-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathfthreads.c
1871 lines (1509 loc) · 59 KB
/
fthreads.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* FTHREADS.C (c) Copyright "Fish" (David B. Trout), 2001-2012 */
/* Fish's WIN32 version of pthreads */
/* */
/* Released under "The Q Public License Version 1" */
/* (http://www.hercules-390.org/herclic.html) as modifications to */
/* Hercules. */
#include "hstdinc.h"
#define _FTHREADS_C_
#define _HUTIL_DLL_
#include "hercules.h"
#if defined(OPTION_FTHREADS)
#include "fthreads.h"
////////////////////////////////////////////////////////////////////////////////////
// Private internal fthreads structures...
typedef struct _tagFT_MUTEX // fthread "mutex" structure
{
CRITICAL_SECTION MutexLock; // (lock for accessing this data)
HANDLE hUnlockedEvent; // (signalled while NOT locked)
DWORD dwMutexType; // (type of mutex (normal, etc))
DWORD dwLockOwner; // (thread-id of who owns it)
int nLockedCount; // (#of times lock acquired)
}
FT_MUTEX, *PFT_MUTEX;
typedef struct _tagFT_COND_VAR // fthread "condition variable" structure
{
CRITICAL_SECTION CondVarLock; // (lock for accessing this data)
HANDLE hSigXmitEvent; // set during signal transmission
HANDLE hSigRecvdEvent; // set once signal received by every-
// one that's supposed to receive it.
BOOL bBroadcastSig; // TRUE = "broadcast", FALSE = "signal"
int nNumWaiting; // #of threads waiting to receive signal
}
FT_COND_VAR, *PFT_COND_VAR;
////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////
// Private internal fthreads functions...
static BOOL IsValidMutexType ( DWORD dwMutexType )
{
return (0
// || FTHREAD_MUTEX_NORMAL == dwMutexType // (*UNSUPPORTED*)
|| FTHREAD_MUTEX_RECURSIVE == dwMutexType
|| FTHREAD_MUTEX_ERRORCHECK == dwMutexType
// || FTHREAD_MUTEX_DEFAULT == dwMutexType // (FTHREAD_MUTEX_RECURSIVE)
);
}
////////////////////////////////////////////////////////////////////////////////////
static FT_MUTEX* MallocFT_MUTEX ( )
{
FT_MUTEX* pFT_MUTEX = (FT_MUTEX*) malloc ( sizeof ( FT_MUTEX ) );
if ( !pFT_MUTEX ) return NULL;
memset ( pFT_MUTEX, 0xCD, sizeof ( FT_MUTEX ) );
return pFT_MUTEX;
}
////////////////////////////////////////////////////////////////////////////////////
static BOOL InitializeFT_MUTEX
(
FT_MUTEX* pFT_MUTEX,
DWORD dwMutexType
)
{
// Note: UnlockedEvent created initially signalled
if ( !(pFT_MUTEX->hUnlockedEvent = MyCreateEvent ( NULL, TRUE, TRUE, NULL )) )
{
memset ( pFT_MUTEX, 0xCD, sizeof ( FT_MUTEX ) );
return FALSE;
}
MyInitializeCriticalSection ( &pFT_MUTEX->MutexLock );
pFT_MUTEX->dwMutexType = dwMutexType;
pFT_MUTEX->dwLockOwner = 0;
pFT_MUTEX->nLockedCount = 0;
return TRUE;
}
////////////////////////////////////////////////////////////////////////////////////
static BOOL UninitializeFT_MUTEX
(
FT_MUTEX* pFT_MUTEX
)
{
if ( pFT_MUTEX->nLockedCount > 0 )
return FALSE; // (still in use)
ASSERT( IsEventSet ( pFT_MUTEX->hUnlockedEvent ) );
MyDeleteEvent ( pFT_MUTEX->hUnlockedEvent );
MyDeleteCriticalSection ( &pFT_MUTEX->MutexLock );
memset ( pFT_MUTEX, 0xCD, sizeof ( FT_MUTEX ) );
return TRUE;
}
////////////////////////////////////////////////////////////////////////////////////
static FT_COND_VAR* MallocFT_COND_VAR ( )
{
FT_COND_VAR* pFT_COND_VAR = (FT_COND_VAR*) malloc ( sizeof ( FT_COND_VAR ) );
if ( !pFT_COND_VAR ) return NULL;
memset ( pFT_COND_VAR, 0xCD, sizeof ( FT_COND_VAR ) );
return pFT_COND_VAR;
}
////////////////////////////////////////////////////////////////////////////////////
