-
Notifications
You must be signed in to change notification settings - Fork 51
/
Copy pathGenotypic_EvenRichDiv.html
766 lines (692 loc) · 29.3 KB
/
Genotypic_EvenRichDiv.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta http-equiv="X-UA-Compatible" content="IE=EDGE" />
<title>Genotypic richness, diversity, and evenness</title>
<script src="site_libs/jquery-1.11.3/jquery.min.js"></script>
<meta name="viewport" content="width=device-width, initial-scale=1" />
<link href="site_libs/bootstrap-3.3.5/css/sandstone.min.css" rel="stylesheet" />
<script src="site_libs/bootstrap-3.3.5/js/bootstrap.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/html5shiv.min.js"></script>
<script src="site_libs/bootstrap-3.3.5/shim/respond.min.js"></script>
<script src="site_libs/navigation-1.1/tabsets.js"></script>
<script src="site_libs/accessible-code-block-0.0.1/empty-anchor.js"></script>
<link href="site_libs/anchor-sections-1.0/anchor-sections.css" rel="stylesheet" />
<script src="site_libs/anchor-sections-1.0/anchor-sections.js"></script>
<!-- Global Site Tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=UA-107144798-3"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments)};
gtag('js', new Date());
gtag('config', 'UA-107144798-3');
</script>
<style type="text/css">
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
span.underline{text-decoration: underline;}
div.column{display: inline-block; vertical-align: top; width: 50%;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
</style>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css" data-origin="pandoc">
code.sourceCode > span { display: inline-block; line-height: 1.25; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode { white-space: pre; position: relative; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
code.sourceCode { white-space: pre-wrap; }
code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ background-color: #f8f8f8; }
@media screen {
code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ef2929; } /* Alert */
code span.an { color: #8f5902; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #c4a000; } /* Attribute */
code span.bn { color: #0000cf; } /* BaseN */
code span.cf { color: #204a87; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4e9a06; } /* Char */
code span.cn { color: #000000; } /* Constant */
code span.co { color: #8f5902; font-style: italic; } /* Comment */
code span.cv { color: #8f5902; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #8f5902; font-weight: bold; font-style: italic; } /* Documentation */
code span.dt { color: #204a87; } /* DataType */
code span.dv { color: #0000cf; } /* DecVal */
code span.er { color: #a40000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #0000cf; } /* Float */
code span.fu { color: #000000; } /* Function */
code span.im { } /* Import */
code span.in { color: #8f5902; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #204a87; font-weight: bold; } /* Keyword */
code span.op { color: #ce5c00; font-weight: bold; } /* Operator */
code span.ot { color: #8f5902; } /* Other */
code span.pp { color: #8f5902; font-style: italic; } /* Preprocessor */
code span.sc { color: #000000; } /* SpecialChar */
code span.ss { color: #4e9a06; } /* SpecialString */
code span.st { color: #4e9a06; } /* String */
code span.va { color: #000000; } /* Variable */
code span.vs { color: #4e9a06; } /* VerbatimString */
code span.wa { color: #8f5902; font-weight: bold; font-style: italic; } /* Warning */
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
(function() {
var sheets = document.styleSheets;
for (var i = 0; i < sheets.length; i++) {
if (sheets[i].ownerNode.dataset["origin"] !== "pandoc") continue;
try { var rules = sheets[i].cssRules; } catch (e) { continue; }
for (var j = 0; j < rules.length; j++) {
var rule = rules[j];
// check if there is a div.sourceCode rule
if (rule.type !== rule.STYLE_RULE || rule.selectorText !== "div.sourceCode") continue;
var style = rule.style.cssText;
// check if color or background-color is set
if (rule.style.color === '' && rule.style.backgroundColor === '') continue;
// replace div.sourceCode by a pre.sourceCode rule
sheets[i].deleteRule(j);
sheets[i].insertRule('pre.sourceCode{' + style + '}', j);
}
}
})();
</script>
<style type="text/css">
