diff --git a/1_Fetching_the_data_eda.ipynb b/1_Fetching_the_data_eda.ipynb
index a34294d..5083863 100644
--- a/1_Fetching_the_data_eda.ipynb
+++ b/1_Fetching_the_data_eda.ipynb
@@ -197,7 +197,7 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
@@ -213,9 +213,18 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 12,
"metadata": {},
- "outputs": [],
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "C:\\Users\\andre\\AppData\\Local\\Temp\\ipykernel_28384\\1176423828.py:3: UserWarning: pandas only supports SQLAlchemy connectable (engine/connection) or database string URI or sqlite3 DBAPI2 connection. Other DBAPI2 objects are not tested. Please consider using SQLAlchemy.\n",
+ " df_psycopg = pd.read_sql(query_string, conn)\n"
+ ]
+ }
+ ],
"source": [
"# import the data into a pandas dataframe\n",
"query_string = \"SELECT * FROM eda.king_county_house_sales LIMIT 10\"\n",
@@ -224,7 +233,7 @@
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
@@ -234,7 +243,7 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 14,
"metadata": {},
"outputs": [
{
@@ -313,7 +322,7 @@
"4 2015-02-18 510000.0 1954400510 5"
]
},
- "execution_count": 10,
+ "execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
@@ -337,14 +346,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "### Connecting and retrieving data via SQLAlchemy\n",
+ "## Connecting and retrieving data via SQLAlchemy - the way to get data for our EDA project\n",
"\n",
"`sqlalchemy` works similarly. Here you have to create an engine with the database sting (a link that includes every information we entered in the conn object)"
]
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
@@ -367,7 +376,7 @@
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
@@ -378,7 +387,7 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 17,
"metadata": {},
"outputs": [
{
@@ -457,7 +466,7 @@
"4 2015-02-18 510000.0 1954400510 5"
]
},
- "execution_count": 13,
+ "execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
@@ -476,7 +485,7 @@
},
{
"cell_type": "code",
- "execution_count": null,
+ "execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
@@ -484,20 +493,692 @@
"df_sqlalchemy.to_csv('eda.csv',index=False)"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now we import the data of the second table into another csv file\n"
+ ]
+ },
{
"cell_type": "code",
- "execution_count": 18,
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#import the data to a pandas dataframe\n",
+ "query_string = \"SELECT * FROM eda.king_county_house_details\"\n",
+ "df_sqlalchemy = pd.read_sql(query_string, db)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# write data into eda2.csv file\n",
+ "df_sqlalchemy.to_csv('eda2.csv', index=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Let's generate 2 dataframes from those csv's and merge the data into one csv."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "read out those csv's\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
- "#import the data from a csv-file\n",
- "df_import = pd.read_csv('data/eda.csv')"
+ "#import the sales data from a csv-file \n",
+ "df_import_sales = pd.read_csv('data/eda.csv', index_col=3)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "
\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " date \n",
+ " price \n",
+ " house_id \n",
+ " \n",
+ " \n",
+ " id \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 2014-10-13 \n",
+ " 221900.0 \n",
+ " 7129300520 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 2014-12-09 \n",
+ " 538000.0 \n",
+ " 6414100192 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 2015-02-25 \n",
+ " 180000.0 \n",
+ " 5631500400 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 2014-12-09 \n",
+ " 604000.0 \n",
+ " 2487200875 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 2015-02-18 \n",
+ " 510000.0 \n",
+ " 1954400510 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 21593 \n",
+ " 2014-05-21 \n",
+ " 360000.0 \n",
+ " 263000018 \n",
+ " \n",
+ " \n",
+ " 21594 \n",
+ " 2015-02-23 \n",
+ " 400000.0 \n",
+ " 6600060120 \n",
+ " \n",
+ " \n",
+ " 21595 \n",
+ " 2014-06-23 \n",
+ " 402101.0 \n",
+ " 1523300141 \n",
+ " \n",
+ " \n",
+ " 21596 \n",
+ " 2015-01-16 \n",
+ " 400000.0 \n",
+ " 291310100 \n",
+ " \n",
+ " \n",
+ " 21597 \n",
+ " 2014-10-15 \n",
+ " 325000.0 \n",
+ " 1523300157 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
21597 rows × 3 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " date price house_id\n",
+ "id \n",
+ "1 2014-10-13 221900.0 7129300520\n",
+ "2 2014-12-09 538000.0 6414100192\n",
+ "3 2015-02-25 180000.0 5631500400\n",
+ "4 2014-12-09 604000.0 2487200875\n",
+ "5 2015-02-18 510000.0 1954400510\n",
+ "... ... ... ...\n",
+ "21593 2014-05-21 360000.0 263000018\n",
+ "21594 2015-02-23 400000.0 6600060120\n",
+ "21595 2014-06-23 402101.0 1523300141\n",
+ "21596 2015-01-16 400000.0 291310100\n",
+ "21597 2014-10-15 325000.0 1523300157\n",
+ "\n",
+ "[21597 rows x 3 columns]"
+ ]
+ },
+ "execution_count": 35,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_import_sales"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# import the details data from another csv file\n",
+ "df_import_details = pd.read_csv('data/eda2.csv', index_col=0)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " bedrooms \n",
+ " bathrooms \n",
+ " sqft_living \n",
+ " sqft_lot \n",
+ " floors \n",
+ " waterfront \n",
+ " view \n",
+ " condition \n",
+ " grade \n",
+ " sqft_above \n",
+ " sqft_basement \n",
+ " yr_built \n",
+ " yr_renovated \n",
+ " zipcode \n",
+ " lat \n",
+ " long \n",
+ " sqft_living15 \n",
+ " sqft_lot15 \n",
+ " \n",
+ " \n",
+ " id \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 1000102 \n",
+ " 6.0 \n",
+ " 3.00 \n",
+ " 2400.0 \n",
+ " 9373.0 \n",
+ " 2.0 \n",
+ " NaN \n",
+ " 0.0 \n",
+ " 3 \n",
+ " 7 \n",
+ " 2400.0 \n",
+ " 0.0 \n",
+ " 1991 \n",
+ " 0.0 \n",
+ " 98002 \n",
+ " 47.3262 \n",
+ " -122.214 \n",
+ " 2060.0 \n",
+ " 7316.0 \n",
+ " \n",
+ " \n",
+ " 100100050 \n",
+ " 3.0 \n",
+ " 1.00 \n",
+ " 1320.0 \n",
+ " 11090.0 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 3 \n",
+ " 7 \n",
+ " 1320.0 \n",
+ " 0.0 \n",
+ " 1955 \n",
+ " 0.0 \n",
+ " 98155 \n",
+ " 47.7748 \n",
+ " -122.304 \n",
+ " 1320.0 \n",
+ " 8319.0 \n",
+ " \n",
+ " \n",
+ " 1001200035 \n",
+ " 3.0 \n",
+ " 1.00 \n",
+ " 1350.0 \n",
+ " 7973.0 \n",
+ " 1.5 \n",
+ " NaN \n",
+ " 0.0 \n",
+ " 3 \n",
+ " 7 \n",
+ " 1350.0 \n",
+ " 0.0 \n",
+ " 1954 \n",
+ " 0.0 \n",
+ " 98188 \n",
+ " 47.4323 \n",
+ " -122.292 \n",
+ " 1310.0 \n",
+ " 7491.0 \n",
+ " \n",
+ " \n",
+ " 1001200050 \n",
+ " 4.0 \n",
+ " 1.50 \n",
+ " 1260.0 \n",
+ " 7248.0 \n",
+ " 1.5 \n",
+ " NaN \n",
+ " 0.0 \n",
+ " 5 \n",
+ " 7 \n",
+ " 1260.0 \n",
+ " 0.0 \n",
+ " 1955 \n",
+ " NaN \n",
+ " 98188 \n",
+ " 47.4330 \n",
+ " -122.292 \n",
+ " 1300.0 \n",
+ " 7732.0 \n",
+ " \n",
+ " \n",
+ " 1003000175 \n",
+ " 3.0 \n",
+ " 1.00 \n",
+ " 980.0 \n",
+ " 7606.0 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 3 \n",
+ " 7 \n",
+ " 980.0 \n",
+ " 0.0 \n",
+ " 1954 \n",
+ " 0.0 \n",
+ " 98188 \n",
+ " 47.4356 \n",
+ " -122.290 \n",
+ " 980.0 \n",
+ " 8125.0 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 993002177 \n",
+ " 3.0 \n",
+ " 2.50 \n",
+ " 1380.0 \n",
+ " 1547.0 \n",
+ " 3.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 3 \n",
+ " 8 \n",
+ " 1380.0 \n",
+ " 0.0 \n",
+ " 2000 \n",
+ " NaN \n",
+ " 98103 \n",
+ " 47.6908 \n",
+ " -122.341 \n",
+ " 1380.0 \n",
+ " 1465.0 \n",
+ " \n",
+ " \n",
+ " 993002225 \n",
+ " 3.0 \n",
+ " 2.25 \n",
+ " 1520.0 \n",
+ " 1245.0 \n",
+ " 3.0 \n",
+ " NaN \n",
+ " 0.0 \n",
+ " 3 \n",
+ " 8 \n",
+ " 1520.0 \n",
+ " 0.0 \n",
+ " 2004 \n",
+ " 0.0 \n",
+ " 98103 \n",
+ " 47.6907 \n",
+ " -122.340 \n",
+ " 1520.0 \n",
+ " 1470.0 \n",
+ " \n",
+ " \n",
+ " 993002247 \n",
+ " 3.0 \n",
+ " 2.25 \n",
+ " 1550.0 \n",
+ " 1469.0 \n",
+ " 3.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 3 \n",
+ " 8 \n",
+ " 1550.0 \n",
+ " 0.0 \n",
+ " 2004 \n",
+ " 0.0 \n",
+ " 98103 \n",
+ " 47.6911 \n",
+ " -122.341 \n",
+ " 1520.0 \n",
+ " 1465.0 \n",
+ " \n",
+ " \n",
+ " 993002325 \n",
+ " 2.0 \n",
+ " 1.50 \n",
+ " 950.0 \n",
+ " 4625.0 \n",
+ " 1.0 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 4 \n",
+ " 7 \n",
+ " 950.0 \n",
+ " 0.0 \n",
+ " 1949 \n",
+ " NaN \n",
+ " 98103 \n",
+ " 47.6912 \n",
+ " -122.340 \n",
+ " 1440.0 \n",
+ " 4625.0 \n",
+ " \n",
+ " \n",
+ " 999000215 \n",
+ " 4.0 \n",
+ " 2.50 \n",
+ " 2760.0 \n",
+ " 5000.0 \n",
+ " 1.5 \n",
+ " 0.0 \n",
+ " 0.0 \n",
+ " 5 \n",
+ " 7 \n",
+ " 1680.0 \n",
+ " 1080.0 \n",
+ " 1928 \n",
+ " 0.0 \n",
+ " 98107 \n",
+ " 47.6726 \n",
+ " -122.371 \n",
+ " 1850.0 \n",
+ " 5000.0 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
21420 rows × 18 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " bedrooms bathrooms sqft_living sqft_lot floors waterfront \\\n",
+ "id \n",
+ "1000102 6.0 3.00 2400.0 9373.0 2.0 NaN \n",
+ "100100050 3.0 1.00 1320.0 11090.0 1.0 0.0 \n",
+ "1001200035 3.0 1.00 1350.0 7973.0 1.5 NaN \n",
+ "1001200050 4.0 1.50 1260.0 7248.0 1.5 NaN \n",
+ "1003000175 3.0 1.00 980.0 7606.0 1.0 0.0 \n",
+ "... ... ... ... ... ... ... \n",
+ "993002177 3.0 2.50 1380.0 1547.0 3.0 0.0 \n",
+ "993002225 3.0 2.25 1520.0 1245.0 3.0 NaN \n",
+ "993002247 3.0 2.25 1550.0 1469.0 3.0 0.0 \n",
+ "993002325 2.0 1.50 950.0 4625.0 1.0 0.0 \n",
+ "999000215 4.0 2.50 2760.0 5000.0 1.5 0.0 \n",
+ "\n",
+ " view condition grade sqft_above sqft_basement yr_built \\\n",
+ "id \n",
+ "1000102 0.0 3 7 2400.0 0.0 1991 \n",
+ "100100050 0.0 3 7 1320.0 0.0 1955 \n",
+ "1001200035 0.0 3 7 1350.0 0.0 1954 \n",
+ "1001200050 0.0 5 7 1260.0 0.0 1955 \n",
+ "1003000175 0.0 3 7 980.0 0.0 1954 \n",
+ "... ... ... ... ... ... ... \n",
+ "993002177 0.0 3 8 1380.0 0.0 2000 \n",
+ "993002225 0.0 3 8 1520.0 0.0 2004 \n",
+ "993002247 0.0 3 8 1550.0 0.0 2004 \n",
+ "993002325 0.0 4 7 950.0 0.0 1949 \n",
+ "999000215 0.0 5 7 1680.0 1080.0 1928 \n",
+ "\n",
+ " yr_renovated zipcode lat long sqft_living15 sqft_lot15 \n",
+ "id \n",
+ "1000102 0.0 98002 47.3262 -122.214 2060.0 7316.0 \n",
+ "100100050 0.0 98155 47.7748 -122.304 1320.0 8319.0 \n",
+ "1001200035 0.0 98188 47.4323 -122.292 1310.0 7491.0 \n",
+ "1001200050 NaN 98188 47.4330 -122.292 1300.0 7732.0 \n",
+ "1003000175 0.0 98188 47.4356 -122.290 980.0 8125.0 \n",
+ "... ... ... ... ... ... ... \n",
+ "993002177 NaN 98103 47.6908 -122.341 1380.0 1465.0 \n",
+ "993002225 0.0 98103 47.6907 -122.340 1520.0 1470.0 \n",
+ "993002247 0.0 98103 47.6911 -122.341 1520.0 1465.0 \n",
+ "993002325 NaN 98103 47.6912 -122.340 1440.0 4625.0 \n",
+ "999000215 0.0 98107 47.6726 -122.371 1850.0 5000.0 \n",
+ "\n",
+ "[21420 rows x 18 columns]"
+ ]
+ },
+ "execution_count": 37,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_import_details"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ ".. and merge the two into one"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " date price house_id bedrooms bathrooms sqft_living \\\n",
+ "0 2014-10-13 221900.0 7129300520 3.0 1.00 1180.0 \n",
+ "1 2014-12-09 538000.0 6414100192 3.0 2.25 2570.0 \n",
+ "2 2015-02-25 180000.0 5631500400 2.0 1.00 770.0 \n",
+ "3 2014-12-09 604000.0 2487200875 4.0 3.00 1960.0 \n",
+ "4 2015-02-18 510000.0 1954400510 3.0 2.00 1680.0 \n",
+ "... ... ... ... ... ... ... \n",
+ "21592 2014-05-21 360000.0 263000018 3.0 2.50 1530.0 \n",
+ "21593 2015-02-23 400000.0 6600060120 4.0 2.50 2310.0 \n",
+ "21594 2014-06-23 402101.0 1523300141 2.0 0.75 1020.0 \n",
+ "21595 2015-01-16 400000.0 291310100 3.0 2.50 1600.0 \n",
+ "21596 2014-10-15 325000.0 1523300157 2.0 0.75 1020.0 \n",
+ "\n",
+ " sqft_lot floors waterfront view ... grade sqft_above \\\n",
+ "0 5650.0 1.0 NaN 0.0 ... 7 1180.0 \n",
+ "1 7242.0 2.0 0.0 0.0 ... 7 2170.0 \n",
+ "2 10000.0 1.0 0.0 0.0 ... 6 770.0 \n",
+ "3 5000.0 1.0 0.0 0.0 ... 7 1050.0 \n",
+ "4 8080.0 1.0 0.0 0.0 ... 8 1680.0 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "21592 1131.0 3.0 0.0 0.0 ... 8 1530.0 \n",
+ "21593 5813.0 2.0 0.0 0.0 ... 8 2310.0 \n",
+ "21594 1350.0 2.0 0.0 0.0 ... 7 1020.0 \n",
+ "21595 2388.0 2.0 NaN 0.0 ... 8 1600.0 \n",
+ "21596 1076.0 2.0 0.0 0.0 ... 7 1020.0 \n",
+ "\n",
+ " sqft_basement yr_built yr_renovated zipcode lat long \\\n",
+ "0 0.0 1955 0.0 98178 47.5112 -122.257 \n",
+ "1 400.0 1951 19910.0 98125 47.7210 -122.319 \n",
+ "2 0.0 1933 NaN 98028 47.7379 -122.233 \n",
+ "3 910.0 1965 0.0 98136 47.5208 -122.393 \n",
+ "4 0.0 1987 0.0 98074 47.6168 -122.045 \n",
+ "... ... ... ... ... ... ... \n",
+ "21592 0.0 2009 0.0 98103 47.6993 -122.346 \n",
+ "21593 0.0 2014 0.0 98146 47.5107 -122.362 \n",
+ "21594 0.0 2009 0.0 98144 47.5944 -122.299 \n",
+ "21595 0.0 2004 0.0 98027 47.5345 -122.069 \n",
+ "21596 0.0 2008 0.0 98144 47.5941 -122.299 \n",
+ "\n",
+ " sqft_living15 sqft_lot15 \n",
+ "0 1340.0 5650.0 \n",
+ "1 1690.0 7639.0 \n",
+ "2 2720.0 8062.0 \n",
+ "3 1360.0 5000.0 \n",
+ "4 1800.0 7503.0 \n",
+ "... ... ... \n",
+ "21592 1530.0 1509.0 \n",
+ "21593 1830.0 7200.0 \n",
+ "21594 1020.0 2007.0 \n",
+ "21595 1410.0 1287.0 \n",
+ "21596 1020.0 1357.0 \n",
+ "\n",
+ "[21597 rows x 21 columns]\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Joining the DataFrames\n",
+ "df_merged = pd.merge(\n",
+ " left=df_import_sales, # The left DataFrame\n",
+ " right=df_import_details, # The right DataFrame\n",
+ " left_on='house_id', # Spalte im linken DF (df_personen)\n",
+ " right_on='id', # Spalte im rechten DF (df_haeuser)\n",
+ " how='inner'\n",
+ ")\n",
+ "\n",
+ "print(df_merged)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['date', 'price', 'house_id', 'bedrooms', 'bathrooms', 'sqft_living',\n",
+ " 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade',\n",
+ " 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode',\n",
+ " 'lat', 'long', 'sqft_living15', 'sqft_lot15'],\n",
+ " dtype='object')"
+ ]
+ },
+ "execution_count": 41,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df_merged.columns"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "now lets write this into our final csv file... "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df_merged.to_csv('data/King_County_House_prices_dataset.csv', index=False)"
]
}
],
"metadata": {
"kernelspec": {
- "display_name": "Python 3.9.12 ('.venv': venv)",
+ "display_name": ".venv",
"language": "python",
"name": "python3"
},
@@ -511,12 +1192,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.9.12"
- },
- "vscode": {
- "interpreter": {
- "hash": "86bfcc733a99316639cfae738bd2c12342c3c5e2c4e3f470908e9f9639795c12"
- }
+ "version": "3.11.3"
}
},
"nbformat": 4,
diff --git a/EDA.ipynb b/EDA.ipynb
index cc53962..8625046 100644
--- a/EDA.ipynb
+++ b/EDA.ipynb
@@ -1,12 +1,23 @@
{
"cells": [
{
+ "attachments": {
+ "image.png": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY4AAADHCAYAAAAOJLRsAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAP+lSURBVHhefP1XsGRJmt+J/dz96NBxtUhdmVm6qrur9fRojQEwM5gdYEFbGGAkSLNdGh9IM6wZn8qMj3zlO5/5QtJ21wykGbALMapH9HR3qdSZV4vQEUcLdz54ZHYPsMtbdjMyKyuzIs7x4/59f/WJ/8f//f9mFvMlda1pRR3arTaOcjC6oalL5os55xfnPH32nBevjhnNl+SVRguFFhKhHJTrohwH5TgAaK0RQuK6Hp7r0Y5aDAZD9nZ2WMUrTk+PSZIERzn299ttgsCn0Q3KkeR5wtnpCXfu3OHu3bt88eVXPH78GN/12dvZ5ZOvf8w3vv4R28Mh8+mEk6MjyiKnShKW4zHZcoUrFFsbG2wOBqA18+mMxWxB0zR4rQhcxSxecT2b0e73efDue3Q3h8zSmCevXnAxHqO1Rlc1TgPlMuH2/iEfvPc2k8sL/uLP/gQlDH/8R3/EL3zv25hGU1cVnh9wcnLGf/ff/w88+uoRZVkSBD7vvvs2v/iDX+DWrX2KfMV4OibOEoxU4LpoIdBSgXKotGa1ykiyDN0IXCfA9wNu3brNx1+7Q5K84sWzRzz56gmz0QTRKFwVQuPSFOD5LQaDLTa29+hvbSP9kKDd4eDmHQ7392lWI/7kf/z/8PLVK27fusXbDx8yHA7xfRfXd8FT4EpQAoRB15CXhvk8ZbXKKSpYLDKWyyWnpyecnJ4wnkxYrpbEaUxVVxgEQkKWZzS64ebNQ771yTf58N13GfR63L1zmziJefTkESdnp5xdXjJbLnGDkLypqeqGVZxycXrB4c4+b925y6PPv+QnP/4JZV7iKUlTVlAW+ELS831aQqGAQLkIx17HUkDjupQSpmnCeDknq0uko1COg6MUdV2jG43ruggp8YOA/+a/+d/zrW9/m6urK64vLsnSFNdxEQLqpkI5DlEQsre3z6NHT/h///f/HYt4yYO3H/DB+2+ztTWgTlZcHr1ienKCKksGrQ5b/SGtMKTMC5aLBWVR4nsenVaLqBXR3xhwsL+P73pMJ1Om8zm51jy7OOM//sVfEvb6fOc73+dwd59FmvCjJ1/xb/7jf2A0nRC1OjjKQSBQSDzl4DoujpSgJMqRSEeidYNE0/Jdfuu73+O777xLXeYsplPKJEE10Ot2ODjYp9vvUjc1xmiMMQghcBwH1/VwXA/X9/HDCM9z0bphMh3z7OkTHj/+iixb0u8PCMIW15Mlq0JzvUhJUDRuQFYLtoeb3Ol2UPMl8csTyuML+nHFTSei7XhQ1TSBS+1I8qSgLiocx8MIxVRUZIHilVvyt/EV18sFWVOiPYfaUTQKGgEASggcKUAbtNb4vk+v18PzfYqypGwaAAI/wHVcjDZURUlTVQijqauc7a0hW8MuSjTUZYYUDe12SL/fRjkS5QgcR+Aog6scXOUQ+gH9wQAhQ64nS0aza8bzMVVTsnewR5EqPv/pEUXZYISkKEqKqqGuNUIqXNejaWriJKaqCowxgMEY0Nq+YgQgCYKAKAxxPQ8AIQSu6+A4LkIIMAYhBbrRlFWFMWZ9L12UlGh4891ojWkahNGgNUY3yLKkH/p84+ED1D/4nd/4NM0LjJF4no+QkqpuaJoapRSO5+L7AZ4foqRLY6CsDVVVI4WLcl081ycI7AVXjkJJab+RYASeE9Dt9Lh5cANtDKs4wRhDFIT4fkAUdfB9H8dRuAK6jsut4ZA/+s3f4Zc++RaXZxccvTpCGMHOzjZvP3jAwd4uuq6Zz6ZkcQJa4yAQuqEqKuqyIvB8NoZDhv0hQRAQ+CH94ZDB5ibdfg+hHIqqxPMDPN/HSEV/Y0gQRoRRROD5KCERCBwp2d3eoj/oMxqNePr0MXu7O3z/+99lYzikqUtcx8H3AwyCy8tLFvMFrueys7vHg/v3eXD/Pv1Bi7JKWaxWpFlOXhvySpCWhqwSrLKG0TznajxnPFkxm8csVxllWRH4EcONFtt7HW7c2GZ3ZwPHc9FG4Ach3c4QL4zwog694QYbWzuoICRvoDQgHR8/atEfbqGcgOOjKx4/eUG6SnGlpMoKdFWhNChtEMKDGrJMM5mu+OrLp/zZn/2Qv/6bn/D5o8e8ODlnHKcUjaJsoKw8mqZNIzdxOjcR0T5O/4DO5i1u3X6Hb37je3ztw4842N1FUOErSeT49Ft9AtfDcxy80EUqQbvVwVM+TVGxNdzi5sEBvXaHw/193n//fd55+yGH+/u0ogjdNBR5RlPVIARSKIwQgEBLAUphlN1B8rKgahqEFMj1vTUaBKCExHEdpFTcvn2TbrdHWRbkeU5Zl0gp0EZTNQ11U9HpdAHB0dERL1++ROsGJBRFQV0V1EVNGq9Ik4SmLJFIPN8jjNr4gS0G2p02+3v73Lt7l9t37rCzv0uv1wcMcZIwWy1J64rL0TWPnz9nPJuBUPSGA4KozeePH3F0ckpZVrSiFspxaGpDU9UII1DKQUoHg0Y3mrqpqesaYxocqdjq9em22jRNQ5YX5FWFEYpGQllWLOIV0/mCOEnIi4KsyMnzklWSsFrFJFnKahUzHo94/vwZX375OZdXl3S7bd7/4AO+9sk3ePe9DxlubbG5tYMbBGRFRVU3SClRErqtiFbg4taaJk6IakPPdQkcB4nGSAFC0hQ1ZVWhHBeNpqgqlBK0Oh1Cz0PkFVWWoxuNFrZ4RYj1vRUooTBa2z3J84jCCCElTaNpmgaJtBup4yGFQGgwRiOEQGCIfI9Op0UU+AihkdIQRT69XpdWO6TTadNut2hFEa0opBW1iFpt2p0+0pVkeUwjSqTSpPmcKJIEQcT11YKyrHCkg0EglUPTNAjAcR1736oSiQABTdWglMRRri14HJfA9+m0O7Q7bQI/AAGOcgjW60wIgTBgYP15a4QQKKVQysEeR6AxaARGGISxn1sARjd4SrI56LO/sYn61R98/9PXJ1dVN6xWK2bzBaskZrVaMl8sSdMEbQSO4+EFEY02rOIUgySKWgRhSNQK8QMP3/MIfZ8wiAj8ENexXYfv+vheQJqmzBZztLYfWDeapm4oioL5fEIym9FpGn7w3of84gcf03c8jo9PefHyFRp48PZD7t+7Q+h75FlGvFyyXKwo0gxXSTyl0HVNVZSAsQdA4NvFBPiBD0qgBaRFRl6W+EFAVddkeY5yXRqtabXabG5usrmxwaDXZWd7k263w+ZwSLfXYTGfsre3wwcfvEcr9PEdB0dJlHJI05TlaoXWml6/z97+PjcODtjc3MQLBEW5YhUnLOOMZVowWaRMFjnzpCHODLNFwXiasIxLkiRntYrtQ10UnF8ccXHxjCCU7N/Y5ubNQ8KoRVkZvCAianVpdXooP0C4HkVjMNLBb3eQvk8jFEHUZWtnF0PIk0cvuDo/Q+kGtIa6QRoQDTSlJk0qZvOEx8+O+Ou//jFPHz/jejKlbDS1E1B6bQotmMc5dR2xufGQ7ZtfY/P2t2jvv8Pg1rtsHTxgf+8e9+884HC7jUKTZVOqPCYZr1iN5pi6RkqDljVRJ8JzApRw6bd7fPDue3zz61/jow8/4JuffINvfesTPvroIz7+2se8++47bG4MEUKSFwVpkpHnBY3WaAyV0eRlgcYQtEJq3ZCXOVprW4oKEMY+HGAraqUEQRCysblJEIYUZUFe5LabNhqtGxqtEVIQxzGPHz/m+fPnZEVOVZVMJiPmiznz+YzlYk6ZZei6RhuDQOL6Af3+gM2tTTY2NhkOh/R6XaJOCz8MMRhm8ylnlxdMlnMq0zCLVzx5/pxlklBrDULR39ggTlNeHR2TFzlBEKKkoq5qqrIGAwZDXVfUuqFpGrSu7eaJpq4rHASdqEUYhVS6oTEgPZeq0SyThMVqySpNKJuGsq5JspxVEjOZzxhPp8wXSy4vr7i4uGA0vkageevebb7z3W9z/5136fT7uEGwLtb6KNejbgzGGLTRJElMXZcEvk/QGGSaETSaSAiEaXCU3eQdocjynLKukY6iqEvSNMZXkn67xcCL8KWkqWuKuiTTNY1pkI5aH1ACJYRFQzCEYUgYBoCgaRrqukYAruvhOg5SCDDaVunrjVMpwcagx2DQQymD1iWe59DptBhuDBkO+3Q6bXzfJwh8oijE9yOkcjBCE2czyibBDxXapLS7inZrwNnxiDTNAYmUiiAKkdK+L0cpmrqiqivbMQpBmqZIqZBCUpYlrSii1+/RareIogjHcWi0pqnrdXdi73XdNDR1bTtIDFJKHGX/HhBoYTDCNjBGgBQCCfY6NA3ddsQH77zN4c426htf/8anRV5xPZ5ycXnJ0dEJx8dHHB8dc3R8xNnZGcvFgiwrqOoakDiOi0HQNBrX8/E8D601nuvYUxKBEhIlFUJrpAHTNCznM9I8I88yqrqiqRvKoqSptYWaypQ6Teg7ku9+/BG9KMLzPHI0nz17SqvX5YOPPuLG4QFlWZLEMas4JlnG1GWN7zgoBKbRVHVNVZVkeUESJ8yWS1bxisVyxXg6YTSbskpWVI3GcT2yoiIvbbVVVw0ISSuK2NzcZHdnm3a7hRRw48YNhoM+CNjcHHLjYJ9Bt02v1SLyXQSC6WTCfD7H9wPCIMJRiiiMCMMQbSAvKpZJxXyRcz19fWhUxLlmGRcsVxlpXoKQCCS6qiiLgrLIWSxGnJw8YzS+JkszhPTRjWAVZ5RVTa0FVW0oKoORCi0UfhgRtTu4vo+ULp7n4QU+QRSxXC149fIFVaPZ2jsk6m+B0yYuJJNEc7WsOZ8kfPH8nK+evmCyXKHCELfVBsdBqoBAemTLlDDY4OG736N94x2unD6rdo+pH1F5IUHUoR34eEbiGsP52YjTkwlPn8+4uC5Y5YqslDSNInIjhp0NdgabbPSG3D64wY3DG/S7XTzXx3NdolaL4eaQvb19bt68xY3bt7l5+xbDrS28IMBrtej0OgjXsRWW1rYbVg5SStIst4eGkIjXG4oQdpNRila7zc7uDp5vi45G200kSTOSxK67q8tLvvjiSx49esR8scBxFcYYirxgFccsZjMW8yVlntOs4YeyqhBConyfIAxpjGE6m3E9GjNbzFmsVsznc87OL7gcXVM2DdJzWWYpL46PmS5WIBTS9XCDgCBqc3p6xjJO8HwfpRzQoBu7MQgp7cZnBGIN27x5xVbVURASttq20rXHJ2VVkxUFqzSjqCqysmCxWjKdzbi8vOLq6prVasV0MmU5n1PlOXtbG3ztow/58J13iDptdF1SlCXGaDzXxXPse1MIhDGUZcYqicnLikYL3FrjNobQCJyqwVQlpmxwHQ+NYFVkpHVDLQ1JXVLT4HgOSgBFhRDgKg/HcajrysLMQuJKiVAKqSS61igEraiFHwQ0jbH7UFmhpCTwfPw1dCPWF0ra7RdMw8bGkP29HXzPoa5zhBT0ez02NzfpDbr4no9SAulIXFchlIujPBpq8mJF3TR0OxFb20MOb+ziqg4vnl0wGs9xlIdB4rounu/TNI2FpBpt91rXQUmHuqyoa01dN4Dtzh3XxXVdpHKRQqB1gwG7BoBGG+qqoqpqjDZrGGxNMUhl9xplD5D18sCRAmXsvTK6YWdrg9/89V/n/Ydvo/b2b3w6nsw4Pjnh7OyMq+sr5osFcRyzmM+Jk5jGGMIgoNftsrExpD/og5RkRYFQEsdVNE2NweJiWjeYuqYuSvIkpUwz8jRlOpsgBGhpKKuKPC3enPSYGlcZfNGw12vzjQ/eZdjtIhzBV0eveHZ+xt0H93n7vXeJopDlakmaphR5ThIn6LrBdx1cJTEYjGmoqoo0sx3OdDZlMpszmU+ZrhbEaUxtDI7vI12XOEkpyxrleBgEWhvqusZ1Fe12hB94SAW+76GkxQ6Hgz4bvQ7twKUTuQSOwOiGk5Njzk7PKCt74jeNxvNcHMehrDTLpGI6z7iarBgvcvJG0siAUiuWSc50vrDVVVVRFTlFkYBuCH0Hz4WiSCjygsl0xmg0ZTpbkBcFGqi1xgiPxkhQDtJx8MOIIIoQUmGAStdI16Hbb5NVKV8++gojFXff+YjOxiGZ9pjGmpNJxvE443SacjxacDYekzUV0vdRvoMxgjLL0VlJExe4/gYH975GvbXPT2PDk6ziUioq10NJRT8MaNMwu7zm8ZdHhNEe+HukuoPwNjC0yOOScpWx1RvQjUKoG8q8IEtjRtdjrq8vGI1HLJZz8rLAcV2CVsRgOOTe/bd498MPuPfOA95+713e++hD3n3vPe7evo3jKKqiYG9vj529XcaTMWme4zgOQhiqukIKgVLStvmOotfrIoA0T1ktV4zGI16+fMGTp0959uwpT58+49mzp0ymE5RSeJ5ruxKtqeuaIs8p8pwyL6jLkrKuMQJqo8nKkmUcM5qMOTo94ez8nMvra0bjEaPJhPlqQV5VeFGAE/oss4Tnx8dM5wuMUijXxQiJcl1Oz85ZrWILTYQBfhDguMpWq+vuyAIRgDD24DBgtKYqK4RUeL4PQlLrhqquycuSOEtJ85y0LFjGMcskJstzpvMZSZIglf1/bA6H3L11g4dv3WV/ewtPSqoyJy9zqrrE6BpXSZQBqhpTl1R5SpKuyKuCWVYQ5yWyaoikItQgixJRNTgajJBkRck8z0hMRU5NqgsaoZGuhKpGFBWOlLSDkCgKUVJi6pqmLCmrEul7IASmaWxhENmCrmlsBV5VFUopAt/HdewhI9YAjkEjlT04er0Oe3vbtDshZZmjTUOv12Vza5NOu43j2v1HCEAKe3AriTEVRZmhdUMUhWxtD9ncHNDUDs+fnzG6muB6gS1cHIdWq0VRFFRlad+F0eh18dNo/WZ7d12XMAxpmtf32XbFjW7eFENgeZ2qqtC6QUiJ46j1t4NUynZY2A789ZcEe89Mg9E1/V6Hb3z9Y27s7qKiqP3paDwmSVYUeUFVlYCwF76x7Y4Qgm63zeH+AffeuseNmzfxw4C6bsiKjCTLKavcnmhFTl1WVEVBEcdk8Yo8iSmylKZuMFLQAGlWUOUFUgh8x8VV4JqayBN898MP+PDth4S+x2g65U9//FO8fo/3P/yYdq9nF3OSUJYVRVnYrqWpkUDTNFTrk1g5DghBWTfkRUFeVpR1g1ES5Tr4YYgb+NTaMJ8vaBrwggCD5XnKskCbBs/z8TyFqxzyJCVZxUgp2ej18B1JmaWU2cq+ViWXl9e8PDplGaco18PxAhCSqjYss5LpMud6FjOep6SlwQk6OH5E3QjmyyWz2YwsTanSmCJZYsqcbuRxuLPF1kYfhaAuNXnaUFUGY1ykdHHdAMePUE5IsybMNKCUhQvlunaSUuG4ijDyWKULfvrZl8RZSTjYY5IZvnhxxZfPr3l6vuTFKGWc1KwqSPOcLE+ompqiyMjimMV8Qp7GFNmSomwI2j06O/vkUuJ7km7b46DlcyNQbJKTnD7mqx/9iKNXl/Q2b5IHG1xkktzrIqIN6kZTZzV1HONkOel8yWo8YzmZMR9NWY4nFIsV8+sx04tr4tmCxXjKxckZk9GEuqrotHtsbW2xu7PDvTt3eO/td7h96yaHu/s8fOdtNnd2eP7qiPPLCxzPQQiJbhpLfkuJMbZCwxjG4zFPnz3j0aOvePrkKc+ePefi8pLxeMJivqCqKlzXIwh8fM+3hdGagH29OTd1TVUW9kFWEpBkecFsPmc0HjOZzlnFK9IkI04SsjzHGPB8F893abe7uK5DnhXkRYU2EoNEKJe8LFkllgNTyiFsRUSRFbjoRts13NiDQwqJlBYOMdrY57tpMOv3a7ShqhvysiItCtIsZ5WnxFlGnMQsFktG4xHGCG7dvs0HH3zAw4cPuXnzFocH+wx6fYwxdoMyAqMkNYZKvyZhA1yl0I1huVwxXy5Iy5KslqRJiVvUtIVL1ICb13g1eEZQ1ZqsyEnrmlIaGmFojMF3HHxH4TQCVWuaUqOLGmkEnnSJXB8hBEVTUzo/OwZc1yMMQ6SQFHVF0xi0bvAcF9/zrUhC2EodYQ9cx5G4ShGGPlubG2wM+6DtfW132vT7PaIwtPffvL7ewlbwQmFoaKqKpqlxHBfPc2i1AqpK8vLFJaPRjMBrI6RCKEW73aYsStIsW+/mxnKtykE3a3K8sXCp7wcYo2lqy1BgLBr0eh1qjeU0EEhlOw3XdfEcd31AKoSwZPprskMYixwJzHp9WIFEVZeWBw284NM0id9gvFprdGNxUN3U6HUHkRcZ2lRsbm+ytbNJ2IpwfI9VHHN6fsZqtaQsC9uWlyVNkSPqkshTtDwXz1Vsbm/SYMirkqqqkEISBQGBI3GkQZcxw1bA7/zyL/LuW3epm4bTy0tO51MO7t9ne2+fOM2YL+YUZU6apWRZRt3UlFVJWeQW8qpKEALX83GDANf3cP3AXjDPw4983MDHDwOEo8iLkvlyRaMNnh9YfFxrjADXc1AKiiInXi1Jlktm4zF1WdJuRTho8tWcdDUniRfUdUNV1cxWCbURbGzt0ur0SLKS2TJmFmdMVynTOGeZ1zTCRbkB2gjiNCONY+qyQJc5oikJpGbYjbhzuMv9uzfZ395CGMFqmVHkGiED6tqQpDnK9dnbP0S6HkVdU1Q1RVEhjMBVFkYTAhxX4QcuwtFM5hN+8vkXvDy55GJZ8vhsyZcvrnlxGXO2bJhWPrUKMH5IksZMRuckqznpcsp4ckWWLUjTKXE8JskThIDBsMfW5oC9XkjXlKjJOfriFaNHP+H8i79iennO5TjGRFskrS1ermoej1NWxiPyI9xG4yQxHd0QCkmAxEMhGoNTVrhVjVM3FPMV88sRs8sRo/Mrzk/OGF+PSFK7LhaLOav5giKJCf2AvZ1d9g8PiToRpxdnfPnk0brCk+i1wkRKhUBQlAXXoxGXV5ccHx9zdXXNcrkgz3NLNAqswCMMcRwFgOd5SGlxZ73mFCzjqKmqcg1TCaTj0Bio6noNozUWvlIKqexDrByJ73m0ooCtjSE3D29w4+AGrheSZAVJWoBUaAOu5603HInv+ev3UBDHsX2Wja2ALQznIIXEGGPfnzbUVUlZlva9YOxhlKUsk4TZYsHVdMJsMWd0fcVoPOHw8IDvfve7HBweEoQBGPOmenVdu93UGIyjcMMQ5fsYBI6QSKGo8opVvGSZxORVjZE+ZdHgVg1d6dKqwStrVNmgygZt7EGR05ALS/Ab0xC6LpFykLVBafCEIpIOLS9g2OqwtbFBt9shk5rrIqYSdjP3fR/f92iMoXjDPVm1mO95KLWGqcT64DAG13UIQg9HCbqdFru7m0hpqMqCIPDodtv4gW83YmGQynavYs1FIDRlVaCNRkqJoSZq+Rjj8+LFGWdn1yhlC0zpSNqdDo1uiON4zU1p2+E5zht+qKprPNdjc3OD/mBAmqVr0s6uTW0a26k0FrZSbw4NZ91prNsLs+5GrVTLfhuDNAaMVVQ12nIsvUGXThShBt3ep0JrjGmQwmDWMixbiawXNYY4jpnOJuRlaReg59HqtKnqmsvLS2azGQZD4LlEnovUDb3Q5737D3j/4QO2trYYbg5ZpDFZUcIaT/SUgrpC6RpHVHz/k4/5jV/4BYa9LvM45vRqBO0W27fvoIVgMl+QpSl5UbJaLYmTBL3mNHRjH0StDRqQykouXcfFcT0cz7EXVoKRFofUBuq6Js0LlOMglYtSDo7n4/keSimaqmK1XDKfTplPZsyuJyRxSjvwCT0fqgpdVQhtEMrHDVpklcEoj+5gCyMcrsZTpvMV0yRjlmTERUWlQWPx9aLIqYqEpsqQdY6jKyLHMGyH3Nre4MHdWzy4c5OdrW2G3T693pBOd0BRNFxfT5lMl2gt8II2QdCmqBqMFtSVQRqJku4arbDcUxBGeK5iuVjy7OlLnr88ZbQomOeCRrYpaLNqPFLaeK0WbisiXo45ffWEZDaFzL5fYyp0mRN6it2tLVp+QBnPGR+/YHb8iPj0CdX5c6rLV7C4QOVzTJWxXK64nExpvIjO9i5xI0iLko6jGHouNzoRQ3etiFHQOArtShwpCJXEE5JQrqvNskE1EDgugesjDMTzFfPJlPlowvTimvHViCLL6fb67O7vk1UVXzx+xGy5xHfXG5vroZSDkpJGa+I4pm6sDNULfHzff1O1W9WLsfh7Y/Fmz3PRxqzhH0tkGm0fvrqu7QZgLK+iDUgpcJWD7zh4nkvgW3zekVbK3olCemGLfqvDwe4Bd+/exw/brFYpk/mCsmqQjofn+0ipaLUiwiC0HMsqpioKuxFhiQ3HsdJMR9nNp9G226irmrKqMUBtDGVVs0pSlqklx2ezGavlirIscB2Xt+69xd1793CkoK6tGilstQlbEY0WFEVJnBXM4xXXkzmT+YLr8YSiKNGNWG9kln8pa01RNFR5SVg3tLWgVRm8ssGpG0xVW5RCQK5r0qKgLgpoGlrKJcQhcn363R6Ddoeu38JTDo6ReL4LSjEpMk6SGVoJHOXieb6V9KIpygqBQDkKd62oUtKqsaT82caqlGTQ72J0g+857O3tEEU+dVUhBbQ6LVptK0t2HWfNOSgEa57SaBpdIYXCUS5CQdRyEcLn6OUFz56fWHZYKBzHpdVqE4Qhi8WKsiioGwtPOa5dIwZBU1s0ZGO4QRhFzBcLmsYegmbdoSCsss51XAuXr+FFYU8XmnX38rqr0Y3tMIxh3W1YYUDVNHQ6LT7++td5cOcu6sbO5qfCNCgJrqNQSr45peq6wqBxPYeoHdEYTZqlFHVF1Vj83gt8tNGkWYLWNYHrogBlGm7u7vL3f/s3+cXvfZswCji5POfi+oqsKPFcDyUkNBWiKWmHDu8/uMPv/95vc/fGPpcXZ7w4OmaaJLR2d/AHA5K8IMtz8rXKJUkT8iylbmow9gM3TfNGQWKEsTffWGIoyzLSPKWoSmxtZaiairKyJJ5yFI7n4QUhnheAgaqqyNKE5WzOdDxiOh4znUyJF0t67Q5bwz40DTQNSjq4QYtSS64mc6arhKLWXE1mnJ5dsIxT4rphWlhlSpJnZHlKkiwpsiWiLvBETaA0w5bH/kaPG1t9buxscOdgj8OdbYb9PoPhkP3DGwy3dkjTgtlsRVlq4qRgMlsyj60Ky6raXHQNuratrJIOynUI/BAlJMvFklcvTzg6PmVRGLTXwm1tU6sui8ohMQEqcPFbPtlyzMXJY+rVioHjEvkOvisYdFvcOtjjxs42kdTks0tUMmZDpry32+Y7Dw74/odv8f2vv8O792+wMWgTBQ7T2YTpakXU69Hb3sULAvqew62NAe/sbOBmK2aLMbN0xriImRYxebIkW81pez739m9w7+AGB4NNOmGEi8B3HALPx5UKRwikNui6IU9SVvMFRsL+jUOCTpu/+ewnvDw6IghDhLQHquM4SEdRr+XoruusH0Ioi5KiLNbVu7BdgrScyGsiVWtNrRuMsWvPNhy26tfrzdoqsqQ9IKTEc5QlVK3dAkdJWlFAN4poSYfQ9ei02vT7A7RyyIqKyXzJKolt4bHuKPZ29xgOBkynM2bTqSVGBRZ7+LmKU66f8bqpbWe9xsWLyvpnqqYmLwuSLCXNUvKyADRKSqIoZGM4YDgYsLW1yf7+PsFa1jpfxkxmc+I4Z5mkvDw+4Seff86XT55wcnpGnlnot6pqoigiCFroumG5WCDKkqCq8coKJ8uQWY4pS2hqStOgMeR1RV7mUNf4QtJxPCJhN0GtG+o0R6cFTV4ia40XhbitkHGT8mR+ZTsg17HFgaNotOW2LOZvq3DXddawjb2nAssvKCXY3BxS1yVCaPb2tul2InRTU1Y5rVZIqxXZYnO9jyIsnFQ3mqapAHAcd80e1DSmRGvJaLzk6dNXlCW24HCsl6jd7rBYLNZrzsqGHaUQUqIbTVEUaxTFZTa1vNNrtIT1ejPrQ085688Fb9ZhXdeWPrCnBEaDNo0tvF/7doym0TVVU+EFHjduHbLZH6Ae3r37aVNbFZGjHIywxHBVa9u+ey79/oDeYAPpKPKyQmtDlmdkWUq73WY46FvJWJFjmgZTVrgC3n3rLv/wd3+H9x+8zWK15Id/89ecXlwihKIdtQkcB2E0/VbIew/u8cd/+A95ePcOs9GYn/z4p1yMZoTDTTrbu0zT3CoJGlvRlWWJbuwirIoSbexDW5YWR2y0xXSVskqvLM2JVzFZVtgqUCqEEOtDqCSvChzHI2p3CYMIYyRFmpOsViwmU64uLrg8PqXKC6g16Spho9fn5uEhjrD6NT8IUW7EcpXx7NUpx+dXjKZLLq7GXE1n5HUDrkdR1VaAsFySJkuyeEmVJ3iyYavf5sGtQx6+dZv3H77F3ds3ubG/y+7uLpsbG4StNlXdsFglXF2NeHl0wmK2wCAxuqGsKr748guSJGVruEnot2gqTVMbMALX9xFSWalqWTKdTHn16oST03OKskIqhR90cKMeTqePbPcIuy38Xg/d5MzmY9y6ZDv0aIcOYSg53Nlh0O0Rz5fE8yWDVsgvfe8TfvtXvssvfPIRD27scXNnk/3NAXtbQ95+8Ba3bu7y8cfv4SjFq6dPmE9nbEYhN9ptdnwHpldcPP+Kp8dPmaYzFrog1SV1kVHHMaFQdB0fXTS4RmKUZDKfcj4dsyozirqy61cqht0+927fYaPf5/jsjKPzM+Ky4OjijBevjt6oBG1nak1+aZZRV7U9MowlOc2aB/BcH8+3nY0xAiUtxKSkxHE8XMe1ncqbyk2glIuUau2RMnh+SCcMiTwHz13DU1Li+z5hGBBGEe0wwvd8Op0eYadL1OnRKA8hXcq6IY5TlisLR7mOy+0bN+l2OlxdXDAZj3GElVsKY5BIfNfD8z1b6VfV2s9hDxSNpKpqiqqiMYZq/WzlpeUPG62pypLA89jb2mZvd5dht4cxMJ/OOTk75/TsnNFoQp7mFFXNbDbn4uqK5WpFksSUWc5iNiNdLmm3Wmz2+7hKEa8WmLqkIwRuUaGXMU2aocua+nUhqATVWkoaKJe2H9ENWoSuZ1VQykEageO6+OsOWYQeuWk4Sxe8TGbgODiuj+tY9dFrC4KU0poZ1+iEFLYosBCTRauUlOxsb1nOqK7Y3d1m2O+iTUORpfhhQKdtlVqOo0BYoUxV1tSVvX6uYz01aEGlC/J8hUaRxCXPn5+QZxrleFYS7rj0ez0WyyVVaU2PWNQMiXzTgWxtb9Pv9VnFsVVMGWP9HlLajkKv4dJ1/aDN607DKrUsH/MzNZUxa/7EvD48rWG00g3tdptbt27Tdj3Ub/zqL3+a5DlFXlDWNVpAAwhp37wX+GxsbbG5tUkQtSzJ2zQ0VUlVpEgp6PU6+K7DbDJhMZtA0yDqijsH+3z0zjv0/IDGaH7y5eccnZzguR6B51mlBZoHd27wv/onf8QnH7/P5PqK58+es4hTKukwSTJejcbMs9wS1uuLY7sja+jJ8pxVHFOUVh7nrOV0ZVlSFiV11ZBnGas4QRuDVArWuuXGNCR5ipCCdq+HH4R4fkCZl6wWSxbzGePLK3SRE/keBzs7/Nov/hK6qlktFrzz4AHtdhslFcoLcMM2tVGcXFzx0y8f8fLolFVe0AiJ8Dy8MKIyDVkWU5YpNAWOqPFlw6AT8NbtQ957+y73bt9gd2eTdjvCC3yk43A9mXA5uubLx0/48U8/44uvHnF1dY3rKDY2BigHVqsFZ2enHB8dsbuzRzvq0NQaucbDjQGhFLVuSJKYi4sLjk5OuB5dEi/n6CKmqGpa/R5bd27T2tvH63VQnS5e5IGjcIuYqJgTBbC/3Wej3ydeLJlN5gz6Q37zt36N3/ntX2Zz0CZwrZtW0mDKHF0WCFPRH/hsDCPeu3cb8oTPfvgX5FdXbLmS/PqCZnZFmU25mJ/TRIbSg0JW6DwjXy4JUai85Oj5C+bTKYkuOZlecb4Yc12sWGYJWhhoalTd0A5D9nd3mS7n/Nv/+O/48tkT0rrECFgulxitCQJLpqZZ+qbKew3/6vWDqtYFR12V9iEV9lBxHPfNASLE+pBZO61Z/zdCKmpt4ZG60XRaLtuDFlHkE/g+rVZEp9uh3W3T7rRptdu0Oh2M4yB9Hzdq4wUt3ChiMNxgMpvx8uULHOXgSEGv26Yqci4vLphNxjRVRRT46KZBCYnnuoRRRN3ULFa2kpVSwOvOyECtG7KisAVVVVl1zhrnFsLQDgN2NjfpdToUWcb11TVPnjzm6OSYq/GE0WhEp9Pj29/+DmEr4qc//QlX42tWywXL5Rxhag73drh36yab/S6h5zJdjlkuxux2e2yEEeVigc4LmqamrApwJdJVlHVBVRSEvk+/2yH0fXzPIwhCPNdDOJLCNMyrjGkRM0oWzOIFo6bgsk4ohMELAoKoRdPUaKOt0g1wXeugtt2Y3WUtl2W7Galgb2+HNLGH4M72BsNBF9DkRYoUhnanTa/Xw/d9hDFUTUld2XstJQgJSrkEQYQ2JWWdEkZtFouER49eEMc1rVbHKvyUotPtWuVoUeK6riXAGyv8sRu8WXuAeuRZRpql1HVtuyfX8m4IkOr1IWIh07qubWex7lSNVQFghFnDlZrGaKS0nqZaW3RmY2PIwf4+oqhRf/yP/vGnnhcQ5yVlY6iNwAiFH7bo9vu0O11anTaD/gb9/sBqftete1OWVGVBt90i8Dwuzs+4vryypHqWs78x5K0bt5FlTZKmnFzaqsT3fKIwQqH58N23+a/+6R/z8fvvMpuM+PKLL7i6HlMZh4vJgs+evODF2QXXswVZXlCWtUUNhcRZuycd10FISbPG4gTYainLKfKSpq7Js3JNQlocMYw61txVVRjAC0P8IADhkOcFo+sJk+trVrM5VZbyqz/4Af/kH/0hdw5v8v47b7OzsUmVZYR+QLfTAew12z+4jddqM10kjCdzsrIG5WCE1ZJ7a3OQxEBT4QiDJ0Hohl475GB/l63NIUEY4ochyvUoGs3Z1TU/+ulP+dvPvuTZqyNmi4S8KMHAg7fu8a1PPmG40SfLEmbTCSdHJ5gGQt/i3mXVkJcFtYaszCmbmrzIOb+85OjoiOvRmKrMrb4egVYBXn8LE/XIasOqkha39ULcMkGlU7odj3bLocgSklWCNrC5s8tHH39ApxPS1AV1kSOaBmVAGGsyVJ6gaUowNUprWq4imc55+dVnrC4vSCeXdFxNVS44HR0T53PSJMaUOZEWbEZtBkGEFb9a9VEhNKkpyHRFUmeWxEbjC4WsKoSBxXzOV0+fcjEdUxiNdhVm7S6uqhoEa+zbkCQZjmM5MQv32E3ENvvrA3hdmb4m1aW0VapcK7Psg/t3fy2ERCpFpTWhK9ns9ej3+kRRm7DdJghbhFFE2O4QhC20UITdHu3+Jr3hFp3+JsONbfobW6xWK/7mr/+GPEko85xeOyJLUo5ePCNPU+7fu4Ouasu/mddQtIL1BqF1Y6tbpez7E2JdWEh7XaTdoKwxxCCNJvID9ne26be7ZEnCxfkF52fnTKdzlvGKLMs52Nvjo48+pBWFXF9dURUpnVaLuzcP+ObXv8Y3vvYhu1sbVtYuDJPFhKos2AgiAiNIJjMW4zl1XeK4HkIJq0YzmqooEQarVDJQVJU1/BUFcVkwXi44m15zOhuzyBLyumGpGsampEQjPd9e/2p9cFQ1Ulmlmeu6YMRa+mpvWF3ZLqfdarGxOSRerYCazc0hGxt9wsBjuZxTliVh6BO12niut5bH1hgjfq64cPDcEN8PqeqMsopRTsAqTnj27JQyF7iuFeeEUYtOp0OSpFRVSVXVCCGp6+bNuszzfG0bqJhMphigqa3SylHuGi6z69ZCWLbbta2FQCqr+FLrYkcqSWOsMrUxBtd5zfc1IATD4YBhf4BOctR/+Y//q09rIyhqTSMUtRHURhJEbbq9AVG7ZSsa15I+r/Xp0jSIpqEqCtpRQL/bZTwacX52gq5rWo7Dze1d7h0cYvISg2GRxLw6PqJIUh7eu8tv/vqv8ju/9et89MG7FMmKx48fcXp6QVZo0lLz8uyK09GUWZJyOR4zHk9ZLldUeYHQBkcpfN8jiEKiVou6acjyzGbPFBaScpSVHmZZSlnYGAatwfcjlGNd4q7v4UchjYE0yxmNxixmC9Lling+h6rkD3/vd/mD3/99dJ6hy4KbB3tIY0jjmCzJubwcUdWGzd09pONhpCKIWvQ3Nuh0eyAFSZqs1TUlVZbRlCWiqXEEBJ5DOwpptSOiVptWt4twXS7HE37y5Vf81U9/ypNXx8RlSVJULJOUeBUTuC7vv/02X/v4A/b3dzjY3yFZxRy/fMXZyTmO49LvDzFCUBtDpes3HeUqiXl19Irnz58xmUzQWuO4LrmWZLWhdtsYv0tcwizVWCrJxa0TfLPC9zSeKphOxmRpilAKJwhwPMX16ILx9TWr5QrdaBxllT55kQK2mqnLkjyN6bUiPAkvv/qMOlvQa7n0uy5SVsznl+SrOSLLiBrDlh9xONxkazBgc2PIwY0DvNDlaj4iKRKkKymbkixeMp+MyZdLun5IKwx49OgRP/3qCwqhKdDUEqJOCyklcZJQlCWe52KMIUkSu8n+L3y9wcDX31LaVv8NKb7GmNfUB422sIFyHZQjqaqCOi/otTrs7x+yvbtLq9MhiFqELfvthRGbO3ts7h6wtXfAYHuXsNPHDyOkUDx/9pwf/fVfsrezxS//wvcRWvPV558xG4/4zjc/4V/9H/9PvP3WPc5PT5iORgS+hza1Nd/q2mIwEmtuY22UFqB5rSoSyDWf4wjrsG8HAXubm3SikPl4zPnZGePxhDzPqOsGJQW7O9u8/947bO3tMuy02B4OuH/3Nh++/y73792hG/k4pkHnKfP5hLIuUVLQDyIixyWdLhhdXJImKZ5roSMlwDQaqTVRq83G5gatXgfhumR1SVaVVFJTCU2lQLUD2v0unV6XMnQZVSmF0bhRiON51HVFWVq4jp+7b/rnhQzaRstUZUF/0GNzY0hZZrQin41hn04notuJSNOYOFkiBIRRSOAHCGlVTWItf1ZrwYPvh7iuT1WnpNkCqRRplvPixRnLRYXjWr9Jq2UPjrIsmM8XFHkBa6Oqknazbxqr1svzgqqqEGtfijHgKAuX2fu6llsDSq7Xq3rN0b3uhu161sZQVCWNsZyWWgtBpBIMen367S7pZIH6B//gjz9NsxzlhQStDtINcBwfz7ebse/7iDUxWBUFeZpRZzmeUrR9D0dKAs+j3+/jex4X5+ckyyWBUOwPNrm7f4OtTg/X83lxfMTzFy852Nnl7//u7/L3f/e32b99E5PGnJ+f8/LFS1ZpQZJrxvOMaVygvQDh+qRFSZ4VxKuYeL4gTVKqoqSurZTRCwLanZb1YTSaLC/QVYPU1sXuCAWNIU0KqqKh0RKl3HWnEVIZTZrmLJYxk9GEZJVgyooySTBZxs29XT5++yGOgMVoxOZggGg0r14dM7oas4wzpPLJiprZYkleVkTtNhtb22xubRG12yilyJKYeDanqUoCJZFYSefh/gG7uzu4ruUg8rJmPJnx/NUxz1++4vj8giTNcANL2i8XS8osZ3u4wTc/+oiH9+/RjmzMQeQHXF+NOT8+oyobolYbIx37wNjSkmUSc3pywtOnTzk/v6DIC3zPKodQHmVjKBqJUSFe0AIVoitDXhpaoiJyGspkRra4Jp0vMGWDFIqyargeXZEVGXlhTYqnZ+cs4hjlOPiBj6ts16crTZEViLVy7+L0Fat4Tr/fQjoN/WGbTuTTcgShlLSEIHIcumHInTu3uX37BoOtIUYZrmbXLJIlwpWEgY8rJWWaki5XUDcsVjGPnz3laj6jMxwQ9rsEnTabO7u0whZpllGVJWotW87z4k0Uw/pI+M9eX6tvlFRvIiBey2pfdyav43zsq3VzW9gBaAy97oC3336Pew/foTfYoNMbsn/jNoOtHVrdIYOtXYZbe3Q3twlbPYSySQFxkvL00SNG52f88R/8Q/7r/93/llsHB5ydnHD66hW//su/wh//4R/yjY8/RpcVL54/o37NX9Ql2mhbacp1Xtc6Z0Jjq1C7kVpyXa7BdQdBr9Xixu4um/0+SttMLIlgc7jJ/bt3eXD/Pnfu3GJ7a4t2t8Og0+Hmzja9ToedjQ26/TairsFodF0xmUwsSd8YXC3xpEce51xcjMjzAtcLLGEtJWgrU3ADH+0ollnK+WTKZDEjrUrrWfIcwk6Ldr9DEAaUjWZSZoyrnEw3iMBHuY7lHZqGRttoDds52iLTWhAswdysFaa9fo/d3R20rtjd2WJvb8dGHHk2aihNU8qywHE92u2WlWavc9Mcx7WZf66PcgKkcCirlLxYgJCURcXzZ+fMpzmuF1q+Rik2NjZQrsfpySkIabO2sEGN1nzpUFbWSyKk7Rosge6gHBexXn+vu+U3ai9lO2Qr/5ZWpCTsPom0SsBmzZXINVcihKAbtmgHLepFjPr2d3/508l8jpEOrt/C8QKUa/XIr8uQpiqpy4K6rBBNTeT7bHS79NptAt9FSmGd5b0uRZaSpQkdz2enN+Tt27e5d3gTg+Hx8+d8/vln/OD73+Pv/c5v0+13oClYTEccnxwxmS4YzZa8PL3mep7SuAHa8ayByPPx/QC0JokTFrMZs9mc2XzGYrVksVpQ1jVCCVzXtXpsqex7LypcoQj8ECEEeV6TphXSdYnaLbIyZzKbkuY5ZWVxyaYq2ej1ef/BWww7LUbnp9y9cYOtQY+mzBl2u3hKcXJ0wmIVE0RttFQ0BpK0sK7bIqeoCxCGMAoYDPr02hHbGwNu3zxge2sL37MJwRsbVl7bGMNyFXN2fsHjJ8949uIFk/GE1WJBVVc4SpGmCcliBY3mYHuLr3/4Pg/u3UagSeMYg+b66prrqwmrOKHSkJYFeVWzjFeMJmNevHzOkydPODs7pSjytb7bAwFVozGN9YHUVUEUtuh2eggcykrQ9gShr5ieHzF+9Yi2ctnv9qnLhqqpSPKEXBdczaacT8ZczWZcTcdcjsdr5Qckq5S60niubx32jmG6nHJ6dYzfdti/scP+wQ6yKRifnbAcXRM6khs39njnvbe5dfsQJ3TJdYZ2DNqBOI9JkiV1mWOqisjziYKAPM+YLOYY18XvtnBaAZ2NAe3hkF6/h1SSOE5YxSl5npHlNu/KcmGvMSfWh8HPfi1eb6zSwlFCSKRcP2xrzqBZS9qNMfbwWFeMnuu9+f3tgwMevvc+YadHYwRu2EJLh0a6GMcBN6AyMF8mrFYJWVawmK84fvWS85dP+Nr7b7M97HNjf5+bh/t89fnn9Fq2y3IFvH3/PvFqyfNnz8jLDG1sZ6mxJkCDhS60se/b2NMCpABt14Cuajyl2Oj3uLm/x+HODjsbG9y9eZMP33uPh2+9xe3bt9jaHNLoisXCJu3WWcLFyTGTq0tG15fUZU6rFeF4DmmWU5QleZrTlA1COwRBi6qG2WxJUVn1mTYWjsmKgrwqyHRN2pQkTUOloBaasradfJ7GpFlCXVcozyNqh+jI5yqNWVYFpTIYKewzro1NvvBsOKtU6g2h/JoktsIA6xjf2t4ky2IOD3e5e+cmuqmpqgzPU1SVDcNEQLvdptWOUI69nkoqfM/HcXwwUDeGolySZgsQhqquefHinOkkx/V8NIayKjm8cZOd7R0ePXoMgJQ2Q6teH2xCCMqyIMvytRrWktvOmq/BQKObN2vSW3vZlFqvV6mQa88fAgv/SwnS/jmttfWiYKxqFAl1TbNKUW+99cGno9GUyWxhN866odaGLE9J0xV5lpIlMXma4ApjE0p3dznc32XY6+C7Hu7auBT4HrrWLGYLKBt6QcB79x7y/r0HKNdlmcYYY/i1X/5VHjy8j2hKqCvG4xHHp2fMVwlX0xWvTkZczGJKJLWwSpTXWKFCILSmLEryPCNNc5arJVejEVfXV0wnU8qsgLXhiMbgGEE7bHO4d8D+zgFl0bBKbFxKA4wnE8bTKRprsnGVi+96fO2D9/mX/+Jf8MmHH/DlT3/C7uaAOzdvIJoaXym2N4bM5iumswVRr0/U6dHp9QmjENf3ENLK/arKuoYdRzLodnhw7y7337rHxrCPUi51XbOKU5IsY75YcXl5zeVozHI+RwJbg76FerKYKs9Rxl6HO4eHfPvr3+DrH7xHv9tBNyVKKcbjMednlyyXCfO5JbvzsmIyn3F2ccHFxQUXl5cslwtAELxWWumGxmhMo3FchRSaMk+QQhJGbRzPo1Ehmx2Pji+ZHn1Fcf2K77z/Lp+89z5ZGrNYxdRNxdHpEaPRiNFoymI+J0kSqrJgNpnx4tkLFnHKMrZy5bpucH0XLWtGsxHDrT67e7t0u22qJCZbzOm0Au7ePmD/5gHDjR5lU5KWMXlVUjcVNQ1VYwlrozWL6YzFZEKSpjTakOqaVFesypy8rPDbbZzAo6wb0iRjsVwRxyviVUJR2PVjdfw/12m85jqwFaqUlhNwlO04XqtQnDUTKtaHB8aCQa8rQClsXLbneRRljRGSw1t32NnbRyqPNC8Zz5YsVgmrxGr4k6Lk8vKK2XROsoyZTRcspyP+4t//G6bnJ1xdnDObjDjY3WM2uubRl1/S8j2yJGNjMGB3d5fnL59xcnYOUiIcSdXUaGM/izH2c9mOw1aeVnIsUFiYquV7DLt99jY22RwM2d4YcrB/yO2DG+zv7zMY9CjKgmfPn/FXf/mXfPaTv+Wrzz8nnS/odTpMxld8/vkX1hkPLFcryqpBNAJH+bS7fcJ2nzSvORtNmC7tNSjriqwsicuEuMxJ64q4qUibkrSp6XS77Ozt0m2F+NLB1DVlXlLrGuV7yHZEEbgkuqYQ9kC0OU8glZXnSilxHcd2gutDQ1gBEsZoOt0Og0GX+WzK4eE+b927hxSGNI0R2ipQreRWrlNxW1bKbV7H0AdWVVdqyqImzZck2dSuDyF58eKS87MZjmMFGkjJvXv3uHPnHo+/esxoPCUIApR0wNjDBsAYqwZstdo2n0sb69dwPYQwgFx7ODxczyr71LozFnLNdbxez0Ig176TutZgNM6b/L8GTyl86REahXp4/2ufLpYrLq+vmM5nLGKrD1+tpiyXM/IsIU1jyiSmF4Xsbg4ZdDt02xGh7+I6NqMn8DxcR1FkOYvpjCbPaTseD2/e5nBrB8d1CXtdvvXtb/Lg7h3SxZymzKmKjMvxFWlRcHxxzfloxuU0ZrJMmSUpeV1T1w15llIWOaw3YCVsHLYN87L/OGuSL4lj4nhls/uloh1G7Ay22NnaJQpblLVBOB6O71tepMwotc0R8n0P11W4UnG4u8vf+63f4L333mF8cUayXPDJ1z7CEWCaiqDdZjadcnZxhRNG9DY2yYrMKkFocByJ77s43rpyNYbQd2hHPu7aGdzr94jaXbwgJGx1MEIwmk1ZzKY4Ej758AP+6B/8Hl9//22U0TRlwc7GBg/v3uPXf+XX+NVf/AE39/fQdcFiuaBuavKiJElzfL/FdLZgtlqhBazihNlyYaWY2voUwjC0mva6oqpLBBrHFXiuxFUaqVO0aVCOQAYRbqfPTs8l1Bmrky+50TP8w9/4FT56+IB4tWQ0HVPWJUm8wFcO6WLFcjrh7s0Dfvc3f4uN3oD/8Gd/yihZMoqXnJ2ekyQJeZmzjJcs0znbu5vcOLyBIyXJYk5VZmzuDNi9sYMXOcTFkuVqRlGmVGXBeDLmanRFXpVE7YhOv4vvumRxwjxegufRuJLT2ZjpckHY6dAdDEiygvliwWyxIE1T8jwnL3KMMfi+T1VZ7f3/3NfPOI51kNwbvsOqWISwEhK51vO/3oxYy8YNrKWbDkmW4wUBN27dYrixhXI9ok4bLwgxQuL6PoEfUlcVaEvY+srj/u0bmHTOi+dfoYAiyxgOehzs7/HZj3/MfDqlHYVkacqNmzcxwNOXL5gnMUZJjEXi1h3HepPEZkMJKTBC4CorQnGFIHBda0psRbSCgNBz6bTatKOIPMs4PzvjxcvnfPXkEccnx5Rlgack7zx4wEcffojvB3z55Zc8ffGCJMvR2O7WcwM8x8cJ28RVw4uzc15cXJCWFU4YYByJ3woY7m9x46073Hn3AffefciNe3fY3N9FKEGSxEht6PkBG4MBG70eXuiD61D6ityTjNMVqakRzto5b6wctVr7wNaMwFpE8/pOW0/DYNCj024Rx3MOD/e4c/sWnu9QVzl5nsKbtFkHzwsIQhs4KcVacaeUNSpXDXlekCRzFssxjbEhq69eXvLq5RVh2AKJNfZtbnHv3ltcXY94/vz52ibwWthgVXuu66xHAUiqqnrjEXrdWbz27rzh69ZqLHs+vpZZ2uaSdQyNXidAKyHwXQdpDKaxysTdrW22u33Uh+9+49M0jZmv4xSStRSxyFOqPH3Tpjim4ebWBpsbQ6o8oywyHCFwXIdg7UgUBhyp2B5s8PD2Xe4f3uRwe49iEbOMYx6+/w69mze4evGCv/zzPwNdg1LMFgvOrkZcTZd89eKUySKlFi7zZcx0saRZa/JdZVsrm9aIdaAaTRRFbG5tsbu1TafdIVirtobdPmHYwqoyNXlRMV8laCHpDjZpd2x6ahCEKM9BN7WNJvZ8jG7IVyu2N4Y8fHCfbrvFxckxnXaLYa9Ht9NBhCFXoxEXoxGTeMXl6JplbGWH89mEPF0hJPhrHNRVAtBMRiNOTk8pytKmxra79Aab9PtDHN8aKmfTGUUcc/vggN/+lV/iGx99yL1bN7lz8xZ7Ozt88sk3+doHHxH6IWWarlv6hmUSE0VtglaXnZ0DXh6fc3x6hpEK6Tg2UTW0QoC6qmyUgbDBbNawZtDrLKq6zBGmwRg7n8X1A8JOh81QoJMZxdVzvnV/n9/43rcZhj6r5ZLZagVGE4QByWKB0JqP33uXP/4v/ojf/s3foqg0f/7Dv+JofAVScn05Ag3L1YL5fIoWmls3DpHCIVmumM+m1FVBp9+m2+tgBDR1iR/Ye5RkNuRykSbEWcoyiW2CgR8Suj7S81C+j9tpUwnDMk3XmwYUZcVsvmAxX5JlKUmSEscJZVG+qTz/Tsfx86/CKvusE/912y8QWO+E/f21PHedJP0aEzBrHb0UAsfzKEqbWyXXmHWcZETtNoEfIh2HsqxACJJlwnK+YHxxjTCCb7z/Dt/++B3+5s//hFdHr7h5cEArijjc38fUNUcvX+JIxUZ/QLfXZ2dnlxfHR7w6OcaLQrwwWGdy2crTwlWW42DdbQhYJ1wbfKWIfJ9eq00rDAlcD1c5ZEnKxfk5ZycnpEWOHwT0+z3u3rrFW3fv8cE779FutWm1WqyShCdPnjFbLi33hqTbGSCVT4nkfDLjyasjFnnO3uEh73z4Ad//pV/gF3/jV/il3/p1vvmrv8j73/kWDz/5Gu98/WPe+uh9Dm/eJIgiTFVR5FaS74U+KvQh9MgkvJyOOL6+JK4sDwGCRhvKpqEua+vDWXNar++7fS7sOhgO+/R6Hcoy59aNA27cOKAdhWjTkMYrtNHW1KxcXOXieYHNh5MuruOBeE1mNxR5QZzMWa1maANBEHJ8PObsZEqr3aOuGwzWDnHv3gN0Y3j8+CmOctb+NNshqJ/LHUvzHCmsv0NJ24W4r02N6wF7Rr9Wi607YCMwwq7o10WN0dYsrLXGVcrmtzUG0xg6Qcgg6rLT7qO2+sNP49WcOF7S6BqlbCRAspyh64oo8MiylEgZ7t88oNMKmI7HXF9eWDVNsqKpbVY9xmCammG3x4cP3+ajh+9ye+8AXVaMZhN2bh6iHMFyNOb85BjHcaiNZpFkLPKSz5+9YrxMSGuN9O3sD4xNdUTXxKsVaRZbNURlnd6NrknThFYYcPfePfb39uh2OvQ6bVzXJ8tzZqsVo+WMq/mM88k1s3hFEAQYKSmqkqzM0et/pNYUWYYwDXmSIJuSdx7c58bhLmVVMux3aUUtnHZIWeT85Rc/4cnZEUm+Iq8yknTBcrVkMR8zGl1xdXXObDImiRckqwVn5yecXZwzmk4ZL5bU2uC41pWvkbR7HYbb23TbEbqu2Ox2ePvOHXa2t+hHERv9PmVdk60STk8v1s7SitF4xGQxB0dRGcirmu5wi9F0ztH5BbXRFI3VZ1drHbcQVrtdN/ZwqLVVkrCGLZCW5G0aTZUuqauC3e0Be32f+dUx7Sbmm28dcjjs4+sSz/epdM0qie0AHlPz8fv3+af/9B/zgx98D6TDj7/4in/7J3/CxeU589nCmuyMwXUlm1ub3L17F88LmE2n6weoQSqHVjuiN+gTRREgqcqKNC+5Ho2ZLJbgSKTn0+iaVZKQZSnaGFZ5Rq41YadFdzCgaTTLNKNpGorKelmMsdlUy+WSoixoGr3uGNaluG0Z/s6rXA8XMsaslTNriEeAlLa6s38em7bc1G8e2vW5Q6012tTrIWaC5cqq3E5OT/EDn3tv3We4sUG318N1rVFQas2P//qv+OLHP2I1vcYUSyLP4eL8lDAM6HU7CCnY2hgwm0xYLWYIoNdrc+/ePaSn+OLJY0bzCfm68JLCEvuBF9DpdhDSqr60NuuBRRJ0TbfdYm97G0faGBMlFcvlgsuLS05OjlnFMUEUsL2zw+7utoXi0pQyKxiPRnz22Wd88eUXlI1muL3JcGOLsNVC+SGLLOPJqyOeHx9hlMPD99/l+7/yS3zy3U+4/e59uodbOBs9aPvQCiByoR0i+216u1vcvH2D/du3iPodRqs5T45fcDS+5Go1pbW3zfD2Pq+uzlllGV4Q0OiGZRwTtkKKslobI9eY/8+Z32zHYQ8Ox5HopuCt+3fZ39+1wZaudZuDoa6btVjHphR32j067S6uF1CVFUmSvQllTdIFSRqTFzmN1kwmK46PxlYGrRyQViJ+cnrKxcUleZGjtVVDGqwr0Qgw2OdZSrverALKJhG87oDtv1+nBKz9G6+7Xgtn2cNRr+PT66amqUvASrgxAlPXRMpjp9Nl02+j7h4cfprEU8q8QKyzqhwpaHkevqPQdYODYX/Y54O3bnGwu4fCkK1i0iQmiWOWizlZmhKGAe2oBU1FNl/RDgNu7B+CMbw8ekVno0fkuqzmc0aXVyhXURnBLM04vZ7y9OycpDY0QuJ7Ia1Wm1bYIggcmrqibkqSJF7DVgV1XVJXNUKA77p4rmsrzTW2O5/P8YKI9z76gF/5tV/jO9//PvsHhyAElxeX5GXOxtYWSEOapnSikHYQ4BhNPJtRZwlVntMOfO7dvs3msI8wkiD0Obu44MePPudHX33JZDXDcSSeawfJ+K6kHfj0uxGDbodeJ8JTAtOULBYLktQGKkrPwVF2+JXvBRgDZd3gBx6bvQF3b97k5s4eqio5ef6C508fc3l1jeO5FHnF1dWIFy+PODs/ZzyZEmcJWVkjHAc/auMGEZejKZ8/esT1ZIYWdiykEbYtF2v9g3izH9pFJNZYp1QKKR1cR1qvidQo3eDpAh/N7X7I27sbdBzQWUxaZMxXCUmaMLoac7C7yScff8jHH77PoD8kK0qevDjhJ599ThKvUI6gSHPyNEEJyd7uDrt7+zjKYTadsVwtWCUJjWnw/ZAgipDSRSBJ84rxbMb1dE7R1LS7fTZ2tpCOS5ompImNpsnqmkI3GClxAht2GbVbtFpdHNdlY2OLnd1djIHFakmW5dbfgEC85jjWVdkbjmNNJApp4VKpbHifELZqV+vhOPayCtu129LVHjrKKpZsvIP+2chP1wEjyNIEKSX37t3hwdv3CcOQTqtF6LtcnJzw5//h33H+6gVtT+I0BQrrMxhdX5HEMZiGTrvD3u4256dneI5gb3ubw8N9glabs8tzTi7OKU2NIxQOVuG1WiwYj8Y0usF3XAyNVR/VFf12m/feeZubhzfWI1ghzVKm0znT6YTVKqZZx1Ws4iXXV9cs5nOa0qZWl1lB1Vi56XBrg+3tHXqDPsrzEY7DeDLjYjSi0x/wre9+h+9+97sc3j60Z7VsUMKA0BaUVqCVxHgK7To4jkR6HlGvxfbWFrs3drl17w53333A4d1bfO0Xv8uv/f3fZZVn/Pinn+OHIXI9ckA6Lp1ux57n0naMr+/aaw4LNFubQ9ode48ePrjH1uYmUlpZueusB0iVBXlu4c0wbNHudC3ZrTVpYuOO6qqk0XZjzsuMOElpdM10kjIaxSBsoneer4MntX0eq7KxWXrSRoeYddDh62mONg3DjoV1XSv/hdc5VAbd2ORcO5fFrkehfraeWXM5Vv1n4/a10eskBIkrHHphyGbQYbfTQ/3+b/zKp9cXZ0zG17hK4bkOuqxQxqAQ6LzEMZJ3bx3wtft32e73cIWgLgtMXVEWOfPFgjzPLIHU75EXBdfXV4S+z607t5Cu4vjilLDTYjDoUxUls8UClIvwAqZZyZevjpgkOY20MyteywSruqRpKkuA1gVlWWBYs/3C6pLBUBYlSjp4rovWdsLXvfv3+cVf/iV+4Qc/4MOPPuLtBw958NYDtre37SI3Bt93mc2mxMmKt+7c4V/+s3/GJx98iCsFuiigLNkY9HnvnXfWxkO4HF/zk6++4MuXz7kYXdEYTa/dZmu4wbtvvcXb9+7y4O5t3r53h7fv3+XhvTu8dfsGtw732Bj2kMJQFClZllDmGcJAGNpcqaapMRraQchGp0+VZHz12Rd89eUXLFZL3CDg5t27+GGL6XzBy6Mjriczct2gHRfH91Gui+MHpHnN5WjKT796zHQV4wWBrSowbw6J/7kvuyitskQIu4EaIWwYXpbg6YaDQY8H2312Q0WVzEmTOePphJPLC+JVjDCGfqdNU+Scn55zeX7BYplwdHTOj3/8E6qmxHMUeZaQZwn9Xod79+4yHA4YTcZ89fgxT1+84MXREa/Oznh5csLzl0ccnZ1zdnXNxWTKeL6kUYqg0yHq9vCj1puk47QsKY3BKIdSG2oMynVxgwDleHbkse8Ttlpobbi6vmY8Hlmse+3D+P/3JYQ9VF6Xp0KuH8j1vAsrxfwZ3GOExZYFr3OubHVYloX9O9bzFoSAZbwkKzK2trfYO9in14tI0pQf/fCH/E//+l9z/uoFpohZjq8Ydltsb2zQ6XSYTic0umFne4etzSH9bpckXhJ6LlvDAdtbm+wfHhCnCT99/CWrNMZH4jagy4pu1GYw6FNXFcY066Rb6xpvtULu37vLoN/HaI10HNI8J05iyqrCcV2yLOPk7IzRaISSilartRbP2PkS+/t73L5zm72DA7r9PlJKtNbMZwu6vR63b9/m4YMH3Lpxk1YYgG6Q2LwkY4OUwGhEY/PH6rKyM8Gr2ha9joTQJeq02Nwa0t8a4LQCgkGPcNgjr2v+5m9/zNn5OY0xJGmC8lzKddQOmHXHYWcJ20LBbtBbW0NarZAo8nn44D69Xpu6KnFcQRT6IMx6zHBBXq6rdc/mSDmOQ6Nr8iyjrAvKqqBsCparJbPFDCMgSRtePD+nqu1wPLmWStdVgzHSKraApradg/WZ2PeplDXvsebPpJQWAWLNZ2jLWxj9M1/Rz1a37YKNsQOtDMa654U9iBzPRRiboOwj2QjbDLwQ9d/+H/7rTz0lOD07Q1eVTW40NhxOaYMnFQdb23zy9gMe7G3jOy6q0QiwP1eSqiwoqxrf9+h0e0gpSZPUzsHtdZFKMp1NqauS4WCIqQxJkiOVh9PqMolTfvTVY06vxjhBhEJRFRXpckWyXKK1hVbUOgDMaBvQ9gaDW+PGVVnR7fb58IMP+N4v/AK/8IMf8O77H9Lv9zHGYneOctna3OTWLas1l0oRr1Zcj66p04yvv/8+H7z9kO988k2+/tFH3D485Mb+Pvu7uxitKaqSH/34b/ns2VOWaUxtNK0gZH9nn7fv3OXurVvsb22y0e+y0esw7HXZHvYYDnps9Ozo2UGnTRCEBL5HkWWMLi5ZLJaEQUin00MIhdSCMsm5vrri6uyUvCwZbm6wubuLF4RM5ytevHzF6em5hbv8ADcIbaRJ0+BHbYQTcjWP+auffMnVYoUWEr0OvlvX0usf/5NXY/FQXquBhD04hL2ItKRkvz/g3vaQjmMokgXzxZSjk1POL6/pdrp88O4HHGztUJclr56/5PMvvuDli2Om08V6fkpJ5LuYpiH0XO7cvsP7772LG/g8e/GCH/71X3NxNaJoGmoDk9mC47MLXhyf8uLVMcfnl2RFhR+18PyQRZxwdHrGi6Mjzi8umSyWLJOURZaRZAV50yAdF9cPbTbVGs9O0ozr62uOj09YrmKU4yKFzW2S68PhP7s+P/dqjO0+rMnLPpVWnmud5K+5D37Oaf76QAHsEKHSRq5LbNVblRVVXROuYR+M4G9/9CP+h//X/5PJ+Rl/+Pd+hx98+5sk0zHz0TVv3bpt40rabRbzBb12m+FgQOD7DDodIt+3/KCBsN2hbhp+/PlnjMYTHC3QacnNw0P+N//8X/CP//E/oSpLnjx9gm40nudRVdatHXo+VVWzXMZ2Bvk6BshzXTa2tuh0unieS6fdYWNjk167g+s4tIKQ4XDI4Y2bbG5v0x8M8KOIprZzw0Fw7/4D7t65S7fbxZHCznyorclYNBoaY2sdIxDa8nBNVVEXBdJoG+JnNNQlpi5oTGNh0zylRLNIU37045/w1aMn3Lx1i/c++IjFckWa5XQ6bZqfUxetF/3f4Ti2tjbwfZcw8nn41j3arRZ1VeA6kigMENL2KpVuKIvKSo3XMJR6E3a5hoGairIqmC+sncDzPQQhx6/G5EWN67o2+VgoWu0uD+6/za1bdzg/O7PwrbZBhbppkFLhuS5CqvXBYdY+DrXugiXWLYb9fGuj48+vY9sb2zPEqgWtH0QicP0ABVRlia8FLeHiVwb1L/7pP/rUC3zSZMV4PCVbrfBdj0AJTFHRb/l87b13+PDeHTaCEAdjJ2vV9TpNVKGNsTOZpWSwMcB1PbI0RQpJpxURhhHLxYzj42NCzwMNTW2ojUNSNTw6PuFHn3/OqrCR7WWaUSUJdVnQrKdsGawe3nHUGyI3CiK0acjSHEdJdvb2+c53vs1v/OZv8O6779LudJEOKMeqhJRyqArrGG1HEQf7h9x/6y3uP7hPr9ulynOefvE5x0evaLcj7t6+ye1bN9ja2rJelSjk5ckr/vSvfsjZ9QU4yiqjOn3uHOxz9+Ythr0u7TCg5TtEvksrcHB9D8cRuAICRxF5IZ12xOZgQCcKSVZLTo6OmIwn1n2rPISANLXpuUEU0u53cKKQomn44vFTvvjsMx598RVpEtPu9OysamXD/moDjXQh7DOv4DIu8Qfb5FqTFBnCGJT1j68rjv/0FRszgQD0OmDGPkxgEFVJ24Hdfot+oMA0zBdTXh4ds0pTDvYOuHfrNoOejWTQSFbLFZPpnLoq8VxFt219Bo4wDAd9Hj58wN17b1HVJV8+esyXT56Q1w1+FL0xgMZFuR4yVJGkOUVZkyYps+mMk/Nzvnr6lGdHR5yNxlxOxowXC8bzOZPFglWSYoRDGLXWzl0bHb5YLZlMp8xmszfzMpr69cS89ef+z17Xl0JYcxTYZNvXmLiQct0Rrx/J11jA+vraK2xTS6V6HThYoRznTTXf6XZQjker3SZJUp4+ecxPf/QjHF3xB7/3u3z/W18nVIrTF89QUtJrt9nd3rYZWloTBT5oQ1VYuXq8WrKKY5qmxgsiTs7PeHl8TLGM2ext8Ie//wf80R/+EVvbW7w4Oubxo0dkeYFy7IYUBoE1RwrBdLbg+PiYLM8JgoAwtMmwg+GQvd0duoM+Wtv9YXNjyI3DG2xubdLudGmMBumggelyySpLuXXvLW7fuY3ruqTpCl2VeBIUhjrPMHWD1PWbFGq0Rhi7sSlpuwQpNCgBwrritamodENlaspG8/T5C/7sz3/Izs4O/+q//T/zg1/+Ja7HE3784x/TanXeFEjif4Hj2NoaIITBUYJbt27Qbod2eJy06IeUIByBkFA1NVmWECcpeZFRVuV6D4Omse+vKHNm8ynzxRQv8FEq4vh4TJaXOG5gM6XWB/fh4Q02NzZ58fKV5SDXXZF1vVsLwWsOzawPUWd9cEglkcrCW6x9R2/ajvXnffNcr4vKqqrIc6um9Hw78MkVgkHYZrvbpS1d1P/6n/+Xnw6HA1zlUeYZdVkReQpfCtq+w829Hd55cJv9fp9QWA+FrteEpufYtFUlcByXG7dvcvf2bTzPZTaeWHlgr0+v26HKckxdsdkbstEb0OsOUV7IZJnw+ZMnHJ2f4fk+88mUSCm++41P+P53vkUrCJktZjRaUzZ22prrOjjSDiIpy4pOu83777/PH/zhH/Cbv/4b7O7tUZQVi3hFXtSYBprG4s++49Ju+XRaHlHkEgYBm5tb3Lp9hw8/eA+pNV988Rl/+7d/w+nZMUoKdna2CAMfIw1/+sM/57NHXxDnOcIRBG7A9sYGt3b36bfb1HlBlWfUeUZdZjRVgdIVoqrQRY7Q2MhvKWlFIVsbG7RCn8VswatXr7i6GqOFAqFYJCmLVYKRglVWcHp9zcnZBU+ePWNyPSJ0Fbdu3GR3fw/lulTrh7I2mko7VG6bRelAtMHG4T2WecFoPEbpGpfXksOfYfjrXQ4h19XJm1+/5jzsfyLqHJ2luFR4EsLAwzSa6XJJHCcABOupeI025GWO6wXs7e3RiSKW8yn7+3t0u23arYj9vR1u37rNYGPI9WjM3/70J1yNJjTCRuEs4oTlKrFwk+MjHReJpCxKxuMx49GYyWzOPFmRVWt9f15QGU1R29nZcZxhEPR6A1rtFmVZMZlPmc3nLJdLkiTBGIMSNkZdYt20FhO21dnPXu31EtLG1wiBzatSdo1JAY5y35irflbhvZZCWoxZuTbuWr8e4SqgqmpanTYP7j9guDFktYrxPBdlBOfHr7g8fkXbc+m6Hr4EpeH4+XO2N7fY2d5mf3eHNIlZzObMFzObbaQk7ahFt9eh0+mxt79PVhR88fgRy/Gc733yLX7/7/8DPNflT//0z/nhX/4F1+MJStm5IX7g02q1cF2PXrcHCK6urtHG0Ov2aLeitaLIykBbUWgz3LodNjc2GW5u0G53EI5kOp8zW8w5PT/n1dkptTZ89MnXaG1tInVNmVo1Z5Ek6LJAGnCVXBebNXVhzbmmbpBCo4RAiPXEPQVG19R1QV1XNDQ4rodRgqfPXvDi5Us++vgb/Mqv/irK9fns8895/OSpTTpe+xqsUu4/5TgM21ubgHW77+9v0223kNKAaVDK2JGznlXQWS7BWCms5xIEnp3cZxqKwnYiaZaxSpaUVUmr3cJRbV4dX7JapgRBgOvYFOO61sRxyuXFJVmWUlf1+qCUNLq2/hPXTntkHeOunNeKK4mUrw+Rn0Mafm792qLHrm215t7qpraJAFLY/RZwNGx1O+xvbOIbUP/0n/z+p00DYOVknjI4oiFwYWvY5ebhFoN2iINV3mhhx19Kxwa15VVOY6DdbfPw4QMO9vdxlUO8WLCazvEdRS+ICD2Pg909ht0e7aBNGIRI6ZJkKZ89esRoMiJLE3xH8Mvf/S7/7J/8Mb/yg18E3fDsxQvizGYhCc+lqRuyPKUsK4aDId/77vf49V/7NW7fuk1VVyyWK4oyRzreOgDR5vAH3nrSYCMoi4aisPHxaZpzfnFKmqTcvX+bNM948uIxx6fHTBcTolbI7o09Jss5//rf/H85OjulMpaL6LXb7G3usrO5aZ3qpXWeV1VKkWfUVU5TlzZNOC/Jk4ymsDffEQIlbMVU1TWLRcJkGZNpB+G3WJRwMVtyOl7y6nLE6fWc2Sqhaho2hl3ef+cBH7z3kMGgT0NDIyRIhesGBO0h08zl+fmSq5VkVXnM5znz+RJZJTjGmrBsBWxluGbd0gphVRt2hdlK+XWdzFotVdQpSby0IYZS4Xqena+gDXGcELVadHs9pK9YJglpntGOIjqBT5mlKN8larXp9bpsbe0wHA4RQnJyfs5nn33BbL6wldLajS+kRCoXrTV5UdIUBS3PZ29ri8gPmCdL8qrEOJIa0GLtgBYCvQ7D00bS63Xo9fsIJVjFCUkSs1gsWK5iK611nDcxDc2bWd1/t2Ow1ZqB9YAesR4EZKENe90cx5rqjHndub2Oq7ajPLWx86GVY695WVXUlZ2B43s+d+/d5ebN26RZiu/6uK7i7OiYy9MTKEtkVSOrhkErYnw9otWK6Pf6BIHP2ekZ8/mMMGpx48YeN27f4vDGPlvb2ww2NmhtbON4Do8eP2E5nvKNDz/mzu3bJHHKi+MjfvL551xdXyIdFy00SIXju0jp0Ol1GG5uoo0dx6y1nUPTakWodQR3u92mP7SQa5ImjEZjJrMJV+Mxx2cnvDo95YvHX3I9mXLv4Vu8/c67mLpidH1NslpSFTl5uqIqCsz6upRlSZ7ZeShlUVKXdtJnXVqFnBAarWvyPCXLUrs/rOFzx/W5uhpxcXnNO+++y+bOPteTCf/2f/r3VhZf1biezYiy1by9ZT/fcezsbGGMpiwTNjc26fZaOEoi1n6tIFh7NYTlyBxXEQS2E2u1OiglKcuKLE/J18IejT1wev0+jtPi/GzGeGxNgUJK6wOSijwvWS6XNI2hWKMyUmHjRRyJ67k06wBD6z1aEzSvubZ1xaeN+c866dfFIcK8Id5fq6/EOm7m9ZiMjV6fYbeDqSrUP/+X/+zTZZJxPZ6Q5RlpmqLrktC3lXnkKpymoqlLNLYNarVaCKW4Gl1ZoqmxRJrjOSghCRwXT0jSxQJRabaGA/a3d0A3JHHKfDRlPBqT5hmLOOGvf/w3HB29xHcEv/Cdb/OP/t7vsr+zw+jqgkePn/Dk2TPiLKeRwh4e63jrXrfLB++9x3e//W2G/aEdyiIkURTR7nYIIxtkyJo8b2qNxKEua4rMDoJarWLyPOX09IyTsyOSNCXNE14evSLNYyazMXVTcff+PU4uTvkf//2/YzqdWoe563Cws8fh3h69tsVmlbRT6tAGras38SV5mpPFCVmcUSQ5RWq9MFVR4iqJdDxmy5iz0YJSBgT9bWgPiRvFaFUSlxI37NMbbNDrdTjY2+bt+3c52N+3FdN680Yo3nn4Dn7Y528+P+JvvjhhVQbg9JFuQDxfobMpSqfrGH77pAhhXUC21rYV12sC2P5oiV+jNdBQG4vV6qqhLEoc6bK/f8DOzi6uVPiuS1EX1MaO310tF1ydn5EvFpimYZlaKWQ76tCO2vh+gMYwGU85OT5luYrXcw2sYkWvozvKssY0GlFWPLx9m9/7e7/H/bt3uLi6ZBIvaIRAC1spaW3Qxk5A09q6bV3Xs9Wz49qHSRuKoiBN0/V1kDTr5FSLTL/+/D/X4WNJRquqsrCps67wjLF/wnVdW9H9HLdhYD1xzRK9Rq4zh9ZwkEGjG2jqil63z63btyiLCtPUKARnx6+4OD2hSlIi12Nna5Mb+4e4SvLq6IioFVHmBUWe0el0eOfdt2m1W/QHPRylyPIMrQWB69HudDk7P+X69IJbB4d0Ol2SNGW2WHB+ecloOqU2GoREeg6ddpdWyyqFbt68QRS1mM7nLOYLlBR4rmeNn2mKXicvzxYz5oslV9fXnJydcXR6zOnlBZPZlJOzM9wo5Dd/+7fZ2tlhPp9xdXFGslpRZxn5KqbMUrIkI1kmpLFVUlZVDU2NqWvqMqdYe8rKMifPMzvcbT3grShy66tZz1tpjOHm3Xt4fsDf/Ogn/MkP/4LZYkkQRW+8K2Dnz79WzWltx6keHOwihB3PsLXZZ9DrEQQuUoLvKRxlozqktBP2lHQQwvpiTKOp6/X44KJCYMf9hlFgAy3DkKoSvHxxwfX1bK1mVJRliZAOTa3RjV0rjW6soU8qmqbCrGetNHUFGKqqedORGOz7sbEhr4sY+/O/03GsOTep7Ipv6oq6rNBNBXWDMppBu8XNwz1u7h8w6PVQ/+r/+n/5NNzcZZaX/P/4+q8nS7ItvQ/87b1dux8ZOiJ1VmZl6aor+oruRjeARgNsDDkAQTEP4JgN8UByxmg2RtCMtJnhWM3fROMLSYzBDLK7cfW9pSt1iBNHC9fue8/D9si6eJmomxU3MjIr4ni477XWtz7x9GLK1XRNi4fnRpjKYoxtmVFUFWVZ4bguvX4f4Shen5/z1Tdf2QVxkrBcrljMZ/i+z/H+IcOkRy8KOT06xnMcJldXXF1ccnl+yWptnSHjfoyQmu1uxf0Hd/hH//A/5Oz0hKfffsO//cu/5F/95V/y4uqSwhhasI62raWf3b19lx/9wY+4fes2URhysH/A8fExw9GQOE5s92hMx1SymKhpjaWw6e5w7MbrwaDP3t4+cT9BOYrJ7Jr5coYRmoaWyeyKb55+y9NnT8mLjCiKOTk84fbpKUcHR/QTSx22rpUtdGOe6mI666qlqmrSNOuibzOKIiUvMuq2xEiHvGp5Pd8yzTTe3iltfEjrDAlHd+iN7tAf3sMPE6LY5/joiMjzWW9ShAzIipqmhbPTU4Zxwme/+4K//vnvOL9aUcuQsDfm9OSMKA5ZLS8oijVSWIzYsnkEnhdhUBaHvqHsdT2KEfbGM0JbAzRfEYWxFe9tUvKsYjAYcvvsFuPhEN9xSXc7ttsN6/WKy8klk4tzsvXa8s5DH9cPSZIerh/gdJ5VV1cTdtsdruvQVFbQVdc1EoMrBEJbvHsURnz/o4/4o5/+hDiJ+erbb3h9eWmbJyltBKaxOeCOY60fjAbXdekPrGuqlIq8sFPYZrvtYAkrFrUDgX3AurLx5np0PdrNb3XTkF1E2k8KVJe9LaVdwgspLJ1S2CkFaYuPNo2FF5TEVR5t01CVNlPh7OSURw8ekEQRq9WCZ0+/ZXp9jXQdROATDnqcnZ1ycnJKq1tev3rFcj7j+PiYd959hyiO2ew2rDYrFosFuywjz0uUcoijGFcqsu2WXpx0AjWDkYrXV1dcTqe0gON7eH5I07bUTcPe3phbd+7QHwzY7lIuJ1fkeU7dNjRNTVEWzFZzrq6vrTj26pLZYs50PmOxXlHrlsV6TV6W/PGf/gk/+slPyNKUy4sLNosVdVFQpjuaqkLXLbvNju0upSxq6rqxhTHPacqSMs/INhu2O5uRsdvtyLKMuqpomposzynzEi8I2Ts8YrR3QBj3yeuGn/36N/zi17+h1Nou6jG02sJLZW3z15VSdhltWk7PTixUpRv290b0+gm+5yEluK4iiAIrJHY864TcGrSGutZkuS14yvGQ0l7nIAyJ4x6tNuzSjLKA2XTL69dXKMeaFEpl6dllVdkgJ2E1djbi2hI4/n2Vu52SbRHoSEQ3TVAX0Ke6NMCqqtDaEAS+LY5d8bBoSUmRp3hKcnZ8yJO3H/GjH3yfH/zge9y9e5ujkwPUf/3/+X982vgxKhmjogFBuIdSCcWupElLRFOhq52V0/tWK5H0E4SAyfU1F5fn+KHPeDRGKFtdrc++ZH804u6tWxzsj9lttux2G/I0paoqpBD4ocdw0OPszgmPHj/g44/e5/Gjh8ym1/z1X/01f/WLX/D01StqKW0QUueJVZUlSRTxycef8KMf/IDDg33iIOLgYJ9e0sN06XZVR9fDJhyjhHViUVLiOZaO6SlFEAb0kz79YY/hcERvkLDdrHn56gVKGk7PDhFonr34lunkivFwyAfvvMsH773Pwzv3ON7fRwlrm55nBbssoyhKtLaOlMp13lhF6Pa7kbooU4oio6wLytqwzgteTzecr3NyGdGEY/AHiGCE54/pD05IgoC9Ycjto0NoNEVagpH4fsSts1M8KfjFX/0llxdXnN1+i9q4vL5eg5dYap00ZOmUMt+gdYUyXeYyYISDddnQyG7klgCy67slYAxaGrQwKOlgGqjKmqqocZTDMLEsnuvXr1kuFhR5iujguMC3lhVREhPECUK5uJ7Ffx3HoaprppNr8iJn1B8QeB4OBoXGARwBjm4JXYd7Jyd88uGHPLh/l7ou+frpt7y6eI3WBt/3OqxaIIwV6emmRZsWVylrXR9GAKyXK2bzOVma2QnL7l47Z1DVDWVd+fj3MGJbMATGRg4L1WVGmO92RB2DRbyZQDvLbl2jW8u/d5UgDK2brxDC7lh0S77LONg/4G/+yd/g+OiALz77nN999luqokQrQW4alOdydnLC3t6QKAxYLWb04phHbz3AcRRZlrFaL5kvZswXC7QxOMolCkP6vT6xH6BrS8FsmxbpuhR1zdOXL7iaThGOdRswnRitrErCKGL/cJ9er09V18xnM5arBVVVdPkTlnlYVSVVXZPlGVmR4QU+wrG00qIsuHPvHn/nz/8Ot2/dYTabMjm/YrteYqoK09RQNxbywaYqeq6PkoK2amiryn6+1bRFSVVbVlrd1FRVSdNWNE1DVVmiQNzrMRyNifp9wqTP5XTK//q//TNeXV0RxhFFW9nkPSWpqsrC9o5H3TQIDINhn5PjQ4TQBL7L3v4It/PyUsLgONaOXCrruC2UQgoXIRwLs9UNRtuAOSmsN5bnBSjXY7XacHl1RZ5rZrMNV5cTXM8WGK0tbCSEIgxCazzY2B2GI5U1O2zqzlrETjimE6/eBI4J7KRiIStriXJTaN7YkNDRnAV2z13m3Do+5Ec/+B4/+cH3+fD9d3jr3l0Oj/bwQxfpStR/+T/+Pz8tapfKRAh/j8A5wBFDmkyTr1OqYo00GXEvwetGpCgK0UZzfX3NYr0kTmIGwwGO7zIYDRkNR1aRiiCOI2SXd6AxGCHwgwA/CtBG0wpNMuhx684d7jy4Twv88ref8a9//nM+e/qUVVkh/YAaYSswAt1obt+6zR/99Ce898TGj0ohiELr5bLbbtlst5RlicFYU6+uVxTGhrybG8+WDp4AW5Edx0EYw3a95OnXX+HQ8ujOHcZJzGY6Y355xcFozNsP3+L+rTvsD4dIA69fn/PZbz/j2fMXXFxOmFzPWW625GXddR+2o2mNdZAt6pKiykmrnG2esykK0qLmepNxtdhQSofG9diVFYv1jrqqEHUL+Zq3joecDofotKDMahzpcefWbcaDAd98+SW/+9XP6PUSPvnhj1nnNV++vECHEasiY1vsKPMlRbaiSjfItsETAoVEtw7GOF3RsBi8vcvsCNv9BgZ7uFIbJAphlI0ablp6ScLJ0RGuEJRZSp5laN0SxgHjvT1G4z3CpIcWirptUa5nla6uS1mVTKbXVGXJ0f4+/SQiCnwizyP2PVwp8ZVkbzDg3SdPePftJwwGPfIs5/ziitevzynKAsexIkFjDFq3tlgb68vjKockSQhDy4qZzedMpzPL5ZeSpusUbVH4//MmsA+cECjpdMyVjsqJvW76xizPqiGssZ6wmeJgcKXAUxJl6DyBJKJT7dd1TRLHfPzxh8RxxL/4l/+Szz//3E5PGJpGU+U5h+Mxh+M9Rv0eruvw6MF9bt++zWIx5/LqgrKqSLOcsqwIg4her0cUxSS9BN/38TyXLC+oGk3cH7DJM754+pTJwpIT2k7h3hhtYSIp6fV6DEcjlHJIs5T5bEbT2iwOx+sgwE57YTCUVUmv37fwoTHEScIf/uEf8aMf/RgpJecvXpFtbc5OU1UIbW04oighDBP6/QFJb0AYhHg30a6dJkYpGxfgeN0y2WjqyhaNvChotSGMewzGe3hRTNm0/PbzL/nf//k/Z7nZYFxFXlSUVUUUxQghaFuDkIKqKkAKwjDi6PgAbVr29kacnh5TlQV1XeC6NuxIOQ6u63fRry5CurStoKpbmhYbI6ClbWGFS6uhKhuuJlOePX1NVcEuLXj56py2NW+s1QUK3Zou4la9yQ+xuzhrBSQ6twIhutClDqKiCw1TSlqUoNt3NE3zhi6utbZs06ZhtVzgKsX3PvyAv/e3/xY//uH3uXPrhGE/IYpszo5QwjIA/8n/8P/+tKgVm1ywSiFdgmsG9P0IU9ak60uU2NHv2XhYRyn8wKeqSmbLOWVVMhgNiJPYCuEGAx7cv0c/TtjtNlb4tVrZ86frwPzAJ4xCHFdhhD2sHc9DS8H1bMFf/uKX/PqLL1kXFbWw6nLd5T5LDaPhkO9/8gl/8MMfcjAeU2YFumlxHUVdVuy2aSeYscaHrpKdv5WhqRvS7c5OPmVJ0zaYLsc8Lywu2pQFbVny7KvPabId944PGccRbZ6znc2JPZ/D0Zhhv4dpNJOrS371i1/y81/8gucvXnE9nXN5PWM6X7BZbcnT3I7Bjl0etm2DQYOEWmvyuiItarKyYr7NWGx24AVUSrLZ7liu1tRpRr5e0ywnPBjFJMKwnS9ZzmYM4h53bp1ydfGCz371M473BpydnrHLKr749jlXmxynN8S4DsZRJKGDK1p0mUGZoYxl57RaInBQUiOEPeRu3m4mD3tTShwhUUhc4eI4LiBpmpow8Ll7esrDs1uEoYfvOvihT9RL8KOQutFs09y6whqIogjHc3F9j6oumU2v0U3N3qBPEvgEShF5DnEQ4CqBLxXj4YA7p6cM+j2qomC73bBcLFmtVrRtS+B6eK6LqxQKm8WihEIIy2jrJTFxElM3DfPpjOViaZW3QloqrrFTqe3YblhUvzd5/N5FkUi7GJeq22l05OWbv4QV/GHXrLjKwVUK07aItsZpG3RdYeoKAcibrw00TYXvuWw2a37xi58zm153IT72Odyu17hCcnJ4yKifcLA/5mh/H2kMu+2G2XxKVVZIBL4fMBwOGfT6JElClPQQoY+HsGmHnsf48IB1lvHFt99wPZ9To2m1Qd9kjyir8QmCgEG/TxTHtHXDZDKhKgukkvheF3Ha2HtcSWF9zhyHIPAZjUacnZ7xRz/9KQ/u3yfb7rh48Yq6LNBNY8OiYjv5x4m1DXI932aJ+z5RaPNmfNclCAL6SY/BaETS69kdH102eVNbKx0hCKOYwXhMNBiwWm/5+c9/wc9+8QvWuy3CcYl7vQ6SsgShNyy47ucdhj5HRwdAy+1bJ9y7e5e6yimKDM+zVueOYx1ppXDtL+khhHXDbSpNVVmH7yjqkSQ9fD/EGMFsuuL89RVFUbNLU64uJ1ab4fm0WtsAJ9NNC67zJrLYcRRCgm4bi6goO2Ho1nrP2YwYq0WRUtr7G4sYNI01dZSdgaXj2GLiKskHT57wZ3/8R7z/+BGDyMcT2OfOcwhCz7oQYVD/5X/3P32qW0GNR14YsnWJLgy+0ByOYgZDSVMvMVpbx1TPQzoOm3THcrXC8VxG+/sEccQuS2nahuOTE/bHe5RFwdXFBYv5zEIIrttVR+vaGIURSa+P4wWUDUyXW75+cc5f//oznp5PqIykFQ5NY5kopst9vnP7Nn/80z/iyaPHuMqhriqcroJaZkpXlbuwEropo21a6rK2nldpbhkIBstVF4Kqqliv1viuQ+x5PPvqS9L5lHsnJyS+R7ZaYeqGXpxwdnLG3mhMXVW8evmSr7/+msvLCVlubQfW6x3r9Y7tbkeWFxaGUMr6IxUFRdPSCsfmjUhJVras1inrdUpd2kN1t9tSZikONapKEbsVA7Y8PvIZeS27+SVUO+7dOiT24dnXv0NQc//BfbT0+Jc/+x3fXCzInR4m6KH8BDeM2BvvEQQxTVlRbDN002LdB6ydtuisHbr/vTkorUeOwJF2+aewHbLdwmEz3usKx3UYjgb4UUBv1MeNQioM66xgulgxX61J8wIn8EkGfcu/l1BUJavlHNO2RGGAktJ2dmWF7lTWxhjiKIJWM7m84vL8kun1lNV6TV23OB30GEUxvhcQeL7NJtBQl3aZGITWgK4sK6azGZvNFoNlX9loTdmBd79XJn6viNprYR9EgeXJW+WxZa6YmyLTFQ/RdeBta5fNbduS5wWnoyF/9NEHnOzvs14uLVHCtaxBx3Fo2pY0T7maXHFxcUFV2e9fOfZrlXlOulrTiyMOx2MOxiOy7YbL83OatsYYqBttdUC9PlEU4Xoenh9YerlyaEqbc2EcFy/pMd1u+c03X3Mxn9NISzQwkq5ztWZ5QkiCIKTX7+E6rs04X6/sweu7HQ3UFlyni6sNgoA4jBgNhozHIx6/9ZgoCHj5/CVlkXX7M0nc79Mbj2mkYpmmrIuctCzJqoq6KwQoiVAOwnWtZYnn2deCodINVWNdYusWNAKUgx9E+EHI02+f8z//z/8LL56/4p33PuAf/Wf/KX/vL/6C5XrNt0+fIYQgCEJk1zgURUF/0Ge8N6Rta27dOuX27TOkMF3KqO6S/hxaLalqQ1lrDAolPYTwENLDdUP29465ffsu470jhqM94riH64YEYYwXRMzmS84vrtCA4/rWTbdpcRzXZhEZCxk2rXW2Fm8iYS0V92ZH5zgWDrPsQKvPuGH0mY4y9u/tNTrSyAdPnvBHP/oxj+7coacUsm1x7ZGAoyDwXJSw1Fz1T/7b/9enjrKjkx94JCqh2lVky2uePLrLRx/eZ725ZDmbEnqWuWOAzXZDVZck/R4HR0cEYcAm3dLUFYcHB/TjGLShygvKPKctS0b9IYMkIYljPMfF90Mc5ZHmFbP5mvPJgt98+S3fXlyzLRuK1i6ZpHQwtfUPUgJunZ3xg+99wtnpGaZp7MHXWTzQSe4dqewF7LA9iaWmNVVN23RAtgCBwemcJAG2mw2+cuj5AevJFcV6ydn+GNVYjnnsexzs73P/7l0ODg4wdc1qtWKzXGMQlFVL3UKeV1SNpujC5uPAJ+71yIuC+XpNWpZoxwPHQzsebSuoK00/6vHk4SP2RiPKIiNdzTFNgVtmiHTNnlPyg0dHnA59dLHjztGQx/fPmF++YHr9isODPRrg829e8KsvX7LKoVQRpXFppEIbRVm1drJAUGcZTV3imC7WVHUGfqYTKPDdrsMehDfX02o7aO3NKLoAmKKybLW6Kmiw+R6bPON6uWIyXzBfrNnlJXmZMxgNCaKAqq0sfFflZNsNYIh9m8uebTbstmvyzIbz+J5Lvz+gLWvm0xnr5YrdZkeRW4jKcRxcz8PvIDDPcVFCUpclVVUjsHY0nudRVTWzqRVdKanQdCwp4dhcgjcTh+20xU08rLClQ3TRmo7rvZlQLDPLOhm4ru1Gbz6+gUubxkaK/viDd/k//Qd/h3fffpvDvT0ePHhIFARM5zMApGOFhJvdjs1qBYDrWFisLmsCzyNdrdBVyYPbZ5wcHLBdLdlt1ggMvV6PJI7p9+2UYfMcLKzidWlwVVGQZgWbPGNbV7y6nvCbb75htl4gfQ/lOBby6LLVb2JIHaXo9frEUcBmvbaTIobAcwl8n8DzOv2PwPd9hr0+oW93OXEcc+v0FKENv/vVr94EiXlhRINkleW8vrri6fk5r64umK1XpGlGUVfkHXMqyzLyqibNC7a5hXuLpgbZWX24LkYIirKiMYYkSRiN9/nNr37LP/vf/hm3T2/zj//xP+b/8B/9RxyfnPL5l1/xm9/9Dlc5eL5vdQxKUZYF/X6P/iChaWvOTqyBY+h7QEvdmWJKqVBuaIuFdHGULRa6haKwO479/WMO9g8Jgth66gUxw/Eet27fZTQasd5sePXyFXlZIYXE9Xxcx0UKhWkN0lE2nbC1NHHXc+lUI9151u1v/QDZxcxiul3GjRmnEHieddtAGJrGEgFOjo/50fe+zwdvP+ZsPGYvCPCExtSl3ZPcFBCtMVWD+if/t//hU1cKTNsQScUwAFHlVOkV92/vcfvuHrP5OdPrS6RoEUpZdlCeA4bh/h4HB4e4vsdmu8VxFIeHB0R+iGkapDboqiZdboi9kPFwRL8/QAiHIquYTpecn0+YXK+5uF7y2bcvme8KjGdhjabROEhMY5knCIijgLt377I/GlFXpbU1bhvr7NjYBd3Nm31obQdtYSJrJW6rsLHZy92fa1uNQVp1re9SFSnb9ZLIc6jKDM9VxElMHMWMx2MC36cqK/I0IyszQJBmNXnRUlQNBmjaEiUMZ6en3L1zh7yuubi8YrXLKTSktWFT1NSlQGmPe6cP+Bvf/yMePXibOEzIthnr2QKygsRI7h4O+fFH7zKMA0JH8tb925wdDFkvr8FUKNflyxcv+PXXz5lsayoVIrwQ4SowNVqXXE2maCSBp2h1RVVsaXVOKwxaQEuDprXqcWF3A/aotP8yXY6B0cbakHRYv3QUrYR1umW+WrLJd8y3a85nUy7nC65mSyaTFYvlCuULxvtDjDSkeUbVVNY0swt8CnwPCRR5TpalFGVJawxRnBBFEZ7nI+lS24RASIVSbjcx2f3Czdje1A1FUdLWDZ7rE0cR0nXZ5hnTxZKqbpCO04X7WOostmZ2/7JU5Df//2beECCE6thS6s3ODLAWOUpaCjOdwVyXPa6NZjwe8wfvPuGDu7eJgpDbd+/w4MFDFpsNX33zDdJ1CaIQ5dndz3a76wRlHrq1TsZxEFAXOflmzcnhAbdPj7ucHB/XcUji2E4FnkcQhgR+aMkIHStHNzXr7Y7JbMpkseByseDzp9/w+fOnbMoCAs9GkN4wzLodTtM0NI1dXvu+T1WWTK8nGN3geR5KWTq2BBwp8F2PMAgQxkLHSRSTRDFKShsZ/fw5WVWz3GV88ew5v/z8cz5//pznFxe8mFxxeT1hupyx2mzYZimbNGW92zHbbLheLLmY2u9/l24t9O06eIFddpeVTfpLhgPCKOaz337O9WTKn//5n/Onf+vPaDD827/6a/75v/iXXE2uCYLAdvqdxABsoQujgLLMOTo6ZH9/hOs56NZONo3WtFoQRwNGowPiqI+QDrttyouXr/ntbz7j+bNX1LXG90OUclHK6mI8L7AFXSkm1xOurq8xxqb8tU2LwFqlm+76G6CurQGh51ntSNM2NB2F2NJv7X5Da7u/FdL+NxDCLsodu6toW+tY0O/1ePLkXT569x1uHx4xDgP8tiXbbajLHN938XwXU7e0RYXOC9R/9d/8958qoXF1Q5NtqDZreiGMEodB36NtUrIiY7teUBYpRtt9QFNXOL7LeG/MeP+AIAhI85SmqtjbG7M3GBAoH9cI8tWOyxevodYEboBSDrv1jovzCd9+/ZzJ5Zw8byiNy8VsyXSbURm7+DJaY+oGZQyO52CMxd6PDvc5OTpCtA1pusHpJoq2rm11vWmYW03T1JR5Sl1VGN1anraxBolS2JQrIawK2HMsZu95LkWWMr16Rb8X4xhNvxcTeDYqN/B8HMehLgvSLCPdbanaFil9ygaKsrSdryMZjQZ88P57vPfB+6RpxpffPuX11ZT5JuVytuL1ZMFqtqPOGgLjc5jsczDa5/bZLRI3YDaZQJrx3oOH/M0ffY+jvYTV9BKhG3zR4ogaXxmUI7icTvjs2QtqGTA8ucfJnYc8fvcdBv2EutqxWc7YFi0qiPF9l7YtaZsUSQWOpNE1RmibBWeHCIuVdrsNtD00te4EbG9ofBVGSYSrKOqKsq3JdcN0Oef15Jrr+YLZYstykZLmOcNRxHh/QNPWlLUd+dMsJUt3VFVB2Lkdy878r6psXrbjKKvmNqbrxm6KhmOhyM5gTrf253pTOKqiRCAIfZ8wjDAC1nnOerOxGL6wIWAY+zoFdkEquJk0Ou3GTcHAPpRS2A7+ZrK4YVWhNcpVnSam81ZqWurCwm6nx0e8dbAPixnr1QrXcWmAb779lm+ePn2Tn22MptWaPM8JwxBjjDUV7LKgpTHouiJUkrfu3+X+nVskcUQSRpZy29GEI98nSmI810E6kiIruJ5Nmc5mXF5PWaY7rpZLfvvVF7y4nlALaFyFg8SVDsLwJo/dGEOR55YmqiSe67KYz2ygm28LUxyGxFHIsNdnNOjjChu+NuzZ1NDNamX3FVHE1fU1V9dTvnz2gt988SVfvnjBy8mE6WbNardltV1zdT1hOrM7VZSiqEquZgtevn7Ny8tLXp1fcj27ZrNdUdaVFbQ5rk3YUxLlOkjhYFrNk7ff4Q9//IfEvT6/+exz/tf/7z/nl7/6NULa7AqlbDhd07YIoNdLCAKXPM84Oz3i8HAPYey54joO2kAYxOztn9BPBhR5zcX5JU+fPuN3v/kdv/7Vr3n27AVZWlqY13HfIB9atzZeuKl4/uIplxcXgCDPcnRjLUd0F7B0c59Z2/MaPwhwHUv/tzET9n6/KfBCChx1Q92tMfIGlsdSi9sWRwnu33vAh++9x/2zMw6ShJ6SsN3SlDmOstbqUkocBLoocFtQ//R//J8+VcIQei5Xr17xq5//jEDAnTs2gvLVy6e4UrBb7lhcr2kbTVsXtKZl0E84PDhmOBoRxbE18zKaJIkY9UckQYLTumwvNrz8+jWb+YqqrEnTgslkxmyyYLvJMbUgjAb0RmN7w6yXNBLLWHBdhLHiLyEFtW4xbcPp6TH3791GSUjXG+qiJBCSyPHxW2h3JcViyXYyY3MxYXk5YTuZsJ1OqRZz6s0K0h2yrJFVi2hAGYkxtlsyxrBdrXj27FsCR3JwsEe+3ZJut0ReYB/AThxE26DrmjbPCT0XT2hcZehHPnHocf/OLb73/e9zcnjIi5cv+dUvf8n5xRVFWrBKM2brDav1jvlyzcV0ZkkHokE6Bt8TBNTcv3PM3/nbf8y77z7g4tVTnj77hsVswnR6TZbuuuwMydVkQZGW/ORHP+aPf/xjHj64zXCQsNltuLi6Yr7Z0QpBEIe4sqUoUnRT4UcWA250i2lrjLFURCk6CyAsxdR0bpsgkJ2uQSDeOFsBlton7XhcVDVplrNNM7K8oDEGx5OM9gckvQijFFVdU9a1dRYtcuqiwHd9fNdCJd6N347R5HnJdrNhsViyXq1YrtaWQVdZCqZdjDZvgpPqpqEsS4rKMuwsA8el0prVdktR2UaD7mGz84J9+27osNOC/bydsnTXqCA7iNRO/thgHIPBWGGnEsiywm8M98dj7o4GjKXh0eEBp3HA/OKcNE3ZpBnnl5d88+I555cX5HWNlIraaPvMaWOZNEBb1xhAds6tuqlpqoqz4yPu3rlDEoX4fmChshv6ZffwNxiyPGe6nDOZXvPq8orZcsG2rnl9dcWXz5+xK0rbEevOasYIjLCvpTU2UlQ6tqiVZYmjrGJeCmOTPv3gDVzoSMWd27fp9/sc7O+xNx7jCMliNqNIM3q9Hr2kT90Ynr94xeuLCXnZUNSauqip65YmK8jTlHSzxVEOt27dIuoPeHV5yW+++ZoXV5dMtmuul0vOZ0sm8zUX0yWL7Y5G2lz3sq4Ig4CHD97i7cfvkAxGXF5P+Tc//wX/5q/+muVm2zHW7K2glOqs0muG/T5xHIFpOTk9YtCLrTdUYxmTwkjCICGJerS15urVOa+fvmB+fsXkxSvm5+ekqyV1usbUGaFsCGSLajKK9RydrnFMS75eMb28ZH49ocyzDh62DUJV19Z00vdp6pqyqnAdF8d1Qbe2yBms6ry7D6WwBVMp1UkZ7H4IDI1u0FXF0XiPn7z/Pu/fu8NZHDIUBrIdVW7PhRtphScloVQoI/GERP23//f/7tOqLNktV/zqZ/+Of/dv/jV1mXFycEBV5VxfXOJKyXZVcH4+p8h3aJMTeB5HR4cc7h8ShBFKKsIoJAoDjNBEfsQg6qNyh3Jak80zijyzNEkkuhEEQcJ4cEAvHtLv7ZG1mm9fvmSZpwjXRTiWd2yAsizRoot1xHB2eszjtx7gKkm+2UDdEDo+Tm3IllvWVzPy2ZJ2uaXebDG7HJNltNst7W5DvZpRLFeUiy35Zku2ySiKiroxKMfDIMiyHV9+9js26wXDXsJ6uaBKc/bHI1ypKKsS3TT2QapbaBpcoUlCh9h3GPRCzk5O+OCjD/nw/fcJwoBvv/mWLz7/is1ya6EVx6VWikYLNmXNLstJ25q8zNjtpnim4fGtQ77/8Xvce+sW69WcL7/+jMnlOevNkixNKaqKujb4YULoRdy9fZeP3/uAYT9kOb3i+YtnfPP0Ga+vp1StoJEGqQy6rSjzAoTEDxJc18G01rnWtBUY3S3NO4xfCEzbITfadthv9ArSsRTWrmOXUmGd3yRGCoyROK5L0kvoj3rEUYhyHVoDVdO8sduoy4q2aYiCyAqs7EmM71smnjSWQlhXFiZotUYb6w0VhiF+B8Uo6WCEXSbuMpvupyUEYYgT+NStZpVmln5rsGVRSiv8EwKJsovYm2Jifq+S3Ow+Og8v+95en5sdyA2G7EpBoOHe+IC/+OOf8meffMRxErHvOjhtTbregJIURcnryYSLyTXbLLVQhQBQtijf7JeExHT2EY7rYrSmbRvqoiQMAo4ODuj3+50OpauAynoepWXBerNhuphzPZsxX6+YzZdoIcjali9fvuDl+RWNEXiOjys9hLF2mDcHquu6KFeBthi77wW0bWN3PMomz1W1VR47SrHb7WzXHlpb9VF/iO951FlJutsS+AEHB4f4XsTFZMpkssA4Ho4XAQLT2ORBUdtp8vjggI++9z0G4z2+fPGcz58/Y55nZLolb2G1K5mtdkxmK66WMzb5Bg34rofv+ewN9+mN99huM/76l7/iX/31z/jmxUsrEO12et0tB1JQljWj8YhBv4+UcHSwRxgFiG5HWuU1eVFQlxrdGOqsIl1vUVXLXtyj7wX4CBzdYJoUU+xQpiJW4MmGNt1Q7pboPEe0LbqqrSK81aRpSp7m3+2WOkeEumloKttIe45r4cRu+S3MjcW/haOEsEaaQki0sICpkfYc9aTknfsP+emH7/PWeMRQGoK6Qlc5uq4QGJTB0uCNpYs4xjZM6h/87b/76ebqismzp3z1q1/x8unXzKdXSAWHxwe4rkIAaZpyeXHOdjNDyYbRsM/x8QFJ0kMbyPMcISVRHJJlO5SWjMIB7boiv9ra7twYXD8g6Q3p98f04iGRF+Njf6gvLy/49vycVVPR+o71HJKGRrdUuqJq6jderUcHBzx++JA4CDBlSz/qE3khdaHJdzlNbe2JwyjEDwKCKCCKY6IkJgwjoiiyeKPrgFSd9URNUdbQBR01TcEXn/+WZ8++ptEVdVPTTyL2RmO79F2vydMdeZZSlqX1yO+6Ta0Nw+GIRw8e8ujBQw739nGk5PmzFzx79ow8LywTzHPsgygcSi2R8YBgdIpWHmVtaY3jfsJgOODqesJvf/srXr96QZFnuI6lRretRroOQRwT9PrsHx2x3G349We/44tvv2W62TBbb5ivVpRNbe0XNJi6grbGMS0OLUJX0FboprQU0bbtsiQ7PYKxAT5vGBnYw8yyrX6vTRcdvPNmBAHXca1/Vb9Pr5eguyTCLLOeYwBt09JUFbSWOeVJh7a2xcR1HPqxxcYjPyAJIwb9PoNen36SMBwMGA76tjA4tulAaIq2Yr1dsc0zpOsQ9fs4gUfZNKy3W3tAd46jFpDqCkBHrdVYe3l7dN7MI3bUEh08Jd5Ui5sXbDBCoyRIYXC15tHtW/zwk4+4c3JMFIboumKz3mCMJogTNILrxZxatzx+8oTReMzVdEqNsQUYe12lsv//ZpeCkDS1ZWw1dUvg+SRxjNGGqqyh6zarVjNfrXg9mXA5m3K1mHG9WLDOU9woJG0avnr6jMV6C9JFSAeEfS4sTm6t9m/sK+q2IY4TTk5PCeMYOkpqFMfUbUtZVfh+gJSSi4tLSyvFHnSB61HkKVVR0ksS+v0+ruNyMbnm1avXFN1yWLQaZQy+ktDU+Erx9lsP+fGPfsxovMfTp8949eIleV3RKOsXpk1L1ZS0umG3XZGmGwZJwv54bLUvZUUQxnz17AX/y//+z/j5b3/HJstB2v2BfXqNtd/oOn3rRBHR6pqjw316id3XSAFlUbKczkk3O7bLNaZp2Et6nB0ecPfkmJPjA8aDhDj2CQIXQUtZpFRFRuA4xJEPbUOWbmmqkij0ONgfMuz3KIuM9WpB29Qdi8qypcqytDs83aIcRRgEGKPt1CHsPWzPIJvb0TQNTV13wVCtNYKsS4ZByCdP3uHDhw/puy6irpFt3SEG4EgLU4vua7VNQ93W1FWF+nvf+4NP6+2WdrNBZylltuN6dsViOWe4P+bs9Aw/8Cl2GZPJFelmTj/xOD44YH9/iKtc6rphvV6TZRmu66JNC6Wm54SU04zJ1xdQWp6043jsHZ1yeHiKp3zqrEGULYEbcLlc8vJ6wqqtqFxJIwxGSoRjVeNVXSEF+I7D/miPtx8+5GAwJgli9npDoqCHrwKiICQKQjzPRbctRZVTV5WlRGoNUuA6vrU7lwrf80mSPkm/j1KdBsCxyXevXj3j17/7FZvNGscV3Dk9o5/0yNOc9WpFlma2MyhyWm0fmLqukFihVOKHNhCrrNmu17x6+douh5FWud5FgjY41NJD9g5w92/jRwM8P6ItS+p0xXZt7Vx2my1FkRF4DlHgWbweg/ICtLDMoAbD199+w68/+y3L9ZpoMMT1A9IyJ81yWiMQKFwJjjFIXSPaBkmLbFusnXB3A92I2LRASheF7eRF12l/9/73CkXXmduPBY7jEAYRcRxZaqywRaKsKtI8p2msWBRjMLVBCcEg7uE5Dk1RUVcVrpDEQYjvODbrXigCz8d3XDzXsT/zMEAIQdVYFXFDS9lUZEWGBuLBgGQwRDqKsq4tC9A6fFo+cTdZ3ST0AdCF33w3SdxMFpZdpjqRlexyNmxFseFDnqswdU2kJHePTwiUjU1WQqKMYJemuI5L0u/RNJrVbsvx2Rl/8ff/PvsHh/zuiy/Y5gXStRkhCIHTTXZa20lJa+vgq6RrvY00JHGMaA1FWaJcDy0kaZZzeX3Nq8tLLmczrpdzrjcL0rJkdHxI1OtzOZlxPV1Qt1gtgvJomhYtrHBSKrvjAjvhua6H43iM9/c42D9gOBoRhnEHUwq8wLd52wjWyw2Tq0uy9RZXCkxjkYPRYGSNSIWkLGvysrKvq9ZdE2EzOVwhOD0+4pMPPuTjT77H3nDM9dUVz795xqbKMb6LdGyBU06XUSFaelHI3Tt3GPYGNuekbEiLkn/1l3/Nv/i3f8V0taUxdBkt2BtX2qnZAHXVMB6PCQOftm04PT5kNOhZO9DWKvw3yw2b5ZoqzxgnPR7df8D901P2Bj16oc+wHzMe9hiP+wSeQ5btWC/mKAH7wyFJFCDaBqNrXCWIQo/jw31GowFFnrPZrqiqBoTCdQLK2opV27ZBIkh6MWBpteiuaLR2h6GblrZbtLe6sU2gbmnLkqP+gO+//Q73jo6QRYmuCpRuMaYB02J0Z2NvNKZzvKjKiqLMUf/nP/s7nw48l8hR9IOAxlSk6YbZeklelOzvjRkPR5RlzsXFa9LNjMNxn+OTQ/pRhDaWv7/Z7ZhP55R1YTn4jUDmmmqesfjmgnKXU5YFWgoOj084PbtDLxwgDcjaIByXjW746vqc63xL6XRjPxpHgOc4tLUVroTK5Wi8zzv3HnH3+DbDoE+TNzR5S9vYGNjpfM6r1695+vIZL1++4PXlOZPpjOvZjOn1zProXE54fWkPci0MfhDRG/QIA99S8Poxy+U1v/nlz5nNr9gbDnh49w4Kw3KxYLfZ0bQ2BbGqrXVHYzR+EDAYjgm9iNVqxezqmvlkyvnz1yxmC1yhiJOEJOnj+j7aSLatR6F6uMkJXv8WkRMyVAFDR2K2C+Yzm0cc92J6cWAT49oGz/eo25aiblhtUzZ5jhFQG01apOzyFD/06Q96SGnht/xGMIlBmRrqHNFWuLRIGpRp0aZGaotnC2NHX0dZdS7aduI3cEz3uNn3XXKgNeyzf85VFsb0PZ+mrcnSLma0tRh5W9eWTWhAd6LNgwPLzKuqijIrcByHJIqRQnYK4wbR2AWlabWlrkpFXttCUTQlrYFWQE2L9Dz6w7Gl/zYNmywl7YSZ9vsFTEebvakSnYttVwe7icROozcYspW+2Gnj5npYnbgB3VKXOftJwtnhAdUuZXE9wemo43VV47ouvuezSzOMUNx76yFnt+8wXSz5/OuvWWw3OK7NoLZCMIVE0mjrp9XqzlPJWF+itrWL8xvYTgvYZTsmszmXk2vOZxOmqwWr7YYsK3B8j3t37/Ho0dtEQcxsuWGx2lHWLRqF6QhmGm0Xx45VItNpHJarFUZrkn6f8WiP1rTstjuk4xBFMQiIfNsRb+ZLZrNrAsfh6OCAvdGIKArY7bakeWbtTPb3GPat2NhVEoXGl5DEIe88esz3PvmY+3fu4Lkuy/mCVy9fMl/NKdoGmtZ251ojjWYUxTy6d48HZ7dxpaKtNWlR8fnX3/Cvf/YLrqYLpB/YWtjl/OjOop0ufKmsakbDIZ7vYdqGk+N9BklI21RUec5mtWKzXLFezNkbDHn37bd5eOc2w35ig+YU+I7EDz3iOCAIfJqqZD6fkqdbHFcS+K69rlKg0TRVYQWZe2PCJGa3S3n1+oK6NkjHumcIaRfe2miiKLLMqaqmtTctrRVu2Pu1u6eVEAg0ythfp+M9Pnj8iKNeH53n0DbQ2eFUdUVVVORlYf2rGmvYWlYldVmi/uk//Eef9kOPxHGIPIe6rcnqgl2WM1nNkUZyfHKK7yguL1+Rrubsj3scHezjew51q6kaa3u8WC/Zbra4nkuIR5tWyE2Lu9M0aUltaoR06Y33GQ336Sd9IjdE1NoK41zBZ+cvuMzW4Fnlr+gon05n+a0bjSccbh+c8sHjd3hwfJcmb/j6d1/x8sUrppM5T58/57MvvuCrp19zcXnBYrVkvdmyTTPyvCYtCjbrHbPFnOtuGb1crVnv1pSFddwMAo8gcKnLnC++/B2z6YS7d27z8M5dmqpiuVhSNRWusApOJS3NzfdD9g72OTw8Ik4SdNmwmi2ZX1yzvp5T5RWe69NLBsT9HsoNqFrDuvEogzHB8C7B6C49GXDgB9wZDQhNYfcrRiOBwHcwbY1UAtfzbe5E3TLbbplcTym1ZjAcMhj3kY4kjAJGwx6+p0BryrKhKmpoclzTInWNMg2u0ig0ShqEthOiNN1UgYPjuB3231F0u4niZrIA+/tvMOIuLlVKSeAFeIHF5IuysN2REDRNS9VYx9tu5Y5SktPDUwa9Hro1ZGmGRDIaDRkmQ3w3IAlDkigi9ALiOCKKY4QjSPOMtMqtQV/ko3y3g3uUJXA4Dts8Zb3eWkHZDbZtbFHQnd7CFombinFTFGzxoDv4rTLXRnzaIvL7fw4ELaJpOByPORoMaYsCD0Gv10NoY60bpHVlrWvNYG+P0fiQZ69e89vPPudyNmVX5CjPtROZsJOFxtpimBtNjeOQFyUaQ12UFKXNwen3+xhtmK9XTCZTZqsl6ywlrUu7F/JcDg8OOT095fFbT3j86DFBNKBqBXUDu6KkbmqU5+JIZT3HsGaNAI1uaeqWXZqRpjkG2G5S5os5VVkhhKSX9Kiqmn6cEPgebVmzNxrx/pN3ODk+xJGCTbpluVrheg6H+/uMR0MO9/Y43BvRiyIC32FvMOD999/l/Xfeo9/rIRpNkeWspnPm6yVGGuIwIHQ9kjCgH4TcPjnhnXuPGPb6yNZQ1i2X11P+7S9+xfn1HOH7SMejFcJCVTeU627iAKjrhtF4ROj5CKE52hvjuZIyTcnSLcv5gsV0imha3n3ymI/efY9xv4cyBoFdoOu224NKjec6uJ6FYNN8S5FnNG1lhXWedQzAaCsulIKDw0P8IOD16wtWmx113eKFEQhlmyYDnt/lfWBtRYSUltQgpS1erovneBbdUApPCQKpONsf8/jOXcZRhKxt0TDaKtGF0Wgso1EbSzS5ecqVUqj//j//R5/arrLFEZLK1Kw2G9K8IM9KdNVw2B/SjyMWsynr+YRhFDAa9FFgmTJNi+liOFfrFVVZ4QsPt1YEjWSAD0YQRTFBFBMHCa5RyLJjP61sAE/tO3z26hnzbI0MHHwpkUaDtl5DjpTopkHVLXdPT/n+k/c57A948dXX/NW//jecv3rFcjXn6vI1l9MrdumGGmty2BqNoxySOKKXxGhasiKjbCvKpmad7VitNpxfXDC7npJnOcVuh9E1r1485/z1K+7fOuPuyTFtVpDttiitcR2J71ixYdu01LrF8wOCILJhLEbRlA15XkJr7RAwBun7Fl5yIioTkMkh9O/Q658wDPe5E4U8SWJu9T38asdyuWC7zcjSne1IpCL0fPKssImGvT5BGLPebZlNr0FoQt+j348Z9nq4XUfTSyIw2BuzzJCmwjE1SjT4jkCpFtFZppumy3q27bZdzHbU0jedN7ZDM9gtssbCW3TF1KCtM3HnQnxD6S3LCjRUdWUX49rQtBarV0IyHA7pJQMQ0oq/ypLACxmMR4zHY+tfFPcIez16/QEq9NkVBderJdu8QEUh0WBAhdWJNEbg+iFV27JardmkacdLsm9aG3RjugyOmzpoZ4ebN4HAiE7I1y2q7bDxexNHR781RuMKgacE946OORyNMGVF5HuMen3qqrCwYdvY3IgoZHRwQFqXfPn1Vzx9+YLlZkMj7ZRhfwSWOacbq+Ow8JXNLm+6GNGmbci6hbTn+VS6Yb5YMlssyIrCsuaEQLoOYRzbAKiR1WIdHZ7gRT3CZMD+yTHKD5jOZuRZhttZa+gup8Fg0I22CpXWsNlt2Wx3pFnK3Tt3uHf/AWmaUZal/V4Cn0HSw3ddRn3r6jsaDkEa0iJnvp5T1zWOI4kDn14S47tOV6w0vUGPW6dn9Po9qrykKAvapmG3XSOE4d7tO7zz4C3u3brF/eNT7h6fcO/ohIPBAF+5KOWw3qT89ouv+Pzbb2kdHyeIKdqWTqZiXxN29BXKuilXdc1oMLRhTAKGwwTamizdkq43zK6v2cxWnB0f8/7bT9gfDqFpqcqCIs3YrleUWUbT1ujGXrsoDC3RQypr+phntMZSf6u6wJiWtCzZ7HJ8P2TQH9Bqw/n5Jdssw3F8EMK6cAtrUKgc1dFmLfsRAQobzuQoheM69vMKpLEMuL044dbxEXE3TQltn13fdfE8H6cLk5LS7skcx8KTvheg/uk/+oefNk0JdYPRDXXTss0z0ry0RnZ5Q+B4RIHPfD4hXczZH8QcjEYogc3vMJ3dOYbd1i6KIxlw1N9jJGO8QhO5AZ4f4TshgReiakm1TlmdT1nPlpZz3ff5+vIli2qH9FwcKXCFFXkpoZACqFtE3fL41j0+ee99YqH45c9+xhe//g2uIwgCj7TMKKoSXBCOpDFtZ+fgcPv0Fnfv38PzHJabFZsspdKNDQtS3SGf5RRpxnI+w3ccZtMrXr14zv07txiGEW1ZQF3jKomnHKIwwHVcdmnKdLZgtlyRZQVl01JkJW3Z4ggHR7mdwt1QG0EtJTUxBQmFs4fo3yYJ9olVj7u+z1uhS18XiHJDtrV03SIvKIrUFh+kDXjRLYeHx9x5cJ9er0ejG6veDRRJGOB5jl1264rIs1bvum6hzZFthTA1oafo90LiwKdtK6rCLhjpqH0YEMIu3G46kO7cesM+6s7NNxOH41l9TKtbTNu5yEoHKRVVUXZUWbusN0ZSNQ260Qhls5bDOMZzbMxrnltKrdbgBqEtfk1L02haAWlRMFnOma3W4HsM9w9wooDFZsMqTVGOhxdEpGnOcr2mqVuEsvp3g9XwvHld4jsRoOhe13eTxHeKctkd6tZe47uJ4wYrF7phfzDknYcPGYYxdZERSIc4CqjLirKuMMb6lQ2GI3qjIRfX1zx79ZL1LiNva7RUoBRGd18DSd22aGPhOd1qq+vwfOtXJCV107BZrS1ObwS7joAgHYnyXZTnoDwPL/RJvJD9wYi94T5RHJPVLbu65fa9Bzz+8AN00zKZTCiLAinBcz17vDYtjbaTqxaiswG34rM//7t/l//4H/7HFGXBqxeviOPIJgL2erSVXa6Oen2bE+Iq0ipls9uSplvKPAejacqK7dZmt7ieg5SSqq5Yr23U72q2YLtZU6YZcRDw8NYd3nnrIffObnE0GjFO+gQIVNUySPpEQY/z6yk//93nLLMcvBDtOCActKXEYaT9udl1l0RjaKuW0WhE6HkIYRj3E5QyNEXBZr1iPV9Bq3n38WPu376D0oZ8t6NMbS5IVViWoOhyW26U9EmS0B/08RyXFjvdV1VBUWQsVnMWyzW7vKAsG1zXZzAcs1yvmC9WVE2LlC5G2Amjbix5xPe/09mY1jZ9AktUsUhnR3Rpa0TbMohjbh8dMxz0cIXCcxSR5xGGIYEbQGcBXzctTW2FjroFDaj/+u//rU/bjlZaVxWFbii68bMsG+qigLrFcwT5ZkW5W3H7cJ/HDx+QRCGr9ZqyqgiCCN/3beXWgmHU597RHQZeArsKR3pUtT0oHOMga9hcz1lcz3GEZLA/xvQCfvvyG5ZlhvStuAuF9csRXXRkXaEazf3bt3j34UPqPOWzX/2C9fyK27eOOTwcotuKqsxom4qyzMjTHVo3HI/HfPTO23z07juMxj1WqwVX15eku50VjKGI/BDRGnRds1mt6Q9iptMpry9f8/ajh4i2pM63OErgOdZJNvQDfM+j1ZrNbsdqvmK3yaiKhjwtyHYlTaXRNbTC0GLI2pai0aTGY6cjUtUjd0bIxuAUJYe6ZL/aUq+vcRsboVllJRjNdrOlyHKUsd27DY2RCKkIopC98R63b59xfHiI59lUwqq0ew1rF+EgTYvUFUq0+K6g3wvZ3xsSJj7b7ZrtdmunjZvDs2NWNG0nsOwOx5vJA9N5Wwm7+xBdFOWbzlTr7pC2N3XdWEGczROwB177puO3TsfDwZgwijBG0hqba7DcbNimNnBouVqx2G1YrDdcb9as0hztuwz29omHQ7KqZjKbkWYVXhACguVqTbrLMVbS2H331mpEt6abKCyG3w1Rb14Pdgj5PTaVLS528vhu4rB/USPblrPDA+6f3abNMrLNlsCzGc50kFjbWUH0R3vgerycXPLi/IK0qtHKoWhbhHAwRgLWRuLmGkkhrYq/tXshiyAapJCURUnd2rTOMIxsLonrEkYRvh8gpDWppGkJHI/+cEgUJ8x2KS9eX+FFI9559wccHB1TZDlXk2t2aYoX+m8EmVIq+3OsW0bjEXfv3MHxHMLOl2o6uWa72zAe7eE5Nl54Op1wfTUh9H32Dg7QUlPUFWmWslov2W43pNsdy9WSumoYjQfEcUJeFFxeXXF+cc58OmMxn5PudoShTxxGtsA4DkHgQdNYzdV6ixKCg4Nj/Cjm21fn/O7pt+yqBu164LgIV9G2Nq9CCNCmtXBPN4U2dcN4OMJzFMJoBv2YwJGUec5iMWO72TIaDnl8/y32+iOaqqGuarQ2KGGV/o5yrXGh4yMdByVt5x4GMZ4f4EgXo5U9bxvBfLrhcjJntyvYZQV12RB2TMKLy0vmiw2O56McRaMbG6TnOYTd+avr1gbINU23S2wtYaSuusnHhoON+n0ePrzP6emJ9Rjr0v/KWpNWFZssY7Xdst6mzLdbFusti92O2WqD+m/+7p98KmTn2GoMRiiKpmG93ZEXBU3V4CjJrZND9oYJFAVnh3t8+P57jIZ9VssNuyylP+jTH/aJwhjfDzjZP+JodIBJG6pNRpmXFEVFldUWN6816XKDagW3b93i6O5tdk7LL7/5kut0hXat22hjNGmVk9elpZpVNrT+eG+f+2enlJs156++RemKu3dPOTsa43oSrUuaurQ5vU3NaDTkg8eP+PjxY85OD4ginzTbMZvN2Gw2lHlFU1QEygrPXKWoqpJ+v8fF5ILpcsbjxw9wqcjTFYHvEfgeaI3rW0uHJE6QQuG5AQZJkVdUWUNZNGS7gjTNqJqGSmgqYyyMYmJS2WMre+yIcPKaAS33Q8m43FAurvFlS6AcPGFzRKrukBNtazPMXYc0y/jq22+YzWzU7Xg8ZH9vhCNMl4FSWF8l4eB3EbqShsh3GI5ixnt9kl5I09RMphM2mzU34jaL/XZlwugbeUYHy3STBh1F9aYTV/YwtbsLe5gJIdAt1pG4+3s3C3chv1O81nVDGCUcHZ/Q6w3QAvvAOS5l3bArcnZ5RloW7IqSVZ6yqypUFNIb7eH3+zQG1lnOar2jqhuEUmR5znq1tTYUrbZKaCEtvm0sx11oK+qzheL3PKrEzcTR6Tfe7Dg6HUcHV1lMyxYPTwiOR2OOxiPqLKMtS4axjSdo2sbqV8oGJwiIhyPWecaryRVXywUlBq0UZaNtiFbHqrJU6JvihXXn7URdAkuZFjc29bVlEh6fnJD0e5YO32WD6+7eobE5DI7v0Uq4mi65nK1oCYmTM8ajMUEcsN5tmS4W1I2lq9edCNFaykuiOOL07ARPOTz99hv+3c/+Hc9fvCDwQvb3D9ilKbPZtXUxXiwwGEb7Q6TjUNQ5u8xGIeiO/dM2NUkvZjzeQziSqq7ZZSmL5YI03aGkYDwecufsFv1Bn9VyweXFBVmaUpd2GtBNw95wn/3jE3BdLuYLXs/mzNItraNQvkfb2gladA4JRrdWKCdsM9HWLaPhEMeRSGHoRQECzXa3ZrVYUFcVt27f5u7JLSLH79TePkmc4AcBjnJBSPt1WkNVNezSlOXKin6rsrH261VLWRmUDFAyYLPNmC6X1vC0MZim4fTwkOVixeura4Tj4IcBZVVZWNhx8DzPst+EoK4tG7HtJsNaN9SNdc6Q0qrB79+/wycff8zJ2XEnL9gwvV4wmc+5Xi6ZbzYstxnrPGe53bHc7VjvMq7mc9R/9Rd/8qm93YUVYxlNbQx5VVuf/ipnfzzmDz75kLfv3EG2NbHrsr83tsyG9YqiqNnf32c83AfA93xO90+JVMjrb55z/u1L0l1GWlQYpWi1oJGCZDSmd7hP72BMcDImFQ2TbMmr2SWL3RKNptIVWVVRtg2R5yO0FckMk5jTw31oK7arKa7UnB7usTdKCB2F1B3G7HgMwoij/X3uHB3RC3zydMt2s6QqChu5WGukNoTKZ9QfcHxwwHDYRyioqXl58ZJltrEBOdTk2611/PQt/dNzfMuz1ta+2DQGXRtkK2mqliLtikbVWM8oxyE3DblpWBmXFS4ZLo0IGZiGu4HP42HEfluSb2bI7rBGaxzfI+718T2PcpeRZRlhEBP1+1St4fz6Gi06lk1jb9Iit7nMUijo1OBSGDAtUkEY+MRJAAiu5zPmswVFVYGxrB3d2rAfjHnTkYFBdAtlYWxRuYFpvlsUYzUSpjvkhHpDdbW+TjeHtHqTXdG0dipKegkH+weM90e4rkutW6RSuIHtnIXn2iyPwCNKegz29+mP93GiECMkZdOQFxWb7Y68iw2uqpo0y2hqi2u7HYYrbtxCNW92GDc7m64S2MmjKx5vFtWWUmUnjU4MeXOdMBpPw/6gz+FgDE2DYwxxYG27i6qkKq31dxAl+EnCYrvj6flrZustuB7S8Smahrqx+Rs31GfTsWVkRxm+gSfsl9Zv2GC2CFcMByPGoyGu41LXJXVRYVqN73znwNp0z/0yzVmscxrt43pjUALpuPhxTNk0vD4/J92lKOVidFfQpcsu3Vn6poC2btjutqyWa6q6pCwq6zmWplSdLXirW/zAZzAasMsyNumOLM3xPJeD/X1GwwG+F1BWBavVmqwobC5F2+I7LqPRiOPDI/b2xvhBwDbd8vrynIvrC9LU7gykdElGI0aHR2jXpVEOhYBtUbLa7WxokwRHKtsQAY2urYW8waaF1jXDwRDPVSgBSRyAadluV6TbLcYYDvePOD4+Ien1wFU0xrAp7GG72G5YbnbsipysrLi4nvD1s+d8+e1TXp5fMN+s2RUFq+2WPC9xlKIfD2hMy+V0SlYUDJMBge8z6vcp6oqr+Yq0rDp9ToMU1ncKbezyXdnle1VWnXeXi3KtY7HrObhCkIQBP/joYz7+6APQmsvJJVeXExsbvFwyXa7YZNY8MitKyrohLSummyWz1Rr1f/mbP/m0aRva1lDplkZIhOeBlKQdw+hgf8QHjx5za38PXRSYpiSKrPXwfL4kK3JOT884Pj6mzGuaVrM/OCBQHhfPzpleXFmszGik65PpFu24jG+fMb51ituLIHQID4fEB0Pm2Zrpak7RlpS6QXg2r0NikK3GtDWB4zAeRARKINqKQeixP0xIPBehG0xZ4khJ5AZEnkfiBsi2ZnJ5zsuXz5icv2a33aCrBk8qBlGPg+GYYdzj7PSY0XiEUS2T+TVfv35GbVoeP3mIrAs2qwUSSzF1HRuGo2tNlmZUWUWVVzSFtWyXWmGMVVa7QYDyPIxSlBIyKlY4bIMQ6SUoL+YAzVtJyDt7A/ZMTbZe0DQFdVVSVgVSKnqjIcP+kKooydIc1/c4Pj3jwdvvsHd0QtBPUJ5HURas1xvyMkdg3U2VkLiOsHRHV6KkQXqWgZGVOfPliqwsUNIliCJcx7f6l6ahaawo0Hba1gpddAsNe3h+15HbwxfbBcub3+8SyLqiclNkrGLXUnFNR491XZfeoMfB0QGjvRGOo9DS0iRxFcJxGOyNePD4Me9+/CFvv/set+7dYTDaw49ChHDYZRnz2YLNdkfbaqqmpsytp4/vWbjGLv5udjQ3Cxo70dnX0y3Au+/fHt6207c7Ejt5iG5Rbk9yWzw84KA3YNzvIaoGhSEOQxzXhjHJbgL0eglB3GORpby4uGKVZUjXR/o+VWO9jOqqoW6s7cS/d721XemazjzRXj/7HgxFXhBHIYeHB8RBQFPW6LpGGYXf5ahoIah0S1oXbPOGrDYImSBUn7ptqNEMxnsM9vZYLJa8Pn8NRuIFYRc6ZHdWWZ5hdEvUixn0ByjXoS5qLq+u3uh3dIe9l1WJUYIoTmzRahratqHf63NwuIejFMv1iovzS+arJVmaU5Qluvt6Eruor5ua2liTv8o0FHVFZRp8z0brukFI4zgYx8cEAcbz2ZYFq82GuqmtLYqrME0DQmMaa05p//uaptYMhwPLelKC8bCPcgxFmpJlKW1jGAwGHB4d44QB26LkYj7l62fP+eLZt7y8uOR6uUAj8eOIxXrD18+e8fz1OYvdhqxqyNuazc5qwZqqYTTo4wchzy5ec3F+Qb/X42j/gDh0kcrl5dU10+XauuV2RBSjb5IBLTPLNBojDH63y1KOIgg9oiBA1xW+ozg5PsRzHF6+esHTb59yeX3NYrnmcjFjMpuz2GxY71KqtqUoa15PLnlxcclss0b9+Xv3P13vtlStHee9KMYLLPtkNpuxXMwZDvrcPztl6PvkO0shi3s9wjBivlywWq/Z29tnb7Rvl5h5SRL2CJ2A1XTBbrHp1Lwu2nHIgNJTuPsDescHELis8x39UZ+j40NQgqIu2WUpWZnjui4Ogli6eAjavMARhoPBkP3hgMTzSHyPfhgSSGiLiqYobFyjVCgp8X0PJQV5llkr5MZWaCUEnnIIHJco8Bj2I4LAQzmW4XBxdc6ri5d4vsvj+/chL1hNF7StwVUeoRfSi3s4QlGkBeWuoM5KqrJC1xqUxAt8/DjEiXxqoUnrmqwtyExF7QaIICFSPn4tONENbycJZ4GLX2Vs1gvyqiArcrKqoAUCP2QQ9zC1XZLiuvT3D7n3znvs37pFgcB4HnlZsc1S6rq0E1Lg2ZvHD/BcF0dKZGdZUNQVs2V3o9QG6QSEYQ/XDWzRr2uro+noeDdQjv31e28d/g8deiV482cENpNEdVRH+7e7ItPtUWyym7Vxtp5TDZ7nkvRtnnvVVGjdcnh0wDvvvcsPfvhDPv7kY+7dv8fe/gHD4ZC9/QMG/QFSCLIs6+DILUVeWHjFcRHCLrZvlNC2xewKmLYCKss47v55s9ewH8vOotr+3s2Oo3szXeHQhoP+gGEU01YFEsN4MGAwHBBGEUmU2EyGIEQFIbPVmmevz1mlKcZ1Ecqh6ZTbTWtVz01dA7Zw6y6LQTeWdWi/5xsvMftWlSWO43Cwt0e/37ffo7E+Y0oKtBR2CeooKiOo8BFejAr6aOmR1SVpVRH2Em7dvUOvP2Ayueb6emrDsaSibVo8z+5tmrqzrvdDxqMRg/6A6XSOlBLP9boQuIrlckndWPV5HMc2Plg59OOEXhTZQLbNlrKscB2PMAhxpLXeaKvaBnhtNswXc+aLBUVZEoYho/GYXgcT+WFMKySzzZar5ZKXk2teX18zmV6zWq8xxirhTduCNkgDRlt2qYBu76UZDYYdnRb2RgOUEqTpljzPQEiGoxFBHLPabTmfTLiYXjNbLVhs1swWCybXUxzP5ezsFijJ+cUl0/mcSmuyqmSxtjtFGoMnJcO4h+M6PH/9im++fYqQivHekF4U4gYBLy4mXE6uMVKiO9jSYHCk00VMSHzXBazlDgJ838obJAZZ1xwOhihjeP7N15y/esV2s2YxWzCfL1ivN6RZSrrbgTbcOjzmZLzPerViMptS1zXqT57c+TSvCvLauk7iOKRlyeXVFc9fvmQxn7G3N+SdB/c56PdItxuqqmR8sMdwf4/Ves10NiOJEkaDIU2lKYsa3/Fxlc9msWS7WNsjwnOplML0E5peSBE6uOMEFXosVnOUMISuixu6SEewTnds0g2+5+IrxThKOOwNODk84OGdu7x17x7DJEG0NaptCB2JqzW6rtFVg24txVNIQdhL6PUSwtAmoQ2HA5I4IXBdXCWQWEqy70mCyCPpW4uBVxevuLo6J+nFvHXvHoFWpCvLpzbG5n6MhiP6SR9fObhG4jnWTdQmkIEKXPAdShqypmZX5KzLHa0yqDhB+QFhKxhoxaMo4smgj5NtSGdTFqsZZVtT0qBdiaNcAuXR1g1FYVXFIggopWSnDS9nS3755VdM1nYErtoa6YDvOwSRbxeXQYBjsSNcz0P5Hpss5XxyzWaXU2thxV/CpW0tZVZ319FxVOdQa4vEd2PFdzXkTU3pPhCyg1KExcRdz7VQl+ygrhsI6OaXsmaZaZoymVyy3W1QjkC4Nhho/3Cft95+xP37Dzg43CcMI+qmpshtKFUYBgwHAw4ODzg6OqLXSzBC2HTHpgUJ2ljTQCmF3dd0EJUtYtaqwSrkb7x/vpukxM0O5ybX+ebzb+qlATSx43H38Ii94YCmLFAC67hwfIjjuyjHI/Rt0TDK4eVkwhdPn7EpCqRnl7e6m0yk+i7Jzf7TfS19Y3LT/W6no7kBD+uqQrkOo/GI4WiAq2xCnzEaR0lqbagxNMqjdQOkn+BEI4Qf0ihJ3lRkTY0KfUYHB5ycnuKHAdPpjPl8YW1zHFs40a0Vj5UlVVUhlc3FUI5Llmco1yGMQja7DdfTCUjJ3nhM3EveuAC4joturUVG4IeMh0MGgyHj0Zh+0scRCtd16PUSkl4P5SrqpqUoSzzf4+ToiL29PYQQtFKSNw0vp1M+f/acz77+mq++ecpkfk1ZlziOzZTXbYPERvqaVqNuXD2xItC9vbGdmiUM+gmIlvVmSZ5lKOVwcHwESjGZz7i4vma+W7Mrc9I8Z5fuKKqC8d6Yt99+myiKef7yBS9evSKrSrKyoGgqXOUw7iWc7B9xMB7jBh6r3Y7zywuyuiCMAvZHI/qDAfPNltdXV5QddC07h1w6483A93CkjYt1HGsxjzH4jkJXFaMk5k9++lNuHR2xuJ6Q5ylpmrJerSiKLm5b2msx7PX4ySff4+PH71DWFZPZ1OrW/uD+0ad105AXJbus4Hqx4vz8klcXlyyXSxBw59Yt3n/0mL3+kCLPqKqK3nBAMuiz3e5YzucM+kOODo+pG81quUZoiMKYMitYX89JswytBdp3SY4P8ffHlJ5Ahh5KG9bX16xfX9JmBb3I2i2XTc02zzBFhdPAYdLnnbsP+OFHH/P+k3foBxGr6YL19RTPQOz6KGPQZW27kqYlr2q2Wcoq3bHebKyTalGS5TnbzYZtukU3DY4r8TyFFppeL2JvPLR6Wd0SeT63Dk84GezjakWxyTGNoS5q8qzAVy79KKEfxYR+QOxZuxMhBMZTGF9RULMod6yyLct0TVplFrqR1mtrXDu8NzrhB7fvcifwWU+vmFyfs9iuqHSL9Fzifh/fD6HWXF9eMZ/PKNqW3GhmecG3V1M+e/mK3z19yvVqTVbmIA2h7xL6rn0wTEvo+LjCQTousgu8mc6XvDq/Ylc0aKOoGkNVVqR5SVmUHSuqqwVvOnS6zcZ3bxa56v6EsYl3omMtYewSz1GWpnvzF4Sx6I4UdhHtKIFuG7Jsw3K9oGkq+oMex8dH3H/wgPc/eI+HD+4zGPQsBdUYa6tQWfw88HyCwMaMHh4e8uD+fe7fv0/SS8jLkjTdWtsEdTNB2HPC7mZk13BYKjI3xYNukuo+Vl2Y1Zvi8uY1W/GU0Ibbe/u89+gRB8MBbVGigPF4RBhFbHc7Vos1VVnhegE4Hi+vrvjqxQuqtsUJAuisRW6YUm6nIG+b1qZhvrmGHcSnLSvtBu7TRlO3lprd6yVWAKkcC3d1uqZGCopWU2iojEPrBAgvtuiAFFSmpW5aGyrkWm7//nCM7/m8fvWK66srPMezHfnNdeyuZV7kTK5nxHFC3dlkZHnOarmgbTWD/oD+cIjU4EgHR1pH2iJNMU1FFIQEvk9b26lKdmy7g/Ee+3v7jEZDDg4OGA9H+J5H6PoM4x5RENtpyHFZ5wXfvnzNi4sLFqsNq92OurZZIjdTG0ajpMRVdqKx5cTer0IKDg8OcB0rgBwMEqQwLBdzlusldaMZDYdoY1jMlyyWczbrDel6S5buqKuKQDo8uHOXTz74iIO9fdbzBbPrKaZtcRxF6AfsD4ac7h9ytLfH8Xif8XgPA7y8uGC2XBBFEb0kYbi3jxGK88mEVbrDDUKczvZJdvdo6Hl4jmMX5LVFVtqmtur5qubJvfv8B3/rzzg9PCBdrTBta1lpQpGEEaHjEfoewyDk4a07/OjDj7l/ekZZluzylF4Yod4aB5/mZUHVNGzzjNV6S1pWSOkQ9/uMh0Pu3bnNg7Nb9MLQ2ms0JX4UEiYJdWlTufbHexyfnNFUNZeTa9pGc3R0QqAcltOZtSNpW4zn4Yz6kERkLjS6odhu2FxMyM6v6aE4OjwgCANqo8nyzOo8qpYHR2c8uX2Pe7dukYQRTVGTLra0RYlnBJHr47VYeXxV00pJi2GR7Xh5dcnl1YT1Ys1sMefy6oqr6YQ83+F4Fv9zfIUfKDxf4ipJtttx5+SEH3z4MU/uPCKSAZ5WuMpj1B+hlMNqviDd7XANhJ5v87uVwHFd3MjH+A6ZqJmmay43My7mV1xv51RVjaM8/FYRtYoH/pA/vPOYD45P8Iqc+eyaeb628JSCMEnYOz4j9iOK9Zbp9TVZWbAtcpZVwaZuuc5LdkawbhtKrWnQOA6EgcJ3JUoYTF2TBDH9oEfUS6yVguOxTQvOp3O2aUGlDWVlqBtjsfXW0gstln4jOhK2BXsDR90csvZhw9iOV96cyt3HruPguFbLccOi4ubAURKl7HujG1rTMB4N+OiT9/nJT3/Cj378B7z37jucnh4TeD5C2Oxzx1EoYXcuCnA8haOUpQ/XFb7vc3JyzHFHO0zTHev1qjOFs/x6gUQ6yh4m3cTR2TL93qQhbXHrYC6h7BFzsyAXAjAahEYYzbtvvcUHDx7iSUmZZkgpCDwLC04XC1bLFU1R40YRbhhxtVzx9NUrSq1Rvm91RU1L03Z28a0tGDfzhl2U2+lB606K+WYiMQhlSQhxL3oT3uR6LlLZ/BElLR21Fpq8FRRGUWuFCCKE61CZ1jrdYpDKsYzLNANt2Bvv47oe19fXbDdrHCFJ4tBi7EIT+D4a2O1SjDB4ro9yHFbLJVmREvoBQWiV/8ZoqC0BQ2hN05S4SpLEMUrYQklrs3J6UULSs3YeBitWG49HDJIeSgtk1aCEwpEuFXA5n/HNy1fM1ztwHAzW1qPrFDBdXIOrHDzXsiSFsHClUApHCo6OD5DS3hfDQYJ0YD6fMZvPqYqCOInxHZeyKKiLEqNbm3QYBPSCkEES8+DWHd55/ISj0QhXSHRdE/khw15CEgeM4pjjg0OGcY/D0Zher09alDx78ZxXk0sM4Ho+/eGQZNhjMp9xNZ2DsPfhDcyqpNWyOV3AEx1LrKlrqizD0YYfffI9PnryNrqs2C2XOEpwuLfPwXBE7LpEvscgSXhwesZHj5/w+N49el6IFILQ9Rj2e6j3joeftq3FG9pG47kh+/uHHB8eMR6OGCYJR3v7HI3HhNIhL3OKusL1fXqDAQKoi4p+r08yHFI3DReTa5pWc/vsFj0/YnEx4fLiirK1QrvW2EHaGE2x3ZJOl5AVnPSGnIz3GQwHlHnBdrejKWuCVnBv/5QfPv6Yt04eMh4eMBodcHZ2m4ePHnF8cIg0gqosaKraCskAoxyk53chP5Y5FQUBvlK4QOB77B+MOT46IokjhLE3fBiEaCO4up6SDMc8fvSE23tn9PA5Hh5wNjrirdN77EdDym3B+npFtskwNbQVNKWhNhKtHLJWM1mueX11zdVkzmq2xuSGfX/E3eSIO4MTHgxOeHJ4lyfHdxn6Idn1nOV6QdmUVFLTKIHXHzA8sPYD+W5HrWuCOKB2HDIkpZ+Q+TGmv8fFOiVH0nTRu0KDgyAKPHpRSC9ICKMYP47xkh5e0qdCcr1YMZmv2KUVRd3ZNnu+jZNVYHSD1g2yM/S7YfLczCA3FaArH9B1yt3cbzt1pXCUg+t4XefbYV0dTAUGIQytrjk7O+Jv/9mf8g/+wT/gpz/9Mbdv3SKOozfYvqtsTKyUll7aNBV0KXPKURitabTN46ibBtdz6Q96RFGI1i3LxYKmqe0Z0kW/CmFt2zGi+9xNUbCvyu5oLDtMdA6kGLuTUcKqch0hiAOfj956xO29PfLdjnS3sQ6jtOyyjHW6pa5qEBI3jBGez+ViztPzc7KqsvkZQr2x9SjLyqYYthaXV6qzgO+un/2ZdMFSStn9TbdLSpLEOhvo1tpQuB7KdamBRklqKahwqIxES4UXRKAku3TLdpfRtjaJTrfQ1i15VtDv93nnyfvs7+3z+tVLVsuF7VrdLk7XUQhhDQe1NviBjTOt6/LNNS7KEkc6eMpB100XLGSh3iSJGQ+H9OKEOEwYj/YZj8aEYfRGdCltFScIbLLhZrtll6a0UlIYzflsxjcvXvJ6ck3RxfW22nQqe/s9SmGLqKMsBHtzP4O9tq7rcHJ8gtYtZZGRJBEImM/mLOZ2chqNxhzuHTJKegwHA3pBRKhckiDkaDzm9vEZb92/z+3TM+I4wWhN3db4vsfx8SF3Tk84GI4Yx30OR3vs9Ue0bctiueLyesLz89dsswzf94h6Cb1Bj8VqyeuLK+rWoKQNn2vqhiSOkUazXs4YhxF/92/8DT58+x1mry9YTK4ZDQb86Y9/wsOz23gCQtfmtPi+a0POXI9ekjAajLh76xYP7txh1Ot3z7HN8RBCoD66dfCpQBCEAUYLer0Bd2/fYzQc0zQtCkM/jtkfDQl8zz6IbYvjOvR6fUS3rAqjiCDpkZcFLy8vydKUW6e3iD2f6asrXr56Ca5LrRtE1bDX6zOKe6yvr9FFzUfvvcswTGyIkLaUXoliEMR8+OAdfvD4A94+fsKef0DcGxMfHODt7+MfjRns7TOIg05/4eBHEWEvsV+vNURBzP5gxHgwsHbw4zH3T0+4d+8uR7dPrImZ42A0FgMWDsv1hm3ZEO7tcXJ4C6/UyEzTVyF9r0fixRwFI0bhgO085eXTczbrkjJrWS4yLqZLruZbnl1c8duvnnL+ckKdaXzt89bxQ/78kz/m7330R/zwwYe8f/qY494ejla4jUbULWm6oW5rKmnIHUXru1TKYt5FmRH1AvxehIgiSi+m8HuUvQM20ucqb2i8kMY4ZGlJldWYuuT26SFv3b8FSLKioJIOKkloHY9d3bDOKmabDWlZoYUk6Q85PDpgNB7SH8T4vkdZWasH13G6KeS7HcV37ztJOZ09eUcjldKx04F08Dyfumo6KAuQVlRYNwWNrjk+2efv/4d/wT/4h/9H3n33HaIwoG0atG4RwlIL6fDpttG0xgY45UVu/ZVcB5TACE3cT7quW5H0Yo6Pjzg63kdKwfXkyrrIKpvhIZSl5kZRRFlauxpbVMAYgec5RFFoMfS2pa47CmUvYdDvEfguw36f999+zEePHhNirMK5yqmaijRP2aQ70iwjKyvKukY7Lpuy5MXlJZfzOVWrETd2/zdwoLBTkRDd5PPmF3ax7FivNM9z8f0Az7dqa42xdNz9MXlZMZvP0AKMq0jbhl1bUWAoW02LwotCpHJJsx3rzZambojiHnHSs9e5aXC9gDBKODy6zaPHjwgCj2+//ZrddmMLmoDWWDtv5UjCIHxjjminSmkz5suK3W6LK52uEGra2jo8+J6D61iF9Xi0TxIneF5IGAYkSY9ePyFOEvwwoDWaNM/Y5DnT3ZZVmbMuCy6XS15NJix3KWXdULWaIArwfB/dmXFq3dpGABA3jo7G4LqKum7wQ5/79+9TlgWb9Zqkm97mizmbbYqUisFgxK2TEw73Dxj1egzjPvuDAad7B+wNBrhK4bkOyaCHFpptmVNWObvdlrou6EURfT/guL/HqNfDczxL165apqsFn33zDVoYkkEP4Qr80CUrcy6v59SNJowGaGPvWyEMeZ7SljmfPH6b/+t/8V/wZz/9YzaTGV988TkPHt7nT3/yhxwNB/hKUhcZZVHgBy79JGEw6JP0EsIoIInsMy+kwpiWrCxBghcEqO/fOvp02OsTugFFmjNI+jy8+9DK5w3ML68IlMPZyTG9XowWgrzK0FrjuR5NVZFutijHmsilWc751SUKyb3bd/GFy+Zqxnq5Jq8qhIEQB2WgTDPKXcp+f8hHT97D17BdrGiqml7Sp98bsDfYYz8ZE4uQcpGxm27IsxTaFpnn1MsFZrnGLVti6TD0E6IgJA5jDvaOSOIe6Salzis817FKaUcSex5JL6Lf6+E7LnVWUK5Sqk1OndUY47B3dpsHH3zI0dEpepmzfDnB04rN5TUyrZGlZj3fkK4zdCNoa0Gda4q0Ic8b8qxmNl2yul7RFxFvHd3lDx5/zJ9+8of88ZPvcW94QmxcRNVSFyXb7ZYy3UFdkdUphS5pPAmDmNZx2NUVZVmQrucUdUneNqwawUoEZNGIpdtjVsNslyO9CM8LMVpSlxVGa26fnXLv7j20dpFejIh67Gq4XOyYrDNWeUVeQ2Mk+4cnnJ6e4CiF50oeP3rAhx+8hwQuLy9omtruBOgW5N/1aTf6t+/mDGOLi+oOO4FACkVVVt3korssePvLUfAXf/H3+PM//9vcuX3bdtXa0NYNVVUijR29iyyjLst/L2e+bZsuO7zzx/I9a3suFb7vE0Uh/V7CyfExt2+d0rYtL56/6jQEXqfCtvYwutVUlY16VTddLp1YsLUeXHvjEe8+eZvvffwRjx88YNhL2Bv0eXj3DvthRLO1PmNKCfqDPrVp2Wx31G3TFQSFcTyWu5Rnr8+ZLlcgrbcQN9kK3eu3jCm7VZLSdva+59u0P8f6gElpJ7qbYnej9UjiGEdJFssl88WcoqyptaZoGtKiIC9vUhgr1qs18+WCLMtI4h6jwcjqYMqaPCup64bAj4jChCDwuXXrjF4c8fz5c66vJziOLa6e65BluW0WlLR5DmVJVZcUhXVdlUh03aCE9VTCGJqqssr3qrIQjJGURU2e5VQdpCWFspYgrSYrMpabDZssZVcUbKuCVZry+mrCdLHED8LOtaKiqqzQ2XEcPMdBdQSCLM0tTbgoaZsG3/e7e98jjkM26xVVWZIkMXVZ8vr1BcvFEtd1GY9GnOwfMop7xH7IMEoY9foEjkeZ5SyXS5arJZOrK549f87L169YLpek2zXTqwn5ZscwTogcC5XVdUVRVtS6Zb5a8c3zpxR1iR94DMcDwtDHUQ6r1ZbpdIkUHhhh7YwMCGOFve/fu8fHj94mcgIuX53z29/9ltF4zKM7t6GqyLZb0u2GrMitMW0SU1Y119Nr8qIg8AO0MSyXSyaTKdPlnKwsSfMM9Tfevv+pIxVSW8FL7EfEQcjd0zMe33+IMpq2qRn0eySDPo3RrNOUqii6APOmE8JAFMfkVcV8vSKJYu6e3UaWDZvrBXmasctzmso6yurCUgtdbXcTB70hOq9YXM+RHVPJDSOU8sDxodS0m5R8s2Y2ueTVl1/x+quvmD19werFObOnL9hO5jiVJvBCPOkSRz0GvSECxXaT0bQFrqcB6zfv+R5xEOKiKNYpxTqDdYXQiqg34t57H3Lrg/eRUZ92tmNzNWf66oL5xYRym9LmDW1tGI8OeXDnLd598hHvPH6fJ2+/z5NH7/HO4/d4+/ZDPnzrXf7mBz/mj9/7IZ/ce5e3T+4RqwjWBW1eWGxdCdKqYL2asctWbOuUnBITubjjPhWwziuqImU2vWC1WTPb5lzlLdcyYuX3mTsx80qzLRqk4+O5oQ2+78bzvf09RqN9nKBHI1yudyVfvbzi2dWcTaVpHJ/KOJSNQSkXL/Do9yIePX7AD7/3Ce+//y6OErx69ZLZbIpyPFzH+y4p72bH0R1WXZveqcJ5k1shbg69MES3Na1u8D2HvEhxFHzvBx/zn/9n/wnvvPMOUkJR5AisT5LqFNRNbVWxdoHZTS3CZhLciAgdz1psKMdB69ZiYZ0hXC9JODg8YH9vnzTLePnyNXXdkMQJyvGoq5ogtLRQg82YF112s1SKOAp56/Ej/ugPf8JHH33I/mhIlee8fvaUfLvh3skJfc8jX61Y7za4rksQx6RFTl6UNoJVKoIwolGK6+WSV5NrtnmJ8Fy0EDTamj4aYw9IW7CsoejN9YyiyDLjpOwouTZMzKrzBJ7rk2YZruswGI/wuoIkpQKwk09RdAeyQrfaGu8VBY7rEYcx2gjSbUrV1BR5TtNqwjDGCwIMhjAMODk5YTwe8eLFS+bLBb7vAQbXsTYzaGuBXxQldRfOZW05rEOyFOA4DmhjD87CRhVUVU2aZixmC2bzJav1hl1ekHfuAevtmulqyWQ+Y52l5HWJlhKpXHZ5yWQ6Q3k+QWQPxSzLkcJ6zLmui6usn9fBwQHvvPMuD996yNtPnvAH3/8BH338MW89esDB4QFKSTvtxDGtMSymC3Y7a/4YRzGHwzH9sIcvOwFeVbNcLDg/P2exXDCdTnn+6hWvX7/m6uqKfLcjCiKasiTdbknC6Lu9XNNQlKUVZG7WfP3sKdvdhiAJ2dsbIR1B4IfkecP56yu0tnYmjuNimoaqTPEkvH37DseDIWVe8PL5S56+fsHjJ4/4/gcfMkp6BF3GyGq3o2hqsrLm5evXPH31kk26pagbLq+u+ObZU56/eMnziwu+fv6Mb16+Qv30we1PHSEJvYCz42NuHZ9Cqwkch9ODIyLfo63q/x9V/9lsSbKlZ2KPu4eOrffRqUVpdevqvi3Q3RgAMwTAIWHzg+pP0Yz8QBDkmHEGGOD21SVT59Fb79AR7s4PHlkNpllaVp3Kyjz7nNi+fK31vs+LF/j4oY82mt1+S1UVKCFo65rdekXbdURJTGs68rJkNp5ydHRCmxWsLq6pyoqsyKmLEt+CaTpEpwmEoisq6qygzSvKomQ8GjMeT2jLmjYr8bOa8naFNIZhmpAEPnW24/LVK159/wMXL1+wurrm9vKK9XJN1xmMFWgE8XTG6OiESmu2uwVhCIM4YTgckiQDpPRYb/e8vrji+uKWZt9gtSJJRjx8/JT47j1owF6tWb+95PnXf6bKdwS4YKHjw2Nm00NGwwmz4zPG6ZhBOmY0mjIdTZgNJtyZHXN3eEhQGGzZEgof2WpMUVHZDuKAeD4mmo+odc3FzSW7akcrGnQgqYUlK0v2WYZuStpyy7as2LaCbTBgE8/YhGNW+GxbaDvjcOFWolTgIloNRGGItZL1Zs/tcsObmzWXyx2lkYTDKV6QUrWazWrLbrsh8n0+evqYLz79mIf37jAapASeZLvd8vrVK9fKhxFYhyPvhyo/dh7//MN1HLLHgIue3GpMR9PWGNMCGqNrHj95yH/4v/zP/OQnnyOBqsixfZ6yL50Us6kqTOcklFJKZN9ptHVNXdeuG5JurBRFkVsIC+japh9ttTRtgxKSw8NjxqMxL1684OriijhOaVvH/wn8wMEE++1/Xbv5/OnpCZ98+gn/4u//jvlswvXVJX/+w+/4/X/9P1hcXXI0mfD47h0CoNjtQcB0OsGPQrb7Hbtsh8E6AmkQUdQNV6s1690eKz2U57mLtlPX9jJbJ719h8ig/29S4BzZdY21hrZzSj9rLFEYoZRivV5RNy4nZzKZMhgMAajqmqxwWfBV7eCDXecyzoVQLsFPKLKsoMhL2qaj64xL1oziH1334GTaT54+IYoivv72G9brNUIIPE86v4g1lGXlPs++RbXGIIXEU84YKoVb7iLcCLTrNGVZst5sWa3XrNYbNlv39Vvvdiy3a5abDberBcvdmn2Z02pDnAyZHR6SDkds93s22x1JOnCNqzZ0Tc1ut6XKXPBcHIX8+3/77/g///t/x9/93d/xky9+ws9+9jP+6le/4uc//xlPHj9iPptydHTE/Qf3+eijj/jww4949PABx0cnxGHEMB4QewH05Olsn7Fab8jznCAIsUJSVhV+EDCdTnn44AGPHjzAWsvFm7dsN2t4FwPctjRdQ2c122zPs9cvycqcyXTEaDTA9yRYSVd1rNd7qrJxxFrp2GVVsSOQlk8fPeF4NGa32fHtt99SlDm/+c1f8euf/Yyj4yMmoyFN3fDizWveXrlkyNcXl+yLDOF7dFpzu1xyfXvLertzwNAsozEG9VeP7391dnLCo4cPeXjvHuPxlKAPmg89/0cOThAGDEcD4jRFeu5BSaMQT0qwBj9ymdCN1pRNzXQ0ZTQ7oNsXXLx6y3a7IcsdpdNHYRqH+giFwrYatHNtIhQHh4cMByO6ssXUHV1esbq+oW3djG0wiDk4mDJOY9qmZL/bUpQ5ZVVzu16z2O/YNw2VhWQ+I7p7F5Um7PM1Vb7B9wLniDaSvO7ILTRRxHA05+HZY2I/hVbg4REYiV9qZN5hsozV6oo83yAMjNMhSZzQ1i1FVaGEh4xiZBih/AClfJQW+FZCZWkXW26XK6oeHy18iRlG+IcjvOMZYpRQmJptvmFTbulES2lbFtsVq5Xr2rSuEMqy6wxVPEYf3mM3PmEhI247Qda5ZZkxAmEVVrj0RG0taZoShInLT+kM+1qzrzXWiwgHE+JkQBgllHkGuuODxw/4/KP3mY/HKAzCOFet1Yabm1sWiwV125KkA4fsoBd3iHe+Bre8pJ/L/ziqkqLfIeRIT2DpQGo+++wj/u3/6X/kV7/+JXEYotsG3TqkgtWGtqpcXkpZObhHp2mbmq5taPrkxbp1hcMJ9B0iJQwCpHRYBqHc3980tRv3KI84Tlksljz74TlZXiCFyx5pmhbfdzfnvCiwxnJ8esJnX3zBT376U3TX8J//y//Gd9/8hauLt5y/fMHBeMKvf/4zJklKV9UoT3J8csyDhw85PD5CG8Pbi3M2+x1RnKCtYLHbcbVcUTYd+D7Cc0oZ3/d4Nwl0YyiBfucQt2CtoShLyqKkbTvsOzS9cdC7JE6ompqyqiiKgqqqepcx7PZ78syRra2QtK2maVqsEERhRBjH+F6ANoKm7Wgad6B5QcBkMiMII0wvQinrmrptmE4n3Ll3nyzf8/U3X7sUxNDH9z201tRl5UQKfoDyPLdO6PPAlZL4nsLznfAA6YB7Zd2QFyVZ4ZzjeV2xyzNW+y2b3Zb1fsu+zKm1I1YYIUjHY6bzQ2YHR2gL55dX2F4KPR6PEAia0mW0n52ecnhwyJ07d3ny+BGj0ZiydPuHqqwc9r6pieIIJQVSKQ6Pj3jv6Xt88fnnfPrJpzx59AQpJF3rOoX1ZstyvSHLMoyUJMMho8mU4WjEcDTm9OyM+/fuM0hT8t2e5XLFbruhrgrXWdJhhUD5Hlld8ebygqwsmMxGJEnMeDikLiuwIIXHdpsjcOY+3xN0Tcl0mPJ3X/6MhydnZFnOt999Rxj4/OTzz7h7euLUb8pjs9nyx+++4/tXr1ist5Rdy3A64fTeHUaTCZ2FxlhaY9FKks5mnD18hPoPv/nlV8dHR9y/c49BOsC0msDzGA2HDJKYwHfxq0LAYJgihylJHDOKXIBOGsdMxyOm8xlREmMFNJ1r+ZPBkHKz57uvv+Hi8pK8KOlq5yyls0TKJ/ZDPKFQKLQxBH7IwWzOIEoQnSVE4nVQ7vZcX16S7bZIDEkckM4mHB/NSQYxVVNTdy1N17LJM27XK4pOc3jvHrMnj4nGQ6rthvPnz2mLhq4yIAOGkzkPPviY93/2cz7+5Cec3nvMwXCKj6QtavQ+J6havKZFVzlvLl5wdX2ONQbPk2x3W8framtaqxGBoKOjtR1G8mPrKduWrm5Yb1Y0VY4XKGSo0LGPHkSQhORoWt3SdS3b/ZqmLilKB3bLtjt03QCWWncsKksWTWimZ2yDMbctFEYglQ/a4AnnjzCdpmtrrO44nE85Opwzm4wZDBKMUFSdxgiFH0VEcUyaJESeYDxMefrgHmdHc6xu0W2FkA5VkqYJTdPy5vwN290GT6l+Wd5nd/y43/jnH+8KiZO+ghCWJI6wtqUsMz547wn/y//yf+U3f/VrBklC1zjfQ1PXmKZFIaiLiiLLwGh8qSiLgjzbo7u2l8niskCswZcSrHWxs34vszWawPPxPEVT1+S5G1tobVkslvzpT39htVgzmx1gjcubDsOAtnPcHzfO+JC79+7h+4p/+u1/4y9//hO6qZFGI7Th0Z07PLl7D9F2DJKE95++x/vvvcfh4QGnZ3c4OTtjs93y9vICY6DTlpvlipv1ps+GELSdM46K3rMhegAfoncz9yFbWPtj6JinlGMvWUOaxoRhSNs2lGWBELgI5arsuWIuDsH5GVzxdEtrjzQZMB5PnbLQQFlV1HXTq7kUBwcHHB+d4HmKoqzI84z9fs9wNCQZOIPtYDgky/Z8/+03fWFQmK6jriuwhiBwUbg/KtJ6VZjvu2Jpej6aMS5H243pHJJGG03VNlRNTdU2fSCY+1oZ6xLyprMD5geHDMcTrJBc31yz22WMhiPmszkHszl379zhww8+4IP3nnJ0fMh6uaKqa5bLJdeXl1xeXPL27Rsuzt9yc33NPtuzWNxycXnB61evuL6+RinF6dkZD+4/ZJCkTGcHHJ+cMByNnDFXeajAx0oH0vSDAK836203G26urthvtzS1S9XzlSIMAwJf4QUBKMm+KHj59g27/ZbpdMxwmDKfjKmKwnnlooTddk9RlLR1g5KCpsq5e3zE3/z0Z5xMZuw2Wy4vL5jOJtw9PcVqTV0UKKXYZzlf//ADL96+ZV8WeEHI6Z1T7ty7QxTHP0rBW22xUqHCiChNUf/hb3/zlZROMimliyXU2t0skzhxucK+k/I1dY2tG7rGhY1I66iNQgBxCFHo1B1h4MBtUUK+zfjLX77h6vrW3Qi0QXcuhCYNQzwZuMWndjNfLARegGcVSoMvHGOeqmZ5e4svBVESktcl2/0arQTpZEg8TNHCUrUtRVOzzjJE4HH/6fscP34AvmR3s2Dx+po0HHLn6B737j7i9N4T0vc/xH/wEMKYbpMhpWIyHDL1IwatxStKbt684Nvv/8Kzty8IRgmnd88YjYcu2yCUrPI1z94+54e3L7jYXrOsNuzagn1dsG8qGt3Qodlv1timYjwfMZ6P2NPxdrdiWeSINGU8GNK1Ddl2S7HfUheVSxBrO4eJCCL2VrL1BjSTE9rpGVs/ZWckKJ8oCGnrAtl7CWzXoqwm8Czz2ZDBMALTEAQeXhQhPA8vDvGiAK1bsmxH4MHBbMTBdEAa+Vg0xnR4QYDyfDzfZzQZIjFcnJ+z3+8cqvudRLdXVol+xIN0b+x3SiAkdF1Lmkbsdhs8X/Cv/tU/8i//5T+QxBFVVbgCYDR1XYKwSNMXka4j9AOEtey3W8q8wPPcElP06H2sdXgL38dalwPi+z5KqV5J457B/d59rzttePHiFf/tn37ParUlTlI6o/F8RzbtdEcySHnw6CGnZ2doq7m5vWW1WtI2DW1dstusmY/GfPL+hxwfHDAdjnh0/z5379zFYlktl2gBSZJS1BWX19fss5y61qyyPfu6wSoPbSW1cfRgYyy6M44+oJzMln5Z/o7oao0mSRM8X9Fp7TLMhwOEEGTZnq5znoUgDFwGuB8QRE6O6/k+7m2nXJ6G9FDKRyqXjVLmBWVZ0WmN8nwmkwmHh0dEiVs2F0XOerN1fpv5nDCO2W62DEcjjo6OuFksePv8e4LQdzn2/cVCKLePsaaXa/cXijAKCXzfvUZwXhkpnWnU9xHKeX+EJ1GBo8F6notdlUrhBSFJkjKdzzk+vUMUJ0gVUjUN5xcXlHVNEiXcu3+PJ08ec/fuGYPBkCRNASiqks1my3qzJsv2lEVOWVV4vke237sQNiyb3Y7rmytW6zW7fcY222OlZDCZcHx2h6M7dxgfOLJGMhxRdx3PX73k+csX7HYZi+WCF8+e8eblCy7PL7i5uQFrefDgIdPJhCQd4ochnTEsNxveXl2QVyXzwznz2ZTBIKIsCkzbEQQRXacdWVhrZwJtSz54+pjffPElwyCi7TrG4zFPnj5hNps5cgAwHI2pOs0Pr15xfnNDawxhnJAMEjrjdjRZVqCt62StdGdM0bWoXzy8/5Xt8RhFUbHbbdnt9sRxxNHhEVHijDoWTZEX7LMdeZbTNTVt25BnO7Ldjq6t8ZTscb8JUZyAiqjzgmc/vGC33WGNO0h058ZS1kqXN63dDNxXAWVWUOclojXE0ifyfGg6qt0ehfMS7MqM85sLvn31greLC6quQ4XuALjdLLler6i7hng05ujshHGSsF+v2V0soOw4HB5yNj8likd0rcUTgStaWY1sWkyrUUIgOoOoG7rdjm+/+5o/fP0HhsdTfvZXv+Dp+08J0oiTeycc3j1ltV/y7Yvv+eHyBbXU2FhRCU1W5xRt7UxHCmyTo/MMozT+IKSUhovthuVuA57POE3wjKXYbtgtV1RNhef1Cp/WouNhr6KaYw4foCdHbG3Irqwd7bcuMG0NXYNpG6RuSENF4lniWGC6HF9aRgOnfS/rkqwoyIuM/W7LdrvE6obDyYCj2YQodIjmpq3x/QCDpWsbTo6PuHv3LqvFLS9fvMQYTRTGvcP83RDincTKLXNdIXF7kPEoJc/3tG3Be0+e8I//8Hc8fviQrq0xRiOtoalLPClIwoiqyMm2OwJPkoQhVZmzXa1om4rID/CloKlqqqJwwTm9iU93jft+Svc5lNmeIi962GPg5u6N4dtvv+N3//RHrq/d7TSJXUKbNhqlPKaTMdPpFIuhyEu6rmFxe0PXNiRhSKAUd0/O+PC9pxzO5synUyaTKdc31/zn//xf+OOf/8jr8wtevnnN24tLbm5vud1s2ZQ527KmMc4tLrw+7U/1+ee4HYvvuRhQ0QMNrXE3cikcm0p3juoaxY7U3PQJg2BdwmDg998fjcVxozzPJ4pC4ihBSeWWslVFWdaUZUXdOM1+EEREkduPxHFMnhXsdzvKqmKzWZLnGUHgo40z7DZV68Yxjx7z5uKC1c01juLhxAnGuJ2UMTjPh3K5NoHnE/YxuVI4aq2Srsvqutbtnrp3vLTeu4KjNPvKYzQcE8cxSTLg4OgYzw8J4hg/CHn2/Dm77ZY0TXhw/wGz6Zimqtnvd3jKAyxt3dDVNfv1ht16SbHPMG1LGieO8dR3RdoYqrIgLyrW2zU3NwsWqxXL9ZZttqOoGozAkXnnMxCS87dvefbsOZvVkmy7J99uqYuSuixJopinjx4xn82ZTsakaYpUiryqWe823K42WGA6m3Iwn+FJSVVklLkL11IqYLvZIPrXYXXHl599xq+/+JJhFDEcjvjs00959PARSRKBFXieRzqaUFQ13z9/weXtjXvuhCDb7Xj54gdePn9JW5Uo6VFVNXXjZO7agPrs7tlXRVX2N4jC6cqtZjAeM55OCNME3/cx1jHcwzhyew9hAYPupZStdf/cWovyQ5QKkNKnKWqePXvO1dUNEuUMOF1HXpQoIRlPpsRxgucFTlrZdgyCiPl4yiRO8YXC1g1NVdLVlbtphR4ZLeeLK17enHOzuuH15TnXi2tq3WAUGF+BclGtouvY3iw4/+YZ7abE68AnYBCm6NKwu15hdgV+2SEaQ1cV3K4WCKsJopC2zLjdLljt1ySzEUdnx5x++B7p2TFSCUTkoX3B5eqaQnQc3T+FJGBXZzQYklHC9HiKFyvafE++XLBtMrzYw0YBrTAIz2nZuyyn3G7It1uU1WgLZddBECPDlOtGsFAjmvk9qsEBl5VhkddUTYPULXQ1wjRgOqTtELZB6pLJKGAy9OiaHWW2pq2dIiRIIsLQo2wq9rs1ngdH0xGDOGSUhkShousa5xEIfYIoZDQakOcFX//lz7x+9QollcM5rDf4gYPYKd9345V3Rq13TChpnbM4CmmrAt+XfPLRB/z6Vz/n8GBO3ZTUZc5mtSRQktFwRLbfcXN1SRL4TKdjrO4oi5y2KpDCMogjfN+hR3yleryKIlAS33M5yxhDU5bUVYnt3AHU1DVSelhraRrN9fUNuyyjbZ00taxKmrbh8aOHvP/Bh2Atm92WsixYLl3UKdbSVKVDOiiF7/l4yqMsK96ev+W7Z8948eolry8vuLi54Wq55Hax5Ha1ZpFnZApUFNECTedc2p4n6WznRjymQ7e1cwBjHKVV9C576fwS7n0ZMxmP8cOQuirJy8pRfD13mPhh4FRpvgMG+kGA7/nYfmTUau2mAabPXe8Lq/I8hqMRZ2d3GY/HDtWzd8RlrRuUL4mSEKR1h0vdUFcVVaOZjOd8+MFHPPvuW66vrhiPBhhr8D3HrDLauGXxZOQOPNORRCGjNHXqu/73YgyeVERBgFKKoKfjCu2AhEkcMkgdkfdgfoAXhGyz3HG+gsCFgNUNq/WSB48eMJ9PefnyBbvdGs/3qKqC3WZDV5T4QpAGPrZpHGHbQlvkvQChpOlaRxXAiU38MKDtOqpOg1TkVcVys2az3zuChdbsthvOz8/ZLZdgLfPRiPcePeZnn37G3/313/CLL39K4PvsNhuSdMh4PEL6HnlZ8Or8HKTi7qOHJGlCGPlINFmWYU3n+F9pynq3o6obdrs9k8mI//Hf/Gu+/ORTt7gfDAgHQ2SSEEQR4/GY4WyGHwQsN1tevnnN7XJJ5HtEYUBbF5R57r4G2k0ugiBkOBoRDwYURYl6Opt9VRQVYRDg+W6JaIUkjmMmsxnpIHWLLE8SpEPC0RClBE1boY2T/rW6ozPukOu0QSPAura3Kht++P4Fy9slSgX86FI3BuW71jLwA4LAd3LgKGKSjhinzo/hSekct23LNttjpCETHdu2pPYslejIqoK6qxlMR0wOZgTDBBUHzt1rDQESv+qoVxnNOiNf5zR5jYdPKDx8q4iERLQWyoqubsirHGsNsXKHXms68qYmGcZs85yyzKmbiovFNS8u3nK9XFB0Hesyp5VQ2Y5Ct1ir8YOAIPJQnqLNM3aLBcvdil1TkDcl+7KgKDO26y3b5S2y1YwGKV2nud3saISHP5xSyJBrHbCOj1iplKtacFu27OsWYzsCZQk9ga4rAs/l7RldMR/HPLx3wDj1kKbi9uKc5e0VVgjiOGKf5VxfX2N0x3Q8ZJymTAYRB9Mx01GK7ZUiUnkopXjx4hX/n//3f+KH759xdnaHf/zHf82D+w948+ac1WrFZDp1N9t+7+AIce96EEe/DTyXHz9KIn7y+Wd89unHxFFEke/Ybbco4bwLXVOT7zNM05DGMZHvO5xMU1GXJaZpCX0fXypMq7Gmc56HrvuxA+maBpd56RQ1ZVFS5jllWbkOSTrfRl01TmmUZZRlQdNqjk+OefzoMVEcsd9ntE3tTJhV1TuHO8fesj2epaqpm46mbVlvd9yuFuzyEuF7RMMRKI/ldseby0t2bYs3TGgMtD1breuct0VYA8YQem5H4FmD0BqF+zhWA4JOtwRByPHxIcfHJ4SBT54XlFVJEAZEUUTTdm7kogJm0ymBH5DnuRs/GHollYOCCuH2ZL5ybmTleW5c1zoPhNEara3z3VgIQp/haIiULqyoaRraThMGEWk6IU1Tnj59j1evX/L65UsCX1GWVZ+PLWmbhuFgiJISJZxrPPB8PGERxuL3UujId1JdTOe4ZtYgLQT9Mt9XHp4KGAxG+EHkpLp5AUri+QH7vB81Wcvt7S3r9ZJBmuIrwW6zZb9aEXk+x5MxZweH3D085PTggMPJmEEUs9uu2Ww2ZPu9C+BqHaFCSUmcDIiimDBMqOqKFy9e8ec//4kffnjG61cv+f6778nWK46mcx7dvcPT+w/57IMP+fLTz3nv8RNm4ylKutTGqioxxrox1WrDarul7gx5kaMR7r3jeyS9kTFKYgyKm+WS1SZDKWfM/vCD93n84CGT4cCp9Fr32vEUNoig68jyksV6zZuLC5bbzY8E7SSOmI2HnB6dcO/sjJOTMw7nB0ymc4Iw4vp2hXrv8PAri3DcmCgC4VyCnu8zn00ZjsdI38MqiYpCiAN8IdC4QHfxbmmn3J6kMwKEh5AKpQKqquPZsxcslmvCMKatnc6+0wbleygvhL5d9aTkeH7IyeEhURQjsFR1RV7kZHVBaWo2XcV5dstlvqKmoxIdta4xHmgFhBJ/GNEoS57tKPZ7JmHE0zMXYj9SMdU+c2/6siKQitj3CaxCNB20Fl8IJI7E6kUJ3iDF+u5WPhwMkEpyu9/y+uqCH96c8+zNKy5ub+mAdVaw2G7YVxWtbrFGEHhuUSuNIehVaLumZL1fc7VcslzfsFwsub2+ZHN7i+4q6rbhdr3kzXLDqtPctrDBoxifUs3vsw8mVDLG+DEqdEVS0rlw1taZ1kzXIITmztmY6SRiuzhndfkWYToOD46YTqasN3tev35N23Y8uHeXB/ceMIoD0jBgHIdEnofR2mWDW1guNvzxj39iudnxk5/8lH/8l/+aX/ziV3z0yWd4fsC33//AZrvBjyLHUsJNAV3n4VphFyJliUPFo3v3+eXPv+TRwwdgO5qqpG0qhIC2rSnzkrauUEqSRm4fZrsOazravHTUgl4FiOmcP6BrXH5znpPvM9q6dEwio6mrimK/Y7vfO5WQ8omTFD8IqcqK28WSi8tzlqs1XddycnrC0fEhTduyWa8o38ledYdSDltdlQUgGPbqmTCMKLuOuuuo2o6q66i0Ia9rbjYbblZL1mWBCF0OurvBCqfaQRL6va+qqTB1hc4zdFUg25qmKMj2G/I8w+iOuu0YjYbcvXePNE16pZikqHL2uz1FVTEaDpkfHpKkCcbCarXmZrHEUwqpPIex76N+lXIjrTCJCSOnDjRY8qKkrty+o9MdnelctxHHBIFjarmRmUFJ5Xwe/Tjs7r17HB4f8eLZ96wWC8ZDNzILAx/P8xiNhsRR5AQNxhJ6LunSl87U5kuBQqAweDiIX+h7RL5HHEYkSUIcxYRxghWKvKnYlQV12/VzeUFRVdzcXLPb76jLAilgMh5ijGG7WlLudjw8O+Xj997jg0cPeHz3LnfmcxLl4wtLksR0uu0zRzoXwarbXlCQuEWeARBUZcWr16/4/e/+ib/88U/URc7hbMbdo0PGccow8DmaTpmlA6qsoK0qkjgmDAO3BtAdVgpWmzUXl9csNhvyukYpSRBGjIYpUeIc7JPZAaPpFC0UF5fX1K1mOpvw2Wef8/DeXZR1XWkwHCE8D1qD6Fr2Wc7l7TXfPX/O9y9fUmnTExEUvhKkccR0NGSUjtwF3vOxSHZZydvzc9QHR8dfCalIopgkTRGiZ7gDo/GIdDjAyp4CKt1MESmdbM5TTkguBZ4XuDQwP8TzQoQMEMKnrFqePXvNerMjCgdsd3vyvKTVhk5Iau18H9bAw/v3OTw8xFjL2/O3vHz7muv1grKrUZHPqtrzZn3Fm9UVN9maVbEl7yoHJ4wjomGIloZtnlG2Nb6QSK2RtSYVPgeDCXcPT5iMpkR+SFNV5LstdVYgLYRKIdoWpFvsKi/EC0PoM5rrqsKXkidPH0Mc8vL6qkcoN1RNh/QD8rrh4uaWrKpcnrS1mE6z70c5utVuVu171F3LarvidnHLar1it9tSFDn7/Y63N9e8urriMsu5LTtWGpp0Cof32fhjMhlhghgviZGB526AbYXpGugMZZGjTU0cSabjkP36ihff/ok22/GTL77g9OSEi8trvvvhBUJ4PHz4hOOjUzfnLSsiTxH5Psq6+EzTWfK85uWrt+Rlwxdf/pxf/fpvuP/wCdoqoniAQfDsxUsur6/74B4HHvzv5bninUnQas6OjvjFlz/hy88+YzRMnfy2a91trqoclbf3a4S+jwTa2vGopLY0eUFXNQ7poBRt01BlOWWW05QlVVFQ5Q6pYBqXJ9KUFdl+T5mXdG1LHCfEyQAQ7LYZ5+fnvH7zxnVOszmT8QQpJXmRkeW5czT3Pg8l/3nZbqF3MVfs8pyirCiblqrtqDtNVtcs1huuFku2eY5WiihJiZIU3ZvuiqzoaQoFXVmitCbAkniKw9GA9x4/5uMPP+DRw4fcOTvjwcNHHJ2cMByNmUwmbocknHqnqmo6rblz5w6/+MUvefz4KcvVmjdv36K1cZdE950gCELi0FFWpVJ4fuD4T16AEC7v3XSGtm2p6oqqL55RFBFFIU3bUteOoGwthGFMEjvlXVXWeL7PRx9+RKc7/viH3+Er2aNFfGazOWEQOoOlteimQQlB1OfFCOM8PMJalJDEUUjUu7qVlASBR+CHLq5ZSPKyZL3b02iNCkO8KMQKQVVXvHr1irIoiIKA6WjMME2p85zt7YL5YMSn73/AR0+fcDyfM45jIuUh+32bkFAUDj/e1E1PTgBfOaFG6IXUVUOZl2DAU4q2F7l4QnD/9JRHd+4yimMSpXh6/wEfvfe+C1YyGi/w3dRFWKrWfe/qtmVfluyqGhWECOmRpClJkvTdsmU0mRIPx5RVy83tmsVihe+HfPbppzy4c8dFPBgIe1m8rkrW2y0X11e8eHvON8+e8+3zF+xL5zFBuGIdez4K6d4veUFR1uzzkqubBVfXt6iPz86+UkKQpgmDNMHi3LdGd8RRRJg4xYFTXkGrXQa5igI8Jemsy7BVfoAXBPhhgh/GCOljhE9Rtbx885ZtXhLEKYvlmizPsVKilWBfV+zLgg5NGEY0uuNmdcMPb17yennBqskodMW+KbjcXnOTr9i1OXlXULQlhpYw8knTED/waNqKpqlJopDJYIBpWvLlhirLkBqSOGE6GjOfTomT0LHshabRDa3s0IHzV2jrRmpSeQjh4jGFkFxdvUX4sO0qbrMN27KgsR2e5xHGMdZTrPdb8qpEYzEW2qpmuVqxXK0odhkKl9EcpzEo6TK9lUT4HlrBvinZNBW57dhLSRPFBEenhEen7FXCedmRaUuNpTEdTVvSVA5FrXoZblPleJ5lkHoEomF59Yrd7RV3jg45OT7m4vKKb779HiM9Hj5+ymA0Zbvfc3O7oClzfCWYDAckUQgGyrLi4uqaN5e3KD8kHU25WW3549ff8bs//Ik//eVrvv3hGa/O37Ddrd183TWh7iYt3cJTCosEksjj/SeP+Otf/YInD+4hhKHrKuqqcQU9z2j6nPnA9wh9H9NpiiLHdh2eAV3WToGlDaZrKfOcbOdulF1do5vGhXY1Dbpr0G1L2zaY3vPRNC1BGBMnKSAoiorrhfOnlGXJk6fvESUuh73p/SRCCJq6pqprpzTsOrqu7TlZhTOo7TOXxVCUbLKczX7HYrNivd/RmI4wTRhMxkRJDEJgtKbIcnwEJ/NDzo6OeXr/Ab/44nP+7te/4t/8/d/zP/zdX/MPf/e3/PVf/Ybf/OpX/P3f/gv+zb/511QY1rut421J59kJg4DTsxN+85vf8Pf/+A8MkgEXl+c8f/GC7W5HEkckaQyA0Q5DHydODNBqg5QCr6fPtv0IS/VKqLZtEdKxvOI4ciRj65bXTjYrGKZDBklK0zSUVUUYhgjgvadP+fNf/sLl+Rt8XxHHMQcHcwJPEfoe0jrXuLSGyPdc5yUFnnRZGWHoRtpSOJGM7S+xcZoSJjFFVZHVFVqA8J0MVot/VvV1TUNT10SBz9F8Rqw8it0OX8CXn37KR0+fcHJ0SCBw+yQMCOd+32w35IXbfwnhAK3vVEy27VwuSR+1XJVOdTpMEwJPIUzHp++/z//8b/8nvvzsM8a9JyT0PUecti1NV7HerrhcXLFYXrNaL7lZLrlerdBWMBxPSNIB0SBlkKYUZYXyAqz0qVrN1e2KH569ZLHecjg75LNPPuVwPCHuabemrdB1SZ7vuV0teHX+lpeXF7y6vubVxSVXyyUAQRgxjFNO5gdMRiOCwCeKE2azOX6ccH7tMC7qX3zy+VdRGBJ6gdPiaxdT2fU3qjCM3OhJiH622ZMlfbd0M8ahDaTyEMrD80KkF2GsorWKrGx49uac1S6js4rVakNVt6A8tKeojaboGlCK9WbNPs9Y53v2XYVNfNQopjYdt9slu7agFh37OiNvSoLYI04T/MAjDD26XlkyGo6QVlBsd7RFQ6h8lFBUZUNbNvjK4Znj0ZDJZEQYhRgpUGnE4OSAYDKkRdA0HWiBsBIhnQO7qTN+//Uf+NOr5+zbmryraK0m7iNBOyy7cs++LKg67WbI2lBWNWVPOG06TScFrXAhOtqTmMBzP8OANlDUnkQOBsjxFJ0MMPGQSvrcVi0749EpH6OUi89sSnTT4FmLLx1iue0aPKWJfI1vKrp8g2xb5pMJlxeXnF9cE0YD7j54QhAP2eUlbWtI0pTAU2AscRgQBwFF2XB5dcV3z15xu9pSdYLzmw0/vHzLdz+85NmLV/zQdxplVbqLgUO3InGjTMen6v0cWKLA56P3nvKzzz9jPEypy4K67wayvKCqnflK4JQ3UjgFXrbPKPMC34Ata8ospy4rqqKi6LuNtm5o64a6rNFNS9d26LZPecN9LtZY6toZ/MIkoW41l1fXPH/xgs12h/R8RqMR2liKoqJpmh9T6pq2JS9KrIWiLCnKEmMNnh8Q+CFWSlptaDrTZzWXvdJGEEYRXhjSaUPVtFRNS5HlGG14dO8Bf/+bv+FvfvlLfvPzX/KrL3/K0/v3mQ5SfAG+8phOJswnMwbJgEYb/p//6//KDy9fst5syIuSqigZpEM+/uQTfvObv0Zr+K//9b/x29/+lu1218uWZc/zEi4iF2ck0738V3fOP9FqTds6pL4UTu0llSRNUgbDIdLz0NogpSMxWyOI44TJZELgh+5Zrx3RNwwiJtM5p6dn3N5es92snVJtPOw5YNIl8HUa+pCpOIoIQ9cFSelYVu8MyVK6sU0QhnhhjEGwLyuKpkH4Iel4QjIa0hnTI1dcuBHaMBuNOT08pNzvMU3D5x99zM9/8gWnx8eM4wSvj0YWgGmdr0r34VKi92O0Tct2u3MKUAO60yjpE8cxbat/LDJdU4M1nB4e8PDOHUIpuTx/y3fffM13337DYnGDF/ggLedXF9wubnn4+AGf/uQLOm34+rsfKJqOeDDCj3p7hBdQVi2dtmRlzXZfUrXw5u0V6/WeOIr56OkHHE+nJMon9j2E7si2W66vL3l7dcXl7Q1Xyw1vbxacX9/QCcXBwRFJnOAZGMUDxsMhaRKTDsYMx1OMULx860Qe6t/++tdfJVHolpm6c7cG47AGQkAYRY6tb8FqjRGmlzZalDAIT+B5rnDIXueLUFTG0mhYlwXfPn/G2+tb9mVDVro3XCecE9EEHiL0kYGTBnbCUNFSKoNNfYJJSpgGtMpSi5Z9m7OvnJx1ME5JxilhHOBHIePRkNFgiDCWzWJNvssYpAOmszl527Be7dCdIPQCRsnAdQgS8iKn6RqSoynxo1PkyYzCumW8aA2ys3TGpQ3Njie8vT3nh5tzChq8OCAZxEShB3Rsih2ldqC1SndoBK21NMLSCkuuOzZtxXW14ypb83a/5irfsWgq1qYhE5bKk+yMpvUUbRBSaMsyy9kUBYUVEESIyEcEHpoOqxuUNfgWRG+S6myDosazNX6XEdrOIZQFFEXNYDjmzoMHRMMxrYFwMOL47ITJfE4ShxjT0vUu7NV2xfPXrx2AL/CJBhNkOMTi4UUJw8kYFXigIEhiwsBjt1k7CaYE1ev0pXBFRAkn6f3i8094/8kjTNeS7bfkWcZqs3a3eeticaUAegZT1y+ui2yPbTpsv0xsmqr3U/QHVdtSV7WLCW47rHFpfkEQ4AfOa2TBZVxgCeKUqm158fIVv//TH8myjKgfB5R1RV1X1G2L7tof0Sra2h6X4gx6js9l6YxLYqNP7XPy9JBokBD3XCmhFKaP+6yqiiLP8YTkcDLhaDYjkoq2LFldXfL9N1/z3Z//xHp5y3gw5OT0jLbT/Paffs//7f/+/+B//T/+C7erJVXdsN9t2Ww3KOURJTFFXvAf/9N/4sXzF2RF4cYrShHHbvSK7TlYXUfTNUgpHNfLGpq2xRiDUp5Dsvd7kDCMSAYpvu87LEhvDtbGKaDm8zmT8Zi6ranLks5oTKe5c/cu1lqOT085Oz3h+x++w1eC2WyKH/jOUKscCBPdopRgMEgYjobEUUAQOjSIH4aEScRwPGI6nRDGMUXdstnn1EZjlEJFIYPJmPnhIV4U0rQ1TdsirGGUJNw/PSaNQpo85/TokL/99a+5d+8uaRAQhB5R4COkcMkdxlF0vd79rnyfwWAA1pJvndcDa7FCoHHFtutaDBqLpq4LdNcS+pKuKnn16gVvXr3kdnXL7fKabbal0Q3nN5d8/+xbat3yky9/woeffoIVkm+ePWezz8nqmnQ4RnoBTdthhHTKtyih1TCczrl79wGtNtxeXjGIEx4cHTNNE2TXkG03LG+vOb8652a5YJXlVMZSWVBhxN1HT3j86BGB52HqmlAp0iTC9xQayNuOm/WG71+/ZrHdov7l5z/5ynUZTR8Y73TiTnFvSJKUNE2dwsWYPqjFFQ6phOMA+R5KuvxhYyWttlStodaW1S7jD998zavzC5ZZQdtZx23pWholUHEEoYsvNcJJEms6SttR0KJ7yWFRZezrguV6ibYdk8kQLw3Bk8RJTJzEhF5AtstYXN5ia8NsPGM+mqOUT91pPOETiJCubPENpGmKCjxuF0tev37NRleMH98jmI5YFTk3iyWy7LDacXOarkHbBhEqbvZrzpc3eKGPHwfsdlvWuxW7qoDAo9Qdhe5ojSBvXLBS1nXUQIFm29Ws2pLbPON6v2NZl2TWsK4rlkVBYQybsmCxK9hVDVnVUBsNXkil3Ru20jV1kWOqAmUMnjWgNUVTIGyHL1qoc3S2IbSG8XDYL4MHHJ3cYXJwhBYKFSSMp3PiwZA4dijltq3Jioy6LrlZrji/usJLBpzeechgckSYzPDiFOUF7tKgPHRvWuvajvXixi1d+0m6dJM/nJPH0tU1v/7Fzzg7OWa/WZNnGXmRsVlvet2VMxL60rmO27qhqRunhipKTFlhq4auR204EZKhawxd1VCUJXlZoLXFWifLjeKYKIqR0sN0hqppKIqKKE2RXsDVzQ1/+fpbsrxEeb5DcTcNnTa0vVy9bRqkUgR+6BbFXUfbtNS1S1vT/b7DidUtWIHBhYtVdYVFcHJ2xpc//RmPnz4l8APG4wmHBwcESrG6XfDm1SvevnrJt99+w6vnz0B3fPHRx/z0p18S+CG//8Of+I//8f/F//bb/8a2cNJbrQ0GS1lUFGXJcrnk62++5tWrN+R5Qdu0aGuIwhgpFHVVup2kVNS1i3r1g4A4TrBW0LQNVgiSZEAYhE6RJHr/h/LojMZa1w1q7VRZUnnMZgeEYch2s6NuakI/ZDgcEYcxXZ+j8ujxY66ur9nuNkzHEzfyblp8KQmUctRcIRiOB4yGAwZpQhJFJElMGiekwwHj2YR4NKY1kl1RkpU1NghIRmP8OKHR7uiO4tiBHrM9noCj6YxRnFDutgyikE8/+pj7d+8yjCNa3SC0yxbvug6LIQpCBklKFEYI6VJNDw4OnLeoKsl3GVVRkpUlje4AQWucOs6g0V2HtR1Ca9oyJ9tuyfOMosgc/DIIGU3G7LKM5WbJcDjAWPj+2QuyqiJOhxye3AHpM5rOCOMBRdUwHE2YHRzx6On7WOExnMz4/IsvmU3mXLy5IFtvScOAUCq6qiLPdlxeX7qOvdVkZYOIEk7uPeT+46fcefiQtml5/sNzNqsVsnfhF1XJcpux2Oy5WC55c3VN2TSof/ziJ1/VdYOxGm2My9+VEiEsTdPSdq0bwwRujGXp+luXu2kI4RbAANY430RRtWz3e66Xa15fvOGPX3/DJi+orIc3SJBpjBxEtJ4kPZgyOzvhYnHDfp8xHA0I0gipoGprqqZkcXvDbremKksEmvF4SJpGtH0uyGQyJQh8NssNy+tblPU4mR8xT2YENYQiJFEBsQkYRQkBAt00IAXpcID0FOvNhnWRM5xNGR8cIDxXUNq2Y350TJRG7HdbpG45nB3QmY7FakVpWlZ5xnK3ZlOUFJ2m1Jqybak761Q1FhpraRDUwlAL6DxLIwSlccXEeIrGQtm1TtNvLa1QWM9D+CEqcot6KyRWW2xTY4qcbrfC5DtkVxL5kjT1MbrCoyVUEHqWYr+nq2sOZ8ccHxwzGExIRyNaDZ2FdDAmSGKUcpwksKAMTVtzs75hsd7hhzGj2QlBPEJ4CVZ6eH4v4VYeUgbEUYKvBKZrKfZb8nxPGHikSYwUzmNhcWa1OPT54rNPeXTvLl3bsFxes1lv0VY7cqswCAttVVHmpVtyFw7F3dYtykAonSBDSs+hM4RzhyMcm8sagbECoTy0ENStoWwqWmPwfI+mcpA/6bs/Ryifq+sbbm9XIAV5UTlCrXHJh+9wH23T0rY1Rvc3UuNKhRTOsPau+7AWtHGjjk53aCx+GDI7OOD0zhl+FFE3NVESEw1iVOBTtSX7ImNf7qmrgqP5lL//m7/lF1/+hMiPeP36DbeLFbsi55tnz6i1dmoi3Ig5CAOMdV20EB7gxihYSxjG7gapXXELfB8hnBy37VowLmgrCEPCyHkU3tGMfd8jjvpzwFq07pwZXGuqqiaKQkbDEcIYVmvnvPZkQByH+IGP5yuaPj52NJ7QacPbiwVN56Jbra5RSLfL0oa2rokDn4PJgGEcMxqmTIZjZpMR8XBIZSxX2y2vVrcs9hlGKeKh+29WKLIyZ7/P0cY45VUUkEYRg8Cnq0poah7ff8AHjx4582hdslosOH/7mtvbWzabFWVeur2RFPi+j6d8wjAgTVLSQcx0MiUKA96en3NxfUWHBeGc+lK6czEK3dhXdDVKQ9tULvAq8JjNpxweHzKeTFwHNTtgOB5hkZR1wz6vCeKYeDCkahom0zkffvQR55dXBFHIh59+zuzwCKsCfnj+gu12z+eff85HH37opPhtR1Hs2Rc5i/WCXeYy0m0QoaWPjAYc33/A5OCQ12/P+f3vfs/t7Y1jpQWSXBuWecn1NuNms2Kxz6jbDqEU6n/4yU+/sm5F4x5u42aWQrqH3/d90jQmid0ir2mci1gbhxpxyVkeIN0sv6jZZxmLzYbL26vZhicAAP/0SURBVFvOeyzvrqxJZ4ek8xkNml1dUVtNNBqi4pCrm2vatuHeg/uMRgOOT49RvuJ2cUtZFK6V9QXT8ZhhmqC7zt2gEmdQrMqKMiuYDCYcTY8QrYCsZSISpoMpgQwQrSaSAUkU0dY1m+0G6SnG44nDE4QBQTpgcnyMDV1GggpCDk6PUYFPtt0img5fSoRULHZbXlxdsCz25FpTGk1pDOtdzjYr6AxUBmqgE5JOSTop3X4DqI2m0oZOglGeS2SzYIRAS4VRCrwAoXxkEPSHusIYoOuQTYXsGpTpUMKA0Oi2Qrc5VpdI2yK6lnK/RdcNs9GE2XiC9APwfOrOgPQIezmq9HyEkviBQnmSoszYbFdu9zEYIb2UfWFYbnYsN1uMMXh+iJI+oPA82Tt/LbvNiqbMUZ5bbr7LtLDG0OmWJAz59KOPuH/3Dm3jPBFllWP7nGc3nuoospwiy6jykrpyWRye8EC/y6bow46sU/1ZJHWnaTvjbvra0mjNLiu4XS65vL5hvd05+WhnKeuGxlgXWnVyRtNpvnv2jLzfRWnjnNnmx1/7WFn97mPu48LdnRB9hKe7SDnEzjsApOf5SM+nrErOLy548fwF1zc37Pd71ps1i+WSvCwoK6esG6cJ/+JXf8VPPvuMSHlcXF2x3e0Jk5hokLLLc15fXGBwYU5SuTAyhMTrMdtCSLRxCX7u3/vMcuv2FUY7Q26n3UhGeR5hFOH7AVZA138NlPL6VEQXqSveGQfbFiEkw3RAFAV0nZNuCyEJfB8/8AnCgCRNyLLMUbTjBM+LqDvBcrUj8AyYBl13DJIBpjWUReWKROg6nPFwzGA4ousM54slLy6uuNrvyQSE6YBkOEYLSd1oysqNGIuyIu8zW4ZJwiRNUVi6ImeUxDy8c8YoTSjyPedv3/Dsh+/5y1/+zNs3b1jcLsn3GV3b9v6dhix7p6xzcvHJdMpwOKKqat5cXbIvHBdM6xbdNKRxxCBNMLpFdIY09BmPRhyfHHH33l3u3L3P4dER6WBIHCeEcYTvR25XFqXu1zhGSEVZN0znc7782S+5ur3h4vqGn/7850TpiN/9+U988+33fP/DM07v3OGvfvUr7t+7R5rGCCVRvjOIpqMxg9EUgphgMGF6coaWHn/6y9f80+9/z2Kx7MdfAcYTVBoqLSk7Tdl1tEZTNy7vRv373/z1V34YOLiedvA0l9blbiRpEhHHEZ6SNE3Nbu+oj1VVOvWV0RjT5wB0lrKuKcvWZW9oi/QUeV5S1i3j+THjycSB95qKOIiJo4CmLFlcXzFKEt5/8piiKDg4mBDGEW/evsZag/RgOBwyn09JohglLGEco5SkzkvaqmaSjDkcz/C0oisaRt6A0/EBaTTA6xUkRlmGg4Qo8LDG4CtJEqeEgY/wQzoJo4MDbOjTCUEyGjE+OkLGTtbXVTVNVZMMU8q25Xc/fM1tkdNKSS0kZaPZlQ1la2itRCMxwqW5Ib3e9yJ6vLcGLJ7y3SKuP2CkdOwd2RuwpBe4Q93zsUrStC1VW1O3Ndp2Tj4sQXc1dbVF1xlCF0hdQL3D5BtElzEdBMymKcl0hvUDmk5jJQShU5cJJWl1g25LTFdBU2GKnFAGzEZTwmCAMT29VGnarkHrFosG22F0S9fk1FVGtl/RdjUC94y0Td2/XuMMe57k/feecnZ6iG5adtmGtnWzbU8pwKlWmqpE1w1tVdFUNWiDwOFlOgON0eyLyiGfdxnbIifrOwUVuMMvr2uub294e3HJ+cU5lzc31EXOIHCIFG0Vs8NDTu88oGpafvu7P7Da7rBC/chUct2GKxK2z1kX9FgQ63wpkj5MRzjU+48yUimcZFh6+Ah03bFbr8h2e9qypNxntEVJlxeYssRkJfMw4q9/+gt+9vnnWK15/vI5t6slfhrhJSFFU5IVOWVTkecFRkAYxS51T/kMBqnzSinZf75ufyFE/zqsAeFS94w2GOt2M0o5QYwX+G4P1DS0rcZY23cmjSs6uALUdS1RGDkAqlQ0bdMj2QOU8hASwiCg6zrW6zVJEjtfQOACkJSyrG8usF3tPI0agiAlClM6IyhaDV5Ca31W24rLxYarzZ680wTJgHQ4Jg5Tl2WvnDs+TlIGwwFBEFJXFdluT6Akd06OiZTA1BVH0zFH8xl1mXN7fc3lxVuHUSkK6qpmvVyw3+3dzlBrlssFV9c3XF5fcrtass8zgihmOp8xns9YbTcsV8seBaMRVjMeDIl9H2HhcDLm3ukdTk+POTs74+jwiMl47BL2UD3U0oVTOWKzs0ekvYoqjiMm0xknp8e8fvOG129ec//xY5CSZy9ecXF5Sac1YRhycnZMGDg5/Gw+5eD4hPHBnPnxGdYPIBgQDEaUHXz3/AV/+svXbDYb4igmjkOUp9C6QxsXfyCloumaH1ExTdui/t3f/M1XTddRNzWNdlGZ4N4gfuAxSBLCwOVw5HnGbr9zVbep3T6ibqnKiu1mz2K1Is8rl7IlJNPZnJOzO1hrWW9zvGhAFMbuTSaEk2A2LUW2Z7VYcvfuGU+fPuH16xd0umM4HrLdbn5UMviBIk0SEt8ZvvzQ5ex2VUPix4ySEcU2Z3u7ZhqPeXRyj0k4wpcevgqpdMO+zEiSmNlkSprECNPfwIxE9MUiHA5Rg5RwOCCdTPGTGDyPOIoweUW1y4jCEOF5fP3qBa8Wt1QWSmMpG4sWHngBZdvR6ncOOOd5cQeRccVTOxesU6w5ZIugjwRVHsJzUmChfFCe4xgJRSeg7TTVj2l3biGudU1XF5g2R+oS2+ww5Q5T7ZFdQRpJxqMhw8NjahRlUyGFdAA5qbBSU1clpi2ZJBF3DmbMoohRlDIZTBAyoNMCKw2drVyRMR26aSiLPUW+pS1zmrogzzcYXRN6bskWBw5L0bUdpu2w2nB0fMBkNMaYjqoqsRh8z8f3FUqA0S11UaGbDtO6vAjTWUwHVnjUxrDeZVze3PLm4oqL62uW6y15UWCAwWjIcDKh05rzi0tuljeUdQ0W0ijh7tEJQZhQth2j6ZxoMODZi1f89vd/YLvPQDlEjjUu8c+NpZx4xPa0VvqcDHcNd9wk90HXdUgESrqccqM72rKiaxpEjxOXFtrSdVLKGExWEhn47OmH/PUvf4lpW77/4XveXF6QjAeEg4TblfP9eJHPgwcP2Wy3bHeZI7IKD6l8p7yp6x/BjhbXydleAWSMxeD8GfrduE24cZtUnps4CKcIdBiR5sfscYC2dVG9AqcUcxThhvodYcBzUlNhBNJT7HY7yrJiNpkRRRFYx146nE8xbcluvSTb5xR5hUXhhynbumK5LVhsK15fb3l1uWRXaPzhiNnJCad373F4dMRoNGI8mXFwcMBo5FhPo9GIdDB0HWnXMYgjHt+7S+JJTF0yHw2ZjFI2qyUXb15xdXFJUeQ0dYvtNFVRIZVgOBjieT6LxYJXb17z5u1bbhYLFusNRV2AUsRpgrZwu1qQ7zPnNwkCIt9HWhjGMacnxxwczIhCJ2F2l6mmTyV0bnunYtPuAm/cjk/2sFBjDHVdstvtuLy+Ih2OODw9oekseVnz/MUrpKfodMd+v+Wbb7/h22ff0mnL5GDGYDLldrvj9cUt1ouoOsGfvvuOP339LUWR4/ku2Er5PtYah9i34Psh2mj2+7wXQkiXZfP3X3751S7LqNoard0h5DaNmtBzObRJHDq3bI8dqLvWzZBxKWVl07IrSrb7nM5IPD8iSgfMDg6ZzueUdcWbyysW6y113fTqCUGRZbRNhe4aVotbnjx6xCcff8DNzRW3t5dMxuP+Jt3ge26BFvo+gyTBV27W6nkBaZQSqYB6X7K73RDKgAen95iNZkiriEdD0umERnfkZUXgBwzSIR6Kal9SlxVSOkOWn8REaeLeDFHsHNDaIMoK0WjCukHnJV5nSOOEVZ7x3cuXFG2LVT6NARmEeH4fQ+p7+P2byGqn8HFCIUc4dctTxweSUuK/2xkoN7tXyo03pJIIFCgfFQ3AC5HSR6oAcKNCYSwKjbIa2dXYIocmx7MdCk3s+wxGY4LhlLIzLo3Rc7RarWusaejaAl+XHA1DHh3OOU4jZmnK0WTipKhNS2cKmjana8pe0dXiS8MoDTk6GHN6MuPhvTPunZ3w8N4d3nv8mMePHnE4PwBj2G62NE1F7AeEgQvwkUIQ+I5y63sKISx1XZPtMpqycswcbR0xte8ENrs9FxdXXN3cst1tKaqSpnHmtCD0OTk65OGD+yRxxOL2hv1mwyCJuHt2wnsPH/Hxk/cZTabcrNYEaUpn4b/89p94c3FB0zk3dy+icsoZNxMD67oNB+1zB6774cyw/fIPpEB4HtJXWCnodOfGXw55iUW7sZftVYxaI4zlzuExn3/4EYMo4cUPP3B+eYHwJaPphM1uw/XNFWkSO7x7GLHbZ5xfOddwFDlAnu6LHcK9Bve59hklPc7c9vsbY7Vzjss+p9y6mFoplZuJG9vLTRVBGKGU23fKXqnmeR5SCBe72hN6Aaw2eJ6TMLddh+pT98J3OxTlMUhjDg9mGKNZrhY0usEGity0bKqSi/WGH652XOzBhGOS+SnhwDm+bdeiusYVrzAiTd+hPwKS2BWP6XTCbDJmPhlxejgnEBbZtczHQw5nU3RTs7hdcHt9Q5HnVHnhUO3WMp8f8PjxYw4OD9nud5xfOrlsrTsQAm3d+9hB2ATbzZbtZocA4jAiCiKGg5Sjg0NGg6FLN2waqrKkyAvKrHB5KpXLTMnzgrJ0htW6qnoArNtTbLcbdtsNeZZT1hXHJydMZgfEccouy/j+hx9645Tl8vKS28UtQRBycnrCYDJmvd/zT7//E5fXC/BCbpYrvn/+gu1ujwocYdgYd/4rpZz3xfGCKKrS+aesBYQDf3759MlXWVFQNWWPyNBYo1FAErkZXRoEhFFIGEegFJ118DQ/jlFhiPRD/DAhiGJnqEqHxGlKPHDtohWWvKpZrrZkeU6+37Fe3XJzfdmnu1lub655/Og+H3/8AW1b8fzFMzzftbxlVfyIjBDGEHk+aRz3SAMPOku+zaj3JcMw4d7RXU5mR2AExkAym5LMJmghKcqSLHdLomEywOssRV7Qtho/CvDDEGuhKguqLMPWteNXbXeY3R5RNcimRZQNaRTTSPjzsx9Y7nYQBnRS0Al3C7VYhDUY3WJNj9NoG/empMdZKycNNdqNCtxiWCKkw7YgpcMm9Mjy1koa4cyVynMzUakClBR4UhAoidINpsox9R6hGwJh3WjPDxiMJqh4RGP/GatidYPRDYPE53CaEugKr8mIdY3Y71CmYxjHaGPYZjvKJkNTE4WKo/mE95885Oc/+Yy//vXP+cWXX/DxB0957/EDHj+4x93TE86OTzg9Oebk6IgkjKmrkrJw3CfdNkRRwGDg2vGgh/J1bUNdlmS7HU3dIAwoC0K6Of5iteL84orFcknVOPOb7ytnFgx9BmnC4XzG6dkJ4+EQ07UoYTicz3n04AHvP3rM4/sPCcKIm80GGUWs9xn/5be/pTGmD7tyty6s6zL6ZcqPB7HLtnAlgB9z7Vz9MK66uJQ82buvje4/JkC4A1z0KxFtNRJQCI7nBxzPj9gsl1xdXlI1DfiKfeGQ3EHoc3g0x1o4v7xEqIDFesuuKAmiGGRfOKxT3znRi8HqftGv/7lz0qbDGFcEPE9BbwDutEYiXPKn73LbvSAg8P0f8zs8pVCei0JoWteVCBzyxBiHfX+H228bh+cQCOe9UB51VTpAYxAwnU0RUrArMnZNRW40pYFdKyj9A+KTjzl7+gmzO4/RxrK4umZ5fcHm6g2XV9fc3C5Yrdbstht2uz37/Z48z+iaxhGWo4DEU3hWEwjBbDziaDZ1VgOtqYvSdYZC4SuXcHj/3n0+/uRjzu7cYZ/tWa6W5EWJVJ7zXvSTAqeuczG3RV5QFRUCGA0GHM7nDJLU5ZGUFXVdUvZUg7LIyfOCvCjI84Ltdstm4yCaTV0h0YS+h25biiIjzzKKskBIQdlnpBydnHJzu+DFy5eUdcn84IA0jbl37y4ff/oxJ2en5FXNsxcv+e6HFzStRngRm13OPivojJtWICAIAqIoJIzcXsn3gl4y7oLCtDE0beM4gx/eu/NVVZd9WEvnDnIgjULGw7QPc/KIBwnD8RgvCjFK4scxyXhMNBgSxAOidID0Q6cv9jy8IMQLA4SviNMByXDEbH5IFIY0dcXi9obF4hbTtZiuZb/dMJ9NePL4EYMk4cXzZxR55typUmCNIVY+tm4QVjAaDgmCkCIr2S+3tEXNPJ3w6OQ+p/Mj4iDGKA+ZxvizEcyGNKHPqq1ZFSWEAfPZIZPBBClUP38XdG2LaWvy9ZrNzTXFdo3O9ph9ht5n6KpCdQav0S5LJFCcL655s7jBBh5+5GGFga4BXWPqgsizPL53ytnhzD1cTR9t2medCCHdodMrWN51HKLPI3h3o7FAi6S1EoRCeU7V5ClHZA08ReQLaEvaco8wDb7sBQzKI0yGTA6OiZIRSnouOMbzUMIQeYK7h1M+fHCHqdR45Rav2tPtllT5jq6t2BUbttmGKJbcuXvM5x9/xF/94qf87ItP+ej9J9w7OSLyFXWxo9xvoevwhCWQLuN5PBoxn06JAh+ModjvqauS2XTK6ckJo+EQ3/MQApc53dTUZYXpNAqJ7/mEQYiSqjdYNSShz3iYMh8PmI4GzEZDDmYT5uMRo0HKOE2YjkfMxgOO5nMe3rvDo3v3OD06IYlThwXRFnyfZ69e8Zfvv8cLQ8qmodUOKyf6mT49Eh4hnHJKuirx7vCXwv0u9/+4nUcgFZ6QCG2g065rMhZpe8qtxJED+iLT9RntxsI2y9ySXwjarmWfFSAF89kBRltevzlHqJCTuw8oGs12n7vu1HPoCG2czN51GK6reWfMdM+Tk8Ug3G5DKRcF+67LMtbiez5JnBAEbmfxrjr6ngNe9i/4R/mqy85wz3QYhsRx4iIB6gYLxEni6MFF2WeN+xgDYTRkOj+hauH8Zk+nhkyP3mN09BHzx7/h6IPfcHT/Y5LZXYwWVEWObDv8tqWoaqeiyvas12uub664uLzk4vwtF5cX7NYrkiAgVIJQOGjkZJAwHqREQcgwSYnDmKjHx0+nM46PDnn65An3HzzA8zzKwnUH76QPTVVT5G4fAhCHMaHv09YNZenUWNPRxO2aus51M1VFWRYURU5Z5FSl4381jZNDV2VJnu36vVOH1p0zPFpnB9hst6zWG+JkSFnVVE3LaDTi+vqaN+dvOTiY89FHH/D40UPu37/PdDambVrevHnN69dvWCzWWKFQKsQiXSFoGlrdEscRJ6fHHB0eEgQ+SirnXel0b8bVtF1L2zgitLp/MP0qrwrqpnbky64j8BSjNGE2GjnWSQ8y9AIfrQSdFIggIEhTrPToEHTW0nSaqnXxk0IJpBLOONWbrY6Ojjg7O+HO2RnD4QAlBXm2Y7m4Ict25MWe05Mjjg+PeP3qFRfn5yAE6SCla1qU1tC07i1sLHXVsFqs6IqG6WDC3fkx82RMEiQoFDKK8McD/KMZ7Tih9j1qz8NLEzokutUkKmI+neIpp23Ptls8YxBtjS4Kqv2Odr+l2+2grunqGqUNQQdCG1ph2TUV3715QUGH8EF4BmU1oYQ633E0HfFv/9U/8A+/+RWbfc759YKuc/skt6jsx1SB2zUI6W5+QimscLRi7eQyGCR+MkAoH+UFCKF+XMZ6wuJZQ1NuaYotyrYoafGkQEhFPBgxOzwh8CMHZDNuLCl0g20rRh5MA4tfbhH7FbFtiUUHdGjbYD1LOkn58KP3+OyzT/j4/Sfcv3PCdJigrKYq97x5+QNf//EPfP/1X9itV3hCMJ1OXc77IP0RmR36HsvlgrLIODk+5t7du0wm4x8TArNs59hIeUlXN1hjSUKXFT8YDpiMRpwcHXBydMDRfMpsOuJoNuP4cMbxwYzpaMQgjvAkDNOYQRwzTBNm4zHT4YggCNDGcrvZ0QlJ0XX88ZtvePnmLVYp8qJ0svO+ALgRles23hVxB3E07iSxfVHpu0lhLJ4Q+Ah8JKLTiLaDpkO6LSNYjdGdW1hjnMwVaLUmy0vKunYct75YeZ5DoVdlzdXlDZtdxundB8yPT7larji/dmE8qj/k266lLEs31ul/vusE3OtwS3K3b+w7JevwQta6fZQUiiRJnWLNWuq6L0TuRTvFlpB0ugUkXu8N8TzllEJB9M8jMW2Io5i2bcnynDCI2O0y2haM9VzxOLqDiqbkjUcyfsjB3c+Ijj+hG5xi/SGVCci3a7LlLSGagzQknQwZzUacnZ1xcHTIZOwSLpM4BgxCG+LAYxRHKKvxMKRx2HOcjEvvG08Zj8fMZ3OOj497Ic4Bk8mYru3I9nuqskTiIpCrytEKsJbRYMTp0TFKSrIsdwy0MGIwGNA2DXnuikRZFWR5RpHn5O+CovruoqpcYSqKnDAIsEZT5Jkzw/YpfEVds9k674fzzUnW2y2r9Yq6Lvnoow+4c/eMyXhMVRbc3tywXC65uLhitdpiEcRRQqdhs83Y53uatmYwSHnw4D6PHz1kNBoA0LaukVhvNmw2G+qmdpfq/hlSj08Ov/qxx7aG0PMZDwdMhkPSKMTv55cdlka3NEbTGoMVgqaXZ5le6udcpgrRG57qunLVNd9jTYsvLUkgmI1injw449HdE+6czDk6mDBKYzbrhQts7zrO37xhtVpjjSFNUzzp0MCqn9E2ZUWxy5C1Zp6MuTc/YejFJATEQUQgfUQUkhzMGJ8dE81n+JEjaU4GYyI/oN7uMVnFdDRiNBxhuo6ubkB3eMbiW4ccsEWNrDpsVtPuC9qiJk5StHQXMKUkby4v2BV7tOgo2oL3Hz3g7//614TCENqOzz54n/vHx1xeXPLy5TOktaRJ4rAaQhInaQ+Z85HSUUp/7DpwjCSwIIXzCliNwNDVBV1dEMgOZWqEzmnLDbrZIWlRQoOwhEnIwdEBZ3fuYozDx/i+GznURUa522CyHWFXEXUVka4IFAS+QEYBg/mE43t3ePDkCQ8f3efgYE4c+VjdOrCi7aiKPevFDdluS+Arjg4PePjwAacnxwyHA9IkwRjNerV0nUVPXT04mHNyeupia8OILM/Idjt3Iyudmsp0hiiImIzHjAdDDqYTjg8OOD0+5ORwztH8gOPDQ+bTmYs77jRGawLfZzweMxqNKIuKxc2SsqzRRrDPSyc1tJZ1XvCHb77hzeUVjbau2xD9174vCta4bsIK+l2Gu5q7UtdfvoUrK0oIYiuZ+hHHccqxn3CoQk78mKMg4ShISDwPT0CgQbYdotEoK8BAo11Ealk3tNpSt9rhzw3s85JWw3h2SDgYcn59w/NXb1htN2hrUb6TwEqliMLQLcffjcX6RfmPqXrSjSzfPV8OCeNea9s5T41T9STOs1G7UYUnXZGQSjoHvXZqzCBwQVJSOj9Q03TUTUOeZdB3HE2PgZE47pfuQ6mEkiTpgMF4wmR+xHhyQKcFF4sdu32L7Eq8rkA2G6JAc3w64f2PHzE9PSZvSoq6JklSBoMhk/GYw4MDDg+POJrPmQwHxJ7CxxL7HoMkIuxjhJV0aYJBEOH1OTICGPX5E5v1mou3F6RJwsnxMYM0ZToacff0jAd37/Hw/gMODw/Bwj7LnOrI92m7jn2ekec5eZmT5U6NWtfv9hc9yqTvOIxuXaZMj5ZvdedUqlXLPi9oOoO2TkJuhUtSbOsG3XUcHh7w6NFjfE+xXi25urhksViwXW/Z77YoKYmCmNFogjaCvCzRRhMnEQcHBzx6+ICTkxOspU+OdN6j9WZDUeZuKmL7HtVa1KPjgz461hB5AdPRkNloQhy6VDUhhFuMG4dnaI2mtbbvMJzBrdXG6berhiLPKbKCMs/6N25PsJSWAEOVb2jLjDRUjIcxjx7e5adffsEnH7/P4fyA9XrF999+x+J2QeCHzh/SaoeeaLofIX51WSBrOB7NeHh8j4N4RNApInxCL0QYgQl8wtmEwckRcpTg+yGBF+BLD9FpyuWWfLFCWRgNUpIwwrYttB1eZwiswDYNstb4jYGyhdYtCZPxCCOFy0zwA25XK64W16yqFVoZfvnTL/hX/+Jv0WXG5uqSge8TaMP5+RsWt9e8/95TfvmrX+MFPvusQHk+QRghlFPFKL+fLfcLync9stEtZZFRZBuqImO3XVLst9BV2Danq3d01RZd7/GlRggNEuaHcx4+fMTB4SFZVmG0ixPtuoZ8t6XKtyS65SDymEc+CR2+hDAJGc3nHNw74+j0lPF8ShCEdE1NVWTsdxvKIqMuM4r9jrYpGaQJd8/OePzoEaenJ6RJiqcEXdey3WyoyhLPc2ORpmlJ0yGT6YThcIjyfPb7PdvNmip3HKqmauialkB5RH6AEhJPCAIpCD1FEoYM4pgkjDG6Y7lYs16v3PJ1MCQMHOl1t8n5y5+/4cXzV2RFRV41VNayb1qu1mu+/u4Zt+sNRig6bVFSOl9E351Z7d407kPv/O39rcv+s6LKjbYMA6uYeQEn4YBTL+TYiziSAVMvYqwCEuUT+B4DPyRWCh+J7YwzZjpNEp2Fsm7pWk3bWkeWNpIwGeJHKZe3N/zlm++4uL5x8lopaFr3pvd9F3wkkA7K17lMe6ecciMQJ8t1yXzCusmCtaJXkbnOIowSZyzs3IxbIFHSqcVMP+6QUhL2o9d3HUtTt25EU1RkeUYcJaRp6v5srV2R6pVeXd+51J3BCI/JbMZwNEUbWKwytpsdXlNwOA548uCER49OuXPvkMN7B8xPjimbmmfPXnB9dcV2u2O1vGW33dE2lbv8dS2hEKRBQBqFBEoi+66q7TrKsqSpG66ur7m5WeB5HtPJFGFdHv2b168ZJCn37tzh5PCI06NjHt1/wJ2TU+bTGWEYYK1ll2VkZUVRFmy2W/Z5TqudjLltW+coN+7S55hY754d8yPk0Y2w/R8vj0455RIZDZAXFY1uUQh838OTitFoxCBNub654frymqLov+5Z5kQ6nkfoO4it9EL8MCIIAtJhyuHhoZsACUldV2y3e+d/6SGVTmHlnodOaywC9fj46CspLJ6UjNKU+XTsYjOFRUqB7wcIJfBCtyDX1lI1NU3b0bQO2ldkGfvNjny7Y79Z05YlAkMaRxz3rWNZFD3dMvjvAulbwiBgNh0xHQ15+vgRcRSwvLlms15TlU46Wea5W1x5/bJOKULpcZiOeXhwxslwTipCAiNJZESoAqQVWM8jTGJ8P3BhPvsSr2phl6PXe9rVhmq5oskykjAkmk5Q1kVEeu+8FP2SKPAjlO8TRgnpYEgYxf1CWxCGAY2AN4tLFuUaYrh/9w7H8ynb5ZLdcskoTRgNUrL+BvLxxx/zi1/8AmvgZnHrYjwTd3BGSeL006ofQwn3RhXCOZjLYk++21Dne5pij6lLlGkQXYnQFbreY3RF4EukdJnb9+7e5eGDhwip2Kw3bjHvK7KiJN9vEdYwiQJOpmMOJyMi30PGMZPDQ44fPOLw7n2S0RQZOCllXVWURU6R7Sn2W3bbpXPWC8t04jKnDw4PUJ7nWvG64vr6iuXiljiOSNOEuqnxPB8E+EHAaDzupYC1w1c3jZMs9goTiTObWu2cy7rtXHhS26K1pWpabm5XvHzzlt0+YzCeEKUj8rLufzY8e/GSb394xibLKTrn6s+ahovFgh9ev6LqOmTgOQ+EVD96Mdzs3x2kBtvj4nES1v+/bsP9qoChhmFniJuWqKkJjSWWisCT+AIUhlQpZn7IYRAzCWIGKiSwYDsDxhV33Xf4nXUXtbrtqLVmm2W8evOG2/WKqqmxyu1GqsblZkgBUnlEoY+SzoeltSM5e75jUr2D+dF3UULIvjOh34m4HZlTurkRnaMdu1hdrTVC9gvv/26sjbVu6tA0dLpDSsVoOCaKIuf+f0eokNJ9Dkr+SOPtjMOXxGHMeDTgeB5zduBzMlEcDEOOZxEnB0OS2KOqcpTyODw+dpeDXUbX9mFYP8bBlqRBwMF0ynw0IvBcMNU+27PN9uR5wW634+rqmsurK5euJyArcm4Wt5Rl4cY1de2yTeZzktiNwsIgRHctddexrwpW2w2r7Yb1ds16v6VpW7R0FwynQ7V4SuJ7Ct9zYy+XFSfROBnscDTqkfsJcZKSlyVl1aBx0v6mbTDaoo11xl3lVIatMVxdXbn4hzBw8QR1jeyVdZ7n07QtfhAymU5J4pjRaMRkMiYMXacopMuqXyxvyXIHaiyr0uF2+u8ZwqKenB5/5UlJ7AcMkogkivF9d2AlSUyUxCjPIZat1ezzkn2WUfauzLynkzZl5eItjWUQhYwGA8bD1CWOhQEvX77k8vKSdDBiNBljtMZT7qajW6euiUOf48NDppMxnvLZ7/bkWUme5e4B8xR+FBApD18oDqMRZ4M5k2CArxWBUUTSkX6VdRJIg6WpKta3K7LrBe1qR7fZYXYZqqoxeUm532GNZjoYoqKI0Hc6+ChKiKKUNBkQJwPiJCUIIvwgcPNvIQDpWF1xxMXimueLN1SqYZSkJIFPV1S0RU4ahhxMJxhj2O+2hGFMHMfc3N6yWKzQVqLCEJSH7797GHBtvW6c/FG6m4luSqpsjzAtPpZICUIl8GVHIA2mLRGmQ0q3CB0kCXfP7jGfzdltMnbZzi0wfY+8qujaBk9IBr5iEgYcz6dMBgOi0YjB7JDx0QnhYApegBHuMO2qBt26nPOucVTbItv1iIeQKIxQQrJZr7m9ueHm9obzt2/YbDeMRilJEqONJQgjqqqhKGo8P6BuGqq6pKoburZ1caRlRVO1KCHcOE8ITOdUQlXVUOQVu13OYr3h7cUVl9c3bPcFVdex3eVcXN9yeb2kalr2eekgb7s9WV3RCklpNOc3t7w8P6c11hmxjJMIvysc9Lso4/BTrs8QYK07DETvTbIGJBZlLEcqYNoJ/CKHLEc1Db51y9lQ+cRSEGvBEMlI+Mz8hHHgUg7pA3jqTmOVpDWWzoIViqpt2ez35FXJPi8QSmL66NmqdUwq08u93aHv0CMACFcAjDEubte9CIzzAyJ45xtwI2GtLUKAF4QEQdC/cPfibf/3uKW6xFjnJNda98+t84uIPrd8NB6hlNfnWpRg3Q3Wqbmg05qycoVGawe4jJTieA6PzzzuHo0ZBB6KCoVBKUtda/Z5hu+HnJycEMcpg0HCdDLhYD51vqUkYTIccnZ4wDAKMV3Dbrvjdrng5nbBer3h+fOX3NzcEAQRAK/fvOW777/j2YsXrDdrjIHNdkNdOQWf7vPP27qhzDOW2y1XqwUXNzcsN2vWuz37quitCxqLoxsrqYijgCgMCQPl1JV95bbGwTOjOCGMYkcgVgHr7Y68rN332ULZ539XVQ30SYr9Rb5uNUHgJNDucu4aAKcallS9um08mjKbz0iHY9I0ZpAOmc7GgODq6pKXr16x2277lYOTC7sjz40+1Kd3z74KpEtXi/yAOAwYpgnDUUqSpihfUrc1u2zHLnMUWT8ICGPnunWBJi7lLvICkp5SO5uMe+djgpCKly9f8r//1/9GEAQcHR26tDEhCDz305e42E+hmR9MefT4IbPZHE9JiiKjKnK2uw1tW9GWJV1eMfYHnIxmJEGCm8h4xH6PiBeO6qiNpq1qmn1GvttTtw1pGBBYgWcFkZR0dUtT1UgpGcymiDBAJhEiTZDDBDmIMWmITSNk4PYOVkCQpqjIo8YiwoCL1S3fXn5PJVoOxkOmgxGDMEBXFaFSnBwc4ClFtt+jtUNuLzdb1rs9ddNirJPiGuEUROrH8HlXAIRwkaKma92ozgqiPlP7XVRs4Em0bZHKPUxJmnD/7n3u379PHCXk+Z66diE6QgV0xuIJdwNSxhAoy2w2Zn44YzCdkYyH+EGENpambJ2Braro6hJTt9CD4dAtbVmj6xrbuoVkvs1Y3i5YXN+wWd6S73f4EkZpShQGpPGAKEzQraEoC+rGtfJlUbp857qmqSvaqka32inBPB/Tq36skdRtR1YUbPZ7Fusdy82avK7orGFfuGjM9XZLUToJth94FEXBcrehNgYRBrRSsNrvubxd0HQufc33/L4IOCEG9Imtol+Hu8WAY7X1Rj9w35/QCibC473RlIdJSiIFnnUjkVrXWCyB75OEEUngE0mPSCh8oYikIPA8BnFE7Adkuy26qRHWRYYinIT23ZDMC9xt01g3PHt3c9dGOzyIcWMhT3mMRxOmkwlSuO6Dd9uZXkYlcAQC9yHnW9FGg3V5PaPhGKXeKRBdFybf4WGMpm2dtNcaTdM0WANRFAKQJAmj0Rjf96hqd+HQ2jqZvXSjtLrpaLsWK9z7ttMaKzTKA+UpkihlPPRJosQVndY9567AaYbpkOl0RKAEbdUHetU5uq6RumM6GJKGPm1dkWU7Vus1y+WC5XLJ5dUVURTz2aefkqQJz1684Pmrl1zdXrHdZ0ymU/ZFwWa3pm7cILGsarIyo2wbVtmei9tbrpe3rLMtm2JPVhQ0usUAke8TBhFh4JFEkdsfK+UuHYBUjlyhvIAkHXJ4eMxkMscLPeqmYbPdEPbS4SzP0J0rstpqhHLnRmcgimPiZNDvJMAPfOLIqcUkirZqscZycnTG/fsPGY/GDMYTDo6Omc4nZNmaP/3lj7x69YKiKNz5Y93YVio3mrTWoj69c+erQDi4WCAlURQynoxJ0gQrDFlesN1tyYocg2EwHHFyekI6GLqHVbtEu+BdC64USRQRxe6L5AUu8P52teH/+5//d/Kq4tGjR0zHE3RTInRHGga0TYlShv1uQxQHTKZT7ty5w8nJCWkaO7KoNFRtw3axpMsb7kwOOB4cQAtlVuMLj8iPCaSPb98B3gyi7ZCtwWLw0pjTg0NCK9BlhW8VofKcA11rkrjHLYQRIvaxkU/rK/Y+6EAipUfguyW2GKQQRwhPIQOPrM55dvOKTOcM4oTD6ZhJOkR2HUkYcP/0lCiMaMoCbd3YrWw0+6yi1jiHuPRQnlvU+cE7PbXnTG/G3eRM01Dsc6fMMQbROSS+Na27NfbzkqZpODo64dOPPuHk6BgpcPsCo7F9gdIGlHB5zqatsLpjOB4wn08Zzid4QUDXQZFV7NYbNrdLdqsVxX5PU+a0VYXsfT9SG0zTYdsO0xiy3Z58l1NlGWVZEnqKyWhIGkWOMjo/RAoXSVkUFdvtFiw0bU1VVq54VDW6btGdcXkYngPvae1yuvdZwXaXsdnnbPKcvK6RvsKPYqxU1I3r1rwgIIxDqqZhsVywzXKCQYIIQhoEedOyXK8oqgYrJL4XuErxzrth3OGsrf2xeIi+45D9LVzgTG8jFGfRgPfHE+6GMcPQw/OgMQ27yqlodNfhAz6KCEmIxLPasdAwRCpgmEbOdFlVlG2FUAItevmukijPlayulw4rT+GHIXEaI5XvRhVNC9oShRHHh4ccHBwRBqGj/na1y+MwuDGKcMMUIXr8jTW0reNaDYcjDg8P8VRA1zbo1rGtrHXjpbbTGONUWFJKqqoBYV23HiWOTBzHgKSpasqicr4W67D7XT/fbztXSAwOEKmty+doOoPVLcr24hDjRmlNZ5BCgfAIA4/AD2ibAroW3dXst1t0WZH4PofTMWkYoduaoiio64r1ZsfNzQ1REHH33h0++fRTBsMB233GPs9ASE7v3OHO/btoDNe3t+yyfb+kLlnvM+quY1cVXC8XXN7ecLtds9nvqXrCcBAEhGFEFAREQchokBD4HhLHMfODkDB5R5oOmR8d8vjxUybTUQ+m9Hjz5g1RGNA0HfssQ3oeRjjRhLVuF+a+MB5pmhKFCUIKvF5OrYRCWYVpDbq1HB2e8N77HzA/PGE8cZfEIFK8uXjO737/O26urjG2cybSHoRgraHr3CVWffnwwVeB5xH3ppwwCkgGAzxfUrctVVNRdy3KD4gHA2aHBwwmE/Z5znKzweDUEMKCJ93N1fMcDVP5yh3CSlI2NX/489esVksePnrC0eEc0zYY0xJFPm1bOwQxxuU/1xVSehwczPj/0fWfTZZk2Zku9mzX4qg4cUJlpKwsXd3VEn2BxgANMTP3ztBI4/DSaEbyz9Svo/FyLgEMGt0omZUy9NGufQt+WB7ZmEsyraNPZGRkVoSH+957rfW+z3tycszR0YLPPvuMp48eEuKjrONwdMAkHaG1WPWzNGeUZoTKJxp6ttazKJz0e+OY0WTKJB1D1VJtS3CyIHlDPnbbtwRxQpRGksrng8bQK4Pni/rCjyMR1PgBapTgj2Kssqgk4tvrH7ja3jJKQp48fMTp8SG+cuRJyMliQZYJEdV5PlGes6tqrtcrjPIJ05wgikVq64u65p4hhBL3bj9kCzRNLa0TjLSyMDKwFTgs2siD+8HzZ3z+6Sei4Op7+q6l7SWxzlkf5Xw86zC9RrcljpYsi1kcTZnOpigcbVWw36zZ3i3ZLW8pNxtsXUOnCYwh8jyyMCT2I5IgJA0SQuVB7/CckUrI8xglCdMsJQ4j5gcHTKdzjHFYA03bsFpvJKHPWJwzmN4MX3OP1YIjSeKYMAjRncDntrsNu72c7sq6RpueIPCHttEgDvBhlEu2wG6zYr1aQeAxWRzhwpBSa3pn2RUVVduA8gmGe1qpwS2uHJJ5JK7v+w36vuLwlcNHERjDCRGfjKY8i0ccWSS3RjmMUmhlUb3D14am7Snbht7I0NO+bxs5MD2B53G8OCCKPPb7DWVTkWSS59H3miCMRKbtyZC5N44wCnlw9oDpbEJZVXSt+AyiMHzvqva8AOsM3eDdkm1DFHvSipDBubXSPnLAdDLl+OiEMPBpmoH4O5hc3RCspPDwwwA/kAxy5QWMJ2OOjo/wfBG5NE3Ffi9YcWMNUejjh3LI08YN5F4lA/phY+6tRWsR47SdwboAz4+kYh7aQM4pjNZY01Hvd2SJz/npKUcHUxbzGQ+Pjzk6OCAJfbqmoW/FpFc3lQgpAp/ZwZzJZERR1VRthR9GzA4P+PDjj3jw8AGdMby9eMfdckmnO8q6oWwbWivx17frLbfrJctdQW/1wNIaiVIszciilFGaMBtPmU3GjNKMOIlIs4QwTmk6RdtrPD8iSRLZ9BUEgbR8gzCk61pul6v3NOdOWzpjBtKBT9d1pGnO7GAqQVeREKPbtntvbuzansAPefDwnLOH58STDBf7NPWO77/5A9/869eU+x3AwCI0ov7Sf5KF+H/2wUdfxWFInmaEYSClTZYKtyTyCeOEdJSTj8Zko4xsMqHuWr7+9lsurq9EfhfGYC2R/yciplKKMPIJo5jOaJpO8/LtW9bbHScnx0xHI7IkAqMxusPHYWxPFAYoXwmzRvSP+IHP0WIhLKtnH/Lg9Iw8yYj9ADqHdYrJZMbx0TFZnOE7R6BlwRCMR0AcRiR5TpBmmLKhXe7p2w5rzODmtgRRQN015NMR4SgXh5a1aKfpsBDJRmicQ5cNGA1piI4Ut8sVRHDXrHlz8xr6nmePz3l4dkqWiurnYJKLJNUZmt6glcf1csPr6xuqVtMYKdfNgCJByam6N0OKnRFg4L2cLwhlsOiUtA6cJwoq51nquiROI7745BMenT/Ed0r+btOw3W1p6x6lQjwX4nojIUjdHmNbRqOIk6M540mO7dph07il2q6xVY1vLYkXkEcRkzhlnGaMooQsihmnIlWMVUgaR8R4REFAFsWEnsI3jij0ydMcT/l0nUE7SeNbrZbc3t5Rt7XMUYYesu47TGekpeaHgKMspXVZl4200bSmaipZDK3ExAa+YzzKmR5MWMwPGGUxVmt8zyMdT0imM1oLm6rEooSq2rSyEFlRvUgbZ2iNDWX7vWGPQZHrKckb8XFE2vHQC/lidMijIGZUd/S6obM91gcTeMSeT06IdpZd21C27UDjlU1TYQm0xcOQhgHzwxna9ax2a3pr8KIA59R7pLzGDbRaQxCEnD04I8tzNts1dVUPX7+0LtuqFSaaUhir0UNOh2yO0nJTgHxocMl7Hnk+Yj6fg/Oo6oq+09LGQhzHYRgMpa70wZ1zBEHIdDJlMp1QljJgLnZ7qmpPVVagHEmUDNdbDIdmUK7BQDt20FvQRmEJsC5EG0XfOppelEqdNnRNj9Ytdbnn7vaCardmnCUcTscc5Dm+MZi2wTYNfSfhXA6ZXWmt2e12lFVJUZTcLG9ZrtZoJ2iRpu+wwHKz5vLyil25l/jgTioKFfhsi5KiqegsaCBKMg6Pj5jMDkjynFGcESkP22uyNObB6SnnZ2fkeUavW7a7hu2upW4Nq+2Wi3eXLJe3bJZr1qslysGnn32ENZbX795Sdz1W+XTaoo0bEic1xkjMbpbmTGdSsRhjsb1ki5jOUJUV+10Bgc/i5Jh4mlPZjqu3r/juX37Pxbs3lEWFtZJFZJ1F94LGEZGIw//tF198FUUxSSLc/DRNycdCZczyjHycM56MyLKM8XjKeDrjdrniH//599ws14ynB2SZSLlC5ZMkCWEortLAD8Dz6Nqesml49eYd6+2WKIo5mM04WhwKWqJpJDFNeSjfk94nUmbdf6FxHIsJ0POZz+YcLY4I/ZDVeo0fhzz/5CNOzk9RIbRobAgqj/GzkCBLiEcZcTYmVgm6qOmaBjUssmVbyc2RhDDLmT1+SHA4kwfBOjyn8HzpQave4aqevmxRCMFW+T6baseq2DAeJ4RYymJHlkY8fHTO2dkxx4u59BPHwhLatx27uuZ6u+V2u6fRlqJuZVhtnODtfanecEKlNEPZ2LQN4IRfNYhYfF8S9iQa3lFVBfPJlJ99+SXHhwsCz8cYw2az4eLiiq7vJe1Lt7RtQVdvMV2B5zSzccbZg2PGWUrb1lT7gqYsQWuyIGSSZszHY2a5JC5O0ow0ioiDiCxOyZNMsDBRQugHJEEgwDfjsLoHixjUjMah6J2l7jruNmsub24oq3qIMRV8OUYWI98XR7I2clrue43yfOI0I4gkh8JZUX4kScxsMuZwNuFwOmUxO2A0npDlOaPxlGA8wSQJ67piud3RaUPb9UPynayj/oB6UcMihhpwIXKRpZUlvRbwIdSGsYNP0hmfT484iWPifkCXAFEQEnoBsfFJ/IggTrCBIHwK3VO1olZ0VlI2nbP0bc3R/ICTg0NMb1hudtS9xkszGudQfij3BXJI8oKA+XxOEIVsNxvqRjhsynnCNvOCP0VAK49eyzBbfCn/PaXAyTeM8jyyLGc2m6HwKMpK0NqDVFywJKG08AbRiO8HRAP8sG1adrsdRbGnbSSt0VmL53v4Q9/cDrJghxvibGWGItEmDuUrfO7FNJId3ulOJN7bHV3fMx1ndG3Bmx9/YHl7SeSJcq0pS968eslmeUfgeQKb7FqcFcUhDsIwRGuDHiCDdSuVfVHXvLu45M3bt7Jp7PZ4yFrlKV8yaMKI9b5g37YQBDg/xAsjwiQV02YYMslGOG24vbmhqSsmkynHx6f4fsy7Nze8ulzSBwkm8NmUJZfLG3Z1ybrY8u7mCo3h3/31X+P5Aa/fvmW92cKQqV41jQA5jcUO9OMoiphODsjzESLXUDgnZO22G+aCuy1+HDCfH2D6nu++/iPffS2k3KZpJSRNfhTDuULWGOfA/8vPfvJVFMoCFcexpGyNUuIkJgildA0DuUHyyYg4zXjz9h3/8E+/Z7XdM5lMGU+mxH5I4ImCQ+im8qD1vaZrO3b7isu7Oy4vb2iampPjI06Oj2mHYHfpIZs/PQQMpxcgTWKh4QY+bVUTBGJKMlZzt1kzOZjw+NljolFE2ZfUrsVFPsE4wYtCCMB54Fsf14aEno+HFTSI5zAYqq6h8i3h2YLp4wcEs4ksImVLgCLwfALnofc1ru7RjSYOY1F7jXKSNGRVrvBNz5PTI0aTlMlBztNnjzg5PSRLIozpJcrUGaqup+w7rldbbvc7nAqIs2wYRFuaRiSVfiDXVB6uoerQPZ4nbSyrNWoI1ZJZuvSCrdacPzjl519+yfxghjWGu9sbvv/+B65vrmRgGkBZbCl3txS7W/pyj+s7DqYjHpyekGWJMHOMwbOWCMiCgFmWc5CNhs1CTGyC0RjURc7h4xEg7ZvIUwQOPCsnl7atqZqa3mjwfdq+Y7Pfs9xtWa42NG1LUzV0rVRaOGE4eZ60TozR+Eqkub4fEMWpgPNiYe1MB/TIKEskx7oVg1oYh2TjCcl4TOv5LPuWy7sVq82Gqm4E0dFLtIA3nJ6x4Ck5mYKcimX9cmC1AApDcMoSNR3HLuQ3pw/52eEJizghxcMPPJIoYpRkJH5EiCLyQ8IkBT+g8xSlc/RG03Uao3t016H7Gt3UxAqenpxyeHDAtpLDxt46el8ycALfRw3zBuX7zA8P8DyP9XpFVQkmQ7mA2WzOwWyO0UIjVp6TZEAr15h/QzK4BzqaIWoh+TeqqLpphD015H0oJH3RugHR4ksglOcLKmW72wp1WWuM6bCul4NA4Mm/j6SOMswkre7RfY9zMtz3/Ps5k0Y5qQSVs6AsbdPJbAzHfDama0pevfiWZr/lZHGAMj3vXv/Ij9//gDOao8NDrO4xfXdfVmGt5vzsjPl8PgAiLb3WCP3Cp20blqs1XdsSBSEHsyl5Pnq/LuEsN6sNt9sN+7plX9Vstnv2pahOu77Hd462Krm+umC9WpJGCQ/PH6NcyO9//y0/vL3Cm05onGXfVmyrkl4ZejR13+AHPh99+jEoxevXr7m5ucWPIqzyKNsa5XsEgSdtXStiCMGk54ShbN51XQ8xDSKOWG2XFFXBKIvpioI//PM/8f3331GWMpPs9f2M49/c/1ZUdP6ff/rRV37gE8QBcRyQ5pLa5YdKFvT77PE0Jc1ynINXry74lz9+zXZbMplOGY9nYv7xhk3DC8SMhMI4S9s7qrZltd0NOuOWo8URjx6eo7Ai9RoGRc7KsEfeHwxKeCgcoT/g1APBFbve4Kwm8Hy07lmv1pTFTpILjcE4Q9e3VK0YZmxvCJ3Diz2Ub9GewUVgo5A+DCgDRRl6kKRk+QhddTSrLcp5BGkCeY5pO5q6JfRDqURwqCgiSAKyPGa7ukE5zZMPHvHxZx8xP5xireX27pZXr19xs7xhs9myb1t6FDebDW+vb+mtIxtNSfIM64RX5QbVGk6AiPIgyyngfqGwTg8nX+ERKSxOW9Ik5pOPP+GnX3xOno24ePuWb/71Gy4v3qGUTxhFeJ4o1jbrJVjNfDLh9OiQp08e8/D8AVmaDJAThNyqDbHvkUYJ6QCvc+5+9iKYbfFXGJmZ9BqUyFu9wQNgjcE4y9WN4DHCJKQZPAmr9VpUUVVDVVaURUXXNGCRSmOIaTX6vtqSNzzpk8dpwihPybJMBAyewhojsvGmwwUh+eSAIM5ZljXfvnrLarujbnqcU0IqtpKWp5RQYofJMdaKbt44CTayAyjQVyLHpdckreZ8NOaL8yc8ni+IQ8mwjvMRQZJiFRhjUZ5wxjql2Pcdu6am7HrpHfueeDaMRhsNTg4R09kBh2cP8OKE0jgu9zuMJ3kXnpKZn0JUNAfzOb3pub1bCrJCQz6acHb2iOl0MvgnpBXY9jV6SAR0Q/zu/XMncluDwyNKYtIkQykl+RwiMZODikM2O2Pk6/EDUUZpje4FF+Ocg2HQrZDKzfN8qfqH4bzcIHIPYS1KSbtOKYezYuLzlSBgnJH5V9tUbLcbrLWM8oRqv+bq4jU+PceHBzTljm//9WtevXrB4fyA89MzmkaI3OLUNmRpxsH0AE9JUFXfa6q6pm1boiAgft8hOeJosWBxuCBPc9kclaLrNDc7SRCt2pZtUbLbC2fMGU1T1ew3AmCsqwKF4oPnz/mLP/8tUZryv/6v/8QPb17TK9C2Y7vfUTXFQARv8J3jw6dP+OKjj0mCkFc/vuHm5gacbMy+8oUeDbJmyzAOP4jIsww/CEXebgye7w1evI66ayQb3VqWqztev37F7VKSWMuqxPR6+LkN97/WsuF7Pv5vPnn+VRQHhIGHF4AfeASRpLb5PkSBT5rFjEZj0izDaLi8vuG7739ktd0R+hFZmpFEsQzElWAIGBy2vbY0nYDI9mXBerliu92SJQmPH56TJilVXaK7HoWgoI2zEhJjLW6Q/jljwchJ1kfhOrkJMYZiv+Pq3QW3N1fSEzea/W7Ldr9js9uwryuMckSRfJ9W9aLYCKD3LH3koUY5Nk95t9vSo5jkU1xrKG7WKM8jmU3g9AhbVqzXGxIvlJRIbVFG49DEWUS5XVHsV4ynOfOjGXVdcXFzwY+vf+T11Vtur27Y7rbgB/hJys1yw5vrK5rOoIIA5zzZKAfc+v2JTw07PtZhTC8LsB1Q7RiR9SkRAUShKMV+/uXPef7kKXe3t/zDf/1/c3V9RRTGLBYL8iwX3EhTY/qWT55/wL//+7/h73/3O7744hNmkzFd2wgqQmts1+P6jtAJZ8ofXGJGG7Tp6VpJhuw6MX01TUOnezmxDANmbTR916FNz91yiVFWjErWysax37HZ7CjLmqZqBlluL4PdOJZF1ToBAzqpRx2yfvmeIk5j0qFV6ozBDP99i8MLQpJ8QppPaAy8vLji2zdvqWppm+CGCq63cm9o6d+/V1MZLZvGfX7FYLALFGA0fq8Z43GU5hxlOe1uz2azoSxL6r4TEF9VUTWNZFw0HbdlweVuza6R1pyEdYmJTiHPogdoI7nqs8URB4sTkoMZe625Xq9Qnocf+HhaFI5+GDKbT+n6jvV2M8hiHYeHJ5yfnYuhV4mTuO1bqrJAm37I57g/WQqixDGYYSNxJ4sjfKguzPCqhW9ntcbzh7mIsnKIsJLJ7obDzT0vy2FlluJLVScVjsVzwvhSToPVYkK2GkePbhus7oSQjEW3IvRoioKi2OGcIQ6hLDZsllf0lficbq/e8eL779huVjw4O+X05JSq3FPvt+iuJQAWhwdYbQbCb/uey6X7XqjLgcQfTycTsiRFAV0rrS5nHUVVcb3dsO4qei2zBlCyLsaxSJXbhr6vMNpwenLEX/zFX/Dlz3+G7R3fv/iRt5cXdE5amm0v8904iTBNTR74/OTDj/nk2TPSMOJueceb129o2oa+7YhDUdBZa7DaSLvfyoIfRTGB79P3hqYT7H2re1lzBy+PNh13t7es1nfUdUPXC5fKDR0DT4EzAxZm6AT5f/b5R1+FUUiUxoKB8CEIfaIkIktjsnFOPh6R5jm+H9Jb2G4L3l5cygDJGKI4Jc9HRIEoPpTycZ4vUkGHoEm6nqoU0+B2K8z687NTDg8PRNOtNaEnJ1jr5OGUTUSMSM4OblrnaMpabvi2o+8alndLbm9vKYqCKIlRvs9qt+Vufcdyu8Eox2Q+Yzwd4cU+2rd0SmMCMJGPN8pIjg7xJmPWfYfnhZzMj0gJ2C/XtH2LN0pIDmcY3fHm6gKctPDiOMJoTdmWgk/XPU1bsmsKdvWed1cXvL18x3K9oqlrmrYh9H0ePHrC40ePKNuel68v2O0KfBWgghiLjx4Gj4EnZkzn5ESpgLbthspMFA+AuPx97z0rbHG44Fe//AXWOf7xH/6Rly9eMh2POT49ZXF0RBRFUi15gpj+za9/xV/82Z/x8MEp0/EIrGa7WrHfb7FdJw9u0xGgUE5JMlzX0/Watu1o2pa2aeS1FYNS3/V0uh/kmpqubWmbVpR6947iMITAo+01dd2yLyuapsNaQVZ0XS/+jTjC90QypryhD2/lcGGtxQ4PuFTGkqfihz5+nJBOJowXRyT5hE75XK42/PD6LavNDqtESW+tQXey0JlBqy5HYDFmDZ0ceR1mHoEvdAGrLbEXME1HxGFEWze8fPOal29f8/bmijfLWy63K273W7ZtzV53rJuS2/2GbVOJ2TZOye6/ZqVIwpA8EjyOr3yqoibNxpw8eMTs5IRgOuJqeU1RlySR4IFM36PCgIPFAm0Nu92ertPEUcb5+WOOFscyO1MeURwKMqYopDKUJpPMdIa5hu/JzNH3BVoY+N7AowsAJTJg3ctm4ByBF+BHAdpo2rYRrIgn1QGIw/79FVQyt1KDJcYbMDL3HxP4sBPfiu7ptbjBPT/AaUffy5yi7TqarhGBi+3QukG3BfV+xW51y831OzarJTjHwXjK4dERpusoyz1W9+R5zoOzM9I0xRlH0+khTTBAWQjCkCiSg3OeZHS6Z7vZsd+LJNc4x2q342a7li6C7sEpsjhmnKYEyoO+Q1mN0z1h4PPTn37B3/7133B6dERZlOx2e65vrtlvtyjPEUY+WRwQ+xAYzdnBjJ98+CEPj49ErGMM1zfX+L7P8fExJ4sFs8mEuqnpjB3gp97QVorw/FB+Xlo4g23bUtU1vqdI0wytDevtimK/G2TaWtq1KJmbKQ/PUwSeh+fLx/zf/dnPvvJCyTJwCsAQxgFZlpLmKUkaDzC8EOMUujfsq4qrq1uu7pbUdU0YhYzzEcHgFvYGQ4rzAvk7xtL3mrKVk2hZ7rBas1jMOT1e4KzGR06SUvqKoUcbIzupMVJ5OEe1K7i8eMf1xaW0M3bCyd/v9yhPcTA/IEhCNrst62JL2VTEo4STh6cEWcS6WFH2JUVboAOFnyXEixn50QI1HuGGFs5BOiYwsL+9Y1ft6SKP8cGYIIu4vLuh73uSJCbxA/q2pmlEhaC7hl63vLu94Gpzx2q7pqgKOVF5stnM5jOeP3/O0w8+wFjF9fUdRVFhhVyG86L3ZipPIeiL4aGWG6cHK5WZcxolkUN4A/vGU47PPvmE8/Nzvv36G7775hvSNOPxkydMRjn5OJdFUFk8J+2ALInBGFa3N3RNSVfVFOWOvqkxXYuuatAGz1hMb+iadjihNdRNTVPXwkjqZaPompamk75q3VRUVU1dVdR1SdNWQm7tG5SSga51imYYdJZVhdGWqmop96UQlo3FDC27JE1RSk7ibSf4CmMMdgBOpqNEsDB5hheGpOMx6WhKbeF2teHN9Q3vrm+o+/79CUprMcwZI+Y6rMi5nZOT9/1qp5QMocUQFYh81TjyJGM0GuGco+lbdnVJYw1l37BqSzZ1ybKrWNY7ls2eVbmj7MV0msYx4ziVrAuliBTEKiALY7JApN+mtVjnMZnMmCzmeOOUoqt5/fpHkiQkHVI6/ShifnxE32s2mx1t3TGfH/Lk4TNG4xnWaKJIUt5W6xX73U7QOW74/oZDiCzSPmHoEScSJGbcPWNKWqVCvJVhvkLhedJedUPsr2BPHFZrGEKClBVpMw5hYw2zFAYGkrJG2oPW4DDovqPXf0Kl+EP6YN8MB5JeY5VEF/e6xtkWZRvqYs1ue8d+dUvfNSgrCrHZWHLM+6E9PkoSZgdTJqMxUZRIW+pgxmwyI01SRqlEt84PDlCex367Z1/s6DoNSlzcN8s7Nk1F6yTRNAp8DkYT8ijGNjVdVWDahjyN+OLTj/n7v/tbfvL55zhr2W+36K6j2G65urykrQuM7bBdg+ka5lnCZ08e8cmTJ2RhRFXuiZKIoiqZTCd8/sknPDo543ixYFUUbKtCOtconBU/kh8GAp30fEyvaTtBuTtENViWJZuNyNqbuhKxxL3wY6isfaXwAjFtB5GP/5///ndfeb4vOnJnhyS8lNF4RJplhFEkTmk8jLZ0xlIUNTd3S5arNXXT4fkh+XhMlo/wgwH37YdSeeDRO0c3DEXrph3KoZ7xKOf8wRmh7w+ZG9LTtVagiV13DwYbXKnGsl5tePXqNavlCpSi6Tp2ux1NJ8iK+dEhnu+x3m8p6pLearJJzuLshNa0fP/mBa+v3rEqtiTTnPRggotD4tmY0YHMGALj8Nuebr+j3G5kODVJmBzNCBcHGN2hnSGIQsk03u/wh+qj6RvuNku+fveSytNk0xFhIoyuLEuZjEecHB5xfHLGdDInz6csjh7w6Mkz8tGEfdXSDEl31ll6bTBWepOyIUvQjpT30sYC+eEqT37Ap6cnPHz4iLIoePHiBQrFw/NzFotDSTaMYlHT6J6+76mqUtLFdluc7kijCG+YR1hj0G0LWuM7hdOGtm3RQ0uqbhrquh6ihOW03veappNTTdXUVE3z/vPqppIeMzKA9AJftj3l0XQ9d8s1q9WGXhvKuqGuRW57v3xn+YiT01M835eAGWOG/HFL07U0fUfbC5BTAz0KF4S0VnG32/Hu5o7r9ZbNvqDpOixywpZnSFqDxsgJWg1okWHbAMX7eY2nfNn08FFOkaW5wB+1JvQDJvmIcZKS+xFJIP6WyJdsjtB5pH5IHsSMhrcYX4LK1HBy9wfllvKxziNKEsqB93Z0vMCYjs16yeX1JX4gakYvDAjTjMPDI+qm5e52ibHw+PEzHj96ShwlREFEkqaU1Z6r6wvqupJT/rBpII2qQa9vcMqhvEEQcD+sVt6QuSEXyFcyM5F7UZRVyvOIolBarUPqpRoEBzIIlwr6T9dcPs8OHQbr5IDUa+nNg7CWLIqmEcOjdRJtG8cBWRbhdINuK/p6j21LbF9TVzvh1KGk7RknpGkCztJ3AoO0xg5VairS2fGEUS4hdGmek2c5DsVuv2e52Qg5OfDprWFXFdyt1+zbhs5o+rolC2Men51xMpsROIvqO2ajjE+ef8Bf/+Vf8utf/orpaARGWvG26wk9j8j3pPXpDOiOLPB4fv6AT5894+zwkDj02e13IuMuCpquZTQaYzvNrihpcNxutvRdj0MIxUmWDZQIUa+1nay9doBTlmXJvtxT1eL50UOyo+cp+RndV94KaQwrURv6/+Gvf/uVUxIBa3GDCTAmikUx5Ky0i7pO09YdfW8pa1EN1F0PKPwwJh+NGY2nhGEs4K0gBE94S9oa2gGW1bUdddtSlcKd//DZM0Z5gtEtzskp21ipNPq2HXT8Mmh11rLb7qQ/bo1A8YwWgmPfE6cRs9kBnelZrdcSQOIM6SRnOj9g1+x58eYl7+5uqHXHyaMHTA7n1LbH+BCnCWkcQdvSLjdUqxV9XWE9hzeKiSYp2XiEHwfUpsePQqr9Ht32TCcjojCg7zteX1/w3eUrbB4yPpiSz8akSUSexszHBxwezAj9GGsgSUY8evIBX3zxU87PH7PeV7y6vhY+mLP0bSu9xQEGJ4NoiZQ0Q1qj54kc976d8OGHz7HGcPHuHco5Tk9OOTo6Ih4YUkpB29YYrTF9K8NHY8ijgAdHJzw4OSEOA3TX0jc1umvBGAIEM982rYTPDBC1tutk4+hlIxLJXycwzFY2FK01vRYZZdu1GKfxA4GqNV1P76DrDZuN5Gf3RoBvyvOlTRqI7yHLcs7OzyU/ZRj4GWfR1tB00grdVyW7qpSyPQzRKmBb11zdbbjb7qh6PWw4ck/Z4SQt7Q/Jm7g3tcn7ssABYIfKDw9l5Q2n8P0Q56DtpJ0XOjgIM05HU05nc84XRzw8PuF8vuDBbM6j6YIHswWnowMO0hGhcbSNbMDGSf503bQUVUOnxemvdU+sPE4WBwRGU+237Ms9Td+jwhAvTgnjhMnsgKIouL1dkcYpHz7/hOOTM8nWSHPSLObm9pqLi7forhs2Kff+0GaNRpt+mKV14MkmipPIA6cgDERF6azg1IUkLNdUKVFhSmt1qCgGee2gmX6/Hb+//tZIledkcbLOoa3MT4yTYbrvh/Sdpm46UFLx6b4n8CGJfbAttinpqx0+HbEP5W5DUzcEfiBigLqDwXvTNjXFXjIvGNbA3b5gvVqz2W4py1J8VNpweX3Far1mX5ZYBb2Tzsu+LNk39cARU9im5XA85ldf/JTffPklHz16yIePH/HZhx/y6YfPefTgIUkc0lYNaEtgFXEQkscRZ4sjnj56yAdPHvPs/AGfPnvCZ8+ecXYwI1IK03UU5Z5NsaduW9abLX7gM55McF7Auqq4uLml763gdYKILE2FMu5B20mr2DiDdYaqLNnvd2LmHA6RbqgI1dBa9IbbXQ0eJoZ9wv/tr3/xlRlaAVJBimKka1uaqqKqK5oh6Up34hbtmpZNWQnmV/kEAzU2ipNBTQWdseI8HWI3tbW0A0OoblrWmw1RGPHpp58wHWV0bS3l7FDu3bubtR6coQpMr9nudpRFgef7TMYTOfW2DUYbsjRlNBnTti3b3RY9cG9G4xGT2YSyqbhZreiNJsgSzp8+ZnZ0SOcMtW5p64KuraiWSzYX79jd3aC7WkpHJaf7KBKXeV3VRL6Ppx1JGDIajWi6hsp0XC5v+P72glJpVOyTpAlBFOApRxBGeEqx3hXc3a25Xe9Zb/d0xhGGCZerNd+/fIXFYbUVlIQStY21Mk/QXffeUe6wBJ48yGkSkWYp84MDAbLVDScnpxwdLhiNxiRRBJ6oXZy1KM/R9i26a9F9xzTPef70KcdzmTsVmy1NW+M6+VmI0kV64c45WRx8GeY6WSUw95yk+9nDcOM5JydSi0N5EjUaxiHaOpqmoTeyOWqLbCTaykA7y0nSDIMSqJvns1gsSNIMazRNJ1r+3hi0lYrHWIt2EKUJ0XhC72C53bPaFVRdP2BDRI1krHhC2lYyEaS9Mih+hq/73jzuSRNFvn/kpnRK4H4MG32rW2zb0RQVtqgJe0g8nyyMORhNmc8OOJodspgecjw/5OTwmMl4hHWWsixougZnpIffth2tNjS6Yd+WhNbD8yzTJObR4YJJmrLe71htN7Qe+GmCF4TMZnN2+4LVasPs4IgPP/yY+cEC5RSjkQSoXVy85urqLW6QtwqY0RIqmGUp0zTB13JPfP7BM56cnJIoj6Yo0XWNMT3e4CUKPCUS6fvWnpOqRK7fwKN67wEQUCcOqfTkJsYN6JH7A5KYLS36nuDri1qzGw5OQRgSBrIZONNiTYvqG5RrULohCRxx4LPfbSn3Bf6Qk77bV+iuGw7FbqAwtNyulmx3Wy5ubri4vODq5oa7uyW3qxU3t7dc3d5Q1jW9lcz4omkpq5JqwL20Q2JfXRRM04xf/OQn/PKLz3ny8CGPTo/wPcV+u2G323B9ecnbN295+eJHrq+v8R30fUdX15wcLfjko+d8/vFzPv3gGefHR0RK0bY1ZVGwLQuWmzVtLwKTXlsmkyleGPL66pqruxXOyjoTBsIUDAKpDs3QvVCI6bGqKpq2QyHPY9e1WCtyf+ekzeh76r0QRnGv4jT4v/3Fl191vUZZRxSFeDi6tqUuSuq6pBu47IGSfGGtDXXbs1xueXd7x3q9pekNvZFQnuVqzfXNkpubOzb7PVVVikkricETieOurNjt9ijf48njR0zHOb5SNE2F0b04U9t+6KE6kQLGKU3bsd1u0NYyGo0ZTUZUleiN1QDhYsCGaC05ur7vMZlOydKMfV0LQ8b0BFnKgyePmB7O0MphbEdd7aj3a4rlHburS/arO+rdlq6tJXjFGrqmEXdyJ6FPER5xGOOAsmnoleGu2vGHNy/Y6IZsnEEoYTk4x77Yc7tc8fbdFd//+Ipvf/iRr3/4ke++f8k33/3Adz++ZFkWkqEAdE2DG4aH3SAGaPtORpmewhlNGPhkSUyWZywO55RFQV3VHB8d8fD8nHwkBk3fF5VO23cYY6gHbpJ1BmUh9HwiZI5SbLbc3t5S70s838cHlPJJ44QkSyUwZzwmSeOhPenjR9JKwxNXsx9LoFAQiWiCwZiXT8fSfguFlCqD8Y4wTjiYL9AO2s4wmk7xg5jtvqCuW8ErdD1JknN2ekoQRxTlnm6oHO7xE14QkY0m5LMZnXGCglitKdohF7pp6TqN8hRGy4BfcDfgqWFALGcsGAbj9zMm5ZwcjuSTZYHzlXyPoUevO8GjKJ/MC8mtj2l7ytWWy8tLbq5v6OoOPbRslbF01lDWksKZhREH8zlZNh4k2RD6MUZLJnmAQ+meT0/PGcUJdVvx9vaaZd+i8gScx8npA9arPav1jtPTcz76+DPmB0fEcUqeJRR1yY8vvuPm5hKsEQm9FZ/N0XjMf/yrv+I//tVfcZilLLKM/+mvf8f/5X/3f+CXn33B49NTDucz6qpis19LiqE1lLuSNI5hUAJ6nkenO7zBUHh/Pe+VVbJxyMdRSlRWnifjDZAZpxV1FoEvjDIvoOs11iniKJEhvbWEIWAamnKNZxqSUJF4DoWlqQtZa/Cxg8y/7Tq6tiOMhUK93m1p2o7lZsVyueJuveT6+oaLmxtubq65WS7ZlyVl21C3DXXXS1vKOdq+oxm8ag6HbRvm0ymff/ghRwdTmrLg4s1r/vWPf+Dljy+4vrrm+vqad6/f8d133/Pdt99ycXnBZrlieXfL61cvKXcb0tAnjyJi38M6SSAsm5rNdktnDNaC8kWk0GlDZxzfvnzDdl/SaYOvQsn08Hz8gY6sBvFRbzS77U4qLedoW2kjgxh0u14c486awS8DbphR6U7ICv6//6u/+KpvW/kkK7A823X0fSsqAN9nlKYkSSw4Yacw1lF1gqy+W2/Z7PZs9wXb7U7e32xZbdYs75bcrVY0dYNB3Iy9NjgcZV2z3RWcnBxzfnZC19bU5Z66aYSpEkeSb+sFZFlGp60gQoYoz6OTY44WC+nXGXH9Gt0Lw8VKFoAxgmA4OJiRJhlN29C2PU3f4SUxJ+cPGB8egAdaGfq+pq1LEl9Ma6GCKApIo0gItChurm/oy4Z6X+DqBk+LcZgoxEsjOl+xKvZ8e/mGZbHGeY4gUGgMZV2yXK95e3nBj6/fcbfacLcveXd1zcu373j95h1v7+5o/03UZq8lKlcpJcYoK7prkWyKzyNNQiaTMXEU4vsedVkynU44Oz2VcCSkGrDWUtZyEJC5pEjz7gdhyoiczzQtdVnSNR1RHDEZT4iSRAZkni/hMWGIA3orQ9L7aFsV+IRRKLyvMCKMI6IwkEWgl/9uMGTYe55PVYtM2+KRpSOCJMEPY7phGL4pCjbbPb4fkKQ5IN6MNM8kfCaKpM1kRAnilKTIJaMRvYGibtjuS0E0ID3xprnffOWaKIXIF+3A+2Ioz53DDSdl1HBivp8FKDdkuYeEnidAT0/R9xrfOGI/5CDJOZ4u+OTDj3ly/pi26bm5XbLd7rjb7rhdLrlZL9lUO2rTE8fiFzg8mJPluQSSKZ84CGW24IExHYHWPJrNGccxGsvdfsvb3Zogy0izMaPRjOVmy76oOHvwiE8+/pTZbE4SJwRxyN3tNd+//I79doUaaLzKWtqiYDGb8J/+7m/5T//+7/jVF5/z4ZNH5IFHs99zPJ7wi1/8jN/+xZ/z2ecfc3w8J40TduslOCMqHKWIolAk0PfX7d51fz//GNp+Uqm+36JlcxlOt9YJr0zf+5UGj4nWmkB5ZGlCHPp4HsSBw5kW15dMspCDcUYQKNqmZr3ZUuxLDGrwl/kyVxlmWMoXvhYesnH5w+LqRCzRWvHTNFpTViV120rbLApxONpeY7RURkp56K4nTxLOz05Jo4jl6pYfv/+Od5cXpGnC/PgYh2JflBKwFEdMp1NmBwdEccx2u2G7WUn+RStekqauqBpBnDRaWphV25PlY04ePCQMY67uVtxudhRNJ1JypQSQGkfEUSg9JwdREmP6ntVqRa87/MCnrir2xZ6mrOj6Tq677lFu8NIoUGqQJ4divvb/42///CvdNbJ4WCObRteC1eRpwuF0xmw2IY7kVK2NpXdg8djXLevtnqpuMVZ4KVpbei0O4abtqOuG3so3glKUVSXmrSBgtdmRpRkPHxzjdCu9tq4X1IjyaJqe8XjKw0ePSZKUqqwFCaANJ8cnHB+fkMQpSZrjnGQ7jMdjCfuxQu1UTjHKxwR+QF036Lan6nuIQ9LpBPyA2nT0VkLbre5IooA0FMd25HlgLLQ9dIa+bAkt6F1Jt69wjcY4RzDOmZydYKOAVVXy/btXXKxusM4IA6utWG5W3KxWLDdbeucxmszx45Tlfs+urEAFdAraocduncPoP73fd0Nsp++Lp8FJ33mUZ4wnI6yT2VCaJjw4lbmGj6LTvbQAh+D5qiplUDYEcTknw/jAKXwnEuB4AAqOR2Py0QjdazabDVVVUpRSWW52e+q6ErOldcIkG6S4SomRzVM+2lh2+x3L5Yp9KUNpzxd0SBCENG2PthDEMVXbU9YtGmi15m4pWHQvEFmk1oaqrtmXBUEYcrhYkI/yYTZmJafd8zDKp9WG7b5iX9WyUPgBxhrBer9nNA160GETuXcwMwzGhxXt/S9Z1uRVMeSKD854p0X951lRWiUq5Nn5U37x5S/4/KNPyfIx223B1XrFTjdUfcemLtm2FUXfoFCMk4w4SlHa0TcdnpX/Djh8T+CVqm95MJlyPJ8TRhH7tuXV+o4+CMhGU+LRlOu7NXVn+OTjz/now0/xfUkDNFbz8scXvHz1gt60ktXhLK7r8ZxlHIdM8pjQs6SRx5OTU45nE1aXl3z9+9/z5vVLnOt5/vwpf/7b3/CLL7/kw2dP6eqW12/e0Lad4IMCnyhO0L1EF99fT+fuTb3yMVA4NYzjh8+xw2Zx33HwApEAe54QKZIkIssSSRcNPZJIEShD7DtGsUQMBL6gYYpdyXKzxRiJyxVnuKHTHV3fAZDmqchoB7mxH4bSynqvOJFOSaN7LJY4SYjiWOYwvdB8vSDAIO72w8Uhjx8+ROuWd2/fsFzd4QcBj5484emzD8hGwpA6WCw4PXvAwydPOX/8kGyUU5Qlq9WKuq4wWtM2LVVT0xqNRuF8j6Jq2RclcTbiaHFGpx1v312zLEqqvv+ToVMpCe2KQzzlEScJbdex3W2p64q2HeaVfYevPOaHh5w/fMjJyTEnx8fMZhPauqYs9+RpyunZCR99+CEff/IJ/r/7s199JUwSMdlp06OsI08STo6POTk5Ik1TjDF0bU/RtCgVEMUZTWu5Xa6pmxblBe9vztCPRI/uee/t+wLgcqw2a3ptiJOErtN4WM6Pj4mjANsJXx+naCrh9Z+dPeD50+eMx1NRN1ho64YkSsiyEXmekw6YjnE2YjqdMspG5HlGEEj86igfE0YBTdmw3xcS1pPEqCCiaGt2ZUHZd5KR0TXY3mD7Hs/JSbQpa5p9iWsNkzRnEo+IUNjW0DtDYwxdGpAdHeIlMcvtju9e/cDN8o4g8pjMxlgsdVeLyUp5RFHKYnFKMh5TN73gof0QrcD6gZT4TnIJ7vvEdtDLCydHnjLPU4zHOXmWoADPc5wdn3IwnRAFEb3uMJ0Y2nTfi+eiEaR12/U0nZSrCoi9gDzNmGWiWY+jhNFI8qb3RcH11S27osQ5Rdt1rDdbrm9vWa82kmGsLdoKtkJrYWtVTcNms+H66prNdktvDX4g2Ip9UTEaT1BeQNW2+EFM1fXs9gXGQdMZtoVklfh+gOdJjrPuLWVV0nQ9WZ5xcnJMPsrBIpkX9zMyoyjKWuYlvi8zDaMxelDw3KunuB/CyA6hpKso7yk5CcvvZAm///09UyzwI6FAW2ShNA6nLY/PH/PB8+fUu5KLt+8Ig5AoCKjKGpxU4M4T1E7bNpi2EwOXFDRYC3UjIgblQRKFeFhi4zjNxjw8OcMLfaq+5abcU2uLl+UkkwPeXd8QRCl/8Rf/jkcPn9I0LZ7y6PuGH3/8gYt3L+kHObCvfIIh+hVnsH1HWWx5++oll2/fkPohDx+cMU1HbHdrvvn2X/nhh28IfHj44JSPPvmUX/7iS9q65cWLH2T+F0WAEv/F0NKT6zxs1ojyCiVRuw6Hh2SJADKEtQ7jLJ7z8Yd2qXOWyPPwnBmEHT1ZHJBFPlnokUYengKweF5EozVFUVPWrVCw/eG5MtJestYyynOZh1qJeBUTa4vWepjJCeNJKY8kTUVxFYSYXgQVzgBKmHxVWTAdjXn44ARfOdabJU1dM5lMOD0+IwhCdCcqsiAICeOEfJSTJDHWOLa7DfvdHqMlGrYbKMReKJELKghpjaOzEOcTXBBwfbvixzfvKJuOzhqUk6rJWYcfBMRRIrQApSjLgrKsBLnf90RRyPmDR3z++Wf84uc/5yc//Sk/++mXfPmTL/jg2VPOHpzy6ccf8Vd//e/4z//j/8TPf/EzDueH+H/95//DV/fHATMEpU+mYxZHCxZHC7Iso9cdTSND6L6z5OMR8+NTCEKub+9YbjYYLeWfHYaiouce+pi+J1WIM2x3BbthuO0HHspYZrMJWSzGqSSIKaua/b5gnI958ugpi6NjfCUa8d12jzGGyWTKZDQhDhNWqxU3VzckacLBdEY+GZPnI4IwJMtyjo4XjMZjcexWHS4KsVFE2XWst3uW2x27qkJbTVlVEijfNDKYH1L4+qrFNJpRlJFFCWmU4Pk+vYK97dk6QxsHJFnO3WbNtz9+z+XNFWHsc3p+zGQ2xo89Aj9CBT5ZNmZx/IAozrhdrVgut2hjMUph/QCHEuSFHc64DpHkKnm4tBlkugrSNCZPE+IkYjaTsJy6rtjtd7RVQ9d1Qzla0Na1qFgU4n+wVtAsjWyUB/mEo8PDYTM2RGFCmmUUZcnV9TX7XUHT9RRlxe1qxe3tcqg8GjkgdJq273DAvihZ3t3x7vKCm5tb6rYhDCPCWK7dartldnBIkmWst3u0s/hhjPU8DFC1LfuiGqBtkkSJFdy2HwQUVc1+tyOKYvIsp2lqbm7vKKoSY6HpNPXQ3lR4aKPp2l54X4OSyvaDiXK4vsrJsPuemTYciv9UZjjhnklRobDKI8oy4jTHCyKcAWulHgmCgF5rfnzxgrevXzObTDg/PgHESaw8i4cVRqITtH1ZVdRdgxdKVHPbiNow8H2iwCewQuAdq4CToyOiKGBT7Sh7TaENNkpQozGvr645Pn/Mz7/8FVGYst3sUJ6i2G/57oevuV1eY0wnA34Gk6OSHjbKMJlMSLKYzXLJzbu36Kbl9GTBx598zNHxnKurC/74h3/m7vqavi15/OgJn378EUEQ8ur1a27ubphMxijl0RuNui/fhlc3zOgEXS8bpVxfucj2vuLQDocTI6Sv8KwjDJzw2VxPHChGaUioIFCGcRqRpAlODW1159F0mtVqI4IObxjaW2m96F4TxRHj0QiUmE7rthQkfd+9P71rY4mjkDzNSeJYFmdjMZ3YBtq6w0P8PWkWMZ3meD50TU3T1FRlzd3NLZcXN5RliTEiEtpsd1xeX/Lih5e8u3jH3c0dRV3gsPhBgEO8S2mSYz2P3kFhNL3nQxhxu9rx3Y+veHd1S2eNqP0G3paxQxRBmhB4AV3fURcNZVnggMViwZc//Rk/+/mXPH/+MWcPzhjlI8JIhCGz6Zi//Is/5+/+7m94/uwJi+ND0jhmv9/h/4//4T98FYYxeDLYnExnPHr4mJPTU5I0ozc91YBK6DuN83yms0MOj8/wo4zr2ztubu7Q1jJ4PQddvDyseELcdDhZgK3kRCsFWZIS+JAlCV1Tk/ohCthtdvhewEcffszzDz9kMprQa01dNlRVxXQ849H5I04WJ/hBwOpuSVXXHC2OmR/OiYLwPfc/TmNOT04ZT6ekcU6UpKgoZltXXN7ccrNastrt2FQFSkm/08PDauHPv1ffaIPtLHmc4jvpbXTO0YSKPgnRk5R4NiEb5ex2e354+YJ3VxcYT3N6fsLx6YIsiSXfwMAon3L24BHZeMxqueV2uZIHxfPEe4AczryB6eP5kgqo/CGdbpCTGtOTRjFZLtXBwXxGuduxuluyWa0py4JiX7DZbMSA17UDd0b8D3aYRuq+I/ICjg4OeXB8SoBHVQo8LUlTmr5js97IkLCoWC5XlGU98JSErVS3LU1biw/CGpa3S65vr9mut1R1Sdu0FJU4ZT1fwptOTs6YHx6x2u3YFRXxaMR4doAXhLS9ZrsXcq3neQSeZAswLHQW6HuRGHZdy36/4+bujrpq0NZQNXKquv/62mbAaQ8HG2ss1g6LmgJPBX/aHAaE9PuKY3h173/vYQlwfkyUjpjM5xzOjxmNpvh4tIMHZVNuqOuCqqsIPDieTzmYjsnDkFGWEicRozhlmmakcUpvesqmoq1bFI4kEvVQEPqCf9CG0ABtx2I+ZzTLWe/2lLpHeyFVHNH4Icuy4osvf8HTxx8IIkpBEsdcXr/l2+/+le12CcoShjHWQq97IcSanrqqMEaqvDj0odNcvHvDm1cvabqa+WLO8fEc22tevf6Rzd2Kpih5dP6QX/3yF3hK8fXX/8rt7VJ66vcCg8EvoxAjJXhwnwHyPgtk+GE4aRtaZwn9gDRNSUKfIFDkacQ4DcmSkMkoJg48rGklSTRUeErmotODBSqI2Gx23C3v0J3G9wffyTDz6/ueMAgYjVKUAz9QeIivDDzxsSBEhixOpd3XaXTTIOlJDgx0ncGYP1VY84MJoyyBYdbTtz3VtkJrTRwkBH5I32u2uy2XF1e8+PEFd3crOt0RhcKYyrMUzw/wnJIZTRRTWcPF3ZrXVzdcLTe8vLzk+maJdmJiFdmytGSdgyRJyTNhjGmt2Rd7jo+O+d3f/I5f/PyXPHz4gMP5gjASoYEb4oadMbRNhVKWzWbJH/74e969eUvT1vRtj/+73/3tV/iBSBgt5PmIw6Mj0jwTrPBwUi3LCqMd6WjEaDIhSkc02vDqzVtev30ri6ycz2CQO/IeHyLejN6K6zQMpGQMQp8oCEjTmP1mQzJcpDzL+eijT/jss885nC9ASQhMmqTMJjPmswOpNhJJabvfPc9Oz8hGMu8oioK6achHI6azGcpT0kZBsWlqXt9c8eLNa9brLfuqpGgbkjwTQ40xtFVNVYuFX5yUjsgPmeVj4foEPjYOiY9mzJ6cc/DkIfOHZzhtubu95ftXL7i8vaBzHdPFhOPFIWkSEnjBIE31GE+mTKcHGCeKtLKoKboW4ykcUlqGofQn7b25ahiMW2PRVuOsIcsSZjPJDk6TRJQogxjBU57IXTvp54rbuqPVvairBhOhM7IpPjg6YTYa01Si4LDWSRsGBGEQBCRJQppKZksYRihP0bXiBzg7O+OD5x+QJDF3y1tWyyWe5zEejQnjSE6bSsIL0yxjvjgkHY3YFns2RUE2HpOOxxKWFQgsE8+TzdPzCcMQQEQUfkCe5SgFTVVS7HfUrVCFWy2zDGPlvux1T1NJ28cN1YazWu7XYbkSmbrMlO7bK//bP7+/xcFD2xAVZEznRxyenbNYnDKdHODhUe4LatOiPUsySQhHAZ7rmeQpkzxFVxWecizmhxzkIxbZlMl4Qpql+J5Ie23fE6KIw5AsSyVnxjoCoKllAZ8fzajahs22hCRl4ynWWPw056e/+CXnDx6he80oH+OHPt//8DU/vPiapqvwfNksgzAgikNRvaXCnNvut1xcXbC8vsH1PWka0zU1l9cXXN1ckmUpj588JFCK1c0tvhIxwXQ649PPPmY8HvPtD9+zXK/wQhlKS2vKA6WwAO+FBkP1Ie++v95WHhSUQtzuRoPpyZOQURoRh4o4EOOwQwsUUHdUbUs6mvDg/DHZaMpms+Pt67e0bUU4GNucE3yRGXxQ1kpI2r2vRJi90lZzA8gzCgOiIEQ5YThlccx0POZgOmUyPQAvYLVe0dQFR4s5p6dHZHGCBxwdLPjgyXNOFsdDFs2feFJB6JNn+ZCTvuBgPmc8ETZgHMaDbFjjxSGlsXzz5jX/7dtvudluabTBOsl07/perq2STcTzfTFyJynGGjm4lSU//8XP+b/+3/9vPHz4iNvbO5paWotGG6qioC4LdNcRhh6e71iv77i5uaTt7sPjwP/yZ7/6qu8Nbafpuh7PCwiimN4I0baoGnEldj1plnN0cs5svsALE4q644cXr3j1+q3goO29K1T9dzI8zxdDEEogfUkcv3dNRoHPbDKlbxvK9ZZJPuYnP/kpv/71nzE9XFCXJeW+oO966qomjoSOO/zLAwLBk/D3OBn6/3I6z/Kc+fyQMIrYbgtulndcLldcb5a8vbnm8vqGrhXwF9YxG42J/ZBqV7DbbKmLirZpsG1P7AfM8im5F6OsYjQaMzs65vTZExYffcT87IzJZMrq8pa3r17zw8sfuNsu0WgmBxOO5nPGaYqnAsIgJs1GTGcHjEfTwbWvSLMcq3z2TStDOuUThAHOyZxIG03XdAMoUCSonoL5bMrx0YI8TYkCcS3PDw44PztnNpniIRtQkiSAzAHsMHvS2uCMAObGSc7p4pgsSWmrhqIsMVZoAs6JJDhNEpIoJvTEOR0FAVEQ4CuP6XjMT7/4Cb/59a85Oz5ls1qyWa7IkoyzkxNOT894dP6I58+eMx6NOD9/hB/6NG3PriwomkYqDa0JooTxdMZ0OmM0HuP7IQrhUTnrhHnVNnhKkSYxRvdst2vqqsVZJHPCitILJB1OEO0yI3LDosTgJ5AKb/jYsDE4I5kTnvKkdWXBV4J/USrAuIB8fMCDx084PD4lCGKJX3RgtWG3X5OkIR88Pufk8IDQGLyuI/UDQufR1hLdmvgRiR+JAzzLmE6n5FmGc47tekM0MOM8SYAhUBLNujg65Hgxx6K4XK7RacYNji0wOz7hk0+/IAlj6qIiCDz2uzVff/0vXF9fDLklskrbIYZVNlS5zxyK2fyAL7/4gvOTU4q94Ge0kXba8m7JfrcnCAK6tmd1tx7MqR1BEPCzn3/Jp598QlEUXN7cSfDUUD1Lr0iushrmdcJFkmdazpzDJziR1MdBiLMdzvaMkpBREhL6SuJ2lSRfOgfGKNoefD9jPj/l6OgUayx/+Jff05QlgS8blDMK8NHGSSXrheI700b4a53BWKlewiCmrlpG6YTjxQOODs84nD/g6OghDx485fzhB5yePuX88QfMD+Y4PMLAI89SkijCRzFOxpwdnXG8OGF+cMB8fsDR0ZzDxZwH5w94/sFzHj58xMGhCB5Q4HsBURjjeT7agvY8Wuv44d0Fr95dkI4mLI5P8VVIXTUSkz0AGo11hGHIeDwhSSTLSPeGYl+Qj3I+ePoBnqcoij3OSAUeBJYogL4tqYrtoFRrqPdbmmJPtdtS7nbkcYz/0y9/9ZU2Ej8ZRAnO86m1oWxaqs7SGQdhJJGr8zlhkmKdwngBN+sNf/jXr7m+vZW2xzCUEf3WPdtfAlo8X9oLDHOUtq7oupZyv2MyyRinKbv1hp/99Kf83d//LUma0NY1TTUkhxX7QQXUCO+qKinKgnaQxwVBgB8E0o7oOvI8Zzyd4ICyqtjs91zvt7y4u+ZfvvuG7398wWa7Ybfd0NcNi/GYxXiC1/YkYcR0PKarG979+BLTdpwtjpimOV6tOTlcMMrHaOvYlSUKCLMcjGN/c8frlz/yzcvvePHuJQbN048+4HhxODzwoujJRmMmsxlxmnG33nC3XHP28BHxaMTF9Y080E5OlhZDXVWix/ZkbtS2ch3GecbZgxNRvsUxQeAzm07I81zCtyZTjo4lencymzKbzhhPx+R5LqoLX7I+2qZhPj3geH6Ec5bNds2uLOm1YBm6YVjYVDXFfsd+u2WzXlMXBVHg8+DkmKePn/Dg7JSj+SFR4FMVlbQFsJSl8KraRsib08nsvS9ovdtwu14RphlxnnN9e0vd9URpymR6wNHxKXmeo5RPFEVEcUjbNURhJNQBK0PJthFAW6c76qal10NFoQasxb+VMg/uZFH4yEJlB7OqnHrl74RBiEUwKjiRm/q+qG4MivnhIQfHx3hhQt0byrZFm54oCujrikj3PD465Hw2hbKl3W7JogSFz3K5YrfeU5R7yramGRz4SkGURCR5RjzJ2DYl16tbtLMCUWw7lALd9zw8O8VLQr55d0k7ynjXNdhxzp//5V8xnS+4fPeWm5tL1utrXr99wTff/IGbmyuULwuy7JxOECPOYY0MhC2Ok4cP+T//l//C//x/+i88eng+YNWhKAr2uz23d8JY63RPmCRoY/n9H/6Fsi758MOnPH72mL/7m7/h1dtL/umf/1nw8OOJCEQAhyJNpD0n1YW0U+5jkcWX5UjiCJQlCX0meUwa+0SBI1AQeuCFYD0LKgaVMp6ecPLgA45PH/L48RNGo5Sri7e8fftWuFnOwzmPfdHQ1BpHhBcmJPmYMIrJxhN6p4jiEVGUE0YZTx5/wJdf/hkPTp+Rj47wwgPC7Bjnj6iNjyUkTUY8evyMX/3Zb/j4k49QHhS7Pc5ZsjgjIGS/27HbrSnbHXW7o2wKEVhEIVEc45yl1oLyabqe3lo6baitIUhzrldrvn35iqJuCaMM29shHdTRtK2ce4Z2VZrmJANeSOYaYlyu25rF4pDHjx8ReIqmrdBdg+53mH5DGitOjqYkocfdu7fcvH2Lp1vyOCH1FLat8b/82a+/goF+GIQEYYQKQpzyccoXALIKyEcjZtMpUZxhrKJqOt68u+Drb75lvd7hB6Fo3gdGPfdUW+4HYgKHC/xAKK5KLG5h4HN2fEzfthzP5/zNX/01Zw8eSB/eSHSjGgaNURwRDaYdNyiORC8u/+77Et/IBuWQgX/dtqxWGy6WN7y9uZIh1N0tVmvm0ymPTk55dHLGfDIZvCxGII9RTFvXVJs9ysDhaMYim7EYHZAkGRhYbXfcXN+yubrj8tVbdoOR5+WbV9zt14zmE548f8rh7ADfycPieQFxkpKNx/hhzGZXsBkC6Otec7NaUpcVUTBkoTtxWztriKIQ3cvCEQU+s+mYxeGcPBVz18Fs+j6XO/LF/BOFkmGcZxnj6YTZdEaej8iylGyUMclHLA6POD06YTaaisNfGzx/UHVoLQFN1pIlCYezGYezGSdHx5yfnXF2csL56SmnR0fkSUrg+SRhjK8U0+mE6XhKHMfS43aWKAw5PT3FWUdZV9xt1iw3W1QQMJpN8cII4xTK8zHWsdvuKUsZknuex+xgxqOHj5hORpRlyfLulv1+N4TY3PfGBaLnecMJ9t54hrB25GtxQ1Nk2F+QTRmUbCDD7+8Na4EvVZYMzj2CMMGPYoIowQtjrFI0fS9Vqta4rmG/vGUxyvn1T3/K8cGc3WpNXTYkSUro+zRFSV1Vw2K8o9jvaZqarm1o+xY8RRSGdF3HbiNZM0mcEMcpCsfZ8QICn7fbDTvfo0gi1GRCko+pmxbdthir8XzL9c07Lt69HYCB4oNXCJLeH66Tp4R+3PYdXd+TBBHT8ZTnz57x2a9+xc8+/YzxaELXa7ZbQV845RHHKZ7nUdU1k8mYx48fEWcpvhfw8cef0nWab7/+V4qyIPB94UMlKc4OFaCRecN9B0ANCYyB55EmMWkSMx4nTMYpeRKRBD6R7xHHAVZ5NL1GGx/lj5jOTlgcPWQ2mzIZZxjb8fr1C169fInyfCDAmpDx6JDj48ek6ZjDwzM++ugTnn7wlLPzM06Oj/nkk4/5/Isv+fjDz/ji858BIeW+wVoP4wzzoxkPn5wQJg6natp+w2Z7g1Mdo1HCdrfm9csf8VEcHx7jOcV2s+ZuecNydcPd6oa71SDmcJYg8HGeQhtDUQ4IfgtGKVpt+eH1a27WW5a7PaiAPJ+QpjlZmpPnI0aZpLbGSUKSZERhhHOOthGlWFVXss77Pnme8vj8jOPFIaZvKXYrlGuYjiLmszHTPCN0DroO+g7Xa3znOBiNGOcp/uc/+cVXCodT0kd2g1HEDDRJzxd8dBRKBKJ1il4bqraXXI4ffmSz28HA6/d8GXLp92W//P6+R+95Hp6TbAxPZmIcTMb0bctvfvUrfvvbPycMAwkwwgl0y4MwjomjWKz0UUSYxCRJSpxkw0k7QPqRsgBIPKbs1vuy4Ha5YrfbYa1lOhrz5Mlj/vzXv+Y//vu/53//n/8Tv/vrv+bj58+5ubtlvV7TaU2WpHjKoy4qrLY8OnnAB2dPyP0Ep0LCIIZeXLO79Zb1zR3Fdke53/P9mx+5Wt8RTTIOThaMRyNCzyeMY/JRRpiKGWtdFLx4+Yrr1QqDJR2PmUxnbPcFZVFI28BZvMAXJYjuacoShSUKPGazCUeHB0RxSOh7TCZjAl8WgXsly/0w1x+yG1CicU9SkemFQch4NCFLMjwvFPVJFJFkKX4U4COO3yQIOZwd8OD4iPnBAYuDGaenp8ynU3GoohjluWySvi8tsihiOhnz8NFjPnz+nMdPnvDs2VOSNJMHpK7ZDPMN5/uEWYZ2Dm2Fj1Y1LfvdnjCKmc0OUL5HnmVkWUqx2/H6zSvubm7EBXuvNhtw/MMkFnWvUHMy71BKyTV47wqX7ePfvsrfGqqSIcbX8yRxzw8iRpMD4jSVE6FxeANuvOs0XVVh+o7IExpC31QEkU+apMRJKtGjns8oTsX/Yc3QT5fFs61KqqKgLStp6bYaeoNnoW97iqKgalp8BQ/PjonShBe3t7zZbVgqR6kUu7KlqGq2+y26bwmjgM16xe3dzYBo6YD7Vty9zFgkTr7vD74hzfLmlu/+9Ru++/Z7yrsl+WjMRx99zMnZuRB4dzuUJ8FgWhvaviNOEsbTKdPRBC+OmZ6c8PzpE+YHM169fsXtzS15nuMpqCqhsd5v39YOQU2DRNz3PfIsIY494tAjChWRLwgeEIWb8iJUmBOEY5yfEEcZ+XhGmkb4sQf0LNe3/PM//zdWqz3Hx484O/uAX//q3/HpZz/nJ5/9nDSdcHgwww8sSaJwqsWYljBKyEczysrStY6qq0gzj7NHKU8/yDl5oDg9c5yc+xydKZKJ5m79ij9+89+4vb0iSaSFHgYBSRSgbYfnQZSm5HlOkieEsU8YhyRZjAEBdmpL2/bsq5r1dsfNas27yxuq3mCURzKaECcJyg+ZTiZMpgek2Qg/DCWuNo5RQFWLK9w6SxRJu1opS1lsaeoCTzniUFA23jAnyqIY30mqp3Ki+Lt3kTtnSZII//PPv/wKBnmaddhBbeOGh8wbMmbbpmW32XG3XLFcb9gXIsd88+6Csqrel+++Jz9QqTYGLIZCBlFmsLAbI2FAnsL0Hb6CB6en/Kf/8B84OT56T60ENQC4DGEY4QeCd/bCgDhOSNJMkBaeZFC4e1Kn8kUG7Pl0vWa5XAmkbLUBazg9OebTTz7mk48/4fGDB0zyEabr2Wx2rJZ3XFxcsN1tcQ6SIJIeoHEczxY8nB/TFTV9URGpAK0dbS39RWfBao0fBrxbXnOxukX7Dj8JJetYCya6G7KM19sdL1694pvvf6CsKtJsxNHxMedPngCWq6sb6qaSHAQPojCkrkpxyCtH6HvMZiMOplIpda0sJnmaysnRE027QhhCQiGVbAyjtaQAKkXoh4yyHF/J7Eggl7Jx5OMMnEN3DWkUM80zkjQhTxMhJyvYbrZsVitAMZtOmU2nBJ5PVTfc3d1xt1oRRhEH80OS4e/VVS3omboUV6zRWC9A49gVJfuiFFn2bk9RVIMiR7Hdbri6umK1XnJ9dcX1xQVlWUqVi5IqdMhmv1/87+/v+0OFGnrsDhnoymf+28+XKpdhk3HD5mEMoBTjyQFnDx4SxglN01FVDSiPMEpQzqHbDtN1OCsPYtPV3C1v2W73WCtVdBD4xHjYSoK04jBgnI8YpTFZnJDHMVmUkPiB9MizMYfzhVBy25aya1A4Hp6eEOUZ319d8LbYswkUajLhg48/5fzhEy4v37Hbben7lvV6xXq9ousHTLkfEAQ+Mo2UeYNSEAY+SZQQhCF93bJdb9luNtxc33Bze0vdigs/HY3J84yuE3BgXTfC1B2wHvenXt85RnnGr/7sz5iNcn74/ju2mzVB4BGFAUab4eAn1Z3vD3QCPyAMArI0JIoUcRQQhXJijiLJbA+ihNHsmEePP+b88XNG4ynKC8nzMbPDGaNJSj6KUZ5BG8fx8RkfDhXE2YNz4lCRZx7nD8acniUcHSuePBtzuAgwpmCzWfHy5SvC6D7npePJB1N+/WdnfPRpyvyw4uCkY3FiODqzfPjRnA8/PeZwMeHo8IT5bEZddrRNRZ5nHBxMOTo6YnF0xOHRKfPFnHwyEslsnFHWDbuipqpbNvtKVKvLFfuyJp0cEMYJYZKR5COUF6CUR5aNBtuEPOOiFoSu1WLQ1b0AO2UITZZEBL6irSt0V2F1i24lPsF0LW1V05e1zEXahq4SjmAYSECaB/iffvrlV84JjNAOpzW47/kaetOju5bles311dV7+Ne2KFhvt9zcreiHH7y0VERyZ+1A1PRkIXduoC16HqFSAzwL2rYhT1P+/d/9Lb/9zf9A2zZ4ChnKKjDDJqR8aacpf0A6h8JHUoMyQ6I/Rf8taV4y+N1XFdc3N9wu7+h1S57nPHzwgEePHzMdjaiKkquLK168+JEXL37g7cU77obITd2JH0FZR9v2pEHE8WyBrnucVYRhJFGRuz14PvkoJ84z5scLlm3Ju/U1je1IximRH1ANZN+7u1tu7u64Wd7y7vKa1WZLmuecnp6SjcdMJhOm8wOK3ZbVakUYiDwxUGpIJYMg8EjjgMloxHiU4YaI3yRNGKXpMPwVE5W4qqW/L1JcTdM14AQpnmY5aZqjB+Cb8gf0g+ewyg4u05rI92CgapZNTV1XvL284LvvvqNpWx6enzNfHGKdJYhjDJbb9YoffnzBu6tLdsWe9XbLZrtjvd9xs7xjud9RNDW1MagowCqf3lh6I4RPMzi5tZVUSDxF3bTs9wXFXrI7rNHycx++P+4rByX1Fm5Q6Aw6qfeVhRu8Rv9dxXFfaQybiRLESTuEHUVxyngyJZ/OCIKAuuuGloIhCkJRwTlL23ZSVYeBKPy6lr7vWG/XVOWeTrfQ1LiypC1LeaCDgCyKmCYpB6Mxs9GYPM2ZjCYkeY4XhqgkJkwTGtezKzYczw+ZLg757uody76lGec8+clP+Ou//4+cP3rMu8t31HXJar3m4t1bNtu1HEQCMdWpITN8+FbfP/vm/sQ/iAPatuVuecvF1TV3a5lJlW1F3/f4DkF010KObdqGzX6HQ+47yeYO8Yzm2bOnHB0e8PU3/8p6ecvx8THOKjw/wlpD04mLOUkzRmlGkiSM8pA0DcjSQIbbno/zQzQ++8ahXUg+PeJwcUKUZPRa44cRk2lGOk7JRjHOF+nx7OCIru1J0pA47jl7EHN4VPHFTyN+9suMjz6JePRY8fhpwrNnB8znE1arW7a7LevNJfMjw69/c8rieIu1X2PND5j6j1jvJV70FquuSdKSw8MpoR/y7bc/8OL7C6q6wLoWPwrx/IBGO9pe5PdeGGAJ2Oxq3l3d8e7qmovbJXfrDduyRqmAdDxlcXqGDUI04MeJ+KGCEN8PaAdqda9Fxdp2/fuMHBx4vkJ3jcj345BRnjDKYnwfmqqgbUrsAFpsi4pyX1BudqxXK6qdtBfHWY7neZi2x//ww0+/skZiJ40ZuDDG0fcdVVWx225Zrzasl0uqshqGVsIqanstA9JGuD/35zScGlR3UrF4w8k39EPigWrp3dPMtOaTDz/if/4v/0cWR8eUuy1BEIpbdkgeQ0lFoYZWiwpCGFrUskAOxjgrJ0M7VCp100l2rnHMZlOePfuAjz7+kNPTM8ZZRrErefXyFS9fvuLNq1dcXF3R9a0gNIyWJDpj8AfJho/PYjbHOUUUxySjEbXVbOuKDkPveXhxSJBnXO9X/HD5ltq2HJ+dcnwwQzc9++2WvtcEUYQfRvTG0GnDaDzi6PiUKIrwg4jZZEpR7Hnz+uVwbS1t3eBhRQ6oHFkSM53kjLKcPImZzWYcL+YDjkRiTvWwgRrdD0RrK0TZXlRwSgnDx2hNVd5DDy1eIBkLbS9odOUMWINuG4q6ZLVZcXl9zQ8//MDrt29BKWYHc/AURVVTVCVl03C3WvL9jz/y5uItRVXT9D29sZRNw3q/p6gqNkUpoUZhTBgnRMNp1w8i6rqmKCq2my37UrIjdN/Td40kBLbyqnUv98K9iNYNmdj3TRAnw1eFvP7/ak69f3X/puJADWosRZaPGU0meGEs+v8oxlhL3faS+aDkBO0pX6JUvYA4jWlaST3M0hRfWaqyoKn3JA5yJbGcoaeIPJ8QCPAIPdFQOUCFIc73qLRh1zaUfcd+SJlcjKYcPzjn9eqO666FxQE//Yu/5Mtf/JKibNisRQ69Xt9xeXlJ01REUTjMOAbHPAqlhGjw33vjh9nQ/XVDhC9+GKN8hReG+ApM00ngUq/RuqftB4R+11Hsd6RxwtFiTlNWONPx7OkTsiTm9uaau7s7jPFQXjhknUAQBO/NdnmWkqcRUeTwcFjb4wUx+eQAF+QsNy1Xt1u2+1qUR1qIyZ6nCJMQz7dESURV7/n22++5vbkjS0KSqOOLL0744vMRH3+kiKJvidN3wI+03SucumU8DpjP5xRFwz/+wz9x8e4Ni4Xi5788ZzLdYPWPOP2OuvyRuntJlG7xg5K+3xD5GaYL+f1/+54//uGt5IpYx3a7Z7necrvacbsuWW93rPcFV7crfnjxlpdvL3hzect6tx9UexPGs0Oy8ZQozemtpWx7/FBmHEEUSrjebo9TMrsz2lLXDVXTYvQQvHXPDnOaUZ5xNJ+R5wnhQMANFZi2pS1LmrqhWG9Y3i4pt3viMOLB8THHiyMiP8QZi//0yUdfaSPyTCVN8fdmqbKqhlbBDmMMaZwwGo8YjXJBhvSa9WZDWZQy5BoyhGXD8ERYJ/8b6Ky+xG0Omm9nDUkU8bd/+zt+85vfYDqJm7SDt0DkewpvOCEFw7BX+dK2kMVABnrvTXJRTJym4mHwfaI45uDwkKfPnvLgwTlhJAOj3b7k+vqa5WqDUh75WMx7URLh+RIlakyPGv594UP5BGHMttyzrkvWTcnbzYqXt9e8XS95dXvFbbnl3fqO7y9f8+PlGzrbc/bghMXkgMBKdnWeZxyfnTBfHIoSrOsIgpB8NBZnuZJo1uurK969e/M+37of2hPO9Cis6MgnI/I0YTSSkKg4CunaVk7h90qioR0jqiFRzCg/oGla6kp6oPvdlr5rJdcj9AhCCeKJo4jAA921tGVF11Q0fcum3HN1c8vdek3Td6AURV0PldQdL1+/5s27t7y7vuTN5QW3qxV130qEcNvQWystKq1Z7nZs9wVWKZmtJClnZw+YTmeEQTTMqobo2VZihp0ZUgariq6rRVJ9f2oe9oo/bRoDG+lPfyDv36+O/9tfSv7vfvl0KOI0Z7Y4YjSeDqfqbvC3CFK8bTt03+Mpj8iXzaNuGpJUUjSrtiHyYZQlONMRe455mpF7HlHgkyUpWRQRKZ/AE5Njaw2V0ey7lr3u2OmWu92Wu/2GfV1jjWGWjZifHHFd7rmqC8bPnvLL3/2O+eEJt8slWncYp7m6vOTm5hptevxBhnvvU1FqGIq/NzfebyZDqxo3xLf2eIFPPpZwss72dHVNMMwzFdBpjQo8sizDGENT1TirUc6yOJxTVwVFsefDD54xP5jw+vUb9k1P00smRxTFJLEgwZNY8iQC3+KpHofBmI54NOXk4VOmRw8x/kg2yO2Ouq0xVmajSZaQ5wl4jjgOKOuSf/xf/yt311d8+ZMnfPx8ys9/Nsbz/gjun1D6H3H6j2j9At+/A7cFNNiYF99f8M0fX2Jai9N7kqBjmvWMkhrbbmiKa3AFih3OtPhK4zGmKX2+//aWVy8LsnxMPp6yq2pW+z13m4Kb5Y7L2xWv317y4tUFby9vWW4LGuOI0hHT+YLJwZwoSTF4OM8niGK0cygvIAxD+t5Q1zVN04nowFrarqOqG9r3VgMr4VDOMsoSHj8848Hpscw2lCX0FLprqfZ76lJma01ZY7uecZbx5PwhHzx9yvFiIYinOMZ/9OiDr/QQouIFPh5D8tzAYdFaY61jMhoxO5gThpEMb5pOZK6bHd3QQ/N80bCr+/hYb5DgKt7PHTAScxp4HtZoRlnGf/7P/4njxRHb3YY0SSkqwYp7oS/RsQqiKBGKpVIiF7RDW8owKKmk7eB5AQSBZDkkiZwSpyKz09ZSVQ3bouDmbsXF9Q27XUkyHgvKepSLb0LJSf3eaNd1Hf4wAFR+wN1uw6urS364uuCPr17yzcUbXt/d8XJ5zdvbG75/94pXN1dsmgKnFLODAxI/wA3zhThNGM9mYlZEUXcNznmEcYK1iqZr2aw2XF9fUuz2kn2gnJTpVk4IyjqyLGGSj0jSiDiU6NDNesN6s6YqK9quk36nc+8Ng+IulSHv5fU1V1fXbDdrit0Oh2jiwzhEG+lpHh4siHyf9d2S7WZDW9VsioLVdkvZNGjrCGNJSjPWcne35PrulsvLK65XS6q2ozWa1hrBpfc9ZdNSlDVV39FZWO52LLe74YEICaKYKEqJwog4Fg6Z7jVVXbNer/ECjyiKpYXUtu8DaKT6VHhD7rpl8AsoqSLksDGcZO65VMPsZLhJ//TqpMJV+HhhQD6aMDs8IslGQwbH/T/pYXGSgth2eCiiKCYOBvWf8vB8j6ZtCDxYzKakUUDgDJMkZhTHxElMGiWEYSBxqr6PUYraWfa6Z9VUXO+3XG5WrIqSFtlIS1dwmM2ZHS24rSreFHtmzz/gy9/+JU1r2O1LfN9jtbrj62++5vbuFs8Twcv9xuArD88bqg810B6H6+CUkz1XKfFX+IowThjNJuTjCX4Ui6/E86RVHHjCocsyptPZMOS2VMUOqyU8KI5juq4F63h0fs7Dh4949faS69sl+2JH4CnyLGWUpaRpTBh4OMTxHcYRxoANcvKDM/LZGQRT2rZjvVmz22+pKpGQx1FMnAqyRXlQVwX/8A//lTc/vkC5DT/59JCT45Iw+J66+icC/YIguEOxo+v3NHWH52V0dc7/8//xr9gu5ZMPf8Lp4oA4hFA1xIHFc5rIVzjX07QVpoMwyvCCB9huzNf/cssf/nhLGGVMD09otWPfNtytC27We1bbguW2YLneU3ca5UdM5gvmi1PG0xnKj9DWYVCiOpxMCaJIukLGst8XdN2fYhYEmSLUAj0kcoJsHlEU8PyDpzx69ACre/q2wnNyKDBdR982NPtK4m+9gMPZAQ9Pz3n6+DGLg0OiKCIOIpI4xj9/+Owro3s5oXsBTVVTVdV7WWvfCcMoy1IU3vt82uVyyW5f0PU9phe9vJj+nJxUPIEVSuCQTOflRpXSPFAKqzVf/uQL/t1vfyvfSNNRVgVVWVKVJXVV0w1afGct2gguvdOSM933RnwGvR5wwJ4M460Rc5Pn45T4SJq2Y7vfc7O64827S168es2rt5esdsKl35UF+7KgMzVpEhGGHl1T0bYVvgdhKL1EPwpQYUCjLBfbNa/Xd6z6mr3t2eueSnd0WLZNQT2oV6IoYDaZopzCWI0fBGijKeqaoq6ET9RIRkRRFdRVg+fBbrtjvbpFGY3pe4zusIOY4GhxwOJwQZpEksWRJQR+gLPmfRSv7jWb3UYWNN9Da0l2U54/ZEPcyTDT9PR9SxgI0sFoTVtXKAdpnFCst9xcXNGUgmQvq4rVZiNYDN8nTRJG+Yg4Tuh76a06IE5SwiQS5/9wKpc2hsF5oJ2jM4bruzuKuiFOc6GQth1YR1VJj9ZTgiuvqkpOpWFIFIVgJUug79ph+O/QWsB1SsZCWIZK5H214XCIaxgQD5An960x8nHfU+KmDWOKuiTwA8azGcoLhIQcRkJGNYKkwcpQ0hlLoDxiX0yqnhdg4b303LYNaehxMptwMptykI9lZlQ3aCxNpynalhpLoXvuqpKrYsemrdm2LZXu6bQA8iyGyEUcHs4ZzWbc1RWl5/H05z/n9IPn9JK7hXOGi4s3fPPN1xT7Qg4fvpRlUqlLVaGUyJelvnp/qXA4/EEVaawjG+XibJ5OSPMRQRyiwgBCn3agQwR+QBzF4vJ3jrKSrkXdNMPgPUb42h7HR0d89uknONPy7tULymLNKI8YjyKi0MP3LcppiVK2MdqEhOmCOD+itzF+OCaOA6qmwFiD71mqqkYpxfHiiOl0zMF0hK8cd1cXvPrua5rtBecLj08+GlGVf6RcfY/er6A19L2HsmOy9BHOnPLdNwUvvt2ymD3l+ePPePb4GYvZEeNsQhpPCYMJgT8mCg/xmROoI6L4HJoj3rzseP2mYbPy2Owb6lax2e25vL2Vg1PdoZ2l6w1OKfLRhPliwXR2gB+EwtoaDslN28qIIJKEVuUraUcNz0QQBOI5ckY8V73ESrhh0wDD2ckxT548IgkDcDK7blsJ5urqmv16S1vVTLMx56dnPH/yjGePnnA4nb4fMfiekteTo/Ov+l4eRpAhlzVWbvphkCrqiwhtLF3fU9fNQEM1WCto4T+d0AbX+DBpG9rO8pAOLSs1pH1hLT/7yU/4+MPnlEVBsd+z3WzY7fZ0bSNYbt/HGHm4mqYReVnT0AypbU0jb1UtiJC27ei0UGDv39abHRdXV7x++46vf/iRF69e8/rtFW8vr7m5u+N2veZmectyfUdZ7tC6w1cW3XU0VY3nSRjUdDbDj0IIQ2pnWbUNO6vpowCSGKKI6eGc2WKB8cR42PU9o9GIw/kckFNClmUESUTV1RRlRaN7lPKF3t71KM9jko/AOVZ3t9RVSdfUmL5jPpvx6Sef8OEHH/DwwQMmo5wkioYSMkLh8ANp0Xm+T9v2kvfdNLRdTxAEbHc7Vqs11kEYxlRVyX5f4O615FZIyWmU4BvF25evWV7fkUQxCo+6bsUjoO8JsxDFsnn4nk8v8iOiRFyvTddRFjVN1+MFIXGSEqU5KgzZFRWb3Y7eykaTZjkOj7YRV7XvSfldFCX7sqTvB4y956OGoWzf9UNlNVSeA73g/p770933//3qrDxXcu9CHMdEYYQxhk73kj89mgCCa/eCCPAEQHd/zyuFNXLNBAOAHLq0wQ0VIgpc25BFAUeTKQejnDgKqeqabVnRWkdlejZNw77vWDUNy7pi0zaUxtAhen48ORwpJfykk8UR6XTKj7e37Kzj89/+lqMnT+k6mU0U5Y5//v3vefHiB6mcA6kwlJKDnMwf5bl9f13+TUfPRz7fyEViNJkwO5yTj8bESYYKQkHDBD52wMmEfkQcxgTKxxrNviioWzGQ3vuxhP4ACsXBdMJHz5/y9MlDlDOs17f0uiWOFJ4SiqzCJwhGTGcPWZw+I0gOKCtN0zn80ANfKvIsz4jCmCgYyM5xwihLiEPFy+++47s//gH6DfMxPHuUEag7mu0ddI5qZ9E6J0meYM0p19chy+uAJHzA04efMZ+JS7ttevoerIloWsVm03Fz07C801xdtNxc9SxvfW5vDbtdiB/OKeueNxc3rHZ7iqqm7bRghTxf2utDvnkUpzgnB92mE0Vp24lopWpqmlaMrVob+q59H3UMMu/VWg9k3x7rZB4q5k6JXzheLIgjH4xGdzW67eibjqassL1hNp7w5OEjnjx8MuCHJkRBOLTqRenmBz7+yfHDr3DCIHJuyLAYBqb9kH0RRbH8WS9k0aqRk6BSHnYITXLuviV1X/LLTaG8QS8/oB4Cz5NgIWsJA59f//IXHC8WrO7uKPY7qrKkbWuUpwjjCM/36Lt+2FgK9vsdZVlR17VA++qaqq4oyordkJJVt0KdXK6X3C2XvHz9ih9++J7vX73k21c/8vbiiuVqw7YsqRtx6+7KPftyh7UdmJ4sifCBYr9DoZhOZ8RxKv4W5dF7isZZdOATpClxNiJJM9JUkBGeL7wf6XNLOl/TdeyqPSrwCZKYumvZVyXaSja28nychSzLeXB6RpYkXF9eUO63jNKU87NTfvXzn/Ozn/6Ex48ecXJ8TBj41HWNMpbRSFL5wiBkPBkzHo3xfH8wUw4o5zBity8k11tb2t6wL2uaVuOU0Htn0xlZkpHGCXmUcHt1ze3lLWEgD7y9x49EEtakBvVN6PkyjO96GMx6zkqiZNd2KAdxlJBkGQQhWnncLFcUTSPzjTBidjAnimKaumacjzk4OECh2O737Pd7Ia0OJj5QaCNZyUbLLEfc4EP3fuhK/f/9pWTRF0NcQBTFtG1LXdUohbjv85F4QpSPH4agfKI4whvMiW6gkDorD6nVw8bllMAegSD0JISpbfB0zziOmSQpAJv9jtvdjsoYSufY6p6N7tgZTWE1jUJQ+0P7SBAdnqgSfZ+Hjx+Tzg54t1rRxQk/+cu/ZHR0TN10OAc3Nzf8v/6X/4WLy0uUkqhXpaQr8P7t/YX60/bxp1/yMetE5TadTTk4OCDLR0SxpPD5YYAKRBqq8OU+8UOUEzNb1TaSQ993GOvwg5Awjt+jNfq+YzIZ8/GHH/KTzz/h7GSBMS3FfkPfVfRtRxDEjMeHzA6OmRwc4YUR+7KibirUEOvcdy2giEPhfUVhSJqExIEi8i0/fP1HXv/wA6mvoGuJfEWkfDb/H7b+s9uyLDvPxJ5ltj32nuvCR/qqyvJVqCoQhk0SGq3m0BClL80/of4R+b/UkoYkgiSAhmmQAApl0kZG3Lju+O3XWvow176ZVHfUiLrhMuKcfZaZ852vuetwzZz9dsJmN2e9mXNzM2GznmLNY85O3+Hs7IKz1QnL5TwGkDVsDw27Q8Nm17PZOq6vW169qri/D4SwIklOUWbK4BSb3Y6b+3tJNx0Ghk6iLDSBLLGURUaRZTHuoKPpWskIb1txy2hrjoc9h8Oe4/FA37cyD3aC6GilhOrfSb6GG6OeEXYl3jHJMy7PTskTS1fVVIcDfVPTt9HNYTrnvRfv8P477/Lk0WPm0ymZkXA4G4lKAdlf5vGjF58oLVqNELFkEOWtcNc92uioyB3o+oGmrRmcI81yvPd0bSu6CyVkRqWky5BFKssveI/VGqsNiVb0bcdsUvKrX/yCSZmzWUsMpVaasswpChH2eR9iClbNbrdlt9tR11XsPARWq2pxwt0dduwPB3aHPVdvb3j95g1ffPklV1dv2e/2XN3d8NnrVxK/2AvMECJTa/AD3nekRpEYOF8umU0K6mOFNUbsv4uC+lgTFLQKeq3otUZlCUlaUBYldVVjE4lq3O331K0cQjaxGKNpuk4MHYykjaE1JonMMa1Jk5SLiwtePn9BniZcv3lDYhXf++53+NUv/oA/+PnPOFnMo822pe9a7m6v2e/3LJdznjx5wunpitXqlMV8QZpmTKdTprM5RivZwF3H7tjQ9p7dsWV7qGkHRTmd8/jJC37w/e9zsTpnkueczOc0xyOvv3oN3pNnZdSGQFEWTCdiM23QBO+pjzVdW9N3g8xVBvGHssaKYDMrsFlGEwJV18psw3sGBDYqygmT6YSmbpnPZkwnM7q+Z7PZcqyP9F0vUFNUPHsnyYLD0EuxPFqHxHAqeKhjHr6ORbUIIqMoMkDXCS6cWLlsT1YrTlYrtpstXe9I8xybpMzmc9q2R0XH0aGTKF58wPVRjT1SXTVkmbT5oWtojgdKa1jNZmAM15t77vY7au/preHgA0c8NeASizMiyvUhEAiooEgSTZKkZHnBcrVC5Rk3h5p0teJ7v/oldjYRdAL49a//ib/+m/+Fw3GPTeUCGz2qRPsyflXoyDdR42hoLACl9iPNUk5OVpysFuRZQZrnohWKSnyBwDRGGxQavMSUBg198AzeiTs0SJx0lpMkGVbGoWRWcTKf8v67L/jORx/w7Mk5WWZo6hZFQjlZMpmeUkymOGUYhkFcl9tKUIi6pu96jDEEB0WecXoypcwUoW/58ve/5fXnX7KazWj2NYftnq513Lyp+fz3R75+NfC73zX8+tc7Pvt84HgsUX4KIeG43xNCT1lOWJ2umM5XFJMTvEo51I7dPuBDSZKekWVnwJTJ7JTlyTlt2/H66orjsaLvB+qRrWkMaWJJrHS6aLG2cV4yYwbnqKuatqvp+4Gul0vEuUGKcBMNumJn0bWCuAyDxFwrBPJRSFs9neScn67IrKba72mqI33TEJwjTVKePX7Ce++8w6OLC6blBKsNFhFbhujk0batkGjOzx9/Mto0iOrWCV8+SDUC4YHl5IPQdJumQSlFlolzY1XJLYpCmFSx3NNaiUU5UpEZrbFGqLltXXG6XPKLn/8M8HRtQ55llEXBpJyQZSnOe6qq4ng8UtVCydzt9xyPNVXdsD8cOByO7A5HNvstd+s16+2Gt29veHt9zdWbK67eXJFmGS9evqDtez7/8kvqY43RGq0tg3NyuClPajSJgVlZ8ME7L7k8PaM61DR1x3S2YDZb0tQN/eBpBkcfQBmDMsICsdFHqB8cnevZ7bd0nTjQpknCyXL1oOwOBEximMwmJFmGGzxu8EzKKU+fPuPRxQXNseLu5ppZOeFHP/gBH7z3PlmSsNtuuX57xX67o66O3N7est1upDVVcHZ2TjmZkKTy+WRFwXQ2pe16ttsdXhnW2wN3u5p97SGZMj15ytnZM959/2O+970fcHFxjlEBg+P+7o6vvvoKlKKYTMSCRIlFzWQyYVKUTKdTikyqaLzQlcU9V6rLPC9FEJameK3pCNxsNkIN9gHnwQXwzkvwDJrEpgxdLxkgrdjB+yhkJIZYBaSw6CNfHYQIEB6weimK4h6KPxh/LtbpYtTXMvQDH37wAe+9+x7rzYambnjx4iVJmrHZ7BgGx2wm+fV9KwyqoRu++be9dC/OhTg0F1+sJLPkeSqFV12RpymPLy8IWvP25obN4UivFIOxND5QO0+DmNoNBIaYlYPWWJuQZlJYpUVBFzzHYeDgPKfPn/P84+9DtP+4ub3lr/7yP/PPv/lnOahsdBTQ6oFeq6IZqVy6cRIkvyWXiPwpCIo0yVieLJlO5tgkiXNM0Vx5RPsRvLhOeB8kQiH4yLp3EuYWMf02hscR/aoSLTFOhkCiFfNpwaPLUz58/z0enT8hsSV9D1kxIysneKVxfuBQ7Vlv7jnWR7F6ia+hrhu0cpyfLplPc4Jr+eLTT/nsd79nUpS43nM4NgI17RTrteX23rDdp9RNSddlNFWgrlqOhwOb9Zabt3fc3W04HhockJcF0/mMyXyGSXJQKUZnGJMSUBirmU5n2NRyOIrGJc1yDscKYyzz+Vxcj+M67vtexLku4EKMiK0rIbSob+DJPBf3iTRJIXj6TqjPXdcxuE6MS2XA9c0HiSdPUpbzGVYruqahaxpcJ7ED89mcx5ePxMU7K9BBZtAqSP5733W0bSNBcG2LOV09/kRFywGtJMx93GCjhfUwOKni4iYd+gFtDFkm+RJtI1bWWsuloXX0vjLS2hDtqsXrR5I627rinZcv+OH3P8b7gdRappPJg+V63/dUdc1uu2W727HdboUefDhQNzXHquZwPMrlUVWstxs2ux136zW3t7fcr9dsNlu6tuGDDz7gZz/7GUma8uWXX7Db7vE+iE1C7xiGDm1gUmRoHE8eXfDDjz7i4uyc2+s7rt/egrbMZgt8LzYmrQ+kk5JyvmQym2NthjEJPnpj7Y9H6qZhGDoIHmst56ennK5WpGmCw5OkRiidCvoYmbs6OeXZ06csZgu29xvefP0Vyg+cniwJwfHFZ5/y6tVXvHn9iro6YrUizRKslXS7u9gOD86hjeZYVbRty7Fu2G63MidwgTc39+xrT1KsePru93j6zveZzM+ZLi54//13OT1ZUB+2rG9fc3d7w9urN3gfyPMCYzRpljCZlJSFwBXWWIpcFOtaa8qikMMtyyiKkiTNItQjrKF923J9fyfD3liBJqlkFCRJxmw6Jc9y+q6nbVvxJDPi/DlSRE0skft+YIgxoMKskvX7TcX8v/NVRXZRgLZpsNby/e9/nz/81R9ydnbG27dvWd/fkWYpH330HYyx3N2vSRJhlVgr4sS2bXG95G0ba2VeMnY2GoIKZFmCzQw6QN82pIllMZ1S9z2v37zh2HX0xLhbD4NWdEAwhp5AUIoQjTxtkpBlGYlNMYml8QOHfqAJinc//iHPv/NdVJ7jnOPX//Rr/vNf/GfW63u01ZhIlzc2qjViazFeACq6RDx8lWsmsq4gy3MWC7k45QEqORtGuI4gP4+CzRAFvL1zNE1D1w8SL+28zN2iM4AKHtd3WAIMHUNX09VHtPLkqeX5s3c5W51zu97z9nYDxpAVBTY1aKsZ/MB2u6HrWrQS2nzT1OAHlvOS1WIOQ8erL77gd//8GzQasNh0grITtF3R9jM6N0WbE5bLZ8ymZ6hgqPY79tsN2/WO7XrDer1lu92x3m6pmpoheGGaTZdYW0RzzSglUOJkkCaWtCg4uzxnuTqlqhqG3jFfLLFWYqCbGAfQ9w7nPV0/CPHICxOtKAoW0Zx0OhXzQmvFm28kt4zuEKIcjzAVIcofPEWWMptMSBNLWzcMjajDsyTjbHXK5dlZpD8Lm9X1A34YkQPRgTnv8CFgzs/k4lBEa4Vx18Ufj/+RG3McWsmoNolBaSXeOl33LdaKLDhjZODm8dKexo4jOIcfevzQ84OPP+b9996la2pm0wnWWjyOpqk5HA/s9ju22x3bvUBQTdtSVTVVVcuiOxzk+3HPbr9nu5MPdLvZcDwcqI9HFvMFP/rhD/judz8iy1Pu1/fc3lzTVI0M8UMg4LFWYzVk1vD+8+e8/85LrLas77dUVUuSRZ8hbWh7j9OKpJyQlzOUSfEoybp2sDsIfNb1LUPfEtyAQTqZxXwWh6UelFicV9URP3iW8yVPHj9hdXpKkWfsdzu+/OIz7m7e4oae+5trvvrqS25vb9AKzk8WPH/yhHfeecnLFy9ZLpekScL19TVVVXOoKg6HI4djxWa75e7unqYfuLpds6t7ZqePOX3yAWeX72PzM/bHHptMePHsCXlmuL99zc3bLzkc9jR1zbGu0SYR59YsZTKdkKYpTStuxU3TUNdH6qam6eSgEM2IRhm5IIfBUw0915s1m+pI1w34ADZJxGTTWqwxlEVJmmY452naBhdhr74fHnDWEZrqoqBROuO4gsfTezzE4yZ6+HHE9yV0KvDixQt+/vOf8/TZU3EAPuxp2oa7uzseXT7i2fMXD2pcrQ15nj9E8fZ9L/9MZCnJDxWS4ibW+KNJZe8GCQLqeu43a9abe/rBi6Gji7YoShNE6onTCqdCzOMeGVDxUAqBnkCPokPx3R//mJcffw9vDdvdnr/6q7/g7//+7wjBS7ehFCPz9pvbVX4ql4U8o4fOLL6ngDiuFlnObD6XfeoFnRick1wYF4OxxqwTAsFK9vjQ9rhBKP5dHPa2bSf2Grst1f5AtdvSHg90TcXxsOV42NK3NQbI0glZPuO3n3/J3/z9P3C33mJsgk0si9MlZZlL2mUj8bDimNBD6JmVOcv5hOpw4LPf/Y6vX31BwGFTzeJ0js4sOk04tDXaGBaLFRfnlzy7vOR8uWSSJ6SaSAxRNG3L/rhnf9iy229EzNm0+EGTp1NxRe5jNd/3OBfoOoexGadn55yszqialuubW7puEHboIGLjth8YnKcfnMwRtaEsJ5ycnHBysmKxmAuxJrIngxvZgz5aNEmn55zDefG4k49YLo/UGuaTkiyxdHVFdTgwtD15nnJ+dsrJckmWpqiYjuiHgeCiWW1cFN5LGqI5Wz35JES7BskcCDLQjhP6YRhkgQyD2HD0IgIyxkAQFa+EoUTrgljBCMarxAYi2pgYY3C95Cob4A9+/nOeP3lK2xxZLhZoo3CDo+2EJXU4CETVREbG0DvaWhLf2lYEilUlv3+sKo7VkePhQNd29G1H8J73Xr7DT37yYx4/esR8NsO7gfX9PU3VyHtFk2VpFCYGzk9O+N53PuRydUbXtLjes1iumCwW+KAp8im997TOM6Cp20GGy90AyjI4iTwVO/KevqlRYcAoWMymnCwXJKPBowEXHUGNNlycXfLkyVMmUxlwd13L66++4v72GvzAdnPH0LZMyoIP3n3JDz/+Lh+8+x4vXzznyePHnJ+dcXZ6zmQ2ZbMVJlldt6R5jguwOxxo2oHtoYak4OLZh5SLJwS7ZNdobu92pNmUs9UcfMPxcMv65iv6oSNJE46VRAcXk4yiyCiKnDzPhQLYSrpeUzcy1GtaSYVUmiTPSYuCoJRofw4H7o57lLV0fRzKWxHNlUWJAoFkTCJxvyMEEdeTSDFkwIsb16mwSMaKORbTo5YtnpBSQUuhhIghnePpkye8/8H7MlMbRgfiVtTPbcd6s+Hly3d49vwFu92eYZCOO7EpOMk18TFQLEQhHFEWkSQJaZFCHEwbbej7jv1hz+F4ABckTjdJpdv30RU4XgoDgUF5+ljVE8AkEmhl0oReG5LJFJKU7/7kJ1y+8w7HruHrV6/48z//c7744nOm08kDPCWXx6jjEGhZnld8PtKKPFwmQqOX7qwoSqaTKTYxUgyGICQINc6S5M/Li9ToNBU4xcnnKXG+Pd0w4KPxZN/14o90PErUQnWk72r8ICJXXMAmBV3n+a///Dv+4de/4831NevtjsHLoVeUOYOTfaSDoq4PtK10HGWaspxN2W/W/O43/8T67paizJjMck4vTsXK3nX0biBJEy7PLvnwnfd4/vgxi0nBosi5PFuxWqxYLpbkeYbWCjd0HI/iZtw2PYYM7xRDW4MWwaN3juDUQ1c9nS04vbhEGcNnX37F2+sbht6JwtsFusExDEK+SZKU6WzO+dk5F5eXrE5W2CQhtQkQGDpx60hsQiAI+USJbm7wIqJW0ebJxO5HE5jkJbNJgR96mqoiDJ6yyFnOFyxmM7I0lbMpetjJvyeWPT4EhsHjgsecnV5+Mt5UXewmFFKJjTcXIeon2haQRRSik6dsmuhLFYu6cWOOwjOBv6SVNUrRdy2TOBg/O1vhg0NpaJqKqhFa7bGuJLtiGMRpF0V1FAZVVcmwyMe5ixscbdtw2B+E8qc1BsXpYslHH37Iuy9fMinFhtoYGdDXUa9itCIxmjS1XJye8O47L3h8fk6eJDgXsDZhvjih7T1X1zeYJCUtSg5ty3p3oHOB/bHmeGxAxUyQtqNtapzrZAGHgbIoePnyOY+fPILgCX2H6R1D3RCaFu0V0+mU5ckpJs0fDpjrN2/Y3N9Gh9qOSW756OUTfvbDj/nOhx9yslpSFBNh+hhLUZacP3qMMgnr3Z7OeUya0Q2BQ9Ww2Vfsa085u6CYXTJQcuzgfrOnaw+k1uObO/b3bxjaA33b0DcdKgTc4Om6Hh8FiWmWitI+KusVEJwnSeXX0zzHZimT+QJlNIe6pu177rZbtlUNVuzCnYvtrzHk2TeOvYzW/GpMDRxw3oESlo/rB9H09OPfIWss8G12lQQ6yTxDbpKHA14pHj96xI9+9CPOTs84Ho8iwiNw9faK6ngky7MYk3vgyZOnXFxccn9/z/FQoUJgUpYCBR6PIswcrf29zPyMlc58hNDSKJZs+oG6OjApJdNdNrxcQtoYnJdizYdx2CDCxjY4BqOYnK/Iz09JVgu6LIHJhO/85MfYacH+eOAf//Ef+Iu//Au6rsUm8poCMWtEjbh3ZFE9XBrybMYLOMR7xHmHVoq8KJhMSpJEHJR9kOCg+LfE/48/GIWF2jAEj1OaLgSGGDIUo5vQQcPQ01QH+q4VhMJLJe4C9FH8dnO/5a//6z/xz198KSSJvqY+bjhsbjls7hnamsQqyiJFKzHl9H1Dnijmk4Tt/Ws++/Sf2W3vmJQZl+dn5ElKdTgQmp4CxTvnj/juixe8vDhjlmlSNVAWVmYKRUlZFMzKkkU5YV6UlEmKUZrQ9wx9R1XtadsDQyeU2aAUnXcc64rWOdIsY36yYjKbcXN9yz//8++pqzrO5LQkWk7nnK5OORsvjNWKPM8JwQsVtxfoduh7BidOFIOTGZuc2dKVj3NAKZXEqSPRmtm0ZFaW9G1DdTyA80wmJWdnp0xnU1lnSuKpjRWrmyEEehdonacNng4wi9nqkzzLMEoLM+VbmKcI+kBr4cu74MU+O+Y+Oy9OukrJEpR291sVXQDn4ysPiE7AWNzQM59O+cUvf87F5QU2YpJ1U4uoZWQH+BgOhfy9bdfSNEI508pQFIXYi2QJKmicG+SmLksmRcHpasXJYoFWcNhsubm74bDf4wfPcXegbzumkynLxZzVcsmTR+ecn50ym0g7mCQJzmsCitv7LVfXtwRtWZ1fENAcmxZtC5K0IAQjhmNWKMRDLzkIXVMDA48uL/n4+9/l8vKC4Adc1WCGAd05Uif+YEFrTJLJ36NFJHhz9Yb17TWGwLRMuFwt+N67T3n/5XNWpytxyNTqoYUMGLETaQc2hyN1HwjK0HRihb89triQMl8+JpmcUvWWugvsjjWJCUwyTX+8Y3P9Nb7ryJMUG/Ma0kyiaIe+o+9abGJJ0ozEiu1+URTCSc9S8rxkMp9SlDL83x0qqrYFY9hWFZtjhUlSwb37HqstRZGTRuGYNZHeGXUSbhCR5zA4FEFYHkFYgD5EN9wRm9dxu8QOIyCHtlhxR5EqiovLCz7+7scslwtSk7BarZhOp1TVkeurK3b7rUADieH+bk3b9ZxfXDKbzcRpOQSsiRVgJIdIdSbVuFT5MiQXbzBPWc44u7ggn05R3pFpRVHkMS+hxg1ioS+6Hiewr7UobVCpoQmOIdUUZ6ekqwVhUrJtG9LZlA9/8DFpIRDaf/n7/5Vf/9M/Rc2HXArSaES4K+5XHkgs0cl6LP7ir4uIMmCUFq1QOYmaL4GwTFx/ysubF0QjCMSBZnCBAegDeC3jb+88rpP3liYp+NFLTTzifBCMfggiEwzK8PXVW/7mv/4zX765RWmPtYEwNLSHHbvtPdVuBzhsklAWKalWJMqTGc0kVxz3t1xdfUVXN5yuTrg8P0cFT7U9knp4sljx0bPnPDtbsSwtSWghiCLbDQOJtSTGkOmEWZazKCYs5zPmkzmz6YTgB5ruKAXjMMghrsAFRR8cXdvjgLKYspgv2O8qvn71BmMSlssTlosVp2cXPLp8zOPLR6xWp8xmc6xNRXS7P1LVxzgfEdSmH2TNDJ3IIcYzwMVMIQXo6LsWXCDPU6ZFSVFmDG1L28ilJReHBL3ZaNRpTUowmt4J2aEfAoMGpyxV32OKfPZJnhdYax4ofKN9gzEGE8U/XS8vzli5NOQaE+fQ4CMvPC6cWFx9M2j333D8BidslOfPn/OLX/yC5ckJVVWxPx6EsdV11HVD03V0gxMGU9tRt51ggZ2EkqRZymQ6pZxMyPNcxClWDp/JRG7VPMvom463b6949eoVb968YbvdRv6zRyvNdDKJYUNTyiKXrkRrjJIW8+rmhre3d2z2OxyKcvaN3YK2CeVsTpIWkeuvSRKpUJqmpu9amuqAIvD+B+/z/vvvUZYFrusZ6gbfdlit0EDnPZ3zBGPRqUBnwQc2t7fcvL1CB8d8OuHJo0c8efJUVNbKysL0irod2Owr7nZ7fvfZK766uuF6vaN10HtN3XuqtudYtaAS5ssVSTajbh2HY0fbe4rEUGYZfb1nfXuF6ypOZgWL+ZQ8NeCh74SSt9vvado+RgJLuJE2CcbKa3KAtgkqSdjsD1zd3NAHT9CGm82a3bEiy0VpLp9nRpJksSiRb8ZatDb0Q/9g6eGciE59kE5ChoAasbeRKkUORblwpH2PWG90gg0+kGYZp6tTzs/P6bqOJE25vLzEGsNhv+fm9ob7+3vKScH5+SVGW7bbPX03MF8sccGz2+7wzpOXBYFAXdWCN0eHUqVk1idapwECEmd8IhdU6DssA4vFgqAESpRzWxhULniCBiKs42MHppSwdWbzOVYnrDdbFvMFH3z4IWVZsttt+au//Es++/xz9HhxKPl71PhVgKv/v6Jv7DbivpX7Bh+1F9PplLIoo4pb/oC1VvwkQ0QVIuTtvMcP8hkNTg41oekKcnDYHXAxzMl7j7aWbnB0Q4dH0QVohkDnNI3T/ObzV/z9r3/P5tiIA3d8cRJX6+i6TgTAtQhllR8wOIpUU+SW/fae9d09VhvOz05ZzOb0TctxtyfRmmdPnnB+uiLPrBR2QYR0vetpewkIE6fmEBenwiQJaZFTlhMZKmuD73p8KxEHfdNRJBlZkkrkc92QZQVFPqU+NmzXeyblhLPTM1Ynp5yuzlkulhRFiQ9QVzWbzZr723vW6zWbzYa2bQhB9oZSYpXuIyTsnTz7wcmAXT6XiPw82NULkcY7J8P9vmc6n3H56JKTkxVFGf/tvudQN+zrin1Vc2iaaPl+4Pb+HjOfLD8RjDWJFYgEuAcvgz1jZBDW9Z1QC61oFJSSjsR7DxECEgxVnuu4kKQEFPhKG03XtUxnE773ve/yox//iMRYtrstx2pP27Z0XUfbdZL72w+0XU/dtULbdIGub/HeURQFeVmQ2ASbyDwlSYxQevOM+XTKtChRzlNXUVRIYDqZcHF+zsnJCVmSYJRCq4BSkXbshcefJJa6a/j8iy+5vrsjyTMePXnC+eUl2lqSNCUvSpI0px0GDscKbYQhYa2mOh7ou5q6OpLnKR99+D6PHj3CIAwH3zb0xyO+Hxj6ltY5EQZmGTbPMUYur+N+y+b+FuUH5mXBxfkpp2dnuKh49kHT9AP3uz2vr6756vVbPnv1NW/vN1TdgNcJA5qmd1RNx/5YQ4CT+ZKsmFM3jkPdEbxhUuSkiSV0FX21xXVHpolhtZhSZJamrmOsJ0KD3h3wIaCUoR+EBdIPA+0wcKwEljrWDbfre45NTVrkHNuaq5trmr4jL0rxmSKq6a3Y7yulSFLRPiil6IderEV64af7sQcnoLxU0jpqHXwQ0sF4aehY5MQRL1oryrJktTpBEei6ntXqhMePH1MWBd4LX/542FNXB9Ik4fmzZ5yfnZGkKevNlrpuePToEbvdHj848lJYTHVdfQtako7DGqnIQwhYaymLkqIoBAcaWqaZZbaYMQwD++MeR8AklsFHXVQ89H2QgfP4/hazebzoUjbbLScnSz7++Hsk1vDpp7/nL//yL9is78V+xqj/rejv4fnIM5EuTQwwBa6O/7aXgydNUxbzOUVZouKsSUd68AiBCT7xzdkqx6x8LrI/xSbmuNuz2WwIIVDm4kFnU4sYqQS81vQu0LlA5xSbquWfP/uKL95c4xD9guKby23Uiw19T98KW6hvj/ihIU81ZZFQHXe0dU2ep5zM5+Q2oaoqurphOil48uiCk+UM5cV52flenLKHAYcT6DHGRmgjhQpKnptNNGWWUyQZRZKSaUMYHGEYsEpjFOBcdEyWM6rvBuqqJTUpk8mUJBFHgrpuJF52u2W9XnN/e8d2t6VtG8pJKYzGRHz4JA9HDlylNS4W8eMwO0QXAylFpOi3VrQj1mqCGP1xslpy8eicJE05HCvu1huubm54/faaq+sbbu7vud+sub275+3bt7y9vsUsFuefyIaShLOAtDsCCYhZYYheKUqNFYZgoeMCCg8D9bHjkJnJ2HmEIG9uGBzGaKblhMViwXQ6YxiERdU1UjEID14U6xIaL95G3smb79ue3jm0jQPEiI+PNDEV8blpOWE+mVLkOXmWM5lMmM8XLJdLlssT8jSj6yRN7Xg80HYN3onlRpKkpHmG8/D29pa2H5gvTzi/fMRsscAHSSSsu47t4UDViI1417c0TR0Vn7Wk9dUVeZbx+NETJmWJ0YYskfD4/X7P4XhkdzjQeU9aTklKseIYK8zD8cDm7pbB9RSTgsVCVLseQzApjYPbzZFXV3e8ub7ndnug7gWWcogZX9t1NE0rOe2HPdrDcroky6c0feBQdaASpsUEayy+q/FtQ+gOpPRMy4wys3KA9x1JVhCU5X6741BLiFFQhkPVsN4d2B9bbjcb7rd7bjb3bI9HsmlJWuS8vbvl9n6NTSXJsevEO6ssJ+OxQ5blFEWBUtFfaxC2iYs6I2GTxO5ByQYOCN98JHOM63P87uO8TWnN+fkFz58/53g4cjwceefdd/nud75Dnmfsd5Jjb7Rmvd7gfeDy8hEvXrzgdHUGKHa7PUUugs+27ahrYeQMztO27QPur7RGW6EQExRWW7JE4L62aei7mjQz5OWE2WKOThIOxyO9c1LlBg+xYwjIXnPOozHMZnNOz84JPrDdbpnN5/zwhz+irhv+4i/+kn/6p3+S2WNMypNvsaqLP5bmY4SCowYjsqNCkD8TYmeXWMtisYyXq/h6jUmGLvjocyUXhVwc4987FpFymwydkz23P+J9EEPIPENpLcJODf3g6YcAKqXtAl/f3PP567fsqoaAnFMK0Y+oyIwU+3BRKvqhf7DomZQ5ZZHRNQ1+6EmMRCnjA20tFfckL3h0dspiOoHoDD70/cP8LSiB7JRSGCUkDmnVomWLFm+uzKbMyimz2fzhMmhbcU1AKbHH6Xvp2JziuG/EcqgZ2B8rbu82bLYb7tcbttsth+OBwTuKsuTk5ITz83PSNI3PSuaJfS/OCX3X4yKBwgeBcv23z+LYHSolsHOWSkw4SqGt2Etdvb3l959/yRdfvuLLV695ffWWt7e33N7dc3N7z263J8TALrOYrj6RD0IGe4wQgHNoLVbmAF0nGyIx8tBUzPoWLxQlX2NlFwDioC2EaD0RRUx5lmESTdPU7LZ7ttttFFB5gncYJewr8Axjix/xVqUUbVdTdy3tIEKUPibuhVgpxd5Mhrm9EypgvO37oaeN3PG7uzs292v22y1tUxOCI01T0lTglqLMMUnCZrfDhUCS5WAsWmux1M4SNvsd9/d3YBRVdeTu/o6qEiyy7xuIqnoTM9GDRyoQo2mbmuN+T9vUIqhLEvLZlGI6JZ1M5cBRiuqw4/buBtf3TKcT5vM5RTklyUuCyTnUPTebPXfbA1XvCcritaWTsA3hhg8yRxhb+dwknCzmZMVcFnDjUCpjOp2T2AzfVfi2wviWjJbMBIpUkxcFNjHkkzlZOeFwbMTocnD0vWd7OHJzu2bfNOyPR7bVkaqp0WnCcnVCFxyvr97QDgMXl5ekaSYwUZKQZxk+eIwyzBYzijzHB2KXIZ2rHP6SoCdzV4k9NXHdjpvJh9gFaxlMa2MgFjjWWp48ecLLly+4ub3lsNtzfn7Gh+9/QJqkvHn9NYkxFGXO9dtr8ixluVzx8sVLHl0+5mx1itYCZ03KCQrpvvDCjuq6Tta80WgjG5UgwWVpmpImCVYLT76qdrRdxcXjR/yLP/ojnj9/wc21+KeN80PvHNqK64APCPNsMmV5smQxX8ps5FhxcnLC9773Pb5+9Yr/8Of/geu3V9g0keM7HrTjZStzo299VbJ/PUQLi3i1xP0dQiBLEk5OVxRFEaEPhzEWbUbNhzBx1DjjVOOlHqLLrkCMru9pWxnwGmPJsoy8KGLolSjbPQplLMZk7PY1X7695Wa7p48eYFopjBXNGWN1HcSZIrgB73rwPVZrzk5PWC7m9HUdz5dI5IiMrr7vyBLL04szTmZTQQTwgkLE+VKSisWMNgYdRhKBXFqj6V9mE1JrmeQFeZZTTkpmsxltLedN8I4hDNRVg9IWm6RUh5brq1t2u6PQ548SDzAEsRJJ0pTVYsnF5SUnyyWHwz5SncE76fBH145vugzZ9xE8kgJq1NUlVphqKKzRpGlO8KJOX9+vubq55frmjrvNhvV+G63ZO9q+p2karLG89+47PHn0CDOZLKIAUC4D0Vw4vJeFMJoMtl0nNC1rZZEFcbyFiDV6jxieC6Y83noPOKqWFks6GPGM3242XF/fsNvu6AZH03ZUTU/T9hzbnmPdUbc9/eDoQ6Buarb7A4fjUaxGqgpPoCwL2ajx3x7ajupwZH17x93tHdvNmk3Ud9xv1tzf3bLZbOg6qQR0zDQvy0IGk1qTlxNMknCz3rA9HKnaTmwN+p77+3tMmrLf71jvthij2R72XF29oRs62rqmrmuM0mL9XYvS3Q2DePdURzabew6HA00vKYOkicw2JiXFfIZNU4JW7A47bq7f0vY9WZaS5AXaZpi0oA+wPdRUTUfng2hJjFBch2hf77wswn7oqQ8H+q6TBV5OyPIJQVmOdc/gNVmagzLQN/juCN0B3+zpmiPBtUymE04vzpnP57iA0Kabmt1hz3Yn7sJN38mGShO8DyRlwXK1xKaJPPvNljRNOb94hFKatusxWthozjmxMC8msu564bh754QoMYjBoQoBF5XjOjoBqyhUk4NaLhGtxvjcGEmqRVOxXCw4PRV/tNu7OxJrOTk5oW877tf3XD56RFHk1NWRLMvxzjGdTFmdrlienDKfzUQBvN+T5QXBu+heKvPAvmtjxyPCV5RAPakVtbWJViVtc8SFgdVywQ9+9ENePH9O1QiuPR4GLh4iY+WepCnLxYLZfM6kLKVjbxsuLy44WS75m7/9O/72r/9aMsm1mI2OPYfk7YyU2XiyxCLQBzFpFARBDhettDCrnMcmKSfLE/KijBbp4pgj5+g3xaJHSFtS5cZExiAIxihQa5uWtunJUokXOD1dUc6neCeR0dYmBGU4Ng1vbu64ubunakXg6QbBX8ZOox+8hL5F520X46m1UuRZwtnpillZCPzUR6YbMpttqpq2bSms5enFI6Z5gTWWVEtud5rmZHlJYlOUtuggIUmuH8TR1klxOwyOfnAYm5LkuTD5jCabFDgCb29u2FVHQkByVALk5QywbPcH6rrDx0+pdwP4QF4UnJ+esjhZooDdYc/12yuhZI9K/K6l63t87MR9pIQL/SOS5xCyiLYmpicKdBaUIkskKro6VlTHmiHanPSRhEKQ4C4d4cbZZMpPfvhjfvqjH2Fms9UnIZpkhcggCA/VmvDrBycVq9JaZhxRSapiqyaXhHu46cZOQ5qR+GKNYRKV4SFCSj4EycfY79kdam7XW27vN9ysN9ytd9xv9mz2AuXsDkfuN1t2h71AQX0fN6thOp+RxnB24c3IZum7HjcMGKVJo7o5zVPKsmQxX7BarVgsFyRZgk0TsiKTDaAUxWxGWpTc3N1xfbdmX1Uc24Zu6KmahsXJks12w+u3b1BGGF/b/Y6+6+Lz6ijLCWmScjxUuGFgvlgwnU7pho798cCxlop8wBGsIViDjjMOrNhN7A47bm6vBdKxhiFA0zmyYopXlrpzOG1AJ/TRkbUd0/5CoO1kbtS1DYf9nuAGtII8L8mKCTbJOdSOpvOgDMPgCUODGnr0UKNdjQ49vq9xwXNyumK2PKEdepq2wxGoYuiXSTJOVmecnJ1STCYoa1merViuTtgdj7x5+5Z+6EmzIg7GY9aJkYsDxMZGPMq+KUKGmJEeuRswdrIxe1ob6SystSSpqNPHgfgIayitJZQqsSSJuAmHELi5ucGHUaygmUxKXrx8yXQ25fbuljdXb9jvDoQQmM0WLBYnzOZzzs/P8fHQGCOM266NHHo5NPvY7SmtyPJUOiMCSZoI3BAkZwIFaZry8t13ePL4CTZJOB4OpFmGsZaqruRA1IY0ySgnE8qypCxKvA80Tc2Tx0+p25b/+B//I1+//po0zi1l/41dwDeEARWhlhG9EmjjG6GXQDAyzHY+kCQJJycryskEHyIQNZa1I0QVryOQ+Gg5AESgFryYJCrgeGxo6o5yOuXxkye8fO9dZrMpd3c3ksmRpNRNy+trca6u2k4uKpNESFygcW3kLHFeTCplaC+Jd4m15FnK2ekJ00kpVN/RvSK6BRz2UsGfLBY8f/SYaVGSJRlZmpOlOWkqLMHeib5mcAiKMQicN/gg3m9tRzcI8WNwA3XXsqsPVH2HSiSobbPb0XQtVd3S+8B8ecpkNqftHOvdnuOxomk7tBFa/snJiWinjhL7ezweiHyEOPMTqUIYIdqHaItYQBFnMEqjjHiyjV9D/EyKoiBLM8nu6IdIHZfzHKQos9bKrymYT6b87Ic/4uPvfRezOrn4pIkYrQY6J0lRSgujSmmJYe1jLoLWskkEglIQLxvpOGQ+omIFIsI/RZ5mFKVYUNgkkShWAcdAafpObNOPx4rd4chud2SzPbDby/f94chuH/M52h4gsimEjbNcLGQIGRk3NnY3eZqRpanMOYpCBupZwXQyZT5fcLI8oShKQBTcg/PUbQdaszhZkWYFb25uuL65pe7Eg8pYSzmZMJlOeXv9lqvra5JEHGOr44E+crqTJOP50yckNmG73uC84+LsgvPzM4oyRylF17XUTYOPcbcgpovaCrU3ENjt92zu11R1LRW3V6RpLlkINqVzkkPRO4HFqraO+SQtXSt+/aNrZtsI68cPPRhDWUwwaUZVd+yr6GDadoSuIvQNZmiYZprFtMQNkmfStALFeBXJD4j5mTaGs7NTHj19zGIxp+17ijxjMp2hAtzc3LBeryFSMJu2ww9i3yKGbQlZlpKmmazDXi6LwTtcL19l2iejPk8gGRd27DL0tw5FFSnlQ8xzSZKE6UQyk71zTKYT5tMZ6/VaXJarGq0Uk4nQLPM845/+4R/4p1//mv3+gLEJZ2fnTKbTB7bhYjaXz2gjPmGjknxwQhLo+w4fohVPnBcopUhj8eRdT5KIGWDdVFyen3P56IK+bfniqy8Z+o7pdEpqLfv9nhDFiXmWUxQ5ZVE8iG+n0wmff/4Zf//3f0/fdSIWSxK5QENsLpBvUtzFQz0I3DPC095LtU6k7YYQ8IPQXE9OTijz/AFRIMisI4xYVRBcnW+zrCIEHcREHBeURCH0ntn8lCfP3+PR05eodMp6V3F1t+d2vef1zS239xuOTUvwAeJQHCXGlgEiOUfenI7FrIspm94HpmXBk8cXzMuCumkQYr0M0fe7HbvdDq005ycnnJ2dMp/OKMqSxKQEZUBbeg9111O1PU3d0bS92ILE93GoWja7PdtjzdvrW37z2Rf8/vOv+d1nX/PZZ6+4vV3Tt63YJq231G0LaObzEyaTKU3bcXNzw3a/Q4VAWZbM5lOC99ze3vD2+m3U4iSkiZHuphfBokIuEhU1c+Pnq4mulNFDLG6PqKgXqm4/dGRJSlHkDK0QksQ00aODKM11vIhs1FBNkoyP3n+Pd54/k+jY3X6HMYLhhdi+aiMceq3Vw9CFIIImreX3xCdfDt2x7R36IYp/ZNElScriZMlJtMvW2oDWKAwojQoaYxORUStJTBuclhbQScKfj90Q0XlTG2HfBAJlXjKZlEIT9gHlZQEbrUmNEZNFL62ytOFSTRWFXCZGG7phoG4bDk1F0/eUszmn5xd0zvHVK4k9VTG2tpxOmS+XeILQJz3YTPIbBF4QC4zZbM7z5y9IbMbhcKCum4fKs5xOmEwmaCMUOpTsZhdEHW2SFJMkElFaNWwPO45VTZpmrE7PePTkGUmaS/fRDmIl30QKc99Ju9lFe+WYZEhs471z9F5a+3wyI0sLWhc4Vi1NJwZr+A7XNYTuyMRqijKFIAy3w/HI/njAJDCdT8lSMaPMipzHTx+zWp0Sov6nnE5RwGa3Zbfd0Q8DNhF8t+8GjElE96M1aZpSlhPxyYmHWB8rqSgRkBMvFrIq2opbY0GPf0C+6XFtRg8wpTVFlj1YziulmM3nLE5OWN/fs46wZddKRr0Pgdlsxtdff81XX30tM60kYTFfxChbYR3mec60mPD2+prNdiv2Gs5RRwdT5x1Gib+UqN1l1kVAtAGJoShy3DBwPIhtzma95veffspvf/MbDscD7zx/yYsXL7i9uWG73T7MuSaTCWVZCIyiYLPZ8Otf/5P4aaVp5OOnD3DD2GGomJUj3UKElSIbLUQKsYoQtVYym/Txva5OTx9mHHL1CBwdn/rDYNwFudjl7wx4ZO8N3kXrEVA6ZXXxlOfvfITO5wRborMZx17x5uaO6/u15LcoJZWylksjPCR9xu4JWT8+RiKPaEiSWC7Olrx8fEmWpeKaq8VSvus69vs9dVVRZBlnZ+dcXl6wWJyQpTlV07HeHtjuK+42e+62O+43W7b7I0PvCEoTlGZ/rFlvd7y5vuGLr77m17/7lH/47Wf88+df89kXr/n8i9e8+vIV67u7yDLs0MaQl6WYZU4mKKWpm1r2UF6gtKJpGtbrezbbbYStxBtNG+nkjLUUeU6apQ83h46pjqgxxiKOC9xIrZLPSyF7ZxR5loUYyobgSW1CkWUkxohtv4YsSbHWgvMsphO++8EHPH78CPPTn/3ik/v7NW4Qq16F3AHfdATyc9eL1a/WCq1tdJeVoWTfD3F9Cro2ekABZHnGbC7GaFpp3ODoOkdwMrQzxqCVCIqIg7UgbMYIPIFWcgGoqEYNXgRz1kgoTJqK/UWZFyTxEBGrBHHiDQERJIUg/jaRWZVlOe3QsT8c2ez3HOoaZQyrs3NsmvH16yt+/9nnbA9HtLZoIzMa76GqGpqmxdqE6XTO5fkjXr54RzbiIDYMqcmYliV917PbbWnqhqapcf1AnmZMylJwRi+MFuVl6CjPqKNre4a+Z7vZ0dUtTx8/5Z2X7zIppVLZ7XYcDjsJOTocaKqKYZCOZ+jEa8Y5cSENITB0A4OTz8qjyLKcvIhxtW0rTpneEboW37UwtBD68bwmoOj9ELskx2w2Zz6fSS2pNKvVGdPZFO89ZTmh73vW2zX39xvqqiJE/rmwUuL6QWETqaKTLJMLboiVkRcIVA6neGn4iJvHw8PEUCMiVdKYGEwUDxAf369SSoaWpWh+8jxnMV9wd3fLer2h76TDubm9oT5WXFxcoLXm9evXOOdp6ybaqAzR8qYj0VLAOO+5vn5L24m1u4shUC4WBSaSTLTSeNfjB+kSJLVRDuZJOeH66oq//Zv/hc8+/ZS3b68gwMuXL1gsFnz99RvW63upSKczGSrnOWme8fbtNb/97W+5v7sH70mMFcrvOGOJz278FMcOhAAhCBvRR8+ucd/IIF0J/dlJJXxyciKu1aMbhP/W5xQvGO88boiOEc7hvWSl9H3H0Dsxrew8Jsm5ePSMy6fPQSe0gyMoKMqcPM/E16vvIAhMFCLTSysE8lLSUQZixzOijUoo0LPJhEdnpzw+W6KVou+6B6+8rm7ZbcXbarFY8OzpM05Pz2ibjtvbe37/+y/4x1//ht9++jm///Irfvvp57x+e83bmxuarpV8IjRV23J1c8unn3/F77/4kqubO3aHI4dDTX2sZHDdtTTHCtcPZGkqn1k8jCdlFOMNPYf9MUJ4wsKSojthMhVYUmtN10lefGKTb4gXcT6Fl0tcITPAER4MUYxKTLgU2FJLGmk/sJzPefr0mVy+Xc+sKJiWOdM8ZTGdcbqcY7XBoHj57Bk/+vhjFvM55l//2b/95O72lqquQEkVh0JgiIcKRXC1wQ2iHLdSfetoDz444ThrI9kGxgjW6H2QFivP5E1qJS38GD5itVSdKGlxkQNC7kZZ7kpF4zgVLxmtxXbYi7WF4IFLLi7OOD8/w1hDdTzSd50omlP5kGySSrZzZDtkZUHvPffbNW9vb9geJBdiOp8zWyzZHyt+8+mnXL29oXch2qdLdOhovBjQnJye8aMf/pg/+uM/5aOPvkPf+4eDJQQ5QOuqYrvbouIC3u93uGFgUhQigBo8fd/FzSGpi13f0/WC7R52B3zvefHsORfnF9RNw3azZbOToKhu6OnahsH1BGQDhyB6h3h/y+c09FGoKO6lNk0oylIuQzfExeaElRICSsWqBYElg0JYbU2N8z3Eyn2+XAgenwi81nQtddtwv9lwc3PLdrOlH5z4NmVZpAHGjjamFeZFTpomhIjZeh8N8+LAT9akXIAjFq9j10Gspo2RtSdw6jd/PgQxfksSS1lOYnetWSyXGGPoho6qPoofW9PQDS3zxYKL83P2+z373Vb4/F6KpL7vWd/fo7VmUk5Is4S7+3u2+704/MYUNhfivENJJayQA1VrxWRSUkSh6MnJkl/+4he0bc1/+S//haLIWZ2u6LqWNE3YHfa8fv2GYRiYTCbkhaTbZYUID79+/Zqvv/4akFxuFS3vhV027qv/7Tc5TkZIKbISlZa1HuE17xwo6cCWJ0vpuLwM6z3fMjYMYqvu4ucj+19yxpWK3UkIdEPAY5gtVizPLtFZIRY+dU3bixXRfD4Tt+f473St+IYRC49R/Obi+oCATQxZXENay8zo7GTG+WoOSrycrLEMw8But+N+fY/znufPnvP+++/Tdh2/+e3v+M1vfs8///4zfvfpF3z55orr9Ybr9T2bw4Hru1uqumEymzKZz8BY3tzc8tnr12wPFRiDSXKMtaSpOFiUZU5mE7SR1NPEGoxVKAXFJCMvMrwf2O0O1HUv+TnzKYvlktl8SlEWDwSlrpfYaaX0NwFm42cRBDpUSjoFrQQaFHZfhG4NqMgMHS/6d16+y0//4OcsFkvausIGmJU5J/MppydLplGwXOYF3/3oA54+eYzSYP5P//b/8sn+sGez3j6wE5RWAllEcRdA1/Vi7qYNiRF6oI5444MzqZd8AxXZRMHLB5iYhGEY29Rv4kYJMgdxw8gciYvOxRY4hEjbkBZYKyO/5GQRGqtZrZY8f/GMR48ekSUJ6/WaN6/fsN/voz1KEoVykZaoNP0wUFUN6+2W69sb7tYbun4gzXMWJysc8Or1FV989TVN59A2IQr4Ucqw3x9wDt595z3+xb/4E371y3/B6ckpX3/9hldfvqI6VtJxJAIZdK0kefnBCT+8bgneCwd+6Gmqmr7pcV1PP/RyOXpp+bUSUVDwgcV8SfCB9XrD/nCQeNVIM/Xxu1TpAskxHgaIen+M+vVeFk1qU+l6rBUatJI8+D4mtYUAXcx5752j6RoOxyNt14ELdL24fubFFJQ4sl7d3HB7e8fNnaQvrtcynwk+YIzYGRhrhQWlBFLKMonO1MbKeopMqm+/N0J0NIhq8eBFk6G1VPJEzFs6Yfm5vHXpYId+QIMkFsZq+mS55PT0DKsNu+2OuqrJx3Cyrufpk6ckScrNzS1dK0N81w8oFLvNjmEYWM6XZKlAIbd39wQUbUxtG5zDD6K98CPUq4zM2coJIXj2ux2PHz/mT/7kT4DA3e0tf/onf8rPfvpz7m5v2aw3dG3Hdr3FO890OqMsJvGrBIe9eSO+WrI3JeZzcJKlEFGK/93vIc4iQ6xQZY/Fji22mXImaBbzBYv5AquNMJuCGET6qKMKQVAAN3iGmMHuvXh2qRia5R20bU9Rznn6/D0Wq3N2x4agNFXTEEIgL0pxaB1pLt/a824Y8EMfP1dkDUXISmtRRasgl12WJFycLDg7WaABP0i0QXOohYq/3mC04Z2XL3n+7BnXb97yX//+H3j99RsO+4M41w4OtMDnLpoodk3DYr7g6ZOnzKczbu7uePP6CnygyAoSY7FopmnKsiyZZTm5tSRKobxDK0isOEyIxixFE2iagcEnTGZzFosFeZYxDIP49h2OHI+VdNjGAgK3dW33kHzpBinG4ymFZuzA5DkpBTZNHppPF8ObPv74+/zoRz9hsViihgH6DuMdiQarFUPb0VTxPT9+QlNX3N5cY/6P/8P/+ROtNXe3dxyPFRAw2gpG5uUDD9EozruANsJtHj8w792DG+P44l0A8Fgr7JW8LFHa0HUyRHfRBngY4iHhfaxIwId4YEQMjmhKB9D3InhRccZijOb8fMXTp4/J84y319d89vmnXL295lhVkqqnoIvOvk3Xcqwrtvs9m92azXbHoa6k+i4ysskEm2ds9ke+fvuGzUH8lJRNcMGjTYpNElyAy8tH/Mt/+a/5xS//EFD87d/9PX/+5/+Ju7t7tJJBbDGZoAgkMbsiTVMC0inNFnPKckLw4i0jHHRHF+GOYDQ2y0nzXAb3fU9wgd1+R1VLUp2HWO3Jd7l4R1aPDCrdaHH9UA3GzATnydKUSZGRpZYs0STWoJQX0WUAlWaotBCGV/A0fUvXHvEBNJp+CBKitdux3sqlcX17zf5Ycb9Zsz3sOVZHhsGhtfDhTWIBQ5omKCP02DST5yoMHiEp+GiRPlaz40XwUB17YRnpWMCgRr76mHcfldLRZ0vWFmgjF5axmmUM1tJGU9cVu90eYwROrauKZ89ecH5xjneO3X4nA/0g0I8xmupYSddYFhhrIiVZLta6baRLGS/vMFo+pGRpAloq6W5ouTy/4KPvfESW52it+PFPfsLlxTm///2nrNf3TCbRSLGqxWhwOmU6FYHZ/WbN1dUb6SidkzlaltP2HWacWT58i7jzw1eA8fmGiC7E6jRCvM47rLUsT5bM5nMpKuNwfPBigir7Nc4kI7T1MBgPTgBnhViHDwNnF0/56OMfsDi9ZF/LbLEbeoy14gKBwSYJSZoTiM7JRtN3HX03Qp4aZYSJ54X4i/eB3vUo75lNCx5dnHF+MpN3G6So2m62HA4Hur6jyHOePHnMyXLJ169e8cUXX0phoKIVvkkwaSprDy85Jq7nbHXKRx9+wKPLxxz2O15/9TVuGEhtggri6zXLUmZ5TmY0mVGkVmMVWKsoypyiENiqzDOKPMMFzaGRGrnre/aHHZvNlsNhT9t1DMNAkqagRQja9Z0YvY4UapnwyCWtlAy3jZGRj44dn4Kma2Pn3DNfnPC9733Mo8tHgugEh/GdCCVVwGorxKfBkSTS2V9fv+Xq6grzx3/8rz6ZTiaicbi/jyFNET8c+dxRtSpKgdjKIpt1PIR0fLFS4QrGX+S5VEblBK0Nfd8TfMD5Xvx8Rp+rh/+N0IJ/kMqLIjV2MUEqaQk/MdhEURQZWmvu7m75/NNPef311+wPe4YuDuyjynUYBtroLNl2HXUjIkKPeM6YJBHBXdtKpsf2gPcBY8UKwAc5mLquZzab8cd/9Cf88le/YrPe8v/9f/9/+Ku/+mtev74CrwjI+7JWWBBaa4qiYDotRXE8KVguT1idnzKbzcRaA2EAdX1H7x06SZguxeSsrlvqqpHI3ENFP/QPm3PohXIs7FO53F0QjrkbldZ+fK7yPLpOwrjS1FLmOVliSeMhbpXYPXgs+WRGOl2QpAmeQNfXDH1D8J6hEd3N/tCwP9Zstltu7u84HCvxXdrvqZuGtu1BaekqChnmmkSTpRlEerdYi2hCEMcA5xxh+AZ7HzsOGM3zBCKRS0FcecddI4LUeEsga2v0SApE7ZFWGG2ZzSZkqcQTK5Rs0qbFB09iE54+fcLzZ8+5vLykrmvu7+7pOwmNmpQT6lpM4pbLE9JEMuRvb2/pBmFXtX1HcONr52HI672jqmr2+710m4PMkbwfOOy2rO/v+OqLV3z16kuq44Ghj1U9AY2mKEtOV6c45/j8889ZbzZYa2PxoLBW03fDAyvq4dsDsX/8+nAbx5col8c4F5Tn70isMKqmkwmEGGPrA26IWe+xC3QIw88HYe6EIJ2JjZdx1bRok/Lk+Tu8fPkR+US80u7u7wkEskIyL7q2Q6FJs5zEiptwkmR0Q0ddVbJvR/p/GM8FKZ6UCyRGsZhOuDhbsprP5OLyUFUHtmuxOklMQp6nXJyfs5jNefvqNdvbOzKTMHQ9iGgfE+1DvOsxeBKlefb4Ed//7vd458VzjNJcv7miORxEVKc0uTXM8pxZmVMYQ5kkzKYFaWZRKpAVMmNLspQsSymyjGByNlXPYVdxv75ns95SN7VAT4nMM0I002zahrZuBXoeIgt2/IxDEPRAa4Q3ogkeXHQzL4qS+WKKUYbzszPee/cDyqKkOhyFSekdyg3YaGwZYvSAdz7GJtS0fYP5/vd/+slivqAfBu7vbjlWlbSp8T9Ci5+7gMYiHJGqLsZGBhGKiLdStGCOKtmyLCkmU6m0Q8zmiIuOOMQSk7y4jpVCxa9hpJVFhodw2EVvMeJ2aWLwYWC9XvPV16+4vZFOo+/7eCjJMFvej1yBQWmp1JHKykUzw7ofqOuG7aHicKjoI7TCA9tMS+uK4kc/+jH/+s/+DIXm//4//8/8p//4n7i7XxNcoGkaqmPFsa4ZOjk8ulYYTqhAkmUkiQUr7rugaLqOpo42B1Hslk0nzBcLmr5nvVlTNw19O+AIDDElzLvRjuUbOmU/yKUhNglyCBOvfGlZNU0litDUGumM0gRjEHprYjG2QNkCkpxOpbRdw7FtaNsjLnQYbxjagPcanYide+NiVzd0cmiOrykyXJI0J0szkjTBGBPnXsLSs8YSQKC8h/lGhD+iHiPeGw/rJ0QYT9g/0Q8JJWrlaFEunZecjyiF/uYMJwBFUbI8WT4M0/e7HYejqMCzvODy/ILziwsuLy9I0pzrm2vu79d458TqOibZXZyfU06ntG3L3eZegor6nq7tGMbOiYCO5o9931NVNW3T0A4dh/2O65tr1nd33N7d8PrVK95cvWHoe+qmYb/fA6JQ1tYyn85ZrlYcj0c+/eILnBOauGQnxEHyeJvGgi7Wed/6KnstqG/227jvtRJ9MdFMMstzlssTyrL8RuAXHX+HIOsrxNma81FIiNDy5VV4mq7He1icnPHsxftMFyvaIdD0A9v9DpsnzGdzQoDddsfxWKGUwdiUcjojn87IklRshrqOvm9RQaFtgo42+zYKPPPUMJ2WnC3nLKeTyKbSHLZ7DocD+bgHA5ycrbg8O6fe7WgPR8o0x8fqPrEJ1iQYpSEMGALL2ZyP3nuP9955h8uzc06WS7q64e3VFfSOPE3JjaFMEyZZyiRLOSkLzs/PmE4Lmq5GaSgmpXTaNhInkgle5Wz2R9b3a6rjUdZ4nBu2XSdnRdtKtAFeXpcSlpTAr9KR6+iTpiJNd/AipF3M5/zJv/xT/sUf/iFn5+dMipLV6RllXnCsalTfkVlN6Bqq/TaeE2LhrrTMbfIil1HF82fvfjKfzSjyjN1uz/r+Ps4yIrspViUBqUx46A2kqAs+gPdoQpT7O7LUyqVRFCLM05phcA+FDg/tlEbFy0Yuk7jMvoW5yq/EiijeX87LYrWJVG/b7YbddiPVTwyNmk4mMZhExFZGibgFpNUOBDrnJea1qjhUNXUrqnXn5H0am4CK3YZSNHXD6vSUP/qjP+Lx+SV/+Rd/wZ//hz9ns9lgE0sI0LaNvAfvqBtRpg6uj3OHmNnetjR1zXq75fb2ht3um/mSixkH8/mCvCy5u73j7vb+If9X5kpSzT10EpHNMs4GiI9SKsFvnqWK3PymrnFDjzWaaVmS5ylKViBpmpGXU4xN6Afhu++3wkXXXpPYnCybkKQ5KklxGOpejA21TQBN03Qoo1AIocFGOwZjJN3PGDF6I9rRjJBnN/QyL3NSsfp4GX4DVUn145wUK/E8fDgExVZEqt//dkYibfzYzQoBwJNmGY8fPUYpCSSrjkc292uBfID5fC5EijxnNp1ydfWW119/DQpxQdBi7nhxccF8ORfSwm4nnVbXxvyEcV7jYucrvkKS2AaJFWZidTyw224Yhh6l5XkQoG/bqA5vaeqG2XTGfLGEgFCJ12uB6iIFXTp6yaRxTir+sdt86DrjXh5/LE2HPON4nYgWI+6TIpOLI8vzh8skEJPmImvPR0dW+bzizDLu07Zp6XsHOuHJs3d48uwdhmDYHxrp6hNZE8F7+lbsLbq2EyPAuiYg1vPC4ltQ5AV4qOuWphUYJ3gxWrRWU+YZy9mE1WLOyUIunNRaCX/bH6RA0pquaVhOZzw+O8c6z2GzwSpNluVivqgU1ig0nsTIjx+dnfHRh+9zEVM658slWWJ5++YNx8OBxIrJaZYYiixlUuasTpY8ff6YrMy4Xd8y+IHZYkaSJUI31ki0sjXsdxt2uzVNU0cIUOZzXdfJTNR7jBExa5Zn0q1H6qwckjIzDjFIquvkogkh8JOf/oR//z/+j/zLP/1TVsslx+ORrmliR9ij3ECRGvq24bjb0XUd3ksioVaGvMhlmO8cpiwXn5RFyXJ5grWGu/t7jodDnCHErRmCVCCx81Ax2hKEBikDmIAOniSxnJ+esDxZkdiUgMZ7mTMYI7i2iVbtkpXbP2DRsakhBAl7cd4JLu8l3MXJ0EV8e+TqEs1CHEaOg9E8TTi/POd0dUbw4r8jQ34VcXFD5x27/YFtVYmpnBNrYmMzsqzABclY9ij2h8N/kz736PIRV1dv+au/+kuurq9RSIfVtrIR4g6UNvHh/cgsw8XWr2kb6mib4mJ4T5qlKGvJ8ozl6hTvgww+DwdUHCa7aM9N7KCUNlht0NZIhWRlII+KFiwPUIUEWAnMGEisUKqNkax3a+XiS7KcJLF4AkPTUB/3MDiKfMZ8dkqWnRCUwRkIJqFXChcQwZQyBG1kE0Sbe2OkEk6zjLIQCmkWM7vlc5cV33ZSoXe9MLrGC9GNB5pSEAVeUsjIr3nARN0QQB8vDlm/wrDSenRxHj8aKXysMZysVphIBsmylDdvruTv0gqbWjkwUzG9vFvf8fb6Whh7iZjzlZMJl48uKCYTnPds9nvarqHtO6pKfMhkXiiXlldCI06idb5/gIo8PriYiRME7x8ZYzHH3jvPxeUjlssFddNyd39P27aiTdFCVPERtghEkkT8++V9f+uSjUUYRKHfeGnoCDkrCMGjMMzmC05WK4H1QizoIttxcGLjMcTL2MWCxrnhQbAp68NSlnPe/+hjzi6fst1XDC6Ql1J5o2C/3XE4HPCjsWU0Oh1fndWWcjLjdHlKnpbUjcwtxwwPrcAmhsVsynI5Y7UQd4hZJCKUecFmvcF1PSfLBbmxWAKLfMLJYsFhu6WuGs5WJ0KEGHrSXMv8L00okoTT1YpnT55I8FFZkljLfDaNcPkdh+pAnqdkeUpiDfkk5+LxBY+ePaJ3PV+8fkXnB+bLxYMrsDEapcGqgX5o5L0YK2zHWFwlmeypNMspojNuYhNsakljXgsIs5Ugn0PbigX9yeqEd959h//rv/t3fO9738NqocBv7+/54rPPaOpaFkdMXQzxTO37Pnb+8hn2Q8d2vxX/vZPF+SdplskkP89p64bNZkvXtWLupVRU7UYSdVDiZyS9MGrE17xHG5hNCpbLBWVeEpSR2ULnItatYg7vgOudLLI4O5BDVtpcF7sYpZV0JlbgCGU0SgmGP2LcKogR4tAK7mmAyXTK2cnqIfui72WA56O/lvOBrh+oulZysaOuwFgJEHI+kKY5KC2q4q7F9T3WWnabjdiQXL3l6q0cIiK+iRc+ASH5aBnseyeDKy+PzA0D3dARhqjQ9SPxQNT6aWKZzeYUecl2u+Xu9lYq1FZySPQozgyyyVWE3OQSGQ+F2LYSfcNA2vp4aVsrRnsy6JVUujRJH2ZXXmlcJCKEQcwuR7Fe1w7UXU3TtVG/IQpb0eDI5ZWlGRpRRAtWLGwna60wXELAj2LA6LnRx6rKRVPDEC0w/Oh0O5508TKJ71QKl3H9KKmSBaePEGf8XMJ4oSNFCjHK+Ox0RVFMojliYLNeszvsSW1KlucPVuIE+Oqrr3j9+vUDbFCUhbiWXl5ik0Tckvdbmr6jqVua5pvNZ7SlnJYsF3IIz2dz8rIgSxPyXMKrkkQuWYFRBGIY14cbvIhPZzMpDAK8ev1KDDQTgf/kufYMI4MuiPf+CN8FJc9rvDyUkv0TonbKI5eMihWcDyIInM5mLBdLofhG+uf4+Qx9zxBk3wYEnhwvD5Qw+PohEDA8f+d9Hj19SdU6qqpjvlphtNBu80QiWQ87GQr7OOh3zslM60HA69EopnnJ/GTxQOGWz89T5EKDnZUl5+enLONA3yJrc2hbuqZlMZmxWsxhcGjEh2mxWOAH0SlZawl4NJ7ZfIpRmizPeffFC54+e8p8NmMymcga9Z7l/AQ0HPd7tNVMioIsy5jPp5xdnFNMS9aHLZ9/9QWd71ksT8hKmS8mWSJzZGTPtYOnbXq6IUjXbq2gM1GOoLSGIOey62Na4jBQtxVD18sUIWYk/fiHP+Tf/bt/x5/92f+Bjz76SCzdXc/QO3abNTfRBsho8fqy8exwnbgeuL6XaIum5XA40I5zl/Pzp58MfU+e5SyWc5IkEWHZ/iBqTR0dM5WI82RUPpYrQvuSCYAntYbVyZLlfIq1cgAPTlg8IQoFnZN8aOEfCxdfx2pSWjNZvNoYEmtJ84w0SeQSM+KeKYs/PMAfeA9BHHCN1symU+bTGUZp+k6yx6UqlcUjXZCnblp6L52GUgatx/wHcQitG8k9d86xWCz40Y9+RFEUXL99K7qXmFNgjHjhj6OgsaJjtHKIm1ggJYFatFbinWSFgjrSmZMsZblcQAhcXV1xPBxlSBU350NuSvw8pNWN9s6MnxHCnR+r2QjrGCMdWZpKmEvwstnSJCXLC7QyEsLjZAgti0+q/KZtOBz2VNVeHGCVQSthSIUgh3CapHJpKEXfdOggQ7rExAyAeMATEHZZIvRc7yVXfOg7fNSyhMgAI752Hd8r8bAb7w0du8zxMmA8EB/uFenwxgNRLhniwN2zWq04WS7jvElmVHd3d6JR8uIrZWO0wOs3b9jcrwlBOrYkSXj8+DGXjx6RpCn9MHB7f89uu+VYVXS9aHkUki8ymU6YzeeURRmtQ1Lm8wWz+YwiTx+ej9EKEEudupZEOZuk5FFdX+Q5TdNw/fY6OjkIy0s6h0hbHYkn3/KVk3U5rg95hGMnRyQO/DfPznuMtcxnc2azufgcxTUz2leIvYes5xDRgeBFq0IQZt8weCbTJT/88R+wWJ7z5u0tx7rh9PwMm9j4+fioWNYMg3ir9X2PTUwc1o8dY0ATSBJDOSk5PT2NCXye4AaMhsVsyqPLc06WC5LEYmOUwbTIUSGwubsl0YrL8zPSWJRmmRAAUETLFouO+qUsSxmGgUk54f0P3mM+n9F1nUBfR9H/1HXN9c01V29f09Q11mqsFX++siwwWcL+uOeLr1/RDj3L1VISL7OUfPQuI+C8omkk36dphEEqKYsareT5mMgKTKyNMxL5tz54/z2Wizn363sCnn/xh3/Iv//3/55f/uqXPLp8RJalaC1asuqwZ7PeyFz7eMAHT2YTlvM5WWJp6uoBqjLGylzIWpaLOcv5AnN+/uSTtuvRxrBYLiVjoOvZ7na0fRtZKIg1BLHjIGJKqIeOQ6lAWeaslguR+A9BTMH8CA8lkbonlYx3kYIbB5gPeH2IB2FkExhtxFY6ViYjRDHi5wpZrKI0F9FLFg/XvhUFtTGGxIrpmzUC47gh0PTiPzVaCGgt7pcAbdNS1Q1N25HmGT/44Q/47/7Vv8Jqw9vrazkQU/HdUkbjBwm+8qP1QYw29UNM5Iq0uRHu0loqRWss2mrwElhkjGUynXI4Hrm/v8cNUa8QqZKgCWPEZ6wMBV6IMatxQDzqOFzstGDs7ETcJTRruayNlQhYbTRDL69x6Dy96x8G713b0HRHur6Jsy0r6lUk2KbMC/JCBsZVdZR21iiBqawhiRCjzDwsGvl8QxCTvrqqpTqPzy/Eind8n2OxInfJmDEgnYga3QbkZJRDMVJ1VWRTjRDieCFJXvnAfLbg5GTFdDJBKSUZLcejVFdtVPJ2PcPguL27jeFVEoG8WC558uQps8UCpQ1t3/P27TU3d3fsD0eathXvNh0t1mOB0fbCkmvi/AJENLrf78RqP3a4fd/jB89kOmW5PEFbw7SckhUFb95csdltI+7tBIpMpBPpB/FTQsVOLdZaY7EnW0WwdZDOVYiM8txVXF8+eIxOROQ5m8vrH74JC3Ix/8QHEQv7EDVZUU8QCAyDiP5evHyfj3/4U9Apt5sdddMxXy5YLJZUdcVuKwLZaVFSFDk+ZgA5J12P1TEPpqoxJu7xaIkxmZakNiVNLbNJyclqyWqxJM1TcWSIvkuz2ZTMWurqSGI0p2cCv/V9D16isInrsuuE2KCiJYg8P9Gd3a/vubq64v7+npubW95cXfHll19y9fYt++1eqNh9T1CiGzJJQpJnNK7j1evXtK5nNp8/qMjzIkdHZ+Wu9+yrlu2+4lB3tJ2j907mrmo8f8MD4kOIXnFa8T/93/4n/u3/8G/56Lvf4aMPP+QXv/wlL569oGmFvj9SzY9H8f077A+8vbri+uaGtmkp8pxHF5fMpiW79YbDQfI30ixhUkwpS/FHy/MM8+ji2ScuUiCLrGC2mJJnOW1Ts9ls8N5jTfKNJfPYdcRFKb71kCaG5XwaefEJgxtwTli1AZkrJDZBR3gFFXnjkXKrlcKMwsJR+euE8tdH076HfPOIaeuYe+4HEXdZbbFGo9EMXUfXiBrb6gQzXno+4Jyo3etGnGyJ/57WIq4BmSWMjK8XL17yL//ln3K6OuMf/+G/8uqrV5iYXx2CDI7kwxQcW4KrBKZxoyJbpkTCcImzBx9VxFmax+heqXCstRwPR7pW2s6+71Hx/TkvIkwV/wl5HlJ1am3kMAiyoGTzixBTKaFI6wjvaS2HiI/5C8aI0aDRAmv1fUvbNJKImFryIqEoUsoyweiUYRDrgzxPmZQFRZ6hgqeu9zRVRZ4a8jQhT6VK0jElMksseZ5iE+lU2qbmcKgekgW/aRyCvL94PcgcTUXYL8TMhHG2Ib/zsC70WIXHHAsvkOH4vOTzkkt9Monw0VKgmHHY+/btFSoGLg2DQ2loasmRN9qQ5SlPnjzl4vICYy1dL8y4u7UE3tRNhXeQ5imz2ZzZfEqW5VIxaoNNDAQYOhGG1tWRw25PU8vMyzuH6x3Wai4vLklSi3dB4OSu582bNzR1IwdO7HZt9K3qux7vhkg8GK9XWXfjvpV7OMKbWsztxstX7H2kmLPWslicMJ2KZZCPsKrkg8ehv5czgEgKGZ+zsNsCxuR8/4c/5fGTl9StQGmi20i4OD+jro7stxu6tgVEmFrmOVob2rblcDgSgscqLX9//Py9G+i6Gj84jJFO4/LynDIvcE5mp1oJRbsoUqZFgTWR1ePFyUCpwHq7xQdHW/e0XUPfO6qmEpKEChyPYuVjraVpGna7HZvNms1mR9e1NHWLTSzT2ZTFcobRogvyzmGsFgrsck43OF6/fUPT9aLryrKYWjomsGqarmd/bNjua/bHjqppadtx5uPlPIwGmn3X4/qe7XrDbDbhT//kT3n27Anvvfse3/noI06WJwxdy/5wpO9agXODZ+h62q7lzes33N/fobR+KFYuLy9YLRYcdlv2u4OQniI1WStF8AOhd5jT00efAGInYg3TyZTZbErfD+y2W9qui4tIbtwQ5MCWZQjEQylNLcvFjKIo0UaJFiAoUUBHtbLSUvWIBUFcwEF+XRFpvsjvDzF8qOk6YaKM4eta4g9NIuHxxKGjVobEmgikje36IBVxgKHthcbXCqOlG6KDrPPSMSCiohAUfRTJ5EXGZDLll7/6JT/96U/57NPf8+d//p/YbbckmWCyIVbzIKFJYr8ysnikWg9jJRcfmorPu4sVlbXCPJJDztM0DXXboJXCu0BT1wQPaZbiBpmhjH+ff3CFlYpefnVkvgjsNA5YTKzAx8M2RHsTOSyFkWJNQggiEAp+QKNIUhHsTSYp09mEyWSGTQqKPCHPErJU0XcNx8OGptpjDSwWE/JUYBejpStNrMKmCUlqGWIXc9gfxcJkEDvs+JRkHoVcrvJ+4sHkRFgWl+M37zdeug9FhzTKAr0NPUO8pBObiC2FETZTWU4oS2HszGZTmTUpuHr7VuZnvcyorJEKN00zrDHkeR69hiYizEIq0/V6I2LBrqfIc2azhYRvFRMpDuJ61yauX6VRwdN3PcH1qKBIYmqgwjObzjg9XXFzc0ff97gA9/f3HGth3chhLvkYEgcqSn/nneDm8TnGgvnhcgAiTCUdvnT8Pr4+ua6DH3M4JAebqNsKEYKVtE5PUHGmET8n9SAY9vigOVld8OF3vk8wlv2hBq3ovadt68gQshwOew77HW3VRAt0R5ZmTIqStm2EoOKdwOdhoKlrula61KYR2Hi1WjCbTElTiUY1VuDuJJVsl8Qo8iwjzyx1U7Fe33N1/ZZXr76iKCaYRESc2+2afnC4YZD5aHBoY1mdrgRqLMsHC5kkycmylLIoolkg1M2R4/EYOwEhWMxXJxyaI1+9eU3dN6RFTl6I1X6SGGEz5hl1N7DZH7m523G/PVA1Ma9H2AqicYqXdohw5Ha34cmTp/z3//2fkdiEphVtkHcDaZIxKYvobSWaNu8dh8OR3/72txyPFe+++w5lWdI2DfPpjOViTlNXHPd7EX1rJbq8kT5sDWa1vPxEaUWIs4jJZBpFaclDtGrXdRGDEz60HPMSCCMVDBRZynwxwxgrUIBn3CER2vg2N/9bw02kspHLJS7IQXjHwzDI/CIeiiPTxMbuZcT7Q7Q6kb8sYrUBdIBEi/9+GPUN0V2TSMcV5q16EOv74GljaEyRl3zwwYf84R/+IWma8J/+03/m1atX4rmUZvHSULETEnt5Lzsn4nvIlh1hgRFj1zoO6UeMWA610T24i1i/1kIuGJyICHU01RMoYYQL5QAwRvLhZdPLIgsR1iHi+0pJJrqK+DMhyAA9jFWFWFcHke9EWEnUp8pAmlqm05zpdE5ZTLBGYfTA0Nc0xy1tcyCxgdk0p0gNRgeMCVirKQqxTbdWurPdXrj6Tdc9YPGytmStEF97bJ4e1skINSnk9apIQQ0E6TSiroPRYnsY8HEmkceBpbxHuWyLQnLr8yzj7PxCoLOuY7/dsd/vH+Yn4+uw1kpF7wPHo8wfyhgX2vU9t7e33K83YkgX2U5dP8i87FhxrMQ+4niUC7NtGokL6FoZCMsbR0Vn6UePLtHGcH19Q1AK5zzb7TYKSyONVV4dBJndSIclz0+uVeK1IXAfCFSppF0dl9HD14gJEEIgT7/RcMjfL+QVmW9It+oFF5X/VikCQgV2PqB0wrMX73F69ojdoWIICrRg/x7PdrcVk7/DgbZuCMFx2B3Y7bboaHOfpAl9pEsPQyfby0eqadOgCMwXM6aTUjqWxFJOJNfdpglGKV6/+Zq6rjg9XbJYzAnBs93t+ezzz3hz9ZbV6oyynES7mBatNV0kbBhjOVmdPPjeyecExib4wdH3MlDfbXe8ef2a25tb0dZow2Q64+T0jGI64Xaz4avXr6i6hryQeIfEip7EaI1JLL0L7A4t13cb7jcH2n4gBLn65dCXaOTx3FAGDoc93/nuR/z8D37ObD6LhbOInUdIMYRAkljcIESltmt48+YNu92Oy8vHPHv2LOpWDGUujs2b7Ya2bSSiIssoipI8TQR+W8zPPtHRwM67gSzLKMpchr7WsN3uqOpj3Gixw0Aw/HGRWwNFUTCfT3GjnYgjsgBEFSwLelQGC347GnUNQyeMmkGwZB+ESijDZh3ZN/ah8xHYRyoz5x1D19EPAyqI4liFgPKioEyMwSqNDgobZwAmcp8H7xmCzBx6L6wN52J2MYrptORnP/8Z3/noQ37z29/zN3/zv9C2PXmeCjuqb/FRm6HjgTzCBqAgCDb5bbhAqW+G1AJDSdsZAjGPQlLiAEJwtG2H0RKT6WKg1nhYhDgjGju4xFg5CGK1xwgdqLEzGecc0YokDhx1tKWWw0eRJHIAjw2MMSI+y+Phn4yEBN/SdxWur3B9jTGOIk+ZFJa+bwgMKBUoioyyLEkyi/OObui4u7sTl10nlhZaSxvtYpDY+Hq+/VVYO/LzEE015UnLJamNXKYP/31kvBhrHjIsZI4lz1FrCY6SoTs8fvyIAOwPcqkdDnsJu8nEdsJ58W2q6iNt21LXDXXdkBc5i8US5z3X1zfc3d9RN5IvfazqiCmLo7DkU4vFCt5HlfQIY0YKrRcNhLXCRrtf37Pb7YRBFCTHRazeZU8ohXQdPqrs47oQZ9R4V4xfI402IOtBBL1xZhakc/mmrvCkacby5IQszVFEuxofO40gM0ceOmtE6BuEtegD2Kzg2Yt3waZsD0eyckKSJZxfnFOWGZvNhq++/ILmWIn5Xwgcj7sogHMcDwe8G5hOJpRFKkPzRpxnu65mGHqWC2Gb9V0rwkA8x2NFVR/ijE7Qk/X6jjRJMGb0trLs9gestVibkOe50NsTC0BdV5J8Gs1Zq+qIG8R+ZhuZX845yklJUZYYrVmv17RtTVmIq+1svmS5XOKN4WZ9x+evXtH0rfzeYiqUbCdSA+8HXNC0vePufs9md6SJCEnbdQQ/4PwQn7ucBwpF3Rz5/ve/zx/90R+SJgK39r2IJOUgEaHqeL6nqaWuG67fXrHZbFgsZpyeCVFgtBcJbuDu7pbtZiPEFKOx8YxTCszZ6eNPiO1q3w8kiWVSTMlyScEavGO3P0rVG/35VZCKxQ8Cy7x4/pxf/eqXfPDBByRZ+rBwbJIxnc1x0VTveDw+hBc1dSOul73Yj4S4wo0Rs7IxU8AmSdQDSEUqbBfxYUnTDOe9RMhGW3iNdBtCLTNkxpImCalJyJKUMi8eHCZ77+md0Du9PN8HE7wiL3j33ff54z/+Y5qm5a//+q948+YtJsJTgRErF5tnuSiAyME38TB2Xi4iPVbTI91Rdm3UGghO7b2LnYNBKf0g/PGRWqeVOBN7ua/jYSCb3igN0YKja9sYQSmXVAixWo8VoQrS+cilpkisHIx9P5BkaVT6AyhsTAVTCoyW6gjnsSoQfIt3DYkJzOcl00lOmghUOERbiCQxTKcz0ixlu99JzndV0bYdKlqqj53UOMSHbw+8Y7U//jrx8BvddXWkI48VdKyAVYhwkLVMJlPKsqTrOw77A24QGCRNhYa+3e74/LPPqKqa5XJJalO+fPUlRkllnGU5H370Iev7Lff394Qglv7WJvTdwP5wEIPGELjfbNgfjtRNw+A8aZp/Exy2WLFYnjCbykylKErJUI9CQBXEpSHLMozRDMPAbrelazqMtTHaF+qmlXvbf+P6K49OFsYwUprHzzvOLIgdh4qXhfz6N78m/4E85YCsmXIy5fT0nDIOrH0QoanoU+LHhXwePkJ7KMsQYLZc8af/3b8hmyz46usr9lVDOZlgbcKxrkhjONRmfc9hv6c+HgDIsxytAsfjkaaqwAvNdj6fMptMUCrQVEfatiFJLPPFjCSx8cLfU1UVx8OeumnZbvfs95EJGGN9vfcUeSE5KdHYsSwmMiu00tmDwsQ5VF03fPnFl5K7bRNOlktWq5WEfi3lYphNp9QxEO/Jk6fMI2GimEzIigl13/HZ11/x6uo1aLFjks/dksSiuCgK2s7RtF4CorYHifIGhr6T7JY4g1MRnnZOTFH/zb/513z4wQc4N3DY76U76+VzcsPwsFeGmNzZ95JJYowwYbVWHHZiuSPiVsXr16/46ssv8d6TFzl910tnHDzm0cWLT3zM6O17GaiVZUmWi8CpKEqqqpIBlROs2mgxxHPDQJqk/PBHP+BnP/8pz54/5Xsff8yzFy+o2479/sDQezbb3YOwsK4bcQ7tBdbRDxz/SL+NFE0bra/HiYpCePmJEc66NRZjDUPXy2DV+6hGF2sJjSI1mlTLB2MRZ1KrBVdGK/rgJPwo+t6gYHCOpml5/Pgxf/onf8L52Tl/+7d/wz/+wz9yv16TRtMzOaKkQh83bIiVsMAAchm4Qf7uET4JkRtv4gdJNCIcBoE/xgWhlHQvfSfe/PFfe2CkCdYvz8UYuVBU9BQb2UTjn3WxGtVKk8RFIVWpBy/6GO89fdfRdbIGksSSpvJZZFlKURQUuVhGGw1WB9zQMnQNhF6G3xq0kn+v68SqIM8LyrKg6VoO+2NMGZTNa6yVoC2k0xtPovH9Eg8vufLkm1ygctAppdAIDVUOyPiefcAYQ1mW5EUp8FIv7s7WWvJMOuoksZR5Sde13N+t2e2kktzud2zWa9pGvKfOzs84PzsnTVN2u63ktqdZZPzIAa+i2PN+vWGz2TI4z2p1yunZOdOZGFoWRUliJRa36zqauqZpavA+zpcExuvahr5tZD+kYpOuraEoCpTStG1LQJ7fbDqVGeDQy4Gn5HAASNJUaNVxico6lTUz3hMPzzeuz/G5CuzqmJYzTpZLdFTJu+gO4UdzvchClDVu0Calajq8Nrx49wOePHuH+eqMr9+8pXee09NTBjfQtMKOaqojRS4XRV1VMudoaojmiH4YaNuapjowdB2J0aRWqvSmqWjqijR01jPGAACqZUlEQVQxZFlCW9eS9+49/dBz3B/Zbva0bRt9taTQla+IZmsQxqO1IrgLXuarLsbMpklGXhQsF0sWC2GdjkQW9yBUHNjvdxRlyePHj5kvFiRpJnk3eYm2CXfbDZ+9+or7zYZgtBRoWUqRF2RZInEU2hCCoa46DoeKbvCSltiIQG9w4i8XlDwXaw1915NnGb/61a94952XtE3N7a2EfrkYd4GWjqGua3a7XSzgO2HO1k10Wi6k2w2QpylohASwXlPVVTyz+wcKtnn06PknLg7XRsO4PM+ZxMpgPptjbcLd7S2H/VHgnoAMqjCcnp7wwx9+n2fPn+FRnKxWJFnKZ599wW9/+ylvr99yd3dP2zSRGioHZ2IsaZaRZelD626iVzxINRVckPYt2hwQg56MjheHMZHyKg/RaiNB9UGELJlJyKwhjZYj1lgSLV0LRtM5x7FtGIJHWYNSIukvy5Kf/vRn/MHP/4Cvv37F/+P/+f9iv9/GmNlvDrcRe5QtKa8vMNpoxMFscLJR40Dax3mGvFfhqDsvwh83OBlqRtWzUtIiez+OguPmjs9oiHBBvAYegubTRJS4KrJmRuhKOhXh2UtYkgyC5CBRoEyEYyDLC4pyIjzzvBDB01QsXExkV8ghIuFPRslGDPFQFJsDmM9mpHnOfrfncKzoh4G6qrFWOo0HanaI5e63nm8sf+X1EQ+m2GHoaBiook2LQCVyIIISDHk6E6prJ7CRsZYiLzBGkvq8Fz3AOFBumpbNbkN1qITb7uFYHXn54iXvvPsO8/mCuq5ZbzYMzkFQZHlGGztnpW2EqAam8znnF5csFguyLCdJMpIkk4vGDbSdYNXe9TR1TV0d8c5jtQLEufj8/FyeX5oSfMDalOVqyePHj0nTjLv7e1TUGhhjYtxuH7VFVuRNjNY9/831+/BVayVakIgmyC/LxaGUFife2Uxmb1G7IDY64o+lzDcUaaUkyXNXtRSTJR985/uYNKcdPEmWk2a5QHRAU9ccjwfquiKJcbhZlhHcwNC1EC9/rQKZtQx9x2G/p2mOcrF2YjCplJgoivpf3HqTRDrNpu05VNVD504QWHf0CTNWYGGBcb+JGpZCQDJNklTWzHw+ZzqZRUW4FF9aSXaRApllrM6YzWYPVkXaWHQibhmvr2/49KuvOLY1QctzlyImJUskZkAFzXy+pOsGNrt9ZA2NULhiNl+QFTltXdN2HVme07UNp2en/OGvfslkOuX25prtbvdAYNBGCCFD11PVDdvdluPxKLPcuqXrWopSznuBXyvJ71DQ9x2H457DYS/hY0bWrnMD5uLs6SfCXw4UeSF+Om5gNpuTZxnWJMzmU6qqYbO+x/VequUQ8K5nMpnw+PEjyumEQKAfHDd3d/yv/+W/8sWXX1BXDYQoXNOaxFiSVJgtSZKITsPEg4s4wwiiHPcjRht1CiCdhIqL3RppJX0QNakigJPM3NRYcpuQaREAWa0li1wnmGipUXUNdd+DkSD3wYvo6tGjx/zql79kPpvxl3/xl/z2t795wMJlLCCdxVjBhW+J7WT8Igeg80L5DJEWGOKwUtrGmFanZZgbItPK9YLx29hBDDGsZTxUBYKQHa6j9kTH1DsixbfrusiqkH/fR2HlePWEB7aSXB6iJZDDR0WNyXQ6Y7kUX6AsEwvoJLHooPB+oG0bXN89eEoR2TtD10fee2BSlEwmE0KA6ljRdi1dI8aPSWIJXvKsA2OnFe+NeK7Ja447Mz5WFYkSMgiPeoMoOgtRx6OUDLG1Vg+ZJWmakmYZwYsVQ9+JuGyEcdI0QnRDoB86jocKHzx5mrNYLnjvvfdE4W0T9vsdVSWspsQmkcAgl7sbfEyZPGE2W5AmuSRH6jjvQ4sRYHSNTW0SZzM+HoCarpFheZbKgWJsNOf0HmsTVqtTTlYrtFZcX19DhBF9GARujbkLQ9/J/pJhoTxDpJjQGunUtISyKaUQpbQwuvqhx1jD2eqM8/ML0jQRLD4q7FWkZyo3dsFS3LWdR5mMpy/f4dHT59TdQNsPnKxO6fqO+/t7gcMnJV3XSUG626G1oiwyjDK4vsMNHWEQjzfvBggOG6nkrm+/mQGh4u97BtdTHSqGXjqupm457o/0fY93TtAMbamrKmbqRJcBI3unbVuBvb10ICD5Iqjw4K6QpzlZngpUaXQUz+aUZRnp3wnFtCTNcrEM8Yrb9ZrPX73idrORSGwlZ6wyijxJBKFAkyUpq5Mz8qJgcKJjqZuaAMwXcz766EPqY8P95p7gZb00Vc27777LD37wfeq64u7mFqWk+A8xDTLNUhGSuoHqUHOsjiikOKirGqWVGEh6R98Nwh5MLErDfrdnu93SDR0gaAoKzOnp4098ZCUZa+ldR9N2JDZhuVyCCmRZwWw6p6k79tsNxljxM+oHJmXBxaNLkjQVimXf8cVXX/N3f/d37PZH8UFKJW5SfJQMNkljZzFWw7KRwsPhIIeFNqKMTKx4GxkjFcLIDjLGEFTA9S66ZSJ846DIjaFIMlJrsMqQaE1i5HbXNmHwjqpt6cOASVKC1vRRmZ2mGbPplNdfX/G3f/c39N3wIEqSdmtEVVS8NOJlNx564yEeKY7x2JNFquTiU3FGYiMcIVRcGJx0HlJtxeH/IIPubxyGocgzFosTTk6WzOeLmChXUpR5rJZkUD44SRMUbDSezPEQkdmCp4sbS+Yekhk/m01ZrU6ZTMXdWGkRD43mfV0r+obxgB8GOVSkIu1IkpTT01MSa2mbJsJrknMRvBzwPkR9S3w98ozk2Y4dh/xW/MVYNOhvWaqMfx6kahx/PkSihTFG2CB5hvOBtq1xg3iqFYV4GPVdL+LUmCehEGZb1/VkWYr3npPVCdPJVFhZiWVwktrWDX0cqKaEoGOyYk6SZrLek5Qkkf/GGnGvjXwFcb+tDkK0aBtcH2N6gxQOUr0ajlXN0Hci0tSaJElZngh00nat2O7XFWmakaYpXS9mkVlexEtWyCA6MsTkEhOqnKC249BTCoc+OvtmWc7Z2RnzxRLnhKihFdI5WCOhSV50Qs55nIOm71mcnPP85bskxRQV/ZXyQgbPXVtzOBwYXC/zuK5hs9mIfqXrxe/OGFIrHaVWQTQpiPvt2KG5oRPii4UkES2RNZa6riT4zHn6bqCqxS3bGk2epqRJQlM1bLcb+l66s2k5hRCojhX7ww7vg/jGIftPK0OSyuWvIsXbu29+XTpK6cyLSUleTjBJgtYJddvyxVeveXV1Rd0PdKGndU4udWOEEGOs+FrlBZPJlBfP3+H5ixcUkwlpnvHk2XO+853vkKQ5n3/xBev7tViHdANt0/D9H3yfd995R8YJ3mFtggKSJKEoc4y2AjO5wOGwZ7eTDsL7QFUfcU72Q5JkOC9U5yxLmc/n9K5jt9tS1zWDc6RZIsXG6uTik3FvukEGdT6a8M0XkjKGguVyIRjvdsvxsCcMA8v5jO985yOePn8GCno30HQ9V9dvef36CmstWZaLKE+LRsKMfitKOgS5LsYeOR7CfpwDRH+lbw2QQ6T06ojbqZFRMgzoIHYEJkBuE4pEPhSjRDyXWkuWSBhK5xxV39IGj7Lic+ScPPTdfsf6fsPbqyvu7+6Et2wkXEZ0GvJ6Q+w8xu8Pb0ONv/eNgy3jQHKcL8Q/ZyIsNVY4wloRKp+xMjQO3gnvJiBVoRYHT8lnzkkiPjteQovo6loU+UMXMcJbMgMQ7ywd2VbDIDRQOXRjaxwpk9PpVEzoAtLJ9JKJ3MchmffihNp1HU3byBAyQFkWLBZzBueoj0d0hBLqphLWUIidk5LnMOLu0nmOD3L8Nqrf/1sat4rdEd+aeYCshwBiTphlAk0Ng8wBlDjzJonF+2ik13W0TUN1FLX32M36qMrtOtnkFxcXDNF6ggA3tze0XUea5hSTiRRUqVSfSZLS9p3oR5QWJXuEg4ZI2w5+wPuBEIQF49wgNhJGE3XcuBh16kOgiKrd6WzGfD7DOcdiOUcpWK/X4nic2AeSxUhXV/EZx6cGIGtxnHPE56pjSFDTNAxuIEszTpYnzGYznPN0cX4gz16IE2OB08XCAZ2wOD2nnC6lAE1TZvM5xaTEaolyBs/t7Q336zucE5hz6DqGriHRhiKzBO+oqwOH/Y76eGS3WXN7fcV2s8a7gSLPmEwLUTJnMRY6zx7o2IJmfDMnREFqLVpLLodQe+U9LpYLFJ62a9jvdnHoLrY8I/tqNpnJHo370RjZH4ul0HuXJycy28hybKSs7vYHfv/553zx6is2xwP10EkYmusFRrLSZWTRo8woIZI8e/qc8+fPOT8/58mzZzx59oQ0y/jHf/w1v//972krmUscDwe01vz4xz/h/PyctqmZz2YQz8TVYkmR5TFMTS6Z7WbL/d0dVV0/dFkuftZZltC2jYgCleLi4owkTdkfdtS1dG5axY5jubj8RAa34q6poudN07VYk4g7aKyclgvxULq/veV42PPk8SN+9JMfc3Z+Ru/dQ0LV/f2a27s7CJEBMraEY9Ud7S60nBix/REcO54PEAfIKs5UnBe2iHOSpGYi/EQA5YV+aJBW1qLIbMIkzUiVwSD+LnkiZnKeQB88nXM0rhfoQItOZDafU+QFu+0OoyU0RyklGRhjtC4KHyX/D693lG8g+pYQh5Cyz+LGVJJjouUkj3+PaCYEbpKfyyaWja+1aEu8l4vJx87MITOgfhB4S2jOMiNJkhjKZCxGW2wiVVFR5KRpJiyOeHnL65T5llCeZR0EhB5clBOyJKMfvDhmDtGW3HtU1N4MfrT9rvE+UOQ5k+kUow191zH0LSFI5SiiR9FWjJ+zQp6HPBe5Gr65OsbLYIQFR7hS4CoVWwwfoTiQn9skoSwK4JvuI0skIybPcrxzHPYHQiRSgIoYfifP4P/H1592SZKc973gz8x3jzX3rbau6gbQQKOBBilKpHRJXkoz995z9KH66805MzpXIikCBBq91JJVucbmu7vZvHgejyppdCbJQnZGZkZGuJvZs/0XxdbXdY0xhjTNODs7kw1vpLUpQ/hIqoo4JY5S0kwH8nGC62FwSOY6eNyAChAqVDXQw1cPd3GAbGnbmqLYiaT9dkvfD6SZ2BR4DNPJhNl8Sd/15FlOmiQ8PD7Q1I20nZB506dXcJ946PoaG5fjVQMhAXa6jvDSwonihCxOJbCjpGuF/UqbTdrFbScincujU07PLgnijN55CEIOlkviKGa33eC842C5ZHADm9WKsixJogg/DFgPSSz//Xj/wId377i9uWH9+MDq4YG6KsmzlIuLc85OT5lkuSQOWvFaIyAbgyYSmpp2SrRNVI+sbRo6bYNhLZNcKobQiqvjZr3Be8jSVNQUgkA1wjLyfMIkz2WmsTxguTxgsViq6VSMjRKSLKfter7745/4r//0T9zeP8hZ07ZUXYu3ej90jpPEEVEYEmBktpjleO9plQD97t01//hP/8w//eN/5+FhjTWWKEqoq4qDg0O++c1vmM3nBNaS5xMJRmnKfDZlGBzbzZa+66mrmm1RyMC7qPZWEMYb8klOnmZgDOVuR1XXLBZLkixls16zWq/pG0HrhYFWHJJAi7DgeMGtFe/kxWJGlk8xxnNwcEASRzw83LPdrJnN51w9uSLNM5z6BefTCbd39/z44w+is6RwVZEAsJLfKE/DjZk6HxnYxshweexjIyohMuwZJNseswHvHc6pv0HXYpzDeod1kIShVhzC4Qg0C4nCgN57ehytdxRtRd31mNCyWCz5y7/8Sy4vn/Dm9WvKsiSOVC03ETE+PZf2eZp81l35ySaUjBHJrMf3plme+aT6GHoZ/gdqKC8zdBmKBWFEGIp+1jCqknqtXsZWXhQKtFR1vYxxwi9RjkzT1pLVhYYoikV3Jp8qJwAG12E8hFYOSms1W9OWYpqlBGFE27RUOkzzzmGtaEr1g0ggNHVFVTdYY5jMpuRZKkPjXoTS5PDu6TppdWlxgGfUo/ofW31mL1UgLHGpUKRKQtensVa4HYocQ/vu8uQjxHoAI/4F+XRCnAiZrKpKAKIoIAgjokgEHpvR/6KWINi20nY7Pjni8OCQSZ5RlhVhGLBcHIjfeNeLSrKVFqq8EEiyjDSNwepQ0UmFJoN5NUBy4ifR9w1lWYAfOL845+tff8XnX3yhwpLShx69qJNURBLrpiawsofubm8IgoA0TQTN2PcYKzDPwXu8KtU6va5SEeu6NQbvHX0v6D6PtLW8g+12y8PDI3Vd0Q9OrBZUusIr0qfrhV8TxhlXT19wdvWcVFs2Xd/RD4N653iK3ZbtbkMSBSwXc0JrWD0+UBc7LJCqUmxZbgWgMMiwezbJOD4+5PJCjLXSNBak3CDrV1qNck27EbnnxbuiaVvquiRJEwwCJ0YJdX2vihnTnCRJKetCvOOdI01FQ6rvZfYZRhF5nol0TCAdFOcdnUKTgygiTCLKpuVffv97/t//n//C+/tb4skEQsumLGmHDhvFeFCfC6/7V705NImvu4a37z/wj//03/i//+t/5c/f/Zl372703oQ4L5LzFxcX/PJXvyJNEyb5BI8jzQTM0vUDu+1GQBNaOdd1xWq1oa5LUgWKGGOY5BlRkhCGcr3W6wfiNCVLE1artaAJO3G/DMOQ4PDg4ls3yNDNGkvXicKsDUKqosTagKPDA7zzREHA5eUFxnvevrtm6EWsa7lcsFgeik7MZMbrN6958/qNVATG4PuBKEp0oUr26PzHs9YgQ3E5M7S3qcikjxmS8DIEGSNKjVEoeOu+bRnansiA9Z+2qiIiG5CGkQy1IsmQOjfQ4enwFF1H3Tbk0ynf/O4vePrsOXe3t/zw4w/qPzBKsYsUxXi2yZ7TgKCh49OwMb5qyazlt0aYriwQ7dN74VqIX4gsZmuMGGBp68ruEVkySEbnE1bRYseHhzy5umQxmxCHAXkWY6yna0u6viEMpYftFD3X91JyxlFAnqTkSYL1TiS524amqUnSVPSbongPWXSDsGS9EyRX33UUZcl2s6EoK0IbkE8kI4uTRPTCWvGX6Pse7zwYS1HsPrLbP7me4/WzepgZ/xGmaxXcMEKVHRJr0ODiPQK1thbjBWHmhp4wiqSFodVPVdWiohwIosUj3t8eSNOEfhgoix0YS2CMDD2t5ec//wWnx8f4wRPgGZqO1IZs7x95vL2l3pW4rmUYOoahoWlr+l4EMpNEKvG+74TfZAxhEGC8oIBwPXVdgxs4PDriL//id/yn//Sf+O1vvqZtOz58+ECWT0iTFIzAjLM8I4ljrA2oq5K3b98xn8149eoVWZapntJKDkkjTomoI3NgAvwYX3UdSiUx6k7pPESh4iLAKEZTj+uNJiKyXr0RNFfdOp4+fcnZk2fMF4ek0xn9MPDh5pZit2Hoe9I4oioLNpsVeE8cWjmw8AxdRxZHLOczrB/o2oYsiThYLphNMiaTCbPZhMl0Ip7tonmg60ValjInFKBFmoogH0DXNuyKQrSqtLoZVJ2g19bh8ckhcSScpUJblkZbXSN6r1cFjSzLNBkWC+D1asOuLKnbhk1R8Yfv/sz/67/8F/780090DmaLOT4M2G53tCrjYqwlCET3LbSitDyfZOSTCYv5gjhLubm74ccff+Lh/o6buwdwIXk+w6gNgXOOz16+4tmTpwAsF3Mm+YQ4kuTIdb2cTs5RlsKd67RzIoRCqXgCK+t8ou8L7yjKUvyCqprteiPK5v3AZrcjCUKCs9On346VAF5vQBhixl6sd8znC6aKF59MJpyenrDdbPjp9WuWBwf87Be/4Oj4mNliQdf1fP/9n3n//j1WJcPbTlzNJLNRqK0iacYs2mvCGVgr7nFGiXb7RNSAFax7GEZyiOvJ27edoFKsJfCeAEjCiDSMiHWTRoHcHBuEbJuKeuhxgWFdbDFhwJe//Iqvvv41u2LHf/unf+T+/mHPh5DlqcFi/O99taSZm/I4ZDN9/AWvUtMgN2l8z/vnGFnRKv+9zwj3KqeSqQ6D+JeM19Hp8xo80yxjuZiRJxGTLGa5mHJwMGUySbCBoITaWr2t1cpVECmeyBosDoZeyHqTnMkkJ9VNJq1L0f8fdBDqEJ2poioodjvZZArjzicC4cWL3WXbtfs5ikd4MkVZ7pnG0v+XYDB+DJqRe0VxhKM+zqh4q7MZrzIjZmxpjqquirCKVObdGEvXibPcMAw6D5L5UdPUeODw6JCj4xPcMLDZbukVXdho8Hv29BmXF+e4oRenOG8wfc9PP/zAdrXi+dOnfPPN13zzm1/z+c9ecX52Qte3vH9/LQPXYRDvik6yXe8Hka5uhAXdtQ0ez/HxEb/85S958fw5dV3zr3/8V356/UaTOclKZdaRaUAWBNHbt29pu47nz5/z7Nkz2a9DT9OL+5u1wX797vfXWJnJst23QSWgSLKCJinGGBm6DwP90FFUwohfb3asNxWHJ+e8ePkFk8UB9eDYFgW7sqBpGx4fH0iSiCyJKYstq4cH/NBhvWdQu1KLo+9bgZcbYcc3TU0ShTjn6LpWeQjrffsuSiLyPN/7kYTqWzHeX4enaVrKsqCuK4H7eiequ5q8jlXW5dU5+STDG2nXrVYrRcrJmh36QZ0JhQS32+1YrzesNxs2mw2Pmw336xWvr9/z+z/+kT+/eU3VD6R5Rjad4A1sioKuHzBBiOxc4SFBoCKtgu47PT/n5OSEbDKhaVq2ZcFsugBCsnxGFEW0w0AcJzx//oz5Qmaay+UCoyKXQy9zFK8kUe89fdcr2EbmHW3XEQRis5DEMTYIBJl1f8/Dwz0PDw+sViu2u51o5jUNj48rmrYluDp//q21Ia7vcSgMCwkk1lqaqiKOY46PjmSRuZ6ryyvmizllWbI8WPLq1edi3jSZ0DQVr1+/5cP1tSSDg6NrJUM1VjDzRvvKY9Y9thas1a+RQe4+Jd8vYCPzDD1c5J+YQnk3qLSIJ7ICxY2DgNBDHERMkgQbhtRtTec9PrIMgWG123B4csJvfvdbZvMFf/ruO/7pv/0jxohW0z6rNZoF6/nmFZK4f4leAob4LMvGFEKRZs0ghLd9FSXvYyTyoQJzXrWGhHktsOS+Hxj6boxEAqnEi16XUZ2wSUqexUySiKODGceLGfNZTh6HTJOExWTC8XLJ2dEBX3z2grPjQxbTCUfzCUeLBYfzKacnR1ycnjBfyMC1V02eJBISmpAXPcY52rqmqiqx9lTfijzPSeMYqyiOuhV+g1cXRq/VZlGVOCVGGiPBw47LQNOEwIp1r7TNpG8/XmxrpI0ZhiGBZhBjy1OG/CN6TVoqUmJ3YMT1L4oiSYx02LeYL7g4PxeP97KirCoBUuQ5cRTTNB15mnJyeEhsoFxtiPFsHu+5e39NnqY8fXLOJE+xxrGczTg7OWI2yVjf33H77j3rh3v6tlFYuAHX0/XSQulbqVS8d+RZyvnZGRb4w7/+K//tv/3f3N3eEYYBcZKSxDHT2Yw8S6UN1LbCs7q/xRjD5cW5wHUPDlgsFzzeP9B1vVzcfRtagBjGSmLEfj2qTYLO36yVuWQcxUShtL3CMNT1OdANPet1QZxMefn5L7h48hyCkA93d6w3a5UDajhcLKmKHevVI30jFd/ondFVFdVuh+sbrBUGvTWGcrdls17RtZKUWGsIQkOvulBVKVVBU4s8fV2Jd87Imi7KkqooKAvp13dNTaik5a6VtRCFgpjru47ZXCWTup4oTHh8fKRuapIowRr5PdGxqiiLis16zWazpdjtKMuaXVVS1g039w/88Potq9WKIIrI8ozpbArWsC0KmrbDW5kLeW3JGu8Jrd8f4JdXTzg6PiJV+22MOFTGyYTtasvjak2x23B4fMTLF8+ZTpUSkWfqx97KGWvtnqw5AmFEW6vThK8m0iH/ZJIThAJVFqK2VFBNVdM1o9JywMP9PdvNjuDs/Pm342HYD2Jh6vRQjKOYuqlp2pblcsFkklGUBWmW8vKzV5yfnTOfS8AwulEB7u7v+PGnn6jLSmxXtD/tlJmIkSBiPunpGQ0O7DNynYXIf4nHBCIM2A893dBJBo7Zs1mNk/lGaC1pnJAEIwxXGOcOTzsMdMbRGs9jsaVoG774+c/48quvKKqKf/zHf+THN6+ZTqYYg7RUJHp8fH2auzknwWKsHD7GOGnJyM8MdL3Ya47SJF55FSP3QGY1AgWVSkL64NZK9jQ49XPea331BMaI4FgYMkljDuZTZnnGJI2ZZhFJZEkCS5bEHM4XnBwdcnF6wpPzC85Oj0mTmICBNA6ZTzLmk5xpnsngKwxoh46qrvczJbHOFTXOfuho2pambaRHHFiSJBGui9q01opUajvJeJ2WWQ7ELlcH8OP3PGNg/ijYGCikWKo25YuMbYmR6etFBgMjA36rpEKZG+g8Qf9WoMEGfS8YqTQOjw6Jk5RhGNR8CdIs4/z8gtl8Tt00LGYzTg4PcU1NV25xTU1kPIfLOV988ZJnT6+Anu3mke3qgYfbG4amIQ0C5tOcs+Nj0jgWyYdasvFeq7FBzZBEq0ju8+3dLX/4w+/54ccfBLmViKVxmqZMp1PSLKNrG6bTCcPQ8/btW6wxXF5dkmapgEC8qPzWTb3fS2Y/N9RVrMF4vBeyhGVOI7fMiBbauLitEQfGQPgoAyG/+vXv+OLLr7BxwqaoWG8FmVQ1NeB5/vwpj4/33H54r2CJFlxPFAh6yvUNZbGlrku6vqOtG9q2Zeilhdd0otAdxTFZnpMkKjVUiZ5YWVYUZclqJcrERVlSlgVlJdyhXu14o9ESWVVrw1BkYlrVVTtYLhSIkNK2HY8PK8IoUvb+R4fSrpd5QatMaoeTIBCE7Kqau8cVzTAQRDFREjGdTTBhyGa7pe46CKM9OMEa1C/c0Xc9cZJweHzI8ekZcZphgoCqrvnTdz/w8LDm9v6esirAeI6Oj7h6ciWyJ4cHWoEKSCCKRarJO/EDwhjpXDhHVVeiu6UkzjhJmCgIqO1EjbztROgVYylV4iaKIh7XGx4fNwSnx0++ZR+dHIFV/SV1ywOoq5IwDDg4OMR4OfhOj084Pzsnm2TyYsqaQRnc292WH77/gc22IAxkdoIynQ2GwHyE8UnwkNeor1T+95OzGs3qoziWDN7JN6NA4KcWJIPVaiYwljQOSaJEpKsxDP1Aq7ON1jta53jYbUgnE37xq18xnc15/fYtv//D72nrhkk+wanUt1ETKwlu8r96Dsp7YIStyPf370EPvUHfdxgI4kM24fi+tBeHJtsYGfB6VGpd5L89Ip/uVTJh6HqSKGI6yVnMZhweLFlMJ0zSBKsijwyOCEsSxiQ2IjIRaRwT2YC+a+iaCusdcRSQpQlxHNF3LW3f0TSCMMIIScwPMoR2OmRrVc3VBgKxFE8RIaz1ztFUAs0dVCcHPfCtNdprlf7rPm0w0hKT2U0gG1UBEd45KepV1mLMkr2TaxcYcR+MFX7ad720hLwntOrxgpZ62sqyxrCYi2ZUHCn7u20AYfWHYcTh0Ylwa7qef/tXf8VXv/gFzW7LPIk5mk348ovP+fJnn/Pys2dcnB1zdXHGqxfPePHkCRcnR5wcLHl+dclXP/s5r168oG9rrq/f0bYNNpBs0Ev5KYNd7wEn7PSHB+7v7qjrWt5bnAqBLYyYTiZkSSJzg0wQT++v39MPjovzCyaTKWEY8fj4yO3dPW0j7SxBNo7QeCVdjut5THzkJzG6DkdymnwtaEhjRC/NeTi/eMq//9/+I8dnF1x/uOHu/o4wCOi6ls12Q64DaatVTVuXbFaPuL4niUP6tqHc7Sh3O5qqEi7FZkPftPq3ZbM5hbYHasomYoU6C1VLA7EdlnfgBpHQGboea8wefRaorIgZRR7dQN81RNZycnICDpIoIc8yrq+vaaqaIBAYfxwoYXlMcBQhKuslwRvD43rL43qLN4YojkmThIODA4wNWK03dL3DhrFK5YhwYKIyS14VMtquJ4pTkjTDYwmjhDTNeff+hu1uS1nuiOKI05MTXjx/xpMnVzKP6kW3KlEya6CkUT9Ip0LOooFiKyKdQpWQ7kAYhcRRjHMCLmi7Vip5J0TKvpNgu1nv2OwKgqPDy2+9JsgGsNpLNqoJFKgeStXUHB4ecLBcivJiL34Dghv39E60YLwxlGXJDz/9yG6zkyGal2phXKyiDS9HhvTNx0xH+ufee9wnUgkyEBWIYdeLPr0NA+IwFiVLp73qQRZDpJ4dFiOY6zAkyRLS6ZR8MWN+dEQfGh62G06vzvns5SveXL/lv/7f/5X7xwfpi1tph8k2ko1lEJa4+VjYKxpI/ILNSGob21ijK5q6HUpQHispqb6cVwlx+R+RCIiE+RtYaRl6JTYGitqxiEHUdDLl+OiQw4Ml0zwltAbXd9APuK7DNR2+d8RGPMG9E4e2otxRFjthKHcNQ9finOj31K3IGXSqnTWy4iUT9nt/48GL6GUYivOcUWmTthffk1bbVP3ooaBtDqNs7l1R6Bk1yq9IpSHrwOBxQjAbiX1Weu1u1OpygrATno8G47H6+GTdiFeEVKro/TIaxKYT6T13bUdVl7Stuu7pegzDiKoSz4d/+Ie/55tff0VX7nh+ccbzizMuTo44PV4wm+VEkWGSpUwnKWkckISGWZqymExYzqb4oeP29oaf3vzIZrthQOTyBy8JQ6soICG0dqrAW+Ock0MrTcgSCc7z6UzERFW+xgPvP7wH4OLqknySE6cpu13Jhw/v960qo5vcYBm8kjfVGGusCP0nbP1xnVuFH0v6Ii3EsmnI8glf/eYv+ezlL3jYbHh3/Z5tIdpQTdvoc3q6usbgRFpDFi/OdbR1xWr1wHr1KEZCfU9VFbR1vc94ozgUsEUaY7wgPZtakG9hEBAl4qK5nw1q+9gNg5LcZP3FsRz6xiDJ1yDtKpCAHUUhy8UBRuWQDg6X3N3ccv/wIGZwofDAxmEyGlQxXoiTUUjTDdw+PLLa7BhwgsKa5hKQjBG5/aEnCBM5B9V4LonjveVA03W0Tcdmu6NpesI4YTqdc3pxDnjuH25ZrR6Yzac8ubxUHbUjqqYSQnGkXBmjSFS1pJbZxkBV16pjNYicVCyK1XEcieimE0i485KsicSIzKmbpmNbFJRVQ3B++vRbo0qZgVq02kB4D0bVVo01VGVFHEecHB+L3suulEgcJ2DF2hE9PMq64s1Pb9nutoQ2YPASHKzyL6xirwfVUPJGKgWMYG/H7MdYxI0slKzHeelHBkFAEomLnDUB/SDlrUe8xcNIFScD8XpeHB9w8eSKqxdPefHqFWfPrtg2JberB548fcb8YMkffv+v/On778B50ixlGKUwhDigh864mWSWYfRruUn7H1HrTCX7fRIUpLL62OoyEon2v+dBb35IoDo4aDUoQz+5H1Eo6ppnFyecHB2RpjI0bZua3WZDYA2hFV8N33sCGxLZGI+hV/a3dx4biW+xZCUOqyi1QQ/lMBZdniiOCG0okM2uw/lhvz7Gw8ipq1tdSWvBK3rLOWFBiwpAiDUBdVOz2Wwl47UiqWFVQsTqdRPBPCFHBjqg9yiMW/W85HWJvljXtsryFQMfa8SdcdT/wotRV6iESO8VStyIG1pd1tStDD/7QRBgElR6irLgyy9+xqsXz6g3GxZZzDxNSGMLfUvdlrR1Td2WbLcbNusV29Wau9sPrO/uxbURS5oL4GC1XYvelfNYG0sLoetUMkT0zbxCmP0wEEQBeZqLRWqUMF/MRRcMxzTPqeqKn374EWMNT58+I8kS4ihhs93w/voDvRILpdEtI0QpvqRskNX4P69TfaR3CiwXTTCPFSsCDFdPn/PzL39N7+Hdu2uckb27Wj/SNQ3ZJMX3A2EYUO0K+r4hSxLyLKEpS25vb9iu1wyupyxKyqrED+I3g5eW0tANxElIHGuSOjjKuqSpBEwg1qwBxsk+NZpZey8EKUm2lKMydOLH4wdcLyhJqRpkPQSatAWR5XApYowPd/c0Ta1J0kd7h3H9O7cnYlF3LavNjqJp5DLHEYvFgtPzM7yH24cH2nZQXTwd4tuAMJRqehgGQhuSTXPqumOlnjV39/dcX7/nT3/+jtXDA0maslwsOT075ejggNliThLFun9knwjgRpKmfuhpG4Eo73Y7yrIkyzKOT45VDUFmWN7I7EqqDZmBDYPwtKq6YrvbUWxrmr4nOD9//q0EB8no3aj7ZKwuTk8YBLStwLkOxqqj70jiiPlioYgNTxKnDG6gqmp++OlHNo9rjA32veYwjMCKrPeYwe5FALX8G+MHBiyBZPSaMcoh4GR+kWcCK0T6jm0vNrFekThRIgzbg5Mjnjx9wuWzJxyfn7M4PsTGEW/vbqi6lqvnTynKkn/67//MblcIdNKrr8ZYWah44ceg8TE4eA0awhqQsIEXKRIrkQWcZ9AK6mOFIRm1PL8EDWMkI7bGiryztvhCrQBRN78wCDg4WHJ1fk6chHSNGOD4QZA6aRizmM3Ik5y2aWmr0X5XdKTc4IRnEIk2v7yugTiIGEXrQhUETLNEFEFjYSTXTbUfdA+9zJu8U3Z7P9CoCqkZjWe86DnZwBKF8vx1XbPb7aSXbiRYeiTDGeHY+6RB2xXOq/eIlVmRIOrkdTu1Mo0CcYa0KiTohgGvA3Et3ui9ZJiDc7KZWmHCV81H9U/UZMtgaduG7XbLi+dP+fLzV9TbDf2uIPA9ZmjZru+pypLeCXO+bisd9Hu6uuH63Tuu315TVqWQspYLSazevxXPmjBh6HqthAxNJ1yYJBErUe8doRUTqizNMdYwzSdYdfsLoxDr4f3tDV3bMZ/PpB+dxOw2W95/uJYWT6hWtSMMdfTv0EpN1rcEi08razR59BiCIILAUrc9k9mcX3z5FcenpzyuNvQMTKYTjJU2UVWXWAz5JKOrhdRonAc/0DcND/d3PNzeiqimh7qtOTk+4eXnL5lNZyJ946FTPpJHKq8gCjEOul4GwJFWEs5L0ijJzKf7ajw8W/q23+t5DW7Qilba3OIN1AtPI05YLObkWc6HDzds11usNaQavCyiKG0xDDiMCei8o6xb1kUh5kvWECUJy4Mlh0dHNH3Pw90DZdMA4zgglMNeg3WaJCRZSt8J8KAsKt68fcftzS2PqxVt3fCzn/+M33z9NU3bMs0nvPjsM/IsF7HIMJRzdRDtOGuE6zZW1HVVU5QF1lhOz0650BleEsdUTaW6VdJObgdliVtp1YoBWcXjeovzluDJ5ctvg5E7EY49UGEuByr+9bHl0nOwWHJxcbZHGsxmM+IkYhgG4iTeEwd/+vE1j6sVYRDStqrdb1VZ10uEl6RADshAZdTHw9ZiwXq9yXoxDERWenGB9lstgtsfelEb9VoxHJ+ecPX0kvPLC6bLBVGWQhKxKgv++NMP/OFPf2JbFUynM968fcufv/+eOIkJTCBDWH29cvLzSTkhm8xLEvbJLGaUE5HNh/+YOXs99MT/W7MhD14qXXkeXfReBfvCICQILYG3WB8QeBlZhiYgj1NOj445XC7wfc9q9UhTlSzmU55dXbJczEnjmDSJ6OqG7W4rbmldTVPVNE1NaCxZmpAEkXBfVEIiDiICo5kbTuwpcfRdy+PjPVtl/w4KV3Uq8e40M3HDaCOKVKLqiZEkicB0pXyjLEoFYQiZD6TCDFUh2cjNlcUiV1cPf20HOqfkSu03W5HK9yqL3fedBK0gIlKPFeedNOY1STFKwGxbISd6HIHqOuGlTYuXQ+rli+f84mevuHv3ju3jA0NZ0jcVfdvijcEEAYORrCdKEiazOXGcsFlt+fH1G67ff6DqO8IoZVdVvL+5oWwGMNJyShOR0GibFjcMxCod0neiUptn+X4ONJuJ/MUwdEQ2IE5iPly/p+1aTk9FNy5NM1brFXd39zj1r5HSULLRQa+foAA1aBiZ58lSl/mjKMFKIMaIC6j3cHH5hM9/9nOqqmFXlSRJStu1NE3DfD5jMZvLUL0fuL+/JUAyLOvFS2O9ehCQhzWsVitOT074f/4f/w/+/u/+ns8++4zzUxFO7Tth/Q+dUAOSSNS0ndo0BzYgidVcTJMDdPl5dF3qMBsdczknSduYlIAnjiKmU+FADP3AwcEBWZ5xd3PLdrORdlcSqXeGoKEG1fhzeIwNqbuebVnROTGxi5KYxXzBYrmgrms+3N7QNj02jFXB2hBgiCPR/rOBpa4a7u4f2W62PK5WbDc7Xr58yd/89d/w9de/5utff40bHB/ev2e5XHJ+eoZT4moYii99nmSa/EjQuL9/EOOrrqXvek5PTrl68oTJJCcKI7quFZJn0wjiUNUjsEaSmaalKEt2RcmuKESr6ury5bd7FItaUYrKo5T7EkRkwS2XCz5/9ZLT01NhIjatTu814qtBSdU0/Om777i/uyeOExmsBIEcKppdo8Q+s0fRaAtLS2bJYhVxo1lRoLoxQSCIEadGRODpnUhKGwuT2ZTjk2MOjg7JJjlElsYNbOqSH6/f8M+//wPf//Qjm+2Ooiy5ub0RlnicSMtJj6pxAe4/9IVLGTi+EQ0WGlfG1emRCkIOReFcDGpYNYYX9NCT6yC/L60YkVUJTQgO+qqT4X/nCU3A2dEJy9kM66EoNng/cH5+yle//AW/+vJLDuYLurqhLguKnZhnGUUSOVXMzOKMJAwxzoFzxGFIliRkSawD8Ia+b8EJQKDrG3a7LdvdVjJAlYFBTbrkIPqkTbD3bQmJ4ljFAYW45b1IW3ddh/OfKhbIsFFWgFw/Y+Q+9Aq/Hg87aRGOrmTyO26QaxtGMtwOFHobhsG+AgKBdlorrYcgkBZc28qmCgNxPxwGBVsYw9B3XF2ccXl6wruffqCvShJrCBHXzLIRKYdtUbItS9abrWLgN1RVo45uK97d3PK43bIpSh5Wa7ZFgzfid3J4eMB0OqWqSrqukddoRHQyDEMmkwmBFTXW+XyGAZq6Ybmck6Yp766vadqWZ8+eMl+Ite9afXD8yHdRFYZB0Xt+7K/uV6TZl/uyr+ROOC99Y2MN3lviNOfq6ilxknJ3/4DT6rPrWqIwZDabMptOBTU1DCJxsdvBMGC8o64LtqsVxW5LHEe8ePGCv/7rf8e//w//nidXT8jV1+Lw4JCilEy573v8MOwHycKLEQkgG0hlhmbuBqnsnXYgZF/JmhwTVqysG2uFx7BcLFgsFhhj6NqWw4MD8izn5uaWu9tbQQ1GMUbyoX0rKAil4vHWUrcD27KmHRGDRmT3Z7MpXdfz+LCi6XrCMCJWGZdAkY9JIsrLktfIUHoYHIv5nF9/9WtePH9GFMXc3d7ypz/+K03TcHh4uFdnjsKQKIiJggivAqt1XYsbZVkSRhFd2zKZTrm8umQxn8vf8TIMLyvpJNhA7jNG1h/GUFUV67W0V6uqwRsIri5efmtU98mGoSBXRsSTFbiYDaRl9OLFc7755hsOj49o6oam7YDROEg8eGezKV3f8/33P/Dhww1hEKmuk5XP42HrhYhkjXjtWmWZCzdDuAsO7UOqXHEQKorCKgvWi6SJUS/mfnDghXI/m8+knRUavLU0bcvjZs2763dcv39PUVZgDA/3dxRlSaSKvXIg6WbSzfPpZvJeUDB6sunXZv86jC4YMCIXr88zDHq4Oi8ELC+PG3Qlom0BHUTiIEszrDN0dU9iU46Wxzw5e8LTi6ccLo9J04woSri8esJvv/4tX/78Sw6XRyymS1w70JQtXd0CljiIiIKIJIw4XBwyy6cirIYlS1Lm8znLxYI8zeQ1DVJh9r1ARLu2I4gsURLhvcX1dt+cG9+fR3gng5ZjYSSkS3GTTAjCcN+2LIpy3x4KoogoHGdWuqGVoOaGgV6rMGNkQC7rcQy68vdHSG8QBKSZwFbjRFF4XiCJ3stzyKFolAgpul1tK/IVcviIErDMRmQWcnx0xMnRgrv31wxNQ6htx12x42694ub+gcfthvV2y+39PW/evOPD7T1FVRPEGSaIuN/seH97x6qoKKqOpvdgQ6bTCYcHB2AN2/WK3vUYLHEqyKkgkLahDcSEarFYSOD2A4vFgjiOeP36DUVR8PTpE46OT0jTlPVux/39Hd5LB0HWlTRVZdnKNRwrfWsFhDLyO4wdyboAgTQTbcTB8Qknp+fUTUdZNfuB7pggOTcIYicKKcoCvLS7u66hLkuqqmT9+Eg+yfjLv/gL/o//6//iq6+/ZrlcYgwM3sn8NBXZmvVWrGSdqgaHocjlOC/tYKNumzpuwxtplzk5JPb7rOs7+k7UjK2iIeM4YjqbMZ3ORMHBQxhFTKcznPfcvL+mLCsmaS4Vs3NyfYxqeUURYRIzYGmdp+5amsGLEvMgqtNBFOJBTOPaHqtVsA0C0jhisVwwn81Js4SD5ZKLi0sW84VU6VGMsYZ3b6/5l3/5F/77P/93dkXB6emZSOuPFQ8ifGptQNlU9P0gbpSbDYvFUvaoG7g8v+Do5BirM9RhGCkAngEhlA5OuTy6D5uu4/FxzfsPN9RVJbOji7Pn346H3v7jfypfQQ7op0+f8uuvvuLo6JCubanLUo1UJLAkScxiucQGAbe3d7x5/ZZhkPLfjzg5kKGADpj2lYaHTr2gx16zVan3UOXVrWafgoqQga4EN5lG9IMwIwMtE+M43N+0qhXnwbKqKauKo6Mj8jzjcbUiTzPB69fVfq7wv/qQK6S9NjRjG6+VAbMffH+8fnJZ5ca4QVp2++f5JNhIb+ajNLiV/BvrLKcHx/zNX/0NX//811ycXjKfLnTuEJFmOYeHhxweHhKYgGpXEtuYJIiZpVMmyYQ0TkTKYDrnaHnA4fKAaaaPZzmL+YyjgwMWsznTyYTABqRqMhOHEd45mrYhsFZtOjPqWmZOsolU7l3hpSPcNY4i0izTDSAl8KgjVBTFnskdqcvgx4pXs2NNIlCJ6CiKCZQn4tyA1xmKJBejqoAg16wVscmu76TN4SRzn04mBIGlbdt9hbtf53tUliYkeJWx6Dk6WHJ8sKTYrOmrkqaqqMuCXVGwKXZsq5K6aWn6nraTf03bs9mV1E1HmKR0GO5Wa+5WG6p2YHBCCl0ul8znc9q2ZrtZ09S1IBdb8Yw2IIeCMWRZznw6lSBpjLrnGd68fUux23H15IqD5QHOOx7vH3h4fAQvyZ/Rte3dR9SfJpf79WvMmDxJPiP3V8Zrg/Ok+YSnT58zm83pneTzu92Opq3lPlhFbhlo6or7uzvSNOHgYEkaxXRtzXa9YrmY8w9//3f8x3/4j/zsZz8jyzNB4vXSyehaUTkwwHr1wOrxga4TKfYwlArVK+8siWVdGCPVr1PlAfksSYcbfVj6Ts4R3cdxHJOlKW3bsNlsaLtOBsXOsXp4FNZ7HEtbJ5D5WRRKQhSFwd7iuneCq+w8dIpiqtuOVqVnnPf0bhC7ZqvKF86RxBHL2Zw0iUXEMc9ZLhZkWarvfcXtzQ03Nzf88OfvaduWo6NDTk9PBSAURiQqty/7tKapGtbrFZv1htl0xmIxZ/24IktTrp48IY0TAV548eUR+RKBM5dVRdu2+1mRDQSQsN6sef/+/R6YEpweP/0WPci8LippFekjetIFNuDk9ITnz56yXCyEwVmVeAc2lDbDZDoly6dEcUyxq/juzz/QNp3gkTVDkIJDev9hFO5duPpBXPDG9kVgA6JYPAzkIFH0jpcj2TlwRgZANpQNMbieYfAQCAlQBmeCMgg1yteNwASfPn2O856yrMXdbbHk/uHxf1FxfPxsjFZMBklrxuNf2yzjwHbfjBpbLSOfQ9tv8u2xHSC9dn1of41GvH3gAl4+f8X/+Q//J5cXV2zXhaAb6pq6b+i9o/Ed6+2Oh8cV68ct5bbG+pjZZMkkXZCmM2aTQ5YHx0xnh+SzJUGcQhhho5gwywjilDBJiZOMMIzIsxkHB6cs5oeEYUpVdpRFQ2hSsnxG5wxtL2rFWBnUeiMEsxHVlE5yskxsiAV4MZrTCNBCqgAZcEoGJOvOBsIbwSh5M44JlOzXD4OKw6lLIoKEyVKRSTFIEOtaQUeNszHvPPP5gufPnjGZTFivNjLY96pIoGjCMXHw3hPGkQToKGA6mZBnCW1ZjaeoGH8NA4MBzzhj0fmIjYmTFLyl6QeqdmBbNzxuCrZVRTuIQnMYJZycnJAkGdvdhtVG3AUneb5fPzYImGQTgjBkkubMFjMJzoEYo3kDH95/YFcWnJycMJlN2RUiHbHdqu5WEMLoPy+rbh/0x2BhtEKWToB831qLjUKMDcGELA+OuLh8grEhbaecKiutFYGSC0Kn63p2xY66rEiTmDzNOFjMKXdbkjjmf//7v+Nv/+5vOT4+ASuQaA/UtQxw+64XKDYC71+tJKB6Vf41GNpOBuhpJlbAsn4+nl9OD0anb7ofRjdNqaQkU5c9u9uKV3nXCrm1KEoZ8BvLcrlkkk+kio0iGWLHsbRgI1GkaAePDwMGZ2kGT6/7fbTb7RTY470QBYdBpD8YJIj3XUdZlfo6BWDU9R2r1Zr1di2qzYHl7PSMy8tLJvmMMBQocpql5NmEqq5om46iLHh8XDGbzzk/P6eqhVV/fnnB0eER3ojUyqA8qW6QfdwNvbS2u15acDrPCaKAqqj4cHtL10k7Kzg5uvzW6cBszODcODgbM2j1vzhYLDg+OtK5RUtdNVR1Sd/2hFHIdDoTVzUb0rUdf/zjn1ivN8RRIgPVbuRFiCBZEIgEx+A8XdfQtTLQDKwElSiUYTsg6BlJ0kUQ0CCD0dE90MtN6voWnP9E7RXyNOfk5IggCHl4uCPNciZ5zs3NHZNJzvPnL+j7jrvbe7zi2zUk/C8/yzE/avzoNtwnMYKqErYtItGh19EPOiD34/PJexufb3x+r14ZkYkwg2eezbk4Pafa1nz//fe8uX7Ptt5Su54e6bFvthuqoqFrB8ptw9AM+NbiOugaMCYijDLafmBb1KyLgnVRsil3PG52PKzWrDdb8QVvPZaASTpjmkuF0TcDjw87mqojnc4J0kiQWk29H1x6FWyMwogwkvZKnolktTeiNFsUO8pCmKveje/b4JH14ZQf4r3Il48qpF3XCr58GAiCUDw1QvGmj0LxD7cmkMypFxa2DO1luIx35PmEq6tLjg4OVXah2G8eg3i2gBcJdDewnC9YLudEcUQUWkGtFTvMIBL+WMPAgDc6e7MRQ9dTFuLtMfSQTyZk0wVF3fDu5o6HzZbBG0wYgAmYTqecnp5hLXvV6Ume89WvfsXJ8Qmb9QqDIc1SrAlI05T5bI5BZM2TJMIPjpu7W9aPKyaTnDyfsCt2rDdbUQHW4INCNUeAh6zbj+vXaDIkg3Fdl1J20DtPmk15cvWELJ8JrLNqwBom+YTJVIJ2U9fik10WtHVDGBgCLE1VSocCx1/87nf83d/+B/IsZ7cTr5GmqTFGKsFKrV3LogTtLmw2azarDW3XEhiZaXVth3OdHnAKSBmN1Zx6nuh+G9QDBT3QZX144Td0IvfysRsgLpd4mOQZRweHZKlU53EUCkQ9DAiDiCSWw7v34IOI3nmqtteAMeDRvz8MYvWsQavvpBL2blAx0FpmbtbQ9QPFbkvbtHjEkOrx8ZH5fM6zp085PTkjTSKSKCWOQ0Ib7dWHm6am2BbESczTJ0/BeO5u7sinOU+fPCVOIvDCA+u6XhJaVZfuuoHdbkvbdsT6vgwQhgm9G3i4u+fx8UGQj8fHT741CnfEC2Zbst+PZSxGuASHBwccn5yIBLWWhLtyR91UpHnK4dGBuIOpiNfbt2+5fn+DNUaybTwiVGixoQh7DV4w7J3C72yoZB1F12gdJMtc+977TF0l2KNQ+reDqj7iB2lh4ZlMJrx4/oyTszM2mxUPj2tOT0/Y7Aru7255/vw502kuc4/dTmB6Rt7//+qzlPdSyqNxY6wq0MHwOFwyiFRKoGUf6i8+zkWkU/KxKjFW/44XnSwZLkoAyeMJ1bbix3c/sSrvqU1NR0M5VJRdQd3L4nfOExDgOo8foG1FGbN3hsHBh4cHXt/fct9UFF3HpmtZlxWromC9K3hY7Vg/bih2NW6wRGFOnsywxJSbhvW6xhkIpyoY14qQIRhRr/3UzSzPSfKM0Br6wdEoFnw0TJIWJyJ9Ph5eKmpotGXXK1O+V25JnCRkWUYcJ9KTDiS4YAy9mjU5N7bQJCkJA1HN9erwuFgumS8WuGFQPZ4Kq62uthfGeZZlnJ+dMp1PBeePp1OejKtbCU4MtH0vSZZi8l3vBPa4KynLCm8CsnxCNQzc3N6xKnaYIIAwJDCW6WLB+fkZxlgeHx/YFVsWiwWvXn3ObD7lw80HOVTiGIMgBg8OlmClUsryDDf0rFYrVqsVSZZxeHhI20v2WDWi6GoCEYP0mvCMaYtH9vnHdY6s7xEUo4iqdvCcnJ7z/MUrPJ7VZofzTiRAUiGPCYTY0DQyTO26hjhJ6NqG+/s7jHf8+utf8x/+5q85Pj6iLAu2hdiYdn4AdaPsOvGIF4l32WTb3Zb1akVZlZpEShImL1pQYtLtB8MI1tC95p1oRO2lbyRJM+PI1cvawnuCKBB0VSqeLUZFJbMsY5pnREm8N6ZLIrFlDWxAZy2DDWhHSZJBzLmcd4SBIjS9JLujgKYxUqUFet1DvUcA3TBgjCdJM2azCb0byLOcy6srlgdznBck2GQyIYljEZ/sOnZFQRBYLq+uiOOI6+v3dF3H+cU5R0eH++6AwOg1Q5WyG+8HtkVB1zZEaUqSxJgwII7FgXW9WvPm3RtBfJ4cP/l2PAAlg5YFtS9fjZyQ1hgODg+4OD8n1QGqd56yKimLiiRNOTo+YTKZghFi3upxyw8//iCDK43kMtyW5+4HERxruxbvlX8RiZ8v2q+U2YjMMTx68DqVIPCeMAiJo4g4ivDeiTOdehB77zg/PeVXv/oVYWD505++w+M5Ojziw80tTV3z5MkTyrLiw4cP4jmgKq78DzXAx4+PMWPUnNrvQAm8XngfBmlPfbyG0l4blPUsTyqPy3Pqs+o9CIwltCHWWSbJlNPDU2KT8OH+mtIW9EFL42vKrqTsa7pBZEKKTUFXddAb4iAnDBKG3hBGCW3v+NMPP/Jm9UBlwScxvQ3ovKfH0nVQlh3ltqYpe5pqwHeWgAT6kLp2rO533G8eGaIBrCBQmqYR2G2cipyMlWoj0dIeDF3bUZYlm40g2awNhKGv+mMGBWUoDJR9tSt91jRRt8NYQAx+j1eXmyKZk7BjJQmSwan0s4WbMgwDbSN98sViwXy+kCqoLBWOK0PVJE1UjuSAIAiE1Tz0Irz3uKItaoyHuu9olFnbd0JWM06Yx2mS4RysN1tW2x2P2x136zVNPxDEYmPrPCwWBxwdHeOd48PNB4qiYDadkaYpTd3w+PjIrig0AwzI0ozZYk5VVmy34lmxKwo2qzWr9YbZbMrF5RVdN/C4WtM04q9hjPpHKApOsnFd3yPSb3+mylp0iqhqu540nfDixeecnpzRD5627cTfRduIgxP5f2sCaTk3Yt5l8Gw3G6wxfPPNb/n3f/PvOD89EZjowyNlUdAoS7xuGpqqoetk1onXIbcTZdrNZiPtL5WzcZpMyHoZ/TVEwXes7lGr10EPSqkqxlmpdgM+mTt6nXvkWY7H09QNdV0zyXPyXHxQrCZ9AtoJ6QdP1Xuq3tG0A70Tz/aqrnFuIIzEdlZGoqLxJWtXrvs4nzM6EnCaWI7IqpPTU54/e05gAybTiSAGrSWOEqb5ROZM2x2393f0fc/p2SmHB4fc3t7y/sMHptMp56dnxImgRqu6pm1kxmeMyLUY1bLabQuqRqqfJM3kPA4jwihit93y5u07mVufHj/91ozEO82Mx4G1aO5L5mGtkM4uLi9ZHiz3B6NEcfFpyPOc2WxOHMfEcYJzjh++/5GyFOyv3l+5yW7ADYK5B5nih9FHSr9340pWqfVPmZqK/08ioeqPksB9L5LHEkQ9URjw7NlTPv/iFY+rFT/+9BMzhaHd3NwynU05PTnl8VEkhPuulbaFrKJ90By/tvr6rcp3M266/S+MwdtqQ0uu6/jzZgyGn/APDCoOKcnd/u9ZxdAbDHk64fzknGk+YbVdQeyxkVRZgnrxuN7RlR3VpqRa7UiDhNlkQhRYwsgSJ6IM/P3rH7h5+EDVVnR9ya54pKhWbIsVZbmhKHbUrZgYOedwfU/XNmxXa7X3bLnb3rLuRC+nbWWQaa1g0Y2xYiozETE6g6Hre3aFDJKrsmLoO+IkYTaZYgLhUjgvg+jxwno1ABNOQrLfLGNlPM6KvFbIMtSWluvYrpAsWhnn2m4dnJo1DY7zi3OiKKKuRSJcDj/JOLM8FzJrXYtyrZNh726zo+0a2r6n7Tv513UURcWurGiGgTjPmR8dszg+pnGOtzc3vP1wQ9V12DgmSmL1t4+5uLjk6OiAzVogvFEUcXh4gLUBTSPtmqapicKQLEtIMmFe71Rt9v7unrIUie9it2O2WPL06ROatuNxtaLrRCtsrNTlssh+CtQKVUirsv+dKiIMeGkRDmCDlJPTS54+f0YUC9KpKMv90NlacdXr1VY5MGIdPJtOpHVVlvzum2/4u7/9D8xnM6qyFCnyx0fqqlSYuKduamk/qe+LMaN7o1QhTVvTtg3nZ2c8uXoCeKq6IssSoijeWwEbDXoGyfKk/S6dgGHQjoKuGbkeuoaQQbG1ljRLyTLR4SurEuc887lImmOEDGlMKLMB7yianrqXuZwNLE3XiE933xGGhsCGkvhEsaL3vHYiEBO3EV2q1bExctZ5A8dHRxwdH7E8WDAMniSOmEynTCc5cRhRFjs+fPgA3nF2esbJybG0YouSNE05Oz0R0JIRgmld1XitFo21+1mjcwMPj4/sip2QVefCF7JWZIHaruX63Xu22y3BydHTb+WyySEmJaoEjSAQuRHJ7APmiwUX5xccHR4qJM6TJCkYw2a7wwaW5fJAJv2J4JR//OlHrq/fE+x5HKNuigyqDIjWy5gdfjJEl8NWc3GV3QhUgC5W1cowkMXvnBjOdIpE8V70ZZ4+veLg4IB3796yWq2Zzmfc3t+z3Wz47MULnj17Jv3USqqNth41dv7/fCisWALnmK0gwQA0w9PXD4KB194m+89jv2AMTvo+x3uhWY3xliiMOT89Z5JMWO3W9EbUdhmh0g76uqcpGvqqJ/QBp4fHxIElDMFYuT5lXfP+wwfevn/DrlzxsLnl/f1b7h7es1rfsdqsWG83bLXFgfdM04zIWorNmrIoCYxlOxSsuy1RHNO1HXXVYlSgMIqE5TyZTPfZTFmWbLc7CvV5tsaSa/kPkgF5Jwc76svNGDgiMStyzgv6Q1FW40X3ul7cCHf2klg4hctKYJUf91r1NW1LXTekSYI1ls16I3IX2rKYTKZkuRDodrsd/TAIyGKQezd4R9117MqSqhZnxF1Zsi4KtnVN64EwJplNGYKA97d33D2u8EEglrJaOcdxwuXFJVmWc39/R1VVzOZz0iwDBIHmvBpoDT1RFDGZZGLU03dgPHmWkmU5xa7gcb1hsVxyfnHBdrdjtVozODnMMLKXMQEgSYdV0UzX93o5x3UvXznv6PuAJF3w7PkLLi4vMTZgvdux3qzZqvx209RYGxBH0vOPQrHtDQNhLl89ueSv/92/4+zkmPV6zXazoa4q8TZXB8wRMOHHWau2jL0X0cd+EFlzMPzVv/k3/G9/+7ekacLjwwNd3ymXTJj08t8fk7S+l16+U2tlWR8S9MIwxHtPEEoQcN6BMSRxSppl2MDS9z1FUagFcyJAA2NlFlHV1E1HPUBvQtJc7t1ut6WsCpwO5OMk4fj4mDiO2G13DGoQFan+1QiLRZP3ce5wfn7Or776isl0ilWtuzAKZf+kKWVV8uH9B9qm4cnVE87Pz+iHgc1mw2Qy4eLiktlstgeXlEVFWZVyxqtat3Nyneu65v3NBx5Xj8xmM+bzBV4rtjFpf//hA7c3t1hBTiiWOxTf6WAkA9pAeAVjtqKyvajD1nQ2YzaXP7BYzsmyDOcc2+2Wpq6Jk5gsS7Hatx7X5qcBwViJ0DbQkvPjKTweoVhlzAbKQM4ycT/DO2FEty1u8KRpShKnWuJJ6VqWFe/evef27p4wiqnrhpv3NyRJysuXL3n+7Blf/vKXfPnll5yfnWOUkzK+5//lv0++b/VGSxb38fN4+O/TG92O42KxyluRx/VnPvkbHpFj8YHHB452aHCBWHBu7jcUjztoHBObkNkE0wxQ94TOc350xDSNMa4jNI4ocPRdietrIuvpq4rdasPucUO5KdltSna7irKoKYqSumlYbR5Zb9eY0LA4mHNwsMBYh6NlPp0yT6ekNiKLEvE9CYT8OZ3OxCEtFCHLQaXKu15Ig1Ekvh2L+Zw4iTEYAr2O1loCdXILRk0zvRaSTIwVrlZD42NOZnNev5Z0ZLzi+tlodWfk67Zt+fHHn/jhx+95fBSrUCHJCQRcMlgJMrtdQVHK8HY6nTGbLYjjBJDDo247yqajqFvWu4Lrm1v+9Ofv+cMfv+Pt9XuavidMEoJIpFfGNRLHER5PWchBEsdSoVWVeJ04tS+VQCIBKwgFtZamMWdnZzx79oznz58LeQ1Ik1gOtKIQ90XVRAo+0QsbZVk+rrePe9wqaTOMIuEbJDGzxYzlwQFpnmFUjHK5WDKdiE7Wer2maWoGJ+5y3omDX9s2fPbiOf/xf/8Hzk5PaFUePUkTIr0W4/0tip0E6a5XIU2RfjEa3EZmdRiKsOHh4QFf/vIXXF5d0qmaq7VGMmSlB4gwlzzHqBgbhdEe/Wis/O0ojjBKBAzCkLZtpSVWN2BEnXbwhusPd3gb8uTFSw5Pz2kxbOqWXTcwGOFRZGkGBrpBKpcoirBWzsvZTFqQYSDUAlmLCvlGssxhGIRvoi1QGwS8+OwFv/jyFzw8PoiU+yc6Ure3t2y2W05Ojjk/PwcvtgVhEDJfLJjNpkSRJPkgvCinApBNLS0/Y6XrMQzy2HYrA/JAzymnW2gynXB6ciKWs+dnL74dW1GB1WGjsTKo1czda784SRKWywXL5ZIkSWQxqxFK13XYIKCqKu7u7mXhGcvvf/8HfvzxR8IwpO+kJB3nE9J2+GR/f8I8ljc6bno9XPXn+k6yj6ZRaW9l1MZRjPOOqq7pB5F4DwJLWZUMw8BsNmO1XnN9fc3F+QXffPMNs/kMNwyUlYiJ3d1Kn/DTA///58MjB9SY4Y4Pj+9nfEg/yzodB3Py8Mf5jQRI+c4YQOTnwWNDkbefzabMZzOMgfvbBxHFUzifbwfoHJMo5Wh2wMXRMVkUcbiccXK8ZD6fEoWWqixp25pNsaOoKqq2FjKPEUl9nJSkxgsTeJZlHB8csJhNSKOIphdL1M5LBhxHCUkY09Q1YEjThGwyIYxC0SjreoqqlPaXlsdxHItTYJ7Ttg1lIR4Mck28eD0YhSiPgcMp+qXX9eOkgvr4T+YbYxYp62pcQx9vht/fEy8ZViOBclcUOIVpeqSK69p2byE6KOoqUItP4x1t05BlE4JAPOmdFxw/xtD1jk1R8LjZCkN8V9I5L/L0VmZ1QRAynUzJ0pSu68XSVpE9fS86W4OTeVvb1ng8WZaQZSlpJsCALJWkLIoi7u/uub275+TkBGsDbm7vqJpG+BvWavvDakWn19A7QRepgqrT2Zuxhm5wdINnOl9y9fQZc3X3XG02NFVNlgvJ0ntP1wq6sixLuq6lbzu22w3z2ZR/9+/+LaenJ8qHkb8jbZRClIf1gB1BEwDCZRKknVQ0EhS6tuP27pbHxweKYsfd/QM//vgDd3e3itOX2ULbynC9aWQ21bYdzsnsyiCy+yKTZkRzL0kEVPGJlI5UQjJ8D+IIDzRtx9HRCV//5rck+YQffnrD47YkSnMIxmAbcHd/x+3tjfp8iE/7crnk8OBIgmRZ0qrQqNf93/XaolNuirVSrYl3jbRM//mf/5GqKpnP5kynEx7v71k/rGSudS6VRVmWNHVDmudMpxOM6rZ5lWWqVbAxSROMDRgGOcMGdeb86fVPvHn7htlsxvn5GRhpJRukdV5VFa/fvCW4vHj5rbBxJZqPaCajB6FXLDVGZKaXyyWHh0dqXQlNIyJwq/Wa9XrNu3fXbLdbjg4PCcKIP/zhD/z440+CzdeBnEeGnpKQGxVVlENTskhpW1lFL6DzFKdWj5LBCprFGkuoXBBrBZpplfnrnPxs03T7LOfm5pa6Fu7Gq5evMMby+PDA9fU1b96+pSxFXluugRFootYEmrPuKwI/PmbQQKPHv76v8WF5b59+X77nvAz+x/mNVW2YMWjZwAoBD08aJ8xnC5bLA6azKdkkF1VZY0Tzf7HkYHHAYjohjSMuzo95cnnG2ckhh4dzppMMYzxtWxPFCb0TIbqmbcRBcfCEBATeMjQdkyTl/PiQSRLi2hb6HpwTATY34DBkqQwM21YGsHGakOW5lMX4PdGvLCt69WrJ85w8z7DGslMXMpH+sLSdQBityqWPWbBUGBqoR5w+gsMfA8SYhIxxfAz7+3sxJh+6lkF6ukb5IJESHQclMTZNQ93I5hZiYUhoBelmkEoqSfTgHGRGY2xAFCeYIKDrB6q6oaxqUTSwonhgwxBrA7I8ZzrJsVYGy72iuYz9ONAfepHVaNuWOI7UbAesekKMLVuwbDYb1us1UZKwKwrW2x1BGBGGkfzd/6mC8zoTkvJ/XJMf/3Y3SOV2fnHF0+cvAMN2V9DUrcwz+oEkVvkTI2ZqbVvL621qurblFz//Gb/9+muMlxaQdwNNXbFerfdkO6MzwL7rqGvRU4qjiCxLBXxTFrSNSObEUcTD/T3fffcdb9684c3r19zd3UmV41W0cc/TELtZlPcxtqtEC03OkzRJpfJCHh/bVKGS3pq21io5YblcEkYRRVlJi3ZwfLi9xwGTyVwrloR+6Pnw/j2rlVSxxsBiseDpk6fMFwuGwVHXDZXuiUAlbqaTKUma0NQNYRgJCdFLxXt9/Y53b98BcHJ8xtnZKX3XcXtzSxiEPLm64vBQIOalIgRnsxlJkkgAVE+cvu8AQ5LGTCZTOcOBuqlpW/ndH1//xOvXr5nNZjx5+pQ4Fi01Y6Rb4Jzj3dt3BGenL74dDzY5uJRMNwzCaRj1eoaBwBimsznzmZBPrA3o+571esWHmxseHh7Eq9sY9W92/OEPf+Snn35S5r8V5JaSc4yRWcGYCRnt/RoQIlkgQ2bvpE85jMM4pEKK9KIbJCvFGKIwZZJPwYgUfFPL8LbrOsqyYrsrWc4XPH/+gvPzc2wQsF6teXhcsd1uqaqauhCVSGM+Ii68HkLj105bafK1IoAY38/49cfvMxYjXgbfkiDpMHf//HIf5GsRHQzDkKHvsUFIHCdk2YTFfMnJyQnHJ0fStgsj0lhsRY2HeZ7x9OkVi1lKFFuSKCBMIxbTXNBpNsAEsbQKMPhekGARFjNAEgRcnJ3y9OKMNDC024JyvaVrO3BGeuaB+HlHYUzXdXhrSfOUKEkwHpquo6okm2+1N52kCVmWk6WpsPiLEg9M9ABt2oauE56GcA5QFNBHUT4t0rR60681IZH7IXBm+fqTxzXAe6+/r/ancZwwn83I8gnOC9cE5HAeBsm0QisgEaPe3aHOYZq2oaobqXrG4jkQnL9TQ6tBf8fpjGH8vrRVE4Zemc4jKMNLaxZtDXedtC3wHhtYumEQj/K+Z7FYMMmm4OVQX63XVHVDsStwwGw2k31ljDjUKTx5XHd4IcyJOqu0Cf3Iqxo8SZpzen7FYnkoyLDHlQTSMKRRQcMgDMlSQbwFVnSNivWWNEn463/7V5ydnmGAtqopq5LtZsdus6UopcoziKCeVVLcbldiPURJiveDeKT0okkVJxGr1Zrrd+9Yb9Y6l/JkabZHWhqdlbadKAW8evWKv/rLvyKJU6pSqhc0McgnOWEQ0TQNaZZqB+GjL0zXdrR9j+sHwiRhMp1QlhV3dw/sipJ+EFOmLMsxyj0ri5L319eUZYm1ojJ9eXHOy1efq4ptI4i8uqYspR05yXN++803/O53v2Oz3bJ+XIkenyowDIOjaVpefvaSf/Nv/g3z6Ywf/vwDVVlycnTK6ckpWZ6z3WwYhoE8y8jzicxnOhEp3Z/hQUAcCdgkTQTdt9vuKKqSXbHjpx9fc/3uHUma8+TpU/LJVK+tqn17z+3tHcH52fNv5bDTg4+xjSSTdmNkDoFm93meEkYxfujlcLdGzUFWFGUlVYD62DZ1y08//cj79zeEoQxiMKKVo6Fqn0GNHAaZtwQEWkqiA05RloVAaf7S8xTCTBBGIi9ipaSU4exESjC1Xa2qgqpuSNOYZ8+fc3V1yWKxJIpDGYyrz8d6vaYoSjlqjJHr8knGagz79zGyx/XNaLXw8SH056WHPP7emN3JISEKMSM3RDJso4NxO8orWMGSGxMIRNJCmEbY0FK3FUVV0g0NGPDWM5nleNMzMND3Dc44jBfJ8yiNsWmGDywuMKR5ymKxZD6bM5/MOJjPOT8749nTK86Pj0njkKEbKHc7iqqh7QcGazFxhAkCvIHWD6pjlWBDS+8Gte6sqCtBaI1GMWkaE4bhXnsoz2Uu4vA0jXpq2HAfdEdjLz9WZxqg95/1uv4Pn43FaAtAHh4rWjOGEA3injgO9XXJoLx3AssdEWLj/XNOPBw0PEj7oBJbUq/tn1arFROG4oLYdXg8QZSITpSCO2wYqu5aIJ4hCprQ/gkoJHlk0xuMzBC0yq4bMT06OTklz3O6fuD+/l7gt21D72TYO51KNWD2bHgAQUuNFYcQXkfJHAnIbd/hMCwPjzk5OyfJcvquZ6ctllCFI7tOqowoCMnSiCSW4OGHgYuLc373F3/BdJJRVRW7YktVlgxDxzAMgpbqBgYvw2ORlIlom5q6bcTsyXswkiwaI/D/1eqBu7s7mrrGGPFyERQoWCPITeekfZZlOX/1V3/Ff/7P/5nTs1PapuPDh/eUZQUGsjQHvCQqnwBdZL4r7T0/uL16chKnJFlK3XZ0vSMME8IgIpvMCHRG8Ph4z93dLX0vLo+z6YQnT5/y5MkVeT5hkmdkWc5GhTCdG8iynJ//4uf89re/Y7PZ8NPr12Ak4fA6z3BDzxdf/Iyvv/4a7xzfffdHjLc8fXrF4eERzglyMUkiprOFKpaPFbScJ8OgM7IgEGQiwn0qFOBw//DA69c/cffwQBSFXF5csVweaDtLqjEDbLcFwdnp82/R/FgOWhk2+hHbjRySRv8vCIVdW1YVTSVucVVZst5sqKoKa8XqNM+nhGHI+w+3vH9/TRAKw1UqDmlHSUavBCQ9PMMglMzHS/k7tg5k/xuBfWrf1niBqyVhRBTnBMbSdT04TzadkmeirT+bSgXinePi4oJXL19ysDxkNp1irGX1uOLh8YG+7djtSordVrKJTyoMOS60rvBaT4x99E8yXPn4uAj1Cu4fx+vcTjPKEc8tz6+H3P7nJXCnacry8JAojqmHjrrvWBVrHtcPbMstXd8KkRJH53vqtuJ+fU9RbNgWG6q64GH9yPX7a1a7HT6KWDcNj5sVzdAxyTJm+Yx5PmUxm3NyfMTh4ZLFNCeOLL6XoWdVd6y2JWXXMRjp13fe4XEQyqHXO1FJXW83NFVF23WEgRACszQVJzntp8ahCMzFUURVV9SlypBopi4Vhq5HtJLYH3ByPb1eU/ZhQT4+3p/xQo6q2/KA98qgVn7HoG56xlr1ZxjnV0Lg9IAff05vkFdV4ME7mlYUhUF4J90wCBnVWOJEKjEZUgqLWWyUP95v53XIr/vDjVIoEhH3hLhhlAQ3hjzLmM0XlEXB9z/8xHq9xloRKh2cJ89Fit2PLTxt947JmFe1ZJzIsuCFeNb3A2GUcnX5hLOLyz2KCAxlJeintpNqzDtP31ZYA7HaCGdpwpe/+AWvPvuMILSUOxk0N41k2FEgCKi+a1V9oGFwnsmISNpuqZtGQRMBbdvQqNz8drvj9sMNVVURWAEnNI14zEibTfeYEdDFdDrj+OgYYyyrh0e+/+EHyrIgihOyNJHZLIambTF676yVjgAqcdP3PV0nJNUknRCHCV07YExAOpmSxAkeT1OVvP9wzXr1iHNijXt6fsqLZ09ZHhwwnUxYHhwS2IAPNzcyT9XX3fU95a7g9u5Ofn/M8FWOZLvb8vTqCc+fPZc21e0dszzn/OKCJIp4XK3k3MvFItd5L0Kdvewnr9dEigBP16uOl9rLlmXJ27dv+fH1T2zXWzCWs9NTjo6PGfpehEu9CLh2TUtwcfHZt8ZKhiZrSDNgK9hjI7RSzYyciBpGokWz2W5YrVasNxt2uy1d3xNFAXGScnR0xHQ2Z7NZ8+bNG4ZB2i3g9pjyMaO2CtsbEVZe9VqEjDf2fa3qp6hbnOaUxhhsKBaMHgk2/TAQxeLNPF/MOTo6lgF6HPPzX/yM589fMJvNmM5mBEHIw+Mjr3/6icfHFUFgWW92Im2gmQifZrS62T9+fPJ9rUzkMBgrCLRd8PGQ2H//k9+X/zeCKVdEm8djA8N0NuHg6IAwjqjbmk2x5eHxntv7Gx4eb1ltVmx2a8q2oe0b6k6kCh5W97y/uWa923C/fuT69o43tx+4Xj1yX6zZVjuKRmY6w9DLyzEQZzHJJCXJE4LI4ALRK+qCiE1TsaoqyqGHKCSIrDiaBTrAHlpBIhWFtBiAOE4FRhon4IVZ23c9+SRnNp3gQOGLtRzETq6JN3rAG00u9Hr6/XVEgrURwxk53D69Xx+vuw0MRg2jPqo0g/eOrpcMWKRw5NBwXkh9xkCSZKSKALMGolC8RcIowuH3QcIBcZoQpZn+zYAkS0nzCZPJhDjNAEfTyfAVY6Wy0WTLqZmcR3lCRt7SuB+d9wxDJzD0MKQfHMvlgu224KfXP1GU1R7RhjHM5wtBDo2FsJEkUKOqvP8RnaYRduzzL5cHPH/xGYdHR9RNKxBOtVuo9f4OzhGYQeyK/UBVVZTFlkk+4ZtvvuHgcLG3aB2ckvoUxRQE6jypMNCmqUnSRPv8gvZJMjEaaxuR5AiCgKoquLm5oWvF0gE/UJUldVXi3cDQyyA8Uj+T9fqR6+tr3r7+ibdvr7m5/UDfi7BmMGpGOYGbhlEsKgNenDL7vsMYQxzH6vgZMJtOOTw6xtoQj2G5WJLEKcY4ttsNNx+uqaqSIDTMZlOeP3vC02dPhXMRJ4SBpW5adtsd9/cPlOpv0bWtQF1vP0hnJbByfUOd4RrD0dExz549IdTKbL5YMptOKMqK7XazDxpGz1PdRbqPHFGcYLUic4OHQLxAgiBktV7xp+++4927t1RVDcZzeHTEmbbz/SfcM+cguDh78a3RzNp5UZwFLyJ7QaDHm2RDg17g2WzKbDIFDGVZUNcV3nniJCZNUg4OPiKvrLHc3t/y+LAiDGMZNavhjrFWfiawInLmvSKmappa+BhWCTVj6T4O6r1zeAN2fwBIH7zrxJDHernhWZqprMnA4fERL1485+DgQNiakWhhlWXB+/cfeHh8xBrLdruhKWvCKJaKwMg+M0atNxlTOMlKxixHTjXZ8BriP8aF/eMfP3stvz1en1dqmnFA6r3HWsgnopRZtzVlXbDeriirHXVTUhU7ympHURYSUNZrOtdiQ3EhfFw9EMQRQRzz0/UH3j8+8FAXPOzWrOsdVV1RNRV12dC0LU3dUg8N7dBRdRWN6/GhxYUhQxxTOsdjWbDabhmMI8kSgkSGtf3QUVclu3JHUzd4L+TNNEukBx4KSXP0bZjOZuRpRtu3rB7X1HUjTGEl+Hm9rx9LDZ1l6fX3OqvwqLid/kNd60ZIMKOMhpKqpLcu1/vj/RBxxKEXEbcwiKRt5kXWI89yDIahd4Sh6nHFMUmW4bwTD/VQOEYjgSufTmUImWfEiZDUrA0AtbodnOipSTT8pKXkcapgoJ1SAp2zCFlSBsBNK3pHTVNTFBV1LQrGRo3Z4kS8rcdgYYyWasbDIHOOQdFEfSfVjKxbODg44uT0DIsVkICHJM3EzzyO8U6qoKYq6NsS13WUpaDnnj17wq+/+hVd27FareSetx0GlUUf5fP1fnocdVWxK0riSJLDrusIY9Gya9saA0RhyGaz5vbmA33bCAfCGgLRl8QAQ9fTNhVD1xJHITjPdrNm/bim7VrhmOS5qCSHIZN8wtHREUcHx8wXC7I0YzqfcXRwyOnxCU8uLnn18iXPnjzDOZGTWSyXnJ2dM58vyfMJs9kMN3TcfHjH7c0Hmq4miULOzk45Pz8jSSL6rhel6DilKiseHx55/+49RSGy89aIakbXdoKm07aSQPflOh0dH3Nxdi6zKx2qeed4XD0ChmwiDpFmbPPzactEbATk2JI9Y20gA3xruH53zT//y3/n9vaWfpDgm+cTLs8vyfOMoR9lXeT5g/Ozz74dT7JPW0LjcHj8237s+VvxWZjPFxwfH7GYL8gnEybTKfP5jOVyyWK54ODgUKCLNmBXFLx+/VrkHLJ0jxk2KiPSNiI5Ii2JjwNya7V/aWRYBf4TBJJsOGNk1Rg9aOWwlVaW001oEO/xOI4EClgWqosvSK9dUVHsxBqxLEpa9Yjouu5jZbBvIY1fy6eP//3pz8khJffuk6/3P/zJ1xpcNAzJ4abeFiKjIqW4IEHEGrbrO7zr8X0PbgAnPy9rybNarwkCyyTLSNOExcEBk8WC1jlq5yibhqKuFTu/pdoWlLuS3WbDar1mU2zZFFvxxt6ueVxveNxu2FQVRSeKvM5A01aEcUgUR3jj6bqWopS2xDAILyJOEtJUqg2DeAIMg9M2YrzHzW93BU0r5EsJGPJe+GQtOkVPeV2rTrPl8bNX+fVUyYVRGMpsYby+47UegRmGfXYvzyprToAZIhEhz5cSBAIEGdRkywby3k7PTgnjiLvHR4bBEcYxYEjSjDhJsaFUFNaKh4hXUTmne03WsXrhjKgnj2AZNdiBrG+j6sld3wOGKAzZbkXNtFIyXRBEjE1mMVkTpvOnH34kTTqRbQlUyt6rdHoURSwW0lppe4G+e1QqwzuSJGU6nQCOqtztW13GG/JJzi++/AVXl1e0nZh/rdZr6WToa28VJgti4hXHCUVRcHPzgaauhesQSouqrmtQnxXvPUVZsF6v6dtuz7yOo5AkFpOwIJAWNn4gTRKW8zmTfEKeZxwsD3j27DkvPnvB2fk5z5894xdffsmzZ8959vw55+fnnF9c8tUvv+Jv/vqv+ea3v+HnX3zBF69ecXFxzuHBkqZt2azXBGHE2dkpJyenJHHM/f0tr9/8wHq1ou9b8jzlxYtnzOYzbm5uxA01DEnilKZteff2mrfvrhUUYTFGzsRxDY9y7WEU7pOdg4MDXnz2gizP6fuOuqpo1OQqVtsB6RRpK39/xMg6CoKQIJRKb3w8imOapuNP333Hd999x2a7BWSdhmHI5eUlBwcH+9cWhqqYK7LqOmo04gMhfbBxlWl2ppFr6DqxGAxCDo+OOD465PjwWFE+JxweLFguF/vBXKCmKW9ev2WzE7QFGJEUwODV2hGNg24QhIoxYt0pcFzNzDV4jq0qGYKiB7Ocx87pEEf/BQrrdF7w4+vHlbp63VOp9vxuu6PvhUV6d3sryBYsm+2WQFt1cqXlOhgNpnqB9qqimDFDln78eFCZ/fRjzADGTFeGlH48KcefMmKA4NyA62QRLmYzDKLFxTBgnSfAE3hRah2DPQgPYOgGwsCynM85Oj7B2ICH7Y5dWbLZFeKsVlf0TQO9xwxyurphoB16yrqibGvqrqZqGlbbDavdVmQhRtkUPEkcEMURTrHvdVVJP1r9sIV4lchAzsicwBhRLA6VE1HXDbtdIcPxYRADp/E6Ii0CGO2LxX7XjZpfTrK1OIqFW6CzBFRCwTtpRUmiMp6hcr+8V9iW3EY51Pt+r6EWhuL1MHphDINAkq3asMpaEwOzsqyo24YkSZjN58RJpkKekjjInx0rpo8BTDDyn7gRDk6ChsLV8dq2UlSVd4I0coNwYrx6Sw+jd4nuuTTNmC8W0tLVIDG+aY90Fsb9NiIpPTL3sEFInIjHQ7nbsdlIJVE3jXKBWkJrmE1yZnmGGwb6tmNwPceHB/zm698wnUzEA0UZx3VVs91tqcodZVmx2+4oK+F9GNVauru/o65rsjzHGqMy4wKH9s5T1hXr1SO77RangQPnBe2GweCIo4BpnhEHAbPphOPDQ7IkYTadcXF5zvHhIcvlAcvFkpPTE87Pzjk+OuJgechivmCST8S90ATCqHcDkzQhDkMOD5dcXVwQxTFv3rzl7uFBmPJxxIf373h/fc1284i1hrPTE66eXGoLXfgx3sF0OqHvB3784Sfu7u4EGaot+ygWeHWapWKypkKw4/07Oj7is+cvSJKYvpVRwW67JQgjolh4dbJfxvNnnOONrVt5qO979TsPqKua77//gT/84Q/cPzxI9wj5Hazh5OiYw6NjnBOri3H3BKdnL77VNS1lcxDquTZWANI6GdsngxtE66fviMOI2XwupMCDJUeHB+STXPq5cbJvR8VJTFGUvH79eo8gsVYiXzcI1E7WtJRDoOqwo2GLFxa18aLiaK0QFWXOMXYxJAgNKklhlAEr7QoZgOLFJbAoSh4fH9mstmx3JXd393jvOTw4oKrElW5wAns0Yw2snyQMyN+T/ro+qnwUPi0m9MIaI3ds/Hr8pkX69XqOaFASWKQbHLQdl5fn/P3f/Qe+ePUZ64d7Hh7uCU1AYAyhAgqkCtNs1RisNxjvyIOIp1dP+OzFZ2As1+8/cHP/QF23MkxUQ59gZG8rzNmGAYNxBBbmizknJ8fMJ7mo3+Lxg+iLdU1N09bMpjlhFNLUlbj6aTUZRwlJmgp7dvR6ULJprCqjzjnxCygK6qqi904OQiVIfqwwJDsetCo1qiYax7HoCuUZqQogyiHaY3Xo3Ku8TRBI+2psWwWfXH95dYL48/o3ozDSFpPOurwmLVbRT95RVBVBKJ4YgxtI85zJdCrQUA+Mg3X9/f1/gzCsNWkKo0jUdXWVjVwDr2vFeSfHu7VKDhT7AWFzWzoN3F5bekmaMp+Ji51UN17aOVZmiPJ8H217nbZLzKirpq+v6QXK3mtl2/edSOkPPUkkjGxjRM576BqePXvGz3/+c2l39D2T6VSc/QJD2wgjvuta8adX47b7BzFpyrOM6XRKnqb0Q0+x2+G9Fz+XMKCpCh4eHtmu17RtS6CdB+daAjNwuJxzeXbK2ckRx4eHHMxnhGFAlqV88fkrPn/1irbvqOuKNMsJbEBRFDStzHCaRtq1282G+9v3bB7vCYxjMsnY7dZcv32NN54nTy6xgeXD+2tWqwfatub6+h2P97c0Tc1skvPs+VNevXzObD6nLAsh1E6nTKcz6qbl+x9+ZLctiJOEMJZqQfyJFFGIBESvPkMeOD895cXLzwgCqcY2qzVVXQsiUNFssjdkn42Lxxg+Ob8lUXWqOn1zd8e//P5fWGuXYpxNWtWNm87mnJ6eEumcZ1B75uD8RJjjxqhpi7ZWJMN30nvXjYWRIbXggwXxFIVC1/eDw4YBeEgSCRpjHhBGEYENefNW9KK6riPZs047QIh94+GPMURWiFKMsxfteVsjUDmLHJJ46bnhzV6qYCz/x98zWtaHYYTrZdPiPE3bUWwLNpsNUSjuhYEJVPCwkxKxH/05NBKMBcNYcviPj2OkXB8DoVy38fv6xf/08+MXfhTMdVr1DbLRn15e8Be//TWHiwUfrt+xeVxJH9vLz3knswyvLpl+AOs9sTdM4oQnp+c8f/4cBs+b9+/ZbAu6usX0IulsvREc/+BBJlsEUSiDWgMH8zlPL845Xx6QRCF9WdJWBYtJzmw2oVa8uhsEDigGMZ4wjEnSRDDjkQwcvbZmoijCIoFODMGkRShWsjIQdAolHJmtkqnLwR3HEZFai2Zptpcu6YeBvhXjHIPBhoEkXdoPDkMBHcgmUqitHtRedpwEoygiiWQ+EAVCwOzUaEjWkbSVem2/DN5TFCVBFCp+XioSDLhB2juadIrelb6fwQnBDzyBEXKgpiUapzTSGGHyDwqJl8NSGM7SApNsVpKlGKNk2Fg5NbK+JBMdZyy+lxbJ2B4z/pOWoLawBvVdt4Fl6AYRGawqnBsIldFeFDuGoWOzXtO0NV+8+oKnT6/Yrrdsdlt5fx4Ws7lYnVqZmbhhwI5S9FpBBio1b6ycG23fUhaFtHjCmLquWD087j0jbGCJgog4hJPFlC9efcbLF885Ojzk6OCAPE9pq5ooCnn14iVXV0/YbkVNOI5iMLBerSmKgu16y2qzptwV9H0DQ0dgHbNJyuHBjDxLyPKE3WbN7d0N282azeaR7XpD1zW0Tc39/T04x8XFKVcXlzx9esXJ8QnOe+JQWsaBCbm/f+T7P/9A07bipRGKxBN69g4j9NtYjK4T7zxn52dcXV4RhiFt3bHbbBkGRxxHtI1IuON1LqzQbqP7zOjMWhwILVVZU1QVH64/8O76mul0Rpwk3N7eynwpCOhUBufq6sk+4A16HgYnpyOPQw4xXWf7k01znv3gThanmoGodWigVpy7XaHWjBIILIZBfl1ZiobVasVmvZYMT2cceIGcBaHMMgKjngyjGuo+aGj/eVxcXvwujBGW+bjPwkB8pEVaWQmFiJJsVQu7dWyfdP0oNhZpOyBgs97QNjK87HUgJFdH/kcaZPLC5SppqwgJrv/z1xaN+hrs5HnGjECurdHrYIwhMgGhgRBDGEASGFzXUm421E0jgnVBqBWXtj0ArySztqiIMXz+5Dl/9btv+PzFS4pix3fffc9a2b8OOSi8Mdrq0msahARRJIcrnjQOmMUxiQXXNJSbDX1dczCfcXx4qPwGgeBWdS3PiyFNM5JEZNBDrWItBqOuddYK96FuW5paKti2lQGttCcl40YHvWEoGyxOEjINGHt4q8pwi0/4eEKPMuuSTBgVhDR63QVSO95HGZ6PlYjVwB9FokjQtaJUEATCDA9DqVy6ToJJ27Ss1ivc4AnUACcKY9kjY/L1actyRDF9yoa3hjCIPnJYxuGn3txxYCqHZYjH0+rfj5SMG0cyrDcYAmuZTPL93xsGIYGNSV4/9Hg8fS9BwmhV81FIUoAqdVPvrWy9G6T6aMQO1bthr0tVqs7UL3/5S549faqVScN2t+Ph/l68x/HkkynTyUTWhJ4nVlnywyDVZ7GTDN17p20x5YtVFZvtlraqtTqXW3g4nfDlFy959eIF0+mUNIkIA0saiRJxVRSEgZhmNV2H64Uz1PeigGAVAWcwOBxRYIiMw3UNcWSYz3ICC7OpyKrHUYi1sNluWG/WeO+ZTacUux1hEPD8ySXPnj3l6PCQNEs5OT7m6OgIsJR1w+ufXvPm9Vu8kwpyf16MFZ/zchYZ6J3I2zjnuby44OjoWGR+mobdZitJlfdUZfnxvFHytEX2txWSC6hStVP14bbrePP2Lev1mqOjI5q24fr9tfI9Qtk3QcT5+TmHh0e0TSPnnfcERweX33oku3BepM6lYAeslu0aycYX6Y0s9sENGA/5RA6Jrm9p6pqma0Waoh9Ek0VbT0dHR4RhSFEVbLdbvPGENmBQuQAb2H2GI4eH6vErisSMCBRV35amhSpKouUZaAbuwMgx5o0Yl0h5rO9Ne9TeiUVo/4kHQN+Ph5C4ZGFGNIpsQvazDMYoK5/23/+YKY6fpUDRx5F5zf7r0RJXD9fAWqkCXI/1A/NpxtFygRl67h8eGaKYQV9/Pwz0fhDegwHjII9jDicz/u1vf8tvv/wVWZayW295f3tDUVbUfY8zQKBVkEQ1HDojCqUVGIWeRZ4xzxISPxB4R2IhS2ICY3BDzyyfcHIqwme7QoJSkqXEscwaokBE3qRi1HZJID39vpdqo1UjKMnAB7xeP6++9HESE0cRYfhRBNFgRFKmadS8yeGN1LgeHfyO+lZeqllrReRN2i6q1TSi5sabuCeNDiSpWAO0XYvHk+YSrKTMV6VVuZtUVU1ZV/Sd+C8IVFf1yMYkgpHV/mklK5IlQy+bNQxDHPL8XiuFwauWlK4XG0qSJEGx32swyfU1cj09LJYL/DDIzEaVdo36sI/6TW1TS7tMVavbphMfCy9VZNM0tE0FXkicSRTgfI/re4IoINbWnxsGkiTm619/xcnpsVQKUYh3A9vdlndv3/Hm7Ru6pmEynZDnOUEoh/VutyMIAvJJhjUSIMqy3Ac3aXNqhbPdiuz/MJDEEYcHSz7/7Ck/e/mC5cFc238dfuiZLWZMsozVZk2WpeSTCSjgYb3esCtKsbCOpSUZZwneDRgzEFlPlgYsZzmLxYRJluIGycRPTo84PDwkyWK6tuX6/XvV6epYzCc8e/qEV69ecXRyBF7Wu/fi7LdZb/juuz+LwmwQIOnZCPCQpMl72dduNLnrRQLpyZMnTPKcMA4ptjtW6wd8P9D1Db2y6w0iVWSNxYTa/dCg0Stvp9H1satK/vTddzjXM18suLm95f37G0lWVG0A51koKdgYK5WzHwgWi8tv/SftAK+YDGNUdhnJfqyyNI3RwYseMs57ptMpx8fHJElC07ZqEiKiZCP13xjDZDrl8OgIlLZe1zU2EMLVqBgpUEp5494Lwkreh5AD90Fiv9n153Wg73RgKu9Hgk1oRfVXZjUBSZoy9ANNo1o0ithIkoS6bkhSQX51Kt6o+1vw9npzzJjuGDnEMMiVMx8JfmMGIK9Xb6JmvONRMqZNYwwaBullJ1GIH3r80HF6fMDnL18wn04pqoZtKXyHvm1FLXOQ4a9zkg1EzvP8/IK/+at/w8nJKX3T4Jxjtd7w+s1beu8xQSAIjCggiWIxClL8v1xaRxZazk8OuDo6ZJ7GpGHAJInJ05TIhhwsl7z6/AtOT07BWJFsaTom+YQoFmtXmSnINbJWLFPHYNC2LUVVabIgc4S272QdSu9IUDf6PHjonQx0BdYrvd9Q/WP0XMWoh4vorgkfaVyD/aeEKF3H44dRJdlYDYr8nhDrSZOEST7R/rJ4cAzDQBAGhKH+7CAe5HEUM8lztbKVZMCqvpRHkpCxrYAxIv7pBc0URjGolLXcBbkW46GAQouNtqucR6ClKpGNEakMYwyHh0f0w8DQycDfe1GMkTazWKn2gyRPYzXmddAcBFbmaJE4Oja12OF2XUOeJiwPFkzU7GjoRahwuVjws5//DDy8efOaMAgwQUBTV4RhSNM0vHv/nut3b0XmI02YTqeilKzeLm0rh3OSSquwa1sG5X+4XiT6m7IkMHBxfsY3v/0tX//y5yxnGXEgjPymEh+K0+MTyrqia2pevvyM2XSKx5EksbgMNjXWGtI4wDLQ1QW77QO+qzlYTLg8P2Z5MCeyliyOGYaepq1xXU8UhpwcHjKfzRjahndv3tBUBednJ/z8Zz/n6fOncuboemranq7tWa3W/PDDD+x2BXGYyHXX882quu949gaK7ovimOlsxsXFJUmakkQRRVmwenyUoNPLGWsD0RoMA1FADqygCq22LodBgA/DICKu7z984M/f/8Dh0TGHh4e8fvOa27t7SdCtPJf3kGcZz549I0szSTKcJ1jMzr8dNGCMSBY+GZLte+/aahkTVGtlkwk5pxXxuokYunsvQ285TWW4HoQhdV3TdR0HB4dstht++ukn0jjViKoTey21HILwEV6J/s1AIY3jTpfTWg9xCRreSabmkM05DCKpIHtUfEa887oIhDuCkcoGY5nN5wTBx9aId1ApSmh8vFfNF6dKvU4ZpmMG22k2aa3A7CRgjbh12exeB1/jZz2tZYMMDoPHeo/rGo6Plrx6+YIsy0izjLKoGLpOhm7DQBCFstniiIPpnM8uL/nFy1fk+YRiu2Wr8h9DJ14YrRuo2pooDpnmE/JJrmTIQFm4Ir9+tJhydXLCwSwnDSG2lsjI9Z7Op0wnM+7v7vnzDz/yuFrjEDn7bDIhimOCwILXXqsedmEYEkYhfT+w2W6pq1qk7IOAruupGzk80LUwDAONWomOqgbDyHg2hsCILYDcYyN5t2oxyb0fW1SyPoZB7pFUzjIjG4P3yKvp+p62k4O1bVrySc7J6SlJmojEumpsSTUhbYAoTvAYWhVHBJHStl7ueaCquOPfHofWkixZ+n7QOYr0oD1S6e9nPPs18vF3gyCgqRvaTtz4QN+3amfN5rM9D6PrhIjXt52QFbWHbI3MgvwnSdvQ9+rVLqWwc/IarPVkWcp0OiXWKr0qKgmYXcOTJ1f88pe/4uHhgZvbG5qmJbQC1w6CUAzeIgkgH25uuL6+5sP793qfRCRzkuckCscFSYSkYmqlJVYKiOLo4IDffP1rfvnznzObZhgv/Jb1+pG6aTg+PgLjubu5JctTZrMpQST+NOv1Aw/3NxSbNfVmxWZ1S7G+4+H2HUOz4/PPnvDF55+RRCGRsRwcLGiamjCQ2eJ2u6UpSw6Wc06WS16+eIL1A0PXsljMOTw+Ybvb8ebdO+IwIZ9MqKuW1WrNH//0J96+fSezKCOk5DiRoGSttIutFZjsKA/SdFKlXVxdkasq8Vq9Ysa2r/OeKI6Jk2QPIAlCkQtqR++jwNL1Iia52+34l9//nmJX8MXPf4bzjj/+8U9si0ICjia640zk+OiY6WxG14ksULBcXHw7nllW+2HGyAUaP4x2NLyWwuPPWWMY1AEtzzOOjo7I80xbW7KNB7VsDKwhjoUQCJ4kjrm9ueHu7oY0y4SIYgRNYo0EnI+Zp2RE8rvja9VApr9jjEwI5WUrgknjYKBMbKOBzDsnzNCu+2RQqoTBLKNrWpwbSJJMyU4ju1V8si2y0fu+E2/tyYQ0FZx4YEIZRBk5kAYlvDk3kqu0JzQeBvL2NCCrhPjQa+BwBMZzfnzIs6dPpF0TBKRRTKgcl9lswmwyIYkjZpMJFyfHfPX5z8mThKaueHi85/r6mrv7O6Iw4unTKzrX09QVrm8xftCOlcf1Hcb3mL5jmkZcnR5zeXrEPIuJ8ATGEyL47jCMqOuG25tbNtsdVdNQ161kWMrPUJwZqHyG/J5UB1VVyWC1lwxdgpZ4OIzXAg0C6AFrxqxbL6Nk3oo+0rajZG/jwv24RhghqdobN3p/xuzdaCXthoGhl+C0XCyYTkdXy4im6cTqVLWibCCq0sJCFvhmXVf0rSKlVIY9VJTcuMbNWO3oe7LjQNoN+0xzDJrei6MdfNSTGn8HhGGMdwSf7I1hGLAGDg8PZU7QCNZ/vCw4mR0ZACNBqO9EPcDiMd6BG0SkzxiiMBCnzShkPp+SxDFVWdO3srY3mw1933NxdsaLF88l8PS9rIPAyPUaeoz6asSxXK++bSnLktvbO9brteihFQVNU4NWklEU4oaetmvUTbDADwPHRwc8e3rFwXKO8R3GiQ9IXZakScJ0MuHh/p7V6oE0jUnTmMBCVW65+fCeh/t7+rYhTSKW05zT40MOFhOODxc8uTxnuZwzdD3O9USBAHK6pqFTF8xiu8X1PWkS0rU1x3tE6RSnsil3t/fiE2KkWt7tCl7/+JrVer2XVpI9L21IOTPGM9DuW6F935GkGZeXF/v2XrHbsV6tcH5kuIM1lqoWtfKqKpVu0IAiDeuqomtFumaz2fD67RuCMOTy/ILHhwf+/MMPCkMXYNK4PuIo4uT4hMV8LuseQ7CYX36LbkBrZNjqkX65nsLy33rojigmYwTu6r2hriu6Xqxjp9MZSSpWroG1DIOnrCRLA0SC23iOjg4Zhp531+9Vg0dc1kCGRGM27nS2IJFYh+n6YXS+bIxmY2OGplmZBB09cDQrHRTS2fVSroM8tzGWMJS/b60I0vWdyBBneYa1crA1VYvz6IIIODk54+xcBBNPT884PjojzXKGQWSdu66X3rsGJ7wINYaROKWBDCX1CosAnZHNGxhPAJycHHJ+dkZgDHirXBh5vzKOkl5oZCANIpq65vrdO96/f8fNhxtev33Nj29es91uwEKap9L7bmp832G8Y+g7fNcQW8vhYsaT81OenJ8xyzJwPUPfwiDl5wAMHvpuoK56WZgghkVpilXiZ6CtGq9ZfxiJTMPgB9brNXU1MpJTMNA2DW3TiiWuBoPByVBX3u8nsyGtfr2i7pwmGOMEa//h0exdnk9+7mMQ8l74IW7UnRpVVoHJdEqa5qRZyuAcTV3tWdTG6DDTWIJIqlM3DFRlLYxutTCNo4QojmWuopwUWaGy0VG0izfi+Nf1gww2Q5F5GAZRSJAgiLZDPwY9q9afxopvtVWZdoxhOp3Sd+JHMaiv9L6DgBxQ40UKwpA4Ei8WO3YU0JnPIAfTwXJBqJ4MVVMLpDsI6YeBLMv42c++4OrqiZo6ifaX+7T9bcVyNVE13TiO5HooJ6hrW9YbkTHabDeURUGxKyhrOQD7VlBWbVMxn85EqHQ2xw8ieeKGnrIsSXNh8795/ZqmaclnE+FJRCFtKxydPJtwcX7BkyfPuLq6JJvkos82X7A8OCBOIumQqMWCd56qKKXa9J7tbsN2vREvj66nVOLi8uiEtu/ZFjttZ8q1jeKY+/sH/vTd91R1LcoDQShB2+3RE/JJ4d5D3+MQU6g4Sbi4OKdpWsqmYrfbURRbwjCkGwQk0elYYLFccHR0zHwxJ8unZHmKN6jHTEnVVNzd3/P+/QcOj445Pjnmx59ETh3E9AtkjXsnnafJdMLR4SFG90twsLwUIyc9sFFBQ1miGgFHKQTA6CEYBNJDNkDTShmZJBkHy8Xe9S9OUsIokDbD0OMx9H2LwYqW/2JJ27a8fftG8EFW+u7G6IhTDwkzIh/UOhG1aJUDAFERVVMpr1H64895CQSMXC+Frg69zECCT3qJYUjvBGKM9+zKkrquSZKM5XzObLYgDCxhGBOFAWk64fDoiKPDY9I0Iwpj4ighTTJyRZGVVUFTCx9EXONkqNm1Mp/wzitkTt7PeP2N8laS0HBxesbV+Tm+93R6uLpB+DRVWeD6gSQKyaKUMLRsHlZUVamBT6qrqirZbLc8Pt7jnaOtC/q6JrCQxjFJYMmimMPFlCdn51ydn7Kc5FjfMzQtfhxA+4G2HSiLEkzIbDZnMl1go5DWecIkxgYC0bZG1kcQhMSRIIYGJ6XydrPFqQptHMV450WFVKG0XttK3gkEVVef4JKcJBWCw9br5t3+dP1IaJPLOgZs76X9I0mFCv15WS9GM/0wCkQuPha/90DRNl0nlTXKqB0RXd54Iit+Ik4HzyNU3XuRxo/UL320SJZ9JZwdqyrIRm12xUPCSFtE6kCZkcjJK9no+DUaQ0AgylEsLR4dnKPXUVBScl28tkLRYC4clfH5DW5oMQ7CwOAHT981+GFArLAt3SeCg+NZ13Udk8mEX/3yK05OjijLGrx4qss8odfKSAAVKDw+SVKyPJUKIc9VaykmimIM0PdCeB2GQfaxMbRVSd/1nJ4c8fKzFxwu5zR1SVPu9vIrbvCs1ys26y2HR4ccHhyyWIg2XRxHTCdznj55yuXlE/IswxhL37XEiRhkRSrkWpc1Q9viByh2W9qmZbfbigov8HD/KNfRiBHVrhAvDBtEPDw84hwcHR1xsDzCAz98/xNv3rzGIHYJMpfyOM+eaDyeZwZpf4/JcJZlnJ6f75OguhLjrCSNJbl2jq+//ppvvvmGL3/5K549e8r5+SXn52ccH51wsFyKk6SRffbu3Ts2my3Hx8cAfP/9n3l4FC6HIFA1YfPSXk3iiLPTc9JU2mrB8uDyW7vvw4+Z2CcBw46HtHxIpiSZTqAwL6MKowCz+VxvBgLHjET3fTKdkaaJbGYrGftsNieKQpU6LjVwaWtBL5DT1sKYse/hrKAHxVgpCVFm2OsQSV4lwU6OnP2jY9viE+5KqPIMbhCS0/j8VV3TtQ2z2ZyryysVVAzI8wlJIuSrJE6IooRhcGJOoyY7NpBhc6hyDlVVKjlONqFwYPR1aRo4OCk9vesxfiAOLc+vrnj25Cmu79ltd9RlwaA+yJvtBmMci/mcxXLOJJtwdnLCfDolVF94kMFrFArmv6lLFaZzhAFMkog8TZilCbM8ZzHNyONYCHKulxaVMXtpk2EQaeWyqEmSnDhL6Y2l6XsaPDYUc6FAM+AojEQnB09RVRQ7ycZitfM0Rkh6gmZS4p/ehzFzlYAvuavWxEp22/f55PM+7VFklq4DqVaUQOhkGO2dzN/CUNonSZIQpwlJpAZIRrL5vpdA4IZe4LXaDvMoQixSHL4mLzK8V46HBr4kSTW4jG03WYzjKjU6mG7VejUIAoJI/LClYhbeibxDzQY1MkahzN72HQN12WvHmYnO2zBacQ+CFBzBEFKhi4BpFIrfiOt7XDeQ5wlffP4Zp6cn3Ny8Z1fsCK1UV8ZYCpXOz/KML3/5CybTGWUhszePdCuGTmxIwzAUNN+42EFmNWZsFwv6Mk5i0jQTQuBsikGAIHVVst1uiAPLq5fC2fB+YP1wT6lrqm4aVqtHbm9vmU5nvHz5kjwXja1AOSNhEDGdTHHOC5Lo+p2gP70isrzcmLqqKMuCpq7YbrYY5X1YA5M8Z60EvDzPKcqKm9s7iqri+OSUp8+ecXZ+SZplhGHEZrPlX//4Rx4f19ppkGp1zABkPY3XRVrublDTND8wn884PTsln06YTHJ2ZcFmvVYagqznFy8+48nTZ0RByHq9EgM1NxCFIZPphOVStLXKquCPf/wjZdWQ5xMe7h94++4dTduo4OZHSRxJNAbCMOLs9JTZfI4bBoLD5ZNvjTWa9WqvV/9hDAGiSz/uFNmbRiOkLH4bSJbTde2eyRtF0oaxVjZNqu0Ip/MFNwj0TFQyPe/eXe83kNEdMt5ACQ7C4Rg3nOwe2UBGM89hEBtRr8ENPUY+ZqDyldcoKlmxmNdIBiDIA+9lsIT3ItanvIQwCCmKimFwTHIhzPTdQBCIl4BkyIJ/H5wjCmOWiwOOjsVwaVSFldcppTv+Y3YsHDfd6IDxA0kU8ezqiicXF1SqJzUM4rW+3e1oqpooisVPYzZjPp2JsUuaKUJDxM0mk4l4wy/mzKYTJpMMq3A/PwyC5LIBcWCJjCVEshjjvfbPBWFkTUCSZrTdwO3dIzaIifMJPYaqH2iGAUwARvgXko3L123XUZaluJTZgDRJCQMZlIuSrt4fvZddKxpmgZXAO7aQJBRKgLCabIx3Wlcl8vIFPeV1uOvUNMsYmXlJwEhIk0Skz8NYTJv0UBZ4sKK3xlN6/yHJUxLJPAcNbBpf6VohkPa9tKik368ic/p65T/tR7tctfAddG+EofCRPt2T477UxS/gAEVE9SqjPQ7U+04G3CPwxPlRqkXeSxBImyiMhGdTNzV901IXBW3VMJvk/Obr3/D3f/+3nF+c8/Bwx83NHU3VSIvNWNqmpfeeg8MjfvXVr8iyjFodApum2YuVjndGKi+Zr/RDj3cCyQ8CgfUa5e0EQYgJ5HfatqUsJGiUuy15nvPq5UuOjw4pdht2m42AUtTF7vb2lqKsuLy45OTkhKYdjdzEPKxpOpq65eFxJTO6zYa2rXFOvDes5iPFbsduvRV+WtuAN2zWG9wg5lFFUVBVtRg5mYC6aVlvtvTD/7eq71yT5EiOtIhIWaqrunq6R/UAAywGO7tcck9wj3yG40PhFe/4cXkAdqFGti6VOsT9MI+sZn+YwbSqyszw8HBhbhbw5euvcX7xFMPgEIS14ccf/wZnmYn5wANUC3CGvo4RiXs03c0BUYX1kydYn51hOp0hy3Pc3VzjsN+T780ksIPF3c09B2IzwsidI5lmLyzPSijqf/rpZ3z//Q+CXivwcH+PzXYnwZ6wJChBz0qmbrTBcrXC6WoJ5z3Mycmz71irlagnRufSpBE3LGaOMYKJDtwHTzI5FdC0Hfq+x3y2wHK55OZ3TO8D4sOgqhkbhdz0WZri9vYW1aESkAtTdM5AHUtVSlM4iBfC61FC6hWCh7Meg3/UBIybU1J0SGkhBHLVx/dBCCOk14MREJRCP1C/OM8KJGmCw6EivbQmXTagMEjk5Sw1jtuugfPcjEVZIkk5jJPnOU5OlghSi7SW2h/OOxS5MMcOA3rb8xBT1ElIjcLLi2e4eHKG5sCp1xA8ur4jmywCBWKmVNZL0+P0sUkMM76ywHQ6xXxxgsXJHLPJFHlO5t++7wh3dBZ5kiJLEqRaw8jBgRAHICVDMwblZAadJNgdaiRZjmI6Q9336JyDlT6UEvg0y4QK1lu0XYdaGrVZLqg1mVmI096xdDgMPSeMg4PRybF0JXYIeY/RHh7ZZwBIsR0H3TyzDaU4KJqmKdLUIE0zCgEJAykU+y/OMyp3zo/T4Sr2BGJGjkDUS8KsoO+6sdegQJlOL3M2QXpYSRRwehTUuEAnD3A/BBXIIxU416Tl5/kr3I/x/bkFuLv5DKlZzfJnRAkww/GewRqV0cXuodAPHUIICIH3a7TC+XqNf/3LX/Bv//vf8D//x58xn05QNxU22w2uPl+hOtSS3XBq3lqPZ08v8Mc//gNMYgQOTH/iAxFT1DY/IuIGGdj03qGq6JidAEOs8+i6FtvtFtfXVwiS7fUtKW6mZYlnT88xn00x2I6ZsKMg0XZLJc/pdIJnz5/BB4+u6zDYnloiXYeht2TZvbnFdr/lYW0ZpHDQkazB+90O+/1hpDdp6gZN0yDRpOdnwBOrE0DdtNgdangAy9UKyiSomgafr27w17/+Fbd3d6N0MHGfkltoBecGCSqI1GQ9VqG3bFY/f/4My9WKxJVQ+PjhHbqmRZZSn2joelxfcTZkMpkgTRM0bYOb+xvc39/j9vYGt7e3uL65xg/f/4AP799jvlggSahXX1V77oPIRC6aSF7AGUoBZVFidboi1H158vy747bD6HSj8+Hf8pvj9wUvIz/MNJiUz23TIk1TnJwsmWVIQ1Np6uAaowkh7HvkeS6UDkDX9fj4+aM034816fhxzDiOVxjfmzcpcreehqo1a8RMCUmpwJuUjENQX0quL9ai8yxjeUoa4975sR5Ng7djU7uRCVatDRubzo4a4QqMDvt+GPlwAI1JOcH5+RMslysYQ2bYtqXAjZZ5E57Ins7cUHry6TnnMezAVDpIrySEINTLmqJaVY39/oC6rlHVNQ4HksrF3/M+sDGfkk00+CBCTQ6pMcg0ebA4C0O0jjGkIUnTFNoYZEWJrCjRDQ5JkkOlGe53B3Q+ICtLDM6zOW6kQS6UHa1IngZpGmsQRUZpVK4lo02NtiUzapBpfoDlRbrCuP4MKMYIHITTcq7lqD+tpM+SpCmylDX0GKUrCNIuAEEoamJErhThqSYCG8b34LAW50RIFd80LZxz1LzXhk5F5g+cY2M+y3MUWT4GRxCadzpu3oYGdRi8lLgyqfcrKWUpsfkYtXNN4+FDf8OyEw+biPAjTFeCNUGi+UCac0jQlWqN0A84mUzx3/7xT/jmy9fkYXr/Hr/+8jOuPn1C37IHMwwDhp7RsHUOLy4v8fbtW3hBICqlRSkwQZqyOWwMS3o+Uq0EUd8DpDQoOuuWmjpNU2O/20Mbos7apkZTVUgTzoyUZYFE5nfatmVj/f4Bzjk8f/ECT86foGmo9jcMFl3Lw8n7gP3ugLu7O9Q1QTtaStZDz/6NteTKstIcT0xCxgtFmHXfDyzVB/oBpTXRVFUFrQ3OnlxAJxnqpsXV1TX+/vMvqOoaRc6Ak2bHMCfIwR996yD7GsLAURYFLi9fYbk4QZ6xj/Xht/doDgco75FojaEfUFXUc7++usK79+/xn//5V/z4tx/x+fMnfPzwHvf3d9huHvDxwwcE73FycoLdbo/3Hz6i63uSeQqaShvDAzkaZlDI8wzn5+eYTEqY+fziOxouU6XjzcQtKnlbhFlJuhyEtI9IKJaGkiThAGBP7PvZ2Vqgd8dhwqZtEETbmRkHsNluMJ1Nqf19fy9pPZ1xNCgl/YjjUcaNMh4c0kyioz9OkT/e8LID6RTi5/IzSUJ6CessB5cU/x1kMCvLWY+P0R8jJ/IyMbrk/EhR5siznNGj98RNd6yDLuYncN4hMSkunl7g1atXOL+4gEkSNE0DK9QY3nmkhr+fJQZfvLzEs6fP0NTNGOFMplNy3SQpnHP49PkTrLWYlBNMypJpd9ejG3hIt22H/aHCdrfHoaqwP1QknFQKth+gAArNSHPVi3QnHbdGXhTQxqDtO7gALBZLLE/PoHSCbd2gdR5OKaiUuHSWhcThBood9REDbtgnSoyRXsbx4GCGwoZrH9FJEiwwc+C6P4opAFlKLw7XRdlRsU+WpLKRZypOnluh13BOdL+lRMAcnR//9X24H8LYd8BjI+J9Dpy2tlKWjL8/SIkySRMGVFA8MB85f4ADj1prUkJIcJXlOZTIDUCiwfEt+QJxO3Dvjtd8bKJzf8v9yCHJQ4v3ngLIoJA6D1c3yI1BrjU+/Porvv+P/8DHd+/RHmpmkfEgD0BnB3gFfPX1a3zz7Teo6gp1XaPtWmy2orEiE/zxQ+sjpZBSShQ9GaQ5z0n3fujhLPdiIsO424cHVNUBCgFlSWXPRGSI7+/vsNtQh7woCzx79oyQX0dlxtvbOzRtCyWs1x8/sDnMkmlGuxHSRUgfauipI5KYhMjRrifbc07djL5jGc45CyfzP23TwqQZZosTFGWJpu3x0y+/4vPVNcERsXYzrguD2PCI2sjamCVzwRbzBV48f87ealHCW4vrz5852CsDedWhwnazhZN9tt1ucHtzg5vrK9zd3mK/33EqPgR0kjVNynJEsCUp6fedlf0gATgvkv4AAJmEV6cw89nFd4h2pxiB0i/H9BhjSWlMsTXnPFjeYdSmlEEhFA1Nwwh6MZ9jMZ8TpaCiChsfT9t0UKL36y1r/nmeYbN5QF3VSFKyMXZdDw1mG9ocr4MHodREjWFa5YXk0DAiiz+nlWbmoYU9VrF8Eh0S693UUY4NU+8DyzSK3FeMUI+OSEmqbp1lf9ZoJClr1P0wELLYNGjbFt46FGWJ+WwmmHaHLCOiZDKZoiwLhCDoNEvtc63YmcmSFM/OL7BarkZcNvUhWPbIBZr722/vsN9uGZmslkjTHEVZYDadY3myxHQuMGltiPU+NKxPWwcFRQSMzKzwvmQuQkk0mCZw3pPrywckWYHJbI66H3C/3aPzAUlZwCmFrh9gtEgA+0DYbtvKUCh1IgBOrTvvEByH8YxhgxQC27a2Z/knCM26eEelFLw/2idwlPr04lxVJLZMU+RZTiRcynWDUjIAJ5H+o34D1BGFhxChufy+1oy8jNHQmjMp8SAJgTMV0ca9p4qlF9YFHxhcacMZGK1pjz4c47K4N1RkqJUgJc8odgbpUwCQrCj2w8S+eXZJWCX2LfcX9zNzVYLQeKjQOWnnoIcBvm5xfrLEly8vUaQJrj59xPWnTwSvBJbneP08hJ2noufXb97g669eo+tZ6kFgeSz4gN1uxzJRSyqRvu9JbSJ0KAgx06C2N++A65dlKYIPqKuK5IYyiDcpJ5hPp9DaoDrssd1u0bQ1VFB4crbG4uQEgx3Q1DUeHja4vrmFdxwK3Wy22Gyo9klUGYMOBIonJVL64UQ8/UXwJLgshO3ZWv68dx5dQ9qWEDzarkUAkOUTTGZz3N7e4/vvf8TDZjf2muKJH31IENAHhC8sCLdY8KShOVud4vzJOXsvPgA+4ObzNbb399BK4eLJOWaTOTbbDbquw/J0hSRJsT9s0fdRglcjT8zY18wTMklvHjbY7w8I4LS4l8MqeGF6UJSNcD7AaEK8z87WMIv50+9oS8cTjrtIyi06pryMWqJxy50zZdZ8CFo4iPquR1VXKIsSp+tT2QDccEnCBnTTVOjtgDzPYJIUXdeMlCLX19cYLBWznI10DLLpwYfuJeU0cqAEaQZ6gZHx0JDQS94/fvA+5LiXg9AYRkBBNKGdlDliNuPHKXTIvcsie3IdaUk9BztQVa9p0PUdrzWQdnq73WB/2MN7B6OVzAEy8rPWyYwAdRYSo8HZLmY8sZEpd8TXMOwnFHkO5xw+fvqE3W6H/WGPm9tbbDYbVNVhLL0FATJY63B//4DNw4avn6XIU5bpyrJEADjXAZC0L0uhkxTOe9gAKJ1A6QSdC7jfHrCpKwwB8IqklmTHPbIb90NPkSZHLQujibDSiuvGaJu2BcGJcwaGfQIvtfEQxKmPWbGshkTOcb0VhAnXsMdDdNfRBoLMaoTAXkB8ndHr8pPROYurlWAjOnQl8E0RGRvfm0GHdeSRenxNMbIMCHS+CSVjg7wvHT7/ooNmGSfCRK3oRHt5FpCSaHwaEQQQn8Vo53h0H3GPy9e4dwO0tUDfYVYU+Pb1lzhbr3B3d4Pr6ys0XUM4/RhgkglCGwOvgLTM8fYPb3Fx8RRdS+bb43MUBKbMBoSxj0Ede/qCGGRxwj2yMLBs6FBVB9zf341Rs9EaRZZiOpsQsHLYY7vbomkapGmC9dkaSaJRVVTGvL29xW63GwPC3XZH3Q8RE7OCMBwETODsQEp37wl6sSyBx6Z9zE6jLXZCBGlFftg6j7yYYDpb4OOnK/z4089CTkp750rQ7glk8Ox2iK0jBHhBeJVFifXZGU4WcxhlUBY5Eq3x4d1vqPZ7vH37Fv/yL/+K1ekKP/zwIzb7HWazKbz32G83yJIEZVFgkqWYZjkwDKi3Oyi5h4eHDfaHA0KEAY8l0SNQibbkiK4yBqena5jl4vl39Mdywkh5QUMkWxHLB8daMlvlcmhAsc5IsxBW0CC1RUWajLyg/kJCJ++sRdN2sINFluYo8xxN06LrO8xnC9RVjcP+QMejlCBdeEBFi4ybjX0BZgqxAailjhsjRSMZUzwYePQd69aktBbtcy+oE8XmMkACNycb3rtYzhgvBVpYLJ2zVLJre0Cw9UU5QZIkOBwOeHi45yBkABvqzqI6VNSi6HpAMfJPBVqptYIdes5u9AMKGZzyljQnSWLgrMN0OsPz5y/gnMO7d+9xOOylz1Fhvztgc/+Am5tb3Nxc4+r6Bnd3D9ht9zBGY3FygtXJCcrJBHlOTQBIFJlkCUySwaQZoBO4AISgMJkuUExn2NUNrh+2aAcHpzVsCAjaIE9zBM9MLsiB7oRGO5Y5gmSsPnDamw5GMgfP2i7LKDywrXWM/qSuHCSoGddztF+ihbTmjIIWITEoxuXix2VziB3H1+OpMEJBlJRXuczH/RFfL8vZK9EQdUJpyLP0xYOHmSv3l1IKVmYokiSRkqYwGsj7Byn7GqHoSIVHzDmRd5UMTGnOHfEMkPKUCpxVks8ZHPH6WQg7ZljgJUEp6pIoZ5Ep4HevXuGb11+gaRq8e/8rdocDEnmOSitYJ6+hifhyUFit1/jDH/4Bs9kMVUWiRy/IMO+lF2TYK6NzEiQcx+fHgC9+zvVhCahpWuw2G9zf36PvGvbctKIW0HyGNOXAK5U7O+RZhvlsRt2NvkVTN4yog/gmeb8AhUlZsEQjq2wt0VZt3ZDRQJidh8gKK/IP1pLOnhk6GRe6jlP0RTlBYlIU0xmUNvj13Xt8vrqB9dInjeshhhjZk9lzlal/TYSc9w6z2RxPhAdQS4NaQ+Hq8xXKPMNf/vkv+P2332J/qPB//v3/wvmA+WwB7zyGvqWG0WA5Bd+2WE5nePPVV/jDt7/Hs2fPsd3ucXf/AK8Y9BMIRXtnZSn2AJmtBR/w5GwNs1xGVBUNl8bECG10rvHPeBJJr0GMNcJkGe0DEHjZ0JPscLVaoiiLcXNDmF2bloNCWcFJz6ZpoRUniZ1z2G4ZYSRpyhqpNM6D/L4X6mEd4cDysCOsOARGV7w/Ofxk8/BDXIcWSvEYf0pqp8W5Rzim1vw8/jw/6ByGnuWpruewX54XJMuLU8We8N9UxISM0XDOS/rOaMtZwuZCUGxmey8MpYzYy8kUJ/MpbM86rHeMVEySYD6fY71eY3myQNu00j9wsH2HvhswdAMpIjpOs58uV3h1eUmFtKLApMyRZSm1BZzlIa040RwUBYb6waLpe2TFBNPFElU/4KE6oLEOXhsESPYX10cgtV0/wEnDNsRBzejAvQNHI7gujJYj0IGRlxVhJiVlRvpKxm3R+bGUKKUuCRJ4oERXBJkBCiwLjDbwX/4Zi1Kj041fHf8Vs2wJOnwQ9JYlKsnH0WzpVTkhE9Qy3BrG2SSFJGX5TPbmeK3x2rWIoAVwqr7rOyDuvxgYScaKwJ4DMfjieUMQ1GD8HMebUnK3wcEFC2Utzk5O8O03X2NWlvh09Qk3d7fsSQkaTEWBLSgow7KGh8fp+QXevHkDKI26qsnVFgj/tHaQQ5TXyX3L66ANcP9prUjXE4OHQNr4pq6w3WxQVweE4Md+SJylypIEVnjb+q4nrXpRou9aAlNkAFcrCVo88UxaAsPIieUdyS/bpkLf92NJahAyTR35xIYOCuz5pUkCK0zDfU+0VlHmKCdTZHmJm/stfv7lF2y2Feg5WQrlEXEERsRDBGL/SrN050PAYjHH6eoUWvHQTRLSh3Qyqb44mWG72+P//fA9/vb3n5DnOasG3qKramRG4/L5c7y+fIl//sd/wv/685/xx9+/xReXl3j+4hKT6Qzb/QGb3YGl6cfsHLIJYvbqrUeaGlw8fQpzunrJyXFBkGhRoFP6GMHxP76cgpSv+JLgOfGIMdd6aMOIoOka2H7A4mSOoigY3ZgEWU5qg6qqhI02Q55m2O/3qOsas9kMZVmi74kDjwun5NBRSpo10lBNEka2TnixlGZ/gIvB+9AxYxFj5UvxvnlIxPtiyW0c6HpEn60NNT0SoS0O4MO0jo2yru+QGkaJiTZ8P6GJN9ogLzKkacrDwXs4zwZqP9Cps7zhYN3AxldwCM6hHzrYfsBsPsXZ6RpwA+A9qvoApYh2gA+YL+Z4evEUT87OcP7kDIv5HGVeYJIXWExpgOdnT/D6yy/w6vIST87WyLIEWgdoAB4Ww9BhcGwae0C0P5h5dYLcGJyDg0LV96jaHgQPUtiIjOUeQ9dzsr2qOB/ghCbcsZRC65H6rpQlRuem6GCO9P18LpBBUJaZoqOV9RLeKCX2EftOMYhVAi+HROKMmnkgKL4lg6AQD4ejnbNsy5+nQxd7MiyZWhuDC0EtgVo1lClgpmrUUcY4bkadaORJxuuQUmd8/SBDWEZr2Ec63fHoI/kn692BHmf8PxS/LqkUb/DR85L/oHSUarbIAXz58jmenq1x2D3g8/VnNH1LIEOWQgUNB5lLkVJVCAHWA6uzNb748rUEChzk1NAwhsy/iUDEgwRZrAzQHiBT0xGCHNFodiCxYVVV2G4f0HcdjI5aLtyLk7KgaFwI2G936Icep6tTTGcFfUfXERllB/Fb9BMKsu+NRpaQ9r/vOihFbZfEGEwnE0AFmVnh8x4sZRcmZYnZdAIjSnz90GHoeoRAZOTi5ATKpPh0fYMPH6/QOwJCEMv8j4IZqvxJ1q1ioEt2ZKUVFrMF5vMZAMpXZEkG5wgVPlQHbDYb/PbuHf7+95+wEUG6NEsQrENbHXAymeG//9Of8Kdvv8XlxQVWEw5UDsIrlxcTfLy6wi+/vYNHYLtA7ERMmSvnA4xRWC2WePnyJcxq9eI7duZi1iHRtzQCgxg5DRO0QBVvO+51biglyI8QIPS9nDfQ2qCcTMZ6c5pxsxwOFdq2RZKkyEVetut61jCLEtoYVHWDqqqRCC8WpOFNVFOM5DggZi0dHre5RHGQjEjz6IunZ7xfehmwma6PqJYgfQQ6vFjr4+8b8i/AWiIY7EAMPQ+yo046QKI6JZrnzjJ7aBpyHpEvS7Ikebp24DwIkSgDp5UdD680S/FkfYoiSRGcQyPQ58V8jizLpPnnMV/MsZifYL08xdl6jfV6jbOzM1ycn+Pi4hzL5RImMXB2GPH1fd9xoKlryUbqROQmMVA6gYdG1w+ouw51O+DQtDi0PbMNpWF9QNN0GCRTIMlai04ODSfOwgf2hILoXngZSPMjyoeRqH/UIGT5JyKlGKH5EKSjDG5IFTNgOQwkCOKnx+/TBvj+8styiIE8YXHlVLRosaXRno5f09LfYEZERlqlIlFl1FTgm4Z4nXJYUYMmQBuhs9fUYQig4/CR3VeYl621CFwRfk/2WXS+QRwQnx2/fvy+3N94J7yeIFvZOYcsUXh6toZRCtdXV9ju9whQyMsSiUkxWIuu7Tm3JFmztQ5D8FhfXODy1SVRSNYKOpD7axCxKS8Zcsw8QuAhEvcj94EcHMKtZfseh+qA7XZL0ItWMEb6l2DWURYTKAUSLQ4DlssTZHlKqp9O5jZkiI77kGsE8Wuc4SGC0Q6cds/zWKIiVVJqBATgKL0wn82RFyW8d+gkgyfaUcEHhWI6Q9Apbu83uH3YwnlAJ+SlokEeAwXaldizqDTGw9UkyRhEh+CRplIVsBY3t+w/tX2Pumlwd/+A3jlkeYayKIHgJeMwmOU5mv0Bvh/Q1jXu7+6x2WywrRo87A/4/m8/4d3nz4DiTJMPihP+Yu4h8ODIswIvX77Es2dPYdarF99BCeJDkEiM2MVJS70bYtDxDx4tgNbcoHpk9eSGL8tS+hkt5vM5lqsVjGH6jaDQ9mSbTEzCJk5Zkn3SOphx0riCC+T8D1IfVFIKgaTzPFQiV9Ux44h+xYgCHQ9DvkjMNJSgaLTitHiaJBTKEdI7CJ26AiNpgHMQkJq27SmQw9SXSKI0Y4kqzThk57xD13ao6ppMpY4DgEopZj5aQXnyHHUNJ1hVIDWGUQpplpImwzks53OsVyt0XQNtDIo8RyEc/SEE9G2Lw6FC37ZMPQN7PCP9uGcD33tL3qimQdPWaNuaB6938AIxVNKTCDCwDuidxzA4DEHBBgBpisF7DFLLd4ER7GAt2rqGcyKLalg39dJs1gmfZ5CfB3hdYqWAlGAQmJnR6bCvQzACrTraXzwUtOJcjhI6HKLT5BCXryv+IqNOLd0MxYx5tA/NfoiS64ZiE5SHibxv4OtADjpel9in4fN2wSM4N74u15sqiLGXxkyUNOLcoMxaYrIw3ud40EngA2YjcT/EgT4EeT6xMS6187h/IRUCI+WuNDFw3iLx5Dsb2haH/Q7WW5SzKYq8gAsBbdOSTgca+aRElmYYrMXgHV58+QVevLhk5jww+4pBmHcyz/II7aa0+JUQaNcyewPFdaf/YMax3+3QNg2ZeiPaUJMSBYHUHyZJUNcVfPCYTkpordDUhxFQQacu6xRY2vWe6EcjrBFlnqOpGygETMoJvKWGe2qEu0xrZBkhwPP5DFopdHaQpjhL2SZJ4KFg0gxKp9geatzd3aOPa6q4Xsx8o91GATb6JSOmFbxHlmeYlhNWawCkWeR+Y5+46zsqYWYZ6qZBPwwo8hJlUaCragxNC+MD2v0eD9dXeLi9w+31Z1xdXWO33aHpB/zy/gN+fvcOh6aBTkhMS38fM2xaHbzHbDrF716/xvp0zVIV5ORjJYfm6rlraXDyVQ7LHf/wpyX9igZpEpaJpPTlZUo7BJDHP89l8hIIzlMbwLJvENkiu7aDdRZ1dSA/vCICaeh7NuSsRdeRGsCYBCEwjfSimqbGZiCvQ0uJCzKvya/LISl/tGbTTWkKq1AlTtJyreARCGPLObhGGKlI5z6CW6ZZhvlsjsVygWlRQhmmwVVT8/qNRpaI6lhiAA14bzn/0rawbmBDC0Ai3D2JHMzwHi54nJ2fAUYh0QQf5MKrpJVGVTdjyW+/2WKz3aLa71G3LYauRy/OHIIWa7sOTVOjG4gs8bE3JFGdVxq9c/j8sMX13QYdEiR5Cael7zFmDMfp5YiWQRBm18DafxBOHW9ZnnPS5GeeHlieAZ0JHwHXy8kUt7ei3jdOs0scoI7Olf6c0Q0jUzoLOo1o34TBaQj3WRC7CGLPQfohgdY/fp1Pjp/LJ7Ee771A2eW6+Dx4f3Kl3CSx+R4EYST3EjNdJ6gapam+5j2HQZm5sI8RBPGnQsyCRR0w/pyPaoHM5OJdx+egJFsq8gxBKdi+I99R32O332PoOxTTKRaLBZRJUFcNDtUBCAqz5QKTyRRD8NRZL0q8+uo11ufnQBC0mPQTg/cIwAjmiNen5P9cV9K6JGkKO5Dy2wuqsWtb3N7foWsbySD5FCVpY4M6L6AVRrhwXuRQwaMbWvTC0qsiA63sH64Ln4N3JJHMsxyQPqQGe7SpJr3OpJygKKfQWiErCjhPzrW+6znYKxmg1gYqSZAkOVrn8enqBptDBSgNLwd1tJuYCXJdvWST7F/FMmWRUegqTRI4b5GlFDRTCthut+jaDifLJbIsw3a/R1XXmC/mmGQ5Tk9WePvN73D5/DlSAEPfwcqQ5H67Q16WWJye4n53wM/v3mPXd0JfQxYFNwYa3BeJNjg/W+PNmzc4W6/w/wGFMQfewPC5YAAAAABJRU5ErkJggg=="
+ }
+ },
"cell_type": "markdown",
"metadata": {},
"source": [
- "# EDA\n",
- "\n",
- ""
+ "# EDA - project. Let's make our customers happy\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Before we start, lets get some libraries in place"
]
},
{
@@ -23,7 +34,10 @@
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
+ "# lets use plotly as well for visualizations\n",
+ "import plotly.express as px \n",
"\n",
+ "import missingno as msno # get more insights about missing data\n",
"\n",
"from matplotlib.ticker import PercentFormatter\n",
"plt.rcParams.update({ \"figure.figsize\" : (8, 5),\"axes.facecolor\" : \"white\", \"axes.edgecolor\": \"black\"})\n",
@@ -32,17 +46,20223 @@
"pd.set_option('display.float_format', lambda x: '%.3f' % x)"
]
},
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 1. Load the data into Panda's DataFrame "
+ ]
+ },
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
- "source": []
- }
- ],
- "metadata": {
+ "source": [
+ "df = pd.read_csv('data/King_County_House_prices_dataset.csv')\n",
+ "#df = pd.read_csv('data/King_clean.csv') # use this one for skipping all the cleaning steps - when you want to go straight to No 5 for hypothesis testing. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "actually I put here two different reads. Use the second one if you want to skip data cleaning and use right the cleaned data. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 2. Now let's have a deeper look at the data and get some first insights"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " date \n",
+ " price \n",
+ " house_id \n",
+ " bedrooms \n",
+ " bathrooms \n",
+ " sqft_living \n",
+ " sqft_lot \n",
+ " floors \n",
+ " waterfront \n",
+ " view \n",
+ " ... \n",
+ " grade \n",
+ " sqft_above \n",
+ " sqft_basement \n",
+ " yr_built \n",
+ " yr_renovated \n",
+ " zipcode \n",
+ " lat \n",
+ " long \n",
+ " sqft_living15 \n",
+ " sqft_lot15 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 2014-10-13 \n",
+ " 221900.000 \n",
+ " 7129300520 \n",
+ " 3.000 \n",
+ " 1.000 \n",
+ " 1180.000 \n",
+ " 5650.000 \n",
+ " 1.000 \n",
+ " NaN \n",
+ " 0.000 \n",
+ " ... \n",
+ " 7 \n",
+ " 1180.000 \n",
+ " 0.000 \n",
+ " 1955 \n",
+ " 0.000 \n",
+ " 98178 \n",
+ " 47.511 \n",
+ " -122.257 \n",
+ " 1340.000 \n",
+ " 5650.000 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 2014-12-09 \n",
+ " 538000.000 \n",
+ " 6414100192 \n",
+ " 3.000 \n",
+ " 2.250 \n",
+ " 2570.000 \n",
+ " 7242.000 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 7 \n",
+ " 2170.000 \n",
+ " 400.000 \n",
+ " 1951 \n",
+ " 19910.000 \n",
+ " 98125 \n",
+ " 47.721 \n",
+ " -122.319 \n",
+ " 1690.000 \n",
+ " 7639.000 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 2015-02-25 \n",
+ " 180000.000 \n",
+ " 5631500400 \n",
+ " 2.000 \n",
+ " 1.000 \n",
+ " 770.000 \n",
+ " 10000.000 \n",
+ " 1.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 6 \n",
+ " 770.000 \n",
+ " 0.000 \n",
+ " 1933 \n",
+ " NaN \n",
+ " 98028 \n",
+ " 47.738 \n",
+ " -122.233 \n",
+ " 2720.000 \n",
+ " 8062.000 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 2014-12-09 \n",
+ " 604000.000 \n",
+ " 2487200875 \n",
+ " 4.000 \n",
+ " 3.000 \n",
+ " 1960.000 \n",
+ " 5000.000 \n",
+ " 1.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 7 \n",
+ " 1050.000 \n",
+ " 910.000 \n",
+ " 1965 \n",
+ " 0.000 \n",
+ " 98136 \n",
+ " 47.521 \n",
+ " -122.393 \n",
+ " 1360.000 \n",
+ " 5000.000 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 2015-02-18 \n",
+ " 510000.000 \n",
+ " 1954400510 \n",
+ " 3.000 \n",
+ " 2.000 \n",
+ " 1680.000 \n",
+ " 8080.000 \n",
+ " 1.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 8 \n",
+ " 1680.000 \n",
+ " 0.000 \n",
+ " 1987 \n",
+ " 0.000 \n",
+ " 98074 \n",
+ " 47.617 \n",
+ " -122.045 \n",
+ " 1800.000 \n",
+ " 7503.000 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
5 rows × 21 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " date price house_id bedrooms bathrooms sqft_living \\\n",
+ "0 2014-10-13 221900.000 7129300520 3.000 1.000 1180.000 \n",
+ "1 2014-12-09 538000.000 6414100192 3.000 2.250 2570.000 \n",
+ "2 2015-02-25 180000.000 5631500400 2.000 1.000 770.000 \n",
+ "3 2014-12-09 604000.000 2487200875 4.000 3.000 1960.000 \n",
+ "4 2015-02-18 510000.000 1954400510 3.000 2.000 1680.000 \n",
+ "\n",
+ " sqft_lot floors waterfront view ... grade sqft_above sqft_basement \\\n",
+ "0 5650.000 1.000 NaN 0.000 ... 7 1180.000 0.000 \n",
+ "1 7242.000 2.000 0.000 0.000 ... 7 2170.000 400.000 \n",
+ "2 10000.000 1.000 0.000 0.000 ... 6 770.000 0.000 \n",
+ "3 5000.000 1.000 0.000 0.000 ... 7 1050.000 910.000 \n",
+ "4 8080.000 1.000 0.000 0.000 ... 8 1680.000 0.000 \n",
+ "\n",
+ " yr_built yr_renovated zipcode lat long sqft_living15 sqft_lot15 \n",
+ "0 1955 0.000 98178 47.511 -122.257 1340.000 5650.000 \n",
+ "1 1951 19910.000 98125 47.721 -122.319 1690.000 7639.000 \n",
+ "2 1933 NaN 98028 47.738 -122.233 2720.000 8062.000 \n",
+ "3 1965 0.000 98136 47.521 -122.393 1360.000 5000.000 \n",
+ "4 1987 0.000 98074 47.617 -122.045 1800.000 7503.000 \n",
+ "\n",
+ "[5 rows x 21 columns]"
+ ]
+ },
+ "execution_count": 3,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# lets have a look at this data\n",
+ "df.head()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ ".. and let's examine the descriptive statistics of the dataset."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 21597 entries, 0 to 21596\n",
+ "Data columns (total 21 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 date 21597 non-null object \n",
+ " 1 price 21597 non-null float64\n",
+ " 2 house_id 21597 non-null int64 \n",
+ " 3 bedrooms 21597 non-null float64\n",
+ " 4 bathrooms 21597 non-null float64\n",
+ " 5 sqft_living 21597 non-null float64\n",
+ " 6 sqft_lot 21597 non-null float64\n",
+ " 7 floors 21597 non-null float64\n",
+ " 8 waterfront 19206 non-null float64\n",
+ " 9 view 21534 non-null float64\n",
+ " 10 condition 21597 non-null int64 \n",
+ " 11 grade 21597 non-null int64 \n",
+ " 12 sqft_above 21597 non-null float64\n",
+ " 13 sqft_basement 21145 non-null float64\n",
+ " 14 yr_built 21597 non-null int64 \n",
+ " 15 yr_renovated 17749 non-null float64\n",
+ " 16 zipcode 21597 non-null int64 \n",
+ " 17 lat 21597 non-null float64\n",
+ " 18 long 21597 non-null float64\n",
+ " 19 sqft_living15 21597 non-null float64\n",
+ " 20 sqft_lot15 21597 non-null float64\n",
+ "dtypes: float64(15), int64(5), object(1)\n",
+ "memory usage: 3.5+ MB\n"
+ ]
+ }
+ ],
+ "source": [
+ "df.info()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "here are some first insights\n",
+ "* we can do some modifications on date --> convert to date type. \n",
+ "* lots of missing data on waterfront. Not relevant for my client. \n",
+ "* some data missing on sqft_basement\n",
+ "* lots of data missing in yr_renovated\n",
+ "* features date, waterfront, view, condition, grade, zipcode categorical (partly numerical category)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " price \n",
+ " house_id \n",
+ " bedrooms \n",
+ " bathrooms \n",
+ " sqft_living \n",
+ " sqft_lot \n",
+ " floors \n",
+ " waterfront \n",
+ " view \n",
+ " condition \n",
+ " grade \n",
+ " sqft_above \n",
+ " sqft_basement \n",
+ " yr_built \n",
+ " yr_renovated \n",
+ " zipcode \n",
+ " lat \n",
+ " long \n",
+ " sqft_living15 \n",
+ " sqft_lot15 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " count \n",
+ " 21597.000 \n",
+ " 21597.000 \n",
+ " 21597.000 \n",
+ " 21597.000 \n",
+ " 21597.000 \n",
+ " 21597.000 \n",
+ " 21597.000 \n",
+ " 19206.000 \n",
+ " 21534.000 \n",
+ " 21597.000 \n",
+ " 21597.000 \n",
+ " 21597.000 \n",
+ " 21145.000 \n",
+ " 21597.000 \n",
+ " 17749.000 \n",
+ " 21597.000 \n",
+ " 21597.000 \n",
+ " 21597.000 \n",
+ " 21597.000 \n",
+ " 21597.000 \n",
+ " \n",
+ " \n",
+ " mean \n",
+ " 540296.574 \n",
+ " 4580474287.771 \n",
+ " 3.373 \n",
+ " 2.116 \n",
+ " 2080.322 \n",
+ " 15099.409 \n",
+ " 1.494 \n",
+ " 0.008 \n",
+ " 0.234 \n",
+ " 3.410 \n",
+ " 7.658 \n",
+ " 1788.597 \n",
+ " 291.857 \n",
+ " 1971.000 \n",
+ " 836.651 \n",
+ " 98077.952 \n",
+ " 47.560 \n",
+ " -122.214 \n",
+ " 1986.620 \n",
+ " 12758.284 \n",
+ " \n",
+ " \n",
+ " std \n",
+ " 367368.140 \n",
+ " 2876735715.748 \n",
+ " 0.926 \n",
+ " 0.769 \n",
+ " 918.106 \n",
+ " 41412.637 \n",
+ " 0.540 \n",
+ " 0.087 \n",
+ " 0.766 \n",
+ " 0.651 \n",
+ " 1.173 \n",
+ " 827.760 \n",
+ " 442.491 \n",
+ " 29.375 \n",
+ " 4000.111 \n",
+ " 53.513 \n",
+ " 0.139 \n",
+ " 0.141 \n",
+ " 685.230 \n",
+ " 27274.442 \n",
+ " \n",
+ " \n",
+ " min \n",
+ " 78000.000 \n",
+ " 1000102.000 \n",
+ " 1.000 \n",
+ " 0.500 \n",
+ " 370.000 \n",
+ " 520.000 \n",
+ " 1.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " 1.000 \n",
+ " 3.000 \n",
+ " 370.000 \n",
+ " 0.000 \n",
+ " 1900.000 \n",
+ " 0.000 \n",
+ " 98001.000 \n",
+ " 47.156 \n",
+ " -122.519 \n",
+ " 399.000 \n",
+ " 651.000 \n",
+ " \n",
+ " \n",
+ " 25% \n",
+ " 322000.000 \n",
+ " 2123049175.000 \n",
+ " 3.000 \n",
+ " 1.750 \n",
+ " 1430.000 \n",
+ " 5040.000 \n",
+ " 1.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " 3.000 \n",
+ " 7.000 \n",
+ " 1190.000 \n",
+ " 0.000 \n",
+ " 1951.000 \n",
+ " 0.000 \n",
+ " 98033.000 \n",
+ " 47.471 \n",
+ " -122.328 \n",
+ " 1490.000 \n",
+ " 5100.000 \n",
+ " \n",
+ " \n",
+ " 50% \n",
+ " 450000.000 \n",
+ " 3904930410.000 \n",
+ " 3.000 \n",
+ " 2.250 \n",
+ " 1910.000 \n",
+ " 7618.000 \n",
+ " 1.500 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " 3.000 \n",
+ " 7.000 \n",
+ " 1560.000 \n",
+ " 0.000 \n",
+ " 1975.000 \n",
+ " 0.000 \n",
+ " 98065.000 \n",
+ " 47.572 \n",
+ " -122.231 \n",
+ " 1840.000 \n",
+ " 7620.000 \n",
+ " \n",
+ " \n",
+ " 75% \n",
+ " 645000.000 \n",
+ " 7308900490.000 \n",
+ " 4.000 \n",
+ " 2.500 \n",
+ " 2550.000 \n",
+ " 10685.000 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " 4.000 \n",
+ " 8.000 \n",
+ " 2210.000 \n",
+ " 560.000 \n",
+ " 1997.000 \n",
+ " 0.000 \n",
+ " 98118.000 \n",
+ " 47.678 \n",
+ " -122.125 \n",
+ " 2360.000 \n",
+ " 10083.000 \n",
+ " \n",
+ " \n",
+ " max \n",
+ " 7700000.000 \n",
+ " 9900000190.000 \n",
+ " 33.000 \n",
+ " 8.000 \n",
+ " 13540.000 \n",
+ " 1651359.000 \n",
+ " 3.500 \n",
+ " 1.000 \n",
+ " 4.000 \n",
+ " 5.000 \n",
+ " 13.000 \n",
+ " 9410.000 \n",
+ " 4820.000 \n",
+ " 2015.000 \n",
+ " 20150.000 \n",
+ " 98199.000 \n",
+ " 47.778 \n",
+ " -121.315 \n",
+ " 6210.000 \n",
+ " 871200.000 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " price house_id bedrooms bathrooms sqft_living \\\n",
+ "count 21597.000 21597.000 21597.000 21597.000 21597.000 \n",
+ "mean 540296.574 4580474287.771 3.373 2.116 2080.322 \n",
+ "std 367368.140 2876735715.748 0.926 0.769 918.106 \n",
+ "min 78000.000 1000102.000 1.000 0.500 370.000 \n",
+ "25% 322000.000 2123049175.000 3.000 1.750 1430.000 \n",
+ "50% 450000.000 3904930410.000 3.000 2.250 1910.000 \n",
+ "75% 645000.000 7308900490.000 4.000 2.500 2550.000 \n",
+ "max 7700000.000 9900000190.000 33.000 8.000 13540.000 \n",
+ "\n",
+ " sqft_lot floors waterfront view condition grade \\\n",
+ "count 21597.000 21597.000 19206.000 21534.000 21597.000 21597.000 \n",
+ "mean 15099.409 1.494 0.008 0.234 3.410 7.658 \n",
+ "std 41412.637 0.540 0.087 0.766 0.651 1.173 \n",
+ "min 520.000 1.000 0.000 0.000 1.000 3.000 \n",
+ "25% 5040.000 1.000 0.000 0.000 3.000 7.000 \n",
+ "50% 7618.000 1.500 0.000 0.000 3.000 7.000 \n",
+ "75% 10685.000 2.000 0.000 0.000 4.000 8.000 \n",
+ "max 1651359.000 3.500 1.000 4.000 5.000 13.000 \n",
+ "\n",
+ " sqft_above sqft_basement yr_built yr_renovated zipcode lat \\\n",
+ "count 21597.000 21145.000 21597.000 17749.000 21597.000 21597.000 \n",
+ "mean 1788.597 291.857 1971.000 836.651 98077.952 47.560 \n",
+ "std 827.760 442.491 29.375 4000.111 53.513 0.139 \n",
+ "min 370.000 0.000 1900.000 0.000 98001.000 47.156 \n",
+ "25% 1190.000 0.000 1951.000 0.000 98033.000 47.471 \n",
+ "50% 1560.000 0.000 1975.000 0.000 98065.000 47.572 \n",
+ "75% 2210.000 560.000 1997.000 0.000 98118.000 47.678 \n",
+ "max 9410.000 4820.000 2015.000 20150.000 98199.000 47.778 \n",
+ "\n",
+ " long sqft_living15 sqft_lot15 \n",
+ "count 21597.000 21597.000 21597.000 \n",
+ "mean -122.214 1986.620 12758.284 \n",
+ "std 0.141 685.230 27274.442 \n",
+ "min -122.519 399.000 651.000 \n",
+ "25% -122.328 1490.000 5100.000 \n",
+ "50% -122.231 1840.000 7620.000 \n",
+ "75% -122.125 2360.000 10083.000 \n",
+ "max -121.315 6210.000 871200.000 "
+ ]
+ },
+ "execution_count": 5,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.describe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "...and more insights : \n",
+ "* on average, houses are quite old\n",
+ "* with a medium price of 500.000$ \n",
+ "* average condition of 3,4 from 5 (very good)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 3. Clean up the data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Procedure : \n",
+ "- Dealing with missing values: remove (rows, or columns) or impute data\n",
+ "\n",
+ "- Dealing with extreme values or outliers: remove data\n",
+ "\n",
+ "- Transform data where necessary, e.g. to log or sqrt to try to get some feature closer to normal distribution, or binning\n",
+ "\n",
+ "- maybe throw away data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### a) Tell our data frame to only use lower cases for our column names"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "Index(['date', 'price', 'house_id', 'bedrooms', 'bathrooms', 'sqft_living',\n",
+ " 'sqft_lot', 'floors', 'waterfront', 'view', 'condition', 'grade',\n",
+ " 'sqft_above', 'sqft_basement', 'yr_built', 'yr_renovated', 'zipcode',\n",
+ " 'lat', 'long', 'sqft_living15', 'sqft_lot15'],\n",
+ " dtype='object')"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# changing all column names to lower case\n",
+ "df.columns = df.columns.str.lower()\n",
+ "df.columns"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### b) check for duplicates"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "False 21597\n",
+ "Name: count, dtype: int64"
+ ]
+ },
+ "execution_count": 7,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.duplicated().value_counts()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "there are no duplicates...good. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### c) check date type and change it"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "str"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "type(df['date'][0]) # check for type of date --> str!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# change \"date\" dtype to datetime with format %Y/%m/%d\n",
+ "df['date'] = pd.to_datetime(df['date'], format='%Y-%m-%d')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "pandas._libs.tslibs.timestamps.Timestamp"
+ ]
+ },
+ "execution_count": 10,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "type(df['date'][0]) # check for type again --> Timestamp "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "here we changed data type from string to pandas Timestamp. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### d) Check Data types"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Price : 3 decimal places. No decimal needed for price. Int would be fine. Will convert to int\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " date \n",
+ " price \n",
+ " house_id \n",
+ " bedrooms \n",
+ " bathrooms \n",
+ " sqft_living \n",
+ " sqft_lot \n",
+ " floors \n",
+ " waterfront \n",
+ " view \n",
+ " ... \n",
+ " grade \n",
+ " sqft_above \n",
+ " sqft_basement \n",
+ " yr_built \n",
+ " yr_renovated \n",
+ " zipcode \n",
+ " lat \n",
+ " long \n",
+ " sqft_living15 \n",
+ " sqft_lot15 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 2014-10-13 \n",
+ " 221900 \n",
+ " 7129300520 \n",
+ " 3.000 \n",
+ " 1.000 \n",
+ " 1180 \n",
+ " 5650 \n",
+ " 1.000 \n",
+ " NaN \n",
+ " 0.000 \n",
+ " ... \n",
+ " 7 \n",
+ " 1180 \n",
+ " 0.000 \n",
+ " 1955 \n",
+ " 0.000 \n",
+ " 98178 \n",
+ " 47.511 \n",
+ " -122.257 \n",
+ " 1340 \n",
+ " 5650 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 2014-12-09 \n",
+ " 538000 \n",
+ " 6414100192 \n",
+ " 3.000 \n",
+ " 2.250 \n",
+ " 2570 \n",
+ " 7242 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 7 \n",
+ " 2170 \n",
+ " 400.000 \n",
+ " 1951 \n",
+ " 19910.000 \n",
+ " 98125 \n",
+ " 47.721 \n",
+ " -122.319 \n",
+ " 1690 \n",
+ " 7639 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 2015-02-25 \n",
+ " 180000 \n",
+ " 5631500400 \n",
+ " 2.000 \n",
+ " 1.000 \n",
+ " 770 \n",
+ " 10000 \n",
+ " 1.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 6 \n",
+ " 770 \n",
+ " 0.000 \n",
+ " 1933 \n",
+ " NaN \n",
+ " 98028 \n",
+ " 47.738 \n",
+ " -122.233 \n",
+ " 2720 \n",
+ " 8062 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 2014-12-09 \n",
+ " 604000 \n",
+ " 2487200875 \n",
+ " 4.000 \n",
+ " 3.000 \n",
+ " 1960 \n",
+ " 5000 \n",
+ " 1.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 7 \n",
+ " 1050 \n",
+ " 910.000 \n",
+ " 1965 \n",
+ " 0.000 \n",
+ " 98136 \n",
+ " 47.521 \n",
+ " -122.393 \n",
+ " 1360 \n",
+ " 5000 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 2015-02-18 \n",
+ " 510000 \n",
+ " 1954400510 \n",
+ " 3.000 \n",
+ " 2.000 \n",
+ " 1680 \n",
+ " 8080 \n",
+ " 1.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 8 \n",
+ " 1680 \n",
+ " 0.000 \n",
+ " 1987 \n",
+ " 0.000 \n",
+ " 98074 \n",
+ " 47.617 \n",
+ " -122.045 \n",
+ " 1800 \n",
+ " 7503 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 21592 \n",
+ " 2014-05-21 \n",
+ " 360000 \n",
+ " 263000018 \n",
+ " 3.000 \n",
+ " 2.500 \n",
+ " 1530 \n",
+ " 1131 \n",
+ " 3.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 8 \n",
+ " 1530 \n",
+ " 0.000 \n",
+ " 2009 \n",
+ " 0.000 \n",
+ " 98103 \n",
+ " 47.699 \n",
+ " -122.346 \n",
+ " 1530 \n",
+ " 1509 \n",
+ " \n",
+ " \n",
+ " 21593 \n",
+ " 2015-02-23 \n",
+ " 400000 \n",
+ " 6600060120 \n",
+ " 4.000 \n",
+ " 2.500 \n",
+ " 2310 \n",
+ " 5813 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 8 \n",
+ " 2310 \n",
+ " 0.000 \n",
+ " 2014 \n",
+ " 0.000 \n",
+ " 98146 \n",
+ " 47.511 \n",
+ " -122.362 \n",
+ " 1830 \n",
+ " 7200 \n",
+ " \n",
+ " \n",
+ " 21594 \n",
+ " 2014-06-23 \n",
+ " 402101 \n",
+ " 1523300141 \n",
+ " 2.000 \n",
+ " 0.750 \n",
+ " 1020 \n",
+ " 1350 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 7 \n",
+ " 1020 \n",
+ " 0.000 \n",
+ " 2009 \n",
+ " 0.000 \n",
+ " 98144 \n",
+ " 47.594 \n",
+ " -122.299 \n",
+ " 1020 \n",
+ " 2007 \n",
+ " \n",
+ " \n",
+ " 21595 \n",
+ " 2015-01-16 \n",
+ " 400000 \n",
+ " 291310100 \n",
+ " 3.000 \n",
+ " 2.500 \n",
+ " 1600 \n",
+ " 2388 \n",
+ " 2.000 \n",
+ " NaN \n",
+ " 0.000 \n",
+ " ... \n",
+ " 8 \n",
+ " 1600 \n",
+ " 0.000 \n",
+ " 2004 \n",
+ " 0.000 \n",
+ " 98027 \n",
+ " 47.535 \n",
+ " -122.069 \n",
+ " 1410 \n",
+ " 1287 \n",
+ " \n",
+ " \n",
+ " 21596 \n",
+ " 2014-10-15 \n",
+ " 325000 \n",
+ " 1523300157 \n",
+ " 2.000 \n",
+ " 0.750 \n",
+ " 1020 \n",
+ " 1076 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 7 \n",
+ " 1020 \n",
+ " 0.000 \n",
+ " 2008 \n",
+ " 0.000 \n",
+ " 98144 \n",
+ " 47.594 \n",
+ " -122.299 \n",
+ " 1020 \n",
+ " 1357 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
21597 rows × 21 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " date price house_id bedrooms bathrooms sqft_living \\\n",
+ "0 2014-10-13 221900 7129300520 3.000 1.000 1180 \n",
+ "1 2014-12-09 538000 6414100192 3.000 2.250 2570 \n",
+ "2 2015-02-25 180000 5631500400 2.000 1.000 770 \n",
+ "3 2014-12-09 604000 2487200875 4.000 3.000 1960 \n",
+ "4 2015-02-18 510000 1954400510 3.000 2.000 1680 \n",
+ "... ... ... ... ... ... ... \n",
+ "21592 2014-05-21 360000 263000018 3.000 2.500 1530 \n",
+ "21593 2015-02-23 400000 6600060120 4.000 2.500 2310 \n",
+ "21594 2014-06-23 402101 1523300141 2.000 0.750 1020 \n",
+ "21595 2015-01-16 400000 291310100 3.000 2.500 1600 \n",
+ "21596 2014-10-15 325000 1523300157 2.000 0.750 1020 \n",
+ "\n",
+ " sqft_lot floors waterfront view ... grade sqft_above \\\n",
+ "0 5650 1.000 NaN 0.000 ... 7 1180 \n",
+ "1 7242 2.000 0.000 0.000 ... 7 2170 \n",
+ "2 10000 1.000 0.000 0.000 ... 6 770 \n",
+ "3 5000 1.000 0.000 0.000 ... 7 1050 \n",
+ "4 8080 1.000 0.000 0.000 ... 8 1680 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "21592 1131 3.000 0.000 0.000 ... 8 1530 \n",
+ "21593 5813 2.000 0.000 0.000 ... 8 2310 \n",
+ "21594 1350 2.000 0.000 0.000 ... 7 1020 \n",
+ "21595 2388 2.000 NaN 0.000 ... 8 1600 \n",
+ "21596 1076 2.000 0.000 0.000 ... 7 1020 \n",
+ "\n",
+ " sqft_basement yr_built yr_renovated zipcode lat long \\\n",
+ "0 0.000 1955 0.000 98178 47.511 -122.257 \n",
+ "1 400.000 1951 19910.000 98125 47.721 -122.319 \n",
+ "2 0.000 1933 NaN 98028 47.738 -122.233 \n",
+ "3 910.000 1965 0.000 98136 47.521 -122.393 \n",
+ "4 0.000 1987 0.000 98074 47.617 -122.045 \n",
+ "... ... ... ... ... ... ... \n",
+ "21592 0.000 2009 0.000 98103 47.699 -122.346 \n",
+ "21593 0.000 2014 0.000 98146 47.511 -122.362 \n",
+ "21594 0.000 2009 0.000 98144 47.594 -122.299 \n",
+ "21595 0.000 2004 0.000 98027 47.535 -122.069 \n",
+ "21596 0.000 2008 0.000 98144 47.594 -122.299 \n",
+ "\n",
+ " sqft_living15 sqft_lot15 \n",
+ "0 1340 5650 \n",
+ "1 1690 7639 \n",
+ "2 2720 8062 \n",
+ "3 1360 5000 \n",
+ "4 1800 7503 \n",
+ "... ... ... \n",
+ "21592 1530 1509 \n",
+ "21593 1830 7200 \n",
+ "21594 1020 2007 \n",
+ "21595 1410 1287 \n",
+ "21596 1020 1357 \n",
+ "\n",
+ "[21597 rows x 21 columns]"
+ ]
+ },
+ "execution_count": 11,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# change data type to int\n",
+ "df = df.astype({'price': int})\n",
+ "# same for sqft values . Basement needs cleaning first.. \n",
+ "df = df.astype({'sqft_living': int, 'sqft_lot': int, 'sqft_above': int, 'sqft_living15': int, 'sqft_lot15': int})\n",
+ "df"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 3.1 Ok, lets look at the basement squarefoots. Seems there is a formula that we can use for the missing values: \n",
+ "\n",
+ "sqft_basement = sqft_living - sqft_above"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# it seems that the basement value normally is \n",
+ "# the value of (sqft_living - sqft_above), so \n",
+ "# we are using this formula for the NaN values\n",
+ "\n",
+ "df['sqft_basement'] = df['sqft_basement'].fillna(\n",
+ " df['sqft_living'] - df['sqft_above']\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "np.int64(0)"
+ ]
+ },
+ "execution_count": 13,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.sqft_basement.isna().sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 3.2 Lets look at the houses with yr_renovated = NaN"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " date \n",
+ " price \n",
+ " house_id \n",
+ " bedrooms \n",
+ " bathrooms \n",
+ " sqft_living \n",
+ " sqft_lot \n",
+ " floors \n",
+ " waterfront \n",
+ " view \n",
+ " ... \n",
+ " grade \n",
+ " sqft_above \n",
+ " sqft_basement \n",
+ " yr_built \n",
+ " yr_renovated \n",
+ " zipcode \n",
+ " lat \n",
+ " long \n",
+ " sqft_living15 \n",
+ " sqft_lot15 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 45 \n",
+ " 2014-07-18 \n",
+ " 488000 \n",
+ " 8035350320 \n",
+ " 3.000 \n",
+ " 2.500 \n",
+ " 3160 \n",
+ " 13603 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 8 \n",
+ " 3160 \n",
+ " 0.000 \n",
+ " 2003 \n",
+ " NaN \n",
+ " 98019 \n",
+ " 47.744 \n",
+ " -121.977 \n",
+ " 3050 \n",
+ " 9232 \n",
+ " \n",
+ " \n",
+ " 56 \n",
+ " 2014-08-19 \n",
+ " 292500 \n",
+ " 9478500640 \n",
+ " 4.000 \n",
+ " 2.500 \n",
+ " 2250 \n",
+ " 4495 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 7 \n",
+ " 2250 \n",
+ " 0.000 \n",
+ " 2008 \n",
+ " NaN \n",
+ " 98042 \n",
+ " 47.366 \n",
+ " -122.114 \n",
+ " 2250 \n",
+ " 4500 \n",
+ " \n",
+ " \n",
+ " 73 \n",
+ " 2014-07-10 \n",
+ " 360000 \n",
+ " 5416510140 \n",
+ " 4.000 \n",
+ " 2.500 \n",
+ " 2380 \n",
+ " 5000 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 8 \n",
+ " 2380 \n",
+ " 0.000 \n",
+ " 2005 \n",
+ " NaN \n",
+ " 98038 \n",
+ " 47.361 \n",
+ " -122.036 \n",
+ " 2420 \n",
+ " 5000 \n",
+ " \n",
+ " \n",
+ " 89 \n",
+ " 2014-09-04 \n",
+ " 335000 \n",
+ " 3869900162 \n",
+ " 2.000 \n",
+ " 1.750 \n",
+ " 1030 \n",
+ " 1066 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 7 \n",
+ " 765 \n",
+ " 265.000 \n",
+ " 2006 \n",
+ " NaN \n",
+ " 98136 \n",
+ " 47.539 \n",
+ " -122.387 \n",
+ " 1030 \n",
+ " 1106 \n",
+ " \n",
+ " \n",
+ " 139 \n",
+ " 2014-05-07 \n",
+ " 519950 \n",
+ " 2767603505 \n",
+ " 3.000 \n",
+ " 2.250 \n",
+ " 1170 \n",
+ " 1249 \n",
+ " 3.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 8 \n",
+ " 1170 \n",
+ " 0.000 \n",
+ " 2014 \n",
+ " NaN \n",
+ " 98107 \n",
+ " 47.672 \n",
+ " -122.381 \n",
+ " 1350 \n",
+ " 1310 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 21576 \n",
+ " 2015-04-16 \n",
+ " 475000 \n",
+ " 1931300412 \n",
+ " 3.000 \n",
+ " 2.250 \n",
+ " 1190 \n",
+ " 1200 \n",
+ " 3.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 8 \n",
+ " 1190 \n",
+ " 0.000 \n",
+ " 2008 \n",
+ " NaN \n",
+ " 98103 \n",
+ " 47.654 \n",
+ " -122.346 \n",
+ " 1180 \n",
+ " 1224 \n",
+ " \n",
+ " \n",
+ " 21577 \n",
+ " 2015-03-17 \n",
+ " 1090000 \n",
+ " 8672200110 \n",
+ " 5.000 \n",
+ " 3.750 \n",
+ " 4170 \n",
+ " 8142 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " 2.000 \n",
+ " ... \n",
+ " 10 \n",
+ " 4170 \n",
+ " 0.000 \n",
+ " 2006 \n",
+ " NaN \n",
+ " 98056 \n",
+ " 47.535 \n",
+ " -122.181 \n",
+ " 3030 \n",
+ " 7980 \n",
+ " \n",
+ " \n",
+ " 21579 \n",
+ " 2014-10-31 \n",
+ " 520000 \n",
+ " 1972201967 \n",
+ " 2.000 \n",
+ " 2.250 \n",
+ " 1530 \n",
+ " 981 \n",
+ " 3.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 8 \n",
+ " 1480 \n",
+ " 50.000 \n",
+ " 2006 \n",
+ " NaN \n",
+ " 98103 \n",
+ " 47.653 \n",
+ " -122.346 \n",
+ " 1530 \n",
+ " 1282 \n",
+ " \n",
+ " \n",
+ " 21581 \n",
+ " 2015-04-21 \n",
+ " 1580000 \n",
+ " 191100405 \n",
+ " 4.000 \n",
+ " 3.250 \n",
+ " 3410 \n",
+ " 10125 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 10 \n",
+ " 3410 \n",
+ " 0.000 \n",
+ " 2007 \n",
+ " NaN \n",
+ " 98040 \n",
+ " 47.565 \n",
+ " -122.223 \n",
+ " 2290 \n",
+ " 10125 \n",
+ " \n",
+ " \n",
+ " 21583 \n",
+ " 2014-09-15 \n",
+ " 810000 \n",
+ " 7202300110 \n",
+ " 4.000 \n",
+ " 3.000 \n",
+ " 3990 \n",
+ " 7838 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 9 \n",
+ " 3990 \n",
+ " 0.000 \n",
+ " 2003 \n",
+ " NaN \n",
+ " 98053 \n",
+ " 47.686 \n",
+ " -122.046 \n",
+ " 3370 \n",
+ " 6814 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
747 rows × 21 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " date price house_id bedrooms bathrooms sqft_living \\\n",
+ "45 2014-07-18 488000 8035350320 3.000 2.500 3160 \n",
+ "56 2014-08-19 292500 9478500640 4.000 2.500 2250 \n",
+ "73 2014-07-10 360000 5416510140 4.000 2.500 2380 \n",
+ "89 2014-09-04 335000 3869900162 2.000 1.750 1030 \n",
+ "139 2014-05-07 519950 2767603505 3.000 2.250 1170 \n",
+ "... ... ... ... ... ... ... \n",
+ "21576 2015-04-16 475000 1931300412 3.000 2.250 1190 \n",
+ "21577 2015-03-17 1090000 8672200110 5.000 3.750 4170 \n",
+ "21579 2014-10-31 520000 1972201967 2.000 2.250 1530 \n",
+ "21581 2015-04-21 1580000 191100405 4.000 3.250 3410 \n",
+ "21583 2014-09-15 810000 7202300110 4.000 3.000 3990 \n",
+ "\n",
+ " sqft_lot floors waterfront view ... grade sqft_above \\\n",
+ "45 13603 2.000 0.000 0.000 ... 8 3160 \n",
+ "56 4495 2.000 0.000 0.000 ... 7 2250 \n",
+ "73 5000 2.000 0.000 0.000 ... 8 2380 \n",
+ "89 1066 2.000 0.000 0.000 ... 7 765 \n",
+ "139 1249 3.000 0.000 0.000 ... 8 1170 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "21576 1200 3.000 0.000 0.000 ... 8 1190 \n",
+ "21577 8142 2.000 0.000 2.000 ... 10 4170 \n",
+ "21579 981 3.000 0.000 0.000 ... 8 1480 \n",
+ "21581 10125 2.000 0.000 0.000 ... 10 3410 \n",
+ "21583 7838 2.000 0.000 0.000 ... 9 3990 \n",
+ "\n",
+ " sqft_basement yr_built yr_renovated zipcode lat long \\\n",
+ "45 0.000 2003 NaN 98019 47.744 -121.977 \n",
+ "56 0.000 2008 NaN 98042 47.366 -122.114 \n",
+ "73 0.000 2005 NaN 98038 47.361 -122.036 \n",
+ "89 265.000 2006 NaN 98136 47.539 -122.387 \n",
+ "139 0.000 2014 NaN 98107 47.672 -122.381 \n",
+ "... ... ... ... ... ... ... \n",
+ "21576 0.000 2008 NaN 98103 47.654 -122.346 \n",
+ "21577 0.000 2006 NaN 98056 47.535 -122.181 \n",
+ "21579 50.000 2006 NaN 98103 47.653 -122.346 \n",
+ "21581 0.000 2007 NaN 98040 47.565 -122.223 \n",
+ "21583 0.000 2003 NaN 98053 47.686 -122.046 \n",
+ "\n",
+ " sqft_living15 sqft_lot15 \n",
+ "45 3050 9232 \n",
+ "56 2250 4500 \n",
+ "73 2420 5000 \n",
+ "89 1030 1106 \n",
+ "139 1350 1310 \n",
+ "... ... ... \n",
+ "21576 1180 1224 \n",
+ "21577 3030 7980 \n",
+ "21579 1530 1282 \n",
+ "21581 2290 10125 \n",
+ "21583 3370 6814 \n",
+ "\n",
+ "[747 rows x 21 columns]"
+ ]
+ },
+ "execution_count": 14,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# houses younger than 15 years normally do not need to be renovated\n",
+ "df.query('yr_renovated.isna() == True and yr_built > 2001')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "lets look at the yr_renovated. This looks strange, seems there is one digit too much.\n",
+ "2015 is shown as 20150. So lets divide by 10 here..., but first check the unique values\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([ 0., 19910., nan, 20020., 20100., 19920., 20130., 19940.,\n",
+ " 19780., 20050., 20030., 19840., 19540., 20140., 20110., 19830.,\n",
+ " 19450., 19900., 19880., 19770., 19810., 19950., 20000., 19990.,\n",
+ " 19980., 19700., 19890., 20040., 19860., 20070., 19870., 20060.,\n",
+ " 19850., 20010., 19800., 19710., 19790., 19970., 19500., 19690.,\n",
+ " 19480., 20090., 20150., 19740., 20080., 19680., 20120., 19630.,\n",
+ " 19510., 19620., 19530., 19930., 19960., 19550., 19820., 19560.,\n",
+ " 19400., 19760., 19460., 19750., 19640., 19730., 19570., 19590.,\n",
+ " 19600., 19670., 19650., 19340., 19720., 19440., 19580.])"
+ ]
+ },
+ "execution_count": 15,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.yr_renovated.unique()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df.yr_renovated = df.yr_renovated / 10 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([ 0., 1991., nan, 2002., 2010., 1992., 2013., 1994., 1978.,\n",
+ " 2005., 2003., 1984., 1954., 2014., 2011., 1983., 1945., 1990.,\n",
+ " 1988., 1977., 1981., 1995., 2000., 1999., 1998., 1970., 1989.,\n",
+ " 2004., 1986., 2007., 1987., 2006., 1985., 2001., 1980., 1971.,\n",
+ " 1979., 1997., 1950., 1969., 1948., 2009., 2015., 1974., 2008.,\n",
+ " 1968., 2012., 1963., 1951., 1962., 1953., 1993., 1996., 1955.,\n",
+ " 1982., 1956., 1940., 1976., 1946., 1975., 1964., 1973., 1957.,\n",
+ " 1959., 1960., 1967., 1965., 1934., 1972., 1944., 1958.])"
+ ]
+ },
+ "execution_count": 17,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.yr_renovated.unique()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "now we need to take care of the NaN numbers\n",
+ "1) set all NaN values for houses that are built after 2000 to 0 --> not been renovated (within 15 yrs normally not necessary)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "np.int64(803)"
+ ]
+ },
+ "execution_count": 18,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('yr_built > 2000')['yr_renovated'].isna().sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "so we do have 803 missing values for yr_renovated where yr_built > 2000. Lets set those ones to 0 that have yr_built >2000"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# 1. Define a boolean mask for the condition\n",
+ "condition = (df['yr_built'] > 2000) & (df['yr_renovated'].isna())\n",
+ "\n",
+ "# 2. Use .loc[] to select the rows that meet the condition\n",
+ "# and the specific column, then set the values to 0\n",
+ "df.loc[condition, 'yr_renovated'] = 0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "np.int64(0)"
+ ]
+ },
+ "execution_count": 20,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "#lets check again\n",
+ "df.query('yr_built > 2000')['yr_renovated'].isna().sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's have a look at the other ones "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " date \n",
+ " price \n",
+ " house_id \n",
+ " bedrooms \n",
+ " bathrooms \n",
+ " sqft_living \n",
+ " sqft_lot \n",
+ " floors \n",
+ " waterfront \n",
+ " view \n",
+ " ... \n",
+ " grade \n",
+ " sqft_above \n",
+ " sqft_basement \n",
+ " yr_built \n",
+ " yr_renovated \n",
+ " zipcode \n",
+ " lat \n",
+ " long \n",
+ " sqft_living15 \n",
+ " sqft_lot15 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 2014-10-13 \n",
+ " 221900 \n",
+ " 7129300520 \n",
+ " 3.000 \n",
+ " 1.000 \n",
+ " 1180 \n",
+ " 5650 \n",
+ " 1.000 \n",
+ " NaN \n",
+ " 0.000 \n",
+ " ... \n",
+ " 7 \n",
+ " 1180 \n",
+ " 0.000 \n",
+ " 1955 \n",
+ " 0.000 \n",
+ " 98178 \n",
+ " 47.511 \n",
+ " -122.257 \n",
+ " 1340 \n",
+ " 5650 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 2014-12-09 \n",
+ " 538000 \n",
+ " 6414100192 \n",
+ " 3.000 \n",
+ " 2.250 \n",
+ " 2570 \n",
+ " 7242 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 7 \n",
+ " 2170 \n",
+ " 400.000 \n",
+ " 1951 \n",
+ " 1991.000 \n",
+ " 98125 \n",
+ " 47.721 \n",
+ " -122.319 \n",
+ " 1690 \n",
+ " 7639 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 2015-02-25 \n",
+ " 180000 \n",
+ " 5631500400 \n",
+ " 2.000 \n",
+ " 1.000 \n",
+ " 770 \n",
+ " 10000 \n",
+ " 1.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 6 \n",
+ " 770 \n",
+ " 0.000 \n",
+ " 1933 \n",
+ " NaN \n",
+ " 98028 \n",
+ " 47.738 \n",
+ " -122.233 \n",
+ " 2720 \n",
+ " 8062 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 2014-12-09 \n",
+ " 604000 \n",
+ " 2487200875 \n",
+ " 4.000 \n",
+ " 3.000 \n",
+ " 1960 \n",
+ " 5000 \n",
+ " 1.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 7 \n",
+ " 1050 \n",
+ " 910.000 \n",
+ " 1965 \n",
+ " 0.000 \n",
+ " 98136 \n",
+ " 47.521 \n",
+ " -122.393 \n",
+ " 1360 \n",
+ " 5000 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 2015-02-18 \n",
+ " 510000 \n",
+ " 1954400510 \n",
+ " 3.000 \n",
+ " 2.000 \n",
+ " 1680 \n",
+ " 8080 \n",
+ " 1.000 \n",
+ " 0.000 \n",
+ " 0.000 \n",
+ " ... \n",
+ " 8 \n",
+ " 1680 \n",
+ " 0.000 \n",
+ " 1987 \n",
+ " 0.000 \n",
+ " 98074 \n",
+ " 47.617 \n",
+ " -122.045 \n",
+ " 1800 \n",
+ " 7503 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
5 rows × 21 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " date price house_id bedrooms bathrooms sqft_living sqft_lot \\\n",
+ "0 2014-10-13 221900 7129300520 3.000 1.000 1180 5650 \n",
+ "1 2014-12-09 538000 6414100192 3.000 2.250 2570 7242 \n",
+ "2 2015-02-25 180000 5631500400 2.000 1.000 770 10000 \n",
+ "3 2014-12-09 604000 2487200875 4.000 3.000 1960 5000 \n",
+ "4 2015-02-18 510000 1954400510 3.000 2.000 1680 8080 \n",
+ "\n",
+ " floors waterfront view ... grade sqft_above sqft_basement yr_built \\\n",
+ "0 1.000 NaN 0.000 ... 7 1180 0.000 1955 \n",
+ "1 2.000 0.000 0.000 ... 7 2170 400.000 1951 \n",
+ "2 1.000 0.000 0.000 ... 6 770 0.000 1933 \n",
+ "3 1.000 0.000 0.000 ... 7 1050 910.000 1965 \n",
+ "4 1.000 0.000 0.000 ... 8 1680 0.000 1987 \n",
+ "\n",
+ " yr_renovated zipcode lat long sqft_living15 sqft_lot15 \n",
+ "0 0.000 98178 47.511 -122.257 1340 5650 \n",
+ "1 1991.000 98125 47.721 -122.319 1690 7639 \n",
+ "2 NaN 98028 47.738 -122.233 2720 8062 \n",
+ "3 0.000 98136 47.521 -122.393 1360 5000 \n",
+ "4 0.000 98074 47.617 -122.045 1800 7503 \n",
+ "\n",
+ "[5 rows x 21 columns]"
+ ]
+ },
+ "execution_count": 21,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.head(5)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([3, 5, 4, 1, 2])"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# lets check the condition values --> go from 1 (poor?) to 5 excellent\n",
+ "df.condition.unique()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Lets check median conditions for renovated houses (renovated within last 30 years) and unrenovated houses (renovated before 1985)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 23,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "count 581.000\n",
+ "mean 3.133\n",
+ "std 0.417\n",
+ "min 1.000\n",
+ "25% 3.000\n",
+ "50% 3.000\n",
+ "75% 3.000\n",
+ "max 5.000\n",
+ "Name: condition, dtype: float64"
+ ]
+ },
+ "execution_count": 23,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('yr_renovated > 1985')['condition'].describe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Renovated houses after 1985 have a median condition of 3.0, mean is 3.13 with a standard deviation of 0,42. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "count 17957.000\n",
+ "mean 3.402\n",
+ "std 0.647\n",
+ "min 1.000\n",
+ "25% 3.000\n",
+ "50% 3.000\n",
+ "75% 4.000\n",
+ "max 5.000\n",
+ "Name: condition, dtype: float64"
+ ]
+ },
+ "execution_count": 24,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('yr_renovated < 1985')['condition'].describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "count 17808.000\n",
+ "mean 3.401\n",
+ "std 0.647\n",
+ "min 1.000\n",
+ "25% 3.000\n",
+ "50% 3.000\n",
+ "75% 4.000\n",
+ "max 5.000\n",
+ "Name: condition, dtype: float64"
+ ]
+ },
+ "execution_count": 25,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('yr_renovated == 0')['condition'].describe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Not renovated houses (yr_renovated = 0) (or renovated before 1985) have a condition of 3.4 with std of 0.65"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Lets look at newer renovated houses, after 2000"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "count 350.000\n",
+ "mean 3.057\n",
+ "std 0.277\n",
+ "min 3.000\n",
+ "25% 3.000\n",
+ "50% 3.000\n",
+ "75% 3.000\n",
+ "max 5.000\n",
+ "Name: condition, dtype: float64"
+ ]
+ },
+ "execution_count": 27,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('yr_renovated > 2000')['condition'].describe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "They still have a mean of 3.0. There is not much value in the condition for getting information about the renovation status. \n",
+ "\n",
+ "At least we get more information about condition : 3 is better than 3.5 --> condition 1 is best, condition 5 is worst. \n",
+ "\n",
+ "Lets have a look at grade of the houses... "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "count 135.000\n",
+ "mean 7.578\n",
+ "std 0.958\n",
+ "min 5.000\n",
+ "25% 7.000\n",
+ "50% 7.000\n",
+ "75% 8.000\n",
+ "max 10.000\n",
+ "Name: grade, dtype: float64"
+ ]
+ },
+ "execution_count": 28,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('yr_renovated > 2010')['grade'].describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "count 350.000\n",
+ "mean 7.951\n",
+ "std 1.185\n",
+ "min 5.000\n",
+ "25% 7.000\n",
+ "50% 8.000\n",
+ "75% 9.000\n",
+ "max 13.000\n",
+ "Name: grade, dtype: float64"
+ ]
+ },
+ "execution_count": 29,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('yr_renovated > 2000')['grade'].describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "count 18173.000\n",
+ "mean 7.686\n",
+ "std 1.175\n",
+ "min 3.000\n",
+ "25% 7.000\n",
+ "50% 7.000\n",
+ "75% 8.000\n",
+ "max 13.000\n",
+ "Name: grade, dtype: float64"
+ ]
+ },
+ "execution_count": 30,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('yr_renovated < 2000')['grade'].describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "count 3045.000\n",
+ "mean 7.451\n",
+ "std 1.136\n",
+ "min 4.000\n",
+ "25% 7.000\n",
+ "50% 7.000\n",
+ "75% 8.000\n",
+ "max 13.000\n",
+ "Name: grade, dtype: float64"
+ ]
+ },
+ "execution_count": 31,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('yr_renovated.isna()')['grade'].describe()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "count 3045.000\n",
+ "mean 3.509\n",
+ "std 0.686\n",
+ "min 1.000\n",
+ "25% 3.000\n",
+ "50% 3.000\n",
+ "75% 4.000\n",
+ "max 5.000\n",
+ "Name: condition, dtype: float64"
+ ]
+ },
+ "execution_count": 32,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('yr_renovated.isna()')['condition'].describe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Again, not a very good measure for renovations. Grade is worse for houses renovated after 2000 (could have been very necessary..)\n",
+ "\n",
+ "Unfortunately, the last investigation into correlations to grade or condition was not very successful in determining renovations. Therefor, I will set all yr_renovated with NaN to 0, since that would be the next best assumption. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "#set remaining NaN also to 0 for yr_renovated\n",
+ "df['yr_renovated'] = df['yr_renovated'].fillna(0)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ ".. and also set the type to int now, since we only have years in there and 0. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# make waterfront an INT\n",
+ "df = df.astype({'yr_renovated': int})"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 3.3 So lets look at waterfront data now.. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 35,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAACCMAAAPsCAYAAAB1TOTgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3QeUVNUBN/BLVwEFQUFRFDWCXVCwx97QqIklFhKxKyr2XoM10ViwgSWKJvaKJbF3sKDYxYYF7ICCIJ35zr3fN/uxsOCCj7us/H7nzJnZN++9efPfmT1n5/3n3jqlUqkUAAAAAAAAAAAKUreoHQEAAAAAAAAARMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjULihQ4fW9CEscGSel7zzknde8s5P5nnJOy95A0XyNyUveecl7/xknpe885J3XvLOT+Z5yTsveecn83lLGYFCHX/88aFz585hyJAhNX0oCwyZ5yXvvOSdl7zzk3le8s5L3vlNmTKlpg8B5hl/U/KSd17yzk/meck7L3nnJe/8ZJ6XvPOSd34yn/eUESjMCSecEC655JIwadKk8Prrr6dlU6dOrenD+k2TeV7yzkveeck7P5nnJe+85J1f//79w2WXXRY+/PDDmj6UBcJRRx2VXufk4W9KXvLOS975yTwveecl77zknZ/M85J3XvLOT+aZlKAARx11VKlOnTqlNm3apOtNN920NG3atJo+rN80mecl77zknZe885N5XvLOS9759erVq9S4ceOU9z333FOaMGFCTR/Sb9opp5ySso6Xc845p6YP5zfP35S85J2XvPOTeV7yzkveeck7P5nnJe+85J2fzPNRRuBXO/roo9MbtVu3bqVHH320tMwyy6Sf+/Xrl+735i2ezPOSd17yzkve+ck8L3nnJe/8TjrppJTxxhtvXPrf//5X04ezQFhvvfUqygjxcu6559b0If1m+ZuSl7zzknd+Ms9L3nnJOy955yfzvOSdl7zzk3leyggU8obdY489Su+++25adsghh6Rlhx12WE0f3m+SzPOSd17yzkve+ck8L3nnJe/8brjhhlLdunVLO+20U+mtt96qWD516tSZ1vWP9K83ZcqUdN2zZ8/S2muvXWmEBIWE4vmbkpe885J3fjLPS955yTsveecn87zknZe885N5fsoIzLVjjjmm4g07ZMiQiuUPPvhgxYdysVFEcWSel7zzknde8s5P5nnJOy955xWLBZMnTy517dq11LJly9Krr7460zrffvtt+l0MHTpUEaFg8ZsS8TX91VdfVdyevpAg71/P35S85J2XvPOTeV7yzkveeck7P5nnJe+85J2fzGuGMgJz5dRTT01vyj333LPiDTv9N7D222+/dH8cNnb6bxEx92Sel7zzknde8s5P5nnJOy9514xPPvkk5XrEEUdUWj548ODS+eefX2rbtm1p0UUXLS277LKlbbbZpvTKK6+Uxo0bV2PH+1syYMCAlP0tt9ySfr7qqqsqPrQ455xzKtZ7/fXXSwMHDqzBI62d/E3JS955yTs/mecl77zknZe885N5XvLOS975ybzm1A0wh0aNGhXGjh0b9ttvv3DWWWeF9u3bp+V16/7/l9OGG26Yrm+99dbw9ddfh3r16tXY8f4WyDwveecl77zknZ/M85J3XvKuOT/88EO6btKkScWyl156KZxwwgnh9NNPDz///HO6L/5+Hn/88dC9e/dw9913h3HjxtXgUf82rLPOOqFly5bhiSeeSD/36NEjXHPNNen2mWeeGS655JLw2GOPhT322CP9LoYNG1bDR1x7+JuSl7zzknd+Ms9L3nnJOy955yfzvOSdl7zzk3kNq8EiBLXYd999V/r+++9neX9sE2244YapRXTCCSeUJk2alPX4fotknpe885J3XvLOT+Z5yTsvedeMDz/8MGV64IEHpp9/+umn0j777JOWnXfeeaWPP/44jZ4Qv5m/+uqrp+WrrLJKGiEhMpXA3JswYUKpS5cupQ022KDS8r59+1aMkLDkkkum60svvbTGjrO28jclL3nnJe/8ZJ6XvPOSd17yzk/meck7L3nnJ/OaY2QE5soSSyyRvg1UlalTp6Y20V/+8pfQsGHDMGjQoDBt2rR0X5wahLkj87zknZe885J3fjLPS955ybtmxFEPmjZtGm677bYwYMCA8OWXX4Z77703nHbaaeHUU08NK664YlhhhRXC+uuvH5588smwyiqrhCFDhqT74++gTp06Nf0UaqX4um3UqFHYZJNNwmuvvRY+++yzMGnSpHTfwQcfHHr27Jlujxw5MnTt2jUcffTR6efy655f5m9KXvLOS975yTwveecl77zknZ/M85J3XvLOT+Y1RxmBXzTjG+2XPkgrD12y2WabhWbNmoVnnnkm9O3bNy3zoWf1yDwveecl77zknZ/M85J3XvKefyy11FLhyCOPTNMxXHfddeGWW24JkydPDjvssEOl3038h3rJJZcM//73v0Pz5s3D+++/H7755psaPvraq/y6/d3vfpfy/u6779IHFVGcDiNOz1DO/5FHHgnnnXdeuj390I/8f/6m5CXvvOSdn8zzknde8s5L3vnJPC955yXv/GQ+f/GJCNV603777bfpg84JEyZU+iBtdo2gDh06hFNOOSXdjh/KxXltNYiqR+Z5yTsveecl7/xknpe885L3/CEWDKJtttkmrLTSSuH2229PJ74XXnjhVDiIyvnGf6jjP92tWrUKiyyySBpB4fvvv5f/LAwfPjw8//zzaY7It99+O73Wp1fOLY40ET377LPp+r///W84/PDD0+gT119/fRqxIjrjjDPC6aefnv151Bb+puQl77zknZ/M85J3XvLOS975yTwveecl7/xkPn9RRmC24gdpu+yyS2jXrl1o3759WG+99cK1114b3nzzzYpG0OwaReuuu25qET366KPhrbfe0iCqBpnnJe+85J2XvPOTeV7yzkve+b3xxhuhf//+Kft4cnzUqFHpn+hyY//3v/992G+//dI39OO6Y8eOTVM1TF9CKA81GEdSiNMLrL322un3J/+ZXXHFFWHHHXcMm266aejWrVvo0qVLOPPMM8Mnn3xSsU45t1hGiCNOxFEmXn755TQdw8cffxwuvvjisP/++4c///nPoU+fPmndCy+8MIwYMaLGntf8yt+UvOSdl7zzk3le8s5L3nnJOz+Z5yXvvOSdn8znQyWYhRNPPLFUp06dUpMmTUprr712afXVV08/N2zYsNSpU6fSbbfdVrHu1KlTZ7mfgw46KG23ww47lH744YdMR187yTwveecl77zknZ/M85J3XvLO79xzzy21bt065VW+xKyPPPLI0ldffVVp3aOOOqrUqFGjtE6rVq0q/T7KLrjggnT//vvvX/r5559L06ZNy/hs5n8nnHBCyqdly5bpdfqnP/2ptOiii5aaNm1auvbaayutG7MbM2ZMaY011ig1bty41K5du7TtpZdeWmmd6Kabbiq99dZb2Z/P/M7flLzknZe885N5XvLOS955yTs/mecl77zknZ/M50/KCFTpkksuSW+0rl27lgYPHlzxxjz//PMr3rx169YtXX755bN8406ZMiVdv/DCC+kDuiWWWKL03nvvZX4mtYfM85J3XvLOS975yTwveecl7/xOO+20lOtqq61WOuOMM0rnnHNOOvG92GKLpeWrrrrqTPmddNJJqYgQ74/5xt/bp59+Wvruu+9KZ599dqlFixalNm3alD755JMae17zq5hP+TX++uuvVyy/6KKL0vIuXbqUxo8fP1OBo1zwiJfLLrus0ut/dh9qLOj8TclL3nnJOz+Z5yXvvOSdl7zzk3le8s5L3vnJfP6ljMBMhg4dmj7sjG+y1157LS2bPHlyuo4fwF1//fWl5ZZbrsoP3qr6hlX81lD5jf75559nfCa1h8zzknde8s5L3vnJPC955yXv/Pr3759GOdh0001L7777bsXyL7/8snTDDTeUOnbsmPKLoyYMGDCg0rbXXXddaZtttqn4fTRv3jx9uz/eXmmllSrtj//r3//+d/rGxBZbbFF6++2307JJkyal6xEjRpTatm1bWm+99arcNn4g0b1790ojIighzJ6/KXnJOy955yfzvOSdl7zzknd+Ms9L3nnJOz+Zz9+UEZhJ/FCzfv36pX322afSB2rTvyG7detW8aaNl1tvvbXKfZW3eemll0rvv/9+luOvjWSel7zzknde8s5P5nnJOy9553feeeelpv6dd95ZkVu5mR9Pksd/qjfeeOOU9VJLLVV64403Km0/fPjw0i233FLaeeedS+uuu24aUrBXr16lL774okaez/xsyJAh6cOKWNh48cUXK5aX846v0zhNw1577VV68MEHS4cffnipT58+pYEDB1asO/1wjYoIv8zflLzknZe885N5XvLOS955yTs/mecl77zknZ/M5291A8zgs88+C1OnTg3Dhg0Lo0ePDnXr/t+XSZ06ddLyaIcddggNGzYMO+64Y/r5n//8Z3jnnXdm2lfcJlpvvfVChw4dsj6P2kTmeck7L3nnJe/8ZJ6XvPOSd36DBg2KhfHQsmXL9HPMuV69eul2gwYNQqdOnUK/fv3CxhtvHL755puwyy67hOHDh1ds36ZNm9CtW7dw7733hldffTU89NBD4YwzzgjLLrtsjT2n+VWjRo1CkyZNwmmnnRY23HDDSnl///334ayzzgpjx44NL774Ythtt93C1VdfHQ477LCw1157hVtvvTWt36xZs3Qdf2fl9wez5m9KXvLOS975yTwveecl77zknZ/M85J3XvLOT+bzN5+WMJOVV145NG/ePHz99dfhrbfeqnKdL7/8MkyaNCnst99+Yfvtt09v2LfffrvigzjmjMzzknde8s5L3vnJPC955yXv/OLJ8ejxxx9P1/Xr159pnRVWWCFcc801Yd111w2ff/55OPbYY8OYMWNmWq+cv99D1dq2bRtuueWWcPjhh1fkFIsII0eODBdddFG46667wkYbbRT+/ve/h8GDB6dixwEHHJAyP+WUU8LLL78804cVzJ6/KXnJOy955yfzvOSdl7zzknd+Ms9L3nnJOz+Zz+dqemgG5j/fffddaa211krDlMQ5Z+NcK+W5VaLRo0eXVltttdImm2ySfu7Xr19ad/PNNy+NHz++Bo+89pJ5XvLOS955yTs/mecl77zknd99991XatSoUZpi4fXXX5/lenHIwXvuuae0zDLLlNq2bZuGD5zVXIfMmb59+6bX8dZbb10aN25cxfKYbZwrctddd033xykbmDP+puQl77zknZ/M85J3XvLOS975yTwveecl7/xkPn9TRljAvffee6UJEyZU/Fz+8PKVV15Jc6fGN2N8c8a5ax9//PH0Bl177bXTB6TxQ7ryNh06dCh17Nix9PPPP9fYc6ktZJ6XvPOSd17yzk/meck7L3nPH959991Sp06dUt4nnXRSpZPhM/r2229Lf/jDH9K6J554Ytbj/C28xmclrnP88cdX/Fyea7LsH//4R8r8sMMOmyfH+Vvhb0pe8s5L3vnJPC955yXvvOSdn8zzknde8s5P5rWPMsIC7OCDDy4tt9xyM33jqvxh25NPPllq1qxZeuPGS/369dN1mzZtSuecc07pp59+SutNmjQpvWFXWmml0jfffFMjz6W2kHle8s5L3nnJOz+Z5yXvvOSdV1WjF0yZMmWmb+bHy2WXXTbbffXv379Ut27dUrdu3ebJsf7WX+Mzmv6bEzP+PHHixHR90003pd/N6aefPo+OtvbzNyUveecl7/xknpe885J3XvLOT+Z5yTsveecn89pp5glIWSDEeWWvu+66NC9KnEdlenXr1k3XW2yxRRg4cGDo27dvePPNN8PPP/8cVl999dCtW7fQpUuXsMgii1TMYztixIiwyiqrhFatWtXI86kNZJ6XvPOSd17yzk/meck7L3nnN2zYsPDNN9+k6xYtWoRNN9001KtXL0yZMiVlePDBB4fPP/88XHDBBeGYY45Jv4dDDz00NGjQIG0fS+VTp05N68bfWfx58uTJNf20auVrfEYx06p+njZtWmjYsGG6fd9994UmTZqk/UUx/zp16syz469t/E3JS955yTs/mecl77zknZe885N5XvLOS975ybwWq+k2BPkdffTRqQn05z//ufTBBx/Mcr3yt7NioyjeHjNmTJXrxTZR3N/FF1+cfjZP7cxknpe885J3XvLOT+Z5yTsveed39dVXlzp37lxaaKGFUlZxmMA4n+FXX32V7p9+qMFjjjmmos3/t7/9rfTRRx/NtL/47fx4/5VXXpn1efzWXuOzM/00DeUpGnbYYYfSyJEjCzzS3wZ/U/KSd17yzk/meck7L3nnJe/8ZJ6XvPOSd34yr92UERbQN+wee+xRGjJkSJXDwpaV33wzzpE6/c/xw9Qll1wyza0ybNiweXrstZXM85J3XvLOS975yTwveecl7/yOP/74lPkiiyxS2n777VMpYYkllkjLNt5444ppAMq5xtxPPPHEikLCTjvtVLrqqqtKP/zwQ+nHH38sXXrppaWWLVuW2rdvX/riiy9q+NnV7tf4rEz/gUSfPn3S7ysO7/jxxx8Xfry1nb8peck7L3nnJ/O85J2XvPOSd34yz0veeck7P5nXfsoIC5DjjjsuvWH32WefSm/YsvhtrGeeeab09NNPl957771K983YCvrss89Khx9+eGnRRRctLbXUUqV33313nh9/bSTzvOSdl7zzknd+Ms9L3nnJO79zzz03Zb7jjjuWXnrppbRsxIgRpUcffbS09NJLp/viKAdVZXzJJZekdcpzHa644orphHi8vcwyy8h8Hr7GJ0+eXBo7dmx6jTdv3jzl/s4772R5DrWJvyl5yTsveecn87zknZe885J3fjLPS955yTs/mf82KCMsIG644Yb0hm3dunXpgQceqHTfW2+9VTr//PNLLVq0qPjWVfygM34Y+sorr8y0r9gg6tmzZ1pviy22mOvhTn/rZJ6XvPOSd17yzk/meck7L3nnFwsHMdM4EsLbb79d6b7Y5I9Fhbp165b23HPPWTb3n3322dJFF11U+t3vfldadtllSx07diz16NGjNHTo0GzPY0F6jccPLeLvpl+/fqXVVlstrbfpppuWPvzwwxp4RvM3f1Pyknde8s5P5nnJOy955yXv/GSel7zzknd+Mv/tUEZYgD4A3WqrrdIbbffddy+9+eabafkLL7yQ5qitV69eafHFFy916dKltMEGG6T14geiu+66a5Vv3PjB3P3331/69ttva+DZ1A4yz0veeck7L3nnJ/O85J2XvPOaNGlS6eCDD065PvLII1U29OPvJObcrl270siRIyttP+PQguPGjUtzHpbnP2TevsY//fTT0mGHHVbq3bt36ZtvvqmhZzR/8zclL3nnJe/8ZJ6XvPOSd17yzk/meck7L3nnJ/PfDmWEBUT8sPK5555LjZ/4hvzTn/6U3nTxTRl/7tWrV2oSxXlq47pxKNg4/2y876STTprtXCtUTeZ5yTsveecl7/xknpe885J3Xl988UVF835W4gnvVq1apakYvvvuu1muN+MQgzP+TLGv8fLre8KECWm6Bqrmb0pe8s5L3vnJPC955yXvvOSdn8zzknde8s5P5r8dyggLgPKbLV7H4V3Lb9z4zat4Hd+g069XFpfH+2O7aNCgQTVy7LWVzPOSd17yzkve+ck8L3nnJe+acf3115fOOeecWd4fR0NYccUV05yF03/7XtlgznmN5yXvvOSdl7zzk3le8s5L3nnJOz+Z5yXvvOSdn8x/W5QRFtA37pZbbpnekEcdddRM60zfENp8883Tm/ahhx6qgaOu3WSel7zzknde8s5P5nnJOy9551NVmaCqZaNGjSqttNJKpSWXXLL01VdfzZT9Tz/9NI+P9LfFazwveecl77zknZ/M85J3XvLOS975yTwveecl7/xk/ttRP/CbFIsmderUqfg53i4v23jjjcPpp58eVlpppbDttttWWieqW7dumDp1apg8eXKYMGFCmDZtWvjhhx9q5HnUJjLPS955yTsveecn87zknZe8a07MMeZXr169Sstm1KhRo3SJ4u+mnH10zTXXhP79+6fr5ZdfPtux1yZe43nJOy955yXv/GSel7zzknde8s5P5nnJOy955yfz3646sZFQ0wdBce69996w1lprhRVXXLHK+8tv3PhG/PTTT6tcL94X37gTJ05M+4qeeuqpsPTSS8/z46+NZJ6XvPOSd17yzk/meck7L3nn9/nnn4cRI0aEr776KrRv3z60adMmNG7c+Be3GzduXOjSpUva9tVXXw1t27ZNy/v16xdOO+20tL+PPvpolr/LBZXXeF7yzkveeck7P5nnJe+85J2XvPOTeV7yzkve+cl8AVDTQzNQnOOOOy4NUXLQQQeVPv/882rPMzv9OtMPZXLWWWel/e23336Ghp0Fmecl77zknZe885N5XvLOS975XXrppaU111yz1KhRo5RVy5YtS+uuu27p8ccfL40YMaJivap+D2PGjCl16NCh1KJFi9LIkSPTsn/961+lpZZaqtSsWbPSO++8k/W51AZe43nJOy955yXv/GSel7zzknde8s5P5nnJOy955yfzBYMywm/EVVddld5g8bLooouWDj744NJnn302R/uYMmVKxe2+ffumDz6XW2650tChQ+fBEdd+Ms9L3nnJOy955yfzvOSdl7zzO/HEE1Pebdq0KR122GGlPfbYo7TWWmulZbFgcMIJJ5Ref/31ivVn/Mf6559/Lq266qqlZZddtvT111+Xbr755lREWGyxxUpvv/12DTyj+ZvXeF7yzkveeck7P5nnJe+85J2XvPOTeV7yzkve+cl8waGM8Bvw3HPPlVZeeeX0hj3ggAPS7YUWWii9cctNouoot4dOPvnk0hJLLFFq3bp16d13352HR157yTwveecl77zknZ/M85J3XvLO7/rrr095b7vttqXXXnstLZs0aVIa4aBr167pvqZNm5Z23XXX0osvvljlPiZMmFDq2LFjyvncc88tLbPMMooIs+A1npe885J3XvLOT+Z5yTsveecl7/xknpe885J3fjJfsCgj1HKjR48uHXrooekNe8YZZ6Sfr7jiilK7du3m6I0b37C33HJL+gZW3Ffnzp1LQ4YMyfIcahuZ5yXvvOSdl7zzk3le8s5L3nnF0Q0mTpxY2nHHHUsNGzYsvfzyyxXLy838eHuzzTZLOS688MKlP/7xjxWFhemNGzeutNpqq5Xq1q2bflfxGwGKCDPzGs9L3nnJOy955yfzvOSdl7zzknd+Ms9L3nnJOz+ZL3iUEWq5b7/9trTXXnulb1INGDAgLYvzoFx55ZVz/MYdPnx4afPNNy/17Nkz3aZqMs9L3nnJOy955yfzvOSdl7zzGzZsWCoZtG3bNk21MP08hZMnT07XDz74YKlx48bpH+MGDRqkTH/44YdK+4nbdurUKa2z5JJLlt55553sz6U28BrPS955yTsveecn87zknZe885J3fjLPS955yTs/mS94lBF+AwYOHFh6+umnKy2rzht3xrlqyx+Exm9mMXsyz0veeck7L3nnJ/O85J2XvPMaMWJEGgJwhRVWSNMyzDhfYfT888+nEkKcxiGWFuL0C3HZjLnH6RliaUERYfa8xvOSd17yzkve+ck8L3nnJe+85J2fzPOSd17yzk/mCxZlhFqo/GYrf9tqevHbWOX7Z/fGjfPYlv3444/Zjr22knle8s5L3nnJOz+Z5yXvvORds0aNGlVabrnl0ogGRx55ZMXy+Pso/04efvjhNO3CHXfcUTrhhBPSurG1H/9Zrmp/VOY1npe885J3XvLOT+Z5yTsveecl7/xknpe885J3fjJfsCkj1EJxbtrpTT8cbNns3riffPJJxXonnXRSqXv37qUvvvgiw5HXXjLPS955yTsveecn87zknZe8a0451759+5YaNWpUatiwYenss8+utE6cjiEOOxhHThg/fnzaZu21104FBq396vEaz0veeck7L3nnJ/O85J2XvPOSd34yz0veeck7P5kv2JQRapEnnnii9Pe//7209dZbl/7617+WLrnkktLXX389x2/cHj16pLlTLrjggoq5a7/66qvsz6c2kHle8s5L3nnJOz+Z5yXvvOQ9//joo49K+++/fyojxAz/+Mc/li688MLSWWedVVpttdXS8vj7KY+EENeN67311ls1fejzNa/xvOSdl7zzknd+Ms9L3nnJOy955yfzvOSdl7zzkzmRMkIt0atXr1LTpk3Tm6x8qVu3bun3v/99egPOaq6U6d+4l19+efpWVnzjdunSJe1jiSWWMC/tLMg8L3nnJe+85J2fzPOSd17yzq9///6ld999d5b3Dx48uHTsscemf4an/72svPLK6R/lmHnZcccdl+6b3f4WdF7jeck7L3nnJe/8ZJ6XvPOSd17yzk/meck7L3nnJ3PKlBFqgfLcsvGbVXEY2LvuuivNSbviiium5XE4krFjx85y+/IbN7aMrr766tKSSy6Ztlt88cV9CDoLMs9L3nnJOy955yfzvOSdl7zzO+aYY1JGPXv2TKMgTG/6f5rjtAvPP/986YgjjkiN/fhP9/vvv1+aMGFCpW3iP93t27cvTZkyJdtzqE28xvOSd17yzkve+ck8L3nnJe+85J2fzPOSd17yzk/mTE8ZYT4X36TxDbbzzjtXavr8+OOPpd69e5eaNGlSWmONNUrffPPNLPcx/QedJ598csUb9r333pvnx18byTwveecl77zknZ/M85J3XvLOL/7DW27vL7rooukf5xkLCWVVtflnXH7ppZemfR1yyCFpvsRZbbOg8hrPS955yTsveecn87zknZe885J3fjLPS955yTs/mTMjZYT5WPwmVadOnUotW7YsDRo0KC2LH1iW51H5/PPPS0svvXR6E959992/uL/p37CaQ1WTeV7yzkveeck7P5nnJe+85J1fHOUgjmAQc9p3333TPIWLLLLIbAsJM855OP3t+A9369atS23bti0NHTp0nh9/beM1npe885J3XvLOT+Z5yTsveecl7/xknpe885J3fjKnKsoIteCbWH369JnpvvIbd5999knr3HrrrbPd18svv5zWa9SokebQbMg8L3nnJe+85J2fzPOSd17yzmvMmDFpuoWY0+mnn16aPHlyGtVgmWWWKS288MK/WEiY/nfz1VdflXbYYYdS48aNS8suu6x/nmfBazwveecl77zknZ/M85J3XvLOS975yTwveecl7/xkTlXqBuZb9erVC23btg0dO3ZMP8fySFnduv/3V9eyZct0PX78+Nnuq0uXLuHaa68Nr732WlhllVXm6XHXZjLPS955yTsveecn87zknZe886pTp074+uuvw/rrrx+22267UL9+/dCzZ89w3HHHhRYtWoTrr78+9O7dO3z88cez3c+UKVPCc889F4YOHRq22mqr8NRTT4VVV1012/OoTbzG85J3XvLOS975yTwveecl77zknZ/M85J3XvLOT+ZUpX6VS5kv7LPPPmH11VdPb7jyh6LTf7AZPxRdeOGF089jx46tuG/atGkVb+po6tSp6Q/AgQcemPX4ayOZ5yXvvOSdl7zzk3le8s5L3nk1adIkXHrppeHDDz8MG220UVoWc4yFhOif//xnKiREcdlKK61UsW38R7v8+2nYsGHYcccdw9prrx1at24dFltssRp5PrWB13he8s5L3nnJOz+Z5yXvvOSdl7zzk3le8s5L3vnJnKoYGWE+1rhx47DhhhtWvBGnV35TNm3aNF3HN3D5DVq+76GHHgrDhw9Pb1iqR+Z5yTsveecl7/xknpe885J3fssuu2zYcsstKwoG5X+MZzdCQlyn/I/2xIkTK3537du3V0T4BV7jeck7L3nnJe/8ZJ6XvPOSd17yzk/meck7L3nnJ3OqooxQS0zfCJr+50aNGlW6Lr9B+/XrF/bdd9/QrVu31DaafigUqkfmeck7L3nnJe/8ZJ6XvPOSd36xYBBznl0hYciQIRW/i+OPPz7sueeeYfTo0TV96LWS13he8s5L3nnJOz+Z5yXvvOSdl7zzk3le8s5L3vnJnDLTNNRS5Q9CY2NoxuFMbrrppnDqqaemN+oVV1xR0S7i15F5XvLOS955yTs/mecl77zknc+MhYTpp2xo0KBBOOKII8Jtt90WLrnkknTfTz/9ZESEAniN5yXvvOSdl7zzk3le8s5L3nnJOz+Z5yXvvOSdn8wXXH6btVS5EVQeBnahhRZK1zfeeGM47bTTwvjx48Pzzz+f5mahGDLPS955yTsveecn87zknZe8a7aQEG9fdtlloU+fPmHgwIHhpZdeSiMmPPvss2GZZZap6cP9TfAaz0veeck7L3nnJ/O85J2XvPOSd34yz0veeck7P5kvuJQRaqnysCXxG1jl69tvvz2ccsopYcKECeGFF17whi2YzPOSd17yzkve+ck8L3nnJe+aLSQce+yxqbHfq1evVERo3rx5KiKsuuqqNX2Yvxle43nJOy955yXv/GSel7zzknde8s5P5nnJOy955yfzBZcywm9EbA4NHTrUGzYjmecl77zknZe885N5XvLOS975jRgxIowaNSoVEWLmq6yySk0f0m+a13he8s5L3nnJOz+Z5yXvvOSdl7zzk3le8s5L3vnJfMFRt6YPgF83nEnZiy++GMaNG+cNOw/JPC955yXvvOSdn8zzknde8q4ZcVSE6KSTTgrnnntuaNasWRpOUBGheF7jeck7L3nnJe/8ZJ6XvPOSd17yzk/meck7L3nnJ/MFl5ERaqnynCpt27atmFtlwIABhoOdh2Sel7zzknde8s5P5nnJOy9515zXXnstXHrppWmowfhPtCLCvOE1npe885J3XvLOT+Z5yTsveecl7/xknpe885J3fjJfcNUpzVhFoVb58ccfw9VXXx123XXX0L59+5o+nAWCzPOSd17yzkve+ck8L3nnJe/8Jk2aFG677baw3nrrhQ4dOtT04fzmeY3nJe+85J2XvPOTeV7yzkveeck7P5nnJe+85J2fzBc8ygi/AdOmTasYJpY8ZJ6XvPOSd17yzk/meck7L3nnF/+dKrf7mfe8xvOSd17yzkve+ck8L3nnJe+85J2fzPOSd17yzk/mCxZlBAAAAAAAAACgUGonAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAANV9G+OCDD8IVV1wRunfvHtZYY41Qv379UKdOnXDuuef+qoN54oknQteuXUPLli3DwgsvHDp06BBOO+20MHbs2F+1XwAAAAAAAACYU5MnTw5PPvlkOOGEE0Lnzp1Ds2bNQoMGDULr1q3DTjvtFB5++OEqtxs2bFjo27dvOPjgg8M666wTGjVqlM6pH3jggbN9vJtuuimtN7vL//73v1luf9ttt4XNN988NG/ePCy00EJh5ZVXTsf+ww8/VLn+2Wef/YuPFy8rrLDCHCYXQv053iKEcM0114TLL788FOnSSy8Nxx57bHoim2yySWjVqlV4/vnnw/nnnx/uueee8MILL6SSAgAAAAAAAADk8Oyzz4att9463Y4FhI033jg0btw4vPfee+HBBx9Ml1g46NOnTzrXXXbPPfeEY445Zq4fd8UVV0yPVZU2bdrMtKxUKqXBBG6++eZQr1690KVLl3S8gwYNChdffHG444470jn3tm3bVtpu7bXXDvvuu+8sj6N///6pyBALDlnKCKuvvno4/vjjQ8eOHUOnTp1SYeCWW24Jc2vw4MHhuOOOS6HEX9b222+flv/888+pTRKbJoceemi4++675/oxAAAAAAAAAGBO1K1bN+y6667hqKOOSl+qn148wb/PPvuEa6+9Nmy00Ubhr3/9a8V97dq1C0ceeWQ6nx4vd955ZzjvvPOq/bixiBBHSZiTAQViEaFp06bhoYceCr///e8rRnbo0aNHuP7668Pee++dCgnT22WXXdKlKl999VX497//nW4fcMABIUsZYcahI+Iv4Ne44IILUlNjv/32qygiRIssski44YYb0pAPsTkyZMiQNHUDAAAAAAAAAMxrW2yxRbpU5c9//nN4/PHH0zntWASYvoyw8847p0vZvffeO0+PszyzQZyNoFxEiOKUEr179w6PPPJIePHFF9NAAFtuuWW19tmvX78wderUdI5+ww03nONj+nUtggJMmjSpYh6N2MSY0XLLLZdaJNF9992X/fgAAAAAAAAAoCpxNoFo2LBhNXYMY8aMCR9++GG6vdVWW810/8ILL1xxzn1OZiO48cYb53pUhLkeGaFIMZQ4HUO07rrrVrlOXP7888+n6RwAAAAAAAAAYH7w0Ucfpeulllqq0P1+/PHH4fTTTw/fffddaNKkSVh99dXDTjvtFFq2bDnTumPHjq243aJFiyr3V97utddeq9bjx/Pz8bnFkRWmH/GhVpURPv3003TdrFmzNH9FVZZddtlK6wIAAAAAAABATfrmm2/CTTfdlG7vuuuuhe77xRdfTJfpLbTQQuHss88OJ510UqXliy++eKhXr16aUmHo0KFhlVVWmWl/cfmcnHP/17/+la533HHHsOSSS9bOMsJPP/2Urhs3bjzLdWLTozy8xPyiR48eoTa6+uqrQ20l87zknZe885J3fjLPS955yRsokr8peck7r9qadyTzvOSdl7zzknd+Ms9L3nnJO6/amnck83ljypQpoVu3bmH06NFhjTXWCIccckgh+23dunU47bTT0igIK6ywQmjUqFH44IMPwhVXXBFuueWWcPLJJ6fSwamnnlqppLDhhhum0Qyuu+66sMMOO1TaZxzh4Kmnnqr2Ofd4Dv+uu+76VVM0RHXneksAAAAAAAAAWAAdeuih4cknn0zTItx9992hYcOGhex3u+22C+eee27o0qVLmlohzi6w7rrrhn79+oWLL744rdOrV6/w7bffVtruzDPPDHXq1AkPPPBAOrZYQIjFg8cffzxsv/32FevVrfvLFYE77rgjjBs3Liy99NLpeGptGaE8NUN8MrNSnuNi0UUXzXZcAAAAAAAAADCjo446Ktxwww2hefPm6WT/yiuvnO1xW7ZsGSZOnBgee+yxSvdttdVWaVSEOEpC37590zEttthiYZtttgmTJk0K55xzTsWUDtWdomHfffdN0z/MrRqfpmH55ZdP1z/++GMa7qFcTpjesGHDKq0LAABAHoZyBAAAAPj/jjvuuNC7d+/QrFmzVAjo2LFjtseuV69e+N3vfhdGjBgRhg8fPtP9cUqFOEVDHKnh/fffTyMlxOP785//HG699da0TpxSYnaGDBkSBg4cmG7vv//+v+p4a7yM0L59+7DIIouEn3/+OQwaNChsvvnmM60Tl0edOnWqgSMEAAAAAAAAYEF34oknhksuuSSNOBCLCHH6hNxGjhyZrqv6kn/UunXrcMQRR8y0/Pnnn0/XW2+9dbVGRdh0003DSiut9KuOtcanaYhzZ8R2RlRuY0zv888/DwMGDEi3//jHP2Y/PgAAAAAAAAAWbCeffHK46KKLUhEhTs3QuXPn7Mfw+uuvhw8//DDd7tKlS7W3++yzz8I999wTmjRpErp37z7L9aZMmRJuvvnmilEWfq1sZYQrr7wydOjQIfz1r3+t8hcXh4i48cYbw//+97+K5XG0hPgkp06dGnbddde0PQAAAAAAAADkcvrpp4e///3vaWqGeVlE+Pnnn8NVV10Vfvrpp5nue+6559I582jjjTeeqYwwadKkMHjw4CqnXYiDA4wfPz7885//DC1atJjl4z/88MPh22+/TYWL3Xbb7Vc/n/pz27iYft7QTz75JF337ds3PPTQQxXL77vvvrDUUkul23Heig8++CANCzGjOP1CfOLHHnts6Nq1axryYckll0xDRXz99ddpKoc+ffrMzaECAAAAAAAAwFzp379/OO+889LtOG1BLAtUpWXLluHiiy+u+Pnrr7+uNPL/8OHDK/a3/vrrVyy/+uqr0/nycqEgTrFw3HHHhY4dO4a2bdum0QriaAjvvPNOWmeNNdYId955Z5VFhrifFVZYIZ1fj8WJOCLCK6+8EqZNmxZ69eoVDj744GpN0bDXXnuFhRdeONRIGWHMmDHh5Zdfnml5DLAcYjRx4sRq7/OYY45JwcVSQgxk3LhxKdxTTjklXWY15wUAAAAAAAAAzAujRo2quD1o0KB0qcpyyy1XqYwwceLEKs+pf//99+ky/bn3skUWWSScccYZ6THiiAbvvvtuGtGgefPmYauttgq77757mmahYcOGM+03bnvUUUelL/y/9NJL6Xx7HABgzz33DD179vzFaR3iiAiPPPJIur3//vuHIsxVGWGzzTYLpVJpjrY5++yz02V2YoDxAgAAAAAAAAA1LZ78j5c5tfzyy8/xOfVYMogjGMyNuO1ll10W5larVq3C5MmTQ5HqFro3AAAAAAAAAGCBp4wAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQqPrF7g4AAGDe6dGjR6itrr766po+BAAAAADIxsgIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAOafMsJdd90VNttss9C8efPQuHHjsNZaa4V//OMfYfLkyXO8r3HjxoULLrggrLvuumHRRRcNDRo0CK1btw477rhj6N+//685TAAAAAAAAACYKx988EG44oorQvfu3cMaa6wR6tevH+rUqRPOPffcWW5Tp06dal1uvvnmStsNHjw4nTffcsstQ6tWrdJ583g+fpNNNglXXXXVLM/Fx/P21Xm8/fffv9J28TlVZ7sttthijnOrH+bS0UcfHS6//PIUdHzgJk2ahKeeeiqcdNJJ4cEHHwyPPfZYWHjhhau1r5EjR4bf//734b333kv72XDDDUOzZs3Cxx9/HB5++OF06dmzZ3o8AAAAAAAAAMjlmmuumeNz1fvuu+8s7/viiy/C008/nU7yb7rpphXLp0yZEjp16pRux/PmnTt3ToWE4cOHh4EDB4YXXnghlRceffTRdD59etttt11Yfvnlq3y8SZMmhdtuuy3d3nzzzSvdt/HGG8/2edx6662pADHjdvOsjHD//fensGMAzz77bEUgI0aMSMWEGMIZZ5wRLr744mrtr1evXqmIsM4666QSw+KLL15x3yOPPBJ23nnn0Lt377DXXnuF9ddff24OGQAAAAAAAADm2Oqrrx6OP/740LFjx3Ru/Pzzzw+33HLLbLe56aabZnlfjx49Uhlhq622Csstt1yl++I58zgAwE477RQaNWpUsfztt98O2267bXjllVfCscceG/71r39V2u7kk0+e5ePdeeedqYyw2GKLhd12263SfQceeGC6VCU+Vr9+/ULdunXTCApZpmmI4ZafULmIELVs2TJcffXV6faVV14ZRo8eXa39xREVohjq9EWEqGvXrhUti9j2AAAAAAAAAIBc4sn6iy66KOy9996hQ4cO6eT83JowYULFKAUHHHBApfvirASDBg0Ku+++e6UiQhSnh/jHP/6Rbt9+++2znK6hKjfccEO6jl/+r+7sBtNvt80224Rll102zKk5TunLL78Mr776arodw55RHMYhHsjEiRPTqAbVsdBCC1VrvVh2AAAAAAAAAIDa6J577gk//vhj+pL+LrvsMkfbxpEZovHjx6dZC6pj2LBh4Yknnqiy/DA78TFi6WFOt/tVZYTBgwen6xhOu3btqlxn3XXXrbTuL9l+++3T9d///vcwatSoSvfFQkMcoqJ169ZpKAoAAAAAAAAAqI3+9f+mV+jWrdtMox/8ko8++ihdN2zYcKYZB2Y3XcS0adPCmmuuWXEevzruvvvuMGbMmDRgwNyep68/pxt8+umn6bpt27azXKc8REN53V8Sp2eI8008+uijaU6MjTbaKDRr1ix8/PHH4bXXXks/xyEg4hwWAAAAAAAAAFDbfPbZZ+mL+HMz2kCpVKqYpmHHHXesVpEhbhPLCHPzeOXSxF/+8pdUfshSRvjpp5/SdePGjWe5TpMmTdJ1bEpUR9zXgw8+GE499dTwz3/+M5USylq0aBG22mqr0KZNmzk9VAAAAAAAAACYL9x4442pIBBHKIgjFcyJv/3tb2HgwIHpXPyFF15YrW2eeeaZMHTo0FRciCMxVFfc5tlnn/1VUzTM1TQN88LXX3+dRj+44oorwrnnnpue3NixY9NoCeuss04KduONN64oQgAAAAAAAABAbTFt2rSKUQr233//Odr25ptvDr169Qp169ZNIxb87ne/q9Z2cfaBaOedd672tA5RfIxYmujSpUtYbbXVQrYyQtOmTdP1uHHjZrlOLBJEiy66aLX2ue+++4ZXX301nHPOOWl0hHbt2qXREjp37hweeuihsMYaa4Q333wzXHzxxXN6uAAAAAAAAABQo5544onwxRdfhIUXXjjsvffe1d7urrvuqigvXHfddWH33Xev1najR48O99577xyPbhBLE/369Zvj7QopIyy//PLpetiwYbNcp3xfed3Z+fLLL8Pjjz+ebu+1114z3d+gQYOw2267VfyCAAAAAAAAAKA2+de//pWud91117DYYotVa5tYJojFhVgQ6Nu37xyNqHDbbbeF8ePHh7Zt24atttqq2ts99thjYfjw4WGRRRYJe+65Z8haRujYsWO6HjlyZPj000+rXGfQoEHpulOnTr+4v9j+KJvVSArlX8aoUaPm9HABAAAAAAAAoMaMGjUq3H///XM02kBcP5YBpk6dGq655ppw0EEHzVX5Yb/99kvTO8zpdnEEhurOhFBYGWGZZZZJ0ydEt95660z3v/DCC2lkhEaNGoWuXbv+4v7atGlTcfvll1+ucp2XXnopXcfpGwAAAAAAAACgtvjPf/4TJk6cGFZcccWw6aab/uL6Dz74YNhjjz3ClClTUhHhkEMOmaPHe+edd8Krr74a6tSpk8oI1RUHJHjggQcKmaJhrsoI0amnnpquL7zwwvD6669XOrgePXqk20cccUSl4SXuu+++0KFDh7DllltW2lccFqJcbjjqqKPCZ599Vun+f//73+GOO+5It+dk7gwAAAAAAAAAqGn/+n+jDcRpFmJBYHYeeeSRsNtuu6UiQp8+fea4iBDdcMMN6TpOz7DccstVe7t4bn7SpElh5ZVXDptsskn4terPzUa77LJL6NmzZ+jdu3dYf/31U8GgcePG4cknnww//vhj2GijjcI555xTaZvRo0eHDz74IEyYMKHK8DfffPPw/vvvh1VWWSXts2XLlunnd999N63TrVu3sM8++8zt8wQAAAAAAACAORa/oF/+Un70ySefpOu+ffuGhx56qNIX9JdaaqlK2w4ePDi88cYboV69eqF79+6zfZzvvvsu/OlPf0qFgDhjwYABA9KlKhdffHE6pz6jyZMnp1LB3IxucOONN1aUJoowV2WE6PLLL0+lg6uuuioFEJ9UHFbi5JNPDsccc0xo2LBhtfe1+uqrp6EiLr300vDf//43DRkRh6lo3rx52HbbbdOTjcNQAAAAAAAAAEBOY8aMCS+//PJMy4cPH54uZfEc96xGRdh2223D0ksvPdvH+fnnnyv2Effbr1+/Wa579tlnV1lG6N+/fxgxYkRYfPHF0yAD1fXaa6+FN998M5Um/vrXv4YaLSNEsSBQ3ZJAbHnMrunRqlWrNO1DvAAAAAAAAADA/GCzzTYLpVJprra94oor0qU6ll9++bl+nLJdd911rvaxzjrr/OrHnlHdQvcGAAAAAAAAACzwlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAADA/FNGuOuuu8Jmm20WmjdvHho3bhzWWmut8I9//CNMnjx5rvf5wAMPhJ122im0bt06NGzYMCy55JJhww03DL169fo1hwoAAAAAAAAAc+yDDz4IV1xxRejevXtYY401Qv369UOdOnXCueeeW+X606ZNCwMGDAhnnnlm2HjjjUOLFi1CgwYNQsuWLcPWW28d/vOf/4RSqTTLx/v555/DBRdcENZee+10Hr5p06ahc+fO6RimTp1a5TbPPPNMOqbZXfr06TPLx3zkkUfCH/7wh3SePh5rfMx11lknPceffvppLlILof5cbRVCOProo8Pll1+egt5iiy1CkyZNwlNPPRVOOumk8OCDD4bHHnssLLzwwtXe36RJk0K3bt1SwSFut8EGG4RWrVqFb775Jrz77ruhd+/e6ZcFAAAAAAAAALlcc8016dx4dQ0dOjRstNFG6fbiiy8e1l133fQF/7j8iSeeSJfbb7893HPPPekL+tMbNWpUOv/+5ptvpkJA3E+9evXCSy+9FHr27JnOxT/00EMzbVcWz7Fvt912Vd7Xvn37KpfHc/xx0IEoHmsckCAex4svvhjOOOOMcPPNN4fnn38+7XuelxHuv//+FHYsIDz77LOhU6dOafmIESNSMC+88EI6qIsvvrja+zzooINSEWGXXXYJ1113XWqFTN8ceeWVV+bmUAEAAAAAAABgrq2++urh+OOPDx07dkznxs8///xwyy23zHL9OArBFltsEU444YQ0EkIsE5TF8+s77LBDKhRceOGFM30h/9BDD01FhPiYcbSCZZddNi3/9ttv0wwDjz/+ePjb3/4WzjvvvCofu0OHDuGmm26q9nMbPHhwKiLE0RAefvjhdLxl33//ffo5Hs9ZZ50125EVCpumIYYbnXzyyRVFhCgWCK6++up0+8orrwyjR4+u1v6efPLJ1KaIgd55552VigjpIOvWDeuvv/7cHCoAAAAAAAAAzLUDDzwwXHTRRWHvvfdOJ/vj+evZWXHFFdM58DhCwfRFhGjTTTdN59mjeI58el999VW4++670+04JUO5iBDFUQnil/qjSy+9dK6nTphRnP0giqWD6YsI0RJLLBFOPPHEdHvgwIFzvO85LiN8+eWX4dVXX023Y9gzinNexFAmTpyYmhrVEYMsT/0QGxcAAAAAAAAA8FvUsWPHdD1s2LBKywcNGhRKpVKaguH3v//9TNutueaaqSAwfvz4ap+L/yULLbRQtdabcUCBeTJNQxymoTy3Rbt27apcJ84jEYOL6+61116z3d/UqVNTKySKgX7zzTdpfowPPvggNGrUKP0idt111zQlBAAAAAAAAADUZh999FG6XmqppSotHzt2bLpu1qzZLEdfiKWAOH3Ca6+9Fv785z/PdH+czqFXr15pkIFYNIgjOcRpIdq2bVvl/rbaaqtQv379NP3DE088kX4ui48Tp3CIDjnkkHlfRvj000/T9awONioPF1Fed3aGDh1aEepLL70UevToUfFzWZxLIxYU4rwaAAAAAAAAAFAb/fzzz6F3797pdvxS/vSWXHLJdP3dd9+lc+YzfmF/2rRp4fPPP5/tufghQ4aEs846q9KyWDY48sgjU7Eg3p5e+/bt00wG8f44TUPnzp3DCiusEH744YfwwgsvhMUWWyxND7HHHnvM+2kaynNPNG7ceJbrlEMZM2bML+5v5MiRFbcPOOCAsM4666RpIOLjvPHGG6Fr166pcbHzzjtXNEQAAAAAAAAAoLbp0aNHKhIsvfTS4dRTT61033rrrRcWWWSRdPv666+fadubb745lRmqOhcfSwNHH310ePbZZ8PXX38dxo0bF956661wzDHHhDp16oRLL700PXZVDj300PDwww+nMkQ8V3/HHXeExx57LD3WJptskmZGmBtzXEYoWpzzoqxNmzbh0UcfTU8mFhrWWmut0L9//7D66qun5seFF15Yo8cKAAAAAAAAAHPjnHPOCf369UvTJ9x5552hRYsWle5v2rRpOO6449LtU045JY2gEIsFcaSEWE6Ioxc0aNAg3T/jNA4dO3ZMhYPf//73oXXr1qnUsMYaa4RLLrkkzUIQxREO4oAAMzr99NPDtttuGzp16pTKCPHcfJzhIB7v/fffHzbccMNUTpjnZYQYQBSbFLNSnmZh0UUXrfb+ou7du4dGjRpVur9evXoV80/EOSoAAAAAAAAAoDa55JJLwplnnpnOh993331ho402qnK9OMVCHKlgwoQJ4aijjkojKLRq1SocdNBBqSyw//77p/UWX3zxaj/2n/70p7D22mun2w8++GCl+/7zn/+E8847L6y55prpvjhwQJwloV27dqmk8Le//S2MHz8+HdPUqVPnbRlh+eWXT9fDhg2b5Trl+8rr/tL+4rAQUZx7oirl5bH1AQAAAAAAAAC1xRVXXJFGPGjYsGG45557wnbbbTfLdeOX9a+55po0xcK5554bDj744HDsscemGQWefvrpiukZ4qgHc2KVVVZJ18OHD6+0/KabbkrXu+++e6hfv/5M2+29997pOk4tEUdLmBMz7+0XxOEdopEjR6YHjI2IGQ0aNChdx2bGL4nTMbRv3z4MGTIkjBgxosp1ysvjugAAAAAAAABQG1x11VWhZ8+eFUWEHXbYoVrbxbLBjIWDUqkUXnzxxXR76623nqPjiOf3Z5y5IPriiy9mO+vBYostVnF71KhR83ZkhGWWWSZ07tw53b711ltnuv+FF15IIyPE4SW6du1arX3GlsXspmF4/PHH03WXLl3m9HABAAAAAAAAILs+ffqEI444oqKIsOOOO/6q/d15552pPLDBBhuEddZZp9rbffnll+H555+v8px7mzZt0vXLL79c5bYvvfRSxe3qzIzwq8oI0amnnpquL7zwwvD6669XalP06NEj3Y6hTt+SiPNedOjQIWy55ZYz7S82QZo3bx4eeeSR0Ldv30r33X777WmeivJ6AAAAAAAAADA/u+6669K58zktInz11Vfpy/8zeuihh9KUDXFQgFhymNHll19e5UwEcbqHP/zhD2H8+PFhxRVXDDvvvHOl+3fbbbd0fdttt6Vz89OL0zIcddRR6XY8z9+qVaswT6dpiHbZZZdUDOjdu3dYf/310wM3btw4PPnkk+HHH38MG220UTjnnHMqbTN69OjwwQcfhAkTJsy0v5YtW4Y77rgj7LTTTuHQQw9Nc2bEOSs++eSTMHjw4LTOGWecUe2RFgAAAAAAAACgCPEL+uUv5UfxPHYUv2gfSwLTf0F/qaWWCm+88UY45JBD0rQKK6ywQrj77rvTpSo33XRTpZ9feeWV8Kc//SmstdZaoV27dqFBgwapUDBkyJDQpEmTcP/994c111xzpv2cddZZ4bjjjgtrr7122q5u3boV59unTZsW2rZtGx588MFUZpheLDj897//Tc9jr732Cuedd146V//999+nURHi+f04e8K11147x7nNVRmh3KyIpYM4x8WAAQPC5MmTU5Pi5JNPDsccc0xqeMyJOKfFm2++Gc4///w0XcMDDzyQ5qWIBYTYtthmm23m9lABAAAAAAAAYK6MGTOmymkMhg8fni5lEydOTNfxC/ylUindjiWCeJmVGcsIq6++evjrX/8aBg4cGB5//PEwderUVCSI5+Bj2aA8rcKMTjvttPDiiy+Gd999N203bty4dL59ww03TKMhxHJE06ZNZ9qufv36oX///uGWW25Jl1ikiMe70EILpZkP4qgK8bHjTAfZygjRHnvskS7V0b1793SZnZVXXnmmsAEAAAAAAACgpmy22WYV5YJ5sf70Vlpppbk6Z37CCSeky9yoU6dOKkDES5HqFro3AAAAAAAAAGCBp4wAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAA5p8ywl133RU222yz0Lx589C4ceOw1lprhX/84x9h8uTJv/rAHnnkkVCnTp102WqrrX71/gAAAAAAAABgbnzxxRfhiCOOCO3btw8LL7xwWGihhUK7du3CvvvuG958881Zbjdt2rTQr1+/dM57iSWWCI0aNQpLLbVU2GKLLcLVV1890/oDBgwIPXr0CBtssEFo06ZNepx4Ln7VVVcNRx55ZPjss89m+VhTpkxJ+9x4443TOfwGDRqEli1bhi233DIdQzyWnOrP7YZHH310uPzyy0P9+vVTUE2aNAlPPfVUOOmkk8KDDz4YHnvssfRLmBs//PBDOOigg1IRoVQqze0hAgAAAAAAAMCv8vLLL4ett946/PTTT6kgsM0224R69eqFN954I9x8883h1ltvTZfdd9+90najR48OO+20U3juuefCoosuGjbccMPQrFmz8OWXX4bBgweHMWPGpOLBjF/av+aaa0Lbtm1T8aFVq1ZpP6+//nq48sorw4033hgeeuihNGjA9CZOnJiOKz5Ww4YNUyEhlh+GDRsWnn766XQu//777w/33ntvOg8/35YR4kHGIkIsIDz77LOhU6dOafmIESNSMeGFF14IZ5xxRrj44ovn6qBio+Pbb78Nhx56aAoaAAAAAAAAAGrCwQcfnIoI8ToWAuKIA1EcaeCss84K5557brrvD3/4QxrJICqVSmGXXXZJ5YBDDjkknTuP59fLJk2aFN56662ZHmufffYJBx54YFh++eUrLY/rn3jiiek8/V/+8pc0QkIsRJTFERHiYy233HLpOpYZygYNGpTO48fz/HfccUfYc889w3w7TcP555+frk8++eSKIkIUh3goDyURfwmxoTGn7rvvvvCf//wnHHvssaFLly5zc3gAAAAAAAAA8KuNHDmyojQQSwflIkJUt27dcPbZZ6cZA3788cfw/vvvV9x34403hmeeeSZsu+22oU+fPpWKCFEcvWDddded6fFWWWWVmYoI5fUvuuiiVHYYPnx4eO+99yrdH0c+iA4//PBKRYQoPk65gDBw4MCQyxyXEeKQEa+++mq6vffee890fxzuYdlll03DQMQhJOZEHFkhjoYQh5vo1avXnB4aAAAAAAAAABSmUaNG1V43fnm/rHfv3un6hBNOKOxY4vQKsQBR1XGVR2SYk2Oc78oIce6KaPHFFw/t2rWrcp1yg6O8bnUddthhqZBwww03VDssAAAAAAAAAJgX4ogGm2yySbp9+umnh8mTJ1fcF6dpiCMjjB8/Pmy//fbpS/vRt99+G9588800jcKGG24Yhg4dGi688ML0xfzjjz8+3HXXXWnahTkxderU8Le//S38/PPPYdVVVw0rrbRSpfvj40dXXXVV+OKLLyrd99prr4Xbb789jeAQp3jIpf6cbvDpp5+m6xmHdpheOeTyutURn/zdd98djjrqqLDRRhvN6WEBAAAAAAAAQOGuu+660LVr13DttdeGhx9+OH05PxYN4pfz48wC8QT/lVdeWbF+eVqHFi1ahOuvvz4cd9xxlUoM0QorrBDuu+++sOaaa1b5mLFQcOaZZ6bbo0aNSo8Vp2eIJYQ777yzYoSEsu7du4dnn3023HzzzeF3v/tdmtFgySWXDMOGDQsDBgwIa6yxRpouoqopIOabMsJPP/2Urhs3bjzLdcrzXYwZM6Za+/zmm2/S3BUrrrhiOP/88+f0kAAAAAAAAABgnmjfvn0YOHBgKh089thjqYBQFkcp2GyzzcKiiy5asWzkyJEVJYKePXuG3XbbLZx11lmpCPDOO++Eo48+Orz88sthu+22C2+//XYqLcwobtuvX79Kyzp16hT+9a9/hdVWW22m9WM54aabbkrlhlNOOSU89dRTFfctssgiYauttkrn43Oa42ka5oWDDz44/PDDD6kVEoMAAAAAAAAAgPnBiy++mEYWiEWCW2+9NX3ZPpYFHnzwwTTiwQEHHJAuZaVSKV1PmTIlbLDBBmlahtVXXz19qX/99dcPjz/+eGjVqlX4+uuvw9VXX13lY6699tppP3EqiDgiQhwNIU7RsM4664TevXvPtH4cKGDHHXcMJ5xwQjjiiCPChx9+GMaNG5fKDrvssku45JJLQpcuXdJICfNtGaFp06bpOh74rIwdOzZdT9/+mJXY5oi/pDg/RmyMAAAAAAAAAMD84Mcffwx//OMfw/fffx/uvffesNdee6UiQfPmzdPJ///973/pC/dxxIKnn3660jn16JBDDgkzivd369Yt3X7iiSfC7NSpUye0adMm7L777ml0hvjYxxxzTHjzzTcrrRengnjkkUfCYYcdlooHcaqGeFyxBPGf//wnbLvttuHzzz8Pp59+ephvywjlOSRm15go31ed+SbiPBjRq6++msoI018uvPDCdN9rr71WsSy2TAAAAAAAAABgXnv44YdTEWGFFVYI66233kz3T7+8XCyIy8qmvz298vI4OkJ1NWvWLBUj4mgJ/fv3r1g+derUcMstt6TbsSxRlb333rta5Yci1Z/TDTp27Fgxz8Wnn34a2rVrN9M6gwYNqpizorrK28yqbfLss8+m2xMmTJjTQwYAAAAAAACAOfbFF1/84qwAiy22WLqOUzdEK6+8chr94KeffgojRoyocpvy8jh1w5xo3Lhxuv7uu+8qlsXbEydOnO1xzniM8+XICMsss0zo3Llzuh3nw5jRCy+8kEZGaNSoUejatesv7u/+++9Pc11UdbnxxhvTOltuuWXFsuqMtgAAAAAAAAAAv1acIiEaMmRIGD169Ez3T548Obz++uvpdvmL/PXr1w+77LLLbEciePzxx9N1ly5d5uh4nnrqqYrCQ1mLFi3S+fno5ZdfrnK7l156qdIxzpdlhOjUU09N13EahXKw5dESevTokW4fccQRFe2K8nQMHTp0SMUCAAAAAAAAAJjfbb/99mk0gvHjx4eDDjoojB07tuK+SZMmhWOOOSaNntCgQYOw2267VTqn3qBBg3DdddeFhx56qNI+L7roovQl/3r16oXDDz+80n0XXHBBmhZiRj/88EM48sgj04wD8Tz8HnvsUXFfw4YNw0477ZRun3HGGeGtt96qtO2TTz4ZLrvsskrTNcyX0zREscXRs2fP0Lt377D++uungkH8BcQnEadU2GijjcI555xTaZvYEvnggw9MswAAAAAAAABArbDEEkuEPn36hP322y/cdddd4ZlnnkkzCcSiQSwGfPnll6Fu3brp3PkKK6xQsV2HDh1SEWH//fcPf/jDH8K6666bZgF455130igLsYhwzTXXhDXWWKPS48USQywUxOUrrrhiGmUhPsbgwYPDuHHjUhEhHkerVq0qbXfppZeG1157LQwdOjR06tQpncePozrEn+NxRltssUU4/vjj5+8yQnT55Zen0sFVV10VBgwYkIafiGGcfPLJqf0R2xcAAAAAAAAAUJt169YtlQPi6ALPPfdc+pJ+qVQKSy21VNhnn33SF/mrmm5h3333Dauuumr4+9//Hp5//vnw5ptvpikVdt9991QKqGqbK6+8Mq0bywfxceJIDE2bNk2Pv+2224bDDjtspiJCFIsHb7zxRipFPPDAA+Htt99OUzPE8sKmm26aRkQ44IADUglivi8jRHHoh+mHf5id7t27p8ucmJttAAAAAAAAAKBIa621VrjxxhvneLvOnTuHu+++u9rrx2kbZpy6obpiaeG0005Ll/lB3Zo+AAAAAAAAAADgt0UZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAAAAAAAAABRKGQEAAAAAAAAAKJQyAgAAAAAAAABQKGUEAAAAAAAAAKBQyggAAAAAAAAAQKGUEQAAAAAAAACAQikjAAAAAAAAAACFUkYAAAAAAAAAAAqljAAAAAAAAAAAFEoZAQAAAAAAAAAolDICAAAAAAAAAFAoZQQAAAAAAAAAoFDKCAAAAAAAAABAoZQRAAAAAAAAAIBCKSMAAAAAAAAAAIVSRgAAAAAAAAAACqWMAAAAAAAAAAAUShkBAAAAAAAAACiUMgIAAAAAAAAAUChlBAAAAAAAAACgUMoIAAAAAAAAAEChlBEAAAAAAAAAgEIpIwAAAAAAAAAAhVJGAAAAAAAAAAAKpYwAAMD/Ye8uwCQrroeNXxyCEyA4i0NwWXRxh0WD++IJkkWCW1jcgkOAxd0lENxdQ7Dg7sEiEELy7+95K99pau50z3TP9OzM7ry/5xnGeobe6jt1q06dOiVJkiRJkiRJUkuZjCBJkiRJkiRJkiRJklrKZARJkiRJkiRJkiRJktRSJiNIkiRJkiRJkiRJkqSWMhlBkiRJkiRJkiRJkiS1lMkIkiRJkiRJkiRJkiSppUxGkCRJkiRJkiRJkiRJLWUygiRJkiRJkiRJkiRJaimTESRJkiRJkiRJkiRJUkuZjCBJkiRJkiRJkiRJklrKZARJkiRJkiRJkiRJktRSJiNIkiRJkiRJkiRJkqSWMhlBkiRJkiRJkiRJkiS1lMkIkiRJkiRJkiRJkiSppUxGkCRJkiRJkiRJkiRJLWUygiRJkiRJkiRJkiRJaimTESRJkiRJkiRJkiRJUkuZjCBJkiRJkiRJkiRJklrKZARJkiRJkiRJkiRJktRSJiNIkiRJkiRJkiRJkqSWMhlBkiRJkiRJkiRJkiS1lMkIkiRJkiRJkiRJkiSppUxGkCRJkiRJkiRJkiRJLWUygiRJkiRJkiRJkiRJaimTESRJkiRJkiRJkiRJUkuZjCBJkiRJkiRJkiRJklrKZARJkiRJkiRJkiRJktRSJiNIkiRJkiRJkiRJkqSWMhlBkiRJkiRJkiRJkiS1lMkIkiRJkiRJkiRJkiSppUxGkCRJkiRJkiRJkiRJLWUygiRJkiRJkiRJkiRJaimTESRJkiRJkiRJkiRJUkuZjCBJkiRJkiRJkiRJklrKZARJkiRJkiRJkiRJktRSJiNIkiRJkiRJkiRJkqSWMhlBkiRJkiRJkiRJkiS1lMkIkiRJkiRJkiRJkiSppUxGkCRJkiRJkiRJkiRJLWUygiRJkiRJkiRJkiRJaimTESRJkiRJkiRJkiRJUkuZjCBJkiRJkiRJkiRJklrKZARJkiRJkiRJkiRJktRSJiNIkiRJkiRJkiRJkqSWMhlBkiRJkiRJkiRJkiS1lMkIkiRJkiRJkiRJkiSppUxGkCRJkiRJkiRJkiRJLWUygiRJkiRJkiRJkiRJaimTESRJkiRJkiRJkiRJUt9JRrjmmmuK5ZZbrph00kmL8ccfv5h//vmL4447rvjhhx+a+j3PPfdccfTRRxcrrrhi8bOf/awYa6yx0u9ceumlizPOOKPp3ydJkiRJkiRJkiRJUk/ZZ599itFGGy29HXHEEe2+/8c//rHYfvvti0UWWaSYeuqpi3HGGaeYcMIJiwUWWKA44IADir/+9a81f+8XX3xRXHjhhcVuu+1WLLnkksVPfvKT9P9YaaWVOn1O//nPf4ozzzyzWHzxxYuJJpoo/ey8885bDBs2rPjuu++KEW3Mrv7g0KFDi1NOOaUYc8wxixVWWKGYYIIJinvvvbfYd999i1tuuaW48847i/HGG6+hBllooYXSx/yOgQMHpoSEDz74oHjssceKhx9+uLj44ouLO+64o5hkkkm6+nQlSZIkSZIkSZIkSeq2Rx99tDjxxBNTkkClUqn5mMsuuyy9zTrrrMU888xTTDHFFCnR4Mknn0wb9YcPH57W1+eee+42P/fQQw8VQ4YMafo5ff/998XgwYOLu+++OyU+RELCE088URxyyCHFddddV9x///0jdM29S5URbrzxxpSIQPIAT55EAZ7866+/njIrSCA4+OCDG/59Cy+8cHH11Ven7A8a/IorrkiNTMUEskR4Qfbcc8+uPFVJkiRJkiRJkiRJklri22+/LbbZZpu0jr3OOuvUfdzee+9dfPzxx2kN/a677iouv/zytK7+/vvvFxtuuGHx2WefpcoJZWzc32mnnYrf//73xVNPPVWcffbZDT0v1udJRJh22mmLp59+OiUe3HzzzcUbb7xRrLnmmsXzzz9f7LLLLsWI1KVkhKOOOiq932+//apVDTD55JOnsg84/fTTi2+++abT30VlBRqDBidDI0diA8c+4Morr/S4BkmSJEmSJEmSJElSr9l///1TgsE555xTTDzxxHUft8ACCxRTTTVVu6+z4Z+qCnj88ceLv/3tb22+v8QSS6QEhB133DEd8VBeQ6+FdfSzzjorfcyREVRiCBwNcd5556VTDSgKQHLCiNJ0MsKHH36YMjCw2Wabtfv+oEGDiumnnz6Vgbjtttu6/QQXXHDB9J4zLOqdmyFJkiRJkiRJkiRJUk+i2sBpp51WbLXVVsUaa6zR5d8z5phjpvejjz56MdZYY3X7eb3yyivFP/7xj/TxSiut1O77JEWQoMCREpx40GeTETg6AZNNNlkx00wz1XwMGRr5Y7uDrBKMPfbY6f8pSZIkSZIkSZIkSdKIxGL/tttum45ROPnkk7v8e77//vvigAMOSB+vvPLKqWJBK55b+OlPf1rzMZxygGeeeaYYUf6XctGEt99+O72fYYYZ6j6Gygj5Y7uKzIw4pmHw4MENlaCQJEmSJEmSJEmSJKmV9t5777T+fcMNNxSTTjppwz/37LPPFqeeempa+/7888/TKQScCDBw4MBi+PDhLXluU045ZfXjt956q5h77rnbPYavt2INv0eTEf7+97+n9+OPP37dx3DOBcrnWzTrt7/9bfHYY4+l33fMMcd063dJkiRJkiRJkiRJktSsO++8s/j9739fbLLJJsW6667b1M++9957xUUXXdTmaxylwO+bdtppW/L8Zp111lRMgP/Xueee265yA8dLvPrqqy1Zw+/RYxpGlIsvvrg4/PDD0zkZ559/fjHbbLP19lOSJEmSJEmSJEmSJPUj33zzTbHddtsVU0wxRXHaaac1/fPrrrtuqorwn//8p3jnnXeK8847r3jllVeKeeaZp7j22mtb9jwPPfTQ9J7neMghhxTvvvtu8dVXX6X/x8Ybb1yMNdZY6fusv48oTf+fJpxwwvT+n//8Z6dnUkw00URdelLXXHNNOm8DZG5suOGGXfo9kiRJkiRJkiRJkiR11dChQ4sPPvigOP3004vJJ5+8y79njDHGKGacccaU2PDwww8Xo402WjFkyJDik08+acnzZH2dkwf4vcOGDSsGDBhQTDbZZGmtnWMcfvOb36TH8bU+e0wDTxrvv/9+3cfE9+Kxzbj++uuLzTbbrPi///u/VJoikhIkSZIkSZIkSZIkSRqRbrjhhmLMMccszjzzzPSW+8tf/pLeDx8+vLj77ruLqaaaqrjyyis7/Z0DBgwoll9++eLWW28t7rrrrmLLLbdsyXOlIsIWW2yR1tzffPPNYuyxxy4WX3zx4he/+EVx2GGHpcfMO++8RZ9NRlhwwQXT+y+++KJ4++23i5lmmqndY55++un0fqGFFmrqd994443pnI3//ve/xVlnnVXssMMOzT49SZIkSZIkSZIkSZJahiMWHnjggbrf5/gF3qh80Kjxxx8/vf/ss8+KVpp55pmLvffeu93XH3roofR+5ZVXLvrsMQ3TTTddMXDgwPTx5Zdf3u77lJSgMsI444xTrLHGGg3/3ltuuaXYaKON0gtJIsJOO+3U7FOTJEmSJEmSJEmSJKllvv7666JSqdR823rrrdNjOBaBz0lIaMT333+f1tUx++yzFz3t8ccfT/+/6aefvlhnnXWKPpuMgAMOOCC9P+aYY4pnn322+nWqJfzqV79KH++6667FxBNP3KZ8xZxzzlmsuOKK7X7fbbfdVmywwQYpEeHss882EUGSJEmSJEmSJEmSNFKi2sFZZ51V/O1vf2v3vQ8//DAdy/DRRx+l4xpaVangq6++Kl599dWaiQgc0zDaaKMV55xzTjpyYkTp0v9p3XXXLXbffffi1FNPTWdMkGBAGYl77rknZYYstdRSKfsj980336R//L/+9a92L8T6669f/Pvf/05VFx599NH0VssJJ5xQTD755F15ypIkSZIkSZIkSZIk9bhvv/02beIfOnRoscACC6SkAyoncMIAm/1ZG59mmmmKG2+8sRh33HHb/Txr8OHzzz9P75966qk2Xz/44IOLNddcs/r5u+++Wyy44ILFXHPNVcw666xp/Z71+eeee64Ya6yxiuHDhxerrbZaMSJ1Oe3hlFNOSUkHZ5xxRkoe+OGHH4pZZpml2G+//Yo99tijGHvssRt+IShDgQ8++KC46KKL6j72sMMOMxlBkiRJkiRJkiRJktRnTTnllMWJJ55YPPjgg8WLL75YvPLKK8V3331XTDLJJCmhYK211ip23HHHYqKJJqr580888US7r1FlIf96JCmEaaedNp1AwHEMDzzwQFqDJ+Fhhx12KPbaa69ijjnmKEa0btVg2GijjdJbI7bZZpv0VhZZIJIkSZIkSZIkSZIkjSwuvPDC9Fb2k5/8pNhzzz3TW1d0Zf18iimmKM4+++yiLxm9t5+AJEmSJEmSJEmSJEkatZiMIEmSJEmSJEmSJEmSWspkBEmSJEmSJEmSJEmS1FImI0iSJEmSJEmSJEmSpJYyGUGSJEmSJEmSJEmSJLWUyQiSJEmSJEmSJEmSJKmlTEaQJEmSJEmSJEmSJEktZTKCJEmSJEmSJEmSJElqKZMRJEmSJEmSJEmSJElSS5mMIEmSJEmSJEmSJEmSWspkBEmSJEmSJEmSJEmS1FImI0iSJEmSJEmSJEmSpJYyGUGSJEmSJEmSJEmSJLWUyQiSJEmSJEmSJEmSJKmlTEaQJEmSJEmSJEmSJEktZTKCJEmSJEmSJEmSJElqKZMRJEmSJEmSJEmSJElSS5mMIEmSJEmSJEmSJEmSWspkBEmSJEmSJEmSJEmS1FImI0iSJEmSJEmSJEmSpJYyGUGSJEmSJEmSJEmSJLWUyQiSJEmSJEmSJEmSJKmlTEaQJEmSJEmSJEmSJEktZTKCJEmSJEmSJEmSJElqKZMRJEmSJEmSJEmSJElSS5mMIEmSJEmSJEmSJEmSWspkBEmSJEmSJEmSJEmS1FImI0iSJEmSJEmSJEmSpJYyGUGSJEmSJEmSJEmSJLWUyQiSJEmSJEmSJEmSJKmlTEaQJEmSJEmSJEmSJEktZTKCJEmSJEmSJEmSJElqKZMRJEmSJEmSJEmSJElSS5mMIEmSJEmSJEmSJEmSWspkBEmSJEmSJEmSJEmS1FImI0iSJEmSJEmSJEmSpJYyGUGSJEmSJEmSJEmSJLWUyQiSJEmSJEmSJEmSJKmlTEaQJEmSJEmSJEmSJEktZTKCJEmSJEmSJEmSJElqKZMRJEmSJEmSJEmSJElSS5mMIEmSJEmSJEmSJEmSWspkBEmSJEmSJEmSJEmS1FImI0iSJEmSJEmSJEmSpJYyGUGSJEmSJEmSJEmSJLWUyQiSJEmSJEmSJEmSJKmlTEaQJEmSJEmSJEmSJEktZTKCJEmSJEmSJEmSJElqKZMRJEmSJEmSJEmSJElSS5mMIEmSJEmSJEmSJEmSWspkBEmSJEmSJEmSJEmS1FImI0iSJEmSJEmSJEmSpJYyGUGSJEmSJEmSJEmSJLWUyQiSJEmSJEmSJEmSJKmlTEaQJEmSJEmSJEmSJEktZTKCJEmSJEmSJEmSJElqKZMRJEmSJEmSJEmSJElSS5mMIEmSJEmSJEmSJEmSWspkBEmSJEmSJEmSJEmS1FImI0iSJEmSJEmSJEmSpJYyGUGSJEmSJEmSJEmSJLWUyQiSJEmSJEmSJEmSJKmlTEaQJEmSJEmSJEmSJEktZTKCJEmSJEmSJEmSJElqKZMRJEmSJEmSJEmSJElSS5mMIEmSJEmSJEmSJEmSWspkBEmSJEmSJEmSJEmS1FImI0iSJEmSJEmSJEmSpJYyGUGSJEmSJEmSJEmSJLWUyQiSJEmSJEmSJEmSJKmlTEaQJEmSJEmSJEmSJEktZTKCJEmSJEmSJEmSJElqKZMRJEmSJEmSJEmSJElSS5mMIEmSJEmSJEmSJEmSWspkBEmSJEmSJEmSJEmS1FImI0iSJEmSJEmSJEmSpJYyGUGSJEmSJEmSJEmSJLWUyQiSJEmSJEmSJEmSJKmlTEaQJEmSJEmSJEmSJEktZTKCJEmSJEmSJEmSJElqKZMRJEmSJEmSJEmSJElSS5mMIEmSJEmSJEmSJEmSWspkBEmSJEmSJEmSJEmS1FImI0iSJEmSJEmSJEmSpJYyGUGSJEmSJEmSJEmSJLWUyQiSJEmSJEmSJEmSJKmlTEaQJEmSJEmSJEmSJEktZTKCJEmSJEmSJEmSJElqKZMRJEmSJEmSJEmSJElSS5mMIEmSJEmSJEmSJEmSWspkBEmSJEmSJEmSJEmS1FImI0iSJEmSJEmSJEmSpJYyGUGSJEmSJEmSJEmSJLWUyQiSJEmSJEmSJEmSJKmlTEaQJEmSJEmSJEmSJEktZTKCJEmSJEmSJEmSJElqKZMRJEmSJEmSJEmSJElSS5mMIEmSJEmSJEmSJEmSWspkBEmSJEmSJEmSJEmS1FImI0iSJEmSJEmSJEmSpJYyGUGSJEmSJEmSJEmSJLWUyQiSJEmSJEmSJEmSJKmlTEaQJEmSJEmSJEmSJEktZTKCJEmSJEmSJEmSJElqKZMRJEmSJEmSJEmSJElSS5mMIEmSJEmSJEmSJEmSWspkBEmSJEmSJEmSJEmS1FImI0iSJEmSJEmSJEmSpJYyGUGSJEmSJEmSJEmSJLWUyQiSJEmSJEmSJEmSJKmlTEaQJEmSJEmSJEmSJEktZTKCJEmSJEmSJEmSJElqKZMRJEmSJEmSJEmSJElSS5mMIEmSJEmSJEmSJEmSWspkBEmSJEmSJEmSJEmS1FImI0iSJEmSJEmSJEmSpJYyGUGSJEmSJEmSJEmSJLWUyQiSJEmSJEmSJEmSJKmlTEaQJEmSJEmSJEmSJEktZTKCJEmSJEmSJEmSJElqKZMRJEmSJEmSJEmSJElSS5mMIEmSJEmSJEmSJEmSWspkBEmSJEmSJEmSJEmS1FImI0iSJEmSJEmSJEmSpJYyGUGSJEmSJEmSJEmSJLWUyQiSJEmSJEmSJEmSJKmlTEaQJEmSJEmSJEmSJEktZTKCJEmSJEmSJEmSJElqKZMRJEmSJEmSJEmSJElSS5mMIEmSJEmSJEmSJEmSWspkBEmSJEmSJEmSJEmS1FImI0iSJEmSJEmSJEmSpJYyGUGSJEmSJEmSJEmSJLWUyQiSJEmSJEmSJEmSJKmlTEaQJEmSJEmSJEmSJEktZTKCJEmSJEmSJEmSJElqKZMRJEmSJEmSJEmSJElS30lGuOaaa4rllluumHTSSYvxxx+/mH/++Yvjjjuu+OGHH7r0+5555pliww03LH72s58V4447bjHTTDMVu+22W/HZZ59152lKkiRJkiRJkiRJklT0pfXxUV2XkxGGDh1abLTRRsUjjzxSLLroosVqq61WvPfee8W+++5brLDCCsV3333X1O+79tpri8UXXzy9n3HGGYt11lmnGH300YvTTz+9mG+++Yo33nijq09VkiRJkiRJkiRJkqSir6yP9wddSka48cYbi1NOOaWYYIIJiieeeKK44447iuuuu654/fXXi3nnnbd4+OGHi4MPPrjh3/fRRx8VW2+9dfGf//yn+P3vf188+eSTxVVXXVW89tprxRZbbFF8+umnxWabbVZUKpWuPF1JkiRJkiRJkiRJkoq+sD7eX3QpGeGoo45K7/fbb79ioYUWqn598sknL84888z0MRUNvvnmm4Z+38knn1x8++23xUorrVTsuOOO1a+PMcYYxVlnnVVMPPHExVNPPVXceeedXXm6kiRJkiRJkiRJkiQVfWF9vL9oOhnhww8/TIkBoFpB2aBBg4rpp5+++P7774vbbrutod95ww031P19ZJesvfba6ePrr7++2acrSZIkSZIkSZIkSVKX9MT6eH/RdDLCc889l95PNtlkxUwzzVTzMYssskibx3bk73//e/HGG2+0+bnu/D5JkiRJkiRJkiRJklqh1evj/UnTyQhvv/12ej/DDDPUfQyZH/ljO/LOO+9UP673O5v5fZIkSZIkSZIkSZIktUKr18f7k9EqlUql2fMwDjzwwGKppZYqHn744ZqP4fs8bpVVVinuuOOODn/fo48+mn4Xfvjhh2LMMcds95i77ror/a6xxx47lbeQJEmSJEmSJEmSJKmntXp9vD9pujKCJEmSJEmSJEmSJElSS5MRJpxwwvT+n//8Z93H/OMf/0jvJ5poooZ/X0e/s5nfJ0mSJEmSJEmSJElSK7R6fbw/aToZYcCAAen9+++/X/cx8b14bEdmnHHG6sfvvfdet3+fJEmSJEmSJEmSJEmt0Or18f6k6WSEBRdcML3/4osvirfffrvmY55++un0fqGFFur095EdMuuss7b5ue78PkmSJEmSJEmSJEmSWqHV6+P9SdPJCNNNN10xcODA9PHll1/e7vsPP/xwyvwYZ5xxijXWWKOh37neeuvV/X2UtLjlllvSx+uvv36zT1eSJEmSJEmSJEmSpC7pifXx/qLpZAQccMAB6f0xxxxTPPvss9Wvkw3yq1/9Kn286667FhNPPHH1ezfccEMx55xzFiuuuGK73zd06NDiJz/5SXH33XcX5557bvXr//3vf9Pv+/rrr9MLvMoqq3Tl6UqSJEmSJEmSJEmSVIyo9XEVxWiVSqXSlR/89a9/XZx66qnFWGONlRIMxh9//OKee+5JiQNLLbVUcddddxXjjTde9fEXXnhhMWTIkGLGGWcs3nnnnXa/75prrik23XTTlICw2GKLpfM0nnrqqeKtt94qfvazn6WMkjjOQZIkSZIkSZIkSZKkEaXZ9XF1IxkBV199dXHGGWcUf/rTn4offvihmGWWWYotttii2GOPPYqxxx67zWM7S0bAM888Uxx11FHFQw89VHzzzTfF1FNPXQwePLg4+OCDU0KCJEmSJEmSJEmSJEm9oZn1cXUzGUGSJEmSJEmSJEmSJKls9HZfkSRJkiRJkiRJkiRJ6gaTESRJkiRJkiRJkiRJUkuZjCBJkiRJkiRJGiX89a9/Te89nViSJKn3mYwgqSnPPfeckzlJktSn/ec//+ntpyBJktSO8ZSet+222xaDBw8u3nrrrWK00UazzSVJ6sR///vf3n4KGsWZjCCpYbvuumuxzjrrFNdff72TOUkaSblIq1F90vyvf/2rGHPMMYt//OMfxb333ttrz6u/9SkxNnSMKElSbT/88ENaHP/222+Ljz/+uLefzijpvffeKx577LHiySefLH7961+bkCBJIxljViPWWWedVXzxxRfFGGOM0dtPRaM4kxEkNeSzzz4rvvzyy+LTTz8tjj32WBMSJLWEk4ye9X//9381F2npy+nHNWIXyr3eewaT5kcffbQ45ZRT0ufjjjtu8c033xRzzz13sd566xWvv/56bz/FURp9yt///vdi6623TiWRDfhL0siBvjrGJv/+9797++mMcuJeyDjko48+Sm091lhjpSSERRddtLjoootS4qRaa/rppy8uvfTSYumlly5uvfXWtKnGhIQRo177luekam1blxODpZHZgQceWNx2223GTkZgJaFddtmluOqqq+xD1ONMRmixjgZY/kH3jHwXVq2P1RpTTjllcdhhhxU77LBD8fzzzxdHHnlkcd1119nOI4iTtxHL0lQjdhHrk08+SbtWvvrqq95+OqOc0UcfPU3kmNDFIi3B0HnnnbfYaqutildeeaW3n+Io35ewUP7999+ngPPw4cOLDz74oLef1iiFcQjJkoMGDSr22GOP4txzz01f53Oy+4cOHVrMMMMMvf00R3l77rlnCvwfffTR6XMC/pLUjFrzSueaPTOnJCk1dugzFmfjwaabblrcfPPNvf0URym07xNPPFHMMcccxf77719t+2WWWaZ4+eWXiwknnLAYf/zxe/tpjpLtvuCCCxYnnnhisdRSSxW33357Skh48803TUjo4XlPjP/oa7jWv/766+qcVK2NVVFdBcwzIzF4ww03LN54441efoajNmOFPWv77bdP80mq25iM0PO222674sILL0yxwTXXXNM5vHqco4EWopNkgMV7Mp8Z8LIA8P7776fBAX/QLii2Fu0ZHSXv2QUXWf1OMlpv9tlnT5M4blYvvfRSSki49tprbecRMNilb+G6vummm4oHHnig+O6773r7aY2y6MNj8fC0004rjjnmmN5+SqOkvN/YYostUlvvtNNO1YCFWrdIy3mpTOi4lgk8s0jL+0MOOST16+rZvoRA0cYbb1wMGTIk7dwnMGcQo3UY70022WTF2WefnT6nH5l66qnTWPyggw4q9tlnn2KcccZxDN7DSPr46U9/WlxzzTUejdFDOuo3HIv3DDcajPhFLN7/85//TIspjGG8X7YWc8oHH3ywWG655VKCJIihLLLIIsVdd93lHLMHUDFo8sknLy655JK0sWPgwIEpEfvkk08udtxxRwP/PRib5bo+/fTT2yQk0LcYK+y5BGzQt3C868wzz1zMOuusxeKLL15cfvnlxYcfftjbT3OUQDs//PDDab5zzz33pHkO/ThzfCofEi9Uz4nrnMVytRZrDeeff36xzTbbpPslG2nUs+19wQUXpOqGbD6dccYZvTeq51XUEj/88EN6/49//KOy2WabVX72s59VRhtttPQ2YMCAytZbb1354osv0mP++9//9vKzHTX85z//qX58ySWXVDbffPPK1FNPXVlkkUUqgwcPrjz99NOVf//73736HEcleVu+8847lV/+8peVscceuzJo0KDKVVddVfm///u/Xn1+o3rf8s9//rOy0UYbpT5l8cUXr7zxxhu2eQ/35euss05q73HGGafy5JNP9vZTGyX77++//z69//3vf1+ZccYZU3tznX/11Ve9/AxHLdddd111TDLJJJNUJpxwwsqpp55a+de//pW+77ik567xv//975WFF164MtZYY1W22mqryrvvvtvbT22Uw70wruFzzjknXeejjz56ZfXVV68+JvoatUZ5/BH3zsMPP7wyxhhjVHbddde6j1XXRBt/++23lZNPPrmyww47VH79619XLrroot5+av1irsm8knvp7373u9TP/PWvf63eQ73GW3d9Ey/humY+z3iFOMp2221XufPOO3v7KY4yuG5/85vfpHvlAgsskMaDtPNEE01UOf7449tc92pd/OSxxx6rzDTTTKndiaEceuih1ba2zXumP2E+eeWVV6a41brrrpva/ic/+UkaH7755pvpMfbfrZHPJffZZ5/U1hNPPHFl+eWXryy44IIpnjLBBBOkuPjLL7/cq891VDF06NDUzuOOO27ljjvuSP057XzUUUdVvvvuu95+eqO8PffcM7U/40K1xrbbbpvadJtttqm8/fbb1T463uJz9Vx7w9igeprJCC0Qf6gsXi200ELpj3mZZZapHHPMMZWddtqpMt9886WvzTHHHClwoe7LO8f99tuvumA4++yzVyd5BDCOO+64ykcffdSrz3VUmtBx/f72t7+tbLDBBqmtY3GLhISrr77agUEPLmYtuuiiaTGLtn/xxRd7+6mN0u1NX86kmUDRlltuWfnss896+6mNku38+eefVzbeeOPKtNNOW5l77rnTAlb0KZtuuqkJCS1AnxztTdJetO9KK61UfYyLtD2HQBBBuDHHHLNy8MEHp6Qy9Ryu5VVXXbV6nfPGIktwYt3axRXGhl9++WWb7z311FPVcTgLt2r9XHOJJZZoc43z9qtf/ary/vvv9/bTHKXk/cWRRx5ZmWqqqdq0+VxzzVU59thjbfcWiHEK423GgxE3IZ4S803GiOeff35vP9VRxmuvvZaSx1iYZb7DYhaJCMH7ZfewGPi3v/0tfRxJS1znxKuYz3NN77zzzukealv3XH9CUhML4oxLtthii8oMM8yQkm5ofxMSesYJJ5yQ2nfNNdesPPPMM9Vx4y233FL56U9/WplyyinTY1wsb4199923moRN33L66aensSLsW1qr3J5HH3106tPL8011DUnWsTD+1ltvVb8e/XPcS+07WoMxCO1NQkLe3iBmxWY8xoUkr1577bVpjh+8Z6q7TEZoYQD0F7/4RfpjPvDAA6sDgNhFPv7441fGG2+8NpM8dR8JH7Q5wWc6S25QDBJOOumk9HUGuyySx2K6uj7oigBRZDgz8GXAwA5b2prJ3jXXXOONqcXYAbfUUkulyQV9Syxm2c49gz6EhVramx0reV+u7ovrlsQmAvmTTz55Zccdd0zBoBtuuCFllkeQjkQFExJag+t4hRVWaLOQcsghh1S/746snkHFj5jk0ZfnPvjgg8rFF19cOeuss9zx2SL0KywaXnjhhZXhw4dXr3WCnuUxjQG67mGRhUA+48BHH320zffOPPPM1O4smrPgpdaOT0huohrcZZddlq5tdhrS3ptsskmqmqXuy8fY+++/f2pf5kCnnXZa5dJLL02bDWaeeea0kEsVEJNWu+/rr79Old9YFCd5j2BzJEsecMAB6TVgzPjss8/29lMdZRA7mXTSSVOfQswkT/Zwntl1RxxxRDU2woaC6L8ffPDBlOzOovgss8xSTUj48MMPe/spj3K++eab1P4sFDIuDMwrGSPyPRMSWu/Pf/5zSvzgLRIRol0POuigapIClYbUuqorjANJ2CMh4e677273fXVfHiu54oorUlUEqnlGchNvZ5xxRq8+x5HZkCFDUhtSmba8gZd75B/+8IfKeuutlypg88ZY3GTgrmMOGRt6yxX2HnnkkTQ2Yf0yrm3mO9NMM43V+NQyJiO0CH+w/LGutdZabTK1GASwa5zBAQuJ5R1EDnq7jlJ3HMsw55xzVgMT0Z4sIjIYI0nBwW73MZFebrnl0o2onFDDxJqBGIEMJnZWSGgd2pEJNO2+2267tVvM4nW57bbbKvfdd1/llVde6bXnOSqIa5aFQdqbiggRQAqvv/56WlxkJxHZoSYqdA3BZRZNaGcqrZR35j/++OPVo46skNC6oBwZ++xUvvnmm6sTCxZZypNsF2m7rnzvI9GGdi4fzcCOuaikFW9nn332CH62o+4ieVzLTJhrJSTkfY6BjK5d5wSCaFeCcCSp0r4kXwfKIRPgoJw9THjqmjyZ+v77708LhizM5kFmxoCU5o2EhFhYUfddfvnlqV1XXnnlygsvvNDme+uvv376HguL+bWvruHoEdpz9913b3Pdk4Q9//zzp2u/vOFD3RurUFGFNidZlUAzScIkJET/4ny+a4j3RZ+cJyRwLb/33nvpYxYMZ5111mplmzwhIb9fWlGrOXHNknAQ8/loz9hVyxiQ+2aekMAcP/95dc3111+f2vSUU05p8/XDDjssfZ2x43PPPVf9ejk2ruZwLRP3Ziwe1zPrDg888ED6vnP61sj7Baoyc7+cfvrp05iE5ODVVlutOt+kMoWaQ+L6YostVt1kmiey01dTGZi1hnJVONr+oYce6tXnPjLj+KKoKH777benr917772VJZdcsrqpgORr2pkqzdHuJiSoFUxGaJHYiX/PPfdUv8bNP0ppkgkapdpYUGQXUXlhUc1hkkHCQblkIwOyyLrNd0/EZM5BWfM4g4wSjgy0YkKXB0LJgmYXcxzZcNVVVzmZaxGyQ5lgRP8RmORRoYI2Zyf5FFNMkQLV6h6yQLnWuaYD1zIJCPPOO291EMZOIs60tR/v2sI4ZXd5i0XB8kL4E088kV4H2ppkJxMSmlc+V49rNdqZUpm1EhLyRVp3NDcnFk+4N8Yu2Tif9qabbkpBUAJw0W+TcMOOWiZ58Vp4BE/jOlrc5jWI656dE7USEnDeeeel3YnstlBzSNyj3C5JwVzTBD+p4sTXo49h7EJJ5E8//TR9zXFh149moD++8cYbU5uzg7w8Dicpnh23UVXIhITu4VqlTye5gzH2ww8/3Ob7w4YNS2299tprp/GKuo8dbwRE8yoTLOLOM8886TUgOTvG3IwJqS6k1szx6S8YC7LAwiYPAs15QoKxk8bFgjf9dCQkLLzwwu2ObABjj3JCQl69iRgXm0CsnNC8qKbyxz/+seYuceY7HF9Hn8N1T4zLCgmdY+GvVjW3aLN99tkntTs7xwMbDyI2+6c//an6dcaGlGPPYy5qHu0XrwmxqUhIiEVaK8K1DvHXGPs9//zz1fko48WoiGOFhOZxbZJAE0ctEv8mJkIbR5ICiWVsrGEutNdee1UrqZIQHEl+akye8EssKhISGHNEojVtncdf6WciZsWxdVH5RuoqkxG6IL+Rx8CWc1T4w2S3bPyB10pEAANddpkTnFbXRWeYJ4DUG+wSsNhss83cAdcBJrr1Jl+UTs/LetcazBKoY4E2EhL4W3Ay13W0HQE5gkKULH355ZfT1zjPiQz+WBAnw3zFFVesnl9rqdjuieN2GIyx042BF2fW8jUWVQhu0PewQ4sShC7YNu/VV19N7cnkIgL+uehfKIcckzpel1h8tF9pfpE2T0yIj2+99daaCQkgq59FLxLL1Lm4Zlk4oYw6wSACzhzDQPtSPpMdK0z0WKDdbrvtKp988km7fqe84KXaos9gYYrdViQs8UZi8BdffNEusSZPSOB4L8bkXOMDBgwwCaSLqMbEzgkSIQnOcTRDHNtFIIPqZbFTiGCziXtdw3Uc7brhhhumBdtayWaRkBAVV0xIaEy5Albuo48+SmM9jg7I1Ztr8vHbb7/do893VBVHd7HT8OOPP64m4ZAETGIqiQh55Ul2brF4a0JC4zpbiGJ+STyLo0XnmGOOtOmjvIBL7MrkvdqYp4dotzwhoXxkQ62EBHYpxqIKVYWouspxMJGAps7FPTHOHmczQT20K+3L49h1S+y2XMlMPyLmQVuxGeyuu+6q2e6xQS8qqdL+te6XoCIc3+OYVzUu2jqPn+Rznqh4kyck5H05ycLl8+HVOTY2Lr300ukeGQux3FfzcTjXvRUSmpPPZ6i4TBwlKtZQlYyPL7jggnY/R7Xa2LhU6/tqPF4YCQnxFlUNy+jDBw4c2C7hTOoKkxE6kd9cIusN5bLSZL/xR0ngGZHBVU5EALssyMB96qmnRsi/YVR9TXbZZZfUxueee26HwaE8izGyo9UWEzYWvSPDsyxK3XGWU0c7EuM1idJVBiy6LzLM2VVBFi5nNVH6mIUXgnD8PRC4I9hBwNpAaPeCdJSxJ/jMubTsmGURkQVE/kZi8ZCd/TFQZkKn5pDkwTVM4KejHYUslvOYaaedNrU1VSvUsRijcI2yQ5lFQCZzlLcjcBQ7lEOekEBfQ1Iai7Xsdubatz9pHMHlyOjfd999q+NESk+TOEbwgkoJHJNRLjNNAJS+vfz6qOPd4pH0S2A0rmO+Fn11HvDPExLI6I/qFCYidKyjM2c5lot23H777auLMRytwxiQxSwWzgmGzj333NUzbNU82jQCyyQblPuJegkJa6yxhn14ByhJSlIpiTO10M70Ecsuu2y7UtO15ppc7yQH5/2O2isnoIL7JX03Y2/mmLzRb9RKRABVQLjOy+cKq7aYt5MU9pe//CXFoPKEyMBCbDkhITCmJPmMa9/ksrZIUudazeNMcZ03mpBAtTgew/xylVVWSYkIxFLcrd81VD2IZPboP/I2jPbnODU2dtDflCuzqD3mlbEhplaFBBLFIm4Vj6V982q18Tg2eZDU6sJ4Y8rx13IyZX6fzBMSWODN50JscqKSWXk9Qx3j/kh7Uq2JuVE+lsmT/ThaN+ab+XEl9uGdi4SESEKoldSRz0tjQzDXM6+H1T+63qfEkQ0cldZR9UnWg3jcwQcfPIKepUZVJiN0IDozzhDLA8fc+AlOUB4mD2jwR8kCy3zzzZc+ZgdtOZOZGxK74ignU05SUHv5DaV8cyE7n/I8W221VbUkVfkcMhAAZWGFAJFl7tojGDHbbLOl9isnD8Sg6bbbbkvfn2yyydJuuPx7+aCAIB3Z/ZwrxI7D2N2ijtUaOEWbEgzddtttqwMyghSXXXZZm/6DxxLEYFeRAaLOdTRQJbBJpj5ZnwTdSPqghGl5wke1BP5uvMa7hn6b65kEpnK/HANgdiX+/Oc/T8l+BOV4/JVXXtlLz7jvi3YjkBZnvfEWWeMsEDKBYLEqR//O5JrHMD7hPQs0cQa2Z73Xl7cNx29xj6TKRIwZ4z7JtVyvMhPJCrxG/E3YfzeGABq77hlzb7311qmPZmd+nJea9815wJ9xIwuLJAyToBNnBKtjjDdYgGKMyLWcY3zC6xC75LiHMieiAlyeKEIymUGi5uTtFbs86atJAil/Px+T0xfRh9OvuHO8vjhejv7iySefbPM92pa2IxmSueZLL72UFsXrJSKQyMr3CEIb4K8vrlPmNgQy4whFgshxjbOwy+It7c6u2nyBhZ8nvsL32IRQK7FBtccpn3/+eUpqJyZCoi8L3cx3yguBeUICc/m99947XdcTTzxxmheZ4NQWsT5KSteao9Q6sqFeQgLjmEho5fpmcSV26Xud15ff+/J7Igk3UbHzxBNPrLuYReyE8Td9fCT6OVZpbNGK9uW6zV8H7n+UU4+xHzvJI+k3HsMYheO92ERjBb7GRB/A/ZD1BNp4/vnnT/1zXm25VkIC/T3H0tGv0/8zVy3Hy9U55pVc8yTRRNJSeeMq2HRAwgftTvuTAKLmKiRwZAPzfN6i4mGufOwoyazqft/O+DrmmGUxXon+nyo4UneYjNAJBk/8sbHwFEg2YJLAH2s+mI1jA/he7CDPUXKaAQA70M0Aba5jJHuWrLj777+/+jUWxSPwzBtZ5JF1G5MIdrsw2CXTmUCRamM3W+zwZsLMromymGhzBMMbb7xRfY3yCRsBOt6YPH/55ZfVx6ixc8ZZGHn88cerwbkck4Z6ZzMde+yx6bUZOnSoAYtORPswoGICzXVfLjXIY1gUrLdQFZVWSCor73BWpcNATtwzGejGhPi4446rLnDF68PPcz1zVACTkih3z31X9SdwTNjY3UNVA3b7cA8kIY+FwOmmmy4tZHGvLCckMOkjSM33WFyM18P+u/NrnL6C46KohMX1HJO1cunGkPfRJNrwd0CZWMeFHcvbjXshbU0Fivx+yfVPskE5ISFfHGRBhteso/Lsait2+TCW5qgAkg0C43JeC/qdcnIei7ck9hFwrld5Sx3L55n04xFYjiNd6iUkUHXIPqVj9Asc4Uebsuhaq2LhgQceWD0GjffcJ8uJCNxPmY/OOOOMHrXTAO6RzCVJfsyTZZj/RPCeBNQTTjihZvIeC+IscNGXq2PRJ9BWxJ9oW96ziBVJqvQr5QpBHBVw6KGHVqsI8Ub8KxbHHRu2xXUcu48ZhzCmDjH+aCQhgd/DuP2+++6rbmiyrWsrH93HImy5klNUro2Fk3KiGF8jyYajGYOJCPXl7cccnXal/SIhIZC4GpXLSEyN+C3X/OWXX57Gi3EmeXDXeOfXOu0Xib4km7LmEK9BHh/JExLidYo3No1ZEa7rFl100dSObMCLDQRx7UbfQaIC7Uw17NisyvhG/9NRRas8IYEjRsox2nJMgCNeaGMSylQb8amnn366w8d0Ns7I74scXcfY0IQmdZfJCJ3gZh0TMUodE4zghpKXDIzOkOA9JXh5LAsBN954Y+pEyf4kOYEJNuW/ybxVpeEOkbambCPtSonAWOQG5QMZgMVNKBYPuYFde+211SoVJIIEB7tt5e3x1VdfpVLRlL7885//3OZxBOkouRZZzuWEBdqYQDWLA7V+t+pf5yxoU941ytETrKA96+0+ySfbnJfFa0ZwKXYyq/P2XmGFFdpMzkgsYIGrVjJHPgAjsEF7c4SD5zF33s4kiJHwwUJU3q8T0CBDn/siCQeUBMt3JpJgw72XajcsNlL6NBIDeY0MzrVHm0ZS5BFHHNEu6MbZbkwgSEhgNzkLh/TR0U+z+5mPIzBqG3eONmaxlTHK+uuvn3a1oaMy3QQv2H1FsgiLMSSJOC7sWFyj9Ck33HBDCmayeBjJYPTR0U/TP0SwrlZCguOS5tEXMP6mwljcMwluvPrqq+n7++23X/oai4fl0qUs3FpBqHMdLYDk34sdKY0kJKi+/NhFEmwiISHGIdGmBJDj6EV2kpd3PpPsx7iE+yo7D9U5FlmpTEObUt0gxzm1scDCuJDXgQp+vLHLkxgMSR8slsOFw8b6b8qlM9ZmbMh9k36aakIkJdCXEKcqL1ARE2DuT0LO8OHDq7vGHRvWx2IhYzp2z+ZJe50lJNSrpuL13XH/zTVK0gwxWublVIXjus6TnLjmY9xCNZyjjz46LY4zXyJeS2y31pElaiv/u2deTswpYim1jmyg4gH3xmh7SttzD43H8zoFr/P6om1oc8Yi9Nf051SV5O34449P90wqUVApuFZCwkUXXZTutcTU496p2uqNoSP2StyVfoN7J2s98fU8NksFWx7DojsVoCJ5Af39Wt9zzz3TmLujZOlar0G9Cjix9hZHpff39i1jHE37sOmlvLbTkVoVP8D9lt/HGN4q7+oukxEawI0+znEj2MAfYSh3eAzMCPLni1xRLYHgaATu1Fjnx8J2nANU72x2BrORrMAgl4FvLJozEMjPGfIG1TEqHsRuCY4D4KYVrweLKywCRNsS1CAoetRRR6Xz+BgcMxH0KIzmsDAVgU4SCuhrmFBQHpPgUN5nxGsRO/eZdLAjkZ21VLdQ55icxeSYpBp2BJEkFgvdTKYjyJGXHGTyxuvBDk/6GRcPOy8HS1WaSBajv2BHIYGj/LWgvCDHHsV9kteAgAWfE3COycr111/v+WSdiCAn5/yGfJEWLKRQXpBdh7GTJb7vIlbz2AHHmI9EvAiwlcvY52hrdryxszOSXD0qoDH0yyR+RN9NIJ/2zANA0Xfznv4ndgHFYriLKM3L+w/akcBnHJtDwi/lj1nc4vWg/4nSpZaq71rFJsbZ7HBjfMciIGONb775ps3jO0tIUOfK7cWRXLQp98fykQ3nnntuZd55503tzRiF0vacR87rE2XA83Kl3ks7F+eKM+d57bXXql8nuEniUxwdxevB3JK5Dp8zX3J3fufyKmOMtRlXb7fddu3ajPLe7GCulZBQ6zq2n+kYi9px/AtjcRKpG01IKO/qV21xDZMcE+1I8nrEaqOCza233tomVkhMsByfZYd+bOTw2q4vbxs2CzD2Y+5O/DWSx+ijy7uYSUZljMiRi8S4aG/GN3nlENu9c/QNJCBQ+p/2i0Rs5o+x7hBHMu6xxx7Vn+soMV7tlTfNELMq98vEpdZaa63U1lRJYCyYtzObUFnz4W+E+wFxRR4bmxX68/iQI86jryAZrCub6PKKOFRW5fcx3883q6ptZaDooxmTdKdK4e9+97sU78rXe/rz9azuMxmhwU6PbKIYuK6xxhrVP7x6E2F2bbFowsCBxRYGZ5YTbA67I2JCUSuTKx+8MuFgxwQLXuw0ZOcyn+dZug52OxbXNMdfRKYzCQnctKLtCGhQ+pXXJJ/METRiQGaAqPn2ZlLHZI7+ggQDMp/ZXbXgggumtt10003bJCQw4KX8HTsvovydSU6NYzGWhUCSyqK8GpPluKbZOc4ibb6oRSJUHAlD/x/HlKg2MsGjBCO7VJiA0SfHxC1ffOV65n65+eabV/sTkhB4PaI/4fG0P/0MCzX9WZSBrdWfUCo6gpv0wfkEOp8s7LLLLulxHL3D1703dk20KcEGytiTFBY7PcuLhzkC0UzoWHBxXNg47o2cHx4L4QQ3o5/Oxxy1EhIIfLjzrXPlsRuBuFrBTHYVsiAeSTgkh5CUyse77rrrCHzGo1YlIY45Y+d3Pr4meESZ3ffff79uQkIcu2Nf3vx1zniaZAMC+iSb0qYzzTRTuyMbqCxEpab8taHtSdDOzwP2NWj8NWDcR/J1rfNpqSzJoi5zISrcMCZkc0HcM51ndo7FWnavMcYmiTqO+qPt8jEh51sz92k0IUGVDtuHXflRpYwF8s4SEmh7dxg2h7EJfS/HjOyzzz7pc8bdxKg4bo52pX/Jq3hS5YYKH1RSZcGWMXgkT9qfNCaOLVp55ZVTBVr6FI644PMYa5crJCAWdfPd+vB+2f6+VwttyviEcXYkL5HEt+WWW6Z2Z2MNlVj4e4iqQqFeLEBt5X0A1WkZ71Gxlp33VEPIETeMWDnXPMcDkpBKLDeqf8RmSP5G+JwjwfozkjZoB8Z8tCvJMzvssEOXq/qyGZK2p71jfmR/UmmTFBMbTJm/sLE3xiTNJCQwZiEey32ThD7G4/Gaed9Ud5mM0AAGW5StJ8BGUIg/ZG5QMRioFQQN3vS7hkEru08YeHV0xk25E2SXIm/lhQBvTo2J65Vd9vUSEgKlqRicUf6OQAbtDm9MzWFBkAWT/NxrJg5MKuK8vTwhgdeBICkLimSEusDSHHYbkp0f13NM0ghYxIJ4OSGBQRiZ/QykXTysLRa1eU/mMwkflAMMZNBGBRDup/lOuEDSwQsvvJDaOLL+eRwDYBe5KpXtt9++elxRLUwO2KnCOCUvXx/iYyYoBCwoua6uKZ8PyY5xEhKYqLGQRYnGSHaqx3tl8wjYn3LKKdUFW44HCPm1nicpRGKfFSg6Fm3GdUvfzcI45Yvpt7n/lc+GjMA/1SoILkViKn8D9SqZqXY/wviPhRUWAzmyi7EGAX6SPKKKCkHocnndSEjgzfNoG5P3E/vvv38KZlKJjHE2O9k4qiFKmpYTEuh/qNJEdRB+9p577mlTata5ZnOYQ9LWVJ3IKwrlVcnoj2LBMNjOnaMNWaCK6kDcM8sLXfUSEhhrstiiSkNjOK7RciUgEhI4iquzhIRIdKdKljrHNUu7szucdmO+mSdM8n2udzYnsTDYyM5w+5PGRIVCrtnykS6IuXpeIaHW5j3buzY2L5arLEUbUtmDRdfYDMPia4z/WNCNfoVkshiPUw5fjcnvhXHsHFUoIvmdN6o154kdVC1j3p9vWOWNTZGnnnpq9XG8PnyduWv5/9VfENtjPsP4gt36F1xwQYqV0MbNJCRQ/YANqKzDkcxAxSc3QrbHmIRrk+uO9yAuGHHYRhMSaFPGhlEVmw15cQSS7a1WMBmhQRGEYxDAQhZ/kJToyRMSag2uyuW+9aOOytHRQdLGm2yySacdXr0zhBzstj4hobPr2DbvWK3rmJ3jMWiNxdzoO8iEzhMSIsOfxxC8tqRj46W8ApUott122/RxOUOfhe9ISGDARkJIBI147/Xd+dnLGDRoUJooxOcRDCLJIM4czxMS6vXvBDPi8bwuob++Dvm5p7USEqhIEeMTFkrK7RXvCTIzIaQstRpTvkZrXYNRIYGgPwkhnJfaWUKC6ot+O4LPgQA+90wCEbydfPLJnSYkdHXnRX8R7cucJsYcVGwiyBY7rUhMYBd5+fUhEZXF2ahCQdl6z6Rtru1j0ZCKTfniCYuwLNhGIjwV30jWzsc0sTPOo7qaE+VdSfKIpAPGKIxLqDhWLyGhHuf5bUX/yzylfB/M+2nml/QxkcCU9/XlNrWNm/P222+n5KYoT0//kie+10pIYPweC1nlDTaq1Bx3szjLAlZ5TlmukHDbbbdVvxfzI/pzqseZLNkcNizRP+dxEJLFSGyiJDUJldHv5Nd8XhXE/qQ5w4YNS9fyhRdeWP0abZj3E1Ri6ahCgupjo0DM8amel2Phm5hI3Dup8MF1Xt5tz258fp4ES95TyUKNIwmYeSWVPjhKhHgJ1WrjdaHiRD5GZz7KfZaEbaoiUiUrT/rj9WDBnR3q/fUYY/oIqjPRfsSd6I+Za9I29OHNJCRwvyRuzu9i7hNJrC6Mt0clSRLzqJyXJ76TdNpMQgJtzPVN3DGOwrC91SomI5Q0MjDlyACCcuWEhEDgiAmf6uOMU7Ka69147r777jbJCB29VuxILJ/vqZ5JSMiPy3AS15yYrBGsIMOZDFsWxgn8xA7y8s29nJDAwKtWNro63uVJf0zbsdOTnW+UXKt3HecJCbw2BOcMyLVXvlYpB0vWPgFMJgqU8c4fF+8J3EWfUq9CAo9lAkh2OUFqdr7050SE/Bpl4bVWQkK0CwvgBJ6nnHLKaolARMCOx1GeNA922Jc3fp47FYHiCC4mZ/lut3JCAhM9ExKa18gklwAQfwsE47je88BdrYQEdY6xSexcoYIQfTr9dX4mLfdPjvIKeYUhFs4Z19c6Vk31EaBkTslb9BX5gglzTI4R4BgYdhJRjQL5TlzmQWocuwrpn1kwYcdW+T5IX89OZa55zkaNhIT8Md43O8f9kPEeVa1YaMlx/dKGMaYhnqLW30eJs8QxdByfxkJJR0ke11xzTXotYrehGis9zZibhOFmEhLKu/YdrzR2XbMxjHFKXt2NXZ8kIrCQSEwlfx2IubATV91DTJbrmHlQ+XqN/oZE1IiRU50iv97VOcYa9RISYsxHWzMWn2GGGapx9Bg7Ej8ntsIxAxzn6ni8ufkmR0PRtrFIG/dGrmOu59hpHn13R+NA7gdUNuPn+nuyMAvizCvzmEkkJDRbIYFx5XXXXVetgu3CeFv5NZn//Uf/QV/RUUJCrfbkZ+Pr/TEOq55jMkIm/yMj84dFv3IJ9PgDJHgRgy0WuOIP/KKLLqqejZ2XHNSPaFMytWgjShnXEucrcb4NO1XoWOsFgcj6pNS95epHTEIC175BuOZEv8FkmWB/Xs4rAvwsruSPLSckxM9RPtOKCI2396KLLtquvSm7RpZuRwkJUW6Q7Ogoea//ZY3Xyu4mG5z2YmGQIFGcr5cPavOEhKh4wOuTL24F2pxJC9UpQn8eAOf/dgIU9SokEAgi8E9AjiMbWBwkEzrangV0di5zVq1HjjR3nvtqq63Wri+hHCa7lfPrvJyQQHC/vBtRnSd+EOQnuWn99ddP7ckulfzexz2TvwWudY70ygN3Biead8IJJ1R33+cJNPQ9HMVAv8HZzOVj0BwPdo6qVuUy3oEjofIy3bXuc9wzmWuWjyvyOu+amGNGm9daVKHPjiNeOLqh0QoJ+hHHyeX3S3YVXnnllW0eQ/A54iYk/6p5nfXBJBZEQgJjbo50Kfcz+e+IhVz7l87RN7PYTTICyU2NJCTk8xp1rNYCCPHVSSaZpPLzn/+8+hjKdddKRAC7b4mzOJfvnjh2hOMB6vU97FxmMZzKWtHvm9jUuoQEsD7B3HOVVVZp9xqQODzjjDNWjzhSY9gcxrFbxKY4RiD6nPweSL9NHx8JCTGmL1doJkbGnInH0UdR1UL/i43Uiq10lJDQWYJef44LNtMu8Xm+Ua9WQkLe3uUEYqknmIzw/+V/nAQ/CUCwI5OsQoJv+R9kdKAsypJlzh8ygf0NN9wwLXKRBRc7LdQekwQWRAhSMGhFHtzkps7ELdqWHUH59/KBARmgLH6RxU+pWPV8QgLnBtVaPFTHGLQS+GQnJ2WqWNRl0sAAjHblY0oM1ktIoDwyEw8HtY2hzchwpn8gCER2KKW9qXbAJI6S0vfee2/dCTXXOBNv2/tHRx99dLXMWjnYk5cHjAWtkF/PeUIC1zOPZZG3s6CnC16NJyQQqOD+GqV5mQxTXYUygXxOnxOTPSdyjZ/nTt/NziAWDwlWkBjG12jTLbbYos1CeSQk8BowJrzhhht68V8ycsiDE5QtLid+ROnop59+um5CQpzJqeaxWEWgLU9S4jWJgMVBBx1UTZrkNYpyjepYnD/LbsJa97GoAkQfHffVvF+On7npppuqfZC659lnn02vSb6zNn9tIiZwzDHHVM9fnmqqqQzONYk5Ddc3Z2GzO3CMMcZIbUl1MpIS4uxZdnHyvaFDh/b2Ux5p75v0HSRSc9wF1SfjbPHAgiAbNxpNSFDjuBcy/2Gs10hCAo/J55/6n7gey8m7VF067LDD2hxlwQYNxn20O3McPq7V7lSCY5GLMbvXd/dEzJXFKz4O5Q1jxMOJAXAkJq+JWpuQEEcZ09/klYHPOeectAmBdnfTUuPiCAGSTumbaUfUOs4lT0hgvFIryZhkBBIvqQTgEYH1j9uK950lJPC4q6++Oh2Hoc51lsBRLyGBeVHchxmzk1DGJmupJ5mMUDorNXbRklXIYlVUP+DrecZ+/Mxbb72VzhaP85k4N86F2vrixsMgKW7glDwmaB9BiUBQOQZitSooUPKHyQjtbqC/518zrmuSdMhGp3yvmhsQsBjOjZ3AdEy0WZBl1yxZ+1znDMDi2JdykIg+x921jbc3fQztSgZ/3m7srmWnLQFmqh50lJDgZK7Spm2YhLG7JLLGo73yRAK+F/32SSed1GFCAgEmEkbefPPNEfgv6R8JCQSemWDPNtts1R0qJPhR8SMqW7jrrbnz3FmMzcvq0t9QvSMSEkheynGfHDJkSAoOlRcGVD/xg3E0AYlNN920ct9991WuuOKKFMQn2MyCFX1GvkuZBS/+FuKM1PLfgv7nsccea1fVIK+oMu2006Y5T54UGUdEce3H18EOIpKKI6FYtdFHxBnKeWJ1ft0zto7yr/lcp3x/jePr+LtQ9xDUpI+hPSn3Wi9ISv/O/TPOqCWJWF3DognjQ47ziqpCjE9ISmBnOdUReE2Y26sx0TeQQMZ9MSpM8Mb8h/lmuZ8vJyS4QNuYzhJ3G0lIYOxN/01/b/XU2piTc6xijPGIk5AIxjFFjAfjmmfBkA1gjAupQkayQvk1Io5IW7OZxg1LneusL2CBcL311kv9B+/zvjranteI1yUWdMvfV2sSEkiG5+tsMiBpkuNF2UTJOL7W8Zeqj3kMccFoa6ok1EsKBrEwKuHwWBI/al3brHGUj+FRe/USEri+IzE+jhblyFbjVm2Vr70Yc8RRFs0kJMw555wpeTgS6NmQXV6bk1qt3ycjRCfIHyPJBwxq6fQiYMcOOM6LpOw0f6TsTq71h8yOFYJzntvZXMfJQIvdbAygCHaWO73999+/OjjgJsTiCjtTuGHFAi67nYOT6p4R7UpWeiQiOLFoDMkFF198cTpvjEFWBPRjQMWCN99rJCFBnaPtSG5iIZxFwFh4zRMLOHP5F7/4RUMJCfoR12Pc4+gHyPqOgFo+QWAxMPrtvH+ulZAQ7e1Zqa1PSACTOQITXOME4/IzydU52oyxH4kcUeI1+pK4dhknRkICyWX5a0TCjUdINYZrkr47Fr/LJXVZCOS1oN/mcfn3ua8eddRRKUBESXy1deihh6Z25Xz2Wn0tSSCct8wRaiESrcuJCCAxle/XS25Q2wQb5ofxMQmR5d1Uw4YNS23NmOXWW2+tfj3vp6kKwmPKu7bUnGg35vr0JVR6IgAX8rEii1ksmDPO4bg01ZaP56JMcX7GbHlBnPPbOfaP65mFRMp6s9jI51Tgcu7TuXyMwX2RtiOOte+++6YFEqqt8DUWWaKiTTkhgSSbhx56yL6kiU1LHe3OZLxIwg0JTCQl0K+XS6Uzh4qqQo7D26JdIvGLJGAWtombTDzxxGmBMG+vqPTBwhULsBdeeGH1e/Q93C9JUOXn33///fR1+5X68ralT2EDDTtly2fdMz6J/obqhhzJGO16//33p2pDHOllXKVnExJI7iOOlVeOo0pz+fVSY7hHUnWMdmTNhzgh6h0RTdyWxzLvVG2NxvU6qpAQR8MwN7IyQm30yRzJGhh/M/7g/tdRfxCvD/P7uO9Gkg1Jw1GdwnGKelK/T0aIPzIGrSyIE5yIACc72Si9G9lCvCcokVdIqHcGqGrLOzQGr7Tf8OHDK3PMMUdKSiD5oJyQEEG68hsd5tlnn93m96nnlM/EUmPXO0E2rlcC9+wqJ2ux1jEMJiR0H21FJQTacLnllktZnQym+Hq5jGA5IYGghxrD9Tp48ODUzptttll1sTXv3/MjG+olJKhnExLqtbWBoeYDQfQVtSZl0ZYkS/I4Kj2Vv6fGcM/jOAwSgGNBkPbO25yAcxw/QhJI+efd/VbbgQcemO51tY6xoJ+g7bgP0q6cucxxRnxMgKOciEBiA8E6dn6aRNax/NplvkPCB0E2EtvzRW8WSyIQysIKJUlzBPzZ4cnPu1Olcx2NM6Jfvuuuu6pze45JK+/Ip5II5/4us8wy6bWLn3MM01b0Aewu/O1vf5sWqGaYYYa024qE1eeee65NokKOErDbbLNNdfxC3+713bjot0mGJFaS98ckPdGmxFaoPoFof/qbWMhac801jWU1uFBOKWN2IHe085gEYGJZVHFiUeXwww+veayd48Pa2NwVx4LGZiWSKEPeh3AkHdcv1z99B/EW+p84/pJd4y6odK48d49E1HgjJpXvsr3++utTZZVIwmYRnHtlfJ6/XmptQkJecZKqISRp0/eTCO+GyMbl/W9c/yQk0L9HZaE4ErBeQgIJUbW+rh9xTXJkRWfH+kX78Rqcd955qQ+nwkrs0I+2ds7Zts2IeUTfQCIv80rajirW5QS+WmJswton4/Zye3vfVE/rV8kIlPCi5GIZWUNkAFHyP8p5k4hAOeMovUsnyu6JOH+Zsz+DN6DG5BOIffbZJwU5mUhHQgI7siIhIbKY86wvOlnOmWQCzYJLfnanwaGO1Tr3SiMGpXnZ+RNnMpFxXusGX05IoJRjeWeoOkc2/mqrrVYdnDFpztVKSOD1YWL94IMP9sIzHjnkfSyDXUpGR6IN5WFNSOjbFRLUvSAQZ0l2dJzIJZdc0iaw7722c+V+gJLRtCGLWMhLXOaP5ZzOuEfSzk6W68uvwwisMa5gcaqcZMA4O/oQqsSxsFheRGFRnB3MHN8QVYdUX37dskM2Eg7oTzjbPU9IYKdbzDN5YxzDPHTVVVdNyR8kYL/00ku99C8ZeeT9AW1KkJ5rmeSD8jVLclME4Kh+w65yXhfuocz1+Xq+41a125pKWVRLob3YxczO2LiOWUyMqpL1EjoYTxIXiEQE+/TGcK2yAMgCSt6mBPQZnxNT4dqvNZdkkZYKCp5p3RiSH0kU4974q1/9qsOEhFdffbX6N0Bgn7iWJbsbH6tQBZXkAhIoObYrzrKu9XiOy+XIKBbQSfTjXkk8l6TJevEW1W733/zmN+ma5dpl3EFiR/TjjFnynfkk65GQyniQPp6/C8bu+RnjzvV7PiFBjSlfi/WOveXeSUyrkYQEE1Rry9uKSim05YYbbtjpsX4xH2JuGsnxLox3jkSx6BtIQmDcR8w1xhz1rs/4OjErNtLY3uoNRX/7Q+Uct7x0FChRt9RSS1WeeeaZ9DmLKnE+zXbbbVd9HKUx+RoTv3nmmafDs1hUH0kFcV5hTILpMMsJCbV2R5R3ycGgf3vlEujlAUBXBk75z9TK8ld9nAPMLgmu+1122aX69VoJCSRMMZhgIu6Zks3jmiepgMSl2BlBQLr8mMD3GPRyb8iznFVpd53Sj0RfwrVKO9O+jSYkcK6hRkxCAouG6j6C+ATYKHlMgLQssvRfeOGF1O5DhgzphWc58ol2Y+wXY29KMHLfYxwYpY1rHe3CGJ77KWW+1bm8P6bdY9cb5aSjAhNoc5KEWQBgnsNYPb7O68RxDSw0cn6zR2G0V56LxG5j2o4E9wiARvWmGWecMS0m5otULKwccsghKUGShRUeR3uT5MQClxq/1tkVNM0006TrmXakPUmiif4mXHXVVWnhJcbo8cbnHgPYOcaE7IylJCxnzTJvoS8n4WmDDTaolj0uJyTUe+0MgDaOBA7aN1+sZcxCjIrFQarcxHydRRYS/nJxf3W3YWNuuOGGNOehT6Efr9UnR1tyZAbHCHDtk9jkkUadiyqGyy67bHUxkPdUT4kKKx2h34nXJPoRFwobc9ppp1WrwHFEQyAmRfszJiQhsjy3ZLMe7c5bHmu03Xs2IaFc5czxSX35mILkVCo2UYGPqles89CueXJ2IwkJ6ritY/5Df8Fch7Yk2bqzhAR+nkp+Lox3Lt+MERtieMtjI41UvYokNDZm294a0fpNMgK233779MfGWW5xfmfgRhOZ45wLScCNc/ZyZP6TFc0iOr+HrHN3Lncu79AYrLL7ZO21165OLGLA2llCgoOA5ktmEoxbb7310o4VgkIE1ijr1eyNJp9UXHHFFZUzzzwz/T2o8aMsaLcIdlKlJZRfBzJD2cH1+uuvj4BnPGooBx0iIWH11VdP7U1/Uw5A568V3ytXY1GlXcCBM8hIpol25n0jCQn0F3HmW774pZ5NSLj44ot79XmN7P02H3MdR3Iqx3Tlwfz8Go9FAc9z71y0MeNn+g6O1GE8yEJt7EZmN2e5X4/3r7zySloMYEyjxseEcU2yY5A5DiUwCUDnfTK7Pffee+9qH8LiLQG7WBTgSDV357cXbUvSQZw1G0FNkj84BiDGzJ0lJMSYhPOXL7jgglS9Lz/zXbXlfTcVDqJ9mQdR9pVxYBwFwK7OHFVvWGhkpzj9Cok4t99+e83frbbXPckztCuJCOVFbb4fsRf6m1o7nNU1tG0ccRGbbLincpRLOREhEibpz8sbclRbPobLr2uq7eUJCXmFhPx4KRZumeuzUzzml44LG/OnP/2pcumll6ZqkWwW4xrn2Nx8kTzvl/OxeHkzjjrHAhQxbY6Cij46b1PG3FQDIbGG8SCflx+Ts+17DgvnEUu0CmLn8rFbJFtHwnUcK8LcnnFMxK/KCQlUtaXd1bHoDziqiLZjzYw1nzzRl4qGHSUkROVDxu4ujDeGcV8cbRRvXM+ho/ajL2ddk0QEjzRSb+gXyQj5JIJzryIhgbKAtbBDgoncww8/3GZywU2KRXLKrhN45qwydSwfkJKIQACI9ifho9bjGq2QoMZLZrLLngkG13RUpIg2bWTCkA/kmFTzujBIYLChSlM3bnbWNpKQoI6Vgw1RQSK/VvkeVW+izOBaa63VYUKCOsbCCO1Igkd58baRhARKHcdA13ZvvfzaJwhNINTyu50rL3gzTmGxML9GmegNGjSoGpSgKlaevHT22WenMeVcc83leKWGWn/vjKsp28gOcLLyY0Gc8TWLhSx602fE65Mv1jIu5LU44YQT6v5+tUX77rbbbtWKEyzQUlqX3eIkJOS7gjiDkl3NLGqxM4UxH9VBKONo9aD6WJSiTQkKUTmCa5w2jGuVuWhcq7USEjy3vTVIumacza7kCCDT7uwk5PWJKgl50ki9M4FhIkJ9tA3XO/e/8jg8bzf6etqdBa3870DdE0mQHCHAvZLAf61EBDAXoqS6VW061sjfO2PASEjYeeed2yyS8/MsBJDw9/zzz1e/7jy/MeW+gZ35JNHUS0jAI488Uq0+pOZxnyRZjGOk6iF+QgUcE917H8cU07+4DtG4ww8/PF27VEJlQypJvg888EBl8ODBKU5Oe5KInce2SUjYbLPNqpW1OfbFsUtt0S5seCQWwpiQY84j0ZeNMpH8QZywXkLCySefnDY+EYuB983OUXWJeQ/jkptvvrmakECsJHRUKYj10IjbWiVLI1q/SEYoBzIJyMWNpVwhgT9oyttxXhY3qhy7ifi6A97m7brrrtVAxMCBA6udXXnxsJyQQHsTqH7vvfd67bmPjDuYmTAwsdhrr73SDT9KqBFQjt1ujZQMzF8fFgYIZPCakLWu9uWm2RXL4IvBLpVVCDCXj1owIaE17c2iylFHHZUqf7DjnpKY7D5ksSQSyGolJLgzq2s4a5m+u9YRAI0mJMCBbm2tOH4o769jcdf2bqwvYaGVfoJFKsaA9BUc4RKVhFisjR1a3APZwb/TTjulcngEpD3PvfNd+fm1+PHHH6ez2hkb5hXGGF8T/OEeOeecc6YdytGfg51A9PcmfjTXL8SxRfl5vscdd1ybhITymJBrn36c65rXwEXZjnEPZGxNgg0BTqpJ8DHHE8X5tPwdRDvWSkjIr3U1jyqHJIzNN9981eO5SPLgNeAYAeaVEVzmuo9KN9x/DTI3j/6BHVUkLeW7CkNc6+wmZ1ct5797zF/3cJ3GtcoRI1Gxhvsl/Q2LLuU25mx3YgJUNrP924v2jDEK4z2OV6RCE1VWaOdyIl6ekEDiE/dWxiRUCGFhi3gL8RjV19GYIk/OYwNTnpCQJ3lw3NSAAQNSaW/nO13D2IO2JbGMcUm9eNSwYcOqx2aod9mPN461Ho5aZPxBhaC872HcQj/PHJ65JbHuvPw9CQkck8Y9VB2jzyahKaoblhOsGW/Txp1VSDB+1fiYJd4Tx4prNvrzckJC/nrkFZ2Cc3z1hn6RjBCdGQMsFmQ5t5BARVRIKJesozIC3yP5gCy4OPeaCTflqSyX2byoSBG78+uVCcwTEs4///wUrObxZD2rc9xIojwpN6D8Rs73WEChTcn+jB1yHf2uciICE+xaWen9Vdz4GTituOKKqd0JTBB0i3NSCXyWk57yhAQCR2q+vWNhkF2bBJUJtPE5ATmCSBEEKickkLyQ74hT466++urUhgTeuA+WS9rnCQlc9+VEHP1PtFte0jUW/7jv5buUu/q74eJKY31JBDkZDxKQoE+JBUIWwyMIzaI5CZWxO4g3qg4RqKg1sevvGIsMGTKkzQIrbcgOCXYpc3+MRNM8+MmRDQQ0WDykjdntSXJIVKcgmGHiR3NI8KXtuFZjXoPjjz++TUJCfmRDuf+wP+kcgU4SlGhrxnjsmi0vdKFeQgLzUxMSGle+JklWoi0JxkWbc13Tp5McEolPJAzzOBZvIyHBQFzzaM84Wocza+uhn+feyjzS6iqN6yxJnVgJcamIr7AgW0Yfz9iGhZhIGLEv/5+8elj0u9wfY+NG/jbNNNNUbr311jabm2688cZ0zFQ8JiqvzDTTTNXr3H6ltrgfkgTJcURs5OB+SeJYrSpBeUICR+lce+21KX7CtU1syn6lc+W/++hfqHrAYi1x7kjyza/b+NuIXbe/+MUv7EPUp3R01Cq7xvMxSiT0xTVMNYQ4HoCEnHKfnfdH9uf10ZeTDMxbtFl5Rz7x11gL2mijjaoJCeV2tX9pfEyYJybEx4xVaiUkxJomsSuSLKXeVvSXP1omzAQz2dHGYIs/Qsry8EfKBDlfHCfbmcewuEUQNCYlBEDjnCw1Jr+ZxLnLlOmplTFX/hkmfGQ8sxCuxjBh4BgGBgKxEyuuf3Z7EvynfGMkIjBwKJ9VWy8RgYmKiQg/yrMROROYYP5WW22VjiIh+YDrneAyyQkEi8rHwpCQwM/wN8HkW41ng7MoRdv9+te/TkeSUHaUYwSWXHLJ1J7030w6InOc14pjd9ZYY41qRm6t614dI0hBQJMAfhxjVOvIhoUXXji1M4ssTijaivagnVjojsVYrmPGGCx0sxjbiv+HOkb/sOyyy6axHgl6JIHwOrDQTbCN65yxIvfMOO+dACpJI/TxnClOgmt3kkdGVVRlog+gWk1eJYVEJr5O0i+JYxGIKF+zJHcQQGIsExNqAvwkk73++uu98m8aGUW7cv1yfyTBo5yM11FCguqjQhCJ0vm1y7yGuSVtydiPeWdeSax8vywnJLBoTr+i5oJyMZ6777772hyJwZnjjAcZi8ciC9/j3psvNMZ4Ro2L65ed4LThlltu2W4neDyGrxNrYS5ksk1z1zf3SBL4uKdybbNwmM/RGUMSq+I1IDGEeBbXM/187FL0/OX2WPxmLpnfDzmiiCMuWSyhwtsVV1xR2XPPPVPlPdqRsSL9fr4rmf6d14cjeTjGjr48ErFt69qiXUj8YAwe/XCU8SaOxdEB5fa766670saP/Axyxoiedd25vM/gXpj3w7RbvA5cw9GPl4/UIdmPtic2K/UV3PNqxVLjmo/KcJdeemm7fiKub/oQEpt4XHkDWfmxqu3VV19N7UdMvFwNMX89mGdG/02sJV4P++/GE/joi6lQQ39Nch73xohThTwhgSO9qHDL3whrOhyHGUdhSL1plE9GyBcLCcKxQMgkgWAmWbZRBYHzaeLmwyDszDPPrJakJpCx2mqrufOti/KbUWQeEvgkq7meuOGXd96qYyzKEgTles0TcZgk1zpHkhsVk+h8YdZEhMbRVixiReZhXm4anJPFrgmC0pyZWj7DnV3QLHZF2TB1jqMZaO9yeW+wiEJANMqW5n02fQqBao7PcFdtbY1MBDgLlfYlsaNWiTX+Jki8Yedh+XrXj9dplKpjrEHfOssss6TJAWe5d+del/9svRJ4/V2ML7j38RpQuSn6khiv8Bqxs5/gM9WEOFsSjkM6xzUdVWhi3BBtzj0vqqfwRlJeR6jAws5lzg1m7N7I8VLq+HzxtddeO13feWAtT0jg9TPBpmOU5KYtmSfmASCCO4yZqQwU1Zhob8747WgXCwkJlJ8mGcG5Zufyfpjr+qCDDkr3O76eL4jTpsz9SRJGzHXoTxgjRoUEgqOqrbN7HgsB7EymHVkwr1WaPs5rZp5kwLnxNmexNq/EFAkHlIzOYyuMtWPXeP5GQiVxrtg1atv/z1tvvVVNmmahKqqjUEGIcTgB+/yIKbBrPxISovJKLsYm5Ypnqn1tsxuZa5n4CPdLEmgYL8amAirY0reU25GjFk866aSU2EolEI78gu1dX942XOOMW+hX8tgffwMcYxQbNspJqdxDSXriiGOqTUp9BYlLcc9jXh+i746KwXkl2nz+E309CWg8jgplah7jEMYcbHzsqAItaw88Ztppp03tzb1VjSfwxT0yrzjO/J1KlOVK4iRkR/IeazmxscMEPvUV/SIZgcFq7NLMd4uHzTffvJqQELuXGaAxseCG9Oabb3ruWzcDFvn3yDKnvQkQUfJLrcPOB242BCVAQJmKCLUSEbgBzTbbbGnBoNbZYwRbPZqhY/QTHBfAeanRhlzr+fV+0003paAngwHK3Je5uNIcAvtck5HRGW2dn/UZGf5ki+ZnAfO+s+NJ+pNapefYGXTeeeelxKZajyWAxGIiO63Igs5/Nv9d8XjPfPsRfS2JYiDpgAkBgU+CO9wPWRCJiUFXMvDz14HdWwSUXnzxxUp/V+8aJADK4mtUvIr2i/f0JXG+OKXXnbR1jvsgRwEwMeb8drBISNIeWfmgak0k+xJQrneN2t7NqZe8G30JfXsc1RUJefk9gISEWFQ855xz3AXUAe599An048h3ATFfpP0JkNLfx5nieUJC3ifF/JL5aSysqDFR4YCdtOUy3Sxaxfdo23zhhbOvObaBPiYSzdReXKck6z355JMpmYwdWOVAMzsOIzhKhTiOSmOsSBUhKiFSLYQdzF7fjWMxcOmll06L3yRZM6ZjsYQKn+wgJ/Ej70e497LQuNtuu6WxH5s/CERHUqr307boj+mfI2GM8QrtTMwk0L55u0UFm6mmmqrdrsK453rfbOzaHjx4cEq+IzaVH5HB16MvYfGbhIRaY3hel2hzr+368rHgAQcckBYLOXKExLC8tD33SI7LYG5P25OsQCyAjXpsTIrkHasiqC+i/66VkJCPT7h35pWw84RgsGmMuWtezUzNYfxHW++yyy7VOX+IfpqNBcxF6UviiN0rr7yyl55x35fP4bknEjekshMJYqxbkszBOgTrDCTBlxMSmOMwxuF72267rZWb1Kf0i2QEAqP84UbAs7x4hSjfTYmecjl1dS7v0Nh9fO6556YMRM4FpgpFOcM2SviakNA1tc5W4o1dhHGsCAvfCy20UEpEYBdFnnDAY6kSEuXWypPns88+O022GbiZiFAbbUbbxC58Frnzsnd5m0ZCFIvk9Dvuru0aAqIs4JIkEyV383aOfoggNIsqXP+WnK7tsMMOS2W+8uoSLL5GuVdK6rL7JHYU5gGL2CFkNnPjos0Yj0RwmAUR+mcWq/h6rbM6G5X/TCSS8f/rz2XYaN9ImClPuuiHSaphDPL888/XLaFO+1G9hgpZ5Ym12qM/iR2a0fbcH/n8+uuvbxMcIujPGITjdtipqK6L+Uz5+LO8yhhjQCoK8VrQ5iH/22DhkEC1R9LVF31DJJIyxqBcJgGgcj9DEIgympF4kyckgDLgLB6+/PLLI/BfMPLK25e+mfEKQbZaRxuRcMP9lcSnHK8B1eJY9HJBq60YD9Jv5DuxCGIyH4zd9lH2NU9KIMmMxcVYEBgwYEDqS2KO5E6s5nD0HONwxjHRv1OFhYSQqKxVTkgItRKEVWk3zqMviOooJAuTYMbRUihv3ggcE8DjGWeXf586R3uRNMPYe/vtt6+OWYinULkwFrLiiBEWxeslJKhxUZ2G+169XcuMaTiqmPtjucoKMRXOGg9e9xpZKiTQd5Cgx9c5cqfWsVwcnclaEUk3cXym2qs3loj4N2sPxJ/YZHPcccdVF76j/+bnSZQkrkIfcvHFF6fXhUQp1cd9cqeddkptxZpOea7PXJL1H2IqjGFI/M2TbYjv8nEkZTsOV18xyicj8MfKQJZOMXZ61irNQ8Y/i6/8kTPJo4Sjmr8xUcI7AhX5eW6UQS4H8vOEhFol71Rb3EBY/GYiXS6FTnnBvEQj5y7nC45c/ySJkHjDJJxMu/LvJ1DNz5uI0DGCdGSRs1DFx+UbfPxtkAjFRK4cFFXjuG5ZCI+FLYIZtdDmTCQI4pHhzIKYk+a2WBSkDdkZmJ+/TiCC/oKBbPQhBKAZADPJi0V0Fk64nsnEjUUA27g+Aji0JVWYor0JdMYOFHYNEsTnPOCuLHjXOlqnvyeSsaMnxnNUt8r7ZtqLjzm/ul5Zx5hcM4Gba6650uPYLeF1Xmn4KBdKMJI8Rj/Mgkq5Mhm7Z2lbyjVSMcuEhO5hnMc8hhKOXP+1jsnhvHGCFfTdJO3V6kPKY0L9T95euUjwoD9hd1a5j8gTEigJHrtW2IVI/8TfSb5DUbXl7UoiAomStClHLtbCeIbqbzyGXUTce9l9RcCOPqezI2L6G5Jitttuu1TRIFDZIO5/JFNTBjbOX+aNOWS+oYBdtMztmfdzbZOY9pvf/MZS6g0o9xuMxaN6R95HM3Yk4F8rIcEF2+4lJPC2yCKL1HxcvA4smvA4FlTUPK7RjTbaKM17YgGLo4miSi3Xc4xDYo7E4jgbnew/uoZNdlRNpUpQXoms3nyGeycbFpj7k4jG3DQ/msHkJo1sCQl33HFHmyNgrrrqqrSBD1R7iiQzkipVW378M/Mh1m7YzJH3y6y7MeZjjE3Cwe67757W2ALV5JinkhRFTID1tpg/lSsR6Udcq6xnEgMP5UrMzG+ofEi1Ca73eAyMXamvGuWTERjoUkadjo4dP6H8R0kgiAx+JtA8lvObax3poM6zbtmpws2GiTQ3l0jy4ONywC0SErhpXXvttb323EcWEWhgksZZqBwtwsJh+RgRSg3GGUIRKGKAQBCDQQIJICwSxOtRnlhw7Rsc7Rw74qLcNAHpUC73TeCUwUGUaFfXRbINO8nzxVb69Pw6ZkBGIDSvVqFKdXcVi38sWIFM2XIFiRtuuCH1FVFCjQVuzp5lYYXEmzh/nMQm1UfbsuOK6gcE6kGmOP03fTdBHibMLEiRkEDZ6U8++aTN7yiPV2rt4M8TEQg69edEBK5J2jpK8NImb7zxRvpePtGlFD3fp0JCXqq73JfMOeecaRLoES8dy69Lru8ICLEQGMqVgVgQpH1NSOg+Amrs7CHZgP6GeyB9fByXUS41TWWccvUE1RYJurUClSykrLXWWun7zDfrJSRQgY/XhmASAX7urSQF9+e+uisi+eNXv/pVGn/nO65C9POUqY8qQXmifD5uMUj3vw0Z9B0cW8SROowRQQU9NnNwhEs5oTXmPuwmL1fQIomPSk+Mv6080bloG9or5ur03YsttljNvplxZb2EBPvxxuR/9ySI0T8TM6GfoHJT+XHRvjfeeGO1Mog6VytBhoT2qJTFtR7H7dCnl++73DPpl4h3lctPqzHspKV9mdfXE9d5Z/20/YtGpoQEKnzG9c2xuYy943uMxTkuoFbyguPCtqJfIFmV6hJxpB8JB1Qni81K0aczjozxCcdKsQZENUQ+J8ks5vqxOerggw+u9HdU56iFa5F7XyRL8lrUq8RMVaGoxFeOZUl90SifjACCRwxkWZjKS/OU/0hZROdMPiYYUbZX9eVnWxOMm3XWWVOmW5xFG4vmlPwi2B/lwfJdF3mQLy//pfrtTZBowQUXTOVHyean4keU64kbEgsvkWXOG4uITLRjVzlZoXG+qgGijtUbkEbfceutt6ZdyLwRsIvH5wOFQw89NLU7CTsd/U7Vn+hGQIPBGv0Ji1cEpWudN37iiSdWE0QI2tne7ds3SnWRWLDCCiuko3VqHWnBQgmTChZjaVMWUNjlyRsfU4HCkt4dtzfn/NJ27CwhcYzEA/rvvAITk2ASIssJCfnfA9d6/hqZiNAeC9rR13KNx/mzeUJC9M18TsICwU4SRmpNBFm04ufZEWoyQseinyWZkfEg1zhtx3XNjvz8MfUSEkiAyqu1qDn05/QFsTjOtU0QP+Y1jBXZJReVK2zrxkTyHUG1fKEqrmMCa3HcX72EBBZso8wmCcHsUvTe2Twq7dGG0b/kZwDXGjdSkpoA9NJLL51+loB0MFD3P4wrqFTDhgzGddxH2f3G/ZN7ZMwT84VFdipzDee7mWGbNifalioUlKZnfsOuceb5HDUXlQ3Lc/U8IYF+iaQ/5/PNyfto4oNRwYY5Edd3iCMbeDxjwbw6n/PL+qJtmM/su+++ba7P+JhqcFSX5L4Zm8AipnXUUUelPok+iKSoKPmtxtDGtCWl57lmGQN21j/HaxavAY/3GtfInJBATBBcx1RLZXMqydospLNhkmpP+TGCjmFqY4wSR7lSZYK1hTiKi7FgPp9kfMLcPl+LIAmBxIVYf+DxLK4zT+0oUao/4MiifJNAGZUOGeuxjhNjwvw6jY+p9ERSJZU+pJFBv0hGiMUW/sgpDVY+sxPcqAhs1DtHS23lA1OCcOyip33ZhRLfj4kGA1oWXSj1SAdJwkd8vbNsMLVtb5I7aEcCmZRCjkWVWhMFBgIsgpP1SXCJYAWDBUoMxq4XAxcdy8tjMkkmcEziTd5u7P5hAYVrm8kypRsppxSvzRlnnJEWwigX6zlkHcsDnrQViR4EhKgskSd3kLjEAguLV5wxSRCVwRmvEWeU0d4EN9xlW+m0jyXYE8fpRDuWB7e0PW3LBC7upUweeE//Uq7MorZOO+201FYkCjDx5T2JS3k/Esfn5AkJeeCNfoRdciSNIP/ZSEQgU70/JyJQkSnGeXlZQD4vJyTEPZOKTAT/2UnO/fHMM89M4xmu6SOPPDK9HrzFUQ+qLRap6Cuieg07HaJKEwvfkQxcLyEhzqk98MADLTfdApwhyS6J6KsJvvG3QFITJdfph3iM6svH1rG7kL6iqwkJPJavU+KUwJ46Vm+Owjg7kkMYl5TPT601H6JvqnWMmv6HsR9jQCpDsjucXcrcM08++eR2GxBC7BLnzV3LzYu2ZJNGBPmZu9A3R7sy1w+1KiRcc801qU/iHpvvTlTXjmyInbPMdfh7yPG3QPyFDR32342h3+VoHNo0NivlbU5MkO+RKMbX87k+u2k322yz9LU4Psq4VfMYl9CnR/uX+5F4PUhK496axwGkUSkhIY/d8kY8vFbcS2037vKepFNir8RGAslkxKZoY5IniZGXkXTwwgsvpHFOtDWP22qrrdpVFu6vYn5ZLyGB8QabNvj+/vvvX7cSM8eJEhtnri+NDPpFMgLYPc5OLf6Il1tuuVQamRsQHSOBU4LNZKGXyyOrY5wvGbsG2TlLacZaN3MGuASmeSw7tkJ5UuEgoD6CbRHY5yy3WsE3JhrlBViScViAIQCdl0h2QtexWAxhEZbqHQyyCPjwxm4h+o283RmkUR2B14e+hsl3ZKOzAFlrB79qt/c222yTAqIxMGORlcFqlLmPBd68vBqDNM7BjkUX27uxjNs4coFkGs6nZZElJgu1Fg1JtGEBiyARfT6JIuXHqNIu4Bb3SvqPvGx9fuZbOSGBIPRzzz2XJtFk8BOgZvKcu+iii9Lj+3siAokbJBUQyI/KVkzeInmDpKVyQkJgd2GcFxn9NYllfMzfhH1Jx+L6ZZzHfZKER9o0gsocR9JIQsL555+fghqU8FXXlfvixx9/PJ0HT0IkrwPXdtwrWXhx11vH8rHysGHDqv34xRdf3KWEBDWPSjd5JaE8IYGxS0fH/OXt72vRWELCgAED0niDTRokh5X7lbwdqfzE4zg/WM2hHZn7sBBLkJ8xHxWYqKKSB6cjIaReQgJtH2NDr/HWJSSwkYOqqjvvvHM6loSjTJhrxs5O5z2do6oE7Ud7kmRdRkIT91PiWzmqxTHvYVNNsL27JmKH2267bbW6Xlzz+bXPmeMd7c6VRuaEhPwYhlq7yr131o7LxnrDoEGDUvw7Po8Kq6ylRQwlT0iot87AkYLxeCon9Of+Pb/mGOfVSkiIdrnqqqvSGISKtHk18Yi18DiOVsuvda9p9XX9JhkB7GomOBTnRlIuJs6S5H1+vIAaE+VeeSMTKy9/WcZCCQsmBKRZAFNzaDMWWSlplO8aZFDAggtJHuwS4kZF4C4my96ImhcDKAJzcS4qi1IswBKgiz6EkpqB9uZIEnZ3MoGOBfJNN9203eKX2oqBFu3NQDYGtLQvZ5NFH8NulDzozICWJCeCeJy9zM+QtBAL5Oo44zbanUVbkmkIvJUTEkK5H/n444+rQQ13MXeM4DLtyj0ykmvKpaXzyTCJNiTjEKBjoSX6n3LiBwu+vGYsLvbnRIRYBKRfpoTdN998k9qcKkK0DbuQUevIhsAC+Kmnnpp2J0ZfT1nZuI+qY4xDKL9I+5K8lydL0peQYNZIQgKvnVqPYAX9PNc0VREiKaG/9xuNKAfUCPbQl3enQoI6li+U/OEPf0htSen6PCE1P5aH3co333xzLz3bUTMhIZJ9uR9SLQj5dRwB0F/+8pcetdikPHgMKpOxSzA/cpHHUKmpkYSE4CaD1iUkcGRDjL/ZxERCK2NE5j6wrRtHIlmMvcvH4HKEV5w/ztiRo3VJ3mZuw3g+2lv11RtfxNychFTaniRUKlHEkXP53J1xOX0+m2niWDVpVEtIYMOH6ivf19i4yyYPxtoczXD//fe3eVx+zFRUTq1XIYHHsnOfODr3Vo/3av9vJ4mgXoUEKgYT4yb5lyMb2PjBBr54Ddi4xKZINoqVj0SX+qp+lYwABrVM7lgkZGGXxS2CpC4Wdh03pug4YwdFrU6WqgkENdh1aHm75nEDp40pWQcCFSQoxNnABJa5njsq86PGkfG50korpZv+fvvtVy1/yaCWoFDsnC2XQmLnOGeScbwA13l+xrvqIwi3zjrrVMvu5pNrskFjIXGeeeap3HHHHW1+lvKNtDV9jQvjXcu4bSQhofw7a32u9u0SgX0CmZRNj4SE8k7PPCGB8/O22GKLVLGJyhaUwisfHcOxSIxlqJ7Q39F/kLxEf81kjSAmH3MMSb7AHffLWgkJYGIXgbr+PDluRN7XUoKRNuXIonJllWjXOGuZhISHHnqo+ph4U8/Jr2WOIOG8aytQNFexiUQOzkjlOJe4l5KQwBEjHSUkkPzBTmev8eaDoYyfCcCxGEhbknRaTuQzIaH1aHfGLYy3aVsWyqNyJNd4/hqxaEslp+jT1Xg1J5JOzznnnJR0HRWY8jL1qJeQ4GJ46+V9NIuzUd6e14cYTLDtm8eufMbkVHMrtyGbDOIajzcWtCIZ2PauL2+bSDotx1hZUKSSENcyyQbleRExlUhSveCCC0bo85dGBGK3cWRdrQot/R2VCSPOlCMWSJux0ZEk7DhqO+938oSEqHjAPIlNwGXEB4h93X777dWvGWtpPCGBcSJxRF6POCqX6k1UBuXzmWaaqfLOO++0+51SX9XvkhECgSUGYgSwXbxqbUIC51fXmtxx82EgsO6661ZL+6i28lnivHFzidL1Bx10UDrPk2xFPl9zzTXTwgqLKLHoyM2Jm74B0K6JARglpikziGhLXh/KYkZCAsdmwBt/86JNGZgyUeZapn9GtHvsVImdt+yaILmp1hm2Xu/ND3CbTUhQx2JMkV+/sTsfjSQkBMYpEZwuB+QYv8TRSP0df/ckgJGcwQIhY42999672maRYFAvIaG8UzF+p2qLtqF/oMwu1TzoN6LqVa17YTkhwTPGRyyv565XbKIiGTtOCNizc5M+fLXVVqsmJORni+cJCTFm4bHOezqX9xvHHXdcWpCir6AsKQtZtCUfd5SQ4HEBXe8P8q9FQgLHuxCEZi4UFRIC/T7tTvlekpzUOBYEaTsSsHnP8Wf15AkJJLVqxFVIoO9nrOhOw+6NL1jsisWT2NyR9/dUvWFDE8nEVPuMsaSJCPXlbUMfwdyGHbNstqO/JvEj5j4cV0xie1ShIGGbah8kk8Ui7UknnVT9fY4XNap54okn0nXODnL9iOSM2FyXx60CVa9i/MHaQ8j77zwhIY45Yt7TWf9tP9N8QgJJeiTBMzYnQZvHUNWTpOHyxiWpr+u3yQhqvQceeKDacZ5xxhltzrYmw5xgRWcTbrVdGMwXsEBGIhOJmDgQGGXSli8YstuC4CgVP9R1lAukjSlvh3LSEgMoXg8WYNg1EQvo6ppjjz02tXecw1wr0YBFL4LN7MJyV2fjTEgY8QikLbzwwpUTTjih+rV8crD77run14BydVQ4UNdFH0FyBgtVBPe5R+62227V3Zzx/Y4SEkxMbQ7tFbvESSIjAbIzeULCuOOOm3aMS30VSUoE7LleObs6xnnR55Dw1FGFhNdffz0F+KgcosaxKEW7EtTk+DPmQiS6RxlYjuaql5DAwnl+nJfai7EIfTiVxTimspxokB/ZQNCTtuU9x36dffbZ6e+CQCg7saheAROym8Nu5RiPH3nkkR0G5/OEhPPOO28EP9ORS3fHcvlrQMl6dpbD67vzs8WjGmS0VV7xLXbfx/FGfK+jzQS2d315W1G1iXZl3j5gwIBqghPzSxaoImn9zTffTPP+OA4zqqpSBZRj/4LtrlFV9OX6sR9hMxiVlVm7ia+VY1Z8L/qMPGmpVkIC8a+NN9449TfqmYQEkCDJcRjMhRjHR+KZiQgamZiMoJZ68MEHqx0nZy5vuOGGKfBMpi7nA+VnNZkNVx8TByYR7BQvB+u56TBpIOOZSV950hCL6CQpwHZuPnBB+7O4QjsSCK2HcknTTDNNelw5cUSdt3c+YKK8N+14yCGHtHlM+RqORUSTmkZMQgJn2RL4NNmmuTam/6V9OaOTIHLId8eakNDatmcBi9J1v/jFL1KFBBalCPazQ7mjhAR2EXG0jppHlabIzCcBpLxAWAt9yQYbbJB+pta5klJfQaISR8sRvI/+nbFJ3tfH2IWEhFhkQf54NS5KdpPoFKXrcxxVVy8hIeY/7ORSbXE9Erzceeedq/dKEt25h0YCdjkhIY5sYKGLpD8WsHbaaSd3YnVBfhRDjAN5i9LF9ebt7Oik7aMMr9qL65BFJ47A6OrikwvjzaGdKdG9+eabpyMt8ms8xt1UFeI6Z/yn1qDiBFWDOFKEamNUnWADGHN4qgrR3iSO5UeGMganoi3zTiomRBUKeJ2rP/A6b9sWHGMe/TjjaDY2lsd1xAtrVWiqlZAQ90/nPz0bry1zzUcjG5MR1KMVEggWUXKN3UN56UwHAR1jorDOOuukNuQoBkoF1pPf6BkcUEqWRJDymXGqLQZOJCAQmAv77LNPan+Cc7Wu2bjhx645d3g2194EOFkMpMwr2GlFOxLgDHmbR+mwPfbYo02yjXouISH+BtjxbDJCY9c17cQuWBIQVl555bRANeOMM7Zp43oJCfkZemoek2eCa1zD119/fXWRhT6jXkLCeuutl9qfxxI8dSLXmLyd2NHJgi3JCOxObqScMX8nEeyQ+ir6ZPoHdvkgL2GaB+k4fq5WQoKaR0IqbcnCVd7f5HOdaG/mmJT3LifFq7Z85xplXaNsOmPxuF+yoEgVsloJCfwMc0wWHJkz1dpBp7bqxTvy6znmNbzdfffd6Wv1xiKxqGiQv71oM+YvVOygPbt7bItjwsbaiDhfHKVDBUOOU4xNA9GGLHxTjYzHXHPNNb38rEdO5b97xiYcuRDVl6KtSUq46qqr0vyT9t5vv/3SHKdWfxQ/47Uu9e++ZfDgwam/IOk3Kkvm47v8yIZ6CQkasRUSpJGZyQjqEZzdHB1neWe5N6zGEPyhvFo5IaHWZIGBAosABImYeFgyszmUNlpqqaXa7MyPDH52oZDlX2+n25JLLpmqI0RWqTpHQJ9jW1i8IgM3zsAisEybcy0H2jofCHMGMztx//znP/fKc+9PCQksKh5++OHV/kSdB/g5soU+gxL0BPmjffkax7p0lJDAWyM7y9XY9U0gdK655uo0IWHTTTdNpXjVXBvnO984/5rjc7juCVB4tItGBewwpF/m3PCQj8Gj7z/ssMOqR4/wPi95rMbRtpFoENWC8vF2tDdjEhZgeNxPf/rT9DqVOf9pK67bL7/8MlWdoFrhAQccUC3tyuIgc00Savj+TTfd1G4RnHsq/TwLvXHuu+qL65U2fuWVV1KSxw033JCqSeQ7lcsJCZFgU29x0EXDjtucTTAkSHK0Tj5OaVbeh5SP6FFbVFqhLDfHo0UiCG9UKiM5m34nrxr3y1/+Mn1ue3auVrLX/vvvn5Ilad+IW3G9lq9ZKhuS7E6f3kiisKT+I+8vuFeSDBnHuJDoZEJC34vX5rFEaWRnMoJGSIWEK6+8sjrpcOLROIIV9RISeGNnCmc3xQ4XFtRj4dCdKh3Lr8Xf/va3aSF82LBhlW+++aZdGW9K3dVa/I4ztJgMunO88UHVBRdckErCMoGOQCg4eoRAJ4uHlD4uI4gRO7cIfKjnExLc+dYYAm30w1zXBPgJ+nBtc+/bZpttqosm9RISOM6IxYFa5zarOfkYo9GEBNVXLrsYFQ3KO7SOOeaYdLQLbwSfTUjQqNCvx85Cgvr1SpCyeEg/s8UWW6Qky5dffrlXn/fIinaNOU8kqsbX849ZCCdgGkfEcBRg9O3OMetjzMEiIDuXGafEPfCll16qHp0T80kScFg4L89JYzEdtnV90VcwFiSJmrFhjLWZUzIuLB8PVSshwQB/56IfjuR1+uKoZtPV+Uve7pdffnna+W9idnu1rk/uf8x1ZplllmqCHsnZw4cPT0dnLLDAAqmKgknAHcvPXM/bmaSm6CcmmWSSNhs4ytjowd8Dj+UIJEnK74uMpyO5lHso1cXmn3/+hhMSmPtrxMZrL7744l59XlKrmIygHsUNLTpOB8HtlSfItSZ19RISAoOAAQMGpAX1yHp24bCxwEXsmCAIR4WDSCiIRUIC0ex0jmDn0UcfnTLRmdyxkM5uZ77++uuv9+K/pu+L65qKCLQV5QI5fzbaP77PzvIjjjgiJSTQ5quvvnrKur3zzjvTThcWcwk+e75795lx29q2ZJcK7UfAsrwTi/6CwH+Ula53ZEPsHLL/HnEJCWrsXkliDcl6a665ZhqHkBBGALScPGNCgkY29RZUo6TxQQcdlPqOpZdeunLXXXe1Gc+ErbfeujLffPOlj90x3j1URCAxj8UrquyFcjL7hhtumBIWNtpoo3Rv3WSTTUwK7sRzzz2X5iyrrbZatW/PExE4mos+nfPHqZBABTOOPKrFcUp9eXWx2WefPbUtbcrYb5dddqlW4mNcUk5cioQE+pw//vGPvfQvGPmwYEIffPLJJ1cWXHDByv3335++3pXKCPn86MILL0xzzxlmmKHywQcfVPq7+LuPNmJ+w9dqJfcy3yf2Rz/CNT3WWGOlRJw4qoFYgMk2HVdl2nLLLWt+f8cdd6weDcVxc19//XW7sUy0bcxPSQaRpDzuRFyKcUn0F7xvJCGBOX7Ex8uVntQ6+T2SYzFZe3jnnXd69TlJrWIygkZoQkL5HMr+LD/b8Oyzz64GNmtNzAjos+MqEhLKJUmZDMZE0IldbeVJGm1KcIGqBuwAYrd+rYk2rw9BpLiGI0jEe4JMBPLUORZdCRTR1gxwY4JdDhR9+umnaQfiZJNN1qbNeSPA5I7D1jHjtnU4Z48FlHqVaeijOUOV9mWnLVVVQh7Ec6dhzyYksEi+ww47OJFrQFzDBBmWWGKJajINJXgJzvP5dNNNV3nsscfqJiQwtjFIob4qFmS51kkiYLEpr44VC7gkInC9L7vsspVLL720zfdJ4OPvgDNW6cvtw7uH1yHOrSXh4Iknnmg3ZuE4I/oXxiqMIUnIJsHVRJCOsdueihKvvfZa+pzEg5122im1NYvg5SAzVT7o+z12pHnMMUmoZgGWAHI+JqRPYbzIfP60005LfUY+FyKplfbnCEDmTvYpnc9hjjvuuNRmtCvv2bnZ3d9JIgKvAVUtnn/++Up/F/dL+lmOwCCpiYUo7o9smqm3UYCf48hW5kD8PfD6sOkgKqyovVtuuSW106qrrtom8TGvJslcJvrpSBqLviK/jkna43F/+MMfRui/QVLfRtJebP7KxxmNJiRwj4x4iuOU2srxwK60U96fR0ylXJ1SGhmZjKARFgDhZvbCCy/09lPpU5hgDBw4MLXNscceW90lWyuhgEle7KZgEf2RRx5p9xgHAu0RBOLIkHL7PPTQQ9VJHG9Dhw5tN2jIH09wjkz0xRZbLCUwnHDCCZZsbAJJBMsss0w1kWOdddbp8Lpl9zKvHYHSX/3qV2kB4OOPPx7Bz3rUZ8Zt99uP3W9RBjNfOCljh1DsZOE827wKhUlkPSPvWzgyg3anukpMqtX5GIUFWO6RBDTZfcUROdwn119//XQ9k2RGf51fwyQkcE5t7MZybKK+JsZ67KYn2Zed+BNMMEFaWCkn5BGUo3oWffc444yTHsPfA+XXY2eQFZtah7acbbbZqjvK8x2dBE+pzEJCFJUT6KPmnXfe9FgSo+xrOsaialSsuemmm9LibXn3LYuE7GCOynDlBTHVF9cf1yYLryTU5EFj+huuV5JpDj/88Go1j/IYkGqHb7zxxgh+9iNf/82YJOYssehKP7399ts3nZxUTkRgBz/jmFrHNPbX9mbDAMcs0M6TTjppap9IAGH+yKJ4XvGtvBBDtQ+qbEVVLSus1Pf0009Xr+E8kSDvizl2J2JZtSqpcE/kOmbe43UsqTzWi3WIcmXURhMS4MJ42zFEJJdGO7Gx8fzzz0/Ha3f3d8N5jkYVJiNohLF8ZntMMij9zwIJgbWjjjqqw4SEOHucN87hY6Ki+q666qrq+ZyxezMv9crkLo4EIOgW8kFWecDVnYFEf8f1SinduIbZKRHKGblqjBm3I1a9a5NJGtc0SUv1HsfkhCA0STk8luofJiT0vPxvgoQQA/yNI+mOa3XnnXduN4ZjcZZF2N133z0tCJTbmp1zBEFfeeWVEf68pY7EdcqiLNWaosoHY8UYnzA2z/tkxi/sHudx8Zjxxx+/svDCC3uN91ACK7v4I4GVgCm79DlrnM9PPPHE9Dheo1lnnTUlRUU/pPbK4wvGeIxFuIbZqZ9XaaKSE+18yimnpKMb+FzNIbmX6zSvZEh/wxiQtuX7sajI10lkrXX9Ohavj8RIxhjsEA+RkECyx+WXX97w7zIRobGYFRUKSdrj6DkWWBhPc3wRVRJodxa9Y25fb/Ekvm4iQmMOPvjg1LaxaaackMCGjUhIIBGYpAS+T0WbSCjLjweUpEA/EZvEGIPk/XY5IYEKcB999FGvPt++Ku5xtBfzx9iwSAIfsRKS+GKs3d3/hzSqMBlB6gOT6VNPPTVN4OolJESAiFLqDBY4t5lJh+cXdozEAXb8xPEWjz76aLuEhFtvvbW6g5OdFKHeJDl+zgFB4/K2fPLJJyubbrppam8WAaJqBeqdd1jre/2RGbd9ZyctwZ4XX3yx2l7HH398dZd4VPAoB9x4fehrONM2SsrS55977rnV/4dt3zNs165h5zeT6LwqDdc1FYK4fg866KBqWXvelxMW6Jukvoh+edttt00luCmLzrXKbk2O0Ilkg8MOO6zNvZESyQTiSGpiwYoFxM8++6xX/x2jMoJ5JDUxP2IBl3nPoosu2qZSQizUUALcpPfGcd3OPPPMaXdzftwcfxd77rln6vcJosa904XDxkR77brrrum6vOOOO6r3x1qJCGDBe/HFF0+LumociR5x9FmeNMD1G8liN998c5cSEbgvmIjQ9rqOvpYEpfIRi4jjRKmQ8Je//KVXnueoOF+55pprUnINbcu13VFCAlVBeM99kvdzzDFHNUm+1u+W1L+xlkA8lqpvkTxZ68gGEq/pU6jGYj9SGxu6GDvH5iTGELPMMktK4KMCdnc2HeU/65F0GlWYjCCNQPlCdh7YIQiaJySQUReTjHyywc4gSiPzNZIYYICoY+w46Swh4bbbbqtWSMgzz23b5jXSZk899VQ66oL2XmGFFdKRGcEBbm1m3Pau2J1GX73RRhulwBA7Tmh/kE0epUvpp8vHANC2RxxxRKqGwPVPYJrPWVyhzyfRTOpLuNa5Z7KAEgkH9O/sTo5EhDwBirLU7Bzna/Yl6ovKCygzzTRTZeutt66WrY/rlmOhCMyVExIcE/bewvnrr7+eduHmyR/Mm1hMZzGSo2LUOK71wYMHp8oTjD8i4YzESqr1sdM5/i7UuOgrqNxB/3Heeeelz+eZZ56aiQiR9Eewurtj+P6I+T19dV7GHnvttVdDCQn5WIVEhGmmmcaKCHXE8TixESau9bx6B2ePxw7a/LgGNabeGIPrm2u5o4QEjrWMhIT99tsvxQny46Osvif1P43MWw455JDqsWi1FrrpO+6+++7Kyiuv7FGuNay33nppzAySDphbMqYj5ke/fdppp1Vfh+5WsKWiKpv6YkOUNDIzGUHqhYEAlQ7KNyPOHc8TEshAz3+OABGZ+vmilROLxncyU/UgEhJi8btcIcGEhK6JNoyABJNjBkssVnEmKtUQysE3Sh7HmeMmJDTGjNvePyuVygcEPgkeszBCXx5t99prr6VdKLw+lLQjCP3MM8+kxRMmevTt7FaJUry0c5TypQy+NCLl/WytUtBcnyzyEZznHsrfAbs3ayUixLENJOJEoqTUF3HdEsihugELhHFsC9d3fh+kxHccCUBCgvqOL7/8MpVjJxGBXcwG5bqGChNTTDFFmvvMNddcqQQ71/uAAQOqCa+OxzsfG9JvlKtyELinLX/yk5+kwDRJH4z3ygkeJBfT/jvuuGOqvKLmnH766amdGX+Uj7loNCEBVJdjrGNFhNpiPMhbJITVGkOSMM/1TNJqVPVUY/J4E8ctED/J3XLLLZ0mJNCPxJENzz77bM0NUJJGXXm/G3Ma5uXEpMoVa+KxrEEQt6J/jwSmckyRz+PxHh/1I+J39LlUrY746bBhw9L8kcQwvl5O4GtG/jMXXXRRmvPw/3v77bdb+K+QeofJCFIPixs2k2QSCjhbnAAoNycm0Xngngke2XOx4LjKKqukBAUCp2ONNVZa6MrLJavzdmcnHIOAO++8s3rmFQkJjzzySLuEBDLPTUhoXL4TLXYcEmhbdtllq2WOeeM833333bfd4lU5ISE/W1U/MuO290R70k/Tb9PuBIjiei+3NxO96Gd4IwBNcJOPed3i7OX89950003t/n9ST4m+Iu6RsQBC/8wCX56MRBn7SH5aaqml0secFVzuy1msJfjJ34ZBCo0MgaPZZpst3T+jWlaol5BAcEm9j/4p+qVBgwa12fmp5rCAzpFRkWTGGGXdddetBk6d+9QXbUPVIKogMMcpj5vjuADeqMBSxniecTxVtWJu7xiwOey+p3w0RwPE4mu+Iz8SEiaZZJJU7r4ejtUgccREhPrJ8Mzlacv8aLkyds2yoYbrmkQ/r+fG5H0tx0bRzsQCy31KIwkJcWQDY/LY6OHmJWnUx1z8rLPOapP0yHx97rnnrh6hc9JJJ1Uee+yxdmPBmBu5Oab5ZMjNN988VW+Lvpikjhh3sK5wwgknVD788MOmf3+tI6RIwnacolGFyQjSCNpRG+e3sas2znTjjcAPi+D54tRll12WdjznC7qUSo6FLANEHYv2YTDGYvd0002Xbt5MkKM96x3ZkCckUE1BtXFmJOeG33///W0Gs0svvXRqO3aOs4BF8k1kcdKeUe67nJDApJmAUnmA3N+Zcdv7WFyN3SbsCM+zzuk3CHwS8KEKQvQ77GohiYTgPqVNSW7irPGO+m+DRRpRHnjggRSciL9zdhqTbMM1ft1111Ufd8kll1TvmSREcl2Xdx+ec845aUch94Poi6S+imt0pZVWql7TkQyW98vlhIQI/rN4qN7Fa8MCzZVXXtnuOCQ1Lq5xEivp0++9994ULGXREc4z64uEO3YTLrfccqlvIKHg8ccfT+0W88mXX345JffyfSpjXXDBBWneec8991Q23HDDNIanCoVz+/pqJTdG+0ZbU5KeNiaZMuRtyXw1EtDKVfpyUQ1EtdubuSf3TOb1b775Zs3+hPkPx7zwd+H13Ji8nZgrxiIW7/MYS1cSEsYdd9zUt0satV1//fXpb37mmWeuLoyDuCsbG0mIjPk8MXGOdeHY0IgtMl5h8wwx8zgyymSy+oj9EedjHMeYDsT5tthii9TWJCBQzXraaadN6wpUwap1hGu9z2slIniElEY1JiNIPSRuKBHk5wbCRJnJ7hNPPJEyF2eYYYZqecHyeYcEOcheJPjPIiGfw8ldY+3OwjgJIOxk3mWXXVLw8qWXXkqDAypOdJSQcNttt1UHbAY72yNwFtUPWAznrHDccMMNaSDLESNRspTkmquvvrqaXLPddtu1S0hgEZcFW37Ws8h+ZMZt38DOcRZuf/7zn7cJjDIRoSoFZ+jFwtZWW21VeeWVV6qPYbcb/Ur8nP23+oJVV101XbNc1xwvQjWP8cYbr3LUUUe1C9b/5je/qd4PqZwSfxM8jkUAxjbstiiXf5T6KvrlGAey+zCOasjvifnHLCLyuBdeeKFXnq9US3k80WzguN7jDUB33uZUMqRaIbvpd99993bzmvD888+nOWi+uSA2Jqy++uqV999/v83vVe3+msoTzOGJqZT96U9/SouuJP/m4++8TanaVC/J2rZvLCGaRe2Yf+6xxx7tEhLoN0hY4PskgFglq3P5tUeb0nabbbZZZcstt0wf33XXXTX75DwhgUoKIar2YbfddkvfZyMOY3b7dWnUxcZHkpM4jiFiVJFcGojTMqdnvk/fQNyPeAAbFBjTROLeKaec0kv/ipHrfkliHu3FhiTGJiQesFnsj3/8Y/VxJCSwYaOckJDfb1mjyF8rExHUX5iMIPUgJmIkIHCjOvTQQ6ulA2NCwNl6LMLGTvI4hy+fTOTcOdsY2jcWUMgyz8/hZOLHgncMIOod2XDHHXe4uNIBkjioaEBGKEcIPPnkk6l8N+fOlhdeuZ5vv/32aonHWgkJZOFGUE5m3Pa140g4bmGZZZZJbUh/wrUaSQgsUlERhAVZPidoGgz+qC/iGl5jjTWqiyJMngk+xGSY/iH6CK7hKHXMGxVsuN5nn3329DlJOuyokPqqfGwX4xIWuFgM5BpeaKGFqgl/+b0x77/rLTZKI7qSQX4d//Wvf03n3ZePzlHPoS/g2CLunYy9ay26lr/GhoPf/va3qdoZ8QCC19GnuBheH5XI4ugzdtwz9qCaTXkhPBZvqZiSK7etC+S1RbvQj7AATjI812h+HCOGDx+eEq9p60022SR9ziIM8StKhJPQztjQI0W7loiwwQYbpARh5uV8fvHFF9edS5KQEBUU2OVc6/eSqBBV+ySN2uPDWGegP+b4W47UKSckgFgffQMVneg/SE5gPsQbHxPPyhP7VBsbkmg/4qeMT3jPkdx5H0zfTXwlT0iISqk444wzUmXJOP4o/9mIz7JZz/isRkUmI0g9PDhYYoklUgWEfIE2n1SQkEA2f0eZiC5oNYfBGCUCmaTFTvtyIgcVKmIxhoSEOFcvD1qrvbxtOFJhnXXWqR43wsB3m222aXdmJ7j+ywkJBk/rM+O27+BajqSxIUOGVI8eIUGBwBFlv2nTq666Kj2GsrtUBLEfUV8Ux4zQp7CYwhE57JyKoHO57w5UcyJQwaSYikNMng855BBLG6vPiWBO9MHcF2uNN1gwiaQygnK1KiTE77A/V2/JE9gZ50Wfy044kiG5dqOsbnf/H+oclVLoM3bYYYc2fQXznKjARwIfxxx1tvjtJoPOMdfkiDQSQGh3krSpSnHggQem+Q1teOONN1aTJV0I73q1j0GDBlV3zTIvJBGEXbM5dt4S12IOxOOofMhCDB/zukTcxSSbxsTRDBzdEom9JNXwNY677AiJOTyOKqo5k26kUR9jwlqocki/QGIYRz9zfE6txFaq2JIkSfyWxxMPiE0GtaoQqf14mXh2jEs40jWUN3XkCQnEThizn3jiiSn+wr22fMwlVbF5vIkIGpWZjCD1EG487LTiBsVucXYils8az89c5nEERZm8GZzoHgJ0JHiQ2VnvDGvamCxEFnfjjK3yhFu15ZNcFsqp6sEgjHYkwaNecLOckLDRRhuZkNABM277DgJEBPwpBctrQlk7As1xHAmY7PEaUDFE6stIOKC0NMFkkmfiPOWoTpP38fl4hDEM/QuLYSbuqS+Ka5cxNwEfKjdx72TBhMVDxix5v50f2ZAnJLiQor6EhFISD2KBijEb1zSJYccee2y35o35z8b5waovjl3Iq+dxT6UiH3PJ/DgG+qC8nU1u6hrajj6ZhXD68ZhzEshn3kn5acYwJG1zNEb8jBrDwtO8885bjUVRhY8qFLHIcuedd7Z5/N13350qfHBsA/NPjhvl+o+EeO+fjTniiCOqiQivvvpq9evXXHNN+jrfL/cdZfWOH5E06tp+++1TH8FGgbI4coFjpBiTXHrppdWEhOhH8vvj119/XbniiitSBVDmQdGneA/tGPNM2jcS84incpxRLk9IIK7LuJ17Kq9NrD+U25vjjUkKnGyyyYzPapRmMoLUgwhyTj755OmGE+WO8slEBPPjvMM555wzncNskKJ7aMNFFlkk3eTj7KxayN4nkBHlpueZZx7bvyRvC4ILEejPzxUnuE9iARm1XMcMomr9PPh5jsBggMV5h/nCuf7HjNu+m+REFjpBz/KuE16LOBqGdof9iPoyJsyUjiYhbKWVVkrXLoli0SfHNd5RMMJrXH1JLICwcEtVslisil2bsXPzyCOPTMG3WgkJAwcObLMoIPUmjusioQYkHZBoTQJCjKEJbpYrgTQj799///vfVzbddNO021y10da77rpr6itI8iV5g4XZBRdcsLoTkTEgC7XR53CsnbqnfG1Tep7d4FFmOhYDeGMhXc397bM7dooppmizw56kvd12263aruWEBHDUCEfF5HNSExEaR/yPxOBIbIq4IBUQafNf/epX7Y5v5Weuv/76dr/LhUOp/yUylRMSoh+gX6ZCE4va5YSEevdV5kJRSdXqKrXlbUbVCapInHrqqdUkVeKqeQVb5PFaYoiMURgzklDy4Ycftrlv8tjbbrstrQl1t+KZ1NeZjCCNgEASN6dtt902ZSrWykpkkYugEiXv1T3RpsOGDauev/f555/XfAxBJI5oYDDx61//urqbQm3biQof+QA2dmhxxmF4+OGHU2Y/i+YsbOVVJmolJNxzzz3VM5pVmxm3fVtM1CIZhEUvdgeV+xupL4h+OA8wxJEMvF9++eXbJSTkRzbcf//91TOupb6KREl293CP23PPPdOOT3ZrkjTJcVIk7JEkzBgxH9cQhIuju/h5gv8m26g37bzzzul6XHPNNasVC7huqejGOI+vR6JpVxai8p8hQZVKWfz/3GnbsZtvvrm6CBDl6knu5Qzm/Ei02LlIYFk9199TpeyXv/xliqPwRsJZHDtlH15bLHzEPXDzzTdPpbpj0TsfJ0aidZ6QQLuadNAatY5GYxGKfoUNCbknn3wyxVgmnXTSlJAjqX/J72knn3xytxMSyr+z1uf6n1ob8p599tnqx40kJATiKXG/Ld9LqUJp5WD1ByYjSN1ULwAUk4tbb701LXizUHX44YdXExLiyAZuQPvvv3+6eRFkYgBgdnPnOmsjdqJwTAPtyi6WWme4swOAwDRZ5qqNHVIRnA/zzTdfZayxxqoccMABbY4eoc0J9vN4dnJ1lJCg2sy4HbkwIeG1mWSSSVK5+zjL2T5cfUV5klu+NmNSzSQ7T0iIvgME+8cZZ5zUt3htqy/fOzmvnWuYxanyDp933303lS6lWhDXeCysxN8I1zzH7JiYqt52+umnp+uYRcJI3KWvpiw6X2fMwfyF6z3vqxuV9+NxZBcLXCao1p+z5PdSznRffPHFU6WKOP6lfBTjoEGDUpIC/Y56fmxD5bJNNtkk/X2cffbZvfa8RhbERYhPsWmGypBRSbJWhQPum7HoRXVDOK/vOS+88EJKOss3KZGIwBEavAb0+5L6p3z89rvf/a4lCQlqDOs4Cy+8cJs+OL9XUukmjtg1EVXqmMkIUjdEgJNSdmTGUarx6aefbvMYdmXtt99+6abEbiyynCkBG0ELFsRJVGAiGIkKaqzdaUMCQCzWnnHGGZXrrrsuZRLGBJnPY4BG6dGrrroqDcp4vU466aQUJFp00UXThFz1kxGixPHqq69emWuuudKiFGWOYxErH4SRkMDkOR5vQkLjzLgdedCGLBaQ1MFrwiJu7FB0t5D6Wp9CcuTw4cNTyd1VV1017aZ4/PHH2yVP5gkJVFlhTHPYYYdVpptuurT4ZQKT+jrGegTdIjGs3B/zdR7DNb7lllu2+3n7b/U2+mMWCKl+QBUxUK2GZLCtt946BUEJQE877bQpIeHoo4+untXeyE63WokIzFFNRGjbBzCGZn5IchIVr8ptSkC/VrUgHnfcccelY+u22mqrNmN6tV7+usS8n0Vb/o6cd9Z33333pXsl1SSY13MMTPkeWC8hgeog6hlcsy+//HJ6TUh4wiOPPFI9Ti1fBDM5WOqfTEjonbbmeC7ambjImWeeWbPCjQkJUmNMRpC6IC9PR4CC4D0BIW487BjnSAZKvsYkmI/33XffdOPiMZRQn3/++dPOrAj6v/POO+mxTiwaLy3IojeT6BiA8cZCy8UXX1x9HIEJdvvwPQJ7tHm0O0cNMOFTx9h1xTmotNkYY4yRzkKttSu/nJBAe5OQwG4VNcaM25EHiSJUDCHoHAlNLmSpL94rYzdV/rZX+OcAADdOSURBVEZAggSFWhUSqGyTP5bduJ4jrr5+vZNoyviOHYUsIDI+qbUY9dRTT6XrmkRgxjcuWKkv4brdeOON0zVKwjVJ7SQecF3niagEoEmqLick5PNI+u386AATERpL4GNMRwLwvPPOmxYFuQdSxZC+I+T9S96ujAnpW0hWjSOP7GN6VrQ/9wCOaSCJ3o0GHSPZhuqdxKDoa5h7RqJ6fj3n85qo5En8xGSPno0FULWCBASSgE1EkNSqhARiulTC4X6pjsX9j7aiYg0JCMRUiHEzLszbul5Cwu23394rz13q60xGkBrEbhQWuRGTL27sc889d7rZLLbYYpW11lqrmpRAMJ9gaNzEmBSTSc4iLTsMecxCCy1U2WmnnarBCheyGg82MGmmDddee+1U8YDBAcE7dqIwsWZwEI9/+OGH09nBBCjYVc57SjlG6VN1jOuShasY5HKucvwN5NdsHpR47LHH0rVOEG/JJZdMWf2qzYzbkRcLvRG8NjCkvnivXGSRRVISGfe8V155JR1LFH0IyXxU+Cj3M/TrRxxxRDriiPOCI1lS6itq9bf0xausskq6tq+44oq6CzAk3jB2J3n4zTffHAHPVmrOaaedVh3nsbDK++OPP77dmPuUU05pk5AQ80lQMY65KeNK5D8biQjMiUxEqLRpn08//bQ6tydov8IKK1SrYDGfiTL1+byHhBGS2zfccMM0D6WKXNw3nduPOG+88UaaP1ltsvEqbyQkxIaDIUOGVJOX6iUkMDakndVziC9y9B/9M32OiQiSWpGQEBVullhiCZMROhH3PcYSbDzl+GfGdxyhG+3M137/+993GK/l7d577+2Vf4PUl5mMIDWAReu4mVx77bXVGxQL3FNMMUUqWR9IQKD0P49dccUVq7uzymViWRQgKBrHNRisaAzBZipP0L4HHHBAtRQ9mBwTtOM1IWiXl8YkYEQ5zddeey0FjSyb2TiueRJnWJgikYO2Hzx4cDVgUa+kIxUSGLxNNtlk1ZLJasuMW0k9gbEF540zcT7ooIOq/TXjGcrT55UPWLSq1c/AsYn6mrgmucavv/766lnXsVDCNc1iYH7MEWPAfCxOBYUFFligmkwm9QV5Ui/H+kVVtx133LH6da7jvCpZnpBwyCGHpJ20J554YtqdzxgxjpAKF110UXq8iQiVmkkFzOGpYMgcM+boN910U9qpPOaYY6aF7rvuuqvNz5P0TuUKXi8S/6i4Au+fIw4LBjG2IYlSjS1cEw8hIWGmmWZKbccmmSjhXS8hAd47ew6vyYILLlgdoxPTCiYiSOpqQgIVnQ8//HDjsg1iTEhyKuNlxoS037ffflu58sorK9tss021yl69hAQS/BhPvv/++730L5D6LpMRpAZRar6ckMACLbu/Y0IWQQt2R5CIkCck5AGmjs7yVMdoW3Y9kCmeZ3QyyCLLk51ulBH86quv2kyebePuibPCSfiIHUJUAskTEmpNkElIcABWmxm3knrKDTfckCofsDASpXdfffXVarCexS2qIsRiFztxawWZvXeqL4lrk8WS2IVMAirnX4NS9VHSmMpZMXapFaxjsddS0+qLCHZSkYzFb65VAqHlcV6ekED/TVU4+nICn3EUz9tvv93msVdffXUq00uSsIkIbdEXsBDLffPAAw+sJru/9NJLlV/84hepTaNiAu/zCgmgSh8B6rjfmogwYrG4stRSS1XWXHPN6tf6e98e90vm6iTQHHXUUWlh+/LLL09xkmgfFr//8Ic/pN34HSUkaMS5++6702tx8sknV7/mayGpuwkJtarbqj3aK44m2nvvvdtsgMS7776bEhT4PvPQehvISGiA7S21ZTKC1MWEBHYSchQDuyHyCV/c4Kl8UE5IUPdxVEatLPHFF188fZ0doBEIIpjH6xMTanWukcANAUx2HZYTEgKL5wcffHAPPstRhxm3klqhvIPtt7/9bTrXN3bFEqgnwEyfssMOO6Svff311ylwz9dYoMorJEh99RpnTMeuQY6B4niujz/+uBok4jHXXHNNZf7550/XNe9JzGFRlnvnMcccU5l22mnT21tvvdXL/yKp9vj7sssuS4mpp556amWXXXapJiT88Y9/bPMzeXCZ63yLLbZIfxvbb799u935PJajvUgojiQd/Yg2mXzyydNRdNFmJCJssMEG1d32HLnIvIfP55tvvnavR7yGLhqOeLR53qf399cgT3gnQY/EvbwiFl+jSkpeaciEhL4lr2rjayCpKwkJeQxRzaESMHHWqCRRTiggISGqmFHRNo+jxCZV9PfESKkWkxGkbiQklDMOQ62EhFVXXbXyzDPP9MIzHrVccsklqT1POumkahIIFRHKiQix0MLuH4J56lwesGSR/MUXX0y7DGsNdDlSIBISWMyKAVeUf+XrnF3r4Ks+M24ltUL87dMvRMUgdorHES58nwnyGGOMkY5uyMX5keyo5f3w4cN74V8gNYaxxnrrrZeu5UMPPbS6WMI1HuMN7qXsUqbiUIzVSerjPsrHLLYwvpH6ikhoz4+Qy48ZaSQhIXAkXYwny+NC/n7yeZJ+dOedd1aWXnrpyl/+8pf0OUm+kcC3xx57tAvyU4mPo15YwFXf0t/nnvHv54xwko+4VjfddNPKLbfcksZ4VMgiAZXqKSxUxePph/KEBH7Gc8V7n4kIkrqTkMBmPjXXjmwQi1j3E088UfexVMyOOArHRefJH/bdUn0mI0hdcP/991dv7gTyQ62jGEhIWGWVVarnSHrGXvdQYpS2pCoFGeMc11ArEQE777xzGhgw+VbH4rpkV/6ee+6ZdlaRCcqRGFzjHLcQIrhJQkKULCUgR8lkghsE/PmeOmfGraRWIGDMmdYsnuRfi36dCfUcc8xR+fTTT9t874orrqgMGjSosu+++6adc+wElfqauMfdeOON6Wx27p21dm3m5UffeeedNDZceOGFU5WQZZddNiX+8XWpr2EHM9fqCSecUP1aPiaMo7kmmmiiVOFArcemgUgIodIE4/Ott966zWOoskJ/EhX5lltuuTYJwlJfwHVM3IlrdNiwYW2+xziPBL2pp546bdjIY1MkMtG/TDDBBOk6j4R3SVLfl8+JjjzyyHTkq/OejtVLGqD6HvfQM888s+7juGfOO++8lWWWWSY9lo2QJiRInTMZQWpBQgJn73WUkMDCLDczBwJdF23Josqiiy5aXSgn2eCwww5LZx/mWLRlMLDuuus6ke5EBDs5boG2jYVvdhVGRihfv/nmm9v9DCUxF1tssfQYzlldZJFFUgKOOmbGraRWL6JEP1zeORvjFQLTyKuwcI9kEk2fTjUhqS+LSh5xjde6B5aT87iu2SEKE4LVl+TX77nnnpuubeY2EfhEvtBtQkLPKPcL3A+pukc7R4WKuG++8cYbaQ7KTkOObnBur76I40FJJuA4hvz6JomPMR/X8OGHH15NTM0Tn0h2v/vuu6tHvZjwLkkjRnljUlf633xsGcfpOv/puL25FzK3jMp5tDvHQsexXBwJmLdt/BybIRkrnnzyyZXjjjuuWo2PMX3wHiq1N3ohqUuWXXbZ4v77708fb7755sU111yTPh5ttNFI8mnz8TzzzFNceumlxYwzzlj85z//6dXn3df997//bfN53pYYa6yxim222aaYZJJJig8//LBYYYUVii222CJ9Hk4++eRi2LBhxaSTTlqccMIJ6b1qo33HGGOM4rvvvivWXnvt4k9/+lMxdOjQ4s9//nNx7733praceeaZi2effbbYZ599iltvvTX9HD/DtTzTTDMV9913X3HjjTcWN998c3HLLbcUc845Z2//s/qc//u//2vz+eijj15MPvnkxXzzzZc+f+aZZ2o+Drwu9CGDBg0qPv3002L//fcvzjnnnOrvqfUzkvqXhRZaqDj22GOLb7/9trj++uuLf/7zn9X7Z9xXX3zxxeKjjz5K91HQjzz88MPFSiutlO6xE088ca/+G6TOvPnmm+m+N95447UZG+a4J3LtM24B13WMAxm7SH0B/TLXMn02ffMPP/yQ+mL6aPrys88+Oz1unHHGKb7//vv08SmnnFLstttuxd///vdik002Ke64445e/leM3HPMGD+POeaYbT7/5ptvio8//rgYf/zxi8kmmyx9jfsm/coZZ5xRTDjhhMWKK65YHHfccc7t1Sc9/vjjxWeffVass8461eubceHiiy9evPrqq8WBBx5Y/OY3vyl+8pOfpK8/9NBDxT/+8Y/0uLHHHjtd39NMM036m6l1n5UkdU+MORj/gf6WecoXX3xRXHDBBWms15X+N48PTjDBBGnsEvcB/YixW7T3kCFDivXXXz+Nsbl30u477LBDMf/88xcvvPBCiscSh6Vtwc/Rrqeeempq26WWWqrYaaed0hrE119/Xey3334pjg7voVJ7JiNI3bDMMssUDzzwQPp44403rpuQgBgAOBD4UbRRDJZiQMDC+JlnnlnsuOOOKdFjr732Kh588MHiq6++Su237rrrpvb+6U9/mhZxDzjggOLqq68uhg8fnr635557pt/H4vgss8zSq//Gvo7rk4HvQQcdVDzxxBPFLrvskgZRE000UQr6X3LJJcVbb71VzDrrrCl4sccee6SEA/Ba/Pvf/06LAgzQSAyZaqqpevuf1KcDzrfffnvx0ksvVa//RRZZJH1M0PmTTz5pM3mIoOm//vWv4t13300DZALU/B1wzZ933nnp+/xM/C1J6n8LKvH5GmusUQwcOLC46KKLiqeeeqo6/lh++eXTIhd9z3bbbVdceeWVxc4775wSzOi/6fdjci31Rfk9jnskSZC1Ajx8LxIOttpqq2ogKK5vA0LqCyLg/PnnnxeDBw9OC3/MXUiy5lp/7733ikMPPbSaeFovIWH11Vev/i2o474j5pgEiQkek9jOHHPfffdNc0zaM8bTJLhPO+20aVx++eWXp5/BSSedlD5feOGF2yTBO7dXb4pkGObkMYcs3/P+9re/FUsssUTx2muvpb6F/mbcccdN3yMZYc0110xz/jIT+CSp9Rhr0E+TCHbiiScW77//fupvWQife+650ziFWGxX5fFB5z61x+GM3WhvYtg33XRTsfLKKxfnnntuGt9xLyWZnTWG2WefvXj66aeLVVddNa03kOzO+P2www5L80zi5LPNNluKnxNTOfzww4svv/wyxc4l1VGjWoKkJj344IPVIxuuvvrq6tctydOxP//5z9WPo/wl5QOXWmqpanvG27TTTlvZbLPNKu+99156HKUDjz322FRqMH/cpJNOmspOv/7667327xrZvPzyy+ms8aWXXrparpEypFtttVVq0x133DEddbHRRhulz3/+85+nc5uD13l9URKNEtG033jjjZeOv4hz2ykfvcACC6R2HThwYOWTTz5p8/O07RFHHJGOHHnqqacq33zzTfp8jDHGSCXAfve73/XKv0tS7/YpnAd8zz33tDtaIUoEcm98//33q/0IpQfjjOt4oy+n/5dGFpzjPs4446Rr+fHHH69+nWs8L0saxzlQJtPjjNQXMa6ee+65KxNPPHHlgAMOSEd3cRTdlVdeWdlmm22qpV7zo7nyIxuGDBmSSq1HP6+2OCIx+oaYY3722WeVBRdcsN0ck6MxaHNeg3DppZdWpp566tTG88wzT2WhhRZKjx0wYEB1Lur8R70tSkUzr1x//fUrp59+erouOUKU63XNNddMMRHKTI899tjpDHHGj4HHbrnllum+euedd/biv0SS+heOUOA4HfpqjuciNj7LLLNUJphgghTn7s78Jf/Z8nHG/V2M3b744os0vqO9ObYoxorlsd1f/vKXyvzzz18dM4455php7M7HM800U+Xdd99t93tvuummdv8/ST8yGUHqgYSESy65pLefTp+3/fbbt0veIAi34oorpskyC+F33HFHCjyziEvwh8cPGjSoesNnMk1giYn3SSedVDnmmGPS2Z6ee92chx56KCWAcOY4WBDfY489Untvt9121cedc8456WtjjTVWGrhdd911vfisR64AEUEgAj1rr712SvTgPM6YJLz22muVOeaYI7UtA93zzjsvvRZc24ccckhl8sknryy66KLV65oJBcEkHr/zzjv36r9R0ohH0h6LJyxUbbLJJqlPya2++uqpfyAxIRavSGJ46623Up+y5557pv48zgOWRhYEeFZeeeV0fW+xxRaVJ598st1juLanmGKKypJLLlk941PqSxj/7b///uk63nvvvasB0MA8hwQFvs+1fNZZZ9VMSCChodYZw/0di7K03S233FL9GmPnxRZbLCUX7LTTTimZ7/rrr69suOGGKSGbx6+00krVZGHG4Keeemo1eYF5KMnuH3zwQfq+ba6+gmt74YUXTtcpC1hgcwFzR673KaecMs1BGRPGpoP8TGwWVTbddNPq2eKSpJ6z3nrrVVZbbbX0MX02C9osiLP5aPzxx6+cdtpp1TFGVxay80QEElrp31988cUW/gtGfsRF2HDHffOggw5KsdlAmzPWJkYe8XFiL6w18NrxerFmMXTo0MpHH33U4ZjQhHipNpMRpBbihsUNbZJJJkkL62bB1Xf33XdXkzfYBQQy8mk7AnB5sI1JNgGlyEjcYIMN0k5ztQ4DLQZZ8ToQmCCYlyNAR4UKghu8DuwSip9RW2bcSuopJIJFX8E9kzcS8p5//vn0/XvvvTctYNGnsKAC+wiNKrhfzjbbbOn6X2655dICy6uvvpqu/9133z39PXD98ziprxo8eHBaKIxd9uVAJuM+EoK5zmecccbKGWecUf1eOWiqtugH4h4ZY2WS2yeaaKJUXSxvM8bTJCVQKSiSnCL5l7koH1NZ6O23364u1pqIoN6WL3BcdNFFqTIkieoxz+QaZact83auaxa+3nnnnTa/g8fzc1RoiQUV+xNJ6jlsJIqqNVGxYNiwYWkz3uijj56+HkmPXVnILt8bqPDE/48xjH7EWg33PsZ+UXUyxn0kg0TiO5vw2CT5yiuvVB9Dojv3yvg5x4RS80xGkFqMsrHsPlTjyRu8Eegh4YCM0CiTmQ8MmFzfeuutlVlnnTXtFL/55pvT18027J68jcOqq66aBsQPP/xw+jwCG1RMmHDCCVPZY0ogm2HbMTNuJfUEFq/WWWed1E9zfNFaa62V+hmOfLn44otTX0PZ3XJ1m7wPMeCskRlBoWWWWSYFibjOWWQkiBd/Bx4/or6KMRvznLnmmitdr0888UTdx1577bXpMVzbU001VZsjGxz7tZff1w4++ODqHPP++++vXHbZZZVpppmmmkRdDj6TrDDDDDOkwP1dd91Vd9ztvVO9Lf72ObrvpZdeSgk0HM0V4rqln9lrr71Sch5JeowbL7zwwlTxgyog/G3MPPPM1SQFF1QkqedQzZd+d/PNN68eKUylXxJOY4MBsdYTTjihS9UL83EhfT3jGRLO8qOR9T+s17D5i7kk4zqSEzj2LJIQOD6DI4ypLMTn++67b/VnHQdK3Tca/ykktdx//vOfYswxx+ztp9HnPfTQQ8Wyyy6bPl5hhRWKf/7zn8Wjjz5ajDbaaO0e+7e//a3Ye++9i/POO68YMmRIMXz48F54xiOn//73v8UYY4xR/ZyuP2/j//u//ytGH3304u9//3ux5JJLFh9++GHxyCOPFHPNNVf1MYcddlhx6qmnFk899VQxyyyzjPB/w8jmu+++KwYOHJja+vnnn6/2B99//31x7rnnFjfffHNx9913p69vuummxf7771/MOeec6TGffPJJ8bOf/Sy9bny//PpJ6h+iby5/fP755xc77LBDsf766xcHHHBA8cADDxQHHXRQ8e233xY77bRT6kv4+oQTTlicdtppxYYbbtjL/xKptT7//PPi9ttvT/dTxjNTTDFFGkeut956xdRTT93bT09q12/nNtlkk+Lqq68uzjjjjOKXv/xlzcf98MMPxcILL1xMOumkab7E+6OPPrrYcccdO/zd/Vk+Xj744IOLI488Mn28zDLLpH7ivvvuq/lzX331VbHbbrsVl19+eXp/yimnjNDnLTXjm2++KRZaaKFi+umnT9f7z3/+8zTW+9e//lWMO+641Xk+98lLLrkkvTEXDVNOOWWx4oorFscff3wxzTTTOM+UpB5E/I9430033VTcddddab7y8ccfF/vss0/qe+edd970/oQTTkgxb+bwxLuJB9aL3+af5+PBiy66KMUVias//PDD6Xer/eux5pprFvfee2+xzTbbpPjJgw8+mO6Z6667bnHyySenueS1116bxuszzjhj8cwzz6RxeK11CknNcaVU6iEmIjRm6aWXLu6///5iueWWS4MBJsdPPvlksdhii7V77EQTTZQGcRdccEHx1ltvpUHEOOOM0yvPuy+LgWkMSiMxhsVx2u5Pf/pT8Y9//CMNsNZZZ51ivvnmKyaZZJL0cyxcTTvttMVLL71UXHXVVcUuu+ySAvwES1n8YjA7+eST9/Y/caRAQsGrr76akjuYXND+X3zxRbHtttumJASu9UGDBqXHECTi9TjmmGPSzzLx4DWMfsQAkdT/RHCYex3v83EF/QjBjD/84Q/p46FDhxYLLrhgWkihP6Gfpv+nz7nllluKNdZYoxh//PF79d8jtRJjky233LLYfPPNXZBVn+7DI8jJwuHcc8+dxtuLLLJISkY4++yzUwLNVFNNVR23x8+xsPjuu+8W2223XTF48OBi3333TQFqHrP99tun9+XgdH9Hu0X7DRs2LLUpCRzR/izIzj///O1+jgAzAWfuoe+8846bCtSnvf322+mafeyxx1LSEtc88kQE3nOf3H333dOi1nXXXZeuax67/PLLFwMGDCh+8pOfmIggST1srLHGKsYee+zUL/OeBEg2LbH4TYLCaqutVn0sSWJHHXVU+jgSEvJkA+K0LI5PMMEE6XMTEZrHGgIJfJtttllxxRVXpFjLKqusUmyxxRZpowf3RpCwQDuT/DfZZJP19tOWRh0tqK4gSd123333VctpHn300e2+H6UDKTNFWd5VVlnFEqV15KW44ogFypIutdRS1TaON86SpMx3nE0W55FTqnS88cZLZ2ktvvji1XJV+XlZ6hhlXzlqgbYbMmRIZeONN07l0igJtsEGG6Q25xq+6qqr0mMGDBiQzq619Jek8M9//jMdXzTPPPNULr300nROYXj22WdTH77wwgtXv/bll19WHn300coiiyySSj3St3AuOX2LNCrK75neP9VXxDEAf/3rXysbbbRRGlMvv/zylU8//TR9/euvv05HitBHDxw4MB2FluNaPuKII1L//9RTT6WS7Hw+xhhjVH76059Wfve73/XKv2tkkZecp7xuzHtOOeWUuq/VY489lh7DGF3q6xjrcb44fcvEE0+c5pPN3gu9Z0rSiHHaaadVj5bj6C3eH3/88e2OUWScwrFSzOOJi8eRrTjjjDMqiy22WDo2F/nPxtEM3A88mqExjMkffPDBdFRX+fhi4rS/+c1v0mt24oknpq95z5Raw2QESX3GAw88UA0WXXTRRTUfc8ghh6TvH3jggSP8+Y0Mtt9++9Q+V199dfVrnIHFojjni2+11VaVO+64Iw24CI6yAM7jOROLc7LAotWZZ56ZgqN8b/rpp6+sttpqlddee60X/2UjJ86tJtg87rjjprZcddVVK5dccklaYAwkijDZWH/99Xv1uUrqe95+++10tjiBhQkmmCD15U8++WQ12SwmyYcddlibn6NfOfbYYyvrrruuAQlJGoEiOEyQc7755quMM844lbXXXrvyxhtvVL7//vtqMjXj6jnmmCP14fPPP3/lvPPOqzzzzDOVzz77LM13Jp988sqiiy6aEhfw1VdfVY488sj0+J133rlX/40jgzxIf8ABB1TnmPmibW6PPfZI3z/mmGNG4LOUmpMvhjz88MOV1VdfPV23nHVNQk2tx0mSekfeF2+33Xapvx599NErO+64Y/XrjAtjbFhOSGA8+Nxzz6UFcZJRSWLIN5KB2DmPNxGheyIhIV4D2nvJJZesfP7557391KRRiskIkvoUMhMjWMSA68UXX2yTCTrFFFNUpptuuspbb73Vq8+zr7r77rur7XfllVemr915552VSSaZJAXi2K0fCGrecsstKQAaO4FioMXj2IX1hz/8ofLmm2+m3bbqGjNuJXUH/fLFF19cWXbZZVNfwcIWCXncH0k6mGWWWSqzzz575YUXXmhTEYeFmDzxSZLUs2IMR2IvFW1IIjv88MOr/XJ5jPeXv/ylOg7njepZBJP5eKaZZqq8++677X7vTTfd1O7/p84TErhvRjufeuqp1TkmY3PG4AT4SQ4pV6mQ+pr8754KCVSM5Lom6emJJ56o+ThJUu9hg9jMM8+cxnn014z17r333jaPyRMSqKTAHJ/EBaoc8jP8PBsV8seyCY0KOVTSMhGh+7777rvKLrvskuLnbNx777330tetyiy1zmj8p7ePipCk3EMPPVQsu+yy6eNZZ521mHbaaYvPPvuseO+994ppppmmuOGGG4qf//znvf00+yzOB1tmmWXSx7fddls6H3LrrbcuXn311XSOeH4OKudMcu74r3/96+Lrr78uhg8fXqy99tqeH9mDov25/XJW2eGHH17MMccc6bw4Xh9JquXf//538dvf/ra4+OKLi48//riYeuqpi0MOOaQYf/zxiy233LI48MADU39SPj9SkjRix3m77LJLce6556Z++eCDD05nBIOxH335U089lc6k5RxazvY9/fTTiyeeeKL405/+VMw888zpnN999tkn9fP1xuT2843J2++ggw6qnsVMOw8YMKB4++2307nNM800U3HLLbcUM8wwg/Mg9Xn0JaONNlr6+LHHHisOPfTQ4u677y7WWmut1O8suuii7R4nSRpx8v738ssvL4488shi5513TnHZM888s5hooomKK6+8slhttdXaje34WeKD1113XfHSSy8VCy+8cIoDEA+PMQqPveOOO4o999yzuOKKK4oFFligF/+1IzfG5ozbGY/z+iy33HLFJZdcktYiHBNKrWUygqQ+6cEHH0wDABCo22mnnYrxxhuvWH755dOAQI0ndKywwgop0Pnoo4/WDEb87W9/K/bee+/ivPPOK4YMGZISEtSz/vWvf6U2v+yyy4pJJpkkXe/TTz+9gWVJnQYzHnjggbRgctJJJ6XP55lnnjRp5jHXX399MXjw4F5+tpLUf3333XfFwIEDU5/8/PPPVxOAv//++xTovPnmm9OiIV/fdNNNi/3337+Yc84502M++eST4mc/+1kKfPJ9A6CtkbcjC7VHH310+niJJZYodthhh2KcccYpVl555ZQUbJtrVEhIIPGGfkiS1HsbkIj7jTvuuOlrzz33XLHgggumj3fddddOExLyeC2x8LHGGqvdGIVFdMaXE0444Qj9942KeH2GDh2aYinbbbddMdlkkzkmlHqAyQiS+qz7778/LaTjzjvvLFZaaaXefkojbULHlFNOmTJrF1tssZqPve+++4pVVlmlGDRoUHH77benoJxaz4xbSV1V3t1GwJlKCOyW+Oqrr9LXttlmm+Kss86yD5ekXsJO+9lnn71Ycskl01yGQPQXX3xRbLvttqnfZkzO9xkHsiOfCgjHHHNM+ll3MfecfJy93377Fccdd1x1ETfmRyYFa2RPSDjssMOKe+65p1hqqaWKU045xZ2yktRLGOOtvvrqKfF0r732ajcWoTotlVJJJCAhgceqd7GJjzgKiSSOCaWe4V+VpD6LhVqOEMBUU03V209npMNRDffee2/6mGMuSDgoYzAMdgIRyKCMLBm36hm0L8FpAtHHHntsce2115qIIKkh5QUqEvQuuuii4oQTTkjlpbHvvvuaiCBJvYgSulQno0oZO6uoOkbJdMbhv/jFL4pnnnkmJSkQgMZVV11VfPnllyYi9DDG2THvIfljt912azfHNOiskQ19Ruwvo9IHSapUlXz99detJilJIxgL2IHNYM8++2xx8sknp80CMRahkgFIGGMs8ve//73YZJNNij/+8Y+99rz1Pxx/GRXNHBNKPcPKCJL6vG+//Tadq6ruV0i48MILi6222qrdYyjrOGzYsOKAAw4ojjjiiF54lv2LGbeSWt2nsPOWs64lSb3rlVdeKTbbbLPiL3/5Swo6U31siy22KNZff/3qnIZ+e+qpp07HA3AmsDpXTt7tSgJH/ju++eabYuKJJ66WU5Z6S3evwfxvgcWv6aabLiW/O8+UpBEjxhfEr996662UlHrDDTekajUcyUpVpp133jk9lrFhbCDIKyRcffXVxaqrrtrL/xJJ6jkmI0hSP8BAmF1aYBctA9y55547fc5ZZZR0ZDBM4kLssJUk9X1WVpGkvoeqZBzFQKIY58/mC40sEBKUZkzO25577mllhJJYRP3hhx/anJNMe958883FBhts0OUzkvMFWttdvS2ubfoMdtKus846KZGgWeVr2UQESRqx/ThHM2y88cbpGMW//e1vxcwzz5wSVDHFFFOkDWA77rhj3YQEkLyw/PLL9+K/RpJ6jskIktQPExJmnXXWVLqRoMd7772XSsqStfvzn/+8t5+mJEmSNErufCb8QsCZcupzzDFHWnzkuDS1X1Rl7vLII48Um2++edpVyLxlvvnmSxUlLrjggmKBBRbo7acqteRaJ8lm4MCBxTvvvJOSbUhg6u7vlCSNOF999VWx9NJLFx988EGxyy67FHvssUcq+0+ffvvtt6fjFSebbLLiqKOOqpmQsO2226aju0hkpbqNJI2KrEUnSf0EA2POqOXIhjfeeKOYaKKJiqFDhxbjjTdeyrz1XElJkiSp9UhE+Ne//lXsvffexWWXXVZMMskkxZVXXpkSEdzB3BYLqf/4xz+KDTfcMCUgcJTCoEGDivXWWy8db7HpppumpISuytv766+/Tq+F1FvXOjtqqVL43XffFYcccki3SnTn13YcdWlygiT1LPre448/vnj55ZeLvfbaK/XpVHUClRKWWGKJtAHs6KOPLg466KD0eI5sIBEhEhLOP//84sQTTywmnXRSKx9KGmVZGUGS+hkSElZYYYX08Z133lmstNJKvf2UJEmSpFHSv//97+Lcc88tTj/99LTjjcTgSy65JCUCG3Bua/3110+Lsn/84x+L4447rjj77LNT2eOxxx47Bez/X3v3HlN1/cdx/F0pKs7UhpgRKOaNhhpeuoDNrPAaTq3mJTO1SM3ESvOGrpBlWpszBea1TDOXQYU1BS/MiLWcYqCS2mapmDdESwURrX57v9s5AmL9pMM5cXw+/uGc77l4jvv68cvn8/q833PnzpVx48bZ31lVFlnLLtYuXbrUfi+KjY11tq8D3FkpRX/qOdy+fXsL2GhASVVlXCh7bq9du1Z27dolMTExVlUEAFC9oqKiJCMjQ/bv32/jbsVxXCvSalUsDR0EBQXJlClT5KWXXnJeJ+p1jiJABsCbEb8HgJuMToBu3rzZbt95552e/jgAAACA19IJ5vDwcOsDP2/ePElOTiaIUAkNGXzxxRf2d6IVC3SiXssW6yS93tffYbQ6gj6uC6//JoiwatUq27moi79aRhlwJw0inDx5Ujp37mwhpbp169r5ry5fvvyvgghaCnzChAmybt06Kq4AQDXT8ff06dNy8OBBC1MeP37cjlccxzWA0KdPH7udn58v8fHxFop0XCfq+yiCCAC8GVemAHATeuyxx6z8aWhoqKc/CgAAAODVwsLCZMOGDdZDWHsG66QzQYSrEhMTZcmSJTJs2DBZsGCBtU7QthbLly+3xVltL5eZmWnhgWPHjt3wImvFxdpp06bZ++fm5kqLFi2q6VsB5TkWmxyBmD179siMGTMkJydH9u7da8cdpb2rem7r+2nFhS+//JI2jABQjeO40vFXW2452kdlZ2dX+jzVv39/m4PV1lMaSJs+fbozkKDvU9lrAMCbEEYAgJuU9pAEAAAAUP10B77uiFbsWL5K2y9s3brVdgNqJYRWrVrZzsLo6GirhqB9mN944w0LJMTFxdkirk7il1Wx+2jZ+xUXa3Xyv6ioSL7++msrjw+4g1ZC0fPwt99+k8OHD8vrr79ubRR0J62e+xpI0AogN6Kyc1s3HHzzzTfOhTEAgGvH8eLiYklLS5O8vDznNUeXLl3straXOnHiRLlwgb5OaQhSx39tSaWVss6ePWsBMg1eKn0N3dQBeDN+AwYAAAAAAIDb6U5wLVGsE/D6Uyfnu3btamXmhwwZIpMmTZJXXnlFJk+eLA0aNJA5c+bIBx984AwklG3ZoAsDuhjruH+9IEJWVhZBBLiVVkI5c+aMhISEyFtvvWXHtAqIBhL03F+zZo1s3Ljx/34/zm0AcB+tOKPjeGFhoYwaNcoCBdoS59SpU3bNoQHKjh07WsUbrYCg1yiOMVpfp+P8woULLZQaEREhY8aMsVYNGkLTak36/4GiTQMAb0YYAQAAAAAAAG6nk/Vaslj169dP7r33Xjl//rwt2EZGRjqfN3HiRJk6dWq5QIJWUHBM9iclJcnzzz9vrRzK7mAsu1iruxlZrIWn7Nu3z3bMbtq0yRaslC5AafsW3TGri1naXqEqQQTObQCoHno9oSECDR48+uijkpqaatcny5Yts7ZSOiY3bNjQQpRt2rSRnTt3Sq9evWTFihWya9cuKSgokDfffNPGe63+1Lp1a6v2NH78eJk9e7YF1Q4cOODprwkA1e6WP6n/AgAAAAAAADfS6SjHLsAXXnhB3n//fbuvt5csWWLHHWWOHeWLFy1aZOWNNbCgi7gDBw6UjIwMCyhcvnxZfvjhBwkICHD+GdrWwbFrXMvXs1gLTxoxYoQtWKWkpFj4xkErf8yfP99aKa5du1aioqL+8d+MBhG0xLdWAyGIAACu5xhzNTDQvXt3OXTokEyZMsWqGWhlp7JjstJQweDBg2X37t3OqgjapuvcuXPSokUL2bZtmwQFBZV7Xx2/tZpC2T8PALwRYQQAAAAAAAB4xMWLFyU0NFSOHDliOxB1x+Dnn38uPXr0uGY3uE5hJSYm2g7Dn3/+WerWrWuvDw4Olq1bt9pkv+O5n376qTz33HNSr149WwBgsRaepueulvZ+6KGHZMOGDbab9kYDCUorg8ycOZOQDQC4oUWDVjHQSgixsbEya9Ysayul9JqktLRUduzYYWN3p06dbFxOSEiQ7du3S05OjrRs2dLGaA0xNGvWzK5zNKTwd1VvAMAbEUYAAAAAAACA25Td/ffxxx9bW4axY8farkJtuaCBBG250Lt370oDCVomWXeX5+XlSefOnSUuLk7uuusu5yS/Pjc9PV1ee+01W9i97777PPhtgb9cunTJ+oXn5+dLWlqahIWF2bE6deqUCyRoSEEXvp566qlK30cDDVpJ5LvvviOIAADVSAOPXbt2tWuP3Nxca9mgdOzWcXr9+vWyZcsWOz506FCrxtSuXTt7jrbmadq0qbPVw/WCCABwMyCMAAAAAAAAALftMtRJ+ZKSEqtsoL7//ntbmFUvv/zyPwYSHLT0sVY+0HLJFSf5dbeiLhY0aNDArd8PNy/HuV1Z8EbPTz13tbWCthqJiYmxCh+q7Lk7depUeffdd623uJb6dvwbqUgDDYGBgW74VgBw89IqTG3atJHw8HCrsqTXLoWFhTJ69GgLIfj7+9vjGqYsKCiwCghz586119J2AQCuIowAAAAAAAAAt9EJ+z59+tguwkmTJl2zIDtx4kRZtGiRBQk0kKDPBWoC3QmrIYMRI0ZYSe7GjRuXe1x31j744IP2mLZqcOygLXv+x8fHy7PPPmttRypiZy0AuI+GGvv16ycZGRkycuRIKS4ulszMTLuOGTBggI33Op4nJyfLkCFDpHnz5pKdnW1jP0EEALiKMAIAAAAAAACqVdmqBsuXL5cXX3xRAgICbKf4uHHj7HjZkvUEElDTaDWO+++/3yoaaGnu1q1bW+uF0NBQ6xvuoEGFjz76yFqIDB48+LpBg8oqLQAA3Gvfvn0ybNgw2b9/v12n9OzZU4YPHy6DBg0SX19fe05RUZGFEiIjI62NFACgvKu17QAAAAAAAAAXc5So1x2Fe/fulcuXL8vjjz8ux44ds5L1ixcvtudpEEEn+tV7770nEyZMkPPnz9tuw/T0dA9/C+Dv+fj42LkcGxsr99xzj2RlZcnAgQOlb9++MnPmTMnLy7NQzpNPPmnP13YMWknBoWLFA4IIAOB5ISEhdg2yadMm+eyzz+Srr76yMIIjiKDjelxcnFy4cEEiIiLsGPt/AaA8KiMAAAAAAACgWjh2e2tJY90Frguy586ds53iuttQNWnSxErTa7WE61VIUFu3bpUePXp48NsA/0wXpnS6deXKlbJ9+3ZZsWKF3b/jjjvkgQcekOjoaOsrruEcbdXQoUOHcpVDAAD/bY7KNTq26zXK7NmzpW3btpKamip+fn6e/ngA8J9DGAEAAAAAAADV5uzZs/Lwww/L0aNHZfz48fLqq69K/fr1Zf369ZKWliYffvihLdTOmTOn0kDC6NGj5ZNPPpEDBw7I3Xff7eFvA/w9nWot2yt8165dsnnzZms3kpuba+EcDemoZ555RlavXu3BTwsAqIqSkhJrxbNmzRpp1KiRZGZmSmBgIOEyAKgEYQQAAAAAAABUC52U1xL1c+fOlUmTJlngoHbt2s7Hjxw5IkuWLJG3337bdhPq7sKxY8deE0jQQEPjxo2dlRaAmrhwlZycLN9++62sWrXKjmm4ZuPGjRIcHHxNiAEA8N9TWloqy5Ytk4SEBAtJPvLIIxYqCwgI4BoFAK6DiBYAAAAAAACqhe4O3LNnj9SrV09iYmIsiODYFa6CgoJkzJgxVv3g9OnTFlpISkqyxzSIoJP+SoMIuljLJD9qIj3n69ata33G9fzWAEJUVJT8+OOP1odcEUQAgP8+Hx8fCQ8PF39/f5k3b56FzAgiAMDfI4wAAAAAAACAaqmKoAGDgwcPysWLF+X48eN2vOJkvQYS+vTpY7fz8/MlPj5eli5d6pz01/dRLNaipnKc844Ctdq25Omnn7bbKSkpVgWE4rUAUDOEhYXJhg0brO2UtpnS6xSCCABwfYQRAAAAAAAA8K85QgNlqyJo64UOHTrY/ezs7Eqfp/r37y+hoaHSrVs3OXnypEyfPt0ZSND3qew1QE2jgRrHudy7d29p06aNVQ4pKioibAMANUj9+vWlVq1azusUAMD1MUoCAAAAAADgX9HyxDoZX1xcLGlpaZKXl2fHdbd3ly5d7PbixYvlxIkT5cIFjpYNJSUlcvjwYRk0aJCVPT579qzMmDFDli9fbo/ra9g5Dm/gWLTSSiEaQtDATtnWJQAAAIA3IYwAAAAAAACAKrty5YqVJy4sLJRRo0ZZoGDChAly6tQp2+0dHR0tHTt2tB3gWgFBKx84FmT1dRoyWLhwoe0wjIiIkDFjxlirhl9//VWmTZsmCxYssOeycxzeoqCgQOLi4uSXX36xFiVNmjTx9EcCAAAAqsVfdWQAAAAAAACAG6Q7ujVEoMGDyMhIOXDggPTq1Uvmz58vjRo1sgoIDRs2lHXr1klUVJTs3LnTHtewgvZcDgwMlISEBElKSpJWrVpJ69at5fbbb5fx48db+GDmzJn2noA30UogP/30k/Tt21feeecdO6ahHAI3AAAA8Da3/EmNOwAAAAAAANwgx+LpmTNnpHv37nLo0CGZMmWKVTOoXbv2NYurGioYPHiw7N6921kVQXsunzt3Tlq0aCHbtm2ToKCgcu+blZVl1RTK/nlATachHW1LEhwc7LxPz3EAAAB4I8IIAAAAAAAAqHKLBq1isGzZMomNjZVZs2aJj4+PPaZTTqWlpbJjxw7x9fWVTp06SVFRkVVC2L59u+Tk5EjLli2lffv2FmJo1qyZVVrQkEJFLNbCWxGyAQAAgDcjjAAAAAAAAIAquXjxonTt2tUWVHNzc61lg7p06ZIFFNavXy9btmyx40OHDpXp06dLu3bt7DknTpyQpk2bOls9XC+IAAAAAAComYiUAwAAAAAAoEo0UKDtF/z8/CxIoOGEo0ePSlRUlMTExFhLhm7duknjxo1l9erVsnLlSudrNYigO8IdAQaCCAAAAADgXaiMAAAAAAAAgCrRCgj9+vWTjIwMGTlypBQXF0tmZqYUFBTIgAEDZMGCBdZ+ITk5WYYMGSLNmzeX7OxsCydQmh4AAAAAvBthBAAAAAAAAFTZvn37ZNiwYbJ//34LJ/Ts2VOGDx8ugwYNEl9fX3tOUVGRhRIiIyMlJSXF0x8ZAAAAAOAGf9XBAwAAAAAAAKogJCRE0tPTrV1DYWGhPPHEE87WC+qPP/6QuLg4uXDhgkRERNgx3RtDZQQAAAAA8G5URgAAAAAAAIBLXblyxQIJOu20aNEimT17trRt21ZSU1PFz8/P0x8PAAAAAOAGhBEAAAAAAADgciUlJTJ58mRZs2aNNGrUSDIzMyUwMNAqJdx6662e/ngAAAAAgGrGb34AAAAAAABwmdLSUklMTJSwsDBJSkqyn1lZWRZE+P333wkiAAAAAMBNgt/+AAAAAAAA4DI+Pj4SHh4u/v7+Mm/ePElOTpaAgAALItx2222e/ngAAAAAADehTQMAAAAAAABcrqioSOrUqSO1atWiNQMAAAAA3IQIIwAAAAAAAAAAAAAAAJcikg4AAAAAAAAAAAAAAFyKMAIAAAAAAAAAAAAAAHApwggAAAAAAAAAAAAAAMClCCMAAAAAAAAAAAAAAACXIowAAAAAAAAAAAAAAABcijACAAAAAAAAAAAAAABwKcIIAAAAAAAAAAAAAADApQgjAAAAAAAAAAAAAAAAlyKMAAAAAAAAAAAAAAAAXIowAgAAAAAAAAAAAAAAcCnCCAAAAAAAAAAAAAAAQFzpfzmTeA3a05WhAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# plotting percentage of missing values per column\n",
+ "msno.bar(df)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "... more than 2000 data points missing for waterfront. And we see that view also has still some missing values. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ ""
+ ]
+ },
+ "execution_count": 36,
+ "metadata": {},
+ "output_type": "execute_result"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAACCAAAAOzCAYAAABjo+XBAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAA3dxJREFUeJzs3QWYXOX5sPEDTWFpKR68WHApXhwSdEtxLa7F3TVocXf34poWWNzdJUBwCqVoC20pS9t/57vul+8Zzp6d3chMMtk59++6tkl2Z7ezL+ec1573ecapVCqVTJIkSZIkSZIkSZIkqQ7j1vPNkiRJkiRJkiRJkiRJMABBkiRJkiRJkiRJkiTVzQAESZIkSZIkSZIkSZJUNwMQJEmSJEmSJEmSJElS3QxAkCRJkiRJkiRJkiRJdTMAQZIkSZIkSZIkSZIk1c0ABEmSJEmSJEmSJEmSVDcDECRJkiRJkiRJkiRJUt0MQJAkSZIkSZIkSZIkSXUzAEGSJEmSJEmSJEmSJNXNAARJkiRJkiRJkiRJklQ3AxAkSZIkSZIkSZIkSVLdDECQJEmSJEmSJEmSJEl1MwBBkiRJkiRJUkurVCrZf//73/T3f//7381+O5IkSVLLMgBBkiRJkiRJUkv53//+l/789NNPs//85z/ZOOOMk/Xr1y/77LPPso022igbMmRIs9+iJEmS1JIMQJAkSZIkSZLUUsYdd9zs4YcfzgYOHJhdfPHF6XNff/11tsgii2T33HNP9u233zb7LUqSJEktqV+z34AkSZIkSZIkNdJ3332X/fGPf8yGDRuWnX/++SkLwimnnJKCEAYPHpytt956zX6LkiRJUksap0IBNEmSJEmSJElqIW+99VZ27bXXZscdd1z23//+N2VFOOqoo7J99tmnWqaBz0mSJElqHEfYkiRJkiRJklrObLPNlrW3t2fjjz9+CjaYaKKJssknn7z69XHGGaep70+SJElqRQYgSJIkSZIkSWopkfT1sssuy7766qts2WWXzf75z39mJ554YnbppZemkgwEIJgcVpIkSWosSzBIkiRJkiRJall33313Nuuss2YXXXRRdvrpp2czzDBDduCBB2YbbbRR9uMf/zgFIfBhOQZJkiSpfgYgSJIkSZIkSerzKLPQWxDBe++9l5177rnZOeeck00//fQpCGHjjTdOQQhhyJAh2Y9+9KPs17/+9Rh615IkSVJrMaxXkiRJkiRJUp/2f//3fyn44Ntvv82GDRuWPfvss9mnn37a5TUzzzxztssuu2Q77bRT9tFHH2XHHntsdvXVV1e/ft5552XbbrttClLg50iSJEkaeWZAkCRJkiRJktSngw/IWvDFF19k22yzTfbMM89kn3/+eTbNNNNkBx98cLbyyiun4IPwpz/9KTvrrLNSJoT+/ftn6623Xvbdd99lV1xxRTbeeONlTz/9dDbTTDM19XdS38Q1OMUUU6SSHuOMM06z344kSVJTGIAgSZIkSZIkqU+KjV42fpdZZpmU/WCOOebIxh9//Ozll1/OJphggmzzzTdPmQ/mmWee6vd9+OGH2cUXX5ydf/751UwJ8803X/aHP/whm2GGGapBDdKI2nrrrbPXXnstZdWYZZZZDEKQJEmlZQCCJEmSJEmSpD6LYAFKJxA8sOeee2Z77LFHymRw0UUXpQCDoUOHZptttlm29957dwlC+Oqrr7K33347u/XWW9OG8WqrrZZNOeWUBh9opJFVY5VVVkkBML/+9a+z008/3SAESZJUWgYgSJIkSZIkSepT/vvf/2b9+vXL/ve//2X//ve/s0UXXTRbbLHFUsBBPnhgyJAh2XHHHZfKMhSDEGptDvPzxh133DH++6hv41p6/vnns7322it75JFHsvb29lTmwyAESZJURo6mJUmSJEmSJPUpBB989tln2YYbbpjdcsst2ddff53ttNNOKfiADAZx5mqNNdbIDjzwwGyRRRbJrrzyyuzkk09OGRHApnDxbJbBBxoVXEsLLrhgur6WWmqprKOjI5X9eOedd2peZ5IkSa3MEbUkSZIkSZKkPoUN3cMOOyy76aabssGDB6dghH/961/pawQh5Dd9V1999eyggw6qBiGcdtpp2UsvvZS+5sl0NSojB8ErXGNkPsgHIVDmwyAESWXHc1JSeRiAIEmSJEmSJKlPYUN3//33z9Zaa63sk08+SWUY7r333moQQrymGISw+OKLZxdffHF2xRVXuBmihpYD+eqrr7LrrrsulQGZYoop0tcefvjhbLfddsveffddgxAkldbBBx+c3XHHHfa7UokYgCBJkiRJkiSpT6HMwkwzzZSdeuqp2fLLL58+d+ONN2bPP/98l03eYhDC7rvvnq222mrpTzaNpXqvQ66jzz//PFtppZWy7bffPmU+mHDCCbOf//zn6WuRCcEgBElltO2222bHHnts9sQTTxiAIJXIOBVHPJIkSZIkSZLGUixf9lYq4U9/+lO26667Zn/4wx+yRRddNDvjjDPSn6TEr/UzOjs7s7a2trR5TLkGqR5///vfsxVWWCF75ZVXUjkQMm2AjAi33XZbKsnw3HPPZe3t7envs8wyy3CvaUlqBdtss0126aWXZltuuWV2yCGHpOefpHIwAEGSJEmSJEnSWCmCBAga+PDDD7Nhw4Zlk046aTb11FNnAwYM6BKEQKr7IUOGjFAQglSvuJ4uv/zybKuttso23XTTtNHG9frdd99l448/fioN8vjjj2f77rtvNQiBa3PWWWf1epRUiuCDLbbYIjvssMNS1qJaGYp8DkqtyRIMkiRJkiRJksba4IMvvvginZ4cOHBgtsYaa2TLLLNMtvLKK2cHHnhg9bUzzDBDduaZZ6avP/PMMykYgT+Lmx1So8T19Oabb6Y/N95443S9/uc//0nBBxhvvPGyJZdcMpX8mHjiibOHHnooZeuwHIOkVrbddttVgw/IDEPwQeDZR3AWCNaS1JoMQJAkSZIkSZI0Vvnf//6XNnM///zzFHBw/fXXZ3PMMUe23377pdPmBCUcf/zx2brrrpt9/fXX6Xt+/vOfdwlC2GuvvbLHHnvMTV6NFnFdcY2Caw4//vGPu7yOIITVV189m2yyybJvv/02u/fee1O2BLJ2GBQjqdVsvfXW2UUXXZT64pNOOimbeeaZq1/7y1/+kt1+++3ZRhttlJ6L66+/fvb73/8+++ijj5r6niU1Xr/R8DMlSZIkSZIkaZRROuGf//xntskmm2TvvPNOduSRR2YHHHBA1q/f98uZnKokI8I999yTdXR0ZBtuuGEKWiAI4ayzzkqvu/nmm7Pjjjsu/ckmsNRIETyw7LLLps22l156KZUKaWtr65JWnBO+ZD9YccUVs48//jh77733stdffz2bYIIJmvwbSFJjvfXWW9lrr72W/s7z8K9//Ws2+eSTp38/+OCD2dlnn53deuutKcNRICCBDDI77LBDtvTSSzftvUtqLDMgSJIkSZIkSRrrsFnBxwYbbJAddNBB1eADMh7sueee2YQTTpjts88+2WqrrVYNWsD000+fnXzyySlTApsdBh+oEfKZNAh2CXPOOWc2ySSTpECXc845J30ugg/y5RgeeeSRlAWBbB7Dhg3L+vfv3+XnSFJfN2DAgOyEE05IZZLuvvvubN99982GDh2avfzyyymI8KabbkrZD04//fTslltuSZmK6Nuvvvrq7Pzzz88+/PDDZv8KkhrEDAiSJEmSJEmSxjps2P73v//N9t5772pwwTfffJNOSL755pvZYYcdljYvOHFOUMIbb7yRLbbYYul1M844Y3bhhRem7+NnRPCCNLI4qUs5kMCpXv4d1+QiiyySHX300dkuu+ySAmIIPth5551T4EuUYzj11FNT9gOydsw999zpcwQfxM+QpFYI0uKZRtmkgw8+OD07hwwZkv373/9O/fDTTz+dXXLJJdmWW25Z/Z4111wzm3322bNdd901lWJYYYUVunxdUt/lyFuSJEmSJEnSWLeR8dlnn6W/f/XVV9XggyWWWKJb8AE4NUlWhN/97nfZoEGD0udic9fgA42qCF7hGjzttNPSBhrX31RTTZVtuummqcb5dNNNl+20007Z3/72t+zQQw9NATNPPfVUtsACC6Tr9Zprrkkba5QHWXXVVas/2+ADSa0kMr/wJ4GCgwcPTn+nTBLOPPPMLsEFZIghSGu77bbL3n777eykk05K5Wx4tvJ89Bkp9W2OviVJkiRJkiSNVdi0mHLKKaubFJykJLsB9aWLwQdg0/f999/Ppp122ia+a7USrjmCDwiEWWWVVbKXXnopBR5MNNFE2RNPPJE+2FjbfvvtU2ABJ34psbDffvulMgt8BLIeUOec7zfzgaRWDyCMIIRDDjmkmkGG0gt5BB9Ehplll102BSDwfDRoUGoN3smSJEmSJEmSxpqNC7B5sfDCC6e/77bbbunf7733XtrMKAYfkPWAcg1bb711Kr0gNQKbYmQ+ILiArAfUMj/wwANT8ADlPsh28Ic//CH72c9+luqezzHHHNmOO+6YLbTQQqnm+UMPPZRNPvnkKb34uuuum/Xv379bOQdJ6qu+/PLL9Iwror+OIATKMfDMpHQNAVo99fl8HbPNNtsYeOeSxgQDECRJkiRJkiSNcbU2YyOFc9SGZvOC4AJOSrIBzKZvHicmSY0/zzzzpK8RmBAbH9Ko4hriJO6JJ56YPf/88yno5cgjj8zGH3/89PVFF100e/fdd9OG2iyzzJLNNNNM1e8lUwcfBMTk8fMMPpDUCsg6ROmj448/Ppt55pl7DUIgE0LI98/5bAeUqcGKK65Y/ZqZYqS+bZxKhBhJkiRJkiRJ0hgMPuCE+WWXXZZ99NFH2TTTTJMNGjQoW2CBBaobD2xw/OpXv8pee+21bK655srOOuusbLzxxksBCaeeemp23XXXZTPMMEP28MMPpz89Ya5GWm655dK1ScYDrjn84x//yJZaaqn0ucMPPzzbc889swkmmCD717/+lf3kJz9Jr+E65BrOb8JJUivYZ599slNOOSWbdNJJs/XXXz9lhhnZ7EPRV/N8JJBw//33zwYOHJjddNNN6edK6vsMQJAkSZIkSZI0xsTJxs8//zxbeeWVs5deeqn6NYIMNt5447QZEScjP/jgg1Q7+sknn+zycwhEYMPioosuyqaffnqDD9QwXEvvv/9+Nuecc6YghHvvvTd9/ptvvsmWWGKJbNiwYdlhhx3WpRzIueeemwIRttxyyya/e0kaPa666qps8803T0FVBA3Sj2+xxRbZwQcfPEolkI499tgUgPDTn/40e/zxx1NfbvYDqTUYgCBJkiRJkiRpjPrnP/+Zrbrqqtmzzz6brbfeeilF8/3335/dfffd6Wu77bZbdtxxx1WDEKgPffXVV2cvvvhi9sUXX2RTTTVVCl5gM3iSSSYx+EB1iesnv/H1l7/8JZt77rmzaaedNhs6dGh6Ddk53nzzzW7BBxgwYEA24YQTpk00NtMkqZW8+uqr2U477ZQ98cQT2emnn54yvlCahmflZpttNsJBCH/729/SzyBoiz5/9tlnz26//XazGEkt5vsRvCRJkiRJkqRuaqVPN6V6/Z577rl0ivyggw7KDjjggBRosNZaa6VNCNI5k94ZEYTARu/WW2+dPlc8Hcm/3bDQiIrrJ18ygeuHk7znnHNOtskmm2SzzjprOt0733zzZU899VR29tlnp6+9/fbb2eDBg7sFH/Dvjz/+ODv55JOrP1OSWgXjnldeeSV79NFHU9kFMr3wLCUrDP31lVdemV43IkEIjJ9+97vfpSCETTfdNDv++OPT89bgA6m1GIAgSZJahpMVSRq+//73v9XTpJKkERtf8icn8DnlN9lkk2UTTTSRz9KRVAzaePnll9NpcYIN4uT5lFNOmUot8Pldd921WxBC9GHF1MymatbI4Hp54IEHsksvvTRl2lhkkUWyL7/8MvvFL36RrlFKLsw888zpuuRUL1k6CDDgawTMcM3mr7kzzjgju+KKK7Ill1wy+81vfmNwkqSWw3ONwAKeme3t7dVAK8ovgOCrEQ1CIGvRzTffnD322GPZiiuumMZUrudJrceZkiRJagmxGPndd99lF1xwQYrC5iSVJJVZcSGHzTNO65Ha+umnn86WX375pr4/SeoL48u//vWvKcUwC+WcfmbhfIUVVsg23HDDbKWVVmr22+xT/dF//vOfFIhAsAGbF/379++W9p5+ao011kh/rxWEYG1o1Yv034ccckg6fUupBMZFZNf49ttvU4DBMsssUx0/rbLKKqnUx1133ZVNPvnk2UwzzVS9/v7973+nYITzzz8/Bc9cfvnlKUDJa1RSKyLIilIzlECKvp2AQbIh9BaEUCsAnp+xzjrrpL+bxUhqTeNUGPVLkiT1YTGZIeiAdJlDhgzJxhtvvOyRRx7JFl100Wa/PUlqKuoQP/PMM9nuu++e/v3111+nE35fffVVOtE322yzNfstStJYu2FOSvZBgwZlr732WqpRzIL5J598kr311ltpg/HCCy/Mttpqq2a/3T7Rlpww32WXXbLXX389++CDD9IJc05UPvzww2kTuBg0R2Ax43qCEAgCoZ1Jge8mhRqBa4sa5mRCYAON6++YY46pjpfyQQRDhw7N9t9//1SrfPzxx0/PgimmmCI9B95///00rrrtttvSZpuneCWVIYtR/Dv+ZD3usssuS0EIZIsie0w+CIHX3XjjjWmNjkAuSa3PUExJktSnscATwQecVLnzzjtTDbkPP/zQ4ANJpcYiDxs2Sy+9dLbnnnumTTLwbzaB9thjj2yGGWZo9tuUpLESG4gEbHES/5133kmnpV988cXsnnvuyYYNG5ZOPbNBud9++2UvvPBCs9/uWN0X0ZZffPFFSmt/3XXXpb6JtqM9absTTjghvTYyIQQ2emn/s846K435b7/99uwf//hHE38btYI4i8e1te2226bgF+aSc889d7bssstWXxfBB7x+nnnmyc4888yUhYO/E5B0//33Z9NPP302ePDg9Fww+EBSKyuWlol/RxACz1IyIey9997ZNNNMkzIhHH300an/B58nc1T06ZJanxkQJElSn8fpqNVWWy176KGHUsrMfffdN01+NHzWgpdaH2Vpdthhh/R3Tu6Sdvjwww9PJ0p5VpomWJJq43Q0AVw8LznRF2Omf/3rXykNMSf8fvvb36ZgBMeetbHsyEbDTjvtlN16663ZjjvumMqkvfTSS9l9992XHXrooel1p556as2T5zHWZ4N3wQUXzKabbrpupzClkcU1xjVEdhMycJCN47333ku1zLkOF1hggV6/n6wHlF8gE0IEHTieklTmNaPeMiHweYLhKVXz5JNPli4DgsFpKisDECRJUp8VE5zzzjsvLWqS+YC0rKTQDNTp5XTKp59+mk61tLe3u0BcQBrhY489Nm1ITjrppM1+O5Ia+IzkI1KEb7/99umZSS3jO+64I72GxXNK1kiSuqM2MenZ33zzzax///7pc9SKX2KJJVIWBMZOBChMMMEEqawNi+5skCvL/vOf/2Q//vGPq5uyc8wxR7b44oun/oh+h/6JTY2LLroo23nnnYcbhBBcxFcjEQjz6quvZpNNNln2u9/9LpWtoqQfmU3mm2++6uviesxff/F3A2IktboRXTOK5yEZpCi3wHOV7+3s7Ezjo8ceeyxl4CvLQZhzzz0322CDDbLJJ5+82W9FaorWv8slSRoLeBpi9IiFHhaOWOAk80EEHzDxId3bDTfckBaVMMkkk2Sbb755mjixUFxm+YUyAjcI0iA6nZPStJOkvo97nA+CDG666abqvd/R0ZHSCHOil00g+yhJ6o5SNW+88Ub2s5/9rJoqmAADMh8QkMAi/F577ZW1tbWlr1FKgMV2snEZhJClsTljS0qk7b///qlN2NSl34ngBD7IiACCEAjmAEEIxc3eYPCBGoUx0fzzz58+wJjpyCOPzH7/+9+nf+eDEGKc9NRTT6VsUgMGDKheiwYfSGpFo7JmxOvp4yeeeOK08U7ZJTLG5IMPooxqq9t6661TJgjakbGOfYXKyFUmSZJGMwbXLFiwAXTbbbelMgHffvtts99WS/n888/TJOfZZ5/NPvjgg+yVV17JBg4cmB122GEp8pq0uNttt11a5BwyZEj20UcfZWW/JmNTEkwMmQiyaM4JaU7wSWod1MumpvGll16aTprG5g5pMUEfFTW387W3JaksOIlXROABC+yM28l+wPhpscUWS5kPGGPmgw+itjFphfOfKzsW3t99990UXPDggw+mMToYk+exMH/22WenvxOEQJAcDDZQo9Qa38RmUMyJyJR3xBFHpEwdBCGccMIJ2csvv1x9PZn2yI7AeKrWM0OSWkU9a0b08Xz/8ccfn917773dgg/K0Ldvs802aQzEAahf//rXBh+otFo/1EiSpCaKtGLUid1qq63SaXwWLq+66qpslllmcRBapzi1u/HGG2ePPPJIOqVCpDXlFmj3bbfdNjvqqKPSKZW///3v2TvvvJNqzbJwPNtss2VlFBO+L774Ittll12yRx99NC2uR1AG1yhfZ4HNTAhSayDlI9kOfvKTn6T7m+fjlltumbLGxKZZBMpFOQaeCdNPP32T37kkjX6cTOO5+Nlnn2VnnXVWdsABB6TnJc/FeeedNwUVsIHOyWcyHxx66KFdgg/4/kMOOSRl3OJPxqL6HkHAtOvpp5+e/k0wAmqlrM9nQiBIjv8GLOBLjZqTMx+8+eabsyeeeCLd39QgJ+AlX4pqpZVWSn8SZEQQAmnDf/Ob32SvvfZadsYZZ6SgdwLby3B6V1I5NWLNaJ999kl9P0EHDz/8cOmCDwhU22KLLVJfMuOMM1qqR6U1ToWrX5IkNVwMrqkTu8IKK6S0rGuuuWZK1zrPPPM0++31Ob2lCCdFLpHYF198cUrvNmjQoDToJ0VulGTAcsstl1LGMQGaeuqps7KJSQ/tRTpcMkdQ25i0uJzuoe0I4mCRjgj38847zyAEqY/pbWGHRXMWzHkOsKi+2Wabpc+feOKJKQgh8CylVA2LRpzYkKRW991332UrrrhiGg+x0RglFAg6WHrppdOzlYADAlvzz0vwrKTG8Zxzzpk2N6eYYoom/RZjlyizAAIKIqvBnXfema2yyio9Lsafcsop6dTk008/nRbtpUaMi5j3rL/++mkeCMZDzHkWXXTRlH1jwQUX7DJ+4tTucccdlzJ3RPYEAtjvvvvudF2WZSNNUrk0as0oxkb05QR7lTX4gN8dljxUWRmAIEnSaETKVk5RMOhmkE5NWE7zGP06aqdWWBymhAWndFkEZqE4/xoWOv/85z9ns846a7efwYmVPfbYI6XNZJL005/+NCsj2o7JELX4CIbhlF/+1A8L7QTKcFqN0z5mQpD63rOSvoe0wWyigVTC3PeTTTZZlywH+SAEAg522mmn7IorrshOOumkajkbA+YklQElu8icddNNN6Xx0eDBg6tfu/DCC9OpfJ6xZJM59dRT04I8qBdP0BaBrWTj+vnPf17KReaefufol0DWiNNOOy39/Z577kkB2j3NiQjgJog4//3SqF6XnOIlEP2NN95I8xvGOxNNNFG2ww47pGwI8803X7o2KVeV3yDjAAEBCMw/yYbCSWDu9bJspEkqp0atGZWtLyeT0/nnn5+y35IRa+aZZ65+jay4Q4cOTf0J7UZmXILZFllkkfR114jVqgxAkCRpNKGLZUOHgSeLFZzkmWCCCboMxlmo5HMsZHBqSt3FAs8333yTrbHGGtkDDzxQ/RrBBKTN/MUvftFtQpNfCGVCRPQ1bc2pFcpflBWpRznpAzYXmUhGG0ebETBDtDsBHZwUYhJlEII0dov7l2clgW+kDGcRI6Z7BCHccsstqSQNwVzjjz9+tyAEvkYJmymnnDKVqzH4QFKZMMZkU5xTzn/84x+r5br+8Y9/pGcl43metQQZcLL/b3/7W/r45S9/mV1//fWlSi+cF78zwW8Er1HqjL6HdmGTN5+NLB+EwAnz5ZdfvsdFdxfj1QjMuTfaaKO06cMmGuWnuH8JItp6662z22+/Pb1u7rnnTlk6mAMV55VRC51xVhnvcUnlUs+aUTEgsSx9+dVXX51tuummqa0uuOCCbPPNN69+7fHHH8+uvPLK7PLLL09lfcDaJO3FmnH+tVKrKVdItiSpSzS/MWijF4NsBuU/+9nPqpvf+dP4bKaT2nrllVdOpy1YFFF3THIYpK+66qppYZg0uNtvv33Wv3//tBhMAAKfJ6oacV3z7w8//DAtLLHYxM8ZMmRIqYMP8Mknn2RvvfVWNumkk6bFN9opFtGYKDJhZMH45JNPrtb340QgE0743JDGTty/nFZZb731sueffz4tZJDmmrTCCy+8cApIYJGIZwDBBwQhRCDXrbfemvohTmGsu+66qc6nwQeSyobn4MYbb5y9/fbb2Ysvvlj9PGN5TkpzEpp0w5NPPnl65jImZcOSYIWyBx9wwpxTkAS7rb322ildM+NJMka8+eabXcorkJEMZDK7//7705wpUtznlWHDQqMX8xaCg5grbrjhhqkmOfMfNtS4pwk+IBsCXyNrFAEyHBCIeWXgGo8NtbLd45LKp541owjUKltfzviRfoX5OGWn7rrrrvR5+h8C3wjQWGCBBbLtttsuvZasOpSH3XLLLVMGQqllkQFBklQuO++8c+XnP/955cYbb6z873//a/bbaUm062effVaZc845K21tbZXXXnstfe7dd9+t/OpXv6qMM844lUknnbSy2mqrVVZYYYX077nmmit9j7q79tprK/37968cdthhlX/961/pcy+++GJljTXWSG23+OKLV+66667Kf/7zn/Q1/vzDH/5QWWSRRdLXV1111crbb7/d5N9i7PD+++9Xxh9//Eq/fv0qTz31VI+vu/3229NrpptuutSGO+ywwxh9n5JGTDz38Nxzz1Umm2yyyv7771/55ptvqp//8ssvK8stt1y6l2ebbbbKX/7yl/T57777rvqazz//PD1f//GPf4zh30Ct6r///W+PX3P8qbHV+eefn56V8803X+Xjjz/uds3y3ORZWRyz/9///V+lbOJ3pv+YffbZq2Puc889N803l1pqqeoch7lQ3p577pm+xljzzjvvbNJvoDKMkTbYYIPKJJNMUvn3v/+dPvfmm29WNtlkk3T97b333tVx0owzzli99x944IFe+zBJamWuGY36fHyXXXZJbUG/c8kll1TWWWed9O8zzjij8re//a36updffrmy/fbbp69NPfXUaR4vtSIDECSpZD799NPKRhttVBlvvPEqiy66qEEIo9l+++2XBpQLL7xw2iyfdtpp00CehZCPPvootT0bQQsssEDlZz/7WeW9995r9lseK+2+++4pmCMWOmMB6Y033qguIBWDED744IPKySefXLnyyivTwqh+sPnmm6c2Y3H4z3/+c5evxWIbi+5zzz135eyzz65MMMEE6fUEgkgae0T//c9//rNyyy23VK6++urKTDPNlP4Nnpnx3OTZOHDgwB6DEBwLqJGiL2aj9rTTTqv89re/TX355Zdf3uy3phKL65JxZAS01gogWHHFFSs/+clPUjAr8huRxWdl2Z+d9DcEV//4xz+u/O53v+vSVi+88EJqRwLfzzzzzNRWMYbHPvvsk/ok5kednZ2lb0s1dhMoEPxy8803p79/++23lWOPPTZddzvttFOX19FH/ehHP0qHBwh8f+yxx8bY+5aksY1rRiMnP/6JIIT4uOCCC2p+D4eqWJfnNddcc80YfLfSmGMJBkkqGeo6H3744dlvf/vb7KWXXkqlAW666SbTqtehVspQ6qBh7733zrbaaquUDvsPf/hDqi15ySWXZBdddFE23XTTpXRkpHH917/+lU0//fSp/nbZ1Ur1P+2002ZLLrlkSudGOQbSwGGOOebIDjvssJTC7KmnnsoGDx6c6paT9oxUuNTq5WtTTDFFVvZrMn9drrbaatnUU0+dXXPNNamMBanfEKn1+P4TTjgh1YLfcccdU7o4vPzyy2Pwt5A0PPQh3LeDBg1K6a7PPffc9Lyj5A/3O89MPngN9YzvueeebODAgSm9eJRjiJqeZUmPqdGPPoTr7ZtvvslWWGGFVCqJcQ/lp0gzuvPOO2cfffRRs9+mSojrkrFNe3t7tt9++2VPPPFEtzI2jD8ZJ3377bephm8x5XrxWVnWZ2eM05955pns3nvvzdZaa63UptFWzG0oBcTrmHdSEo22yrfliSeemOalDz/8cCoNVNa2VGNwrcU9Tvm9mFPONddcqfQh/vrXv2bnnHNOmldy/YH7HszDBwwYkMZJfO/MM8/cxN9GkkYv14waizaJfofyXJRjAKWoGAPVMv/886dSDKAMkNSKDECQpBKaffbZ08bsNttskw0dOjQFIdx4440GIYwCBt8sWDJIZ0OHTXAW3GKDnICPiy++OAUgPPvss2nzhw1xasmGU089NdVXW2WVVarfV1YxmWHR94gjjkgLl0x8mPCwYIS2trYu1+pss81WDUJ4+umns6OPPjrVW+NnsbEW9TrLIurusfHzwgsvpLrETAL5fFxfa665Zrbppptmf//737Pjjz8+O+6449ICMot2OOmkk7Jrr702W2KJJdJ/i/79+6fPUxeeds3X9JPUXCycr7766unZyD1KH8SCEPd73Kvc2xGEcPfdd6fF9XfeeSebZ5550qKR9YzVSPRB3333XdqQpG+hf77qqqvSZs9Pf/rTFChDLVSuQWlMO+qoo1I93rPPPjtbaqmlUp3e6667Ln2NcSOb4Fy700wzTRpDEUCs7iJY4PHHH0/9C+0Y40jGoIsvvng2bNiw7JBDDkn3+09+8pP0eeZDX3/9dfXnEDzMpi8/Q6r3mmROzv3LphjXH5g3xjiHe5oAOA4FRLAm9z06OjqyRRZZJBsyZEiam/MMcM4jqRW5ZjT6gxAIdjvwwAOzpZdeuuZcm7kSmMNj0kknHcPvVhpDxmC2BUnSWCCf9pK6XjvuuGMqx7D00ktXrrvuOlNfjkKKLVKPrr322tW6Z5RTIM1oT+UU8v8NqDNL2lHKC/Dfo8wi9S3t+ctf/rJLyjI+SOlGevFQvFap5xlp4lZaaaVqCvIyXpOUnBg0aFBl4oknTu0x+eSTpxIg+ZpzpCAl9e1UU02VXkPq3GWXXbYy77zzpn9TB/Xdd99NryVtKZ879NBDm/a7SerZ3//+98rpp5+eSvxwrx5wwAE104pHamKeFQsuuGB67VtvvdWU96zWTn394IMPVqaccsrKQQcd1GXcQ11txklce7/5zW8q77zzTpPercr8vCTlLWMgxkekXOd6XGuttVLaYEqkgbE8X9tjjz2a/ZbHSjEOjzTDlEHD119/XZlvvvnS/JKSDIw38/WOKZl2zz33NO19q7VxvVGDnGuSUgtFt956a2XcccetbLbZZl0+f+qpp6bnwWGHHVZz/CRJrcI1o/occsghlWeffXaEyzHUku9fGBdNPfXUqWyV1IoMQJCkEi4Mf/HFF5Ujjjiist5661Vmn3326gYvQQjXX3+9QQgjgfqxiy22WGo/gghoTxY1fvrTn1a22mqryrBhw6qvjXblvwPfR53JySabrDLNNNOk2pT6vm023HDDyoQTTljZfvvt00LlGWecka5N2pUJ0v333199ffFaff311yvbbbddZejQoZWy4v6eZ5550jW55JJLVlZZZZUU5MK/CezIbzZSb5egjk022aT6HGASycTzgw8+SK/h9YssskhahKfGvKTmiucef+YXN7766qv0vGTTh4/TTjttuEEIZQ980+gJIiQgkE0eFjK5LpEPQqCudgTA0OcbhKBmefrpp1Pd4p///OfpemSsOdtss6VAhHPOOSeNn6gHby34nu/5k08+ObXdRRddlP7NpkSt4AMwvmSM7yK7Rqc777wzXZPMsV966aUuX3vuueeqm23Mxa+88srKNttskwLd55hjjspf/vKXpr1vSRpTXDMaNbvttlv6/WeZZZa0Vjmi8uuW+fk7QW/8PNbmCZCVWpEBCJJUskWizz77LA00mXizmbv//vtXfvvb31Z+9rOfpYEPg8YbbrjBIIThiPY5/vjjK1NMMUWK8iWo4JtvvkkLcLGwvtFGG3UJQmDw/sc//rEy/fTTp68PHDiwy9fLfmKSDQoG82TmoC3DQw89VFlnnXXSwjDZDXoLQshvcpQFbcA9zp977713pX///mnhN/z5z3+uBsostNBCaXOoiEnjK6+8kiLhI3tEPqsEJ9wkNc/wTlKAzV4CDzidwiYPJ/p6C0KQGum7776rjifXX3/9lB2qGDQT2NClPzIIQaP7mRljJMZCXKO1nqV/+tOfKpdeemllxRVXTNck2WS4PtnAjJPUZT4NHW1GG+TH57j33ntTG/3kJz+pzDzzzJV+/fqlMWgxExltyPOBQGHmTNLotPXWW6dAmMsvvzz9O3/f33jjjd0y7XG/x0baiIy3JKmvcc2oPgSsRhYI/iRorRjkNjKYp08yySSVAQMGpLaH6/BqRQYgSFKJ/OMf/0gb3gyWTjzxxC5fe/jhhysbbLBBWjQiCMFMCCNmzTXXTIEc+cU4NsA7OjoqSyyxRLcgBAb8zzzzTGXnnXeunHDCCZVPPvmkie9+7Lo2d91118opp5yS0rvFADwfTPDUU09V1l133REKQiiT2EhkUR1ki1httdWq/yboBUwSV1hhhW4Typ4W2UiPG68n2j2UeQFeavZ9zv3Mab299torBWXx3CRAK/+sJAiBBQ0W3tnsyQchuKiu0Y0xD/0GJ6Doaz799NMuX+8pCGHVVVftsXSVNKrPTNIIk/Vt5ZVXrswwwwwpzS2nnuMEfizG57FhueWWW1Y3JgnmirIMZRT9BqUVyHZA8Pqrr77a5TX0SdFeW2yxRbefQcA2Wd8ovxInzMs8dlf9hnf9XHLJJel6nHvuuavpxPP3+n333Vc5+OCD02bZhRdemA5pwHGSpFbkmlF9Hn/88cr888+ffs9rrrmmstRSS6W/kwF3ZIIQaG+C3QjYYHxJ1q3ISGj/o1ZlAIIklQi1OdmQaG9vrw5u8psWpJDiFFqUY7juuutcHMqpNSAkXRkprxHRxDHAv/vuu7sEIbzxxhvpa7yGgIUyntSvhXYj40FkhCA7BIPwaM/8NVgMQqCWdBkVr0U2eEgfzAIw1yS1t/Oviz9Jtbf88sv3GtXOa6mNPNFEE6XTbETHt+pEUuoL4v7llAnpMYun9vjg3s/XoiwGIZx++ulN/A1UBvn+gcxaEYRAQGvx6/l+nQU9Tk1zrZZ5k1eNf2YyNoqMZGR+m3TSSavPTMY3ZCTLX4/FMQ4n+/fbb7/qdVnGheHYsGBDIoLYCSJ48sknU3tE21FKLoKPyAxHNgnubTZ5yYbCuH2mmWbyhLkavpFGEHv+/o0/uTaXW265dE1eddVV1a/l+5/iOofzHEmtxDWjxiBrE0H/tAd/xrw8skWMaBACbTZkyJDKwgsvXA2+LvMYU+VhAIIktRhOjvcUNMBmBAOdwYMH9zgwfPTRR6sLdAQhkKLQIIQfFjqoZUpNWE7/cJqHNoq0ZcVBYzEIYbPNNut2YkjfI5sBgTGxMHzzzTd3+XqtIATS41KfjuwdZcFpnsgOkcfCWpzSI4vJ+eef3+2azE8oI0qd9nv99de7/TwmVNRPJZNHq04kpb4gnn0ErZGdiFrkbPIQfMXpi+233z5t3LLRSwAhGXYCdSTp93/605+m+/3cc89t4m+iMsgHVu6www7puqNPYmzZWxAC/fq77747ht+tWhknntko5/l3wAEHVD7++OOUYePaa69NdXbj2iwGIRQVF+XLJH5nToaTZpgNBmofkwmhFhbfyfBWDJBjvP6rX/2q8uGHH3b5uVI92EhjPsOJWzbB8v1PnOglY1TU1paksnDNqPGOPPLIyqyzzpqyt+Xn52TWGpkgBMajZJNiXv7Xv/41fc5xkVqdAQiS1EI4cTbnnHP2OPC57LLL0uBoq6226nWgE4tHLDQRIRuLc2UVg2gG2Msss0y3hbVf/OIX6bRp/rXFIIT4vm233dbMBzUwiCeQYK211krtRHqzp59+uttrAl8jAwLpXOM0Vaujdi5tQ6kUAmGKzjrrrOo1udNOO1U/n78m8xNK0hHz2nxGlJ4YhCQ1D/dnnLo45JBDutXVZpGJvp8Tprwu/3WCEI455pjKlFNOWc3CI9Wrt8XF/Nciu9GIBCFIjcJ1RbA11x7BBxFEnP8643G+PsEEE1Sef/75pr3XsR3BBqQZJoiAcWixLVH8HPNGyl4QhHTYYYdVHnnkkWrQQtkW2X3Gjb523WeffVIAJvcxgUbbbLNNCsyMr4NxzzTTTJNec8MNNzT5XUvS6OeaUWPlfycyBhcD3ciO0FsQQq0243vj860asCHlGYAgSS3ik08+SfWjGPgUAwZi0HTHHXekr7NpGxGs+QFVbIwffvjhKbqTEwWky4xanWXGIJHTOz/+8Y/TYJ4NH2qckjY46p2y0dNTEAL/TRi8Dx06tEm/wdinOOiOIATamTZdY401Ks8991yX78lfr3wtTlO1On5vIssJdjn77LOrnytOavhaTChPOeWUXieUnGjjxPQ777wzBn8TSSOL9MKkahwwYEC1n+Y+zt/7BBhymoV7n3JLxe//8ssvx/j7VmuKzUZqxd5yyy2Vgw46qLL77runWtqMcYqno4cXhCA1GtcXqYMpBcBJs/hc/k9QGiAW4LmuW3HhvF6UUqCNCHLPtx3txf1+0kknpbTLnDSvFZyQV7b7PvprTkjGdajGYVzDHIbAy5iP80GWPLIVxsnSCy+8MH2evgje5z23QdnuUanVuGY0ehSfjfHvGPf0FISQHxdRlkoqKwMQJKmFUH/zD3/4Q/o7J/JrnXZcc801q+UV3n777ergMj+o+vWvf50+OFle5rRQ+QEj0a4sZHKSioWkiAjmNMUss8xSXZwr1qEMtF98X1nFNRSToOKicHyNk1IRab366qv3GoRQJrRTBAORdpQNn2jD/P1JOreYUJ5xxhldvr+n/xbDWzRuVWX9vTV2K/Yf1NrmfmZhIzZ+a712jz32SK+jRAP3dhn7bY1ecU2RZYNxIqei8xmhSNPOdVgMDswHIZC6FG50aHQGZZPBbfrpp09/L4prj3JfXJOUt6l1SlA/ZMXLzynpg/bdd9/q/Cc+osRftHGMMcswbo/fkTrZpL2O8SXj9HnmmSedSI05oupTq+9gDYRU4gRqUqqK63HuueeuXHzxxZULLrgglWMhW0JxTllG+bEhbckzkpI1klqDa0aNNbzfuacghMiuRXuSsYe15Msvv3yMvGdpbGMAgiS1iPziDpPIaaedtrLQQgt1SRMF6kNzkpKBEWUBikEKZ555ZmWSSSap7L///jV/dtmwWHTFFVek7BGcrogsBzEY53QLXxuRIIQyyw/MSQe+9tprV6aaaqrKoEGDUvYIgl3ipFCtIATT43Zty9VWWy21zcYbb1xdXM9PKPOp9XqaUJZN8XePzQba76abbmrSu5J6Pl0eC+XULSe7AZmJeIb2tDh0//33V370ox9VVlxxxaa8d7W2fL1TxpFs3NKXc/KZrFCMKfv37189gfqnP/2pZhACHwTVSKMLATJsPnKtcX32hGuU8jSkaC9LOa+RQd+yyy67pHbkFDnzy3vvvbey4IILVhfYqWNMmYW4t8t8wi+CBTfffPPUlzO+pN/mc4zLyzyfbmTGPO5VPhfpr/Peeuutyo033pgOWtDuZC6cbrrpqmUYOEhQ5rlQfq540UUXpfkkJTcnn3zyymKLLVb5/e9/X/noo4+a+h4lNYZrRmNuvahWEALlEV988cXU7/BvgmJ9vqqsDECQpBZEZoP5558/DXTYiCAIIRY9ImVuBCEw4WRRmE1hFoxZUOb0AKc3yo7BOUEctBOTclKZMQitVWLBIISexSSHNqGOLG30s5/9LJ1QofZuDNBZ9IiMG8UgBDY5nnrqqUpZ5a8jAjVYAI5rk5R4TihHzO23357ShQeec2yYUTuW01NSM8W9yeYZffjAgQMrL7zwQtrwjc006moXF+PjT0orjTvuuJX11luvib+FWhnXHnXduRbZdMxn4yBFKydQyYIQae3ZsMxvum222Wbpaz5vNbrE8zAWfLnmYmxZfA2fJwBh2WWXrQbBqqshQ4ZUx5IzzDBDmicS5M5pvvyJ/m233Ta9hvlQWVFuL4Kwttxyy5SFg+DB008/3etrFMWmDn0JfQ41yAlgJ+CNQI9hw4b1+H1sFm2zzTYpCCHmnmVe38jP//bbb7/UJhNPPHE6DEBQERmNuF45GGAfLfVNrhk1b70o+isOrC255JKpPRlj8ifjgffffz993QyFKiMDECSpxcRCLxsR1D+NIATqUMUgkk10NnPXWGONLqkzOTn5y1/+snoKyMHR93UjI8UwJ31YYK/VNsUgBFJgs4mkSvWa4zQKQQekgSMdHNk3HnzwweoAnYE5J9Ui0phrmXrRq666arVN85sdZRHXGotvkSKT6+3hhx+uBhqNyITyuOOOq5QV1xK1YqMtSIXLpJysJmR8Of74433eaYyrdRqS65K65PQ7pLiODR76IhaG2dy97LLLqtdr/pl44IEHpuubmtw9/XypHizCzTXXXOkjsnFwLca1xvXKtcppU56vETiYP6kaaWGlegxvYZyMMGyu8Uzce++9uwUh4Mgjj0xf59lZ5jFArb4i3x7XXnttOtHHPU2QNQHC+Xua72eMT2BCGTNJ5IMLnnjiidROXFek/GfTPNqyzNfYqIj2Ys5ICQXadNJJJ61MNNFE6dR+bO5QSiU/Fiq285133lk56qijqqWByv7fgTEibUcZpci0xTVMGU8OptCmvMayNFLf4ppR89eL4rnJOjBBm5H5wPV1lZ0BCJLUwgtJRGj2FIQQbr311nRi7eijj06nXBh0wcHRDziZT3AG7Ugt1FArCIFFDgaobBRFrTVVUoYN2o9UrsXADDYs4lQkm2vUT81fyw888EBlnXXWqQwdOrRSViycE3nN9Zc/9TwiE8pzzjknfZ0TQ2WvP8tpqJhUcp9yGopI/1i4LGukv8a8OCXBMy5fW5LNWRYsis9KMhuRPpO+iIwxsSiSr+PJPc7GsOkdVQ+CA2ultsZdd92Vnp+/+tWvenxmfvHFF2ljI/r84LhSjRLPTJ6RTz/9dCoBcs8993TLlHXVVVdV+3xOSzOe//zzz9M1SjYZxgEEF5c5KCZfUo45IHNF2qgYlEBbf/31192+n9edcMIJKcCYNi7TpiVzmyjNF+NI2pMAwjh1T8YYxvCOL0cNm2iczmdezYlU7l3GQ9zvZEOgjamrHamx8+2cv4bj82Xvh8iKyWYaHxF8EO10yCGHVAMTnn322Sa/U0mjwjWj5q0XxeeZQx166KEGH0g5BiBIUgmDEIZ3KrKsiyS1FirCNddcUw1COPzww6ufLw4kWcBjUYQalPoB2TY4iUYt83z75lOVLbfccql9SR+eP1HJn3HSsqzIFBGbPsXrdEQmlJyYjrRvZTwVze8c7UGWjZhU8kwMPW24SY22//77V7baaqsuAQRs7px66qkpVTMprqlNXryPKcfwm9/8JqWA5PqdZ555Kquvvnq11jELRmUO1FL9Im09wam1+gpqmXL6dIkllqhuNNba8LntttvSBhzXq1SvCMbK9+VkJKNMFyeiuWYjWxmpxfOBCPT5LB5Hvz/TTDOlk/oR9FrmlLgxBifwgM2K+eabL7XjjDPOmLJCPPPMM9XXcp/H/Z2/5wk+4NQ0gXEReF2GcSaB+1xDiyyySHWjhs0JxuRsmG+66aappGEEIZQ59f+o4jqKTRzu61plLGjnyIRA8Jx6R7YI2ouxZh5rG3yeevGMNUOtzDGSxl6uGTV/vYgMhpHd1eAD6XsGIEhSCYMQiH4vvqbMRnRAePXVV49QEIK6Lxxz0oKUzHEyN3/dRfs9//zzKUiBOnVljrquhYXLRRddNF17ZCzJG9EJJfInrct6LcazMD4GDx5c/br3skY3UoFz3VFjN3+frrnmmunzq6yyStrIidSZxT6aDDGcwuDUblzDPF/XXnttA99UF/oHAgC5piijUMS1SHkvNht5DafJ81/LP0OpORulk6R67LrrrqmOO6fyA6egyfbCNUbwKgFda621VvWZuNJKK6WsbuG+++5Lz16emwRqEUDDAnFkPihj359Pb08wW5SaY4xEH8S/KZFG1pPifc6mJHNLygWR+YD/FmUL5KANoixAPgjhm2++qQYQ8hycddZZ02t22mmnLkEI+Xbie1TbCiuskPqcmD8WA9jBRhttTJaoMpbqy6M8yt13393t83HvEshBW3GwIpANJjIfEGQYeDZsueWWXdaNJI3dXDNq7noR8yRKGhN8ULZxkdQbAxAkqaRBCK+88orBB7nBNQsWF1xwQWW77bZLC5ek/KcWYrGMgkEII4drjIU1TpnRZhdffHHN1zEhYsGOEyzU9Rw2bJjXZ8H111+f2pCNyq+++qrLCbTihJJFOEuAdEf6YDZvSa3H5kRMKjnpV7yXy5oJRqNPpLYkWCAWdOM5RwrxuH/5oK/pDc+AJ598MpX94V6vlRpbGlFxHdJfs1kbf3/ooYe6nfahlnZk3Lj99ttrjoP22muv9BrGVfmfL40MyiuQep1N7n322SdtiGHPPfesTDbZZJUTTzyx2+neWHhnrvPEE090+TrZttjI5CR1mVOy5wMJWChn3E16+7jXyWDC4jnZeOadd96U2S3v0UcfrYw33nipnclyEhvrZWnL2OSmH44ghIUXXrhbOQb88Y9/7BaEkE+LTd/PdWyGhO4IxCQbBx9kPCn2JTGHZ/5DlhMCi8qczYwAVa6zcccdt9s9G+12yimnpNfEs/PII4+sGXyA8847L33thhtuGIO/haR6uWbU3PUigg8jsKPMgRxSngEIklTSIAQWSojQLLMYOHJqhRMWMWlnwY2/8yeD8liMrxWEwMRdw3fcccdVFziKGTjyA3dqn7OAVCvNZtmxaM4pK9LjsviLWqn1uLdp6x133NFNn1wbxZ+U84h7nyCjWpPK/AImC3pSvUhXz/OPjZ6orcviOptqsfFAusfYPGPR6NVXX635s8qyyaMxK39d8QwkHTsbv2yg5fvkDz/8MG06cp1ON910aaEzjxNXnFjl++PUqjQqGJ+TaYOT+RNMMEEKbOFkGmnCqf8e12x+gfeBBx5Im+pcn2Q9CAYVdsUm+fbbb59K+hx88MHVe5wyPuuuu261zE/8mc+EgOuuu65y7bXXVjfdy9AvMY8O0V75IIRiOYZaQQiMzSNDAgFaXNezzDJL+jnqiraMdquVlSdwypQ+h6Ckt99+u9RzHzIW0F6UpqmVCeH++++vrgPFa3mekoWw+Drm5GRBeffdd8fgbyCpXq4ZjR3rRY47pR8YgCBJJRGDKYIOqE05ySSTVE8SlVF+cLnYYoulRfbNN988nZYi4IDTVZy4ICBh2WWXTZGsxSAEvoeBKJvrZdfTADt/OoVIa4I6dtlll5obayeffHJqT77Owl3ZJkIjsnhL+jfaaNVVV62maC/+d+BaJYtHpH0rq1rtmZ9cxt85wVtrUomzzjorLWqy0C7Vg00zgqu4zsjwgsgMw6ndcNVVV6UTpwS57b777i78qin9OGOjCDKYaaaZ0uJbPgiBk+kbbLBB9dnJZjBjKEqI0M+TzYiNTKkRz06CEAYMGJAW0zlFTkmv0047rUtfnx8z3nrrrdVr87HHHmvaex+bUed9iimmSOPJaEPu2SjDQomKL7/8srL66qunf//iF79IGXfyos3LsMhOsAZZH/JtEHOcEQ1CiNJJZOdYeeWVU/ABmSbeeeed9JqyzXt6E21Bxp0f//jHKVV4tFOI645nxNRTT10ZOHBgKQJhasn/3mwmRhBCBA5Fe7Jhttlmm6X1DV6zzDLLVOfk8ZrHH3+8MmjQoJRVwvmPNPZxzahxXC+SxgwDECSpRGIARZ3oCD4ow6JRT/jdOX0aA0kWMPJuueWWtJjBJJ06p8XBOWkzGWxSzqLM8ifQONXDAJ0TaO+9916XDQsG5/3790+bE5S4YEGZNifN8wknnJAWlFmIK8uGWz5qOu5DFnsvuuiiyhtvvFHztdRAJpCD4JjYxCzew/w7Xl/WtG/xe5NC79xzz02nfKgRy8I6aUmLwVf5SSX1UTmRTmAR1yTpn7mWpXrFYhCnxmeeeeaUDYHF9WL9Z56N1NTmWcmJ37I8EzXmFDe6os9gw4wTpOC6jI0M+hyCEPIbalyXXNNsCkdAJptAZPqI/klqZBACwTATTTRR2gjm1H5xDJS/rtmw5HVct+qO09FsPsZ4k8wmbLJzHxOEHU499dT0OTaB2WRnI71sCDAgKxHtQNaH4ZVj6CkIgc1ggrSiPZdaaqnKBx98UOrx+vDWITiJT/8T12UxCIF7PsoCMX4vazsW55V77LFHapOJJ564W/YS7uEIiGWd48EHH0yf55rlgEVkPiEFeTA4Rmoe14xGD9eLpDHHAARJKpli+q0yY1GIxZ/pp58+pceONsm3C3VQOaXKadRimmGUve52DNzZqGDQzgm1GJiz6EE2g3wJizPPPLMy99xzV18z55xzpvbn76R67CnleKs5/PDD00QnH/RCGttY9OH0KHU6i/WLaecddtghvYY/1XNADPViSR0a11rUK2bTd6uttup2KvKOO+6ollZhg4M/2SSOwKOynqpSY/vdTTfdtHpNbrfddl2epfm+h0Vgno8GIWh0XY8EGjz11FPVz7OBRkaoLbbYorroNrwgBDz33HNpA+PSSy9NKcpNJa7RGYQQY0jS1rNpXnzGRuBrXLcEv6o27t2Y/xB0zfiI+z+PBfWpppqqsvjii1c3LIvPgLKktCabW2z8PPTQQ9WvxQbOiAQh8HMY2xOoHc/Kso4vYw7J/IfNHu7VRx55pNt45+KLL04BG7QrmXn491//+tc0zmc+xUl/skv85S9/qZRV/hqi32buEmU3a5Vj4KQuGR5jPErmLQ4BxOvPOeec6mvLvl4kNZNrRqOH60XSmGUAgiT14dpUGnW04csvv5wGjQQYkG44f1o/38acsuJ1yy23XLdNojLLp75caKGFUhvxJ4tDpG6MgTxpW2+88cbq97HIdOihh6ZsCKR/5XsIVChL1DDp1mPxnGwk+WAWTpuw+BttxyIQJ9KeeeaZavo8NngI7iBwgxS68JlQ6dIOLA4zMScanU1eJuWkGWQCTrsxcST9bXFSyYLyGmuskb629dZbVz7++OP0eSeTasR1yWIQ9YxjcWPaaadNG0D51/QUhEA67PzzQqoHtUpZXGODgtNTjH/mm2++dF2edNJJaayTv26LQQj501jSmMKGLkEIbJZxPVL245NPPqk+O/N9NafYSCHOhqa6Kp50pN04Ec1ietSCjzkRgUo8K6644orUD5U5VXNcg4wjGZ93dHSMcBBCT8/Mss4p85s/Sy+9dCpHERs6nNrNB3iAk74EqjMe4nUEvJNxJ+bxZd78yV9Dxx9/fJp3EzTEHDsCNyabbLI0/8578cUXU/lDgroYazJvOuigg7q0fVmvT2ls4JrR6OF6kTTmGYAgSWOxYl3TYv2uUZkU5r8nTr2UFYseLKYT8c/fiwPHaCtO5TN4X3TRRZv2XsdWLKiRlpQFjiOOOKLLpIbTFauttlr1ZEUxBSSD/i+++CK1c5nSvnGylBPNLKbFyahYoAycRGOhNxbkSO1G2lYmPFyrpH3j86effnqTfoux+5qMNMJHH310t0Xfa665Jp3kY1LJxJ0TU/kaf5wq4O9xYs3JpOoRzzY2c0jTyHVJABY1eKMcw6OPPtprEEJsDBMMV6ZnpUYfTvKy4Uj5BPppFjf5O9dolATheoxrsVYQQj5oU2qUWovj+c9FEMJss82WNiPpxyMTQj7bFtcqG5uclC6r4vilVvrlGI9T3oKxZj7AgHYn7T2bmaQaDmXuhwh4obxHbHzfeeedIxyE4DOzK+7NGN9Qh5wMUZQF4d+UPyye2mdj6LDDDkt9EAGcnFplrhRBSGUfr8eBCdqSwH8CXCkXyb8jCKHYprG+xLVZXBcy+EBqLteMRh/Xi6QxywAESRpLxeIOk0Ki2ddee+3KggsumGpSEfHKxu3IDnbyE0kGVaTXK9a2KhMG8AQVMPDkBH6xneJPTuYzqG9vb2/aex3bxOCb0z9sWlDzOTYt8gsYjz/+eIoQpo232WabNFgvBtYU/97K4pqKyQoTQ06gXnjhhd0mlCBLxz777FNdyOQ65FQfH/ydtHuvv/76GP89xmax8MvCcCiWVqGGLyepaMMIjImvl+Va1OgX1xT3NpleOFlGKZ/YhIiTK8MLQmABmdT4nGSRGuWVV16prLjiiukaZIGNEz9x/eU3GHsKQqCOtBtqaqQYH3L9sSk+dOjQbsEF+XIMBCFwPfInC8jnnXdeZZ111kknf0mJ+6c//al0G2nFe5h5JBsP9DdkKGMzgo0JxuPxetqHknS05THHHFMNeCcbCsEHq666anWMXza1xoSUUYiNC1L/Dy8IgU2MaO+yy9+LBK6TDY/At8B1tuuuu1ZP9dbaMOf0bwSwx88r++ZPnJQm4KVWOUOyxRQzIcS1XevwhaTmcs1o9HK9SBqzDECQpLFQTAQJDiDogEHkJJNMUpl88smrqZt/+ctfpgWQER0A5QdTl19+eUpLygLy559/XmllPbVNtMftt9+eUpbxceKJJ1Zfn19U57QFbX7kkUf2+jPLiOAY2obUrKgVXHDrrbdWfvrTn6ZrrqwbaFE3toiF3ljAZDE9X98vrlGuRRbkWKiLep5Re460mWU83ddTe3LdkSYvFuG4HnsqrbLzzjun15HBI3/St8zyi5BlPuHYSGxGRBDW7rvv3uWEBff7lltuOUJBCCy4S6Pq/PPPT8/G/DOQa5GxZVtbWzptuvrqq6eUzCH/2lpBCPTp+RTkZdRbv+FYceREn0PgAcEwUX6GDGSc7H3yySdrBiFEOQYycbHATlANm8NxYr8sG5MEFMV1F+MeNixiHpn/ILUwfU9+DnjVVVelk5OUW6BNo7QamREikKNs13RcO5TpK56OZA5OyubhBSEwFuU1bAKVXbRnzHU22WSTNK+J6zU/7uREbzEIgeuvLPfzyDrqqKNSW1122WXVz9Fe+TblEEtvmRAkNZ9rRo3jepE09jAAQZLGUgwQicok4nLvvfdOp1E4ic8HJykYCJE+d0Q2JfIDJSamLDCx4Z5faG5FsUjB789gnKhf6h7nFy9YQGKRgwU3JuR77LFHWjCKQejZZ5+d2ovTVbEAV1axiJFvv1ggGjx4cJfXFAfvbGzwOjJvlM22226bfvdzzz2329ciNR7XHymwWQCOCWWtTUiuTdpw2WWXTc8HngfF15S5PUH6YE7sEdEebZlvn/g72Tlo9xVWWGEMvfOxW9zXnLSgn+Akaa2Tpxq+/HOQTSH6EJ6VxXsb9E1bbbVVNQgh6pVHmseybfio8Qg65foi41M+6xX9B9fmxhtvnOqY8hqCZXg2hrj+8tci1yypsglAYExVVvmx0LPPPlu56aabKqeeemrlggsuSKdz49Sa9/DI1YOnHm8sljN2jEAE+moCWmsFIfA9zGvY0Iy0uPmf2+rI+kCbURolMG8kcw7jHAIy7rvvvnRKev3110+l53g9wRrxTKDtybAXAQsEHqy11lrVYPeytGUR9zIbFAcccEC3FPXFTAh33HFHtyAE/juQDjtfv7vMCDDi+iOzI4EukVq8ViaDSB3OR5w+9XlaG9lNaKd4RubHodGmrGPMNddc6XUcaslfr5KazzWjxnG9SBq7GIAgSWMhBjz7779/GjQdeOCB3VLhsihHOijSbHEqY3g/qxh8wGki0nS1smgzFso5dcpJHk748UG943y6R1K8EuTB4iVtPuuss6Ygj4UXXjj9e+qpp66ZzrCsp1ZYEKa+LtikjEXMWtdcLNZRQ5bXkTaubEgLHAto+UlQtBOLm1x/BBsVJ5ShuOBGHbpIv1e2k+o9tWegPdmwiOdnT6VVCMBiU2ODDTaolF3+eUmEP23HIiWbamXddBhVca9yD7MQzLOSe5uFo54WfopBCJzKkBpl2LBhqY8mY1HxVCTBrlyTzzzzTCozxRiJZ0A+CCHfx8TpKa5Z+qGyyt/Hv/vd79I4MX/CnOcn7W0Q14g/M7m2yO7GQi/lamJ+c8MNN6QNS65Nvn7bbbd1+X7GQiyyExBD2YUoH1Amu+22W/Xai/ahLvREE02Uxkz5MSQbwAQiMJfk9QQTsVEBgmb4O6f52ayIcWaZxwFXXnllaieya9CWIxOEEEFIoWzj9VoeeOCBNCYiMx4l/KJfyl9jPQUhDBkypCnvuS+IbBxkKOpp7sizkfUQStREm37wwQdNeLeSanHNqHFcL5LGLgYgSNJYiNP3LLKxkJGvuckAk9MCDIJY8IzFObIgFBc5ego+YDGq1YMP8pvlnPhjYMkgnQhgfn8WPPgcpwUCE3BOr80333zpVABfZ1C60UYbVd5+++0m/jZjDxbdll566ZTKjaCOaDfqd9Jee+21V/W1THDyC0icqmTBo9WvvZ4mgKeddlrdE8riz6z171Y2Mu153XXXVSaccMK0YHzWWWdVvx6ZTXhdBMVwYrX488sk7lMWJwi6Io01tWJdlBx1PP/ow7m+fv3rX6dsRcOTD0IgJf4TTzwxRt6rWls8EyNbFvc5qdcJciluKlIXnjThkWo0H4QANnmpzV3WUkoh31ewaEl7cQKfYCP6bjYj6cfZSN9ll12qwUfqGXMYNs7YlCT4IE6PEyAcacMjMwKn0dlcz+O65nNRdqEs/Xn+9zz00EOr46IHH3wwZYaYdtppq2PJ/MYD7U17EczO3DBqwtcKNChLW/aE8fk555yTxpNkyhuRIISyl6bpDeNwyh8OGDAgtRfjTrKWFNct8tdiPGc5rcq1W/ZrspZ77703zXu4/vh7KGbSIgPKTjvtVNl6663TtSyp+VwzahzXi6SxkwEIkjQWeuONN9IGBKfR8pvpbI6PN954Kfggv/jBRJ5BUT4IoazBB4G24MQf7UXazDgRxSk/BqMsIjGYLEazcvKH04Kc0GCAHxHDZZW/ji699NKUPYNyC/nMG6R35uQZgTGkGS8i60Gkz+XkVVnbj3u0ERPKMhuR9ow0o2z8cP+zYMmGBhu88Tw9+eSTU8YTUhLmayCXFf3JoEGD0n3KJkY+8E2j5pBDDqmeMiNo6/777x/u99DusdlW5tT2qt/zzz9f8/M8F7m+CMgkw0lxIS0fhED69cjGQf/Ps5QMHZ7q/97VV1+d2mmllVZKpVZqpcTndDlpXtW7F154IV1fzHtiozwffMApaK67VVddNWVCIBiWU/y1lO20fv73pd+JcdFyyy1XGThwYI/fR8YJSlbwWjIoqNJrW7E5QcD1iAQh8JoR6fPLigAj1i7YLKe9CL6M+XZPQQi0eZkPBAxv04t+hrIWtCd/5jNpRZtG9gnKBOWVJSW7NDZzzahxXC+Sxj4GIEjSWIiTpwQLxKlJTgaQ+aBW8AEDpNlmmy1NNouLIbE5XJayC3kMxBlobrHFFtV2ydeEpU5qBCEcfvjh6fNOwLuK9qD9qF1KIAfXYT4qGJzuY2GIIATak80L6sjefffdaVBPRgk24gjsKCMnlM2ZVFI2Zeedd06R7VFPmmfq/PPPn/5NqubYGCr7vX/++eenNuFEVLGsD4vqV1xxRWpf7mmN+CJxpGYnAIEMMSOyeMHCx8cffzya36VaGRmKuJ9JHV5EYAtllPj6Ukst1WMQAhu9XLfURl155ZVTn1S2LEY9iRIWZNEiY8yjjz7a5etHHXVUal8yPz311FNNe599yX333ZdSg0fgFcEGsZnL6bPASfQI6qI/v/7665v4rsce+Y1aFtBjXESGA9IH94S5UFyrZUrNXMvwxoEjEoRABg4y5zHvKXs/Prz2pO0IQmAszjXI/V6rDncxoKiM12m+DZhz0w8TZFjMRkR7Rkpx+m3G9tGWZEXhIACbafngGE/zSmMP14wax/UiaexiAIKkkRYTlXxKt2J6N42Y4iAm2pFT+Isvvnga9LC4xqIcwQfFxQ5ey8IcC3Fnn312t/8G5513Xtr8YLJZtkXjWIB/8sknay5Y0FZMzBm0c/LXE789Z5L4xS9+kVLeMhDfbLPN0ucjCCF8+umnlYsuuqga1JH/WHDBBUufsnlUJ5ScDqJdvT5HbVJJMBenVAnSitPopHGmxECkai7baUkU+4qoHVssu3DMMcek/id/P9OvqPfrMv98pA0JziKrEYFZLg5pdIua2WyOsyBZvD7ffffdFGDQWxACJUBiA5i0+JQUef311ytl0lsGLDYXSdnKWD3viCOOqJZeyW/88vf33ntvtL7fvu6ll16qPh9vu+22VMIixpyBfpssHIzbaedVVlmlZvB1GeXHMvvvv3+1zz799NO7vTbmRNznvIZME2WWL0XV231KFjfm24wnCUQg2KgYtEm9bYIV8j+3bOL6oj0p78E46MQTT0zjcTISRn/DvfvHP/6xMtNMM/UahFBm+WuIAJjFFlusy5j8t7/9bSohGcgMQ39N/8/XOblLOcr4N1kgJY29XDNqHNeLpLGHAQiSRkpxMhhp7SP1v0EIIy4GMSxcUGe3mKL1uOOOqw6Sxh9//G4bF7Q1i0oMkkj/Wkxtz8+PTfhWDz4oBheQMYLFX373/KS8iIhX6qPyup7SFZcdgQOkaiY1e9SFDrXudzY2OPXLIhI1Jtn8YDFOIz+hjE0korCdTI76pBKcPOdkJad+eFbGgnEZJ5PxvGSTPGqTk2qdtmPTh/6cdNixwUNKQjKZxGYkHzw79cP1E8/COPFY7JPoz1kc4oMTvAYhdBdtlg9s1cjJtxkBq9yrpKsf1SAEXsvnGR/RJ5UJNdw59cQGbS0EXfJsJM19IJtWreADkKWM06f5UmmqPbfkWcC4k8AX+qJI2R6LxARkM/9hjFQMmiu7njIhUOe4lqhtTB9VdgQNsIFDWYreSiAxnjzwwANT8D/PiCOPPLJmEExZ+7C4BhlfUgqR4Mv8hjmfIztjvI572yCE2vLXECUOaR8OlRB4RYaDaFPaLuqTg36LMQAZMAnk4plJsBztHsrettLYzDWjxnG9SBo7GIAgaYTlO17SujJBZ2LDyejVVlstLVIWT0Wr94V2BjbUh+UUBaUC4sRE4OQPAyQmj0OGDKlO1FnoYCLK4hyLH1GPtziZZADa6rV647ok6GCHHXaofj4G4gcffHCP2SbydXp7WmRWJd3bpBqOAXs+qCO/OOJiRmMnlEyCWNikPp3qb8+iMi4OR1twKo1FYILU2BCjxALtRvpB+vRJJpkklQHaZpttKp988kn1+9ddd930umLK8TL34yxOcAqSTcef//znaZORcgvFvtcghOGjH2fcE6UqyniPNnKsHqUACELgHh+VIISy2nDDDVO7cBrq6aef7vI12o/SNJzE51Tp0KFDU+BlT8EHjJn42q677lrdSFfP2LgknTAbbbRt/trm2UrgBwEg+bJq+kG+PZgDxbiIQPYIHqT/orYx/TxlVvL9fFnddddd6Z5ms5YA6t6CECgpx/VJu04//fQpIMHgoh/6bDbEKAXA85GSFJT6uPjii1P/HunCyUIYr+d6zAch8D1uov3gzDPPTO3CGDx/qOTOO++sbLnllqmdychDm+axrkRGDz7i0BCcr0tjP9eMGsf1Iqn5DECQNELyHTJ14ONUPicFonYfGxYnnHBC6WsejujCEItnpKZnoYMMBm+88UZ1YTIGOm+//XYK9IhBEhHvLBazWMS/SY0fp3/KvADHBhCL57TJ4MGDq0Ey/JsJeSwGx3WcP5265JJLpiwIntLvLn9NsQDPghBtygYlNaJDrVOTPX1NIzcJcoG9sZHt+j5jEX0JbUSa5uh3SMvKgjqBbWREIOituEnOyQqel/RfZZZP10yb0JYEEjIeovZzbEoUA9vyQQiUsugtxXsZbbvttqnt2GTUqCn2FZxwJoNRPZkQyojn4sYbb1w9XfrMM890e01s7s4111zpzzXWWKNb8MFjjz2WxkwzzjijgVsjiOuPwHauW/r0GJ+Twp2ycu3t7QZwjWIQwoABA1KQHBvAlAZyHtnVLbfcksrN8bzccccdU6BBUcwhyRJFVjiuU2pGf/311014x2MfDklE0DpBcHkEFDFG4gALATH5+TiHWO64444UCEuQUfFQRllxf1IKjXaLbI35e5XSSATMcB2SOSZKJfV0P9u/S32Ha0aN43qR1FwGIKgl9RbV66C7PlEWgM0LNiTZyKC9TznllOpm7/XXX98t/bC6Xn9kPmDBko0eNswjc0St65M2Puyww9LiBpsWRLlT24/UmrEJVMaBJm0V7UXN3ajFmV8AWn311dN1yYmWWmUoqOMZJwrKftJiRK4hFuDjBPTyyy9feeSRR6pf89namElQ8fSKRoztOeL3NyV/JptssnRiLzZx8iUEesqaQ4ACAXPUQyzWPC7rIjvp10nDTCaJr776KvXttHVk1mFzhw3e/PXJOIpTp3ydE4E+O3/A6VzKSpFJ4r777mv22+lzYuzNeIbgIsbqjBfjecimGjVOewtC4JomcKbM12W0I0EI66+/fjUIITIhRLs9+eST1XrcXLPXXnttl59z7733pg0hnhHU5dWI49nIuJ5NcuZLBGzHf4c44Vfma7SecgwEXl966aXpWRDZZso6jwz5dYubb765SxBCPhNCzNdpL9Y8KLtCWvsYN3lNViovvfRSCiAgy1a+XRlvzjfffCmrIyd1Y96dv/Z45vLcjJrbtuf3c2/Wfwjq6Mlzzz1XWWCBBdL9nc92JKnvc42jcWxLqXkMQFDLiYkOfzJhJDXZ7bffnhYrIjWeacdGDQuSRKyTUi8isGNiyAY5E3UWOzk9pZ4xuY7SCixc1ErHygkBFoSLKUnJiMACPdd3XMdlr2GO9dZbLy2oxWJG3OucnsjXMT/22GNTXV9OExD4weIRn3/rrbcqZZRPfRkbagzADznkkLQ4xGJ7sa4p93dsrhmEMHomQS4ejRrbs/d2IWiATV3ubwIQ8mOiWvdufuGYYC36f05NFvumsjrppJPS9UXpn2IAG/0Rfctuu+2WAhOQb2PGTLRnnFQro+I1F9cbfQ8btrvsskuPr1XP9zmbPJy4J5sJwQRkg9p5553TqfEIQvj973/f7fu4rznBz2t4bZnTiRfniRtssEFqlxlmmKFbOYYLL7wwbarF6VMym9DmnDqPFO0EaQev5RHDM5WsetQtpw3JLkNmHkpflHXuMyry7URQUoyLCJ4JZVsXGZHfl7IpEYRAH58PYuf7mUNOPPHEabM9eE1+j3kk1xhlAwL90rzzzpuCWClXE3NLPv/AAw/UzAZle36P8hUx5+a52FO7RMklSjJIo4P3ZPO4xtE4tqXUHAYgqKXE4iWTGdJmsvgbHQonJrbYYot0Oq2Mk+1GuOyyy9JE/JJLLunyeRbSo+5pBCYgFuRt60q3QAIWMVkgzm/wEIjAQian9slyQApCFuIjNWbZFy2Lvz/3Oe3IiXzaktM8+clRXHfUoYyTffHBQjF/UkIkX1+2LPIbiBHEQXuyWZFvp1lnnTUtWFKXu7cgBNMKj7r885FFOYJi3n///aa+p77M9qyN/mXRRRdNp8u5dwkWRG+bjAQskGVnu+22Syf2KSlQxudlT9isZZyZL9/D9Rcnogn0iIw8/FkMUqBvKqvodxgDFdMsc9ovSnuxCaSRa9fomxmbxzUX46d99tmn10wIBGOy2f7KK69Uyiq/wE5NcsblzB85iR8b4cVyDNdcc00qGVAcZy688MI1y16od9FOXM8EcN1///3pRHRsUroJMnLy7UVQHNdn2cZFxYBr5jUEYpFBj3nOddddV51v1wpCoNQCmQ4IgKEUJcEHBMeUvUxAPltM3Lc8M7nGzjrrrOr4hyCtYvABGGOSEeGcc86plF1xnSPuW7IbMAYny04EYOX7khhPUTYtsjqWfc1IoxeZ9DTmucbROLalNOYZgKCWPPlDnTQG4JxEIdXt9ttvn9Lg8rk55pij1Iu+9aAdacN8Wlwm7hF8kK97ygSJIJCeUjmXGe1Em9E+MXEkKCHKBXAyNa5X61J9Pyh86KGH0t/zE2pO3tM+nJTkY4899ui20JZ/PYsbbKSxOcTknNOrkca1TPbbb7/UBg8++GD1c2xSLLPMMtUaxrTVhhtumE7o8jnqchdrm0YQAm3PInux1nlZFBfCR2XRJz8JigX2spaxsT1HD4Iv2USbZJJJ0j3NyVzKLfTWhpxKIwU2r//Vr35V2kwxtTCOZDGYRfV4NnLtLrHEEtXgg3zgFm255557ps+5MPw92oLr6re//W23xUz6INqR9synv1bvyJI19dRTp3lQPAfzGbOw7777VoMQam2Ol/lZmW8nStQwHqdU2kYbbZTG5QSz03ZkgikGIXA9k7r9xBNPTN/LXCkf7Fm24IN6+/KeXl/G52cjxkX5nxFZecpwr+c3FGKjljl3ZNbIf0w77bQpa2Y+MPPWW2+tDBw4sPoaNssjECkCFsp2bxevKYIImA8ScMC1SXBbrA0xbuTZWSv4gNeSEXL88cev3H333ZUyy19DrKHFtRrtHAcEGDNF0Av3b/5ZwHoRc3Iylkmjy1577ZWuRU6Oa+S4xtE4tqXU9xiAoJZC9HXUJyf1ZdQ2jgkoi0jUUGNxSCMuOnRSuNK2RLb3FnyA008/PX2NEhhlVtwM54NrccCAAdVNip122iltZERbsoDMyVPqbccCPNdyGRfdOJFCG0w33XTVDe5oxzidFqfSKLVQq92LA9Tiaf4yYbEsFjG41tgUwy233JJO8xx66KHVE5NsWF5//fXVa3WbbbbpFoTAqYwVVlghfW8Zoobzp/Ly1xabkWSGqefayk+CynKv255jRvz+n3zySWXXXXetBhbRhxfv6Tw2KVhgYlEz6kSXvTZ0+Nvf/laZccYZ04ZFpMSNDY1i8EGUZCADRWThKjvaN06Mc7KPPoSgwHw/Qrp1NiYuuOCC9G9PPQ8fJaZoUwIIkd/sybcfbVsrCEHfI/V/nCSNQAOegQTDxGZkrSCEnrR6HzQ6+/KycVzUOASdL7300pWnnnqq+jn64AUXXDBtiPOcJHsJG2pRro91IkoI5J+drHEwFiLgkA3gHXfcsRrAWfZ+ibEQQei03fHHH58+x5jol7/8ZQrW4FQp/TjP1HwWKK4/1uPo+wnwqlWCoSzy19DFF1+cxooLLLBAl0AYSqaQlZB2rtVerJHMM888KWguXxpRqlcxwIpyptzTXItnnHFG097X2M6+vHFsS6k1GICglvLYY4+liSMnyfMTRzorJqBEBROYUEyXZ2dTuxMuDjhvu+22VBpg8803r+y+++5p4MkC8gsvvNDldffee2/a4GBjkpSZZZUvAZAvTQEWN5h0c03SjmwKE9iRD5phcYPF4TLX8mNAyekI2oggjTglmQ9C4LQKGxhxUj/0tCgU31fW+5425KQK1xZ1nqlnfNBBB1Xmmmuu6kZbtB3PTjY0YtGjVhAC938ZMp3E9fLwww+nyXdkz+DkD2nYWSwqPgtH9f+jDGzPMSPaIPojygUQhECJH07wkYKYgLfelGmBPX7XeBZG29AXMe5hsT1svfXW6bnIaf2llloq/Z1naXEh5PDDD099PSWVPFnxAwJbJp988jReZPOHNqIdI+sTdY/p2ym1xHMB3tO9oxwS1yFlqUK+zeL65prkdW1tbelPgg31PcYzlOdiIydKUeTbkE0hNiFpNwI0Iwgh/5oyXaf25X2rLcuC7COxMU7AFRu4scHL+IcMmdEfR7vvsMMO1SAE+p+imP8UN0HKJr8+RFkKMmqR3SDfLoyLODxAezLXLAap83q+j03zCOYoy33eU1syfmRjl8BWsujk59YEb1BqksBX2pRnwUUXXZQy7VAiNa51sx+okfLPuAjWokxXrLt5zdXmuKhxbEupdRiAoJZyyimndCsRwMC+VkpcFpXZiBvewntZB5nU2ySVXj5N++uvv54WNWPAufLKK1c31mMCRQQ2C8mkebZ27/ebFgzSmVAWU9TTxiz6Mnknkr0Y8BFBHpFxoqyDI4IyhheEcMcdd1QzIUQphjIvDtWSv364FqlnGgtzyy+/fDXQpVgTngW6YhBCWU+zcZ8y2YlNx5dffjltQLCYycmfetKw5r83v8nZymzPxis+82q1YWRCoF+iLBWZZhwL/YCSPyyKv/fee+nfBK3OO++86TrNj2uuvPLK6niI4Ew2NCK1deD0PovJlL2J2r36YUxJZgjKfJA1i2dA9OMEydFPsXHBv+mfvEaHj2s1NijYnIjnQbH+OfMkgg433XTTFPjx2muvNfV9j03I7BSprpEPGor2ZDOIU9S8jrIMI5oJoVXZlzeObdk4zBejD6G8HKXjmE/Snwfu7/y4iewGvJ5SNjEGKLZfWefj+TYgGGPo0KGpDyEzRIi2JGPM3nvvnfp31oSYc7JRzonpFVdcsZpFJgITyj5fJ0A1DvbkM3bk0eaMQWnvYvkQDrWwbhfKfI2qMfLX0AEHHJAymrAOx2G+TTbZpPps5SN/7el79uWNY1tKrcEABPVZ+c4iIq6jrumNN95YnVT2VI/3nXfeSWk0OdWvrhM/otKnmGKK1G6cRMtnjGDyyCSHr5EJIWpCM0il3anzx9fOPPPM6veUeRLEImVs9OY3z2vJL3IyQedkwLLLLpsyKJRVfrGX7AbRjpFesJgJwSCE3uWvMdqQBTkyIdBmq666ao/3bDEIgej3MgUhrL322mmiDSY6nBxn0hP1oXneFTd6RrU/IzsK6TVfffXVSquyPUfv/U0QEXWLKanCxu3JJ5/crRxSPgiB074GIfxglVVWSc85ghBIuT7//POnE5HHHHNMl+xa+XEnH1xroB15HQt2BCCSgviNN96olFW+lnERQZj57EVshHO/stBJcAzPCjbI+W9Bdi31/EyknXn2Md/p169fZZlllqncc8891edh/trdYost0ngdLrh1RWA11yRZ3HoryULAUYyf2KzsbXzfquzLG8e2bJx8+3BfrrTSSuk+pY3Z/Ob511uJGu59Xs8BgeLP0/fluQgeIHsjAey77LJLl/aM9vrss8/S+JMTqvnNcjaSNt5442qWzLLP0xnbMFakbEX+nuzpuiMQgSxG22+/fToMRPmqfNmFejbjpKIoq8ua0UsvvVS9ZxkLHX300WZCKLAvbxzbUmotBiCoTyimD43Fn++++67L6xj4MAC64oor0r85cdZTPd7f/OY3aYGz7KdWiu27//77pzYjDW6t9IMg8jACFNgMZpM8Ur8xKMhHwToJ+v4EP8EatU7wF3F9k96M4ANOsUWaqTK2Y9znLKpzcvTuu+9OG0HRjpRcKQYh/PGPfzQIYTjPzfyCGwsWBBOwwUMq5nwa5lpBCHfddVd10B8pM1tdpGT99a9/Xd2oOeqoo1L9WDYf+HycbB6V+7SYypR05Pz/FU9etQrbc/SIZxz9Tf5USnzQtjvttFOXZ2ExCOGGG27oUqO3rAggICCLdqNtuDZZgIuau1xj+ZOQnPKLdmYsxMYv7cm/5557bk+X//9sUNzb9NHFvoNSFrQzm+Ug6JKAN4KE49rlT54dZRwL5eXLJPH85FlZqywS12CU97rqqqu6fJ1Ftumnnz5tADGPcnOtK/qKKE2Rz3hSLN9FUBdzIbJ48Frq0JaJfXnj2JZjLghhRErUkAq/OI9U1z6GsQ7XZ/QzPT0n6bM4yEI2Rw61sEZE5oQYa5Zxfl4Um7i33HJLj6+J9hxee5V9jKTG4j5lPMm6D9mh4hrLPzdPPPFEMyH8f/bljWNbSq3HAASN9aJz4KQ9C+vFVDws/AYWLGPBOE7iM4kspsRlIZlIY9LGlekU7/CQKjgiXElt1FtHzWlzNjOo30tbkmKYf7NJXOv1Zcf12lMQAh9ch5QQ4ZRfBIBE8EEZJ+f5zTRSMbNYTlAG11tMcnoqx5APQohTlWUzvOfmnnvu2aVm9Prrr58G85wMIv14b0EIpG6OzCetjok01xGpBuN3JoAjUlyTVpRrjdMncZJnZOSfkWSXYfLDdV7r+dsKbM/RI+5TFopYFKYcAEGWBAwRmMlzkM/Rxox78ifSIwiB4EFS5fa2AFoGEdjKgjljSYKz6HeoJ12rRE1gYZ2U7WSIoi0JgB08eHC1Hy87rrG4x+lvGK8HSn0R2Mb45y9/+UuX7yMj16KLLpqeC3HyqqzyGaG4jwlu4VpjcTgCrwO1UtkYp1/nOuY1lPVifB8nUIcNG9ak32Tsf5YyRqLtCNB88cUXq1/PPzuZS84222wpoCY/9ykD+/LGsS1Hn/wchqB1Ags5fMIzMR+YVSxRQwYp2n6//fZrwrvuG5h/swFEdijGPWTRCiMa1Fb24Df6dMaccYiHMc7w1s6izWKsWtwMlhrpgw8+SPMgytYw/sln0sxfqzHG54OxUSjTtWlf3ji2pdSaDEBQn0AqHDobTtoHAgxYUCfAIL8gRDqyqMe71VZbdftZpOqhk5lzzjmrC8r6PgUr7UtnTo3EnhQ3w7/88sv0UTyBVbbggxGpu91TEEIgnSu1ZI844ohUO7HWzy2D/GYa6QhZYN95553Tc4BTEww2STnYWxDCHXfcUZ0IscFWRsN7buYzyNCGa621Vno9p6d7C0IoCzYaSf3GJgRBF2CjgY0f0rdyHZ566qmV6aabLj03jz322G7XWrHt8v+uNfkhmKtVJz+25+hFXxGnBcj6lN8oZ8GI07oRhLDddtt1+d5PP/00jZfYlHz77bcrZUfb7bbbbimNPX0ybcZG44cffpi+3tMCHM9UrmmCDvL9kb6/PgnSiNTWcZ3GJjjlKvgcz4HiIicbwMXAhLKJa4mAQk7v0lYEZvK8jPbkmZm/HhnLs5HO6+I1nGJjs+P111+vlFVv85NoZ7JxME+kzeifIuNWeOKJJ1JgDOOrfBaJMsx97Msbx7Yc/fLtQcA1gYLc15QOeOCBB6pfy5cPYDzEay6++OJuP6PsempPMkzwXKz1OvWOwBiCYljjqNWPRFuyjkRWjvzBAml0YuzNxuwMM8yQSqr0lDVmyJAhKXMU8yaeB8XMW63OvrxxbEupdRmAoD6zkUZ9TQY0THTmmmuuNFDnZFRMGGOxkg4qNtLYuCSKnTTjbLAxoWRgRD3eGOSXSW91eIm6ps04NTm8je+eOvEyLLz11h6kDT7vvPOq12St9mDSyAAqNs+ZvBcjjfNR7WVFm0ZtbSbb+drkXJvvv/9+ZcMNN+y1HAOnf8tcd3tEnpv5+5xn5Jprrll9fdmDELj/4hqjD+FENJMdUr+xmRuYBJEBpjgJyt+//LeI9O1lnfzYnqMXgYBsmHGKPBYno8/PPxMjCIFyC/m2Y2GprMFatdx///0pmw7ZicgMQ5vNOuus1fIBMeYckc3Mssu3EYuZpGvl1CRtSlAcNaJjY51a0bHIWSyzVnb015Sr4LTpPvvsk8acBMVE+Tk+qAudb2/GTlyzN954Y3o2PvXUU9X2LaP8mOfpp59Oz0GCfgk4KJ6ior1YdKddea5Soo7SdATSkH2Cz/OasrEvbxzbsjnlGCKInSCE3//+911ee9ppp6VALfomnrEa8fYkww59TK3XqWebbbZZaj/697iHi6UscO2116bX0QdJYwqHgWJ8GetxxaBLxpXMkVhHjmzETz75ZKUs7Msbx7aUWpcBCOozWBiKmrqkgjrssMOqXysuALM5SYRcsQYyC+/UlC1j2lE2ujn1TNvUcu+993YJQKglBpssILNwpx+woctpKNrw+OOPr54+rbU5wfVHiQVey+Jm8WQVyj5pp/24V0mxFddssS05ZRp1uglCYJAKT56O3HOzuJBEEAJRxwQhkMa5zMiYQ9sxOSGYgz/ZPMtvYtB+pBvMT4LyNc7ZHCIdO/VPkf/emPywoVSGyY/tOfo888wzqW3XXXfdmkGEcZ9TtorXHXrood2+VmbFFMyIfpw/Bw0a1C0IIZ9lgjICxUxQZVS87siuVatsBe214447pj6edqVEANcuf99ll13G4DvuW4HDM888c5rfRJBRXLecNmPBtxiEUMYsWj3JtwXjdPoYxjq0GSf3llhiiWqN40Ba8VVWWSWNn/LzSf59xhlnlPYZal/eOLZlczfNCYbj3ieDFPN4Dq8QzMmBgLIfBhiZ9iQDgkEItfXUBjHeZKOWe5RsReeff351kzc/HmUdj8A3xqDFfkoaHddnjD+5Jnkuzj///OlgX3w+Pz4lkIvXELTF/DLGomV6htqXN45tKbUmAxDUZ9BpzDLLLNXFHzYeY8DU0wLb1VdfnQZBW265ZTotxAmXSG1fJkQEMmGh3YqR/oHJDF9nY5w2Km7i5v9+8MEHp01KT0t2XWRn4MMgiXrRxxxzTK9BCFyTcS2z8Nlb2YsyIiU4C+1kK/noo49qvoZ2ZVBJRCztyPMhf2pfI/7czN/fpNDk/mYzgxrStQJkWl2+PbbZZpvUdmxU5FPXc/3lgzjykyBqv7/wwgvpZC/PAyZOxev48ssvT68vw+TH9hxzAQiUDHjnnXd6fN2VV16ZXkft3nzq8LIaXvmkfJatfBBC/rQ0bcrzkuxGZVloqyUWy1k8J9MO1xiZd1gA4t7lHs4jYIONCjZ9YiOYjV0WMTlpru+RhWOjjTZKWQyowxtlUrh289cbc54YD8XCr76XbycyGdBG1JIlEOGiiy5Km2aROS+fRhw8T2+55ZZ0OnW99dZLY/2Ojo6aP7vV2Zc3jm3Z/E1zAq1/8pOfpLYn6H2dddZJgUVR8scArlEPQvCgSqXbNcSGLRu0xcwarHmQ7ZFxJONL1pDyAa1kL1tuueVS21566aVj9P2rPNcnc0LWM4uBr5QsXn311dP1RzYE5jz5wGLufZ6fZI1hbfjuu+9OryV4E60+z7QvbxzbUmptBiCoz2DhbaGFFkono+aYY47UIa222mrVtDr5AVQ+YrgMA5/hYQGdjnjnnXdOA0vkJza0D50zKUZp14gUjK/l25ZMCSzQMRAl5bN+QHuwcDHFFFP0GIQQKYVJG8UmLwv0LLj3tMle5ms26hyzONwTsiPQ1nHKn8V5vrfs9/yoPDeL5RjYbJtssslSpomyYiONAI6oachkhdTseflJEBHbAwYMSJOlWNTk+997770ur73++uvTqSvat0yTH9tz9OFE9OKLL54m22xEFsW46JVXXkntSEmqsos2oZ+m1vOuu+6aFsxIwZxPHRr9eD4IgeuS8RAbvZxa4yR/cYO9TKL/oG/hNCltxFiI+zXuXYIRKGsRop9m7MTJlmhb6s2Wud8p4mQu7TLbbLOl1OD0z3k9BSEcddRRTXi3YzfG6Iy5GX8TtJVfwIzrlKDgnk7wFseWZQo+yLMvbxzbcszK38OcKicwm41f+p8XX3yx+jWDD0Y9swTP2GWXXbbUY6LiNXTOOeektbOpppoqZb8kkxEbYZHtgJKR2267bbr/uaeZsxMQQ5BMZOA55ZRTqj+vTOsc+d81xu1l+v3HxPVJv8L6EKnuKWVM1oM8no2UrOE6pE8hIIbrkYN+ZCHl82eddVaXQ20bb7xxpUzsyxvHtpRakwEI6lNiIsPpH9Lj0bkwmM9vptVaDCrzYDV+Z6JZY/ObwSIL7cVNbxbg4qR0rUwJnIQmTS4LoJwGKrN8bb78AJ6o9nwQAiel4gRl/AlO/DGx5HMRyOFix/fiHmbxnGuRE2fFzCXxGgJqmPhwve6+++6Vl156qSnvuRWfmywkUV+6bPL9BNcVKS+5pwngiklQvgZdcRLEs5GT0AsuuGBaTIqT0nF/89o77rgj/bcow+Kc7Tl62jJ/z/J32mPPPfesblTmN9Dzfct+++2XXnPBBRd0+5llEm1C4Eac2st/sHBBUEKtTAjt7e1dXstJaupMlh1txBiRBSP6Y071MSZ66623qmXROCH1+uuvd7uOGaNSQ5ZSYS4KdcVYfcUVV6yWkrvtttu63dfFIATG6VESTN8j0xjBqlyDcTqXedFxxx2X2ouTpyyYRxBCPENp57I+J/PsyxvHthy7Ns0JeCcdcxmzZDa6PXlussZBe9Knl1W+TSLrDhtfZCmjH4/04ptvvnnKchTZds4999x0cCDGl2yU0f+zcVa2wLf8OD0fDEx7UbKLsaXqvz4POOCA6riHazSuPa7bfDaEoUOHpvXjfGbNuI7zJal++9vfps+zrlz8/2o19uWNY1tKrc8ABI2VRmSgwgIlp6mKm2mByM18vfMyy09UOPFDiiKiAw855JBuQQgHHnhgdUBJrWgWMpmcE9UaA84y1z0tBgnUSmHNAkY+CIGAj/z3cdKPQRRZEMo2mcwb3u/MdUcJhqgJTaBGsa1ZOOZ6zp9aKatGPTfzteHLJoLV8sFCzz//fPXvIzIJCmSZiYl7redGLDi1MtuzcfITaBDV/80333S571mkW3rppVObstF20003dQkiOu+881K/xDOgzFl3og1pPzYeOF32m9/8Jm2M05fstttuqQ3ZlIwTPfnFT/5bHH300alf2nfffVMmHlUqJ510Umq3nXbaqXqqL9qbDQkyGxAAk8/AVcZx5KggJXjULOcEZZRhKAYiBdI08zoynpRV8bpiY4f2i/Ie9E+cmmIMyfwmNjkiIIlT0RGEUMYxep59eePYlo1RzHZZz/OBE7sEzJX5Xrc9R49LLrkkZSUi0wYHeTg4QeYN1tg4bc69zoGU/HycsemDDz6YNsvIjJAP5Chbez7yyCOpjybjGL766qsURDi8DJkaueuTcQ9lTJkD0a6xFsx8KF9ugfZn/klm3SOOOKJy1VVXpf9GgTkTgQzzzz9/l1J1rci+vHFsS6kcDEDQWL3I/te//jWdKqOeVK2OhoW12EyLesb52j58/uOPP66UWfGEFG3EqT5SuzGgJ+CguBERJ8+LH2wGs4GR/3llEoMjBt8EEWy44YYp5T/XHgPufEkKJossbLIATNuxcExQAnV8iXyn/aPGZBlFW3I9MnGhbc4+++y0YcbAMBYy+Hdcf7Tdddddl05UMjkn9Rv3OfXoyl4OZHQ8N8u6KcS9u/DCC6fNtFrP0dicJOKfxSH1zvZs3POSTV0ChOhPWOCh/yGQiNO8UVOW5+dSSy1VTWXPCYLtt98+naAiNSH9OKdYyo7n3iabbJLakWDMWPzlRNVmm23WZexD3xTyC3Ewc9EPqPvMab38KVLah9IgtCPtzPgJbPbSV6k2+t/og+MaY8xIOmbakhOScfovPxbP99vFQI8yyd+Xcc8+8MADqR/ieUo70d+QQYsMJjEP4mtkLsvf/2wWyb68kWzL+kRbsclNNqfY7B5ZllT5nu05+gI5WCtizSeCAaONCERgTYP+h3udU+hsmtVqs3zWzbLZY489qqfz77rrrsoCCyyQggMpc5rfrNSIKc5ZuD4J6IgMonGN0e9wiIq2J+tBjKN6uwYJzO7fv3/6vtdee61SBvbljWNbSq3PAASNtYvse+21V0qhw0l96utyaipf9zQ6JAb088wzT+qQGJSuv/76KX0UA6Ayn/xBfhJD+5HalkX2CEIg3WgEIRRTrd9+++1pEY46YKQ54+RQvv3LNqnMT87Z8I7TUWzoxCIlbUV943xdY1JIUZMqv5g533zzVT744IMuP7dM8in1qMMbqYLjgxrcV1xxRfV1BCGwkcbXaG+uWz7iJGBZJjk98blZv/zz7MILL0ztQvtRs7PWxqOToN7Zno0T9yx99xJLLJHaiSwGBBLQf0cJAPrr6Fd4tnIKnXs7nqssCBFw9Oabbzb5Nxo7kKqRvofMB3EaYtiwYdXgg+222y4FFka/Q0BhrQXmMi0IP/HEEz1uav/pT39Kp/kIbov25DkQ1yzBB/lTJ/fdd186QcUivH64z+N6IoCw1ikdghDihD73d61MCGXerKg19+Ha4zqLAM1AqlaeAVzX+T6J01VsGEU75+/9srEvbxzbsjHiuUbQ5cwzz9wlq0m9P7OMbM/61VrLYW2to6MjraENHjy4+gzIPwc4TMFpc+5x1pYsAVJblLBgLM4hHsbmkbGobOuRjUJ5LsbhK6ywQjXIOsr5Ba5fgoojCCEOrBTLAZLpgCxnvI6g91YPcrcvbxzbUioXAxA0Vi6yxwYvi+qDBg2qntbl80OGDOn2Pe+++25lscUWq6bMJaVuvsZs2cVpHtovUgXTmReDEGqlZKaNixOrsk0s4/dl4ZITpwx6qG/MgvtTTz2VgjNmmGGG1MZLLrlkCkLIY0LJaX3KBXDKPCaYZQw+yKe+JsqVNuPUJKcAGGwSiU2UO0EbtGu8nhNobK6zKEz6Lf5k46js9f98btYv2oNrkuALrkM2HljooC25Doc3CWKSru/Zno3HKZ/lllsuBQnts88+aWOSYDgWeVjcJBiOAIPf/e531ZNrbJKzoMwCE+1Jyswypx3ML3JwjZI6lAC2GPfQn5MpgmuQ+qXgtD5BG1G7N58JoWwoaUY7nHbaaTVTNXO/E1zJmDJE/1IMPgCBcny9zKf0awURslHR3t6enoOMg7gWyRJF+9Yqx5APQijjmHJE5z4RnJVP7Rpfo23zfRFZ4CjJQHuSkris7Msbx7ZsfHtSAmnqqadOfVO+TvnIKm4Il3Gdw/YcNe+8807N3/vWW2+tBv9OMskkaf2iJ/RNMV+/8cYbR/t77kvy1+GEE06YyqXxzIxyDPVcp2VGeV2ut5lmmikFGJD1pKfg1XwQAtkoIgghjwAE+irWRlu9JJ19eePYllL5GICgsUIMdFh8Y+OMWlR77rlndWGSlFssxPXr168y55xzdtngzS/c3XbbbWmxvcyp7YuLkGw6cNKZTd4XXnihyyRpeEEIrTphHBVcZwysGfAwOS+mInv44YdTFHFsqEe9vp4mR2WO2KYtt95669RWZOXItxEL6SyAcBKfMhf59Hq0Nc8ETvASDFL21Hs+Nxv3rOR+pQ05VU4ADBH8+dIz559/fq+TID7uv//+StnZnqPnHj/11FOrG+Nx6ifuYYKPOB3EBjmBcLFhVuY+pqfrkmstFsRJxx4LF3yd4AIWNynLkMcJ6jh5xZ+Mmcro4IMPTm1w+umnd/sa1xrXYZwYJxBm6aWXrvbxxeADxlD0S6RrrbfudCtmOCGYiHFQPAsJuKRNo3xFMQiBk2dk7yi74c198gjeYsxE2+WRMYpAmtVWWy39vHiOli24w768cWzLxoi+gj9pUzZtCVoPo3KP5sdJbMoR4EkwYhnYnvXhYAT3JFmzaiGLVowd11577dR/91SigvW3Mo8ve8OGN2NGNhs5KEE7MVZ3rjPqyAi1zjrrVPsVsiH0Vs6LuRJ9FK9l/a5Wm/PfqViirtXYlzeObSmVkwEIGqs6IiKESR3OJlossrMhSZpMOhg20fhzttlm63Kit1Y0ZlnlB4wswJFalDa7++67a75uRDMhlF2kEmaDJybtXLP59iYIIdIX1lqkh0EdlVQygfRaZIvIn+qLNia9HtdhpGYupibWD3xu1o9gFjYqyKzBZhkZSgjMuPbaaytbbrlldUOop0nQVlttldq/WMamrGzPUdfTZuzGG2+cJuaRoSQWf+JPNnh5DW274oorlm6zbETQ11DvnSwH+c+B65PFdzZ6I4NEfO2aa65Jm+kEefDfoNVTixbl+91nn302/Uk/w/1cDCygdFcsCLG5S5aJYqAg9/0000yT+npOTen7DCfLLrtsCiKiP+cZSgkGMh9Q2ouxOWVXOJkffXwEIay66qqpvfl+gjnLOk4a0blPIFCTMVGUWyGbFtf04osvnoJj2DwrO/vyxrEtG4PnIvXKycRDFp0HH3xwlE9C5zfRLrvsstT+zPHLtAZie446ylRE2cj8OIf7OhA0HBvmN998c5e+Kt9eccClmEFT33v55ZerfXm0FW3KGKnWnEjDR0AMmURpS8Y8ZHQtjqXyfyfdPa895phjKmVmX944tqVUPgYgaIw7/PDDU33NWpuSLA4vs8wy1YVfNtE233zz6gIRHdUGG2xQrTFFirNQ1kW3npBKj3aiDjQnfGJjo1Z0az4IYdJJJ63su+++LRuxPipoJxYnaU82KRgc5Tdv89ceacx4HScB86en9IMrrrgitREZDgLtxMJvMV0zbc0pg/yiu37gc7M+XHdx8oSTOsVFN1JjMini62Tl6CkdXNSVLvvGr+05athYjBPMxd+Zvnv++edPZVJeeumlmvU3Y9ONiTrPAzd2u3vuueeq5WaKY1AW3fkai3HIX7dsAHMimv8u+RPoZZK/Jrkeo7QCWSM4uR/or7m/o04vKfDj89zf9O0sNHG6/4033qiUXdzHJ510UmrPHXfcsdqeMWbnmUkWDk7/MUaPRfj4b8K9zkm2eDaU3YjMfaLtWFAnGIbXU8YmgmfyAcRlHSPZlzeObVmf/L17wgknpHZi04E/qQVf789ks3zaaadNfVMZnqO2Z+MQlBmHJfLBA/mABPr12DCvtf5JsBz9EEGGbLTrh343H5SdX3ejfy8GIeSfqwSHUGZSlZpjmehDmNOQ9Y22pOxUBBn3FISQL2VVxrGRfXnj2JZSORmAoDHqpptuSh0JtaSK6XIYQC611FJpkTiisjnRy+u32Wabbhu8LG7OO++86Wequ4i65hRab+mJ8kEIl1xySYpW5/WPPfbYGH7HYzdOmjE5ZJIep1CLA3Q+XnzxxXRKklPnTEDLOEAfniuvvDJdY6ecckp1ghmph4u1opkc8bw444wzmviOx14+N+tHqmXu6wi6Kk5imATRlrQfNenydeB7CkQqM9tz5Fx00UWpLaaaaqpqPdloMybo/J3TzbyGUgy12oeJO8/NqCNLP1SW9hsZsdgepSyijShBw+d5NuaDNzh1Qb/PM7XMwYSxCBztRTpcNhc4sX/mmWd2CUKgRBKLSbGZS9/O9cviZpQTKFsWieHZaKONUlv29Mzk87ymp3TPLryN/NwnrmtO/VHKgiBOvpeSVKHM9zzsyxvHthw1+Y2yqC0eJ6AJdNt2222rG8CjulnO5i8BXmXY/LU9R49DDz00teEee+xRMwghv2F+3HHHpUAEvn799den9ON8Lb/BVlbF52J+bNlbm5KBNFx11VVpHY61kTJneiyOX/IZR/N4FlB6ZUSCEGpl7ygb+/LGsS2l8jEAQWMckxs6EhZ1WfTNY9ATJ5055cMCJyd78kiPO91001V++ctfpp+z0EILeTo6J98Jx0Ykm46kwu1pIJ4PQqBzZwKp7qjhF/XPqFlVazDO9ckJyzXXXLOp73VsxoSbdmxvb0+pGSnFUCv4ADvssENaFCGaXbURfOBzc+Rxz5LuLTZtI/1gLTfeeGN1gY7Tu/l0cGWeiOfZniOPk7aMg3gW0h4s3JLBpDgRjwAiMiFE3dPof/LtReDbAgss0CUFbBkVFzHi36+++mp6BrI5+cADD3RpR7IWRb9E2QVKNfAsJaNE/DcpMxaCd9111+q1Rc1YFo5Y6CUIId93f/nllymFJpkjKLdECQEyHLFInz9BVXZclywKk9mAa5LTotzPtRbTnnnmmWo6UoJkXHDrOfCCTaARmfsE5j4EceV/Xpn6oSL78saxLetHf8LYiAChEJvmBG6NTLkUN8ttz0Yo9r833HBDajvakDJKvW2Yc3/zZ8zHCco855xzevzZZQt0pc2YGxFsyZyHgNZ8YGCtNqWEAMHcZHDlGuTgygsvvFApq/xYhmuT+3vAgAEpGJgNXcaTxcM+wwtCKDv78saxLaXyMgBBY0w+jVacUCEI4d577635emqqsSBH+nVEah5O+LKYeeGFF6a0pCwoq+e2joU4ForpxHtSK6q1bB17T79vpHqivjGbESwAH3nkkdUghFjcZMAf6aRIqV3cHCq7uMbYwGDizTXJ5gSDSkqzFE9dEAzDJJIU2JFiS73Xi/e52bOe7sWYdMcCUK3X0Y5spsVJdK7Lsk+CbM/6sEjJ705fQh/DSYBiEELcv/ybjXFO+hAIlz/tE1iw4/upiVjmAIT8IibBHcWyCZEFgesv6kbSN3EiLcoAxQclayhzU3bcj/TDtMnll1/epS3zQQhff/11l+/74osvUt9DxgOu5TLc172p9ftzvXICn7Yl8KUW2o7rmVqpbKpHphR9j2doMbX1yM59in8vE/vyxrEtG4/5TJyAzG9sxxiKoP8hQ4aM0mY5QYatvlleZHuOnsA3SjDQdr0FIRDYGptpBxxwQDr5G+XXynyPR5sS6Dpw4MBqFiPGO/w9asTXatPo6+ODgM4yrnHUuoaiJFqURYv2nG222SqDBw9O4/NaQQizzz57ClIoM/vyxrEtJQUDEDRG5Wv2cJIqOpJiJgQWMUmFO+mkk3Zb/CX1K5/3RFrvnW7+ayM7qSzzpgWn0Z5//vkUGBMRwIFNcCaMRPcTPEMUMRPHCEAgrR7BCVy7EZxQRsXJeXFRl7ZmsEmNSK7LFVdcsdv9TKpxIl2J2C77vT689ox7nWh2n5u9tyH3NxsVsThBW5544onpOvzFL36RSq3k2zS+j7blvj/ttNOqG5jc6wR0lHHzwvasD6fH+Z032GCDytNPP139PP8uBiFEO7CJxmkgFpII4OIZygY6/dLvfve79Dzlw83JSsruQnAb19RvfvObbs+9X/3qV6mdufZiXEq/RM1YFuUYM5F1Il+Ooewuvvji1Ga//vWvu4xvuN/zQQj5lLnFe7iV7+nhiWcf48Wbb745ndYLRx99dGpbTgMx/gzFIFYW1slwUiv4sEzy6YDZ9KHtJplkkm5zSec+w2df3ji25ejDaejxxx8/3e95e++99wjd4/l2Y7OcsVIZTur3xPasfz7Omg/Bb3lkaxxeEMJ2221XLR0Q/T3tWdZSSvEc5Lm52GKLpWwGW265ZRp/88Gzk41z5j6c5K/VpgTGku2IuVCkcy87rk2uM7K7MTZiXYgMegS7M14iqIPsEpxEzwchbLzxxtX1ecb6Zexz7Msbx7aUlGcAgpqywfvee++lSQ8dTmRCKNbp5CQvX2PjLBY7zzrrrHQCnSi44qm2sslPVEglTEfMYJNTkG+99Va3umkjOqksm/ykj0E4tfg4KR7pWym3wKAoBjf8ff/990+bG3G6ik0hFob5NxvmUVexDFGZxcwZcZ9zApcMBmQ7oXYxE3EmPpHJ4OOPP04lQrj32Rhn4+26665Li/KUr6AtCUAoW63okW3PyBoR3+dzs7toQ07jcp2RJpP7nLIUoE3Y1KHdFl100S4nAqJt2SBiMs6JAALk+DeLR0yCCJYpE9uzPjz76DO4J0m5Hm0Zk2nKpxSDEPLla1ZYYYXqSR+ekbRjpM0s86mfvJtuuqnaRiy08XHKKadU25vxZv/+/dN/h2I5JXUV7cL9TbkkxpDFdJm9BSHoh2cmgTHrr79+aieuvygDwjOSQEyu1zXWWKOaOjg/huS5yNcJfCVopqzXa37uw3XGZkOcmKw1lzQIoWf25Y1jW45ezGNoO/qg4jxmZNY3LrnkkrRZXoaT+r2xPevre9i4pY2mmmqqbuPuEQlCiNIB3N+PPPJIadaMesIpZ4IOGBtxaj9KRLKeucUWW1QzIvAna0e1DrbpBwQcsGm7yCKLVF555ZUu1xd9D8EaU045Zbp+CSDKr4XyPCDQmP6njOzLG8e2lFRkAILGiBjUMKBcffXV04ZjpLJnYZiOh4FQfuGIBWReQ2dF2tFIjctg6fXXX6+UWX6Swmk9otjz6cdIncVGZfH0Xn5SyQSprJjMXHHFFenvsYjL4IjrjPYhApvrNAIRSH3NxkVcx9RPZFLORnlcvwsttFBKrcfmEsoSyZ5fcIh04dznSy21VJdrko/pppsuRVZHdDrXJyeBSa2Vfx3PB9I9M/Esm1Fpz48++qjLc3OGGWbwufn/xX3IZIeAN56VbPCwsctJ1HiWvvnmm6kOJ23FpiSBMM8991zanOQZy8YGp85joY7AD05a8PoddtihUha2Z/04ZU+70T5Mpgku4uQzE+w4DVWrHEPgFMsZZ5yR7m+CDggsIijugw8+aNJvNPahj6F/ZsGSZyT9Oe3JQgd9P9cqJwBjQzfk++2ybvD2hvI9sUnO5m++jfJBCGTnyNeXLbN4JtKPL7jgguneJ+0owazRx/Ma6vTyrIxn5i233JKCtVlg56Ql/T0fPD/KKj/34SQU427ahPljbE4U55LFIIQyz33y7Msbx7Yc/XgOLrzwwun+jnFSfvMx1jeYk/Ms7ckuu+yS+qlW3ywfHttz5OTHhpHyP9Z/HnzwwW6vH5kgBMZMxT6rVUWwRdHdd9+d1tzWXXfdagArz8sYp/P86+joSNca/95tt92q3xvjqLKN26OEXC3MEWmnK6+8stou8REHruI6Xn755bsFv0Rm17IFxtiXN45tKakWAxA0xrDIzsYuA3KiV9moZYORQWec2uVEUKTQ5KQ0i5hExPE1ghHYCKajUtf0WmxEsJHLgJPNCE5F8nn+XhygxqSSFGe91UVtVVxzsYEbvz+DJCaIXH8MagJBBwx6eC2nTvl3cSDORgcbu0yAYsBeluCDbbfdNrUNp3Lz9zltxWLw5ptvXrnrrrvSQjqRrzPNNFN6/dJLL13dLGMyziCT0xicUGWhncWQMp7UH9X2XGaZZar3OcExPje/FxNt2oTSFBNOOGF6ZsZiRXGh4o033qhuAMUzklM9/H3mmWeuXrP5n3vbbbd1+/9rVbZnY9BPUBaAe5rFWybe/P2YY45JAQkhNs1rBSFENimeD2VbICrK/+75v1MygJSt6623XupTOCkRC8IsWpDOkcVMgrPyz9wy66kt8/fo3HPPnYLcIjtRfqGSIIS4xylh0ar38MiijdZee+10aofsRHG6j7FitBHPUbJAcToonpkEaTMu5e/092Y4+d7BBx+c2mTllVdOQZfc35ziYyE95pI9BSGUde6TZ1/eOLZlY9QqKxO/azwnKYFIO+XTsOfn2xEgR33z/EZvURlStNuejZNvE9YvaRMCW2Nz/J577ql5b+aDEMiYUGvDPMrR0tcznm/V+zufNYK1njx+Z9YtWK+IuQ5rGjvuuGN6PQeqYhy11VZbpXF9MbCjbBjf0AasmeXFuJ1DPHz9qquu6jG4mmytbO7yumL5quJry8C+vHFsS0k9MQBBY3zBiAElC+dFm2yySXXh6N57761GY7MgT7kG6hpH+vayigEkHS0biqT956RkPk09nTILctGR8/V8fS8w2eRrbPqW0cMPP9wtCIGTVJyYjEl7LKpz2jRSXkcQQn6gU+Yax9yn0Y7XXntt+hwBRZwKIIVe/jQFEatMxuO6ZFOIrBNqXHvGfe5z8wfcz1Fv85BDDumyWca9SltxIoNoa7AxxISezSImPdzznBIYXmaTsmwA2571o51IvT7nnHOmhTQ2JVmYi7aIoIKeghDyp6bzP7OMos247motuBPowcLHHXfckf7NSTWuXxaFZ5xxxvQ1FjpYSI5N4bIqjn1qlQViE4Kgmd42LUjtSkrmMmbcKYq2u/XWW1OQEePxuM5q3b+0I4vCPFs5nUpwzHLLLZeeD1Haq+wYs3P9ERxcKyAj6hfXCkIo+9wnz768cWzLxogSh6xp1Jq3vPjii+m0OG2W71/y7cUmB5ljainL4YBge46e4APm26zBEfTGv4sZNfOYp0emBLJk1vq59O/xbGhljz/+eHWNo5g6nWuUQI54xhFATBlU+vNapUMisIO15TIiHX2ttoxrkPuer3H/Fr+WH++TjYvXsV4k+/JGsi0l1WIAgsYY6kmx2BsLRsUa51h11VVTR0VEZgQhqPvAkRSsRAfTVrGwnq/fRSd/5513prTOnPA7//zzq5/Pb8KXWT4I4eyzz06nxB999NEu12S0ORPzYhCCvsfgMdqRa47JNqnEYzM8f3+zcXb77benwBnu8agt6eCxMe0Z0cBlWBQaUWzmkiGGU7v5tmPiQ63ylVZaKbU1Cx1kmMgvwrF4xzMgvs92tT3rFX0KfTGpb2knAhA4BZWvfZjvq2sFIdTabC8rAlp5RnLKgtM+XGeBk9GkaGczN7AQz0IotVGjzBLjJII3y44FIDJoUReaNJi1Nr1ZLOKanX766aupm4v9uG3ZVZwkpU/vacxT3LwgC1QEaXq//4CUrPnUwsj3K/nTf/mseqHsc59gX944tmX9GPNEQDV9EJndmNMQRJ0Xp84jSDsU263sz0zbs7EiXf3666+fDqaANuNznN7vDe1e67R6Gdu0p41z5LOIkrKdTFsxBo3AbNaGOTDEc5UxaKuX/ujNs88+22NbMheKkqb5QMx8GQZwPTP/IRhJ9uWNZFtKqsUABI0RDCqpvcsiMWl2eorEfPrpp6vlAzj5E4t1+gH1imkf0pDRplFnt7igSQ21Qw89NL2WDYxQ7MTLvPmbD0Lg49xzz+32mlpBCJQMKUO0+qi0I220+OKL93gil5P5pNPjtVtvvfUYf699ge3ZOARrccKZcjS0IRMigrdi4kM/w8Icm8H8m1MDZT9V3hvbs370uZzaISCTeqdkQqBNWeDM13evFYTAgtywYcOa9M7HTpzOI9iSdI20Kc9MxpIRpLXvvvumtjv88MO7bbZTuorNyjIvYuZxAo02JMCA7BxcbwQisNCZF6lxY8yUz5Kg7rjPadOoFV3rWRhpsfNjy2hPn52VajtEcEEEX+cXNmN+Q0rwqClLausILs4r+7VqX944tmVjPPHEE+mk5FJLLZXaiT6I+5jxEodXuGfJJsPXCCrMBxuqO9uzMY4++uhq8EF+/H3DDTekz/N10J493c89ZZEoo96CEMC1ybVKiSXk23SLLbZI2cuYH+WzxZVVT23JuGijjTZKn6esV60xEGtNjPe591u9jMqIsi9vHNtSUi0GIGiMYBE4JkCkZ+2pg6FjInXr7LPPnl47YMCAmuUayiyfpp2OPV8DqYhFdRblOQH42WefjdH32VewIBztySm1UKvMAkEITIh4Lamdyxi93pOHHnqo2o4MKp988skeX0s0NtfuwIEDu5QV0A9sz8agPSJwiKAt0g1ykpz2Io3mRx99lBaNqL0ddbY5vevkpzbbszFIKcgGGm118803V4MQSPHaUxACaQlpU17LmMo2/QEZYkiDS7p62mj88cevLrITaMBYknHlK6+80qWMBRuWjjG7YqxIauEIemHjnJPkjI/I/sQ1GeNQxpZvvfVWs9/yWCvuUQIQaK/DDjus5uvygQacGKq1KK/v24eTUsUSIMXxOiWqOCUZ9Y0ZQ8Vz1efm9+zLG8e2bBzaiX6ZwDeCq6PeO4FEZMm85ZZbKrPNNlvqeyIbYdmDiXpje9aP0+G77bZblwNUfHBIirbcaaeduowr43sY2xfZtsMPQuA6jAxGEUyMCy64IPXlHLbIt3XZ9dSWd911V8pmxufJKEH/Q2atCDaOPiufTars7Msbx7aUVIsBCBpjGOBQa26JJZboEolJR5MfkLP4RsmAWOxU75vmteqfRXuSHWGWWWZJWSUilat6b8+rr7661yAENjAYRFmPtzvqmkc7Hnvssd2+HqfTCIwh5RbBHE7Ge2Z7NgbpMskWQ/8TGUzoj/Ibj2xSko59nXXWaep77Qtsz8bI36vXXHNNOsU/vCAETrSYfadntNVBBx2UUrNGmQAWLX//+9+nhXeyQgWflcPHdbnzzjuntowMHBtssEEK7CDYY6KJJkqvUe/Y5CEohmxG+WDC4vwnSjVceOGFXp89IHCLlMGkdWWM1FtqYYIUuF4jaNhgo67syxvHtmyM4uYD4x1S19O2cfAi5kWbbrpp095nX2F7Nkat4P4XXnghtR+ZSfPYNF9xxRVT+nvH66MWhLDtttumz1NGhOt1k002Sf0+gTJvvvlm095zX2jLU045pXrvc0gtDk7xQQYUxk612t2N3+/ZlzeObSmpyAAEjdFTVcsvv3zqgFgQogZv0cknn1wZb7zxKk899VRT3mNf3TTntFpeDCKJzmbhmJSlnowe8RPn119/fa9BCJH5wAwIvbfj5Zdf3msN31rBM+rK9myMTz/9NKUbZCOoeN+y0RNp2umD4ES8d7ZnY+TbZUSDEDT8tmR8tPfee1efnfPNN18aWxKo9Yc//KGp77MvKG5+s2m+6667ppOStCfl1Aju4O8sbnp/945TPZF2lE2e/Km+QKAMJ/44sWYq7J6R3WC11VarpsTOzxfjuiUr1AQTTJCyonBSkpNV8847b/pedWVf3ji25ejz7bffpo0Lyv/89Kc/TR9sppnZZNTYnvXjQArjyjXXXLP6Ofr26OtPOumkpr6/vhyEQDtG5qj4YCOTDU0Nvy3zfQxlQ8g+TAAxmU84lMa6cD5DhwGvXdmXN45tKSnPAASNUaQvm3XWWVNHQ7pwBud0TKTPJcKV8gsLLrhg5ZNPPmn2W+1zm5Nnn312SmcUyDKx9NJLp695Qm3EMEAaXhCCRq4dGVByWjJwnbLIzuZFfoNNPbM9Gy8mQdzbp59+epqUs/FDX6SRZ3uO/iAEDV+xrybNKDUm2TCPZyipIA3IHHls5JJJizqdUeqCdiUDj0Zs/hMBHMx/TjjhhLQwTKY30jtPMskkqS+PNM/qGe0WbUka8YsvvrhL8BFpX+mDyJDARhsBSLyWmuiO53tnX944tmVjRLa3/JyIjCbc0+edd17T3ldfZXvWj3uazfDIbITHHnssZT4oBh+4uTvyp/fBePOSSy6pHHXUUZUbbrjBwMxRDEIIrBHzwbo7p86D1+fw2Zc3jm0plZsBCBrjXn/99cpSSy2VBu0MkGacccZUE4i/8+fQoUOb/Rb77Obksssum04EscBOnTTSldG5Bxfehs8ghMa3IwvFLLiT9m3CCSdMtbi9z0eO7dl4bEyQXpyNH05I/ulPf0qfdzI+amzPxgYhcIKXmr2W+6kPQRwsYlKOiuenG7yjJn8f//Wvf02bvp5GG/n5D+N0MnFwLVLCImpye7pv5NBWCy20UDWF+KKLLppK/HEiNb/4znVL4Ds1kKP+sXpnX944tuXoGSfddNNN6T7ntDkBhc7RR57tWX9m15///Ocp6IByDAYfND4IQY3LKpG/FuPv3ucjzr68cWxLqbzG4X8yaQz75JNPsltuuSU744wzsn/961/ZJJNMki200ELZIYcckg0YMKDZb6/Pefjhh7OBAwemv08xxRTZhhtumLW1tWXLLbdcttpqq6XP/+9//8vGHXfcJr/TvuGRRx5JbYcrrrgi23TTTZv9lvr8dcn9vf3222cTTDBBNmjQoGy66aZr9tvrc2zPxvj3v/+dXXjhhdlZZ52VDRs2LLXplVdemdrw//7v/7If/ehHzX6LfYrt2RgMx8cZZ5z09+uuuy7bY489sv/+97/Zq6++mk011VTNfnt93jfffJN9+eWX2QwzzNDst9IS16hGzeeff551dHSkZyZt2b9//2z55ZfP1l577WyaaaZp9tvrUz788MPs4osvzs4+++zs73//e+pvFl544TQ22nrrrdNrBg8enB199NHp38w5f/KTnzT7bY+17Msbx7YcPWItg7Uj5kFff/11NnTo0GyyySZr9lvrk2zPUcd4cpFFFsn+9re/ZfPMM0/2xBNPZCeeeGK29957p6+77jZynn322eyXv/xl+vtpp52W7bbbbtWvOfZsXFtq5NiXN45tKckABDUVEx4W2NksZ5Der1+/Zr+lPuvBBx9Mi5i48cYbs3XWWaf6NSdBI+/RRx/Nll122WziiSfOPv7443SNOvmp77q8++67sxVXXLHZb6lPsz0b44UXXkgbvARobbPNNmmxzcnPqLM9GyO/yHbTTTdlCyywgEGZDeC1qLGN4/LGBnWwccazc6KJJkpBHTjzzDOzww47LH3ugQceyGaeeeZmv9Wxnn1549iWo88777yTNi84wHL//fdX73mNGttz5HV2dmZLLrlk9uKLL6Z/n3DCCdk+++yT/m7/Puob54svvnhqv3POOSfbYYcdmv2WWqItjznmmOyAAw5o9lvqs+zLG8e2lMrNAASpRU9IX3PNNSkTQtzibp6PvKeeeiqbcsopXbSs03333ZettNJK2csvv5zNO++8zX47fZ7t2bgT0eOPP34KfHOxqH62Z2N40kcq133uPd9YnEg94ogjUgYzgofvueeedEJVI8a+vHFsy9ETcMQp86uuuipt+LLxq1Fne9Y/Hz/11FOz3XffPX3O+7w+ZJL41a9+lT322GP223V6+umnUxDCSSedlO21117Nfjt9mn1549iWUnkZgCC1cPmAG264IVt33XWb/Zb6PLJ0mJ2j/mwnpr5tHNtTkiTpB1999VXaTLv00kuzpZZaKpVomH322Zv9tiQ1sPTKRhttlE7r//GPf0yfM4hr1Nme9fnzn/9cLYPoZlrjsksQPKj6ffbZZ+kwlSRJzWYAgtTiQQi33HJLtuaaazb7LUmSJEnSaMEG0Ouvv569+uqrKSPcVFNN1ey3JKnB9/gHH3xQzU7opm99bM/GsN00NvP6lCQ1mwEIUouihh/14U3TLkmSJEmSWoEn9RvL9pQkSdLoYADCaEhzRL0lPp555pn08eWXX6avbbHFFtlll13W7LeoEjFNuyRJkiRJkiRJkqQxxaLmDWaqR41NDD6QJEmSJEmSJEmSNKZYCGg0mmGGGbKVV1652W9DkiRJkiRJkiRJkqTRzgwIDTZ48OBs0UUXTR9kQ3j//fezmWeeudlvS5IkSZIkSZIkSZKk0coAhAY74ogjmv0WJEmSJEmSJEmSJEka4yzBIEmSJEmSJEmSJEmS6mYAgiRJkiRJkiRJkiRJqpsBCJIkSZIkSZIkSZIkqW4GIEiSJEmSJEmSJEmSpLr1q/9HaEwaOHBgs99Cn9fW1pZ1dHSkv7e3t2ednZ3Nfkt9lm3ZOLZlY9mejWNbNo5t2Ti2ZePYlo1jWzaW7dk4tmXj2JaNY1s2jm3ZWLZn49iWjWNbNo5t2Ti2ZePYlqPHgw8+2Oy3oLHEoEGDRsvPfeCBB0bLz20VZkCQJEmSJEmSJEmSJEl1MwBBkiRJkiRJkiRJkiTVzQAESZIkSZIkSZIkSZJUt371/whJkiRJfV3UnJQkSZIkSZKkUWUAgiRJkqSsvb096+zsbPbb6LPa2toM4pAkSZIkSVLpGYAgSZIkyc1zSZIkSZIkSXUbt/4fIUmSJEmSJEmSJEmSys4MCJIkSZIswVAnSzBIkiRJkiRJBiA03KOPPpq9/fbb1X9/8cUX1b/z+csuu6zL67fccssx+v4kSZIkSZIkSZIkSRodDEBosIsuuii7/PLLa37tscceSx95BiBIkiRJkiRJkiRJklrBuM1+A5IkSZIkSZIkSZIkqe8zA0KDUWKhWGZBkiRJGtt1dHQ0+y1IkiRJkiRJ6uPMgCBJkiRJkiRJkiRJkupmBgRJkiRJWXt7e9bZ2dnst9FntbW1mUVCkiRJkiRJpWcGBEmSJEmSJEmSJEmSVDcDECRJkiRJkiRJkiRJUt0MQJAkSZIkSZIkSZIkSXUzAEGSJEmSJEmSJEmSJNXNAARJkiRJkiRJkiRJklS3fvX/CEmSJEl9XUdHR7PfgiRJkiRJkqQ+zgAESZIkSVl7e3vW2dnZ7LfRZ7W1tRnEIUmSJEmSpNIzAEGSJEmSm+eSJEmSJEmS6mYAgiRJkiQzINTJDAiSJEmSJElSlo3b7DcgSZIkSZIkSZIkSZL6PgMQJEmSJEmSJEmSJElS3QxAkCRJkiRJkiRJkiRJdTMAQZIkSZIkSZIkSZIk1c0ABEmSJEmSJEmSJEmSVLd+9f8ISZIkSX1dR0dHs9+CJEmSJEmSpD7ODAiSJEmSJEmSJEmSJKluZkCQJEmSlLW3t2ednZ3Nfht9Vltbm1kkJEmSJEmSVHpmQJAkSZIkSZIkSZIkSXUzAEGSJEmSJEmSJEmSJNXNAARJkiRJkiRJkiRJklQ3AxAkSZIkSZIkSZIkSVLdDECQJEmSJEmSJEmSJEl1MwBBkiRJkiRJkiRJkiTVzQAESZIkSZIkSZIkSZJUt37NfgOSJEmSmq+jo6PZb0GSJEmSJElSH2cAgiRJkqSsvb096+zsbPbb6LPa2toM4pAkSZIkSVLpWYJBkiRJkiRJkiRJkiTVzQwIkiRJkjy9L0mSJEmSJKluBiBIkiRJsgRDnSzBIEmSJEmSJFmCQZIkSZIkSZIkSZIkNYABCJIkSZIkSZIkSZIkqW4GIEiSJEmSJEmSJEmSpLr1q/9HSJIkSerrOjo6mv0WJEmSJEmSJPVxBiBIkiRJytrb27POzs5mv40+q62tzSAOSZIkSZIklZ4lGCRJkiRJkiRJkiRJUt0MQJAkSZIkSZIkSZIkSXWzBIMkSZIkywdIkiRJkiRJqpsBCJIkSZKy9vb2rLOzs9lvo89qa2sziEOSJEmSJEmlZwkGSZIkSZIkSZIkSZJUNwMQJEmSJEmSJEmSJElS3QxAkCRJkiRJkiRJkiRJdetX/4+QJEmS1Nd1dHQ0+y1IkiRJkiRJ6uPMgCBJkiRJkiRJkiRJkupmAIIkSZIkSZIkSZIkSaqbJRgkSZIkZe3t7VlnZ2ez30af1dbWZhkLSZIkSZIklZ4ZECRJkiRJkiRJkiRJUt0MQJAkSZIkSZIkSZIkSXUzAEGSJEmSJEmSJEmSJNXNAARJkiRJkiRJkiRJklQ3AxAkSZIkSZIkSZIkSVLdDECQJEmSJEmSJEmSJEl1MwBBkiRJkiRJkiRJkiTVzQAESZIkSZIkSZIkSZJUNwMQJEmSJEmSJEmSJElS3QxAkCRJkiRJkiRJkiRJdTMAQZIkSZIkSZIkSZIk1c0ABEmSJEmSJEmSJEmSVLd+9f8ISZIkSX1dR0dHs9+CJEmSJEmSpD7OAARJkiRJWXt7e9bZ2dnst9FntbW1GcQhSZIkSZKk0rMEgyRJkiRJkiRJkiRJqpsBCJIkSZIkSZIkSZIkqW4GIEiSJEmSJEmSJEmSpLoZgCBJkiRJkiRJkiRJkupmAIIkSZIkSZIkSZIkSaqbAQiSJEmSJEmSJEmSJKluBiBIkiRJkiRJkiRJkqS6GYAgSZIkSZIkSZIkSZLqZgCCJEmSJEmSJEmSJEmqmwEIkiRJkiRJkiRJkiSpbgYgSJIkSZIkSZIkSZKkuhmAIEmSJEmSJEmSJEmS6mYAgiRJkiRJkiRJkiRJqlu/+n+EJEmSpL6uo6Oj2W9BkiRJkiRJUh9nAIIkSZKkrL29Pevs7Gz22+iz2traDOKQJEmSJElS6RmAIEmSJMnNc0mSJEmSJEl1G7f+HyFJkiRJkiRJkiRJksrOAARJkiRJkiRJkiRJklQ3SzBIkiRJytrb27POzs5mv40+q62tzTIWkiRJkiRJKj0zIEiSJEmSJEmSJEmSpLoZgCBJkiRJkiRJkiRJkupmAIIkSZIkSZIkSZIkSaqbAQiSJEmSJEmSJEmSpJbSv3//Zr+FUjIAQZIkSZIkSZIkSZLUUj7//PNmv4VSMgBBkiRJkiRJkiRJkiTVrV/9P0KSJElSX9fR0dHstyBJkiRJkiSpjzMAQZIkSVLW3t6edXZ2Nvtt9FltbW0GcUiSJEmSJKn0LMEgSZIkSZIkSZIkSZLqZgCCJEmSJEmSJEmSJEmqmwEIkiRJkiRJkiRJkiSpbgYgSJIkSZIkSZIkSZKkuhmAIEmSJEmSJEmSJEmS6mYAgiRJkiRJkiRJkiRJqpsBCJIkSZIkSZIkSZIkqW4GIEiSJEmSJEmSJEmSpLoZgCBJkiRJkiRJkiRJkupmAIIkSZIkSZIkSZIkSaqbAQiSJEmSJEmSJEmSJKluBiBIkiRJkiRJkiRJkqS6GYAgSZIkSZIkSZIkSZLqZgCCJEmSJEmSJEmSJEmqmwEIkiRJkiRJkiRJkiSpbv3q/xGSJEmS+rqOjo5mvwVJkiRJkiRJfZwBCJIkSZKy9vb2rLOzs9lvo89qa2sziEOSJEmSJEmlZwkGSZIkSZIkSZIkSZJUNwMQJEmSJEmSJEmSJElS3QxAkCRJkiRJkiRJkiRJdTMAQZIkSZIkSZIkSZIk1c0ABEmSJEmSJEmSJEmSVDcDECRJkiRJkiRJkiRJUt0MQJAkSZIkSZIkSZIkSXUzAEGSJEmSJEmSJEmSJNXNAARJkiRJkiRJkiRJklQ3AxAkSZIkSZIkSZIkSVLdDECQJEmSJEmSJEmSJEl1MwBBkiRJkiRJkiRJkiTVzQAESZIkSZIkSZIkSZJUNwMQJEmSJEmSJEmSJElS3frV/yMkSZIk9XUdHR3NfguSJEmSJEmS+jgDECRJkiRl7e3tWWdnZ7PfRp/V1tZmEIckSZIkSdJYZNCgQdkDDzzQ7LdROgYgSJIkSXLzXJIkSZIkSS3F4IPmGLdJ/7+SJEmSJEmSJEmSJKmFmAFBkiRJkiUY6mQJBkmSJEmSJMkMCJIkSZIkSZIkSZIkqQEMQJAkSZIkSZIkSZIktZTpppuu2W+hlAxAkCRJkiRJkiRJkiS1lD//+c/NfgulZACCJEmSJEmSJEmSJEmqmwEIkiRJkiRJkiRJkiSpbv3q/xGSJEmS+rqOjo5mvwVJkiRJkiRJfZwZECRJkiRJkiRJkiRJUt3MgCBJkiQpa29vzzo7O5v9NvqstrY2s0hIkiRJkiSp9MyAIEmSJEmSJEmSJEmS6mYAgiRJkiRJkiRJkiRJqpsBCJIkSZIkSZIkSZKkljL77LM3+y2UkgEIkiRJkiRJkiRJkqSW8tZbbzX7LZSSAQiSJEmSJEmSJEmSpJYy3njjNfstlJIBCJIkSZIkSZIkSZKkltKvX79mv4VSMgBBkiRJkiRJkiRJktRSvvnmm2a/hVIy7EOSJElS1tHR0ey3IEmSJEmSJKmPMwBBkiRJUtbe3p51dnY2+230WW1tbQZxSJIkSZIkqfQswSBJkiRJkiRJkiRJkupmAIIkSZIkSZIkSZIkSaqbAQiSJEmSJEmSJEmSJKluBiBIkiRJkiRJkiRJkqS69av/R0iSJEnq6zo6Opr9FiRJkiRJkiT1cQYgSJIkScra29uzzs7OZr+NPqutrc0gDkmSJEmSJJWeJRgkSZIkSZIkSZIkSVLdDECQJEmSJEmSJEmSJEl1MwBBkiRJkiRJkiRJkiTVzQAESZIkSZIkSZIkSZJUt371/whJkiRJfV1HR0ez34IkSZIkSZKkPs4ABEmSJElZe3t71tnZ2ey30We1tbUZxCFJkiRJkqTSswSDJEmSJEmSJEmSJEmqmxkQJEmSJHl6X5IkSZIkSVLdDECQJEmSZAmGOlmCQZIkSZIkSbIEgyRJkiRJkiRJkiRJagADECRJkiRJkiRJkiRJUt0MQJAkSZIkSZIkSZIkSXUzAEGSJEmSJEmSJEmS1FKmnXbaZr+FUjIAQZIkSZIkSZIkSZLUUj7//PNmv4VS6tfsNyBJkiSp+To6Opr9FiRJkiRJkqSG+c9//tPst1BKBiBIkiRJytrb27POzs5mv40+q62tzSAOSZIkSZIklZ4lGCRJkiRJkiRJkiRJUt0MQJAkSZIkSZIkSZIkSXUzAEGSJEmSJEmSJEmSJNWtX/0/QpIkSVJf19HR0ey3IEmSJEmSJKmPMwOCJEmSJEmSJEmSJEmqmxkQJEmSJGXt7e1ZZ2dns99Gn9XW1mYWCUmSJEmSJJWeGRAkSZIkSZIkSZIkSVLdDECQJEmSJEmSJEmSJEl1MwBBkiRJkiRJkiRJkiTVzQAESZIkSZIkSZIkSZJUNwMQJEmSJEmSJEmSJElS3QxAkCRJkiRJkiRJkiRJdTMAQZIkSZIkSZIkSZIk1c0ABEmSJEmSJEmSJEmSVDcDECRJkiRJkiRJkiRJUt361f8jJEmSJPV1HR0dzX4LkiRJkiRJkvo4AxAkSZIkZe3t7VlnZ2ez30af1dbWZhCHJEmSJEmSSs8SDJIkSZIkSZIkSZIkqW5mQJAkSZLk6X1JkiRJkiQ13T/+8Y/s9ddfr/57nHHG6fL14f1bzWcAgiRJkiRLMNTJEgySJEmSJEn1Bx+sscYazX4bqpMlGCRJkiRJkiRJkiRJTTX++ONnP/vZz5r9NlQnMyBIkiRJkiRJkiRJkppqvPHGy4YMGdKwnzdo0KCG/SyNODMgSJIkSZIkSZIkSZKkuhmAIEmSJEmSJEmSJEmS6mYAgiRJkiRJkiRJkiRJqlu/+n+EJEmSpL6uo6Oj2W9BkiRJkiRJUh9nAIIkSZKkrL29Pevs7Gz22+iz2traDOKQJEmSJElS6VmCQZIkSZIkSZIkSZIk1c0ABEmSJEmSJEmSJEmSVDcDECRJkiRJkiRJkiRJUt0MQJAkSZIkSZIkSZIkSXUzAEGSJEmSJEmSJEmSJNWtX/0/QpIkSVJf19HR0ey3IEmSJEmSJKmPMwBBkiRJUtbe3p51dnY2+230WW1tbQZxSJIkSZIkqfQMQJAkSZLk5rkkSZIkSZKkuhmAIEmSJMkMCHUyA4IkSZIkSZKUZeM2+w1IkiRJkiRJkiRJktRIE088cbPfQikZgCBJkiRJkiRJkiRJailff/11s99CKRmAIEmSJEmSJEmSJEmS6tav/h8hSZIkqa/r6Oho9luQJEmSJEmS1McZgCBJkiQpa29vzzo7O5v9NvqstrY2gzgkSZIkSZJUepZgkCRJkiRJkiRJkiRJdTMAQZIkSZIkSZIkSZIk1c0ABEmSJEmSJEmSJEmSVDcDECRJkiRJkiRJkiRJUt0MQJAkSZIkSZIkSZIkSXUzAEGSJEmSJEmSJEmSJNXNAARJkiRJkiRJkiRJklQ3AxAkSZIkSZIkSZIkSVLdDECQJEmSJEmSJEmSJEl161f/j5AkSZLU13V0dDT7LUiSJEmSJEnq4wxAkCRJkpS1t7dnnZ2dzX4bfVZbW5tBHJIkSZIkSSo9SzBIkiRJkiRJkiRJkqS6GYAgSZIkSZIkSZIkSZLqZgCCJEmSJEmSJEmSJEmqW7/6f4QkSZKkvq6jo6PZb0GSJEmSJElSH2cAgiRJkqSsvb096+zsbPbb6LPa2toM4pAkSZIkSVLpWYJBkiRJkiRJkiRJkiTVzQAESZIkSZIkSZIkSZJUNwMQJEmSJEmSJEmSJElS3QxAkCRJkiRJkiRJkiRJdTMAQZIkSZIkSZIkSZIk1c0ABEmSJEmSJEmSJEmSVDcDECRJkiRJkiRJkiRJUt0MQJAkSZIkSZIkSZIkSXUzAEGSJEmSJEmSJEmSJNXNAARJkiRJkiRJkiRJklQ3AxAkSZIkSZIkSZIkSVLd/l97dx/s6Vw/fvx11mEv5f4uIhShlQlRucnNhi4pcp+GUjSVNDWjojvTN+UmlbuRchOy1XZDSFwatxWNQiaFMm4qtEa1VsXlpt3fXNf89oxll7P7OlznOp/HY+Yz+znnfM57X2f1V5/neb0FCAAAAAAAAABA2nD+CAAAoO+qqup6BAAAAACg5wQIAABAlGUZdV13PUZvFUUh4gAAAABg4LmCAQAAAAAAAABIEyAAAAAAAAAAAGkCBAAAAAAAAAAgTYAAAAAAAAAAAKQJEAAAAAAAAACANAECAAAAAAAAAJAmQAAAAAAAAAAA0gQIAAAAAAAAAECaAAEAAAAAAAAASBMgAAAAAAAAAABpAgQAAAAAAAAAIG04fwQAAAAAAAAALLqnnnoqPvjBD8bdd9/d9Sgk2IAAAAAAAAAAQKf++9//ig8mABsQAAAAAAAAAOjUsssuG9OmTYtf/OIX7cdz5syZ5+vP9/EznXXWWS/AlDwfAQIAAAAAAAAAnVt99dVjv/32G5OzBAjdcAUDAAAAAAAAAJBmAwIAABBVVXU9AgAAAADQcwIEAAAgyrKMuq67HqO3iqIQcQAAAAAw8FzBAAAAAAAAAACkCRAAAAAAAAAAgDRXMAAAAK4PAAAAAADSBAgAAECUZRl1XXc9Rm8VRSHiAAAAAGDguYIBAAAAAAAAAEizAQEAAPDb+wAAAABAmg0IAAAAAAAAAECaDQgAAECUZRl1XXc9Rm8VRWGLBAAAAAADzwYEAAAAAAAAACBNgAAAAAAAAAAApAkQAAAAAAAAAIA0AQIAAAAAAAAAkCZAAAAAAAAAAADSBAgAAAAAAAAAQJoAAQAAAAAAAABIEyAAAAAAAAAAAGkCBAAAAAAAAAAgTYAAAAAAAAAAAKQJEAAAAAAAAACANAECAAAAAAAAAJA2nD8CAADou6qquh4BAAAAAOg5AQIAABBlWUZd112P0VtFUYg4AAAAABh4rmAAAAAAAAAAANIECAAAAAAAAABAmgABAAAAAAAAAEgTIAAAAAAAAAAAaQIEAAAAAAAAACBNgAAAAAAAAAAApA3njwAAAPquqqquRwAAAAAAes4GBAAAAAAAAAAgzQYEAAAgyrKMuq67HqO3iqKwRQIAAACAgSdAAAAAvHkOAAAAAKQJEAAAABsQkmxAAAAAAICISV0PAAAAAAAAAAD0nwABAAAAAAAAAEgTIAAAAAAAAAAAacP5IwAAgL6rqqrrEQAAAACAnrMBAQAAAAAAAABIswEBAACIsiyjruuux+itoihskQAAAABg4NmAAAAAAAAAAACkCRAAAAAAAAAAgDQBAgAAAAAAAACQNpw/AgAA6LuqqroeAQAAAADoOQECAAAQZVlGXdddj9FbRVGIOAAAAAAYeK5gAAAAAAAAAADSBAgAAAAAAAAAQJoAAQAAAAAAAABIEyAAAAAAAAAAAGkCBAAAAAAAAAAgTYAAAAAAAAAAAKQJEAAAAAAAAACANAECAAAAAAAAAJA2nD8CAADou6qquh4BAAAAAOg5AQIAABBlWUZd112P0VtFUYg4AAAAABh4rmAAAAAAAAAAANIECAAAAAAAAABAmgABAAAAAAAAAEgbzh8BAAD0XVVVXY8AAAAAAPScAAEAAIiyLKOu667H6K2iKEQcAAAAAAw8AQIAAODNcwAAAAAgTYAAAADYgJBkAwIAAAAAREzqegAAAAAAAAAAoP8ECAAAAAAAAABAmgABAAAAAAAAgAlliSWW6HqEgSRAAAAAAAAAAGBCmTZt2pifudFGG435mRONAAEAAAAAAACACWWfffYZ8zNvvfXWMT9zohEgAAAAAAAAAABpAgQAAAAAAAAAIE2AAAAAAAAAAACkDeePAAAAAAAAAIBFN2fOnDj66KPjiiuu6HoUEmxAAAAAAAAAAKBTM2fOFB9MADYgAAAAAAAAANCpFVZYod2AMG3atGd9bWho6Dm/d35f/8Mf/jCm8zE6AgQAAAAAAAAAOrfFFlu0j7Gw/fbbj8k5LBxXMAAAAAAAAAAAaQIEAAAAAAAAACBNgAAAAAAAAAAApAkQAAAAAAAAAIA0AQIAAAAAAAAAkCZAAAAAAAAAAADSBAgAAAAAAAAAQJoAAQAAAAAAAABIEyAAAAAAAAAAAGkCBAAAAAAAAAAgTYAAAAAAAAAAAKQJEAAAAAAAAACANAECAAAAAAAAAJAmQAAAAAAAAAAA0gQIAAAAAAAAAECaAAEAAAAAAAAASBvOHwEAAPRdVVVdjwAAAAAA9JwAAQAAiLIso67rrsforaIoRBwAAAAADDwBAgAAAAAAAACdmjNnTnz961+PSy65pOtRSJiU+WYAAAAAAAAAyJo5c6b4YAKwAQEAAHB9AAAAAACdWmGFFeLII4+Ms88+e4GvGRoaes6Pn+4vf/nLmM7H6AgQAACAKMsy6rrueozeKopCxAEAAACQtP3227ePsfCpT30qfvvb347JWYyeKxgAAAAAAAAAmFDEB92wAQEAAPDb+wAAAABAmgABAABwBUOSKxgAAAAAwBUMAAAAAAAAAMAYECAAAAAAAAAAAGkCBAAAAAAAAAAmlFe96lVdjzCQBAgAAAAAAAAATCh333131yMMJAECAAAAAAAAAJAmQAAAAAAAAAAA0gQIAAAAAAAAAECaAAEAAAAAAAAASBMgAAAAAAAAAABpAgQAAAAAAAAAIE2AAAAAAAAAAACkCRAAAAAAAAAAgDQBAgAAAAAAAACQJkAAAAAAAAAAANIECAAAAAAAAABAmgABAAAAAAAAAEgTIAAAAAAAAAAAacP5IwAAgL6rqqrrEQAAAACAnhMgAAAAUZZl1HXd9Ri9VRSFiAMAAACAgSdAAAAAvHkOAAAAAKQJEAAAABsQkmxAAAAAAICISV0PAAAAAAAAAAD0nwABAAAAAAAAAEgTIAAAAAAAAAAAaQIEAAAAAAAAACBNgAAAAAAAAAAApAkQAAAAAAAAAIA0AQIAAAAAAAAAkCZAAAAAAAAAAADSBAgAAAAAAAAAQJoAAQAAAAAAAABIEyAAAAAAAAAAAGkCBAAAAAAAAAAgTYAAAAAAAAAAAKQJEAAAAAAAAACANAECAAAAAAAAAJAmQAAAAAAAAAAA0gQIAAAAAAAAAEwou+yyS9cjDCQBAgAAAAAAAAATylVXXdX1CANJgAAAAAAAAADAhPLYY491PcJAEiAAAAAAAAAAAGkCBAAAAAAAAAAgTYAAAAAAAAAAAKQJEAAAAAAAAACANAECAAAAAAAAAJAmQAAAAAAAAAAA0gQIAAAAAAAAAECaAAEAAAAAAAAASBMgAAAAAAAAAABpAgQAAAAAAAAAIG04fwQAANB3VVV1PQIAAAAA0HMCBAAAIMqyjLquux6jt4qiEHEAAAAAMPBcwQAAAAAAAAAApAkQAAAAAAAAAIA0AQIAAAAAAAAAkCZAAAAAAAAAAADSBAgAAAAAAAAAQJoAAQAAAAAAAABIEyAAAAAAAAAAAGkCBAAAAAAAAAAgTYAAAAAAAAAAAKQJEAAAAAAAAACANAECAAAAAAAAAJAmQAAAAAAAAABgQtlhhx26HmEgCRAAAAAAAAAAmFCuuuqqrkcYSAIEAAAAAAAAACaUl7zkJV2PMJAECAAAAAAAAABMKP/5z3+6HmEgCRAAAAAAAAAAgDQBAgAAAAAAAACQJkAAAAAAAAAAANIECAAAAAAAAABAmgABAAAAAAAAAEgTIAAAAAAAAAAAaQIEAAAAAAAAACBNgAAAAAAAAAAApAkQAAAAAAAAAIA0AQIAAAAAAAAAkCZAAAAAAAAAAADSBAgAAAAAAAAAQNpw/ggAAKDvqqrqegQAAAAAoOcECAAAQJRlGXVddz1GbxVFIeIAAAAAYOC5ggEAAAAAAAAASBMgAAAAAAAAAABpAgQAAAAAAAAAIE2AAAAAAAAAAACkCRAAAAAAAAAAgDQBAgAAAAAAAACQNpw/AgAA6LuqqroeAQAAAADoOQECAAAQZVlGXdddj9FbRVGIOAAAAAAYeK5gAAAAAAAAAADSBAgAAAAAAAAAQJoAAQAAAAAAAABIEyAAAAAAAAAAAGkCBAAAAAAAAAAgTYAAAAAAAAAAwITy9re/vesRBpIAAQAAAAAAAIAJZcqUKWN+ZlEUY37mRCNAAAAAAAAAAGBC+cpXvjLmZ9Z1PeZnTjQCBAAAAAAAAAAgTYAAAAAAAAAAAKQJEAAAAAAAAACANAECAAAAAAAAAJAmQAAAAAAAAAAA0gQIAAAAAAAAAECaAAEAAAAAAAAASBMgAAAAAAAAAABpAgQAAAAAAAAAIE2AAAAAAAAAAMCEsu+++3Y9wkASIAAAAAAAAAAwofzgBz/oeoSBNNz1AAAAQPeqqup6BAAAAACg5wQIAABAlGUZdV13PUZvFUUh4gAAAABg4LmCAQAAAAAAAABIEyAAAAAAAAAAAGkCBAAAAAAAAAAgTYAAAAAAAAAAAKQJEAAAAAAAAACANAECAAAAAAAAAJAmQAAAAAAAAAAA0obzRwAAAH1XVVXXIwAAAAAAPSdAAAAAoizLqOu66zF6qygKEQcAAAAAA88VDAAAAAAAAABAmgABAAAAAAAAAEgTIAAAAAAAAAAAaQIEAAAAAAAAACBNgAAAAAAAAAAApAkQAAAAAAAAAIA0AQIAAAAAAAAAkDacPwIAAIC5qqrqegQAAAAA6IQAAQAAYAyVZRl1XXc9Rq8VRSHkAAAAAOghVzAAAAAAAAAAAGkCBAAAAAAAAAAgzRUMAAAAAAAAAHRq9uzZ8fnPfz6uv/76rkchwQYEAAAAAAAAADr18MMPiw8mABsQAAAAAAAAAOjUCiusECeeeGKcf/7583x+aGjoOT9ekGuvvXZM52N0BAgAAAAAAAAAdO51r3td+xgLX/7yl+OKK64Yk7MYPQECAAAQVVV1PQIAAAAAjBnxQTcECAAAQJRlGXVddz1GbxVFIeIAAAAAYOBN6noAAAAAAAAAAKD/BAgAAAAAAAAAQJoAAQAAAAAAAABIEyAAAAAAAAAAAGkCBAAAAAAAAAAgTYAAAAAAAAAAAKQJEAAAAAAAAACANAECAAAAAAAAAJAmQAAAAAAAAAAA0gQIAAAAAAAAAECaAAEAAAAAAAAASBMgAAAAAAAAAABpAgQAAAAAAAAAIE2AAAAAAAAAAACkCRAAAAAAAAAAgDQBAgAAAAAAAACQJkAAAAAAAAAAANKG80cAAAB9V1VV1yMAAAAAAD1nAwIAAAAAAAAAkGYDAgAAEGVZRl3XXY/RW0VR2CIBAAAAwMCzAQEAAAAAAAAASBMgAAAAAAAAAABpAgQAAAAAAAAAIE2AAAAAAAAAAACkCRAAAAAAAAAAgLTh/BEAAEDfVVXV9QgAAAAAQM/ZgAAAAAAAAAAApNmAAAAARFmWUdd112P0VlEUtkgAAAAAMPBsQAAAAAAAAABgwv3CCC8+AQIAAAAAAAAAE4ptn90QIAAAAAAAAAAAaQIEAAAAAAAAACBNgAAAAAAAAAAApA3njwAAAPquqqquRwAAAAAAek6AAAAARFmWUdd112P0VlEUIg4AAAAABp4rGAAAAAAAAACANAECAAAAAAAAAJAmQAAAAAAAAAAA0gQIAAAAAAAAAECaAAEAAAAAAAAASBMgAAAAAAAAAABpAgQAAAAAAAAAIG04fwQAANB3VVV1PQIAAAAA0HMCBAAAIMqyjLquux6jt4qiEHEAAAAAMPBcwQAAAAAAAAAApAkQAAAAAAAAAIA0AQIAAAAAAAAAkCZAAAAAAAAAAADSBAgAAAAAAAAAQJoAAQAAAAAAAABIEyAAAAAAAAAAAGnD+SMAAIC+q6qq6xEAAAAAgJ4TIAAAAFGWZdR13fUYvVUUhYgDAAAAgIHnCgYAAAAAAAAAIE2AAAAAAAAAAACkCRAAAAAAAAAAgDQBAgAAAAAAAACQJkAAAAAAAAAAANIECAAAAAAAAABAmgABAAAAAAAAAEgbzh8BAAD0XVVVXY8AAAAAAPScAAEAAIiyLKOu667H6K2iKEQcAAAAAAw8VzAAAAAAAAAAjDPTpk2LD37wg7HZZpvF5MmTY2hoKM4555wFvv6GG26I3XbbLVZaaaX29a9+9avjyCOPjMcee+xFnZvBJkAAAAAAAAAAGGc+97nPxemnnx5/+ctfYrXVVnvO115wwQWx9dZbx+WXXx5vfetb49BDD40VV1wxjjrqqNhxxx3j8ccfj0EzderUrkcYSK5gAAAAXB8AAAAAMM6ceeaZ7RaDtdZaK4499tj49Kc/Pd/XNRsOPvShD7UbEq677rp4/etf335+zpw58dGPfjROPfXUOOGEE+KII46IQXLVVVd1PcJAEiAAAABRlmXUdd31GL1VFIWIAwAAABhTO+yww6hed/3118dDDz0Ue++990h80GiChC996UttgPDNb34zDj/88PZz49V9990Xl112WcyYMSNWXXXV2HnnnWONNdboeiwWkgABAAAAAAAAoKeaN+wbr3zlK5/1teWWWy6WX3759hqHu+++O9ZZZ50Yj5rw4Ktf/eo8n5s+fXp88pOfbH9xhv6Y1PUAAAAAAAAAACyalVZaqf3znnvuedbXZs2aFTNnzmyf//nPf47xuvmgiQ9mz579rMfxxx8f999/f9cjshBsQAAAAAAAAADoqa222iqWWWaZuPDCC+N3v/tdbLLJJiNfO/LII0eeP/zwwzFetx8sSBMh7L///i/qPOQIEAAAAAAAAAB6aqmlloqvf/3rcfDBB8cWW2wRe+21V6y66qpx/fXXx0033RQbbLBB3HHHHTFp0qRxfYUEE8P4/F8ZAAAAAAAAAKNy0EEHxaWXXtoGCBdddFF84xvfiMUXXzyuvPLKWHfdddvXrLLKKjEeNbHEohoaGprn0UQWcx90wwYEAAAAAAAAgJ7beeed28czHXDAAe0b8ptuummMR83M06dPn+/Xmrm/853vxOqrr77Q526//fZjMB0LS4AAAABEVVVdjwAAAADAGLvuuuvi3nvvjbe97W2x7LLLxni0xhprxCc/+ck4/vjjn/W15vOLEh/QHQECAAAQZVlGXdddj9FbRVGIOAAAAIDOPPLII7HMMsvM87kHHnggDj744BgeHo6jjjoqxvv/N7XRRhu110jMmDGjvZahiSbEB/0jQAAAAAAAAAAYZ84888z41a9+1T6/9dZbRz53zTXXtM+33nrrNjBonHzyyTFt2rT2c6usskr87W9/i4suuigeffTROOuss8bt9QtP18QGH/jAB7oegyQBAgAAAAAAAMA408QH55577rOuVGgec80NELbccsu49tpr46c//WnMnDkzVlxxxXaDwOGHHx6bbLLJiz47g0uAAAAAAAAAADDOnHPOOe1jNKZOndo+oGuTuh4AAAAAAAAAAOg/AQIAAAAAAAAAkCZAAAAAAAAAAADShvNHAAAAfVdVVdcjAAAAAAA9J0AAAACiLMuo67rrMXqrKAoRBwAAAAADzxUMAAAAAAAAAECaAAEAAAAAAAAASBMgAAAAAAAAAABpAgQAAAAAAAAAIE2AAAAAAAAAAACkCRAAAAAAAAAAgDQBAgAAAAAAAACQJkAAAAAAAAAAANIECAAAAAAAAABAmgABAAAAAAAAAEgTIAAAAAAAAAAAaQIEAAAAAAAAACBNgAAAAAAAAAAApAkQAAAAAAAAAIC04fwRAABA31VV1fUIAAAAAEDPCRAAAIAoyzLquu56jN4qikLEAQAAAMDAcwUDAAAAAAAAAJAmQAAAAAAAAAAA0gQIAAAAAAAAAECaAAEAAAAAAAAASBMgAAAAAAAAAABpAgQAAAAAAAAAIE2AAAAAAAAAAACkCRAAAAAAAAAAgDQBAgAAAAAAAACQJkAAAAAAAAAAANIECAAAAAAAAABAmgABAAAAAAAAAEgTIAAAAAAAAAAAaQIEAAAAAAAAACBNgAAAAAAAAAAApAkQAAAAAAAAAIA0AQIAAAAAAAAAkCZAAAAAAAAAAADSBAgAAAAAAAAAQJoAAQAAAAAAAABIEyAAAAAAAAAAAGnD+SMAAIC+q6qq6xEAAAAAgJ4TIAAAAFGWZdR13fUYvVUUhYgDAAAAgIHnCgYAAAAAAAAAIE2AAAAAAAAAAACkCRAAAAAAAAAAgDQBAgAAAAAAAACQJkAAAAAAAAAAANIECAAAAAAAAABAmgABAAAAAAAAAEgTIAAAAAAAAAAAacP5IwAAgL6rqqrrEQAAAACAnhMgAAAAUZZl1HXd9Ri9VRSFiAMAAACAgecKBgAAAAAAAAAgTYAAAAAAAAAAAKS5ggEAAHB9AAAAAACQJkAAAACiLMuo67rrMXqrKAoRBwAAAAADT4AAAAB48xwAAAAASBMgAAAANiAk2YAAAAAAABGTuh4AAAAAAAAAAOg/AQIAAAAAAAAAkCZAAAAAAAAAAADSBAgAAAAAAAAAQJoAAQAAAAAAAABIEyAAAAAAAAAAAGkCBAAAAAAAAAAgbTh/BAAA0HdVVXU9AgAAAADQczYgAAAAAAAAAABpNiAAAABRlmXUdd31GL1VFIUtEgAAAAAMPBsQAAAAAAAAAIA0AQIAAAAAAAAAkCZAAAAAAAAAAADSBAgAAAAAAAAAQNpw/ggAAKDvqqrqegQAAAAAoOdsQAAAAAAAAAAA0mxAAAAAoizLqOu66zF6qygKWyQAAAAAGHg2IAAAAAAAAAAAaQIEAAAAAAAAACBNgAAAAAAAAAAApAkQAAAAAAAAAIA0AQIAAAAAAAAAkCZAAAAAAAAAAADShvNHAAAAfVdVVdcjAAAAAAA9J0AAAACiLMuo67rrMXqrKAoRBwAAAAADzxUMAAAAAAAAAECaAAEAAAAAAAAASBMgAAAAAAAAAABpAgQAAAAAAAAAJpRll1226xEG0nDXAwAAAN2rqqrrEQAAAABgzMyaNavrEQaSAAEAAIiyLKOu667H6K2iKEQcAAAAAAw8VzAAAAAAAAAAAGk2IAAAAH57HwAAAABIswEBAAAAAAAAAEizAQEAAIiyLKOu667H6K2iKGyRAAAAAGDg2YAAAAAAAAAAAKQJEAAAAAAAAACANAECAAAAAAAAAJAmQAAAAAAAAAAA0gQIAAAAAAAAAECaAAEAAAAAAAAASBMgAAAAAAAAAABpAgQAAAAAAAAAIE2AAAAAAAAAAACkCRAAAAAAAAAAgLTh/BEAAEDfVVXV9QgAAAAAQM8JEAAAgCjLMuq67nqM3iqKQsQBAAAAwMBzBQMAAAAAAAAAkCZAAAAAAAAAAGBCeelLX9r1CANJgAAAAAAAAADAhPLf//636xEGkgABAAAAAAAAAEgTIAAAAAAAAAAAaQIEAAAAAAAAACBNgAAAAAAAAAAApAkQAAAAAAAAAIA0AQIAAAAAAAAAkCZAAAAAAAAAAADSBAgAAAAAAAAAQJoAAQAAAAAAAABIEyAAAAAAAAAAMKFMmTKl6xEGkgABAAAAAAAAgAnltttu63qEgSRAAAAAAAAAAADSBAgAAAAAAAAAQNpw/ggAAKDvqqrqegQAAAAAoOcECAAAQJRlGXVddz1GbxVFIeIAAAAAYOC5ggEAAAAAAAAASBMgAAAAAAAAAABpAgQAAAAAAAAAIE2AAAAAAAAAAACkCRAAAAAAAAAAgLTh/BEAAEDfVVXV9QgAAAAAQM8JEAAAgCjLMuq67nqM3iqKQsQBAAAAwMBzBQMAAAAAAAAAkCZAAAAAAAAAAADSBAgAAAAAAAAAQJoAAQAAAAAAAABIG84fAQAA9F1VVV2PAAAAAAD0nA0IAAAAAAAAAECaDQgAAECUZRl1XXc9Rm8VRWGLBAAAAAADzwYEAAAAAAAAACBNgAAAAAAAAAAApAkQAAAAAAAAAIA0AQIAAAAAAAAAkCZAAAAAAAAAAADSBAgAAAAAAAAAQJoAAQAAAAAAAABIEyAAAAAAAAAAAGkCBAAAAAAAAAAgTYAAAAAAAAAAAKQJEAAAAAAAAACANAECAAAAAAAAAJAmQAAAAAAAAAAA0gQIAAAAAAAAAECaAAEAAAAAAAAASBMgAAAAAAAAAABpAgQAAAAAAAAAIE2AAAAAAAAAAACkDeePAAAA+q6qqq5HAAAAAAB6ToAAAABEWZZR13XXY/RWURQiDgAAAAAGnisYAAAAAAAAAIA0GxAAAAC/vQ8AAAAApAkQAAAAVzAkuYIBAAAAAFzBAAAAAAAAAACMAQECAAAAAAAAAJAmQAAAAAAAAAAA0gQIAAAAAAAAAECaAAEAAAAAAAAASBMgAAAAAAAAAABpAgQAAAAAAAAAIE2AAAAAAAAAAACkCRAAAAAAAAAAgDQBAgAAAAAAAACQJkAAAAAAAAAAANIECAAAAAAAAABMKMcee+yYn7nOOuuM+ZkTzXDXAwAAAN2rqqrrEQAAAABgzBxxxBFjfuZdd9015mdONAIEAAAgyrKMuq67HqO3iqIQcQAAAAAw8FzBAAAAAAAAAACkCRAAAAAAAAAAgDQBAgAAAAAAAACQJkAAAAAAAAAAANIECAAAAAAAAABAmgABAAAAAAAAAEgTIAAAAAAAAAAAaQIEAAAAAAAAACBNgAAAAAAAAAAAdBMg3HjjjfHFL34xdtppp1hjjTVi8uTJsdRSS8V6660X73vf++JXv/rV854xe/bsuO222+Kcc86JQw45JDbffPP2nKGhofZxzTXXjGqW7bbbbuR7nu/xfB555JE47rjjYquttooVVlihnecVr3hF7LXXXnHZZZc95/fee++9o55j7mPttdce1c8IAAAAAAAAAOPd8MJ+wzbbbBO//OUvn/X5J554Iu6888720UQF73nPe+KMM86IJZZYYr7nnHfeeXHggQfGePHrX/869txzz/j73/8+z+fvu+++9nH++ee3P9O3v/3tWGyxxcbk71x//fXH5BwAAAAAAAAABtv9998fP/rRj+LSSy+NO+64I2bMmNH+4n3zC/if+tSn4o1vfOM8r7/lllvihz/8Ydx0001x8803xz/+8Y/YdtttR70sYEwChAceeKD98+Uvf3nsvffe8eY3vznWXHPN+N///te+if+1r32t/cG+853vxJNPPhnf+9735nvOnDlzRp4vvvjisdFGG7Wvv/XWWxfpB9lss83i7LPPXqTv/dOf/hQ777xzzJo1KyZNmhQHH3xwu/VgxRVXjHvuuSdOO+20uPLKK9ufqdn0cOqppz7rjNVXX31Usx9zzDEj/ybvfe97F2leAAAAAAAAAHi6U045pd34v84667S3Gay88srtAoELL7ywfTTvU++7774jr28+17x/3SwVaG47aAKErIUOEDbYYIM4+uij220Bz9wE8KY3vSkOOOCAtqD485//HN///vfjQx/6ULs14ZmmTJkSJ598cnv1wsYbbxxFUcQXvvCFRQ4QXvrSl8ZrX/vaRfreww47rI0PGmedddY8mxk23XTT2GOPPeL9739/u9mhiRGarzdzP10TUTzf399EGnNrkaWXXjp23333RZoXAAAAAAAAAJ7uDW94Q/t+dLPF4OmaGw7e8pa3xIc//OF45zvfGZMnT24/3ywc2HXXXdtlAf/85z9jtdVWi6xJC/sNl1xySeyzzz4LvIZgpZVWarcgzPXjH/94gT/8Rz/60TZaaOKDrjz00EPtCopGE07M71qIoaGhOOGEE9rIodnc0FQji+KKK64Y2SDRbFhYcsklk9MDAAAAAAAAQLS/WP/M+KDR3Gqw/fbbx8yZM+dZCLDhhhu2v5Df/LL9WFnoAGE0muHnuuuuu2I8a+6zmHsdRHMNw4Ist9xybSzRuOyyy+LRRx9d6L+rucJhLtcvAAAAAAAAAPTLGWecEffdd1/0zeL/PzIYHl7oSxK6DxAef/zxkecL2pQwXjSrJOZ62cte9pyvnfv1Jj648cYbF+rv+fe//93eodFYe+2153stBQAAAAAAAADj1/Tp09tfNq+qKvrir3/9a7utv7liobluoXcBwrXXXjvy/DWveU28GO6444544xvf2G4qaK50WGONNWK33XZrtw48+eSTC/y+pZZaauT5rFmznvPvePrXb7vttoWar7mKYu7WhAMOOKC91gEAAAAAAACA/pg9e3b7OP744+P++++P8e7JJ59s359ulggcd9xxL/gCgTHfr9D8Yx977LEjH++zzz7xYnjwwQfbx1zNf+zmcfHFF7f/kE0AML8Y4umfa8KJww47bL7nP/HEE3HDDTfMU4ks6vUL73nPexbqewEA4IXWp2IbAAAAAMaDSy+9ND7wgQ/EeDV79uw48MAD4xe/+EU7ZxMivNCG5syZM2csD/za174Wn/jEJ9rne+yxR5x//vmj/t4vfOEL8X//93/t86uvvjq222675/2eqVOnxqRJk+Jtb3tbvO51r4sVV1yxve7g5ptvjm9961tx++23j1yf8Jvf/CbWXHPNZ52xwQYbxJ/+9Kf2nCZC2HrrrZ/1mmOOOSY+85nPjHx86KGHximnnDKqn6uJFZprF5p/6i233DKuu+66UX0fAAAAAAAAAN046qij4pprrmnfyH+m5r3l5v3sz3/+8zEezZ49O97//vfHueeeG/vvv3/7ZzPzgsyYMaO9omHbbbdtf+ZxsQGhefP+iCOOaJ+vssoqcdppp8UL7YILLmivXXimN7/5zXHIIYe0JUfzj9lsR/j4xz/evv6ZvvSlL8Xee+/d/kfYZZdd4uijj44999yzjRnuvffe+MY3vhEnnXRSLLHEEu0mhMZjjz026hmnTZvWxgcN2w8AAAAAAAAAxr8mLhivgcFzad73ft/73tdu6d9vv/3inHPOec74YCyN2d/yxz/+MXbfffd46qmnoiiK+NGPftRGCC+0+cUHcy2++OJx5plnxvrrr99+/JOf/GS+93DstddeI5sXHnnkkXa7QVN3NMHBeuutFyeeeGIsv/zybagw19JLLz3qGc8777z2z8mTJ8e+++67UD8fAAAAAAAAACxsfNC8N928V73YYovFi2VMAoR77rkndtppp5g5c2Y7/PTp02ObbbaJ8WB4eDgOOuigebY0zM+RRx4ZV155Zey4445tKDDXkksu2a6k+P3vfz/P9Q1NkDAazbUPd9xxR/t81113fc5gAgAAAAAAAAAy1y408UFzA0Czqf/FjA/G5AqGBx54IHbYYYf2z6Ghofj2t78du+22W4wnU6ZMGXk+vw0Ic02dOrV9PP744/H3v/+9vTZh9dVXbzchNO68886R12644Yaj+rub/7hzuX4BAAAAAAAAgBfCF7/4xTj33HNjqaWWajf9P33D/1zvfOc7Y+ONN26fN79If+yxx7bPH3vssZHPHXjggSOvb65veNEChH/84x/txoC77767/fiUU04Zl2+yN2HEwmg2IKy99trP+vxNN9008vwNb3jD857z5JNPttsgGs11FGVZLtQcAAAAAAAAADAa9957b/vnf/7zn/jyl78839c074PPDRBmzJjRBgtP9+CDD87zuRctQJg1a1a89a1vjdtuu639uCkjPvKRj8R4NHfGxstf/vJFOuPf//53XH755e3zLbbYIl7xilc87/f87Gc/i3/+85/t83e/+93tdRAAAAAAAAAAMNaaWGBhgoHtttuuvRVgLE1alG969NFHY5dddombb765/fizn/1sHH744TEePfXUU+21EHNts802i3TOMcccM7J2YrShxdOvX3jve9+7SH8vAAAAAAAAAPTBQgcITzzxROy+++5x3XXXtR9/7GMfm+/dES+Gq6++Oh5++OHnvALh4IMPjttvv739+B3veMd8Nxc0r2uuk1iQ7373u3Hccce1z7fddtt2m8Hz+de//tVuQGhstNFGI2ssAAAAAAAAAGAiWug7Afbbb7/4+c9/3j6fOnVqHHTQQfGHP/xhga9fYoklYr311pvv1565/uGWW24ZeV5V1cgdFY111103tt5663le39w9seuuu7aPZj3E+uuvH8sss0x7p8VNN90Up59++sj1C6usskqcdNJJC7xOYs0112zDiuZaieacSZMmxV133RXf//734+KLLx65D+O8886LoaGh5/13mj59ehtrNGw/AAAAAAAAAGCiG5qzkJc6jObN96dba6215gkJFvWs5k38ZwYLBx54YBshPJ9mA0ETBEyZMmW+X2+2H6y88srPecZWW23VbkJofp7ReNOb3hQ33HBDLLbYYnHffffFqquuOqrvAwAAAAAAAICB2IAwnhx++OHt1Qa//vWv200HDz30UHv1weTJk+NlL3tZbLbZZrHXXnu1mw2aEGBBlltuuTjzzDPjyiuvjJtvvjlmzJgRdV23Z2y++ebxrne9K/bcc89RBxN33nlnGx80dtxxR/EBAAAAAAAAABPeQm9AAAAAAAAAAAB4pknP+gwAAAAAAAAAwEISIAAAAAAAAAAAaQIEAAAAAAAAACBNgAAAAAAAAAAApAkQAAAAAAAAAIA0AQIAAAAAAAAAkCZAAAAAAAAAAADSBAgAAAAAAAAAQJoAAQAAAAAAAABIEyAAAAAAAAAAAGkCBAAAAAAAAAAgTYAAAAAAAAAAAKQJEAAAAAAAAACANAECAAAAAAAAABBZ/w9+0K6tBC0BzgAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "msno.matrix(df)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We do have missing values in \n",
+ "* yr_renovated, but no good idea on how to fill in those. --> DONE. \n",
+ "* view - there are only some, we can maybe get that by looking at the area and the price/sqft --> make an analysis\n",
+ "* waterfront. There could (should) be a correlation with price/sqft and with the view. It for sure has to do with the ZIP code. \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "let's have a look at view values for waterfront houses"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([nan, 0., 1.])"
+ ]
+ },
+ "execution_count": 37,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.waterfront.unique() # so we have 1 for waterfront, 0 for not waterfront"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "count 145.000\n",
+ "mean 3.786\n",
+ "std 0.555\n",
+ "min 1.000\n",
+ "25% 4.000\n",
+ "50% 4.000\n",
+ "75% 4.000\n",
+ "max 4.000\n",
+ "Name: view, dtype: float64"
+ ]
+ },
+ "execution_count": 38,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('waterfront == 1').view.describe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "--> we have a HUGE correlation with the view, with the majority of those places having a view of 4. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "count 19004.000\n",
+ "mean 0.204\n",
+ "std 0.698\n",
+ "min 0.000\n",
+ "25% 0.000\n",
+ "50% 0.000\n",
+ "75% 0.000\n",
+ "max 4.000\n",
+ "Name: view, dtype: float64"
+ ]
+ },
+ "execution_count": 39,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('waterfront == 0').view.describe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We see that most waterfront houses have a view of 4. There are a few with a view of 4 where there is not a waterfront though. But those are very few. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# lets have a look at ZIP Codes \n",
+ "waterfront_zip = df.query('waterfront == 0').zipcode.unique()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " date \n",
+ " price \n",
+ " house_id \n",
+ " bedrooms \n",
+ " bathrooms \n",
+ " sqft_living \n",
+ " sqft_lot \n",
+ " floors \n",
+ " waterfront \n",
+ " view \n",
+ " ... \n",
+ " grade \n",
+ " sqft_above \n",
+ " sqft_basement \n",
+ " yr_built \n",
+ " yr_renovated \n",
+ " zipcode \n",
+ " lat \n",
+ " long \n",
+ " sqft_living15 \n",
+ " sqft_lot15 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 2014-10-13 \n",
+ " 221900 \n",
+ " 7129300520 \n",
+ " 3.000 \n",
+ " 1.000 \n",
+ " 1180 \n",
+ " 5650 \n",
+ " 1.000 \n",
+ " NaN \n",
+ " 0.000 \n",
+ " ... \n",
+ " 7 \n",
+ " 1180 \n",
+ " 0.000 \n",
+ " 1955 \n",
+ " 0 \n",
+ " 98178 \n",
+ " 47.511 \n",
+ " -122.257 \n",
+ " 1340 \n",
+ " 5650 \n",
+ " \n",
+ " \n",
+ " 10 \n",
+ " 2015-04-03 \n",
+ " 662500 \n",
+ " 1736800520 \n",
+ " 3.000 \n",
+ " 2.500 \n",
+ " 3560 \n",
+ " 9796 \n",
+ " 1.000 \n",
+ " NaN \n",
+ " 0.000 \n",
+ " ... \n",
+ " 8 \n",
+ " 1860 \n",
+ " 1700.000 \n",
+ " 1965 \n",
+ " 0 \n",
+ " 98007 \n",
+ " 47.601 \n",
+ " -122.145 \n",
+ " 2210 \n",
+ " 8925 \n",
+ " \n",
+ " \n",
+ " 23 \n",
+ " 2014-05-16 \n",
+ " 252700 \n",
+ " 8091400200 \n",
+ " 2.000 \n",
+ " 1.500 \n",
+ " 1070 \n",
+ " 9643 \n",
+ " 1.000 \n",
+ " NaN \n",
+ " 0.000 \n",
+ " ... \n",
+ " 7 \n",
+ " 1070 \n",
+ " 0.000 \n",
+ " 1985 \n",
+ " 0 \n",
+ " 98030 \n",
+ " 47.353 \n",
+ " -122.166 \n",
+ " 1220 \n",
+ " 8386 \n",
+ " \n",
+ " \n",
+ " 40 \n",
+ " 2014-07-15 \n",
+ " 625000 \n",
+ " 5547700270 \n",
+ " 4.000 \n",
+ " 2.500 \n",
+ " 2570 \n",
+ " 5520 \n",
+ " 2.000 \n",
+ " NaN \n",
+ " 0.000 \n",
+ " ... \n",
+ " 9 \n",
+ " 2570 \n",
+ " 0.000 \n",
+ " 2000 \n",
+ " 0 \n",
+ " 98074 \n",
+ " 47.614 \n",
+ " -122.027 \n",
+ " 2470 \n",
+ " 5669 \n",
+ " \n",
+ " \n",
+ " 55 \n",
+ " 2014-05-12 \n",
+ " 885000 \n",
+ " 9822700295 \n",
+ " 4.000 \n",
+ " 2.500 \n",
+ " 2830 \n",
+ " 5000 \n",
+ " 2.000 \n",
+ " NaN \n",
+ " 0.000 \n",
+ " ... \n",
+ " 9 \n",
+ " 2830 \n",
+ " 0.000 \n",
+ " 1995 \n",
+ " 0 \n",
+ " 98105 \n",
+ " 47.660 \n",
+ " -122.290 \n",
+ " 1950 \n",
+ " 5000 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 21578 \n",
+ " 2014-10-17 \n",
+ " 350000 \n",
+ " 5087900040 \n",
+ " 4.000 \n",
+ " 2.750 \n",
+ " 2500 \n",
+ " 5995 \n",
+ " 2.000 \n",
+ " NaN \n",
+ " 0.000 \n",
+ " ... \n",
+ " 8 \n",
+ " 2500 \n",
+ " 0.000 \n",
+ " 2008 \n",
+ " 0 \n",
+ " 98042 \n",
+ " 47.375 \n",
+ " -122.107 \n",
+ " 2530 \n",
+ " 5988 \n",
+ " \n",
+ " \n",
+ " 21582 \n",
+ " 2014-10-13 \n",
+ " 541800 \n",
+ " 8956200760 \n",
+ " 4.000 \n",
+ " 2.500 \n",
+ " 3118 \n",
+ " 7866 \n",
+ " 2.000 \n",
+ " NaN \n",
+ " 2.000 \n",
+ " ... \n",
+ " 9 \n",
+ " 3118 \n",
+ " 0.000 \n",
+ " 2014 \n",
+ " 0 \n",
+ " 98001 \n",
+ " 47.293 \n",
+ " -122.264 \n",
+ " 2673 \n",
+ " 6500 \n",
+ " \n",
+ " \n",
+ " 21586 \n",
+ " 2014-06-26 \n",
+ " 224000 \n",
+ " 844000965 \n",
+ " 3.000 \n",
+ " 1.750 \n",
+ " 1500 \n",
+ " 11968 \n",
+ " 1.000 \n",
+ " NaN \n",
+ " 0.000 \n",
+ " ... \n",
+ " 6 \n",
+ " 1500 \n",
+ " 0.000 \n",
+ " 2014 \n",
+ " 0 \n",
+ " 98010 \n",
+ " 47.309 \n",
+ " -122.002 \n",
+ " 1320 \n",
+ " 11303 \n",
+ " \n",
+ " \n",
+ " 21587 \n",
+ " 2014-08-25 \n",
+ " 507250 \n",
+ " 7852140040 \n",
+ " 3.000 \n",
+ " 2.500 \n",
+ " 2270 \n",
+ " 5536 \n",
+ " 2.000 \n",
+ " NaN \n",
+ " 0.000 \n",
+ " ... \n",
+ " 8 \n",
+ " 2270 \n",
+ " 0.000 \n",
+ " 2003 \n",
+ " 0 \n",
+ " 98065 \n",
+ " 47.539 \n",
+ " -121.881 \n",
+ " 2270 \n",
+ " 5731 \n",
+ " \n",
+ " \n",
+ " 21595 \n",
+ " 2015-01-16 \n",
+ " 400000 \n",
+ " 291310100 \n",
+ " 3.000 \n",
+ " 2.500 \n",
+ " 1600 \n",
+ " 2388 \n",
+ " 2.000 \n",
+ " NaN \n",
+ " 0.000 \n",
+ " ... \n",
+ " 8 \n",
+ " 1600 \n",
+ " 0.000 \n",
+ " 2004 \n",
+ " 0 \n",
+ " 98027 \n",
+ " 47.535 \n",
+ " -122.069 \n",
+ " 1410 \n",
+ " 1287 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
2391 rows × 21 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " date price house_id bedrooms bathrooms sqft_living \\\n",
+ "0 2014-10-13 221900 7129300520 3.000 1.000 1180 \n",
+ "10 2015-04-03 662500 1736800520 3.000 2.500 3560 \n",
+ "23 2014-05-16 252700 8091400200 2.000 1.500 1070 \n",
+ "40 2014-07-15 625000 5547700270 4.000 2.500 2570 \n",
+ "55 2014-05-12 885000 9822700295 4.000 2.500 2830 \n",
+ "... ... ... ... ... ... ... \n",
+ "21578 2014-10-17 350000 5087900040 4.000 2.750 2500 \n",
+ "21582 2014-10-13 541800 8956200760 4.000 2.500 3118 \n",
+ "21586 2014-06-26 224000 844000965 3.000 1.750 1500 \n",
+ "21587 2014-08-25 507250 7852140040 3.000 2.500 2270 \n",
+ "21595 2015-01-16 400000 291310100 3.000 2.500 1600 \n",
+ "\n",
+ " sqft_lot floors waterfront view ... grade sqft_above \\\n",
+ "0 5650 1.000 NaN 0.000 ... 7 1180 \n",
+ "10 9796 1.000 NaN 0.000 ... 8 1860 \n",
+ "23 9643 1.000 NaN 0.000 ... 7 1070 \n",
+ "40 5520 2.000 NaN 0.000 ... 9 2570 \n",
+ "55 5000 2.000 NaN 0.000 ... 9 2830 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "21578 5995 2.000 NaN 0.000 ... 8 2500 \n",
+ "21582 7866 2.000 NaN 2.000 ... 9 3118 \n",
+ "21586 11968 1.000 NaN 0.000 ... 6 1500 \n",
+ "21587 5536 2.000 NaN 0.000 ... 8 2270 \n",
+ "21595 2388 2.000 NaN 0.000 ... 8 1600 \n",
+ "\n",
+ " sqft_basement yr_built yr_renovated zipcode lat long \\\n",
+ "0 0.000 1955 0 98178 47.511 -122.257 \n",
+ "10 1700.000 1965 0 98007 47.601 -122.145 \n",
+ "23 0.000 1985 0 98030 47.353 -122.166 \n",
+ "40 0.000 2000 0 98074 47.614 -122.027 \n",
+ "55 0.000 1995 0 98105 47.660 -122.290 \n",
+ "... ... ... ... ... ... ... \n",
+ "21578 0.000 2008 0 98042 47.375 -122.107 \n",
+ "21582 0.000 2014 0 98001 47.293 -122.264 \n",
+ "21586 0.000 2014 0 98010 47.309 -122.002 \n",
+ "21587 0.000 2003 0 98065 47.539 -121.881 \n",
+ "21595 0.000 2004 0 98027 47.535 -122.069 \n",
+ "\n",
+ " sqft_living15 sqft_lot15 \n",
+ "0 1340 5650 \n",
+ "10 2210 8925 \n",
+ "23 1220 8386 \n",
+ "40 2470 5669 \n",
+ "55 1950 5000 \n",
+ "... ... ... \n",
+ "21578 2530 5988 \n",
+ "21582 2673 6500 \n",
+ "21586 1320 11303 \n",
+ "21587 2270 5731 \n",
+ "21595 1410 1287 \n",
+ "\n",
+ "[2391 rows x 21 columns]"
+ ]
+ },
+ "execution_count": 41,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('waterfront.isna() == True')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([ 0., nan, 3., 4., 2., 1.])"
+ ]
+ },
+ "execution_count": 42,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.view.unique() # lets see what view values we have..."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "So we are not making a big error if we set waterfront to 1 when \n",
+ "* ZIP in waterfront_zip AND\n",
+ "* view = 4\n",
+ "* waterfront was NaN"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# 1. Define a boolean mask for the condition\n",
+ "condition = (df['zipcode'].isin(waterfront_zip)) & (df['view'] == 4) & (df['waterfront'].isna() == True)\n",
+ "\n",
+ "# 2. Use .loc[] to select the rows that meet the condition\n",
+ "# and the specific column, then set the values to 0\n",
+ "df.loc[condition, 'waterfront'] = 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "np.int64(2363)"
+ ]
+ },
+ "execution_count": 44,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# lets see how many are left... not many set... (19206 - 2363 = ) 21597 in total, was 19206 and still 2363 left --> 28 with seafront\n",
+ "df.waterfront.isna().sum()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# and set all other values of waterfront to 0... \n",
+ "df.waterfront.fillna(0, inplace=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "np.int64(0)"
+ ]
+ },
+ "execution_count": 46,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.waterfront.isna().sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Hint : I probably have missed some waterfront places, since some of them have had a view value <4. I will be conscious about it, \n",
+ "but mostly waterfront needs also great view to justify a significantly higher price. For my customer Erin, the waterfront information is not of much use anyway."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 3.4 Now lets look at the view... \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " date \n",
+ " price \n",
+ " house_id \n",
+ " bedrooms \n",
+ " bathrooms \n",
+ " sqft_living \n",
+ " sqft_lot \n",
+ " floors \n",
+ " waterfront \n",
+ " view \n",
+ " ... \n",
+ " grade \n",
+ " sqft_above \n",
+ " sqft_basement \n",
+ " yr_built \n",
+ " yr_renovated \n",
+ " zipcode \n",
+ " lat \n",
+ " long \n",
+ " sqft_living15 \n",
+ " sqft_lot15 \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 7 \n",
+ " 2015-01-15 \n",
+ " 291850 \n",
+ " 2008000270 \n",
+ " 3.000 \n",
+ " 1.500 \n",
+ " 1060 \n",
+ " 9711 \n",
+ " 1.000 \n",
+ " 0.000 \n",
+ " NaN \n",
+ " ... \n",
+ " 7 \n",
+ " 1060 \n",
+ " 0.000 \n",
+ " 1963 \n",
+ " 0 \n",
+ " 98198 \n",
+ " 47.410 \n",
+ " -122.315 \n",
+ " 1650 \n",
+ " 9711 \n",
+ " \n",
+ " \n",
+ " 114 \n",
+ " 2014-10-28 \n",
+ " 480000 \n",
+ " 8961960160 \n",
+ " 4.000 \n",
+ " 2.500 \n",
+ " 3230 \n",
+ " 16171 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " NaN \n",
+ " ... \n",
+ " 9 \n",
+ " 2520 \n",
+ " 710.000 \n",
+ " 2001 \n",
+ " 0 \n",
+ " 98001 \n",
+ " 47.318 \n",
+ " -122.253 \n",
+ " 2640 \n",
+ " 8517 \n",
+ " \n",
+ " \n",
+ " 129 \n",
+ " 2015-04-06 \n",
+ " 430000 \n",
+ " 7853210060 \n",
+ " 4.000 \n",
+ " 2.500 \n",
+ " 2070 \n",
+ " 4310 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " NaN \n",
+ " ... \n",
+ " 7 \n",
+ " 2070 \n",
+ " 0.000 \n",
+ " 2004 \n",
+ " 0 \n",
+ " 98065 \n",
+ " 47.532 \n",
+ " -121.850 \n",
+ " 1970 \n",
+ " 3748 \n",
+ " \n",
+ " \n",
+ " 205 \n",
+ " 2014-08-04 \n",
+ " 840000 \n",
+ " 3456000310 \n",
+ " 4.000 \n",
+ " 1.750 \n",
+ " 2480 \n",
+ " 11010 \n",
+ " 1.000 \n",
+ " 0.000 \n",
+ " NaN \n",
+ " ... \n",
+ " 9 \n",
+ " 1630 \n",
+ " 850.000 \n",
+ " 1966 \n",
+ " 0 \n",
+ " 98040 \n",
+ " 47.538 \n",
+ " -122.219 \n",
+ " 2770 \n",
+ " 10744 \n",
+ " \n",
+ " \n",
+ " 487 \n",
+ " 2014-07-21 \n",
+ " 207950 \n",
+ " 1895000260 \n",
+ " 2.000 \n",
+ " 2.000 \n",
+ " 890 \n",
+ " 5000 \n",
+ " 1.000 \n",
+ " 0.000 \n",
+ " NaN \n",
+ " ... \n",
+ " 6 \n",
+ " 890 \n",
+ " 0.000 \n",
+ " 1917 \n",
+ " 0 \n",
+ " 98118 \n",
+ " 47.516 \n",
+ " -122.264 \n",
+ " 1860 \n",
+ " 5000 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 19989 \n",
+ " 2014-05-28 \n",
+ " 1400000 \n",
+ " 148000475 \n",
+ " 4.000 \n",
+ " 3.250 \n",
+ " 4700 \n",
+ " 9160 \n",
+ " 1.000 \n",
+ " 0.000 \n",
+ " NaN \n",
+ " ... \n",
+ " 11 \n",
+ " 2520 \n",
+ " 2180.000 \n",
+ " 2005 \n",
+ " 0 \n",
+ " 98116 \n",
+ " 47.574 \n",
+ " -122.406 \n",
+ " 2240 \n",
+ " 8700 \n",
+ " \n",
+ " \n",
+ " 20148 \n",
+ " 2014-08-04 \n",
+ " 384500 \n",
+ " 291310170 \n",
+ " 3.000 \n",
+ " 2.500 \n",
+ " 1600 \n",
+ " 2610 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " NaN \n",
+ " ... \n",
+ " 8 \n",
+ " 1600 \n",
+ " 0.000 \n",
+ " 2005 \n",
+ " 0 \n",
+ " 98027 \n",
+ " 47.534 \n",
+ " -122.068 \n",
+ " 1445 \n",
+ " 1288 \n",
+ " \n",
+ " \n",
+ " 20380 \n",
+ " 2014-09-24 \n",
+ " 734000 \n",
+ " 1196003740 \n",
+ " 5.000 \n",
+ " 4.250 \n",
+ " 4110 \n",
+ " 42755 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " NaN \n",
+ " ... \n",
+ " 10 \n",
+ " 2970 \n",
+ " 1140.000 \n",
+ " 2000 \n",
+ " 0 \n",
+ " 98023 \n",
+ " 47.337 \n",
+ " -122.337 \n",
+ " 2730 \n",
+ " 12750 \n",
+ " \n",
+ " \n",
+ " 21057 \n",
+ " 2014-08-28 \n",
+ " 636230 \n",
+ " 3448900290 \n",
+ " 4.000 \n",
+ " 2.500 \n",
+ " 2840 \n",
+ " 6284 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " NaN \n",
+ " ... \n",
+ " 9 \n",
+ " 2840 \n",
+ " 0.000 \n",
+ " 2013 \n",
+ " 0 \n",
+ " 98056 \n",
+ " 47.514 \n",
+ " -122.169 \n",
+ " 2790 \n",
+ " 7168 \n",
+ " \n",
+ " \n",
+ " 21589 \n",
+ " 2014-10-14 \n",
+ " 610685 \n",
+ " 3448900210 \n",
+ " 4.000 \n",
+ " 2.500 \n",
+ " 2520 \n",
+ " 6023 \n",
+ " 2.000 \n",
+ " 0.000 \n",
+ " NaN \n",
+ " ... \n",
+ " 9 \n",
+ " 2520 \n",
+ " 0.000 \n",
+ " 2014 \n",
+ " 0 \n",
+ " 98056 \n",
+ " 47.514 \n",
+ " -122.167 \n",
+ " 2520 \n",
+ " 6023 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
63 rows × 21 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " date price house_id bedrooms bathrooms sqft_living \\\n",
+ "7 2015-01-15 291850 2008000270 3.000 1.500 1060 \n",
+ "114 2014-10-28 480000 8961960160 4.000 2.500 3230 \n",
+ "129 2015-04-06 430000 7853210060 4.000 2.500 2070 \n",
+ "205 2014-08-04 840000 3456000310 4.000 1.750 2480 \n",
+ "487 2014-07-21 207950 1895000260 2.000 2.000 890 \n",
+ "... ... ... ... ... ... ... \n",
+ "19989 2014-05-28 1400000 148000475 4.000 3.250 4700 \n",
+ "20148 2014-08-04 384500 291310170 3.000 2.500 1600 \n",
+ "20380 2014-09-24 734000 1196003740 5.000 4.250 4110 \n",
+ "21057 2014-08-28 636230 3448900290 4.000 2.500 2840 \n",
+ "21589 2014-10-14 610685 3448900210 4.000 2.500 2520 \n",
+ "\n",
+ " sqft_lot floors waterfront view ... grade sqft_above \\\n",
+ "7 9711 1.000 0.000 NaN ... 7 1060 \n",
+ "114 16171 2.000 0.000 NaN ... 9 2520 \n",
+ "129 4310 2.000 0.000 NaN ... 7 2070 \n",
+ "205 11010 1.000 0.000 NaN ... 9 1630 \n",
+ "487 5000 1.000 0.000 NaN ... 6 890 \n",
+ "... ... ... ... ... ... ... ... \n",
+ "19989 9160 1.000 0.000 NaN ... 11 2520 \n",
+ "20148 2610 2.000 0.000 NaN ... 8 1600 \n",
+ "20380 42755 2.000 0.000 NaN ... 10 2970 \n",
+ "21057 6284 2.000 0.000 NaN ... 9 2840 \n",
+ "21589 6023 2.000 0.000 NaN ... 9 2520 \n",
+ "\n",
+ " sqft_basement yr_built yr_renovated zipcode lat long \\\n",
+ "7 0.000 1963 0 98198 47.410 -122.315 \n",
+ "114 710.000 2001 0 98001 47.318 -122.253 \n",
+ "129 0.000 2004 0 98065 47.532 -121.850 \n",
+ "205 850.000 1966 0 98040 47.538 -122.219 \n",
+ "487 0.000 1917 0 98118 47.516 -122.264 \n",
+ "... ... ... ... ... ... ... \n",
+ "19989 2180.000 2005 0 98116 47.574 -122.406 \n",
+ "20148 0.000 2005 0 98027 47.534 -122.068 \n",
+ "20380 1140.000 2000 0 98023 47.337 -122.337 \n",
+ "21057 0.000 2013 0 98056 47.514 -122.169 \n",
+ "21589 0.000 2014 0 98056 47.514 -122.167 \n",
+ "\n",
+ " sqft_living15 sqft_lot15 \n",
+ "7 1650 9711 \n",
+ "114 2640 8517 \n",
+ "129 1970 3748 \n",
+ "205 2770 10744 \n",
+ "487 1860 5000 \n",
+ "... ... ... \n",
+ "19989 2240 8700 \n",
+ "20148 1445 1288 \n",
+ "20380 2730 12750 \n",
+ "21057 2790 7168 \n",
+ "21589 2520 6023 \n",
+ "\n",
+ "[63 rows x 21 columns]"
+ ]
+ },
+ "execution_count": 47,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('view.isna() == True')"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Looking at the original data we had some houses with no view value and no waterfront value.. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "lets check for waterfront zip --> they are all in , could all be waterfront ones.. \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "7 True\n",
+ "114 True\n",
+ "129 True\n",
+ "205 True\n",
+ "487 True\n",
+ " ... \n",
+ "19989 True\n",
+ "20148 True\n",
+ "20380 True\n",
+ "21057 True\n",
+ "21589 True\n",
+ "Name: zipcode, Length: 63, dtype: bool"
+ ]
+ },
+ "execution_count": 48,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('view.isna() == True').zipcode.isin(waterfront_zip)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "so we do have 63 view values within the waterfront ZIP areas that are NaN"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Let's add a column for price/sqft for both house and plot to get a feeling for how expensive a place is. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# one new column is price_per_sqft_living and calculated by price/sqft_living \n",
+ "\n",
+ "df['price_per_sqft_living'] = df['price'] / df['sqft_living']\n",
+ "\n",
+ "# ..and another new column is price_per_sqft_lot and calculated by price/sqft lot \n",
+ "df['price_per_sqft_lot'] = df['price'] / df['sqft_lot']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Check the waterfront prices per sqft living and non - waterfront prices"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "count 174.000\n",
+ "mean 501.054\n",
+ "std 164.430\n",
+ "min 145.122\n",
+ "25% 365.133\n",
+ "50% 489.590\n",
+ "75% 638.212\n",
+ "max 800.000\n",
+ "Name: price_per_sqft_living, dtype: float64"
+ ]
+ },
+ "execution_count": 50,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[df.waterfront == True].price_per_sqft_living.describe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "we have a lot of different values for price/sqft in waterfront places. That is a bit astonishing, but will not give us any hint on to if a plot is a waterfront place. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 51,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "count 174.000\n",
+ "mean 124.431\n",
+ "std 106.498\n",
+ "min 1.978\n",
+ "25% 43.700\n",
+ "50% 94.187\n",
+ "75% 167.860\n",
+ "max 493.274\n",
+ "Name: price_per_sqft_lot, dtype: float64"
+ ]
+ },
+ "execution_count": 51,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df[df.waterfront == True].price_per_sqft_lot.describe()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "as we can see, this does not give us too much confidence in using that value to determine waterfront houses.. \n",
+ "So I will use some value derived from house prices for views for those 62 values. That should not mess up the results by too much... "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 52,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "array([ 0., nan, 3., 4., 2., 1.])"
