forked from yell/boltzmann-machines
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdbm_cifar_naive.py
433 lines (386 loc) · 17.7 KB
/
dbm_cifar_naive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Train 3072-5000-1000 Gaussian-Bernoulli-Multinomial
DBM with pre-training on "smoothed" CIFAR-10 (with 1000 least
significant singular values removed), as suggested in [1].
Per sample validation mean reconstruction error for DBM monotonically
decreases during training from ~0.99 to (only) ~0.5 after 1500 epochs.
The training took approx. 47m + 119m + 22h 40m ~ 1d 1h 30m on GTX 1060.
Note that DBM is trained without centering.
After models are trained, Gaussian RBM is discriminatively fine-tuned.
It achieves 59.78% accuracy on a test set.
References
----------
[1] A. Krizhevsky and G. Hinton. Learning multiple layers of features
from tine images. 2009.
"""
print(__doc__)
import os
import argparse
import numpy as np
from scipy.linalg import svd
from keras import regularizers
from keras.callbacks import EarlyStopping, ReduceLROnPlateau
from keras.initializers import glorot_uniform
from keras.models import Sequential
from keras.layers import Dense, Activation, Dropout, BatchNormalization as BN
from sklearn.metrics import accuracy_score
import env
from bm import DBM
from bm.rbm import GaussianRBM, MultinomialRBM
from bm.utils import (RNG, Stopwatch,
one_hot, one_hot_decision_function, unhot)
from bm.utils.dataset import load_cifar10
from bm.utils.optimizers import MultiAdam
def make_smoothing(X_train, n_train, args):
X_s = None
X_s_path = os.path.join(args.data_path, 'X_s.npy')
do_smoothing = True
if os.path.isfile(X_s_path):
print("\nLoading smoothed data ...")
X_s = np.load(X_s_path)
print("Checking augmented data ...")
if len(X_s) == n_train:
do_smoothing = False
if do_smoothing:
print("\nSmoothing data ...")
X_m = X_train.mean(axis=0)
X_train -= X_m
with Stopwatch(verbose=True) as s:
[U, s, Vh] = svd(X_train,
full_matrices=False,
compute_uv=True,
overwrite_a=True,
check_finite=False)
s[-1000:] = 0.
X_s = U.dot(np.diag(s).dot(Vh))
X_s += X_m
# save to disk
np.save(X_s_path, X_s)
print("\n")
return X_s
def make_grbm(xxx_todo_changeme, args):
(X_train, X_val) = xxx_todo_changeme
if os.path.isdir(args.grbm_dirpath):
print("\nLoading G-RBM ...\n\n")
grbm = GaussianRBM.load_model(args.grbm_dirpath)
else:
print("\nTraining G-RBM ...\n\n")
grbm = GaussianRBM(n_visible=32 * 32 * 3,
n_hidden=5000,
sigma=1.,
W_init=0.0008,
vb_init=0.,
hb_init=0.,
n_gibbs_steps=args.n_gibbs_steps[0],
learning_rate=args.lr[0],
momentum=np.geomspace(0.5, 0.9, 8),
max_epoch=args.epochs[0],
batch_size=args.batch_size[0],
l2=args.l2[0],
sample_v_states=True,
sample_h_states=True,
sparsity_cost=0.,
dbm_first=True, # !!!
metrics_config=dict(
msre=True,
feg=True,
train_metrics_every_iter=1000,
val_metrics_every_epoch=2,
feg_every_epoch=2,
n_batches_for_feg=50,
),
verbose=True,
display_filters=12,
display_hidden_activations=24,
v_shape=(32, 32, 3),
dtype='float32',
tf_saver_params=dict(max_to_keep=1),
model_path=args.grbm_dirpath)
grbm.fit(X_train, X_val)
return grbm
def make_mrbm(xxx_todo_changeme1, args):
(Q_train, Q_val) = xxx_todo_changeme1
if os.path.isdir(args.mrbm_dirpath):
print("\nLoading M-RBM ...\n\n")
mrbm = MultinomialRBM.load_model(args.mrbm_dirpath)
else:
print("\nTraining M-RBM ...\n\n")
mrbm = MultinomialRBM(n_visible=5000,
n_hidden=1000,
n_samples=1000,
W_init=0.01,
hb_init=0.,
vb_init=0.,
n_gibbs_steps=args.n_gibbs_steps[1],
learning_rate=args.lr[1],
momentum=np.geomspace(0.5, 0.9, 8),
max_epoch=args.epochs[1],
batch_size=args.batch_size[1],
l2=args.l2[1],
sample_h_states=True,
sample_v_states=False,
sparsity_cost=0.,
dbm_last=True, # !!!
