forked from DongjunLee/conversation-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchat.py
124 lines (87 loc) · 3.32 KB
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
#-*- coding: utf-8 -*-
import argparse
import os
import sys
from hbconfig import Config
import numpy as np
import tensorflow as tf
import data_loader
from model import Conversation
import utils
def chat(ids, vocab):
X = np.array(data_loader._pad_input(ids, Config.data.max_seq_length), dtype=np.int32)
X = np.reshape(X, (1, Config.data.max_seq_length))
predict_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"input_data": X},
num_epochs=1,
shuffle=False)
estimator = _make_estimator()
result = estimator.predict(input_fn=predict_input_fn)
prediction = next(result)["prediction"]
beam_width = Config.predict.get('beam_width', 0)
if beam_width > 0:
def select_by_score(predictions):
p_list = list(predictions)
scores = []
for p in p_list:
score = 0
unknown_count = len(list(filter(lambda x: x == -1, p)))
score -= 2 * unknown_count
eos_except_last_count = len(list(filter(lambda x: x == Config.data.EOS_ID, p[:-1])))
score -= 2 * eos_except_last_count
distinct_id_count = len(list(set(p)))
score += 1 * distinct_id_count
if eos_except_last_count == 0 and p[-1] == Config.data.EOS_ID:
score += 5
scores.append(score)
max_score_index = scores.index(max(scores))
return predictions[max_score_index]
prediction = select_by_score(prediction)
rev_vocab = utils.get_rev_vocab(vocab)
def to_str(sequence):
tokens = [
rev_vocab.get(x, '') for x in sequence if x != Config.data.PAD_ID]
return ' '.join(tokens)
return to_str(prediction)
def _make_estimator():
params = tf.contrib.training.HParams(**Config.model.to_dict())
# Using CPU
run_config = tf.contrib.learn.RunConfig(
model_dir=Config.train.model_dir,
session_config=tf.ConfigProto(
device_count={'GPU': 0}
))
conversation = Conversation()
return tf.estimator.Estimator(
model_fn=conversation.model_fn,
model_dir=Config.train.model_dir,
params=params,
config=run_config)
def _get_user_input():
""" Get user's input, which will be transformed into encoder input later """
print("> ", end="")
sys.stdout.flush()
return sys.stdin.readline()
def main():
vocab = data_loader.load_vocab("vocab")
Config.data.vocab_size = len(vocab)
while True:
sentence = _get_user_input().lower()
ids = data_loader.sentence2id(vocab, sentence)
ids += [Config.data.START_ID]
if len(ids) > Config.data.max_seq_length:
print(f"Max length I can handle is: {Config.data.max_seq_length}")
continue
answer = chat(ids, vocab)
print(answer)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--config', type=str, default='config',
help='config file name')
args = parser.parse_args()
Config(args.config)
Config.train.batch_size = 1
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
tf.logging.set_verbosity(tf.logging.ERROR)
main()