forked from simongog/sdsl-lite
-
Notifications
You must be signed in to change notification settings - Fork 1
/
sorted_int_stack.hpp
184 lines (162 loc) · 5.71 KB
/
sorted_int_stack.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
/* sdsl - succinct data structures library
Copyright (C) 2009 Simon Gog
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see http://www.gnu.org/licenses/ .
*/
/*! \file sorted_int_stack.hpp
\brief sorted_int_stack.hpp contains a data structure for a stack which can
contain numbers in strictly increasing order.
\author Simon Gog
*/
#ifndef INCLUDED_SDSL_SORTED_INT_STACK
#define INCLUDED_SDSL_SORTED_INT_STACK
#include "int_vector.hpp"
#include <vector>
//! Namespace for the succinct data structure library.
namespace sdsl
{
//! A stack class which can contain integers in strictly increasing order.
/*! \par Space complexity
* \f$n+o(n)\f$ bits + 64 bits for every stored number > n-1.
*/
class sorted_int_stack
{
public:
typedef int_vector<64>::size_type size_type;
private:
size_type m_n; // maximal value which can be stored on the stack
size_type m_cnt; // counter for elements on the stack
size_type m_top; // top element of the stack
int_vector<64> m_stack; // memory for the stack
std::vector<size_type> m_overflow; // memory for the elements which are greater than n
inline size_type block_nr(size_type x) {
return x/63;
}; // maybe we can speed this up with bit hacks
inline size_type block_pos(size_type x) {
return x%63;
}; // maybe we can speed this up with bit hacks
public:
sorted_int_stack(size_type n);
sorted_int_stack(const sorted_int_stack&) = default;
sorted_int_stack(sorted_int_stack&&) = default;
sorted_int_stack& operator=(const sorted_int_stack&) = default;
sorted_int_stack& operator=(sorted_int_stack&&) = default;
/*! Returns if the stack is empty.
*/
bool empty() const {
return 0==m_cnt;
};
/*! Returns the topmost element of the stack.
* \pre empty()==false
*/
size_type top() const;
/*! Pop the topmost element of the stack.
*/
void pop();
/*! Push value x on the stack.
* \par x Value which should be pushed onto the stack.
* \pre top() < x
*/
void push(size_type x);
/*! Returns the number of element is the stack.
*/
size_type size()const {
return m_cnt;
};
size_type
serialize(std::ostream& out, structure_tree_node* v=nullptr,
std::string name="")const;
void load(std::istream& in);
};
inline sorted_int_stack::sorted_int_stack(size_type n):m_n(n), m_cnt(0), m_top(0)
{
m_stack = int_vector<64>(block_nr(n)+2, 0);
m_stack[0] = 1;
}
inline sorted_int_stack::size_type sorted_int_stack::top()const
{
return m_top-63;
}
inline void sorted_int_stack::push(size_type x)
{
x += 63;
assert(empty() || m_top < x);
++m_cnt; //< increment counter
if (x > m_n+63) {
if (m_overflow.empty()) {
m_overflow.push_back(m_top);
}
m_overflow.push_back(x);
m_top = x;
} else {
size_type bn = block_nr(x);
m_stack[bn] ^= (1ULL << block_pos(x));
if (m_stack[bn-1] == 0) {
m_stack[bn-1] = 0x8000000000000000ULL | m_top;
}
m_top = x;
}
}
inline void sorted_int_stack::pop()
{
if (!empty()) {
--m_cnt; //< decrement counter
if (m_top > m_n+63) {
m_overflow.pop_back();
m_top = m_overflow.back();
if (m_overflow.size()==1)
m_overflow.pop_back();
} else {
size_type bn = block_nr(m_top);
uint64_t w = m_stack[ bn ];
assert((w>>63) == 0); // highest bit is not set, as the block contains no pointer
w ^= (1ULL << block_pos(m_top));
m_stack[ bn ] = w;
if (w>0) {
m_top = bn*63 + bits::hi(w);
} else { // w==0 and cnt>0
assert(bn > 0);
w = m_stack[ bn-1 ];
if ((w>>63) == 0) { // highest bit is not set => the block contains no pointer
assert(w>0);
m_top = (bn-1)*63 + bits::hi(w);
} else { // block contains pointers
m_stack[bn-1] = 0;
m_top = w&0x7FFFFFFFFFFFFFFFULL;
}
}
}
}
}
inline sorted_int_stack::size_type
sorted_int_stack::serialize(std::ostream& out, structure_tree_node* v,
std::string name)const
{
structure_tree_node* child = structure_tree::add_child(v, name, util::class_name(*this));
size_type written_bytes = 0;
written_bytes += write_member(m_n, out);
written_bytes += write_member(m_top, out);
written_bytes += write_member(m_cnt, out);
written_bytes += m_stack.serialize(out);
written_bytes += sdsl::serialize(m_overflow, out, child, "overflow");
structure_tree::add_size(child, written_bytes);
return written_bytes;
}
inline void sorted_int_stack::load(std::istream& in)
{
read_member(m_n, in);
read_member(m_top, in);
read_member(m_cnt, in);
m_stack.load(in);
sdsl::load(m_overflow, in);
}
}// end namespace sdsl
#endif // end file