-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathkmeans_wilber.cpp
399 lines (361 loc) · 13.3 KB
/
kmeans_wilber.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
#include <cassert>
#include <limits>
#include <iostream>
#include <iomanip>
#include <vector>
#include <algorithm>
#include <cassert>
#include "kmeans.h"
template <typename T>
void print_vector(const std::vector<T> & vec, std::string sep=", "){
for(auto elem : vec)
{
std::cout << elem << sep;
}
std::cout<<std::endl;
}
void kmeans_wilber::set_search_strategy(search_strategy strat) {
std::cout << "setting search strategy to: " << strat << std::endl;
this->search_strat = strat;
}
kmeans_wilber::kmeans_wilber(const std::vector<double> &points) :
f(points.size() + 1, 0.0), bestleft(points.size() + 1, 0),
is(points), points(points), n(points.size()), search_strat(search_strategy::INTERPOLATION) { }
std::string kmeans_wilber::name() { return std::string("wilber"); }
std::unique_ptr<kmeans_result> kmeans_wilber::compute_binary_search(size_t k) {
std::unique_ptr<kmeans_result> kmeans_res(new kmeans_result);
double lo = 0.0;
double hi = is.cost_interval_l2(0, n-1);
size_t cnt = 0;
double val_found;
size_t k_found;
while (true) {
++cnt;
lambda = lo + (hi-lo) / 2;
std::tie(val_found, k_found) = this->wilber(n);
if (k_found == k) {
break;
} else if (k_found < k) {
hi = lambda;
} else { // k_found > k
lo = lambda;
}
}
get_actual_cost(n, kmeans_res);
return kmeans_res;
}
std::unique_ptr<kmeans_result> kmeans_wilber::compute_interpolation_search_with_noise(size_t k, double lambda_fail){
//const double scale = std::max(double(points.size())*1000, 1000000.0)
//std::cout << "search with random noise added to deal with special case the easy way - k: " << k << std::endl;
float range;
double scale_const = 1.0;// mayeb just do sqrt of epsilon
double eps = std::numeric_limits<double>::epsilon();
double sqeps = sqrt(eps);
// (x-eps - m)^2 = (x-eps)^2 + m^2 - 2m (x-eps) = x^2 - eps^2 + 2 eps x ... = (x-m)^2 - eps^2
if(lambda_fail >= 1){
range = sqeps * sqrt(lambda_fail) * scale_const;
}
else{
range = sqeps * scale_const;
}
//range = std::min(range,
//std::cout << "what is range " << range << std::endl;
std::random_device rd; //Will be used to obtain a seed for the random number engine
std::mt19937 generator(rd()); //Standard mersenne_twister_engine seeded with rd()
//std::default_random_engine generator;
//std::cout << std::setprecision(10);
std::unique_ptr<kmeans_result> noise_res;//(new kmeans_result);
size_t retries = 10;
bool succ=false;
for(size_t i=0;i < retries; ++i){
std::uniform_real_distribution<> dis(-range, range);
std::vector<double> new_points(points.size(), 0.0);
for(size_t i=0; i<points.size(); ++i){
new_points[i] = points[i] + dis(generator);
//std::cout << "new point and old point " << new_points[i] << " " << points[i] << std::endl;
}
std::sort(new_points.begin(), new_points.end());
std::unique_ptr<kmeans_wilber> noise_wilber(new kmeans_wilber(new_points));
std::tie(noise_res, succ) = noise_wilber->compute_interpolation_search(k, false);
if(succ){
//std::cout << "noise success " << std::endl;
bestleft = std::move(noise_wilber->bestleft);
break;
}
else{
std::cout << "noise fail - try again - scale noise range by 1.5" << std::endl;
range = range * 1.5;
}
}
assert(succ);
return noise_res;
}
std::pair<std::unique_ptr<kmeans_result>, bool> kmeans_wilber::compute_interpolation_search(size_t k, bool add_noise_if_loop=false) {
std::unique_ptr<kmeans_result> kmeans_res(new kmeans_result);
double lo = 0.0;
double lo_intercept = 0;
size_t lo_k = n;
double hi = is.cost_interval_l2(0, n-1);
double hi_intercept = hi;
size_t hi_k = 1;
//double hi = 1e-2;
double val_found;
size_t k_found;
size_t cnt = 0;
while (true) {
++cnt;
//std::cout << "\r" << "[Step = " << cnt << ", k_found = " << k << "]" << std::flush;
lambda = (hi_intercept - lo_intercept) / (lo_k - hi_k);
std::tie(val_found, k_found) = this->wilber(n);
if (k_found <= hi_k || k_found >= lo_k) {
std::cerr << "[Warning: K Found Outside search range - Empty Lambda Interval or numerical issues - Fix It with noise]" << std::endl;
std::cerr << std::setprecision(20);