pre:not([class]) {
background-color: white;
}
</style>
<style type="text/css">
h1 {
font-size: 34px;
}
h1.title {
font-size: 38px;
}
h2 {
font-size: 30px;
}
h3 {
font-size: 24px;
}
h4 {
font-size: 18px;
}
h5 {
font-size: 16px;
}
h6 {
font-size: 12px;
}
.table th:not([align]) {
text-align: left;
}
</style>
<link rel="stylesheet" href="styles.css" type="text/css" />
<style type = "text/css">
.main-container {
max-width: 940px;
margin-left: auto;
margin-right: auto;
}
code {
color: inherit;
background-color: rgba(0, 0, 0, 0.04);
}
img {
max-width:100%;
}
.tabbed-pane {
padding-top: 12px;
}
.html-widget {
margin-bottom: 20px;
}
button.code-folding-btn:focus {
outline: none;
}
summary {
display: list-item;
}
</style>
<style type="text/css">
/* padding for bootstrap navbar */
body {
padding-top: 61px;
padding-bottom: 40px;
}
/* offset scroll position for anchor links (for fixed navbar) */
.section h1 {
padding-top: 66px;
margin-top: -66px;
}
.section h2 {
padding-top: 66px;
margin-top: -66px;
}
.section h3 {
padding-top: 66px;
margin-top: -66px;
}
.section h4 {
padding-top: 66px;
margin-top: -66px;
}
.section h5 {
padding-top: 66px;
margin-top: -66px;
}
.section h6 {
padding-top: 66px;
margin-top: -66px;
}
.dropdown-submenu {
position: relative;
}
.dropdown-submenu>.dropdown-menu {
top: 0;
left: 100%;
margin-top: -6px;
margin-left: -1px;
border-radius: 0 6px 6px 6px;
}
.dropdown-submenu:hover>.dropdown-menu {
display: block;
}
.dropdown-submenu>a:after {
display: block;
content: " ";
float: right;
width: 0;
height: 0;
border-color: transparent;
border-style: solid;
border-width: 5px 0 5px 5px;
border-left-color: #cccccc;
margin-top: 5px;
margin-right: -10px;
}
.dropdown-submenu:hover>a:after {
border-left-color: #ffffff;
}
.dropdown-submenu.pull-left {
float: none;
}
.dropdown-submenu.pull-left>.dropdown-menu {
left: -100%;
margin-left: 10px;
border-radius: 6px 0 6px 6px;
}
</style>
<script>
// manage active state of menu based on current page
$(document).ready(function () {
// active menu anchor
href = window.location.pathname
href = href.substr(href.lastIndexOf('/') + 1)
if (href === "")
href = "index.html";
var menuAnchor = $('a[href="' + href + '"]');
// mark it active
menuAnchor.parent().addClass('active');
// if it's got a parent navbar menu mark it active as well
menuAnchor.closest('li.dropdown').addClass('active');
});
</script>
<!-- tabsets -->
<style type="text/css">
.tabset-dropdown > .nav-tabs {
display: inline-table;
max-height: 500px;
min-height: 44px;
overflow-y: auto;
background: white;
border: 1px solid #ddd;
border-radius: 4px;
}
.tabset-dropdown > .nav-tabs > li.active:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li.active:before {
content: "";
border: none;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open:before {
content: "";
font-family: 'Glyphicons Halflings';
display: inline-block;
padding: 10px;
border-right: 1px solid #ddd;
}
.tabset-dropdown > .nav-tabs > li.active {
display: block;
}
.tabset-dropdown > .nav-tabs > li > a,
.tabset-dropdown > .nav-tabs > li > a:focus,
.tabset-dropdown > .nav-tabs > li > a:hover {
border: none;
display: inline-block;
border-radius: 4px;
background-color: transparent;
}
.tabset-dropdown > .nav-tabs.nav-tabs-open > li {
display: block;
float: none;
}
.tabset-dropdown > .nav-tabs > li {
display: none;
}
</style>
<!-- code folding -->
</head>
<body>
<div class="container-fluid main-container">
<div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar">
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<a class="navbar-brand" href="index.html">Population genetics and genomics in R</a>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav">
<li>
<a href="TOC.html">Table of contents</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Part I
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="Introduction.html">Introduction</a>
</li>
<li>
<a href="Getting_ready_to_use_R.html">Getting ready to use R</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Part II
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="Data_Preparation.html">Data preparation</a>
</li>
<li>
<a href="First_Steps.html">First steps</a>
</li>
<li>
<a href="Population_Strata.html">Population strata and clone correction</a>
</li>
<li>