+ ]
+ },
+ "execution_count": 52,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.view.unique()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 53,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "np.float64(0.03624830086089714)"
+ ]
+ },
+ "execution_count": 53,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('price < 300000')['view'].mean()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 54,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "np.float64(0.12303935380858458)"
+ ]
+ },
+ "execution_count": 54,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('300000 < price < 600000')['view'].mean()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 55,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "np.float64(0.36430678466076694)"
+ ]
+ },
+ "execution_count": 55,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('600000 < price < 1000000')['view'].mean()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 56,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "np.float64(1.2171507607192253)"
+ ]
+ },
+ "execution_count": 56,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.query('1000000 < price < 5000000')['view'].mean()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "In general, the view seems to be quite poor. \n",
+ "\n",
+ "Derived from the data above, let's use view = 0 for houses below 600.000, 1 between 600.000 and 1 Mio and 2 for all above."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# 1. Define a boolean mask for the condition\n",
+ "condition = (df['price'] < 600000)\n",
+ "\n",
+ "# 2. Use .loc[] to select the rows that meet the condition\n",
+ "# and the specific column, then set the values to 0\n",
+ "df.loc[condition, 'view'] = 0"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# 1. Define a boolean mask for the condition\n",
+ "condition = (df['price'] > 600000) & (df['price'] < 1000000)\n",
+ "\n",
+ "# 2. Use .loc[] to select the rows that meet the condition\n",
+ "# and the specific column, then set the values to 0\n",
+ "df.loc[condition, 'view'] = 1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# 1. Define a boolean mask for the condition\n",
+ "condition = (df['price'] >= 1000000)\n",
+ "\n",
+ "# 2. Use .loc[] to select the rows that meet the condition\n",
+ "# and the specific column, then set the values to 0\n",
+ "df.loc[condition, 'view'] = 2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "np.int64(0)"
+ ]
+ },
+ "execution_count": 60,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# check if there are more views missing.. looks good.\n",
+ "df.view.isna().sum()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 3.5 Lets go back to unique types if possible. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 66,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 21597 entries, 0 to 21596\n",
+ "Data columns (total 23 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 date 21597 non-null datetime64[ns]\n",
+ " 1 price 21597 non-null int64 \n",
+ " 2 house_id 21597 non-null int64 \n",
+ " 3 bedrooms 21597 non-null float64 \n",
+ " 4 bathrooms 21597 non-null float64 \n",
+ " 5 sqft_living 21597 non-null int64 \n",
+ " 6 sqft_lot 21597 non-null int64 \n",
+ " 7 floors 21597 non-null float64 \n",
+ " 8 waterfront 21597 non-null int64 \n",
+ " 9 view 21597 non-null float64 \n",
+ " 10 condition 21597 non-null int64 \n",
+ " 11 grade 21597 non-null int64 \n",
+ " 12 sqft_above 21597 non-null int64 \n",
+ " 13 sqft_basement 21597 non-null float64 \n",
+ " 14 yr_built 21597 non-null int64 \n",
+ " 15 yr_renovated 21597 non-null int64 \n",
+ " 16 zipcode 21597 non-null int64 \n",
+ " 17 lat 21597 non-null float64 \n",
+ " 18 long 21597 non-null float64 \n",
+ " 19 sqft_living15 21597 non-null int64 \n",
+ " 20 sqft_lot15 21597 non-null int64 \n",
+ " 21 price_per_sqft_living 21597 non-null float64 \n",
+ " 22 price_per_sqft_lot 21597 non-null float64 \n",
+ "dtypes: datetime64[ns](1), float64(9), int64(13)\n",
+ "memory usage: 3.8 MB\n"
+ ]
+ }
+ ],
+ "source": [
+ "df.info()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Waterfront can be set to int. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 65,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# make waterfront an INT\n",
+ "df = df.astype({'waterfront': int})"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "...and lets also convert view into an int value "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 67,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# make waterfront an INT\n",
+ "df = df.astype({'view': int})"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "and last but not least the sqft_basement values to int.. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 69,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# make waterfront an INT\n",
+ "df = df.astype({'sqft_basement': int})"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 70,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 21597 entries, 0 to 21596\n",
+ "Data columns (total 23 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 date 21597 non-null datetime64[ns]\n",
+ " 1 price 21597 non-null int64 \n",
+ " 2 house_id 21597 non-null int64 \n",
+ " 3 bedrooms 21597 non-null float64 \n",
+ " 4 bathrooms 21597 non-null float64 \n",
+ " 5 sqft_living 21597 non-null int64 \n",
+ " 6 sqft_lot 21597 non-null int64 \n",
+ " 7 floors 21597 non-null float64 \n",
+ " 8 waterfront 21597 non-null int64 \n",
+ " 9 view 21597 non-null int64 \n",
+ " 10 condition 21597 non-null int64 \n",
+ " 11 grade 21597 non-null int64 \n",
+ " 12 sqft_above 21597 non-null int64 \n",
+ " 13 sqft_basement 21597 non-null int64 \n",
+ " 14 yr_built 21597 non-null int64 \n",
+ " 15 yr_renovated 21597 non-null int64 \n",
+ " 16 zipcode 21597 non-null int64 \n",
+ " 17 lat 21597 non-null float64 \n",
+ " 18 long 21597 non-null float64 \n",
+ " 19 sqft_living15 21597 non-null int64 \n",
+ " 20 sqft_lot15 21597 non-null int64 \n",
+ " 21 price_per_sqft_living 21597 non-null float64 \n",
+ " 22 price_per_sqft_lot 21597 non-null float64 \n",
+ "dtypes: datetime64[ns](1), float64(7), int64(15)\n",
+ "memory usage: 3.8 MB\n"
+ ]
+ }
+ ],
+ "source": [
+ "df.info()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "now this looks good. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 4. To not start over every time.. make another csv with cleaned data.. \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "df.to_csv('data/King_clean.csv', index=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Evaluation of the data\n",
+ "\n",
+ "Important hint : If you want to start here, go back to the beginning of the document and execute the first 2 cells (import libraries and get data from King_clean.csv)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## 5. Hypothesis"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 5.1 General data exploration\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Procedure: \n",
+ "- Check distributions of the continuous variables, for example by producing histograms for each of them.\n",
+ "- Check the distributions for the categorical variables, by producing plots/tables of counts.\n",
+ "- Look at the histograms and check for clues or patterns: identify groups, are the distributions skewed, do you have extreme values or outliers, where is the data centered."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Lets concentrate on Erins target group and extract only the relevant columns for her. Lets get the data down to the 10th percentile of prices on the market. \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "np.float64(245000.0)"
+ ]
+ },
+ "execution_count": 8,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# get the 10th percentile of prices : \n",
+ "price_threshold_10p = df['price'].quantile(0.10) \n",
+ "price_threshold_10p"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "So we are going to look at only houses that are below 245.000 USD. But lets use 250 because there will be quite some because it is a number that is used much more than 240.000 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "poor_area_houses_df = df.query('price <= 250000')"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 22,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " date \n",
+ " price \n",
+ " house_id \n",
+ " bedrooms \n",
+ " bathrooms \n",
+ " sqft_living \n",
+ " sqft_lot \n",
+ " floors \n",
+ " waterfront \n",
+ " view \n",
+ " ... \n",
+ " sqft_basement \n",
+ " yr_built \n",
+ " yr_renovated \n",
+ " zipcode \n",
+ " lat \n",
+ " long \n",
+ " sqft_living15 \n",
+ " sqft_lot15 \n",
+ " price_per_sqft_living \n",
+ " price_per_sqft_lot \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 17305 \n",
+ " 2015-05-04 \n",
+ " 190000 \n",
+ " 3326079016 \n",
+ " 2.000 \n",
+ " 1.000 \n",
+ " 710 \n",
+ " 1164794 \n",
+ " 1.000 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 1915 \n",
+ " 0 \n",
+ " 98014 \n",
+ " 47.689 \n",
+ " -121.909 \n",
+ " 1680 \n",
+ " 16730 \n",
+ " 267.606 \n",
+ " 0.163 \n",
+ " \n",
+ " \n",
+ " 2755 \n",
+ " 2014-06-23 \n",
+ " 230000 \n",
+ " 3520069033 \n",
+ " 3.000 \n",
+ " 1.000 \n",
+ " 1530 \n",
+ " 389126 \n",
+ " 1.500 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 1919 \n",
+ " 0 \n",
+ " 98022 \n",
+ " 47.178 \n",
+ " -122.011 \n",
+ " 1768 \n",
+ " 42148 \n",
+ " 150.327 \n",
+ " 0.591 \n",
+ " \n",
+ " \n",
+ " 1772 \n",
+ " 2014-05-05 \n",
+ " 210000 \n",
+ " 1549500370 \n",
+ " 3.000 \n",
+ " 1.000 \n",
+ " 1340 \n",
+ " 306848 \n",
+ " 1.000 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 1953 \n",
+ " 0 \n",
+ " 98019 \n",
+ " 47.753 \n",
+ " -121.912 \n",
+ " 1800 \n",
+ " 128066 \n",
+ " 156.716 \n",
+ " 0.684 \n",
+ " \n",
+ " \n",
+ " 12937 \n",
+ " 2015-02-17 \n",
+ " 250000 \n",
+ " 120059044 \n",
+ " 3.000 \n",
+ " 1.750 \n",
+ " 1628 \n",
+ " 286355 \n",
+ " 1.000 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 1996 \n",
+ " 0 \n",
+ " 98092 \n",
+ " 47.256 \n",
+ " -122.122 \n",
+ " 1490 \n",
+ " 216344 \n",
+ " 153.563 \n",
+ " 0.873 \n",
+ " \n",
+ " \n",
+ " 9904 \n",
+ " 2014-11-10 \n",
+ " 234000 \n",
+ " 3323069045 \n",
+ " 3.000 \n",
+ " 1.000 \n",
+ " 1240 \n",
+ " 239144 \n",
+ " 1.000 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 1921 \n",
+ " 1992 \n",
+ " 98038 \n",
+ " 47.430 \n",
+ " -122.046 \n",
+ " 1990 \n",
+ " 109335 \n",
+ " 188.710 \n",
+ " 0.978 \n",
+ " \n",
+ " \n",
+ " 13313 \n",
+ " 2014-11-24 \n",
+ " 220000 \n",
+ " 2120069003 \n",
+ " 3.000 \n",
+ " 1.000 \n",
+ " 1000 \n",
+ " 223462 \n",
+ " 1.000 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 1933 \n",
+ " 0 \n",
+ " 98022 \n",
+ " 47.210 \n",
+ " -122.043 \n",
+ " 1710 \n",
+ " 105850 \n",
+ " 220.000 \n",
+ " 0.985 \n",
+ " \n",
+ " \n",
+ " 19219 \n",
+ " 2015-03-17 \n",
+ " 200000 \n",
+ " 1324079029 \n",
+ " 3.000 \n",
+ " 1.000 \n",
+ " 960 \n",
+ " 213008 \n",
+ " 1.000 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 1933 \n",
+ " 0 \n",
+ " 98024 \n",
+ " 47.562 \n",
+ " -121.862 \n",
+ " 1520 \n",
+ " 57499 \n",
+ " 208.333 \n",
+ " 0.939 \n",
+ " \n",
+ " \n",
+ " 3489 \n",
+ " 2014-11-25 \n",
+ " 150000 \n",
+ " 522069097 \n",
+ " 2.000 \n",
+ " 1.000 \n",
+ " 720 \n",
+ " 212137 \n",
+ " 1.000 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 1982 \n",
+ " 0 \n",
+ " 98058 \n",
+ " 47.422 \n",
+ " -122.066 \n",
+ " 2010 \n",
+ " 109642 \n",
+ " 208.333 \n",
+ " 0.707 \n",
+ " \n",
+ " \n",
+ " 12938 \n",
+ " 2014-10-27 \n",
+ " 246000 \n",
+ " 420069021 \n",
+ " 3.000 \n",
+ " 2.000 \n",
+ " 1990 \n",
+ " 203861 \n",
+ " 1.000 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 1949 \n",
+ " 0 \n",
+ " 98022 \n",
+ " 47.251 \n",
+ " -122.039 \n",
+ " 2760 \n",
+ " 217800 \n",
+ " 123.618 \n",
+ " 1.207 \n",
+ " \n",
+ " \n",
+ " 9122 \n",
+ " 2014-12-30 \n",
+ " 250000 \n",
+ " 1921069059 \n",
+ " 1.000 \n",
+ " 1.000 \n",
+ " 720 \n",
+ " 123710 \n",
+ " 1.000 \n",
+ " 0 \n",
+ " 0 \n",
+ " ... \n",
+ " 0 \n",
+ " 1935 \n",
+ " 0 \n",
+ " 98092 \n",
+ " 47.289 \n",
+ " -122.084 \n",
+ " 1860 \n",
+ " 297514 \n",
+ " 347.222 \n",
+ " 2.021 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
10 rows × 23 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " date price house_id bedrooms bathrooms sqft_living \\\n",
+ "17305 2015-05-04 190000 3326079016 2.000 1.000 710 \n",
+ "2755 2014-06-23 230000 3520069033 3.000 1.000 1530 \n",
+ "1772 2014-05-05 210000 1549500370 3.000 1.000 1340 \n",
+ "12937 2015-02-17 250000 120059044 3.000 1.750 1628 \n",
+ "9904 2014-11-10 234000 3323069045 3.000 1.000 1240 \n",
+ "13313 2014-11-24 220000 2120069003 3.000 1.000 1000 \n",
+ "19219 2015-03-17 200000 1324079029 3.000 1.000 960 \n",
+ "3489 2014-11-25 150000 522069097 2.000 1.000 720 \n",
+ "12938 2014-10-27 246000 420069021 3.000 2.000 1990 \n",
+ "9122 2014-12-30 250000 1921069059 1.000 1.000 720 \n",
+ "\n",
+ " sqft_lot floors waterfront view ... sqft_basement yr_built \\\n",
+ "17305 1164794 1.000 0 0 ... 0 1915 \n",
+ "2755 389126 1.500 0 0 ... 0 1919 \n",
+ "1772 306848 1.000 0 0 ... 0 1953 \n",
+ "12937 286355 1.000 0 0 ... 0 1996 \n",
+ "9904 239144 1.000 0 0 ... 0 1921 \n",
+ "13313 223462 1.000 0 0 ... 0 1933 \n",
+ "19219 213008 1.000 0 0 ... 0 1933 \n",
+ "3489 212137 1.000 0 0 ... 0 1982 \n",
+ "12938 203861 1.000 0 0 ... 0 1949 \n",
+ "9122 123710 1.000 0 0 ... 0 1935 \n",
+ "\n",
+ " yr_renovated zipcode lat long sqft_living15 sqft_lot15 \\\n",
+ "17305 0 98014 47.689 -121.909 1680 16730 \n",
+ "2755 0 98022 47.178 -122.011 1768 42148 \n",
+ "1772 0 98019 47.753 -121.912 1800 128066 \n",
+ "12937 0 98092 47.256 -122.122 1490 216344 \n",
+ "9904 1992 98038 47.430 -122.046 1990 109335 \n",
+ "13313 0 98022 47.210 -122.043 1710 105850 \n",
+ "19219 0 98024 47.562 -121.862 1520 57499 \n",
+ "3489 0 98058 47.422 -122.066 2010 109642 \n",
+ "12938 0 98022 47.251 -122.039 2760 217800 \n",
+ "9122 0 98092 47.289 -122.084 1860 297514 \n",
+ "\n",
+ " price_per_sqft_living price_per_sqft_lot \n",
+ "17305 267.606 0.163 \n",
+ "2755 150.327 0.591 \n",
+ "1772 156.716 0.684 \n",
+ "12937 153.563 0.873 \n",
+ "9904 188.710 0.978 \n",
+ "13313 220.000 0.985 \n",
+ "19219 208.333 0.939 \n",
+ "3489 208.333 0.707 \n",
+ "12938 123.618 1.207 \n",
+ "9122 347.222 2.021 \n",
+ "\n",
+ "[10 rows x 23 columns]"
+ ]
+ },
+ "execution_count": 22,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "poor_area_houses_df.sort_values('sqft_lot', ascending=False).head(10)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# we have a big outlier in terms of sqft_plot.Lets drop this one for data analysis reasons. \n",
+ "row_index_to_delete = 17305\n",
+ "poor_area_houses_df2 = poor_area_houses_df.drop(labels=[row_index_to_delete], axis=0, inplace=False)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We dropped one house since it has a very big plot that makes our statistics difficult to read"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "lets look at the histograms"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 21,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAHWCAYAAABt3aEVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYABJREFUeJzt3Qd8FHX+//F3Nr2QAoEEDAEEhNAVFbGgJwgqenpydxZEVNTTs3Ny/vBUFE7x0LOe5f6e9Q7rnV0sCIqFIqBICy30koQQ0nuy/8f3i7smkEBIYTeT1/PBPDY7Mzv73WGSvPOdz3wnwO12uwUAAAA4gMvXDQAAAACaCuEWAAAAjkG4BQAAgGMQbgEAAOAYhFsAAAA4BuEWAAAAjkG4BQAAgGMQbgEAAOAYhFsAAAA4BuEWQJPq2rWrrrzySl83w/EefvhhHX300QoMDNSgQYOOyHu+/PLLCggI0ObNm4/I+7UUZn+Y/WL2DwDfI9wCOGSYWbJkSa3LzzjjDPXr16/R7zNr1izdd999jd5Oa/H555/rz3/+s0455RS99NJLevDBB33dJADwG0G+bgAAZ1m7dq1cLtdhh9unn36agFtPc+fOtfv4hRdeUEhIiK+b0+p16dJFxcXFCg4O9nVTANBzC6CphYaGtrhf8oWFhWpJMjMzFR4eTrD1sYqKCpWVldmzG2FhYbZEBIDvEW4BNGvNbXl5ue6//3717NnTBoB27drp1FNP1ezZs+1ys67ptTVMSPBM1YPnn/70J3Xu3NkG5169eumRRx6R2+2u8b6m5+yWW25RfHy82rRpo1//+tfasWOH3Vb1HmHztZm3evVqXXbZZYqLi7PtMZYvX27bY2pZTVsTExN19dVXa8+ePTXey7ONdevW6fLLL1dMTIzat2+ve+65x7Zr27ZtuuCCCxQdHW238fe//73eYWnatGnq3r27/axmX951110qLS31rmPe15QimP3i2VeHqvVctGiRzj33XPtZIyMjNWDAAD3xxBMH9AafdtppdnlsbKxtf2pq6iHbvP/+res48JS4fPvtt/b/yewv8z5/+MMfbEDMycnRFVdcYdtoJlN2Uf3/2FPXav7v/9//+3/efXTCCSdo8eLFNd7bHHNr1qzRrl27Dtl+08aoqCht3LhRo0aNsp+/U6dOmjp1ap3v//jjj3vf3xxHddXcmjb8/ve/t5/V/DFijt2//OUvNdYxx6g5xhISEuz2+vbtqxdffPGQ7QZQN8oSABxSbm6usrKyDphvQsShmOAzffp0XXPNNTrxxBOVl5dna3h/+OEHnXXWWTbc7Ny504bdf//73zVea8KFCalffvmlJkyYYC+c+uyzzzRp0iQbCh577LEaIeWtt97SuHHjdNJJJ2nevHkaPXp0ne363e9+ZwO3qVf1hBjTBhNyrrrqKhtKV61aZYOUeVy4cGGN0G1cfPHFSklJ0UMPPaSPP/5Yf/3rX9W2bVv985//1Jlnnqm//e1vmjlzpu644w4bwoYNG3bQfWX20SuvvKLf/va3NtCbUGr2nQmZ7777rl3H7CPTpu+//17/+te/7LyTTz65zm2az3TeeeepY8eOuvXWW+3nMtv76KOP7HPjiy++0DnnnGNDvfn/Mn8oPPXUU7am1/w/maDaVG6++WbbBvMHj9mn5rOYkDt//nwlJyfb/w9TpmIumDP13CbwVvfaa68pPz/fHjfm/2PGjBm66KKL7P+b54yBOTbM/8v48ePrdZFXZWWlzj77bHvcmO19+umnmjJliv1jw4Tc6swfFiUlJbruuutsGDX/31VVVQds0/yhZP5YMG0y65p9mJaWpg8//FAPPPCAXScjI8O+p/kcN910kw3Bn3zyiT3WzffJbbfd1si9DbRSbgCow0svvWRS30Gnvn371nhNly5d3OPHj/c+HzhwoHv06NEHfZ8bb7zRbmt/7733np3/17/+tcb83/72t+6AgAD3hg0b7POlS5fa9W677bYa61155ZV2/pQpU7zzzNdm3qWXXnrA+xUVFR0w7/XXX7frf/311wds47rrrvPOq6iocCclJdl2PfTQQ975e/fudYeHh9fYJ7VZtmyZ3eY111xTY/4dd9xh58+dO9c7z2wrMjLyoNvztKlbt272/8S0o7qqqirv14MGDXJ36NDBvWfPHu+8n376ye1yudxXXHHFAcfDpk2bvPP23791HQee144aNarGew8dOtTus+uvv/6AfXn66ad755n3NK9v166dOzs72zv//ffft/M//PDDA9Y91D43zDpm3ZtvvrnGvjHHbEhIiHv37t01thkdHe3OzMyssQ3PMvMZPYYNG+Zu06aNe8uWLTXWrf7ZJ0yY4O7YsaM7KyurxjqXXHKJOyYmptbjEcChUZYA4JBM2YDpAdx/Mqe3D8X0ypmez/Xr1x/2+5oePFPHaE5jV2d6NU2uMr1chulpM/74xz8e0EtYl+uvv/6AeebUsYfpnTO91aZnzTA9mLX1tHqYdh5//PG2XabnrfrnN6ejTc/ioT6rMXHixAM+q2F6hg/Xjz/+qE2bNtkeQNOO6jy90ObU/bJly2zPt+mF9DD/t6Zn3dOupmL2TfUe8CFDhhywzzz7srZ9ZnrLTdmCh+kdNaqva3pJzTYPZ2gu03Pq4elJNeUSple7ujFjxtge1oPZvXu3vv76a1tuYHqjq/N8dtO+//3vfzr//PPt1+ZY80ymPMKcLantmANwaJQlADgkU05gwsb+TMiorVyhOnNa19RvHnPMMfY0szn9a0oH6hOMt2zZYusfTQ1tdeaUs2e559GMHtCtW7ca6/Xo0aPObe+/rpGdnW1Pl7/xxhv2oq3qTNjY3/7BxdTemlpdU/e7//z963b35/kM+7fZnMI3wdTzWQ+HOQ1uHGy4Ns92TQDfn9nPpgzE1PeaWtSmUNs+M0xN9f7z9+7de8jXe4JubevWl9nvpiSjOnO8GvuP6VvbcbM/T9A+2H43AdjUGZuyDDPVZv9jEED9EG4BNCtTZ2pC1vvvv2/HZzV1oqZW9rnnnqvR83mkVe+l9TAX/5jaT1PTa+p7zYVGpp7SBPLa6ipruzq+rivm978Ari771/W2VKaOtTZ17Z/a5te2zxq7f5vjuGkIz/FkLkg0tcG1qc8fgAAORLgF0OzM6W5zkZaZCgoKbOA1Fy55wm1dgc6MH2pOC5sLiKr33pqr0D3LPY8mLJhT8OYiMY8NGzbUu42m52/OnDm25/bee+/1zm9IOUVDeD6DeT9Pz7TnoiPTw+f5rIfDXNFvrFy5UiNGjKjzfT3jE+/P7GfTC32wXlvTc2raV505nV+fkQr8hdnvprfV01trmJEwjIZcTOfpBTb7vS6mtMEc0+aPgLr+bwA0DDW3AJrV/qfjTW+oOfVefXgrT3jaPySZ4avML/9//OMfNeabnl8TiM0V/oapUTSeeeaZGuuZK/7ry9MjuH8PoBn26Ugwn7W293v00Uft48FGfqjLcccdZ0+jm23uv289n9OMomB6qc0oDdXXMcHM9LR72nWwAG3qS6szp9nr6rk9Eg5nKDCP6seY2TfmuRnpYPjw4Yf9/ia4mj/gzJBeW7durXW/m+PN1O+autvaQrApWwDQMPTcAmhWffr0sbfpHTx4sO3BNcOA/fe//61xAY9ZZpgLx0xQNb/4L7nkEnuxza9+9Ss7NqipfRw4cKANXKbEwVwk5emZNK83QcGEOBOmPUOBeXrf6nOq34xJawKJGQrKhKOjjjrKvpfpDT4SzGczp6dNMDQh8/TTT7fDfZnQeeGFF9r90JBa0meffdbuRxNgTc+5CbMm+JmL/Ew9rWGG3TJ/KAwdOtRe2OUZCszUvR7qrnGm991cnGf2v7kA7aeffrLb3b/u+Eg63KHATJ20uSjRrG8ucDMXKpoL+MwYw4e6eKwuTz75pB0/2fyBYYYCM39kmGPYbNdcwGeYIeTMMHfmPa+99lr7vWLqvs2FZOaMhfkawOEj3AJoViawfvDBBzYomt5acxrcjAdr6lo9zDilZmQDcyHXf/7zH9u7ZcKtCWfmtaZM4M0337RjjJrTxCaMeUYR8Hj11VftxVevv/66HRPWnOo1rzEXSpnwUh9mDFXTDjM6hGnDyJEjbdAxF7UdCaYe2ZzSNoHMfAbzeSZPnmzHXG0o88eCCVCm3MLcTMKcgjd/FJgw5WH2lWdsV7OvTY+lCddmnN5DXUBltmP+ADC3AjbbMKMXmJE0GtLj6SvmjynT9htuuMEel6ZcwLMvGvPHihnH19zYw/yBYUbfMMe+qev2MDduMH/AmIsu33nnHXvmwdzkxNzIwex7AA0TYMYDa+BrAcCvmR6yY4891gbmsWPH+ro58ENmCDRzJsHUggNwBmpuATiCOZW+P1OmYHp/D3VnMACAc1CWAMARTK3s0qVLbW1qUFCQLScwk6l33H8MVQCAcxFuATjCySefbGs9p02bZk8xm8H+zcVQ5mI0AEDrQc0tAAAAHIOaWwAAADgG4RYAAACOQc3tz7de3Llzpx3b0Cn3dQcAAHASU0lrbsduxh43I+HUhXAr2WDL1dQAAAD+b9u2bUpKSqpzOeFWsj22np1lbsEJAAAA/5KXl2c7Iz25rS6E22r3nTfBlnALAADgvw5VQsoFZQAAAHAMwi0AAAAcg3ALAAAAxyDcAgAAwDEItwAAAHAMwi0AAAAcg3ALAAAAxyDcAgAAwDEItwAAAHAMwi0AAAAcg3ALAAAAxyDcAgAAwDEItwAAAHAMwi0AAAAcI8jXDQAAAMCRs3XrVmVlZTV6O/Hx8UpOTpa/IdwCAAC0omCbktJbRUXFjd5WRES4UlPX+F3AJdwCAAC0EllZWTbYTn14rLp2T2jwdjanZejeSTPt9gi3AAAA8Kmu3RPUu2+SnIgLygAAAOAYhFsAAAA4hk/D7bPPPqsBAwYoOjraTkOHDtUnn3ziXX7GGWcoICCgxnT99dcfUBg9evRoRUREqEOHDpo0aZIqKip88GkAAADQqmtuk5KS9NBDD6lnz55yu9165ZVXdMEFF+jHH39U37597TrXXnutpk6d6n2NCbEelZWVNtgmJiZq/vz52rVrl6644goFBwfrwQcf9MlnAgAAQCsNt+eff36N5w888IDtzV24cKE33Jowa8JrbT7//HOtXr1aX3zxhRISEjRo0CBNmzZNd955p+677z6FhIQckc8BAAAA/+A3NbemF/aNN95QYWGhLU/wmDlzph0kuF+/fpo8ebKKioq8yxYsWKD+/fvbYOsxatQo5eXladWqVXW+V2lpqV2n+gQAAICWz+dDga1YscKG2ZKSEkVFRendd99Vnz597LLLLrtMXbp0UadOnbR8+XLbI7t27Vq98847dnl6enqNYGt4nptldZk+fbruv//+Zv1cAAAAaIXhtlevXlq2bJlyc3P13//+V+PHj9e8efNswL3uuuu865ke2o4dO2r48OFKS0tT9+7dG/yepgd44sSJ3uem57Zz586N/iwAAABo5WUJpi62R48eGjx4sO1RHThwoJ544ola1x0yZIh93LBhg300tbgZGRk11vE8r6tO1wgNDfWO0OCZAAAA0PL5PNzur6qqytbE1sb08BqmB9cw5QymrCEzM9O7zuzZs21Y9ZQ2AAAAoPXwaVmCKQ8455xz7D2J8/Pz9dprr+mrr77SZ599ZksPzPNzzz1X7dq1szW3t99+u4YNG2bHxjVGjhxpQ+y4ceM0Y8YMW2d7991368Ybb7S9swAAAGhdfBpuTY+rGZfWjE8bExNjQ6sJtmeddZa2bdtmh/h6/PHH7QgKpiZ2zJgxNrx6BAYG6qOPPtINN9xge3EjIyNtzW71cXEBAADQevg03L7wwgt1LjNh1lxYdihmNIVZs2Y1ccsAAADQEvldzS0AAADQUIRbAAAAOAbhFgAAAI5BuAUAAIBjEG4BAADgGIRbAAAAOAbhFgAAAI5BuAUAAIBjEG4BAADgGIRbAAAAOAbhFgAAAI5BuAUAAIBjEG4BAADgGIRbAAAAOAbhFgAAAI5BuAUAAIBjEG4BAADgGIRbAAAAOAbhFgAAAI5BuAUAAIBjEG4BAADgGIRbAAAAOAbhFgAAAI5BuAUAAIBjEG4BAADgGIRbAAAAOAbhFgAAAI5BuAUAAIBjEG4BAADgGIRbAAAAOAbhFgAAAI5BuAUAAIBjEG4BAADgGIRbAAAAOAbhFgAAAI5BuAUAAIBjEG4BAADgGIRbAAAAOAbhFgAAAI5BuAUAAIBj+DTcPvvssxowYICio6PtNHToUH3yySfe5SUlJbrxxhvVrl07RUVFacyYMcrIyKixja1bt2r06NGKiIhQhw4dNGnSJFVUVPjg0wAAAKBVh9ukpCQ99NBDWrp0qZYsWaIzzzxTF1xwgVatWmWX33777frwww/19ttva968edq5c6cuuugi7+srKyttsC0rK9P8+fP1yiuv6OWXX9a9997rw08FAAAAXwny2TtLOv/882s8f+CBB2xv7sKFC23wfeGFF/Taa6/Z0Gu89NJLSklJsctPOukkff7551q9erW++OILJSQkaNCgQZo2bZruvPNO3XfffQoJCfHRJwMAAECrrrk1vbBvvPGGCgsLbXmC6c0tLy/XiBEjvOv07t1bycnJWrBggX1uHvv372+DrceoUaOUl5fn7f2tTWlpqV2n+gQAAICWz+fhdsWKFbaeNjQ0VNdff73effdd9enTR+np6bbnNTY2tsb6JsiaZYZ5rB5sPcs9y+oyffp0xcTEeKfOnTs3y2cDAABAKwu3vXr10rJly7Ro0SLdcMMNGj9+vC01aE6TJ09Wbm6ud9q2bVuzvh8AAABaQc2tYXpne/ToYb8ePHiwFi9erCeeeEIXX3yxvVAsJyenRu+tGS0hMTHRfm0ev//++xrb84ym4FmnNqaX2EwAAABwFp/33O6vqqrK1sSaoBscHKw5c+Z4l61du9YO/WVqcg3zaMoaMjMzvevMnj3bDitmShsAAADQuvi059aUB5xzzjn2IrH8/Hw7MsJXX32lzz77zNbCTpgwQRMnTlTbtm1tYL355pttoDUjJRgjR460IXbcuHGaMWOGrbO9++677di49MwCAAC0Pj4Nt6bH9YorrtCuXbtsmDU3dDDB9qyzzrLLH3vsMblcLnvzBtOba0ZCeOaZZ7yvDwwM1EcffWRrdU3ojYyMtDW7U6dO9eGnAgAAQKsMt2Yc24MJCwvT008/bae6dOnSRbNmzWqG1gEAAKCl8buaWwAAAKChCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMfwabidPn26TjjhBLVp00YdOnTQhRdeqLVr19ZY54wzzlBAQECN6frrr6+xztatWzV69GhFRETY7UyaNEkVFRVH+NMAAADA14J8+ebz5s3TjTfeaAOuCaN33XWXRo4cqdWrVysyMtK73rXXXqupU6d6n5sQ61FZWWmDbWJioubPn69du3bpiiuuUHBwsB588MEj/pkAAADQSsPtp59+WuP5yy+/bHtely5dqmHDhtUIsya81ubzzz+3YfiLL75QQkKCBg0apGnTpunOO+/Ufffdp5CQkGb/HAAAAPAPflVzm5ubax/btm1bY/7MmTMVHx+vfv36afLkySoqKvIuW7Bggfr372+DrceoUaOUl5enVatW1fo+paWldnn1CQAAAC2fT3tuq6uqqtJtt92mU045xYZYj8suu0xdunRRp06dtHz5ctsja+py33nnHbs8PT29RrA1PM/Nsrpqfe+///5m/TwAAABoxeHW1N6uXLlS3377bY351113nfdr00PbsWNHDR8+XGlpaerevXuD3sv0/k6cONH73PTcdu7cuRGtBwAAgD/wi7KEm266SR999JG+/PJLJSUlHXTdIUOG2McNGzbYR1OLm5GRUWMdz/O66nRDQ0MVHR1dYwIAAEDL59Nw63a7bbB99913NXfuXHXr1u2Qr1m2bJl9ND24xtChQ7VixQplZmZ615k9e7YNrH369GnG1gMAAMDfBPm6FOG1117T+++/b8e69dTIxsTEKDw83JYemOXnnnuu2rVrZ2tub7/9djuSwoABA+y6ZugwE2LHjRunGTNm2G3cfffddtumhxYAAACth097bp999lk7QoK5UYPpifVMb775pl1uhvEyQ3yZANu7d2/96U9/0pgxY/Thhx96txEYGGhLGsyj6cW9/PLL7Ti31cfFBQAAQOsQ5OuyhIMxF3mZGz0cihlNYdasWU3YMgAAALREfnFBGQAAANAUCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAMAxCLcAAABwDMItAAAAHINwCwAAAMcg3AIAAKB1h9spU6Zoy5YtTd8aAAAA4EiH2/fff1/du3fX8OHD9dprr6m0tLQxbQAAAAB8F26XLVumxYsXq2/fvrr11luVmJioG264wc4DAAAAWlzN7bHHHqsnn3xSO3fu1AsvvKDt27frlFNO0YABA/TEE08oNze3aVsKAAAANPcFZW63W+Xl5SorK7Nfx8XF6R//+Ic6d+6sN998s7GbBwAAAJo/3C5dulQ33XSTOnbsqNtvv9325KampmrevHlav369HnjgAd1yyy0N3TwAAABwZMJt//79ddJJJ2nTpk22JGHbtm166KGH1KNHD+86l156qXbv3t2QzQMAAAANEtSQF/3+97/X1VdfraOOOqrOdeLj41VVVdWwVgEAAABHqufWU1u7v+LiYk2dOrUhmwQAAAB8E27vv/9+FRQUHDC/qKjILgMAAABaVM9tQEDAAfN/+ukntW3btinaBQAAADRvza0pRTCh1kzHHHNMjYBbWVlpe3Ovv/76w28FAABoEbZu3aqsrKwm2Za5Pic5OblJtgU0KNw+/vjjttfWXExmyg9iYmK8y0JCQtS1a1cNHTq03tubPn263nnnHa1Zs0bh4eE6+eST9be//U29evXyrlNSUqI//elPeuONN+xtfkeNGqVnnnlGCQkJNb7RzB3SvvzyS0VFRWn8+PF220FBDbpeDgAA1ML8vk1J6a2iouIm2V5ERLhSU9cQcNGkDiv9mdBodOvWzQbR4ODgRr25GRP3xhtv1AknnKCKigrdddddGjlypFavXq3IyEi7jhlD9+OPP9bbb79tw7QZW/eiiy7Sd9995+0xHj16tL0F8Pz587Vr1y5dccUVtm0PPvhgo9oHAAB+YXpsTbCd+vBYde3+SydTQ2xOy9C9k2babRJu4ZNwm5eXp+joaPu1uWGDGRnBTLXxrHcon376aY3nL7/8sjp06GBvEDFs2DB7C18zju5rr72mM888067z0ksvKSUlRQsXLrRj7X7++ec2DH/xxRe2N3fQoEGaNm2a7rzzTt133322R3l/pgfYTNU/GwAAqB8TbHv3TfJ1M4BauQ6n3jYzM9N+HRsba5/vP3nmN5QJs4bnojQTcs2tfUeMGOFdp3fv3vYvvAULFtjn5tHcVKJ6mYIpXTCBddWqVbW+jylZML3AnsncKhgAAACtqOd27ty53tBpalubmrnhw2233aZTTjlF/fr1s/PS09Ntz6sJzdWZIGuWedapHmw9yz3LajN58mRNnDjR+9wEYQIuAABAKwq3p59+uvdrU3NrwuD+w4GZi83MrXgbwtTerly5Ut9++62aW2hoqJ0AAADgLA0a59aE2927dx8wPzs72y47XOYisY8++sj2CCcl/VLDYy4SKysrU05OTo31MzIy7DLPOub5/ss9ywAAANB6NOlNHMw4t2FhYYe1HRNs3333XVv2sH8wHjx4sB31YM6cOd55a9eutUOReIYcM48rVqzw1gMbs2fPthe19enTpyEfDwAAAK1hKDBPnaoJtvfcc48iIiK8y8yQXIsWLbKjFRxOKYIZCeH9999XmzZtvDWy5iIvM+6teZwwYYJ9X1PvawLrzTffbAOtGSnBMEOHmRA7btw4zZgxw27j7rvvttum9AAAAKB1Oaxw++OPP3p7XE1vafVhtszXAwcO1B133FHv7T377LP28Ywzzqgx3wz3deWVV9qvH3vsMblcLo0ZM6bGTRw8AgMDbUmDuYmDCb1mfFwzHu/UqVMP56MBAACgtYVbzygJV111lZ544ol6j2dbFxOSD8WUOTz99NN2qkuXLl00a9asRrUFAADA14pL9ygrb5X25K/V3vx1KizNVGlZjkrKcxToClZwUKRCg6IV1+YYtY/pr4TYQYqJ7OrrZvuVBt2f1vSsAgAAoHEqKku0Lesbbd/9jXbsWai9Bevq9TrzGg8Tcnsn/U49Ov1aYSE1h09tjRoUbgsLC/XQQw/ZC73MhVxmjNrqNm7c2FTtAwAAcJTKylJtzvxC63d+qG2756misuYdX2Mjj1bbNr3Vts0xahN+lMJC4hQaHKOqqnKVVxapuCxbe/JWa3fuCmXmLLePZlqw5iEN7nGjBna7RoGBrfe6owaF22uuuUbz5s2zF3F17Nix1pETAAAA8Ius3FVas/1trdvxnkrLfxnmNCqsk7okDFdSu1PUsd2JCg/Zd9Os+jBBd/2O95S67S1l56/RorUP269P63u/kjvUvKaptWhQuP3kk0/08ccf27uJAQAAoHZl5flau+Mdrdn2lq2l9YgMS9QxR12k7h3PVXx030N2FJphULOysupYOkg9Igdqj+trbc1/VXlFW/Tx4iuVFHWJOkX9rsa2U1NT5XQNCrdxcXHeW/ECAACgpvziHVqx6WWlbntDZRX5dp7LFaJuCWfZ+tik9qfJFRBYr22ZYJuS0ltFRTXLF2oTGh6g31wZp2Gj22h7wRt6b9YL+vcTe1Re6j7g3gRO1aBwO23aNN1777165ZVXaox1CwAA0Jpl5vyknzb9S2m7ZsntrrTzYiO7q2+Xy3XMURfa+tnDZXpsTbCd+vBYde2eUK/XlFdsUmngjzp+WKROPDVZ4RWnKkBBmj8vVc898YlKSkrkVA0Kt3//+9+VlpamhIQEde3a1d5FrLoffvihqdoHAADg18zQpjv2LNCS9Y9rV/b33vlHtTvZXtxlal8DAhp0U9gaTLDt3TepnmsnKb+omzbs+kiV2qOg2J/UvdN52pyWIadrULi98MILm74lAAAALS7UfqfF655Q+t7Fdp4rIMgOyTWw2wTFx/T1afvaRCTZtqzf8a5yizZrc8YXktrJ6RoUbqdMmdL0LQEAAGghoXZ71rdast6E2iV2XqArRCmdL9Wx3a9XVHhH+Ys24Z10dMdztWHnh3Y0hYj29e35bWXhFgAAoDVK37tUC9f8zVt+YEJtn+TLdGz3GxQZVr962CMtNrKbuiacpc0Znyu83Xb1GhgmJ2tQuK2srNRjjz2mt956y17BV1ZWVmN5dnZ2U7UPAADA5/YWpNkxZDelf2qfB7pC1bfLWA06+npFhnWQv4uPTlFB8U5l5a3U+IntpPKa2c1JGlTdfP/99+vRRx/VxRdfrNzcXE2cOFEXXXSRXC6X7rvvvqZvJQAAgA8UlmRo3orJevPrkTbYBsil3p0v1mVnfKVT+tzbIoKtR+f2w1RRGq7YdkEKjl1nyyucqEE9tzNnztTzzz+v0aNH2zB76aWXqnv37howYIAWLlyoW265pelbCgAAcARvkbts4/P6Ie1p7+1xzan9Ib3+rLZteqolCnQFK39HL0Ul/ajgsD22F7d9TH85TYN6btPT09W//76dERUVZXtvjfPOO8/euQwAAKCl2pL5pd78epS+X/eIDbaJcYN14dC3dc7xz7fYYOtRWRql91/Za7/envWdyn8O7mrt4TYpKUm7du2yX5se288//9x+vXjxYoWGhjZtCwEAAI6AvKJt+mTJtZq1+Co7dFZEaAeNGPSELhz6X3Vse4Kc4qsP81VVHqnKqlLtzJovp2lQWcJvfvMbzZkzR0OGDNHNN9+syy+/XC+88IK9uOz2229v+lYCAAA0k4rKEi3b+P/0w4anbeAzY9X273a1ju95i0KCouQ0VVVSeW4Phcb/pN15KxUf079F1Q43S7h96KGHvF+bi8qSk5O1YMEC9ezZU+eff35Ttg8AAKDZbMmYq29X36+8oi32ead2Q3Va36ktvvzgUNxlsWrbppey89dq6+6v1DvpdwoICJATNMk4t0OHDrUTAABAS5BXtFXfrpqqLZnmrl1SZGiCTu5zt7p3PK/JQp45o52VldXo7aSmpqo5JMWfqpyCjSos2aW9Bets2G214fbVV1896PIrrriioe0BAABo1hKEH9OetVNlVZktQRjQbYIG97y5SUsQTLBNSemtoqKmu2CroKBATSkkKMpeLLcze6F2Zn+vuKieCgho0OVYLT/c3nrrrTWel5eXq6ioSCEhIYqIiCDcAgAAv7M54wt9u+p+5Rdvs8+PaneKTut7v+La9GiW3lYTbKc+PFZduzfuzmXz56XquSc+UUlJiZpah9hBysj5USVl2dpbsN4RvbcNCrd79+4bQqK69evX64YbbtCkSZOaol0AAABNIrdwi75bfb+2ZM61zyPDOuqUPnfr6MRza5QgNEdva3xCpHr3TWrUNjanZai5BAWGKiHuOO3cs8AxvbdNUnNrmIvJzIVmZuSENWvWNNVmAQAAGsSM4frjhme1bONzP5cgBGvg0RM0uMfNCg6KPGB902PbEnpbm1qHmIHK2PuDY3pvg5p0Y0FB2rlzZ1NuEgAA4LCY28puzpit71ZPVX7xdjsvKf40ndr3PsVFdT/k602w9efe1mbpvY091jG1tw0Ktx988MEBB5G5qcM//vEPnXLKKU3VNgAAgMOSW7hZ3666zw5vZUSFddLJfe7R0YlnO2aoq+bQoVrtbU7hpnr9EeCocHvhhRfWeG4Olvbt2+vMM8/U3//+96ZqGwAAQL1LEMxNGMzNGKpMCYIrRIO6Xavjetyo4KAIXzevRfTeto/pp/S9S5WZs6z1hdsqc2sLSbt377YjJMTExDR1uwAAAA7JnD3elP6ZvkudpoLiHXZe5/bDdGqf+xQbdbSvm9eitI8ZoPS9P9hSjqLSLEWExqtVhNucnBz95S9/0ZtvvukdNcH02l511VW655577FBgAAAAzW1PXqq+XT3VXulvhATGq0v01YoLHKKN63Ik/eAXN0toKUKDo22P7d6CDbb3tmvCCDk+3GZnZ9s7ke3YsUNjx45VSkqKnb969Wo99dRTmj17tr799lstX75cCxcu1C233NJc7QYAAK1Ucekefb/uUaVufV1uVckVEKLP/rtXH722VeWlS/3uZgktrfZ2b8EG7clfo6T4UxQUGC5Hh9upU6faMoS0tDQlJCQcsGzkyJEaN26cPv/8cz355JNN3VYAANCKVVaVa+WWV7Vk3eMqq8i387p3HK02Fefr+pfOafQQXi1p+K7mEhXWSRGh7VVUulu7c1eqY9sT5Ohw+9577+mf//znAcHWSExM1IwZM3TuuedqypQpGj9+fFO2EwAAtGJbMr/U/NXTlFO40T6Pj+6jU/pMUad2Q/TDDz80yRBeLWn4ruYSEBBge2/NUGqZucvt7Xlb2rBghxVuzXBfffv2rXN5v3795HK5bLgFAABorOz89VqQ+qC27v7SPg8Laachve5Q786/lysg0NfNc6S2Ucdo++5vVF5RoLyirYqJ7CrHhtv4+Hht3rxZSUm1/1W0adMmdejQoanaBgAAWqmC4p1avO4xrd3+v5/raoPVv+uVGtzzZnvhE5qPyxWkttG97UVlWXmrnB1uR40aZUdKMBeOmdrb6kpLS+1oCWeffXZTtxEAALQSJWU5+jHtWa3Y/JK9Za7RLWGUTup9J0N7HUHx0X1suM0p2GjHEA5uQReWHfYFZccff7x69uypG2+8Ub1797bjy5mhM5555hkbcF999dXmay0AAHCk8ooirdj8sn5Me05lFXl2Xse2J+qk3v+nxLjjfN28VicitL0iQjuoqDRT2flrlRA7SI4Mt6YcYcGCBfrjH/+oyZMn22DrKT4+66yz7O13k5OTm6utAADAYVan/qSdBe9pV+F7qqjaF2rDg7oouc3ligk5Tjs3STs3HXy82tY+Pm1z9t5u3Z2prNxV6hAzsMXcvviwb+LQrVs3ffLJJ/YGDuvXr7fzevToobZt2zZH+wAAgANlZe3V8N+00Q73vcrP33dhWObOcs16PVeL522Ru+rrw95max6ftjm0bdNL27K+UXFZlh0aLDKsg3Nvv2vExcXpxBNPbNrWAAAAR6uqqrBDTIV0WKgxE/Z1jAW4IxRSmaJu8cm66WaXdPPhbZPxaZtHUGCY4iK7K7tgnb2wzPHhFgAA4HBC7e7cFUrfu0TllUVyBUlZ6RWKCeujIcePbNSwXoxP23zaRfex4TY7f506tx/WIoZfa1mj8gIAgBZ3V7GMvT/a0Q+2ZX1tg21IUBvl7+qh+6/focqiji0iMLVW0RGdFRQYocqqEjvmbUtAzy0AAGiWULs7d7nS9y5VRWWxnRcSFGVHQDC9gZ+vWKbKCl+3Eodi7k7WNqqnMnN/0t78dYqN7CZ/59Oe26+//lrnn3++OnXqZK/AM7f3re7KK6+086tP+4+jm52drbFjxyo6OlqxsbGaMGECBeUAAPiIGZt2V/YS21O7PetbG2xDgqLVpcNw9et6pdrH9KentoVp2+YY+7i3IM2Wl/g7n/bcFhYWauDAgbr66qt10UUX1bqOCbMvvfSS93loaGiN5SbYmtsCmxtLlJeX66qrrtJ1112n1157rdnbDwAA9qmsLLW9e6YEoaJq34VdocEx6hh3gr3bFYG25YoM62hLScoq8pVbuElxbXrKn/k03J5zzjl2OhgTZhMTE+sc1+7TTz/V4sWL7c0ljKeeekrnnnuuHnnkEdsjDAAAmk+FCbU5y5SR86Mqq0rtvNDg2H3lB2162dPaaNkCAgJs760pMTEXl/l7uPX7I+6rr75Shw4d1KtXL91www3as2ePd5m5oYQpRfAEW2PEiBFyuVxatGhRnds0d1LLy8urMQEAgMMrP9i5Z5FWbH5RO7MX2mAbFhxnb5Xbr8s4xUenEGwdpG3UvtKEnMJNtpfen/n1BWWmJMGUK5gbR6Slpemuu+6yPb0m1AYGBio9Pd0G3+qCgoLsDSXMsrpMnz5d999//xH4BAAAOEtQsFTmWq8Vm2d5LxQLC2mrTm1PVFxUTwKtQ4WHtrc98qXlOTbgSlHyV34dbi+55BLv1/3799eAAQPUvXt325s7fPjwBm/X3Dp44sSJ3uem57Zz586Nbi8AAE1l69atysrKapJtxcfHKzk5ufHj1BbN0ZR/HqWyoOVS5b7yg6PaDf051LaMW7OiMaUJvbQre5Gy89dKGix/5dfhdn9HH320/QbdsGGDDbemFjczM7PGOhUVFXYEhbrqdD11vPtfmAYAgD8F25SU3ioq2tcz2lgREeFKTV3ToIDrdru1JXOuFq6Zrr0FG9SuQ5AC3OFKTjhZ8dF96KltRdpG9bDhNq94myI0QP6qRYXb7du325rbjh072udDhw5VTk6Oli5dqsGD9/0FMXfuXFVVVWnIkCE+bi0AAA1jemxNsJ368Fh17Z7QqG2Zu3fdO2mm3ebhhlsz9NN3q6dq2+559nlQQJTe+tc2jRt3odrHdGlUu9DyhIW0syNglJbnqsLlv3eF82m4NePRml5Yj02bNmnZsmW2ZtZMpi52zJgxthfW1Nz++c9/Vo8ePTRq1Ci7fkpKiq3Lvfbaa/Xcc8/ZocBuuukmW87ASAkAgJbOBNvefZOO+PuWludp6fqn7Fi1Ve4KuQKCNaDb1QosPFXXvTtMV4xjWK/WWpoQF9XDjppQGbBD/sqn4XbJkiX61a9+5X3uqYMdP368nn32WS1fvlyvvPKK7Z01YXXkyJGaNm1ajZKCmTNn2kBryhTMKAkmDD/55JM++TwAALRkbneV1m7/rxaumaHisn31vubmCyf3udvemeqHH37wdRPhY7GR3ffddc6VriA/Pf/v02adccYZtpanLp999tkht2F6eLlhAwAAjZNbuEVfrfg/7dyzwD6PiTxap/S5R106/NIJBUSGJSo4MFLllYXqNShM/shPMzcAADgSqtyVWrn5FS1a+7Ad2isoMFzH97xNA7pdpUBXiK+bBz8sTYiN6q7ducs1cGiE/BHhFgCAVsqMfvDV8jvtaWajU7uh+tWAvyk6onHDhsHZ4jzhdkiE3O5K+RvCLQAArbC2dtnG57V43d/tncaCg6J0cspdSul8CUN74ZCiwo+S3MFqEyvll62RdIL8CeEWAIBWpKh0t+Yum6htWd/Y58ntz9Dp/R9UVDijDKF+XAGBCqrqqIrArdpbukjSOPkT/jwDAKCV2J41X29/c64NtkGuMJ3R/28694SXCLY4bEFVyfp6Vr7ahg2VvyHcAgDgcKbSYHv+G/pw0VjbcxsXdYzGnPqhUpIv5ra5aJAgd4LeeCZbbUJS5G8oSwAAwMGqVKxbH0jQjoK37HNTV3tK3ykKDgz3ddOAZkG4BQDAoQpLMlQcPFfH9A+TKyBMvxr4Nx1z1AW+bhbQrChLAADAgbLz19u7jbkDSrRzS5n6xT9CsEWrQLgFAMBBzJ0/d+5ZpI3ps1TlrlBgVaIeuSNd4UFcNIbWgXALAIBDVFVVaFP6p9qZvdA+T4g9VmEVJ6ukuO5b3QNOQ7gFAMAByiuKbBlCdsE6BcilLh2Gq3P7YQoQoyGgdeGCMgAAWrjS8jyt2/GuSstzFOgKU/eOoxUdkeTrZgE+QbgFAKAFKy7do3U731N5RYFCgtromKN+o7CQOF83C/AZwi0AAC1UQUm61u94X5VVJQoLaWuDbUhQlK+bBfgU4RYAgBYor2irNuz8SFXuckWGJqjnURcoiBszAIRbAABamr0FG7Qx/VO53ZVqE95ZPTqdp0BXiK+bBfgFwi0AAC1Idv46G2wlt+Kieqhbwii5XPw6Bzz4bgAAoAUG23ZtUtQ1YYQCAhjVE6iO7wgAAFoAgi1QP3xXAADg5wi2QP3xnQEAgB8j2AKHh5pbAAD8VEXAdm1M/55gCxwGwi0AAH6o7/FhKglqumCbmpra6DY1xTaA5ka4BQDAz+SVrtS1k9tLAW61jTqmUcE2a3eefbz88subrH0FBQVNti2gqRFuAQDwIxl7f9TavQ8qJNSlwKqO6po4slE9tgV5xfbx9r+M1rGDezWqbfPnpeq5Jz5RSUlJo7YDNCfCLQAAfmJPXqo++n68qtwlWrOsWIP7DJErILBJtt25Szv17pvUqG1sTstokrYAzYmqdAAA/MDegjR9uGicyiryFBXcS89N260ANU2wBVoTwi0AAD6WX7RdHy66XMVlWYqP7qtebe9WWanb180CWiTCLQAAPlRYkqkPFo1VYckuxUZ213knvqogV6SvmwW0WIRbAAB8pLgs2/bY5hVtUZvwzjr/pJkKD23n62YBLRrhFgAAHygrz9fH34/X3oJ1igxN0K9Pek1RYYm+bhbQ4hFuAQA4wsorizVryQTtzl2hsJC2On/ITEVHdPZ1swBHINwCAHAEVVaW6rMl12lX9vcKCWpja2zj2vTwdbMAxyDcAgBwhFRVVWj2j7doW9Y3CgqM0OgTXlb7mH6+bhbgKIRbAACOgCp3peb8NFGbMj6TyxWic45/XoltB/u6WYDjEG4BAGhmbneVvlp+pzbs/ECugCCNOu5ZJcWf4utmAY5EuAUAoBm53W59vfIerd3+XwUEBGrEsU+pa8JwXzcLcCzCLQAAzRhs56dO0+qtMyUF6MyBj6p7x3N83SzA0Qi3AAA0U7BdtHaGlm960T7/1YC/6ZijLvB1swDH82m4/frrr3X++eerU6dOCggI0HvvvXfAD4Z7771XHTt2VHh4uEaMGKH169fXWCc7O1tjx45VdHS0YmNjNWHCBBUUFBzhTwIAQM3fX4vXP6Yf0561z0/rN029O//e180CWgWfhtvCwkINHDhQTz/9dK3LZ8yYoSeffFLPPfecFi1apMjISI0aNUolJSXedUywXbVqlWbPnq2PPvrIBubrrrvuCH4KAAAO7LFduv5J+/zklLvVr8s4XzcLaDWCfPnm55xzjp3q+uHw+OOP6+6779YFF+w7jfPqq68qISHB9vBecsklSk1N1aeffqrFixfr+OOPt+s89dRTOvfcc/XII4/YHmEAAI50ja2nFOHkPvdoYLcJvm4W0Kr4bc3tpk2blJ6ebksRPGJiYjRkyBAtWLDAPjePphTBE2wNs77L5bI9vXUpLS1VXl5ejQkAgMYO9/XNynu8wdaUIhBsgSPPb8OtCbaG6amtzjz3LDOPHTp0qLE8KChIbdu29a5Tm+nTp9ug7Jk6d+Z+3gCAxt2g4asVk7Vq63/sqAhnDJhBKQLgI34bbpvT5MmTlZub6522bdvm6yYBAFrwLXW//OkOrdn2pgLk0vCBjyqFi8eA1llzezCJiYn2MSMjw46W4GGeDxo0yLtOZmZmjddVVFTYERQ8r69NaGionQAAaIzyikJ9/sNN2rr7S3vnsRHHPqHuHUf7ullAq+a3PbfdunWzAXXOnDneeaY21tTSDh061D43jzk5OVq6dKl3nblz56qqqsrW5gIA0FyKSnfr/YWX2GAb6ArVyMHPEmyB1t5za8aj3bBhQ42LyJYtW2ZrZpOTk3Xbbbfpr3/9q3r27GnD7j333GNHQLjwwgvt+ikpKTr77LN17bXX2uHCysvLddNNN9mRFBgpAQDQXPYWpOnj769UfvE2hYW01TnH/0uJccf5ulkAfB1ulyxZol/96lfe5xMnTrSP48eP18svv6w///nPdixcM26t6aE99dRT7dBfYWFh3tfMnDnTBtrhw4fbURLGjBljx8YFAKA57Mpeok+WXKPS8hxFR3TReSe+opjIrr5uFgB/CLdnnHGGHROwLuauZVOnTrVTXUwv72uvvdZMLQQA4Bdpu2ZpzrLbVFlVpg6xg3Tu8S8oPLSdr5sFoCVcUAYAgD+NYbt43eNaumHfmcGuCWdpxLFPKjgw3NdNA7Afwi0AAAdRWp6rOctu15bMufZ5/65X6eQ+d8sVEOjrpgGoBeEWAIA67M5dqc9/uFF5RVvsiAin95+uXkkX+bpZAA6CcAsAOKitW7cqKyurSbYVHx9vR8Pxd+Z6kJVbXtX81AdUVVWmqPCjdPbg59Q+pr+vmwbgEAi3AICDBtuUlN4qKipuku1FRIQrNXWNXwdcM37tvBWTtTnjC/u8W8JI/WrgwwoNjvF10wDUA+EWAFAn02Nrgu3Uh8eqa/eERm1rc1qG7p00027TX8PtpvTP9NWKu1RStkeugGANTblL/bteaUfvAdAyEG4BAIdkgm3vvklyqqLSLM1fPU3rd75vn7dr01vDBz2mdtEpvm4agMNEuAUAtFqmtnbt9v/q21XTVF6ZZ+9K3zHyAiVFXqItG4q1RT84tq4YcCrCLQCg1Y6E8O2q+5S+d4l9vi2tTDOf2qOtGx6XZCbn1hUDTka4BQC0KuaCscXrHtPqra+bvlu5AkL1vxfTddpJo/XXGR0dX1cMOB3hFgDQKpRVFOinjc9r2cbnVVFZZOf16PRrRVWcp+v/N0rjxnZssrri1NRUn74eaM0ItwAARysrz9eKLa9q+aYXVFKWbed1iB2oob3vUqd2Q/TDD4dfV1uXrN2mble6/PLLm2R7BQUFTbIdoDUh3AIAHKmkLEfLN7+oFZteVlnFvtAZE9FVQ3pP0tGJ5zbL8F4FefvGA779L6N17OBeDd7O/Hmpeu6JT1RSUtKErQNaB8ItAMBRCksytWLzi1q5+d8qryy08+Kieui4HjepR8fz5HI1/6++zl3aNarEwdTuAmgYwi0AwBEy9v6oFZtfVtquWapyl9t58dF9dFyPm3V04igFBLh83UQARwDhFgDQYlVWltowa0JtZu5P3vmJccfr2O43qEuHM7m7GNDKEG4BAC1OTsFGpW57U2u3/0/FZVl2XqArxI5+YG6X2z6mn6+bCMBHCLcAgBahvLJYG3d9otRtb2hX9vfe+ZFhierbZZz6dL5E4aHtfNpGAL5HuAUA+P2dxEwv7fod76msIt/OC5BLyR1+pZTOF9vHQFewr5sJwE8QbgEAfqe0PE/rd76v1K1vKitvpXd+m/AkG2h7df6dosISfdpGAP6JcAsA8Atut1vpe5fYsoO0nR+romrfGK8uV4iOThiplORLdFS7kxn1AMBBEW4BAD5VVJqlddvfsaE2p3Cjd35cVE/bS3tM0kUKD2nr0zYCaDkItwCAI67KXantWd/asoPNGbO949IGBYarR8fzlZJ8sRJij2MYLwCHjXALADhi4uIDtT3/Ta368mYVFO/wzu8QM9CWHZg7iIUEt/FpGwG0bIRbAECz99LmFm5ScdASTXvxKO0oeNPODwyIVHz46WofMVyRwd1UkiWtzFpf7+3Gx8crOTm5GVsOoCUi3AIAmkVJ2V7tzlulPXmrVVFZLLnMvwCtW16ibz/L108Ltqq8bLWkZxu0/YiIcKWmriHgAqiBcAsAaDKVVeXKKdhgQ231soOgwAjlZbTV3+5apMuvGqVbbu0l3drw99mclqF7J81UVlYW4RZADYRbAECjFZXutjdbyM5fo8qqsp/nBigmooviY/opJrKrPl+5TLt3fqfOXdqpd98kH7cYgFMRbgEADVJZWao9+WuVlbdKRaWZ3vkhQdGKj+mr+DYpzX5xWGpqql9sA4D/INwCAA7rRgsFJbuUlbtSewvWq8pd4b0dbmxUd8VH91V0RHKzD+GVtTvPPl5++eVNts2CgoIm2xYA3yHcAgAOya1Spe/9wYbakvK93vlhIW1toG3XpreCgyKOWHsK8ort4+1/Ga1jB/dq1Lbmz0vVc098opKSfXdEA9CyEW4BAHUO4ZVT+qMm3BmvwuCPVZjltvNdAUGKa3OM2kf3VWRYR5/eaKEp6nfNxWkAnINwCwCoIadwk9Zu+6/W7nhHhSW7NPi0SNt3GxHaQe1j+qlt1DEKDAz1dTMBoFaEWwCAyioKlLZrltZse1vpexd75wcGRGnOhzt1zqjfqE/Pfj5tIwDUB+EWAFopt7tKu7K/15rtbytt1yeqqCzyXhyW1P409U76nXJ2xesPzw3VeSNjfd1cAKgXwi0AtLLRDrLyVmr9zg+VtvMjFZTs9C6Lieym3km/1TFJYxQVlmjn/ZD+gw9bCwCHj3ALAK3A3oINWr/zA23Y+ZFyCzd65wcHRal7x9G2lzYxbrBPLw4DgKZAuAUAh8or2qa0XR/ZULsn75cbFQS6QtU1YYR6dDxfyR3OUFBgmE/bCQBNiXALAA6qod2du0KbMmZrc8YX9la4Hmb4rs7th6lHp1/bYBsSFOXTtgJAcyHcAkALVlFZoh17FmhzxufanDGnxm1wAwIC1bHtierZ6dc6OvFshYXE+bStAKDWHm7vu+8+3X///TXm9erVS2vW7OuNMHeT+dOf/qQ33nhDpaWlGjVqlJ555hklJCT4qMUAWoqtW7cqKyurSbYVHx+v5ORkHSnFZdnakjlXm9Nna1vWN95RDozgwEhbatC1wwgld/iVwkIY5QBA6+LX4dbo27evvvjiC+/zoKBfmnz77bfr448/1ttvv62YmBjddNNNuuiii/Tdd9/5qLUAWkqwTUnpraKifbdwbayIiHClpq5pkoBbV+gurtipnJLvtbdksfLL15r7h3mXhbjaKTbsBMWFnaDokH5yKVgFmVJmVZ6Skwm3AFoXvw+3JswmJu4bkqa63NxcvfDCC3rttdd05pln2nkvvfSSUlJStHDhQp100kk+aC2AlsCERxNspz48Vl27JzT61q33Tpppt9nYcFs9dAe4pG69QjVgSLgGDIlQYufgGutuSyvT8kVFWr6oWNvStphBuyT9s9lCNwC0FH4fbtevX69OnTopLCxMQ4cO1fTp0+0P6qVLl6q8vFwjRozwrtu7d2+7bMGCBQcNt6aEwUweeXl5zf45APgfE2x7902Sv8jYvUM9+ktX3nyCwmNy5Q745eeU3AEKdLdXYFVHBVV1UkrnCKV0li7+7cFD9zfffGP/6G+o1NRfRlkAgJbAr8PtkCFD9PLLL9s62127dtn629NOO00rV65Uenq6QkJCFBtb85Sbqbc1yw7GBOT9a3kBwBdKy/Ns/ezG9E+1JX2urr+ng6RMue2QXSH2xgqxkUcrOqKLggJD673drN37/mi//PLLm6SdBQUFTbIdAGjV4facc87xfj1gwAAbdrt06aK33npL4eHhDd7u5MmTNXHixBo9t507d250ewGgPopL99jhujalf6rtWd+pyl3uXbYno0KJ8b3ULXmgosI7yRUQ2KD3KMjbV098+19G69jBvRrc1vnzUvXcE5/YC3gBoCXw63C7P9NLe8wxx2jDhg0666yzVFZWppycnBq9txkZGbXW6FYXGhpqJwA4UopKs5S262Nt3PWJdmV/L3e1C8LionqoW+LZKsvpqmHn/U6vvnOxoiOaplyic5d2jSq9MOUNANCStKhwa06LpaWlady4cRo8eLCCg4M1Z84cjRkzxi5fu3atvSDD1OYCgK+VVxTZHtr1O961Q3a53ZXeZfHR/XR0x3N0dMIoxbXpYef98IO5KAwA4Nhwe8cdd+j888+3pQg7d+7UlClTFBgYqEsvvdQO/TVhwgRbXtC2bVtFR0fr5ptvtsGWkRIA+PIuYeamCmu3/0+b0j9TeWWhd1mH2IH2lrfdEkcpOoJSKABodeF2+/btNsju2bNH7du316mnnmqH+TJfG4899phcLpftua1+EwcAONLKKvfqhw3PKHXbG8or2uqdHx2RrJ5HXahjOl2o2KijfdpGAGgN/DrcmjuPHYwZHuzpp5+2EwAcaW63WxUBGbpmcryWZV4nd+a+soOQoDbq0enX6pV0kRJij1NAQICvmwoArYZfh1sA8EeVVWXak5eqjJxlKg3O0XGnRMqtShtk+yRfqu4dRys4KMLXzQSAVolwCwD1VFqeq8ycn5SVt8oGXMsdrC8/3KNbrn5Bpw75ja+bCACtHuEWAA6hoCRd6dlLlFO40aRZOy80OFYJsYO0Z0eM3v5/T+r//tDF180EABBuAaDuelpzYVj63iXKL95e4wKxDrGDFBPR1dbSZu/4ZRkAwPcItwCw31BeewvSbKgtKs208wLkUts2vZQYN1jhoe1qfV1qamqj37sptgEArR3hFgAkVbkrlZ23Rrv2LlFpeY6d5woIUnxMPyXEHqvQ4OhaX5e1O88+Xn755U16wxoAQMMQbgG0aubCsN25K5WR86PKK/aFykBXqL3hgik/CA4MP+jrC/KK7ePtfxmtYwf3alRb5s9L1XNPfKKSkpJGbQcAWjPCLYBWKSLKpTLXai3f9LEqq/aFyeDASCXEHav2Mf0V6Ao5rO117tJOvfsmNapNm9MyGvV6AADhFkArk1+8Q1tyX9ADLx+lsqBUqcqMfBCjxLjj1a5Nb7lc/FgEgJaMn+IAWoU9+Wu1LO2f2rDzA1W5KxQa5pKrKkZdO52suKgeCghw+bqJAIAmQLgF4OjhvHbtXaxlac9pS+Zc7/zokP564M4v9H/3XKS2bTr7tI0AgKZFuAXgOFVVFdqc+YWWpf0/ZeT88PPcAB2deI6O7f4Hbd9YqdQfP1KAAnzcUgBAUyPcAnCM4tI9St32hlZtfU0FxTvsPHNhWK+kMRp49HWKjexm522XJ/ACAJyGcAugxZceZOYs08ot/9aGXR+pqqrMzg8LjlNK8qUa0PVKRYR18HUzAQBHCOEWQItUVJKp9Ts/0Nod/9OevF/u7NU+ZoD6db1CPTqep6DAMJ+2EQBw5BFuAdRq69atysrKapJtxcfHKzk5udHbKa8s1qb0z7Vuxzvavvsbuc04XuZOYq4QG2ZNqE2IHdQELQYAtFSEWwC1BtuUlN4qKtp3963GiogIV2rqmgYF3JKyHG3N/NJeILY18yuVVxZ6lyXEHqdeSRepe8fzFBYS2yRtBQC0bIRbAAcwPbYm2E59eKy6dk9o9F237p00026zPuHW1NDmFKbZILs5Y7Z27V0it7vSu7xNeGcdk/QbHXPUb7wXiAEA4EG4BVAnE2wbe0vZ+oTZvQXrtXPPIu3MXqhd2d+rqHR3jXXMncO6JpylLgnD1SFmoAICGMILAFA7wi2AI8YE2cKSdO3OW6nduSuUlbtSGTnLVFKWXWM9M3xXYtwJ6powwk7REdxoAQBQP4RbAM2iorLEhtZy1yZdNCFOa7KnavkX21VcduBFakGuMCXEDVandkPUqe0QdYgdyEgHAIAGIdwCaHAvbEVViUrLc71TWXmuSszXZXtVXlm0b8UgacRvopVbusw+DQgIVFxUT7WP6af20f3UPra/2sf0t721AAA0FuEWQJ3MUFsmtJoRC8oq8mxw9QRY81j58w0T6hISFKXKsgjN/nCDzj1rnLp3HqqI4C5yBYRKlVL5XmmnmbTyiA8rBgBwJsIt0MqZ8JpXtE15RVuVV7TFPm7fs0pT/9VJhcHvacVm90FfHxwUpdCgaIUGx3gnMyxXWEhb2xv77Ver9d/nF+u/zz8pyUy+G1YMAOB8hFvA4TdeMMNolVXuUUllhkor01VakaES82ieV2Sowl1Q67biE4Nt360pI/CG15DYA752uQ7+Y6Qgb99Yubf/ZbSOHdzriA4rBgBofQi3gAOUledr3cbFmvCHixTd1q34xCC1SwxS+45Bats+SEHBBx86K3dvpfaklysrvUK7d1XYx6yMCv3p/y7WcSc0zdBbnbu0a/ZhxQAAINwCLUBlVbkKinfakoH8Yk8JgXncpvyibSoxxauSrpxUx1263C4FKEIud6SdAuxjlAK073lUZJCO6i7JTJLmz0vVc3M/UUmxuQCMMWUBAC0H4RZq7aftG6opL2yqrCxVYWmGDbAFxbuUX7zdWwdrwqyZZy7uOpggV7TWp+5Wzx491D4+sUYNbHBQpAICXId1+t+fpaam+vT1AAD/RbhFqwq2KSm97W1lm0J9L2wy470WlWbagFpQskuFJbu8X5tHc1OD2sZ+3V+gK1TREcn2hgbmsU140s/Pk9UmIkkrl6/TdecO1qvvXKaj4p15+j9rd559vPzyy5tkewUFtdcbAwBaLsItWg3TY2uC7dSHx9rbyjbG5rR0Tb/vdW3btUyuiO02vJpbxhaVmMdMFZrnP39dVpFfr20GKEQhge3sFBrYXmGBCQo1U5B57KBgV9wvJQKlUmWptDdH2isznuy6VtEb2VQXp9myiyc+UUlJSRO2DgDgDwi3aHVMsK3rwiZ7Y4LKInsDgvKKQjuVVe57NPPLfp4X37tAf38zWcuzbtHyelQ5mF7XqLCOigxLVFR4p58fO6o4P0iX/f4P2rWjUIV5puxgfaM/X2vojWzsxWn+XnYBAGg4wi38vh61KZibDZRW7lbXY0JUEbBDmTnZKv85tNrJE2btXbUOPq6r5bnGyh2msCDT2xpne1aDA2MVYh/N87berwMDIn7pdTUZtkgqK5LWpaZqQ2p+k/Qm0xsJAADhFj6uR20sE0irlwD88vXufc9LMlVcuts7msCfH+2oEi3U1t0H325QYLiCAyPthVh2sl9HeOctX7JTf77xdZWX1iMI10N8QmSjh8miNxIAAMItmqUetWED7ZuSgMqqUpWUZavYTKVZKi7b4/1633zzfI+KS/c9VlTWP4wHKEh7MksUH99e0W3iqoVW8xjhDbIm2LoCAg+6rfy9u2ywpfYTAAD/QrhFvetRDxZKq9zl9tS/nQKC1WtgmLKLF2rNtjSVVRSovKLAPpqLqw54Xv7Lc7Odw2UCakRYB0WEtv956qBI+/znKayDIkM7aNWKjTr+vOP16jsXq0enphlNgNpPAAD8C+G2lauqqlBpRZ5KKnaqi61HzVB2ftEvQbWqTFXVvq45v/Tnr00grXZ6Pli69YEErc+ZofU5h9+mAAUqyBWjYFe0fYyK6KD4uM4KD2mnsJB2Cg9tp/CQtgoPibdfhwRF1W+73IwAAADHI9w6iAmZ5tS9qTfdd+o+y56+Lyrbd0q/tDxXZeV59rH050dzUZXHnbYe9VttTG9oCwIU6ApRRVmAdm7LU3FRlUqK3Soxjz9PxUU/Py82z/d9bdfbb74v6ncBAEDLR7htISMTVFYVq7QyS2VVe1RmHu1kvt6jyoAclVflqLS8Ad2kP3MFhGt3Rr7ax7dTRGSUglyhcrlCbFjdf3LVMc8VEGR7Rz/9YKkemDTT1qOe1Ih61Or1u998841SUlIata3WMA4sAACtHeHWD0YmCA4NUFx8oOLigxTX/ufHas9j2wUpIqq+t0512dP5wa4YBbli7WNwoPk6WkEBJrRGKtAVpaCAyBpfr1mzTtdffbmtR+2d5B/1qM1xR6rWMg4sAACtFeH2CNtbkKbFaTM0/o4opQzoqqDQcimgnhdRuYPlcocrQOEKcIfL5Y7Qtk0FeuPlxcrbW6n8nEoV5lfJ7XZO8GuqO1IZjEwAAIDzOSbcPv3003r44YeVnp6ugQMH6qmnntKJJ54of2NGBcgs+kz9T4zYN5L/z1wBwQoJbmMvjgoJ2vcY7Pn65/nm9P/+dq5fqrU/feP4IamaoheYkQkAAHA+R4TbN998UxMnTtRzzz2nIUOG6PHHH9eoUaO0du1adejQQf4kOqKLjor6nWZMf04Trv+1unfvquCgNgoKDG3UdhmSCgAAwBRoOsCjjz6qa6+9VldddZX69OljQ25ERIRefPFF+ZuwkFgltblU331WoCB3osJD4xsdbAEAAOCQntuysjItXbpUkydP9s5zuVwaMWKEFixYUOtrSktL7eSRm5trH/Py9l281Nw8da1rVm1XcdEv7WhMj+uGdemKjEjz+XbYVstvU2vYlj+2yV+35Y9tag3b8sc2tYZt+WOb/HVbWzbt9maaI5WfPO9jbh51UO4WbseOHeYTuufPn19j/qRJk9wnnnhira+ZMmWKfQ0TExMTExMTE5Na1LRt27aDZsMW33PbEKaX19ToelRVVSk7O1vt2rVr1F2szF8UnTt31rZt2xQdHd1ErW192I9Ng/3YNNiPTYP92DTYj02D/dgy96Hpsc3Pz1enTp0Oul6LD7fx8fEKDAxURkbNC6LM88TExFpfExoaaqfqYmNjm6xN5j+Zb5bGYz82DfZj02A/Ng32Y9NgPzYN9mPL24cxMTHOv6AsJCREgwcP1pw5c2r0xJrnQ4cO9WnbAAAAcGS1+J5bw5QYjB8/Xscff7wd29YMBVZYWGhHTwAAAEDr4Yhwe/HFF2v37t2699577U0cBg0apE8//VQJCQlHtB2m1GHKlCkHlDzg8LAfmwb7sWmwH5sG+7FpsB+bBvvR2fswwFxV5utGAAAAAE2hxdfcAgAAAB6EWwAAADgG4RYAAACOQbgFAACAY7TqcNu1a1d7R7L9pxtvvNEuP+OMMw5Ydv3119fYxtatWzV69GhFRESoQ4cOmjRpkioqKmqs89VXX+m4446zVxT26NFDL7/88gFtefrpp217wsLCNGTIEH3//ffyV19//bXOP/98e4cQs0/ee++9GsvNNYpm5IqOHTsqPDxcI0aM0Pr162usY+4IN3bsWDvws7mBxoQJE+z9qatbvny5TjvtNLtPzF1QZsyYcUBb3n77bfXu3duu079/f82aNeuw2+KP+7G8vFx33nmn/UyRkZF2nSuuuEI7d+485DH80EMP1VinNe9H48orrzxgH5199tk11uF4PPR+rO1npZkefvhh7zqt/XicPn26TjjhBLVp08b+Prjwwgu1du3aGuuUlJTY3zHmjphRUVEaM2bMATchOlK/V+rTFn/cj+b79eabb1avXr3s/39ycrJuueUW5ebm1thObcfrG2+8UWOd1rwf/S3nNOl+dLdimZmZ7l27dnmn2bNn23sWf/nll3b56aef7r722mtrrJObm+t9fUVFhbtfv37uESNGuH/88Uf3rFmz3PHx8e7Jkyd719m4caM7IiLCPXHiRPfq1avdTz31lDswMND96aefetd544033CEhIe4XX3zRvWrVKvuesbGx7oyMDLc/Mp/zL3/5i/udd96x++vdd9+tsfyhhx5yx8TEuN977z33Tz/95P71r3/t7tatm7u4uNi7ztlnn+0eOHCge+HChe5vvvnG3aNHD/ell17qXW72c0JCgnvs2LHulStXul9//XV3eHi4+5///Kd3ne+++87uyxkzZth9e/fdd7uDg4PdK1asOKy2+ON+zMnJscfVm2++6V6zZo17wYIF7hNPPNE9ePDgGtvo0qWLe+rUqTWO0YKCAu/y1r4fjfHjx9vjrfo+ys7OrrEOx+Oh92P1/Wcm8/MqICDAnZaW5l2ntR+Po0aNcr/00kv2sy1btsx97rnnupOTk2vsg+uvv97duXNn95w5c9xLlixxn3TSSe6TTz7ZJ79XDtUWf92P5li46KKL3B988IF7w4YNtv09e/Z0jxkzpsZ2zHFstlP9eKx+jLT2/ehvOacp92OrDrf7u/XWW93du3d3V1VVef/Tzby6mP9kl8vlTk9P98579tln3dHR0e7S0lL7/M9//rO7b9++NV538cUX24POw4SWG2+80fu8srLS3alTJ/f06dPd/m7/X4Jm3yUmJroffvjhGkEtNDTU/iIzzMFvXrd48WLvOp988on9Rbljxw77/JlnnnHHxcV596Nx5513unv16uV9/vvf/949evToGu0ZMmSI+w9/+EO92+IvagsT+/v+++/telu2bKkRJh577LE6X8N+3BduL7jggjpfw/HYsOPR7NMzzzyzxjyOxwM7UMy+nDdvnredJqi//fbb3nVSU1PtOuYP2CP5e6U+bfHX/Vibt956y4an8vLyeh/H7Ee33+Scpt6PrbosobqysjL95z//0dVXX2275T1mzpyp+Ph49evXT5MnT1ZRUZF32YIFC+wps+o3ixg1apTy8vK0atUq7zrmlFl1Zh0z3/O+S5curbGOy+Wyzz3rtCSbNm2yN9Ko/nnMfaDNKQjP5zGP5tSvuaOch1nffO5FixZ51xk2bJi9vXL1/WZOqezdu7de+7Y+bWlJzCk3c2yafVedOe1rTuMce+yx9hRx9dNF7MdfTpmZ02nmNOYNN9ygPXv2eJdxPB4+c6rw448/tuUb++N4/IXnNHnbtm3to/lZb0qOqrfdlF+Y0+rVfz4eid8r9WmLv+7HutYxZUVBQTXvTWVOc5vf4ebupS+++KItafFgP/pPzmnq/eiIO5Q1BVNflpOTY+vzPC677DJ16dLF1qCZOjFTA2l+CL/zzjt2ufkBu/9d0DzPzbKDrWMOjOLiYvsDvbKystZ11qxZo5bG87lr+zzV94kJGtWZH0jmG676Ot26dTtgG55lcXFxde7b6ts4VFtaClOLZI6/Sy+91P4A9zB1ZqbOyey7+fPn2x9Mu3bt0qOPPmqXsx9l62svuugiux/S0tJ011136ZxzzrE/MAMDAzkeG+CVV16xdXxmv1bH8fiLqqoq3XbbbTrllFNsaDBM+0yw3/8P1P0/35H4vVKftvjrftxfVlaWpk2bpuuuu67G/KlTp+rMM8+0taKff/65/vjHP9paenOcGuxH+U3Oaer9SLj92QsvvGB/4Zn/YI/q3yjmLxdz8cLw4cPtL8ju3bv7qKVobcxfs7///e9tj8Ozzz5bY9nEiRO9Xw8YMMD+cPjDH/5gLyTwx1si+sIll1xS4/vY7Cfz/Wt6c833Mw6f6QEzF+CZC0Oq43is2WO4cuVKffvtt75uiqP3owlQ5mKnPn366L777qux7J577vF+bc4kFBYW2rMJnnDbmtxYx350as6hLEHSli1b9MUXX+iaa6456HrmtJexYcMG+5iYmHjAlXye52bZwdYxvW/mKk9zKsD0HtW2jmcbLYmnzQf7POYxMzOzxnJz6tJcAXuo/Vb9Pepap/ryQ7WlpQRbc4zOnj27Rq9tXceo2ZebN2+2z9mPBzr66KPt913172OOx/r75ptvbM/OoX5etubj8aabbtJHH32kL7/8UklJSd75pn3mFK05S3iwz3ckfq/Upy3+uh898vPz7ZkZcxbh3XffVXBw8CGPx+3bt6u0tNQ+Zz/6T85p6v1IuJX00ksv2dOS5q+/g1m2bJl9NH/ZGEOHDtWKFStq/GL0BBDzV6RnnTlz5tTYjlnHzDdMz8bgwYNrrGNOH5jnnnVaEnPK0RyI1T+P+cva1C56Po95NAewqbHxmDt3rv3cnm8ss44ZmsiEu+r7zdRMmlOX9dm39WlLSwi2Zogj88eXqWM8FHOMmlomz2l29uOBzC83U3Nb/fuY4/HwznKZn1kDBw485Lqt7Xg0Z1dMkDBByxxD+5dgmP1mAlj1tps/FMxQS9V/Ph6J3yv1aYu/7kfP//nIkSPtZ/3ggw8OOItQ1/FojjPPWQT2o//knCbfj+5WzlyxZ4bGMFfsVmeGFzFD2pjhKDZt2uR+//333UcffbR72LBhBwyRMXLkSDvMhhn2on379rUOkTFp0iR75d/TTz9d6xAZ5krfl19+2V65fd1119khMqpfnehP8vPz7ZAgZjKH0KOPPmq/9lzFb4bpMe03+2z58uX2qurahgI79thj3YsWLXJ/++23dhiX6kMvmSsnzZBB48aNs8OYmH1k9uP+QwYFBQW5H3nkEbtvp0yZUuuQQYdqiz/ux7KyMju8UVJSkj22qg/T4rlCdf78+fbKdLPcDMf0n//8xx5/V1xxhfc9Wvt+NMvuuOMOe7Wt+T7+4osv3Mcdd5w93kpKSrzb4Hg89Pe1YYYIMp/bXC29P45Ht/uGG26wQ5R99dVXNb5ni4qKagx3ZH7nzJ071/5+GTp0qJ188XvlUG3x1/1ojkMzgkb//v3t7+rq65j9Z5hhwp5//nl73Kxfv96O1GH22b333ut9n9a+Hzf4Wc5pyv3Y6sPtZ599Zn+Qr127tsb8rVu32v/gtm3b2v8QM+6l+Y+rPv6bsXnzZvc555xjx2o0Y7/96U9/qjEUiWHGzR00aJAdpsQcOGbcuf2ZceHMf6pZxwyZYcbb9Ffm85h9tv9khlzyDNVzzz332F9iZt8NHz78gP27Z88eGx6ioqLskCJXXXWV/eVanRm/8tRTT7XbOOqoo+wvtNqGfznmmGPsfjNDkXz88cc1ltenLf64H80PmtqWVR+HeenSpfYHvPnhFRYW5k5JSXE/+OCDNUJba9+P5oe4+aFsfhibgGSGqjLjK+7/hyPH46G/rw0TQs3POhNS98fxuG/oqdqm6j/zTQD/4x//aIdEM4HgN7/5jQ0cvvi9Up+2+ON+rOtYNZP52ekZzs/sH/M9HRkZacexfu6552yHVnWteT9u9bOc05T7MeDnHQAAAAC0eNTcAgAAwDEItwAAAHAMwi0AAAAcg3ALAAAAxyDcAgAAwDEItwAAAHAMwi0AAAAcg3ALAAAAxyDcAoCDbN68WQEBAd57xANAa8MdygDAQSorK7V7927Fx8crKCjI180BgCOOcAsADlFWVqaQkBBfNwMAfIqyBADwU2eccYZuuukmO8XExNje2HvuuUeePomuXbtq2rRpuuKKKxQdHa3rrruu1rKEVatW6bzzzrPrtGnTRqeddprS0tK8y//1r38pJSVFYWFh6t27t5555hmffF4AaAqcswIAP/bKK69owoQJ+v7777VkyRIbYJOTk3Xttdfa5Y888ojuvfdeTZkypdbX79ixQ8OGDbNBee7cuTbgfvfdd6qoqLDLZ86caV//j3/8Q8cee6x+/PFHu+3IyEiNHz/+iH5WAGgKlCUAgJ8ygTQzM9P2vJreWOP//u//9MEHH2j16tW259YE0nfffdf7GtNz261bNxtSBw0apLvuuktvvPGG1q5dq+Dg4APeo0ePHrb399JLL/XO++tf/6pZs2Zp/vz5R+iTAkDToSwBAPzYSSed5A22xtChQ7V+/Xp74Zhx/PHHH/T1pjzBlCHUFmwLCwtteYLpGY6KivJOJtxWL1sAgJaEsgQAaMFM+cDBhIeH17msoKDAPj7//PMaMmRIjWWBgYFN1EIAOLIItwDgxxYtWlTj+cKFC9WzZ896h88BAwbYut3y8vIDem8TEhLUqVMnbdy4UWPHjm3SdgOAr1CWAAB+bOvWrZo4caKtmX399df11FNP6dZbb633681IC3l5ebrkkkvsBWmmpOHf//633Z5x//33a/r06XryySe1bt06rVixQi+99JIeffTRZvxUANB86LkFAD9mhvkqLi7WiSeeaHtrTbA1IybUV7t27ewoCZMmTdLpp59ut2EuNDvllFPs8muuuUYRERF6+OGH7TqmzKF///667bbbmvFTAUDzYbQEAPDj0RJMEH388cd93RQAaDEoSwAAAIBjEG4BAADgGJQlAAAAwDHouQUAAIBjEG4BAADgGIRbAAAAOAbhFgAAAI5BuAUAAIBjEG4BAADgGIRbAAAAOAbhFgAAAHKK/w/gM+dAQhmxNwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAHWCAYAAAB5SD/0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYrhJREFUeJzt3Qd8VFX2wPGT3kglJKGEUKVJkyaCWECKZUWxs8q6rK4KKrI2dpWirtgL9l52se5/bbgiCAoWOiIQkA4JJQXSSG/z/5wb3piEYoAkU97v+/k85s2bN2/uFDJn7jv3XB+Hw+EQAAAAwCZ8Xd0AAAAAoDERAAMAAMBWCIABAABgKwTAAAAAsBUCYAAAANgKATAAAABshQAYAAAAtkIADAAAAFshAAYAAICtEAADOKo2bdrIn/70J1c3w+s9/vjj0q5dO/Hz85NevXo1ymO+/fbb4uPjIzt37hRvoZ/VJk2aNMpj8X8D8GwEwIBNWAHPypUrj3j72WefLaeeeupJP87//vc/mT59+kkfxy7mzZsnd999twwaNEjeeustefjhh13dJADwev6ubgAA97Vp0ybx9fU97gD4hRdeIAiuo4ULF5rX+I033pDAwEBXNwcAbIEeYABHFRQUJAEBAeJJCgoKxJNkZGRISEgIwa8X8rTPImAnBMAA6pznWFZWJjNmzJCOHTtKcHCwNG3aVAYPHizz5883t+u+2vurNN3CWqoHBH/7298kMTHRBNedOnWSJ554QhwOR43HLSoqkttuu01iY2MlPDxc/vCHP8iePXvMsar3LOu6btuwYYNcc801Eh0dbdqj1q5da9qjubXa1oSEBPnzn/8sBw4cqPFY1jE2b94sf/zjHyUyMlKaNWsm999/v2lXamqqXHzxxRIREWGO8eSTT9bptSsvL5cHH3xQ2rdvb56rvpZ///vfpaSkxLmPPq6mPejrYr1WmqpyLMuWLZPzzz/fPNewsDDp0aOHPPvss4f1Kp955pnm9qioKNP+jRs3/m6ba7++R/scWOk0P/zwg3mf9PXSx/nrX/8qpaWlkpOTI9ddd51poy6a4lH9Pda8Y72/vvevvvqq8zXq16+frFixosZj62fu119/lX379kldbd++XUaMGGGef4sWLeSBBx447DNWWVkpzzzzjHTr1s18PuLj4037s7Oza+yn93vooYekVatWEhoaKuecc44kJycf9pjWa7Jo0SK55ZZbJC4uztzH8uKLL5rH0uepbZowYYJ5nWr7+OOPpU+fPuZHkX7+9TOpn/0j5TqnpKTIhRdeaNZbtmzp/L+3bt06Offcc83zT0pKkvfee++w1/RY/48BOyAFArCZ3Nxc2b9//2Hb9Uvx92hwNHPmTPnLX/4i/fv3l7y8PJNTvHr1ajnvvPNMALF3717zRfqvf/3rsEBCA9lvv/1Wxo8fbwZ7ff3113LXXXeZL/inn366xhf8Rx99JNdee62cfvrpJqi44IILjtquyy+/3HyZa/6sFehoGzQQuv76603gqkGLBlt6uXTp0hqBubryyiulS5cu8sgjj8iXX35pgp6YmBh55ZVXTDDx6KOPyuzZs+XOO+80gdqQIUOO+Vrpa/TOO+/IZZddZoJ+DVz1tdNA9JNPPjH76GukbVq+fLm8/vrrZtsZZ5xx1GPqc9KAp3nz5nL77beb56XHmzNnjrmuvvnmGxk1apQJ/PX90h8Tzz33nMkx1vdJg9n6cuutt5o2aDClr6k+Fw2Ef/rpJ2ndurV5PzQlRgf5aX65BsXVaWB28OBB87nR9+Oxxx6TSy+91Lxv1pkH/Wzo+zJu3Ljf/XGgKioqZOTIkeZzo8ebO3euTJs2zfwg0UDYoo+px9PPhwbxO3bskOeff15+/vln+fHHH52PP3XqVPNZ0B8duuhrOHz4cBPoH4kGv/qDQO9n9QDr+6Cv0bBhw+Tmm282qUUvvfSSCfarP5bVHv186WclPT3d/LjRfbRd+tpWf576PuvnUJ+nfjYnTpxogt5//OMfMnbsWPNavvzyy+Z1HzhwoLRt27ZO/48BW3AAsIW33npLI8NjLt26datxn6SkJMe4ceOc13v27Om44IILjvk4EyZMMMeq7dNPPzXbH3rooRrbL7vsMoePj49j69at5vqqVavMfpMmTaqx35/+9Cezfdq0ac5tuq7brr766sMer7Cw8LBt77//vtl/8eLFhx3jxhtvdG4rLy93tGrVyrTrkUcecW7Pzs52hISE1HhNjmTNmjXmmH/5y19qbL/zzjvN9oULFzq36bHCwsKOeTyrTW3btjXvibajusrKSud6r169HHFxcY4DBw44t/3yyy8OX19fx3XXXXfY52HHjh3ObbVf36N9Dqz7jhgxosZjDxw40LxmN91002Gv5VlnneXcpo+p92/atKkjKyvLuf2zzz4z27/44ovD9v2911zpPrrvrbfeWuO10c9sYGCgIzMz02z7/vvvzX6zZ8+ucf+5c+fW2J6RkWHup/ev/jz//ve/H9Ym6zUZPHiwec4W6xjDhw93VFRUOLc///zzZv8333zTXC8tLTXv26mnnuooKipy7jdnzhyz39SpUw97ng8//PBhn019/T/44APn9l9//fWw97Uu/48Bb0cKBGAzeppUexJrL3oq/fdoD5T2oG7ZsuW4H1d7ArXMl/a2Vae9oxp7ffXVV+a69thZPWm1exuP5qabbjpsm55CthQXF5teb+0VVNrTVZv2hlm0nX379jXt0t7q6s9f0za0h/L3nquaPHnyYc9VaQ/z8dIeQO2lnDRpUo2eQGX1ZmuawJo1a0wPuvZeW/S91Z49q131RV+b6j3pAwYMOOw1s17LI71m2uuuKRIWTdtQ1ffVHms9Zl16fy3aE2rR9ul17bHV3nErzUBTXfQ10c+FtWjqgaYT6FkKpfvr/fSzV/156ntwNDfccIN5zhbrGHqf6gNKdT9Nq7E+C9oDq/ng+rnXtASLnvno3LnzET8z1T+z1mdTe4CvuOIK53bdprdVf01P5v8x4C1IgQBsRk95akBSmwYiR0qNqE5PIWs+6SmnnGJOaeupZk1TqEvwvGvXLpP7qDm91enpbet261IDBet0raVDhw5HPXbtfVVWVpY57fzBBx+YwKJ2Gkhtesq+Og2QNBDRPMza22vnEddmPYfabdZ0AQ0+rOd6PLZt22Yuj1WqzjquBj216eusKSd6Wl6DpPpwpNdMaY537e21c2uPdH8rGD7SvnWlr7umf1Snn1dl1TzWwE8/A5qneyTW58V6PTW9pjpNcageuB/rs3i090QHPWo7q3/uj7Sf0gBY862r08+mtqP266x5x7XTe2q//ifz/xjwFgTAAOpM8w01EPvss89M/VrNW9XcXc0zrN4b1diq9/ZatBdMc1E1x1jzjbVnTwc+6Ze9XtZWvdfuWNtU7QFVR1M7EPFUmm96JEd7fY60/Uiv2cm+vidK338NfjVv9khqB5Yn+1lsCMfz2td+Td31/zHQmEiBAHBc9NS6DtR5//33TYUE7TWqXjngaEGfjkbXAXI66Kk6HeFv3W5daoCip/ur27p1a53bqL1dCxYskHvvvdf0Al9yySXmdHftnsGGYj2H2qeYdVCTjvy3nuvx0EoJav369cd8XKWDrGrT11l7s4/V+6u9mrUrE+jp++OpwOBq+rrXTrfQCh/KGgCor6X24uvAQB2YVnvp2bNnjdez9vuYmZlZ517qo70n+rrqZ7z65/5I+1nbTuQzczL/jwFvRwAMoM5qn/rXXlU9zV+9tJcVYNUOpHQEvfYk6kj76rTnSYNmHdGutHyVVTaqOq1kUFdWL1jtnkQte9UY9Lke6fGeeuopc3msihZHc9ppp5nT63rM2q+t9Ty1OoT2dmv1ier7aNCsPX1Wu45GA8PFixfX2KaVHY7WA9wYTqQMWvXPmL42el0rLQwdOtR5dkCfk5apq02rRVivnQbDej/97FX/LB3P50iPoekOs2bNqnEMnfhE0zCsz4KmJWmvtPbCVv//pLnxWunjRD4zJ/P/GPB2pEAAqLOuXbuaKZN1sJD2IOnAnf/85z81Bh3pbUoHu2kwq8HoVVddJRdddJGpoaolmjQXU3vZNCjT07A6QMjq4dT7jxkzxgQZ+kVtlUGzevHqklagg4us8lAaQGmNVH2s2r3KDUWfm5bt0uBRg6mzzjrLlDrTwHT06NHmdTiR3FYtnaWvowa52nunAa8GhzqgSfN7lZYc0x8TWvZKB6NZZdA0D/T3evj09LcOKNTXX3vMf/nlF3Pc2nnQjel4y6BpbqwOpNT9dVCeBpA6gExrMFupDfp+aBk0LQWmgwa1rJkGutrTqwPktPSYlq/T/bXsne6n5ef0B4QORtRj1vU10WNMmTLFnInQ9BstBag9uvoDT8udaZ1fpY+vpfb0fdX2XX311c4yaNpzfccdd0hj/j8GvJ6ry1AAaBxWmaYVK1Yc8XYtU/V7ZdC0hFn//v0dUVFRpuRS586dHf/85z9NCSeLloDSMlTNmjUzJZmq/5k5ePCg44477nC0aNHCERAQ4OjYsaPj8ccfr1FiShUUFJhyajExMY4mTZo4Ro8e7di0aZM5VvWyZFYJM6u8VXW7d+92XHLJJaatkZGRjssvv9yxd+/eo5ZSq32Mo5UnO9LrdCRlZWWOGTNmmNJl+lwTExMdU6ZMcRQXF9fpcY7mhx9+cJx33nmO8PBwc78ePXo4nnvuuRr7fPPNN45BgwaZ9ygiIsJx0UUXOTZs2FBjnyOVQdMyXffcc48jNjbWERoaasqcaXm6o5VBq/1ZqutraZU20/e+ttrvz/GWQdPH2bZtmyk7ps8hPj7eHK96CTLLq6++6ujTp495nfT17N69u+Puu+82n5Pqr4m+j82bNzf7nX322Y7169fX+TWpXvZM/7/oZ0HbdPPNNx9Wzk59+OGHjt69ezuCgoLM53/s2LHms3ys1/P3Ppva1uplz+ry/xjwdj76j6uDcAD4PdpT17t3b/n3v/9tivwDAHCiyAEG4Hb0tH1tmhKhaQC/NwMbAAC/hxxgAG5Hc3dXrVplcmX9/f1NzqUuN95442E1ZgEAOF6kQABwOzoznQ4a2rBhg+Tn55sJE7RQvw6g04AYAICTQQAMAAAAWyEHGAAAALZCAAwAAABbIZmujlNr6hSu4eHhdSrCDwAAgMalWb0HDx6UFi1amKpBx0IAXAca/DLyHAAAwP2lpqZKq1atjrkPAXAdaM+v9YLqFKsAAABwL3l5eabD0orbjoUAuA6stAcNfgmAAQAA3Fdd0lUZBAcAAABbIQAGAACArRAAAwAAwFYIgAEAAGArBMAAAACwFQJgAAAA2AoBMAAAAGyFABgAAAC2QgAMAAAAWyEABgAAgK0QAAMAAMBWXBoAL168WC666CJp0aKFmbf5008/Peq+N910k9nnmWeeqbE9KytLxo4dKxERERIVFSXjx4+X/Pz8GvusXbtWzjzzTAkODpbExER57LHHGuw5AQAAwL25NAAuKCiQnj17ygsvvHDM/T755BNZunSpCZRr0+A3OTlZ5s+fL3PmzDFB9Y033ui8PS8vT4YPHy5JSUmyatUqefzxx2X69Ony6quvNshzAgAAgHvzd+WDjxo1yizHsmfPHrn11lvl66+/lgsuuKDGbRs3bpS5c+fKihUrpG/fvmbbc889J+eff7488cQTJmCePXu2lJaWyptvvimBgYHSrVs3WbNmjTz11FM1AmUAAADYg0sD4N9TWVkp1157rdx1110mcK1tyZIlJu3BCn7VsGHDxNfXV5YtWyaXXHKJ2WfIkCEm+LWMGDFCHn30UcnOzpbo6OjDjltSUmKW6r3IAOwnJSVF9u/fXy/Hio2NldatW9fLsQAAXhwAa5Dq7+8vt9122xFvT0tLk7i4uBrbdP+YmBhzm7VP27Zta+wTHx/vvO1IAfDMmTNlxowZ9fhMAHhi8NulS2cpLCyql+OFhobIxo2/EgQDgBtw2wBY83WfffZZWb16tRn81pimTJkikydPrtEDrIPnANiH9vxq8PvA42OlTfuqH80naue2dJl612xzTAJgAHA9tw2Av//+e8nIyKjxZVFRUSF/+9vfTCWInTt3SkJCgtmnuvLyclMZQm9Tepmenl5jH+u6tU9tQUFBZgEADX47d2vl6mYAAOxQB1hzf7V8mQ5YsxYd1Kb5wDogTg0cOFBycnJMb7Fl4cKFJnd4wIABzn20MkRZWZlzH60Y0alTpyOmPwAAAMC7ubQHWOv1bt261Xl9x44dJtDVHF7t+W3atGmN/QMCAkyvrQavqkuXLjJy5Ei54YYb5OWXXzZB7sSJE+Wqq65ylky75pprTD6v1ge+5557ZP369Sa14umnn27kZwsAAACxewC8cuVKOeecc5zXrbzbcePGydtvv12nY2iZMw16hw4daqo/jBkzRmbNmuW8PTIyUubNmycTJkyQPn36mJHYU6dOpQQaAACATbk0AD777LPF4XDUeX/N+61Ne4vfe++9Y96vR48eJqcYAAAAcNscYAAAAKAhEAADAADAVgiAAQAAYCsEwAAAALAVAmAAAADYCgEwAAAAbIUAGAAAALZCAAwAAABbIQAGAACArRAAAwAAwFYIgAEAAGArBMAAAACwFQJgAAAA2AoBMAAAAGyFABgAAAC2QgAMAAAAWyEABgAAgK0QAAMAAMBWCIABAABgKwTAAAAAsBUCYAAAANgKATAAAABshQAYAAAAtkIADAAAAFshAAYAAICtEAADAADAVgiAAQAAYCsEwAAAALAVAmAAAADYCgEwAAAAbIUAGAAAALZCAAwAAABbIQAGAACArRAAAwAAwFYIgAEAAGArBMAAAACwFQJgAAAA2AoBMAAAAGyFABgAAAC2QgAMAAAAWyEABgAAgK24NABevHixXHTRRdKiRQvx8fGRTz/91HlbWVmZ3HPPPdK9e3cJCwsz+1x33XWyd+/eGsfIysqSsWPHSkREhERFRcn48eMlPz+/xj5r166VM888U4KDgyUxMVEee+yxRnuOAAAAcC8uDYALCgqkZ8+e8sILLxx2W2FhoaxevVruv/9+c/nf//5XNm3aJH/4wx9q7KfBb3JyssyfP1/mzJljguobb7zReXteXp4MHz5ckpKSZNWqVfL444/L9OnT5dVXX22U5wgAAAD34u/KBx81apRZjiQyMtIEtdU9//zz0r9/f0lJSZHWrVvLxo0bZe7cubJixQrp27ev2ee5556T888/X5544gnTazx79mwpLS2VN998UwIDA6Vbt26yZs0aeeqpp2oEygAAALAHj8oBzs3NNakSmuqglixZYtat4FcNGzZMfH19ZdmyZc59hgwZYoJfy4gRI0xvcnZ29hEfp6SkxPQcV18AAADgHTwmAC4uLjY5wVdffbXJ91VpaWkSFxdXYz9/f3+JiYkxt1n7xMfH19jHum7tU9vMmTNND7S1aN4wAAAAvINHBMA6IO6KK64Qh8MhL730UoM/3pQpU0xvs7WkpqY2+GMCAADABjnAxxP87tq1SxYuXOjs/VUJCQmSkZFRY//y8nJTGUJvs/ZJT0+vsY913dqntqCgILMAAADA+/h6QvC7ZcsW+eabb6Rp06Y1bh84cKDk5OSY6g4WDZIrKytlwIABzn20MoQey6KD6zp16iTR0dGN+GwAAAAgdg+AtV6vVmTQRe3YscOsa5UHDVgvu+wyWblypankUFFRYXJ2ddGqDqpLly4ycuRIueGGG2T58uXy448/ysSJE+Wqq64yFSDUNddcYwbAaX1gLZf24YcfyrPPPiuTJ0925VMHAACAHVMgNLg955xznNetoHTcuHGmVu/nn39urvfq1avG/b799ls5++yzzboGxxr0Dh061FR/GDNmjMyaNcu5rw5imzdvnkyYMEH69OkjsbGxMnXqVEqgAQAA2JRLA2ANYnVg29Ec6zaLVnx47733jrlPjx495Pvvvz+hNgIAAMC7uHUOMAAAAFDfCIABAABgKwTAAAAAsBUCYAAAANgKATAAAABshQAYAAAAtkIADAAAAFshAAYAAICtEAADAADAVgiAAQAAYCsEwAAAALAVAmAAAADYCgEwAAAAbIUAGAAAALZCAAwAAABbIQAGAACArRAAAwAAwFYIgAEAAGArBMAAAACwFQJgAAAA2AoBMAAAAGyFABgAAAC2QgAMAAAAWyEABgAAgK0QAAMAAMBWCIABAABgKwTAAAAAsBUCYAAAANgKATAAAABshQAYAAAAtkIADAAAAFshAAYAAICtEAADAADAVgiAAQAAYCsEwAAAALAVAmAAAADYCgEwAAAAbIUAGAAAALZCAAwAAABbIQAGAACArRAAAwAAwFYIgAEAAGArLg2AFy9eLBdddJG0aNFCfHx85NNPP61xu8PhkKlTp0rz5s0lJCREhg0bJlu2bKmxT1ZWlowdO1YiIiIkKipKxo8fL/n5+TX2Wbt2rZx55pkSHBwsiYmJ8thjjzXK8wMAAID7cWkAXFBQID179pQXXnjhiLdroDpr1ix5+eWXZdmyZRIWFiYjRoyQ4uJi5z4a/CYnJ8v8+fNlzpw5Jqi+8cYbnbfn5eXJ8OHDJSkpSVatWiWPP/64TJ8+XV599dVGeY4AAABwL/6ufPBRo0aZ5Ui09/eZZ56R++67Ty6++GKz7d1335X4+HjTU3zVVVfJxo0bZe7cubJixQrp27ev2ee5556T888/X5544gnTszx79mwpLS2VN998UwIDA6Vbt26yZs0aeeqpp2oEygAAALAHt80B3rFjh6SlpZm0B0tkZKQMGDBAlixZYq7rpaY9WMGv0v19fX1Nj7G1z5AhQ0zwa9Fe5E2bNkl2dvYRH7ukpMT0HFdfAAAA4B3cNgDW4Fdpj291et26TS/j4uJq3O7v7y8xMTE19jnSMao/Rm0zZ840wba1aN4wAAAAvIPbBsCuNGXKFMnNzXUuqamprm4SAAAAvD0ATkhIMJfp6ek1tut16za9zMjIqHF7eXm5qQxRfZ8jHaP6Y9QWFBRkqkpUXwAAAOAd3DYAbtu2rQlQFyxY4Nymubia2ztw4EBzXS9zcnJMdQfLwoULpbKy0uQKW/toZYiysjLnPloxolOnThIdHd2ozwkAAAA2D4C1Xq9WZNDFGvim6ykpKaYu8KRJk+Shhx6Szz//XNatWyfXXXedqewwevRos3+XLl1k5MiRcsMNN8jy5cvlxx9/lIkTJ5oKEbqfuuaaa8wAOK0PrOXSPvzwQ3n22Wdl8uTJrnzqAAAAsGMZtJUrV8o555zjvG4FpePGjZO3335b7r77blMrWMuVaU/v4MGDTdkzndDComXONOgdOnSoqf4wZswYUzvYooPY5s2bJxMmTJA+ffpIbGysmVyDEmgAAAD25NIA+Oyzzzb1fo9Ge4EfeOABsxyNVnx47733jvk4PXr0kO+///6k2goAAADv4LY5wAAAAEBDIAAGAACArRAAAwAAwFYIgAEAAGArBMAAAACwFQJgAAAA2AoBMAAAAGyFABgAAAC2QgAMAAAAWyEABgAAgK0QAAMAAMBWCIABAABgKwTAAAAAsBUCYAAAANgKATAAAABshQAYAAAAtkIADAAAAFshAAYAAICtEAADAADAVgiAAQAAYCsEwAAAALAVAmAAAADYCgEwAAAAbIUAGAAAALZCAAwAAABbIQAGAACArRAAAwAAwFYIgAEAAGArBMAAAACwFQJgAAAA2AoBMAAAAGyFABgAAAC2QgAMAAAAWyEABgAAgK0QAAMAAMBWTigAnjZtmuzatav+WwMAAAC4YwD82WefSfv27WXo0KHy3nvvSUlJSf23DAAAAHCXAHjNmjWyYsUK6datm9x+++2SkJAgN998s9kGAAAAeGUOcO/evWXWrFmyd+9eeeONN2T37t0yaNAg6dGjhzz77LOSm5tbvy0FAAAA3GEQnMPhkLKyMiktLTXr0dHR8vzzz0tiYqJ8+OGH9dFGAAAAwPUB8KpVq2TixInSvHlzueOOO0yP8MaNG2XRokWyZcsW+ec//ym33XZb/bUUAAAAcFUA3L17dzn99NNlx44dJv0hNTVVHnnkEenQoYNzn6uvvloyMzNPqnEVFRVy//33S9u2bSUkJMQMvHvwwQdNT7NF16dOnWoCcd1n2LBhJgCvLisrS8aOHSsRERESFRUl48ePl/z8/JNqGwAAAGwUAF9xxRWyc+dO+fLLL2X06NHi5+d32D6xsbFSWVl5Uo179NFH5aWXXjIpFdq7rNcfe+wxee6555z76HXNRX755Zdl2bJlEhYWJiNGjJDi4mLnPhr8Jicny/z582XOnDmyePFiufHGG0+qbQAAALBRAGzl+tZWVFQkDzzwgNSXn376SS6++GK54IILpE2bNnLZZZfJ8OHDZfny5c52PPPMM3LfffeZ/XQA3rvvvmsG5n366admHw2c586dK6+//roMGDBABg8ebALoDz74wOwHAAAAezmhAHjGjBlHTCEoLCw0t9WXM844QxYsWCCbN28213/55Rf54YcfZNSoUea6pmCkpaWZtAdLZGSkCXSXLFliruulpj307dvXuY/u7+vra3qMj0TrGufl5dVYAAAA4B38T+RO2vPq4+Nz2HYNUGNiYqS+3HvvvSb47Ny5s0mz0JxgHVynKQ1Kg18VHx9f43563bpNL+Pi4mrc7u/vb9pp7VPbzJkz6zWQBwAAgIcGwJr2oIGvLqecckqNIFiDU+0Vvummm+qtcR999JHMnj3bzDank27oBByTJk2SFi1ayLhx46ShTJkyRSZPnuy8rkG4lnUDAACAzQJgzbfV3t8///nPpodU0w0sgYGBJk934MCB9da4u+66y/QCX3XVVc7qE7t27TI9tBoA6wx0Kj093VSBsOj1Xr16mXXdJyMjo8Zxy8vLTWUI6/61BQUFmQUAAAA2D4CtXlctS6b5uQEBAdKQNKdYc3Wr01QIq7qEtkODWM0TtgJe7a3V3F6dmllpQJ6Tk2PqFvfp08dsW7hwoTmG5goDAADAXuocAGtgqXV0lU56oRUfdDkSa7+TddFFF5mc39atW5sUiJ9//lmeeuop0wOtNAVDUyIeeugh6dixowmItW6wpkhoeTbVpUsXGTlypNxwww2mVJrOWqcTeGivsu4HAAAAe/E/nvzfffv2mQFlWlXhSIPgrMFxmg9cH7RcmQa0t9xyi0lj0ID1r3/9q5n4wnL33XdLQUGBqeurPb1a5kzLngUHBzv30TxiDXqHDh1qepTHjBljagcDAADAfuocAGvagFXh4dtvv5XGEB4ebvKOdTkaDbi19vCx6g9ru3UgHQAAAFDnAPiss85yrmuqgVZFqN0LrD3AOi0yAAAA4FUTYWgAnJmZedh2raygtwEAAABeNxXykXKAtQ5w9dxbAAAAwKPLoFmTQ2jwq4PTQkNDnbfpwDctP2aVIwMAAAA8PgDWMmRWD/C6devM5BcWXe/Zs6fceeed9d9KAAAAwBUBsFX94frrr5dnn3223ur9AgAAAG4ZAFveeuut+m8JAAAA4K4BsE488cgjj5gpiHWCCmtqYsv27dvrq30AAACA6wPgv/zlL7Jo0SK59tprpXnz5kesCAEAAAB4TQD81VdfyZdffimDBg2q/xYBAAAA7lYHODo62jktMgAAAOD1AfCDDz4oU6dOlcLCwvpvEQAAAOBuKRBPPvmkbNu2TeLj46VNmzYSEBBQ4/bVq1fXV/sAAAAA1wfAo0ePrt9WAAAAAO4cAE+bNq3+WwIAAAC4aw4wAAAAYKse4IqKCnn66aflo48+kpSUFCktLa1xe1ZWVn21DwAAAHB9D/CMGTPkqaeekiuvvFJyc3Nl8uTJcumll4qvr69Mnz69flsIAAAAuDoAnj17trz22mvyt7/9Tfz9/eXqq6+W119/3ZRGW7p0aX22DwAAAHB9AJyWlibdu3c3602aNDG9wOrCCy80M8QBAAAAXhUAt2rVSvbt22fW27dvL/PmzTPrK1askKCgoPptIQAAAODqAPiSSy6RBQsWmPVbb71V7r//funYsaNcd9118uc//7k+2wcAAAC4vgrEI4884lzXgXCtW7eWJUuWmCD4oosuqs/2AQAAAK4PgGsbOHCgWQAAAACvDIDffffdY96uqRAAAACA1wTAt99+e43rZWVlUlhYKIGBgRIaGkoADAAAAO8aBJednV1jyc/Pl02bNsngwYPl/fffr/9WAgAAAK4MgI9EB8Dp4LjavcMAAACAVwbASmeF27t3b30eEgAAAHB9DvDnn39e47rD4TATYzz//PMyaNCg+mobAAAA4B4B8OjRo2tc9/HxkWbNmsm5554rTz75ZH21DQAAAHCPALiystJcZmZmmsoPkZGR9d0uAAAAwD1ygHNycmTChAkSGxsrCQkJEhMTYy6nTJliSqEBAAAAXtMDnJWVZWZ827Nnj4wdO1a6dOlitm/YsEGee+45mT9/vvzwww+ydu1aWbp0qdx2220N1W4AAACg4QPgBx54wKQ8bNu2TeLj4w+7bfjw4XLttdfKvHnzZNasWSfWIgAAAMBdAuBPP/1UXnnllcOCX6VpEI899picf/75Mm3aNBk3blx9thMAAABo/BxgLXXWrVu3o95+6qmniq+vrwmAAQAAAI8PgHXg286dO496+44dOyQuLq4+2gUAAAC4PgAeMWKE/OMf/5DS0tLDbispKZH7779fRo4cWZ/tAwAAAFw7CK5v377SsWNHUwqtc+fOZha4jRs3yosvvmiC4Hfffbd+WwgAAAC4KgBu1aqVLFmyRG655RZT91eDX2smuPPOO89Mhdy6dev6bB8AAADg2png2rZtK1999ZVkZ2fLli1bzLYOHTqYCTEAAAAAr5sJzhIdHS39+/c3S0MGvzrpxh//+Edp2rSphISESPfu3WXlypXO27UXeurUqdK8eXNz+7Bhw5yBefUJPHTijoiICImKipLx48dLfn5+g7UZAAAAXhgANwbtZR40aJAEBASYXmedce7JJ580wbdFaw/rpBsvv/yyLFu2TMLCwsxgveLiYuc+GvwmJyebmermzJkjixcvlhtvvNFFzwoAAAAelQLRmB599FFJTEyUt956q0YKRvXe32eeeUbuu+8+ufjii802HYSnE3XopB1XXXWVGaA3d+5cWbFihRnAp3TaZp2w44knnpAWLVoc9rg6mE8XS15eXgM/UwAAADQWt+4B/vzzz03Qevnll5v6wr1795bXXnutRt3htLQ0k/ZgiYyMlAEDBpjBekovNe3BCn6V7q8TdmiP8ZHMnDnTHMdaNAgHAACAd3DrAHj79u3y0ksvmbJrX3/9tdx8881y2223yTvvvGNu1+BX1Z6aWa9bt+ll7ck5/P39Td6ytU9tWuEiNzfXuaSmpjbQMwQAAEBjc+sUiMrKStNz+/DDD5vr2gO8fv16k+87bty4BnvcoKAgswAAAMD7uHUPsFZ26Nq1a41tXbp0kZSUFLOekJBgLtPT02vso9et2/QyIyOjxu3l5eWmMoS1DwAAAOzDrXuAtQLEpk2bamzbvHmzJCUlOQfEaRC7YMEC6dWrl3PAmub2arqEGjhwoOTk5MiqVaukT58+ZtvChQtN77LmCgMNRX+o7d+/v16OFRsbyyQzAADYIQC+44475IwzzjApEFdccYUsX75cXn31VbNYM9BNmjRJHnroIZMnrAHx/fffbyo7jB492tljPHLkSLnhhhtM6kRZWZlMnDjRVIg4UgUIoL6C3y5dOkthYVG9HC80NEQ2bvyVILgRFJZkysaUD2V7ziq5Y2a8FPn/KGUVf5AAvxBXNw0AYIcAuF+/fvLJJ5+YQWkPPPCACXC17JnW9bXcfffdUlBQYOr6ak/v4MGDTdmz4OBg5z6zZ882Qe/QoUNN9YcxY8aY2sFAQ9GeXw1+H3h8rLRpX3OQ5vHauS1dpt412xyTALhhlVUUyWdLrpScgu3mesfuwVIhabJt7xdySstLxdfXrf9kAgDqyO3/ml944YVmORrtBdbgWJej0YoP7733XgO1EDg6DX47d2vl6magjpZsfNgEv6FBcRITMFQenfm8jJ2YIPnF+2Rn+nxpmzDS/M0BAHg2tx4EBwCNZVf6Qkne9S+zfm7PJ6Vl+OXy49f5Elx+uviIr2Tlb5a9WUtd3UwAQD0gAAZge4Ul++XbtXeb9R5tx0tiszOdt/k74qR13DlmfV/WcikuzXFZOwEA9YMAGIDtrd76vBSV7peY8M4yoNNdh93eLPJUiQitqj6TmbvOBS0EANQnAmAAtlZeUSyb93xi1gd2mSL+fr8NoK0uLqqnudyflywVlWWN2kYAQP0iAAZgazq4raQsV5oEt5BWsYOPul9kaJIEBURKRWWJZB2sWZ8cAOBZCIAB2NrG1I/MZadWl4mvj99R9/Px8ZVmkT3MekbuWnE4HI3WRgBA/SIABmBbBwt3y+79P5j1zomX/+7+sRFdxcfHT4pKMk1pNACAZyIABmBbm/b8n4g4pGXTMyQiNPF399f84Kbhnc16Zs4vjdBCAEBDIAAGYEsOR6X8mvqxWe+ceEWd79cssru51AkzKivLG6x9AICGQwAMwJb2HlgqB4t2S6B/uLRLGFnn++kscYH+TaTSUW7uDwDwPATAAGxpZ8YCc9kuYdRRS58diU6FHBnaxqznFOxosPYBABoOATAAW0rNXGwuW8edddz3jQxray5zC3ZSDQIAPBABMADbyS/aK9n5W8RHfI9Z+/dowkMTTTWI0vI8KS7NapA2AgAaDgEwANtJOdT7q7O76eQWx8vPN0DCQ1qZ9dzCnfXePgBAwyIABmDb9IfEZkNO+BiRYW2caRAAAM9CAAzAVrR0mTX5xckEwFGH8oA1naK8oqTe2gcAaHgEwABsJSP3F5O7G+gfIXGRPU/4OJo6ERwQLQ6plLzClHptIwCgYREAA7Bl+oMOfvP19T+pY/2WBkE5NADwJATAAGylPvJ/LRGhSebyYNGekz4WAKDxEAADsI2SslzJyPnFrLeuhwC4SXCCTo1hUipKyw7WQwsBAI2BABiAbezLWmFydqPC2kmTkBYnfTw/vyAJDWpm1vOL99ZDCwEAjYEAGIBtpGWvNJcJMf3q7ZhWIH2wiAAYADwFATAA29iXtcpcNo/uU2/HbBLcwlkODQDgGQiAAdhCRWWpZOZW5f8mRPett+OGH+oBLirdTz1gAPAQBMAAbCEzd70JgoMDYyTy0CQW9SHAP8w5nXJB8b56Oy4AoOEQAAOwhfTs1eYyIfo08fHxqddjW2kQlEMDAM9AAAzAFvZZA+DqMf2h9kA48oABwDMQAAPweg6H47cKEPU4AM4SHtLSXBaUpEtlZXm9Hx8AUL8IgAF4vYNFqVJUsl98fQOlWWT3ej9+UECU+PuFiMNRIQUlGfV+fABA/SIABuD19mVV9f42izhV/P2C6/34mlP8Wzk08oABwN0RAAPwemnZqxos/aF2HnBBcXqDPQYAoH4QAAOwTwAc03ABcFhwvDMPGADg3giAAXi10rKDknVwk1lPiDqtwR4nNChOkyGkrDxfSsvzG+xxAAAnjwAYgFfbn5esdSCkSUhLCQ3WILVh+PkGSEhgjFknDQIA3BsBMACvnwHOGgDX0JxpEATAAODWCIABeLWM3LXmsllUjwZ/rLDgBHNZUJzW4I8FADhxBMAA7NEDHNnwPcChQVU9wIUlGWbyDQCAeyIABuC1SsryJLdgu1lviAkwagsJaio+Pn5SUVkiJWU5Df54AIATQwAMwMsHwFVNVWwNUGtIvj5+EhrUzKyTBwwA7osAGIDXpz/ENkLv72F5wNQDBgC3RQAMwGtlHhoAF9eYAfChPGB6gAHAfXlUAPzII4+Ij4+PTJo0ybmtuLhYJkyYIE2bNpUmTZrImDFjJD295hdPSkqKXHDBBRIaGipxcXFy1113SXl5uQueAQDXDIBrzB7g3wbCVToqGu1xAQBeGACvWLFCXnnlFenRo2YpozvuuEO++OIL+fjjj2XRokWyd+9eufTSS523V1RUmOC3tLRUfvrpJ3nnnXfk7bfflqlTp7rgWQBo3AFwOxo9AA4KiBI/3yBxOCqkqORAoz0uAMDLAuD8/HwZO3asvPbaaxIdHe3cnpubK2+88YY89dRTcu6550qfPn3krbfeMoHu0qVLzT7z5s2TDRs2yL///W/p1auXjBo1Sh588EF54YUXTFAMwDvtP9T7Gx7SSoIDf/u70dD0LFXVtMjaC0waBAC4I48IgDXFQXtxhw0bVmP7qlWrpKysrMb2zp07S+vWrWXJkiXmul52795d4uOrTkuqESNGSF5eniQnV40Qr62kpMTcXn0B4Fkyctc1eu+vJezQlMsFxRmN/tgAgN/nL27ugw8+kNWrV5sUiNrS0tIkMDBQoqKiamzXYFdvs/apHvxat1u3HcnMmTNlxowZ9fgsADS2/S4MgKtPiAEAcD9u3QOcmpoqt99+u8yePVuCg4Mb7XGnTJli0iusRdsBwLO4YgBc7R7gotIDDIQDADfk1gGwpjhkZGTIaaedJv7+/mbRgW6zZs0y69qTq3m8OTk1Z1zSKhAJCVW1OPWydlUI67q1T21BQUESERFRYwHgOUrKciW3cGejTYFcW6B/BAPhAMCNuXUAPHToUFm3bp2sWbPGufTt29cMiLPWAwICZMGCBc77bNq0yZQ9GzhwoLmul3oMDaQt8+fPN0Ft165dXfK8ADSszFxrBrjERh0AV3MgXNWMcKRBAID7cesc4PDwcDn11Jq9N2FhYabmr7V9/PjxMnnyZImJiTFB7a233mqC3tNPP93cPnz4cBPoXnvttfLYY4+ZvN/77rvPDKzTnl4A3jsBhivSHyyhwfFysGj3oQC45jgFAIBruXUAXBdPP/20+Pr6mgkwtHqDVnh48cUXnbf7+fnJnDlz5OabbzaBsQbQ48aNkwceeMCl7QbQcDIPDYCLi3JdABwW9FslCF85xWXtAAB4QQD83Xff1biug+O0pq8uR5OUlCT/+9//GqF1ANwpAHZpD/ChALiodL+ESqXL2gEA8LAcYAA4kQFweYUpZj02ovEHwFmCAiLFzzfQDISr9KGWOAC4EwJgAF5Z/iwitLUEB7ou97b6jHCVPjUr1QAAXIsAGIBXcYcBcJbfAuBsVzcFAFANATAAr+LKCTBqCz00IUYFPcAA4FYIgAF4lYwc9+kBtipBVPrkii9/bQHAbfAnGYDXKC7NkYNFqS6bAa62oIAo8fUNFPGpkITEAFc3BwBwCAEwAK8rfxYRmmSqMLha9RnhWncIdHVzAACHEAAD8ML6v67v/a2dBpHYngAYANwFATAALxwA10PchVUJgh5gAHAfBMAAvIY7lUCrXQmiVbuqSTEAAK5HAAzAKxSXZsvBot1mvVlkN3EXwQFRIg4/CQr2laLyPa5uDgCAABiAt+X/Roa2cYsBcBYfH1/xdVTNSFdQtt3VzQEAEAAD8BbuOADO4ncoAC4s2+bqpgAARMTf1Q0AgPqQ4QyA3WcAnMXXEW0u6QFufCkpKbJ///56OVZsbKy0bt26Xo4FwLUIgAF4hf1u3APsDIDLd0ilo0J8ffxc3STbBL9dunSWwsKiejleaGiIbNz4K0Ew4AUIgAF4vKLSLDlYVDXALNYtA+AmUlpcKYHBxZJbsEOim3RwdZNsQXt+Nfh94PGx0qZ9/Ekda+e2dJl612xzTAJgwPMRAAPwngFwYW0lKCBC3I2P+MruHaXSrkuwqVVMANy4NPjt3K2Vq5sBwI0wCA6AF02A4X69v5aUraU1gnUAgOsQAAPweJk5a912AFztAHj/oWAdAOA6BMAAPF5mnvv3AKduO9QDnJcsDkelq5sDALZGAAzAoxWVHJB8awBchPvMAFfbvpQy8ZVAKSvPl5wCyqEBgCsRAAPwkgFw7dxyAJylslIkNKCtWc84lLIBAHANAmAAHs0TBsBZmgRUVX/IzCUABgBXIgAG4NEycteYyzg3HgBnCQusCoAzcn5xdVMAwNYIgAF4LIfD4Qwm46J6ibsLC+hoLvfnbZCKyjJXNwcAbIsAGIDHKihOk8KSTPHx8ZPYSPcdAGcJ9kuQQP9wqagskayDm1zdHACwLQJgAB7L6v1tGt5JAvxCxN35+Pg6axWTBwwArkMADMDj83+bRfYUTxEXVdVWKkEAgOsQAAPwWOnO/F9PCoCreoAzchkIBwCuQgAMwCPpbGpWDeB4TwqAD/VWZx3cLGUVRa5uDgDYEgEwAI+Uk7/dzKrm7xci0U2qqit4grDgBAkNaiYOR4UcyN3g6uYAgC0RAAPwSOnO/N/u4uvrL57Cx8fHmbNMGgQAuAYBMACP5Kz/60ED4A7LA2ZCDABwCc/pNgE8QElZrqRlr5Z9+d/JNRNjpNR3o5SURUhQQISrm+Z1fpsAwwMD4EOl0AiAAcA1CICBerJlz2eyeP39UlqeZ64PHhkupbJB1u3cIOEhraRF09MlPKSlq5vpFcoriuVA3kaPDYDjo3uby9zCnVJUmiUhgTGubhIA2AopEMBJKi7NkfmrJ8o3a243wW94SKLEBJ8hX32QK36Vzcw+B4t2y+bd/2X2r3qiwW+lo0yCA2PMjwtPExQQKdFNOpj19OzVrm4OANgOATBwEkrK8uTTJZfL1n1zzHS8/U6ZLNec/a10jL5Tvvh3joSUD5Huba43wY5DKmV72lyTIoGTk57zszP/VweVeaL46D7mMi17laubAgC2QwAMnKCKyjKZt3qCZOdvkbCgeLn0jP9K3463HVaRQPN/2yWcL3FRvcz13fu/J+g5SdbrlxDTVzxVAgEwALgMATBwAhwOh/yQPN0Es1qHdlS/N46Zi6q9lImxQ6Rl04Hm+u79P8rBor2N2GLveu3Tslaa9eaHgkhPlBB9mnMgnP6YAgA0HgJg4AQk7/q3bEiZraGtDOv1rDSLPPV376NBcEJ0P4kJ76RhnOxI+0rKmQnsuGk+dUFJuvj6+EszDxwAZ4kKaydBAVFSUVkiB/KYEAMAGhMBMHCc8gpTZcmvD5v10zvfK20Thtf5vhoEJ8WdawKf0vJ82Zn+jenRRN1Zvb+xkd0kwC9EPJWPj6/ER1VVgyAvHAAal1sHwDNnzpR+/fpJeHi4xMXFyejRo2XTppqj6IuLi2XChAnStGlTadKkiYwZM0bS09Nr7JOSkiIXXHCBhIaGmuPcddddUl5e3sjPBt5Ag9XF6+8zPbfNY/pLr3Y3HPcx/HwDpX3z882guZyC7bI/L7lB2uqt9mVXBcAJ0Z6b/1s7DzidPGAAaFRuHQAvWrTIBLdLly6V+fPnS1lZmQwfPlwKCgqc+9xxxx3yxRdfyMcff2z237t3r1x66aXO2ysqKkzwW1paKj/99JO888478vbbb8vUqVNd9Kzgybbu+0JSMxeJr2+gnNX9YdOLdyJCg5pJy6ZnmPU9B34ydW1RN9agsebR/cTTWXnA9AADQONy64kw5s6dW+O6Bq7ag7tq1SoZMmSI5ObmyhtvvCHvvfeenHvuuWaft956S7p06WKC5tNPP13mzZsnGzZskG+++Ubi4+OlV69e8uCDD8o999wj06dPl8DAQBc9O3hivd8fkx8w6306THTWcT1ROmhOe3+LS7Nkb9Yyad3srHpqqXfPtGfVUk6I8dwBcNU/A3omIL94r+QX7ZUmIS1c3SQAsAW37gGuTQNeFRNTNWuSBsLaKzxs2DDnPp07d5bWrVvLkiVLzHW97N69uwl+LSNGjJC8vDxJTj7yqeeSkhJze/UFWLnlGSkq3S/RTTpK7/Y3nfTxfH38nEGvVgIoKtlfD630bunZWv/XIRGhSaYX3dMF+IdJ0/AuZp1eYABoPB4TAFdWVsqkSZNk0KBBcuqpVSPu09LSTA9uVFRUjX012NXbrH2qB7/W7dZtR8s9joyMdC6JiYkN9KzgKfIKUyR5l1Z9EBncbYbJ460PEaGtJSqsvQnqUjIXMyCuzvm/nt/7e3gaRNVzAwA0PI8JgDUXeP369fLBBx80+GNNmTLF9DZbS2pqaoM/Jtzbis1Pm6l3E2PPlFaxVbm79SWx2ZnmNPjBolTJLdhRr8f2Ns76vx48AUZtVjC/L2uFq5sCALbhEQHwxIkTZc6cOfLtt99Kq1atnNsTEhLM4LacnJwa+2sVCL3N2qd2VQjrurVPbUFBQRIREVFjgX0dyNsom/d8atYHdL6n3o8fFBAp8YdmidubtZRe4KPQySIyctZ4TQUIS4tDk6Psz9tg8swBADYPgDUQ0OD3k08+kYULF0rbtm1r3N6nTx8JCAiQBQsWOLdpmTQtezZwYNWXil6uW7dOMjIynPtoRQkNart27dqIzwaeaumvj5kUhQ7NL6zThBcnIj66j/j6BEhhSabkFGxrkMfwdPtz10t5ZbH5wXCyAxDdSVhwnDMNRn8AAQBsHgBr2sO///1vU+VBawFrzq4uRUVVs2dpfu748eNl8uTJpndYB8Vdf/31JujVChBKy6ZpoHvttdfKL7/8Il9//bXcd9995tja0wscy76slZKS+a2Zdax/pzsb7HF0QgdnL/ABeoGPZPeBn8xli5gBJ1x+zl21PJRWo+89AKDhufW3yEsvvWRycM8++2xp3ry5c/nwww+d+zz99NNy4YUXmgkwtDSapjX897//dd7u5+dn0if0UgPjP/7xj3LdddfJAw9UlbMCjmXV1lnmsnPi5RIZ1qZBHys++jQzuK6o9IBk529p0MfyRHv2/2guW8UOFm/T8lAaxO79VUE+AMDGdYDr0gsWHBwsL7zwglmOJikpSf73v//Vc+vg7TJy1kpq5mIzQK13+1sa/PH8/YIlPuo0cxpcewL1NL+39XSeKJ0oxKqSYPWWepMWTavOWGXnbzZpMN5Q4g0A3BnfrsBRrN72orns2OJiiQhtnFJ4cVG9xM83SIrLsiU7f2ujPKYn0OC3orJUwoLiD+XLepeQwBhpGt7ZrJMGAQANjwAYOIKsg1tkR5rOROgjpzVC76/F3y/IBMFWWSxygavsPpT+0DJ2kPj4+Ig3snq29xyomsQHANBwCICBI/j5UO9v24QREh3euBUHdDCcVoTQWeeoC1xlz6Hc2Faxg8RbWeXQCIABoOERAANHmPVty97PzXqfDhMa/fE1F7hZVA+zvi97hTjE3r3AJWW5kpG71tkD7K1axPQXH/E1P3ryi488SyUAoH4QAAO1/LztJXE4KiSx2VnSLLK7S9qQENXbDL4rKE6TCp9MsbOqHlGHyf1tEnzkyWu8gdY3jj1UZ3rvfnqBAaAhEQAD1WjP26+7/8+s9+kw0WXtCPAPk9iIbma9zO9XsTM7pD9YrGm2UzIXubopAODVCICBan7Z/qpUVpZK85j+0jymn0vbkhDdx5wSr/DNlDadAsWudu//wWvLn9XWutk55jIl8zuprCx3dXMAwGsRAAOHFJUckA273nN5768lKCBCYiKqSmONujJS7CivMFVyCrabHwLWZBHeTH/0aCpESVmOpOf87OrmAIDXIgAGDlm7400pryyWZpE9pFXsmeIOmkf31fRX6d4/VArK7FcRYkf6PHOpPfIaGHo7X19/Zy/wzvRvXN0cAPBaBMDAoUoD63e9a9ZP63CL29SaDQ6MFv/KVmZ9b35VbrKd7Eybby7bJJwndpEUf6653JWxwNVNAQCv5dZTIQONZf3Of0lp+UGJbnKKtI0fLu4koLKzlPvtlqziJZKdv02im3jfTGhHUlyabcrAKXd7TxpS62Znia+Pv5kJMLdgl0SGJbm6SR6jorJMMnJ+MXnj6dmrJDcvV26e2kyK/ZZJZm62qSQS4B/q6mYCcAMEwLC9svJCWbvjjWq9v+51YsTPESlrlxVKjwGhpkTbuT2fEDvYlbHQlKPTKYIbaypqd6CpHgkx/WTvgSWmF7hH2z+7uklur7yiWNbv+pf8vPVFM414dZo+VC67ZVfGbtkl30p4SEuTT94kpIXL2gvA9dzrmx5wgQ2p75svzYjQ1tKh+YXijuZ+mGsut+z51AwMs4Md6Vb6g316fy1t4oY6fwTg6HSq8C17PpP3Fw2VJRv/af4fBwfGSPvmF8iQUx+S9lF3yLvP7JfA8q4SGhRn6kkfLNotv+7+WHakzZOy8gJXPwUALkIADFurqCiRX7a9atZ7t7/ZDEJyRzs3l0pEYA+pdJTLmm2viB169FIP1cK1U/qDJSm+KgDee2CZlJYddHVz3PYz8t3au+WbNbdLftEeCQtuLuf0eEzGDVshw097Qbol/VFiQ86Upd8USGBlF+na+mrp3uZ6Z33tAwc3mrz/3IKdrn4qAFyAABi2tmnP/0lBSbqEBSdIp5aXijtr0WSMufx190dSUJwh3mz3/h+lvKJImgS3cAYsdhIV1laiwtpJpaNMdmV+6+rmuB09C/LJT2NMT66WyOvbcZJcc/a30jnxCvH18TtmacE28cOkc+KVpke4orLUTHuelr3a9CYDsA8CYNiWfvmt3vqiWe/V7kbx8wsSdxYReKrER51m2v3L9tfEDuXP2sSf5zYVORpbu4RR5nLLns9d3RS3ciBvo/z3x0tkf16ySXe4cMC/pN8pk8TfL7jOx9AptTu3uvzQjyuH7N7/vezM+EYcjsoGbTsA90EADNv6NfVjkw8YEhQrXVpfLe5OA0Frgo7klNmmSoI30gB/Z1pVANzWRuXPajul5SXmMjXzOzNJC0QyctbKZ0uvkqLS/RIb0VUuHzznhKfI1nSnpLihktjsLP3fJQfyNsiOtK8JggGbIACGbfMHV2193qyf1n6CBPiFiCdoHXeO+eIvryiUXw5VrvA2u9IXmsFMYUHx0sIGs78dTXR4B2kW2d3kfW/dN0fsLi1rlXyxbKyp2R0f1Vv+cPr7J13JQX9Uxkf1MoPmNJUiK3+zbE+bSxAM2AABMGxpY8oHUlC8zwyc0cExnqKqF/g258x1hSWZ4m00r1Od0urSY+Zz2qkXePOeT8TO9udtkC9X/MnU6tZZATXtoT5nBtTa2lYQnJ2/5VBPMDnBgDcjAIbtlFUUyeptL5j1Ph0mHFfuoDtomzDCTNesvcCrt1Y9D29RWJwhKZnfmfVOrS4Tu+vQ4iLx8fGTjJw1kpO/XexIJwOZs/w6E/wmRPeTC/q/I4H+Ter9caKatKvRE6x5wQC8FwEwbCd5579Mz2l4SCszatzTaC/w6Z3vMevJu2Z7VV3gTXs+MZNf6GA/u8x4dyyhQc0kMfZMs755z6diN1rt5Itlf5Sikv3SNKKLnN/v9QZNV9IgWAdeqvScn011CADeiQAYtqIDx6zc374dbxM/30DxRDrwp1XsYFMma8Xmp8Ub6CnnTYfSHzonXu7q5rhlGoSdTsvrJBX/W3G9HCxKlYjQJLmw3zv1mvZwNE0jOkvLplUD67QXOOvg5gZ/TACNjwAYtrJi8zNSWp5nepNOaVVVV9dTDeh0lzMwOpD3q3g6Pc2fnb9V/H2DzaloiHMmvAD/JiYQ3HPgJ7GDyspymbd64qFSZ03lwv7vSmiwzuTWOBKi+0hcZE9nSb6Dhbsb7bEBNA4CYNhG9sGtkpzyb7N+Rpf7PX6AVVxUT2mXcL6pY/rDhhke3zu4MfUjc9k2YaSZsABV9JR/p5ZVP9a8vf6z0s/x98n3S0rmt+bH0Pn93pDIsKRGTzNKbDZEosLam5QcrcJR4ZPXqG0A0LAIgGEbP238p/ky05mgWsWeId5gYJcp4ucbJHsPLJFtHlwqSwe/bd7zf2a9a+urXN0ct9Oj7Z/N4CwdIHjg4CbxZj9ve1E2pLxvavMO6z3LlClzBR8fX2mXMFKaBDeXisoSKfb/QSKbevaPZgC/IQCGLaRkLjI9Sr4+/jKw89/FW0SEJsppHW5xBviaN+mJtKaxToChg9+axwxwdXPcjvaAavUPtXb76+Ktft39H1m26XGzPrjrNGmbMNyl7dHJMrQSR3BAtDh8imTC9Dgpryx0aZsA1A//ejoOGkBKSors37//pI8TGxsrrVu3FrvSoHDxun+Y9VPbjDMjvb1Jr3Z/lU27/0/yClNk1dbn5PTO94on0YkNkndVpaZoMG/XqY9/T892N8j2tK9k897PpH+nuySsEXNiG0NKxnfy3dp7nJ/p7m3/JO7A3y9EOrYcLet3vCet2opsyX5c+lQOED/fAFc3DcBJIAB24+C3S5fOUlhYdNLHCg0NkY0bf7VtELxs0xNmyuMmIS2l3yl3iLfROsaDuk6Vr1b+RX7Z/oac0vJSiQk/RTzF+p3vSllFgcSEd5akuHNd3Ry3lRB9miRE95W07JWyfuc7MqBz1SBIb5CZu06+Xn2LSVHq2GK0s8yfu9Cc9ODyQZJd/o2er5BF66bIOT0e58ca4MEIgN2U9vxq8PvA42OlTfv4Ez7Ozm3pMvWu2eZ4dgyA07JXybqdb5v1s7o/3CAF9N2B5jUnxQ2TXRnfyII1k+TSQZ96RIm3svJCM6OdOq39zSbvEkfXq90NMnfVSlm/61+mRzg4MEq8YaKLL5dfbyZ20dJ+5/R8zC0/B36OaHnj0UyZML25bNr9HwkNipPTO9/t6mYBOEEEwG5Og9/O3Vq5uhkeqaKi5NApVYd0ajVGWjc7S7zZ2d0flg8XrzLTxq7c/KxH9BCu3/WuFJdlS0Roa0qf1UFS/DCJCe8kWQc3mfrPZ546QzxZUckB+XL5OCkq3S+xEV1lxGkvufUPt+SVxdI28q+yI/clM1gvODDa/CgB4Hnc72c2UE9+3PiQqSsbEhhryp55O62Telb3mWb9520vyb6sleLO8ov2ysots8x6nw63mgFHODYt3Teo6zSzriX9PLn+c2nZQfnfij9LbuFOCQ9pKef3e1sCA8LF3cWFnicDOlX1/C7Z+E/59VD5PgCehQAYXkmnjU3e9S+zfk7Px73iVHFdtGs+0vR2O6RSFqy5Q4pLc8Rd/ZA8w5z21rxWbTPqRkv4tUsYZfJlPbX+swa/c5aPk4zcXyQoIEou6P+ORw3q693+ZunZtqrn97u199pymmrA0xEAw+vo1KU6SEX16XCbJMWdI3aiPYThIa3MzGHzVt8iFZVl4m52pn8jO9K/NmXphpz6kFvmfLqzgV3+7qz/vD1trniS0vJ8+XLFnyQ9Z7WZ2viiAf+W6CYdxJPo4Dd9D7okXuX8sakl3AB4Ds45wqtoj+fXq26S8ooiaRV7pvQ95XaxGx2xPqrva/LJT5eZqXN/SJ5+KMj0cZuBbz8kV53G79F2vDSN6OzqJnlk/ede7f8qq7bMMq9l85i+EhrUTNxdcWm2SXtIz/lZAv0j5KIBs6VZ5KniifT/kw6s1UuduOPbX+4SR2WFdGl9paub5lXqqxyosntJUNREAAyvYXqWlo+TnILtEhbcXIb1esbjpzs+UU0jusiw3s/KVytvkA0ps00PW4+217u6WeZ0/Xfr7pGDRXtMWbq+He33A6U+T8Nv3/c/k+c+/+fb5KL+/3LrPOq8wlTn/08Nfv9wuucGvxY9czHk1H+Kj4+/SbnSz3ZBSZo58+QuPzg9WX2WA1V2LwmKmtz3ryVwHMoriuWrFeNNTqHO2nRh/3ckJKip2JmWRtNJMZb+OlN+3DDD/Bg4tc11Lm3T6m0vyta9X5jUh6E9n5QA/1CXtseTBfiFyIjTXpb//PgHkwqxfPOTblc/t3qd3y9XXC9FJfulSXALk/MbE95RvIEGwWd2e0AC/cPk520vm+ocOimNDkh154oWdioHquxeEhSHIwCGV/T8aq7r3qxlEuDfRC4c8K5HTQTRkHq1u1GKSjLllx2vy/fJU6Wsokh6t/+rS9qyI22eLLemue02Q1o0Pd0l7fAm0eEd5Jwej8r8n281lT+aRfaQ9s1HibvQHv8NKe+ZH2A61XXT8M5yfv+3pUlwgngT7e3VH5tazm/x+vvNzIy5BSlyXu9npUlIC1c3z+NRDhQNgQDYTWfGWpX2uPzzrZZSEDBXkneFmJ6yAL8wCfAPM7UngwOiJDiwqfj7BYmdHSzcLf9b+RfJOvir+PsGy/n93pRmkd1d3Sw3G6zzD/HzC5bVW583vcHFpVkyoNNdjXq6PDVzsXyzZpJZPzVpnHRLGttoj+3tOrS4SNKyV8u6nW/JNz/fKg7H02abO/ww1SnIt+z9zFzXiVqG9nrK5Kh7q66trzGpPfNXT5S07BXy0fejzIxxbROGu7ppAGohAHZDpeUHpdxxUKKb+YtDCqSoVJcj76un+8OC4yUsOMFchgQ1s03e696s5TJv1S2miL4OABrZ51WJj+7t6ma5ZRA8oNOd4u8XYnpg12x/xQxCGtZ7VqP0xGmd1EXr/i6VjnJJbDZEBnX1/prMjU0rEugPGw02NR9Yg8+ura92WXt2pH0t3ydPk4LiNPHx8TO9oz3b/sUWebE64c5lg+fINz/fZlKy5q66UTq3uty8BnZPywLcCQGwG+raeqwUHmgl14y9Qh544ipplRQtZRWFUlZeYIJjHUmts2eVleebS10OHKwqiK9fNmFB8aYXQovLO8TzaoT+Hv1yX/br42YWMZ3lTWeQGtX3dU41/o4+HSZIZGiSfLfuXtmXtVw+/v58UzKtY4uLGqQMmc7Et2LLM+bUvOrYYrQ5Xe/OA7U8lZ9vgAzt9bRJAdJBj1oGMCd/m/Q3P3yCG60d2Qe3ytJNj5gydyoiNEnO7fmkqVJhJ5FhSTL6jI9l2aYn5Jftr8qvuz+W7WlfmzMv+sOE/wOHq3RUmB9xmideUn7Q/P3ILt4o3fuHSLnPPsktqDA51fp51kXLAFI+ESeD/4VuSCdtCA1IlNRtpeLniJXIsCPnPmk+p/awFBSnOy8rKoslv3ivWfQUnAT4yF1PJEhK3rvSND1HEmL6euwpyMrKctm6b44s+/Ux8/yU9qwM7jbdpIbg93VocaEZeT9v9QTZn5csC9bcLut2vGl6EFs0HVBvj7N7/w+yeP1UyS3Ybq6f1mGi9D/lb7boAXRtRYKHzP9v/dGhed87MxbKOT0ea/AANOvgFlm1dZZs3TvH/CjVQY692t8kfTpMbNQA3J1osHZGl79Lu4QR8v36+80U5d8n3y9rtr8qvdvfJJ1bXSZ+NkphczgqTfUX/WGmlUCy87dJXuEuKSzJlMKS/Sb41c9ObTdPjZNi+Um2VP3Jr8HPtyoY1nrS+rnXSVWq1qsW/WEIHA0BsIePAo8Ka2sWa8BJSVmO+SOTX7THXGqPcdvOQbKv4FPZt/JT8RFfaRrR1QQ7LWL6S0JMPwkJjBF3pj3fempXR1jr6GoVHpIoZ/eYKa1iB7u6eR4nMqyNXHrGf2XNjtfl560vmtO0ny290gyg0t4pzR8N9G9y3MfVCTdSMhZKcsp7kpq5yGwLCYqVwV2nuUVOqh1UDca6R5pH9zO9wPoD5NMll0lS3LkmBaFF04H19iNE/19u2/c/07upZxQsbeOHm55nBqJWSYjuI2MGfyHJu/4tK7c8ayaoWbz+H7JyyzNmBsRTWo7xmooYVsdMbv52yS7YVhXs5m8z67n5O6S8svh37u0jwYExJpj19w2S4uJyWb8uWdqfkiBBwX5mIKV28uilqlovNt97RxLoH141ZiYwRsp8faRj9yAprcg235X8GIetAuAXXnhBHn/8cUlLS5OePXvKc889J/379xdvof+hq/6zRzvra25I3iQvPf9vufMfV0qpzzbJLdwp+/PWm2XtjjfMPlozt1lkN4mNOLREdjOlilz5B6KoNEv2Hlgq2/Z9KbvSFzj/cOofsh5t/iw92v6ZElonQXueNCWiS+IVpmzTr6kfS2buWlm0bq2ZWEGnJ27Z9AyJjz5NIkNbS1hI88Nyy/WLLr9wj6TlrJa0rJWSkvmdFJZkmNv0h5aWXOt3ymSPPePgyZLiz5UrY+bJTxseMjOU7cpYaJaY8E7SJv48ad3sbImP6nVcp+J1AhNNtdqXtcIMatyXvUIqDwUi+n7rcft2vM38/UBN+n+ne5tx5ozVxtQPTC+wnrXTH/W6aBpXYrOzpXWzIeb/nLuXT9OzcdrBot8neQW7JKdgh+QcCnh1+9H4+gZKZGgbiW7SXqJ0CWtbNXYlsKn5saxjWqp/JlevXi3j7uwj7/73Gumc1KpGukRFRbEpf6l/h0rLcqW4LFdKzJJjLisqS0wHkC6m48Rf5I6ZCfJzxnhJnhfhbIO5DKta1yoe9BrbZwIS2wTAH374oUyePFlefvllGTBggDzzzDMyYsQI2bRpk8TFec4c9MfLV8Jk2cICaff4BDnttNMkvzjN9NbsPbBM9mUtM0X0C4r3mcXK21M6YEr/GOiMU1WXSWZ6XR3EoX+sNMjWqhQnGyRbaRz6R1TbkpW/RdKzf5bs/M019tM/mt3aXCtdE68m8K1HOnhQZ7PS9IRNe/5rZrTSXkOdQU4Xi69PgDml6OsbYL7M9QtGv1hqCwmMNb1aXVpf5TwzAdfQ9+ucno+bCTPW7nhTNu3+j2Qd3GQWrQiiQVZkWDsTAGgQor1luui4AQ1sNbgoKMmo+v9ZmCq5BTsOO0Wt9++svZitxnhdabOGoH+79Md7t6Q/yq70hbJpz38kJeM7kx6hy8/bXjRBopaL02o22ouuefsRYUkSFhQn/n6hDdoxoT2j2tmg/781F/e3FDsrzW6f+SwcLNptBrUejXZUaFBZFVy2cwaa+h1SH/nP+jfI17+qKlKI2dLqiN8tZrxMaZa53J+1V/alpUpciyApLc8zA4F1qXncAPOdp+NJmgQ3N51DTUKam3UToJsKTNHm+9Gbe5BTjjIBiT5lP38Rf38f8Q+oWvz8fSQgQH67rpf+ul1fTx/9dSzBwYHy/tuLpUO7HuJObBMAP/XUU3LDDTfI9ddXzYalgfCXX34pb775ptx7771iF/ol1bHFH8yiSssOyv6DG2V/brLJCdUl++AWM5Ww9WV5NPoFqn/odFYna1BC1QCFILNu/VJ3OMqlsrJCHKK/2kvNIDZrMJ/+ITqa6CYdpXXcOaat2jPtzX9wXE1/2PRqd4M5Ta49OXv2LzEB8IGDm+RgYapUOspMtY3a9ItAv6j1NG/zmP7SKnaQ2/de2U1Uk3YypPtD0r/T30wvsPbUaw+uBjlaPlCX4/nBpKkymnqkFT00uOH/5fHT/yPtmo80S1HJgUPvyfeSuv97KS49YM7G6HK0v7kaiGlHRFWea6AJ3PTSz69qvWpwmMMEtJp765BKc6m9ovrDxrqsWgqrek7L86SkLM/Zq//7zyHIdIzogL+qXt0OVb26Tdq5RVqdpggGhIRI+KHB0QUZu2X6jU/JipVLpG3HKPN3LttK0cjfavKS9XtPL3U5FvM+BERLkOkICjV/B63BeVXr1hIsfj6B5v3QAeoauJt1qbr+2/ZD18XX/ADV90scjt/eQ/PDs+q9NJd6/dD2w7Y5Ks3fa01Jq9TFUW5SRnS9wmFtq3a7SSv5bZvuW1iYJ/fOipHopqEmkBWp0G9zEZ8TH1Sfmr6aANgVSktLZdWqVTJlyhTnNl9fXxk2bJgsWbLksP1LSkrMYsnNzTWXeXlHD9bqW35+vrn8NXm3FBX+1pbjtWtHprnU528d88jai7+0lwT5g8SFlUtZxX4prsyQ0vJ0Ka7IlJLyDCmtyJRyR76UVeaJQ8pEpFjyRUcmHGF0wnHw9QmUIN9mEuzfUkL8W0hIQJKEB3QWf59wKc8U2ZipgyO+P/YxfH2lslL/EJy8+jiWnlmoj/fv+N7D+nx+SRIiSdLKV8QRViFlFVlSIcXikHLzB1XfG3/fSPPH31HmkNIMkV26yNIGbFPjHsvz38MjaSZBcrm0Dxojpf4HpMSxV4pK95r/0xWOQqmoLBTx8RVf8RcfnwAJ9I0Uf78YCfKLkRC/RAnwixIpEslJ1UVPdf92upv38GSeXzMJlEulXeAlUuqXKQXl26WwbKcUl++Tkop0s1TW49/cOrRQAnzDJdA3Rvx9oyXQL1oCfbXnM1qC/eIkyC9OAnyjqwLtQpHyQpHM/SKZekXWH+U5usf79/PqdVJY0ElHkuhUQRIovUTnmIsLqZSyyiwprtDvugPmb15p5QEprciSMr3uyJPyygLzN7DqfdgnYhbvFBbhK6VlxWI+dkfj0B+/+mOrKqh3rjusdR8pLSmTPbuzpM0AR6PEUNZj6A+H3+PjqMteHm7v3r3SsmVL+emnn2TgwIHO7XfffbcsWrRIli1bVmP/6dOny4wZM1zQUgAAAJyM1NRUadXq2LMH2qIH+HhpT7HmC1v0V2xWVpY0bdq00U736a+YxMRE8yZGRDCIyNPw/nk+3kPPx3vo2Xj/PF9eI7+H2qd78OBBadHi9+cFsEUArCMQ/fz8JD09vcZ2vZ6QcPjAjaCgILNUFxUVJa6gHxj+43su3j/Px3vo+XgPPRvvn+eLaMT3MDIysk772WIalcDAQOnTp48sWLCgRq+uXq+eEgEAAADvZ4seYKUpDePGjZO+ffua2r9aBq2goMBZFQIAAAD2YJsA+Morr5TMzEyZOnWqmQijV69eMnfuXImP1/Gf7kdTMKZNm3ZYKgY8A++f5+M99Hy8h56N98/zBbnxe2iLKhAAAACArXKAAQAAAAsBMAAAAGyFABgAAAC2QgAMAAAAWyEAdjOLFy+Wiy66yMxiorPOffrpp65uEo7DzJkzpV+/fhIeHi5xcXEyevRo53z28AwvvfSS9OjRw1m4XWuFf/XVV65uFk7QI488Yv6WTpo0ydVNQR1Nnz7dvGfVl86dO7u6WThOe/bskT/+8Y9mFt2QkBDp3r27rFy5UtwFAbCb0drEPXv2lBdeeMHVTcEJWLRokUyYMEGWLl0q8+fPl7KyMhk+fLh5X+EZdP54DZpWrVpl/life+65cvHFF0tycrKrm4bjtGLFCnnllVfMDxp4lm7dusm+ffucyw8//ODqJuE4ZGdny6BBgyQgIMB0IGzYsEGefPJJiY6OFndhmzrAnmLUqFFmgWfS2tLVvf3226YnWIOpIUOGuKxdqDs9A1PdP//5T9MrrD9q9EsZniE/P1/Gjh0rr732mjz00EOubg6Ok7+/vyQkJLi6GThBjz76qCQmJspbb73l3Na2bVtxJ/QAAw0oNzfXXMbExLi6KTgBFRUV8sEHH5gefKZN9yx6JuaCCy6QYcOGubopOAFbtmwxqYDt2rUzP2RSUlJc3SQch88//9zMvHv55ZebTqDevXubH6PuhB5goIFUVlaavEM9DXTqqae6ujk4DuvWrTMBb3FxsTRp0kQ++eQT6dq1q6ubhTrSHy2rV682KRDwPAMGDDBnzzp16mTSH2bMmCFnnnmmrF+/3oyvgPvbvn27OXM2efJk+fvf/27+L952220SGBgo48aNE3dAAAw0YA+U/sEmd83z6BfvmjVrTA/+f/7zH/MHW/O7CYLdX2pqqtx+++0mBz84ONjVzcEJqJ4GqPnbGhAnJSXJRx99JOPHj3dp21D3DiDtAX744YfNde0B1u/Dl19+2W0CYFIggAYwceJEmTNnjnz77bdmUBU8i/ZSdOjQQfr06WMqe+jA1GeffdbVzUIdaL59RkaGnHbaaSaPVBf98TJr1iyzrmkt8CxRUVFyyimnyNatW13dFNRR8+bND+sw6NKli1ulstADDNQjh8Mht956qzll/t1337ld0j9OvDejpKTE1c1AHQwdOtSksFR3/fXXmzJa99xzj/j5+bmsbTjxAY3btm2Ta6+91tVNQR1p6l/tEqCbN282PfnuggDYDf+jV/+Vu2PHDnMqVgdRtW7d2qVtQ93SHt577z357LPPTK5aWlqa2R4ZGWnqIML9TZkyxZyC1f9vBw8eNO+n/pj5+uuvXd001IH+v6udcx8WFmZqkZKL7xnuvPNOU41Fg6W9e/fKtGnTzA+Xq6++2tVNQx3dcccdcsYZZ5gUiCuuuEKWL18ur776qlncBQGwm9G6o+ecc47zuiaQK82Z0UEBcG+a9K/OPvvsGtu1FMyf/vQnF7UKx0NPn1933XVm8I3+cNEcRA1+zzvvPFc3DbCF3bt3m2D3wIED0qxZMxk8eLApQ6jr8Az9+vUzZ0K1Q+GBBx4wZ0OfeeYZU9HDXfg49JwtAAAAYBMMggMAAICtEAADAADAVgiAAQAAYCsEwAAAALAVAmAAAADYCgEwAAAAbIUAGAAAALZCAAwAAABbIQAGABfQ2QInTZpUr8fU2SKjoqLq9ZgA4I0IgAEAAGArBMAAYBOlpaWubgIAuAUCYABwkfLycpk4caJERkZKbGys3H///eJwOMxtJSUlcuedd0rLli0lLCxMBgwYIN99991hKQ+tW7eW0NBQueSSS+TAgQM1bp8+fbr06tVLXn/9dWnbtq0EBweb7SkpKXLxxRdLkyZNJCIiQq644gpJT0+vcd+XXnpJ2rdvL4GBgdKpUyf517/+VeN2Hx8feeWVV+TCCy80j9+lSxdZsmSJbN261aR3aJvPOOMM2bZtm/M+v/zyi5xzzjkSHh5uHrdPnz6ycuXKen9dAeD3EAADgIu888474u/vL8uXL5dnn31WnnrqKROsKg2MNaD84IMPZO3atXL55ZfLyJEjZcuWLeb2ZcuWyfjx481+a9asMYHlQw89dNhjaED6f//3f/Lf//7X7FdZWWmC36ysLFm0aJHMnz9ftm/fLldeeaXzPp988oncfvvt8re//U3Wr18vf/3rX+X666+Xb7/9tsaxH3zwQbnuuuvMcTt37izXXHON2XfKlCkmsNVgXttnGTt2rLRq1UpWrFghq1atknvvvVcCAgIa8BUGgKNwAAAa3VlnneXo0qWLo7Ky0rntnnvuMdt27drl8PPzc+zZs6fGfYYOHeqYMmWKWb/66qsd559/fo3br7zySkdkZKTz+rRp0xwBAQGOjIwM57Z58+aZY6ekpDi3JScna7ezY/ny5eb6GWec4bjhhhtqHPvyyy+v8Xi6/3333ee8vmTJErPtjTfecG57//33HcHBwc7r4eHhjrfffvu4XysAqG/0AAOAi5x++ukmlcAycOBA08O7bt06qaiokFNOOcWkKViL9thaKQUbN240aRHV6f1rS0pKkmbNmjmv6/0SExPNYunataupHqG3WfsMGjSoxnH0unW7pUePHs71+Ph4c9m9e/ca24qLiyUvL89cnzx5svzlL3+RYcOGySOPPFIjPQIAGpN/oz4aAOB35efni5+fn0kT0MvqNBA+HpqL21Cqpy9YgfyRtmnahZWTrGkSX375pXz11Vcybdo0k+Kh+csA0JjoAQYAF9E83uqWLl0qHTt2lN69e5se4IyMDOnQoUONJSEhweyrg86OdP/fo/dLTU01i2XDhg2Sk5NjeoKtfX788cca99Pr1u0nQ3u177jjDpk3b55ceuml8tZbb530MQHgeNEDDAAuotUYNC1AB46tXr1annvuOXnyySdNkKgDxnSAmV7XgDgzM1MWLFhg0g4uuOACue2220xawhNPPGEGtX399dcyd+7c331MTT/QNAU9/jPPPGMqUdxyyy1y1llnSd++fc0+d911l6kMoY+r+3/xxRdmEN0333xzws+1qKjIHPeyyy4zFSl2795tBsONGTPmhI8JACeKHmAAcBENcDUw7N+/v0yYMMFUXrjxxhvNbdozqrdrJQYtQzZ69GgTMGrZMyt/+LXXXjPVI3r27Gl6VO+7777ffUxNS/jss88kOjpahgwZYgLcdu3ayYcffujcRx9Lj6vBdbdu3Uy5M22Pljc7UZrKoWXa9DlpgK8B9qhRo2TGjBknfEwAOFE+OhLuhO8NAAAAeBh6gAEAAGArBMAAAACwFQJgAAAA2AoBMAAAAGyFABgAAAC2QgAMAAAAWyEABgAAgK0QAAMAAMBWCIABAABgKwTAAAAAsBUCYAAAAIid/D+0pU8t28PEcAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAHWCAYAAAB5SD/0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXUFJREFUeJzt3Qd8VFXax/EnvZJOCCEJXXpRkCKKKAgKItjbClYsWJBd27uKirooKqiIZe2uqOiqqKgIAoIiTRDpSCe0hJDe27yf54SZTULok8xM7u/r5zrt5s6ZO5fkP2eee46XzWazCQAAAGAR3q5uAAAAAFCXCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAqmjWrJnceOONrm5Gvff8889LixYtxMfHR7p27Vonz/n++++Ll5eX7NixQ+oLPVZDQ0Pr5LmeeOIJs//S0tLq5PkA1B4CMFCP2QPP77//XuPj/fr1k44dO57y83z//fcmHOD4zJ49Wx588EHp06ePvPfee/Kvf/3L1U1CJfp+zJgxw9XNAFCLfGtz4wA8z6ZNm8Tb2/uEA/DUqVMJwcdp3rx5Zh+/88474u/v7+rmoIYAfMUVV8jw4cNd3RQAtYQeYABVBAQEiJ+fn3iSvLw88SSpqakSFBRE+LWQ8vJyKSwsdHUzABxCAAZw1BrgkpISefLJJ6V169YSGBgo0dHRcvbZZ8ucOXPM47qu9v4qLbewL5XD6d///ndJTEw04bpNmzbywgsviM1mq/K8BQUFcu+990pMTIw0aNBALrnkEtmzZ4/ZVuWeZXsd5vr16+W6666TyMhI0x61evVq0x6trdW2xsXFyc033ywHDx6s8lz2bfz111/yt7/9TcLDw6Vhw4by2GOPmXYlJyfLsGHDJCwszGzjxRdfPK59V1paKk899ZS0bNnSvFbdl//3f/8nRUVFjnX0ebXsQfeLfV9pqcrRLF26VAYPHmxea0hIiHTu3Flefvnlw3qVzznnHPN4RESEaf+GDRuO2ebq+/dIx4G9nObXX38175PuL32e22+/XYqLiyUzM1NGjBhh2qiLlnhUfo+17lh/Xt/7f//73459dOaZZ8ry5curPLcecxs3bpR9+/bJ8dq2bZsMGjTIvP74+HgZP378YceYPvdZZ51ljmH9ANKtWzf573//e9j+0Pfmgw8+cLw/1Wvi9bXqffr69di56aabJD8//7Dt3H333TJt2jTp0KGDea2zZs0yj/3xxx9y0UUXmeNL65f79+8vS5YsqfE1XXnllRIVFSXBwcHSq1cv+e6776qs8/PPP5vn+uyzz8y/0yZNmph/P9qDnZWVZY69MWPGSGxsrHkubWvl41Hpv2X9N6SvR9fRf6N63AL1GSUQgAXoH8KaTtzRoHEsGo4mTJggt956q/To0UOys7NNTfHKlSvlggsuMAFo79695o/of/7znyo/qwFEg+z8+fPllltuMSd7/fjjj/LAAw+YcDt58mTHuhoo9I/4DTfcYP7QL1iwQIYMGXLEdmkw0FCuX1fbg462QUOD/pHX4Lpu3ToTtvRSA0blYK6uvvpqadeunTz77LMmWDz99NMmbLz55pty/vnny3PPPWcCzD/+8Q8T1Pr27XvUfaX7SIOThg8N/Rpcdd9pEP3qq6/MOrqPtE3Lli2Tt99+29ynoexI9DVdfPHF0rhxY7nvvvvM69LtzZw509xWP/30kwlUGvz1/dIPE1OmTDE1xvo+aZh1lnvuuce0QcOW7lN9LRqcfvvtN0lKSjLvh5bE6El+Wl+uobiyjz/+WHJycsxxo+/HxIkT5bLLLjPvm/2bBz029H0ZOXLkMT8cqLKyMrnwwgvNcaPb06D5+OOPmw8kGoTt9EODHo/XX3+9Ce2ffvqpOY50X9qPNX1/7Mf6qFGjzH0a1iu76qqrpHnz5ua91f2r76MGTD1eqn8o0WNag7B+sNP3QY9F/aCi4Vc/JOhr1uNN6/H1mO/Zs6f52ZSUFHNcaLDWDxwa2vXY0vZraL/00kurPJe2RUP9ww8/LFu2bDHvv25bS20yMjLMcaHvl+5Pbfu4cePMz2l79PjSD1W6rzSo688vWrTohI4LwOPYANRb7733nibDoy4dOnSo8jNNmza1jRw50nG7S5cutiFDhhz1eUaPHm22Vd2MGTPM/U8//XSV+6+44gqbl5eXbcuWLeb2ihUrzHpjxoypst6NN95o7n/88ccd9+l1ve/aa6897Pny8/MPu++TTz4x6y9cuPCwbYwaNcpxX2lpqS0hIcG069lnn3Xcn5GRYQsKCqqyT2qyatUqs81bb721yv3/+Mc/zP3z5s1z3KfbCgkJOer27G1q3ry5eU+0HZWVl5c7rnft2tUWGxtrO3jwoOO+P//80+bt7W0bMWLEYcfD9u3bHfdV379HOg7sPzto0KAqz927d2+zz+64447D9uW5557ruE+fU38+Ojralp6e7rj/66+/Nvd/++23h617rH2udB1d95577qmyb/SY9ff3tx04cOCIx0dxcbGtY8eOtvPPP7/K/fre1PTc9uPm5ptvrnL/pZdeal5XZbqe7v9169ZVuX/48OGmXVu3bnXct3fvXluDBg1sffv2ddyn/xZ0G7/88ovjvpycHHM8NGvWzFZWVmbumz9/vllPX4e+Hjv996Hvy0UXXVTl+fX90vfWbvLkyebnK+8nwAoogQAsQEsUtCex+qK9PseivXvaS7R58+YTfl7tCdRhvrQHqzLtHdWM8MMPP5jb9q+G77rrrsN6G4/kjjvuOOw+7QGz03pL7fXWXkGlPXXVaU+fnbaze/fupl3aW1359etXwtpDeazXqsaOHXvYa1XVv7o+HvpV+fbt281X2NqOyuy92VomsGrVKtODrr3Xdvreag+9vV3Oovumck+69lhW32f2fVnTPtNedy2RsNPeUFV5Xe0p1W0eT++vnfayVi8/0F5e7R2v6fjQXlH9ZkSfv6Zj42iqH3u6DS2z0W9HKjv33HOlffv2VXqqdQQQPblOe+vttHdfy3m0vMS+DX3ftBfaXt6jtDxBe6W1nERLgCrTnvbKtfv290VLgCrT+7XER3vHlf24+vrrr02dMmAVBGDAAvQP6YABAw5bKgeRI9GvRbXm8bTTTpNOnTqZ8gWttT0eO3fuNPWYWpNYmX69bX/cfqlf1epXs5W1atXqiNuuvq5KT083ZQGNGjUyYUfrVO3radipTr+yr0zrObV2WL+urn6/BqZjvVZ9DdXbrOUCGjLsr/VEbN261Vwebag6+3Y1pFen+1k/BDjzJMGa9pnSGu/j2WfVf95+DB5r/x6N7vfKgVLp8aoqj3mspQ76gUjfY/2woMfH66+/XuOxcTTH+xqqH6MHDhwwJQ1Heq80gGo4tb+vR1rP/vjJvi/6PPbXrB9ItFRGPwzqv5trrrnGlG0QhlHfEYABHJXWvWoQe/fdd00Q03rHM844w1G/6iqVe/Mq12a+9dZbpofuyy+/NL1t9t7lmv6ga0/l8dynqp9QdSTV64w9lfZW1uRI+6em+2vaZ6e6f0/WL7/8YupnNfy+9tprpodVvwXRntcTfe7jfQ01HaO15UTel8pt1TYuXLjQ9JRr/b1+uNVQrN8eHOkYAOoDAjCAY9LeMj2x7JNPPjE9VPr1euWRA44U+po2bWpOkNOTnirTM/ztj9svNaDq1/2V6ck4x0t73+bOnWtOAtITtPQkIf0jXr1nsLbYX0P1UhE9mUl70O2v9UTYT75au3btUZ/XPn5zdbqftTdbR0Y4Eu291PZVpqUDJzICg6vpfq9ebqEjfCj7CYBffPGFCb96EqaWBehJg/otSF1+iNEeZx3N4UjvlfZk23ts9X090nr2x51Fn1dHopg0aZIprXjmmWfMCXx68ipQXxGAARxV9SHEtA5Rv+avPJSSPWBVD1I6dJf2Ir366qtV7tfRHzRkaAhROnyV0p65yvRM9uNl7+mq3gv30ksvSV3Q11rT82moUEcb0eJItKddv0bXbVbft/bXqfWjOrqGjhBQeR0NzdoDbm/X0UK29gBWpiM7uLL372SGQat8jOm+0dtaE6vBzn586DFX+XVpeURNM77p8Vx9fzuDtmHgwIGm3rZyaYZ+SNLRMbTeV0eHUPq+6UghixcvdqynpSz63mior1xbfCq0bKg6+9Tc1YdLA+oThkEDcFT6h1aHaNIxU7UnWIdA02GYKp90pI8pPdlNw6z+oddawqFDh8p5550n//znP80f/C5duphQpgFAT+yy93Dqz19++eUm6Gngtg+DZu/FO54eOQ0OWq6hw2BpgNLxUPW5qvcq1xZ9bTpslwYUDU96ApQGGA2metKT7oeT6ZnTGlXdjxpKtBdeA6+GQz0xUXszlQ45ph8mevfubU5Gsw+DpvWex5qdT2s/tWRE97/2mP/5559mu9XroOvSiQ6Dpj27Wuqi6+tJXnpypZ50qGPZaq+r/QOIfhjR4dK07EEnI9GTQ/XDXPWadj0etSRA19cadv0QYh+e7FTpUHv2cXf1pE9fX18zDJqGTT127fSbDP3GRd9X/Xel//b0WNLjWXuzT3S2xqPV+OsHIN0/2qus+0U/iCYkJFQ5AQ+obwjAAI5K//h+8803JkzqH2n9I6l/xPVkODsdx1VHbNBxVT/66CPTA6cBWP9I68/qmKPTp083E0Bo75UGNvvoCHYffvihOWFM/+jrmLn69bT+jJ4IpAHneGgvmrZDg422QXvbNAxpiKkLWhetJRca2vQ16Ot55JFHzJi0J0s/UOhX0VrWoRNy6Nf9+sHhtttuc6yj+8o+9q3ua+351ACu49LWdLJgZbodDVU6LbNuQ0c00IBm7zn1BPqBS9t+5513muNST7q07ws7HddZX6OO+awfvnS/6P7RD2bVA7AGXx1t4dFHHzUfJuzB2hl0UgytR9bjQsfu1fdTt63/bio/h56QpmMrP/TQQ+bDjI5qoqVH33777Ul9m3AkWhet+0Br/PWESf3go8eOHm/2E+mA+shLx0JzdSMAoCY6vNfpp59uwoFOXgAAgDNQAwzALWhPW3VaEqG9yMeagQ0AgBNBCQQAt6D1jytWrDC1sloXqaULuuhX0dXHMgUA4FRQAgHALWjdqdYd6jBMubm5ZmB/HZdUT6DTQAwAgLMQgAEAAGAp1AADAADAUgjAAAAAsBQK646DjtOo07nq2JK1NUUmAAAATp5W9ebk5Jix3481WQwB+Dho+OUsdAAAAPeXnJxsZjM8GgLwcdCeX/sOtc/TDgAAAPeRnZ1tOiztue1oCMDHwV72oOGXAAwAAOC+jqdclZPgAAAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFiKr6sbALibXbt2SVpa2ilvJyYmRpKSkpzSJgAA4DwEYKBa+G3Xrq3k5xec8raCg4Nkw4aNhGAAANwMARioRHt+NfyOf/56aday0UlvZ8fWFBn3wDSzPQIwAADuhQAM1EDDb9sOCa5uBgAAqG8nwS1cuFCGDh0q8fHx4uXlJTNmzHA8VlJSIg899JB06tRJQkJCzDojRoyQvXv3VtlGenq6XH/99RIWFiYRERFyyy23SG5ubpV1Vq9eLeecc44EBgZKYmKiTJw4sc5eIwAAANyLSwNwXl6edOnSRaZOnXrYY/n5+bJy5Up57LHHzOWXX34pmzZtkksuuaTKehp+161bJ3PmzJGZM2eaUD1q1CjH49nZ2TJw4EBp2rSprFixQp5//nl54okn5N///nedvEYAAAC4F5eWQFx00UVmqUl4eLgJtZW9+uqr0qNHD3OiktZVbtiwQWbNmiXLly+X7t27m3WmTJkigwcPlhdeeMH0Gk+bNk2Ki4vl3XffFX9/f+nQoYOsWrVKJk2aVCUoAwAAwBo8ahzgrKwsUyqhpQ5q8eLF5ro9/KoBAwaIt7e3LF261LFO3759Tfi1GzRokOlNzsjIqPF5ioqKTM9x5QUAAAD1g8cE4MLCQlMTfO2115p6X7V//36JjY2tsp6vr69ERUWZx+zrNGpU9Wx++237OtVNmDDB9EDbF60bBgAAQP3gEQFYT4i76qqrxGazyeuvv17rz/fII4+Y3mb7kpycXOvPCQAAgLrh6ynhd+fOnTJv3jxH76+Ki4uT1NTUKuuXlpaakSH0Mfs6KSkpVdax37avU11AQIBZAAAAUP94e0L43bx5s/z0008SHR1d5fHevXtLZmamGd3BTkNyeXm59OzZ07GOjgyh27LTk+vatGkjkZGRdfhqAAAAIFYPwDper47IoIvavn27ua6jPGhgveKKK+T33383IzmUlZWZml1ddFQH1a5dO7nwwgvltttuk2XLlsmiRYvk7rvvlmuuucaMAKGuu+46cwKcjg+sw6VNnz5dXn75ZRk7dqwrXzoAAACsWAKh4fa8885z3LaH0pEjR5qxer/55htzu2vXrlV+bv78+dKvXz9zXcOxht7+/fub0R8uv/xyeeWVVxzr6klss2fPltGjR0u3bt0kJiZGxo0bxxBoAAAAFuXSAKwhVk9sO5KjPWanIz58/PHHR12nc+fO8ssvv5xUGwEAAFC/uHUNMAAAAOBsBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApLg3ACxculKFDh0p8fLx4eXnJjBkzqjxus9lk3Lhx0rhxYwkKCpIBAwbI5s2bq6yTnp4u119/vYSFhUlERITccsstkpubW2Wd1atXyznnnCOBgYGSmJgoEydOrJPXBwAAAPfj0gCcl5cnXbp0kalTp9b4uAbVV155Rd544w1ZunSphISEyKBBg6SwsNCxjobfdevWyZw5c2TmzJkmVI8aNcrxeHZ2tgwcOFCaNm0qK1askOeff16eeOIJ+fe//10nrxEAAADuxdeVT37RRReZpSba+/vSSy/Jo48+KsOGDTP3ffjhh9KoUSPTU3zNNdfIhg0bZNasWbJ8+XLp3r27WWfKlCkyePBgeeGFF0zP8rRp06S4uFjeffdd8ff3lw4dOsiqVatk0qRJVYIyAAAArMFta4C3b98u+/fvN2UPduHh4dKzZ09ZvHixua2XWvZgD79K1/f29jY9xvZ1+vbta8KvnfYib9q0STIyMmp87qKiItNzXHkBAABA/eC2AVjDr9Ie38r0tv0xvYyNja3yuK+vr0RFRVVZp6ZtVH6O6iZMmGDCtn3RumEAAADUD24bgF3pkUcekaysLMeSnJzs6iYBAACgvgfguLg4c5mSklLlfr1tf0wvU1NTqzxeWlpqRoaovE5N26j8HNUFBASYUSUqLwAAAKgf3DYAN2/e3ATUuXPnOu7TWlyt7e3du7e5rZeZmZlmdAe7efPmSXl5uakVtq+jI0OUlJQ41tERI9q0aSORkZF1+poAAABg8QCs4/XqiAy62E980+u7du0y4wKPGTNGnn76afnmm29kzZo1MmLECDOyw/Dhw8367dq1kwsvvFBuu+02WbZsmSxatEjuvvtuM0KErqeuu+46cwKcjg+sw6VNnz5dXn75ZRk7dqwrXzoAAACsOAza77//Luedd57jtj2Ujhw5Ut5//3158MEHzVjBOlyZ9vSeffbZZtgzndDCToc509Dbv39/M/rD5ZdfbsYOttOT2GbPni2jR4+Wbt26SUxMjJlcgyHQAAAArMmlAbhfv35mvN8j0V7g8ePHm+VIdMSHjz/++KjP07lzZ/nll19Oqa0AAACoH9y2BhgAAACoDQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKQRgAAAAWAoBGAAAAJZCAAYAAIClEIABAABgKW4dgMvKyuSxxx6T5s2bS1BQkLRs2VKeeuopsdlsjnX0+rhx46Rx48ZmnQEDBsjmzZurbCc9PV2uv/56CQsLk4iICLnlllskNzfXBa8IAAAArubWAfi5556T119/XV599VXZsGGDuT1x4kSZMmWKYx29/corr8gbb7whS5culZCQEBk0aJAUFhY61tHwu27dOpkzZ47MnDlTFi5cKKNGjXLRqwIAAIAr+Yob++2332TYsGEyZMgQc7tZs2byySefyLJlyxy9vy+99JI8+uijZj314YcfSqNGjWTGjBlyzTXXmOA8a9YsWb58uXTv3t2sowF68ODB8sILL0h8fLwLXyEAAADqmlv3AJ911lkyd+5c+euvv8ztP//8U3799Ve56KKLzO3t27fL/v37TdmDXXh4uPTs2VMWL15sbuullj3Yw6/S9b29vU2PcU2KiookOzu7ygIAAID6wa17gB9++GETPtu2bSs+Pj6mJviZZ54xJQ1Kw6/SHt/K9Lb9Mb2MjY2t8rivr69ERUU51qluwoQJ8uSTT9bSqwIAAIAruXUP8GeffSbTpk2Tjz/+WFauXCkffPCBKVvQy9r0yCOPSFZWlmNJTk6u1ecDAABA3XHrHuAHHnjA9AJrLa/q1KmT7Ny50/TQjhw5UuLi4sz9KSkpZhQIO73dtWtXc13XSU1NrbLd0tJSMzKE/eerCwgIMAsAAADqH7fuAc7Pzze1upVpKUR5ebm5rsOjaYjVOmE7LZnQ2t7evXub23qZmZkpK1ascKwzb948sw2tFQYAAIC1uHUP8NChQ03Nb1JSknTo0EH++OMPmTRpktx8883mcS8vLxkzZow8/fTT0rp1axOIddxgHdlh+PDhZp127drJhRdeKLfddpsZKq2kpETuvvtu06vMCBAAAADW49YBWIcr00B71113mTIGDay33367mfjC7sEHH5S8vDwzrq/29J599tlm2LPAwEDHOlpHrKG3f//+pkf58ssvN2MHAwAAwHq8bJWnVUONtKxCh1fTE+J0NjnUX3qyZbdu3eTDL8dK2w4JJ72djet2y4jLJpnSmzPOOMOpbQQAAKeW19y6BhgAAABwNgIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwlJMKwI8//rjs3LnT+a0BAAAA3DEAf/3119KyZUvp37+/fPzxx1JUVOT8lgEAAADuEoBXrVoly5cvlw4dOsh9990ncXFxcuedd5r7AAAAgHpZA3z66afLK6+8Inv37pV33nlHdu/eLX369JHOnTvLyy+/LFlZWc5tKQAAAOAOJ8HZbDYpKSmR4uJicz0yMlJeffVVSUxMlOnTpzujjQAAAIDrA/CKFSvk7rvvlsaNG8v9999veoQ3bNggCxYskM2bN8szzzwj9957r/NaCgAAALgqAHfq1El69eol27dvN+UPycnJ8uyzz0qrVq0c61x77bVy4MABZ7QRAAAAcBrfk/mhq666Sm6++WZp0qTJEdeJiYmR8vLyU2kbAAAA4B49wPZa3+oKCgpk/PjxzmgXAAAA4D4B+Mknn5Tc3NzD7s/PzzePAQAAAPWuB9jLy+uw+//880+JiopyRrsAAAAA19cAa9mDBl9dTjvttCohuKyszPQK33HHHbXRTgAAAKDuA/BLL71ken/1BDgtdQgPD3c85u/vL82aNZPevXs7p2UAAACAqwPwyJEjzWXz5s3lrLPOEj8/v9poEwAAAOD6AJydnS1hYWHmuk56oSM+6FIT+3oAAACAxwZgrf/dt2+fxMbGSkRERI0nwdlPjtN6YAAAAMCjA/C8efMcIzzMnz+/NtsEAAAAuD4An3vuuY7rWgOcmJh4WC+w9gDrtMgAAABAvRoHWAPwgQMHDrs/PT3dPAYAAABYYiIMHQc4MDDQGe0CAAAAXD8M2tixY82lht/HHntMgoODHY/piW9Lly6Vrl27Or+VAAAAgCsC8B9//OHoAV6zZo2Z/MJOr3fp0kX+8Y9/OKttAAAAgGsDsH30h5tuuklefvllxvsFAABA/Q7Adu+9957zWwIAAAC4awDOy8uTZ599VubOnSupqalSXl5e5fFt27Y5q30AAACA6wPwrbfeKgsWLJAbbrhBGjduXOOIEAAAAEC9CcA//PCDfPfdd9KnTx/ntwgAAABwt3GAIyMjHdMiAwAAAPU+AD/11FMybtw4yc/Pd36LAAAAAHcrgXjxxRdl69at0qhRI2nWrJn4+flVeXzlypXOah8AAADg+gA8fPhw57YCAAAAcOcA/Pjjjzu/JQAAAIC71gADAAAAluoBLisrk8mTJ8tnn30mu3btkuLi4iqPp6enO6t9AAAAgOt7gJ988kmZNGmSXH311ZKVlSVjx46Vyy67TLy9veWJJ55wbgsBAAAAVwfgadOmyVtvvSV///vfxdfXV6699lp5++23zdBoS5YscWb7AAAAANcH4P3790unTp3M9dDQUNMLrC6++GIzQ5wz7dmzR/72t79JdHS0BAUFmef9/fffHY/bbDYTvHVKZn18wIABsnnz5sNKMq6//noJCwuTiIgIueWWWyQ3N9ep7QQAAEA9DsAJCQmyb98+c71ly5Yye/Zsc3358uUSEBDgtMZlZGSY6ZZ1nGGdfnn9+vVmDGKdic5u4sSJ8sorr8gbb7whS5culZCQEBk0aJAUFhY61tHwu27dOpkzZ47MnDlTFi5cKKNGjXJaOwEAAFDPT4K79NJLZe7cudKzZ0+55557TA/tO++8Y06Iu//++53WuOeee04SExPlvffec9zXvHnzKr2/L730kjz66KMybNgwc9+HH35oJuiYMWOGXHPNNbJhwwaZNWuWCefdu3c360yZMkUGDx4sL7zwgsTHxzutvQAAAKinAfjZZ591XNcT4ZKSkmTx4sXSunVrGTp0qNMa980335je3CuvvFIWLFggTZo0kbvuuktuu+028/j27dtNOYaWPdiFh4ebYK7t0QCsl1r2YA+/StfXE/a0x1jDfHVFRUVmscvOznbaawIAAEA9GAe4d+/eZiQIZ4ZftW3bNnn99ddNsP7xxx/lzjvvlHvvvVc++OAD87iGX6U9vpXpbftjehkbG1vlcT1xLyoqyrFOdRMmTDBB2r5oLzQAAAAs3AOsZQZHM2LECHGG8vJy03P7r3/9y9w+/fTTZe3atabed+TIkVJbHnnkERPoK/cAE4IBAAAsHIDvu+++KrdLSkokPz9f/P39JTg42GkBWEd2aN++fZX72rVrJ1988YW5HhcXZy5TUlLMunZ6u2vXro51UlNTq2yjtLTUjAxh//nq9EQ+Z57MBwAAAA8vgdDRGSovOqTYpk2b5Oyzz5ZPPvnEaY3TESB0u5X99ddf0rRpU8cJcRpi9YS8yr21WturZRlKLzMzM2XFihWOdebNm2d6l7VWGAAAANbilBpgpXW6enJc9d7hU6EjSujEGloCsWXLFvn444/l3//+t4wePdo87uXlJWPGjJGnn37anDC3Zs0a0/usIzsMHz7c0WN84YUXmhPnli1bJosWLZK7777bnCDHCBAAAADW4+vUjfn6yt69e522vTPPPFO++uorU5M7fvx40+Orw57puL52Dz74oOTl5ZlxfbWnV3uhddizwMDAKjPXaejt37+/Gf3h8ssvN2MHAwAAwHpOKgBrb2tlOh6vTozx6quvmrIFZ9LZ5XQ5Eu0F1nCsy5HoiA/aewwAAACcVAC2lxdUDqENGzaU888/38zUBgAAANSrAKwnkKkDBw6YkR90rFwAAACgXp4Ep3W2ehJaTEyMGYFBywv0Uut0dSg0AAAAoN70AOvYuTqs2J49e8yJaDrCglq/fr1MmTJF5syZI7/++qusXr3ajN6gs7YBAAAAHhuA9UQzLXnYunXrYdMP62MDBw6UG264QWbPns0oCwAAAPD8ADxjxgx58803Dwu/SssgJk6cKIMHD5bHH3+8VqcqBgAAAOqkBliHOuvQocMRH+/YsaMZZ1cDMAAAAODxAVhPfNuxY8cRH9++fbvExsY6o10AAACA6wPwoEGD5J///KcUFxcf9lhRUZE89thjZtphAAAAoN6cBNe9e3dp3bq1GQqtbdu2Zha4DRs2yGuvvWZC8Icfflh7rQUAAADqMgAnJCTI4sWL5a677jLj/mr4tc8Ed8EFF5ipkJOSkk61TQAAAID7zATXvHlz+eGHHyQjI0M2b95s7mvVqpWZEAMAAACol1Mhq8jISOnRo4dzWwMAAAC421TIAAAAgCcjAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSfF3dAMAdHMhaKys2vyIH0nfJoCvDpFyyXd0kAABQSwjAsLTcgr2yeOOzsmXvN477ho2MlHyZI5v3bJaWjYeItzf/TAAAqE8ogYBlFZVkyYzFVx4Kv17SOn64NAu7XdYuzxexeUlW/g7ZkfqT2Gw2VzcVAAA4EQEYlqSh9ufVD0tOwR5pEJQoV549Uwac/pI0Chkkrz15QAJL+4iXeEt6zibZm77E1c0FAABORACGJa3f9bFs2/+DeHv5ycAzpkpMeIcqj/vaGknT2PPN9X3py+Rg9gYXtRQAADgbARiWczB7oyxaP95c79X2IYmN6FzjehqK4yLPNNeTDyyUsrKiOm0nAACoHQRgWM6v65+UsvIiSWrYTzo3v/mo6zaJ7iWBfpFSWl4oKZmr6qyNAACg9hCAYSn7M1bK3oOLTenDuZ3+JV5eR/8noI/HR/cy11MyV0ppWWEdtRQAANQWAjAs5Y+tr5nL05pcKqFB8cf1M5GhrSXIP0bKyotNgAYAAJ6NAAzLOJizSXak/GSGPOva8vbj/jkvLy9pEt3bXE/NXCUlpfm12EoAAFDbPCoAP/vssyaMjBkzxnFfYWGhjB49WqKjoyU0NFQuv/xySUlJqfJzu3btkiFDhkhwcLDExsbKAw88IKWlpS54BXClP7a8bi5bNh4skaEtT+hnw0OaS3BAIym3lZhSCAAA4Lk8JgAvX75c3nzzTencueoZ+/fff798++238vnnn8uCBQtk7969ctlllzkeLysrM+G3uLhYfvvtN/nggw/k/fffl3HjxrngVcBVsvN3OWZ7O73lnSf88/rBq3FUxYgQadnrpdxW5vQ2AgCAuuERATg3N1euv/56eeuttyQyMtJxf1ZWlrzzzjsyadIkOf/886Vbt27y3nvvmaC7ZEnF5AWzZ8+W9evXy0cffSRdu3aViy66SJ566imZOnWqCcWwhrU7PxKblEtiw77SMLzjSW0jPKSZ+PoESWlZgWTn7XR6GwEAQN3wiACsJQ7aiztgwIAq969YsUJKSkqq3N+2bVtJSkqSxYsXm9t62alTJ2nUqJFjnUGDBkl2drasW7euxucrKioyj1de4LnKy0tl856vzPUOTW846e14e/lIdIN25npads3HDgAAcH9uH4A//fRTWblypUyYMOGwx/bv3y/+/v4SERFR5X4Nu/qYfZ3K4df+uP2xmuhzhYeHO5bExEQnviLUtd0HF0l+0QEznm9Sw3NPaVsxYe3NZWbedikpzXNSCwEAQF1y6wCcnJws9913n0ybNk0CAwPr7HkfeeQRU15hX7Qd8Fx/7a7o/W0VP1R8vP1PaVtBAdESEhgnIjY5mLPRSS0EAAB1ya0DsJY4pKamyhlnnCG+vr5m0RPdXnnlFXNde3K1jjczM7PKz+koEHFxGlLEXFYfFcJ+275OdQEBARIWFlZlgWcqLs2V7ftnmeunJfzv5MhTERPWwXEynM1mc8o2AQBA3XHrANy/f39Zs2aNrFq1yrF0797dnBBnv+7n5ydz5851/MymTZvMsGe9e1eM26qXug0N0nZz5swxobZ9+4qvs1F/bds/y0xjHB7SQmLDuzhlm1GhrcXby1cKi9Mlr7DmMhoAAOC+fMWNNWjQQDp2rHrGfkhIiBnz137/LbfcImPHjpWoqCgTau+55x4Tenv1qpi+duDAgSbo3nDDDTJx4kRT9/voo4+aE+u0pxf121+7vzSXbZpcZoYycwYfnwCJCG0l6TkbJT33LwkNauyU7QIAgLrh1j3Ax2Py5Mly8cUXmwkw+vbta8oavvyyIvQoHx8fmTlzprnUYPy3v/1NRowYIePHj3dpu1H7cgv2yp6DFaOBtG4yzKnbjgxtZS4zc7dSBgEAgIdx6x7gmvz8889VbuvJcTqmry5H0rRpU/n+++/roHVwJ1v3/2BOVmsc1UPCgp07kkdYcJIpgyguzZGCogMSHBjr1O0DAIDa4/E9wMCR7Ng/21w2jxvk9G37ePtJWHBTcz0jb6vTtw8AAGoPARj1UmFxhuxLX26uN280sFaeIzK0paMMAgAAeA4CMOqlnanzzNTH0Q3aOr38wS48pLl4ibcUFB+UwuKqQ/EBAAD3RQBGvbQ9ZY65bFZLvb/K1ydQQoOamOuZlEEAAOAxCMCod0rLCiX5wAJzvXncBbX6XPYyiAzKIAAA8BgEYNQ7u9MWSWlZgYQENpaYsKrjSDtbxKEAnFe4T4pL82r1uQAAgEWHQQOOZceh8ofmjS5w2uQXR+LvGyohAY0kryhFsvN2SEx4xTTJqB90Vsm0tDSnbCsmJkaSkpKcsi0AwKkhAKNeKbeVyY6Un8z1Zo1qt/zBLjykmQnAWfkE4PoWftu1ayv5+QVO2V5wcJBs2LCREAwAboAAjHrlQOZqKShOE3/fBhIf3bNOnjMspJnsTV8q2fm7xGYrFy8vKovqA+351fA7/vnrpVnLRqe0rR1bU2TcA9PMNgnAAOB6BGDUK7sOnfyWEHO2+Hj718lzhgTEio93oJSVF0pu4X5pEBRfJ8+LuqHht22HBFc3AwDgRHRVoV6xj/6Q2PDcOntO7fEND67o1cvO31lnzwsAAE4OARj1hk5GkZr5p7me1LBvnT53WEjFtMhZeTvq9HkBAMCJIwCj3tid9quZ/S0y9DQJreMyhLDgigCcX5QqJaX5dfrcAADgxBCAUe/KH5LqsPzBzt83RIICGprrejIcAABwXwRg1As2m81xAlxSbN0HYBV+qBc4izpgAADcGgEY9UJ6zkZTfuDrEyRxkd1d0gYdD9h+IpxNbC5pAwAAODYCMOoFe+9vk+je4usT6JI2hATGibe3v5mGudwr0yVtAAAAx0YARr0KwHU5/Fl13l4+0iCoible5pXqsnYAAICjIwDD4+moC/vTfzfXE+t4+LPqwg6NB1zmTQAGAMBdEYDh8XQa4nJbiTQISpDw4Io6XJcHYK808fP3cmlbAABAzQjAqBfj/6qEmHPEy8u1oTPQL1L8fEJEvMqlRbsAl7YFAADUjACMehSA+7i6KSaA23uB23Z1zcl4AADg6AjA8Gh5hamSnrNJo6dbBGBFAAYAwL0RgOHR9qQtMpcNwztKoH+kuIMGwYnmMrGlv5SU57i6OQAAoBoCMDxactov5tJden/t0yJ7l4eJt7eXZBetcXVzAABANb7V7wA8afrjyifAuRMfW6yUS7ZkF//p6qZ4hF27dklaWppTthUTEyNJSRVlKAAA1IQADI+VkbvFTH/s4x0gcZHdxJ34lMdKic8WySpa7eqmeET4bdeureTnFzhle8HBQbJhw0ZCMADgiAjA8Fi7D5U/NI7q4bLpj4/Ex9ZQykptUiQpkp2/y3FiHA6nPb8afsc/f700a9nolLa1Y2uKjHtgmtkmARgAcCQEYHis/5U/nC3uxkt8ZdvGImndMdC0s33Sda5uktvT8Nu2Q4KrmwEAsABOgoNHKisvlj0Hl7jdCXCVbVxVaC53HxqpAgAAuAcCMDxSSsYfUlqWL4H+0RIT1l7c0cZVBY4AXG4rc3VzAADAIQRgePzsb15e7nkY7/yrWLy9gqSoJFMOZq93dXMAAMAh7pkcgGNITltoLhPdsP7XrrxcJMy/o7mefKDihD0AAOB6BGB4nKKSLDmQucYtx/+tLjygi7mkDhgAAPfBKBDwOLvTfhOblEtkaCsJDWos7iw8oLO53J+xXErLCt1uuDZYGxOQALAqAjA8zu5D5Q/uOPxZdYE+TSQkME7yCvfLvvTlktjQvXusYR1MQALAygjA8DjJBypOgEuM6SvuzsvLywT1Tbv/a07cIwDDXTABCQArIwDDo2Tl7ZScgmTx9vKT+Oie4gn+F4CpA4b7YQISAFbESXDwyNEfGkWeLn6+IeIJEqLPMpdp2eukoDjd1c0BAMDyCMDwKLs9qPzBLjgwVqIatBURm+xJ+83VzQEAwPIIwPAY5eWlsudgRYBMaOj+J8BVZp+umTIIAABcjwAMj5GatVqKS3MkwC9cGoZ3Ek9iH7Fid9ovYrPZXN0cAAAsjQAMj6HhUTWJ7iPeXj7iSeKjepgT93IKdkt2/i5XNwcAAEsjAMPzhj/zsPIHpSfs6Yl7lYM8AABwDQIwPEJxSY6kZv7hEdMfH0nioXZTBwwAgGsRgOER9qQvkXJbqYQHN5Ow4ETxRE0OnQinJ/KV28pc3RwAACyLAAyPGv7ME6Y/PpLY8M7i79tAikqyJC1rraubAwCAZRGA4RHsdbOeNvxZZd7evtIkure5rtMiAwAA1yAAw+3lFOyRzLxt4uXl4wiQnup/w6FRBwwAgKu4dQCeMGGCnHnmmdKgQQOJjY2V4cOHy6ZNm6qsU1hYKKNHj5bo6GgJDQ2Vyy+/XFJSUqqss2vXLhkyZIgEBweb7TzwwANSWlpax68Gp1r+EBvexYwB7MnsdcD7Mn6XkrICVzcHAABLcusAvGDBAhNulyxZInPmzJGSkhIZOHCg5OXlOda5//775dtvv5XPP//crL9371657LLLHI+XlZWZ8FtcXCy//fabfPDBB/L+++/LuHHjXPSqcKJ2HphvLhMbeuboD5VFhLSQ0MB4KS8vlv3py13dHAAALMlX3NisWbOq3Nbgqj24K1askL59+0pWVpa888478vHHH8v5559v1nnvvfekXbt2JjT36tVLZs+eLevXr5effvpJGjVqJF27dpWnnnpKHnroIXniiSfE39/fRa8Ox6OsvNhRL9s0tuI99mReXl5mWuSNuz83ZRCJDfu6ukkAAFiOW/cAV6eBV0VFRZlLDcLaKzxgwADHOm3btpWkpCRZvHixua2XnTp1MuHXbtCgQZKdnS3r1q2r8XmKiorM45UXuMa+9OVSUporQQExHjf98ZE0qTQtMgAAqHseE4DLy8tlzJgx0qdPH+nYsaO5b//+/aYHNyIiosq6Gnb1Mfs6lcOv/XH7Y0eqPQ4PD3csiYmeOe5sfbAzdZ65TGrYT7y8POZwPaqEmLPMZVr2eikoOujq5gAAYDkekyi0Fnjt2rXy6aef1vpzPfLII6a32b4kJyfX+nOiZjtT59eb8ge74ICGEt2grbm++yCjQQAAUNc8IgDffffdMnPmTJk/f74kJCQ47o+LizMnt2VmZlZZX0eB0Mfs61QfFcJ+275OdQEBARIWFlZlQd3LytshWXnbxNvL16MnwKgJw6EBAOA6bh2AbTabCb9fffWVzJs3T5o3b17l8W7duomfn5/MnTvXcZ8Ok6bDnvXuXTFerF6uWbNGUlNTHevoiBIaatu3b1+HrwYn2/sbF3WmBPiF1dMA/Ks5zgEAQN3xdfeyBx3h4euvvzZjAdtrdrUuNygoyFzecsstMnbsWHNinIbae+65x4ReHQFC6bBpGnRvuOEGmThxotnGo48+aratPb1wX7sO1f/Wp/IHu8ZRPcTby09yC/ZIVv4OiQip+uEOAABYtAf49ddfNzW4/fr1k8aNGzuW6dOnO9aZPHmyXHzxxWYCDB0aTcsavvzyS8fjPj4+pnxCLzUY/+1vf5MRI0bI+PHjXfSqcDxKSvNkT/pSc71p7HlS3/j5Bktc5Bnm+u4DjAYBAEBdcuse4OP5ajgwMFCmTp1qliNp2rSpfP/9905uHWqTlgboZBFhwUkSEdJS6qOk2PNkb/pS2ZH6k3RsNsLVzQEAwDLcugcY1rVt/4/mslmjC8zkEfVRs0YV41fvObhEiktzXd0cAAAsgwAMt5z9bUfKT+Z6i7iLpL7Snu3wkOampzuZMggAAOoMARhuZ8/BxVJcmm3Gy7XXydZH2rPdLLa/ub4jZY6rmwMAgGUQgOF2tu+fZS6bNRpYb2Z/O1YZxK7U+VJeXurq5gAAYAn1O13A45TbymT7/ore0BZxF0p9FxfZXQL8wqWwJEP2Z650dXMAALAEAjDcyv6MFVJQnCb+vmESH10xlnN95u3t6xjn2F73DAAAahcBGG5a/jBAfLz9xArsZRAEYAAA6gYBGG417rN9+DMrlD/YJcb0NbPCZeVtk4zcLa5uDgAA9R4BGG4jJfMPMzWwr0+wJDbsK1bh79dAmsT0Nte37mPCFgAALD0THKxl854Z5rJ5o4Hi6xMoVtKq8VBJPrBQtuydKd1b3+vq5qCa4tI8yS3Ya+rTi0qyzFJWViQ2KRebrdwcr34+IeLnGyohgbESEhgnQf7R9X4UEwDwVARguM3kF1v2fmuun5ZwqVhN87iBsmDtPyUj9y85mLNJohu0cXWTLE2HpMsqWiNX3xEleX6zZPX2vKOuX1yaIyIHzPW07Ir7vL39JTy4mUSGthSbWKOeHQA8BQEYbkF7P3UoMJ38IiG6j1iNDoWW1LCvORFu696ZEt2GAOyK0Ls3fYkpQ9Fa9MLig3LuxQ3EJhXhN8g/RkICG0mAX4QE+oWLj0+QeGsPr5e3lJYVSElpnhSVZEte4X7JK0oxM/zpBxpdxM9Hrr8nSnKLtca7/k7uguOza9cuSUtLc8q2YmJiJCkpySnbAqyEAAy38Neer8xlq/hLzNBgVtSy8VATgLUn/MzTxpqZ4lD7oVdnHty67zvZrqG3JMPxmK9XqCz8cb+cf94F0rZNF/H1CTju7WpZRF5RqmTmbjEnNmrJRJ9BDWTdwQcl9dePpEPTv0mr+KHi5xNUS68M7hx+27VrK/n5BU7ZXnBwkGzYsJEQDJwgayYNuBXtNbNPBXxaE+uVP9g1a9RffLwDJCt/h6Rlr5OG4R1d3aR63dO7Ze93sj1Fe3rTHY8F+kdJi7hB0iJusKTsCpBRr/SUgf3iTyj8Kq39DQ2MM0uT6D6yfsOfsmDR99KzX7gcyFotP69+UH5b/5S0SbhCOja9QSJCW9TCK4U70p5fDb/jn79emrVsdErb2rE1RcY9MM1skwAMnBgCMFxu274fTA1wZGhriQnrIFbl7xsqTWP7y7b935teYAKw82YXzMzdJvvSl8rutN9kz8HfpKgks1rovVBaNh4i8VE9Hd9AHEh2zsx82pPvY4uR919Ikzuu+kz8ozbJup3TJKcgWdbseM8sCTHnmCCsk6JY9RsQq9Hw27ZDgqubAVgWv2nhNuUP2vtr9a/9W8VfXBGA982UXm0fYhSBakHWZiszPbjm0lZ6aCkTW3nFZalXivQ8P0T25HwmWaunmxKEtOz1pka3skC/SGnRWEPvxVVCb23z8wmX01veIV1bjJJdBxbIup0fyc7UebI77RezhAY1kfZJ10mbJpdJaFDjOmkTAFgRARgupT1z+nW0iJe0bjJMrE57AHUoLR0Pee/BJdIk5iyxCh1SLLdgn+QXHTDDjRUWZ0pJWb45uaysvMiscUx+IiPHxsju3E9Fcv93t69PkMSGd5YmMX0kIaaPxIZ3cWlPq36waRp7nlmy85Nl/a5psmHXdPO+L9v0vCzb9II0jjrT1Ak3bXieNAimpxAAnIkADJdat+sjc6lBoEFQE7E6HU+2dfxQWb/rE1mf/Gm9D8Aabg/k/yy3PBQjeX7fysbdpcf1c15ePuLt5SNeXr7ibRYf8fL2laKCMlm3ao/07XOxNEvsImHBTaVhWAcJD21u1nFHYcGJ0qvtw9K99RgzAsWG5E9lX/oyx/KLiESEtJCEmLMlNqKLNAzvbGqG3fX1AIAnIADDZUpK82Vj8ufmeoemN7i6OW5DvwLXALxt/ywpLM6QQP9IqW+y8nbK2p0fysbkz8wYut3OCRGRUtNTGxwQK8EBMRLoHy3+viHi5xMsPj6Bh4Kurwm/RyqV2bhut0wZN0luXDFazmh9hsd9+GmTcJlZdNINnRRle8psM0NiZt42s8jO/40xHBaUYAK+Ds2mx4iWdZjLQ4tOxKH1zf6+DSxfWgQA1RGA4TKb935two/+EU9qeK6rm+M2GoZ3MicD6kgQm3Z/IV1a3Cr1RX5hqiz7a7JsTJ5uSh5UgE+czJi2SS67fLi0b9WJsCYioUHx0rXlKLPoEGp70hbLvozlkpq5WtKy15qaZkcoPgYNy0H+USYQa1iOCGkpEaEtJbfYS7zpRAZgUQRguITNZjM9gErHROVkr6raJV0jv6x9zHwd3rn5LR4fCnWUj1Xb3pI/trwmJWUVE0skNuwrnZrdJGnJDeSWj86UKy+L8vjXWVuTpOgJe7ooPdlPe4iz83dJdv5OyS/Seul0UzNdWHLosjhdCorTpbQs30zIYSbnKNxvPlTtlHmObU+anigFvgtlb3oriQxpaXqMeQ8AWAEBGC6xP2OFHMzeYMa9bZtwpaub43Zaxw+TxRv+ZSZR0H3VOKq7eKqD2Rtl3p9/N+FLaR3rWe0eNSd5mcd3O2e4MavQ2l+tG9ZF5OizJpaUFUhh0UEThguKD5qT7DJyt5rRMfYd/EMkMFfK5IDsPajLYjPLXXSDthIT1l78/RrU2WsCgLpGAIZLrN35gSPoBfpHuLo5bifAL0xaNb5YNu7+XDYkf+KRAVhnQ9Ne32V/vWh6ITVcnd3+cTPaBz3+dUNnmvMLTqhxFIkVK36Xi4f3lmdevVgCwzIkuyDZjI+so7LsTV8q4SHNpFHE6dIgKKHOe4WZKhhAbSMAo85l5e2QrXu/M9c7Nhvh6ua4rXZJ15oArJNi9GrzkAQHxoonze6nvb72Gf50go9+nSZ41Guo7/RDyP7dpeJX3kJaN0kwZSo6LOGB7LWmpzgrb7tZQgLjJC6yuxmJoi6CMFMFA6gLBGDUuZVbppoToJIansdsZ0ehvW+66CgAq3e8a4bK8gTpOX/JrBW3m/CkJ2Cd0+EJaZd4LbWlbs7H21+iw9qaRUsmUjP/NGUrWju8dd9ME4R1KLbaHq6QqYIB1AUCMOqUDvq/ac+X5nq31ve4ujluTQPj6a3uklm/3yZrd34kp7e805wQ5c52py2SH1fcYUb3CA2Ml0HdXjc1v/AsOmqEjs0dH9VDUjJXmTCsQXjT7v+anmCdUETXqU1MFQygNlGIhzq1cstrZhrbxJhzJC7Ss8ZpdYVmsf0lMvQ0KSnNNSHYnW3a/aV8t+xGE34bR/WQK87+lvDr4fx8Q8zMeZ2ajTTD8+mMjTr0mk7hvCNlrhSXVppuDwA8CAEYdSYnf7fpQVLdWt/n6uZ4TJ3mGS3vNNdXb3/XnNXvjkPaaVnLvD/HSrmtxJy8N7THfyQoINrVTYMTg7BO061DFuo4wjottY5HvHbHB7L34FKxyfHN4AcA7oIAjDrz+5YpJiA1ie7jkaMauEqr+KHmTPzC4oOycdd0cSfl5aWycO2jsnTT8+Z2lxajZMDpr4iPT4Crm4ZaoGUPreIvljYJV5qa4HJbqRk1It9vtvQ4L8SM/AEAnoAAjDqhNYQ67a3qcdpYVzfHo3h7+0rXlreb6yu2vmpGWHCXqaxnrbhD1u+aZr4aP7v9E3JWu/9jiDMLaBAUL20TrpIWcReZqZZtXgVy499jZN3Bh2Rf+nJXNw8Ajom/VKh12iv0y7px5mvT05pcJnFR3VzdJI/TLvFqc/JRQVGarNj8iqubIwVFB+WbpdfKztSfzGQmerJbp+Y3urpZqOOTNKManCYdm44Q/9KOUpBfLnklW2XG4itl1u+j5GDOJlc3EQCOiACMWrcx+XPTA+znG+oxQ3m54xBVfdrrhwiRNTvel4ycLS5ri07B+9XiK8x7qpNbXNLzY2kRVzFNL6z5DYV/eRt5YtQeiQ2+QLzEW7anzJbPFl4oP/0xxsxmCADuhgCMWlVUkiVLNj1nrp/ZeoyEMBHCSUuK7SfNGg0wdZe/rn/SnHxW1w5krZUvf7vMjPGr48FeetZ/6dGHkZNZLs3D75Sr+v5oSiP0G5/Ne2fIpwsuMKUy+oEJANwFARi1RgPaL2sfl8LidIkMbS0dm410dZM8nvYCa2/w7rRfZNv+H+r0uZMPLJSvF19tyjCiw9rJpWd9KZGhreq0DXB/UQ1am5IYHQZPP7BpEN6+f5Z8sWiYfLFouGza/YWUlhW6upkALI4AjFqzac8XpgfIy8tH+nV6Vny8/VzdJI8XFpwkXVtUnBC3YM0jZmKRuvDX7q/k++U3S0lZnjSJPkuG9ZouIYGnNksX6jcdN/ii7m/L1X1nm9p/by8/Sc1cZabI/uCnHjJ/9UNm4pRyW5mrmwrAgpgJDrUiM3eb/LK2omb1zNb38zW5E+kMeslpv5gwMXvlaLm09+e1NuyYhpNlm16UP7a+Zm63ir9Ezu/8PMOc4bjpiXL9u06S3u0ekQ3Jn8n6XR9LbsEe2Zg83SyB/lGSGNPXlPgkRJ8l9eXbL/2wWFySLUWlOWbyH7HZzAgpRaWpEhTiJTap+xImAP9DAIbT6debc/64R0rL8iU+urec3qpiIgc4h5ZADDxjqnz+yxA5kLVaFm14Wvp2fMrpz6PDrc1dNUZ2ps4zt7XnuVfbhxjmDCclOKChdGs1Wk5veYfsS18mW/Z+I1v3/WBKpPSbIl1UgE8jGTk2Woq9N0tWXpmZUMXPJ8SMOuFOyspLTJDPytthTgzNyt8hWXm7JDu/4nZZefERf/bF6UmSZ/tK1uwIMyeSBvpHSkhAI/Otit52t9cK1EcEYDi9x3DuqvslLXudBPpFSv+uk8Xby8fVzap39AS0AV1fku+W3yTrdv5HwoObSpcWtzpt+3rC0k+rxpiT3XSYs36dn5PTmgx32vZhXfr7oEl0b7Oc3WG8pGT+IbtS50vygQWSlr1BispSpOf5oVIsq2Xz3tXmZ/QY1J5inYhDxx3292sg/r6h5rqOLlNb5VU686KG2ey8nZKVv/N/l/k7JadgT0XP7lFfq69po46UoWNl26RcCouyxSbFIl42c5KwLro9O1+fIGkQlChhwYkSEdLczMIHwPkIwHDySW+PmZOzvL395YIzpkpoYJyrm1Vv6VfGZ552vyz/a5L8tuFpKS7Nle6t7zul3iOd2e2Pra/L75tfNqNNhAbGy4Xd3zT1nICzaXCNj+phFv12Qb91WLT8M5k09R9yyTXtxS+gQApLMqWsvEjyCveZpebt+Jvg6OsdKD4+geLnE2Qui3wK5cKrwmRf7teydsc6U7qjobS8vMT00Op2dXZKva5BNL/ogOQXplZcFh2Q4tKco7Zfny8spKmpzQ8PbiZhIRWX4SFNJSigoXm8+r/HlStXSs9e3eTt6bdLQvNg87wFxQclrzBFCooOSGlZgWTk/mWWneJlPuxGNWgjkaEtzWsE4BwEYDjN8r8mm/o+7enQ3smEmPpRz+fOurW6R7zES5b99aL8vvklKS7Nll5tHzmpHjGdwWvR+qdMWYVq2XiI9O34jAT6R9RCy4HDBfiFSUTgGfLdx1ly9RW9pW2bBPOhrLAkw0y+omG4pDTHfNgrLqm4tAdYE2Ilq+oGfUQuGREpu3I+kF3rTq5N2oMbHtLMfMsSFtzUhNuKy2YSHBB7Uh84S0v0DPQQCQtOEJHEKt+g5RXud/Q65xWlSE7BbrNoL7kGba2pjghtaUI/gJNHAMYp01/av61/WtbseM/cPqfjeGnZeLCrm2UJ+sdXT4rTr4EXrX9SVm9/V3an/WbeA+1VOx7pOX+ZHt+t+74zt3Vb53R40py5Ty0iXE3LB7R+WJeavnXS4KvnG2i5QllZoelBNdfLC+VgWqbM/2mVDBs2RMIjQsz5CfrNhn5A1G+pfCotGnTtzxMcGOu47u8bVmf/DrQ8RHt8ddESEe0dTs/ZLOm5f5neYVNnnL9DvFP9TBAu8zp8nwA4PgRgnBL9QzP3jzGyPeVHc7t32/+Tjk1vcHWzLKdz85vMyUI68kZ6zkb5evFVZjKCVvEXmzPstWaycmjQHqW9BxfLhuTpsj9jhblfZ/Bqm3i19GgztsawAbgbDaa+PgFmCZTIwx7PTdktH0+ZJ3+/cYycccYZ4mkC/MKlcVR3sxQUp0tGzl9yMGejCcZ6noX4iTw6tbHsy/1GCoq07CLa1U0GPAYBGCdk165dkpaWZq4XlOyWLZkvSX7pNvESP2kZcY+UZ3U3NW7HIyYmRpKSkmq5xdbROv4SSYw5R5ZsnCgbkj81tdimHtvLz5xQo/WD3t5+5sQ2/QNqp+M0N2t0gZzZ+j4zwQUA96MnAAZF95LGUT3N6BMagA9mb5b4pv6yK+d9+XDuNDPxSNvEqySxYV9OPgaOgQCMEwq/7dq1lYKCAjlvWAMZNiJS/Py9JDe7TN58er9sXX/fCW0vODhINmzYSAh2Ih1OqV/nCdKh6fWyee83siNljgm8mXnbqqynoVhPrGnZ+CJpk3AlU1QDHtTr3SA4wSyFB0+Tt996T24d00PySrY6PvSGBDaWtglXmDCsH34BHI4AjOOmPb8JrWwy+rEO4heUa+7zKW8ksYHd5PGnT+zs5B1bU2TcA9PMNgnAztcwvKNZzmr3f2acUj3DXGsjS8sLpUFQgqkf5CQawLPpN2+//JArLz39vDRtFWRKmv7aM8OMlrFiyxSzxEWeaT7otoi7UEKD4l3dZMBtEIBxTFozqgPXbzw4Qcb8S6e/zTU9iIkNz5GYsI6cKOXmzBnsIc1c3QwAtUjLl87u8IT0avuw+eZHZ93bnfar7M9YbpZF68dLbEQXaRE32IRhHc0CsDICMI5I60S37J0pa3f+x5xYpUpLbBLk3UratzqPAdoBwM34+gRKq/ihZskt2Cvb9s8yM+7tz/jdTHCjy5KNE8yQavFRvSQ+upc0ie5F7zAshwCMKvQXZvKBX0wd2e60RWaMTaUnUEX6ny133PK+TH79CsIvALg5DbWdm99slrzCVDNaz7Z9P8je9KUVYw3n75KNuz8z6+rYxg3824pPWWMJ9kuSIN+m4ud98tMyu+NJzpVP4j5V7vj6cGIIwBZms5VLZu42MxVpSuYqMyxW9ZOl9ESptglXStvEK2Xdmq1yMOVtl7UXAHBy9ERXHaJSF51EZF/G77L34BLZm75EDmSuMdMxV56SWeVklsmencVyYG+ppKeWSsaBMjl4oFQyUkslM71Myss85yRn+0nc+fkFTtmeu70+nDhLBeCpU6fK888/L/v375cuXbrIlClTpEeP45sswJOVlOabeeszcrdIZu4Wc2mu520zJ0ZVpmPBNozoLE1jzzeTWUSGtnJZuwEAzqfjgjeNPc8sSgPxr8s/lRemPCADL2kpgQ2KxCa50iDCR9pGBEnbLjVsxGa2JF662AIOXVbczkovlNnfrZa1Oz+QPK82ZmpqX5/gQ5cVwzHqlNS6eHn7HLruI16OS2+zVNC5Lr10+IuKyyrX5dB6h69Tvedae341/I5//npp1lLPZTl5nMRdP1gmAE+fPl3Gjh0rb7zxhvTs2VNeeuklGTRokGzatEliYz1rCKiy8hIz81FRSbYUlWRKYXGGFBRnSFFxhpkyVL/qyi3ca6bUzC3YZ6bHPRKdq14Db2x4F4mL6mZmH9LB1wEA1gnEEYHd5IdPs+Taq/pJ29MSzN+ZwuJ0KShKk6LS7ENTT9uXXLGJdv8Wi00Xr4pRgeyCG4oMvzFSdma/IzsrZlZ3oYpQrHn9la+SxNf3N8nzPhSeD4Vo8fI2wVtP7taZB+3h3BHUzX3/eyzeO1/OH95AUvJ+lE27d5hQr7XXfj7Bh65Xvx1YKdDDXVgmAE+aNEluu+02uemmm8xtDcLfffedvPvuu/Lwww+LO9EpaTcm/1dy89OlqDjXTOlZbiuUMpte6ifz0hPepk7zGRHawvTo6hJx6DIsKNH8owYAwE6niw4JbGSWmkYG0k4YnVpah1Y0Qywemoa6rLxIDqZlyMJ5q2XI0IES2iDAMVW1/dJWXirltjIzLbXt0KXeth1anMtm/lO+fhp4y8VWcfPQvRVXys2V4yyP8BW54tYo2ZH9puz48zh/xDuwUjgOOjQdd0XALikuk9JSm5mUyEt8TU+4lxzqERed0ORQL7fJ64d6wY3/9YTb7w8KCpKwsLBKwV9fr75Smyl7NHvDpq9WL/VWub6hFZf2+2zlkpeXK0VFhYf2nf1xvVpxaV//f/u34mer36eLr6+v9D/jGWkY3knciSWST3FxsaxYsUIeeeQRx33e3t4yYMAAWbx48WHrFxUVmcUuK6ti1qzs7CP3pDrTvpQtsmnn3GOuV1JULnm55ZKfUy55OeWSn1sm+bk2U5uVlV4qWQfLJDOtVIoK/OStN5+XhkGNRLJEcnQRkWRJNv8/Xtpbrjau2y0F+f/bPydj5/YD5lLfl9zcqr0HJ0Pfz/LyQ/9AT4GzXqO7vj533Ja7Hlfu2i7Ffq/7din2+5Fo+NKx4CvGg9+53Vf+8/JBOafDedK4TZuqqx0jdVSEqIqgpry9vQ7t80P3OEKW/Z7KS8W9Na2zdetWeeDBB+TeB4dKk8ToyvG3Yi0vDd5lh3q2D1133Fd66La2o0xyc3Jl7ept0rNXNwkO8RebrVjKbEWmg6pcis2l3rZJxUnkFfIPLda0YdNqCWhb+0Pv2XNaxXF0dF6241nLw+3du1eaNGkiv/32m/Tu3dtx/4MPPigLFiyQpUuXVln/iSeekCeffNIFLQUAAMCpSE5OloSEhKOuY4ke4BOlPcVaL2ynnz7T09MlOjq6ziZ90E8xiYmJ5k2s+DoDdYH9XvfY567BfncN9rtrsN+tsd9tNpvk5ORIfPyxx7W2RADW8fp8fHwkJSWlyv16Oy4u7rD1AwICzFJZRESEuIIeMPxjrXvs97rHPncN9rtrsN9dg/1e//d7ePjxnchvidMS/f39pVu3bjJ37twqvbp6u3JJBAAAAOo/S/QAKy1pGDlypHTv3t2M/avDoOXl5TlGhQAAAIA1WCYAX3311XLgwAEZN26cmQija9euMmvWLGnU6NQGxK4tWoLx+OOPH1aKgdrFfq977HPXYL+7BvvdNdjvrhHgxvvdEqNAAAAAAJaqAQYAAADsCMAAAACwFAIwAAAALIUADAAAAEshALvQ1KlTpVmzZhIYGCg9e/aUZcuWHXHd999/38xCV3nRn8PxW7hwoQwdOtTMEKP7b8aMGcf8mZ9//lnOOOMMcwZrq1atzPuA2t3vus+rH+u66OgtOD4TJkyQM888Uxo0aCCxsbEyfPhw2bRp0zF/7vPPP5e2bdua3y2dOnWS77//vk7aa+X9zu/2U/f6669L586dHZMt6Pj+P/zww1F/hmO97ve7ux3rBGAXmT59uhmbWIcHWblypXTp0kUGDRokqampR/wZPcD27dvnWHbu3FmnbfZ0Ou6z7mf94HE8tm/fLkOGDJHzzjtPVq1aJWPGjJFbb71Vfvzxx1pvq5X3u50Gh8rHuwYKHJ8FCxbI6NGjZcmSJTJnzhwpKSmRgQMHmvfiSH777Te59tpr5ZZbbpE//vjDhDdd1q5dW6dtt9p+V/xuPzUJCQny7LPPyooVK+T333+X888/X4YNGybr1q2rcX2Odec40f3udse6DoOGutejRw/b6NGjHbfLysps8fHxtgkTJtS4/nvvvWcLDw+vwxbWb3rof/XVV0dd58EHH7R16NChyn1XX321bdCgQbXcOmvv9/nz55v1MjIy6qxd9V1qaqrZpwsWLDjiOldddZVtyJAhVe7r2bOn7fbbb6+DFlp3v/O7vXZERkba3n777Rof41ivPUfb7+52rNMD7ALFxcXmE9OAAQMc93l7e5vbixcvPuLP5ebmStOmTSUxMfGYn7Jw6vS9qPweKe2lP9p7BOfRyWoaN24sF1xwgSxatMjVzfFoWVlZ5jIqKuqI63C8u2a/K363O09ZWZl8+umnptddv5KvCce68x3Pfne3Y50A7AJpaWnmYKk+C53ePlKdY5s2beTdd9+Vr7/+Wj766CMpLy+Xs846S3bv3l1HrbYefS9qeo+ys7OloKDAZe2q7zT0vvHGG/LFF1+YRX9R9uvXz5QK4cTp7wot3+nTp4907NjxhI93aq9rd7/zu9051qxZI6GhoeZ8jTvuuEO++uorad++fY3rcqw7z4nsd3c71i0zFbKn009UlT9V6UHTrl07efPNN+Wpp55yadsAZ9JfkrpUPta3bt0qkydPlv/85z8ubZsn0ppUrW389ddfXd0USzne/c7vdufQ3xl6rob2uv/3v/+VkSNHmprsI4Ux1P1+d7djnQDsAjExMeLj4yMpKSlV7tfbcXFxx7UNPz8/Of3002XLli211Eroe1HTe6RF/EFBQS5rlxX16NGDAHcS7r77bpk5c6YZiUNPWDmZ4/14fyfh5PZ7dfxuPzn+/v5mpB7VrVs3Wb58ubz88ssmXFXHse48J7Lf3e1YpwTCRQeMHihz58513KdfBejto9XOVKYlFPrVg35djNqh70Xl90jpmd3H+x7BebSHgWP9+On5hhrC9OvIefPmSfPmzY/5Mxzvrtnv1fG73Tn0b2pRUVGNj3Gs156j7Xe3O9ZdfRaeVX366ae2gIAA2/vvv29bv369bdSoUbaIiAjb/v37zeM33HCD7eGHH3as/+STT9p+/PFH29atW20rVqywXXPNNbbAwEDbunXrXPgqPEtOTo7tjz/+MIse+pMmTTLXd+7caR7X/a373W7btm224OBg2wMPPGDbsGGDberUqTYfHx/brFmzXPgq6v9+nzx5sm3GjBm2zZs329asWWO77777bN7e3raffvrJha/Cs9x5553mbOuff/7Ztm/fPseSn5/vWKf675hFixbZfH19bS+88II53h9//HGbn5+feQ9Qe/ud3+2nTvenjrSxfft22+rVq81tLy8v2+zZs83jHOvusd+fdLNjnQDsQlOmTLElJSXZ/P39zbBoS5YscTx27rnn2kaOHOm4PWbMGMe6jRo1sg0ePNi2cuVKF7XcM9mH16q+2PezXup+r/4zXbt2Nfu9RYsWZhgX1O5+f+6552wtW7Y0vxijoqJs/fr1s82bN8+Fr8Dz1LS/dal8/Fb/HaM+++wz22mnnWaOdx0C8LvvvnNB66213/ndfupuvvlmW9OmTc0+bNiwoa1///6OEKY41t1jv49xs2PdS//nmr5nAAAAoO5RAwwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAdaRfv34yZswYj9kuANRXBGAA8BA///yzeHl5SWZmpqubAgAejQAMABZUUlLi6iYAgMsQgAGgDpWWlsrdd98t4eHhEhMTI4899pjYbDbz2H/+8x/p3r27NGjQQOLi4uS6666T1NRU89iOHTvkvPPOM9cjIyNNT/CNN97o2G55ebk8+OCDEhUVZX72iSeeqPK8uv7rr78ul1xyiYSEhMgzzzxj7tf7WrZsKf7+/tKmTRvThsp27dolw4YNk9DQUAkLC5OrrrpKUlJSHI/r83Tt2lXeffddSUpKMuvdddddUlZWJhMnTjRtiY2NdTyf0terP6frBwQESHx8vNx77721sr8BoCYEYACoQx988IH4+vrKsmXL5OWXX5ZJkybJ22+/7eiVfeqpp+TPP/+UGTNmmNBrD7mJiYnyxRdfmOubNm2Sffv2mZ+vvF0NtkuXLjXBc/z48TJnzpwqz62h89JLL5U1a9bIzTffLF999ZXcd9998ve//13Wrl0rt99+u9x0000yf/58R6jW8Jueni4LFiww29u2bZtcffXVVba7detW+eGHH2TWrFnyySefyDvvvCNDhgyR3bt3m5977rnn5NFHHzVtU/o6Jk+eLG+++aZs3rzZvNZOnTrV8p4HgEpsAIA6ce6559ratWtnKy8vd9z30EMPmftqsnz5cu0atuXk5Jjb8+fPN7czMjIO2+7ZZ59d5b4zzzzTbNtOf27MmDFV1jnrrLNst912W5X7rrzyStvgwYPN9dmzZ9t8fHxsu3btcjy+bt06s61ly5aZ248//rgtODjYlp2d7Vhn0KBBtmbNmtnKysoc97Vp08Y2YcIEc/3FF1+0nXbaabbi4uLj2GsA4Hz0AANAHerVq5cpR7Dr3bu36QXVkoEVK1bI0KFDTWmAlkGce+65jjKEY+ncuXOV240bN3aUT9hpeUVlGzZskD59+lS5T2/r/fbHtedZF7v27dtLRESEYx3VrFkz0167Ro0amfW8vb2r3Gdvz5VXXikFBQXSokULue2220xPtJaGAEBdIQADgBsoLCyUQYMGmTrbadOmyfLly00wVMXFxcf8eT8/vyq3NWRrCUNlWiJRG2p67qO1RwO1lnG89tprEhQUZGqG+/bty4l5AOoMARgA6pC9DtZuyZIl0rp1a9m4caMcPHhQnn32WTnnnHOkbdu2h/Xg6olqSnuLnaFdu3ayaNGiKvfpbe29tT+enJxsFrv169ebYdjs65wsDb7a2/3KK6+Y4d0WL15sapMBoC741smzAAAc5Qxjx441J5ytXLlSpkyZIi+++KIpe9CAq7fvuOMOc1KanhBXWdOmTU1P6syZM2Xw4MEmROqoCyfrgQceMKM6nH766TJgwAD59ttv5csvv5SffvrJPK736clp119/vbz00kumTEF7a7U0o3o5xYl4//33TYjv2bOnBAcHy0cffWRei74+AKgL9AADQB0aMWKEqX/t0aOHjB492ozCMGrUKGnYsKEJhp9//rnpXdWe4BdeeKHKzzZp0kSefPJJefjhh01NrQ6ndiqGDx9uRpLQ5+nQoYMZleG9994zM8spDdtff/21GXZNSxQ0EGvd7vTp00/pebWG+K233jL1xlq7rIFbw3d0dPQpbRcAjpeXngl33GsDAAAAHo4eYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACAWMn/A+jxpzz2rn0vAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAHWCAYAAABt3aEVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbe9JREFUeJzt3Qd4VGXWB/D/lPTeCykQWuhVAVFsCCIWwF0b2Munoqui6KKrKO6qK+haV3ZdF3UX667gooKFKtKRIhBKQklCeu/JtO85b5iY0CGT3Jmb/+95LnMzc+fmzExCzrxz3vMaHA6HA0REREREOmDUOgAiIiIiIldhcktEREREusHkloiIiIh0g8ktEREREekGk1siIiIi0g0mt0RERESkG0xuiYiIiEg3mNwSERERkW4wuSUiIiIi3WByS9RBde7cGbfddpvWYeje7NmzkZKSApPJhIEDB7bL93z//fdhMBhw8ODBdvl+nmjfvn0YM2YMQkJC1HO1cOHCVp3voosuUpuTPPdyXnktzpT8XsrvJxGdHSa3RDrgTGY2bdp03Nvlj27fvn1b/X2++eYbPPvss60+T0fx3Xff4fHHH8fIkSMxb948vPDCC1qHREfceuut+OWXX/CnP/0J//rXvzB06FB89NFHeO2117QOjYhaydzaExCRZ9qzZw+MRuMZJ7dvv/02E9zTtGzZMvUcv/fee/D29tY6HDqitrYWa9euxVNPPYUHHnig6XpJbnfs2IGHH3641d8jOTlZfR8vL68zvu+7774Lu93e6hiIOiomt0QdlI+PDzxNdXU1AgIC4CkKCgrg5+fHxNbNFBYWqsvQ0NA2+x7ySYqvr+9Z3fdsEmIi+hXLEog6qKNrbi0WC5577jl0795d/VGOiIjA+eefj++//17dLsfKqK3zD7dza554Pvroo0hMTFSJc8+ePTFnzhw4HI4W31dGs373u98hMjISQUFBuPrqq3H48GF1ruYjwrIv1+3atQs33XQTwsLCVDxi+/btKh6pZZVYY2Njcccdd6C4uLjF93KeY+/evZgyZYqqr4yKisLTTz+t4srKysI111yD4OBgdY5XXnnltJ47q9WK559/Hl27dlWPVZ7LJ598EvX19U3HyPeVUgR5XpzP1anqL9evX48rrrhCPVZJ4vv374/XX3/9mNHgCy64QN0uyZnEn5aWdsqYj35+T/Rz4CxxWb16tXqd5PmS7/N///d/aGhoQFlZGW655RYVo2xSdtH8NXbWmspr//e//73pOTrnnHOwcePGFt9bfuZ2796N3NzcU8afl5eH22+/HQkJCep8cXFx6rE3ryuWOP74xz+qY/z9/XHxxRdj586dLR6jPAcyqiqmT5+uYpXbpXTn66+/xqFDh5per9bUvR5dcyvPh3wt5z/ajBkz1Bug0tLS49bcnslzKj7//HP07t1b/W5IOdKCBQtYx0sdCkduiXSkvLwcRUVFx1wvScSpyB/9F198EXfddRfOPfdcVFRUqBren3/+GZdddplKbnJyclSyKzWKzUlSIUnq8uXLceedd6qJU99++61KHiRx/ctf/tJ0rPyR/eyzz3DzzTdj+PDhWLlyJcaPH3/CuH7729+qhFvqVZ1JlMSwf/9+lexIUioJjPzRl8t169a1SLrF9ddfj169euGll15SCYwkQOHh4fjb3/6GSy65BH/+858xf/58PPbYYyphGDVq1EmfK3mOPvjgA/zmN79RCb0kpfLcSZIpiYSQ50hi2rBhA/7xj3+o684777wTnlMe05VXXqmStoceekg9LjnfV199pb4WP/zwA8aNG6eSenm95I3Cm2++qWp65XVyZfLy4IMPqhjkDY88p/JYJMlds2YNkpKS1OshZSoyYU4SKEl4m5OP+CsrK9XPjbweL7/8MiZNmqReN+fIpPxsyOsi9a+nSvyvvfZa9fpKXPI4ZVRcnrPMzMymx/3MM8+o11beIMgmz4lMGpOk3ElikMfxyCOP4MYbb1THBQYGqjcL8vuTnZ3d9PMq17vKddddp94IyM++/F40J9dJnPJm4WRO5zmVn2/5ee/Xr5/6mZSEWX4nO3Xq5LLHQuT2HETk8ebNmydZ30m3Pn36tLhPcnKy49Zbb236esCAAY7x48ef9PtMnTpVnetoCxcuVNf/8Y9/bHH9b37zG4fBYHCkp6errzdv3qyOe/jhh1scd9ttt6nrZ86c2XSd7Mt1N9544zHfr6am5pjrPv74Y3X8qlWrjjnHPffc03Sd1Wp1JCQkqLheeumlputLS0sdfn5+LZ6T49m6das651133dXi+scee0xdv2zZsqbr5FwBAQEnPZ8zpi5duqjXROJozm63N+0PHDjQER0d7SguLm66btu2bQ6j0ei45ZZbjvl5OHDgQNN1Rz+/J/o5cN537NixLb73iBEj1HN27733HvNcXnjhhU3XyfeU+0dERDhKSkqarv/yyy/V9YsWLTrm2FM95/KcyHGzZ88+4TEFBQUOb29v9TPcPO4nn3zymO/h/L5Hn0/uK8/H2ZDn4HjPgzyfzZ/DIUOGtLjfhg0b1HEffvhh03USa/M4zuQ57devn3pNKisrm65bsWKFOu5sHxuRp2FZApGOSNmAjGYdvcnH26cio1kyMiYtks6UjOBJqyv5GLs5GdWUvGrx4sXq6yVLlqjL+++/v8VxMhp3Ivfee+8x10kdq1NdXZ0arZZRYCGjdccbaXWSOGVmvMQlI1rNH7+UUsgo2Kkeq5g2bdoxj9U5cnamtmzZggMHDqiJTEfXgTpHoeWj+61bt6qRbxl1dpLXVkbWnXG5ijw3zUfAhw0bdsxz5nwuj/ecyehh85FIKaUQzY+VEVc556lGbZ11yytWrGj66P5oMqotI7Tys9Q8bldMDnMVeU42b96MjIyMpus+/fRTVWIgJRanc/+TPafyyYp0gJBR9OajzhdeeKEaySXqKJjcEumIlBOMHj36mO1UH3eKWbNmqXrKHj16qD+E8tGp1LaeDqkjjI+PVzW0zclHzs7bnZfSPaBLly4tjuvWrdsJz330saKkpER9VB8TE6MSH6kLdR4nHy0fTT5Gb05qb6UeUep+j77+RMlT88cqj+HomOUjfElMj1dTeSrOZOdk7dqc55UE/GjyPEuCL/W9rnK850xITfXpPGdH39/5M3iq5/d4JPmT0hF5kySvuZSNyEfyUod79PMjJSzNyc/G6fz8twcpsZGfHUlohST2Uh8rpSZS930qp3pOnc/B8X6fTvY7RqQ3TG6JSJGEQZKsf/7znyrJkjrRwYMHN9WLaqX5KG3z+kVplySjul988YXqJ+scFT5eCyUZYTyd68TRE+BO5Oi6Xk9ls9mOe/2Jnp/jXX+856y1z+/RZARWJgZKHam8MZFJgZLUy6i3p5A3gDLaKjW2QmqZpWZYRmRPh6ufUyK9YnJLRE3k426ZpPXxxx+rTgLykXfzGfYnSuhk9rl8JCqTXZqTmfDO252XknzKR/DNpaenn3aMMkq1dOlS/P73v1eTnSZOnKg+lpdJVu3B+RiOLt/Iz89XI9/Ox3omZPa7kB6rJ/u+zv7ER5PnWUahT9YmTUb5JL7m5GP80+lU4C7keZLyD3kzI8+VxO/scOF8fo5+XaTt1+mOFrfHGxZJZLdt26ZeRxnBla4OV111lUvO7XwOjvf7dCa/Y0SejsktESlHt9GSmj35KLN5eytn8nR0kiQzzmUE8K233mpxvcw6l4RBPnYVY8eOVZd//etfWxwnM/5Pl3P06ujRqvZaWUoe6/G+36uvvqouT9b54URkhFzKKuScRz+3zscpXRSkC4V0aWh+jCR5kuw54zpZYrhq1aoW10kHhBON3LaH020FVlNTo2qrj348Ugbj/PmU8hvpGCA/S81/Ns7k58LZMaEtSdcH+RmWN5BSkiAdMlzVu1lGhuVTlw8//BBVVVVN10tHEqnFJeoo2AqMiBTpiym9PocMGaJGcKUN2H/+858WKzjJbUImjkmiKn+kb7jhBjXyJD1FZcUn6ck5YMAAlXB9+eWX6uNk58ik3F/+uEvCIcm0sxWYfNx8uiNnUpvorLmU5EhaHMn3Ono0uK3IY5PWVZIYSpIpk3Wk3ZcknRMmTFDPw5mSOsx33nlHPY+SwMrouSSzkvjJJD9pqyak7Za8URgxYoSa2OVsBSZ1r6daNU4m1UkZhzz/MtIto4dy3qPrjtvT6bYCk5+PSy+9VJWjyM+p2WxWLddktFx+/py1tdLKTcoWJGGUZF9KFqRO93Qfo/x8ymiqTBaUlnDyBs9Vo6pO0dHR6mdE3gzJJx2nW5JwuqRFm0xOk/Zw8nMko9byplOS3uYJL5GeMbkloqaE9X//+59KFGU0TD7ilJ6hzXtySk9NmY3+ySef4N///rcaIZPkQpIzua/0GZXkQBYvkJnwkow5uwg4yaiSTL6SkStJUGTETe4jE6VOd0Un6fcpcUh3CIlBeoRKEiMjV+1B6pClDEISMnkM8nikEf/MmTPP+pzyZkH6BEuphXzULqUP8qbg7rvvbjpGniupLZbvI8+1jFRKci2TrY438a45OY+8AZClgOUcUvspnTQkaXR3MolNetJKOYr0D5bkNjU1VdWuSrLuJD+v8jM0d+5c9VxKhwf5eT7d0XTp4iEdKeTnVz51kN8BVye3QhJa6e4gI8+nGnE/UxKv/G7Jmx0p3ZEJdvJzKm++5I0SUUdgkH5gWgdBRB2bJBSDBg1SCfPkyZO1Dod0xrkC2alajumZfCIgo9vOFQeJ9Iw1t0TUruSj9KNJmYKM/p5qZTAiOjkp1ZHloZuT/sBShiIJPlFHwLIEImpXUisrjeyl7lA+XpZyAtnuueeeY3qoEmlNui2cbNKdLC7RfFENrUkds5SvTJkyRZXpSN22lGlI6czxFkQh0iMmt0TUrs477zz10ejzzz+vJrhIY3qpD5TJaETuRiaWnWxhDql5lpFRdyEt32RinNSFS2IunRik5vill15CRESE1uERtQvW3BIREZ3ATz/9dNxSmqOTSSJyH0xuiYiIiEg3OKGMiIiIiHSDNbdH1qKXpUOl56Be1osnIiIi0hMpNpDFT2SypHTYOREmt4BKbDlLm4iIiMj9ZWVlISEh4YS3M7kF1Iit88mSpT2JiIiIyL1UVFSowUhn3nYiTG6brWcviS2TWyIiIiL3daoSUk4oIyIiIiLdYHJLRERERLrB5JaIiIiIdIPJLRERERHpBpNbIiIiItINJrdEREREpBtMbomIiIhIN5jcEhEREZFuMLklIiIiIt1gcktEREREuqFpcvviiy/inHPOUWsER0dHY8KECdizZ0+LYy666CK1zFrz7d57721xTGZmJsaPHw9/f391nunTp8NqtbbzoyEiIiIirZm1/OYrV67E1KlTVYIryeiTTz6JMWPGYNeuXQgICGg67u6778asWbOavpYk1slms6nENjY2FmvWrEFubi5uueUWeHl54YUXXmj3x0RERERE2jE4HA6Hht+/hcLCQjXyKknvqFGjmkZuBw4ciNdee+2491m8eDGuvPJK5OTkICYmRl03d+5cPPHEE+p83t7ex9ynvr5ebU4VFRVITExEeXk5goOD2+zxEREREdHZkXwtJCTklPmaW9XcSrAiPDy8xfXz589HZGQk+vbtixkzZqCmpqbptrVr16Jfv35Nia0YO3asegJ27tx5wnIIeXKcmyS2REREROT5NC1LaM5ut+Phhx/GyJEjVRLrdNNNNyE5ORnx8fHYvn27GpGVutwvvvhC3Z6Xl9cisRXOr+W245EEedq0aceM3BJR25C6+KKiIpecS97oJiUlueRcRESkP26T3Ert7Y4dO7B69eoW199zzz1N+zJCGxcXh0svvRQZGRno2rXrWX0vHx8ftRFR+yS2vXqloqam1iXn8/f3Q1rabia4RETkvsntAw88gK+++gqrVq1CQkLCSY8dNmyYukxPT1fJrUwk27BhQ4tj8vPz1aXcRkTakhFbSWxnzZ6Mzl1bfspypg5m5OOZ6fPVOZncEhGR2yW3MpftwQcfxIIFC7BixQp06dLllPfZunWrupQRXDFixAj86U9/QkFBgZqMJr7//ntVaNy7d+82fgREdLoksU3tc/I3r0RERB6d3EopwkcffYQvv/xS9bp11sjKJC8/Pz9VeiC3X3HFFYiIiFA1t4888ojqpNC/f391rLQOkyT25ptvxssvv6zO8Yc//EGdm6UHRERERB2Lpt0S3nnnHdUhQdp9yUisc/v000/V7dLG64cfflAJbGpqKh599FFce+21WLRoUdM5TCaTKmmQSxnFnTJliupz27wvLhERERF1DJqXJZyMdDCQnrenIt0UvvnmGxdGRkRERESeyK363BIRERERtQaTWyIiIiLSDSa3RERERKQbTG6JiIiISDeY3BIRERGRbjC5JSIiIiLdYHJLRERERLrB5JaIiIiIdIPJLRERERHpBpNbIiIiItINJrdEREREpBtMbomIiIhIN5jcEhEREZFuMLklIiIiIt1gcktEREREusHkloiIiIh0g8ktEREREekGk1siIiIi0g0mt0RERESkG0xuiYiIiEg3mNwSERERkW4wuSUiIiIi3WByS0RERES6weSWiIiIiHSDyS0RERER6QaTWyIiIiLSDSa3RERERKQbTG6JiIiISDeY3BIRERGRbjC5JSIiIiLdYHJLRERERLrB5JaIiIiIdIPJLRERERHpBpNbIiIiItINJrdEREREpBtMbomIiIhIN5jcEhEREZFuMLklIiIiIt1gcktEREREusHkloiIiIh0g8ktEREREekGk1siIiIi0g0mt0RERESkG0xuiYiIiEg3mNwSERERkW4wuSUiIiIi3TBrHQBRR5eZmYmioiKXnCsyMhJJSUkuORcREZEnYnJLpHFi26tXKmpqal1yPn9/P6Sl7WaCS0REHRaTWyINyYitJLazZk9G564xrTrXwYx8PDN9vjonk1siIuqomNwSuQFJbFP7JGgdBhERkcfjhDIiIiIi0g0mt0RERESkG0xuiYiIiEg3WHNLpDNpaWkuOQ/bihERkSdickukE0WFFepyypQpLjkf24oREZEnYnJLpBNVFY29ch95ajwGDenZqnOxrRgREXkqJrdEOpOYHHFMWzGHwwGLtQp1lnL5Sl1nMJjgYw6ClzkABgPL74mISB+Y3BLplNVWj5LKPSip2ova+kLY7A3HPc4AI7y9ghHgEw1/3xgE+MbAAUu7x0tEROQKTG6J9MbYgIP5S1FSuRt2h/WYJNZoMKmvbXaLGs11wI56S5naJBFWvIA/vB2HjLLXYT5wEaJD+iMipDe8TH5aPSoiIqLTwuSWSDccGHKBP3yiNqGoonHk1dc7HJHBfRDsnwRf77CmxLbpHg47LLYa1NYXo6Y+H9V1Baiuz1dJb3yyN4pqV6Jo18qm5DgsqAeiQvoiIigV4UE9ERHUE34+UTAYDJo8YiIioqMxuSXSAbvdiqBOe3DnE1EALPDzjkRS1IUI9Ot00sRTam29zYFqCwlIbrp+1850zHlxHv40+0GY/YtQWL4dNfWFajRYtuZ8vcIaE91gSXh7HEl6U1UtLxERUXtjckvk4aSWNj1nEXyCi2CzOmCv6YzBg686ZpT2TBjhix0ba5EQdD0GDx6srquuy0dB+XYUle9AsdTyVu5FRfVB1FlKkVOyTm1OMlktMrg3YsOGoL4uHl7eHNklIqL2oekU6RdffBHnnHMOgoKCEB0djQkTJmDPnj0tjqmrq8PUqVMRERGBwMBAXHvttcjPz29xTGZmJsaPHw9/f391nunTp8Nq/bXWkEivrLY67D28AJW12bDbTHjtqXzYqjq3KrE9EZlo1iXmMpzT4xFcPmQubrpoGe66fBd+c/5XuHjAHAxIuQeJUaPg7xMNh8OGwvJf8MvB97G39AW8/FECas1rUVqVrkohiIiIdDlyu3LlSpW4SoIryeiTTz6JMWPGYNeuXQgIaPxI85FHHsHXX3+Nzz//HCEhIXjggQcwadIk/PTTT+p2m82mEtvY2FisWbMGubm5uOWWW+Dl5YUXXnhBy4dH1OalCHsPL1S1siajL8oO9ETGzv3tGoPZ5KtqcGVrrqo2B7mlm5BbvAH7spcAvkWwIQcZuTnwMgciKrgvokMHqPsTERHpJrldsmRJi6/ff/99NfK6efNmjBo1CuXl5Xjvvffw0Ucf4ZJLLlHHzJs3D7169cK6deswfPhwfPfddyoZ/uGHHxATE4OBAwfi+eefxxNPPIFnn30W3t7eGj06orYjfWsPFSxTia3Z6IseCddi1c5DcBeBfvHo7nc1usdfjYCGiZh4/Xl45tUL4fDOUpPVpIQhv2yLKluIDh0Ik9FL65CJiEgn3KpzuySzIjw8XF1KkmuxWDB69OimY1JTU9WKSWvXrlVfy2W/fv1UYus0duxYVFRUYOfOncf9PvX19er25huRJyko34biyjTVwyAl7gr4+0TCXcmEtqyMBvjY+qF/5zvQJWYs/LwjYLPX43DxGuw4+AFKqzK0DpOIiHTCbZJbu92Ohx9+GCNHjkTfvo0fcebl5amR19DQ0BbHSiIrtzmPaZ7YOm933naiWl8pcXBuiYmJbfSoiFyvsvYwsgt/VPsJkecj2N9zfn6NRrPqqtA76SZ0iRkDb3MQLLZqZOR+hf15S2C1NS4hTERE5PHJrdTe7tixA5988kmbf68ZM2aoUWLnlpWV1ebfk8hVnREO5C1RCy9Iy62Y0EHwRNKCLCK4F/om36JKE2QEWlZT23no3yp5JyIi8ujkViaJffXVV1i+fDkSEhKarpdJYg0NDSgrK2txvHRLkNucxxzdPcH5tfOYo/n4+CA4OLjFRuQJsot+QoO1Ct7mYCRHX+rxiyfISK6MPqcmXqf65cqCEnuzv0BB2TZVV0xERORRya388ZLEdsGCBVi2bBm6dOnS4vYhQ4aorgdLly5tuk5ahUnrrxEjRqiv5fKXX35BQUFB0zHff/+9Slh79+7djo+GqG1V1uaoxRRE55hLdTUJK9A3Fr2SbkBYYHc1Kp1ZuAKHCn6A3WHTOjQiIvIwZq1LEaQTwpdffql63TprZKUO1s/PT13eeeedmDZtmppkJgnrgw8+qBJa6ZQgpHWYJLE333wzXn75ZXWOP/zhD+rcMkJLpJe2X4fyf1D7EcG91XK6emMyeiMldhzyy2LUCHVRxS5YrDVqwpyeEnkiItLxyO0777yjal4vuugixMXFNW2ffvpp0zF/+ctfcOWVV6rFG6Q9mJQafPHFF023m0wmVdIgl5L0TpkyRfW5nTVrlkaPisj18ko3qZXAzCZ/JEZeAL2SMgupwe0WdyWMBjPKaw6qRSpksQoiIiK3H7k9nZo6X19fvP3222o7keTkZHzzzTcujo7IPTRYq5FXulntJ0WN6hALH4QGpqB7p4lIz/kfqutysSf7v+iZMEnrsIiIyAO4xYQyIjqxnOJ1sDusCPCNRVhgD3QUQX7xSE34jRqtrm0owp7DC+BAg9ZhERGRm2NyS+TGauuLUVTRuBhJQuQFHt8d4Uz5+USiZ8K1MJv8UFtfiFrzj/AL4H9bRER0YvwrQeTGsot/kgIehAZ0VSOZHZGfdzh6dmpMcO3GMtw/Mwp2R73WYRERkZtickvkpmQxg/LqA2qBg4TIkejI/Hwi0KPTJMDhha69fZFe+he2CSMiouNickvkxrW2IiqkL3y9w9DR+ftEws96HiwNDpTWb8DqHTO50AMRER2DyS2Rmy7YUFmbDQOMiAs7R+tw3IbJEYl5c4rUaPbOzH/j5/QTd1EhIqKOicktkRvKLdnQtGCDt1eQ1uG4la1rapAcfKfa37B3DnZnfa51SERE5EaY3BK5meq6PFTUHFKjk3HhQ7UOxy3FBlyBQV3vU/srfvk9DhUs1zokIiJyE0xuidxMbslGdRkRlAofrxCtw3Fbw3o+riaZORw2fPfz/Sgs36F1SERE5AaY3BK5kdr6IpRV71f7ceGstT0Z6fl7Uf8/q+WIrbZaLN54J6rr8rUOi4iINMbklsiN5JVtUZdhgd3YIeE0mIxeuGzw2wgL7I7q+nws3nQXLLZarcMiIiINMbklchMWazVKKveo/ZiwIVqH4zF8vIJxxTnvwdc7HIXlv2DZ1kfhcNi1DouIiDTC5JbITRSUb1f1owG+cQj0jdU6HI8S7J+EsUPmwmjwwv68b7Bx71+0DomIiDTC5JbIDThgRWHZdrUfGzpI63A8Unz4ubiw3wtqf3P6m9h7eKHWIRERkQaY3BK5AasxE1Z7HbzNwQgN7Kp1OB4rNfG3GJjyf2p/xfbHkVe6WeuQiIionTG5JdKYwQA0mPap/ZjQgTAY+GvZGsNTn0DnmMtgszdgyab/Q2VNttYhERFRO+JfUSKNpQ70hcNQBZPRG5EhfbQOx+PJm4PRA19DRHAv1DYU4ZtNd6HBWqV1WERE1E6Y3BJp7IIrGpfXjQjqpRJcaj0vcwCuGPoe/H2iUFK5Gz9seQh2h03rsIiIqB0wuSXSUL2tCP3P9VP7USH9tA5HVwL94nH50HdhMvrgUMFSrEt7SeuQiIioHTC5JdJQYc0PMJoMMNoj4ecToXU4uiM1zJcMmKP2tx14F2mZn2odEhERtTEmt0QasdktKKj5Xu172VO0Dke3usVfhaHdH1b7q3Y8hcPFa7UOiYiI2hCTWyKNHMz/ARZ7KSpKbTDbO2kdjq4N7f6QSnLtDiu+3XwfyqsPah0SERG1ESa3RBrZeejf6nLN91Uw8FexTRkMBlzcfzaiQwei3lKGbzbegXpLudZhERFRG+BfVCINlFXtx+HinyTtwuollVqH0yGYTb4YN+TvCPSNR1n1fnz381RVGkJERPrC5JZIAzsz56vLUJ8hKClgi6r24u8bjXHn/ANmkz+yi1bjp53PweFwaB0WERG5EJNbonZmtdVhT/Z/1H6M/1itw+lwIoN7Y/Sg19Wo+c7Mf2PHoQ+1DomIiFyIyS1RO0vPWaTqPYP8EhDiM1DrcDqkLjGXYXjq79X+T7tmIbtISkSIiEgPmNwStTMZLRS9k26CwWDSOpwOa2DKPejRaRIcDhu++/l+lFcf0jokIiJyASa3RO2osPwXFJRtg9HghdTE67QOBx29g8KF/V5AdOgANZK+eNOdaLBwch8Rkaczax0AUUey81DjRLKUuHHw94kEkAl3lpaW5hbnaMsOCpcPeRf/XX0VSqvS8cPWh9SSvUaOqBMReSwmt0TtpMFahX05/1P7fZImw50VFVaoyylTprjsnFVVVS47lysS5sjISCQlJSHANxqXD/07Fq69DocKlmHDntlN9bhEROR5mNwStZP0nK9gtdUgJCAFceHnwp1VVdSqy0eeGo9BQ3q26lxrVqZh7uuLUVdX51ZJt7+/H9LSdqsEV0oTLur/MpZufQhbMuYiPCgVPTpNaPX3ICKi9sfklqidpGV9oi57JV6v6j09QWJyBFL7JLTqHAcz8t0u6ZaYnpk+H0VFRSq5FT06XYOSyj3YkvFXrNj+OMICuyEqpK/LYiciovbB5JaoHRRX7kFB2VYYDWb0TJikdTgezxVJ9/EM6/kYSip3q/KEbzf/H35z/lfw9Q5z+fchIqK2w24JRO1gd9an6jI5ZjT8faK0DodOwGAw4tKBf0GwfzIqaw/jhy2/g93BFeSIiDwJR26J2pjNVo892V80lSSQ+zjRxLRk/4ews+b3yCr6EYtWPYHEoJtOa3IaERFpj8ktURs7kP8d6i1lCPCNQ2LUKK3DodOcmDb0Qn/cMT0KOVX/wZPT3saun+tOa3IaERFpi8ktURtLO1KSkJrwW/ZPdROnOzGtzrYFVtN+PPBcIvwto2GE32lNTiMiIu0wuSVqQxU1WcguWi3VnEhN/K3W4dAZTkyz22ORlv0ZausLYQzZhp6dJqm6XCIicl/8X5qoDe3O+kxdJkSej2D/RK3DoTNkNJrRNXacWi65qvYwckrWax0SERGdApNbojZit1uxO/tztc+JZJ5LWoElx1yq9nNLNqKqNkfrkIiI6CSY3BK1kazCVaiuy4OvVxi6xFymdTjUChFBPRERlArAoSYI2uwNWodEREQnwOSWqI1XJOuRMAkmk4/W4VArJUZdBG9zEOot5cgqXKl1OEREdAJMbonaQE1dAQ4WLFX7LEnQB7PJB11ix6r9oopdKK3K0DokIiI6Dia3RG1gz+Ev4HDYEBM6COFBPbQOh1wkyK8TYsOGqH1ZotdqO3HvWyIi0gaTWyIXczgcSDvSJSGVo7a6Ex8+HL7e4bDaalRdNRERuRcmt0Qulle6GeXV+2E2+aFb/JVah0Nt0B6ss5ogaEBxZRqshlytQyIiomaY3BK1UW/brnHj4W0O1DocagOBvrGICR2o9uvNW+DrZ9A6JCIiOoIrlBG5UIO1Cum5X6l9TiTTt/iIESir3q+6J1x9ayjS0tJcct7IyEgu40tE1ApMbolcKCP3G1WLGRLQBbFhQ7UOh9qQyeiF5OhLsPfwAowaF4QZ0+5AVkbr+9/6+/shLW03E1wiorPE5JbIhXZnfaouUxN+C4OBH1XrXbB/EurKo+AbUohH/pSCCO9xMODsX/eDGfl4Zvp8FBUVMbklIjpLTG6JXKS0Kl1NJjMYTOiZ8Butw6F2Ul3QBQ5zPvwCaxEZXYaokH5ah0RE1KFxQhmRi+zO+lxdJkVdhADfaK3DoXbisHpj0b/K1H520U+wWGu0DomIqENjckvkAja7BXsO/1ft90q8TutwqJ2t+qYS9oZA2Oz1yCleq3U4REQdGpNbIhfILFyB2voi+HlHIin6Eq3DoXZmtwOWiq5qv7BiJ2rqC7UOiYiow2JyS+TCiWQ9EiapWfTU8TgaQhEW2F321MplslIdERG1Pya3RK1UU1eAQwXL1X6vBJYkdGQJkeerCYWVtdmqBy4REbU/JrdErbTn8BdwOGyICR2MsKBuWodDGvLxCkZs6GC1n130I+x2q9YhERF1OExuiVpBPnp2LrebyolkBCA2fCi8TAFq5bLCih1ah0NE1OEwuSVqBelrKx8/m01+6BY3XutwyA2YjN6Ijxim9nNLNsBmb/2qZUREdPqY3BK1gnPUtmvceHh7BWkdDrmJiODe8PEKgdVWi/yyrVqHQ0TUoTC5JTpLFms10nO/UvssSaDmjAYTOkWcp/bzSzfDYqvVOiQiog6DyS3RWUrP/RpWWw1CArogLuwcrcMhNyNtwfx9olRZQl7JJq3DISLqMDRNbletWoWrrroK8fHxMBgMWLhwYYvbb7vtNnV98+3yyy9vcUxJSQkmT56M4OBghIaG4s4770RVVVU7PxLqiJomkiX8Vv1sEjUnPxPO0duC8m1osFRqHRIRUYdg1vKbV1dXY8CAAbjjjjswadKk4x4jyey8efOavvbx8WlxuyS2ubm5+P7772GxWHD77bfjnnvuwUcffdTm8ZPnyczMRFFRUavPU2vNRl7pJtXTtGfCb1wSG+lPsH8yAv06oar2MHJK1qNzzGitQyIi0j1Nk9tx48ap7WQkmY2NjT3ubWlpaViyZAk2btyIoUOHquvefPNNXHHFFZgzZ44aESZqntj26pWKmprW1z9OuC0UY34TgqjAYQjwjXZJfKTP0duEiJHYnf0Ziip2ISZsMPy8w7UOi4hI1zRNbk/HihUrEB0djbCwMFxyySX44x//iIiICHXb2rVrVSmCM7EVo0ePhtFoxPr16zFx4sTjnrO+vl5tThUVFe3wSEhrMmIrie2s2ZPRuWvMWZ/HATsqjTKRzIIQ8/kujZH0J9AvDqEBKaplXE7xWtVZg4iIOmhyKyUJUq7QpUsXZGRk4Mknn1QjvZLUmkwm5OXlqcS3ObPZjPDwcHXbibz44ot47rnn2uERkDuSxDa1T8JZ37+saj+qcy2oKLUhNPbXN1ZEJyK1t5Lcllalo7ouDwG+x/80ioiINJpQNnPmTBw6dAht7YYbbsDVV1+Nfv36YcKECfjqq69UCYKM5rbGjBkzUF5e3rRlZWW5LGbSv6KKnepyw/IqGA1u/f6Q3ISfTwQignqp/eyiNVqHQ0Ska2f1l/nLL7/En/70J1x44YWqO8G11157zESvtpCSkoLIyEikp6fj0ksvVbW4BQUFLY6xWq2qg8KJ6nSFxNoe8ZI+e9uWVR9Q+2u+r0baJWmtOp/UjVPHEB8xHCWVe1BZm4XK2sMI8uukdUhERLp0Vsnt1q1bsWXLFtXF4KGHHsLUqVPVKKt0PTjnnLbr95mdnY3i4mLExcWpr0eMGIGysjJs3rwZQ4YMUdctW7YMdrsdw4Y1Ln9J5ErFlbsbq24bQpCXdQhTpkxxyXnZvk7/fLyCERncG4UVO5BTvA49E67VOiQiIl06689UBw0apLZXXnkFixYtUonuyJEjkZqaqkZzpUdtSEjIKf+gyyis04EDB1TiLDWzskldrIwKyyis1Nw+/vjj6NatG8aOHauO79Wrl6rLvfvuuzF37lzVCuyBBx5QiTY7JZCrORwOFJU3liRUF0epy0eeGo9BQ3qe9TnXrEzD3NcXo66uzmVxkvuKDT8HRZVpqKzNRkVNFoL9E7UOiYhId8yu+IMvSWVDQ4Pal64Gb731Fp5++mm8++67uP766094302bNuHiiy9u+nratGnq8tZbb8U777yD7du344MPPlCjs5KsjhkzBs8//3yLkoL58+erhFbKFKRLgiTDb7zxRmsfFtExqutyUWcpVXW2DRWR6rrE5IhWTU47mJHvwgjJM0Zv+6CwfLsavQ3yS+ACIERE7pLcSimAjNZ+/PHHKtm85ZZb8Pbbb6uRVWe/2d/97ncnTW4vuugilRCfyLfffnvKOGSElws2UHtOJJNlVQvsnEhGZydORm8rdqKqLkfV3wb7J2kdEhGRrpxVtwTpXjB8+HBVRvDee++pbgMvvfRSU2IrbrzxRhQWFroyViLN2OwNKKncp/YjQ/poHQ55MG9zIKJC+qn9w8XrTvoGn4iIztxZDT9dd911avJYp04nnu0rXQ1kYheRHpRW7oPdYYGPVygCfaWe+8R9lIlOJTZsKArLf1GlLhU1hxAS0FnrkIiIOvbIrbO29mi1tbWYNWuWK+IicsuSBJntzhpJai1vcwCiQ/qrfY7eEhG5QXIrXQyO17qopqaGK3+R7tQ1lKKqLheAARHBjY34iVorNmyImpxYU5+P8pqDWodDRKQbZz1ye7zRq23btqkJXkR6HLWVj46lXpLIFbxk9DZ0gNqXzgkcvSUi0qDmVkoRJKmVrUePHi0SXJvNpkZz7733XheFRqQ9u8OGooq0ppIEIleKCRuCgrLtqKkvQFn1fmkWpnVIREQdK7l97bXX1OiCTCaT8oPmizR4e3ujc+fOatUwIr2oqD4Eq60GZpMfQgK6aB0O6YyXyU+N3uaVblKjt0aM0jokIqKOldzK4gqiS5cuOO+88+Dl5dVWcRG5haKKXeoyIigVRoNJ63BIh2LDBqOgfDtqG4rga8jROhwioo6T3FZUVCA4OFjty7K70hlBtuNxHkfkySzWGpRXH1D7LEmgtiKfCsSEDkRuyQY0mHaBzTiIiFrHfCb1trm5uYiOjkZoaOhxJ5Q5J5pJ/S2Rpyup2gsH7PD3iYafT+Nyu0RtISZ0EArKtsKGCgwa6a91OEREHSO5XbZsWVMnhOXLl7dlTERuofhISQJHbamtmU2+iAkdjJySdRh/UwgcDg4QEBG1eXJ74YUXNu1LzW1iYuIxo7cycitL8RJ5upr6QrUZYER4UA+tw6EOIDp0IHKKNyMuCSiu+wnAOVqHRETUcfrcSnJbWFh4zPUlJSXqNiJPV3yk/VdoYIqqiSRqa2aTD7xtjW+kDld+BrvdqnVIREQeyaWLOEifW19fX1fERaRpb9viyt1qPyKIK5JR+/Gyd0VVhQ11thzsy/mf1uEQEem/Fdi0adPUpSS2Tz/9NPz9f534IJPI1q9fj4EDB7o+SqJ2721bC7PJH8EByVqHQx2IAV74/r8VmHh7GDbtex3d46+G0XhG/00TEXV4Z/S/5pYtW5pGbn/55Re1cIOT7A8YMACPPfaY66MkakfsbUtaWvV1JX57ZzIqag5h7+EvkJp4ndYhERHpN7l1dkm4/fbb8frrr7OfLemOxVbb1Ns2IpglCdT+6usciA+YgMzKD7Fp3xvo3mkCTMZfBxKIiKgNam7nzZvHxJZ0qaRyT1NvW3/2tiWNRAeMU72VK2uzkZb5idbhEBHpP7mtrq5WNbeyBG+3bt2QkpLSYiPy9C4JHLUlLZkMPhja7SG1L6O3Fmu11iEREXmMs5qpcNddd2HlypW4+eabERcXd9zOCUSe2du24Ehv255ah0MdXK+kG7D9wHsorzmIbQf+gaHdG5NdIiJqg+R28eLF+PrrrzFy5MizuTuRW4/ahgR0gRd725LGTEYvnNvzMXy/5QFszfg7eidNZqkMEVFblSWEhYU1LcVLpLfetlxul9xF17grEBXSHxZbNX5Of0vrcIiI9JvcPv/883jmmWdQU1Pj+oiINO1t68fetuQ2DAYjhqc+ofZ3Hvo3yqr2ax0SEZE+yxJeeeUVZGRkICYmBp07d4aXl1eL23/++WdXxUfULtjbltxVQuRIJEVdjMzC5Vi7+wWMG/oPrUMiItJfcjthwgTXR0KkERmxZW9bcmfn9XoKWUWrcDD/B2QXrUFC5Hlah0REpK/kdubMma6PhEgjJZV7j/S2jVIbkbsJC+qGPklTsOPQB1izaxZ+c8HX/ISBiMiVNbdEuixJ4EQycmPn9HgY3uZgNfFxd9ZnWodDRKSv5NZms2HOnDk499xzERsbqzonNN+IPEVNfRF725JH8PUOw9Aejb1u1++Zg7qGMq1DIiLST3L73HPP4dVXX8X111+P8vJyTJs2DZMmTYLRaMSzzz7r+iiJ2gh725In6Zt8C8ICu6OuoRjr98zWOhwiIv0kt/Pnz8e7776LRx99FGazGTfeeCP+8Y9/qPZg69atc32URG3A4bCzty153MIOo/o+r/Z3ZX6EgrJtWodERKSP5DYvLw/9+vVT+4GBgWr0Vlx55ZVq5TIiT1BeI71ta9jbljxKfMRw9Og0Ud6eYdWOp9UCJERE1MrkNiEhAbm5uWq/a9eu+O6779T+xo0b4ePjczanJGp3JRWNo7bhgT0485w8yojUGfA2B6GwfDt2HfpI63CIiDw/uZ04cSKWLl2q9h988EE8/fTT6N69O2655Rbccccdro6RyOVs9gaUVTeu9hQRnKp1OERnxN83Guf2fEztr9vzZ1TV5mgdEhGRZ/e5femll5r2ZVJZUlIS1q5dqxLcq666ypXxEbWJ0qp02B1W+HiFwt8nRutwiM5Yn+Qp2Hf4S+SX/YyVvzyJK86ZB4PBoHVYRESemdwebcSIEWoj8hTFR0oSZEUyJgTkiaSU5uL+L+Oz1Vcgs3AF9h5egJ4Jk1ock5mZiaKiolZ/r8jISDWIQUSk2+T2ww8/POntUp5A5K7sqEVNbZbaj2BvW/LwlcuGdn8IG/bMxk+7ZiEx8nxVsuBMbHv1SkVNTW2rv4+/vx/S0nYzwSUi/Sa3Dz3U2EjcyWKxoKamBt7e3vD392dyS27NasxUl4G+8fDxCtE6HKJWGZhyD/bnfq1W2lvxywyMG/oP9WmEjNhKYjtr9mR07nr2pTcHM/LxzPT56nxMbolIt8ltaWnpMdft27cP9913H6ZPn+6KuIjaPLnlRDLSS+/bSwa8iv/8dDUOFSxV/W/7JE9uul0S29Q+CZrGSETk9t0Sjkcmk8lEs6NHdYncSafOXrAbK2AwmNRKT0R6IG/Uhvd8XO2v2fU8SqsytA6JiMjzk1shq5Xl5LAlDbmvcy8OUJch/p1hNvlqHQ6Ry/Tvcgc6RYyE1V6HpVsfUd1AiIg6orMqS/jf//7X4muHw6EWdXjrrbcwcuRIV8VG5FIOhw3nXNSY3LIkgfTGYDDikgFz8NmPl6vFHUzWf2sdEhGR5yS3EyZMaPG1TF6IiorCJZdcgldeecVVsRG5VEXDDoRGmAGHlxq5JdKbQL84XNT/z/h2873Iq/4f+g/z0zokIiLPSG7tdru6LCwsVB0SQkI445zcX1HtKnVptifAaHRJi2cit5MSe7kqUdh+4J+45ZEI2FGtdUhERO5dc1tWVoapU6eqpt6xsbEIDw9XlzNmzFDtwIjckcVWi5K6tWrfy852RqRvw1N/jwCv7vAPNKHOvB52O+tviajjOKPhq5KSErUS2eHDhzF58mT06tVLXb9r1y68+eab+P7777F69Wps374d69atw+9+97u2ipvojBzM+w52Rx2K8ixIDo/QOhyiNmUyeqN72GNYnX4XAoNLVYuwzjFjuBofEXUIZ5Tczpo1S5UhZGRkICYm5pjbxowZg5tvvhnfffcd3njjDVfHSnTW9h5eqC43LK9G52v5B570z8cUhff+XISH/hiL4srd8POJRGzYEK3DIiJyr7KEhQsXYs6cOccktkJKE15++WX897//xbRp03Drrbe6Mk6is1ZbX4ysosZ6240rWX9IHceebXXwtvVX+9lFq1FWfUDrkIiI3Cu5lXZfffr0OeHtffv2hdFoxMyZM10RG5FLZOR9o9qA+ZtTkJ/N2kPqWLzsXREZ3Fft789bot7sERHp2RkltzKJ7ODBgye8/cCBA4iOjnZFXEQus+9wY1/mSL8LtA6FqN0ZYEBS9EUI9OsEu70B6bmLYLXVah0WEZF7JLdjx47FU089hYaGhmNuq6+vx9NPP43LL7/clfERtUpl7WHklW5Uf+LD/bjACHVMRoMJXePGw9scjHpLOTJyv4HdYdM6LCIi95hQNnToUHTv3l21A0tNTVWrk6WlpeGvf/2rSnA//PDDtomU6Cyk5yxSl/Hhw+BjitQ6HCLNeJn80C3+KuzO+gyVtdnIKlyJpKiL2UGBiDp2cpuQkIC1a9fi/vvvV31tJbEV8p/jZZddppbfTUpiD1FyH/tyvlSX3Ttdg7oiraMh0pa/T6Ra5EFKEwrLf4GPVyhiwwZrHRYRkUud8TJNXbp0weLFi1FaWop9+/ap67p166YWcyByJyWVe1FckQajwQspseOwq2i/1iERaS40MAUJkRcgu+hHtXmbgxAe1F3rsIiIXOas1yANCwvDueee67pIiFxsX07jRLLEqAvh6x2qdThEbiMmdBAaLBUoKN+GA/nfwtsciEC/OK3DIiLSZvldIk8gJTPpR5Lb7p2u1jocIrcipWSJUaMQEtBFtcmTMoW6hjKtwyIicgkmt6RLBWVbUVGTCbPJH52jR2sdDpHbMRiMqlzH3ydatQaT+nS2CCMiPWByS7qeSNYlZgy8zP5ah0PklkxGL3SLv1rV3dZbypCe8xXsdi50QkSejckt6Y78cU7P/Urtd49nSQLRyXibA9A9/hqYjN6oqsvBwfzvmzrhEBF5Iia3pDuHi9eitr4Ivl5hSIjiqmREp+LnE6EWeTDAiJKqvep3iIjIUzG5Jd1xTiRLibtCfexKRKcW7J+E5JhL1b6s6ldYvkPrkIiI2rcVGJE7strqsD9vSdPCDUR0+iKDe6vleXNLNuBQwTJViwuYtA6LiOiMMLklXcksWIEGayUCfeMRFzZU63CIzoosaa7VOeLDh6PeUoGSyt3IyPsGPoZRrY6FiKg9MbklXZF+naJr/JWq1RGRJykqrFCXU6ZMcdk5q6qqzrgHbufoS9WbxKraw6gz/4SQCI7eEpHn0DS5XbVqFWbPno3NmzcjNzcXCxYswIQJE5pulxm7M2fOxLvvvouysjKMHDkS77zzDrp3/3WpyJKSEjz44INYtGgRjEYjrr32Wrz++usIDAzU6FGRVizWGvVRqugWd6XW4RCdsaqKxj6zjzw1HoOG9GzVudasTMPc1xejrq7ujO9rNJrV79DurM9QZynF/c9Ew2Y/8/MQEXW45La6uhoDBgzAHXfcgUmTJh1z+8svv4w33ngDH3zwAbp06YKnn34aY8eOxa5du+Dr66uOmTx5skqMv//+e1gsFtx+++2455578NFHH2nwiEhLhwqWqib0MjEmKqSf1uEQnbXE5Aik9klo1TkOZuS36v5mk6+qW99x4GMkdgX2l7+FoY4RamSXiMidaZrcjhs3Tm3HI6O2r732Gv7whz/gmmsaJwZ9+OGHiImJwcKFC3HDDTeomrIlS5Zg48aNGDq0sb7yzTffxBVXXIE5c+YgPj7+uOeur69Xm1NFReNHgeTZpAG96BonJQn8A0zUWj5eIfC1DkeVYQVK6tZg6/6/YVDXe7UOi4jopNy2KPHAgQPIy8vD6NG/Lp0aEhKCYcOGYe3axh6MchkaGtqU2Ao5XsoT1q9ff8Jzv/jii+pczi0xMbGNHw21tQZLJTILl6v9bvEsSSByFZMjEp/9rUTtr9v9Z2QWrtQ6JCIiz5xQJomtkJHa5uRr521yGR0d3eJ2s9mM8PDwpmOOZ8aMGZg2bVqLkVsmuJ7tYMFS2OwNCAlIQURQL63DIdKVHxdX4Za7xsDisxlLNt6PvpEvw9ccd1bnioyMRFJSkstjJCJy++S2Lfn4+KiN9FeSIJNgWJJA5PoODvdd/wUefikWKanA4k13Y/ajeaivO/Nlev39/ZCWtpsJLhF1vOQ2NjZWXebn5yMu7tcRAvl64MCBTccUFBS0uJ/ValUdFJz3J/2TpvNZRz4qZUkCUdt0cHjwifHom5KEWscyxCcDb3w2Ar7WYTDAcEaT3J6ZPh9FRUVMbomo4yW30h1BEtSlS5c2JbNSPiC1tPfdd5/6esSIEapFmLQSGzJkiLpu2bJlsNvtqjaXOoYDed/B7rAgLLAHwoN6aB0OkW47OPTu0x1VtQHYk/1f2IyHERqXh7jwc7QOjYjIfZJbaS6enp7eYhLZ1q1bVc2svKt/+OGH8cc//lH1tXW2ApMOCM5euL169cLll1+Ou+++G3PnzlWtwB544AHVSeFEnRJIf9Jzj5QkcNSWqM0F+sUjKfpi1XrvcPFa9XWQXyetwyIico/kdtOmTbj44oubvnZO8rr11lvx/vvv4/HHH1e9cKVvrYzQnn/++ar1l7PHrZg/f75KaC+99NKmRRykNy51DHUNpThc9JPa7xo3XutwiDqEqJC+avWy4srd2J+3BL2TboKXyU/rsIiItE9uL7roItXP9kRkYtCsWbPUdiIyyssFGzqu/Xnfwu6wIiK4F8ICu2odDlGHIaO3VXV5qLeU4WD+9+gWdxUncxKRW3DbPrdEpyPDWZLA5XaJ2pXJ6I2ucVfAYDChvPoA8su2aB0SEZHC5JY8Vk19EQ4XrVH73eKv0jocog7H3ycKiZGj1L6UB1XXnbi/OBEROnq3BCKnzMxM1TroaPnVS+CAHQFeXZG+W24/9pjmZLlmInKtqJB+qKzNQmlVOjJyF6v6W7OJfcSJSDtMbsntE9tevVJRU9PYa7O5h1+MQY9+vvjX3E34YUFjK7jT7dJBRK4hdbbJ0aNRXVeABmsFDhX8gJRYKVdg/S0RaYPJLbk1GbGVxHbW7Mno3PXXpZjtqEWN1zdqf8rNN+KWmwNOea41K9Mw9/XFqKura9OYiToaGalNiRuHPVmfqxHcooqdqqMCEZEWmNySR5DENrVPQtPX+WVbUVMIBPjGolf3nqe9OhIRtY1A31h0ijwP2UWrkVW4CkF+CfD1DtU6LCLqgDihjDxSaeVedRkeyBXJiNxFTOhgldTKioEH8r+Dw2HXOiQi6oCY3JLHabBUoqouV+2HBXXXOhwiOkLqbDvHXKbahFXX5SKvdJPWIRFRB8TkljxOSdU+dRnoGw9vc6DW4RBRMz5ewUiMukjt5xSvR01dgdYhEVEHw+SWPE7pkeQ2PIglCUTuKCIoFWGB3VSrvv3538Jut2odEhF1IExuyaPUWyqONIo3qD+eROSe5QlJ0ZfAbPJHXUMJDhc3LrZCRNQemNySRyk5MpEsyK8TvMynbv9FRNrwMvmhc8xotS9L81bUZGkdEhF1EExuyaOwJIHIc4QGdEFUcGO/24PSPQENWodERB0Ak1vyGHUNZaipl8kpBoSyJIHIIyREXQAfrxA0WKtQb9qudThE1AEwuSWPUVLVWJIQ7J+oPvIkIvcnbcG6xIxRb0qtpkPody5/d4mobTG5JY9RWtlYkhAWyN62RJ4k0C8esWGD1f7kByNgsVdoHRIR6RiTW/IIdlSgtqEIBhjZJYHIA8WHD4fRHozgMBMOlv8NDodD65CISKeY3JJHsBqz1WWwfxLMJl+twyGiM2Q0muFjGwqb1YGSurVIz12kdUhEpFNMbskjWEyNyW0YuyQQeSyTIwyLPy1X+z/ueBrVdflah0REOsTkltxefLIXHIZKGAwmhAakaB0OEbXCks/KEeDVFfWWcqzY/nuWJxCRyzG5Jbc3+AJ/dRninwyzyUfrcIioFew2ICXkQdVFIbNwOXZnfaZ1SESkM0xuya3JqM6QCxpXImOXBCJ98PdKwrk9HlP7P+2axdXLiMilmNySW6uxHkBMJy/AYURoIEsSiPSif8qdiA0bCoutGsu3TYfDYdc6JCLSCSa35NaKa39SlyZHnPoYk4j0wWgw4ZIBc2A2+SGnZB1+OfiB1iERkU4wuSW3LkkoqWtMbr1sCVqHQ0QuFhLQGSNSn1T763a/hNKqDK1DIiIdYHJLbqugfBvqbQWoq7XD5IjVOhwiagN9kqcgIfIC2Oz1WL7tMdjtVq1DIiIPx+SW3FZGzlfq8pcNtTDArHU4RNQGDAYDLu7/Z3ibg5BftgVb9/9N65CIyMMxuSW3JJNL0nO/Vvs//1itdThE1IYC/eIxss9Mtb9x72sorkjTOiQi8mBMbskt5ZX+jOq6XJgM/ti5uVbrcIiojfXsdC06x4yG3WHB0m3TYLM3aB0SEXkoJrfkljJyG0sSwnzPgdWidTRE1B7lCRf2fQG+XmFq5Hbzvje1DomIPBSTW3I7docNGUdKEsJ9R2odDhG1E3/faIzq9ye1/3PGX5FftlXrkIjIAzG5JbeTW7IBNfWF8PEKQYjPAK3DIaJ21DXuCnSLvxoOhw3Ltk6D1VandUhE5GGY3JLbST/SJaFLzFgYDV5ah0NE7eyCPrPg7xOFsur9WL9nttbhEJGHYXJLbkV6XO7PW6L2u8VfqXU4RKQBX+9QXNTvz2p/+4F/IruocTEXIqLTweah5FYOF69FXUMxfL3D0SniPBRmbdc6JCJysbS002n1FYoov8tQWPs9lmycin6Rr8LLFNriiMjISCQlJbVZnETkmZjckltJP9IlISX2chiN/PEk0pOiwgp1OWXKlNM63svHgCdejUV8chn+veRGvD2zAA7Hr7f7+/shLW03E1wiaoHZA7kN6Wt5wFmSEMeSBCK9qapo7Fn9yFPjMWhIz9O6j81QgVrHMvQe7Id3F4yHt73xfgcz8vHM9PkoKipicktELTC5JbchdXX1lnI1kSQuYpjW4RBRG0lMjkBqn4TTPr6w3I5DBUvRYN6JlITeCPSLa9P4iMizcUIZuY30nEXqMiX2ChgNJq3DISI3ERncB+GBPWRhbuzPW8z2YER0UkxuyS3YbPU4mP+92meXBCI6evWy5OhLVO/rBmslDub/AAeaFd8SETXD5JbcQmbRKvVHK8A3FrFhQ7QOh4jcjMnkg5TYcTDAiLLqDFiM+7UOiYjcFJNbcgsZRxZu6Bo3HgYDfyyJ6FgBvjFIiDxf7TeYtqNLqrfWIRGRG2IWQZqT+jn5mNGZ3BIRnUh06ECEBXYDDHbcPSMKDbYSrUMiIjfD5JY0d6hgOSy2agT5dUJM6CCtwyEiN6+/7RxzGYz2YIRGmLGv9GVVs09E5MTkljSXcWThhq5xV6o/XEREJ2MyesPXOgI1VTZUWfbix50z4Wi+ugMRdWhMbklTFms1DuUvVfvskkBEp8uIQLz3cpHaS8v6BLsy52sdEhG5CSa3pKkD+T/Aaq9DiH9nRAb31TocIvIgaT/XITHoJrW/euezyC3ZqHVIROQGmNySpvYdXqAuu3W6miUJRHTG4gImqomodocV3/58H6pqc7UOiYg0xuSWNFNTX4Ssoh/Vfo/4CVqHQ0QeSN4UX9x/NiKCUlFbX4RvNt2BBmuV1mERkYaY3JKmvW0dDhuiQwcgNDBF63CIyEN5mf1x+dB34ecdieKKNHz38/2w2S1ah0VEGmFyS5rZm9NYktAjfqLWoRCRhwv2T8QV57wHs8kPWYWr8OOOp9lBgaiDYnJLmiir2o+Csm0wGEzoyi4JROQC8inQ6EFvqCV6pYPCz+lvax0SEWmAyS1pYm/OQnWZGHkB/H0itQ6HiHSiS8xlOL/Ps2p/w9452Jvd+AkREXUcTG6p3clHhfsONya33TuxJIGIXKtv51swMOX/1P7y7Y/jcNEarUMionbE5JbaXX7ZFlTUZMJs8lejLERErjY89YkjLcIsWLL5/9REMyLqGMxaB0Adj3PUNiV2rJrlTER0ttLSTpy0hjtuRoH3AVQ27MKCn25E74g/wtccf9xjIyMjkZSU1IaRElF7YXJL7Ura86TnLFL73Tuxty0RnZ2iwgp1OWXKlJMe5xdgwMMvxCKxaxmW7bwXrz6eh9Ii2zHH+fv7IS1tNxNcIh1gckvtSlr01FlKVT/KhIiRWodDRB6qqqJWXT7y1HgMGtLzpMfaUYdax0pERFfhhXmp8LdcBAN8mm4/mJGPZ6bPR1FREZNbIh1gckvtat+RLgnd4q+C0cgfPyJqncTkCKT2STjlcfWWaOzJ/lytXuYI2oDunSbBbPo1wSUi/eCEMmo3DZZKHMj7Tu33YJcEImpHPl7B6KESWj/U1BcgPed/XMWMSKeY3FK72Z//LWz2eoQGpCAqpJ/W4RBRB+PrHYYe8RNgMnqjqi4HGblfw263ah0WEbkYk1tqN7/2tp0Ag8GgdThE1AH5+0ajW/w1MBrMqKg5hIy8b+CAXeuwiKijJLfPPvusSoKab6mpqU2319XVYerUqYiIiEBgYCCuvfZa5OfnaxozHV9l7WFkF/2k9nuwSwIRaSjILx7d4q9Wy3+XVx9AnXk9jCatoyKiDpHcij59+iA3N7dpW716ddNtjzzyCBYtWoTPP/8cK1euRE5ODiZNmqRpvHR8e7O/kLXJEB8+DMH+nI1MRNoK9k9Et7irVIJrM+bgjumRcDiObRFGRJ7H7aerm81mxMbGHnN9eXk53nvvPXz00Ue45JJL1HXz5s1Dr169sG7dOgwfPlyDaOl4HA47dmd/rvZTE6/TOhwiIiUkIBnd4q7EvsOLMPj8AGSUvY5B9vfZyYXIw7n9yO2+ffsQHx+PlJQUTJ48GZmZmer6zZs3w2KxYPTo0U3HSsmC9Chcu3btSc9ZX1+PioqKFhu1ndySDWq5XS9zIFJix2kdDhFRk5CAzvC1DoPV4kBx3Wos2/YY7BzBJfJobv32dNiwYXj//ffRs2dPVZLw3HPP4YILLsCOHTuQl5cHb29vhIaGtrhPTEyMuu1kXnzxRXUuajvyJkQaoouMsrnqMtRrOH7ZvttlS2sSEbmC2RGP914uxL1/iFO9uGV+x8X9Z3MEl8hDufVv7rhxv47y9e/fXyW7ycnJ+Oyzz+Dn53fW550xYwamTZvW9LWM3CYmJrY6Xvo1se3VKxU1NbXw8TPgpX8lwMfXiCem/hv7d793VuesqqpyeZxERE7b1tWiW+g0pJe/ir2HF8Bmb8ClA1+DyeildWhEpKfk9mgyStujRw+kp6fjsssuQ0NDA8rKylqM3kq3hOPV6Dbn4+OjNmobMmIrie2s2ZPRqXsN6s0/w+AIxMwX7ocBZ9YCbM3KNMx9fbHqjEFE1JbC/UZgbNe/4rufH2jqgXvZ4DdVX1wi8hweldzK6F1GRgZuvvlmDBkyBF5eXli6dKlqASb27NmjRg1HjBihdagEoHPXGDgCf0J9HRAfOQBx4Wc+Oi5rvhMRtZcusWNx+ZC/4duf78WB/G/x7eZ7MWbwX2E2+WodGhHpYULZY489plp8HTx4EGvWrMHEiRNhMplw4403IiQkBHfeeacqL1i+fLmaYHb77berxJadEtyDzVCO6ro8GGBEZHAvrcMhIjotyTGXYNzQf8Bs9MWhgmVYsuluWGy1WodFRHpIbrOzs1UiKxPKrrvuOrVYg7T5ioqKUrf/5S9/wZVXXqlGbkeNGqXKEb74QvqpkjuwGvery9DAFHiZA7QOh4jotCVGjcIV586D2eSPrKIf8c3GO2Cx1mgdFhF5elnCJ598ctLbfX198fbbb6uN3Iu3jwEWY2PbtqiQflqHQ0R0xjpFjMCV536Irzfehpzitfhqw60Yf84/4e0VpHVoROSpI7fkuYaOCgAMVvh4hSDIj50oiMgzxYUPxVXn/gve5iDklW7Eog03o95SrnVYRHQSTG6pTZw/LlBdRgb3VT0jiYg8VUzYIFw9/GP4eIWioGwr/rduMmrqG/t4E5H7YXJLLldt2Y/OPXwAhwGRwb21DoeIqNWiQvrimuEfw9c7AkUVO7Bw7XWorMnWOiwiOg4mt+Ry+dXfqkuzvRO8zP5ah0NE5BIRwb0wccTnCPTrhPLq/Viw5lqUVO7VOiwiOgqTW3KpuoYyFNeuVPte9hStwyEicinp/jLxvP8iLLA7quvzsXDtb5FXulnrsIioGSa35FJpWZ/CjgZk7W+A0RGpdThERC4X6BuLCSM+R0zoIDW5bNH6KThUsFzrsIjoCCa35DJ2hw07D32o9lcsqjjjpXaJiDyFr3corho2H4lRF8Jqq1ULPezJZp91Infg1n1uybMcyv8BlbWHYTYEYdPKTOA+rSMiIjp9aWlpZ3yfWNNU1PjaUVz3I5Ztm4Y9GeswoPNUJCcnt0mMRHRqTG7JZbYffF9dRvtfBkvDDq3DISI6LUWFFepyypQpZ3V/6XZ4za2hGPObEByu+gyL3vkQT977I7p07u7iSInodDC5JZcortitVvAxGEyIDrhcFkfWOiQiotNSVVGrLh95ajwGDel51uexWA+gzrQFgy/wxeq9DyI2bj78fCJcGCkRnQ4mt+QS2w68qy5TYi+HDziRjIg8T2JyBFL7JLTiDAnYscsfJfWrgMDd+GLNRFxxzj8RFtjNhVES0alwQhm1WlVtDvYd/lLtD0y5R+twiIg0Y3bEYM5jufAxxaCiJhNf/DSRnRSI2hmTW2q1bQfeg91hRXz4cESHDtA6HCIiTeVlW9En4kXEhA5Gg7US32y8Axv2vqo6yhBR22NyS60iPR53ZX6s9gd1vVfrcIiI3IKXKVQt19s7aTIABzbvewPfbLgNtQ0lWodGpHtMbqlVdhz8F6y2GkQEpap+j0RE1Mhk8sGF/f6ESwa8ArPRF1lFP+I/P16J/LKtWodGpGtMbumsWW11+OVI+6+BXe+FQfrhEBFRCz0TrsWkkQsR4t8ZVXU5WLj2OjUw4HA4tA6NSJeY3NJZ25X5EWobihDk1wld48ZrHQ4RkduKCE7Ftef/D11ixsJub8CPO5/G4k13oqauQOvQiHSHrcDorEdtt2S8o/YHd5sKk9FL65CIiNx+tbMowz2wBcUjq/JfOFSwDPOXXYouIfch3G/4McdGRkYiKSmpHaIl0hcmt3RWdh76N2rqC9Wobc+E32gdDhGRR612FpfshdsejURiSiX2lb2Mdf+twmd/K0Fdza+lCv7+fkhL280El+gMMbmlM2ax1mBLxly1P7jbgzAZvbUOiYjI41Y7c8COBtsuWIx7MPzSQIy4JBo+1iEwO6JxMCMfz0yfj6KiIia3RGeIyS2d1ahtY61topooQUREZ7vaWRIqa/vjYP53qrVindePiAjqhWR0bYcoifSJE8rojDRYq7Bl/9/U/pDuMmrLWlsiotYI8otH76SbEB3SuAhOcWUaqr2+w/BLA9hRgegsMLmlMyLlCHUNxQgJ6IIenSZqHQ4RkS5IeVdS9EVITbweft6RgKEBtzwSibSSmSitytA6PCKPwuSWTltVbS627X9X7Q9PfYKjtkRELhboG4teSTfA29oXDXV2VDbswGc/jsP6PXPUfAciOjUmt3TaNuydA5u9HnHh56pejURE5HpGgwne9p54fmouQnwGqb64P6e/hU9WjkZG7jcsVSA6BSa3dFoKy3dgT/YXan9Erye5GhkRURsrzreiZ9gfMHbIXNV2UVY3++7n+7Fo/RSUVO7TOjwit8VuCXRKMkqwJu1PqnFNt/irERM6UOuQiIg6hN27d6OXoRd6hsxBrmkBcqoW4HDxT/hs1eWICbgCnQKvh9nof8rzcEEI6kiY3NIp7cv5H3KK18Jk9MGwntO1DoeIqMMuBhERY8Zv7grDgBH+yKtehD3ZC7FwXik2LK/GyaoVuCAEdSRMbumkpO/iml3Pq/0h3R5EsH+i1iEREaGjLwZhteSh3rwNIWFVuHVaJG5/uCd8bANhcoQecywXhKCOhsktNcnMzFT/+TV3oPxvasEGX1MnOCrOwc8//3zWa6oTEZGrFoNIgN0+EPllW5FbsgF2YzFqjUsRFdIPnSJGwGzy0yBaIvfA5JaaEttevVJRU9M4WiCSe3hj+pxYGI0GvPj4Zuz7ZfgZnbOqqqoNIiUiImE0mhEXPhQRwanILvwRJVV7UVj+i5pslhB5HiKD+8Bg4Lxx6niY3JIiI7aS2M6aPRmdu8bAARtqzctgN1bAbEvC08+d/jK7a1amYe7ri1FXV9emMRMREeBtDkRK3DhE1fRDZuEK1DYU41DBMtXlJinqQq3DI2p3TG6pBUls5SOwrKLVqC6tUB9t9ekyFl7mU8/GbV7fRURE7SvIP0Et41tQvl1NAq6pL8Du7M9hNiUhOJQjuNRx8KedjlFZexj5pZvVfufo0WeU2BIRkXakDEHaNfZNvlWVJQirKRMz/94JuVWLYLNbtA6RqM0xuaUWHLDgQN53al/+YwwNTNE6JCIiOkMyKNE5ZjRSE6+H0R4GP38jMivn4fMfr0B20U9ah0fUppjcUgv1pi1osFbA2xyMxMgLtA6HiIhaIdA3Fn7Wi/Hv14thNgajtGofFq2fjO9+nqo+pSPSIya31OTCK4NgNWXJB1voEjsGJpOP1iEREVErGWDAmu+rMCDqLfTrfBsMMCIj92t8snI0Nu97C1YbJ/+SvjC5JaWyYbda9UYkRJ6v1jEnIiL9MBsDcX6fZ/HbC75GXPi5sNpqsWHvHHy6aiwO5S/TOjwil2FyS6ipK8C+0jkwmQ0w2xIQEzpI65CIiKiNRAT3wjXDP8Xoga8jwCcGFTWH8M2mO/DNxjtQXn1Q6/CIWo3JbQdnsVbjm013wmIvQV6WBT62wTAYDFqHRUREbUj+n+/e6RrccNFSDEz5PxgNXqo37ierxmD97tmwWGu0DpHorDG57cDsdiu++/kBtaKNTDR45/kCGOCldVhERNSOC0CM6DUD141agsSoUbDbG/Bzxtv4eMXF2JP9Xzgcdq1DJDpjXMShg3I4HFi142lkFi6H2eiLHmEzUJhzk9ZhERFRG0lLSzvp7XGmh+Abdh4yK+ahuj4fy7Y9ivW7/ork4DsQ5N2r6bjIyEgkJSW1Q8REZ4fJbQdNbNek/RFpWR+rWbOjB72B0pxIrcMiIqI2UFRYoS6nTJlyWsebvYCLrw7G5deHAP4Z2FX8FDb/WI2F75ehON8Kf38/pKXtZoJLbovJbYdMbJ/H9gP/VF+P6vcn1farNOdnrUMjIqI2UFVRqy4feWo8Bg3pedr3s6MODbZdsBoPYMgFARhyfhBqS2Ix88H1KCoqYnJLbovJbQcitVM/7Xoevxycp76+sN8L6J10o9ZhERFRO0hMjkBqn4QzvFc31NQXIqvwR1TWZsEvIgez/tEJ2ZUfo4+lG3y8gtsoWqKzxwllHYQ06f5hy++OSmxZY0tERCfn7xOFHp0monv8BBjtofD1N+Jw1eeYv3wUtmT8DRZb48gwkbtgctsB1DWU4asNtyA99ysYDWZcMuAVJrZERHRGrcNCApLhZ70Ef3+hEL6mTqi3lGHd7hfxkUpy56LBUql1mEQKk1udK67YjS/WTERuyQZ4m4Mw/twP0DPhWq3DIiIiD13Kd+uaGvSPeg0XD5iDIL8EVbawbvdL+Neykdiw5xXU1hdrHSZ1cKy51bHd2f/Bj7/8AVZ7HQL9OuGKoe8hIjhV67CIiMjD7d69F70MvZAa8iqKvX9ETtUXqLMexub0N7El/W+I8r8McQFXwcccfdLzsK0YtQUmtzpUbynH6p3PYe/hL9TXiVEXYvTA1+DrHaZ1aEREpMO2YrKw5YDhfhh7XQiSuwP5NV8jt/IrbN9QixWLKrF3e91xz8e2YtQWmNzqTGbhSqzY/gSq6/LUB0jn9HgEQ7o9AIOBFShERNS2bcUccMBmKYDFtAcwFWLgCH+1Ge3B8LJ3hdmeBMOR1ONgRj6emT6fbcXI5Zjc6kRNXQHW7n6pabQ2xL+zmjgWGz5E69CIiKhDtRVLBDBE1d4WlG9Tcz/sxgrUG7fAatyJ8MAeiAjpAwdOXrJAdLaY3Ho4m70BOw5+iI37XoPFWqVGa/t1vhXDUp+Al8lP6/CIiKiD8vOJQHL0JegUMRLFFbtUoitlc4UVO9Rm8ArCZdcGo8FWonWopDNMbj2U3WHDvsMLsXHvX1BZm62uiw4dgAv6zFKXRERE7sBs8kFM2CBEhw5Uf6+KKnahrCoddlRi4u1h2FJwD4rWj0RK3Dh0jhkDfx8uB0+tw+TWw9jsFmTkfIWfM/6K0qp96jofczjiA65HlO+lyN5vQzbOfCndtLS0NoiWiIjo1165wf6JarPZLsKuvRuwc88adOvji6yiH9W26pc/IDZ8KFJixyEl9nIE+sVpHTZ5ICa3HkKaY+/J/i+2HfhH00itj1cIukTcgImjn0d52e9d8n2qqqS0gYiIqO2YTD7wsnfBq08swE/rF8E3/BD25y1BYfkvqi+7bD/teg4RQanoFDkSCZHnIz78XHiZA7QOnTwAk1s3V1y5B7sOfYQ92f+BxVatrvP1jkD/Lnegb/IU7PwlA+VlT2LW7Mno3DXmrL/PmpVpmPv6YtTVHb9dCxERUVvwNcdjcLcrMbjbVFTWZKskd3/et8gr3YTiyt1q237gPbXCppQ2dIo4D9Gh/REV0g8Bvmf/d4/0i8mtG5LVXvYd/hJ7Dy9AUcXOputDA1LQr/PtSE38Lcwm3xb3kcT2xDNXT01ashAREWkpyD8BA1LuUpt0WzhcvAbZRbKtRmVtlkp4ZXPy94lSSW5kSF846qNgqQmEjzkWJoPPWcfAhSU8H5NbjWRmZqrefk42ey3K6jejqHYFyuq3ypQxdb30Awz1GYyYgHEI9u6PhhIDtpfsarofa2WJiEiv3Ra6xV+lNlFRk4Xsop9UyUJh+Q41KU0Ggw4VLFNbc6VFVhTmWFGQa0FpoQ3lJTZUlNhQVmJVl5UVdjga/8wegwtLeD4mtxoltr16pcLbrwH9zvVD/2H+6DHAF15ehqZjDuyux/rlVdj8Yw2qKzIAfH7Sc7JWloiI9EwmovVOukFtwmKtQXFFmqrT3X1gJTZtW4Kkrv4wmmwIizSrrUf/lp9yNnEYYIAPDA4/GOALg8NHXZYWNuDjeetxIOdHBEecp0aGvUwBajIceQ4mt+1M3nluPfAWfvdCCJK6tfzYxOAIgNmeCC9bEvqlBKFfCnDXnSc/H2tliYjIk7XuE0hJOvujIdcLL097Hx9+MQ3dukegrqEM9ZYy1FnKYLFWN262ajRYq2G11cgfXDhQB4eh5d/OwFjg7hlR2FX8FHataLzObPSFn0+UalEmyW6gXzwCfeMbL/3iEeTXCX4+kTAaTK17IshlmNy2s8qaLByu+qwxsXVAtTkJCUhBaGAKfL3CzvjdIWtliYjIExUVVqjLKVOmuOyc8imm2ZSAQD+/E7YRczjssNhqWiS9Mgos15WUFmNPWgb69O8COyrUbVZ7nar3le1EZLJbgG/skWQ3oXHzb7wM9k9AgG8cTEYvlz1OOjkmt+0sNvwcRPhegL+8uAD3Tr0VqT26aR0SERFRu6uqqFWXjzw1HoOG9GzVuc7kU0yDwQhvc6DajlZbmI1Xn1iDzZu/weDBg1XSW9tQpGp71VZXiKq6HFTV5qCyNkftV9flwe6wqjadsuViw7HfE0aV/DoTXrkMbkqCE9VtTH5dRzfJ7dtvv43Zs2cjLy8PAwYMwJtvvolzzz0X7kZ+eLuFPYJ1S/+N+6eeoBaIiIiog0hMjmhVt5+2+BTz2FIJ+VQ1Wm3e6INwAOHyJ9xXRoJtaLCXosFWiHpb0ZHLArXVWQrQYC+EA5bGpLgu57jJL2CEtykcPqboYzYvUzi8jCGIiUpCcnKySx+nXukiuf30008xbdo0zJ07F8OGDcNrr72GsWPHYs+ePYiOlh9GIiIiovYtlXBWGgaFGBEeY0aEbNGNl+HRv+57edvRoBLjIlTi145IzVmyHAjeI6O/saqThCzk5G0Oho9XMLxlMwep0WiT0VstkqEujY2XUjfsvE6m0mUfPozSktKjo20ZtPPrJo5mu4374RER6JzUDV5mf7gTXSS3r776Ku6++27cfvvt6mtJcr/++mv885//xO9/75qVu4iIiEjf2qJU4lTnkqltjgaZ3FYDu6EGDlQ3XhqOXKIOMFjh5W1ArSUfteVuNNemAOhWdAsuO3cW3InHJ7cNDQ3YvHkzZsyY0XSd0WjE6NGjsXbt2uPep76+Xm1O5eXl6rKiovEdW1tztu3avTMbtTW/xtGaj2LS9+YhwD9D8/PwXJ4fU0c4lzvG5K7ncseYOsK53DGmjnAu53nq6y2t/vvcUG85g3MZpVfDka3lteLQwTy889oCvPDnpxGfGAKLvQJ2ew2sjhrYml3aHbVwOKywOyyww9K4ry4bYEfj9TLqanfYYTS6pr1ZUVFpu+VPzu/jODJyfEIOD3f48GF5hI41a9a0uH769OmOc88997j3mTlzproPN27cuHHjxo0bN3jUlpWVddLc0ONHbs+GjPJKja6T3W5HSUkJIiIidNeoWd7lJCYmIisrC8HBwVqHQ63A11If+DrqB19L/eBr6RlkxLayshLx8fEnPc7jk1tZA9pkMiE/v2UNinwdGxt73Pv4+PiorbnQ0FDomfyy8hdWH/ha6gNfR/3ga6kffC3dX0hIyCmPcZZzeCxvb28MGTIES5cubTESK1+PGDFC09iIiIiIqH15/MitkBKDW2+9FUOHDlW9baUVWHV1dVP3BCIiIiLqGHSR3F5//fUoLCzEM888oxZxGDhwIJYsWYKYmBh0dFJ+MXPmzGPKMMjz8LXUB76O+sHXUj/4WuqLQWaVaR0EEREREZEreHzNLRERERGRE5NbIiIiItINJrdEREREpBtMbomIiIhIN5jceqBnn31WraTWfEtNTW26va6uDlOnTlUrrgUGBuLaa689ZpGLzMxMjB8/Hv7+/oiOjsb06dNhtVo1eDQdy6pVq3DVVVep1VXkdVu4cGGL22V+p3T9iIuLg5+fH0aPHo19+/a1OEZW05s8ebJqNC6Lj9x5552oqqpqccz27dtxwQUXwNfXV6268/LLL7fL4+soTvU63nbbbcf8jl5++eUtjuHr6B5efPFFnHPOOQgKClL/F06YMAF79uxpcYyr/k9dsWIFBg8erGbkd+vWDe+//367PMaO4HRex4suuuiY38t77723xTF8HfWBya2H6tOnD3Jzc5u21atXN932yCOPYNGiRfj888+xcuVK5OTkYNKkSU2322w29cvb0NCANWvW4IMPPlC/nJJUUduS/ssDBgzA22+/fdzbJXl54403MHfuXKxfvx4BAQEYO3as+uPqJAnRzp078f333+Orr75SidY999zTYhnJMWPGIDk5GZs3b8bs2bPVG6K///3v7fIYO4JTvY5Cktnmv6Mff/xxi9v5OroH+T9SEtd169ap18JisajnXV5jV/6feuDAAXXMxRdfjK1bt+Lhhx/GXXfdhW+//bbdH3NHfR3F3Xff3eL3svkbRr6OOiKtwMizzJw50zFgwIDj3lZWVubw8vJyfP75503XpaWlSbs3x9q1a9XX33zzjcNoNDry8vKajnnnnXccwcHBjvr6+nZ4BCTkNVmwYEHT13a73REbG+uYPXt2i9fTx8fH8fHHH6uvd+3ape63cePGpmMWL17sMBgMjsOHD6uv//rXvzrCwsJavJZPPPGEo2fPnu30yDr26yhuvfVWxzXXXHPC+/B1dF8FBQXqtVm5cqVL/099/PHHHX369Gnxva6//nrH2LFj2+mRdezXUVx44YWOhx566IT34euoHxy59VDyUbV8JJqSkqJGgOSjFCEjPPKOVT7OdpKShaSkJKxdu1Z9LZf9+vVrsciFjA7KSJGMJJE2ZERAFiFp/trJGtrDhg1r8drJR9iyGp+THG80GtVIr/OYUaNGqaWpm7++8hFdaWlpuz6mjkw+upSPNXv27In77rsPxcXFTbfxdXRf5eXl6jI8PNyl/6fKMc3P4TzGeQ5q29fRaf78+YiMjETfvn0xY8YM1NTUNN3G11E/dLFCWUcjyY58VCJ/NOVjleeee07V5e3YsUMlR/LHUP5wNie/rHKbkMujV29zfu08htqf87k/3mvT/LWThKk5s9ms/gNvfkyXLl2OOYfztrCwsDZ9HNRYkiAfW8vrkJGRgSeffBLjxo1TfwBNJhNfRzdlt9vVx8wjR45UyY9w1f+pJzpGEqfa2lpVY09t9zqKm266SZX5yMCQ1LM/8cQT6s3iF198oW7n66gfTG49kPyRdOrfv79KduUX9rPPPuMvFpEbuOGGG5r2ZSRIfk+7du2qRnMvvfRSTWOjE5OaTRkkaD6HgfTzOjavaZffS5m4K7+P8gZUfj9JP1iWoAMyotCjRw+kp6cjNjZWFcOXlZW1OEZm9sptQi6Pnunr/Np5DLU/53N/vNem+WtXUFDQ4naZySsz7/n6ui8pH5KPQuV3VPB1dD8PPPCAmti3fPlyJCQkNF3vqv9TT3SMdMvgoETbv47HIwNDovnvJV9HfWByqwPSPkjeecq70CFDhsDLywtLly5tul0+dpGa3BEjRqiv5fKXX35p8cdVZpfKL2fv3r01eQwE9RG0/MfZ/LWTj7qkBrP5ayd/ZKUO0GnZsmXqYzjnf9RyjMy8lzrB5q+vlLHwo2xtZGdnq5pb+R0VfB3dh8wJlIRowYIF6jU4uhTEVf+nyjHNz+E8xnkOatvX8Xik24Fo/nvJ11EntJ7RRmfu0UcfdaxYscJx4MABx08//eQYPXq0IzIyUs0OFffee68jKSnJsWzZMsemTZscI0aMUJuT1Wp19O3b1zFmzBjH1q1bHUuWLHFERUU5ZsyYoeGj6hgqKysdW7ZsUZv8+r366qtq/9ChQ+r2l156yREaGur48ssvHdu3b1cz7rt06eKora1tOsfll1/uGDRokGP9+vWO1atXO7p37+648cYbm26X2d0xMTGOm2++2bFjxw7HJ5984vD393f87W9/0+Qxd7TXUW577LHH1Ex6+R394YcfHIMHD1avU11dXdM5+Dq6h/vuu88REhKi/k/Nzc1t2mpqapqOccX/qfv371ev3/Tp01W3hbffftthMpnUsdT2r2N6erpj1qxZ6vWT30v5PzYlJcUxatSopnPwddQPJrceSNqOxMXFOby9vR2dOnVSX8svrpMkQvfff79qIyS/hBMnTlS/5M0dPHjQMW7cOIefn59KjCVhtlgsGjyajmX58uUqGTp6k9ZRznZgTz/9tEpqpAXYpZde6tizZ0+LcxQXF6skKDAwULWouf3221VC1dy2bdsc559/vjqH/IxI0kzt8zrKH1P54yh/FKWFVHJysuPuu+9u0V5I8HV0D8d7HWWbN2+ey/9PlZ+bgQMHqv+7JbFq/j2obV/HzMxMlciGh4er36du3bqpBLW8vLzFefg66oNB/tF69JiIiIiIyBVYc0tEREREusHkloiIiIh0g8ktEREREekGk1siIiIi0g0mt0RERESkG0xuiYiIiEg3mNwSERERkW4wuSUiIiIi3WByS0TkRmRdnXvuuQfh4eEwGAzYunXrGZ/j2WefxcCBA5u+vu222zBhwoSzvj8RkSfhCmVERG5k8eLFuOaaa7BixQqkpKQgMjISXl5eWLBgwWknqJKcLly4sCkxLi8vV0lzaGjoad2/qqoK9fX1iIiIaNVjISLSglmT70pERMeVkZGBuLg4nHfeeS47Z0hIyBkdHxgYqDYiIk/EsgQiIhf7z3/+g379+sHPz0+Nfo4ePRrV1dWw2WyYNm2aGkGV6x9//HHceuutTSOyUj7w4IMPIjMzU5UkdO7cWW1i4sSJTdedqeZlCX//+98RHx8Pu93e4hgZLb7jjjtOWtYwZ84clXhL7FOnToXFYmk6Jjc3F+PHj1ePuUuXLvjoo49UrK+99tpZPotERGeHyS0RkQtJknfjjTeqRDEtLU2VF0yaNEmVBbzyyit4//338c9//hOrV69GSUmJKjdwev311zFr1iwkJCSo82zcuFFtYt68eU3XtcZvf/tbFBcXY/ny5U3XSRxLlizB5MmTT3g/OV5GleXygw8+UI9DNqdbbrkFOTk56vH+97//VUl0QUFBq2IlIjobLEsgInIhSUCtVqtKaJOTk9V1MoorZBRzxowZ6jYxd+5cfPvtty3KB4KCgmAymRAbG9vivDLae/R1ZyMsLAzjxo1TI6uXXnpp00iz1PZefPHFJ73fW2+9pWJLTU1Vo7RLly7F3Xffjd27d+OHH35QiffQoUPV8f/4xz/QvXv3VsdLRHSmOHJLRORCAwYMUEmjJLQySvruu++itLRUTeqSxHfYsGFNx5rN5qZksD3JCK2MrsqkMTF//nzccMMNMBpP/CehT58+KrF1kvIE58jsnj171GMZPHhw0+3dunVTCTERUXtjcktE5EKSAH7//feq60Hv3r3x5ptvomfPnjh48CDcxVVXXaXKJL7++mtkZWXhxx9/PGlJgpCODc1J/e/RdbtERO6AyS0RkYtJ4jdy5Eg899xz2LJlC7y9vdVH+DLauX79+qbjpHxh8+bNpzyfJJYyGc1VfH19VWmEjNh+/PHHKvluPup6puT+8ljksTqlp6erEWsiovbGmlsiIheS5FUS2TFjxiA6Olp9XVhYiF69euGhhx7CSy+9pGpRpW711VdfRVlZ2SnPKV0H5JySMPv4+Ljk434Zqb3yyiuxc+dOTJkypVXnksciHSFk8Yl33nlHJeOPPvqo6pwgiT4RUXviyC0RkQsFBwdj1apVuOKKK9CjRw/84Q9/UF0SZBKXJHw333yzav81YsQINXlMWnyditxfSh0SExMxaNAgl8R5ySWXqFXQpF72pptuavX5PvzwQ8TExGDUqFHqMclEM3l8MkpMRNSeuEIZEZGGpIesjN7KimJ6kp2drZJx6aLg7MpARNQeWJZARESttmzZMrVsr3SJkK4QskCFlFPISC4RUXtiWQIRkYeRtlzOJXKP3mSSmBZktbInn3xSxSZlCVFRUWpBh6O7LBARtTWWJRAReZhDhw61WPq2Oal7lVpXIqKOisktEREREekGyxKIiIiISDeY3BIRERGRbjC5JSIiIiLdYHJLRERERLrB5JaIiIiIdIPJLRERERHpBpNbIiIiIoJe/D9/FGGPTh2cYgAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAs4AAAHWCAYAAABngQ9HAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUDVJREFUeJzt3Qd4VGX69/F7Jj30EKpUAQWpioqIIgqCyOKi7q4iIlb+ulhRYLFQdxcWu4i6uxb0FVxxL0UXFKniooCIIlUWEASlt4SaMnPe636SM8ykTjKTTPt+vMZpJzPPnJmEX57cz30clmVZAgAAAKBEzpLvBgAAAKAIzgAAAIAfCM4AAACAHwjOAAAAgB8IzgAAAIAfCM4AAACAHwjOAAAAgB8IzgAAAIAfCM4AAACAHwjOAIKiWbNmcvvtt4d6GFHv6aeflrPPPlvi4uKkU6dOlfKc06dPF4fDITt27KiU54tEW7Zskd69e0uNGjXMvpo9e3ZAj9ejRw9zAhBeCM4Aig1K3377bZH36z/o7dq1C/h5Pv30Uxk3blzAjxMr5s+fLyNHjpRu3brJW2+9JX/9619DPSTkGzJkiKxbt07+8pe/yP/7f/9PLrzwQpk5c6a88MILlTqOkydPmu+pL774olKfF4gV8aEeAIDosHnzZnE6nWUOztOmTSM8+2nx4sVmH7/xxhuSmJgY6uEg36lTp2T58uXyxBNPyP333++5XYPz+vXr5eGHH67U4Dx+/HhzmRlrIPiYcQYQFElJSZKQkCCR5MSJExJJ9u/fLykpKYTmMHPgwAFzXrNmzVAPBUAFIzgDqJAa55ycHDPz1apVK0lOTpbatWvLZZddJgsWLDD367Y626y0LMQ+eYfaRx99VBo3bmxC+bnnnivPPPOMWJZVaLbvwQcflPT0dKlWrZpcd9118uuvv5rH8p7J1st628aNG+WWW26RWrVqmfGotWvXmvFo7bCOtX79+nLnnXfKoUOHfJ7Lfoz//e9/cuutt5p61jp16shTTz1lxrVr1y757W9/K9WrVzeP8eyzz/q173Jzc2XixInSokUL81p1Xz7++OOSlZXl2UafV8szdL/Y+0pLakqycuVKufbaa81rrVKlinTo0EFefPHFQrPYl19+ublfg5+Of9OmTaWOueD+Le5zYJf9LFu2zLxPur/0ef7v//5PsrOz5ejRo3LbbbeZMepJS1G832Otq9av1/f+H//4h2cfXXTRRbJq1Sqf59bP3I8//ih79uwpdfx79+6VO+64Qxo1amQer0GDBua1e9dx6zj+/Oc/m21SU1PlyiuvlA0bNvi8Rt0HTZs2NZdHjBhhxqr362zv3Llz5eeff/a8X3p7oL843XXXXVKvXj3zOe3YsaO8/fbbPvtK96/S7z37efmLDhA8lGoAKFZGRoYcPHiw0O0aUEqj/1hPmjRJ7r77brn44oslMzPT1Ex/9913cvXVV5vgtHv3bhOktSbUmwYWDcBLliwxQUEXwX3++ecmmGgofv755z3baoCZNWuWDB48WC655BJZunSp9OvXr9hx/f73vzdhXuuD7YCmY/jpp59MkNLAq+FIQ5qer1ixwifQq5tuuknatGkjkydPNuFIw1VaWpr8/e9/l6uuukr+9re/yYwZM+Sxxx4zAa979+4l7ivdRxqAfve735lfFjTw6r7TAPvRRx+ZbXQf6Zi++eYbef31181tl156abGPqa/pN7/5jQmEDz30kHld+nhz5swx19XChQulb9++5hcGfb/0l5CpU6eaGmp9nwINet4eeOABMwYNdLpP9bVogP7666+lSZMm5v3Q0h1d/Kj18xqmvWnZw7Fjx8znRt+PKVOmyA033GDeN/svHfrZ0PdF641L+6XixhtvNO+vjktfp4ZS3Wc7d+70vO4xY8aY91Z/+dCT7hNdAKiB36Zj0NfxyCOPyMCBA812VatWNb+I6PfPL7/84vm86u3lpe+NhvGtW7eacpDmzZvLBx98YD7/+suHvqcaml999VW577775PrrrzdjU/oLE4AgsQCggLfeeksTZYmntm3b+nxN06ZNrSFDhniud+zY0erXr1+JzzNs2DDzWAXNnj3b3P7nP//Z5/bf/e53lsPhsLZu3Wqur1692mz38MMP+2x3++23m9vHjh3ruU0v620DBw4s9HwnT54sdNt7771ntv/yyy8LPcbQoUM9t+Xm5lqNGjUy45o8ebLn9iNHjlgpKSk++6Qoa9asMY959913+9z+2GOPmdsXL17suU0fq0qVKiU+nj2m5s2bm/dEx+HN7XZ7Lnfq1MmqW7eudejQIc9tP/zwg+V0Oq3bbrut0Odh+/btntsK7t/iPgf21/bp08fnubt27Wr22b333ltoX15xxRWe2/Q59etr165tHT582HP7xx9/bG7/z3/+U2jb0va57hPd7umnny52m/3791uJiYnmM+w97scff7zQc9jPW/Dx9Gt1f5SH7gPv/fDCCy+Y53j33Xc9t2VnZ5v9WLVqVSszM9PcduDAgWLfGwCBo1QDQLG0lEJn4Qqe/JnB0lk4ndHTNl1lpTOP2m5N/7TvTWdjNbN99tln5vq8efPM+R//+Eef7XQWsTj33ntvodu0bth2+vRpM8uus9dKZxmLmiG26Ti1g4KOS2fHvV+/lpfojGhpr1UNHz680GtVOqNdVt9//71s377dLEorWHdrz55rOcOaNWvMjKXOltv0vdW/CNjjChbdN94z9126dCm0z+x9WdQ+01l+LeWwaXmJ8t5WZ4r1MUubbbbrxLXzxJEjR4rcRmfjdWZZP0ve467MhX7e9P3QGXud1bbpTLt+jxw/ftz8pQVAxSM4AyiWllj06tWr0Mk7wBRnwoQJ5k/I55xzjrRv396UWWgtsT+0LrRhw4amZtmb/hnevt8+1y4T+mdrby1btiz2sQtuqw4fPmz+1K21oxqq9E/e9nb65/aCtLTAm9Y6a82p1lkXvL24YOb9WvU1FByzhiQNvfZrLYtt27aZ85JaBtqPq+G+IN3P+stDMBdPFrXPlNaw+7PPCn69/Rksbf8WRWuatZxGfwHT91xLabT0Q+ueC+4fLevxpp8Nfz7/wabj0bEU7FxT8HsCQMUiOAOoEBpGNMC9+eabJsBpXe4FF1zgqc8NFe/ZZdsf/vAH+ec//2lmoz/88EPTL9mezXa73YW215lRf25TBRczFqdgHXWkcrlcRd5e3P4p6vai9lmg+7cgnTnWRZ5aS66/9OgCTw2hOlsPAMUhOAOoMFoCoAvu3nvvPdNxQssAvFf4FxcWtUuBLhzUxWDetGOCfb99rsFWyxK86QIqf+mM5aJFi+RPf/qTWbimi6q0VEEXzFUG+zUULGnZt2+fmbG3X2tZaOcJpT2ES3peu/92QbqfdfZcF7gVR2dddXzetLTBn44W4UL3k5bE6C9Kuq90/HYnFHv/FHxftPWcv7PcwfxlSMejYyn4i1zB74lo+QUMCFcEZwAVomArN+0ooOUI3i3W7GBWMIBpZwKduXz55Zd9btfuBBoMtBOE6tOnjzl/5ZVXfLbTzhD+smcyC85cVtYR3/S1FvV8zz33nDkvqUNIcXRmX0tN9DEL7lv7dWq3De1Wot08vLfRAKlB0h5XSaHzyy+/9LlNO2UUN+NcGfxtR6cHCdFa9oKvR0uD7M+nliRpDbF+lrw/G2X5XNidNYJB3w8tJXn//fd92hjq+PR764orrjC3ads8VfB9BxActKMDUCHOO+880z6rc+fOZuZZW9H9+9//9jmymt6ndIGThmANsTfffLP079/f9MzVI7Fpb1rtV6th7uOPPzZ/YrdnVPXrta2YhhkN6nY7Ov0TvL+zb9pz2a5x1eB11llnmecqOItdUfS1afs0DZ0adjQAacs5DbQDBgww+6GstA5W25LpftRwrLP+GpQ1VOqCTW3tp7T1m/4S0rVrV7NIz25Hp3XGpfX+1QWSWtqi+19n6H/44QfzuAXrvCuTv+3o9PPRs2dPU6Kjn9P4+HjT9k9n+fXzZ9cyaztBLeXQtn4aXLWMQ+ui/X2N+vnUoKsLP7UtoQZcfU/KY+jQoabdoS7mXL16tVkIqd9PX331lfn82+sBtBRJX5M+r64v0O89LZUqqd4dQBkEoTMHgChjtxBbtWpVkfdrm6zS2tFpK7mLL77YqlmzpmnL1rp1a+svf/mLaaHl3X7sgQcesOrUqWNak3n/SDp27Jj1yCOPWA0bNrQSEhKsVq1amXZf3q3B1IkTJ0xbu7S0NNOWa8CAAdbmzZvNY3m3h7NbyWm7roJ++eUX6/rrrzdjrVGjhvX73//e2r17d7Et7Qo+RnFt4oraT0XJycmxxo8fb1rI6Wtt3LixNXr0aOv06dN+PU9xli1bZl199dVWtWrVzNd16NDBmjp1qs82CxcutLp162beo+rVq1v9+/e3Nm7c6LNNUe3oXC6XNWrUKCs9Pd1KTU017ea0TWBx7egKfpb83ZfFtXpTBd8ff9vRHTx40Hxm9DOpz6XveZcuXaxZs2b5bKevUd+XBg0amP3To0cPa/369YVeY3FjPH78uHXLLbeYz5XeX5bWdAXb0al9+/ZZd9xxh9nn2iqvffv2Zv8W9PXXX1udO3c229CaDgguh/6vLEEbAMKdtlk7//zz5d1335VBgwaFejiIMvaRAUtrewcg+lDjDCCiaXlBQfqnay1XKO2IfQAAlAU1zgAimtYma82n1gJrrarWoOpJa0IL9ggGQk27cpS0gFIPzOJ9QBoA4YXgDCCiXXrppeZohhMnTjRHUNMDZejCNl1YCIQbXSRY0sFKdHGoHtEQQHiixhkAgEqiXTCKKi/y7o9td5sBEH4IzgAAAIAfWBwIAAAA+IEaZz/oIU718L/aYJ7DmQIAAIQfLaI4duyYNGzY0HRWqggEZz9oaGZ1PgAAQPjbtWuXNGrUqEIem+DsB/tQpvpG6OF5AQAAEF4yMzPNRKed2yoCwdkPdnmGhmaCMwAAQPiqyLJaFgcCAAAAfiA4AwAAAH4gOAMAAAB+IDgDAAAAfiA4AwAAAH4gOAMAAAB+IDgDAAAAfiA4AwAAAH4gOAMAAAB+IDgDAAAAfiA4AwAAAH4gOAMAAAB+IDgDAAAAfiA4RwGXK0tc7pxQDwMAACCqEZwjXHbOMXl3yWXyyYqBoR4KAABAVIsP9QAQmF8Pr5CTWQfkVPZhsSxLHA5HqIcEAAAQlZhxjnB7Dn1jzi3LJS53VqiHAwAAELUIzhFu9+GVnsvZucdDOhYAAIBoRnCOYBqUD2as91zPdZ0M6XgAAACiGcE5gu09/K1Y4vZcZ8YZAACg4hCcI9juw3n1zbac3BMhGwsAAEC0IzhHsD1e9c2KGWcAAICKQ3COUDmuU7L/6FpzuWpyw7zbmHEGAACoMATnCLXvyPfitnKkSnIDqV29tbkth8WBAAAAFYYDoER4mUbDtIs9CwRzKNUAAACIzhnnSZMmyUUXXSTVqlWTunXryoABA2Tz5s0+2/To0cMcDc/7dO+99/pss3PnTunXr5+kpqaaxxkxYoTk5ub6bPPFF1/IBRdcIElJSdKyZUuZPn26RLLdh/KDc+0ukhBX1VymVAMAACBKg/PSpUtl2LBhsmLFClmwYIHk5ORI79695cQJ3wB4zz33yJ49ezynKVOmeO5zuVwmNGdnZ8vXX38tb7/9tgnFY8aM8Wyzfft2s82VV14pa9askYcffljuvvtu+fzzzyVSHchYZ87r17pQEuJTzWUWBwIAAERpqca8efN8rmvg1Rnj1atXS/fu3T2360xy/fr1i3yM+fPny8aNG2XhwoVSr1496dSpk0ycOFFGjRol48aNk8TERHnttdekefPm8uyzz5qvadOmjSxbtkyef/556dOnj0Qay3JLjivvl4uUxNqSEF/FXGbGGQAAIEYWB2ZkZJjztLQ0n9tnzJgh6enp0q5dOxk9erScPHlmEdzy5culffv2JjTbNAxnZmbKhg0bPNv06tXL5zF1G729KFlZWebrvU/hJNd12nM5Pi5FEu1SDRYHAgAARP/iQLfbbUoounXrZgKy7ZZbbpGmTZtKw4YNZe3atWYmWeugP/zwQ3P/3r17fUKzsq/rfSVto4H41KlTkpKSUqj2evz48RKuct3ewTnZa8aZUg0AAICoD85a67x+/XpTQuFt6NChnss6s9ygQQPp2bOnbNu2TVq0aFEhY9FZ7eHDh3uua8Bu3LixhItc1ylzHudMFIfD6QnO2ZRqAAAARHepxv333y9z5syRJUuWSKNGjUrctkuXLuZ869at5lxrn/ft2+ezjX3drosubpvq1asXmm1W2nlD7/M+hRM7OGuZhvLMOLuYcQYAAIjK4GxZlgnNH330kSxevNgs4CuNdsVQOvOsunbtKuvWrZP9+/d7ttEOHRp2zzvvPM82ixYt8nkc3UZvj0R2jbMdnBPjWBwIAAAQ1cFZyzPeffddmTlzpunlrLXIetK6Y6XlGNohQ7ts7NixQz755BO57bbbTMeNDh06mG20fZ0G5MGDB8sPP/xgWsw9+eST5rF15lhp3+effvpJRo4cKT/++KO88sorMmvWLHnkkUckEhWecbb7OLM4EAAAICqD86uvvmo6aehBTnQG2T69//775n5tJadt5jQct27dWh599FG58cYb5T//+Y/nMeLi4kyZh57rDPKtt95qwvWECRM82+hM9ty5c80sc8eOHU1butdffz0iW9H5Budkc36mxplSDQAAgKhcHKilGiXRBXl6kJTSaNeNTz/9tMRtNJx///33Eg08wdlZsMb5hNmnenRFAAAAROHiQJS3xjnZp8bZslzicmeFdGwAAADRiuAcBYsD7RlnRbkGAABAxSA4R0GNs/Zyjo9Lzb+PBYIAAAAVgeAcgXLdvl01VCILBAEAACoUwTkC5RRoR6cS6OUMAABQoQjOUVDjrGhJBwAAULEIzlFQ4+zTko4ZZwAAgApBcI5ALnvG2XkmOCfaRw9kcSAAAECFIDhHwSG3VUJ+V40cSjUAAAAqBME5AuUUWeOcP+NMqQYAAECFIDhHy4wziwMBAAAqFME5goNzQlGLA6lxBgAAqBAE52g5AEocpRoAAAAVieAcgXJdWUWUarA4EAAAoCIRnKOmj3PejHM2M84AAAAVguAcycHZWXhxYI6LGWcAAICKQHCOkhnnxDj7yIEsDgQAAKgIBOcIY1lucbmLqnFmcSAAAEBFIjhHmNz8g58UtziQPs4AAAAVg+AcoWUaxS0OzHGdEMuyQjI2AACAaEZwjjC57rwZ5zhnkjgczkI1zpbl8pRyAAAAIHgIzlGwMNBczy/VUNQ5AwAABB/BOUJrnL3rm5XTEee5Tcs1AAAAEFwE54idcfYNzt69nFkgCAAAEHwE5ygp1VCJcbSkAwAAqCgE5yg4aqCNGWcAAICKQ3COMDnF1Dh7B+dcF0cPBAAACDaCc4RxlRSc81vSZVOqAQAAEHQE54itcU4qdF9i/oxzDqUaAAAAQUdwjjC57pK6arA4EAAAoKIQnCNMDu3oAAAAQoLgHCUHQPEOzjksDgQAAAg6gnMU9XG2FwdSqgEAABB8BOcIDc4JRcw4szgQAACg4hCcI7UdnbP4xYG0owMAAAg+gnOEHgAlrqhSDU+NMzPOAAAAwUZwjtga58IzzvHOvDDtcmVV+rgAAACiHcE5YmucC884x+UfFMXlzq70cQEAAES7+FAPAMXbuXOnHDx40Oe2Y8cPm/Pt23+VI7u/87nvePZ2c37y9DH57rsz96Wnp0uTJk0qZcwAAADRiuAcxqG5TZvWcvJk3gyzbezfG0q9sxJk6N1/lG0bfUsyzmqWIE+83FAOHNwrnft29tyempoimzb9SHgGAAAIAME5TOlMs4bmCU8PkmYt6nluP5HwqVhySp78yy0SZ9Xy+Rq3HJOTMl9q1EyWdz4cbm7bsW2fjBkxwzwewRkAAKD8CM5hTkNz67aNPNe/32aJyy1ydsuzJCUxzWfbrJxMWbdDxOF0+3wNAAAAAsfiwAjjtnLMudNR+Hce+zbLcollWZU+NgAAgGhGcI4gGoY1FBcfnOO8ts3bDgAAAMFBcI4gbivXc9npTCh0v8N5Jky7Cc4AAABBRXCOIG53XplGcTPODq+30/IK2QAAAAgcwTkCZ5wdjjhxOByF7tfb9L68bZlxBgAACCaCcwQGZ6ejcJlGUQsEAQAAEDwE5wjiducHZ69a5uIWCHrXQwMAACBwBOcoaUVnc+TfR6kGAABAcBGcI3HG2VH6jDOlGgAAAMFFcI7EGuciWtHZPIsD80M2AAAAgoPgHIHt6Eqccc6vf2bGGQAAILgIzhE541xSjTOLAwEAACoCwTlK29GxOBAAACC4CM5R2o6OIwcCAAAEF8E5gtCODgAAIHQIzhGEdnQAAAChQ3CO1sWBtKMDAAAIKoJzRLajK2FxYH6oplQDAAAgioLzpEmT5KKLLpJq1apJ3bp1ZcCAAbJ582afbU6fPi3Dhg2T2rVrS9WqVeXGG2+Uffv2+Wyzc+dO6devn6SmpprHGTFihOTm+s64fvHFF3LBBRdIUlKStGzZUqZPny7ROOPM4kAAAIAoDM5Lly41oXjFihWyYMECycnJkd69e8uJEyc82zzyyCPyn//8Rz744AOz/e7du+WGG27w3O9yuUxozs7Olq+//lrefvttE4rHjBnj2Wb79u1mmyuvvFLWrFkjDz/8sNx9993y+eefS2S2o/OnjzMzzgAAAMFUfAKrBPPmzfO5roFXZ4xXr14t3bt3l4yMDHnjjTdk5syZctVVV5lt3nrrLWnTpo0J25dcconMnz9fNm7cKAsXLpR69epJp06dZOLEiTJq1CgZN26cJCYmymuvvSbNmzeXZ5991jyGfv2yZcvk+eeflz59+hQaV1ZWljnZMjMzJXIWB9pHDmTGGQAAIGprnDUoq7S0NHOuAVpnoXv16uXZpnXr1tKkSRNZvny5ua7n7du3N6HZpmFYw+6GDRs823g/hr2N/RhFlZDUqFHDc2rcuLGEV6lG8TXOzDgDAABEeXB2u92mhKJbt27Srl07c9vevXvNjHHNmjV9ttWQrPfZ23iHZvt++76SttFwferUqUJjGT16tAnx9mnXrl0SKaUatKMDAACIwlINb1rrvH79elNCEWq6gFBP4cbylGrkheMSD7lNOzoAAIDom3G+//77Zc6cObJkyRJp1KiR5/b69eubRX9Hjx712V67auh99jYFu2zY10vbpnr16pKSkiKRwi6/sMsxikKpBgAAQBQGZ8uyTGj+6KOPZPHixWYBn7fOnTtLQkKCLFq0yHObtqvT9nNdu3Y11/V83bp1sn//fs822qFDQ/F5553n2cb7Mext7MeIFHb5RYkzzvmt6lgcCAAAEEWlGlqeoR0zPv74Y9PL2a5J1gV5OhOs53fddZcMHz7cLBjUMPzAAw+YwKsdNZS2r9OAPHjwYJkyZYp5jCeffNI8tl1uce+998rLL78sI0eOlDvvvNOE9FmzZsncuXMlknhmnP05ciAzzgAAANEz4/zqq6+axXc9evSQBg0aeE7vv/++ZxttGfeb3/zGHPhEW9Rp2cWHH37ouT8uLs6Ueei5Bupbb71VbrvtNpkwYYJnG53J1pCss8wdO3Y0belef/31IlvRRfyMs6cdHcEZAAAgamactVSjNMnJyTJt2jRzKk7Tpk3l008/LfFxNJx///33Esnsrhol1TjbodreFgAAAFG0OBClsyy3/r/UGWdKNQAAACoGwTlCeAdhh19HDiQ4AwAABBPBOUJ4B2G/Zpzp4wwAABBUBOcIcaZm2SEOh9OPdnTMOAMAAAQTwTmKOmp432+JO78uGgAAAMFAcI64owaW3AjF+34WCAIAAAQPwTlKZ5y9vwYAAACBIzhH3IxzycE5r/7Zkf81LBAEAAAIFoJzhLDyu2SUNuOctw0LBAEAAIKN4BxlM84+Rw+kJR0AAEDQEJwjrcY5v91cSRz527A4EAAAIHgIzlE840ypBgAAQPAQnCOEZflf42y3pGNxIAAAQPAQnCMEM84AAAChRXCOuD7OftQ424sDmXEGAAAIGoJzNHfVYMYZAAAgaAjOEcKePS5TH2fa0QEAAAQNwTnCSjX8mXE+U6rBjDMAAECwEJwjrsbZjxnn/D7OLA4EAAAIHoJzxNU4x5ehxplSDQAAgGAhOEcIu17Zvz7OlGoAAAAEG8E5Krtq2KUazDgDAAAEC8E5CmucmXEGAAAIPoJzhLBDsL3wryS0owMAAAg+gnOEsBf60Y4OAAAgNAjOEYJ2dAAAAKFFcI4QHHIbAAAgtAjOETfjHF+GUg1qnAEAAIKF4BzV7eiYcQYAAAgWgnOEsMq1OJAZZwAAgGAhOEdaO7oyzDhT4wwAABA8BOdo7KqRvw2lGgAAAMFDcI64Gmc/Fgfmt6NzcwAUAACAoCE4RwhmnAEAAEKL4BwBLMvyhGAWBwIAAIQGwTkCeM8cl2VxIDPOAAAAwUNwjgDe3THs+mX/jhyYK5ZYFTo2AACAWEFwjqAezsrhx1vmu4CQ4AwAABAMBOcIO2qgw+EodXvfcg7KNQAAAIKB4BxlHTUKLyB0V9CoAAAAYgvBOcJmnP2hs9L2thYzzgAAAEFBcI6gGme7W4Y/zsxOE5wBAACCgeAchTPO3ttaDko1AAAAgoHgHIU1zr6z08w4AwAABAPBOcpnnFkcCAAAEBwE5whguctT45x/9EBmnAEAAIKC4BwBmHEGAAAIPYJz1NY401UDAAAgmAjOUTrj7HTml2rQVQMAACAoCM4RwO3p41yeUg1mnAEAAIKB4BxBpRqO/Fnksi0OZMYZAAAgGAjOEYAaZwAAgNAjOEcAumoAAACEHsE5yo8caDmYcQYAAAgGgnMELQ50lOEAKCwOBAAACIPgPHbsWPn555+DPBQEdcbZs5CQUg0AAICQBeePP/5YWrRoIT179pSZM2dKVlZWUAaD4Nc4c8htAACAEAbnNWvWyKpVq6Rt27by0EMPSf369eW+++4ztyG8apyZcQYAAAhxjfP5558vL730kuzevVveeOMN+eWXX6Rbt27SoUMHefHFFyUjIyNIQ4TbbR8ApSx9nPNnnFkcCAAAEB6LAy3LkpycHMnOzjaXa9WqJS+//LI0btxY3n///RK/9ssvv5T+/ftLw4YNxeFwyOzZs33uv/32283t3qdrrrnGZ5vDhw/LoEGDpHr16lKzZk2566675Pjx4z7brF27Vi6//HJJTk4245oyZYpE/SG3PSGb4AwAABDS4Lx69Wq5//77pUGDBvLII4+YGehNmzbJ0qVLZcuWLfKXv/xFHnzwwRIf48SJE9KxY0eZNm1asdtoUN6zZ4/n9N577/ncr6F5w4YNsmDBApkzZ44J40OHDvXcn5mZKb1795amTZuaMT/99NMybtw4+cc//iERd+RADrkNAAAQMv7/7d9L+/bt5ccffzSBVMs0dNY4Ls431A0cONDUP5ekb9++5lSSpKQkU0NdFA3q8+bNM7XVF154oblt6tSpcu2118ozzzxjZrJnzJhhZsPffPNNSUxMNHXZWqP93HPP+QTsSJhxLk9XDQ65DQAAEMIZ5z/84Q+yY8cOmTt3rgwYMKBQaFbp6enidgce2r744gupW7eunHvuuWYB4qFDhzz3LV++3JRn2KFZ9erVS5xOp6xcudKzTffu3U1otvXp00c2b94sR44cKfI5tUuIzlR7nyJtxplSDQAAgDAIznYtc0GnTp2SCRMmSLBomcY777wjixYtkr/97W+mDERnqF2uvDC4d+9eE6q9xcfHS1pamrnP3qZevXo+29jX7W0KmjRpktSoUcNz0rrocDgAypnezGVoR8fiQAAAgNAF5/HjxxdagKdOnjxp7guWm2++Wa677jpTGqIz21rDrGUZOgtdkUaPHm26gtinXbt2SSgx4wwAABDBM87a4aKgH374wcz2VpSzzz7blIBs3brVXNfa5/379/tsk5ubazpt2HXRer5v3z6fbezrxdVOa121dunwPkVqjTN9nAEAAEKwOFDLM+y2cOecc45PeNbyCZ2Fvvfee6WiaK9orXHWTh6qa9eucvToUdMto3Pnzua2xYsXm9rqLl26eLZ54oknTMu8hIQEc5t24NCa6aLKTcL7AChl6eNsLw5kxhkAAKDSg/MLL7xgZpvvvPNOU5Kh9b82XXzXrFkzE1T9pUHbnj1W27dvNx0vdNZaT/ocN954o5kZ3rZtm4wcOVJatmxpFvepNm3amDroe+65R1577TUTjrVFnpZ4aEcNdcstt5jH0f7Oo0aNkvXr15sDtDz//PMSKewaZ9rRAQAAREhwHjJkiDlv3ry5XHrppZ4Z3PL69ttv5corr/RcHz58uOd5Xn31VXPgkrffftvMKmsQ1vZ3EydONKUUNm03p2G5Z8+eppuGBm09oqFNw/38+fNl2LBhZlZaSz3GjBkTMa3oLP0vkENuOyjVAAAAqNTgrC3Z7FpfPdiJdtDQU1H8rQnu0aOHmcEuzueff17qY+jM9MyZM0vcRg8D/t///lci05n94yjHIbdVfGC/3wAAAKAswVnrgfXIfdr+TXsnF7U40F40aLeLQzCc2ZdlmXF2eLWuS0gM+MjqAAAAMc/v4KyL7uyOGUuWLKnIMcHHmVKLMtU4m4Yp+suNJQmJhX/JAQAAQAUF5yuuuMJzWWuc9aAgBWeddcY51D2Po43dFUODcFGz/MXRbbXO2W3lEJwBAACCoFx/w9fgfODAgUK3a/9kvQ/Bn3Euy2xzwdIOgjMAAECYHQBF28slJycHYViwWfldMcpyuO2Cdc4EZwAAgMCVKY3Z7eI0ND/11FOSmprquU8XBK5cuVI6deoUhGHhjLIfbtvGjDMAAECIgvP333/vmXFet26dOeiJTS937NhRHnvssSAOD3apRlk6ahTs5UxwBgAAqOTgbHfTuOOOO8zR9/zt14wgLA4sR3C2+z4TnAEAAAJX9sJZEXnrrbeC8NQo24xz2d8qSjUAAABCHJxPnDghkydPlkWLFsn+/fvF7fY9rPNPP/0UrPEhkBpnFgcCAACENjjffffdsnTpUhk8eLA0aNCgTP2FUc6uGtQ4AwAARF5w/uyzz2Tu3LnSrVu34I8IQevjTI0zAABAiPs416pVy3P4bVROqUb5ZpypcQYAAAhpcJ44caKMGTNGTp48GbSBoGiWZ8a5HIsDqXEGAAAIbanGs88+K9u2bZN69epJs2bNJCEhwef+7777LljjQwAzznZ5B8EZAAAgRMF5wIABQXhqVHSNs704MD6B4AwAABCS4Dx27NiAnxiV11UjMYngDAAAEJIaZ4Sgj3N+vXJZ2LPUzDgDAACEaMbZ5XLJ888/L7NmzZKdO3dKdna2z/2HDx8OwtCQJ4AZ5/ywnUiNMwAAQGhmnMePHy/PPfec3HTTTZKRkSHDhw+XG264QZxOp4wbNy7wUcHDCuTIgXaNM8EZAAAgNMF5xowZ8s9//lMeffRRiY+Pl4EDB8rrr79uWtStWLEi8FHBSxBqnAnOAAAAoQnOe/fulfbt25vLVatWNbPO6je/+Y05oiCCx3LY7egCqHEmOAMAAIQmODdq1Ej27NljLrdo0ULmz59vLq9atUqSkpICHxW8lD84U+MMAAAQ4uB8/fXXy6JFi8zlBx54QJ566ilp1aqV3HbbbXLnnXcGcXjwdNUI4JDbzDgDAACEqKvG5MmTPZd1gWCTJk1k+fLlJjz3798/CMNCwUNu27PHZWEfppsjBwIAAIQoOBfUtWtXc0KYlWoQnAEAAEIbnN95550S79eSDQR3caA9e1yeUo0EDoACAAAQmuD80EMP+VzPycmRkydPSmJioqSmphKcK2LGuRylGvbXJHDIbQAAgNAsDjxy5IjP6fjx47J582a57LLL5L333gt8VCiiVCOu/DXOCQ6xLCvoIwMAAIgl5QrORdGFgbposOBsNIK0ODCAGmdnnEMsyQ362AAAAGJJ0IKz0qMI7t69O5gPiYAWB56ZpXZbOUEdFQAAQKwpV43zJ5984nNdywD0gCgvv/yydOvWLVhji3kO/bXGkTfj7ChXO7ozwdmysoM6NgAAgFhTruA8YMAAn+sOh0Pq1KkjV111lTz77LPBGlvMi/fqhlG+GmeHiOU04dtNcAYAAKj84Ox2582CHjhwwHTSqFGjRmCjQJG8D5VdnlKNPBq43eIWgjMAAECl1jgfPXpUhg0bJunp6VK/fn1JS0sz56NHjzYt6RA89oFLHOIUh6nbKDuHCc7UOAMAAASqTNOYhw8fNkcI/PXXX2XQoEHSpk0bc/vGjRtl6tSpsmDBAlm2bJmsXbtWVqxYIQ8++GDAA4xlnuBcjvrmM/ICN6UaAAAAgSlTIpswYYIpzdi2bZvUq1ev0H29e/eWwYMHy/z58+Wll14KcGiwg3N56pttDitOLAfBGQAAoFKD8+zZs+Xvf/97odCstFxjypQpcu2118rYsWNlyJAhAQ8u1tlH/Ct/fbPKC90WpRoAAAABKVPhrLaca9u2bbH3t2vXTpxOpwnOCJwe8S9YwZkZZwAAgEoMzrogcMeOHcXev337dqlbt26AQ0LBGedAapx1YaGiqwYAAEAlBuc+ffrIE088IdnZhUNYVlaWPPXUU3LNNdcEOCQUbEfHjDMAAEAELg688MILpVWrVqYlXevWrc1RAzdt2iSvvPKKCc/vvPNOxY02xsQHYXHgmeBMjTMAAEClBedGjRrJ8uXL5Y9//KPp26yh2T5C3dVXX20Oud2kSZOABoSiumoEUKph2YsDs4I2LgAAgFhU5kTWvHlz+eyzz+TIkSOyZcsWc1vLli3NgVBQQaUaQenjzIwzAABAIMqdyGrVqiUXX3xxQE8O/0o1HIH0cabGGQAAICjKdxxnRN7iQLpqAAAABITgHMYSEvPeHrpqAAAAhB7BOYwlJErgfZw9iwOpcQYAAAgEwTkiZpwDaUfH4kAAAIBgIDhHwJEDA2pH5ynVoB0dAABAIAjOYSwhIZiLA5lxBgAACATBORJmnAPq48ziQAAAgGAgOEfAkQMdAR050K5xJjgDAAAEguAcEYfcDmRxoN1Vg+AMAAAQCIJzRATnYCwOpMYZAAAgEATnSDhyYEA1zpRqAAAABAPBOYzFe2qcAy/V4JDbAAAAgSE4R8KMc0CLA+mqAQAAEAwE5yivcT6zOJAaZwAAgEAQnCOgVCOQGmdH/ltsiUvc7tygjQ0AACDWhDQ4f/nll9K/f39p2LChOBwOmT17ts/9lmXJmDFjpEGDBpKSkiK9evWSLVu2+Gxz+PBhGTRokFSvXl1q1qwpd911lxw/ftxnm7Vr18rll18uycnJ0rhxY5kyZYqEO33tiUHo42zPOCuXm8NuAwAARGRwPnHihHTs2FGmTZtW5P0acF966SV57bXXZOXKlVKlShXp06ePnD592rONhuYNGzbIggULZM6cOSaMDx061HN/Zmam9O7dW5o2bSqrV6+Wp59+WsaNGyf/+Mc/JJxZkivOuOCVaqhcgjMAAEC5BZLIAta3b19zKm7G9YUXXpAnn3xSfvvb35rb3nnnHalXr56Zmb755ptl06ZNMm/ePFm1apVceOGFZpupU6fKtddeK88884yZyZ4xY4ZkZ2fLm2++KYmJidK2bVtZs2aNPPfccz4BO9x4910O5AAoDnFITo4lCQkOcbnO/MIBAACAKKlx3r59u+zdu9eUZ9hq1KghXbp0keXLl5vreq7lGXZoVrq90+k0M9T2Nt27dzeh2aaz1ps3b5YjR44U+dxZWVlmptr7VNk8R/qzAm1HJ5KbbeWdM+MMAAAQfcFZQ7PSGWZvet2+T8/r1q3rc398fLykpaX5bFPUY3g/R0GTJk0yId0+aV10ZTvTPi7O1H8HIjs/ODPjDAAAEIXBOZRGjx4tGRkZntOuXbsqfQxnDlgS+FvEjDMAAEAUB+f69eub83379vncrtft+/R8//79Pvfn5uaaThve2xT1GN7PUVBSUpLp0uF9CtWMs8NrcV955TDjDAAAEL3BuXnz5ibYLlq0yHOb1hpr7XLXrl3NdT0/evSo6ZZhW7x4sbjdblMLbW+jnTZycs4sttMOHOeee67UqlVLwpV3qUawgjMzzgAAABEanLXfsna40JO9IFAv79y509T1Pvzww/LnP/9ZPvnkE1m3bp3cdtttplPGgAEDzPZt2rSRa665Ru655x755ptv5KuvvpL777/fdNzQ7dQtt9xiFgZqf2dtW/f+++/Liy++KMOHD5dwZnfVsA+ZHQjtqqGYcQYAAIjQdnTffvutXHnllZ7rdpgdMmSITJ8+XUaOHGl6PWvbOJ1Zvuyyy0z7OT2QiU3bzWlY7tmzp+mmceONN5rezzZd3Dd//nwZNmyYdO7cWdLT081BVcK5FZ1yW/bscBCCcxYzzgAAABEdnHv06GH6NRdHZ50nTJhgTsXRDhozZ84s8Xk6dOgg//3vfyWSBLVUwzPjTHAGAACIuhrnWGfZpRpBeItystzmPNdNqQYAAEB5EZzD1Jl2dMGYcc47Z8YZAACg/AjOYcrTji4IiwOzT+fNOOe4Tgb8WAAAALGK4BwDNc6nT+XVOOfkngj4sQAAAGIVwTnsg3Pgb1HWqfwZZ4IzAABAuRGcw1QwjxyYZc84uwjOAAAA5UVwDlNWEEs1suwaZ2acAQAAyo3gHOZdNYKxONCucc4mOAMAAJQbwTkWFgeetLtqEJwBAADKi+Acptz5B0AJyuLA03TVAAAACBTBOSYWB9LHGQAAIFAE5xgo1TjTju54wI8FAAAQqwjOMXDkwDMHQGHGGQAAoLwIzrEw45zfjk7rpl2urIAfDwAAIBYRnMO8HV1wSjXyZpxVNp01AAAAyoXgHKas/K4ajiC8RW63vtGJ5jKdNQAAAMqH4Bym3FZW0GacldOZbM4JzgAAAOVDcI6BxYEqzpFizjkICgAAQPkQnMP+ACjBCs7MOAMAAASC4ByGLMstltg1zkEq1bBnnGlJBwAAUC4E5zCU6/ZuGRekGef8GudsFwdBAQAAKA+Ccxjy7bXsDG6NM6UaAAAA5UJwDkO57tPm3JVrBaUdnSI4AwAABIbgHIZcrrzgnJ195sAlgXKyOBAAACAgBOcwrnHODWJwph0dAABAYAjOsTLjzAFQAAAAAkJwDkO5+cE5J6siZpxpRwcAAFAeBOcw5Mov1cjJCWZwzm9Hl0s7OgAAgPIgOIfzjHNF1DhTqgEAAFAuBOcwbkcXzFINp5PFgQAAAIEgOIfxAVAqolSDGWcAAIDyITiH9YyzuwJKNVgcCAAAUB4E53Ceca6QA6CwOBAAAKA8CM5hfACUoC4OzK9x1tlst+UK2uMCAADECoJzGLqgxX1yUf33ZNY/jgS9xllR5wwAAFB2BOcw5HA4xelICmpXDYckiNMRby4TnAEAAMqO4BwjHA6HJMRXMZdpSQcAAFB2BOcYkhCXH5yZcQYAACgzgnMM8cw4E5wBAADKjOAcQxLiU815NqUaAAAAZUZwjiEJcVXNOQdBAQAAKDuCcwzOOHMQFAAAgLIjOMeQxPj8GWcXM84AAABlRXCOya4azDgDAACUFcE5htBVAwAAoPwIzjGEA6AAAACUH8E5hiTE5bejY8YZAACgzAjOMSTBXhxIOzoAAIAyIzjHENrRAQAAlB/BOYYk2gdAoR0dAABAmRGcY7KrBjPOAAAAZUVwjiG0owMAACg/gnNMtqOjVAMAAKCsCM4xeeTAE2JZVqiHAwAAEFEIzjEkMX/G2RK35LpPh3o4AAAAEYXgHEPi41I8l1kgCAAAUDYE5xjicDi9yjWocwYAACgLgnOMoSUdAABA+RCcYzQ4Z7toSQcAABA1wXncuHHicDh8Tq1bt/bcf/r0aRk2bJjUrl1bqlatKjfeeKPs27fP5zF27twp/fr1k9TUVKlbt66MGDFCcnNzJVYlxucfPTCHGWcAAICyiJcw17ZtW1m4cKHnenz8mSE/8sgjMnfuXPnggw+kRo0acv/998sNN9wgX331lbnf5XKZ0Fy/fn35+uuvZc+ePXLbbbdJQkKC/PWvf5VYlJyYZs5PZR8M9VAAAAAiStgHZw3KGnwLysjIkDfeeENmzpwpV111lbntrbfekjZt2siKFSvkkksukfnz58vGjRtN8K5Xr5506tRJJk6cKKNGjTKz2YmJiRJrUpPSzfnJLIIzAABA1JRqqC1btkjDhg3l7LPPlkGDBpnSC7V69WrJycmRXr16ebbVMo4mTZrI8uXLzXU9b9++vQnNtj59+khmZqZs2LCh2OfMysoy23ifokVKYl5wZsYZAAAgioJzly5dZPr06TJv3jx59dVXZfv27XL55ZfLsWPHZO/evWbGuGbNmj5foyFZ71N67h2a7fvt+4ozadIkU/phnxo3bizRIjWpjjlnxhkAACCKSjX69u3rudyhQwcTpJs2bSqzZs2SlJQzB/MIttGjR8vw4cM913XGOVrCc0p+qcYpgjMAAED0zDgXpLPL55xzjmzdutXUPWdnZ8vRo0d9ttGuGnZNtJ4X7LJhXy+qbtqWlJQk1atX9zlFC2qcAQAAYiA4Hz9+XLZt2yYNGjSQzp07m+4YixYt8ty/efNmUwPdtWtXc13P161bJ/v37/dss2DBAhOEzzvvPIlF1DgDAABEYanGY489Jv379zflGbt375axY8dKXFycDBw40NQe33XXXaakIi0tzYThBx54wIRl7aihevfubQLy4MGDZcqUKaau+cknnzS9n3VWORbZpRqns4+I250rTmdYfwQAAADCRlinpl9++cWE5EOHDkmdOnXksssuM63m9LJ6/vnnxel0mgOfaCcM7ZjxyiuveL5eQ/acOXPkvvvuM4G6SpUqMmTIEJkwYYLEquTEWuIQp1jillPZh6VKct1QDwkAACAihHVw/te//lXi/cnJyTJt2jRzKo7OVn/66acVMLrI5HTESXJSmlkceCrrAMEZAAAgGmucERyp+XXOJ6lzBgAA8BvBOQal5PdypiUdAACA/wjOMYiWdAAAAGVHcI7llnQEZwAAAL8RnGOQ5+iB1DgDAAD4jeAcgyjVAAAAKDuCcyzPOGcdCPVQAAAAIgbBOQbRjg4AAKDsCM4x3I7udNZhcVuuUA8HAAAgIhCcY1BKYpqIOMxht09nHw71cAAAACICwTkGOZ3xkpxYy1ymJR0AAIB/CM4x3suZzhoAAAD+ITjHeEs6ZpwBAAD8Q3CO8ZZ0dNYAAADwD8E5RjHjDAAAUDYEZ4n1GmcOggIAAOAPgnOszzhTqgEAAOAXgnOMHwSFUg0AAAD/EJxjfMaZdnQAAAD+ITjHeI3zqexDYlnuUA8HAAAg7BGcY1RKUm1zblkuOZ1zNNTDAQAACHsE5xgV50yUKkn1zOWME9tDPRwAAICwR3COYWnVzzXnh49tDvVQAAAAwh7BOYalVWttzg9lEpwBAABKQ3COYbWr5c04Hzq2KdRDAQAACHsE5xhWO3/GWUs1LMsK9XAAAADCGsE5htWq2lIcjjjJysmQE1n7Qj0cAACAsEZwjmFxcUlSs0pzc/lQJuUaAAAAJSE4xzjvcg0AAAAUj+Ac4+zOGgRnAACAkhGcY5zdy5lSDQAAgJIRnGOcXapx5Pg2cblzQj0cAACAsEVwjnHVUhpJQnxVcVs5HHobAACgBATnGOdwOCSt6jnmMuUaAAAAxSM4Q2pXzz/0NgsEAQAAikVwBi3pAAAA/EBwhqRVy+uscTBzI4feBgAAKEZ8cXcgumzaVHz9ssudKw6JlxOn98hX33wsqQlNit02PT1dmjQp/n4AAIBoRXCOcgcPZJrzW2+9tcTt7htTR9pfnCqTX7pd5s7MKHa71NQU2bTpR8IzAACIOQTnKHc885Q5f+SJfnJ+57ySjKLkOH+WLPlW+t/cRG763dVFbrNj2z4ZM2KGHDx4kOAMAABiDsE5RjRuWltat21U7P25rnT54afvxO3MlKatUiUlMa1SxwcAABDuWBwIIz4uWaqlNjaXjxzbEurhAAAAhB2CMzzSqrYy50eObw31UAAAAMIOwRkeNau2EIc45VT2QTmdfSTUwwEAAAgrBGcUXa5xnHINAAAAbwRn+KhVtaXnYChuyxXq4QAAAIQNgjN8pFU7R+LjUiUrJ0MOZKwL9XAAAADCBsEZPuKciXJW7UvM5T2HVkquKyvUQwIAAAgLBGcUkl69rSQnpkmu+7TsPbIq1MMBAAAICwRnFOJwOKVR7W7m8r6jayQrJ++w3QAAALGM4Iwi1ajSXKqlNBLLcsmOfQtZKAgAAGIewRlFcjgc0qTOFeJ0JMixU7tk14GlYokV6mEBAACEDMEZxUpJSpez619jLmuHjRwnRxQEAACxi+CMEtWserY0Sr/cXM6OWytdr64S6iEBAACEBMEZpapX83xJr95OxCEy+KF02ZHxurjcOaEeFgAAQKUiOMOveuemda+SxNzzzPV9Jz+VOStvlSPHKd0AAACxg+AMv8NzoruNvDZxvzgdybL78Ep5/8s+snTdaDlxel+ohwcAAFDhCM4ok7UrT0n79GekWb2rTau6jTvfk3cXd5O539wh//v1Y8nOPR7qIQIAAFSI+Ip5WESz5PiGcukF/5Q9h1fJih+nmKML7jywxJwcjjhz5MGGaRdLg7SLpH7aRZKSmBbqIQMAAASM4Iwy27RpU/6lOGmaPFrq1vlFDp1aJodO/VdOu/bIgYy15vTD9tfNVinxjSU14WxJjW8qqfFNJDGujiTFpUu9uo2lSZMmIX0tAAAA/oqp4Dxt2jR5+umnZe/evdKxY0eZOnWqXHzxxaEeVsQ4eCDv0Nu33nprsdvUSo+TFm2TpFW7ZGlxXpI0bJoop3J3mdOhAtue3uGWWj82lKqpdSU5sZYkJ9Qy5zpDnZRY05ynJKZLalId01M6Mb6qORy4Nz2iocudLW53tuS6ssTl1lO2xDkTJSmhhiTGVzP12QAAAIGKmeD8/vvvy/Dhw+W1116TLl26yAsvvCB9+vSRzZs3S926dUM9vIhwPPOUOX/kiX5yfudz/foaKztLXI5D4nZkituRkX9+SsSRI8kpTjmVs1dOZez1ewxOSRSHI1EsyRXLyhFLSjsUuFPiHVUkzllV4p1VJF7PHdXMeZxez79sn+IcqVI7ra40btRc4uKSJd6ZJHHOJFOCYiOIAwAQm2ImOD/33HNyzz33yB133GGua4CeO3euvPnmm/KnP/0p1MOLKI2b1pbWbRuV4StaFLpl2dK1Mnncu1KlulOqVIuTqtWdUrV6XN71/Mt6W7WacVK9VpykpObNNLslW9N4kc/idluSm6MnkYREhznpV+RaxyTXdUyySsvYtoMi8j8pIztMFx2qHSXef+a+vFDuFIc5OUQceZfF0vucZ6773O84c5vD674irzvEcos4nfH5X5P/uOZ+RxHjLfDaHHnPlreFU1xut8TpY5lx5+1vyxyZ3W2+wjLneoMllmWZ7Ryiv4TEmefVy/pLSWpKValRo5Y4HfHidOptOj57f8Bfuo/tfW3OzWV3sbdlZmbIyZMnPbfb75W+iXn/ucwi4DPnueY9tazcQve5tbe7w+11vz6H+8zn2RHneb/zzhPM++2QeHE6Esy5fp6V25VrPgf5r8rrFTryv14fL+8znHfdvqz/pFn549KxuCQ3N1v0ofJec95tea/X7LAzj5//vXVmjGfGbH9eq6RWk1o1axf6y1fhcZZ2q/3c/j5GcY9S+Pa897mYR7Hc5q90Zv/oe2bleq7r+fHjmXLq9EkxPyR89on9s8TeL3n7yfu9tS/rjwF9Ht3vcfFO89j2ftfb8/a/fkbsz0reZyjvteT/LMv/uabXU5JTpWrV6nk/OzzvS97Prbz3Kv96/uW8n1FOceqY7J+PxfwcKX5fFf9elHhPuR+v7F9X/rGX8HVed2VkZsgp87OhtPFJ/nuZW+zPisTEeOne6XGpXc2/CbdwFxPBOTs7W1avXi2jR4/23OZ0OqVXr16yfPnyQttnZWWZky0jI8OcZ2bmlSpUhuPH87pT/LjhFzl18sxYymrHtrxWcVv/t1eqpG4LaEzBfKz13/0i+3fnyvWXXyRntyomhB8TOa6nXfrz0y1Op0sccS5xOPQfAIdYllPE7ZBN63fL3I++kwG/v1DObtX4zNfr18TlijM+13ydfr193anX9aSXnXo9Vxzx+o2fKy5XrsQnOiQ+gdAGAECgam+6Wjq1blDhz2PntJJ/sQiMw6rIRw8Tu3fvlrPOOku+/vpr6dq1q+f2kSNHytKlS2XlypU+248bN07Gjx8fgpECAAAgELt27ZJGjcryl3H/xcSMc1npzLTWQ9vcbrccPnxYatfWP9E5KuU3psaNG5s3vnr16hX+fJGG/VM69lHJ2D+lYx+VjP1TOvZRydg/wd9HOhd87NgxadiwoVSUmAjO6enpEhcXJ/v2+R7hTq/Xr1+/0PZJSUnm5K1mzZpS2fRDwjdT8dg/pWMflYz9Uzr2UcnYP6VjH5WM/RPcfVSjRg2pSDFx5MDExETp3LmzLFq0yGcWWa97l24AAAAAMT3jrLT0YsiQIXLhhRea3s3aju7EiROeLhsAAABASWImON90001y4MABGTNmjDkASqdOnWTevHlSr149CTdaJjJ27NhC5SLIw/4pHfuoZOyf0rGPSsb+KR37qGTsn8jcRzHRVQMAAAAIVEzUOAMAAACBIjgDAAAAfiA4AwAAAH4gOAMAAAB+IDiHmWnTpkmzZs0kOTlZunTpIt98841EOj2EuR5x0fvUunVrz/2nT5+WYcOGmSMzVq1aVW688cZCB6vZuXOn9OvXT1JTU6Vu3boyYsQIyc3N9dnmiy++kAsuuMCsvm3ZsqVMnz49bPfvl19+Kf379zdHN9L9MXv2bJ/7dc2udoBp0KCBpKSkSK9evWTLli0+2+jRLAcNGmSawusBeu666y45fvy4zzZr166Vyy+/3LxePfrSlClTCo3lgw8+MO+HbtO+fXv59NNPyzyWUOyj22+/vdDn6pprromZfTRp0iS56KKLpFq1auZ7YsCAAbJ582afbcLpe8ufsVT2/unRo0ehz9C9994bE/tHvfrqq9KhQwfPwSX0uAafffZZmcYUy/sn1j8/BU2ePNnsg4cffji6P0PaVQPh4V//+peVmJhovfnmm9aGDRuse+65x6pZs6a1b98+K5KNHTvWatu2rbVnzx7P6cCBA5777733Xqtx48bWokWLrG+//da65JJLrEsvvdRzf25urtWuXTurV69e1vfff299+umnVnp6ujV69GjPNj/99JOVmppqDR8+3Nq4caM1depUKy4uzpo3b15Y7l99DU888YT14Ycfalcb66OPPvK5f/LkyVaNGjWs2bNnWz/88IN13XXXWc2bN7dOnTrl2eaaa66xOnbsaK1YscL673//a7Vs2dIaOHCg5/6MjAyrXr161qBBg6z169db7733npWSkmL9/e9/92zz1Vdfmf00ZcoUs9+efPJJKyEhwVq3bl2ZxhKKfTRkyBCzD7w/V4cPH/bZJpr3UZ8+fay33nrLjHvNmjXWtddeazVp0sQ6fvx4WH5vlTaWUOyfK664wozV+zOkn4lY2D/qk08+sebOnWv973//szZv3mw9/vjj5rOt+8yfMcX6/on1z4+3b775xmrWrJnVoUMH66GHHvLcHo2fIYJzGLn44outYcOGea67XC6rYcOG1qRJk6xID84aXopy9OhR84Pogw8+8Ny2adMmE5SWL19urus3ktPptPbu3evZ5tVXX7WqV69uZWVlmesjR4404dzbTTfdZP7xDPf9WzAUut1uq379+tbTTz/ts5+SkpJMsFP6w0O/btWqVZ5tPvvsM8vhcFi//vqruf7KK69YtWrV8uwjNWrUKOvcc8/1XP/DH/5g9evXz2c8Xbp0sf7v//7P77FUhuKC829/+9tivybW9tH+/fvN6126dGnYfW/5M5bK3j928PH+R76gWNo/Nv1+eP311/n8lLJ/FJ+fPMeOHbNatWplLViwwGefROtniFKNMJGdnS2rV682f+K1OZ1Oc3358uUS6fTP1von97PPPtv86Vz/NKP0Nefk5Pi8bv2TeJMmTTyvW8/1z+PeB6vp06ePZGZmyoYNGzzbeD+GvY39GJG0f7dv324O0uM91ho1apg/PXnvEy090CNh2nR7fU0rV670bNO9e3dzyHnvfaJ/rj5y5Ihf+82fsYSS/vlO/7R37rnnyn333SeHDh3y3Bdr+ygjI8Ocp6Wlhd33lj9jqez9Y5sxY4akp6dLu3btZPTo0XLy5EnPfbG0f1wul/zrX/8yR9TVkgQ+PyXvHxufHzHlD1pqUfB1ROtnKGaOHBjuDh48aL4xCx7JUK//+OOPEsk0QGg9koabPXv2yPjx401N6fr1603g0NCiAafg69b7lJ4XtV/s+0raRr/5Tp06ZUJQpOxf+zUVNVbv16uB0Vt8fLwJBd7bNG/evNBj2PfVqlWr2P3m/RiljSVUtJ75hhtuMK9x27Zt8vjjj0vfvn3ND8G4uLiY2kdut9vUFXbr1s38A26PK1y+t/wZS2XvH3XLLbdI06ZNzS/1Wus+atQo80vThx9+GDP7Z926dSYIav2n1n1+9NFHct5558maNWv4/JSwfxSfHzG/THz33XeyatWqQvdF688ggjMqnIYZmy600CCtP2xmzZplFlIB5XHzzTd7LuuMhX62WrRoYWahe/bsKbFEZ3z0F9Fly5aFeigRtX+GDh3q8xnSxZ362dFfxPSzFAt0QkNDss7I//vf/5YhQ4bI0qVLQz2ssN8/Gp5j/fOza9cueeihh2TBggVmQV6soFQjTOifenSWrOAKT71ev359iSb6G98555wjW7duNa9N/8xy9OjRYl+3nhe1X+z7StpGV0JrOI+k/WuPp6Sx6vn+/ft97tdVyNpFIhj7zfv+0sYSLrQMSN9n/VzF0j66//77Zc6cObJkyRJp1KiR5/Zw+t7yZyyVvX+Kor/UK+/PULTvH52F0y4FnTt3Np1IOnbsKC+++CKfn1L2T1Fi7fOzevVq8zNWu13oX/P0pL9UvPTSS+ayzuZG42eI4Bwm9JtTvzEXLVrk8+dFve5dTxUNtB2Y/kauv53ra05ISPB53fqnLq2Btl+3nuufy7xDkP6Gq9809p/MdBvvx7C3sR8jkvavlg7oN7L3WPVPUlqX671P9AeA/uCyLV682Lwm+4e3bqMt3bSuy3uf6AyKliD4s9/8GUu4+OWXX0yNs36uYmEf6ZpJDYX6p2N9XQVLTsLpe8ufsVT2/imKziwq789QtO6f4ujYsrKyYv7zU9r+KUqsfX569uxpXp++bvuka0p0HZN9OSo/Q2VaSogKpe1UdCX+9OnTTUeAoUOHmnYq3qtNI9Gjjz5qffHFF9b27dtNay9tO6PtZnSVu90iRttELV682LSI6dq1qzkVbFfTu3dv01ZKW9DUqVOnyHY1I0aMMCtlp02bVmS7mnDZv7oKWVvv6Em/DZ977jlz+eeff/a0N9Oxffzxx9batWtN94ii2tGdf/751sqVK61ly5aZVc3erdZ0FbG2Whs8eLBpn6SvX/dRwVZr8fHx1jPPPGP2m3ZAKarVWmljqex9pPc99thjZjW0fq4WLlxoXXDBBWYfnD59Oib20X333Wda4On3lnc7rJMnT3q2CafvrdLGUtn7Z+vWrdaECRPMWPQzpO/d2WefbXXv3j0m9o/605/+ZLqM6OvXz61e164z8+fP92tMsbx/+PwUrWCnkWj8DBGcw4z2J9Q3VvsRansV7T8b6bRtTIMGDcxrOuuss8x1/aFj03Dxxz/+0bT50W+O66+/3vwD523Hjh1W3759TY9dDd0axnNycny2WbJkidWpUyfzPPoDTHu4huv+1bFqGCx40hZrdouzp556yoQ6/WHQs2dP00fU26FDh0wIrFq1qmndc8cdd5hA6U17Cl922WXmMXTfa8AraNasWdY555xj9om2/NG+pd78GUtl7yMNP/qDVn/Aaoht2rSp6dtZ8JegaN5HRe0bPXl/7sPpe8ufsVTm/tm5c6cJOWlpaeY90x7f+g+zdx/eaN4/6s477zTfOzom/V7Sz60dmv0dU6zuHz4//gXnaPwMOfR/ZZujBgAAAGIPNc4AAACAHwjOAAAAgB8IzgAAAIAfCM4AAACAHwjOAAAAgB8IzgAAAIAfCM4AAACAHwjOAAAAgB8IzgAQpfT4VkOHDpW0tDRxOByyZs2aMj/GuHHjpFOnThUyPgCINARnAIhS8+bNk+nTp8ucOXNkz5490q5dOxOgZ8+eXWHPuWPHjnKHdAAId/GhHgAAoGJs27ZNGjRoIJdeemmohwIAUYEZZwAIY//+97+lffv2kpKSIrVr15ZevXrJiRMnxOVyyfDhw6VmzZrm9pEjR8qQIUNkwIAB5utuv/12eeCBB2Tnzp1mBrhZs2bmpK6//nrPbWXldrtlwoQJ0qhRI0lKSjJlHDqzbWvevLk5P//8881z9OjRI2j7AgBCjeAMAGFKyysGDhwod955p2zatEm++OILueGGG0zt8rPPPmvKMN58801ZtmyZHD58WD766CPP17744ouegKuPs2rVKnNSb731lue2stLH1ed+5plnZO3atdKnTx+57rrrZMuWLeb+b775xpwvXLjQPMeHH34YtP0BAKFGqQYAhCkNnrm5uSYsN23a1Nyms8/qhRdekNGjR5v71GuvvSaff/6552tr1Kgh1apVk7i4OKlfv77P4+osdcHb/KWBedSoUXLzzTeb63/7299kyZIlZjzTpk2TOnXqmNt1Fry8zwEA4YoZZwAIUx07dpSePXuasPz73/9e/vnPf8qRI0ckIyPDhOouXbp4to2Pj5cLL7ywQseTmZkpu3fvlm7duvncrtd1RhwAoh3BGQDClM4WL1iwQD777DM577zzZOrUqXLuueeazhUAgMpHcAaAMKYL7HRGd/z48fL9999LYmKiLFq0yHTLWLlypWc7LelYvXp1qY+XkJBgFhaWR/Xq1aVhw4by1Vdf+dyu1zXYKx2fKu9zAEA4o8YZAMKUBmMNyb1795a6deua6wcOHJA2bdrIQw89JJMnT5ZWrVpJ69at5bnnnpOjR4+W+pjaSUMfU8O4dsWoVatWmcY0YsQIGTt2rLRo0cJ01NCFhtqzecaMGeZ+Had2ANFOG7owMTk52dRbA0A0IDgDQJjSGd4vv/zSLLzT+mJdIKgdLfr27StXX321qXPWFnROp9N03tA2c1r/XBL9em1jp/XSZ511VpnLPh588EHzHI8++qjs37/fzDR/8sknJsDbtdYvvfSS6egxZswYufzyy003EACIBg5L+xoBACKe9m7WWeeKPDIgAMQyapwBAAAAPxCcASCGtW3bVqpWrVrkya5bBgDkoVQDAGLYzz//LDk5OUXeV69ePXMQFQBAHoIzAAAA4AdKNQAAAAA/EJwBAAAAPxCcAQAAAD8QnAEAAAA/EJwBAAAAPxCcAQAAAD8QnAEAAAAp3f8HlqsGgyg8cZAAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAHWCAYAAAB5SD/0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAVIZJREFUeJzt3Qd8FGX+x/FfegMSkpCEQOi9N0FEEQVBRE/PjjQr6oENbNydSLkTBBsq1lPRk6b+FRSVIiCcNCFIL1ICoSShE0ggdf+v34O7bhoECNkyn7evcXdnZnefnR023332N8/42Gw2mwAAAAAW4evqBgAAAADliQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMoFzUqlVL7r33Xlc3w+uNHz9e6tSpI35+ftKqVatyec5JkyaJj4+P7Nq1S7zJ7NmzzTYMDg42r+/YsWNmH9Z9GYBnIwADuODAs2rVqmKXd+nSRZo1a3bRz/PDDz/IiBEjLvpxrGLu3Lny7LPPSqdOneSTTz6Rl156ydVN8liHDx+WO++8U0JCQmTixIny3//+V8LCwlzdLABlxL+sHggAzmbr1q3i6+t73gFYwwchuHQWLFhgtvFHH30kgYGBrm6OR1u5cqWcOHFCRo8eLd26dXN1cwCUMXqAAZSLoKAgCQgIEE+SkZEhnuTAgQOmx5LwWzbbUkVERLi6KWKz2eTUqVOubgbgVQjAAFxSA5yTkyMjR46U+vXrmxrLqKgoufLKK2XevHlmua6rvb9Kyy3sk3M4HTp0qCQkJJhw3bBhQ3nllVdMWHCmweHxxx+X6OhoqVixovzlL3+Rffv2mcdy7lnW6zpv06ZNcs8990jlypVNe9S6detMe7S2VtsaFxcn999/v/mZ3Jn9MX7//Xfp27evhIeHS5UqVeSFF14w7dqzZ4/cfPPNUqlSJfMYr776aqm2XW5urumJrFu3rnmtui3//ve/S1ZWlmMdfV4te9DtYt9WWqpyNitWrJAbbrjBvFb9eb9FixYyYcKEIr3KV111lVmuYVDbv3nz5nO2ufD2LWk/sJfT/PLLL+Z90u2lz/Pwww9Ldna2qbvt37+/aaNOWuLh/B5r3bHeX9/7Dz74wLGNLrvsMtOL60z3uS1btkhKSspZ264lPAMGDDDX9XH08c9Wv17afbE076N9G914440yZ84cadeunflS8/7775tl+u9D90vdRhUqVDDPpY8B4PxQAgHggh0/flwOHTpUZL4GjXPRcDRmzBh58MEHpX379pKenm5qilevXi3XXXedCUD79+83f/C1/tKZBgsNsgsXLpQHHnjAHKikYeGZZ54x4fb11193rKvB5YsvvpB+/frJ5ZdfLosWLZJevXqV2K477rjDhHKtn7UHGG3Dzp075b777jPBdePGjSZs6eXy5csLBHN11113SePGjWXs2LHy/fffy7/+9S+JjIw0Iebaa6+Vl19+WSZPnixPP/20CVidO3c+67bSbfTpp5/K7bffboKWBlfddhpEv/nmG7OObiNt06+//ir/+c9/zLwrrriixMfU16Qhq2rVqvLEE0+Y16WPN2vWLHNb/fTTT9KzZ08T/PX90i8Tb731lqkx1vepLA8Ge+yxx0wb9EuRblN9LRryli5dKjVq1DDvh5bE6EF+Wl+uodjZlClTTMmC7jf6fowbN05uvfVW877Zf3nQfUPfFw23Z/ty8I9//MMES23DqFGjpHbt2ia0Fud89sXSvI/OJUO9e/c2r+ehhx4y7dH9Td8z/aKi7dIQvX37dlmyZMlFbn3AgmwAcJ4++eQTTYZnnZo2bVrgPjVr1rQNGDDAcbtly5a2Xr16nfV5Bg0aZB6rsBkzZpj5//rXvwrMv/32220+Pj627du3m9uJiYlmvSeffLLAevfee6+Z/+KLLzrm6XWd17t37yLPl5mZWWTe1KlTzfqLFy8u8hgDBw50zMvNzbVVr17dtGvs2LGO+UePHrWFhIQU2CbFWbNmjXnMBx98sMD8p59+2sxfsGCBY54+VlhY2Fkfz96m2rVrm/dE2+EsPz/fcb1Vq1a2mJgY2+HDhx3z1q5da/P19bX179+/yP6QlJTkmFd4+5a0H9jv26NHjwLP3bFjR7PNHnnkkSLb8uqrr3bM0+fU+0dFRdmOHDnimD9z5kwz/7vvviuy7rm2uXO7Vq5cWWC+3ldfw/nui+fzPurj67zZs2cXWPf111838w8ePHjO9gM4O0ogAFwwLVHQnsTCk/ZQnYv27mmP1rZt2877ebUnUIf50p/MnWmvmmavH3/80TGMlfrb3/5WpLexJI888kiRefoTtN3p06dNr7f2JivtCS1Me/rstJ36M7a2S3sInV+/9uppD+W5XqsaMmRIkdeqtIf5fP3222+SlJQkTz75ZJEaV3tvtpYJrFmzxvSga++1nb632kNvb1dZ0W3j3JPeoUOHItvMvi2L22ba664lEnZatqGc19Uea33Mc5WGXIp98XzfR+117tGjR4F59vdq5syZkp+fX2avAbAiAjCAC6alC3qEfOHJOYiURH/C1frOBg0aSPPmzc1PxlprWxq7d++W+Ph4U9PrTH/eti+3X+qoCBomnNWrV6/Exy68rjpy5IgpC4iNjTVhWOtU7etpGUhh+pO9M60F1tphrUMuPP/o0aPnfK36Ggq3WcsFNBDZX+v52LFjh7k821B19sfVkF6Ybmf9ElCWBwkWt82U1tWWZpsVvr99HzzX9r1Y57svlvZ9LG4/1JCv5Sf6BUv3xbvvvtuU9xCGgfNHAAbgElr3qkHs448/NkFM61bbtGnjqF91FefeXjsdD/bDDz80vcNff/21GW/X3rtcXPjQHsHSzFOFD5QqSeE6Y0+Vl5dX7PyStk9x84vbZhe7fctLad/H4vZDnbd48WJTm6017fqFUUOx9siXtF0BFI8ADMBl9Kd1PbBs6tSpZoQE/XndeeSAksJCzZo1zQFyetCTMz3C377cfqkBVX/ud6YHDpWW9iDOnz9fnn/+eXOA1l//+lcTOPTAsPJgfw2FS0XS0tJMD7r9tZ4P+wFdGzZsOOvz2g/GKky3s/Zmn+3EENoDq+1zpqM6nGsEBk9zvvvixb6P2ovctWtXee2118yIJf/+97/NSB16EB6A0iMAA3CJwkOI6ZBO+vOw85BQ9oBVOEjp0F3a4/X2228XmK9H3Gto1pELlL2G8p133imwno5kUFr2nsXCPYlvvPGGlAd9rcU9nwYgdbYRLUqiPe36E7s+ZuFta3+dOjqEjmigoxY4r6OhWXvA7e06W8jW3kpnOqqCK3sqSzsM2vko7b5YFu+jluIUZj/ddeGh1ACcHcOgAXCJJk2amPFW27Zta3qCdQi0r776SgYPHuxYR5cpPcBIw6yGUa17vOmmm+Saa64xw1XpOLAtW7Y0oUwPDtIDu+w9nHr/2267zYQODdz2YdB0nN7S/hytY/ZquYYOq6UBqlq1aua5CvcqXyr62nTYLg2PGkSvvvpqM9SZBtNbbrnFbIfzpb2I7777rtmOGqC0F14Dr4ZDPTBRh/FSOuSYBriOHTuag9Hsw6BpHe65zs6ndapaMqLbX3vM165dax63cB10eSrtMGjno7T7Ylm8j1o3r18qNCxrj7GerEO/3FWvXt0xZjWA0iEAA3AJDbXffvutCQvae6V/0HW8XD0Yzk7HcdURG6ZNmyaff/656Z3UAKwBTu87fPhwmT59ujkBhB7hr4HNflS93WeffWYONNIyCx1rVQ/S0/vowV16YFpp6Biz2g4d9ULb0L17d3N0vx78VB60LlpLLjS06WvQ1zNs2DB58cUXL/gx9QuF/myuZR16Qg79eV7Dmo45a6fbSmud9Xl0W+t4uhrcdBzj4g7ScqaPo18S9LTM+hg6KoOOEKI/33uT89kXL/Z91PGGNWRr3bwehKhfJvT90PfQftAggNLx0bHQSrkuAHgFHd6rdevWJlT36dPH1c0BAJQzaoABeDX92b4wLYnQnrtznYENAOCdKIEA4NW0djcxMdHUWPr7+5vSBZ0GDhxYZIxZAIA1UAIBwKtp3anWSOqQUSdPnjQnTNAxVPWgJQ3EAADrIQADAADAUqgBBgAAgKUQgAEAAGApFMCVgo6Pqae6rFixYqnP4w4AAIDyo1W9elpyHaNdR/o5GwJwKWj45WhxAAAA97dnzx5zhsSzIQCXgvb82jeonhYVAAAA7iU9Pd10WNpz29kQgEvBXvag4ZcADAAA4L5KU67KQXAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSXBqAx4wZI5dddpk5Wi8mJkZuueUW2bp1a4F1Tp8+LYMGDZKoqCipUKGC3HbbbZKWllZgneTkZOnVq5eEhoaax3nmmWckNze3wDo///yztGnTRoKCgqRevXoyadKkcnmNAAAAcC8uDcCLFi0y4Xb58uUyb948ycnJke7du0tGRoZjnaeeekq+++47+fLLL836Oibvrbfe6liel5dnwm92drYsXbpUPv30UxNuhw8f7lgnKSnJrHPNNdfImjVr5Mknn5QHH3xQ5syZU+6vGQAAAK7lY9PTZriJgwcPmh5cDbqdO3eW48ePS5UqVWTKlCly++23m3W2bNkijRs3lmXLlsnll18uP/74o9x4440mGMfGxpp13nvvPXnuuefM4wUGBprr33//vWzYsMHxXHfffbccO3ZMZs+eXapx5cLDw017GAYNAADA/ZxPXnOrGmBtsIqMjDSXiYmJple4W7dujnUaNWokNWrUMAFY6WXz5s0d4Vf16NHDbISNGzc61nF+DPs69scoLCsry9zfeQIAAIB3cJsAnJ+fb0oTOnXqJM2aNTPzUlNTTQ9uREREgXU17Ooy+zrO4de+3L7sbOtosD116lSxtcn6DcI+cRpkAAAA7+E2AVhrgbVEYdq0aa5uigwbNsz0RtsnPQUyAAAAvINbnAp58ODBMmvWLFm8eLFUr17dMT8uLs4c3Ka1us69wDoKhC6zr/Prr78WeDz7KBHO6xQeOUJva31ISEhIkfboSBE6AQAAwPu4tAdYj7/T8PvNN9/IggULpHbt2gWWt23bVgICAmT+/PmOeTpMmg571rFjR3NbL9evXy8HDhxwrKMjSmi4bdKkiWMd58ewr2N/DAAAAFiHS0eB+Nvf/mZGeJg5c6Y0bNjQMV/rbu09s48++qj88MMPZmgzDbWPPfaYma9DntmHQWvVqpXEx8fLuHHjTL1vv379zDBnL730kmMYNK0r1jKL+++/34Ttxx9/3IwMoQfDnQujQAAAALi388lrLg3APj4+xc7/5JNP5N5773WcCGPo0KEydepUMzqDBtZ33nnHUd6gdu/ebYKynuwiLCxMBgwYIGPHjhV//z8rPHSZjim8adMmU2bxwgsvOJ7jXAjAAAAA7s1jArCncFUA1lKPQ4cOXfTjREdHm6HjAAAAvNX55DW3OAgOxYffxo0bSWZm0WHazldoaIhs3ryFEAwAAEAAdl/a86vhd9T4PlKrbsExjM/Hrh1pMvyZyebxCMAAAAAEYLen4bdR0z+HhgMAAICXnAgDAAAAKA8EYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkuDcCLFy+Wm266SeLj48XHx0dmzJhRYLnOK24aP368Y51atWoVWT527NgCj7Nu3Tq56qqrJDg4WBISEmTcuHHl9hoBAADgXlwagDMyMqRly5YyceLEYpenpKQUmD7++GMTcG+77bYC640aNarAeo899phjWXp6unTv3l1q1qwpiYmJJjyPGDFCPvjgg0v++gAAAOB+/F355D179jRTSeLi4grcnjlzplxzzTVSp06dAvMrVqxYZF27yZMnS3Z2tgnPgYGB0rRpU1mzZo289tprMnDgwDJ6JQAAAPAUHlMDnJaWJt9//7088MADRZZpyUNUVJS0bt3a9PDm5uY6li1btkw6d+5swq9djx49ZOvWrXL06NFinysrK8v0HDtPAAAA8A4u7QE+H59++qnp6b311lsLzH/88celTZs2EhkZKUuXLpVhw4aZMgjt4VWpqalSu3btAveJjY11LKtcuXKR5xozZoyMHDnykr4eAAAAuIbHBGAtYejTp485kM3ZkCFDHNdbtGhhenoffvhhE2KDgoIu6Lk0RDs/rvYA68FzAAAA8HweEYD/97//mZKF6dOnn3PdDh06mBKIXbt2ScOGDU1tsJZPOLPfLqluWIPzhYZnAAAAuDePqAH+6KOPpG3btmbEiHPRA9x8fX0lJibG3O7YsaMZbi0nJ8exzrx580w4Lq78AQAAAN7NpQH45MmTJrDqpJKSksz15OTkAuUHX375pTz44INF7q8HuL3xxhuydu1a2blzpxnx4amnnpK+ffs6wu0999xjyiL04LmNGzeaXuQJEyYUKHEAAACAdbi0BGLVqlVmWDM7eygdMGCATJo0yVyfNm2a2Gw26d27d5H7a5mCLtdxfXXkBj3YTQOwc7gNDw+XuXPnyqBBg0wvcnR0tAwfPpwh0AAAACzKpQG4S5cuJtyejQbVksKqjv6wfPnycz6PHhyndcQAAACAR9QAAwAAAGWFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUlwagBcvXiw33XSTxMfHi4+Pj8yYMaPA8nvvvdfMd56uv/76AuscOXJE+vTpI5UqVZKIiAh54IEH5OTJkwXWWbdunVx11VUSHBwsCQkJMm7cuHJ5fQAAAHA/Lg3AGRkZ0rJlS5k4cWKJ62jgTUlJcUxTp04tsFzD78aNG2XevHkya9YsE6oHDhzoWJ6eni7du3eXmjVrSmJioowfP15GjBghH3zwwSV9bQAAAHBP/q588p49e5rpbIKCgiQuLq7YZZs3b5bZs2fLypUrpV27dmbeW2+9JTfccIO88sorpmd58uTJkp2dLR9//LEEBgZK06ZNZc2aNfLaa68VCMoAAACwBrevAf75558lJiZGGjZsKI8++qgcPnzYsWzZsmWm7MEeflW3bt3E19dXVqxY4Vinc+fOJvza9ejRQ7Zu3SpHjx4t9jmzsrJMz7HzBAAAAO/g1gFYyx8+++wzmT9/vrz88suyaNEi02Ocl5dnlqempppw7Mzf318iIyPNMvs6sbGxBdax37avU9iYMWMkPDzcMWndMAAAALyDS0sgzuXuu+92XG/evLm0aNFC6tata3qFu3btesmed9iwYTJkyBDHbe0BJgQDAAB4B7fuAS6sTp06Eh0dLdu3bze3tTb4wIEDBdbJzc01I0PY64b1Mi0trcA69tsl1RZr3bGOKuE8AQAAwDt4VADeu3evqQGuWrWqud2xY0c5duyYGd3BbsGCBZKfny8dOnRwrKMjQ+Tk5DjW0REjtKa4cuXKLngVAAAAsGwA1vF6dUQGnVRSUpK5npycbJY988wzsnz5ctm1a5epA7755pulXr165iA21bhxY1Mn/NBDD8mvv/4qS5YskcGDB5vSCR0BQt1zzz3mADgdH1iHS5s+fbpMmDChQIkDAAAArMOlAXjVqlXSunVrMykNpXp9+PDh4ufnZ05g8Ze//EUaNGhgAmzbtm3lf//7nylRsNNhzho1amRqgnX4syuvvLLAGL96ENvcuXNNuNb7Dx061Dw+Q6ABAABYk0sPguvSpYvYbLYSl8+ZM+ecj6EjPkyZMuWs6+jBcxqcAQAAAI+qAQYAAAAuFgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApLg3Aixcvlptuukni4+PFx8dHZsyY4ViWk5Mjzz33nDRv3lzCwsLMOv3795f9+/cXeIxatWqZ+zpPY8eOLbDOunXr5KqrrpLg4GBJSEiQcePGldtrBAAAgHtxaQDOyMiQli1bysSJE4ssy8zMlNWrV8sLL7xgLr/++mvZunWr/OUvfymy7qhRoyQlJcUxPfbYY45l6enp0r17d6lZs6YkJibK+PHjZcSIEfLBBx9c8tcHAAAA9+Pvyifv2bOnmYoTHh4u8+bNKzDv7bfflvbt20tycrLUqFHDMb9ixYoSFxdX7ONMnjxZsrOz5eOPP5bAwEBp2rSprFmzRl577TUZOHBgGb8iAAAAuDuPqgE+fvy4KXGIiIgoMF9LHqKioqR169amhzc3N9exbNmyZdK5c2cTfu169OhhepOPHj1a7PNkZWWZnmPnCQAAAN7BpT3A5+P06dOmJrh3795SqVIlx/zHH39c2rRpI5GRkbJ06VIZNmyYKYPQHl6VmpoqtWvXLvBYsbGxjmWVK1cu8lxjxoyRkSNHXvLXBAAAgPLnEQFYD4i78847xWazybvvvltg2ZAhQxzXW7RoYXp6H374YRNig4KCLuj5NEQ7P672AOvBcwAAAPB8/p4Sfnfv3i0LFiwo0PtbnA4dOpgSiF27dknDhg1NbXBaWlqBdey3S6ob1uB8oeEZAAAA7s2ta4Dt4Xfbtm3y008/mTrfc9ED3Hx9fSUmJsbc7tixoxluTR/LTg+u03BcXPkDAAAAvJtLe4BPnjwp27dvd9xOSkoyAVbreatWrSq33367GQJt1qxZkpeXZ2p2lS7XUgc9wG3FihVyzTXXmJEg9PZTTz0lffv2dYTbe+65x9TzPvDAA6aGeMOGDTJhwgR5/fXXXfa6AQAAYNEAvGrVKhNe7ex1twMGDDBj9X777bfmdqtWrQrcb+HChdKlSxdTpjBt2jSzro7coAe7aQB2rt/V4dTmzp0rgwYNkrZt20p0dLQMHz6cIdAAAAAsyqUBWEOsHthWkrMtUzr6w/Lly8/5PHpw3P/+978LaiMAAAC8i1vXAAMAAABljQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIuKAC/+OKLsnv37rJvDQAAAOCOAXjmzJlSt25d6dq1q0yZMsWchQ0AAADw2gC8Zs0aWblypTRt2lSeeOIJiYuLk0cffdTMAwAAALyyBrh169by5ptvyv79++Wjjz6SvXv3SqdOncxphydMmCDHjx8v25YCAAAA7nAQnM1mk5ycHMnOzjbXK1euLG+//bYkJCTI9OnTy6KNAAAAgOsDcGJiogwePFiqVq0qTz31lOkR3rx5syxatEi2bdsm//73v+Xxxx8vu5YCAAAArgrAzZs3l8svv1ySkpJM+cOePXtk7NixUq9ePcc6vXv3loMHD5ZFGwEAAIAy438hd7rzzjvl/vvvl2rVqpW4TnR0tOTn519M2wAAAAD36AG21/oWdurUKRk1alRZtAsAAABwnwA8cuRIOXnyZJH5mZmZZhkAAADgdT3APj4+ReavXbtWIiMjy6JdAAAAgOtrgLXsQYOvTg0aNCgQgvPy8kyv8COPPHIp2gkAAACUfwB+4403TO+vHgCnpQ7h4eGOZYGBgVKrVi3p2LFj2bQMAAAAcHUAHjBggLmsXbu2XHHFFRIQEHAp2gQAAAC4PgCnp6dLpUqVzHU96YWO+KBTcezrAQAAAB4bgLX+NyUlRWJiYiQiIqLYg+DsB8dpPTAAAADg0QF4wYIFjhEeFi5ceCnbBAAAALg+AF999dWO61oDnJCQUKQXWHuA9bTIAAAAgFeNA6wB+ODBg0XmHzlyxCwDAAAALHEiDB0HODg4uCzaBQAAALh+GLQhQ4aYSw2/L7zwgoSGhjqW6YFvK1askFatWpV9KwEAAABXBODffvvN0QO8fv16c/ILO73esmVLefrpp8uqbQAAAIBrA7B99If77rtPJkyYwHi/AAAA8O4AbPfJJ5+UfUsAAAAAdw3AGRkZMnbsWJk/f74cOHBA8vPzCyzfuXNnWbUPAAAAcH0AfvDBB2XRokXSr18/qVq1arEjQgAAAABeE4B//PFH+f7776VTp05l3yIAAADA3cYBrly5suO0yAAAAIDXB+DRo0fL8OHDJTMzs+xbBAAAALhbAH711Vdlzpw5EhsbK82bN5c2bdoUmEpr8eLFctNNN0l8fLypI54xY0aB5TresAZtrTMOCQmRbt26ybZt24qcfrlPnz5mSLaIiAh54IEHzBnpnK1bt06uuuoqc5a6hIQEGTdu3IW8bAAAAFi1BviWW24pkyfX0ST05Bn333+/3HrrrUWWa1B988035dNPP5XatWubs8/16NFDNm3a5DjlsobflJQUmTdvnuTk5JgxigcOHChTpkwxy9PT06V79+4mPL/33nvmBB76fBqWdT0AAABYywUF4BdffLFMnrxnz55mKo72/r7xxhvyz3/+U26++WYz77PPPjO9ztpTfPfdd8vmzZtl9uzZsnLlSmnXrp1Z56233pIbbrhBXnnlFdOzPHnyZMnOzpaPP/7YnK2uadOmsmbNGnnttdcIwAAAABZ0QSUQ5SEpKUlSU1NNz61deHi4dOjQQZYtW2Zu66X25NrDr9L1fX19ZcWKFY51OnfuXOC0zdqLvHXrVjl69Gixz52VlWV6jp0nAAAAWDgA5+XlmR7W9u3bS1xcnBkRwnkqCxp+lfb4OtPb9mV6GRMTU2C5v7+/aYPzOsU9hvNzFDZmzBgTtu2T1g0DAADAwgF45MiRpoTgrrvukuPHj8uQIUNMDa/2vI4YMUI83bBhw8zrsk979uxxdZMAAADgygCsdbUffvihDB061PS49u7dW/7zn/+YERuWL19eJg3TnmWVlpZWYL7eti/TSz0Vs7Pc3FwzMoTzOsU9hvNzFBYUFGRGlXCeAAAAYOEArKUDOvyZqlChguklVTfeeKM5Q1xZ0FEfNKDOnz/fMU9rcbW2t2PHjua2Xh47dkwSExMd6yxYsEDy8/NNrbB9HR1uTUeIsNMRIxo2bGhO6AEAAABruaAAXL16dTP0mKpbt67MnTvXXNfRGLT3tLR0vF4dkUEn+4Fvej05OdmMC/zkk0/Kv/71L/n222/N8GX9+/c3IzvYh2Fr3LixXH/99fLQQw/Jr7/+KkuWLJHBgwebESJ0PXXPPfeYA+B0fOCNGzfK9OnTZcKECaZsAwAAANZzQcOg/fWvfzU9s9rL+thjj0nfvn3lo48+MsH1qaeeKvXjrFq1Sq655hrHbXsoHTBggEyaNEmeffZZM1awDlemPb1XXnmlGfbMPgawvRxDQ2/Xrl1NDfJtt91mxg6204PYNKAPGjRI2rZtK9HR0aZUgyHQAAAArMnHpgPuXiQdakyn+vXrmzO7eRstvdAgraUe5VUPvHr1ahPYP/t6iDRqWv2CH2fLxr3S/9bXTJnI+ZylDwAAwFvz2gX1ABemdbb2ulwAAADAnV1QANYzsp2N1uoCAAAAXhOAn3jiiQK3dYSFzMxMc7BZaGgoARgAAADeNQqEnkLYedLRHPTUwnqQ2tSpU8u+lQAAAIArA3Bx9AC4sWPHFukdBgAAALwyACs9K9z+/fvL8iEBAAAA19cA64kpnOlIanpijLfffls6depUVm0DAAAA3CMA28/EZqdnbatSpYpce+218uqrr5ZV2wAAAAD3CMD5+fnm8uDBg2bkBx10GAAAAPDKGmA9JbGeVlhPKRwXFyeRkZHmctiwYWYoNAAAAMBreoCPHDlizvi2b98+6dOnjzRu3NjM37Rpk7z11lsyb948+eWXX2TdunWyfPlyefzxxy9VuwEAAIBLH4BHjRplSh527NghsbGxRZZ1795d+vXrJ3PnzpU333zzwloEAAAAuEsAnjFjhrz//vtFwq/SMohx48bJDTfcIC+++KIMGDCgLNsJAAAAlH8NsA511rRp0xKXN2vWTHx9fU0ABgAAADw+AOuBb7t27SpxeVJSksTExJRFuwAAAADXB+AePXrIP/7xD8nOzi6yLCsrS1544QW5/vrry7J9AAAAgGsPgmvXrp3Ur1/fDIXWqFEjcxa4zZs3yzvvvGNC8GeffVa2LQQAAABcFYCrV68uy5Ytk7/97W9m3F8Nv/YzwV133XXmVMg1atQoy/YBAAAArj0TXO3ateXHH3+Uo0ePyrZt28y8evXqmRNiAAAAAF55KmRVuXJlad++fdm2BgAAAHC3UyEDAAAAnowADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFAIwAAAALIUADAAAAEshAAMAAMBSCMAAAACwFLcPwLVq1RIfH58i06BBg8zyLl26FFn2yCOPFHiM5ORk6dWrl4SGhkpMTIw888wzkpub66JXBAAAAFfyFze3cuVKycvLc9zesGGDXHfddXLHHXc45j300EMyatQox20NunZ6Xw2/cXFxsnTpUklJSZH+/ftLQECAvPTSS+X4SgAAAOAO3D4AV6lSpcDtsWPHSt26deXqq68uEHg14BZn7ty5smnTJvnpp58kNjZWWrVqJaNHj5bnnntORowYIYGBgUXuk5WVZSa79PR0KU+5eaclLWOO+AeU69MCAABYgtuXQDjLzs6Wzz//XO6//35T6mA3efJkiY6OlmbNmsmwYcMkMzPTsWzZsmXSvHlzE37tevToYULtxo0bi32eMWPGSHh4uGNKSEiQ8rRx9+eyK/19GflBNcnx3Sn5tj97wAEAAODlPcDOZsyYIceOHZN7773XMe+ee+6RmjVrSnx8vKxbt8707G7dulW+/vprszw1NbVA+FX227qsOBqihwwZ4ritYbk8Q3BIULQE+EZK5SpHJEt+kw27dkj9+JvMfAAAAFgoAH/00UfSs2dPE3btBg4c6LiuPb1Vq1aVrl27yo4dO0ypxIUICgoyk6s0qHaLpKfGyTMju8tdA6tKdm667EydLY1r9BZfHz+XtQsAAMAbeEwJxO7du00d74MPPnjW9Tp06GAut2/fbi61NjgtLa3AOvbbJdUNuwNfn0D5+bsTEpLTTfz9QuRU9mFJOfKrq5sFAADg8TwmAH/yySdmCDMd0eFs1qxZYy61J1h17NhR1q9fLwcOHHCsM2/ePKlUqZI0adJE3J2vBEuNKteY6ylHVkrG6T9fBwAAALw0AOfn55sAPGDAAPH3/7NqQ8scdESHxMRE2bVrl3z77bdmiLPOnTtLixYtzDrdu3c3Qbdfv36ydu1amTNnjvzzn/804wi7sszhfERWrC+VK9QXEZvsSpvLQXEAAADeHoC19EFPZqGjPzjTIcx0mYbcRo0aydChQ+W2226T7777zrGOn5+fzJo1y1xqb3Dfvn1NSHYeN9gT1KjSxVEKcSR9i6ubAwAA4LE84iA4Dbg2m63IfB2ZYdGiRee8v44S8cMPP4gnC/APldiINrLv8BI5cHydRFVqUmAoOAAAAHhRDzDOiA5vKj4+fpKZdUAysgoe2AcAAIDSIQB7kAC/EIms0MBcP3hsraubAwAA4JEIwB6mSsSZg/uOnNwmOXmnXN0cAAAAj0MA9jBhQbESGhQjNlueHDpe/KmcAQAAUDICsIfRA99iws/0Ah88vk5stnxXNwkAAMCjEIA9UGTFhuLnGyTZuSfk5OkUVzcHAADAoxCAPZCvr79EhNU214+ePHPKZwAAAJQOAdhDRVSoay6PndxR7BjJAAAAKB4B2ENVCq0pvj7+pgziVNZBVzcHAADAYxCAPZSfb4AJwepoxg5XNwcAAMBjEIC9pAwCAAAApUMA9mBnDoTzkVPZh+V09jFXNwcAAMAjEIA9mL9fsFQMqW6uH6MMAgAAoFQIwB6u8h9lEEcpgwAAACgVArCX1AFnnE6R3LxTrm4OAACA2yMAe7hA/woSHBhlrqdn7nV1cwAAANweAdgLVApNMJfpmcmubgoAAIDbIwB7gUqhNczliVN7XN0UAAAAt0cA9gIVQ6qJj/hKVs5xMwEAAKBkBGAv4OcbKGHBceY6ZRAAAABnRwD2sjKI9EzKIAAAAM6GAOyFAdhmy3d1cwAAANwWAdhLhAXHmlKIvPzTkpl10NXNAQAAcFsEYC/h4+PrOC0ydcAAAAAlIwB7EeqAAQAAzo0A7EXsPcB6WuR8W56rmwMAAOCWCMBeJDgwUvz9QiTfliuZpw+4ujkAAABuiQDsRXx8fKRCcLy5fuLUPlc3BwAAwC0RgL3wrHDqJAEYAACgWARgbw3Ap/czHjAAAEAxCMBeJiQo+o/xgLMlM+uQq5sDAADgdgjAXjgesL0OmDIIAACAogjAXqjCH2UQHAgHAABQFAHYyw+Es4nN1c0BAABwKwRgLxQaHCO+Pv6Sm39a8n1OuLo5AAAAbsWtA/CIESPM2LbOU6NGjRzLT58+LYMGDZKoqCipUKGC3HbbbZKWllbgMZKTk6VXr14SGhoqMTEx8swzz0hubq54M18fPwkLrmqu5/scdHVzAAAA3Iq/uLmmTZvKTz/95Ljt7/9nk5966in5/vvv5csvv5Tw8HAZPHiw3HrrrbJkyRKzPC8vz4TfuLg4Wbp0qaSkpEj//v0lICBAXnrpJfH2MogTp/ZIng8jQQAAAHhUANbAqwG2sOPHj8tHH30kU6ZMkWuvvdbM++STT6Rx48ayfPlyufzyy2Xu3LmyadMmE6BjY2OlVatWMnr0aHnuuedM73JgYKB4qwohZ0aCyPM97OqmAAAAuBW3LoFQ27Ztk/j4eKlTp4706dPHlDSoxMREycnJkW7dujnW1fKIGjVqyLJly8xtvWzevLkJv3Y9evSQ9PR02bhxY4nPmZWVZdZxnjxNWLB+afARm88pqVzFz9XNAQAAcBtuHYA7dOggkyZNktmzZ8u7774rSUlJctVVV8mJEyckNTXV9OBGREQUuI+GXV2m9NI5/NqX25eVZMyYMaakwj4lJCSIp/HzDZDQoBhzvW6TIFc3BwAAwG24dQlEz549HddbtGhhAnHNmjXliy++kJCQkEv2vMOGDZMhQ4Y4bmsPsCeG4AohVSUzK03qNg52dVMAAADchlv3ABemvb0NGjSQ7du3m7rg7OxsOXbsWIF1dBQIe82wXhYeFcJ+u7i6YrugoCCpVKlSgckTVfzjjHB1m9IDDAAA4JEB+OTJk7Jjxw6pWrWqtG3b1ozmMH/+fMfyrVu3mhrhjh07mtt6uX79ejlw4IBjnXnz5plA26RJE/F29gPh4msGSG5+hqubAwAA4BbcOgA//fTTsmjRItm1a5cZxuyvf/2r+Pn5Se/evU1t7gMPPGBKFRYuXGgOirvvvvtM6NURIFT37t1N0O3Xr5+sXbtW5syZI//85z/N2MHay+vtAvzDxMcWJr6+PnIye6urmwMAAOAW3LoGeO/evSbsHj58WKpUqSJXXnmlGeJMr6vXX39dfH19zQkwdOQGHeHhnXfecdxfw/KsWbPk0UcfNcE4LCxMBgwYIKNGjRKr8MuPlly/DDmRs8XVTQEAAHALbh2Ap02bdtblwcHBMnHiRDOVRA+a++GHH8Sq/GxRkiu75UT2Zlc3BQAAwC24dQkELp5ffpS5zMjeJnn52a5uDgAAgMsRgL2cj1SUk8fzJF+y5dDxkk/+AQAAYBUEYC/nIz6yc0uWuZ5ydJWrmwMAAOByBGAL2LHpTABOPUIABgAAIABbwI6Nf/YA22w2VzcHAADApQjAFpC8PUt8JEBOZx+W4xlJrm4OAACASxGALSA3V6RCQD1zPZU6YAAAYHEEYIuoENjYXKZQBwwAACyOAGwRFQMbmUtGggAAAFZHALaIioENzeXxjJ1yKuuwq5sDAADgMgRgi/D3rSiVKzQw16kDBgAAVkYAtpCqkW3NZcrRRFc3BQAAwGUIwBYSV/kyc5l6ZKWrmwIAAOAyBGALqRp5JgAfPL5BcvNOu7o5AAAALkEAtpCKIdUlNChG8m05cuDYGlc3BwAAwCUIwBbi4+Pj6AVOoQwCAABYFAHYYuIjO5jL/UdWuLopAAAALkEAtpiqUWcCcOrRRMnLz3F1cwAAAModAdhiIivUl6CACMnNOyWHjm9wdXMAAADKHQHYYnx8fB11wPuP/Orq5gAAAJQ7ArCF64BTCMAAAMCCCMAWVDWyvSMA59vyXN0cAACAckUAtqDoSk0kwL+CZOeekCPpW1zdHAAAgHJFALYgX19/iavc1lynDhgAAFgNAdii4p3KIAAAAKyEAGxRVR0nxPhVbDabq5sDAABQbgjAFhUT0UL8fYPldPZhOXpym6ubAwAAUG4IwBbl5xsocZHtzPV9h5a6ujkAAADlhgBsYdWirjCXew//4uqmAAAAlBsCsIVVj+5kLvcfXiH5+bmubg4AAEC5IABbWHR4Mwn0r2TGAz54fL2rmwMAAFAuCMAW5uvjJ9WiLjfX9x6mDhgAAFgDAdjiqv1RBrHv0BJXNwUAAKBcEIAtrnrUmQCcenSV5OaddnVzAAAALjkCsMVFVKgrYUGxkpefLalHE13dHAAAgEuOAGxxPj4+jjKIvZRBAAAAC/AXNzZmzBj5+uuvZcuWLRISEiJXXHGFvPzyy9KwYUPHOl26dJFFixYVuN/DDz8s7733nuN2cnKyPProo7Jw4UKpUKGCDBgwwDy2v79bv/xyUy36Cvl939ey7zABGLAS/Ww8dOhQmTxWdHS01KhRo0weCwAuNbdOgBpsBw0aJJdddpnk5ubK3//+d+nevbts2rRJwsLCHOs99NBDMmrUKMft0NBQx/W8vDzp1auXxMXFydKlSyUlJUX69+8vAQEB8tJLL5X7a3LnOuCDx9bL6eyjEhxY2dVNAlAO4bdx40aSmXmqTB4vNDRENm/eQggG4BHcOgDPnj27wO1JkyZJTEyMJCYmSufOnQsEXg24xZk7d64JzD/99JPExsZKq1atZPTo0fLcc8/JiBEjJDAwUKyuQkhViazYSI6c2CLJBxdJg2q3uLpJAC4x7fnV8DtqfB+pVTf2oh5r1440Gf7MZPOYBGAAnsCtA3Bhx48fN5eRkZEF5k+ePFk+//xzE4JvuukmeeGFFxy9wMuWLZPmzZub8GvXo0cPUxKxceNGad26dZHnycrKMpNdenq6eLuaMdeYALz7wAICMGAhGn4bNa3u6mYAQLnymACcn58vTz75pHTq1EmaNWvmmH/PPfdIzZo1JT4+XtatW2d6drdu3Wpqh1VqamqB8Kvst3VZcbQ+eOTIkWIlNWOuld92vCt7Di6SfFueOUkGAACAN/KYAKy1wBs2bJBffvmlwPyBAwc6rmtPb9WqVaVr166yY8cOqVu37gU917Bhw2TIkCEFeoATEhLEm8VGtJaggHDJyjkuaUd/k6qR7VzdJAAAAOsOgzZ48GCZNWuWGcWhevWz/1TXoUMHc7l9+3ZzqWURaWlpBdax3y6pbjgoKEgqVapUYPJ2vr7+klDlTF21lkEAAAB4K7cOwDabzYTfb775RhYsWCC1a9c+533WrFljLrUnWHXs2FHWr18vBw4ccKwzb948E2qbNGlyCVvveWpWudZcJhOAAQCAF/N397KHKVOmyMyZM6VixYqOmt3w8HAzLrCWOejyG264QaKiokwN8FNPPWVGiGjRooVZV4dN06Dbr18/GTdunHmMf/7zn+axtacXf0qIuVpPjSGHT2yRk6dSzOgQAAAA3sate4DfffddM/KDnuxCe3Tt0/Tp081yHcJMhzfTkNuoUSMZOnSo3HbbbfLdd985HsPPz8+UT+il9gb37dvXjAPsPG4wzggJjDS1wCr54EJXNwcAAMB6PcBaAnE2emBa4bPAFUdHifjhhx/KsGXePRxa2rHVsittgTSpcY+rmwMAAGCtHmCUv1qx3czl3kOLJTvnhKubAwAAUOYIwChAzwgXEVZH8vKzZRcHwwEAAC/k1iUQKH8+Pj5St2ovSdz+luxImSUNqt3s6iZBa7KTk81pZstCdHQ0p6sFAFgaARhF2AOwnhVOyyACAyq6ukli9fDbuHEjycw8VSaPFxoaIps3byEEAwAsiwCMIiIrNpSIsLpyLGOH7DowXxpUu8XVTbI07fnV8DtqfB+pVbfgab3P164daTL8mcnmMQnAAACrIgCj+DKI+F6SuO3NP8ogCMDuQMNvo6ZnPxMiAAA4Nw6CQ4llECr54GLJykl3dXMAAADKDAEYxYqs0EAqV6gn+fnZsjttvqubAwAAUGYIwDjraBDq931fu7o5AAAAZYYAjBI1rH67udxz6BdJz9zj6uYAAACUCQIwSlQpNEGqR1+lJ6WWzXumu7o5AAAAZYIAjLNqUuNuc7l1z5eSn5/r6uYAAABcNAIwzqpW7HUSHBglGVlpsvvgQlc3BwAA4KIRgHFWfr6B0rD6beb65uRprm4OAADARSMA45waJ9xlLpMPLJSTp1Jc3RwAAICLQgDGOVWuUFfiIzuITfJlw+7/uro5AAAAF4UAjFJpUft+c7lx9385MxwAAPBoBGCU+mC4yhUaSHbuCXqBAQCARyMAo1R8fHylTb2/mevrkj6SnNxMVzcJAADgghCAUWr1qt4olUJryOnsI7Jpz1RXNwfABcrOOSFZeYckIspP8iWTMb4BWI6/qxsAz+Hr6y+t6z4ii9b/Xdbu+ECa1egrfn5Brm4WgLM4nX1M9h1eJvsOLZGD6RskPTPZfIlVL31aXTLlR1m9QyTAv4IEBYRLheA4qRiSIBVDqpl/8wDgjfh0w3lpWO02WfX7BHNijPW7PpVWdQe6ukkACsnJOyVJKbNly94vTfjV05kX5iP+kp2TIwH+viI+NsnJPWmmk6f2SerRRPHx8ZOIsDoSVamxhIfWNGVQAOAtCMA4L9rj277hUFm47llZtW2C1K92s4QFx7q6WQBEzDjda5P+I5v3TDdh1q5yhfpSPbqTVI28TMJDa0mlsJqyYd3v0rZtW/n066ekfqNoOZ1z3PQMn8jcK+mn9pj7Hz25zUwBfmESE9FKqoQ3F39+9QHgBQjAOG8Nq98um5KnStqx32Tp5n/Lda3fdHWTAEvTsobEbW/J7/tmSL4tx8zTMoZGCbdLg2q3SqXQhBLv66N9wX4hUkGn4DiJrtREbDabnMo6KIdObJYj6VskJy9D9h1eIqlHV0qV8BYSV7kdQRiARyMA47zpT6FXNRstX/1yk2zf/600rXGPxEdd7upmWUpu3inTY5edky7ZuSfFZsszk/lh2y/YBJpA/woSEhhFnbYXy8w6aIKvfiG1B9/4yMtNrX5Clc4XXLbg4+MjocExUiM4RqpHXylHTmw1ZRHaQ5x6dJUcPL5B4iPbS5WIFuLr41fGrwoALj0CMC5IlfBm0rRGH9mY/Ln8b+OLcnunbwlal1BUrL9k+26XnSnr5eTpFDMec2kF+leUsOA40wuYLwGXtJ0oH7l5p2Vt0keyevtEyc07MyRhQvRV0q7BUxJXuU2ZPpcGXO0VjqrYWI5l7JR9h5eaILzn0GI5cHytVIu6QmwSUqbPCQCXGgEYF6x9w6dlR+oPpndISyGuajbK1U3yKkdPbjc/aW8+OFNGf1RNsmWtHPmzrNPUZQYFVJIA/4rmaH0NKvrTtfYO65SVm27qODUsZ588YWo5JVDknxOryt4T06X2iUpSuWI9V75EnCd9f3emzpZlm/8tJ07tNfNiIlpKh4bPSfXoKy7pc2uvsJ4WPSKsthxK3yT7Dy+TrJzjsjP1R/H1j5Q6jfkCDMBzEIBxwYIDI+Talq/KDyvvkw27PzMH2NSLv8nVzfJoObkZsnXf17J1z1emd80uL88mgT4xEhtdVyqEVJWwoNhS9bhrT6H+TK5H9qdn7jEHScXXDJR9J6fLtMXTJTaitTSp2ceM8aylE3Bfh45vlCWbRsn+IyvMbe3Vv7zR81I//mYTTsuLllXoL0CRFRtI2tHVknp0teT7HpGnx8fJtqOvSv1T48wQagDgzgjAuCg1Y66RNnUHyeodE+Xndc9LVKUmppcI5+dYRpJs2PWZbN37laO8wdfHXxKqXC3+2c3klh5Py/v/vV3io6qf1+NqqNXSB520Tnvzxp3yztufyBPDekh69lpzIKM5mHHTaHNwY5Ma9/D+uZmM0wdk5e+vy5Y908Um+eLnGySt6j4sres8IgH+oS5rl59voNmnosOby6btP0m2T5IcOb1Epv58rVu0DwDOhgCMi3ZZg6fMATL7jyyX2asGys0dp0loUBVXN8vt2Wz5knxwkWzY9akkH/zZMT88rLY0rdnX9OyFBkXL6tWr5VRGfpk8p48EyooFGdJw/D+kUdME2bLnC9mUPEVOnNpnTnGtk9Z0NqvVX2rFdONECC7+NWDNzg9kzc4PHXW+2lOvvb4VQ8/vi9ClFOgfJsF5bWXU00tlzHvd5ET2Jknc9qbZt870UP+FMYQBuB3+uuGiaUjSodC+WnKzHMvYId8uv0f+cvlUE95QVFZOuunp3bD7v3I8I+mPuT5So0oXaV5rwEUdvX8+9EtKm3qDpFXdR2TPwcWycfdkST6wwBzkpFOFkGrSrGZfaZxwtwQHVr7k7cEZelriLXu/ML2+Wr6itFSlY+N/SNXIduKu9u7MkcaRoyUiPk2WbX7J1CjPX/Ok+VJ1eSOtUb7S1U0EAAcCMMqEDpn0l8unyLfLe5uDrfSSEFz0oLYzZQ7/Z8ZVtY/Q0CjhDmlWs7+Eh9VySbv04DktZdFJe4I1CG9OnmrqhpdveVlW/v6G1K92iwnnOhoALt0vAnqAmwZfc8CiiFQKrWF6UevE9SzXOt8LpW2sW/UGqRlzrRml4rft78jB4+vluxV9TQBuV/9Jtw7xAKyDAIwyo0eHa+i1h+Cvl9ws17WZKLERrcSq9CC0XWnzZPOeL2Tvof8VODOXlhk0rHarBPiHibvQg5cub/SstKv/uBnjWU93fSh9o6k/1alqZHsThGvFdhc/X4ZUK6se3x0p30vi9oly9OTvZl5QQIR5D7QURmttPY3WnretN0gaJ9wlq7e/bb5U7T30i5niozpK23qPSbWojh4R6gF4JwIwLkkI/v7XeyU9c7fMWHq76cFqUfsBy/yx06GqdAQHHclh2/5vJTs33cz3EV+pGdtVmte619TZuvP20ADTKOFOaVj9DnPig/W7JpneyZQjv5opODDK1KM2qHaLOUWuO78Wd3U6+6g5gYWWwmScTnH8IqD7R8s6D0pQQLh4Ov0F6MqmI8y/fx2zWEt/dPg0naIqNZbmte4zNcKMQAKgvBGAcUlC8O1XfieL1g8zPVtLN/9LdqT8IB0b/92rf/7UEoek1Dlm7F77T9hKa2kbVrvNlDqc7ZS07kiDrQ5vp9PJ06myafdkE9pOZR+SDbs/NVOl0JpSv9rN0iD+FomoUMfVTXb73t49h/5ngqD+MpCXn23m6xcK7VnXyRuCb2G633dpMVba1n9Mftvxnmzd86UcTt8sP697VpZu+pcJwQ2r38aXKQDlhgCMS0JP0HBd67fNMEl6QEzasdUyY9ntUiu2m+kNio/s4PFHhufknTK9oXsP/iK7DywwBwDa6VBVWrepoffMT72e/VpVheA4ad9wqLSt/7j5KXvbvpmSlDbH9PTrUf86RYTVNbXENWK6SGzlthLgxxnCcnIzzfbSwLvrwAI5nX3YsSy6UlNpXvs+y4zDrCU2nZuNlvYNhsrmPdNl4+7PztSdJ39upoohCVI77jqpHdvd7D+U2QC4VCwVgCdOnCjjx4+X1NRUadmypbz11lvSvn17VzfLa2lPTrOa/aR2bA9Zte11Uwe7K+0nM+nBPdrjoyMfRIc3MwdiubO8/BwT9I6c+N0x+P/B9A2S/0cPnvL1CZBq0VeY4KsHAumXAG+kocR+0JwO1ZWUNk9+3/eNCXn6JeBY0g5Zm/Qfsz1iIlpIXOV2UiW8ubmuAcfbe/gyTx+Qg8c3SOqx1bL/8HI5cGyt5NtyHMuDAyP/6PG83QRgb98eJZ1Ep3Xdh02ph5ZD6IGhO1N+lBOn9si6pI/N5O8Xan4x0i+QMeEtzeeEt/6bAlD+LBOAp0+fLkOGDJH33ntPOnToIG+88Yb06NFDtm7dKjExMa5unlcLC46Rq5uPkRa1HpB1uz6Sbfu/k/TMZHO0u076k6/+xB5VsYlEVWokEWF1TE9RYEDFcj0CX2syM7MOmKGnMrIOyPGMXaas4djJ7XI8Y3eBEONc3qBHtydEX2nCfHm22R3oAXxaB6yTnhZXQ7D2hu89tNTUter40DrZ+fuFSHhoTakUVksiwmpJpdBaEh5aQ0KDYiQkKMrsC+7eW65lDPpatedSvxTpvnw8M1nSM3abYe0ystKK3Ef351qx15mDB3Vfp2fzDP3iq/9+dOrc7N+y59BiSUqdK8kHFsrpnKNmeD6d7PSLs46WomU35npoDXNdz46o9dPuvu8AcB+WCcCvvfaaPPTQQ3LfffeZ2xqEv//+e/n444/l+eefd3XzLKFyxXomCF/R+AXZkfqD7EqdK/sOLzNhwt4z7Ez/oIUERplQGehfyVwGmcsKpnfRx8fPjEGsZ0zTSXvS8vPzJN+WawLtmcs8M+l1DS45eZmm1/LM5UnJzs0wB6mdyjpk1jkb7ZHSs6RVCddezbYSV7mN+eNrxR684mh4rVu1l5n0QEDtzdMe0LRja0yP6OETWyQ375S51Kk4+p4GB1Q2vaTaSxjgF2q2e4B/yJlLv1AzKoJ57/V99/X7c1/447aP+IlNbPq1xkzaljN0ru3MbMd1m+TZciQvL0vy8rMkNz/L9Orn/nFbJ91fNIydzj5mviTZD2osmY9UrlDP9HprCVC1qMst0fN9sfSscXXirjeT/vs9cmKr+XxIObLSDKWm4wrrlw2diqMHmQYFRkhwQIQZt1pH0tASHD1luJYk6eTvFyS+voHi/8dtM8KGj4+Y/0x41mu+f7xXZ+bpbfs6Zy7/XO5dvO31OLMVe/3Pz4ZC853Xd1rHeW0pcZ3ze8yC68h5Peb5vxYpdduOHD0qGRknne/w5+dmgbvbP2v/nOn8f70MCwuTto37ut0xMJYIwNnZ2ZKYmCjDhg1zzPP19ZVu3brJsmXLiqyflZVlJrvjx4+by/T0c/3hKzsnT57Z8bZs3CunMv9sy/nanXRmIH19/fbHvBi63fLzy+KsZDFSwbe/1AvuLRm5OyUzR6dkOZW7R7Ly0iTXliGn5Lj5rzz5+1aUQJ8I8fMNlyC/KhLiHy/B/vES4l9NAnwjxSffV+SoSJpOon+Ii/9jXJbbSn+lKIt9wTX7Q5z4yPUSI9dLdGiuZOcdkqy8VDOdzk2T03mpkp17QHJs6ZJnO6X9q5IpB0TM5N4CdB/xjZEg/xgJ8os9M/nHSIhfgvj5BIukixzUKWmXiOwqw387ZbNvecZ+VU9CpJ7U8O8tuWEnzefD6bw0yTb7zgHJzjtgLvNsOq52vmRmHhIRnQC4E7+8GtKq0U2X/HnsOa3gF4Li+dhKs5aH279/v1SrVk2WLl0qHTt2dMx/9tlnZdGiRbJixYoC648YMUJGjhzpgpYCAADgYuzZs0eqVz/7KeMt0QN8vrSnWOuF7bQn4siRIxIVFVVuP2Pqt5iEhATzJlaqxIEfdmyX4rFdSsa2KR7bpWRsm+KxXUrGtnGP7WLK706ckPj4+HOua4kAHB0dLX5+fpKWVvDgFL0dFxdXZP2goCAzOYuIiBBX0B2Gf0xFsV2Kx3YpGdumeGyXkrFtisd2KRnbxvXbJTy8dGOpW+KQ2cDAQGnbtq3Mnz+/QK+u3nYuiQAAAID3s0QPsNKShgEDBki7du3M2L86DFpGRoZjVAgAAABYg2UC8F133SUHDx6U4cOHmxNhtGrVSmbPni2xsbHijrQE48UXXyxSimF1bJfisV1KxrYpHtulZGyb4rFdSsa28bztYolRIAAAAABL1QADAAAAdgRgAAAAWAoBGAAAAJZCAAYAAIClEIDLweLFi+Wmm24yZybRM8nNmDHjnPf5+eefpU2bNubIyXr16smkSZOKrDNx4kSpVauWBAcHS4cOHeTXX38Vb94uX3/9tVx33XVSpUoVM6C2juE8Z86cIqex1sdynho1aiSe5ny3je4vhV+3TjriiZX3mXvvvbfY7dK0aVOv2mfGjBkjl112mVSsWFFiYmLklltuka1bt57zfl9++aV5rbo/NG/eXH744YcCy/UYaR05p2rVqhISEiLdunWTbdu2ibdvmw8//FCuuuoqqVy5spn0dRf+t1LcvnX99deLN28X/TtU+DXrvuNN+8yFbJcuXboU+znTq1cvr9lf1LvvvistWrRwnNRC/wb/+OOP4qmfMQTgcqDjDbds2dKEj9JISkoy/3CuueYaWbNmjTz55JPy4IMPFgh706dPN2Mb6/Aiq1evNo/fo0cPOXDggHjrdtHwowFY/wElJiaa7aNh6LfffiuwnoablJQUx/TLL7+IpznfbWOnH9TOr10/wK28z0yYMKHA9tDTcUZGRsodd9zhVfvMokWLZNCgQbJ8+XKZN2+e5OTkSPfu3c32KsnSpUuld+/e8sADD5h/Q/qHXqcNGzY41hk3bpy8+eab8t5778mKFSskLCzM7DOnT58Wb942+oVSt83ChQtl2bJl5lSuep99+/YVWE8DjPN+M3XqVPHm7aI0+Di/5t27dxdY7un7zIVsF+2ccd4m+m9Izz5b+HPGk/cXVb16dRk7dqz5+7tq1Sq59tpr5eabb5aNGzeKR37G6DBoKD+6yb/55puzrvPss8/amjZtWmDeXXfdZevRo4fjdvv27W2DBg1y3M7Ly7PFx8fbxowZY/PW7VKcJk2a2EaOHOm4/eKLL9patmxp8yal2TYLFy406x09erTEddhnbGZ9Hx8f265du7x6nzlw4IDZPosWLSpxnTvvvNPWq1evAvM6dOhge/jhh831/Px8W1xcnG38+PGO5ceOHbMFBQXZpk6davPmbVNYbm6urWLFirZPP/3UMW/AgAG2m2++2eYtSrNdPvnkE1t4eHiJy71xn7mQ/eX11183+8vJkye9dn+xq1y5su0///mPzRM/Y+gBdkPa46A/AzjTb0Q6X2VnZ5tvYM7r+Pr6mtv2daxAT2d94sQJ06PnTH8+0Z/I69SpI3369JHk5GSxCj3Bi/6UpD3lS5Ysccxnnznjo48+Mq+5Zs2aXr3PHD9+3FwW/rdxPp8z+kuUltA4rxMeHm5KZzx5nynNtiksMzPT9AQWvo/2FOuvLA0bNpRHH31UDh8+LN6+XU6ePGn+/WiveOHeP2/cZy5kf9HPmbvvvtv0Znrr/pKXlyfTpk0zPeNaCuGJnzEEYDekO0ThM9Tp7fT0dDl16pQcOnTI7HzFrVO45tObvfLKK+bD+M4773TM0384WqemZ/nTeiX9B6a1fBqUvZmGXv0J6f/+7//MpH+ctC5NSx0U+4zI/v37Tb2alhM587Z9Rr8YatlUp06dpFmzZuf9OWPfH+yX3rTPlHbbFPbcc8+ZL0jOf6j15+zPPvtM5s+fLy+//LL56bxnz57m35m3bhcNbh9//LHMnDlTPv/8c3O/K664Qvbu3euV+8yF7C9aK64/8Rf+nPGW/WX9+vVSoUIFc3zSI488It988400adLEIz9jLHMqZHiXKVOmyMiRI80HsXOdq36g2GmxvoYb7a344osvTB2St9I/TDrZ6R+lHTt2yOuvvy7//e9/Xdo2d/Hpp59KRESEqUFz5m37jNYv6h9gT6tjdtdtozWP2tOlvXfOB3xpD5+dHtyj+07dunXNel27dhVv3C7a0+fc26efM40bN5b3339fRo8eLd7mQvYX7f3V/aF9+/YF5nvL/tKwYUNzbJL2jH/11VcyYMAAE+ZLCsHujB5gNxQXFydpaWkF5ultPfhAj5KMjo42BfbFraP39Xb6x0i/XWtAKfzzSmEaeBo0aCDbt28Xq9EPYPvrtvo+oyXD2nPVr18/CQwM9Np9ZvDgwTJr1ixz8JYesHIhnzP2/cF+6S37zPlsG+dfmTQAz5071wSWs9HyGf135mn7zYVsF7uAgABp3bq14zV70z5zIdtFywH071Npvjh76v4SGBhoRqZq27atGTFDD0rWg4098TOGAOyG9Bu2/kziTI9GtX/z1h1Qdz7ndfSnGr1dUi2Ot9CjZu+77z5z6TzETEm0REJ7QrVEwGr0W7r9dVt5n1HaQ6F/aErzh8kT9xkN+PoHW3+OXLBggdSuXfuiP2f0MfSPkPM6WoalR2p70j5zIdvGfnS69mpqaUy7du3Oub6WAWhNp6fsNxe6XZzpz/f6k7j9NXvDPnMx20WH/MrKypK+fft63f5SEv07oq/ZIz9jLvlhdrCdOHHC9ttvv5lJN/lrr71mru/evdssf/755239+vVzrL9z505baGio7ZlnnrFt3rzZNnHiRJufn59t9uzZjnWmTZtmjpScNGmSbdOmTbaBAwfaIiIibKmpqTZv3S6TJ0+2+fv7m+2RkpLimPSoUbuhQ4fafv75Z1tSUpJtyZIltm7dutmio6PNkbye5Hy3jR51PGPGDNu2bdts69evtz3xxBM2X19f208//WTpfcaub9++5ujj4njDPvPoo4+ao/P1dTj/28jMzHSso9tFt4+dvlb99/TKK6+YzxkdDSMgIMDsP3Zjx441+8jMmTNt69atM0ex165d23bq1CmbN28bfd2BgYG2r776qsB9dP9Tevn000/bli1bZvYb/XfWpk0bW/369W2nT5+2eet20RF35syZY9uxY4ctMTHRdvfdd9uCg4NtGzdu9Jp95kK2i92VV15pRmwqzBv2F6WvWUfD0Neg763e1lF15s6d65GfMQTgcmAfoqrwpMOiKL28+uqri9ynVatW5kO4Tp06ZviZwt566y1bjRo1zDo6xNXy5ctt3rxd9PrZ1lf64VO1alWzTapVq2Zub9++3eZpznfbvPzyy7a6deuaP0aRkZG2Ll262BYsWGCz+j6j9AtSSEiI7YMPPij2Mb1hnylum+jk/Lmh28X534r64osvbA0aNDCvXYde/P777wss12GKXnjhBVtsbKz58tS1a1fb1q1bbd6+bWrWrFnsffQPuNIw1L17d1uVKlXMH3Rd/6GHHvKoL5MXsl2efPJJx+eH7hM33HCDbfXq1V61z1zov6UtW7aY9exh0Jk37C/q/vvvN23X919fi763zq/X0z5jfPR/l76fGQAAAHAP1AADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADAADAUgjAAAAAsBQCMAAAACyFAAwAAABLIQADgIfR8xcNHDhQIiMjxcfHRyIiIuTJJ590dbMAwGMQgAHAw8yePVsmTZoks2bNkpSUFGnWrJmrmwQAHsXf1Q0AAJyfHTt2SNWqVeWKK64wt/39L/1HeXZ2tgQGBl7y5wGA8kAPMAB4kHvvvVcee+wxSU5ONuUPtWrVKrLO0aNHpX///lK5cmUJDQ2Vnj17yrZt2wqs83//93/StGlTCQoKMo/x6quvFliu80aPHm0ep1KlSqbkQkPw4MGDTfgODg6WmjVrypgxYy75awaAskYABgAPMmHCBBk1apRUr17dlD+sXLmy2JC8atUq+fbbb2XZsmWmZviGG26QnJwcszwxMVHuvPNOufvuu2X9+vUyYsQIeeGFF0xZhbNXXnlFWrZsKb/99ptZ/uabb5rH/OKLL2Tr1q0yefLkYgM4ALg7SiAAwIOEh4dLxYoVxc/PT+Li4oos155eDalLlixxlEhoUE1ISJAZM2bIHXfcIa+99pp07drVhFrVoEED2bRpk4wfP96EZ7trr71Whg4d6ritvc7169eXK6+80vQ+aw8wAHgieoABwIts3rzZ1AR36NDBMS8qKkoaNmxoltnX6dSpU4H76W0Nz3l5eY557dq1K7COhuM1a9aYx3r88cdl7ty5l/z1AMClQAAGABQrLCyswO02bdpIUlKSqQ0+deqUKaO4/fbbXdY+ALhQBGAA8CKNGzeW3NxcWbFihWPe4cOHTc1ukyZNHOtoiYQzva2lEFpacTZ6QNxdd90lH374oUyfPt0cTHfkyJFL9GoA4NKgBhgAvIjW6N58883y0EMPyfvvv2/qhZ9//nmpVq2ama+0rveyyy4zPbkaZvVAubffflveeeedsz621g7rCBCtW7cWX19f+fLLL00dsp6IAwA8CT3AAOBlPvnkE2nbtq3ceOON0rFjRzMKxA8//CABAQGOUgYdyWHatGnmJBrDhw83I0s4HwBXHA3T48aNM7XBGqB37dplHlfDMAB4Eh+bfjICAAAAFsHXdgAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACAWMn/A/6iXX0PK3CnAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAHWCAYAAAB5SD/0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAANX1JREFUeJzt3Qd4VFX+//FvAiQ0Cc0EkCq9BFBUjBRRWIrAwoKFIkXa4lKECCq70lVYpCuIClJ+Cwr6W5AFpYXeEUF6foIgKCVIL0pCMv/ne/7Pnc2kgTLJTHLer+e5z2TuPXPn3LlBPznzvecGuFwulwAAAACWCPR1BwAAAICMRAAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAbgE6VLl5auXbv6uhtZ3rvvvisPPvigZMuWTWrWrJkh7zlnzhwJCAiQEydOiG30d1p/twH4NwIwAK8Fnm+++SbF7Q0aNJBq1ard8/t89dVXMmLEiHvejy1WrVolr732mtSpU0dmz54t77zzjq+7BAB+IbuvOwDATtHR0RIYGPi7A/C0adMIwXdp7dq15jOeNWuWBAUF+bo7Vvj4448lISHB190AcAcEYAA+ERwcLJnNjRs3JE+ePJJZxMTESK5cuQi/GShHjhy+7gKAu0AJBAC/qAGOi4uTkSNHSvny5SVnzpxSqFAhqVu3rqxevdps17Y6+qu03MJZEofTV199VUqUKGHCdcWKFWX8+PHicrk83vfXX3+V/v37S+HCheW+++6TP//5z/Lzzz+bfSUeWdafdd2hQ4ekQ4cOUqBAAdMftW/fPtMfra3VvhYpUkS6desmFy5c8HgvZx//93//Jy+++KKEhITI/fffL0OHDjX9OnXqlLRq1Ury5ctn9jFhwoS7+uxu374to0ePlrJly5pj1c/y73//u9y6dcvdRt9Xyx70c3E+Ky1VScuOHTvkmWeeMceqQb969eoyZcqUZKPK9erVM9vz589v+n/48OE79jnp55va74FTTrN582ZznvTz0vf561//KrGxsXL58mXp3Lmz6aMuWuKR+Bxr3bG+Xs/9Rx995P6MHn30Udm1a5fHe+vv3JEjR+TMmTNp9l33pfv88ccfk20bMmSI+QPj0qVLqdYA64jw5MmTpWrVqub3JSwszByP8xoVGRlpfucTH0u/fv3M+06dOtW97ty5c2bdBx98kGafAaSNAAzAa65cuSK//PJLskWDxp1oONIA/NRTT8n7778v//jHP6RkyZLy7bffmu0aGP70pz+Zn//nf/7HvSgNDRpkJ02aJE2bNpWJEyeaADx48GATLBLTgPLee++ZoPfPf/7TjJA2b9481X4999xzcvPmTVM/27NnT7NOQ/kPP/wgL730ktlXu3bt5LPPPjP7TBq41QsvvGBC0NixY6V27dry1ltvmUCkx/PAAw+YfpQrV04GDRokGzduvONn1aNHDxk2bJg8/PDD5piffPJJGTNmjOmHQz8bDaoa/pzPqn79+qnuU49Jt2vgf+WVV0wY13OxbNkyd5s1a9ZIkyZNzMiyni/9bLdu3WpqjL19wZuGv++//978Tui51TCrfzi0bNlS4uPjzfnQP0j0Ij/n9yCxBQsWmG36e6Oft/avTZs2Hr+L+odP5cqVTYhNy/PPP29C56JFi5Jt03WNGzc2YTw12gf9XdTPSf+g0N+b+fPnm8/S6Y+eq4sXL8rBgwfdr9u0aZMpYdHHxOtUWucSwF1wAcA9mj17tqa+NJeqVat6vKZUqVKuLl26uJ/XqFHD1bx58zTfp0+fPmZfSS1ZssSsf+uttzzWP/vss66AgADX0aNHzfPdu3ebdgMGDPBo17VrV7N++PDh7nX6s65r3759sve7efNmsnWffvqpab9x48Zk++jVq5d73e3bt13Fixc3/Ro7dqx7/aVLl1y5cuXy+ExSsnfvXrPPHj16eKwfNGiQWb927Vr3Ot1Xnjx50tyf06cyZcqYc6L9SCwhIcH9c82aNV2hoaGuCxcuuNd99913rsDAQFfnzp2T/T4cP37cvS7p55va74Hz2iZNmni8d0REhPnMevfuneyzfPLJJ93r9D319YUKFXJdvHjRvf7LL7806//zn/8ka3unz9x5/1q1anms27lzp3n9vHnz3Ot0X3pMjk2bNpk28+fP93jtihUrPNbHxMSY59OnTzfPL1++bD7X5557zhUWFuZ+Xf/+/V0FCxb0+GwA/H6MAAPwGi1R0JHEpIt+lX4n+jW3jn7pqN/vpRfH6TRf+pV5YloSodnr66+/Ns9XrFhhHv/2t78lG21MTe/evZOt01Fjx2+//WZGuR9//HHz3BmxTjpi69B+PvLII6Zf3bt39zh+HbXWkeU7HatKOrKtx6qWL18uv9eePXvk+PHjMmDAANOPxJwyEy0T2Lt3rxlBL1iwoHu7nlsdyXb65S362SQucdGR86SfmfNZpvSZ6ah74lFZHWFVidtqqYLu806lIc7+du/eLceOHXOvW7hwoRlh1zKQ1Hz++eem9EU/o8TfitSqVUvy5s0r69atM+201KNSpUrubwC2bNlijk9HjrXswfl3oSPAOvKd+LMB8PsRgAF4zWOPPSaNGjVKtqT19bBj1KhRpr6zQoUKEh4ebv7Hr7W2d0NrM4sVK2ZqehPTr7ed7c6jfqVcpkwZj3ZafpCapG2VflWtZQJay6lhWMOL007LQJLSUo7ENBBpLajWISddn7guNLVj1WNI2metIdbwmlKd6p04oS6tqeqc/WpIT0o/Zw11Wm/sLSl9ZkprvO/mM0v6eud38E6fb1qlMPq5a+hVGpw13DZr1szUcKdGg6v+ToSGhprfk8TL9evXTTlJ4pDulDjoo4Z7XfQPDn1+9epV+e6779xhHsAfxywQAPyC1jRqEPvyyy/N/LUzZ8409a0zZszwGEHNaIlHexPXhGrtq4Z0vbmEjuRpja/WH6c0BZaO5N3NOpVSDXFKssoIoNbzpiS1zyel9Sl9Zvf6+Salf2Bp8NSaX73gcPv27XLy5ElTv50W/X3Q8Ks1vynRIOzQkV2dRk1HqTXw6vvpedb1+lz7oPsjAAP3jgAMwG/oSJdeIKSLjo5pKNaLrZwAnFroK1WqlLlA69q1ax6jwHqFv7PdedQAoV/362wTjqNHj951H3UEMSoqylycpReiOf5I6cYf4RyDvp8zwq30a3IdQXeO9ffQmRLUgQMHzIh9au/rzN+clH7OOpqd1hRxOgKr/UtMZ3W40wwM/kTLILR8Rj8DHQnOnTu3uSjvTp+t/m7qBXAp/TGVmBNstWxIZ6x44403zHP9d6CzPmgA1s9YyycA3BtKIAD4haRTiOmoqn7Nn3hqLydgJQ1SOvuCjiTq7BGJ6Qiyhmb9mlrpVfdq+vTpHu10Joe75YwsJh1J1FkdMoIea0rvpzNfqLRmtEiNziahJRy6z6SfrXOcRYsWNaPdc+fO9WijoVlH7J1+pRUEk85woTM7pDYCnBHudho0R9u2bc35//TTT035Q4sWLe44L7R+W6DHqNPWpTSdXeLPUs+Bzgqiv7faNw3NTjDWb0e++OILU2uePTtjV8C94l8RAL9QpUoVc8tkHd3SkWC9rbL+D79v377uNs7Il17spmFWw4hO/aWjcDpll06dptNd1ahRw4QyLafQC7ucEU59vYYYDXoauDVMbNiwwczTe7dlBVrvqSNy48aNMyFFA4u+l44qZwQ9ti5dupjwqOFJp0DbuXOnCaatW7c2n8PvpbWtOsKon6OGXB2B18Cr4VAvTFy5cqVpp9OK6R8TERER5mI0nVNZ/3jQOtw73Z1PR/H1gkL9/PWCMK1l1f0mrYPOSM40aPp53s2FcFrKoJ+v/rGh3zboiPCd6PnRadB0mjq9iFCnTNObZegIvoZonRbt2WefdbfXsKtT6mkdvFO3rH+gaNDW31OdkxrAvSMAA/ALGmqXLl1qwqSO+upX7jp/q9bZOnQeV52xQQPCv/71LzM6qQFYA5y+VksS9KtpvQGEXuGvgc2ZHcExb948c8GYjuItXrzYfOWvr9GLu/TCtLuhc8xqP3TWC+2DhhqdaUK/os4IWh+tN+HQ0KbHoMejc9kOHz78D+9T/6DQGQm0tEPnANYyC/3DwZn7WOlnpTNp6PvoZ61BTgOe1sGmdLFgYrof/SNBb8us+9Cgp1/1N2zYUDITDb1a0qClNnca9XZoHbv+8fXhhx+a+mEdwdXfT705ijPKmzQAOzddUdpe/+jQ96X+F/COAJ0LzUv7AoBMSUfmHnroIROqO3bs6OvuAADSGTXAAKyiX9snpSUROorM3bUAwA6UQACwitbu6g0NtJZTv1rW0gVdevXqlWyOWQBA1kQJBACraN2p1rkeOnTITLWmN0zo1KmTuYCOq+sBwA4EYAAAAFiFGmAAAABYhQAMAAAAq1Dwdhd0PszTp0+beR/vZqJ8AAAAZCyt6tWb1Oic7DqzT1oIwHdBwy9XhwMAAPi/U6dOSfHixdNsQwC+Czry63ygehtUAAAA+JerV6+aAUsnt6WFAHwXnLIHDb8EYAAAAP91N+WqPr0IbsyYMfLoo4+apB4aGiqtW7eW6OhojzYNGjQwB5J46d27t0ebkydPSvPmzSV37txmP4MHD5bbt297tFm/fr08/PDDEhwcLOXKlZM5c+ZkyDECAADAv/g0AG/YsEH69Okj27dvN5PTx8XFSePGjeXGjRse7Xr27ClnzpxxL3onJ0d8fLwJv7GxsbJ161aZO3euCbfDhg1ztzl+/Lhpo3d+2rt3rwwYMEB69OghK1euzNDjBQAAgO/51Y0wzp8/b0ZwNRjXr1/fPQJcs2ZNmTx5coqv0VuYtmjRwlyoFhYWZtbNmDFDXn/9dbO/oKAg8/Py5cvlwIED7te1a9dOLl++LCtWrLirmpKQkBC5cuUKJRAAAAB+6PfkNb+aB1g7rAoWLOixfv78+VK4cGGpVq2aDBkyRG7evOnetm3bNgkPD3eHX9WkSRPzIRw8eNDdplGjRh771Da6PiW3bt0yr0+8AAAAIGvI7k9z7WppQp06dUzQdXTo0EFKlSpl5nTbt2+fGc3VOuF///vfZvvZs2c9wq9ynuu2tNposP31118lV65cyWqTR44cmW7HCgAAAN/xmwCstcBaorB582aP9b169XL/rCO9RYsWlYYNG8qxY8ekbNmy6dIXHWWOjIxMNq0GAAAAMj+/KIHo27evLFu2TNatW3fHiYtr165tHo8ePWoeixQpIufOnfNo4zzXbWm10fqQpKO/SmeKcKY8Y+ozAACArMWnAVivv9Pwu3jxYlm7dq2UKVPmjq/RWRyUjgSriIgI2b9/v8TExLjb6IwSGlqrVKnibhMVFeWxH22j6wEAAGCXQF+XPfzrX/+SBQsWmLmAtVZXF63LVVrmMHr0aNm9e7ecOHFCli5dKp07dzYzRFSvXt200WnTNOh26tRJvvvuOzO12Ztvvmn2rSO5SucN/uGHH+S1116TI0eOyPTp02XRokUycOBAXx4+AAAAbJsGLbU7dcyePVu6du1qbj384osvmtpgnRtY63D/8pe/mICbuCzhxx9/lJdfftnc7CJPnjzSpUsXGTt2rGTP/t8SZ92mgffQoUOmzGLo0KHmPe4G06ABAAD4t9+T1/xqHmB/RQAGAADwb5l2HmAAAAAgvRGAAQAAYBUCMAAAAKziNzfCAABkrJMnT8ovv/zilX3p7epLlizplX0BQHojAAOApeG3cuVKcvPm/5928l7lzp1LDh8+QggGkCkQgAHAQjryq+F31LsdpXTZsHva14lj52TY4PlmnwRgAJkBARgALKbht1LVtG9BDwBZDRfBAQAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWMWnAXjMmDHy6KOPyn333SehoaHSunVriY6O9mjz22+/SZ8+faRQoUKSN29eadu2rZw7d86jzcmTJ6V58+aSO3dus5/BgwfL7du3PdqsX79eHn74YQkODpZy5crJnDlzMuQYAQAA4F98GoA3bNhgwu327dtl9erVEhcXJ40bN5YbN2642wwcOFD+85//yOeff27anz59Wtq0aePeHh8fb8JvbGysbN26VebOnWvC7bBhw9xtjh8/bto89dRTsnfvXhkwYID06NFDVq5cmeHHDAAAAN/K7ss3X7FihcdzDa46grt7926pX7++XLlyRWbNmiULFiyQp59+2rSZPXu2VK5c2YTmxx9/XFatWiWHDh2SNWvWSFhYmNSsWVNGjx4tr7/+uowYMUKCgoJkxowZUqZMGZkwYYLZh75+8+bNMmnSJGnSpEmyft26dcssjqtXr6b7ZwEAAAALa4A18KqCBQuaRw3COircqFEjd5tKlSpJyZIlZdu2bea5PoaHh5vw69BQq6H14MGD7jaJ9+G0cfaRUmlGSEiIeylRokQ6HC0AAACsDsAJCQmmNKFOnTpSrVo1s+7s2bNmBDd//vwebTXs6janTeLw62x3tqXVRkPyr7/+mqwvQ4YMMWHcWU6dOuXlowUAAICVJRCJaS3wgQMHTGmCr+mFcroAAAAg6/GLEeC+ffvKsmXLZN26dVK8eHH3+iJFipiL2y5fvuzRXmeB0G1Om6SzQjjP79QmX758kitXrnQ7LgAAAPgfnwZgl8tlwu/ixYtl7dq15kK1xGrVqiU5cuSQqKgo9zqdJk2nPYuIiDDP9XH//v0SExPjbqMzSmi4rVKlirtN4n04bZx9AAAAwB7ZfV32oDM8fPnll2YuYKdmVy8805FZfezevbtERkaaC+M01Pbr188EV50BQum0aRp0O3XqJOPGjTP7ePPNN82+nTKG3r17y/vvvy+vvfaadOvWzYTtRYsWyfLly315+AAAALBtBPiDDz4wF5k1aNBAihYt6l4WLlzobqNTlbVo0cLcAEOnRtNyhn//+9/u7dmyZTPlE/qowfjFF1+Uzp07y6hRo9xtdGRZw66O+taoUcNMhzZz5swUp0ADAABA1pbd1yUQd5IzZ06ZNm2aWVJTqlQp+eqrr9Lcj4bsPXv2/KF+AgAAIOvwi4vgAAAAgIxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVnwbgjRs3SsuWLaVYsWISEBAgS5Ys8djetWtXsz7x0rRpU482Fy9elI4dO0q+fPkkf/780r17d7l+/bpHm3379km9evUkZ86cUqJECRk3blyGHB8AAAD8j08D8I0bN6RGjRoybdq0VNto4D1z5ox7+fTTTz22a/g9ePCgrF69WpYtW2ZCda9evdzbr169Ko0bN5ZSpUrJ7t275d1335URI0bIRx99lK7HBgAAAP+U3Zdv3qxZM7OkJTg4WIoUKZLitsOHD8uKFStk165d8sgjj5h17733njzzzDMyfvx4M7I8f/58iY2NlU8++USCgoKkatWqsnfvXpk4caJHUAYAAIAd/L4GeP369RIaGioVK1aUl19+WS5cuODetm3bNlP24IRf1ahRIwkMDJQdO3a429SvX9+EX0eTJk0kOjpaLl26lOJ73rp1y4wcJ14AAACQNfh1ANbyh3nz5klUVJT885//lA0bNpgR4/j4eLP97NmzJhwnlj17dilYsKDZ5rQJCwvzaOM8d9okNWbMGAkJCXEvWjcMAACArMGnJRB30q5dO/fP4eHhUr16dSlbtqwZFW7YsGG6ve+QIUMkMjLS/VxHgAnBAAAAWYNfjwAn9eCDD0rhwoXl6NGj5rnWBsfExHi0uX37tpkZwqkb1sdz5855tHGep1ZbrHXHOqtE4gUAAABZQ6YKwD/99JOpAS5atKh5HhERIZcvXzazOzjWrl0rCQkJUrt2bXcbnRkiLi7O3UZnjNCa4gIFCvjgKAAAAGBtANb5enVGBl3U8ePHzc8nT5402wYPHizbt2+XEydOmDrgVq1aSbly5cxFbKpy5cqmTrhnz56yc+dO2bJli/Tt29eUTugMEKpDhw7mAjidH1inS1u4cKFMmTLFo8QBAAAA9vBpAP7mm2/koYceMovSUKo/Dxs2TLJly2ZuYPHnP/9ZKlSoYAJsrVq1ZNOmTaZEwaHTnFWqVMnUBOv0Z3Xr1vWY41cvYlu1apUJ1/r6V1991eyfKdAAAADs5NOL4Bo0aCAulyvV7StXrrzjPnTGhwULFqTZRi+e0+AMAAAA/KER4OHDh8uPP/7o/d4AAAAA/hiAv/zySzMdmZYd6Oir3jgCAAAAyLIBWC9U09sP622FX3nlFTOdmN6lTdcBAAAAWfIiOL1YberUqXL69GmZNWuWmaKsTp06pt5WZ1m4cuWKd3sKAAAA+MMsEHoRm86xGxsba37WuXXff/99c+c0nXIMAAAAyBIBWG8+oXPu6k0pBg4caEaEDx8+LBs2bJDvv/9e3n77benfv793ewsAAAD4IgCHh4fL448/bubW1fKHU6dOydixY81NKhzt27eX8+fP32v/AAAAAN/PA/z8889Lt27d5IEHHki1TeHChc0tiQEAAIBMPwLs1Pom9euvv8qoUaO80S8AAADAfwLwyJEj5fr168nW37x502wDAAAAstwIcEBAQLL13333nbk1MQAAAJAlaoC17EGDry4VKlTwCMHx8fFmVLh3797p0U8AAAAg4wPw5MmTzeivXgCnpQ4hISHubUFBQVK6dGmJiIjwTs8AAAAAXwfgLl26mMcyZcrIE088ITly5EiPPgEAAAC+D8BXr16VfPnymZ/1phc644MuKXHaAQAAAJk2AGv975kzZyQ0NFTy58+f4kVwzsVxWg8MAAAAZOoAvHbtWvcMD+vWrUvPPgEAAAC+D8BPPvmk+2etAS5RokSyUWAdAdbbIgMAAABZah5gDcDnz59Ptv7ixYtmGwAAAGDFjTB0HuCcOXN6o18AAACA76dBi4yMNI8afocOHSq5c+d2b9ML33bs2CE1a9b0fi8BAAAAXwTgPXv2uEeA9+/fb25+4dCfa9SoIYMGDfJW3wAAAADfBmBn9oeXXnpJpkyZwny/AAAAyNoB2DF79mzv9wQAAADw1wB848YNGTt2rERFRUlMTIwkJCR4bP/hhx+81T8AAADA9wG4R48esmHDBunUqZMULVo0xRkhAAAAgCwTgL/++mtZvny51KlTx/s9AgAAAPxtHuACBQq4b4sMAAAAZPkAPHr0aBk2bJjcvHnT+z0CAAAA/K0EYsKECXLs2DEJCwuT0qVLS44cOTy2f/vtt97qHwAAAOD7ANy6dWvv9gIAAADw5wA8fPhw7/cEAAAA8NcaYAAAAMCqEeD4+HiZNGmSLFq0SE6ePCmxsbEe2y9evOit/gEAAAC+HwEeOXKkTJw4UV544QW5cuWKREZGSps2bSQwMFBGjBjh3R4CAAAAvg7A8+fPl48//lheffVVyZ49u7Rv315mzpxppkbbvn27N/sHAAAA+D4Anz17VsLDw83PefPmNaPAqkWLFuYOcQAAAECWCsDFixeXM2fOmJ/Lli0rq1atMj/v2rVLgoODvdtDAAAAwNcB+C9/+YtERUWZn/v16ydDhw6V8uXLS+fOnaVbt27e7B8AAADg+1kgxo4d6/5ZL4QrWbKkbNu2zYTgli1berN/AAAAgO8DcFIRERFmAQAAALJkAJ43b16a27UUAgAAAMgyAfiVV17xeB4XFyc3b96UoKAgyZ07NwEYAAAAWesiuEuXLnks169fl+joaKlbt658+umn3u8lAAAA4MsAnBK9AE4vjks6OgwAAABkyQCs9K5wp0+f9uYuAQAAAN/XAC9dutTjucvlMjfGeP/996VOnTre6hsAAADgHwG4devWHs8DAgLk/vvvl6efflomTJjgrb4BAAAA/hGAExISzOP58+fNzA8hISHe7hcAAADgHzXAly9flj59+kjhwoWlSJEiUrBgQfM4ZMgQMxUaAAAAkGVGgC9evGju+Pbzzz9Lx44dpXLlymb9oUOH5L333pPVq1fL5s2bZd++fbJ9+3bp379/evUbAAAASP8APGrUKFPycOzYMQkLC0u2rXHjxtKpUydZtWqVTJ069Y/1CAAAAPCXALxkyRL58MMPk4VfpWUQ48aNk2eeeUaGDx8uXbp08WY/AQAAgIyvAdapzqpWrZrq9mrVqklgYKAJwAAAAECmD8B64duJEydS3X78+HEJDQ31Rr8AAAAA3wfgJk2ayD/+8Q+JjY1Ntu3WrVsydOhQadq0qTf7BwAAAPj2IrhHHnlEypcvb6ZCq1SpkrkL3OHDh2X69OkmBM+bN8+7PQQAAAB8FYCLFy8u27Ztk7/97W9m3l8Nv86d4P70pz+ZWyGXLFnSm/0DAAAAfHsnuDJlysjXX38tly5dku+//96sK1eunLkhBgAAAJAlb4WsChQoII899ph3ewMAAAD4262QAQAAgMyMAAwAAACrEIABAABgFQIwAAAArEIABgAAgFV8GoA3btwoLVu2lGLFipm5hJcsWeKxXecZHjZsmBQtWlRy5coljRo1ck+95rh48aJ07NhR8uXLJ/nz55fu3bvL9evXPdrs27dP6tWrJzlz5pQSJUrIuHHjMuT4AAAA4H98GoBv3LghNWrUkGnTpqW4XYPq1KlTZcaMGbJjxw7JkyePuR3zb7/95m6j4ffgwYOyevVqWbZsmQnVvXr1cm+/evWqNG7cWEqVKiW7d++Wd999V0aMGCEfffRRhhwjAAAAssg8wN7QrFkzs6RER38nT54sb775prRq1cqs09ssh4WFmZHidu3amVswr1ixQnbt2mVu0azee+89eeaZZ2T8+PFmZHn+/PkSGxsrn3zyiQQFBUnVqlVl7969MnHiRI+gDAAAADv4bQ3w8ePH5ezZs6bswRESEiK1a9c2t2NW+qhlD074Vdo+MDDQjBg7berXr2/Cr0NHkaOjo83d7FJy69YtM3KceAEAAEDW4LcBWMOv0hHfxPS5s00fQ0NDPbZnz57d3JY5cZuU9pH4PZIaM2aMCdvOonXDAAAAyBr8NgD70pAhQ+TKlSvu5dSpU77uEgAAALJ6AC5SpIh5PHfunMd6fe5s08eYmBiP7bdv3zYzQyRuk9I+Er9HUsHBwWZWicQLAAAAsga/DcBlypQxATUqKsq9TmtxtbY3IiLCPNfHy5cvm9kdHGvXrpWEhARTK+y00Zkh4uLi3G10xoiKFStKgQIFMvSYAAAAYHkA1vl6dUYGXZwL3/TnkydPmnmBBwwYIG+99ZYsXbpU9u/fL507dzYzO7Ru3dq0r1y5sjRt2lR69uwpO3fulC1btkjfvn3NDBHaTnXo0MFcAKfzA+t0aQsXLpQpU6ZIZGSkLw8dAAAANk6D9s0338hTTz3lfu6E0i5dusicOXPktddeM3MF63RlOtJbt25dM+2Z3tDCodOcaeht2LChmf2hbdu2Zu5gh17EtmrVKunTp4/UqlVLChcubG6uwRRoAAAAdvJpAG7QoIGZ7zc1Ogo8atQos6RGZ3xYsGBBmu9TvXp12bRp0z31FQAAAFmD39YAAwAAAOmBAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqfh2AR4wYIQEBAR5LpUqV3Nt/++036dOnjxQqVEjy5s0rbdu2lXPnznns4+TJk9K8eXPJnTu3hIaGyuDBg+X27ds+OBoAAAD4g+zi56pWrSpr1qxxP8+e/b9dHjhwoCxfvlw+//xzCQkJkb59+0qbNm1ky5YtZnt8fLwJv0WKFJGtW7fKmTNnpHPnzpIjRw555513fHI8AAAA8C2/D8AaeDXAJnXlyhWZNWuWLFiwQJ5++mmzbvbs2VK5cmXZvn27PP7447Jq1So5dOiQCdBhYWFSs2ZNGT16tLz++utmdDkoKMgHRwQAAABf8usSCPX9999LsWLF5MEHH5SOHTuakga1e/duiYuLk0aNGrnbanlEyZIlZdu2bea5PoaHh5vw62jSpIlcvXpVDh48mOp73rp1y7RJvAAAACBr8OsAXLt2bZkzZ46sWLFCPvjgAzl+/LjUq1dPrl27JmfPnjUjuPnz5/d4jYZd3ab0MXH4dbY721IzZswYU1LhLCVKlEiX4wMAAEDG8+sSiGbNmrl/rl69ugnEpUqVkkWLFkmuXLnS7X2HDBkikZGR7uc6AkwIBgAAyBr8egQ4KR3trVChghw9etTUBcfGxsrly5c92ugsEE7NsD4mnRXCeZ5SXbEjODhY8uXL57EAAAAga8hUAfj69ety7NgxKVq0qNSqVcvM5hAVFeXeHh0dbWqEIyIizHN93L9/v8TExLjbrF692gTaKlWq+OQYAAAA4Ft+XQIxaNAgadmypSl7OH36tAwfPlyyZcsm7du3N7W53bt3N6UKBQsWNKG2X79+JvTqDBCqcePGJuh26tRJxo0bZ+p+33zzTTN3sI7yAgAAwD5+HYB/+uknE3YvXLgg999/v9StW9dMcaY/q0mTJklgYKC5AYbO3KAzPEyfPt39eg3Ly5Ytk5dfftkE4zx58kiXLl1k1KhRPjwqAAAA+JJfB+DPPvssze05c+aUadOmmSU1Onr81VdfpUPvAAAAkBllqhpgAAAA4F4RgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAAAArEIABgAAgFUIwAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAMAqBGAAAABYhQAMAAAAqxCAAQAAYBUCMAAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrWBWAp02bJqVLl5acOXNK7dq1ZefOnb7uEgAAADKYNQF44cKFEhkZKcOHD5dvv/1WatSoIU2aNJGYmBhfdw0AAAAZyJoAPHHiROnZs6e89NJLUqVKFZkxY4bkzp1bPvnkE193DQAAABkou1ggNjZWdu/eLUOGDHGvCwwMlEaNGsm2bduStb9165ZZHFeuXDGPV69elYx09uxZs9wrPdaEhASv9Il9Ze4++eu+/LFPWX1f0dHR5vHIwZ/k15v//e/dH/Hj8fPmUf87e/36dclqn5W39+WPffLXffljn2zYV6AX+1SkSBGzZAQnp7lcrju2tSIA//LLLxIfHy9hYWEe6/X5kSNHkrUfM2aMjBw5Mtn6EiVKpGs/ASCjvTN0kdf21atXL6/tCwD+qGvXrklISEiabawIwL+XjhRrvbBD/wq6ePGiFCpUSAICAnzat6xC/0rTPyhOnTol+fLl83V38AdwDjM3zl/mxznM/DiH3qUjvxp+ixUrdse2VgTgwoULS7Zs2eTcuXMe6/V5SsPywcHBZkksf/786d5PG+k/eP7RZ26cw8yN85f5cQ4zP86h99xp5Neqi+CCgoKkVq1aEhUV5TGqq88jIiJ82jcAAABkLCtGgJWWNHTp0kUeeeQReeyxx2Ty5Mly48YNMysEAAAA7GFNAH7hhRfk/PnzMmzYMDOzQs2aNWXFihXJLoxDxtASE52TOWmpCTIPzmHmxvnL/DiHmR/n0HcCXHczVwQAAACQRVhRAwwAAAA4CMAAAACwCgEYAAAAViEAAwAAwCoEYGQYvZtex44dzWTfemOR7t27y/Xr1+/qtXqtZrNmzcyd+JYsWZLufcW9nz9t369fP6lYsaLkypVLSpYsKf3795crV65kaL9tNm3aNCldurTkzJlTateuLTt37kyz/eeffy6VKlUy7cPDw+Wrr77KsL7i3s/hxx9/LPXq1ZMCBQqYpVGjRnc85/C/f4eOzz77zPw/r3Xr1uneRxsRgJFhNDwdPHhQVq9eLcuWLZONGzdKr1697uq1Om8zt6HOXOfv9OnTZhk/frwcOHBA5syZY6Ye1OCM9Ldw4UIz/7lOsfTtt99KjRo1pEmTJhITE5Ni+61bt0r79u3N+dmzZ4/5n64ueu6QOc7h+vXrzTlct26dbNu2zdxit3HjxvLzzz9neN/xx86h48SJEzJo0CDzBw3SiU6DBqS3Q4cO6XR7rl27drnXff31166AgADXzz//nOZr9+zZ43rggQdcZ86cMftYvHhxBvQY3jp/iS1atMgVFBTkiouLS6eewvHYY4+5+vTp434eHx/vKlasmGvMmDEptn/++eddzZs391hXu3Zt11//+td07yu8cw6Tun37tuu+++5zzZ07Nx17CW+fQz1vTzzxhGvmzJmuLl26uFq1apVBvbULI8DIEDoaoV+b6534HPr1XGBgoOzYsSPV1928eVM6dOhgvkIqUqRIBvUW3jp/SWn5g5ZQZM9uzT14fCI2NlZ2795tzpFDz5U+13OZEl2fuL3SkarU2sP/zmFK//2Mi4uTggULpmNP4e1zOGrUKAkNDeXbsnTG/4WQIfTue/oPOjENQfofZt2WmoEDB8oTTzwhrVq1yoBewtvnL7FffvlFRo8efddlL/jj9LOOj49PdqdLfX7kyJEUX6PnMaX2d3t+4ftzmNTrr78uxYoVS/aHDfz3HG7evFlmzZole/fuzaBe2osRYNyTN954w9TmprXc7X+sk1q6dKmsXbvW1P8i852/xK5evSrNmzeXKlWqyIgRI7zSdwCpGzt2rLmIavHixebiK/i/a9euSadOnczFjIULF/Z1d7I8RoBxT1599VXp2rVrmm0efPBBU76QtOj/9u3bZqaA1EobNPweO3bMfPWeWNu2bc2FAXrBB/z3/CX+j3rTpk3lvvvuM/8zzpEjh1f6jtTp/zyzZcsm586d81ivz1M7X7r+97SH/51Dh154qgF4zZo1Ur169XTuKbx1DvX/d3rxW8uWLd3rEhIS3N+4RUdHS9myZTOg53YgAOOe3H///Wa5k4iICLl8+bKph6pVq5Y74Oo/bp0WJrXRyR49enis06mZJk2a5PEfCPjn+XNGfrWONDg42IzoMxKVMYKCgsx5ioqKck+hpOdKn/ft2zfVc6zbBwwY4F6nM37oemSOc6jGjRsnb7/9tqxcudKjZh/+fw51CsL9+/d7rHvzzTfNIMKUKVPMrB7wIl9fhQd7NG3a1PXQQw+5duzY4dq8ebOrfPnyrvbt27u3//TTT66KFSua7alhFojMc/6uXLliZhEIDw93HT161Mzi4Sx6lTPS12effeYKDg52zZkzx8zi0atXL1f+/PldZ8+eNds7derkeuONN9ztt2zZ4sqePbtr/PjxrsOHD7uGDx/uypEjh2v//v0+PAq7/d5zOHbsWDPLyhdffOHx7+3atWs+PAq7/d5zmBSzQKQfRoCRYebPn2/+6m3YsKG5ElZLGaZOnererlcr61c8euUyMv/50zkvnRkiypUr57Gv48ePm4nhkX5eeOEFOX/+vAwbNsxcyFazZk0zD7NzQc7JkyfNeXToxaYLFiwwI05///vfpXz58uamM9WqVfPhUdjt957DDz74wMw88Oyzz3rsR+egpfY+c5xDZJwATcEZ+H4AAACAT/FnBwAAAKxCAAYAAIBVCMAAAACwCgEYAAAAViEAAwAAwCoEYAAAAFiFAAwAAACrEIABAABgFQIwAGRhegcwvfsUAOC/uBMcAGRh169fl1u3bkmhQoV83RUA8BsEYAAAAFiFEggAyMQ++ugjKVasmCQkJHisb9WqlXTr1i3FEoiZM2dK5cqVJWfOnFKpUiWZPn26e9uzzz4rffv2dT8fMGCABAQEyJEjR8zz2NhYyZMnj6xZsybdjw0A0gsBGAAyseeee04uXLgg69atc6+7ePGirFixQjp27Jis/fz582XYsGHy9ttvy+HDh+Wdd96RoUOHyty5c832J598UtavX+9uv2HDBilcuLB73a5duyQuLk6eeOKJDDk+AEgPBGAAyMQKFCggzZo1kwULFrjXffHFFya0PvXUU8naDx8+XCZMmCBt2rSRMmXKmMeBAwfKhx9+aLY3aNBADh06JOfPn5dLly6Zn1955RV3ANbHRx99VHLnzp2BRwkA3kUABoBMTkd6//d//9dc7OaM8rZr104CAz3/E3/jxg05duyYdO/eXfLmzete3nrrLbNeVatWTQoWLGhGfjdt2iQPPfSQtGjRwjxX+qghGQAys+y+7gAA4N60bNlS9Hrm5cuXm9FZDa6TJk1KcUYI9fHHH0vt2rU9tmXLls08ar1v/fr1zUhvcHCwCbvVq1c34frAgQOydetWGTRoUAYdGQCkDwIwAGRyejGbljLoyO/Ro0elYsWK8vDDDydrFxYWZi6Y++GHH1KsD3ZoHbCGZA3AWiusI8kait99910ThOvUqZPORwQA6YsADABZgAZaLVU4ePCgvPjii6m2GzlypPTv319CQkKkadOmJtB+8803pt43MjLStNFRX60LDgoKkrp167rX6civjjDrLBAAkJkRgAEgC3j66adN7W50dLR06NAh1XY9evQwF7DpaO7gwYNNmA0PDzfTnTn0ef78+aVChQqmRtgJwPHx8dT/AsgSuBEGAAAArMIsEAAAALAKARgAAABWIQADAADAKgRgAAAAWIUADAAAAKsQgAEAAGAVAjAAAACsQgAGAACAVQjAAAAAsAoBGAAAAFYhAAMAAEBs8v8AbH2SpF4LOVsAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAHWCAYAAAB5SD/0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAYGtJREFUeJzt3Qd4VFX6x/E3vZEeklCS0HsTUMSuIFhXFNeGyCrWFRV1UdlVxLILIguisva6i2vZv2JHEBAs9N47JJQUSCO9zf95D8yYhAQCJJlyv5/nucydmZuZM3duwm/OvOdcL5vNZhMAAADAIryd3QAAAACgMRGAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAdRZq1at5E9/+pOzm+HxXnzxRWnTpo34+PhIr169GuU533//ffHy8pLdu3c3yvNZUfXfn59++snsc708EX1fdFt9nwCcPgIwYFH2wLN8+fIa77/oooukW7dup/083333nYwfP/60H8cqZs+eLY899pice+658t5778k//vEPZzcJjeijjz6Sl156ydnNADyer7MbAMB9bNmyRby9vU86AE+fPp0QXEfz5s0z+/idd94Rf39/ZzcHDeiCCy6QwsLCKu+zBuD169fL6NGjq2yblJRktvXz83NCSwHPQw8wgDoLCAhwu/+A8/PzxZ2kp6dLUFAQ4dcC9INOYGBgnT5U6rc1uq2WxQA4fQRgAKdcw1haWirPPPOMtG/f3vznHB0dLeedd57MmTPH3K/bau+v/T9w+1I5nD766KOSkJBgwnXHjh1l8uTJYrPZqjyv9nw9+OCDEhMTI6GhofKHP/xB9u3bZx6rcs+yruttGzdulFtuuUUiIyNNe9TatWtNe7S2VtsaHx8vd9xxhxw6dKjKc9kfY+vWrXLrrbdKeHi4NG3aVJ566inTrpSUFLnmmmskLCzMPMY///nPOu27srIyee6556Rt27bmteq+/Otf/yrFxcWObfR5texB94t9X52o5nPJkiVyxRVXmNcaEhIiPXr0kGnTph3Tq3z++eeb+yMiIkz7N23adMI2V9+/tR0H9nKaX375xbxPur/0ee655x4pKSmR7Oxsue2220wbddESj8rvsb2+Vd/7N99807GPzjzzTFm2bFmV59ZjbvPmzXLgwAGpC932hhtuMG3SDxZ6jP3tb3+rss2qVavk8ssvN+9pkyZNZMCAAbJ48eIq29hf46+//iqPPPKIeTzdn9dee61kZGRU2VZf2/PPPy8tW7aU4OBgufjii2XDhg3HtK16DbCWHX377beyZ88ex/uv+7ryPqp+PNTlvbUf09u3bzfvm26nx/Xtt98uBQUFddqPgKehBAKwuJycHDl48OAxt2vQOBH9j3XChAly5513yllnnSW5ubmmpnjlypVy6aWXmgC0f/9+E4j//e9/HxMSNMjOnz9fRo4caQZ7/fDDDzJmzBgTbqdOnerYVv/T/vTTT2X48OFy9tlny4IFC+TKK6+stV1//OMfTSjX+ll70NI27Ny50/ynr8FVA4mGLb3UsFM5mKsbb7xROnfuLBMnTjShRANNVFSUvPHGG3LJJZfICy+8IDNmzJC//OUvJqjp19nHo/vogw8+kOuvv96Efg2uuu80rHzxxRdmG91H2qalS5fK22+/bW4755xzan1MfU1XXXWVNGvWTB566CHzuvTxvvnmG3Nd/fjjjybcafDX90s/TLzyyiumxljfJ3vAqg8PPPCAaYN+KNJ9qq9Fw9Zvv/0miYmJ5v3Qkhgd5Kf15RqKK9Ov/w8fPmyOG30/Jk2aJNddd5153+zfPOixoe/LiBEjTvjhQD/0aDjUn7377rvNa92xY4d8/fXX8ve//91so++/bqPhV4O5bqvvsYZRPc769et3zGvUEP/000+bUKr1uqNGjZJPPvnEsc24cePM8aIfTHTR/Txo0CDzYeB4NJjr7+PevXsdx78G8tqc7HurHwRat25tjju9X4+x2NhYcywDlmMDYEnvvfeeJsPjLl27dq3yM0lJSbYRI0Y4rvfs2dN25ZVXHvd57r//fvNY1c2cOdPc/vzzz1e5/frrr7d5eXnZtm/fbq6vWLHCbDd69Ogq2/3pT38ytz/99NOO23Rdb7v55puPeb6CgoJjbvvvf/9rtl+4cOExj3H33Xc7bisrK7O1bNnStGvixImO27OysmxBQUFV9klNVq9ebR7zzjvvrHL7X/7yF3P7vHnzHLfpY4WEhBz38extat26tXlPtB2VVVRUONZ79epli42NtR06dMhx25o1a2ze3t6222677ZjjYdeuXY7bqu/f2o4D+88OHjy4ynP379/f7LN77733mH154YUXOm7T59Sfj46OtmVmZjpu//LLL83tX3/99THbnmifqwsuuMAWGhpq27NnT637Z8iQITZ/f3/bjh07HLft37/f/Jz+fPXXOHDgwCo///DDD9t8fHxs2dnZ5np6erp5PP29qLzdX//612PaPX/+fHObXtrpz+n+rc7+urUdJ/ve2o/pO+64o8pjXnvttWafA1ZECQRgcVqioD2J1Rf9Kv1EtHdPe9C2bdt20s+rPYFaz6hfmVemvaOavb7//ntzfdasWebyz3/+8zE9cbW59957j7lNv/62KyoqMr3e2pustDesph5bO21n3759Tbu0t7ry69ev1LWH8kSvVelX59Vfq9Ie5pOlX9vv2rXLDJbSdlRm783WMoHVq1ebHnTtvbbT91Z76O3tqi+6byr3pGvvafV9Zt+XNe0z7XXX3lU77ZlVlbfVXk19zBP1/mpZwsKFC02Zi/Y+V2ZvY3l5uZl1Y8iQIaYX1U571LWERks69FuNyrQnufJr1Dbq42jZgr1XVnt69fisvF31QW2n61Te2+q/F9p2LQGq/hoBKyAAAxanpQsDBw48ZqkcRGrz7LPPmvrODh06SPfu3U35gn7tXBcaGJo3b25qeivTr7ft99svdZCQfnVbWbt27Wp97OrbqszMTFMWEBcXZ8Kw1nDat9OvnaurHpq0ZlJrh7UOufrtWVlZJ3yt+hqqt1nLBTS82l/rydCv8tXxpqqzP66G9Op0P+uHgPocJFjTPlNa412XfVb95+3H4In2b03sofl4+0dDstbA1rZ/KioqTM33ybTRvs+1BKcyPd7q8jtVV6fy3tbn/gXcHQEYwCnTulcNYu+++64JGlpT2Lt3b0f9qrNU7u2tXP/41ltvmV6wzz//3PT82XuXNehUV9No+9pG4FcftFeb6nXG7kp7PGtS2/6p6faa9tnp7t/G4A5t9MS2A/WNAAzgtOjXrzqw7L///a/pLdOvYCvPHFBb6NN5TXWAnA56qj5q336//VIDqn7dX5mOaK8r7eGaO3euPPHEE2aAlo7c16+JK3/t3ZDsr6F6qUhaWprpQbe/1pOhMyUonTP2eM9rn7+5Ot3P2putswfURnsItX2V6df7dZ2BwZns7+3x9o/2yuosDbXtH+21r957fSL2fV79vdbe5rr0tNb1Q9LpvreA1RGAAZyy6lOI6Yh1/Zq/8tRe9v+EqwcpHR2vPYmvvvpqldt19LuGAB3drgYPHmwu//Wvf1XZTke7n2zPV/WersY645a+1pqeb8qUKebyeDNa1EZ72rWEQx+z+r61v06tZdXZNXT2icrbaCjUHnB7u44XsrWOtjKd2aG2HuDGUNdp0DTc6jcU+u1EcnJyjftHjwudneHLL7+scgpo/WCiM1LoFHo6O8TJ0PIhnUlCj8/Kx1tdjzX9fampJKe6031vAatjGjQAp6xLly5muqg+ffqYnmCdAu1///ufmRbKTu9TOthNw6yGjptuukmuvvpqMz+qTv2k4aNnz57mP24NIzpgyN7DqT8/dOhQEyA0cNunQdN5euvaY6YhRsOQTqulAapFixbmuar3KjcUfW06bZeGRw0rF154oZnqTMOLDsDS/XCytHfytddeM/tRg5D2wmso0nCoAxN1SjmlU47ph4n+/fubwWj2qbK0DvdEZ+fTgYBaMqL7X3vM16xZYx63eh10YzqZadBefvllE2L1w4IOXtMPDHqs6aBDHUCmdLoyHfSp2+lAS19fXzMNmn6I0+PlZGnw1qnxdKoxnaJOg6gOWNRBnXXZb3q865RqOmBSp9fTD5X6HtfkdN5bwOoIwABOmYbar776yoRJDQz6tawGCh0MZ6fzuOqI+I8//lj+85//mF4xDcAa4PRndc5U/Q9fTwChI/z1P3X77Ah2H374oRkwpmUWOmeu9rLpz+gAIB2YVhfao6ft0FkvtA3a86ehRAfiNQati9av5TW06WvQ1zN27Fgzn+yp0g8UOo+ylnXoCTm0zEI/ONx1112ObXRfaa2zPo/ua+2d1ACuc7/WNFiwMn0c/ZCgp2XWx9BZAzQs6oki3IF+8ND5iPUkJvphQWf/0GNU68HtunbtKj///LN5LzS06j7U2Sv0WK0+B3Bd6e+AHpevv/66eX/0cfR3pC49/RrCNZzr74N+G6LtrS0An857C1idl86F5uxGAMDJ0pBwxhlnmKAybNgwZzcHAOBGqAEG4PL0q93qtCRCe5FPdAY2AACqowQCgMvTWswVK1aYWlmt0dTSBV20rvNkR+kDAEAJBACXp3WnWue6ceNGycvLMxP6Dx8+3Ayg00AMAMDJIAADAADAUqgBBgAAgKUQgAEAAGApFM/Vgc4LqadsDQ0NrfNpKgEAANB4tKr38OHDZn53nSXoeAjAdaDhl5HmAAAAri8lJUVatmx53G0IwHWgPb/2HXqy54UHAABAw8vNzTUdlvbcdjwE4Dqwlz1o+CUAAwAAuK66lKsyCA4AAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACW4tQAvHDhQrn66qvNhMU6Ym/mzJm1bnvvvfeabV566aUqt2dmZsqwYcPM7AwREREycuRIycvLq7LN2rVr5fzzz5fAwEAzPcakSZMa7DUBAADAtTk1AOfn50vPnj1l+vTpx93uiy++kMWLF5ugXJ2G3w0bNsicOXPkm2++MaH67rvvrjIn3KBBgyQpKUlWrFghL774oowfP17efPPNBnlNAAAAcG1OnQf48ssvN8vx7Nu3Tx544AH54Ycf5Morr6xy36ZNm2TWrFmybNky6du3r7ntlVdekSuuuEImT55sAvOMGTOkpKRE3n33XfH395euXbvK6tWrZcqUKVWCMgAAAKzBpWuAKyoqZPjw4TJmzBgTXKtbtGiRKXuwh181cOBAc/7nJUuWOLa54IILTPi1Gzx4sGzZskWysrJqfN7i4mLTc1x5AQAAgGdw6QD8wgsviK+vrzz44IM13p+amiqxsbFVbtPto6KizH32beLi4qpsY79u36a6CRMmSHh4uGPRumEAAAB4BpcNwFqvO23aNHn//ffrdEq7+jR27FjJyclxLCkpKY36/AAAALBgAP75558lPT1dEhMTTa+uLnv27JFHH31UWrVqZbaJj48321RWVlZmZobQ++zbpKWlVdnGft2+TXUBAQFmVonKCwAAADyDywZgrf3V6ct0wJp90UFtWg+sA+JU//79JTs72/QW282bN8/UDvfr18+xjc4MUVpa6thGZ4zo2LGjREZGOuGVAQAAwLKzQOh8vdu3b3dc37Vrlwm6WsOrPb/R0dFVtvfz8zO9thpeVefOneWyyy6Tu+66S15//XUTckeNGiU33XSTY8q0W265RZ555hkzP/Djjz8u69evN6UVU6dObeRXCwAAALF6AF6+fLlcfPHFjuuPPPKIuRwxYoSp/a0LneZMQ++AAQPM7A9Dhw6Vl19+2XG/DmKbPXu23H///dKnTx+JiYmRcePGMQUaAMtLTk6WgwcP1stj6d9W7bgAAHfgZbPZbM5uhKvTadA0SOuAOOqBAXhK+O3cuZMUFBTWy+MFBwfJpk2bCcEA3CKvObUHGADgHNrzq+H32ReHSau2VaeKPFm7d6TJuDEzzGMSgAG4AwIwAFiYht9OXVs6uxkA0KhcdhYIAAAAoCEQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAluLUALxw4UK5+uqrpXnz5uLl5SUzZ8503FdaWiqPP/64dO/eXUJCQsw2t912m+zfv7/KY2RmZsqwYcMkLCxMIiIiZOTIkZKXl1dlm7Vr18r5558vgYGBkpCQIJMmTWq01wgAAADX4tQAnJ+fLz179pTp06cfc19BQYGsXLlSnnrqKXP5+eefy5YtW+QPf/hDle00/G7YsEHmzJkj33zzjQnVd999t+P+3NxcGTRokCQlJcmKFSvkxRdflPHjx8ubb77ZKK8RAAAArsXXmU9++eWXm6Um4eHhJtRW9uqrr8pZZ50lycnJkpiYKJs2bZJZs2bJsmXLpG/fvmabV155Ra644gqZPHmy6TWeMWOGlJSUyLvvviv+/v7StWtXWb16tUyZMqVKUAYAAIA1uFUNcE5OjimV0FIHtWjRIrNuD79q4MCB4u3tLUuWLHFsc8EFF5jwazd48GDTm5yVlVXj8xQXF5ue48oLAAAAPIPbBOCioiJTE3zzzTebel+VmpoqsbGxVbbz9fWVqKgoc599m7i4uCrb2K/bt6luwoQJpgfavmjdMAAAADyDWwRgHRB3ww03iM1mk9dee63Bn2/s2LGmt9m+pKSkNPhzAgAAwAI1wCcTfvfs2SPz5s1z9P6q+Ph4SU9Pr7J9WVmZmRlC77Nvk5aWVmUb+3X7NtUFBASYBQAAAJ7H2x3C77Zt2+THH3+U6OjoKvf3799fsrOzzewOdhqSKyoqpF+/fo5tdGYIfSw7HVzXsWNHiYyMbMRXAwAAALF6ANb5enVGBl3Url27zLrO8qCB9frrr5fly5ebmRzKy8tNza4uOquD6ty5s1x22WVy1113ydKlS+XXX3+VUaNGyU033WRmgFC33HKLGQCn8wPrdGmffPKJTJs2TR555BFnvnQAAABYsQRCw+3FF1/suG4PpSNGjDBz9X711Vfmeq9evar83Pz58+Wiiy4y6xqONfQOGDDAzP4wdOhQefnllx3b6iC22bNny/333y99+vSRmJgYGTduHFOgAQAAWJRTA7CGWB3YVpvj3WenMz589NFHx92mR48e8vPPP59SGwEAAOBZXLoGGAAAAKhvBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYCgEYAAAAlkIABgAAgKUQgAEAAGApBGAAAABYilMD8MKFC+Xqq6+W5s2bi5eXl8ycObPK/TabTcaNGyfNmjWToKAgGThwoGzbtq3KNpmZmTJs2DAJCwuTiIgIGTlypOTl5VXZZu3atXL++edLYGCgJCQkyKRJkxrl9QEAAMD1ODUA5+fnS8+ePWX69Ok13q9B9eWXX5bXX39dlixZIiEhITJ48GApKipybKPhd8OGDTJnzhz55ptvTKi+++67Hffn5ubKoEGDJCkpSVasWCEvvviijB8/Xt58881GeY0AAABwLb7OfPLLL7/cLDXR3t+XXnpJnnzySbnmmmvMbR9++KHExcWZnuKbbrpJNm3aJLNmzZJly5ZJ3759zTavvPKKXHHFFTJ58mTTszxjxgwpKSmRd999V/z9/aVr166yevVqmTJlSpWgDAAAAGtw2RrgXbt2SWpqqil7sAsPD5d+/frJokWLzHW91LIHe/hVur23t7fpMbZvc8EFF5jwa6e9yFu2bJGsrKwan7u4uNj0HFdeAAAA4BlcNgBr+FXa41uZXrffp5exsbFV7vf19ZWoqKgq29T0GJWfo7oJEyaYsG1ftG4YAAAAnsFlA7AzjR07VnJychxLSkqKs5sEAAAATw/A8fHx5jItLa3K7Xrdfp9epqenV7m/rKzMzAxReZuaHqPyc1QXEBBgZpWovAAAAMAzuGwAbt26tQmoc+fOddymtbha29u/f39zXS+zs7PN7A528+bNk4qKClMrbN9GZ4YoLS11bKMzRnTs2FEiIyMb9TUBAADA4gFY5+vVGRl0sQ980/Xk5GQzL/Do0aPl+eefl6+++krWrVsnt912m5nZYciQIWb7zp07y2WXXSZ33XWXLF26VH799VcZNWqUmSFCt1O33HKLGQCn8wPrdGmffPKJTJs2TR555BFnvnQAAABYcRq05cuXy8UXX+y4bg+lI0aMkPfff18ee+wxM1ewTlemPb3nnXeemfZMT2hhp9OcaegdMGCAmf1h6NChZu5gOx3ENnv2bLn//vulT58+EhMTY06uwRRoAAAA1uTUAHzRRReZ+X5ro73Azz77rFlqozM+fPTRR8d9nh49esjPP/98Wm0FAACAZ3DZGmAAAACgIRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWckoB+Omnn5Y9e/bUf2sAAAAAVwzAX375pbRt21YGDBggH330kRQXF9d/ywAAAABXCcCrV6+WZcuWSdeuXeWhhx6S+Ph4ue+++8xtAAAAgEfWAJ9xxhny8ssvy/79++Wdd96RvXv3yrnnnis9evSQadOmSU5Ozmk3rry8XJ566ilp3bq1BAUFmV7n5557Tmw2m2MbXR83bpw0a9bMbDNw4EDZtm1blcfJzMyUYcOGSVhYmERERMjIkSMlLy/vtNsHAAAACw6C0wBaWloqJSUlZj0yMlJeffVVSUhIkE8++eS0HvuFF16Q1157zTzepk2bzPVJkybJK6+84thGr2sQf/3112XJkiUSEhIigwcPlqKiIsc2Gn43bNggc+bMkW+++UYWLlwod99992m1DQAAABYLwCtWrJBRo0aZnteHH37Y9AhrSF2wYIHpgf373/8uDz744Gk17rfffpNrrrlGrrzySmnVqpVcf/31MmjQIFm6dKm5XwP3Sy+9JE8++aTZTnufP/zwQ9MrPXPmTLONtmnWrFny9ttvS79+/eS8884zAfrjjz822wEAAMBaTikAd+/eXc4++2zZtWuXKX9ISUmRiRMnSrt27Rzb3HzzzZKRkXFajTvnnHNk7ty5snXrVnN9zZo18ssvv8jll19uruvzp6ammrIHu/DwcBN0Fy1aZK7rpZY99O3b17GNbu/t7W16jGuig/pyc3OrLAAAAPAMvqfyQzfccIPccccd0qJFi1q3iYmJkYqKitNpmzzxxBMmfHbq1El8fHxMTbD2LGtJg9Lwq+Li4qr8nF6336eXsbGxVe739fWVqKgoxzbVTZgwQZ555pnTajsAAAA8qAfYXutbXWFhoTz77LNSXz799FOZMWOGmWpt5cqV8sEHH8jkyZPNZUMaO3asGcRnX7SHGwAAABbuAdbe0XvvvVeCg4Or3F5QUGDu01kZ6sOYMWNML/BNN93kKL3QE3BoD+2IESPM9GsqLS3N1CLb6fVevXqZdd0mPT29yuOWlZWZmSHsP19dQECAWQAAsIrk5GQ5ePBgvTyWfgucmJhYL48FuEwA1h5gLy+vY27XGl0tLagvGqi1VrcyLYWwl1bo9GgaYrVO2B54tWRCa3t1XmLVv39/yc7ONoP2+vTpY26bN2+eeQytFQYAwOo0/Hbu3EkKCgrr5fGCg4Nk06bNhGB4RgDWsgcNvrp06NChSgjW+lydW1d7huvL1VdfbWp+9RdIT7qxatUqmTJliqk/Vvr8o0ePlueff17at29vArHOG9y8eXMZMmSI2aZz585y2WWXyV133WWmStMp23T2Cu1V1u0AALA67fnV8Pvsi8OkVduq42pO1u4daTJuzAzzmARgeEQA1inHtPdXA6iWOuiMC3b+/v5mqjLtca0vOl2ZBto///nPpoxBA+s999xTpcTisccek/z8fDOvr/b06jRnOu1ZYGCgYxutI9bQq6du1h7loUOHmrmDAQDA7zT8dura0tnNAFwrAGvdrdKeVp2izM/PTxpSaGioCd261EZ7gXXg3fEG32lZhg6kAwAAAOocgLW2Vk8lrPSkFzrjgy41sW8HAAAAuG0A1vrfAwcOmDl19cQSNQ2Csw+O03pgAAAAwK0DsM6cYJ/hYf78+Q3ZJgAAAMD5AfjCCy90rGsNcEJCwjG9wNoDzEkjAAAA4HFngtMAnJGRccztenIJvQ8AAADwuFMh11QDrPMAV55+DAAAAHDradAeeeQRc6nhV+fnrXwqZB34pmdgs5+RDQAAAHD7AKxnYrP3AK9bt86c/MJO13v27Cl/+ctf6r+VAAAAgDMCsH32h9tvv12mTZvGfL8AAADw7ABs995779V/SwAAAABXDcD5+fkyceJEmTt3rqSnp0tFRUWV+3fu3Flf7QMAAACcH4DvvPNOWbBggQwfPlyaNWtW44wQAAAAgMcE4O+//16+/fZbOffcc+u/RQAAAICrzQMcGRnpOC0yAAAA4PEB+LnnnpNx48ZJQUFB/bcIAAAAcLUSiH/+85+yY8cOiYuLk1atWomfn1+V+1euXFlf7QMAAACcH4CHDBlSv60AAAAAXDkAP/300/XfEgAAAMBVa4ABAAAAS/UAl5eXy9SpU+XTTz+V5ORkKSkpqXJ/ZmZmfbUPAAAAcH4P8DPPPCNTpkyRG2+8UXJycuSRRx6R6667Try9vWX8+PH120IAAADA2QF4xowZ8tZbb8mjjz4qvr6+cvPNN8vbb79tpkZbvHhxfbYPAAAAcH4ATk1Nle7du5v1Jk2amF5gddVVV5kzxAEAAAAeFYBbtmwpBw4cMOtt27aV2bNnm/Vly5ZJQEBA/bYQAAAAcHYAvvbaa2Xu3Llm/YEHHpCnnnpK2rdvL7fddpvccccd9dk+AAAAwPmzQEycONGxrgPhEhMTZdGiRSYEX3311fXZPgAAAMD5Abi6/v37mwUAAADwyAD84YcfHvd+LYUAAAAAPCYAP/TQQ1Wul5aWSkFBgfj7+0twcDABGAAAAJ41CC4rK6vKkpeXJ1u2bJHzzjtP/vvf/9Z/KwEAAABnBuCa6AA4HRxXvXcYAAAA8MgArPSscPv376/PhwQAAACcXwP81VdfVblus9nMiTFeffVVOffcc+urbQAAAIBrBOAhQ4ZUue7l5SVNmzaVSy65RP75z3/WV9sAAAAA1wjAFRUV5jIjI8PM/BAeHl7f7QIAAABcowY4Oztb7r//fomJiZH4+HiJiooyl2PHjjVToQEAAAAe0wOcmZlpzvi2b98+GTZsmHTu3NncvnHjRnnllVdkzpw58ssvv8jatWtl8eLF8uCDDzZUuwEAAICGD8DPPvusKXnYsWOHxMXFHXPfoEGDZPjw4TJ79mx5+eWXT61FAAAAgKsE4JkzZ8obb7xxTPhVWgYxadIkueKKK+Tpp5+WESNG1Gc7AQAAgMavAdapzrp27Vrr/d26dRNvb28TgAEAAAC3D8A68G337t213r9r1y6JjY2tj3YBAAAAzg/AgwcPlr/97W9SUlJyzH3FxcXy1FNPyWWXXVaf7QMAAACcF4B1oNuWLVukffv2pt5Xzwj35ZdfysSJE81tmzZtkvHjx9drA3XGiVtvvVWio6MlKChIunfvLsuXL69yFrpx48ZJs2bNzP0DBw6Ubdu2HTN7hc5aERYWJhERETJy5EjJy8ur13YCAADAAwfBtWzZUhYtWiR//vOfzby/Gj7tZ4K79NJLzamQExMT661xWVlZ5tTKF198sXz//ffmbHMabiMjIx3baBDXGSc++OADad26temF1p5qnZotMDDQbKPhV+uXdZq20tJSuf322+Xuu++Wjz76qN7aCgAAAA89E5yGTA2jGk7tPa3t2rUzJ8Soby+88IIkJCTIe++9V+X57TSAv/TSS/Lkk0/KNddcY2778MMPzSwVOmPFTTfdZHqlZ82aJcuWLZO+ffuabXTOYp2tYvLkydK8efN6bzcAAAA86ExwdtoLe9ZZZ5mlIcKv0hILDa1//OMfzeC6M844Q956660qg+5SU1NN2YOdnpa5X79+pqda6aWWPdjDr9LtdbaKJUuW1Pi8Ws+cm5tbZQEAAIDFA3Bj2Llzp7z22mumvviHH36Q++67z5xdTssdlIZfVX1eYr1uv08vq89M4evra0K7fZvqJkyYYIK0fdFeaAAAAHgGlw7AFRUV0rt3b/nHP/5hen+1bveuu+6S119/vUGfV+ubc3JyHEtKSkqDPh8AAAAaj0sHYJ3ZoUuXLlVu69y5syQnJzvOPqfS0tKqbKPX7ffpZXp6epX7y8rKzMwQ9m2qCwgIMDNGVF4AAADgGVw6AOsMEDrtWmVbt26VpKQkx4A4DbFz58513K/1ulrb279/f3NdL7Ozs2XFihWObebNm2d6l7VWGAAAANZy0rNANKaHH35YzjnnHFMCccMNN8jSpUvlzTffNIt9+rXRo0fL888/b+qE7dOg6cwOQ4YMcfQY68k57KUTOg3aqFGjzAwRzAABAABgPS4dgM8880z54osvTE2unoRDA65Oe6bz+to99thjkp+fb+qDtaf3vPPOM9Oe2ecAVjNmzDChd8CAAWb2h6FDh5q5gwEAAGA9Lh2A1VVXXWWW2mgvsIZjXWqjMz5w0gsAAAC4fA0wAAAAUN8IwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAWMy+Q4vkQN6XMuDaUCnx3iqFxYec3SQAaFS+jft0AABnsdlssnzbNFm+7SVzfejIKCmRdbIxZaO0jhssUaHtnd1EAGgU9AADgAWUV5TKT2sfd4TfiIC+smRennhXRIvNVi47U7+TtKxVzm4mADQKAjAAWKDnd+7q0bJ576fiJd5yfrfnpGPUX+WDKYckqOxCaRre3WyXcnChHMhc7uzmAkCDIwADgIfbkz5Pdhz4Vry9/GRw3zekW9Jwx31e4iWJTS+WFtH9zfX9mYuluDTHia0FgIZHAAYAD1ZeXiy/bXzOrPdofYe0jrv0mG28vLwkPvJMCQ1KMOUQKRk/O6GlANB4CMAA4MHW7n5Xcgp2S3BAU+nT/oFat9MQnNj0QtMnnJ2/Q3Ly9zRqOwGgMRGAAcBD5RelyfJtr5j1szs9If6+TY67fVBAtMRG9HTUA1fYyhulnQDQ2AjAAOChlm2dKmXlBRIXcYZ0aHFtnX6meVQ/8fUJkqKSTDmYs6HB2wgAzkAABgAPVFSSLVv3fWHW+3f+m3h51e3Pva9PoDSLOsusp+esMTNIAICnIQADgAfasvd/Ul5RLDFhXSQ+ss9J/WxMaGczY4T2AucV7muwNgKAsxCAAcDDaK/thuSPzHrXpFvNALeT4eMTIFGhHc16Rs66BmkjADgTARgAPMy+Q4skJ3+n+Pk2kfbNrzmlx4g9enKMrLztUlqWX88tBADnIgADgIfZsOc/5lIHvvn5hpzSYwQHxkpIYLzYpEIO5m6s5xYCgHMRgAHAg+QXpcvutNlmvWvisNN6LPspkjNy1ovNVlEv7QMAV0AABgAPsnnvZ1JhK5P4yL4SHdbptB4rqkkH8fEOkJKyXMktSKm3NgKAsxGAAcCD7DjwjbnslHDDaT+Wt7evYzBcVt7W0348AHAVBGAA8BDZ+bvkUO4m8fLykdZxl9bLY0Y2aWcus/J2cmY4AB6DAAwAHmLnge/NZYvocyTQP7JeHjM0qIU5M1x5RZEcLthbL48JAM5GAAYAD7EzdZa5bNvs8np7TD2DXERIW7Oenbe93h4XAJyJAAwAHkAHqWXkrBUv8ZZWcYPq9bEdZRD5O5gNAoBHIAADgAf1/jaL7ifBATH1+tihwS3FxztQysoL5XDh/np9bABwBgIwAHiAnQe+M5dt4+uv/MHO28tHIpq0MetZedvq/fEBoLERgAHAzeUVHpC07FVasSut4wc3yHPYyyCy87QMwtYgzwEAjcWtAvDEiRPFy8tLRo8e7bitqKhI7r//fomOjpYmTZrI0KFDJS0trcrPJScny5VXXinBwcESGxsrY8aMkbKyMie8AgCof7vT5pjL+Mg+EhIY1yDPERacKD7e/lJani/5RakN8hwA0FjcJgAvW7ZM3njjDenRo0eV2x9++GH5+uuv5bPPPpMFCxbI/v375brrrnPcX15ebsJvSUmJ/Pbbb/LBBx/I+++/L+PGjXPCqwCA+pec8ZO5bBU3oMGeQ8sgwoKTzHpOwe4Gex4AaAxuEYDz8vJk2LBh8tZbb0lk5O9zW+bk5Mg777wjU6ZMkUsuuUT69Okj7733ngm6ixcvNtvMnj1bNm7cKP/5z3+kV69ecvnll8tzzz0n06dPN6EYANxZWXmR7Dv4m1lPbHpRgz5XuD0A5+9p0OcBgIbmFgFYSxy0F3fgwIFVbl+xYoWUlpZWub1Tp06SmJgoixYtMtf1snv37hIX9/vXgoMHD5bc3FzZsGFDjc9XXFxs7q+8AIArOpC5VMoqiiQkMF6iQjs16HOFhbQylwXFaVJaVtCgzwUAlg7AH3/8saxcuVImTJhwzH2pqani7+8vERERVW7XsKv32bepHH7t99vvq4k+V3h4uGNJSEiox1cEAPVf/pDQ9EIzRqIh+fuGSFBAU7OeW5DcoM8FAJYNwCkpKfLQQw/JjBkzJDAwsNGed+zYsaa8wr5oOwDAFSWn/9Qo5Q/HlEFQBwzAjbl0ANYSh/T0dOndu7f4+vqaRQe6vfzyy2Zde3K1jjc7O7vKz+ksEPHx8WZdL6vPCmG/bt+muoCAAAkLC6uyAIArnv0tO3+neHn5SMuYcxrlOcOPlkHk5u/hrHAA3JZLB+ABAwbIunXrZPXq1Y6lb9++ZkCcfd3Pz0/mzp3r+JktW7aYac/69+9vruulPoYGabs5c+aYUNulSxenvC4AqM/eX53+LMAvvFGes0lgMzMdmtYd5xf//ncVANyJr7iw0NBQ6datW5XbQkJCzJy/9ttHjhwpjzzyiERFRZlQ+8ADD5jQe/bZZ5v7Bw0aZILu8OHDZdKkSabu98knnzQD67SnFwDcvf43semFjfacXl7eZk7grLztkpO/W5oE1vxNGgC4MpfuAa6LqVOnylVXXWVOgHHBBReYsobPP//ccb+Pj49888035lKD8a233iq33XabPPvss05tNwCc9vRnhxpn+rPqwoPtZRDUAQNwTy7dA1yTn3460uNhp4PjdE5fXWqTlJQk3333XSO0DgAaR2rWSikrL5TggKYSHda45VxhIUcGwuUXp5kgDgDuxu17gAHAiuy9vy1jzmvw6c+q8/dtIoH+UWb9cOHeRn1uAKgPBGAAcEP7Dv5qLltEHxnw29jCghIcM1EAgLshAAOAmykpPSzpOWvNeovoxpn+rLrQ4CMBmB5gAO6IAAwAbuZA5jKx2colLDhJQoNbOqUNoUEtzGVRSaZUSKFT2gAAp4oADABuWv/rrN5f5esTKMEBsWa93DvDae0AgFNBAAYAdw3AMc6p/7ULO1oGUe7FCTEAuBcCMAC4kcKSTDmYu9GpA+DsQo8OhKMHGIC7IQADgBvZf2ixuYxs0sHMAexMTYKai5d4i82rQKLj3G5aeQAWRgAGADey76B9/l/n1f/a+Xj7ScjRUyF36hXo7OYAQJ0RgAHAjbjCALiapkPr0IMADMB9EIABwE3kFaVKdv5OU3bQPLqfuAL7QLiOPQLFZrM5uzkAUCcEYABws/KHmPBuEuAXLq7AlEDYfCQs0kcKy5Kd3RwAqBMCMAC4WfmDK9T/2nl7+YiPLdqs55asd3ZzAKBOCMAA4Aa0vGDfoUUuVf9r51Nx5IQYucXrnN0UAKgTAjAAuIHcgmTJK9wn3l5+Eh/ZV1yJj+1oAC5ZLxUVZc5uDgCcEAEYANzAvkO/msu4yDPEzzdYXIm3LUIK8sql3FYgB3M3OLs5AHBCBGAAcKMBcM4++1tNvMRLtq4rrlKnDACujAAMAG5Q/7vXXv8bc664oq1riszl3qNBHQBcGQEYAFxcZt5WKSo5JL7egRIX0Utc0Za1RwJwauYyKS8/0hsMAK6KAAwAblL+0CzqTPHx9hdXdCC5VPy8I6SsokjSslc7uzkAcFwEYABwkwFwLVxo/t+ahPl3N5d7j7YXAFwVARgAXJhOK7b/0BKXnP+3urCAblV6rAHAVfk6uwEAgNrptGIlZYfF3zfUnALZHXqA07NXS2lZgctN14ZTV1iSKTn5u0wJjr9vmAT6R0qAX5izmwWcMgIwALgw+7RizaPPNqcddmUBPnESGtRCDhfukwNZyySx6YXObhJOc/aRQ7kbJSN3veQXpR5zf2STdpLQ9ELx923ilPYBp4MSCABwi/l/Xbv8QXl5eTnaSRmE+5fe7Ez9Xnan/3g0/HpJWHCShAe3kkD/aHM9K2+7bNjzb0nPXmvCMuBO6AEGABel04kdyFzmFgPg7DQAb977mew7Om8x3I+Wr2w/8I3kFx0QL/GW5tH9JCasq/j5hji2KSjOkD1pcyW/OE2SM+abMp2WLjpHNVATeoABwEXpdGI6rViQf4xENekg7qB5zJEz1R3MWS/FpTnObg5Okk2KZfPeT0349fEOkPYtrpVmUWdVCb8qOKCpdEq4QVrGnGeup2Ytl9SslU5qNXDyCMAA4OL1vy1i+pvyAnfQJDBeIkLaiE0qZH/mUmc3BydBD7Ei32Xmg4sOutSAGxbc8jjbe0t8ZB9H2cvegz/LwdxNjdhi4NQRgAHARdnLCNyh/rey5tFHeoGpA3Yvl90YLuXeaeLl5SPtml8tQf5Rdfq5+Mi+EhdxhlnfnTZHyr2yGrilwOkjAAOAi9ZhpmWtcssA3PJovTJ1wO4jp3i1XHlLuFlPir3ElDjUlX470TLmfDMrhCmi8FkuvowwgosjAAOAC9JpxCpspdIkqIWEBSeKO2kedba5zDy8WQqKDzq7OTiB4tJc2ZH9snh7e4lveSuJCety0o+hITgx9hLx9QmSCu9cueLmiAZpK1BfCMAA4NLTn7lP/a9dUEC0RId2Muv7Dy12dnNwAsu2TpXSimxJTSmVgPJep/w4fj5BpvdYDbo+TPJKttVjK4H6RQAGAFceAOdm5Q929mnb9h781dlNwXEczN0o63d/YNY/eT1TvOT0TraiZRC+5Qni7eMlO3NeNfMJA66IAAwALqaoJEsyctabdfs0U+6mZfSRdu89+Iuzm4Ja6Mkrfl7/tJmxIyrwHNmypqheHjegvKcczimXwrIU2ZTySb08JlDfCMAA4GKO9JraJCq0o4QExoo70pMneHv5yuHCFMnJ3+Ps5qAGW/d9IalZy0zdbmLYn+rtcb0kQL7/75E5oJdtmyolZXn19thAfSEAA4CLsfeauvOZtfTECXGRvR3zw8K1lJUXyZItk8x6n3YPSIBPTL0+/s+zDkuATzMpLD4oa3a+Va+PDdQHAjAAuNjX0vbAqFNLuTN7+QZ1wK5nY/J/Jb8oVUICm0mP1nfU++OXl4kkhA4z66t3vin5Ren1/hzA6SAAA4ALyS3YI4cL94m3l580j+onnhCAdUBfha3c2c3BUaXlhbJyx3Sz3rf9A+LrE9ggzxMV2N+cIKOsvFCWb5vaIM8BnCoCMAC4kJSjvb/xkb3FzzdY3FlseA9zSl09tW5GzjpnNwdHrd/9oSlNCA1KkI4t/9hgz6PT9/Xv/FezvjnlMzlcsLfBngs4WQRgAHAh9nIBd539oTJvb18zj7GiDMI16IC01TteN+t92z8oPt5+Dfp8zaLOlBbR50qFrUxW7XyjQZ8LOBkEYABwEVomYD8BhicE4Mp1zHszGAjnCtbt/kCKSrMkPKSNdGhxbaM8Z5/2o8zl5pRPJL8orVGeEzgRAjAAuIiM7LVSUpZrygaaRvQQT9Cy6ZEgn5q1QkrLCpzdHLH6zA/rdr1n1vu2e8D00DfWqbHjI8+U8ooSMyAOcAUEYABwsenP9Oxv3l6nd0YuVxEe3EqaBLWQClup7M9c4uzmWNqWvf8nhSUHzfvRtvlVjfa8Wgusg+3Uxj0zpKD4YKM9N+CWAXjChAly5plnSmhoqMTGxsqQIUNky5YtVbYpKiqS+++/X6Kjo6VJkyYydOhQSUur+hVLcnKyXHnllRIcHGweZ8yYMVJWxukZAbiW5IyfzGVC0wvEU2j4SYg58npSMhY4uzmWLq9Zs+tts67TnjV07W9NpTCx4T2lrKJI1u56p1GfG3C7ALxgwQITbhcvXixz5syR0tJSGTRokOTn5zu2efjhh+Xrr7+Wzz77zGy/f/9+ue666xz3l5eXm/BbUlIiv/32m3zwwQfy/vvvy7hx45z0qgCg5tMfp2WtMuuJsReJJ0k6+nr2pM8z8xyj8e1OmyM5+bskwC9cuiTc5JQPQr2P1gJv2PMfzg4Hp2ucAqBTNGvWrCrXNbhqD+6KFSvkggsukJycHHnnnXfko48+kksuucRs895770nnzp1NaD777LNl9uzZsnHjRvnxxx8lLi5OevXqJc8995w8/vjjMn78ePH39z/meYuLi81il5ub2wivFoCVpWQsFJtUmNMfhwa1EE/SIuZcM69xbkGyCWERTdo4u0mWoh86Vu84MgND18RbzVn6nKFV7ACJCGkr2fk7ZFPyx9KzzZ1OaQfg8j3A1WngVVFRUeZSg7D2Cg8cONCxTadOnSQxMVEWLVpkrutl9+7dTfi1Gzx4sAm1GzZsqLX0Ijw83LEkJCQ08CsDYHX28ofEpp7V+6v8fZtIs6izzPqejPnObo7lpGYtl7TsVeLt7S/dW41wWju8vLylV5u7zfqaXe9IeUWp09oCuE0ArqiokNGjR8u5554r3bp1M7elpqaaHtyIiIgq22rY1fvs21QOv/b77ffVZOzYsSZs25eUlJQGelUAcKQ+M/lofWxS7MXiieyvKzn9SNBH41l9dP7dji2uk+DAWKe2pUOLIRIc0FTyiw7I9v1fO7UtsDa3CcBaC7x+/Xr5+OOPG/y5AgICJCwsrMoCAA05/VlRSaaZ/iwuso94osSjAVhngigt+30cBxpWVt522Z32o/a/Ss82dzm7OeLjEyDdW/3JrOuUaNSEw1ncIgCPGjVKvvnmG5k/f760bNnScXt8fLwZ3JadnV1le50FQu+zb1N9Vgj7dfs2AOBM9rIAnf2hsUfnN5aIkDYSFpwoFRUlsvfQkZN9oOGt3vmWuWwVN1Aim7QVV9A16Vbx9QmWzMObJeXgQmc3Bxbl0gFYPxlq+P3iiy9k3rx50rp16yr39+nTR/z8/GTu3LmO23SaNJ32rH//I6ff1Mt169ZJenq6YxudUUJ7dbt06dKIrwYAamYvC/DE+t/KswAkNrWXQcxzdnMsIb8oXbbu+8Ks92pzj7gKMxNF4s1mffUOTowB5/B29bKH//znP2aWB50LWGt2dSksLDT36wC1kSNHyiOPPGJ6h3VQ3O23325Cr84AoXTaNA26w4cPlzVr1sgPP/wgTz75pHlsLXUAAGcqKM6QjJy1Zj2x6YXiyezTu+1J/4mvvhvBut3vmx73uIje0iyqr7gSnYvYy8tH9h36VTJy1ju7ObAgl54G7bXXXjOXF11UtVdEpzr705+O1BBNnTpVvL29zQkwdOoyneHhX//6l2NbHx8fUz5x3333mWAcEhIiI0aMkGeffbaRXw0AHCs5/Uj5Q0xYN6cPUGpoLaL7i493gBkAdejwJokJ41u4hqLz7Op8u6pX2yMzL7gSneqvXbOrZdv+mWaQ3qVnvOLsJqES/Sb94MH6OWNfTEyMmZ3L1bh0AK5LD0FgYKBMnz7dLLVJSkqS7777rp5bBwCnb2fqbHPZOv5S8XS+PoGS0PR8MyhrV+oPBOAGtCnlEykpy5XwkNbSKs41jy0N5hqAdxz4Tvp1fEzCgply1FXCb+fOnaSg4Mi37acrODhINm3a7HIh2KUDMAB4ei/d3qODgFrHXyZWoK9TA/DO1B/kzA4PO7s5Hknn1127612z3qvNXeLt5SOuSD8AJcScLykHfzanRz6v63hnNwkipudXw++zLw6TVm2rTiN7snbvSJNxY2aYxyQAAwAcg9/KK0pML11Ukw5iBa1iB5raT50BIFvPChdSdXAzTp/2qOYV7pNA/2jp0OI6cWW92t5jArD2WPdt/5AE+kc6u0k4SsNvp66/z7zlaVx6EBwAeLJdqUdO994mfrCZJcEKAv0jTC2w0jII1H/p4JqdR2ZW0LO+admJK2sRfa7pCS4rL3TULAONgQAMAE5QVl4ke44OgLNK+YNd6/jB5nLn0Q8AqD/7Dv0mB3M3iK93oHRLGi6uTj/49Tw6Rdu63R+Y3wugMRCAAcAJ9h78RUrL8yUksJnEhvcQK2kdpwHYS9KzV0te4QFnN8ej6NnVVKeEG9ymnKBtsyvMrBCFJQdl677Pnd0cWAQBGACcYGeV8gdr/SkOCYyV+MjeZn1X2pFZMHD6DuVulpSMBeIl3tKzzZ3iLvTshz1aj3Scua7CVu7sJsECrPVXFwBcZJS+zoRQuRzAauxlH5RB1H/vb5tml5vTTruTzgk3mjPE5eTvkt1pc5zdHFgAARgAnFCnWVyaLYH+UdIs6iyxojZHA/CBQ0ukoOj3U9Xj1Ggpyfb9X5n1nm3uEnfj5xsiXRNvNeurd7zBmQLR4AjAANDItu79wly2a3aVy87R2tD0pAdxEWeITSpk29HghtM87bGtzHygiovoJe5IZ63w8faXtOxVkpq13NnNgYcjAANAI5/8Ylfakem/OrS4VqzMPkctA59OT0npYdmY/JFZ73V0RgV3pKcC79BiqFnX0yMDDYkADACNSGtedc7T8JA2EuumPXX1pV1z7QH3k4O5G80ALpyajSkfS0nZYYkIaStJsReLOzsyeM/L1Mhn5W13dnPgwQjAAOCE8oeOLa61zMkvaqPTdCXFXmLWt+47sl9wcsrLi81phFWvNne7/YwikU3aSqu4gWZ9zc63nd0ceDD3/k0BADcbqKQD4FT7FkOc3RyX0KHlkTKQbftmMv3VKdi091PJL0qVkIA46eAhx9QZbe41l1v2fS75DJBEAyEAA0Aj2bZ/pp6s1gxU0kFgEElqerEE+EVIfnGa7Dt45MMB6qa8okRWbX/NrJ/R9j7x8QkQTxAf1UfiI/tIRUWJGdwHNAQCMAA0Ap3WacvR8gf74C+ICW06G4ZiMNzJ2bL3f5JXtF+CA2Klc+JN4km0nENt2PNvKS7NcXZz4IEIwADQCFKzVkhW3lbx8Q6Qts0ud3ZzXErHlkdG/u848J0UlWQ5uzlu0/u7cvt0s35G23vF1ydQPEmruEslKrSjGdxHLTAaAgEYABrBut3vOWp/9YxX+J3OhhET1lXKK4plU8rHzm6OW9iy93M5XLhPggOaSpfEW8TT6GC+Mzs8bNbX7npXCosPObtJ8DAEYABoYHlFqY5T/upk/6hKZ8Ow75f1e/4jFRVlzm6SSysrL5IV219xzPvrab2/dq3jBkvT8B5SWp4vq3a87uzmwMMQgAGggW3cM0NstnIz+C0mrIuzm+OS2jX/gzk1dF7hPtmd/qOzm+PS1u/+0OynkMBm0jXpyOmDPfWD0VkdHzXr6/d8KPlFac5uEjwIARgAGri3bsPRs3R1b/UnZzfHZWkvZueEIwO51u3+wNnNcVlFJdmyYvurZl3Doaf2/tolxFwg8ZFnmvKY5dtednZz4EEIwADQgHYc+FaKSg6Z3rrWcYOc3RyX1i3pVvHy8pH9hxbJocNbnN0cl6QD30rKciUqtJMlTqWtvcD9Oo0x61ofznGB+kIABoAGnPpMB/DYw523t6+zm+TSmgQ1d3xIsO83/C63IEXW7TnSO96/0xPi7eUjVtA86ixpE3+5KSP6dcOz5vcKOF0EYABoILvT5sjB3A3i6xMsnRNvdnZz3ELP1neay617/09yC5Kd3RyXsnjzRHNyiBbR50hC0wvFSvp3/qv4ePvLvkO/mt8r4HQRgAGgAdhsFbJs6xRH7W+Qf5Szm+Q2ZwFLiDlfKmxl1HxWkpz+kymn8RJvOafz30xpgJXomRN7Hj05xm+bnpfy8mJnNwlujgAMAA1gZ+r3cujwZvH3DXWc1Qp1c+bRkf9b934u2Xk7xep0IOXPG8aZ9e6tb5eY8K5iRb3b3ichAXHmm4HVO99ydnPg5ihIA9xAcnKyHDx4sF4eKyYmRhITE+vlsVCzClu5LNs61az3aH2HBPpHOLtJbiUuopckxQ6QPelzZfm2aTLwjGli9YFvGvpCAuMdJ4ewIj/fEDm781iZu3q0LN/+srSOHyxRoe2d3Sy4KQIw4Abht3PnTlJQUFgvjxccHCSbNm0mBDeg7fu/lqy87eLvGyY9Wo90dnPckgY9DcDb9n8lvdvdL1GhHcSKsg5vd5wE4rwu48Xft4lYWfvm18i2fV9KcsZ8mb92jFx7zv9ZZjAg6hcBGHBx2vOr4ffZF4dJq7Zxp/VYu3ekybgxM8xjEoAbRklZnize/IJZ19KHAL8wZzfJLTUN7yat4y+TXamz5JcNz8jV/f5jubpXrXP9cfVDUmErlaTYS0yPp9XpMXBh93/IJwsHSXr2alm78x3p1ZYSI1dRUVEmRSWZUlSaY+ZuLvFOl6uGhUtxeYa4GgIw4CY0/Hbq2tLZzcAJ6MC3/KIDEhqUID3a0Pt7Ovp3GivJ6fPNyP9t+2ZKh5aeP+9tZUu2/tPMIhLoFykXdP+H5T4A1KZJUDM5p8tT8tPax2Tp1snmw0FkaDtnN8uSysoLzfR8WqJzuHCfFJfm6BDg3zfwFbni5ggpKjsgroZBcABQTzJy1sm6Xe+b9Qu6Py9+PkHObpJbCw9Jkr7tHzTrv256TopKssQq9h78RdbsfNOsX9TjBWkSGO/sJrmUTi3/KAlNL5DyihL5YeWfpbQs39lNsozyihI5lLtZtu6baQYj6oBf/aBWXJptwq+vd6A58U94SGvxLU+Qhd8eFj9v1xsHQQ8wANTTV38/rR0rNqmQds3/IIkWm6e1ofRsc5ds3felZOVtlUWbJsjFPSeJpysozpC5qx8x610Sh0nreM4gWJ32hl/SY7J89stV5tj4ad0TMrDXy/SSN6DCkkxJz14jh3I3mbIcu0D/aAkPTpTQ4AQJCYg1857b34fNWXvl49d+kTF3ul7JHQEYAOrB6p1vyMHc9Wbg27ldnnJ2czyGnvzgou4T5ItFQ2Xz3k+lbbMrJDH2IvFUpeWF8v3yO6WgOF0im7STc7o86ewmuazgwFgZ1Hu6fLX4ZjPwNC6it/Rofbuzm+Vx8gr3y/7MpZJbsMdxW4BfuDkdd3RoRwn0jxR3RAkEANTD19VLt/zTrJ/b5UkJDmjq7CZ53MkxuiXdZtZ/XD3a1Bx66slT5q1+1PSyBfhFyGV936KM5gSaRZ1pzhKnFm36u6RkLHR2kzxGuVeGbNn7uWze+9nR8OslESFtpEOLa6Vb0ghpEX2224ZfRQAGgNNwuGCvzFn5gCl90LrEji3/6OwmeSQNObHhPU2d4Q8r7jE9pZ5myZYXZWfqd+Lt5SeX9XlDIkJaO7tJbqF7q9vN9Gh69sBZK+6RA5nLnd0kt2Wz2SSneJ08PCFOCv0WyuHCFHP2wZiwbtK91Qhp1/xqCQtO9IhSEwIwAJzGGbp+WHmfFJVmSdPw7nJ+t+c84j8GV+TrEyiD+7xm6g0P5m6Uhev+Zv6z9gT6OpZunSKrdrxmrl/UY6I0j+7n7Ga5Df2du7jni5LQ9EIzK8F3y26XgzkbnN0stzsGkzMWyMxF18vmzKelffdAEZu3+bvWrdUIaRU3wJQ9eBICMACccq3mXWbmB52manDv10xIQ8NpEtRcBp3xinh5+cjWfZ/LrxufdfsQrO1ftOkfsmLby+b62Z2ekI4thzq7WW5ZKz64z+sSH3mmlJQdlq+XDpe0rFXObpZbHH970ubJ578NkW+XjpDUrBXiJX4y/6tcCS4dbKaY89S5zAnAAHAq4XfZSNl78Gcz4nlw3zckNJg5mhtDi5hz5IJufzfr63a/J79sGO+2IVhPdLFg3V9lza63HGd6O6Ptvc5ultvSeukrznxHmob3MCdj+HLxTbLjwPfObpbL1pvvSv1B/vfL1fLd8jtM3blOX6ZnruwV+5p89maWeEuweDJmgQDchE1KzPRIOt+lLmUVxeZMOzono9hspgZVByl4e/mKt7ev6RHx9Qkyi79vqMd9feUsOhftDyvulf2ZS8TPJ0SuPOt9MxAHjadL4k3i5eUtP619XNbv+cD8Hpzf7VlzzLsLPWnA7JV/NsFDf28v7D7BvC6cHu2tvObs/8qcVQ+aU2nPXnmfnNVxjPlgwSmTRUrLCmTLvv+TtbvelZz8XeY2/T9CB5n2bHOnGcC7cuVKsQICMOBCtCcrvyhVDh3eLNl5OyQrb4fsPbRGXpjRUvL9v5aNyaf3+F5+QTJ6QpzszJ4usr2PRId1NqecZdaCutGvB3XAW17RfvHzbSJXnfmBmaEAja9zwg0mBM9fM0Y2pXxs5ia9tPerEhacIK5uV+psE961dlynzRvQa6qpsUT98PMNkcv6vim/bnjWfEBauuVFSclYIJf0nGwGcFlRXlGqrN/9oWxMnnH0bG1iOka6Jt0qPVvfKUEB0WI1BGDAyb2J2gOUnrNW0rPXSkbOGtPLW11ouI/jk7r2OuofeK039fEOEB9vPzNKV44OvtITMuhoaO0Z1gEhpeUFUlKaa3rJbF6F0qF7oGQUzpWMLXMdjx8SECcx4d0kJqyrCcRNI3pw5qlKdF+u2fm2Oc2x7ls9w5HOPxoT1sXZTbO0Ti2vl0C/CJm35lFJz1kjn/18hZzf7Xlp3/wPLjkYMSd/j/y68RnZkz7PXNcBRoN6/8stQru70d7e87s9Y35HtVb8QOZS+WThZXJWh0ekW9Jw8fEJEE9XYSuXfQd/M9OY7TzwnfnbpfRDQI9Wd0jHhOvF37eJWBUBGGgkWraQkbPehN2Mo6FXz59enQ7wiQhpaybBj2zSVrIP+sidIx6X51+8Vzp3bXVaMxZs2bJVpr/0qTz1zAMSFFZgRkpn5++U/OI0yU9PM18Z2gUHxEpsRA9TTxerS0RPt57z8VR75LVObvHmiZJTsNvc1q7ZVebran+/UGc3DyLSKm6g/PG8b2X2qlGSnr1a5q5+SNbvft+cQCI+0jV653Xe4rW73pGNyR+ZD1M6zVnPNiOlb/vRDJxsYJ0TbzR14/ohSUPwb5uel7W735Mz2z8kHVpcZ8rFPO1vVkbOWtlx4DvZtv8ryS864LivWdRZ0rP1SEmKG0g5CAEYaBj6FZNO1aQBUy81+GbnbT9ap1uV9iZqwNRe17jwXhId3qXK5Pcr81dKyo4S8TrNX1fTY2yLkuULCqRl6A3S+4zejmCu53XPyF1vZjTQtmYd3mrORLU77Uez2IUGJfweis1ld4/sQdA6OT2z1Ibk/5h9orRMpF/Hx6Rjy+tdsnfRynQA4pD+n5ppxFbteF3SslfJF78NlZYx50mXxFukVdyl5puSxlReUSr7Dv0mW/b+z4QRm63c3K5tOq/rM+bDLRqH9rBfc/bHsinlU1m+7SXJK9wn89c+Zk5e0ynhBrO4cy98Selh2XdokaQc/FmS0+eZ+nI7LbFp3+Ia6Zxwo/l2DxYNwNOnT5cXX3xRUlNTpWfPnvLKK6/IWWedJa4qOTlZDh48eNqPExMTI4mJ1qx7aowShuy8nZKdf6ReV3tTNUzq5OE1CQmMN5P5a3jUHlUNkM4enKblFFrHWrmWVQOgBnf9Wjkje63prdYBE/q6dNlx4NujW3pJaFBLiQptL5FNdGknkboe0tbtekiLSrIl5eBCSU7/SXanzTFTKSkdGd2zzd1yRtt7zL6Ca9IBcH3bPySdE24yc+puTvnUnKFPl6CAGGkVe6kkNr1QWsac22DHZn5Rmuw/tNiEEf3mQGt87VrGnC+92txtAjAfoBqf1ovrIMMOLYaYWthVO98w33yt2P6KWfRDfVLsxZLY9CKJCe/qsgMqtcQtJ3+3HMzdYD7opWatNOv2D1hKZ6bR16KnDU+KHcC3DFYPwJ988ok88sgj8vrrr0u/fv3kpZdeksGDB8uWLVskNjZWXG2gzYbt38lL06ZJcVGp2Cr0oLfpQH+p0PVym7ksL7NJWalNSnUpsUlZSaX1Ujl6aRNfnwBZtnSVJCW15WuPOtKvKYtLsqWoNNuEXB2Ylld04Mhl4X6zrp+ydaqd2mgw1Jpa/WN6pLa2u4QEutaxVhs/32BpFtXXLJV7tU0Jx9HyDQ3GOhjMHortdY12GuxDg1pIk6AW5lL3R3BgrAT5x0iQf5RZAv2jGv0rSC0F0fdOy0801Ot/HunZ647poQ8LTpKuicNMnZy2Fe4hJDBOLu7xgvRpN0o2Jv9XNu/9VAqLD8qmlP+aRevlI5q0Mb+TUaEdTe+xHpshAbHmmNXBjbUFVPN3oTTX/G3QYz+v8IApjck8vFUyD2+u0vOm9KQdbeMvl86JN9H75iI0DPZqe7c5q9mutDlmAKV+SNKyAV2Wb5tmwq/9b7ae+je8SWvzN0z/dukx0pAfYDTgFpflmrEgepbJwwUpkqt/Y3W9MMV0tOh4jurCg1tJQtMLzKIfsgi9J2aZADxlyhS566675PbbbzfXNQh/++238u6778oTTzwhruRA5jLZmv6OXHFz/X21PGvDIJENOjDA9+jAKX+zeJupsgIc60duD6iyjWPx8RcvnWLLy1u8xMfUqnp7+xxd9z5y3cun0qW3Y3vtKTxGtT8iXjVtI8ffRif/0k++OqehFvjrpV6vkHKxVZSLTcqlwtymA8PKzbybOjDMvpSWFx1dLzCXJWV5JvSWluXVed82CWxu/kM9Urd7pHZXQ6+ze3brm74e7T3Txa6w+JBk5W2XzLytknV4u2TlbTOL/vHWwGwvBTnR42oZha9PiPj76gC/JuLnE2wG/Gk41nrJI5c+ldb10sfUu2loPfK+H3nvddGBf9qLXVqef+R9LsuXotIcKSzOcPTs1iSySQfTc6KTv+vUZnoMwz3pV9pnd3pMzuww2gwESs74yZzpSj/06DGrS03075f2+nt7HznWzN+WilITfmsKHlV+VrwlOqyLOYub9iS2iO7vcTWmnkIHwbVrfpVZCorSZU/GT7Inba7sz1xs/m5p76ou1en/ofrBXWdNCPSLEj/fIMf/mUf+Lw0w/5c6OOaotpn/o8rK7dNX6v9FR/4/KinLNd9A6Wm+j/f3yU7/NuqHt7iIXhIX2dvUumtAx8mxxG9mSUmJrFixQsaOHeu4zdvbWwYOHCiLFi06Zvvi4mKz2OXkHJkyJDc3t1Ha6++VKCEVF8q3334tvfq0lpBQHa2qv0Q2sXkdufx9qTjaa6Vff1SIzevopf26VIiX+Rm7kqMLTsxLfL2Cxcerifj7RIifd7T4+0SJv4/9MkYCvOPNHzwpFrEVi2RmimRKmeyQNeYYq9Cu+tOk31KozRv2SmHB8f8DPpE9u47MMKG/D3l5dQ/5tfn9NSaZJUIGSIS/SLlvkZRUZEhx+UEpLT9oLnUpq8iW0orDUmY7LGUV+vw2KRT9mvj3r4obg7dXgAR6x4q/T5wE+yVIsF8bCfFtJX5ekVKaIbI9o1i2yy/19h6a53Sxx3KP40rq6bH0g8wl0tL7EokLzpKCsj1SULpHisr3S8nRY7O0IkdsoqPk9XlLj/uYPl7B4u8dJX4+URLg01SCfVtKoG+CBPkmiq8tWMoPiuw6aJNd8lsjvT7P/TvTePsqXoJlmLQNuEVKfNMkr3SHFJalSFHZASkqPyClFVlSbis0/3/m56fqd7XSkHy8QiTAO0b8fZpKgG9TCfDR9VgJ9Glmjjmvch+pOCRyQBfZIWIW1/3bkJeX1ygZyv4cdTk5jpfNXU+hcxL2798vLVq0kN9++0369+/vuP2xxx6TBQsWyJIlS6psP378eHnmmWec0FIAAACcjpSUFGnZ8vhn57RED/DJ0p5irRe2009TmZmZEh0d3WiDF/RTTEJCgnkTw8I88zzcp4L9UjP2S+3YNzVjv9SOfVMz9kvt2DeusV+0T/fw4cPSvHnzE25riQCssyD4+PhIWlpaldv1enz8sZP9BwQEmKWyiIgIcQY9YPhlOhb7pWbsl9qxb2rGfqkd+6Zm7JfasW+cv1/Cw+s2/sYSIzz8/f2lT58+Mnfu3Cq9unq9ckkEAAAAPJ8leoCVljSMGDFC+vbta+b+1WnQ8vPzHbNCAAAAwBosE4BvvPFGycjIkHHjxpkTYfTq1UtmzZolcXFx4oq0BOPpp58+phTD6tgvNWO/1I59UzP2S+3YNzVjv9SOfeN++8USs0AAAAAAlqoBBgAAAOwIwAAAALAUAjAAAAAshQAMAAAASyEAO8HChQvl6quvNmcq0TPLzZw584Q/89NPP0nv3r3NSMp27drJ+++/L57oZPeN7hfdrvqiM314kgkTJsiZZ54poaGhEhsbK0OGDHGcr/14PvvsM+nUqZMEBgZK9+7d5bvvvhOr7xf93al+vOj+8TSvvfaa9OjRwzEBvc55/v3331v6eDmV/WKV46W6iRMnmtc6evRosfoxcyr7xgrHzfjx4495jXosuMvxQgB2Ap1/uGfPnjJ9+vQ6bb9r1y658sor5eKLL5bVq1ebX7o777xTfvjhB7H6vrHT0HPgwAHHomHIkyxYsEDuv/9+Wbx4scyZM0dKS0tl0KBBZn/V5rfffpObb75ZRo4cKatWrTLhUJf169eLlfeL0uBT+XjZs2ePeJqWLVua/6hXrFghy5cvl0suuUSuueYa2bBhg2WPl1PZL1Y5XipbtmyZvPHGG+aDwvFY5Zg5lX1jleOma9euVV7jL7/84j7Hi06DBufRt+CLL7447jaPPfaYrWvXrlVuu/HGG22DBw+2WX3fzJ8/32yXlZVls5L09HTzuhcsWFDrNjfccIPtyiuvrHJbv379bPfcc4/Nyvvlvffes4WHh9usKDIy0vb222/XeJ8Vj5e67BerHS+HDx+2tW/f3jZnzhzbhRdeaHvooYdq3dZqx8zJ7BsrHDdPP/20rWfPnnXe3tWOF3qA3cCiRYtk4MCBVW4bPHiwuR1H6IlNmjVrJpdeeqn8+uuv4ulycnLMZVRUVK3bWPG4qct+UXl5eZKUlCQJCQkn7P3zBOXl5fLxxx+bnvHaTv9uxeOlLvvFaseLfqOi3zhWPxZqYrVj5mT2jVWOm23btpmSxTZt2siwYcMkOTnZbY4Xy5wJzp1pPWv1M9bp9dzcXCksLJSgoCCxKg29r7/+ujnFdXFxsbz99tty0UUXyZIlS0zNtCeqqKgwZTDnnnuudOvW7aSPG0+rjz7Z/dKxY0d59913zVeYGpgnT54s55xzjvnPSb8e9yTr1q0zwa6oqEiaNGkiX3zxhXTp0kWsfryczH6x0vGiHwZWrlxpvuavCysdMye7b6xw3PTr18/UOutr1fKHZ555Rs4//3xT0qDjMlz9eCEAw63pL54udvoHZseOHTJ16lT597//LZ7aC6F/YI5Xa2VFdd0vGnwq9/bpMdO5c2dT1/fcc8+JJ9HfDR03oP8B/+9//5MRI0aYuunawp5VnMx+scrxkpKSIg899JCppfe0wVrO2DdWOG4uv/xyx7oGfQ3E2uP96aefmjpfV0cAdgPx8fGSlpZW5Ta9rgX2Vu79rc1ZZ53lseFw1KhR8s0335jZMk7Ui1DbcaO3W3m/VOfn5ydnnHGGbN++XTyNv7+/mTVG9enTx/ReTZs2zfwnbOXj5WT2i1WOFx0UmJ6eXuWbMy0R0d+pV1991XzD5uPjY8lj5lT2jVWOm8oiIiKkQ4cOtb5GVzteqAF2A/opcu7cuVVu00+ix6tZszLt2dHSCE+iYwI15OlXtfPmzZPWrVuf8GescNycyn6pTv8j06/EPe2Yqa1MRP+zturxcir7xSrHy4ABA8zr0r+f9kVLy7SuU9drCnhWOWZOZd9Y5bipXvOs38DW9hpd7nhxytA7i9ORpKtWrTKLvgVTpkwx63v27DH3P/HEE7bhw4c7tt+5c6ctODjYNmbMGNumTZts06dPt/n4+NhmzZpls/q+mTp1qm3mzJm2bdu22datW2dG5Xp7e9t+/PFHmye57777zIjin376yXbgwAHHUlBQ4NhG94vuH7tff/3V5uvra5s8ebI5bnTErp+fn9lPVt4vzzzzjO2HH36w7dixw7ZixQrbTTfdZAsMDLRt2LDB5kn0NetsGLt27bKtXbvWXPfy8rLNnj3bssfLqewXqxwvNak+04FVj5lT2TdWOG4effRR87dXf5f0WBg4cKAtJibGzMbjDscLAdgJ7FN3VV9GjBhh7tdL/eWq/jO9evWy+fv729q0aWOmWPFEJ7tvXnjhBVvbtm3NH5aoqCjbRRddZJs3b57N09S0T3SpfBzofrHvJ7tPP/3U1qFDB3Pc6FR63377rc3q+2X06NG2xMREs0/i4uJsV1xxhW3lypU2T3PHHXfYkpKSzOts2rSpbcCAAY6QZ9Xj5VT2i1WOl7qEPKseM6eyb6xw3Nx44422Zs2amdfYokULc3379u1uc7x46T/O6XsGAAAAGh81wAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwAAAALAUAjAAAAAshQAMAAAASyEAAwAAwFIIwABgQa1atZKXXnrJcd3Ly0tmzpx53J/505/+JEOGDGmE1gFAw/Jt4McHALiBAwcOSGRkpFnfvXu3tG7dWlatWiW9evVybDNt2jTh5KEAPAEBGAAg8fHxJ9wmPDy8UdoCAA2NEggAcLKKigqZNGmStGvXTgICAiQxMVH+/ve/m/vWrVsnl1xyiQQFBUl0dLTcfffdkpeXd0xZwuTJk6VZs2Zmm/vvv19KS0sd26Snp8vVV19tHkN7dmfMmHFMGyqXQOg26owzzjC3X3TRRVWey664uFgefPBBiY2NlcDAQDnvvPNk2bJljvt/+ukn8/Nz586Vvn37SnBwsJxzzjmyZcuWBtmPAFBXBGAAcLKxY8fKxIkT5amnnpKNGzfKRx99JHFxcZKfny+DBw82pQkaLD/77DP58ccfZdSoUVV+fv78+bJjxw5z+cEHH8j7779vFjsNrikpKeb+//3vf/Kvf/3LhOLaLF261Fzqc2lpxOeff17jdo899pj83//9n3nOlStXmgCv7c3MzKyy3d/+9jf55z//KcuXLxdfX1+54447TnOPAcBpsgEAnCY3N9cWEBBge+utt465780337RFRkba8vLyHLd9++23Nm9vb1tqaqq5PmLECFtSUpKtrKzMsc0f//hH24033mjWt2zZokW7tqVLlzru37Rpk7lt6tSpjtv0+hdffGHWd+3aZa6vWrWqSnv0ua655hqzrm3y8/OzzZgxw3F/SUmJrXnz5rZJkyaZ6/PnzzeP8+OPP1Zpv95WWFh4WvsNAE4HPcAA4ESbNm0ypQQDBgyo8b6ePXtKSEiI47Zzzz3XlExULiPo2rWr+Pj4OK5rKYS9h1cfQ3td+/Tp47i/U6dOEhERcVrt1h5nLbPQ9tj5+fnJWWedZZ6zsh49elRpmzpeDzQANDQCMAA4kdblni4NnpVp3a2GZFdRuX3aNuVK7QNgPQRgAHCi9u3bmxCsA8Wq69y5s6xZs8bUAtv9+uuv4u3tLR07dqzT42tvb1lZmaxYscJxm/YeZ2dn1/oz/v7+5rK8vLzWbdq2bWu20/bYaY+w1ip36dKlTm0DAGdhGjQAcCKdPeHxxx83A8o0UGpJQUZGhmzYsEGGDRsmTz/9tIwYMULGjx9vbn/ggQdk+PDhZpBcXWhQvuyyy+See+6R1157zZRDjB49+rg9zzqrg94/a9YsadmypWlj9SnQtCzjvvvukzFjxkhUVJSZuUJnsigoKJCRI0ee9n4BgIZEDzAAOJnO/vDoo4/KuHHjTK/vjTfeaGpkddqwH374wcyqcOaZZ8r1119vaoVfffXVk3r89957T5o3by4XXnihXHfddWYqNQ25tdGQ/PLLL8sbb7xhfu6aa66pcTuduWLo0KEmkPfu3Vu2b99u2ms/oQYAuCovHQnn7EYAAAAAjYUeYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACApRCAAQAAYCkEYAAAAFgKARgAAACWQgAGAACAWMn/A4tgWQArt29yAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAHWCAYAAAB5SD/0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAX4xJREFUeJzt3Qd4lFX2x/GTSe+VBAIkVOlFQBFR1AXFrn+7omLftSOWXV1FRVdZC/beXcGya+8i2OkgiID0HtJII73N/zk3mTEJAQJMMvPO+/08zzjtZead4uQ3d849N8DpdDoFAAAAsAmHt3cAAAAAaEsEYAAAANgKARgAAAC2QgAGAACArRCAAQAAYCsEYAAAANgKARgAAAC2QgAGAACArRCAAQAAYCsEYACtrkuXLnLJJZd4ezf83sMPPyzdunWTwMBAGTx4cJvc5+uvvy4BAQGycePGNrk/u9DnU59XfX4BeB4BGMB+BZ6FCxc2e/3RRx8t/fv3P+D7+eKLL+See+454Nuxi2+++UZuu+02GTlypLz22mvywAMPeHuXAMBnBXl7BwD4v1WrVonD4djnAPzMM88Qglto1qxZ5jl+5ZVXJCQkxNu7AwA+jRFgAK0uNDRUgoODxUpKSkrESrKzsyU8PJzw62XV1dVSWVnp7d0AsBcEYABtXgNcVVUl9957r/Ts2VPCwsIkMTFRjjjiCJkxY4a5XrfV0V+l5RauQ8NwevPNN0vnzp1NuO7Vq5c88sgj4nQ6G91vWVmZ3HDDDZKUlCTR0dFy6qmnyrZt28xtNRxZ1tN62YoVK+SCCy6Q+Ph4sz/qt99+M/ujtbW6r+3bt5fLLrtMduzY0ei+XLexevVqufDCCyU2NlbatWsnd911l9mvLVu2yGmnnSYxMTHmNh599NEWB6r77rtPunfvbh6rPpd33HGHVFRUuLfR+9WyB31eXM/V3mpH582bJyeeeKJ5rJGRkTJw4EB54okndhlVPvLII831cXFxZv9Xrly5131u+vzu7n3gKqf5+eefzeukz5fez1//+lcTIgsKCuTiiy82+6gHLfFo+Bq76mT1tX/xxRfdz9EhhxwiCxYsaHTf+p77448/ZPv27dIS//3vf6Vv377mNdeSng8//NDsuz6G5u7/8ccfd9+/vo90/ydNmiRDhw417wV9DvW5/O6773a5L32cetu6nT7+8ePHm8uao4/hrLPOkoSEBLNvw4YNk08++aRFjwnAnyiBALBfCgsLJTc3d5fLNWjsjYajBx98UK644go59NBDpaioyNQUL168WI499lgTgDIyMkwg/s9//tPo32oA0iCrQeLyyy83k72+/vprufXWW024feyxx9zbaqh477335KKLLpLDDjtMfvjhBznppJN2u19nn322CeVaP+sKWroP69evl0svvdQE1+XLl5uwpcdz585tFMzVueeeK3369JEpU6bI559/Lvfff78JKy+88IL85S9/kX//+98ybdo0ueWWW0xQGzVq1B6fK32O3njjDRN6NPRrcNXnToOohjKlz5Hu0/z58+Xll182lx1++OG7vU19TCeffLJ06NBBbrzxRvO49PY+++wzc159++23csIJJ5jgr6+Xfpl46qmnTI2xvk4Ng+CBuv76680+6JcifU71sWgQnD17tqSlpZnXQ0tidJKfhlENxQ1Nnz5ddu7cad43+no89NBDcsYZZ5jXzfXLg7439HXRcLm3Lwf6uunrOGDAAPNc5+fnm/dax44dm91ev3yUl5fLVVddZQKwvt76ntbX4vzzz5crr7zS7J+Wp4wdO9a8Tq5Jivo+0y8W+iXgb3/7m9lHfV11P5vS95w+/7of//jHP0yo1vf36aefLu+//7783//93wG8CoDNOAFgH7z22muaDPd46NevX6N/k56e7hw/frz7/KBBg5wnnXTSHu/n2muvNbfV1EcffWQuv//++xtdftZZZzkDAgKca9euNecXLVpktpswYUKj7S655BJz+d133+2+TE/rZeeff/4u91daWrrLZW+//bbZ/scff9zlNq666ir3ZdXV1c5OnTqZ/ZoyZYr78vz8fGd4eHij56Q5S5YsMbd5xRVXNLr8lltuMZfPmjXLfZneVmRk5B5vz7VPXbt2Na+J7kdDtbW17tODBw92JicnO3fs2OG+bOnSpU6Hw+G8+OKLd3k/bNiwwX1Z0+d3d+8D178dO3Zso/seMWKEec7+9re/7fJcHnXUUe7L9D713ycmJjrz8vLcl3/88cfm8k8//XSXbff2nKsBAwaY+9q5c6f7su+//978e30MTW8zJibGmZ2d3eg2dH8rKioaXabPd0pKivOyyy7b5f380EMPNfq3Rx55pLlcnyOX0aNHm30rLy93X6bP2+GHH+7s2bPnXh8XgD9RAgFgv2iJgo4kNj3oT+l7o6N7Opq1Zs2afb5fHQnUNl/6k3lDOjqq2evLL78057/66itzfM011+wy2rg7OgLXlNbVuugon45662iy0pHQ5kZsXXQ/9Sdq3S8dQWz4+LVsQ0co9/ZY1cSJE3d5rK6Ryn3166+/yoYNG2TChAlmPxpyjWZrmcCSJUvMCLqOZrroa6sj9K798hR9bhqOpA8fPnyX58z1XDb3nOlorZZIuGipgWq4rY5Y623ubfRXf3lYtmyZGWWOiopyX37UUUeZEeHmnHnmmaZ8oyHdX1c9dm1treTl5ZlyFn0MDd83+lwGBQXJ1Vdf3ejfNn2f6r/XkpRzzjnHjCbr+1APWoqjo8r6/5KOcgNoGUogAOwXLV3QP+ZNaRBprjSiocmTJ5uffQ866CDzk/bxxx9vyhRaEp43bdokqamppqa3If3p2HW961i7InTt2rXRdj169NjtbTfd1hU89Kf5d955x0w0a1oG0pT+ZN+Q1nVqrabWITe9vGkdcVOux9B0n7VcQMOr67Hui3Xr1pnjPbWqc92uhvSm9HnWkhOtN9af4D2huedMaY1308u1HGFv/94Vhpvbdm9cj72594le1tyXnubeN0pLV7TWW+t2G5YGNdxe709LURqG7eae+7Vr15oArzXlemiOvj93V6YBoDECMIA2p3WvGsQ+/vhj079WayW1dvf5559vNILa1hqO9rroiJvWomqNsdZtalDRET0N7XrclI7eteQy1XTS3u40rTO2qpqammYv393z09zlzT1nB/r8tsb75q233jIj6Fqfq++d5ORks59aU+z6ErIvXO81rR3XEd/m7OnLHYDGCMAAvEJ/WteJZXooLi42oVgnW7kC8O5CX3p6upmgpT8DNxwF1lE21/WuYw0N+nO/TmxrOJLWUjqCOHPmTDMCrDP6XfandGN/uB6D3p9rhFtlZWWZLgGux7ovtFOB+v3332XMmDG7vV9X/+am9HnW0ew9jf7qCGzTLgbaFaGlHRi8yfXYm3uf7Mt753//+5+ZQPjBBx80ei/ffffdu9yfvsf0/4GGo8BNn3u9LaWT+nb3ugFoOWqAAbS5pj/96x9+Hb1q2NrLFbCaBilt3aUjiU8//XSjy3UEWYOGdi5QrlGyZ599ttF22smgpVwji01HErXlVVvQx9rc/U2dOtUc76mjxe4MGTLE/ASvt9n0uXU9Tv1JXke79Sf8httoaNYRe9d+7Slk//jjj40u084OuxsBbgstbYOm5TVaHvLmm2+aUOqiHUS0NvhA3jvawWPOnDmNttPnUmuDn3vuOfdl+jw1fZ/qCLKusqjdRJp7DDk5OS3eNwCMAAPwAu2vqn/MtUeqjgRrCzQdMbvuuuvc2+h1Sie7aZjVQHHeeefJKaecIsccc4z885//NH1YBw0aZEKZllPoxC7XCKf+e52cpEFPA7erDZr26W1pWYH27NWRaW2rpQFK6yv1vnRUuS3oY9N2WBoeNYjqRCxtoaXBVH9a1+dhX2lNsYYtfR415OoIvAZeDYc6MVHre5W2HNMvEyNGjDCT0Vxt0LQOd2+r8+kovk4o1OdfJ80tXbrU3G7TOui2tC9t0LTtmtaoa8sxfX70lwD9wqXBuGEo3hNtM6ejv9qaTL+o6HtGS3z0vd/wNvR10PvRtmb6ftbr9d81V1+uE0+1P7VOxtPWajoqrL8GaKjeunWreZ4BtAwBGECb01Crzfs1TOqor/4MrP1ytVbSRfu46kx4nXym9ZQ6kqYBWAOc/lstSXj33XdND1ad4a+BzdUdwUVH8XTC2Ntvv216q+pPx/pvdIKRTkxrCe0xq/uh4UP34bjjjjOdJnSksC1ofbQGHQ1t+hj08dx+++27/JS+L/QLhfZR1tIOnaSlZRb6xUFDlYs+V9pJQ+9Hn2v96V0DuPYx3t2kLxe9HQ182vdWb0O7MmiHkNGjR4sVaCjV94wGfQ2mWkKjz79+8dAvCS2h9b+ZmZlmxFbDvwZbfR/rAhvff/+9ezvX+1m/vOn1+sVM+1zr63LwwQc3uk29Df2yqK+b7o9+sdORYd2uYYkOgL0L0F5oLdgOAPyCtvfSwKBhY9y4cd7eHViIjphruzPXioUArIsaYAB+S3+2b0pLInTUbW8rsMG+tNxF63Ib0lFbLTHQ0h0A1kcJBAC/pbW7ixYtMrWyutiAli7oQZesbdpjFmhYL6wlIBdeeKEpddH6aK3f1fKT5hZLAWA9lEAA8Fv6U7XWS65YscJMPNIFE3TBDZ1Ap4EYaI5OQNMvSb/88ovprqAdSbR+ecqUKe5JlgCsjQAMAAAAW6EGGAAAALZCAAYAAICtUATXAtojMyMjwyy72pLm+QAAAGhbWtW7c+dOM3lVu/3sCQG4BTT8MmMcAADA923ZskU6deq0x20IwC2gI7+uJ1SXRgUAAIBvKSoqMgOWrty2JwTgFnCVPWj4JQADAAD4rpaUqzIJDgAAALZCAAYAAICtEIABAABgKwRgAAAA2AoBGAAAALZCAAYAAICtEIABAABgKwRgAAAA2AoBGAAAALZCAAYAAICtEIABAABgKwRgAAAA2AoBGAAAALZCAAYAAICtBHl7BwAAaC2bN2+W3Nxcj9xWUlKSpKWleeS2AHgXARgA4Lfht0+f3lJaWuaR24uICJeVK/8gBAN+gAAMAPBLOvKr4Xfyw+OkS/eUA7qtjeuyZNKt08xtEoAB6yMAAwD8mobf3v06eXs3APgQJsEBAADAVgjAAAAAsBUCMAAAAGyFAAwAAABbIQADAADAVgjAAAAAsBUCMAAAAGyFAAwAAABbIQADAADAVgjAAAAAsBUCMAAAAGyFAAwAAABbIQADAADAVgjAAAAAsBUCMAAAAGyFAAwAAABbIQADAADAVgjAAAAAsBUCMAAAAGyFAAwAAABbIQADAADAVgjAAAAAsBWvBuAff/xRTjnlFElNTZWAgAD56KOP3NdVVVXJ3//+dxkwYIBERkaabS6++GLJyMhodBt5eXkybtw4iYmJkbi4OLn88suluLi40Ta//fabHHnkkRIWFiadO3eWhx56qM0eIwAAAHyLVwNwSUmJDBo0SJ555pldristLZXFixfLXXfdZY4/+OADWbVqlZx66qmNttPwu3z5cpkxY4Z89tlnJlRfddVV7uuLiorkuOOOk/T0dFm0aJE8/PDDcs8998iLL77YJo8RAAAAviXIm3d+wgknmENzYmNjTaht6Omnn5ZDDz1UNm/eLGlpabJy5Ur56quvZMGCBTJs2DCzzVNPPSUnnniiPPLII2bUeNq0aVJZWSmvvvqqhISESL9+/WTJkiUyderURkEZAAAA9mCpGuDCwkJTKqGlDmrOnDnmtCv8qjFjxojD4ZB58+a5txk1apQJvy5jx441o8n5+fnN3k9FRYUZOW54AAAAgH+wTAAuLy83NcHnn3++qfdVmZmZkpyc3Gi7oKAgSUhIMNe5tklJSWm0jeu8a5umHnzwQTMC7Tpo3TAAAAD8gyUCsE6IO+ecc8TpdMpzzz3X6vd3++23m9Fm12HLli2tfp8AAACwQQ3wvoTfTZs2yaxZs9yjv6p9+/aSnZ3daPvq6mrTGUKvc22TlZXVaBvXedc2TYWGhpoDAAAA/I/DCuF3zZo18u2330piYmKj60eMGCEFBQWmu4OLhuTa2loZPny4exvtDKG35aKT63r16iXx8fFt+GgAAAAgdg/A2q9XOzLoQW3YsMGc1i4PGljPOussWbhwoenkUFNTY2p29aBdHVSfPn3k+OOPlyuvvFLmz58vv/zyi1x33XVy3nnnmQ4Q6oILLjAT4LQ/sLZLe/fdd+WJJ56QiRMnevOhAwAAwI4lEBpujznmGPd5VygdP3686dX7ySefmPODBw9u9O++++47Ofroo81pDccaekePHm26P5x55pny5JNPurfVSWzffPONXHvttTJ06FBJSkqSSZMm0QINAADAprwagDXE6sS23dnTdS7a8WH69Ol73GbgwIHy008/7dc+AgAAwL/4dA0wAAAA4GkEYAAAANgKARgAAAC2QgAGAACArRCAAQAAYCsEYAAAANgKARgAAAC2QgAGAACArRCAAQAAYCsEYAAAANgKARgAAAC2QgAGAACArRCAAQAAYCsEYAAAANgKARgAAAC2QgAGAACArRCAAQAAYCsEYAAAANgKARgAAAC2QgAGAACArRCAAQAAYCsEYAAAANgKARgAAAC2QgAGAACArRCAAQAAYCsEYAAAANgKARgAAAC2QgAGAACArRCAAQAAYCsEYAAAANgKARgAAAC2QgAGAACArRCAAQAAYCsEYAAAANgKARgAAAC2QgAGAACArRCAAQAAYCsEYAAAANgKARgAAAC2QgAGAACArRCAAQAAYCsEYAAAANgKARgAAAC2QgAGAACArRCAAQAAYCsEYAAAANiKVwPwjz/+KKeccoqkpqZKQECAfPTRR42udzqdMmnSJOnQoYOEh4fLmDFjZM2aNY22ycvLk3HjxklMTIzExcXJ5ZdfLsXFxY22+e233+TII4+UsLAw6dy5szz00ENt8vgAAADge7wagEtKSmTQoEHyzDPPNHu9BtUnn3xSnn/+eZk3b55ERkbK2LFjpby83L2Nht/ly5fLjBkz5LPPPjOh+qqrrnJfX1RUJMcdd5ykp6fLokWL5OGHH5Z77rlHXnzxxTZ5jAAAAPAtQd688xNOOMEcmqOjv48//rjceeedctppp5nL3nzzTUlJSTEjxeedd56sXLlSvvrqK1mwYIEMGzbMbPPUU0/JiSeeKI888ogZWZ42bZpUVlbKq6++KiEhIdKvXz9ZsmSJTJ06tVFQBgAAgD34bA3whg0bJDMz05Q9uMTGxsrw4cNlzpw55rwea9mDK/wq3d7hcJgRY9c2o0aNMuHXRUeRV61aJfn5+c3ed0VFhRk5bngAAACAf/DZAKzhV+mIb0N63nWdHicnJze6PigoSBISEhpt09xtNLyPph588EETtl0HrRsGAACAf/DZAOxNt99+uxQWFroPW7Zs8fYuAQAAwN8DcPv27c1xVlZWo8v1vOs6Pc7Ozm50fXV1tekM0XCb5m6j4X00FRoaarpKNDwAAADAP/hsAO7atasJqDNnznRfprW4Wts7YsQIc16PCwoKTHcHl1mzZkltba2pFXZto50hqqqq3Ntox4hevXpJfHx8mz4mAAAA2DwAa79e7cigB9fENz29efNm0xd4woQJcv/998snn3wiy5Ytk4svvth0djj99NPN9n369JHjjz9errzySpk/f7788ssvct1115kOEbqduuCCC8wEOO0PrO3S3n33XXniiSdk4sSJ3nzoAAAAsGMbtIULF8oxxxzjPu8KpePHj5fXX39dbrvtNtMrWNuV6UjvEUccYdqe6YIWLtrmTEPv6NGjTfeHM8880/QOdtFJbN98841ce+21MnToUElKSjKLa9ACDQAAwJ68GoCPPvpo0+93d3QUePLkyeawO9rxYfr06Xu8n4EDB8pPP/10QPsKAAAA/+CzNcAAAABAayAAAwAAwFYIwAAAALAVAjAAAABshQAMAAAAWyEAAwAAwFYIwAAAALAVAjAAAABshQAMAAAAWyEAAwAAwFYIwAAAALAVAjAAAABshQAMAAAAWyEAAwAAwFYIwAAAALAVAjAAAABshQAMAAAAWyEAAwAAwFYIwAAAALAVAjAAAABshQAMAAAAWyEAAwAAwFYIwAAAALAVAjAAAABshQAMAAAAWyEAAwAAwFYIwAAAALAVAjAAAABshQAMAAAAWyEAAwAAwFYIwAAAALAVAjAAAABshQAMAAAAWyEAAwAAwFYIwAAAALAVAjAAAABshQAMAAAAWyEAAwAAwFaCvL0DAOCrNm/eLLm5uR65raSkJElLS/PIbQEADgwBGAB2E3779OktpaVlHrm9iIhwWbnyD0IwAPgAAjAANENHfjX8Tn54nHTpnnJAt7VxXZZMunWauU0CMAB4HwEYAPZAw2/vfp28vRsAAA9iEhwAAABshQAMAAAAWyEAAwAAwFZ8OgDX1NTIXXfdJV27dpXw8HDp3r273HfffeJ0Ot3b6OlJkyZJhw4dzDZjxoyRNWvWNLqdvLw8GTdunMTExEhcXJxcfvnlUlxc7IVHBAAAAG/z6QD873//W5577jl5+umnZeXKleb8Qw89JE899ZR7Gz3/5JNPyvPPPy/z5s2TyMhIGTt2rJSXl7u30fC7fPlymTFjhnz22Wfy448/ylVXXeWlRwUAAABv8ukuELNnz5bTTjtNTjrpJHO+S5cu8vbbb8v8+fPdo7+PP/643HnnnWY79eabb0pKSop89NFHct5555ng/NVXX8mCBQtk2LBhZhsN0CeeeKI88sgjkpqa6sVHCAAAgLbm0yPAhx9+uMycOVNWr15tzi9dulR+/vlnOeGEE8z5DRs2SGZmpil7cImNjZXhw4fLnDlzzHk91rIHV/hVur3D4TAjxs2pqKiQoqKiRgcAAAD4B58eAf7HP/5hwmfv3r0lMDDQ1AT/61//MiUNSsOv0hHfhvS86zo9Tk5ObnR9UFCQJCQkuLdp6sEHH5R77723lR4VAAAAvMmnR4Dfe+89mTZtmkyfPl0WL14sb7zxhilb0OPWdPvtt0thYaH7sGXLlla9PwAAALQdnx4BvvXWW80osNbyqgEDBsimTZvMCO348eOlffv25vKsrCzTBcJFzw8ePNic1m2ys7Mb3W51dbXpDOH6902FhoaaAwAAAPyPT48Al5aWmlrdhrQUora21pzW9mgaYrVO2EVLJrS2d8SIEea8HhcUFMiiRYvc28yaNcvchtYKAwAAwF58egT4lFNOMTW/aWlp0q9fP/n1119l6tSpctlll5nrAwICZMKECXL//fdLz549TSDWvsHa2eH000832/Tp00eOP/54ufLKK02rtKqqKrnuuuvMqDIdIAAAAOxnvwLw3XffbUJoenq6tCZtV6aB9pprrjFlDBpY//rXv5qFL1xuu+02KSkpMX19daT3iCOOMG3PwsLC3NtoHbGG3tGjR5sR5TPPPNP0DgYAAID97FcA/vjjj83I7FFHHWVWVdNA2Ro1s9HR0abPrx52R0eBJ0+ebA67ox0fdCIdAAAAsF81wEuWLDELS2hZwo033mjqcK+++mpzGQAAAOCXk+AOPvhgU0aQkZEhr7zyimzdulVGjhwpAwcOlCeeeMK0DwMAAAD8rguELkesE8sqKyvN6fj4eHn66aelc+fO8u6773pmLwEAAABvB2BtK6YTy7T/7k033WRGhFeuXCk//PCDrFmzxtQI33DDDZ7aTwAAAMB7AVgXpDjssMNkw4YNpvxBV0qbMmWK9OjRw73N+eefLzk5OZ7ZSwAAAMCbXSDOOecc0watY8eOu90mKSnJvWAFAAAAYOkRYFetb1NlZWV7bEcGAAAAWDIA33vvvVJcXNzs0sV6HQAAAOB3I8C6AEVTS5cuNYtOAAAAAH5RA6xlDxp89XDQQQc1CsE1NTVmVPhvf/tba+wnAAAA0PYBWJck1tFfnQCnpQ6xsbHu60JCQqRLly4yYsQIz+wZAAAA4O0APH78eHPctWtXOfzwwyU4OLg19gkAAADwfgAuKiqSmJgYc1oXvdCOD3pojms7AAAAwLIBWOt/t2/fLsnJyRIXF9fsJDjX5DitBwYAAAAsHYBnzZrl7vDw3XffteY+AQAAAN4PwEcddZT7tNYAd+7ceZdRYB0B1mWRAQAAAL/qA6wBOCcnZ5fL8/LyzHUAAACALRbC0D7AYWFhntgvAAAAwPtt0CZOnGiONfzeddddEhER4b5OJ77NmzdPBg8e7Pm9BAAAALwRgH/99Vf3CPCyZcvM4hcuenrQoEFyyy23eGrfAAAAAO8GYFf3h0svvVSeeOIJ+v0CAADAvwOwy2uvveb5PQEAAAB8NQCXlJTIlClTZObMmZKdnS21tbWNrl+/fr2n9g8AAADwfgC+4oor5IcffpCLLrpIOnTo0GxHCAAAAMBvAvCXX34pn3/+uYwcOdLzewQAAAD4Wh/g+Ph497LIAAAAgN8H4Pvuu08mTZokpaWlnt8jAAAAwNdKIB599FFZt26dpKSkSJcuXSQ4OLjR9YsXL/bU/gEAAADeD8Cnn366Z/cCAAAA8OUAfPfdd3t+TwAAAABfrQEGAAAAbDUCXFNTI4899pi89957snnzZqmsrGx0fV5enqf2DwAAAPD+CPC9994rU6dOlXPPPVcKCwtl4sSJcsYZZ4jD4ZB77rnHs3sIAAAAeDsAT5s2TV566SW5+eabJSgoSM4//3x5+eWXTWu0uXPnenL/AAAAAO8H4MzMTBkwYIA5HRUVZUaB1cknn2xWiAMAAAD8KgB36tRJtm/fbk53795dvvnmG3N6wYIFEhoa6tk9BAAAALwdgP/v//5PZs6caU5ff/31ctddd0nPnj3l4osvlssuu8yT+wcAAAB4vwvElClT3Kd1IlxaWprMmTPHhOBTTjnFk/sHAAAAeD8ANzVixAhzAAAAAPwyAL/55pt7vF5LIQAAAAC/CcA33nhjo/NVVVVSWloqISEhEhERQQAGAACAf02Cy8/Pb3QoLi6WVatWyRFHHCFvv/225/cSAAAA8GYAbo5OgNPJcU1HhwEAAAC/DMBKV4XLyMjw5E0CAAAA3q8B/uSTTxqddzqdZmGMp59+WkaOHOmpfQMAAAB8YwT49NNPb3Q444wz5J577pGBAwfKq6++6tEd3LZtm1x44YWSmJgo4eHhZgnmhQsXNgrfkyZNkg4dOpjrx4wZI2vWrGl0G3l5eTJu3DiJiYmRuLg4ufzyy03dMgAAAOxnv0aAa2trzXFOTo7p/BAbGyutQSfY6YjyMcccI19++aW0a9fOhNv4+Hj3Ng899JA8+eST8sYbb0jXrl3NqnRjx46VFStWSFhYmNlGw6+OUM+YMcN0rLj00kvlqquukunTp7fKfgMAAMCPRoALCgrk2muvlaSkJGnfvr0kJCSY49tvv920QvOkf//739K5c2d57bXX5NBDDzUB97jjjpPu3bu7R38ff/xxufPOO+W0004zI9Dao1jrkD/66COzzcqVK+Wrr76Sl19+WYYPH246VTz11FPyzjvvUK8MAABgQ/sUgLWUQEOkjraeeeaZ8uijj5rDqaeeakLlqFGjpLy8XObPn29GZQ+U1hoPGzZMzj77bElOTpaDDz5YXnrpJff1GzZskMzMTFP24KKj0bqPujSz0mMte9DbcdHtHQ6HzJs3r9n7raiokKKiokYHAAAA2LAEYvLkyabkYd26dZKSkrLLdTo6e9FFF8k333zjkQC8fv16ee6552TixIlyxx13yIIFC+SGG24w+zB+/HgTflXTfdHzruv0WMNz024VOnLt2qapBx98UO69994D3n8AAABYfARYywoeeeSRXQKn0jIIrcd9//33TWDVgHqgtNZ4yJAh8sADD5jRX63bvfLKK+X555+X1qTlHIWFhe7Dli1bWvX+AAAA4KMBWCeS9evXb7fX9+/f35QW3H333Z7YN9PZoW/fvo0u69Onj2zevNkdulVWVlajbfS86zo9zs7ObnR9dXW1KedwbdNUaGio6RjR8AAAAAAbBmCd+LZx48bdXq81uU3LDQ6EdoDQJZYbWr16taSnp5vTOilOQ+zMmTPd12u9rtb2jhgxwpzXY524t2jRIvc2s2bNMqPLWisMAAAAe9mnAKztxf75z39KZWVlsxPHtAXZ8ccf77Gdu+mmm2Tu3LmmBGLt2rWmbdmLL75oulCogIAAmTBhgtx///1mwtyyZcvk4osvltTUVNOf2DVirPukpRM6Oe+XX36R6667Ts477zyzHQAAAOxlnyfBaTeFnj17mhDau3dv04pMW409++yzJgRrGzJPOeSQQ+TDDz80Nbl63zriq23PtK+vy2233SYlJSWmPlhHerXNmbY9c/UAVtOmTTOhd/To0aZEQztYeGKSHgAAAPw8AHfq1Mm0FbvmmmtMKNXw6xqJPfbYY81SyGlpaR7dwZNPPtkcdkfvW8OxHnZHOz6w6AUA2EdNbZX7bxQAHPBKcDoKq6uy6SptriWHe/ToYUImAADetjFrpny96G8SIMFy66PtpTxwsVRVx0twUKS3dw2AlZdCVrocsa7OBgCAryguz5RZS2+WWmeViFRJ116hUi0bZEPWN9Iz9XTzqyEA7PNSyAAA+KJaZ43MWjJRKqoKJCmmvwxIekxefThHxOmQotLNUlCy3tu7CMBHEIABAH5h6foXZduO2RIUGC7HHvykRASny8IfSiW49iBz/ZacH6W2ttrbuwnABxCAAQCWV1iyUeavetScPqLfvRIX1c19XUhNLwkJipLK6iLJzF/oxb0E4CsIwAAAy1u19X2pdVZLp6QjpHensxtdFyBB0inpSHN6e/5Cqagq8tJeAvAVBGAAgKVpu7M1GR+b0xp+m5voFh/VU6LCUsXprJEdRSu9sJcAfAkBGABgaVkFv5pJbkGBEdIl5dhmt9FQnBTT15zOL17bxnsIwNcQgAEAlrZmW93ob7f2YyU4KGK329XVBQdIWWWulFcWtOEeAvA1BGAAgKVXfFu7/TNzukfqqXvcVrtDRId3MqcLSta1yf4B8E0EYACAZW3L/UXKK3dIWEiimQC3N/FRPcwxZRCAvRGAAQCW5Zr81qPDSRLoCN7r9vFR3c1xSXmmVFbtbPX9A+CbCMAAAEuqrimX9Zlfm9M9O57Won8THBRpukGofMogANsiAAMALCkrf7FU15RKRGiypMQNafG/i6sfBaYMArAvAjAAwJIy8uaZ49TEw5rt/bu3OuDism1SVV3aavsHwHcRgAEAlpSxoz4AJwzfp38XGhwj4SFJ7hAMwH4IwAAAS9b/ZhUsdo8A76uo8Lo64J3lGR7fNwC+jwAMALCc7IKlUlNbKeGhSRIXqQtc7Jvo+gBcXEYABuyIAAwAsG79b8Lwfar/dXF1giityDFBGoC9EIABAJaTsWPufpc/qJDgaAkJihERpxSXbffw3gHwdQRgAICl1NRUmBZoKjVh/wJwwzrgYuqAAdshAAMALCW78Depri03yx+7WprtD+qAAfsiAAMALNv+bH/qf5vWAeuyyLXOGo/tHwDfRwAGAFhyAlzH/az/dQkLSZBAR5jUOqvNZDgA9kEABgBYho7Uuup/OyQcekC3paPHlEEA9kQABgBYRmHxBqmqKZGgwHCJj+55wLfnnghHAAZshQAMALDUBDiVFNNfHAGBB3x7rjpg7QThdDoP+PYAWAMBGABgGTn1ATg5boBHbi8iLFkCxCHVNWVSWb3TI7cJwPcRgAEAlpFT+Ls5bhfjmQCso8i6nLIqrcj2yG0C8H0EYACAJdTWVktu0XJzup2HRoBVRGg7c1xSTgAG7IIADACwhPySdaZUITgwUuIiu3nsdiNCk80xI8CAfRCAAQCWkFNQV//bLra/BAR47s+X1gG7AjAT4QB7IAADACwhp3CZOW4X67nyBxURojXAAWZ0uaq62KO3DcA3EYABALYOwA5HkISHJJrTrAgH2AMBGADg82pqqyS3aIU53S5uoMdv3z0RriLL47cNwPcQgAEAPi+/eI3U1FZISFC0xEake/z2/6wDZgQYsAMCMADA5+UU1JU/JHl4AtwunSBohQbYAgEYAGCZJZCTYz1f/tCwBKKqpkQqq0ta5T4A+A4CMADA57kXwIjt3yq3H+gIlrCQBHOafsCA/yMAAwB8mtNZK3k7V5nTiTF9Wu1+XKPAlEEA/o8ADADwaUWlm02P3kBHqMRGdGm1+/lzRTgmwgH+jgAMAPBpO3b+YY7jo3qanr2thSWRAfsgAAMAfNqOoroAnBjTu1XvJyJUV4QTqazeKdU1Fa16XwC8iwAMALDECHBidOsG4KDAMAkOijKnyyp3tOp9AfAuAjAAwKf9OQGudQOwci2JXFaR2+r3BcB7LBWAp0yZIgEBATJhwgT3ZeXl5XLttddKYmKiREVFyZlnnilZWY2Xsty8ebOcdNJJEhERIcnJyXLrrbdKdXW1Fx4BAGBfVFWXSmHJRnM6oZVHgBuWQZRVEoABf2aZALxgwQJ54YUXZODAxk3Qb7rpJvn000/lv//9r/zwww+SkZEhZ5xxhvv6mpoaE34rKytl9uzZ8sYbb8jrr78ukyZN8sKjAADsi7zi1doITcJDk9zhtDWFh9QHYEaAAb9miQBcXFws48aNk5deekni4+PdlxcWFsorr7wiU6dOlb/85S8ydOhQee2110zQnTt3rtnmm2++kRUrVshbb70lgwcPlhNOOEHuu+8+eeaZZ0woBgD4rryi+vKHNhj9VRq0XTXATqezTe4TQNuzRADWEgcdxR0zZkyjyxctWiRVVVWNLu/du7ekpaXJnDlzzHk9HjBggKSkpLi3GTt2rBQVFcny5XUrCzVVUVFhrm94AAC0vR07V7ZpAA4LiZcAcUhNbaXpBgHAP/l8AH7nnXdk8eLF8uCDD+5yXWZmpoSEhEhcXFyjyzXs6nWubRqGX9f1ruuao/cVGxvrPnTu3NmDjwgAsK8t0BLaYAKccgQEmhCsKIMA/JdPB+AtW7bIjTfeKNOmTZOwsLA2u9/bb7/dlFe4DrofAIC2pSUIbdUCrbkyiFImwgF+y6cDsJY4ZGdny5AhQyQoKMgcdKLbk08+aU7rSK7W8RYUFDT6d9oFon379ua0HjftCuE679qmqdDQUImJiWl0AAC0LV2RraKqwJQkxEf1aLP7/XMiHL2AAX/l0wF49OjRsmzZMlmyZIn7MGzYMDMhznU6ODhYZs6c6f43q1atMm3PRowYYc7rsd6GBmmXGTNmmFDbt29frzwuAMDe7Siqq/+Ni+pmFqloK7RCA/xf6y2q7gHR0dHSv3//RpdFRkaanr+uyy+//HKZOHGiJCQkmFB7/fXXm9B72GGHmeuPO+44E3Qvuugieeihh0zd75133mkm1ulILwDAN7nKHxKie7Xp/bpKIMor86W2tlocDp/+UwlgP1j+/+rHHntMHA6HWQBDuzdoh4dnn33WfX1gYKB89tlncvXVV5tgrAF6/PjxMnnyZK/uNwCghSvARfdp0/sNDoyUQEeY1NSWS3llnkSEJbfp/QNofZYLwN9//32j8zo5Tnv66mF30tPT5YsvvmiDvQMAeLoEoi2WQG5IVxwND02U4rJtZiIcARjwPz5dAwwAsKea2irJL17nlRIIFcFEOMCvEYABoAmns1aqagqkU9dgqZVSb++OLRWUrJdaZ5UEB0VJdHinNr//P1eEYyIc4I8sVwIBAK3Zd3bBmsfk13XPS21tpdzxVKqUOr+U7IIySY4b5O3ds+UCGNr/V0sS2pq7FzCLYQB+iRFgAKi3eN2zsmjNkyb8igRIcVGNHsnmnO9la+7PJiCjbeTVL4HsjfIHFR6SYI6ra0qlqppfAQB/QwAGABFZvmmazF/1sDk9ovcdckj7d+W2C7ZKSHU/c1lm/iLZmP0tIbiN7Cha5ZUJcC6BjhAJDY41pymDAPwPARiA7W3K/k5+/P1Oc3pI92tlcPerxBFQVyEWUttbuqQca0aEdxStkMKSDV7eW3v4cwnktm2B1tyKcJRBAP6HAAzA1mqdNTJn5b+0Alh6dz5XDu11yy7bJMX0lfbxQ8zpulKIWi/sqX1UVBVKSfl2czoh+iCv7cefE+HoBAH4GwIwAFtbl/GZ5BevlZCgGDm8zz93O+GqffwhEuQIk/KqfMkp/L3N99OOE+CiwztKaHCM1/YjIiTRHJcxAgz4HQIwAFuP/i5c84Q5PbjbVXsMW0GBodIhcbg5nZE3V2rMRDm07hLI3it/aDoC7BRqvwF/QgAGYFtrt31i+s2GBsfJgC7j97p9u9gBZmJUdU2ZmRSH1m6B5p0OEC76WmstuNNZI04p9uq+APAsAjAAW6qtrW4w+nulhARH7/XfOAICpVPiSHM6u2CJWa0MnpfnmgDnpQ4QLgEBDgmrL4OoDSj06r4A8CwCMABbWp/5pRSWbpSwkATp34LRX5e4qB6mXlhLIAqK17bqPtqRTjDcsbO+BZqXSyBURH0ZRI2DAAz4EwIwAFv6Y+v/zHG/tHESEhTV4n+nk+SSYut6A+cULW+1/bOrotItZvEJ7cMbG9nF27vjrgNmBBjwLwRgALZTUp4tW3N+Mqd7dTpzn/99khmZDJDism1SXlnQCntoX67yh/ionuJw1PVi9qZwSiAAv0QABmA7azI+FqfUSvv4ofs1yqj1wjERaeZ0LqPArbMAhpfrf5uOADsDSiU0vPkWeQCshwAMwFZ0KeNVW983pw/qeMZ+3067mLoyiB1FK1kYoxU6QCRE+0YADg4Ml+DASHM6NT3Y27sDwEMIwABsRZcz1p/ZHY4Q6ZF68n7fTmxUNwkKDJeqmhIpLNno0X20sz8nwPlGAG44CpyaHuLtXQHgIQRgALayatsH5rhL8hjT53V/aUs0V0jLLVrhsf2zs6qaMiks2eBTJRANA3DHrowAA/6CAAzANrRv75ptH5vTvTrtf/mDiysAF5VuoiewB+TvXK1FKqb3bkRoO/EVriWRO3ZhBBjwFwRgALaRsWOulFXmmt6/ndsddcC3Fx7aTkKCoqXWWS1FpZs9so925ovlD41GgLsEmxpyANZHAAZgGxuzvjXHXVKOlUDHgf+crT2B46K6m9MFxesO+PbsTicU+lr5gwoLjtc2EBIRFSiVtTu8vTsAPIAADMAWdORuY9YMc7pryrEeu934qB7muKBkPd0gPNUCLbqX+BLtR+xw1i2VXVa1ydu7A8ADCMAAbEH79RaXZ0iQI0w6JR3hsduNCutgukHU1FbIzrJtHrtdO35ByatvgZYY4/0lkJtyOOsmTJZWE4ABf0AABmCr8odO7Y6UoMAwj91uQIBD4iK7mdOUQey/0oocKa/KlwBxmFXgfDYAMwIM+AUCMABbaI3yBxdXAM4vWcckqf20Y2dd/a+uzOfJLyie4nDGmGNGgAH/QAAG4PeKyzLqlywOkPTk0R6/fV0W2REQLFXVxVJakeXx27fTCnC+WP7QcAS4vHqb1NRUeHt3ABwgAjAA25Q/tI8fKuGhdT1dPT1JSkcuVX7xeo/fvh3k+WgLNJcACZfS4hpxSo0Z6QdgbQRgAH5vQ335g7Y/ay2xkV3di2Jg/0sgEnysA4RLgATIto11i53kFdWFdQDWRQAG4Ncqq4vNAhiqS8qYVruf2Ig0c1xakS1V1aWtdj/+SFfRy9+51qdLINS2jZWN2rUBsC4CMAC/ti13ttQ6qyQmIl3i6xetaA3BQZFmZTjFqnD7prBkg3mNgoOiJDq8o/iqbRvqRoAJwID1EYAB+LUtOT+a487tRrX6fblGgSmD2De5hcvdC2BoWzlflbGpbgTY1a8YgHX57icNAHjAlty6AJzW7qhWv6+YiLqJcIWlm2iHtg9yi1aY46SYfuLLMjbVjQCXVGRJeWW+t3cHwAEgAAPwW4UlG005grYo65g4otXvLyq8g7mv6poyKavIafX78xd1Lep8PwBXlDklNDDFnN5RVDdpD4A1EYAB+K3NOT+4259pjW5rcwQESnREJ/coMPZOR8rdATjWtwOwighKbzRqDcCaCMAA/L7+Ny259csfXGIj6gISE+Faprhsm1RUFYojIEgSfHAJ5KYig+tW/SMAA9ZGAAbgl2pqK2XbjjnmdOek1p8A56LdJlyrz+k+YM9co7/x0T0lMDBUfF1EfQDOKfzd27sC4AAQgAH4pcy8hVJdUyrhoUlt2ls2LCROQoNjxSm1srN0a5vdr1XlWKT+t+kIcEHxWqmqKfP27gDYTwRgAH5d/6ujv23dWss1Ckwd8N7lFlqjA4RLSGCCRIS2M19wmAgHWBcBGIBftz/r3Abtz3ZfB0wAbnkHiL5iFUkx/Rv1LwZgPQRgAH6npDy7fnQuQDonHdHm96+dIALEYSZ3lVcWtPn9W0VZZZ6UlG+3XgCu71aRU0QdMGBVBGAAfjv62y62v4SHJrb5/Qc6QiQqPNWcZhR491wjqFoyEhIcLVbRjhFgwPIIwAD8d/njNuz+0BR1wP6zAtzuRoDzdq6i0wdgUQRgAH7F6ayVrbk/m9Od27D/b1OxkXUBWDtB6IQp7MpKC2A0FB3eyXT6qHVWSd7O1d7eHQD7gQAMwK9of9byyjwJDoqSlLiDvbYf4SFJEhQYYUJSTUCu1/bDl7lKCKxU/6sCAgKYCAdYHAEYgF/ZUt/+rFPi4RLoCPZqSIqNSDOnaxxZXtsPX1VVXSoFJevN6XYWK4Fw1ZcrJsIB1kQABuBXNud4r/3Z7uqAawIIwE3lFC7TghWJDGsvEWHJYjWuso1cVoQDLMmnA/CDDz4ohxxyiERHR0tycrKcfvrpsmrVqkbblJeXy7XXXiuJiYkSFRUlZ555pmRlNf5js3nzZjnppJMkIiLC3M6tt94q1dXVbfxoALS2iqoiySpYbE53bue9CXAuMfUjwLWOQomJ8+mP2zaXVbDEHCfHDRYrck3c03Z7tc4ab+8OgH3k05/IP/zwgwm3c+fOlRkzZkhVVZUcd9xxUlJS4t7mpptukk8//VT++9//mu0zMjLkjDPOcF9fU1Njwm9lZaXMnj1b3njjDXn99ddl0qRJXnpUAFrLth2zxemskdjIbhIT0dnbuyPBQRESEVo3utlnSLi3d8enZNcH4JS4QWJFcZFdJTgwUqpryyW/eK23dwfAPgoSH/bVV181Oq/BVUdwFy1aJKNGjZLCwkJ55ZVXZPr06fKXv/zFbPPaa69Jnz59TGg+7LDD5JtvvpEVK1bIt99+KykpKTJ48GC577775O9//7vcc889EhISssv9VlRUmINLUVFRGzxaAJ6q/03zgdHfhqvClVZkE4CbyC5YaukRYF1eu13sAMnImyvZ+UskMbqXt3cJgL+MADelgVclJCSYYw3COio8ZswY9za9e/eWtLQ0mTNnjjmvxwMGDDDh12Xs2LEm1C5fvny3pRexsbHuQ+fO3h9JArBnTqfzz/6/PlD/6xJT3w6tz8FhpkUb6lbqKy7PMKvlJccOFKtKiR9ijjPry24AWIdlAnBtba1MmDBBRo4cKf37182+zczMNCO4cXFxjbbVsKvXubZpGH5d17uua87tt99uwrbrsGXLllZ6VAA8RTsK7CzbJg5HiKQmDBdfoZO8xBkk0bGBUlJV1/XA7rILfjXH8dEHSXBQpFhVSnxdm72s/LrHA8A6fLoEoiGtBf7999/l55/rGty3ptDQUHMAYL3yhw7xh5jaW1/hCAiUQGey1ARkSGGFBqVzxO6y3OUP1qz/dUmpL9/IL15jJmCGBsd4e5cA+NMI8HXXXSefffaZfPfdd9KpUyf35e3btzeT2woKChptr10g9DrXNk27QrjOu7YBYH2u8oc0Hyp/cAmqrfvVqbCibuKX3f05Ac6a9b8uEaHtJDpcS+ScklP4m7d3B4C/BGCt6dPw++GHH8qsWbOka9euja4fOnSoBAcHy8yZM92XaZs0bXs2YsQIc16Ply1bJtnZ2e5ttKNETEyM9O1rrdWHADSvuqZcMnbM9Zn2Z00F1gfgnVWrzEihnWnLsOz6sGj1AKza19cBUwYBWIvD18se3nrrLdPlQXsBa82uHsrKysz1OkHt8ssvl4kTJ5rRYZ0Ud+mll5rQqx0glLZN06B70UUXydKlS+Xrr7+WO++809w2ZQ6Af8jMX2jaUUWGpkiCD87Gd0ikZG2t0vgn23Jni50VFK+Xqupis0y01gBbnWu57cx8JsIBVuLTAfi5554zk9COPvpo6dChg/vw7rvvurd57LHH5OSTTzYLYGhrNC1r+OCDD9zXBwYGmvIJPdZgfOGFF8rFF18skydP9tKjAuBpm7Prlz9ud6RZgtgXrVhc98V9S27dvtp9ApwuJaz10VbnnghX8Kv51RKANfj0JLiWfJiEhYXJM888Yw67k56eLl988YWH9w6Ar9iS67v1vw0D8DGnxpilmvWzzVeDelutAOcaObW6xJg+EugIlYqqAiks3WgWyADg+3x6BBgA9qa4PFPyduoS6QHSKekI8VWrl1VIgARLcdk20zXA7hPgrLoARlOBjhCzIIaiDhiwDgIwAEvbWt/9ITluoISFxIuvqqpwSkxoXVDalP3nxF070QmAO4r+aFQ64A9co9laBgHAGgjAACxtU/Z3Prf62+7Ehw41xxuz7BmAM/MWilNqJTaii0TpAiF+4s8FMZgIB1gFARiApdufba5fAKNryrHi6+LChrmDUlllnthNRt48c5yaWNelx99GgHfs/EMqq4u9vTsAWoAADMCytPdvdU2paX+WFFO3RLovCw1sJ4nRvc0o6Obs78VuXL2afWmpak+ICu8gMRHp4nTWyPa8Bd7eHQAtQAAGYFkbs741x+kpoy3TVSE9ebQt64Arq3ZKTuEyczo10b8CsOqYeLg5tnufZ8AqCMAALElbiW2sD5FdLFD+4KJh3bV0c02tLo5hD9vz6+p/daQ0KjxV/E3HpLrVR7ftIAADVuDTfYABK9MluXNzcz1yW0lJSZKWluaR2/IXuUXLpaR8uwQFhkvHxLrwYQXJcYMkLCRRyit3mJ/LOyXVjRz6O38tf3BxvQdzi1ZIeWW+T3ckAUAABlot/Pbp01tKS+tW/zpQERHhsnLlH4TgZsofOieNkqDAMLEKXf0sPfkYWbX1f6YMwjYBOG+uX06Ac4kIbSfxUQdJfvFqydgxT7p1ON7buwRgDwjAQCvQkV8Nv5MfHidduqcc0G1tXJclk26dZm6TALxrAO6SMkasRuuANQBvzJohh/e50zL1ywdW//u739b/uuiXGQ3AWgZBAAZ8GwEYaEUafnv36+Tt3fA7xWXbJbdIA1WApCf/Rawmrd0os3xuUelmU8rRLtb3O1gccP2vs0aiwztLdHhH8VdaBrFs4+uyNfcXb+8KgL1gEhwAy9mQ9Y05bh8/RMJDE8VqgoMiJS35GHN63fYvxN9tr+//29FPyx9c6so7AqSgZJ2UlGd5e3cA7AEBGIDlrM341Bx363CiWFWPDieZ43XbPzcdLfzZlpyf/br+1yU0ONY9mr9txxxv7w6APaAEAoClFJdlSGb+QjPS1r0+RFqRlm7UlUFs8usyiOLyTHe5Sud2o8TfaT9g7Xes/YAP6ni6t3fH8uimg9ZCAAZgKWu3f26OUxMOlaiw9mJVWgahIXh95pdmFNhfA/CmrLpezSlxg02nBH+ndcBL1r8gW3J/MiP7/j7BsTXRTQetiQAMwJLlDz1STxGr697hxPoA/IUM73WbX4Yl14p36Rbs1rE/tMwjKDDC9KjWke92sQO8vUuWRTcdtCYCMADLKCzZKDmFv0lAQKB0a3+CWJ2OAAc5wvy2DKKqpszdEaFL/RLQ/k57Uqe1O1rWZ34h6zO/JgB7AN100BqYBAfAMtZmfGaOOyUebsnuD3vuBlH32PzJ1tyfpaa2wrQ+S4juJXbRtf1x5nhDZl23EgC+hwAMwDLWbvef8geXHqknm+PV2z6WWmeN+GP9b3ryGL8s79gdXenPERBkFsUoKNng7d0B0AwCMABL2FG0UvJ2rhJHQLB0bT9W/EWX5DESGhxnaka35Pwo/sLprHXX/3ZJsUf5Q8N2aKmJI8xpRoEB30QABmAJKza/7V76WAOGvwgMDJWDOv6fOb1yy7viL7QVWGlFjgQHRkpqgv8uf7w7XVPqyiA21i/aAsC3EIAB+Lyq6lJZve1Dc7pv2gXib/p0Ptccb8r6VkorPNPz1Ns2ZM0wx9r7V0O+3egXNZWZv1hKy7O9vTsAmiAAA/B5a7d/JpXVOyUmIk06JY0Uf5MY01uS4wZJrbPaHfStXv6wpv5xdGt/vNhRVHgHSY4dpM+GbMz+1tu7A6AJAjAAn7di8zRz3DftfAkI8M+PrT6dzzPHKze/Y/mlkbftmCs7y7ZJSFC0X9Vr7283iDX1vasB+A7//EsCwG/kFi6X7IKlZvJbr05ni7/q0eFkCQoMl4KSdZKVv1isbNXW/7q7dWhfXLvqmXqaWQI6Y8cc08MagO8gAAPwacs3T3ePpkWEJom/CgmONiFYLdv0ulhVZdVOWb/9S3O6tx9/YWmJ6IhOktbuKHN65ZZ3vL07ABogAAPwWRVVhbJm20fmdN+0ceLvBnS91Byvy/hcCks2iRWt3f65VNeWS1xkd0mOGyx21yetrrTljy3/k5raSm/vDoB6BGAAPmvZxtelqqZE4qMOko71fVX9WVJMX7OMrlNqZcn6F8WKVm39nznu3flsWy1+sTvpyaMlPDRJyipzZWP9wiAAvI8ADMBnf0pfuv4Vc3pYz+ttE6YO7n61u47Wau2zCorXS2b+QgkQh7u3sd0FOoKld6dzzOmVW+p6WQPwPgIw4GE6g7/WWSFRMQ5xSrW3d8eyft/0plRWF0lcZDfp1uFEsYsOCYdKStwQ83P5bxtfEytx7W/ndkdJZFiKt3fH5/o8b8n5SYpKt3h7dwCISJC3dwCwuoKSDWYJ26z8XyWr4FcpLttm+rk+NL2zlMjHsmR9uGkHFRnWXmIj0iU6orMZFcLuVVWXyNL1L5vTQ3pcJ46AQLELHeke0uMa+XLhFbJ801tmRDg0OEZ8XXF5pnslu8Hdr/L27viU2Mh06Zg4Urbt+EV+3/imHN73n97eJcD2CMDAfqisLpY12z6WVVvfl6yCPbesqq4pM4fSimzJKfxNAgICJd5MEBokkWEdbPPT/r5YvmmalFflS0xEuvRMPVXsJj35L6buOb94tfy67jk5rPffxdctWfeC1NZWSvv4QyQ14TBv747PGdTtiroAvOlNGdTtSokMS/b2LgG2RgAG9rErwbKNb8hvG16ViqoCc5nWO6YmjpDURP3p+mCJj+ohK5avk8OGj5LX/3edpPeIlorKAikq22Jm9uvP+nnFq80hIrSddEgYbn7mJwjXKavMk8XrnjWnh/S4VhwO+31M6WIfw3vfKl8tvNKMhPfufI7ERXYVX1VakSMr6tvV2alee1/o5Mb28UMlM3+RLF77tBzZf7K3d8knaemPLqJSWp4luWXz5NBjIqU6YJsUltRIaHCsOfD+gifY7y8LsB9qa6tNR4KFa54wS/Kq2Miu0rfz+dKz4+m7jOYEOTLFWavhOMSEXD3ER/c09cEaFnIKl8qOnavM6XXbPzPlEfoTaUxEJ7G7uSsfNF8uEqJ723oiVZfkMdK53ShTXvPL8sly0qG+Ww+sIb2mtsL8qtEp6Uhv745P0tB26EE3yyfzLpAVm9+Wwd2uMn2C7U4/E7MLlsim7O9ke958U0am7yWXS25OknKZK2sy6s7rgjjaVSMmorMZbAgPSSIQY78QgIG92J63UH76/U7ZsfMPcz4+qqcM7XGddE89eZ9rU/WDWsNyZNix0inpCHfdcEl5pqze9r65bQ09IUFRYkcZO+bJH/WriB3V/1+2rpXW98rIvnfLez8eL5tzvpNNWbMkPeUv4mv0S9zvm/5jTg/rcSNhZA86Jh3urgVeuOZJOWbQQ2JXxWUZpmZcS8kKSxuvkqcrImp5WG1VuMyfu1D6De4koWEi5VUFUuuskpLy7eaggTkkKMa0D0yK7S8hQZFeezywHgIwsBtlFTtk7h9T3IEsNDhODuv9D+nT+RzzE/WB0g95/YOoo2YZefMlp3CZ5BevkcLSTabnbXLsQI/cj5V++vzx9zvN6T6dz5f2CUPF7uKjusvArpfJkvUvyM8r7jXvF19bWvjn5fdIdU2ptIsdKGnJx3h7d3zeob1ulg9n/yKrtr1vaoETonuKneQU/i5L178k67Z/biYLuz4LuySPNu/vDvGHSlxUd/NFavHixXLRpKHy5gcXSu/0TuJ01kp5Zb4ZMNDJx0WldSVlGXlzTRiOi+ohHRIO8esVI+E5BGCgCf2Q1Z8o5616yNT8qj6dz5PhvW+T8JAEj99fcFCkpCcfI+1i+8um7Fnmw31Lzg+yo2iFpCX73ohfa/l13fPmC0BYSKIlJn21laE9r5fV2z40f+w1bB49cIr4inXbvzRBRid2HjXgAUZ/W6B9/BDpknKsbMyaIbOW3iz/d/j7tvilQ4Pv/FWPml8zXHSypK6U1zXlWPM5uDc6IBAemmgOSbH9pKa2SgqK10l24W9mRFgnjepBf0lLTRhutgN2hwAMNKCjsDoKmV2w1JzXn9aO7H+fmbzS2rROWBvm5xb9LltzfzE/Lf+x5V0JCuwqEVH+PRK8Oft7WbD6MXN6ZJ87JSwkztu75DO0HGb04Kny6byLZOWWd8x7UVdZ8zYdiftp+V3mtLZq0y9waBn9TNERS+0Ks2jNk2ZU2F/l71wr81dPlfWZX5jz+mWpR4dTTFeMA33P6BeHxJje5qCfl9vzFpgv0a5DQtRB0iFxeKsMXMD6CMBAfXcHHZ2oq2V0mr69hxw0UfqnX9SmXQh0BK1d7ACJi+wuW3N/lh07V0p14Aa5+4VUySmdKU7nYL8ri9CfMmf8er153vvUTypEY1ovfshBE8yXhJ9+v8u8R/SPvjcnLv28/F4pq8g1E5GG9dDXDy0VFdbejJh/s/haWbz2mboOEX5W8qMLfixc87is3vqhWdpbpwRrS8NhB01olY4mOoDQvcOJUlqRK9vz5kl+8dr6bjtrJDG6l9RKusfvE9bmX39Jgf34Q75q6wfy9vejTX9ODWE9U0+T846aKQO7Xuq1FlzBQRHStf1x0qvTWeKojZHo2EBZX/iMfDTnbMktWiH+tNyxtvrSzho6snlk/3v5GX03hva43kyQrK4tl68W/dUsPOEt2pt4TcZHpgXgMQMflsDAUK/ti1V173CSHNTxDBMOZy69ycw58AfFZdvlh2V3yNvfH2P6pOvj65pynJxz5Jcy5uAnWr2dn9b/6nPbN+0C015SP9N1AnNp8Ddy3tUJUlmT16r3D+sgAMO2tAODBspZSydKWWWuGXU9Zfh08yHtK03qo8M7Snj1aPnglXxxBISZHqL/++lkM/rmqk+2Kv0J/dP5F5mRGm0DN3bIcxLoCPH2bvksHfkfPfhx857QeuCP55xr+qW2tRWb3zH18WpEnzskJf7gNt8Hf3FEv3vqX8/N8un8C6W8sq63uBWVlmebGvXp3x9lekLrBDdtiXfGyI/k+GEvtvkvFjoi3CP1FDN/QxfUkQCnjDopWpZkXyNzVj5oPn9gbwRg2E5hyUaZsfg6+WD2/0lm/kIzA3l4r9vknFFfSqekw8XX6Cjbtx8WycB2T5qRDR1RWbbxNZn23SgzcayqpkysOEqkXz60/6d21zhh2EsS4SNfOnyZ1jKeetg7Eh3euT4En2PCU1tZv/0r+XHZHe66X63jxP7TJa5POvQN09d2R9FK+Wz+RZb7Yqsj1xoo9fNIe6VrN5cOCYfKaYe9K6cM/4+kxA326v5FhqXIQR1Pl/CqUbJuRbk4pdJ0VXnruyNl3h8Pm5IJ2BM1wD5s8+bNkpt74P9zJiUlSVpamtidTsZYtPZpWZvxibsmrXens+SQXjebmjxfFxqYJCOGPCNbcs6VX1bcZyZ5aJs2XZVO2yn17XyehARHi6/LzFskM5bcIMVl20yvz5MPfdN2raAOhC4AcPqId+WTeeOksGSD/O/nU+WoAQ9K9w4ntNp91jprzGQt7V2rPynrZE390ogDpzXUpw6fLh/PPc9Mwv1k7gVy3JBnJDayi/iy/OJ18tuGl00JmWvhCl0JUyf0aa9jXytlCnS2k0dvy5KZv7wouTUfmC8ci9c9I0s3vCx9Op8rA7pcInFRWjIBuyAA+3D47dOnt5SWHvjoXkREuKxc+YctQ7D+4dYOA8s3vSWbc743f7xVWrtjZHivW0wrHavROtBzRn1lWmPppCgNknNW/ssEFK1707ZCvrhsblV1qcxf/Yj8tkFXNHOa+ryTh//H/ASMfRMVnmpG2L5YcJnpGvLN4qtNPekR/e42S8V6Ukl5tikT0kmZSicqjup/n88FHCtLiD5ITh0+zYTf3KLl8t5PJ8qR/e6RXp3O9qnnuaamQjZkfWMWsHC9H5T2gD6k5wTTB9qX9rc5cWFD5ZiDL5cNmd+YWvbswqVm/ocetGSjX9o405aSunb/RwD2UTryq+F38sPjpEv3lP2+nY3rsmTSrdPM7dklAOvENg0FazM+k7XbPzMB0UUnY2hfVZ1Fb2W6Ap2OXvfscIqs2vahLF3/ohSUrDc/7elBf4LUQNQlZbSphfN28NXFRHQfXTWrOrlvZN+7PB7W7ETr1M8Y+YEsXP2E+UO+etsHprdsv/SLzOIZB7oYgP40vGTdC7J803/MxDstFRrV/1/Sq9MZHnsM+FNiTB8568jPZNaSiZKRN0++++02WZPxqfm8Sk041Kuhd+uO2bJ++5cm/Ooy5XUCzOfLoK5Xms8bXw++Tevpu3U4Xrq2Hyvbdsw2v6JpD/atuT+Zg64u163DCdKjw8nmuScM+ydbBeBnnnlGHn74YcnMzJRBgwbJU089JYce6r0Plt3RtjG/5z4tNz+UIim9VokjarPpnai1oNqVINARag5BgaGNTusfqCBHmDn2VvcCb9EekLqMrvbP1Q+wnWVb3ddpyNKfbPumX+CTI6MHQj+Y+6adZ1an25g9U1ZsmiZbcn40PUb18MOyAPOzZFryUdIh/hBJjj9YggPD22TkXScZ6h/MP7a85/6jGRWWato/pSUf3er7YAc6aXB471slPfkv8sPvd0jezlXy67pn5bcNr5jRuC4pYyS93TEtXhBAu3LoLyUbsmaYMF1dX1+uqxVqtwcdqUTr0V9DTjlsuvnisWD1VHcgax9/iPRJO9e8zq3d01ZrePV9pJ+nGg71uKqmxH29li317nS26UWt5ThWpqG9U9JIc9C2bTp5b/XWD6SkIsv0YK/rwx4hHRMPN9topxr9omKHhUvswDYp6d1335WJEyfK888/L8OHD5fHH39cxo4dK6tWrZLkZN+afFNSkSklVeuke98wqZEcKSrd99twBASZIFwdFCjXT06WtfmPScnv3SQsJP7PQ3CD0yEJbRKMDkR1TbmUVe4wK6XpRDbtH6sf1Fo3p5c1pF8EdBW1Hqknmz8avrZ8bGuMaOhqSnrQ9lirt74v6zO/Ms9NVsFic1COgGCJj+4hidG9TZiJiegiMRGdzB+1sOC4/fripK+L6zXJKVouuYW/mxGs8so/2w3FRKTJoK5XmJFfbfEGz9IestpmamPWt6avrP6suyHzK3NwffGoe73TzRdCrRUPkAATbCqris2EurzitVJUsrG+Pr5Ocuwg07dV+9RaaYTP6r/uDOlxjZnwumT98/LH1vclM3+BOeggSEr8UNN5Iymmn+lvq+Uw2re8pa+P/kKmS1frZ6mO8peUZ5lacj1ou7AdO1dJbW1lo38TEZpsRku7tT9BUhOHm330NxrmdQXKQ3vdYgYP1mz7RDZlf2sGV/RYD66/LQkxvSQhqpf5fyo6XD8/UyQyvINEhCTZbvDJymzzSk2dOlWuvPJKufTSS815DcKff/65vPrqq/KPf/xDfIl+8OVnBcnEm2+UG/5xiqR2jBOns8aMqmlrGZ1woD9L6XF1/Wn9iVKDSN2IjdNsp71Vtc9HnyHhsqP8J9mx6ac93q+OJGsQ1lW4ggMjTWgMNCPKoQ1Oh5kPgMDAEAmQQBO8zOi0OXbUjVLrh2NAQP2HpJ53mA9dp9SYZYb1oI9F/9C6z9dWmX2vqil1P466D+l806JMG+6bx7NbAZIQ3avu23ziSPMh3ZKlNf2RTugb0uNac9BuC/rTXkbeXLNKkgZVnfyhh+bo664BSWen63Gg+eLg1L+a5nr9r75edcGpSMqrCqW8svn+pfozotbS6U+JuvSrP/7R9LkvQe2PM8+11pHq6PumrG9N3+ji8gxzaInYyG51X6baHycpcUMIvl4SG5luJjcO6znBjEzq66n/37rCcEM6SqklL/qZFxwYZUKY/s2o+3ytO9a/CeVVBeaz1DVpbXf0/3395ahj0kjpmDjCrIjpbwvw7I5+Tulj1oPT+YBZkl5/Fdmet9AMJGiXDl0p1LVaaEP690+72WjZWXBQlITUvx76uuiKjvqLnQ5OmYMj2NyXDko4HHocJAF6kAb/v+3y/96f5xtd02C7Rv/efGbXfX47G1xSd97pnhPj2qb+lLFjR64UF7v+5tZvV/93oP4vQcNr3Kf+vFe9zbpzkZERMrTvBT4338MWAbiyslIWLVokt99+u/syh8MhY8aMkTlz5uyyfUVFhTm4FBbWtaUpKipqoz2Ok6DqXrJ0bpmsWyZSXaw/t7TsJxeHecdpuKwQZ0ClZGVmy2cfzZZLrzhfEhLDpNpZLFW1O6Wmtliqa3ea89W1xeKUam1oI8WiNZpt31u0pQIkSIIdsRIamCxhQR3MISK4m0QFd5UACZGaXJFNepBF+30f+t6orf1zFGx/6C8L6o/lW6WsdM9/bPZm04Ycc6zv4eLi4v24hc4SKp0lPegsqQrPlbLarVJauVnKqrdKZU2OVNTmSFVt3Xu8TPQDb09fNJrnCAiREEeSRASlS2RwF4kI7i6RwT3EsTNItu4U2br6l1Z/zj19W771Gu7PYxwmKTJMEiNLpbxmi5RV6eudK9XOMqmp1Z+VnBLoCBdHQKjpMBIW1FHCAztKsCNeqnJEVueUyGr5ycP71La35auv4b4/vqHSXoZKQniOFFb9LqVVm6RMDzXbpMapr2Wx7Ny5b/vkkGAJcsTWfZ4GtZfwwPYSHtJRwh1dJCSwnQSUB0jRVpGirfpLzs9t8Bh9+fUbINEyQKJCx0tFUJaUVm+WipptUlq1Tapqdkhlbb45iFRLaal+0WzZl007cdSkyuDep7T6/bhy2p9hffcCnC3ZyuIyMjKkY8eOMnv2bBkxYoT78ttuu01++OEHmTdvXqPt77nnHrn33nu9sKcAAAA4EFu2bJFOnTrtcRtbjADvKx0p1nphF/0Wm5eXJ4mJiW32c6B+i+ncubN5EWNiYtrkPuE5vH7Wx2tofbyG1sbrZ31Fbfwa6pjuzp07JTU1da/b2iIA60IQgYGBkpWV1ehyPd++/a4LIISGhppDQ3FxceIN+obhf3zr4vWzPl5D6+M1tDZeP+uLacPXMDa2Ze01bVHVHhISIkOHDpWZM2c2GtXV8w1LIgAAAOD/bDECrLSkYfz48TJs2DDT+1fboJWUlLi7QgAAAMAebBOAzz33XMnJyZFJkyaZhTAGDx4sX331laSk7P8qa61JSzDuvvvuXUoxYA28ftbHa2h9vIbWxutnfaE+/BraogsEAAAAYKsaYAAAAMCFAAwAAABbIQADAADAVgjAAAAAsBUCsA+bMmWKWXluwoQJ3t4VtJAuo62vWcND7969vb1b2Efbtm2TCy+80Kz+GB4eLgMGDJCFCxd6e7fQQl26dNnl/0M9XHvttd7eNbRATU2N3HXXXdK1a1fz/1/37t3lvvvuM6t8wTp27txp8kt6erp5HQ8//HBZsGCB+ArbtEGzGn2TvPDCCzJw4EBv7wr2Ub9+/eTbb791nw8K4n8zK8nPz5eRI0fKMcccI19++aW0a9dO1qxZI/Hx8d7eNezD56eGKJfff/9djj32WDn77LO9ul9omX//+9/y3HPPyRtvvGE+T/XLp/bs1xW+brjhBm/vHlroiiuuMP/v/ec//zFLE7/11lsyZswYWbFihXTs2FG8jb/MPqi4uFjGjRsnL730ktx///3e3h3sIw28zS2xDev88dW161977TX3ZToSBevQLy1Nf03TUcSjjjrKa/uElps9e7acdtppctJJJ7lH9N9++22ZP3++t3cNLVRWVibvv/++fPzxxzJq1Cj3L6Sffvqp+XLjC9mGEggfpD/T6f/4+k0J1qOjhfptt1u3buaLzObNm729S9gHn3zyiVkxUkcLk5OT5eCDDzZfRmFNlZWVZuTpsssuM2UQ8H36U/nMmTNl9erV5vzSpUvl559/lhNOOMHbu4YWqq6uNr/ChIWFNbpcSyH0tfQFjAD7mHfeeUcWL17sU3UyaLnhw4fL66+/Lr169ZLt27fLvffeK0ceeaT5GSg6Otrbu4cWWL9+vRmh0OXT77jjDvP/ov7sGhISYpZTh7V89NFHUlBQIJdccom3dwUt9I9//EOKiorM/InAwEATpP71r3+ZAQVYQ3R0tIwYMcLUbvfp08esuquj+HPmzJEePXqILyAA+5AtW7bIjTfeKDNmzNjlWxOsoeEIhdZvayDWCQDvvfeeXH755V7dN7RMbW2tGQF+4IEHzHkdAdYvMM8//zwB2IJeeeUV8/+l/ioDa9DPy2nTpsn06dNNDfCSJUvMZCp9Dfl/0Dr+85//mF9etN5Xv8gMGTJEzj//fFm0aJH4AgKwD9E3RXZ2tnmTuOg33x9//FGefvppqaioMG8iWEdcXJwcdNBBsnbtWm/vClqoQ4cO0rdv30aX6QiG1rPBWjZt2mQmpH7wwQfe3hXsg1tvvdWMAp933nnmvHZh0dfywQcfJABbSPfu3eWHH36QkpISM6Kvn63nnnuuKQ/0BdQA+5DRo0fLsmXLzLdd10FHovRnHz1N+LXmhMZ169aZ//FhDdoBYtWqVY0u01pEHcmHtehERq3jdk2mgjWUlpaKw9E4nujfP/11BtYTGRlp/gZqh52vv/7aTHD0BYwA+1jNTP/+/Xd542gv0qaXwzfdcsstcsopp5iwlJGRIXfffbf54NaffWANN910k5mEoyUQ55xzjpl5/uKLL5oDrEPDkgZgHTGkFaG16Geo1vympaWZEohff/1Vpk6dan5Oh3V8/fXXpnezzonRX0F1ZF/rurWlnS/gUwHwoK1bt5qwu2PHDtOK6YgjjpC5c+fu0pYJvuuQQw6RDz/8UG6//XaZPHmyaYH2+OOPMwHHYrT0QTuwEJqs56mnnjILYVxzzTWmLFBrf//617/KpEmTvL1r2AeFhYXmc1T/LiYkJMiZZ55pvtgEBweLLwhwsrQKAAAAbIQaYAAAANgKARgAAAC2QgAGAACArRCAAQAAYCsEYAAAANgKARgAAAC2QgAGAACArRCAAQAAYCsEYADAbt1zzz0yePBgb+8GAHgUARgAAAC2QgAGAD9XWVnp7V0AAJ9CAAYAi9m5c6eMGzdOIiMjpUOHDvLYY4/J0UcfLRMmTDDXd+nSRe677z65+OKLJSYmRq666ipz+d///nc56KCDJCIiQrp16yZ33XWXVFVVNbrtKVOmSEpKikRHR8vll18u5eXlu9z/yy+/LH369JGwsDDp3bu3PPvss230yAHAMwjAAGAxEydOlF9++UU++eQTmTFjhvz000+yePHiRts88sgjMmjQIPn1119N0FUaal9//XVZsWKFPPHEE/LSSy+Z8Ozy3nvvmZrfBx54QBYuXGjCddNwO23aNJk0aZL861//kpUrV5pt9fbfeOONNnr0AHDgApxOp9MDtwMAaKPR38TERJk+fbqcddZZ5rLCwkJJTU2VK6+8Uh5//HEzAnzwwQfLhx9+uMfb0pD8zjvvmLCrDj/8cPPvnnnmGfc2hx12mBkFXrJkiTnfo0cPM7p8/vnnu7e5//775YsvvpDZs2e30qMGAM8K8vDtAQBa0fr1603ZwqGHHuq+LDY2Vnr16tVou2HDhu3yb99991158sknZd26dVJcXCzV1dWmRMJFR3T/9re/Nfo3I0aMkO+++86cLikpMf9WSyM0bLvo7eg+AIBVEIABwA9pfXBDc+bMMXXD9957r4wdO9YEVh39ffTRR1t8mxqalZZODB8+vNF1gYGBHtpzAGh91AADgIXo5LXg4GBZsGCB+zItgVi9evUe/52WJ6Snp8s///lPMzrcs2dP2bRpU6NtdGLbvHnzGl02d+5c92mdHKelFjoKraUQDQ9du3b12GMEgNbGCDAAWIhOZBs/frzceuutkpCQIMnJyXL33XeLw+GQgICA3f47DbybN282o76HHHKIfP7557vUCN94441yySWXmIA8cuRIM+Ft+fLlJnS76AjyDTfcYEaQjz/+eKmoqDA1xPn5+WZyHgBYASPAAGAxU6dONbW5J598sowZM8aEVVdbst059dRT5aabbpLrrrvOrOymI8Ku7hAu5557rrnstttuk6FDh5oR4quvvrrRNldccYVpg/baa6/JgAED5KijjjKdJRgBBmAldIEAAIvTyWkdO3Y09bw6QQ0AsGeUQACAxWhv3z/++MN0gtD638mTJ5vLTzvtNG/vGgBYAgEYACxIe/iuWrVKQkJCTLmCLoaRlJTk7d0CAEugBAIAAAC2wiQ4AAAA2AoBGAAAALZCAAYAAICtEIABAABgKwRgAAAA2AoBGAAAALZCAAYAAICtEIABAAAgdvL/HOFNsjTlX74AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAHWCAYAAABt3aEVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAdI5JREFUeJzt3Qd4VFXaB/D/tJRJ7wmk0EkIHaSIBQVBRFbUXSsWdHXtCoouFlTU1bV33XX303VF17KWtUsTlN6lhJKQkEB6723mfs974sQkBAiQ5E75/57ncu/M3LnzzswN886Z95xj0DRNAxERERGRGzDqHQARERERUWdhcktEREREboPJLRERERG5DSa3REREROQ2mNwSERERkdtgcktEREREboPJLRERERG5DSa3REREROQ2mNwSERERkdtgckvkQXr16oVrr71W7zDc3jPPPIM+ffrAZDJh+PDh3fKY77zzDgwGAzIyMrrl8VzRvn37MGXKFAQFBanX6vPPP++Wx504cSIGDx7cLY9FRExuiVyWI5nZuHFjl36gfvPNN3jkkUdO+jie4ocffsC9996LCRMm4O2338Zf/vIXvUOiX11zzTXYvn07nnjiCfz73//G6NGj8f777+PFF1/UOzQi6kTmzjwYETm3PXv2wGg0Hndy+9prrzHB7aBly5ap1/if//wnvLy89A6HflVTU4M1a9bggQcewG233dZ8vSS3O3bswF133aVrfETUedhyS+RBvL29YbFY4EqqqqrgSvLz8+Hr68vE1skUFBSodXBwsN6hEFEXY3JL5ME1tw0NDXj00UfRv39/+Pj4ICwsDKeddhoWL16sbpd9pdVWSAmEY2mZeN59992Ii4tTifPAgQPx7LPPQtO0w1rN7rjjDoSHhyMgIAC/+93vcOjQIXWsli3Csi3X7dq1C1dccQVCQkJUPOKXX35R8Ugtq8QaHR2N6667DkVFRa0ey3GMvXv3YtasWaq+MiIiAg899JCKKysrCxdccAECAwPVMZ577rkOvXaNjY147LHH0LdvX/Vc5bW8//77UVdX17yPPK6UIsjr4nitpHzkaNatW4fzzjtPPVc/Pz8MHToUL7300mGtwaeffrq6XZIziT8lJeWYMbd9fY90HjhKXH7++Wf1PsnrJY/zpz/9CfX19SgtLcXVV1+tYpRFyi5avsdS5yv3l/f+73//e/NrdMopp2DDhg2tHlvOud27dyMnJ+eY8efm5mL27NmIjY1Vx4uJiVHPvWVdscTx+OOPq32sVivOOuss7Ny5s9VzlNcgISFBbc+bN0/FKrdL6c7XX3+NAwcONL9fcn1HffHFF5g+fTp69Oih4pPnLeeIzWZrd/9Nmzbh1FNPVV9+evfujTfffLPdL0fXX389oqKi1Hk+bNgw/Otf/2r1+oWGhqrXpa3y8nJ1n3vuuaf5Ojk/H374YfTr10/FKH+r8v61PG+J3A3LEohcXFlZGQoLCw+7Xj4Ej0U+9J988kn88Y9/xJgxY9SHo9Twbt68Geecc45KbrKzs1WyKzWKLUlSIUnq8uXL1YexdJz6/vvvVfIgiesLL7zQvK8kGR999BGuuuoqjBs3DitWrFBJwZH84Q9/UAm31Ks6kiiJYf/+/epDXZJSSWAkkZL12rVrWyXd4tJLL0VSUhKeeuoplcBIAiRJwd/+9jecffbZ+Otf/4pFixapRECSsDPOOOOor5W8RpJk/P73v1cJvSSl8tpJkvnZZ5+pfeQ1kpjWr1+Pf/zjH+o6SWaORJ7T+eefr5K2O++8Uz0vOd5XX32lLoslS5Zg2rRpKqmX90u+KLzyyiuqplfep+NJxo7l9ttvVzHIFx55TeW5SJK7evVqxMfHq/dDylSkw5zUc0vC25L8xF9RUaHOG3k/nn76aVx00UXqfXP8YiDnhrwvUv96rMT/4osvVu+vxCXPUxI/ec0yMzObn/eCBQvUeytfEGSR10Q6jUlS7iAxyPOYM2cOLr/8crWfv7+/+rIgfz8HDx5sPl/l+o6S+GX/uXPnqrV8CZF45O9IXqOWSkpK1ONecsklKgb5e7j55ptVC798SRPy3krCnZqaqkonJAH++OOP1d+PfMGQc0JexwsvvBCffvqpOpdb/kIgHeQkab3sssvUZbvdrv5G5UvLjTfeqF53qTmW5ypf/rqrQx1Rt9OIyCW9/fbbkvUddUlOTm51n4SEBO2aa65pvjxs2DBt+vTpR32cW2+9VR2rrc8//1xd//jjj7e6/ve//71mMBi01NRUdXnTpk1qv7vuuqvVftdee626/uGHH26+Trblussvv/ywx6uurj7sug8++EDtv3LlysOOceONNzZf19jYqMXGxqq4nnrqqebrS0pKNF9f31avSXu2bt2qjvnHP/6x1fX33HOPun7ZsmXN18mx/Pz8jno8R0y9e/dW74nE0ZLdbm/eHj58uBYZGakVFRU1X7dt2zbNaDRqV1999WHnQ3p6evN1bV/fI50HjvtOnTq11WOPHz9evWY33XTTYa/lmWee2XydPKbcPywsTCsuLm6+/osvvlDXf/nll4fte6zXXF4T2e+ZZ5454j75+fmal5eXOodbxn3//fcf9hiOx217PLmvvB4nor1z8k9/+pNmtVq12tra5uvktZLHfu6555qvq6ura35v6+vr1XUvvvii2u+9995r3k9uk/fB399fKy8vV9d9//33h72u4rzzztP69OnTfPnf//63Ok9++umnVvu9+eab6v6rVq06oedN5OxYlkDk4qRsQFqz2i7y8/axSGuWtIzJEEnHS1rwZKgr+Rm7JWnVlLzq22+/VZe/++47tb7lllta7SetcUdy0003HXad/JTrUFtbq1qrpRVYSGtdey2tDhKn9IyXuKSVueXzl1IKaVk81nMV0kLX9rkKaRk+Xlu2bEF6errqyNS2DtTRCi0/3W/dulW13Emrs4O8t9Ky7oirs8hr07IFfOzYsYe9Zo7Xsr3XTFrLpWzBQUopRMt9pcVVjnmsVltH3fKPP/6oWj3bI63a0kIr51LLuLurc1jLc1JarOWclOdcXV2tSi9aMpvNqkXbQZ6bXJbWaClXEPJ+Ssu5tOw6SEut/I1VVlaqXzyE/PIgJT4ffvhh837yGsnfvbwHDtLqK621iYmJKjbHIvcX8qsLkTtiWQKRi5NyAkk22pIko71yhZYWLlyoahgHDBigfmY+99xzVelARxJjqVOUWkOpoW1JPkwdtzvWMnqA/MTaktQAHknbfUVxcbH6ufw///mPSghakp+W25Kf0VuS2lupR5SkoO31bet223I8h7YxSyIiianjuR6PtLQ0tT7acG2O40oC3pa8zlIGIvW98vN6Z2jvNRNSp9n2+vYSzrb3dyS6R0pOj0bqQ6V0RL5ASP2pfJGREg4phZDXveXrIyUsLUnNcMsku6vIF8MHH3xQlSNIKcLRzkn5W2n7PsnfnZAaYnl+8nzkubQd0aTt35QkylKyIWUgUoYgr5WUKUgpUsvkVr60SpmLvB7taft3ROQumNwSeTCpM5UkSzrGyPisUicq9XjS0aVly2d3a9ki5iC1ilL7KTW9Ut8rNY5SUygJuazbkhbGjlwn2naAO5K2db2u6kgdno70+rR3fXuv2cm+vm1JC+yMGTNUbagk8tIpUOqcJZkcMWIE9CQ1sGeeeabqmChfEqUzmXx5kl8R7rvvvnbPyc4kdbVScyu/kMycOVPV8EoLrXRAc5AYhgwZgueff77dY7T90kLkLpjcEnk4R89rWeSnT0l4peOSI7k9UkInvc/lZ2H5ObZl663j51hH73RZy4es/ATfsoVNOs10lLT8LV26VLXcSocdhxMppzgRjucgj+doRRN5eXkqyXE81+MhyZCQMVYnT558xMd1jE/clrzO0gp9tFZbab2U+FqSn/E7MlKBs5DXSVpvZZHXX77YyAgX7733XvPrI9dLh7uWw351tLX4RL+wSLmEtPhLi2nLzohynrdHOma2bWWXTl3C0TlOno+MCiLnWsvW27Z/U0IeUzoiSmmCjCgiCb+M4dv2tdu2bRsmTZrkNl/MiDqCNbdEHqztz/HSGio/vbccJsjxYdw2SZKe39IC+Oqrr7a6Xlp+5YNUeviLqVOnqvXrr7/eaj/p8d9RjhbBti2A3TWzlDzX9h7P0SJ2tJEfjmTkyJGq/EKO2fa1dTxPSV4kmZNRGlruIwmxtLQ74joSSW5WrlzZ6joZAeFILbfdoaNDgUndqtRWt30+8kXKcX7KlwKpSZVzqeW5cTznhWPEhOPV3jkpXxzanucth5KTltaW+8plKRkYNWqUuk7eTxn+rGUtrdxPnp/8bUpLsYMkvzJyx5dffqlG6ZD9WpYkOH7tkNEp3nrrrcPikZEZXG0MaaKOYsstkQcbNGiQGnpIPlylBVeGAfvkk09azeDk+OCVTi2SqMqHuvwkKj8Xy5ii0lokNYPyc6gkXFLiID8nO1om5f5SHygJhyTTjqHAHK1WHWlRkp9+paVKhpaS5Khnz57qsY7UStbZ5LnJ0FWSGDp+jpbhviTplJ+E5XU4XpKcvPHGG+p1lARWWs4lmZXET2o55Wd4IUNKyReF8ePHq45djqHApO71WLPGSeu7dM6T1186oEkrnhy3bd1xd+roUGByfkiLoyRocp5KnakMuSat5Y6hriQxlKHcpFRB6nElOZSOevJTfUefo5yfkkxKZ0EZEk6SSHlPjkWGeJOWcXke8rch57EkmUcqwZCaW6khlr8VqbWVx5TOgnJOOYZJk+G6JOGVDoTSyUxadOXvcdWqVervp219uySzci7IOLZSftDyVwUh9fNSriDngHQek+Hj5IuNnGNyvZwL7dXrE7k8vYdrIKIT4xi+acOGDe3eLsMPHWsoMBnGa8yYMVpwcLAaEisxMVF74oknmocmcgz9dPvtt2sRERFqWKiW/21UVFRoc+bM0Xr06KFZLBatf//+aqillsMyiaqqKjWkWGhoqBrSaObMmdqePXvUsVoOzeUYxqugoOCw53Pw4EHtwgsvVLEGBQVpf/jDH7Ts7OwjDifW9hhHGqKrvdepPQ0NDdqjjz6qhu+S5xoXF6fNnz+/1ZBPR3ucI/n555+1c845RwsICFD3Gzp0qPbKK6+02mfJkiXahAkT1HsUGBiozZgxQ9u1a1erfdobCsxms2n33XefFh4eroankqG+ZIi2Iw0F1vZc6uhreaRhtkTb96ejQ4EVFhaqc0bOSXksec/Hjh2rffTRR632k+co70tMTIx6fSZOnKjt2LHjsOd4pBgrKyu1K664Qp1XcvvxDAsmQ2mNGzdOPa78Ddx7773Nw3QtX778sHNs48aNalgvHx8f9TivvvrqYcfMy8vTZs+erd4zGeZsyJAh6v1pj/ydyXnY3pB8DvK3/Ne//lU9vre3txYSEqKNGjVKvWZlZWUdfq5ErsQg/+idYBOR55FWK+kUJLWTV155pd7hkJtxzEB2rCHHiMj9sOaWiLqc/JTelvzMKj/NH2tmMCIiouPBmlsi6nJSKys1hFKbKrWTUhMpi9QYcjgicjYy2sLROt3JBAwtJ9UgIufC5JaIupx0vpHZkx577DE13JgM9i+dodoOXUTkDKRj2dEm5pAOhTIUGBE5J9bcEhERtSCjE7RXSuMgoyQ4RhEhIufD5JaIiIiI3AY7lBERERGR22DN7a/zb8vUiDJANqcoJCIiInI+UmwgU77LpCgtp6hui8ntr3N+s8c2ERERkfPLyspCbGzsEW9ncgs0T2koL5ZM80lEREREzqW8vFw1RradirotJrct5raXxJbJLREREZHzOlYJKTuUEREREZHbYHJLRERERG6DyS0RERERuQ0mt0RERETkNpjcEhEREZHbYHJLRERERG6DyS0RERERuQ0mt0RERETkNnRNbp988kmccsopaqaJyMhIzJw5E3v27Gm1z8SJE9VgvS2Xm266qdU+mZmZmD59OqxWqzrOvHnz0NjY2M3PhoiIiIj0pusMZStWrMCtt96qElxJRu+//35MmTIFu3btgp+fX/N+N9xwAxYuXNh8WZJYB5vNphLb6OhorF69Gjk5Obj66qthsVjwl7/8pdufExERERHpx6BpmgYnUVBQoFpeJek944wzmltuhw8fjhdffLHd+3z77bc4//zzkZ2djaioKHXdm2++ifvuu08dz8vLq0NzFQcFBaGsrIzT7xIRERE5oY7ma05VcyvBitDQ0FbXL1q0COHh4Rg8eDDmz5+P6urq5tvWrFmDIUOGNCe2YurUqeoF2LlzZ7uPU1dXp25vuRARERGR69O1LKElu92Ou+66CxMmTFBJrMMVV1yBhIQE9OjRA7/88otqkZW63E8//VTdnpub2yqxFY7LctuRan0fffTRLn0+REREROTBya3U3u7YsQM///xzq+tvvPHG5m1poY2JicGkSZOQlpaGvn37ntBjSevv3Llzmy9Ly21cXNxJRE9EREREzsApktvbbrsNX331FVauXInY2Nij7jt27Fi1Tk1NVcmtdCRbv359q33y8vLUWm5rj7e3t1qI6MhkFJLCwsJOOZaUFcXHx3fKsYiIiJw2uZW+bLfffjs+++wz/Pjjj+jdu/cx77N161a1lhZcMX78eDzxxBPIz89XndHE4sWLVaHxoEGDuvgZELlvYpuUlIjq6ppOOZ7V6ouUlN1McImIyL2TWylFeP/99/HFF1+osW4dNbLSE87X11eVHsjt5513HsLCwlTN7Zw5c9RICkOHDlX7ytBhksReddVVePrpp9UxHnzwQXVsts4SnRhpsZXEduEzV6JX39Y17ccrIy0PC+YtUsdkcktERG6d3L7xxhvNw3219Pbbb+Paa69Vw3gtWbJEDQNWVVWl6mIvvvhilbw6mEwmVdJw8803q1ZcGR/3mmuuaTUuLhGdGElsE5OPXipERETkTHQvSzgaSWZlzNtjkdEUvvnmm06MjIiIiIhckVONc0tEREREdDKY3BIRERGR22ByS0RERERug8ktEREREbkNJrdERERE5DaY3BIRERGR22ByS0RERERug8ktEREREbkNJrdERERE5DaY3BIRERGR22ByS0RERERug8ktEREREbkNJrdERERE5DbMegdARK5B0+wortiLkspU2Oz10DQbjEYLQvz7ITRgAExGL71DJCIiYnJLREenaRqKynchp2QD6hrKDru9vPoAsgpWICwgET3DT4PZ5K1LnERERILJLREdkQY70vO+R3HFHnXZbPRBZPAweFuCYTSYUNtQphLf2oYSFJTvQFn1AfSJPhf+vj30Dp2IiDwUk1siapfRBNSZ1qOq4hAMMKJH2HhEBg89rPwgOmQUKmoO4kD+UtWyu/vgJ+gZdqq63mAw6BY/ERF5JnYoI6LD2LVG3PDnCDSamhLbPjHnISZ0dLt1tZLABlrjMCjucoQGDFTtvYeKVuFQ0RpV0kBERNSd2HJLRIfJrvwEw8ZbAc2Ifj1nIMiv1zHvYzJ5o3fUVFi9I3Gw8CfklmyQNBkaErolZiIiIsHklsiNZGZmorCw8KSOUVm/D4cqPgEMgLdtdIcS25atuNEhI2EwGFUns9ySTbCYKtVtKSkp6Azh4eGIj4/vlGMREZH7YXJL5EaJbVJSIqqra074GBZvA+a/GIPoOAs2/FiFU4aGnNBxooKHwwADMgt+RINpDyZM9cesWbPQGaxWX6Sk7GaCS0RE7WJyS+QmpMVWEtuFz1yJXn2jTugYdaataDCloaHWjA/fLMaQ52tPOB4ZVaHRVoPs4nW47JZQTJw0CgP7jcLJyEjLw4J5i9RzZXJLRETtYXJL5GYksU1Mjj3u+1XX5mNXVlrTdv5AVFc2bZ+MmNCx2J++Hz5BBeiRmIWEXqfB1zvspI9LRER0JBwtgYiUg0Wr1TrUfwAaqk6sHKG9GtzKnP5I3VkLg9GG1Jwv0Wir65RjExERtYfJLRGhouaQmmnMMZ5tp9KM+NsTBdAavdU4uBl5P3CIMCIi6jJMbok8nCSahwqbWm3DAwfBxyu40x+jqtyO+pJkGAwmlFbt/3WYMCIios7H5JbIw0mLbWVttko8Y8LGdtnjaA0BiI+YqLZlgoeyqgNd9lhEROS5mNwSeXqrbdEatR0ZNAxeZv8ufbyIoMEID0xW2+m536GuobxLH4+IiDwPk1siD1ZZcwjVdfkwGsyIDjm5Ybo6SlpvZRazRnst0nK+ht3e2C2PS0REnoHJLZEHyyvdqtZhAYmwmK3d8phGoxl9Y6bDZPRRibVM9EBERNRZOM4tkYeSkgDp3CUig4d362N7WwLRJ/pc7Mv+HIXlO+HnE61KFjqqM6by5TS+RETuicktkYfKL90mVbcItMbrMrFCkF8CeoaNVzW/0npr9Y6An8/RZ1YrLGiq0e2MqXw5jS8RkXtickvkgWz2BtVi6uhIppfokFNQVZunWpCl/jYp/nJYTL5H3L+yvEat5zwwHSNGDTzhx+U0vkRE7ovJLZEHKipPgc1eB29LEIL8eusWh8xg1itqClKyPlATPMgICv17XACD4ejdAeISwk5oimEiInJ/7FBG5IHDfxWU/dJcaysJpp7MJm/0jTlfjdhQXp2J7KK1usZDRESujcktkYeREQpq6ovUpA1hAUlwBlbvcCRETVbbOSUbUFKZpndIRETkopjcEnmYwvJdah3i11e1mjqLsICBzaM2ZOT9gNr6Er1DIiIiF8TklsiDyIQJxRV71HZY4CA4m9jw0+DvEwObvR6pOV+j0Vand0hERORimNwSeRAZlUA6ksk0u4HWODgbo8GEPjHTYTH5oba+CPtzv4Fds+kdFhERuRAmt0QeWJIgtbbHGpFAL15mP/Tr8TsYDRbVwSwzf7nqBEdERNQRzvnpRkSdrr6xUiWLzlqS0JKfT6SawQwwqPF4c0s26h0SERG5CCa3RB40tq3MSObv0wM+XsFwdsH+fRAfcabaPlS0GkW/1goTEREdDZNbIg/xW0cy5xj+qyMig4chKniE2s7IWwyzb5neIRERkZNjckvkAWrqCpvGtoURIf794EpkBIVgv77QNBsCY1MQ2YMTKxIR0ZExuSXyAMWV+9Q6yK8XzCYfuBLp+NY7eiqs3lEwmhtx28JIwFivd1hEROSkmNwSuTkZacBRkhASMACuyGS0oH+PGbDV+yA82gKv0O2wcQxcIiJqB5NbIg+YbreuoQxGgxnBfn3gqixmP5RlJqOi1AajV6Wa5IFj4BIRUVtMboncXHHFXrUO8uujWkBdmb3BF689kg/NbkRFTRYycn/gGLhERNQKk1sidy9JqGxKbkNdtCShrczUejSUJKvOcfLcDhb+pHdIRETkRJjcErmxytpsNDRWwmT0QpA1Ae7CXheKXlGT1XZe6RbklmzWOyQiInISTG6J3FhJZapay1BaRqN7DaEl4/XKMGFCWm8d5RdEROTZmNwSuXFJgiO5dbWxbTsqKngkIoOHq+30vB9QWZOjd0hERKQzJrdEbqq6Lk+VJBgNFgRa4+GODAYD4sJPV6NAyCQPqTlfqpEhiIjIczG5JXJTJZVpzRM3uFtJQvuTPESg0VaDfdn/QyPHwCUi8lhMboncviShL9yddJjr1+N3sJj9UVtfjIw8DhFGROSpmNwSuSFJ8OoaSmEwmBBk7QVP4GX2R9+Y6eo5l1btR07JBr1DIiIiHTC5JXJDJVVNJQmBvnEwmbzhKfx9ohEfMVFtZxetQVlVht4hERFRN2NyS+SGSn+ttw32gJKEtiKCBiMiaIja3p/7HeobKvQOiYiIuhGTWyI3Y0cVquvypauVGkXAE8VFnAmrdxRs9jqV4GqaXe+QiIiomzC5JXIzjcZstQ7w7QmL2QpPZDSY0Cf6XBiNXmqWtpxi1t8SEXkKJrdEbprcemJJQks+XsFIiDhLbWcXr0NFTdPrQkRE7o3JLZEbCQg2wm4oVNshfp6d3IqwwESEBSTK4GhIz/0eNnu93iEREVEXY3JL5EaGjrVKqa2qN/WyBOgdjlOIjzwLXuYA1DeW41DRGr3DISIid05un3zySZxyyikICAhAZGQkZs6ciT179rTap7a2FrfeeivCwsLg7++Piy++GHl5ea32yczMxPTp02G1WtVx5s2bh8bGxm5+NkT6Gz7e6jETNxzPBA8JkZPUdn7pVlTUHNI7JCIictfkdsWKFSpxXbt2LRYvXoyGhgZMmTIFVVVVzfvMmTMHX375JT7++GO1f3Z2Ni666KLm2202m0ps6+vrsXr1avzrX//CO++8gwULFuj0rIj00WivwsBhPmo7xL+f3uE4lSC/BIQHDlLbGXlLoMGmd0hERNRFdJ1w/rvvvmt1WZJSaXndtGkTzjjjDJSVleGf//wn3n//fZx99tlqn7fffhtJSUkqIR43bhx++OEH7Nq1C0uWLEFUVBSGDx+Oxx57DPfddx8eeeQReHl56fTsiLpXad1GmC0GGLQA+HiF6B2O04kNPwNlVQfUzG12U4re4RARkSfU3EoyK0JDQ9VaklxpzZ08eXLzPomJiYiPj8eaNU21c7IeMmSISmwdpk6divLycuzcubPdx6mrq1O3t1yIXF1x7Tq1Ntt76h2KUzKbvJEQ2fQlucG4F5E9df1uT0RE7p7c2u123HXXXZgwYQIGDx6srsvNzVUtr8HBwa32lURWbnPs0zKxddzuuO1Itb5BQUHNS1xcXBc9K6Lu0WCrQVndFrVttvfQOxynFezfB0HWXoBBw6V/CoWmaXqHRERE7prcSu3tjh078J///KfLH2v+/PmqldixZGVldfljEnWlgwUrYdfqUJTXCKPW+ssgHT57GTQjkkb6oqR2rd7hEBGROya3t912G7766issX74csbGxzddHR0erjmKlpaWt9pfREuQ2xz5tR09wXHbs05a3tzcCAwNbLUSubH/u92q9dU01DDIWGB11cgeLfYDaPlD+Nhoaq/UOiYiI3CW5lZ8EJbH97LPPsGzZMvTu3bvV7aNGjYLFYsHSpUubr5OhwmTor/Hjx6vLst6+fTvy8/Ob95GRFyRhHTSoqXc0kTuz2RvUCACO5JaOzcs2ULVy19sLsWX/m3qHQ0RE7pLcSinCe++9p0ZDkLFupUZWlpqaGnW71MNef/31mDt3rmrVlQ5ms2fPVgmtjJQgZOgwSWKvuuoqbNu2Dd9//z0efPBBdWxpoSVyd9lFa9UEBWZjIPan1OkdjkswwIxP/69EbW/b/xaqan/7ckxERK5N1+T2jTfeUDWvEydORExMTPPy4YcfNu/zwgsv4Pzzz1eTN8jwYFJq8OmnnzbfbjKZVEmDrCXpnTVrFq6++mosXLhQp2dF1L1kWlkR4j0Wml3vaFzHllXV8LcMQKOtBhv2vqB3OERE1El0HQunIz2VfXx88Nprr6nlSBISEvDNN990cnREzk/T7EjPa0puQ33GAviH3iG5lPjAa7Cr6AHszvoQQ3tfh9CA/nqHRERE7tChjIhOTF7JFlTXFcDLHIBA7yF6h+NyAryS0DtqKjTYsXb3U3qHQ0REnYDJLZEL2/9rq61MTmA0WPQOxyWNTbwXBoMJB/KXIruoaSIMIiJyXUxuiVyUlPWk5zZNYd07+ly9w3FZIf59kRR3qdpev/c5TuxAROTimNwSuaiiihSUV2fCZPRGvExMQCdsVL/bYDR6Iad4PQ4VrdI7HCIiOglMbolcfJSEuIgzYDFb9Q7Hpfn79kBy/BVqe/0ett4SEbkyJrdELj4rWR+WJHSKEX1vUa3geaVbkFnwo97hEBHRCWJyS+SCyqoyUFyxW3WESoicpHc4bsHPJxKDE65W2xv2Ps/WWyIiF8XklsiFW217ho2Hj1ew3uG4jRF9b4LZZEVB2Xa23hIRuSgmt0Qu6LdREqbqHYpb8fUOa6693ZL2ht7hEBHRCWByS+RiKmtzVV2o6B01Re9w3M7QPn9UYwbLyAk5xRv1DoeIiI4Tk1siF5ORu1ito4JHws8nSu9w3I6/TzQGxl6strekva53OEREdJyY3BK5mP2536o1R0noOsP7/gkGGHEgfxmKylP0DoeIiI4Dk1siF1JdV4jsorVqu08Mk9uuEuzXG31ipqntLWlv6h0OEREdBya3RC5EJm7QYEdE0BAEWuP1Dsetjeh7s1qnZn+pZoIjIiLXwOSWyIWk5Xyj1n1jztM7FLcXETRYzf4mXya2pP1N73CIiKiDmNwSuYiauiJkF61R231jpusdjkcY2fcWtd5z8GNU1+brHQ4REXWAuSM7EZH+0vOaShLCAwezJKGTpKQcvbOYplngbxmIyoY9+GHtXxAf2DSDWVvh4eGIj+d7QkTkDJjcErkIliR0nsKCcrWeNWvWMfcdMsYXNy+IxP6CT3HF+S+jpurwaXmtVl+kpOxmgktE5ASY3BK5SEnCIZYkdJrK8hq1nvPAdIwYNfCo+2rQUGNfAl9rOV5ZNA1e9sRWt2ek5WHBvEUoLCxkcktE5ASY3BK5SkmCZkN4YDKC/BL0DsdtxCWEITE59pj7FZWPV++B3Xs/BvSaCKOR/3USETkrdigjcgEsSdBXSEB/eJkD0GirQVHFbr3DISKio2ByS+TkauqLWZKgM6PBhMjg4Wo7r2QzNO3wulsiInIOTG6JXGHiBlWSMAhBfr30DsdjRQQmw2T0Qm1DCcqqM/QOh4iIjoDJLZGLlCT0Yautrkwmb4QHDWluvSUiIufE5JbI6UsSVqtt1tvqLypoGAwwoqLmIKpq8/QOh4iI2sHklsiJpef+0FySEOzXW+9wPJ6XJQChAQPUNltviYicE5NbIie2P+drtWZJgvOIChmp1sWV+1DX0DQZBBEROQ8mt0ROqra+BAdZkuB0rN4RCPCNU9M75JVu0TscIiJqg8ktkZPa/+soCWGBSSxJcDLRIaPUurBsJzTU6x0OERG1wOSWyEntO/S5WveLOV/vUKiNQGs8fL3CYNca0GBM1zscIiJqgcktkROqrMlGdvFatd2/xwV6h0NtGAyG5trbBlMqTJyNl4jIaTC5JXJC+7L/p9YxoWMQYI3VOxxqR2jAQFhMftAMtRh9hp/e4RAR0a+Y3BI5ob2/liQM6Hmh3qFQB6bknXxhIKfkJSJyEvwxjUhnmZmZKCwsbL5c3ZCB4ordMMCMyvye2FzYsfFUU1JSujBKak9E0GAcKlyLnr29UFa/DUBTRzMiItIPk1sinRPbpKREVFfXNF8389pgTPl9ELasLsfNfznzuI9ZWVnZyVHSkZhNPrDYe6u629xKKSW5Tu+QiIg8HpNbIh1Ji60ktgufuRK9+kZBg4Zqy7fQUINxp5yN0z7t2eFjrV6Rgjdf+ha1tbVdGjO1ZrH1Qx32oax+K4rKU9TQbUREpB8mt0ROQBLbxORYlFcfxN5DNTAZvTAocRSMxo7/iWak5XVpjNQ+I/yweVW16lS2df9bmDT8eb1DIiLyaOxQRuREpNZWhPj3P67ElvS15NOmaXhTs/+HypocvcMhIvJoTG6JnITd3oiSyn1qOywgUe9w6DhkptYjwGsQ7Fojtme8o3c4REQejcktkZMoq0qHzV4PL7M//H07XmtLziHGr2myjV2Z76O+kZ36iIj0wuSWyEkUVexpnhxAZsAi1xLsPQrBfn1Q31iBlKwP9Q6HiMhjMbklcgIa6lFWnaG2WZLgmgwGI4b1uUFt/5L+f6rMhIiIuh+TWyIn0Gg8CE2zwdcrHL7e4XqHQydIZpST97Cy5hDScr/ROxwiIo/E5JbICTQYs9Q6LJCttq4+qcPgXler7a1pf+eUvEREOmByS6SzsCgz7Mam6XdD/QfoHQ6dpOSEWTAbfVBYvgPZxWv1DoeIyOMwuSXS2fhz/NQ60BoPL0uA3uHQSfL1CsXA2N+r7W37/6F3OEREHofJLZGOpM52/GR/tR0eOFjvcKiTDO1zvXQxw4H8pSipSNU7HCIij8LklkhHpXVbEBJuBjQvBPv11jsc6iTyXvaOmqK2t6Wz9ZaIqDsxuSXSUUH1ErW22BM43a6bGd7nRrXec+hTVNfm6x0OEZHHYHJLpBNJeErqNqpti62X3uFQJ4sOHYWo4JGw2+ux48C/9Q6HiMhjMLkl0smeQ/8FYEfarloYEah3ONQFHJM6SHLb0FitdzhERB6ByS2RDmT805TMpilaV/1QqXc41EV6R09Ro2DUNZRiz0H5MkNERF2NyS2RDnKK16npdo0GX2z5mS167spoMGFY7z82dyyzaza9QyIicntMbol0sCvzP2od7nsa6mo5i5U7kzFvvS3BKK8+gIzcxXqHQ0Tk9pjcEnWzuoYy7M/9Rm1H+E7WOxzqYhazFYMTrlLbW/f/Xe9wiIjcHpNbom6299DnsNnrERaQCD9LP73DoW4gya3R6IW80s3ILd6kdzhERG6NyS1Rt3ck+0BtJ8VdBoPBoHdI1A2sPpEY0PNCtc3WWyKirsXklqgbFZRtR1HFbpiMXujfc6be4VA3cnQsS8/7AWVVGXqHQ0TktpjcEnWjlKymjmR9oqfBxytY73CoG4UG9EdC5NnSfo9t6f/UOxwiIrfF5Jaom8gg/vuy/6e2k+Iu1Tsc0nFShz1ZH6OmvljvcIiI3BKTW6JukpbzNRoaKxFoTUCPsHF6h0M66BE6DhFBQ9Bor8XOA+/pHQ4RkVtickvUTVKymmYkS4q7BAYD//Q8kXQgdNTe7sh4F422Wr1DIiJyO/yEJeoGJRWpyC3ZCIPBpAb1J8/VJ+Y8+Pv2RE19IfYe+kzvcIiI3I6uye3KlSsxY8YM9OjRQ7VofP75561uv/baa9X1LZdzzz231T7FxcW48sorERgYiODgYFx//fWorKzs5mdC1LFW24TIs+DnE6V3OKQjk9GCob1mq+0taW/Abm/UOyQiIrdi1vPBq6qqMGzYMFx33XW46KKL2t1Hktm33367+bK3t3er2yWxzcnJweLFi9HQ0IDZs2fjxhtvxPvvv9/l8RN1hEzYsOfQf5vHtiX3lJKS0uF9bfZBMBsDUV6dicWrX0aEdWLzbeHh4YiPj++iKImI3J+uye20adPUcjSSzEZHRx/xw+S7777Dhg0bMHr0aHXdK6+8gvPOOw/PPvusahEm0ltG3hLU1hfDzzsK8RG/JTHkHgoLytV61qxZx3W/cy4OxIWzQ7Bm53NYeMvd0OxN11utvkhJ2c0El4jIFZPbjvjxxx8RGRmJkJAQnH322Xj88ccRFhambluzZo0qRXAktmLy5MkwGo1Yt24dLrywaUagturq6tTiUF7e9OFE1JVj2w6M+wOMRqf/k6PjVFleo9ZzHpiOEaMGdvh+GhpQpX2HqFjgH5/+ARZ7HDLS8rBg3iIUFhYyuSUiOkFO/UkrJQlSrtC7d2+kpaXh/vvvVy29ktSaTCbk5uaqxLcls9mM0NBQdduRPPnkk3j00Ue74RmQp6uoPoisgp+aR0kg9xWXEIbE5Njjuk928ShkF62BwZqKgfEcHo6IyO2T28su+60+cciQIRg6dCj69u2rWnMnTZp0wsedP38+5s6d26rlNi4u7qTjJWpr98GPVRtdz7AJCLSyJY5aiwwahrySzapspaQyFYCv3iEREXnmaAkPP/wwDhw4gO7Wp08f1dkiNVU+BKBqcfPz81vt09jYqEZQOFKdrqOOV0ZXaLkQdTa7ZsPuLElugaR4zkhGhzObvBEVPFxt5xSvgwZN75CIiDwzuf3iiy9UC6q0nsqoBC3rV7vSwYMHUVRUhJiYGHV5/PjxKC0txaZNm5r3WbZsGex2O8aOHdstMREdSVbBSlTWZsPbEozeUVP0DoecVGTwcJiMXqipL4LNkK13OEREnpncbt26VY1QkJycjDvvvFO1kt58883quuMh49HKsWQR6enpajszM1PdNm/ePKxduxYZGRlYunQpLrjgAvTr1w9Tp05V+yclJam63BtuuAHr16/HqlWrcNttt6lyBo6UQM4ytu2AnhfCbPLROxxyUnJuSIIr6k0dH06MiIg6eRKHESNG4OWXX0Z2djb++c9/qlbVCRMmqLrYl156CWVlZcc8xsaNG9VxZBFSByvbCxYsUB3GfvnlF/zud7/DgAED1OQMo0aNwk8//dRqrNtFixYhMTFRtSLLEGCnnXYa/v73v5/o0yLqFNV1BTiQt0RtJ8WxJIGOTkoTjAYL7MYyDBnDulsiIl07lGmapiZPqK+vV9syZNerr76Khx56CG+99RYuvfTIH+wTJ05U9zmS77///piPLyMjcMIGcjZ7Dn4Ku9aoWuTCAhP1DoecnNnki8jgYWqK5vMuCzrq/4tERNRFLbdS5yolAFL/OmfOHNXiKpMqrFixAvv27cMTTzyBO+6440QPT+SyJDFxlCRwRjLqqKjgEYBmQsIAb5TW/daPgIiIuiG5lWG5xo0bp2pkpSQhKysLTz31lKqHdbj88stRUFBwIocncmk5JRtQVrUfZpMV/Xqcr3c45CIsZiss9r5q+2DFB2y9JSLqzrKESy65BNdddx169ux5xH1kyC4ZtYDI06RkNs1I1q/HDHiZ/fUOh1yIl20AKup2A9Z0pOd+jz4x5+odEhGRZ7TcOmpr26qpqcHChQs7Iy4il1TXUIb9Od+obXYko+NlgDeWfdE0Hfj6vc+rsZKJiKgbWm5l6tqbbroJVqu11fXV1dXqNhntgMjdyZB1hYWFra7Lq/oOjfZa+JrjcGi/hmzD5qMeQ+rUiVpa+nk5ZlzREyWVe5Ga/RUG9LxA75CIiNw/uZWWW4PBcNj127ZtU6MXEHlCYpuUlIjq6ppW1//5xWjE9/PGu69vw/L/je7w8WRcZyJRU6Uhxv8CHKx4Hxv3vYh+MdNhNDr1TOlERE7luP7HlFIESWplkbFnWya4NptNfUBLiy6Ru5MWW0lsFz5zJXr1jVLX2QwlqLEsAzQjrr32asy+9rfxmI9k9YoUvPnSt6itre2GqMlVRFuno7DuO5RVpWPvoU+RGHeJ3iEREblncvviiy+qVlvpTCblB0FBQc23eXl5oVevXmpKXCJPIYltYnKs2j6Qvw81ZUBIQD/0jWnq9X4sGWl5XRwhuSKT0Rcj+96C1SmPY+O+l9C/50w1RS8REXVycnvNNdeode/evXHqqafCYrEcz92J3JbN3oDiit1qOyIoWe9wyA0kJ8zC1v1/R0XNITVu8uCEq/QOiYjIvUZLKC9v6sErZMIGGRlBrmtvIfI0pZWpsNnr4WUORIBvnN7hkBswm3wwqt9tanvzvlfRaGPpChFRRxiPp942Pz9fbQcHB6vLbRfH9USepqB8p1qHByW329mS6ETIcHL+vj1RVZeHnQfe0zscIiL3KktYtmxZ80gIy5cv78qYiFxKbX0JKmsOqVFKwwOS9A6H3IjJ5I3R/e7Aj9vvw+a0N5AUfxknBiEi6qzk9swzz2zelprbuLi4w1qopLOZTMVL5ImttkHWBHhZAvQOh9zMgNiLsGX/m2rkhO3pb2NU/9v1DomIyP1mKJPktqCg4LDri4uL1W1EnkKDHUXlu9R2eNBgvcMhN2QyWnDKgDlqWzqY1daX6h0SEZF7Tr/bXl2hjHPr4+PTGXERuQSbIQeNthqYTVYE+fXSOxxyU/1izkdYYBLqGyuwJe0NvcMhInKfocDmzp2r1pLYPvTQQ62m35VJHNatW4fhw4d3fpRETqrBlKHW4YFJMBpMeodDbspgMGLsgHn4ZuN12JHxLwztfR38fJomDyEiopNIbrds2dLccrt9+3Y1cYODbA8bNgz33HPP8RySyGUFhZpgM+Sq7bDAQXqHQ24uPvIsRIeMQm7JJmxKfRVnDH5M75CIiFw/uXWMkjB79my89NJLCAwM7Kq4iJzeuEl+MkAC/H1i4OvVNJIIUVeRX8zGDpyHL9ZehpTMDzC8zw0ItMbrHRYRkXvU3L799ttMbMmjya8X489pGpIpPJAzklH36BE2DnHhp8OuNWLD3hf1DoeIyH2S26qqKlVzK1Pw9uvXD3369Gm1ELm7ivpdiOxhATQzQgL66x0OeZCxifeq9d5Dn6G4Yq/e4RARuXZZgsMf//hHrFixAldddRViYmI4IxN5nIKaZWpttsfCZPyt9pyoq0UEDUGf6GnYn/st1u95FueO/rveIRERuX5y++233+Lrr7/GhAkTOj8iIidX31CB4trVatti5/Bf1P3GDLgb6bnfIz3vB+SVbkVUMEepISI6qbKEkJCQ5ql4iTxNas5XsGt1yM1qgFHj3wF1v5CAfmrmMiGtt0REdJLJ7WOPPYYFCxagurr6RO5O5NJSsj5U69WLK2GQ4RKIdDC6/50wGiw4WPgzDhY2/ZJAREQnWJbw3HPPIS0tDVFRUejVqxcsFkur2zdv3txZ8RE5FenAk1+6FQaYsG5ZJa6epXdE5I5SUlI6tF+E72TkVX+LZZsfRnLYU4f1fwgPD0d8PIcLIyLPckLJ7cyZMzs/EiIXsDvrI7UO9h6FitL9eodDbqawoFytZ83q2LemwGAjHv1HTwD7MPuW07F9fU2r261WX6Sk7GaCS0Qe5YSS24cffrjzIyFycjZ7PfYc+lRtR1gnAfhY75DIzVSWNyWncx6YjhGjBnboPnWmHWjAHtz6YD/4Nk5uLpXJSMvDgnmLUFhYyOSWiDzKCSW3RJ7oQN4y1NYXw+odiWDvkXqHQ24sLiEMicmxHdq30RaO7RnpsKEckXFVCAtM7PL4iIjcrkOZzWbDs88+izFjxiA6OlqNnNByIXJHuw82lSQMjL0YBoNJ73CIFLPJB9Eho9R2dvFa2DWb3iEREblecvvoo4/i+eefx6WXXoqysjLMnTsXF110EYxGIx555JHOj5JIZ9W1+cgsWKG2B8b+Xu9wiFqJDB4Bs8kXdQ1lKCzbqXc4RESul9wuWrQIb731Fu6++26YzWZcfvnl+Mc//qGGB1u7dm3nR0mks73ZX0DTbIgKHoEQ/756h0PUisloQUzoGLWdU7wednuj3iEREblWcpubm4shQ4aobX9/f9V6K84//3w1cxmRO9E0DXsO/re5JIHIGUUEDoaXOQANtirkl23TOxwiItdKbmNjY5GTk6O2+/btix9++EFtb9iwAd7e3p0bIZHOCst3orhiN0xGL/TrMUPvcIjaZTSa0SNsnNrOKd4IDQ16h0RE5DrJ7YUXXoilS5eq7dtvvx0PPfQQ+vfvj6uvvhrXXXddZ8dIpCtHq22vqHPgbQnSOxyiIwoLSISPJQQ2ey3qTfv0DoeIyHWGAnvqqaeat6VTmYyhuGbNGpXgzpjBli1yHzZ7A/Zl/09tD+zJkgRybgaDET3CxmN/7jdoMO6Df+AJtV8QEbm0Thnndvz48WohcjeZBT+itr4Ivt7hiIs4Q+9wiI4pxL+fGou5ui4fUy/hLw1E5HlOKLl99913j3q7lCcQuVNJwoAeM1VNI5GzMxgM6Bl2KvZlf44zzgtAna1Q75CIiLrVCX1a33nnna0uNzQ0oLq6Gl5eXrBarUxuyS3U1pfgQF5TbTlHSSBXEmiNh9EeDotXIQ5VyDTRU/QOiYio25xQQVZJSUmrpbKyEnv27MFpp52GDz74oPOjJNJBavaXsGsNCA8chLDAJL3DITqu1ltvW7LaLqhZirKqDL1DIiLqNp3W20A6k0lHs7atukQuX5LAVltyQSYtHDs21gCwY1PqK3qHQ0TUbTq1K63MVpadnd2ZhyTSRUlFqhoI32gwo3+PC/QOh+iEfP1+qVrvPfQ5W2+JyGOcUM3t//7XNDRSyxmcZFKHV199FRMmTOis2Ih0s+fQJ2odFzERVu9wvcMhOiEH9tYj2HskSus2Y+O+lzFp+PN6h0RE5JzJ7cyZMw+r74qIiMDZZ5+N5557rrNiI9KFXbNh78HP1DY7kpGr6+l/qUpu9x36HKP6345gv956h0RE5HzJrd1uV+uCggI1QkJQEMdSJPdxqHA1qury1GxkvSLP1jscopPi79UfCZFn40D+Mmza9wpbb4nI7R13zW1paSluvfVWhIeHIzo6GqGhoWo9f/58NRwYkavbe6ip1bZfzAyYTN56h0N00kb3v0utpfW2tHK/3uEQETlPy21xcbGaiezQoUO48sorkZTUNDzSrl278Morr2Dx4sX4+eef8csvv2Dt2rW44447uipuoi7R0FiN9Nzv1faAnhfqHQ5Rp4gMHoqEyEk4kL9UjZwwafgLeodEROQcye3ChQtVGUJaWhqioqIOu23KlCm46qqr8MMPP+Dll1/u7FiJulxG3mI02KoQ4BuHqJCReodD1GlOGXCXSm73HfoCI/vdhhD/vnqHRESkf3L7+eef429/+9thia2Q0oSnn34a5513Hh5++GFcc801nRknUbfYl/2FWg/oOVN1lCRydSkpKc3bwd6jUVq3EYvXPYp+IU2lCh0hZWjx8fFdFCERkY7JrQz3lZzcNOtNewYPHgyj0aiSWyJXU1NXhMyCFWq7f0+ObUuurbCgXK1nzZrVfF1cXy/MfykGBVUrcMe1HyDvYGOHjmW1+iIlZTcTXCJyv+RWvr1nZGQgNja23dvT09MRGRnZWbERdau0nK+haTZEBA1BiH8/vcMhOimV5TI7GTDngekYMWpg8/U19tWAKQePvTYOPrYxxzxORloeFsxbhMLCQia3ROR+ye3UqVPxwAMPqI5jUnvbUl1dHR566CGce+65nR0jUbeOktC/Z+txnIlcWVxCGBKTf2uQqK6diF1ZH6DRdBC9+pwFH68QXeMjItK9Q9no0aPRv39/NRxYYmKimp1Marpef/11leC+++67nR4kUVcrqzqAvNItMMCI/jEz9A6HqMtYfSIRZO2FsuoM5BRvQO/oKXqHRESkX3Ir5Qhr1qzBLbfcosa1lcRWSMebc845R02/y5+tyBXty/5crWPDJ6gPfyJ3FhM2ViW3RRW70SNsHLwtgXqHRESk3wxlvXv3xrfffouSkhLs27dPXdevXz81mQORK5IvaXsPNY2S0J9j25IH8PeJRqA1HuXVmcgt3oCEqEl6h0REpO/0uyIkJARjxhy7MwKRM8nMzFQdY1qqrN+Hsqr9MMIL5blR2Jy/+biGVyJyRTGhY1RyW1iRora9LAF6h0REpG9yS+SKiW1SUiKqq5t6kTv8/oYQnH1BINb9WIKbnj3tuI5ZWVnZyVESdY8A357w9+2JyppDyC3ZhPjIiXqHRETUKZjckseQFltJbBc+cyV69W2aiESDHdWWb6ChDqdPOAdnnRrToWOtXpGCN1/6FrW1tV0cNVHX6RE6Ro0SUlC+AzGhp8Bi9tM7JCKik8bkljyOJLaOoZFklIR92XUwm3wxqN9IGA2mDh1Dxv4kcnUyzbSfTzSqanORW7IZcRGn6x0SEdFJM578IYhcl/QWFyH+/Tuc2BK5CxnpRuptRUHZL2iwtS7ZISJyRUxuyWPZ7A0orUxT22EBiXqHQ6QLGfPW6h0Ju9aIvJIteodDRHTSmNySxyqrSodda4C3JUj9NEvk6a23+WXb0GhjHTkRuTYmt+Sxiiv2qnWI/wD1AU/kqYL9+sDXKwx2ez3yS7fqHQ4R0UlhckseqdFWp2ZoEqEBA/QOh8hpWm/zSrfCZqvTOyQiItdMbleuXIkZM2agR48e6j/Xzz9vmgK15cxRCxYsQExMDHx9fTF58uTmWdEciouLceWVVyIwMBDBwcG4/vrrOfYoHVNp1X5omg0+XqGqxYrI04X494OPJQQ2ex3yy37ROxwiItdMbquqqjBs2DC89tpr7d7+9NNP4+WXX8abb76JdevWwc/PD1OnTm01tqgktjt37sTixYvx1VdfqYT5xhtv7MZnQa6ouGKPWoeyJIFIMRiMaqxbkVe6RXW4JCJyRbqOcztt2jS1tEdabV988UU8+OCDuOCCC9R17777LqKiolQL72WXXaamQP3uu++wYcMGjB49Wu3zyiuv4LzzzsOzzz6rWoSJ2pIJGyqqs9Q2SxKIfhMaMBDZxetQ11CGgrLtiA4ZqXdIRETuU3Obnp6O3NxcVYrgEBQUhLFjx2LNmjXqsqylFMGR2ArZ32g0qpbeI6mrq0N5eXmrhTxHo/GQmplMhj/y8QrROxwip2q9jQ5p+v80r2QT7PZGvUMiInKf5FYSWyEttS3JZcdtso6MjGx1u9lsRmhoaPM+7XnyySdVouxY4uLiuuQ5kHNqNB5Ua7baEh0uLDAJXuYANNiqUVi+U+9wiIjcJ7ntSvPnz0dZWVnzkpXV9BM1ub/AEBNshoLmWcmIqDWZqS86ZJTazinZCA02vUMiInKP5DY6umlQ/by8vFbXy2XHbbLOz89vdXtjY6MaQcGxT3u8vb3V6AotF/IMI0+zAgbAzycG3ha+70TtCQ9MhsXkh4bGSjQaM/UOh4jIPZLb3r17qwR16dKlzddJbazU0o4fP15dlnVpaSk2bdrUvM+yZctgt9tVbS5RW6PPsKo1SxKIjsxoNDe33tabdsNo0jsiIiIXGS1BxqNNTU1t1Yls69atqmY2Pj4ed911Fx5//HH0799fJbsPPfSQGgFh5syZav+kpCSce+65uOGGG9RwYQ0NDbjtttvUSAocKYHaqmvMR58kHxkuAaEsSSA6qvCgwcgp2YBGWzVOOdNP73CIiFwjud24cSPOOuus5stz585V62uuuQbvvPMO7r33XjUWroxbKy20p512mhr6y8fHp/k+ixYtUgntpEmT1CgJF198sRobl6itotpVam3SImAx88Oa6GhMRguigkfiUNEqnHtJkJr0hIjIFeia3E6cOFGNZ3skMrj+woUL1XIk0sr7/vvvd1GE5E6Kan5Wa7Odo2MQdURk8FAcKtyAqFj5crgaQNMkD0REzsxpa26JOlNJZRqqG9Nha9RgtrNkhagjTEYveNn6qe3syk+gaXa9QyIiOiYmt+QR0nK+UuuUrbUwwFvvcIhchsXeFzVVdtQ0ZiE99we9wyEiOiYmt+T2pPRl36H/qe1NK6v0DofIpRjgheVfNs3iuCn1laOWkhEROQMmt+T2iit2o7QqDQZYsG1ttd7hELmc5V9UwGjwUTOWHchfpnc4RERHxeSW3N6+7C/VOth7JGqr2epEdLyqKuyIsp6rtjelvszWWyJyakxuya3Jh3Dqr8ltmO9peodD5LJi/H4Hs9EH+aXbcLCwaeQRIiJnxOSW3Fp+2TZU1GTBbLIi2LtpxiUiOn4WUzCS4i9vrr0lInJWTG7JrTlabXtFTYbJ+NvkH0R0/Ib3/ROMRi/kFK9HdtFavcMhImoXk1tyWzImZ1p20xBg/XrM0DscIpfn7xONpNhL1PbGfWy9JSLnxOSW3FZO8QZU1eXByxyA+PAz9A6HyC2M6HsTjAazmpY3t2ST3uEQER2GyS25fUlCn+hzYTJx4gaizhBgjcWA2IvV9sZ9L+kdDhHRYZjckluy2xuRlvuN2mZJAlHnGtXvVtV6m1WwUv1CQkTkTMx6B0B0LJmZmSgsLDyu+5TWbUVtfTHMxkDkZ/qiIGszUlJSuixGIk8SaI1HYtwfsCvzA6zb8wwuGPchDAaD3mERESlMbsnpE9ukpERUV9cc1/1m3RmGU8/xx7IvD+HGN8a0uq2ysrKToyTyPKP63YE9B/+rRk7IKlyJ+Igz9Q6JiEhhcktOTVpsJbFd+MyV6NU3qkP30WBDleVrAA2YOmU6zjsnQl2/ekUK3nzpW9TW1nZx1ETuz983BskJV+GX9H9i/Z5nERd+BltvicgpMLkllyCJbWJybIf2La3cj9ScBlhMfhjUb3jzB25GWl4XR0nkWUb0vVmVJhSUbUd67vfoE9M0RS8RkZ7YoYzcTnHFHrUODRjAliSiLmT1Dsew3ter7XV7nlYdOYmI9MbkltyKzd6A0qr9ajskYIDe4RC5vWF9boCPV6j6u0vJ+lDvcIiImNySeymrSodda4SXORB+3h2r0SWiE+dtCcTofneo7Q37XkBDY5XeIRGRh2NyS26luGKvWrMkgaj7DEq4AoHWBNTUFWLr/rf0DoeIPByTW3IbjbY6lFVnNCe3RNQ9TEYvjEu8V21v3f93VNfm6x0SEXkwJrfkNqTmT9Nsqv7P1ytc73CIPEqf6PMQGTwMjbZqrN/7vN7hEJEHY3JL7jdKgj9LEoi6m/zNTUhaoLalY1lB2Q69QyIiD8XkltxCg60GFdVZapslCUT6iA4dhf49LlBTqfy881FomqZ3SETkgZjcklsorUyFBjus3hHw8QrROxwijzUu8c8wm3yRW7IBqTlf6h0OEXkgJrfkVqMkhPiz1ZZI72l5R/a9RW2vSXkSDY3VeodERB6GyS25vPrGKlTUHFTbLEkgco6JHQJ8Y1FVm4NNqa/oHQ4ReRgmt+TySn5ttfXziVYDyhORvswmH0xIflhtb9v/Fop+7exJRNQdmNySyyuudEzcMFDvUIjoV72jzkHvqClqxsCV2x+Aptn1DomIPASTW3JpdQ1lqKrNlYGIEOrfX+9wiKiF05IfgdlkRW7JRuzO+ljvcIjIQzC5JbcY21bq+yxmP73DIaIW/H17YMyAuWp7ze6/cOYyIuoWTG7JLUZJCGNJApFTGtLrWoQHDlK/sqzc8SDHviWiLmfu+ocg6hrVdYWoqS+CwWBCsH8/vcMhcmspKSknfN9or+tRhHuRnvcD1m7/P4wfen2nxkZE1BKTW3L5koQgawLMJm+9wyFyS4UF5Wo9a9askzrOtMuCMGNWMFbtehRhfiMxoO+IToqQiKg1JrfkkuSnTUdJAkdJIOo6leU1aj3ngekYMerE/9ZkBsGy2h/gF1CFTel/Qf8+H8FgMHRipERETZjckkuSERLqG8thNFgQ5Ndb73CI3F5cQhgSk2NP6hg7d41HRcNilGIDdmW+j+SEKzstPiIiB3YoI5ce2zbYvw9MRove4RBRB5i0IHz+rxK1vWrXwuZfX4iIOhOTW3I5Mhi8Y1YyliQQuZblX1QgyHs4bPY6LN5yBxpttXqHRERuhsktuZyKmoNosFXDZPRBoDVe73CI6DjISGB9g+6Ar1c4iit2Y/Wux/UOiYjcDJNbcjmOnzJD/PvBaDDpHQ4RHSeLKRhnD3tWbe/MfA97Dn6qd0hE5EaY3JJLsdsbUVKZqrZZkkDkuuIjJ2JU/zvU9ort81FYtlPvkIjITTC5JZdSXp2pavUsJj8E+PbQOxwiOgmn9L8L8RET1d/0d5tuQm19qd4hEZEbYHJLLqXo14kbQgMGwGDg6UvkyuRveNLwFxHgG4eKmiws3nIbbPYGvcMiIhfH7IBchs1Wh7Kq/c3JLRG5Ph+vYJw7+m8wm6w4WPgzftqxQE3SQkR0opjcksuQWlu71ggfSwis3lF6h0NEnSQ8cBCmjHgVBhiRkvUBtu1/S++QiMiFMbkll1FUsVutwwITOW0nkZtJiDobpw56SG2v2f0k0nK+1jskInJRTG7JJdhRpca3FaEBiXqHQ0RdYEivazE44RoZDRdLttyFrIKVeodERC6IyS25hEZjlloH+MbC2xKodzhE1AXkF5kJyQvQL+Z82LUGfLfpT8gt2ax3WETkYpjckktoMB1Q67DAJL1DIaIuJBOznD38ecRFnIFGWw2+2TAbheW79A6LiFwIk1tyer0GeEEzVMJoMKtZyYjIvZmMXpg68k1EBY9EXUMZ/rf2Cia4RNRhTG7J6Y0921+tg/37qQ89InJ/FrMV08e8g8jgYahrKGWCS0QdxuSWnJrU3Y0+06q2w9iRjMijSH39+WP+3SrBzS/dpndYROTkzHoHQHQ0pbWb4BdggkHzQaA1Tu9wiKgTpKSkHNf+cd73oMqyEFUN+/DZ6ksxMOR+BHoPRnh4OOLj47ssTiJyTUxuyakV1vyo1mZ7PKfbJXJxhQXlaj1r1qzjvq+3rwE3PRiJgcOAX3Ifwj+eKkDaDkmUdzPBJaJWmNyS06qpL0Zp3abm5JaIXFtleY1az3lgOkaMGnjc99dgQ619HeCVg5seisR/Xi9CYWEhk1siaoXJLTmt1Owv1YdZZmodBsUH6R0OEXWSuIQwJCbHntB97VosDuQvQ1H5Llx+axgOlL+N4dowNYQYEZHg77zktPYe/FSt1y2r0jsUInISksT2ipwMr8ZkdTm36kt8v+kmNDRW6x0aETkJJrfklEoqUpFftg0GmLBhBZNbImo9k5mXPRH//GsBDLAgI28xvlh7Kapq8/UOjYicAJNbckp7Dn2i1kHeI1BZZtc7HCJyQpt+qkZS2CPwsYSgoGw7Pl01E0XlxzcSAxG5Hya35HRs9gbsOfhftR3he5be4RCREwvwSsJFEz5DkF8fVNZm49PVF2Ff9v/0DouIdMTklpxOZv4yVNcVwNcrHME+o/UOh4icXJBfL1x06qeICz8djbYaLNlyB1bvegJ2e6PeoRGRDpjcktNJyfpQrQfGXgyjwaJ3OETkAny8gnHemHcwou/N6vK29Lfw1fqrUVNXpHdoRNTNmNySU6msyUFmftPEDUlxl+odDhG52EgK4xLvw5SRb8BssuJQ0Wp8sup3qh6XiDyHU49z+8gjj+DRRx9tdd3AgQOxe/dutV1bW4u7774b//nPf1BXV4epU6fi9ddfR1RUlE4R08naffBjaLAjJnQMgv37ANisd0hE5HJT+UYhKeQv2FfyV1TWHMJ/f74IvYJuQKR18hGPw6l8idyHUye3Ijk5GUuWLGm+bDb/FvKcOXPw9ddf4+OPP0ZQUBBuu+02XHTRRVi1apVO0dLJ0DQ7dv9akpAUd5ne4RCRi0/l6+tnwDVzwzF0rBXpZa/jvY/+io/+VoKGeu2wfa1WX07lS+QmnD65lWQ2Ojr6sOvLysrwz3/+E++//z7OPvtsdd3bb7+NpKQkrF27FuPGjdMhWjoZBwt/RkXNIXiZA9A35jy9wyEiJ9bRqXw1aGho3IN6005MmBqA08+Jg0/jWBjh37xPRloeFsxbxKl8idyE0ye3+/btQ48ePeDj44Px48fjySefVP/5bNq0CQ0NDZg8+befmRITE9Vta9asOWpyKyUMsjiUlze1AJC+dh54T60H9LwIZpOP3uEQkdtM5RuH8uoB2J/7HRpRijqfH9E7asqvpU9E5G6cukPZ2LFj8c477+C7777DG2+8gfT0dJx++umoqKhAbm4uvLy8EBwc3Oo+Um8rtx2NJMhSxuBY4uLiuviZ0LFU1mQjI6+p/CQ54cg/MxIRnYhAazwGxV0OP59o2Ox1SM35EoeK1qhyKCJyL07dcjtt2rTm7aFDh6pkNyEhAR999BF8fX1P+Ljz58/H3LlzW7XcMsHV167MD1RHsh6h4xAa0F/vcIjIDXlZAjAw9vc4WPCTmt47p3i9GqFFwzC9QyMiT2m5bUtaaQcMGIDU1FRVh1tfX4/S0tJW++Tl5bVbo9uSt7c3AgMDWy2kH5u9HruyPlDbg3tdpXc4ROTmw4XFR05E76ipMBrMqKjJQrVlKXoN8NI7NCLyxOS2srISaWlpiImJwahRo2CxWLB06dLm2/fs2YPMzExVm0uuQ+rgauoKYfWORK+oKXqHQ0QeICwwUY3K4m0Jhmaowdy/RiOv6lto2uEjKRCRa3Hq5Paee+7BihUrkJGRgdWrV+PCCy+EyWTC5Zdfrmplr7/+elVesHz5ctXBbPbs2Sqx5UgJrtmRbFD85TAZOSMZEXUPX+8wDIq7DCZ7T5gtBmSUv4WlW+egobFa79CIyF2T24MHD6pEViZuuOSSSxAWFqaG+YqIiFC3v/DCCzj//PNx8cUX44wzzlDlCJ9++qneYdNxKCpPUXVvBoMJSfGX6x0OEXkYk8lbDQ32yT+K1UfivuzP8d9VM1FauV/v0IjIHTuUycxjRyPDg7322mtqIdf0S/r/qbXUv/n7HL1WmoioKxhgwLLPK/DQfa/jQOVLKKncq6btPWvoM+gb81vHZiJyDU7dckvurbquAHuzv1Dbw/pcr3c4ROThAr0G4Q+nfa2m/25orMQPm2/G6l1PwGZv0Ds0InKXllty/1pbu70ekcHDER0ySu9wiMjDpaSkqHWc1zzAbxFyqj7HtvS3sP/QKvQLngsvU2iHjhMeHs6Zzoh0xOSWdNFoq8WOXzuSDevNVlsi0k9hQdMslbNmtZ5AZvh4X1w1J1xG4saPu6/FP/9aiNSdv81ueSRWqy9SUnYzwSXSCZNb0sW+Q1+gtr4I/j490CeaNW1EpJ/K8hq1nvPAdIwYNbDVbXZUoNa+FkGh5Zj7VAy8bINhsfdXdbrtyUjLw4J5i1BYWMjklkgnTG6p28k4kr9kNHUkG9LrWhiNPA2JSH9xCWFITI497HqbvR8O5C9DccVu1Ju3w8+/Br2izoHJyIkfiJwRO5RRt8vMX47iij2wmPyQFH+p3uEQER2VjL/dO2oK4iPOggFGlFSmIiXrQ9TWl+gdGhG1g8ktdXur7abUV9V2csIseFuC9A6JiOiYDAYDIoOHYmDcH2Ax+6O2vhgpWf9BSWWa3qERURtMbqlb5RSvQ17pZvVz3lB2JCMiFyPjccusZtJfwGavR1rOVzhUtAaaZtc7NCL6FZNb6labU5sm3EiMvQR+PpF6h0NEdNwsZj8MiL1IDWMoZJbFfdn/U6PAEJH+mNxSt8kv/QVZhT+pqXaH9/2T3uEQEZ0wo8GE+Igz1eyK8n9aefUBVaZgM5TpHRqRx2M3deo2m9NeV+v+PS5AoDVO73CIiE5aWGAifL1CkZrzNeoaygDzcow6w6p3WEQejS231C0Ky3YiPfc7NYv7iL436R0OEVGnsfpEYlD8ZQi0xgMGG66/NwIHyt+B3d6od2hEHonJLXWL9XtfUOt+PWYgNGCA3uEQEXUqs8lX/SplsTVNApFb9T98uf4q1NQV6R0akcdhcktdLq9kCw7kL1HjQ57S/y69wyEi6hIGgxHetsH4+18KYDT4ILtoDT75eYb6P5CIug9rbqnLrd/7vFoPjL0Ywf599A6HiKhLbV1dDd+yP8EW8hEqa7Px2erfIy7gSkT7/U4lwB0VHh7OKXyJTgCTW+pS2UXrcLDwJxgNFozqf4fe4RARdanCgnK1vuaKufCxGnDlbWEYdYYfMivexddL38S7LxahqrxjY+Jarb5ISdnNBJfoODG5pS6djWzdnqfVdlLcpRwhgYjcXmV5jVrPeWA6RowaCA0aGhvTUWfahiFjrHh2URh8GsfApIUf9TgZaXlYMG8RCgsLmdwSHScmt9Rl9ud+g9ySTaqjxaj+t+sdDhFRt4lLCENicqzjEqrrkrA/51vUNpSgxrISPcLGISZk9HGVKRBRx/CvirqEzNSzJuUptT28z5/g5xOld0hERLqxekcgKf4yhAUkyu9aqrPZ7oMfo6a+WO/QiNwOk1vqEtsz/oWKmiz4eUdheJ8b9Q6HiEh3JqMXekVNUYtsV9XmYlfm+8gt2QxN61gdLhEdG5Nb6nQyruPm1FfV9pjEebCYOVsPEZEwGAwID0xCcvwsNemDptlUp9s9B/+L2vpSvcMjcgtMbqnTrdvzLOobKxAeOBgDe16kdzhERE7HyxKA/j1mIiHybDWajAwZtitzkRoTl624RCeHHcqoU0kHspSsD9T2hOQF7CxBRHSUVtyIoCEItCYgI28xKmoOIqtwJQrLd0IzJOsdHpHLYnJLnUbmUV+5/QG1HRsyDbkZZuRmbD6pY6akpHRSdEREzsnbEogBPS9SSe2hwlWoqS8CLCsxe1446m2cvpfoeDG5pU6zPeMdFFXshsUUiOsvehcFeW922rErKys77VhERM7ZijsYIf79cKhoDQpKf8EpZ/phW8Ht8E67E0N6zYbZ5KN3mEQugcktdYrKmmxs2PuC2o71n4WCvPuw8Jkr0avvyQ0BtnpFCt586VvU1tZ2UqRERM5LEtiEyLNQWRiBHfu+Rt9BwNrdf8X2jHcxuv/tGBj7B5iMFr3DJHJqTG6pU2Yi+3H7n9Fgq0J0yChEeJ+trpfE9rdBzE+MzNJDRORpTFownrs3D9/99Czy6j5BVW0OVmy/H1vS3sTo/neif8+ZMBpMeodJ5JTY24dOWkrWf5BVsBImozcmDv0rO5EREXWSCOtZuGLickwY9DB8vcNRXp2JZdvuxocrpmBf9v9UXwciao1ZCJ2U8uosrN71uNoeO3CeqhcjIqLOLVUY2ns2rpy4EuMS74O3JQilVWlYsuUOvP/jWWrSnIbGar3DJHIaTG7phMlYjMt/uffXcoRTMKT3bL1DIiJyWzIhzoi+N+PKs37C6P53wccSomaC/Hnnw/j3slOxfs/zqK4r1DtMIt0xuaUTtnX/39T86GaTL84e9izrv4iIumnosFMG3IVZk1bj9OSFaqazuoZSbEp9Ge8tOxXLt92L/NJf9A6TSDfsUEYnJKd4o5qJTEgtWJBfgt4hERF5FIvJF4N7XY1BCVciPfd71eCQX7oNuw9+pJaIoKFITpiFfj1mqH2JPAWTWzputfUlWLzldjUnev8eFyAp7lK9QyIicksdn8gmGr18FiA8bDfyqr5Hce1qFJT9gh9/uRc/bX8EcaHTMG7wzewXQR6ByS0dd52t9NSVYWmC/PrgjCFPqMHHiYio8xQWlKv1rFmzTuj+/oFGjD/HH6dP80d4dDUyiv6LjBX/RY/Qcao1t3fUOTCZvDs5aiLnwOSWjsv6vc/jQP4ymIxemDLyVXiZ/fUOiYjI7VSW16j1nAemY8SogSd8HA0asjP3ICN7A4aN80d28Vq1SGc0GSs3Ke4ShAUmdWLkRPpjcksdtvfQF9ic+qraPnPIUwgPHKR3SEREbi0uIeykJ8MxwID5t3yDdxc9jMCe6SioXobahmJsz3hbLX6WvojwnYQw39NhNvod83jh4eGIj48/qZiIuhKTW+oQ6aQgtVtieJ8/YWDsRXqHREREx1HicPWVt6m1zLOTNMIHp07xx9AxVlQhDVUNadhb8Ca2rqnBmsWV2PtLLTSt/eNZrb5ISdnNBJecFpNbOqayqgP4duMfYbPXISFyEsYmNiW5RETk2iUOmlaHhsZMNBoz4OVdjjET/dRi0Kyw2HrBbE+AEdZWU6IvmLcIhYWFTG7JaTG5paOqqs3HV+uvQnVdAcICEjF5+Iscz5aIyK1KHPpC0zRU1+WhsHwXiiv2wGavRr15F+qxS42jGx6YjGC/PjpETXT8mNxSs8zMTPVt3KHRXoWUogdR3ZgJb1MU4n3nYcf2fZ04dA0RETkDGfXGzydaLbHhp6O0Mg2F5TtRUXMQ5dWZajEZvWE0xSK2j0XvcImOisktNSe2SUmJqK5u+vnK18+AWx+NQp9Eb5SV2PDcvM0ozJ18XMesrKzsomiJiKirmIwWhAUmqqWuoUy15srS0FgJmykN97/cA9sL7oY5/So11rmvd5jeIRO1wuSWFGmxlcR24TNXIqFvCGrMP8NuLAE0C6L9J+H514M7fKzVK1Lw5kvfora2tktjJiKiruVtCULPsPHoEToW5dVZSM/aiBp7FqqRjlW7FmJNyl+QEHk2BsZejPjIs9QwkUR6Y3JLrST0DYY9YC3sdSUwm3wxoOeFsHpHHNcxpMMBERG5D4PBqKZZ97GZMOeaNfjo64WoNqxTs6Cl5/2gFh+vUNWSmxj7e4QHJesdMnkwJrfULCLGjGrLj9DqKlViO7DnRfD1Dtc7LCIiciJVFXZE+03DyJEPoKhiD/Yc/C/2HfpMdTx2jJ0rHZAHxv5eTRRh5ecIdTNjdz8gOaeK+j2459loaIZKeJkD1H9KTGyJiOhowgIG4tSk+3HV2Wtw3ilvo2/MdBiNXiiq2I3VKY/j30vH4ZsNf8T+nO9gs9frHS55CLbcEvYe/AwpRQ8jIMgEoz0YSXG/h8V87FlqiIjIM7U/Kk4QwnE9giMuQVHNKhTULEdVwz4cyF+iFrMhAGG+pyHc90z4WfqrERo42xl1BSa3Hsxmq8OqXY9hZ+Z76vL29dUYN/wCJrZERHTU2c5mzZrVof2jY80YO8kfY8/2Q3BYBfKqv1VLQU4DNq6oxo51jfhxyU4muNSpmNx6qLKqDCzZeqeaVlf09L8Etz7+DMZ/wlOCiIiOf7azo9GgwdaQh0ajzIaWjYgYYNplQZh2GbA85WoMbbgM/XrMQIBvzy6MnjwFMxkPI7PQ7MpchNUpT6DRVqOGeZk0/EUUHQyCZn9G7/CIiMilZzs76r0AjIbN3oCyqv04kL0NdbZsVCMDa3c/pZbokFPQv+fvVO2ur1doF0VP7o4dyjyIzDDz9YZrsHLHgyqx7RE6Dn847WskRJ6ld2hERORBk0SEBgyEb+Op+PNVB9E76Gb1eQQYkFuyAT/teAjvLhmDr9fPxu6Dn6iJJIiOB1tuPaS2duv+v2NT6quw2evUINtjE+/D0F6z1diFREREeqiutCPSeg5GjrwPlTU5SM35CvsOfYHC8h3ILFiulhUGM3qGn4o+0dPQO2oKZ0SjY2Jy68Y0zY60nK+xbs+zKK8+oK7rGXYqTh/8GEL8++odHhERUTN/3xgM73ODWkoqU5Ga/SXScr5FSeVeZBWsVMvK7Q8gJnQM+sach97RU+HnE6V32OSEmNy6gczMTDV9bsu62rL6bThYsQhVDWnqOosxGPGBsxFmOQ3pe8uQjs0dGNaFiIioax3p88eEMzEg4EzU+B5Cce0aFNesRXXjfmQXr1XLTzsXwN8yEMHeoxDsMwrx0aORkJDQ7fGT82Fy6waJbVJSIqqra2AwAINP8cW5lwah90BvdXtttR2LPy3Hss8zUVd71zGPV1lZ2Q1RExGRpzveYcVEWJQZI061YvgEK/okeqOyYY9aDla+j5/32DCk30wk95mB2PAJHNbSgzG5dXHSYqsZ6vD0PyciILJAzTCmaCZY7L1hNQ/E5Zf44PJLjn6c1StS8OZL36K2trZb4iYiIs92osOKOdjrq2Ez5qLRmING5CM4DMgq+RJZm75Us6T1DB2L+MizERd+OoL9+6pJI8gzMLl1YQVlO7C/9DU8+a+e8PJJh6Z6oXohImgIooJHwmK2dvhYGWl5XRorERFR5w0r5jBA/Zuy8wD++sTfMOf+C2C0pqPOloeswp/U4ijNC/BKRqDXYAR6J8PH1POIyS5nTXN9TG5dTFVtnuokJr1J88uaJmDw8jHCaA9CXPQoNbyKJLhERESeoqigCrs21eKGiz9snhlt8ClWDBrto8oX4F2K4tpVahHlJTZk7K3DgX31OCDr1HpUldvVbVarL1JSdjPBdWFMbl1ATX0x9ud8q3qOZhevU3O9CKPBghDvcZh/+8d4+ImLEBEkA2QTERF5lqOVOGiwwd5QDJuhEDZjAWyGIgSGAEPHWtXiYNCsqK3wxbJv9mN31qfwDZqsyhksJt9ufz50cpjcOqnSqnQcyF+GzPzlyC5aC7vW2HxbdMgo9IuZgb49pmP3zizsT3kPBrCWiIiIPNuRSxx+G0XBbm9EdV2++iW0qi5PresaSqEZquEdWK2mBU4rfRFpP7+oJpaQKYEDrfFq7e/bA/6+PRHw69rfJwZmk0+HRzM6GSyX6Dgmt06i0VaL3JKNKqE9kL8cZVXprW4PD0xGvx6/Q7+Y6QiwtvzDzer2WImIiFyV0Wj+NUnt0Xxdo60O1XV5yDiQhmVLVmHajDFoQC5qG0pQUXNQLUfi6xWuxuiVRNfPJ0Zty7qq3IDfTbsCuYeq0Phb+9QJY7lExzG51Ul6RioO5KxBef0OtVTW74WGhubbDTAhwGuQGr8vxGc0fMw9oJUB+8ryAcjShOPTEhERnRyzyVu1znrZjXj/1S9x9+wnMHLkSNTUFaGkKg2V1YdQUXMIlbWyzkZlTba63GirRk19oVoKyrYfdtz7XwuX5ikYNG8YNF8Y4AujrDV/GDU/GDV/GOCnPvOP1el7wbxFqhWYye2xMbntZnmlW7Fi66PILdkMi1frUoLSokbs2lyLHRtqsHtLDWpr9gP4qkPH5fi0REREnaN1w5GkSgkwIAEBAALkYgCg+WuwaZWosxWi3laAeltR02IvQp2tCFU1OahtLICXt1EN2SkLUApbO4/nZfaHtyUY3pYgtfaRtZdcDobJaOnGZ+4emNx2M7PRG0VVW1Ria2+0wMsQBZMWAZM9An4B/og904ApZ3b8eByfloiISL+JJY7l9X9fi0HDYlDfUIH6xkrUN1agrqHs16UUNnv9r9dXtlv+YDH7w272xeW3hiKn8nOk5xYiyK83gqzxMJmaJmwiN01uX3vtNTzzzDPIzc3FsGHD8Morr2DMmDFwNjJUV++gm3Dt5Q/h6ZdvR1LyyY1wwPFpiYiInGNiiXYbn2rssHpHqKUtTdPQaKtpTnZrG0pVwqu260tgs9ehobESMFbi9GkByKx4F5mb3lX3NcCo6oaD/Ho11fuqul+pJXbU/0bByxwAg8EIT+MWye2HH36IuXPn4s0338TYsWPx4osvYurUqdizZw8iIyPhTOQki7ROQd7B+RzhgIiIyO0mluh445NMJCETLskiSWlbkvjW1pciPWM/PvtkCWZdOx1GrzKUVWeopPdYnd0MBhN8LCHw8QqFr1fTWkogJOGur9VgNPrAZPCB0eANA8wqR2lam1QdsFoM5l/XphZrSZiNCA0JQ+9eyfD1CoUzcYvk9vnnn8cNN9yA2bNnq8uS5H799df4v//7P/z5z3/WOzwiIiKi42Y2+cLf1xcWuw1fvVeGR+fcrTq6SYuvdGIrq8pAWfUBVd9bWSsd3XJRWZujOrzVN5ZD02zNHd5KuiLAQuBQ6VU4Z8xjcCYun9zW19dj06ZNmD9/fvN1RqMRkydPxpo1a9q9T11dnVocysrK1Lq8vKnWpqs5On/t3nkQNdW/xXEy3wxT9+bCz5qm+3F4LNePyROO5YwxOeuxnDEmTziWM8bkCcdyxpjEgfQCtZZ85/AO5PILdSQMGNbU4Q0yPhnU+Pg2ewUatQo0yPrXJS8/C19+/RlGjIqHNcgCo9EOg8EGg0GTmSya1tBaX26xOGYt1ux2lYOFGmu6LX9yPI4k90elubhDhw6pd2H16tWtrp83b542ZsyYdu/z8MMPN71zXLhw4cKFCxcuXDRXWrKyso6aG7p8y+2JkFZeqdF1sNvtKC4uRlhYmKp/cXfyzScuLg5ZWVkIDAzUOxzSGc8HaonnA7XFc4Kc5XyQFtuKigr06PHbBBztcfnkVqajM5lMyMtrXbgtl6Ojo9u9j7e3t1paCg4OhqeRk5L/UZEDzwdqiecDtcVzgpzhfAgKCjrmPi4/PoSXlxdGjRqFpUuXtmqJlcvjx4/XNTYiIiIi6l4u33IrpMTgmmuuwejRo9XYtjIUWFVVVfPoCURERETkGdwiub300ktRUFCABQsWqEkchg8fju+++w5RUVF6h+aUpCTj4YcfPqw0gzwTzwdqiecDtcVzglztfDBIrzK9gyAiIiIi6gwuX3NLREREROTA5JaIiIiI3AaTWyIiIiJyG0xuiYiIiMhtMLl1E4888oiaXa3lkpiY2Hx7bW0tbr31VjULm7+/Py6++OLDJr7IzMzE9OnTYbVaERkZiXnz5qGxsVGHZ0PHa+XKlZgxY4aatUXe+88//7zV7dJvVEYTiYmJga+vLyZPnox9+/a12kdm6bvyyivVoNwyqcn1119/2Bzmv/zyC04//XT4+PioGWqefvrpbnl+1Lnnw7XXXnvY/xfnnntuq314PriPJ598EqeccgoCAgLU/+0zZ87Enj17Wu3TWZ8RP/74I0aOHKl60vfr1w/vvPNOtzxH6tzzYeLEiYf9H3HTTTe5zPnA5NaNJCcnIycnp3n5+eefm2+bM2cOvvzyS3z88cdYsWIFsrOzcdFFFzXfbrPZ1ElaX1+P1atX41//+pc6CSUhIucn4zoPGzYMr732Wru3S9Lx8ssv480338S6devg5+eHqVOnqg80B0lkdu7cicWLF+Orr75SCdKNN97YasrFKVOmICEhAZs2bcIzzzyjvlT9/e9/75bnSJ13PghJZlv+f/HBBx+0up3ng/uQ//MlcV27dq16PxsaGtR7J+dJZ35GpKenq33OOussbN26FXfddRf++Mc/4vvvv+/250wndz6IG264odX/ES2/vDr9+SBDgZHre/jhh7Vhw4a1e1tpaalmsVi0jz/+uPm6lJQUGQJOW7Nmjbr8zTffaEajUcvNzW3e54033tACAwO1urq6bngG1Fnkff3ss8+aL9vtdi06Olp75plnWp0T3t7e2gcffKAu79q1S91vw4YNzft8++23msFg0A4dOqQuv/7661pISEir8+G+++7TBg4c2E3PjDrjfBDXXHONdsEFFxzxPjwf3Ft+fr56f1esWNGpnxH33nuvlpyc3OqxLr30Um3q1Knd9MyoM84HceaZZ2p33nmndiTOfj6w5daNyM/M8jNknz59VKuL/GQgpFVFvpnJT9EOUrIQHx+PNWvWqMuyHjJkSKuJL6RlT1pnpPWGXJd8e5bJTVq+/zI399ixY1u9//LTs8zy5yD7G41G1dLr2OeMM85QU163PEfk56ySkpJufU508uTnQvkpceDAgbj55ptRVFTUfBvPB/dWVlam1qGhoZ36GSH7tDyGYx/HMcg1zgeHRYsWITw8HIMHD8b8+fNRXV3dfJuznw9uMUMZQSUq8pOAfFDJzwePPvqoqoXbsWOHSmzkA0g+rFqSk1JuE7JuO6Ob47JjH3JNjvevvfe35fsviU5LZrNZ/WfXcp/evXsfdgzHbSEhIV36PKjzSEmC/OQs72daWhruv/9+TJs2TX3omEwmng9uzG63q5+HJ0yYoJIW0VmfEUfaRxKempoaVe9Pzn8+iCuuuEKVHEmDmdTW33fffeqL66effuoS5wOTWzchH0wOQ4cOVcmunJgfffQR/0MholYuu+yy5m1pfZH/M/r27atacydNmqRrbNS1pNZSGj1a9skgz3XrEc6HlvX18n+EdEaW/xvky7D8X+HsWJbgpuQb+IABA5Camoro6GhV9F1aWtpqH+kJK7cJWbftGeu47NiHXJPj/Wvv/W35/ufn57e6XXq9So95niPuT0qZ5OdH+f9C8HxwT7fddpvqHLh8+XLExsY2X99ZnxFH2kdG3GAji+ucD+2RBjPR8v8IZz4fmNy6KRmyR75hybetUaNGwWKxYOnSpc23y88LUpM7fvx4dVnW27dvb/WBJr0o5SQcNGiQLs+BOof8dCz/ybR8/+VnIamdbPn+yweb1N45LFu2TP1k5fhPTfaRHvNSm9fyHJFSGP4E7doOHjyoam7l/wvB88G9SL9CSWQ+++wz9T62LSfprM8I2aflMRz7OI5BzuFY50N7ZLQD0fL/CKc+H7q8yxp1i7vvvlv78ccftfT0dG3VqlXa5MmTtfDwcNULUtx0001afHy8tmzZMm3jxo3a+PHj1eLQ2NioDR48WJsyZYq2detW7bvvvtMiIiK0+fPn6/isqKMqKiq0LVu2qEX+rJ9//nm1feDAAXX7U089pQUHB2tffPGF9ssvv6ie8r1799Zqamqaj3HuuedqI0aM0NatW6f9/PPPWv/+/bXLL7+8+XbpUR0VFaVdddVV2o4dO7T//Oc/mtVq1f72t7/p8pzpxM4Hue2ee+5RveDl/4slS5ZoI0eOVO93bW1t8zF4PriPm2++WQsKClKfETk5Oc1LdXV18z6d8Rmxf/9+dQ7MmzdPjbbw2muvaSaTSe1LrnM+pKamagsXLlTngfwfIZ8bffr00c444wyXOR+Y3LoJGV4jJiZG8/Ly0nr27KkuywnqIEnMLbfcoobukZPtwgsvVCdzSxkZGdq0adM0X19flRhLwtzQ0KDDs6HjtXz5cpXEtF1kyCfHcGAPPfSQSkZkCLBJkyZpe/bsaXWMoqIilbz4+/ur4Vxmz56tEqGWtm3bpp122mnqGHKeSdJMrnU+yAeYfCDJB5EM/5SQkKDdcMMNrYb0ETwf3Ed754Isb7/9dqd/Rsi5N3z4cPVZJAlRy8cg1zgfMjMzVSIbGhqq/rb79eunEtSysjKXOR8Mvz5RIiIiIiKXx5pbIiIiInIbTG6JiIiIyG0wuSUiIiIit8HkloiIiIjcBpNbIiIiInIbTG6JiIiIyG0wuSUiIiIit8HkloiIiIjcBpNbIiKdyVw6N954I0JDQ2EwGJrnce9svXr1wosvvtglxyYichZMbomIdPbdd9/hnXfewVdffYWcnBwMHjxYJbmff/653qEREbkcs94BEBF5urS0NMTExODUU0/VOxQiIpfHllsiok7wySefYMiQIfD19UVYWBgmT56Mqqoq2Gw2zJ07F8HBwer6e++9F9dccw1mzpyp7nfttdfi9ttvR2ZmpmqtldIBWcSFF17YfF1HEuQLLrgAUVFR8Pf3xymnnIIlS5Yctl9FRQUuv/xy+Pn5oWfPnnjttdda3S5xyHHkGIGBgbjkkkuQl5enbtu7d6+KZ/fu3a3u88ILL6Bv377Nl3fs2IFp06apY0g8V111FQoLC0/wlSUiOj5MbomITpKUEkjCeN111yElJQU//vgjLrroIlVL+9xzz6mSg//7v//Dzz//jOLiYnz22WfN933ppZewcOFCxMbGquNs2LBBLeLtt99uvu5YKisrcd5552Hp0qXYsmULzj33XMyYMUMlqy0988wzGDZsmNrnz3/+M+68804sXrxY3Wa321ViKzGuWLFCXb9//35ceuml6vYBAwZg9OjRWLRoUatjyuUrrrhCbZeWluLss8/GiBEjsHHjRlVyIcmxJMlERN1CIyKik7Jp0yZN/jvNyMg47LaYmBjt6aefbr7c0NCgxcbGahdccEHzdS+88IKWkJDQ6n5yvM8+++yk4kpOTtZeeeWV5svyGOeee26rfS699FJt2rRpavuHH37QTCaTlpmZ2Xz7zp07VSzr169vjrVv377Nt+/Zs0fdnpKSoi4/9thj2pQpU1o9RlZWltpH9iUi6mpsuSUiOknSEjpp0iRVlvCHP/wBb731FkpKSlBWVqZaXseOHdu8r9lsVq2fnU1abu+55x4kJSWpEggpCZBW5LYtt+PHjz/ssuwnZB0XF6cWh0GDBqnjOfa57LLLkJGRgbVr1za32o4cORKJiYnq8rZt27B8+XL1+I7FcZuUThARdTUmt0REJ8lkMqmf8L/99luVDL7yyisYOHCgSgK7iyS2Uu7wl7/8BT/99JMaTkyS7fr6+k59nOjoaFV28P7776vLsr7yyitbJdlSDiGP33LZt28fzjjjjE6NhYioPUxuiYg6gXS0mjBhAh599FFVz+rl5aXqX2UUhHXr1jXv19jYiE2bNh3zeBaLRXVG66hVq1apzmnSCU2SWklC20uuHS2uLS9La6+QdVZWllocdu3apepoJWl3kGT2ww8/xJo1a1RNrrTmOkgr7s6dO1UnuH79+rVapBMbEVFXY3JLRHSSJHmVFlPpQCVlAJ9++ikKCgpUsigdtp566ik1Zq2MMnDLLbeoZPFYJDmU5Dg3N1eVOBxL//791eNKK6mUBkgHL+kg1l4S/PTTT6uRD2SkhI8//ljFKGSEB0mMJXndvHkz1q9fj6uvvhpnnnlmq1IK6Swnoy7cfPPNOOuss9CjR4/m22699VbVIU062ElHOClF+P777zF79uzjStaJiE4Uk1siopMkQ2atXLlSjVYgIwo8+OCDapQEGQ7r7rvvVkNhyfBfUt8aEBCgWlePRe4vpQ5S/yojDxzL888/j5CQEDVWrpQFTJ06VbWitiXxSBIux3z88cfV/WRfR+vzF198oY4jJQSS7Pbp00e10rYkz0EeQ5LoliUJQhJdSaAlkZ0yZYpKlu+66y5Vt2s08iOHiLqeQXqVdcPjEBHRr6R8QFpvOQMZEVHn49doIiIiInIbTG6JiFxAcnJyq+G1Wi5tJ1UgIvJkLEsgInIBBw4cQENDQ7u3yRS3UgdLRERMbomIiIjIjbAsgYiIiIjcBpNbIiIiInIbTG6JiIiIyG0wuSUiIiIit8HkloiIiIjcBpNbIiIiInIbTG6JiIiICO7i/wH/1YkwIRNPtwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAHWCAYAAAB5SD/0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWShJREFUeJzt3Qd8FGX+x/FfeggllJCEQAi9d1SMKOqBICI21BMR8CxYwAKKHKci4CkcKIqKBf+CeoLtTuFERUAURIqAIlWkF4HQCSSQOv/X70lm3U2BhCzsJvN5+xp3d2Z29tnZXfLdZ3/zTIBlWZYAAAAADhHo6wYAAAAA5xMBGAAAAI5CAAYAAICjEIABAADgKARgAAAAOAoBGAAAAI5CAAYAAICjEIABAADgKARgAAAAOAoBGChj6tSpI3feeaevm1HmjR8/XurVqydBQUHSpk2b8/KY7777rgQEBMj27dvPy+OVRps2bZKuXbtKZGSk2VczZswo8efp2muv9Vr7APgHAjDgx+zAs2LFigKXX3HFFdKiRYsSP85XX30lI0eOLPF2nGLOnDnyxBNPSMeOHWXq1Kny/PPP+7pJyNW/f39Zs2aNPPfcc/Lvf/9bLrjgApk+fbq8/PLLvm6aI+zZs8f8W7Jq1SpfNwU4reDTLwZQ2mzcuFECAwOLHYAnTZpECC6i+fPnm338zjvvSGhoqK+bg1wnT56UJUuWyJNPPimDBg1yzdcAvHbtWnn00Ud92j6nBOBRo0aZnvPz9csIcDboAQbKmLCwMAkJCZHSJCUlRUqT/fv3S7ly5Qi/fubAgQPmsnLlyr5uCgA/RwAGyngNcEZGhumRadiwoYSHh0u1atXk0ksvlblz55rluq72/iott7An93D62GOPSXx8vAnXjRs3lhdeeEEsy8rX+/bwww9LVFSUVKxYUa677jr5448/zLbce5b1us5bv3693H777VKlShXTHrV69WrTHq2t1bbGxsbKXXfdJYcOHfJ4LHsbv//+u9xxxx2m3rN69ery9NNPm3bt2rVLrr/+eqlUqZLZxosvvlikfZeZmSnPPvus1K9f3zxX3Zf/+Mc/JC0tzbWOPq6WPeh+sfeVlqqczrJly+Saa64xz7V8+fLSqlUrmThxYr5e5csuu8ws1wCn7d+wYcMZ25x3/xb2PrDLaRYtWmReJ91f+jj33XefpKeny9GjR6Vfv36mjTppiYf7a6x1x3p/fe0nT57s2kcXXnihLF++3OOx9T3322+/yd69e8/Y/n379snf/vY3qVWrltlejRo1zHN3r3PWdvzzn/8060RERMiVV14p69at83iOug8SEhLM9aFDh5q26nItE/ryyy9lx44drtdL559N2Yv2aOr7slmzZvLZZ595LD98+LA8/vjj0rJlS6lQoYJ573Xv3l1+/fXXfNt69dVXpXnz5ua56L62yzTc6WdH3/sxMTFmv+j6U6ZM8Vjn+++/N8/nk08+MZ/xmjVrms/ezTffLMeOHTPvW+31jo6ONm3S/ez+XrZ98MEH0r59e/OlrmrVqnLbbbeZz1BB5Vb6udX9r23Xxxs3bpxHe/T9oPSxivr5AHyBEgigFNA/ZgcPHsw3X4PGmWgwGDNmjNxzzz1y0UUXSXJysqkp/vnnn+Wqq64yAUh/ttRArDWT7jR4aJD97rvv5O677zYB4JtvvjEBQ/9Av/TSS651NYjoH+K+ffvKxRdfLAsWLJAePXoU2q5bbrnFhHKtn7WDlrZh69at5o+nBlcNORq29HLp0qUewVz99a9/laZNm8rYsWNNyNGQpH/A33rrLfnLX/4i//rXv2TatGkmmOgf5k6dOp12X+k+eu+990yA0NCvwVX3nQbRzz//3Kyj+0jb9NNPP8n//d//mXmXXHJJodvU56QHUWmwe+SRR8zz0u3NmjXL3Fbz5s0zYUmDv75e+mVCQ5LWGOvrdDaBrTAPPfSQaYMGJt2n+lw0CC9evFhq165tXg8tidGD/DTwaCh2p0Ht+PHj5n2jr4cGoJtuusm8bvYvD/re0NdF63HPFH569eplXl9tlz5P7V3XfbZz507X8x4xYoR5bfVLhE66T/RANw3uNm2DPo/BgwdL7969zXoa+vQLhX5+du/e7Xq/6vziHlin77X777/fPCf9AqTv39mzZ5vPkNLnrwfc6fy6detKUlKSeR9efvnlJjTGxcWZ9d5++23zBUTfY/r6nzp1ynzx0/eafiFUel/9DOn+1VIO/bLy9ddfm8+gfn7zlnLoe1TD69///nfZvHmzee/oa6FlOkeOHDHvKX2t9bXQtun+tGmttH5xvPXWW837X3vR9f76Wfnll188etN1W1dffbXZ17r+f/7zHxk2bJgJ/fr+1dd89OjRZvsDBgwwX+jO9PkAfMYC4LemTp2qyfC0U/PmzT3uk5CQYPXv3991u3Xr1laPHj1O+zgDBw4028prxowZZv4///lPj/k333yzFRAQYG3evNncXrlypVnv0Ucf9VjvzjvvNPOfeeYZ1zy9rvN69+6d7/FSU1Pzzfvwww/N+gsXLsy3jQEDBrjmZWZmWrVq1TLtGjt2rGv+kSNHrHLlynnsk4KsWrXKbPOee+7xmP/444+b+fPnz3fN022VL1/+tNuz21S3bl3zmmg73GVnZ7uut2nTxoqOjrYOHTrkmvfrr79agYGBVr9+/fK9H7Zt2+aal3f/FvY+sO/brVs3j8dOTEw0++z+++/Pty8vv/xy1zx9TL1/tWrVrMOHD7vmz5w508z/4osv8q17pn2u+0TXGz9+fKHr7N+/3woNDTXvYfd2/+Mf/8j3GPbj5t2e3lf3x9nQ++k2//vf/7rmHTt2zKpRo4bVtm1b17xTp05ZWVlZHvfV9oSFhVmjR492zbv++uvzfWbzuvvuu832Dx486DH/tttusyIjI12fk++++860rUWLFlZ6erprPf1s6WvavXt3j/vra+2+H7Zv324FBQVZzz33nMd6a9assYKDgz3m63tBH+v99993zUtLS7NiY2OtXr16ueYtX77crKfvN8CfUQIBlAJaoqC9Ynkn/Sn9TLQHR3vYtBeruLQnUIf50h4rd9o7qtlLe6WU9oSpBx980GM97dUrjPam5aW9WDbtGdNeb+0JU9rrl5f2WNm0nfpTsrZLe8rcn7+WbWgP3ZmeqxoyZEi+56q0h7m4tAdt27Ztpscub12q3ZutZQJ6xLz2oGvvtU1fW+1dtNvlLbpv3HvSO3TokG+f2fuyoH2mPaH6s73N7uVzX1d7bnWbZ+r9teuo9adz7V0siPaOa0+vvpfc230+D2jT3tsbb7zRdVvLG7RnXF9fLeFQWqZgH3yalZVlyna0p1nfe+7vXX0faG903rIRm+63//73v9KzZ09zXT8D9tStWzfTm533s6Btca/7t19TLaFwp/O1tEFLfZSWcWRnZ5veXPfH0V8I9NcZ/eXHnT4fLTmy6Wunvyqd6bMF+CMCMFAK6B+ZLl265Jvcg0hh9CdJre9s1KiR+alSyxf0J9ei0LpJ/eOvdYXu9KdOe7l9qX/89edVdw0aNCh023nXteso9WdhrXvUcKQ//drr6R/+vPQne3daC6w1mlqHnHd+YQHL/bnqc8jbZg0DGlrs51ocW7ZsMZenG6rO3q4Gpbx0P2sg8eZBggXtM6U13kXZZ3nvb78Hz7R/C6KhUctU9IuUvub6s7uWVNih0n3/aCBzp++Norz/vUHfE3nLb/TzpOxaZQ2SWmKh7dTnpe9BbaN+1tzfu1oyoEFSP9O67sCBA+XHH390LdcSBP28ammK3t990tIgpWUiZ/uaajvt9uiXYg3K2o68j6VlOnkfR2uw8+4HfQ3O5rUHfI0aYKCM01ChQWzmzJnmQB6tW9U/1G+++aZHD+r55t7ba9OeKK1F1ZCu9cYaFPQPttYd6mVe2lNZlHkq70F7hcn7B7600l7IghS2fwqaX9A+K+n+zUt7crW3U+tntb5c61G1plUPCmzbtq2UFlo7rW3XXlc9kFJ78/ULlT4/9/eufqnRoQq1Blx/OdHe3tdff93UzWpdtr2u9rRqvXFB8v7yU5zX1P210sfS97t+ASlo3by10t5+7QFfIgADDqB/jLX3SKcTJ06YUKwHxtgBuLDQp0fV60/QetCTey+wHuFvL7cv9Y+p/tzv3lOnB+QUlfYiffvttyYEuB+kczalG2fDfg76eHYPt31AkvbI2c+1OHSkBKVj0GqPfWGPqzQU5aX7WXsS9UCuwmgPnLbPnZYMFGUEBn+h+0lLTXTS/a9ffnTkDh2dwN4/Ol8PEnTvKS1qz2NJv9To+1hDnvt2dAQSZR+opweE6egIOja0O31t8v4ioa+nlpLopK+VHlSmB6MNHz7c9L7qZ02/wBT2nvHmftfnpb+y2D3aJVVWvkCi7KMEAijj8g4hpr06+pOu+3BIdsDKG6T0SHr9Q/zaa695zNceZP1Dp0d+K61NVNqT5U6PJi8qu3cpb2/S+TqDlz7Xgh5vwoQJ5vJ0I1oUpl27diZc6Dbz7lv7eeroEBr4dPQJ93U0NGuPvd2u04WYhQsXeszTn88L6wE+H4o6DFpqaqqp9c77fDQA2u9PDYFa36rvJff3RnHeF/ZIEGdLR0mxRwFROhLD+++/b143LZGx379537uffvqpGRHjdJ9HraPVYdX0vrrfdDs6Mob2DOt7oLCxjr1Bg7c+nn7pzNt2vZ23rUVR2L8lgL+hBxgo4/SPq47hqeN8ak+wDoGmvVXuZ8rSZUoPdtMwq38UdSxQ/Wlae7X0zFpa69i6dWsTyrScQn/atXs49f76R1tDif7RtIdBs3vJitIrpAcW2TWgGgR0jFF9LO1VPh/0uelPzhoe9Y+3Dl+lQ51pML3hhhvMfigu/Qn8jTfeMPtRw5L2wGvg1XCoBybqT/5KhxzTLxOJiYnmYDR7GDSt2TzT2fm0F18PKNT9rwfN6bizut28vY7nU1GHQdP3R+fOnU3pi75Pg4ODTdDUXnd9/yntEdVh7LQsQoeT0y8EevCZ/mxf1Oeo78+PP/7YHOCow+Hpl0B9TYpKe0f1ddED17RWWcfj1TbqcGg2bZvW2+trrMN+6emYdQg+915rpcO3aWjWIe50W1prq18w9QuW/SuLDuunB6DpQWv33nuv2TdaH68Hv+kvMnrdG/Tzq8PLac+zfr71fa5t0M+cvg46lJnu++JuU2vmtcRKt6WBWJ9HQTX/gE/5ehgKAIWzh67SoYUKokMTnWkYNB3C7KKLLrIqV65shgNr0qSJGd7IfdgkHfbqoYcesqpXr26GT3L/p+H48ePW4MGDrbi4OCskJMRq2LChGWbKfUgqlZKSYoZTq1q1qlWhQgXrhhtusDZu3Gi25T4smT2E2YEDB/I9n927d1s33nijaasO93TLLbdYe/bsKXQotbzbKGx4soL2U0EyMjKsUaNGmaHL9LnGx8dbw4cPN0NcFeVxCrNo0SLrqquusipWrGju16pVK+vVV1/1WGfevHlWx44dzWtUqVIlq2fPntb69es91iloGDQdemvYsGFWVFSUFRERYYY50+HpChsGLe97qaj7srAhxlTe16eow6DpMF/6ntH3pD6WvuYdOnSwPvnkE4/19Dnq66JDg+n+ueKKK6y1a9fme46FtfHEiRPW7bffbt5Xurw4Q6LpujqM2jfffGNeNx3WTNv76aefeqyn75HHHnvM1UZ9LZcsWWLee+7Dyb311ltWp06dzHByuq369etbQ4cONUOruUtKSjL7Rt+D+l7U4cY6d+5sTZ482bWOPQxa3rYU97XWId4uvfRS8xropM9PH1s/v2f6DOn+z7s/dWi8Zs2amaHUGBIN/ipA/+fbCA6grNLhvfRAJq3l7NOnj6+bgzLGPtMbZxoDUFzUAAPwCv3ZPi8tidAygDOdgQ0AgPOJGmAAXqG1uytXrjS1slrLqTWaOmkdYd7xSAFf04PJTnegoB6c5n5iEgBlCwEYgFfogT96djodA1WHWtPB+fUALj2ADvA3ejDc6U5uogdB6hnqAJRN1AADABxHz75WUNmO+/jK9ugoAMoeAjAAAAAchYPgAAAA4CjUABeBnh5VzwSkg3pzmkcAAAD/o0UNx48fl7i4ODMC0ekQgItAwy9HsQMAAPi/Xbt2Sa1atU67DgG4COzTU+oO1dO1AgAAwL8kJyebDks7t50OAbgI7LIHDb8EYAAAAP9VlHJVDoIDAACAoxCAAQAA4Cg+DcBjxowxZ+PRWo3o6Gi54YYbZOPGjR7rnDp1SgYOHCjVqlWTChUqSK9evSQpKcljnZ07d0qPHj0kIiLCbGfo0KGSmZnpsY6e0addu3YSFhYmDRo0kHffffe8PEcAAAD4F58G4AULFphwu3TpUnMK1YyMDOnataukpKS41hk8eLB88cUX8umnn5r1dUSGm266ybVcz+Wu4Tc9PV0WL14s7733ngm3I0aMcK2zbds2s86VV14pq1atkkcffVTuuece+eabb877cwYAAIBv+dWZ4A4cOGB6cDXodurUSY4dOybVq1eX6dOny80332zW+e2336Rp06ayZMkSufjii+Xrr7+Wa6+91gTjmJgYs86bb74pw4YNM9sLDQ0117/88ktZu3at67Fuu+02OXr0qMyePbtIRxVGRkaa9nAQHAAAgP8pTl7zqxpgbbCqWrWquVy5cqXpFe7SpYtrnSZNmkjt2rVNAFZ62bJlS1f4Vd26dTM7Yd26da513Ldhr2NvI6+0tDRzf/cJAAAAZUOgP51tTUsTOnbsKC1atDDz9u3bZ3pwK1eu7LGuhl1dZq/jHn7t5fay062jwfbkyZMF1ibrNwh74iQYAAAAZYffBGCtBdYShY8++sjXTZHhw4eb3mh70hNgAAAAoGzwixNhDBo0SGbNmiULFy70OHVdbGysObhNa3Xde4F1FAhdZq/z008/eWzPHiXCfZ28I0foba0PKVeuXL726EgROgEAAKDs8WkPsB5/p+H3888/l/nz50vdunU9lrdv315CQkLk22+/dc3TYdJ02LPExERzWy/XrFkj+/fvd62jI0pouG3WrJlrHfdt2OvY2wAAAIBz+HQUiAcffNCM8DBz5kxp3Lixa77W3do9sw888IB89dVXZmgzDbUPPfSQma9DntnDoLVp00bi4uJk3Lhxpt63b9++Zpiz559/3jUMmtYVa5nFXXfdZcL2ww8/bEaG0IPhzoRRIAAAAPxbcfKaTwNwYedqnjp1qtx5552uE2E89thj8uGHH5rRGTSwvv76667yBrVjxw4TlPVkF+XLl5f+/fvL2LFjJTj4zwoPXaZjCq9fv96UWTz99NOuxzgTAjAAAIB/KzUBuLQgAAMAAPi3UjsOMAAAAOCIUSBQMD3Y7+DBgyXeTlRUlDl5CAAAAAjAfh1+mzZtIqmp+U/UUVwREeVkw4bfCMEAAAAEYP+lPb8afkeP7yN16nuexa44tm9JkhFDp5ntEYABAAAIwH5Pw2+T5n+eHAQAAAAlw0FwAAAAcBQCMAAAAByFAAwAAABHIQADAADAUQjAAAAAcBQCMAAAAByFAAwAAABHIQADAADAUQjAAAAAcBQCMAAAAByFAAwAAABHIQADAADAUQjAAAAAcBQCMAAAAByFAAwAAABHIQADAADAUQjAAAAAcBQCMAAAAByFAAwAAABHIQADAADAUQjAAAAAcBQCMAAAAByFAAwAAABHIQADAADAUQjAAAAAcBQCMAAAAByFAAwAAABHIQADAADAUQjAAAAAcBQCMAAAAByFAAwAAABH8WkAXrhwofTs2VPi4uIkICBAZsyY4bFc5xU0jR8/3rVOnTp18i0fO3asx3ZWr14tl112mYSHh0t8fLyMGzfuvD1HAAAA+BefBuCUlBRp3bq1TJo0qcDle/fu9ZimTJliAm6vXr081hs9erTHeg899JBrWXJysnTt2lUSEhJk5cqVJjyPHDlSJk+efM6fHwAAAPxPsC8fvHv37mYqTGxsrMftmTNnypVXXin16tXzmF+xYsV869qmTZsm6enpJjyHhoZK8+bNZdWqVTJhwgQZMGCAl54JAAAASotSUwOclJQkX375pdx99935lmnJQ7Vq1aRt27amhzczM9O1bMmSJdKpUycTfm3dunWTjRs3ypEjRwp8rLS0NNNz7D4BAACgbPBpD3BxvPfee6an96abbvKY//DDD0u7du2katWqsnjxYhk+fLgpg9AeXrVv3z6pW7eux31iYmJcy6pUqZLvscaMGSOjRo06p88HAAAAvlFqArCWMPTp08ccyOZuyJAhruutWrUyPb333XefCbFhYWFn9Vgaot23qz3AevAcAAAASr9SEYB/+OEHU7Lw8ccfn3HdDh06mBKI7du3S+PGjU1tsJZPuLNvF1Y3rMH5bMMzAAAA/FupqAF+5513pH379mbEiDPRA9wCAwMlOjra3E5MTDTDrWVkZLjWmTt3rgnHBZU/AAAAoGzzaQA+ceKECaw6qW3btpnrO3fu9Cg/+PTTT+Wee+7Jd389wO3ll1+WX3/9VbZu3WpGfBg8eLDccccdrnB7++23m7IIPXhu3bp1phd54sSJHiUOAAAAcA6flkCsWLHCDGtms0Np//795d133zXXP/roI7EsS3r37p3v/lqmoMt1XF8duUEPdtMA7B5uIyMjZc6cOTJw4EDTixwVFSUjRoxgCDQAAACH8mkAvuKKK0y4PR0NqoWFVR39YenSpWd8HD04TuuIAQAAgFJRAwwAAAB4CwEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoPg3ACxculJ49e0pcXJwEBATIjBkzPJbfeeedZr77dPXVV3usc/jwYenTp49UqlRJKleuLHfffbecOHHCY53Vq1fLZZddJuHh4RIfHy/jxo07L88PAAAA/senATglJUVat24tkyZNKnQdDbx79+51TR9++KHHcg2/69atk7lz58qsWbNMqB4wYIBreXJysnTt2lUSEhJk5cqVMn78eBk5cqRMnjz5nD43AAAA+KdgXz549+7dzXQ6YWFhEhsbW+CyDRs2yOzZs2X58uVywQUXmHmvvvqqXHPNNfLCCy+YnuVp06ZJenq6TJkyRUJDQ6V58+ayatUqmTBhgkdQBgAAgDP4fQ3w999/L9HR0dK4cWN54IEH5NChQ65lS5YsMWUPdvhVXbp0kcDAQFm2bJlrnU6dOpnwa+vWrZts3LhRjhw5UuBjpqWlmZ5j9wkAAABlg18HYC1/eP/99+Xbb7+Vf/3rX7JgwQLTY5yVlWWW79u3z4Rjd8HBwVK1alWzzF4nJibGYx37tr1OXmPGjJHIyEjXpHXDAAAAKBt8WgJxJrfddpvresuWLaVVq1ZSv3590yvcuXPnc/a4w4cPlyFDhrhuaw8wIRgAAKBs8Ose4Lzq1asnUVFRsnnzZnNba4P379/vsU5mZqYZGcKuG9bLpKQkj3Xs24XVFmvdsY4q4T4BAACgbChVAXj37t2mBrhGjRrmdmJiohw9etSM7mCbP3++ZGdnS4cOHVzr6MgQGRkZrnV0xAitKa5SpYoPngUAAAAcG4B1vF4dkUEntW3bNnN9586dZtnQoUNl6dKlsn37dlMHfP3110uDBg3MQWyqadOmpk743nvvlZ9++kl+/PFHGTRokCmd0BEg1O23324OgNPxgXW4tI8//lgmTpzoUeIAAAAA5/BpAF6xYoW0bdvWTEpDqV4fMWKEBAUFmRNYXHfdddKoUSMTYNu3by8//PCDKVGw6TBnTZo0MTXBOvzZpZde6jHGrx7ENmfOHBOu9f6PPfaY2T5DoAEAADiTTw+Cu+KKK8SyrEKXf/PNN2fcho74MH369NOuowfPaXAGAAAASlUNMAAAAFBSBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKP4NAAvXLhQevbsKXFxcRIQECAzZsxwLcvIyJBhw4ZJy5YtpXz58madfv36yZ49ezy2UadOHXNf92ns2LEe66xevVouu+wyCQ8Pl/j4eBk3btx5e44AAADwLz4NwCkpKdK6dWuZNGlSvmWpqany888/y9NPP20uP/vsM9m4caNcd911+dYdPXq07N271zU99NBDrmXJycnStWtXSUhIkJUrV8r48eNl5MiRMnny5HP+/AAAAOB/gn354N27dzdTQSIjI2Xu3Lke81577TW56KKLZOfOnVK7dm3X/IoVK0psbGyB25k2bZqkp6fLlClTJDQ0VJo3by6rVq2SCRMmyIABA7z8jAAAAODvSlUN8LFjx0yJQ+XKlT3ma8lDtWrVpG3btqaHNzMz07VsyZIl0qlTJxN+bd26dTO9yUeOHCnwcdLS0kzPsfsEAACAssGnPcDFcerUKVMT3Lt3b6lUqZJr/sMPPyzt2rWTqlWryuLFi2X48OGmDEJ7eNW+ffukbt26HtuKiYlxLatSpUq+xxozZoyMGjXqnD8nAAAAnH+lIgDrAXG33nqrWJYlb7zxhseyIUOGuK63atXK9PTed999JsSGhYWd1eNpiHbfrvYA68FzAAAAKP2CS0v43bFjh8yfP9+j97cgHTp0MCUQ27dvl8aNG5va4KSkJI917NuF1Q1rcD7b8AwAAAD/Flgawu+mTZtk3rx5ps73TPQAt8DAQImOjja3ExMTzXBrui2bHlyn4big8gcAAACUbT7tAT5x4oRs3rzZdXvbtm0mwGo9b40aNeTmm282Q6DNmjVLsrKyTM2u0uVa6qAHuC1btkyuvPJKMxKE3h48eLDccccdrnB7++23m3reu+++29QQr127ViZOnCgvvfSSz543AAAAHBqAV6xYYcKrza677d+/vxmr93//+5+53aZNG4/7fffdd3LFFVeYMoWPPvrIrKsjN+jBbhqA3et3dTi1OXPmyMCBA6V9+/YSFRUlI0aMYAg0AAAAh/JpANYQqwe2FeZ0y5SO/rB06dIzPo4eHPfDDz+cVRsBAABQtvh1DTAAAADgbQRgAAAAOAoBGAAAAI5CAAYAAICjEIABAADgKARgAAAAOAoBGAAAAI5CAAYAAICjnFUAfuaZZ2THjh3ebw0AAADgjwF45syZUr9+fencubNMnz7dnIYYAAAAKLMBeNWqVbJ8+XJp3ry5PPLIIxIbGysPPPCAmQcAAACUyRrgtm3byiuvvCJ79uyRd955R3bv3i0dO3aUVq1aycSJE+XYsWPebSkAAADgDwfBWZYlGRkZkp6ebq5XqVJFXnvtNYmPj5ePP/7YG20EAAAAfB+AV65cKYMGDZIaNWrI4MGDTY/whg0bZMGCBbJp0yZ57rnn5OGHH/ZeSwEAAABfBeCWLVvKxRdfLNu2bTPlD7t27ZKxY8dKgwYNXOv07t1bDhw44I02AgAAAF4TfDZ3uvXWW+Wuu+6SmjVrFrpOVFSUZGdnl6RtAAAAgH/0ANu1vnmdPHlSRo8e7Y12AQAAAP4TgEeNGiUnTpzINz81NdUsAwAAAMpcD3BAQEC++b/++qtUrVrVG+0CAAAAfF8DrGUPGnx1atSokUcIzsrKMr3C999//7loJwAAAHD+A/DLL79sen/1ADgtdYiMjHQtCw0NlTp16khiYqJ3WgYAAAD4OgD379/fXNatW1cuueQSCQkJORdtAgAAAHwfgJOTk6VSpUrmup70Qkd80Kkg9noAAABAqQ3AWv+7d+9eiY6OlsqVKxd4EJx9cJzWAwMAAAClOgDPnz/fNcLDd999dy7bBAAAAPg+AF9++eWu61oDHB8fn68XWHuA9bTIAAAAQJkaB1gD8IEDB/LNP3z4sFkGAAAAOOJEGDoOcHh4uDfaBQAAAPh+GLQhQ4aYSw2/Tz/9tERERLiW6YFvy5YtkzZt2ni/lQAAAIAvAvAvv/zi6gFes2aNOfmFTa+3bt1aHn/8cW+1DQAAAPBtALZHf/jb3/4mEydOZLxfAAAAlO0AbJs6dar3WwIAAAD4awBOSUmRsWPHyrfffiv79++X7Oxsj+Vbt271VvsAAAAA3wfge+65RxYsWCB9+/aVGjVqFDgiBAAAAFBmAvDXX38tX375pXTs2NH7LQIAAAD8bRzgKlWquE6LDAAAAJT5APzss8/KiBEjJDU1tUQPvnDhQunZs6fExcWZMooZM2Z4LNfh1vRxtMyiXLly0qVLF9m0aVO+s8/16dPHjEhRuXJlufvuu80JOdytXr1aLrvsMnOSDj2F87hx40rUbgAAADgsAL/44ovyzTffSExMjLRs2VLatWvnMRXnYDodO3jSpEkFLteg+sorr8ibb75pTrJRvnx56datm5w6dcq1jobfdevWydy5c2XWrFkmVA8YMMC1PDk5Wbp27SoJCQmycuVKGT9+vIwcOVImT558Nk8dAAAATqwBvuGGG7zy4N27dzdTQbT39+WXX5annnpKrr/+ejPv/fffN6Fbe4pvu+022bBhg8yePVuWL18uF1xwgVnn1VdflWuuuUZeeOEF07M8bdo0SU9PlylTppiTdTRv3lxWrVolEyZM8AjKAAAAcIazCsDPPPOMnGvbtm2Tffv2mbIHW2RkpHTo0EGWLFliArBeatmDHX6Vrh8YGGh6jG+88UazTqdOnTzOWqe9yP/617/kyJEjpp45r7S0NDO59yIDAADAwSUQ54OGX6U9vu70tr1ML6Ojoz2WBwcHmwP03NcpaBvuj5HXmDFjTNi2J60bBgAAgIMDcFZWlikxuOiiiyQ2NtYETveptBs+fLgcO3bMNe3atcvXTQIAAIAvA/CoUaNMDe1f//pXExCHDBkiN910kyk90APMvEGDtUpKSvKYr7ftZXqpZ6Jzl5mZaUaGcF+noG24P0ZeYWFhZlQJ9wkAAAAODsB6YNnbb78tjz32mCk56N27t/zf//2fGbJs6dKlXmlY3bp1TUDV0y271+JqbW9iYqK5rZdHjx41ozvY5s+fb07NrLXC9jo6MkRGRoZrHR0xonHjxgXW/wIAAKBsO6sArLWzOvyZqlChgukFVtdee605Q1xR6Xi9OiKDTvaBb3p9586dZlzgRx99VP75z3/K//73P1mzZo3069fPjOxgj0LRtGlTufrqq+Xee++Vn376SX788UcZNGiQOUBO11O33367OQBOxwfW4dI+/vhjmThxoum1BgAAgPOc1SgQtWrVkr1790rt2rWlfv36MmfOHDP+rw5HpuUDRbVixQq58sorXbftUNq/f39599135YknnjBjBetwZdrTe+mll5phz/SEFu690Rp6O3fubEowevXqZcYOtulBbNq+gQMHSvv27SUqKsr0VDMEGgAAgDOdVQDW4cW0NEHLDB566CG544475J133jE9t4MHDy7ydq644goz3m9htBd49OjRZiqMHnQ3ffr00z5Oq1at5IcffihyuwAAAFB2nVUAHjt2rOu6HginPcE63m7Dhg3NqY0BAACAMhWA89IDzewD0wAAAIAyF4D1lMSnowerAQAAAGUmAD/yyCMet3WIsdTUVDPaQkREBAEYAAAAZWsYtCNHjnhMOpzZxo0bzSgNH374ofdbCQAAAPgyABdED4DTg+Py9g4DAAAAZTIAKz0r3J49e7y5SQAAAMD3NcB6ZjZ3Opavnhjjtddek44dO3qrbQAAAIB/BGD7VMTuJ6yoXr26/OUvf5EXX3zRW20DAAAA/CMAZ2dnm8sDBw6YkR/0dMMAAABAmawBPnr0qAwcOFCioqIkNjbWnIpYL4cPH26GQgMAAADKTA/w4cOHzRnf/vjjD+nTp480bdrUzF+/fr28+uqrMnfuXFm0aJGsXr1ali5dKg8//PC5ajcAAABw7gPw6NGjTcnDli1bJCYmJt+yrl27St++fWXOnDnyyiuvnF2LAAAAAH8JwDNmzJC33norX/hVWgYxbtw4ueaaa+SZZ56R/v37e7OdAAAAwPmvAdahzpo3b17o8hYtWkhgYKAJwAAAAECpD8B64Nv27dsLXb5t2zaJjo72RrsAAAAA3wfgbt26yZNPPinp6en5lqWlpcnTTz8tV199tTfbBwAAAPj2ILgLLrhAGjZsaIZCa9KkiTkL3IYNG+T11183Ifj999/3bgsBAAAAXwXgWrVqyZIlS+TBBx804/5q+LXPBHfVVVeZUyHXrl3bm+0DAAAAfHsmuLp168rXX38tR44ckU2bNpl5DRo0MCfEAAAAAMrkqZBVlSpV5KKLLvJuawAAAAB/OxUyAAAAUJoRgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4it8H4Dp16khAQEC+aeDAgWb5FVdckW/Z/fff77GNnTt3So8ePSQiIkKio6Nl6NChkpmZ6aNnBAAAAF8KFj+3fPlyycrKct1eu3atXHXVVXLLLbe45t17770yevRo120Nuja9r4bf2NhYWbx4sezdu1f69esnISEh8vzzz5/HZwIAAAB/4PcBuHr16h63x44dK/Xr15fLL7/cI/BqwC3InDlzZP369TJv3jyJiYmRNm3ayLPPPivDhg2TkSNHSmho6Dl/DgAAAPAffl8C4S49PV0++OADueuuu0ypg23atGkSFRUlLVq0kOHDh0tqaqpr2ZIlS6Rly5Ym/Nq6desmycnJsm7dugIfJy0tzSx3nwAAAFA2+H0PsLsZM2bI0aNH5c4773TNu/322yUhIUHi4uJk9erVpmd348aN8tlnn5nl+/bt8wi/yr6tywoyZswYGTVq1Dl9LgAAAPCNUhWA33nnHenevbsJu7YBAwa4rmtPb40aNaRz586yZcsWUypxNrQXeciQIa7b2gMcHx9fwtYDAADAH5SaALxjxw5Tx2v37BamQ4cO5nLz5s0mAGtt8E8//eSxTlJSkrksrG44LCzMTAAAACh7Sk0N8NSpU80QZjqiw+msWrXKXGpPsEpMTJQ1a9bI/v37XevMnTtXKlWqJM2aNTvHrQYAAIC/KRU9wNnZ2SYA9+/fX4KD/2yyljlMnz5drrnmGqlWrZqpAR48eLB06tRJWrVqZdbp2rWrCbp9+/aVcePGmbrfp556yowjTC8vAACA85SKAKylD3oyCx39wZ0OYabLXn75ZUlJSTF1ur169TIB1xYUFCSzZs2SBx54wPQGly9f3gRp93GDAQAA4BylIgBrL65lWfnma+BdsGDBGe+vo0R89dVX56h1AAAAKE1KTQ0wAAAA4A0EYAAAADgKARgAAACOQgD2Q9lWlmRln/J1MwAAAMokArAf2nVgofy8/y7p+0g1yQo4UOABgAAAADg7BGA/tHP/95JtnZLEqyrIyZCFsnbHe3Li1D5fNwsAAKBMIAD7oUubj5Rm1Z6TRd8cF7GCJS3jmGze8z85lX7U100DAAAo9QjAfiggIEAqhjaV6a8elvIZ10hEWLRkZp2UTXtmSEZmqq+bBwAAUKoRgP1cgIRIw7jrJDS4kqsnODs709fNAgAAKLUIwKVASHB5aVTzBgkKDJeUtCRJOvqLr5sEAABQahGAS4nw0CpSu/rl5vq+IyskI+ukr5sEAABQKhGAS5GqFRtLRFh1ycpOl72Hf/J1cwAAAEolAnApOziuZrWO5vqBo6tNTTAAAACKhwBcykSWT5BKEbXFkmz54+BiXzcHAACg1CEAl0K1cnuBD5/4XU6mH/Z1cwAAAEoVAnApFBEeLZHl65rrB46t8XVzAAAAShUCcCkVHdnKXB5K3sC4wAAAAMVAAC6ltA5YT46RlZ1mSiEAAABQNATgUiogIFCqR7Yw1ymDAAAAKDoCcCkWVam5BEigpJzaJ6mn9vu6OQAAAKUCAbgUCwmOkCoVGpjr++kFBgAAKBICcClXPbKluTx8fKNkZWf4ujkAAAB+jwBcylUoV9McDJdtZcixlO2+bg4AAIDfIwCXgdMjV63Y0Fw/wmgQAAAAZ0QALgOqVGhkLrUHOCs73dfNAQAA8GsE4DIgIqy6hIVESraVKUdTtvm6OQAAAH6NAFxWyiBye4GPHKcMAgAA4HQIwGVElYq5ZRCpOyQzK83XzQEAAPBbBOAyolxoNQkPrSqWlSVHU7b4ujkAAAB+iwBcpsogckeDOL7J180BAADwWwTgMqRKbgBOPrmL0SAAAAAKQQAuQ7QEQkeD0DKI5NSdvm4OAACAXyIAl7EyiMjydc31oye2+ro5AAAAfokAXMZULl/PXB5L3S6Wle3r5gAAAPgdAnAZU6FcnAQFhklm1kk5cWqfr5sDAADgdwjAZUxgQJBElq9jrh9LoQwCAACgVAXgkSNHmrpW96lJkyau5adOnZKBAwdKtWrVpEKFCtKrVy9JSkry2MbOnTulR48eEhERIdHR0TJ06FDJzMyUsqyyXQfMaZEBAADyCRY/17x5c5k3b57rdnDwn00ePHiwfPnll/Lpp59KZGSkDBo0SG666Sb58ccfzfKsrCwTfmNjY2Xx4sWyd+9e6devn4SEhMjzzz8vZVWliDoSIIFyKv2wRMhxXzcHAADAr/h9ANbAqwE2r2PHjsk777wj06dPl7/85S9m3tSpU6Vp06aydOlSufjii2XOnDmyfv16E6BjYmKkTZs28uyzz8qwYcNM73JoaKiURcFBYVKhXE05fnKXZAbu9XVzAAAA/Ipfl0CoTZs2SVxcnNSrV0/69OljShrUypUrJSMjQ7p06eJaV8sjateuLUuWLDG39bJly5Ym/Nq6desmycnJsm7dukIfMy0tzazjPpXWMoisQA6EAwAAKDUBuEOHDvLuu+/K7Nmz5Y033pBt27bJZZddJsePH5d9+/aZHtzKlSt73EfDri5Teukefu3l9rLCjBkzxpRU2FN8fLyUNvaBcFkBByWsXICvmwMAAOA3/LoEonv37q7rrVq1MoE4ISFBPvnkEylXrtw5e9zhw4fLkCFDXLe1B7i0heDw0CrmrHBpGcekSetwXzcHAADAb/h1D3Be2tvbqFEj2bx5s6kLTk9Pl6NHj3qso6NA2DXDepl3VAj7dkF1xbawsDCpVKmSx1QaRUbk9AI3a3/uviwAAACUNqUqAJ84cUK2bNkiNWrUkPbt25vRHL799lvX8o0bN5oa4cTERHNbL9esWSP79+93rTN37lwTaJs1ayZlnV0G0eKCcmJZlq+bAwAA4Bf8ugTi8ccfl549e5qyhz179sgzzzwjQUFB0rt3b1Obe/fdd5tShapVq5pQ+9BDD5nQqyNAqK5du5qg27dvXxk3bpyp+33qqafM2MHay1vWVSxXS8QKlCrVg+Vkph482N7XTQIAAPA5vw7Au3fvNmH30KFDUr16dbn00kvNEGd6Xb300ksSGBhoToChIzfoCA+vv/666/4almfNmiUPPPCACcbly5eX/v37y+jRo8UJAgODJciqLlkBSXI07RcRudHXTQIAAPA5vw7AH3300WmXh4eHy6RJk8xUGO09/uqrr8SpgrJjJStQA/DPvm4KAACAXyhVNcAovuDsnIP9TqRvkPQMzgoHAABAAC7jAqWC7N+TIZZkye5DOaeIBgAAcDICsAOsW3HSXO7c/72vmwIAAOBzBGAnBeAD3zMcGgAAcDwCsANsWpsmARIqKaf2yeHjG33dHAAAAJ8iADtARrolkWEtzPWdB77zdXMAAAB8igDsEJFh7cwldcAAAMDpCMAOUTk3AO87slLSMpJ93RwAAACfIQA7RHhwrESWryfZVqbsPshwaAAAwLkIwA5Su/rlrtEgAAAAnIoA7CC1o68wl7v2MxwaAABwLgKwg8RV7SDBgeGSkpYkh45v8HVzAAAAfIIA7CDBQeFSM+oSc53RIAAAgFMRgB2mdvWcMgjqgAEAgFMRgB1aB5wzHNoxXzcHAADgvCMAO0yliNpSuXw9sawshkMDAACORAB2cC8wdcAAAMCJCMAOVLv6la46YIZDAwAATkMAdqC4qhdJcFA5SU3bL4eS1/u6OQAAAOcVAdiBgoLCpGa13OHQGA0CAAA4DAHY4XXAO6gDBgAADkMAdvh4wElHf2Y4NAAA4CgEYIeqFBEvlcvXzx0ObZGvmwMAAHDeEIAdLCE6ZzSIHfu/83VTAAAAzhsCsIPZdcC7DiwQy8r2dXMAAADOCwKwg9WocqEEB0VIatoBOchwaAAAwCEIwA4fDq1WVO5waIwGAQAAHIIA7HD2aBCMBwwAAJyCAOxwruHQjjAcGgAAcAYCsMNVjKglVSo0FEuyZdeBhb5uDgAAwDlHAAZlEAAAwFEIwHANh7Zz/wLJtrJ83RwAAIBzigAMqVH1QgkNrign0w9K0pFffN0cAACAc4oADAkKDJU6MV3M9W37Zvu6OQAAAOcUARhG3dhu5nLrvtliWZavmwMAAHDOEIBhxFe/XIIDw+X4yd1yMHmdr5sDAADgzAA8ZswYufDCC6VixYoSHR0tN9xwg2zcuNFjnSuuuEICAgI8pvvvv99jnZ07d0qPHj0kIiLCbGfo0KGSmZl5np+NfwsJKifxuQfDaS8wAABAWeXXAXjBggUycOBAWbp0qcydO1cyMjKka9eukpKS4rHevffeK3v37nVN48aNcy3Lysoy4Tc9PV0WL14s7733nrz77rsyYsQIHzwj/1Yv9mpzSR0wAAAoy4LFj82e7RnENLhqD+7KlSulU6dOrvnasxsbG1vgNubMmSPr16+XefPmSUxMjLRp00aeffZZGTZsmIwcOVJCQ0PP+fMoLRKi/yKBASFy5MRmOXJ8s1Sp2MDXTQIAAHBWD3Bex47lnKq3atWqHvOnTZsmUVFR0qJFCxk+fLikpqa6li1ZskRatmxpwq+tW7dukpycLOvWFVzrmpaWZpa7T04QFlJJakV1NNe3Jn3j6+YAAAA4OwBnZ2fLo48+Kh07djRB13b77bfLBx98IN99950Jv//+97/ljjvucC3ft2+fR/hV9m1dVljtcWRkpGuKj48Xp6ibWwaxde+Xvm4KAACA80og3Gkt8Nq1a2XRokUe8wcMGOC6rj29NWrUkM6dO8uWLVukfv36Z/VYGqSHDBniuq09wE4JwfViu8kPa5+Sg8nr5fDxTVK1YkNfNwkAAMB5PcCDBg2SWbNmmV7eWrVqnXbdDh06mMvNmzebS60NTkpK8ljHvl1Y3XBYWJhUqlTJY3KK8NAqEl89ZzSITX/M8HVzAAAAnBWA9YQMGn4///xzmT9/vtStW/eM91m1apW51J5glZiYKGvWrJH9+/e71tERJTTUNmvW7By2vvRqVPN6c7lpz0xOigEAAMqcYH8ve5g+fbrMnDnTjAVs1+xqXW65cuVMmYMuv+aaa6RatWqyevVqGTx4sBkholWrVmZdHTZNg27fvn3N8Gi6jaeeespsW3t6kV9CTBcJCSpvToqx78hKqVH1Al83CQAAwBk9wG+88YYZ+UFPdqE9uvb08ccfm+U6hJkOb6Yht0mTJvLYY49Jr1695IsvvnBtIygoyJRP6KX2BusBcv369ZPRo0f78Jn5/0kx7FMjUwYBAADKGr/uAT7Tz+96YJqeLONMEhIS5KuvvvJiy8q+RjVvkN//+Ey27P1SOjYfIUGBjJcMAADKBr/uAYbv1Kx2iZQLi5JTGUdk14GFvm4OAACA1xCAUaDAwGBpUKOnub5x93993RwAAACvIQCjUE3jbzWX25PmSuqpP0fRAAAAKM0IwChUtUpNJaZyO8m2MmXD7k993RwAAACvIADjtJon9DGXG3ZOl2wry9fNAQAAKDECME6rfo0eEhYSKcdP/sHBcAAAoEwgAOO0goPCpXGtXub6+p3TfN0cAACAEiMA44ya1b7dXO5Imi8nTu7xdXMAAABKhACMM6pSoYHEVe0glmTL2h3/9nVzAAAASoQAjCJpVfcuc7luxweSlpHs6+YAAACcNQIwiqROzFVSpUJDSc88bkIwAABAaUUARpEEBARK2/r3m+urt0+RzKxTvm4SAADAWSEAo8gaxF0nFcvVlJNpB+U3TowBAABKKQIwiiwoMERa1xtgrq/aMlmyszN93SQAAIBiIwCjWJrE3yrhodXk+Mld8tvu//i6OQAAAMVGAEaxhASVk3YNHjTXl//+oqRnnvB1kwAAAIqFAIxia5HQVyIj6khq2gFZteUtXzcHAACgWAjAKLagwFBJbDrcXF+1dTJnhwMAAKUKARhnpU5MV6lR9SLJyk6TZRvH+7o5AAAARUYAxlkJCAiQjs2eNtd//+Nz2X3wR183CQAAoEgIwDhr1SNbSvPad5jr8399XNIyjvm6SQAAAGdEAEaJJDb9h1SKSJCUU3tl0bpRvm4OAADAGRGAUSIhwRHSufUECZBA+f2Pz2Tr3tm+bhIAAMBpEYBRYrFV20ub+veb69+vGSZHTmzxdZMAAAAKRQCGV1zY6FGJqdzW1AF/tfwuOZl+2NdNAgAAKBABGF4bG/jqC96WiuVqSXLqDpm9YoBkZp3ydbMAAADyIQDDayLCoqTHhe9KaHBF2Xdkhcz75WHJykrzdbMAAAA8EIDhVVUqNpBu7d+UwMBQ2ZY0R2Ytv1PSM477ulkAAAAuBGB4Xa2ojqYnOCSovOw5tERmLr1NUk7t93WzAAAAjOCcC8C7akVdItcnfiSzfrpTDiavk09+6C5XtBordWOu8nXTUMbt3LlTDh486JVtRUVFSe3atb2yLQCA/yAA45yeKe7GS/4jc1Y+IIeO/yazV9wrTeL/KolNhkt4aGVfNw9+FDa9FTS1PU2bNpHU1JPiDRER5WTDht8IwQBQxhCAcU5VLl9XenWcKT/9PkFWbZ0sv+36WLbu/Ura1BsgLev+TUKDK/i6ifCDsFlQ0LSsbMnMTjMHUmbpZXaaZGaliWVlmmWW/mcus82lWJZs2/Ob1KibLXc/0FNq1IwSkQBT6RVgBbiu62WABJl//vQELoXZviVJRgydZgI+ARgAyhYCMM65oKAwSWw6XBKir5RF60fJoeQN8tPvL8qv296RRjVvlKbxt0q1Sk193Uy4ybayJCs7PTd8prsCqPvtzX+sl/otRPrc1U2qx1YUkSwTRvVSNJQG5FwWPP/PeenpaXLo4DGZu/4mCdoouUH3lGRbGWfV9sf+FSsiq6UosVwDcGBgSM4UECxB5jLndkzjDOk/pJpsO/aWpG2oIyHB5XOmoPISaq5XkJCgCNf80KCcecFB5SQgQMO2J0ozAMB/EIBx3sRVu1huufRL2bL3S9MjfCxlm6zZPtVMVSs2kdrVL5f46pdJTJX2EhJUTkq7kgSenJ7NDBMCs610qVylgkTHVHOFUNMz6rp+ytVL6t5jmnP9VIG9qHbIzBtsdd3s7HTJtjKL1M4HRkSLyG9SksHugsNFYmqFSHrWwZyMXKBACQwIlUAJkYAA7b3N6bk1PbgB2qOb07ObkZ4he/ftk9i4SAkJCXTrKc4Sy7Jye4v/fBC9be+DAh5SOvylguxP/Ub2by3OMwpwBeJgvQwuL1mZwbJo4VJJOZ4paaey5dRJS9JOZkvaSUtOndTb2ZKZbklmpkhmhpVvysgQycz883ZocLisWbNBEhISpCQI5QCcigCM8yogIFAaxPWUerHdZdfBH+S3XZ/I9qR5cvj4b2ZatfUtE2YqV6gn1So1k8rl60mliHipWK6mhIdWlbCQSDMFB4WfszZqUNLgqYEwOzvn0p40HOYPme7hMidUHjq8X9586zWRgCwJCQ2QkJAACQnLuQzW26Fu13WZPS/0z3kedBCNjeIjGj5DNNbl9I7mXk9Pz5Itm3dI/YY1pUKFCBNMAwOCJCAgOPcyyO0yWAIDg/+87rbe+jV/yKvjvpKMdA16lgmCea9na2dxMbz+/rXSqkOTApeZIGxlmZBvXl/9kpGd8edtcz1D9v5xQD58/zt56OH7JKp6JUnPTJGMrBTJ0MvME5KRlZozL/e6ztdIrZOZl3lC3L8ZNGsfJiI6ecdXay+XoPWhbvs70OxfvQyUnP2uPdE5l0Hmc5Wz/3MuMzKyZPWvayQzM8vsX60iyc62JCtLJDur8MvsLJGsAm7r6/voI0OkatXqEhQQYn750RPkBAXmXua5HRwYLkFBbstzL3U7AHCu8S8NfNhjVF+6tX/DnDZ514EfZPfBhbL7wCJJSUuSIyc2m6kw+ocyNKSSOemGBqqsTP2DbJnaTg0ERm6PnwYS/c/8/G7lBJScnsDM3F5WrSnNkGzJyJ1XtN7PM+l8Y3mvbEebrL2G5cIqSHBweE5PqJlCJFA0AIW4bgfk9pK6r2OWS8715ORUeeXl1yUlJc0ESxMwTa+i5IRO0wuZM9/0PBYhfL7+/nXSqHHBYbMokg8ckS3r02Twkz2kbfvGUhKLF2yQNyd+LadOFX4WwpxQGCyB+s/fab5IHdy1W+Z9NlP+9eRt0q5ZuzM+tqlZzjplgm+6KyjnTL9vXisjRz8pdz14pURFR+SGbv1S9eelvve09CQnnOdc5lzP6bU2k3k//0m/lInodHYSGoWIiE7esTFpskhSybah4dwjOLsCtHt4DpPAwDAJzhuyXSE6JPd2qBw7liKpKWm5vx4E534eci/Nl7lgt8+JPV/rw3OXm18cctDLDZQdjgrAkyZNkvHjx8u+ffukdevW8uqrr8pFF13k62aVGt4+wj48PEz+85//So0aNUQkXipLH4mscrtkZB+R1IztkpK5TdIykyQta7+kZx2QzOwTkmlpL5v+bJ0uJ9MOmulc02CtYVBDtntQdPVQalBMy710C5V6vXO31hJXMyan5y3Qs+fT/JE94/xg+XHBbzLkvv/z6nP6++gbpVmLuuc8bBZHfEI1adK8Vom2oQeueduGDRtKcG8Nl5Vl//ZqsnjOCbn//oYSV+3sn6OG7N/W75L7+74ib01+Qxo0rJNb0uF2MKDHdftLYM5tu+5ar+/ctUMmTHhRBg+/TuLiq+asa9/H7eDCgg84dFsulhw5lCzfzf1VrrzycqlUuWLOF0orw1XGY9/O+ZJpz0uXbNHQrwH+z2Cvzycz66SZ/IH2cpvSk0yRrA0i1avHSlhIhDnZT07I/jNsayh3n/fnOn9O2kN/7NhxSU05KaK98WL3zmsZj97OvQwo5HpuT759vXLlKhIbUyOnFCh3vZzLnNvimpdTKpTzS0HuwaB51v9jz145fPiIuf7nAaMBudvIOZDULjfKuX/+WncbXxbg7xwTgD/++GMZMmSIvPnmm9KhQwd5+eWXpVu3brJx40aJjtY6RpyJ9vxq+B09vo/UqR9Tom2tWrFVJjw/Q6699tpi3ze8XIBEVAiUchUCJbxcoAQFiQQFB8hf+18itROi3f6Y2v84BxR4Pecf8tw/JFbOH5eVS7fK1Lfmy32PdJVWbbQ3Mvcffl0cmjuVL2I4fP1r6XhRbYlr1UZK4kRyThDwZg9pdGxFvwyb/uTggWRzeccdd3htmydOnCjR/TWoHDqQIidTLOnX536vtOnU8UipWrFhibaxc916mf7adzL9tc/P6v6BgSLBWhLkVg4UFCw5ZUK58+zl7rdzLgtZLzhAgsx1kaYtakiFiuGuLwOugzMD/rxt5R6kaSa3XBcYFCChOtn7K2O/nDq74zPPjcMiUqwade/Rkhn9hSp3EBaxtIQmW1z17NWjYiUk91ernJ723F+sXL3ruWVVpnc+55ernF9n7F+2QqRSxSoSXT0290BV/WIRUqTrOWU/Gt5zQ7z9hSA3xuv8P78EnDnQ5/x66Lrlds1tvlXI/CKt4752wevnND7n+dglZmdqNwrnmAA8YcIEuffee+Vvf/ubua1B+Msvv5QpU6bI3//+dynrStaL5bkNDb/eCk/eDHWVHqglLZqVLGzu3JIiJ45lS81a0dK0eYJfhUN/7SEtq87FFw9v9JZ7q13+2Cb3dnltWy98LRMmXyNtLyjavw3uB0v+WY6SLSuWbZQXnv2PRxB3D+lnnG8CuYb9ABP4W7aNl8hI/TZtiRWQU5qVf8o5ULPgZZacOpUuRw6f0A5ak+dML2+gSGBOp63HPL2uj+u5joanP9fVthWHa31XlUju7Yici0w5YIJwiRwTkd0l3EaZZ4f4wDwHBrv/ehDgtsz+BcHu3Xe7f+4vEZq77WMLXL885DnoOOe227LcXxry/pJRLrycJLYcJFUqNBB/4ogAnJ6eLitXrpThw4e75gUGBkqXLl1kyZIl+dZPS0szk+3YMf0EiiQn5/QInQ92T9Fv63bLydSzP8Z+9S/bvd6L9cuK30vUJvcglpaWUeJtpafldMds/n2flI/Y4pV2lXRb3tqOE7blj20qDe/RkrbLH9vk3i5/2+9rlh+QP7ZnyI1/vVDqNTz7L6Lr1+yUr2eulAcfby+t25y55/10kXT1oo0y5c15JW6TZ7uuklZt7KDyZxD/83bO5Z+9lO7r5Bxr8esvW2XW50vlL1c3k5q1oyRAA35AtgToFGjlXmb/Od+eF2CZ6znrWpKamioH9x81v/AFBuX8ShAUpJOY3n2dr9eDdZ5ZlvNroPbaO0sxjxL2gQpBF0qbJuf+13Y7p3n22BcswCrKWqXcnj17pGbNmrJ48WJJTEx0zX/iiSdkwYIFsmzZMo/1R44cKaNGjfJBSwEAAFASu3btklq1Tv+l0BE9wMWlPcVaL2zLzs6Ww4cPS7Vq1c5brY1+i4mPjzcvYqVKlc7LY5Zl7E/vY596H/vU+9in3sX+9D72qfdon+7x48clLi7ujOs6IgDr0ahBQUGSlORZ/6i3Y2P1rFGewsLCzOSucuXK4gv6YeAD4T3sT+9jn3of+9T72Kfexf70Pvapd0RGRhZpvZxDIsu40NBQad++vXz77bcevbp6270kAgAAAGWfI3qAlZY09O/fXy644AIz9q8Og5aSkuIaFQIAAADO4JgA/Ne//lUOHDggI0aMMCfCaNOmjcyePVtiYko2nu25oiUYzzzzTL5SDJwd9qf3sU+9j33qfexT72J/eh/71DccMQoEAAAA4KgaYAAAAMBGAAYAAICjEIABAADgKARgAAAAOAoB2A9NmjRJ6tSpI+Hh4dKhQwf56aeffN0kvzRmzBi58MILpWLFihIdHS033HCDbNy40WOdU6dOycCBA81Z/CpUqCC9evXKd0KUnTt3So8ePSQiIsJsZ+jQoZKZmXmen41/Gjt2rDn74aOPPuqaxz4tvj/++EPuuOMOs8/KlSsnLVu2lBUrVriW67HIOkJNjRo1zPIuXbrIpk2bPLahZ6Ps06ePGShfT8xz9913y4kTJ8RpsrKy5Omnn5a6deuafVW/fn159tlnzT60sT9Pb+HChdKzZ09ztiz9fM+YMcNjubf23+rVq+Wyyy4zf8v0TGfjxo0TJ+7TjIwMGTZsmPncly9f3qzTr18/2bNnj8c22KfnmY4CAf/x0UcfWaGhodaUKVOsdevWWffee69VuXJlKykpyddN8zvdunWzpk6daq1du9ZatWqVdc0111i1a9e2Tpw44Vrn/vvvt+Lj461vv/3WWrFihXXxxRdbl1xyiWt5Zmam1aJFC6tLly7WL7/8Yn311VdWVFSUNXz4cMvpfvrpJ6tOnTpWq1atrEceecQ1n31aPIcPH7YSEhKsO++801q2bJm1detW65tvvrE2b97sWmfs2LFWZGSkNWPGDOvXX3+1rrvuOqtu3brWyZMnXetcffXVVuvWra2lS5daP/zwg9WgQQOrd+/eltM899xzVrVq1axZs2ZZ27Ztsz799FOrQoUK1sSJE13rsD9PTz+TTz75pPXZZ5/ptwbr888/91jujf137NgxKyYmxurTp4/5N/rDDz+0ypUrZ7311luW0/bp0aNHzb+HH3/8sfXbb79ZS5YssS666CKrffv2Httgn55fBGA/ox+KgQMHum5nZWVZcXFx1pgxY3zartJg//795h+eBQsWuP7RCQkJMX8gbRs2bDDr6D9A9j9agYGB1r59+1zrvPHGG1alSpWstLQ0HzwL/3D8+HGrYcOG1ty5c63LL7/cFYDZp8U3bNgw69JLLy10eXZ2thUbG2uNHz/eNU/3c1hYmPkDp9avX2/28fLly13rfP3111ZAQID1xx9/WE7So0cP66677vKYd9NNN5lQoNifxZM3rHlr/73++utWlSpVPD7z+llo3LixVdYV9KWioA4GXW/Hjh3mNvv0/KMEwo+kp6fLypUrzc9NtsDAQHN7yZIlPm1baXDs2DFzWbVqVXOp+1J/enLfn02aNJHatWu79qde6s9S7idE6datmyQnJ8u6devEqbTEQUsY3PedYp8W3//+9z9zBspbbrnFlIO0bdtW3n77bdfybdu2mZPzuO9TPZe9lj+571P9SVS3Y9P19d+HZcuWiZNccskl5jT2v//+u7n966+/yqJFi6R79+7mNvuzZLy1/3SdTp06SWhoqMe/A1qmduTIEXE6/XulpRK6HxX79PxzzJngSoODBw+a+ra8Z6fT27/99pvP2lUaZGdnmzrVjh07SosWLcw8/Udc/6Gw/4Fx35+6zF6noP1tL3Oijz76SH7++WdZvnx5vmXs0+LbunWrvPHGG+Z07P/4xz/Mfn344YfNftTTs9v7pKB95r5PNTy7Cw4ONl/2nLZP//73v5svU/rFKygoyPyb+dxzz5naScX+LBlv7T+91DrtvNuwl1WpUkWcSo+j0Jrg3r17m3pfxT49/wjAKDM9lmvXrjU9QTh7u3btkkceeUTmzp1rDrKAd76caa/O888/b25rD7C+V998800TgFE8n3zyiUybNk2mT58uzZs3l1WrVpkvv3pgEfsT/k5/Qbv11lvNgYb6xRi+QwmEH4mKijI9GnmPqNfbsbGxPmuXvxs0aJDMmjVLvvvuO6lVq5Zrvu4zLSs5evRooftTLwva3/Yyp9ESh/3790u7du1M74NOCxYskFdeecVc194G9mnx6JH0zZo185jXtGlTM1KG+z453edeL/V1caejauhR407bpzqiiPYC33bbbabUpm/fvjJ48GAzKoxif5aMt/Yf/w4UHn537NhhOhns3l/FPj3/CMB+RH8Sbd++valvc+890tuJiYk+bZs/0m/QGn4///xzmT9/fr6fhnRfhoSEeOxPrZXS4GHvT71cs2aNxz889j9MeUOLE3Tu3NnsD+1VsyftvdSfl+3r7NPi0bKcvMPzaf1qQkKCua7vW/3j5b5P9Sd+rftz36f6pUO/oNj0Pa//PmhtppOkpqaaukh32nGg+0KxP0vGW/tP19GhwTT0uf870LhxY0f+VG+HXx1Obt68eWZIRHfsUx/wwYF3OMMwaHq07bvvvmuOCh0wYIAZBs39iHrkeOCBB8xQPd9//721d+9e15SamuoxZJcOjTZ//nwzZFdiYqKZ8g7Z1bVrVzOU2uzZs63q1as7dsiugriPAqHYp8WjR3sHBweb4bs2bdpkTZs2zYqIiLA++OADj2Gn9HM+c+ZMa/Xq1db1119f4LBTbdu2NUOpLVq0yIzS4ZRhu9z179/fqlmzpmsYNB12SofZe+KJJ1zrsD/PPMqLDlGok8aACRMmmOv2iATe2H86coQO2dW3b18zZJf+bdP3fVkdsut0+zQ9Pd0MJVerVi3zb6L73yv3ER3Yp+cXAdgPvfrqqyZg6HjAOiyajgmI/PQfmYImHRvYpv9gP/jgg2boGP2H4sYbbzT/6Ljbvn271b17dzOeov4hfeyxx6yMjAwfPKPSEYDZp8X3xRdfmC8F+uW2SZMm1uTJkz2W69BTTz/9tPnjput07tzZ2rhxo8c6hw4dMn8MdcxbHVLub3/7m/mj6zTJycnm/aj/RoaHh1v16tUz46+6Bwn25+l99913Bf7bqV8uvLn/dAxhHQJQt6FfWjRYO3Gf6he1wv5e6f1s7NPzK0D/54ueZwAAAMAXqAEGAACAoxCAAQAA4CgEYAAAADgKARgAAACOQgAGAACAoxCAAQAA4CgEYAAAADgKARgAAACOQgAGgPNMzz80YMAAqVq1qgQEBMiqVauKvY2RI0dKmzZtzkn7AKCsIwADwHk2e/Zseffdd2XWrFmyd+9eadGihQnCM2bM8HXTSo0777xTbrjhBl83A0ApFezrBgCA02zZskVq1Kghl1xyia+bAgCORA8wAJyF//znP9KyZUspV66cVKtWTbp06SIpKSmSlZUlQ4YMkcqVK5v5TzzxhPTv39/VW6k9lw899JDs3LnT9PrWqVPHTOrGG290zSuqt956S+Lj4yUiIkJuvfVWOXbsmGvZ8uXL5aqrrpKoqCiJjIyUyy+/XH7++WePUgwtpahdu7aEhYVJXFycPPzww67laWlp8vjjj0vNmjWlfPny0qFDB/n+++9dy7UXW5+n9mQ3btzYtOHmm2+W1NRUee+998zzqFKlitmm7pfibvebb76Rpk2bSoUKFeTqq682veVK26zbnzlzptlfOrnfHwDOhAAMAMWkQax3795y1113yYYNG0z4uummm0ygfPHFF02AmzJliixatEgOHz4sn3/+ueu+EydOlNGjR0utWrXMdjSk6qSmTp3qmlcUmzdvlk8++US++OILU1bxyy+/yIMPPuhafvz4cRO+tR1Lly6Vhg0byjXXXGPmq//+97/y0ksvmRC9adMmU4Khod42aNAgWbJkiXz00UeyevVqueWWW0wQ1XVtGnZfeeUVs462QfeFBvmvvvrKTP/+97/N9vULQ3G3+8ILL5j7L1y40Hxh0NCs9FLDvh2KdaI3HUCxWACAYlm