You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: CHANGELOG.md
+9Lines changed: 9 additions & 0 deletions
Original file line number
Diff line number
Diff line change
@@ -7,7 +7,16 @@ This project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.htm
7
7
8
8
## [Development]
9
9
10
+
### Changed
11
+
* AI: moves public `g.g_dgl` from KG `embed` method to private method `g._kg_dgl`
12
+
* AI: BREAKING CHANGES: to return matrices during transform, set the flag: `X, y = g.transform(df, return_graph=False)` default behavior is ~ `g2 = g.transform(df)` returning a Plottable instance.
13
+
10
14
### Added
15
+
* AI: all `transform_*` methods return graphistry Plottable instances, using an infer_graph method. To return matrices, set the `return_graph=False` flag.
16
+
* AI: adds `g.get_matrix(**kwargs)` general method to retrieve (sub)-feature/target matrices
17
+
* AI: DBSCAN -- `g.featurize().dbscan()` and `g.umap().dbscan()` with options to use UMAP embedding, feature matrix, or subset of feature matrix via `g.dbscan(cols=[...])`
18
+
* AI: Demo cleanup using ModelDict & new features, refactoring demos using `dbscan` and `transform` methods.
19
+
* Tests: dbscan tests
11
20
* AI: Easy import of featurization kwargs for `g.umap(**kwargs)` and `g.featurize(**kwargs)`
12
21
* AI: `g.get_features_by_cols` returns featurized submatrix with `col_part` in their columns
13
22
* AI: `g.conditional_graph` and `g.conditional_probs` assessing conditional probs and graph
g3.plot() # useful to see how new data connects to old -- play with `sample` and `n_neighbors` to control how much of old to include
425
+
```
426
+
416
427
417
428
*UMAP supports many options, such as supervised mode, working on a subset of columns, and passing arguments to underlying `featurize()`andUMAP implementations (see `help(g.umap)`):
418
429
@@ -451,11 +462,11 @@ See `help(g.umap)` for more options
451
462
452
463
from [your_training_pipeline] import train, model
453
464
# Train
454
-
g = graphistry.nodes(df).build_gnn(y=`target`)
465
+
g = graphistry.nodes(df).build_gnn(y_nodes=`target`)
455
466
G = g.DGL_graph
456
467
train(G, model)
457
468
# predict on new data
458
-
X_new, _ = g.transform(new_df, None, kind='nodes'or'edges') # no targets
469
+
X_new, _ = g.transform(new_df, None, kind='nodes'or'edges', return_graph=False) # no targets
459
470
predictions = model.predict(G_new, X_new)
460
471
```
461
472
@@ -480,12 +491,21 @@ GNN support is rapidly evolving, please contact the team directly or on Slack fo
480
491
#encode text as paraphrase embeddings, supports any sbert model
481
492
model_name="paraphrase-MiniLM-L6-v2")
482
493
494
+
# or use convienence `ModelDict` to store parameters
0 commit comments