static BOOL InitializeFT_COND_VAR
(
FT_COND_VAR* pFT_COND_VAR
)
{
if ( ( pFT_COND_VAR->hSigXmitEvent = MyCreateEvent ( NULL, TRUE, FALSE, NULL ) ) )
{
// Note: hSigRecvdEvent created initially signaled
if ( ( pFT_COND_VAR->hSigRecvdEvent = MyCreateEvent ( NULL, TRUE, TRUE, NULL ) ) )
{
MyInitializeCriticalSection ( &pFT_COND_VAR->CondVarLock );
pFT_COND_VAR->bBroadcastSig = FALSE;
pFT_COND_VAR->nNumWaiting = 0;
return TRUE;
}
MyDeleteEvent ( pFT_COND_VAR->hSigXmitEvent );
}
memset ( pFT_COND_VAR, 0xCD, sizeof ( FT_COND_VAR ) );
return FALSE;
}
////////////////////////////////////////////////////////////////////////////////////
static BOOL UninitializeFT_COND_VAR
(
FT_COND_VAR* pFT_COND_VAR
)
{
if (0
|| pFT_COND_VAR->nNumWaiting
|| IsEventSet ( pFT_COND_VAR->hSigXmitEvent )
|| !IsEventSet ( pFT_COND_VAR->hSigRecvdEvent )
)
return FALSE;
MyDeleteEvent ( pFT_COND_VAR->hSigXmitEvent );
MyDeleteEvent ( pFT_COND_VAR->hSigRecvdEvent );
MyDeleteCriticalSection ( &pFT_COND_VAR->CondVarLock );
memset ( pFT_COND_VAR, 0xCD, sizeof ( FT_COND_VAR ) );
return TRUE;
}
////////////////////////////////////////////////////////////////////////////////////
static BOOL TryEnterFT_MUTEX
(
FT_MUTEX* pFT_MUTEX
)
{
BOOL bSuccess;
DWORD dwThreadId = GetCurrentThreadId();
if ( hostinfo.trycritsec_avail )
{
bSuccess = MyTryEnterCriticalSection ( &pFT_MUTEX->MutexLock );
if ( bSuccess )
{
pFT_MUTEX->nLockedCount++;
ASSERT( pFT_MUTEX->nLockedCount > 0 );
pFT_MUTEX->dwLockOwner = dwThreadId;
}
}
else
{
MyEnterCriticalSection ( &pFT_MUTEX->MutexLock );
ASSERT ( pFT_MUTEX->nLockedCount >= 0 );
bSuccess = ( pFT_MUTEX->nLockedCount <= 0 || pFT_MUTEX->dwLockOwner == dwThreadId );
if ( bSuccess )
{
pFT_MUTEX->nLockedCount++;
ASSERT ( pFT_MUTEX->nLockedCount > 0 );
pFT_MUTEX->dwLockOwner = dwThreadId;
MyResetEvent ( pFT_MUTEX->hUnlockedEvent );
}
MyLeaveCriticalSection ( &pFT_MUTEX->MutexLock );
}
return bSuccess;
}
////////////////////////////////////////////////////////////////////////////////////
static void EnterFT_MUTEX
(
FT_MUTEX* pFT_MUTEX
)
{
DWORD dwThreadId = GetCurrentThreadId();
if ( hostinfo.trycritsec_avail )
{
MyEnterCriticalSection ( &pFT_MUTEX->MutexLock );
pFT_MUTEX->dwLockOwner = dwThreadId;
pFT_MUTEX->nLockedCount++;
ASSERT ( pFT_MUTEX->nLockedCount > 0 );
}
else
{
for (;;)
{
MyEnterCriticalSection ( &pFT_MUTEX->MutexLock );
ASSERT ( pFT_MUTEX->nLockedCount >= 0 );
if ( pFT_MUTEX->nLockedCount <= 0 || pFT_MUTEX->dwLockOwner == dwThreadId ) break;
MyLeaveCriticalSection ( &pFT_MUTEX->MutexLock );
MyWaitForSingleObject ( pFT_MUTEX->hUnlockedEvent, INFINITE );
}
MyResetEvent ( pFT_MUTEX->hUnlockedEvent );
pFT_MUTEX->dwLockOwner = dwThreadId;
pFT_MUTEX->nLockedCount++;
ASSERT ( pFT_MUTEX->nLockedCount > 0 );
MyLeaveCriticalSection ( &pFT_MUTEX->MutexLock );
}
}
////////////////////////////////////////////////////////////////////////////////////
static void LeaveFT_MUTEX
(
FT_MUTEX* pFT_MUTEX
)
{
if ( hostinfo.trycritsec_avail )
{
ASSERT ( pFT_MUTEX->nLockedCount > 0 );
pFT_MUTEX->nLockedCount--;
if ( pFT_MUTEX->nLockedCount <= 0 )
pFT_MUTEX->dwLockOwner = 0;
MyLeaveCriticalSection ( &pFT_MUTEX->MutexLock );
}
else
{
MyEnterCriticalSection ( &pFT_MUTEX->MutexLock );
ASSERT ( pFT_MUTEX->nLockedCount > 0 );
pFT_MUTEX->nLockedCount--;
if ( pFT_MUTEX->nLockedCount <= 0 )
{
pFT_MUTEX->dwLockOwner = 0;
MySetEvent ( pFT_MUTEX->hUnlockedEvent );
}
MyLeaveCriticalSection ( &pFT_MUTEX->MutexLock );
}
}
