# API Reference ## Flask Routes ### `GET /` **Description**: Main application entry point. Renders the music player interface with an empty playlist. **Request**: None **Response**: HTML page (musi.html template) **Template Variables**: - `songs`: Empty list `[]` **Example**: ```bash curl http://localhost:5000/ ``` --- ### `POST /hook` **Description**: Receives webcam snapshot, performs emotion detection, and generates a personalized playlist. **Request**: - **Method**: POST - **Content-Type**: application/x-www-form-urlencoded - **Body Parameters**: - `imageBase64` (string): Base64-encoded PNG image from webcam **Response**: HTML page (musi.html template) with generated playlist **Template Variables**: - `songs`: List of song strings in format `"XXX.mp3_Song Name - Artist"` **Process**: 1. Decode base64 image data 2. Save image to `snapshots/pic.png` 3. Call `get_playlist()` to generate songs 4. Render template with playlist **Example**: ```javascript $.ajax({ type: "POST", url: "/hook", data: { imageBase64: "..." }, success: function(response) { document.write(response); } }); ``` --- ### `GET /graph` **Description**: Generates emotion history visualization and returns the music player with current playlist. **Request**: None **Response**: HTML page (musi.html template) with playlist **Side Effects**: - Creates emotion grid visualization - Saves graph to `static/graph.jpg` **Template Variables**: - `songs`: List of songs from current session **Example**: ```bash curl http://localhost:5000/graph ``` --- ## Python Functions ### `algorithmia.py` #### `get_emotion()` **Description**: Analyzes the saved snapshot image to detect facial emotions using Algorithmia's deep learning API. **Parameters**: None (reads from `snapshots/pic.png`) **Returns**: - `str`: Detected emotion name ("Happy", "Sad", "Angry", "Fear", "Surprise", "Disgust", or "Neutral") **Side Effects**: - Appends emotion color code to global `emot_list` - Prints emotion list to console **Algorithm**: 1. Read image from `snapshots/pic.png` 2. Send to Algorithmia EmotionRecognitionCNNMBP API 3. Parse confidence scores for each emotion 4. Return emotion with highest confidence 5. Default to "Neutral" if no face detected **API Call**: ```python client = Algorithmia.client('api-key') algo = client.algo('deeplearning/EmotionRecognitionCNNMBP/1.0.1') result = algo.pipe(input).result ``` **Emotion Color Mapping**: ```python { 'Neutral': 11, 'Sad': 31, 'Disgust': 51, 'Fear': 61, 'Surprise': 41, 'Happy': 21, 'Angry': 1 } ``` **Example**: ```python from algorithmia import get_emotion emotion = get_emotion() print(f"Detected emotion: {emotion}") # Output: "Detected emotion: Happy" ``` --- #### `get_playlist()` **Description**: Generates a personalized music playlist based on detected emotion using cluster-based selection. **Parameters**: None **Returns**: - `list`: Playlist of song strings in format `"XXX.mp3_Song Name - Artist"` **Dependencies**: - Calls `get_emotion()` internally - Reads song database from `test.txt` **Cluster Mapping**: ```python songlist = { 1: [1, 170], # Energetic/Upbeat 2: [171, 334], # Moderate Energy 3: [335, 549], # Neutral/Mixed 4: [550, 740], # Calm/Mellow 5: [741, 903] # Intense/Dark } ``` **Emotion-to-Cluster Logic**: | Emotion | Cluster Distribution | Total Songs | |---------|---------------------|-------------| | Anger, Fear | 5×2, 3×7, 2×12 | 21 songs | | Sad | 3×4, 4×4, 2×13 | 42 songs | | Neutral, Disgust, Surprise | 3×2, 4×5, 2×7, 1×5 | 19 songs | | Happy | 2×10, 4×5, 1×6 | 21 songs | **Algorithm**: 1. Detect current emotion 2. Select cluster distribution based on emotion 3. For each cluster in distribution: - Randomly select N songs from that cluster's range 4. Return complete playlist **Example**: ```python from algorithmia import get_playlist playlist = get_playlist() print(f"Generated {len(playlist)} songs") print(f"First song: {playlist[0]}") # Output: "Generated 21 songs" # Output: "First song: 741.mp3_Song Name - Artist" ``` --- #### `get_emotion_grid()` **Description**: Creates a visual grid representation of emotion history throughout the listening session. **Parameters**: None (uses global `emot_list`) **Returns**: None **Side Effects**: - Generates matplotlib figure - Saves image to `static/graph.jpg` - Displays plot window (plt.show()) **Grid Specifications**: - **Size**: 5 rows × 10 columns (50 cells) - **Fill Order**: Left-to-right, top-to-bottom - **Default Color**: White (81) for unused cells **Color Scheme**: - Red: Angry - Blue: Neutral - Yellow: Happy - Green: Sad - Cyan: Surprise - Magenta: Disgust - Black: Fear - White: No data **Example**: ```python from algorithmia import get_emotion_grid # After several emotion detections get_emotion_grid() # Creates static/graph.jpg with emotion timeline ``` --- ## Data Formats ### Song Database (test.txt) **Format**: Pickled Python list **Structure**: ```python [ "Song Name - Artist", "Song Name - Artist", ... ] ``` **Total Entries**: 903 songs (indices 0-902) **Loading**: ```python import pickle with open("test.txt", "rb") as fp: songnames = pickle.load(fp, encoding='latin1') ``` --- ### Playlist Format **Structure**: List of strings **String Format**: `"{index:03d}.mp3_{song_name}"` **Example**: ```python [ "001.mp3_(Mama) He Treats Your Daughter Mean - Brown", "234.mp3_Night in Tunisia - Blakey", "567.mp3_Along Came Jones - Coasters" ] ``` **Parsing**: ```javascript var parts = songlist[i].split("_"); var filename = parts[0]; // "001.mp3" var displayName = parts[1]; // "Song Name - Artist" ``` --- ## External APIs ### Algorithmia EmotionRecognitionCNNMBP **Endpoint**: `deeplearning/EmotionRecognitionCNNMBP/1.0.1` **Authentication**: API Key (required) **Input**: Binary image data (PNG/JPEG) **Output**: ```json { "results": [ { "emotions": [ {"label": "Happy", "confidence": 0.85}, {"label": "Sad", "confidence": 0.05}, {"label": "Angry", "confidence": 0.02}, {"label": "Neutral", "confidence": 0.03}, {"label": "Fear", "confidence": 0.01}, {"label": "Disgust", "confidence": 0.02}, {"label": "Surprise", "confidence": 0.02} ] } ] } ``` **Error Cases**: - Empty `results` array: No face detected - API timeout: Network error - Invalid API key: Authentication failure --- ## Configuration ### Required Environment Variables Currently hardcoded, but should be moved to environment variables: ```python # Algorithmia API Key ALGORITHMIA_API_KEY = "your-api-key-here" # Flask Secret Key FLASK_SECRET_KEY = "your-secret-key-here" # Server Configuration FLASK_DEBUG = True FLASK_HOST = "0.0.0.0" FLASK_PORT = 5000 ``` ### File Paths ```python # Snapshot storage SNAPSHOT_PATH = "snapshots/pic.png" # Song database SONG_DATABASE = "test.txt" # Music files MUSIC_DIRECTORY = "static/music/" # Emotion graph output GRAPH_OUTPUT = "static/graph.jpg" ```