5cqWl/3xu374937IaNWpY48aNc93OyMiwatWqZV1//fWueS+99JKVkJDgcT/d3ueff17kNjzzzDNWUFCQtXv3bte8r7/+2goMDLT27t1b4H2ysrKsihUrWl988YW5/eKLL1qNGjWy0tPT8627Y8cOs/0//vjDY37nzp2t4cOHm+tTp0417d68ebNr+X333WdFRERYx48fd83r1q2bmV+S7U6aNMmKiYlx3e7fv7/HPgWA4qAHGACKqXXr1tK5c2fTW6q9l2+//bYcOXLElB9ob6T+pG8LDg6WCy644Jy0Q0sXtIzAlpiYKNnZ2bJx40ZzOykpSe69917T86slEJUqVZITJ06Y3lSlbT958qTUq1fPrKc91ZmZmWbZmjVrTNlCo0aNTAmCPS1YsMDUMNu07KF+/fqu2zExMab0Qdd1n7d///4SbVdrpu1tAEBJcRAcABRTUFCQzJ07VxYvXixz5syRV199VZ588kkzz59o+cOhQ4dM2UVCQoKp89WQnJ6ebpZr7bCG5Xnz5pm2a/nE+PHjTRjVoKzPc+XKlebSnXu4DQkJ8Vim9bgFzdNgrkqy3ZyOcgAoOQIwAJwFDWQdO3Y004gRI0zA/Pbbb01P5bJly6RTp05mPe1R1bDXrl27025PA5/7gWJFoT25e/bsMQevKa3zDQwMNAekqR9//FFef/11U/erdu3aJQcPHvTYhh7E17NnTzMNHDhQmjRpYnpp27Zta9qjva6XXXaZeIu3thsaGlrs/QUANgIwABSTBlwNu127dpXo6Ghz+8CBA2bEgkceeUTGjh1ryg40TE6YMEGOHj16xm1q2YBuUwO19tTq6AlnEh4ebnp59WCx5ORkM9qCHhwWGxtrlmsb9CAyLcHQ5UOHDjWB16YH62mI1JINLTn44IMPzHIN8zqCRZ8+faRfv37mwD4NrvoctY2tWrWSHj16nNW+09IHb2xX95eOEqE92NpWLfHI22sMAIWhBhgAiklraXVkAu1Z1UD31FNPmTDXvXt3eeyxx6Rv374mmGq5QcWKFc2oCGei99cyBC1L0FBYFA0aNDCjT2g7NIxrgNQeX9s777xjapO191nbpAFZA7tNhxrT+mUN3XpfLYXQESU0UNqjUmhQ1eekvco6lJuOUKG1xyXhje1qzbLeV8N99erVTW83ABRVgB4JV+S1AQDFpmP/ai8wZ3oDAP9ADzAAAAAchQAMAH6oefPmHsOEuU/Tpk3zdfMAoFSjBAIA/NCOHTskIyOjwGU6rq7WFgMAzg4BGAAAAI5CCQQAAAAchQAMAAAARyEAAwAAwFEIwAAAAHAUAjAAAAAchQAMAAAARyEAAwAAQJzk/wEpzexSZ2/D4gAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsUAAAHWCAYAAACfYfSwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAamhJREFUeJzt3Qd4lFXWB/D/tPTeewKhJIQOSlUQWIpdcXURFPu6gg0ray+72FZFZXU/C+qufe0FRGmK9N5CCwkJkN57m/mec3GyJISSZJJ3yv/3PPPMOyXvnJk3yZy5c+65OovFYgERERERkQvTax0AEREREZHWmBQTERERkctjUkxERERELo9JMRERERG5PCbFREREROTymBQTERERkctjUkxERERELo9JMRERERG5PCbFREREROTymBQT0WklJCTguuuu0zoMp/f888+je/fuMBgMGDhwYJc85rvvvgudToeMjIwueTxn8fjjj6vXraCgoFOPxdixY9WJiDofk2IiF2N94924cWOrt8sbcN++fTv8OD/88INKHOjMLFmyBPfffz9GjRqFhQsX4u9//7vWIZEdOnr0qPq72rp1q9ahEDkdo9YBEJH927t3L/R6fZuT4gULFjAxPkPLli1Tr/Hbb78NNzc3rcMhDVxzzTX405/+BHd391MmxU888YT69qarvk0gchUcKSai05I3aZPJBEdSWVkJR5KXlwdPT08mxBqrqqrS7LGlbMbDw0N9k0NEXY9JMRG1uaa4vr5ejVb17NlTvYkHBwdj9OjR+Omnn9Ttcl8ZJRbyBm89HZ+w3nPPPYiNjVUJd+/evfHCCy/AYrE0e9zq6mrccccdCAkJga+vLy6++GIcOXJE7ev4EWhrfefu3btx9dVXIzAwUMUjtm/fruKRWl2JNSIiAjfccAMKCwubPZZ1H/v27cOMGTPg7++P0NBQPPLIIyqurKwsXHLJJfDz81P7+Mc//nFGr11DQwOeeuopJCYmqucqr+Vf//pX1NbWNt1HHldKJuR1sb5WUuZyKuvWrcP555+vnqu3tzf69++P+fPnnzD6fM4556jbAwICVPypqamnjbnl63uy3wNrKc6qVavUcZLXSx7nz3/+M+rq6lBSUoJrr71WxSgnKQ85/hhL7az8vBz7//u//2t6jc466yxs2LCh2WPL79yePXuQnZ19ytjldZR9btmy5YTbpCRFEk/5HTq+VGjTpk0499xz4eXlpY5NW0hN8ZVXXql+L+Tv4M4770RNTc0Jz7G149nydT5dffeKFSvUayOuv/76M/5dIaIzw/IJIhdVWlra6iQhST5OR97I582bh5tuuglnn302ysrKVI3y5s2b8Yc//EElRfI1ryTJ//73v5v9rCRFktwuX74cN954o/oK+Mcff8R9992nkpWXXnqp6b6SgH366afqa+Xhw4dj5cqVuOCCC04a1x//+EeVqEvyY02+JIaDBw+qJEKS2V27dqkETM7Xrl17wqjcVVddheTkZDzzzDP4/vvv8fTTTyMoKAj/+te/MG7cODz77LP44IMPcO+996oERZKpU5HX6L333sMVV1yhPghIMiuvnSSnX375pbqPvEYS0/r16/HWW2+p60aOHHnSfcpzuvDCCxEZGamSMHlesr/vvvtOXRY///wzpkyZoj4MyPGSDxivvvqqqlmW4yQJrq3cfvvtKgb5oCSvqTwXSY5Xr16NuLg4dTyknEYmEkoSKony8T788EOUl5er3xs5Hs899xwuv/xyddys31DI74Ycl5kzZ54yCZTXedasWeoYDRo0qNltcp0kwtHR0U3XyYcjeZ2kbEE+DIWHh7fpuUtCLK+lHFN57q+88gqKi4vx/vvvw9bk+T/55JN49NFHccstt6gPPKf7XSGiNrAQkUtZuHChZIunPKWkpDT7mfj4eMvMmTObLg8YMMBywQUXnPJxZs2apfbV0ldffaWuf/rpp5tdf8UVV1h0Op3lwIED6vKmTZvU/e66665m97vuuuvU9Y899ljTdbIt102bNu2Ex6uqqjrhuo8++kjd/5dffjlhH7fcckvTdQ0NDZaYmBgV1zPPPNN0fXFxscXT07PZa9KarVu3qn3edNNNza6/99571fXLli1ruk725e3tfcr9WWPq1q2bOiYSx/HMZnPT9sCBAy1hYWGWwsLCpuu2bdtm0ev1lmuvvfaE34f09PSm61q+vif7PbD+7KRJk5o99ogRI9Rrduutt57wWo4ZM6bpOnlM+fng4GBLUVFR0/Vff/21uv7bb7894b6ne82F/B5ERUVZGhsbm67bvHmz+nmJ2UpikeveeOMNS1tZf18uvvjiZtffdttt6np5rY+P+/jHPdnr3NqxkBiPf802bNhw0v0RUcewfILIRUl5g4w4tjzJ1/CnI6OAMtK6f//+Nj+ujBjKV9jydfvxZBRV8oRFixapy4sXL1bnt9122wmjkidz6623nnCd1OlaydfaMjouo85CRkxbG9m1kjiHDh2q4pJR7eOfv5R8yEjm6Z6rmDNnzgnPVchIdFtJWUB6ejruuusuFcfxrKPeUmIg3QlkpF1Gua3k2MpIvjUuW5HX5vgR92HDhp3wmllfy9ZeMxmdl/IKK+sI6PH3ldFY2eeZlArISLR8UyHfRhw/Siy/C1OnTm12XynXkG8R2ktGpVv7/bT1a0xEnY9JMZGLkrKHCRMmnHA6Pjk5GfkKV+pFe/XqhX79+qnSB6ndPROHDh1CVFSUqhFu+dWw9XbruXRj6NatW7P79ejR46T7bnlfUVRUpEoK5GtxSYqk7tV6PykhaUm+7j+e1BZLLbLUNbe8Xr4mP91zlefQMmYpNZCE1vpc2yItLU2dn6ptnnW/kri3JK+zfDCw5UTE1l4zITXjZ/Katfx56+/g6V7fk5HEX0pLJBEWZrMZH330kaqpbvl7J6UUHZncKOU6x5O6aDnm7PtM5HiYFBNRm0kdrSRn77zzjkrOpA528ODBTfWwWjl+VPj4ms8333xTjSJ/8cUXqh+wdRRakqWWZETzTK4TLScGnoyzdBNobGxs9fqTvT6tXd/aa9bR17e1/cmEy88//1x9OyAjxjJyLDXDZ/I70xEtj/XJjv3JXksi0g6TYiJqF/laXr52lhE46cwgX80fP5P+ZMlAfHy8SlBkYtXxpLOA9XbruSStUipwvAMHDpxxjDLSuHTpUjz44INqEthll12mRhFl8llXsD6HlmUmubm5aqTd+lzbQkYixc6dO0/5uNb+0i3J6yyj3tKR4mRkpFbiO550kzhd5wd7IiUUMgH022+/VSPG8g3BpEmTbP44LY+t/H7KMbdOZLSOerd8PdvzLYEzfcAiskdMiomozVq2M/Px8VElAse3GbMmXS2TAWkjJqNkr732WrPrpeuEvOFLJwBhTWD++c9/NrufdFA4U9YRyJYjji+//DK6gjzX1h7vxRdfVOen6qRxMjIiL+Ufss+Wr631eUrpgHT1kK4Xx99HEmkZKbfGdarE+5dffml2nXSU0HJ080xbslnJhzQ5ybcXMmIs3SWMRts3XLK2Hmz5+2n9PZZWbfIhpOXr2fL3+kyd7O+KiDqOLdmIqM369OmjWlsNGTJEjRhLO7b//ve/mD17dtN95DYhE+okwZUEVRKTiy66COeddx4eeughVXc5YMAAlah9/fXXavKYdSRUfl4mRUnyJ0m4tSWb9BE+0xEzSUik1ENafElSJfWj8lgtR587izw3aSEmCaUkMWPGjFFt1yRZvfTSS9Xr0FZSr/r666+r11ESXxmtlyRYEkaZ/Cjt7YS0P5PEbMSIEWrCm7Ulm9T1nm6VQZlsKOUm8vrLyPq2bdvUflvWVXelM23J1nK0WFrnidZKJ2xBfpekxeDkyZOxZs0a/Oc//1GlG3Lsj389pcWfnMtkQ0mQrb/HbSV/H1KP/sYbb6j6aEmSZWJja/X0RNQ2HCkmojaTRFcSWunNKtuSrEo/3+MXtJA+szITX+p3pc/wtGnTmpK6b775RiXA0ldXzmXRDUnirCOoVtLrVWb3S5eGBx54QH2F/8knn6jbZPLbmZAeuJKUy4je3LlzVd9ba4eLriAjlVK6IYtRyHOVBTUkjo8//rjd+5TnI3WyMtFRXnPpbiFlIpIoW8mkSXntZUEJ6WsrC2TIB4vffvvttAnUzTffrF5vSd6kU4YkftKZ5FQlF/Zo+vTp6sOYvE4ysbQzyO+jdLCQEh35PZUPhrJU9/Hk9ZcPJvLBURYwkRH39v4Oyu+vfKiS5yUfXOTvSv7+iKjjdNKXzQb7ISLqEtJqTBZlkBE5SXqITka6bMgouiSlsjIhEdGpcKSYiOyWfOXfkpRTyGjz6VaSI5IyCxmVlW8qiIhOhzXFRGS3pBZ406ZNqvZWJknJV85ykiVuW/bAJbKSEhUpyfnb3/6marfbsqR1RUWFOp2KdLI4WRs5InJcLJ8gIrsldaxSjysJjiQqssiDjPrJJL3O6CRAzkEmga5evRqjRo1SZTYywfJMySRE+Z07FamxbkuiTUSOgUkxERHR72Rp6dMt3z169OgznuhJRI6DSTERERERuTxOtCMiIiIil8eiPEAtySnLzkojdC6hSURERGR/pLihvLwcUVFRqguRrTEpBlRCzJnsRERERPYvKysLMTExNt8vk2JAjRBbX2RZFpaIiIiI7EtZWZkaxLTmbbbGpFhmG/5eMiEJMZNiIiIiIvvVWaWunGhHRERERC6PSTERERERuTwmxURERETk8pgUExEREZHLY1JMRERERC6PSTERERERuTwmxURERETk8pgUExEREZHLY1JMRERERC6PSTERERERuTwmxURERETk8pgUExEREZHLY1JMRERERC6PSTERERERuTyj1gEQEVHnyMzMREFBQYf3ExISgri4OJvERERkr5gUExE5aUKcnJyEqqrqDu/Ly8sTqal7mBgTkVNjUkxE5IRkhFgS4iefn46ExPB27ycjLReP3veB2h+TYiJyZkyKiYicmCTESSkxWodBRGT3ONGOiIiIiFwek2IiIiIicnlMiomIiIjI5TEpJiIiIiKXx6SYiIiIiFwek2IiIiIicnlMiomIiIjI5TEpJiIiIiKXx6SYiIiIiFwek2IiIiIicnlMiomIiIjI5TEpJiIiIiKXx6SYiIiIiFwek2IiIiIicnlMiomIiIjI5TEpJiIiIiKXx6SYiIiIiFwek2IiIiIicnlMiomIiIjI5TEpJiIiIiKXx6SYiIiIiFwek2IiIiIicnlMiomIiIjI5TEpJiIiIiKXx6SYiIiIiFwek2IiIiIicnlMiomIiIjI5TEpJiIiIiKXx6SYiIiIiFwek2IiIiIicnlMiomIiIjI5TEpJiIiIiKXx6SYiIiIiFwek2IiIiIicnlMiomIiIjI5TEpJiIiIiKXx6SYiIiIiFwek2IiIiIicnlGrQMgIiLXkZmZiYKCApvsKyQkBHFxcTbZFxERk2IiIuqyhDg5OQlVVdU22Z+XlydSU/cwMSYix0+K582bhy+++AJ79uyBp6cnRo4ciWeffRa9e/duuk9NTQ3uuecefPzxx6itrcWkSZPwz3/+E+Hh4c3+0f7lL3/B8uXL4ePjg5kzZ6p9G43M+YmI7IWMEEtC/OTz05GQ+L//4e2RkZaLR+/7QO2TSTER2YKmWePKlSsxa9YsnHXWWWhoaMBf//pXTJw4Ebt374a3t7e6z913343vv/8en332Gfz9/TF79mxcfvnl+O2339TtjY2NuOCCCxAREYHVq1cjOzsb1157LUwmE/7+979r+fSIiKgVkhAnpcRoHQYRkf0kxYsXL252+d1330VYWBg2bdqEc889F6WlpXj77bfx4YcfYty4ceo+CxcuRHJyMtauXYvhw4djyZIlKon++eef1ejxwIED8dRTT+GBBx7A448/Djc3txMeV0ac5WRVVlbWBc+WiIiIiOyVXXWfkCRYBAUFqXNJjuvr6zFhwoSm+yQlJamvytasWaMuy3m/fv2alVNIiYUkurt27Wr1caS0QkadrafY2NhOfmZEREREZM/sJik2m8246667MGrUKPTt21ddl5OTo0Z6AwICmt1XEmC5zXqf4xNi6+3W21ozd+5clYBbT1lZWZ30rIiIiIjIEdjNTDSpLd65cydWrVrV6Y/l7u6uTkREREREdjNSLJPnvvvuO9U9Iibmf5MvZPJcXV0dSkpKmt0/NzdX3Wa9j1xuebv1NiIiIiIiu06KLRaLSoi//PJLLFu2DN26dWt2+5AhQ1QXiaVLlzZdt3fvXtWCbcSIEeqynO/YsQN5eXlN9/npp5/g5+eHPn36dOGzISIiIiJHZdS6ZEI6S3z99dfw9fVtqgGWyW/St1jOb7zxRsyZM0dNvpNE9/bbb1eJsHSeENLCTZLfa665Bs8995zax8MPP6z2zRIJIiIiIrL7pPj1119X52PHjm12vbRdu+6669T2Sy+9BL1ej6lTpzZbvMPKYDCo0gtZvEOSZelvLIt3PPnkk138bIiIiIjIURm1Lp84HQ8PDyxYsECdTiY+Ph4//PCDjaMjIiIiIldhFxPtiIiIiIi0xKSYiIiIiFwek2IiIiIicnlMiomIiIjI5TEpJiIiIiKXx6SYiIiIiFwek2IiIiIicnlMiomIiIjI5TEpJiIiIiKXx6SYiIiIiFwek2IiIiIicnlMiomIiIjI5TEpJiIiIiKXx6SYiIiIiFwek2IiIiIicnlMiomIiIjI5TEpJiIiIiKXx6SYiIiIiFyeUesAiIjI/lksFtTWl6ptk8Ebej3fPojIufC/GhERNWM2N6CiJhsV1UdRbTyIp96Jxoacq7A+p6HpPkaDJwK8uyHUvz/CAgYgPmwcvD3CNY2biKgjmBQTEZEaCa6qzUNB2W4Ule9Fo7n22A16IDjMCAv+lxCLhsZqdV85pWZ9DB30iA4Zhd7RlyMx6gIY9G7aPBEionZiUkxE5OLKq4/iSOFqVFQfabrOZPCCr2cMKku88PSDi/DBe1/jrCFjodPpUd9QiZr6EhSV7UVe6XYcLVyL3JLNOFzwqzpt2P8Szup1D3pGXaTuT0TkCJgUExG5qJq6YmTl/4LSqgx1WaczINA7EcF+feDnFasS2j1Fh5G+pw7uxjAYDR7qfgY3N3i4Baryie6Rk9V1ZVWZ2HfkS+w89G+1vXTrndh28P8wbsALCPZL1vR5EhGdCSbFREQuxmIxI7dkqxodtlgaJR1GiF8KooLOhpvJt1379POKw9Ced2JAt5uwPX0hth78FwrKduHz3y7B8KQH0S/heps/DyIiW2JSTETkQmrry3AwZzEqa7LVZV/PWMSHnadGfm3BZPTGkJ6zkRz3J6zY/gAO5S3Fb7ufxOGCVQjV3WiTxyAi6gxMiomIXERZ1WEczPlBTZLT690QGzIaIX59odPpbP5YXu4hmDL0Lew69G+sTn0ah/KWocB0CD5+rDEmIvvEpJiIyAU6S+SVblP1w4AFXu6hSIy8EO4mv059XEm2+yZcq1q2fb/helTWpeGe5yJgRmWnPi4RUXvwIzsRkROzwKJKF7LyV6pLQb5JSIq5stMT4uNJUnzpiM/gZghBeIwJ1aaVqGuo6LLHJyI6E0yKiYiclF4P1Bo2q3ZpIiZkNLqFT9RkNbpAn0SkBM9D7uF6WHTV2H/kazQ0/t4LmYjIDjApJiJyQmZLA264PwQNBmm3pkNC2AREBA7plPrhM+VmCMarj+ZCZ/FAdV0B0rK/U6vnERHZAybFREROxmxpxMGSVzF4tDdg0SMx8nyE+KfAHhTlNcKjYRT0OhPKqw+rCXhS80xEpDVOtCMicrIexCt3/BWFNb+iscECb8twBPr0gD0xWAKQGHkB9h/9GoXlqfD1ikGIXx84i8zMTBQUFHR4PyEhIYiLi7NJTER0ekyKiYichIy4SvuzPVmfqC8C33k+F3ffEwl75O8dj6jg4ThauAaZecvh7R4OT/dgOENCnJychKqq6g7vy8vLE6mpe5gYE3URJsVERE5ie/rb2J7+jtru7j8LW367F7gHdisy8CxUVB9Ry0Kn5SxCcuxVMOhNcGQyQiwJ8ZPPT0dCYni795ORlotH7/tA7Y9JMVHXYFJMROQE0rIXYXXq39T2iOSHYC4ZAnsnk/6kG8auzA9RU1eoWsfJ6nrOQBLipJQYrcMgojbgRDsiIgeXU7wJS7fepfoQ942/FgO63QRHIctCS2Is8ku3o6L6qNYhEZGLYlJMROTAKqqzsXjTn9ForkV82ASMSnlM07Zr7a0vDvZNVtsZeUvZpo2INMGkmIjIQTU01qiEuLq2AMG+SfjDoPnQ6wxwRLGh58Bo8ERNXZEa+SYi6mpMiomIHLTTxIrtD6qSAw9TICYPfVOVIjgqSYjjQseo7eziDaiuK9I6JCJyMUyKiYgc0I6Mhdh/9CvodAZMHLwAfl6xcHSBPr3g75UAi6URWfm/aB0OEbkYJsVERA4mr2Qb1qTOU9sjkx9CdMhIOAOphY4NPRc66FFWdQillYe0DomIXAiTYiIiB1JbX4Ylm2fDbKlHt4jJ6JdwPZyJh1sgQgP6q+3DBb+qFfqIiLoCk2IiIgerIy6vzoKvZwzO6/+sw3WaOBNRQcNg0Lujuq4QBWW7tQ6HiFwEk2IiIgexK/M/OJjzA/Q6I/4w+DW4m/zhjIwGD0QGna22jxSuQaO5TuuQiMgFcEU7IiI7kpmZqZb2bamyPh27Cp5U2zE+M3DkoBlHsPmk+0lNTYUjCwsYoDpr1NaXqhrqyKCztA6JiJwck2IiIjtKiJOTk1BVVd3sendPHR58ORLh0SbsWF+F2558AoCcTq+iogKOSPotRwUNR3ruj8gp3oww//4wGNy1DouInBiTYiIiOyEjxJIQP/n8dCQkhqvrLLCg1rABDYYs6CyeGD7wQoz44vTJ4eqVqXhj/iLU1NTAUQX59kJ20XrU1Bcjt3Qbon4vqSAi6gxMiomI7IwkxEkpMWo7v3QnDuVlScMy9Iq9EL6eUWe0j4y0XDg6nU6vaotltDhXjRYPgJGjxUTUSTjRjojITsnyzVn5K9V2dPCIM06InYmMFnu4BaHRXIu8kq1ah0NEToxJMRGRHWo01yMtZxHMlgb4ecUjInAoXJGMFlvLJnJLtqCxsVbrkIjISTEpJiKyQ5n5K1BTVwSTwRvdwic6ZT/iMxXo0xMepkA1WpxftlPrcIjISTEpJiKyM/X6QyhUi1bo0D1iMkxGL7gyGS2OCByitnOLt8BsbtA6JCJyQkyKiYjsSHiMEbWGLU0ru/l6HZtw5+qCfHurUfP6xkoUle/VOhwickJMiomI7ITZUoubHggFdI1qGWcuWPE/er0R4YGD1HZO8SbVqo6IyJaYFBMR2YlDZQsR3c0NOos7ukVMVmUD9D+hfn1h0LupvsWNumytwyEiJ8P/uEREduDA0W+RV7UEZrMF7g1nwc3orXVIdkdWtAv176+26wz7tA6HiJwMk2IiIo2VVmZgxY65avvHT8tgtBxbzY5OFB4wEDqdAWZ9IeJ6uGkdDhE5ESbFREQakr67SzbPRn1DBXzd+uD7D0u0DsmumYzeqkWbGHuRr9bhEJETYVJMRKSh1al/R0HZTtWHNzHgLpjNWkdk/8IDBqjzIedKNwp+iCAi22BSTESkkf1Hv8HOQ++p7XEDX4S7IUTrkByCt0cE9OYgmEw6VYdNRGQLTIqJiDRQVL4fK7Y/qLYHJ85CfNh5WofkUEzmRHWeW/WjWhKbiKijmBQTEXWx+oZKLNn8FzQ0ViE6eCTO6j1H65AcjtEcg9KiBtSbi3EwZ5HW4RCRE2BSTETUhSwWC1bseBDFFQfg7R6OCYNegV5n0Dosh6ODHr8uqlDbOzOOlaAQEXUEk2Iioi6069C/VU9ivc6IPwxeAC931hG316pF5dDBqFa4yy/doXU4ROTgmBQTEXWR3OIt+G33U2p7eNKDiAwaqnVIDq2sxIwgj5Fqe0fGu1qHQ0QOjkkxEVEXqK4txJLNs2C21KN7xPno3+1GrUNyChHe56vz/Ue/RVVtgdbhEJEDY1JMRNQFC3Qs3nQrKmqOwt+7G87r/yx0Op3WYTkFH7deCAsYALO5DqmZH2sdDhE5MCbFRESdPLHul50PI6d4A9yMvpgy5E24mbgSmy31S7i+qV6b7dmIqL2YFBMRdaKtB/8Pew5/prol/GHwawj07aF1SE4nMfJ8eLqHoLI2F+k5i7UOh4gclKZJ8S+//IKLLroIUVFR6qvEr776qtnt1113nbr++NPkyZOb3aeoqAjTp0+Hn58fAgICcOONN6Ki4libHiIiLaXn/oS1e55R26NSHkNc6BitQ3JKBr0b+sRdrbZ3ZLyvdThE5KA0TYorKysxYMAALFiw4KT3kSQ4Ozu76fTRRx81u10S4l27duGnn37Cd999pxLtW265pQuiJyI6ucKyVPy85U4poEBK3Az0jb9W65CcWkrcdNXmTspU5LUnImorIzQ0ZcoUdToVd3d3REREtHpbamoqFi9ejA0bNmDo0GOtjV599VWcf/75eOGFF9QIdGtqa2vVyaqsrKxDz4OI6HhVtfn4YeNNv69YN0qNEnNiXefy9ghHt4hJSMv+HjsPvY8x/eZpHRIRORi7rylesWIFwsLC0Lt3b/zlL39BYWFh021r1qxRJRPWhFhMmDABer0e69atO+k+582bB39//6ZTbGxspz8PInIN9Y3VWLTxZlRUH4G/d3dMGvJPGPQmrcNyCX3jr1Hn+458hdr6Uq3DISIHY9dJsZROvP/++1i6dCmeffZZrFy5Uo0sNzY2qttzcnJUwnw8o9GIoKAgddvJzJ07F6WlpU2nrKysTn8uROT8zOYG/LR5NvJKtsLd5I/zh76lzqlrRAYNQ6BPLzQ0VmPv4c+1DoeIHIym5ROn86c//alpu1+/fujfvz8SExPV6PH48ePbvV8pyZATEZEtW6+t3DEXh/KWwqB3x5ShbyPAp7vWYbkUKVHpm3ANft35CHYe+g/6Jchkbbse+yEiO+JQ/y26d++OkJAQHDhwQF2WWuO8vLxm92loaFAdKU5Wh0xE1BkJ8bq9zzZrvcYlnLXRK/oymIw+KK08iMMFv2kdDhE5ELseKW7p8OHDqqY4MjJSXR4xYgRKSkqwadMmDBkyRF23bNkymM1mDBs2TONoichVbNw/H1vS3lDb5/b7O7qF/wHORiY228M+TsfN6IPe0ZeryXZyig09p9Mfk4icg6ZJsfQTto76ivT0dGzdulXVBMvpiSeewNSpU9Wob1paGu6//3706NEDkyZNUvdPTk5Wdcc333wz3njjDdTX12P27Nmq7OJknSeIiGxp84EF2Lj/ZbU9Mvlh9In7X9mXMyjIP9adZ8aMGTbbZ2f3kk+Jv0YlxIdyl6K8+gh8PaM79fGIyDlomhRv3LgR5513XtPlOXPmqPOZM2fi9ddfx/bt2/Hee++p0WBJcidOnIinnnqqWT3wBx98oBJhqTGWrhOSRL/yyiuaPB8ici3bDr6FdXufV9vDkx7AgO43wdlUlFWr87sfugCDhvTu0L5Wr0zFG/MXoaamBp0pyLcnooJH4GjhGuw69AGGJ93fqY9HRM5B06R47NixqhbvZH788cfT7kNGlD/88EMbR0ZEdGo7Mt7D6tSn1fZZve7GoMS/wJnFxgcjKSWmQ/vISMuFrZ2sJMO7cbQ07sSO9P/AWDkGet2p2+LJfJW4uDibx0dEjsOhaoqJiOzB7swPsWrXY2p7cOIsDOlxh9YhuZzTlXXo9cBT70QjMKQMs+4dj/UrKk+5Py8vT6Sm7mFiTOTCmBQTEbXB7syPsXLHX9X2gO634Oze96pe5wUFBQ4xEc2Vyjrq9Kmow27cMKcXZt/xv1K91kawH73vA3UMmRQTuS4mxUREbSiZsI4QSw/cEUlzVUKcnJyEqqpjSZojTERzlbKO+oZAbE/fA7O+CLGJJrUUNBHRyTApJiI6A1vS/oW1e+ap7QHdbsaI5L+qxSJkdFES4iefn46ExHCHmIjmKkxGbwT69kRR+V61ymC3iGOdi4iIWsOkmIjoFGQy8KYDr2DDvpfU5SE9bsdZveaohPh4khDb40Q0VxcWMFAlxUXl+xATMlolykREDr+iHRFR169U91xTQnx2r3txdu97TkiIyX75eETA2yMSFpiRV7pd63CIyI4xKSYiOklCvDr1KWxJe71pYY4hPWdrHRa1Q3jAIHWeX7oDZnOD1uEQkZ1iUkxE1EpC/NvuJ7A9/R11+Zy+TznlwhyuItAnUS3/3NBYrUopiIhaw6SYiKhFQiwdJnZkvAtAh7H9nkXf+Gu0Dos6QKfTq9pikVuy9ZSLRhGR62JSTET0O0mWft31KHYeev9YQtz/WSTHXaV1WGQDIX4p0OuMqK4rQFlVptbhEJEdYlJMRKQSYjN+3fkIdh36t0qIz+v/HJJjr9Q6LLIRo8EDIf591XZO8SatwyEiO8SkmIhcniTEv+x8GLsy/3MsIR7wPJJi/6h1WNQJE+500KO8OguVNWx/R0TNMSkmIpemSiZ2PordmR/+LyGOuULrsKgTuJv8EOTbS23nFG/UOhwicoak+LHHHsOhQ4dsHw0RUReTHsTWEeJxA15gQuzkIgKHqPPiigOoqSvWOhwicvSk+Ouvv0ZiYiLGjx+PDz/8ELW1tbaPjIiok21PX6hWqxPn9n0KvWOmah0SdTJP9xD4e3dT2znFm7UOh4gcPSneunUrNmzYgJSUFNx5552IiIjAX/7yF3UdEZEjOHD0W9WLWMiyzSnxM7QOibp4tLiwPBW19WVah0NEjl5TPGjQILzyyis4evQo3n77bRw+fBijRo1C//79MX/+fJSWlto2UiIiG8kt3oJl2+5R2/0SrsOQHrdrHRJ1IV/PaPh6xsBiaUR2EQdziMhGE+1kkkp9fT3q6urUdmBgIF577TXExsbik08+6ejuiYhsqqL6KBZvugWN5jrEh43HyD6PQKfTaR0WdbGo4BHqvLBsN8yo0DocInLkpHjTpk2YPXs2IiMjcffdd6uR49TUVKxcuRL79+/H3/72N9xxxx22jZaIqAPqG6qwaOPNqKrNR5Bvb0wYNB96nUHrsEgDvp5R8POKhwVm1Bn2aB0OEdkBY3t+qF+/ftizZw8mTpyoSicuuugiGAzN31imTZum6o2JiOyF9CIuKNsFD7dgDIh6Eju37+vwPmUwgBxTVPBwlFUdQoP+EMKi2/V2SEROpF3/Ba688krccMMNiI6OPul9QkJCYDabOxIbEZHN7Dn8X+w78oVavGFg9GMYMuA8VFVV22z/FRX8Ct7R+HhEqE4UpZXpuGh6gNbhEJEjJsXW2uGWqqur8fzzz+PRRx+1RWxERDZRXH5ALeEszup1NyzlMSohfvL56UhIDO/QvlevTMUb8xehpqbGRtFSV4oOHoHSinQMOdcb5XUy6j9Y65CIyJGS4ieeeAK33norvLy8ml1fVVWlbmNSTET2oqGxBku2zEJDYzWig0dhUI/bsHXLNnWbJMRJKTEd2n9GGpcLdmRe7qEwmhPQYMjAobJ3YLFMg07HxV6JXJG+vSPFrc3W3rZtG4KCgmwRFxGRTazf9yKKyveqRRsmDHyJE+voBG6NKaiuNKOyPg17D/9X63CIyBFGiqVkQpJhOfXq1atZYtzY2Khq6mQEmYjIXvoRbz/4ltoe2+9ZeHmEaR0S2SE9PPDDxyWYemMQ1u59Dt0jpsDN5Kt1WERkz0nxyy+/rEaJZZKdlEn4+/s33ebm5oaEhASMGHGs9yMRkZYaG2uxfPv9quVWr+jLkBA+XuuQyI6t+LYc029JQXVtNjbsfxmj+hyrQSci19GmpHjmzJnqvFu3bhg5ciRMJlNnxUVE1CEbD7yK4or9qmxiVB/Oc6BTa2wA4v1uxN7ip7E9/R01WhwZNFTrsIjIHmuKy8r+tz68LNQhnSbkutZORERaKirfjy1pr6vtc1Oehofbid1yiFoK8BiMpJg/yswZLN92L+obbdeyj4icKCmWeuK8vDy1HRAQoC63PFmvJyLSipR4/bb7CVgsjUgI/wO6R07WOiRyICP7PAxvjwiUVmVg/d7ntQ6HiOyxfGLZsmVNnSWWL1/emTEREbVbRu5POFywCga9G+tCqc3cTf4Y2+8ZfL/hOmxPX4j4sAmICRmpdVhEZE9J8ZgxY5q2paY4Njb2hLZsMkKTlZVl2wiJiI6TmZmJgoKCVm8zW+qwPf9YIhzueREO7JH7nXhfLs1MpxIXNhbJsdOQmvURftoyG1eM+ga+Xh3rZ01ETrp4hyTF2dnZCAtr3t6oqKhI3Sbt2YiIOiMhTk5OOunyzJP+6IdLZgaipLABd1/xEmprXjzl/rg0M53M6JTHkF+6AwVlO7F40624bOR/YTR4aB0WEdnjMs+tLd4hbzAeHvynQUSdQ0aIT7Y8swW1qDQtljXsEO4/Am9+GHfS/XBpZjodSYAnD/0X/rvqIpUYr9wxF+MGvNjqex8RuWBSPGfOHHUu/xQeeeSRZss8y+jwunXrMHDgQNtHSUR0nNaWZ87K/xWVJQ3wcg9Dco8Rp0xeuDQznQlfz2hMHLwA366bgX1HvlS/W8OTHmRiTOSk2pQUb9mypWmkeMeOHWrBDivZHjBgAO69917bR0lEdAp1DZXIK92mtqODT50QE7WF/D6d2/dpNVK89eC/oNcZcXbve/k7RuTqSbG168T111+P+fPnw8/Pr7PiIiI6YzlFG1QLNm+PSPh5xWsdDjmZPnHT0Giuw6pdj2Fz2gLodAac1etuJsZETqZdNcULFy60fSRE5JIdI9qita4RtfVlyC/bqbY5SkydpV/CTJgtDVi9+ylsOvAKyquzMKbfPE6+I3L1pLiyshLPPPMMli5dqhb0MJvNzW4/ePCgreIjIifvGNEex3eNyP59lNjXMwZ+XrE2ewyilgZ0u1H1v16163FVY1xScRCThv4LPh4RWodGRFolxTfddBNWrlyJa665BpGRkRyZIaJ2dYxoq5ZdI+oaKlBYfmz0OCp4hE3iJTqVvvHXINA7EUs2z1J17J/+Mhmj+jyKXtGX8b2QyBWT4kWLFuH777/HqFGjbB8REblMx4i2atk1Iq9kqxol9vGIgq9nVAcjJDoz0SEjMXX0N/hx060oKNuFZdvmYP/Rr9SEPCJyXPr2/FBgYGDTks9ERFpoaKxViyuIiMAhWodDLkZKdS4f9RWG9b5PlVRk5f+Cj1aMR0bpm/ALaNdbKxFprF1/uU899RQeffRRVFVV2T4iIqIzIAsqSEcAD7cg+Ht30zocckEGvQmDe8zCH89ZhJiQc2C21CO3ahGeeCsatYZtahIoETl5+cQ//vEPpKWlITw8HAkJCTCZTM1u37x5s63iIyJqhRm5xcf6pkcEDGYtJ2kq0CcRFw37N44UrMayzY8D2Id6HMCOjDQE+fZGROBgeLmHah0mEXVGUnzppZe258eIiGzC4JmH+sZKmAzeKukgspda4z7B83DNLaNx1+N90ajPR1H5HnWS/tlS5iNdUvghjsiJkuLHHnvM9pEQEZ0hg88RdR4WMBB6fbv+jRF1Ckl4UzfXwLPhXMQmmpBTvBnFFftRVnVInWSp6IjAoWp0Wadj7TGRPeG7CRE5lO5J7tCbKtSqYqH+fbUOh+ikvD3CkRg5BbX1I1VyXFi2G1W1eTiY8wPcTf4IDxiMEL8+/GBHZCfa9ZfY2NiIl156CZ9++qlqzF9XV9fs9qKiIlvFR0TUzLkX+qpzKZvgamLkCCQBjg87D1FBw5BXuh15JTIJrxSZ+ctxtGitSo7DAwdBrzNoHSqRS2vXdzdPPPEEXnzxRVx11VUoLS3FnDlzcPnll0Ov1+Pxx2WSARGR7ekMdRg8yktth/n31zocojYxGb0QHTwc/bvdgLjQsXAz+qGhsRpHCn/D7kMfoKwqS+sQiVxau5LiDz74AG+++SbuueceGI1GTJs2DW+99ZZq07Z27VrbR0lEBMAjIBdGkw7mOl/11TSRo7ZyCwsYgH4JM5EQ/gcYDZ6oqS/GviNfID33J9VqkIgcJCnOyclBv3791LaPj48aLRYXXnihWumOiMjWLBYzPAJz1HZDJVevI8cnE+2kprhv/EyE/v7Nh9Qd7878CI26Yq3DI3I57UqKY2JikJ2drbYTExOxZMkStb1hwwa4u7vbNkIiIgAllekwmGpRXtoIc3WY1uEQ2YzR4K5qjnvHXAGT0Qe19SWoNi7HOVN8tA6NyKW0Kym+7LLLsHTpUrV9++2345FHHkHPnj1x7bXX4oYbbrB1jEREKCjbpc7X/lzR3n9dRHbN1zMaKXHTEeCdCOgsmDYrGIfKFsJsadQ6NCKX0K7uE88880zTtky2i4uLw5o1a1RifNFFF9kyPiIi1DVUorQyQ22v/qkC54zQOiKiziEdVRIjL8COPUtRZ9yFnMpvsXhjNf4w6BU1UY+IOo9NhltGjBihOlAwISaizlBYlipVxaiv8kXu4QatwyHq9AVA3MxJeOuZfOhgwqG8n/HDhutR31CpdWhETq1dI8Xvv//+KW+XMgoiIluwWCxq8pGoKZGOEzu1DomoS2xeVYXk4CdwoHQejhatw3frr8MFZy+Em5G1xkR2kxTfeeedzS7X19ejqqoKbm5u8PLyYlJMRDZTWZOt2lXpdUbUlYdoHQ5Rl/J1S8KFw/6N79Zdg5ziDfh+/UxcePb7MBm9tQ6NyOm0q3yiuLi42amiogJ79+7F6NGj8dFHH9k+SiJyWQW/jxIH+vSExczlcMn1hAcMxEXDPlCLfeQUb8KPm29Do7le67CInI7NpnDLJDuZgNdyFJmIqL1kEYOi8n1qO8Q/RetwiDQTFtAfF579nlroIyt/JVbueFCVFhGR7di0r5Gsbnf06FFb7pKIXFhJRRrMlnq4m/zh48EFO8i1hQcOwsRBC6DTGbD38OdYv/cFrUMicirt+i7ym2++aXZZPq3KYh6vvfYaRo0aZavYiMjFFZbvVefBvklqRj6Rq4sPH4cx/eZhxfb7sTltAQJ9e6JX9KVah0XkuknxpZc2/wOUN6vQ0FCMGzcO//jHP2wVGxG5MGk/VVaVqbaDfJO0DofIbiTHXqn+NjYfeA0rtj+AQJ9EhPr30zosItdMis1mszrPz89XHSf8/f1tHRcRubhjtcQWeLuHw8MtQOtwiOzK2b3mqP7dh/KWYtHGW3DF6G/g5R6qdVhErlVTXFJSglmzZiEkJAQREREICgpS53PnzlVt2YiIbFk6EeTHUWKilnQ6PcYPfAkB3t1V28Ilm2fBbObCNkRdNlJcVFSkVq87cuQIpk+fjuTkZHX97t278eqrr+Knn37CqlWrsH37dqxduxZ33HFHh4IjItdUU1eMqtpceetHkE9PrcMhskvuJj9MHvomPv/tEmQXrceG/S9jWO97tQ6LyDWS4ieffFKVS6SlpSE8PPyE2yZOnIhrrrkGS5YswSuvvGLrWInIxUaJ/bziuEgB0SlIPfGYfn/Hz1vuwOYDCxAVNAyxoedoHRaR85dPfPXVV3jhhRdOSIiFlFA899xz+PzzzzFnzhzMnDnTlnESkYuQbjZF5Xuauk4Q0an1jLoYfeKmqRr8pVvvRlVNntYhETl/Uixt11JSTt5Av2/fvtDr9XjsscdsERsRuaCq2jzU1peqZZ0DfLprHQ6RQxjV5zHVpaW6rgBLt90Di+XYhHgi6qSkWCbXZWRknPT29PR0hIWFtWWXRETNFFXsV+f+3t1g0LtpHQ6RQzAaPDBx8Gsw6j1wuOBX7Mx4X+uQiJw7KZ40aRIeeugh1NXVnXBbbW0tHnnkEUyePNmW8RGRi5VOFP++rDMn2BG1TaBPD4xIfkhtr9kzD0Xlxz5gElEnJMUymW7v3r3o2bOnqh+Wle2+/vprPPPMM+q61NRUPP7442e8v19++QUXXXQRoqKi1AIgUrPc8g3y0UcfRWRkJDw9PTFhwgTs37//hI4Y0gnDz88PAQEBuPHGG1FRUdGWp0VEdqKyNhd1DeXQ60zw807QOhwih5MSPwOxoeei0Vyr6osbzScOYhGRDZLimJgYrFmzBn369FF9iWVlu8suu0yNHst1v/32G+Li4s54f5WVlRgwYAAWLFjQ6u2SeEsXizfeeAPr1q2Dt7e3Gq2uqalpuo8kxLt27VLt4L777juVaN9yyy1teVpEZCeso8QBqnTCpHU4RA5HBpjO6/883E0BKCjbiU37X9M6JCLnXdGuW7duWLRoEYqLi5tGbXv06KEW8WirKVOmqFNrZJT45ZdfxsMPP4xLLrlEXff++++rzhcyovynP/1JjUwvXrwYGzZswNChQ9V9pF/y+eefr7pkyAh0a6TUQ05WZWVlbY6diDqhdOL3euJA315ah0PksLw9wjGm39/Ugh5b0v6J7pGTEeLXR+uwiJxvRTurwMBAnH322erUnoT4dGTSXk5OjiqZsJLlpIcNG6ZGq4WcS8mENSEWcn/pgCEjyyczb948tS/rKTY21ubxE1HbVNbkoK6hQpVO+HvFax0OkUNLjLwA3SImw2xpwIrtD3C1O6LOTIo7myTEomVPZLlsvU3OW3a7MBqNKkm33qc1UvpRWlradMrKyuqU50BEZ66o4vfSCZ/u0Ovb/CUWEbVwbsqTcDP6Ib90B7alv6l1OER2z26T4s7k7u6uJuYdfyIirUsnDqjtIB+WThDZgpdHGEb1eURtb9j3Eoor0rQOiciu2W1SLCvkidzc3GbXy2XrbXKel9d85Z6GhgbVkcJ6HyJyjK4T9b+XTsjSzkRkG71jrvi9G0UdVmx/kIt6EDliUiwT+iSxXbp0abMJcVIrPGLECHVZzktKSrBp06am+yxbtgxms1nVHhORYyj5fZRYFuxg6QSRbbtRjOn7d5gM3sgp3oBdh/6jdUhEdkvTpFj6CW/dulWdrJPrZDszM1P9Id911114+umnVT/kHTt24Nprr1UdJaQVnEhOTlaLhdx8881Yv369agk3e/Zs1ZniZJ0niMh+SycCfRK1DofI6fh6xWB40gNqe+2eZ1FedVjrkIjskqZDMhs3bsR5553XdHnOnDnqfObMmXj33Xdx//33q17G0ndYRoRHjx6tWrB5eHg0/cwHH3ygEuHx48errhNTp05VvY2JyDHU1BWitr4UOp0B/lywg6hT+OrOha9bH5TX7ca3v81G76BH1OBTe4SEhLRpTQIiR6FpUjx27Fg1SnQy8gcrq+jJ6WSk08SHH37YSRESUWezTv6RWmKD3k3rcIicjnz7Kgts+QTU46HXolCKrbjt3jFYv6KyXfvz8vJEauoeJsbkdFi8R0SaKq48lhQHerN0gqgzFBQUoKqqGg8+MR3e+mLUYReuvycas+6YCB3a9kE0Iy0Xj973gdonk2JyNkyKiUgzUjZRXZsv3wvB36e71uEQObWExHD0ShqI3ZnZqKkrgmdIOhLCx2sdFpHdsNvuE0TkOqUTvp7RMBk8tQ6HyOnpdQbEh41T2wVlO1FRfVTrkIjsBkeKiUjzVmyBPj20DoXILqWmptp8H/IhNNivDwrLduNQ3jIkx01TyTKRq2NSTESaqG+oREVNttoO8GbpBNHxCvLL1PmMGTNs2gbVKiZkNEorDqK6rhB5JVsRETjEZo9D5KiYFBORJkoqD6pzb/dwuJl8tQ6HyK5UlFWr87sfugCDhvTu0L5Wr0zFG/MXoaampuk6KVeSxDgj72ccLVyLQJ+ecDf5dThuIkfGpJiINGFdsCOApRNEJxUbH4yklJgO7UM6RrRGSigKylNRUX0Emfkr0CPyonb3LiZyBpxoR0RdrqGxpmlVLa5iR6QNSYBl0p0OepRWpjd9e0PkqpgUE1GXK63MgAVmeLgFw8MtUOtwiFyWp1sQwn+vJ5bR4kZzndYhEWmGSTERaVY6wVFiIu1FBZ0Nd5M/6hsqVH0xkatiUkxEXarRXI+yqkNqm6vYEWlPrzciLnSs2s4t2YoqtaAOkethUkxEXUoSYrOlAW5GP3i6h2odDhEB8PdOUB0oAAsO5S6FxWLWOiSiLsekmIg0WcVOSic4053IfsSGnguD3g2VtbnIL92pdThEXY5JMRF1GbOlUc1yFwGsJyayK25GH0QHj1TbRwp/UwvsELkSJsVE1GWkDVujuRZGgxd8PCK1DoeIWgj17wcv9zDVhSIr/xetwyHqUkyKiajLlFgX7PDuDp2O/36I7I38XcaHjZctFFXsQ2nlsUmxRK6A70pE1CUssKD498UBArmKHZHd8vYIQ1jAALWdmb8cZnOD1iERdQkmxUTUJcy6QjQ0VqmJPL5eHVu2log6V3TwCJiMPqitL0V28QatwyHqEkyKiahLNOiPqnN/727Q6wxah0NEpyAfXuNCzlXbOUUbUV1XpHVIRJ2OSTERdYkG/RF1ztIJIscQ4NMD/l4Jakn2Q3nLYLFYtA6JqFMxKSaiThfTzQSLrgo6nQF+XvFah0NEZ0D6iMeFnQe9zoiK6iMoLE/VOiSiTsWkmIg63cCRXurc3yseBr1J63CI6Ay5m/wQGTRMbR8uWAULarUOiajTMCkmoi5Lilk6QeR4wgMHwdMtGA2N1ag1cKU7cl5MiomoU1U3HEZUvBtg0cHfu7vW4RBRG8nE2PiwcWq7wZCBxBR3rUMi6hRMiomoUxVVr1XnBksYjAa+mRI5Ih/PKIT49VXbV88KgtlSr3VIRDbHpJiIOlVRzRp1bjRHax0KEXVATMgo6CzuiIxzQ3bl11qHQ2RzTIqJqNOUVWWiqiEd5kYLjOYorcMhog4wGjzg1thPbR8p/y+XgCanw6SYiDrNwezF6nz/zlrowNIJIkdnNMdhz7ZqWFCHlTv+yt7F5FSMWgdARM7rYM4idb5ldSWGJGsdDdGppaam2sU+7JkOOnz0WhGefLMbjhT+hr2H/4uk2D9qHRaRTTApJqJOUVGdjdySLWp725pq4EatIyJqXUF+mTqfMWOGzfZZUVEBZ5Wf3YAY36uQVf5vrE59GnFhY+HlHqp1WEQdxqSYiDpFes6P6tzH1BulRaw9JPtVUVatzu9+6AIMGtK7Q/tavTIVb8xfhJqaGjizSO+LUa3bjIKyXfht95P4w6BXtQ6JqMOYFBNRp5ZOBHmMALBE63CITis2PhhJKTEd2kdGWi5cgSzZPrb/M/h81SU4cPRb9Iy6FAnh47UOi6hDONGOiGyuqrYA2UUb1HaQx3CtwyGiThDq3w/9u9+ktn/Z+TDqGpy3ZIRcA5NiIrK5jNwlsMCs3jTdjWFah0NEneSsXnfDzysOlTXZWL/3Ba3DIeoQJsVEZHMHs4+VTnSPmKx1KETUiUwGT4zp93e1vSPjPeQUb9I6JKJ2Y1JMRDZVW1+KI4XHVrHrHjFF63CIqJPFhIxG75ipACxYsf1BNDbWah0SUbswKSYim0rP/QlmSwOCfHsjwKe71uEQURcYmfwwPN1CUFyxHxv3v6J1OETtwqSYiDplFTuWThC5Dg+3QJzb92m1veXgG8gv3aF1SERtxqSYiGxGZp8fLvhFbbN0gsi1dI+cjMTIC2CxNGLZtvvQaK7TOiSiNmFSTEQ2k5Hzk3oj9PfursoniMi1nJPyJDzcglBUvgebDrymdThEbcKkmIhs5kD2t+q8Z9RF0Ol0WodDRF3M0z1YJcZiy4F/oqB0l9YhEZ0xJsVEZBM1dcXIyj9WOtEj6iKtwyEijUgJhZRPyYTb5duljKJe65CIzgiTYiKyiYM5i9WbYIhfHwT69NA6HCLSiHxLdE7fJ+FhCkRB2W5sSXtd65CIzgiTYiKyiQNHj5VOcJSYiLzcQzEq5XG1vWn/qygsS9U6JKLTYlJMRB1WWZPXtGBHYuSFWodDRHagZ9TFSAj/A8yWeizdNofdKMjuMSkmog5Ly/5erWYVHjAIfl6xWodDRHZSRjGm799UGYWMFG/cN1/rkIhOiUkxEdmwdOJirUMhIjvi5RGGc/v9XW1LbXFO8SatQyI6KSbFRNQhpZWHkFuyGTro1axzIqLjJUZOQa/oy2CBGcu23oP6hiqtQyJqFZNiIuqQfUe+UOcxoaPh7RGmdThEZIdGpzwOb49IlFZlYE3qsZFjInvDpJiI2s1isWDv4WNJca/oqVqHQ0R2yt3kj3EDnlfbuzL/g8z8lVqHRHQCJsVE1G45xRtRXp0Fk8Eb3SImah0OEdmxmJDR6Jdwndpese1+1NSVaB0SUTNMiomo3fYe/lydJ0aeD5PBU+twiMjODUt6AAHe3VFZm4tfdz2qdThEzTApJqJ2aWis+b0VG9A7hqUTRHR68uF53MAXodMZcODoN9h35CutQyJqwqSYiNolI/cn1DWUw9czGpFBZ2sdDhE5iPCAgRjS43a1/cvOh1FWlal1SEQKk2Ii6lDpRK/oy6HT8V8JEZ25IT1mIyJwKOobKvDTljvQaK7XOiQiJsVE1Hbl1UeaZo/3irlc63CIyMHo9UZMGPgy3Iy+yCvZio37udodac+odQBE5HhSsz5RyzpHB49EgHc3rcMhIgfk6xWDMf3m4acts7H5wALEhoxGVPBwOJPMzEwUFBTYZF8hISGIi4uzyb6odUyKiahNzOYG7MmUpBjoEzdN63CIyIG5NfRHqOd45FcvxaL1s9Av9EUY9b5OkTRKQpycnISqqmqb7M/LyxOpqXvs6jk6GybFRNQmh/KXq3ZKHm5B6BbO3sRE1LGksdFcgwfnRyI8uhBvfXEF3pxX4BRJo4wQS0L85PPTkZAY3qF9ZaTl4tH7PlD7tJfn54yYFBNRm6RmfqTOe8dcAYPBXetwiMhBHZ80xoa5odqyHINGeePtr0bDZO7uNEmjJMRJKTFah0FngEkxEbVtgl3eCrXdJ/ZPWodDRE5AJY19YpBTXIfDBatQZ9qOxNhkeLmHah0auRh2nyCiNk2ws8CMqOARCPBp20gOEdGphAcMhp9XPCyWRqRl/4DGxlqtQyIXw6SYiM54Bbtdhz5Q2ylxV2sdDhE5GZ1Oh+4Rk+Bm9EFtfQky8n6GxWLROixyIUyKieiMyJKsNXWF8PGIQveIKVqHQ0ROyGjwRPeI86GDHsUVB1QPY6KuwppiIjotGa3Zlv6O2u6bMFM13ici15Wamtpp+/DxjERM6DnIyl+paoy9PSLUdUSdje9sRHRaRwpXo6h8jxrF6RPHCXZErqogv0ydz5gxw2b7rKioOOG6MP8BqKg+iuKK/TiY8wOS466GyeBps8ckag2TYiI6re3pb6vzpJg/wt3kr3U4RKSRirJjC1Hc/dAFGDSkd4f2tXplKt6Yvwg1NTWt1hcnhI1HVW2+qi9Oz/kRPaMuUdcTdRYmxUR0SiUVB3Eob5m8TaFft+u1DoeI7EBsfHCHe+9Kb+FTkT7oiZHnq643ZVWHcLRoLaKDR3ToMYlOhRPtiOiUtqS9oc7jw8YjwLub1uEQkQuRXsXxYePUdnbRehSV79c6JHJidp0UP/744+qrkuNPSUlJTbfLVy6zZs1CcHAwfHx8MHXqVOTmnvqTJxGdubKqLOw78oXaHtzjNq3DISIXFOLXB+EBg9R2Ru4SVNXkaR0SOSm7TopFSkoKsrOzm06rVq1quu3uu+/Gt99+i88++wwrV67E0aNHcfnll2saL5Ez2XxgAcyWBsSGnIOIwMFah0NELiomZLRa2EP+H+3P/hb1DZVah0ROyO5rio1GIyIiIk64vrS0FG+//TY+/PBDjBt37KuVhQsXIjk5GWvXrsXw4cM1iJbIeZRXHcbew/9V20N73qV1OETkwnQ6veqPvifrE9TUF+NA9nfoHT2V7SHJtUaK9+/fj6ioKHTv3h3Tp09HZmamun7Tpk2or6/HhAkTmu4rpRVxcXFYs2bNKfdZW1uLsrKyZiciam5z2j/VqIyM0EQEDdE6HCJycUaDO3pEXQSD3h2VNTlqAjBXvCOXSYqHDRuGd999F4sXL8brr7+O9PR0nHPOOSgvL0dOTg7c3NwQEBDQ7GfCw8PVbacyb948+Pv7N51iY2M7+ZkQOd4o8Z6sz9T2kJ53aB0OEZHi4Rb4+4qaOhSWpyK3ZLPWIZETsevvHaZM+d9Ssv3791dJcnx8PD799FN4era/iffcuXMxZ86cpssyUszEmOh/1u59DmZLPaKDRyIq6GytwyEiauLvHY+40DHIzF+hVrw71jvdQ+uwyAnY9UhxSzIq3KtXLxw4cEDVGdfV1aGkpKTZfaT7RGs1yMdzd3eHn59fsxMRHZNTvAkHjn6jRmJGJj+kdThERCcI9e+PUP9+avtgzmI06gq0DomcgEMlxbIUZFpaGiIjIzFkyBCYTCYsXbq06fa9e/eqmuMRI9jcm6g9LBYzftv9VNPqdSH+KVqHRER0AmnRGhc6FgHeibBYGlFtXI3IeJPWYZGDs+uk+N5771Wt1jIyMrB69WpcdtllMBgMmDZtmqoFvvHGG1UZxPLly9XEu+uvv14lxOw8QdQ++49+i7ySrTAavHB273u1DoeI6DQdKSbDxyMS0NVj9hNhqGngWgXkpDXFhw8fVglwYWEhQkNDMXr0aNVuTbbFSy+9BL1erxbtkI4SkyZNwj//+U+twyZySNL3c92eZ9X24MTb4O0RpnVIRESnJC3ZekRdjO0HPkJgSBn2FD2G/tUD4OMZpXVo5IDsOin++OOPT3m7h4cHFixYoE5E1DFr9zyLipqj8PWMxoDuN2kdDhHRGTEaPODRMBoZBV8jLCoP36ybjkuGf8IP9uRc5RNE1DWOFq7FzkPvq+2x/Z9VbzJERI5CD0/M/2su3AyhKK1Mxzdrp6Gi5tTtWYlaYlJM5OLqG6qwfPv9ajs5dpparIOIyNEUFzQiOegJeHtEoqQyDV+vuRJlVVlah0UOhEkxkYtbt/c5lFVlwscjCiOT/6p1OERE7eZhjMClIz6Fn1ec+r/21ZorUVyRpnVY5CCYFBO5sLTsRdiR8a7aHtPv73Az+WodEhFRh/h5xeLSEZ8h0KcHKmuy8eXqqcgu2qB1WOQAmBQTuaji8gNYvu1Y27UB3W5GXNhYrUMiIrIJb49wNdkuLGAAautL1OS7/Ue+1jossnNMiolcUF19ORZvugX1jZWIChqO4UkPaB0SEZFNeboH4+LhH6Nb+CSYzXX4eeudWLf3BZgtjVqHRnbKrluyEQlZpbCgwDZLeIaEhCAuLg6urNFch5+23IGSyoNqQsofBr+men0SETkbk8ETE4f8E2tTn8G29Dex+cBryC3eggmD5sPLPUTr8MjO8J2Q7D4hTk5OQlVVtU325+XlidTUPS6bGJvNDfh5y13IzF8Og94dkwb/k28MROTU9DoDRvZ5CCH+fbFyx4M4Uvgb/vvrBThvwAuIDT1H6/DIjjApJrsmI8SSED/5/HQkJIZ3aF8Zabl49L4P1D5dMSm2WMxYvv0+HMz5AXq9GyYP/T+EBw7SOiwioi7RK/oShPj1wY+bblUt275bfw36xF2NEcl/hZvRR+vwyA4wKSaHIAlxUkqM1mE4rIbGGjWp7kD2d9DrjJg4eAHiQsdoHRYRUZcK8u2JK0Z/q1pRSued3ZkfIjN/JUYmP4TuEVOg0+m0DpE0xKSYnFqjuR71DZVoaKxCg+4ohpzjhfyq5UjN3A+93qRqaU0Gb3i4BcDDFAhvjwiYjF5wJpU1eVi88WbklW5TCfH4gS+jW/gftA6LiEgT8j9+dMrj6BYxCcu33Yfy6sNYsvk2RAadjVF9HkWof1+tQySNMCkmu54cl5qaesalAdV1RaisyUFVbZ7arq0rRn1j1f/uZAJufCAUB0tfxcEdJ9+XSR8Ad0O4agLvbohQ517GBHgaY6DTGRxq0p4s3/zz1rvU6+JuCsCkIa8jOniE1mEREWlO/hdede4SbD34L2xN+xeyi9bjv6suRHzYeAzpMZvlZS6ISTHZ/eQ4UVFRccJ1NXXFKK06pFYtKq8+olrutEZGR01Gb1RXWnBgTx7q6iywmC3QG3QwmXRw99DB208Pbz8DPL30qDeXqFNF/d5m+6mrNePooXpkpdWpU95hHX78dgsSEhJhjy3X1ux5BrszP1CXpYn9lKFvw987XuvQiIg6zZkOpBzPgDHoG9IHWWUfoLBmFQ7lLVUnGTlOiZuO7hGTYTC4d0q8ZF+YFJNdT45bvTIVb8xfhJqaGnW5urYARRX71bKdNXWFze6r15lUw3Y5eboFw90tUJVEGPRuqk5s8Teb8PJfP8DdD12AQUN6t/p4lro6mHWV6mSBnFf8fiqBm3sDEnq5q5PV4l2TEHqkL8IDBiLMfwDCAgfC3ytBs7o0qR3ek/UZNqctUKPDQk0kSZrL1eqIyGkV5Jep8xkzZnRoP2FRRpw/LQjDzvNRI8dy8nALQs+oi5EYeSEiAgdDp+MSD86KSTHZ9eQ46Rgho7gG78PYnbkbVbX5TbfpoIePZ7Ra415O0lrsTP5ZxcYHtzkui8WC2vpSVZohMeQXZqK0Ihs+fkBeyVZ1snI3+SPMvz/CJFFWpwGd3vassiZXrda0Pf1tVNbmquv8vOIxtt88RIeM7NTHJiLSWkXZsW8mTzXo0ZYuRbdc9W8Y/XchNfNj9T9VJuXJSXq7x4edh9iQcxEdMkL9vyfnwaSY7JYknz6R+/G3hdEwuaehqvZYIuzvnYBAn57w9+4GYxd9pSUjv2oynlsAgnx7oSI3Hn+++kX8tu57hETX/54Yb0NB2U6VPGcV/KpOVpK8B/v2VnHLz8u5lDS0d1Kf9BsuLN+D7KINyMj9CUcK10jqrm6Tf9qDE/+CpNgrYTR42Ow1ICKyd+0Z9GiNuyEEg3vdjSE9blfdKdKyv0d67hJU1mSrjhVykvcjGfiQXseSJIcG9IdBb7LJ8yBtMCkmuyIT5koq0pBbug0V1UfgESDX6mGu80FC9FCVUBoNnrAXMgmvV/Rg1f/SulpcUfle5P4+eiyJspR6yHOR06G8Zc1+3scjCj6ecoqEl3sYPEwBauTBYPBQo97yT7ehsVp10KipL0F5dZaqoS4uP6CWaD5eROAQ9I75I3pHX8b6NyIiG5AORQnh49VJytOOFKxGVsEvyMr/VfU6zi3ZrE4b98+H0eCFyKCzEB08EjEhI2HhctIOh0kx2QUZ+cwv24nc4k2oazg2qU4SwprSILz61E7MnnMlwlIGwHEmdaQgQE6+09HgXYmq+nRUN2ShuuEwqtR5FhrMpaioOapOKG77Yxt0XvBxS4KfWwqCPUbB3RgGH4QwISYi6gTyzVt8+Dh1EuVVh5FVsApZ+b/gSOFq1NaXICt/pToJg84bN88NQb0+A/UNgWrCN9k3JsWkKRlZzS/dgZzizaqXsJCR4FD/fuq07Ie9OLhnk0qRnW1Sh9RKh0YYERRmRECIAb7+Bnj76uHlq1ddMfR6HfQGoK7GgppqM6qrzCjKbUR+Tj3yjjYgJ6seFrMk5V827dPVl7EmIuoqvl4x6BP3J3WSbzmlpE1Gko8UrkV20TrUNZRj0Chv1GITtqVvUqVtQVI659uTK+jZKSbFpInGxlq1mERu8RY0mI91lnAz+iIicKhahlO+snKFSR3W7hod3Y9w9WWsiYi0IuVu8t4lpwHdb1Lffq5a/zmefeXPuHhaN5j1xaoeWU5SfiEToWWREJkboz+u/z1py74zD3LKFeakzjaneCMazbXqOqmhjQw8C0F+SQ73z6GjkzokkbXFfoiIyH7IwI6PW0/88FEp/vTHcejeOwDFFQdQXL4PFTXZKFM99g+pFVWlQ1Gof/8umzhOJ8ekmLqE2dKIwrLdOFq4rmmCmPQQluboMnmOfR+JiMhZSbmE9LOXU01dCQrKdqmTvB9KPbIMFEliLBOm2TVIO0yKqVNJf9+iin04WrhGtSqzlklEBQ9HsG8Sk2E7WdGpNbW1tXB3d7ebeIiInIG09owJGaXeB4vK96mEuKauSJ3LHBspI5Tk2d7LCJ0RX3HqNA066ee4EtV1BU0T6GRkONSvL//Y7XhFJytZlM9yrPVxpy3VTUTkqqRcMMQvWQ0QlVQeVINH1XWFOFL4G/JLtyM2dAwCfRK1DtOlMDMhmyuv24M5z4ajxrQaqINaZjk8cIj65CvbZN+T/2w9AbDlUt1ERNR8cShJfgO8ux3rYFG4RnWuSMv+Tk3Eiwsdq3WILoNJMdmMTCJYt+c5pBcuQY8UD8CiR3jQIESqGin7WXDD2dli0p4tJwBa90VERKfvYCErnmYXrUdu8WaUVqZjV/URmPR9tQ7PJTAppg6rrMnDxv0vITXr099X8NFj1Y+lmHjeVYgN6al1eERERA5DloqWmmMpqziUt1R1q6g1bsZtj4WirrFI6/CcGmc5UbvV1Zdj/d5/4MMVY7A78yOVECeET0C/kJfw4atF0IOjw0RERO3h6R6M3jFXICbkHPXNa9+zvLCjYA4yf18xj2yPSTG1axW6Henv4oMVY7DpwKtoaKxGeMBgXDriM0wZ+ha8TLFah0hEROQUJRURgYPhVT8eWQfr0GAuw/frZ2LtnmdU33+yLZZP0BmTZSzTsr/Hur0vqKbjwt+7O4Yn3Y9u4ZPUZAEiIiKyLT388Pw92fj4xz8jr2oxtqS9gdzirZg4eIEaUSbbYFJMZ0TWc1+z5xnVJkZ4uofgrJ53ISn2KlX/RERERJ2noR7o5n8LBiZdjOXb7sPRorX4/LeLMXnI/yHEP0Xr8JwCk2I6pcKyVKzd8ywy81eoy7Ik5cDEWzCg200wGb21Do+IiMilJEaerzpULN54M0qrMvDl6qkYO+A59Iy6WOvQHB6TYmpVefURbNj3IvYe/kIKJ6DXGdEn7moM6XkHvNxDtA6PiIjIZQX59sTU0V/jpy13ICt/JX7ecgcKy3bj7N73qUVBqH2YFFOTzMxM5ORl4GjFF8ip/B4WHCviD/IYiVjfq+FRF4U9uzLlnqfcD5f1JSIi6lzuJn+cf9Y7an2ArQf/peqMC8v2YMKgV+Bu8tM6PIfEpJiU9Iz9mPXgcIy71Avevsc+Ze7bUYMvFxbj0L6PAMipbbisLxERUeeRUeERyXPVoh8rtj+gSh2/XH25Spb9vOK0Ds/hMCl2cWZLI/Yf+Qqr9szDRdf4quv0Zj+4NfbFoN4RGPxM2ztKcFlfIiKirtMz+hIE+CRi0YYb1eqyn6+6BJOG/gtRQWdrHZpDYVLsoiwWi6pDkl6Hsta6KM5vQETgMPRNGql6I7YXl/UlIiLqWqH+fXH56K/VBLz80h34du10jOk/D0kxV2gdmsPg4h0uSP2xrJuO7zdcpxJiN6MvYn1n4PE/H4XJnNChhJiIiIi04eMRgUtGfIruEVNgttRj+bZ7VQcpWWeATo8jxS6krCoT6/Y+jwNHv1WX9Xo39Iu/FoN7zMLunemor/ub1iESERFpzhYTxrWadG4yeKpFPdbvexGbD7yGLWmvo6QyHeMHvAiT0UuTmBwFk2IXUF1bqJZj3nXoA/XJEdChV/SlOKvXHPh5WZdkTtc4SiIiIm0V5Jep8xkzZthsn1pMOpdvfIf1vhcB3t2xYseDSM9ZjK+qDmPKWW+p0WRqHZNiJ1bfWI3tB9/GloNvoL7h2B9lbMg5GJ70IFe/ISIiaqGirFqd3/3QBRg0pHeH9mUPk857x1yuulAs3nQLCsp24vNVF2PK0LcQFtBfs5jsGZNiDXsCFxQU2GRftbW1cHd3b7pssTQiv3oZDpd/jHpzsbrOy9gNcX7Xwt80AJlptcjE5mb7YG9hIiKiY2Ljg5GUEtOhfdjLpPPIoKGYOupr/LDhBhRX7MfXa65E/5i/wlTft8P7DgkJQVyc87R+Y1KsUUKcnJyEqqpjn0g7SqeTRPjYdv9hnrhkZgAi49zU5YKcBnzz72Js+uUQLJZjSzWfCnsLExERORcplbxs5Of4acvtqvPU5sxH8fV7xfjxs2PlIu3l5eWJ1NQ9TpMYMynWgIwQS0L85PPTkZAYbpOvZ+bOOw/xKaUw6wuP3WBxg1tjEuKDuuOOOw3AnWe2H/YWJiIicj6yyt35Q9/GVyvvRG7V97hkZiCmzhgA98bB0KHtS0PLSPij932gchomxdRhkhB39OuZrKx03Dw3BLH9DkIaruh0BoQHDEJE4FAYDf8rqXCUr3mIiIioc+j1RiT434iXn38f024LQYMhEx7e9UiMvJCdKdin2HHVN1TiUN4yBHTfjEGjvFX5RIhfCvolXIeYkFFtSoiJiIjIdfy6qAIeDaNg0LuhoiYbqVmfqE5Vro5JsYNpNNfhSOEa7Mh4Ty3CIfXEO9ZXoS5/KBLCJ8DN6KN1iERERGTnjJZwJMVeBXeTP+oaypB6+FOUVmbAlTEpdhBmSyPySrZhR8a7yC5ar/oNe3tEoCSjH15/Mh+WBm+tQyQiIiIH4ukWhOTYq+DjGQ2zuQ77j36D3JKtsFhn77sY1hTbOfnFLK44gCOFv6G2vlRd524KQHTwSAT69MChLc1bqxERERGdKaPBE72iL0Nm3jIUlO1W3Skqq7MRHz5elVe4EibFdqy86jAOF6xCZW1u0y9uVNAwhPj3hV7X9pmiRERERC1JThEfNgEebsEq7yiq2IfK2jwkRp4PL/dQuAomxXaourYAhwt+Q2nVsdoevc6E8MDBiAgc7HKf2oiIiKjz6XQ6lWfIMtBpOYtQW1+iJuDFhY5VE/nldmfHpNiO1NWX40jRWhSWyepyUs+jQ6h/XzU6bDKyZpiIiIg6l49nFPrEXY2MnCVqcO5Q3lKUVx9GfNg4px+YY1JsBxoaa5FTvOH34vZGdZ3UC0vdsIdboNbhERERkQsxGTzRI+pi5BRvwpHC1Sgq34vKmhwkhE+Er2cUnBWTYg1Z0Iic4s3ILtqARvOxleR8PKIQEzIaPp6RWodHRERELkqn0yEyaKjKRw7mLFaT/fce/gzhgUMQHTQczohJsQYsFjPOHuuNKtMSVBZUqes83IIQEzwK/t7dXKJuh4iIiOyfr2c0UuJmqK4UheWpyC3ehNLKdOh0A+FsmBR3MSmR2FlwH667NwQWVMFk8EZU8HCE+PWBTse20URERGRfjAZ3dIuYiACfRFVjXFNXBBiX44Kr/WG2NMBZMAvrYnqdEVUN6aiuNMOtIQV9E2aqyXRMiImIiMieBfokIiX+GgT69AR0FlxwdQDSSl6Gs+BIcReTBLi7/x2YevV9eP3dP8KgN2kdEhERETmA1NRUzfdhMniq/sU7UtegoGIN+iReCGfBpFgDoV5jUVlm1joMIiIicgAF+WXqfMaMGTbbZ0VFRYd+3mSOxcM3/hdrVyfBWTApJiIiIrJjFWXV6vzuhy7AoCG9O7Sv1StT8cb8RaipOdb1qiPqa2VNBefBpJiIiIjIAcTGByMpJaZD+8hIy7VZPM6Gs7uIiIiIyOUxKSYiIiIil8ekmIiIiIhcHpNiIiIiInJ5TIqJiIiIyOUxKSYiIiIil8ekmIiIiIhcHpNiIiIiInJ5TpMUL1iwAAkJCfDw8MCwYcOwfv16rUMiIiIiIgfhFEnxJ598gjlz5uCxxx7D5s2bMWDAAEyaNAl5eXlah0ZEREREDsApkuIXX3wRN998M66//nr06dMHb7zxBry8vPDOO+9oHRoREREROQAjHFxdXR02bdqEuXPnNl2n1+sxYcIErFmzptWfqa2tVSer0tJSdV5WVtYFEQMVFRXqfM+uw6iu+l8cHVnD/MC+HHh7pWm+H+7L8WNyhX3ZY0z2ui97jMkV9mWPMbnCvuwxJnvd16H0/KacpqvyJ+vjWCyWTtm/ztJZe+4iR48eRXR0NFavXo0RI0Y0XX///fdj5cqVWLdu3Qk/8/jjj+OJJ57o4kiJiIiIqKOysrIQExMDW3P4keL2kFFlqUG2MpvNKCoqQnBwMHQ6XZd80omNjVUH1c/Pr9Mfj1rH42AfeBzsA4+DfeBxsA88DvZ5HGQct7y8HFFRUZ3yeA6fFIeEhMBgMCA399jXAVZyOSIiotWfcXd3V6fjBQQEoKvJAeYfm/Z4HOwDj4N94HGwDzwO9oHHwf6Og7+/f6c9jsNPtHNzc8OQIUOwdOnSZiO/cvn4cgoiIiIiIqcdKRZSCjFz5kwMHToUZ599Nl5++WVUVlaqbhRERERERC6RFF911VXIz8/Ho48+ipycHAwcOBCLFy9GeHg47JGUbkhP5ZYlHNS1eBzsA4+DfeBxsA88DvaBx8E1j4PDd58gIiIiIoKr1xQTEREREXUUk2IiIiIicnlMiomIiIjI5TEpJiIiIiKXx6S4nX755RdcdNFFalUVWQXvq6++OmHxkOuuu07d7uXlhcmTJ2P//v3N7lNTU4NZs2aplfR8fHwwderUExYhyczMxAUXXKD2ERYWhvvuuw8NDQ1d8hxd4TjISoa33347evfuDU9PT8TFxeGOO+5AaWlps/3wOHT+34OVzP2dMmVKq/vhceia47BmzRqMGzcO3t7eqmH+ueeei+rq6mZ/N9OnT1e3ycJHN954IyoqKrrkObrKcZBOStdcc41ahEqOw+DBg/H55583uw+Pw8nNmzcPZ511Fnx9fdX/iksvvRR79+7tlPfgFStWqOMjHRJ69OiBd999t0ueo6sch23btmHatGlqZTt5n05OTsb8+fNPeCxbHAcmxe0kfZAHDBiABQsWtPqmLgf+4MGD+Prrr7FlyxbEx8djwoQJ6ues7r77bnz77bf47LPPsHLlShw9ehSXX3550+2NjY3qj7Gurg6rV6/Ge++9pw6ytJ4j2xwHec3l9MILL2Dnzp3q9ZV2fvLmYsXj0DV/D1bSZ7y15dZ5HLrmOEhCLEnaxIkTsX79emzYsAGzZ8+GXv+/twtJxHbt2oWffvoJ3333nUoCb7nlli57nq5wHK699lqVPHzzzTfYsWOHem+48sor1f2teBxOTt5TJdFau3aten3q6+vV77St34PT09PVfc477zxs3boVd911F2666Sb8+OOPXf6cnfU4bNq0SSXU//nPf9Tv+0MPPYS5c+fitddes/1xkJZs1DHyMn755ZdNl/fu3auu27lzZ9N1jY2NltDQUMubb76pLpeUlFhMJpPls88+a7pPamqq+rk1a9aoyz/88INFr9dbcnJymu7z+uuvW/z8/Cy1tbVd9Oyc+zi05tNPP7W4ublZ6uvr1WUeh647Dlu2bLFER0dbsrOzT9gPj0PXHIdhw4ZZHn744ZPud/fu3Wo/GzZsaLpu0aJFFp1OZzly5EinPBdXPA7e3t6W999/v9m+goKCmu7D49A2eXl56vVauXKlTd+D77//fktKSkqzx7rqqqsskyZN6qJn5vzHoTW33Xab5bzzzmu6bKvjwJHiTlBbW6vOPTw8mq6TURYZ0l+1alXTJx/5xCSjA1ZJSUnq63sZqRFy3q9fv2aLkEyaNAllZWXq0xJ1/Di0Rkon5OtIo/HY2jY8Dl1zHKqqqnD11Ver0TX5yrglHofOPw55eXlYt26dGpUZOXKkeq3HjBnT7DjJcZCv6mUFUSv5Pyb7kp8l2/w9yOv/ySefqBIJs9mMjz/+WH3NPHbsWHU7j0PbWEvigoKCbPoeLPc5fh/W+1j3QR0/Difbj3UftjwOTIo7gfWAyvB+cXGx+url2WefxeHDh5Gdnd1UL+bm5qb+qR1P/vjkNut9Wq7KZ71svQ917Di0VFBQgKeeeqrZV5A8Dl1zHOQrNEkELrnkklb3w+PQ+cdBvtIXjz/+OG6++WZVSiQ1euPHj2+qeZXXWpLm48kHSHmD4nGw3d/Dp59+qpIFqbOUhPnPf/4zvvzyS1UrKXgczpx8qJCv00eNGoW+ffva9D34ZPeRxPn4OnxCu49DS1LKIh8Yz+R9uq3HgUlxJzCZTPjiiy+wb98+9Q9KCvSXL1+uJg8dX5dH9nUc5I9HapL69OmjkgLquuMgdZPLli1T9cSk3XGQNy0hCdj111+PQYMG4aWXXlITUd955x2Nn4Fr/V965JFHUFJSgp9//hkbN27EnDlzVE2x1BdT20hNq8wZkdF2cuzjsHPnTjVwIks/S22yrTFD6yRDhgxRxd7yT00+/cuIS2FhIbp3765ul6+HZYRAbj+ezLi0fnUs5y1nwlovt/b1MrX9OFiVl5eryUUyQ1ZGY+SNy4rHofOPgyTEaWlparRARruspSsyC9n6dTGPQ+cfh8jISHUuHwyPJ7O9ZRa+9bWWMovjyWx8+Zqfx8E2x0H+FmQSkXwQkVF6mbQnSYCUSlgn7/E4nBmZJCqTEOWDR0xMTNP1tnoPPtl9pARPOiVQx4+D1e7du9Xfg4wQP/zww81us9VxYFLcyfz9/REaGqq+epRP+9avhuWfoiReS5cubbqvzDSWN54RI0aoy3IuowLH/+OT2ZtykFu+aVH7joN1hFg+ccpXODJieXytn+Bx6Pzj8OCDD2L79u0qUbCehIxSLly4UG3zOHT+cUhISFBtwlq2TJJRTemQYD0O8gYmtYBW8qFGRpmHDRvWxc/EOY+D1NeLlt9oGQyGptF8HodTkzmOkojJIIe8Lt26dWt2u63eg+U+x+/Deh/rPlydxQbHQUgNt3SWmDlzJv72t7+d8Dg2Ow5tmpZHTcrLy9VMeTnJy/jiiy+q7UOHDjV1MFi+fLklLS3N8tVXX1ni4+Mtl19+ebN93HrrrZa4uDjLsmXLLBs3brSMGDFCnawaGhosffv2tUycONGydetWy+LFi9UM5blz53b583XW41BaWqpm2/fr189y4MAB1fXAepLXX/A4dM3fw+lm7fM4dM1xeOmll9TsepkNvn//ftWJwsPDQ/19WE2ePNkyaNAgy7p16yyrVq2y9OzZ0zJt2rQuf77Oehzq6uosPXr0sJxzzjnqNZbX/oUXXlCdJb7//vum+/E4nNxf/vIXi7+/v2XFihXN/q9XVVXZ9D344MGDFi8vL8t9992nuiYsWLDAYjAY1H3JYpPjsGPHDvW6z5gxo9k+pJOFrY8Dk+J2kn9o8s+u5WnmzJnq9vnz51tiYmJUqxE52PLG0rJtVHV1tWorEhgYqA7mZZddpg708TIyMixTpkyxeHp6WkJCQiz33HNPU6sw6vhxONnPyyk9Pb3pfjwOnf/3cLqkWPA4dM1xmDdvnrqf/F+SN6dff/212e2FhYUq+fLx8VEJ9PXXX68SQbLdcdi3b59KlMPCwtRx6N+//wkt2ngcTu5k/9cXLlxo8/dgOd4DBw5UrTy7d+/e7DFcHWxwHB577LFW9yEfJm19HHS/B01ERERE5LJYU0xERERELo9JMRERERG5PCbFREREROTymBQTERERkctjUkxERERELo9JMRERERG5PCbFREREROTymBQTERERkctjUkxE5ATGjh2Lu+66q0P7yMjIgE6nw9atW9XlFStWqMslJSU2ipKIyH4xKSYiIiU2NhbZ2dno27dvq7e/++67CAgI6PK4iIi6ApNiIiI7V1dX1yWPYzAYEBERAaPR2CWPR0RkT5gUExF1sffffx/BwcGora1tdv2ll16Ka665Bo8//jgGDhyIt956C926dYOHh8cZ7behoQGzZ8+Gv78/QkJC8Mgjj8BisTTdLqUQX331VbOfkZFfGQFurXzieFJKcf3116O0tFTdR04SJxGRs2BSTETUxf74xz+isbER33zzTdN1eXl5+P7773HDDTeoywcOHMDnn3+OL774otUktTXvvfeeGuVdv3495s+fjxdffFEl1rYwcuRIvPzyy/Dz81MlFnK69957bbJvIiJ7wO/IiIi6mKenJ66++mosXLhQJcjiP//5D+Li4tSEuZUrV6qSCRlRDg0NbVNN8EsvvaRGcXv37o0dO3aoyzfffHOHY3Zzc1Mj0LJvKbEgInI2HCkmItKAJKpLlizBkSNH1GUpYbjuuutU0ini4+PblBCL4cOHN/28GDFiBPbv369GpYmI6NQ4UkxEpIFBgwZhwIABajR44sSJ2LVrlyqfsPL29rb5Y0rCfHyNsaivr7f54xAROSImxUREGrnppptUna6MFk+YMEGVP3TEunXrml1eu3YtevbsqbpKCBl5llpgKxlFrqqqalMJBUedichZsXyCiEgjUld8+PBhvPnmm00T7DoiMzMTc+bMwd69e/HRRx/h1VdfxZ133tl0+7hx4/Daa69hy5Yt2LhxI2699VaYTKYz3n9CQgIqKiqwdOlSFBQUtCmhJiKyd0yKiYg0IhPXpk6dCh8fH9WOraOuvfZaVFdX4+yzz8asWbNUQnzLLbc03f6Pf/xDjUafc845KiGX7hFeXl5t6kAhifRVV12lRp2fe+65DsdMRGQvdJaWBWZERNRlxo8fj5SUFLzyyitah0JE5NKYFBMRaaC4uFgtiHHFFVdg9+7dqoUaERFphxPtiIg06j4hifGzzz572oRYaoX79Olz0tslqZYex0RE1H4cKSYisnOyfLMswXyqCXCykh0REbUfk2IiIiIicnnsPkFERERELo9JMRERERG5PCbFREREROTymBQTERERkctjUkxERERELo9JMRERERG5PCbFRERERARX9/+ePCtPRJ3ZYwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAHWCAYAAAB5SD/0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAASZRJREFUeJzt3Qd8FGX+x/FfegGSAAESei8iTVREEAsciMqJ4qnIHxBQTwQbtkNPmgUOFPUQ9TwV9GzoqeiB0hVEqiiigJwgCEgJNSGE9Pm/fg/O3u5mE4IsbJnP+/VadndmdvbZ2Vn2m2ef+U2EZVmWAAAAAA4RGegGAAAAAGcSARgAAACOQgAGAACAoxCAAQAA4CgEYAAAADgKARgAAACOQgAGAACAoxCAAQAA4CgEYAAAADgKARhwiPr168vNN98c6GaEvUmTJknDhg0lKipK2rZte0aec/r06RIRESHbtm07I88HKPY7hDICMBDCXzxff/21z/mXXHKJnH322af8PJ9++qmMGTPmlNfjFPPmzZMHH3xQOnXqJNOmTZMnn3wy0E2Cw+Xk5JjP8BdffBHopgBBJTrQDQBwZmzatEkiIyNPOgBPnTqVEFxOixYtMtv41VdfldjY2EA3BzABeOzYsa4/jAEcRw8w4BBxcXESExMjoeTo0aMSSjIyMiQhIYHwGwShzyn7HIDfhwAMOHQMcEFBgekZatKkicTHx0vVqlWlc+fOMn/+fDNfl9XeX6XDLeyLe1C47777pE6dOiZcN2vWTJ566imxLMvjeY8dOyZ33XWXpKamSqVKleSPf/yj/Prrr2Zd7j3LelunbdiwQW666SapXLmyaY9at26daY+OrdW2pqWlyeDBg+XAgQMez2Wv47///a/83//9nyQnJ0u1atXk0UcfNe3asWOHXH311ZKUlGTW8fTTT5dr2xUWFspjjz0mjRo1Mq9Vt+XDDz8seXl5rmX0eXXYg24Xe1vpUJWyrFy5Uq644grzWitUqCCtW7eW5557rkSv8kUXXWTmp6SkmPZv3LjxhG323r6l7Qf2cJqlS5ea90m3lz7Pn//8Z8nPz5fDhw/LgAEDTBv1okM83N9jHf+pj9f3/uWXX3Zto/POO09Wr17t8dy6z/3444+ye/fuMtuu21HX+e2335aYp8NKdHy17kPuw33WrFkjXbp0kcTERPPelEdZ+5x68803pX379uaPmipVqsiNN95o9iF39vPrOi699FLz/LVq1ZKJEyf6/ANpyJAhUqNGDbMft2nTRl5//XWP7aPPM2jQoBKPzcrKMo+5//77zX19b0aNGmXap/u57h+6n3z++ece742+n0o/6/Z+6b5f6Ptx3XXXmefV9Z977rnyySeflHj+9evXy2WXXWa2Re3ateXxxx+X4uLicm1nIBgxBAIIYZmZmbJ///4S0/WL9ET0S3D8+PFyyy23yPnnn2++YHVM8TfffCN/+MMfTADatWuXCcT/+te/PB6rAUiDrH7Z6he6Huw1d+5ceeCBB0wweeaZZ1zLath67733pH///nLBBRfI4sWL5corryy1XX/6059MKNegYwctbcPPP/9sgoEGV/0y1rCl1ytWrPAI5uqGG26QFi1ayIQJE2T27Nnmy1q/4P/xj3+YL/G//e1v8tZbb5kwoUFNg1NZdBtpUNGgoKFfg6tuOw2iH330kVlGt5G2adWqVfLKK6+YaRdeeGGp69TXdNVVV0l6errcfffd5nXp+mbNmmXuqwULFkjPnj1N8Nf3S/+YmDJlihljrO+Thll/ufPOO00bNCjpNtXXokF42bJlUrduXfN+6JAYPchPA5+GYndvv/22HDlyxOw3+n5oALz22mvN+2b/8qD7hr4vAwcOLPOPA93Ow4YNM+9Ru3btPObpNA2dGjJt+oeQbicNqPqHjwbMk+Frn3viiSfMH07XX3+9ef/37dtntr3uKxrMddvYDh06JJdffrl5vbr8v//9b3nooYekVatWpl1K3ztt9+bNm2X48OHSoEEDef/9983nQ//I0Pdct9M111wjH374odlX3X9JmDlzpvmDS1+j0s+r7md9+/aVW2+91Wx7HXrTo0cPsw/qZ1LD74svvihDhw4169X2Kf1DS+nnR/cl3ZZ/+ctfTIjWz2rv3r3lgw8+MI9Re/bsMeFe/xC0l9P9Q8MwELIsACFn2rRp+i1d5qVly5Yej6lXr541cOBA1/02bdpYV155ZZnPM2zYMLMubzNnzjTTH3/8cY/p1113nRUREWFt3rzZ3F+zZo1Z7p577vFY7uabbzbTR48e7Zqmt3Va3759SzxfTk5OiWnvvPOOWX7JkiUl1nHbbbe5phUWFlq1a9c27ZowYYJr+qFDh6yEhASPbeLL2rVrzTpvueUWj+n333+/mb5o0SLXNF1XhQoVylyf3aYGDRqY90Tb4a64uNh1u23btlb16tWtAwcOuKZ99913VmRkpDVgwIAS+8PWrVtd07y3b2n7gf3YHj16eDx3x44dzTa7/fbbS2zLiy++2DVNn1MfX7VqVevgwYOu6R9//LGZ/p///KfEsifa5kr3g5o1a1pFRUWuad988415vLbZpm3RaS+99JJ1skrb57Zt22ZFRUVZTzzxhMf077//3oqOjvaYbj//G2+84ZqWl5dnpaWlWX369HFNe/bZZ81yb775pmtafn6+2c4VK1a0srKyzLS5c+eW2G7qiiuusBo2bOjxXujzuNN9qUaNGtbgwYNd0/bt21fqvtC1a1erVatWVm5urmua7gMXXnih1aRJE9c0/fzqOlauXOmalpGRYSUnJ5fY74BQwRAIIITpEAXtSfS+2D08ZdEeLO0B+umnn076ebUnUH+G1p/M3WnvqGavzz77zNyfM2eOub7jjjtK9DaW5vbbby8xzb2nKTc31/R6a2+y0p5Qb9pjZ9N26s+62i7trXZ//TpsQ3soT/Ra1YgRI0q8VqU9zCdLexC3bt0q99xzj0dPorJ7s3WYwNq1a00PofZe2/S91R56u13+otvGvSe9Q4cOJbaZvS19bTPtddchBDb9OV65L6s91rrOEw0NUdrDrL9AuP+kr72/ui/06dPHY1kdcuFr2EB5ee9z2gOrP+9rb67ua/ZFe8i1p9i9TapixYqm59mmPbf6q4r7a9f3Sx+vPbY27fHVz1B2drb5ZUTpLxQ6XGjGjBkePcz6udZt7P5e2D3E2taDBw+aHlp9f3x9Jrzp8jq8Rl+j9h7br1F707UXWf9fsIeZaNv186avyaa9y/369SvnFgaCD0MggBCmX0j6hedNg4ivoRHuxo0bZ8aTNm3a1PykrT/h6jCF8oTnX375RWrWrGnG9LrTn7ft+fa1VkXQn3vdNW7cuNR1ey9rf1nrT/PvvvuuGUfpPQzEm/5k707HSOr4Rg0W3tO9xxF7s1+Dd5s1zGh4tV/rydiyZYu5LqtUnb1eDenedDvrkBMdb6w/R/uDr22mdIy393QNZCd6vB2GfS1bHhrydXiIht6uXbuakPfOO++YfdZ7v9Of8E/lwEPvfU7DnwZ1Dbu+eB9MqmNivYfh6OvXsevu76euz7sSi/dnJjo62gR8HVKiQx403Gsg12FN7gFY6bAcHceu43jdhz35+gx506EY+hp1mIdefNHPmm5bbZv+QeTN174JhAoCMOBQOpZRg9jHH39s6tfqeEIdu/vSSy959KCeab7GFWovlY5F1THGOrZRe9w0EGlo93UgjvaOlWea8j5orzTeASdUFRUV+Zxe2vbxNd3XNjvV7etrfXpg2j//+U954YUX5KuvvjI9wu49rbZTHYvq/Xjdp/T91l8yfL0u3f+82+rP167jfHUMsD6/jsfVcbnNmzc3B825H6Cnvw7ofP1cVK9e3bRDx6bbf2CVxf7c6Dh47fH1paw/VIFQRwAGHMw+4lwv+jOshmI92MoOwKWFvnr16pkDtPSnU/feOO2Jsufb1/pFqz/3u/emae9TeWkP4sKFC00PsB71bvs9Qzd+D/s16PPZvXVq79695uAl+7WeDK2UoH744Qfp1q1bqc9r12/2pttZe7PL6v3VHkhtnzutHHCiCgzBRIdBaA/nf/7zHxMG9Wf30sKaP+n7o+FVe1L1FxJ/0PdTe4R1X3LvBfb+zCj9HGrvtw6D0KoUOlThkUce8VifHminB0dq77D753T06NEey5X2GdbH2r3Zpe2D7m339XnztW8CoYIxwIBDef/0r71a2uPjXtrLDljeQUpLd2lP4vPPP+8xXXuQ9QvXPvLdDivag+dOj6YvL7t3zbs37dlnn5UzQV+rr+ebPHmyuS6rokVpzjnnHBOudJ3e29Z+nRqAtLdbf+Z2X0ZDs/bY2+0qK8QtWbLEY5oeuV9aD/CZUN4yaDYdjqMX/XVCqxJoz6gOETjdtFqC7nf6R5f3fqf3TzRsxhd9v7SagvvYXh2zq58F/exdfPHFrukakLUShgZ/rS6iy3kPf/D1udDqJMuXL/dYTsuyKe/9THuMtSqF9jT7ej+06oV727UyiFaXcJ+vw1OAUEUPMOBQZ511lvkC1Dqi2hOsJdC0V0lLNNl0ntIDdTTM6peuhpBevXqZskjaK6W1RvWnWQ1lOpxCD+yyezj18TqeUYOehga7DJrW6S3vsAKt2as9YlpWSwOUjknU59Je5TNBX5uW7dLwqCFCg4oGAQ2m+vOzboeTpQFHy1PpdtSQqz3wGng1HOqBiTq+V2nJMf1jomPHjuZgNLsMmo7DPdHZ+bQXXw/u0u2v42m/++47s17vcdBnUnnLoHn3Atu1b30NfzgddP/V0nkjR440+7e+z/pLh+5zWvbutttuc7WpvPQxGjZ12ILWLNYDAvXzpkM79PPhPa5ZA6++19qjq+XU3H99UFpCT3t/tVSZ/hGmbdPhS/q51l9z3Id36DQN3tqbrZ91HXuuFz2IVnuYdf1aSk17hfWXDQ3RO3fuNPuM0trPGsR1yJGWa7PLoNm92kBICnQZCgAnzy5dtXr1ap/ztTTTicqgaQmz888/30pJSTHlwJo3b27KO2lpJvdSS3feeadVrVo1UxLL/b+MI0eOWPfee68pVRUTE2PKJk2aNMmjlJY6evSoKadWpUoVU+6pd+/e1qZNm8y63MuS2SWptGyTt507d1rXXHONaauWXvrTn/5k7dq1q9RSat7rKK08ma/t5EtBQYE1duxYU7pMX2udOnWskSNHepSPKut5SrN06VLrD3/4g1WpUiXzuNatW1tTpkzxWGbBggVWp06dzHuUlJRk9erVy9qwYYPHMr7KoGn5sIceeshKTU21EhMTTZkzLU9XWhk0732pvNvSLm2m77037/fnZMqg2Xbv3m1KkjVt2tTn/PK+h76Utc+pDz74wOrcubN5vXrRz4juy7r/nuj59TXqtna3d+9ea9CgQeY9iY2NNSXI3Eu6udPPke5nvsoN2vOffPJJ8xxxcXFWu3btrFmzZvl83mXLllnt27c3z+n9nmzZssWU1NOybbpv16pVy7rqqqusf//73x7rWLdunXmt8fHxZpnHHnvMevXVVymDhpAVof8EOoQDcBYt76UnONADeSilhLJoNRPtHdfx36VVKwCAk8UYYACnlf5s701/8tVhACc6AxugQyV03LKW6AMAf2EMMIDTSsfu6phHHSurBzDp0fx60TGR3jVmAZtWPtiwYYM5JbGOwT2Z0z7rGFj3cbC+aEWJ0sqXAQh/DIEAcFrpGaz0aHoNMxpK9IQJ2punB9CdiSP6EZr0AE2t/dypUyczVEYPfiwvPUBQ97my6EFjJxOqAYQXAjAAIKzoKYhPdIprrX6gZwcE4EwEYAAAADgKB8EBAADAURiAVw566ko9B70WKi9P4X4AAACcWTqo4ciRI1KzZk2PU477QgAuBw2/HK0OAAAQ/Hbs2CG1a9cucxkCcDnYp6jUDaqnZQUAAEBwycrKMh2W3qcW94UAXA72sAcNvwRgAACA4FWe4aocBAcAAABHIQADAADAUQjAAAAAcBQCMAAAAByFAAwAAABHIQADAADAUQjAAAAAcBQCMAAAAByFAAwAAABHIQADAADAUQjAAAAAcBQCMAAAAByFAAwAAABHIQADAADAUaID3QCUbvv27bJ///5TXk9qaqrUrVvXL20CAAAIdQTgIA6/LVo0l5ycY6e8rsTEBNm48UdCMAAAAAE4eGnPr4bfcZP6Sf1GNX73erZt2SujHnjLrI8ADAAAQAAOehp+m7esHehmAAAAhA0OggMAAICjEIABAADgKARgAAAAOAoBGAAAAI5CAAYAAICjEIABAADgKARgAAAAOAoBGAAAAI5CAAYAAICjEIABAADgKARgAAAAOAoBGAAAAI5CAAYAAICjEIABAADgKARgAAAAOAoBGAAAAI5CAAYAAICjEIABAADgKARgAAAAOAoBGAAAAI5CAAYAAICjEIABAADgKARgAAAAOAoBGAAAAI5CAAYAAICjEIABAADgKARgAAAAOAoBGAAAAI5CAAYAAICjEIABAADgKARgAAAAOAoBGAAAAI5CAAYAAICjEIABAADgKARgAAAAOAoBGAAAAI5CAAYAAICjEIABAADgKARgAAAAOAoBGAAAAI5CAAYAAICjEIABAADgKARgAAAAOAoBGAAAAI5CAAYAAICjEIABAADgKARgAAAAOAoBGAAAAI5CAAYAAICjEIABAADgKARgAAAAOEpAA/D48ePlvPPOk0qVKkn16tWld+/esmnTJo9lcnNzZdiwYVK1alWpWLGi9OnTR/bu3euxzPbt2+XKK6+UxMREs54HHnhACgsLPZb54osv5JxzzpG4uDhp3LixTJ8+/Yy8RgAAAASXgAbgxYsXm3C7YsUKmT9/vhQUFEj37t3l6NGjrmXuvfde+c9//iPvv/++WX7Xrl1y7bXXuuYXFRWZ8Jufny/Lli2T119/3YTbUaNGuZbZunWrWebSSy+VtWvXyj333CO33HKLzJ0794y/ZgAAAARWdCCffM6cOR73NbhqD+6aNWukS5cukpmZKa+++qq8/fbbctlll5llpk2bJi1atDCh+YILLpB58+bJhg0bZMGCBVKjRg1p27atPPbYY/LQQw/JmDFjJDY2Vl566SVp0KCBPP3002Yd+vilS5fKM888Iz169AjIawcAAEBgBNUYYA28qkqVKuZag7D2Cnfr1s21TPPmzaVu3bqyfPlyc1+vW7VqZcKvTUNtVlaWrF+/3rWM+zrsZex1eMvLyzOPd78AAAAgPARNAC4uLjZDEzp16iRnn322mbZnzx7Tg5uSkuKxrIZdnWcv4x5+7fn2vLKW0WB77Ngxn2OTk5OTXZc6der4+dUCAABAnB6AdSzwDz/8IO+++26gmyIjR440vdH2ZceOHYFuEgAAAMJhDLBt+PDhMmvWLFmyZInUrl3bNT0tLc0c3Hb48GGPXmCtAqHz7GVWrVrlsT67SoT7Mt6VI/R+UlKSJCQklGiPVorQCwAAAMJPQHuALcsy4fejjz6SRYsWmQPV3LVv315iYmJk4cKFrmlaJk3LnnXs2NHc1+vvv/9eMjIyXMtoRQkNt2eddZZrGfd12MvY6wAAAIBzRAd62INWePj4449NLWB7zK6Ou9WeWb0eMmSIjBgxwhwYp6H2zjvvNMFVK0AoLZumQbd///4yceJEs46//vWvZt12L+7tt98uzz//vDz44IMyePBgE7bfe+89mT17diBfPgAAAJzWA/ziiy+aMbaXXHKJpKenuy4zZsxwLaOlyq666ipzAgwtjabDGT788EPX/KioKDN8Qq81GP/f//2fDBgwQMaNG+daRnuWNexqr2+bNm1MObRXXnmFEmgAAAAOFB3oIRAnEh8fL1OnTjWX0tSrV08+/fTTMtejIfvbb7/9Xe0EAABA+AiaKhAAAADAmUAABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4CgEYAAAAjkIABgAAgKMENAAvWbJEevXqJTVr1pSIiAiZOXOmx/ybb77ZTHe/XH755R7LHDx4UPr16ydJSUmSkpIiQ4YMkezsbI9l1q1bJxdddJHEx8dLnTp1ZOLEiWfk9QEAACD4BDQAHz16VNq0aSNTp04tdRkNvLt373Zd3nnnHY/5Gn7Xr18v8+fPl1mzZplQfdttt7nmZ2VlSffu3aVevXqyZs0amTRpkowZM0Zefvnl0/raAAAAEJyiA/nkPXv2NJeyxMXFSVpams95GzdulDlz5sjq1avl3HPPNdOmTJkiV1xxhTz11FOmZ/mtt96S/Px8ee211yQ2NlZatmwpa9eulcmTJ3sEZQAAADhD0I8B/uKLL6R69erSrFkzGTp0qBw4cMA1b/ny5WbYgx1+Vbdu3SQyMlJWrlzpWqZLly4m/Np69OghmzZtkkOHDvl8zry8PNNz7H4BAABAeAjqAKzDH9544w1ZuHCh/O1vf5PFixebHuOioiIzf8+ePSYcu4uOjpYqVaqYefYyNWrU8FjGvm8v4238+PGSnJzsuui4YQAAAISHgA6BOJEbb7zRdbtVq1bSunVradSokekV7tq162l73pEjR8qIESNc97UHmBAMAAAQHoK6B9hbw4YNJTU1VTZv3mzu69jgjIwMj2UKCwtNZQh73LBe792712MZ+35pY4t13LFWlXC/AAAAIDyEVADeuXOnGQOcnp5u7nfs2FEOHz5sqjvYFi1aJMXFxdKhQwfXMloZoqCgwLWMVozQMcWVK1cOwKsAAACAYwOw1uvVigx6UVu3bjW3t2/fbuY98MADsmLFCtm2bZsZB3z11VdL48aNzUFsqkWLFmac8K233iqrVq2Sr776SoYPH26GTmgFCHXTTTeZA+C0PrCWS5sxY4Y899xzHkMcAAAA4BwBDcBff/21tGvXzlyUhlK9PWrUKImKijInsPjjH/8oTZs2NQG2ffv28uWXX5ohCjYtc9a8eXMzJljLn3Xu3Nmjxq8exDZv3jwTrvXx9913n1k/JdAAAACcKaAHwV1yySViWVap8+fOnXvCdWjFh7fffrvMZfTgOQ3OAAAAQEiNAQYAAABOFQEYAAAAjkIABgAAgKMQgAEAAOAoBGAAAAA4yu8KwKNHj5ZffvnF/60BAAAAgjEAf/zxx9KoUSNTe1dLkOXl5fm/ZQAAAECwBGA9W9vq1aulZcuWcvfdd0taWpoMHTrUTAMAAADCcgywnrHt73//u+zatUteffVV2blzp3Tq1MmcdEJPNZyZmenflgIAAADBcBCcnsmtoKBA8vPzze3KlSvL888/L3Xq1JEZM2b4o40AAABA4APwmjVrZPjw4ZKeni733nuv6RHeuHGjLF68WH766Sd54okn5K677vJfSwEAAIBABeBWrVrJBRdcIFu3bjXDH3bs2CETJkyQxo0bu5bp27ev7Nu3zx9tBAAAAPwm+vc86Prrr5fBgwdLrVq1Sl0mNTVViouLT6VtAAAAQHD0ANtjfb0dO3ZMxo0b5492AQAAAMETgMeOHSvZ2dklpufk5Jh5AAAAQNj1AEdERJSY/t1330mVKlX80S4AAAAg8GOAddiDBl+9NG3a1CMEFxUVmV7h22+//XS0EwAAADjzAfjZZ581vb96AJwOdUhOTnbNi42Nlfr160vHjh390zIAAAAg0AF44MCB5rpBgwZy4YUXSkxMzOloEwAAABD4AJyVlSVJSUnmtp70Qis+6MUXezkAAAAgZAOwjv/dvXu3VK9eXVJSUnweBGcfHKfjgQEAAICQDsCLFi1yVXj4/PPPT2ebAAAAgMAH4Isvvth1W8cA16lTp0QvsPYA62mRAQAAgLCqA6wBeN++fSWmHzx40MwDAAAAHHEiDK0DHB8f7492AQAAAIEvgzZixAhzreH30UcflcTERNc8PfBt5cqV0rZtW/+3EgAAAAhEAP72229dPcDff/+9OfmFTW+3adNG7r//fn+1DQAAAAhsALarPwwaNEiee+456v0CAAAgvAOwbdq0af5vCQAAABCsAfjo0aMyYcIEWbhwoWRkZEhxcbHH/J9//tlf7QMAAAACH4BvueUWWbx4sfTv31/S09N9VoQAAAAAwiYAf/bZZzJ79mzp1KmT/1sEAAAABFsd4MqVK7tOiwwAAACEfQB+7LHHZNSoUZKTk+P/FgEAAADBNgTi6aefli1btkiNGjWkfv36EhMT4zH/m2++8Vf7AAAAgMAH4N69e/u3FQAAAEAwB+DRo0f7vyUAAABAsI4BBgAAABzVA1xUVCTPPPOMvPfee7J9+3bJz8/3mH/w4EF/tQ8AAAAIfA/w2LFjZfLkyXLDDTdIZmamjBgxQq699lqJjIyUMWPG+LeFAAAAQKAD8FtvvSX//Oc/5b777pPo6Gjp27evvPLKK6Y02ooVK/zZPgAAACDwAXjPnj3SqlUrc7tixYqmF1hdddVV5gxxAAAAQFgF4Nq1a8vu3bvN7UaNGsm8efPM7dWrV0tcXJx/WwgAAAAEOgBfc801snDhQnP7zjvvlEcffVSaNGkiAwYMkMGDB/uzfQAAAEDgq0BMmDDBdVsPhKtbt64sX77chOBevXr5s30AAABA4AOwt44dO5oLAAAAEJYB+I033ihzvg6FAAAAAMImAN99990e9wsKCiQnJ0diY2MlMTGRAAwAAIDwOgju0KFDHpfs7GzZtGmTdO7cWd555x3/txIAAAAIZAD2RQ+A04PjvHuHAQAAgLAMwErPCrdr1y5/rhIAAAAI/BjgTz75xOO+ZVnmxBjPP/+8dOrUyV9tAwAAAIIjAPfu3dvjfkREhFSrVk0uu+wyefrpp/3VNgAAACA4AnBxcbG53rdvn6n8kJyc7O92AQAAAMExBvjw4cMybNgwSU1NlbS0NKlSpYq5HjlypCmFBgAAAIRND/DBgwfNGd9+/fVX6devn7Ro0cJM37Bhg0yZMkXmz58vS5culXXr1smKFSvkrrvuOl3tBgAAAE5/AB43bpwZ8rBlyxapUaNGiXndu3eX/v37y7x58+Tvf//772sRAAAAECwBeObMmfKPf/yjRPhVOgxi4sSJcsUVV8jo0aNl4MCB/mwnAAAAcObHAGups5YtW5Y6/+yzz5bIyEgTgAEAAICQD8B64Nu2bdtKnb9161apXr26P9rleEfyNwa6CQAAAGHppAJwjx495JFHHpH8/PwS8/Ly8uTRRx+Vyy+/3J/tc6RNOz+QDQcekX53VhFLigLdHAAAAGcfBHfuuedKkyZNTCm05s2bm7PAbdy4UV544QUTgt94443T11qHyCvINH+bdOpRSY4VfykFhakSE10h0M0CAABwXgCuXbu2LF++XO644w5T91fDr30muD/84Q/mVMh169Y9XW11jNYNBsv+3cXy7Y5xkljxgGzY8a40q9VH4mNTAt00AAAA550JrkGDBvLZZ5/JoUOH5KeffjLTGjdubE6IAf9JiT9HJo7YLWP/0VwKCo/I7oMrpUFaj0A3CwAAwJmnQlaVK1eW888/37+tgYeMXYUSX3iuHIv5XA5m/yS1Cy+SmOjEQDcLAADAWadCxpkVZVWRxLgaYllFsj9rfaCbAwAAEPICGoCXLFkivXr1kpo1a5pxxHqiDXc6xnjUqFGSnp4uCQkJ0q1bN9ewC/fTM+tpmZOSkiQlJUWGDBki2dnZHsvoqZkvuugiiY+Plzp16pgTdoSS6iltzPW+zHViWcWBbg4AAEBIC2gAPnr0qLRp00amTp3qc74GVT2l8ksvvSQrV66UChUqmFJsubm5rmU0/K5fv17mz58vs2bNMqH6tttuc83Pysoyp2iuV6+erFmzRiZNmiRjxoyRl19+WUJFlYpNJDoqQfILs+Xw0Z8D3RwAAABnjgH2h549e5qLL9r7++yzz8pf//pXufrqq800LbGmp2HWnuIbb7zRlF+bM2eOrF692pRnU1OmTDGnY37qqadMz/Jbb71l6ha/9tprEhsba85kt3btWpk8ebJHUA5mkZHRkprUUvYc+loyDq+TyhUbB7pJAAAAIStoxwDrWeX27Nljhj3YkpOTpUOHDqYUm9JrHfZgh1+ly+vpmLXH2F6mS5cuJvzatBd506ZNppKFL1rPWHuO3S+BVi25lRackyPHdsix/IOBbg4AAEDICtoArOFXaY+vO71vz9Nr71MvR0dHm5Js7sv4Wof7c3gbP368Cdv2RccNB1pcTJIkJR6vsZx5tPTTUQMAACBEA3Ag6Uk+MjMzXZcdO3ZIMEhOrGeus3K2B7opAAAAIStoA3BaWpq53rt3r8d0vW/P0+uMjAyP+YWFhaYyhPsyvtbh/hze4uLiTFUJ90swSEo83hOdfexXKS4uDHRzAAAAQlLQBmA945wG1IULF7qm6VhcHdvbsWNHc1+vDx8+bKo72BYtWiTFxcVmrLC9jFaGKCgocC2jFSOaNWtmTuYRSuJjq0pMVKIUW4WSnet7+AYAAACCOABrvV6tyKAX+8A3vb19+3ZTF/iee+6Rxx9/XD755BP5/vvvZcCAAaayQ+/evc3yLVq0kMsvv1xuvfVWWbVqlXz11VcyfPhwUyFCl1M33XSTOQBO6wNrubQZM2bIc889JyNGjJBQo9uk0m/jgBkGAQAAEIJl0L7++mu59NJLXfftUDpw4ECZPn26PPjgg6ZWsJYr057ezp07m7JnekILm5Y509DbtWtXU/2hT58+pnawTQ9imzdvngwbNkzat28vqamp5uQaoVICzdcwiINHfpQjJgBfGOjmAAAAhJyABuBLLrnE1Pstq8dz3Lhx5lIarfjw9ttvl/k8rVu3li+//FLCgV0J4mhehhQW5Up01P/+GAAAAEAIjwGGb7HRFSU+toqeKkSOHNsZ6OYAAACEHAJwCEpKOF4NgnHAAAAAJ48AHMLDIAjAAAAAJ48AHIIqJdQyp0XOK8iU/IIjgW4OAABASCEAh6CoqDhJjEs1t49SDxgAAOCkEIBDVGJcDXN9NM/zLHcAAAAoGwE4RFWI/y0A5xKAAQAATgYBOMQDcE5eRpm1lAEAAOCJAByiEmKrSmREtBQV50tuwaFANwcAACBkEIBDVEREpCTGVTO3cxgGAQAAUG4E4BCWyDhgAACAk0YADmEVqAQBAABw0gjAYXEg3D4ptooC3RwAAICQQAAOYXExKRIVGSeWVSTH8g4EujkAAAAhgQAcwiIiItx6gRkGAQAAUB4E4HA5IxwHwgEAAJQLAThszgi3J9BNAQAACAkE4BBXIa66uT6Wf1CKiwsD3RwAAICgRwAOcTHRFSUqMl5ELBOCAQAAUDYCcBgcCJcYl2puH8vfH+jmAAAABD0CcBhI+C0Aaz1gAAAAlI0AHAYSY3/rAc6jBxgAAOBECMBh1AOsAdiyrEA3BwAAIKgRgMNAQmxVHQ0shcW5UlB0NNDNAQAACGoE4DAQGRkt8TEp5jbDIAAAAMpGAA4TCXHVzHUOARgAAKBMBOAwkRinwyAohQYAAHAiBOAwkUAlCAAAgHIhAIeJxN+GQOTmH+KUyAAAAGUgAIfVKZHjxJJiyS04FOjmAAAABC0CcBidEvl/Z4RjGAQAAEBpCMBheUY4TokMAABQGgJwGKEHGAAA4MQIwGEYgHPzDwS6KQAAAEGLABxGEmKrmOuCohwpKDoW6OYAAAAEJQJwGImKjJXY6CRzOzePXmAAAABfCMBhJsF1RjgCMAAAgC8E4DAdBkEABgAA8I0AHLanRCYAAwAA+EIADuMhEJZlBbo5AAAAQYcAHGbiYyrreeGkqDhPCoqOBro5AAAAQYcAHGYiI6MlPibF3GYYBAAAQEkE4DAUz4FwAAAApSIAh/E4YM4IBwAAUBIBOAxRCQIAAKB0BOCwrgRxUCyhEgQAAIA7AnAYiotJloiIKCm2CsSSnEA3BwAAIKgQgMNQZESUqxJEcURWoJsDAAAQVAjAYSoh9vgwCAIwAACAJwJwmI8DJgADAAB4IgCHeSWI4ojMQDcFAAAgqBCAw/xkGMURRySSdxkAAMCFaBTGlSAiI6JFIoolNT060M0BAAAIGgTgMBUREeHqBa5ZNybQzQEAAAgaBGAHVIJIrxcb6KYAAAAEDQJwGEuIO34gXM169AADAADYCMBhLMEeAkEABgAAcCEAO2AIRPWaMea0yAAAACAAh7WY6IoiVoxERUdIbuGuQDcHAAAgKBCAw7wSRKSVZG7nFG4PdHMAAACCAgE4zNkB+FgBARgAAEARgJ0SgAt3BLopAAAAQYEAHOYYAgEAAOCJABzmoqxkc51XtFcKCnMC3RwAAICAIwCHuQiJk6xDRSJiyaHszYFuDgAAQMARgB1g9/bjNYAPHtkU6KYAAAAEHAHYAXb9km+uCcAAAABBHoDHjBljatm6X5o3b+6an5ubK8OGDZOqVatKxYoVpU+fPrJ3716PdWzfvl2uvPJKSUxMlOrVq8sDDzwghYWF4iS/bj3eA3zgyI+BbgoAAEDARUuQa9mypSxYsMB1Pzr6f02+9957Zfbs2fL+++9LcnKyDB8+XK699lr56quvzPyioiITftPS0mTZsmWye/duGTBggMTExMiTTz4pTvHrtuM9wAeyCMAAAABBH4A18GqA9ZaZmSmvvvqqvP3223LZZZeZadOmTZMWLVrIihUr5IILLpB58+bJhg0bTICuUaOGtG3bVh577DF56KGHTO9ybGysz+fMy8szF1tWVpaEsl1mDHCkHMvfLzm5GZIYXz3QTQIAAAiYoB4CoX766SepWbOmNGzYUPr162eGNKg1a9ZIQUGBdOvWzbWsDo+oW7euLF++3NzX61atWpnwa+vRo4cJtOvXry/1OcePH296lO1LnTp1JJQV5FkSH5VubjMMAgAAOF1QB+AOHTrI9OnTZc6cOfLiiy/K1q1b5aKLLpIjR47Inj17TA9uSkqKx2M07Oo8pdfu4deeb88rzciRI00Ps33ZsSP0z6KWGFPPXDMMAgAAOF1QD4Ho2bOn63br1q1NIK5Xr5689957kpCQcNqeNy4uzlzCSWJ0PTkoy+gBBgAAjhfUPcDetLe3adOmsnnzZjMuOD8/Xw4fPuyxjFaBsMcM67V3VQj7vq9xxeEsMaa+uT6QtSHQTQEAAAiokArA2dnZsmXLFklPT5f27dubag4LFy50zd+0aZMZI9yxY0dzX6+///57ycjIcC0zf/58SUpKkrPOOkucRHuA1aHsLVJUfLwqBAAAgBMFdQC+//77ZfHixbJt2zZTxuyaa66RqKgo6du3rzk4bciQITJixAj5/PPPzUFxgwYNMqFXK0Co7t27m6Dbv39/+e6772Tu3Lny17/+1dQODrchDicSG1VNYqMrSbFVIIezfw50cwAAAAImqMcA79y504TdAwcOSLVq1aRz586mxJneVs8884xERkaaE2Bo2TKt8PDCCy+4Hq9hedasWTJ06FATjCtUqCADBw6UcePGidPoSUSqJrWQ3QdXyYGsjVI16X8nFAEAAHCSoA7A7777bpnz4+PjZerUqeZSGj1o7tNPPz0NrQs9VSs1Px6AORAOAAA4WFAPgYB/2b2+B45sDHRTAAAAAoYA7CBVKv0WgLMIwAAAwLkIwA5StVIzHQ0sOXn7JCdvf6CbAwAAEBAEYAeJia4gyYnHy6EdZBwwAABwKAKww6QmtzTX+zK/D3RTAAAAAoIA7DDVks821/syfwh0UwAAAAKCAOww1ZJbm2t6gAEAgFMRgB3aA5yVs13yCjID3RwAAIAzjgDsMHExyZKUWNfcphcYAAA4EQHYgaoltzLXBGAAAOBEBGBHB2AOhAMAAM5DAHZwAM44vC7QTQEAADjjCMAOPhDuyLEdkpt/ONDNAQAAOKMIwI49EO74GeH2ZzEMAgAAOAsB2OG9wAyDAAAATkMAFqefEIMeYAAA4CwEYIeiFBoAAHAqArBDVUtu6XYg3KFANwcAAOCMIQA7+EC4lAoNze09h74JdHMAAADOGAKwg6VVPtdc7zn0daCbAgAAcMYQgB0srYodgNcEuikAAABnDAHYwdJ/6wHOOPydFBXlBbo5AAAAZwQB2MGSKzSQ+NiqUlScJ/s4IQYAAHAIArCDRURESFrlc8ztPQcZBgEAAJyBAOxwHAgHAACchgDscPY44N2H1ohlWYFuDgAAwGlHAHa4aslnS1RkrOTmH5DMo1sD3RwAAIDTjgDscFFRcVItuY25zTAIAADgBARgSHqV9q5hEAAAAOGOAIz/HQh3cHWgmwIAAHDaEYDxWwCOkMNHf5bs3D2Bbg4AAMBpRQCGxMemSPWU1ub2jn1LAt0cAACA04oADKNO6sXmese+xYFuCgAAwGlFAIZRt9rxALxz/1IptooC3RwAAIDThgAMo3pKG4mNriR5BZmy7/C6QDcHAADgtCEAw4iMjJbaqZ3N7R37GQcMAADCFwEYLnWqdTHXHAgHAADCGQEYJQLw3sNrzVAIAACAcEQAhkulhFqSUqGRWFaR7Ny/LNDNAQAAOC0IwPBQtzrl0AAAQHgjAMNDnd/KoW3LWCDFxYWBbg4AAIDfEYDhoVbVCyU+prIcy9svuw6uCHRzAAAA/I4ADA9RkTHSML2nuf3Tr58EujkAAAB+RwBGCY1r9jLXP++ZI0VFeYFuDgAAgF8RgFFCepXzpUJcDckvzJLtnBQDAACEGQIwSoiMiJJGNa8ytzfvYhgEAAAILwRglDkMYtveBVJQmBPo5gAAAPgNARg+VU9uI0mJ9aSw6Jhs2zs/0M0BAADwGwIwfIqIiHD1Am/cMSPQzQEAAPAbAjBKdVadGyUiIkp+PbBM9meuD3RzAAAA/IIAjFJVSqwtjdKO1wT+buurgW4OAACAXxCAUaY2DW91VYPIzt0T6OYAAACcMgIwylQ9pY2pC1xsFcoP26YHujkAAACnjACME2rT4BZzvf6Xt6Wg8GigmwMAAHBKCMA4oXo1ukpyYn1zZrjvt70e6OYAAACcEgIwynVmuHOaDDe312x+XrKP7Q50kwAAAH43AjDKpVmtayWtcnspLMqRZRsfD3RzAAAAfjcCMMolIiJSLmo5TiIkUrbsni07938V6CYBAAD8LgRglFtqcktpWa+/uf3lD6OkqDg/0E0CAAA4aQRgnJTzm42Q+NiqcvjoFvnyh9FiWVagmwQAAHBSCMA4KXExyXJZm6d0UIRs3PGOfE9tYAAAEGKiA90AhJ561S+Vji0eluUbn5BlGx6TlIoNpW61iwPdLAAA4Afbt2+X/fv3+2VdqampUrduXQk2BGD87pNjHDryX/lx5/sy75th0v2cqYRgAADCIPy2aNFccnKO+WV9iYkJsnHjj0EXggnA+F0iIiKky9mPy5Fjv8qvB5bJp6sGSaeWo6VV/YGBbhoAAPid9u/fb8LvuEn9pH6jGqe0rm1b9sqoB94y6yQAI2xERcXJledNk8U/PCybdn4gS9ePlv2Z6+WCFn+RhNgqgW4eAAD4neo3qiHNW9aWcEUAximH4EtbPyWVKzaWFT9OlB93vic/75kj5za5S86uP0CiImMD3UQAAFBORVaeVKsZLYURGXLgyFEpKsqVwuK849fmdq5YVpFYVvHxi1giv11HRkRLZGSMuY6KjJHcqHy5ZlCKHCv8VUTOkWDiqAA8depUmTRpkuzZs0fatGkjU6ZMkfPPPz/QzQqL4RDtGg2VGintZOmGsXIga6M5W9w3W16QJjX/KM1qXyepSS3NcgAA4MzTsqX5hUckJzdDsnN3y9Hc3ZKdu+f49bHfrnP3SF7BYRn7ci3JlS9l655TfNIokT/0SZb8ogMSbBwTgGfMmCEjRoyQl156STp06CDPPvus9OjRQzZt2iTVq1cPdPPCQs2qF8h1nWfJph3/ltX/nSxH8/aaMml6SYhLlfTK55nTKWtvcXKFBlIpoZZERjpmFwQAwG+097WgKEfyC46YYKvXeQWZkpO377dLhud1bobpvS2PvNxiiY9LkoqJKRIVGSfRUfHmEhWp13ESGRHzW6dWpDlTbIREaG+YFBcXSrFVIMXFBVJsFcrevQfks49XSJs/B1/Ockz6mDx5stx6660yaNAgc1+D8OzZs+W1116Tv/zlL4FuXtiIjIiSFnVvkGa1+8iO/V/Kpp3/lm17F8ixvP3y857PzMVdbHSSqS0cH5tirvUSHZVw/GcU81NKtERERLnuR0Qev20+bCX4mOaj17n0fmgfy/q51/rUThxyaicdOeVTlgS07afa+lN8/lB+7af08EC33QrZfeZUHh/oEwyd0rY75baH7v8Vp/6+WeYMq3rRAPm/28ev9VJQdOy3sJsl+YXZv6u9sdGVpEJ8ulRMSDt+He92nZAuWzZlSIfzusgbH46QZrVPbQzw4V075cPX5sgjw9Ik2DgiAOfn58uaNWtk5MiRrmmRkZHSrVs3Wb58eYnl8/LyzMWWmZlprrOyss5Qi0Wys3XHFvlx/U45lvO/tpysX7buM9f6+u11ngrdbsXFxeVcOkri5QZpmnit5BT+LNn5/5Xs/C2SV7RHcov2iiUFckwO60dEW3rKbQMAwGkiJEqiIhIkKiJRoiMTJSoyWWIjUyQmMlliolIkWu9HpUhMRGVzW3t0De0MzhXRYmd6OV71d6/5Zdwf+cM9g2j+OBMZyn6O8vwxEmEF+k/NM2DXrl1Sq1YtWbZsmXTs2NE1/cEHH5TFixfLypUrPZYfM2aMjB07NgAtBQAAwKnYsWOH1D5B77UjeoBPlvYU63hhm/Z4Hjx4UKpWrXrGDuTSv2Lq1Klj3sSkpKQz8pyhgO3iG9ulJLaJb2wX39guvrFdfGO7BOd20T7dI0eOSM2aNU+4rCMCsJ6GLyoqSvbu3esxXe+npZUclxIXF2cu7lJSUiQQdAfiw1US28U3tktJbBPf2C6+sV18Y7v4xnYJvu2SnJxcruUixQFiY2Olffv2snDhQo9eXb3vPiQCAAAA4c8RPcBKhzQMHDhQzj33XFP7V8ugHT161FUVAgAAAM7gmAB8ww03yL59+2TUqFHmRBht27aVOXPmSI0ap3ae69NFh2CMHj26xFAMp2O7+MZ2KYlt4hvbxTe2i29sF9/YLqG/XRxRBQIAAABw1BhgAAAAwEYABgAAgKMQgAEAAOAoBGAAAAA4CgE4CE2dOlXq168v8fHx0qFDB1m1apWEq/Hjx8t5550nlSpVkurVq0vv3r1d5yG3XXLJJeYMfO6X22+/3WOZ7du3y5VXXimJiYlmPQ888IAUFhZKqNLTcXu/5ubNm7vm5+bmyrBhw8zZCStWrCh9+vQpcaKXcNsmSj8X3ttFL7otnLSvLFmyRHr16mXOdqSvcebMmR7z9dhmrXiTnp4uCQkJ0q1bN/npp588ltGzW/br188Uq9cT/QwZMkSys7M9llm3bp1cdNFF5v8iPbvTxIkTJVS3S0FBgTz00EPSqlUrqVChgllmwIABsmvXrhPuYxMmTAjb7aJuvvnmEq/58ssvd/T+onz9X6OXSZMmhfX+Mr4c38v++g764osv5JxzzjFVIxo3bizTp0+XM0arQCB4vPvuu1ZsbKz12muvWevXr7duvfVWKyUlxdq7d68Vjnr06GFNmzbN+uGHH6y1a9daV1xxhVW3bl0rOzvbtczFF19stsPu3btdl8zMTNf8wsJC6+yzz7a6detmffvtt9ann35qpaamWiNHjrRC1ejRo62WLVt6vOZ9+/a55t9+++1WnTp1rIULF1pff/21dcEFF1gXXnhhWG8TlZGR4bFN5s+fr1VsrM8//9xR+4q2+5FHHrE+/PBD8/o/+ugjj/kTJkywkpOTrZkzZ1rfffed9cc//tFq0KCBdezYMdcyl19+udWmTRtrxYoV1pdffmk1btzY6tu3r2u+brcaNWpY/fr1M5/Pd955x0pISLD+8Y9/WKG4XQ4fPmze9xkzZlg//vijtXz5cuv888+32rdv77GOevXqWePGjfPYh9z/Pwq37aIGDhxo9gf313zw4EGPZZy2vyj37aEX/V6OiIiwtmzZEtb7S49yfC/74zvo559/thITE60RI0ZYGzZssKZMmWJFRUVZc+bMOSOvkwAcZPQ/5GHDhrnuFxUVWTVr1rTGjx9vOYEGHP2PaPHixa5pGmruvvvuUh+jH6zIyEhrz549rmkvvviilZSUZOXl5VmhSAOwftn4ol/kMTEx1vvvv++atnHjRrPd9Es9XLeJL7pfNGrUyCouLnbsvuL9xa3bIi0tzZo0aZLHPhMXF2e+fJV+2ejjVq9e7Vrms88+M1/uv/76q7n/wgsvWJUrV/bYLg899JDVrFkzKxT4CjTeVq1aZZb75ZdfPALNM888U+pjwnG7aAC++uqrS30M+8txuo0uu+wyj2nhvr/4+l7213fQgw8+aDp63N1www0mgJ8JDIEIIvn5+bJmzRrzc6UtMjLS3F++fLk4QWZmprmuUqWKx/S33npLUlNT5eyzz5aRI0dKTk6Oa55uG/1Z0/2kJj169JCsrCxZv369hCr9yVp/mmvYsKH56VF/TlK6j+jPue77iQ6PqFu3rms/Cddt4v15efPNN2Xw4MHmZ0cn7yvutm7dak72475/JCcnm+FU7vuH/oytZ8a06fL6/83KlStdy3Tp0sWcSt59W+lPoYcOHZJw+f9G9x3dFu70J2z9abddu3bm5273n23DdbvoT9H6M3WzZs1k6NChcuDAAdc89hcxP+/Pnj3bDP3wFu77S6bX97K/voN0Gfd12MucqbzjmDPBhYL9+/dLUVFRibPT6f0ff/xRwl1xcbHcc8890qlTJxNebDfddJPUq1fPhEEdS6Xj+PQ/jw8//NDM1y97X9vMnheKNKzoWCj9Mtq9e7eMHTvWjCH74YcfzGvS/0y9v7T1NduvNxy3iTcdr3f48GEzftHJ+4o3+3X4ep3u+4eGHXfR0dHmC859mQYNGpRYhz2vcuXKEsp0DKPuH3379jXjWm133XWXGZOo22LZsmXmjyj9DE6ePDlst4uO97322mvN69qyZYs8/PDD0rNnTxNEoqKi2F9E5PXXXzdjYnU7uQv3/aXYx/eyv76DSltGQ/KxY8fM8QunEwEYQUMH1GvAW7p0qcf02267zXVb/6LUA3u6du1q/qNu1KiRhCP98rG1bt3aBGINdu+9995p/08hVLz66qtmO2nYdfK+gpOnvVfXX3+9OVjwxRdf9Jg3YsQIj8+eftH/+c9/NgcGhcLpXX+PG2+80eNzo69bPy/aK6yfH4i89tpr5pc4PZDNSfvLsFK+l8MBQyCCiP5sq39tex9JqffT0tIknA0fPlxmzZoln3/+udSuXbvMZTUMqs2bN5tr3Ta+tpk9LxzoX9pNmzY1r1lfk/78r72fpe0n4b5NfvnlF1mwYIHccsstZS7nxH3Ffh1l/T+i1xkZGR7z9WdbPdI/3PchO/zqPjR//nyP3t/S9iHdNtu2bQvr7eJOh13p95H758ap+4v68ssvzS9JJ/r/Jtz2l+GlfC/76zuotGX0M3kmOnoIwEFE/3Js3769LFy40OPnB73fsWNHCUfaA6Mfso8++kgWLVpU4qciX9auXWuutXdP6bb5/vvvPf6Dtr/YzjrrLAkHWm5IezH1Nes+EhMT47Gf6H/OOkbY3k/CfZtMmzbN/CSrJXbK4sR9RT9D+sXivn/oT4o6VtN9/9AvLx3LZ9PPn/5/Y//RoMtomSgNjO7bSoflBPvPticKvzq+Xv+A0nGbJ6L7kI51tYcAhON28bZz504zBtj9c+PE/cX91yb9f7dNmzaO2F+sE3wv++s7SJdxX4e9zBnLO2fkUDucVBk0PVp7+vTp5sjb2267zZRBcz+SMpwMHTrUlGv64osvPMrI5OTkmPmbN282JWa0zMrWrVutjz/+2GrYsKHVpUuXEuVWunfvbkq2aAmVatWqhVxpK3f33Xef2Sb6mr/66itTSkZLyOjRuHYJGi1Ls2jRIrNtOnbsaC7hvE3cK6Poa9cjqd05aV85cuSIKS2kF/1vfPLkyea2Xc1Ay6Dp/xu6DdatW2eOXvdVBq1du3bWypUrraVLl1pNmjTxKGulR3pr+ab+/fubckj6f5OWLArm8k1lbZf8/HxTDq527drmvXf//8Y+Kn3ZsmXmiH6dr6Wu3nzzTbN/DBgwIGy3i867//77zdH7+rlZsGCBdc4555j9ITc317H7i3sZM30dWsHAW7juL0NP8L3sr+8guwzaAw88YKpITJ06lTJoTqe18HTH0nrAWhZN6y6GK/1Px9dFaxCq7du3mwBTpUoV84eB1p7UD4t7bVe1bds2q2fPnqa+ogZFDZAFBQVWqNJSMOnp6WYfqFWrlrmvAc+mQeaOO+4w5XX0P5BrrrnG/AcVztvENnfuXLOPbNq0yWO6k/YVrXvs63Oj5azsUmiPPvqo+eLVbdG1a9cS2+vAgQMmwFSsWNGUJho0aJAJBO60hnDnzp3NOnQ/1GAdqttFw11p/9/YdaTXrFljdejQwXz5x8fHWy1atLCefPJJjyAYbttFQ42GFA0nWtpKy3ppLW3vThen7S82Dar6f4UGWW/hur/ICb6X/fkdpO9B27ZtzXeddli4P8fpFqH/nJm+ZgAAACDwGAMMAAAARyEAAwAAwFEIwAAAAHAUAjAAAAAchQAMAAAARyEAAwAAwFEIwAAAAHAUAjAAAAAchQAMAAh6N998s/Tu3TvQzQAQJgjAAIDTgtAKIFgRgAEgAPLz88/IYwAAJRGAAcAP3njjDalatark5eV5TNce0P79+8uYMWOkbdu28sorr0iDBg0kPj7+hOu85JJLZPjw4XLPPfdIamqq9OjRw0z/4YcfpGfPnlKxYkWpUaOGWf/+/fs9HnfXXXfJgw8+KFWqVJG0tDTz/O62b98uV199tVlHUlKSXH/99bJ3714z77///a9ERETIjz/+6PGYZ555Rho1amRuFxUVyZAhQ8xrSUhIkGbNmslzzz3nWlaf7/XXX5ePP/7YrEsvX3zxhZm3Y8cO83wpKSmmfdqObdu2uR6r6x4xYoSZr9tUX4dlWSf1fgBAWQjAAOAHf/rTn0xw++STT1zTMjIyZPbs2TJ48GBzf/PmzfLBBx/Ihx9+KGvXri3XejVExsbGyldffSUvvfSSHD58WC677DJp166dfP311zJnzhwTXDVQej+uQoUKsnLlSpk4caKMGzdO5s+fb+YVFxeb0Hnw4EFZvHixmf7zzz/LDTfcYOY3bdpUzj33XHnrrbc81qn3b7rpJtc6ateuLe+//75s2LBBRo0aJQ8//LC89957Zv79999v2nT55ZfL7t27zeXCCy+UgoICE+QrVaokX375pXldGsJ1ObuH++mnn5bp06fLa6+9JkuXLjXt/Oijj07h3QEALxYAwC+GDh1q9ezZ03X/6aeftho2bGgVFxdbo0ePtmJiYqyMjIxyr+/iiy+22rVr5zHtscces7p37+4xbceOHdo9am3atMn1uM6dO3ssc95551kPPfSQuT1v3jwrKirK2r59u2v++vXrzTpWrVpl7j/zzDNWo0aNXPN13Tp/48aNpbZ32LBhVp8+fVz3Bw4caF199dUey/zrX/+ymjVrZraJLS8vz0pISLDmzp1r7qenp1sTJ050zS8oKLBq165dYl0A8HvRAwwAfnLrrbfKvHnz5NdffzX3tRdTDwTTn/9VvXr1pFq1aie1zvbt23vc/+677+Tzzz83vab2pXnz5mbeli1bXMu1bt3a43Hp6emmR1pt3LhR6tSpYy62s846yww50HnqxhtvNMMSVqxY4er9Peecc1zPpaZOnWrap69J2/Hyyy+boRVl0fZrT7j2ANvt12EQubm5pv2ZmZmmt7hDhw6ux0RHR5seaQDwl2i/rQkAHE6HJbRp08aMB+7evbusX7/eDIGw6ZCEk+X9mOzsbOnVq5f87W9/K7GshlxbTEyMxzwN4Tpsobx03LAOtXj77bflggsuMNdDhw51zX/33XfNMAcdrtCxY0cTaCdNmmSGXJRF26+h2Xt4hTrZPw4A4PciAAOAH91yyy3y7LPPml7gbt26efSy+oP2wuo44vr165ue0d+jRYsW5kA0vdjt03G8Or5Ye4Jt/fr1Mweg9e3b14wR1l5hm47d1TG9d9xxh2uaew+00rHLOi7au/0zZsyQ6tWrm4PvfNEgr0G6S5cu5n5hYaGsWbPGPBYA/IEhEADgR3qQ2M6dO+Wf//yn6+A3fxo2bJg5KExD6erVq03onDt3rgwaNKhE2CyNBvNWrVqZgPvNN9/IqlWrZMCAAXLxxRd7DDW49tpr5ciRI6bn99JLL5WaNWu65jVp0sQchKfPrVUjHn30UdMedxrS161bJ5s2bTJVKvQAOH1OrWihB+HpQXBbt2411SG0aoVuN3X33XfLhAkTZObMmaYShYZsDecA4C8EYADwo+TkZOnTp48Z23o6TgKhIVR7XzXs6jALDbJaJk3H70ZGlu+/dB0OoeXJKleubHpZNRA3bNjQ9My602ENOtxCx+1qcHX35z//2QRkrRyh43UPHDjg0Rtsj4nW8mgaqnV4g7Y7MTFRlixZInXr1jWP195oLaemY4DtHuH77rvPlHYbOHCga3jFNddcc8rbDgBsEXoknOseAOCUde3aVVq2bCl///vfA90UAIAPBGAA8JNDhw6Zn/Ovu+46M6ZWez8BAMGHg+AAwI9VIDQEa4WGE4VfLRfmfsCZNw3QOkwAAOB/9AADQABoZQP30/96O5UqDwCAshGAAQAA4ChUgQAAAICjEIABAADgKARgAAAAOAoBGAAAAI5CAAYAAICjEIABAADgKARgAAAAiJP8P7jkoZJLOBX8AAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAHWCAYAAABt3aEVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZMBJREFUeJzt3Qd8VFXax/EnvfeQhJBQpCV0KQJWVARpqyuuDQEVcS1YQNGXVVGwwKprXSzrulgWLOxaUQRExVWpQZQSEEKHkBBCEtLbvJ/n4MRMSKhJZnLn9/Vznczcmztnbi7Jf84851wPm81mEwAAAMACPJ3dAAAAAKC+EG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BHFPr1q3lhhtucHYzLO/pp5+WM844Q7y8vKRHjx6N8pxvvvmmeHh4yI4dO8SdDBgwwCyu6tFHHzU/FwCnhnALuBF7mFm9enWt6/UPfpcuXU77eb744gvzBxonZtGiRXL//ffLOeecI7Nnz5Ynn3zS2U0CgCbL29kNAODaNm/eLJ6enicdbmfNmkXAPUFff/21OcZvvPGG+Pr6Ors5bvFmAoB10XML4Jj8/PzEx8dHmpKCggJpSjIzMyUgIIBg20j0OHOsAesi3AI4qZrbsrIymTZtmrRv3178/f0lKipKzj33XFm8eLFZr9tqr63SEgj7Uj143nvvvZKYmGiCc8eOHeWZZ54Rm83m8LxFRUVy1113SXR0tISEhMgf/vAH2bt3r9lX9R5he33ixo0b5brrrpOIiAjTHvXLL7+Y9mgtq7Y1Li5ObrrpJjl48KDDc9n38euvv8r1118vYWFh0qxZM3n44YdNu3bv3i2XXXaZhIaGmn387W9/O6FjV15eLo899pi0bdvWvFY9ln/5y1+kpKSkaht9Xi1F0ONiP1ZaPnIsK1askKFDh5rXGhQUJN26dZMXXnjhqN7g8847z6wPDw837U9NTT1um2se37rOA3uJy/fff29+Tnq89Hn+/Oc/S2lpqeTk5MiYMWNMG3XRsovqP2Ot89Xv15/9P/7xj6pj1KdPH1m1apXDc+s5t2nTJklPTz9m27/99luHc676ou2vq+bW/n3vv/+++fnoz1iPm55z+rNvyOOvx09fs56fegxee+21Ol/fv//9b+nVq5d5IxQZGSnXXHNNre0D3B1lCYAbys3NlaysrKMe1xBxPBp8ZsyYITfffLOcddZZkpeXZ2p416xZI5dccokJN/v27TNh95133nH4Xg03Ghi++eYbGTdunBk4tXDhQpk8ebIJrs8991zVthqkPvjgAxk9erT069dPli5dKsOGDauzXX/6059M4NZ6VXuI0jZs27ZNbrzxRhNYNmzYYIKU3i5fvvyoQTtXX321JCcny8yZM+Xzzz+Xxx9/3IQIDRwXXXSR/PWvf5U5c+bIfffdZwLJ+eeff8xjpcforbfekiuvvNIEeg1Feuw05Hz00UdmGz1G2qaVK1fKP//5T/PY2WefXec+9TUNHz5cmjdvLnfffbd5Xbq/+fPnm/vqq6++kiFDhphQrz8vfaPw0ksvmZpe/TlVD3qn68477zRt0Dc8ekz1tWiY+/HHH6Vly5bm56FlKjpgTuu5NfBWN3fuXDl8+LA5b/Tn8dRTT8kVV1xhfm72Twz03NCfy9ixY48Z/HWbmuechuxJkyZJTEzMcV/LE088YdrwwAMPmN70559/XgYOHChr1641gbK+j/+6detk0KBB5o2Bbqdvhh555BGJjY2ttW36Zuuqq64y59WBAwfMPvUc/Omnn8wxB/AbGwC3MXv2bE19x1w6d+7s8D2tWrWyjR07tup+9+7dbcOGDTvm89xxxx1mXzV9/PHH5vHHH3/c4fErr7zS5uHhYdu6dau5n5KSYra75557HLa74YYbzOOPPPJI1WP6tT527bXXHvV8hYWFRz327rvvmu2/++67o/Zxyy23VD1WXl5uS0hIMO2aOXNm1eOHDh2yBQQEOByT2qxdu9bs8+abb3Z4/L777jOPf/3111WP6b6CgoKOuT97m9q0aWN+JtqO6iorK6u+7tGjhy0mJsZ28ODBqsd+/vlnm6enp23MmDFHnQ/bt2+veqzm8a3rPLB/7+DBgx2eu3///uaY3XrrrUcdywsuuKDqMX1O/f6oqChbdnZ21eOffPKJefyzzz47atvjHfOatF3Dhw+3BQcH2zZs2FD1uLajelu++eYbs/8WLVrY8vLyqh7/4IMPzOMvvPBCgxz/yy+/3Obv72/buXNn1WMbN260eXl5Ofz72bFjh3nsiSeecHjOdevW2by9vY96HHB3lCUAbkjLBrQHquaiH68ej/YQac/nli1bTvp5tQdPp7rSj7Gr015NzVULFiww97/88ktze/vttx/VS1iXW2+99ajH7L1tqri42PRWay+w0h60mrRHzE7b2bt3b9Mu7WWu/vq1lEJ7Fo/3WpX2GtZ8rUp7hk+W9tBt375d7rnnnqN66uy90PrRvfY0as+39jrb6c9We9bt7aovemyq94D37dv3qGNmP5a1HTPtLdeP9+30o3xVfVvt6dR9Hq9coyYtCdEeVf2+Tp06HXd77VXWEhg77XHXHlr7MavP419RUWE+tbj88stND3f13ufBgwc77PvDDz+UyspK02ur57B90V5j/bRCPwkB8DvKEgA3pOUEGjZq0pBRW7lCddOnTzf1gx06dDAfM1966aWmdOBEgvHOnTslPj7eIUDY/6Db19tvdfaANm3aOGzXrl27Ovddc1uVnZ1tPi5/7733zMfMNUszaqoeMpTW3motpNb91ny8Zt1uTfbXULPNGkg0GNlf68lIS0szt8ears2+Xw3gNelx1kCl9b1aC1ofajtmSmuqaz5+6NCh436/PejWtu3J0DdI+rOfMmWKjBw58oS+R4NizcCqPz/7PMD1efy1FEPLFWo+p/17q78J0TeSGu5r21Y1tQGfQEMj3AI4KVrjp3/kP/nkEzOlktaJaq3sq6++6tDz2diq99LaaU+X1n5qTa/W9wYHB5seMA3keluT9jCeyGOq5gC4ulhlMn7taaxNXcentsdrO2ane3xro72ro0aNMj2lWjfd1Om5queRfrJR2/HS8xrA7wi3AE6aftyqg7R0yc/PN4FXB8TYw21dga5Vq1ZmsI32WlXvvdWR8Pb19lv9g64hpXpv1datW0+4jdrzt2TJEtN7N3Xq1KrHT6Wc4lTYX4M+n71nWmVkZJhBTvbXejJ0NL1av369GehU1/Pa5yeuSY+z9kIfq9dWe061fdXp7AfHm6nAVWhvqA5I097xd99996TmaK55bmjA1nPO/qlEfR5//URA35DVdj7W/F59Xm2Lfjqhn5gAODZqbgGclJofx2uvkX50W316K3t4qhmSdPok7QH8+9//7vC49vxqINYR5spec/jyyy87bKejw0+UvYerZg+gjoBvDPpaa3u+Z5991twea+aHuvTs2dMEHN1nzWNrf51aI6q91DpLQ/VtNJBpT7u9XXXRIPXdd985PKYzINTVc9sYTnQqMHvttU7pprNRVK/lPRFvv/22eeNl95///Mc8p/28rM/jr+ennucff/yx7Nq1q2o7nXlBSxeq07Cu2+sbtZrns94/XokM4G7ouQVwUnRgjs4RqvNtag+uTgOmIWDChAlV2+g6pQPH9A+4/mHWOTlHjBghF154oTz44IOmjrF79+7mD76WOOggHXvPmH6/1klqiNA/3PapwDS0nOhH/TonrfYo69RSGo5atGhhnkt7gxuDvjadukqDoYacCy64wEz3paFHBxHpcThZ2gv5yiuvmOOoAUp7zjVMafDTQX72UKTTbmkg69+/vxnYZZ+KSutej3fVOO1914Cox18/1v/555/NfmvWHTemE50KTAfpaUDVtuscx7pUfxOmx/1Y9HzWOZL1uGoPu55/+sZt/PjxDXL8NaxqbbAOotPBkzoVmG7XuXNnh7brvwstr9D6Yf13o69DP/nQc1lD/C233GKmpwPwG2dP1wCg8dinb1q1alWt63V6pONNBabTeJ111lm28PBwMyVWUlKSmYqotLS0ahudMunOO++0NWvWzEwLVf1XzeHDh20TJ060xcfH23x8fGzt27e3Pf300w5TKamCggIzpVhkZKSZykmnTdq8ebPZV/WpuezTeB04cOCo17Nnzx7bH//4R9PWsLAw25/+9Cfbvn376pxOrOY+6pqiq7bjVJuysjLbtGnTzPRR+loTExNtU6ZMsRUXF5/Q89Tl+++/t11yySW2kJAQ833dunWzvfTSSw7bfPXVV7ZzzjnH/IxCQ0NtI0aMMNNMVVfbVGAVFRW2Bx54wBYdHW0LDAw0U33pFG11TQVW81w60WNpn95Lf/Y11fz5nOhUYMea6k7bf7ypwHSaOP356DReetx0yrvq03TV9/FXS5cutfXq1cvm6+trO+OMM2yvvvpq1TGs6b///a/t3HPPNc+pi/7b038j+u8CwO889H/2oAsArkynWDrzzDPNlZp0wBBQH/QKZdqTPm/ePDP9F4CmjZpbAC5JP8qtST8m1o+Gj3dlMACA+6LmFoBL0lrZlJQU06Pm7e1tpkHSResLa86hCgCAHeEWgEs6++yzzVXT9CpTOt2YTvavg3F0MBoAAHWh5hYAAACWQc0tAAAALINwCwAAAMug5va363bv27fPTIptlevAAwAAWIlW0upVBOPj4495aW3CrYgJtoy+BgAAcH27d++WhISEOtcTbkVMj639YOklOwEAAOBa8vLyTGekPbfVhXBb7Tr1GmwJtwAAAK7reCWkDCgDAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBnezm6Au9q1a5dkZWXVy76io6OlZcuW9bIvAACApoxw66Rgm5ycJIWFRfWyv8DAAElN3UTABQAAbs9lwu3MmTNlypQpcvfdd8vzzz9vHisuLpZ7771X3nvvPSkpKZHBgwfLyy+/LLGxsQ5B8bbbbpNvvvlGgoODZezYsTJjxgzx9naZl3YU7bHVYDv96VHSuu3vr+VU7EjLkKmT55h9Em4BAIC7c4kEuGrVKnnttdekW7duDo9PnDhRPv/8c5k3b56EhYXJhAkT5IorrpAffvjBrK+oqJBhw4ZJXFyc/Pjjj5Keni5jxowRHx8fefLJJ8XVabBN6pzg7GYAAABYhtMHlOXn58uoUaPk9ddfl4iIiKrHc3Nz5Y033pBnn31WLrroIunVq5fMnj3bhNjly5ebbRYtWiQbN26Uf//739KjRw8ZMmSIPPbYYzJr1iwpLS114qsCAACAW4bbO+64w/S+Dhw40OHxlJQUKSsrc3g8KSnJfPS+bNkyc19vu3bt6lCmoKULeXl5smHDhjqfU0scdJvqCwAAAJo+p5YlaC3tmjVrTFlCTfv37xdfX18JDw93eFyDrK6zb1M92NrX29fVRWtyp02bVk+vAgAAAOLuPbe7d+82g8fmzJkj/v7+jfrcOnBNyx7si7YFAAAATZ/Twq2WHWRmZkrPnj3NzAa6LF26VF588UXztfbAat1sTk6Ow/dlZGSYAWRKb/V+zfX2dXXx8/OT0NBQhwUAAABNn9PC7cUXXyzr1q2TtWvXVi29e/c2g8vsX+usB0uWLKn6ns2bN5upv/r372/u663uQ0Oy3eLFi01Y7dSpk1NeFwAAANyw5jYkJES6dOni8FhQUJBERUVVPT5u3DiZNGmSREZGmsB65513mkDbr18/s37QoEEmxI4ePVqeeuopU2f70EMPmUFq2jsLAAAA9+IS89zW5bnnnhNPT08ZOXKkw0Uc7Ly8vGT+/PnmIg4aejUc60Ucpk+f7tR2AwAAwDlcKtx+++23Dvd1oJnOWatLXVq1aiVffPFFI7QOAAAArs7p89wCAAAA9YVwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMtwarh95ZVXpFu3bhIaGmqW/v37y4IFC6rWDxgwQDw8PByWW2+91WEfu3btkmHDhklgYKDExMTI5MmTpby83AmvBgAAAM7m7cwnT0hIkJkzZ0r79u3FZrPJW2+9JZdddpn89NNP0rlzZ7PN+PHjZfr06VXfoyHWrqKiwgTbuLg4+fHHHyU9PV3GjBkjPj4+8uSTTzrlNQEAAMBNw+2IESMc7j/xxBOmN3f58uVV4VbDrIbX2ixatEg2btwoX331lcTGxkqPHj3ksccekwceeEAeffRR8fX1bZTXAQAAANfgMjW32gv73nvvSUFBgSlPsJszZ45ER0dLly5dZMqUKVJYWFi1btmyZdK1a1cTbO0GDx4seXl5smHDhjqfq6SkxGxTfQEAAEDT59SeW7Vu3ToTZouLiyU4OFg++ugj6dSpk1l33XXXSatWrSQ+Pl5++eUX0yO7efNm+fDDD836/fv3OwRbZb+v6+oyY8YMmTZtWoO+LgAAALhhuO3YsaOsXbtWcnNz5T//+Y+MHTtWli5dagLuLbfcUrWd9tA2b95cLr74YklLS5O2bdue8nNqD/CkSZOq7mvPbWJi4mm/FgAAALh5WYLWxbZr10569eplelS7d+8uL7zwQq3b9u3b19xu3brV3GotbkZGhsM29vt11ekqPz+/qhka7AsAAACaPqeH25oqKytNTWxttIdXaQ+u0nIGLWvIzMys2mbx4sUmrNpLGwAAAOA+nFqWoOUBQ4YMkZYtW8rhw4dl7ty58u2338rChQtN6YHeHzp0qERFRZma24kTJ8r5559v5sZVgwYNMiF29OjR8tRTT5k624ceekjuuOMO0zsLAAAA9+LUcKs9rjovrc5PGxYWZkKrBttLLrlEdu/ebab4ev75580MCloTO3LkSBNe7by8vGT+/Ply2223mV7coKAgU7NbfV5cAAAAuA+nhts33nijznUaZnVg2fHobApffPFFPbcMAAAATZHL1dwCAAAAp4pwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMtwarh95ZVXpFu3bhIaGmqW/v37y4IFC6rWFxcXyx133CFRUVESHBwsI0eOlIyMDId97Nq1S4YNGyaBgYESExMjkydPlvLycie8GgAAALh1uE1ISJCZM2dKSkqKrF69Wi666CK57LLLZMOGDWb9xIkT5bPPPpN58+bJ0qVLZd++fXLFFVdUfX9FRYUJtqWlpfLjjz/KW2+9JW+++aZMnTrVia8KAAAAzuLttGcWkREjRjjcf+KJJ0xv7vLly03wfeONN2Tu3Lkm9KrZs2dLcnKyWd+vXz9ZtGiRbNy4Ub766iuJjY2VHj16yGOPPSYPPPCAPProo+Lr6+ukVwYAAAC3rrnVXtj33ntPCgoKTHmC9uaWlZXJwIEDq7ZJSkqSli1byrJly8x9ve3atasJtnaDBw+WvLy8qt7f2pSUlJhtqi8AAABo+pwebtetW2fqaf38/OTWW2+Vjz76SDp16iT79+83Pa/h4eEO22uQ1XVKb6sHW/t6+7q6zJgxQ8LCwqqWxMTEBnltAAAAcLNw27FjR1m7dq2sWLFCbrvtNhk7dqwpNWhIU6ZMkdzc3Kpl9+7dDfp8AAAAcIOaW6W9s+3atTNf9+rVS1atWiUvvPCCXH311WagWE5OjkPvrc6WEBcXZ77W25UrVzrszz6bgn2b2mgvsS4AAACwFqf33NZUWVlpamI16Pr4+MiSJUuq1m3evNlM/aU1uUpvtawhMzOzapvFixebacW0tAEAAADuxak9t1oeMGTIEDNI7PDhw2ZmhG+//VYWLlxoamHHjRsnkyZNksjISBNY77zzThNodaYENWjQIBNiR48eLU899ZSps33ooYfM3Lj0zAIAALgfp4Zb7XEdM2aMpKenmzCrF3TQYHvJJZeY9c8995x4enqaizdob67OhPDyyy9Xfb+Xl5fMnz/f1Opq6A0KCjI1u9OnT3fiqwIAAIBbhludx/ZY/P39ZdasWWapS6tWreSLL75ogNYBAACgqXG5mlsAAACgyc6WAGvSgX9ZWVn1sq/o6GhTlw0AAHA8hFs0SLBNTk6SwsKietlfYGCApKZuIuACAIDjItyi3mmPrQbb6U+PktZtHa8gd7J2pGXI1MlzzD4JtwAA4HgIt2gwGmyTOic4uxkAAMCNMKAMAAAAlkG4BQAAgGUQbgEAAGAZhFsAAABYBuEWAAAAlkG4BQAAgGUQbgEAAGAZhFsAAABYBuEWAAAAlkG4BQAAgGUQbgEAAGAZhFsAAABYBuEWAAAAlkG4BQAAgGUQbgEAAGAZhFsAAABYBuEWAAAAlkG4BQAAgGUQbgEAAGAZhFsAAABYBuEWAAAAlkG4BQAAgGUQbgEAAGAZhFsAAABYBuEWAAAAlkG4BQAAgGUQbgEAAGAZhFsAAABYBuEWAAAAluHUcDtjxgzp06ePhISESExMjFx++eWyefNmh20GDBggHh4eDsutt97qsM2uXbtk2LBhEhgYaPYzefJkKS8vb+RXAwAAAGfzduaTL126VO644w4TcDWM/uUvf5FBgwbJxo0bJSgoqGq78ePHy/Tp06vua4i1q6ioMME2Li5OfvzxR0lPT5cxY8aIj4+PPPnkk43+mgAAAOCm4fbLL790uP/mm2+anteUlBQ5//zzHcKshtfaLFq0yIThr776SmJjY6VHjx7y2GOPyQMPPCCPPvqo+Pr6NvjrAAAAgGtwqZrb3NxccxsZGenw+Jw5cyQ6Olq6dOkiU6ZMkcLCwqp1y5Ytk65du5pgazd48GDJy8uTDRs21Po8JSUlZn31BQAAAE2fU3tuq6usrJR77rlHzjnnHBNi7a677jpp1aqVxMfHyy+//GJ6ZLUu98MPPzTr9+/f7xBslf2+rqur1nfatGkN+noAAADgxuFWa2/Xr18v33//vcPjt9xyS9XX2kPbvHlzufjiiyUtLU3atm17Ss+lvb+TJk2quq89t4mJiafRegAAALgClyhLmDBhgsyfP1+++eYbSUhIOOa2ffv2Nbdbt241t1qLm5GR4bCN/X5ddbp+fn4SGhrqsAAAAKDpc2q4tdlsJth+9NFH8vXXX0ubNm2O+z1r1641t9qDq/r37y/r1q2TzMzMqm0WL15sAmunTp0asPUAAABwNd7OLkWYO3eufPLJJ2auW3uNbFhYmAQEBJjSA10/dOhQiYqKMjW3EydONDMpdOvWzWyrU4dpiB09erQ89dRTZh8PPfSQ2bf20AIAAMB9OLXn9pVXXjEzJOiFGrQn1r68//77Zr1O46VTfGmATUpKknvvvVdGjhwpn332WdU+vLy8TEmD3mov7vXXX2/mua0+Ly4AAADcg7ezyxKORQd56YUejkdnU/jiiy/qsWUAAABwm57bRx55RHbu3Fn/rQEAAAAaO9xqjaxOw6VTcmlNrF4UAQAAAGiS4VZnLFi1apV07txZ7r77bjPl1m233WYeAwAAAJrcgLIzzzxTXnzxRdm3b5+88cYbsmfPHnN1MZ3F4IUXXqi6lC4AAADQZGZL0EFhZWVlUlpaar6OiIiQv//972YwmH3WAwAAAMClw21KSoq5AINO3aVzz2pPbmpqqpndYMuWLfLEE0/IXXfdVb+tBQAAAOo73Hbt2lX69esn27dvNyUJu3fvlpkzZ0q7du2qtrn22mvlwIEDp7J7AAAAoPHmub3qqqvkpptukhYtWtS5TXR0tFRWVp5aqwAAAIDG6rm119bWVFRUxJXBAAAA0LTC7bRp0yQ/P/+oxwsLC806AAAAoEn13Hp4eBz1+M8//yyRkZH10S4AAACgYWtutRRBQ60uHTp0cAi4FRUVpjf31ltvPflWAAAAAI0dbp9//nnTa6uDybT8ICwsrGqdr6+vtG7dWvr3718f7QIAAAAaNtyOHTvW3LZp00bOPvts8fHxOflnBAAAAJwdbvPy8iQ0NNR8rRds0JkRdKmNfTsAAACgMXmfTL1tenq6xMTESHh4eK0DyuwDzbT+FgAAAHDZcPv1119XzYTwzTffNGSbAAAAgIYNtxdccEHV11pzm5iYeFTvrfbc6qV4AQAAgCYzz62G2wMHDhz1eHZ2tlkHAAAANPmLOOg8t/7+/vXRLgAAAKBhpwKbNGmSudVg+/DDD0tgYGDVOh1EtmLFCunRo8fJtwIAAABo7HD7008/VfXcrlu3zly4wU6/7t69u9x333310S7AQWpqar3sJzo6Wlq2bFkv+wIAAE083NpnSbjxxhvlhRdeYD5bNLisA3nm9vrrr6+X/QUGBkhq6iYCLgAAFnVS4dZu9uzZ9d8SoBb5eUcuFDLxwWFyZq+Op7WvHWkZMnXyHMnKyiLcAgBgUacUbgsKCmTmzJmyZMkSyczMlMrKSof127Ztq6/2AUZiqyhJ6pzg7GYAAAArhtubb75Zli5dKqNHj5bmzZvXOnMCgMa3a9cu0zNdH6hPBgC4TbhdsGCBfP7553LOOefUf4sAnHKwTU5OksLCI6Ucp4v6ZACA24TbiIiIqkvxAnAN2mOrwXb606OkddvY09oX9ckAALcKt4899phMnTpV3nrrLYe5bgE4nwZb6pMBAO7qlMLt3/72N0lLS5PY2Fhp3bq1+Pj4OKxfs2ZNfbUPAAAAaNhwe/nll5/KtwEAAACuF24feeSR+m8JAAAAcJo8T3cHAAAAQJPuua2oqJDnnntOPvjgAzP9UGlpqcP67Ozs+mofAAAA0LA9t9OmTZNnn31Wrr76asnNzZVJkybJFVdcIZ6envLoo4+eyi4BAAAA54TbOXPmyOuvvy733nuveHt7y7XXXiv//Oc/zfRgy5cvP+H9zJgxQ/r06SMhISESExNjBqpt3rzZYZvi4mK54447JCoqSoKDg2XkyJGSkZHhsI32Hg8bNsxMS6b7mTx5spSXl5/KSwMAAIC7hdv9+/dL165dzdcaOLX3Vg0fPtxcuexE6SV8NbhqIF68eLGUlZXJoEGDpKCgoGqbiRMnymeffSbz5s0z2+/bt8/0ElcvkdBgq6URP/74o5l798033zRBGwAAAO7llGpuExISJD093Vy5qG3btrJo0SLp2bOnrFq1Svz8/E54P19++aXDfQ2l2vOakpIi559/vgnNb7zxhsydO1cuuugis83s2bMlOTnZBOJ+/fqZ5964caN89dVXZt7dHj16mItMPPDAA6ZEwtfX91ReIgAAANyl5/aPf/yjLFmyxHx95513ysMPPyzt27eXMWPGyE033XTKjbH3ANsv7ashV3tzBw4cWLVNUlKSCdXLli0z9/VWe5E12NoNHjxY8vLyZMOGDbU+T0lJiVlffQEAAICb9tzOnDmz6msdVGYPmxpwR4wYcUoNqayslHvuuUfOOecc6dKlS1X5g/a8hoeHO2yrQVbX2bepHmzt6+3r6qr11UFxAADAGnT8TVZW1mnvJzo62uQauFm4ral///5mOR1ae7t+/Xr5/vvvpaFNmTLFzPBgpz23iYmJDf68AACgYYJtcnKSFBYWnfa+AgMDJDV1EwHX3cLt22+/fcz1Wp5wMiZMmCDz58+X7777ztTz2sXFxZmBYjk5OQ69tzpbgq6zb7Ny5UqH/dlnU7BvU5PWBZ9MbTAAAHBd2mOrwXb606OkdVvHT3NPxo60DJk6eY7ZH+HWzcLt3Xff7XBf62ILCwtNCYFOx3Wi4dZms5ma3Y8++ki+/fZbadOmjcP6Xr16iY+Pj6nv1SnAlE4Vpu/Q7D3FevvEE09IZmamGYymdOaF0NBQ6dSp06m8PAAA0ARpsE3q/HsnGdzTKYXbQ4cOHfXYli1b5LbbbjNzzJ5MKYLOhPDJJ5+YuW7tNbJhYWESEBBgbseNG2dKCHSQmQZWDcMaaHWmBKVTh2mIHT16tDz11FNmHw899JDZN72zAAAA7uWUZkuojQ4m04FmNXt1j+WVV14xMyQMGDBAmjdvXrW8//77VdvoZX51/lztudXpwbTU4MMPP6xa7+XlZUoa9FZD7/XXX296jqdPn15fLw0AAADuNKCsamfe3uYiCydKyxKOx9/fX2bNmmWWurRq1Uq++OKLE35eAAAAWNMphdtPP/30qJCqF3X4+9//bqbyAgAAAJpMuL388ssd7nt4eEizZs3MVcT+9re/1VfbAAAAgIYPt3rBBXXgwAEzQ4IO/AIAAACa3IAynXNWZyLQK3jo4C6dxUBv9cIIOh0YAAAA0CR6brOzs82MBHv37pVRo0ZJcnKyeXzjxo3y0ksvmfll9Qpjv/zyiyxfvlzuuuuuhmo3AAAAcHrhVqfX0jKEtLQ0iY2NPWqdzjmr880uWrRIXnzxxZPZNQAAANC44fbjjz+W11577ahgq7Q0QS+iMHToUHnkkUdk7Nixp986AAAAoKFqbnW6r86dO9e5vkuXLuLp6WnCLQAAAODS4VYHke3YsaPO9du3b5eYmJj6aBcAAADQsOF28ODB8uCDD0ppaelR60pKSuThhx+WSy+99ORbAQAAADhjQFnv3r2lffv2ZjqwpKQkc3Wy1NRUefnll03Affvtt+ujXQAAAEDDhtuEhARZtmyZ3H777WZeWw229iuUXXLJJebyuy1btjz5VgAAAADOuEJZmzZtZMGCBXLo0CHZsmWLeaxdu3bmYg4AAABAk7v8roqIiJCzzjqrflsDAAAANObldwEAAABXRbgFAACAZZxyWQLg7nbt2iVZWVmnvR+dP5qBmAAA1A/CLXCKwTY5OUkKC4tOe1+BgQGSmrqJgAsAQD0g3AKnQHtsNdhOf3qUtG4be8r72ZGWIVMnzzH7I9wCAHD6CLfAadBgm9Q5wdnNAAAAv2FAGQAAACyDcAsAAADLINwCAADAMgi3AAAAsAzCLQAAACyDcAsAAADLINwCAADAMgi3AAAAsAzCLQAAACyDcAsAAADLINwCAADAMgi3AAAAsAzCLQAAACyDcAsAAADLcGq4/e6772TEiBESHx8vHh4e8vHHHzusv+GGG8zj1ZdLL73UYZvs7GwZNWqUhIaGSnh4uIwbN07y8/Mb+ZUAAABA3D3cFhQUSPfu3WXWrFl1bqNhNj09vWp59913HdZrsN2wYYMsXrxY5s+fbwLzLbfc0gitBwAAgKvxduaTDxkyxCzH4ufnJ3FxcbWuS01NlS+//FJWrVolvXv3No+99NJLMnToUHnmmWdMjzAAAADch8vX3H777bcSExMjHTt2lNtuu00OHjxYtW7ZsmWmFMEebNXAgQPF09NTVqxYUec+S0pKJC8vz2EBAABA0+fS4VZLEt5++21ZsmSJ/PWvf5WlS5eant6Kigqzfv/+/Sb4Vuft7S2RkZFmXV1mzJghYWFhVUtiYmKDvxYAAABYvCzheK655pqqr7t27SrdunWTtm3bmt7ciy+++JT3O2XKFJk0aVLVfe25JeACAAA0fS7dc1vTGWecIdHR0bJ161ZzX2txMzMzHbYpLy83MyjUVadrr+PV2RWqL3AdNptNKivLpbyiWDw8y8U/wENEKp3dLAAA0AS4dM9tTXv27DE1t82bNzf3+/fvLzk5OZKSkiK9evUyj3399ddSWVkpffv2dXJrUZdKW4UUl2ZLUWm2lJQekuKyHCktz5ey8gIpryiUisrSqm2jOoo8O6+liPxP1mxdJl5e/uLjFSh+PmHi5xMq/r6REugXIwG+keLh0aTeqwEAAKuFW52P1t4Lq7Zv3y5r1641NbO6TJs2TUaOHGl6YdPS0uT++++Xdu3ayeDBg832ycnJpi53/Pjx8uqrr0pZWZlMmDDBlDMwU4LrKK8oksOFeySvaI8UFO+XotKDYrMdqZs+GZW2cqk0IThfCksce+w9PLwkyC9WQgMTJSQwUYL9mxN2AQBwQ04Nt6tXr5YLL7yw6r69Dnbs2LHyyiuvyC+//CJvvfWW6Z3VsDpo0CB57LHHTFmB3Zw5c0yg1RpcnSVBw/CLL77olNeDIypsJdKlT4CUeP0sG3Z9J0UlB47axsvTVwJ8o8XfN0L8fMLFzydEfLyCxMc7yKzz9PQRTw9vWfhZikz/y7vy1MvXSZ/+7U1QLi0vkNKyPCkpy5XC0iwpLDkglZWlkl+8zyySvUK8PP0lPPgMiQhuJ6GBLcXTw8spxwIAALhRuB0wYICpr6zLwoULj7sP7eGdO3duPbcMJ0tLCnZmfiPb9i+Q7Rlfye2PxEiZbJWykiPrtXwgNCBRggNaSJB/jPh6h5orzh2fp5SXaSGu92+lCGESVGMLPYdKynLkcNEeySvcI4cLd0l5ZbEczNtoFm+vAIkKSZZKiWqIlw4AAFxIk6q5hWvRAV/bMxZJ2r7PZdeBb6Wi8rckKyIHM8slNqqdtGyRJCEBCaZHtqFoSNYeYF2ahXUVm61SDhftlZz8NMnO/9X09mbkrBHxFbljWozklqwVm+3MEwzXAACgKSHc4qRl5W6Q1N3vy697P5bS8t8vgKEf/7dtPlRKc86QC4ZfLW9/eLVEhiQ0evu01lZrb3VJaHae5BbskKy8DZKbv1069wqQTdnT5cD386R3+7ulTexgQi4AABZCuMUJKSnLky37PpHUXe9LVt76qse1zKB9/GUm1EaHdjZBcc2aNeIqtNY2IritWTZu2CSffzlPLr4sRg7mpcrClFslOrST9Olwr7SKuYiQCwCABRBucUy5BTtl3Y7Zsmn3PCmrKDCPeXr4SJu4QZKceLW0iD6nyQzW8pRgmfePQ3Lf+I9EQlbLL9v/JVl5G2XB6nHSIuocOafTQxIVmuzsZgIAgNNAuMVRdIBWevYK+Xn7G7Ij4yt9xDyuMw8kt7xWOrT4o5lXtqny9gyRnh3vlW5tbpKf0l414X3vwR9k3v+GSXLLa6Rf0gNm4BoAAGh6CLdwuLjCtvQF8lPaK6ZG1a5lswHSrc04SYg+11If3esAtP7JU6Rzq+tl+aaZkpb+uWzcNVe2718kZyc/KO1bXG6p1wsAgDsg3MKE2rR98yVl60tyKP/IRTW8Pf2lQ8IV0q31TRIR0k6sTAeeDeo5S/YdHCPfrX/QHIMlP0+UX/d+KAO6/VWCA7ggCAAATQXh1o1VVpbL1n2fmVCbU7DNPObrHSJd29woXVvf0KRLD05FfFRf+dN5X8jP216X1VtelN1Z/5P3vxss53R6WDom/IleXAAAmgDCrZvW1OrFFlZsflpyC7abx7TGtHubm6VL67Hi5xMq7kqvjtaz3R3SJu5S+ebn+yQj5yf55pf7ZUfm13Jht79SiwsAgIsj3LqZ/dkp8mPqE0cuaqB1pz4R0v2M8dKl1Wjx9QlxdvNchk4ddvnZ/zG9uCs3/0227/9SsnLXycAzX5K4iJ7Obh4AAKgD4dZN5BRsl+Wb/mpCmtJL0mqo7XHGLeLrHezs5rkkneLszLa3Souos2XxTxMkr3CXfLLsKjmr42Sx2Xo5u3kAAKAWhFuLKy07LKu2PCfrd7wtlbZy8RBPSUq8Svp0mChB/rHObl6TEBPeTa48d758t+4vsjV9vizfNEPC/HpKcKins5sGAABqINxavK72hw3TpKAkwzzWstmFZuqryJAOzm5ek6N1yFqSoBet+H7Do5Jbskb+8lJzqfDIFpHGv8QwAACoHeHWgvIKd8v/1k+VXQe+MfdDA1vJ+V0ek8Rm5zu7aU2azpbQqeW1Eht+pny67GYJj9ojRbalcjDPV6JCk5zdPAAAYK5ICsuoqCyVNVtnyXtLB5pg6+npK73a3yVXn7+QYFuPNMh2jpopv6woFPGolO0ZC2VP1vdis1U6u2kAALg9wq1FFJXtkQ9/uMJM71VRWWIGQV113gI5q8Mk8fbyd3bzLMfbM1Bee/yA+FR0NPf3H0ox9bgVFSXObhoAAG6NcNvE2cQmA0aEyLqs+yQrb734+YTLRd2flRF955jprNBwbDYRv4ouZk5cDw8vM2dw6p4PpLg0x9lNAwDAbVFz24SVludLsff3ctWfI8UmpZLY7AK5sNvTEuQf4+ymuZWokI7i7xNuem6LS7Nl054PpF38HyTYP87ZTQMAY9euXZKVlVUv+4qOjpaWLVvWy76AhkC4baKyD/8qOzO/lgrPEiktrpQOMX+WS/v8hUvEOolOq5aceI1s3fepFJZkyq97/itnxA2R8OAznN00AG5Og21ycpIUFhbVy/4CAwMkNXUTAbcJ21VPb3Zc9Y0O4baJqbRVyJ4D/5PM3J/Nfc/KCHny7vWy4NMhBFsn8/UOko4JI2Vb+gLJLdxhenJbxVwozcK6OrtpANyYhhgNttOfHiWt257e/OY70jJk6uQ5Zp+uGGpwfPX5ZsdV3+gQbpuQsvICSUv/QvKL95n7zSP6SF5GgmTuXevspuE3Xp6+0i5+hOlVz8rbYG61fCQ+sh9vPgA4lQbbpM7My+3usurpzY4rv9Eh3DYR+UXpkpb+uZRVFJgA1SZ2sPnI+3DGHmc3DTV4eHhKq5iLxcc7WNKzV0h69koTcFvFXGQu6QsAgLO1tvCbHcJtE7jS2IHcdbL7wFKxSaX4+0ZKu+bDxd83wtlNwzFoL22LqH7i6x1sem8P5m2U8ooiaRs3VDw9+WcHAEBDYSowF6+v3Zm5xFyQQYNtRHB7SU68mmDbhDQL62LejNinCtuy7xNzsQ0AANAwCLcuqryiRLbs/cTUbYp4SEL0uWb0vZYkoGnR8pEO8ZeLp4ePHC7aI7/u/UjKK4qd3SwAACyJcOuCSsryZPOeeXK4aLcJRDpAKS6iFwOSmrCQwATpmHCFeHn6S0Hxftm85z9mgCAAAKhfhFsXU1RyUDbtmSdFpQfFxytIkhKulPCgNs5uFupBkH+cJCWMND9X/fnqz7lSCLgAANQnwq0LyS/eL5tMj16+GTiWlHiVBHK1MUsJ8IuWjglXiq93qJSU5UqRz1Jp1pwBZgAA1BfCrYvIK9wtv+75UCoqi3/r4btS/HxCnd0sNAB/33BJSvyT+PtEiM2jSO6ZESvF5UfmLgYAAKeHcOsiwVYv21ppK5PQwJbSocUfxdsrwNnNQgPSKcL0amaelSESEe0tGw9OlZz8bc5uFgAATR7h1mWCbbmEBbaWds1HMCOCm/DxDhL/8vNl385SKavMlk+WXyOH8tOc3SwAAJo0wq0TlXsccAi2bZsPY4J/N+Mp/vL8lAwJ8G4lhSWZ8qkJuFud3SwAAJoswq2TtO/iJ8XeP5hgGxrYimDrxvLzKiU58lGJCkmSwpIDpgc3+/AWZzcLAIAmiXDrBHklG+T2R2NEPCpMsNUrWBFs3ZuPV5iM6DdXokM7SVFJlny6/FrJPvyrs5sFAECT49Rw+91338mIESMkPj7eXKDg448/dlhvs9lk6tSp0rx5cwkICJCBAwfKli2OPVrZ2dkyatQoCQ0NlfDwcBk3bpzk5+eLq9qXvVI2H3pc/Pw9xasylmCLKgG+kTKi7xyJDu0sRaVZ8snya+Xg4c3ObhYAAE2KU8NtQUGBdO/eXWbNmlXr+qeeekpefPFFefXVV2XFihUSFBQkgwcPluLi3y9dqsF2w4YNsnjxYpk/f74JzLfccou4Kj+fMPH08JMNKUXiX96fYAsH/r4RvwXcLlJcetD04B7M2+TsZgEA0GQ4NVkNGTLELLXRXtvnn39eHnroIbnsssvMY2+//bbExsaaHt5rrrlGUlNT5csvv5RVq1ZJ7969zTYvvfSSDB06VJ555hnTI+xqokI6SueoJ+X2x0dI3/e9nN0cuOg8uH/oN0c+W3G9HMhdJ5+uGCWX93tfIkLaObtpAOAWNF/Uh+joaGnZsmW97AsnzmW7Dbdv3y779+83pQh2YWFh0rdvX1m2bJkJt3qrpQj2YKt0e09PT9PT+8c//rHWfZeUlJjFLi8vTxqTv3e8lJc16lOiidEe/hF9/y2fLh8lWXnr5dMV18ll/d/nUswA0ICyDhzJA9dff3297C8wMEBSUzcRcBuZy4ZbDbZKe2qr0/v2dXobE+N4eVpvb2+JjIys2qY2M2bMkGnTpjVIu4H6DbjvmNrb7MOb5NPl18nl/T+Q0MBEZzcNACwpP6/I3E58cJic2avjae1rR1qGTJ08R7Kysgi3jcxlw21DmjJlikyaNMmh5zYxkcAAV63BfUc+WXaN5BSk/RZw35fgANcruQEAq0hsFSVJnROc3QxYbSqwuLg4c5uRkeHwuN63r9PbzMxMh/Xl5eVmBgX7NrXx8/MzsytUXwBXFejXTP7Qb66ZNu5w0W5Tg1tQ7HjeAwAAFw+3bdq0MQF1yZIlDj2sWkvbv39/c19vc3JyJCUlpWqbr7/+WiorK01tLmAVQf6xJuCGBLSQ3ILt8tmK66SwJMvZzQIAwOU4NdzqfLRr1641i30QmX69a9cuM+/tPffcI48//rh8+umnsm7dOhkzZoyZAeHyyy832ycnJ8ull14q48ePl5UrV8oPP/wgEyZMMIPNXHGmBOB0aLD9Q793Jcg/zlyid/6K66W4NMfZzQIAwKU4NdyuXr1azjzzTLMorYPVr/XCDer++++XO++808xb26dPHxOGdeovf3//qn3MmTNHkpKS5OKLLzZTgJ177rnyj3/8w2mvCWhIoYEt5Q9950qAX7QcPLxJ5q8cLSVljTvbBwAArsypA8oGDBhg5rOti/beTp8+3Sx10ZkR5s6d20AtBFxPePAZJuB+svwaMw/u5ytvkOF933Z2swAAcAkuW3MLoG6RIR3MPLg6XVhGzhpZsHq8VNp+n7sZAAB3RbgFmqjo0E4y/Ky3xcc7WPYdXCa/HnpavN1ycj8AAH5HuAWasJjw7jK0z7/E29NfckvWyI2To8Umlc5uFgAATkM/D9DExUeeJZf2fl0+X3mjnHlOkJRUrBabLUE8PHjvCtejs+HoFZvqQ3R0NFd+AnAUwi1gAYnNzpP2EZMl9cCTIt67ZWfmN9Iq5iIzKBNwpWCbnJwkhYVHLnF6ugIDAyQ1dRMBF4ADwi1gERH+fWT2M1ly8wPNJCtvvXh6ekti9PkEXLgM7bHVYDv96VHSum3sae1rR1qGTJ08x+yTcAugOsItYCFrvi8Uv/t6S4n3asnMWSueHj6SEH22s5sFONBgm9Q5wdnNAGBRFOUBFuNT2UpaNhtgvt5/aJWkZ690dpMAAGg0hFvAorMoJESfa77ee3CZZBz6ydlNAgCgURBuAYuKi+gl8ZF9zde7s76TA7nrnd0kAAAaHOEWsLDmkX0lNqKX+Xpn5hI5mLfJ2U0CAKBBMaAMsDCdKSEh6hyprCyTA7m/yPaMRWYWhYjgds5uGprQnLLMJwugKSHcAm4QcHWAmQbcg4dTZVv6AmkbP1zCg9o4u2loInPKMp8sgKaEcAu3k5qa6hL7aOyA2zp2oFTaKuRQ/q+Slv65tI+/TEIDE53dNLj4nLLMJwugqSHcwm1kHcgzt9dff3297TM/P1+aCr0cb5u4QVKZXia5Bdtl677PpEOLyyU4IN7ZTUMDYk5ZAO6GcAu3kZ935OPZiQ8OkzN7dTytff24NFVefWGBFBcXS1Pi6eElbeOGytb0zySvcJds2feJdGgxUoL8Y5zdNAAA6gXhFm4nsVXUafdk6Ue1TZUOKGvbfLhs2fux5Bfvky17P5KOCSMlwC/a2U0Tdx+4pRi8BQCnh3ALuCEvTx9pH/8H2bz3IyksyTC3SQlXir9vhLOb5tYDtxSDtwDg9BBuATfl5eVnam437/mvFJVmya97P5SOCX8SP59QZzfNLQduKQZvAcDpI9wCbszby186tPijbN7zHykuO/RbwL3S2c1qkhi4BQCugXALuDkf70DpkHCFbNo9T0rKcuXXvR+Jl5zt7GYBwGmx2WxSVlFgfq+VlOVJaflhqagolvKKYqmoLJXyymKpqCiRSlt51feEn1EiU1+JF99mq2Tjrk2mA8Asnv7i9dvXft6h4ucbbm51DANcDz8VAOLrHSwdNeBqD25ptnh6/08Cgrg6NwDXZ7NVSnF5upx5TqCUeG2QLXtTjgTa8jyx2SpOal/efiJxiT4iUiiFJYUn9LvTzyfcjFcI9IsxS4BflJmZBs5DuAVg+PmESccWGnDnSbnkyoRpMVJRWT+DpACgvhSWHJD07NWy/9Aqycz5WQ7mbTI9tOOnNJMy2SS5DpnUQ3y9Q8xYAl+fUPH2ChBvTz/x8vQzvbB6W733dcX3m2X2q4vljvsGS6euLU3vbnlVb2+xlJUXmtBcUpojlbYyKS3PN8vhoj2/P6OHlwT4RkmpV5D0uzhISsozG/cAgXAL4Hfa+9ChxRWycec8aZMksvnQE9Kj4r/i4xXg7KYBcFOHi/bK3qwfTKBNP7TKXISmJg/xle2/HpZ2bTtKfFxr8feNPBJovUPMBWxOVHnRftmyvkQqS8MlPPiMY5Y8lFcU/VbykCNFpQeloDhTCksypaKyxNyKl8iYidGy9sCtkvZ1orSI6ifxUf2lRVR/CQ5ofsrHA8dHuAXgINAvWgLKz5Xs0q9EZKMsXH2LDOn9TzO7AgA0NO0J3XdwuezJ+l52H/hOcgq21djCQyJDOkrzyD4SF95TosO6yPZfc+S24WfJ2x9eJzHhCY1ySXMdr6BL9aCqobe0PM8E3d17t8rmLevkjKQAOVy0Wzbt0WWe2S4yJElaxVwkrWMvlpjwHpQx1DPCLYCjeNkiZNajmXL/M61kd9b/ZNFPE2RQz5fN/LgAUN9yC3bIjoyvZEfGYtl/KMVhkJeHeEpMeHeJj+onzSP6SFxkL1NGVd0OjzXiCjT0att0yawIkGfuWywrV30vsS3LZO/BZSa0H8hdJ9mHN5nlp7SXxd83SlrFDJDWMZdIy5gBplwCp4dwC6BW21JLpEPEFNmS86T5g7Nk7T1ycY/nCbgA6mUQWEbOWvO7RUPtofwtDutDA1tJQvS5ktjsPPMxfs0w25R4eQZIy5hzTHBVxaU5suvAt7Iz4yvZdWCpFJceNPON6+LtFSitYwdKu+bDJbHZ+QTdU0S4BVCnML9uMqjnK7Iw5VZJS//c/EEaeOaLBFwAJ00HZe3J+uFIoM38SopKfr9ktaeHtzSP7CttYrX38kIJC2olVuXvG24uoKNLRWWZ7M9eJTsyl8i2/V9KftFe2brvU7NovXDr2EvM1SQTmp1H6cJJINwCOCatCRvc61VZuOY22bZ/gSxec4dc0vPv4uXp6+ymAXBxRSUHZWfm1ybQaomTDsKy0/DWstkFJsBpr2ZT7p09VdpR0CL6bLOcnfyQZOT8JGnp8yUt/QspKN5vLqyji04xphfc6ZgwUiJDOji72S6PcAvghALupb1ek4Upf5btGYtkYcrtMrjnLAaZAThKTv422f5buUHGoRSxSWXVumD/ePOxuwba+Ki+vEmuUa8bF9HTLBp0tfZ4677PZMu+T83sC2u3vWaWZmHdTMjVnl93fENwIgi3AE5Iq5gL5dLer8uXq2+RnZlfyZcpt8rgXq9QEwa4uUpbhWQeWmve+GqgzSlIc1gfHdq5KtDq1xricGw6fZnOBqHL2Z0eMr3fWpO7K/MbOZD7i1mWpT4p7eJHSOdW10tMWHeOazWEWwAnTD9CHNrnDVmw6mbZdeAb+TLlz6ZHl4ALuBe9wIvWiO7M+NoEr6JSx/pZnc/1SKAdKCEBLZza1qZOe7fPiLvULFrmoT25qbvfN7MtbN7zH7Pom4bOrUZJ+/jLxMc7SNwd4RbASdERzEP7/Eu+WD1Odh9YKp+vHGvmwfX1CXF20wA0IL1gQannVpkwPUZSMsaKLaPcsX425kIzICyx2QXmAgqoX7t27ZKsLH0T0V3aBXWTfN9fJbNwoRws+kGy8jbI0nV/kf+tf0yiA86X2MDBEujTutb9pKamitURbgGcNB38MOyst2TBqnGyL3uFfLL8Whl+1lvmmuoArFNuoIOa9IpgOQXbpbg026SGTj0DxCblZrou+4UImkeeRf1sAwfb5OQkKSw8+pLoQSGe0vfiIDlvSIjEthATeHXZuqFYvv7ksPy8vFBsv5c9V8nPzxerItwCOCXxkWfJH/q9K/NXjpWsvPXy8bKrZETfdyQ4IN7ZTQNwCvTqWnop2bzCXUeWoj1SWVlabQsP8aqMlg9mb5Zp/zdHzu4znDrPRqI9thpspz89Slq3ja11G5vYpKLsgJR7bpNyz33SrrO/WTxsgeJT0V58KluJh/jIj0tT5dUXFkhxcbFYlUuH20cffVSmTZvm8FjHjh1l06ZN5mv9wdx7773y3nvvSUlJiQwePFhefvlliY2t/QcPoH41C+sil/f/QOavGG0GkXy07E8y4qx3jnlNdgCuo6y80Fwa1h5o9dK31Xl7+ktoUGsJD2ojoYEtZeumLFny0Wp56qEWBFsn0GCb1PlYlxdOFJGeUlpeIAdyfpbM3HVSUVkopd4/S4VnqkSHdpGE1oFidS4dblXnzp3lq6/0GvdHeHv/3uSJEyfK559/LvPmzZOwsDCZMGGCXHHFFfLDDz84qbWA+4kIbiuXnz1PPlsxWnILtpkeXC1RiA7r7OymAaihtOyw5Bfvk8NF+yS/aJ/DQDDl4eElwf7NTZDVRedXJcQ2Pb7eQaZ8LC6yjxzMSzXz52qvfEbOGoloJ3Lj5Gjx8MkTq3L5cKthNi4u7qjHc3Nz5Y033pC5c+fKRRddZB6bPXu2JCcny/Lly6Vfv3517lN7eXWxy8uz7g8YaAw6Glp7cHVwmQ5s+Hj51TK458vm8pEAnEOvKJidv0UyChbKDfdGSYHPAvllR+FR2wX4RlWF2eCAFlyB0EK8PH0kJrybNAvramqnNeQeLtojfS7QGRV+ks17Dph66ZCABEu9iXH5cLtlyxaJj48Xf39/6d+/v8yYMUNatmwpKSkpUlZWJgMHDqzaNikpyaxbtmzZMcOt7qNmuQOA0xPoF21qcL9cPd4MMvt81Y1yfpcnpFPLa5zdNMAt6mW1vCAzR+dAXScHcteb29LyI503Z10YLDbRYOshgX7NTG28XlBBb7WXD9bm4eFhysV0WbxwqWze/r30vSjEBN3De/dIkH+cNI/oI2FBbSwRcl063Pbt21fefPNNU2ebnp5uAul5550n69evl/3794uvr6+Eh4c7fI/W2+q6Y5kyZYpMmjTJoec2MVHrVACcDp3+Z/hZb8u36/5Pft37kSxd93+mjq9vx/vMpOSwvvKKYjOqvqj0oBSWZB35uuSglJTnyb68nXLtHZFS7LVK0tJ/lorKslr34aH/eXiJp6e3mTPVLPq1p694e/qJl6eflHvkS+uOvlJUvk+KSlqJr0+o2/Q46pRc2Yd/Ncuh/C1y8PBmOZi30Txek7dXgAR6tZd33/xORv5puCQndWVWAzdXURIsbz93UHp0uVhadiiWA3nrzawYW9M/kwDfaHPhiIjgdk36d7ZLh9shQ4ZUfd2tWzcTdlu1aiUffPCBBAQEnPJ+/fz8zAKg/ukleS/q/qz5iHP1lhfkp7SX5XDhLrmw+zNc7MEiiktzJPvwZskr3Cl5hb8PRsor2i1FJY41nDXpdEXlsksOne4sRD4i9/+tufxyYIL88tuwDB+vIPH3jTAfs+utv2+kBPhGmlv71/Z1Om2dzs3qin/Aj8xakPvbcd0pufbjW7BTcgq2mUux1kbDf1RIkhnoqR9D6xIZ0lF+XrtOPp/bS66+MpZgi99V+EvLmH4mzO7P+UkO5PxiarC37V8g/j4REhfZ25w/nh5e0tS4dLitSXtpO3ToIFu3bpVLLrlESktLJScnx6H3NiMjo9YaXQCNRz/W6tNhooQEJsrSX6bI1vT5kl+8Xy7t/Q8TMNA0aMiqlDzpfUGg7Mp7R9JXviQHD2+SguL0Y36f9rSaEOmnYTLafO3nEyYHs/LkH6/NlpHXnCdxzaNNb6z20prncnjiSjPHaqWt/MhSqbdlUllZZnqGKypLpKDgsBw4cFBi4kKlwnakjrSsokDKigrMR60nQnuHTQj2+T0EV7/1840QH+9A8fEKNG/Mjtzq/QDx9tavA+r8w2+Ona3ctLWistQs5eWFpgfbXAyh7MhtSVmeCRQFxRlSUJwphSUZUlicKeWVx56mSWtjI4PbS0RIB3MbFZoskSEdCK84aXpFs8Toc6V5RG/JyFkrmTlrpbjskOzIWCz7Dq6Q+Ki+5k2TK74RtES41QmH09LSZPTo0dKrVy/x8fGRJUuWyMiRI836zZs3m4mOtTYXgPMlJVwpIf7x5jK9+w+tlv98P0IG93zFDHCA69EAph9P6hsRHUmvX1f4lshNk5tJesFHIgWOgwjDg86QEDMQKbFqQJI+7ucTXmvd3po1a2TBe8/LtVd1kJjwY01ndHybNuyRh8c9Kykpn0qPHt2ktPywFJflmDKI4tJDUmRus6tuHb8+ZLa32SpMT7Muh06xHR7iqSn5SEj38PwtqstvJRcOkf2k6UwF9uMaFtTKXDQhLLCVRIS0F1/v4NPaN1CTvoFrEdVP4sLPNFOI6cwKWrOtIXd/9mqJj+onEcHtm0RNrkuH2/vuu09GjBhhShH27dsnjzzyiHh5ecm1115rpv4aN26cqZ2NjIyU0NBQufPOO02wPdZgMgCNS6ejueLsj2RByngzWvejZVfKeZ2nSXLiNU3il6SVaY+oTgt1pLRg928fd9cIZDYvSUstkP69L5OOZ5wrUSFHeghd6fKq2gN8pAwhQiSozQl9T0VFiRSVHXIMviXZUlR25FZ7rjQEl1UUSnlFkZkPVm/N1xWFVcdJ+7b1S3PPduzebC8vf9ODrcfOzzvUfK21wjoYU4NskH+sBPrF/nbbjDIeOK20rHlkb4kJ7y6ZOT/L/kMp5t+DlisE+K6U+Kj+5o2tK3PpcLtnzx4TZA8ePCjNmjWTc88910zzpV+r5557Tjw9PU3PbfWLOABwLREh7WTkOZ/INz/fJ9szFsnSdVMk49AaOa/LY/wBb0T6UbkO9NI3GRpmNdhq72V1Woeq85wGBTQ3t7vSSuRv9z8vKSl/li6teoqV/oAHe8VJsH/cKR1HLTfQkKtvEMy1ocz1TfUaUZp0bUcGv3n5mVstFWiKdYtwb16ePkdCblhXU66gPbn6+yMtfb55M1bp0V5clUuHW73y2LHo9GCzZs0yi7tLTU097X1ER0ebqdSAhqC9VYN7vSZrt70qKzY9LZv2zJOsvI0yuNcr5mNXNAybVEhOwXYTaHMLdpiP46vTQVimnEBLCwISxNcnxGG9h5xY/ao70U8c9E0Zb8zgDry8/Ezdrfbkai+u1uSaT3l8MmXSX2Mlr2SDuSqaK3HpcIvjyzpwZA7D66+//rT3FRgYIKmpmwi4aNBQcGbb26RZWDdZ/NNd5oIP8/43XAZ0myltmw91dvMsQwcpZRUulT8/2EwKfD6TrfsqHD4e1yCrtZt6q6OiKQ8BcDz6Zi4h+hyJDT/TjKHIOPSztOvsLweLvxeR0eJKCLdNXH5ekbmd+OAwObNXx1Pez460DJk6eY5kZWURbtHg9Bfkn86dL4vW3G6umKO3HROulHM7PXJUzyFOjI6835HxlaSlfyG7s/4nlZWl0r2/XkO+wgw+0snZdQkNSDQ1qgBwKnQGEb365OHM5vLFovdk4k1XiqvhN5xFJLaKkqTOpzf6GGhMwQHN5bL+H8jqX5+XNWkvy+Y9/zHTzgzo9ldJiD7b2c1rMvPN7shYZALtnqwfzHRZdv5eLeTDf2+QkVeOlE7tOtM7C6BeeUqAfPDqIXlgfJS4GsItAKcOWOibNFkSYy6Qr9dONJcP/WzFdZKceK30T57iUiPyXYWO6t++f5Fs2/+F7M360cylahcR3MGUd+iyY0u+3DSnl1w1svZpuQDAqgi3AJwuPvIsuer8hbJ8019lw853JHX3u7Izc4n0T35Q2sf/we3DmU5JpYFWRynvOfijwwwHOrl62+bD5Iy4IWZWCrsdssZJrQUA5yLcAnAJWhd6fpfHpF3z4fLtuv8zo/uXrL1bUnfNlXM7P2quwORuNbTb9y+Uremfy15TcvB7D210aCc5o/kwaRs3RMKDXXu+SQBobIRbAC5Fp5y56rwF8vO2f8qarX+Xfdkr5IP/DZWOCVdInw6TzBWwrMompdL3oiDZnP24rFq8zqGGVsN92+bDTclB+AleqAAA3BHhFoBLTjnTq/0E6dDiclm2aYakpX8um/f8V7bu+8zU457Z9s8SHBAvVlBeUWJ6qbPzf5UCn50ydlK05JQcKSmIDEmSdlpy0HyoRAS3dXZTLU0v3a6zxdQHvaiQn5/fae+HuceBU0O4BeCyQgITZFDPWZKRM16Wp84wvbjrd74lG3fNlQ4JV0j3NuPMpWCb4jy0OQXbJCd/m+QX7T1yCVflIZK+q1R6dxot5/a8WSJD2lvqQjH1sY+GCrbJyUlSWHhkasXTpSXitmNcivdEMfc4cGoItwBcXmx4D/lDv/dk78EfJGWLliosl0273zeLXue8S6sx0jr2YnOZU1dUaauQguIMySvcaa4WVlRywGG9v2+kRAS3k5yMMHns9n9KSsrVLhNs6/NCMXb5+fniSrTHVoPt9KdHSeu2sae1rx+XpsqrLyxg7nHAiQi3AJoEnTEhIfpcs+zPTpG121+XHfsXyb6Dy8zi5xNuZg1o3+IyiYvoJZ4eXk5rq81mk+KyQ5JXuMssh4v2mosqVHs1Euzf3AwGCw86Q/x9I8yjh/fvseyFYqoHv+LiYnFFGmxPd75wDaWKuccB5yHcAmhy4iJ7yaWRvUxo3LBzjrkAhF7rfOOuOWbRS8q2jLlQEptdIPGRfRq8Ptc/0EPKPTIkPXuf6aEtKN4vZRWFDtt4efpLqF72Nqi1hAW2Nlf5aUrqI6zZgx8ANCTCLYAmS2dO6Jd0v5zV8V7Te/vr3o/MJWi11/TXvR+a5ch2CRIT3l2iQpIlKjTJBEx9TAeunSibrVIKSjLN4K/cgp1Hbgt3SvqBdfLMe4lS7Pm97D34+/YeHl4S7B8voYEtTagN9Itx+/l6AaAxEG4BNHlagmAvWaisLJf9h1JkR+YS2XdwuWTlrpfDRXvMorMuVOfvGyUBvhHi5xMmvt4h4unpLR4e3mY0UHllsVRUFEtJeZ65iIJeGcyxtKDa83t6iIctUCJCEiTIP06C/GNNmNX9AQAaF795AViKBkqdK1cXVVqeLxmHfpKsvA1yMG+TZB/eJHlFe6SsPF+KSw+a5URpb6z2+NpLC/Q2K71CLhvyZ3n5zXvkjObUWAKAsxFuAVj+ymeJzc4zS/UBX6XleZJftE+Ky3KkpDRXSssPm1kNbL9dCczLy1+8Pf1Mj67OZqCDvrRX1svTx2H/aw6tkfy836byAtxEfU3rxly+aAiEWwBuR2tftRRBFwDOmxqOuXzREAi3AACg0aeGYy5fNBTCLQAAOCnM4wtX5unsBgAAAAD1hXALAAAAyyDcAgAAwDIItwAAALAMwi0AAAAsg3ALAAAAyyDcAgAAwDIItwAAALAMLuIAAGiyUlNTXWIfAFwH4RYA0ORkHcgzt9dff3297TM/P7/e9gXAeQi3cEAvCICmID+vyNxOfHCYnNmr42nt68elqfLqCwukuLhYXA2/k4GTR7iFQS8IGvKPYnR0tLRs2bJe9gVUl9gqSpI6J5zWPnakZYir4XcycOoIt3CrXhA45w+rv7+f/Oc//5XmzZuf9r4IynAH/E4GTh3hFm7RCwLn/WFdu3qbPPvkxzJ8+PB6aVtgYICkpm4i4MIt8DsZOHmEWwCN8oe1PoKy7mvq5DmSlZVFuAUAWDvczpo1S55++mnZv3+/dO/eXV566SU566yznN0s4IS4w6CR+gjKAAC4Rbh9//33ZdKkSfLqq69K37595fnnn5fBgwfL5s2bJSYmxtnNA+rEoBEAAOqXJcLts88+K+PHj5cbb7zR3NeQ+/nnn8u//vUv+b//+z9nNw+oE4NGnNdLzcA0ALCmJh9uS0tLJSUlRaZMmVL1mKenpwwcOFCWLVtW6/eUlJSYxS43N9fc5uUd6UVraPaetU0b9khR4e/tOJ16xq2/7pegwDSn74d9ndp+SkrKTvtcKC0pq5c2VW+Xq+3rl5921FtPt87g8Pbb70hsbOxp7Uc/Iaqvf887tx8wt/o77XR74OurXa56Llh9X67Ypvrel9XPd1d8ffX5Gu2vT19bY+Un+/PYbLZjb2hr4vbu3auv0Pbjjz86PD558mTbWWedVev3PPLII+Z7WFhYWFhYWFhYpEktu3fvPmY2bPI9t6dCe3m1RteusrJSsrOzJSoqSjw8PBrs3UZiYqLs3r1bQkNDG+Q5mjKOT904NsfG8akbx+bYOD5149gcG8fHOcdGe2wPHz4s8fHxx9yuyYdbrZvz8vKSjAzHefz0flxcXK3f4+fnZ5bqwsPDpTHoD5p/CHXj+NSNY3NsHJ+6cWyOjeNTN47NsXF8Gv/YhIWFHXcbT2nifH19pVevXrJkyRKHnli9379/f6e2DQAAAI2ryffcKi0xGDt2rPTu3dvMbatTgRUUFFTNngAAAAD3YIlwe/XVV8uBAwdk6tSp5iIOPXr0kC+//PK0R0HXJy2DeOSRR44qh8ARHJ+6cWyOjeNTN47NsXF86saxOTaOj2sfGw8dVea0ZwcAAADqUZOvuQUAAADsCLcAAACwDMItAAAALINwCwAAAMsg3B6DXgXjnnvukVatWklAQICcffbZsmrVqqr1ej3lCRMmSEJCglnfqVMnefXVVx32UVxcLHfccYe5+llwcLCMHDnyqAtO7Nq1S4YNGyaBgYESExMjkydPlvLycodtvv32W+nZs6cZfdiuXTt58803xerH5ueff5Zrr73WXOlE95GcnCwvvPDCUcdFrypXc9FZM9zh3Knttb/33nvi7ueOvsbajo0umZmZlj93/vGPf8iAAQPMBOr6mnJyco56Hr0q46hRo8w2ehGbcePGmX1X98svv8h5550n/v7+5t/hU089JVY/Njt27DDHok2bNmYfbdu2NSO/S0tLHbap7dxZvny5uMO507p166Ne+8yZM8Xdz526fqfoYn8uq5472dnZcuedd0rHjh3N+pYtW8pdd90lubm5zsk7x7w4r5u76qqrbJ06dbItXbrUtmXLFtsjjzxiCw0Nte3Zs8esHz9+vK1t27a2b775xrZ9+3bba6+9ZvPy8rJ98sknVfu49dZbbYmJibYlS5bYVq9ebevXr5/t7LPPrlpfXl5u69Kli23gwIG2n376yfbFF1/YoqOjbVOmTKnaZtu2bbbAwEDbpEmTbBs3brS99NJL5nm+/PJLm5WPzRtvvGG76667bN9++60tLS3N9s4779gCAgLM67fT/etpvHnzZlt6enrVUlFRYXOmxjg+Sl/77NmzHV57UVGRzd3PncLCQodjosvgwYNtF1xwgVucO88995xtxowZZtHXeOjQoaOe59JLL7V1797dtnz5ctv//vc/W7t27WzXXntt1frc3FxbbGysbdSoUbb169fb3n33XfPvT5/PysdmwYIFthtuuMG2cOFC83tHvzcmJsZ27733Vm2j+9bv/eqrrxzOndLSUps7nDutWrWyTZ8+3eG15+fn29z93CkpKTnq987NN99sa9Omja2ystLS5866detsV1xxhe3TTz+1bd261fxubt++vW3kyJFOyTuE2zroH0c9oPPnz3d4vGfPnrYHH3zQfN25c2fzD7yu9Tk5OTYfHx/bvHnzqtanpqaaE3vZsmXmvv5wPT09bfv376/a5pVXXjEnlf5DUffff795ruquvvpq88faysemNrfffrvtwgsvPCqg1PYL2Fka8/jo/Y8++qjOtnDuHJGZmWm+5+2337b8uVNdXa9R/2jo46tWrXIIdR4eHra9e/ea+y+//LItIiKi6veQeuCBB2wdO3a0WfnY1Oapp54yAcXOHlD0D7SraMzjo+FWg15dOHeO0MDarFkzh/26w7lj98EHH9h8fX1tZWVljZ53KEuog3aTV1RUmI9UqtPu9u+//958rd32n376qezdu1ffJMg333wjv/76qwwaNMisT0lJkbKyMhk4cGDV9yclJZnu+mXLlpn7etu1a1eHC04MHjxY8vLyZMOGDVXbVN+HfRv7Pqx6bGqjH3FERkYe9bheuKN58+ZyySWXyA8//CDO1NjHRz+ej46ONlfn+9e//mX2Z8e5c8Tbb79tPga78sorLX/unAg9TlqKoFd1tNPj6enpKStWrKja5vzzzzeXOK9+7mzevFkOHTokVj02J/N75w9/+IP5aPXcc881z+tMjX18tAxBy4LOPPNMefrppx0+WubcOUL3d/DgwVqvluoO505ubq4p4fD29m78vHNSUdjN9O/f33yMqT0Z2p2uH4vru44OHTqY9cXFxbYxY8aYd2He3t7mHcpbb71V9f1z5swxj9XUp08f8+7E3tU/aNAgh/UFBQVmn/ouR2nX/pNPPumwzeeff2620XdcVj02Nf3www9mX/pxod2mTZtsr776qvloWtffeOONZpuUlBSbMzXW8dF30t9//71tzZo1tpkzZ9r8/PxsL7zwQtV6zp0jkpOTbbfddpvDY1Y9d06kh+mJJ56o2l912sukvW7qkksusd1yyy0O6zds2GD2pz2/Vj02NelHtNqz9I9//KPqsQMHDtj+9re/mZKOlStXml5J7fWu/hG2lY+PvnZd//PPP5uet/DwcNvEiROr1nPuHDFkyBCzVOcO5479dbZs2dL2l7/8xWbXmHnHEpffbSjvvPOO3HTTTdKiRQvx8vIyBc46wEl7jtRLL71kisD13YwWYX/33XemFy0+Pv6odx5W09jHZv369XLZZZeZgR3V3ylq8boudvruMi0tTZ577jnTRqsfn4cffrjqa+1BKSgoML0oWsjvqhr73NF3/KmpqUedD+5+7jRFjX1stJfq0ksvlT/96U8yfvz4qsf1k5JJkyZV3e/Tp4/s27fP/NvTHjmrH5/qr71bt26mh/bPf/6zzJgxw2UvR9vY586ePXtk4cKF8sEHHzg87g7nTl5enhk0poPOHn30Uee8oBOOwW5MC+X37dtXVXQ9dOhQ8w5Ca/hq1qiMGzeuqjZEC6pre3en72aeffZZ8/XDDz9sBnVUpwXV+n3aG6fOO+8829133+2wzb/+9S/Tm2DlY1P9Hb8O6Kj+DvBY7rvvPjPAyBU0xvGpTvep36fvspW7nzvqpptusvXo0cNtzp0T6WHSwZra21ad1sVp3d2HH35o7o8ePdp22WWXOWzz9ddfm/1lZ2fbrHps7LQHS3uR9DicyCDDv//977a4uDibK2iM41OdDhrTbfXTEOXu5479UzX9JOREBopZ6dzJy8szvcAXX3yxw+Dmxs471NyegKCgIFOTp7VC+k5MexC15k8XrVGrTt/xVFZWmq979eolPj4+smTJkqr1WnOkU2H079/f3NfbdevWVU1PpBYvXmzqVPRdj32b6vuwb2Pfh1WPjdI6nAsvvFDGjh0rTzzxxAm1ae3ataZNrqChj09trz0iIqKq98Sdzx379DXac6JTO7nLuXMi9DjpNEb2Xhn19ddfm3307du3ahvtndHnq37uaG+3nmNWPTb2Hlud8knPtdmzZx+1T3c+d+p67bpfrSF193NHaU2qnjdjxowxv6uOxyrnTl5envlkVXvytYe3Zg1vo+adk4rCbkanntARxPrOYtGiReYdR9++faveiWl9io7q03dxuo1OyeTv719Vs2afskh7lPRdq9b26TsaXWpOjaF1KGvXrjXPqe/2apsaY/LkyWZU+KxZs5w+nVNjHBudWkSPxfXXX+8wZYqOfLfTEbsff/yxqYvT7fUdn9YJ6TQrztQYx0enXHn99dfN69bXr9+r58nUqVNt7n7u2P3zn/8031tbD4uVzx39d6KjsfX80F/z3333nbl/8OBBh6nAzjzzTNuKFStM3bb2UlafCkxnpdDpnLQXTnvm3nvvPXMuOXM6p8Y4Njr1kU6Lpj1P+nX13z12b775pm3u3Lnm35QuWsOs5472MDlTYxyfH3/80fzb0b9XOlXav//9b/N7Wusx3f3csdPfIbpez42arHru5Obmmu27du1qpgKr/u9Gc05j5x3C7TG8//77tjPOOMMUTutHBnfccYf5R2unPzSdDzE+Pt78kHWaEy0Ut89np7RbXqev0mlR9Af2xz/+0eGXpNqxY4cpOtd5AHXON51P0T51hp2eUPrRqrZF26QnltWPjc6zp78gai46DY3dX//6VzP3nj5HZGSkbcCAASbwOFtjHB/9RaTnRHBwsC0oKMj8MtIBUjU/QnXHc8dOA+91111XazusfO7U9W+n+s9e/yBrmNXzRz/y0wF1hw8fdmiLDhg699xzzUDFFi1amEGLVj82elvb+up9QRpQdJCinnt67M466yyHqemsfHx0wKWGmLCwMLMPPQ46AMheCuXO546d/ruqOSe51c+db34r1aht0enPGjvveOj/Tq6vFwAAAHBN1NwCAADAMgi3AAAAsAzCLQAAACyDcAsAAADLINwCAADAMgi3AAAAsAzCLQAAACyDcAsAAADLINwCgIt48803JTw83NnNkEcffVR69Ojh7GYAwCkh3AKAi7j66qvl119/dXYzAKBJ83Z2AwAARwQEBJgFAHDq6LkFgEa0Y8cO8fDwOGoZMGDAUWUJ9vKA1157TRITEyUwMFCuuuoqyc3Nddjnv/71L+ncubP4+flJ8+bNZcKECVXrdu3aJZdddpkEBwdLaGio+f6MjAyH7585c6bExsZKSEiIjBs3ToqLi49q9z//+U9JTk4Wf39/SUpKkpdffrlBjg8AnC7CLQA0Ig2p6enpVctPP/0kUVFRcv7559e6/datW+WDDz6Qzz77TL788kuz/e233161/pVXXpE77rhDbrnlFlm3bp18+umn0q5dO7OusrLSBNvs7GxZunSpLF68WLZt22bKH+x03xqin3zySVm9erUJxzWD65w5c2Tq1KnyxBNPSGpqqtn24YcflrfeeqvBjhMAnDIbAMApioqKbH379rUNHz7cVlFRYZs9e7YtLCysav0jjzxi8/Lysu3Zs6fqsQULFtg8PT1t6enp5n58fLztwQcfrHX/ixYtMt+/a9euqsc2bNhg01/9K1euNPf79+9vu/322x2+T9vUvXv3qvtt27a1zZ0712Gbxx57zHwvALgaem4BwEluuukmOXz4sMydO1c8PWv/ddyyZUtp0aJF1f3+/fubHtnNmzdLZmam7Nu3Ty6++OJav1d7WbWnWBe7Tp06mdIHXWffpm/fvg7fp89hV1BQIGlpaaZcQUsb7Mvjjz9uHgcAV8OAMgBwAg2HCxculJUrV5pa11PRGIPP8vPzze3rr79+VAj28vJq8OcHgJNFzy0ANLL//ve/Mn36dFPv2rZt22NuqwPCtHfWbvny5aaXt2PHjiYUt27dWpYsWVLr9+oAsN27d5vFbuPGjZKTk2N6cO3brFixwuH79DnsdKBZfHy8qdXVWt7qS5s2bU75GABAQ6HnFgAa0fr162XMmDHywAMPmBkO9u/fbx739fWtdXudnWDs2LHyzDPPSF5entx1111mxoO4uDizXgeD3XrrrRITEyNDhgwxZQ4//PCD3HnnnTJw4EDp2rWrjBo1Sp5//nkpLy83g9EuuOAC6d27t/n+u+++W2644QZz/5xzzjGDxzZs2CBnnHFGVRumTZtmnjcsLEwuvfRSKSkpMYPPDh06JJMmTWqU4wYAJ4qeWwBoRBoKCwsLTVmCzkxgX6644opat9ceUl03dOhQGTRokHTr1s1hNgMNvhpc9TENy8OHD5ctW7aYdTrF2CeffCIRERFmNgYNuxpa33///arv15kTdOaD+++/X3r16iU7d+6U2267zaENN998s5kKbPbs2SYsazjWacvouQXgijx0VJmzGwEAOJr2yn788ceydu1aZzcFAJoMem4BAABgGYRbAAAAWAZlCQAAALAMem4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBYxf8DOAEhAPo/uQYAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAHWCAYAAABt3aEVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAcPpJREFUeJzt3Qd4VGXWB/D/lPTeE9LohA4C0hRZQQGxoOhawL66uvYudnH3w9W1sPbddXV17a5iQVCkKYJIkR5aIA3Sey8z93vOG2ZMIAmBTHKn/H/P3r03Mzc3Z2YSPPPOec9r0DRNAxERERGRGzDqHQARERERkaMwuSUiIiIit8HkloiIiIjcBpNbIiIiInIbTG6JiIiIyG0wuSUiIiIit8HkloiIiIjcBpNbIiIiInIbTG6JiIiIyG0wuSVyIz179sQ111yjdxhu79lnn0Xv3r1hMpkwYsSIbvmZb7/9NgwGA9LT07vl57miffv24eyzz0ZISIh6rhYtWtSp602ePFltNvLcy3XltThR8ncpf59E1PWY3BI5KVsys3Hjxlbvl//oDhkypNM/55tvvsETTzzR6et4iu+++w73338/Jk6ciLfeegv/93//p3dIdMTVV1+N7du34y9/+QveffddjB49Gu+//z5efPFFeIqPPvoIc+fORb9+/dS/H82T8+ZWrVql7m9t+/nnn7s9biJHMjv0akSkqz179sBoNJ5wcvvKK68wwe2gFStWqOf4zTffhLe3t97h0BE1NTVYt24dHn74Ydx666322yW53bFjB+68885O/4zk5GT1c7y8vE74e//5z3/CarWiq7322mvYtGkTxowZg6KiouOef/vtt6tzm+vbt28XRkjU9ZjcErkRHx8fuJqqqioEBATAVeTn58PPz4+JrZMpKChQ+9DQ0C77GTKq6evre1LfezIJ8cmQEev4+Hj1Bqwjn+ycfvrpuPjii7slNqLuwrIEIjeuuW1oaMCTTz6pPqKU/yhHRETgtNNOw7Jly9T9cq6M2ormH0s2TzzvueceJCYmqsR5wIAB+Nvf/gZN01r8XBnNkhGgyMhIBAUF4fzzz8ehQ4fUtZqPCMux3LZr1y5cccUVCAsLU/GIbdu2qXikllVijY2NxXXXXXfM6JPtGnv37lUfv0p9ZVRUFB599FEVV1ZWFi644AIEBwerazz33HMdeu4aGxvx1FNPoU+fPuqxynP50EMPoa6uzn6O/FwpRZDnxfZcHa/+cv369TjnnHPUY5UkftiwYVi4cOExo8GSZMj9kpxJ/KmpqceN+ejnt63fA1uJy5o1a9TrJM+X/Jw//vGPqK+vR2lpKa666ioVo2xSdtH8NbbVmspr/49//MP+HMmI34YNG1r8bPmd2717N3Jyco4bf25uLq699lokJCSo68XFxanH3ryuWOL485//rM7x9/fH7373O+zcubPFY5TnQEZVxX333adilfvlI/nFixcjIyPD/np1pu716JpbeT7ka7n+0ebNm6feAJWUlLRac3siz6n45JNPMGjQIPW3IUnr559/3modr/ytnuinNxUVFer3n8hdcOSWyMmVlZWhsLDwmNsliTge+Y/+ggUL8Ic//AGnnnoqysvLVQ3v5s2bcdZZZ6nk5vDhwyrZlRGf5iSpkCR15cqVuP7669XEqW+//VYlD5K4vvDCC/Zz5T+yH3/8Ma688kqMGzcOq1evxsyZM9uM65JLLlEJt9Sr2pIoieHAgQMq2ZGkVBIY+Y++7KUGsHnSLS699FIMHDgQTz/9tEpgJAEKDw/HG2+8gTPPPBN//etf8d577+Hee+9VCcOkSZPafa7kOfrPf/6jRrEkoZekVJ47STIlkRDyHElMv/zyC/71r3+p2yZMmNDmNeUxnXvuuSppu+OOO9Tjkut9/fXX6mvx/fffY8aMGSqpl9dL3ii89NJLqqZXXidHTkK67bbbVAzyhkeeU3kskuSuXbsWSUlJ6vWQMhWZMCcJlCS8zclH/JIIye+NvB7PPPMMLrroIvW62UYm5XdDXhepfz1e4j979mz1+kpc8jhlVFyes8zMTPvjfuyxx9RrK28QZJPnRCaNSVJuIzHI47jrrrtw+eWXq/MCAwPVmwX5+8nOzrb/vsrtjvL73/9evRGQ3335u2hObpM45c1CezrynMrvt/y+Dx06VP1OSsIsf5MyQttZ8vdWWVmpJkfKGyx57aVWmcilaUTklN566y3J+trdBg8e3OJ7kpOTtauvvtr+9fDhw7WZM2e2+3NuueUWda2jLVq0SN3+5z//ucXtF198sWYwGLT9+/errzdt2qTOu/POO1ucd80116jbH3/8cfttciy3XX755cf8vOrq6mNu++CDD9T5P/zwwzHXuPHGG+23NTY2agkJCSqup59+2n57SUmJ5ufn1+I5ac2WLVvUNf/whz+0uP3ee+9Vt69YscJ+m1wrICCg3evZYurVq5d6TSSO5qxWq/14xIgRWnR0tFZUVGS/bevWrZrRaNSuuuqqY34fDh48aL/t6Oe3rd8D2/dOmzatxc8eP368es5uuummY57LM844w36b/Ez5/oiICK24uNh++xdffKFu/+qrr44593jPuTwnct6zzz7b5jn5+fmat7e3+h1uHvdDDz10zM+w/dyjryffK8/HyZDnoLXnQZ7P5s/hqFGjWnzfL7/8os5755137LdJrM3jOJHndOjQoeo1qaiosN+2atUqdV57j03+fWgef3M//fSTNnv2bO3NN99UP3PBggUqFl9fX23z5s0dfIaInBPLEoicnJQNyGjW0Zt8vH08MpolI2PSIulEyQiejObIx9jNyaim5FVLlixRXy9dulTt//SnP7U4T0bj2nLTTTcdc5vUsdrU1taq0WoZBRYyWtfaSKuNxCmjTRKXjGg1f/xSSiGjYMd7rOLuu+8+5rHaRs5O1K+//oqDBw+qiUxH14HaRqHlo/stW7aokW8ZdbaR11ZG1m1xOYo8N81HwMeOHXvMc2Z7Llt7zmT0sPlIpIz0iebnyoirXPN4o7a2umWZtW/76P5oMqotI7Tyu9Q8bkdMDnMUeU5kAldaWlqLjgVSYiAlFh35/vaeU/lkRTpAyCh681HnM844Q43kniz5xOHTTz9VpT/yCc2DDz5o/4RESiqIXBmTWyInJ+UEU6dOPWY73sedYv78+aqesn///uo/hPLRqdS2doTUEfbo0UPV0DYnHznb7rftpcavV69eHZ5xffS5ori4WH1UHxMToxIfqQu1nScfLR9NPkZvTmpvpR5R6n6Pvr2t5Kn5Y5XHcHTM8hG+JKat1VQejy3ZaW9Sj+26koAfTZ5nSfClvtdRWnvObHWaHXnOjv5+2+/g8Z7f1kjyJ6Uj8iZJXnMpG5GP5KUO9+jnR0pYmpPfjY78/ncHKbGR3x1JaIUk9lIfK6UmUvd9PMd7Tm3PQWt/T47uaiDXk4RcSpEsFotDr03UnZjcErkxSRgkyfr3v/+tkiypEz3llFPs9aJ6aT5K27x+UdolyajuZ599pvrJ2kaFW2uhJCOMHblNHD0Bri1H1/W6qrYSk7aen9Zub+056+zzezQZgZWJgVJHKm9MZFKgJPUy6u0q5A2gjLZKja2Q0U+pGZYR2Y5w9HPaWfJGR0bLHfmmiqi7MbklcnPycbdMGvnggw9UJwH5yLv5DPu2EjqZfS4ficpkl+ZkJrztfttekk/5CL65/fv3dzhGGaVavny5+mhUJjtdeOGF6mN5mWTVHWyP4ejyjby8PDXybXusJ0Jmvwvpsdrez7X1Jz6aPM8yCt1emzQZ5ZP4mpPEpCOdCpyFPE9S/iFvZuS5kvhtHS5sz8/Rr4u0/eroaHF3vGGRRHbr1q3qdZQRXOnqcN555znk2rbnoLW/pxP5G+soKYeQNxqOnHhH1N2Y3BK5saPbaMl/sOSjx+btrWzJ09FJksw4lxHAl19+ucXtMutcEgb52FVMmzZN7V999dUW58mM/46yjV4dPVrVXStLyWNt7ec9//zzat9e54e2yAi5lFXINY9+bm2PU7ooSBcK6dLQ/BxJ8iTZs8XVXmL4ww8/tLhNOiDo+ZFyR1uBVVdXq9rqox+PlMHYfj+l/EY6BsjvUvPfjRP5vbB1TOhK0vVBfoflDaSUJEiHDEf1bpaRYfnU5Z133lFdDWykI4nU4na2L3BzkqB/+eWXqsvDibYTI3ImbAVG5MakL6b0+hw1apQawZU2YDKJpPkKTnKfkIljkqjKf6Qvu+wyNfIkPUVlxSfpyTl8+HCVcH3xxRfq42TbyKR8v/zHXRIOSaZtrcDk4+aOjpxJbaKt5lKSI2lxJD/r6NHgriKPTVpXSWIoSaZM1pF2X5J0zpo1Sz0PJ0qSA1ktSp5HSWBl9FySWUn8ZJKftFUT0npJ3iiMHz9eTeyytQKTutfjrRonk+qkjEOefxnpluRErnt03XF36mgrMPn9mDJliipHkd9Ts9msWq7JaLn8/tlqa6WVm5QtSMIoyb6ULEidbkcfo/x+ymiqTBaUlnDyBs9Ro6o20dHR6ndE3gzJJx0dLUnoKGnRJrWw0h5Ofo9k1FredErS2zzhFfJmx/aGRxJYKS+QVmpC/sZsLfEkRikPkollEr/0npbffxl1lvZ6RK6MyS2RG5OEVUZiJFGU0TD5iFP+Q9e8J6f01JTZ6B9++CH++9//qhEySS4kOZPvlT6jkhzI4gUyE16SMVsXARsZVZLJVzJyJQmKjLjJ98hEqY6u6CT9PiUO6Q4hMcjokSQxMnLVHaQOWcogJCGTxyCPR2aNP/744yd9TXmzIJNzpNRCPmqX0gd5U3DDDTfYz5HnSmqL5efIcy0jlZJcy2Sr1ibeNSfXkTcAshSwXENqP6WThiSNzk5qO6UnrZSjSP9gSW5TUlJU7aok6zby+yq/Q6+//rp6LqXDg/w+d3Q0Xbp4SEcK+f2VTx3kb8DRya0tWZTuDjLyfLwR9xMl8crflrzZkdIdmWAnv6fy5kveKB29IIj8vjUntcxCfsdsya28aZM+0JKQS/9reSMh/xbIOVx+l1ydQfqB6R0EEbkfSShGjhypEuY5c+boHQ65GdsKZMdrOebO5BMBSUptKw4SURMW1RBRp8lH6UeTMgUZ/T3eymBE1D4p1Tl6eVzpDyxlKJLgE1FLLEsgok6TWllpZC91h/LxspQTyHbjjTce00OVSG9Si9repDtZXKL5ohp6kzpmKV+ZO3euKtORum0p05DSmdYWRCHydExuiajTZFKKfDT61FNPqQku0phe6gNlMhqRs5GJZe0tzCE1zzIy6iyk5ZtMjJO6cEnMpROD1BzLxK+IiAi9wyNyOqy5JSIij/LTTz+1WkpzdDJJRK6JyS0RERERuQ1OKCMiIiIit6Frza00OJdNGsSLwYMHqz6PtpWPZPUa6acp/TelR6f0jJRVkGJiYuzXkDW8b775ZtX/UJpzS+Nwafgtk1o6SnpPyjKj0p/QXdaWJyIiInInUmwgC6XIxMp2V9HTdPTll19qixcv1vbu3avt2bNHe+ihhzQvLy9tx44d6v6bbrpJS0xM1JYvX65t3LhRGzdunDZhwgT79zc2NmpDhgzRpk6dqv3666/aN998o0VGRmrz5s07oTiysrKkNIMbN27cuHHjxo0bnHuTvK09TldzK+1XZAWkiy++WDWnllWL5FhI+xNZ1nHdunVqiU9pNSRLMsqoq200V9qjPPDAA2pGqbRz6QhZdzw0NBRZWVlqGVAiIiIici6ymp60l5Rl0mWJcqdvBSY9Bz/55BO1DrassS49M6VxtfT2s5GlGaXFkC25lf3QoUNblClI6YKUKciShLI6UmukxEE2GxniFpLYMrklIiIicl7HKyHVfULZ9u3bVa2sj4+PakYta7oPGjQIubm5auRVRlSbk0RW7hOyb57Y2u633dcWqcmVjN+2sck8ERERkXvQPbkdMGCAWoN+/fr1asRVJoTt2rWrS3/mvHnzVCmCbZNyBCIiIiJyfbqXJcjobN++fdWxNM3esGEDFi5ciEsvvRT19fWqrqL56G1eXp5aclDI/pdffmlxPbnfdl9bZJRYNiIiIiJyL7qP3LbWlkvqYSXR9fLywvLly+337dmzR7X+kppcIXspa8jPz7efI0uASt2slDYQERERkWfRdeRWygOkp61MEpNJXdIZQdbz/vbbb1Ut7PXXX4+7775bdVCQhPW2225TCa1MJhNnn322SmKvvPJKPPPMM6rO9pFHHsEtt9zCkVkiIiIiD6RrcisjrldddRVycnJUMjts2DCV2J511lnq/hdeeEE16Z09e3aLRRxsTCYTvv76a1WrK0lvQECAqtmdP3++jo+KiIiIiPTidH1u9eqbJsm1TC5jKzAiIiIi183XnK7mloiIiIjoZDG5JSIiIiK3weSWiIiIiNwGk1siIiIichtMbomIiIjIbTC5JSIiIiK3weSWiIiIiNyGros4EBHUktKFhYUOuVZkZKRa8Y+IiMhTMbkl0jmxHTgwBdXVNQ65nr+/H1JTdzPBJSIij8XklkhHMmIrie38Z+egZ5+YTl0rPS0Pj933nromk1siIvJUTG6JnIAktimDE/QOg4iIyOVxQhkRERERuQ0mt0RERETkNpjcEhEREZHbYHJLRERERG6DyS0RERERuQ0mt0RERETkNpjcEhEREZHbYHJLRERERG6DyS0RERERuQ0mt0RERETkNpjcEhEREZHbYHJLRERERG6DyS0RERERuQ0mt0RERETkNpjcEhEREZHbYHJLRERERG6DyS0RERERuQ0mt0RERETkNpjcEhEREZHbYHJLRERERG6DyS0RERERuQ0mt0RERETkNpjcEhEREZHbYHJLRERERG6DyS0RERERuQ0mt0RERETkNpjcEhEREZHbYHJLRERERG7DrHcARJ6qpr4YRTVrcPENYag2r8SODMBk8ILR6AU/n0iE+PdEkF88jEb+mRIREXUU/6tJ1M1q60ux5cAb2J7+NhotNTjzgmBYUYza+t/OqajJRn7pFhgMJoQH9kds+Gj4eYfrGTYREZFLYHJL1E00TcPOjP9i/Z5nUN9YoW7zMyfhm892YPo5U5GcnACrtQGN1lpU1hxGWXUGGhorUVSRqrbQgN6Ij5gAP58IvR8KERGR02JyS9QNLNZ6/LjjcaRmfaC+jggeiFP734ui7FBc+4/ROG96IoL9E+znRwYPUslwVW0ucks2obQqDaVVB1BWlY7osJHoEX4qTEZvHR8RERGRc2JyS9QNZQjfbvojDhevB2DA+JR5GN77DzAYjCg+tLnN7zMYDAj0i0Nfv3NVfe6hwp9UgptXsgnFFXvQM3oqQgKSu/WxEBEROTt2SyDqQo2WWizecI1KbL3MgThnzL8xos+NKrE9EVJv27fHeegbdx68zcGqXGHf4UXIzF8Fi7Why+InIiJyNRy5JeoimmbF91vuVBPDfLxCccG4DxERnNKpa4YG9kaQf6Iaxc0v26q28upM9I47x2FxExERuTKO3BJ1kXWpC3AwdymMRm9MH/2PTie2NiajF5KiJ6Nfj1nwMgWgtqEEu7M+QoMx3SHXJyIicmVMbom6wJ7sz7D14D/V8ZnDnlUTwBxN6m0HJV2BYP9kWLVG1Jk3Ye4dEbBodQ7/WURERK6CyS2Rg0kbrzU7H1fHo/vdgX7xF3TZz/Iy+6NfjwvQI2I8oAETzgrEzsIHUFKZ1mU/k4iIyJmx5pbIgaR916ptD6g+ttGhIzCq721d/jOlq4KMDBfnmpFXuQoIy8T/1pyPycOeVpPQTlZmZiYKCwsdEmNkZCSSkpIcci0iIqL2MLklcmDyl1f1LbLKf4QB3oj1uh5btmxr9xqpqakOi8esRWPBbYfxysczUFG/A8t+vQ35pdswLuWBE17CVx7bwIEpqK6ucUhs/v5+SE3dzQSXiIi6HJNbopPQWvIXFmXCo6/2gK+fER//Ixc3f3l+h69XWVnpkLjKS60YGP44GgJW4Ne011Tdb2H5Tpx1yssntHyvJO3y2OY/Owc9+8R0Kqb0tDw8dt976ppMbomIqKsxuSU6Ca0lf7WmX9BoyoLRGoFrrrkI115jOO511q5OxesLl6C2ttZhsRkMJjVaGxUyFCu23otDRWvx6ZrzMH3UG4gKGXJC15LHljL4t5XTiIiInJ2uE8oWLFiAMWPGICgoCNHR0Zg1axb27NnT4pzJkyermsLm20033XTMKNrMmTPh7++vrnPfffehsbGxmx8NeSJb8pfYx6wSWzEg+WwMHJyobj/e1iOh46OpJ6pP3DmYPXERQgJ6obLmED5fOxt7sv/XZT+PiIgInp7crl69Grfccgt+/vlnLFu2DA0NDTj77LNRVVXV4rwbbrgBOTk59u2ZZ56x32exWFRiW19fj7Vr1+I///kP3n77bTz22GM6PCLy1ElkWYVr1HFEUAoCfKPhLMKD+qsENzn6TFisdVix9R6s3fVnWDWL3qERERG5X1nC0qVLW3wtSamMvG7atAmTJk2y3y4jsrGxsa1e47vvvsOuXbvw/fffIyYmBiNGjMBTTz2FBx54AE888QS8vb2P+Z66ujq12ZSXlzv0cZFnKa06oEZGpRwgPmICnI2PVwhmjP4XNux7EZv2/R1bD/4LZdUZmDpioWolRkRE5E6cqs9tWVmZ2oeHt/yo9r333lOthIYMGYJ58+ahurraft+6deswdOhQldjaTJs2TSWsO3fubLMcIiQkxL4lJiZ22WMi96bBiuwjo7axoafA2ysIzshgMOLU/ndj6si/w2T0RnreMixa93tU1+brHRoREZF7JrdWqxV33nknJk6cqJJYmyuuuAL//e9/sXLlSpXYvvvuu5g7d679/tzc3BaJrbB9Lfe1Rq4jibRty8pqqpUkOlGNxmzUNZTCbPJDbPhoOLt+Pc7H+eM+gK93BArLd6gEt6I6W++wiIiI3K9bgtTe7tixA2vWNI2C2dx44432YxmhjYuLw5QpU5CWloY+ffqc1M/y8fFRG1FnGAxAg3G3Oo4JHalGRF1BbNgoXDThM3y1fg7KqtNVgnvu2HcRFnhyf09ERETOxClGbm+99VZ8/fXXanQ2IaH9tkNjx45V+/3796u91OLm5eW1OMf2dVt1ukSOMGycH6zGCpXURoUMgysJCUjGrPGfIDSgDyprD+OLdZdyyV4iInILRr1nmUti+/nnn2PFihXo1avXcb9ny5Ytai8juGL8+PHYvn078vN/qx2UzgvBwcEYNGhQF0ZPnkx+d6dfEqKOo0OGw2xyvU8CAv3iMGv8x4gMHoSa+kJ8vf5KVNYc1jssIiIi101upRRB6mnff/991etWamRlq6lpWvVJSg+k84F0T0hPT8eXX36Jq666SnVSGDasaaRMWodJEnvllVdi69at+Pbbb/HII4+oa7P0gLpKef1WJPf3ATQTokNHwFX5+UTg3FPfRWhAbzWC+9X6K1FTV6R3WERERK6Z3L722mtqQpcs1CAjsbbto48+UvdLGy9p8SUJbEpKCu655x7Mnj0bX331lf0aJpNJlTTIXkZxZbKZJMDz58/X8ZGRuztc+Znae1l7uXw7LZXgjn0Xgb49UFqVhm82XAer9lurPCIiIldi1vuj3fZIiy5Z6OF4kpOT8c033zgwMqK2FZXvRnn9DlgsGvwt/eAOgvziVYK7aO3FyC/bCmv9P/QOiYiIyHUnlBG5kh0Z76j91nXVMMK1R22bk24JZ53yCgwworBmJU6fEah3SERERCeMyS3RCahrKMPeQ5+r49WLK+BuEiInYFzKg+r4khvDYTGw/paIiFwLk1uiE7An+39otNTAz5yIfdvdsy51eO8bEO47AWYvA2rNv8Bicc/HSURE7onJLVEHaZoVOzL+q45j/GfAXRkMBvQOuQUFOQ3QDNXIOrK8MBERkStgckvUQdmFP6Gs6gC8zIGI9DsD7sxk9MN/FzaVJMgyvWVVGXqHRERE1CFMbok6aGfGu2o/IH62Sv7c3b4ddfCyNC3Jm5H/PcsTiIjIJTC5JeqA6rpCZOSvUMeDk+fAU3hbhsDHKwT1jZXILlqrdzhERETHxeSWqAP2HVoEq9aoltoND+oPT2GAGcnRU9RxQdl2rl5GREROj8ktUQcWG9md/ak6HpB4MTxNsH8iQgOkPEFDVuGPeodDRETULia3RMdRWL4TxRW7YTJ6o1+P8+GJEiJPU4s7lFdnoKwqXe9wiIiI2sTklug4dmd9ova9Ys5W9aeeyNc7FNGhw9WxjN5KWzQiIiJnxOSWqB3SIWDf4S/U8YDES+DJ4sLHwmz0RW19sRrNJiIickZMbonakZ6/HHUNpQjwjVUfzXsys8kHcRFj1XFO8QZYNYveIRERER2DyS1RO/Ye+kzt+8dfBKPBBE8XFTwEZpM/6hsrUFy+W+9wiIiIjsHklqgNdQ1lyMxfrY77x8/SOxynYDSaERs2Sh3nlGxg7S0RETkds94BEDmrA7nfwqo1IDwoxaV626ampnbpNaJChiK3eINK/osr9iIiOKXTP4+IiMhRmNwStWH/4S/Vvm+P8+AKCgvK1X7u3LkOu2ZlZeUxt5mMXogJG4lDReuQU/yLSvwNBn4IREREzoHJLVErqmvzcaiwabnZfi6S3FaW16j9XQ/PxMhRAzp1rbWrU/H6wiWora1t9X5ZqS23ZDNqG0pQWnUAYYF9O/XziIiIHIXJLVEr0nK+gQYrokNHINg/Ca4kMTkCKYMTOnWN9LS8du83mXwQFTIMuSUbkFe6hcktERE5DX6WSNSK/Tlfqb2nrkjWEdEhQwEYUFlzCNV1BXqHQ0REpDC5JTpKRXU2cks2qcStT9xMvcNxWt5eQQgL7KeO80u36B0OERGRwuSW6Cj7cxarfY+IcQjwjdE7HKcWc2RJ3qKKPWhorNY7HCIiIia3REc7kLtE7fvEnaN3KE4vwDcO/j7R0DQLCst36B0OERERk1ui5iprDh/5iN2A3jHT9A7H6RkMBjXpTuSXbeeSvEREpDsmt0TNHMhdqvaxYaPh7xutdzguITywH8wmPzQ0VqKsKl3vcIiIyMMxuSVqJbntHTdd71BcakneyOBB6riwjKUJRESkL/a5JY+SmZmJwsLCVu+rt5Qgp3iDOq4uTMDmks1dusStO4kMHqw6TJRVZ6C+oUJ1UiAiItIDk1vyqMR24MAUVFc3reR1tNNnBOLyWyJwcE8d/nTu9JNentYT+XqHIdAvXvW8LaxIRY/wU/UOiYiIPBSTW/IYMmIrie38Z+egZ59jW3zVmH+ABQUY0GcU3vlsQKeWp/VEUcGDm5Lbsp2ICxujJpsRERF1Nya35HEksT16edpGSw22HGgqV+jfZxR8vUM7tTytJwoN7AtTwSrUN5ajoibL5ZYtJiIi98AJZUQASqsOAtDg5x153MSWWmcyeiE8qGnEu6Bsp97hEBGRh2JySyTJbeUBtQ8N7K13KC4tMniI2pdWpaHRwpINIiLqfkxuyeNZrA0or85Qx2EBffQOx6UF+EbDzztCrVhWUrlf73CIiMgDMbklj1dRnQWr1ghvcxD8fKL0DsflhQelqH1RxW69QyEiIg/E5JY8nnyELkIDenOGvwOEB/VXe+mcUNdQrnc4RETkYZjckkfTNOuRyWSst3UUH69g1fNWFFfs1TscIiLyMExuyaNV1uaqNmAmo489IaPOizhSmlDM0gQiIupmTG7Jo5VWNpUkhAT0hNFg0jsctxEW2BcGgwk19UWwGMr0DoeIiDwIk1vyWJqmobTqSAuwAJYkOJLZ5IsQ/57quNGYqXc4RETkQZjckseqayhVmwFGhPgn6x2O24kIbipNaDRmgfP0iIiouzC5JY9lm0gW5J8Ak8lH73Dcjozcmoze0Aw16DuEzy8REXUPJrfkscqOJLe2j8/JsYxGM8IC+6njMZMD9A6HiIg8BJNb8kiNljpU1hxWxyEBvfQOx+0XdDhlYgCsWr3e4RARkQdgckseqbw6Exqs8PUKg693qN7huK0gv3gYND/4BxpRWrtZ73CIiMgDMLklzy5J4Khtl5IV38zWRHVcWLNa73CIiMgDMLklj6NBQ1l1ur2/LXUtszVJ7UvrNqGugT1viYioazG5JY9jNRQfWZXMG4F+PfQOx+2ZtBAcOlgPDY1Iy/lG73CIiMjNMbklj9NozFX7YP9krkrWTX5ZVaX2+w4t0jsUIiJyc0xuyeNYDE3JLettu8/GH5qS28PFv6CyJkfvcIiIyI0xuSWPEhJhgtVY2nTMVcm6TUmBBUHeg1TF8/6cr/UOh4iI3BiTW/IoQ0b7qX2Abyy8zP56h+NRInxPV/t9h77QOxQiInJjTG7JowwZ05TcsiSh+4X7jYfRYEZh+Q6UVO7XOxwiInJTuia3CxYswJgxYxAUFITo6GjMmjULe/bsaXFObW0tbrnlFkRERCAwMBCzZ89GXl5ei3MyMzMxc+ZM+Pv7q+vcd999aGxs7OZHQ85OVshKGeGrjkO55G638zIGIyHyyOjt4S/1DoeIiNyUrsnt6tWrVeL6888/Y9myZWhoaMDZZ5+NqqqmySfirrvuwldffYVPPvlEnX/48GFcdNFF9vstFotKbOvr67F27Vr85z//wdtvv43HHntMp0dFzqq8bgd8fI0waL7w84nSOxyP1C/+ArXff+hLaJqmdzhEROSGzHr+8KVLl7b4WpJSGXndtGkTJk2ahLKyMrz55pt4//33ceaZZ6pz3nrrLQwcOFAlxOPGjcN3332HXbt24fvvv0dMTAxGjBiBp556Cg888ACeeOIJeHt76/ToyNnIIgLCZI1VK2dR9+sVcxbMRl+1iEZB2XZEhw7TOyQiInIzTlVzK8msCA8PV3tJcmU0d+rUqfZzUlJSkJSUhHXr1qmvZT906FCV2NpMmzYN5eXl2LlzZ6s/p66uTt3ffCP3JqOEpXWb1bHZGqd3OB7LyxyAnrFnqeN9hzmxjIiI3Di5tVqtuPPOOzFx4kQMGTJE3Zabm6tGXkNDQ1ucK4ms3Gc7p3lia7vfdl9btb4hISH2LTExsYseFTkLmcBUZ8lDQ70GkxatdzgerV+PI6UJh7+CVbPoHQ4REbkZp0lupfZ2x44d+PDDD7v8Z82bN0+NEtu2rKysLv+ZpK+M/BVqv3dbLQz6VuN4vMSoSfDxCkF1XT4OF63XOxwiInIzTpHc3nrrrfj666+xcuVKJCQk2G+PjY1VE8VKS5ua7ttItwS5z3bO0d0TbF/bzjmaj48PgoODW2zk3jLyl6v9jo01eofi8UxGb/SJO0cdszSBiIjcKrmVOkhJbD///HOsWLECvXq17D06atQoeHl5YfnypsRESKswaf01fvx49bXst2/fjvz8fPs50nlBEtZBg2RFJPJ0dQ1lyC1pmky2YwOTW2cqTTiQ8w0sljq9wyEiIjdi1rsUQTohfPHFF6rXra1GVupg/fz81P7666/H3XffrSaZScJ62223qYRWOiUIaR0mSeyVV16JZ555Rl3jkUceUdeWEVqizILV0DQL/MyJKMrL0DscAhAXfqpaJa6qNheZBavQK3aa3iEREZGb0HXk9rXXXlM1r5MnT0ZcXJx9++ijj+znvPDCCzj33HPV4g3SHkxKDT777DP7/SaTSZU0yF6S3rlz5+Kqq67C/PnzdXpU5Gwy81eqfajPKL1DoSMMBiP6xp2njrmgAxERuc3IbUeauPv6+uKVV15RW1uSk5PxzTffODg6cgcyGz8zf5U6ZnLrfAs6bD34T6TnfY/6hgp4ewXpHRIREbkBp5hQRtRV8ku2oLahBN7mYAR5p+gdDjUTGTwYoQG9YbHW4UBuywVdiIiIThaTW/KIFmBJ0WfAYDDpHQ41I6vE9Y9vWkp7T/b/9A6HiIjcBJNb8ogWYMlRTcs3k3Ppn3ChpLk4XPwzyqvZb5qIiDqPyS25rcqawyiq2A0DjEiMPkPvcKgVQX7xiI9oauu399BvE0WJiIhOFpNbcvuShJiwkfDzDtc7HGrDgISL1X5P9mcdmmRKRETUHia35LYyjrQAS4pmSYIz6x07HV6mAJRXZyC3ZKPe4RARkYtjcktuqdFSi0OFP6njnkxunZqX2R+942aoY04sIyKizmJyS27pUNE6NFprEeAbh/AgtgBzdgMSZqt9Ws5iNFi4RDIREZ08JrfkljLyjnRJiD5TtZwi59YjfCyC/BJR31ihElwiIqKTxeSW3I5MSsooWGlPbsk1luMdmHSZOk7N/EDvcIiIyIUxuSW3U1y5F5U1h2Ay+iA+coLe4VAHpSRcohbayC3ZhKKKPXqHQ0RELorJLbltSUJ8xAR4mfz0Doc6KMA3Gj2jp6pjjt4SEdHJYnJLbtsCLDmGJQmuZlDS5faet9LxgoiI6EQxuSW3UltfgrySTeqY9bauJyHqdLVqWX1jOdJyvtE7HCIickFMbsmtZBb8AA1WhAcNUEkSuRajwYSBiU0Ty3Zlvq93OERE5IKY3JJbycj/rQUYuaaUxN8fmVi2EYVlO/UOh4iIXAyTW3IbVmsjsgpWq2Mmt64rwDcGfWKbVizbnv623uEQEZGLYXJLbiO3dDPqGsrg4xWKmNCReodDnTC017Vqv+/wF6ipK9I7HCIiciFMbsltZOavUPukqDNgNJr1Doc6ISb0FESHDIfFWs/aWyIiOiFMbsn9WoCxJMHlyZLJttHbHRnvqiSXiIioI5jckluoqM5GccUeGGBEYtQZeodDDtAn7hz4+0Sjui4faTlL9A6HiIhcBD+7JaeXmZmJwsLCds/Jq2pKfgK9U7Brx4FWz0lNTe2S+KhjTub5D/c6E9V1H+LnnX9HRW6CGtGNjIxEUlJSl8RIRESuj8ktOX1iO3BgCqqra9o9709PRGPIaD+888ZPWPa/Ue2eW1lZ6eAoqT2FBeVqP3fu3BP+3sBgI/78b+lXnIY515+GPVtr4e/vh9TU3UxwiYioVUxuyanJiK0ktvOfnYOefWJaPUdDI6q8vpJmYLhi7u9x5ZzgVs9buzoVry9cgtpaLuvanSrLm96Y3PXwTIwcNeCEv7/OtAUNSMPdTw1B3p4BeOy+99TvBZNbIiJqDZNbcgmS2KYMTmj1vtLKA9ifY4W3OQiD+g5UH123Jj0tr4ujpPYkJke0+Rq2p64hGDvSD8JiLEBi3yFdEhsREbkPTigjl1dWdVDtQwJ6tZnYkuvy8QpWyymLetNuvcMhIiInx+SWXJqmaSitTlfHoQG99A6Hukhs+Gi1txhzEJfspXc4RETkxJjckkurqS9EQ2MljAYzgvxO/CNvcg1+3uEIC+yrjqdfEqJ3OERE5G7J7eOPP46MjAzHR0N0kiUJQf6JXJXMzcWFjVH7UZP8Ud3Af3+IiMiBye0XX3yBPn36YMqUKXj//fdRV1d3Mpch6rTSKpYkeAp/32iYrPEwGg3IrvxI73CIiMidktstW7Zgw4YNGDx4MO644w7Exsbi5ptvVrcRdZcGSw2qanPUcYh/T73DoW7gbRkEq1VDSe3PKCjboXc4RETkTjW3I0eOxN///nccPnwYb775JrKzszFx4kQMGzYMCxcuRFlZmWMjJTpK+ZFRWz/vSHh7BekdDnUDkxaMjaur1PGGvc/rHQ4REbnjhDKZrd7Q0ID6+np1HBYWhpdffhmJiYn46CN+dEhdhyUJnmnxB/LG2YiM/BXILd6kdzhEROQuye2mTZtw6623Ii4uDnfddZcayZW141evXo19+/bhL3/5C26//XbHRkt0hFWzoPxICzDpb0ueo+BwI6L8fqeO1+1eoN5UExERdSq5HTp0KMaNG4eDBw+qkoSsrCw8/fTT6Nu3qVWPuPzyy1FQUHAylyc6rqqaHFis9TCb/BDg2/qyvOS+4oMuhdnoi9ySjTiY+63e4RARkasnt7///e+Rnp6OxYsXY9asWTCZTMecExkZCavV6ogYiY5hW7ghxD8ZBgPbNXsaH1Mkhve+QR3/vPtp9UaHiIhInFRWYKutPVpNTQ3mz5/PZ5a6dcld8kwj+vxRTSYsq07Hzoz39A6HiIhcObl98sknUVlZeczt1dXV6j6irlTXUIba+mIABgT7J+sdDunE2xyIMf3vUscb9y1UvxdEREQnPXJrMBiOuX3r1q0IDw93RFxEbSo9Mmob6NcDZpOP3uGQjgYmXoqwwH6oayjF5v2v6h0OERG5WnIrpQiSvEpi279/f3Vs20JCQnDWWWepelyirlTGFmB0hCy5PH7gQ+p4W/pbKK/O0jskIiLSmflETn7xxRfVqO11112nyg8kobXx9vZGz549MX78+K6Ik0iRiUMVNdnqmPW2JJKiJiM+YiIOFf2E9XuewVkjX9I7JCIicpXk9uqrr1b7Xr16YcKECfDy8uqquIhaJSNzmmaBj1cIfL2OndRInkc+SZow8CF8suZc7D/8FYb1vA4xYSP1DouIiJy9LKG8vNx+LAs2SGcEua21jajLuyT492y17ps8U2TIYAxIuEgdr039Py7sQETkwcwnUm+bk5OD6OhohIaGtppY2CaaWSwWR8dJpH6/bPW2LEmgo53a/16kHV6M3JINOJj3LXrHTtc7JCIicubkdsWKFfZOCCtXruzKmIhaVVNXgAZLFYwGLwT5xesdDjmZQL84DOv9B2ze/zJ+3v1XJEdPgcnI0ikiIk/T4eT2jDPOsB9LzW1iYuIxo7cysiZL8RJ1ZQuwYP9ENUue6Ggje/8RuzI/UOUrqZkfYEjPq/QOiYiIXKHPrSS3BQUFx9xeXFys7iPqCrISlWBJArXF2ysIY/rdqY437FuI+oYKvUMiIqJuZnbkIg6yapmvr68j4iJqwYpaVNfmquOQgJ56h0M6S01NbfM+qzYAvqYeqK0/jCU/PYHE4DmtnhcZGYmkpKQujJKIiJw+ub377rvVXhLbRx99FP7+/vb7ZBLZ+vXrMWLECMdHSR7PYsxTe3+faLXsKnmmwoKmbixz585t97zh4/zwx0eikV78Ca65eCFKi46d5Orv74fU1N1McImIPDm5/fXXX+0jt9u3b1cLN9jI8fDhw3Hvvfc6PkryeI3GHLXnqK1nqyyvUfu7Hp6JkaMGtHmeBg011tXw9inCM/+eCF/L6Bb3p6fl4bH73kNhYSGTWyIiT05ubV0Srr32WixcuBDBwcFdFReRnckMWAxNI7estyWRmByBlMEJ7Z5TWTsVu7M+QqMpA0m9JsLfJ6rb4iMiIhebUPbWW28xsaVu02eQL2BohNnkhwCfGL3DIRcR6BuLsMD+6ji7cI3e4RARkTNPKKuqqsLTTz+N5cuXIz8/H1artcX9Bw4ccFR8RBgyxk/tuSoZnaiEyAkordyP8upMlFVlICQgWe+QiIjIGUdu//CHP+DNN9/E6aefjltvvRV33HFHi62jfvjhB5x33nno0aOHSloWLVrU4v5rrrlG3d58mz59+jHtx+bMmaNGkmXltOuvv151bSD3MWT0keSWJQl0gny8QhAdOtw+estleYmI3N9JjdwuWbIEixcvxsSJEzv1w2UEWCahXXfddbjooqZ14Y8myayUQdj4+Pi0uF8SW1kWeNmyZWhoaFD1wDfeeCPef//9TsVGzqGuMR+xiV6AZkCwPyf+0ImLCx+DgvKdqKkvREnlfoQH9dM7JCIicrbkNiwszL4Ub2fMmDFDbe2RZDY2NrbNXpdLly7Fhg0bMHp002zol156Ceeccw7+9re/qRFhcm2ldZvV3qhFwGxq+caGqCOkVjsmdARyin/B4eKfERbYR++QiIjI2coSnnrqKTz22GOorq5GV1u1ahWio6MxYMAA3HzzzSgqKrLft27dOlWKYEtsxdSpU2E0GlXP3bbU1dWhvLy8xUbOndyarZxIRicvJvQUmIw+qK0vRnHFXr3DISIiZxu5fe6555CWloaYmBj07NkTXl5eLe7fvLkpIeksKUmQcgVZ0ld+3kMPPaRGeiWpNZlMyM3NVYlvc2azWY0qy31tWbBgAZ588kmHxEhdx2KpQ3n9DnVs0lofvSfqCBn1jwk7BYeL1uFw8XqY8Tu9QyIiImdKbmfNmoXucNlll9mPhw4dimHDhqFPnz5qNHfKlCknfd158+bZV1sTMnKbmJjY6XjJsXJKNsCq1aK0qBEBQSF6h0MuTkoT8kt+RV1DKWDM1DscIiJypuT28ccfhx569+6t1oPfv3+/Sm6lFldakTXX2NioOii0Vadrq+M9emIaOZ/M/FVqv2tzLRLOYAsw6hyT0Rux4aNV14R60x4YTqooi4iInJ1L/fOenZ2tam7j4uLU1+PHj0dpaSk2bdpkP2fFihWq7+7YsWN1jJQcIbOgKbndubFpyVWizooKGQqT0ReaoRKnTPTXOxwiInKWkVuLxYIXXngBH3/8MTIzM1FfX9/ifhk57QjpRyujsDYHDx7Eli1bVM2sbFIXO3v2bDUKKzW3999/P/r27Ytp06ap8wcOHKjqcm+44Qa8/vrrqhWY9N2VcgZ2SnBtFdXZqm2TvP/avYXJLTlu9FbKE6RrwrTfh7DvLRGRGzqpkVtJOp9//nlceumlKCsrU/WrMvFLuhQ88cQTHb7Oxo0bMXLkSLUJuY4cSycGmTC2bds2nH/++ejfv79anGHUqFH48ccfW5QUvPfee0hJSVFlCtIC7LTTTsM//vGPk3lY5ISjtkFeA1BTxQSEHEct6qCZkdDLG6V1v33qQ0REHjxyKwnlP//5T8ycOVMls5dffrma6CUTvn7++WfcfvvtHbrO5MmT2x05+fbbb497DRnh5YIN7pvchvjKG5+leodDbsRs8oWXtTcaTHtxuPJTaNoNXNaZiMjTR26lzZZ0LxCBgYFq9Face+65auUyos62AMsuXKuOQ31O0TscckNeln5oqNdQ2bBXtQcjIiIPT24TEhLUkrdCRmy/++47dSwrhbELAXVWTslGNFqq4e8TBX9zL73DITdkhC/Wflepjrcc+Kfe4RARkd7J7YUXXojly5er49tuuw2PPvoo+vXrh6uuugrXXXedI+MjD24Blhh1Bj8upi6z4gtZmdCAzIKVKKn4bWIrERF5YM3t008/bT+WSWVJSUlq1TBJcM877zxHxkceXG+bFDUZ5W0vNEfUKQU5jQjzORUldeux9eC/MHnYb/+uERGRhyW3R5N+s7IRdVZFzSGUVO6DAUYkRp2OnblpeodEbiwu8HyV3O499BlOHXAv/H0i9Q6JiIj0SG7feeeddu+X8gSizpQkxISdAh8vLrlLXSvQK0W1Bssv3YqdGe9iTP+79A6JiIj0SG7vuOOOFl/L4gnV1dXw9vaGv78/k1tyQEnCGXqHQh5AarqH97oBy369FTsy/ouRfW5WrcKIiMjDJpSVlJS02GSlsT179qgFFD744APHR0kewWKtx6EjLcCSoifrHQ55iN6x0xHkF4/a+iLsO/SF3uEQEZEz1NwKmUwmE83mzp2L3bt3O+qy5EFyijeiwVIFP+9IRAYP1jsc8gCpqalqH2qeggq8g19SX0d1Qd8T7tIRGRmpJtYSEZEbJbfqYmYzDh8+7MhLkgeWJCRGTYLBcFIfKhB1SGGBtAGDejMuAoKM+Mvb8QAO4pK5E3Bwd/0JXc/f3w+pqbuZ4BIRuWpy++WXX7b4WpbQlUUdXn75ZUycONFRsZGHTiZjSQJ1tcryGrW/6+GZGDlqgDquNW1CI9Ix76+nwtdyaoevlZ6Wh8fuew+FhYVMbomIXDW5nTVrVouv5SO8qKgonHnmmXjuueccFRt5kMqawyip3NvUAixykt7hkIdITI5AyuAEdVxV643UrHRYTIfQp28YvMwBeodHRETdldxarVa1LygoUB0SQkLYsokcU5IQHToCvt6heodDHijANxoBvnGoqs1BQdkO9IgYq3dIRER0Ek64sLG0tBS33HKLmkARGxuL8PBwtZ83b55qB0Z0MliSQM4gOmSY2heUbYdVs+gdDhERdfXIbXFxsVqJ7NChQ5gzZw4GDhyobt+1axdeeuklLFu2DGvWrMG2bdvw888/4/bbbz+ZmMgDW4BlF/5kX3KXSC9hQf2QVfiD6tpRVpWOsMA+eodERERdmdzOnz9flSGkpaUhJibmmPvOPvtsXHnllfjuu+/w97///URjITeSmZmpJth0RFnddpVMmI0hyEqrR7Zh8zGtmoi6g9FgQmTwIOSWbFKjt0xuiYjcPLldtGgR3njjjWMSWyGlCc888wzOOeccPP7447j66qsdGSe5WGI7cGAKqqubZqQfz4XXhuKs2SH46ftDuPH5Ma2eIwuFEHUH6bEsyW15dQbqGsrh4xWsd0hERNRVya20+xo8uO3m+kOGDIHRaFTJLXkuGbGVxHb+s3PQs8+xb4SOVm1eBivKMWnSmZhyWmKL+9auTsXrC5egtra2CyMm+o2vdxiC/BJQUZONwvJdiI8Yp3dIRETUVcmtTCJLT09HQkJT65yjHTx4ENHR0SdySXJjktja2iy1pb6hAtvSpaG+AQP7j4DZ5HdMD1Gi7hYZMkQlt0XlO9Ej/FQuKkJE5EJO6F/sadOm4eGHH0Z9/bGr99TV1eHRRx/F9OnTHRkfubmy6gy1D/CNOSaxJdJLWEAfmIy+qG+stP+OEhGRm04oGz16NPr166fagaWkpKjVyWTSz6uvvqoS3HfeeafroiW3IzPSRYh/T71DIbIzGs2ICE5BfukWFJbtRGhAL71DIiKirkhupRxh3bp1+NOf/qT62kpia1uh7KyzzlLL73L5Seoo6SNaXpOljkMCkvUOh6iFqOAhKrktrTqA+sYqeHPFMiIi91yhrFevXliyZAlKSkqwb98+dVvfvn3VYg5EJ6KyJgdWa70qR/D3Of7EM6Lu5OcTYV+xrKh8F+LCW+/kQUREbrD8rggLC8Opp57q2GjIo5RXN5UkBPsnq9F/ImcTFTLEvhxvbNho/p4SEbkATgEmJ6i3ZUkCOaewwH4wGb1R31iOiiMlNERE5NyY3JIupAVYTX2ROg5mvS05KZPRC+FBKepYRm+JiMj5MbklnVuAxcKLLcDIyUsTRGllGhoaq/UOh4iIjoPJLelCljYVLEkgZ+fvEwV/n2hosKKoYrfe4RAR0XEwuSV9WoBVZ6rj4AD2tyXXGb0tLNthb4FIRETOicktdbuq2lxYjrQAC2ALMHIB4YH9YTSYUdtQon5/iYjIeTG5Jd26JAT7J7G1ErkEk8lHdU4QheU79Q6HiIjaweSWuh2X3CVXFBkyWO2LK/bCYm3QOxwiImoDk1vqVvWNlaipL1THbAFGriTQtwd8vEJg1RpQUtm0OiMRETkfJrfUrcqrjrQA84lhCzByKVJCExk8SB0Xlu/SOxwiImoDk1vqVmW2JXfZJYFcUETQQElzUVlzCLX1JXqHQ0RErWByS91G06z2FmAhTG7JBXl7BamJkIKjt0REzonJLXWbytqcphZgRl8E+ETrHQ7RSYkMbppYVlSeqt6wERGRc2FyS93fAiwgGQYDf/XINYUG9lY9mhssVfZlpImIyHkww6BuY0sE2AKMXJnRYEJ40AB1XMTSBCIip8PklrpFfWMVauoK1LGtZpHI1UsTSisPQEOd3uEQEVEzTG6pW5QfKUnwlxZgZn+9wyHqFH+fSPj7REODFQ3GpkmSRETkHJjcUveWJHDhBnKz0dtGY9MbNyIicg5Mbql7W4Cx3pbchNTdGgwmWI3lSOrrrXc4RER0BJNb6qYWYHVNLcB8Y/QOh8ghzCYfhAX2VccTzg7UOxwiIjqCyS11ubIjS+7KRDK2ACN3YluOd8wZAbBonFhGROQMmGlQlys/suQuVyUjdxPklwiD5g+/ACNKan/WOxwiImJyS12tobEK1fYWYJxMRu7FYDDAy9L0e11QvULvcIiIiMktdVeXBGmbxBZg5I7M1mRYrRrK67ejvDpL73CIiDwek1vqliV3WZJA7sqIAOzZWquOd2d/onc4REQej8ktdRlpcF/OJXfJA6xbVqn2e7I+hVWz6B0OEZFHY3JLXcZiKILFWg+zyY8twMitbVlXDZMhAJW1h5FduEbvcIiIPBqTW+oyFmOOfdSWLcDInTU2AJF+Z6jjXRnv6x0OEZFHY8ZBXabRltwG9NI7FKIuF+1/ttqn53+Pqto8vcMhIvJYuia3P/zwA8477zz06NFDtdRZtGhRi/s1TcNjjz2GuLg4+Pn5YerUqdi3b1+Lc4qLizFnzhwEBwcjNDQU119/PSorm+rfSD9RPczQDJUwwIgQ/yS9wyHqcv5eSYgNGwNNsyA16yO9wyEi8li6JrdVVVUYPnw4XnnllVbvf+aZZ/D3v/8dr7/+OtavX4+AgABMmzYNtbVNM5OFJLY7d+7EsmXL8PXXX6uE+cYbb+zGR0GtGTLaT+0D/eJhMvnoHQ5RtxicPEftUzM/5MQyIiKdmKGjGTNmqK01Mmr74osv4pFHHsEFF1ygbnvnnXcQExOjRngvu+wypKamYunSpdiwYQNGjx6tznnppZdwzjnn4G9/+5saEW5NXV2d2mzKy8u75PF5sqFjm5LbUJYkkAfpHTsdP3mFqYllmfmr0DNmit4hERF5HKetuT148CByc3NVKYJNSEgIxo4di3Xr1qmvZS+lCLbEVsj5RqNRjfS2ZcGCBepati0xMbGLH41nabRWod9gX3XMelvyJGaTLwYkXKyOd2W+p3c4REQeyWmTW0lshYzUNidf2+6TfXR0dIv7zWYzwsPD7ee0Zt68eSgrK7NvWVlcVciRyuq2wmQ2wKAFwtc7VO9wiLrVoKTL1T4jfyUqqrP1DoeIyOM4bXLblXx8fNQEtOYbOU5p3Ua1N1vj9A6FqNuFBvZGfMQEtYwJJ5YREXU/p01uY2Nj1T4vr2VLHfnadp/s8/PzW9zf2NioOijYzqHuJZNoSus2q2MTk1vy9IllWR/CYm3QOxwiIo/itMltr169VIK6fPnyFhO/pJZ2/Pjx6mvZl5aWYtOmTfZzVqxYAavVqmpzqfvll25Bo7Uc1ZVWmLQIvcMh0kXPmLPg5x2J6roCZOT99m8YERG5eXIr/Wi3bNmiNtskMjnOzMxUfW/vvPNO/PnPf8aXX36J7du346qrrlIdEGbNmqXOHzhwIKZPn44bbrgBv/zyC3766SfceuutqpNCW50SqGtl5K1Q+12ba1SPWyJPZDJ6IyXx9+p4JyeWERF1K12zj40bN2LkyJFqE3fffbc6loUbxP3334/bbrtN9a0dM2aMSoal9Zevb9NMfPHee+8hJSUFU6ZMUS3ATjvtNPzjH//Q7TF5uoz8plGqHb/U6B0KkRNMLDMgu/BHlFVl6B0OEZHH0LXP7eTJk1U/27bI6O38+fPV1hbpjPD++1zL3RlU1BxCUcVu9Z5p52Ymt+TZgv0TkRg1CVkFq7Er832MHzhP75CIiDwCPzcmh8nIbypJCPTqj6pyq97hEOlucFLTxLLd2Z+g0fLbyopERNR1mNySw+ttw3x/W1SDyJMlR5+JQN8eqK0vxv7DX+kdDhGRR2BySw7R0FiNQ0U/qeNQn1F6h0PkFIxGM4b0vFIdb09/q90yLCIicgwmt+QQ2UU/wWKtR5BfPPzMSXqHQ+Q0BiZeDrPRF4Xlu5BTskHvcIiI3B6TW3KI9Nzv1D45eqqaCEhETWQJ6n7xF6rj7Qff0jscIiK3x+SWOs1qbUR63vfquHfsNL3DIXI6Q3tdo/YHc79VXUWIiKjrMLmlTssp/gW1DSXw9QpDXPipeodD5HQiggYgPmICNFixI/0dvcMhInJruva5JfdwMK+pJKFnzFQ1gYbIE6WmprZ7f4B1EoC12H7wvzBXTYLJ6NfqeZGRkUhKYt06EdHJYiZCnSKzvw/kfquOe8VO1zscom5XWFCu9nPnzm33PClFf+z1HoiJr8L982dg1VcVrZ7n7++H1NTdTHCJiE4Sk1vqlIKybaiqzYGXKQAJkRP1Doeo21WWN63Gd9fDMzFy1IB2z20wHkAdfsWlNybg2munwXBUZVh6Wh4eu+89FBYWMrklIjpJTG6pUw7kLlX7pOjJMJt89Q6HSDeJyRFIGZzQ7jkWawy2p+9Go6UaMUm1CA/q323xERF5Ck4oIweVJLBLAtHxmIxeiAoZpo5zSzZzUQcioi7A5JZOWknlfpRVHYDR6I3kqN/pHQ6RS4gOGQaDwYTqujxU1h7WOxwiIrfD5JZOWlrO12qfGHkavL2C9A6HyCV4mf0RGTRQHecWb9Q7HCIit8Pklk6KfJy6/3BTctsn7ly9wyFyKTFhp0j/BJRVp6O6rkDvcIiI3AqTWzopxRV7UFqVBpPRG71iztI7HCKX4usdhvDAfuo4h6O3REQOxeSWTsr+IyUJSVGTWZJAdBJiw0erfUnlPtTWl+gdDhGR22BySydVkpBmL0mYqXc4RC7J3ycKIf495S8KuSWb9A6HiMhtMLmlE1ZYvlPVCpqMPmrJXSI6OXHhY9S+qDwV9Q2tr1hGREQnhsktnXSXhOToM+FlDtA7HCKXFejXA4F+8dBg5egtEZGDMLmlk+iSsFgd9+3BLglEndUjfKzaF5TvgBXVeodDROTymNzSCckr3YyKmiyYTX5I4sINRJ0W5JfQNHqrWVBv2q13OERELo/JLZ2QvYcWqX3v2OmqGT0RdY7BYEB8xHh13GhMR3i0Se+QiIhcGpNb6jCLtR77D3+ljvvHX6h3OERuI8gvHkF+iYBBw/RLQ/QOh4jIpTG5pQ7LLFiNuoZS1cIoPmKC3uEQuZX4iHFqP35qIGobc/UOh4jIZTG5pQ7bm/252vfrcQGMRrPe4RC5XecEkzUGJpMBhyo/0TscIiKXxeSWOqSuoQwZ+d+r437xs/QOh8gteVsGqX1hzWqUVh7QOxwiIpfE5JY6JC1niaq5DQvsj8jgwXqHQ+SWTFo4tv8i7cCs2Lhvod7hEBG5JCa31CF7D32m9v3jZ6nZ3UTUNb76b6na7zv8JYor9ukdDhGRy2FyS8dVVpWBnOJfpGmRSm6JqOtkH2hAmI8s7KBh474X9Q6HiMjlMLml49qd9bHaJ0adria9EFHXSgi6VO3TchajoGyH3uEQEbkUJrfULqu1EXuyP1XHAxOb/oNLRF3L36sn+vY4Xx2vS12glr0mIqKOYXJL7coq+AFVdXnw9QpDz+ipeodD5DHGDrgPRqM3DhX9hMyCVXqHQ0TkMpjcUrtSsz6yt/8ymXz0DofIYwT7J2Jo8tXq+OfdT8OqWfQOiYjIJTC5pTZV1xUgI3+5OmZJAlH3G9XvVvh4haC4Yg/2ZDWVBxERUfuY3FK7K5JZtUZEhwxHRHCK3uEQeRxJbEf1vU0d/7L3OTQ0Sg9cIiJqD5NbapVMYNmV9aE6Tkn8vd7hEHmsIclXIsgvAdV1+dh68F96h0NE5PSY3FKrDhWtRVnVAXiZAtAv/gK9wyHyWFLrLpPLxJa0N1S5EBERtY3JLbVqZ8Z/1b5//IXwNgfqHQ6RR+vb4zxEhQxDg6UKG/dyWV4iovYwuaVjVNbm4mDed+p4cPJcvcMh8ngGgxETBj6kjndlfYCSyv16h0RE5LSY3NIxUjM/hKZZEBs2hhPJiJxEj4hxSI6eqv4216U+rXc4REROi8kttWCxNiA18wN1PISjtkROZfzAB2E0mJGR/z0y87mwAxFRa5jcUgsZecvVimR+3pHoHTtd73CIqJmwwL4Y2vMadbxm15OwWOr0DomIyOmY9Q6AnMv29Lft7b+4IhmRPlJTU9u8z2ydDC/jpyirOoglPz2FHoEXtXluZGQkkpKSuihKIiLnxOSW7ArLd+Fw8c8wGEwsSSDSQWFBudrPndv+39/YMwNw9d2R2Jf/DuZe9DTKilpfmtff3w+pqbuZ4BKRR2FyS3bbD76l9n1iZyDQr4fe4RB5nMryGrW/6+GZGDlqQJvnadBQY10FX79iPPvv8fC1nHrMOelpeXjsvvdQWFjI5JaIPAqTW1Jq6oqw7/AX6nhor2v1DofIoyUmRyBlcEK751TVTkNq1gdoNGUhPnksgvziuy0+IiJnxgllpOzKfB8Waz2iQ4YjJvQUvcMhouMI8I1GVPAQdSydEzTNqndIREROgcktqaR2R8Y76nhor+tgMBj0DomIOiA+cgJMRl/U1BeioGy73uEQETkFJreEtMOL1Xr1/j7R6BM3Q+9wiKiDzCY/xEeMV8eHitahobFa75CIiHTHmlsPp2kafj3wujpODJ2FrVt2dGkbIyJyrKiQISgo34GaugJkF65Br9iz9Q6JiEhXTG49XGb+ShRX7IHZ6I9LZvwFxYUPO+zalZWVDrsWEbXOYDAiOep32J39MYoqUhERPBDB/ol6h0VEpBunTm6feOIJPPnkky1uGzBgAHbv3q2Oa2trcc899+DDDz9EXV0dpk2bhldffRUxMTE6Rex6bKO2UX5nobjw75j/7Bz07NO552/t6lS8vnCJen2IqOsF+sUhKmQYCsq2ISN/OQYnsU81EXkup05uxeDBg/H999/bvzabfwv5rrvuwuLFi/HJJ58gJCQEt956Ky666CL89NNPOkXrWnKLNyGn+BcYjd6IDTgPwN9VYnu8FkTHI/01iah7xUdMQGllGuoaytTfNcDetkTkmZw+uZVkNjY29pjby8rK8Oabb+L999/HmWeeqW576623MHDgQPz8888YN26cDtG6ll8PvKb2/eMvhHdjuN7hEFEnmE0+SIqejLScxcgt2QRfQ4jeIRER6cLpuyXs27cPPXr0QO/evTFnzhxkZmaq2zdt2oSGhgZMnTrVfm5KSopaiWfdunXtXlNKGMrLy1tsnqa4Yh/S82RE3IARvW/UOxwicoDQgD4IDegNDVbUmTbC6PT/whMROZ5T/9M3duxYvP3221i6dClee+01HDx4EKeffjoqKiqQm5sLb29vhIaGtvgeqbeV+9qzYMECVcZg2xITPW/yxZYDb6h9r5izERbYR+9wiMgBpEd1UvTvYDL6wGosxdSLgvUOiYio2zl1WcKMGb/1XB02bJhKdpOTk/Hxxx/Dz8/vpK87b9483H333favZeTWkxLcyprD2HdokToe2ecmvcMhIgfyNgciMWoS0vOWYeacUFQ3ZAHgqoNE5DmceuT2aDJK279/f+zfv1/V4dbX16O0tLTFOXl5ea3W6Dbn4+OD4ODgFpsn2XrwTVi1RvQIH4eYsJF6h0NEDhYRNBAmayy8vAw4UPYyrNZGvUMiIuo2LpXcSt/UtLQ0xMXFYdSoUfDy8sLy5cvt9+/Zs0fV5I4f37RiDx2rtr4UuzI/UMcctSVy3/IEn8ZTUF1pRVXDPmxOe1XvkIiIuo1TJ7f33nsvVq9ejfT0dKxduxYXXnghTCYTLr/8clUre/3116vygpUrV6oJZtdee61KbNkpoW07M95Fo6VaNXpPjDpD73CIqIsY4YePXy9Wxxv3LURe6Ra9QyIi6hZOndxmZ2erRFYWbvj973+PiIgI1eYrKipK3f/CCy/g3HPPxezZszFp0iRVjvDZZ5/pHbbTknXnt6W/pY5H9r5Jje4Qkfv6ZVUVInxPg6ZZsPzXO9HQWKV3SEREnj2hTFYea4+vry9eeeUVtdHx7ch4F7X1xQj2T0KfuJl6h0NE3aBnyI2oRRrKqtPx064/Y/KwBXqHRETkucktdYzUGRcWFrZ7jsVagy0FTW8CIr3Ox5Yt21rcn5qa2qUxEpE+zMZATBn+HL5cPwepWR8gPmIc+sVfoHdYRERdhsmtGyS2AwemoLq6pt3zzpodjAuvDUP+4Qbcev59sFrbnrRHRO4lPnICRvW9FZv2v4RV2+chMmQwwgL76h0WEVGXYHLr4mTEVhLb+c/OQc8+Ma2eo6EBVV5LAdQjMXo83v40+Zhz1q5OxesLl6C2trYboiai7ja6/53IKdmIw0Xr8N3mW3DRxEXwMp18v3AiImfF5NZNSGKbMjih1ftyijegqqgePl6hGNJ3PAyGY+cRpqfldUOURKQXo8GEs0YsxMdrzkFxxR78sP1hnDn8OU4sJSK349TdEqjzLJY65JZsVsc9wse2mtgSkWfw943GWSNfgsFgwt5Dn2HrwX/pHRIRkcMx03FzeWVbYbHWwtcrDOFB/fUOh4h0Fh8xHhMHPqqO16X+HzLyV+odEhGRQzG5dWONljrkHRm1jQs/laO2RKQM6Xk1BiZeriryv//1dhRX7NM7JCIih2HNrRvLL90Ci7UOvt7hHLUl8lBttfkL1GYhyHsrKup34fM1l2NQ5P/BxxTZ6rmRkZFISkrq4kiJiByDya07j9qW/qqOe3DUlsjjFBaUq/3cuXPbPCcg2Ih7/hqL2MRCLNl4DZ5/IA9VFcf2CfT390Nq6m4muETkEpjcuqn80l/to7Zhgf30DoeIullleVPv67senomRowa0eZ4V1ajRViEuCXjuveHwazwdhmb/aZBOKo/d955qO8jklohcAZNbN9TQWI1c+6gtOyQQebLE5Ig22wTa1NRFYHf2p7CgGIbgX9CvxwUwmXy6LUYiIkdi1uOGcko2wGqth79PNEdtiei4/Hwi1JK8JqM3KmtzsPfQ52i0cEEXInJNTG7dTF1DOQrKtqvj+IgJbNBORB0S6BuL/vGzYTb6oqouD3sOfYb6xiq9wyIiOmFMbt2MLK2paRYE+SUiJODYZXaJiNoS4BuNAQmzYTb5oaauAKlZH8JiKNU7LCKiE8Lk1o1U1xWgqGK3Ok6InKh3OETkgvx8IpGS8Hu18EtDYyVqzKswfJyf3mEREXUYk1s3oUFDduEadSx1tgG+MXqHREQuytc7FCmJlyLYPwkwWPDHR6KRXvYm63CJyCUwuXUTFkMuyqsz1ZrxHLUlos4ym3xU1wQvS1/1dV71YvzvpwtQVN76ohBERM6Cya0bMJqAOvM2dRwTOgI+XiF6h0REbkDaCPpYhuPlx/PgZQxFccUefLLmXKzZ+STqGsr0Do+IqFVMbt3ApHOCoBkq1SSQuLAxeodDRG5m16ZaDI18Hr1ip6sJq9vT38L7q87E9oNvs1SBiJwOk1sX12itwMwrmkZq4yPGs/E6EXUJL1Mopo96Heee+i7CAvuitr4Ia3Y9gXdXTMTm/a+gpr5Y7xCJiBQmty4uq+J9BASZYLQGIzJ4sN7hEJGbS4w6HZecvgSnD3kKQX4JKsldv+dZvPP9WCzd+EcczP0ODZampX+JiPTA5XddWH7pNuRXf6eOvS0juMwuEXULk9ELQ5KvxMDEy5B2+GtsPfgmCst34GDet2ozGX3UJ0mJUZMQEzoSEcEDYTb5qu/NzMxEYWGhQ+KIjIxEUlKSQ65FRO6Dya2LsmoW/LjjUdUE7JdVVThzQpTeIRGRBya5/RMuVFtRxR7syf4f0nIWo7LmEDILVqlNGA1eiAhOgZ+pD5556h3s31WJ3OwGWC2d+/n+/n5ITd3NBJeIWmBy66JSMz9EftlWmAz++OzNbJw5Qe+IiMiTRQQNwISBD2F8yjyUVO5DRv4KHC5ar/6dqq0vPrIs+HZcdkswgGBAM8KoBcGohcKohajNpIXBAK8O/bz0tDw8dt97ahSYyS0RNcfk1gVV1xVi/Z5n1HFC0GUoL3lc75CIiBSDwYDwoP5qG9nnJmiahoqabOSXbsX2vd/hx/Ufo9/gQMDQCKuhDFa0bCnm5x2BQN84BPknIdg/0V7OQETUUUxuXdCanY+rHpNSxxbjPwMAk1si6lqpqZ1dvKEHqg+NxQsPvoT/fHYFevcPVkuGy5v1mrpCVNflo76xAjX1RWorKN8hqTICfGNVdwbZfLxk1JeIqH1Mbl3MwdxvVU2brET2u2HPICutQe+QiMiNFRaUq/3cuXMdds2qyir4eCWqBWckabWpb6xCVW0OKmoOqRUXpZxBvpYtu/BHBPjGISp4MMKC+jssFiJyP0xuXYiM1v6w4xF1PKL3jYgKGYosbNY7LCJyY5XlTW297np4JkaOGtCpa61dnYrXFy5BbW3rCz94mwPgfWSUVtQ3VKC06gCKK/epSWq2RDez8AeYTAmIiuN/wojoWPyXwYX8tOsp9TFeaEBvjO53h97hEJEHSUyOQMrghE5dQyaBnQhvryBEhw5Xm4zqFpWnqpZj8kbfajqAx9/ogb3Ff0V86Ty19DgRkWBjVBdxIHcp9mR/qmrQfjfsWU6yICKPIqO6ceGjMST5avSPvxAmayyMRgNK6tbjs59m4ZsN16OgTOp0icjTMbl1AZU1OVi17UF7OUJs+Ci9QyIi0q0bQ7B/EvwaJ2L+zYcR6TcZBhiRkb8cn645F0s33YSi8t16h0lEOmJy6wKLNSzfejfqGkpVje2pA+7ROyQiIqeQm9WAPqG347Izvke/HheoT7YO5i7Fxz/OwLLNt6Kkcr/eIRKRDpjcOrktaa/jcNE6mE3+mDpiIUxGb71DIiJyKqGBvTF15EJcOulb9ImbqVZu3J/zNT5afTZWbL0X5dVZeodIRN2Iya0Tyy5ci1/2PKeOTxv8hPoHnIiIWicLR5x9yiu45PRv0DPmLGiwqrkKH6w6Ez/seBRVtSc2oY2IXBO7JTipiupsLPv1VvWPc//4i5CScIneIRERucziEjHGmxEQMQVZFe+jvH4bdma8i10ZHyEmYDp6BF4EL2PLBSEiIyO5jC+Rm2By64QaLbVqUoQ0MI8MHoIzhv6fmkRBREQnvrhEv6E+OP/KUPQZBORWfYn0gkVY8UU5li8qR02Vps7x9/dDaupuJrhEboDJrZPRNCtWbXtA9XL09Q7H9FGvs+0XEVEnF5fQoMHSkIt60y74+pfinMtDcc5lkfCy9kLegRA8ctf/UFhYyOSWyA0wuXUyP+/+K/Yd/gJGgxlnjXwZQf6da5pOROTOTmxxiURo2miUVu7HoeKf1adjDaZ9CO9rwLX3RaKyXrornNLFERNRV2Ny60S2HXwLWw68oY7PGPY0EiIn6B0SEZFbkRKvsKB+CA3si7LqdOSVbEZFTTbGnBGAnUX3o3jdpxiSfKWakMZPzYhcE5NbnWRmZqqPwGyKatZgf+kL6jgh6ApU5/fG5vzNJz2ZgoiI2k9yQwN6qW3nrh1Y9eMXGHdmCHKKf1Gbj1eI6p2bkniJmvvAeQ9EroPJrU6J7cCBKaiubqoZGz3JH9fcEwmjyYAfFlfgw9cWAJCt4yorK7soWiIi92bSQvGf54swZdR8BMcfQGH1KtQ1FGJHxjtq8zcnI9LvTIT7jYePKfK412PnBSJ9MbnVgYzYSmI7/9k5iO9XhzrTBllYB2ZLT8w46xScc1bHRwjWrk7F6wuXoLa2tktjJiJy984LV825Re0NRiBluC/GTQ3EiPH+qEYGMiveUtuB1FpsXlONX3+qRkmhpdXrsfMCkb6Y3Ooovl8V6sxb1HFk8GAkR0854Y++0tPYlJyIqKs6L2ioR2NjFhqMWbAai9B7oK/aLr4hHEZrOMzWeJitCTDC3/5v8mP3vcfOC0Q6YnKrU7uvWdeEos78q/pa6rmSo89kTRcRkVN2XmhaHbK+sRIllftRUrEPlbWHYTUWo142bEeAbyxCA/ogCQHdHjcRtcTkVocFGmTi2NkXh6ive4SPQ1z4qUxsiYicnLc5EDGhI9QmiW5pZRqKK/ehsuYQqmpz1QZv4LHXeiCz/B30KNYQEzYSBqlzIKJuw+S2m+07/CWKa3+CpVGDP8agR8RYvUMiIqKTSHSjQ4errb6xSvXOLa06gPKqLMQmeiGnahE+X7cIft6RSI6Zgl4xZyMhciLbixF1A76d7GYpCZcgxn8mXnosH17WZL3DISKiTvI2B6gkt3/8hQhoOA9v/rUAEb6nw9schJr6QuzO+ghLNl6Pt5aNxNKNf8Tu7E9RU1+sd9hEbosjt91Myg96hlyPvdte1TsUIiJyMAO8sOnHavQNuwvDRwzB4aL1SM9bhvS871Wd7sG8b9UmZ0aFDEVi5OlIjDodMWGnwGT01jt8IrfA5JaIiMjBfltgJwABmIVBoReguvEASmo3oKT2F1Q3pqOgbJvaNqe9AqPBF8HeQxDsPRiB3ikI8OqN6Kg4dlwgOglMbomIiBzcM3fu3LntnhcSbkLKCF8MHCmbH4JCa1Fat1FtoqFeQ/aqBkw57Wr0Sz4DkcGDEOSXwMlpRB3A5JaIiKgbeua2RYMGa0MZLIY8WIxFsBqK4eVdh14p3jhQ+IHahNnkh/DA/ggPkm0AQgP7qIQ3yC8eXuamPrtExOSWiIioG3vmtvkdAIaoI03TkLprN157+X3c98jlsJoPqf66jZYa5JdtVdvRfL0jEOyXgEC/eAT4RsPPOwJ+PhHw9Q5XHRvk2M87HN7mYLaeJLfH5JaIiMiJSPJpRBDWr6hCr2dvximnnAKrtRFl1RkortiL4ordKKrYg/LqDFRUZ6O+sQK19UVqay3xbXFtmGE2BsFkDIDZEACT0f/IPgAmQwDMRv8je/na/8jtPjA226Kj4tEzuWlhCyJn5DbJ7SuvvIJnn30Wubm5GD58OF566SWceuqpeodFRETkgIlpNjEwIQbRhjMQLYuhBQCN1irUWfJRZylAvSUfDZZSNFjL0WAtQ6O1DLUNxaiszoevvxEaGtFgLVHbSZNV33cYYTL4wmjwbpH4Gg1eqmOE7JsfGwzmY7+GF4ICQxEZGas6Rdg2o9EbZqMPTLKZmr42HbPJ/d5OX4OcmZmplmJ2hMjISIdNMMx0UFyOjMmR3CK5/eijj3D33Xfj9ddfx9ixY/Hiiy9i2rRp2LNnD6Kjo/UOj4iIqEsmpp2IB5+6ACmD46AZ6qGhQRYUhmZoOHLcYD+WvfrafmxRSbHsYdCOXM0Ki1attk6pAJBz8t9ugAkGSaRhbkqcjT5HEu5mG2wJuO22lufI9zWVashmRFBQMCIiIiDj55I8G2CAVbPAam2AVWtQo+gWtZevG9XXVq3+yL4RliO3V1aU4cuvFkGDBSaTASYzYDQaYDSpQmv5HzTZHzmwHWvWpr3VqsFqlb3cpsFoMOGiiy5W8TU9btmM6nbbcfPboB6PZi91sR2XlZWpAcHGxoamU9SZBtirVWy3NatesR3b9hYL1GJU8iZl/sP/xsiB58OZuEVy+/zzz+OGG27Atddeq76WJHfx4sX497//jQcffFDv8IiIiLp8Ylpb1q5OxesLlyA6JgSDBvc/6etIgvTtVxux4IkPcct9Z2HIsGRoBsuR5Ff2jdAM1qYkGFaZJvfbsbq95X3FRWXYvzcbZi9Dy80M+7HXUfd5ebesF5afq0niabtBLt9ZZQCyHXAdAKec7tgV6bJKFgOdGHS3OfsSGfZ3jMz8H5jcOlp9fT02bdqEefPm2W8zGo2YOnUq1q1b1+r31NXVqc1G3sWI8vKmd8pdrbKyUu1378xGTfVvcZyM9DT5fAjYvzcXAf5pul+H13L9mDzhWs4Yk7Neyxlj8oRr2a5TV9fQ6f9O1Nc1OPDxFaCmSkN1JVBX3blFJ/b+sgf/fn0LLrx0DHr3S5CBZDW22DRu3BZNjR4b1GaFwWhVXx/Yl4N1a3ZiyoxBiE+KtN9n3x9zrMFglM0q47JNlzZo6vk+nF2IIUOHIiDA3z7i2TSCK6PDtlFSKas4ciy3G+Q+GTn97ZzCghJ8/NEnmDpjJMIjgu0jw/ah0SMjqS2PfxthlS4atq9Liyuw4rttmD37QkRGhqs3B+rNg9a0bzrXCu3I12iR5dtGpZuUlpZi1crVGDW2D4KC/Vrc99v5OM5tGioqKrF10wFcMbtHt+VPtp/T9Lq0Q3Nxhw4dUq/82rVrW9x+3333aaeeemqr3/P444//9hvDjRs3bty4cePGTXOVLSsrq93c0OVHbk+GjPJKja6N1WpFcXFxU40NW6R0K3kXlpiYiKysLAQHyztbcmZ8vVwPXzPXwtfL9fA16z4yYltRUYEePXq0e57LJ7cyU89kMiEvr+kjHBv5OjY2ttXv8fHxUVtzoaGhXRontU/+QeA/Cq6Dr5fr4WvmWvh6uR6+Zt0jJCTkuOc4dw+NDvD29saoUaOwfPnyFiOx8vX48eN1jY2IiIiIupfLj9wKKTG4+uqrMXr0aNXbVlqBVVVV2bsnEBEREZFncIvk9tJLL0VBQQEee+wxtYjDiBEjsHTpUsTExOgdGh2HlIc8/vjjx5SJkHPi6+V6+Jq5Fr5eroevmfMxyKwyvYMgIiIiInIEl6+5JSIiIiKyYXJLRERERG6DyS0RERERuQ0mt0RERETkNpjcUqf98MMPOO+889SKIbLC26JFi1rcL3MWpZNFXFwc/Pz8MHXqVOzbt6/FObJC3Jw5c1QDbFlQ4/rrr0dlZWWLc7Zt24bTTz8dvr6+ajWYZ555plsen6e9Xtdcc426vfk2ffr0Fufw9eo+CxYswJgxYxAUFITo6GjMmjULe/bsaXFObW0tbrnlFrXKYmBgIGbPnn3MwjaZmZmYOXMm/P391XXuu+8+NDY2tjhn1apVOOWUU9Ss7759++Ltt9/ulsfoia/Z5MmTj/k7u+mmm1qcw9ese7z22msYNmyYfREG6ZG/ZMkS+/38+3JB7S7OS9QB33zzjfbwww9rn332mVrz+fPPP29x/9NPP62FhIRoixYt0rZu3aqdf/75Wq9evbSamhr7OdOnT9eGDx+u/fzzz9qPP/6o9e3bV7v88svt95eVlWkxMTHanDlztB07dmgffPCB5ufnp73xxhvd+lg94fW6+uqr1euRk5Nj34qLi1ucw9er+0ybNk1766231PO4ZcsW7ZxzztGSkpK0yspK+zk33XSTlpiYqC1fvlzbuHGjNm7cOG3ChAn2+xsbG7UhQ4ZoU6dO1X799Vf1OxAZGanNmzfPfs6BAwc0f39/7e6779Z27dqlvfTSS5rJZNKWLl3a7Y/ZE16zM844Q7vhhhta/J3J340NX7Pu8+WXX2qLFy/W9u7dq+3Zs0d76KGHNC8vL/X6Cf59uR4mt+RQRydLVqtVi42N1Z599ln7baWlpZqPj49KeIT8ocv3bdiwwX7OkiVLNIPBoB06dEh9/eqrr2phYWFaXV2d/ZwHHnhAGzBgQDc9MvfUVnJ7wQUXtPk9fL30lZ+fr57/1atX2/+e5D/En3zyif2c1NRUdc66devU1/IfW6PRqOXm5trPee2117Tg4GD7a3T//fdrgwcPbvGzLr30UpWokWNfM1tye8cdd7T5PXzN9CX/fv3rX//i35eLYlkCdamDBw+qhTWkFKH5utBjx47FunXr1Neyl4+2ZYU5GznfaDRi/fr19nMmTZqkllu2mTZtmvqor6SkpFsfkyeQj8/ko7UBAwbg5ptvRlFRkf0+vl76KisrU/vw8HC137RpExoaGlr8jaWkpCApKanF39jQoUNbLGwjr0d5eTl27txpP6f5NWzn2K5BjnvNbN577z1ERkZiyJAhmDdvHqqrq+338TXTh8ViwYcffqhWOZXyBP59uSa3WKGMnJcktuLo1eLka9t9spdEqjmz2az+Q9D8nF69eh1zDdt9YWFhXfo4PInU11500UXq+U5LS8NDDz2EGTNmqH+ETSYTXy8dWa1W3HnnnZg4caJKiGzPp7yJkDcc7f2NtfY3aLuvvXPkP9A1NTWqXp4c85qJK664AsnJyar2XerTH3jgAfXm77PPPlP38zXrXtu3b1fJrNTXSl3t559/jkGDBmHLli38+3JBTG6JqIXLLrvMfiyjETLRok+fPmo0d8qUKbrG5ulkUsuOHTuwZs0avUOhTr5mN954Y4u/M5lwK39f8oZS/t6oe8mnVJLIyij7p59+iquvvhqrV6/WOyw6SSxLoC4VGxur9kfPLJWvbffJPj8/v8X9MstUZuQ3P6e1azT/GdQ1evfurT463b9/v/qar5c+br31Vnz99ddYuXIlEhIS7LfL81lfX4/S0tJ2/8aO93q0dY7MHueokmNfs9ZIqZZo/nfG16z7yOisdDAYNWqU6nYxfPhwLFy4kH9fLorJLXUp+Wha/qiXL19uv00+hpHaTPkISMhe/uGQ2iabFStWqI/zbP/gyznSwkpqn2yWLVum3m3zI+6ulZ2drWpuZWRJ8PXqXjLvT5Ik+ZhUnuejyz3kP8ZeXl4t/sbk421pTdT8b0w+dm3+pkReD/kPq3z0ajun+TVs59iuQY57zVojo4ai+d8ZXzP9yL9ndXV1/PtyVXrPaCPXV1FRodqfyCa/Us8//7w6zsjIsLcCCw0N1b744gtt27ZtaiZ+a63ARo4cqa1fv15bs2aN1q9fvxatpWTGqrSWuvLKK1V7lg8//FC1VWFrKce+XnLfvffeq2YBHzx4UPv++++1U045Rb0etbW19mvw9eo+N998s2qlt2rVqhZto6qrq+3nSKsiaTW1YsUK1apo/Pjxaju6VdHZZ5+tWlNJ+6GoqKhWWxXdd999ajb4K6+8wlZFXfSa7d+/X5s/f756reTvTP5t7N27tzZp0iT7NfiadZ8HH3xQdbKQ10L+GyVfS/eX7777Tt3Pvy/Xw+SWOm3lypUqSTp6k5ZStnZgjz76qEp2pAXYlClTVC/B5oqKilRyFBgYqNqnXHvttSrRak565J522mnqGvHx8SppJse+XvIfX/kHWv5hlvY3ycnJqhdn8xY3gq9X92nttZJN+qjayBvFP/3pT6p9kfwH9MILL1TJVHPp6enajBkzVL9h6cF5zz33aA0NDcf8bowYMULz9vZWyVbzn0GOe80yMzNVIhseHq7+PqRPtCQ9zfvcCr5m3eO6665T/9bJcyj/9sl/o2yJreDfl+sxyP/pPXpMREREROQIrLklIiIiIrfB5JaIiIiI3AaTWyIiIiJyG0xuiYiIiMhtMLklIiIiIrfB5JaIiIiI3AaTWyIiIiJyG0xuiYiIiMhtMLklIuomsmbOjTfeiPDwcBgMBmzZsuWEr/HEE09gxIgR9q+vueYazJo166S/n4jI3TC5JSLqJkuXLsXbb7+Nr7/+Gjk5ORgyZIhKchctWnTS11y4cKG6Zkfde++9WL58ORztH//4ByZPnozg4GD1mEpLS485p2fPnuq+5tvTTz/t8FiIyLOZ9Q6AiMhTpKWlIS4uDhMmTHDYNUNCQk7o/MDAQLU5WnV1NaZPn662efPmtXne/PnzccMNN9i/DgoKcngsROTZOHJLRHQCPv30UwwdOhR+fn6IiIjA1KlTUVVVBYvFgrvvvhuhoaHq9vvvvx9XX321vWRAygduu+02ZGZmqhFLGcWUTVx44YX2205U87IEGT3t0aMHrFZri3MuuOACXHfdde2WNfztb39TibfEfsstt6ChocF+jowyz5w5Uz3mXr164f3331exvvjii/Zz7rzzTjz44IMYN25cu/FKMhsbG2vfAgICTvgxExG1h8ktEVEHSZJ3+eWXq0QxNTUVq1atwkUXXaRqaZ977jlVHvDvf/8ba9asQXFxMT7//PMW5QMyapmQkKCus2HDBrWJt956y35bZ1xyySUoKirCypUr7bdJHFIOMWfOnDa/T86XUWXZ/+c//1GPo3mpw1VXXYXDhw+rx/u///1PJdH5+fknFaOUIUgCPXLkSDz77LNobGw8qesQEbWFZQlERB0kCagkY5LQJicnq9tkFFfIKKZ8HC/3iddffx3ffvtti/IBGbU0mUxqxLI5Ge09+raTERYWhhkzZqiR1SlTpthHmiMjI/G73/2u3e97+eWXVWwpKSlqlFbqcqV8YPfu3fj+++9V4j169Gh1/r/+9S/069fvhOO7/fbbccopp6gJdWvXrlXPlzynzz//fCceNRFRS0xuiYg6aPjw4SpplIR22rRpOPvss3HxxRfDaDSqJG3s2LH2c81ms0oGZVS3O8kIrSSlr776Knx8fPDee+/hsssuUzG2ZfDgwSqxtZHyhO3bt6vjPXv2qMciSalN3759VUJ8oqRsw2bYsGHw9vbGH//4RyxYsEDFSkTkCCxLICLqIEkAly1bhiVLlmDQoEF46aWXMGDAAKSnp8NZnHfeeSqhXrx4MbKysvDjjz+2W5IgvLy8Wnwt9b9H1+12BXkzICPhzvT8EZHrY3JLRHQCJPGbOHEinnzySfz6669q9FE+wpfRzvXr19vPk6Rt06ZNx72eJJYyGc1RfH19VWmEjNh+8MEHKvluPup6ouT75bHIY7XZv38/SkpKOh2r9PmVEeXo6OhOX4uIyIZlCUREHSTJqySyUo4gCZl8XVBQgIEDB+KOO+5Qk6WkFlXqVqWOtLVer0eTrgNyTUmY5aP5k/m4/2gyUnvuuedi586dmDt3bqeuJY9FOkLI4hOvvfaaSsbvuece1TlBEn2b3NxctUniK6SsQWqMk5KSVI3tunXr1PMltb9yu3x91113qfgc8ZiJiGw4cktE1EGyQMEPP/yAc845B/3798cjjzyiuiTIJC5J+K688krV/mv8+PEqgZMWX8cj3y+lDomJiaqDgCOceeaZKqGUetkrrrii09d75513EBMTg0mTJqnHJDW98vhklNhGJtBJ/LYetnKufP3ll1+qryVx//DDD3HGGWeoGt+//OUvKrmVzgtERI5k0Lp7tgMRkYeQHrIyetuZFcicUXZ2tkrGpYuCrSsDEZGzYFkCERG1a8WKFaisrFRdIqQrhCxQIeUUMjpLRORsWJZARORE5CN72xK5R28ySUwPslrZQw89pGKTsoSoqCi1oMPRXRaIiJwByxKIiJxIRkZGi6Vvm5O6V6l1JSKitjG5JSIiIiK3wbIEIiIiInIbTG6JiIiIyG0wuSUiIiIit8HkloiIiIjcBpNbIiIiInIbTG6JiIiIyG0wuSUiIiIiuIv/Bxyw/eKVKFNrAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAHWCAYAAACFXRQ+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAUWRJREFUeJzt3QeYU2X69/E7mT70Ik2qoIJURUXEgoKgIi7Krg0VRWV1sYECYgHE3YUFxYIou6uCvosF96/ooiIIAouCIopUWUAUkF4HZpiWnPe6n5mTSTItmUxJ+X68YtqZMycnyfDLk/u5j8OyLEsAAAAAeDgLLgIAAABQhGQAAADADyEZAAAA8ENIBgAAAPwQkgEAAAA/hGQAAADADyEZAAAA8ENIBgAAAPwQkgEAAAA/hGQAJWrZsqXccccdVb0ZUW/KlCly2mmnSVxcnHTp0qVSfuesWbPE4XDIL7/8Uim/LxJt2bJF+vTpI7Vq1TL7au7cuSGtr2fPnuYEIPwRkoEYYoei7777rsj79R/vDh06hPx7Pv30Uxk/fnzI64kVCxYskFGjRkmPHj1k5syZ8te//rWqNwn5Bg8eLOvWrZO//OUv8v/+3/+Tc889V95++2154YUXKnU7MjIyzHtqyZIlhe7bs2ePPPbYY3LZZZdJjRo1zHu8qOXs97je73+68sorK+FRAJElvqo3AEB427x5szidzqBD8vTp0wnKAVq8eLHZx6+//rokJiZW9eYg38mTJ2XFihXyxBNPyP333++5XUPy+vXr5eGHH67UkPz000+by/4j0foe/dvf/iann366dOzY0WxzSZo2bSoTJ070ua1JkyYVsNVAZCMkAyhRUlKSRJr09HSpVq2aRIr9+/dLSkoKATnMHDhwwJzXrl1bwlnXrl3l0KFDUrduXfn3v/8tf/jDH0pcXktHbr311krbPiBSUW4BIKia5JycHDOipaNWycnJUq9ePbnoootk4cKF5n5dVkeRlffXud4B9pFHHpFmzZqZAH7mmWfKs88+K5ZlFRrFe/DBB6V+/frmK+Rrr71WfvvtN7Mu7xFqvay3bdy4UW655RapU6eO2R61du1asz1a66vb2qhRIxkyZIgJFN7sdfzvf/8z4UFDxCmnnCJPPfWU2a6dO3fK7373O6lZs6ZZx3PPPRfQvsvNzZVnnnlGWrdubR6r7svHH39csrKyPMvo79USC90v9r7SspiSfPPNN3L11Vebx6ofBjp16iQvvvhiodHpiy++2NyvIU+3f9OmTaVus//+Le51YJfuLF++3DxPur/09/zxj3+U7OxsOXr0qNx+++1mG/Wk5STez7HWQevP63P/j3/8w7OPzjvvPFm1apXP79bX3E8//WTKCkqzd+9eufPOO81oqa6vcePG5rF7113rdvz5z382y6SmppoyhQ0bNvg8Rt0HLVq0MJdHjhxptlXv11HcTz75RH799VfP86W3h/oh6a677pKGDRua12nnzp3lzTff9NlXun+Vvvfs32s/T/r+0IAcDH1tnjhxIqTtBqIdI8lADDp27JgcPHiw0O0aRkqj/zDrV7V33323nH/++ZKWlmZqnL///nu54oorTEjavXu3Cc1aw+lNw4mG3S+//NKEAp2g9vnnn5sQogH4+eef9yyrYWXOnDly2223yQUXXCBLly6Vfv36FbtdOnqmwV3ree0wptvw888/m9Ck4VaDkAYyPV+5cqVPeFc33nijtGvXTiZNmmSCkAYpDR9///vf5fLLLzdfac+ePVseffRRE+YuueSSEveV7iMNO7///e/NBwMNt7rvNKx++OGHZhndR7pN3377rbz22mvmtgsvvLDYdepjuuaaa0z4e+ihh8zj0vXNmzfPXFdffPGFXHXVVebDgT5f+oFj2rRppuZZn6dQQ523Bx54wGyDhjfdp/pYNCx//fXX0rx5c/N8aPmNTkzUencNzt60dOH48ePmdaPPx+TJk+X66683z1tCQoJZRl8b+rxofXBpHyAGDhxonl/dLn2cGkB1n+3YscPzuMeOHWueW/2goSfdJzo5T8O9TbdBH8fw4cPl5ptvNstVr17dfOjQ98+uXbs8r1e9vaz0udHgvXXrVlPS0apVK3n//ffN618/aOhzqgH51Vdflfvuu0+uu+46s21KPxyVhX4Y1Mehj1eD+T333GP2ib2/AeSzAMSMmTNnanos8dS+fXufn2nRooU1ePBgz/XOnTtb/fr1K/H3DBs2zKzL39y5c83tf/7zn31u//3vf285HA5r69at5vrq1avNcg8//LDPcnfccYe5fdy4cZ7b9LLedvPNNxf6fRkZGYVue+edd8zyy5YtK7SOoUOHem7Lzc21mjZtarZr0qRJntuPHDlipaSk+OyToqxZs8as8+677/a5/dFHHzW3L1682HObrqtatWolrs/eplatWpnnRLfDm9vt9lzu0qWL1aBBA+vQoUOe23788UfL6XRat99+e6HXw/bt2z23+e/f4l4H9s/27dvX53d3797d7LN777230L689NJLPbfp79Sfr1evnnX48GHP7R999JG5/T//+U+hZUvb57pPdLkpU6YUu8z+/futxMRE8xr23u7HH3+80O+wf6//+vRndX+Uhe4D7/3wwgsvmN/xr3/9y3Nbdna22Y/Vq1e30tLSzG0HDhwo9rnx9v7775vlvvzyyyLvHzJkiDV+/Hjr//7v/6y33nrLuvbaa83yN9xwQ5keDxDNKLcAYpCWQ+jomv8pkJEpHV3TkTptjRUsHVHUFmf69bw3HWXVfPbZZ5+Z6/Pnzzfnf/rTn3yW09HB4tx7772FbtM6X1tmZqYZPddRaaWjh0WN/Np0O7WTgW6Xjnp7P34tEdGRztIeqxoxYkShx6p0pDpYP/zwg2zfvt1MGPOvk7VHxbUkYc2aNWYk0vsreH1udaTf3q7yovvGe0S+W7duhfaZvS+L2mc6eq/lGDYtEVHey+oIsK6ztFFku65bOzscOXKkyGV0lF1HUPW15L3dlTkJz5s+HzoSr6PVNh3R1feIlkPoNyjlSSeHjhs3zoxG67c0H330kRlJ1m9t9JsAAAUIyUAM0jKJ3r17Fzp5h5XiTJgwwXwNfMYZZ5iZ9FoqobW/gdA6Tp1FrzWU3vSrdPt++1y7PehXz97atGlT7Lr9l1WHDx82X1frV8oaoPRra3s5/crcn5YHeNPaZK0R1bpo/9uLC2Hej1Ufg/82ayDSgGs/1mBs27bNnJfUps9erwZ5f7qf9YOC1j+Xl6L2mdKa80D2mf/P26/B0vZvUbQGWUti9MOWPudaDqPlG1qn7L9/tDTHm742Ann9lzfdHt0W/w4y/u+JimR/cNMPEAAKEJIBBEWDh4a1N954w4Q1raM955xzPPW0VcV71Nh2ww03yD//+U8zyvzBBx+YfsT2KLXb7S60vI54BnKb8p9oWBz/uudI5XK5iry9uP1T1O1F7bNQ968/HRHWmlut/dYPODr5UgOnjsKjaPYHGv1QCaAAIRlA0PRrfJ0M984775jOD/pVvndHhOKCoXYL0El9OlHLm3YusO+3zzXEammBN53cFCgdiVy0aJE5yIJOKtMJT1puoJPZKoP9GPzLUvbt22dG4u3HGgztAKG0R29Jv9funetP97OOipfUHk9HU3X7vGl5QiCdJcKF7icdHdUPRbqvdPvtjiT2/vF/XrTdW6Cj1+X5wUe3R7fF/0Ob/3uiIj9s2aUtdgcNAHkIyQCC4t8+TWf2a0mBd1szO4T5hy3tEKAjki+//LLP7dolQEOAdmRQffv2NeevvPKKz3LaoSFQ9gil/4hkZR0pTR9rUb9v6tSp5rykTh3F0RF7LRfRdfrvW/txatcL7RqiXTW8l9GwqKHR3q6SAuayZct8btOOFcWNJFeGQFvA6QE3tPbc//FoeY/9+tSyIq351deS92sjmNeF3eGiPOjzoeUg7733nk97Nt0+fW9deuml5jZtVaf8n/dgaCca7/epdzs87/cdgDy0gAMQlLPOOsu0rNIDGOiIsrZ/0wMYeB+RTO9TOvlI/+HVwHrTTTdJ//79TU9aPYKZ9n7VfrAa3HTykH5Nbo+U6s9rKy8NLhrK7RZw+jV6oKNq2tPYrknVkHXqqaea3+U/Ol1R9LFpyzINmBpsNOxomzcNrwMGDDD7IVhat6qtwHQ/ahDW0XwNxRogdTKlttNT2m5NP3B0797dTKCzW8BpXXBpR0HUyYtanqL7X0fef/zxR7Ne/7rsyhRoCzh9ffTq1cuU2ejrND4+3rTa09F7ff3Zo6Xawk/LMbSVnoZULcXQOuZAH6O+PjXU6qRMbQWoYVafk7IYOnSoaTGoEy1Xr15tJinq++mrr74yr3+7fl/LifQx6e/V+QD63tNyJ7s+3Q66+jqwWwtqD2v15JNPeiar6gRBPekHW31d6P7R36XboR/CAHip6vYaACqP3bZr1apVRd6vralKawGn7dvOP/98q3bt2qYVWtu2ba2//OUvpm2Vd8uvBx54wDrllFNMOzDvPzXHjx+3hg8fbjVp0sRKSEiwTj/9dNNiy7sdl0pPTzet5OrWrWtaYQ0YMMDavHmzWZd3Sza7fZu2yPK3a9cu67rrrjPbWqtWLesPf/iDtXv37mLbyPmvo7jWbEXtp6Lk5ORYTz/9tGnbpo+1WbNm1pgxY6zMzMyAfk9xli9fbl1xxRVWjRo1zM916tTJmjZtms8yX3zxhdWjRw/zHNWsWdPq37+/tXHjRp9limoB53K5rNGjR1v169e3UlNTTYs3bc1XXAs4/9dSoPuyuPZqyv/5CbQF3MGDB81rRl+T+rv0Oe/WrZs1Z84cn+X0Merz0rhxY7N/evbsaa1fv77QYyxuG0+cOGHdcsst5nWl9wfTDs6/BZzat2+fdeedd5p9ru3pOnbsaPavv6+//trq2rWrWcZ/H5XU1tH2888/m/dAy5YtreTkZPP86vpmzJhR6P0HwLIc+j/v0AwA4Upbm5199tnyr3/9SwYNGlTVm4MoYx9Rr7RWcwBiAzXJAMKSfhXsT79+1pKD0o50BwBAqKhJBhCWtJZYazS1dldrS7VmVE9aO+nfgxeoatodo6TJjXqQE++DuwAIf4RkAGHpwgsvNEcBfOaZZ8yRx/SgEzrpTCf9AeFGJ/CVdOAPnbipRwIEEDmoSQYAIETaIaKoEiHv/tN21xcAkYGQDAAAAPhh4h4AAADgh5rkAOjhQvVQutrUvSIPDQoAAICy0eKI48ePS5MmTUwnpFARkgOgAZnZ9AAAAOFv586d0rRp05DXQ0gOgH1YUN3peqhbAAAAhJe0tDQzqGnntlARkgNgl1hoQCYkAwAAhK/yKo1l4h4AAADgh5AMAAAA+CEkAwAAAH4IyQAAAIAfQjIAAADgh5AMAAAA+CEkAwAAAH4IyQAAAIAfQjIAAADgh5AMAAAA+CEkAwAAAH4IyQAAAIAfQjIAAADgh5AcoVzubMl1ZVb1ZgAAAEQlQnKE+mjFTTJz4Tny3ZYXJSc3o6o3BwAAIKoQkiOQZVmy7+gPkuvKkFX/e17eWXKZbNvzWVVvFgAAQNQgJEcglztLo7K5XD25iaRn7ZOl6x6r6s0CAACIGoTkCJTjKiivuO7C/zPnWTlpZoQZAAAAoSMkR6Dc/BrkOGeiJCXUzL/Vklw3E/kAAADKAyE5AuW4Tprz+LhUiY9LKRSeAQAAEBpCcgTKcaWb84S4VHE4nBLnTDLXc/PDMwAAAEJDSI5A9oixPYqsYdl7hBkAAAChISRHIDsMJ8TnheP4/HNtCQcAAIDQEZIjkB2G7RHkhPwRZe+uFwAAACg7QnKET9zLO88LyRymGgAAoHwQkiO4JtlTbuEJyYwkAwAAlAdCcgSyyyoKTdyjBRwAAEC5ICRHcEi2wzHlFgAAAOWLkByB7LIKOxzb50zcAwAAKB+E5AiUk+vbAs4eUaYmGQAAoHwQkiO6BVw1nz7JHEwEAACgfBCSo2DiXnxcsjnnsNQAAABREJInTpwo5513ntSoUUMaNGggAwYMkM2bN/ss07NnT3E4HD6ne++912eZHTt2SL9+/SQ1NdWsZ+TIkZKbm+uzzJIlS+Scc86RpKQkadOmjcyaNUsilR2GCw4mQrkFAABA1ITkpUuXyrBhw2TlypWycOFCycnJkT59+kh6errPcvfcc4/s2bPHc5o8ebLnPpfLZQJydna2fP311/Lmm2+aADx27FjPMtu3bzfLXHbZZbJmzRp5+OGH5e6775bPP/9cIpHd6i0+3r8FHCPJAAAA5SFeqtD8+fN9rmu41ZHg1atXyyWXXOK5XUeIGzVqVOQ6FixYIBs3bpQvvvhCGjZsKF26dJFnnnlGRo8eLePHj5fExESZMWOGtGrVSp577jnzM+3atZPly5fL888/L3379i20zqysLHOypaWlSTgflppyCwAAgCiuST527Jg5r1u3rs/ts2fPlvr160uHDh1kzJgxkpFRUFawYsUK6dixownINg2+Gmw3bNjgWaZ3794+69Rl9PbiykBq1arlOTVr1kzCsybZDsmUWwAAAETNSLI3t9ttyiB69OhhwrDtlltukRYtWkiTJk1k7dq1ZoRY65Y/+OADc//evXt9ArKyr+t9JS2jQfrkyZOSkpJXtmDTID5ixAjPdV0unIJywcFE/MotGEkGAACIrpCstcnr1683ZRDehg4d6rmsI8aNGzeWXr16ybZt26R169YVsi06uU9P4SrX0yfZbgFnH3GPkWQAAICoKbe4//77Zd68efLll19K06ZNS1y2W7du5nzr1q3mXGuV9+3b57OMfd2uYy5umZo1axYaRQ53lmUVUW5hh2RGkgEAACI+JGvg04D84YcfyuLFi83kutJodwqlI8qqe/fusm7dOtm/f79nGe2UoQH4rLPO8iyzaNEin/XoMnp7pHG5dUKhZS5TbgEAABCFIVlLLP71r3/J22+/bXola+2wnrROWGlJhXaq0G4Xv/zyi3z88cdy++23m84XnTp1MstoyzgNw7fddpv8+OOPpq3bk08+adZtl0xoX+Wff/5ZRo0aJT/99JO88sorMmfOHBk+fLhEGnsU2ftIe56R5PzWcAAAAIjgkPzqq6+ajhZ6wBAdGbZP7733nrlf27dpazcNwm3btpVHHnlEBg4cKP/5z38864iLizOlGnquI8O33nqrCdITJkzwLKMj1J988okZPe7cubNpBffaa68V2f4t3NlBOM6ZKE5HnG9IdmeKZbmrdPsAAACiQXxVl1uURDtK6AFHSqPdLz799NMSl9Eg/sMPP0iks0sq7Hpk73ILlevKlIT8EWYAAABE8MQ9BC7HlV4oGNsHE8m7n5ILAACAUBGSI7Tcwnu02OFwSryTo+4BAACUF0JyFJRbmOv5oZmQDAAAEDpCcoSxDxhit3+z2dcptwAAAAgdITlaRpLzr9MGDgAAIHSE5CioSfZuA8cBRQAAAEJHSI4wBYekLrrcgppkAACA0BGSIzQke7eA8ym3oCYZAAAgZITkSJ24R7kFAABAhSEkR5ic3KIn7iXEU24BAABQXgjJEdsCruhyC1rAAQAAhI6QHDUT9+wWcIwkAwAAhIqQHGHscorCI8l5h6VmJBkAACB0hOQIk5PfJzk+vwa5cHcLRpIBAABCRUiOkppkT7kFIRkAACBkhOSI7ZNczed2yi0AAADKDyE5Uifu+ZVb2H2TGUkGAAAIHSE5wtjdK4o/4h4hGQAAIFSE5AhiWZZXCzj/muQUn4l9AAAAKDtCcgRxubM0KvuEYpvdN5mRZAAAgNARkiOI96S8+PwaZM91yi0AAADKDSE5guTml1LEORPF6YgrutyC7hYAAAAhIyRHkBzP0fZ82795l1toSYbbclX6tgEAAEQTQnIEyXGlF1lq4X+by5VZqdsFAAAQbeKregNQvB07dsjBgwc9149lrTPnuTkO+f777wt1vhBxmIl93//wjSTE1fbcV79+fWnevHklbjkAAEBkIySHcUBu166tZGQUTMTrcF6K/GlcA9m8cZsMGdG10M9Mfb+ZJKc4pV//vnJoX67n9tTUFNm06SeCMgAAQIAIyWFKR5A1IE+YMkhatm5obstx7pQs+VZatTlV3vrglkI/k54wTyzJkmdnDJY4q5a57Zdt+2TsyNlmfYRkAACAwBCSw5wG5Lbtm5rLB48dk1/2i9SoXl1OPzXvNm9rtydJdm6WtDitnlRPblQFWwsAABAdmLgXQVxWjjl3OhOKvN++3e3OWw4AAABlQ0iOIHb4LTYkO/K+GCAkAwAAhIaQHEHs8BvnKDokx9kjyfkjzgAAACgbQnJEllvElzKSXNDZAgAAAMEjJEcQO/w6ixlJtssw7DANAACAsiEkRxC7jIKaZAAAgIpFSI7EmuTSultYlFsAAACEgpAcQVx2d4vSJu4xkgwAABASQnIEsUeIKbcAAACoWITkSAzJ+WG4+Il7lFsAAACEgpAcQSxPd4u4Iu+3yzAYSQYAAAgNITmCuC2XOXcUF5Lz+yczcQ8AACA0hOQIYuWH5OIPJsJIMgAAQHkgJEcQRpIBAAAqByE5glhWaTXJ8T5hGgAAAGVDSI6ikWT7djtMAwAAoGwIyRHCstz6/5JbwOWHZEaSAQAAQkNIjhDewbfYmmTPSDIhGQAAIBSE5AjhXULhLLXcgpAMAAAQCkJyxI0kO8ThKPppY+IeAABA+SAkR1qP5GLqkf1Hki0rr34ZAAAAwSMkR0lnC/8yDEouAAAAyo6QHCEsd8k9kv0DNCUXAAAAZUdIjqKRZO/76JUMAABQdoTkCAvJ9qGni+Jw6KQ+eiUDAACEipAcIawARpIVvZIBAABCR0iOEG6r9JpkxUgyAABA6AjJEYKRZAAAgMpDSI60muRSR5LtA4owcQ8AAKCsCMlRdDCRvPsZSQYAAIjokDxx4kQ577zzpEaNGtKgQQMZMGCAbN682WeZzMxMGTZsmNSrV0+qV68uAwcOlH379vkss2PHDunXr5+kpqaa9YwcOVJyc31HUpcsWSLnnHOOJCUlSZs2bWTWrFkSjeUW1CQDAABEeEheunSpCcArV66UhQsXSk5OjvTp00fS09M9ywwfPlz+85//yPvvv2+W3717t1x//fWe+10ulwnI2dnZ8vXXX8ubb75pAvDYsWM9y2zfvt0sc9lll8maNWvk4Ycflrvvvls+//xzibaJe4wkAwAAhK7k7+4r2Pz5832ua7jVkeDVq1fLJZdcIseOHZPXX39d3n77bbn88svNMjNnzpR27dqZYH3BBRfIggULZOPGjfLFF19Iw4YNpUuXLvLMM8/I6NGjZfz48ZKYmCgzZsyQVq1ayXPPPWfWoT+/fPlyef7556Vv374SLQcT8alJzj9CHwAAACK8JllDsapbt64517Cso8u9e/f2LNO2bVtp3ry5rFixwlzX844dO5qAbNPgm5aWJhs2bPAs470Oexl7Hf6ysrLMz3ufqho1yQAAADEYkt1utymD6NGjh3To0MHctnfvXjMSXLt2bZ9lNRDrffYy3gHZvt++r6RlNPyePHmyyFrpWrVqeU7NmjWTyBlJpiYZAAAgakKy1iavX79e3n333areFBkzZowZ1bZPO3furOpNEiu/fIKaZAAAgCivSbbdf//9Mm/ePFm2bJk0bdrUc3ujRo3MhLyjR4/6jCZrdwu9z17m22+/9Vmf3f3Cexn/jhh6vWbNmpKSklJoe7QDhp7CCSPJAAAAMTKSbFmWCcgffvihLF682Eyu89a1a1dJSEiQRYsWeW7TFnHa8q179+7mup6vW7dO9u/f71lGO2VoAD7rrLM8y3ivw17GXkck8NQkO0upSc6/3+JgIgAAAJE5kqwlFtq54qOPPjK9ku0aYq0D1hFePb/rrrtkxIgRZjKfBt8HHnjAhFvtbKG0ZZyG4dtuu00mT55s1vHkk0+addujwffee6+8/PLLMmrUKBkyZIgJ5HPmzJFPPvlEIgUjyQAAADEykvzqq6+amt+ePXtK48aNPaf33nvPs4y2abvmmmvMQUS0LZyWTnzwwQee++Pi4kyphp5reL711lvl9ttvlwkTJniW0RFqDcQ6ety5c2fTCu61116LmPZv3iPD1CQDAABE+UiylluUJjk5WaZPn25OxWnRooV8+umnJa5Hg/gPP/wgkYqRZAAAgBjsboHy6pNMTTIAAECoCMkRgpFkAACAykNIjhDUJAMAAFQeQnKEYCQZAACg8hCSo7YmmZAMAABQVoTkaB1Jzj+MNQAAAIJHSI4QVn7opSYZAACg4hGSIwQ1yQAAAJWHkBxxNcmljCQ7qUkGAAAIFSE5AuiRCS1xm8uO/BBc+kgyNckAAABlRUiOAN6jwtQkAwAAVDxCcgTwHhWmJhkAAKDiEZIjgPeosKOUp4w+yQAAAKEjJEcAe1RYA7DD4Qh4JFlrmQEAABA8QnIEsEeFSyu18K1ZLpjsBwAAgOAQkiOoJrm0SXv+QZqSCwAAgLIhJEfRgUT8gzST9wAAAMqGkBxRBxIpuUeycjicnsl9jCQDAACUDSE5ArjduQGPJHsvZ/8cAAAAgkNIjqJDUts4oAgAAEBoCMlRVpPsvRw1yQAAAGVDSI6kkWRn6TXJ3ssxkgwAAFA2hOQIagHHSDIAAEDlICRHdU0yE/cAAADKgpAcAahJBgAAqFyE5AhgjwgH0ifZezlqkgEAAMqGkBwBGEkGAACoXITkCEBNMgAAQOUiJEcARpIBAAAqFyE5Alj5h5fmiHsAAACVg5AcUSPJgU3cs5djJBkAAKBsCMlRXZNMSAYAACgLQnI01yTnl2kAAAAgOITkCMBIMgAAQOUiJEcAd34rN4czwJrk/OWoSQYAACgbQnIEYCQZAACgchGSo7pPMjXJAAAAZUFIjgCMJAMAAFQuQnIk1SQH3CeZI+4BAACEgpAclSPJeWGakWQAAICyISRHAHeQIZmRZAAAgNAQkiOAFeTEvYKaZCbuAQAAlAUhOaJGkqlJBgAAqAyE5DBn6X9BjyRTkwwAABAKQnLYc3suUZMMAABQOQjJERSSg65JdlOTDAAAUBaE5DBnScFocPBH3GMkGQAAoCwIyREykqzB1+FwBPQTHHEPAAAgNITksBdcj2TlcOZP3BO3mfgHAACA4BCSw5zlKBhJDpRvoC6oaQYAAEAFhuRx48bJr7/+WpYfRdCC65FcOFBTcgEAAFApIfmjjz6S1q1bS69eveTtt9+WrKyssqwGAQl+JNnh9bRqyQUAAAAqISSvWbNGVq1aJe3bt5eHHnpIGjVqJPfdd5+5DeXLDrlB1SQ7HF4jz4wkAwAAVFpN8tlnny0vvfSS7N69W15//XXZtWuX9OjRQzp16iQvvviiHDt2rKyrho/gjrZnK1iekWQAAIBKn7hnWZbk5ORIdna2uVynTh15+eWXpVmzZvLee++FunqUYSTZe3nLwUgyAABApYXk1atXy/333y+NGzeW4cOHm5HlTZs2ydKlS2XLli3yl7/8RR588MGyrh757JDrCGLiXt7yjCQDAABUakju2LGjXHDBBbJ9+3ZTarFz506ZNGmStGnTxrPMzTffLAcOHCjzhiG0kWRCMgAAQNkFNzyZ74YbbpAhQ4bIqaeeWuwy9evXF7ebgFZVNcn2xD3vw1oDAACgAkeS7dpjfydPnpQJEyYEvJ5ly5ZJ//79pUmTJqYjw9y5c33uv+OOO8zt3qcrr7zSZ5nDhw/LoEGDpGbNmlK7dm2566675MSJEz7LrF27Vi6++GJJTk42tdKTJ0+WaO5uoRhJBgAAqOSQ/PTTTxcKoiojI8PcF6j09HTp3LmzTJ8+vdhlNBTv2bPHc3rnnXd87teAvGHDBlm4cKHMmzfPBO+hQ4d67k9LS5M+ffpIixYtTB31lClTZPz48fKPf/xDIqpPcv6hpgNVEKoZSQYAAKiUcgsdSdZRXX8//vij1K1bN+D1XHXVVeZUkqSkJNOHuSg6UXD+/PmmP/O5555rbps2bZpcffXV8uyzz5oR6tmzZ5vOG2+88YYkJiaa3s7a53nq1Kk+YTr8j7hXtpFk+7DWAAAAqKCRZC2x0BCsAfmMM84wl+1TrVq15IorrjD1yuVpyZIl0qBBAznzzDPNAUsOHTrkuW/FihWmxMIOyKp3797idDrlm2++8SxzySWXmIBs69u3r2zevFmOHDlS5O/UIwjqCLT3qarYITfommTPyDMjyQAAABU6kvzCCy+YUWSdtKdlFRqMbRpCW7ZsKd27d5fyoqUW119/vbRq1Uq2bdsmjz/+uBl51uAbFxcne/fuNQHa5wHFx5vQrvcpPdef99awYUPPfUXVVk+cODGospFwHEkuWJ6RZAAAgAoNyYMHDzbnGjovvPBCSUhIkIp00003+bSd06P5tW7d2owu9+rVq8J+75gxY2TEiBGe6zqSrBP+qnLiXln7JNPdAgAAIHgBJy8NitpBQumBQ7SThZ6KYi9X3k477TTTWm7r1q0mJGut8v79+32Wyc3NNR0v7DpmPd+3b5/PMvb14mqdtQ5aT9FwxD1GkgEAACqwJlnLEuxAqnXAet3/ZN9eUXbt2mVqkvUof0pLO44ePWq6VtgWL15s+jN369bNs4x2vNBDZ9u0E4bWOFfktlZ1n2Qm7gEAAFTCSLKGT7tzxZdffinlQdvI6aiwTY/gp50n7MmAWhc8cOBAM+KrNcmjRo0yR/XTiXeqXbt2pm75nnvukRkzZpggrIfK1jIN7WyhbrnlFrMe7Z88evRoWb9+vbz44ovy/PPPSyQdlto+OEigCpan3AIAACBYASevSy+91HNZa5K1Rte/DZxO6tNDVAfqu+++k8suu8xz3a4D1trnV1991RwE5M033zSjxRp6td/xM88841MKoS3eNBhr+YV2tdBQ/dJLL3nu18mFCxYskGHDhknXrl1NucbYsWMjpP2b4mAiAAAAEdEnWUOyHtjDv7OE1gLrfS5XYKOXPXv2NMG6OJ9//nmp69AR57fffrvEZXTC33//+1+JTPkjyWU8mAgT9wAAACrxsNRFHUxEyyf00M8In+4WjCQDAAAEL6jkZZdDaEB+6qmnJDU11XOfjh7rATy6dOlShs1A+fdJpiYZAACgUkLyDz/84BlJXrdunc9R7PRy586d5dFHHy3zxqD4iXvBjiTb5Rl0twAAAAheUMnL7mpx5513mg4RFdUPGaGPJBeUWzCSDAAAUCkT92bOnFmWH0Mo3S2CnriXP5JMSAYAAKickJyeni6TJk2SRYsWmQOM6ME7vP38889lWS2KYIfcsvdJptwCAACgUkLy3XffLUuXLpXbbrvNHP2uqE4XKC92dwvKLQAAAMI6JH/22WfyySefSI8ePcp/i1A+3S08E/cIyQAAAJXSJ7lOnTqeQ1Sj4sRrzs0fpA+6uwUt4AAAACo3JOuhofXQzhkZGWX/zShVfGJBGUvwfZI5mAgAAECllls899xzsm3bNmnYsKG0bNlSEhISfO7//vvvy7xBKJDgFZKDr0mmuwUAAEClhuQBAwaU+RcicAkJDk9ADnZyZEHLOEIyAABApYTkcePGleXHUMZyi2Dbv+X9TP7Is8MSZ5mKagAAAGIX8SkCyi3KEpK9J/p5l20AAACggkaSXS6XPP/88zJnzhzZsWOHZGdn+9x/+PDhsqwWfuxwG2w9sn+w9p4ACAAAgAoaSX766adl6tSpcuONN8qxY8dkxIgRcv3114vT6ZTx48eXZZUoaSQ5yENSK61htsN1IiEZAACg4kPy7Nmz5Z///Kc88sgjEh8fLzfffLO89tprpi3cypUry7JKlDBxL9j2bzb75xhJBgAAqISQvHfvXunYsaO5XL16dTOarK655hpzJD6Ud7lFmapiPD/HSDIAAEAlhOSmTZvKnj17zOXWrVvLggULzOVVq1ZJUlJSWVaJErtbMJIMAAAQ9iH5uuuuk0WLFpnLDzzwgDz11FNy+umny+233y5Dhgwp722MWQXlFmUbSbZ/jpFkAACA4JQpfU2aNMlzWSfvNW/eXFasWGGCcv/+/cuySpRzdwvzc/kT/hhJBgAACE7Zhij9dO/e3ZwQPt0tzM/lh2t7RBoAAACBKVP6euutt0q8X8suUJ4HEylrTXLe05uQREgGAACo8JD80EMP+VzPycmRjIwMSUxMlNTUVEJyOYlPCLW7BSPJAAAAlTZx78iRIz6nEydOyObNm+Wiiy6Sd955p0wbggocSaYmGQAAoOJDclF00p5O6PMfZUZ5hOQy1iTn1zITkgEAAKooJCs9+t7u3bvLc5UxzVNuUeaJe4RkAACAsihT+vr44499rluWZQ4u8vLLL0uPHj3KtCEoLDEptHILT00yIRkAAKDiQ/KAAQN8rjscDjnllFPk8ssvl+eee64sq0QJI8mhHkyEkAwAABCcMqUvt9ttzg8cOGA6WtSqVassq0EFH0yEmmQAAIBKqkk+evSoDBs2TOrXry+NGjWSunXrmvMxY8aYNnAIn8NS2+GaI+4BAAAEJ6j0dfjwYXNkvd9++00GDRok7dq1M7dv3LhRpk2bJgsXLpTly5fL2rVrZeXKlfLggw8GuTnwFh/qSHJ+uE4kJAMAAFRcSJ4wYYIpr9i2bZs0bNiw0H19+vSR2267TRYsWCAvvfRScFuCCjssNSPJAAAAwQkqfc2dO1f+/ve/FwrISksuJk+eLFdffbWMGzdOBg8eHOSmoPhyC0aSAQAAwrYmWdu8tW/fvtj7O3ToIE6n04RkhC4hKcTDUuePQDOSDAAAUIEhWSfr/fLLL8Xev337dmnQoEGQm4DiMJIMAAAQASG5b9++8sQTT0h2dnah+7KysuSpp56SK6+8sjy3L6bZI8Bl75OcX5OcH7YBAABQQRP3zj33XDn99NNNG7i2bduao+1t2rRJXnnlFROU33rrrWBWiQBGksva3cIu06BPMgAAQAWG5KZNm8qKFSvkT3/6k+mLrAHZPuLeFVdcYQ5L3bx58yA3ARXW3cJzMJGg22EDAADEtKDTV6tWreSzzz6TI0eOyJYtW8xtbdq0MQcVQfmxLJfExZdPuUVCYrluGgAAQNQrW/oSkTp16sj5559fvlsDD7eV47kc6sFEGEkGAAAIDukpTLmlYHJkWbtb2OGammQAAIDgEJLDlNvKD8mWQxwOZ4gjyQ6xLHd5bh4AAEBUIySHKctTblG2UWT/CX+WFJRvAAAAoGSE5DAfSXaEEJK9a5k9I9MAAAAoFSE57CfuhTCSrCHZchSaCAgAAICSEZLDVEF5RKhPUd7PM5IMAAAQOEJymHJbWebcYZV9JDlP3s8TkgEAAAJHSA5TBeURoT1Fdk0zE/cAAAACR0iO4ppk759nJBkAACBwhOSw724R4kiyRU0yAABAsAjJYaqgPIKRZAAAgMpGSA73keRym7hHTTIAAECgCMlRXpNsl2vY3TIAAABQOkJymCoojwj1KaK7BQAAQLAIyWHKKofDUnuXa1BuAQAAEDhCcphyl9sR9+yQTLkFAABAoAjJYV9uEerEPbsmmZFkAACAiAjJy5Ytk/79+0uTJk3E4XDI3Llzfe63LEvGjh0rjRs3lpSUFOndu7ds2bLFZ5nDhw/LoEGDpGbNmlK7dm2566675MSJEz7LrF27Vi6++GJJTk6WZs2ayeTJkyXcWfmhNtTuFna5Bi3gAAAAIiQkp6enS+fOnWX69OlF3q9h9qWXXpIZM2bIN998I9WqVZO+fftKZmamZxkNyBs2bJCFCxfKvHnzTPAeOnSo5/60tDTp06ePtGjRQlavXi1TpkyR8ePHyz/+8Q+JhcNSeybuEZIBAAACFi9V6KqrrjKnougo8gsvvCBPPvmk/O53vzO3vfXWW9KwYUMz4nzTTTfJpk2bZP78+bJq1So599xzzTLTpk2Tq6++Wp599lkzQj179mzJzs6WN954QxITE6V9+/ayZs0amTp1qk+YDjd2DXG5TdwTQjIAAEDE1yRv375d9u7da0osbLVq1ZJu3brJihUrzHU91xILOyArXd7pdJqRZ3uZSy65xARkm45Gb968WY4cOVLk787KyjIj0N6nqpu4R00yAABAZQvbkKwBWenIsTe9bt+n5w0aNPC5Pz4+XurWreuzTFHr8P4d/iZOnGgCuX3SOuZIL7egJhkAACAKQnJVGjNmjBw7dsxz2rlzZ9X1SWbiHgAAQKUL25DcqFEjc75v3z6f2/W6fZ+e79+/3+f+3Nxc0/HCe5mi1uH9O/wlJSWZbhnep8gfSabcAgAAIOJDcqtWrUyIXbRokec2rQ3WWuPu3bub63p+9OhR07XCtnjxYnG73aZ22V5GO17k5BSERO2EceaZZ0qdOnUkXNkjv+U1cY/uFgAAABESkrWfsXaa0JM9WU8v79ixw/RNfvjhh+XPf/6zfPzxx7Ju3Tq5/fbbTceKAQMGmOXbtWsnV155pdxzzz3y7bffyldffSX333+/6Xyhy6lbbrnFTNrT/snaKu69996TF198UUaMGCHhzCrviXt0twAAAIiMFnDfffedXHbZZZ7rdnAdPHiwzJo1S0aNGmV6KWurNh0xvuiii0zLNz0oiE1bvGkw7tWrl+lqMXDgQNNb2aYT7xYsWCDDhg2Trl27Sv369c0BSsK5/Vv5HnGPmmQAAIBgOSxtSIwSaZmHhm2dxFdZ9cn/+PQscVkZkprdR85q367M69mw8Uc5mbBEkuIayZArV5brNgIAAERrXgvbmuRYVzDRrrz6JDOSDAAAEChCchjSwf2CmuTQniIm7gEAAASPkByGXO68Q1KXR3cLT02yJ3QDAACgNITkMA/J5Tlxj/JzAACAwBCSw1CuKy8ku10aah0hrcvheYotDigCAAAQIEJyGI8k5+RY4ggxJHuPROe6MkNcFwAAQGwgJIchV/5Ick52eZRHOMXttooo4wAAAEBxCMlhKNedN+KbmxN6SNaR6Nz8sM1IMgAAQGAIyeFcblEuI8l5ZRve6wUAAEDJCMlRX25RsB5GkgEAAAJDSA5DueU9kpy/HkaSAQAAAkNIjqGRZHu9AAAAKBkhOYxHkstj4p5PuQUjyQAAAAEhJMfCxD1GkgEAAIJCSA7ncotyH0lm4h4AAEAgCMlhPJJs9zcOlV22wUgyAABAYAjJYcjhiJM4R3U5mV4+ITk7i5FkAACAYBCSw1CnVnfKuY3ekvdmHC7nPskny2V9AAAA0Y6QHAOyTuaF5JzcjKreFAAAgIhASI4BmSfd5jzHdaKqNwUAACAiEJJjQFZ+SM7OTa/qTQEAAIgIhOQYkOkpt2AkGQAAIBCE5Fgqt2AkGQAAICCE5BiauEe5BQAAQGAIyTGAiXsAAADBISTHgKwMuyaZkWQAAIBAEJJjaCSZcgsAAIDAEJJjauIe5RYAAACBICTH0MQ9lztL3O7cqt4cAACAsEdIjqGRZJXjouQCAACgNITkGODKFXFIvLmcTckFAABAqQjJMSLOkWLO6XABAABQOkJyjIhz5oVkRpIBAABKR0iOEU5GkgEAAAJGSI4RcY5kc05IBgAAKB0hOdbKLTg0NQAAQKkIyTGCiXsAAACBIyTHXEhmJBkAAKA0hOQYm7iXzUgyAABAqQjJMVaTTLkFAABA6QjJsdbdgol7AAAApSIkx1hNMuUWAAAApSMkxwgOJgIAABA4QnLM1SRTbgEAAFAaQnKMoNwCAAAgcITkWOuT7CIkAwAAlIaQHGuHpc45XtWbAgAAEPYIyTE4kmxZVlVvDgAAQFgjJMdYdwvLconLnVXVmwMAABDWCMkxdjARlU2HCwAAgBIRkmOEw+GU+LhUc5leyQAAACUjJMeQxPhq5pxeyQAAACUjJMeQhPjq5jybNnAAAAAlIiTHkIQ4eySZkAwAAFASQnIModwCAAAgMITkWCy3YCQZAACgRITkGJLASDIAAEBACMmxWG7BxD0AAIASEZJjSEIc5RYAAAARH5LHjx8vDofD59S2bVvP/ZmZmTJs2DCpV6+eVK9eXQYOHCj79u3zWceOHTukX79+kpqaKg0aNJCRI0dKbm6uxCLKLQAAAAITL2Guffv28sUXX3iux8cXbPLw4cPlk08+kffff19q1aol999/v1x//fXy1VdfmftdLpcJyI0aNZKvv/5a9uzZI7fffrskJCTIX//6V4k1ifkT92gBBwAAEOEhWUOxhlx/x44dk9dff13efvttufzyy81tM2fOlHbt2snKlSvlggsukAULFsjGjRtNyG7YsKF06dJFnnnmGRk9erQZpU5MTCzyd2ZlZZmTLS0tTaJpJJlyCwAAgAgut1BbtmyRJk2ayGmnnSaDBg0y5RNq9erVkpOTI7179/Ysq6UYzZs3lxUrVpjret6xY0cTkG19+/Y1oXfDhg3F/s6JEyeakWn71KxZM4kGlFsAAABEQUju1q2bzJo1S+bPny+vvvqqbN++XS6++GI5fvy47N2714wE165d2+dnNBDrfUrPvQOyfb99X3HGjBljRqrt086dOyUaJOZP3KO7BQAAQASXW1x11VWey506dTKhuUWLFjJnzhxJSUmpsN+blJRkTtGGcgsAAIAoGEn2p6PGZ5xxhmzdutXUKWdnZ8vRo0d9ltHuFnYNs577d7uwrxdV5xztKLcAAACIwpB84sQJ2bZtmzRu3Fi6du1qulQsWrTIc//mzZtNzXL37t3NdT1ft26d7N+/37PMwoULpWbNmnLWWWdJrKG7BQAAQBSUWzz66KPSv39/U2Kxe/duGTdunMTFxcnNN99sJtTdddddMmLECKlbt64Jvg888IAJxtrZQvXp08eE4dtuu00mT55s6pCffPJJ01s5GsspAh5JdqWLZbnF4Yioz0gAAACVJqxD8q5du0wgPnTokJxyyily0UUXmfZuelk9//zz4nQ6zUFEtGWbdq545ZVXPD+vgXrevHly3333mfBcrVo1GTx4sEyYMEFiUUL+SLLKcWV4RpYBAAAQQSH53XffLfH+5ORkmT59ujkVR0ehP/300wrYusgT70wWhzjFErcpuSAkAwAAFI3v22OIHta7oMMFk/cAAACKQ0iO0ZILJu8BAAAUj5AcYxJpAwcAAFAqQnKMSUrIO0JhZo5vf2kAAAAUICTHmNSkBuY8I7OgdzQAAAB8EZJjTLXkvJCcnuV7JEIAAAAUICTHmNSkvB7TGVmMJAMAABSHkBxjKLcAAAAoHSE5xqR6yi0OVPWmAAAAhC1CcoypltTQnFNuAQAAUDxCcoyOJGdmHxaXO7uqNwcAACAsEZJjTHJCHXE6EszlDEouAAAAikRIjjEOh6OgwwWT9wAAAIpESI5Bqcm0gQMAACgJITmG28ClE5IBAACKREiO5Q4XmdQkAwAAFIWQHMMdLii3AAAAKBohOZaPukdIBgAAKBIhOQZVs2uSM/dV9aYAAACEJUJyDKLcAgAAoGSE5BgutziZdUjclquqNwcAACDsEJJjUEpSPXGIUyxxm6AMAAAAX4TkGOR0xElKUn1zmZILAACAwgjJsd7hgkNTAwAAFEJIjlHV8ifvpWfR4QIAAMAfITlG0SsZAACgeITkGA/J6ZRbAAAAFEJIjvFyC0aSAQAACiMkxyjKLQAAAIpHSI71o+5lHqjqTQEAAAg7hOQYVc0zknxALMtd1ZsDAAAQVgjJMco+mIjbypGT2YerenMAAADCCiE5RsU5E6VmanNz+fDxn6p6cwAAAMIKITmGNajd2ZzvO7KmqjcFAAAgrBCSY1iD2l3M+b6jhGQAAABvhOQY1jA/JO8/ukYsy6rqzQEAAAgbhOQYVr9me3E6EuRk9kE5fnJXVW8OAABA2CAkx7D4uGSpV7Odubzv6A9VvTkAAABhg5Ac47xLLgAAAJCHkBzjPJP36HABAADgQUiOcfZI8sG09eJyZ1f15gAAAIQFQnKMq1WtlSQl1DIB+VAaBxUBAABQhOQY53A4PCUX1CUDAADkISTDU3LBQUUAAADyEJLhNXnvew4qAgAAoK1yq3oDUDk2bdpU7H257nhxSKIcy/hFlqx8S2oldSx22fr160vz5s0raCsBAADCAyE5yh08kGbOb7311hKXu/HeunLpNTXkwy9GybSx+4tdLjU1RTZt+omgDAAAohohOcqdSDtpzoc/0U/O7npmscu5JV0yrM+l3TkpMvPDOyXOqlNomV+27ZOxI2fLwYMHCckAACCqEZJjRLMW9aRt+6YlLvPz3l/k8PGfJLnODmnduPiSCwAAgGjHxD14NK5zrjk/cmKrnMw+XNWbAwAAUGUIyfBISaontaudZi7/dvBrOl0AAICYRUiGj8Z1z9NDjMjR9G2y8+AygjIAAIhJhGT4qJbcSFo27O05At/uwyurepMAAAAqHSEZhdSveZY0P6Wnubzn8LeyY/8Scbmzq3qzAAAAKg3dLVCkBrU7i8udJb8dWiH7j/1oyi+cDjpeAACA2MBIMorVuO75cnqT30lifE3Jzj0hmQkrZPTURnLw5H/F5c6p6s0DAACoMIRklKhWtZbSvsWt0kjbw1lOaXFGkmw7+rzMXnyRrNg0UQ4d31zVmwgAAFDuCMkoVZwzQZrW7yHVcq6W//zrqCQ4a0t61j5Z8/PfZc6yvvLesr6y8qfJsvfwanFbrqreXAAAgJDFVE3y9OnTZcqUKbJ3717p3LmzTJs2Tc4///yq3qyI4ZAk+ezdY3LLNcOlZct0OXhyiRzN+l4OH99sTj9se0WcjmSpltBGqie0kZT4UyUxrr4kxtWTOEeKOB2J4nQkiUMSxOFwSP369Tm8NQAACEsxE5Lfe+89GTFihMyYMUO6desmL7zwgvTt21c2b94sDRo0qOrNiwgHD6SZ89tuvcNzW2p1p7Q/N0U6nJci7bumSGr1TDmevd6ciuN2W5KbbUn2ZpFa6+pKQlxBgNbzOEc1SYirJfHOmpLgrGVO8c4a4nAkiEPixCFOcTic5rJGd1WnTh1p1KiR53c4HHES50w0o+DO/PM4Z5I49bpDfy766Ci+251jOpHoSS+7rbzrluU2y1ji1ffauwe2wyEJcakSH5fiOdcPMkBZ6esuM/uIZGYflpPZRyQ7J00s0dehJU5HvCQl1pHkhDqSbM5ri9MZM/8cAYgQMfNXaerUqXLPPffInXfeaa5rWP7kk0/kjTfekMcee6yqNy8inEg7ac6HP9FPzu56ZqH79R9Ad85xcTsOi8txRCxHhliSIW5HpojkijjyQpnT6ZDEZD2JuOSouFxHQ9+4gyKyJdCFneKU+LzQ7YgXpxnZjvdc1trruDgd8Y43/5g78pe1L+dFTbdYlivvXFwilp7nnfIuu8TlzhWnQ5fOW04Dvf6Xd+40wVS3xb4tj9tr3a78cOsSt5Wbv4/t2/U8Vywr7+TW/Wt+R/nRbwXizClV4pypnvN4R7W8/SVx4naJxMcn5n14cTjzQrh5/Ppc553sYJR3YBrv+/Rx5l1OTk6VmjVqmQ83uh79IJN3OS7/st6mz4Mzf1/lvZasQoHfvt3venH3F6zA7/a882Npx+Rkhr6O7WUsz/NinnfP5bznLO85cIiYD3Fez7U4JCUlVWpUr5n3AS//ceRd1g9++ZfzPwDqa8M8bvM6yVuXfmjJ+126GQX7Me823e+W13nBPre3Vc/1g5R5vehtlktOnEiTzMy893VR25z3QSn/srlPt69gGbeVLS4rQ3LdGZLjOiGWZOZfP27Og6EfjuOd1c15SlJtqVmjgSQl1JLE+Oqe5z5vX+V/SPbZd4U/0BV/IKSiby/2sElBr8cKfNlyWXeJGx/4eixLjqWlmdd74aXzXvfi9TfP8/fP+3Xv9ZpJTk6W6tV0cMP3NVPw+hfPa77gvVDwN9F+H+T9jP03U+/L+zn7b4fnPP+9YF/2fT/k/b05duyYnDx50vP+yHt4+e+pYv425S1r//3Wbc3b/hT9m1WzttffqbyBG9+/YQWPtWA3++973+uFnplSly/l/mB/Pv9qwd8+y3+LCm1fwb+DRb8+EpPi5ZLOj0ndGmdIpImJkJydnS2rV6+WMWPGeG5zOp3Su3dvWbFiRaHls7KyzMmmbyyVlpY3kloZTpw4Yc5/2rBLTmYUbEuwftm2z5xv/d9eqZa6LaRtsteVlZVTwjYli0iT/FPen0173Nb+Y6NvoDXfbZEP3/9K+lzTQZq2rC8Op1sc4jbnzjiXxCXkiDMuV5zxuRIXn3fZhGz7lDf4mbdWl1syM/O6bdhv5ziHSFyCQ+LzT750OzRUaniPXrk5lrj05NJ9VHC79588+7KG+cQk/eDi/Qc9I/90uLI2GVHG7bIk/bhb0tNccjLDLe78bKLvydQaTqlW3SmpNey/EMfzT/kOVNVWAyhvdRMvly5tC77trSh2TiuvowU7rBg47vDu3bvl1FNPla+//lq6d+/uuX3UqFGydOlS+eabb3yWHz9+vDz99NNVsKUAAAAIxc6dO6Vp06YSqpgYSQ6Wjjhr/bLN7XbL4cOHpV69ehVep6mfgpo1a2ae4Jo1a1bo74pE7J+SsX9Kxv4pGfunZOyf0rGPSsb+qdj9o+O+x48flyZN8r7NDlVMhGTtohAXFyf79uWVC9j0uvdkL1tSUpI5eatdu7ZUJn1x8AYqHvunZOyfkrF/Ssb+KRn7p3Tso5Kxfypu/9SqVUvKS0z0SU5MTJSuXbvKokWLfEaH9bp3+QUAAAAQMyPJSssnBg8eLOeee67pjawt4NLT0z3dLgAAAICYC8k33nijHDhwQMaOHWsOJtKlSxeZP3++NGzYUMKJlnmMGzeuULkH8rB/Ssb+KRn7p2Tsn5Kxf0rHPioZ+yey9k9MdLcAAAAAghETNckAAABAMAjJAAAAgB9CMgAAAOCHkAwAAAD4ISSHmenTp0vLli0lOTlZunXrJt9++61EMj3Etx6l0PvUtm1bz/2ZmZkybNgwczTD6tWry8CBAwsd9GXHjh3Sr18/SU1NlQYNGsjIkSMlNzfXZ5klS5bIOeecY2bEtmnTRmbNmhW2+3bZsmXSv39/c0Qg3R9z5871uV/n0moXlsaNG0tKSor07t1btmzZ4rOMHgFy0KBBptm6HujmrrvukhMnTvgss3btWrn44ovN49UjGE2ePLnQtrz//vvm+dBlOnbsKJ9++mnQ21LZ++eOO+4o9Jq68sorY2L/TJw4Uc477zypUaOGeS8MGDBANm/e7LNMOL2nAtmWyt4/PXv2LPT6uffee2Ni/7z66qvSqVMnz4Ea9DgBn332WVDbE637JpD9E8uvnaJMmjTJ7IOHH344el9D2t0C4eHdd9+1EhMTrTfeeMPasGGDdc8991i1a9e29u3bZ0WqcePGWe3bt7f27NnjOR04cMBz/7333ms1a9bMWrRokfXdd99ZF1xwgXXhhRd67s/NzbU6dOhg9e7d2/rhhx+sTz/91Kpfv741ZswYzzI///yzlZqaao0YMcLauHGjNW3aNCsuLs6aP39+WO5bfQxPPPGE9cEHH2hnGevDDz/0uX/SpElWrVq1rLlz51o//vijde2111qtWrWyTp486VnmyiuvtDp37mytXLnS+u9//2u1adPGuvnmmz33Hzt2zGrYsKE1aNAga/369dY777xjpaSkWH//+989y3z11VdmP02ePNnstyeffNJKSEiw1q1bF9S2VPb+GTx4sHn83q+pw4cP+ywTrfunb9++1syZM802r1mzxrr66qut5s2bWydOnAjL91Rp21IV++fSSy812+r9+tHXQyzsn48//tj65JNPrP/973/W5s2brccff9y8pnV/BbI90bxvAtk/sfza8fftt99aLVu2tDp16mQ99NBDntuj7TVESA4j559/vjVs2DDPdZfLZTVp0sSaOHGiFckhWcNKUY4ePWr+AL3//vue2zZt2mSC0YoVK8x1fQM5nU5r7969nmVeffVVq2bNmlZWVpa5PmrUKBPEvd14443mH8xw37f+IdDtdluNGjWypkyZ4rOfkpKSTJBT+kdDf27VqlWeZT777DPL4XBYv/32m7n+yiuvWHXq1PHsIzV69GjrzDPP9Fy/4YYbrH79+vlsT7du3aw//vGPAW9LRSsuJP/ud78r9mdiaf/s37/fPNalS5eG3XsqkG2p7P1jBx3vf9T9xdL+Ufo+eO2113jtlLJ/FK+dPMePH7dOP/10a+HChT77JBpfQ5RbhIns7GxZvXq1+brW5nQ6zfUVK1ZIJNOvn/Wr89NOO818Ba5ftSh9vDk5OT6PWb/abt68uecx67l+ze190Je+fftKWlqabNiwwbOM9zrsZex1RNK+3b59uznYjfe26nHo9ask732iJQR69EibLq+P6ZtvvvEsc8kll5hDsnvvE/3q+ciRIwHtt0C2paroV3H6Nd2ZZ54p9913nxw6dMhzXyztn2PHjpnzunXrht17KpBtqez9Y5s9e7bUr19fOnToIGPGjJGMjAzPfbGyf1wul7z77rvmyLNaVsBrp+T9Y+O1I6aEQcsl/B9HNL6GYuaIe+Hu4MGD5k3pfwRAvf7TTz9JpNLAoLVEGmb27NkjTz/9tKkDXb9+vQkYGlI00Pg/Zr1P6XlR+8S+r6Rl9E138uRJE3oiZd/aj6mobfV+vBoQvcXHx5sg4L1Mq1atCq3Dvq9OnTrF7jfvdZS2LVVB64+vv/568/i2bdsmjz/+uFx11VXmD19cXFzM7B+3221qAXv06GH+wba3KVzeU4FsS2XvH3XLLbdIixYtzAd3rUsfPXq0+XD0wQcfxMT+WbdunQl9Wq+pdZoffvihnHXWWbJmzRpeOyXsHxXrrx2lHxy+//57WbVqlfiLxr8/hGRUKA0vNp0QoaFZ/8jMmTPHTHQCgnXTTTd5LuuIhL6uWrdubUaXe/XqJbFCR3P0w+by5curelMiav8MHTrU5/Wjky71daMfuPR1FO10wEIDsY6y//vf/5bBgwfL0qVLq3qzwn7/aFCO9dfOzp075aGHHpKFCxeayXKxgHKLMKFf3+gomP/MS73eqFEjiRb6qe6MM86QrVu3mselX5scPXq02Mes50XtE/u+kpbR2ckaxCNp39rbU9K26vn+/ft97teZwdrRoTz2m/f9pW1LONAyHn2O9TUVK/vn/vvvl3nz5smXX34pTZs29dweTu+pQLalsvdPUfSDu/J+/UTz/tHRNe0W0LVrV9MNpHPnzvLiiy/y2ill/xQl1l47q1evNn9bteuEfjunJ/0A8dJLL5nLOkobba8hQnKY0DemvikXLVrk83WhXveuh4p02oZLP3XrJ3B9vAkJCT6PWb+60ppl+zHruX795R169FOsvlnsr8B0Ge912MvY64ikfaslAPoG9t5W/YpJa2m994m+8fUPlm3x4sXmMdl/tHUZbaWmNVne+0RHSbSUIJD9Fsi2hINdu3aZmmR9TUX7/tG5jBoA9StgfUz+JSPh9J4KZFsqe/8URUcNlffrJ1r3T1F0u7KysmL+tVPa/ilKrL12evXqZR6fPm77pHM/dK6RfTnqXkMBT/FDhdOWJjozftasWWaG/tChQ01LE+9ZoJHmkUcesZYsWWJt377dtNTSti/a7kVnndstWrRF0+LFi02Llu7du5uTf7uYPn36mJZO2gLmlFNOKbJdzMiRI83s1enTpxfZLiZc9q3ODNbWN3rSt+DUqVPN5V9//dXTVky37aOPPrLWrl1rOjkU1QLu7LPPtr755htr+fLlZqaxd4szndmrLc5uu+02075IH7/uI/8WZ/Hx8dazzz5r9pt2IimqxVlp21KZ+0fve/TRR83sZH1NffHFF9Y555xjHn9mZmbU75/77rvPtJzT95R3G6qMjAzPMuH0niptWyp7/2zdutWaMGGC2RZ9/ejzdtppp1mXXHJJTOyfxx57zHT60Meur1e9rl1fFixYEND2RPO+KW3/xPprpzj+HT+i7TVESA4z2g9Qn1Tt/6ctTrTPayTTti2NGzc2j+fUU0811/WPjU3DxJ/+9CfTZkffFNddd535R83bL7/8Yl111VWmj60GbA3eOTk5Pst8+eWXVpcuXczv0T9c2is1XPetbquGP/+TtjazW4s99dRTJsTpH4FevXqZnp3eDh06ZEJf9erVTeucO++80wRIb9q396KLLjLr0H2vgc7fnDlzrDPOOMPsE225oz1CvQWyLZW5fzTs6B9X/aOqgbVFixamP6b/h51o3T9F7Rc9eb/ew+k9Fci2VOb+2bFjhwk1devWNc+X9s/Wf4i9e91G8/4ZMmSIec/o9uh7SF+vdkAOdHuidd+Utn9i/bUTaEiOtteQQ/8X/KA7AAAAEL2oSQYAAAD8EJIBAAAAP4RkAAAAwA8hGQAAAPBDSAYAAAD8EJIBAAAAP4RkAAAAwA8hGQAAAPBDSAaACKTHgRo6dKjUrVtXHA6HrFmzJuh1jB8/Xrp06VIh2wcAkY6QDAARaP78+TJr1iyZN2+e7NmzRzp06GDC8ty5cyvsd/7yyy9FBvINGzbIwIEDpWXLlub+F154ochArvd5n9q2bVth2woAoYoPeQ0AgEq3bds2ady4sVx44YVVvSmSkZEhp512mvzhD3+Q4cOHF7tc+/bt5YsvvvBcj4/nnyAA4YuRZACoIv/+97+lY8eOkpKSIvXq1ZPevXtLenq6uFwuGTFihNSuXdvcPmrUKBk8eLAMGDDA/Nwdd9whDzzwgOzYscOMyOoIrp7Udddd57ktWG63WyZMmCBNmzaVpKQkU4qhI9a2Vq1amfOzzz7b/I6ePXua6+edd55MmTJFbrrpJvNzxdFQ3KhRI8+pfv36QW8jAFQWQjIAVAEtkbj55ptlyJAhsmnTJlmyZIlcf/31ptb4ueeeM6UUb7zxhixfvlwOHz4sH374oednX3zxRU+Y1fWsWrXKnNTMmTM9twVL16u/+9lnn5W1a9dK37595dprr5UtW7aY+7/99ltzrqPB+js++OCDoNav62nSpIkZdR40aJAJ+QAQrviuCwCqgIbM3NxcE4xbtGhhbtNRZaU1vWPGjDH3qRkzZsjnn3/u+dlatWpJjRo1JC4uzozIetPRZ//bAqXhePTo0WZEWP3tb3+TL7/80mzP9OnT5ZRTTjG36+h2sL+jW7duJvifeeaZ5rE//fTTcvHFF8v69evNYwGAcENIBoAq0LlzZ+nVq5cJxjpi26dPH/n9738vTqfThEgNld5lCueee64ZZa4oaWlpsnv3bunRo4fP7Xr9xx9/DHn9V111ledyp06dzOPTDwdz5syRu+66K+T1A0B5o9wCAKqAjgIvXLhQPvvsMznrrLNk2rRpZpRVO0jEAh3xPuOMM2Tr1q1VvSkAUCRCMgBUEZ38piO1Wnrwww8/SGJioixatMh0rfjmm288y2lZxurVq0tdX0JCgpn0VxY1a9Y09cJfffWVz+16XUO80u1TZf0d3k6cOOHp0AEA4YhyCwCoAhqCNRBrmUWDBg3M9QMHDki7du3koYcekkmTJsnpp59ueglPnTpVjh49Wuo6taOFrlODt3aZqFOnTlDbNHLkSBk3bpy0bt3adLbQSYDaE3n27Nnmft1O7cShHS900mBycrKpj87OzpaNGzeaZfTyb7/9Zn6uevXq0qZNG3P7o48+Kv379zclFlrWob9HR9N18iIAhCNCMgBUAR25XbZsmZkUp/XAGh61s4TW7l5xxRWmLlnbvmmNsnbA0NZux44dK3Gd+vPaOu6f//ynnHrqqUGXbjz44IPmdzzyyCOyf/9+M4L88ccfm7Bu10a/9NJLprPG2LFjzcQ77cqhoVfbwnlPANTTpZdeau5Xu3btMoH40KFDZgLgRRddJCtXrvRMBgSAcOOwKnImCACgXGhvZB1Nrsgj6gEAClCTDAAAAPghJANAlNLDQGtdcFEnu84YAFA0yi0AIEr9+uuvkpOTU+R9DRs25CAeAFACQjIAAADgh3ILAAAAwA8hGQAAAPBDSAYAAAD8EJIBAAAAP4RkAAAAwA8hGQAAAPBDSAYAAADE1/8HVbc8+bARff0AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAHWCAYAAABt3aEVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAb9pJREFUeJzt3QeYVNXZB/D/1O192QK7S2/SRUVijSCoaESNLaJYolExKhijRMVCDMReomiMsXzBEgsajCIoiFGKgKAISy9L2cr2Njvlfs97dmfcWbazs3fK//c8l3t37t2ZM3dmmXfOfc97DJqmaSAiIiIiCgJGvRtARERERNRVGNwSERERUdBgcEtEREREQYPBLREREREFDQa3RERERBQ0GNwSERERUdBgcEtEREREQYPBLREREREFDQa3RERERBQ0GNwSdaE+ffrg2muv1bsZQe/xxx9Hv379YDKZMHr06G55zNdffx0GgwH79u3rlscLFHI+5LzI+SHfWLJkiXqfh4eHq3NdWlp6TPcn9/HQQw91yXub/+eRP2JwS9QC93/469evb3b/mWeeieHDhx/z43z66adeHzTUuqVLl+KPf/wjTjnlFLz22mv4y1/+oneTiHzmyJEjuOyyyxAREYEXXngB//d//4eoqCj1vv/oo4/0bh6RXzLr3QCiYLJ9+3YYjcYOB7fyocUAt32WL1+uzvGrr74Kq9Wqd3NCXu/evVFTUwOLxaJ3U4LSunXrUFFRgblz52LixIme2yW4/fWvf42pU6ce82NcffXVuOKKKxAWFtYt/+cR+RqDW6Iu1JkPB71VVVWpnqBAUVBQoHqxGNjqy+FwwOVyqddBLpeH0vPt7ve7iI+P99ljSHqPLKHyfx4FP37dIupCTfPP7HY7Hn74YQwcOFAFAElJSTj11FOxbNkytV+OlV5bISkQ7qVx4HnXXXchMzNTfYgMHjwYTzzxBDRN83pc6Tm7/fbbkZycjJiYGPzqV7/CoUOHjsqtk225bevWrfjNb36DhIQE1R7x448/qvZILqu0NS0tDddff726LNqY+z527NiBadOmIS4uDj169MADDzyg2nXgwAFceOGFiI2NVffx5JNPtjt4kN6p/v37q+cq5/JPf/oTbDab5xh5XElFkPPiPldt5XquXbsW5513nnquEsSPHDkSzz777FG9waeddpraL0GEtD87O7vNNjc9vy29D9wpLt988416neR8yeP87ne/Q11dncqhvOaaa1QbZZG0i8avsTuvVV77v//9755zdOKJJ6qevcbkPbdt2zbk5ua22X5pY3R0NPbs2YPJkyer59+zZ0888sgjLT7+M88843l8eR+1lHMrbZDL6fJc5cuIvHfvu+8+r2PkPSrvsdTUVHV/w4YNwz//+c82293c+T7//PNVyoo7N/W4447Dhx9+eNSxcq7vvPNOz9/UgAED8Ne//lUFru15vu0hqUxyPuXvUZ5737591fNs2g45//L3I++F6dOnY9OmTV7nUlKf5HYhr7Xsk9+RtfwNvPHGG56/g2PJe22acyvnUv4faM748eNxwgkntPle//bbbzFr1iz1+sv76qKLLkJhYaHXfck5l78fec9FRkbil7/8pTrHzOOlY8WeW6I2lJWVoaio6KjbJYhoi/zHPW/ePPz2t7/FSSedhPLycvXB9/333+Pss89Wwc3hw4dVsCu5dI1JcCFB6ooVK3DDDTeoD+3PP/8cd999twoKnn76ac+x8kHw73//W11ePPnkk7Fy5UpMmTKlxXZdeumlKuCWS5vuIEbaIEHOddddp4LSLVu2qEBK1mvWrPEKusXll1+OoUOHYv78+fjvf/+LP//5z0hMTMTLL7+Ms846SwUMCxcuxB/+8Af1wXz66ae3eq7kHMmHtVxqlYBeglI5dxJkLlq0SB0j50ja9N133+Ef//iHuu0Xv/hFi/cpz0k+qNPT03HHHXeo5yX398knn6ifxRdffIFzzz1XfZjL6yVfFJ5//nmV0yuvk3zQdpXf//73qg3yhUfOqTwXCWxWrVqFrKws9XpImooMmJN8bgl4G3vrrbfUJWp538jr8dhjj+Hiiy9Wr5s7LUDeG/K6SFDUnkFeTqcT55xzjnrfyP3J4KUHH3xQfdmQILcx+WJRW1uLm266SQV78no3Dgrd5IuSfFmQNsmxcg53796NxYsX49FHH1XH5Ofnq8eU53HbbbepIOizzz5T73X5O5EAtCN27typ3pM333yzeu7SVnmfy/ORvzVRXV2NM844Q50jOYdyzuXcz549W30ZkEC2refbnp7WSZMmqedz7733qtdXgsbGgbb8zckXKPmyI+2V10ve4+5A1k2+DMiXAnmfyGshQbIE2pKe4P4/Rdom5PauIudR3nvyxUn+dt3279+v3rfy/mzPe12+qMl7SZ6/nFt5nd99913PMXLe5T13wQUXqC8DP/zwg1rLOSc6JhoRNeu1116TqK/VZdiwYV6/07t3b2369Omen0eNGqVNmTKl1ceZMWOGuq+mPvroI3X7n//8Z6/bf/3rX2sGg0HbtWuX+nnDhg3quDvvvNPruGuvvVbd/uCDD3puk2257corrzzq8aqrq4+67e2331bHf/3110fdx0033eS5zeFwaBkZGapd8+fP99xeUlKiRUREeJ2T5mzatEnd529/+1uv2//whz+o25cvX+65Te4rKiqq1ftzt6lv377qNZF2NOZyuTzbo0eP1lJSUrQjR454bvvhhx80o9GoXXPNNUe9H/bu3eu5ren5bel94P7dyZMnez32+PHj1Tm7+eabjzqXZ5xxhuc2eUz5/aSkJK24uNhz+8cff6xuX7x48VHHtnXOhRwjx/7+97/3OjfynrVarVphYaHXfcbGxmoFBQVe9+HeJ8/R7fTTT9diYmK0/fv3ex3b+LnfcMMNWnp6ulZUVOR1zBVXXKHFxcU1+35siZxvacMHH3zgua2srEzd/5gxYzy3zZ07V713duzY4fX79957r2YymbScnJw2n29bFi1apH533bp1LR7j/tt+7LHHvF7300477ahz6X7vNL0/eR7teY2b0/R92/S9LecuLCxMu+uuu7x+T9or79fGr2tL7/WJEyd6vd4zZ85U57i0tFT9nJeXp5nNZm3q1Klej/HQQw+1+/1L1BKmJRC1QdIGpAew6SKXt9sivTbS8ym9Sh0lPXiSByeXsRuTXk35fJJeLiE9U+LWW289quekJdJb1JRcPnWTnhPprZaeNSE9mE1Jz5GbtFMuVUq7pOet8fOXnifpWWzruQq5jNn0uQrpGe6ojRs3Yu/evaoHsGm+orsXWnrr5FKw9Hw37pWT11Z6+9zt6ipybhr3gI8bN+6oc+Y+l82dM+lRk94wN+kdFY2PlV5Suc+OlOaSHjU3d0+qpEtIr3Zjl1xyieqRbI1cev7666/VZXjpGW3M/dylfR988IHqsZNtea+5F+m5k6slzb3nWiOXtuXSt5ukxUjvo7wP8vLy1G3vvfeeOmdyDhs/pvSESg+2tLujz7cp93tNrg60dHVH3ldmsxm33HKL1+ve2t9sd5JzJ1cz5GpQ4/QU6XWV/xOavq7NkR7lxu91Oe9yjqX3V3z55Zfq6kBH/t8iai8Gt0RtkEt/8uHXdGkcZLRELiVKbt2gQYMwYsQIlVIgl2zbQz4E5ANbcmgbk0uY7v3utYxWlkuWjUkuYUuaHiuKi4vVpXrJf5RAVz7U3cdJsNFU0w84yR2UXEfJM2x6e0lJSZvPVZ5D0zbLJXwJFtzPtSPkMrhorVyb+34lAG9KzrMEPpLb2FWaO2dC8j/bc86a/r77PdjW+W2NnPem+ZXyfhVN6542975pyh1ot3beJQCWvwu53C7vs8aLpMU0HkjVXvLeaZo60/R5yJdM+TLY9DHdVQiaPmZ7nm9TkvYgQbGknsjfgqQfSHpD49xxed9JqozkOzfW3PtQL/JFSvLnV69e7fl72rBhg7q9Pdp6r7r/9pr+zcuXzPb830rUGubcEvmQ5JnKh8LHH3+sBrtInqjkyr700ktePZ/drXEvrZsM/pH8QwnAJb9XPngln1LyMZvLq2xudHVLI66bDoBrSdPgJFBJD1VzWjo/zd3e3Dk71vPri/dNZ7jfTzIgsWmeqVt7rox05nGlR14G7DXHHQwfy/OV9/D777+vclMlx1jy5KUXWwZWym1NA1p/Jb3qMshLem8lr13W8kVI8pjbQ+/3KoU2BrdEPiY9EdIbJUtlZaUKeGXgkju4bSmgk/qhcllYBhA17r2VUeju/e61fGjLJXgZJOa2a9eudrdRelPkMqH0Ns2ZM8dze2fSKTrD/Rzk8dw90+5BR9LD536uHeEeYPPTTz951Qdt+rjuWp1NyXmWnrfWyqRJD1PT2aLkcn57KhX4Cznv0tvaOLCTShiiM4Pp3L3Act5bIr2l8p6WLwEtvTYdJe93CZwa/z01fR7ynpC/wa56zNbI5XtZZACdDAS86qqr8M4776i/e3nfyd+btKVxsNvc+1CvL4LyvpfBmJLK8dRTT6mUBEktkKtJXcH9tyevW+MecqnOcixXIogE0xKIfKhpGS35IJPLcI0vUbqDp6ZBkpSvkg//v/3tb163S8+vfLBJTpyQHEXx4osveh0nI/7by93L0rRXpenocV+R59rc48mHqmit8kNLjj/+ePWhKffZ9Ny6n6dcGpZeaqnS0PgYCcykp93drpZIsNQ0T1MutbfUc9sdOlIKzK3xe0zOjfwslQ4mTJjQ4ceXwFW+wElJr5ycnGbPu7zf5NK95N02FwQ3LRnVHlJ1xF1VQ0jFhTfffFO9vpLe4r46IZfZpTe1KXn9JQf0WElg1vTvyD1FtPvvXt5X8lgLFizwHCPvmY78zcr/G8c6DW9bJAVBzqtccZJKBu1NSWgPeW9J3nHjcyCa/n9H1BnsuSXyIam1KbUqx44dq3pwpQyYXLJsPIBH9gkZOCaBqnzwy2xBcllQ6j5KOSDJGRw1apQKuCTFQQZJuXsm5fclUJAgToJpdykwd69Ve3p4ZACJBCRSlkeCo169eqnHkt7g7iDPTS5PS2AoH9iStyjlviTolBmY5Dx0lFxClQ9OOY8SXEjPuQSzEvjJID93gCNljeSLgtTvlIFd7lJgkvfa1qxx0gsng/Pk/MvlbgkA5H6b5h13p46WApM8aclDleNlgJsMVJQBfFJjuKODqdyee+45VT9ZvmDIwCL5kiHvYblfGcAnpISclLmTx7zxxhvV34rkfctAMrliIdsdIT3P8vpJ+SrJG5fgWnr+Jd/VTVJu/vOf/6geSRlEKH87klO9efNm9XcpbTzW107es/JFUwa3yd+oXHl55ZVX1N+Y+8uSvCel1JyUCpPHdNfkbS63vSXSdjlP8gVQelPlHMu57ErSXulhl3J+7i8kXUVeI8nxl3QNKXko6U/y9yPvP3kNgiVFifTB4JbIhyRglQ9TCRSl10YuxUk9WPmQdZM6pTJCWC5Z/utf/1K9PhLcSnAmvytpAnJJUD6k5fKqBGPuKgJu0kMlvVNvv/226r2Sy67yOzJApb2zR8mlU2mHVIeQNkitTvmg6arLkG2R3iG5pC0BmTwHeT5SB1PqZHaWfFmQAErSLeRDVC7BS8AhwZSbnCt3bVc519JjKcG11Olta0CR3I98AZCpgOU+5LKtVNLoTI+nXiRokbbLyH15X0ow4z4Xx/JlRfJLZWIP+YIh1TfkvS89p42DG/kCI4MuJbCTgFAmOZGJHOTcd5Sk5MiXEnkOcnlfXjv5G3Bf2RCSQypf/KSesFxul78bCTolMJb3iHuA37FwfzGTv2cJruU+ZVCq1Hx2v5/cf9vyJVX+5iWQkwBP3qNjxoxp1+NIUCtfHO6//371hcz95aQryf8d0i5pu/ydpKSkdOn9y+ssr4kE/xKoyxdM+b9SvhiFwqx35DsGqQfmw/snIp1ID5l8UMqHp+T7ETUlvZfSYym5n4FMvvRJdQYpvxXIpBdXAmD5IhuqM3TJlRvJZZdOgKYz2hG1F3NuiYKA9Nw0JWkK0kPU1sxgRET+9P+WkHQuos5iWgJREJBcWalBKbmpMkhD0glkkcuWTWuoEgUKGVjW2uA8q9Xarilxg7U9jUm72hqIJwNa/akUmaSNSBqS5PZKu2Q6YkmtkpQoyUkm6iwGt0RBQOpQSq7n3Llz1SVmKaAug6F4WY8C2YknntjqBB6S3/rVV1+FbHsakwkX2soRl1zqtgZJdiepZSxfxuXLuVS3cA8yk5QEomPBnFsiIvJL3377bbOXrt0kN9NdbSQU29OYDNqTns/WyIDNprPREQUjBrdEREREFDQ4oIyIiIiIggZzbhumn5RZWKS+IwtHExEREfkfSTaQiVGk/rpUA2oJg9uGaRs5opyIiIjI/8kAyoyMjBb3M7gFVI+t+2TJbDVERERE5F+kqoZ0RrrjtpYwuJVRdQ2pCBLYMrglIiIi8l9tpZByQBkRERERBQ0Gt0REREQUNBjcEhEREVHQYHBLREREREGDwS0RERERBQ0Gt0REREQUNBjcEhEREVHQYHBLREREREGDwS0RERERBQ0Gt0REREQUNBjcEhEREVHQYHBLREREREGDwS0RERERBQ2z3g0gsjuqYXOUQ9OcMMCAqPA0GAz83kVEREQdx+CWdKFpGnKL12JLzkLsyfscLledZ198VD+M7Hs9BmVcAospQtd2EhERUWAxaBJlhLjy8nLExcWhrKwMsbGxejcnKOTk5KCoqKjZfTWOQ9hV8jSqHXsa3WqEAUZocAFqAcyGaPSNn4FBGVOQlZXVTS0nIiKiQI7X2HNLPglshw4dgurqmqP2jT09ElfdloTwSCNqa1xY91UVvllSiQO763tuwyMMGH92NM68IAY90iuxrWg+Hnr4T3jrlR8Y4BIREVGbGNxSl5MeWwlsH3n8KvTpn6pu06ChzvQj7KZd6meTqwcSTSfi3AkROHfC0fchPbg25/eAaT+uvC0WW3PeRlbWPd39VIiIiCjAMLgln5HAdsiwDLV96Mhq5BbXB7bpiSehZ+K4NgeNaVomftz+CeymPdhbtgB788agb9qkbmk7ERERBSYOSSefyy/dhNzi79R275Sz0CtpfLuqIRgMBlido/HVJ+Xq55U//Qm1daU+by8REREFLga35FPFFTtxoHCl2u6ZeDJ6xI3o0O9LabAPXy1BuDkDNbYifLv1ER+1lIiIiIIBg1vyGReqsK/gC7XdI26kSkfoDIcd6Bc3Q4W6Ow59iP35y7u4pURERBQsGNySTxgMgM28QdWvjQpPR1aPM1SaQWfFWAdjVN8bPOkJdY7KLmwtERERBQsOKCOfOOP8GDiNhTAazOibevYxzziWnZ2NQUMmIMy0GFW1eVi26jGkR0/t8P0kJyezpBgREVEQY3BLXU4maZh6bbzazkg+FeHWhE7fV1Fh/WCyadOmqfX4s6Nw9R3J2Lz/n5h6w1yVstARkZERyM7exgCXiIgoSDG4pS63v/yfsIYZYXKlqFzbY1FZXj8RxMz7pmDM2MGq/m21tgRxiTV4+b2psLj6tfu+9u3Ox5y7F6o6vAxuiYiIghODW+pSUs+2zLYRToeGSNeYY8qzbSyzd5KnZm5+6UmqAoMWvhuD+5x6zCkPREREFDwYFVCX0TQNa7bNV9v/W1IBI6J98jjJscNgNkWgzlGO4oodPnkMIiIiCkwMbqnL7MlbgoLSH2A0hOOzd8p89jgmowUp8aPVdm7JehVUExEREQkGt9QlXC4H1m5/XG2nR/0KFaUunz5eStwoGA0W1NYdQVVtrk8fi4iIiAIHg1vqEjsOf4Syqj0ItyYiLepXPn88sykMCdED1HZRebbPH4+IiIgCA4NbOmaSFvDj3lfV9uh+N8JsjOyWx02KHarWJZU7VM8xEREREYNbOma5xWtxpDwbZmM4hmZe2W2PGxORAas5Bk5XHUqqdnfb4xIREZH/YnBLx+zHva+p9aCMixFurZ+8oTtImTF3760E10REREQMbumYlFcfwL78ZWp7RJ/ruv3xk2Lqg9vy6hzUOSq7/fGJiIjIvzC4pWPy07431axhGcmnITFmYLc/vvQUR4f3lMxf9t4SERERg1vqPLujCtkH3lHbI3XotXVLjj1OrY9UbNOtDUREROQfGNzSMU3aUOeoQGxkb2SlnKlbO+KjB8AAI2rrilFbV6JbO4iIiEh/Zr0bQP4jJycHRUVF7T4++8gbah1rHI+NGzf9fHt296YHSM3bmMgMlXdbWrUHadax3fr4RERE5D90DW4XLFigln379qmfhw0bhjlz5uDcc89VP5955plYuXKl1+/87ne/w0svveQVkN1yyy1YsWIFoqOjMX36dMybNw9mM+P2jpDzOHToEFRX17Tr+LhEEx59vReMRgOuu/xJHMn/61HHVFZ23wCv+Kh+KrgtqdyNtAQGt0RERKFK1wgwIyMD8+fPx8CBA9VEAG+88QYuvPBCbNy4UQW64sYbb8Qjjzzi+Z3IyJ8nCHA6nZgyZQrS0tKwatUq5Obm4pprroHFYsFf/vIXXZ5ToJIeWwlsH3n8KvTpn9rm8XXGHagzbobRlYSnF1zitW/Vymy89OxnqK2tRXcGtzmFX6mpeCUX2GKO6rbHJiIiIv+ha3B7wQUXeP386KOPqp7cNWvWeIJbCWYleG3O0qVLsXXrVnzxxRdITU3F6NGjMXfuXNxzzz146KGHYLVau+V5BBMJbIcMy2jzuC05XwM2ICN1JFLivY/ftzsf3c1qiUFkWCqqbfkordqLHnHDu70NREREpD+/GVAmvbDvvPMOqqqqMH78eM/tCxcuRHJyMoYPH47Zs2ejurras2/16tUYMWKECmzdJk+ejPLycmzZsqXFx7LZbOqYxgu1X42tCDW2QjWIS4/yXy1JiO6n1qWVnK2MiIgoVOmemLp582YVzMolbMmZXbRoEY47rr60029+8xv07t0bPXv2xI8//qh6ZLdv344PP/xQ7c/Ly/MKbIX7Z9nXEsnJffjhh336vIKZu+RWXFRfmE0R8BfxUf1x6MhqlNccUFPymozsuSciIgo1uge3gwcPxqZNm1BWVob3339fDQiTQWQS4N50002e46SHNj09HRMmTMDu3bvRv3//Tj+m9ADPmjXL87P03GZmZh7zcwkFkht9pGK72k6KGQx/Em5NRJglDjZ7Gcqq9vtVrzIRERGFSFqC5MUOGDAAY8eOVT2qo0aNwrPPPtvssePGjVPrXbt2qbXk4ubne+d3un9uKU9XhIWFITY21muh9qmy5cPuqITRaFU9t/7EYDCo3lshJcGIiIgo9Oge3DblcrlUTmxzpIdXSA+ukHQGSWsoKCjwHLNs2TIVrLpTG6hrufNZ4yJ7w2jUveP/KPENAXd59X7Vy0xEREShRdfoRNIDpKZtVlYWKioq8NZbb+Grr77C559/rlIP5OfzzjsPSUlJKud25syZOP300zFy5Ej1+5MmTVJB7NVXX43HHntM5dnef//9mDFjhuqdpa7n7hGV0lv+KCoiHUaDBQ5nDWrqihAZ1kPvJhEREVGoBLfS4yp1aaU+bVxcnApaJbA9++yzceDAAVXi65lnnlEVFCQn9pJLLlHBq5vJZMInn3yiJnGQXtyoqCiVs9u4Li51ndq6UjXFrVRJ8LeUBDejwaRmKyur2qvybhncEhERhRZdg9tXX321xX0SzDadnaw5Uk3h008/7eKWUWu9ttERvdSUt/4qNjJLBbcyY1l64gl6N4eIiIhCOeeWAiAloaGerL+SfGBRWXsYTpdd7+YQERFRN2JwS+1id9agsuawX+fbuoVZ4mE1x0DTnKisOaR3c4iIiKgbMbildpHL/ICGCGsywiz+XTpNSoJJaoKQ1AQiIiIKHQxuqV1KKwMjJcEttiE1oYzBLRERUUhhcEttcmlOTw+ov6ckuMVG1s84V1t3BHWOSr2bQ0RERN2EwS21qao2Dy7NDrMpApFhKQgEZlM4osJS1XZ51X69m0NERETdhMEttcndaxsbkanyWQNFTEPebUXNQb2bQkRERN2EwS21P7htCBYDRWxkhie45VS8REREoYHBLbXK4axFVW1+QAa3UeHpajY1ybmtc5Tr3RwiIiLqBgxuqVX1l/Q1hFsSYLXEIJCYjBZEhdfn3VZUMzWBiIgoFDC4paBMSXCLiXCnJnAyByIiolDA4JaCO7htnHcL5t0SEREFOwa31CKbvUwtkrfqDhIDzc95txXQUK13c4iIiMjHGNxSm722UeFpMBmtCESSdxvZkHfrNBbq3RwiIiLyMQa3FLQpCU3zbp0GBrdERETBjsEtNUvqwroHYcU0TGUbqGIieqm101ikd1OIiIjIxxjcUrNq7SVwOGtgMJg85bQCVXRET5V3qxmqkZRq1rs5RERE5EMMbqlZlQ29ttHh6TAaTAhkjfNuBw4P07s5RERE5EMMbqlZ7pSE6IZL+oEuJqKnWvc/jsEtERFRMGNwS63n2wZJcBsd7g5uw/VuChEREfkQg1s6itSEtTsqVZ6qlAELBpJ3K9IyLbA7y/RuDhEREfkIg1s6irvXNjI8ReWrBgOzKRxGV6zarrBv07s5RERE5CMMbqnFwWTBkpLgZtSS1LqibqveTSEiIiIfYXBLQT+YzM2kJat1RR17bomIiIIVg1vy4kINbPZSr0FYwcLkqu+5rbbvgd1RrXdziIiIyAcY3JIXp/GIWkeE9YDZFFxlswyIREmhAxqcKCjdpHdziIiIyAcY3JIXl6F+itqYIOu1FQYYsGuLTW3nlqzTuzlERETkAwxuyYvTcMSrdFaw2b21Vq1zi9fr3RQiIiLyAQa35GEJM8BlqK8BGyz1bZvavbW+5za/5Hu4XA69m0NERERdjMEteWQNsAIGDRZTFKzmGASjwzl2mAyRsDurcKSCVROIiIiCDYNb8ug3JMzTa2swGBCMNBcQYx2itnOLmXdLREQUbBjckkffwfXBbXREOoJZtHWoWjO4JSIiCj4MbknRNA19h1iDOt/WLaYhuM0rWaeeNxEREQUPBrek1DkLEZdoBjQDosJSEcyiLQNgNFpRbStEeXWO3s0hIiKiLsTglpRK+w61NmrxMBrNCGZGgxUpcSPUNuvdEhERBRcGt6RU1G1Xa5OWiFCQnniiWjPvloiIKLgwuKUmPbehEdymJdQHt3kMbomIiIIKg1uCw1mLavtetW1yJSEUpCWMVevSqj2osdXPykZERESBT9fgdsGCBRg5ciRiY2PVMn78eHz22Wee/bW1tZgxYwaSkpIQHR2NSy65BPn5+V73kZOTgylTpiAyMhIpKSm4++674XBw5qmOKCz7CRocKCtxwoBIhIJwazwSogep7bwSTsVLREQULHQNbjMyMjB//nxs2LAB69evx1lnnYULL7wQW7ZsUftnzpyJxYsX47333sPKlStx+PBhXHzxxZ7fdzqdKrCtq6vDqlWr8MYbb+D111/HnDlzdHxWgaegdJNa79tugwHBOXlD63m3DG6JiIiCha7B7QUXXIDzzjsPAwcOxKBBg/Doo4+qHto1a9agrKwMr776Kp566ikV9I4dOxavvfaaCmJlv1i6dCm2bt2Kf/3rXxg9ejTOPfdczJ07Fy+88IIKeFtis9lQXl7utYSygrIf1Xr/DhtCiSe4LflO76YQERFRsOXcSi/sO++8g6qqKpWeIL25drsdEydO9BwzZMgQZGVlYfXq1epnWY8YMQKpqT/XZZ08ebIKVt29v82ZN28e4uLiPEtmZiZCWWHZZrXev6vlLwTBKD3hBLUuKtsCu6Na7+YQERFRMAS3mzdvVr21YWFhuPnmm7Fo0SIcd9xxyMvLg9VqRXx8vNfxEsjKPiHrxoGte797X0tmz56teobdy4EDBxCqbPYylFXVDybL2RlawW10RC9EhafDpTk8qRlEREQU2HQPbgcPHoxNmzZh7dq1uOWWWzB9+nSVauBLEki7B7G5l1AeTCbCTKmoqnAhlBgMBqQn1vfe5nJQGRERUVDQPbiV3tkBAwaonFpJFxg1ahSeffZZpKWlqbzZ0tJSr+OlWoLsE7JuWj3B/bP7GGpdYUO+bZSlP0JResJJas3JHIiIiIKD7sFtUy6XSw34kmDXYrHgyy+/9Ozbvn27Kv0lOblC1pLWUFBQ4Dlm2bJlqidWUhuobQWl9fm2UZYBCEXuntv8ku/hcrGEHBERUaAz6/ngkvsqFQ5kkFhFRQXeeustfPXVV/j888/VQK8bbrgBs2bNQmJiogpYf//736uA9uSTT1a/P2nSJBXEXn311XjsscdUnu3999+vauNK6gG1rbDsh5DuuU2IGQSrOQZ1jgocqdiGHnHD9W4SERERBWpwKz2u11xzDXJzc1UwKxM6SGB79tlnq/1PP/00jEajmrxBenOlEsKLL77o+X2TyYRPPvlE5epK0BsVFaVydh955BEdn1XgkJm5KmoOqe0oSz+EIqPBpGYryyn8SqUmMLglIiIKbLoGt1LHtjXh4eGqZq0sLenduzc+/fRTH7QudEqAxUf1g9kYhVCVlniiCm5lprKRfa/TuzlEREQUTDm31P2TN/SIG4lQ9vNMZd9B0zS9m0NERETHgMFtCHNXSkiJD+3gNiVuJIxGK6pthSivztG7OURERHQMGNyGsMKGSgmh3nNrNoUjJW6E2s4tYUkwIiKiQMbgNkRV1eajypYPA4xIjmXZtLSGqXjzijmZAxERUSBjcBvig8kSYgbCYo5EqEtPdE/m8J3eTSEiIqJjwOA2RBWV109xnBw7TO+m+AUpByZKq/aoEmlEREQUmBjchqiisi1qzZSEeuHWeCRED1LbUhKMiIiIAhOD2xBVVM7gtqWpeHOZd0tERBSwGNyGIJu9DBU1B9V2chzTEtzSExrq3bJiAhERUcBicBvCKQkxERkIs8Tp3Ry/m8yhqOwn2B3VejeHiIiIOoHBbQjiYLLmRUf0QlR4OlyaAwWlm/RuDhEREXUCg9tQDm6ZkuDFYDD8nHfLQWVEREQBicFtCOJgsrbzbvOKmXdLREQUiBjchhiHsxYllbvUNtMSWs67zSv5Hi6XQ+/mEBERUQeZO/oLFNiKK7ZD05wItyYiKjwNoSg7O7vFfXJuTIZI2J1V+HbdIkRZ+rd4bHJyMrKysnzUSiIiIuoMBrchm5IwTOWYhpKiwnK1njZtWqvH3fpQCoafEIE5j96ArxZXtHhcZGQEsrO3McAlIiLyIwxuQ0xhCM9MVlleo9Yz75uCMWMHt3hcnXEb6rAFV944Atdfd3Kzx+zbnY85dy9EUVERg1siIiI/wuA2xHAwGZDZOwlDhmW0uL+ixojtB7fAYCnG4EG9Qq6Hm4iIKJBxQFkIcWlOFJdvU9ssA9ayqPBUGA1mOJw1qKkr0rs5RERE1AEMbkNIWdU+OFy1MBvDERfVV+/m+C2jwaQmdBAV1fXTFBMREVFgYHAbQoor6nttE2MGqwCOWiZTE4uKGga3REREgYTBbQg50pCSkBg7RO+m+L2YyJ+DW01z6d0cIiIiaicGtyHkSEV9fdekGAa3bYkKS4HJaIXTVYdqW6HezSEiIqJ2YnAbgj23Sey5bZPBYPw575apCURERAGDwW2IqLNXeII09tx2LO+2vPqA3k0hIiKidmJwGyKKK3aotUy5G25N0Ls5ASE2MlOtK2sOqzJqRERE5P8Y3IYI5tt2XIQ1GSZjOFyaHdW1BXo3h4iIiNqBwW2IYL5tx8nMZDENebflNUxNICIiCgQMbkPEEU+N26F6NyUgUxPKq3P0bgoRERG1A4PbEKBpmie4Zc9tx8RG9lbrqppcVRaMiIiI/BuD2xAgVRLsjkoYDRbER/XTuzkBJcwSB6s5FhpcnIqXiIgoADC4DQHuXtuEmAEwGS16Nyfg8m7jIrPUNlMTiIiI/B+D2xBQ7B5MxnzbTomNqk9NYHBLRETk/8x6N4COXU5ODoqKilrcv6tktVrXlkfj+++/b/aY7Oz6UmF0tJgIGVRmQK29BDZ7OcIssXo3iYiIiFrA4DYIAtuhQ4egurqmxWPmLOiJtEwL7r7zcWRvnNvq/VVWVvqglYHNbApTk19U1eaq3tseccP1bhIRERG1gMFtgJMeWwlsH3n8KvTpn3rUfg1OVFk+Utv3PHAdjIho9n5WrczGS89+htraWp+3ORBJ3i2DWyIiIv/H4DZISGA7ZFjGUbdX2wqxNQcwGcMw9LgBaoBUc/btzu+GVgZ2SbDDxWtVcKtpLr2bQ0RERP44oGzevHk48cQTERMTg5SUFEydOhXbt2/3OubMM89UAVnj5eabbz7q0vyUKVMQGRmp7ufuu++Gw+Ho5mfjn2psR9Q6wprUYmBLbYsKT4XJaIXTZUOVjVPxEhER+Stdg9uVK1dixowZWLNmDZYtWwa73Y5JkyahqqrK67gbb7wRubm5nuWxxx7z7HM6nSqwraurw6pVq/DGG2/g9ddfx5w5c3R4Rv6npq4huA1L0rspAc1gMCK2oSRYWdU+vZtDRERE/piWsGTJEq+fJSiVntcNGzbg9NNP99wuPbJpaWnN3sfSpUuxdetWfPHFF0hNTcXo0aMxd+5c3HPPPXjooYdgtVoRyjzBrZXB7bGKi+yDkspdKKvaCyOOTgEhIiIi/flVnduysjK1TkxM9Lp94cKFSE5OxvDhwzF79mxUV1d79q1evRojRoxQga3b5MmTUV5eji1btjT7ODabTe1vvIRCWgIdm7ioPmpdbSuACy1XpyAiIiL9+M2AMpfLhTvvvBOnnHKKCmLdfvOb36B3797o2bMnfvzxR9UjK3m5H374odqfl5fnFdgK98+yr6Vc34cffhjBzumqQ52jPnAPZ1rCMbOYoxAVlooqWz6cxubfW0RERKQvvwluJff2p59+wjfffON1+0033eTZlh7a9PR0TJgwAbt370b//v079VjS+ztr1izPz9Jzm5kphfqDS21dsVqbTZGwmJovAUYdExfVVwW3Dga3REREfskv0hJuu+02fPLJJ1ixYgUyMlrPZRw3bpxa79q1S60lFzc/37uMlfvnlvJ0w8LCEBsb67UEI6Yk+Ca4FU5DPsx+89WQiIiI/CK41TRNBbaLFi3C8uXL0bdvfeDQmk2bNqm19OCK8ePHY/PmzSgo+Lk8k1RekID1uOOOQyhjpYSuFxnWAxZTFGBwYuCIcL2bQ0RERE2Y9U5FeOutt/Dxxx+rWrfuHNm4uDhERESo1APZf9555yEpKUnl3M6cOVNVUhg5cqQ6VkqHSRB79dVXqxJhch/333+/um/poQ1lNQ1pCey57TpSK1gGlhWVb8HwE5nqQURE5G907bldsGCBqpAgEzVIT6x7effdd9V+KeMlJb4kgB0yZAjuuusuXHLJJVi8eLHnPkwmk0ppkLX04k6bNg3XXHMNHnnkEYQ6lgHzbWrCiJMi1NUHIiIi8h+69ty2FRjIIC+Z6KEtUk3h008/7cKWBT6H0wa7o1Jth1u9S6vRsYmNzAQ0I5LTLKhxHAQwVu8mERERkT8NKCPf9dpazdEwm0I7PaOryTS8Jq2H2i6xrdW7OURERNQIg9sgVdsQ3IYzJcEnzK5eal1Sy+CWiIjInzC4DVIsA+ZbJlc6XC4NVfbdqKw5rHdziIiIqAGD2yDFMmC+ZUQ49mTb1Pbe/GV6N4eIiIgaMLgNUu7ZyTiYzHd+WFOt1nvzPte7KURERNSAwW2wVkpw1gdeEZYEvZsTtDatqlHrw8VrUVtXondziIiIiMFtcPfaWszRMLFSgs8cyXcg0twbmubE/oLlejeHiIiIGNwGeUoCe219LiF8nFozNYGIiMg/MLgN6ml3mW/bXcHtgcKvYXfUp4IQERGRfhjcBiEOJus+keY+iI3sDYerFvsLvtS7OURERCGPwW0QqrXXD25icOt7BoMB/dOnqO1duf/VuzlEREQhj8FtkHG5HLDZy9R2hJU5t91hQENwm1OwAnWOSr2bQ0REFNIY3AZpr63JGAazKVLv5oSEpNjjEBfVF06XDfvzmZpARESkJwa3QZpvK4PJ5JI5+Z6c5wHp56vt3UxNICIi0hWD2yCtlMB82+7lzrvNKfwKdfYKvZtDREQUsjoV3D744IPYv39/17eGjhkrJegjMWYw4qP6w+mqw778L/RuDhERUcjqVHD78ccfo3///pgwYQLeeust2Gy2rm8ZdUpNwzSwrHGrQ9WEnqyaQEREFJDB7aZNm7Bu3ToMGzYMd9xxB9LS0nDLLbeo20g/muaCrSG4Zc9t93Pn3R4o+tpTsYKIiIgCJOd2zJgxeO6553D48GG8+uqrOHjwIE455RSMHDkSzz77LMrK+OHe3SSg0uCC0WCG1Ryjd3NCTmLMICRED4KLqQlERESBO6BM0zTY7XbU1dWp7YSEBPztb39DZmYm3n333a5pJXVwMFkCKyXoZEBDagKrJhAREQVYcLthwwbcdtttSE9Px8yZM1VPbnZ2NlauXImdO3fi0Ucfxe233961raVWcTCZ/vqn1Qe3Bwr/x9QEIiIiHZg780sjRozAtm3bMGnSJJWScMEFF8BkMnkdc+WVV6p8XOo+tcy37Xbyha6pCHNv1Dj246u1f0ePyAlt3kdycjKysrJ81EIiIqLQ0qng9rLLLsP111+PXr16tfqB7XK5jqVt1Mm0hAgLp931taLCcrWeNm3aUfvOuTwOv7o6Hou/fAIvPPTHNu8rMjIC2dnbGOASERHpFdy6c2ubqqmpweOPP445c+Z0RduoAzRonql32XPre5XlNWo9874pGDN2sNc+FypQjaUYNjYSb3w4AwaEtXg/+3bnY87dC1FUVMTgloiISK/g9uGHH8bNN9+MyMhIr9urq6vVPga33U9DjRqlDwmlrPF6NydkZPZOwpBhGUfdviVnI2pshUjOqEGPuP66tI2IiCgUGTvbc9vcaPwffvgBiYnsNdSDy1A/5Wu4JR5Gg3f+M3W/xOiBal1SuVPvphAREYWUDvXcSiqCBLWyDBo0yCvAdTqdqKysVD26pGNwy5QEv5AQPRCHjqxCefUB2B3VsJi9r3IQERGRHwS3zzzzjOq1lcFkkn4QFxfn2We1WtGnTx+MHz/eF+2kNrgM5Z4at6S/cGs8IsNSUG0rQEnlLqTEj9S7SURERCGhQ8Ht9OnT1bpv3774xS9+AYvF4qt2USd7biPYc+tXM5ZJcFtcuYPBLRERkb8Ft+Xl5YiNjVXbMmGDVEaQpTnu46j7aExL8MvUhINF36Cy5hDqHJWwmqP1bhIREVHQM3ck3zY3NxcpKSmIj49vdkCZe6CZ5N9S94mMNkIz2NQ20xL8R5glFlHh6aiqzVWpCanxo/VuEhERUdBrd3C7fPlyTyWEFStW+LJN1EFpmfXpIdIzaDJa9W4ONamaIMFtccUOBrdERET+FNyeccYZnm3Juc3MzDyq91Z6bg8cONC1LaR2B7dMSfA/CTEDcaDoaxXg1tkrYLXE6N0kIiKioNapOrcS3BYWFh51e3FxsdpH3Ss9i8Gtv5Le9OiI+mmqi1nzloiIKLAmcZA6t+Hh4V3RLuqAtIz64JaVEvx7QgdJTSAiIiI/KgU2a9YstZbA9oEHHvCaflcGka1duxajRzOvsLsxLcG/JUQPQE7hSlTb8mGzlyHM8nN9aCIiItIxuN24caOn53bz5s1q4gY32R41ahT+8Ic/dHETqTVOVy2SUutfRga3/slijkJMRAYqag6o3tv0xBP1bhIREVHQ6lBaglRJkEUmc/jss888P8vy+eef4+WXX8bAgfWXYNtj3rx5OPHEExETE6NKjE2dOhXbt2/3Oqa2thYzZsxAUlISoqOjcckllyA/P9/rmJycHEyZMkX1JMv93H333XA4HAgFtc5D9RuaFRZThN7NoVYmdBBMTSAiIvLDnNvXXnutSyZqWLlypQpc16xZg2XLlsFut2PSpEmoqqryHDNz5kwsXrwY7733njr+8OHDuPjii73SISSwraurw6pVq/DGG2/g9ddfx5w5cxAKahz1wa1R48QZ/p6aYIARNXVFqK0r0bs5REREQatDaQluEnzOnz8fX375JQoKCuByubz279mzp133s2TJEq+fJSiVntcNGzbg9NNPR1lZGV599VW89dZbOOusszyB9dChQ1VAfPLJJ2Pp0qXYunUrvvjiC6Smpqqc37lz5+Kee+7BQw895JU6EYxqPcEtZ7/yZ2ZTOGIiM1FevV/13vZMGqd3k4iIiIJSp4Lb3/72t6oX9eqrr0Z6enqzlRM6Q4JZ4Z4sQoJc6c2dOHGi55ghQ4YgKysLq1evVsGtrEeMGKECW7fJkyfjlltuwZYtW9RUwU3ZbDa1NJ5aOPB7blk/NRBSE1RwW8ngloiIyK+CW8m3/e9//4tTTjmlyxoivb933nmnus/hw4er2/Ly8lTPq0z325gEsrLPfUzjwNa9372vpVzfhx9+GMGg1pGr1uy59X/xUf1hMCxHbV0xamxFiAhL1rtJREREQadTObcJCQme3tWuIrm3P/30E9555x342uzZs1UvsXsJ1FnVNM2FWudhtc2eW/9nNoUhLrK32i6u3KV3c4iIiIJSp4JbyWmVAVvV1dVd0ojbbrsNn3zyiaq6kJGR4bk9LS1NDRQrLS31Ol6qJcg+9zFNqye4f3Yf01RYWJgaENd4CURVtXlwaTY4HRoMiNK7OdTOgWWihMEtERGR/wS3Tz75pCr9JZf/Jd/1+OOP91raS+rlSmC7aNEiLF++/Kipe8eOHQuLxaIGrrlJqTAp/TV+/Hj1s6yl5q4MbHOTygsSsB533HEIZqVV9QP3CnMdaiQ++b+4qH7qtaqtO4KaumK9m0NERBR0OpVzK/VouyoVQSohfPzxx6rWrTtHNi4uDhEREWp9ww03qJnRJA1CAtbf//73KqCVwWRCSodJECuD2x577DF1H/fff7+6b+mhDWallfXBbcFhOwZ4px2TH6cmuKsm1Pfe9tS7SUREREGlU8Htgw8+2CUPvmDBArU+88wzvW6Xcl/XXnut2n766adhNBrV5A1S4UAqIbz44oueY00mk0ppkOoIEvRGRUWpSSYeeeQRBDt3z23+QTtwdFEI8uPUBAluSyt3wcjgloiISP/gtqtIWkJbwsPD8cILL6ilJb1798ann36KUOMJbg+FxmxswSI+uj/2FyxHta0QkajUuzlERERBpVOJmjIr2BNPPIGTTjpJDdqSlIHGC3VvWkL+IbveTaEOkGmSYyLqB046jA3TJxMREZF+wa3UiH3qqadw+eWXq1JakhMrU+JK+oDMCka+53DWoqLm0M9pCRSQVRMY3BIREflBcLtw4UK88soruOuuu2A2m3HllVfiH//4hyoPJtPiku+VVe2TxA6YDJGoLPOe/pj8X0J0f7V2GUuQ0MOkd3OIiIhCO7iVigRSAkxER0d7ps09//zz1cxl1H35tuHmXno3hTrBYo5CdHj9YLLR4yP1bg4REVFoB7cy0UJubv20r/3798fSpUvV9rp164K+/Ja/5dtGmDnaPtBTE8acwuCWiIhI1+D2oosu8kysIHVnH3jgAQwcOBDXXHMNrr/++i5rHLWj59bEnttAD277DQ1DnZMTOhAREelWCmz+/PmebRlUlpWVhdWrV6sA94ILLuiShlF70xLYcxuorJYYGF2JgLEYJbVrAUzUu0lEREQBr0vq3MrkCe7pcKl76gP/nJbAnttAZnb1Qp2xGMW1HIhJRESkW3D75ptvtrpf0hPId2rqjqDOUQ7AgHBzmt7NoWMNbrEZ5XVbUGM7goiwJL2bREREFHrB7R133OH1s91uR3V1NaxWKyIjIxncdlNKQkxETxgNHMAXyIyIQs4uG7IGhGFv/jIcl3WF3k0iIiIKvQFlJSUlXktlZSW2b9+OU089FW+//XbXt5K8lFXuVev4qH56N4W6wMZvq9V6T17oTSFNRETkF8Ftc2QwmQw0a9qrS77ruY1vmAiAAtvGVfXB7aGiVbDZ62tGExERkc7BrZDZyg4fPtyVd0nNKK3ardbsuQ0OBYcciDBnwqU5sL9ghd7NISIiCr2c2//85z9Hjd6XSR3+9re/4ZRTTumqtlEL3JUS4qL6opDlUYNCQvg41FQewN68zzGo11S9m0NERBRawe3Uqd4fvgaDAT169MBZZ52FJ598sqvaRs1wuuwor85R2/HR/VCIfL2bRF0gIewkHK58HzmFK+Fw1sJsCte7SURERKET3LpcLrUuLCxUFRLi4uK6ul3UgorqA+rytdkYjujwdIDBbVCIsvRHdHhPVNYexsGib9AnlRM6EBERdUvObWlpKWbMmIHk5GSkpaUhMTFRrWfPnq3KgZFvlVbVV0qIi+4Lg6FLU6ZJR3L1o2/aJLUtqQlERETUDT23xcXFaiayQ4cO4aqrrsLQoUPV7Vu3bsXzzz+PZcuW4ZtvvsGPP/6INWvW4Pbbb+9ks6jNSgkcTBZ0+qROwuZ9r2Nf/hdwuRwwGrtkAkEiIqKQ0qFPz0ceeUSlIezevRupqalH7Zs0aRKuvvpqLF26FM8991xXt5UaDSZjcBt8eiaehDBLPGrtJcgrWY+eSSfr3SQiIqKA06Hr2h999BGeeOKJowJbIakJjz32GD744APMmjUL06dP78p2UgOWAQte0lPbJ3WC2t7D1AQiIiLfB7dS7mvYsGEt7h8+fDiMRiMefPDBzrWGOjCBA4PbYNQ3tT7vdl/+UlVij4iIiHwY3Mogsn379rW4f+/evUhJSelgE6i9bPZy1NiK1DZ7boNTRo/TVSWMippDKCrfondziIiIgju4nTx5Mu677z7U1dUdtc9ms+GBBx7AOeec05Xto0bKGiolRIb1gNUSo3dzyAcspghk9jhDbe/NW6p3c4iIiIJ/QNkJJ5yAgQMHqnJgQ4YMUZdOs7Oz8eKLL6oA98033/Rda0McB5OFBikJtjf/c+zNX4qTBs/SuzlERETBG9xmZGRg9erVuPXWW1VdW3dOoNToPPvss9X0u1lZWb5qa8hz59vGMbgNar1TJsBgMKG4YhvKqvYjLqq33k0iIiIKGB0upNm3b1989tlnKCkpwc6dO9VtAwYMUJM5kG9xMFloCLfGo2fiyTh05Fs1ocPo/jfp3SQiIqKA0ekprhISEnDSSSephYFt9yitZBmwUNEvbbJaS2oCERERtR/nbw0QmuZCWVV9pQr23Aa/Pqlnq3VeyQZU2wr1bg4REVHAYHAbICprc+Fw1cJoMCM2IlPv5pCPRUekIyVulHytwb78ZXo3h4iIKGAwuA0Q7koJsZFZaiYrCo2qCYIlwYiIiNqPwW2A4GCy0NM3tT7v9uCRVaizV+jdHCIiooDA4Dbgatz217sp1E0SYgaowYMuVx32F67QuzlEREQBgcFtoPXcslJCSOnbUDVhH1MTiIiI2oXBbYAoY1pCSOqbWp93u7/wKzidNr2bQ0RE5PcY3AYAh7MWFTWH1XZcVF+9m0PdKCV+FKLCUmF3VKrcWyIiImodg9sAUFa1V5WEsppjEWFN0rs51I0MBiP6sGoCERFRuzG4DbBKCQaDQe/mkE6pCVLv1qU59W4OERGRX2NwG1CVEphvG4p6Jp2seu1r6oqQX/K93s0hIiLya7oGt19//TUuuOAC9OzZU/VIfvTRR177r732WnV74+Wcc87xOqa4uBhXXXUVYmNjER8fjxtuuAGVlZUIzp5blgELRSajBX1SJ6htpiYQERH5cXBbVVWFUaNG4YUXXmjxGAlmc3NzPcvbb7/ttV8C2y1btmDZsmX45JNPVMB80003IZiwDBj1aUhN2Jv/OTRN07s5REREfkvXeVzPPfdctbQmLCwMaWlpze7Lzs7GkiVLsG7dOpxwwgnqtueffx7nnXcennjiCdUj3BybzaYWt/LycvgrCWR+TktgpYRQldXjDJiMYSivzkFxxTYkxQ7Vu0lERER+ye9zbr/66iukpKRg8ODBuOWWW3DkyBHPvtWrV6tUBHdgKyZOnAij0Yi1a9e2eJ/z5s1DXFycZ8nMzIS/kjzLOodMvWpAXFQfvZtDOrGYI5HZ4zS1vTefqQlERER+2XPbFklJuPjii9G3b1/s3r0bf/rTn1RPrwS1JpMJeXl5KvBtzGw2IzExUe1ryezZszFr1iyvnlt/DXDdvbYxEb1gNoXr3RzyEbkK0RZj7WAAX2DLno9grKgPdJtKTk5GVlaWD1pIREQUGPw6uL3iiis82yNGjMDIkSPRv39/1Zs7YUL9AJvOkFQHWQKtDBgFn6LC+pSYadOmtXlsVKwRf/2/DFRjLyadNw5H8h1HHRMZGYHs7G0McImIKGT5dXDbVL9+/VTP1K5du1RwK7m4BQUFXsc4HA5VQaGlPN1AU6omcOBgsmBVWV6j1jPvm4IxY6VntnU1hq/hRCH++vK5sLoGeu3btzsfc+5eiKKiIga3REQUsgIquD148KDKuU1PT1c/jx8/HqWlpdiwYQPGjh2rblu+fDlcLhfGjRuHYMAat6Ehs3cShgzLaPO4/JKhOFBUCGvMEQzJ+GW3tI2IiCiQ6BrcSj1a6YV127t3LzZt2qRyZmV5+OGHcckll6heWMm5/eMf/4gBAwZg8uTJ6vihQ4eqvNwbb7wRL730Eux2O2677TaVztBSpQR/kZOTo3rY2pJ/ZKtaF+Y68X3x953K1aTgIbWODxR9jcqaw7A7qtVAMyIiIvKT4Hb9+vX45S9/7n1yD/KaPn06FixYgB9//BFvvPGG6p2VYHXSpEmYO3euV77swoULVUAraQpSJUGC4eeeew7+HtgOHToE1dX1l6RbYjQBz36QBZPZgEt+dSNKilqeejXYJq6g5oVZYhEZloJqWwHKqvYiOW6Y3k0iIiLyK7oGt2eeeWarBek///zzNu9DenjfeustBBLpsZXA9pHHr0Kf/qktHudCBarNSwHNhGf+fjsMMBx1zKqV2Xjp2c9QW1vr41aTv5AUFQluS6p2M7glIiIK5JzbYCOBbWt5lpJvuysXiAhPxNBBzZcqk0FEFFoSovvjcPEaNaGD01UHk9Gqd5OIiIj8ht9P4hDKau0lah1uSdC7KeRHwq1JCLPEQdOcKKvar3dziIiI/AqDWz9WW9cQ3Frj9W4K+RGDwYD4qP5qu7Rqt97NISIi8isMbgMhuGXPLTWTmiBkUJlLa3mgIRERUahhcBsIaQlWBrfkLSo8HWZTpMq5rag+qHdziIiI/AaDWz/lcNrgcNaXCgu3MC2BmktNqJ/Yg6kJREREP2Nw6+e9thZTFEymn+v6EjVNTZCqGq2V1CMiIgolDG79fjAZUxKoeTGRmaoMmN1ZhcraXL2bQ0RE5BcY3Pr9YDKmJFDzjAaTJzWhpHKn3s0hIiLyCwxu/ZStIS0hjD231IqE6IFqXVKxExqYmkBERMTg1k8xLYHaIzYyy5Oa4DIc0bs5REREumNw64dkcFCtvVRts8YttcZoNHsmdHAYWRKMiIiIwa0fqnNUqKlVDTAizBKrd3PIzyXE1KcmOIyHYOBfNBERhTh+FPpxSkKYNR4GRivUrtSEMGiGWvQfyrJxREQU2hg5+fPMZExJoPZWTWioeXv8aZF6N4eIiEhXDG79ejAZy4BR+yQ2VE0Yc0qUSmkhIiIKVQxu/brGLXtuqf0TOkCzIi7BhPK6LXo3h4iISDcMbv05LYFlwKgDqQlmVy+1faTmf3o3h4iISDcMbv2M02WH3VGpthncUkdYXJlqXVy7Gg5nrd7NISIi0gWDWz9ja6hvazaGw2yK0Ls5FECMWjJKCh1watXIKfxK7+YQERHpgsGt35YBY68tdYwBBqz/ukpt7zq8WO/mEBER6YLBrZ/htLt0LNatrA9u9+V/gTp7hd7NISIi6nYMbv22xi3LgFHHHdxjR7ipF5wuG/bmL9W7OURERN2Owa2fYc8tHaukiNPUeuehj/RuChERUbdjcOtHNE1jjVs6ZskNwe3Bom9RVVugd3OIiIi6FYNbP2J3VsGl2dXQoDBLnN7NoQAVbk5HWsJYaHBh5+GP9W4OERFRt2Jw64+VEiyxMBrNejeHAtigXher9faDH6grAkRERKGCwa0f1rhlSgIdqwE9z4fJaEVxxTYcKd+qd3OIiIi6DYNbP8LBZNRVJK2lT+rZanv7oQ/1bg4REVG3YXDrRxjcki9SE3Ye+hgul0Pv5hAREXULBrd+WOM2jGkJ1AUye5yOcGsSauqKcKDof3o3h4iIqFswuPUT0rNms5er7XArJ3CgY2cyWjCo14Vqe/vB9/VuDhERUbdgcOsnbPYyqXQLo8ECiylK7+ZQkBic8Wu13pu3FDV1xXo3h4iIyOcY3PrbtLvWBBgMBr2bQ0EiOfY49Igboeon7zjIgWVERBT8GNz6CQ4mI18Zmnm5Wmcf+Ddr3hIRUdBjcOsnOO0u+cqAnr+C2RiOksodyC/dqHdziIiIfIrTYPldWkKi3k2hAJednX3UbfFhJ6Oo5it8s/FF9Iu/tV33k5ycjKysLB+0kIiIKEiD26+//hqPP/44NmzYgNzcXCxatAhTp0717JdLqA8++CBeeeUVlJaW4pRTTsGCBQswcOBAzzHFxcX4/e9/j8WLF8NoNOKSSy7Bs88+i+joaAQKeZ61DYN9IpiWQJ1UVFhfbWPatGlH7RswLAyz/pqGA0eWYtqUf8JW23Z6QmRkBLKztzHAJSKigKJrcFtVVYVRo0bh+uuvx8UX1xecb+yxxx7Dc889hzfeeAN9+/bFAw88gMmTJ2Pr1q0IDw9Xx1x11VUqMF62bBnsdjuuu+463HTTTXjrrbcQKOzOKjhddQAMCLOwDBh1TmV5jVrPvG8Kxowd7LVPg4ZqbSnCIyvx4jtTYXH1bfW+9u3Ox5y7F6KoqIjBLRERBRRdg9tzzz1XLS31Zj7zzDO4//77ceGF9bU633zzTaSmpuKjjz7CFVdcoS6/LlmyBOvWrcMJJ5ygjnn++edx3nnn4YknnkDPnj0RCNy9tjJlqtHITBE6Npm9kzBkWMZRt+cWj8KhI9/CFHUQQ7JO06VtREREITugbO/evcjLy8PEiRM9t8XFxWHcuHFYvXq1+lnW8fHxnsBWyPGSnrB27doW79tms6G8vNxr8YfBZBHMtyUfSo4bBoPBhGpbAapq8/RuDhERUWgFtxLYCumpbUx+du+TdUpKitd+s9mMxMREzzHNmTdvngqU3UtmZib05C6uzzJg5EsWUwQSo+vz1QtKf9S7OURERKEV3PrS7NmzUVZW5lkOHDjgF2kJrJRAvtYjbqRaF1fugMNZq3dziIiIQie4TUtLU+v8/Hyv2+Vn9z5ZFxQUeO13OByqgoL7mOaEhYUhNjbWa/GPCRwY3JJvRYWnISKsBzTNiaLyrXo3h4iIKHSCW6mOIAHql19+6blNcmMll3b8+PHqZ1lLiTApJea2fPlyuFwulZsbCBxOm6qWIDiBA/maTO2c0tB7W1j2I2csIyKioKPr0PzKykrs2rXLaxDZpk2bVM6slB+688478ec//1nVtXWXApMKCO5auEOHDsU555yDG2+8ES+99JIqBXbbbbepSgoBUymhYfIGiykKZlOY3s2hEJAYMxgHi/4Hm70M5dX7ERfVR+8mERERBUdwu379evzyl7/0/Dxr1iy1nj59Ol5//XX88Y9/VLVwpW6t9NCeeuqpqvSXu8atWLhwoQpoJ0yY4JnEQWrjBoqf823Za0vdw2S0ICn2OBSUbkJ+6SYGt0REFFR0DW7PPPPMVi+LyiXURx55RC0tkV7eQJqwoSkOJiM9pMaPRkHpD6rntsZWhIiwZL2bREREFNw5t6HCXQaMNW6pO8mEIQnR/dW29N4SEREFCwa3OmOlBNJLavzxan2kYhvsjvpBjURERIGOwa2ONDjVoB7B4Ja6W3REuioNJmXBCso2690cIiKiLsHgVkcuQ6UKcU1GKyymSL2bQyHceytlwVwuh97NISIiOmYMbnWkocLTayuD54i6m+TdWs2xcDhrUFS+Re/mEBERHTMGtzpyGsvVmikJpBeDwYi0hLFqO7dkPXtviYgo4DG41ZHLUB/cRliT9G4KhbDk2OPUJCJ2RyWOVGTr3RwiIqJjwuBWRwxuyR8Yjeafe2+L18OlOfVuEhERUacxuNWJ2Sw5tzKgDIgIY3BL+kqOGw6zKQJ1jnIUV2zXuzlERESdxuBWJ6kZFsAglRLC1CVhIr2n5HVXTsgtXgcNLr2bRERE1CkMbnWS3tviSUlgpQTyBynxI1Xvrc1eCodxn97NISIi6hQGtzrp2duq1px2l/yF1FtOTzhRbdeZsmEN45cuIiIKPAxudZKe1dBzG5asd1OIPHrEjVB1bzVDLc66MEbv5hAREXUYg1ud9GxIS2CNW/K3ygm9ksar7bN/HQe7s356aCIiokDB4FYHTlctklLNaptlwMjfJMYMhtEVj4hIIw5Vvqd3c4iIiDqEwa0OahwHYTQaYNDCYDFH6t0cIi8ywNHqHK6286uX4Eg5J3YgIqLAweBWBzWOHLU2arF6N4WoWWYtFd9/WyVTjeDrn+6HprE0GBERBQYGtzqocRxQawa35M8+eKUERkM48ko2YPvB9/VuDhERUbswuNVBNXtuKQCUFDmREX2Z2l6dPQ+1dSV6N4mIiKhNDG51UGNncEuBITXqfDXArNZeglXZj+rdHCIiojYxuO1mNns56lxH1DaDW/J3RoMZpw+XoNagUhP25i/Tu0lEREStYnDbzUoqdtavixwwoH6WMiJ/lp54Akb3u0ltr/xxNmps9V/OiIiI/BGD224WGZ6CjOgr8PV/K/RuClG7nThopkpPqKkrwsrNf4KmaXo3iYiIqFkMbrtZbGQmesVchs/fK9e7KUTtZjaFY8Kop2A0WLA3/3NsO/BvvZtERETULAa3RNQuyXHDcNLgWWr7f1vmoKhsi95NIiIiOgqDWyJqt9H9foesHr+E02XD59/fqgZIEhER+RMGt0TUbgaDERNGP42YiF4or96PFT/8gfm3RETkVxjcElGHhFvjMen4BTAardibvxQbdj2nd5OIiIg8zD9vEhF5y87ObnFf75gbsLdsAdbteBrFBUByxGktHpucnIysrCwftZKIiOhnDG6J6ChFhfW5tNOmTWv1uIuui8fZl8RhW8FTePZP92DPNluzx0VGRiA7exsDXCIi8jkGt0R0lMryGrWeed8UjBk7uMXjNGioda0BrIdx9+O9EWE/E0ZEex2zb3c+5ty9EEVFRQxuiYjI5xjcElGLMnsnYciwjFaPcbrS1NS81bYCuKLXYVDGZTCbwrqtjURERI1xQBkRHROT0YIBPS+AxRyN2rpi7M79L1yaU+9mERFRiGJwS0THzGqOxsCev1IzmFXUHEBOwVcsEUZERLpgcEtEXSIyrAf6pZ0j1XBRVP4T8ko26N0kIiIKQQxuiajLxEf3Q2aP09X2oSPforhih95NIiKiEMPgloi6VGr8aKTEj1bbMsmD01Ckd5OIiCiE+HVw+9BDD8FgMHgtQ4YM8eyvra3FjBkzkJSUhOjoaFxyySXIz8/Xtc1EBGQmn4b4qP7QNCdqzKuR0pOFWYiIqHv4dXArhg0bhtzcXM/yzTffePbNnDkTixcvxnvvvYeVK1fi8OHDuPjii3VtLxEBBoMRfdMmIyo8DTDUYcbDKbA7y/RuFhERhQC/704xm81IS0s76vaysjK8+uqreOutt3DWWWep21577TUMHToUa9aswcknn6xDa4nIq0RY+gX4cc9C9Eivxo6SeRjrHA+zKVzvphERURDz+57bnTt3omfPnujXrx+uuuoq5OTkqNs3bNgAu92OiRMneo6VlAWZAWn16tWt3qfNZkN5ebnXQkRdz2KORIT9FFRVOFFp34EvN82Eprn0bhYREQUxvw5ux40bh9dffx1LlizBggULsHfvXpx22mmoqKhAXl4erFYr4uPjvX4nNTVV7WvNvHnzEBcX51kyMzN9/EyIQpcRsXj5z4UwwIw9eZ9hdfY8vZtERERBzK+D23PPPReXXnopRo4cicmTJ+PTTz9FaWkp/v3vfx/T/c6ePVulNbiXAwcOdFmbiehou7bY0C/+NrX9w95X8NO+N/VuEhERBSm/Dm6bkl7aQYMGYdeuXSoPt66uTgW7jUm1hOZydBsLCwtDbGys10JEvpUccTpOGny32v5my0PYl/+l3k0iIqIgFFDBbWVlJXbv3o309HSMHTsWFosFX3758wfk9u3bVU7u+PHjdW0nETXv+P63YmjmFdDgwrKNv0dR2Ra9m0REREHGr4PbP/zhD6rE1759+7Bq1SpcdNFFMJlMuPLKK1Wu7A033IBZs2ZhxYoVaoDZddddpwJbVkog8k9Sq/q04XPRK+kUOJzV+HT9b1FVy9rUREQUIsHtwYMHVSA7ePBgXHbZZWqyBinz1aNHD7X/6aefxvnnn68mbzj99NNVOsKHH36od7OJqI0SYZPHvqgmeaiqzcVn638Lu6Na72YREVGQ8Os6t++8806r+8PDw/HCCy+ohYgCR5glDlNOeg0ffDsVhWWb8eWmOzF57Etq8gciIqJjwU8SItJFbGQWzhn7dxiNVuzNX4o12/6qd5OIiCgIMLglIt2kJ56AX458XG1v2vMytua0frWGiIioLQxuiUhXg3pdiBMG3qm2//fT/ThY9K3eTSIiogDm1zm3RBQ8srOzW9xn1E5DUvgGHKn9Hz797kYMS56PCHNGs8cmJyerabaJiIiaw+CWiHyqqLBcradNm9bqcWYLcMejqeh/HPDlj7fgsbvyUFXuOuq4yMgIZGdvY4BLRETNYnBLRD5VWV6j1jPvm4IxYwe3eqwGG6q15eiRXo0n/zUaEY7TYIDJs3/f7nzMuXshioqKGNwSEVGzGNwSUbfI7J2EIcOaTzVorKYuAdsOvAsnjsCSsBn9089jiTAiImo3fmIQkV+JsCZiQPoFMBhMKK3ajZzCr6Bpmt7NIiKiAMHgloj8TkxkBvqlTlbbMslDbvF3ejeJiIgCBINbIvJLCTEDkdXjTLV9uHgN8ks26t0kIiIKAAxuichvpcSPQnriOLV9oOhr2I179W4SERH5OQa3ROTXeiaOQ2r88WrbZvoeJ54ZpXeTiIjIjzG4JSK/ZjAYkJF8KnrEDgcMwPRZSSis/lLvZhERkZ9icEtEARHgZqWcBbOzL4xGA/aUvYAt+/+ld7OIiMgPMbglooAJcMOcY7DiP/Uznn390/34ftcLLBNGREReGNwSUcAwwID3/l6C9KiL1c9rtz+Or3/6E1wuh95NIyIiP8HglogCTlbsNJx63EMwwIitOW/j0/U3wGYv07tZRETkBxjcElFAGtH3Wkw+4WWYjeE4ULgS73/zKxSVbdG7WUREpDMGt0QUsPqmno2pv3gPMRG9UF69Hx+uukj15DIPl4godDG4JaKA1iNuBH596n/RO+UsOF11WLl5Nj5bfwMqa/P0bhoREemAwS0RBbxwazzOPeEfOHnIvTAardhfsBzvrjwbW3PegUtz6t08IiLqRgxuiSgoGAxGjOl/My499ROkxI1CnaMCKzffiw++uQCHilbp3TwiIuomDG6JKKgkxgzCRb/4AL8Yej+s5hgUlW/Ff9b+Bp98dw0OF3+nd/OIiMjHGNwSUdAxGs0Y1e+3+M2ZX2F472tgMJhwoPBrfLz6MixadSl2534Gp8uudzOJiMgHzL64UyIiX8rOzm73sVGYipHJJyO3ahEKq1cgr2SdWqzmBByXdRkG9roQSTFD1QxoREQU+BjcElHAKCqsn3p32rRpnfr9uCQTzpgSg/FnRyMuoQSb9ryslrjIPuibNhmZPc5AWsLxMJvCO3S/OTk5KCoqQldITk5GVlZWl9wXEVEoYnBLRAGjsrxGrWfeNwVjxg7u9P3s252Ll1/8CDP+eAacll0oq97nCXQNsCLGOhhRlgGItgxApKU3rKYUGA3N/3eZm5uLSy/9NWpqalt8PJMZiIw2IiLKCIvFANVJbABstRpqKl2ornLB1VDUITIyAtnZ2xjgEhF1EoNbIgo4mb2TMGRYxjH1AP+wugY3XbQEYREGDD8hAsNPjMDgUeGITwLK6zarxc3p1HAk34GyI05UlDtRVe6CvU6D06HB5QIuuCYCJ/xiKOISIgA4oMEBwA7NYIeGOsDQRjkyTWLdCNiqrVi94iCyc95HfPKvERORyXQJIqIOYnBLRCGnpR5gDRpc9gq4DEfgNJTApZYKmExOpPS0qKVlxWiroq7JGKYGtxmk21aCZs0Ol0uCX3nsGlijanDG+THYU/Yc9qx4DlHhaeid8kv0TpmIjORTOpwuQUQUihjcElHIak8PsEzla3dWwVZXCruzGg5nDezOGmiaE5rmwr7deVixbCvOPm8M+vfvrSaRMBktMKl1mApIZV0f2B7dCyv34XDWwmYvw959e/Df/3yJqZefhGrHHlTV5qnphGWRsmb906dgUMbFSE84kT26REQtYHBLRNQKCSKt5mi1NGfL6g345F+rcdbpWUiJH9WJ+zfCYo6sX1xOfPjPUlx81jUYO6Qfym1bUGJbj9LadahzHEH2gXfUEmZKRXLEmUiOOAPh5rQW75uD04goFDG4JSLy82oQ0kk7YFgYxk2IxvGnRAKR+ThU+a5adm6uxeovK7Hx22rYajSv3+PgNCIKRQxuiYgCqBqEDFZzOA7DYdwPp6EAA0eEq+WaO0wwu3rB7OoNk9YD+3cXYM7dC1WJMga3RBRKGNwSEQVcLnAfAL9Anb0CRyq2qSmGbfZSOEw5apH83PRBaegz2KpyeomIQgmDWyKiAGW1xCA98USkJZygBp9JkFtSuQN1jgrAVIE/PpmOjQU3ovyHiWqCil5J4xERlqR3s4mIfIrBLRFREAx6i45IV0tWjzPUpBT7D/6ICtt+ILIE2w6+pxYRG5mF1PgxSIkfjdSEMUiOGQqTKUzvp0BE1GUY3BIRBRGj0YyE6AHId4bj1t98g6Vfv4aw+MM4ULgSxRXbUV6do5adhz9uON6K+Ki+6nfio/urdUJUf8RF94PFJJNSEBEFFga3RERByuEADu+xYOjQczAw+hw4IqtQZd+JyrqdqLTvQKV9JxyuchX0ytKUxRgPq6kHYiMzkZY8CDERGWpiiciwHogIS0akNZm9vkTkd4ImuH3hhRfw+OOPIy8vD6NGjcLzzz+Pk046Se9mERH5VVmxphJTTEjPsiAt04LUDAvSZMm0IDrWBLurVC1VZTuRW7a82d+XwWsRYT0QZolR25aGmsCyWExRMEv9XlMEzCb3OkLV9FVrU/3avc9ijlJ1f4mIEOrB7bvvvotZs2bhpZdewrhx4/DMM89g8uTJ2L59O1JSUvRuHhGRX5YVa4lMQ4y6OrgM1cjPP4ylS1Zhxu1XIzzahmpbAapthaixFcGl2dXgNTWArUsYYDJEwGSIhMkY6VmbG//caDsxPg290vupgDrMEqvWMrWxVIjQ4FKzy8na5bLD6bKpmeCcThscrtr6bbW2qXVhUS4qKkvg0uqOXlAHaC4YDBYYDdaGxQIjZC0z0EmbGxZjBBIT0pHZawCs5igVsEu7jAYTQpFLc8LuqFKz+6m12pZ1tVrnFxxAWbm8l2rg1GrVghYmsjao8x2mzr/JYIXBEAaTWiJgNIar90Nmr/4N5zwKVlNUSF9Z0DRNTe/taPQ+l/e9LIdz96O4tFC9vzX1Prc3/OVLreyfF7mPhntTr4DBYJa/UhgNEj4aEReXgIF9xql0Jn8SFMHtU089hRtvvBHXXXed+lmC3P/+97/45z//iXvvvVfv5hER+fUUw60xaQlY/tHnuP7Xv0CfoUOBSJkdov6D06lV1ffuOsvg1KrrF1dtw3YNnK5quDSbWiRoqbFVYPuOzbBYAGu4AdZwI6xhBoSFGWA0yXTCmud+0I4KZnvKgPX74X+KAez2vkl6qFVvdqNebfe2BGAS/ErAID3X9euGn42mhsDYe7plCeIb/+S9s+mxTTW+pT6A0VA/nbRnUT/LPmfDF4X6RYJVeXFcLoeaitr9RaF+qalfu29zVKntblMMrN7jfZN8CVGBrjkKZlP9Ws67XDWQ/HT1JcVoVlNmu7fVuuE1cJ+un8+3BHiyXf9z/e0N+wzuoxr+NcgXrYYgUW5Q51XOqevnQFJrvG64vdFt6m9CfTmrU1/Q6pe6nxcVtNZv1weyNjgbvQb1QakPlQJl1Vfj7JPmwp8EfHBbV1eHDRs2YPbs2Z7bjEYjJk6ciNWrVzf7OzabTS1uZWVlal1eXn8Zz9cqKyvVetuWg6ip/rkdnbFvd75a79qRh6jI3brfD+8r8NsUCvflj23y1/v6ceO+dqU3dMRl08Yjs0/jaYM1wKDBaHLCaHLAYHTCYHKpdePb6rfrb7c7alFSUoq+/XrCZHHUB9KQ3qfGjA3BhwSMDb2uqvfv520YLKiprsO67zYiq3cawiPCobkM0FxGaJqxfu2qT5UwGDQYjC7AIG2QRYNRrZ0wSpuNThVkVNfUILlHDGC0q0k36lU1LPWvS+gxwiS93IZwGBGmerhra1z48YetSO+ZgrCw8IZzbYKmHR2Oy3vEff7lvKu1Qc57/WvhdNahqqYKPVLiGs67+71ga1jkG0coM3iuNjidRhTkHUF0dCRMJkv9+1ve63KY17k3eGLj+n5b+af+dZC13W5HUVEZUk4wd1v85H6cn3uUW6AFuEOHDqmvNqtWrfK6/e6779ZOOumkZn/nwQcf9O5358KFCxcuXLhw4aIFwnLgwIFWY8OA77ntDOnllRxdN5fLheLiYiQlJTVcbvAv8k0lMzMTBw4cQGxsrN7NoQZ8XfwPXxP/w9fE//A18T98TdpHemwrKirQs2fPVo8L+OA2OVlK0ZiQn+99qUd+TktrfNnrZ2FhYWppLD4+Hv5O3vB80/sfvi7+h6+J/+Fr4n/4mvgfviZti4uLa/OYgK+5YrVaMXbsWHz55ZdePbHy8/jx43VtGxERERF1r4DvuRWSYjB9+nSccMIJqratlAKrqqryVE8gIiIiotAQFMHt5ZdfjsLCQsyZM0dN4jB69GgsWbIEqampCAaSQvHggw8elUpB+uLr4n/4mvgfvib+h6+J/+Fr0rUMMqqsi++TiIiIiEgXAZ9zS0RERETkxuCWiIiIiIIGg1siIiIiChoMbomIiIgoaDC41dHXX3+NCy64QM20ITOjffTRR177ZayfVIBIT09HREQEJk6ciJ07d3odIzOrXXXVVaros0xEccMNN6CysrKbn0lwmDdvHk488UTExMQgJSUFU6dOxfbt272Oqa2txYwZM9RsdtHR0bjkkkuOmkAkJycHU6ZMQWRkpLqfu+++Gw6He3556qgFCxZg5MiRnuLmUr/6s88+8+zna6Kv+fPnq/+/7rzzTs9tfE2630MPPaReh8bLkCFDPPv5mujj0KFDmDZtmjrv8jk+YsQIrF+/3rOfn/O+weBWR1KLd9SoUXjhhRea3f/YY4/hueeew0svvYS1a9ciKioKkydPVv9JuckbfsuWLVi2bBk++eQTFTDfdNNN3fgsgsfKlSvVf/5r1qxR59Nut2PSpEnqdXKbOXMmFi9ejPfee08df/jwYVx88cWe/U6nU3041NXVYdWqVXjjjTfw+uuvq/+8qHMyMjJUALVhwwb1oXDWWWfhwgsvVO97wddEP+vWrcPLL7+svnw0xtdEH8OGDUNubq5n+eabbzz7+Jp0v5KSEpxyyimwWCzqC/nWrVvx5JNPIiEhwXMMP+d9REqBkf7kpVi0aJHnZ5fLpaWlpWmPP/6457bS0lItLCxMe/vtt9XPW7duVb+3bt06zzGfffaZZjAYtEOHDnXzMwg+BQUF6vyuXLnSc/4tFov23nvveY7Jzs5Wx6xevVr9/Omnn2pGo1HLy8vzHLNgwQItNjZWs9lsOjyL4JSQkKD94x//4Guio4qKCm3gwIHasmXLtDPOOEO744471O18TfTx4IMPaqNGjWp2H18Tfdxzzz3aqaee2uJ+fs77Dntu/dTevXvVhBRyiaLxfMrjxo3D6tWr1c+ylksUMjObmxxvNBrVN0A6NmVlZWqdmJio1tJzKL25jV8TueyXlZXl9ZrIZafGE4jIt/Dy8nJPTyN1nvQuvfPOO6o3XdIT+JroR65ySE9f43Mv+JroRy5nS5pbv379VG+fpBkIvib6+M9//qM+ny+99FKV5jFmzBi88sornv38nPcdBrd+St7wouksa/Kze5+s5Q+mMbPZrIIx9zHUOS6XS+UQyiWl4cOHq9vknFqtVvUfTWuvSXOvmXsfdc7mzZtVnqDM3nPzzTdj0aJFOO644/ia6ES+YHz//fcqT70pvib6kIBI0ghkdk7JU5fA6bTTTkNFRQVfE53s2bNHvRYDBw7E559/jltuuQW33367SvkQ/Jz3naCYfpfIF71SP/30k1fOGuln8ODB2LRpk+pNf//99zF9+nSVN0jd78CBA7jjjjtU/l94eLjezaEG5557rmdbcqAl2O3duzf+/e9/q4FKpE8nifS4/uUvf1E/S8+tfK5Ifq38H0a+w55bP5WWlqbWTUezys/ufbIuKCjw2i8jW2VkpfsY6rjbbrtNJe2vWLFCDWZyk3Mqgy1KS0tbfU2ae83c+6hzpNdpwIABGDt2rOotlIGYzz77LF8THcglbvl/5/jjj1c9SLLIFw0ZFCPb0uvE10R/0ks7aNAg7Nq1i38nOpEKCHKFqbGhQ4d60kX4Oe87DG79VN++fdUb98svv/TcJrlPkmMjuYZC1vKflXzYuC1fvlx9W5Rv7dQxMq5PAlu55C3nUV6DxiSwklGvjV8TKRUm/1E1fk3kEnrj/4ykh0tKuDT9T446T97jNpuNr4kOJkyYoM6n9KS7F+mdkhxP9zZfE/1Jqajdu3erAIt/J/qQtLam5SR37NihetQFP+d9yIeD1agdo403btyoFnkpnnrqKbW9f/9+tX/+/PlafHy89vHHH2s//vijduGFF2p9+/bVampqPPdxzjnnaGPGjNHWrl2rffPNN2r08pVXXqnjswpct9xyixYXF6d99dVXWm5urmeprq72HHPzzTdrWVlZ2vLly7X169dr48ePV4ubw+HQhg8frk2aNEnbtGmTtmTJEq1Hjx7a7NmzdXpWge/ee+9VFSv27t2r/g7kZxkpvHTpUrWfr4n+GldLEHxNut9dd92l/u+Sv5Nvv/1WmzhxopacnKyqvgi+Jt3vu+++08xms/boo49qO3fu1BYuXKhFRkZq//rXvzzH8HPeNxjc6mjFihUqqG26TJ8+3VMm5IEHHtBSU1NVaZAJEyZo27dv97qPI0eOqDd5dHS0Ktly3XXXqaCZOq6510KW1157zXOM/Idz6623qlJU8p/URRddpALgxvbt26ede+65WkREhPpwkQ8du92uwzMKDtdff73Wu3dvzWq1qg9b+TtwB7aCr4n/Bbd8Tbrf5ZdfrqWnp6u/k169eqmfd+3a5dnP10QfixcvVl8a5DN8yJAh2t///nev/fyc9w2D/OPLnmEiIiIiou7CnFsiIiIiChoMbomIiIgoaDC4JSIiIqKgweCWiIiIiIIGg1siIiIiChoMbomIiIgoaDC4JSIiIqKgweCWiIiIiIIGg1siCkn79u2DwWDApk2b9G6KX8vLy8PZZ5+NqKgoxMfHd+o+zjzzTNx5552en/v06YNnnnmm079PRNQac6t7iYiCVGZmJnJzc5GcnKx3U/za008/rc6TfAmIi4vDV199hV/+8pcoKSnpdLC7bt06FSy314cffgiLxdKpxyKi0MOeWyIKOXV1dTCZTEhLS4PZbA7o5+Fru3fvxtixYzFw4ECkpKR0yX326NEDkZGR7T4+MTERMTExXfLYRBT8GNwSUcCTy9a33XabWqR3UXpjH3jgAWia5rkMPnfuXFxzzTWIjY3FTTfd1GxawpYtW3D++eerYySYOu2001Rw5/aPf/wDQ4cORXh4OIYMGYIXX3yxXe1zP9Y777yDX/ziF+r3hw8fjpUrV3od99NPP+Hcc89FdHQ0UlNTcfXVV6OoqOio5ymX6OU5Tp48udXHlef/0EMPISsrC2FhYejZsyduv/12z/6CggJccMEFiIiIQN++fbFw4UKvlAHZ/uCDD/Dmm2+q9l977bWq11YkJCR4buuoxo/xm9/8BpdffrnXfrvdrp6fPG5LaQ1/+ctfcP3116vXSZ7f3//+d6/7WLVqFUaPHq3O9QknnICPPvqIaShEIYLBLREFhTfeeEP1wn733Xd49tln8dRTT6lg1O2JJ57AqFGjsHHjRhX4NnXo0CGcfvrpKghcvnw5NmzYoIInh8Oh9kvgN2fOHDz66KPIzs5WwZXcjzxue91999246667VBvGjx+vAssjR46ofaWlpTjrrLMwZswYrF+/HkuWLEF+fj4uu+yyo56n1WrFt99+i5deeqnVx5PAVNIKXn75ZezcuVMFeCNGjPDsl8D0wIEDWLFiBd5//30VrEvA2zh94JxzzlFtkNQEOa9yn2L79u2e247FVVddhcWLF6OystJz2+eff47q6mpcdNFFLf7ek08+qYJWOZe33norbrnlFtUmUV5ers6tPNfvv/9efbG55557jqmdRBRANCKiAHfGGWdoQ4cO1Vwul+e2e+65R90mevfurU2dOtXrd/bu3SvdutrGjRvVz7Nnz9b69u2r1dXVNfsY/fv319566y2v2+bOnauNHz++zfa5H2v+/Pme2+x2u5aRkaH99a9/9dzXpEmTvH7vwIED6ve2b9/ueZ5jxozR2uvJJ5/UBg0a1OxzkvuU+/7uu+88t2VnZ6vbnn76ac9tF154oTZ9+nTPzytWrFDHlJSUtLsd0u477rjD87O8Hu7HkPOQnJysvfnmm579V155pXb55Ze3+vvTpk3z/Cyve0pKirZgwQL1s6yTkpK0mpoazzGvvPKK1+tNRMGLPbdEFBROPvlkddnZTXpGpbfS6XSqn6WXrzVyuVrSEJobuFRVVaXSE2644QaVMuBe/vznP3ulLbRF2uQmvczSJukFFj/88IPqQW18/5L6IBo/huS/ttell16Kmpoa9OvXDzfeeCMWLVrk6YmWx5U2NL4/ebzODhLrLGmD9AxLz7j7XH/88ceqR7c1I0eO9GzL6y750+5eZ+nBlf2SkuB20kkn+ew5EJF/CdyRFEREHdDW6HzJO22J+5L5K6+8gnHjxnntk4FpXUEeQy6l//Wvfz1qX3p6ume7I1UGpCKEBHpffPEFli1bpi7fP/7440fl+upNAtkzzjhDBafSTnktJB2iNU2/hEiA63K5fNxSIgoE7LkloqCwdu1ar5/XrFmjRvi3N/iUnr7//e9/ajBTUzK4SwZj7dmzBwMGDPBaZCBWe0mb3KQHVfJ6ZYCaOP7449WANhks1fQxOhLQNiWBogTNzz33nCrjtXr1amzevFn10rrb4CaBsOT+tkbyfYW7R7wryCA7CcTfffdd1YMrPc7HUvpr8ODB6jnabDav/GEiCg0MbokoKOTk5GDWrFkqQHv77bfx/PPP44477mj370sVAhmIdMUVV6gBXZLS8H//93+eQUoPP/ww5s2bp4LEHTt2qODptddeUwPX2uuFF15QqQHbtm3DjBkzVK1YGbQm5Ofi4mJceeWVKhCTVAQZWHXdddd1OpB8/fXX8eqrr6oqDBKY/+tf/1LBbu/evVUAKL2jv/vd79QXAwlyf/vb37bagy3kd6WX9JNPPkFhYaHXQLBjIVUTZICc9Ny2lZLQnvuSXlypiiHpF3IeZUChaJy6QkTBicEtEQUFKfMl+aWSWymBogS2Ety0V1JSkqqSIMGaXCKXXFRJQ3D3IErgJ9UXJKCVUfhyjASPHem5nT9/vlqkasM333yD//znP55JJKRnWCogSCA7adIk9RhS/kpyYI3Gzv1XLb8rz+GUU05RPdOSniCVCeS5Cnku8rjyXC6++GJ1vtqqZdurVy8V6N97772qR1u+FHQFCWi3bt2q7l/aeyyklJs8T8mjlnJg9913n6p0IRrn4RJRcDLIqDK9G0FEdCykDqoEMR2Z0rU7SZ1bCYKlbJW0059JWoQE1cE23a2kO0gveFlZWZu900QU2DigjIiIgo5MACFVIqQnWCpRSJ1bqcrAwJYo+DEtgYjoGMmEDo1LeDVeZMYxX/ZGtvS4w4YNQ3flOrfUBllkvx7y8vIwbdo0NWBv5syZapBa01nMiCg4MS2BiOgYyUAwWZojPYXSe+gLFRUVahaz5kiusAz+8jWpuCBpF62lOUgtWyKi7sLgloiIiIiCBtMSiIiIiChoMLglIiIioqDB4JaIiIiIggaDWyIiIiIKGgxuiYiIiChoMLglIiIioqDB4JaIiIiIECz+H486kzBh+lNvAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsAAAAHWCAYAAAB5SD/0AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXt9JREFUeJzt3QecVOXVx/EzZWcLy+7SliJFokYQpQiK2BUEaySaWGIhSjQWjC0aeaPYA6KxYS9BfWOLySuWKBFBMSgiglgQERUFRZrALlun3fdzntk7zCy7sCyzO3Pn/r6fz3Cn3J25M3OX/c8z5znXY1mWJQAAAIBLeNO9AQAAAEBrIgADAADAVQjAAAAAcBUCMAAAAFyFAAwAAABXIQADAADAVQjAAAAAcBUCMAAAAFyFAAwAAABXIQADGW7XXXeV3/72t+nejKx3++23y89+9jPx+XwycODAVnnMJ554Qjwej3z77bet8nhOoa+Hvi76+qBlTJ8+3ezneXl55rXetGnTTt2f3scNN9yQsu0DWhoBGGhFduD58MMPG7z98MMPl7333nunH+e1117jj9EOeOONN+Tqq6+Wgw46SKZOnSp/+ctf0r1JQIv56aef5JRTTpH8/Hy5//775X//93+lTZs2Zr+fNm1aq27L559/bv6v4kMgWpu/1R8RwA5ZunSpeL3eHQ7A+oeNENw0s2bNMq/x448/LoFAIN2b43q9evWS6upqycnJSfemZKX58+fL5s2b5eabb5YRI0bEr9cA/Ktf/UpGjx7dqgH4xhtvNB/+9dsuoLUwAgxkuNzcXMcFgcrKSnGStWvXmtEwwm96hcNhCQaD5lsS/Wpey1Hc8HzTsb+rkpKSVn9sIFMQgAGH1QCHQiEzYrLHHnuYkNChQwc5+OCDZcaMGeZ2XVdHf5UGCfuUGE6vvPJK6dGjhwnXe+65p9xxxx1iWVbS4+oI3B/+8Afp2LGjtG3bVn7xi1/IDz/8sFWtn57X63Qk5ze/+Y20a9fObI/65JNPzPZoba1ua5cuXeTcc881X8Emsu/jyy+/lDPPPFOKi4ulU6dOct1115ntWrlypZx44olSVFRk7uOvf/1rkwOGjnLttttu5rnqa/k///M/UltbG19HH1fLHvR1sV+r7dWezps3T4499ljzXPWr4/79+8s999yz1ajyIYccYm7XoKHbv2TJkmbXUtbfD+xymjlz5pj3SV8vfZzf//73JlRpTefZZ59ttlFPWuKR+B7bdbb63j/yyCPx12i//fYzI4SJdJ/74osv5Mcff9zu9us2FhYWyjfffCOjRo0yz79bt25y0003Nfr4d999d/zxdT9qrAZYt0G/utfnqh9YdN/985//nLSO7qO6j3Xu3NncX79+/eRvf/vbdre7odf7+OOPN+Uxdq3sXnvtJf/3f/+31br6Wl922WXx36ndd99dbrvtNolGo016vk2hZVP6eurvoz733r17m+dZfzv09dffH90XxowZI4sWLUp6LXWkVa9X+l7rbfozutTfgSeffDL+e7Czcw8++ugjOeaYY8zvre4Tw4cPl/fffz9+u27Tr3/9a3P+iCOOiD/u22+/vVOPCzQFJRBAGpSVlcn69eu3ul6DxvZoOJo4caL87ne/k/3331/Ky8vNH8eFCxfKUUcdZQLQqlWrTCDW2r5EGkA0yL711lsyduxY84f9P//5j1x11VUmONx1113xdfWP3z/+8Q8566yz5IADDpDZs2fLcccd1+h26R8yDeX6NaoddHQbNAidc845JrguXrzYhC1d6h/CxGCuTj31VOnbt69MmjRJ/v3vf8stt9wi7du3l4cffliOPPJIEyqefvpp+eMf/2j+eB966KHbfK30NdI/6Pq1roZ+Da762mkQffHFF806+hrpNn3wwQfy2GOPmesOPPDARu9Tn5MGo65du8qll15qnpfe36uvvmouqzfffNP84dfgr++XfpiYMmWKqTHW9ymVX/VecsklZhv0Q5G+pvpcNPy899570rNnT/N+aEmMTvLT+nINxYmeeeYZ83W47jf6fkyePFlOOukk877Z3zzovqHviwanpkxMi0QicvTRR5v9Ru9PJ1xdf/315gOJBuFE+uGjpqZGzj//fBMI9f1ODI42/TClHyh0m3RdfQ2//vpreeWVV+TWW28166xZs8Y8pj6PcePGmaD8+uuvm31df080pO6IZcuWmX3yggsuMM9dt1X3c30++rumqqqq5LDDDjOvkb6G+prraz9+/HjzgUHD7vaeb1NGbEeOHGmezzXXXGPeXw3UiWFcf+f0Q5Z+INLt1fdL93E77Nr0A4N+cND9RN8LDdIaxrUUwv4/RbdN6fXNpb/j+n5p+NUPX/q+6e+xBnD9v2To0KHm91c/vN17773mg6lus7KXQIuyALSaqVOnajLc5qlfv35JP9OrVy9rzJgx8csDBgywjjvuuG0+zsUXX2zuq75p06aZ62+55Zak63/1q19ZHo/H+uqrr8zlBQsWmPUuu+yypPV++9vfmuuvv/76+HV6Xq87/fTTt3q8qqqqra579tlnzfrvvPPOVvdx/vnnx68Lh8NW9+7dzXZNmjQpfv3GjRut/Pz8pNekIYsWLTL3+bvf/S7p+j/+8Y/m+lmzZsWv0/tq06bNNu/P3qbevXub90S3I1E0Go2fHzhwoFVaWmr99NNP8es+/vhjy+v1WmefffZW+8Py5cvj19V/fRvbD+yfHTVqVNJjDxs2zLxmF1xwwVav5WGHHRa/Th9Tf75Dhw7Whg0b4te/9NJL5vpXXnllq3W395orXUfXveSSS5JeG91nA4GAtW7duqT7LCoqstauXZt0H/Zt+hxthx56qNW2bVvru+++S1o38bmPHTvW6tq1q7V+/fqkdU477TSruLi4wf2xMfp66zb861//il9XVlZm7n/QoEHx626++Waz73z55ZdJP3/NNddYPp/PWrFixXaf7/a8+OKL5mfnz5/f6Dr27/bkyZOT3vdDDjlkq9fS3nfq358+j6a8xw2pv9+OHj3avN9ff/11/LpVq1aZ91DfS9sLL7xgfvatt95q1uMCzUUJBJAGWqKgI4n1T/pV+vbo6I+Orujo1I7SkUCtq9RRl0Q6Oqp/w3S0TOkIl7rooou2Gm1sjI461adf1dp01EtHvXWETulIaH06AmXT7RwyZIjZLh3BS3z+OoKlI5Tbe67qiiuu2Oq5Kh1hbs5XusuXLzcjifXrJ+3RbB3106+ddQQ9cXRP31sdNbS3K1X0tUkcSdeRtfqvmf1aNvSa6QinlkjYdNROJa6ro616nzvSlkxHYG32iKyWZujoeKKTTz7ZjGxuy7p16+Sdd94xX/nrCGsi+7nr9v3rX/+SE044wZzXfc0+aemAfuvS0D63LVq68ctf/jJ+WUczdQRd94PVq1eb61544QXzmulrmPiYOqKqI+G63Tv6fOuz9zX9lqGxb4l0v/L7/XLhhRcmve/b+p1tKfq8tXREJ9PptyA2/dZEy6R0lFpH5IF0ogQCSAP9mlEDSX32H9Ft0a8t9avOn//85+Yrbf2qWcsUmhKev/vuO/NHXWt6E9lfOert9lK7IujXo4m0trEx9ddVGzZsMF/NP/fcc/GJNzYNJPXVDzday6i1l1r3WP/6+nXE9dnPof42a7mABgr7ue4I/cpdbatVnX2/GtLr09dZS0601lJrY1OhoddMaT1q/es3bty43Z+3w3BD6zaVvu6JwUfp/qrqt7tqaL+pzw7j23rdNSRrDax+ta+nhtTfB7dH9536ZTqJz0P3Jf0gquUZjYXa+o/ZlOdbn5ZYaHDW3yUtU9IyAg2XGia1jMLe7zRgaq1toob2w5am74WWhjT2O6AlLlrXr/XZQLoQgAGH0bo5DWIvvfSSGWXRulX9o/jQQw8ljaC2tsTRXptOWNJ6SK0x1npj/eOsf/w0tDdU59nQrP/GOgHUn7TXmPoBxql0VK0hjb0+DV3f0Gu2s69vS+w3zWHvTzqJsn7dq60pHxKb87g6sq91rg2xA/POPF/dh//5z3+aGm+tedYPUToarpNB9br6oRfA9hGAAQfSr9Z1YpmeKioqTCjWyVZ2AG4s9Gl/Vf0KWic9JY4C6+x6+3Z7qX/Y9et+ndhm++qrr5q8jTqCOHPmTDNqNWHChPj1zSndaA77OejjJU6q0YlSOlJoP9cdYU8K+uyzz5L6p9Z/XLt/c336Outo9rZGf3UEtv5RubR0oCkdGDKFvu46apsY/rTDh2rOBEB7NFlf98boCKzu0/pBobH3Zkfp/q4fBBJ/n+o/D90n9HcwVY+5LVo+pCed9KeTF8844wzz7Yr+3ut+p79vui2Jgbih/bClPyzqe1FQUNDo74B+Q2B/Q5EtH1DhPNQAAw5T/6t//WOnX9UmtvayA1b9IKWtuzQg3HfffUnX6wiy/iHSzgVKaybVAw88kLSedjJoKntksf5IYv1Z8S1Fn2tDj3fnnXea5bY6WjRm3333NV9h633Wf23t56lfQ+tot3afSFxHw5uO2Nvb1RgNVPXrRvUr/cZGgFvDjrRBsyXuY/ra6GXtBKCtsJoTqPRDnrYzW7FiRYOvu+5vWiagdcANBWX9Wn5HaTcVu1uI0rrVp556yry/Wv5gf8sxd+5cMypbn77/2vliZ+mHyfq/R/bhuu3fe92v9LEefPDB+Dq6z+zI76z+v7Gzh0S23wvtWqHfUiWWvOiHTw3u2iZR66ntx1SpeFxgRzACDDiM9iLVGsDBgwebkWBtgaZfjyZOOtLblE520zCrf5BOO+00M0FI+21qKyT9wzRgwAATyvQPlU7sskc49ec1TGjQ08Btt0GzR7+aMmqjf+A0tGgbLA1Qu+yyi3ksHVVuDfrc9KtwDY/6x1XrKLXVmQZTrZ/U12FH6ciVBgx9HTWA6Ai8Bl4Nhzox0Q5B2nJMP0wMGzbMTEaz26BpHe72js6no3k6oVBff/1q/eOPPzb3W78OujXtaBs0rdvWiZS6vk7K08mVOulQW13t6AQwm7bK0uCkH0K0TZd+ENF9WO9XJx0qbZ+nLf70Mc877zzzu6J16Dr5Tb/50PM7Qkew9f3TvsjaV1gDuIY4bWVm0/Kel19+2bTG04mP+rujNd6ffvqp+b3UbdzZ9073Wf0wqhPy9HdUv8F59NFHze+Y/YFK90lts6dt0vQx7Z7FDdXaN0a3XV8n/ZCocwX0NdbXsjm0haFO7NX3TCfT6gQ9bYOmgV3/T7Dp75H+/6QtDnVbtaZZWx6WlpY263GBJmt2/wgAO6yx9kM2bVO1vTZo2sJs//33t0pKSkw7sD59+li33nqrFQwGk9ofaRuqTp06mZZYib/qmzdvti6//HKrW7duVk5OjrXHHntYt99+e1I7KVVZWWnaqbVv394qLCw0bY2WLl1q7iuxLZndwsxub5Xo+++/t375y1+abdU2VL/+9a9NK6TGWqnVv4/G2pM19Do1JBQKWTfeeKNpXabPtUePHtb48eOtmpqaJj1OY+bMmWMdddRRpqWT/lz//v2tKVOmJK3z5ptvWgcddJB5j7T11QknnGB9/vnnSes01AYtEolYf/rTn6yOHTtaBQUFps2ZtqdrrA1a/X2pqa+l3ZZL3/v66r8/O9oGTR9H21+NHDnSPIfOnTub+9Pn1pTHb6gNmvrss8/i+1NeXp615557Wtddd13SOmvWrDH7rb7X+p536dLFGj58uPXII49YO0Jfb23d9p///Me8v7m5ueZ3Tdt21ae/U7pf7b777qb1l753Bx54oHXHHXfEfy+39Xy3Z+HChabNYM+ePc12aIu9448/3vrwww+T1tO2e2eddZbZ3/T3Tc9/9NFHTW6D9sUXX5gWZbrPNvX93lb7Pt1u3X/1/w/dD4444gjrvffe2+pnH330UetnP/uZaRtHSzS0Fo/+0/S4DMDNdKRt0KBB8ve//93UHwL16SiojnxqLaqTaY2vdp3Q1mNOpqPBOpKro9Y7e2Q3IJtQAwygQfq1fX1aEqFlANs7AhsAAJmMGmAADdI6vQULFphaWa3f0zpOPWn9Zf0es4BT6GS4bU0oDAQCTTo8cbZuTyLdru1NHtRJuLRhgxMRgAE06MADDzSTWG6++WbzdbYeMEEncOkEOsCp9ttvv20eBEUnS7799tuu3Z5EerCK7R244/rrr9/uxE4gE1EDDABwjXfffbfB8p7EPsx2FxU3bk8iPXy5HrZ4ez2a6x/1D3ACAjAAAABchUlwAAAAcBVqgJt4WE89IpAeZpPDNgIAAGQeLWrQA8XogVy0Y9G2EICbQMMvs94BAAAyn07g7N69+zbXIQA3gY782i+offxyAAAAZI7y8nIzYGnntm0hADeBXfag4ZcADAAAkLmaUq7KJDgAAAC4CgEYAAAArkIABgAAgKsQgAEAAOAqBGAAAAC4CgEYAAAArkIABgAAgKsQgAEAAOAqBGAAAAC4CgEYAAAArkIABgAAgKsQgAEAAOAqBGAAAAC4CgEYAAAAruJP9wag5a1YsULWr1+fkvvq2LGj9OzZMyX3BQAAkA4EYBeE3759+0hVVXVK7q+gIF+WLPmCEAwAAByLAJzldORXw+9Nt58hu+7Weafu69uv18iEq54290kABgAATkUAdgkNv336dU/3ZgAAAKQdk+AAAADgKgRgAAAAuAoBGAAAAK5CAAYAAICrEIABAADgKmkNwO+8846ccMIJ0q1bN/F4PDJt2rT4baFQSP70pz/JPvvsI23atDHrnH322bJq1aqk+9iwYYOcccYZUlRUJCUlJTJ27FipqKhIWueTTz6RQw45RPLy8qRHjx4yefLkVnuOAAAAyCxpDcCVlZUyYMAAuf/++7e6raqqShYuXCjXXXedWf7f//2fLF26VH7xi18krafhd/HixTJjxgx59dVXTag+//zz47eXl5fLyJEjpVevXrJgwQK5/fbb5YYbbpBHHnmkVZ4jAAAAMkta+wAfc8wx5tSQ4uJiE2oT3XfffbL//vubo5vpgRiWLFki06dPl/nz58uQIUPMOlOmTJFjjz1W7rjjDjNq/PTTT0swGJS//e1vEggEpF+/frJo0SK58847k4IyAAAA3MFRNcBlZWWmVEJLHdTcuXPNeTv8qhEjRojX65V58+bF1zn00ENN+LWNGjXKjCZv3Lixwcepra01I8eJJwAAAGQHxwTgmpoaUxN8+umnm3pftXr1aiktLU1az+/3S/v27c1t9jqdOycfAti+bK9T38SJE80ItH3SumEAAABkB0cEYJ0Qd8opp4hlWfLggw+2+OONHz/ejDbbp5UrV4pbBEOb5ePlj8vKde+ke1MAAACyrwZ4R8Lvd999J7NmzYqP/qouXbrI2rVrk9YPh8OmM4TeZq+zZs2apHXsy/Y69eXm5pqTG22s+EpC4QpZs+kjKSroKcVtdk33JgEAALhnBNgOv8uWLZM333xTOnTokHT7sGHDZNOmTaa7g01DcjQalaFDh8bX0c4Qel82nVy35557Srt27Vrx2ThDRc2P8fPfrZ0lkWgwrdsDAACQVQFY+/VqRwY9qeXLl5vz2uVBA+uvfvUr+fDDD00nh0gkYmp29aRdHVTfvn3l6KOPlvPOO08++OADeffdd2XcuHFy2mmnmQ4Q6je/+Y2ZAKf9gbVd2vPPPy/33HOPXHHFFel86hlJS0wqqmN9lr0evwTDm+WHn+ame7MAAACyJwBruB00aJA5KQ2len7ChAnyww8/yMsvvyzff/+9DBw4ULp27Ro/vffee/H70HDcp08fGT58uGl/dvDBByf1+NVJbG+88YYJ14MHD5Yrr7zS3D8t0LamgTcUqRSPeKV3l1HmurWbPpaKmoYnCwIAADhRWmuADz/8cDPq2Jht3WbTjg/PPPPMNtfp37+//Pe//23WNrqx/CE/t5O0K9xd2rfdUzZsXirrNn0ihY3USwMAADhNRtcAo3XZ5Q+F+V3NsqTNbmZZE9qU1u0CAABIJQIw4irrRoAL82L103k5xWZZSwAGAABZhAAMQ7s9VNWuTxoBzq0LwOFItYQjtWndPgAAgFQhAMOoNBPdLAn420rAX2iu8/lyxe/LN+drQ2Vp3kIAAIDUIADDqKi2yx9io7+23JwSs6QMAgAAZAsCMJI6QBTmx+p/bXkEYAAAkGUIwDDt5rZMgKs3AhyIBeAaSiAAAECWIADD1PfqJDg9+lt+bsek2+KdIIKMAAMAgOxAAIYEwxVmmeMvFI/H20gNMCPAAAAgOxCAIaG6AGx3f0hkt0LTQyRbEm71bQMAAEg1AjBMuFU5/jZb3eb35Ynfm2fORz2xoAwAAOBkBGDESyAaGgFOnAhnSSwoAwAAOBkBGBIK140A+7YeAU4sg2AEGAAAZAMCMOI1wDoJriH2RDgCMAAAyAYEYEiwbgQ40EANcOLBMCwPJRAAAMD5CMAupwfB2DIJbts1wIwAAwCAbEAAdrlItEYsK2LO5/gKGlzHPhiG5amWnICnVbcPAAAg1QjALmeXP/h9+eL1+htcx+fNE58315zv2KXhdQAAAJyCAOxy8QlwjXSAUB6PJ94JorQbARgAADgbAdjl4i3QGpkAV78TRAdGgAEAgMMRgF1uewfBsOX4Y/XBRSW+VtkuAACAlkIAdrltHQY5kT1Bri0BGAAAOBwB2OXsEojtjgDXBWBGgAEAgNMRgF0u2IRJcMpfVwLRtoRdBgAAOBtpxuW2TIJr2ggwJRAAAMDpCMAuZllRCUWqtnkY5K0CcLHPHD0OAADAqQjALhYLvxpmPeJv5ChwNj1QhlnmeCRixUaNAQAAnIgA7GLxg2D425iDXWyLOUqclRP7ueimVtk+AACAlkAAdjH7MMiB7UyAs3kkdjjkUKSsRbcLAACgJRGAXWzLCPC2J8DZPFZdAI4SgAEAgHMRgF2sqYdBtnkkL/ZzlEAAAAAHIwC7WFMPg2zzxkeACcAAAMC5CMAu1tTDINcvgQhTAgEAAByMAOxi9iS47R0FbqsSCCbBAQAAByMAu1hoB0sgtkyCowQCAAA4FwHYpaJWRCLRWnPe79/2QTC2aoNGCQQAAHAwArBLRSI18fN+byzYbo/HsrtAEIABAIBzEYBdKlwXgH3eXPF4vDs0Ahy1aiQU1sMoAwAAOA8B2KXC0VgA9vtio7pN45dgbdScqw7+1EJbBgAA0LIIwC4fAfb78pv8Mx7xyOZNsQBcVbuuxbYNAACgJRGAXSocqTZLv3dHRoBFNpdFzLK6dn2LbBcAAEBLIwCL20eAdzAAb6oLwJRAAAAAhyIAu1SkrgbYt4MBuHwjI8AAAMDZCMAu1ZwaYLW5zK4BJgADAABnIgC7PQB7m1sCQQAGAADORAB2+yS4HS2BsAMwI8AAAMChCMAu1bw+wDoCTAkEAABwNgKwSzW7BpguEAAAwOHSGoDfeecdOeGEE6Rbt27i8Xhk2rRpSbdbliUTJkyQrl27Sn5+vowYMUKWLVuWtM6GDRvkjDPOkKKiIikpKZGxY8dKRUVF0jqffPKJHHLIIZKXlyc9evSQyZMni5vp6xppZg2wXQJRG9okkWioRbYPAAAgawNwZWWlDBgwQO6///4Gb9egeu+998pDDz0k8+bNkzZt2sioUaOkpiYW3pSG38WLF8uMGTPk1VdfNaH6/PPPj99eXl4uI0eOlF69esmCBQvk9ttvlxtuuEEeeeQRcatoNCiWRJvVBq1qczS+2zAKDAAAnMifzgc/5phjzKmxUcq7775brr32WjnxxBPNdU899ZR07tzZjBSfdtppsmTJEpk+fbrMnz9fhgwZYtaZMmWKHHvssXLHHXeYkeWnn35agsGg/O1vf5NAICD9+vWTRYsWyZ133pkUlN1Y/+vx+MTnzdmhn7UskRxvkYSim8xEuMK8Li20lQAAAC6rAV6+fLmsXr3alD3YiouLZejQoTJ37lxzWZda9mCHX6Xre71eM2Jsr3PooYea8GvTUeSlS5fKxo0bG3zs2tpaM3KceMomza3/teV4S8ySThAAAMCJMjYAa/hVOuKbSC/bt+mytLQ06Xa/3y/t27dPWqeh+0h8jPomTpxowrZ90rrhbNLcHsA2v7etWdaEylK6XQAAAK4OwOk0fvx4KSsri59Wrlwp2aS5PYBtfm+hWdYGGx5BBwAAyGQZG4C7dInVlq5Zsybper1s36bLtWvXJt0eDodNZ4jEdRq6j8THqC83N9d0lUg8ZWcP4PydHAEmAAMAAOfJ2ADcu3dvE1BnzpwZv05rcbW2d9iwYeayLjdt2mS6O9hmzZol0WjU1Arb62hniFBoS8su7Rix5557Srt27cSNttQAN3ME2BMLwLWUQAAAAAdKawDWfr3akUFP9sQ3Pb9ixQrTF/iyyy6TW265RV5++WX59NNP5eyzzzadHUaPHm3W79u3rxx99NFy3nnnyQcffCDvvvuujBs3znSI0PXUb37zGzMBTvsDa7u0559/Xu655x654oorxK2a2wO4fglEDSUQAADAgdLaBu3DDz+UI444In7ZDqVjxoyRJ554Qq6++mrTK1jblelI78EHH2zanukBLWza5kxD7/Dhw033h5NPPtn0DrbpJLY33nhDLr74Yhk8eLB07NjRHFzDrS3QEmuAd7QHsI0SCAAA4GRpDcCHH3646ffbGB0Fvummm8ypMdrx4Zlnntnm4/Tv31/++9//7tS2ZpNU1QDXBimBAAAAzpOxNcDI4BpguwSCEWAAAOBABGAXSlkfYGqAAQCAAxGAXV0CsXNdIILhzRKNhlO6bQAAAC2NAOwyUSsi0WhwJ2uAYyUQilZoAADAaQjALm2BJuIRnze3Wffh8fgk4KcTBAAAcCYCsGvrf3NNl43mygvEDiJCJwgAAOA0BGCX1v82twewLTenxCwZAQYAAE5DAHbpQTCaW/9rywvUBWA6QQAAAIchALvMzvYAtuXl1JVAMAkOAAA4DAHYZXa2B/BWJRCMAAMAAIchALvMzvYA3qoEghpgAADgMARg19YAUwIBAADciQDs0j7AOzsJLpdJcAAAwKEIwC4dAfbtZA1wHm3QAACAQxGAXSYcrU1RDTAHwgAAAM5EAHaZSKQuADfzMMg2DoQBAACcigDsMqk6EpzdBUJLKuzWagAAAE5AAHaRaDQslhUx5307OQIc8BeJx+Mz5+kEAQAAnIQA7CKRuvpf5fMGduq+PB6P5OYUm/N0ggAAAE5CAHbhBDgd/dUAu7PsThC1oU07fV8AAACthQDsyh7AO1f/W78TRE2QAAwAAJyDAOzSEeBUoBMEAABwIgKwC1ugpSoA250gKIEAAABOQgB2EXsSnN+XogCcQwkEAABwHgKwi9j9enf2MMhblUDQBQIAADgIAdhFUj4CTAkEAABwIAKwK0eAUxWA60ogCMAAAMBBCMAuEokGW6YLBCUQAADAQQjALhKOprgPMAfCAAAADkQAdpHUt0Hb0gXCsqyU3CcAAEBLIwC7SKRuBNjnS20JRNQKSShSmZL7BAAAaGkEYBcJ19UA+1M0Auz35YvPGzDnqQMGAABOQQB2CUuiErUnwaWoBtjj8cRHgWtDZSm5TwAAgJZGAHaNUPxcqkaAFQEYAAA4DQHYJSyJjf56PTni8aTubd9yMAwCMAAAcAYCsEtYnlBKjwJny80pMktaoQEAAKcgALuEVVcC4fOmpv5364NhEIABAIAzEIBdwvLYE+BSOwK85WAYlEAAAABnIAC7Rl0JREuNAFMCAQAAHIIA7LJJcHbf3lTJDRSbJSPAAADAKQjArpsEl+oR4LoATA0wAABwCAKw60aAW6oGmAAMAACcgQDsEi03AmzXAFMCAQAAnIEA7BotNAIcPxAGI8AAAMAZCMBu6wOc8gNhxGqAw5FqiURqU3rfAAAALYEA7LYSiBSPAAf8bUXEY87TCQIAADgBAdhtk+BSXAPs8Xjjo8DUAQMAACcgALuAxwzQ2odCTu0IsKITBAAAcJKMDsCRSESuu+466d27t+Tn58tuu+0mN998s1iWFV9Hz0+YMEG6du1q1hkxYoQsW7Ys6X42bNggZ5xxhhQVFUlJSYmMHTtWKioqxC1y8z12lULKSyASD4bB0eAAAIATZHQAvu222+TBBx+U++67T5YsWWIuT548WaZMmRJfRy/fe++98tBDD8m8efOkTZs2MmrUKKmpqYmvo+F38eLFMmPGDHn11VflnXfekfPPP1/coqAw9jZ7PD7xev0pv3+7FRoHwwAAAE6Q+jSUQu+9956ceOKJctxxx5nLu+66qzz77LPywQcfxEd/7777brn22mvNeuqpp56Szp07y7Rp0+S0004zwXn69Okyf/58GTJkiFlHA/Sxxx4rd9xxh3Tr1k3cEoD93tTW/25dAkENMAAAyHwZPQJ84IEHysyZM+XLL780lz/++GOZM2eOHHPMMeby8uXLZfXq1abswVZcXCxDhw6VuXPnmsu61LIHO/wqXd/r9ZoR44bU1tZKeXl50snJCgp9LdICbavDIROAAQCAA2T0CPA111xjwmefPn3E5/OZmuBbb73VlDQoDb9KR3wT6WX7Nl2WlpYm3e73+6V9+/bxdeqbOHGi3HjjjZJtI8AtMQEu+WhwlEAAAIDMl9EjwP/4xz/k6aeflmeeeUYWLlwoTz75pClb0GVLGj9+vJSVlcVPK1euFCcraGOXQLRQAK6bBEcXCAAA4AQZPQJ81VVXmVFgreVV++yzj3z33XdmhHbMmDHSpUsXc/2aNWtMFwibXh44cKA5r+usXbs26X7D4bDpDGH/fH25ubnmlHUjwCnuAbxVDTCT4AAAgANk9AhwVVWVqdVNpKUQ0WjUnNf2aBpitU7YpiUTWts7bNgwc1mXmzZtkgULFsTXmTVrlrkPrRV2gy2T4Fq2BKI25OxaaQAA4A4ZPQJ8wgknmJrfnj17Sr9+/eSjjz6SO++8U84991xzu8fjkcsuu0xuueUW2WOPPUwg1r7B2tlh9OjRZp2+ffvK0UcfLeedd55plRYKhWTcuHFmVNkNHSCSR4BbdhIcNcAAAMAJMjoAa7syDbQXXXSRKWPQwPr73//eHPjCdvXVV0tlZaXp66sjvQcffLBpe5aXt+Xrfq0j1tA7fPhwM6J88sknm97BbpHfpmUnwXEkOAAA4CQZHYDbtm1r+vzqqTE6CnzTTTeZU2O044NOpHOreAlEC9UAb5kEVy5RKyJeT6ztGgAAQCbK6BpgOKUNWiwAi1gSDG1ukccAAABIFQKwC7T0JDifNyA5vjbmPAfDAAAAmY4A7KYa4BaaBJd8NDjqgAEAQGYjAGc5y7ISRoBbpgY4sQ6YThAAACDTEYCzXNSqFX+OpxVGgDkYBgAAcAYCcJYLWxWxM5ZHvJ6cFnucLa3QqAEGAACZjQCc5SLRyrpzOaZlXEuPAFMCAQAAMh0BOMuFrVgA9kigRR8nL94LmBFgAACQ2QjAWS4SjZVAeKyWK39QdIEAAABOQQDOcuFo64wAx0sggowAAwCALAzA119/vXz33Xep3xq02CS4lh8BtifBMQIMAACyMAC/9NJLsttuu8nw4cPlmWeekdra2tRvGVI+Ca4l5VECAQAAsjkAL1q0SObPny/9+vWTSy+9VLp06SIXXnihuQ4uLYEI0AYNAABkeQ3woEGD5N5775VVq1bJ448/Lt9//70cdNBB0r9/f7nnnnukrIwglAkirVQCYfcBrgluMkefAwAAyNpJcBp2QqGQBINBc75du3Zy3333SY8ePeT5559PzVbCMZPgolZIQhG77AIAACCLAvCCBQtk3Lhx0rVrV7n88svNiPCSJUtk9uzZsmzZMrn11lvlD3/4Q2q3Fs2uAW7pEWC/L1983ljI5nDIAAAg6wLwPvvsIwcccIAsX77clD+sXLlSJk2aJLvvvnt8ndNPP13WrVuXym3FzhwKuYVHgPUoc3k57cx5jgYHAAAymb85P3TKKafIueeeK7vsskuj63Ts2FGi0ejObBtSWgLRsiPA9kS4yto1UhPc2OKPBQAA0KojwHatb33V1dVy0003NXtj0JJHgmvZEeCkiXAhAjAAAMiyAHzjjTdKRYX91foWVVVV5jZkhkikVqISbMUR4NiHolqOBgcAALJxBFhrPuv7+OOPpX379qnYLqRAbbjcLKNRbUvW8gF4Sw0wI8AAACBLaoC17EGDr55+/vOfJ4XgSCRiRoUvuOCClthONIN9UIqaqqgUBbb+wJJqeYHY0eCoAQYAAFkTgO+++24z+qsT4LTUobg4FnhUIBCQXXfdVYYNG9YS24mdCMBVFVGRVhiYz60bAeZwyAAAIGsC8JgxY8yyd+/ecuCBB0pOTst/rY7mqw2Vt2oAzqurAdajwQEAADg+AJeXl0tRUZE5rwe90I4PemqIvR4yJABXtk47urycuhIIaoABAEA2BGCt//3xxx+ltLRUSkpKGpwEZ0+O03pgpF8wsQSiFWzpAsEIMAAAyIIAPGvWrHiHh7feeqsltwktUQPcCjgSHAAAyKoAfNhhh8XPaw1wjx49thoF1hFgPSwyMisAV7dWAA6UxB83akXE6/G1yuMCAAC0eB9gDcDr1q3b6voNGzaY25CBk+BaQW5dDbCIJcG6xwYAAMjqA2FoH+C8vLxUbBccWALh8wYkx19oztMLGAAAZEUbtCuuuMIsNfxed911UlBQEL9NJ77NmzdPBg4cmPqtxM4F4FbqAqHyckokFK6gDhgAAGRHAP7oo4/iI8CffvqpOfiFTc8PGDBA/vjHP6Z+K9EsteHWHQFWuTklsrn6ezpBAACA7AjAdveHc845R+655x76/TqkBri1JsElHQyDXsAAACAbArBt6tSpqd8SpJw9Ea01R4DtThDUAAMAgKwKwJWVlTJp0iSZOXOmrF27VqLR5ID1zTffpGr70EzahiwY3tz6AbiuF7BdfwwAAJAVAfh3v/udzJ49W8466yzp2rVrgx0hkF6JbchacxKc1gArRoABAEBWBeDXX39d/v3vf8tBBx2U+i1CStgjsF5PnkRb8cjU8RIIaoABAEA29QFu165d/LDIyOwJcH5Pm1Z9XEogAABAVgbgm2++WSZMmCBVVVWp3yKkhB1Afd7YgSlaSy6T4AAAQDaWQPz1r3+Vr7/+Wjp37iy77rqr5OTkJN2+cOHCVG0fdjIA+72tPQJsl0DQBxgAAGRRAB49enTqtwQtE4A9qR8BXrJkSaO31YR/NMuqmp+2+0GoY8eO0rNnz5RvHwAAQMoD8PXXX9+cH0NaSiBSNwK8fl2srvjMM89sdJ38Nl756/M9JGrVyNChgyUcbvz+CgryZcmSLwjBAAAg8wMwnFQCkboR4IryarO8/M/HyaDBeza4jiWWVFr/J+IReewfF4pX8htc79uv18iEq56W9evXE4ABAEDmB+BIJCJ33XWX/OMf/5AVK1ZIMBhMun3Dhg2p2j40k12D6/e0Tfl99+jVQfr0697o7Yu+zpNwtEZ6795O8nM7pvzxAQAAWr0LxI033ih33nmnnHrqqVJWViZXXHGFnHTSSeL1euWGG27YqQ1CatTWdWHwe1MfgLfH58szy3CkptUfGwAAoEUC8NNPPy2PPvqoXHnlleL3++X000+Xxx57zLRGe//995tzl2ipEeBWboNmHtMXK3vQUWAAAICsCMCrV6+WffbZx5wvLCw0o8Dq+OOPN0eIQ/rVBNMYgL25ZskIMAAAyJoA3L17d/nxx1i7q912203eeOMNc37+/PmSmxsLP0iv2vgIcNv0jQATgAEAQLYE4F/+8pcyc+ZMc/6SSy6R6667TvbYYw85++yz5dxzz03pBv7www+m7VaHDh0kPz/fjDx/+OGH8dstyzKlF127djW3jxgxQpYtW7bVpLwzzjhDioqKpKSkRMaOHSsVFRWSrfQ1iQfgFugDvD1+uwaYEggAAJAtXSAmTZoUP68T4bSN1dy5c00IPuGEE1K2cRs3bpSDDjpIjjjiCHn99delU6dOJty2a9cuvs7kyZPl3nvvlSeffFJ69+5twvioUaPk888/l7y8WBDT8Ksj1jNmzJBQKCTnnHOOnH/++fLMM89INgpHqiUSDaZ9ElyEEWAAAJCtfYCHDRtmTql22223SY8ePWTq1Knx6zTkJo503n333XLttdfKiSeeaK576qmnzCGap02bJqeddpo5atn06dNNecaQIUPMOlOmTJFjjz1W7rjjDunWrZtkG3v01+vJEa8nFkZbk99LFwgAAJBlAVhD5rZoKUQqvPzyy2Y099e//rXMnj1bdtllF7nooovkvPPOM7cvX77cTMjTsgdbcXGxDB061IxIawDWpZY92OFX6frasm3evHmmnKO+2tpac7KVl8eOgOYUNXUt0HIDxeLxeNJXAhGJHTgDAADA8QH40ksvTbqsZQVVVVUSCASkoKAgZQH4m2++kQcffND0Gf6f//kfM4r7hz/8wTzOmDFjTPhVOuKbSC/bt+mytLQ06XZt3da+ffv4OvVNnDjR9Dp2qpq6o8Dl5WwpFWlNtEEDAABZNwlOa3MTTzqhbOnSpXLwwQfLs88+m7KNi0ajsu+++8pf/vIXGTRokKnb1dHfhx56SFrS+PHjTWs3+7Ry5UpxktpQ3QhwTklaHn9LFwhGgAEAQJYE4IboBDidHFd/dHhnaGeHvfbaK+m6vn37msMvqy5dupjlmjVrktbRy/Ztuly7dm3S7eFw2HSGsNepT1u5aceIxJMTewDnBdITgHMSArBlRdOyDQAAAC0egO3SglWrVqXs/rQDhI4sJ/ryyy+lV69e8QlxGmLtlmx2va7W9tqT8nS5adMmWbBgQXydWbNmmdFlrRXORvYkuLw0jQDbXSAUE+EAAEBW1ADr5LRE2o1B24zdd999JrSmyuWXXy4HHnigKYE45ZRT5IMPPpBHHnnEnJRO8LrsssvklltuMSPQdhs07ewwevTo+Ijx0UcfHS+d0HrlcePGmQly2dgBInEEODfQTiQNVQhej0983lyJRGvNKHCOv6D1NwIAACCVAdgOlzYNotqj98gjj5S//vWvkir77befvPjii6Ym96abbjIBV9ueaV9f29VXXy2VlZWmPlhHerUOWdue2T2A1dNPP21C7/Dhw033h5NPPtn0Ds5WW0aAi9MSgO06YDsAAwAAOD4Aa/mAWrdunenIoK3HWsrxxx9vTo3R8K3hWE+N0Y4P2XrQi4bUJEyC29LMrfXrgDWIhwjAAADA6TXAOsp68cUXS8eOHU39rYZLXeoorbZCQ/rVBOvaoGkJRJr4fbGyB0aAAQCAo0eAtXOCTir74YcfTBmC1tcqPeywHl1NDzU8Z84c+eSTT+T99983PXvhvjZoilZoAAAgKwKwlhloycPXX3+91cEn9LaRI0fKWWedJW+88UZW19hmuppQYhu09HRhIAADAICsCMDTpk2Thx9+eKvwq7QMYvLkyXLsscfK9ddfb47UhtanHTlq7RIIMwLc8NHuWqsXMDXAAADA0TXA2uqsX79+jd6+9957my4LGoCRHqFIpUSt0JY2aGmyZQSYunAAAODgAKwT37799ttGb1++fLmUlpamYrvQTLV1PYB93oD4vVtawbU2SiAAAEBWBOBRo0bJn//8ZwkGg1vdVltbaw5CoQedQPrrf3UCnLaISxdKIAAAQNZMghsyZIg56pq2QuvTp4+pOV2yZIk88MADJgQ/9dRTLbe1aPpBMNJY/lB/BFj3kXSGcQAAgGYH4O7du8vcuXPloosuMn1/NdgoDTdHHXWUORRyz549d+QukWI1QbsFWssdnGRHArCIZY4I5/elrxwDAABgp44Ep4cjfv3112Xjxo2ybNkyc93uu+9uDoiBDGqBlpPeEWCv1y9eb0Ci0aAZBSYAAwAARx8KWbVr107233//1G4NdprdAi3X9ABOL3M45GhQQpEqyZP0BnIAAIBmHwoZma2m7ihwsR7A6UUnCAAAkIkIwFk7CY4ADAAA0BACcJapCW5pg5YpAZhWaAAAIJMQgLN1BDjNk+ASewEzAgwAADIJAThb26AF0tsGTVECAQAAMhEBOMvUhMoyZgSYAAwAADIRATiL6IFJ7BKITGiDRg0wAADIRATgLBIMbxbLimRMGzRqgAEAQCYiAGeR2rryB783LyOOvOb3FcQDsH3YbAAAgHQjAGflBLj0j/4mlkDoqLQeEhkAACATEICzSLz+NwPKH5TPmyNeT+xo29QBAwCATEEAziLVwQ1mmR9oL5mCThAAACDTEICzSHXwJ7MkAAMAADSOAJxFqmvrAnBuR8kUBGAAAJBpCMBZpKauBCIvg0aA7VZo1AADAIBMQQDOItXB9WaZH+ggmYIRYAAAkGkIwFmkunZDBgZguxdwVbo3BQAAwCAAZ+MkuNzMCcA5/lgADhGAAQBAhiAAZ2EAzqwa4DZmGQpXpntTAAAADAJwlghHaiQUrjDnCzKoCwQjwAAAINMQgLOsA4QeeS3gL5JMGwHWSXBRK5LuzQEAACAAZ9tR4LT8wePxSCZ1gfDU7WbhMKPAAAAg/QjAWaK6dn3GTYBTGsb98TII6oABAED6EYCzbAQ4k1qg2XLqWqGFGAEGAAAZgACcbS3QMjEA++s6QTACDAAAMgABOEvUZGALNBut0AAAQCYhAGeJ6lr7IBiZ0wLNRis0AACQSQjAWVcDzAgwAADAthCAs0R1cL0DaoAZAQYAAOlHAM4S1bVO6ALBCDAAAEg/AnC2dYHIsD7A9UeALctK9+YAAACXIwBngVCkWsJ15QWZ2QUiNgJsWRGJRGvTvTkAAMDlCMBZoKauA4TXG5CAv61kGq/XLz5vrjlPGQQAAEg3AnBWHQSjvTn0cCbiYBgAACBTEICzQCYfBtnG4ZABAECmIABngepauwVa5tX/2hgBBgAAmYIAnE0jwBl4FLitD4bBCDAAAEgvAnAW1QBnYgcIGyPAAAAgUzgqAE+aNMlM8rrsssvi19XU1MjFF18sHTp0kMLCQjn55JNlzZo1ST+3YsUKOe6446SgoEBKS0vlqquuknA4LNmiJj4Jzgk1wARgAACQXo4JwPPnz5eHH35Y+vfvn3T95ZdfLq+88oq88MILMnv2bFm1apWcdNJJ8dsjkYgJv8FgUN577z158skn5YknnpAJEyZItqiudUAA5nDIAAAgQzgiAFdUVMgZZ5whjz76qLRr1y5+fVlZmTz++ONy5513ypFHHimDBw+WqVOnmqD7/vvvm3XeeOMN+fzzz+Xvf/+7DBw4UI455hi5+eab5f777zehuCG1tbVSXl6edHJGDXAGB2BGgAEAQIZwRADWEgcdxR0xYkTS9QsWLJBQKJR0fZ8+faRnz54yd+5cc1mX++yzj3Tu3Dm+zqhRo0yoXbx4cYOPN3HiRCkuLo6fevToIZnMSTXAeiS4aDR7yk8AAIDzZHwAfu6552ThwoUmlNa3evVqCQQCUlJSknS9hl29zV4nMfzat9u3NWT8+PFmdNk+rVy5UjKVZVnxI8EVZHAXCD0SnMfjM+cpgwAAAOnklwymwfPSSy+VGTNmSF5eXqs9bm5urjk5QThSJeFoTcaPAOvkRS2DCIY3UwYBAADSKqNHgLXEYe3atbLvvvuK3+83J53odu+995rzOpKrdbybNm1K+jntAtGlSxdzXpf1u0LYl+11nMwuf9ARVrvXbqaiFRoAAMgEGR2Ahw8fLp9++qksWrQofhoyZIiZEGefz8nJkZkzZ8Z/ZunSpabt2bBhw8xlXep9aJC26YhyUVGR7LXXXuJ0lTWxMN8mr7MZZc1kWw6GQQAGAADpk9ElEG3btpW999476bo2bdqYnr/29WPHjpUrrrhC2rdvb0LtJZdcYkLvAQccYG4fOXKkCbpnnXWWTJ482dT9XnvttWZinVPKHJoSgAtyk+ucM1HAX2iWwXCFiGRuxwoAAJDdMjoAN8Vdd90lXq/XHABD25dph4cHHnggfrvP55NXX31VLrzwQhOMNUCPGTNGbrrpJskGlbX2CHCpZLqcpAAMAACQHo4LwG+//XbSZZ0cpz199dSYXr16yWuvvSbZqKpmbbwEItPl5rQ1S50IBwAAkC4ZXQOM7CqByPHXBeAQARgAAKQPAThrSiCcUwMcCleIJVa6NwcAALgUAdjhquwuELmlDgnAHrEkKpbEehcDAAC0NgKww1XWxmqACxwwAuzxeOO9gC1Pdbo3BwAAuBQB2MG0m4KWEzilBEIF6uqALeFwyAAAID0IwFnQAULbi9n1tU4JwFFGgAEAQJoQgLNhApwD6n9tgbpWaJaHEWAAAJAeBOBsaIHmkPIHZY9UMwIMAADShQCcBQG4jQN6ANuoAQYAAOlGAHawKgf1AN4qADMCDAAA0oQAnBUlEKWOK4GwPDXid9yBuAEAQDYgADtYZV0XCCeVQPh9+eLx+Mz54g4kYAAA0PoIwA7mxBIIj8cTL4No3ykWhAEAAFoTAdihLMvaMgnOQQFY2QG4XSdGgAEAQOsjADtUMFwukWitOV/goD7AiXXA7ToyAgwAAFofAdih7NHf3JwS8fvyxEnsg2G0L2UEGAAAtD4CsEM5tfwhqQSCEWAAAJAGBGCHcuJhkG3UAAMAgHQiADtUlQMPg1y/BKJdRwIwAABofQRgh3JiD+D6k+AKCr0SjnJIZAAA0LoIwA5VWbPasTXAPm9AxMox54OR9eneHAAA4DIEYIfXADvpMMiJvFaBWQYj69K9KQAAwGUIwA5V5eASCOWRNmZZE4mNZAMAALQWArADRa2IVNXWBeC8LuJEXitWB1wTJgADAIDWRQB2aP1v1AqL15Pj4BKIWACujfyY7k0BAAAuQwB2oM1V35tlYX438XqceTAJj1VXAsEIMAAAaGU0Ys1gK1askPXrt+6SsK5qTuxMuFgWLly4zftYsmSJZPYI8FqJRsPi9bIrAgCA1kHqyODw27dvH6mqqt7qtmNOK5YTziyR1195V86cMrhJ91dRUSGZxCP5EgpakhMIS0XNj1JU0CPdmwQAAFyCAJyhdORXw+9Nt58hu+6W3OmhxvehhOU7OWL4UBl1RN9t3s97s5fIQ/e8LjU1NZJJPOKR9atD0rVnQMoqvyUAAwCAVkMAznAafvv065503dLv58nmapFddukhHYqSb6vv269j/YIz0bofw7EAXPWt9JBD0r05AADAJZgE50C1oXKzDOQUiZNpAFblld+le1MAAICLEIAdxrKiEgrH6nlznR6AV4XMUkeAAQAAWgsB2GGC4QqxJCoe8UqOL9ZKzOkjwGWMAAMAgFZEAHaYYLz8oa14PB5xsrWr6kogqr4zI9sAAACtgQDsMLXhugDsd3b5g9q4Liwe8UkkGjRHtwMAAGgNBGCHjgA7vf5XRaMiub7YoZy1FRoAAEBrIAA7tANENgRglevvapZlVSvSvSkAAMAlCMAOEwxvzpoSCJXn62KW5XSCAAAArYQA7DDZNgKcZ48A0wkCAAC0EgKwg2inhPgIcE52jQDTCxgAALQWArDDegCLWOLx+BzfA3irGuBKbYVmpXtzAACACxCAnXgIZL/zewDbcn2dzEE9wpEqqapdm+7NAQAALkAAdpBgOLvqf5XXkyNFbXY15zdsXpruzQEAAC5AAHbkCHD2BGDVoe2eZvkTARgAALQCArCDZNNBMBK1rwvAGzZ/ke5NAQAALkAAduJhkLMsAHdo28csN2z+Mt2bAgAAXIAA7CC1wU1mmZtTLNmkfZE9AvylRK1IujcHAABkOQKwQ4QjtRKKVJrzeTntJJsUFfQUvzdPItFaKeeAGAAAwM0BeOLEibLffvtJ27ZtpbS0VEaPHi1LlyZPlKqpqZGLL75YOnToIIWFhXLyySfLmjVrktZZsWKFHHfccVJQUGDu56qrrpJwOCxOUhPaaJba/9fvy5Vs4vX4pF3bn5vzTIQDAACuDsCzZ8824fb999+XGTNmSCgUkpEjR0plZWwkVF1++eXyyiuvyAsvvGDWX7VqlZx00knx2yORiAm/wWBQ3nvvPXnyySfliSeekAkTJoiT1AZjATgvkF2jv/U7QTARDgAAtDS/ZLDp06cnXdbgqiO4CxYskEMPPVTKysrk8ccfl2eeeUaOPPJIs87UqVOlb9++JjQfcMAB8sYbb8jnn38ub775pnTu3FkGDhwoN998s/zpT3+SG264QQKBwFaPW1tba0628vLY5LN0qs7yAGx3gmAEGAAAuHoEuD4NvKp9+/ZmqUFYR4VHjBgRX6dPnz7Ss2dPmTt3rrmsy3322ceEX9uoUaNMqF28eHGjpRfFxcXxU48ePSTdaoIbsrL+d+tWaARgAADQshwTgKPRqFx22WVy0EEHyd57722uW716tRnBLSkpSVpXw67eZq+TGH7t2+3bGjJ+/HgTtu3TypUrJVNqgPMCsfCfrSUQZZXfSihSne7NAQAAWSyjSyASaS3wZ599JnPmzGnxx8rNzTWnTGFZUakNlWV1CUR+bicT7nWke+PmZVJa0j/dmwQAALKUI0aAx40bJ6+++qq89dZb0r179/j1Xbp0MZPbNm2K9ce1aRcIvc1ep35XCPuyvY4TDoFsWRHxevwS8LeVbOTxeDgiHAAAaBUZHYAtyzLh98UXX5RZs2ZJ7969k24fPHiw5OTkyMyZM+PXaZs0bXs2bNgwc1mXn376qaxduza+jnaUKCoqkr322kucwK7/zc0pMUExW23pBMER4QAAgEtLILTsQTs8vPTSS6YXsF2zqxPT8vPzzXLs2LFyxRVXmIlxGmovueQSE3q1A4TStmkadM866yyZPHmyuY9rr73W3HcmlTm4uf7X1r7ukMh0ggAAAK4NwA8++KBZHn744UnXa6uz3/72t+b8XXfdJV6v1xwAQ1uXaYeHBx54IL6uz+cz5RMXXnihCcZt2rSRMWPGyE033SROUZPlLdDqjwD/VL7EjP5n82g3AABIn4wOwBqCticvL0/uv/9+c2pMr1695LXXXhOnsgNwfrYH4KK+ps65OrheNld/L0UF6W8/BwAAsk9G1wCjXglElvYAtvl9edKxuJ85v3rjwnRvDgAAyFIE4AxnSa2E6/ri5mb5CLDq0m6wWa7ZuCDdmwIAALIUATjDRT2bzVLbn/m8OeKWALyaAAwAAFoIATjDRT0VrpgAZ+tcsq9Z/rT5CwmFK9O9OQAAIAsRgB0yApztLdBshfldpTB/F3Pgj7WbPk735gAAgCxEAM5wUU+ZKybAJerSLjYKzEQ4AADQEgjAGS7qiR3muSCvVNyiSwl1wAAAoOUQgDNYcQefWJ5aEfFIQaCjuEWX9nWdIDYtFMuKpntzAABAliEAZ7CeuwXMMj/QXrzejD5mScoPiez35UttqEw2VXyT7s0BAABZhgCcwbr/LBaAC3LdU/6gtN1bafEAc54yCAAAkGoEYAeMABfkdhK3oR8wAABoKQTgDNbDDsAumgBn69J+iFl+/9O7YllWujcHAABkEQJwhgpFyqR9qd+1I8C7dBgmfm+eVFT/IBs2f5HuzQEAAFmEAJyhKsPLzdJjFYrPGxsJdhO/L0+6dzrYnP92zZvp3hwAAJBFCMAZqioU637gi5aIW+1aepRZEoABAEAqEYAzVGVdAPZa7g3AvTofaXogry37WCpr1qR7cwAAQJYgAGeoylCsBMLNAVhrnzuXDDTnv1s7M92bAwAAsgQBOAPVhsqlNvKjOe9zcQBWu3YeYZaUQQAAgFRxz+HFHOSn8s9jyzVhKWyXK9lsyZIl27y9KtTNLFes/a/M//A98XnzGlyvY8eO0rNnzxbZRgAAkF0IwBloXflis1z5TVB6xY4HkXXWrys3yzPPPHO76970WDfp2EXkvEtGyMfvVze4TkFBvixZ8gUhGAAAbBcBOAMVBDpK28De8tXid+TgLA3AFeWxIHv5n4+TQYP33Oa6tb6PJSRfycXj95W8yNCtbv/26zUy4aqnZf369QRgAACwXQTgDLTHLifK5jU9ZNa0wfLbsyWr9ejVQfr0677NdapqAvL5yq8k4lslP9u9RAL+wlbbPgAAkH2YBIeMp4eCLszrKpZEZV3Zp+neHAAA4HAEYDhCaV07tHVln0k0Gk735gAAAAcjAMMRSgp3kxx/oYQjVbKx4qt0bw4AAHAwAjAcwevxSafifcz5tZsWpXtzAACAgxGA4RidivYWj8cnlbVrpKI6dqAQAACAHUUAhmPk+AukfdtYy7SV698Ry4qme5MAAIADEYDhKLt0GCZeb0Aqa1abCXEAAAA7igAMR9EewBqC1Q8/vSuhcGW6NwkAADgMARiOU1rcXwpySyUSDcrKde+ke3MAAIDDEIDhOB6PV3qVDtdzsqHiSwl5v033JgEAAAchAMOR2uSVStf2+5nztb6Fss/++eneJAAA4BAEYDhWt/YHSIeivUQ8loz9U0cpr12c7k0CAAAOQACGY3k8Htm1dLj4ol0lkOuVpRtvla9WvZruzQIAABmOAAzH1wPnhYfKko+qJWrVyIyPxsl/P7teIpHadG8aAADIUARgOJ5HfHL/9WulW5uTzOXPvntS/vnuL2TFutnp3jQAAJCBCMDICtGoSI+iM+XY/aZKXk472bB5qfz7gzHyyryzZPXGBWJZVro3EQAAZAgCMLJKr9Ij5PTDZ0n/3mPF68mR79f/V15872T555zj5fMVz0ltqCzdmwgAANKMAIyskxdoJwftdZ2cdtibsmf3k8XnDcj68sUy+9NrZOqMfeWluafKR18/JKt+mifB0OZ0by4AAGhl/tZ+QKClLFmyZKvrSuQMGdDpF7K+aqasq35LqsMrZdWGeeZky/WVSsDbQXJ87SXgay/t2vaU7l37SJu8LnWnziZEAwCA7EAAhuOtX1dulmeeeeZ21+3Q2S/77Jcvew7Ik+67BaRDqV9qI2vNSUKxdVZXiixZnfxzAV8nKfD3kHxz6i75/p5m6fM2fgCOjh07Ss+ePXfy2QEAgFQjAMPxKsqrzfLyPx8ngwbvuUM/awVrJerZLFFPtVhSLWvWrJGvvlouJR18sVNHv+TkeCQYWWdOm2oXJv38+tUh+eFbPQXlh+Wx5bofw2JFRQoK8mXJki8IwQAAZBgCMLJGj14dpE+/7jt1H9OXLZCpt883Ybr3z/c03SM0JFsmJOupvO60WSxPjXTskmNOAw4o2HInlldCNQUyf85q+fS7qeItOEo6FPWR/ED7nX+SAABgpxGAgWaG6XCkRqpr10tVcL1ZVgd/MsuohCUnv0IOPKpQVpRPlRXzppr18wIdpF3hbtKucA9pV7h7/KR1xnpUOwAA0DoIwEAz+X150raguznZdMRYW6199dVS+dcL0+XMc4+WqHe1lFV9JzXBn+THDXr6IOl+cvyF0q7NblJS+DNpm99dCvO7Sdv8XaQwfxez1McBAACpQwAGUkhHcvMCJeK3dpF/P1Mmpx97gvTt21cibWukJvKDVIe+l+rwllNN5EcJhStkbdnH5tQQv7dY2uR2lQ7FGpBjobiwILbUU25Ocas/TwAAnIwADKSxM4XPL9Kpa4506ZEjpd380r6TX9qX+qR9aex8XoFXwtEyKavW0xcN34enQAK+jpLr62S6Vegy8XyOt0Q8Hm9au1NEo2EJR2skHKk2pSORaK05iLXX4xev12+WHo/PtJsL+AuTthcAgFRzVQC+//775fbbb5fVq1fLgAEDZMqUKbL//vune7OQhXamM4XNEkskGJIlS76U11/5bywUm2BcF5BL/dK22CcRq0qqwyvMqSGhkCUb14Vlw9qwbFgXkXDQK78dM1ZKSjpINBoyYTR2CkokUresd4rqSVtb6DaZU6zco24r41ssdYecjlp24K2RSKTGXG46j/g8+eLzthG/p029ZYF4PDkNvlpRKySWhCQQ8EleQcBst2VFzBEBvV6f+L35EsgplIC/7ZZT3WUtQ8n1F0lOji7bis+XZ7Y7FKkyoT0UrjLnQ+FKCYYrJBTeLLXhzWb0PhiqqHt+llhW1LwiuhSJxiZRmtclKhUVm6WmtqZuPft1rLs96bwkPN9C8Xv1fKHkeNtKjred5PjaSZdOvaVXr147tD8BAFwYgJ9//nm54oor5KGHHpKhQ4fK3XffLaNGjZKlS5dKaWlpujcPWSoVnSm++3qjfPx+dYNh2gqGxZIqiXqqxPLULRMua2s3beNW2k1HmLcEx2/WPyuyXtLCKwHxeGIHFrEkbEJqOBIUn8+eCGiZUB+JVElQ1u34A1SJyCbJauEfLClcWipFBd2kIK+TFOSWSkFuJxPk/d488flyxe/NNfXjXm/AvMYa0jWYm2U0IlGJyPr1a2XzZj08uAZ3DeyR2FIiIua80jCv7DCf+MFny20FBYXSrqSjGcX3eXPNUh/b582pu86+rNulp3zJ8RWI31cgOb58c1m/DQCA1uCa/23uvPNOOe+88+Scc84xlzUI//vf/5a//e1vcs0116R784AWCdNRKxIbtQyVmxHLZV9+LTP/s1D8OR7x+UQiYUvCodgocThkSSgYWyafRMJhS6KRupHf+D/2Y2y5bA9sRqOx+wrqqdaSkJ6CsVNjrrlptPTdu5cZxdWjklgeHdENiuXR0dWguV6v2xK66vPJ6h/K5J2Zn8e3PRqNlZlouA7kekxJSX4bb2xZsOVyfoFe5zFLbzyIx9RURyVYo88jKrXVllRXRaWmKirVlZa5Tc9HwrHnbkZ86zKiOUVjl83rFBU5/Ki9pXMXux2eZ6ulnoutrs/Vfs7B2GXRntU1Ip6g+P0eqQmtk5qydSKaXzNBpUhzPq8k8oiWw+RJjj9f8gJtTSg2AdmfnxSUNThrkBaPvmaeLUv91+NNOL9lGRt1l+RvLeIj8fa1yd9uxK/f8gNbftoe3a+7PvlnZcuHDf1WwHwAicQ/iFRUbpaaGv2kprfVfeCIn4+d9AOIPq/YfqFLb73nF7us+5jX59/ynM313rrnvuW12HJd/XXsyx4pKGgjxUV1JVN1r2ns8fRy7L7oWJOdrIRvq3T/27Rpo1RVVSZcp/t13b4Z/7Yrtk+bZd0+m3ydno+KP8crRw66RToV7y2ZxBUBOBgMyoIFC2T8+PHx67xer4wYMULmzp271fq1tbXmZCsri/2FKS+P1XW2hoqKCrP8YvH3Ul21ZVt21LdfrzHLr75cLW0Kvt6pbeK+nL1NIgH5eI5XXn5qk/zy1P2k5x47NzL9+acr5PWXFpj7+tlO3Jd9P+XlVVJTpWFX/8AG6k5tdui+ln+yVGb8qzy2Tf23s036/3iFSK2e4lda4vFGxeOJypLPVsmr/1q41fPTrdPj/+Vrcw49tWvac/zPSwtkj96F0rGweaUL+rg+Eflk0Tfy9N/+I23b+aSoxBdb1p3PCYjk5HrMqL8/4JFAwCM+v0eikdiHkthS/05ZEtGlZUmXbu0l3zwZDYl1YcnS8/ajxl+a2DpJl2PKNlbJ18t+jH2w8ov49aTboCe/R3zx83pb3bblec326QeTLR86gnUn/b82tt8DcL4lSxdJbp+Wn3ti57QtH3gb57GaspbDrVq1SnbZZRd57733ZNiwYfHrr776apk9e7bMmzcvaf0bbrhBbrzxxjRsKQAAAHbGypUrpXv3bQ+CuGIEeEfpSLHWC9ui0ahs2LBBOnTo0Cpf/+gnmB49epg3sKioqMUfD5mHfQDsA2AfAPvAjtEx3c2bN0u3bt22u64rArC2ffL5fLJmTfJXanq5S5cuW62fm5trTolKSkqktenOzg7vbuwDYB8A+wDYB5quuLhpvfFd0WwzEAjI4MGDZebMmUmjuno5sSQCAAAA2c8VI8BKSxrGjBkjQ4YMMb1/tQ1aZWVlvCsEAAAA3ME1AfjUU0+VdevWyYQJE8yBMAYOHCjTp0+Xzp07S6bR8ovrr79+qzIMuAf7ANgHwD4A9oGW44ouEAAAAICraoABAAAAGwEYAAAArkIABgAAgKsQgAEAAOAqBOAMc//998uuu+4qeXl5MnToUPnggw/SvUlIkXfeeUdOOOEEc4QaPaLgtGnTkm7X+ajapaRr166Sn58vI0aMkGXLliWto0ckPOOMM0xDdD04y9ixY6WioqKVnwmaa+LEibLffvtJ27ZtpbS0VEaPHi1Lly5NWqempkYuvvhic+TJwsJCOfnkk7c6iM+KFSvkuOOOk4KCAnM/V111lYTD4VZ+NmiOBx98UPr37x8/sIH2on/99dfjt/P+u8+kSZPM34TLLrssfh37QcsjAGeQ559/3vQr1pYnCxculAEDBsioUaNk7dq16d40pID2ndb3VD/kNGTy5Mly7733ykMPPSTz5s2TNm3amPdf/yO0afhdvHixzJgxQ1599VUTqs8///xWfBbYGbNnzzZ/1N5//33zHoZCIRk5cqTZN2yXX365vPLKK/LCCy+Y9VetWiUnnXRS/PZIJGL+6AWDQXnvvffkySeflCeeeMJ8eELm6969uwk8CxYskA8//FCOPPJIOfHEE83vteL9d5f58+fLww8/bD4UJWI/aAXaBg2ZYf/997cuvvji+OVIJGJ169bNmjhxYlq3C6mnv3ovvvhi/HI0GrW6dOli3X777fHrNm3aZOXm5lrPPvusufz555+bn5s/f358nddff93yeDzWDz/80MrPAKmwdu1a857Onj07/p7n5ORYL7zwQnydJUuWmHXmzp1rLr/22muW1+u1Vq9eHV/nwQcftIqKiqza2to0PAvsrHbt2lmPPfYY77/LbN682dpjjz2sGTNmWIcddph16aWXmuvZD1oHI8AZQj/F6YiAfu1t83q95vLcuXPTum1oecuXLzcHaEl8//V45loGY7//utSyBz2aoU3X1/1ER4zhPGVlZWbZvn17s9T/A3RUOHE/6NOnj/Ts2TNpP9hnn32SDuKj3xSUl5fHRxHhDDqK99xzz5lvALQUgvffXfTbIB3FTXy/FftB63DNkeAy3fr1681/hvWPTKeXv/jii7RtF1qHhl/V0Ptv36ZLrfNK5Pf7TXiy14FzRKNRU/N30EEHyd57722u0/cxEAiYDzrb2g8a2k/s25D5Pv30UxN4tbxJ6ztffPFF2WuvvWTRokW8/y6hH3y01FFLIOrj/4HWQQAGgDSN/nz22WcyZ86cdG8KWtmee+5pwq5+A/DPf/5TxowZY+o84Q4rV66USy+91MwD0AnvSA9KIDJEx44dxefzbTXLUy936dIlbduF1mG/x9t6/3VZf0KkzvjVzhDsI84ybtw4M4nxrbfeMpOibPo+ajnUpk2btrkfNLSf2Lch8+no3u677y6DBw82nUF0cuw999zD++8SWuKg/5fvu+++5ls8PekHIJ0Ered1JJf9oOURgDPoP0T9z3DmzJlJX5HqZf2qDNmtd+/e5j+txPdfa7m0ttd+/3Wp/yHqf562WbNmmf1Ea4WR+XT+o4Zf/cpb3zt93xPp/wE5OTlJ+4G2SdN2R4n7gX6FnvhhSEeStKWWfo0O59Hf4draWt5/lxg+fLh5D/VbAPukczu0y499nv2gFbTSZDs0wXPPPWdm/T/xxBNmxv/5559vlZSUJM3yhLNn/H700UfmpL96d955pzn/3XffmdsnTZpk3u+XXnrJ+uSTT6wTTzzR6t27t1VdXR2/j6OPPtoaNGiQNW/ePGvOnDlmBvHpp5+exmeFHXHhhRdaxcXF1ttvv239+OOP8VNVVVV8nQsuuMDq2bOnNWvWLOvDDz+0hg0bZk62cDhs7b333tbIkSOtRYsWWdOnT7c6depkjR8/Pk3PCjvimmuuMV0/li9fbn7P9bJ2cnnjjTfM7bz/7pTYBUKxH7Q8AnCGmTJlitnpA4GAaYv2/vvvp3uTkCJvvfWWCb71T2PGjIm3Qrvuuuuszp07mw9Cw4cPt5YuXZp0Hz/99JMJvIWFhabdzTnnnGOCNZyhofdfT1OnTo2vox94LrroItMaq6CgwPrlL39pQnKib7/91jrmmGOs/Px8q2PHjtaVV15phUKhNDwj7Khzzz3X6tWrl/k/XgOL/p7b4Vfx/rtT/QDMftDyPPpPa4w0AwAAAJmAGmAAAAC4CgEYAAAArkIABgAAgKsQgAEAAOAqBGAAAAC4CgEYAAAArkIABgAAgKsQgAEAAOAqBGAA2AnffvuteDweWbRoUbo3JaOtXr1ajjrqKGnTpo2UlJQ06z4OP/xwueyyy1K+bQDchwAMADuhR48e8uOPP8ree++d7k3JaHfddZd5nfSDwpdffilvv/22+eCwadOmFnvMJ554otlhG0B2IwADQDMFg0Hx+XzSpUsX8fv94uTn0dK+/vprGTx4sOyxxx5SWlra4o8HANtCAAaAhK/Yx40bZ07FxcXSsWNHue6668SyLHP7rrvuKjfffLOcffbZUlRUJOeff36DJRCLFy+W448/3qzTtm1bOeSQQ0wAtD322GPSt29fycvLkz59+sgDDzzQpO2zH+u5556TAw880Py8jjzPnj07ab3PPvtMjjnmGCksLJTOnTvLWWedJevXr9/qeWo5gT7HUaNGbfNx9fnfcMMN0rNnT8nNzZVu3brJH/7wh/jta9eulRNOOEHy8/Old+/e8vTTT5vX6u67746/bv/617/kqaeeMtv/29/+Vo444ghzW7t27eLX7aiNGzea90Lvo6CgwDznZcuWmdt0hPmcc86RsrIyc/960ucAAIoADAAJnnzySTOa+8EHH8g999wjd955pwmstjvuuEMGDBggH330kQnH9f3www9y6KGHmqA4a9YsWbBggZx77rkSDofN7RoOJ0yYILfeeqssWbJE/vKXv5j70cdtqquuukquvPJKsw3Dhg0z4fOnn34yt2lJwZFHHimDBg2SDz/8UKZPny5r1qyRU045ZavnGQgE5N1335WHHnpom4+n4VVLGB5++GETMKdNmyb77LNP/HYNrytXrpS33npL/vnPf5pAr6HYNn/+fDn66KPNNmgZhL6uep9q6dKl8et2lD6uPseXX35Z5s6da4L6scceK6FQyHxA0ACuH0L0/vX0xz/+cYcfA0CWsgAAxmGHHWb17dvXikaj8ev+9Kc/metUr169rNGjRyf9zPLly3V42Proo4/M5fHjx1u9e/e2gsFgg4+x2267Wc8880zSdTfffLM1bNiw7W6f/ViTJk2KXxcKhazu3btbt912W/y+Ro4cmfRzK1euND+3dOnS+PMcNGiQ1VR//etfrZ///OcNPie9T73vDz74IH7dkiVLzHV33XVX/LoTTzzRGjNmTPzyW2+9ZdbZuHFjk7dDt/vSSy8157/88kvz8++++2789vXr11v5+fnWP/7xD3N56tSpVnFxcZPvH4B7MAIMAAkOOOAA83W5TUdYddQzEomYy0OGDNnmz2sphJY85OTkbHVbZWWlKYUYO3asKU+wT7fccktSicT26DbZdLRat0lHk9XHH39sRmIT71/LLFTiY2g9blP9+te/lurqavnZz34m5513nrz44ovxEW19XN2GxPvTx2vpyWf24w4dOjR+XYcOHWTPPfeMvxYA0BjnztoAgDTQNl7bonWwjamoqDDLRx99NCm4KZ1Mlwr6GFoScdttt211W9euXZv8POp3utBShTfffFNmzJghF110kdx+++1b1R4DgFMwAgwACebNm5d0+f333zedC5oaUPv37y///e9/TR1qfTohTSeQffPNN7L77rsnnXTyWFPpNtl0JFbrjHVSndp3333NJDydeFb/MXYk9DYU7DVY33vvvWaCmdbcfvrpp2a0194Gm4bl7bU30/pjZY+s7yh9vvq4ie+X1kHrY++1117xx2ju/QPIbgRgAEiwYsUKueKKK0yQevbZZ2XKlCly6aWXNvnntbtCeXm5nHbaaWaClpZP/O///q+5P3XjjTfKxIkTTZDUfrgaIqdOnWom2zXV/fffb8oQvvjiC7n44otNNwSdaKf08oYNG+T00083k8+07OE///mP6YjQ3DCo/XQff/xx011Cw/vf//53E4h79eplSg50gtvvf/97E0Y1CP/ud7/b5ki40p/VUpNXX31V1q1bFx8dbyr9UHLiiSeakow5c+aY0o8zzzxTdtllF3O90g8Ber8zZ840XTCqqqqa9fwBZB8CMAAk0LZaWu+6//77mzCp4VfbnTWV1qFq9wcNXocddpipjdWSB7smWMOhdpXQ0KudFHQdDZg7MgI8adIkc9JuFBr+tAuCtjNTOsKsnR007I4cOdI8hrY705pcr7d5/+Xrz+pzOOigg8wIt5ZCvPLKK+a5Kn0u+rj6XE466STzem2v168GVf0wcM0115iRcf3gsKP0cfX11ZZzWhetXSBee+21+GutnSAuuOACOfXUU6VTp04yefLkZj1/ANnHozPh0r0RAJAJtD/uwIED4/1rM432AdagrO3PdDszmY6+avDm0MUAMhEjwAAAAHAVAjAAZAg9KEZi+7LEkx7lrKXowTkae9x+/fpJa9VeN7YNetLbASBVKIEAgAyhk9f01BCdVKZ1sy1h8+bN5mhxDdF6Wp2w1tK0o4OWeGyrpEL7/gJAKhCAAQAA4CqUQAAAAMBVCMAAAABwFQIwAAAAXIUADAAAAFchAAMAAMBVCMAAAABwFQIwAAAAxE3+Hz58AWMXC+vsAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "continuous_cols = [ #chose interesting variables\n",
+ " 'price',\n",
+ " 'bedrooms',\n",
+ " 'bathrooms',\n",
+ " 'sqft_living',\n",
+ " 'sqft_lot',\n",
+ " 'floors',\n",
+ " 'view',\n",
+ " 'condition',\n",
+ " 'grade',\n",
+ " 'sqft_above',\n",
+ " 'sqft_basement',\n",
+ " 'yr_built',\n",
+ " 'yr_renovated',\n",
+ " 'zipcode',\n",
+ " 'sqft_living15', \n",
+ " 'sqft_lot15', \n",
+ " 'price_per_sqft_living', \n",
+ " 'price_per_sqft_lot'\n",
+ "]\n",
+ "\n",
+ "\n",
+ "# Go over columns\n",
+ "for col in continuous_cols:\n",
+ " # new figure for each plot\n",
+ " plt.figure(figsize=(8, 5))\n",
+ "\n",
+ " sns.histplot(data=poor_area_houses_df2, x=col, kde=True, bins=30, color=\"#96b41f\")\n",
+ "\n",
+ " # set title\n",
+ " plt.title(f'Histogram of column: {col}')\n",
+ " plt.ticklabel_format(style='plain', axis='x') # get real values for x \n",
+ " plt.xlabel(col)\n",
+ " plt.ylabel('Quantity')\n",
+ "\n",
+ " # show plots\n",
+ " plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Dropping a single datapoint makes the lot values more readable. \n",
+ "Here are some interesting findings from the data : \n",
+ "- view is 0 for all poor houses. \n",
+ "- most houses have a tiny lot, but a few ones have considerable plots\n",
+ "- 150 USD per sqft living is the most used value. \n",
+ "- most houses have 1300 - 1400 sqft. \n",
+ "- only very few houses are renovated\n",
+ "- most houses were built in the 1960s and have an even distribution between 1900 and 2016. \n",
+ "- most houses have no basement\n",
+ "- most houses have grade 7 and condition 3. \n",
+ "- most have 1 floor, 3 bedrooms and 1 bathroom. \n",
+ "- there are much more houses for 250.000 USD than for one of the values below. Might be interesting to find a great one of those?\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Relationships in the data\n",
+ "\n",
+ "Procedure : \n",
+ "- Compute the correlation matrix and plot it.\n",
+ "- Check the relationships between the values in your hypothesis and the targe (price)\n",
+ "- Are all the conclusions expected or unexpected?\n",
+ "- If helpful create new features by combining existing ones, e.g. if you have distance and time you could derive the speed."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAPaCAYAAABRai6oAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsXQeUFFXWvpMjE2AY8pAlDVkJAiqCZARkzQFEQQVMqCAmxIQ5AaZ1hd1/RQwrqAgoAqIgICBKRjJIGsLkHOo/3515bXV1VXXPMLnvd07TVNWrqlc9dd/N9/pomqaRQCCo9vCt6AkIBILygRC7QOAlEGIXCLwEQuwCgZdAiF0g8BIIsQsEXgIhdoHASyDELhB4CYTYyxGIX0pJSeFvgaC8IcRejkhNTaXIyEj+FgjKG0LsAoGXQIhdIPASCLELBF4CIXaBwEsgxC4QeAn8K3oCAoHAGskZOXQ2LYdSsnIpIiSAYsICKTI0kEoCIXaBoJLiRFImTfvfNvp531nHvstaxtCLoztQ/aiQYl9PxHiBoJJydCOhAz/tO0uP/m8bHy8uhNgFgkoIiO5GQtcTPI4XF0LsAkElBHR0O6S6OW4GIXaBoBIiIjjA9ngNN8fNIMQuEFRCxIQHsjHODNiP48WFELtAUAkB9xqs7kaCx/ZLozuUyP3mI3Xjyw9Ib0XWW3JyMkVERFT0dARVyM8OHR2iOzi6+NkFgmqIyNCSE7cRIsYLBF4CIXaBwEsgxC4QeAmE2AUCL4EQu0DgJRBiFwi8BELsAoGXQIhdIPASCLELBF4CiaATCCppGarIkAAKC/KntKw8KUslEFTXMlShgX4056bONG/tIfp5/znHGClLJRBUszJUEy5r5kLoqkoNxklZKoGgmpSh6t0ixoXQFTAuITW72PcQYhcIKmEZqrx8+8zz5EwpSyUQVIsyVKFBfrbjodMXF0LsAkElLUPVq0Ut07HYHxZYfNu6ELtAUMqA8exAQhptPZpIB86keWRMM5ahWr03gSb3beFC8Ni+98qWFBVa/IKTpFVxvPDCC9rFF1+shYeHa7Vr19ZGjBih7dmzx2nM5ZdfDgXI6XPXXXc5jTly5Ig2ZMgQLSQkhK/z8MMPa7m5uU5jVq9erXXu3FkLDAzUmjdvrs2bN69Yc01OTuZ741tQPXE8MUO75cMNWuNpSxyfWz/cwPsVktKztf2nU7XfjpzX9iek8rbat+XwOW33yWRt3+kU7eiZNG39gTPatr8StV/2n9W2/5XE28fOppVoblXez75mzRqaNGkSXXLJJZSXl0ePPfYYDRgwgHbt2kVhYWGOcePHj6dnnnnGsR0aGur4f35+Pg0dOpTq1q1Lv/zyC508eZJuu+02CggIoBdeeIHHHDp0iMfcfffd9PHHH9PKlSvpzjvvpHr16tHAgQPL+akFVbGLy+wbO1N6Tr7LmD4tY2hS3xY0bv4mysjJ531XtYmlaYPb0JxV+2mtzirfp0UtmnxlS6oRElDs4JpqV3DyzJkzFBsby4vAZZddxvuuuOIK6tSpE7355pum5yxbtoyGDRtGJ06coDp16vC+9957j6ZNm8bXCwwM5P9/++23tGPHDsd5N9xwAyUlJdHy5cs9mpsUnKzeOJCQRv1eX2N5fM3DV9ATX+0w7fQC8bxzXDQTNzD5yhasBqwzcb9h7Asj21PjmL+ZmVfq7CAkoGbNmk77wY1jYmIoPj6epk+fThkZGY5j69evp/bt2zsIHQC3BnHu3LnTMaZ///5O18QY7LdCdnY2X0P/EXhvF5f0nDzLlk4g6s6Nohzb+L8ZoauxuFZxUeXFeD0KCgrogQceoF69ejFRK9x0003UuHFjql+/Pm3bto259N69e+nLL7/k46dOnXIidEBt45jdGBBwZmYmhYS4hi/OmjWLZs6cWSbPKqh6XVzSi0R0KyAOHhz9o7WHKDuvwHasEve9ltihu0PMXrt2rdP+CRMmOP4PDg49u1+/fnTgwAFq3rx5mc0HEsSUKVMc21gYGjVqVGb3E1QO99lPJtwb+6NC3CwG2Xksur99Y2fy9fGxHYskmeKi2ojxkydPpiVLltDq1aupYcOGtmO7d+/O3/v3F+pHMMydPn3aaYzaxjG7MdC9zbg6EBQUxMf1H4H3dnGJrRFk2dIJevjWY0ksos9bdwheMupt4WeHQQ/X8jpix48CQl+0aBGtWrWKmjZt6vac33//nb/B4YGePXvS9u3bKSEhwTFmxYoVTJxt27Z1jIEFXg+MwX6BQAHZaLC6r5xyOS2eeCl/Y7teVIjlYgBCv71XUxbfARA8IuSeGt6Ore9GQn/ZW9s/TZw4kRYsWEBfffUVtWrVyrEfVm9wXIjqOD5kyBCqVasW6+wPPvggc39Y7JXrDdZ66PQvv/wy6+e33noru9b0rjfYAaAqjBs3jheW++67jy30nrrexBovUC6640mZdPhcBgX5+zJHB6Hr9fD/3NGNpnz6O93QLY6NddDhMTauZii1rFODSoIqr7O/++67DveaHvPmzaOxY8ey2+yHH35gt1t6ejrrzKNHj6YnnnjCMdbPz49VgHvuuYc5NfzzY8aMcfLLQ2IAYWOheOutt3ix+PDDD8XHLig2wJWR5Tbx498sx+TmFbgY4Xx8fCjQr+TCeJXn7FUJwtm9s+JMhEmFGRy/95OtpsY86OqXNK1J7epHsv6+rpSKVwixlyOE2L2v4owdkWIcIut+Mox7bmQ8bTx0nhb/ftzU144xsAN4fQRdZYYQe/VHckYOTf5kq2nwjCJSQHH98CB/Fs2TM3MoLCiAwoP92QWXlZtPQ952diHrAcNf89hw79LZBYLKIJKfLToeEuhnGSW3+UgiJWbk0pOLd9DP+525+Quj2lNGbh7tOJ7Murm/r72fHf3aiwshdoHgAkRy4/F3bu5iea1xvZvSk4u3m9aVe/TLbdRJFxv/8Z2FsSBWqOEmWq9a+tkFgorKYjudkuVyHO4xK8CFZlVXbq0hNn79wXOWQTVYbBCtV1wIsQsEHhaBNBJ8YrrzcVUqqk8L8yg5d9DHw8PvPrZXUw6i0QNBNjDglSSoRsR4gcAC0MFBwBC/VWBLcIAf/XY0kYkxJevvzDOMQ0z7xxuP0JheTaiANBeXWYNoe3eZXiqAj/2+T7bSwgk9aOylTRxBNZAmTqVkcWx8cQleiF0gsAAICgQMX7fSpVV4K/ZHhvxNPlgQlE98w8HzvD2uV1MmUiTAwHIOCzvOtcpRRySdHiD4M6nZdMe/N5vmswuxCwSlZG0PC/J3CWoBsA1b+cv/6OjIcgPnVwsCiFS/OChXGfRs1I9T11CAbg6RHZzc3QKgzvX6fHaBoDSt7Zk5+ZYFJGBQw3GMg7HOXf45XGXg7o1rhtKwDvUdXB9qQdNaofTst7ucwmOhm48xWQAUvD6fXSAoTWv7A/0LubA7An7l2o50Pj2H3W56nV5PkPC/A8h+GxJfl86l51B+gcaf85jHoDb08IDWlJKZy4E1QQG+dOMHGyyJuiT57ELsAq/FWTfW9seGtLE9HyK/mWSgdHpwZRArtn87mkR1I4IdenZufgH9lZjJRSpqhQfSS8t306o9Z5w4O6LtoK8bCb6k+exC7AKvRYqbKDQ/Xx/byjPQ6R/+/A+XBUOJ/jDSofIMctVB+N2b1iysLvvFNqcIOqWzw7CnCLvQH+9DTw5tS9MXbXeMxcKBSrQlgRC7wGsR4SYKDcSudHJjsgoqz6Bvul0ByUcHt+b/Kw4PkZ2lAB2hK/0fCSp3Xd6McvM1Jzdfg6hgmj/2EsrIzXfkvqPk9DeTe4s1XiDw1PIeHuRPs65pT88u+ds4pvzqlzarRUkZORQVGsg6OQgbOjrCVFX02l9Jmbb3OnY+08kqD2K3Why2Hk2ip4e3o02Hzzvt/+1IItWNDGEJQi/OS2y8QGCDEyb6NaLd/jXmYocv2+hXB/E/OawtdYmLYu4Ln1tadh7N+Hon3dgtzvZ+4MRq8ejZrJat2gCufi4tm77dftLJAwCxHW2gcPyNFfsc+6FCFBdC7AKvtrz/XCRSfzahJ+UWFNDr3+91EJuKigPxT/9yu4uOvf14skuQjJ64CzSNPrurJ237K4nG/2ezI73VCJwzqF1dembJLlOfPvD01e2ofYMotvTvPpFMwTYx+FYQYheQt1vef95/lqb6aJSckeuUqKKPijPTsbs1rUl39m5GQ9vXozoRwZRXoFHTmDB69pudTuI7pIdFEy9lMfyFUfH03Le7ndQGLCg5+QW2TSFycgschD51UBtKz5WgGoGgRJb3hJRsqhnmbPCCoQz+cjRuMIuNH9+7GcfAL91+khcAjPvP+sMuRIvF5Lklu2nKgIuoee0wWjK5Nx1NzGCCxyKx91QKRQT528bhpxbVlIdlH266aYMKjX/FgRC7wCsQ4UH+t7+fc8EIcGq72PjosAB6a+U+zkMHEdauEeQSJqsn+Dt6N6U8TaO3V+1w0cufuTqe5t7UhT5ce9D0XoF+Po5z0BOuJPWlJMVV4BWICQ90SRc1xqBn5hQ4pafWiwy2jI3HfkS63dS9MXNcGPgQJGOHyNAAy+s9/fVOOpmcyVZ5SAgwGiIi747ezehMShbVDA2kJff25jDb7o1rlihcVohd4BWIDA2kZ0fEM2FbNWiAlR3pqapoRE6evR5Nmo8T8doVrlCSg9X1wPnrR4YwF1eLB0pNw6e+ZPtJyinQ6Lr31/P9GtZCwwmxxgsElogODXBKQlFBKgh66RxXaOkG0UNvnnhFC7amA1a6dE6+c6IMrmWXwpqYnuuW87+q8wYoYBtGP8wBIj5q2M0a1b7Yzy/ELvAq7n75RbVdIuIUd1eRbiAofCA2691vRl16ZKcGfFyJ1FgoMBYw6uS4PmwAJef859jdB8AYmCZZbwKBZ73YTqVkcaVX7pxaxN2NenBIgB89ObSNpZ49U8dt9dVlVOEKJMpAFUA9ObXfivPDnpCSmedxS+eSRNCJzi7wOqRl53EACwgdujGI1czglVNQQPENI6257b6zHFarh5IM/v3LYbooNpwaRofQH8eSeD+IFBzeWEgSRsGnhrV1m7aqb+mMhaS4EM4u8LpIuiPnMpiA4cK6snVtals/0kUf33UimVIz8zhP3V2yDIjVWAceiTJQG3D+uF5N6PEhbfj/aLsOgh/Xuxll5+VT7fAgigoNoHNpObT5yHmXaylgf2yNYJ7zJxuPcBx9cSHELvC6SLqkzEIReOGvR+njO3vQM0ucI97AeZ8c1o4KtAIKCQy2vR5SVod0qEdPDW/LnBeJMqqrC7gwjIBbjibRwl+30Xu3dKV/vLeez1O2gDd++JMXHmS2ta0XSV3iol2KVUL0h5fg+g/WU9e4KLq9d1OJoBMIPImkCypykaEdMgjdLBz22SU7uWTzLwfO2VrYIQVgoVh+fx/m2uD0D3/2hxN3xjikyp5Jy7YMxc3XNPpo3SH2s+PYg/0vouSiRUlvU3DkuQ+zL6xRLXX2WbNm0SWXXEI1atSg2NhYGjlyJO3du9dpTFZWFvdVR3/28PBwbtl8+vRppzFHjx6loUOHUmhoKF/nkUceobw859Xzxx9/pC5dulBQUBC1aNGC5s+fXy7PKCjdSLqtx5K4EgxEd9sac7kFHMcOsRvjrfzzAKQFSA1YPBShg3vDoAZjHWLz0FtdwXhvtHzCttL5QeiwJ5jZFHB9+4p31ZSzr1mzhgkZBA/ifOyxx2jAgAG0a9cu7rMOoKc6eqt//vnn3Fhx8uTJdM0119C6dev4eH5+PhN63bp16ZdffqGTJ0/SbbfdRgEBAfTCCy/wmEOHDvGYu+++mz7++GNauXIl3XnnnVSvXj3p0V7FIun2nkxhMf1YYobtWNSDc6rfnprt4p9XRAixff66w8yVOzSMok6Noig00J/yCwpo3YFzDv99v9a1qU39SAoLdCY9lJnW+/Nx7kdjLzGtZwek6mrWe20X1zNnzjBnxiJw2WWXccfU2rVr04IFC+gf//gHj9mzZw+1adOG1q9fTz169KBly5bRsGHD6MSJE1SnTh0e895779G0adP4eoGBgfx/LBg7duxw3OuGG26gpKQkWr58uUdzky6uZWNwS4ILLSeP9WfUaIelGsQH7mjWiPFEUib9eSqVdWulQ5th2f19aPBbP/P/H7yqJRvTkLhiTFJBQA4MZ/j/R2Muobmr9zllz0EKQFz8oTPp1KtlDGfXYV7f7zrFMe7tG0RSnYggOpWS7eLmM8YAKCy9rzcbFr2KsxsBQgJq1qzJ31u2bKHc3Fzq37+/Y0zr1q0pLi7OQez4bt++vYPQAXDre+65h3bu3EmdO3fmMfprqDEPPPBAuT2bwBknkzLpyPkMmr1qn2UddhCIsTd6/agQXgy++uOEpT6Oa2BR4Lj5o0lMkPPWHnIhYsSwZ+UW0KQFvzFXnr3aeS4Atn3Jh4a0r0uD3ixcPMDFOf599X5684d9/H8rfz6g9+fjvogBKC4qjNjffvtt0/3QXYKDg1knBmf28/P8oQoKCpj4evXqRfHx8bzv1KlTzJmjov5umgeAsHFMjdETujqujtmNAbfOzMykkBDX1j7Z2dn8UcBYQelx9B//PENLtp2wzDdXBKJKQ89GF5ciDo/qrBDnwTUBXENfeMLPx4ddY0gl3XMyhf611pwQYfTq2qQwMUXfKMII6NljezVx3OOKi2qz5HF772bUMS6a/H19bePwoff/XbmmJRv0qgyxv/HGGywiZ2RkUHR0NO9LTExkAxmMaAkJCdSsWTNavXo1NWrUyKNrQneHmL12rXUT+/I2Hs6cObOip1EtAWMYCNYTAgF+2neWz1HEju+ZI+Jpxlc7WARHbnq9qGB6bskul7DYx4e0pan/+7tSjVUYq7tGEQiXnXNTZxb3nYtb1KLhHeo5hd4aAR0e3D8hJYuz8UqS41ph1ngYvmBU27dvH507d44/f/75J3Xv3p3eeustto7DYAbjmieA0W3JkiW8ODRs2NCxH9fIyclh3VoPWONxTI0xWufVtrsx0L3NuDowffp0VivU59ixYx49i8A9VwfXBQHYwUh8qYYQU4jzr17bkUZ1asBNF0HoxpbKWDSQeurJfdxlvTWIDGFVAJKHHrgnrP7g+FYIC/LjfPnjyVnsFgysSmL8E088Qf/73/+oefPmjn0Q3V999VV2jR08eJBefvll/r8dYF+89957adGiRewaa9rU+Qfr2rUrW9VhPVfXgmsOi0nPnj15G9/PP/88SxMw7gErVqxgQm7btq1jzNKlS52ujTHqGmaAiw4fwYUBnUvRHhldUyOC/dnNNXnBbxylZgcj8dUwKWChOP3J5CzL3unuoO6TkJptGQEHCUHz0SzvgdDbiVcU0oIxmg9qBBg5fPjA+oPn2VOgbBCVntjh3jL6sQHsU3py/fr1KTU11a3oDkv7V199xb52dS6s3uC4+L7jjjtoypQpbLQDAWNxAJHCOAfAVQeivvXWW3mBwTWwGOHailjhcpszZw5NnTqVxo0bR6tWraLPPvuMLfSCssPRc+ncJEFfBBLJKf93R3c6m5ZNC8Z358AXo3vK2BSxT8sY1nMPnElzss7DyAfdv2mtQjetGZRf3oxQQdwoZ7Xgzu7UMCqErerGCDicO6lvS0rPts9UC/Dz5ag7YzTf01fHU2ZOLiWk5lCDyGB69+YuHN9fZcT4vn370l133UVbt/7duA7/hwX8yiuv5O3t27e7cGoj3n33XRaRr7jiCvZ5q8+nn37qZB+Aaw2cHUY/iORffvml4ziMgFAB8I1F4JZbbmE/+zPPPOMYg3mAsMHNO3bsSK+99hp9+OGH4mMvY45uJHSEmKKYA1xit/7rV7rpnxvp96LkEBxXBKICXrAPud9TB7ViQkdc/NIdp5jIoQ4cPZ9B3247YdsVFdeBfm+sdAMifnJ4W9p/OpU58e7TqTR5AXLjox2VZuArh3iORaCGm/LPZsUyIPLP+HoHaeTjKGQR5O/nqF1fJfzs4J7gpBCvIWYrrt6vXz/6v//7P7Z0Q/+G2wyctzpA/OzFA8TXQUV+bgDRaOB8pimiLWK4oCPSVvFKszU9v4CaxYTRM98gqs3ZZYbWyQ0jg3kxwTHba7eMYQPaieQs6tcmlotTKo6PhUDFq8O9Nnb+Jsd5+lx4VKId3qE+PfnVDsv5d4yztuZ/PbkXXT1nnWP+z42Ip6a1w6uGGA/uCi6JABcY5oBWrVrxR8/9Bd4L6Oh6uHNt3XNFc+Z+Cuj28t/1h02NbgAIRh2zKjwBIkTVmjv+vYk59IvL9phUjz3H4auw/uv99mjscD4tm+PcYYlHM0dkvz2/dLdL4AwkhJFzC4nZrDoO9HWVy85htblVsHgFAlzwEQiMgDFOD3eurUB/X05Ige6O3HAQl765gx5GgjEWnsC90EsdrZPBUd350XG98X2aOfz2CMQZHF+Py0npF5v+rWPpiSFt6GRKNofIwrgHdQWtoYy15I3VcbDwLBjfg+789ybKcKP/VypiRzw6EkkgxsMKjoAYPWAAE3g3osMCWf9Wrip3ri2Ev2aC0EMLQ2T/TEizHZ9hIBiVhKIPST2bmuMgQiwAIERw7L6tCr02OAbD2s/7zvAxFIlENh2CcYyEDvywJ4Hdho8Mau2oRgv1IOhEMqsLsMpbNacotPJrNG9sNwrwdy57XamJ/f7772diR3IJot0QOScQ6IE49BdGtafHFm1ngrcr6IhF4XhiJuvqQFZOYWKJHWqE+Numr36/6zQNjK/LcfEg7gBfH/rm3t5c2vml5c7iPLjusA716NaejbknG6LwLN1s+8/R7Wk5vDCoe3WNi+b4efjY7NWVc/SoD1FYVfKzL1y4kF1XQ4YMqagpCKoA4mqF0WvXdWI/O9xNozs3oKe+3unUygmE/tTwdvTGir00umsjR4XWB/q3tK780jKGokMD2VAH6AkX1Wse6H8RV5bJyM7j9k6o645mEPUjg12aLwK4x8yvd9Ejg1rR5kPnyb/IJ26FGsH+9L97elJ2bgH9cvAcx9YDTwxtYxoPoAfq54UGWrsKKx2xI14dQTQCgVk7ZX22Gjg8PgpzbuzM4xARh8CT40mZ9OKy3ZwFphd/weQn9m1uWvllUt8W3BwRerkqLw0iA3FHhQU6OLfeSq+PozcDCP5Rn9b02NA2biVV2BOiQwJo9d4zzMkRyadSZ5vEuCfkkhjoKszP/tBDD3FYbDXLsBWUkMgPn03nqLh+r6+hUe/8Qv1eW0P3frKVM8+MwALQPDacOW1m0Uu/ak8h0egJMb5+JBd/0Pu9/zXmYt6G1R4LRr2oELqydSw1QDSaplGt8CB67bu/RXT9NaGzuzMSoicbKkYjws1YWFIB+2FbwIKA6+N718kUfl4sLOgb7657TZUy0CFZBX505JK3a9fO4WtX0Ae9CKovQMxrLLLXzLLV9BJAWnYu56+DI757SxdOjFHuKRjOQJhGo5seyDr783QKp6iC4LJggAsizkJD3Th1DQV3BkIA4ruvrw/HsiNBBqzMKFVgP2wLh86l0z3/LRTfoW7Al45FAOfPGN6OZkJdMZS3UrntUC2qDLEj5XTUqFEVdXtBJeqZPvbSJpaisTFbDYsDztlypDBq7uXvnDuoIKpt8cReTEjuYsdz8vLp6Pkc04IRuDaISk/g4KjQ2e1qvx86m07t6kfQqeRsXqgQv//o4NaUlpXP3gJkrWH+z4yId7r27lOF6c8vFqkPys9+9xXN2ceOhQdx8pgTjHlhboyPXlGppjJDIuiccSAhjcV2iNfKMm2GxRMvZZEdi8PkT7aycc4u4g3ECFEdQCitMctMcdIZV7ejp7/e4XRcn9MO3zcaM6ClMrLSAHRaDQ7wpTmr9zsvMi0La7+DMBH2CqkB5277K8mpH7viziBWlKtSUgfUCxScXGczFwTmnE7O5EUM6bgX1YmoWkE1Au+F6pnuTjxW1mlweGWFdxfgAoMbdGAQJ0TeWF05qVPJmVQvMoTj4o2EbhXMAmKE/g+rOfzsiIQDm0QprEA/X1p34Az7zdFy2UpKAMGrqjUzR7RjkV+5BxvXCuU539y9Mc8Ri0SXRtH0V1IGB9+ouSugpn1xUa7EjsqsCKJBsQqUerKzWP72m/VKL6hePdPt/OcoKaWSPtTiALgzlOXkFx7XSGNX2VqDqI9YduM13AWzfHtvb05jBfeGDx7YdPi8w2pvJHSrslK4HsR9nIvFCHMs1M/1kXa12W///s8HXBaPyX1bcMBRpSb2ESNGOFJG8X8JpPFu9xqszohff+37vVwjDjCKxi8X7YfIn5evOSqu6rmcGRpFh3JVGKtiEQUoItn/Iqf97oJZYPkHJ1eFJmE4RP04d+caq+YAWGiwH1LHUsNiBLSuH0kzvnataa+P66/UxD5jxgzH/59++unyvLWgEkAZ1/QBMSDoOTd1YbcbwkwVUcRGBNG+02nMoR/5xPkccLcBbetY5pjjuJ8P1AM/yyi2dfvP0bRBvk4ShTtpAYk5mCeqyUI0V9KDJ+cajyvVBfEDZjYFd4tHlfKzo+Y6KssIqj+Q6LHnVArtLirwCJFX6aog4rmr9tNnE3oyAYcF+lNUaCCt3J3AOjWnoOoIXb3sb/7wJxd1ALHqge2pA1vTK9/vdXRUscLJ5Cyej7qGO9sB+rVDHMf9Ie6jtLSCu3P1x/WFNawWCXeLh1WtukppoEOxyUGDBnFNd9RfR8EIFIUQVO9KM2ZGK+iwJ1Oy6OYPNzqNgctKiclGIIhm4hU5hQEyRVlqKgINobU4DmOXHWqFBVJaVh4nrSCZBVqlSkYxC4SB2nFxkZUfz/P01QGOcFw7u4OeuPW+crtFwr3R0r/qEDvKSKGaLLq0oKzU66+/zqmuN998M910003UpEmTipqaoIwqzdgZrYxcGGNUkQgroHa6magLVx5gR4B9WsTQn6dT6bFFO5yMYs9c3Y4LTKw1CYSBNKFi6QFUvXloYCs3+fCFZaWOnc9gi76xkwz87kZ1REk9n4zvzrYJfz9fXsDgftuCmnQnUridVHFRoa43WOUnTJjAn7/++os++eQT+uijj+ipp54yrU8nqFrAC+qu1LPyJTeqGcJEqu+04g5wfZkluiiuaEmALWNo0hUtaNy//y50Afxy8DxHvE0d1JqmFonKcI+t3X/WQaCPDGzNagg6wMZFh9KLy3dzhRnUhIcfHC45WOvR9SU8OICW7jjJ3VdhgDRa+jH3upEh7BmA0K6CaTDnBRuP0I3dG7v481XSDyz4xUWl8LOj9NTmzZtp48aNdPjwYZdmDILqUWnGCBi4zPzaSszfgRxvGyMcCk6aJbpAolCLgLEgRSQSbMIDOf5er/cqIkMdeWMJK5UAA8BlhmCe/xvXjZs4QgKAyqAHCBJBQADGwvtgNg+I4jd8sIHHqWO1wgPpte/2csiumRsQ90OZLdTVq1JdXBEbP378eCbusWPHclQZCj+CywuqX6UZI2Dgsmp5hP3g3GjAaDTCgZBhhIMsa5bogtbIt/duwhxcxcbf8e/N9MnGI1x7Hb5yo4FL+djNSlhhv6rpDqkB+1DrzsyKDmA/rOmQLJQBEPfDNsR4EDpi4319fBzXVXOEexFzcNdhNr0qlaVq0KABnT9/no10H3zwAQ0fPlxqrFfzSjNmJZjtxHzUflux+xQb0NC1FHq9MsK9tfJPmtCnuWWiCzj1pxN6cFVZfYHIkXPX0T9vu9hlvCd+cr2hDdltEOeNNd6NSTiKo6PjTMOaoTTz6x2mUoxSE0DsgNvsuhJ0ca0wYoef/dprr3XpwSaovpVmFLAAPD8qnhIzcmzPh+4LPdhYFUbhjt7NLM8F4fj5+tLzS3e5nLv+4DmXRcgdcQHKio6FBHXm/7P+sAvhIiLuj7+SXGwQfxxPon+tPWhZ/FIZK8OC/aqfNR7iu8C7Ks1wR5cQfw6TRbw33F12AMEiJx1lnsyAcFMrVxkkB/jFzRaJj4oMdz7k4zDuuSMuiN63ffQrzwkcHfq68dooMokkmS2Hzzu5DLEIzBjWjt5fc9BpPGwHyIpDABHy0we1q0uRwf7cw92dJwHx+JWa2K+55hquOwfdHP+3g+SzVx/oK83oo+igX1uJ+XjRwRHb1rPO7IJffNIVzV2IWlWiwYJihowi8frjO7uzFR1cHbq8mTEQXBylogBUkwGnBpGaeQuYOxus5wC2n12yi4/jPHxf0rgm95eDWK+/J36PZ0fG06vf7TWtjIM5YrHJNRRorXTEjvROFQ+P/wu8M39dcWIYqfDi443Qv/CFnVbaseXbLicdXH/cvzc7WbmVTg+32qd3Fbb3siL48+k5bBTTW+OVCwwAUf/3ju5c3AILR6NozMWHm1dAXEcGHK6j3IcD29Vx0fv19d/REebqjvXZmg588LNrii4WvicX76DnR7Xn4hywV4BkYBCEPo+MPS6VHWpfp67CiX3evHmm/xd4B/QpqgA6tkAcHdy+HgetIEItNMiPdvyVzIY0JTJbcX/ArhINiMOTqDZAb0wDgSGUtmVsuKkrDllnqCeJVFeI5sp9aJRCjCmzxnp2VvPGs2I+Lyw1t1VwU4lhhQ1Hq5yfXeAd0KeoAugzrje+Qax/e9U+pxdcHxhjNPIhJ90OCGwxF4VjaEyvJo6QVePCAS68/XiybTcZZKuhvHRuvuZwHxoz24wps3qLvzuDIMJ47TwVJSk5U67E7i6HXQ/JZ6+++esKqOgCo5ZyYaGyCyzs8JsrF5YTxx3chsNOQwP8uCOrT9ECgXdK7/ZS3G9z0T4l5ocH+Tu6n3688YhLUI2+KszAdnXduuLwKusJ2GhUM7rzilPPDhKOHdJL0MW1XIl95MiR5Xk7QSXLX4df/ao2sdSqXgQTAohq8aRerMM6V4b5u44cLPaKkCEmP/z5Hw7R2Cq5Bimoyk2mF/O/ntyLrv9gg0O8VjnlZhVqVHy9FXAuikPqa7wbw3Ot0loBdw0vgv3tiR0LY7WrQYd4+auvvprCwopfFL+yoTrVoLOq8W6Xvw6D18IJPbkFsbEmu1UdORCfatqAiDMY1fz9fEx7skM8nz6kUN+G8Q8532GB/pRXUNi2CQklCEZByacAPx+6tHktCgkoJBrUntdLCChMoYx3ZoBEAZdZSmaeU7ae3iAHC7/qvAron1e/wJjFvuflFdDzy3Zb/jZPDm1LrW08FZUuXNYToIf76dOFJYCs8NNPP3EEXv369fkPtnjxYqfjCMXFfv0HkXt6IJoPGXcgQgT63HHHHZSW5twrbNu2bdSnTx8KDg6mRo0a0csvv0zeCBAxCj/a1Xg3Wt4BFKdQhA7YhYRiP45jgbiv30X0yvI9NGz2WvZ1oyf7VkNPdnwjIUWpieCpyGqDWw6FHG/850a69r31XC9+y+FEurhxNFu4n/12F7eFBmHjmLoudHZIGGYAsSEqz0fz4QAdFc5r7LwKNjprVLxjjsbw2UIpJJoW3NmdPr+7Jy25tzcfv+mfG+hYUqZTrr3+3thfZRNh7OCJ4JGens658OPGjbP034O49R4AY2guCP3kyZPcRhqJObfffjtn4yH9VnFl9Inv378/vffee7R9+3a+HxYGjPMWmBGxWY13o+XdnQ5rlSiDMlRmEXT6yDMlPpsVikQdN/RG31pUBx5AIM3g9nW5HJTVdXEOstHgajPWbr+3b0tuzng8OdNxb4joN3Vv7DqHln8Xq1QE/uTQNsyZoabAG4H2T0YpBdl2WECVvSE00J8ycvJY/F+48Sg9PqzQ91+tiN0TDB48mD92AHGjJ7wZdu/eTcuXL6dNmzbRxRcXxk3Pnj2b+9C9+uqrLDF8/PHHlJOTwym4aF2Fxha///475+F7E7GbEbFZjXf4iI2x49GhAczl1EvtzkiFRBmI3e7SZO0KRaKOGyznb+viz+3KQemvO3nBVppwWTOaPqQNqyuYe1igPy3ZfoJdbljYFAHj//PN5oDfStNo4YQelJSZy+oFpIGEXafoj2NJ3LJKtX9SobW7TiQ7uQUByCuQWlC3HouYfwnqN1YLYvcEKIEVGxvLOfRXXnklPffcc1SrVqGItH79eubQitABcHBfX19Ou0UzC4y57LLLmNAVBg4cSC+99BIX4cB1jcjOzuaPAqSDqg710uvFVX0SCPqvAZEhgSwSG7mcnuhsQ0JbxnD8d8KZdNv54P6eJLF8VJS55qnrK8DflwkYQEANrN/oDJsdlE/D2tenq9rU4eKTKDCB+u8gRLuurWNTC9+Du4u4daeG0TS0fX2XxBjo7Mj0Qw92U2mlZQzdfXkzSsup5Nb4igJEeIj3TZs2pQMHDtBjjz3GkgAI2M/Pj06dOsULgR7+/v5Us2ZNPgbgG+frofLuccyM2GfNmkUzZ86k6gTEiNvloMNYB1EfUWBmXA5qmSI6q+ISuBYy3hBP70ltN0+KPa4z+MHdXRcc+DadgQ5ECLcgst3eXOkcC4BjvZvHuJ0DEnvUb2cXQYe4+6evbufSNAJQUtWMEojxld5AVxpAjTtY9Nu3b8/uP+TMQ2Qv64KX06dPZ8u7+hw7doyqOuDyscpBR744uDys4WZtktXLDF82oERgiNnf3NuL+7Wpxot3/HsT1QgJcHB/M4DLweKNDDM7KMLO1i0KXODConkiiBeitnHeJ4t0dDMChSHQ3RwQRKR+O3fGSYQJW3aL3XeWijJhqxdnb9y4sUvTxwtFs2bNKCYmhvbv30/9+vVjXT4hIcFpDMpiwUKv9Hx8G70CatvKFgA7QXXL0Ycoq+9coi8hhTJK0774g7/tgIAYELXe6KRvkaQAVxv0V7MoOBDk08Pb0fA5a1lS8CQsNqiI6EHkCIXtNrydk3fALrrOnZ4PI5tVL3g1hysuqu1x2epUN5Vx4fKrMsQOggN3VXqzQlJSEneOOXiwMB1wx46/CwKWFlAJ59y5c1SvXmEnzJ49e/J9t2zZQl27duV9q1atooKCAurevbtjzOOPP86WerX4wHLfqlUrUxG+OgKutScWb3fSTeEDh/EJ/caTEJ7au5nbCjW5eQVsnVZWaivkFxSwhRv12PRVZFVJpwNn0xwVYCAeg5TNSkqBcPu0jOF2zMvv78MLSHR4IJ1NyXJcF5Z/GASjwgIoPSufPr2rp1ORR9xDXyfeCBz/enJvl86rWAAm9m3BkgoaPiq4zVcPCbigCLtKReyoNZef75qCCIPW8ePHi3Ut+MPBpRUOHTrElnLo3PhAbx49ejRzYOjsU6dOpRYtWrCBDWjTpg3r9cixh1sNBD158mQW/2GJB1DxFteB/33atGm8CKG//BtvvEHVGSp4Btz42W+cWxTBUAdiNLrGXhgV75bLAfi2G4c+5ypUlrPGggMoOL+ARWwV+KJXB2A5nzq4tVNlGtX19I7eTemXA2coOiSQ2jWIpITkbObGIHy4ufq1iaVzqTlsc3jluz0u1WWxmNS0yTTDHFIyc9jXrzqvIjz3h92n6dfD53iuUDkU3OWrIyTYTlpBZd1KH0H39ddf8zd053//+99Oqa4gfvSCA8fcu3evx9eE7t23b1+X/WPGjKF3332X77V161bm3iBe+MufffZZp8KWENlB4N988w1b4bE4vP322xQeHu4UVDNp0iSWSKAG3HvvvUz41TWCzph7buTCVhFwWAS4Jtzq/ZacFsSB0s1TBrSiWUt3cz90RdRKZD6TmkX/3XCEVhYVdJw/9hIKCfSlA2fS+ThCaY3RdMpT0Kt5LT4OGwM7qXy4XRt/B/r60vmMbLr7v7/Rx3f2oOeWFC5ixufRex2AhtEh3Cr69RV/coCQ3huB1NMODSPpuvc3OGLscf8CrYDSs/PZWo869a9+v5d/T6sIusKsupZULyKI8jSNnv66sKilk/pydTsK8fOlBrXCKjexg5CsAPEY9eJfe+01GjZsGFU3VCVi17dHBszaKtuJ4XiZId6fSc1mgmhcM5SW7TzlIEpEp824Op5C/X1pw+Hz1KlRlEs6KV7s50a2p+e+3UU/7E6g/7u9G9WJCnaRMDBurG4RQaWXqYPauFST6VW02MCQ+MSwthxUg4VCn3VnzG83K/884+q29MLS3U5VZbEf18QCqRo86q+BoB5ju2e1mFzarBb56nqw4zdCNN0L3+7inm9qUVG5+sinf2JYG2pS629GVOnEeHBGiMhwd8GNpTikoPIHz5jpmHZGJry4aGGMBQJEhhxxFHfo1TyGwoP9qUaQH4X6+1FsVAh18ylMR53YtyVntsFSDokCHA1cF37nhwa0YuZsJHQA48A5v7znUo6dRwNGs7JR61SYblw0uwanD25Dc1cfcAT/wGCoYBeoA26LUtF6Ysd+LEqD4+s6Rfepa6guryB6Y7GNw+fSuSKuvvwWnuGHPWf4Y4aHi5pTVOoUV/ik0fJJxagLqkbuuZmO6YkPnOuvDW9HLy4zcMKWMfTK6A6m7aHAqSFeI7Dkhu6NHUZBcF7LwBX48GFb+XAjj3MXdTdn1X4OltHHDCA0V8EuUAeLi76WvH4OYy9tYnoN/f/NrlvonfhbbUA+e2lXly1XPzui1JSV/ciRI2ztFlRO1AwNdNRiBxHAiHVn72ZOPm8sACBMM0CshUEKhGUkdEUYh4saN5r5rZ9dspPm3tzFqZa7+/LKucXqqBoVGujEvaHRqucpbldWs/1W/7drmAGbAVQJlXdfZavLwuh1+eWXO1xeCE+FSG8GtSgIKsrFtsMlAQQGKCSIoHUSuDbcbf3b1CGNnK3xl7WMoedGxtPMb3aytd5I6Aowntk1QnjMr7Ahg6eShMrx9rSjam5+YWSdPmoOur9WzK6sVvut/m8GuP3e+OFPx3zc5buHlcAaX67EjmYQCFuFm+y+++5jV1eNGjXKcwoCT7PaDO4w9dIN61CfmsaEUb2oEB57Lj2Hg1vgj+ZCiEXtlZAMM/PqeNp7OtUylj7DDfcyBpa465QKXb9/68Kw54Xju1OQSVPEAwmpfBxppUZVBfnvKI6BudpVm0XWGp4TUg9cYIiew0IB92RMeBDr56r7C+IQkOxidT0lBaGApFU5LmN1WWTjVYmOMCqPHAEs999/vxB7Fcpq4zbFw9sxoSvAlwORE/7p5pHBTgUs0AElK89ZL9aXf0KEHFQEY0kpBVxTD7tGjSjAmJaVwxZxqACI4ptt0hTx2ZHx9NySXezOg5qiB7ivqmyj7qWvNuvkUtR1fzV6A7CNcxFg8+GYS9hYaHY9tUghYu+gIeFHX45Ln+KKBQ317tMMC1W1qFRTnVAVXG/QGVGQwgqLJ17KlmhjFRolvqNbqb788/HEDJr6v2221VmM/ncABIPmhWiprJcy9O4qcFLUsUO5q9mr9nEIL9JM0RTRqgJO76Kmi8Zqr4AnfnbUf1/rprKOWoBmXt3OyZ1ovB5SflFAA4ZqBNFAsrBa+PRuQdzruRHx1LR2JXa96eGuSYQe0jCi4opCGoEoNk8LWADoAmPmirJrgaRKM2Xm59NTw9tyjTpFMJwaezSRXXi/HTnP7iqI5I8ObkPZufmF6aS6Ms1mKkRMUZMHo6Twd6eYv8s54zpqMTqelOU2B14Bvw3qzevFdn09PMwLdfZeW/G3nm7W+03t0+e3c307m9DdSkfs4GyLFi1iTqfyyCHag+sh4k3cchUDEAI4NAjXCOzHcXRBtStgcTIli/8Pgk/R6d1W7iy8+OCKyH67rGVt3l6x6xSHuaomECBgAHXfVu5O4FhzLCrgoIjTQp3516/r5GT5NiskqfReRVBGUblGsB8TNnq0I05ABbJgHApM2MFocVfeATPgnlA33C18eqlHD/3vWumJHaGq1113HceiK4s8wmUnTpzIC8Err7xSUVOrlnBXIFIdR4WZZ0bE01Nf7XAieBA6+pKB2xw9n2F7L+ifz3+7m8M69Xq3mfvJjiAHx9dzNGLQczksDGobee+oHYftBtHBTpZv68CYc6w7K4JS94WojEKUEJdhSzBGDBbXQm+0OejhruDGY4Pb0JD4utzYEoFC+ko2kED0VW0rPbGjvNPatWudXG/4/5QpU+jSSy8VYi9FuNOvjcfZ4jysLT0+tI2jXDI4OoAQWn3giNVLj2thwXh0UGtHsosZsdgR5JNf7XApKYUINETjgVigcsA4qOrQwTKuRF5eFNwQ1IP9L3Lox+q8AW3rcMw+ntfYicadN0AvamMbv6txvFIrkCRjh7+SMjmZxsy+gUUpxM3CU6mKVyBffM+ePS77sU+CbUoP7vRrFZpqPI7SyufScgqLMhRpVHCzYZxdQQn9S4+XFGWcJ/Vt7kSEergr4oCEF7zwIBAlBaDSLLjvte+vp9vnb6I/jiay/otnheFqz4kU0wg3I9DvHddDLD3Gg/Chokwb0obe/OFPVh30813461E2uhkDibCtzgeU6I3fVV8hVs0fNgd3QTP6Qhd6YPudHw+QVgItt8I4O6q3Il0UKafdunXjfaj3hlJOOCYonwKR8EHrj1uJ1ZAEZlzdjo/blZMy6pfZeZpD7744LpqGd6hHzy3Z7bCwe1pSinux9yZLKWDmkp10SZOa1LFhFF3ZJpYLMkK/d4d//3KYnrm6HaXn5PEzNYsJo1MpWRwItOHgeac4dljjkaEHaz6eUxn84NDC7zL/9m6spysd3+g+gxSF5BauVBMXbSslwMtgV6nGk37ylYbYUbUV+eXIcEMJZwDpp8g1f+ihhypqWtUOxsAR1+N5bsVqvMgdGkVRQkoWfTTmEk5kAcd+eEArmnm1Px0+l0GxNYL4BUVCx5ybunAjBthYEXzy2nUdKbYGUlJ96FhiJhu/7s/L57FN3KRpKtEfc0CbY/0CZLS0N6kVSr/rqt7AleZO7P5531k6eDad5q87zJb/hNQsbghpZsXH88E/r1JujUDHmbHzCokbxkOEwKrnRqkuCEnKOo8Fc85NrgU3VNAMfhs7uIudr1TEjiIVyB8HccP/jGIWyGVv27atZQitoPRdacaqMkY914rTKy7+4U8H6MEBrbhkszEVdGLf5jT63V+cjGs45/oP1nOLJhSUCAnwte3RrlSCggKN6ug4td28lI7vSQWb0EA/9tOjTzsMj4iXjwz25XRUZKnpr20MwjECrj+73+rIeefAGQTHqA62KgNOBc0EuWn/VOlj4/UYMWIE+9rvvvtu1tFRUAL57GfPnuVa7Pfcc09FTc2rXGnRYc7HjeKhW994r6YuhA5ATC+gvyvJOp1TtA9EiH7leNl9bAgS/0dVmcHt/q7156nPHucjr35sUV693pUGgDhfR0EJXeALGjggD+CWHo1ZfVAWcEgpdqgZFuRSeVY/JxgE9fNXee9G4Hnxu9pJJWguUWUMdOjSilZKwBdffMGuOGTC/ec//+EKMYILA4xVBxLSOFcarjQQtB7KlQYDGL5nXdOeORf00uIY0KAXu2vhZLUPBFYzPKiwdFSTmlwfDnNQFWb1TRpBbOcychzGLk9aRwGQKr7fdZrLMsOVBsMeFgHsVwuGntBB/GgCMXT2Wrrnv785tYQCt7UzTEJst5tToL8vx8pDvUBuPyL+4OLDtmoR5Rjr60tPDTM3BiJlOCkzh6oMZ8/IyHDExX///ffM5VHFpkePHkz0gpLDE1ca9G40PsCLHBboz8ktqByLhBF9XTj3fcTtEzLMzjemfoLw3vxhH/VvE8tcF4SKjq3v3NSlsDWzjw/7mZEZhtj8Wct2u50XMuBUQgp/xl7Csfh6YyTi8/Xitjtp4Z7Lm5tWulVSCApwGKHX/fH7PjG0LYfQWqkeSuWJqRFEryx3NgYqqQQpw5A+qgyxo+AjGjCi28p3331HDz74IO9HSefKGjdeVV1teIGmf7mduTkMR+hkguwu/Ri4n+7vfxElpudyySNlMXcXSBIebK9bmp2vN7rFRYfSF3f3ZKMYOqqiJZJKmLHqcgpJBZVc7KAWMlwD1Wlr1wikHs1qcnUa1H8HsLDp4c4v/+jg1jShqMacvtKMUgs+vauH0zl4hvdu7kqBAT68+GTmFLBOjth91NxThG1UPYA8rcC2Us3UQVXIGv/UU09xxVYQOWq3o1Sz4vKoaCMoG1cbyj0/geQMg7vtRl2VWGyjUitebgR2ICTV7Jqqm6knBjbjPtxjHjdtxKLinFWGhHJUaTXjsrgPgnVg0XdXwRbngps/MrAVHTqbwSWo2tePYh/2rKV72CinhztpAQtSlzjzBaF30W+h17MnX9mc6kcHu9g0zDi5PrYex7Ho2qEk4bIVprP/4x//oKNHj9LmzZu5qaICCL+6l2cuSx0dgS92gD/ZSLhm4mt8g0gWF6959xcac2kTy9bBX2w5xjXijMexQKBKqgo00Z+DfU8MbUNzVu1zSRSBTo0Oq4icsytsASJ+cnhby3mp++JZUcIpLjq0MPT25wP0j/fW82ICtxgWDAVwaSw4EP/1VXqUTo0yVnhW/TmK0J8f1Z7+t+WYUxDNVW3rmhovsa0ChYyLjSqyGR3mPiGpuJAU12qQ4uqu5LMe6AOOPuV6GM+xSvXsEhfNBBEVGsA+Z/iPl+88zZFl+tLKGIMiDj/+mUDx9SPZcNW4Zhj75uFvrh8VzOePftd5Hnp8dldPuu591+NqLrDMY+Hy8/WliBB/jsdH6SxwdGOKKIj2y9/+4nhztElWfvPtx5M4COdfPx/kRefBq1pStyY1HdVfjW2aQewPf/EH/WdcN7YlwF4BNQYc/aVle+i5UfFUJzyIfHx9OIkGno7Bb/1s+YzG333p/X244i1q2bPxzkSy0af/NipmKelK3/5JUDwd3S5+Gzp7lIn7yCi+GnVXfWqm/iVFfzY951aAQS0syI/+b32hoRXWfh/SONKsee1wLgeVYdIgRI8wnXXafdJMYcsm9DM35oEDIOwbusVxqyeje69DgygOYrn7ihYcc7DjeLJpe6u5q/dT1ybRrCZhwTIuqJgb6sNnBOXTc0t3cwz/v8cVRoZaQf+7Yy7w06vnuq1HE45DMAu6eW5Ue0rKyBZi93Yd3SqUVbnaUJ98aPu6dE2Xhuw2A3cCp1aWawBBJiBoYztmRUjYj5cOpZgQBebv40t/JTlnwm09kkifclsojePsIT6iaYLqraav5GoGNH8w2gLsyjtrRT59zFMf+YZnQ9LJmz/86VISSu//vu2jXzm+fsn2k5b6NXT8Pjqbg/4+jaJDacfxJHavqdLRaHNlB2WoNLPmI18dvnSzoBs0pKhTozDDrzgQMb6KivEqJRU6OpIq9ASpfxGh26ETCYJrcAytje7t15ILShqt3AggAdHMW/u379mskszHd3Znazi2L21eiw15et200Ph2MYvWsRHBDmJ4ucgYpxpIvLzcuc2S/n6jOzdkvRpuKjXGnYqCXunwNJg1dhhT1KzRjPMvHN+D1h44ywk1ZjXiVFotrsPNHLLzWETHAqKKaaroOjwr/PnYxqJgVTEHNg38bqeSs3gcRHfUqlOcHaG3xrZa+vlUqUo1gtJNWTVaeNVLs3LK5dQ8NpwXh6lfbGPuZCR0AAQFo9i320+6EKDeNfTH0STWXdV9WteLcDFCwRAGr5aeS+prvuM6KqsMnEZ/LlyAjw9pSzkFBbxYwCCGzDvOEnPDlqJDA+md1YWJJu6i+fSoEeLv1u0G0R5zUIuNqjuHZBn8Dqr/OoKSVIdau4QhBMbc8MF6XrCNCUTYNla+Nc4HJayKCyH2apKyauarVZVlAGRy4aWfOriV5UsELmxXdgmFItCmSa8bmxFJ31axLlxJr5+qc4xZZajDFhUW6KJbqzj7zFx7sTi3wLkMlF3ZKD08zRbVuxHxO2m63xtzR1YbikviGAjemPWm98ujQy2ChlCcAqHAavFUhG8mgeiB4KjiQoi9mlV/VS+00tFRjQYLBKzD7iLe3PmZYYE2isJW5xgXFH1wjTrHaPizahTp4Mxu4sXd+aazTeaK81bsPk39W//d5NMMsG8YjZGYx/jezXje9dCDrojQjYZS42IIqeC6rg3pdG422zqw+CEzEFLBjr+SHQE6ViW4MQ9VI784EGKvZimr0NEhuqva7WqB8CTizV20HAxORo5jdk5GtuuCsuNEMrdyRix+GERckxLS7kRpEJZZuCqMZk8Ob8fWbDtEGTwR6rxlO06ym9AqeAi16EMD/NnOgLnCcIbY9AAfX6oHsX3tQZ67XqqwE+Eh/j+zpLAvHKrnKuBvhgX687t6soES0gHcgMbQWuz3LUHxigoLqilN/PTTTzR8+HDOh4fbB2G4esAGiYg9dKIJCQmh/v370759fzfRUy2bb775ZjacoU0VCmug77uxMSWSd4KDg6lRo0b08ssvU2VLWYUxDjq6vr4cFgjFaVTEmxmQr24MGFEAIaCKixFmLaDwogIqQOXft3ejIfH1aNn2k6zz3vDPDU4JJioJxJ1kAT21MDkmml/4d2/pQsvu70ND2tfjgpPf7Tptm6hSu0YQuwtVsg3CVnHer4fOU9t6kRy3bjwf8fqPDmlDT329g66es45u+GADBxpxHbjQAHph6S4mcuPclQiv5vrJ+B5OCT7oSos+8YsmXsrGuA/HXEwLxvdg4yKScHLzNK5Pb1qpZvWBEmW9VQvOnp6eTh07dqRx48aZlqgGUSKTDv3g0T32ySefpIEDB9KuXbuYcAEQOopooDc8Os2iWs6ECRNowYIFDks60nCxUKBI5vbt2/l+WBgwrjJVfzVbIBSnURFvepETAMH2bB5DXRrX5CYKxtZPz46IZy5uvDfaB6Ps87Pf/H3O2v1nmRve0D2OX15g68+u4rnRzoA66qqjqpnbT9/EAcDYBRuOOBWEsGoi8czV7did9fKyPaYuOJDOzBHxrCogfh657SjIgUAg5S506RxLe+niptFsRW9U0zlbENDP1cyTcDwx02GxR109tMtS98nOLyyLbQb8zlWqlHRpYvDgwfwxA7j6m2++SU888QTn0ANIo0VKLSSAG264gXbv3s0hu2ghrcpaz549m4YMGcIVdSAxfPzxx5STk8OFMgMDA6ldu3b0+++/c+59eRC7vjosOBBaGaFhgRKB9Tq6EVgALm5cyFFAWAnJWUygMA6hxRKqoCZn5tA/3issNIExd1/RnK3LiJJDIUcEcUSEBHKRSpReSsnMo9AgPw5+QdcXhLjC0g8/c2RwAI3q3IAeK2raqLqmmgHH8aKjZFWtsCB+8c0ywpDMYoyzR6MIY/CP3iAGvRYJMZBmvt52gqP5rAnoHB06m85Ra48MbM2LIgJr1BzNgL8BsglREkvN1ZNilHoo1QUhvfpz3RnoqlSlmvLCoUOHuE00OLICfN3du3en9evXM7HjGxxaETqA8Ui5RV08ZOZhzGWXXcaErgDp4KWXXqLExESKjo4u9+qwS+/rQymZORQW9Hd/NTNgP4gUBSa5dHLRftU3HX3F9S+aan8EbvTmin2mlnFwKVX6SRnVVOMDvPzw2Tu4lBvxHMbDXSdTaKtJMQdsQymAO270e393qsHcA8zsBTpuijBZVQ76X0VBQp7Uuwvy/5OeGNKW0nPzbA2a+trviJgzkyr0raHMFgCk8qril0Y3oh3cVaf1SmIHoQPg5HpgWx3Dd2xsYUNABX9/f6pZs6bTGKgAxmuoY2bEjtJb+ChAFSjN6rAotQzOAj80stlQqCI82LUmPAC3ENJbEeqJmmvKBQRpwYwbsWhtojMqyziy4iAZoAgDXlgOyNE0DpzBOYoremL4g7jcqGYd237oPr7Eei04ILLWEFsPX75drzj9ffMKNIcPXK8i6OP6wwL9OROvVngg6+JIL7UrRaU3KJq52VAjAGW3YIzTzw0LJtKITyVnc8ILFknjbwQJySqbEPvd/aZeSewVCVTKnTlzZpm52rD/2PkM5rLKP3vjPzeyyG7suQZgAQChq06leFkhopfEMv7YkNb0x7FkFpEV8P+bezShXw6ed3oZ7eL18eL/eTqVa7/ZAfotwnOb1gpjbmqMF4dEgSQXhOTiWRCRpkRnEFPTWmEOH7gC5vTxnT04zVb/rIob4zns5m6E0ZX4/q1dqVVsOF3Vpg7d0qMJzwM59OsPnuN+ehivutPAW6G8AWqcWdCRsuZ7rc5uB1SwBU6fPu3oC6+2O3Xq5BiDohnGuvaw0Kvz8Y1z9FDbaowR06dP56YXes4OK35putqUaKo3doFo1/x5holedVhV3B511NwValQRYVbAyxjg68fRdsYXcXLfFhxBByJRLYrt2g9P6tuCxhW1cnKHmuGBrCJYlZJWjRVBrDBC3vzhBj6OdNpnDISu5oKFA9Vg9D3k9QEzVnPHPdyVqkYW3q0f/Ur/GnMJ6/dLtp0wnTt+6ZEd69P0wa0pwG8v97SH6mYVkIP9yLwrLqo9sUP0BjGicq0ibhAddHFV1BKFM5KSkrjXXNeuXXnfqlWruBAmdHs15vHHH2dLPQpjArDct2rVylJfDwoK4k9Zutr0HFTVV+90Y2HhB1SnMXaAgdHKXaFGvOBmIq/i/O76lMEOABcVkmQQnwbRX724iMKD4Q+qB8R3uLO404sH3VaQ1moXQqoCikCsIG6I578fTaT2DSOd/Nl6YKxZQwl1PaN4Dl0ZrkXo2Iias+q5ruaM0tkvLt9NUwe2dvp7GO+FMlO3/GsjG1nRiRbc2ygpVNnqsqUJ+MP379/vZJSDpRw6d1xcHD3wwAP03HPPUcuWLR2uN1jY0UASaNOmDfeNHz9+PLvVQNAocw3jHcYBqKoDkRz+92nTptGOHTvorbfeKrNCG8r6jqg1u0oxxgwsWMdxDrgcjEZKLIeOD90fL5UdwajFAl1XUDpJXRcf5Jj/sPs0dW/qXL/deA2AjXcLtrJu/8BVLQlNflD3DnH1yO7afDSR2tWPcMzPk8YTvZubxwAo6KURXANei2u7NuSiHqE20WhWUoxZpJ/ehTZ/7CU0pldTl57r7Oob0Y7OpmbToHZ1OVMtyU1lGUhwKvgJiwdiACxVn5YxFBTgpTo7qt307dvXsa1E5zFjxtD8+fO5Nj188XCRgYP37t2bXW3Kxw7AtQYCR6UcWOFHjx7tVOUWFnyUzJo0aRJz/5iYGA7UKQu3G3qaHzmXwS9IWKA/PTSgFRu/1poQASzsnojlABaMxAz7SjbgXLNX/smEbrxuYZnlNqwWwNJtlv6q4rb1/vK8/AKqHR5MyVm53KRQdejV10Y3M3DBd/3dztOF1WfjoinA3z5szGi0Qumm177bQxP7trD9jdA9xpPr6V1o4OhQKxBohAaWMBimZ+VRjSI3JgqEgHjxm0GNwOJr/7sHOC0wdjEDD/RrSdlu8gSqLbFfccUVTAxWwMv1zDPP8McKkAJUAI0VOnToQD//bF15pDTw1/kMmvblNqc/MMoPo+baxOw8LsekjDyKOKzEcl/y4XTUxIxcB1GGmBSF0CMk0Jc5C4gV14V0gP/DD474bwTcTNeJxGaLCuwCSBfVF46cvervVFV1Hpoo6rmXnoOqtFLVthicEl1SiuPLBuHBoo76evMsfiOQuZkYD50cRjO1aAENokLYqh8XHUK1awRzFCBUo6dNaswpVye+ce8TyVm2c8dCBmOlWmCskmjgifD38+VUZK8k9uoCiO7TDYQOwHiEPzZefpSGgr4LXRQvhJ3VHLoyAl2Utb6wO4qP7UuHoooArqu4iyMKbq37KDhwHiws+nRWK0J7e+U+emFUe3p80XanhUDFrCPIBWIzwngh6aCoxoyi6D+rfHv9NYL8fJlYYSNYZ1PPDpzf+Dug7Hagvx89bVL2+d6+LfjvcWtP60UEgP6tSktZ+eExT/TQg6gPdxwkL/X3MersagHE3x4RjcWFEHslArvZ3BiguA5akesMOqmxV5udtR5c7M6iZBJjDXUQKSzjqloKztMTqrsoOBxnIh3WluPNFewWI8SHo/QSrOF39mnGxkOIw5BacA287OCwiPa76Z8buIQ0nh12gKmDW1NWTgEFB/rS9qJMMX2bqXG9m9E3205wbXhYxe0Abq2MkcriDfVhy+HzltVthrWvzzH5b6xwzrHQj0NxCr3UYuTUTWLCmHCVkVLF4j8/sj3HUBjrFegLiGRVpcaOAle406fxgsCCDYCArmwV69KrzU7vBBcDEeCFWXZfn8Jw2axczpQLDvClXw6co06NIgsNQP6+DkJlV5ubxAtYh9HVBdzYkxTYv58517EYqKwvBOr0ah7DJaXAnbHAzbu9G1eIQUZYYIAvnUvLpsjgQHrt+70U3zCSU0KRbQc1Bf54BP7gt8K5SIBxl81njFvn6MEfrAkZBOsup9wYfWdWy8/oJcACCMltJiSbouKYepeb+m0RXFRcCLFXIhEeXM0O0IURgKJ0ZLzIq/YmuNVj9ZZoBNHgJUOoaeOioBvce/InW2n3yRT6ZEIPmnhFcyZapKMqnRuisB0C/fz4+kbTib6tkRlQmFJvzIN9BVwVKsSbN3TiqrTPLyuMyjMGvUxesJFe+UdHjlLTJ7ioKrEqDsBdN1dAcfawwMIOtVgg7IyQGOuO2N31hrMC1LaHB7ouQHq4W+TNIMReiUR4VCyxeinxgoN7oh0x+p/BKo7x7lxWVtZ6XA/6clytMEeUHl54GJugXyIwBvYBJcq76ye+62QyNYsJp+y8fKdx0LPtwj5Rz/2Dn5y7pSr7QlzNEKdMMGPQC/zof/yVRJsPn3e6vrFSjp1le8bwtvTC0t1MYFZdaMyMkFxjPsjP9jdB5xnryEHr5BjlSbD73dwtotU2n706AH5WvJTIuDLmh8NKi/2w/uJlw8sD0VVxG7yElzSpybnaEHNhgVd50yAIq84qyEqDYUhF6embNKIqLOqy497wvSP7Dfo1CEQPtahgEZq9eh/VjQzmbfUMkP7Bhc2aOeCZnjck4QDYRmAJqtbaxQRAGmjfINKUIIwZZPfpcssRL4Dv23s1oReLCN2dMVHf1AFzx+9Gmo9TUwjjb4K4BqvjMMqZleHWu0CfHRlv2tgRtovz6fb9280gnL2SAJFyeCmT0nPYYAVXG7LBlL524z83OImRSHxRwH7o3y8u20O39WzCIvdWD6z1IJKzadks2qOIAhoP2vU9R411cEJYxs10SRAF5tE8Jox1bxgPwaGswj4T0yHNnLfMYXfXz83KHmBWKSdDpy9jQcT94U7U91LzpOhkYUhwYcOIE8mZ9OCnvzueDUCarq8v8cIMick05TY1m70ekNCsuD7+JmdTs7gZRFpOPv+OiG9A0NTkBb+xS6+4EGKvBIDODKMMuA0yroDzaTmO9EwzqJrtiFLTEzVeqnv1L1ig/Z8YhIv7qAIVEN/t3En397vIVpcEodUMDaQf/zzDBjIY/+bc1IUJ2NjEAYkidsEu7ojdKvNLVcqxQgoq9xxNpOEd6vHipq+Hbwc8C0KBV+9NoPfXHOR4frWIKG5+04cbmIghUanW0OrZULIaejykAoTGKoI1qhYIKb7+g/V8/M2V212Ov359JwrCilJMCLFX0rLQ/dvU4WAafYKG/jj0dZR1hhsKVmP1onLLY13zQYj2nhAMXqgZX+2k6UNa27qTHhtiryuiFdOR8xkuSR9mem+j6BB6fqmz8U3dB5h5dTu3TSPhVjPGp6NSjidNH59bstupGq+7tFF4Lq57f7OD6JQRz0zCMatkq2LqlQXeKmgGvegsG2LsO0szv95JL/2jIxUXQuyVtiz0HuYiqEVmLBGl97eiNDQMXOpFNRqjIA56GnWG+zzqZs6oZ46SU63rR7iI3ntOpPD9nlllrocDirgK9VjrYBfsRzUcqxJaY4uMj7DGI1ZfH5+O3wN56QgssPJVq+dFRR5F7J4k4yhCV/EEVhVljFICzkeOun6/WaILFg/3wVL4bXJdUpjdQYi9EpeFxvEpAy7iKDgrfytyyKFvFxT8nTCj5xjQi80qsppFnXlS7ijQz4cjvR5f7BxZBgKEQSkj17m8kvGZsIDhRcZzoM6bHRBTjxJasF9M8/Hh2HP43lHZFQE1/7ztYnr9+72OhB09hzxyLp0eHdSaHh1cqKoEmfx2AOwbSnpQCyWUAKuIPhS4hIuU+9XZuN70UoL6reGqU7XqrBJzkEnniUrhLvXZDELsFQj9H8zsj98gKph1eTsdGUAllG5Na7J/HI5urPyKEL+9tzeNmbfJxUhk9uIrvdQubfN0SjZ9tHaPed/0xTt5IbDDmdRsx/PYVYEBQoL86LoPCnPSFSD6z725C0WE+JJWUPisgBkX/OLuno52TFbA74vFZFxaDhvdkBQDS/mx85lsDEsr+q3AxXs2q8m55sqlaJWNiN8PIj5KT+t/a2zDgt+/dW26oShe37hgQn3Du+DOtVaSls1C7BUIlatu2Z20ZQz39LLT3ZX+CUIGEeGFGpuazS85jEEIvuii0+GtGjGol+37XadM0zYVd4JF2K7qqVl6hn4hwzOjJ9u6A+c40cRObFZlrxWXRYTdh2Mu4Vx1nAMDn101WngGEHprlyqak1tAqw4lsAsPKCiSbmDxRoEIZezEwuTv68tdZzYdPs+2gseGtGGbCwKB1H1hL8Hvh3z+V6/t6FhoMIfvdxUGC/3v7kvpuaW7HElG+vnvPpHMRlJ38QnhJfCzC7FXIFRZ6A6NoiyNMYiRnj6kDYd02iV/4GXBCw53nbKu4/j5jGwWr59cvMNWVDUWRsQLDpEb14NoiRx5vNRwGdnVfUvNLPTNKzuDXZvlmSPa0dUd6tNTiAM3iM0gGFR4LSxTXZj4AneeInRVauo/6w+bWvKhz8OzAfcarO7PLUFTSWf9/clhbfj5QLz60FjMDc8Izo5yV7AZ6NN8YQ+Ys2ofvfLdn05zxthlO086JCZjl1a1/2RKliMxxswTAcNkbn6+bVmqkvR6ky6uFdzFFZzh8Nl0uunDjZbnLX+gD+vkKBap1931xKaKKqDhAERlHN97MqVQRJ2/iUVfxLfDPx8RghpnxLnlOF/ljRuJF9cEZ7OKKtO/wAq4P3z3qhOsnSSBa4zoWJ+bQ54tEqPxbHG1Qun4+UwucIGCkA9ddRF1bFSYD45y11iIkB6LAhtW6sYTQ9pwZJzqGjuud1NOioGOjvlisUJhiVmGUFw910fQzX83HOG68PrWzKobrdl9VVouzn98SBuWLuBqgyFWFaeAEY6r6dp0eMW5aEahV+30f/f5t19C3ZqaN8SwgnD2CgYsqui3bQcYhlBaeP4vh20r1ihRES+bqiPPHDAmjMXK927pyn3IjcDLZ6bz4poovOCujJU+Bz0s0J98axA9PLA1TR3sw22K3AWqILRVEYmajxJ/wWWRYIOst7k3dXEsPMZ2S8brIsFGHVdW7zlFXgCVJoqutVbGRPzOkGygo+u5r74brdXzQEoac2kTJlbVrBE+cz3HVynEejEengzYEBBDgYAkq/gEQHT2KorIEPvKqmj1A+4M0RLit74ji+Kwn/56lFMjUUd+VKcGjjrycO+x0UzzYY5rBiv/Ml5GZJNZ1W/T+5NVZNmS7Se4nZLi+u4KSapa7Xq/NCQNEDxsDsgHAKGDK8aEB9Hbq/a5lKo2g1UZqHW6brQnk+wXWVjPjQudOys5wlwRAamXeIz1/YC6kUHsRUExELPKtmPn/epYKIzxCRgTLKWkqybsWjoprs2FHudvcqSmcsFDpHP6+rCx6DmEVWblEdeeKAogw8s89X/bqCNcXUcTLZNZVL82ozEI9zyjKxVtBvQhB7eDqAoxHJFl6qVUseR2UAuNIiKIsMH+ftSqTg2uWQdr9oe3XcycDNloau7uAmDsjucXdaN1txDh/sbfyt19Yb03k2RUY0rU90NBi8Iaga5ivLEVtEtxkBYx9MzIeNbpiwtJhKkEUB1bQPB6KK6tuAGICDnvaNzYpXE067ot69SgoAA/LurQ7/U1XI+832trWPRDJNuWI4ksJuKlwXXMEjMQDPP01fEuTR2xANSPDnGbogqg7NKkBb85cTPlT4fxygz6QBUQkSotjTBbPCNSbJvVDmdOiW0QvoJSW8yA57DLKMstMmbazQ37zYJu7e9rn8kWGRrgkBTU38QM6rh+GzYKLKqIcNx65DxLasWFcPZKAquOLUYDmFFXs+sYAw4GjgBJQOmGOfkFNOWqVjRtkA/fC1IB7v39rpPUtUm0I4AHVVQQ0AJLvJULCFxY2QjMgPsiWw4NExGKaxUJCOJsXCuUdXO4vOCaUn3t9DXvQ3Utj+xSex8e2IreWvm3pdxqgflo7aEia7tzI0vM5/beTRwSkh5294V/HlVnrIACm+ocT1pR6aG8LIibaN8oig22xYUQeyWCatkEK7KnXVrdReEhPbVhVIipiwrEBgkAi8zLy52JAzozVAVYo81cQFgAnhsZT4PfMi/AqQyD/7f+MIv2WHSwkKhU2pW7E5jQEQPw5PC2bEDEogZCemLxdicjmKp5H+jr61SfTR8pCNSLDKGlO9AWurAQpLIHGJ/5viL3InziyId/dmQ7rvySnpPPix9i6z/ecITu73+Ri9qj7ot6Ag/2v4gz2LAwo05esJ+vZSYbrqO3mRRXDWHJp2UMpx3vPJHOqllxIcReyaBvwqgneKsure7CJpF8oXzTeqhtWNvNRM+aoQHUvHYYNzZA0o1ZiipCRtF1xmxhenp4W/aPK4nA6GNHGDBy8PUGOFXR1jhXXB+/x5SrWtJTulh5ZWVXdeoQfqvuoxYCLHZYeAoKNH4OJSkpgyIWHhjJ9KmuhaG/7emtH/ZyDj+KdOo5f9e4KG5vje61sJ4jUCi+QSSdTc20DU2GpKPgaRy+2saiAsMiHOWobIv7FhfiZ69gP7u7JhGqRpxVl1Y0QICubgVkvV3//gbLBgmwtuO4XlVA0UMQz77TqbahughHBUD0iIhTfnquzjqkLQ1527rsNmLMcR5UCdWfjSvjzN9kec7qhy6nZ7/d5eT3VgsPers9PKAVDXl7rct5iEB8fEgbSs1CocbCnH1g76lU6tm0JueLozw33F3hwX4cuYeKPSM6N6Ch7evS70eTKDYi2MXXjYUOUpH6u+BvMXzOWsdvDeNlRk6eYzz26zvemsUv6IObVC84qAeQGpKycmnlngT641gSV9ltHBNGxYFw9koK7sumI24QP14mox5rZ8mH2OdDPrY548ib1xM6roUIrke/3E5jLy0Uu60AMV8tBrjXN/f25vr9Ab6+zInsALEZCxmIDLkf9SODqUaRsc8KqKiKsGGz0GEAfnFjvDqkiPF9mtP1H2xwdGuFoQ8cHe63hrXC+LdFVd3UIgMgiPTdW7qyZR3eDn2dfD3wm59LLwyUwcKM5hAwomHhgx1l3u2XcNERK31fSR+TrmjBNQEL2zBrlJCSw6G2WFjg5UCcPqoBj5n3a2Ep6ytbckJQcSHEXlVy3r/Y5iRKKj0WxjU7sT8blVltgmKeHxlPK6dc7iRBKDsA9EJ3vcyMedaK00G3dNeMQuWGq+uhoqq+mIQRSOu0A1Ji59zYmRcaLESoNKsVgBCz6eV/dGTXIKA47TeTe/M2xyNk5tLsIh++nsvOvDreck7YD7EYxTr1CwzOQwz/7hMpLk0wFIGjASYkGmTQqVqChZw8hm0YCKRSXg6U/EJzSK6hn5pNTWqGmkp57iDEXsnB1nYDoet7t+HlVpZ8o9jPFVANRio9sB+15uC+0wPeAL212tg51So9FnPCHPAihgX62+qkRuUR41BcEnniZg0QwbHdVbiF/q+XiPDbwQDpzth5OiWLpi9yrggDwC4AcV4fJagH9qOJhHEx5H7yPnupa+NoFx2eXX5HE+m6rg05TdhoXMXfGb+DPqJQFQVBL3fYBuCSLAmE2Cs5sJKbVVwB8KLguHrB9at9oTTwB93Uo7FtFhrCSg+cSXOoBfpsPLyYqF2OF08Z59DdFe42s/RYAIsNADET4iZgXChgGENpJ5fn2X+OHh/W1kUtwTb01m/+OGFTrTWGosNcuR06u4xJdM5Mg66tN3Yi598ybHb/WbpHV+BCj0ub1bIuMLHvLKtB+hJhep0fKoKdF0UfUYhnXrbjlCMMWkl0xYUQeyUHxMviHnf43vefY2OPHlZZaPqXSG8HgCvK2NjA6gXXxwGAkBrXDKVhHeo7vehYnFSknRkQBWgmpUA3RgUaKx/3MyPbOXE8s3JffVrG0NL7+lB0aIDTwuiuqw4qzJgtQO7cZyoT0ez3uvyi2m7PNZOilGdCbxj0FELslQzKCq8McSg2YQez43rfu9HFY1XbzPgSKTuA8Xw7l5ExDqBeVAgNia/rRLhw58FibqWXIx7eKKUogCOb1W3DAoIil+4CjX7ed5bTaY1hsu4aLiBs1mwBUllsVoiyaBKB38nqmAKCjLCwmgVW6dWl4kCIvRLBjBstv7+Pre5rpsbqfe9GC7BdbTP9S6TsAOCoozo3YN0V87LKh7eKAzDzKkCXNa3w0jLG0d7KCP0CZJRIjPe1CzT6yYRQot0UikDGodUCZOUJwX4QrJlE8PLoDhzdaHVPjIHxzs7tqdSl4sAriP3pp5+mmTNnOu1r1aoV7dmzh/+flZVFDz30EC1cuJCys7Np4MCB9M4771CdOnUc448ePUr33HMPrV69msLDw7n3+6xZs8jfv3R+QituBD+tXaCGmdFK6dyF5ztHmsGtZAf1EuklDHBbuIIgYqcWSRyvXdfJsW0XB2AExrxUjKAhPawMkcUNNEo1HIf4j+44aJphLOiB/VYGMXcBUPUs5gs89PkflpGJuCfCmu0gKa42aNeuHf3www+ObT2RPvjgg/Ttt9/S559/zkEvkydPpmuuuYbWrSuMc87Pz6ehQ4dS3bp16ZdffqGTJ0/SbbfdRgEBAfTCCy+UyvysuBFeoh1/JTsZyZSRB4UdXrvWtaSw0feu1xsX3Nnd7UtkJmEonR4JKQp17OOCnGBcPF7RLR7FXSzcjdMvdp4SSlytMF7AYKyDDg/RHhzfneXb3QJkNl/ES6CBIxppmhnvQOi1wqzjJ8zCpj2B1xA7iBvEagSi2f71r3/RggUL6Morr+R98+bNozZt2tCGDRuoR48e9P3339OuXbt4sQC379SpEz377LM0bdo0lhoCA4v/wxthxY24D9pNMKg5x7bbcUI7jmMmWuqPQz9FBp1ZYk1xDEN64g4L9Kct6Cm+ZBcvPDASwsWGuHj2wPkUz46h9xyYwSzQKLTIAwELOoJfjB4IAIRdEreWJwuQ2d/ayniHUt3I9itO2LQn8Bpi37dvH9WvX5+Cg4OpZ8+eLILHxcXRli1bKDc3l/r37+8Y27p1az62fv16JnZ8t2/f3kmsh6gPsX7nzp3UubN5XjRUAnz04bLF5UZ4IdD1xdhi2R0ntOM4di8RosuKo+8Wp/GFqg2H+8NIqPenW7mU7KQMK/eT8Rk98UCUJ9xJHljQsMCheMYD/VvSY0PbcPUaqGzg+CUhdK8h9u7du9P8+fNZT4cIDv29T58+tGPHDjp16hRz5qgo5ywiEDaOAfjWE7o6ro5ZAQuK0VZgBbuwV1ih4bcu7h/ZiuPYLQQI+LCDO8OQfeML4gXlIw+8AXbX8kTK0D8jkkaeMekGeyFurAuB3d/6qjaxXJnIGJWnFqYLmadXFK8YPHgwXXvttdShQwfmyEuXLqWkpCT67LPPyvS+06dPZzVBfY4dO1bsAhYXIrbZAdeD/q0KQxgDakpqGHKXcqvvFGslOXhyLeNYu2dEXPnPHt6zPGD3t3766nYczWe1wGEBLCm8grMbAS5+0UUX0f79++mqq66inJwcJn49dz99+rRDx8f3r786F2rEcXXMCkFBQfzxBPgjItjkiWFtmROhQSIMWZ4arsqD63hiGHJnCU/LyvdYciiuVb2kc0otgRvLU1jZG6ykq+K6DYsDryT2tLQ0OnDgAN16663UtWtXtqqvXLmSRo8ezcf37t3Lrjbo9gC+n3/+eUpISKDY2Fjet2LFCk5Tbdu27QXPx04vLU9CL0k+vRHuJAOkkHoqOVyolFHa1yku3NkbzNQslZdQFguTV4jxDz/8MK1Zs4YOHz7MrrNRo0aRn58f3Xjjjexqu+OOO2jKlCnsQ4fB7vbbb2cCh3EOGDBgABM1Foc//viDvvvuO3riiSdo0qRJHnNuK7jTSy9EbCspFNdBNtziiZfyN7bhN/ZUMjCD6vJiVcPNKDnYXas47qfSuk55/F3LcmHyCmL/66+/mLBhoLvuuuuoVq1a7FarXbswPvmNN96gYcOGMWe/7LLLWDT/8ssvHedjYViyZAl/YxG45ZZb2M/+zDPPXPDcLlQvLStY6fQXoo+i1HWdGoH87YltorTsGOVtD7mQvytcn4iFQFkwlA5H9R5VbONCFyapVFPBlWpg/UZFWCuAs4LgqhrcVdrxtBJPccdeyJxKEyX5u5rVLdD3BXhmRLxH0pUVvFJnr0yoKH2yrOEu0KQ4gSjFDVop6+uUxd/Vqm4BPBfwJiBcuaR57F4lxldmVIQ+Kah8f1d3dQvcVenxBELsFYyK0CcFle/vatWuytO6Bp5AxPhKAE+zuQTV9+8a5qbfujLSXQiE2CsJylOfFFS+v2uYm5p9OH6hEDFeIKgEUDX7jDEIF1I62gjh7AJBJYBdzb6Slo42QvzslbQjjMA7kVyGsQDC2QUCL7HdiM4uEHgJhNgFAi+BELtA4CUQnb0coWyhdrXoBIKSoEaNGtziyg5C7OWI1NRU/m7UqFFFT0VQzeCJh0dcb+WIgoICOnHihEercEkAiQELCWrdiWvPu367GsLZKxd8fX2pYcOGZX4fvKxV8YWtDIioxr+dGOgEAi+BELtA4CUQYq9GQPHLGTNmXHARTG9EkBf8dmKgEwi8BMLZBQIvgRC7QOAlEGIXCLwEQuwCgZdAiF0g8BIIsQsEXgIhdoHASyDELhB4CYTYyxGIX0J2lcQxCcjbif3FF1/kNL0HHnjAsS8rK4v7oKPNcnh4OLdVPn36tNN5R48epaFDh1JoaCjFxsbSI488Qnl5eU5jfvzxR+rSpQuHQ7Zo0YLmz5/vcv+5c+dSkyZNKDg4mLp3706//vqr03FP5uIunx3VZVVeu0BQrtAqCX799VetSZMmWocOHbT777/fsf/uu+/WGjVqpK1cuVLbvHmz1qNHD+3SSy91HM/Ly9Pi4+O1/v37a1u3btWWLl2qxcTEaNOnT3eMOXjwoBYaGqpNmTJF27VrlzZ79mzNz89PW758uWPMwoULtcDAQO2jjz7Sdu7cqY0fP16LiorSTp8+7fFc3CE5ORksnb8FgvJGpSD21NRUrWXLltqKFSu0yy+/3EHsSUlJWkBAgPb55587xu7evZsJZv369bwN4vb19dVOnTrlGPPuu+9qERERWnZ2Nm9PnTpVa9eundM9r7/+em3gwIGO7W7dummTJk1ybOfn52v169fXZs2a5fFc3EGIXVCRqBRiPERjiOH9+/d32r9lyxbKzc112t+6dWuKi4uj9evX8za+27dvT3Xq1HGMGThwIOvGO3fudIwxXhtj1DVycnL4XvoxKDSBbTXGk7kYkZ2dzfPQfwSCikKFV6pZuHAh/fbbb7Rp0yaXY6dOnaLAwECKiopy2g/CxjE1Rk/o6rg6ZjcGxJeZmUmJiYmUn59vOmbPnj0ez8WIWbNm0cyZMz3+LQSCskSFcnbU+7r//vvp448/ZqNYdcP06dO5EKD64HkFAq/k7BCNExIS2EquAA77008/0Zw5c+i7775jETspKcmJo8ICXrduXf4/vo1Wc2Uh148xWs2xjVpjISEh5Ofnxx+zMfpruJuLEbD8V+diCILi9W9LycqliJAAigmrmPbcFcrZ+/XrR9u3b6fff//d8bn44ovp5ptvdvw/ICCAVq5c6Thn79697Grr2bMnb+Mb18CiobBixQom5LZt2zrG6K+hxqhrQDzv2rWr0xhUgsW2GoPj7uYiEBhxIimTJn+ylfq9voZGvfML9XttDd37yVbeX+7QKhn01njl7oqLi9NWrVrF7q6ePXvyx+h6GzBggPb777+zO6127dqmrrdHHnmELehz5841db0FBQVp8+fPZ/fchAkT2PWmt/K7m4s7iDXeu5CUnq3d8uEGrfG0JS6fWz/cwMfLExVuoHOHN954gy3jCGCBdRtW9HfeecdxHOL3kiVL6J577mEOGxYWRmPGjKFnnnnGMaZp06b07bff0oMPPkhvvfUWl3P+8MMP+VoK119/PZ05c4aeeuopNrh16tSJli9f7mS0czcXgUAPiO4/7ztLZvhp31k+Xp7ivNSgK0dIf3bvwtajiSy6W2HxxEupU1x0uc2nUvjZBYLqiIjgANvjNdwcL20IsQsEZYSY8EC6rGWM6THsx/HyhBC7QFBGgD7+4ugOLgSP7ZdGdyh395vo7OUI0dm928+empXLojs4ekX42Su9NV4gqOqIDK0Y4jZCxHiBwEsgxC4QeAmE2AUCL4EQu0DgJRBiFwi8BELsAoGXQIhdIPASCLELBF4CIXaBwEsgxC4QeAmE2AUCL4EQu0DgJRBiFwi8BELsAoGXQIhdIPASCLELBF4CIXaBwEsgxC4QeAmE2AUCL4EQu0DgJRBiFwi8BELsAoGXQIhdIPASCLELBF4CIXaBwEsgxC4QeAmE2AUCL4EQu0DgJRBiFwi8BELsAoGXQIhdIPASCLELBF4C/4qegEBQ2ZGckUNn03IoJSuXIkICKCYskCJDA6mqQYhdILDBiaRMmva/bfTzvrOOfZe1jKEXR3eg+lEhVJUgYrxAYMPRjYQO/LTvLD36v218vCqhQon93XffpQ4dOlBERAR/evbsScuWLXMcz8rKokmTJlGtWrUoPDycRo8eTadPn3a6xtGjR2no0KEUGhpKsbGx9Mgjj1BeXp7TmB9//JG6dOlCQUFB1KJFC5o/f77LXObOnUtNmjSh4OBg6t69O/36669Oxz2Zi6B64Wxajguh6wkex6sSKpTYGzZsSC+++CJt2bKFNm/eTFdeeSWNGDGCdu7cyccffPBB+uabb+jzzz+nNWvW0IkTJ+iaa65xnJ+fn8+EnpOTQ7/88gv9+9//ZkJ+6qmnHGMOHTrEY/r27Uu///47PfDAA3TnnXfSd9995xjz6aef0pQpU2jGjBn022+/UceOHWngwIGUkJDgGONuLoLqh5SsXNvjqW6OVzpolQzR0dHahx9+qCUlJWkBAQHa559/7ji2e/duDVNev349by9dulTz9fXVTp065Rjz7rvvahEREVp2djZvT506VWvXrp3TPa6//npt4MCBju1u3bppkyZNcmzn5+dr9evX12bNmsXbnszFEyQnJ/M5+BZUfuw/nao1nrbE8oPjVQmVRmcHl164cCGlp6ezOA9un5ubS/3793eMad26NcXFxdH69et5G9/t27enOnXqOMaAI6ekpDikA4zRX0ONUdeAVIB76cf4+vrythrjyVzMkJ2dzXPRfwRVBzHhgWyMMwP243hVQoUT+/bt21kHhj59991306JFi6ht27Z06tQpCgwMpKioKKfxIGwcA/CtJ3R1XB2zGwPCy8zMpLNnz/JCYzZGfw13czHDrFmzKDIy0vFp1KhRCX4hQUUhMjSQre5Ggsf2S6M7VDn3W4W73lq1asW6dHJyMn3xxRc0ZswY1omrA6ZPn862AAUsMELwVQv1o0Jo9o2d2RgHHb1GcABz9KpG6JWC2MExYSEHunbtSps2baK33nqLrr/+ehaxk5KSnDgqLOB169bl/+PbaDVXFnL9GKPVHNuw/oeEhJCfnx9/zMbor+FuLmaAtIKPoGojMrRqEnelE+ONKCgoYF0XhB8QEEArV650HNu7dy+72qDTA/iGGqC3mq9YsYIJGaqAGqO/hhqjroHFBvfSj8EcsK3GeDIXgaAsAF/+gYQ02no0kQ6cSbsw335FWgcfffRRbc2aNdqhQ4e0bdu28baPj4/2/fff8/G7775bi4uL01atWqVt3rxZ69mzJ38U8vLytPj4eG3AgAHa77//ri1fvlyrXbu2Nn36dMeYgwcPaqGhodojjzzCFvS5c+dqfn5+PFZh4cKFWlBQkDZ//nxt165d2oQJE7SoqCgnK7+7uXgCscYLioPjiRnaLR9ucPIA3PrhBt5fElQosY8bN05r3LixFhgYyETar18/B6EDmZmZ2sSJE9kdB4IdNWqUdvLkSadrHD58WBs8eLAWEhKixcTEaA899JCWm5vrNGb16tVap06d+D7NmjXT5s2b5zKX2bNnMzFjDFxxGzZscDruyVzcQYhd4CmS0rNdCF1P8DheXPjgn9IUOwTWgIEOVnkYI6FqCARWgOje73VrQ/XKKZdT89hwqtI6u0AgoDKJ3hNiFwgqISKCA2yPwwVYXAixCwReEr0nxC4QeEn0nhjoyhFioBOUtEpOaUTvVXgEnUAgKJ/oPRHjBQIvgRC7QOAlEGIXCLwEQuwCgZdAiF0g8BIIsQsEXgIhdoHASyDELhB4CYTYBQIvgRC7QOAlEGIXCLwEQuwCgZdAiF0g8BIIsQsEXgJJcRUIKiA/HTXmIkICKCas/BpQCLELBOWEE0mZNO1/25x6vqPyDCrSoM1UWUPEeIGgnDi6kdCBn/adpUf/t+3COr14CCF2gaAcANHdSOh6gsfxSknsV155JTc5NKuxhmMCgaDs68CXC7H/+OOP3NXUiKysLPr5559LY14CQbVCRBnUgS9TA922bdsc/9+1axedOnXKsZ2fn0/Lly+nBg0alO4MBYJqVAf+JxNRvqR14Mu0lLSvry/5+Pjw/81OQ7/z2bNn07hx40p3ltUEUkrau3EiKZONcXqCV3Xg65WDNb5YxH7kyBEm8mbNmtGvv/5KtWvXdhxDn/PY2Fjy8/Mrq7lWeQixV08kF8N3Xpp14MtUjG/cuDF/FxQUlNV8BIJq7TuPLMU68OXmejtw4ADde++91L9/f/7cd999vE8g8BYkVwLfeZkT+3fffUdt27ZlUb5Dhw782bhxI7Vr145WrFhR+rMUCCohzlYC33mZh8s++uij9OCDD9KLL77osn/atGl01VVXldb8BIJKi5RK4Dsvc86+e/duuuOOO1z2wwoPl5xA4A2IqAS+8zIndljhf//9d5f92AeLvEBgBPTXAwlptPVoIh04k1ap9NnkEs6tLHqoVzoxfvz48TRhwgQ6ePAgXXrppbxv3bp19NJLL9GUKVNKe46CKo6KzvYqq7lFFvVQt/KdV5TVvVT7s+OUN998k1577TU6ceIE76tfvz498sgjbJVXgTcCZ3ijnx1ccvInW00NWSCK2Td2rjCiSC6luVWk77zMiV2P1NRU/q5Ro0ZpzanawhuJHeJxv9fXWB5fOeVyah4bThWBA5V4bpWyeIUQuaCqWqxTKuncyqqajcfE3rlzZ4/F899+++1C5iSoRqjMFuuISji3srRveGyNHzlyJI0YMcKjj6eYNWsWXXLJJSwdwIqPe+zdu9clbXbSpElUq1YtCg8Pp9GjR9Pp06edxhw9epSGDh1KoaGhfB3YDvLy8lzScrt06UJBQUHUokULmj9/vst85s6dS02aNKHg4GDq3r07Bw0Vdy6CqmOxjqlkcyvziDytDLFgwQItLS3N8vjAgQO1efPmaTt27NB+//13bciQIVpcXJzTOXfffbfWqFEjbeXKldrmzZu1Hj16aJdeeqnjeF5enhYfH6/1799f27p1q7Z06VItJiZGmz59umPMwYMHtdDQUG3KlCnarl27tNmzZ2t+fn7a8uXLHWMWLlyoBQYGah999JG2c+dObfz48VpUVJR2+vRpj+fiDsnJybCP8Lc34Xhihnbrhxu0xtOWOD7YPpGYUdFT0yrT3PafTnWah/GD4xeCMiX2GjVqaAcOHPB4fEJCAhPDmjVreDspKUkLCAjQPv/8c8eY3bt385j169fzNojb19dXO3XqlGPMu+++q0VERGjZ2dm8PXXqVK1du3ZO97r++ut5sVHo1q2bNmnSJMd2fn6+Vr9+fW3WrFkez8UdvJXYgaT0bH5Ztx45z9/YrixIqiRz++3IeVtix/wuBGVag664hn5YqYGaNWvy95YtWyg3N5cTbRRat25NcXFxtH79et7Gd/v27alOnTqOMQMHDmTL986dOx1j9NdQY9Q1UHUH99KPQe4+ttUYT+ZiRHZ2Ns9D//FWwMAEy3anuGj+rkyuqchKMreytiFUmoKTSJt94IEHqFevXhQfH8/7UAkHefJRUVFOY0HYqkoOvvWEro6rY3ZjQHyZmZl09uxZrrRjNkZ/DXdzMbNJwNWmPo0aNSrRbyPwDsSUsQ2h0hA7DF87duyghQsXUnXB9OnTWVpRn2PHjlX0lASVGCoiz0jwpRWRVymaREyePJmWLFlCP/30EzVs2NCxv27duixio5KtnqPCAo5jaozRaq4s5PoxRqs5thHYglJaqK6Dj9kY/TXczcUIWP7xEQg8BdxriNwri4i8CuXs0OlB6IsWLaJVq1ZR06ZNnY537dqVAgICaOXKlY59cM3B1dazZ0/exvf27dspISHBMQY59SBk5NyrMfprqDHqGhDPcS/9GKgV2FZjPJmLQFCpbQhaGQIW8KNHj1oev+eee7TIyEjtxx9/1E6ePOn4ZGRkOLm74I5btWoVu7t69uzJH6PrbcCAAey+gzutdu3apq63Rx55hC3oc+fONXW9BQUFafPnz2f33IQJE9j1prfyu5uLO3izNV5Q8SgRsTdt2lQ7e/asy/7ExEQ+5vHNiUw/8L0rZGZmahMnTtSio6OZYEeNGsULgh6HDx/WBg8erIWEhLCP/aGHHtJyc3OdxqxevVrr1KkT+9KbNWvmdA8F+N9BzBgDV9yGDRucjnsyFzsIsQsqEiVKhIFbChZoY+469Fe4ouByErjCGxNhBJUHxTLQff3110516PDiKsB1BX0W4aYCgaDyodhNIqwA4xUIHTnuw4YNK635VSsIZxdUCc6O1k+IIIOLClbzTZs2UUyMeQCAQCCofPAtTorr+fPn+f9IdZVqNAJBNSV2BJKg5pxqAyVdYQSCairGI3f78ssvp3r16vH2xRdfbNnXTS0KAoGgChL7Bx98QNdccw3t37+fi0qiwqyUpBIIqqnrbdCgQY50z/vvv1+IXSCoQrjg6rICzyGuN0FFokRZbxDnPcWXX35ZklsIBIJSRomy3sCVEC23efNmxz6I9shcwzF9wQaBQFCFOTuqs1x33XX03nvvOSzyCJedOHEiE/srr7xS2vMUCAQVobOjsePatWupVatWTvuR343eb+fOnbvQeVVLiM4uqHJiPGqy79mzx2U/9kmwjUBQjcT422+/nfuzHzhwgLp168b7Nm7cyAUWcUwgEFQTYn/11Ve57hoy3E6ePOno4jp16lR66KGHSnuOAoGgonR2lF/GaWi3BD308OHDbJ1HzTfUYxeYQ3R2QZXT2dHP7T//+Q//Hzr6gAED6PXXX+debe+++25pz1EgEFQUsaNLa58+ffj/X3zxBbvikAmHBeDtt98ujXkJBILKQOwZGRmOuPjvv/+eI+pQxaZHjx5M9AKBoJoQO1oeL168mDucoBYdxHgAtdtFFxUIqhGxP/XUU/Twww9zzTn0MVdNEsDlUdFGIBBUo6w3lJKG261jx46OQpRowwTOju6mAleINV5QkZAU13KEELugIlFpurgKBIKyhRC7QOAlEGIXCLwEQuwCgZegRIkwAoGgfJCckUNn03IoJSuXIkICKCYssMT92oXYBYJKihNJmTTtf9vo531nHfsuaxlDL47uQPWjQop9PRHjBYJKytGNhA78tO8sPfq/bXy8uBBiFwgqISC6GwldT/A4XlwIsQsElRDQ0e2Q6ua4GYTYBYJKiIjgANvjNdwcN4MQu0BQyoA+fSAhjbYeTaQDZ9JKpF/HhAeyMc4M2I/jxYXExpcjJDa++uNEKVrQcS0Y434yXOul0R2oXgms8ULs5Qgh9uqN5IwcmvzJVlPDGoh09o2di+0jV3526OgQ3cHRxc8uEFQBC3pkMQkV40tK3EaIzi4QVGILemlCOLugWoWEVjcLemmiQjn7Tz/9RMOHD+cGEz4+PlzXTg+YE1ACq169ehQSEkL9+/enffv2OY05f/483XzzzawDR0VFcaeatLQ0pzHbtm3jarjBwcHUqFEjevnll13m8vnnn3OFHYxp3749LV26tNhzERQfMEJBz+33+hoa9c4v1O+1NXTvJ1t5f1VDTBlY0KsNsaenp3NZq7lz55oeB1GiNDW6xaK9VFhYGDehyMrKcowBoe/cuZNWrFhBS5Ys4QVkwoQJTkYxFMRs3Lgxt5VGh9mnn36aPvjgA8eYX375hW688UZeKLZu3cr17/HZsWNHseYiqPiQ0IpEZGggW92NBK8s6BUurWiVBJjKokWLHNsFBQVa3bp1tVdeecWxLykpSQsKCtI++eQT3t61axeft2nTJseYZcuWaT4+Ptrx48d5+5133tGio6O17Oxsx5hp06ZprVq1cmxfd9112tChQ53m0717d+2uu+7yeC6eIDk5meeLb4Gm7T+dqjWetsTyg+NVEUnp2Tz3rUfO8ze2KwMqrYHu0KFDXNQS4rIC3FaoZrt+/XrexjdE94svvtgxBuNRABPcV4257LLLKDDw71UVHBntpRMTEx1j9PdRY9R9PJmLGbKzs1my0H8EVcegVdIgGqB5bDh1iovm7wrn6JXdQAfiAtBtRg9sq2P4jo2NdTru7+9PNWvWdBrTtGlTl2uoY9HR0fzt7j7u5mIGdLWdOXNmMZ/ce1DZDVoVkYZalqi0nL06YPr06RxAoz5oqiGoOgat6mZzqLTEjpbQwOnTp532Y1sdwze60OiRl5fHFnr9GLNr6O9hNUZ/3N1czBAUFMReAv1HUIUMWhWQhuqVxA7RG4SEVtAK0Hmhi6sONPhOSkpiK7vCqlWruLMs9Gk1Bhb63Ny/9T9Y7lu1asUivBqjv48ao+7jyVwEJQNEXYSRrpxyOS2eeCl/Y7s4sd+lkXhSWW0OpflsFaqzwx++f/9+xzYMYb///jvr3HFxcfTAAw/Qc889Ry1btmSCe/LJJ9knD7cY0KZNGxo0aBCNHz+eXWIg6MmTJ9MNN9zA44CbbrqJ9Wa41aZNm8butLfeeoveeOMNx33vv/9+uvzyy+m1116joUOH0sKFC2nz5s0O9xxiANzNRVByXEhIaEXqzBFlbHMo7Wer0ESYH3/8kfr27euyf8yYMTR//nwOZJkxYwYTHTh479696Z133qGLLrrIMRYiOwj8m2++YSv86NGj2R8eHh7uFFQzadIk2rRpE8XExNC9997LhG8MqnniiSfo8OHDTNDwqw8ZMsRx3JO5uIMkwlT+xJPi3h8BQPqstNK6f1k8m2S9lSOE2Es3nBbiLSLvrACVAK6vssSJUk5DVSiLZ6u0rjeBwJ0oWxn89PWLbA6llYaqUBbPJsQuqLKurSeHtfVIZ/Yk0Sb5ApJxSjMNtSztAULsgirr2gr082Uub6Uzg8N6YuQ6UQkDY1QMgt2zVRvXm0DgTpRNzsyx9dMD7oJekitpYExZxCAIZxdUWrgTZcOCAmx1Zhi5PAl6+bmUqsuUZl4+rpWZk08P9G9Jjw1tQ34+PuTn60O1pP2ToDrCU1HWSmf2xMiluZmDp4aw0i40aXWtC7ENiBgvqLS4UFHWEyNXRCkYwkpTFShLtUI4u6BS40JcW55KBpfpxoQG+tG43k2pc6Mo3i7QNCYwu/uVZqHJsihaqSDELqj0KKlrS0kG4IibjyQ6EXGj6FDTMW/f2JnmrTtEc1bt91gcL02feFnGDgixC7xCMkjMyKUnF2+3JGKMScrIpScWb6d1+885xoDTd2gURYfPptOp5ExeHIyGt9L0iZdlvL3o7AKvwJNf7aCfdURs1INBvHkFmtMYEDo4PTLObvpwI13z7nrTgpilmZdfljn+QuyCag9P885TDCIyxH6I9HpOr86ZZjCWPT60Df1rzMX00dhLaPKVLXihKIlPvCxz/EWMF1R7uA/OyWWfPDg7iPW3o4n00dpDrN8rsV9vuMvOK6DgAD9KzMihjJx8mmqwnvdpGUNL7+tD0aGFIjeuXRzfe1nF2wuxewkquhFDRd7fnR6clZtP17z7i2O7V4taLL6D+PXivNFwB6Ke1LcFbTlSWLhUAYT/1Fc7aNY17enRL7d75Hs3+31KO2NPiN0LUNGx3xV9fzsXXO8WteiXg85iuhLbpw1qbSvO43ngmsNx/SIA4F5HzmVY+sv1+eh2v09YoF+pLZKis1dzVHTsd0Xf304P7tMyhsb2asoiuxEg7AA/X+rfOpYGtK1D43o1pXdu7uKkk6txyp1nRFJmrls7gd3vg/1Ld5wqtW45wtmrOcoySKMq3N9OD87XNBo5dx3r3WbIzs2nR4e0oZlfO1vylZh/3ydb+Vzo8GYI8vd16y+3+32wf+ylTdxKBp5CiL2ao6ILPFT0/e2Ccw4kpFkSOhAdGkhPLHZ12SlxXonvZkQNqWHrsSSX/crQBwPfH8cSKSjAj634yuinjINqXmYLSUkXSRHjqzkquhFDWdy/tCquxrjxaefkF9DP+825rhLfQdQJqdku584a1Z72nnTuAKT328MgeCYth55fsovu+PdmmvjxbzRu/iY+hjFKTbCSDqRSjaBciiCU1v1BKP5+Pm5jz/WW6rBAf9pyNJGeXbLLwf1KauyL1IXKmtWQO5XivmnnsyPi2cXWrUlNFzfZzBHxlJ3397X1hj7o/WZGP73UAMI3kw5KukhKwUkvKDjpSVHEsnSNmd0feu/tvZqy3ntx42hLYjWzVOvP1RO8lR5r92wnkzLpxz/PUGyNIBaZwUnBqa+4qDalZefRVW/8ZPlc39zbi7QCjTo0Kuw/YAZ1bywEENMHvfUz74foDo5uhQV3didfXx/m9kZVo6TVZYWzewHcBWmUtWsM13jl2o4chHI8sdCSDI6liNXK6GRlqTbqzHZ6rDu31lST66sxz4+M54XFyH0B7AebRAENuwVFbycAp1awMuopYGGoFxnMC6HZIi2VagTFzhxz5xorjdrriuBgWbbiZmbEamepBgHCHWanx7p7tmdHxNt6CtJy8liCUPczShbn03KocVyo28VSLQT6CD0QsxH6KD14CjJy83mRTM/Oo5TMC4+kE2L3cpS1a0xPcDd2i7MdayRWd5Z8I3c06rHuni09J8/2+unZ+Sx9gACxsCiLOTRflIkKC/JnkR+pscYoOlx/xlc7aMbwdjR9kXMUHRYL+O71UoNVlB4WjWdGxJOPD5RuuiAIsXs5yto1pic4O7+zGbG6s+TjeoobXtqsFheghHVeidDuni3dxu0GRIYEUNfG0U7x8Yog19n43RXiG0bS+gNn6f5+LWnSFS0oLAjc3IdW7T1N7/64nyULhNWuhZRiEqWn0muPJ2VSfoFG59Jz6ddD59meUJIGFELsXg53BAX980KMd3qCg55upQObeQbsLPm4zvbjybbFJtw9W4Cvr+V84CnAsyL2HSGxrDZYhM2a2RBAqIPj69Gz3+x0CciZ3LcFdWgQRWdTs6hTXDSrBLVrBDk9gxWnx/lNY8L4uPjZBaXma76qTSzXZkfPsZKGbOoJDsEieLHxwuphZXQyC3PFS44EEzSI6NUiho1sneOiHX5pfbGJ/IICJloz9GkRQz/+mWA6H2zPGN6WsnPyafKC31iEh+V9cLu6pguDWdgsCN9I6GrcnNX76VRyFtUIDqQucdG8CJ5Icnbz2S0ss1ft40IbxYVwdi+Hna/56avbuWRt6Q1cMB6lZeXZcnw9d4aIq3Tg8b2bUc3wQI4/h4sL1/BN8aE6EcGWnoT0bNwnkJ5cvIOmf7ndRYzGnPAsihsq7ggde62OaJD8MuPqdnT1nLW8rdfJoRqA+A6cSae4miF8vY+KiA6x8XZAEI6CPj3Wyrh4IjmTDZaY/9D29ZzG4HwsjvDH69NqVYSdO3uDGYTYBZauOXcGLkSxoYKLnbsOxP/y6A50+HwG66xpWfkUEexPIQF+9MLSXfTDnjNORPjCqPYUVyvM9J6wZp9MzqSOcVEcWKP0Y8X9XtIRJqBfXO65ogVbuHPzCpiYz6RmOc4H8ehz1cFt8fyo067nru5sDnE1Q5k4zRJrzBYGFeGC6/9+NJH6tKjlkATwrHNv6sLPq0f9yGDej7Tc4kKIvZKhpPrxhQbFmLnmDp5Ntz3HmNVl5a7Diw3RUy+SgrCRcfbLwfMOogP3fXzRDnpxdHsmOiw8kUWcXB+2amYQw7UfHdzaRezFcXDYOav2uwSyQMSHFd2MqHYeT6aezWrR1qNJDiMgDHa4ho+Pj0sMO+a0bMcp+uNoEn01qZdb42DD6BA6l1oY5ovrJ6Rlc8TdjK8g+p+lBlHBlJqVR99uP+liDITOX1P87FUbyl+LF1BxGuieqIRaJyLIJeAExJ2WbU4QpREU44k13J277nRKFruejEQIwgZju+vyZpSbrzmJqqgcczolm7YdT2LrsycGMQBSg6euuo/WHmKiBEcNDvA1JaqmtcNp8pXN6aI6EbRg4xHej3mCq17avNB9hgi3VnVrOCL6gM2HE6l7s2heTMwkI+z/81Qq1QwL5I4v/drEUkJKNh07n0ljezWh23s3pdBAf5q1bI/lsz83Ip6KCyH2SgLlj97iQTljfRAHxEZEZlnVSYMhC+JoScJfbePaW9RiCzL0WGO2lt5dl5ieY2nUAtecMawdzVyy07kCTIsYmnF1W6oR7E9dGkXT9MGtKTjAn1NO4S4DJ1zzZwK1qxfJc4T4XjcyiPx8fGnZ/X0oOSOXsvPyadMRZ+4bpFucsC8vP5+6N6tFjxsWo9Aiox/cXVe2qkOzV/5J9/W7iF77bo9hnrXo87t6smsMC9aEy5pRx4ZR9OHagxz9NvGK5g5Lvrru08PbUtfGNXnBwBz6toqllbsT6IOfDvKYJ4e2YZcdWj/ZGQMRcFNcCLFXEkI/mZzFQScP9L+I9p5KYUKwMorpo7XsDEEYc+x8BouuRk7vidhvZbwDZ5p4RQu64YMNTmKsEq0RbKKQkmVtSGKL9ZKdrhVg9p+lmd/sogmXNaW6USF0NjXbhcthDgPb1WNie/7bXXRD98Yu1mssGkvu7U1Hz2XQ55uPcWDKg1e1pPj6kRwUgwXkr8RM04qyarGdP/YSuuuKFvTScuf7Y1zHuGg6kZxFqF4FKaVOjSAKDfTlv12tGoF0/fsbeAF4sP9FTPS1w4NY0nnq6x0uz7JoYi/y9SWa+fVOmr5oBy0c34PskJEtxF7lYJXoYRakAYIDp9SPdRdjjePG2ufhQQFuM8f0i8ETw9pSgK8PnUvPofBgf3b7wCWln5t6eZ8Y2oYjysKD/Pm+4M5WcLdQPTakDW06dN5FxFbHUVRicPt61Lp+pHnZqP2IYttJjwxqRff1b0l7TqZQj6Y16fb5m5kI/7X2IN3Ss4mTxRveAP1iGxkawLqzkdBNa9K1qEVPj2hHn03oycFur13XkVWwbX8lcaQdkm2snuW5b3fR1R3qOfzuESH2pFnDzXEzCLFXIIqT6GHFKd1ZiCFiWwVn6BcUvXENorJVptltH/1KneOieGEwLkYgkJlXt6PjiVlMIFO/+IO535Wta1Pb+pEuLiR30Z9w64H4rMRZcOTbezeji+rUsF409p+lsamFMflKPXj35i4UGxHInP6i2HA6n1aYjw51B3EFbetF0ryxl7CEAsIuKChwLAiwkreoHU5PG7gzsOVoEuve76ze7xJIA+Mhjlk+S9HillugcRwDFiPM1yyfHpKAu7+7GYTYKxDuEj0eHdyG/6/XO+G20sMuKq0wM0tj4xJ0UH18N4gN+7Gg6F1PJ1OyuKCCu+osABYGWKb9fX3Y2ATR+FxaNuUVFNCLy3fzNXafSqWP7+xBzxj0cljjh3dw9i0bERzoS2fT7SUXEGOOjXSD47XCA+nft3dj/R66NYxfPj6+dHXH+pSUnkNLt59kQsXih3kbRWyEtQ7rUJeOns+kBlEhlFtQwIvYWMPvCREeatP9/S+iSX01p/BYWN71fngzHD6XTsu2n6TFk3rRD7tP0R19kITj3LgC83noqosogIPliwch9gqE3j2j3DsXx0VTdFhhsAmynYbE16VrOjdgg1NqZh7r14hsW7E7gc8DoeIltcrMCvT1pZuK9FkjZ8fxepFBNKhdXcrKzWPre75WyDGtsrHCAv2pa1w066Dw+R46l8Ev+/Kdp2jXiWS+19JtJ2jGsLb0xBCizNx8zth6YmhbNnglZeRQVGggR7fB1w6i1we8KGA/VAC4qOwAd1hBgeYwFG4/nsT+604NoygqLICC/P34/rERQZSbX0BnU3Jo05Hz/Lsh7n3SFc2Z0O0qyKJtFJJR6keGcCAMODus+PrfE9ILjKFPGcpYKVdZTHiQW3ccdHqcC/XqscFtyNePOPgnK7eAMnLyOP4BJB4W4EeZBcXX2aV4RQUWr0BQCsJQlQ4ITntLj8Y0b+0hlxfm8SFtSCONXVLgLnBPwUgDq2xYoD8FBfiwLg592teHuDwyXuiP7+xOr36/1+klbhQdQnNv7sILCggBC0h4oB+9sWIvDepQn7b9lewQuXFtEM0ry/c4ESX004cHtmYbAuYQFRrAevp/Nxymey5vwVVeEBbqbDCrRU8Oa0eHzqVT3Yhg+vNUCtWNDKG/EjMoNiLYwSVhxOrWtCbl5udTiL8/PYHWTRYuLCyGMGgB+B3nj72YSzi3rh/BYrPeJ945LooXOPzOWJSghmAfpB48r10xCVj5wXnrRQRTDuYVEMB/D0hc+B2RhGP8u+n/fsM61Gd7wVNFfnSXZ2kRw6WrhxVF9X17Xy/y9/Wj55Y4h9xi3MwR7SjI14caWAQfWUGIvQKJHTo79DMYz+A+w0sHjmHF6WC8UdxEBaUo3y5cNu0bRrHLJjQIxQyT6Llvd9Ond/Vgq7DizNA5m9QKpd+OJNKz3+52qAcgxGdGxjNXRF80RaTwA285fN70JTabEzjg5sPn6as/TpiqFuCAN3dv7NgG5952LIlmfLPLaS539GnGc/m/DYcdkolRvEb6aE5ePnsyYGO4tWdjLg81d/V+p99QX9mmcxFxq99bBdtgoUEdOCt8OqEHBxE1jw2j3NwCOp+RywuuEuF7Na9FN/7z72hCI3CPwkUamXnpbIvA3wLSAiQeSG4wyiFGHtJYw5ohvOihIKW/ny8vqhgHwyoMjZCcGhWT2EWMr0Ao1xas5HjpoFObGZrAsUBUA9vVobb1Ipx0bhhy4hsUWqMVh1MEs3hiYSSXJwY6EDO4DizCzpFuMfTmD/ssWyA1qhlClzSu6RCNZ3y9k1M6zQgd54Nw569z5oD9W9emhRN6sA0D/mdcF+WiYDBbtecMbTh4vjCevk8zNppBR19/8BzHtmPuWGRgF4CYPmuZs84NYDvI35dtDEBYoL8jJBZzVjHxZvNVzwsJAa41+NieX7rbZTHp3dw84UYB9wBXhfETNoLfLGwEvYukn1e/20OjL27E0pGTRNUyhn+HzDxxvZU55s6dS6+88gqdOnWKOnbsSLNnz6Zu3bqV+HrI2tJs3Gh2qY7gVrXCAujV7/80cTud42AVWMff+MH1uJnBDaIyCFWPPCjxbtxNY3o1ZX1dLR5FXZNcYJWzDR85/Niw5iviglgPTgjJAgEnigMjD1xZ9l+9tqNj4Xvrh72sVmDBhOSgD/QBbjJZZDB3zNnfx4c2IzZdF/GGeenDaM+mZTM3RkQfCNX4WyJf3Q5IS4V3oVZYEN3Ruyk9WiOIXjKJkANhP7dkFz06pDVlZOfS1EGtaZqPD58LGwa4/aebjvLvUlwIsRcDn376KU2ZMoXee+896t69O7355ps0cOBA2rt3L8XGxpbomoqbAWbcxV0O9ZND29pGWoFY7Y4bSzup/mYKUAns5gHiwRIFkRjHC2ui+3rsV1fXBaFbLSZqEUGUnJmxEarBtEFtuDKMWTOHHceTLeeOp1XJK9/e25vtAxiHMF6rMFqzGAjYSKxcZeDWuI6aM8Y9ObwtGwbNgGvcmZpDdSOD2YthxvnJp/jat+SzFwOvv/46jR8/nm6//XZq27YtE31oaCh99NFHJb4mxGzlPsM3Xm4jgdgRq7s/OfRKOxilCZUXrgfm5m4e6rjK6TY+h9m9AHWe3WKiFhFf8jUdA04PojBzF2I8VJF1FnMHJ4WBDSI+CmJi0YIEMaR9PRcDo/6amI8eWCyeGNbGJTde2Vb0mXAg5me/2eVyDT1iagS6ELqaL6IO/X2KT7pC7B4iJyeHtmzZQv3793fs8/X15e3169eX+Lpwd6miDhCFkQSBld/TCDmId3aoEeJ5MgteVPjM9Vi9N4FdR+6gnyfOAfcxvvhwk1md58liovk4uxcV3J2rVBErwMMBSzyMYeC++L+72HRjfzdw+ZNJWY7FAjYIFLyArcUoBSiCt+oRB8BGYLdAZbl5L8wgYryHOHv2LOXn51OdOnWc9mN7z549pudkZ2fzR2+NNwJGIpQLVnnXvuRDDw9sRY8NbcOEjPBUOyBww7K0UosYCgnwtfRlK2lC/f/eK1tSjSB/p/HvrznILqNa4UEeLRrwZ7//SWFSBwoyIC4c0guSZhA3YJyrOs+TsN8Ui+os7s4NC3aVVswWIRj41PzcxZ4b74nfGnq/EtXh9z+fTpaRfXbAHNwt4iWpDSicvQwxa9YsdrWpT6NGjSwt8iB4vBhj52+iEXPX0aylu9kfrojPDNgf7O/HEV5GsRkvzJheTWj2D/vouZHtXa6B8XBdtW8QyZwIfmAEyWQX5NPzI9tzkwK8sBBvNxw6zxliViWe9CoIMrjAxbBIwMj23poDbLB7Y8WftPHQec5y088V52Fu7sI/G9cK5Th1M7gNGfYvXBDNgGeKiw5hPzquo8pUoVNNcSQiLNCQzPTH3c0LC6NZSSzMwUyd0kM6wpSxGA/9/IsvvqCRI0c69o8ZM4aSkpLoq6++8oizg+DNOsLoO4cY64MfOZfOaZjG0krPj2pPWkEB+fr40rqD59hajJcU7YigzAcF+PKLnpmXR4G+fiz6FdYfL4z5BqdNyy4MiIHvFtVkkBEGIx0IAB1JEOMOPy/e20AsLAilNYmZ1weqKJG1f5tYDgbKLgoTxZuWkV0oraAUFZJDaoYGUJ2IEFp/4Bwt2W7um8fi0LVJTf7/lsOJLkYwGNis4hPAcZ+6ui2H8qrCEPrrPjm8HUf1YSHRCogDkFrXi6BBbevSS9/tsQzmmTqwtYO7wji38NejjpJYqr0TFk+zxBf9M+G3hjgP7wGWFxUMhUUW17KKuUBab4PoUCoOhNiLAVjg4WaDuw1AgkRcXBxNnjyZHn300TJt/4QoMxCeWgwKQ0lDPVos9LAaZ3e+at+EbDYO6W0czaGuiLzjcuY+5BqkUxRTjkivpOw8emHpbqeiHECD6BAKDfAlvOZIAMGSAD+9nsCMwUNIUIHhTD8GiwrCcREMZHfuk8Pa8r3PpGVzjDxcc1jksCBhH1Si8MAAtshjrnNu6uwSFQcihV3lvxuO0JieTThLcOY3O5kolV8eFW6gPqEL7OnUbJcqPViAbu/dhCYvKFwYsWDe2bsZR+SB0HEt/P6IHYAxzmyRb1zMgBpAiL2Yrjdw8vfff5+JHq63zz77jHV2oy5fmXq9lQbsFgMcQ5guiiDi5YUOjHROT4/b3QdSgLEjCmC3YMEDAZdhaIAfh/Kqc4MDfNljBQkHkoWaB+aEc7APqaOh/n6UjkIZWXkcx4/EF+jQCOjBwgYbJspQn0fKb9H4tKKiHTC4YhFEoQ1sQ8qCeo95wA6A64cHFF4f98Qc4A04n55N4cEBHPeOwBvYOSBt6K9ttsgXB0LsxcScOXMcQTWdOnWit99+mzm+J6jKxC6o+hBiL0cIsQsqEmKNFwi8BELsAoGXQIJqyhFKYzILrhEILgQ1atTgqDs7CLGXI1JTU/nbLLhGILgQeGIHEgNdOQJ++RMnTni0CpcEKmjn2LFjYgD0st+uhnD2ygUkzjRs2LDM74OXtSq+sJUBEdX4txMDnUDgJRBiFwi8BELs1QhBQUE0Y8YM/hYUD0Fe8NuJgU4g8BIIZxcIvARC7AKBl0CIXSDwEgixCwReAiF2gcBLIMQuEHgJhNgFAi+BELtA4CUQYi9HIH4J2VUSxySoCAixl3M+O2rQqbx2gaA8IcQuEHgJhNgFAi+BELtA4CUQYhcIvARC7AKBl0Bq0Am8HslFPeLQXw192mLCnPvYWR2zupbqa4eebVEhhb3f0KsNvd2iQwIpp6CAu9niOmbXwzXQ4TYpM5fCAv24xxyuY3dfryB29ED/8ssvubliSEgIXXrppfTSSy9Rq1atHGOysrLooYceooULF3IL5YEDB9I777zj1Izx6NGjdM8999Dq1aspPDycGzji2v7+f/9EP/74I02ZMoV27tzJlUifeOIJGjt2LFUFFPelvdBrleb9LhR2czmRlEnT/rfNqfvrZS1juCUyoiHMjqE1M7q3GnEyKZOOnM9w6dqKzqt3FHVpfX3Fn84dXVvG0NNXt+NuuLXCArnJ5NQvtjm1lkaX13uvbEmNa4ZSPZP7ek2lmkGDBtENN9xAl1xyCeXl5dFjjz1GO3bsoF27dlFYWGFbWxDxt99+S/Pnz2c/N1oso9LrunXr+Hh+fj43aaxbty43bTx58iTddtttNH78eHrhhRd4zKFDhyg+Pp7uvvtuuvPOO2nlypX0wAMP8HWxeFTmXm9WL7TVS3uh1yrN+10ogSdm5FBufgGtO1DYQ/2GbnF0abNaFOjvyx1Utx9P5k6rMTWCKC0rn7uknk7JouTMHFr02wmXXvDqWdCO+nxGjmPxAJbuOEVLtpn3mH9hVDwt3X7Sood8LZo6qA3tOJFMzWPCaOz8TY7W13qCH9ahPg2Jr1viRbPKE7sRZ86codjYWFqzZg1ddtllTFi1a9emBQsW0D/+8Q8eAymgTZs2tH79eurRowctW7aMhg0bxjXdFbd/7733aNq0aXy9wMBA/j8IGwuJAhaZpKQkWr58eaUldrz0kz/Z6kR4+pd29o2dPX551LX0fdaz8wooOMCPCQQvIuDufkBZcn2zxebK1rVp2qA29MySnQ5iRD/1j8ZcQnNX73PqwQ5O/PjQtjT4rZ8t7/HF3T3pto9+ZaLEcz0zIp6OnE+nMR9tMh3/rzEX0x3/3mx5vY/GXkL/WnuQJvdtQVuPJXL/+Ctb1eEW0bhHeJAfBfv7kb+vD8XFFL83e7UQ440AIQE1a9bk7y1btlBubi7179/fMaZ169YUFxfnIHZ8t2/f3kmsB7eGRACRvXPnzjxGfw01Bty9MgNEZUZ4wE/7zvJxTwkNY0Hob9/YmeatO0RzVu134jw9m9WiAk2zvd+plCx67tvdjjEguCeHtaUucVH8UpeGimEkdKBt/Ugm9K1Hk2jylS14oaoZFkivf7/XidABcF8sGLb3yczl3+G+T7bycz351Q4Wta2ARdEO/n4+vAgF+fvSk0Pb8u/04vLdziJ/ixiee4C/b4nEed/q1nEFxNerVy8WuQH0UQdnjoqKchoLwsYxNUZP6Oq4OmY3Btw6M9P8xYB9AMf1n/IGuKcdYDgqzrXA0UHoRlEV23jh8wrsBcW/EjOdCB0EA9F34Js/06h3fqF+r62hez/Z6pbYiru4dW4UxYSO+209mshc9nx6jguhFwf/XneYJRU8B+4JFcAKIGI71AoNZO5+c/fGtOHgOZqzer/LbwyVAgvs2v1neVHzamKfNGkSi9kwxFUGwMAHsV19KqLHW0RwgO3xGm6OG68FojHTSQG88AVuiF0Pq4UDnPLR/23jFxqfAwlpTKAHzqS5fcmtFrfsvAKX+9lx263Hkth4ZgZIMTgO4oMK83YRwfsUHTMD1By76y3beYrGzd9EIYF+FBsRbP0b7z9LrevVoHPpXkzsMLotWbKEren6FkswuuXk5LBurcfp06f5mBqDbeNxdcxuDHRveAHMMH36dFYr1Ad9xMobMeGBrFOaAftxvDjXcgelw5oBLzuIRKFLXLTlS735SCIlZuSy/t/v9TUec/3wIH9LztrZsFDZcduP1h5icRqis5Ewb+/VlI8rcR4LCBYSUDuOGQke2/UiQ2jm1e1Mj+mvl5evuRX5E1KyKb8Yi2q1IXbYF0HoixYtolWrVlHTpk2djnft2pUCAgLYeq6wd+9edrX17NmTt/G9fft2SkhIcIxZsWIFE3Lbtm0dY/TXUGPUNcyAhgOqd1hF9RCD7gsruJEAlXupOLoxxjaMttcVYeG2ut8zI9o5XmoAxiYrgHieXLzdRSTXc30zBPr5mnLXrbpFRr/PihN3jouiZTtP0iODWrFx7Z2bu/B357ho1tOVtRwLBhYQWPjDAvzok41HeIzxnP9uOExn07IdxxZO6GF6veiwALciP1ASYvevDqI7LO1fffUVd7JUOjbEZnBcfN9xxx3sH4fRDgR37733MpHCOAcMGDCAifrWW2+ll19+ma8BHzqurTqEwOU2Z84cmjp1Ko0bN44Xls8++4wt9JUdcHdBt4Q+Cx0doju4dEmMYHUjgplwQXRWkgKua7xfeLA//fTnGSYixV3xYlsBXFhvAPTUsJiUmcOcEtBz8V0nkmlo+3pOY7HwQAQ3jlXcFkQIqzhUCDMJRInzQFCAL6Vk5bAL7dklO53mDuv+U8PbkY9P4bVwDAvBxI9/c7kmODtEflzb7J5KOoouwd+uyhP7u+++y99XXHGF0/558+Y5Al7eeOMN9quPHj3aKahGwc/Pj1UAWN+xCMA/j6CaZ555xjEGEgMI+8EHH6S33nqLVYUPP/zQYx97RQOEURruLSUpgLvqCd4oKRjvB717xtc7nYgLL7bVS+0OVobF8KAAuvGfG1kyGNerKYvE4JRbjyXRqj2nmViUtABuCoLG2ElXtKA8TaPcvAIeq7itWhB8fXycpAz9ggBEhRQ+6/UfrOffYdrg1uy3Dw/2Y7H7pn9uoFf/0ZE5+cQrWnBEnBmSM3JZ5IcLTv1OClApnhrWlkbMXUejOjUo9m9W7fzslRkVFVRTlkErnkoK4GjQu2HIUj76OhFBdCol28VIB0J6dHBrGj67MOjJDCunXE7NY8NN5wW93kzyuKpNLD0xrC09vmi7U3ALOO+zI+Np6NtrXYJZAMx52f196HhiJoewqsUDC4GyUaj4Aat7Y5F5aMBFdC4th89FNNzXf5xwUVPgWtt9Ipk6NIqivq1ieR/uAZXn4Jk0OpmSRVsOJxYrPqLacHZB1ZAUlFcAL64ScfFiQ7wGtzNy4T0nU92qC8WVPJ4ZEc/+6deu60SJ6QjqyaOIYH+KDgukYH9furhxtOn9sB+cOMDP161EY3ZvLCZjLm1CN/1zo2NxuKVbHPVqEeMydu/JFJo+pC3N+HoHvbFin4sksWLX6WLbWhSEs5cjqhNnLy7MOK7ys89fd8iJ04IYXh7dgWCTtiIud0ElxZU8AFj53d3Pk+sax8BekZ6dRymZrueYXS8zJ59W/3mG6kQEc7ANwnlBpcEBvlSnRrCEy1YFeDOxWxETRGskgmTlFpgSUEmI9kKQXM73K895CLGXI7yd2CsTMXkjRGcXVEmvgIC8L6hGIBB4BiF2gcBLIMQuEHgJhNgFAi+BELtA4CUQYhcIvARC7AKBl0CIXSDwEgixCwReAiF2gcBLIMQuEHgJhNgFAi+BELtA4CUQYhcIvARC7AKBl0CIXSDwEgixCwReAiF2gcBLIMQuEHgJhNgFAi+BELtA4CUQYhcIvARC7AKBl0CIXSDwEgixCwReAiF2gcBLIMQuEHgJhNgFAi+BELtA4CUQYhcIvARC7AKBl0CIXSDwEgixCwReAiF2gcBLUC2I/aeffqLhw4dT/fr1ycfHhxYvXux0fOzYsbxf/xk0aJDTmPPnz9PNN99MERERFBUVRXfccQelpaU5jdm2bRv16dOHgoODqVGjRvTyyy+Xy/MJBKWBakHs6enp1LFjR5o7d67lGBD3yZMnHZ9PPvnE6TgIfefOnbRixQpasmQJLyATJkxwHE9JSaEBAwZQ48aNacuWLfTKK6/Q008/TR988EGZPptAUGrQqhnwSIsWLXLaN2bMGG3EiBGW5+zatYvP27Rpk2PfsmXLNB8fH+348eO8/c4772jR0dFadna2Y8y0adO0Vq1aeTy35ORkvg++BYLyRrXg7J7gxx9/pNjYWGrVqhXdc889dO7cOcex9evXs+h+8cUXO/b179+ffH19aePGjY4xl112GQUGBjrGDBw4kPbu3UuJiYmm98zOzmaJQP8RCCoKXkHsEOH/85//0MqVK+mll16iNWvW0ODBgyk/P5+Pnzp1ihcCPfz9/almzZp8TI2pU6eO0xi1rcYYMWvWLIqMjHR8oOcLBBUFf/IC3HDDDY7/t2/fnjp06EDNmzdnbt+vX78yu+/06dNpypQpjm1wdiF4QUXBKzi7Ec2aNaOYmBjav38/b9etW5cSEhKcxuTl5bGFHsfUmNOnTzuNUdtqjBFBQUFs3dd/BIKKglcS+19//cU6e7169Xi7Z8+elJSUxFZ2hVWrVlFBQQF1797dMQYW+tzcXMcYWO5hA4iOjq6ApxAIigmtGiA1NVXbunUrf/BIr7/+Ov//yJEjfOzhhx/W1q9frx06dEj74YcftC5dumgtW7bUsrKyHNcYNGiQ1rlzZ23jxo3a2rVr+fiNN97oOJ6UlKTVqVNHu/XWW7UdO3ZoCxcu1EJDQ7X333/f43mKNV5QkagWxL569WomIuMHLreMjAxtwIABWu3atbWAgACtcePG2vjx47VTp045XePcuXNM3OHh4VpERIR2++2380Khxx9//KH17t1bCwoK0ho0aKC9+OKLxZqnELugIuGDf6iccM0113g89ssvv6TqBhjoYJVPTk4W/V1QvXV2vRsKLztcYZs3b3Ych86MfTguEAiqsOtt3rx5jv9PmzaNrrvuOnrvvffIz8+P98HvPXHiROF6AkEZoFzFeD1q165Na9euZWu2HohIu/TSS50i3KoLRIwXeKXrDX7sPXv2uOzHPri8BAJBNYmgu/322zmN9MCBA9StWzfehzj0F198kY8JBIJqQuyvvvoqR5699tprnHIKIMjlkUceoYceeqiipiUQVFtUmM6uh8oGq+56rOjsAq8Nl4Xe/sMPP3AhCVSPAU6cOOFSIUYgEFRhMf7IkSOcenr06FHO+77qqquoRo0anIKKbbjkBAJBNeDs999/PxeLQOGHkJAQx/5Ro0ZxYI1AIKgmnP3nn3+mX375xanyC9CkSRM6fvx4RU1LIKi2qDDODl+6qhRjTD+FOC8QCKoJsaNS65tvvunYhoEOhrkZM2bQkCFDKmpaAkG1RYW53sDBUbARt9+3bx/r7/hGBRkUiTDWhKsOENebwGv97HC9ffrpp/THH38wV+/SpQvXb9cb7KoThNgFXkns4N5IeEEVV+MCAMMdyjZXNwixC7yS2JHWijBZo7iObDfsMzPeVXUIsQu80kCHNUZFzRmJPSwsrELmJBBUZ5S7n12VpgKho+Eiyi0rgJujeSLEe4FAUMWJXZWcAmeHP11vjEOATY8ePWj8+PHlPS2BoNqj3IldlaZCpNzDDz8sIrtA4E0prt4CMdAJvLbX2xdffEGfffYZZ77l5OQ4Hfvtt98qbF4CQXVEhVnj3377bS4/hU6oW7du5dJUtWrVooMHD3KHVYFAUE2I/Z133qEPPviAZs+ezYa5qVOncu+0++67j8VcgUBQTYgdortyscEin5qayv+/9dZbuXKNQCCoJsSOYpNoiQzExcXRhg0b+P+HDh1it5xAIKgmxH7llVfS119/zf+H7v7ggw9yaarrr7+eq9UIBIJq4npD8Qp8VCLMwoULOQGmZcuWdNddd7lUsKkOENeboCIhfvZyhBC7wCvF+BYtWtDTTz9Nf/75Z0VNQSDwKlQYsU+aNIm+/fZbatOmDV1yySX01ltv0alTpypqOgJBtUeFi/Hg7B9//DG722CJ79u3L91yyy102223UXWDiPECryZ2PeB+u+eeezjNVYpXCATVKDZe4ddff6UFCxZwPToQxLXXXlvRUxIIqh38K4v4Dr87Wj+huEV4eHhFTUsgqLaoMGJv3bo1G+ZgqLvhhhs4IUYgEFRDYt+7dy8H0AgEgmruelOEvmXLFvrvf//Ln5LmsKMs9fDhw6l+/fpc227x4sVOx2GDfOqpp6hevXqcdNO/f39uSKEH4vRRsx6Gs6ioKLrjjjtcWkfDcNinTx8KDg6mRo0a0csvv1yi+QoEFQKtgnD69Gntiiuu0Hx8fLTo6Gj+4P9XXnmllpCQUKxrLV26VHv88ce1L7/8Ep4FbdGiRU7HX3zxRS0yMlJbvHix9scff2hXX3211rRpUy0zM9MxZtCgQVrHjh21DRs2aD///LPWokUL7cYbb3QcT05O1urUqaPdfPPN2o4dO7RPPvlECwkJ0d5//32P54lrYH74FgjKGxVG7Nddd5128cUXa7t27XLs27lzJ++74YYbSnxdI7EXFBRodevW1V555RXHvqSkJC0oKIgJFsAccN6mTZscY5YtW8aLz/Hjx3n7nXfe4QUpOzvbMWbatGlaq1atPJ6bELugIlFhYvzy5cu5gAUi6BTatm1Lc+fOpWXLlpXafWDpR2QeRHcF+Lq7d+9O69ev5218Q3RHvzkFjPf19aWNGzc6xqBLjT5BB73qYHtAj3kzZGdnsytR/xEIvLJlc0BAgMt+7MOx0oIKwTVa+7GtjuHb2JkG2Xg1a9Z0GmN2Df09jJg1axYvLOoDPV8g8Mp89vvvv59OnDjh2Hf8+HHOa+/Xrx9VB0yfPp2j5dTn2LFjFT0lgRejwoh9zpw5LNaifnzz5s3507RpU96HunSlWREHOH36tNN+bKtj+E5ISHBpMAkLvX6M2TX09zAC3W5g3dd/BAKv87NDpIWr7YcffqA9e/bwPujvet26NIAFBMS4cuVK6tSpE+/DggJdHHH4QM+ePSkpKYndgF27duV9q1atYnUCur0a8/jjj1Nubq5D/UCBzFatWlF0dHSpzlkgKBNo1QCpqana1q1b+YNHev311/n/R44ccbjeoqKitK+++krbtm2bNmLECFPXW+fOnbWNGzdqa9eu1Vq2bOnkeoMFH663W2+9lV1vCxcu1EJDQ8X1JqgyqFBi/+GHH7Tp06drd9xxh3b77bc7fYqD1atXMxEZP2PGjHG435588kkmVrjc+vXrp+3du9fpGufOnWPiDg8P1yIiIngOWET0gI++d+/efI0GDRrwIlIcCLELKhIVluI6c+ZMeuaZZ9jdhcg2Y/vmRYsWUXWDpLgKvFJnf++992j+/PlcJ14gEFRjazx6u0kfdoHAC4j9zjvv5IIVAoGgmovxWVlZ3OsNrrcOHTq4RNO9/vrrFTU1gaBaosKIHemiyu+9Y8cOp2NGY51AIKhmBSerO8QaL/BKnV1h//799N1331FmZiZvy9ojEFQzYj937hwnvFx00UU0ZMgQOnnyJO9HhZiHHnqooqYlEFRbVBixI7sNRjn0aQ8NDXXsRxdX5LoLBIJqYqD7/vvvWXxv2LChS226I0eOVNS0BIJqiwrj7Onp6U4cXQFppUgNFQgE1YTYUaX1P//5j5O7DSmlqNiKfm8CgaCaiPEgahjoNm/ezKGzU6dOpZ07dzJnX7duXUVNSyCotqgwzh4fH88toHr37k0jRoxgsR6tn7Zu3cpVawQCQTUIqkG1l0GDBnHmmzd1hZGgGoHXcXa43BAuKxAIvECMv+WWW+hf//pXRd1eIPA6VJiBDtVbP/roI856Q5HHsLAwp+OS9SYQVBNiR6Zbly5d+P8w1OkhWW8CgRdmvf3111/cnRWtmKo6xEAnqEhUegpC/7fDhw9X9DQEgiqPSk/slVzwEAiqDCo9sQsEgtKBELtA4CUQYhcIvASVntjFDScQeAmxi4FOIKjCxI5EGH9/f5cS0mbYtWsXNW7cuFzmJRBUZ/hXVCJMXFwc5efne9THXSAQVGEx/vHHH6fHHnuMi1UIBIJqHC7buXNnrhkPkR5iujER5rfffqPqBgmXFXhlIszIkSMr6tYCgVeiwoj94MGDNG7cOLr88ssragoCgVehwnR2iLJXXXUVl6V64YUX6MSJExU1FYHAK1BhxL548WI6fvw43XPPPfTpp5+y3j548GD6/PPPWY8XCATVKKimdu3aNGXKFPrjjz9o48aN1KJFC7rttts4fx3tofbt21eR0xMIqhUqRQQdmjquWLGCP35+ftzocfv27ZzL/sYbb1T09ASCaoEKc71BVP/6669p3rx53PetQ4cOdOedd9JNN93kcEstWrSIjXiJiYlUHSCuN4FXcvZ69erR+PHjWVf/9ddfuTPM3Xff7UQEaAMVFRV1wfd6+umnOaFG/2ndurXjeFZWFk2aNIlq1apF4eHhNHr0aDp9+rTTNdBtdujQodyfLjY2lh555BEumikQVBVUmOsN4vm1115LwcHBlmNA6IcOHSqV+7Vr144r2SogNl8B9oFvv/2WjYPgvJMnT+buNKoNFcJ6Qeh169alX375hdUO2BYQ9gtPgkBQJaB5AWbMmKF17NjR9FhSUpIWEBCgff755459u3fvhmqjrV+/nreXLl2q+fr6aqdOnXKMeffdd7WIiAgtOzvb43kkJyfzdfEtEJQ3KoWBrjwAyz6s/M2aNaObb76ZxXJgy5YtbD/o37+/YyxEfCTqrF+/nrfx3b59e6pTp45jzMCBA1kHRzNKgaAqoMLE+PJE9+7daf78+dSqVSsWwWfOnMkto5Fie+rUKQoMDHSxDYCwcQzAt57Q1XF1zArZ2dn8UcDiIBBUFLyC2BGsowCrP4gfhsHPPvuMQkJCyuy+s2bN4oVFIKgM8BoxXg9w8Ysuuoiz7mB0Q3/4pKQkpzGwxuMYgG+jdV5tqzFmmD59OrvZ1OfYsWNl8jwCgSfwSmJPS0ujAwcOsPsPfeZgVV+5cqXj+N69e1mn79mzJ2/jG0E+CQkJjjEIAIKbEIE/VggKCuIx+o9AUGHQvAAPPfSQ9uOPP2qHDh3S1q1bp/Xv31+LiYnREhIS+Pjdd9+txcXFaatWrdI2b96s9ezZkz8KeXl5Wnx8vDZgwADt999/15YvX67Vrl1bmz59erHmIdZ4QUXCK4j9+uuv1+rVq6cFBgZqDRo04O39+/c7jmdmZmoTJ07UoqOjtdDQUG3UqFHayZMnna5x+PBhbfDgwVpISAgvFFhAcnNzizUPIXZBRaLSN3asTpBwWUFFwit1doHAGyHELhB4CYTYBQIvgRC7QOAlEGIXCLwEQuwCgZdAiF0g8BIIsQsEXgIhdoHASyDELhB4CYTYBQIvgRC7QOAlEGIXCLwEQuwCgZdAiF0g8BIIsQsEXgIhdoHASyDELhB4CYTYBQIvgRC7QOAlEGIXCLwEQuwCgZdAiF0g8BIIsQsEXgIhdoHASyDELhB4CYTYBQIvgRC7QOAlEGIXCLwEQuwCgZdAiF0g8BIIsQsEXgIhdoHASyDELhB4CYTYBQIvgRC7QOAlEGIXCLwEQuwCgZdAiF0g8BL4V/QEqhrmzp1Lr7zyCp06dYo6duxIs2fPpm7dul3QNZMzcuhMWjblF2ikFa3ABUSUmplHYUF+FBrgR36+PpSWk08pmbkUGRJAYYF+lJmfT8npeRQR6k+h/n58PDUzlyKKjmfk4Xgu1awRQEG+fo7zaxm2cb3wQD++b0puPvn5EBVoRClF9w8L8CNfXx9Kz80nTBBzTM/Oo/Bg/6JtjYL9/ciHiM6l5/B+nJOraZSVW0Bp2XlUI8ifQjDn3DwizcdxjRpqbAHG5pOPT+GxtKzC6+M58JLmYXxOPqVn51KtsCDKzi+glIy/nzUxPYtqhARRTn4BpWZh3v48H/yDbx8fogBfX8rKK+Br1wgpvK9WkE8+Rb9FWlYu1Y4IouzcAn72GiF4dv/C3zUrl2oEB1Cwvy9fKzuvwPH7hAf5U2ZePqVn5VJMeDDPU43H74q/K367jOx8iii6b1pu4d8qJrzoWfB3C/7775aSkUdR4f4UbPw7BftTw+jQEr1nQuzFwKeffkpTpkyh9957j7p3705vvvkmDRw4kPbu3UuxsbEluuaJpEx6avEOuqF7HC3YeIRu6dGY5q09RD/vP8fHQwP96KMxl9Dc1fsc+4DeLWrRsyPj6dklO+mVazvRo4u20zrD8SeHtaNXv99DL//j7+MXxYbTB7ddbDr+uZHtKTkjm+asOuC4V0x4IC2c0INe+GYX3dS9Mc1bd8jpvF4tatHtvZry3Mf3acbEfdd/t9Dcm7rQnFXOc+7XujZNHdSGnvl2p+MaeL5/jbmY/vXzQbrB5PqF84qn55bsol8Onqe3b+xMb/ywz2kMrotnfXzxdtO5/W/LMXqgfyt68qsdtNZw7edHtqdZy3bTmj/P0vu3dqUnF+3gOeO5P76zh8vv1KdFDE3q25zG/XszZeTkO66DZ68XFULTTcZP7Nuc7tCNx747+jQlTSN6c+UOl+cd26spvbxsD71/W1fTv9Pzo9pT41phVFz4aBpuKfAEIPBLLrmE5syZw9sFBQXUqFEjuvfee+nRRx91e35KSgpFRkZScnIyRUREMEefvGArdYyLoq1HE6lzXDT9fjTR6YWcfGULPqb/gxsJ4fHFOyyPvzCqvdMLuGLKZfT01zstx+N+N3yw0bEPhPjRukM8N6t5gKjU8aHt61GdiGAmWv1zWD2L2md3fcyrU1w0/99sjN1vhLmN69WUn8Hq2lgQth5Loj+OJjoWJ/Xcds87Z9V+x75Zo+Jp6faTToub3XgQ/OD2demxRTtMxz99dTvbv9OLozsUm8OLzu4hcnJyaMuWLdS/f3/HPl9fX95ev3696TnZ2dlM4PqPHmfTcujn/Wepc6Mo/qPi20gg6pgZMDYzt8D2OERK/fG8fM12PMRfPWIjghxzszpPfxyEjnOMz2H1LPpnt5sXjluNcTc39QxW18ZxXENPqHbnqPnqERsRbEroVuPxd8dvZTXe3d8JqkpxIcTuIc6ePUv5+flUp04dp/3Yhv5uhlmzZjEnVx9IAXqkZOXyN/Q//bceZvv0gN5nB+h6dttGpGXlm267m4f+GYzXMI6xOs/d9a3GuDvXaj7648ZruDvHON7T38fTc9z9nWATKC6E2MsQ06dPZ5FdfY4dO+Z0HAYZIMjf1+lbD7N9etQIKbyGFWDAsts2IjzYz3Tb3Tz0z2C8hnGM1Xnurm81xt25VvPRHzdew905xvGe/j6enuPu7wTjX3EhxO4hYmJiyM/Pj06fPu20H9t169Y1PScoKIh1c/3H6ZrhgXRZyxjWF6Gn4btPi1pOY9QxM0B3Cwnw5W+r47Du6o/7+/nYjk/PduZoCSnZvN9uHmru+D6dksXnGJ9DPYvx3vpnt3tOHLcaY3Zd/dzUM5ihd9Fx/u1bxjj2252j5qtHQkqW6TNbjYfOjt/Kary7vxO8GMWFELuHCAwMpK5du9LKlSsd+2Cgw3bPnj1LdM3I0EA2tOw5mcJGol0nkun23k35RVD4aO0hurdvS6d9f1vj29N9n2xlS7TxxcD2U8Pb0cOf/85WdnV80n9/c9o2Wnl9qMDppZ/2v21sLNqNufVq6kJsyuKNuU/u25LqRYbwOZOvbOl0HQDXwFz118DzTe7bgvacSDG9vvIS4DfCWLMxuC7GWM3tiy3HLH8jPDOs9bj2hMuaOeaMZzA7B38H/D0wXn+d+lEh9ORw8/GTDeOVNR6/ldnzYs74O8HbYjXnkrjfxBpfTNfbmDFj6P3332ffOlxvn332Ge3Zs8dFl/fEGu/Wz56Vx66pMJ2fXe+/NfWz646znz0jl6LDAxz+Whw3bmN8DQs/eyj8yBZ+duXLNvrZw4L9+Ry9nx2+6FDlZycfdju5+Nnz8skHx6Az684JsPKzZ/79rIkZWRQeHES5ej87O9oL/ezkQxSo/OxF18Z5ej87rh1Tw42fPcCXr6f87Ph9auj87LXCg9nFZuVnh38/vMjPDr9+zbDC2AD9s7CfPTOPokL9KdjP8HcSP3v54Prrr6czZ87QU089xUa5Tp060fLlyz0idHccHp/KgPoXeH6T2lQhaFQCv7O3QTh7OcKKswsE5QHR2QUCL4EQu0DgJRCdvRyhNCZjJJ1AcKGoUaMGJxHZQYi9HJGamsrfxkg6geBC4YkdSAx05Qj45U+cOOHRKlwSQGLAQoJIPTEAetdvV0M4e+UCEmcaNmxY5vcxi9YTeIbq/NuJgU4g8BIIsQsEXgIh9moEJN7MmDGDvwXFQ5AX/HZioBMIvATC2QUCL4EQu0DgJRBiFwi8BELsAoGXQIhdIPASCLELBF6CKk/sKNeMxg2IDUZXlpEjR3KHFj2ysrJo0qRJVKtWLQoPD6fRo0c7FY78448/6MYbb+TY6JCQEGrTpg299dZbLvf68ccfqUuXLuyLbdGiBc2fP79cnlEgKA1UeWJfs2YNE/KGDRtoxYoVlJubSwMGDKD09HTHmAcffJC++eYb+vzzz3k8klGuueYax3E0f8BC8d///pd27txJjz/+OJeBVp1fgEOHDtHQoUOpb9++9Pvvv9MDDzxAd955J3333Xfl/swCQYmgVTMkJCQgSEhbs2YNbyclJWkBAQHa559/7hize/duHrN+/XrL60ycOFHr27evY3vq1Klau3btnMZcf/312sCBAz2eW0FBgZacnMzfAkF5o8pzdrO8XqBmzZoOrg1ur2/b1Lp1a4qLi7Ns26Suo64BYKz+GgCaOtpdw9j+6fjx41yDTuW1CwTlCd/qli8O8bpXr14UHx/P+1AFFjXfo6KiPG7b9Msvv3DZ6AkTJjj2YaxZ6ycQcWZmZonaPwkE5YlqRezQ3Xfs2EELFy4s8TVw/ogRIzgpArp/WbZ/EgjKE9WmeMXkyZNpyZIl9NNPPzkViEBrJnRgTUpKcuLuZm2bdu3aRf369WOO/sQTTzgdw1iz1k8odAALvhlgta/OWVSCqoUqz9mRtAdCX7RoEa1atYqaNm3qdBwtmwICApzaNsE1d/ToUae2TbDCw9KOji/PP/+8y30wVn8NANb/krZ+EgjKHVoVxz333KNFRkZqP/74o3by5EnHJyMjwzHm7rvv1uLi4rRVq1Zpmzdv1nr27Mkfhe3bt2u1a9fWbrnlFqdrwLKvcPDgQS00NFR75JFH2Jo/d+5czc/PT1u+fLnHc4UlHj85vgWC8kaVJ3ZuNWbymTdvnmNMZmYmu9Kio6OZYEeNGsXErDBjxgzTazRu3NjpXqtXr9Y6deqkBQYGas2aNXO6hycQYvdOJKVna/tPp2q/HTmv7U9I5e2KgBSvKEdI+yfvw4mkTO4I+/O+s459aNON7r3o/FqeEGIvRwixlw7Q9fZsWg6lZOVSREgAxYQVNsa02l9RcwsP8qfEjBzuRIuuuOjuGuDnSz/vO0M7jyfTq9d25K6yiekYn0cRIf4UHRpIdSKC+TroiJtXoFGBplFGdh4/y4U8U7WxxguqDi6EKM045VVtYunJYW3p8cU7KpSDnsDcvthGP+8/69SLfWLf5nTHvzczsev7s2MhwJzX7T/n0n/95eV7aFSXhjRv3SGn4xfyTMLZyxHC2S9MrMUiMfmTrU7nApOvbEFbjyY6EYX+2rNv7FzmHJ7ntmCrE6Er9GpRizrHRdOcVfsd+0DwQ9rXpemLdriMB8Hf3qspfWQg9At9pirvehNUHYAgjIQObD6SSGv+PEP7Tqcy0R44k8ZjjYA0YDwX6NwoypQogJ/2neXzyhoJqdmmhA5gbpijHhgbGxFsOn7t/nMUGxFU6s8kYryg3GBGrNBn376xM4ur07/cbsvtIfabITuvwPa+qRbnlSaSMu3vYTZHu3mnZRWK/KX5TELsgnKDGbGO693URS9V3OvR/21zElcjggNMrxvkby+g1rA4rzQRFuhne9xsjnbzhrEOCyF+H0gFWBiCA/zot6OJ9NHaQxTi5n5mEDFeUG4wI9biiOAx4YHM8Y3YeiyJ9VwzYDzOK2uEBfqzbm4G7Mcc9ejTMoYSUrJMx+NZggJ86V9jLma1Bsa9iR//RuPmb+Jt7A/0Kz7pCrELyg1mxFocERwcHqK98Rp7T6bQC6Pau+zH9kujO5SL+y0qNIDuvbKlC8HDEDe5b0vmxvp9z42Ip4ub1nRZpLD97Mj2lJ1TQO+s3u+yEGL7ndUHKCff/nczg1jjyxFijS+0xkM8B9cGwKXAuaywcsrl1Dw23NR1h4UAIjoWEb2f3bi/tN2EgJnr8GRSJv345xmKrRHkELvDg/woNjyI0nPzKSM7n2oU+dLhN7/2/fW8GMEYBx09PNifcz1SM3KpZo0gGvzWz2SFZff3oTb1ivcOic4uKFfA4AY9XBElXnxwYEX8nojgICwzIrbaX1puwtBAP/po7CU0d9V+J8u73pg4JL6uRwsOFpG29SIcC53eUAnuvXB8D9u5ZeTkFft5RIwXlDvw8oNbd4qLpsYxYaaieXmK4GaEeORsOk374g8n7wGMZbNX7XNxsSljIs7TPxu+reZvVEmMhsqsPHtrvJWx0g7C2QWVjtuXlgh+Idx87KVN6GeDvgxjoj4wxkjwp1KyijVn/XNn5+U7XRuxB9D/zYyX2F8SA50Qu6BSoLRFcDO9Oy07l6JCAyknr4DSsvNcdPAC0mjzofNM6KGBrq4v6OKI1oOxTYW+6vFXYiZfH7HtZveHjh8dEkAB/r4cC5+SmUuRIQE8j6xcZ7fkwl+P0r/GXkKvfrfXSbrog+i63k0pORNeirBi/Q5C7IJqDcWptxxJZJ345e/2OnFLuMAm9W1Bkxf8Rgvu7EFLtp/k4/PHXuLQofUcF1wV++/7ZKspwR86k075BZojGEiv9zeKDqH/3NGNpv5vm0s8/HMj2/PxY4mZvMi88o+OlJWTR4Pj6/Lig8UGfvmElGzy8/Gh8BKI8WKNL0eINb58AY760Od/UOt6ETSgbR16ZfkeF9FcEfC4Xk1p/rpDjuPwEljFppvFuqt9vVvEsMsM4jmgj+X/enIvemn5HtNrguAfH9qWLfCQHupHBtO3RQuPEeDur17XyUWCcAcx0AmqLRDCen//liyG+/j4mBI6AIJCnLr+OMZbBfsYY917qcSVtYdYLO/QKIrTU43hwf5+vpbXRDw8MOua9nRxXDTVjQyxHIt5pmUV3xovYrygWgLi8xOLtjsI+J2bu9iOh99bj6xce2t4WJA/XxOiNaLjINZ3jotibowot1GdG7CNQI9UN/HzSRm5tHTbCZpxdTydTM50M1YSYQRVHBdagALng2ieWPw3oQOhAX4sHpvFmUP3RqGJ4sTbB/v70cOf/8H/hxHvn7ddzLp0ZtEiMWvpbnpscBunc2qE2OvZ4cF+POeZX++k6UOczzUi1DBfTyDELqg2JZys3GYweEWFBTLHNTO2Ldh4hN1mCGNVPnRwazvX1+5TKbT03t6Una/Rc0t2ulwXYn1SZo7TNfLyC1g3VyK7HtgP4xuAOczw97G9vw8VH6KzCyp1rrs+YMXT843x9uC8r3znahhjqztSawe3oUBfX3pmRDtHbDs4PggWxjA9FCE/u2QXrT90np5dstPFFoDrwoofEuBPM4a3c1xj0se/0bMj403j4Z8a3o7nrwDpBPfpZXF/jWuiFg/C2QWVAlaFKfTZb3bivP58owhuFwyzdv85OpOWTbfO+5XdbcPa12PLPBYMfx8femJYW/afK9eX0s8h+sPvbsalFcHnaRp9v+MUi+SPogZdbj5lZufRrFHtKS0nnwkaojs4+k3/3OCU4efjQ7Rw4xG28Kv5qPtDEnliaFsqLoTYBZUCVoUpPC3WoD/fKIK7y6xLyig89+Ev/qDP7+5JTy7e4SBiGOGQXmoGd9fNzMmnXw+dpzdW7HPsw7yeGtaWvtt5ijYdPm8ppmPhuqF7Y1M/P7LoAn2LL8gLsQsqBdzFersrQKE/HyI4dHEAxOTO2BZUdByc9a7/bKEPx1xMqf/f3nmAR1Wlb/yQhEBC770TSQiIigJS7AoICpZ17YgiYm9rQUEE69pXbKyuyu5fcdVVEETshY4V6YggSO+B9ITM//l9kzOcuXPLTAgQkvs+Tx7I3H4z3znf+cr7UuGWC6Or83W9zltYVGS7dHh42jJ1fJs64o7rz0yX/qpebcR7AKMHpKl7+6eKd0GJ7JY9uZIpyPKonbeDv2b3USbgREwRLQGFeTwudjAVVkeKYxrUqCKVctEQS6zcmqnOf3mOBOzoUWf+dDoWw7Ou6TU4Zs7vTnny7er4VnVD90gnHZV1027urR4e3Ek1r5MkS4p3rztRpTerpXZmFihd+rYxI1fd+PZPKsuDtqpcGjuyyCeccIKqUaOGatiwoRo8eLBouZnIzc0Vhdd69eqp6tWrqwsuuCBCpBHttwEDBqjk5GQ5z1133aUKC8Nzr99884067rjjRKyxffv26s033zwkz1gR4ERMEW33m/V4DB73d+KcP6Sf/O8258YgdTGMCWZ4Wk83ZeSqzRm5amT/1IigGoNEk1pJUqduF0Qbe256xHlNxMdVkrw89wgDzZX/WqCe+3xlUIoooFTVxHg1cPwsde4Ls9WQNxbIUoJ7Yn+7VGGFcOO//fZbMWQMHuO87777RGoZRdZq1YKNArfffrv6+OOP1XvvvSflqghBnn/++Wr27Nmyfd++fWLoKLWizb5p0yZ15ZVXiiDko48+KvusWbNG9hkxYoR66623RORx2LBhqkmTJqpv376H9R2UFxxo95vX8eMt2yCLoPDGrsadgYGZm6j7/13TTVpWGRgopsnKKxRvgBlWR/t1EK1F3SS1aH2G9JvbnVeDbTr4BvA+alRJUKOKeeRvOyMlLBVoHaQqx8e+Zi93tfHbtm2TmZlB4KSTTpI69AYNGqi3335bXXjhhbLP8uXLVVpampo7d67q0aOH+uSTT9TAgQPVxo0bVaNGjWSfV155Rd1zzz1yvsTERPk/Awb67RoXX3yxSEHPmDEjqnvza+PLPnOO6U2AB6YsVjec2l7tzKINtUi1qJOsnpixzLHGfuDRTVWb+tXU/DU7JDhnX9teX91x1lFqV3aB2pyRo9o3rK6a105S9/yPQqDgfdx+Zorq1rquesFCTaUDdHWrVVYdGldwphoMCdStW1f+/fHHH1VBQYE644wzQvukpqaqli1bhoydfzt37hwydMBsff3114uU87HHHiv7mOfQ+9x2222O95KXlyc/prH7iA0HW9KpqYc3QJ585AeovOwIFegQB1CKWnuj9TSlvnpoUCdVpzigR1oOw3/woyVhKUWWA0N6tVaXvTZfZneOg4+Oltsf1+2SKr/jWtYRN51rcf2CfUVBKah9Aan6u2bi9+p/1/eM+VnLlbEXFRWJ8fXq1Ut16tRJPtu8ebPMzLVrh5P0Y9hs0/uYhq63621u+2DAOTk5KikpyTaeMHbs2FJ+yoqDQyWKWMuhl56BZqRRXw8wUNbOowakSZNNRnFPOgIXifGVQufR/75wybEiILFtb56sx+eu3hHWHsuz3T95kbrjzKMcW2pZPpBbv7R7q1B5b4WnpWLtjpv9zjvvqLKAkSNHiqehf/7888/DfUvluqKOz37fmumqKlMahT4Y230fLhYSjBZ1k9Xs37erhz5epv7YkR1xTYwej6ROtUQZGJi1WeMza2uQ04f0wo4/X1fjdWxaS/7lWFAhA3QaBN2mTZumvvvuO9W8efPQ5wTd8vPzZW1tzu5E49mm91mwYEHY+XS03tzHGsHnd9bedrM6IGrPj4+DX1F3MLyAPR6FPFTIDX5xtkTVmZX35hVG3Ne6HVniHVjX3VYCDOIBbi21BPIkcl9cQosabIWb2YkvYugffvih+uqrr1SbNsGRT6Nr164SVSd6rkFqjlTbiSeeKL/z76JFi9TWrVtD+3z++ediyB07dgztY55D76PP4aN0QAR8+aY9anvm/liHHVBA1TM4xzxgUXCNpa6+pIU+BYVFYqx69m1Sq2pYpR/3ZTV0oPfXszSAosoKZn/W8MQImMnJw7esl6yu69NO7cxyfz/lcmbHdSfSPmXKFMm16zU2UW9mXP695ppr1B133CFBOwz45ptvFiMlOAdI1WHUV1xxhXriiSfkHKNGjZJz65mZlNsLL7yg7r77bnX11VfLwPLuu+9KhN5H6cCcBYNBMGfgEmsaZoJcQ3q2VnNW74hId0VTV+9VqGNHc20txuGeceuhxtZAd91rtganpTaIqBA0qaXNNbxumilJI8wRP7O//PLLsh4+5ZRTJOetf/773/+G9nn22WcltUYxDek4XPIPPvggtD0+Pl6WAPzLIHD55ZdLnn3cuHGhffAYMGxm8y5duqinn35avfbaa36OvZRgnQV1fbsdrIbGjG6dKZ28gIwY1vpOhT4mM42efamCKwooVVBUpFZu2atWb8uUfc21uRW47pzr9jM6qIV/BtlkvTTwWN+Pm7pEJSfErvVW7vLsZRl+nt0ZuO79DAUUq2iC1dDsCB/t1GU4zzvDe0g0HOMiNUauvHnd5P1r/fd/jUijkWdHrDEju0Bt3JMjxTQoukAagUYb8QGu73aPMMRe3K2lIznljNv6qKqV41ROfpFatzNb8vMPTQ22zHop5fiKMD6OWNB0YkLXt+vqtBpVE2TdOn3xZkfjsXah6Zz4EzOWh7Wi4go/cl5nVTupclAIwjJ74ilgzFSx4ZrbFbYw4y/ekOEYQQdUyNEvzzNYW2xx3WlsGf3h4rAcPim9u/unysBS2pLNR7wb76N8oGbVyHlH17czwxEsq5IQH6oNtwP5bhMYDkyv1p7zWat2qFEfLpZmFycSSgwe7nhttKY7rgNsMMl6kVJyrRPbRtbOQ5hBdZ41h09K7/FPlkspb2nLUPszu48yAfLQbpRNbK+aEOcaMKP1k5mcGZ7OMWZljMcOM1dtV3tyCj2DgJe8Ot82VSb166e7P5P2NPYFAmr6rX3UH9uzQgQUbHMjvkhMiHN9H26xACf4M7uPQw67gBgc6Mgu21E28TnbnQJmrLGRS7550s8hLXP60alcc0Oyh8Ho7XapMuA1++p+d8guYZY1O9e4Pzes3ZGtHjw33ZHCakemvba7G/yZ3cchhVvxS8t61dTTFx0jKSvW8Lj2zOimGAIFMk/+pcv+fYolkJn1P7i+p1pdPHsyy7Mmd0PVynHSj+7U1JJUvObXbLSk4kzpJ67jRgqpMwpE53u0Dc7G+ljoqNzQqGYVlV+4TwaYe/qnFks676ew+s813VWs8I3dR5kpgaUhBcN2UzpxGywoanl0+jI5H4Y15cZejq7wGakNJFVGRxvOdpgkVPv6asy56eqx6UvVl8u3GZ/vd+epmqMTzo5txqxn15mDri3rSAxBLyswWqcWVo7/dMkWWfPbReR5JgKWscJPvR1CVPTUG6776c98G/aZKZ5IDXndaomOnW0MFqacknl8z7b1ZKauXqWydI/Rh16vWqKaeHU3NcbSedZLtNU6Se/4z+t2h4k3MluTZnvtu9/VF4aha2CguNfEA+Ljlfpk8WZ1aoeGQhCZV1Ak3gBdaruzCtQPBi+9Tpc9+jHtsdvFS4CJZvSUYP+6eW96gHhvRA+18M8MGfy0d0FLLKQZTetUVR0a+ak3H2UU1lpzpyoxp5p2a7282/HTb+mj9uTkC63UuHPTxb03iSeYlbWRWdNiuO52hg4w1D92ZKm35q9VDwxMV9/bEEo61QGwDr+rXwc1IredtLTCGWmy2ZrstT3b1lXQzE1ftCnMM9EqrpkewUU7+Mbu45DB2qnlVCWm3XrW5mia6V72oEzx/tn8lKMaBMtme7cNcrkVz6IcT1qLZQEeAmtmgA+LhhvYtte5Xt6LNZbtdKHRmuqUY7fLrTOba2FHqu7++/26YNuq5R2cntpA+tjv+3BRxBKE+AJ3Rw98rPCN3cchA0UkZkDLjc8dg8Xtv/S1+aHP3h7W3XE2t6bHOB7Ch6z8faGqNHPfvunh3AQmomGjdbt3s+7dvCZ1AtZnn7d6ZxitFZF71GuQbnYToszb5z4g2cE3dh+HDMghmQEtrxk0Lq6S8LZrXbbv1+4UamW3qjVzRkUnXYJ5NvsuWp/hGInXrLFOUXpc7Y4eparms5Ea/NtZHdTe3PyI7bpwSIMZn5TkZd1buZ7frkvOC36e3cchA8Ezk+KZwhc3sL4mNw37KgbQuVkt1bl57aillDF2vcZPToyX8tf3R5yo3rm2h+rcvJYaN6iTeuKCzmH5di/WWN0A4zX7t6qbLAMVz9mlRW01/svf5Lz6Wk7Hc//RcN37FXQ+yjRYsx7fqk5oJmMW88pTa+h9RpzczvUaesYkSKepmzCwFy49Vr0xa4167ovwYBrFOB/f3FuCZ1S6WVljbzylvTSTkrc3pZ/4v1uF2ydLNke4+bjeOv22aEOGbepN37+bsCReh115sRf81NshREVPvYH1O7ODvG7FuXDW2TSLmEbjFtH++JZe6pPFWxyll5lJ4Yp/4oKjRT6ZKDzpvGc+W+HMCNu5iYgxPPnpiogU3fA+bVXdalUkSEgwMKlyvCoKBFS1KvEqvlKctLQiBqGvjwFDKOnUrDP15l7q2c9Xqit6tFINa1RVu4s57EjXUb7boEaiuvCVubKvXUcd5x83OF21qV895nfvG/shREU3dgpiiJKnNqkZMta6yZWl3ZQcNZ1c1ITT2WbmpzUYHGBrccpN01I6ekBHUXIhMKc72rzaRf815HiJ0sP5TrELRo0bvXhjhiwd/jVrjaNEkzbwUQPTZBBQgUrqglfmODbrTBx6gmQInv50eUTQUJ5h/jo1rE8bdXXx/Zo1AAwKeBi06R7XKsieHAt8N97HIa+e+2LZ1pDxXndyW0mrgYKigKpaLFhoFtvoGZx5aYzF0AG/c9T9AzrKcQSvSFtpY4omlQZWb8sSpRZy6Do9ZjV0gBcSMIKBuOLot6ECs2lPrqs4RLM6SUIvPculLfbFb36XQOTIDxeHlgKmt/P6kBMkiOhWaWgH39h9HBLYFcS8eCmR9jj1yPRlEXnmt4b1UOOmLQlb9741rLtjOgrjwQAqx1VSW/bmhe0XrbAjoJlGp8JQaYk2vYbB5+4rEqpox7V2Sn1x1WdFQSx56+kpIWquhjWrqC+XbRVDP65lbambz8gNNg/FAt/YfRyW6jlm9KTEOPXiV+HEECCtaS0xdOvnuNdeqbqxU5eoSyxpK4JdfVxSaXTHpTetKZ4DywCMi9nebYa28xjobLMqyGoPhZ52liiFFORHcU7uSUtFc4/M+NTjs3x4+OOlvj67j7Kr2mIytWIA/dObqG2ZeerHdbvFXTbddSLNdjOq1wzNWhaDxiBMYIAvXHpshIqLjsYTFPvrhHnq6b90oc4utJ3yWjdY7wfKKpNh59rebVWT2lXVw9OWhp7Hi0hTn9M8N4MGZBdAxwn+1tcvqvFxiBEtX7vJ1IohPDRtibr8xNa21XBOBuGWjpKceLGdWtNaGMdNb/+shp/UVt3Zt4NQQDPgJMRXUks2ZMj/h/ZqLTPvtEWbQudnEHJKr1lTg+Ih7MkN3R/PIwUys3aF3a/XM+jt5rkBtfRm0NKnpfJRJlVb+JcU030D0sSQ+6Y3lhmYllS7ajgn8GUnSGXqpWOoj57XSd3XP03lFhQJy2uX5rXUTae1CyuKyc7fp77/Y6fKyd+n5qzergaMn6X6PjdT3fHer1KvfkZaowiuOa6Hl2BHIGFKPevgGe+Cf/V1dYGM3TM4Fews3ZgRwVwr2QKlpIed3/ncL6rxUeZUWzCytTuz1fivfgt98aksA7SJ2hm60+zHuf67YJ16dHAnCcKR6qpfvYpE6E36KWb1ob1bq25t6kZ0lF0z8XtpkDHBdRBNtLuedsnvO7tjcJlSNUFVTohTG3bmqDeHdpP8uKnfpve/4ZT2trLK5j739ktVOdIWG6cS4uJkUKTBhu3AqQdARCNKQEvlG3sFRWmoo+qgm12ajEIXXM0Ff+xU037dGGZIej3Kmt3u2F/X71bDercVtxMPwOxZ59jM/EL1zcptKiGukszWViPFfS9SAQlq2eXX82xSceTl7aBr109OaSBdc+Th69VIVFe9+b2acEVXae5pWquqDCCcl6IbjFfIJQKVQulFet71+ZBumvnbNrUjM1+q9i6a8IMsc/573Ymhc+lCILs0Y1ylSmrcoHRVIY0dfbcnn3xS5Jk3bdokUlCDBw8O02RDX/2zzz4TzTeEIsaPH69SUlJC+6ACc9ddd4kIxN69e1WHDh3U/fffL8ISGjt37hQ1malTp6q4uDjZ9o9//ENVrx57NVNZXGdTK04bafWq0Rk/QTe3LrQLjm2mmtSsGvaF1bXhpNHIaUPgsGj9bkl56fUokfNjWtQWOqZr9uZHBLn0+e/tnxpW/mqCa97bP01mV4y0c7NaYfRSLch3n5uuGteqouJUnKrksaDFeLfsyRNCirb1ktWTF3RWLeski77b0c1ryzW+WrFFTfh2taTHcP9XbN6j3rzqeLUvoEKtrab30S+9sSosKpKqOminCvcVScSd6/Bu3JhvWbJUSGPPysoSlRZkmc4///ywbaRTMHz03pCIonLtmWeeEa31pUuXqmrVqsl+KMAwEHz00Ueqfv36Iil10UUXqR9++EH02cFll10mgwkDAprvQ4cOVcOHD5d9y8M6m/5sZkOMKhpRRIxm9MCOjl1oD3y0RKSINfTAYO3ftranBr/kldQ1fdqIcVmDXPr8zLJuWL8rW3VrXVfopJ8zBgUGk39f00345C/o2kLu/4TWdR1povgcb+PYVnXU79/vVYO6NBVVlrv+tyjsGW46tb06ulltqa0PqDXq2j5t1e/bssKCfhpch/qC/p0ayxLEKoqhlzpOqLABuv79+6uHH35YnXfeeRHbfvvtNzVv3jyRiTrhhBNkxub/aKpPmjQptN+cOXNk1u7WrZtq27ataL2h+oq3AJYtW6ZmzJghkk/du3dXvXv3Fu8AeeiNGzeq8rDONrvGohFFZOZnFnMKsHEdIt460IQyy0QXWWKTvVVTN9kFuaJFg+pVJOgWIQKxaocaPXmxuv6U9qH7+ed3q2Wdz0BgIsgM01o9OHWpqMrccWYHMXS7tlmutSkjR56D3xvXqio198QNMF6ChzrApt8PXXx8RqbAHDQPRtdbuTB2N+TlBUf/qlX3VxvhgiPYOGvWrNBnPXv2FH04XPWioiIx4tzcXNGQA3PnzhXjP/74/WkhvAPONX/+fMdrUw9v/hxueMkQm+tZHWRzg1fhyd6cQgko0aKKscyMsj0VIItUrViowQ7BYplwWmlzpiWV5jRQzFq1Q8VX2u8q6/Rcl+L2W4wT95rf+Zztu7ML5P24PQNVbTyHpPbi4tSTM5aH6K11qy4zuDb4P3dmy2enpzW0TdHZgWwE0lQV0o13Q2pqqmrZsqUaOXKkmjBhgrjtCD2uX79eXHINFFn/+te/qnr16qmEhASVnJwsa//27duH1vQNGwaDLBrshzKsVo614rHHHlNjx45VZSng5iVD3LBGFZlR0SjjSwvbi9qWGTqf9Tp1kxPDKJKtqFc9Ub7wuMlejKgR8k1VqId33p/01OQbekm1nZWnbfQ56UI3Havk1AtfrQoFBOlJZzAZ0LmJqhIf7HDzEpbgGWsnJ6r/Dj9Rjf0oXPHFjmSDGdxuSWKtxNNgACDSX+RRiVchjZ21OoqtyDZjmCi1MiPj+psNf6NHj5Y1+xdffCFr9smTJ8uafebMmapz584lujYDDFLRGszsLVq0UIersCUaGWLUR+3q0s9Mayjr8/stOujMMrqrzGrwXIeA2KU9WkkvOUEyN5iuK/fCb1UT4x0LWwhmfbJkkzq+dV1pgoEIEkIMWGgGvzg7IsVmhR13u1PAEaO/4dR2kipzAsfWTkqUkl1cdzcPgO12xTNOWncmWSbpw/9d31PFinLvxoOuXbuqX375RYyZ2Zy1944dO2RtDn7//XfRXn/99dfV6aefLsG+MWPGiMv+4osvyj7IPG/dGuzW0igsLBS3n212YKlAQND8OVyFLRpeMsQbM3Jt69I7NKkZ6kM3we8vff27kDLYKbnk7yuSWYovfrQyzMFgV4pEpR/6eKlEtq3Hcf67+6ZKtJ0gF+M2XgtKKzwD8Lre1j15EdudSDCJIbAmZ4JwOifvQL87r047YBbm6Pp9O0+DgOasVdtDajJ8XpIAXbmf2U3QS66DdkTZH3roIfk9Oztb/mX9bQIvgPU7QLedwYKAHYMH+Oqrr2Q7AbuyXNhideeZ7R8a1Emt2pYZQWHMbGiXznIjWMQQbj0j2KVlng9D37cvEJqVnVxT7Xav2Z4l56B7jb5tiGC/Wr4tgpRRn5/l/LEt6khai2IUnavv2a6eOqtjI3XjWz+J2EPk9erL+ZZuypD0HUZPPzu1AScU94nra5nkGJyDencnYQiornRxj1eAjd70K19fEPKGvJYkvBsCfPpeKmwFXWZmplq1av8Xcc2aNTKT47azXn/vvfdUgwYN5P+LFi1St956q6TjzjrrrNC6nrX5ddddp5566ilZt+PGk2KbNm2a7JOWlqb69eunrr32WvXKK69I6u2mm25SF198sWratGmZDbg5zQA7s/OjLjhx+1zD7NLSOCO1YZDQwcE15ZwQRlRPTAjSQhUFpFCGmfmZz1eqFy45zpaUUQODfnXmaqFjtrrdzPzjLz1ODZv4vcQfru7VRqisuQaVe4g5wDDz5Kcrw+538DHN1D9n7nJmri3Yp/723sKgLFO/VLV+V05o8OH/0dbAUxRkLntQjEF04u5+qWpYVr4U53C/C9fvliWJ3ldX0NWoqAE6ZulTTz019LteJw8ZMkS9+eab4rrzGcU1TZo0kZw6a3RzXT99+nR17733qnPOOUcGD4x/4sSJ6uyzzw7t99Zbb4mB4+rroprnn39eHU54BdycZgCn45xmpFh6wvX6FQ02qKFMhljpQLM0vVSuHaduePunUCUdzK1vXNXNcyBj5mdG1263tRovJ79Q/f2Co0MFO1Nv7iXdbS9eeqx6wSjf1UhtWlOCam7MtTynHny4jjnAmQ08zl4Ma//2su7WOCOtobrzzA5q7Y4c8Wh4V6QNn/5suWrTsEaoOk+/w3/NXKPutyybooFPS3WE01KxJufLbBdwY12uhRKiPY6c7y/rdkUExJw+N/uttRFjdLic9KpbW0pNbjnhfzu6qTo9taFwxZn185Ku+3O3pKWciCAoWqE2HQ/FWpQS2q+YE+6d+evULWekiAfCrHmZwUev4UVfRdUfdfAmYab5TjQNtL6+Ofho1521N4NUp6a1QjzxLeslC11XmPueUl961v8+Y5ksZazvsFntqiqtiXvAs0IG6MoznAJu/M6s5lTy6nTcik17JLAW7edaLlkHmgBRe6uhW4tndC/5qUc1kNnSSmKBIbh1iEEBBRGEXl64BdYmzv5DjTw7TRRfEVt0IsHwWqqwxDCfkw610QPTQ7l+fb+6S44Bjc+ICUCIQS8ApbUF+wIy0OIVUCFII0+E8stv26UNGM/F7h1Wkj64CujGV3QQcGMGJxjHGh3XnRSbV22723GxfA6m3tQ79Bnr9JEf7C8ltX5ZmbH+clxzIYbknCi/WAcG7S5b1/h6fQxN9JaMXJkVowkg/rEjS7055w81pGdrlVAsARXrUoVqQO1S6/t47osV6qperdWIU9pJU0vRvoAYPK46MtLUIoz9aIlkMuxiAG73zQCgg4HWd1gSd9w39iMEXkUz/N/JXS/JcSX5XANX1g15BftUmqGoojXcTJgBLtMYcI1JcZEkOaFNHVVQGJCZlMi/6zULi2S2ZCDSOW6rF+DGBc/svXLzXiGBtJNmvrxHawmm6VoCYiK7s/OFNtqtsMYLTt5Gdp4v7FguEUvRTGkcd6iDhsnFJbHmGhfjpSuMBpSHP14m26kfPzOtkdq8J1dtz8pXv67YrZKrxInIoVOLqnXWnr1qhwhB2qXPlm/aox4a3Ek9MCVS4pn1OFzxqMkE6/0TFJlaYbwdmC6z+uuzVkuNvX4GoulDe7eVklsrNTbXRYCCVtZo7tsKqvRihW/sZRxeRTNuAbiSHFcacKvS43Pt+ptEkaelNrBNoZFn/viW3orq0AenLI5QdMFoP168Scp23RRUfjYq1XKN9BmGzyBDSo7g219emSupuutPbickFbjitJtWS0xQufv2qUY1E9TWvblq+uJNIQNGQmrqwo3CpxeN6KQGrviMJZsd77u3Q4Udn1cvgSKMb+xlHCUpmjmQ40oDOvjHoGIavFPQkMDXbWccFdHzDXCBmWmpknNyh28/4ygpUHGqJX/w3E7qr/+cu//+kiqH0mfWCDrgc37MLAP/v4Yg4Kw1YtQMFAyYeCCt61VT63blqK6t60YtOgngwgPWwh4Gka6t6kjhE0yyJrgPKgopnY0VvrGXcZS0aKakxx2OoGG9aolSNefWKntVz9a22zjm5tMCrsE8Ossev+DoYlHJ2jKz62o/inqi4Ybn//ef3dF19vYi0zB55s9IbSDSzDDtWHvtqaTLLSxUF74yR/gAGMwgnORHVzoiXx0rfGMv4yhp0Qxurf5CW/XQ3I6LBSUJ/tkdI8+ZVDmi+MZ0eZ0CVcHmk8qulXa8hzdmr5GUIP33mzPyRP6Zazx9UZeI80FW2bdjE5m14YL/5NY+QiVVFChS027qrcY4FN54kWnoZ2BgIGV33+RFtp7M2GlL1AMDO8p7ovyW9OZdfTuExSWOqHLZcePGqb/97W/SSmoCUgkoph544IHDdWtlCrGuf3VgbhTdaZaCFr1uREnV7rhYUJLgn/UYt+Ib6xrXLlClC2lww73omWev2iEz5HkvBXXY+BwuecQVzfO9cllX1bROknrAYtC9i5cD+UXO/exeoCOP+AOJv5zCfa7S02YHK++L2AT98Nw376wkf7/DVkFHkwllrNYecbrR+GzfPvfoakWqoNuwM1t9t2q79JrrmRq3l4KUxhbDYua8adLPtut1XbF2ylENVBMbg7SbdXMLi6QvnN7vWskJqkaVyrJeXLczO2yNqY0Sgyc6jhRSQAVUpYCSLy4uKMUk5MchjaDGvEWdZKkQ86rKY2Y7u1PjsLSXWcH2U7FrDeuMXk/rqjXIJL5YtkWi5G9cdYIEtqolIuZQKL3ptZKZIQNq+958iYxn5ReoVVuz5DirV0T9OlV4BPHswP0s/HO347vneXq3ry9VdCelNFAXTbA/D4Cb76o3FoRF9pnZuReyBo+c1/nIkX9ijOHLYsXChQulgcVHEJt256j1u3PUx79ujCinPPmoBlEF5syUFkaMoWHYpovtPOv+FmJ4Da5Vl7ryx/2wdpcMEI/PWBaKrtspoBINf+HS41x1z4iUBznaW0vFmJUjrle7emKEPFvluDg1dlAnqap7aGp4L36f4lk8F6XYvFzbeyLllptfqOpXr6r+8eUqx2dEm84J3Ata76Ms4pNa5ZXlA6o1v2/dK4QYXiQYaOFBcwUgEWHgaVarqjqhVR3J4Zd5Y69Tp44YOT9HHXVUmMEzm9OEMmLEiEN9W2USGCTdUVYqZjDTIYVmDcw5kTGYLrddmk6izUatulM5qjXSrNVeyC3b7W8qoBKFd0ONKgnqmGJaKDDp2h7q7v4dQmtjPATz2d646vhQ73zYuyomsLynX6p6bMYy23uCk27suZ0cVWL1M8Iv77Rk6NqyttqWmSuGbE3p6eUDA8+ogenSh+9UwMPnpPwYWD62kFVKmfGpKVJfHysOubE/99xzMqvDBAtlk+4xB4mJiap169bSO+4jOEvjujut7exSaNaAnpORmvl2O29Al3Fqr6BveqOootb6OGZv83grp/zxLeuoOtXcg0y43LjOqndw1uQLTkWa7l1HIOIfxoCE1+JIv7xqu7ovvpIYIe60NQCI0RGQ82KXoXKNlNiYj8ILb/C0qNcf8Z8f1VMXdZEKvx1ZwXRa+H3skHTaQ+emyzti4LMaM5/n7SsSVlyngYelUpk3dtpOQZs2bYTkkfZSH/ZglvZqzrCm0KwBPbfaaz1Y2KXppCPL8ApoO3WDtVzVerw1TXXO0U3ErXYLrJEiG1oclOI8gUBRWOHN9Ft6hx1L6awbMnIKQkEuuyIXr3RkYlycalYnWQgmurSoLelAnpO8PeIOE75dJT30VqafCKpseN/3Fclgq3vtrSQiqM24DTwsxcq0sZvsqnCxE3nnxw4Hg8LpSAOz9E4P0kRrCsZa0BLNYGGX3uOLZ3oFZo7YCoz6qIY1pF88N79I+NFQSkEJxcn1f3jaMnVP/w6OrC98npFdELZt3Lmd1BOfrgz9biWMhKDSDcnFhA+iqqKCTS2mOAWegRtoutHpMrPtNEST1S/VltLLrqhmZ2a+GLq17l8X6wCTmcbK74dmXZk2dqiY7YJydoG78hiNjxXM0sgnOc1+Tqk3s6Alr9D9PepiF2t6jxkGTXH9ZXRiXuELSh6b3LM1gEiuGIUURyqrghRpIsGtts5ufG62d3JdvAfz+nZrfleVV8v16VQLdZ+1rC0pMbeSW2ZTN2rq++KdqautAyYDC3JWJgdALKW2XnLSh93Yv/7660N5uSMezNKkydrUD6rWhEV4o+hX19TPXnl6u/JWZhOTk92JeWX0gDRZW9r1Y4+btjSiRNQE/d3D+7RVL37ze8QXXJNcmLC62aSwzAj91yu2iiqL9R41geXXK7ZGuPVvzV8rXXQNa1YVAUonT2NIrzZqj0MffOj+PLZrLwsvAN53BmI9uEQbANX34xHbPPzGfvLJJx/Ky5ULkA8XWeLBnVVWfqGM7qwRCdxFU9sebZ269gZgcsEIuCYNIBp25ait61eTgNVMS/4bcDzrWgJ7rPftKuMoMuEK9/RNVVf1zA2jS7bOZHZLFnLnpNTIk7O+xYtAfmlg5yZhnoImsJxg8TI0Z7uurdduvV3JLffzvgd9cw2PZQDn0gG4Rz5eJoQa2qtpXLOqawCUTMJxLeuozRk5qkmtpLLfz/7rr7+qTp06CX8b/3fD0Ucffcjuq6zDqYe8tOvUKdpgNtZRZopEzPSQWY7Kl/ZvZ3WQwcGKaFxS3OZPl2yRgWDppj1SBccX34mGimNpLbXeD2k5jHPEKe1D5BHM0hBK4ipDLgmB5cMfLwsbPEzqap6BbfxO+szO6Ngf4UW3dJnbdpYBDWpUkWfUA9mtZ6aEmmyuO6md698QMkuYbTjPTaellP2Z/Zhjjgkpq/B/1uZ2BXz+mr30Ybr1GD2cbzWT8sOUXqy5dtN1n+UQQLMrY/VySbXbrKmr9XVYp9u50booZWtGrqS95q3eIceHqgkzcsTQrn/rJzEiXbijVPA7tHAdzDb7HJcJ+hmEDFM8hUq23Hlvzl6jHh7cWY2avCjsfXC9B85JV6/N/F2ou/7clSPekfZmoK8ii3DxP+eF3Ud23j710U29pO6efLxTmpL70veoawYeOa9T2S6XXbt2rdA5Y8z83w2tWrVS5Q0Hg3CytOrZcXNPe/rbiGP0FxDXmH1wtYm0wy5TKylRzVm9I6Lox4u48f0RJ4rbzCzav3OTkIop1yH/Tgkr14CZlqAclM984dnnHRtZJWa7cYM7FVebVZJINQU3dZGx+uc8GVCqVo4XA9RuuV5OWMky8Xj+75ruald2viooCkjFG4U0ecXPfue7C9W4weny7NpLYrmzLSNXVU+qrJ76dLnl3uqrO/t2EEprq24e2YvHPwm29d5+ZoooziJEERlvaC+B2mc/398dR3OOyfZT5mZ204DLozGXZZgzt3UGWbsjSxRH7TTbtOsOpzrVbPtRTc5JRNkaQPRK91HSyuzerHaS1M1r11fIHHsrOWdhfED2w61nAOg/opGqnljZsVOMCrgx56TLtf/YniVuuzxjy9qyDn/x0uNCJaYsHSjVZS3fvkE1GbB0h2Cb+slyTe05YOj7a+Nrq6cvOkZ9unSzWrN1r7rjrFRht6WFloaaJ2Yss6ne267oErCm2QiwMs2iCntPv6BPjiaenTcUV6mSurpX67C/zxGlCPPvf//bdTvc7j5KD7pKzlHLLKW+bYrHKdWzYVe2CDvszStUzWsnSZqNWZg8u1e+myDcJ4s3qwfPSVc7MnPFRb62TzvVuFYV9fC0pRH31Te9iYgqWlNfPAtUVTSXYJQYHmjfsJr64PqeMpOf26WJqK/WTk4U2qiwWbe46m3Rn7tl1uR89JJb9dTNWAMsNbjl9/RLUw8aHgaDhVf1nQaDG8SX2q3XvfCO1X+/bVcjTt6fJuSYI6rFFVUWEyisIMNEySxtr76xly50lZwj5fJv24NlzDapMr6MNLhg8AT71u/MVvd88KttIQwdcszIXi2nXI/cPN6CE2OMvq8Hi/fr1W5/KhDDZH0Nc0w4+UNQgPH8l+fI7xjI1j25ETXm+tzwtXPuL5ZvC9X1u6W/mO3J/1uLZ7y8Gd4dnWzEFvAkzEE1ml54nSbkHuj0K4lk82Hjjd+1a1fYDw0wK1asUL1791aTJk2K6VzfffedKLkgw0Q8AOkmEyjBXHXVVbKdgQQZJ/TerECD/bTTThNZZ9bUJ510UliFHyKOl112mWyjQAhlWO77YAJXGaplDOH3bZkRQo3RQlfJ4bq7FYbgQgcJHNrLbMXPyP5p4vJiGGu2Z6qRFkM3+cw3ZuTIOW45LSVCqFAPCJp7neuRmoO0om96Y9f7Cnbs7Z+b+NLbN70EBRglfVY8sOG6z/Y4t343XvrxrPnt3qEXDTVklXpQ4PgJl3VVH97QU029ubf699XdVJNa7h1sOk3IuyX4mOtRLFXmRSJSUlLU448/HjHreyErK0uUV7XiqglmK3TdVq9eraZMmaJ+/vlniRcg28xxpqEzCKD/tmDBAvX999+L1JMp9oihL1myJKQBxyAzfPhwdTADavSmn/7Mt9I1dfrT38r6k89jha6S85qBEhPixJVduG6XBNn4GTh+ltAnse7MytvnahAonezOyRPDPLtzE4k2Y8wMGmbaSePPncGUEuteN3Df3JsWYMBg3Npj2a6N0uuZ84q3R6O8ildit5+bYiz3TJqR/nVq/RmAGtaqKl2F54yfJcHK6Ys3h57NCjNNmBAfJ+8wI7sccNAlJCSojRs3xnQMWuv82IEZfN68eWrx4sUqPT2o6Pnyyy+LzDIexLBhw+Sz22+/Xd1yyy2i96bRoUOH0P+XLVsmUs8MAkg5g/Hjx4sWHGKQpS3uGA07LHCihbIjoqCIBjVQN0CSMNbFlb319KMi1srBWauS+mrFFnHhK8fHS4CMYzByq+CjCQprqAGv6cGWClfcjr35IjCBl+PFE899UHjE9aslJrjWmetZ2Wt2psCJ60K6gedjnsupwlCnAc1qQAYplgssH3SNvVeaUx+vPQSvuEiZMvaPPvooYgaGuQad9F69epXadfLygmuhqlX3u0nM1minz5o1S4wd3fX58+fLzE0nHnrtKLs+8sgjsqzQMz+uuzZ0gHfAuTj2vPPOs722vr61EcgLXuywcKdjUNY0GgZNLtUpxda+YXUJTNmdm320u+io5jIwwXatrFNEGBjrS30ONzVT1tdfLd8q53n0vE4R5BTWmVHHEtjv/oHOwoYMRm3qVRODMr2QXjZ15iZds9u9st/0RZtC99Dbci5dYUiWgYo8CnUYoLhvu6CnVe3FrFBk2UTprlm9p+sHiMIzgKERd8S48bjW5s/555+vHnzwQamce/3110vtOhgtuf2RI0dKbCA/P1/9/e9/V+vXr5fBBeDiA66PJDMz+HHHHSdqrXptr4uBrF4IrDpss8Njjz0meXX906JFi6jv24sdlooqu1kfsot73nf2CPgC/d1FG85OncXa5omh29E6s1Ze8Mcu4YHXcNNrQyJJ90UxcBFYs67z9cxoaqwxIPy0dpcMWnbA4Aig2d3jG8Vac4BrUSTTqk6SGBBqLqTvorkHjJUiG1PVhTQfKTvc8uDSJEcGB9PQzXhIcrHHwe86rcb+ZDgIxrGE0sf3KS7coWLwpa9/9yT+KFMzexHd/YcA9Mt/8MEHEkzDMOG+Y0bG7df1RPpe0GcfOnRoqAX3yy+/lIEHoy0JGGC0fLSe2aM1eC9WWScws9rNjmb/eruG1R3LZ+3SbiYodPFKMXnV1OsZD9livRxhP+IR7113otqUkat25xSoFnWT1adLNtvOjAwO027urUbbUEB1aV5bCnWc7vHe/qkSGPxy2VZpRpmycD/lF0Y3ekBHdf+AjmJ0FOM43QPH3NM/VaU3rSnLkUXrM8L206y3GtF2trGUohT53v5x0lwDNx7MNn/957ygx7dqu6cCTplds2uj82p/LSm6du2qfvnlF6lcY2Zv0KCB6t69e8glR7MddOzYMey4tLQ0tW7dOvk/a3zcfROFhYUSoWebHVgq8FParLLMaHZKISBasgunenu36/Kl9Oqv5/oQOZrusLWm3qxYM++XACARfz2YENhzag7hnKT5rO2xizZkqJ0eGYtd2QXCKMM5mM3NNTKfIcLIfdJ8QtrO6R7MAKMuVHpneA8JYkJoSWzXXJpE09lGWg2VmP1LlmAt/Lw1O8Iq8BiIjqho/L/+9S9pjGE9zQ//f+211w7a9XClMXRc8x9++EENGjRIPocKiwAbqT8TK1euDFX6QZW1e/du9eOPP4a2f/XVV+IVMHAcSilm6sNNl9J0DeGLN11DK7yKMbgu9d1WFzlI/NhGAl9uwODoymP9brbI2qXe9P4a1tSXV8AsuUqCGAXuLgbHv6z/aX5xQ0FhkacHgwEysFHl5wZ9j3pA2yZNNYVyL1e/+UPY0sQt7cnn8AdELlmCwpbWonYIKY+YmR1e+GeeeUbdfPPNIc45gmBExZlN4ZWPFuS6V63aP/quWbNGZnLcdtbr7733nhg5/1+0aJGk9ogTkGbTHsVdd92lxowZIyk8mnQmTpyoli9frt5///3QLE9qjjX9K6+8IkVApOYuvvjiUo/Ee3WrAbjfmX1jIT1wIrswQVrvwanhtEu4oy3rJkuFGsbuFODjmuTjmV1x0h44t6PKLyiSYCKwtq6aKSU7uAXM+NyJbMJNjbWXcU0GI7frs2TheaM5l/n8dNkBnhOjZ7a/am+eZAXcQNee3XIBzwBZaPM6sOkeMcZO+uvVV19Vl1xySeizc889VwJ0DACxGDuz9Kmnnhr6Xa+T4bt78803JRDHZxTX4LJTnTd69Oiwc9x2220qNzdXBhtcc4yefHq7dvtbD9966y0xcAJ3ROEvuOAC9fzzz6uDCSd3W/eoH92idlSkB046a07pvi+WbQ2roV+xZa8YPDEBzmON9gvr6Wkpqm61ymrT7jz1y/pd6rMlm9XpqY0k9adLWZ1SUhzfrE74LOqUztIeAtZu1yVHOSuKKxA7Wu9xaPE1MfSxg9KlhsAJDapXUc98vsKWGJL7v6tvqrrk1Xn7n//UFBkgtOoswHAJpk6av07W9yX1OEw1GZ5ht0cgtUyJRJDGImdNIY3Vde7WrZu4zBWx681LUsm6L8Gsfv+Y6XhNSBmrJMQ76qxZz0XKp2mtJFWwL9jlRa266VrrQYOBgM4wAkWsUXErIVa46/1f5QvLkgIGG2stOtFuzk1+fmdWgapSOU7252vYrn41oV0221cXbdgtLmz3NnWlIQTvpnJCJVmvN6pRVaLuacVssybZxOqte6V+PatgnwS5qlaOF2pmnq9h9aqqVlKC5Myf/HSFSm1SM6KtlAEDsclzX5gd0TikrzGgc2OVkVMo24mOo/q6cVduSFpKGy4qMN+s2CrCEIhX2va7p9RXd/dNlSabdxask/iFeU8t61KmnKN+KK4V+OCGniq1cRnuejNxxRVXyOyOK2/in//8p+S7KyJilVTCeOlLdwPrV5PLze26P67dJTMpAg9ORBIsHQiiYbSjbXTMudclGzMiWjWBroc3lVG7tamr0pvWkl72y3u0kly2NTdO6W2jGlXUpj256pHp+0UqGMBoeaV23lzC6P7yC16ZIwMnv48emC5tpk9ceLR6+rNgGyrHvzWshwwY1uPZ/89d2a4acnTPESswvRTd2GKSdND0A579YqWjl0D0HaXZHm3r2t4TgwHNM1rh1SuecdhndjMNRSQbF5t1dI8ePeQzilNYr+NmU51WkWZ2N9kmDN5JT526ecppnfDlHSdLqs0J+roYOtcgd4whuPWki8zRul22KTgdxWZGdALnfn12MP++YvMeVSc5UR3VqIYU49hJSvFFv/HUdmr8V5EDCAZLuypBQeIa1RITJEbw4EdL1KBjm4VmxzrJlaU7b+zUJWrO6p0yU5/VsZG0lZb0Oegph5eOEtaZv20TmiwzHoFYhEnSwft08hJo473qze8dG4L0OeEVOL51XVnfl+mZnbp0a0oMULEG6tevLz/Un1c0lFRPvSTCj9br6hkdd1F/8d1SeG5c9E7RZhO4/JLW2punzu7UROSSzLy4Hc/63f062J6b+6dVlAGEgeKiCfNc23iH9mqtLuvRWr02a7Vn40tCXJxjMJLZmE46M6Vo3jPH33VWqrr0tWAbqy7vdfISXr78uKjeLdV5eHPIXJc7dlkq3Yh2mw0p5REl1VOPllDSKTaAhth/rukuM2y96vtrAtzcRK9cvldaa29uoRgls9jEKBlVM3Pdz8k9UYzi1cYLEIlk22Xd3QlUUHS54ZR2qigQ8Kx3t7tnCnZeG3K8MO0Q2HQDwcBo3i0DJH+bIyr1Fi0odCGN1rZtW1WeUVId9lgIJd1iA8xMYwamh8o23dJe1sowKwhWefWzA9hSo5GUAtWruteCYwBaTsrtvDN/2y4pRX2MGxj8Lnx5jm31n12KzHrPKNfiuhP5v+DYZq7vhI6+aO6J5QrMQpodqFwZ+2FKFhxyHKg7Hi0DrVM3HV9CGkeoK8elNtNeP1tkkOm9dsu1w+dOUQ3R8zA9NEPNlFkd8UI36FmOohTYbWSgMO7FJJxcvDFDnVStQZCF1qNuPK/4vF55/EBRIMLtdqvqC7/n+lLmOnFoN1VYVCQelJv6DZkQfU+ODLUp9VVL6LcDZDLyVNsGzrGYI9LYKwow1IcHd1L3fRjJXMrnB0IlHW1sgPXrPf3TpAMNwgfWmUSJSf9t2J2jdmYHU1ifLNmk7j87TSrMqGHX6Sp0w+/tnybuK11Z5x3TVF3Tu420r7IPhsN6k1QgzScQQrqBWe601AayTqXePkhjla/Gf/1bxFp83KB06OOl7j0nvyhkZKzjIcqsasPU6pTHZ3BB/lmew8LL5zXzam54cvg8K7UJSEhrt9+Jk173CLjVCBCNp+Bp1MCOQtN1xOTZo0WNGjVEs708uPFe0fg731sYlvPVX4YVm/aop/7SpVQMnkgvRBhO+O/wHkKqMMtljeqUQ0dZdG9uvkpKrCxrSgpMoEimvny8kYrTklEQQ1r53kLnw2DO7SSMLI9MD/bG33ZGivrhj52Osx5r8ZHFTLU6QGedRW8+tb1atzNb3f2/RaF7oTf/9LSGIWoozT4LwSSdebji2uDdouXc8139UtWSDRlqa2aeKtgXCO3rflx9dcdZR8ngybXRb7/+lPYS27BjxOXv8fh5nVXzerG58v7MXkbAjEvVmrVyjVwua1BIE2MxdqfiHB3EcgLlobNcNNWBUw6dDjRrinDNtkz1z5mrwxpW8BoICGgZDokAAEDDSURBVD7z+UoJLtrNrMgtMVg8/sl+PXWaVsweeqe1uFvDSZyqJAKM2n3HeHhmTekcds5ijvYHz+mo1u3Kkb8H3k7/To3Vr+sz1EPTloal2rjnf3yxUl3SvZV66ONl8i60B+JGbjGEDMFr80M5etx6/nYoztqBv8feI7XrzQ0HqxOurEbj3dJGf3coromlOAc+djcyCSrY7GAGn7wkoE1jZ2Y2ZZatBTh2ssXQMj/7xQp1wyntw7yHaOml3NJXM1dtV0Mz82Tw4fwINEDe6LY/Mk1TF24M/3u0r6cm39hL8uxUAVIRiAoN1Xw6eGfer12rL22xNM7wN39z6Akyk2u3Hk/ODUcUlXS0KOOrjFKPxruljTQdlanswiDBbI0RUy8NZfKoD2kTjSSvYAC448wUx0ARwTM3Fz8ajjbcztXbMmW2JGVVSVVyTa9Z+dTBW8O6ywCB8KOJaNbL0dxnbsE+canPTGuk/vHlSnVhV3eOAfjmWcYwY5trfwp0iCPwzBi79f5qJCbIcqVhzSqSOmRpQ6MMfwf+dmZxEb0DCFBoyeZqHlRaRwyVNB1jSUlJklKjrdUNS5cuPWhdZWUxGu82K2GwRHWpR7dLnfGl2ZFV4EheIQNGv1R1y6QFtoGiTbtzXXPk0ZRoEtRavT0/NGDFwqeuUTu5srr2lR9CQSsNr+i5Tul53Wfr+tXUwM5Npb4eDjivfDvTjVlNaBbQMDNf+tr8iG1jP1qimtZNktJiq9tOOezzX6wI03576dLjou5e5BzVS0AlfViMHfYYymSj0XOLhcrpSIYujlm2aU9ESWVS5XiZJanoIojD73eceZQa1rttqOlCf6G8BAKJ4h7nIF74GH3s7es5lo9qY3LjaeMLaXom0bre5nWo59e5fjMN5RY9v+HUFGG+iWZQyMwtkBp03VfgxT1nXdqYBTRkI+y2vXjZcRGGbpJNjju3k7ron3PFs2FQw/DN+ITdtfibSXbmvM7C4NtCxRagO2xlaffff7+67777pJ3URxCsx1vVS5YvNG6mJmXQ9MMYKvxmA8bPUk99tkJ+J1XD/gwQfDF0YYkToDfii2MlliAm0K1tHTW0dyRfnCauwNj4sSOm4HdcXTTWzC9stK636Z2QfyefTb343/qmhiiW9bqXWZm6dE1R3bV1XXHNaToxee+s1Mx92teXNOba7VnqLxPmigdh7m99bv1MJpmEla4a6iwrUYiU2sY7E3di8Hn7isTI9d+Zen43D6h/emN5ZlKbG3Zkq+TEMl4uawIWWQgncNFhg0GYwcRPPznTD5dnsBazW7ObEXFGeL0dN1CTKPI5a0e32XnhnxmyFibVc/0p7WQNylryhz92qWm/blIL/9wdipzTskmBCkKJNJJotxqRwa6t6wihAjMzVV3MTINfnB0RWHJnlw3KGGO0einxzvx1KrVpzTChRdau11vSUAnrK6mPft0YWspob0gvCyg/fWRwZ4noUyMApC31+VkyKOBFEVzTnoMZPIMIErYZimJ0lNwJ8NNhsFZXm7ZaN3Bt0pfRekDQUN309k+qQ+Ma0gzTxqW5qcwZO0wxPiKRmVvoSl1krnH17xiG/hwZZYoyTO53DIHKuM7NawmRwtHNa8uyYNi/f1BTb+qtAiqgNmTkyEzaL72xenjaMjmnzgzQCcfM56bMiiIpX3TrTO7seiPT1D5MxphBAcotk1ACN5cecOs74d5QU9Gusq50097Bxa/OE8WVhz7e3xKroX8f2T9VDevTVoKIoiRTPMC8Pay7PCteg5uhE3gzg2dmXXwNj5JitsdCwUUFIYZ+06kpqnqV+OJovHdmpkwYO/TNV199tTr55JMP1y0ckQ0x1hnAVDMRTbZ1u1TnfUWh2ZmoOBzq9EebnWXMqhhhTn6BqppYWWYnbeB8aUec0k6q1vIKisQAt2d5kzhqmicr2aSeNW8sTnXxjFBXLfhjh3gLZpAwyOG238CcApbss2NvMIVmV5HGdogv3QbOQPHSqX/nxiEvhXMIUWQxqaebVwI7ranXpgfcIGWWM50VnydZjNv1Win1Vet61aRT8OsVW1WXZrWFfy9WHDZjp4rszDPPFBce+matxVbR4dUQY50B9O+40ppy6bUrjw8ZCOvJf8/9w7ZghGGCSixKdK1MsHqWxJga1Gjs2fxSmXLWc9OFXMKa2pNg27pdavAxzaSElfWyhh5cKBxCnxxtdnrwiepn5sGWEyTTtEs/VXXJj+tzuyGvoEj94/OVKrVpLSn00XUd81bvVDed2k69OnNNxLOYBTS6olA/A0sSvAHkr6snJggn/ajJ4eXPp6c2EOIPMiosX3QqD3Ya2wKj4lLg7XvzVFJigshrFQYCngo6Za5cdtu2beo///mPkDuSYoPPndkeF5+IfUWjpSJ3TqUc/d1mWk1/mWAfpfyU2VpTJ8FCwzp77Dnp6rdtmaEmENbxsxxIKMxoPzECurOc8rnkvJvVqiqzPFVkrJt1doBgHDLKmhiCxpF3f94gywGMNiG+ksz4WuN8YJcmKik+Xq3fHTxPtcQE2e/JT4NuulOZK7MogUMEEsz7Q0fOzsW3LgmsjTM/FT/reyN6qE0ZebbXG31OugQKs6CErlRJdORZYuGVmKWrTvfM7I3MMoUz0HbtyS0U/TsKeOb+Hk69tSUjV3VtXVttyciTCr0gzVWcqpmcoIqKAopWeApuiK1k5hWopjWriuE3KB6gjoiiGhhfYa/hh4DcG2+8ISw11atXV5dffrm64YYbIjjqyius1FC6h9qpok5TJ5GvpRJs4AuzQoagjwFWTbRY2GhBlfhKQuzI7D/Tpl7+b+8tDNVrP3JeZ7V9b64wrljBjHZmx0bqkan7Oe2s9eKOBUXFZavUsJvlsvQMUOtuN/Oyts0v3CfBPWr9X7A86+tDTpCGHKfrUTAz8OimkqKjLJZ8vF19u9M9M9DiJVBaq5dPb151gtpTOc5W/711/WT105+71Pdrdgql1qzftqqTjmqoxlliDrxnPKjKHlp3ZbYRBvbXf//732LskFXA2rphwwb17bffqieeeEIYX8vzzE5V1d/e/SVkBObMi2voRJ2km0/gWrMSFGqixn6dGqt+z+0npIymkYN2S2ZqZmZmGDjenKL7puADX0Ry9fPW7FRjPloSGjQw9HvPTpNGE2Z0Pbt2b1VXzV+7M3TfpLFQNXXC+yNOVBe+Mjd0bb70G3flSLQdN1yvuSF4aFyzqhBGkLu2fXft66v7B6S5knXiFcGNRzUf0KKOv67fLQyymljTK3CJkATP3Kpusnrgo8jcu36ee/ulCeEksszw1d83ef/yyoQeWFsdKY0wVNEh7oiBf/bZZ0IhDZ3zpZdeGjKEDz/8UNz68mLsTjM63V/mF9LsoXarQMPVx81krWc3U7PepIzWVCVxrxvfoYZm5ssxuKuic96rTdQVcMxmmfn7VIs6SWrKjb3Uhl05qnHtqiq3oEiN+yhce43W1QuOa6ZemRkMDALWsG5g8DLTdKu3Zanb//uLDIwYO1RNqJuyzocPjhy947tbtV1cYzdg3JTIal4+c5Dl+SjKqebBBa8VY8DHN/d2DRiyAtOB0um39HHN03uxAZWpohr42xFcIECHHjrc7yNGjAib8eCCh3K6vEITSVirsGKlgHLq8OJzAmKokuiCEa/zMZtvysgJdbbFWgFH/ph2VvTcyQxQDcea3Gp0xBpGTQ6f5TwVYBLjZdmAoTNo1apaWcgmATpxsL3QvYYSC7OxV6472UP2mFw979B67wyy9JWTUWCwdYP5TF76bMRO9PvwanQpSSPMYTP2Z599VnTYX3zxRVFgsQOGjrqLF7777jt1zjnnSDSfddLkyZPDtiMOoaP9ycnJouyi1VmtYFWD6KPdeWC+HTBggJwDRVdUZGDJPVAiCbcvuZcBwO3uNAPA6sLSDjcTdxsvgYCRGwi2MUvqc8ZSAafzxxzLOTBImhbt7s9OCkmnn+zA5/C+m9WF5NJpA9VFLbjKOudO7IHWXjckVY6PqAQ0r8fg4TYT8wxe92wqxiQlur9LUxCzuke0vSSNMHGHkzfe1Ew/EGRlZYmCCwOHnfES3SevP2XKFGG4xZsg8s9xVjz33HO2bbXU8WPoCEPOmTNHMghQYSNjdaA5dbcvDOtPq4SwVQLJCbi31NLrZQEG8tnSLa5fTiLn5mwdy5eZtWRhceCIc+AG78qyn4HsPAY3eWcCblTDOXkxE2f/Ie9C69wBOsmsJbMaGDnbx5zb0VGTTlNFOYFncCu1fWBgR3VCq7qhctqdmfmOMtN8Dp2XGcdxunc+96L0OiJbXKMBMzE/dmAGnzdvnlq8eLFKT0+XzxCnQHl10qRJatiwYaF96cJ7+umnZUmhlV01iCuQHvziiy9Uo0aNxBt56KGH1D333CO67oklqFXWOXXHKrOU+qKEgq7buKnha179hWRcsjbO6AAYuWurUXlJKlGBZ87WbqQLJnuNbtAYXhys4hyNa1VReQX28V87j8EswKEG/M+d2cGA255c1bRWVXGZZ7uswQnUMaDpzMLf3l2oJlzZVY2evDiCeQfCCN3OCznFfQPSJH4CdGEO9Qpu4N7Me76md1tJjyHjNGf1Djm/1laffAO97/kyAIxDZSeMm6+efD7oxf0c9Xe//6t6+9oe8ne33vtDgzurgqJ9R2Y0vjTBrExgT5fjIuRI8I86fFO3jW46NNuYnUF2drZIOKPFjrqr9TzM4AQUGRA0WGJAl0XaED33WKPxrNlZa2qBRtNgKZKhuYPtwCx3JYCm6aqIyhIoIr0020ZJBSOwCjqE5e0DAWGx+eXPYISZzzEsONHNcluTcJK1bFKVeMn378kuENedGf31WatV87rVxK0e1KWp6tQsWANgRz3FbIc8sS3FVPv6MuNu25svrLJE8T/8ab3k2i94eX9BjhUE73QwTGcKpvy8QTrQKsfHSZ6c2RxDtNYUEDDUra46qt+2fjX1AIFFB2JNMxMBHjuvU4SijXV/rqv/lht25UrtP8sFzPCpz1aGXYttEJaQWWA9T4yBd/G/H/9UI/unqRZHSjT+UCE1NVXaaUeOHKkmTJggDTfEC0jxkfLTIOLfs2fPkIyzFZs3b5YZ3YT+nW12yMvLkx/T2N04380UliknBMjVml8wzQvPl/JFG6UUfqc8lS8Xs4pZK68r2o5pUTvUSw1TKbJC7P/ipcdJZ5s+j14GYIRUc9F15xQNpginV7v6QqgBdxxxAzvPYHkxsSLtnrNsauZRYjHVZ3lWrwi06S2YfQMU3gzt1UaKY5yonnRfu5lG+8/V3dS4c9OlyMmurl+31AL+Np2a1xIOPDvo++EZrH9LPaDydxpnvA9iOprcwlr/cOsZR6lYUe6NnUq8Dz74QF1zzTUi4RwfHy/rddx+7dQwY6O1blWsOVDgJYwdO9Z1HyvnOy44M6ETLzmsrucd0yzEC4/8kxNZBTMYBgwbLFJEdjXkbIeDnHbPF4rvIyuvQNVOSlSPDO4k90CKiuARa0qq9NyMjhl07urtqnOz/QE4O1ZVar3JkfNFvrp3W/Fi+FzXzJNTJ5JvcuDjCTnRbdvJP+NSM/jQj35LFFRP5pKHJRRdb8QB6DIz713fI24+pau47Vwbryva81vTll1b1lGJ8ZXE42EJwzun884qc61BRV6sKPfGrmWmcL9xnwmwUbnXvXt3cdsBho4ElTXNR3FPnz591DfffCNrfFKE1ig/YJsd8CZMfTtmdjsyDpPzXedZoxVqNBtn7Egv/tK1uRTlpB9XS2YJc4bSM2YTg9fOjtSStaz2Pojou4EBa8K3q8XI2Ncs8sFIII3kM7jpKKixK9EF9KxbBSmd1G9MKWYTPP+e3Dx5p9k2HXlW6O2c78ZT26us/AL17Ocr1E2nH6We+jRcfZV9+ndqIm29+v693o31+qYM89/6dpBqOTyMCVd0FW5+jB3CUdKL1nLmGkdSI8zhAOtlHbQjCEeADdx7771hgTrQuXNncfdJ6YETTzxRPfLII2rr1q2SdgPot7P2RrXGDlWqVJGfg6kMo/d3I6qkqo21Knxp1NbzhSEm4CXjbOd9UMbrJhCBWAP38cxnK8IqAjX9tFnu2tuhRLePiyiGeS9U4+ER4MFYzyEiDxavom61xLACIxNa1IH7ZDbF3f/vdT3UF8u3qct7tFbHtKwjA4rpGX2yeJP0xusBNFraLA2ISmbc2kfW7DT+YOi8K92laB1c9LvCCyiJimu5MPbMzEwJwJmBM2Zy3HbW6++9957M5vyfgN2tt94qgbezzjorNDPbzc7s36ZN0NViX4yalCElvKzTR40apW688caYDbo0lWH0/ke3qO1IVEldu5MKbLQwvY+/28yuOs6weENGxH1In7cN/bT+Mpt94Lrk1kujDo+GpUeV+Cqiua5bZbVCTONaSdIOijGa6+Ln6TtQAZsutv10zhpaX45mHztvS58Ps2Ng05kLXH+roVo9D56T9BoFQJqvX78Lq6EDfb+jB6SJx8NAVyGNnVmaajsN7ToPGTJEou0E4vgMt5uUGs02o0ePjukarPWnTZumrr/+epnlCfRx/nHjxpXqs8Qq1Kj3p+Q2FornA4GdthxFIBAsEMm3cru7lejypYaqmZgCRkJswBQtNI27WmKC+nHdrhBfO8b2xlUnqOm/EgE3Ulkp9aXjrUH1ympQl2ZCcPHdb9tDabLRAzvKz96cQrlnMhJkX1jTm11xWl/OaRbV53tneA911d48GWya1KoSikMwW1PEtGh9RgRhJM0ul746L5QJ0AVAXiqu95/dUV35+nz13+EnVkxjP+WUU1wpp2+55Rb5iQV256MYZ/r06epgI1ahRvbfnJFT6uWVJdGWY31shVfJ7dod2ZIy0zPgEzOWq3GDOokbbseiq91ZZsHnLSlHwP4YuPZmnN7lJvoSdmRFeB3BrrjjVU5+sb6ci3sOeSeFSmZ9v07/mXEU7XnQDMPgsmV3rjwjMlm1SX2u2yXX8HxXO7NUWpOantp/5dbYyyOiFWoM7Z+UWOrllSWBXcwh2sCYyav3zcptETO2uY8OREbjzTi9y+TE+DAeOPMapOmg3SYF+erM1Y4kFszQDE5Oz2oVhoQ0kpr929/7RbYxCOBdYPDkzqmYterLWd8vwcOSwDf2coIDVYE9mPcRS+DKTEk5pRT1Pp4kjR7ezHZ6E1w6Cof2ypMsAnRQNBSNGtBRApSUIKPjhrtPtP6SYkUbDB1VGDfCT4qVmMWDqcWA1BmEddS1ry+99ldP/D7C4NmmC63gDox1WeYbezlBrGv9Q3kfQkF91QkREs5OKbNolGdoAGpQI/6AvJk9uQWOpcbcM4b17Oe/SSqRllO99jfvH+7+het3S0qRdCLVhMQgiorFKO2eFSOGrebLZVtUl5aw9LYJu/Zrs1ZLIM4s0NFBxJuLjy9JgK7clcseybRUpQEd0OLLwBc5Lg4CikrS632oDN68D3OdDPhsZ3a+tMKa9E4mdL7ajRRCp8gciThS6ksQjoCfFrW0ApkqSo3t1F4xzIRKlYR1hwFT02jTHBOUnY6TNCNG/i9DpAOcmdZQrk1LK4qx5Mypj4DCG3YcTdyRV1TkeO26yZWF0kuz2EJuSY++flek7FD8jQX+zF7OwJeaLxn91nbCjtEIQ5bWfTgNLvDOT/t1o6tbD++dWz5fDxSOyqg9W4cKXpyevXJcJccuOjIDGJ3VM8LQdQCOajeroYPPl22VmfrWM1JksLHy5HH/FxzbLKIM13yOu/p2CA12urRWGzruvNkOGy38mb0czuw3TfrZ1kj0DHUoZ3grKO8954VZYqS0pZrrcj2rQQV1RY/WUsZrdZ35oo8+p6Po0tEFVy0xQdbTpM7gU2ctTXms1WM4yfLs5Lh/35apLn11v06bFTNu66Oa1KwaIUGNwTPb5uQXuZJ1fnXnySJjbTeowU1vasRZ8fEtvUXQwiTXxCsi69KuQXW5r5b1/UaYCg1NiHEo8u0lAetknZ+mpJZONthxIM2gl54WW4pGbnz7J/Xu8O5Sn69ZbVnTshyAV45qM+sgASiMiebZd2UFmXzdkEuloeVdsSyylh07kXUyuzu15LqxEwEYaU1Qd49HoZl284tiJ5z0jb2CiUygAltpW6YEuDQ1MgUdTuvaA4VZFMN16iYnhlJLRLXd1uXVq1ZW9xqc9k5kmfp3CCijjc7vyS30TAnqAJ+m+M4p3Kd2ZOZLiozyY0QotLCmUvsluDR4v07wunZSZXt9AM33T+lzrPCNvZzBq7Y+O69Qrc4tiFirHow1vabHtsYOiMwLnZRLSo79ci0zo1d1WUFhIOrofM2qCWrO79uda+WL05UU3kg5rg1fAN6EFtaUIh+ji43tZiWgFTy707V1Xb9bepIeh1jhG3sFyrfzpaF6yy4oxf6ky0prTa/JNK1LCq7D15RoNWWvdgE2HRT709Iy6paSk8xDpSCDK94LxvCjsZY+yVJrUKdaogQBu5/azrZWnsIVrkdxj10w0U5Y0+xi08sKp8GMfv6RZ6fapuig4KKu3y09WRJ2WT9AV84CdNaW1Ih0UlwlddUb9gQOAOmldg2rR7jfkFFQ6cXaORq3n0Dc6c9867j9s9tOkrU6WulU/8FXx/nNctblm/aE8bo7cbTrhpSJVsrnYmWXhcWzaONir0U/G3nxv7wyNyzPrjvaGCT+d31Pcdch0nACwg+w6PZNbyQBO+6F4B8D3X+uOUFhk099uiKChuqaPm1VnKqk1u/ODue835Orjm9TV2IK9LQ7pSf13ykW+DN7OYRZW88sx1qVLw0DwAuXuHOzs6+d+21lz/Fy+71iB3/uypYabxhynMDsa4ojOrn9bkoyWtmlqPgz89moY7eWs5qgbt5tKsSwm9Suqn6eFc5BwD0+ceHRqnJ8vNqTkyeqMFf13C8cyWDAee94/xcR99A6c2jE0fM/6IXZ8kxONQS8Ey/2WTv4xl5OEcpzb81UV72xQL48r1zeVVWxBH6sIHBn535b9eG93H6v2AHQxwPTi9BeA0bwaLHw5CyXFlK49NzW8vf2T1XLNu0ROajRkylP3R5VkAyuPbdKNd7Fw9PsJaE5842ntVfjbSjD9ICAoZv3PfnGXsLrxwDkRgzKoMugrAeJaOEbezkHLrGpd0ZE200aGDJLp9SdlUrJLZXnFTtglv5h7S6pEiMX7VQA1LJeNfX0RceIW0sEvVZSgnriwi4qB8nmYq/FK1ilVVn+Jeo60dfsQyrhto/bIINXcXf/VFfeeWtAj5hDz+Jzmqy1ej8IR4gh8Pm/r+6mYoVv7BUAJiGl24wx9tx0tTvHXYfdGiTT6SzrGp/ZGYO1a1HVASe+yKMnhwtGAqvXwAxmzmJcC2OHRptiGkgsrJ1iZs17tcQEGfC0wm20tNqUxrrtg4qtG7ItuXKnd2lej/dGwQ15eF0r/1ax3tyVry8IE++MFb6xl3MEO7v2G5t1xsBtJzCmUzvVq8SmD49hO6XYiKgjPLlqW2YE0SX3EW2Lqgm7axHw0sE7q4yyef63hnUPO5fbu+BzBhsrLzyBSpRdWHNDrnkg8lIQW+gaf3093pNZWUdg8c6+HdQwowuOwaGah8acHXxjL+ewC5SZQSlNtoBxXts76C5Gy+DKfhgI+mt2KTaM8sm/dFHvLFinOjSpKcZtEih6zYzWFlWndJ6WdIaPHZpmp4Dd3NU7wgJ+5ruwUjubz2ru061NXSnJ1Qq7Z6Q1lIYUa9cc+Xc43t2WCSbpBb8Tid9gUaHRA/WrVx4vSx7KZds3rC7eTKzwjb2cwytQxmxrbfawa5W1KsDoY6gScyvPpYiHnPrIDxdF6Muj4upG1GBWsDHLQ/PkdC2M4t6zU4UcgrhDsKotHK/rAJ+l1db6bMymxDYYHDRDLsZVo0pltTMrT/1z5mp5FuISbw3rIZxx1meDE5/ZeExxVZ+dmg7vmOuw9meJwcC5Ze+WiHfCs13Vq7V4LngxCIOUpBbCz7OXwzy7CVN1xknfnS+y9ctjbVHVHHO0ppq5cNJDWkbJDp/fflKE3JEGA0b/zk3UyA8W2W4TFpf8faHZ/J1re4iYoxO0l4JBDLERVgAYEu48pboAHXQyFGu3ZwuxJIPf8s17VO+UBuqpGeHqs5w3KA4RXC64ad2bCjA6dsASgNoCAoq887hKcWrsR4ttZb2s927SXZW0ocmf2Ss4qYXJGW89Lpovk5fnwBfbbea/f0BaxLJB3xsw3faaHq6rtX7cWqsOrDX5ms32hrd/ChkXRgzVlF3e3jyvV/muVoDR+5hFQY+d31lN/3VjRHDSpN0yz23GSkra0OQbewVArASWpUmHhdCBG4iqO92bqN0Y560UUCWit3Lbb9aqHZLS0/X6XoFD87yxaNdbr9uwRhVHSiy7tJyVc74kBKK+sVcQxEpg6ZRO0zJM5ufMUg9+tERIGzSi1WfDuJ3uzUobRTWNE/GjXf24Fb0c9mOpUFQUkCAYBmpN0TkZcbREmrot9aa391/Xa6ConBAXYuwh7fjFsvC1fEkIRH1j92ELp3Taw4M7yRr8C4thU+kG95p1Te+mz+ZFhEkRiZlC48s/af5aWQvbpcqsAwvHc4zXfoX7wtNdk64NT9E5GbFbwY2pMEN5bCWp+4s8hxOgxLrS6AMIU4RpVcenkvZROnDrWKN0FSkk09j157jj1lp3DJ4BQpe8aoie++BOrt4GRmqm0Lgnot8wsupqQLcAGdVmXvv1bl9P5KM0mD25rjVFZxoxxgvcFGCsCjN8Zq7DOYcTC631noC+d9KLbv0E5T4a/91336knn3xS/fjjj6L+YuqqA5Rg7rnnHvXZZ5+p3bt3q5NOOkmNHz9epaSkyPadO3eqMWPGyPZ169aJVBTHowWn9eEA21CE+frrr1X16tVFEQal1oSEhDIbjfdyyUvSsebUfWbXicV173xvoWi1925fX2q/MShmOqLeZ3UMyl4HSTLzVXKVBGGhxZUmuHfms9+FufIc37JussyMu7PzVO3kKmrMlP317nYR7f1dcX+EK8e0ry9Gac72DAzkyKlYs+bqMcK7+qaqb1ZuVZ2a1pJBATYbrSjDdbQHoVN/Zkcd9z1jyWY5P7RbARUI47Dj+NEDOqpOzWsKMw0CEjQDUbuzJ2ef9MdDvTX83z+qly/vWjG73rKyslSXLl3U1Vdfrc4///ywbYxlGC7SzVOmTBEje+aZZ0S2eenSpSLjtHHjRvl56qmnRM9t7dq1asSIEfLZ+++/L+fZt2+fGjBggGjCzZkzRwYVZKQ476OPPqqORJfcqWvNq2PNab1pFzTCiOf8vkOaPp79YmWY8SB7dELruhG18Sa7q1M1nN5n+H9+UneceZS6u38HYZNhoNASzdqA+fed+evUQ4PThe6JgBzSTuxLi6vp1uvg3LzVOyNkpjFiavShlwZWj8FMjzkKbbavr8YOSldDXl8gtf36GpBp1K1eRT04ZbHUJDh1G/L7hCu7qpy8ChqgQ2udHzug2Dpv3jy1ePFilZ4eLHB4+eWXxWgnTZok6q2dOnVS//vf/0LHtGvXThRbL7/8clVYWCgzN7M+g8MXX3yhGjVqpI455hiZ+fEYHnzwQZWYePh43Urqkjt1rUVTiGMHu6ARA4dTRRtcc/dP3k87pY2ENTlyy5Sjomn29xnhBA9A/355j1ZqY0aualWvWmidjt6cCdzlu/unqlXbsmR2fenr38R9RqjBun7XA5lT6ysGraHdePrS8RjM9+LcdhuUpoJCC+9IXwNySwzd6tazPGCZMPyktqKhx++jJy+WdGGsiF339QhDXl6e/Fu16v4vQFxcnCivzpq1n73TCu1qaxd97ty5IuOMoWv07dtXXPMlS5Y4Xpvt5k9ZJKB0SqfZobdNGsgt2MbAwWxpt162fq5nQ2ZL1rsXTZirtu7NtV07A449Pa1haP8r/rVADRw/S32yaJOacmMv9b/rT1RTb+4lhTuDX5ythk38Qf7ld4yrTnKieAgmoo2w6wEBJlyq21jaUKBDoZLds5ngeWCnNcFi2lGdpvg5dfMLx2eWgKmmXMzsbkhNTRXp5ZEjR6oJEyaI247u+vr168UVt8P27dtl1h4+fHjoMySaTUMH+ne22YH1/NixYw/K+jraNbiXS27nersV4hBUg07KhJvqDAMAJBDRLAfsZkOvFBX153bFL+OmLpWCnSc+XS4exPjiJpNqxdTTuONwr99PBkEYb4tEAaZ2cqJ67LxO6qGPl0XM+gx0CEPcdkaKxB+IKdRMSlDJlRPUXqoLcwtkzY0Ihhe0HLQ+L6y6Xs+Jl/Pp0s3iUfh5dhuwpv7ggw/UNddcI3rtSC+zXsftt4tNMvuyNmftjnt+IGCA0fLR+twtWrQ44PV1LGtwL5fcKV/rVoiDtLFTgY7dIER3lx1oGjFhV8ziNdM6AXeZv64OtL3w1aqwdTQDhPV3DWZns4tOGyQy0AQIx01dIi610/Hse0//VNv70sFGymVZEkCh3bxOsnDgewEvBy+Ga2qJ51hQ7o0ddO3aVf3yyy/imufn50u0vXv37ur444NFCxp79+5V/fr1UzVq1JCIPgOFBmv8BQsWhO1PlF9vswNLBX5Kc30NYlmDH4jgo1Oxi9PnToMQRTd298Bga6a47GZx91y2/ZJCg8i4aYhXWzwHx3U19xkIqA9v6Kl+35Ylg1JyYpyKi1NqnET+3Y/nec5enxGRWnMK2umSXS8FHDoGtVqNv2b3AGkvDJ2g3Q8//KAGDRoUNuueddZZEmj76KOPwtb44MQTT1SLFi1SW7fuzy9//vnnsq7HCzhU6+tY1+DaJbeuwb0EHxl4SMExk6Ccwu8lHaiorqPoxnoP1RLjJdKs1812szguK1F369q6VzGZpF13W+j8VRIiqKhnu/xuAiNF7YV7wr3HzYdQcmaUxz/88TLpfDPv221wQK5r3KB02+fk+XlO/X7Yn6q/CjmzZ2ZmqlWr9o+Ua9askZkct531+nvvvSdGzv8x2FtvvVXScRi3aejZ2dnq//7v/8KCaRyH6892jPqKK65QTzzxhKzTR40apW688caYZm83RLO+9iqKsFvLxVobH2uqDrgNQpTRUl1nvQfWtrdM+iGUfqLizMqlrskjKCa5/YyjRByxSc0kSZ1Rd9+1ZR1b7nXuN95S9Zpn8Ry84gGk8sx6Al2+Gs3x3PeaHVmhaj/2bV2vmmPN/ZfLt6nRA5SQY1rTfTz/sS1rh3kxXt+VcmvszNKnnnpq6He9Tqbo5c0335RAHJ/hdjdp0kTy46NHjw7t/9NPP6n584Plku3bhwvdM3C0bt1aDH7atGlSVMMsT6CP848bN67UnqOk6+to9om2Nr4kqbpovnwYDiESXThDIQotnya27s0THbeHEKU0Z9CWtVXDmlXDaJkYFP7W9yjb/bXXwoxMLtwsarnptPYhauaSxgOiLnmNqxRm3LToumF7Vr48Fy2/TkVCGhW2Nv6UU06xDbZp3HLLLfJT0uM1WrVqpaZPn64OFqJdXzut7bSKyeHQivMaqDC881+eE855NyhdvT7kBDX+6yAZpl7XMovf2z9NDJJBxK6mXRM63DxpvpBjjBrYUTroTK9l/c5sWYZY18fPF9eYe9W2W+MBQRWX/etwL8JK83h+p5fdDQx+8OfzXFBR7cgMpo2tz889sASKFRVqzV7WEe36GrUSu7Udnx8ook3VWdf0kFu45ebtar13ZuarF78Ol1XiCw211OOfLJeItS48seueY7bmc2bCRz5eJqqvlJDqBhwq0X5etzsorTzkeIl+X927rdq2J1ddd3LbUDyA+7O+y1ED0yLiAbJ/7zahXLrT8b2NdbY+H7/PWrU94u9mHkNpLNTVkI1QFovxv1kczAsZekp99eC5naToqELO7OUJXutrPqfv2q6Uk8+n3tQ7anfdLk/vNUNDr7xy816RViLfrr+EZ6Y1lBz8qMkWieWU+qKVbtd+mpQY71JIsl0VBgJhbrjmd7Nzw61eB///ce0ux1Lbhwd1UqmNa0pJLobIIID3od8lSjCaK09fT9hp3v5ZvXvdierufgGVm18ksQOCj7kFDDyFqmpivMQ8aidVVhOHdlNVE+PUovUZoee3a5zBi6CijuyBFr7ckpErRTpnd24iQUxTMaZyfCXVIEbOeOAbexmE2/paSx47BXqiKbZwC8B58b1PX7w5RL5oyhTrXnYIJuGl0wMVa3Oq1uxmZrOwxAq+8JXj4iLccH1dKtfcCB3cynRnr9qhHpiyRPXv3Fi8CLvnBHbPSfyAZpZf/9xtG79gEH3042Xy/vAkIOPkPnRRjx5chvVpK9mCgsIi8XrQrNdKO3DCL96QoV769ndH0UufluoIRrQVcXYzr9kVVlAUELfa6fhoAnB21XPWIJEdfRIGf2//wrBuLFx9JwILZkUncF742ewMlZnx7n6p6uJ/hvPRmUErXGA3xpmZq7ZL84ysrdft3k+QYZBFMPDpOn3UdJhRkWhi/8u7tbQl8uC9s+TiHTMTOw3MeCwL1+2y5cwPqOXqrr4d1N3/i+Tm0/v4tFRHKGJJdVlnXqdCDafjownAYax6KbErm9ZT+yCZHfWT1bNw8xQIqDnJFmtlFDvgAl+dmR92L2YAk/eJ2gzUT27YsCtXqKHHDEwP9cibHXl2zLEMDjefluL5d+P9IfTgFEx1ez72x9jdUJJyWT9Ad5jhNdNai1msQTwnV9Xp+GgDcFwHo6d+3CtIZsKaEnIKOmqhgxtPbWcbbOS6bmB9bRfA5Hm/XblNZmdmYTfUr54oHPBjp4Wn7gD19Bi6nWeBlNYfO7PVPe87/90A6/abT2uvHj2vUyhACNcdv+MluCEaOq9Y4c/shxklSXWZQTy41GNRVYk1lx9Lu6tT+S33y1p+d3a+5NpJchKMiourpK6e+INtsNGrQqxF3SQJlFWtHKcqx1UKpU4RUtB66m66dr2KtdycXH0v0knEIu08EvO9o4FBFd70RZvCA3Ip9VW3c9IlgPf92p22ksw1qiSot6/tLlwA1u1eZc5O8I39MKMkXWlmEI8AVizHx1orH41Ao1f5Le4uPdwQWJheyMuXO0smY6huteKfLtkiteKaLILU1ePnHy3acdHo2g0t1lZzEoX0qq5zCy7q907xkMlEo8EzjfloscQDdGOLuUTi/j5ZEgyEmnUBmrzCi87LCb4bf5hxoFVzsR4fa6282/6PDO6szkprKHRUeBp2HPR6mYJEknW5gSSyEzDUaGvFATPnup3ZYe64LrXFqP415Hj1zvAe8i+/8zkVbk5VcF7VcW7BRf3eYax1U3HVtfW8F7wb6/Pp55o45w/1vxE91dSbe8s2OO29ehXs4M/shxkH0pVW0uNjrZV33z/IEOO1TLmqZ+uIGRw32snNJsWFuUVbKw4IiEWjawfwGshjcw92HgTndiKd5J5Zhjh5Hvq9kxVxg/YeeP77zk4T47etFvxtu9rYM0diJ3owgNLKj8aXM8UWrz9oLMdHpImqB4NwsUCc3krRpw71MsXOLcaNduOB35aZL40u1gIeJ/73aFlmesH+2rN1qHwXN7koED4Lr9i0Rz08uLNQQFnr1G86NUXlFxSpB89JV2OnLnFUs8GNj+Z+ANx4diSedgMD4Nqxwjf2cqDYEs3xJelki/ZYt+1wwjkZIm40paF2ATotYXzhK3OlFnzyDb3U1sxcVScpUdazdvzvizZkOPcNtA/yuENTxXrfPD6kFT+go0T59fvbsjdXdW1dR916RkqIFRd8vWKrmvDtaul3t3vvUmk36WfVpUXtqGvnIZx0g/n+OJ9TrMENvrEfwYot0R5f0k62aI4lyu61HcO3axrhM9xxuwCdaQysw0mPwUR7WmpD9cu6XbapKYgmzx7QUfad7cDjPv6SY23135jJr+jRSqr/xBupFNSqX7R+t7DSWIGLD4WV+d44Dnpo0nn39EsVV//8Y5u5Ul0D3g/ekNuywbpk8UrN2cE39gqAknayRXMsXG5u2zEeZvgxUxZHuOwEocg7Q+lsnqNPMTHFmu1Zsl3XpzP7U///2pATVCW1IsKA0prWFC/D7CGnnp60XHylSkKnxTod5hy9LGC2Hntuujq+dR31t3d/CQvwob0+5px0NaxPjqT0dG3+so0Z8jm5fNOrsaOpCnLBpwkfHsVJzMiUx2rPQrv9eQX7hOyC4h6rmMYD56SrSy3qtdpjigW+sVcAlDS9F82xcLB7nZu4AIZGUIm1Jl94vuh8YXF7Xyh2hdmeVNw4YtbT6/p0XGn244uP240e+9od2SHXH2GFJRv3hOrpnTjiTkqpr6bf0kdl5uar6lUT1dzfd0gDj5XpllQhnXNWfjr00emNt3o9dgVO0pX34WIx2mG926pmdZLUecc0U2ekNgxbbq3cslcos1HbGWpZ0jz+yTK5F+2R+Hn2co5YFF1KM73ndazXWlOf226ZYX2mhjUS1f0WowMh+ad+qWER9oGdm4Si64C0mplbZ4Z3qi58YMpi8TjueX+hdJVZ93HjpxtVLHVl9XrsCnHMvgVN2kEZrzUwSpruq+Xb5McOl3VvFVPg1g6+sR8BOJDg2oGm97yOpQe7JOe2e6bJN/ZyzUvnGxF9u2vrGIAOuPVNb+RaXbgnp0D9uG63uqR7UUwVdBy7eU+uo8CERix9C17S1gya1DMciNS2X1RTzmrn7VBS0slojmXdGuu5nZ5pU0aO63PAP+d2bU0mcVxx0O/Pne7n27A7RwYFu0yBVwUdSwYrrZb1PLH0LdRKcjfgetWCadIDCeL6M3s5Dq6VVnrP69hYz+30TIkoGLqgVd3kiNnNem2WA09fdIwEBukb8MKxxYUs1kxBNPx01oIc63m8vAPzb8czHUy6MeAbezkOrpVmes/r2FjO7fRMdkan17y0hObAJGNDx2R37UY1gx6EFxf7sS1q29bQe1XQsb1VvWShAtMFOVYJZ7wDc81uKtKg+kpAUhVzDwDzXKVNNwZ8Yy/jKA3G2SPlmUJCicWpuFh79a1gAEDFxSoe2cvIc//3uh5h63zdn9+4VhV1ZlojIZJwOpYAoUkRBlkkuX7SbPuKlFBZm/fvlh0YN6iTuuntnyTqfiB0Y+Ven/1IQUn02ZmdqDJzCoCVhJ7ocMPtmeCyGzuok/pje5Zw1D3zGfn0klMzcS2otBrWqBJmQAwsGDmFOqT0JFqemCCBMid9dWSsPlu6RbYd36qOaL6d//Lc0LWsEs4f3dRL/X3G/sHCut0EHkgXF7d/8g09JS13IPBn9nJeO3+kPRMzHFHuS1+bL6k0J0LKaOMVbD/5qAYR16J89oZT26trJn4fiqq/Nax7RH26aXzcD7/rd2+NxlvX6HgoVgUaN3YamoUOpgdXLoz9u+++U08++aT68ccfRRACnTYUXzQQh0BHHY313bt3q5NOOkmNHz9epaQE6YVAbm6uuvPOO9U777wjUsvIMb/00kthyq3r1q0TkYivv/5aVa9eXUQiUGrVss5ltXa+LMLtmXSPvldEPNp4hfVaiQlxMkMv+GNHiAhSyzw58sin1JdCGjNAiNdgpv6s97vXUnDk9TxOKGkRTblMvWVlZakuXbqoF198MWIbqxQMf/Xq1WrKlCnq559/FrEHlFw5TuP2229XU6dOFamob7/9Vm3cuFGdf/75oe379u0TdVeEIefMmaMmTpwoajMPPPDAIXlGTROFK3egKZiSIFbttwN5Jr2m94qIE3mP9r5qJSeKwTCowIJzdPPaUsOODh3XQS+9WmKCCE5QTqubXviX31mHUzIrcs/Z+Wrhn7tEwYVtLD3s7tfa827dzrlNTntKeem5Nw27ND24crdmJ8ppzuwrV65UHTp0UIsXL1bp6cG2wKKiIlFeffTRR9WwYcNkDY2m29tvv60uvPBC2Wf58uUqLS1NzZ07V/Xo0UN98sknauDAgTII6Nn+lVdeEY9h27ZtIgh5MNbs5aGop6Rr+uNa1VE//gEDa+Tanrp1Sm8pZ43mvjbaPIPwxxfrzZuVa9TmEzfIxONIqqwekDZX+yAda3d44wnOUQY8btrS0DUwYoJxs2zW7G5yz7TWUsqblFi6Hly5mNndgEsOTFXWuLg4EWOcNWuW/I77X1BQILO9RmpqqghBYuyAfzt37hzm1uPqY8BLlixR5RWlUdRT0jU9M90NDoSUd57VIaiJFsV9OT3D7FU7pF8dckkTGDbltPWqV5GaeWvcwGSX4Xr3fbhIil5SGtWQWVgX+XBNmlu0YoypIOOm6Dpq8iLVoGZSqXtw5WLN7gZttCNHjlQTJkwQQcZnn31WrV+/Xtb3AEVWZubatYO84RoYNtv0Pqah6+16m9NAowcboJVhK2JRT6xgZj6mRW016MXZtv3uEF94ET6a6jAzHZ4B49LdeNbPafJxK9/VaTrzehHxgfhK6okLu0hpLuerlZQgv9MB50aVTTchFYKliXJv7JUrV1YffPCBuuaaa0TCGTVWZvD+/ftHJeZ4ICB4N3bsWHUkozSLemIFzKxOhJSscaO9L69nyHMInGGg0R5nXs+uyMe6rKDc9kC6CUuCcu/Gg65du4peO5F4ZvMZM2aoHTt2qLZt28p21u8E3thugig+2/Q+/G7drrfZAW+C9bn++fPPP9WRhsNZ1ON2ba/gnXlfsdBhWwOA0R4X63vw6hb02l4SVAhj1yA4RiDut99+E033QYMGhQYDPIAvv/wytO+KFSsk1YYWO+DfRYsWqa1bg5pm4PPPP5dAW8eOHW2vR1yA7ebPkQbd9XYwU0IluTZa7tHel9t5etuwwOjPMTirQqsTjXas74GOvd4eiq6ljXJh7JmZmTJz8wPWrFkj/8dYAem0b775JpR+O/PMMyVaf9ZZZ4UGAdz8O+64Q3LoBOyGDh0qBk4kHrAvRn3FFVeohQsXqk8//VSNGjVK3XjjjWLU5RUH0jF3MK996lENor4vVzrs8zoL84zV2IiwN6uTLP/aSTpruueSvgfW43bn1tcu7fW6IFAO8PXXX7P4jvgZMmSIbP/HP/4RaN68eaBy5cqBli1bBkaNGhXIy8sLO0dOTk7ghhtuCNSpUyeQnJwcOO+88wKbNm0K2+ePP/4I9O/fP5CUlBSoX79+4M477wwUFBREfZ8ZGRlyX/x7pGF3Vl5g1Za9gZ/X7pR/+b0sXDuW+9rtsO/mjJzAso0Zgfmrd8i//G4ibPumjMCabXsDC9eVznvwunZpotzl2csyjtQ8u4/ygXLhxvvw4cMbvrH78FFB4Bu7Dx8VBOW+qKYsQYdHjsRKOh9lGzVq1JC+EDf4xn4IsXfvXvm3RYsWh/tWfJQzRBP09aPxhxB029E1F80oXBLgMTCQUKnnR/sr1rur4c/sZQt02zVv3vygX+dIrdYrC6hZjt+dH6Dz4aOCwDd2Hz4qCHxjL0egRn/MmDHlulb/YKFKBXh3foDOh48KAn9m9+GjgsA3dh8+Kgh8Y/fho4LAN3YfPioIfGM/xMo155xzjmratKlUO02ePDlsO7FSRCeaNGmikpKShBgTCi0TO3fuVJdddpkUfsCGC8MOTD0mfv31V9WnTx+hz6Yq7Iknnoi4F9h7YN5lHyiyp0+fHvO9HEpA3nnCCSdIpVjDhg2FaQjqMBOo+sAcVK9ePVHsueCCCyJ4A9etWydiH8nJyXKeu+66SxUWhpM7wmp03HHHSWS+ffv2IgZiBYIkrVu3lvfXvXt3tWDBgpjv5ZDjoNFi+IjA9OnTA/fff3/ggw8+EMaaDz/8MGz7448/HqhVq1Zg8uTJgYULFwbOPffcQJs2bYRFR6Nfv36BLl26BObNmxeYOXNmoH379oFLLrkktB0WnEaNGgUuu+yywOLFiwOTJk0SZp0JEyaE9pk9e3YgPj4+8MQTTwSWLl0qzD2w+CxatCimezmU6Nu3b+CNN96QZ/rll18CZ599trAOZWZmhvYZMWJEoEWLFoEvv/wy8MMPPwR69OgR6NmzZ2h7YWFhoFOnToEzzjgj8PPPP8vfA8ahkSNHhvZZvXq1MBXdcccd8m7Gjx8v72rGjBmhfd55551AYmJi4PXXXw8sWbIkcO211wZq164d2LJlS9T3cjjgG/thgtXYi4qKAo0bNw48+eSToc92794dqFKlihgs4MvHcd9//31on08++SRQqVKlwIYNG+T3l156Sai1TNqte+65J9ChQ4fQ7xdddFFgwIABYffTvXv3wHXXXRf1vRxubN26Vd7Ft99+G7o/Bqz33nsvtM+yZctkn7lz58rvGHdcXFxg8+bNoX1efvnlQM2aNUPv6+677w6kp6eHXeuvf/2rDDYa3bp1C9x4442h3/ft2xdo2rRp4LHHHov6Xg4HfDe+jACSTMQmTFUaKKxwEU1VGlz3448/PrQP+1NzP3/+/NA+CFeaclQo1+Dy7tq1K7SPeR29j75ONPdSFrq8AFoApanqM9fj3UA5zrXMfXj//K73ieZeDgd8Yy8j0KoydqozpioN60wTKMjyhY9FucZpH3O7170c7u7B2267TfXq1Ut16tSpVFV9Njvsw4CQk5Ojtm/fLiKfXu/P614OB/yuNx9HHAh8IdSptfp8RAd/Zi8j0KoydqozpiqNKVIBiCQToY9FucZpH3O7170cLtx0001q2rRpwu9vtguXlqpPY4d9yH6Qlahfv75IiHm9P697ORzwjb2MoE2bNvJFMFVpcB1Zi5uqNHyBWBNqfPXVV+LWsp7W+5DiY81oKtcgW12nTp3QPuZ19D76OtHcy6EGMU0MHTlunpl7NFFaqj4nerwb3HOuZe7D++d3vU8093JYcNhCgxUQe/fulZQPP7z6Z555Rv6/du3aULqLFM6UKVMCv/76a2DQoEG2qbdjjz02MH/+/MCsWbMCKSkpYak3IsGk3q644gpJU5EmIpVkTb0lJCQEnnrqKYkSjxkzxjb15nUvhxLXX3+9pAK/+eYbEe/QP9nZ2WHpLtJxX331laS7TjzxRPmxpt7OOussSd+RTmvQoIFt6u2uu+6Sd/Piiy/apt7ITLz55puSIRk+fLi8KzPK73UvhwO+sZch5RpSXqNHjxZj5ct0+umnB1asWBF2jh07dohxV69eXVJGQ4cOlUHEBHnx3r17yzmaNWsmhmvFu+++GzjqqKMkX0yq6eOPPw7bHs29HErYvTd+yL2XtqrP119/HTjmmGPk3bRt2zbsGhrk3zFm9iEVR92DiWju5VDDb3H14aOCwF+z+/BRQeAbuw8fFQS+sfvwUUHgG7sPHxUEvrH78FFB4Bu7Dx8VBL6x+/BRQeAbu48yhT/++ENYfH755ZfDfSvlDn5RjY8yBdpHt23bJg0ntO/6KD34xu6jzIBOMZN0w0fpwnfjfRw0nHLKKdKpxg9MN8zWo0ePlg42AGHjQw89pK688krpPBs+fLitGw+LzMCBA2UfCCch0/z9999D21977TWVlpYm5I8wwrz00kuH5XnLOnw/ycdBxcSJE4UBF/bVH374QQwaeqZrr71Wtj/11FPCYovOmh02bNggNFsMHLS2YvCzZ88OMcK+9dZbcvwLL7ygjj32WPXzzz/LuatVq6aGDBlySJ+1zOOwtuH4KNc4+eSTA2lpadJBZ5Jf8hlo1apVYPDgwWHHrFmzRrrZaP0FtJ/SWpufn297jXbt2gXefvvtsM8eeuihw95OWhbhu/E+Dip69OghbrkG5A3wzxOIAyZ5ph1w53HbIYOwIisrS9x5PAe42fXPww8/HObm+wjCd+N9HFbgbrsBKignaHGMV199NcTUowF1lI9w+Mbu46BCU1xrzJs3T6WkpERtjEcffbSs+6HZss7usLWirrN69WpRyfHhDt+N93FQAe/aHXfcIRxskyZNUuPHj1e33npr1McTyYf/7uKLL5YAH0uA//znPyHpp7Fjx4o01PPPP69WrlwpHHNvvPGGeuaZZw7iUx2Z8Gd2HwcVpNXgW+/WrZvM5hg6EflogVYaUXg02U4++WQ5xzHHHCOc8WDYsGGi2/bkk0/KPiwLEIKAV95HOPyiGh8HDaTLMMznnnvucN+KD9+N9+Gj4sA3dh8+Kgh8N96HjwoCf2b34aOCwDd2Hz4qCHxj9+GjgsA3dh8+Kgh8Y/fho4LAN3YfPioIfGP34aOCwDd2Hz4qCHxj9+FDVQz8P/jf0+JCgcb/AAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAQwAAAIGCAYAAACh/7FoAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAa7xJREFUeJztnQl4VEXW90/v3dkhAQEFDCQIhiBRXAMOixuyCPqNAzIjCC6j4DK+KqIiICqijjqAOo4K+DqKrzOKIu4KKuDIGmVXggg4oMiSPen1fs+/0re5fft29+1Ok6ST83toOl236tSpqntP13K6yiBJkkQMwzA6MOqJxDAMA9hgMAyjGzYYDMPohg0GwzC6YYPBMIxu2GAwDKMbNhgMw+iGDQbDMLphg8EwTHIbjC+++IIMBoN4TySQOXPmzITKZBg1ixcvFvfaTz/9RC0NY6IqR36ZzWY6+eSTacKECfTf//6XGpsPPvggKY3CwIEDg+pR+dq5c+cJyfO5554T7ZeM1NTUiHZO9JcKHnJl3ZtMJurSpQuNHj2avv32W2rtmBMl6KGHHqLc3Fyqq6ujb775RtyIq1evpq1bt5LdbqfGNBjPPvusptGora0VBq25csopp9CcOXNCwjt16nTCDEZOTo4w7sloMGbNmhUwtolm7NixdPnll5PX66UdO3bQ888/Tx9++KG4t/v27Rsx7Z/+9CcaM2YM2Ww2amkk7OkZOnQo9evXT/x9/fXXixtx7ty5tGzZMrr66qupOdCYhiseMjMz6Y9//CMlM/gtI740HA4HJTNnnnlmUFsUFxfTyJEjheF44YUXNNNUV1dTamqq6JXg1RI5YXMYAwYMEO+7d+8OCkf3+v/9v/9Hbdu2FQ8wjAyMSjRWrVpFv//970X3EJa7c+fO9Je//EX0GmTwTYneBVB2KyPNYZSUlAhjl5GRQWlpaTRkyBDxLaI17FqzZg3deeed1K5dO3FjoJv622+/BcXdsGEDXXrppcJg4qFBr2vixImUCJxOJ82YMYPy8vICdXDPPfeIcCWLFi2iwYMHU/v27UW8008/XdzoSk499VTatm0bffnll4F6kr+pUUfKeos0Noec4cOH08cffyzaEmWWH6iysjK64447hJ7QA3rjS8Tn8wXJfeONN+iss86i9PR00Q6FhYX0t7/9LWw9IH+0AUAvQ9Zf2bYrVqwQ9yDaKSsri6644grRU4gX1CfYs2dPUF2g/m655RZR1+ghRprDQA/ld7/7XaCcZ599Nr3++utBcdauXUuXXXaZ+PJISUkR8XHfNRdOWP9crqw2bdoEwnCDwlJjjuPee+8Vjfnmm2/SqFGj6K233hIPYDj+9a9/iW7ozTffTNnZ2bRu3TqaP38+/fzzz+IauOmmm+jAgQP06aef0quvvhpVR+iDmwqNhwfPYrGImx0PDm6Ec889Nyj+rbfeKsqDhxble+aZZ2jKlCn0f//3f+L6oUOH6JJLLhE3M8qHGxXx3n77bV11hu7v4cOHg8JgVGHI8JDhGw7DvBtvvJF69epFW7Zsoaeffpp++OEHeueddwJpYBwKCgpEfAzB3nvvPXFTQ8bkyZNFHOiO8kD2/fffL8JOOukkiofvv/9edOFR/zfccAOddtppoq1ws2MeC+Ew9F9//TVNmzaNDh48KPIHaCukhaGGMQF4sPGQ3H777Zr5oX5RRtwLuGeuvPJKEd6nTx/x/tlnn4kvgW7dugkjgi8V3Cu49zZt2iSMXKzIX3zZ2dlB4ahX6PPggw+KHkY4YETwxYF2QR3g3sCX1UcffUTXXHNNwMhBbxhP3GNGozFg/PGFec4551CTIzWQRYsWYT8N6bPPPpN+++03af/+/dK///1vqV27dpLNZhOfZYYMGSIVFhZKdXV1gTCfzyddcMEFUn5+fiBs5cqVQibeZWpqakLynjNnjmQwGKS9e/cGwiZPnizSaoHwGTNmBD6PGjVKslqt0u7duwNhBw4ckNLT06ULL7wwpIwXXXSR0FfmL3/5i2QymaSysjLxeenSpSLe+vXrpVj53e9+J9KqX+PHjxfXX331VcloNEqrVq0KSvf3v/9dxFuzZk3Eurr00kulbt26BYUVFBSIfNWgjrTqUK6HPXv2BMK6du0qwj766KOguLNnz5ZSU1OlH374ISj83nvvFXW2b98+8fn222+XMjIyJI/HI8UC7jV1e8r07dtXat++vXTkyJFA2HfffSfq79prr40oF2WD3FmzZok8fvnlF+mLL76QioqKRPhbb70VVBf9+/cP0V1dT7g/cE+de+65Um1tbVBc+X7CO54BtJPyHkNb5ubmShdffLHUHEjYkOSiiy4SlhbdTww50HvAUEPuph09elRYUMxnVFZWim9SvI4cOSK68Lt27Yq4qqIcE8OSI+0FF1wgxsyw1LGCb/NPPvlE9G7wTSTTsWNHYfHxTV5RURGUBt/syq46eieQs3fvXvEZ3xpg+fLl5Ha7Y9YJ33z4xlW+0PMB6EWhV9GzZ89A3eEld5VXrlypWVfl5eUiHr7tf/zxR/E50WDYhTZUAn1RP+iRKfXFfYI6++qrrwJ1hvZEWRMBei9YzcDwFMNeGfQ+Lr74YjEprgd8w+N+7tChg+hxoocxd+7cQG9GBj2qaPMVKBvuefQ61fNo8v0EnfEM4N7DMyHXF+oGvS/Ul3ool9RDEswd9OjRQ9yQCxcuFAVUzhKXlpaKh3v69OnipQW69BiuaLFv3z7R7YMROnbsWNC1eB4CzD2g24zusxo8mGic/fv3iy6kDLrVSuThlqwPHsqrrrpKjKsxVMCNBoOEm0DPjDmMLB4oLXAzoasuj9216k4G3Xnc8P/5z39EGdV1hfFxog2Glr6bN2+Oqi+69BiWoiuOtseQDl8qGMfHg2y8w7Ur5lrkyclI4MsBc2YYFsCo4T6wabShVtnDDWd69+4dNg7qC4wfPz5sHLSdcoif1AYD4yt5lQQPSf/+/cWDgvGtPAYHd911V8i3kQwmxbTANxK+HdBLmTp1qviWRYOjR4JvksayvOG+SeRdDvFt8e9//1tMmmLeADcnxq1//etfRRjqIV5QRkwGPvXUU5rX0bOTb058I6GOEBfhVqtVfLPCiOmpK60JT7kdtNBaEUE+aDO5h6QGXy4Ak4X4dkVdYVIQL4zbr732WnrllVeoqcjPzw9rvJUkajVIbpcnnngi7LJtQ+6fZj3piQcL/gSDBg2iBQsWiK6Y3O3HxKKehlCCyT1M7OEGwo0ko9WNDXezq8E3H2ahYdDUYCUH3yzyQxgr5513nng98sgjYhZ83LhxYiUAy83x0r17d/ruu++EMYhURhgqrJqgJ6bsESmHLDLh5MjfYljlkIdZym9vvfpWVVXpamsYtBEjRogXHhz0OjD5jJ5ouC+RcLp37dpVvIdrV6xeRetdJJru3buLd/gkhSuPHAcT8LE+Hy1iWRXdcfQ6MBuOdXl8kyAMNwLGmWrUy5Na3+zK/Yrxt9bSm3wz4GaPBGSi+/vuu+8GLX/9+uuv4iFHDwmNFwsYmqj3VJa/LdRLn7GCbjp6VC+++GLINawCyDP0WnWFriy+tbXqSque5JtXnmcAkB/LNz70xZAIPQc1yNPj8Yi/MV5XAkMtr3ZEqjMYe1mWEsxBoc6hq/IaHlbMWcEZq7G55JJLxFIqvkTxLCiR2wkrI6j3J598UhjaWJ6PxuSEuj3efffdYhyIJaU///nPYp4DDyK61pgsQq8DDyhuLCyP4htUC3SvUZkYzuChwYOMZVj1XIZc8eC2224TQx88QPC60+Lhhx8WvRTohG81LEHCoOFGffzxx2MuL25SeE9iqQ/6YqILDzj0beiNCu9BjPVRj+gtYIkQQwR8ayJc9oPAzSl/Y2M5EzcfdIDBVhtq1BWWJ1EP+OZDHEyiQgZ6J5MmTRJtiDrEvBR6ZZhL0gPSoZcDHw0MG5EXjA56ixi2wUjj2x69Lgw1kS8myNGLwRIoHnrMOUQaCsC/BEvaGN5gghNzBHihW485kfPPP1+UQV5WxdxNU/xsICMjQwwHUVb4XmCojl4c7nfMMeG+gaF86aWXhN6YL7nuuuvEnA7ud7Q3ZKD32OQ0dJlFXkLSWkr0er1S9+7dxUteesISJpa2OnToIFksFunkk0+Whg8fLpZiIy2rbt++XSxrpqWlSTk5OdINN9wglsoQDzrIIJ9bb71VLOtiyVVZRK1luE2bNomlLMhNSUmRBg0aJH399de6yqjWE7LGjh0rdenSRSwpY2kPZduwYUPUesTyJpY5I+FyuaS5c+eKeJDfpk0b6ayzzhJLgOXl5YF4y5Ytk/r06SPZ7Xbp1FNPFWkWLlwYsiSKJcNhw4aJJT9cUy6xbty4USwDYtkZ5XnqqafCLqtChhaVlZXStGnTpLy8PCEH7YYl9CeffFKUBaDdL7nkElFXcl433XSTdPDgwah1hnZC+ZFO3bZY5i8uLpYcDodYth0xYoS4h6IhL6s+8cQTcd/3izTqSW4XlF/W6ZxzzpGWLFkSFKekpES68sorpezsbNHGqN+rr75a+vzzz6XmgAH/NbXRYhgmOWiWP29nGKZ5wgaDYRjdsMFgGEY3bDAYhtENGwyGYXTDBoNhmNZhMLAijF+U8sowwzQOSW0w4EkJ7z28Mwxz4klqg8EwTOPCBoNhGN2wwWAYRjdsMBiGSQ6DgclKbEOPTU/wc2Xs0bl+/fqmVIlh4qK8xkW7D1VRyb5jtPu3KvG5JdKkx4BhfwBsbIIjAXC61z//+U+x29D27dvD7u3JMM2NA2W1NPWtzbRq1/EjIi7Mz6HHrupDnbKS+0AnNU3283ZsaoJdiLDj1bBhwwLh2GgFm4hgU5dowAcDy6rYUSrW3bEYJhGU17hoypKSIGOhNBrzxxZRZoqVWgpN1sPAFm3YMUq97TqGJtjiXwvshKXctk19DADDNDaHq1yaxgJ8teuwuN6SDEaTzWGgd4Et1GbPni1OK4PxwJAE2/Vp7fkJsCciehTyK95NehkmUVTURT5/pjLK9WSjSSc9MXeBERHmK3Dmw7x588SxedjfUAscMYfhh/zCuSEM05Rk2C0Rr6dHuZ5sNKnBwEa5OMMUG9Xi4cd5qTgxTHkSmRIYFcxVKF8M05TkpFnFXIUWCMf1lkSz8MPAdvfYHh67gGP3a5y0zTDJQGaKVayGqI0GPs+9qk+Lmr8ATboJMIwDssexdjhKEVvTYxIUJ1XjwKNo8CoJ05xWSw5XucScBYYh6Fm0NGPR5H4YeNAxL4EzSXCuBM4lxWlheowFwzQnMlNapoFQk9THDHAPg2Fa4RwGwzDJARsMhmF0wwaDYRjdsMFgGEY3bDAYhtENGwyGYXTDBoNhGN2wwWAYRjdsMBiG0Q0bDIZhdMMGg2EY3bDBYBhGN2wwGIbRDRsMhmF0wwaDYRjdsMFgGEY3bDAYhtENGwyGYXTDBoNhGN2wwWAYRjdsMBiG0Q0bDIZhdMMGg2EY3bDBYBhGN2wwGIbRDRsMhmF0wwaDYZjkMBher5emT59Oubm55HA4qHv37jR79mxxojvDMM2PJj29fe7cufT888/TK6+8QgUFBbRhwwa67rrrxAHLt912W1OqlvSU17jocJWLKurclOGwUE6q9unieuMp41Y53ZSVYiWXx0dVTk8gXX0cN3l8EtV6vFTj8lKWw0Lt023i2qFKJ5XVuindbiabyUjltS5Kd1iD8kQeR6pdQobPJwn5af74R6tdlGIzUarVTHVuH5XXuSnVaqJUm1nkU+n0UGWdhypq3ZTpsFCa1SRkVrq8x8PsZjJ4fOQzGqhKEZ5hN5PJYKA6r0/oXemvj1SLiapcHqqq81KGwyw+GyDT7SXC95qByGwishkRT5GP1SS+jcv9YZCV7g+rcCPMQ2k2EzmsJrIYDFTl9lJlrYdSbSZKQx4q/aD3KW1SqFUbjK+//pquuOIKGjZsmPh86qmn0pIlS2jdunVNqVbSc6Cslqa+tZlW7TocCLswP4ceu6oPdcpyxBxPGXfj3mM0b2wRPf7x97Sm9Ejg+oD8HJo5soAOVzpp3opdgWspVhMtnHA2PbtiF61SxC/Oy6brinPpmpfWUb+ubWjuVX3E8/fgu1tpzDldaNGaPUHyEX9S/1yqqPPQS6t3hFx7ZFQhPbR8G63Y+Vsg35fH96PnVpYG5ds/L5seHlVIs9/bRp/744KLerWnB4b1ogfe2UqrVfEnFOfSbUtKhCFBOacMyhN/v/rNTzTxglw6pa2D7l26JUgnpEN9/OnltcLIKsP++NLxsAF5OXTLoO406ZUNQmbnNg56ddI5dL+GvEdGF1LX7FRqtUOSCy64gD7//HP64YcfxOfvvvuOVq9eTUOHDm1KtZIafEOrjQD4atdhuvetzeJ6LPHUcSf2zw15mAGurfvxCM1XGAuA+AhTPrQAcSAH15HnFz/8RlP/vZl6dszQlC/ir95DB8trNa898M4WOr1TZlC+C1TGAqz2x+2liAuQ7/0qYyHHl/WUy7lgxS6hB/LLTreKdGs00s1ctk0Ywkhhq0oPCz1l+c+OOzOsPBiRn4/VUKs1GPfeey+NGTOGevbsSRaLhYqKiuiOO+6gcePGacZ3Op1UUVER9GKCwTeX2gjI4MGUv9n0xlPHLeqcFXIzy7TPsIc8cJHiIxzXRdp0m3h4IsXHw39Shl3z2mqFrGj5quPGoqdSD4RJZIiYT/sMW9QwpXyzyRhRHoZcrdZgvPnmm/Taa6/R66+/Tps2bRJzGU8++aR412LOnDlifkN+de7cudF1bu5gLiISGJvHEk8d1+nxhU2jdS1SfOV19XsseWhdi1VOPPGdHh9V1kauR8x96AmT5UeTp2yXVjeHcffddwd6GaCwsJD27t0rDMP48eND4k+bNo3uvPPOwGf0MNhoBJNht0S8nu6/rjeeOq7NHP47RutapPjK6+r3WPLQuharnHjjpzsi12Oa3aQrTK88Zbu0uh5GTU0NGY3BKphMJvL5tK29zWajjIyMoBcTTE6aVUxcaoFwXI8lnjpuyf4yMcmoxaGKOhqguhYpPsJxXaStdIo8IsWH7F8r6jSv9VfIipavOq4cv78OPZV6IMxAUth0CD9U4YwappTv8foiysMKU6s1GCNGjKBHHnmE3n//ffrpp59o6dKl9NRTT9Ho0aObUq2kBsuTWOVQGwN8xmSbvHypN5467sLVe8TqhvphxOrBOd2yacrg/KBriH/r4HxxXYm8SoLrkDuoRzuRx/cHKzTli/j9c6ljpiPkgSr2r3zsOFAelC9WM9T5yqsNyrhg58EKenhU7xDZ/RV6ArFKMjhf6LH9QDkdqXSFTTdzZG8xWRwpDKskUwblB+RPfm1TWHnQu6mXVg1SE3pJVVZWCsctGIpDhw5Rp06daOzYsfTggw+S1artC6AEQxLMZZSXl3NvI4zPBMa86MailxDJDyNaPGXcaid8A6zk8vqo2ukJpNPjh1Fe66Y0m1l0wfG3Ok/ZD8Prk8RL+GH446v9MDC3guVTfM5KOe6HIZcFfg+yH0YgTOWHIYdnavlh2C3Cz0P2w0h3mOt9JCL4YSjzlv0w1GEVfp8LlCVF5YeBsHSFH4ZS76Y2Fk1uMBoKGwyGaVz4tyQMw+iGDQbDMLphg8EwjG7YYDAMoxs2GAzD6IYNBsMwumGDwTCMbthgMAyjGzYYDMPohg0GwzC6YYPBMIxu2GAwDKMbNhgMw+iGDQbDMLphg8EwjG7YYDAMoxs2GAzD6IYNBsMwumGDwTCMbthgMAyjGzYYDMPohg0GwzC6YYPBMIxu2GAwDKMbNhgMw+iGDQbDMLphg8EwjG7YYDAMoxszNSGnnnoq7d27NyT8lltuoWeffbbR9ZFPJ8ep4BkOC+Wk1p8orics3InnWvxaUUfHqpHeQxkOM7VJsdJJGfZA/uW1OKXcTEaDgcxGA2WnWqnO46OyWpc4MdwnEVXVecRp4ikWE9V5vOT1kThJPdNhoVSbmaqcbiqv8VCqzUQOi4msZqM4BR0noBsMJOThpHOE4TRyhFlNRrIZDeTzn3heUVtfvjScME5ELiKqdnmpus5N2Wk2cXq7fAK73Wwkj+Qjs9FIBomoVsjHKe8WSrWYyOX1n+ju9IoyI69jNS5yWFHO+rwhDzql+nXCfzaTkSxGQ0AfyMOJ50eqnGSzmMhuNon0eBlwCro/Hk5zxynoOGW9ora+HqCHyS9LPp0dsqBXdZ1HtIMTOvjjO6wmMhsMVO2XkW6vPym+xn/Sepq9XneTEfqbxOnxcvmQl89fX5XQO8UiTn6vUugj2sVoEIfAIxx/GIz13+Jo46B4ZiOd3AxOb29Sg7F+/Xryer2Bz1u3bqWLL76Yfv/73ze6LgfKamnqW5tp1a7DgbAB+Tk0eVAeTVy8nmpc3rBhF+bn0GNX9aFOWY6o+ew7Uk3Tlm6hNaVHAmFDerajB0cU0APvbA3Kvzgvm24c0E3cPHM+2E5jz+1Ki9bsCUo7IA/6dKeJr2wI6NM/L5smFOfSbUtKRBjkTBmURydn2snrk2jWe9tolUIGrl9XnEtLN/5Mf7nkNJq1bGvQ9Yt6tacHhvUS+m3aV0bzxhbR05/vCtIDeU4fXkBPfvo9/fG8rjTplQ0i/NlrziS7xUgLVpYGxZfzvPfVjTR/bBE9t7JUU6cla/fStMt70Z9eXiuMqTKvcS99Q6d1SKfbBudRdpqdZi3bImTACLx47Vn08Be7AzJz0qz0xo3n0X1Lt4bojbqHofrrpz+E1O0tg7oHyjJvbFFI/UPPB4cX0MwPttGKnb8F3Tu3DDye9rlxZ9LLq34MKeOtg/LJbJSoyuWjf/7nJ/rj+adqxkP7oe26ZKdSU2KQJAkGrllwxx130PLly2nXrl3i2yIaFRUVlJmZSeXl5ZSRkRF3vvhmn7KkJOhhVTZWUZc2tGBFacQwGA3c+JF6GuhZ3Pnmt0E3HJgyOI9K9h0LCQdzRvemD7YcpDO6tAkbR4+O4uYcnEfPrgh+MJXxJxbn0kLVA6HWL5Ku/f0POWQgb9Ap007vbzkYVu9weSrL8O2+Y0Ku/PAp80LYo6N704dbDgbKBR2/23csqJwvj+8XNp8Bedl0eWFHmrZ0a1gdQEmEcvdV1b86rVofZRy5XdDGkeINL+xIA3q0o1OasKfRbOYwXC4X/fOf/6SJEyeGNRZOp1MYCeUrEeCbS8tYANwgRZ2zooZ9tetw4BswHBiGaN1wkKUVDtpn2MUNFCmOHh3xGV19rZtRvt4+wxZVv0h6rFbIQDy8MNRaE0eeyjLIcrXyAshDWS6kUZczUj6Ii3qOpEO0chep6l+dNlK9y+0SLR50RE+oKWk2BuOdd96hsrIymjBhQtg4c+bMET0K+dW5c+eE5I25iEg4PT5dYRgXR85Hu7G1ZKmvRYqjV8equuPDPy3CXVfKiaaHLAPx5Fc8earz04qnzCucvrHmE+5aPPUPYqkDPXlEu8dajcF4+eWXaejQodSpU6ewcaZNmyaGH/Jr//79Cckbk1+RsJmNusIw+Rc5H+0pIy1Z6muR4ujVMc1uiigj3HWlnGh6yDIQT37Fk6c6P614yrzC6RtrPuGuxVP/IJY60JNHtHus2RqMV199lYqLi8UDLq90PPPMM/Tuu+/GLAvpP/vsM7r++usjxrPZbGKuQvlKBJgQwxyEFhg7luwvixqG9JATiTapVjHeVQNZWuHgUEWdGGMjDvKNV0d8xioKJvLCyThU4YyqXyQ9+vtlyHnjhXmbSHrL8SOVS5arlRf41V9HSn