metrics_config=dict(
msre=True,
pll=True,
feg=True,
train_metrics_every_iter=400,
val_metrics_every_epoch=2,
feg_every_epoch=2,
n_batches_for_feg=50,
),
verbose=True,
display_filters=0,
display_hidden_activations=100,
random_seed=1337,
dtype='float32',
tf_saver_params=dict(max_to_keep=1),
model_path=args.mrbm_dirpath)
mrbm.fit(Q_train, Q_val)
return mrbm
def make_rbm_transform(rbm, X, path, np_dtype=None):
H = None
transform = True
if os.path.isfile(path):
H = np.load(path)
if len(X) == len(H):
transform = False
if transform:
H = rbm.transform(X, np_dtype=np_dtype)
np.save(path, H)
return H
def make_dbm(xxx_todo_changeme2, rbms, xxx_todo_changeme3, args):
(X_train, X_val) = xxx_todo_changeme2
(Q, G) = xxx_todo_changeme3
if os.path.isdir(args.dbm_dirpath):
print("\nLoading DBM ...\n\n")
dbm = DBM.load_model(args.dbm_dirpath)
dbm.load_rbms(rbms) # !!!
else:
print("\nTraining DBM ...\n\n")
dbm = DBM(rbms=rbms,
n_particles=args.n_particles,
v_particle_init=X_train[:args.n_particles].copy(),
h_particles_init=(Q[:args.n_particles].copy(),
G[:args.n_particles].copy()),
n_gibbs_steps=args.n_gibbs_steps[2],
max_mf_updates=args.max_mf_updates,
mf_tol=args.mf_tol,
learning_rate=np.geomspace(args.lr[2], 1e-5, args.epochs[2]),
momentum=np.geomspace(0.5, 0.9, 10),
max_epoch=args.epochs[2],
batch_size=args.batch_size[2],
l2=args.l2[2],
max_norm=args.max_norm,
sample_v_states=True,
sample_h_states=(True, True),
sparsity_cost=0.,
train_metrics_every_iter=1000,
val_metrics_every_epoch=2,
random_seed=args.random_seed[2],
verbose=True,
save_after_each_epoch=True,
display_filters=12,
display_particles=36,
v_shape=(32, 32, 3),
dtype='float32',
tf_saver_params=dict(max_to_keep=1),
model_path=args.dbm_dirpath)
dbm.fit(X_train, X_val)
return dbm
def make_mlp(xxx_todo_changeme4, xxx_todo_changeme5, xxx_todo_changeme6, xxx_todo_changeme7, args):
(X_train, y_train) = xxx_todo_changeme4
(X_val, y_val) = xxx_todo_changeme5
(X_test, y_test) = xxx_todo_changeme6
(W, hb) = xxx_todo_changeme7
dense_params = {}
if W is not None and hb is not None:
dense_params['weights'] = (W, hb)
# define and initialize MLP model
mlp = Sequential([
Dense(5000, input_shape=(3 * 32 * 32,),
kernel_regularizer=regularizers.l2(args.mlp_l2),
kernel_initializer=glorot_uniform(seed=3333),
**dense_params),
BN(),
Activation('relu'),
Dropout(args.mlp_dropout, seed=4444),
Dense(10, kernel_initializer=glorot_uniform(seed=5555)),
Activation('softmax'),
])
mlp.compile(optimizer=MultiAdam(lr=0.001,
lr_multipliers={'dense_1': args.mlp_lrm[0],
'dense_2': args.mlp_lrm[1]}),
loss='categorical_crossentropy',
metrics=['accuracy'])
# train and evaluate classifier
with Stopwatch(verbose=True) as s:
early_stopping = EarlyStopping(monitor=args.mlp_val_metric, patience=12, verbose=2)
reduce_lr = ReduceLROnPlateau(monitor=args.mlp_val_metric, factor=0.2, verbose=2,
patience=6, min_lr=1e-5)
callbacks = [early_stopping, reduce_lr]
try:
mlp.fit(X_train, one_hot(y_train, n_classes=10),
epochs=args.mlp_epochs,
batch_size=args.mlp_batch_size,
shuffle=False,
validation_data=(X_val, one_hot(y_val, n_classes=10)),
callbacks=callbacks)
except KeyboardInterrupt:
pass
y_pred = mlp.predict(X_test)
y_pred = unhot(one_hot_decision_function(y_pred), n_classes=10)
print("Test accuracy: {:.4f}".format(accuracy_score(y_test, y_pred)))
# save predictions, targets, and fine-tuned weights
np.save(args.mlp_save_prefix + 'y_pred.npy', y_pred)
np.save(args.mlp_save_prefix + 'y_test.npy', y_test)
W_finetuned, _ = mlp.layers[0].get_weights()
np.save(args.mlp_save_prefix + 'W_finetuned.npy', W_finetuned)
def main():
# training settings
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# general