<a href="Locus_Stats.html">Locus-based statistics and missing data</a>
</li>
<li>
<a href="Genotypic_EvenRichDiv.html">Genotypic evenness, richness, and diversity</a>
</li>
<li>
<a href="Linkage_disequilibrium.html">Linkage disequilibrium</a>
</li>
<li>
<a href="Pop_Structure.html">Population structure</a>
</li>
<li>
<a href="Minimum_Spanning_Networks.html">Minimum Spanning Networks</a>
</li>
<li>
<a href="AMOVA.html">AMOVA</a>
</li>
<li>
<a href="DAPC.html">Discriminant analysis of principal components (DAPC)</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Part III
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="intro_vcf.html">Population genomics and HTS</a>
</li>
<li>
<a href="reading_vcf.html">Reading VCF data</a>
</li>
<li>
<a href="analysis_of_genome.html">Analysis of genomic data</a>
</li>
<li>
<a href="gbs_analysis.html">Analysis of GBS data</a>
</li>
<li>
<a href="clustering_plot.html">Clustering plot</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Workshops
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li class="dropdown-submenu">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">ICPP</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="workshop_icpp.html">Preparation</a>
</li>
<li>
<a href="intro_vcf.html">Introduction</a>
</li>
<li>
<a href="reading_vcf.html">VCF data</a>
</li>
<li>
<a href="quality_control.html">Quality control</a>
</li>
<li>
<a href="gbs_analysis.html">Analysis of GBS data</a>
</li>
<li>
<a href="analysis_of_genome.html">Analysis of genome data</a>
</li>
</ul>
</li>
<li class="dropdown-submenu">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">APS Southern Division</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="workshop_southernAPS.html">Preparation</a>
</li>
<li>
<a href="intro_vcf.html">Introduction</a>
</li>
<li>
<a href="reading_vcf.html">VCF data</a>
</li>
<li>
<a href="quality_control.html">Quality control</a>
</li>
<li>
<a href="gbs_analysis.html">Analysis of GBS data</a>
</li>
</ul>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
About
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="Authors.html">Authors</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" aria-expanded="false">
Appendices
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="intro_to_R.html">Introduction to R</a>
</li>
<li>
<a href="Data_sets.html">Data sets</a>
</li>
<li>
<a href="funpendix.html">Function glossary</a>
</li>
<li>
<a href="background_functions.html">Background_functions</a>
</li>
<li>
<a href="https://github.com/grunwaldlab/Population_Genetics_in_R/">Source Code</a>
</li>
</ul>
</li>
</ul>
<ul class="nav navbar-nav navbar-right">
</ul>
</div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
<div class="fluid-row" id="header">
<h1 class="title toc-ignore">Genotypic richness, diversity, and evenness</h1>
<h3 class="subtitle"><em>SE Everhart, ZN Kamvar, and NJ Grünwald</em></h3>
</div>
<p>In the previous chapter, we introduced basic summary statistics that can be calculated using <em>poppr</em>. For this chapter, we want to specifically focus on how to evaluate genotypic richness, diversity, and evenness in your data. In this example, we’ll examine the monpop microsatellite data for 13 loci of 694 individuals of the haploid fungal pathogen <em>Monilinia fructicola</em> that infects peach flowers and fruits in commercial orchards.</p>
<p>For this example, we can explore the hypothesis that the population that infects flowers and yields blighted blossoms (BB) is from a more genetically diverse pool (being a product of overwintering, sexual recombinants), than the population that infects and causes fruit rots (FR), which is likely a product of asexual production from existing infections in the orchard. As such, we can ask the following questions:</p>
<ul>
<li>Is genotypic richness of BB populations higher than for FR populations?</li>
<li>Is genotypic diversity of BB populations higher for FR populations?</li>
<li>Is genotypic evenness higher for BB populations than for FR populations?</li>
</ul>
<p>For the analysis, we need to read in the data, specify the stratifications in the data, and then set the stratification to symptom so that we can calculate genotypic richness, diversity, and evenness for BB as compared to FR for the entire data set:</p>
