-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathrealtime.py
453 lines (354 loc) · 14.3 KB
/
realtime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import argparse
#-----------------------------
# Command Line Options
#-----------------------------
description = "Create real-time maps of the magnetic field across the US."
parser = argparse.ArgumentParser(description=description)
parser.add_argument('--outdir', action='store',
required=False, default='.',
help='Where the output files will be written to. (default: "."')
parser.add_argument('--timeseries', action='store_true',
default=False, required=False,
help='Make a plot of time series')
parser.add_argument('--secmap', action='store_true',
default=False, required=False,
help='Make the most recent map of SEC predicted magnetic fields')
parser.add_argument('--movie', action='store_true',
default=False, required=False,
help='Make a movie of the magnetic field changing over the past day')
parser.add_argument('--server', action='store',
default='https://geomag.usgs.gov',
required=False,
help='Server url to query for data (default: %(default)s)')
parser.add_argument('--verbose', action='store_true',
default=False, required=False,
help='Print out timing information')
args = parser.parse_args()
SERVER_URL = args.server
# server requests
import requests
import datetime
import time
# Numerical
import numpy as np
import pandas as pd
from pySECS import SECS
import bezpy
# Plotting libraries
import matplotlib as mpl
import matplotlib.pyplot as plt
#------------------
# Defaults
#------------------
t0 = time.time()
R_earth = 6378000
Bscale = 12
arrow_width = 0.004
cmap = mpl.cm.plasma
norm = mpl.colors.LogNorm(vmin=1, vmax=1000)
# Mapping library
import cartopy
import cartopy.crs as ccrs
import cartopy.feature as cfeature
bbox = [-135, -65, 20, 75]
projection = ccrs.LambertAzimuthalEqualArea(central_latitude=42.5, central_longitude=-95)
proj_data = ccrs.PlateCarree()
def scale_vectors(x, y, scale=np.log10):
"""Scale vectors while preserving the angle.
Parameters
==========
x: Cartesian x coordinate(s)
y: Cartesian y coordinate(s)
scale: function to scale the magnitude by (Default: log10)
"""
mag = np.sqrt(x**2 + y**2)
# Prevent logs of values <1, which could be large negatives and flip the true sign
with np.errstate(invalid='ignore'):
mag[mag<1] = 1.
angle = np.arctan2(y, x)
newx = scale(mag)*np.cos(angle)
newy = scale(mag)*np.sin(angle)
return (newx, newy)
#------------------------------------------------
# Routines for downloading geomag data from USGS
#------------------------------------------------
USGS_CODES = ['BRW', 'DED', 'CMO', 'SIT', 'SHU',
'NEW', 'BOU', 'FRD', 'FRN', 'TUC',
'BSL', 'HON', 'SJG', 'GUA']
# Actual sites
NRCAN_CODES = ['ALE', 'BLC', 'BRD', 'CBB', 'EUA',
'FCC', 'IQA', 'MEA', 'OTT', 'RES',
'STJ', 'SNK', 'VIC', 'YKC']
# Removed ALE, EUA, SNK
NRCAN_CODES = ['BLC', 'BRD', 'CBB',
'FCC', 'IQA', 'MEA', 'OTT', 'RES',
'STJ', 'VIC', 'YKC']
class GeomagObservatory:
def __init__(self, name='BOU'):