////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////
// Now we get to the "meat" of fthreads...
//
// The below function atomically releases the caller's mutex and registers the fact
// that the caller wishes to wait on their condition variable (or rather the other
// way around: it first registers the fact that the caller wishes to wait on the
// condition by first acquiring the condition variable lock and then registering
// the wait and THEN afterwards (once the wait has been registered and condition
// variable lock acquired) releases the original mutex). This ensures that no one
// can "sneak a signal past us" from the time this function is called until we can
// manage to register the wait request since no signals can ever be sent while the
// condition variable is locked.
static int BeginWait
(
FT_COND_VAR* pFT_COND_VAR,
fthread_mutex_t* pFTUSER_MUTEX
)
{
int rc;
FT_MUTEX* pFT_MUTEX;
if (0
|| !pFT_COND_VAR // (invalid ptr)
|| !pFTUSER_MUTEX // (invalid ptr)
|| !(pFT_MUTEX = pFTUSER_MUTEX->hMutex) // (invalid ptr)
)
return RC(EINVAL);
if (0
|| pFT_MUTEX -> dwLockOwner != GetCurrentThreadId() // (mutex not owned)
|| pFT_MUTEX -> nLockedCount <= 0 // (mutex not locked)
)
return RC(EPERM);
// First, acquire the fthreads condition variable lock...
for (;;)
{
MyEnterCriticalSection ( &pFT_COND_VAR->CondVarLock );
// It is always safe to proceed if the prior signal was completely
// processed (received by everyone who was supposed to receive it)
if ( IsEventSet ( pFT_COND_VAR->hSigRecvdEvent ) )
break;
// Prior signal not completely received yet... Verify that it is
// still being transmitted...
ASSERT ( IsEventSet ( pFT_COND_VAR->hSigXmitEvent ) );
// If no one is currently waiting to receive [this signal not yet
// completely received and still being transmitted], then we can
// go ahead and receive it right now *regardless* of what type of
// signal it is ("signal" or "broadcast") since we're *obviously*
// the one who is supposed to receive it (since we ARE trying to
// wait on it after all and it IS being transmitted. The 'xmit'
// event is *always* turned off once everyone [who is *supposed*
// to receive the signal] *has* received the signal. Thus, since
// it's still being transmitted, that means *not* everyone who
// *should* receive it *has* received it yet, and thus we can be
// absolutely certain that we indeed *should* therefore receive it
// since we *are* after all waiting for it).
// Otherwise (prior signal not completely processed AND there are
// still others waiting to receive it too (as well as us)), then if
// it's a "broadcast" type signal, we can go ahead and receive that
// type of signal too as well (along with the others); we just came
// to the party a little bit late (but nevertheless in the nick of
// time!), that's all...
if ( !pFT_COND_VAR->nNumWaiting || pFT_COND_VAR->bBroadcastSig )
break;
// Otherwise it's a "signal" type signal (and not a broadcast type)
// that hasn't been completely received yet, meaning only ONE thread
// should be released. Thus, since there's already a thread (or more
// than one thread) already waiting/trying to receive it, we need to
// let [one of] THEM receive it and NOT US. Thus we go back to sleep
// and wait for the signal processing currently in progress to finish
// releasing the proper number of threads first. Only once that has
// happened can we then be allowed to try and catch whatever signal
// happens to come along next...