<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1"></a><span class="kw">library</span>(<span class="st">"poppr"</span>)</span>
<span id="cb1-2"><a href="#cb1-2"></a><span class="kw">data</span>(monpop)</span>
<span id="cb1-3"><a href="#cb1-3"></a><span class="kw">splitStrata</span>(monpop) <-<span class="st"> </span><span class="er">~</span>Tree<span class="op">/</span>Year<span class="op">/</span>Symptom</span>
<span id="cb1-4"><a href="#cb1-4"></a><span class="kw">setPop</span>(monpop) <-<span class="st"> </span><span class="er">~</span>Symptom</span>
<span id="cb1-5"><a href="#cb1-5"></a>monpop</span></code></pre></div>
<pre><code>##
## This is a genclone object
## -------------------------
## Genotype information:
##
## 264 multilocus genotypes
## 694 haploid individuals
## 13 codominant loci
##
## Population information:
##
## 3 strata - Tree, Year, Symptom
## 2 populations defined - BB, FR</code></pre>
<p>To calculate genotypic richness, diversity, and evenness, we can use the <code>poppr</code> function:</p>
<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1"></a>(monpop_diversity <-<span class="st"> </span><span class="kw">poppr</span>(monpop))</span></code></pre></div>
<pre><code>## Pop N MLG eMLG SE H G lambda E.5 Hexp Ia rbarD File
## 1 BB 113 94 94.0 0.00 4.40 61.7 0.984 0.755 0.584 0.591 0.0493 monpop
## 2 FR 581 191 66.6 4.17 4.58 53.4 0.981 0.543 0.588 0.809 0.0679 monpop
## 3 Total 694 264 73.6 4.33 4.89 65.0 0.985 0.486 0.589 0.729 0.0611 monpop</code></pre>
<p>This shows us several summary statistics:</p>
<table>
<colgroup>
<col width="8%" />
<col width="91%" />
</colgroup>
<thead>
<tr class="header">
<th>Abbreviation</th>
<th>Statistic</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td><code>Pop</code></td>
<td>Population name.</td>
</tr>
<tr class="even">
<td><code>N</code></td>
<td>Number of individuals observed.</td>
</tr>
<tr class="odd">
<td><code>MLG</code></td>
<td>Number of multilocus genotypes (MLG) observed.</td>
</tr>
<tr class="even">
<td><code>eMLG</code></td>
<td>The number of expected MLG at the smallest sample size ≥ 10 based on rarefaction</td>
</tr>
<tr class="odd">
<td><code>SE</code></td>
<td>Standard error based on eMLG.</td>
</tr>
<tr class="even">
<td><code>H</code></td>
<td>Shannon-Wiener Index of MLG diversity <span class="citation">(Shannon, 2001)</span>.</td>
</tr>
<tr class="odd">
<td><code>G</code></td>
<td>Stoddart and Taylor’s Index of MLG diversity <span class="citation">(Stoddart & Taylor, 1988)</span>.</td>
</tr>
<tr class="even">
<td><code>lambda</code></td>
<td>Simpson’s Index <span class="citation">(Simpson, 1949)</span>.</td>
</tr>
<tr class="odd">
<td><code>E.5</code></td>
<td>Evenness, <span class="math inline">\(E_5\)</span> <span class="citation">(Pielou, 1975; Ludwig & Reynolds, 1988; Grünwald et al., 2003)</span>.</td>
</tr>
<tr class="even">
<td><code>Hexp</code></td>
<td>Nei’s unbiased gene diversity <span class="citation">(Nei, 1978)</span>.</td>
</tr>
<tr class="odd">
<td><code>Ia</code></td>
<td>The index of association, <span class="math inline">\(I_A\)</span> <span class="citation">(Brown, Feldman & Nevo, 1980; Smith et al., 1993)</span>.</td>
</tr>
<tr class="even">
<td><code>rbarD</code></td>
<td>The standardized index of association, <span class="math inline">\(\bar{r}_d\)</span> [@].</td>
</tr>
</tbody>
</table>
<div id="genotypic-richness" class="section level2">
<h2>Genotypic richness</h2>
<p>The number of observed <span class="math inline">\(MLGs\)</span> is equivalent to genotypic richness. We expect that the BB population would have a higher genotypic richness than the FR population. However, looking at the raw number of MLGs for each symptom type, it shows us the opposite: there are 94 MLGs for BB and 191 MLGs for FR. This discrepancy has to do with the sample size differences, namely <span class="math inline">\(N = 113\)</span> for BB and <span class="math inline">\(N = 581\)</span> for FR. A more appropriate comparison is the <span class="math inline">\(eMLG\)</span> value, which is an approximation of the number of genotypes that would be expected at the largest, shared sample size (<span class="math inline">\(N = 113\)</span>) based on rarefaction. For BB (<span class="math inline">\(N = 113\)</span>) the <span class="math inline">\(eMLG = 94\)</span> and for FR (where <span class="math inline">\(N\)</span> is set to 113) the <span class="math inline">\(eMLG\)</span> = 66.6. Thus, genotypic richness is indeed higher in the BB populations than the FR population when considering equal sample sizes.</p>