"""Object to download and store geomagnetic observatory data"""
self.name = name
# Location code on USGS servers
self.loc_code = 'R0'
# Canadian data is in R1 (GOES)
if name in NRCAN_CODES:
self.loc_code = 'R1'
self.dt = datetime.timedelta(days=1)
self._update_times()
self.df = None
self.update_data()
def _update_times(self):
self.end_time = datetime.datetime.utcnow()
self.start_time = self.end_time - self.dt
def update_data(self):
self._update_times()
url = ("{server_url}/ws/edge/?format=json".format(server_url=SERVER_URL) +
"&id={name}".format(name=self.name) +
"&type={loc_code}".format(loc_code=self.loc_code) +
"&starttime={starttime}".format(starttime=self.start_time.strftime("%Y-%m-%dT%H:%M:%SZ")) +
"&endtime={endtime}".format(endtime=self.end_time.strftime("%Y-%m-%dT%H:%M:%SZ")) +
"&sampling_period=60" +
"&elements=X,Y,Z") # other codes: ,F,SV,SQ,Dist
try:
r = requests.get(url)
data = r.json()
self.df = pd.DataFrame(index=pd.to_datetime(data['times']),
data={'X': data['values'][0]['values'],
'Y': data['values'][1]['values'],
'Z': data['values'][2]['values']},
dtype=np.float).dropna()
self.df['Direction'] = np.rad2deg(np.arctan2(self.df['X'], self.df['Y']))
except:
print(f"Failed to update {self.name}")
observatories = [GeomagObservatory(obs) for obs in USGS_CODES] + \
[GeomagObservatory(obs) for obs in NRCAN_CODES]
good_observatories = [obs for obs in observatories
if ((obs.df is not None) and (not obs.df.empty))]
missing_observatories = [obs for obs in observatories if obs not in good_observatories]
good_xy = []
missing_xy = []
for obs in observatories:
site = bezpy.mag.get_iaga_observatory(obs.name)
lonlat = (site['longitude'], site['latitude'])
if obs in good_observatories:
good_xy.append(lonlat)
else:
missing_xy.append(lonlat)
good_xy = np.array(good_xy)
missing_xy = np.array(missing_xy)
nobs = len(good_observatories)
B = pd.concat([obs.df[['X', 'Y', 'Z']] for obs in good_observatories], axis=1)
# Resample, then interpolate
B = B.resample('15Min').median().interpolate(limit_direction='both')
# Detrend
B = B - B.median()
# Create numpy array
B_obs = np.zeros((len(B), nobs, 3))
B_obs[:,:,0] = B['X']
B_obs[:,:,1] = B['Y']
B_obs[:,:,2] = B['Z']
# Save the most recent time string for file naming
time_string = B.index[-1].strftime("%Y%m%d-%H%M")
if args.verbose:
print("Downloading data: {:.2f} s".format(time.time()-t0))
#-----------------------
# Set up regular grids
#-----------------------
delta_x = delta_y = 2
xs = np.arange(-180, -20, delta_x)
ys = np.arange(0, 89, delta_y)
yy, xx = np.meshgrid(ys, xs)
# Change it to an N x 2 matrix
gridded_xy = np.vstack([np.ravel(xx), np.ravel(yy)]).T
# Plot grid
# NOTE: This specifies box edges for pcolormesh, which must be
# one longer than the 'data points'
grid_shape = xx.shape
xs = np.append((xs - delta_x/2), xs[-1] + delta_x/2)
ys = np.append((ys - delta_y/2), ys[-1] + delta_y/2)
yy_edges, xx_edges = np.meshgrid(ys, xs)
obs_lat_lon_r = np.zeros((len(good_xy), 3))
obs_lat_lon_r[:,0] = good_xy[:,1]
obs_lat_lon_r[:,1] = good_xy[:,0]
obs_lat_lon_r[:,2] = R_earth
