-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathsentiments.py
53 lines (48 loc) · 1.47 KB
/
sentiments.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import re
import sys
import json
def get_tweet_sentiment(tweet_dict, weights):
score = 0.0
text = ""
if u'text' in tweet_dict:
utf8_text = tweet_dict[u'text']
text = utf8_text
toks = re.split('\s+', utf8_text.lower())
for word in toks:
word = re.sub('\W', '', word)
if word in weights:
score += weights[word]
score = min(6, score)
score = max(-6, score)
for word in toks:
word = re.sub('\W', '', word)
if word not in weights and len(word) > 3:
weights[word] = 0
return score, text
def readWeights():
weights = {}
with open('sentiments.txt') as f:
for line in f:
toks = re.split('\s+', line.strip().lower())
if len(toks) == 2:
word = toks[0]
word = re.sub('\W', '', word)
weights[word] = float(toks[1])
return weights
def main(tweet_file):
weights = readWeights()
sentiments = []
with open(tweet_file) as tf:
for line in tf:
if line:
tweet = json.loads(line)
score, tweet_text = get_tweet_sentiment(tweet, weights)
if abs(score) > 2:
print tweet_text, " had score ", score
sentiments.append(score)
total = 0.0
for num in sentiments:
total += num
print total / len(sentiments)
if __name__ == '__main__':
main(sys.argv[1])