<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1"></a><span class="kw">library</span>(<span class="st">"vegan"</span>)</span>
<span id="cb5-2"><a href="#cb5-2"></a>mon.tab <-<span class="st"> </span><span class="kw">mlg.table</span>(monpop, <span class="dt">plot =</span> <span class="ot">FALSE</span>)</span>
<span id="cb5-3"><a href="#cb5-3"></a>min_sample <-<span class="st"> </span><span class="kw">min</span>(<span class="kw">rowSums</span>(mon.tab))</span>
<span id="cb5-4"><a href="#cb5-4"></a><span class="kw">rarecurve</span>(mon.tab, <span class="dt">sample =</span> min_sample, <span class="dt">xlab =</span> <span class="st">"Sample Size"</span>, <span class="dt">ylab =</span> <span class="st">"Expected MLGs"</span>)</span>
<span id="cb5-5"><a href="#cb5-5"></a><span class="kw">title</span>(<span class="st">"Rarefaction of Fruit Rot and Blossom Blight"</span>)</span></code></pre></div>
<p><img src="Genotypic_EvenRichDiv_files/figure-html/rarecurve-1.png" width="700px" /></p>
</div>
<div id="genotypic-diversity" class="section level2">
<h2>Genotypic diversity</h2>
<p>Diversity measures incorporate both genotypic richness and abundance. There are three measures of genotypic diversity employed by <em>poppr</em>, the Shannon-Wiener index (H), Stoddart and Taylor’s index (G), and Simpson’s index (lambda). In our example, comparing the diversity of BB to FR shows that H is greater for FR (4.58 vs. 4.4), but G is lower (53.4 vs. 61.7). Thus, our expectation that diversity is lower for FR than BB is rejected in the case of H, which is likely due to the sensitivity of the Shannon-Wiener index to genotypic richness in the uneven sample sizes, and accepted in the case of G. To be fair, the sample size used to calculate these diversity measures is different and is therefore not an appropriate comparison.</p>
<p>For an easier statistic to grasp, we have included the Simpson index, which is simply one minus the sum of squared genotype frequencies. This measure provides an estimation of the probability that two randomly selected genotypes are different and scales from 0 (no genotypes are different) to 1 (all genotypes are different). In the data above, we can see that lambda is just barely higher in BB than FR (0.984 vs. 0.981). Since this might be an artifact of sample size, we can explore a correction of Simpson’s index for sample size by multiplying lambda by <span class="math inline">\(N/(N - 1)\)</span>. Since R is vectorized, we can do this for all of our populations at once:</p>
<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1"></a>N <-<span class="st"> </span>monpop_diversity<span class="op">$</span>N <span class="co"># number of samples</span></span>
<span id="cb6-2"><a href="#cb6-2"></a>lambda <-<span class="st"> </span>monpop_diversity<span class="op">$</span>lambda <span class="co"># Simpson's index</span></span>
<span id="cb6-3"><a href="#cb6-3"></a>(N<span class="op">/</span>(N <span class="op">-</span><span class="st"> </span><span class="dv">1</span>)) <span class="op">*</span><span class="st"> </span>lambda <span class="co"># Corrected Simpson's index</span></span></code></pre></div>
<pre><code>## [1] 0.9925727 0.9829604 0.9860399</code></pre>
<p>Now we can see that, even after correction, Simpson’s index is still higher for BB.</p>
<blockquote>
<p>You try it! Can you calculate the clonal fraction for each population (1 - (MLG/N))?</p>
</blockquote>
</div>
<div id="genotypic-evenness" class="section level2">
<h2>Genotypic evenness</h2>
<p>Evenness is a measure of the distribution of genotype abundances, wherein a population with equally abundant genotypes yields a value equal to 1 and a population dominated by a single genotype is closer to zero. In the example above, the BB population has <span class="math inline">\(E.5 = 0.755\)</span> and the FR population has <span class="math inline">\(E.5 = 0.543\)</span> . This indicates that the MLGs observed in the BB population are closer to equal abundance than those in the FR population. Indeed, when we look at a distribution of the <span class="math inline">\(MLGs\)</span> for each symptom type it shows us there are many more unique BB symptoms as compared to the FR symptoms.</p>