obs_var = np.ones(obs_lat_lon_r.shape)
# Don't include Z component in fits for now
obs_var[:,2] = np.inf
gridded_lat_lon_r = np.zeros((len(gridded_xy), 3))
gridded_lat_lon_r[:,0] = gridded_xy[:,1]
gridded_lat_lon_r[:,1] = gridded_xy[:,0]
gridded_lat_lon_r[:,2] = R_earth
# specify the SECS grid
lat, lon, r = np.meshgrid(np.linspace(15,85,36),
np.linspace(-175,-25,76),
R_earth+110000, indexing='ij')
secs_lat_lon_r = np.hstack((lat.reshape(-1,1),
lon.reshape(-1,1),
r.reshape(-1,1)))
#--------------
# SECS
#--------------
secs = SECS(sec_df_loc=secs_lat_lon_r)
secs.fit(obs_loc=obs_lat_lon_r, obs_B=B_obs,
obs_var=obs_var, epsilon=0.05)
B_gridded = secs.predict_B(gridded_lat_lon_r)
if args.verbose:
print("SECS Interpolation: {:.2f} s".format(time.time()-t0))
#---------------
# Plotting
#---------------
def setup_map():
scale = '10m'
coast = cfeature.NaturalEarthFeature(category='physical', scale=scale,
edgecolor='k',
facecolor='none', name='coastline')
states = cfeature.NaturalEarthFeature(
category='cultural',
name='admin_1_states_provinces_lines',
scale=scale,
facecolor='none',
edgecolor='k')
countries = cfeature.NaturalEarthFeature(
category='cultural',
name='admin_0_countries',
scale=scale,
facecolor='none',
edgecolor='k')
fig, ax = plt.subplots(figsize=(8, 8),
subplot_kw=dict(projection=projection))
ax.set_extent(bbox, proj_data)
ax.add_feature(coast)
ax.add_feature(states, alpha=0.8)
ax.add_feature(countries)
return (fig, ax)
if args.timeseries:
fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(8, 8))
for obs in good_observatories:
ax1.plot(obs.df.index, obs.df['X']-obs.df['X'].median(), label=obs.name)
ax2.plot(obs.df.index, obs.df['Y']-obs.df['Y'].median(), label=obs.name)
ax1.legend(loc='upper center', bbox_to_anchor=(0.5, 1.15),
ncol=5, fancybox=True, shadow=True)
ax1.set_ylabel('B$_x$ (nT)')
ax2.set_ylabel('B$_y$ (nT)')
ylim = ax1.get_ylim()
max_y = np.max(np.abs(ylim))
ax1.set_ylim(-max_y, max_y)
ylim = ax2.get_ylim()
max_y = np.max(np.abs(ylim))
ax2.set_ylim(-max_y, max_y)
fig.savefig(args.outdir + '/timeseries_{}.png'.format(time_string), bbox_inches='tight')
if args.verbose:
print("Time series figure: {:.2f} s".format(time.time()-t0))
if args.secmap:
# Make a single map and save it
t = -1
Bx = B_gridded[t,:,0]
By = B_gridded[t,:,1]
B_mag = np.sqrt(Bx**2 + By**2)
By_log, Bx_log = scale_vectors(By, Bx)
fig, ax = setup_map()
cax = ax.pcolormesh(xx_edges, yy_edges, B_mag.reshape(grid_shape),
cmap=cmap, norm=norm,
transform=proj_data)
cbar = plt.colorbar(cax, orientation='horizontal', label='B (nT)')
Q = ax.quiver(gridded_xy[:,0], gridded_xy[:,1],
By_log, Bx_log, color='k',
transform=proj_data,
scale_units='inches', scale=Bscale, width=arrow_width,
alpha=1., regrid_shape=15)
Bx = B_obs[t,:,0]
By = B_obs[t,:,1]
B_mag = np.sqrt(Bx**2 + By**2)
By_log, Bx_log = scale_vectors(By, Bx)
#obs_scatter = ax.scatter(good_xy[:,0], good_xy[:,1],
# c='g', s=50, alpha=0.75,
# zorder=9, transform=proj_data)
# Plot the missing observatories in Red
missing_scatter = ax.scatter(missing_xy[:,0], missing_xy[:,1],