MyLeaveCriticalSection ( &pFT_COND_VAR->CondVarLock );
// (Programming Note: technically we should really be checking our
// return code from the below wait call too)
MyWaitForSingleObject ( pFT_COND_VAR->hSigRecvdEvent, INFINITE );
}
// Register the caller's wait request while we still have control
// over this condition variable...
pFT_COND_VAR->nNumWaiting++; // (register wait request)
// Now release the original mutex and thus any potential signalers...
// (but note that no signal can actually ever be sent per se until
// the condition variable which we currently have locked is first
// released, which gets done in the WaitForTransmission function).
if
(
(
rc = fthread_mutex_unlock
(
pFTUSER_MUTEX
)
)
!= 0
)
{
// Oops! Something went wrong. We couldn't release the original
// caller's original mutex. Since we've already registered their
// wait and already have the condition variable locked, we need
// to first de-register their wait and release the condition var-
// iable lock before returning our error (i.e. we essentially
// need to back out what we previously did just above).
logmsg("fthreads: BeginWait: fthread_mutex_unlock failed! rc=%d\n"
,rc );
pFT_COND_VAR->nNumWaiting--; // (de-register wait request)
MyLeaveCriticalSection ( &pFT_COND_VAR->CondVarLock );
return RC(rc);
}
// Our "begin-to-wait-on-condition-variable" task has been successfully
// completed. We have essentially atomically released the originally mutex
// and "begun our wait" on it (by registering the fact that there's someone
// wanting to wait on it). Return to OUR caller with the condition variable
// still locked (so no signals can be sent nor any threads released until
// our caller calls the below WaitForTransmission function)...
return RC(0); // (success)
}
////////////////////////////////////////////////////////////////////////////////////
// Wait for the condition variable in question to receive a transmission...
static int WaitForTransmission
(
FT_COND_VAR* pFT_COND_VAR,
const struct timespec* pTimeTimeout // (NULL == INFINITE wait)
)
{
DWORD dwWaitRetCode, dwWaitMilliSecs;
// If the signal has already arrived (i.e. is still being transmitted)
// then there's no need to wait for it. Simply return success with the
// condition variable still locked...
if ( IsEventSet ( pFT_COND_VAR->hSigXmitEvent ) )
{
// There's no need to wait for the signal (transmission)
// to arrive because it's already been sent! Just return.
return 0; // (transmission received!)
}
// Our loop to wait for our transmission to arrive...
do
{
// Release condition var lock (so signal (transmission) can
// be sent) and then wait for the signal (transmission)...
MyLeaveCriticalSection ( &pFT_COND_VAR->CondVarLock );
// Need to calculate a timeout value if this is a
// timed condition wait as opposed to a normal wait...
// Note that we unfortunately need to do this on each iteration
// because Window's wait API requires a relative timeout value
// rather than an absolute TOD timeout value like pthreads...
if ( !pTimeTimeout )
{
dwWaitMilliSecs = INFINITE;
}
else
{
struct timeval TimeNow;
gettimeofday ( &TimeNow, NULL );
if (TimeNow.tv_sec > pTimeTimeout->tv_sec
||
(
TimeNow.tv_sec == pTimeTimeout->tv_sec
&&
(TimeNow.tv_usec * 1000) > pTimeTimeout->tv_nsec
)
)
{
dwWaitMilliSecs = 0;
}
else
{
dwWaitMilliSecs =
((pTimeTimeout->tv_sec - TimeNow.tv_sec) * 1000) +
((pTimeTimeout->tv_nsec - (TimeNow.tv_usec * 1000)) / 1000000);
}
}
// Finally we get to do the actual wait...
dwWaitRetCode =
MyWaitForSingleObject ( pFT_COND_VAR->hSigXmitEvent, dwWaitMilliSecs );
// A signal (transmission) has been sent; reacquire our condition var lock
// and receive the transmission (if it's still being transmitted that is)...