parser.add_argument('--gpu', type=str, default='0', metavar='ID',
help="ID of the GPU to train on (or '' to train on CPU)")
# data
parser.add_argument('--n-train', type=int, default=49000, metavar='N',
help='number of training examples')
parser.add_argument('--n-val', type=int, default=1000, metavar='N',
help='number of validation examples')
parser.add_argument('--data-path', type=str, default='../data/', metavar='PATH',
help='directory for storing augmented data etc.')
# common for RBMs and DBM
parser.add_argument('--n-gibbs-steps', type=int, default=(1, 1, 1), metavar='N', nargs='+',
help='(initial) number of Gibbs steps for CD/PCD')
parser.add_argument('--lr', type=float, default=(5e-4, 1e-4, 8e-5), metavar='LR', nargs='+',
help='(initial) learning rates')
parser.add_argument('--epochs', type=int, default=(120, 180, 1500), metavar='N', nargs='+',
help='number of epochs to train')
parser.add_argument('--batch-size', type=int, default=(100, 100, 100), metavar='B', nargs='+',
help='input batch size for training, `--n-train` and `--n-val`' + \
'must be divisible by this number (for DBM)')
parser.add_argument('--l2', type=float, default=(0.01, 0.05, 1e-8), metavar='L2', nargs='+',
help='L2 weight decay coefficients')
parser.add_argument('--random-seed', type=int, default=(1337, 1111, 2222), metavar='N', nargs='+',
help='random seeds for models training')
# save dirpaths
parser.add_argument('--grbm-dirpath', type=str, default='../models/grbm_cifar_naive/', metavar='DIRPATH',
help='directory path to save Gaussian RBM')
parser.add_argument('--mrbm-dirpath', type=str, default='../models/mrbm_cifar_naive/', metavar='DIRPATH',
help='directory path to save Multinomial RBM')
parser.add_argument('--dbm-dirpath', type=str, default='../models/dbm_cifar_naive/', metavar='DIRPATH',
help='directory path to save DBM')
# DBM related
parser.add_argument('--n-particles', type=int, default=100, metavar='M',
help='number of persistent Markov chains')
parser.add_argument('--max-mf-updates', type=int, default=50, metavar='N',
help='maximum number of mean-field updates per weight update')
parser.add_argument('--mf-tol', type=float, default=1e-11, metavar='TOL',
help='mean-field tolerance')
parser.add_argument('--max-norm', type=float, default=4., metavar='C',
help='maximum norm constraint')
# MLP related
parser.add_argument('--mlp-no-init', action='store_true',
help='if enabled, use random initialization')
parser.add_argument('--mlp-l2', type=float, default=1e-4, metavar='L2',
help='L2 weight decay coefficient')
parser.add_argument('--mlp-lrm', type=float, default=(0.1, 1.), metavar='LRM', nargs='+',
help='learning rate multipliers of 1e-3')
parser.add_argument('--mlp-epochs', type=int, default=100, metavar='N',
help='number of epochs to train')
parser.add_argument('--mlp-val-metric', type=str, default='val_acc', metavar='S',
help="metric on validation set to perform early stopping, {'val_acc', 'val_loss'}")
parser.add_argument('--mlp-batch-size', type=int, default=128, metavar='N',
help='input batch size for training')
parser.add_argument('--mlp-dropout', type=float, default=0.64, metavar='P',
help='probability of visible units being set to zero')
parser.add_argument('--mlp-save-prefix', type=str, default='../data/grbm_naive_', metavar='PREFIX',
help='prefix to save MLP predictions and targets')
# parse and check params
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
for x, m in (
(args.n_gibbs_steps, 3),
(args.lr, 3),
(args.epochs, 3),
(args.batch_size, 3),
(args.l2, 3),
(args.random_seed, 3),
):
if len(x) == 1:
x *= m
# prepare data (load + scale + split)
print("\nPreparing data ...")