<div class="sourceCode" id="cb8"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1"></a>mon.tab <-<span class="st"> </span><span class="kw">mlg.table</span>(monpop)</span></code></pre></div>
<p><img src="Genotypic_EvenRichDiv_files/figure-html/symptom_table-1.png" width="1000px" /></p>
</div>
<div id="conclusions" class="section level2">
<h2>Conclusions</h2>
<p>Calculating measures of genotypic richness, diversity, and evenness is straightforward to do in <em>poppr</em>. In our example, we were able to perform these calculations with one command. However, the ease of calculating these measures is not an indication of the ease of interpretation, particularly when it comes to measures of diversity. There are a large number of diversity measures available and the measures provided here are those we found most useful.</p>
</div>
<div id="references" class="section level2">
<h2>References</h2>
<!--------->
<div id="refs" class="references">
<div id="ref-brown1980multilocus">
<p>Brown AHD., Feldman MW., Nevo E. 1980. Multilocus structure of natural populations of <em>hordeum spontaneum</em>. <em>Genetics</em> 96:523–536. Available at: <a href="http://www.genetics.org/content/96/2/523">http://www.genetics.org/content/96/2/523</a></p>
</div>
<div id="ref-grunwald2003">
<p>Grünwald NJ., Goodwin SB., Milgroom MG., Fry WE. 2003. Analysis of genotypic diversity data for populations of microorganisms. <em>Phytopathology</em> 93:738–746. Available at: <a href="http://apsjournals.apsnet.org/doi/abs/10.1094/PHYTO.2003.93.6.738">http://apsjournals.apsnet.org/doi/abs/10.1094/PHYTO.2003.93.6.738</a></p>
</div>
<div id="ref-ludwig1988statistical">
<p>Ludwig JA., Reynolds JF. 1988. <em>Statistical ecology: A primer in methods and computing</em>. Wiley.com.</p>
</div>
<div id="ref-nei1978estimation">
<p>Nei M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. <em>Genetics</em> 89:583–590. Available at: <a href="http://www.genetics.org/content/89/3/583.abstract">http://www.genetics.org/content/89/3/583.abstract</a></p>
</div>
<div id="ref-pielou1975ecological">
<p>Pielou EC. 1975. <em>Ecological diversity</em>. Wiley New York.</p>
</div>
<div id="ref-shannon2001mathematical">
<p>Shannon CE. 2001. A mathematical theory of communication. <em>ACM SIGMOBILE Mobile Computing and Communications Review</em> 5:3–55. Available at: <a href="http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf">http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf</a></p>
</div>
<div id="ref-simpson1949measurement">
<p>Simpson EH. 1949. Measurement of diversity. <em>Nature</em> 163:688. Available at: <a href="http://dx.doi.org/10.1038/163688a0">http://dx.doi.org/10.1038/163688a0</a></p>
</div>
<div id="ref-smith1993clonal">
<p>Smith JM., Smith NH., O’Rourke M., Spratt BG. 1993. How clonal are bacteria. <em>Proceedings of the National Academy of Sciences</em> 90:4384–4388. Available at: <a href="http://www.pnas.org/content/90/10/4384">http://www.pnas.org/content/90/10/4384</a></p>
</div>
<div id="ref-stoddart1988genotypic">
<p>Stoddart JA., Taylor JF. 1988. Genotypic diversity: Estimation and prediction in samples. <em>Genetics</em> 118:705–711. Available at: <a href="http://www.genetics.org/content/118/4/705">http://www.genetics.org/content/118/4/705</a></p>
</div>
</div>
</div>
</div>
<script>
// add bootstrap table styles to pandoc tables
function bootstrapStylePandocTables() {
$('tr.odd').parent('tbody').parent('table').addClass('table table-condensed');
}
$(document).ready(function () {
bootstrapStylePandocTables();
});
</script>
<!-- tabsets -->
<script>
$(document).ready(function () {
window.buildTabsets("TOC");
});
$(document).ready(function () {
$('.tabset-dropdown > .nav-tabs > li').click(function () {
$(this).parent().toggleClass('nav-tabs-open')
});
});
</script>
<!-- code folding -->
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
script.src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML";
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>