std::cerr << "stats [k_found, k-range searched] " << k_found << " - (" << hi_k << " , " << lo_k << " ) - lambda " << lambda << std::endl;
// infinite loop. lambda intervals are empty between hi_k and lo_k. Add noise if allowed
if(add_noise_if_loop){
kmeans_res = compute_interpolation_search_with_noise(k, lambda);
k_found = k;
}
else{
return std::make_pair(std::move(kmeans_res), false);
}
}
if (k_found > k) {
lo_k = k_found;
lo = lambda;
lo_intercept = val_found - lo_k * lambda;
} else if (k_found < k) {
hi = lambda;
hi_k = k_found;
hi_intercept = val_found - hi_k * lambda;
} else {
hi = lambda;
break;
}
if(cnt > 1000){
std::cout << "[Warning: More than 1000 steps - breaking] "<< std::endl;
assert(false);
}
}
get_actual_cost(n, kmeans_res);
return std::make_pair(std::move(kmeans_res), true);
}
std::unique_ptr<kmeans_result> kmeans_wilber::compute(size_t k) {
std::unique_ptr<kmeans_result> kmeans_res(new kmeans_result);
if (k >= n) {
kmeans_res->cost = 0.0;
kmeans_res->centers.resize(k);
for (size_t i = 0; i < n; ++i) {
kmeans_res->centers[i] = points[i];
}
for (size_t i = n; i < k; ++i) {
kmeans_res->centers[i] = points[n-1];
}
return kmeans_res;
}
if (k == 1) {
kmeans_res->cost = is.cost_interval_l2(0, n-1);
kmeans_res->centers.push_back(is.query(0, n) / ((double) n));
return kmeans_res;
}
bool succ;
switch (this->search_strat) {
case search_strategy::BINARY:
return compute_binary_search(k);
break;
case search_strategy::INTERPOLATION:
std::tie(kmeans_res, succ) = compute_interpolation_search(k, true);
return kmeans_res;
break;
default:
throw;
}
}
std::unique_ptr<kmeans_result> kmeans_wilber::compute_and_report(size_t k) {
return compute(k);
}
double kmeans_wilber::weight(size_t i, size_t j) {
if (i >= j) return std::numeric_limits<double>::max();
return is.cost_interval_l2(i, j-1) + lambda;
}
double kmeans_wilber::g(size_t i, size_t j) {
return f[i] + weight(i, j);
}
double kmeans_wilber::get_actual_cost(size_t n, std::unique_ptr<kmeans_result> &res) {
double cost = 0.0;
size_t m = n;
std::vector<double> centers;
std::vector<size_t> path;
//res->path.clear();
res->path.push_back(m);
while (m != 0) {
size_t prev = bestleft[m];
res->path.push_back(prev);
cost += is.cost_interval_l2(prev, m-1);
double avg = is.query(prev, m) / (m - prev);
centers.push_back(avg);
m = prev;
}
res->centers.resize(centers.size());
for (size_t i = 0; i < centers.size(); ++i) {
res->centers[i] = centers[centers.size() - i - 1];
}
res->cost = cost;
return cost;
}
std::vector<size_t> kmeans_wilber::smawk_inner(std::vector<size_t> &columns, size_t e, std::vector<size_t> &rows) {
// base case.
size_t n = columns.size();
size_t result_size = (n + e - 1) / e;
if (rows.size() == 1) {
// result is of length (n + e - 1)/e
return std::vector<size_t>(result_size, 0);
}
//reduce
std::vector<size_t> new_rows;
std::vector<size_t> translate;
if (result_size < rows.size()) {
for (size_t i = 0; i < rows.size(); ++i) {
// I1: forall j in [0..new_rows.size() - 2]: g(new_rows[j], columns[e*j]) < g(new_rows[j+1], columns[e*j]).
// for (size_t j = 1; j < new_rows.size(); ++j) {
// assert(g(new_rows[j-1], columns[e*(j-1)]) < g(new_rows[j], columns[e*(j-1)]));
// }
// I2: every column minima is either already in a row in new_rows OR
// it is in rows[j] where j >= i.
auto r = rows[i];
//&& (new_rows.size() - 1 + (rows.size() - i)) >= result_size
while (new_rows.size() &&
g(r, columns[e * (new_rows.size() - 1)]) <= g(new_rows.back(), columns[e * (new_rows.size() - 1)])) {
new_rows.pop_back();
translate.pop_back();
}
if (e * new_rows.size() < n) { new_rows.push_back(r); translate.push_back(i); }
}
} else {
new_rows = rows;
for (size_t i = 0; i < rows.size(); ++i) translate.push_back(i);
}
// assert(new_rows.size() <= result_size); // new_row.size() = ceil(n/e)
// assert(new_rows.size());
if (result_size == 1) {
return std::vector<size_t>{translate[0]};
}
//recurse
std::vector<size_t> column_minima_rec = smawk_inner(columns, 2*e, new_rows); // indexes in new_rows
// assert(column_minima_rec.size() == ((result_size + 1)/ 2));
std::vector<size_t> column_minima; // indexes in rows
//combine.