X, y = load_cifar10(mode='train', path=args.data_path)
X = X.astype(np.float32)
X /= 255.
RNG(seed=42).shuffle(X)
RNG(seed=42).shuffle(y)
n_train = min(len(X), args.n_train)
n_val = min(len(X), args.n_val)
X_train = X[:n_train]
X_val = X[-n_val:]
y_train = y[:n_train]
y_val = y[-n_val:]
# remove 1000 least significant singular values
X_train = make_smoothing(X_train, n_train, args)
print(X_train.shape)
# center and normalize training data
X_s_mean = X_train.mean(axis=0)
X_s_std = X_train.std(axis=0)
mean_path = os.path.join(args.data_path, 'X_s_mean.npy')
std_path = os.path.join(args.data_path, 'X_s_std.npy')
if not os.path.isfile(mean_path):
np.save(mean_path, X_s_mean)
if not os.path.isfile(std_path):
np.save(std_path, X_s_std)
X_train -= X_s_mean
X_train /= X_s_std
X_val -= X_s_mean
X_val /= X_s_std
print("Mean: ({0:.3f}, ...); std: ({1:.3f}, ...)".format(X_train.mean(axis=0)[0],
X_train.std(axis=0)[0]))
print("Range: ({0:.3f}, {1:.3f})\n\n".format(X_train.min(), X_train.max()))
# pre-train Gaussian RBM
grbm = make_grbm((X_train, X_val), args)
# extract features Q = p_{G-RBM}(h|v=X)
print("\nExtracting features from G-RBM ...\n\n")
Q_train, Q_val = None, None
if not os.path.isdir(args.mrbm_dirpath) or not os.path.isdir(args.dbm_dirpath):
Q_train_path = os.path.join(args.data_path, 'Q_train_cifar_naive.npy')
Q_train = make_rbm_transform(grbm, X_train, Q_train_path)
if not os.path.isdir(args.mrbm_dirpath):
Q_val_path = os.path.join(args.data_path, 'Q_val_cifar_naive.npy')
Q_val = make_rbm_transform(grbm, X_val, Q_val_path)
# pre-train Multinomial RBM (M-RBM)
mrbm = make_mrbm((Q_train, Q_val), args)
# extract features G = p_{M-RBM}(h|v=Q)
print("\nExtracting features from M-RBM ...\n\n")
Q, G = None, None
if not os.path.isdir(args.dbm_dirpath):
Q = Q_train[:args.n_particles]
G_path = os.path.join(args.data_path, 'G_train_cifar_naive.npy')
G = make_rbm_transform(mrbm, Q, G_path)
# jointly train DBM
dbm = make_dbm((X_train, X_val), (grbm, mrbm), (Q, G), args)
# load test data
X_test, y_test = load_cifar10(mode='test', path=args.data_path)
X_test /= 255.
X_test -= X_s_mean
X_test /= X_s_std
# G-RBM discriminative fine-tuning:
# initialize MLP with learned weights,
# add FC layer and train using backprop
print("\nG-RBM Discriminative fine-tuning ...\n\n")
W, hb = None, None
if not args.mlp_no_init:
weights = grbm.get_tf_params(scope='weights')
W = weights['W']
hb = weights['hb']
make_mlp((X_train, y_train), (X_val, y_val), (X_test, y_test),
(W, hb), args)
if __name__ == '__main__':
main()