-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathheap.py
115 lines (97 loc) · 3.74 KB
/
heap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
"""
A Common-Sense Guide to Data Structures and Algorithms, Second Edition
Level Up Your Core Programming Skills
by Jay Wengrow
https://pragprog.com/titles/jwdsal2/a-common-sense-guide-to-data-structures-and-algorithms-second-edition/
"""
class Heap():
"""
Implementation on Chapter:
Keeping Your Priorities Straight with Heaps
"""
def __init__(self):
"""
Underlying a Python list is used
to store the data
"""
self.data_list = []
def root_node(self):
"""
returns first element in the list
"""
return self.data_list[0]
def last_node(self):
"""
returns last element in the list
"""
return self.data_list[-1]
def get_left_child(self, index):
"""
left_child = (index*2)+1
"""
return (index*2)+1
def get_right_child(self, index):
"""
right_child = (index*2)+2
"""
return (index*2)+2
def get_parent_index(self, index):
"""
parent_node = (index-1)//2
"""
return (index-1)//2
def insert(self, value):
"""
Algorithm description:
1. Add value as last element in the array
2. Move all the way up until the parent is larger
than the new value
"""
# 1. Add value as last element in the array
self.data_list.append(value)
# Get the index of this last element in the array
new_value_index = len(self.data_list) - 1
# 2. Move all the way up until the parent is larger than the new value
while new_value_index > 0 and\
self.data_list[new_value_index] > self.data_list[self.get_parent_index(new_value_index)]:
self.data_list[self.get_parent_index(new_value_index)], self.data_list[new_value_index] = self.data_list[new_value_index], self.data_list[self.get_parent_index(new_value_index)]
new_value_index = self.get_parent_index(new_value_index)
def delete(self):
"""
Algorithm description:
1. Make the last node the root node and remove the last node
2. Compare this new root node with both children if any
3. If any children is greater, swap with the largest children
4. Go to step 2 until no children is greater or there are no children
"""
# Make the last node the root node and remove the last node
self.data_list[0] = self.data_list.pop()
trickle_node_index = 0
while self.has_grater_child(trickle_node_index):
larger_child_index = self.calculate_larger_child_index(trickle_node_index)
self.data_list[trickle_node_index], self.data_list[larger_child_index] = self.data_list[larger_child_index], self.data_list[trickle_node_index]
trickle_node_index = larger_child_index
def has_grater_child(self, index):
"""
Helper method
"""
# No children
if not (self.get_left_child(index) < len(self.data_list)):
return False
if self.data_list[self.calculate_larger_child_index(index)] > self.data_list[index]:
return True
else:
return False
def calculate_larger_child_index(self, index):
"""
Helper method
"""
# No right child (since we are at this line, there is a left child)
if not (self.get_right_child(index) < len(self.data_list)):
return self.get_left_child(index)
# Left child is larger or equal than right child
elif self.data_list[self.get_left_child(index)] >= self.data_list[self.get_right_child(index)]:
return self.get_left_child(index)
# Right child is larger
else:
return self.get_right_child(index)