MyEnterCriticalSection ( &pFT_COND_VAR->CondVarLock );
// The "WAIT_OBJECT_0 == dwWaitRetCode && ..." clause in the below 'while'
// statement ensures that we will always break out of our wait loop whenever
// either a timeout occurs or our actual MyWaitForSingleObject call fails
// for any reason. As long as dwWaitRetCode is WAIT_OBJECT_0 though *AND*
// our event has still not been signaled yet, then we'll continue looping
// to wait for a signal (transmission) that we're supposed to receive...
// Also note that one might at first think/ask: "Gee, Fish, why do we need
// to check to see if the condition variable's "hSigXmitEvent" event has
// been set each time (via the 'IsEventSet' macro)? Shouldn't it *always*
// be set if the above MyWaitForSingleObject call returns??" The answer is
// of course no, it might NOT [still] be signaled. This is because whenever
// someone *does* happen to signal it, we will of course be released from
// our wait (the above MyWaitForSingleObject call) BUT... someone else who
// was also waiting for it may have managed to grab our condition variable
// lock before we could and they could have reset it. Thus we need to check
// it again each time.
}
while ( WAIT_OBJECT_0 == dwWaitRetCode && !IsEventSet( pFT_COND_VAR->hSigXmitEvent ) );
// Our signal (transmission) has either [finally] arrived or else we got
// tired of waiting for it (i.e. we timed out) or else there was an error...
if ( WAIT_OBJECT_0 == dwWaitRetCode ) return RC(0);
if ( WAIT_TIMEOUT == dwWaitRetCode ) return RC(ETIMEDOUT);
// Our wait failed! Something is VERY wrong! Maybe the condition variable
// was prematurely destroyed by someone? <shrug> In any case there's not
// much we can do about it other than log the fact that it occurred and
// return the error back to the caller. Their wait request has, believe
// it or not, actually been completed (although not as they expected it
// would in all likelihood!)...
logmsg ( "fthreads: WaitForTransmission: MyWaitForSingleObject failed! dwWaitRetCode=%d (0x%8.8X)\n"
,dwWaitRetCode ,dwWaitRetCode );
return RC(EFAULT);
}
////////////////////////////////////////////////////////////////////////////////////
// Send a "signal" or "broadcast" to a condition variable...
static int QueueTransmission
(
FT_COND_VAR* pFT_COND_VAR,
BOOL bXmitType
)
{
if (!pFT_COND_VAR)
return RC(EINVAL); // (invalid parameters were passed)
// Wait for the condition variable to become free so we can begin transmitting
// our signal... If the condition variable is still "busy" (in use), then that
// means threads are still in the process of being released as a result of some
// prior signal (transmission). Thus we must wait until that work is completed
// first before we can send our new signal (transmission)...
for (;;)
{
MyEnterCriticalSection ( &pFT_COND_VAR->CondVarLock );
if ( IsEventSet ( pFT_COND_VAR->hSigRecvdEvent ) ) break;
MyLeaveCriticalSection ( &pFT_COND_VAR->CondVarLock );
MyWaitForSingleObject ( pFT_COND_VAR->hSigRecvdEvent, INFINITE );
}
// Turn on our transmitter... (i.e. start transmitting our "signal" to
// all threads who might be waiting to receive it (if there are any)...
// If no one has registered their interest in receiving any transmissions
// associated with this particular condition variable, then they are unfor-
// tunately a little too late in doing so because we're ready to start our
// transmission right now! If there's no one to receive our transmission,
// then it simply gets lost (i.e. a "missed signal" situation has essenti-
// ally occurred), but then that's not our concern here; our only concern
// here is to transmit the signal (transmission) and nothing more. Tough
// beans if there's no one listening to receive it... <shrug>
if ( pFT_COND_VAR->nNumWaiting ) // (anyone interested?)