column_minima.push_back(translate[column_minima_rec[0]]);
for (size_t i = 1; i < column_minima_rec.size(); ++i) {
size_t from = column_minima_rec[i-1]; // index in new_rows
size_t to = column_minima_rec[i]; // index in new_rows
size_t new_column = (2 * i - 1); // 1, 3, 5..
// assert(column_minima.size() == new_column);
column_minima.push_back(from);
for (size_t r = from; r <= to; ++r) {
if (g(new_rows[r], columns[new_column*e]) <= g(rows[column_minima[new_column]], columns[new_column*e])) {
column_minima[new_column] = translate[r];
}
}
column_minima.push_back(translate[to]);
}
// assert(column_minima.size() == result_size || column_minima.size() == result_size - 1);
if (column_minima.size() < result_size) {
// assert(column_minima.size() == result_size - 1);
size_t from = column_minima_rec.back();
size_t new_column = column_minima.size();
column_minima.push_back(translate[from]);
for (size_t r = from; r < new_rows.size(); ++r) {
if (g(new_rows[r], columns[new_column*e]) <= g(rows[column_minima[new_column]], columns[new_column*e])) {
column_minima[new_column] = translate[r];
}
}
}
// assert(column_minima.size() == result_size);
return column_minima;
}
std::vector<double> kmeans_wilber::smawk(size_t i0, size_t i1, size_t j0, size_t j1, std::vector<size_t> &idxes) {
std::vector<size_t> rows, cols;
for (size_t i = i0; i <= i1; ++i) {
rows.push_back(i);
}
for (size_t j = j0; j <= j1; ++j) {
cols.push_back(j);
}
std::vector<size_t> column_minima = smawk_inner(cols, 1, rows); // indexes in rows.
std::vector<double> res(column_minima.size());
for (size_t i = 0; i < res.size(); ++i) {
res[i] = g(rows[column_minima[i]], cols[i]);
idxes.push_back(rows[column_minima[i]]);
assert(res[i] != std::numeric_limits<double>::max());
}
return res;
}
/**
* @return f[j] = smallest value in column j0 <= j <= j1 of submatrix G[i0:i1,j0:j1] all inclusive.
*/
std::vector<double> kmeans_wilber::smawk_naive(size_t i0, size_t i1, size_t j0, size_t j1, std::vector<size_t> &idxes) {
std::vector<double> column_minima(j1 - j0 + 1, std::numeric_limits<double>::max());
idxes.resize(j1 - j0 + 1, n+10);
for (size_t j = j0; j<= j1; ++j) {
for (size_t i = i0; i <= i1; ++i) {
if (i >= j) continue; // g(i, j) is infinity.
double val = g(i, j);
if (val < column_minima[j-j0]) {
column_minima[j-j0] = val;
idxes[j-j0] = i;
}
}
}
return column_minima;
}
std::pair<double, size_t> kmeans_wilber::wilber(size_t n) {
//std::cout << "call " << name() << " with lambda=" << lambda << std::endl;
f.resize(n+1, 0);
bestleft.resize(n+1, 0);
f[0] = 0;
size_t c = 0, r = 0;
while (c < n) {
//std::cout << "hello" << std::endl;
// step 1
size_t p = std::min(2*c - r + 1, n);
// step 2
{
std::vector<size_t> bl;
std::vector<double> column_minima = smawk(r, c, c+1, p, bl);
for (size_t j = c+1; j <= p; ++j) {
f[j] = column_minima[j - ( c + 1)];
bestleft[j] = bl[j - ( c + 1)];
}
}
// step 3
if (c+1 <= p-1) {
std::vector<size_t> bl;
std::vector<double> H = smawk(c + 1, p - 1, c + 2, p, bl);
// step 4
size_t j0 = p+1;
for (size_t j = p; j >= c+2; --j) {
if (H[j-(c+2)] < f[j]) j0 = j;
}
//step 5
if (j0 == p+1) {
c = p;
} else {
f[j0] = H[j0-(c+2)];
bestleft[j0] = bl[j0-(c+2)];
r = c + 1;
c = j0;
}
} else {
c = p;
}
}
// find length
size_t m = n;
size_t length = 0;
while (m > 0) {
m = bestleft[m];
++length;
}
return std::make_pair(f[n], length);
}