-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchat_with_pdf.py
234 lines (209 loc) · 9.31 KB
/
chat_with_pdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
import os
from langchain_google_genai import GoogleGenerativeAIEmbeddings
import google.generativeai as genai
from langchain_community.vectorstores import FAISS
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from dotenv import load_dotenv
import logging
from io import BytesIO
import base64
# Set up logging for debugging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
api_key = os.getenv("GOOGLE_API_KEY")
if not api_key:
st.error("Google API key not found. Please set it in the .env file.")
st.stop()
genai.configure(api_key=api_key)
# Function to extract text from PDFs
def get_pdf_text(pdf_docs):
"""Extract text from uploaded PDF files."""
text = ""
try:
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text() or ""
logger.info(f"Extracted text from {len(pdf_docs)} PDFs")
except Exception as e:
logger.error(f"Error extracting text from PDFs: {e}")
st.error(f"Error extracting text from PDFs: {e}")
return text
# Function to split text into chunks
def get_text_chunks(text):
"""Split text into chunks for processing."""
try:
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
chunks = text_splitter.split_text(text)
logger.info(f"Text split into {len(chunks)} chunks")
return chunks
except Exception as e:
logger.error(f"Error splitting text: {e}")
st.error(f"Error splitting text: {e}")
return []
# Function to create and save vector store
def get_vector_store(text_chunks):
"""Create and save a FAISS vector store from text chunks."""
try:
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
vector_store.save_local("faiss_index")
logger.info("Vector store created and saved successfully")
except Exception as e:
logger.error(f"Error creating vector store: {e}")
st.error(f"Error creating vector store: {e}")
# Function to define conversational chain
def get_conversational_chain():
"""Define the conversational chain for question answering."""
prompt_template = """
Answer the question as detailed as possible from the provided context. If the answer is not in the provided context,
state "answer is not available in the context". Do not provide incorrect answers.\n\n
Context:\n {context}\n
Question: \n{question}\n
Answer:
"""
try:
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
logger.info("Conversational chain initialized successfully")
return chain
except Exception as e:
logger.error(f"Error initializing conversational chain: {e}")
st.error(f"Error initializing conversational chain: {e}")
return None
# Function to handle user input and generate responses
def user_input(user_question):
"""Process user question and generate a response."""
try:
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
new_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
docs = new_db.similarity_search(user_question)
chain = get_conversational_chain()
if chain is None:
return
response = chain(
{"input_documents": docs, "question": user_question},
return_only_outputs=True
)
logger.info(f"Generated response for question: {user_question}")
st.write("### Reply:")
st.success(response["output_text"])
except Exception as e:
logger.error(f"Error processing user input: {e}")
st.error(f"Error processing user input: {e}")
# Function to generate a downloadable report
def generate_report(user_question, response_text):
"""Generate a downloadable report of the question and answer."""
report = f"Chat with PDF Report\n\n"
report += f"Question: {user_question}\n"
report += f"Answer: {response_text}\n"
buffer = BytesIO()
buffer.write(report.encode())
buffer.seek(0)
return buffer
# Streamlit app
def main():
# Set page configuration for a professional look
st.set_page_config(page_title="Chat with PDF using Gemini", page_icon="📄", layout="wide")
# Custom CSS for better styling
st.markdown("""
<style>
.main-title {
font-size: 36px;
font-weight: bold;
color: #1E88E5;
text-align: center;
margin-bottom: 20px;
}
.sidebar .sidebar-content {
background-color: #f0f2f6;
}
.stButton>button {
background-color: #1E88E5;
color: white;
border-radius: 5px;
}
</style>
""", unsafe_allow_html=True)
# Title and introduction
st.markdown('<div class="main-title">Chat with PDF using Gemini</div>', unsafe_allow_html=True)
st.write("""
Welcome to this interactive app that allows you to chat with your PDF documents using Google's Gemini model.
Upload your PDFs, ask questions, and get detailed answers extracted from the documents. This app leverages
advanced NLP techniques, including embeddings, vector stores, and conversational AI.
""")
# Sidebar for navigation and additional information
st.sidebar.title("Navigation")
page = st.sidebar.radio("Go to", ["Chat with PDF", "About"])
# Page: Chat with PDF
if page == "Chat with PDF":
st.subheader("Chat with Your PDFs")
st.write("""
Upload your PDF files using the sidebar menu, then ask questions about the content.
The app will process the PDFs, extract relevant information, and provide detailed answers.
""")
user_question = st.text_input("Ask a Question from the PDF Files", key="user_question")
if user_question:
if not os.path.exists("faiss_index"):
st.warning("Please upload and process PDF files before asking questions.")
else:
response = user_input(user_question)
if response:
# Offer downloadable report
report_buffer = generate_report(user_question, response)
st.download_button(
label="Download Answer Report",
data=report_buffer,
file_name="answer_report.txt",
mime="text/plain"
)
with st.sidebar:
st.title("Menu:")
pdf_docs = st.file_uploader(
"Upload your PDF Files and Click on the Submit & Process Button",
accept_multiple_files=True,
key="pdf_uploader"
)
if st.button("Submit & Process", key="process_button"):
if pdf_docs:
with st.spinner("Processing..."):
logger.info("Starting PDF processing...")
raw_text = get_pdf_text(pdf_docs)
if raw_text:
text_chunks = get_text_chunks(raw_text)
if text_chunks:
get_vector_store(text_chunks)
st.success("Done! You can now ask questions.")
else:
st.warning("Please upload at least one PDF file.")
# Page: About
elif page == "About":
st.subheader("About This Project")
st.write("""
This project demonstrates the power of modern NLP techniques for document-based question answering.
The app processes PDF documents, extracts text, splits it into chunks, creates embeddings using Google's
Gemini model, and stores them in a FAISS vector store for efficient retrieval. Users can then ask questions,
and the app retrieves relevant document chunks to generate detailed answers.
**Key Features:**
- PDF text extraction and chunking.
- Embedding generation using Google Gemini.
- Efficient similarity search using FAISS.
- Conversational question answering with detailed responses.
- Downloadable answer reports.
**Technologies Used:**
- Python, Streamlit, PyPDF2, LangChain, Google Generative AI, FAISS, dotenv.
**Developer:** Sai Ruthvik
This project is part of my portfolio to showcase my expertise in machine learning, natural language processing,
and software engineering. For more details, feel free to connect with me on [LinkedIn](https://www.linkedin.com/in/sai-ruthvik)
or check out my [GitHub](https://github.com/hawkh).
""")
if __name__ == "__main__":
main()