|
| 1 | +import pandas as pd |
| 2 | +import matplotlib.pyplot as plt |
| 3 | + |
| 4 | + |
| 5 | +data = pd.read_csv('PEmpirical4.csv') |
| 6 | + |
| 7 | +effectiveness_categories = [1, 2, 3, 4, 5] |
| 8 | +category_labels_effectiveness = { |
| 9 | + 1: 'Not at all helpful', |
| 10 | + 2: 'Slightly helpful', |
| 11 | + 3: 'Moderately helpful', |
| 12 | + 4: 'Very helpful', |
| 13 | + 5: 'Extremely helpful' |
| 14 | +} |
| 15 | +data['Chat GPT effectiveness'] = pd.Categorical(data['Chat GPT effectiveness'], categories=effectiveness_categories, ordered=True) |
| 16 | +data['Chat GPT effectiveness'] = data['Chat GPT effectiveness'].map(category_labels_effectiveness) |
| 17 | + |
| 18 | +satisfaction_categories = [1, 2, 3, 4, 5] # Presuming these are coded similarly in your data |
| 19 | +category_labels_satisfaction = { |
| 20 | + 1: 'Very Dissatisfied', |
| 21 | + 2: 'Somewhat Dissatisfied', |
| 22 | + 3: 'Neutral', |
| 23 | + 4: 'Somewhat Satisfied', |
| 24 | + 5: 'Very Satisfied' |
| 25 | +} |
| 26 | +data['User satisfaction'] = pd.Categorical(data['User satisfaction'], categories=satisfaction_categories, ordered=True) |
| 27 | +data['User satisfaction'] = data['User satisfaction'].map(category_labels_satisfaction) |
| 28 | + |
| 29 | +pivot_data = data.pivot_table(index='Chat GPT effectiveness', columns='User satisfaction', aggfunc='size', fill_value=0) |
| 30 | + |
| 31 | +colors = ['salmon', 'steelblue', 'skyblue', 'plum', 'cornflowerblue'] |
| 32 | +pivot_data.plot(kind='bar', stacked=True, figsize=(10, 6), color=colors) |
| 33 | +plt.title('Stacked Bar Chart of User Satisfaction by Chat GPT Effectiveness') |
| 34 | +plt.xlabel('Chat GPT Effectiveness') |
| 35 | +plt.ylabel('Count of Responses') |
| 36 | +plt.xticks(rotation=0) |
| 37 | +plt.legend(title='User Satisfaction', loc='upper right') |
| 38 | +plt.savefig('Stacked_Bar_Chart_User_Satisfaction.png', dpi=300, bbox_inches='tight') |
| 39 | +plt.show() |
0 commit comments