-
Notifications
You must be signed in to change notification settings - Fork 0
/
project2.py
83 lines (63 loc) · 2.36 KB
/
project2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import cv2
import numpy as np
widthImg = 480
heightImg = 640
cap = cv2.VideoCapture(0) #0 means the default camera
cap.set(3,640) #setting height of camera
cap.set(4,480) #setting width of camera
cap.set(10,150) #setting the brightness of the webcam
def preProcessing(img):
imgGray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
imgBlur = cv2.GaussianBlur((imgGray),(5,5),1)
imgCanny = cv2.Canny(imgBlur,200,200)
kernel = np.ones((5,5))
imgDial = cv2.dilate(imgCanny,kernel,iterations=2)
imgThres = cv2.erode(imgDial,kernel,iterations=1)
return imgThres
def getContours(img):
biggest = np.array([])
maxArea = 0
contours, hierarchy = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
for cnt in contours:
area = cv2.contourArea(cnt)
if area>5000:
# cv2.drawContours(imgContour, cnt, -1, (255,0,0),3)
peri = cv2.arcLength(cnt, True)
approx = cv2.approxPolyDP(cnt, 0.02*peri, True)
if area>maxArea and len(approx) == 4:
biggest = approx
maxArea = area
cv2.drawContours(imgContour, biggest, -1, (255,0,0), 20)
return biggest
def reorder(myPoints):
myPoints = myPoints.reshape((4,2))
myPointsNew = np.zeros((4,1,2),np.int32)
add = myPoints.sum(1)
# print("add", add)
myPointsNew[0] = myPoints[np.argmin(add)]
myPointsNew[3] = myPoints[np.argmax(add)]
diff = np.diff(myPoints,axis=1)
myPointsNew[1] = myPoints[np.argmin(diff)]
myPointsNew[2] = myPoints[np.argmax(diff)]
print("NewPoints",myPointsNew)
return myPointsNew
def getWarp(img,biggest):
biggest = reorder(biggest)
pts1 = np.float32(biggest)
pts2 = np.float32([[0,0],[widthImg,0],[0,heightImg],[widthImg,heightImg]])
matrix = cv2.getPerspectiveTransform(pts1,pts2)
imgOutput = cv2.warpPerspective(img,matrix,(widthImg,heightImg))
imgCropped = imgOutput[20:imgOutput,shape[0]-20,20:imgOutput.shape[1]-20]
imgCropped = cv2.resize(imgCropped,(widthImg,heightImg))
return imgCropped
while True:
success, img =cap.read()
cv2.resize(img,(widthImg,heightImg))
imgContour = img.copy()
imgThres = preProcessing(img)
biggest = getContours(imgThres)
# print(biggest)
imgWarped=getWarp(img,biggest)
cv2.imshow("Result", imgWarped)
if cv2.waitKey(1) & 0xFF ==ord('q'):
break