c='r', s=50, alpha=0.75,
zorder=9, transform=proj_data)
Q_obs = ax.quiver(good_xy[:,0], good_xy[:,1],
By_log, Bx_log, color='g',
transform=proj_data,
scale_units='inches', scale=Bscale, width=arrow_width,
alpha=1., zorder=10)
title = ax.set_title("SECS Magnetic Field\n{0}".format(
B.index[t].strftime("%Y/%m/%d %H:%M")))
fig.savefig(args.outdir + "/secs_map_{}.png".format(time_string), bbox_inches='tight')
if args.verbose:
print("SECS map: {:.2f} s".format(time.time()-t0))
if args.movie:
# Animations
from matplotlib import animation
# Make a single map and save it
fig, ax = setup_map()
t = -1
Bx = B_gridded[t,:,0]
By = B_gridded[t,:,1]
B_mag = np.sqrt(Bx**2 + By**2)
By_log, Bx_log = scale_vectors(By, Bx)
cax = ax.pcolormesh(xx_edges, yy_edges, B_mag.reshape(grid_shape),
cmap=cmap, norm=norm,
transform=proj_data)
cbar = plt.colorbar(cax, orientation='horizontal', label='B (nT)')
Q = ax.quiver(gridded_xy[:,0], gridded_xy[:,1],
By_log, Bx_log, color='k',
transform=proj_data,
scale_units='inches', scale=Bscale, width=arrow_width,
alpha=1., regrid_shape=15)
#----------------------------------------
# Regrid in map space and
# calculate B-fields on this new grid.
#----------------------------------------
# Get the uniform xy coordinates of the quiver grid and then delete that quiver
xy = Q.get_offsets()
Q.remove()
uniform_xy = proj_data.transform_points(projection, xy[:,0], xy[:,1])
uniform_xy[:,2] = R_earth
# Need to send lat/lon/r, so swap axis 0/1
B_uniform = secs.predict_B(uniform_xy[:,[1,0,2]])
Bx = B_uniform[t,:,0]
By = B_uniform[t,:,1]
By_log, Bx_log = scale_vectors(By, Bx)
Q = ax.quiver(uniform_xy[:,0], uniform_xy[:,1],
By_log, Bx_log, color='k',
transform=proj_data,
scale_units='inches', scale=Bscale, width=arrow_width,
alpha=1.)
Bx = B_obs[t,:,0]
By = B_obs[t,:,1]
By_log, Bx_log = scale_vectors(By, Bx)
#obs_scatter = ax.scatter(good_xy[:,0], good_xy[:,1],
# c='g', s=50, alpha=0.75,
# zorder=9, transform=proj_data)
# Plot the missing observatories in Red
missing_scatter = ax.scatter(missing_xy[:,0], missing_xy[:,1],
c='r', s=50, alpha=0.75,
zorder=9, transform=proj_data)
Q_obs = ax.quiver(good_xy[:,0], good_xy[:,1],
By_log, Bx_log, color='g',
transform=proj_data,
scale_units='inches', scale=Bscale, width=arrow_width,
alpha=1., zorder=10)
title = ax.set_title("SECS Magnetic Field\n{0}".format(
B.index[t].strftime("%Y/%m/%d %H:%M")))
def animate(t):
title.set_text("{0}".format(B.index[t].strftime("%Y/%m/%d %H:%M")))
# pcolormesh
Bx = B_gridded[t,:,0]
By = B_gridded[t,:,1]
B_mag = np.sqrt(Bx**2 + By**2)
cax.set_array(B_mag)
# Uniform grid vectors
Bx = B_uniform[t,:,0]
By = B_uniform[t,:,1]
By_log, Bx_log = scale_vectors(By, Bx)
Q.set_UVC(By_log, Bx_log)
# Observations
Bx = B_obs[t,:,0]
By = B_obs[t,:,1]
By_log, Bx_log = scale_vectors(By, Bx)
Q_obs.set_UVC(By_log, Bx_log)
anim = animation.FuncAnimation(fig, animate, frames=range(len(B)), interval=150)
anim.save('daily_movie_{}.mp4'.format(time_string))
if args.verbose:
print("SECS animation: {:.2f} s".format(time.time()-t0))