-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsegmentationcam.py
80 lines (70 loc) · 2.73 KB
/
segmentationcam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from black import E
import pixellib
from pixellib.semantic import semantic_segmentation
import cv2
import numpy as np
from time import sleep;
import matplotlib.pyplot as plt
cap = cv2.VideoCapture()
cap.open("tcp://192.168.41.30:8888")
segment_video = semantic_segmentation()
segment_video.load_ade20k_model("deeplabv3_xception65_ade20k.h5")
# segment_video.process_camera_ade20k(cap, overlay=True, frames_per_second= 15, show_frames= True,
# frame_name= "Segmentation")
def get_mask(extracted_objects):
mask = np.zeros(shape=(new_frame.shape[0],new_frame.shape[1]))
color = [230,230,6]
if mask.shape[0]>0 and mask.shape[1]>0:
for i in range(new_frame.shape[0]):
for j in range(new_frame.shape[1]):
if((new_frame[i][j]==color).all()):
mask[i][j]=1
else:
mask[i][j]=0
mask = mask.astype(np.uint8)
return mask
def findpath(mask):
midpoints=[]
for i in range(400,500):
row_measure={"start":0,"end":0,"measure":0}
measure=0
max_measure=0
start=0
for j in range(1,mask.shape[1]-1):
if(measure==0):
if(j<(mask.shape[1]-1) and mask[i][j]==1 and mask[i][j+1]==1):
measure+=1
start=j
if(measure!=0):
if(mask[i][j]==1 and mask[i][j+1]==1):
measure+=1
if(measure>max_measure and measure>40 and j>(mask.shape[1]-20)):
row_measure["start"]=start
row_measure["end"]=j
row_measure["measure"]=measure
max_measure=measure
measure=0;
elif(measure>max_measure and measure>40):
row_measure["start"]=start
row_measure["end"]=j
row_measure["measure"]=measure
max_measure=measure
measure=0;
midpoints.append(row_measure)
x=[]
y=[]
for i in range(400,500):
y.append(i);
x.append((midpoints[i]["start"]+midpoints[i]["end"])//2)
while(True):
_,frame = cap.read() # return a single frame in variable `frame`
frame = cv2.flip(frame,0)
segvalues, extracted_objects, new_frame= segment_video.segmentFrameAsAde20k(frame, output_frame_name="segmentation",overlay=True, verbose =False, extract_segmented_objects = True)
mask1 = get_mask(new_frame)
# mask1 = mask1*255
x,y = findpath(mask1)
cv2.imshow("frames",new_frame) #display the captured image
if cv2.waitKey(1) & 0xFF == ord('q'): #save on pressing 'y'
cv2.destroyAllWindows()
break
cap.release()