{
pFT_COND_VAR->bBroadcastSig = bXmitType; // (yep! set xmit type)
MySetEvent ( pFT_COND_VAR->hSigXmitEvent ); // (turn on transmitter)
MyResetEvent ( pFT_COND_VAR->hSigRecvdEvent ); // (serialize reception)
}
MyLeaveCriticalSection ( &pFT_COND_VAR->CondVarLock );
return RC(0);
}
////////////////////////////////////////////////////////////////////////////////////
// A thread has been released as a result of someone's signal or broadcast...
static void ReceiveXmission
(
FT_COND_VAR* pFT_COND_VAR
)
{
// If we were the only ones supposed to receive the transmission, (or
// if no one remains to receive any transmissions), then turn off the
// transmitter (i.e. stop sending the signal) and indicate that it has
// been completely received all interested parties (i.e. by everyone
// who was supposed to receive it)...
pFT_COND_VAR->nNumWaiting--; // (de-register wait since transmission
// has been successfully received now)
// Determine whether any more waiters (threads) should also receive
// this transmission (i.e. also be released) or whether we should
// reset (turn off) our transmitter so as to not release any other
// thread(s) besides ourselves...
if (0
|| !pFT_COND_VAR->bBroadcastSig // ("signal" == only us)
|| pFT_COND_VAR->nNumWaiting <= 0 // (no one else == only us)
)
{
MyResetEvent ( pFT_COND_VAR->hSigXmitEvent ); // (turn off transmitter)
MySetEvent ( pFT_COND_VAR->hSigRecvdEvent ); // (transmission complete)
}
}
////////////////////////////////////////////////////////////////////////////////////
// The following function is called just before returning back to the caller. It
// first releases the condition variable lock (since we're now done with it) and
// then reacquires the caller's original mutex before returning [back to the caller].
// We MUST do things in that order! 1) release our condition variable lock, and THEN
// 2) try to reacquire the caller's original mutex. Otherwise a deadlock could occur!
// If we still had the condition variable locked before trying to acquire the caller's
// original mutex, we could easily become blocked if some other thread still already
// owned (had locked) the caller's mutex. We would then be unable to ever release our
// condition variable lock until whoever had the mutex locked first released it, but
// they would never be able to release it because we still had the condition variable
// still locked! Recall that upon entry to a wait call (see previous BeginWait function)
// we acquire the condition variable lock *first* (in order to register the caller's
// wait) before releasing their mutex. Thus, we MUST therefore release our condition
// variable lock FIRST and THEN try reacquiring their original mutex before returning.
static int ReturnFromWait
(
FT_COND_VAR* pFT_COND_VAR,
fthread_mutex_t* pFTUSER_MUTEX,
int nRetCode
)
{
int rc;
FT_MUTEX* pFT_MUTEX;
if (0
|| !pFT_COND_VAR // (invalid ptr)
|| !pFTUSER_MUTEX // (invalid ptr)
|| !(pFT_MUTEX = pFTUSER_MUTEX->hMutex) // (invalid ptr)
)
return RC(EINVAL);
// (let other threads access this condition variable now...)
MyLeaveCriticalSection ( &pFT_COND_VAR->CondVarLock );
// (reacquire original mutex before returning back to the original caller...)
if
(
(
rc = fthread_mutex_lock
(
pFTUSER_MUTEX
)
)
!= 0
)
{
// Oops! We were unable to reacquire the caller's original mutex! This
// is actually a catastrophic type of error! The caller expects their
// mutex to still be owned (locked) by themselves upon return, but we
// were unable to reacquire it for them! Unfortunately there's nothing
// we can do about this; the system is essentially hosed at this point.
// Just log the fact that something went wrong and return. <shrug>
logmsg("fthreads: ReturnFromWait: fthread_mutex_lock failed! rc=%d\n"
,rc );
return RC(rc); // (what went wrong)
}
// Return to caller with the requested return code. (The caller passes to us
// the return code they wish to pass back to the original caller, so we just
// return that same return code back to OUR caller (so they can then pass it
// back to the original fthreads caller)).
return RC(nRetCode); // (as requested)
}
////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////
// Threading functions...
