-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_mimicry_mnist_fmnist_phase1.py
141 lines (123 loc) · 4.73 KB
/
train_mimicry_mnist_fmnist_phase1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import argparse
import os
from pathlib import Path
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch_mimicry as mmc
from PIL import Image
from torch.utils import data
from diagan.datasets.predefined import (
get_predefined_dataset
)
from diagan.models.predefined_models import get_gan_model
from diagan.trainer.trainer import LogTrainer
from diagan.utils.plot import (
plot_color_mnist_generator, print_num_params
)
from diagan.utils.settings import set_seed
def get_dataloader(dataset, batch_size=128, clip=False, weights=None):
if weights is not None:
eps = 1e-1
if clip:
mean = weights.mean()
var = weights.var()
k = 2
upper_bound = mean + k * var
lower_bound = max(mean - k * var, eps)
weight_list = np.array([lower_bound if i < lower_bound else (upper_bound if i > upper_bound else i) for i in weights])
else:
weight_list = np.array([eps if i < eps else i for i in weights])
sampler = data.WeightedRandomSampler(weight_list, len(weight_list), replacement=True)
print(f'weight_list max: {weight_list.max()} min: {weight_list.min()} mean: {weight_list.mean()} var: {weight_list.var()}')
else:
sampler = None
dataloader = data.DataLoader(
dataset=dataset,
batch_size=batch_size,
shuffle=False if sampler else True,
sampler=sampler,
num_workers=8,
pin_memory=True)
return dataloader
def main():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", "-d", default="mnist_fmnist", type=str)
parser.add_argument("--root", "-r", default="./dataset/mnist_fmnist", type=str, help="dataset dir")
parser.add_argument("--work_dir", default="./exp_results", type=str, help="output dir")
parser.add_argument("--exp_name", default="mnist_fmnist", type=str, help="exp name")
parser.add_argument("--loss_type", default="ns", type=str, help="loss type")
parser.add_argument("--model", default="mnist_dcgan", type=str, help="network model")
parser.add_argument('--gpu', default='0', type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
parser.add_argument('--quiet', dest='quiet', action='store_true',
help='do not use pbar')
parser.add_argument('--num_pack', default=1, type=int)
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--seed', default=1, type=int)
parser.add_argument('--use_clipping', action='store_true')
parser.add_argument('--num_steps', default=20000, type=int)
parser.add_argument('--logit_save_steps', default=100, type=int)
parser.add_argument('--decay', default='None', type=str)
parser.add_argument('--n_dis', default=1, type=int)
parser.add_argument('--major_ratio', default=0.99, type=float)
parser.add_argument('--num_data', default=10000, type=int)
parser.add_argument('--topk', default=0, type=int)
parser.add_argument('--resample_score', type=str)
args = parser.parse_args()
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
output_dir = f'{args.work_dir}/{args.exp_name}'
save_path = Path(output_dir)
save_path.mkdir(parents=True, exist_ok=True)
set_seed(args.seed)
if torch.cuda.is_available():
device = "cuda"
cudnn.benchmark = True
else:
device = "cpu"
netG, netD, optG, optD = get_gan_model(
dataset_name=args.dataset,
model=args.model,
num_pack=args.num_pack,
loss_type=args.loss_type,
topk=args.topk == 1,
)
print_num_params(netG, netD)
ds_train = get_predefined_dataset(
dataset_name=args.dataset,
root=args.root,
weights=None,
major_ratio=args.major_ratio,
num_data=args.num_data
)
dl_train = get_dataloader(
ds_train,
batch_size=args.batch_size,
weights=None)
print(args)
# Start training
trainer = LogTrainer(
output_path=save_path,
logit_save_steps=args.logit_save_steps,
netD=netD,
netG=netG,
optD=optD,
optG=optG,
n_dis=args.n_dis,
num_steps=args.num_steps,
save_steps=1000,
vis_steps=100,
lr_decay=args.decay,
dataloader=dl_train,
log_dir=output_dir,
print_steps=10,
device=device,
topk=args.topk,
save_logits=args.num_pack==1,)
trainer.train()
# if args.num_pack == 1:
# score_dict = calculate_scores(trainer.logit_results['netD_train'], start_epoch=args.num_steps // 2, end_epoch=args.num_steps)
# plot_score_sort(ds_train, score_dict, save_path=save_path, phase='p1')
if __name__ == '__main__':
main()