LIST_ENTRY ThreadListHead; // head list entry of list of joinable threads
CRITICAL_SECTION ThreadListLock; // lock for accessing list of joinable threads
#define LockThreadsList() EnterCriticalSection ( &ThreadListLock )
#define UnlockThreadsList() LeaveCriticalSection ( &ThreadListLock )
////////////////////////////////////////////////////////////////////////////////////
// internal joinable thread information
typedef struct _tagFTHREAD
{
LIST_ENTRY ThreadListLink; // (links entries together in a chain)
DWORD dwThreadID; // (thread-id)
HANDLE hThreadHandle; // (Win32 thread handle)
BOOL bJoinable; // (whether thread is joinable or detached)
int nJoinedCount; // (#of threads that did join on this one)
void* ExitVal; // (saved thread exit value)
jmp_buf JumpBuf; // (jump buffer for fthread_exit)
}
FTHREAD, *PFTHREAD;
////////////////////////////////////////////////////////////////////////////////////
// (Note: returns with thread list lock still held if found; not held if not found)
static FTHREAD* FindFTHREAD ( DWORD dwThreadID )
{
FTHREAD* pFTHREAD;
LIST_ENTRY* pListEntry;
LockThreadsList(); // (acquire thread list lock)
pListEntry = ThreadListHead.Flink;
while ( pListEntry != &ThreadListHead )
{
pFTHREAD = CONTAINING_RECORD ( pListEntry, FTHREAD, ThreadListLink );
pListEntry = pListEntry->Flink;
if ( pFTHREAD->dwThreadID != dwThreadID )
continue;
return pFTHREAD; // (return with thread list lock still held)
}
UnlockThreadsList(); // (release thread list lock)
return NULL; // (not found)
}
////////////////////////////////////////////////////////////////////////////////////
typedef struct _ftCallThreadParms
{
PFT_THREAD_FUNC pfnTheirThreadFunc;
void* pvTheirThreadArgs;
const char* pszTheirThreadName;
FTHREAD* pFTHREAD;
}
FT_CALL_THREAD_PARMS;
//----------------------------------------------------------------------------------
static DWORD __stdcall FTWin32ThreadFunc
(
void* pMyArgs
)
{
FT_CALL_THREAD_PARMS* pCallTheirThreadParms;
PFT_THREAD_FUNC pfnTheirThreadFunc;
void* pvTheirThreadArgs;
FTHREAD* pFTHREAD;
pCallTheirThreadParms = (FT_CALL_THREAD_PARMS*) pMyArgs;
pfnTheirThreadFunc = pCallTheirThreadParms->pfnTheirThreadFunc;
pvTheirThreadArgs = pCallTheirThreadParms->pvTheirThreadArgs;
pFTHREAD = pCallTheirThreadParms->pFTHREAD;
// PROGRAMMING NOTE: -1 == "current calling thread"
SET_THREAD_NAME_ID ( -1, pCallTheirThreadParms->pszTheirThreadName );
free ( pCallTheirThreadParms );
if ( setjmp ( pFTHREAD->JumpBuf ) == 0 )
pFTHREAD->ExitVal = pfnTheirThreadFunc ( pvTheirThreadArgs );
LockThreadsList();
if ( !pFTHREAD->bJoinable )
{
// If we are not a joinable thread, we must free our
// own resources ourselves, but ONLY IF the 'joined'
// count is zero. If the 'joined' count is NOT zero,
// then, however it occurred, there is still someone
// waiting in the join function for us to exit, and
// thus, we cannot free our resources at this time
// (since the thread that did the join and which is
// waiting for us to exit still needs access to our
// resources). In such a situation the actual freeing
// of resources is deferred and will be done by the
// join function itself whenever it's done with them.
if ( pFTHREAD->nJoinedCount <= 0 )
{
CloseHandle ( pFTHREAD->hThreadHandle );
RemoveListEntry ( &pFTHREAD->ThreadListLink );
free ( pFTHREAD );
}
}
UnlockThreadsList();
MyExitThread ( 0 );
return 0; // (make compiler happy)
}
/////////////////////////////////////////////////////////////////////////////////////
// Get the handle for a specific Thread ID
DLL_EXPORT
HANDLE fthread_get_handle
(
fthread_t dwThreadID // Thread ID
)
{
FTHREAD* pFTHREAD = NULL; // Local pointer storage
if ( dwThreadID != 0 )
{
// If request is for current thread then it's easy
if (GetCurrentThreadId() == dwThreadID)
return GetCurrentThread();
// Otherwise we need to look in our list
pFTHREAD = FindFTHREAD( dwThreadID );
}
if ( pFTHREAD != NULL )
{
UnlockThreadsList(); // (release thread list lock
return pFTHREAD->hThreadHandle;
}
return NULL;
}
////////////////////////////////////////////////////////////////////////////////////
// Create a new thread...
DLL_EXPORT
int fthread_create
(
fthread_t* pdwThreadID,
fthread_attr_t* pThreadAttr,
PFT_THREAD_FUNC pfnThreadFunc,
void* pvThreadArgs,
const char* pszThreadName
)
{
static BOOL bDidInit = FALSE;
FT_CALL_THREAD_PARMS* pCallTheirThreadParms;
size_t nStackSize;
int nDetachState;
FTHREAD* pFTHREAD;
HANDLE hThread;
DWORD dwThreadID;
if ( !bDidInit )
{
bDidInit = TRUE;
InitializeListHead ( &ThreadListHead );
InitializeCriticalSection ( &ThreadListLock );
}
if (0
|| !pdwThreadID
|| !pfnThreadFunc
)
return RC(EINVAL);
if ( pThreadAttr )
{
if (pThreadAttr->nDetachState != FTHREAD_CREATE_DETACHED &&
pThreadAttr->nDetachState != FTHREAD_CREATE_JOINABLE)
return RC(EINVAL);
nStackSize = pThreadAttr->nStackSize;
nDetachState = pThreadAttr->nDetachState;
}
else
{
nStackSize = 0;
nDetachState = FTHREAD_CREATE_DEFAULT;
}
pCallTheirThreadParms = (FT_CALL_THREAD_PARMS*)
malloc ( sizeof ( FT_CALL_THREAD_PARMS ) );
if ( !pCallTheirThreadParms )
{
logmsg("fthread_create: malloc(FT_CALL_THREAD_PARMS) failed\n");
return RC(ENOMEM); // (out of memory)
}
pFTHREAD = (FTHREAD*)
malloc ( sizeof( FTHREAD ) );
if ( !pFTHREAD )
{
logmsg("fthread_create: malloc(FTHREAD) failed\n");
free ( pCallTheirThreadParms );
return RC(ENOMEM); // (out of memory)
}
pCallTheirThreadParms->pfnTheirThreadFunc = pfnThreadFunc;
pCallTheirThreadParms->pvTheirThreadArgs = pvThreadArgs;
pCallTheirThreadParms->pszTheirThreadName = pszThreadName;
pCallTheirThreadParms->pFTHREAD = pFTHREAD;
InitializeListLink(&pFTHREAD->ThreadListLink);
pFTHREAD->dwThreadID = 0;
pFTHREAD->hThreadHandle = NULL;
pFTHREAD->bJoinable = ((FTHREAD_CREATE_JOINABLE == nDetachState) ? (TRUE) : (FALSE));
pFTHREAD->nJoinedCount = 0;
pFTHREAD->ExitVal = NULL;
LockThreadsList();
hThread =
MyCreateThread ( NULL, nStackSize, FTWin32ThreadFunc, pCallTheirThreadParms, 0, &dwThreadID );
if ( !hThread )
{
UnlockThreadsList();
logmsg("fthread_create: MyCreateThread failed\n");
free ( pCallTheirThreadParms );
free ( pFTHREAD );
return RC(EAGAIN); // (unable to obtain required resources)
}
pFTHREAD->hThreadHandle = hThread;
pFTHREAD->dwThreadID = dwThreadID;
*pdwThreadID = dwThreadID;
InsertListHead ( &ThreadListHead, &pFTHREAD->ThreadListLink );
UnlockThreadsList();
return RC(0);
}
////////////////////////////////////////////////////////////////////////////////////
// Exit from a thread...
DLL_EXPORT
void fthread_exit
(
void* ExitVal
)
{
FTHREAD* pFTHREAD;
VERIFY ( pFTHREAD = FindFTHREAD ( GetCurrentThreadId() ) );
pFTHREAD->ExitVal = ExitVal;
UnlockThreadsList();
longjmp ( pFTHREAD->JumpBuf, 1 );
}
////////////////////////////////////////////////////////////////////////////////////
// Join a thread (i.e. wait for a thread's termination)...
DLL_EXPORT
int fthread_join
(
fthread_t dwThreadID,
void** pExitVal
)
{
HANDLE hThread;
FTHREAD* pFTHREAD;
if ( GetCurrentThreadId() == dwThreadID )
return RC(EDEADLK); // (can't join self!)
if ( !(pFTHREAD = FindFTHREAD ( dwThreadID ) ) )
return RC(ESRCH); // (thread not found)
// (Note: threads list lock still held at this point
// since thread was found...)
if ( !pFTHREAD->bJoinable )
{
UnlockThreadsList();
return RC(EINVAL); // (not a joinable thread)
}