0x6agkXNkA0qKeI+kQrdwlqvpXp41U73K7RIsHHdPDfOk0a4Px/PPP05133kmXX365GEbIKx1ZWVnCaMTKokWLqH379jRs2DBqCjBRiVUOtdHATXfr4HxauHpPxDCkm3tVn6hLqxhrPzq6MOTG3XGgnB4ZXRiSP24SrLzMGNlbxMEkn/qmxQ2GmXalPoHJR39Y/Sx7PnXKcNCMEaeH3JTyisTbG3+mmSN7h1zfebCCHh5Vrzdkaukhrza8velnkRfi4dUx0yFm+NXx5TyxMoXr4XRCuaET4qnzQhjidW+XJupIloF8//y7bkFGA3FnjiwIqXux4jKiQNSzVt0qy3JdcW5IerFKMqJA6BmUNj847aQBuSFGLLBKYjCI6zsPVISNB1nFeTlNOuEZ9yrJ6aefTo8++iiNGjWK0tPT6bvvvqNu3bqJZdGBAwfS4cPaE4ha+Hw+ys3NpbFjx9Jjjz0Wkx6JWiWRkf0gME5E10/uMegJi9sPw24WPY9gPwy3WBqEz4Apgh8G/ABSrZH9MFL86/g2DT+MKg2fB6Ufhly+ED8Mp5vaptrIrfLDcEs+sqj8MIQfh9IPw+UV35I2vX4YZiNZDMd9J5AXynyk2klW83E/DJPCD0PON0Phh4F6gG8E/FrUsrT8MBA/ReGHUe93YTruh+H3YRE+IEbU3XE/DPjHpCn9MPz6pCv8MALtovDDkMuMb3GvRAE95PZLWj+MPXv2UFFRkeaQobq6OiZZGIrs27dPrI40NXjotR58vWF6gXHAS2/+4po/nX60fUIaoneiyW1A2qb2R2itxGUw0CP49ttvqWvXrkHhH330EfXq1SsmWZdccgk1I1cQhmESbTAwfzF58mSqq6sTD/u6detoyZIlYtnzpZdeikckwzAt1WBgNcPhcNADDzxANTU1dM0114jVkr/97W80ZsyYxGvJMEyzoMGu4TAYVVVVYpWjsUn0pCfDMJFp8KJuSkqKeDEM0/LRbTCwKqLnB2Fg06ZNDdGJYZhkNxjwuZDBZOdzzz0n/DHOP/98EfbNN9/Qtm3bxF4WDMO0TOKaw8CkZ8eOHWn27NlB4TNmzBC/71i4cCE1BjyHwTBJYDDwkG7YsIHy8/ODwrGPRb9+/cQD3BiwwWCYJPgtCZZU16xZExKOMLs9Fm9EhmFa/CoJdsa6+eabxeTmOeecI8LWrl0rhiLTp09PtI4MwyS7H8abb74pHLV27NghPsMl/Pbbb6err76aGgsekjBMK97TM1bYYDBMK91xi2GYFjqHgQ1znn76aTEswU/TsYGvkqNHjyZKP4Zhkr2HMWvWLHrqqafoD3/4gxgO4NerV155JRmNRpo5c2bitWQYJnnnMLp3707z5s0TW+phxy3sjSGHwePz9ddfp8aA5zAYJgl6GL/88gsVFhaKv9PS0gKOWsOHD6f3338/sRoyDJPcBuOUU06hgwcPir/Rs/jkk08CRx9imz6GYVomcRmM0aNH0+effy7+vvXWW4WzFtzEr7322maxNyfDMM3YDwPzFl9//bUwGiNGjKDGgucwGKaZGwy320033XST6FVgM+CmhA0GwzTzIYnFYqG33nrrxGjDMEzLm8PAZjo4PJlhmNZFXJ6emKt46KGHxM/ZzzrrLEpNDT5U5rbbbkuUfgzDJPukZ6S5C+z7+eOPP1JjwHMYDJMkRyUyDNP6iPvks3C9C+y4lZeXR1dccQW1bdu2ofoxDJPsQ5JBgwaJ3bbwq9XTTjtNhP3www9kMpmoZ8+e9P333wvjsXr1arGzeCT++9//0tSpU+nDDz8UhyLB2CxatEjsDZroIcnx09ldlOmwitPCReFx2rjbQ1kOKzlx6rgTf1uofXq912r9ieouSrGZxSnhZqMxcPp5hsNMGXacbU5UVuumSpxm7rCQw2wUp3rjOG5xgnet/yRzq4k8kiTCcNI30uN07iNVTnLY6k81hw51bo84IR3xKhRpoS/0q3N7qa182rj/FHgLTkSvxono9Sd+4+R3nHKeYjWL09FRBhzGLMrtE8UWJ77jtHRxgrq5Pu+KmvoyID98ozglierc8snq9Sem48QJnDwu6tXlpao6N+Wk2YRsyMyCbv46wmnmODkdp6CX17jFCfOQXev1Ull1vUzoi+rCiec4jd5oMIjy1LqP1xNOMMfdiroXJ6LbLaKsR6uclJViJrPRJE5vR32JU+ytJiqrdVKarb6e5PAUvy44HV2Ux5+3h3xkhQynh6r9p7Ajrs8nifh1Li+1Ta2vvwqUC+1lNpJX8pHXR+JUdrksqBuXqp0hC2Xz+ChQLzjlHfdDrbu+ruT0Vpwyr6wvu5lOSdbT2+XeAx5s+UHFQ4vdxPv370833HCDOD7xL3/5C3388cdh5Rw7doyKi4uFAYLBaNeundhIuE2bNpRoDpTV0tS3NtPGvcdo3tgimreilK45tystWrOHSvaVibAnP/mB1pQeCaQZkJ9Dkwfl0cTF66nG5aUUq4leHt+PnltZSqtU8W4Z2J0mvbIhEO/ViWeLh3PGsq3BMvMgsztN9MeVwx4ccbrQ8cVVP9LOXyrp9RvOo2lLtwTSKvPe6Nf3qU+D9S3Oy6brinPpTwvXUVGXLJoyKI+y02x0zYvfUJ9TMuneob3okeXbaYy/3FqyleXqn5dND48qpIeXb6fPdv4WlM9tg+tlz1q2LaDPM5/vCtTlX1W6QdaE4ly6bUmJKDc+Tx9eQDe/tlEYZMicNbKAnv7ke/p//bqQ3WKkBStLg3RcOOFsenbFrhAdZ44sIJPBSPcq6kup/zOffU/vfHtQyIBuyrIry9M+w073Ld1Cq1Xtdcug7nTrkhJ67Ko+9NRnP0Rtz8E929F9l/cSdbNKqf/4s+nZlcH6a6WHPmg7GOnJr28K1NcjowupaxOfWh9XD+Pkk0+mTz/9NKT3gHNJcBo7eg3ogeDvw4cPh5Vz7733ipWWVatWxaW83h4GehZTlpTQql2HacrgPCrZd4yKurQR72h8OUx5I8ig8RB3wYrSmOKhgeevKI0aV3njXF7YgaYt3Soe3oWqm1qZt1498Pfwwo7iQSjZX0bf7TtGZyjKrSVbDcrRV6UreHR0b/pwy0Fx88ejmywbBg6GVvn514o6en/LwZh0xPUx/1iree2ey3rSyAVrIspQlkdL74nFuSFtEq5cWvnEUi9y2LDCjnSgvC6ovmC0mrKnEZcfBh7QQ4cOhYT/9ttv4iEGWVlZIRvrqFm2bJkYevz+978XZ7PidLUXX3wxbHyn0ynkK196wDcYjAUo6pwlGk1+V4ZpIceNNR66+XriyqwqPSwebNA+wxaSNh598TdkQh7C8DBopY0kb7WGruCkDHvg4YpHN1k2dFN/huxYdUR9h7tmNhmjylCWR0tvrTYJV65Y61jrfkAYdFLXF4aFTYkx3iEJfmS2dOlS+vnnn8ULf0+aNClwQtq6deuoR48eEeVg+fX5558Xfh0YumAncvhwvPLKK5rx58yZI3oU8qtz58669K2ocwf+xrha+a7+WwutNNHiVdV5dcXVCtNKG4++Sl0ilSEWedH0iVWWuqxKXWPRMVJ9Y/4omoyGyNdTB/HWsTocczdJN4fxwgsviPmJMWPGkMdTb/HMZjONHz9ebN0HMPn50ksvRZTj8/lED+PRRx8Vn9HD2Lp1K/39738XstRMmzYtaIUGPQw9RkOelASYpFK+q//WQitNtHhpdpOuuFphWmnj0VepS40rfBlikRdNn1hlqcuq1DUWHSPVNyZwo8loiHw9ddDQOpZJV9zLSdPDwKY5GDocOXKESkpKxAt//+Mf/wh4ffbt21e8IoHjFtXzIDiuAPuEaoG9NjBXoXzpISfNShfm54i/MZbH+FB+V4ZpIceNNR5WCvrriKucwzhUUSf+PlThDEkbj774GzIhD2EDVOXWkq2mv4auAPMMkBevbrJs6Kb+DNmx6oj6DnfNgyWMKDKU5dHSG3oV6ywX/o7UftHSy2HQSV1f6fa4vuObx67hMBx9+vQRL/wdK1ghwRKsEizPdu3alRIJViswWQSjsXD1HjGxtv1AuXhHw8hh6gbF6setg/PFdYB3zF7j4VbHmzIoOJ7FaKCZI3uH3DhIq5SpXCXplOUQ8bGa8+CIgqC0gbwVZVDrK6+S4Hr9THs+9cttK+ShvNNHFNDOAxUhacOVS56Z33kweK4Iabu3S6MZI3uH6BNON3lCUy43PqOM0E2WidWOtzf+TB0zHUIftY6oNy0dka5TRn3dqa89PLqQFq6u9zyWdVPHk8vz0Cjt9kI9Qs/rtO4RjfZEXc/0102Q/oPyg8IC6RX3jqwP8kQ9KOsLbdHUS6tNei4Jdui64IILxKbCOAAJ8x5YkkVPZdy4cSfQD6N+bRvr6UBS+WFgHT4zxA/DLZbG4NtgNhoCfhhYS89U+mHUuUW3McQPwx+ervLDkNf64S/hsGr7YchpI/lh4JvH6vfDsPv9MKCnUq7ww4D/iS+KH0bt8fyC/DCcHlEH8MMwqvwwqp1uoa9b7YfhrNdN9sOQZacr/DBS/L4HpnB+GC6v8DNR+2FAToqGH4ayvtR+GPBnSVX4Ych5o6nc5COb0g/Dbhbyw/lhpNnMZPf7YWCqQSnPrvLDkH1RlH4Y8K2Q7wfZDwPpUxR+GIH6aiZ+GE1+kNHy5cvF3AT8L/AbFcxRwGjogX9LwjCtzGA0BDYYDNO48MlnDMPohg0GwzC6YYPBMIxu2GAwDKMbNhgMw+iGDQbDMLphg8EwjG7YYDAMoxs2GAzD6IYNBsMwumGDwTCMbthgMAyjGzYYDMPohg0GwzC6YYPBMIxu2GAwDKMbNhgMw+iGDQbDMLphg8EwjG7YYDAMoxs2GAzD6IYNBsMwumGDwTCMbthgMAyjGzYYDMPohg0GwzC6YYPBMExyGIyZM2eSwWAIevXs2bMpVWIYJgJmamIKCgros88+C3w2mxOnUnmNiw5XuajK6aasFCu5vT7y+STySkTVTg+l2cxkNBCZTUbKTrVStctL5bVuqqrzUJq9/prJaCCL0UhltS5Ks1soJ9UqZCvlujw+qnJ6KNVmJovRQEeqEddMmXYLebw+qnJ5qbLWTRkOC2VYTeQzGqiyzkMVtW7KdFgo3W6mk9ukBHQ+Wu0ig4GozuOjylrINZHdYiKr0SBkVdS5Kd1uoTSrSchE3hUKecjb4/HRsVq3KKPFVK+Tw2ISLy9JokzQG+WF3gZkbiBKs5jIYjEJWT5JIhzVDV2hA9Ii3uFqJ6XZLGS3GMlkMNTrWeemFJuZzEYDOUxGcvkkqnF7qcbppaxUi0grlxk6p1tNom7LnR4iSfwTbYJr0Be6+SSiWpeH2qRYyenxiXJn2C2UYjXR4ao6SrFayGYxklEiskLnOreoCzk+2jHDYRZ5H6lyUqrDRA6TWdQh8lKWG+BcctQzvkVrPb7APYK6OlbrEnXuMBtF9Eq0g7++RZsqw1IslGoxUbXbW38v2cxkMxvJLfnI560vK/TMsJtFeUCZ/75Ld9THdSraHvojrJP/HmnVBgMGokOHDgmXe6Cslqa+tZk27j1G88YW0d8+30XXnNuVFq3ZQ2tKjwTiFedl06T+uXS4yknzP99Fq1TXrivOpdfX7hVpJ72ygRZccyY9u6KUNu6rl/v4x9+HyEOaP/9zIy0YeyY9u/K4zM5tHPTqpHPo/re2BKXpn5dNj4wuJLvJSA+9v51uv6gHzX5vW5AuA/Jy6JZB3YUONS5vIN3DowrpoeXbaMXO34LkzR7Vm25bUkL7j9UGdPrTknV0Xre2dN/lveiBpVtCynp9/27iBv3Hl7vpmvO60qLVe0LiTBmUR3VuH127cD2d2SWLZo4soLEvfiMMKLioV3u6d2hPmrFsmygjHm7Uk7reUZ5bB3cXD+/Lq0Ovoay3Limhx67qQ3/99IeQ+po+vIDGvfQN9eyQLupg+jtb6Osfj4q8nlLFh7yZV5xOJoORpi3dQqsjtPEba/fRpAG5QfUcqL+X19FZXduIOrhu8XpxHeVbOOFsenZFfTuHK6+s8+Mf7whqqwH5OXTLwPp2BQuuKQpb7x6fRF2yU6kpMUgwq004JHniiScoMzOT7HY7nX/++TRnzhzq0qWLrvQVFRUibXl5OWVkZATC8S09ZUkJrdp1mKYMzqOSfceoqEsb8a5sRJkBedk0tLAj3bd0a8g1NJacdmJxLi303wiyXC15SKOMK7NsSjHN/WinZhrcUPcPO10YusVrgm8YtS4LVpQGpeurCpPD77msJ41csCYoLQin96Oje9OHWw7SGV3a0Lf7jgU9WEodhhV2pAPldSLP/v6HSb7h1fUSqZ6Q3wdbDobNR6sOleWT85XrIFLZ3rjxPJq/YlfY9pLbWPmurFNl3Q/IyxZ1hL9jKW+4tlK2TaR6H17YkS7s0S7QG211cxjnnnsuLV68mD766CN6/vnnac+ePTRgwACqrKzUjO90OoWRUL60wLcdjAUo6pwlGk9+1wIP50kZds1ryrTtM2wBGZHkqePKYOgTLg1uElhupNMyFkpd1OnUYXI48lOnjaQ36gB5I47WTSvLQTw5T8SDzjJq+dHyWx1jHSrLJ+cr10GkvNBzitRe6vtEXafKsFWKv2Mpb7i2UrZN5Pqwi6Fnqx2SDB06NPB3nz59hAHp2rUrvfnmmzRp0qSQ+Oh9zJo1K6pcjGVlMBZUvocj0nX5WlVdfRdVjzxlXBnMY0QC1zFuj1XPcLqo89NbB7HWVaR60VOvsdSh3nxjlaUue7R6doaJF+99Fi2dHAdzRU1Js1pWzcrKoh49elBpaXCXTWbatGli+CG/9u/frxlPnkgCmCxSvocj0nX5WprdpCu+Oq5MuuO4Xlrgula6aHqG00WdH+LpKaeeulLGiVQvevILR7S6UOcbSZ7eeo1UBzZFWLh48d5n0fSX42DitSlpVgajqqqKdu/eTR07dtS8brPZxFyF8qVFTpqVLszPEX+X7C8T4z/5XQuMSX+tqNO8pkx7qMIZkBFJnjquDFZMMI7VAuGYfUc66BNJF3U6dZgcjvzUafEKpwPqABOEiBNJB8ST84Qs6Cyjlh+pnurzi60OleWT85XrIFJe1U5v2HIr21j5rhUHDFD8rc4zkg7h2krZNpHro06srLRag3HXXXfRl19+ST/99BN9/fXXNHr0aDKZTDR27NgGyc1MsYrZdRiNhav3iMmx7QfKxbu6McUMeP9cymufJh6WkGuKtFh1uXVwvpjZluVqypPjDsoPkjn5tU308KjeITeuvErS1mGhpZt+pukjCkJ0wecpg/JFvup0Ow6Uh8ibPapQ5KfUCWlRlpkje2uWtWOmg24dkkc7D1aIOtGKAx0QD7KQD2ShrDJIizC5XuR6UpcZslHnyEddh3JZIVerjiHrwREF4rpcB8g3XJtAXrt0q1hNUeuhbuOdBypC6llZfwPyc2jK4OPX8S7uCX9dhSuvrDPyCdIN8vz5ibQR6r04L6dJJzybfJVkzJgx9NVXX9GRI0eoXbt21L9/f3rkkUeoe/fuDVolUfthVDuxXm4ltw9+GEReSQqsw8OPwGwyRPXDKK91UarNInovQCnX5a1fs0+xHvd5wNo71ugDfhh+34lMhR+GHJYRxQ8jxb8WH80PQ5aX7vfDwNq+8A0xGYRM+BhAjo8kMvv9MOA3kBLND0OUzUQpAT8M1AX8G4yEkDovxtb1cZCXXe2HkWIhh7XeDyOgo4YfRo3LQ+k2C1nM4f0wkDZV+GE4yWGt18Gg8MNAO2TJfhhOj6iLlEh+GH4fDLz5NPwwEMcq++HY4E9y3A8jqE0VYWgTpR8GZNhlPwwf/D38fkB+X52wfhj+OkWb2ZuJH0aTGoyGEs1gMAzTgucwGIZp3rDBYBhGN2wwGIbRDRsMhmF0wwaDYRjdsMFgGEY3bDAYhtENGwyGYXTDBoNhGN2wwWAYRjdsMBiG0Q0bDIZhdMMGg2EY3bDBYBhGN2wwGIbRDRsMhmF0wwaDYRjdsMFgGEY3bDAYhtENGwyGYXTDBoNhGN2wwWAYRjdsMBiG0Q0bDIZhdMMGg2EY3bDBYBhGN2wwGIZJPoPx2GOPkcFgoDvuuKOpVWEYJgxmagasX7+eXnjhBerTp88JkS+f4l7hP1k7J9VKmSlWXfGAnjAteY2lY0PLUlbjpmqXh6qdXnF6OE4Lxwunn+M0+0SVMVb0ljVS/HjaKp58y+Q6dHkpy2Gh9um2mOsLcg5VOsVJ7jihHqe+Q1Zj13uzNhhVVVU0btw4evHFF+nhhx9OuPwDZbU09a3NtGrX4UDYhfk59NhVfahTliNivAH5OTR5UB5NXLyealxeSrGaaOGEs+nZFaW0qjSyvMbSUU+8cHpf1Ks93Tu0F81YtpXWlB45Xu68HJoyOE+UefLrm8R7Q8sYK3rLGkv7RZMRT74Hy2pp79Eamr9iV3Ad5ufQ3BjqS+T7781B7VOcl023Ds6nrm1TqGMj1XuzH5JMnjyZhg0bRhdddFHCZcNiqxsffLXrMN371mZxPVI8fMaNMLF/rviMd3xWNqqWvMbUUU+8cHr37JgRYixEuUsP04IVu+hgeW2g7A0pY6zoLWu0+Or2iyQj3ny/+OG3EGMh5623vkS+KmMBIBOykUdj1HuzNxhvvPEGbdq0iebMmaMrvtPppIqKiqBXJNCtVDe+8ibA9Wjx0GhFnbPE33hX3xha8mIhETpGixdO70jlWVV6hE7KsAfKrs7nRKK3rHriK9svkox4822fbmvwPSHyLQ2vP/JojHpv1gZj//79dPvtt9Nrr71GdrtdVxoYlszMzMCrc+fOEeNjDBqJSv/1aPGcHl/QezR5sZAoHSPFC6d3tPLgujpOPGWMFb1l1Rtfq5xa5YgnX2cC7gk9+jdGvTdrg7Fx40Y6dOgQnXnmmWQ2m8Xryy+/pHnz5om/vd76MaeSadOmUXl5eeAFoxOJDLsl4vV0//Vo8WxmY9B7NHmxkCgdI8ULp3e08uC6Ok48ZYwVvWXVG1+rnFrliCdfWwLuCT36N0a9N2uDMWTIENqyZQt9++23gVe/fv3EBCj+NplMIWlsNhtlZGQEvSKRk2YVE1ZaIBzXo8XDxFPJ/jLxN97xOZq8WEiEjtHihdMb4f3DlGdAXjb9WlEXKLs6nxOJ3rLqia9sv0gy4s33UKWzwfdENP2RR2PUe7M2GOnp6dS7d++gV2pqKmVnZ4u/EwGWozC7rW6MC/0z2PJyVbh4mOnGLPXC1XvEZ7zj84Ao8hpTRz3xwum982AFzRzZO+SGr18lyaeOmY5A2RtSxljRW9Zo8dXtF0lGvPkO7NFO5BFShzHUl5yvun3kVZJBPdo1m6VVgyRJEjUTBg4cSH379qVnnnlGV3xMemIuA8OTSL0NeV0d40B07WCtI/kuKOMBPWGJ8sOIR8eGliXID8NuJof1uB9GRW3iyhgressaKX48bRVPvmX+OsTybWYD/TDg+4Kl8FSrmbJSmpcfRrMyGLGi12AwDNNC/DAYhkke2GAwDJM8ruENQR5NRXPgYpiWTnp6uvjx5okmqQ1GZWWleI/mwMUwLZ3yRprHS+pJT5/PRwcOHGg066oEvRoYKjiPJfuEK5cl+cuSzj2M6BiNRjrllFOaVAc9DmTJApeleZLRjMrCk54Mw+iGDQbDMLphgxEn+F3LjBkzxHuyw2VpntiaYVmSetKTYZjGhXsYDMPohg0GwzC6YYPBMIxu2GAwDNM6DAbma+ENx/O2DNM4GJP9tyTYD0P+TQnDMCeWpDYYDMM0LmwwGIbRDRsMhmF0wwaDYZjkMBgzZ84Uv+FXvnr27NmUKjEM05z3wygoKKDPPvss8BmnnrUk5C3rcRxehsNCOamJ264/kmy919JsZrKajFRR5xJb6teJY/k8lG4zk9FAZDYZKdufFieMYwt8HD0AmWlWE9ktJqqo8wTlAyC/yummrBQrub0+MhkMQna1003ZqTZyen1UVecR+WPfF5vJSG6fRFgg90kSVTvrr0EHm9lE1S4vVeLIA4eFUq0msZRe4/bLsJsp3WoiD9K5vGKr/wy7mSwmIx2rdlGKXw4ZiKxGI7m8PpGn2WikWreXapxeynDUx5EMRHaTPz+UyX+6mdPrJZvJJNK5fD4yG4LTpuJYBreXymvc4pgB6FjrwWcPpdpMoix1Hi9V1NaXCzLdko9sBiMh4xp/+VCHKAvqodKF+PXyUMZT2qRQU9PkTycMRIcOHaglggdMfRo4DsXBoTWdshwnTDaejXs0ruFgHdyI6nSDe7ajqZf1ovvfCT7JHQfpXFecS//4ajfdPDCP7lu6Jeg6Tk17eFRvmrBoHe0/VivO0lg44Wx6dkUpbdx3jOaNLaK/f7mb7rjoNJqxfCuV7CsTYU9/Fnzaef3BSXnioXlp9Y+Ba0Le+LPp2ZXbxeHQyviTB3Wnia9sEGkQ7+Xx/ei5laVB8WT9/7RwHZ3Xra0o48Pvb6c/nncq2S1GWrCyNEiPYYUd6K5LT6NpGuWcPryAHv94J113QS61TbPS9He3hsSZUJxLty0pETrp+Tx7VG9h5B5celwWzkB548bzaMaybSHyHxldSF2zU6nV/loVQ5InnnhC+FLgQObzzz9fHLjcpUuXpD+XBN/iU5aUaJ4Gjod3/tiiuHsa0WQPLexI097eEnJtzpWF9MHmgyEnheNhLdl3TPMUcjx0M0cW0EzVDay8ke+5rCeNXLAmSI7898TiXFq4Zk9QmJYcHM0Ive9bulW3XkVd2tCCFaW64gHEwd+dMu30/paDIfFhdGRdtcp5XXGuOD7ywy2ow8g66fkMwze0sENQmaPpgC+EpuxpNOkcxrnnnkuLFy+mjz76iJ5//nnas2cPDRgwIKwjltPpFEZC+WquoEuu9UCDr3YdFtdPlGycuqUFwtXGAhR1ztK8QQHCPV4p7PXVpUfEsEUtR/67fYYtJEwLPIAnZdhj0gvX9caT4+Ad+WjFV+qqVc72GTaRdpUOnfR8RluoyxxNBwwXW+2QZOjQoYG/+/TpIwxI165d6c0336RJkyaFxEfvY9asWZQMYEwfCYyPT5Rsp8eXkPBAfrVRyuK/rpQj/11V59Wdj/q63vixyI0UV6lruOvOBpYh2udoOjTkvmlxy6pZWVnUo0cPKi2t77KpmTZtmhh+yC/sptxcwWRZJDDBeKJkY0ItEeGB/BxRyuK/rpQj/51mN+nOR31db3w98ZRxw8VX6hruuq2BZYj2OZoODblvWpzBqKqqot27d1PHjh01r2OrMnkH5ea0k7IWmLxSnwIug3D5oOATIRsH+mqBcK10JfvLxPhYC4y7zSZD2OsI93h9ATnyKeby34cqnIG0yutacxiYH1DrFS4+wnFdbzy5jHhHPlrxlbpqlfNQhVOkHaBDJz2fMYdxSFXmaDrgsOxWazDuuusu+vLLL+mnn36ir7/+mkaPHk0mk4nGjh1LyQ4mNDFBpX5A5dWKhiytRpM9sEc7zWuDerTTTLf9QLlYBVA/RPIqw8urfhQz9OobuX6VpJAmv7ZJfF64eg/dOjifBuTniL+R9t8b9wvZiCuHqfOpXyXJp46ZjqBrQt6gfHFdHR/huC7HmzIoT+SrpT+uy2XccaBc5IP4aj3e3vSzWLnQKueDIwpEWfLapdGMkb1D0sqTorJOej4jr3O6tQ3KDytYmGTW0gFt0NRLq026SjJmzBj66quv6MiRI9SuXTvq378/PfLII9S9e/ekXyWRkX0eMPZEdxK9g0T7YWjJ1nst1e+HUVnnojSFHwZ8BeA7gd6F2g9Dlqn0w1DmAyAfPheZDiu5fcF+GG1TbcIXAj4UqbKvhd8PA3h98Keov4b5VJvCLwJ5xOSHUeOiFGt0P4x0B8ob6oeB/Owx+GFU1B6vG9kPI8Xvh+H0+2GgXHYtPwx/fhkKPww5DD2LpjYWSb8JcDIYDIZpSTSrOQyGYZo3bDAYhtENGwyGYXTDBoNhGN2wwWAYRjdsMBiG0Q0bDIZhdMMGg2EY3bDBYBhGN2wwGIbRDRsMhmF0wwaDYRjdsMFgGEY3bDAYhtENGwyGYXTDBoNhGN2wwWAYRjdsMBiG0Q0bDIZhdMMGg2EY3bDBYBhGN2wwGIbRDRsMhmF0wwaDYRjdsMFgGEY3bDAYhtENGwyGYXTDBoNhGN2wwWAYRjdsMBiG0Q0bDIZhdMMGg2EY3bDBYBhGN2wwGIbRDRsMhmF0wwaDYRjdsMFgGCb5DMZjjz1GBoOB7rjjjqZWhWGYMJipGbB+/Xp64YUXqE+fPk2mQ3mNi8pq3FTt8lC1y0tZDgu1T7eJa4erXFRR56YMh4VyUq0Rw8prXZRiM5PRYCCz0UDZqviZDgul2sxUVecRn/G3xWigYzUuapNiJbdXoiqnm9IdZrKbTFTl8lJlrZsyUiyUbjML/cprPJRmN1Gq1Uy1bi9V1nmEHKOhviwSEeFPScLfEtnNJnL7fOT1SeQwm8hiNlKl0yN0SLebyWIyUnmNk7LT7KLslSiX3UI2i5HcPi+lmMzkI4m8PqIat5dqnF7KcJgpxWKiOq+XPF6iWpdH6O/0+oQ+0BXpoUydx0sGMgi9qpweyrCbKdViqv8slw/1YjWRR5Kozn08fp3LQ9lptoBeqD+ryUhHa1yizJBT7fZQnctLbVNtQj8kRFqn2xMIq6j1UJrNRGk2M9V6vFRe46Z0e32eTq9X1FWKqCcppIyQX13nDbSl118mOQ50cEsS1biOhzksJjpa7SSbpb5dbGbUpY/MBiPVeXyBurebjUJXZZ6p/npFUUQ8h1nofUqbFKLWbjCqqqpo3Lhx9OKLL9LDDz/cJDocLKulvUdraP6KXbSm9EggfEB+Dk0ZlEfXLV4vboYUq4kWTjibnl1RSqtKDwfFmzwojyb644HivGy6rjiXHv1gB10/oJu4BuaNLaJFa/YE5TO4ZzuaelkveuDdrSI8J81Kr11/Ht27bEtQvP552TShOJfufWszPXZVH1q8Zg+tVlyX83x97V665tyuQe83DuhObq+PrGYjLVixi1ap0j08qjfNfG8brdj5W1B+CMfDiXLNX1kaXD95OTRj5Ol04/+upxkjC+ivn/4Qcn3K4DyR9qXVPwauoXxv3Hg+zVhWX16Aun15fD96edWPNObcrqKOvv+lkl6/4TyatjS4HuRy/unldXRmlyx6cEQBpdqNQv9rVGnvX7olqKxyHd62pEToJZfxWLWLjnpcmmV8cMTpVOty0a++OvJJRAsUcWS9n1uJeyI43fQRp9Okxevp8f/Xh/75n5/ototOo+nLtwbaLGxa1X0n6/3I6ELqmp1KTYlBkmBbm47x48dT27Zt6emnn6aBAwdS37596ZlnntGVtqKigjIzM6m8vJwyMjLi7ll8sPUXWr75QNCNIjMgL5vO6NKGFqwoFTd/yb5jmvFwExf546nDkAbvQCu9Wi5uooUqo6KUObE4N+J1ZZ7K91sH5wn9lEZGBjdkX5X+YM7o3uJ9+ZaDYevn7st60tyPdoa9PrSwI923dGsgTKt8ch3IuuJatHqQ6xu6Iz3KpUwLg7oqSlq9ZbxvWC8q2VdG76viRLonlHWj1WbR0sr3nQzKiS+KpuxpNOkcxhtvvEGbNm2iOXPm6IrvdDqFkVC+GgqGChh6aDUawA1X1DlL/I33cPHWKOKpw+T3cOnV4e0zwuuD8GjXlXkq39GF1zIWYLWG/vW62MUrUv2YTcaI10/KsKtkhuqv1lVPPcj6rvaXTZ12lY60essokUGUI5ze0eomUpnDpVW3B8qJ4V5T0mQGY//+/XT77bfTa6+9RnZ78A0VDhgW9CjkV+fOnRusB+YRnB5fxDjydb3xwqUNl14dXlVX3w0NR7Tran3ld73p1GHRyo05iFjkaumhVcex6Iu48abVW0ZnhPaNlC6cPvHcT5jHaZUGY+PGjXTo0CE688wzyWw2i9eXX35J8+bNE397vaEVPG3aNDH8kF8wOg1FTO6ZI1eDfF1vvHBpw6VXh2NCMxLRrqv1ld/1plOHRSt3usMSk1wtPbTqOBZ9ETfetHrLaIvQvpHShdMnnvsJE7Wt0mAMGTKEtmzZQt9++23g1a9fPzEBir9NJo0KttnEXIXy1VAwAXeo0inGtVpgLFmyv0z8jfdw8YoV8dRh8nu49AjH+FTmUIUz6LNaJq5H00PrvdrpEeXRor+G/vW61EWtH4/XF/H6rxV1Kpmh5VPrqqceZH37+8umTjtAZ1vpKSPWbH6tqAuJE+meUNZNpDKHS6tuD6THykqrNBjp6enUu3fvoFdqaiplZ2eLvxuLzBQrDezRjm4dnB/SeGK2enA+LVy9R3zGO+IhXB3vVkU85Uz+zoMVgWt4IUx942w/UE7ThxcE8p/61mbxWR0Pn5Ee17XkyHlCnvr91kH55PZIojyYwVenmz2qkHYcKA/J74LuOVTQMV27fsQqSW+a/NomkY/WdeTXMdMRdA36zxzZO0h/1A1WBlBfsizEwwpIuHIiDa7NGFEgll6hvzLt9BEFIWWV61BuK3w+v3sO9TwpLWwZocORShd1b5cqdCzW0FudT/0qSYGoG1x/e9PPIW0aNq3qvlOukjT10mqTr5IoaYpVEi0/DCxlZar8MDB2RHcQPZJIYeW1brFcZjIaxEvphyH8GxR+GPicYoUfhNoPw0NpDhM5ZD8Mfz7wX1D6YSBtncoPI6gxY/DDqKh1UptUuyi7nJ/DYhQ+CqnmUD+MdIW/gJYfBvwG7Eo/DINB+Dpo+mH480vT8sNweyg79bgfhjyExFIvyo80evwwKms9lGIzCf8QtR8GykAafhhyGSP5YaTDR0Llh5Hu999Q+mFgOduj9MNAG9vM5FD5YcjylH4YaXazaKemNhbNzmDESiINBsMwSeQazjBM84cNBsMwumGDwTCMbthgMAyjGzYYDMPohg0GwzC6YYPBMIxu2GAwDKMbNhgMw+iGDQbDMLphg8EwjG7YYDAMo5sG/bje5XKJTXB8vuCdgbp06dIQsQzDtCSDsWvXLpo4cSJ9/fXXQeH44St+xqy1WxbDMK3UYEyYMEFso7d8+XLq2LGjMBIMw7R84jIY2EIPe3L27Nkz8RoxDNOyJj1PP/10Onz4+EE+DMO0DuIyGHPnzqV77rmHvvjiCzpy5EjCzwphGKZ5EtcWfUZjvZ1Rz1009qQnb9HHMEkwh7Fy5crEa8IwTLOHNwFmGObEO26VlZXRyy+/TDt27BCfCwoKhG8GHmCGYVomcfUwNmzYQJdeeik5HA4655xzRNj69euptraWPvnkE3H8YWPAPQyGSQKDMWDAAMrLy6MXX3xROHABj8dD119/Pf3444/01VdfUWPABoNhksBgoGdRUlIS4ri1fft2cT5qTU0NNQZsMBgmCfww8HDu27cvJBynqePMVIZhWiZxGYw//OEPNGnSJPq///s/YSTweuONN8SQZOzYsYnXkmGY5F0lefLJJ4WD1rXXXivmLoDFYqGbb76ZHnvssUTryDBMS/DDwFzF7t27xd/du3enlJTGPV2a5zAYJok20IGBKCwsTJw2DMO0DINx5ZVX0uLFi8U3Of6OxNtvv50I3RiGSVaDga6//GMzGA3eNIdhWh/8WxKGYU7ssurgwYPFb0m0HmBcYximZRKXwcDGOdgxXE1dXR2tWrUqEXoxDJPsqySbN28OcgP/5ZdfAp+xac5HH31EJ598cmI1ZBgmOQ1G3759xWQnXlpDD/zGZP78+YnUj2GYZDUYe/bsEdvwdevWjdatW0ft2rULXLNardS+fXsymUy65T3//PPi9dNPPwX21HjwwQdp6NChdCIor3FRWY2bql0eqnF5KdVmJqz1YMHHZCSymkxU7fJSRa2bMhwWSrWasO8g1Xh8VFnnoXSbWcSzmIxU5/GJeJkOC1nNRvL4JPJ6JapyeoRc7GLoMBvJ6yOqcXupxumlDIeZ0iwmwixzpT8fpE+zm8lmMNDROrfQE9PQkIP4DrOJqlxe8TnTYSabCZ89AXk2s5HcPh+ZDfU6VdUhfxM5LPXtcKTaSWk2C6VYTVRW46R0h1XEtxiM5PT6qLrOQ21S6sNE3qgPIvJBB5TZYaZUi4nqvN5AHtVON2Wn2kR6lCHdbiG7Xw+72SQSw/+31uUV9ZyZcrwclf66TbOaqNbrpbJqD6XZTZRiNVOd2yvqWW4X1KHZaKSyGpe4jnay+ute6GY3i7pHXCt0NhpEHtApK8Ui6rrKjc/1dYJymOQ4dW7KsNfXS63HG6gHlKnSH99hNZHZYKBqv4wMB2SYA3nI5UDeGKBXKdvUahLj/XJFWLrVRKhldT0gXoXbKyrfaCKyGo1U64Yebkr334dmo4E6tWlcx8hmt0ry3nvvCQOTn58vDNErr7xCTzzxhPglLIxHIldJDpbV0t6jNTR/xS5aU3okEF6cl02T+udSmtUsrq1SXOufl00zRxbQmH98Q4ercNOa6OXx/ei5laVB8Qbk5dAtg7rTpFc2iAcE8f534tnk8Uo0f2VpUH4D8nPoloHH48r5PDyqkA6W1dCCL3aL+JAxb2wRLV6zh1YrPi9asydE3owRBfTYB9vps52/BZVryqA8qnP7aPLrm+jMLlk0e1Rvmv/ZD/TnQfk0+71ttHFfmZD5+tq9dM25XQPv6jyG9GxHDww/naa/s5U2+dOo46AM04cX0N+/2EW3X9SD7n9na1A5wsW//pX1NGNkQaCcSv2vK84N6HTvW5tp/tgizbq/85Ie1DbFSve9syWQ5wt/Oov+8eXuQNycNCu9ceN5NGPZthA9HhxRIO6Pf6z6MbhuFe0Kma9dfx49tDw0PdoO4SsU9a/33qlP35t+PlZLS9bupTsuPo1mvheaB2TZTEbqnJ1KSWEwli1bJr758ZsR/B2JkSNHxq1Q27ZthdHAj9sSZTDQs/hg6y+0fPOBoIaQGZCXTUMLO9J9S7eGXOvvv3Fx00wZnEcl+45pysANXtSlDS1YUSrinZxpp+VbDkaNq8znoSt60+C/fik+q/OKlDfS9lXJk/MZVtiRDpTXiWuId89lPemJj3aKm1aWCV2U7+o8lHlH0wPy5360U7fe6vha9YT0E4tzaaHK6CiN5tDeHQLthzy/23cs6MHEwxo2fV42XV7YkaZptL+sQ1HnrLDpw9W/3ntHzr99hj1iHpBxSpsU8Wr2qySjRo2iY8eOBf4O9xo9enRcimDSFL94ra6upvPPP18zjtPpjOtIA1j49uk2zYYAuLFOyrBrXsO3XvsMm/gbN004GQjHdTkeGl9PXGU+Ts/xM2rVeUXKe7WGPDkflEu+hnhmkzHwIMky1e9qlOHR9ID8WPRWx1frL6dHG4Rtv12Hg9oPaZTGAkRML+TbI+oQKf3qMPWv996R84+WB4ZqGLIlxRyG8sBl9eHLDWHLli3CQGBJNi0tjZYuXSoOStJizpw5NGvWrJjzwHhV+TBqEel6VV390EGvjGjxwsXBmDXc9Xj1V4dr5RFNb2V4ND2U8uOJHy5vuQ2ixQuXZyzpta7Fm74qhnsnWh64bjJ6k88PI5Gcdtpp4ujFtWvXip/Hjx8/XizZajFt2jQx/JBf2IdDD5jcwuRgJCJdx6RctDjK63iPJz9McIW7Hq/+al208lC/R5IdTQ+l/Hjih8tbboNo8cLlGUt6rWvxpk+L4d6JlgeuY4I5KXoY8+bN0y30tttu0x0XqyvYHxScddZZYjPhv/3tb/TCCy+ExLXZbOIVK5jwWvfTUTEeDTeG/LWiTjMtxo6HKpzi75L9ZWFlIBzX5XgnZzp0xVXmo7yp1HlFyru/hjw5H5QLcxhyPI/XJ8qLbrAsU/2uzgPhSItucTQ9IF+Oq0dvxI9WT8X+Ngjbfvk5dEjRfkiDMAxVZJBeqVdQeiFfu/1lHTCk6B8mfbj613vviPwr6+NFyqPa6WnS+YuYDMbTTz8d9Pm3334T+2FkZdWP3eAqjp+7Y2k1FoOhBsMdzFUkkswUKw3s0Y5yc+pnmNWrJNf5V0kwK76q9LBqdro3jfnHf8Tnhav3iMkzLOQp49XPpufRpFfWB+JhleTWdvkh+dWvkhyPK+fzyOhCOnCsJnBTQQZWF7BkuFrjc+gqSf1xD8pyTRmUL5YqH35/h8hj9qhCsUoyfUQBzX5ve0AmViLkFQm8q3XecaBcrLBglUROo44jrzY8v3KXWDW4379iEU5vOf6kxfWrJOrrylUSvE/1r5Jo1f2dF9evksgPG/LEKgmQjQbSY5Vk5rJtIXpM96+SqB9oZbvKqySzl4emR9s99N62oPoPe+8YDEGGTG6Xn4/V0JK1+0RbznovNA/IspkMTW4w4lpWff311+m5554T55JgSAG+//57uuGGG+imm26icePG6ZKDIQZWXrp06UKVlZVCLs5t/fjjj+niiy9O+I/PNP0w/D+6xTo31vjhh1FZV+9boPbDSLOZRTyzySDGnPJaPHoGXvgeKPww4K9hV/lhwKchXeGHIeeTrvLDgA8Evk0QP0XhhwG/C7sOP4wUm4lSFH4Yqbb6sgg/DLuV3FKwH0ZWipU84fww7GaRVo8fhsvnE/4WAT8Mt98PQ+FPEiizDj8MA3xe/H4YDmu9bwt8FEQ5nfXtERhOKfwwkAfaJV3hh5Hi98MwK/ww5DbW8sMQdajww0BYusIPQy6H2g9DWT7ZD0MOy1D6YajiwQ9DLnPAD8MfB3pYmokfBvwfYqZbt27Spk2bQsI3bNggnXrqqbrlTJw4UeratatktVqldu3aSUOGDJE++eQT3enLy8txf4t3hmFOPHHtuHXw4MHAXp7qpdFff/1Vtxz0UBiGSR7iWiUZMmSIGHps2rQpELZx40axynHRRRclUj+GYZLdYCxcuJA6dOggDi2SVy5wZOJJJ51EL730UuK1ZBimWdCg35L88MMPtHPnTvE3TkHr0aMHNSa84xbDNC68RR/DMLqJa9ITk5vYQfzzzz+nQ4cOhbiKr1ixIh6xDMO0RINx++23C4MxbNgw6t27N+8gzjCthLiGJDk5OfS///u/dPnll1NTwkMShkmCVRLl7z8Yhmk9xGUw/ud//kf8QCyJ50sZhmmsOYzVq1fTypUr6cMPPxRb6WEXLiV8VCLDtEziMhj4hWq8O2sxDJO8sB8GwzAntoeh3BMDP2sH+Jm78tgBhmFaHnFNemKj3okTJ1LHjh3pwgsvFK9OnTqJnb6xqQ7DMC2TuAzGnXfeSV9++aU4VwQ7beH17rvvijCsoDAM0zKJ23Hr3//+Nw0cODAoHCsnV199tRiqNAY8h8EwSdDDwLADP2VXg/08eUjCMC2XuAwGzhGZMWOGOEtEpra2VpwZEu4QIoZhWukqyTPPPEOXXXYZnXLKKXTGGWeIsO+++05spPPJJ58kWkeGYZLdDwNDj9deey2wgU6vXr3EbuEOh4MaC57DYJgk6GHgyELMYeBYAfXWfZjwnDp1aqL0Yxgm2ecwcCoZtuRTg9+V/P3vf0+EXgzDtBSD8csvvwinLTXw9MQRBAzDtEziMhidO3emNWvWhIQjDB6fDMO0TOKaw8DcxR133EFut5sGDx4swrC/5z333MOengzTgonLYNx999105MgRuuWWW8jlwqmSRHa7XUx24rxUhmFaJg36eXtVVRXt2LFDLKXm5+cLP4zGhJdVGaZx4f0wGIY5sZOeDMO0TthgMAyjGzYYDMPohg0GwzC6YYPBMIxu2GAwDKMbNhgMw+iGDQbDMLphg8EwTOMcZNRQsBEPzmHFrl1wL7/gggto7ty54lCkRFJe46LDVS6qcropK8VKLo+PqpweynBYKCfVSpkp1qhpK+rcIn6azUyVdW46VuOmVKuJUm1mynLUny2rjCfL/bWijo5VIxz5maltipVsZmOITKfLS1UuD1W7vNQmxULpdgtV1XlC5OnREXG19FGGIU+ryUhltS5KswfLh7zyGjd5fBLVerxU4/RSusNMKRaT+FxR46E0u5lMRiK72UROj0/USYrNTGajgWwmI1W5vFRR66ZMlM9qEnKr3AjzUJrNRA6rScSrdHlI8hHB3bja6RHxoW+N0yPy90oSVdZ5Qur6UKVTlKONw0oun49cbg9lpdhE/cn5ptvry3i0xkXwZ0YeNS4PtUmxClly/cp1cbTGSQ5L/SNhMBJlOaziG/WIov3apFjppAx7xDaAPJStzuslr49EPoH6c3vry2MzUZrVTE4v6q6+3EqdUq1mMpsMdKTKKe4FlOXkNinUql3DsS/omDFj6OyzzyaPx0P33Xcfbd26lbZv306pqakJcQ0/UFZLU9/aTBv3HqN5Y4to0Zo9tKb0SOD6hfk59NhVfahTliNs2lW7DgfC+udl04TiXLptSQnVuLw0uGc7uu/y02nWsm20qvR4vIt7tacHhp9O9y/dQqv9+aVYTfTy+H703MpSWqXQYUBeDt0yqDtNemWD+ByLnlo6DsjPocmD8mji4vVCR+S7cMLZ9OwK5Hs8XnFeNl3nL0u/rm2EfDwg+47VkNcn0YKVpUE6qMuu1Buf5bxvGXg8LCfNSm/ceD7NWrY1qMzI+7bB+dQm1Uqz3tsWlA9kTB9+Oj3+4Q76bOdvQWlmjexNj32wnb7+8Wignr7/pZJeu/48emj5thB9Z47sTQeO1dILq3aLa6gLrfpV1kVRlyzx95K1e2na5b1ozD++EcZAlvno6ELqkp0atg3CtbO6/uTP9761WdR9JJ3O7JJFj4wupK6KfKm1/5YE2/vhqAIciITT1BpqMGD1pywpEQ05ZXAelew7FtQgyodx/tiioG9wZVo1aMiiLm1owYrSsHK1wiPpIMsEevVsqI7qeJB/y6A8+vG3Knp/y8Go8bU+q8Pw4CxesyfowZEZkJdNQws70n1Lt4Zcw8PUVyVXGa6sJ+SxUPWwKeOj/GP+sVZ81lsX8t/f7jsmHlrZmMsy/3p1X9HT0GoDvXnInycW54bVXxkf+c69qk+T9jSa1RwGHnzQtm1bzetOp1MYCeUrEvhWkBuyqHOWZoOAr3YdDnyDaKVVAzmQF0muVngkHWSZsejZUB3V8SAfXWU8CHria31Wh7XPsGkaC4Bwre49WK0hVxmuLBPyCKcv4qOrL6O3LuS/kR7y1TKPVbvCtoHePOTPkfRXxke+GBo1Jc3GYPh8PrEpT3FxMfXu3TvsnAd6FPILO39FAmNBGYyzI4ExeLi0WsjywsnVCo+mA67HomdDddTSq6rOG1P8cPLlMMiLRZaea+p6ipaH8nosZYtUhgr/g6vVBrHWXyx1pL5PW63BmDx5spi/eOONN8LGweY86IXIr/3790eUmWGvnyADmGiMBCaWwqXVQpYXTq5WeDQdcD0WPRuqo5ZeaXZTTPHDyZfDIC8WWXquqespWh7K67GULVIZMuzmsG0Qa/3FUkfq+7RVGowpU6bQ8uXLxdmsOBwpHNigB3MVylckMOGGcTko2V8mxoNaIA7ihkurBnIgT5aLsaUarfBIOsgyY9EzFh2j5SvLr3Z6xcqOnvhan9VhhyqcYq5CC4Qfqjh+ep6S/hpyleHKMiEPrTaQ42P1RUZvXch/Iz3kq2W28a86abWB3jzkz5CvJz7ylQ1VqzQYmG+FsVi6dCmtWLGCcnNzEyofk4OYfUaDLly9R0xeqRsG1zCRpF6yVKZVgkaDHMgD2w+Ui5l4zOwr+f5ghZjVVt7ISDNlUF5IXKw2TBmUL67LevbXoWc4HSH/1sH18uR88VmdrzwLj+uy/FPbplBe+zShp7qu1GVX6q3MWxmG1YMZqJ+80LynDM6ns05tG5IPZMwYUUA7DwTPUSEe6nrnwYqg9kQe04cXhNSZvErickuBPMLVr7Iu5L93+NsW8pUyHx1dGJh70WqDQDuryqyuP/kz5EfTCddwPzX10mqTrpJgT9DXX3+d3n333SDfC8xP6DlBTe+OW/IaebUT6/NWcnl94lsH3Tt8Q+jxw8DYEfHhf4C/y2rcYvks1WqmrJTjfhhyPFlukB+G3UxtU4/7YShlyn4YWG7LUvhhqOXp0VHuhUQKS/X7HpTXuijVFiw/xA/D5aV0m1mUV/hhCF8Kvx+GyRTwJcB1i8kg5MIPQ847XeGHUVnroRSbSfgkoB5i8sNQ1DX8MCA/K+CHgXqzCj8MOd8MHX4YyrqAH4bdYiYDHgwDCXlBfhh2s+hZRPLDkOUF+WE46+sLZQj4YVhN9f43Xp/QA2VW6gQ/FQt0qnaK9kHeTW0smtxgGNAqGixatIgmTJgQNT1v0ccwjUuTDoiakQsIwzDJMunJMExywAaDYRjdsMFgGEY3bDAYhtENGwyGYXTDBoNhGN2wwWAYRjdsMBiG0Q0bDIZhdMMGg2EY3bDBYBhGN2wwGIbRDRsMhmF0wwaDYRjdsMFgGEY3bDAYhtENGwyGYXTDBoNhGN2wwWAYRjdsMBiG0Q0bDIZhdMMGg2EY3bDBYBhGN2wwGIbRDRsMhmF0wwaDYRjdsMFgGEY3bDAYhtENGwyGYXTDBoNhGN2wwWAYRjdsMBiG0Q0bDIZhdMMGg2EY3bDBYBhGN2wwGIbRDRsMhmF0Y6Ym5KuvvqInnniCNm7cSAcPHqSlS5fSqFGjEia/vMZFh6tcVOV0U1aKlVweH1U5PZThsFBOqpUyU6wJy0uZX0WdOyF5/FpRR8eqIQ86m6ltipVsZmNC80i0zieCcDo2RPdElLs8ioxkqNukMhjV1dV0xhln0MSJE+nKK69MqOwDZbU09a3NtHHvMZo3toge//h7WlN6JHD9wvwceuyqPtQpy5HQ/FbtOpyQPPYdqaZpS7cEdE6xmujl8f3ouZWltCpB5Ui0zicCLR0v7tWepg8/ne5/Z2tcuiei3AeiyEiGuo0HgyRJEjUDDAZDzD2MiooKyszMpPLycsrIyAiy7FOWlIjGmjI4j0r2HQsyFsoGnD+2qMFWX5lfIvJAz+LON78N0jnR5Ui0zieCcDo2pC4SUe7yKDKe+P0ZdNe/vmvWddsq5jCcTqcwEsqXFugGyo1V1DlL88YCX+06LOI2FGV+icgDwxC1zokuR6J1PhGE07EhdZGIch+OIgPt19zrtlUYjDlz5ogehfzq3LmzZjyMGWWcHl9EmZWKuPGizC8ReWDOQk2iy5FonU8E4XRsSF0kotwVUeJotV+seTRXkspgTJs2TQw/5Nf+/fs142XYLYG/MUkYiXRF3HhR5peIPDLsoVNLiS5HonU+EYTTsSF1kYhyZ0SJo9V+sebRXEkqg2Gz2cRchfKlRU6aVYwVQcn+MirOy9aMhziI21CU+SUijzapVuqv0jnR5Ui0zieCcDqiLtT1o1f3RJQ7J4oMtF9zr9tWYTD0ggklzEajcRau3kPXFeeGPGy4NveqPgmZfFLml4g8Tsqw06OjC4MeCpRjyqA8GpCgPBKt84kgnI7fH6wQ9ROP7okod2YUGWi/5l63SblKUlVVRaWlpeLvoqIieuqpp2jQoEHUtm1b6tKlS9yrJOp18GqnmzIdVnJ5fVTt9IguIaz8ifLDwBg1EXkE+WHYzdQ29bgfRqLySLTOJ4JwOjZE90SUuzyKjGSo26QyGF988YUwEGrGjx9PixcvbrDBYBimhfphxAMbDIZpXFrkHAbDMCcGNhgMwyTHb0kaijyaCufxyTCthfT0dPHzihNNUhuMyspK8R7O45NhWgvljTSPl9STnj6fjw4cONBo1lUJejUwVPA2TfYJVy5L8pclnXsY0TEajXTKKac0qQ6RPE6TDS5L8ySjGZWFJz0ZhtENGwyGYXTDBqMBP4SbMWOGeE92uCzNE1szLEtST3oyDNO4cA+DYRjdsMFgGEY3bDAYhtENGwyGYXTTog0GDkoaMWIEderUSXjBvfPOO0HXMd/74IMPUseOHcnhcNBFF11Eu3btCopz9OhRGjdunHCcycrKokmTJomNf5Rs3ryZBgwYQHa7XXjmPf744yG6/Otf/6KePXuKOIWFhfTBBx/EpEu0skyYMEGEK1+XXXZZsysLNnI+++yzhWdi+/btxbES33//fVD6uro6mjx5MmVnZ1NaWhpdddVV9OuvvwbF2bdvHw0bNoxSUlKEnLvvvps8Hk/IfitnnnmmWGXIy8vT3GPl2WefpVNPPVWU5dxzz6V169bp1mWOjrIMHDgwpF3+/Oc/N7uy6EZqwXzwwQfS/fffL7399ttYCZKWLl0adP2xxx6TMjMzpXfeeUf67rvvpJEjR0q5ublSbW1tIM5ll10mnXHGGdI333wjrVq1SsrLy5PGjh0buF5eXi6ddNJJ0rhx46StW7dKS5YskRwOh/TCCy8E4qxZs0YymUzS448/Lm3fvl164IEHJIvFIm3ZskW3LtHKMn78eKHrwYMHA6+jR48GxWkOZbn00kulRYsWCfnffvutdPnll0tdunSRqqqqAun//Oc/S507d5Y+//xzacOGDdJ5550nXXDBBYHrHo9H6t27t3TRRRdJJSUlom5ycnKkadOmBeL8+OOPUkpKinTnnXcKPefPny/0/uijjwJx3njjDclqtUoLFy6Utm3bJt1www1SVlaW9Ouvv+rS5VIdZfnd734n5CrbBfXc3MqilxZtMJSoHzKfzyd16NBBeuKJJwJhZWVlks1mEw8KQOMg3fr16wNxPvzwQ8lgMEj//e9/xefnnntOatOmjeR0OgNxpk6dKp122mmBz1dffbU0bNiwIH3OPfdc6aabbtKtS6SyyAbjiiuuCFv+5lqWQ4cOCb2+/PLLQFwYoH/961+BODt27BBx/vOf/4jPeKiMRqP0yy+/BOI8//zzUkZGRkD3e+65RyooKAjK6w9/+IN4yGXOOeccafLkyYHPXq9X6tSpkzRnzhzdukQqi2wwbr/9dikczbUs4WjRQ5JI7Nmzh3755RfRXZbB7l3oyv3nP/8Rn/GOrnu/fv0CcRAfv2FZu3ZtIM6FF15IVuvxvRovvfRS0TU9duxYII4yHzmOnI8eXfSAbiu6tKeddhrdfPPNdOTI8cN+mmtZ8CtLgH1cAc7ZdbvdQekx/MEer8p2wVDopJNOCtIBP9batm2bLj1dLpfISxkHdYHPchw9ukQqi8xrr71GOTk51Lt3b3FURk1NTeBacy1Li/zxWUPATQ2UDSV/lq/hHQ+gErPZLG4IZZzc3NwQGfK1Nm3aiPdo+UTTJRqYr8D5tNBl9+7ddN9999HQoUPFzWAymZplWfBr4zvuuIOKi4vFwySnh8GCcYuUh5Z8Zf7h4uBBrK2tFQbQ6/Vqxtm5c6duXSKVBVxzzTXUtWtXMfeE+aGpU6cKA/z2228327JEotUajJbGmDFjAn/jG6tPnz7UvXt30esYMmQINUcwAbd161ZavXo1JTuTw5TlxhtvDGoXTASjPWDU0T7JRqsdknTo0EG8q2eJ8Vm+hvdDhw4FXcfsNVYblHG0ZCjzCBdHeT2aLrHSrVs30Q2Wj3FobmWZMmUKLV++nFauXBm0RQHioItdVlYWMY949cQKEVZuUDfoeUUrSzRdIpVFCwzNgLJdmlNZotFqDQa63qiozz//PBCGLh7G8+eff774jHdUMMZ/MitWrBDdT7nhEQdLnhgfynz66adiHgFdeDmOMh85jpyPHl1i5eeffxZzGPhGa05lwZwtHrClS5eK/NVDoLPOOossFktQenThsfSobJctW7YEGUDogAfo9NNP16UnuufISxkHdYHPcpxoukhRyqLFt99+K96V7dIcyqIbqQVTWVkplqrwQlGfeuop8ffevXsDy39Yenr33XelzZs3i1UGrWXVoqIiae3atdLq1aul/Pz8oKVIzD5jKfJPf/qTWF7D8haWwNRLkWazWXryySfFzPSMGTM0lyIj6RKpLLh21113idnuPXv2SJ999pl05plnCl3r6uqaVVluvvlmseT6xRdfBC011tTUBC3/YXlyxYoVYvnv/PPPFy/1UuQll1wiljOxvNiuXTvNpci7775b6Pnss89qLkVi9Wbx4sViFenGG28UeitXLCLpcnOUspSWlkoPPfSQSId2QX1069ZNuvDCC5tdWfTSog3GypUrxcOlfmEJUl4CnD59unhIUNlDhgyRvv/++yAZR44cEQ9VWlqaWOq67rrrxAOqBL4G/fv3FzJOPvlk8cCoefPNN6UePXqItXIskb3//vtB16PpEqksuEFxw+FGw8PbtWtXsQ6vvFmaS1m0yoAX/BlkYFhuueUWscSLB2X06NHiQVTy008/SUOHDhV+IvBb+J//+R/J7XaHtH/fvn2FnnhQlXnIwKcBDxHiYGkSPipKIulCUcqyb98+YRzatm0r6gF+L3jolX4YzaUseuGftzMMo5tWO4fBMEzssMFgGEY3bDAYhtENGwyGYXTDBoNhGN2wwWAYRjdsMBiG0Q0bDCYufvrpJ7F7lOzqzLQO2HGLiQv8nPq3334TP3zCz+SZ1gEbDCZm8KtH5SY7TOuBhySM2KgWv7rEC7tjodcwffp08WtMgI1lZ8+eTddee634FSX2eNAakmCHqOHDh4s42BgXmwlj3weZl156iXr16iU2qcVuT88991yTlJeJH+5LMoJXXnlF7CKOnaY3bNggjAK2b7vhhhvE9SeffFLsBI6zPrX473//K7b3g/HBT71hNNasWRPY/Rrb1CH9ggULqKioiEpKSoTs1NRUGj9+fKOWlWkAMf1UjWmRYKPaXr16iV+ZKjf/RRjAr19HjRoVlAY/18btg5/YA/wcGz9hd7lcmnl0795dev3114PCZs+eHfPPq5mmhYckjOC8884TQwwZbKqCs0QwuQmUmwdrgaEJhiDYpEVNdXW1GJqgB4PzMOTXww8/HDRkYZo/PCRhdIGhQySwVVw45MOSXnzxxcDuXjLYWo5JHthgMAL5qAGZb775hvLz83U/0Nh0GPMg2N5P3cvAztTYNfvHH38UJ68xyQsPSRgB9na88847xT6PS5Ysofnz59Ptt9+uOz1WWLB3J3Yvx6QphjOvvvpq4OjAWbNmiaMF582bRz/88IPYx3LRokX01FNPncBSMYmGexiMAEumOOPinHPOEb0KGAvlFvnRwHmdWB3BuaC/+93vhIy+ffuKczrA9ddfL84OfeKJJ0QcDHGw7T7O8mCSB3bcYsRSKB7uZ555pqlVYZo5PCRhGEY3bDAYhtEND0kYhtEN9zAYhtENGwyGYXTDBoNhGN2wwWAYRjdsMBiG0Q0bDIZhdMMGg2EY3bDBYBhGN2wwGIYhvfx/oUD1bqxtAJwAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# Lets use a scatter plot to see relations between price and other variables. \n",
+ "x1_col = ['price'] \n",
+ " \n",
+ "# Check on these variables\n",
+ "y1_cols = [\n",
+ " 'sqft_living',\n",
+ " 'sqft_lot',\n",
+ " 'yr_renovated',\n",
+ " 'yr_built'\n",
+ "]\n",
+ "\n",
+ "# Make a PairPlot \n",
+ "sns.pairplot(\n",
+ " data=poor_area_houses_df2,\n",
+ " y_vars=y1_cols, # y axis\n",
+ " x_vars=x1_col, # x axis\n",
+ " kind='scatter' # use Scatter Plots to see relations between price and other variables.\n",
+ ")\n",
+ "\n",
+ "plt.suptitle('Relations Features to Price', y=1.02)\n",
+ "plt.show()\n",
+ "\n",
+ "\n",
+ "x2_col = ['price']\n",
+ "# Check on these variables\n",
+ "y2_cols = [\n",
+ " 'grade',\n",
+ " 'condition'\n",
+ "]\n",
+ "\n",
+ "# Make a second PairPlot\n",
+ "sns.pairplot(\n",
+ " data=poor_area_houses_df2,\n",
+ " y_vars=y2_cols, # y axis\n",
+ " x_vars=x2_col, # x axis\n",
+ " kind='scatter' # use Scatter Plots\n",
+ ")\n",
+ "\n",
+ "plt.suptitle('Relations Features to Price', y=1.02)\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "That is cool. So lets have a look at findings : \n",
+ "- condition does not say much about price, so better find a better condition\n",
+ "- the higher the grade, the higher the start price. \n",
+ "- age: few very old houses in higher price range. But otherwise very scattered\n",
+ "- renovated does not say much about price, higher prices have more renovated houses. \n",
+ "- higher price, higher lot size (but big outliers here)\n",
+ "- higher price, more sqft. But also more expensive houses with little sqfts. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 5.1 HYPOTHESIS 1 : \n",
+ "\n",
+ "The lowest-priced houses (bottom 10%) in the entire region are concentrated in only a few ZIP codes (less than 10%), indicating highly localized investment zones.\n",
+ "\n",
+ "Key metrics : Distribution of Lowest Sale Prices by ZIP code, Cluster analysis of price data.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Lets see how the median of all house prices shows in the ZIP Codes"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 99,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "zip_group = df.groupby('zipcode')['price'].median().sort_values(ascending=True).reset_index()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 114,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAKyCAYAAAAEvm1SAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAx2ZJREFUeJzs3Qd4FNXawPF3kwChl9Clg1KkdwRpIiiIoKhYriKiKAoW7IhIUVH8FEXBrnjv1aviFQsqVwWx0KtK76LSawgkpOx8z3vCTGY3G8hmk6Hk//NZkz1zZua8M7Ozm5dzzvosy7IEAAAAAAAA8FCUlzsDAAAAAAAAFEkpAAAAAAAAeI6kFAAAAAAAADxHUgoAAAAAAACeIykFAAAAAAAAz5GUAgAAAAAAgOdISgEAAAAAAMBzJKUAAAAAAADgOZJSAAAAAAAA8BxJKQAAzhA1atQQn89nHvfcc88J6z733HNO3ZiYGE/at3XrVrM/bWcwuy351ejRo038+hPemTp1qnPtZfeh69jmzJmT5bXbuXPnTOsWLFhQKlWqJL1795Yvv/xSzuRjdvPNN5/qpgAA8gFvPqUCAIBc9f7775vEk/4RHMo777zjeZuA002dOnVkwIABJ623YsUK+fXXX83vVatWDWsfTZo0kaZNm5rfExISZPny5TJjxgzzuPvuu+Wll17KYesBADj7kZQCAOAM07JlS1myZIl8/vnncvXVV2daPm/ePFm7dq20atVKFi9eLKeDNWvWSH42dOhQufbaa6Vs2bKnuin5SocOHczjRLZs2WJeU2r48OFy0UUXhbWPvn37BvSA8/v9MnLkSBk/frxMmjRJ+vTpI127ds1hBAAAnN0YvgcAwBnmlltuOWFvqLfffjug3umgXr165pFfaTJK4ycpdXo5evSoXHnllbJ//37p0qWLTJgwIeJtRkVFybhx46RWrVrm+ccff5wLLQUA4OxEUgoAgDNMo0aNTM+Ob7/9Vv7++++AZTp8SP8IrlKlinTv3v2E20lNTZW33nrLzI1TpkwZKVSokNSsWVOGDBkif/75Z5br6bCkTp06SfHixaVkyZJy4YUXml5bJ5LVvDyrV6+WJ554Qtq3by/nnHOOGY4YFxcn3bp1y/KPeXueH213SkqKPPvss3L++edL4cKFzbqaZMhJzyx3G998801p0aKFFC1aVEqVKiU9e/aUBQsWnHCuL51TS4+D9orR46ll2tbszCm1fv16ufPOO6Vu3bpSpEgRKVGihDRo0MCUrVy5MlP9AwcOmOOmw8b0POg6el08+eSTJtESTHvvvPHGG+Y4azwFChSQ8uXLm6Fnw4YNM23PLnsuJY3txx9/NNeZxqttaN26tfzrX/864fqzZs0y50jnXtLzre244oorZP78+Sc9L++++660a9fOXHf2MY/EbbfdZobuVatWzVxv0dHRkht0O/aQvnDbGO61oL0iBw4cKNWrVzevYT0X2tvrRMkwfe2/+OKL5pqJjY2VcuXKSb9+/eT333/PVvtuv/12qV27tllXz0XHjh3l3//+d1hxAgBgWAAA4IxQvXp1S9+6f/75Z2vKlCnm9yeffDKgzttvv23KH3vsMWvLli3m9+jo6Ezbio+Ptzp37myWFytWzOrUqZN11VVXWXXr1jVlcXFx1rJlyzKt98ILL5jl+mjdurV13XXXWS1btjTPhw8fbn5qO4PZ6wQbNGiQKa9Xr57Vo0cPq3///la7du2sqKgoU37fffdlWueHH34wyy644AKrW7duVpEiRaxLLrnE6tevn1W1alWzrFSpUib+cNht1H36fD6rQ4cOJr6GDRua8piYGOvTTz/N8rwMHTrU/NTjoevpMf3pp59MnSeeeMIs05/B3n//fatQoUJmebVq1UwcV1xxhdWkSRPTjuB1Vq1a5cRZqVIlE3vv3r2tChUqmLKmTZtaBw8eDFhn4MCBZllsbKw5Zto+Pd7nnnuuKZ8+fXq2j5PGpevcfffd5jw1aNDAuvbaa62OHTs6502vhVDuv/9+s1zr6fVz9dVXW23atDFx6nX6zjvvZHle9PjqevZ50fW2bt1q5ZR9LesxWbJkScg69rUW6tq1j0Ooc6r0OOvyyy+/PNttCvdamDFjhmm/1tfXrp6Hrl27mmOpZbfcckumfaSlpVl9+/Y1ywsWLGh1797dvO5q1KhhtnXnnXeaZQMGDMi07scff+zsT1+z2jbdX9GiRU2ZXmcAAISDpBQAAGdgUkqTDoULF7bq1KkTUKd9+/bmj9dNmzadMCl1/fXXm2WXXXaZtWvXroBlEydONMs0YZGamuqU//rrr2ZbmhiYNm1awDr//ve/zX7DTUrNmTPHtDXY2rVrrSpVqph1Fi5cmGWioFmzZtaOHTucZYmJiSbZossGDx5shcPeph7XWbNmBSybMGGCWVayZMlMx8s+L3psPv/885DbzioppcmQAgUKmGM3adIkkzBw06SLO2Fy9OhRq3bt2mZbI0eOtI4dO+YsO3LkiEnWBCcH/vjjD1Omx9N9rGyrV682dbLLTsbo4+mnn850PvX46bKZM2cGLHvjjTdMuV6zei25/fjjj1bx4sVNkmT9+vUBy+x9lShRwpo/f76VG/Qa0iSjbnfq1KknrJeTpNT27dtNPLp81KhR2WpTuNfCzp07zfVoJ6f9fr+zbPHixVbp0qXNMj3ubq+88oop1ySmnntbSkqKNWTIECfe4KTUb7/9ZhJmmpT673//m6ltjRo1Muu999572YoXAABFUgoAgDMwKaVuuOEG81wTAXYiR59rDyiVVVJK/xDVP3wrV65sekyF0rNnT7Pul19+6ZTdeuutpkx7VYTSp0+fsJNSJ/L666+bdR588MGQiQKNYcWKFZnWW7BggVleq1atsPZnt/Hee+8NudzuEfbUU0+FPC+heqWcLCll91gZNmxYttr46quvOsnEUA4fPmyVL1/eJFz2799vyhYtWhR2j50TsZMxmhA8UW+oiy++2CnTBIteb1qeVa8kO/Gn64c6L2PHjs2V9msCrly5ck7vqxMJNymVkJBgEmzNmzc3y7QH0bZt27LVrnCvhXHjxpn6LVq0CLn8//7v/5zkspsmBbVcr6VgmtStWLFiyKSUvu61XLcbin2dZdUeAABCYU4pAADOkgnP7Z8nm+D866+/1r+w5dJLLzXzEWU1b5D9TX42e36kf/zjHyHXGTBgQI7i0Hmwpk2bJiNGjJDBgwfLzTffbB7//e9/zfJ169aFXE/nAdI5kYLVr1/f/Ayebyu7sorjpptuCjgOwa666qqw9pOWlibfffed+V3jzo6vvvrK/Ozfv3/I5cWKFTPzjemcQfY3L+oE63qe9bw/9dRT5tvmcoN9PLI6fr/88ouJUS1fvly2b99u5iHSubqye81FcnxDSUpKMvNZ7dmzx8yF9sILL0S8zTFjxjjzXunx1/nWli1bZubK0jnGqlatmifXgn0dZnW9Dho0yPzcsGGDOfb2a2Ljxo1Zvo51jqhrrrkm5Jxk33zzzQmvPb3uNH4913qcAQDIjphs1QIAAKcd/bYwnZj8k08+MZMW//Of/zSTIp/sj/fNmzc739Jnf1NfVvSPd9tff/1lfuo+Q8mq/ES+/PJLM0nzvn37sqwTHx+fZVIqFD0G6tixY5ITJ4vPPg6hJjwPh8Z85MgR87tOap0d9rm78cYbzSM7504TUjpBuB7nkSNHmodOMt62bVu55JJL5PrrrzfJhNw+TomJiSZGTc7Y7d60aVPICe9DtTvS4xuKTuK/dOlSM6m+JkJ1wvdIaWLUntRct6cTjWvirXfv3mby/by6Fuyka1bnQSe017boNwvqNVu5cmXn2tVvgczqnIfanrbPfh1mJ8mm9fUYAwBwMiSlAAA4Q+kf99qjSL+FTXtL7Ny50/SyONkfwtrrQekf0qF6Grm1adNG8or+Ua29LjR58dBDD8kNN9xgEg/6x3JUVJT5dsEePXqYXl2haJ1TIav2ZDcBEQn73GkyqUKFCiesq9/GZtNvVtNvNPziiy/k559/lrlz58r06dPNY9SoUaaXjn4TW14dK7vdFStWNOf0RDRhkhfHd/LkyTJ16lTzjX/aC+9kxy+7+vbtm+W3Kp4t7POX3R6R+i2AAABkB0kpAADOYJqU0uFD2uMoO0P33D0d2rdvL6+88kq296U9H7Sni37F/fnnn59puZaHQ9usCakrrrhCnn322UzLddjRqaDD2+yeL6Hiq1KlSq7sJy4uTooUKSJHjx41QxQbNmyYrXO3du1aMzQr3OFsJUuWDOhh9eeff8qwYcPMELOhQ4fKjz/+GNb2shoGaB8nHQqmMdrtVvpcE0Ne06GE9913n/ldr/m8TLZ6dS3o61GvBbsXWrBDhw6ZXlJ2XffPvXv3mmGzoXpLhXoda6JQk4L6ev2///u/LBOHAACEizmlAAA4g+kQtj59+pg/anU4Vnb+2Na5pJT2mgln7hedK0e9//77IZfr8MFw2H8wu3v0uHvYfPDBB3Iq/Otf/zphuT33UaSio6Pl4osvNr+/+eab2VrHPncff/xxxPvXRJEmNNWKFSvCXv/f//73Ca+DDh06SExM+r9/tmrVyiQyVq9eLatWrRIv6XxKV199taSkpJiehLfddpucbnJyLdjX4XvvvRdyuT3H3LnnnuskozShWqtWLfN7qNeXDnnVYY0nal9uXHsAANhISgEAcIb79NNPTc+H+fPnZ6t+s2bNzHAu7Smjkz6H6hmh89to8mnXrl1Omfaq0T9O9Y9SHfbl9uGHH8pnn30WVrvtCcl1TqwdO3YETPqsQ8qymvA6r7366quZJjOfOHGiLFq0yMzPZE8gnRsee+wxk7jR3jtTpkzJNDTwjz/+MHMg2TSpokk8TRw8/PDDcvjw4Uzb1GGc7sSGTjz90UcfmV4uwewedqESgyej7ZowYUKmHkk6TE7ZPZPsuZZ0mKnGpz3jtF4wPe+zZ8+WBQsWSG5JTk4217oeE03avvzyy3K6Cvda0OSazp+mk6o//fTTAfX1nD/55JPm9wcffDBgO/fee6/5qUMOtaeV+/g/8MADzqTowfT86dBH3Z4mwtxD+mwrV6409yMAALKL4XsAAORDOvH1wYMHzTdq6cTKOreUTnCsf9hqkurXX381f9CvWbPGmXtHh7SNHz/ezP+kySztlaXfpqbD7PSb3jQJocmb7NKJoHVCaP1D+7zzzjM9sYoWLSoLFy40fxhr0iXUsL68dvvtt0vXrl3Nt7NpDxP9Q/v33383CTntfaLzIuUW7UGkk83feuutctddd5kkj5bpH/w6LEvPgybo7G+s0+Oj38B32WWXmbpvvPGGNG7c2PSA0aFf69evN+dMJxe3ewRpMuPaa681w6+aN29uekjpt/NpTDpUTBMNwcml7Lj77rvl0UcfNT2jtA16znS+Km37PffcIz179gyor0MEt23bJs8995w5tjoEtE6dOqZdmjTS3lp6TWpSUBNIuWHcuHFOkkuHL2bnm+20h5eeD6+Fey3o61ITx9oLTBNa2pNPE867d+82QzH1HOvk9sE9w3TbOoeYJiT1da9fmFC6dGnzutPksE4Gr+cgmF472jvO/nZMnTC/QYMGUq5cOdPrUa8nnUhd54nT+wMAANliAQCAM0L16tW1K4T1888/Z6v+li1bTP3o6OiQy9PS0qwPPvjA6tmzp1WhQgWrQIECVlxcnNWwYUNr4MCB1vTp063k5ORM633++edWhw4drKJFi1rFihWzLrjgAuuTTz5x9qftDKbloT52HD582BoxYoRVt25dKzY21ipfvrzVt29fa8mSJdYPP/xg1unUqVPAOlmVZ2d/J+Je59VXX7WaNm1qFS5c2CpRooR1ySWXWHPnzj3hedH4s/LEE0+YOvozlFWrVlmDBg2yatasaRUqVMgqWbKk1aBBA2vo0KFmWbD4+HhrwoQJVrt27axSpUqZc1epUiWrVatW1oMPPmjNmzfPqbtjxw7rmWeeMedZt1+kSBETk27/rrvustauXRvWcdLjrrHoeZg1a5Z10UUXmfbqsWrZsqU1derUE66vx/GGG24wx01jLV68uHXeeeeZ8/7WW29Z+/fvj/hc2gYMGOCsn92HrhN8rYXav30csjqnORXutbB69WrT5ipVqpjrQK+HLl26WB9++GGW+0hJSbGef/55s13dh77u+/TpY61YscJ69913Mx0HN73O77vvPnOf0HuAvm71XHbu3NlcZxs3bszV4wEAOLv59H/ZS18BAACc3d9mqPhodPK5jLQnzg8//JBr82sBAID8iTmlAAAAAAAA4DmSUgAAAAAAAPAcSSkAAAAAAAB4jjmlAAAAAAAA4Dl6SgEAAAAAAMBzJKUAAAAAAADguRjvd4lw+P1+2b59uxQvXtz5qmoAAAAAAIDTlc4UdfjwYalcubJERWXdH4qk1GlOE1JVq1Y91c0AAAAAAAAIy59//ilVqlTJcjlJqdOc9pCyT2SJEiVOdXMAAAAAAABOKD4+3nSwsXMaWSEpdZqzh+xpQoqkFAAAAAAAOFOcbBoiJjoHAAAAAACA50hKAQAAAAAAwHMkpQAAAAAAAOA5klIAAAAAAADwHEkpAAAAAAAAeI6kFAAAAAAAADxHUgoAAAAAAACeIykFAAAAAAAAz5GUAgAAAAAAgOdISgEAAAAAAMBzJKUAAAAAAADgOZJSAAAAAAAA8BxJKQAAAAAAAHiOpBQAAAAAAAA8R1IKAAAAAAAAniMpBQAAAAAAAM+RlAIAAAAAAIDnSEoBAAAAAADAcySlAAAAAAAA4DmSUgAAAAAAAPAcSSkAAAAAAAB4jqQUAAAAAAAAPEdSCgAAAAAAAJ4jKQUAAAAAAADPkZQCAAAAAACA52JOdQMAAAAAAABwetq4on1Y9es0nZvtuvSUAgAAAAAAgOdISgEAAAAAAMBzJKUAAAAAAADgOZJSAAAAAAAA8BxJKQAAAAAAAHiOpBQAAAAAAAA8R1IKAAAAAAAAniMpBQAAAAAAAM+RlAIAAAAAAIDnSEoBAAAAAADAcySlAAAAAAAA4DmSUgAAAAAAAPAcSSkAAAAAAAB4jqQUAAAAAAAAPEdSCgAAAAAAAJ4jKQUAAAAAAADPkZQCAAAAAACA50hKAQAAAAAAwHMkpQAAAAAAAOA5klIAAAAAAADwHEkpAAAAAAAAeI6kFAAAAAAAADxHUgoAAAAAAACeIykFAAAAAAAAz5GUAgAAAAAAgOdISgEAAAAAAMBzJKUAAAAAAADgOZJSAAAAAAAA8BxJKQAAAAAAAHiOpBQAAAAAAAA8R1IKAAAAAAAAniMpBQAAAAAAAM+RlAIAAAAAAIDnSEoBAAAAAADAcySlAAAAAAAA4DmSUgAAAAAAAMjfSamffvpJevfuLZUrVxafzyefffZZwHItC/V47rnnnDo1atTItPyZZ54J2M5vv/0mF154ocTGxkrVqlVlwoQJmdoybdo0qVevnqnTqFEj+frrrwOWW5Ylo0aNkkqVKknhwoWlW7dusmHDhoA6+/fvlxtuuEFKlCghpUqVkkGDBklCQkIuHS0AAAAAAIAz12mVlDpy5Ig0adJEJk+eHHL5jh07Ah7vvPOOSTr169cvoN7YsWMD6g0bNsxZFh8fL927d5fq1avL0qVLTUJr9OjR8sYbbzh15s2bJ9ddd51JIi1fvlz69u1rHitXrnTqaCJr0qRJ8tprr8nChQulaNGi0qNHD0lKSnLqaEJq1apV8t1338mMGTNM0m3w4MG5fNQAAAAAAADOPD5Lu/ychjTZNH36dJMMyoouO3z4sMyaNSugp9S9995rHqG8+uqr8thjj8nOnTulYMGCpuyRRx4xvbLWrl1rnvfv398kyDSRZGvbtq00bdrUJKH0kGlvrvvvv18eeOABs/zQoUNSoUIFmTp1qlx77bWyZs0aadCggSxevFhatmxp6sycOVN69uwpf/31l1k/OzSJVrJkSbN97XEFAAAAAADglY0r2odVv07TudnOZcTIGWrXrl3y1VdfyXvvvZdpmQ7XGzdunFSrVk2uv/56ue+++yQmJj3U+fPnS8eOHZ2ElNIeTs8++6wcOHBASpcubeoMHz48YJtaxx5OuGXLFpPU0iF7Nj3Ybdq0MetqUkp/6pA9OyGltH5UVJTpWXXFFVeEjOvYsWPmYdMTqVJTU81D6Tb04ff7zcNml6elpZnE2cnKo6OjTfLP3q67XGn97JTrsdXtust1u1o/uI1ZlRMTMRETMRETMRETMRETMRETMRETMRFT1GkYkyt15PNLlM8vfitKRB9Ofb95+K3ogPzFyZyxSSlNRhUvXlyuvPLKgPK7775bmjdvLmXKlDHD8B599FEzhO+FF14wyzWZVLNmzYB1tIeTvUyTUvrTLnPX0XK7nnu9rOqUL18+0wWg7bLrhDJ+/HgZM2ZMpnIdRqhDBFW5cuWkdu3aJjm2Z88ep06VKlXMY/369SYbaatVq5Zpiw4/TExMdMp1zixNnOm23Rdl48aNTdJuyZIlAW3QBFtycrKZk8umF2mrVq3M/uyeZkrn2dKhmHv37pXNmzcHJO/q168v27dvNz3GbMRETMRETMRETMRETMRETMRETMRETMRU/rSL6c+9lzvlxWK3SlyJZXLgcFNJSKqRUb/oGilVdI3sPdRO9i9ZYkafndXD9/SkXHzxxfLyyy+fcDs679Ttt99uJhgvVKiQmU9Kk1Kvv/66U2f16tVy/vnnm5960PWkatJL55WyTZkyxSSLtIeWJrvat29vTo5OdG675pprTLs/+ugjefrpp8021q1bF9AevcB0O0OGDMl2TymdjH3fvn1Ol7ezJ9t6NmaQiYmYiImYiImYiImYiImYiImYiImYzp6YNq7oElZPqVqNZptcRlxc3Nk5fO/nn382yR5N/pyMDqnTE7d161apW7euVKxY0SSW3Oznusz+GaqOe7ld5k5K6XOdd8qus3v37oBtaDv0G/ns9UPRxJk+gunFYw9BDL5gg9kXYHbLg7ebk3K9YEOVZ9XGcMuJiZiyKicmYjpR24mJmIiJmE7UdmIiJmIiphO1nZiIiZjkeHnmoXiamNIEVebytJD5izPi2/ey6+2335YWLVqYLmYns2LFCnMQ7aF07dq1M9+Cl5KS4tTRb8fThJUO3bPruCdPt+toudKeVppYctfRLKDOFWXX0Z8HDx403/Bnmz17tskyaqIMAAAAAAAgPzutekrpELuNGzc6z3XcpSaVdB4mnbTcTv5MmzZNnn/++Uzr6+Timhjq0qWLmW9Kn+sk5//4xz+chJNOfK7D5wYNGiQPP/ywGav50ksvycSJE53t3HPPPdKpUyezj169esmHH35oxmi+8cYbTmZRv93vySeflHPPPdckqR5//HHzjXr2cEMdBnjJJZfIbbfdZr6xT5NgQ4cONZOgZ/eb9wAAAAAAAM5Wp1VSShM/mlCy2d+AN2DAAJk6dar5XRNEOgbSPd+TTYe96fLRo0ebeZk0WaRJKfc36elkXd9++63cddddprdV2bJlZdSoUTJ48GCnzgUXXCAffPCBjBw5UkaMGGEST/rNew0bNnTqPPTQQ2biLl1Pe0R16NBBZs6cKbGxsU6d999/3ySiLrroItNbq1+/fjJp0qQ8OHIAAAAAAABnltN2onOI0zNME2knmxwMAAAAAAAgt21c0T6s+nWazs12LuOMnFMKAAAAAAAAZzaSUgAAAAAAAPAcSSkAAAAAAAB4jqQUAAAAAAAAPEdSCgAAAAAAAJ4jKQUAAAAAAADPkZQCAAAAAACA50hKAQAAAAAAwHMkpQAAAAAAAOA5klIAAAAAAADwHEkpAAAAAAAAeI6kFAAAAAAAADxHUgoAAAAAAACeIykFAAAAAAAAz5GUAgAAAAAAgOdISgEAAAAAAMBzJKUAAAAAAADgOZJSAAAAAAAA8BxJKQAAAAAAAHiOpBQAAAAAAAA8R1IKAAAAAAAAniMpBQAAAAAAAM+RlAIAAAAAAIDnSEoBAAAAAADAcySlAAAAAAAA4DmSUgAAAAAAAPAcSSkAAAAAAAB4jqQUAAAAAAAAPEdSCgAAAAAAAJ4jKQUAAAAAAADPkZQCAAAAAACA50hKAQAAAAAAwHMkpQAAAAAAAOA5klIAAAAAAADwHEkpAAAAAAAAeI6kFAAAAAAAADxHUgoAAAAAAACeIykFAAAAAAAAz5GUAgAAAAAAgOdISgEAAAAAAMBzJKUAAAAAAADgOZJSAAAAAAAA8BxJKQAAAAAAAHiOpBQAAAAAAAA8R1IKAAAAAAAAniMpBQAAAAAAAM+RlAIAAAAAAIDnSEoBAAAAAADAcySlAAAAAAAA4DmSUgAAAAAAAPAcSSkAAAAAAAB4jqQUAAAAAAAAPEdSCgAAAAAAAJ4jKQUAAAAAAADPkZQCAAAAAACA50hKAQAAAAAAwHMkpQAAAAAAAOA5klIAAAAAAADwHEkpAAAAAAAAeI6kFAAAAAAAAPJ3Uuqnn36S3r17S+XKlcXn88lnn30WsPzmm2825e7HJZdcElBn//79csMNN0iJEiWkVKlSMmjQIElISAio89tvv8mFF14osbGxUrVqVZkwYUKmtkybNk3q1atn6jRq1Ei+/vrrgOWWZcmoUaOkUqVKUrhwYenWrZts2LAh7LYAAAAAAADkR6dVUurIkSPSpEkTmTx5cpZ1NAm1Y8cO5/Gf//wnYLkmgVatWiXfffedzJgxwyS6Bg8e7CyPj4+X7t27S/Xq1WXp0qXy3HPPyejRo+WNN95w6sybN0+uu+46k0Ravny59O3b1zxWrlzp1NFE1qRJk+S1116ThQsXStGiRaVHjx6SlJSU7bYAAAAAAADkVz5Lu/ychrQX1PTp000yyN1T6uDBg5l6UNnWrFkjDRo0kMWLF0vLli1N2cyZM6Vnz57y119/mR5Yr776qjz22GOyc+dOKViwoKnzyCOPmG2uXbvWPO/fv79JkGkiyda2bVtp2rSpSULpIdNt3X///fLAAw+Y5YcOHZIKFSrI1KlT5dprr81WW7JDk2glS5Y029ceVwAAAAAAAF7ZuKJ9WPXrNJ2b7VzGadVTKjvmzJkj5cuXl7p168qQIUNk3759zrL58+ebYXJ2EkjpsLqoqCjTm8mu07FjRychpbSH07p16+TAgQNOHV3PTetoudqyZYtJarnr6MFu06aNUyc7bQEAAAAAAMivYuQMokP3rrzySqlZs6Zs2rRJRowYIZdeeqlJAEVHR5tEkSas3GJiYqRMmTJmmdKfur6b9nCyl5UuXdr8tMvcddzbcK+XVZ2TtSWUY8eOmYdNs4sqNTXVPJQmtvTh9/vNw2aXp6Wlmd5cJyvXY6Y90uztusuV1s9Oucal23WX63a1fnAbsyonJmIiJmIiJmIiJmIiJmIiJmIiJmIipqjTMCZX6sjnlyifX/xWlIg+nPp+8/Bb0QH5i7MqKaXD4mw6+Xjjxo2ldu3apvfURRddJGeD8ePHy5gxYzKV69xWOm+VKleunIlbe2zt2bPHqVOlShXzWL9+vekiZ6tVq5ZJkOmcWImJiU65TuSuvbl02+6LUo+r9iRbsmRJQBu011dycrKZKN6mF2mrVq3M/uzhj0onf9f5wfbu3SubN28O6FFWv3592b59uxnGaCMmYiImYiImYiImYiImYiImYiImYiKm8qddTH/uvdwpLxa7VeJKLJMDh5tKQlKNjPpF10ipomtk76F2sn/JEjMl0lk3p1QoepKffPJJuf322+Wdd94x8zzZw/CUZuf0G/T02/SuuOIKuemmm0zvI/e8VD/88IN07drVfFue9pSqVq2aDB8+XO69916nzhNPPGHW+fXXX82J0gtLLwidZ8rWqVMn8/yll17KVluy21NKvyFQhyna4zDPnmzr2ZhBJiZiIiZiIiZiIiZiIiZiIiZiIiZiOnti2riiS1g9pWo1mm1yGXFxcSedU+qM6ikVTDOQmqypVKmSed6uXTszEbp+q16LFi1M2ezZs81B1Pme7Do60XlKSooUKFDAlOm34+kcVZqQsuvMmjUrICmldbRc6fC/ihUrmjp2UkoPuM4VpfNcZbctoRQqVMg8gunFow83+4INZl+A2S0P3m5OyvWCDVWeVRvDLScmYsqqnJiI6URtJyZiIiZiOlHbiYmYiImYTtR2YiImYpLj5ZmH4mliShNUmcvTQuYvzoiJzhMSEmTFihXmobSLm/6+bds2s+zBBx+UBQsWyNatW01CqE+fPlKnTh0zCbnSrmU679Rtt90mixYtkrlz58rQoUPNsD/72+6uv/56071t0KBBsmrVKvnoo49MzybtGWW75557zDflPf/886Zb2+jRo013ON2WfRI1YaU9tL744gv5/fffTQ8s3Yfdsys7bQEAAAAAAMivTqvhezo3VJcurm5hxw0YMEBeffVVk/DRIXPaA0kTO927d5dx48YFTDiuQ/A0+fPll1+ajF6/fv1k0qRJUqxYMaeOjqu86667ZPHixVK2bFkZNmyYPPzwwwH71CF2I0eONAmwc889VyZMmCA9e/Z0luth0yF9b7zxhmlPhw4dZMqUKXLeeeeF1ZaTye7XKAIAAAAAAOS2jSvah1W/TtO52c5lnFZJKWRGUgoAAAAAAJyNSanTavgeAAAAAAAA8geSUgAAAAAAAPAcSSkAAAAAAAB4jqQUAAAAAAAAPEdSCgAAAAAAAJ4jKQUAAAAAAADPkZQCAAAAAACA50hKAQAAAAAAwHMkpQAAAAAAAOA5klIAAAAAAADwHEkpAAAAAAAAeI6kFAAAAAAAADxHUgoAAAAAAACeIykFAAAAAAAAz5GUAgAAAAAAgOdISgEAAAAAAMBzJKUAAAAAAADgOZJSAAAAAAAA8BxJKQAAAAAAAHiOpBQAAAAAAAA8R1IKAAAAAAAAniMpBQAAAAAAAM+RlAIAAAAAAIDnSEoBAAAAAADAcySlAAAAAAAA4DmSUgAAAAAAAPAcSSkAAAAAAAB4jqQUAAAAAAAAPEdSCgAAAAAAAJ4jKQUAAAAAAADPkZQCAAAAAACA50hKAQAAAAAAwHMkpQAAAAAAAOA5klIAAAAAAADwHEkpAAAAAAAAeI6kFAAAAAAAADxHUgoAAAAAAACeIykFAAAAAAAAz5GUAgAAAAAAgOdISgEAAAAAAMBzJKUAAAAAAADgOZJSAAAAAAAA8BxJKQAAAAAAAHiOpBQAAAAAAAA8R1IKAAAAAAAAniMpBQAAAAAAAM+RlAIAAAAAAIDnSEoBAAAAAADAcySlAAAAAAAA4DmSUgAAAAAAAPAcSSkAAAAAAAB4jqQUAAAAAAAAPEdSCgAAAAAAAJ4jKQUAAAAAAADPkZQCAAAAAACA50hKAQAAAAAAwHMkpQAAAAAAAOA5klIAAAAAAADwHEkpAAAAAAAAeI6kFAAAAAAAADwXk9MVExISZO3atbJ3717x+XxStmxZOe+886R48eK520IAAAAAAADk755SW7ZskdGjR0uzZs2kdOnS0qZNG+nVq5f07NlTWrduLWXKlJGmTZuaOps3bw67MT/99JP07t1bKleubBJdn332mbMsJSVFHn74YWnUqJEULVrU1Lnppptk+/btAduoUaOGWdf9eOaZZwLq/Pbbb3LhhRdKbGysVK1aVSZMmJCpLdOmTZN69eqZOrrPr7/+OmC5ZVkyatQoqVSpkhQuXFi6desmGzZsCKizf/9+ueGGG6REiRJSqlQpGTRokEnmAQAAAAAA5HfZSkqtXr1arrrqKqlTp468/PLLUqtWLRkzZoy8//77Jlnz1Vdfyb///W9TVrt2bXnllVfk3HPPNeusWbMm2405cuSINGnSRCZPnpxp2dGjR2XZsmXy+OOPm5+ffvqprFu3Ti6//PJMdceOHSs7duxwHsOGDXOWxcfHS/fu3aV69eqydOlSee6550wS7Y033nDqzJs3T6677jqTRFq+fLn07dvXPFauXOnU0UTWpEmT5LXXXpOFCxeaRFmPHj0kKSnJqaMJqVWrVsl3330nM2bMMEm3wYMHZ/t4AAAAAAAAnK18lnb5OYkCBQqYHlF33HGH6REUE3PiUX+pqany/fffm4SNJq2Sk5PDb5jPJ9OnTzfJoKwsXrzY9ND6448/pFq1ak5PqXvvvdc8Qnn11Vflsccek507d0rBggVN2SOPPGJ6ZelwRNW/f3+TINNEkq1t27amF5jGpIdMe2rdf//98sADD5jlhw4dkgoVKsjUqVPl2muvNcm4Bg0amDa2bNnS1Jk5c6bpVfbXX3+Z9bNDk2glS5Y029ceVwAAAAAAAF7ZuKJ9WPXrNJ2b7VxGtnpK6XA3TdpccsklJ01IKa2jdXUdXTevaHCavNKhcW46XC8uLs4MM9SeUJoks82fP186duzoJKSU9nDSXlcHDhxw6mjyzU3raLk9jFGTWu46erB1OKNdR39qu+yElNL6UVFRpmcVAAAAAABAfpatic7r16+f4x3ovEx5QYfJ6RxTOszOnXW7++67pXnz5mZ+Kx2G9+ijj5ohfC+88IJZrsmkmjVrBmxLezjZy3SuLP1pl7nraLldz71eVnXKly+fKVmn7bLrhHLs2DHzsGl2UWlizU6uaWJLH36/3zxsdnlaWprpzXWy8ujoaJPUcyft7HKl9bNTrnHpdt3lul2tH9zGrMqJiZiIiZiIiZiIiZiIiZiIiZiIiZiIKeo0jMmVOvL5JcrnF78VJaIPp77fPPxWdED+Ik+/fW/r1q1y+PBh8417mujReZW8oJOeX3PNNeZg6nA8t+HDhzu/N27c2PSIuv3222X8+PFSqFAhOd1pO3VurmA6t5V9fMuVK2fm7tIeW3v27HHqVKlSxTzWr19vepHZdA4wTZDpnFiJiYkBCUPtzaXbdl+U9nFbsmRJQBu015cOxXT3ftOLtFWrVmZ/9vBHpZO/6/xg+u2M7knvtUeZJjl1gnodxmgjJmIiJmIiJmIiJmIiJmIiJmIiJmIiptMvpj/3ZszlXSx2q8SVWCYHDjeVhKQaGfWLrpFSRdfI3kPtZP+SJWZKpFybU8pN50V66qmnZMGCBQFZNA3wggsuMPM1XXzxxeFsMqw5peyElB6s2bNnm2F6J6ITjTds2NAc9Lp165pv7NPeR+5v9vvhhx+ka9eu5tvytKeUzk+lyS33vFRPPPGEWefXX381+9YLSy8InWfK1qlTJ/P8pZdeknfeecfMOWUPCVSaKdRv89Nv9rviiiuy3VNKvyFw3759To+wsyfbejZmkImJmIiJmIiJmIiJmIiJmIiJmIiJmM6emDau6BJWT6lajWabXIbma042p1RYPaUmTpxoJvbWhnXu3Nkke4oVK2Z6Tf3+++/m2+UuvfRSU8/9jXe5xU5IbdiwwSSSTpaQUitWrDAn1R5K165dO5M4023pBO5Kvx1PE1aakLLrzJo1KyAppXW0XGmvsIoVK5o6dlJKD7jOFTVkyBBnGwcPHjTf8NeiRQtTpkk0PaE691RWtDdXqB5devEEz+dlX7DB7Aswu+VZzRMWTrlesKHKs2pjuOXERExZlRMTMZ2o7cRETMRETCdqOzEREzER04naTkzERExyvDzzUDxNTGmCKnN5Wsj8RcRJKf02OZ3DSb+F7sMPPzS9d4Jt27bNzPGkiSvtLRXufFKa3Nq4caPzXLu4aVJJ52GqVKmSXHXVVbJs2TLzrXia2bPnZtLl2mVNJxfXxFCXLl3MkEJ9ft9998k//vEPJ+F0/fXXm+FxgwYNMvFotzjt2aSJNNs999xjej09//zz5lsHNV7tDvfGG284J1ETVk8++aSce+65Jkn1+OOPm2/Us3t2aTc3nez9tttuM9/Yp0mwoUOHmm/my+437wEAAAAAAJytsj18T5Mw//znP2XTpk1OgicUHQJXp04dGThwoEnqhGPOnDkmoRRswIABMnr06EwTlNu015T23NKE1Z133mmG6ukQOK1/4403mqF47t5HOq7yrrvuksWLF0vZsmVNry5NULnpELuRI0eaebM08TRhwgTp2bOns1wPmw7p00SV9ojq0KGDTJkyRc4777yAY6GJqC+//NJkF/v16yeTJk0yvcuyK7tfowgAAAAAAJDbNq5oH1b9Ok3nZjuXke2klE6UpcPQXn/99ZPW1YnFddha8GRbCB9JKQAAAAAAcDYmpTIPGMyCDqXTGdmzQ+tpfQAAAAAAACCipJSd5coOzYJpfQAAAAAAACCipJROLK4TfGeH1nN/lSAAAAAAAACQo2/fUzrR+YIFC05ab/369eFsFgAAAAAAAPlMWEmpb7/91jyyI7u9qgAAAAAAAJD/ZDspxXA8AAAAAAAAeD6nFAAAAAAAAHBKhu9lZe/evfLNN9/Ijh07pG7dutK7d2+JiiLfBQAAAAAAgAiTUv/5z3/krbfeko8++kjKli3rlM+fP98koQ4cOCCWZZm5pFq3bi3ff/+9FC1aNLubBwAAAAAAQD4SFU5SKiUlJSAhpUmoG2+8UQ4dOiSjRo2SL7/8Um6//XZZuHChTJgwIa/aDAAAAAAAgPySlPr111+lY8eOAWXz5s2TzZs3y5AhQ+SJJ56QXr16yZQpU+Syyy6TTz/9NC/aCwAAAAAAgPyUlNq9e7fUrFkzoOzbb781w/X69+8fUH7xxRebZBUAAAAAAAAQUVIqLi7OzBvl9ssvv0iBAgWkRYsWAeU6l5QmqwAAAAAAAICIklKNGzeWDz/8UFJTU83zv//+W+bOnStdunSR2NjYgLqbNm2SypUrZ3fTAAAAAAAAyGey/e17I0aMkE6dOknz5s2lVatWMmvWLDPx+fDhwzPV1QnPtQ4AAAAAAAAQUU+pDh06mJ5Sfr9fPvjgA9M76q233jLzR7nNnj1btmzZIn369MnupgEAAAAAAJDP+CzLsk51I5C1+Ph4KVmypBw6dEhKlChxqpsDAAAAAADykY0r2odVv07TudnOZWS7pxQAAAAAAADg+ZxS//znP7Ncpt+0p8P5qlevbuacionJ9mYBAAAAAACQD2U7e3TzzTeb5NOJRvvp8vLly8sLL7wg1113XW61EQAAAAAAAPk1KbV48eITLj969KisXbvWTH5+4403StmyZTNNgg4AAAAAAADkyUTnycnJ0qpVKylXrpx8//33HOUIMdE5AAAAAAA4Gyc6z/XJnwoWLCj9+/eX5557Lrc3DQAAAAAAgDD9vrR1WPUbtVgkXsiTb9+Li4uTxMTEvNg0AAAAAAAAzgJ5kpRavny5VKlSJS82DQAAAAAAgLNArielvvjiC3n33Xelb9++ub1pAAAAAAAAnCWyPafU5ZdffsLlOlxv/fr18tdff0mjRo1k1KhRudE+AAAAAAAA5Oek1G+//SY+ny/L5bGxsVK/fn25//77ZfDgweY5AAAAAAAAEFFSauvWrdmtCgAAAAAAAHg/0TkAAAAAAAAQcVLqzz//zE61XF8XAAAAAAAA+TgpVadOHbnllltk0aJF2d7wvHnz5KabbpJzzz03kvYBAAAAAAAgv84p9fPPP8vIkSOlbdu2Ur16denatas0b95catasKaVLlxbLsuTAgQOyZcsWWbJkicyePVv+/vtv6dKli/z00095HwUAAAAAAADOvqRU69at5dtvv5UVK1bIu+++K59//rn5qexv5NPElKpatar07dvX9Kxq2rRpXrYdAAAAAAAAZ/u37ylNMr300kvmsX37dlm7dq3s27fPLIuLi5N69epJ5cqV86qtAAAAAAAAyI9JKTdNPpGAAgAAAAAAQJ5NdA4AAAAAAADkJpJSAAAAAAAA8BxJKQAAAAAAAHiOpBQAAAAAAAA8R1IKAAAAAAAAZ2ZS6tChQ5KWlpYbmwIAAAAAAEA+kOOk1JIlS+SSSy6RIkWKSFxcnPz444+mfO/evdKnTx+ZM2dObrYTAAAAAAAA+T0pNW/ePOnQoYNs2LBB/vGPf4jf73eWlS1b1vScev3113OznQAAAAAAAMjvSakRI0ZI/fr1ZfXq1fL0009nWt6lSxdZuHBhbrQPAAAAAAAAZ6EcJaUWL14sAwcOlEKFConP58u0/JxzzpGdO3fmRvsAAAAAAABwFspRUqpAgQIBQ/aC/f3331KsWLFI2gUAAAAAAICzWI6SUm3btpVPPvkk5LIjR47Iu+++K506dYq0bQAAAAAAADhL5SgpNWbMGPPte7169ZJvvvnGlP3666/y1ltvSYsWLWTPnj3y+OOP53ZbAQAAAAAAcJaIyclKbdq0ka+//lqGDBkiN910kym7//77zc/atWubZY0bN87dlgIAAAAAACB/J6VU165dZd26dbJixQrZsGGDmWNKE1LaUyrU5OcAAAAAAABAxEkpW9OmTc0DAAAAAAAAyNM5pf7zn//IzTffnOXygQMHyscff5yTTQMAAAAAACAfyFFSauLEiVKoUKEslxcuXNjUAQAAAAAAAHItKaVzSTVr1izL5U2aNJG1a9fmZNMAAAAAAADIB3KUlLIsSw4ePJjl8gMHDkhKSkok7QIAAAAAAMBZLEdJKe0lpfNKJScnZ1p27Ngx+eCDD07YkwoAAAAAAAD5W46SUo888oisXLlSunTpIl9++aVs3rzZPL744gvp3LmzrFq1ytQBAAAAAAAAQomRHLj00kvl7bfflnvuuUf69u0bMKyvePHi8uabb0qvXr1ysmkAAAAAAADkAzlKSqmbb75ZrrzySvnuu+9k06ZNpqx27drSvXt3k5gCAAAAAAAAcj0ppUqUKCH9+vWLZBMAAAAAAADIh7I1p9S2bdvMI/j5yR7h+umnn6R3795SuXJl8fl88tlnnwUs1+GBo0aNkkqVKknhwoWlW7dusmHDhoA6+/fvlxtuuMEkzEqVKiWDBg2ShISEgDq//fabXHjhhRIbGytVq1aVCRMmZGrLtGnTpF69eqZOo0aN5Ouvv86TtgAAAAAAAORH2UpK1ahRQ2rWrOl82579/GSPcB05ckSaNGkikydPDrlck0eTJk2S1157TRYuXChFixaVHj16SFJSklNHk0A60boOK5wxY4ZJdA0ePNhZHh8fb4YYVq9eXZYuXSrPPfecjB49Wt544w2nzrx58+S6664zSaTly5ebebP0oZO752ZbAAAAAAAA8iufpV1+TmLq1Kmm59JNN91kftrPT2bAgAE5b5jPJ9OnT3cmUtdmag+q+++/Xx544AFTdujQIalQoYJpz7XXXitr1qyRBg0ayOLFi6Vly5amzsyZM6Vnz57y119/mfVfffVVeeyxx2Tnzp1SsGBBU0e/KVB7Za1du9Y879+/v0mQaSLJ1rZtW2natKlJQuVWW7JDk2glS5Y029ceVwAAAAAAAOH4fWnrsOo3arHI+X3jivZhrVun6dxs5zJisjup+Ymee2HLli0mkaTD5GwaYJs2bWT+/PkmEaQ/dZicnQRSWj8qKsr0ZrriiitMnY4dOzoJKaU9nJ599lk5cOCAlC5d2tQZPnx4wP61jj2cMLfaEsqxY8fMw6YnUqWmppqH0m3ow+/3m4fNLk9LSzOJs5OVR0dHm+SfvV13udL62SmPiYkx23WX63a1fnAbsyonJmIiJmIiJmIiJmIiJmIiJmIiJmIipqg8icnvj5GoqFSxLJ9YVvry9MZbEuVLy1Su62bE5Eod+fwS5fOL34oS0YdzDPzm4beiA/IXuT7R+dGjR808TNq76MEHHxSvaBJIaW8kN31uL9Of5cuXz3QhlSlTJqBO8NBCe5u6TJNS+vNk+8mNtoQyfvx4GTNmTKZyHUaoQwRVuXLlzDcdanJsz549Tp0qVaqYx/r160020larVi3TFh1+mJiY6JTrnFmaONNtuy/Wxo0bm6TdkiVLAtqgCTYdwqlzctn0Im3VqpXZn93TTOk8WzoUc+/evbJ58+aA5F39+vVl+/btpseYjZiIiZiIiZiIiZiIiZiIiZiIiZiIiZjK50lMCfG9pULcdElOqSAH4js65THR8VK29ExJPFZD4hNaOeXaNjumP/de7pQXi90qcSWWyYHDTSUhqUbGMSi6RkoVXSN7D7WT/UuWmNFnuTZ8L5gmX5544gm58847Ja8ED9/TeZ7at29vDohOLm675pprTN2PPvpInn76aXnvvfdk3bp1AdvSk6qJniFDhpj5pDQp9frrrzvLV69eLeeff775qQddT6puR+eVsk2ZMsVsY9euXbnWluz2lNIk4L59+5wub6dTtvVszCATEzEREzEREzEREzEREzEREzEREzGdTTGtWt4xrJ5SDZv/7MS0cUWXsHpK1Wo02+Qy4uLicmf4XrB+/frJJ598YhIr2ZlbKjdUrFjR/NSkkDsRpM91rie7zu7duwPW05Om34Jnr68/dR03+/nJ6riX50ZbQilUqJB5BNMXhD7c7As2mH0BZrc8eLs5KdfrIFR5Vm0Mt5yYiCmrcmIiphO1nZiIiZiI6URtJyZiIiZiOlHbiYmYTqeYlixpIeFq2XKpqw3pCS2fzxKfL/PQuuByuw3pbc9cXxNTmqDKXJ4WMn8R0bfvBdM5kzTh0qVLF3n//fdl7ty5smzZskyP3KS9mzSZM2vWLKdMM286P1O7du3Mc/158OBB8616ttmzZ5vMns73ZNfRb8FLSUlx6ui349WtW9cM3bPruPdj17H3k1ttAQAAAAAAyK9y1FOqc+fOzu8///xzpuXazUwzisFdyE4mISFBNm7c6DzXcZcrVqww8zBVq1ZN7r33XnnyySfl3HPPNYmhxx9/3HyLnT3ET4feXXLJJXLbbbeZb8nTxNPQoUNNEs3+trvrr7/eDJ8bNGiQPPzww2as5ksvvSQTJ0509nvPPfdIp06d5Pnnn5devXrJhx9+aMZovvHGG2a5xpYbbQEAAAAAAMivcpSUevfdd3O/JaY72hLT+8pmfwPegAEDZOrUqfLQQw+ZybIGDx5seiF16NBBZs6cKbGxsc462nNLkz8XXXSR6WamQw0nTZoUMAHZt99+K3fddZe0aNFCypYtK6NGjTLbtF1wwQXywQcfyMiRI2XEiBEm8aTfvNewYUOnTm60BQAAAAAAIL/K0UTn8I4OC9RE2skmBwMAAAAAAGenJRHOKfX70tZhrduoxSLn940r2oe1bp2mc7Ody8hRTyk3nVtq69at5vcaNWqYb5cDAAAAAAAAcn2ic6WTfLds2dJ8+5xO6q0P/V3Lvv/++5xuFgAAAAAAAPlAjnpKTZ8+Xa6++mqpUKGCmVvpvPPOM+Xr1q2Tf/3rX3LppZfKxx9/LFdccUVutxcAAAAAAAD5NSmlE4DrpN/6zXvFixcPWKYTg+uk31qHpBQAAAAAAABybfje5s2bZeDAgZkSUkonsBo0aJBs2bIlJ5sGAAAAAABAPpCjpFS9evXMBOdZ2bVrlzOkDwAAAAAAAMiVpNSECRPktddek88//zzkfFOvv/66/N///V9ONg0AAAAAAIB8IEdzSr388stSrlw5ufLKK6Vy5cpSp04dU75x40bZvn276SU1adIk87D5fL6QSSwAAAAAAADkPzlKSv32228myVStWjXzfOvWrekbi4kxZUlJSfL7778HrKP1AQAAAAAAgBwnpewkFAAAAAAAAODZnFIAAAAAAABAJEhKAQAAAAAAwHMkpQAAAAAAAOA5klIAAAAAAADwHEkpAAAAAAAAeI6kFAAAAAAAADxHUgoAAAAAAABnRlLKsix5/fXXpXXr1lK2bFmJjo7O9IiJicn91gIAAAAAAOCskKPM0UMPPSQvvPCCNG3aVP7xj39I6dKlc79lAAAAAAAAZ4lfFrUIq36H1kvlbJejpNR7770n/fr1k48//jj3WwQAAAAAAICzXo6G7yUmJkq3bt1yvzUAAAAAAADIF3KUlLroootk8eLFud8aAAAAAAAA5As5SkpNmTJFFixYIE8//bTs27cv91sFAAAAAACAs1qOklJ169aVzZs3y+OPPy7ly5eXokWLSokSJQIeJUuWzP3WAgAAAAAAIP9OdK6TnPt8vtxvDQAAAAAAAPKFHCWlpk6dmvstAQAAAAAAQL6Ro+F7AAAAAAAAgOc9pWx//fWXLF++XA4dOiR+vz/T8ptuuimSzQMAAAAAAOAslaOkVFJSkgwYMED++9//mmSUzi9lWZZZ5p5riqQUAAAAAAAAcm343ogRI+TTTz+Vp556SubMmWMSUu+99558++23cumll0qTJk3k119/zcmmAQAAAAAAkA/kKCn1ySefyMCBA+Xhhx+W888/35Sdc8450q1bN5kxY4aUKlVKJk+enNttBQAAAAAAQH5OSu3evVtat25tfi9cuLD5eeTIEWd5v379TE8qAAAAAAAAINeSUhUqVJB9+/aZ34sUKSKlS5eWdevWOcvj4+PNvFMAAAAAAABArk103qZNG/nll1/M8D3Vu3dvee6556RSpUpm4vOJEydK27Ztc7JpAAAAAAAA5AM56il19913S61ateTYsWPm+bhx48w8UjfeeKP5Vr6SJUvKpEmTcrutAAAAAAAAyM89pTp06GAetqpVq8qaNWvk999/l+joaKlXr57ExORo0wAAAAAAAMgHci1zFBUVJU2aNMmtzQEAAAAAACC/J6V++ukn87Njx44Bz0/Grg8AAAAAAACEnZTq3Lmz+Hw+SUxMlIIFCzrPs2JZllmelpaWnc0DAAAAAAAgn8lWUuqHH34wPzUh5X4OAAAAAAAA5FlSqlOnTid8DgAAAAAAAIQjKqzaAAAAAAAAgFc9pW655ZawN6xzSr399ts5aRMAAAAAAADOctlKSs2ePTvTxOZHjx6VPXv2mN9Lly5tfh44cMD8LFeunBQtWjT3WwsAAAAAAID8M3xv69atsmXLFufx1VdfSYECBWTEiBGye/du2bdvn3no748++qiZEF3rAAAAAAAAADnuKRVs2LBhcumll8qTTz4ZUF62bFl56qmnTHJK63z//fc52TwAAAAAAADOcjma6HzBggXSvHnzLJc3a9bM1AEAAAAAAAByLSlVpkwZ+eabb7Jc/vXXX0upUqVysmkAAAAAAADkAzlKSt1+++0yY8YM6dOnjxmip3NO6eO7776Tyy+/3CSs7rjjjtxvLQAAAAAAAPLvnFIjR46UY8eOyXPPPWeSUwEbjImRRx55xNQBAAAAAAAAci0ppcaNGyf33HOP6R21bds2U1a9enXp1q2bmfAcAAAAAAAAyPWklNLk03XXXRfJJgAAAAAAAJAP5WhOKZWWliYffvihmV/qiiuukN9//92UHzp0SD799FPZtWtXbrYTAAAAAAAA+T0pdfDgQWnfvr1cf/318p///Ee++OIL2bNnj1lWrFgxufvuu+Wll17K7bYCAAAAAAAgPyeldCLzVatWyf/+9z/ZvHmzWJblLIuOjparrrpKvv7669xsJwAAAAAAAPJ7Uuqzzz6TYcOGycUXXyw+ny/T8vPOO0+2bt2aG+0DAAAAAADAWShHSSmdN6pmzZpZLk9JSZHU1NRI2gUAAAAAAICzWI6SUrVr15Zly5Zlufzbb7+VBg0aRNIuAAAAAAAAnMVylJS69dZb5Z133pGPPvrImU9Kh/EdO3ZMHnvsMZk5c6b5Vj4AAAAAAAAglBjJgXvuucdMdH7ddddJqVKlTJl+E9++ffvMsD1NSA0aNCgnmwYAAAAAAEA+kKOklPaKevPNN2XAgAHyySefyIYNG8Tv95thfddcc4107Ngx91sKAAAAAACA/D18z9ahQwd58cUX5auvvpJvvvlGXnnllTxPSNWoUcMkxYIfd911l1neuXPnTMvuuOOOgG1s27ZNevXqJUWKFJHy5cvLgw8+mGli9jlz5kjz5s2lUKFCUqdOHZk6dWqmtkyePNm0JzY2Vtq0aSOLFi0KWJ6UlGTaFRcXJ8WKFZN+/frJrl278uS4AAAAAACAvPX9otZhPZAHPaVOpcWLF0taWprzfOXKlXLxxRfL1Vdf7ZTddtttMnbsWOe5Jp9suq4mpCpWrCjz5s2THTt2yE033SQFChSQp59+2tTZsmWLqaPJrPfff19mzZpl5tGqVKmS9OjRw9TR+bSGDx8ur732mklIaXJOl61bt84kutR9991nEnbTpk2TkiVLytChQ+XKK6+UuXPnenKsAAAAAABAhm8Wtgt7nUvbzM+TtiCMpNTll18e1oa1h9Lnn38uua1cuXIBz5955hkzbLBTp04BSShNOmX1zYCrV6+W77//XipUqCBNmzaVcePGycMPPyyjR4+WggULmkRTzZo15fnnnzfr1K9fX3755ReZOHGik5R64YUXTPJr4MCB5rmuowkonQD+kUcekUOHDsnbb78tH3zwgXTt2tXUeffdd822FixYIG3bts31YwMAAAAAAHDWJaVmzJhhhqlpssf+xr2TJaXyWnJysvz73/82PZbc+9PeTVqube3du7c8/vjjTm+p+fPnS6NGjUxCyqaJpiFDhpjJ25s1a2bqdOvWLWBfWufee+919rt06VJ59NFHneVRUVFmHV1X6fKUlJSA7dSrV0+qVatm6mSVlNJvMNSHLT4+3vzU4YX2EEPdlz50Hi99uNugD+0N5j5HWZVHR0eb4xY8dFHLlbtH2onKY2JizHbd5bpdrR/cxqzKiYmYiImYiImYiImYiImYiImYiImY8jomywpOg9j1Ast9vlSxLM0zRDvbsvMOdnkGS3w+bUdU0CxJ6XHYMWXs2y8+nz7XbbhzJ2ni81lOub1fu+1+f+Y2horJLncfA103Kio9pvTt25UtiTJtDyzX45pxnlzb9/klyucXv8Zq4rX3mR6T30o/XsHHP+Kk1DnnnCN///23lC1b1nzT3rXXXptlbySvfPbZZ3Lw4EG5+eabnTJtW/Xq1aVy5cry22+/mR5QOqTu008/Nct37twZkJBS9nNddqI6miBKTEyUAwcOmBMUqs7atWudbWivK/vbCd117P2EMn78eBkzZkym8uXLl0vRokWd3mLaO0yHGe7Zs8epU6VKFfNYv3696allq1WrlhlSqEMdtf3uJJm2T7ftvnk0btzYtH3JkiUBbWjZsqVJyOlxtelF2qpVK7M/O3ZVuHBhadKkiezdu1c2b97slOswRu0ttn37dvnrr7+ccmIiJmIiJmIiJmIiJmIiJmIiJmIipryOKfVg34CYYkp9JuIvIqnx3Z0yny9FYkp9LlZqeUlLuNA5DhqTSkuuIalHWjn1owrslILFf5K0pPqSmnh+xrEplB63HdPhg1eZ54UKrzSPxIQLJTUlI68SW3SRFCy0WY7Edxd/WklnvxqTOniwj1hWAdex/Fqioo7KgQPp27WVLv2J+P1FAs5fQnxvqRA3XZJTKsiB+Iy5wGOi46Vs6ZmSeKyGxCdkxKTH2z5Pf+7NGDlXLHarxJVYJgcON5WEpBoZbSm6RkoVXSN7D7WT/UuWyJEjRyQ7fFZ2uj0d9+OPP5rhaPqNe5qg0SFzN9xwg1x11VVSvHhx8Zr2XtKL6ssvv8yyzuzZs+Wiiy6SjRs3mgt88ODB8scff8j//vc/p87Ro0dNwufrr7+WSy+9VM477zwzLM/dE0qX6TxTWleTUpqk0zmp2rXLGI/60EMPmWO0cOFCc5x0G+5eT6p169bSpUsXefbZZ7PdU6pq1aqyb98+KVGihCkjK05MxERMxERMxERMxERMxERMxERMxBR+TN8s7Bh2T6nuLX9w2v7D0nZh9ZS6uM0CJ6b5S9uH1VOqXYu5TtuXLm0Zdk+pZs0WOmWrlncMq6dUw+Y/O+dp44ouYfWUqtVotsll6Je+aSLRzmVEPNG5JqH0od+yp0kaTbzo5N133nmnSeZoLyUdLqffWJfXNLGk80LZPaCyopOQKzsppb27gr8lz/5GPLvnl/4M/pY8fa4HUjOjemL0EaqOexuaQdaeXO7eUu46oeixC3X89EWuDzf7RRjMfrFltzx4uzkp1xdnqPKs2hhuOTERU1blxERMJ2o7MRETMRHTidpOTMRETMR0orYT0+kb0/RMiaUTu6LNT652ZjWsLHO5Joi0PDguuzxzfU2mZSTUgmMK3rfPF5jcCy7PnAMI3fasYnKvb6+rbQ9VP7jcPt7pbc9cXxNTmqDKXJ4WMn+Rq9++p99U16dPH/NISEgwiSGd6Lt///5msnCdwymv6aTh2lVPey+dyIoVK8xP/eY8pT2bnnrqKdm9e7fzLXnfffedSTg1aNDAqaNJNzetY/eK0t5ZLVq0MN/K17dvetc/zR7qc03SKV2ux0nL+vXrZ8p0GOG2bdsCelcBAAAAAJDffLwg/QvBsuuatrPzrC04dXKUlLLpMDMdBqffsqfjNXUi9Bo1MsYU5hVNAGlSasCAAQHZt02bNpneWz179jTdxHSc63333ScdO3Y040dV9+7dTfLpxhtvlAkTJpj5nUaOHCl33XWX00PpjjvuML3BdDjeLbfcYoYAfvzxx+bb9Ww6ubruX8fU6pC8F1980YyZtL+NT8fJDho0yNQrU6aMSXoNGzbMJKT45j0AAAAAwJnsnwsuCXudm9rOzJO2IB8lpTQhpL2G/vOf/5iJxnWOJf2GuTfffFOuuOIKZzLuvKTD9rTHkSaM3LQHky6zE0Q6F5P2UtKkk7sLmn6ToH7bniaItL2aXBo7dqxTp2bNmiYBpQmtl156yUyq9tZbb5k5rGzaK0wnKhs1apRJbDVt2lRmzpwZMPn5xIkTTVc3bYMm8HT9KVOm5PnxAQAAAAAAOGuSUjqpt/ZCmjZtmpl0W3v7PP3003LNNdeYb+TzkvZ2CjU/uyahdKLxk9Fv5wsenhesc+fOpvfXiehQPXu4Xijac2zy5MnmAQAAAAAAgBwkpTp06GAm+dahcdddd50zTE97LOkjlObNm2d38wAAAAAAAMhHwhq+l5iYKP/9739P+o132otJZ94P/ppIAAAAAAAAIKyklE4sDgAAAAAAAHialNLJwAEAAAAAAIDcEJUrWwEAAAAAAADyak4pAAAAAABwdnhz/uVh1b+t3Rd51hbkT/SUAgAAAAAAgOdISgEAAAAAAMBzJKUAAAAAAADgOZJSAAAAAAAA8BwTnQMAAAAAcIaaMu/KsOrfecGnedYWIFz0lAIAAAAAAIDnSEoBAAAAAADAcySlAAAAAAAA4DnmlAIAAAAA4BSZOPfasOrf1/7DPGsL4DWSUgAAAAAARODZX/4RVv2HO/w7z9oCnEkYvgcAAAAAAADPkZQCAAAAAACA50hKAQAAAAAAwHMkpQAAAAAAAOA5klIAAAAAAADwHN++BwAAAADI18b+PDDsdUZd+G6etAXIT+gpBQAAAAAAAM+RlAIAAAAAAIDnGL4HAAAAADjjjfxxcFj1n+z0Rp61BUD20FMKAAAAAAAAnqOnFAAAAADgtPDwnCFh1X+286t51hYAeY+eUgAAAAAAAPAcSSkAAAAAAAB4jqQUAAAAAAAAPEdSCgAAAAAAAJ4jKQUAAAAAAADP8e17AAAAAIBcce/su8Ne58Wuk/KkLQBOf/SUAgAAAAAAgOdISgEAAAAAAMBzJKUAAAAAAADgOZJSAAAAAAAA8BxJKQAAAAAAAHiOpBQAAAAAAAA8R1IKAAAAAAAAniMpBQAAAAAAAM+RlAIAAAAAAIDnSEoBAAAAAADAczHe7xIAAAAAcLq66/t7w6o/uduLedYWAGc3klIAAAAAcJYZNHN4WPXfvuSFPGsLAGSFpBQAAAAAnGZumPFA2Ou8f9n/5UlbACCvkJQCAAAAgDxwzRcPhlX/48ufy7O2AMDpiKQUAAAAAGShz6cPh1X/8yufzbO2AMDZhm/fAwAAAAAAgOfoKQUAAADgtHbxfx4Nq/531413fu817ZGw1v3q6mfCqg8AyDl6SgEAAAAAAMBz9JQCAAAAkKc6/2tE2OvMufHpPGkLAOD0QVIKAAAAyCfavj0yrPoLBj3p/N5h6mNhrfvLzU+FVR8AkP8wfA8AAAAAAACeIykFAAAAAAAAz5GUAgAAAAAAgOeYUwoAAAA4Q7R+4/Gw11k0eFyetAUAgEjRUwoAAAAAAACeIykFAAAAAAAAz5GUAgAAAAAAgOfOqKTU6NGjxefzBTzq1avnLE9KSpK77rpL4uLipFixYtKvXz/ZtWtXwDa2bdsmvXr1kiJFikj58uXlwQcflNTU1IA6c+bMkebNm0uhQoWkTp06MnXq1ExtmTx5stSoUUNiY2OlTZs2smjRooDl2WkLAAAAAABAfnXGTXR+/vnny/fff+88j4nJCOG+++6Tr776SqZNmyYlS5aUoUOHypVXXilz5841y9PS0kxCqmLFijJv3jzZsWOH3HTTTVKgQAF5+umnTZ0tW7aYOnfccYe8//77MmvWLLn11lulUqVK0qNHD1Pno48+kuHDh8trr71mElIvvviiWbZu3TqT6MpOWwAAAJA/tZgyKqz6S+8cm2dtAQDgVDqjekrZSShNKtmPsmXLmvJDhw7J22+/LS+88IJ07dpVWrRoIe+++65JPi1YsMDU+fbbb2X16tXy73//W5o2bSqXXnqpjBs3zvR6Sk5ONnU00VSzZk15/vnnpX79+iaZdNVVV8nEiROdNug+brvtNhk4cKA0aNDArKM9r955551stwUAAAAAACA/O+OSUhs2bJDKlStLrVq15IYbbjDD8dTSpUslJSVFunXr5tTVoX3VqlWT+fPnm+f6s1GjRlKhQgWnjvZwio+Pl1WrVjl13Nuw69jb0OSV7stdJyoqyjy362SnLQAAAAAAAPnZGTV8T4fK6fxOdevWNUPvxowZIxdeeKGsXLlSdu7cKQULFpRSpUoFrKMJKF2m9Kc7IWUvt5edqI4mrhITE+XAgQNmGGCoOmvXrnW2cbK2ZOXYsWPmYdP9Kp33yp77SpNg+vD7/eZhs8u1fZZlnbQ8OjrazMsVPKeWliutn51y7b2m23WX63a1fnAbsyonJmIiJmIiJmIiJmI6k2K64LVxkmJZ4tMYfPr/DKHK5w8Z5bTdXa67TxPL/EtxlKvcb4n4TXlge/S5lkeLz/xnSzOlErJc2duIOf5v0qnHy+3ntuByZ72YGLPVaFd9SyzT9qzK3edDt6cttGPShxPr8fLgtuu69nlyt9OO9URtDz6HEtRGezu6t6iA8vTrwd329PXsWAPbbrlistuu+7avsSgrKCat7ZMsy93tjrainPMXqu2hyk2bjr+edH2njT5LfFZgrBnl6TG5/9ZQvqA2an3LZ0nU8e26y02bjr+e7OUak64eXN+UBx133bf9OstU3+c3pyWw7SKWKQ98ffisKFOeVduDy93XmM+KdtXXtmt93ad7O2nmqV3X3rdpu6WLMrbh1JcQ5b70Y2XfU9K3Zzkx6RkJOMJB5e5rTGMI1Xax0q/KUOUBrw+98Ex5YBv1KksX1Pbj90zTdsuVTvClpm8roL4elLSAct23fS/XtgT2k9E2+rMsD7hnm32nudruvg/b5TEhrzHL3e70pcd/Bpb7fKliHW+7fcy07enbyByrz5zXEG133VMy9u0Xn0+fZ267z2c55QHXmNlO5jaGiskud59rXTcqKj2m9O3blS2JMm0PLDf3Eec9132u/RLl84tfY3W9XjUeffit9OMV6j58xieldLidrXHjxiZJVb16dfn444+lcOHCcjYYP368SbYFW758uRQtWtT8Xq5cOaldu7aZ/2rPnj1OnSpVqpjH+vXrzRBCm/Yq07muNHmniTV37y1NnOm23R+y9NhqUm3JkiUBbWjZsqXpKfbbb785ZXqRtmrVyuzPTsopPR9NmjSRvXv3yubNm51ynV9Lh0Vu375d/vrrL6ecmIiJmIiJmIiJmIjpTIrpqrK15JO9m6VIVIz0LFPNKU/1+2Xavi1SsUBh6VyqslOu+7Jjuqp0Lad8Z8pRmXN4hzQoXFoaFi7jlG8+Fi+LjuyRlkXLBuy3fmxpWZW0X9oXrSQVCxRxyhcf3S1bkuPl4uJVpUR0Qaf8p4Tt5qcdU98Stc3zbxP+kKP+VOe57bP4TSam7sWqm+e6b/s8lYsuIu1jz3HqHvYny/eJf0j1mBLSrFDGP9juTjsqc5P+DjhPvQrXkT/SDsmK5F3SuGB5qR5d0qm/NmWfrEvdJ60LVZbyUemfd5UeK/s89Sh0rlO+KPlP2WMdlYsK1pYYX8YfRD8mb5EkK9XUdR8zTdzESox0iKmZcZ4sv8xK2yBlfEWlZXQVpzzBSp/Sw33tdYk6T/ZZR2S59afU9MVJLV/69CFqu3VQVls7pZ6vglT2pf+DtO7bvvYaSlUpLcWc+utku+yUg9JCakkRKeSU/yZ/yAE5EnDttfPXk2VRm+SYpJjf3eZHrZVCUkCa+zPOX5r+MX98KhF9PbVIbWCeJ0qS/F5go5S1SkvNtIzzd8iXIOtitkplfzk5x1/eOWb6elJVUytLXFrGNbkjZpfsjNktNVOqSwl/RkzbYtLPsf16Oj+xoXm+pdAWSYg+LPWTGgQkmtbHrpMUX4pTzz5m9j3ivKNNnXK/L03WF/lVivpLSNWkOk55clSSbC68Wkqmlgk415WS6sj2wuuldEoliUvOeP0dKrBXdhfaKuWSq0vJFNf5277duUdUT2jllO+N3SQJBfZI5aMNpYA/43W2q/AaSYw5JNWONDeJIHvfeo/QxNM5h9sGnKe/iy+QaH9BqXikeUBM24svCLjvlY9vL6nRR2VfsSVSOKWClEg8LyPWmANyoOjvUvRYNSl2LON16b7vlY7v5NRPLLRFEmO3SPGjjaVAasb5O1J4rRwruF1KJrQKOGYxqWUktcA+KRHfUXyuxMbh4vPEH5UkJQ91DYhJr0/7Xl7k4MWmzPKlSmKp7yQqNU5iXcfRH50gSSV+lpjkc6Tg0UZO2+17eVTSuRKVlBGrVWibpBX5VaITG4nvWMZ91R+7XvyF1wXcy30HLxOryHKRQn+IL76ziL94xnaKzRMpsFt8hy5xElO6X/tennqwb0BMMaU+E/EXkdT47k6Zz5ciMaU+Fyu1vKQlXOgcMzvvkJZcQ1KPZMQaVWCnFCz+k6Ql1ZfUxPOd8uhC6fcR+/3p8MGrzPNChVeaR2LChZKaUtGpH1t0kRQstFmOxHcXf1pJZ7/2F7wdPNhHLKuAU79kya8lKuqoHDiQvl1b6dKfiN9fJOBcJ8T3lgpx0yU5pYIciO+YEX90vJQtPVMSj9WQeNf50+Ntv+f+ufdyp7xY7FaJK7FMDhxuKglJNTLaUnSNlCq6RvYeaif7lyyRI0eOSHb4LPc/D52B9A1Sh8ldfPHFctFFF5meTO4eSpq0uvfee83E46NGjZIvvvhCVqxY4SzXi0M/mCxbtkyaNWsmHTt2NN+8p5OX23Q+KN2GvgD0BajzR33yySfSt2/GxTxgwAA5ePCgfP755zJ79uyTtiWcnlJVq1aVffv2SYkSJUwZ/8JJTMRETMRETMRETMR05vaUavf6mLB6Ss0f/LhT3uGdsWH3lFo4eJwTU+f3xobVU2rOgFHOebpw6mNh9ZT66aZxzvm45D+jw+4p9e0NY53zdNnHo8LqKfXl1RnHuM/0kWH1lPri6vEB19I1XzweVk+pjy8f51xj137+UFg9pT7oOd4pu+WbEWH3lPpn7wnO6+nO7x4Jq6fUlIufMeXa7mGzh4fVU+qViyc6r6eHfnwg7J5SEzr9n/M6GzFnaFg9pZ66cJJTPuaXoWH1lBrdcYpzjT099/awe0o9esFr6echOlom/HJjWD2lHmr/L+ee8sqCAWH1lBra9r2A+97r8/uH1VNqcJsPnfJ3F/ULq6fUre0+TV+aliYfLO4bdk+p61t95tzLP57fLayeUv1afefcs79c0j2snlK9W37rXGPfLMxIyGS3p1T3lj8cL/PJD0vbhdVT6uI2C5x7yvyl7cPqKdWuRfoXpWnbly5tGXZPqWbNFjplq5Z3DKunVMPmPzvvWxtXdAmrp1StRrNNLiMuLs7kUexcxhnfUypYQkKCbNq0SW688UYzmbh+i55+W16/fv3Mcv02PJ1zql27dua5/nzqqadk9+7dzrfkfffdd+YA6YTldp2vv/46YD9ax96GZlZ1X7ofOymlJ0mf66ToKjttyUqhQoXMI5h+EHB/06Cyb0TB7BdbdsuDt5uTcn1xhirPqo3hlhMTMWVVTkzEdKK2ExMxERMx5VVMmnhSlut3t+ByZ2hSVJSkhqivf6b7Q5ZbAftNT8ekJ7LsoWZuWZXb27ATN7bg58Hl7n1bWdTPqtx9PtzL7STUydpur6vHLtT2T9T2UOcwLYu2p52k7e7ldsItWHo86eUB50v/MA5VP4ty97p2z6es2p5Vuf16cq9v2u7L4hj40mMKPmZaboVse+i2OMOLgpZnVd9OTmU+ZiHq+wLrZ5QHttskb07Q9uBy9zWmiaLM9UO33a4bcMx8GUmoTPVDlLvvewH7Nm0MsR1XuXu/GkOotmviIGTvE1/Q68Nci/ozdNszklMZ7XbacDzxEbitEEO2XOWB+zZ3vpBtDFUecM927zurtrvquPdrJ2wyy1yuCSItD3592OWZ64duu31PCd63L4u22+WZcwCh255VTIHXij0EURNooWN1l7vft0LtVxNT6ecquDwtZP7irEhKPfDAA9K7d2/T40i7kD3xxBPmQF133XWmC+CgQYNk+PDhUqZMGZNoGjZsmEkCtW2b3o2ye/fuJvmkSawJEyaY+Z1Gjhwpd911l5MIuuOOO+SVV16Rhx56SG655RbT60mHB3711VdOO3Qf2jNKu5i2bt3a9KrSrmn6bXwqO20BAADAqdP0xSfCXmfFvZmnWAAAADl3RiWldEy6JqB0KJuOoe3QoYMsWLDAGfc8ceJEk8XT3kk6BE6/NW/KlCnO+prAmjFjhgwZMsQkiHSOJk0ujR2b3o1Z1axZ0ySgdIjdSy+9ZMYYv/XWW2Zbtv79+5vxoDocUBNbTZs2lZkzZwZMfn6ytgAAAAAAAORnZ1RS6sMPM8a+hhIbGyuTJ082j6xoL6vg4XnBOnfubCYZPBEdqmcP18tpWwAAAAAAAPKrzIPuAQAAAAAAgDxGUgoAAAAAAACeIykFAAAAAAAAz51Rc0oBAAAAtibPh/cNer/ez7fnAQBwOiEpBQAAgFOmyXOjw6r/64Ph1QcAAKcvklIAAADIsSbPhJ8k+vUREksAAIA5pQAAAAAAAHAKkJQCAAAAAACA5xi+BwAAkM81eTLMeZ1GMvwOAABEjqQUAADAWaDp2PC+WW7FqPC+uQ4AACC3kZQCAAA4DTR7Iryk0vIxJJUAAMCZjTmlAAAAAAAA4DmSUgAAAAAAAPAcw/cAAABySfPHwxuCt2wcQ/AAAED+RU8pAAAAAAAAeI6eUgAAAMe1eGxs2OssfWpUnrQFAADgbEdPKQAAAAAAAHiOpBQAAAAAAAA8x/A9AABwVmn5SHhD8JY8w/A7AACAU4GeUgAAAAAAAPAcSSkAAAAAAAB4juF7AADgtNPqofCG4C2ewBA8AACAMw1JKQAAkOva3D8u7HUWPv94nrQFAAAApyeG7wEAAAAAAMBz9JQCAAAhtb0vvN5OCybS0wkAAADZR08pAAAAAAAAeI6eUgAAnMXa3RNeb6f5L9HbCQAAAN6gpxQAAAAAAAA8R08pAABOYxcMDf9b7Oa9Qm8nAAAAnP7oKQUAAAAAAADP0VMKAIBsuPD28Hos/fx6Rm+l9neGt+7cKfR0AgAAwNmPnlIAAAAAAADwHD2lAAD5Qsfbwuut9NOb9FYCAAAA8hI9pQAAAAAAAOA5ekoBAM4YnW8Jr7fTnHfo7QQAAACcrugpBQAAAAAAAM+RlAIAAAAAAIDnSEoBAAAAAADAcySlAAAAAAAA4DkmOgcAhKXrjeFNNj77XxmTjXe5Obx11Q9TmawcAAAAOBvRUwoAAAAAAACeo6cUAORD3a4Pr8fS9x/QWwkAAABA7qKnFAAAAAAAADxHUgoAAAAAAACeIykFAAAAAAAAz5GUAgAAAAAAgOdISgEAAAAAAMBzfPseAJyBuvcfG/Y63340Kk/aAgAAAAA5QU8pAAAAAAAAeI6eUgBwivS4OrzeTv+bRk8nAAAAAGcPklIAEIFLrhwTVv2Znz6RZ20BAAAAgDMJw/cAAAAAAADgOZJSAAAAAAAA8BzD9wDkaz37jA57na8/D38dAAAAAEAgklIAzni9LgtvnqavZoQ3DxQAAAAAIPeRlAJwWuh1yeNh1f9q5rg8awsAAAAAIO+RlAKQKy7r9lhY9Wd8/1SetQUAAAAAcPojKQXAcVnnR8KqP2POM3nWFgAAAADA2Y2kFHCa6dV2eFj1v1rwgvP7ZR0eCnt/M36ZEPY6AAAAAABEKiriLQAAAAAAAABhoqcUkAd6tbgnrPpfLX0pz9oCAAAAAMDp6IxKSo0fP14+/fRTWbt2rRQuXFguuOACefbZZ6Vu3bpOnc6dO8uPP/4YsN7tt98ur732mvN827ZtMmTIEPnhhx+kWLFiMmDAALPtmJiMwzFnzhwZPny4rFq1SqpWrSojR46Um2++OWC7kydPlueee0527twpTZo0kZdffllat27tLE9KSpL7779fPvzwQzl27Jj06NFDpkyZIhUqVMijIwS3SxvcHlb9b1a/7vzes8nQsPf39a+vhL0OAAAAAAD51RmVlNJk01133SWtWrWS1NRUGTFihHTv3l1Wr14tRYsWderddtttMnbsWOd5kSJFnN/T0tKkV69eUrFiRZk3b57s2LFDbrrpJilQoIA8/fTTps6WLVtMnTvuuEPef/99mTVrltx6661SqVIlk1hSH330kUlaabKrTZs28uKLL5pl69atk/Lly5s69913n3z11Vcybdo0KVmypAwdOlSuvPJKmTt3rodH7cx2yXm3hlV/5vq38qwtAAAAAAAgnyalZs6cGfB86tSpJgG0dOlS6dixY0ASSpNOoXz77bcmifX999+bHktNmzaVcePGycMPPyyjR4+WggULmkRTzZo15fnnnzfr1K9fX3755ReZOHGik5R64YUXTPJr4MCB5rmuowmod955Rx555BE5dOiQvP322/LBBx9I165dTZ13333XbGvBggXStm1byQ961BwQ9jr/2/JenrQFAAAAAACcPs7oic418aPKlCkTUK69m8qWLSsNGzaURx99VI4ePeosmz9/vjRq1ChgCJ0mmuLj481QPbtOt27dArapdbRcJScnm0SYu05UVJR5btfR5SkpKQF16tWrJ9WqVXPqAAAAAAAA5FdnVE8pN7/fL/fee6+0b9/eJJ9s119/vVSvXl0qV64sv/32m+kBpUPqdC4qpfM/Bc/pZD/XZSeqo4mrxMREOXDggBkGGKqOzndlb0N7XZUqVSpTHXs/oejcU/qw6T6VDlfUh50A04ceA33Y7HJtm2VZJy2Pjo4Wn8/nbNddrrR+dsp1Li7drrtct2u2H6U/M3Kfpl6qX6KifBLlKjexpFkSFR3YHq3n91sSHRNltmlLS/OLFaJct2/HFFMgY/upqX4RSwLKTHmKX8SnMURlOg66Wd1+xrbFtD09Jl+mcvf50PW0fdp2jUHXyYjVSm+7xn+8WPdtnyezbVdMfo3VCmyLOQYa0/F1nXMUE+WUh6qvm3Ufd7Nh+/j7/RnrmPNpmXZr+53qQTG5r0mzz6zaHqI83LYHl5tzfPzac58PU1/brrFGhS4PdY2Za9JVXcv8x9vu3kqaFh5/Hei+Y47vW8s1Vvu508609Pp2ub1v+/UUqr659qKCrjFz7DOuMV3PLo8KilWbGDomv3MvcO/Xbrvu03WaAmIKfn1k1fZQ5ekxpN8j7GV227OK1R2T+/UR5dNrMsR5yqLt7vteTJQvvfz47wFtP35e3eW6X/d9L2CZtl2C2i6umFz3VvseZWLyBZ0nS2MNOk9W0DV2fGGa5TpPrraHisnd9uzE6o4p4HV5/JjZMQXHmimm49eY/nRvX2My58kX4jxJRnmm10cYbXe/D9nLQ54nvS6swHLdr/2+Fc55smNyHzOt4o7pROcpvT0Z57uAa4WU422McW8kqNx9jZm2S+bzlKptDyrXu4geA/c9Rfdtyo5vO+AaC1FuX2O6b3e7zTK9Vo9v82Rtdx+3mGy03f4UY7fd3oeeizSxJFoCz1Nw24Pft4Jjzartdrm73VonO+fJaUtamjlm5vUR8Nklve3aokzXnikP+mwkPlOusbpbn2ZKJWS5ieH4NmKO/5t06vFy+7kTa1C5s15MTPrrxlVfj4q2PavygPctiTIttGPShxPr8fLgtge8b7m2b8d6oraHet9yt9Heju4tKqA88LNRxnp2rIFtt1wx2W0PeN+ygmLS2nqfyaI84B5sRTnnL1TbQ5WbNh2/H+r6Tht9lviswFgzytNjCn59+ILaqPUtnyVRx7frLne/b9nLNSZdPbi+KQ867u73rUz1femf4wPbLmKZ8qB7sBVlyrNqe3C5+xrzWdGu+tp2ra/7dG8nzTy16wa8b1m6KGMbTn0JUe5LC3jfSt+e5cSkZyTgCAeVu68xjSFU28VKvypDlQe8PvTCM+WBbdSrLF10lu9bYrnSCb7U9G0F1NeDkhZQ7n7P1bYE9pPRNvqzLA/4e9bsO83V9oB3ruPlMSGvMcvd7vSlx38Glvt8qWIdb3vw5zorRKw+c15DtN11T8nYt/5tps8zt93ns5zy4M9Gfn/mNoaKyS53n2tdNyoqPab07duV9XNOWqZy9/tWwH59fony+cWvsbperxqPPvxW+vEKdR8+q5JSOrfUypUrzbA6t8GDBzu/a48onQfqoosukk2bNknt2rXldKcTro8ZMyZT+fLly515s8qVK2di0bmv9uzZ49SpUqWKeaxfv97pRaZq1aplhjnq8dKkmrvnlibNdNvuhFLjxo1NQm3JkiXm+YLvl5mf/3trnsQWKySdrm3h1E1NTpP/vT1PylUtLa0vS08Otu3W3ExEr5O/Vzm3nDS6MOO47/n7oCz+Zo3UbnqOnNu8qlP+5/rd8vtPm+T89rWc/arajSvLhhV/S/Ou50rZc0o45b/P3Sp/rd8jF/Q+X4qVinXKNW47pm7XNXPKf/l8lSQdTQ4oU9//Z7nEFikoHfqc7+zXfsHHVSwuLbtmtD3hUJL8MmOtnFOztDRsW80p37vjsCyZvUm2b98uf/31lynrdlVD+Wvzflm16C+p3/IcqVIrozffxpW7ZNPKXdL0wupStmJxU6b7ts9T2261pVjxjJiW/LxV9u1KkM6X1ZWYmIybxC/fbpCkoykBx+ui3nVl1pfrJLZwjLTvVjsgqaPlZcoVlRbtM9p+5HB6AnTv3r2yefNmuajXueb5vt1HZen8P6XWuXFSu16cU//vPw7JqhU7pX7jCnJO9ZLOvvW6U01bVpa4chlzuK36dZf8/We8tO1QTYoWL+iUL134t/npvva6XVxLfvl5myQlpZrfA87Td5slNjZGOlyY0XZdV+eX03Pe7aKM+glHkmXu3D+lcuXi0vD89PndTIz7jsrSpTukVq3SAcesQb2ysnL1HvOzSuXiGedp8wHzaNa4gpSNy4hJ65qfx19PF3eqYZ4vXrFT9u5PlC4dqkmMK/H388K/TEx2PXvfLVu2lGJFCkjH1ucEJHW+/fkPiStdWFo3zkh6JxxJkZ8W/+2cJ9W9Q3Wzv0W/75La1UrJuTUyEuB/7UiQ39bvlYZ14qRKpWJOuV6j9j3iknbVnfJfN+yVP3clSIdmlaR44YzztHDVLtlzIFG6ta4acMyKFy4gicmpcmmbjG2obxb+IYULxkjnZu6Y0t+I9Txp0r5nq/R1Dicmyw+/bpeq5YpJ01plnfq7DyXKgjW75NxzSkndKukx6b7t+17jmmWkermM87T2r4Oy7u+D0vq88lK+ZOGM62PzXtm2JyHgvndZi+oyb90u2R2fKJc0rRpwnmb9/reJSevYdL96nrR3rP4jR+9m6ctS/X75cvk2KVeisLQ/N+M8HU5Klu9XbZdqccWkefWyzjHTOQVV3YqlpH7FjPO0dd9hWbZtnzStWkZqxGXEtGbnQfPTvpf3aZy+36Xb9srW/QnS9bxKUiI24zz9smmX7DqcKL3Oz4hJ923fy/s2DDxPn638Q4oUiJHudTPOU0qaXz5ftU3KFysccK671a4k/9uwXWqUKiYtzsk4T7sSEuXnrbukXrlS0qB8Rkz6vmS/P11RP2O/q3YflNV7Dkr7auWlQrGM87Rk+17ZciDB7KdEoYz3HX1/UpefWy0giTNz099yNDVVrqwbGNOn6/4w51nPk+p3bnWTkPrvhj+kQtHC0qlKxnmKT06Rb7b8LTVLFpNWFdNj0v3qedIh9g3KlJKGZTJi2hyfIIt27ZWW5eOkVomM19PK/Qdl5b6DcmHl8gHHrGaJ4rI5/rD0qHqOlChYwCmfs32n7DyaKH1raEwZ1562237PvapW+n1CfbJ5qxSJiZGe1dLvr/a1N23LH1KxcGHpXLmis1/7PbdmseLSpmzGedqRmCg/7Nop55cqJY1KlXbKNyUcloV79wZ8jrimWk357eAB+f3QAelYroJUKpxx31uwb49Z55JK50jJAunXnu7b/hxxReXqUsCXEdOMnX/K0bRUueacmgHn6eO/t0iR6Bi5rGLVTO+5FQsVlq5xlZy6h1KTZcbuv6RmkeLStlS5jJiOpfd+t99zr6mYfv/feDReFh7aIy1LlpU6RTI+L/x2eL/8nnBAOpauKJUKFXH2q++5qkeZKlIyJuP19MOB7bIjOVH6lq0hBVzn6au92+SoPzXgXF9VtpZ8snezFImKkZ5lqgWep31bpGKBwtK5VGWnXO9Hep70Xn5V6Yz3rZ0pR2XO4R3SoHBpaVg44/PC5mPxsujIHmlZNON+ourHlpZVSfulfdFKUrFAxnlafHS3bEmOl4uLV5US0Rkx/ZSwPeA9t2+J9M8H3yb8YWKyn9s+i99kYupeLP11pvvW86TvueWii0j72Ix7x2F/snyf+IdUjykhzQplvM52px2VuUl/B3w26lW4jvyRdkhWJO+SxgXLS/Xo9HujWpuyT9al7pPWhSpL+aiMeWL1WNmfYXsUSv+MohYl/yl7rKNyUcHaEuO69n5M3iJJVqqp6z5mmriJlRjpEJNxTaZafpmVtkHK+IpKy+iM11mClezs237P7RJ1nuyzjshy60+p6YuTWr6M19l266CstnZKPV8FqezLeN+yP5c3lKpSWjLuHetku+yUg9JCakkRKeSU/yZ/yAE5EvDZqJ2/niyL2iTHJMX87jY/aq0UkgLS3O/6vOcLfM9tkdrAPE+UJPm9wEYpa5WWmmkZ5++QL0HWxWyVyv5yco4/416m77mqampliUvLuCZ3xOySnTG7pWZKdSnhz4hpW0z6Obbfc89PTP+bYEuhLZIQfVjqJzUISDStj10nKb4Up17we+55R5s65X5fmqwv8qsU9ZeQqkl1nPLkqCTZXHi1lEwtE3CuKyXVke2F10vplEoSl5zx+jtUYK/sLrRVyiVXl5IpZUN+Nqqe0Mop3xu7SRIK7JHKRxtKAX/G62xX4TWSGHNIqh1pbhJB9r71PVcTT+ccDpyi5e/iCyTaX1AqHmkeENP24guc86TKx7eX1Oijsq/YEimcUkFKJJ6XEWvMATlQ9HcpeqyaFDuW8bp0/01YOr6TUz+x0BZJjN0ixY82lgKpGefvSOG1cqzgdimZ0CrgmMWklpHUAvukRHxH8bkSG4eLzxN/VJKUPJQ+FY1Nr0/7s1GRgxebMsuXKomlvpOo1DiJdR1Hf3SCJJX4WWKSz5GCRxtles+NSjpXopIyYrUKbZO0Ir9KdGIj8R3LuK/6Y9eLv/C6gL9zfQcvE6vIcpFCf4gvvrOIP+OzlFVsnkiB3eI7dImTmHJ/Nko92DcgpphSn4n4i0hqfHenzOdLkZhSn4uVWl7SEi4MeM81xyG5hqQeyYg1qsBOKVj8J0lLqi+piec75dGF0u8j9nvu4YNXmeeFCq80j8SECyU1JWPqodiii6Rgoc1yJL67+NNKZvpsdPBgH7GsjM8XJUt+LVFRR+XAgfTt2kqX/kT8/oz3PZUQ31sqxE2X5JQKciA+Y/qjmOh4KVt6piQeqyHxrvOnx1vPk75O/tx7uVNeLHarxJVYJgcON5WEpIzPLiWLrpFSRdfI3kPtZP+SJXLkyBHJDp/l7jpzhtAJwz///HP56aefzNxPJ6IHQr9hT+ej0iF4o0aNki+++EJWrFjh1NELRD+cLFu2TJo1a2bmp2revLmZvNym80Fpzyx9EeiLUOet+uSTT6Rv34wLWr/F7+DBg6Zts2fPNskw7VXl7i2lvbh0OzoJenZ7Sum3/+3bt09KlChxSnpK9a6T/q2DqSnp/zLgTozY5SbbfbwXy5cbpzrZ70tq3xx2T6kv12ZMVn55wyFh9ZT6cuVrTkxXtBgWVk+p6Utfzthvi3vD7ik1Y/kk53xc2f7BsHpKfTr3Oec8Xd7+/rB6Sn3+ywSnrF+3kWH3lPr8x2eda6nfJaPC6in135npXyhg2t398bB6Sn353VMB196VfceF1VPq088ed3pK9ek7JqyeUp9Nf9wp63v1U2H3lPrqs9HO66nvdU+H1VPqs/+MSI9FXx/XjAurp9Q3H410rrHLbxofdk+pGf9+zLkX9Lp5fFg9pWa8+4hT3n3g+LB6Sn07daTzr4GX3v5M2D2lvnn9Eef10XXQk2H1lJr15gjnvtf9rmfC6in17eRHAu6HFw97JqyeUt+9nH7M9J7UcdjTYfXA+Xny48411nX4M2H3lJr9QkbbOw5/6qSxumP66flHnbJODz8TVk+pn54b4bw/Xfjw02H3lPpxfPox07a3fnhcWD2lFj2bfsxUh1Hjw+op9cvYR533rVYjx4bdU2re6Ixj1mbMU2H1lFo4Ov1+pG2/4MmMY5adHjjzRqbfT+y2Nx87JqyeUstGPu7cU9o++1RYPaUWPPyY8zmi5bNjwu4pteD+x5zyFhOfDKun1NIHnnDet9pOejKsnlIL7h5pyvU6bT5pTNg9pZYMzXj/uOC1cWH1lJo/ZJTzL87tXh8TVk+p+YMz9tvhnbFh95RaOHic857b+b2xYfWUmjMg/bOBvudeOPWxsHpK/XTTOOcau+Q/o8PuKfXtDWOd963LPh4VVk+pL6/OOMZ9po8Mq6fUF1ePD/icfc0Xj4fVU+rjy8c571vXfv5QWD2lPuiZ8f58yzcjwu4p9c/eE5z33Du/eySsnlJTLk5/v9F2D5s9PKyeUq9cPNF533roxwfC7ik1odP/Oe9bI+YMDaun1FMXTnLKx/wyNKyeUqM7TnGusafn3h52T6lHL0j/hndt+4Rfbgyrp9RD7f/lvG+9smBAWD2lhrZ9L+Bvwtfn9w+rp9TgNh865e8u6hdWT6lb26WPQNK2f7C4b9g9pa5v9ZnzvvXx/G5h9ZTq1+o753Pdl0u6h9VTqnfLb51r7JuFGQmZ7PaU6t7yh+NlPvlhabuwekpd3GaBc0+Zv7R9WD2l2rVI/5I0bfvSpS3D7inVrNlCp2zV8o5h9ZRq2Pxn531r44ouYfWUqtVotsllxMXFmRyKncs443tK6QU4bNgwmT59usyZM+ekCSllJ5+0x5Rq166dPPXUU7J7927nW/K+++47c5AaNGjg1Pn6668DtqN1tFxpdrVFixbmW/nspJSeKH2uCTOly/Ub/bSsX79+pkyHEW7bts3ZTiiFChUyj2D6QUAfbvaNKJj9YstuefB2g8tNMspmBT23iy3LKXdvT5MYqf7M9c0fkqHK06yA9bWeOykRLLjcTlDpNkzCKUiosvSY/JmOg97vQtVPjylzLtd9PtztMjGEqK+JNZt735o4yRigkHWsIdd11QlV306gZdX24GUaqz1czc2OKfiYZdn2LMrDaXtwub2unvP07YeINYvyUNeYuSZD7TPENtyvJzsRYwt+HlwefMxC1TfXXtqJrzH3cnM6QtQPjiljmGV0yO2HOtf2vkLdJ04Wq5ueJ/O6DFqWVazumALOl/6BmfnWkWXb3fc99+s21Gs4uNy9X9P2oHWsLLZjYrIyHzM7uRHMTm5k1fbgfaSF2fbsxOqOKeB1ebyOHVPmtgfGZF9j+jPU9jVBEOJW4JRnen2E0Xb7GgtenuV5cie5Aq6x8M6Ttj3gfe8ksQa3xf2+pYmM4DYGl7nLM11jruGf2Sl331Pc+wl1roPL3fsO1UYJs+1ZxXqytgevo0mDULcmu+2ZrrEw2h68vl3nZOfJ5gxN0tdHGLFqwiPgGrWHSqX/WZ6pflblzusj6N0u+HlwefD1Hap+VuUB71uu5XYS6mRtD3jfCrH9E7U91PtWWhZtD1Ue8LnOtdxOuAVLjyfEPUX/MA5VP4vygHvw8Z5PWbU9q3L7fuhe37Tdl8Ux8KXHlOl1qX8Yh2x76LY4w4uClmdV305OZT5mIer7AutnlAfdg4+vm1Xbg8vd15gmijLXD912u27AMfNlJKEy1Q9R7n7fCti3aWOI7bjK3fvVGEK1XRMHIe9kvqDXh7kW9WfotmckpzLa7bTheOIjcFshhmy5ygP3be58IdsYqjzg71n3vrNqu6uOe792wiazzOWaINLy4NeHXZ65fui22/eU4H37smi7XZ45BxC67VnFFHit2EMQNYEWOlZ3uft9K9R+NTGVfq6Cy9NC5i/OiqSUDtnTb7PTnkjFixd35mbS7n/ajU6H6Onynj17moycdinUHkna80m76qnu3bub5NONN94oEyZMMNsYOXKk2badDLrjjjvklVdekYceekhuueUW0+vp448/Nt+uZxs+fLjpGaXdTFu3bm16VWmvLPvb+LRNgwYNMvV0InZNemlCTRNS+eWb9wAAAAAAAM6KpNSrr75qfnbu3DmgXIfW3XzzzaYH0/fff+8kiHTYm/ZS0qSTO9s3Y8YMGTJkiEkQ6TxNmlwaOza9K7PSHliagNKE1ksvvWTGGb/11ltm+J+tf//+ZkyoDgfUxFbTpk3NEEH35OcTJ040WUVtgw7J0/WnTJmSo9h7VbtWYnwZY0dP5ocDnwc8v6jC1WHtb9auaWHVBwAAAAAAOGuTUieb/kqTUD/++ONJt6PzOgUPzwumiS+daPBEdKiePVwvlNjYWJk8ebJ5AAAAAAAAIEPmCYkAAAAAAACAPEZSCgAAAAAAAJ4jKQUAAAAAAADPkZQCAAAAAACA50hKAQAAAAAAwHMkpQAAAAAAAOA5klIAAAAAAADwHEkpAAAAAAAAeI6kFAAAAAAAADxHUgoAAAAAAACeIykFAAAAAAAAz5GUAgAAAAAAgOdISgEAAAAAAMBzJKUAAAAAAADgOZJSAAAAAAAA8BxJKQAAAAAAAHiOpBQAAAAAAAA8R1IKAAAAAAAAniMpBQAAAAAAAM+RlAIAAAAAAIDnSEoBAAAAAADAcySlAAAAAAAA4DmSUgAAAAAAAPAcSSkAAAAAAAB4jqQUAAAAAAAAPEdSCgAAAAAAAJ4jKQUAAAAAAADPkZQCAAAAAACA50hKAQAAAAAAwHMkpQAAAAAAAOA5klIAAAAAAADwHEkpAAAAAAAAeI6kFAAAAAAAADxHUgoAAAAAAACeIykFAAAAAAAAz5GUAgAAAAAAgOdISgEAAAAAAMBzJKUAAAAAAADgOZJSAAAAAAAA8BxJKQAAAAAAAHiOpBQAAAAAAAA8R1IKAAAAAAAAniMpBQAAAAAAAM+RlAIAAAAAAIDnSEoBAAAAAADAcySlAAAAAAAA4DmSUgAAAAAAAPAcSSkAAAAAAAB4jqQUAAAAAAAAPEdSCgAAAAAAAJ4jKQUAAAAAAADPkZQCAAAAAACA50hKAQAAAAAAwHMkpQAAAAAAAOA5klIAAAAAAADwHEkpAAAAAAAAeI6kFAAAAAAAADxHUgoAAAAAAACeIykFAAAAAAAAz5GUAgAAAAAAgOdISgEAAAAAAMBzJKU8MHnyZKlRo4bExsZKmzZtZNGiRae6SQAAAAAAAKcUSak89tFHH8nw4cPliSeekGXLlkmTJk2kR48esnv37lPdNAAAAAAAgFOGpFQee+GFF+S2226TgQMHSoMGDeS1116TIkWKyDvvvHOqmwYAAAAAAHDKxJy6XZ/9kpOTZenSpfLoo486ZVFRUdKtWzeZP39+yHWOHTtmHrZDhw6l/xLtF4nym1/9aZb4/X6zrahon1PXn+YXv9+S6Jho2b9/f8A+U/0pEh0TJb6ojPppKX6xLEtiCkYHtCE1Jc3sNy0tLWPfx8vFJxITk7m+z+cz21e6b/M8OlrSJMXs32aJJf5UbbtPfO5yy2/i0njcbU+zUsTyWxKlbfcFxhqqXNutz1NTU8WKSs3YTqpfdy7RBQLzsHoMNCZtu3u/KWnJopu1Y0pvY/p29BhGu467XX7w4EFzXkz7fOnt1vORHqur7X7LLIuOjjL7to+ZOZ9RUeK3kkWCY7UC2+LEdHxdp66kOOWh6utmo3S/rsbHx8ebdpuHpDjlaWmWabe236keFJO9b213Suqx9OMSqu0hynW/ep6cMitF0tKOtz06qO0hynXfMTEx5hr2+5OD6lvpsbra7i4PuMbSjomeNr0c3dW1zG/a7pym9Pp+MW3X14fu2/IfyzivdqxB+0xve3q5vW99faSmJIWsH9x23a5u332Nmf3qtafnQw9viPrmPLk2r+vruTKv7bSM+0yadbztWt/dluPlMa5zrVKTk8zPmKC2px6PNbhcj5ceK/d+zevGnx5rdFDb7ZjsYxDw+kg5Zs5Vxnmy0s9TUKy6Dd3WgQMHzL7TG3gsvVzbGHRtpOpGgsp1v3qe0s9LmlnfXV9rBrRdXDH5Mo6ZuSclJ6XH5H4d6HmyNFZf4LV3/HVpX2P2frM8TyFicrddUo6dNFZ3TO5zbaUcC4gpONbgmOxrzFynrv36j7dd6wafJ2WXu18faceSAo6vu36o8oD3reP7Nm039yhXfb3GrMBy9/uWZc5V9s6TufZc59qUH0syx0fLM12TIY67/T6vbY9KzjhmKcfbGOPeSFC5+xozbU9KynSeUrXtx9vjtPH49eS+p0QdOyb6EtZnMXpPcR/fEOX2Nab71nXdUq30fRcIbLqkWOnrxwTfh5OOOeWBbU//19PooHL3+1bUsfT7v56LNLEkWgLPk8aZ3vb01437fUv3a5dntD39PBUIOu52ecDnq6TkbJ0nm96P9Jhpu31JyYH3PUk/T5muPVMedI0lJpvPU1rubr2+i2sbQ5UHvOcmpr/Xp5ojo38MBL7nBpfb+9b33LTEYxLtqq/t0Lab+2GIcvc1pvvVFtoxRQW0Mb08OqjtAe9bR1MyzuvxWE/U9oDPdUfTr1F3G+3tmHtBQHngZyPTPrNvO9bAtpvPtkHnw/2+lXYkOfN50nunFeL8Bb82jugxO/4aDWp7VuXu91xd393G4FgzytNjcr8+ko8cE19QG7W+5bMkygrcp5a737dSEtL3a87S8VgD23783i+h37dSElID6/vSP8cHtl3EMuWBr4/khFRTnlXbg8vd19ixhDRXff0bQevrPt3bSf97yGelt9X9vpWUkGKOZOCxST9Pmcp9/oD3rWMJWs9yYgqsn7k84LOR3y9JZv3AtouVflWGKncfs0Q93qY88G88fYWki87yfSsx4fhnLBNkmmljYL8XvQb8AeXu99yjpt3u+v7j9aNClrs/1x1NON5Gp+0B71zHy2NCXmNHzLpuqSHTIz5fqlim7Rl/X2vbjyTYd77AWH2uV5q77e57SkKC3U69/6Tf+YLb7jNXbHq5+xpLSEgTvz9zG83erdDl7nMdH6+vb32d+sRyv471de3zZyp3v2/puhn19e9KrR91/FzZ+0w/T5aVfrw07vS2ua6TEHzWyWogx7Zv3y7nnHOOzJs3T9q1a+eUP/TQQ/Ljjz/KwoULM60zevRoGTNmjMctBQAAAAAAyF1//vmnVKlSJcvl9JQ6zWivKp2DyqZZSc0yxsXFBfQIUpp5rFq1qjnJJUqUCHtfkax/qtbNr/um3bQ7r9fNr/um3bT7dN837abdp/u+aTftPt33Tbtp9+m+7/iztN3a/+nw4cNSuXLlE26HpFQeKlu2rOnutmvXroByfV6xYsWQ6xQqVMg83EqVKnXC/egFkJOLNzfWP1Xr5td90+4zZ91Tue8ztd2nct+0+8xZN7/um3afOevm133T7jNn3fy6b9p95qybX/dd4ixsd8mSJU+6PhOd56GCBQtKixYtZNasWQE9n/S5ezgfAAAAAABAfkNPqTymQ/EGDBggLVu2lNatW8uLL74oR44cMd/GBwAAAAAAkF+RlMpj/fv3lz179sioUaNk586d0rRpU5k5c6ZUqFAh4m3rML8nnngi03A/L9Y/Vevm133Tbtqd1+vm133Tbtp9uu+bdtPu033ftJt2n+77pt20+3Tfd6F82m4b374HAAAAAAAAzzGnFAAAAAAAADxHUgoAAAAAAACeIykFAAAAAAAAz5GUAgAAAAAAgOdISgFAGE7ld0PwvRTw4jrhOsPZ7Ey9vv1+f76LOdK4z9RjFkm7ET6ON3DqkZQ6i52pH0JO5R9Up3Lfp+qDV369zsIVHx8vaWlp4vP5zth9R3qdnKl/HHh9T0hNTc3x/o4ePZrjY7V//36z75xeJ7l1nZ2qe0JOjlsk5yo3Y87pOT9TX9On4jqJ5PrOreskJ7Zu3WruC1FRUWEfsy1btpj1NeZTdY2qnOw7krj//vtvSUpKMut6fR9NTEzM8bGOpN35/R/fcnJ9Rnq8T4f3jzPxXJ2KfUfy2So3napz7T8D3q9JSp1mjh07JocPH87xG/jUqVNl3Lhx8ueff4b9ISSSfdvrnIp2R7L+oUOHzPq6nv1hNZx9R7K+rjN9+nR58803zXHXN8Xs3jQiWTfSc52QkCC7du0yH7x0nxpzdvcdyXUSabuXLl0qI0eOzNF+V61aJTfffLN8/vnnOdr3kSNHZPfu3eaPonDfGCLZ944dO2T27Nny5ZdfmvMV7nUSyfqRXKMHDx6UzZs3m/3n5HUZyT1h79698vvvv8uKFSskOTk57H0vW7ZMhg0bZmIOl57ru+++W3788cewz/XKlSvlyiuvlPfeey9H12gk19mBAwfM+crJfTCS16Vas2aNucZUuNd3JOfKvg/qz3Dvg5G+tjZs2CD//e9/cxRzpMcskn1H8t6h7Lo5+XAdyfUdyXUS6fuWnqtatWrJP/7xj7ATaqtXr5batWtL//79c5SMi+QajfQ+Gknca9eulSZNmsiIESMkXJHeR/Vauemmm0yyI1yRtDuSzxiR3s8iub4j/Rwdyf0okuMd6X0hkpj37Nkjv/32myxfvtwk1MJ9XUdyrZzK9/pI4o7ks1Wkbddz/ccff5iHnezObhsSInzPzI3365x+xskRC6eNVatWWVdeeaXVtGlT65JLLrHef/99KzU1NVvr/vbbb1aVKlWsCy64wPysUKGC9ffff3uy740bN1rPPfectXfvXvPc7/dne7+RtjuS9X///Xerffv21rnnnms1adLEGj16dLZjjnR9bXetWrXM8S5fvrz5/fDhw3m+bm5cZ3bMbdq0se666y7ryJEjZllaWlqeXSeRtnvFihVWgQIFrLvvvtsK18qVK62SJUuadf/444+AZdmJQdfv3r27VbduXXPMnnrqKevYsWN5vm89V7rPBg0aWOecc47VqVMnKzExMVv7jXT9SK7RX3/91WrWrJlVo0YNq169elavXr2sHTt2eHJP0HVbtGhhrm993Hzzzdk+V+7r7J577rHCpfcTPdf6mtq6dWtY51pfG7rufffdZ23bti2sdXPjOtPzpdeJ3gc7duxoXut5/bpUek1pu30+n3ld2bJzX4jkXGnMHTp0sM4//3xznd14443WoUOHPHltHThwwCpSpIh5vP766075ye6/uXHMItl3JO8dat26deY6sV/L2Y030us7kusk0vet5cuXm2NdvXp1c8y2b9+e7djtdVu2bGn2vXDhwmyvmxv3/0juo5HGXbhwYatYsWJWly5dwroPRnof1WulYMGC1r333ptp2cnWj6TdkXzGiPR+Fsn1Henn6EjuR5Ec79x4r89pzPr5SD8XNWzY0Pw877zzrDlz5jj30ry8Vk7le30kcUfy2SrStuu+L7zwQqtOnTpW/fr1rVtvvTWs+2j7CN4zI32/juQzTk6RlDpN6I29bNmy1u23325NnjzZuvTSS63WrVtbGzZsOOm6f/75p1WzZk1r7NixVnx8vHXw4EHzwv3444/zfN/r16+3ypQpY/7w1P3v27cv2y/0SNsdyfp6Y9Z233///dYPP/xgPkTom+ru3budOieKIZL19aaoH/LGjBlj7dq1y9y09KajN9iTiWTdSM/1li1bzLp6Y54+fbo1YsQI8walb247d+484c0ukusk0nbrG0rRokWtBx980ApXQkKCddlllzlvRtreNWvWWHPnzs1WkmX16tVWXFycWV+vyzvvvNO8uWTnfEWy702bNplkzKhRo6zNmzdbX375pXkj1+vFdqJjH8n6kVyj+pquWLGiOVc//fST9eabb5o3RC2bP39+nt4T9BrTc/Xwww9bS5YssV566SXzIcJ9jZ3ozVw/NOl1puvbkpOTzcM+Vlmtr+3s3Lmz+WPIpn88r1271kpKSjphu3X59ddfb64tpftavHix9cUXX5jX5cleY5FeZ/qafvTRR61ly5ZZM2bMMNe3JhT/97//nXDfkbwu3bp162YNGTLEtOOJJ55wyk+070jOlV4Pei964IEHzDX9yiuvmNeGfnjT+9zJ9h3pa1PPl17TAwcOND+nTJmSrfUiPWaR7DuS9w6lf/hUqlTJKl26tHXLLbeElaSI5PqO5DrJrfct/aNR72WlSpUKOFfZWVfvwfrHbtWqVa077rjDyq5IrtFI76ORxq1/gI0fP968F8TGxgZco3l5H9U/4jTBofdCm7Zf/zC0Ew5ZxR1JuyP5jBHp/SyS6zs3Pofn9H4UyfGO9L4Q6d8O+g9tjz/+uLkn6rb03qav1TfeeOOkSYNIrpVT+V4fSdyRfLaKtO36PqPHW8/1rFmzzD/Kt2vXznrvvfdOuu6WCN8zI3l9RPoZJxIkpU4De/bsMZnUYcOGOWV6sekfds8888xJ1585c6Z5I9A/AG365qB/mOkFPXv2bGv//v25vm+9EVxxxRXWtddea25uzZs3Nxn/7CYcIml3JOtrfX1x6wvOpm9MF110kfkQpS9I+18OQr3oI13/gw8+MDfJo0ePOmVdu3Y1Nwx9k9QbblY3m0jWjfQ6mzZtmkkQuP9lYunSpeYmq29M9rEOPu+RXieRtFv/VT0qKsr8C4PSDw0jR460rrrqKvOve/qB+UT/aqF/tOi5/vHHH80HS30j1BtzuXLlzAd9/bCe1b9w6fHQf5Gy923H2rhx45D/kpqb+3755Zet3r17O9eC/tR/6f7oo4+sf/3rX07Po6yOfSTrR3KN6hu3/guc+wOa/q7Xj8atH4Lt9uTmPUGvsVatWpkPD+7rVuP47rvvrF9++eWE/0KlHxK058l1113n1NEPQT169DD/mqi/6weErNbX/eu51j/69Brt16+f1ahRI/NBTM/5ieLWD1ba9v/+97/muV5zuo5+GNI/6PRc2q+13L7OXn31VfNactNzrMdCkwh6PwzV7khfl259+vSxJkyYYNYpXry40/tHz5vdKzM3z9W4cePMvxq66bWl29SEaF6+tmzaI0G3M3z4cPMvsG+99Zbzr//Z+VfvcI9ZpPvO6XuHfX1ec8015qHHXv/leMCAAdlOTOX0+s6N13RO37f0Dybdt/4hYtM/gPV1HtzTK5h+/gheVxMGepzt1+PJ5PQajfQ+Gknceo+Mjo521tXz3r9/f/PeoefpZNdJJPdRfY/Sdutrw6ZJQO1poPfxvn37OusGX2uRtDvSzxiR3M8i/TwZ6efonN6P9PNHJNdJJPeFSGPWRJLG635v/Oc//2neSzVhb//jW6h1I71WTuV7fSRxR/LZKpK2633v8ssvN//44z7eeg7sa+dEpkXwnhnp+3Wkn3EiwZxSp4FNmzZJuXLlzNh5pePvdexnt27dzNhfdaLxpzo2WMfY6phT9fzzz8usWbPk119/NeNvL7/8cvnoo49Cbmfjxo053ndMTIw0a9ZMrrrqKpk8ebJZ54svvpCXX37ZTBQZPG42eDuRtDuS9bVt2uZBgwY5ZW+//bbMnz9frrjiCrOsS5cuJv5Qkx9Gur6O0dXxyQUKFDDP/+///k9+/vln+eSTT8yjVatW8r///S9k3Dt37szxupFeZ7pvnaOiSJEiTlnz5s1N7BUqVJDevXuHHOcd6XUSyTWqY+YbN24sixYtMtdLr169zDVSpkwZc93ovEO33nqrmRMhmG5Tx8/rsvLly5vx5DqG/p133pE5c+ZI9+7d5dprrzXzCmR1rrTdek2olJQUE2ufPn3MGG2V1fjsSPetc4HoXB72udDrRK/PCRMmyPjx46VBgwZmPoWsxrZHsn4k17fOGbBu3TopWbKkc3z0GP7zn/+UFi1amNe0PfFtKDm9J+jvejzta0y99NJLJuY77rhDbrvtNqlbt665XkNNulu0aFG56KKLzPlYvHixuTaXLFliYq1fv745Zz169HDmZQk+13q89+3bJ5UqVZJ77rnH1HvxxRflrbfekurVq0vnzp3NcQ21rr7mYmNjzTHTc6PnRGPUeR/uuusuGTt2rDkGoY53pNeZ7kPnYHHTeIcOHSr/396ZwFpWFGG4GQijLCObqAwMKKtsDo4iyr7FAVQQBcKeGWTRsMumSDQBQXZFwiI4rMIEUVADJIiAbMIkCIogAoLiyKIsQYVhUa75OtZLTc8592x3O77/TyZv3ru3T1d3V1VXV1XXWWeddcIee+yROeYmcpkWmF1rrbXi/FPbgxpip59+evzbsccem1kDYYkllqi9VuDpp58Oc+fOne9vtD3ggAPiHFK/x2roZKGJbNmYWesVVlghHHfccVGfnHXWWWG99dYLX/ziF6OeydOHdeesad919w5br4022ijyCPwJT7EnfOUrX4lzmcpj+v+6/N1EpgE0LrfccpX3Lf52xx13hLPPPjt885vfHPs77ajRhB7La2v7/AUXXDBfW+aP+UXeQFFdkLo82lSP1h0347n66qtjO2sL3+y0006xhhj1ZIoKWTfRo+xRyD37zA9/+MOw2WabxfmhNtXuu+8e60uxf7HvL7zwwj2ju4mN0VSfNbHLemFH19FHzMXs2bPDSSedVJtPmuwfTccML2LfwKcGbIbDDz88bLvttnHfpX5RVtumvDLMvb7uuJvYVoBaYXVppy3yA38Aq7/1uc99Ls6J/c3T2qs9s+l+3dTGaYSeu7mEyiC9d9asWWO/m/cRD6v3snpvLh5bA/8nekgK6vbbb99ZZJFFOjfffPNYRIa0Q66/0E8v+vb/xxvsvaX0RSYM6dbmycUb6+n1dOMJrkq39c1z64z7rbfe6sydO3fs929/+9uxDsDVV18d0y15BtEDUkWz0LQ9ET/uZE+aNClGZ6Cb9FfLLMFDTYqmebGZR/OWk8ZapW2axtpkrRkbfTNeH+3j/6TykuFCpoqH9UHfdfmEtpdcckklun1f1CKhrgZefiIXPouGtFSuFpCh0+2qCxEwsgt+8pOfzPcZzyPykQUicD/+8Y8XoJssMdbO/83Pp6edCFrZvn07ItLwIFGNPffcM/LJjTfeGOeaObaoXhrpsPnj6lzV9ta2KY+yHkTu0isPRDihiYhdHurqQvrwGVTwGxE4oubIKynjRNv22muvzDEDxkdUyvjMZ3vdcMMNMf05S/4MRMDIJmRufTo9ss9npGBbm1ROiPRSY4G1SlPDqWFA6nYaCfT91+Vx+JsUflLo4Xd0BLUbyMLhOgtjJkMlC03l0nDllVfG6CdgnXkm9R/233//se/4jA+b0zprxU9S8MkQgK94HtebuI5x9tlnxzR76LYUdw/jwTvvvLOybPn+wVlnnTUW3Wbe6HPixImdY445ZoE2Teesbt/+alydvSOFHw+RX+R8n332GcuYItMlL/Jbhb89fVVlGti4Wc86+y3w4/DjJsJOJmi3DHL/LN+WSDmZYXb1IwtNeLSJHvU2QN1x+4wFPwesLVkNlr3SDXX0qOcXxgWvkGVGhoaBbAz2PLIsekl3XRvDfq+jz7xNV9Uu89/Djva1HsvY0SZbPKOuPvKZJ1Xnu+7+YUB26pwdrF+ukyI/XKEjW4VsF66MkunK+Mj8Qbf3klfs/8hwlb3e5hvayYBssteThcV5ocq4vf6oYlulz6hLO/uRnw97/gUXXBDlLZWFdL4fffTRWntmE1uBZ7NerGkdG6cXUKbUkGCeVaL+Sy21VHwrDLAK9wAvJt5fA95dIv+8lYSIE29uAGQk4J0nC4GoDJ7jzTfffKyPTTbZJCy77LJjv1sVf7z29L3vvvvGv+MxLerbnsHnYMkll4xt8JoCImlbbbVVfFvLOeecE729xxxzTKTL3pxgES/o5k0IZelmroB59RdddNEYWbvmmmsK29vf8CyTuYPn2MD3br755hjhI1oM/URD8IwbzKON97lqe95S8dhjj419f/LkyfH7ZA1tuummsR0RW/PUb7zxxjFKyxwTuSEqedNNN1Vu6+nmdzzmxmdl1tr4xN4sQqQBTz1vVDN6AJE/IkdEI4gceR6z5xqfGF3d+ATaiCxatktVusm0IRPL+lpjjTXim3SIphCtxdNvEaEZM2bE9TGe9GtlEQSiK0SubrzxxjgO4yPAfPjIp+dVi8DZOni6LZLI304++eRw5JFHjvG3fQaOOOKIOP9FfadjJipLtJxI0korrRSjItttt12cS+Ruww03nG+M6Vrz7PPPP79U+5TuFVdcMfz85z+PmXBleNTT8c53vjPsuuuuMTIF/cDasY707WUpbV9Fp6BH7O0i9GHZWYDxweNEuqdMmRLfYMWboCy6CNDD55577tj4oZ1+yTYhekxU0viMaBnfI4vBrxf65H/X6OM8EV0naoqsGa8QKSMSaVGxVP+DE044IfLHVVddNZ/M23yj5w32d+MjwFtpyvI4sHERZUTnkd2w7rrrxmgaYz/66KPj3y3zDXiZriqXWWttmDRpUoyGAp5DhI9nXn/99TE6CGxOjA+YUzIaqqyVrf3ee+8d+QW9QAYoUUd4FlmZPn16XBcyOww+GgpoU1a2TC4tsmo0wmvWB2+OQvcSgWX90IMAWtO9p8qc2Txbn15Gi/omwrvaaqtFu8T2LXRSmb0jb60Zj0V/oRV5YY3ImOKtRmR9kaGCDuOf37/L8jdzRTaVvTmtikwD9mvGzRvrll566cjHZfct0yOsNbZNFojU81Y7+sniLWjzEX+fyUSGBJkG6Oa0rcmFzS88iv6Fx8vqf3vDKuOuokcZCxkXzLMft4/C543b23WMzcbq5wAdRZYFGXM2Rx6mf6vqUQN92XevuOKKmFHFXJMlZ88lOwyZw+b29DPfVek2euBnbAyyH2wcRTaG79u+T4YLP8voM9OFzHtVu8y35ztV7WiTLfZ3zxtV9NFtt902X+ZJWT5JbRyewRvN2OeK9ILpcN4ojOzY3l5mzOmZh+/AW+hp1gmaZ86cGccNTXwfnZ/SzXrwXMuSqmKP2k/sKOSUtSza622tmG/mGP4nq6jqXm/f4flkucM7ReM2nWBnUmSMzB7spiLbyre3v62++uqRdrIly9LO/E6cODHuR1nyYXsPf2O/gT724Hnz5o3tRVX3zHTcplPQL0XyAT1m/7Ne6ARQ1sbpKfri6hK6gqgJ9RGos7LLLrss4GX1UX27y3r88cfHu614q4k8HXDAAbEAW+rt574oHmsP7jgT1aLoIoXuiAbgBeW+e1o82DymWX1ff/31Xen23l7acz+fyBJF4mbPnh292fyOxzmNBBBV6EY394GJTPCWDCIFeOt9xK/buOfMmdOV7nT8ROu4M4xX2DzW1EggynrcccfFjA37blb2gW/PfXHmDs8ykYUU3L0n+uDBHX3q4Nxzzz2xlgEFGbfddtsFan10a0sEgEwEo5u6DJ7uorUmmuz5hKKwgMjWRhttFOc1LR5NFILaFUU85ucs5RMiIhT4g0eIjFp2TVYmURbd1157bWxLdCFdFyLqPhLLM+EhIu433XRT7lrBfxR8hT4y+3xE5eCDD45RXJ7L/BJpZf6JlFKrJCvjjMiF3c2nrgGRMu6PE6ljbhk3b7AhqkYUlWK1vCUmr2+iZ37MacQHHiBryIPCpMgC0Zx0vWyty7Tnjrunm2iVjzSefPLJuTyKHqTQp18PAJ8zLiJYRHE9oNOK3iKXFKFN57eMTkEnQDe8R20BMrls7tL5s78RPbe+idQx56eeeuoC/cOzns/4OzyEDDM/6O0sHqXmCG+p4rO0dgP6nnps9JvqfwCffP/73+9MmTIl6lneHGXjYMysH99hrffbb7+YOcL63XvvvWNRb3gcXZPHZ8w3NblSfU+2LNFHaolZ5I72RIThJ6KFWTJt3yPy2U0uAZE6zyuePvon6wf9ThYcewV/oy4Cb+9Cj1IcOx2zzVuVtbI1JguC2jpk7FgNGj5DbxDRpRAuSHUwEeWyskXfeXqUorOsCZ8zZvpljsnmgKfJBOy29xTNGXNEZk2655XpmyxLoqrMG2MxfYD+Ldo7itbarwFg/pkfZJjMTDIOvFwbPzI2ZLcbf6PLoJvfraC36SR41hfFTfkEIJt+3PBWVoZI1r5FBkOq/70e9c+hKDLrYoDHvB7sliEHvfBSN3uU2k8epj/K6H90QF7x+Cw9SsFkb+N0q32XjrvIjvYZ9dRg8YXe8+aM76JH+X43PZruPXzH2yhpxhd7ObRTg4a+82QrpSWlG1nz+tveqJiueZaNAX+m+sj2EDIoivRZ1r5Vlr+Rp6z2eUXBUzvayxbz4WULfVFWH1nbrCzUrPkG0J7KJrJvbdJMN68XutnCRWP2Zx54nwwbGzdjJiOLjHgDWYTwhWVDpXSnslnFHqV+k+lBsigZW95en+pB2+/L7vWpbJqdwdjJtOR7eePO02Xsh9gA3WwraEEWfftbbrll7HvQ6feAlPayehj+sUwpMr+w7TlvZdlHz/xvz6SeX7c9s5suRBbIEsuTD/Z6z6M2t2T/lbFxeg05pQYMGBfjCUHA+OEQCzNiDKapyRTDQ8HzGddROBCgnPxrKRES/7p0lBVvuuLQh+MGpUChRhgIJYUBQL8nnXRSZF4MRBwY6eaQ9g1TlqHbNmZ+ciDkAEWqIW9JQOHB0KT80ta/chdlk0c3c8abANhMOWhCO+1J3bdNGUOZtOu0PcJedr4NOMw43EETc8ZzOCyS4oryY6PwKZzd2qOsKaq36qqrdj7wgQ/ETcoDBcDn0EtaJGuLQse5grIi3RuHHm+9sIJ8pqTZAEjhTNtCcxm6bc3Ttaa/lE9QWPaGC9aNa2UoNArOchBAqZPKy1oX8Vgen9iBDR6hIB+HIxyQXkl3kw/owLj1b0TxyCpkyEEcvuMAl7VW/prqmWeeGdeB75OeDi8xZjYyvsvcswaMG6MMPmP90lfQ8hx4F8OcNFqcvcwZzhoKR1pBQXgWupBx2iBDad/IZbcxAwwIHDw8G55h3qAVfsrSCay1L/jJJsrGmLZnI86iG6POeNWugaQ8isMO/kSu+b/BeJsNkatE6Ds2WgxZUqwpygx/kDqMXNOfGUyepwFFQ7kykeoEZAu6SWlGn9APB1i70pd1CEamV1hhhdgvOilrzvPesMTzaA8/cwWmW1vGzfpSLJY5Jz0dGWOtMWiz9L9dgWDuGBtjhlc4ePCPsSJbrDVzz/rAnxgiyJ69KQljGicghkvKZ8h1t/VKwSEMfY+Rj1yVleksuUT/Z/Vt68S68V3WkEOugQMu+jVrzOwXWaiyVilYd4xMns+eXEYHI1tZsmk6IUuPAp6Pk5xi3X7MjMuCNd32HvY++ASezpqzbnTzfK5OoAvTvjGG0cWs3xlnnBH50DsaoInnYXyneweyVbTWfq6N/3gW+weHkiy5tmAOjleuJWTpUQ6udm3YI6vkQconGPgcuPPGnQaB0n0rT//Ds37NTNY4nCCjrFMZPejniwMIOpRDZzd7lBdD2LxxmK2q/1M7J0uPMmd5No7XoSZvftxl7WhrSwAPJxM2Wd6c2Xc5/FLQnaszWXq0zJz7/6MLGTc6HZ1Sxp608Xu68/Q3Nn+K1MYg2JeljzjY2vXXbvoMuS6yrfLODvSdt2dmtU/taPRAN53C3NXRR1nX8P18A37m8XhWkNnrBZw23WzhrACYjRlnStaZB4du1ssK2E9xACJb2Jvd6E5ls6w9ij7Nequi3+u57tVtrYr2+iLZ7DZuzsdZOoHricwz+h+5ybKtmJNuupC23Whn/yijh80exyaFbpPNbvbRX/7yl+gg5Aph3p6ZpwuhmwAa8pFlKxD86XbWK7Jx+gE5pQYMGBEvugcHJpiIqIlnRlMGKHN7M4Pdq4fZYSCifnzOd80Lz8GEv5N9ssMOO8TNCEWFEepfV4tzCA8qnutUcaR9F9Ht72nzPKI5KCf6pi1vvDHgrUcoeS5ZGXb3PotucNhhh8VX9XpQlwaPPj+JWqEYMSTwWvv2VeabAzSKmI0fbz+HPQ6BfiPFE44S8sKd1x5FiuCy+aN0+InisQMRGzWGJtkWHB74DI84Bhr0QbuBz60GiIFDJJuob8szq9Lt1xoDoBufmPHE4ZkDLPONY4y+Mbiq8BgHas8n6f1zFD3P5v+m3FHAWXRjZFP3wr/2m4gnxhGbj43bnoNxzaEEhVxmrcwAwZDGucFaEGnAIUVbHCb8bqAfnCnQRITVH27YLKDbMsOspoMHzlSMLDYh5hr+hk7fN98pM2YOkRgUHE6pEULmEuMo0gl2KKF/Nry0fTe6iUpxAMW5lfIoxgOGOBstRhbGv6/z4jNw0AnIMhEcss/gb/gIg5z7/cgbh6ys2hbwV6oTMJowOv2YiYbZ25F8jQuTacaOgch8ooPZ4DHsvVHHd+DltH4SvzMX6AQciHnrhUFAxhuAV3DgQRNRUvQ8h6Fu+h+jwoxVy3qCv3k2vAtv40T2rzUmy4F18dE95izlM8bQbb1SwwveIBrJAYg5K5JpPvPz5eUSfVOGV/iefw7oNmbv8Ki6Vl627DADX1JPBucIn5XVwex9zLWXrSI9avVL0IVploWhSJ9h6LJ/pHNWlm6M4bRvPvdvtYKXGJOfQxtzunfAM0VrnfIZOhHdyv7BAbCbXFsAjDb0hbx6HU5wi7mHZtYU+Ub2OMCQ7YnjyUBWoPEJPFo07hSpbVWkR1OnA/QyVnRCGT3oQV0n5tcCJUX2Ec9gverofz9nqR7lXxkbJ2vc8G4VexTgyOINYZa5kjdnpk+sNhYHda9Hy+49nlewXTkQko1bxS7zdKNfqugyDtLexigj194p5PUZe3AV2yrlb+a8SntvR3MALyNbdfRRt/m2A3cVHvf7B1lMVWzh9OxQdOYx5y1AFjlf4bC1uaxCd8orRW19QMfv9Tivq8x3utdXla103N10gr3tkD0vy7YCVc6KnnZkvArd1ETlmXyP+S6yj1588cVoC+PkS/fMIrpNXyAfdsYylLX/DamN0y/IKTVg4KmGedPogL3eEmayzzioYBSZAoIJMSwxLBBGHDscui666KJ46EIwzNhgc4WZTZA4jKHkfJE9BA2vPJsVz2WjsL45OPu+y9LtU53tmgQHdtpacV42ItqwySKYfGapgBjTnm6ex2HSXjtrxgaKlOgV3mIzbCyF2rcvSzeHZ7IxMIZtc0MRM8coDL9hM9eXXnrpfOMlupa2N2BooWwQcpQKXmZo59k8l3nBAMLY4kCKUrcidBYhIO0bA8QUkRlP/LS2llJchW7g17oMn3geBShM5rsKj2XxiQeRPIwZlB8RbLIJmFsMW4taePkgSo4SJtXUXlXMgZ2oA1ERO7jYWuMIpI/0Ok23tUoLYPq0b/piHoGl+LIR8jzosjkDpMRy4DLZ4noeNNp625qTnYIDxBvuvu8yY+YZ5gjGmDDDGlRZa9oTffPty9LN/HgeZdzoLw6NrC8HwDxngwEZMf3BIQ3jiMM7tGNop4ZAWhiS9YRHOXyS5uwPekTq2WiRD4xCopWsNTJNJgtRKVsr5oyC0Mgocs6cYyBw0CPq7Nea/qAJ/cd3y6wXxmy6zjYXRfofXsuK3gIiYhhhGH9e9nH2IUdZc279l1kv/0x0NFcC0ohsN5mGL5ivVC7L9J31coSyY/YyXHWtTJ/AXxj5HGCr7B0234zby1YZuWTNyyBPn+H8SQ/uZenOilojKzhl7dBrV1HYt1lnM3BTHrO9A1TlM7MlOJyXkWv0Ufr6bnsefWLsMydkATMH55xzTnRIcfDAjmBvpr3nk7Lj9nSndl2RHsXBnNov0FlGD2Y5pvwcFNlH9lKJrP2jLN2sr9ejfK+MjZOVeWQ8W8WOtrbomKp7R4oqcw6vk02Gg4FxV7XL7DvQXUWX2Tx4G6Nq34zT9FkVXZh1bqlqm5kdjVyXka0m+iiLx8yOrsrjXi+U0eFWCD09e5Q581i/Bp7lAwxl6c7ilbJtodP2eviyynxn7fV19BnnCRt3N50A/6UvyPG2VdWzoqe9Kt3IMvObnhPz7KOZM2cuUK7AO8iKxs21zyxUOa/BA14n9BNySg0Y3AElgmCV6+0NGIBDLQaQpUgiyBxADBgFpEOed955Md3SKyEyjvjMH35TeIMNg4vN4MILL4yRFnMUWaQ/7bsM3ZbymgKFybMRMP5ZiijChTLj2l3em+oAQo7H3dKMESLSFTG2ERo8/OkVqSp022dsZH5DwlliG7a15R/XkewurwfKyre3flA2pJAa8OyjLOyebtZz0mdw6MGwtloM/rMUVekmQu3XugqfpCjTlnXrBmjF2KIdYG05XDBn1IcxpDzKQY3vEOniMEY7FDR8QzYCUVqL8qDUfYpq2bXKS9HHGMFotM2XyDzGA5E3NnHScu0z+vUp85blZZkubJT2bDY2ok8YaB72eZkx58ll2fXybyvxKEN3Vqo58LqL75ARhmGEXii6GpbSzVxzwEkNAZwVWdfE/CbM/KGPkBfo4PDk1zvrGYwboxvewEhkru3wg0GO08oOVhhm/vBfZr2yrmOU1f+ps8LrD1+TwOaWCJvXKQYzRLOymfLWq9thrqxMp3LZpO+qY6Zvr3urrpU/7FXVwb3Wo3X3nqp0+zF7ubL+OeggX1kHgiw04bMycu3fPuXpIEuRq2QEDMhE8KUFOGygy4iwZ8l0lXFn7Vtl9GgambbPy+hBnucdUX7uy9hHPjvZo8q+lerRsjZOCvtuE3u07Jz5NU4dNkXtGa9dz7IgVVXZ8nxeVZfhOPQ2Rh259v1Xsa1S/q7a3tvhVWXLo0nbOjye6oUqdnR69ihz5knnuC7ddezRrEyZqvOdtdeXlc2sNyRWOVs3PSumtJelm2ey1mkWUhn76K0ce7hXurCMnZFVAqXXkFNqwCCNlo2Egok+qwngJfVFd7OMN1LtYFQMKBw6/jtkSnFYKQIbJt5wf9hEyEjP5g5xr+j2tFOInMM5NBIx8wxuqfJe6HxbDEayEPDS4xFGANnIAMLGRpce2uvSnQcvjERS/UZOlCNNQfbgu3YwwODlYIAnGmPbp1TmCbz9nbVho8qq11CX7rx5q8snVdrmHUyMz83DjyMTo4WxE2HLivB7PsPJmWZfcbUVg9cXAGyyVik4sBABpHYLV+XgUTJAAErd7vpn9c3/ifKTSmuZLlYMkug8EQu/uTUZc9O17iXdHvChHUAtM4K0b3947sYvGESpIUCUjo3WHEZpe/QAxnJa2J0IblpbJm0PXax32pY1xjnEIbgfPFpV/2fpFP83Uu8t3R7A+1mZi3XWq1cyXbXvOmP2jrFey1aRDvYF65vo4F7qsyZ0Gx3Wnv0eWcmrXdNkravKNZm5eSCwwGGPayp24LMxbLHFFvNdnao7bvusiR5togd7aY/W0f+9snGa2tFV56xOezK/8tqVla06uizl+6p9277Sa13YpH0TnVK1ba9tnDq2VZ0zT690StMxl5nvvOBuE33W9Kw3CJ2SvtymF/bRX3twxm1y1us15JTqI4gw4fFGKLkPamnPGFSk5rGh+Pu5XEsibQ8vpX+znDe8uAJjbxEgHdY7coiKwlhZfVvdJv9M/5M71DA/hl+v6M7aUDH8LLJjtPPmDGqi8P289ihiarew6RLNNFiqI8qzCd3pnHGv2s+ZpwUFwNwDrgSwFl6YU2WFw4LrEvTPgZXDAJ5+6iNMmzZtvqhsN0VHH2xGFjEzmprQTUpur/ikStuU7rQ93np4hfvNHKTYgIm6MH/UaiKi7tvCN9YP6aUWlbXxk2bLwQZ+SWWrylqxOafzbRETjC0KU5JOaxEPS9eFz9g88vibmgIYIfThr2DRH4dIeD6drypjLprvovXqJd2+Xx+NtQMoVzjsKlzRemUZAkSYKChKe/8mqW5tDegMDqCXXXZZ/D1PD5tO8teM7W9En1nzJuvVVP/79t0ymDA+LeWe606WTVJ3vZCfujLNGJvwil/rpmNuIluD1MHpWlfVZ/zeC7rZm31bTwf7Fca51bzM2rearHVVuU77tTqJHMaZKzId0zo9XM+1A4VvX3XcTfRoEz0In/bDritDNyhLe5aN00s7uuqcNWnvdWETe7KqLkNeeqmPmtoZVdo3ka0mbUG/bJy6tlWZM09Tuns15qbz3US2mp71BqlTem0fvViB7qbntUFBTqk+AWYi3RIjB083/8dbbGnoVOCHUTnAUM8AgSXiwYZMxAAGprBvlsLg2RQc4zscgmEwflJsDgWS1TcGGfVHjOHSVEA2JDYGe4NBP+gGeF2J8hOZRujInsIjjEeXf2n7bld4AOPm9ZREh+rSjVOo7Jzxf2phcU2Su9SkO1IIMqXbKyvqZfFmCpSDj26gMDCuu7VNQSYE3mtfh6Mu3aTp9pJPyrZFWefRTWFLeAajjOgQkTU/ZxyiqNPQrW0WUMZssPBJ3bUihT5PrjnU2nPSGjdESFDuRL/Svr3BSTSDug9EDUm155nc8Uau+azumNl8mugEHCy9ptv365+FY4/IDhs5a5GlE7rJB+nI1M2BFgyAorbp7xj2FH8lUyKv7279M250DPzbSx6tov/LzJk9j+gaadpE9UmzL6MT8taLda8r0xjgZXg0r+8ya111zL2WrV7rYPRo0Vp302fUlOgn3X6t0A/sv3aVqd9rnSfX7Ldpv9SEs8wrZA86cUzBH2Q8EsHmYMDVj6p0+3FnrVVZPcpa1dWD8ECv7dGydENHVR3ubZxe011lzprsPXm6sBf2ZDddZgfZXst1U11Ypj2lDurKVhO5BE1ks4yNU8W2KnvmwSHRa53SL7uuzHw3ka2mZ71B6JR+2EeblqSb35vYGYOEnFJ9AN5kIhj+bVxkSfAGHN5cwlsKzBttNZYwGmFeFAUFSTGU8JbylgCDF3I2bFIYKZiGQofZSPnt1jcHY+o7eSHC6046PPdO58yZ0xe6/UEOpUBmFIJNW6KfRCjxyua1z9rMEDLefoBwNaGb8VedMwwBUvxJ9cdBUoZuUjjTlPRuY84zQog6YEjgrW9CN07BfvBJUVvWuohulCvA0EqviFQdM8qdLDwOM/BM3bUq6psoBXf9fd8U7yTlmnF369tvBhx8iK5w3c+yGayIb50xN9UJHOIGQbcVaDzyyCPH3sZYRT7sGRSXpx4CTtMqbdENvC7Y3ixStW97Gwvtq8pHWR4to/+r0k2hS+aLSCYH8rrrxZzVlWlQhUfTvjHsBzHmXshWr3RwlT0zS58Nim7jWYJR7Fu88GCQa+3lups+wk4wHiUbEUcUdQAx8KGpzL7Vbdw4i+vq0SLbqpseJAulX/ZoEd1V9Whq42Ar9sseLZqzJnsPOqIf9mSRLmPfGaQ+aqoLfXsCdnVlC1u4iT7qtta9ts3K2lZFZ54i/d9Ep/RyzFXnu4lsNT3r9VOnFOmEJvbRxwrobsKjeVd5+wk5pfoEUh/t7QkmmLzKmcK4HCRgFANXkTCEiDTg9SR9jzo0HKzYMPIUBkDIeb4v/Natb4QKxgV4X1EWFFizNyD0i+40BZnv2WugQVH7VElDBzUy7E0AdemuOmeA14hSxJo5K6Lb7mJnoeqYAZEGe11tE7r7ySdFbYvao2TzCmRX6ZsNletMvF6VyGeTtSrbN9E+A/2QdluGT1K5xiDn/j7/moy56pyl6zUouo12Nkm7BlBVPszhzUZapS06iOLhbNJWZ6dqe672QHtV+ajKo0X6v+qcYXxwoLFxN1mvJjLdpO9BjbmpbPVaBzfVZ4Og278tzl9TH8RaZ8l1t34JLPjaYtRA4a1zvqBt3XE30aNN9OCg7dFU/ze1cfpFd9GcNW3fL3uySJc16XuQujCrfROd0qTtoGycqrZV0ZmnnzqlV2OuM99NZKvpWa+fOqWf9tFGBeNuel4bJOSU6jFYcIxB6nvwz2BXemASPM68gSILCD3REoMxP8xj8K99rNM3904NpOaRBjoIuv1bAeq0T6/OYLw0pbvOnEEnV7nK0p2Xtlx2zL2mexB8ktW2Ct1Z61Wnb8ZrirnJWtXpG9g1y7py3XTMTddrkHQD71yvIx9V5tu3pR1Xmur2zeHVHESD4NGmOsXX+MB4abJew9DB1vegx9xUtnqhgw119dmg6fYBqUGtdSrXdXjUP6fpuJvIdRM9OEx7tC7tg6I7b86atB+EPZmly4Yh1011obVvIltN5XLQNk5V2yrrzNOU7kGPuc58N5GtpnZGr3XKMOn+dw/sjEFDTqkeIRVeIm5cUeOudqpQuOrBWxWIbsDEaVvP2PyflPWU+anSb1G9On1bdGKU6C7bnisXtPXfr0J3r+esyrjbtta9aFu3vUX/hrVWTejO2tCb8Mkg5rsf/F1lvrIMmLJ9k6GW6oQybcmkSAtw1mk/Sjxalm4ia035u44ONvSy736PuV+y1bTvQemUJvp7WGtdVy57Qfew7ATL1E31aBvsuib7RxO68+asyd7Tb/1vuqyNdl0vdEqv5XpYerTKmacJjzY9ewxrvuvKVtOzXi90yrDso7cz6K4q18OEnFI9wGOPPRYLafKGGN7uYlfSSIOjYOa555473/dRMBQz4/WNadsXXnhhgefDYMb8eDupkQCDUWW/l30Pk+4q7blbXZfuYa5XSndb13qY891W2RqP/N2U7mHK1qDG3VY9Oko6oa2yNUz50Fq3h+627FujpI/GK91tlevxqEeHyaNttevaqsPbIlujADmlGoJ7l7yNYLfddov3Qtddd93OT3/60/gZBfhOOOGEWOiMKvgoFtLlqGq/5pprxmr7eW2zYG9qo5I/90/71fcw6S5qP3v27Np0c4d2WOvVje62rvUw57utsjUe+bsp3cOUrX6Ou616dFR1Qj/HPExd1k/50Fq3h+5R3rdGVR+NV7rbKtfjUY8Ok0f7OeZhzveo6vBRlq2//e1vnVGAnFINwCJOnTo1eiUNvGbxxBNPHPuddEuq21NMcKWVVoqLz5sM8KRmtT3ppJPm68PS8Pi5//77x7dk8GrIfvQ9TLrLtKcYW126efvBsNYrj+62rvUw57utsjUe+bsp3cOUrX6Pu616dBR1Qltla5jyobVuD92jvm+Noj4ar3S3Va7Hox4dJo+21a5rqw4fddm6//77O6OCRYJQG88991yYN29e2Gmnncb+9v73vz888cQTYYcddggf/ehHwx577BFmzJgRttlmm/Dwww+HhRZaKKyzzjrh5Zdfzmz7+OOPh09/+tNh2rRpYffddw9rrrlmePvtt8Odd94Z7rvvvnD77beHtddeOzz00EM973uYdJdpP3HixNp0r7jiin2ZsyZ0t3WthznfbZWt8cjfTekepmz1e9xt1aOjqBPaKlvDlA+tdXvoHvV9axT10Xilu61yPR716DB5tK12XVt1+KjL1oorrhhGBROGTUCb8dprr4U333wzMuQLL7wQTjnllHDllVeGlVdeOSy//PLh7rvvDl/+8pfD888/H1ZaaaUwffr08MlPfjIyQLe2yy23XLjnnnvCUUcdFT+bMGFCFIRbbrklfOQjH+lr38Oku6h9E7qHuV7/j2s9zPluq2yNR/5uSvcwZauf4/5/pHu88ugw50xr3Z61bqud0FZ9NF7pbqtcj0c9Okwebatd11YdPsqyNVIYdqpW22BvgzEcdNBBnVVWWaWz9dZbdxZbbLH57p3+4Ac/6EyePLnz61//unHbYfbdVro1Z6JbdIvuUelbdIvuUe9bdIvuUe9bdI+fvkW36B71vttK96hCTqkK4H7v3nvv3dlyyy07M2bM6Nxwww3x708//XTn1ltv7ay11lrzVbB/5JFHOquvvnpnzpw5jdoOs++20q05E92iW3SPSt+iW3SPet+iW3SPet+ie/z0LbpF96j33Va6Rxm6vlcSjz76aNhkk03CoosuGj71qU+FZ555Jhx88MHh8MMPj6lwq6yySvwedzQNl19+eXjHO94R3nrrrdpt+WxYfbeVbs2Z6BbdontU+hbdonvU+xbdonvU+xbd46dv0S26R73vttK9yv8+G1kM2yvWBrz++uudPffcs3PooYeO/W3evHmdDTbYIL4GEm8lVe2nTZsWq9nPnDmzs9dee8VXM95333212z7wwAND67utdGvORLfoFt2j0rfoFt2j3rfoFt2j3rfoHj99i27RPep9t5XuBx54oDPqUKZUCVBRnzftLbPMMvH3119/PXoct91227DzzjuH3/zmN2HWrFnhl7/8Zdhggw1iITHaUJV/ww03rN126tSpQ+u7rXRrzkS36Bbdo9K36Bbdo9636Bbdo9636B4/fYtu0T3qfbeV7qlTp4aRx7C9YqOOt99+u/Pqq692Nt100+iBfOutt+Lf586d21l55ZU7s2bNil7IzTbbbL52fK9J22H23Va6NWeiW3SL7lHpW3SL7lHvW3SL7lHvW3SPn75Ft+ge9b7bSndbIKdUSdx1112dCRMmxMWGGRZffPHOF77whfjZQw891FliiSVi4TGrhA/z9KLtMPtuK92aM9EtukX3qPQtukX3qPctukX3qPctusdP36JbdI96322le9Sh63slsfHGG4d77703TJkyJabCnXbaaeGiiy6Knz355JOxuNjkyZPDhAkTFigw1qTtMPtuK92aM9EtukX3qPQtukX3qPctukX3qPctusdP36JbdI96322le+QxbK9Y25DlcTzqqKM6W2yxReeVV17pW9th9t1WuofZt+gW3aJbfYtu0d2mvkW36B71vkX3+OlbdIvuUe+7rXSPKuSUaoDf/va3nS996UudSZMmdR588MGBtR1m322le5h9i27R3e+2w+y7rXQPs2/RLbpHvW/RLbpHvW/RPX76Ft2ie9T7bivdo4RFhp2p1Va88cYb4YknnggvvfRSrGq//vrrD6TtMPtuK93D7Ft0i27Rrb5Ft+huU9+iW3SPet+ie/z0LbpF96j33Va6Rw0L4ZkaNhFtBYzw73//Oyy++OIDbTvMvttK9zD7Ft2iu99th9l3W+keZt+iW3SPet+iW3SPet+ie/z0LbpF96j33Va6RwlySgmCIAiCIAiCIAiCIAgDh96+JwiCIAiCIAiCIAiCIAwcckoJgiAIgiAIgiAIgiAIA4ecUoIgCIIgCIIgCIIgCMLAIaeUIAiCIAiCIAiCIAiCMHDIKSUIgiAIgiAIgiAIgiAMHHJKCYIgCIIgCIIgCIIgCAOHnFKCIAiCIAiCIAiCIAjCwCGnlCAIgiAIgtBz3H777WGhhRaKPwVBEARBELIgp5QgCIIgCMKAgJOm6N83vvGN+b5/8MEHj/3+pz/9ab7vLrzwwmHKlCnhs5/9bHjwwQdL03HdddeF7bbbLiy33HJh0UUXDSussELYddddw6233trzMQuCIAiCIORhkdxPBEEQBEEQhJ7iiiuuyP0MZ9Qf//jH8LGPfazwObvvvnvYfvvtw3/+85/w+9//Ppx//vnhpptuCvfee2+YOnVqbrtOpxNmzpwZLr300rDBBhuEI488Mrz3ve8Nzz77bHRUbb311uHuu+8On/jEJ2qPURAEQRAEoSzklBIEQRAEQRgQ9tprr8y/X3zxxdEhdcghh8QMpiJ8+MMfnu9ZG2+8cfjMZz4TnVMXXnhhbrszzzwzOqQOP/zwcNZZZ8VsK8Pxxx8fnWaLLCLzUBAEQRCEwUDX9wRBEARBEIaIhx9+OBx66KExc+n000+v9Yytttoq/nzqqadyvzNv3rxwyimnhLXWWiucccYZ8zmkDHvvvXfYcMMNx35/8sknwy677BKWWWaZsNhii4WNNtoo3HDDDQu0mzt3bthpp53C4osvHpZffvlwxBFHhDfeeCOTjvvuuy9Mnz49vOtd74rP3HzzzWN2liAIgiAI4w8KhQmCIAiCIAwJr732WqzlRG2o2bNnh4kTJ9Z6DllWYNlll839zl133RVeeumlmCVFf0V4/vnn4zU+aMRpxrMvu+yymJF17bXXxjpW5uzi2t/TTz8dv0d9KjKusupT8TcywaZNmxa+/vWvhwkTJoRLLrkkOtXuvPPO+RxigiAIgiD8/0NOKUEQBEEQhCGB63qPPPJIdPasscYapdvhKHrhhRdiTalHH300ZiYBspryQO0psN5665Xq41vf+lZ0TOEs2mSTTeLf9t9//7D++uvHWlQ77rhjdCp973vfC4899li45pprxvrnex/60IcWqGd10EEHhS233DLWv7JMrQMPPDCss8464Wtf+1q4+eabS8+BIAiCIAjth67vCYIgCIIgDAFXXXVVmDVrVrwyt88++1RqS5bRu9/97likfIsttoiZUqeeemrYeeedc9v84x//iD+XXHLJUn3ceOONMXPJHFJgiSWWCAcccEB8CyDONPve+973vvD5z39+7Htcy+N7Hrwd8PHHHw977LFHePHFF6NTjX+vvvpqzLS64447wttvv11pHgRBEARBaDeUKSUIgiAIgjBg4Jwha4jsqPPOO69yexw+ZCWRqbTUUkvFTKOiq3+TJk2KP//5z3+W6uPPf/5z5psAP/jBD459vu6668afq6222gI1qtZcc80Fxgz23Xff3D5feeWVsPTSS5eiTxAEQRCE9kNOKUEQBEEQhAGCAuC77bZbePPNN2MdKbKPqmL11VcP22yzTaU2FDgHDz30UCxKPmhYFhTF3KdOnZr5nTpzIQiCIAhCeyGnlCAIgiAIwgBx1FFHhQceeCB85zvfiW/cGxS4hkcW0tVXXx2++tWvFhY7X3nllcMf/vCHBf5ODSv73H7+7ne/izWjfLZU2nbVVVcdy9iq6lATBEEQBOH/E6opJQiCIAiCMCBcd9114dxzz41vsONNdYMEdZ6OPfbYWPCcnziRUlx55ZVhzpw58f/bb799/P+vfvWrsc+p/0Rh81VWWSWsvfbaY9975pln4hv5fCF2vufBG/dwTJ1xxhnhX//61wJ9//3vf+/peAVBEARBGH0oU0oQBEEQBGEAePbZZ8N+++0XM5Qo7I0DKAs4bj7+8Y/3hYajjz46PPzww+HMM88Mt912WyxOTrH05557Llx//fXRCXXPPffE7x533HExq2q77baLDrRlllkmviXwqaeeCj/60Y9iPSt70x6ONoq133///bHo+RVXXBGdYB58/+KLL47PowbWjBkzwuTJk8Nf//rXSAsZVD/72c/6Mm5BEARBEEYTckoJgiAIgiAMAFxne/nll+P/DzvssNzvUQi8X04pHEOXX3552HHHHWMmE1lLvJWPN/ltttlm4bTTThvr+z3veU90UJFV9d3vfje8/vrrYf3114+Oox122GHsmTiffvGLX4RDDjkkfo/f99xzz+h8mj59+nz986ZAMq9OPPHE6MgiYwqnGAXVDzzwwL6MWRAEQRCE0cVCnazcbUEQBEEQBEEQBEEQBEHoI1RTShAEQRAEQRAEQRAEQRg45JQSBEEQBEEQBEEQBEEQBg45pQRBEARBEARBEARBEISBQ04pQRAEQRAEQRAEQRAEYeCQU0oQBEEQBEEQBEEQBEEYOOSUEgRBEARBEARBEARBEAYOOaUEQRAEQRAEQRAEQRCEgUNOKUEQBEEQBEEQBEEQBGHgkFNKEARBEARBEARBEARBGDjklBIEQRAEQRAEQRAEQRAGDjmlBEEQBEEQBEEQBEEQhIFDTilBEARBEARBEARBEARh4JBTShAEQRAEQRAEQRAEQQiDxn8Bc4G8P0KzrzsAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "plt.figure(figsize=(12, 7))\n",
+ "sns.barplot(\n",
+ " data=zip_group,\n",
+ " x='zipcode',\n",
+ " y='price',\n",
+ " palette='viridis', # nice colors\n",
+ " order = zip_group.sort_values('price', ascending=True)['zipcode']\n",
+ ")\n",
+ "plt.title('Median prices per ZIP code', fontsize=16)\n",
+ "plt.xlabel('ZIP Code', fontsize=12)\n",
+ "plt.ylabel('Median price (USD)', fontsize=12)\n",
+ "plt.xticks(rotation=45, ha='right') \n",
+ "plt.ticklabel_format(style='plain', axis='y')\n",
+ "plt.grid(axis='y', linestyle='--', alpha=0.7)\n",
+ "plt.tight_layout()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "This shows that ZIP codes with a mean that lies within the 10th percentile are very few. In fact, we have 3 very cheap ZIP codes out of 70 Zip codes in Kings County. \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "70"
+ ]
+ },
+ "execution_count": 38,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "len(df.zipcode.unique()) # number of Zip codes in county\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Look at all those 3 ZIP codes in Kings County to see where the cheapest houses are located."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# 'Zipcode' must be string to get correct color\n",
+ "plotall_df = df.copy()\n",
+ "interesting_zip = [98002, 98168, 98032] # limit to ZIP codes with mean below 10th percentile\n",
+ "plotall_df = plotall_df[plotall_df['zipcode'].isin(interesting_zip)]\n",
+ "plotall_df['zipcode'] = plotall_df['zipcode'].astype(str)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 57,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "customdata": [
+ [
+ "98002",
+ 189000,
+ 1921
+ ],
+ [
+ "98002",
+ 233000,
+ 1941
+ ],
+ [
+ "98002",
+ 225000,
+ 1954
+ ],
+ [
+ "98002",
+ 250000,
+ 1976
+ ],
+ [
+ "98002",
+ 266000,
+ 2009
+ ],
+ [
+ "98002",
+ 200000,
+ 1958
+ ],
+ [
+ "98002",
+ 214000,
+ 1953
+ ],
+ [
+ "98002",
+ 234000,
+ 1966
+ ],
+ [
+ "98002",
+ 218500,
+ 1949
+ ],
+ [
+ "98002",
+ 208000,
+ 1960
+ ],
+ [
+ "98002",
+ 249950,
+ 1968
+ ],
+ [
+ "98002",
+ 224000,
+ 1959
+ ],
+ [
+ "98002",
+ 247500,
+ 1948
+ ],
+ [
+ "98002",
+ 180000,
+ 1920
+ ],
+ [
+ "98002",
+ 176250,
+ 1966
+ ],
+ [
+ "98002",
+ 370000,
+ 1950
+ ],
+ [
+ "98002",
+ 250000,
+ 1959
+ ],
+ [
+ "98002",
+ 208000,
+ 1967
+ ],
+ [
+ "98002",
+ 183000,
+ 1957
+ ],
+ [
+ "98002",
+ 210000,
+ 1910
+ ],
+ [
+ "98002",
+ 280000,
+ 1991
+ ],
+ [
+ "98002",
+ 300000,
+ 1991
+ ],
+ [
+ "98002",
+ 175000,
+ 1948
+ ],
+ [
+ "98002",
+ 161500,
+ 1961
+ ],
+ [
+ "98002",
+ 254600,
+ 1968
+ ],
+ [
+ "98002",
+ 250750,
+ 1951
+ ],
+ [
+ "98002",
+ 219950,
+ 1985
+ ],
+ [
+ "98002",
+ 255000,
+ 1920
+ ],
+ [
+ "98002",
+ 257200,
+ 1952
+ ],
+ [
+ "98002",
+ 222000,
+ 1968
+ ],
+ [
+ "98002",
+ 206000,
+ 1942
+ ],
+ [
+ "98002",
+ 213500,
+ 1968
+ ],
+ [
+ "98002",
+ 188200,
+ 1954
+ ],
+ [
+ "98002",
+ 95000,
+ 1915
+ ],
+ [
+ "98002",
+ 276000,
+ 1959
+ ],
+ [
+ "98002",
+ 125000,
+ 1961
+ ],
+ [
+ "98002",
+ 245000,
+ 1921
+ ],
+ [
+ "98002",
+ 270000,
+ 1968
+ ],
+ [
+ "98002",
+ 285000,
+ 1998
+ ],
+ [
+ "98002",
+ 183000,
+ 1985
+ ],
+ [
+ "98002",
+ 156000,
+ 1950
+ ],
+ [
+ "98002",
+ 238000,
+ 1978
+ ],
+ [
+ "98002",
+ 245000,
+ 1989
+ ],
+ [
+ "98002",
+ 190000,
+ 1966
+ ],
+ [
+ "98002",
+ 248500,
+ 1948
+ ],
+ [
+ "98002",
+ 195000,
+ 1968
+ ],
+ [
+ "98002",
+ 199950,
+ 1949
+ ],
+ [
+ "98002",
+ 233500,
+ 1957
+ ],
+ [
+ "98002",
+ 235000,
+ 1959
+ ],
+ [
+ "98002",
+ 150000,
+ 1915
+ ],
+ [
+ "98002",
+ 215000,
+ 1983
+ ],
+ [
+ "98002",
+ 257500,
+ 1977
+ ],
+ [
+ "98002",
+ 111300,
+ 1908
+ ],
+ [
+ "98002",
+ 142500,
+ 1917
+ ],
+ [
+ "98002",
+ 269000,
+ 1975
+ ],
+ [
+ "98002",
+ 230000,
+ 1960
+ ],
+ [
+ "98002",
+ 239000,
+ 1977
+ ],
+ [
+ "98002",
+ 154950,
+ 1966
+ ],
+ [
+ "98002",
+ 197000,
+ 1962
+ ],
+ [
+ "98002",
+ 225500,
+ 1972
+ ],
+ [
+ "98002",
+ 279950,
+ 1914
+ ],
+ [
+ "98002",
+ 286285,
+ 1977
+ ],
+ [
+ "98002",
+ 194900,
+ 1923
+ ],
+ [
+ "98002",
+ 187000,
+ 1985
+ ],
+ [
+ "98002",
+ 224950,
+ 1965
+ ],
+ [
+ "98002",
+ 135000,
+ 1948
+ ],
+ [
+ "98002",
+ 195000,
+ 1958
+ ],
+ [
+ "98002",
+ 330000,
+ 1978
+ ],
+ [
+ "98002",
+ 319450,
+ 1930
+ ],
+ [
+ "98002",
+ 292500,
+ 2008
+ ],
+ [
+ "98002",
+ 245000,
+ 1959
+ ],
+ [
+ "98002",
+ 193000,
+ 1991
+ ],
+ [
+ "98002",
+ 186000,
+ 1912
+ ],
+ [
+ "98002",
+ 389000,
+ 1989
+ ],
+ [
+ "98002",
+ 288000,
+ 1963
+ ],
+ [
+ "98002",
+ 224000,
+ 1957
+ ],
+ [
+ "98002",
+ 236000,
+ 1998
+ ],
+ [
+ "98002",
+ 200000,
+ 1938
+ ],
+ [
+ "98002",
+ 224000,
+ 1976
+ ],
+ [
+ "98002",
+ 275000,
+ 1973
+ ],
+ [
+ "98002",
+ 305000,
+ 1978
+ ],
+ [
+ "98002",
+ 160000,
+ 1927
+ ],
+ [
+ "98002",
+ 200000,
+ 1913
+ ],
+ [
+ "98002",
+ 112000,
+ 1963
+ ],
+ [
+ "98002",
+ 235000,
+ 1958
+ ],
+ [
+ "98002",
+ 225000,
+ 1950
+ ],
+ [
+ "98002",
+ 215000,
+ 1931
+ ],
+ [
+ "98002",
+ 125000,
+ 1960
+ ],
+ [
+ "98002",
+ 208000,
+ 1960
+ ],
+ [
+ "98002",
+ 250000,
+ 1920
+ ],
+ [
+ "98002",
+ 205000,
+ 1968
+ ],
+ [
+ "98002",
+ 184500,
+ 1983
+ ],
+ [
+ "98002",
+ 195000,
+ 1913
+ ],
+ [
+ "98002",
+ 222000,
+ 1958
+ ],
+ [
+ "98002",
+ 207000,
+ 1959
+ ],
+ [
+ "98002",
+ 235000,
+ 1960
+ ],
+ [
+ "98002",
+ 272000,
+ 1998
+ ],
+ [
+ "98002",
+ 269950,
+ 1956
+ ],
+ [
+ "98002",
+ 189000,
+ 1927
+ ],
+ [
+ "98002",
+ 255000,
+ 1977
+ ],
+ [
+ "98002",
+ 185000,
+ 1985
+ ],
+ [
+ "98002",
+ 250000,
+ 1918
+ ],
+ [
+ "98002",
+ 294400,
+ 1990
+ ],
+ [
+ "98002",
+ 140000,
+ 1955
+ ],
+ [
+ "98002",
+ 249500,
+ 1977
+ ],
+ [
+ "98002",
+ 128750,
+ 1950
+ ],
+ [
+ "98002",
+ 190000,
+ 1953
+ ],
+ [
+ "98002",
+ 292000,
+ 1998
+ ],
+ [
+ "98002",
+ 250000,
+ 1990
+ ],
+ [
+ "98002",
+ 246000,
+ 1958
+ ],
+ [
+ "98002",
+ 150000,
+ 1951
+ ],
+ [
+ "98002",
+ 247200,
+ 1922
+ ],
+ [
+ "98002",
+ 220000,
+ 1938
+ ],
+ [
+ "98002",
+ 269950,
+ 1944
+ ],
+ [
+ "98002",
+ 160000,
+ 1983
+ ],
+ [
+ "98002",
+ 275000,
+ 1996
+ ],
+ [
+ "98002",
+ 179500,
+ 1959
+ ],
+ [
+ "98002",
+ 250000,
+ 1998
+ ],
+ [
+ "98002",
+ 167000,
+ 1985
+ ],
+ [
+ "98002",
+ 159995,
+ 1915
+ ],
+ [
+ "98002",
+ 255000,
+ 1959
+ ],
+ [
+ "98002",
+ 270000,
+ 1999
+ ],
+ [
+ "98002",
+ 270000,
+ 1968
+ ],
+ [
+ "98002",
+ 288000,
+ 1949
+ ],
+ [
+ "98002",
+ 209950,
+ 1968
+ ],
+ [
+ "98002",
+ 235000,
+ 1990
+ ],
+ [
+ "98002",
+ 268000,
+ 1999
+ ],
+ [
+ "98002",
+ 223000,
+ 1973
+ ],
+ [
+ "98002",
+ 208000,
+ 1960
+ ],
+ [
+ "98002",
+ 195500,
+ 1954
+ ],
+ [
+ "98002",
+ 265000,
+ 1911
+ ],
+ [
+ "98002",
+ 292000,
+ 2006
+ ],
+ [
+ "98002",
+ 265000,
+ 1996
+ ],
+ [
+ "98002",
+ 270000,
+ 1993
+ ],
+ [
+ "98002",
+ 180000,
+ 1958
+ ],
+ [
+ "98002",
+ 250000,
+ 1914
+ ],
+ [
+ "98002",
+ 367500,
+ 1980
+ ],
+ [
+ "98002",
+ 205000,
+ 1960
+ ],
+ [
+ "98002",
+ 202500,
+ 1954
+ ],
+ [
+ "98002",
+ 257000,
+ 2009
+ ],
+ [
+ "98002",
+ 201000,
+ 1959
+ ],
+ [
+ "98002",
+ 190000,
+ 1946
+ ],
+ [
+ "98002",
+ 189000,
+ 1915
+ ],
+ [
+ "98002",
+ 340000,
+ 1997
+ ],
+ [
+ "98002",
+ 163500,
+ 1954
+ ],
+ [
+ "98002",
+ 300000,
+ 1978
+ ],
+ [
+ "98002",
+ 137000,
+ 1959
+ ],
+ [
+ "98002",
+ 315000,
+ 2004
+ ],
+ [
+ "98002",
+ 265000,
+ 1958
+ ],
+ [
+ "98002",
+ 219000,
+ 1953
+ ],
+ [
+ "98002",
+ 235000,
+ 1977
+ ],
+ [
+ "98002",
+ 219500,
+ 1912
+ ],
+ [
+ "98002",
+ 217000,
+ 2002
+ ],
+ [
+ "98002",
+ 206000,
+ 1967
+ ],
+ [
+ "98002",
+ 230000,
+ 1997
+ ],
+ [
+ "98002",
+ 279950,
+ 1977
+ ],
+ [
+ "98002",
+ 315000,
+ 1967
+ ],
+ [
+ "98002",
+ 235000,
+ 1962
+ ],
+ [
+ "98002",
+ 148900,
+ 1967
+ ],
+ [
+ "98002",
+ 229500,
+ 1967
+ ],
+ [
+ "98002",
+ 189900,
+ 1914
+ ],
+ [
+ "98002",
+ 219200,
+ 1968
+ ],
+ [
+ "98002",
+ 206000,
+ 1978
+ ],
+ [
+ "98002",
+ 237950,
+ 1960
+ ],
+ [
+ "98002",
+ 247500,
+ 1998
+ ],
+ [
+ "98002",
+ 232603,
+ 1976
+ ],
+ [
+ "98002",
+ 234000,
+ 1910
+ ],
+ [
+ "98002",
+ 185000,
+ 1961
+ ],
+ [
+ "98002",
+ 260000,
+ 1977
+ ],
+ [
+ "98002",
+ 229950,
+ 1911
+ ],
+ [
+ "98002",
+ 193000,
+ 1962
+ ],
+ [
+ "98002",
+ 329900,
+ 2014
+ ],
+ [
+ "98002",
+ 319500,
+ 2006
+ ],
+ [
+ "98002",
+ 319900,
+ 2014
+ ],
+ [
+ "98002",
+ 263000,
+ 2011
+ ],
+ [
+ "98002",
+ 292000,
+ 2012
+ ],
+ [
+ "98002",
+ 285000,
+ 2011
+ ],
+ [
+ "98002",
+ 260000,
+ 2011
+ ],
+ [
+ "98002",
+ 240000,
+ 2012
+ ],
+ [
+ "98002",
+ 298000,
+ 2014
+ ],
+ [
+ "98002",
+ 289950,
+ 2010
+ ],
+ [
+ "98002",
+ 300000,
+ 2006
+ ],
+ [
+ "98002",
+ 267000,
+ 2012
+ ],
+ [
+ "98002",
+ 319900,
+ 2014
+ ],
+ [
+ "98002",
+ 265000,
+ 2012
+ ],
+ [
+ "98002",
+ 273500,
+ 2009
+ ],
+ [
+ "98002",
+ 297000,
+ 2011
+ ],
+ [
+ "98002",
+ 255900,
+ 2014
+ ],
+ [
+ "98002",
+ 261000,
+ 2012
+ ],
+ [
+ "98002",
+ 282900,
+ 2014
+ ],
+ [
+ "98002",
+ 275000,
+ 2007
+ ],
+ [
+ "98002",
+ 298900,
+ 2014
+ ],
+ [
+ "98002",
+ 300000,
+ 2010
+ ],
+ [
+ "98002",
+ 343000,
+ 2009
+ ],
+ [
+ "98002",
+ 260000,
+ 2006
+ ],
+ [
+ "98002",
+ 223990,
+ 2013
+ ],
+ [
+ "98002",
+ 250000,
+ 2012
+ ],
+ [
+ "98002",
+ 259000,
+ 2011
+ ],
+ [
+ "98002",
+ 335900,
+ 2014
+ ]
+ ],
+ "hovertemplate": "zipcode=%{customdata[0]} lat=%{lat} long=%{lon} price=%{customdata[1]} yr_built=%{customdata[2]} ",
+ "lat": {
+ "bdata": "Ad4CCYqnR0AQ6bevA6dHQFMFo5I6qUdAz/dT46WjR0D3deCcEa1HQDAqqRPQpEdAUwWjkjqpR0BWn6ut2KdHQIEmwoanp0dAvjCZKhilR0C/fR04Z6RHQABvgQTFp0dAgZVDi2ynR0AeFmpN86ZHQCzUmuYdp0dAZRniWBenR0B/+zpwzqhHQN0kBoGVo0dAP8bctYSkR0CsHFpkO6dHQET67evAqUdARPrt68CpR0BKDAIrh6ZHQOtztRX7o0dA54wo7Q2mR0BUUiegiahHQB1aZDvfp0dA5WGh1jSnR0AQejarPqdHQJqZmZmZqUdAwFsgQfGjR0Coxks3ialHQDy9UpYhpkdASS7/If2mR0ApyxDHuqhHQBSuR+F6pEdAK4cW2c6nR0AibHh6paRHQLG/7J48pEdAexSuR+GqR0ARx7q4jaZHQGsr9pfdo0dAzczMzMykR0BN845TdKRHQFYOLbKdp0dANjy9UpapR0CBJsKGp6dHQLAD54wopUdA5BQdyeWnR0AQWDm0yKZHQMKGp1fKqkdA2qz6XG2lR0AQejarPqdHQMcpOpLLp0dARPrt68CpR0BHA3gLJKhHQIV80LNZpUdA+n5qvHSjR0C+nxov3aRHQDj4wmSqqEdAxyk6ksunR0Di6ZWyDKlHQJAxdy0hp0dAJuSDns2qR0D4U+Olm6RHQNejcD0Kp0dAqmBUUieoR0AFNBE2PKVHQKwcWmQ7p0dAvjCZKhitR0C9UpYhjqVHQD0K16NwpUdAg8DKoUWmR0BEaW/whalHQKkT0ETYqEdAorQ3+MKkR0AyVTAqqatHQKs+V1uxp0dAPZtVn6ulR0BNhA1Pr6RHQP7UeOkmqUdA16NwPQqnR0DwhclUwahHQI/C9Shcp0dAFK5H4XqkR0Byio7k8qdHQL4wmSoYpUdAaQBvgQSlR0BpAG+BBKVHQEku/yH9pkdAejarPlejR0CYbhKDwKpHQB/0bFZ9pkdAFK5H4XqkR0Av3SQGgaVHQNV46SYxqEdAFK5H4XqkR0AUP8bctaRHQB+F61G4pkdAPQrXo3ClR0BfKcsQx6pHQCuHFtnOp0dA6bevA+ekR0CuR+F6FKZHQFr1udqKpUdAylTBqKSmR0A2qz5XW6lHQPjCZKpgpEdA5IOezaqnR0Cx4emVsqRHQOVhodY0p0dApN++DpyjR0AnMQisHKpHQBKDwMqhpUdACfmgZ7OqR0C/fR04Z6RHQE2EDU+vpEdAXW3F/rKrR0Am5IOezapHQLx0kxgEpkdA9pfdk4elR0DOqs/VVqRHQAfwFkhQpEdAgSbChqenR0DNO07RkaRHQCzUmuYdp0dAMQisHFqkR0A6I0p7g6dHQCKOdXEbpUdANqs+V1upR0BlqmBUUqdHQEku/yH9pkdAFNBE2PCkR0CGONbFbaRHQHEbDeAtqEdAgSbChqenR0AK16NwPapHQAWjkjoBpUdA001iEFipR0CJ0t7gC6tHQCL99nXgpEdAO99PjZemR0C8lpAPeqZHQNnO91PjpUdAPL1SliGmR0AQWDm0yKZHQK+UZYhjpUdAdnEbDeClR0CiRbbz/aRHQOPHmLuWqEdATDeJQWClR0AQejarPqdHQNk9eViopUdAlrIMcayjR0CwcmiR7aRHQMWPMXctqUdAcM6I0t6oR0AxmSoYlaRHQGFUUiegqUdA78nDQq2pR0C8dJMYBKZHQOxRuB6Fo0dArfpcbcWmR0Dbiv1l96RHQD81XrpJpEdAqoJRSZ2oR0AB3gIJiqdHQM07TtGRpEdAdQKaCBumR0Ce76fGS6dHQAdfmEwVpEdAI0p7gy+sR0CJ0t7gC6tHQFyPwvUorEdAwOyePCysR0A+eVioNa1HQGkAb4EErUdAI0p7gy+sR0AVHcnlP6xHQE5iEFg5rEdA93XgnBGtR0Akl/+QfqNHQOoENBE2rEdAI0p7gy+sR0DqBDQRNqxHQL4wmSoYrUdAidLe4AurR0AjSnuDL6xHQMDsnjwsrEdAldQJaCKsR0CJ0t7gC6tHQMDsnjwsrEdAPujZrPqsR0Dl0CLb+aZHQInS3uALq0dAPzVeukmsR0AVHcnlP6xHQLAD54worUdAXI/C9SisR0A=",
+ "dtype": "f8"
+ },
+ "legendgroup": "98002",
+ "lon": {
+ "bdata": "PQrXo3CNXsDLoUW2841ewOf7qfHSjV7AEoPAyqGNXsAhsHJokY1ewCGwcmiRjV7A9ihcj8KNXsBoke18P41ewD0K16NwjV7AoBov3SSOXsDn+6nx0o1ewCGwcmiRjV7ATDeJQWCNXsDn+6nx0o1ewNnO91PjjV7AoBov3SSOXsAhsHJokY1ewIXrUbgejV7ArkfhehSOXsCR7Xw/NY5ewARWDi2yjV7ABFYOLbKNXsBYObTIdo5ewARWDi2yjV7AhetRuB6FXsAEVg4tso1ewEw3iUFgjV7Ag8DKoUWOXsBMN4lBYI1ewIXrUbgejV7AZmZmZmaOXsBMN4lBYI1ewHWTGARWjl7A9ihcj8KNXsAhsHJokY1ewC/dJAaBjV7ASgwCK4eOXsAGgZVDi4xewNv5fmq8jF7A9ihcj8KNXsDLoUW2841ewC/dJAaBjV7Ay6FFtvONXsCDwMqhRY5ewNnO91PjjV7AaJHtfD+NXsDLoUW2841ewARWDi2yjV7AWmQ730+NXsDZzvdT441ewNnO91PjjV7A+FPjpZuMXsCDwMqhRY5ewGZmZmZmjl7AL90kBoGNXsBaZDvfT41ewPhT46WbjF7AL90kBoGNXsAGgZVDi4xewD0K16NwjV7ALbKd76eOXsBMN4lBYI1ewOf7qfHSjV7A5/up8dKNXsDLoUW2841ewPYoXI/CjV7AIbByaJGNXsC8dJMYBI5ewLx0kxgEjl7AEoPAyqGNXsD2KFyPwo1ewLx0kxgEjl7AO99PjZeOXsDZzvdT441ewBKDwMqhjV7AIbByaJGNXsC8dJMYBI5ewCGwcmiRjV7ASgwCK4eOXsDZzvdT441ewJMYBFYOjV7Ay6FFtvONXsCuR+F6FI5ewNnO91PjjV7Ad76fGi+NXsD2KFyPwo1ewJHtfD81jl7ArkfhehSOXsCuR+F6FI5ewK5H4XoUjl7AWmQ730+NXsAEVg4tso1ewDvfT42Xjl7AaJHtfD+NXsD2KFyPwo1ewFpkO99PjV7Avp8aL92MXsA9CtejcI1ewHWTGARWjl7ABoGVQ4uMXsD2KFyPwo1ewD0K16NwjV7Ay6FFtvONXsCDwMqhRY5ewBSuR+F6jF7A5/up8dKNXsD2KFyPwo1ewOkmMQisjF7Ad76fGi+NXsBMN4lBYI1ewLx0kxgEjl7AIbByaJGNXsC8dJMYBI5ewMuhRbbzjV7A9ihcj8KNXsCF61G4Ho1ewKAaL90kjl7Ay6FFtvONXsD2KFyPwo1ewGZmZmZmjl7ArkfhehSOXsCwcmiR7YxewGiR7Xw/jV7Ag8DKoUWOXsD4U+Olm4xewHe+nxovjV7AsHJoke2MXsB3vp8aL41ewLx0kxgEjl7AvHSTGASOXsCgGi/dJI5ewJHtfD81jl7Ay6FFtvONXsA/NV66SYxewCGwcmiRjV7ATDeJQWCNXsCuR+F6FI5ewKAaL90kjl7A5/up8dKNXsASg8DKoY1ewK5H4XoUjl7A5/up8dKNXsCDwMqhRY5ewLx0kxgEjl7Ag8DKoUWOXsCgGi/dJI5ewPYoXI/CjV7AZmZmZmaOXsAhsHJokY1ewLx0kxgEjl7AFK5H4XqMXsDZzvdT441ewFg5tMh2jl7AhetRuB6NXsDLoUW2841ewIXrUbgejV7AIbByaJGNXsAhsHJokY1ewFpkO99PjV7ATDeJQWCNXsBKDAIrh45ewKJFtvP9jF7AoBov3SSOXsCgGi/dJI5ewM3MzMzMjF7APQrXo3CNXsASg8DKoY1ewK5H4XoUjl7ASgwCK4eOXsDZzvdT441ewHWTGARWjl7ATDeJQWCNXsDn+6nx0o1ewD0K16NwjV7A9ihcj8KNXsAv3SQGgY1ewD0K16NwjV7A9ihcj8KNXsDZzvdT441ewD0K16NwjV7AL90kBoGNXsDn+6nx0o1ewARWDi2yjV7APQrXo3CNXsAEVg4tso1ewCGwcmiRjV7AL90kBoGNXsDZzvdT441ewARWDi2yjV7A2c73U+ONXsD2KFyPwo1ewEw3iUFgjV7AEoPAyqGNXsAv3SQGgY1ewNnO91PjjV7Ay6FFtvONXsDZzvdT441ewC/dJAaBjV7ATDeJQWCNXsA=",
+ "dtype": "f8"
+ },
+ "marker": {
+ "color": "#636efa"
+ },
+ "mode": "markers",
+ "name": "98002",
+ "showlegend": true,
+ "subplot": "mapbox",
+ "type": "scattermapbox"
+ },
+ {
+ "customdata": [
+ [
+ "98032",
+ 247500,
+ 1967
+ ],
+ [
+ "98032",
+ 258000,
+ 1960
+ ],
+ [
+ "98032",
+ 260000,
+ 1978
+ ],
+ [
+ "98032",
+ 205000,
+ 1960
+ ],
+ [
+ "98032",
+ 299000,
+ 1958
+ ],
+ [
+ "98032",
+ 318888,
+ 1973
+ ],
+ [
+ "98032",
+ 250000,
+ 1968
+ ],
+ [
+ "98032",
+ 285000,
+ 1962
+ ],
+ [
+ "98032",
+ 321000,
+ 1978
+ ],
+ [
+ "98032",
+ 140000,
+ 1959
+ ],
+ [
+ "98032",
+ 229900,
+ 1981
+ ],
+ [
+ "98032",
+ 248000,
+ 1966
+ ],
+ [
+ "98032",
+ 223000,
+ 1961
+ ],
+ [
+ "98032",
+ 240000,
+ 1969
+ ],
+ [
+ "98032",
+ 123300,
+ 1956
+ ],
+ [
+ "98032",
+ 176500,
+ 1910
+ ],
+ [
+ "98032",
+ 234000,
+ 1961
+ ],
+ [
+ "98032",
+ 299000,
+ 1982
+ ],
+ [
+ "98032",
+ 240000,
+ 1977
+ ],
+ [
+ "98032",
+ 240000,
+ 1959
+ ],
+ [
+ "98032",
+ 221700,
+ 1957
+ ],
+ [
+ "98032",
+ 249000,
+ 1962
+ ],
+ [
+ "98032",
+ 215000,
+ 1960
+ ],
+ [
+ "98032",
+ 260000,
+ 1962
+ ],
+ [
+ "98032",
+ 281000,
+ 1945
+ ],
+ [
+ "98032",
+ 247000,
+ 1968
+ ],
+ [
+ "98032",
+ 320000,
+ 1978
+ ],
+ [
+ "98032",
+ 215000,
+ 1978
+ ],
+ [
+ "98032",
+ 330000,
+ 1978
+ ],
+ [
+ "98032",
+ 250000,
+ 1978
+ ],
+ [
+ "98032",
+ 285900,
+ 1961
+ ],
+ [
+ "98032",
+ 226450,
+ 1944
+ ],
+ [
+ "98032",
+ 243400,
+ 1959
+ ],
+ [
+ "98032",
+ 231000,
+ 1995
+ ],
+ [
+ "98032",
+ 215000,
+ 1967
+ ],
+ [
+ "98032",
+ 158550,
+ 1961
+ ],
+ [
+ "98032",
+ 203000,
+ 1970
+ ],
+ [
+ "98032",
+ 237000,
+ 1979
+ ],
+ [
+ "98032",
+ 277000,
+ 1968
+ ],
+ [
+ "98032",
+ 327500,
+ 1971
+ ],
+ [
+ "98032",
+ 263000,
+ 1977
+ ],
+ [
+ "98032",
+ 296500,
+ 1978
+ ],
+ [
+ "98032",
+ 310000,
+ 1966
+ ],
+ [
+ "98032",
+ 163000,
+ 1996
+ ],
+ [
+ "98032",
+ 320000,
+ 1978
+ ],
+ [
+ "98032",
+ 182000,
+ 1959
+ ],
+ [
+ "98032",
+ 249000,
+ 2005
+ ],
+ [
+ "98032",
+ 250000,
+ 1959
+ ],
+ [
+ "98032",
+ 319000,
+ 1978
+ ],
+ [
+ "98032",
+ 374900,
+ 1982
+ ],
+ [
+ "98032",
+ 249000,
+ 1909
+ ],
+ [
+ "98032",
+ 270500,
+ 1960
+ ],
+ [
+ "98032",
+ 400000,
+ 1973
+ ],
+ [
+ "98032",
+ 250000,
+ 1967
+ ],
+ [
+ "98032",
+ 201500,
+ 1959
+ ],
+ [
+ "98032",
+ 165000,
+ 1970
+ ],
+ [
+ "98032",
+ 280927,
+ 1977
+ ],
+ [
+ "98032",
+ 268000,
+ 1966
+ ],
+ [
+ "98032",
+ 275000,
+ 1962
+ ],
+ [
+ "98032",
+ 290000,
+ 1980
+ ],
+ [
+ "98032",
+ 85000,
+ 1939
+ ],
+ [
+ "98032",
+ 235000,
+ 1939
+ ],
+ [
+ "98032",
+ 290000,
+ 1959
+ ],
+ [
+ "98032",
+ 244615,
+ 1999
+ ],
+ [
+ "98032",
+ 305000,
+ 1968
+ ],
+ [
+ "98032",
+ 545000,
+ 1964
+ ],
+ [
+ "98032",
+ 320000,
+ 1966
+ ],
+ [
+ "98032",
+ 268500,
+ 1959
+ ],
+ [
+ "98032",
+ 165000,
+ 1978
+ ],
+ [
+ "98032",
+ 260000,
+ 1963
+ ],
+ [
+ "98032",
+ 336950,
+ 1978
+ ],
+ [
+ "98032",
+ 245700,
+ 1968
+ ],
+ [
+ "98032",
+ 300000,
+ 1967
+ ],
+ [
+ "98032",
+ 245000,
+ 1981
+ ],
+ [
+ "98032",
+ 185000,
+ 1959
+ ],
+ [
+ "98032",
+ 287000,
+ 1977
+ ],
+ [
+ "98032",
+ 180000,
+ 1959
+ ],
+ [
+ "98032",
+ 262500,
+ 1979
+ ],
+ [
+ "98032",
+ 241000,
+ 1981
+ ],
+ [
+ "98032",
+ 336000,
+ 1967
+ ],
+ [
+ "98032",
+ 240000,
+ 1950
+ ],
+ [
+ "98032",
+ 265000,
+ 1962
+ ],
+ [
+ "98032",
+ 129000,
+ 1949
+ ],
+ [
+ "98032",
+ 225000,
+ 1963
+ ],
+ [
+ "98032",
+ 205000,
+ 1959
+ ],
+ [
+ "98032",
+ 374000,
+ 1982
+ ],
+ [
+ "98032",
+ 380000,
+ 1965
+ ],
+ [
+ "98032",
+ 309000,
+ 1968
+ ],
+ [
+ "98032",
+ 269950,
+ 1977
+ ],
+ [
+ "98032",
+ 270000,
+ 1973
+ ],
+ [
+ "98032",
+ 265000,
+ 1963
+ ],
+ [
+ "98032",
+ 250000,
+ 1961
+ ],
+ [
+ "98032",
+ 227000,
+ 1954
+ ],
+ [
+ "98032",
+ 270000,
+ 1963
+ ],
+ [
+ "98032",
+ 169000,
+ 1978
+ ],
+ [
+ "98032",
+ 279950,
+ 1978
+ ],
+ [
+ "98032",
+ 273500,
+ 1967
+ ],
+ [
+ "98032",
+ 242000,
+ 1947
+ ],
+ [
+ "98032",
+ 185000,
+ 1958
+ ],
+ [
+ "98032",
+ 100000,
+ 1912
+ ],
+ [
+ "98032",
+ 202000,
+ 1907
+ ],
+ [
+ "98032",
+ 324900,
+ 1988
+ ],
+ [
+ "98032",
+ 85000,
+ 1947
+ ],
+ [
+ "98032",
+ 209950,
+ 1960
+ ],
+ [
+ "98032",
+ 225000,
+ 1926
+ ],
+ [
+ "98032",
+ 229950,
+ 1944
+ ],
+ [
+ "98032",
+ 160000,
+ 1912
+ ],
+ [
+ "98032",
+ 135000,
+ 1959
+ ],
+ [
+ "98032",
+ 240000,
+ 1969
+ ],
+ [
+ "98032",
+ 280000,
+ 1995
+ ],
+ [
+ "98032",
+ 206000,
+ 1963
+ ],
+ [
+ "98032",
+ 287500,
+ 1985
+ ],
+ [
+ "98032",
+ 250200,
+ 1959
+ ],
+ [
+ "98032",
+ 239000,
+ 1954
+ ],
+ [
+ "98032",
+ 245000,
+ 1963
+ ],
+ [
+ "98032",
+ 180000,
+ 1959
+ ],
+ [
+ "98032",
+ 268000,
+ 1980
+ ],
+ [
+ "98032",
+ 265000,
+ 1960
+ ],
+ [
+ "98032",
+ 178500,
+ 1961
+ ],
+ [
+ "98032",
+ 215000,
+ 1967
+ ],
+ [
+ "98032",
+ 278000,
+ 1960
+ ],
+ [
+ "98032",
+ 299500,
+ 1980
+ ],
+ [
+ "98032",
+ 234000,
+ 1955
+ ],
+ [
+ "98032",
+ 324950,
+ 2012
+ ],
+ [
+ "98032",
+ 375000,
+ 2012
+ ]
+ ],
+ "hovertemplate": "zipcode=%{customdata[0]} lat=%{lat} long=%{lon} price=%{customdata[1]} yr_built=%{customdata[2]} ",
+ "lat": {
+ "bdata": "WYY41sWtR0BE+u3rwLFHQHS1FfvLrkdANxrAWyCxR0BhMlUwKrFHQMpUwaikrkdADi2yne+vR0A5RUdy+a9HQGaIY13crkdAOUVHcvmvR0Ar9pfdk69HQC0hH/RsrkdAZ9XnaiuuR0DnHafoSK5HQB1aZDvfr0dADi2yne+vR0DKMsSxLq5HQLyWkA96rkdA1lbsL7uvR0A4Z0Rpb7BHQNJvXwfOsUdAWKg1zTuuR0DUmuYdp7BHQBsv3SQGsUdAJJf/kH6zR0C5/If0269HQA8LtaZ5r0dAkKD4MeauR0BHcvkP6a9HQFdbsb/srkdAYcPTK2WxR0BVwaikTrBHQHGsi9tosEdAnDOitDewR0DkFB3J5a9HQJp3nKIjsUdA8fRKWYawR0DHuriNBrBHQPOOU3Qkr0dAke18PzWuR0AukKD4Ma5HQHWTGARWrkdArthfdk+uR0D8GHPXErJHQOQUHcnlr0dA8IXJVMGwR0Dy0k1iELBHQFTjpZvEsEdAZDvfT42vR0CfPCzUmq5HQGPuWkI+sEdAZDvfT42vR0BLWYY41q1HQDhnRGlvsEdAfoy5awmxR0D1SlmGOK5HQIPAyqFFrkdAETY8vVKuR0BUUiegibBHQLyWkA96rkdAf/s6cM6wR0B/+zpwzrBHQK62Yn/ZrUdA0gDeAgmyR0DmriXkg65HQPaX3ZOHrUdAETY8vVKuR0BHcvkP6a9HQAK8BRIUr0dAZohjXdyuR0BHcvkP6a9HQGTMXUvIr0dAnKIjufyvR0D1udqK/a1HQI/C9Shcr0dAgnNGlPauR0Ar9pfdk69HQPT91HjprkdAoImw4emtR0BYyjLEsa5HQEtZhjjWrUdADi2yne+vR0CLbOf7qbFHQJwzorQ3sEdAuK8D54ywR0C8lpAPeq5HQIzbaABvsUdAV1uxv+yuR0COdXEbDbBHQC1DHOvirkdAVFInoImwR0AOT6+UZbBHQGTMXUvIr0dAyeU/pN+uR0CdEaW9wa9HQJ0Rpb3Br0dAqMZLN4mxR0CitDf4wrRHQFUwKqkTsEdA78nDQq2xR0Bj7lpCPrBHQNnO91PjrUdAJ6CJsOGxR0BSuB6F67FHQIBIv30dsEdAYVRSJ6CxR0BhVFInoLFHQMgHPZtVr0dAjZduEoOwR0BnRGlv8K1HQCqpE9BEsEdAZDvfT42vR0A3GsBbILFHQBlz1xLysUdAEFg5tMiuR0AAb4EExa9HQNcS8kHPrkdAYTJVMCqxR0BTliGOdbFHQOSDns2qr0dAOiNKe4OvR0BIUPwYc69HQH0/NV66sUdA1zTvOEWvR0CsHFpkO69HQA==",
+ "dtype": "f8"
+ },
+ "legendgroup": "98032",
+ "lon": {
+ "bdata": "fT81XrqRXsD8qfHSTZJewG8Sg8DKkV7A0SLb+X6SXsAZBFYOLZJewFK4HoXrkV7AmpmZmZmRXsCLbOf7qZFewFK4HoXrkV7AiUFg5dCSXsB9PzVeupFewArXo3A9kl7AtMh2vp+SXsD8qfHSTZJewG3n+6nxkl7AEFg5tMiOXsDD9Shcj5JewIts5/upkV7AexSuR+GSXsAIrBxaZJNewDVeukkMkl7AGQRWDi2SXsDRItv5fpJewN9PjZdukl7AtvP91HiRXsDD9Shcj5JewArXo3A9kl7AYOXQItuRXsAK16NwPZJewH0/NV66kV7A30+Nl26SXsDJdr6fGo9ewPp+arx0k17ACKwcWmSTXsDRItv5fpJewN9PjZdukl7A0SLb+X6SXsDJdr6fGo9ewGDl0CLbkV7ARIts5/uRXsCoxks3iZFewH0/NV66kV7A0SLb+X6SXsDl0CLb+Y5ewBkEVg4tkl7A7nw/NV6SXsBvEoPAypFewEJg5dAik17ACtejcD2SXsBvEoPAypFewOXQItv5jl7Aw/UoXI+SXsAbL90kBpFewMP1KFyPkl7A30+Nl26SXsCYbhKDwJJewKjGSzeJkV7ACtejcD2SXsBSuB6F65FewH0/NV66kV7AZDvfT42PXsBkO99PjY9ewBkEVg4tkl7ArBxaZDuPXsBg5dAi25FewMP1KFyPkl7A7nw/NV6SXsB7FK5H4ZJewDVeukkMkl7Aw/UoXI+SXsAK16NwPZJewNEi2/l+kl7AtMh2vp+SXsDRItv5fpJewF66SQwCk17A30+Nl26SXsBeukkMApNewIts5/upkV7A30+Nl26SXsAZBFYOLZJewN9PjZdukl7Ai2zn+6mRXsDl0CLb+Y5ewO58PzVekl7A+n5qvHSTXsDTTWIQWJFewFK4HoXrkV7A30+Nl26SXsB9PzVeupFewArXo3A9kl7ANV66SQySXsAZBFYOLZJewJqZmZmZkV7ANV66SQySXsD8qfHSTZJewPyp8dJNkl7ARIts5/uRXsAMAiuHFpFewF66SQwCk17A5dAi2/mOXsC6SQwCK49ewPyp8dJNkl7AyXa+nxqPXsDJdr6fGo9ewKwcWmQ7j17AyXa+nxqPXsDl0CLb+Y5ewF66SQwCk17Aw/UoXI+SXsBEi2zn+5FewO58PzVekl7AqMZLN4mRXsDufD81XpJewCcxCKwckl7AtMh2vp+SXsB7FK5H4ZJewFK4HoXrkV7A30+Nl26SXsDufD81XpJewH0/NV66kV7A0SLb+X6SXsCamZmZmZFewBkEVg4tkl7A/Knx0k2SXsDufD81XpJewA==",
+ "dtype": "f8"
+ },
+ "marker": {
+ "color": "#EF553B"
+ },
+ "mode": "markers",
+ "name": "98032",
+ "showlegend": true,
+ "subplot": "mapbox",
+ "type": "scattermapbox"
+ },
+ {
+ "customdata": [
+ [
+ "98168",
+ 171800,
+ 1950
+ ],
+ [
+ "98168",
+ 280000,
+ 1923
+ ],
+ [
+ "98168",
+ 340500,
+ 1947
+ ],
+ [
+ "98168",
+ 215000,
+ 1943
+ ],
+ [
+ "98168",
+ 240500,
+ 1997
+ ],
+ [
+ "98168",
+ 269950,
+ 2002
+ ],
+ [
+ "98168",
+ 249950,
+ 1952
+ ],
+ [
+ "98168",
+ 210000,
+ 1950
+ ],
+ [
+ "98168",
+ 175000,
+ 1947
+ ],
+ [
+ "98168",
+ 282000,
+ 1956
+ ],
+ [
+ "98168",
+ 245000,
+ 1963
+ ],
+ [
+ "98168",
+ 185000,
+ 1932
+ ],
+ [
+ "98168",
+ 260000,
+ 1940
+ ],
+ [
+ "98168",
+ 283000,
+ 1942
+ ],
+ [
+ "98168",
+ 320000,
+ 1939
+ ],
+ [
+ "98168",
+ 225000,
+ 1962
+ ],
+ [
+ "98168",
+ 262000,
+ 1997
+ ],
+ [
+ "98168",
+ 173000,
+ 1947
+ ],
+ [
+ "98168",
+ 170000,
+ 1947
+ ],
+ [
+ "98168",
+ 290000,
+ 1929
+ ],
+ [
+ "98168",
+ 300000,
+ 1933
+ ],
+ [
+ "98168",
+ 325000,
+ 1966
+ ],
+ [
+ "98168",
+ 231500,
+ 1941
+ ],
+ [
+ "98168",
+ 340000,
+ 1949
+ ],
+ [
+ "98168",
+ 192500,
+ 1926
+ ],
+ [
+ "98168",
+ 248000,
+ 1959
+ ],
+ [
+ "98168",
+ 82500,
+ 1951
+ ],
+ [
+ "98168",
+ 275000,
+ 1926
+ ],
+ [
+ "98168",
+ 284000,
+ 1960
+ ],
+ [
+ "98168",
+ 230000,
+ 1961
+ ],
+ [
+ "98168",
+ 300000,
+ 1991
+ ],
+ [
+ "98168",
+ 179900,
+ 1943
+ ],
+ [
+ "98168",
+ 166000,
+ 1957
+ ],
+ [
+ "98168",
+ 305000,
+ 1962
+ ],
+ [
+ "98168",
+ 250000,
+ 1934
+ ],
+ [
+ "98168",
+ 239950,
+ 1941
+ ],
+ [
+ "98168",
+ 283000,
+ 1947
+ ],
+ [
+ "98168",
+ 234500,
+ 1954
+ ],
+ [
+ "98168",
+ 265000,
+ 1961
+ ],
+ [
+ "98168",
+ 220000,
+ 1952
+ ],
+ [
+ "98168",
+ 275000,
+ 1944
+ ],
+ [
+ "98168",
+ 230000,
+ 1986
+ ],
+ [
+ "98168",
+ 299950,
+ 1958
+ ],
+ [
+ "98168",
+ 308000,
+ 1942
+ ],
+ [
+ "98168",
+ 145000,
+ 1954
+ ],
+ [
+ "98168",
+ 189000,
+ 1944
+ ],
+ [
+ "98168",
+ 226950,
+ 1957
+ ],
+ [
+ "98168",
+ 325000,
+ 1963
+ ],
+ [
+ "98168",
+ 200000,
+ 1960
+ ],
+ [
+ "98168",
+ 122000,
+ 1946
+ ],
+ [
+ "98168",
+ 205000,
+ 1954
+ ],
+ [
+ "98168",
+ 84000,
+ 1949
+ ],
+ [
+ "98168",
+ 220000,
+ 1951
+ ],
+ [
+ "98168",
+ 210000,
+ 1951
+ ],
+ [
+ "98168",
+ 228950,
+ 1942
+ ],
+ [
+ "98168",
+ 135000,
+ 1942
+ ],
+ [
+ "98168",
+ 198500,
+ 1932
+ ],
+ [
+ "98168",
+ 360000,
+ 1931
+ ],
+ [
+ "98168",
+ 235000,
+ 1934
+ ],
+ [
+ "98168",
+ 235000,
+ 1959
+ ],
+ [
+ "98168",
+ 150000,
+ 1979
+ ],
+ [
+ "98168",
+ 245000,
+ 1962
+ ],
+ [
+ "98168",
+ 160000,
+ 1933
+ ],
+ [
+ "98168",
+ 203000,
+ 1953
+ ],
+ [
+ "98168",
+ 296000,
+ 1953
+ ],
+ [
+ "98168",
+ 173250,
+ 1936
+ ],
+ [
+ "98168",
+ 318000,
+ 1967
+ ],
+ [
+ "98168",
+ 278000,
+ 1960
+ ],
+ [
+ "98168",
+ 300000,
+ 2007
+ ],
+ [
+ "98168",
+ 225000,
+ 1944
+ ],
+ [
+ "98168",
+ 232000,
+ 1936
+ ],
+ [
+ "98168",
+ 239000,
+ 1950
+ ],
+ [
+ "98168",
+ 276500,
+ 1942
+ ],
+ [
+ "98168",
+ 150550,
+ 1945
+ ],
+ [
+ "98168",
+ 207000,
+ 1952
+ ],
+ [
+ "98168",
+ 294000,
+ 2003
+ ],
+ [
+ "98168",
+ 380000,
+ 2013
+ ],
+ [
+ "98168",
+ 240000,
+ 1957
+ ],
+ [
+ "98168",
+ 600000,
+ 2012
+ ],
+ [
+ "98168",
+ 170000,
+ 1948
+ ],
+ [
+ "98168",
+ 203000,
+ 1951
+ ],
+ [
+ "98168",
+ 235000,
+ 1962
+ ],
+ [
+ "98168",
+ 217000,
+ 1942
+ ],
+ [
+ "98168",
+ 235000,
+ 1980
+ ],
+ [
+ "98168",
+ 190000,
+ 1943
+ ],
+ [
+ "98168",
+ 272000,
+ 1934
+ ],
+ [
+ "98168",
+ 199950,
+ 1938
+ ],
+ [
+ "98168",
+ 261000,
+ 1941
+ ],
+ [
+ "98168",
+ 260000,
+ 1958
+ ],
+ [
+ "98168",
+ 170000,
+ 1950
+ ],
+ [
+ "98168",
+ 165000,
+ 1965
+ ],
+ [
+ "98168",
+ 123000,
+ 1964
+ ],
+ [
+ "98168",
+ 118125,
+ 1944
+ ],
+ [
+ "98168",
+ 212000,
+ 1944
+ ],
+ [
+ "98168",
+ 330000,
+ 1962
+ ],
+ [
+ "98168",
+ 324950,
+ 1946
+ ],
+ [
+ "98168",
+ 174000,
+ 1922
+ ],
+ [
+ "98168",
+ 216000,
+ 1942
+ ],
+ [
+ "98168",
+ 305000,
+ 1942
+ ],
+ [
+ "98168",
+ 291000,
+ 1942
+ ],
+ [
+ "98168",
+ 200000,
+ 1942
+ ],
+ [
+ "98168",
+ 250000,
+ 1929
+ ],
+ [
+ "98168",
+ 285950,
+ 1948
+ ],
+ [
+ "98168",
+ 339950,
+ 1981
+ ],
+ [
+ "98168",
+ 285000,
+ 1962
+ ],
+ [
+ "98168",
+ 185000,
+ 1928
+ ],
+ [
+ "98168",
+ 207000,
+ 1954
+ ],
+ [
+ "98168",
+ 175000,
+ 1962
+ ],
+ [
+ "98168",
+ 224000,
+ 1930
+ ],
+ [
+ "98168",
+ 293550,
+ 1965
+ ],
+ [
+ "98168",
+ 287000,
+ 1933
+ ],
+ [
+ "98168",
+ 312000,
+ 1937
+ ],
+ [
+ "98168",
+ 286000,
+ 1954
+ ],
+ [
+ "98168",
+ 255000,
+ 1952
+ ],
+ [
+ "98168",
+ 245000,
+ 1959
+ ],
+ [
+ "98168",
+ 175000,
+ 1925
+ ],
+ [
+ "98168",
+ 235000,
+ 1930
+ ],
+ [
+ "98168",
+ 213500,
+ 1961
+ ],
+ [
+ "98168",
+ 309000,
+ 1961
+ ],
+ [
+ "98168",
+ 250000,
+ 1960
+ ],
+ [
+ "98168",
+ 243000,
+ 1970
+ ],
+ [
+ "98168",
+ 258000,
+ 1916
+ ],
+ [
+ "98168",
+ 292000,
+ 1955
+ ],
+ [
+ "98168",
+ 124000,
+ 1949
+ ],
+ [
+ "98168",
+ 224000,
+ 1949
+ ],
+ [
+ "98168",
+ 352000,
+ 1964
+ ],
+ [
+ "98168",
+ 330000,
+ 2013
+ ],
+ [
+ "98168",
+ 270000,
+ 1959
+ ],
+ [
+ "98168",
+ 309000,
+ 1962
+ ],
+ [
+ "98168",
+ 221900,
+ 1939
+ ],
+ [
+ "98168",
+ 196700,
+ 1954
+ ],
+ [
+ "98168",
+ 150000,
+ 1949
+ ],
+ [
+ "98168",
+ 245000,
+ 1946
+ ],
+ [
+ "98168",
+ 309950,
+ 1950
+ ],
+ [
+ "98168",
+ 134000,
+ 1942
+ ],
+ [
+ "98168",
+ 406500,
+ 1966
+ ],
+ [
+ "98168",
+ 265000,
+ 1928
+ ],
+ [
+ "98168",
+ 150000,
+ 1954
+ ],
+ [
+ "98168",
+ 92000,
+ 1947
+ ],
+ [
+ "98168",
+ 292000,
+ 1988
+ ],
+ [
+ "98168",
+ 250000,
+ 1997
+ ],
+ [
+ "98168",
+ 255000,
+ 1965
+ ],
+ [
+ "98168",
+ 394950,
+ 2002
+ ],
+ [
+ "98168",
+ 264950,
+ 1959
+ ],
+ [
+ "98168",
+ 205000,
+ 1941
+ ],
+ [
+ "98168",
+ 202000,
+ 1946
+ ],
+ [
+ "98168",
+ 270000,
+ 1961
+ ],
+ [
+ "98168",
+ 290000,
+ 1942
+ ],
+ [
+ "98168",
+ 195000,
+ 1959
+ ],
+ [
+ "98168",
+ 240000,
+ 1954
+ ],
+ [
+ "98168",
+ 319000,
+ 1964
+ ],
+ [
+ "98168",
+ 250000,
+ 1931
+ ],
+ [
+ "98168",
+ 192500,
+ 1900
+ ],
+ [
+ "98168",
+ 218000,
+ 1956
+ ],
+ [
+ "98168",
+ 206000,
+ 1944
+ ],
+ [
+ "98168",
+ 225000,
+ 1940
+ ],
+ [
+ "98168",
+ 320000,
+ 1960
+ ],
+ [
+ "98168",
+ 215000,
+ 1947
+ ],
+ [
+ "98168",
+ 200000,
+ 1949
+ ],
+ [
+ "98168",
+ 225000,
+ 1947
+ ],
+ [
+ "98168",
+ 214950,
+ 1954
+ ],
+ [
+ "98168",
+ 234550,
+ 1946
+ ],
+ [
+ "98168",
+ 209977,
+ 1948
+ ],
+ [
+ "98168",
+ 205000,
+ 1944
+ ],
+ [
+ "98168",
+ 245000,
+ 1933
+ ],
+ [
+ "98168",
+ 335000,
+ 1945
+ ],
+ [
+ "98168",
+ 229000,
+ 1941
+ ],
+ [
+ "98168",
+ 235000,
+ 1948
+ ],
+ [
+ "98168",
+ 209000,
+ 1962
+ ],
+ [
+ "98168",
+ 327200,
+ 1942
+ ],
+ [
+ "98168",
+ 244500,
+ 1939
+ ],
+ [
+ "98168",
+ 248500,
+ 1958
+ ],
+ [
+ "98168",
+ 315000,
+ 1937
+ ],
+ [
+ "98168",
+ 161000,
+ 1954
+ ],
+ [
+ "98168",
+ 220000,
+ 1954
+ ],
+ [
+ "98168",
+ 259000,
+ 1964
+ ],
+ [
+ "98168",
+ 270000,
+ 1962
+ ],
+ [
+ "98168",
+ 200000,
+ 1949
+ ],
+ [
+ "98168",
+ 285000,
+ 1953
+ ],
+ [
+ "98168",
+ 260000,
+ 1954
+ ],
+ [
+ "98168",
+ 295500,
+ 1933
+ ],
+ [
+ "98168",
+ 279000,
+ 1952
+ ],
+ [
+ "98168",
+ 350000,
+ 1947
+ ],
+ [
+ "98168",
+ 246000,
+ 1953
+ ],
+ [
+ "98168",
+ 201000,
+ 1962
+ ],
+ [
+ "98168",
+ 294000,
+ 1957
+ ],
+ [
+ "98168",
+ 290000,
+ 1942
+ ],
+ [
+ "98168",
+ 235000,
+ 1941
+ ],
+ [
+ "98168",
+ 300000,
+ 1963
+ ],
+ [
+ "98168",
+ 305000,
+ 1968
+ ],
+ [
+ "98168",
+ 168500,
+ 1935
+ ],
+ [
+ "98168",
+ 369900,
+ 1978
+ ],
+ [
+ "98168",
+ 110000,
+ 1927
+ ],
+ [
+ "98168",
+ 110000,
+ 1943
+ ],
+ [
+ "98168",
+ 229000,
+ 1954
+ ],
+ [
+ "98168",
+ 150000,
+ 1959
+ ],
+ [
+ "98168",
+ 225000,
+ 1962
+ ],
+ [
+ "98168",
+ 78000,
+ 1942
+ ],
+ [
+ "98168",
+ 297975,
+ 1947
+ ],
+ [
+ "98168",
+ 350000,
+ 1972
+ ],
+ [
+ "98168",
+ 200000,
+ 1938
+ ],
+ [
+ "98168",
+ 235000,
+ 1961
+ ],
+ [
+ "98168",
+ 365000,
+ 1950
+ ],
+ [
+ "98168",
+ 135000,
+ 1943
+ ],
+ [
+ "98168",
+ 235000,
+ 1966
+ ],
+ [
+ "98168",
+ 182200,
+ 1929
+ ],
+ [
+ "98168",
+ 274950,
+ 1958
+ ],
+ [
+ "98168",
+ 280000,
+ 2012
+ ],
+ [
+ "98168",
+ 81000,
+ 1943
+ ],
+ [
+ "98168",
+ 215000,
+ 1931
+ ],
+ [
+ "98168",
+ 165000,
+ 1943
+ ],
+ [
+ "98168",
+ 185000,
+ 1969
+ ],
+ [
+ "98168",
+ 209950,
+ 1943
+ ],
+ [
+ "98168",
+ 180000,
+ 1962
+ ],
+ [
+ "98168",
+ 175000,
+ 1963
+ ],
+ [
+ "98168",
+ 109500,
+ 1942
+ ],
+ [
+ "98168",
+ 187000,
+ 1952
+ ],
+ [
+ "98168",
+ 210000,
+ 1938
+ ],
+ [
+ "98168",
+ 340000,
+ 1941
+ ],
+ [
+ "98168",
+ 280000,
+ 1943
+ ],
+ [
+ "98168",
+ 208000,
+ 1951
+ ],
+ [
+ "98168",
+ 265000,
+ 1920
+ ],
+ [
+ "98168",
+ 499950,
+ 2001
+ ],
+ [
+ "98168",
+ 170000,
+ 1950
+ ],
+ [
+ "98168",
+ 173250,
+ 1954
+ ],
+ [
+ "98168",
+ 242000,
+ 1944
+ ],
+ [
+ "98168",
+ 146000,
+ 1937
+ ],
+ [
+ "98168",
+ 280000,
+ 1942
+ ],
+ [
+ "98168",
+ 187250,
+ 1926
+ ],
+ [
+ "98168",
+ 219000,
+ 1948
+ ],
+ [
+ "98168",
+ 212500,
+ 1938
+ ],
+ [
+ "98168",
+ 280000,
+ 1968
+ ],
+ [
+ "98168",
+ 115000,
+ 1950
+ ],
+ [
+ "98168",
+ 124000,
+ 1950
+ ],
+ [
+ "98168",
+ 157000,
+ 1950
+ ],
+ [
+ "98168",
+ 245000,
+ 1910
+ ],
+ [
+ "98168",
+ 170000,
+ 1959
+ ],
+ [
+ "98168",
+ 285000,
+ 1958
+ ],
+ [
+ "98168",
+ 292000,
+ 1948
+ ],
+ [
+ "98168",
+ 206000,
+ 1921
+ ],
+ [
+ "98168",
+ 311000,
+ 1962
+ ],
+ [
+ "98168",
+ 215000,
+ 1946
+ ],
+ [
+ "98168",
+ 259000,
+ 1960
+ ],
+ [
+ "98168",
+ 158000,
+ 1942
+ ],
+ [
+ "98168",
+ 273500,
+ 1944
+ ],
+ [
+ "98168",
+ 315000,
+ 1964
+ ],
+ [
+ "98168",
+ 250000,
+ 1951
+ ],
+ [
+ "98168",
+ 424305,
+ 1910
+ ],
+ [
+ "98168",
+ 306000,
+ 1959
+ ],
+ [
+ "98168",
+ 195000,
+ 1940
+ ],
+ [
+ "98168",
+ 83000,
+ 1918
+ ],
+ [
+ "98168",
+ 210000,
+ 1948
+ ],
+ [
+ "98168",
+ 202000,
+ 1950
+ ],
+ [
+ "98168",
+ 283450,
+ 1979
+ ],
+ [
+ "98168",
+ 262000,
+ 1962
+ ],
+ [
+ "98168",
+ 335000,
+ 1953
+ ],
+ [
+ "98168",
+ 199950,
+ 1958
+ ],
+ [
+ "98168",
+ 268000,
+ 1967
+ ],
+ [
+ "98168",
+ 182000,
+ 1950
+ ],
+ [
+ "98168",
+ 179000,
+ 1900
+ ],
+ [
+ "98168",
+ 211000,
+ 1959
+ ],
+ [
+ "98168",
+ 215000,
+ 1967
+ ],
+ [
+ "98168",
+ 270950,
+ 1942
+ ],
+ [
+ "98168",
+ 185000,
+ 1969
+ ],
+ [
+ "98168",
+ 347500,
+ 2014
+ ],
+ [
+ "98168",
+ 355000,
+ 2014
+ ],
+ [
+ "98168",
+ 350000,
+ 2011
+ ],
+ [
+ "98168",
+ 268000,
+ 2014
+ ],
+ [
+ "98168",
+ 334950,
+ 2014
+ ]
+ ],
+ "hovertemplate": "zipcode=%{customdata[0]} lat=%{lat} long=%{lon} price=%{customdata[1]} yr_built=%{customdata[2]} ",
+ "lat": {
+ "bdata": "ZDvfT42/R0DYgXNGlL5HQGfV52orvkdALGUZ4li/R0Dl0CLb+b5HQAXFjzF3vUdA5dAi2/m+R0DaG3xhMr1HQLAD54wovUdA1QloImzAR0AhsHJokb1HQKwcWmQ7v0dAqoJRSZ3AR0C9UpYhjr1HQJMYBFYOvUdAgSbChqe/R0BvEoPAysFHQHPXEvJBv0dAImx4eqW8R0DvycNCrcFHQI/C9Shcv0dABOeMKO29R0CutmJ/2b1HQFTjpZvEwEdAn82qz9W+R0B1ApoIG75HQNqs+lxtvUdAO99PjZe+R0BE+u3rwMFHQCL99nXgvEdAKxiV1AnAR0DgnBGlvcFHQEvqBDQRvkdA+MJkqmC8R0Dl0CLb+b5HQHWTGARWvkdADeAtkKDAR0CcxCCwcsBHQERpb/CFwUdA1zTvOEW/R0CTOgFNhL1HQOcdp+hIvkdABoGVQ4u8R0B/2T15WMBHQHctIR/0vEdAn6ut2F++R0Cu2F92T75HQJyiI7n8v0dAvjCZKhi9R0Dn+6nx0r1HQBQ/xty1vEdAlIeFWtO8R0DVCWgibMBHQBniWBe3wUdA9dvXgXO+R0CCc0aU9r5HQHRGlPYGv0dA2IFzRpS+R0Ac6+I2GsBHQM4ZUdobvEdA93XgnBG9R0DhehSuR8FHQDeJQWDlwEdAIGPuWkK+R0BcIEHxY7xHQOlILv8hvUdAMQisHFq8R0CjI7n8h7xHQDm0yHa+v0dA9pfdk4e9R0CsHFpkO79HQLn8h/Tbv0dAdCSX/5C+R0Ch+DHmrr1HQNXnaiv2v0dABoGVQ4u8R0B4CyQofrxHQNlfdk8evkdAI0p7gy+8R0B0tRX7y75HQBKDwMqhvUdAd76fGi+9R0B0RpT2Br9HQK7YX3ZPvkdAVcGopE7AR0C6SQwCK79HQGiz6nO1vUdAqDXNO07BR0A/NV66SbxHQFioNc07vkdAPSzUmua9R0AgQfFjzL1HQBE2PL1SvkdAETY8vVK+R0Av3SQGgb1HQH6MuWsJwUdAnl4pyxC/R0ChZ7Pqc71HQJ7vp8ZLv0dAdLUV+8u+R0DlYaHWNL9HQLFQa5p3vEdA1QloImzAR0CoNc07TsFHQNzXgXNGvEdA2PD0Slm+R0CC4seYu75HQBzr4jYawEdAukkMAiu/R0BIv30dOL9HQGdEaW/wvUdAKxiV1AnAR0DV52or9r9HQPCnxks3wUdA78nDQq3BR0CSy39Iv71HQKHWNO84vUdALNSa5h2/R0BxPQrXo8BHQFOWIY51wUdAvHSTGAS+R0AhH/RsVr1HQFXBqKROwEdAIv32deC8R0Ai/fZ14LxHQLpJDAIrv0dA5x2n6Ei+R0CPU3Qkl79HQOY/pN++vkdAMZkqGJW8R0AU0ETY8LxHQJF++zpwvkdAnu+nxku/R0DT3uALk8FHQNbFbTSAv0dAh6dXyjK8R0DgnBGlvcFHQERpb/CFwUdAf2q8dJPAR0AE54wo7b1HQLn8h/Tbv0dAseHplbK8R0Ba9bnair1HQLpJDAIrv0dANxrAWyDBR0D2l92Th71HQOauJeSDvkdAnl4pyxC/R0DZX3ZPHr5HQPCFyVTBwEdAImx4eqW8R0BXW7G/7L5HQJVliGNdvEdAApoIG56+R0Af9GxWfb5HQJJc/kP6vUdA0m9fB87BR0CEDU+vlL1HQJF++zpwvkdAdLUV+8u+R0C8dJMYBL5HQLAD54wovUdAEHo2qz6/R0AhsHJokb1HQOXyH9Jvv0dA4XoUrkfBR0CMSuoENMFHQFRSJ6CJwEdAufyH9Nu/R0BLWYY41r1HQLn8h/Tbv0dALUMc6+K+R0C6SQwCK79HQOm3rwPnvEdA6bevA+e8R0AGgZVDi7xHQP7UeOkmwUdAi2zn+6nBR0D+1HjpJsFHQMbctYR8wEdA2T15WKi9R0AFo5I6Ab1HQKg1zTtOwUdAyeU/pN++R0As1JrmHb9HQBUdyeU/vEdALGUZ4li/R0D/snvysMBHQFfsL7snv0dAI0p7gy+8R0AdWmQ7379HQLhAguLHwEdAkDF3LSG/R0DV52or9r9HQAaBlUOLvEdAjNtoAG/BR0A6I0p7g79HQIbJVMGovEdAOpLLf0i/R0CM22gAb8FHQMsQx7q4vUdAc9cS8kG/R0A5tMh2vr9HQAAAAAAAwEdAI0p7gy+8R0BIv30dOL9HQJXUCWgivEdA2IFzRpS+R0Ba9bnair1HQNxoAG+BvEdAzczMzMy8R0DysFBrmr9HQFXBqKROwEdAMEymCka9R0BYqDXNO75HQHNoke18v0dA5dAi2/m+R0BKDAIrh75HQPKwUGuav0dA8KfGSzfBR0Db+X5qvLxHQCJseHqlvEdAzqrP1Va8R0DcaABvgbxHQEvqBDQRvkdA9pfdk4e9R0B24JwRpb1HQHZxGw3gvUdASL99HTi/R0Djx5i7lsBHQBBYObTIvkdA097gC5PBR0B/arx0k8BHQH9qvHSTwEdAf2q8dJPAR0B3vp8aL71HQNxoAG+BvEdAvJaQD3q+R0AgY+5aQr5HQD7o2az6vEdATRWMSuq8R0AwTKYKRr1HQGaIY13cvkdAAwmKH2O+R0Ch1jTvOL1HQGrecYqOvEdAo5I6AU28R0Dpt68D57xHQHicoiO5vEdAumsJ+aC/R0DcaABvgbxHQNxoAG+BvEdA8x/Sb1+/R0CDL0ymCr5HQGFUUiegwUdA9wZfmEy9R0Bq3nGKjrxHQARWDi2yvUdAW9O84xS9R0CdgCbChr9HQLByaJHtvEdAumsJ+aC/R0B+HThnRMFHQNnO91PjvUdAdZMYBFa+R0DT3uALk8FHQIC3QILiv0dAkKD4Mea+R0B1kxgEVr5HQA==",
+ "dtype": "f8"
+ },
+ "legendgroup": "98168",
+ "lon": {
+ "bdata": "CKwcWmSTXsBCYOXQIpNewDEIrBxalF7AMzMzMzOTXsA/NV66SZRewGDl0CLbkV7AWmQ730+VXsCJQWDl0JJewPyp8dJNkl7AMzMzMzOTXsDpJjEIrJRewM/3U+Olk17AJQaBlUOTXsAzMzMzM5NewKabxCCwkl7AokW28/2UXsBOYhBYOZRewPp+arx0k17ARrbz/dSQXsB56SYxCJRewDEIrBxalF7AQmDl0CKTXsBCYOXQIpNewHe+nxovlV7AUI2XbhKTXsDsUbgehZNewG3n+6nxkl7ATmIQWDmUXsBaZDvfT5VewIlBYOXQkl7AokW28/2UXsBOYhBYOZRewCUGgZVDk17A6SYxCKyUXsCyne+nxpNewDVeukkMkl7AkxgEVg6VXsAX2c73U5NewAaBlUOLlF7Ad76fGi+VXsDufD81XpJewAisHFpkk17AokW28/2UXsCF61G4HpVewJhuEoPAkl7A2/l+aryUXsCF61G4HpVewLByaJHtlF7AUrgeheuRXsCF61G4HpVewKjGSzeJkV7A001iEFiRXsCTGARWDpVewD0K16NwlV7AaJHtfD+VXsCWQ4ts55NewJZDi2znk17A/Knx0k2SXsBoke18P5VewFCNl24Sk17A+FPjpZuUXsCwcmiR7ZRewBfZzvdTk17APzVeukmUXsDpJjEIrJRewGDl0CLbkV7AhetRuB6VXsAlBoGVQ5NewPhT46WblF7A0SLb+X6SXsD6fmq8dJNewBfZzvdTk17AaJHtfD+VXsDRItv5fpJewD81XrpJlF7AmG4Sg8CSXsA1XrpJDJJewDEIrBxalF7AmpmZmZmRXsDdJAaBlZNewHe+nxovlV7AbxKDwMqRXsCHFtnO95NewAisHFpkk17AFK5H4XqUXsDdJAaBlZNewHe+nxovlV7AhetRuB6VXsBU46WbxJBewL6fGi/dlF7AaJHtfD+VXsDb+X5qvJRewNv5fmq8lF7A2/l+aryUXsAlBoGVQ5NewIXrUbgelV7AUrgeheuRXsBcj8L1KJRewAisHFpkk17Asp3vp8aTXsBQjZduEpNewNNNYhBYkV7Ad76fGi+VXsDb+X5qvJRewHE9CtejkF7ARIts5/uRXsAIrBxaZJNewFpkO99PlV7ATmIQWDmUXsBeukkMApNewBfZzvdTk17A3SQGgZWTXsC+nxov3ZRewHnpJjEIlF7ATDeJQWCVXsCoxks3iZFewClcj8L1kF7AUI2XbhKTXsBOYhBYOZRewDEIrBxalF7AhetRuB6VXsB9PzVeupFewGiR7Xw/lV7AJQaBlUOTXsAlBoGVQ5NewGiR7Xw/lV7AI9v5fmqUXsAX2c73U5NewHe+nxovlV7ARIts5/uRXsDufD81XpJewGq8dJMYlF7A+n5qvHSTXsB3vp8aL5VewPhT46WblF7Ai2zn+6mRXsB56SYxCJRewJMYBFYOlV7AkxgEVg6VXsCF61G4HpVewPhT46WblF7AKVyPwvWQXsBSuB6F65FewFpkO99PlV7AWmQ730+VXsBoke18P5VewCPb+X5qlF7AhxbZzveTXsD6fmq8dJNewAisHFpkk17AGy/dJAaRXsDByqFFtpNewFTjpZvEkF7A3SQGgZWTXsDNzMzMzJRewIXrUbgelV7ATmIQWDmUXsDNzMzMzJRewNv5fmq8lF7A3SQGgZWTXsB3vp8aL5VewN9PjZdukl7AhxbZzveTXsCmm8QgsJJewAaBlUOLlF7A6SYxCKyUXsCkcD0K15NewJMYBFYOlV7APzVeukmUXsBt5/up8ZJewJMYBFYOlV7AMQisHFqUXsAGgZVDi5RewN9PjZdukl7A30+Nl26SXsAzMzMzM5NewNv5fmq8lF7AWmQ730+VXsB56SYxCJRewDMzMzMzk17AUrgeheuRXsC+nxov3ZRewNv5fmq8lF7AhxbZzveTXsDsUbgehZNewHE9CtejkF7AsHJoke2UXsAlBoGVQ5NewGiR7Xw/lV7AYhBYObSQXsAlBoGVQ5NewNv5fmq8lF7ATmIQWDmUXsA/NV66SZRewNv5fmq8lF7ATmIQWDmUXsAUrkfhepRewFK4HoXrkV7A+n5qvHSTXsCTGARWDpVewDEIrBxalF7A+FPjpZuUXsAGgZVDi5RewD81XrpJlF7ARIts5/uRXsAzMzMzM5NewDeJQWDlkF7APzVeukmUXsBcj8L1KJRewF66SQwCk17AjZduEoOQXsAzMzMzM5NewFpkO99PlV7AF9nO91OTXsCF61G4HpVewD81XrpJlF7AF9nO91OTXsBQjZduEpNewIXrUbgelV7Ad76fGi+VXsB7FK5H4ZJewDeJQWDlkF7AtvP91HiRXsBEi2zn+5FewAisHFpkk17Aw/UoXI+SXsD4U+Olm5RewGiR7Xw/lV7AMQisHFqUXsAzMzMzM5NewHe+nxovlV7AFK5H4XqUXsCF61G4HpVewIXrUbgelV7AhetRuB6VXsBvEoPAypFewFCNl24Sk17ARIts5/uRXsBOYhBYOZRewPCnxks3kV7AQmDl0CKTXsCamZmZmZFewPhT46WblF7A3SQGgZWTXsAK16NwPZJewLByaJHtlF7AtMh2vp+SXsApXI/C9ZBewKJFtvP9lF7ATDeJQWCVXsDhehSuR5FewKabxCCwkl7AF9nO91OTXsC0yHa+n5JewAaBlUOLlF7Abef7qfGSXsBQjZduEpNewGiR7Xw/lV7A8KfGSzeRXsAxCKwcWpRewKabxCCwkl7ANV66SQySXsCF61G4HpVewGiR7Xw/lV7AFK5H4XqUXsBOYhBYOZRewEJg5dAik17ATDeJQWCVXsAUrkfhepRewA==",
+ "dtype": "f8"
+ },
+ "marker": {
+ "color": "#00cc96"
+ },
+ "mode": "markers",
+ "name": "98168",
+ "showlegend": true,
+ "subplot": "mapbox",
+ "type": "scattermapbox"
+ }
+ ],
+ "layout": {
+ "height": 600,
+ "legend": {
+ "title": {
+ "text": "zipcode"
+ },
+ "tracegroupgap": 0
+ },
+ "mapbox": {
+ "center": {
+ "lat": 47.4045042158516,
+ "lon": -122.27003878583474
+ },
+ "domain": {
+ "x": [
+ 0,
+ 1
+ ],
+ "y": [
+ 0,
+ 1
+ ]
+ },
+ "style": "open-street-map",
+ "zoom": 10
+ },
+ "margin": {
+ "b": 0,
+ "l": 0,
+ "r": 0,
+ "t": 40
+ },
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermap": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermap"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "ZIP codes with lowest mean for housing prices"
+ }
+ }
+ }
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "\n",
+ "# make interactive plot of map\n",
+ "fig = px.scatter_mapbox(\n",
+ " plotall_df,\n",
+ " lat=\"lat\", # (Latitude)\n",
+ " lon=\"long\", # (Longitude)\n",
+ " color=\"zipcode\", # colour 'Zipcode'\n",
+ " hover_data=[\"zipcode\", 'price', 'yr_built'], # show house data when hovering over items\n",
+ " zoom=10, \n",
+ " height=600,\n",
+ " mapbox_style=\"open-street-map\", # use free map carto-darkmatter\n",
+ " title=\"ZIP codes with lowest mean for housing prices\"\n",
+ ")\n",
+ "\n",
+ "# Optional: Größe und Ränder anpassen\n",
+ "fig.update_layout(margin={\"r\":0,\"t\":40,\"l\":0,\"b\":0})\n",
+ "\n",
+ "# 5. Visualisierung anzeigen\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Hypothesis 1 is proven : there are very few ZIP codes (3 from 70, less than 5% of all ZIP codes) that have the lowest 10% mean of housing prices. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Now Erin wants to go for the lowest 5 ZIP codes, since only 3 limits her too much. So lets use the 5 lowest for the further evaluation. And lets show them in the map as well.. \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 58,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "# 'Zipcode' must be string to get correct color\n",
+ "plotall_df = df.copy()\n",
+ "interesting_zip = [98002, 98168, 98032, 98001, 98188 ] # limit to ZIP codes to 5 with lowest mean value for price\n",
+ "plotall_df = plotall_df[plotall_df['zipcode'].isin(interesting_zip)]\n",
+ "plotall_df['zipcode'] = plotall_df['zipcode'].astype(str)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 59,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "customdata": [
+ [
+ "98002",
+ 189000,
+ 1921
+ ],
+ [
+ "98002",
+ 233000,
+ 1941
+ ],
+ [
+ "98002",
+ 225000,
+ 1954
+ ],
+ [
+ "98002",
+ 250000,
+ 1976
+ ],
+ [
+ "98002",
+ 266000,
+ 2009
+ ],
+ [
+ "98002",
+ 200000,
+ 1958
+ ],
+ [
+ "98002",
+ 214000,
+ 1953
+ ],
+ [
+ "98002",
+ 234000,
+ 1966
+ ],
+ [
+ "98002",
+ 218500,
+ 1949
+ ],
+ [
+ "98002",
+ 208000,
+ 1960
+ ],
+ [
+ "98002",
+ 249950,
+ 1968
+ ],
+ [
+ "98002",
+ 224000,
+ 1959
+ ],
+ [
+ "98002",
+ 247500,
+ 1948
+ ],
+ [
+ "98002",
+ 180000,
+ 1920
+ ],
+ [
+ "98002",
+ 176250,
+ 1966
+ ],
+ [
+ "98002",
+ 370000,
+ 1950
+ ],
+ [
+ "98002",
+ 250000,
+ 1959
+ ],
+ [
+ "98002",
+ 208000,
+ 1967
+ ],
+ [
+ "98002",
+ 183000,
+ 1957
+ ],
+ [
+ "98002",
+ 210000,
+ 1910
+ ],
+ [
+ "98002",
+ 280000,
+ 1991
+ ],
+ [
+ "98002",
+ 300000,
+ 1991
+ ],
+ [
+ "98002",
+ 175000,
+ 1948
+ ],
+ [
+ "98002",
+ 161500,
+ 1961
+ ],
+ [
+ "98002",
+ 254600,
+ 1968
+ ],
+ [
+ "98002",
+ 250750,
+ 1951
+ ],
+ [
+ "98002",
+ 219950,
+ 1985
+ ],
+ [
+ "98002",
+ 255000,
+ 1920
+ ],
+ [
+ "98002",
+ 257200,
+ 1952
+ ],
+ [
+ "98002",
+ 222000,
+ 1968
+ ],
+ [
+ "98002",
+ 206000,
+ 1942
+ ],
+ [
+ "98002",
+ 213500,
+ 1968
+ ],
+ [
+ "98002",
+ 188200,
+ 1954
+ ],
+ [
+ "98002",
+ 95000,
+ 1915
+ ],
+ [
+ "98002",
+ 276000,
+ 1959
+ ],
+ [
+ "98002",
+ 125000,
+ 1961
+ ],
+ [
+ "98002",
+ 245000,
+ 1921
+ ],
+ [
+ "98002",
+ 270000,
+ 1968
+ ],
+ [
+ "98002",
+ 285000,
+ 1998
+ ],
+ [
+ "98002",
+ 183000,
+ 1985
+ ],
+ [
+ "98002",
+ 156000,
+ 1950
+ ],
+ [
+ "98002",
+ 238000,
+ 1978
+ ],
+ [
+ "98002",
+ 245000,
+ 1989
+ ],
+ [
+ "98002",
+ 190000,
+ 1966
+ ],
+ [
+ "98002",
+ 248500,
+ 1948
+ ],
+ [
+ "98002",
+ 195000,
+ 1968
+ ],
+ [
+ "98002",
+ 199950,
+ 1949
+ ],
+ [
+ "98002",
+ 233500,
+ 1957
+ ],
+ [
+ "98002",
+ 235000,
+ 1959
+ ],
+ [
+ "98002",
+ 150000,
+ 1915
+ ],
+ [
+ "98002",
+ 215000,
+ 1983
+ ],
+ [
+ "98002",
+ 257500,
+ 1977
+ ],
+ [
+ "98002",
+ 111300,
+ 1908
+ ],
+ [
+ "98002",
+ 142500,
+ 1917
+ ],
+ [
+ "98002",
+ 269000,
+ 1975
+ ],
+ [
+ "98002",
+ 230000,
+ 1960
+ ],
+ [
+ "98002",
+ 239000,
+ 1977
+ ],
+ [
+ "98002",
+ 154950,
+ 1966
+ ],
+ [
+ "98002",
+ 197000,
+ 1962
+ ],
+ [
+ "98002",
+ 225500,
+ 1972
+ ],
+ [
+ "98002",
+ 279950,
+ 1914
+ ],
+ [
+ "98002",
+ 286285,
+ 1977
+ ],
+ [
+ "98002",
+ 194900,
+ 1923
+ ],
+ [
+ "98002",
+ 187000,
+ 1985
+ ],
+ [
+ "98002",
+ 224950,
+ 1965
+ ],
+ [
+ "98002",
+ 135000,
+ 1948
+ ],
+ [
+ "98002",
+ 195000,
+ 1958
+ ],
+ [
+ "98002",
+ 330000,
+ 1978
+ ],
+ [
+ "98002",
+ 319450,
+ 1930
+ ],
+ [
+ "98002",
+ 292500,
+ 2008
+ ],
+ [
+ "98002",
+ 245000,
+ 1959
+ ],
+ [
+ "98002",
+ 193000,
+ 1991
+ ],
+ [
+ "98002",
+ 186000,
+ 1912
+ ],
+ [
+ "98002",
+ 389000,
+ 1989
+ ],
+ [
+ "98002",
+ 288000,
+ 1963
+ ],
+ [
+ "98002",
+ 224000,
+ 1957
+ ],
+ [
+ "98002",
+ 236000,
+ 1998
+ ],
+ [
+ "98002",
+ 200000,
+ 1938
+ ],
+ [
+ "98002",
+ 224000,
+ 1976
+ ],
+ [
+ "98002",
+ 275000,
+ 1973
+ ],
+ [
+ "98002",
+ 305000,
+ 1978
+ ],
+ [
+ "98002",
+ 160000,
+ 1927
+ ],
+ [
+ "98002",
+ 200000,
+ 1913
+ ],
+ [
+ "98002",
+ 112000,
+ 1963
+ ],
+ [
+ "98002",
+ 235000,
+ 1958
+ ],
+ [
+ "98002",
+ 225000,
+ 1950
+ ],
+ [
+ "98002",
+ 215000,
+ 1931
+ ],
+ [
+ "98002",
+ 125000,
+ 1960
+ ],
+ [
+ "98002",
+ 208000,
+ 1960
+ ],
+ [
+ "98002",
+ 250000,
+ 1920
+ ],
+ [
+ "98002",
+ 205000,
+ 1968
+ ],
+ [
+ "98002",
+ 184500,
+ 1983
+ ],
+ [
+ "98002",
+ 195000,
+ 1913
+ ],
+ [
+ "98002",
+ 222000,
+ 1958
+ ],
+ [
+ "98002",
+ 207000,
+ 1959
+ ],
+ [
+ "98002",
+ 235000,
+ 1960
+ ],
+ [
+ "98002",
+ 272000,
+ 1998
+ ],
+ [
+ "98002",
+ 269950,
+ 1956
+ ],
+ [
+ "98002",
+ 189000,
+ 1927
+ ],
+ [
+ "98002",
+ 255000,
+ 1977
+ ],
+ [
+ "98002",
+ 185000,
+ 1985
+ ],
+ [
+ "98002",
+ 250000,
+ 1918
+ ],
+ [
+ "98002",
+ 294400,
+ 1990
+ ],
+ [
+ "98002",
+ 140000,
+ 1955
+ ],
+ [
+ "98002",
+ 249500,
+ 1977
+ ],
+ [
+ "98002",
+ 128750,
+ 1950
+ ],
+ [
+ "98002",
+ 190000,
+ 1953
+ ],
+ [
+ "98002",
+ 292000,
+ 1998
+ ],
+ [
+ "98002",
+ 250000,
+ 1990
+ ],
+ [
+ "98002",
+ 246000,
+ 1958
+ ],
+ [
+ "98002",
+ 150000,
+ 1951
+ ],
+ [
+ "98002",
+ 247200,
+ 1922
+ ],
+ [
+ "98002",
+ 220000,
+ 1938
+ ],
+ [
+ "98002",
+ 269950,
+ 1944
+ ],
+ [
+ "98002",
+ 160000,
+ 1983
+ ],
+ [
+ "98002",
+ 275000,
+ 1996
+ ],
+ [
+ "98002",
+ 179500,
+ 1959
+ ],
+ [
+ "98002",
+ 250000,
+ 1998
+ ],
+ [
+ "98002",
+ 167000,
+ 1985
+ ],
+ [
+ "98002",
+ 159995,
+ 1915
+ ],
+ [
+ "98002",
+ 255000,
+ 1959
+ ],
+ [
+ "98002",
+ 270000,
+ 1999
+ ],
+ [
+ "98002",
+ 270000,
+ 1968
+ ],
+ [
+ "98002",
+ 288000,
+ 1949
+ ],
+ [
+ "98002",
+ 209950,
+ 1968
+ ],
+ [
+ "98002",
+ 235000,
+ 1990
+ ],
+ [
+ "98002",
+ 268000,
+ 1999
+ ],
+ [
+ "98002",
+ 223000,
+ 1973
+ ],
+ [
+ "98002",
+ 208000,
+ 1960
+ ],
+ [
+ "98002",
+ 195500,
+ 1954
+ ],
+ [
+ "98002",
+ 265000,
+ 1911
+ ],
+ [
+ "98002",
+ 292000,
+ 2006
+ ],
+ [
+ "98002",
+ 265000,
+ 1996
+ ],
+ [
+ "98002",
+ 270000,
+ 1993
+ ],
+ [
+ "98002",
+ 180000,
+ 1958
+ ],
+ [
+ "98002",
+ 250000,
+ 1914
+ ],
+ [
+ "98002",
+ 367500,
+ 1980
+ ],
+ [
+ "98002",
+ 205000,
+ 1960
+ ],
+ [
+ "98002",
+ 202500,
+ 1954
+ ],
+ [
+ "98002",
+ 257000,
+ 2009
+ ],
+ [
+ "98002",
+ 201000,
+ 1959
+ ],
+ [
+ "98002",
+ 190000,
+ 1946
+ ],
+ [
+ "98002",
+ 189000,
+ 1915
+ ],
+ [
+ "98002",
+ 340000,
+ 1997
+ ],
+ [
+ "98002",
+ 163500,
+ 1954
+ ],
+ [
+ "98002",
+ 300000,
+ 1978
+ ],
+ [
+ "98002",
+ 137000,
+ 1959
+ ],
+ [
+ "98002",
+ 315000,
+ 2004
+ ],
+ [
+ "98002",
+ 265000,
+ 1958
+ ],
+ [
+ "98002",
+ 219000,
+ 1953
+ ],
+ [
+ "98002",
+ 235000,
+ 1977
+ ],
+ [
+ "98002",
+ 219500,
+ 1912
+ ],
+ [
+ "98002",
+ 217000,
+ 2002
+ ],
+ [
+ "98002",
+ 206000,
+ 1967
+ ],
+ [
+ "98002",
+ 230000,
+ 1997
+ ],
+ [
+ "98002",
+ 279950,
+ 1977
+ ],
+ [
+ "98002",
+ 315000,
+ 1967
+ ],
+ [
+ "98002",
+ 235000,
+ 1962
+ ],
+ [
+ "98002",
+ 148900,
+ 1967
+ ],
+ [
+ "98002",
+ 229500,
+ 1967
+ ],
+ [
+ "98002",
+ 189900,
+ 1914
+ ],
+ [
+ "98002",
+ 219200,
+ 1968
+ ],
+ [
+ "98002",
+ 206000,
+ 1978
+ ],
+ [
+ "98002",
+ 237950,
+ 1960
+ ],
+ [
+ "98002",
+ 247500,
+ 1998
+ ],
+ [
+ "98002",
+ 232603,
+ 1976
+ ],
+ [
+ "98002",
+ 234000,
+ 1910
+ ],
+ [
+ "98002",
+ 185000,
+ 1961
+ ],
+ [
+ "98002",
+ 260000,
+ 1977
+ ],
+ [
+ "98002",
+ 229950,
+ 1911
+ ],
+ [
+ "98002",
+ 193000,
+ 1962
+ ],
+ [
+ "98002",
+ 329900,
+ 2014
+ ],
+ [
+ "98002",
+ 319500,
+ 2006
+ ],
+ [
+ "98002",
+ 319900,
+ 2014
+ ],
+ [
+ "98002",
+ 263000,
+ 2011
+ ],
+ [
+ "98002",
+ 292000,
+ 2012
+ ],
+ [
+ "98002",
+ 285000,
+ 2011
+ ],
+ [
+ "98002",
+ 260000,
+ 2011
+ ],
+ [
+ "98002",
+ 240000,
+ 2012
+ ],
+ [
+ "98002",
+ 298000,
+ 2014
+ ],
+ [
+ "98002",
+ 289950,
+ 2010
+ ],
+ [
+ "98002",
+ 300000,
+ 2006
+ ],
+ [
+ "98002",
+ 267000,
+ 2012
+ ],
+ [
+ "98002",
+ 319900,
+ 2014
+ ],
+ [
+ "98002",
+ 265000,
+ 2012
+ ],
+ [
+ "98002",
+ 273500,
+ 2009
+ ],
+ [
+ "98002",
+ 297000,
+ 2011
+ ],
+ [
+ "98002",
+ 255900,
+ 2014
+ ],
+ [
+ "98002",
+ 261000,
+ 2012
+ ],
+ [
+ "98002",
+ 282900,
+ 2014
+ ],
+ [
+ "98002",
+ 275000,
+ 2007
+ ],
+ [
+ "98002",
+ 298900,
+ 2014
+ ],
+ [
+ "98002",
+ 300000,
+ 2010
+ ],
+ [
+ "98002",
+ 343000,
+ 2009
+ ],
+ [
+ "98002",
+ 260000,
+ 2006
+ ],
+ [
+ "98002",
+ 223990,
+ 2013
+ ],
+ [
+ "98002",
+ 250000,
+ 2012
+ ],
+ [
+ "98002",
+ 259000,
+ 2011
+ ],
+ [
+ "98002",
+ 335900,
+ 2014
+ ]
+ ],
+ "hovertemplate": "zipcode=%{customdata[0]} lat=%{lat} long=%{lon} price=%{customdata[1]} yr_built=%{customdata[2]} ",
+ "lat": {
+ "bdata": "Ad4CCYqnR0AQ6bevA6dHQFMFo5I6qUdAz/dT46WjR0D3deCcEa1HQDAqqRPQpEdAUwWjkjqpR0BWn6ut2KdHQIEmwoanp0dAvjCZKhilR0C/fR04Z6RHQABvgQTFp0dAgZVDi2ynR0AeFmpN86ZHQCzUmuYdp0dAZRniWBenR0B/+zpwzqhHQN0kBoGVo0dAP8bctYSkR0CsHFpkO6dHQET67evAqUdARPrt68CpR0BKDAIrh6ZHQOtztRX7o0dA54wo7Q2mR0BUUiegiahHQB1aZDvfp0dA5WGh1jSnR0AQejarPqdHQJqZmZmZqUdAwFsgQfGjR0Coxks3ialHQDy9UpYhpkdASS7/If2mR0ApyxDHuqhHQBSuR+F6pEdAK4cW2c6nR0AibHh6paRHQLG/7J48pEdAexSuR+GqR0ARx7q4jaZHQGsr9pfdo0dAzczMzMykR0BN845TdKRHQFYOLbKdp0dANjy9UpapR0CBJsKGp6dHQLAD54wopUdA5BQdyeWnR0AQWDm0yKZHQMKGp1fKqkdA2qz6XG2lR0AQejarPqdHQMcpOpLLp0dARPrt68CpR0BHA3gLJKhHQIV80LNZpUdA+n5qvHSjR0C+nxov3aRHQDj4wmSqqEdAxyk6ksunR0Di6ZWyDKlHQJAxdy0hp0dAJuSDns2qR0D4U+Olm6RHQNejcD0Kp0dAqmBUUieoR0AFNBE2PKVHQKwcWmQ7p0dAvjCZKhitR0C9UpYhjqVHQD0K16NwpUdAg8DKoUWmR0BEaW/whalHQKkT0ETYqEdAorQ3+MKkR0AyVTAqqatHQKs+V1uxp0dAPZtVn6ulR0BNhA1Pr6RHQP7UeOkmqUdA16NwPQqnR0DwhclUwahHQI/C9Shcp0dAFK5H4XqkR0Byio7k8qdHQL4wmSoYpUdAaQBvgQSlR0BpAG+BBKVHQEku/yH9pkdAejarPlejR0CYbhKDwKpHQB/0bFZ9pkdAFK5H4XqkR0Av3SQGgaVHQNV46SYxqEdAFK5H4XqkR0AUP8bctaRHQB+F61G4pkdAPQrXo3ClR0BfKcsQx6pHQCuHFtnOp0dA6bevA+ekR0CuR+F6FKZHQFr1udqKpUdAylTBqKSmR0A2qz5XW6lHQPjCZKpgpEdA5IOezaqnR0Cx4emVsqRHQOVhodY0p0dApN++DpyjR0AnMQisHKpHQBKDwMqhpUdACfmgZ7OqR0C/fR04Z6RHQE2EDU+vpEdAXW3F/rKrR0Am5IOezapHQLx0kxgEpkdA9pfdk4elR0DOqs/VVqRHQAfwFkhQpEdAgSbChqenR0DNO07RkaRHQCzUmuYdp0dAMQisHFqkR0A6I0p7g6dHQCKOdXEbpUdANqs+V1upR0BlqmBUUqdHQEku/yH9pkdAFNBE2PCkR0CGONbFbaRHQHEbDeAtqEdAgSbChqenR0AK16NwPapHQAWjkjoBpUdA001iEFipR0CJ0t7gC6tHQCL99nXgpEdAO99PjZemR0C8lpAPeqZHQNnO91PjpUdAPL1SliGmR0AQWDm0yKZHQK+UZYhjpUdAdnEbDeClR0CiRbbz/aRHQOPHmLuWqEdATDeJQWClR0AQejarPqdHQNk9eViopUdAlrIMcayjR0CwcmiR7aRHQMWPMXctqUdAcM6I0t6oR0AxmSoYlaRHQGFUUiegqUdA78nDQq2pR0C8dJMYBKZHQOxRuB6Fo0dArfpcbcWmR0Dbiv1l96RHQD81XrpJpEdAqoJRSZ2oR0AB3gIJiqdHQM07TtGRpEdAdQKaCBumR0Ce76fGS6dHQAdfmEwVpEdAI0p7gy+sR0CJ0t7gC6tHQFyPwvUorEdAwOyePCysR0A+eVioNa1HQGkAb4EErUdAI0p7gy+sR0AVHcnlP6xHQE5iEFg5rEdA93XgnBGtR0Akl/+QfqNHQOoENBE2rEdAI0p7gy+sR0DqBDQRNqxHQL4wmSoYrUdAidLe4AurR0AjSnuDL6xHQMDsnjwsrEdAldQJaCKsR0CJ0t7gC6tHQMDsnjwsrEdAPujZrPqsR0Dl0CLb+aZHQInS3uALq0dAPzVeukmsR0AVHcnlP6xHQLAD54worUdAXI/C9SisR0A=",
+ "dtype": "f8"
+ },
+ "legendgroup": "98002",
+ "lon": {
+ "bdata": "PQrXo3CNXsDLoUW2841ewOf7qfHSjV7AEoPAyqGNXsAhsHJokY1ewCGwcmiRjV7A9ihcj8KNXsBoke18P41ewD0K16NwjV7AoBov3SSOXsDn+6nx0o1ewCGwcmiRjV7ATDeJQWCNXsDn+6nx0o1ewNnO91PjjV7AoBov3SSOXsAhsHJokY1ewIXrUbgejV7ArkfhehSOXsCR7Xw/NY5ewARWDi2yjV7ABFYOLbKNXsBYObTIdo5ewARWDi2yjV7AhetRuB6FXsAEVg4tso1ewEw3iUFgjV7Ag8DKoUWOXsBMN4lBYI1ewIXrUbgejV7AZmZmZmaOXsBMN4lBYI1ewHWTGARWjl7A9ihcj8KNXsAhsHJokY1ewC/dJAaBjV7ASgwCK4eOXsAGgZVDi4xewNv5fmq8jF7A9ihcj8KNXsDLoUW2841ewC/dJAaBjV7Ay6FFtvONXsCDwMqhRY5ewNnO91PjjV7AaJHtfD+NXsDLoUW2841ewARWDi2yjV7AWmQ730+NXsDZzvdT441ewNnO91PjjV7A+FPjpZuMXsCDwMqhRY5ewGZmZmZmjl7AL90kBoGNXsBaZDvfT41ewPhT46WbjF7AL90kBoGNXsAGgZVDi4xewD0K16NwjV7ALbKd76eOXsBMN4lBYI1ewOf7qfHSjV7A5/up8dKNXsDLoUW2841ewPYoXI/CjV7AIbByaJGNXsC8dJMYBI5ewLx0kxgEjl7AEoPAyqGNXsD2KFyPwo1ewLx0kxgEjl7AO99PjZeOXsDZzvdT441ewBKDwMqhjV7AIbByaJGNXsC8dJMYBI5ewCGwcmiRjV7ASgwCK4eOXsDZzvdT441ewJMYBFYOjV7Ay6FFtvONXsCuR+F6FI5ewNnO91PjjV7Ad76fGi+NXsD2KFyPwo1ewJHtfD81jl7ArkfhehSOXsCuR+F6FI5ewK5H4XoUjl7AWmQ730+NXsAEVg4tso1ewDvfT42Xjl7AaJHtfD+NXsD2KFyPwo1ewFpkO99PjV7Avp8aL92MXsA9CtejcI1ewHWTGARWjl7ABoGVQ4uMXsD2KFyPwo1ewD0K16NwjV7Ay6FFtvONXsCDwMqhRY5ewBSuR+F6jF7A5/up8dKNXsD2KFyPwo1ewOkmMQisjF7Ad76fGi+NXsBMN4lBYI1ewLx0kxgEjl7AIbByaJGNXsC8dJMYBI5ewMuhRbbzjV7A9ihcj8KNXsCF61G4Ho1ewKAaL90kjl7Ay6FFtvONXsD2KFyPwo1ewGZmZmZmjl7ArkfhehSOXsCwcmiR7YxewGiR7Xw/jV7Ag8DKoUWOXsD4U+Olm4xewHe+nxovjV7AsHJoke2MXsB3vp8aL41ewLx0kxgEjl7AvHSTGASOXsCgGi/dJI5ewJHtfD81jl7Ay6FFtvONXsA/NV66SYxewCGwcmiRjV7ATDeJQWCNXsCuR+F6FI5ewKAaL90kjl7A5/up8dKNXsASg8DKoY1ewK5H4XoUjl7A5/up8dKNXsCDwMqhRY5ewLx0kxgEjl7Ag8DKoUWOXsCgGi/dJI5ewPYoXI/CjV7AZmZmZmaOXsAhsHJokY1ewLx0kxgEjl7AFK5H4XqMXsDZzvdT441ewFg5tMh2jl7AhetRuB6NXsDLoUW2841ewIXrUbgejV7AIbByaJGNXsAhsHJokY1ewFpkO99PjV7ATDeJQWCNXsBKDAIrh45ewKJFtvP9jF7AoBov3SSOXsCgGi/dJI5ewM3MzMzMjF7APQrXo3CNXsASg8DKoY1ewK5H4XoUjl7ASgwCK4eOXsDZzvdT441ewHWTGARWjl7ATDeJQWCNXsDn+6nx0o1ewD0K16NwjV7A9ihcj8KNXsAv3SQGgY1ewD0K16NwjV7A9ihcj8KNXsDZzvdT441ewD0K16NwjV7AL90kBoGNXsDn+6nx0o1ewARWDi2yjV7APQrXo3CNXsAEVg4tso1ewCGwcmiRjV7AL90kBoGNXsDZzvdT441ewARWDi2yjV7A2c73U+ONXsD2KFyPwo1ewEw3iUFgjV7AEoPAyqGNXsAv3SQGgY1ewNnO91PjjV7Ay6FFtvONXsDZzvdT441ewC/dJAaBjV7ATDeJQWCNXsA=",
+ "dtype": "f8"
+ },
+ "marker": {
+ "color": "#636efa"
+ },
+ "mode": "markers",
+ "name": "98002",
+ "showlegend": true,
+ "subplot": "mapbox",
+ "type": "scattermapbox"
+ },
+ {
+ "customdata": [
+ [
+ "98001",
+ 240000,
+ 1969
+ ],
+ [
+ "98001",
+ 287000,
+ 2005
+ ],
+ [
+ "98001",
+ 480000,
+ 2001
+ ],
+ [
+ "98001",
+ 465000,
+ 2005
+ ],
+ [
+ "98001",
+ 360000,
+ 1992
+ ],
+ [
+ "98001",
+ 230000,
+ 2003
+ ],
+ [
+ "98001",
+ 252000,
+ 1969
+ ],
+ [
+ "98001",
+ 227950,
+ 1954
+ ],
+ [
+ "98001",
+ 196000,
+ 1974
+ ],
+ [
+ "98001",
+ 305000,
+ 1982
+ ],
+ [
+ "98001",
+ 243000,
+ 1981
+ ],
+ [
+ "98001",
+ 233000,
+ 1974
+ ],
+ [
+ "98001",
+ 249900,
+ 1939
+ ],
+ [
+ "98001",
+ 205000,
+ 1985
+ ],
+ [
+ "98001",
+ 196500,
+ 1966
+ ],
+ [
+ "98001",
+ 199950,
+ 1920
+ ],
+ [
+ "98001",
+ 289000,
+ 1988
+ ],
+ [
+ "98001",
+ 249900,
+ 1950
+ ],
+ [
+ "98001",
+ 100000,
+ 1978
+ ],
+ [
+ "98001",
+ 320000,
+ 1998
+ ],
+ [
+ "98001",
+ 267000,
+ 2007
+ ],
+ [
+ "98001",
+ 350000,
+ 1993
+ ],
+ [
+ "98001",
+ 355000,
+ 1979
+ ],
+ [
+ "98001",
+ 250000,
+ 1962
+ ],
+ [
+ "98001",
+ 355000,
+ 2001
+ ],
+ [
+ "98001",
+ 299000,
+ 1974
+ ],
+ [
+ "98001",
+ 330000,
+ 2006
+ ],
+ [
+ "98001",
+ 196440,
+ 1992
+ ],
+ [
+ "98001",
+ 429000,
+ 2001
+ ],
+ [
+ "98001",
+ 189950,
+ 1919
+ ],
+ [
+ "98001",
+ 215500,
+ 1972
+ ],
+ [
+ "98001",
+ 206000,
+ 1959
+ ],
+ [
+ "98001",
+ 210000,
+ 1963
+ ],
+ [
+ "98001",
+ 284200,
+ 1977
+ ],
+ [
+ "98001",
+ 272000,
+ 1989
+ ],
+ [
+ "98001",
+ 185000,
+ 1955
+ ],
+ [
+ "98001",
+ 332000,
+ 1979
+ ],
+ [
+ "98001",
+ 238000,
+ 1952
+ ],
+ [
+ "98001",
+ 213550,
+ 1990
+ ],
+ [
+ "98001",
+ 230000,
+ 1967
+ ],
+ [
+ "98001",
+ 262000,
+ 2002
+ ],
+ [
+ "98001",
+ 175000,
+ 1958
+ ],
+ [
+ "98001",
+ 235000,
+ 1947
+ ],
+ [
+ "98001",
+ 165000,
+ 1973
+ ],
+ [
+ "98001",
+ 276000,
+ 2007
+ ],
+ [
+ "98001",
+ 265000,
+ 1991
+ ],
+ [
+ "98001",
+ 259000,
+ 2007
+ ],
+ [
+ "98001",
+ 225000,
+ 1989
+ ],
+ [
+ "98001",
+ 354450,
+ 1993
+ ],
+ [
+ "98001",
+ 352000,
+ 1996
+ ],
+ [
+ "98001",
+ 210500,
+ 1958
+ ],
+ [
+ "98001",
+ 276000,
+ 1968
+ ],
+ [
+ "98001",
+ 299950,
+ 1990
+ ],
+ [
+ "98001",
+ 279000,
+ 2003
+ ],
+ [
+ "98001",
+ 329500,
+ 1979
+ ],
+ [
+ "98001",
+ 196000,
+ 1989
+ ],
+ [
+ "98001",
+ 515000,
+ 2001
+ ],
+ [
+ "98001",
+ 180000,
+ 1978
+ ],
+ [
+ "98001",
+ 225000,
+ 1979
+ ],
+ [
+ "98001",
+ 115000,
+ 1913
+ ],
+ [
+ "98001",
+ 195000,
+ 1967
+ ],
+ [
+ "98001",
+ 299950,
+ 1993
+ ],
+ [
+ "98001",
+ 299000,
+ 1983
+ ],
+ [
+ "98001",
+ 201700,
+ 1967
+ ],
+ [
+ "98001",
+ 194820,
+ 1967
+ ],
+ [
+ "98001",
+ 286950,
+ 1984
+ ],
+ [
+ "98001",
+ 250000,
+ 1962
+ ],
+ [
+ "98001",
+ 215000,
+ 1999
+ ],
+ [
+ "98001",
+ 212500,
+ 1977
+ ],
+ [
+ "98001",
+ 382450,
+ 1998
+ ],
+ [
+ "98001",
+ 269950,
+ 1964
+ ],
+ [
+ "98001",
+ 221000,
+ 1965
+ ],
+ [
+ "98001",
+ 263400,
+ 1960
+ ],
+ [
+ "98001",
+ 267500,
+ 1948
+ ],
+ [
+ "98001",
+ 224000,
+ 1964
+ ],
+ [
+ "98001",
+ 330000,
+ 2006
+ ],
+ [
+ "98001",
+ 359000,
+ 1962
+ ],
+ [
+ "98001",
+ 214100,
+ 2004
+ ],
+ [
+ "98001",
+ 482000,
+ 2000
+ ],
+ [
+ "98001",
+ 340000,
+ 1985
+ ],
+ [
+ "98001",
+ 465000,
+ 1948
+ ],
+ [
+ "98001",
+ 299000,
+ 2001
+ ],
+ [
+ "98001",
+ 198000,
+ 1966
+ ],
+ [
+ "98001",
+ 169000,
+ 1969
+ ],
+ [
+ "98001",
+ 195000,
+ 1962
+ ],
+ [
+ "98001",
+ 250000,
+ 1984
+ ],
+ [
+ "98001",
+ 260000,
+ 1973
+ ],
+ [
+ "98001",
+ 260000,
+ 1978
+ ],
+ [
+ "98001",
+ 430000,
+ 1955
+ ],
+ [
+ "98001",
+ 339000,
+ 2001
+ ],
+ [
+ "98001",
+ 215000,
+ 2004
+ ],
+ [
+ "98001",
+ 230000,
+ 1967
+ ],
+ [
+ "98001",
+ 285000,
+ 1987
+ ],
+ [
+ "98001",
+ 277500,
+ 1964
+ ],
+ [
+ "98001",
+ 260000,
+ 2003
+ ],
+ [
+ "98001",
+ 639900,
+ 1997
+ ],
+ [
+ "98001",
+ 420000,
+ 2001
+ ],
+ [
+ "98001",
+ 275000,
+ 1978
+ ],
+ [
+ "98001",
+ 239950,
+ 1979
+ ],
+ [
+ "98001",
+ 239950,
+ 1942
+ ],
+ [
+ "98001",
+ 286000,
+ 1993
+ ],
+ [
+ "98001",
+ 280000,
+ 1936
+ ],
+ [
+ "98001",
+ 254000,
+ 1959
+ ],
+ [
+ "98001",
+ 204900,
+ 1984
+ ],
+ [
+ "98001",
+ 850000,
+ 1969
+ ],
+ [
+ "98001",
+ 265000,
+ 1971
+ ],
+ [
+ "98001",
+ 175000,
+ 1962
+ ],
+ [
+ "98001",
+ 269500,
+ 1999
+ ],
+ [
+ "98001",
+ 286651,
+ 2004
+ ],
+ [
+ "98001",
+ 270000,
+ 1986
+ ],
+ [
+ "98001",
+ 415000,
+ 1943
+ ],
+ [
+ "98001",
+ 241000,
+ 1986
+ ],
+ [
+ "98001",
+ 302000,
+ 1999
+ ],
+ [
+ "98001",
+ 265000,
+ 1963
+ ],
+ [
+ "98001",
+ 449888,
+ 1988
+ ],
+ [
+ "98001",
+ 263000,
+ 1987
+ ],
+ [
+ "98001",
+ 384000,
+ 1999
+ ],
+ [
+ "98001",
+ 190000,
+ 1978
+ ],
+ [
+ "98001",
+ 184000,
+ 1962
+ ],
+ [
+ "98001",
+ 255000,
+ 2006
+ ],
+ [
+ "98001",
+ 220000,
+ 1962
+ ],
+ [
+ "98001",
+ 160000,
+ 1964
+ ],
+ [
+ "98001",
+ 375000,
+ 1961
+ ],
+ [
+ "98001",
+ 225000,
+ 1981
+ ],
+ [
+ "98001",
+ 259900,
+ 1979
+ ],
+ [
+ "98001",
+ 260000,
+ 1967
+ ],
+ [
+ "98001",
+ 170000,
+ 1912
+ ],
+ [
+ "98001",
+ 317000,
+ 1988
+ ],
+ [
+ "98001",
+ 335000,
+ 2009
+ ],
+ [
+ "98001",
+ 359500,
+ 1993
+ ],
+ [
+ "98001",
+ 248000,
+ 1987
+ ],
+ [
+ "98001",
+ 265000,
+ 1967
+ ],
+ [
+ "98001",
+ 215000,
+ 1983
+ ],
+ [
+ "98001",
+ 139000,
+ 1978
+ ],
+ [
+ "98001",
+ 199129,
+ 1955
+ ],
+ [
+ "98001",
+ 285000,
+ 2007
+ ],
+ [
+ "98001",
+ 280000,
+ 1977
+ ],
+ [
+ "98001",
+ 240000,
+ 1946
+ ],
+ [
+ "98001",
+ 214000,
+ 2003
+ ],
+ [
+ "98001",
+ 275000,
+ 2007
+ ],
+ [
+ "98001",
+ 274000,
+ 1962
+ ],
+ [
+ "98001",
+ 204700,
+ 1967
+ ],
+ [
+ "98001",
+ 169100,
+ 1953
+ ],
+ [
+ "98001",
+ 250000,
+ 1953
+ ],
+ [
+ "98001",
+ 370000,
+ 1953
+ ],
+ [
+ "98001",
+ 571500,
+ 1959
+ ],
+ [
+ "98001",
+ 182500,
+ 1997
+ ],
+ [
+ "98001",
+ 551870,
+ 2006
+ ],
+ [
+ "98001",
+ 250600,
+ 1981
+ ],
+ [
+ "98001",
+ 541500,
+ 1960
+ ],
+ [
+ "98001",
+ 303000,
+ 1976
+ ],
+ [
+ "98001",
+ 200000,
+ 1962
+ ],
+ [
+ "98001",
+ 219000,
+ 1986
+ ],
+ [
+ "98001",
+ 225000,
+ 1961
+ ],
+ [
+ "98001",
+ 360000,
+ 1990
+ ],
+ [
+ "98001",
+ 124500,
+ 1954
+ ],
+ [
+ "98001",
+ 292500,
+ 2006
+ ],
+ [
+ "98001",
+ 270000,
+ 1965
+ ],
+ [
+ "98001",
+ 305000,
+ 1936
+ ],
+ [
+ "98001",
+ 285000,
+ 1985
+ ],
+ [
+ "98001",
+ 239950,
+ 1974
+ ],
+ [
+ "98001",
+ 226500,
+ 1968
+ ],
+ [
+ "98001",
+ 370000,
+ 1990
+ ],
+ [
+ "98001",
+ 248000,
+ 2006
+ ],
+ [
+ "98001",
+ 340000,
+ 2001
+ ],
+ [
+ "98001",
+ 238000,
+ 1975
+ ],
+ [
+ "98001",
+ 250000,
+ 1985
+ ],
+ [
+ "98001",
+ 209000,
+ 1967
+ ],
+ [
+ "98001",
+ 411000,
+ 1978
+ ],
+ [
+ "98001",
+ 229500,
+ 1954
+ ],
+ [
+ "98001",
+ 310000,
+ 1988
+ ],
+ [
+ "98001",
+ 255000,
+ 1972
+ ],
+ [
+ "98001",
+ 280000,
+ 2004
+ ],
+ [
+ "98001",
+ 420000,
+ 1983
+ ],
+ [
+ "98001",
+ 256000,
+ 1996
+ ],
+ [
+ "98001",
+ 246900,
+ 1968
+ ],
+ [
+ "98001",
+ 199950,
+ 1946
+ ],
+ [
+ "98001",
+ 233000,
+ 1968
+ ],
+ [
+ "98001",
+ 299900,
+ 1984
+ ],
+ [
+ "98001",
+ 299999,
+ 2001
+ ],
+ [
+ "98001",
+ 178500,
+ 1961
+ ],
+ [
+ "98001",
+ 232000,
+ 1966
+ ],
+ [
+ "98001",
+ 271920,
+ 1985
+ ],
+ [
+ "98001",
+ 257000,
+ 1975
+ ],
+ [
+ "98001",
+ 210000,
+ 1999
+ ],
+ [
+ "98001",
+ 247000,
+ 1962
+ ],
+ [
+ "98001",
+ 115000,
+ 1962
+ ],
+ [
+ "98001",
+ 227000,
+ 1962
+ ],
+ [
+ "98001",
+ 198000,
+ 1980
+ ],
+ [
+ "98001",
+ 185900,
+ 1909
+ ],
+ [
+ "98001",
+ 235000,
+ 1964
+ ],
+ [
+ "98001",
+ 190848,
+ 1970
+ ],
+ [
+ "98001",
+ 314950,
+ 1969
+ ],
+ [
+ "98001",
+ 185000,
+ 1975
+ ],
+ [
+ "98001",
+ 174000,
+ 1979
+ ],
+ [
+ "98001",
+ 184000,
+ 1968
+ ],
+ [
+ "98001",
+ 313100,
+ 1994
+ ],
+ [
+ "98001",
+ 166000,
+ 1988
+ ],
+ [
+ "98001",
+ 165000,
+ 1908
+ ],
+ [
+ "98001",
+ 132500,
+ 1967
+ ],
+ [
+ "98001",
+ 290000,
+ 1968
+ ],
+ [
+ "98001",
+ 206000,
+ 1968
+ ],
+ [
+ "98001",
+ 485000,
+ 2005
+ ],
+ [
+ "98001",
+ 500000,
+ 1986
+ ],
+ [
+ "98001",
+ 429000,
+ 1959
+ ],
+ [
+ "98001",
+ 270000,
+ 2005
+ ],
+ [
+ "98001",
+ 227000,
+ 1989
+ ],
+ [
+ "98001",
+ 300000,
+ 2003
+ ],
+ [
+ "98001",
+ 201000,
+ 1972
+ ],
+ [
+ "98001",
+ 372000,
+ 2003
+ ],
+ [
+ "98001",
+ 215000,
+ 1967
+ ],
+ [
+ "98001",
+ 199900,
+ 1967
+ ],
+ [
+ "98001",
+ 207000,
+ 1943
+ ],
+ [
+ "98001",
+ 367950,
+ 1989
+ ],
+ [
+ "98001",
+ 262500,
+ 1908
+ ],
+ [
+ "98001",
+ 289000,
+ 1988
+ ],
+ [
+ "98001",
+ 300000,
+ 1988
+ ],
+ [
+ "98001",
+ 321500,
+ 2003
+ ],
+ [
+ "98001",
+ 245000,
+ 1984
+ ],
+ [
+ "98001",
+ 199000,
+ 1960
+ ],
+ [
+ "98001",
+ 175000,
+ 1973
+ ],
+ [
+ "98001",
+ 234000,
+ 1987
+ ],
+ [
+ "98001",
+ 234950,
+ 1974
+ ],
+ [
+ "98001",
+ 171500,
+ 1946
+ ],
+ [
+ "98001",
+ 234500,
+ 1978
+ ],
+ [
+ "98001",
+ 246000,
+ 1966
+ ],
+ [
+ "98001",
+ 220000,
+ 1983
+ ],
+ [
+ "98001",
+ 229950,
+ 1969
+ ],
+ [
+ "98001",
+ 290000,
+ 1967
+ ],
+ [
+ "98001",
+ 250000,
+ 1969
+ ],
+ [
+ "98001",
+ 215500,
+ 1946
+ ],
+ [
+ "98001",
+ 289000,
+ 1980
+ ],
+ [
+ "98001",
+ 234950,
+ 1967
+ ],
+ [
+ "98001",
+ 285000,
+ 1965
+ ],
+ [
+ "98001",
+ 335000,
+ 1976
+ ],
+ [
+ "98001",
+ 220000,
+ 1993
+ ],
+ [
+ "98001",
+ 367300,
+ 1993
+ ],
+ [
+ "98001",
+ 535000,
+ 1988
+ ],
+ [
+ "98001",
+ 321000,
+ 2005
+ ],
+ [
+ "98001",
+ 230000,
+ 1903
+ ],
+ [
+ "98001",
+ 289950,
+ 1988
+ ],
+ [
+ "98001",
+ 250000,
+ 2001
+ ],
+ [
+ "98001",
+ 175000,
+ 1967
+ ],
+ [
+ "98001",
+ 360000,
+ 1965
+ ],
+ [
+ "98001",
+ 389000,
+ 1938
+ ],
+ [
+ "98001",
+ 100000,
+ 1956
+ ],
+ [
+ "98001",
+ 162500,
+ 1967
+ ],
+ [
+ "98001",
+ 205000,
+ 1970
+ ],
+ [
+ "98001",
+ 409000,
+ 2002
+ ],
+ [
+ "98001",
+ 172500,
+ 1972
+ ],
+ [
+ "98001",
+ 245000,
+ 1986
+ ],
+ [
+ "98001",
+ 276000,
+ 1976
+ ],
+ [
+ "98001",
+ 264500,
+ 1980
+ ],
+ [
+ "98001",
+ 154000,
+ 1992
+ ],
+ [
+ "98001",
+ 225000,
+ 1952
+ ],
+ [
+ "98001",
+ 215000,
+ 1947
+ ],
+ [
+ "98001",
+ 455000,
+ 2001
+ ],
+ [
+ "98001",
+ 340000,
+ 2006
+ ],
+ [
+ "98001",
+ 212000,
+ 1990
+ ],
+ [
+ "98001",
+ 280000,
+ 2000
+ ],
+ [
+ "98001",
+ 274950,
+ 1989
+ ],
+ [
+ "98001",
+ 280000,
+ 2000
+ ],
+ [
+ "98001",
+ 295000,
+ 1979
+ ],
+ [
+ "98001",
+ 338500,
+ 2005
+ ],
+ [
+ "98001",
+ 250000,
+ 1979
+ ],
+ [
+ "98001",
+ 245000,
+ 2000
+ ],
+ [
+ "98001",
+ 237000,
+ 1950
+ ],
+ [
+ "98001",
+ 234950,
+ 1994
+ ],
+ [
+ "98001",
+ 278000,
+ 1965
+ ],
+ [
+ "98001",
+ 210000,
+ 1963
+ ],
+ [
+ "98001",
+ 150000,
+ 1962
+ ],
+ [
+ "98001",
+ 190000,
+ 1994
+ ],
+ [
+ "98001",
+ 182500,
+ 1971
+ ],
+ [
+ "98001",
+ 175000,
+ 1963
+ ],
+ [
+ "98001",
+ 299000,
+ 1963
+ ],
+ [
+ "98001",
+ 197000,
+ 1976
+ ],
+ [
+ "98001",
+ 305000,
+ 1968
+ ],
+ [
+ "98001",
+ 287600,
+ 1990
+ ],
+ [
+ "98001",
+ 258000,
+ 1998
+ ],
+ [
+ "98001",
+ 199500,
+ 1962
+ ],
+ [
+ "98001",
+ 220000,
+ 1981
+ ],
+ [
+ "98001",
+ 179900,
+ 1970
+ ],
+ [
+ "98001",
+ 270000,
+ 1954
+ ],
+ [
+ "98001",
+ 425000,
+ 2002
+ ],
+ [
+ "98001",
+ 287500,
+ 1979
+ ],
+ [
+ "98001",
+ 255000,
+ 1958
+ ],
+ [
+ "98001",
+ 315000,
+ 1993
+ ],
+ [
+ "98001",
+ 363000,
+ 1961
+ ],
+ [
+ "98001",
+ 240000,
+ 1913
+ ],
+ [
+ "98001",
+ 225000,
+ 1963
+ ],
+ [
+ "98001",
+ 260000,
+ 1967
+ ],
+ [
+ "98001",
+ 230000,
+ 1965
+ ],
+ [
+ "98001",
+ 637000,
+ 2005
+ ],
+ [
+ "98001",
+ 260000,
+ 1985
+ ],
+ [
+ "98001",
+ 290000,
+ 2000
+ ],
+ [
+ "98001",
+ 160000,
+ 1990
+ ],
+ [
+ "98001",
+ 194250,
+ 1987
+ ],
+ [
+ "98001",
+ 222400,
+ 1995
+ ],
+ [
+ "98001",
+ 183500,
+ 1975
+ ],
+ [
+ "98001",
+ 625000,
+ 1978
+ ],
+ [
+ "98001",
+ 310000,
+ 1988
+ ],
+ [
+ "98001",
+ 254999,
+ 1976
+ ],
+ [
+ "98001",
+ 460000,
+ 2001
+ ],
+ [
+ "98001",
+ 230000,
+ 1960
+ ],
+ [
+ "98001",
+ 205000,
+ 1969
+ ],
+ [
+ "98001",
+ 168000,
+ 1913
+ ],
+ [
+ "98001",
+ 225000,
+ 1967
+ ],
+ [
+ "98001",
+ 159000,
+ 1953
+ ],
+ [
+ "98001",
+ 199900,
+ 1944
+ ],
+ [
+ "98001",
+ 328000,
+ 1998
+ ],
+ [
+ "98001",
+ 359000,
+ 2011
+ ],
+ [
+ "98001",
+ 250000,
+ 2012
+ ],
+ [
+ "98001",
+ 349500,
+ 2014
+ ],
+ [
+ "98001",
+ 355000,
+ 2014
+ ],
+ [
+ "98001",
+ 331210,
+ 2014
+ ],
+ [
+ "98001",
+ 272000,
+ 2007
+ ],
+ [
+ "98001",
+ 215000,
+ 2008
+ ],
+ [
+ "98001",
+ 275000,
+ 2009
+ ],
+ [
+ "98001",
+ 245000,
+ 2009
+ ],
+ [
+ "98001",
+ 351000,
+ 2012
+ ],
+ [
+ "98001",
+ 254950,
+ 2005
+ ],
+ [
+ "98001",
+ 309000,
+ 2014
+ ],
+ [
+ "98001",
+ 370228,
+ 2014
+ ],
+ [
+ "98001",
+ 205000,
+ 2006
+ ],
+ [
+ "98001",
+ 216000,
+ 2008
+ ],
+ [
+ "98001",
+ 255000,
+ 2009
+ ],
+ [
+ "98001",
+ 415000,
+ 2014
+ ],
+ [
+ "98001",
+ 427000,
+ 2005
+ ],
+ [
+ "98001",
+ 453000,
+ 2013
+ ],
+ [
+ "98001",
+ 552900,
+ 2014
+ ],
+ [
+ "98001",
+ 524225,
+ 2014
+ ],
+ [
+ "98001",
+ 349950,
+ 2013
+ ],
+ [
+ "98001",
+ 424000,
+ 2006
+ ],
+ [
+ "98001",
+ 317500,
+ 2012
+ ],
+ [
+ "98001",
+ 345500,
+ 2014
+ ],
+ [
+ "98001",
+ 260000,
+ 2007
+ ],
+ [
+ "98001",
+ 499160,
+ 2014
+ ],
+ [
+ "98001",
+ 329995,
+ 2013
+ ],
+ [
+ "98001",
+ 353000,
+ 2012
+ ],
+ [
+ "98001",
+ 447500,
+ 2013
+ ],
+ [
+ "98001",
+ 270500,
+ 2006
+ ],
+ [
+ "98001",
+ 457000,
+ 2013
+ ],
+ [
+ "98001",
+ 274900,
+ 2014
+ ],
+ [
+ "98001",
+ 280000,
+ 2013
+ ],
+ [
+ "98001",
+ 110000,
+ 1968
+ ],
+ [
+ "98001",
+ 353500,
+ 2014
+ ],
+ [
+ "98001",
+ 255000,
+ 2011
+ ],
+ [
+ "98001",
+ 549950,
+ 2014
+ ],
+ [
+ "98001",
+ 510000,
+ 2008
+ ],
+ [
+ "98001",
+ 277950,
+ 2012
+ ],
+ [
+ "98001",
+ 375900,
+ 2010
+ ],
+ [
+ "98001",
+ 215000,
+ 2009
+ ],
+ [
+ "98001",
+ 235245,
+ 2007
+ ],
+ [
+ "98001",
+ 375500,
+ 2010
+ ],
+ [
+ "98001",
+ 349950,
+ 2013
+ ],
+ [
+ "98001",
+ 495000,
+ 2014
+ ],
+ [
+ "98001",
+ 269950,
+ 2012
+ ],
+ [
+ "98001",
+ 312891,
+ 2013
+ ],
+ [
+ "98001",
+ 480000,
+ 2006
+ ],
+ [
+ "98001",
+ 341780,
+ 2014
+ ],
+ [
+ "98001",
+ 541800,
+ 2014
+ ]
+ ],
+ "hovertemplate": "zipcode=%{customdata[0]} lat=%{lat} long=%{lon} price=%{customdata[1]} yr_built=%{customdata[2]} ",
+ "lat": {
+ "bdata": "+8vuycOqR0BeS8gHPatHQI0o7Q2+qEdAVOOlm8SoR0D7y+7Jw6pHQAu1pnnHoUdA5BQdyeWnR0DvOEVHcqFHQIiFWtO8q0dAXrpJDAKrR0D2KFyPwq1HQMHKoUW2q0dAEoPAyqGlR0DfT42XbqpHQKOSOgFNrEdAMlUwKqmjR0DhehSuR6lHQBkEVg4tokdAPE7RkVymR0D2l92Th61HQL6fGi/dpEdAJQaBlUOjR0Bd3EYDeKtHQHo2qz5Xq0dAYcPTK2WhR0ANcayL26hHQBHHuriNpkdAMuauJeSjR0DcaABvgaxHQA8LtaZ5p0dAP8bctYSkR0Aj2/l+aqRHQFyPwvUorEdAejarPlerR0AJ+aBns6pHQD9XW7G/rEdAIo51cRutR0DufD81XqJHQEI+6NmsqkdAiIVa07yrR0AW+8vuyaNHQGDl0CLbqUdAl5APejajR0D7OnDOiKpHQJSHhVrTpEdA/Knx0k2qR0CitDf4wqRHQHxhMlUwokdAE2HD0yutR0BhMlUwKqlHQG+BBMWPoUdAfT81XrqhR0Cyne+nxqtHQCSX/5B+o0dAz/dT46WrR0ASpb3BF6ZHQGHD0ytloUdApHA9CtejR0DChqdXyqJHQJVliGNdpEdAfdCzWfWpR0AIrBxaZKtHQNqs+lxtpUdAS1mGONalR0C4QILix6hHQNCzWfW5qkdAB84ZUdqrR0BeS8gHPatHQNxGA3gLpEdAhslUwaikR0C4rwPnjKhHQF1txf6yq0dAwoanV8qiR0ALRiV1AqpHQGsr9pfdq0dALSEf9GymR0Di6ZWyDKlHQAWjkjoBrUdAf2q8dJOoR0AZBFYOLapHQFr1udqKrUdANqs+V1uhR0AX2c73U6tHQN0kBoGVq0dAkst/SL+lR0Df4AuTqapHQKYKRiV1qkdAOiNKe4OnR0DkFB3J5adHQFtCPujZrEdAV1uxv+ymR0DyQc9m1adHQEGC4seYq0dA7nw/NV6qR0CoV8oyxKFHQBTQRNjwrEdAVOOlm8SoR0BAE2HD06tHQDPEsS5uq0dAidLe4AujR0CxUGuad6RHQJ2AJsKGp0dAQBNhw9OrR0C1pnnHKaJHQFpkO99PrUdACfmgZ7OqR0Djx5i7lqhHQBfZzvdTq0dAAiuHFtmmR0B9PzVeuqlHQEXY8PRKqUdANIC3QIKqR0BPr5RliKtHQPp+arx0q0dAPujZrPqsR0DSb18HzqlHQEaU9gZfqEdAaCJseHqtR0CPwvUoXKdHQMIXJlMFo0dAPQrXo3ClR0D5D+m3r6tHQAu1pnnHqUdAGsBbIEGhR0DswDkjSqtHQN5xio7kqkdAumsJ+aCnR0BtVn2utqpHQO5aQj7ooUdAMEymCkatR0CYTBWMSqpHQDMzMzMzq0dAio7k8h+iR0CRfvs6cKZHQPYoXI/CpUdAaW/whcmkR0CKsOHplaJHQLaEfNCzoUdAfPKwUGuqR0AGEhQ/xqRHQIhjXdxGq0dAQYLix5irR0B+jLlrCalHQH6MuWsJqUdAzczMzMykR0Cu2F92T6ZHQPtcbcX+okdAseHplbKkR0DgnBGlvalHQHKKjuTyp0dA7FG4HoWrR0BLWYY41qVHQPyp8dJNokdAFNBE2PCkR0AX2c73U6tHQG8Sg8DKoUdA3nGKjuSqR0D5D+m3r6tHQF8HzhlRokdACtejcD2qR0B90LNZ9aFHQG3n+6nxqkdAcF8HzhmpR0D7XG3F/qJHQFOWIY51oUdAfPKwUGuqR0BDHOviNqpHQOwvuycPq0dAsb/snjykR0B3LSEf9KRHQKJFtvP9rEdAGlHaG3yhR0CX/5B++6pHQO84RUdyqUdAirDh6ZWqR0DXNO84RadHQDMzMzMzo0dAOpLLf0inR0AJ+aBns6pHQPaX3ZOHpUdA6bevA+ekR0ApyxDHuqhHQN9PjZduqkdAfPKwUGuqR0BeS8gHPatHQCSX/5B+q0dAWYY41sWlR0BZhjjWxaVHQPrt68A5o0dAQfFjzF2jR0CIhVrTvKtHQCbkg57NqkdA6Ugu/yGlR0DuWkI+6KFHQBpR2ht8oUdA/fZ14JypR0B3vp8aL61HQIMvTKYKpkdAiGNd3EajR0ApXI/C9ahHQHe+nxovrUdA5WGh1jSnR0CwA+eMKK1HQHxhMlUwqkdAGeJYF7epR0AawFsgQaFHQIy5awn5oEdAqvHSTWKoR0C2hHzQs6FHQP8h/fZ1qEdAVOOlm8SoR0DSb18HzqlHQFMFo5I6qUdAFNBE2PCsR0Cz6nO1FaNHQAfwFkhQrEdAN4lBYOWoR0DxY8xdS6hHQG3F/rJ7qkdAb/CFyVSpR0D7y+7Jw6pHQIts5/upoUdAlrIMcayrR0A2zTtO0aFHQGsr9pfdq0dA9+RhodasR0ClLEMc66pHQHPXEvJBp0dAB1+YTBWsR0ALtaZ5x6FHQO84RUdyoUdAxY8xdy2hR0AzMzMzM6tHQIiFWtO8q0dATx4Wak2jR0BSSZ2AJqJHQGiR7Xw/rUdARrbz/dSoR0ClvcEXJqtHQFJJnYAmokdAm+Ydp+ioR0BF2PD0SqFHQPrt68A5q0dAKcsQx7qoR0AT8kHPZq1HQLMMcayLo0dA3gIJih+rR0Aj2/l+aqRHQHGsi9toqEdAKA8LtaahR0AaUdobfKlHQApoImx4qkdA9pfdk4elR0Bbsb/snqRHQAYSFD/GpEdA+Q/pt6+rR0D/snvysKhHQPfkYaHWrEdA07zjFB2hR0CneccpOqpHQOLplbIMqUdANe84RUeqR0AX2c73U6tHQGx4eqUsq0dAkst/SL+lR0A17zhFR6pHQOwvuycPo0dAfGEyVTCiR0DIBz2bVadHQHrHKTqSq0dAEhQ/xtylR0DuWkI+6KFHQG1Wfa62qkdAVg4tsp2nR0BWDi2ynadHQF+YTBWMqkdAQs9m1eeqR0CWQ4ts56tHQBniWBe3oUdAEhQ/xtylR0Cad5yiI6FHQPfkYaHWpEdAbVZ9rraiR0BU46WbxKhHQCUGgZVDq0dAY+5aQj6oR0DBOSNKe6tHQD9XW7G/pEdAkzoBTYStR0CWIY51catHQDSitDf4qkdAIo51cRulR0C5/If026dHQFInoImwqUdANe84RUeqR0AbL90kBqFHQLaEfNCzoUdA7lpCPuihR0BfmEwVjKJHQFCNl24So0dARUdy+Q+pR0AKaCJseKpHQERpb/CFoUdAvjCZKhilR0CWIY51caNHQNDVVuwvo0dAwTkjSnurR0Bbsb/snqRHQMPTK2UZokdAjZduEoOoR0DzjlN0JKdHQJp3nKIjoUdAokW28/2sR0Bb07zjFK1HQMzuycNCpUdAV+wvuyenR0CitDf4wqRHQE+vlGWIo0dAfPKwUGuiR0BlGeJYF6dHQJ5eKcsQp0dAqDXNO06hR0CF61G4Hq1HQJoIG55eoUdAaW/whcmkR0D+1HjpJqFHQPtcbcX+qkdAh6dXyjKsR0AgQfFjzKVHQHgLJCh+pEdAd76fGi+lR0BrK/aX3atHQHnpJjEIrEdAfh04Z0ShR0DMXUvIB61HQHxhMlUwokdAE2HD0yulR0B+HThnRKFHQBTQRNjwrEdAkX77OnCmR0C28/3UeKFHQBIUP8bcpUdAqDXNO06hR0CoNc07TqFHQESLbOf7oUdAvjCZKhitR0CYTBWMSqJHQJM6AU2EpUdAkst/SL+lR0BuNIC3QKJHQBUdyeU/rEdAGCZTBaOiR0A2qz5XW6FHQD81XrpJrEdAzojS3uCrR0Bjf9k9eahHQDarPldboUdAnl4pyxCnR0AHX5hMFaxHQIZa07zjrEdAkzoBTYSlR0A=",
+ "dtype": "f8"
+ },
+ "legendgroup": "98001",
+ "lon": {
+ "bdata": "NV66SQySXsCcxCCwcpBewNV46SYxkF7AmpmZmZmRXsC4HoXrUZBewOOlm8QgkF7A4XoUrkeRXsC4HoXrUZBewNNNYhBYkV7A8KfGSzeRXsBSuB6F65FewMUgsHJokV7ARIts5/uRXsBGtvP91JBewMUgsHJokV7AAAAAAACQXsC28/3UeJFewAAAAAAAkF7A8KfGSzeRXsBvEoPAypFewCcxCKwckl7A001iEFiRXsCq8dJNYpBewN9PjZdukl7A0SLb+X6SXsDufD81XpJewArXo3A9kl7A8tJNYhCQXsDTTWIQWJFewOXQItv5jl7AKVyPwvWQXsAAAAAAAJBewCcxCKwckl7AxSCwcmiRXsDFILByaJFewNEi2/l+kl7ACtejcD2SXsAQWDm0yI5ewNEi2/l+kl7AJzEIrBySXsArhxbZzo9ewAwCK4cWkV7A46WbxCCQXsCLbOf7qZFewCcxCKwckl7ACtejcD2SXsAnMQisHJJewMl2vp8aj17AqMZLN4mRXsC0yHa+n5JewDVeukkMkl7AGQRWDi2SXsBg5dAi25FewIts5/upkV7AKVyPwvWQXsDTTWIQWJFewOF6FK5HkV7AnMQgsHKQXsC0yHa+n5JewLgehetRkF7AVOOlm8SQXsAbL90kBpFewNNNYhBYkV7AxSCwcmiRXsDRItv5fpJewP7UeOkmkV7ACtejcD2SXsBU46WbxJBewPCnxks3kV7AN4lBYOWQXsA3iUFg5ZBewPyp8dJNkl7AKVyPwvWQXsAK16NwPZJewESLbOf7kV7ANV66SQySXsAbL90kBpFewKabxCCwkl7ARIts5/uRXsCcxCCwcpBewMP1KFyPkl7ACtejcD2SXsA1XrpJDJJewN9PjZdukl7ACtejcD2SXsAbL90kBpFewIts5/upkV7AN4lBYOWQXsDHSzeJQZBewBkEVg4tkl7AUrgeheuRXsApXI/C9ZBewPCnxks3kV7A/Knx0k2SXsBkO99PjY9ewBsv3SQGkV7AVOOlm8SQXsCamZmZmZFewH9qvHSTkF7A001iEFiRXsDy0k1iEJBewLbz/dR4kV7A0SLb+X6SXsDHSzeJQZBewJhuEoPAkl7ARIts5/uRXsBg5dAi25FewFTjpZvEkF7AJzEIrBySXsC28/3UeJFewO58PzVekl7AYhBYObSQXsA1XrpJDJJewFK4HoXrkV7AYOXQItuRXsDFILByaJFewMdLN4lBkF7AUrgeheuRXsAZBFYOLZJewPLSTWIQkF7AGQRWDi2SXsBSuB6F65FewFTjpZvEkF7ARIts5/uRXsCcxCCwcpBewDVeukkMkl7AgZVDi2yPXsBxPQrXo5BewKabxCCwkl7AqMZLN4mRXsB9PzVeupFewLTIdr6fkl7Ax0s3iUGQXsDhehSuR5FewJqZmZmZkV7AJzEIrBySXsDD9Shcj5JewESLbOf7kV7Aw/UoXI+SXsAnMQisHJJewNEi2/l+kl7AGQRWDi2SXsDwp8ZLN5FewPCnxks3kV7A0SLb+X6SXsCYbhKDwJJewB1aZDvfj17A4XoUrkeRXsBxPQrXo5BewNV46SYxkF7A001iEFiRXsAK16NwPZJewEjhehSuj17AqMZLN4mRXsA3iUFg5ZBewI2XbhKDkF7A0SLb+X6SXsB9PzVeupFewAwCK4cWkV7AbxKDwMqRXsAK16NwPZJewBkEVg4tkl7AfT81XrqRXsDy0k1iEJBewMP1KFyPkl7AmpmZmZmRXsB9PzVeupFewIts5/upkV7AYOXQItuRXsDwp8ZLN5FewLTIdr6fkl7ARIts5/uRXsApXI/C9ZBewKabxCCwkl7Aw/UoXI+SXsDhehSuR5FewG8Sg8DKkV7A001iEFiRXsDwp8ZLN5FewCcxCKwckl7AxSCwcmiRXsDTTWIQWJFewClcj8L1kF7AmpmZmZmRXsBGtvP91JBewPyp8dJNkl7AGQRWDi2SXsAZBFYOLZJewPLSTWIQkF7AnMQgsHKQXsBEi2zn+5FewFK4HoXrkV7AYOXQItuRXsAK16NwPZJewPLSTWIQkF7A/tR46SaRXsDFILByaJFewAwCK4cWkV7A4XoUrkeRXsBvEoPAypFewIlBYOXQkl7A4XoUrkeRXsAMAiuHFpFewKrx0k1ikF7A0SLb+X6SXsBEi2zn+5FewLgehetRkF7AGy/dJAaRXsBI4XoUro9ewOF6FK5HkV7Aw/UoXI+SXsC0yHa+n5JewDVeukkMkl7A7nw/NV6SXsAbL90kBpFewPyp8dJNkl7AtvP91HiRXsDhehSuR5FewAwCK4cWkV7AJzEIrBySXsBg5dAi25FewHNoke18j17AtvP91HiRXsCNl24Sg5BewKjGSzeJkV7AYOXQItuRXsDhehSuR5FewArXo3A9kl7A001iEFiRXsAK16NwPZJewB1aZDvfj17AtMh2vp+SXsCLbOf7qZFewH0/NV66kV7AKVyPwvWQXsAQWDm0yI5ewLbz/dR4kV7AcT0K16OQXsCq8dJNYpBewOOlm8QgkF7AxSCwcmiRXsD8qfHSTZJewLTIdr6fkl7AYOXQItuRXsAK16NwPZJewOOlm8QgkF7AmpmZmZmRXsAMAiuHFpFewPLSTWIQkF7AmpmZmZmRXsCamZmZmZFewESLbOf7kV7ADAIrhxaRXsDjpZvEIJBewPLSTWIQkF7Aw/UoXI+SXsCcxCCwcpBewLTIdr6fkl7A1XjpJjGQXsDwp8ZLN5FewJqZmZmZkV7A8KfGSzeRXsCq8dJNYpBewBsv3SQGkV7A8KfGSzeRXsD+1HjpJpFewA4tsp3vj17A9P3UeOmOXsDFILByaJFewFK4HoXrkV7ACtejcD2SXsBzaJHtfI9ewJqZmZmZkV7AJzEIrBySXsAnMQisHJJewFK4HoXrkV7AbxKDwMqRXsBSuB6F65FewNEi2/l+kl7AGQRWDi2SXsBg5dAi25FewPLSTWIQkF7AKVyPwvWQXsB/arx0k5BewI2XbhKDkF7AbxKDwMqRXsAbL90kBpFewO58PzVekl7AiUFg5dCSXsBEi2zn+5FewJqZmZmZkV7A7nw/NV6SXsBU46WbxJBewIts5/upkV7A001iEFiRXsDjpZvEIJBewFYOLbKdj17A46WbxCCQXsC4HoXrUZBewO58PzVekl7AtvP91HiRXsB9PzVeupFewNNNYhBYkV7A8tJNYhCQXsA3iUFg5ZBewOOlm8QgkF7AtMh2vp+SXsDVeOkmMZBewKrx0k1ikF7A46WbxCCQXsB9PzVeupFewKrx0k1ikF7AmpmZmZmRXsCamZmZmZFewBsv3SQGkV7AUrgeheuRXsCcxCCwcpBewPLSTWIQkF7Aj8L1KFyPXsCLbOf7qZFewCcxCKwckl7AGQRWDi2SXsCamZmZmZFewAAAAAAAkF7AnMQgsHKQXsCq8dJNYpBewJzEILBykF7ADAIrhxaRXsApXI/C9ZBewH0/NV66kV7AN4lBYOWQXsBvEoPAypFewPCnxks3kV7AqvHSTWKQXsCamZmZmZFewKrx0k1ikF7AN4lBYOWQXsAnMQisHJJewJqZmZmZkV7ARrbz/dSQXsDjpZvEIJBewClcj8L1kF7AObTIdr6PXsDjpZvEIJBewFYOLbKdj17AmpmZmZmRXsC4HoXrUZBewDeJQWDlkF7A4XoUrkeRXsCq8dJNYpBewOF6FK5HkV7Ax0s3iUGQXsDVeOkmMZBewPCnxks3kV7AbxKDwMqRXsDFILByaJFewMdLN4lBkF7Ai2zn+6mRXsDwp8ZLN5FewLTIdr6fkl7AN4lBYOWQXsA=",
+ "dtype": "f8"
+ },
+ "marker": {
+ "color": "#EF553B"
+ },
+ "mode": "markers",
+ "name": "98001",
+ "showlegend": true,
+ "subplot": "mapbox",
+ "type": "scattermapbox"
+ },
+ {
+ "customdata": [
+ [
+ "98032",
+ 247500,
+ 1967
+ ],
+ [
+ "98032",
+ 258000,
+ 1960
+ ],
+ [
+ "98032",
+ 260000,
+ 1978
+ ],
+ [
+ "98032",
+ 205000,
+ 1960
+ ],
+ [
+ "98032",
+ 299000,
+ 1958
+ ],
+ [
+ "98032",
+ 318888,
+ 1973
+ ],
+ [
+ "98032",
+ 250000,
+ 1968
+ ],
+ [
+ "98032",
+ 285000,
+ 1962
+ ],
+ [
+ "98032",
+ 321000,
+ 1978
+ ],
+ [
+ "98032",
+ 140000,
+ 1959
+ ],
+ [
+ "98032",
+ 229900,
+ 1981
+ ],
+ [
+ "98032",
+ 248000,
+ 1966
+ ],
+ [
+ "98032",
+ 223000,
+ 1961
+ ],
+ [
+ "98032",
+ 240000,
+ 1969
+ ],
+ [
+ "98032",
+ 123300,
+ 1956
+ ],
+ [
+ "98032",
+ 176500,
+ 1910
+ ],
+ [
+ "98032",
+ 234000,
+ 1961
+ ],
+ [
+ "98032",
+ 299000,
+ 1982
+ ],
+ [
+ "98032",
+ 240000,
+ 1977
+ ],
+ [
+ "98032",
+ 240000,
+ 1959
+ ],
+ [
+ "98032",
+ 221700,
+ 1957
+ ],
+ [
+ "98032",
+ 249000,
+ 1962
+ ],
+ [
+ "98032",
+ 215000,
+ 1960
+ ],
+ [
+ "98032",
+ 260000,
+ 1962
+ ],
+ [
+ "98032",
+ 281000,
+ 1945
+ ],
+ [
+ "98032",
+ 247000,
+ 1968
+ ],
+ [
+ "98032",
+ 320000,
+ 1978
+ ],
+ [
+ "98032",
+ 215000,
+ 1978
+ ],
+ [
+ "98032",
+ 330000,
+ 1978
+ ],
+ [
+ "98032",
+ 250000,
+ 1978
+ ],
+ [
+ "98032",
+ 285900,
+ 1961
+ ],
+ [
+ "98032",
+ 226450,
+ 1944
+ ],
+ [
+ "98032",
+ 243400,
+ 1959
+ ],
+ [
+ "98032",
+ 231000,
+ 1995
+ ],
+ [
+ "98032",
+ 215000,
+ 1967
+ ],
+ [
+ "98032",
+ 158550,
+ 1961
+ ],
+ [
+ "98032",
+ 203000,
+ 1970
+ ],
+ [
+ "98032",
+ 237000,
+ 1979
+ ],
+ [
+ "98032",
+ 277000,
+ 1968
+ ],
+ [
+ "98032",
+ 327500,
+ 1971
+ ],
+ [
+ "98032",
+ 263000,
+ 1977
+ ],
+ [
+ "98032",
+ 296500,
+ 1978
+ ],
+ [
+ "98032",
+ 310000,
+ 1966
+ ],
+ [
+ "98032",
+ 163000,
+ 1996
+ ],
+ [
+ "98032",
+ 320000,
+ 1978
+ ],
+ [
+ "98032",
+ 182000,
+ 1959
+ ],
+ [
+ "98032",
+ 249000,
+ 2005
+ ],
+ [
+ "98032",
+ 250000,
+ 1959
+ ],
+ [
+ "98032",
+ 319000,
+ 1978
+ ],
+ [
+ "98032",
+ 374900,
+ 1982
+ ],
+ [
+ "98032",
+ 249000,
+ 1909
+ ],
+ [
+ "98032",
+ 270500,
+ 1960
+ ],
+ [
+ "98032",
+ 400000,
+ 1973
+ ],
+ [
+ "98032",
+ 250000,
+ 1967
+ ],
+ [
+ "98032",
+ 201500,
+ 1959
+ ],
+ [
+ "98032",
+ 165000,
+ 1970
+ ],
+ [
+ "98032",
+ 280927,
+ 1977
+ ],
+ [
+ "98032",
+ 268000,
+ 1966
+ ],
+ [
+ "98032",
+ 275000,
+ 1962
+ ],
+ [
+ "98032",
+ 290000,
+ 1980
+ ],
+ [
+ "98032",
+ 85000,
+ 1939
+ ],
+ [
+ "98032",
+ 235000,
+ 1939
+ ],
+ [
+ "98032",
+ 290000,
+ 1959
+ ],
+ [
+ "98032",
+ 244615,
+ 1999
+ ],
+ [
+ "98032",
+ 305000,
+ 1968
+ ],
+ [
+ "98032",
+ 545000,
+ 1964
+ ],
+ [
+ "98032",
+ 320000,
+ 1966
+ ],
+ [
+ "98032",
+ 268500,
+ 1959
+ ],
+ [
+ "98032",
+ 165000,
+ 1978
+ ],
+ [
+ "98032",
+ 260000,
+ 1963
+ ],
+ [
+ "98032",
+ 336950,
+ 1978
+ ],
+ [
+ "98032",
+ 245700,
+ 1968
+ ],
+ [
+ "98032",
+ 300000,
+ 1967
+ ],
+ [
+ "98032",
+ 245000,
+ 1981
+ ],
+ [
+ "98032",
+ 185000,
+ 1959
+ ],
+ [
+ "98032",
+ 287000,
+ 1977
+ ],
+ [
+ "98032",
+ 180000,
+ 1959
+ ],
+ [
+ "98032",
+ 262500,
+ 1979
+ ],
+ [
+ "98032",
+ 241000,
+ 1981
+ ],
+ [
+ "98032",
+ 336000,
+ 1967
+ ],
+ [
+ "98032",
+ 240000,
+ 1950
+ ],
+ [
+ "98032",
+ 265000,
+ 1962
+ ],
+ [
+ "98032",
+ 129000,
+ 1949
+ ],
+ [
+ "98032",
+ 225000,
+ 1963
+ ],
+ [
+ "98032",
+ 205000,
+ 1959
+ ],
+ [
+ "98032",
+ 374000,
+ 1982
+ ],
+ [
+ "98032",
+ 380000,
+ 1965
+ ],
+ [
+ "98032",
+ 309000,
+ 1968
+ ],
+ [
+ "98032",
+ 269950,
+ 1977
+ ],
+ [
+ "98032",
+ 270000,
+ 1973
+ ],
+ [
+ "98032",
+ 265000,
+ 1963
+ ],
+ [
+ "98032",
+ 250000,
+ 1961
+ ],
+ [
+ "98032",
+ 227000,
+ 1954
+ ],
+ [
+ "98032",
+ 270000,
+ 1963
+ ],
+ [
+ "98032",
+ 169000,
+ 1978
+ ],
+ [
+ "98032",
+ 279950,
+ 1978
+ ],
+ [
+ "98032",
+ 273500,
+ 1967
+ ],
+ [
+ "98032",
+ 242000,
+ 1947
+ ],
+ [
+ "98032",
+ 185000,
+ 1958
+ ],
+ [
+ "98032",
+ 100000,
+ 1912
+ ],
+ [
+ "98032",
+ 202000,
+ 1907
+ ],
+ [
+ "98032",
+ 324900,
+ 1988
+ ],
+ [
+ "98032",
+ 85000,
+ 1947
+ ],
+ [
+ "98032",
+ 209950,
+ 1960
+ ],
+ [
+ "98032",
+ 225000,
+ 1926
+ ],
+ [
+ "98032",
+ 229950,
+ 1944
+ ],
+ [
+ "98032",
+ 160000,
+ 1912
+ ],
+ [
+ "98032",
+ 135000,
+ 1959
+ ],
+ [
+ "98032",
+ 240000,
+ 1969
+ ],
+ [
+ "98032",
+ 280000,
+ 1995
+ ],
+ [
+ "98032",
+ 206000,
+ 1963
+ ],
+ [
+ "98032",
+ 287500,
+ 1985
+ ],
+ [
+ "98032",
+ 250200,
+ 1959
+ ],
+ [
+ "98032",
+ 239000,
+ 1954
+ ],
+ [
+ "98032",
+ 245000,
+ 1963
+ ],
+ [
+ "98032",
+ 180000,
+ 1959
+ ],
+ [
+ "98032",
+ 268000,
+ 1980
+ ],
+ [
+ "98032",
+ 265000,
+ 1960
+ ],
+ [
+ "98032",
+ 178500,
+ 1961
+ ],
+ [
+ "98032",
+ 215000,
+ 1967
+ ],
+ [
+ "98032",
+ 278000,
+ 1960
+ ],
+ [
+ "98032",
+ 299500,
+ 1980
+ ],
+ [
+ "98032",
+ 234000,
+ 1955
+ ],
+ [
+ "98032",
+ 324950,
+ 2012
+ ],
+ [
+ "98032",
+ 375000,
+ 2012
+ ]
+ ],
+ "hovertemplate": "zipcode=%{customdata[0]} lat=%{lat} long=%{lon} price=%{customdata[1]} yr_built=%{customdata[2]} ",
+ "lat": {
+ "bdata": "WYY41sWtR0BE+u3rwLFHQHS1FfvLrkdANxrAWyCxR0BhMlUwKrFHQMpUwaikrkdADi2yne+vR0A5RUdy+a9HQGaIY13crkdAOUVHcvmvR0Ar9pfdk69HQC0hH/RsrkdAZ9XnaiuuR0DnHafoSK5HQB1aZDvfr0dADi2yne+vR0DKMsSxLq5HQLyWkA96rkdA1lbsL7uvR0A4Z0Rpb7BHQNJvXwfOsUdAWKg1zTuuR0DUmuYdp7BHQBsv3SQGsUdAJJf/kH6zR0C5/If0269HQA8LtaZ5r0dAkKD4MeauR0BHcvkP6a9HQFdbsb/srkdAYcPTK2WxR0BVwaikTrBHQHGsi9tosEdAnDOitDewR0DkFB3J5a9HQJp3nKIjsUdA8fRKWYawR0DHuriNBrBHQPOOU3Qkr0dAke18PzWuR0AukKD4Ma5HQHWTGARWrkdArthfdk+uR0D8GHPXErJHQOQUHcnlr0dA8IXJVMGwR0Dy0k1iELBHQFTjpZvEsEdAZDvfT42vR0CfPCzUmq5HQGPuWkI+sEdAZDvfT42vR0BLWYY41q1HQDhnRGlvsEdAfoy5awmxR0D1SlmGOK5HQIPAyqFFrkdAETY8vVKuR0BUUiegibBHQLyWkA96rkdAf/s6cM6wR0B/+zpwzrBHQK62Yn/ZrUdA0gDeAgmyR0DmriXkg65HQPaX3ZOHrUdAETY8vVKuR0BHcvkP6a9HQAK8BRIUr0dAZohjXdyuR0BHcvkP6a9HQGTMXUvIr0dAnKIjufyvR0D1udqK/a1HQI/C9Shcr0dAgnNGlPauR0Ar9pfdk69HQPT91HjprkdAoImw4emtR0BYyjLEsa5HQEtZhjjWrUdADi2yne+vR0CLbOf7qbFHQJwzorQ3sEdAuK8D54ywR0C8lpAPeq5HQIzbaABvsUdAV1uxv+yuR0COdXEbDbBHQC1DHOvirkdAVFInoImwR0AOT6+UZbBHQGTMXUvIr0dAyeU/pN+uR0CdEaW9wa9HQJ0Rpb3Br0dAqMZLN4mxR0CitDf4wrRHQFUwKqkTsEdA78nDQq2xR0Bj7lpCPrBHQNnO91PjrUdAJ6CJsOGxR0BSuB6F67FHQIBIv30dsEdAYVRSJ6CxR0BhVFInoLFHQMgHPZtVr0dAjZduEoOwR0BnRGlv8K1HQCqpE9BEsEdAZDvfT42vR0A3GsBbILFHQBlz1xLysUdAEFg5tMiuR0AAb4EExa9HQNcS8kHPrkdAYTJVMCqxR0BTliGOdbFHQOSDns2qr0dAOiNKe4OvR0BIUPwYc69HQH0/NV66sUdA1zTvOEWvR0CsHFpkO69HQA==",
+ "dtype": "f8"
+ },
+ "legendgroup": "98032",
+ "lon": {
+ "bdata": "fT81XrqRXsD8qfHSTZJewG8Sg8DKkV7A0SLb+X6SXsAZBFYOLZJewFK4HoXrkV7AmpmZmZmRXsCLbOf7qZFewFK4HoXrkV7AiUFg5dCSXsB9PzVeupFewArXo3A9kl7AtMh2vp+SXsD8qfHSTZJewG3n+6nxkl7AEFg5tMiOXsDD9Shcj5JewIts5/upkV7AexSuR+GSXsAIrBxaZJNewDVeukkMkl7AGQRWDi2SXsDRItv5fpJewN9PjZdukl7AtvP91HiRXsDD9Shcj5JewArXo3A9kl7AYOXQItuRXsAK16NwPZJewH0/NV66kV7A30+Nl26SXsDJdr6fGo9ewPp+arx0k17ACKwcWmSTXsDRItv5fpJewN9PjZdukl7A0SLb+X6SXsDJdr6fGo9ewGDl0CLbkV7ARIts5/uRXsCoxks3iZFewH0/NV66kV7A0SLb+X6SXsDl0CLb+Y5ewBkEVg4tkl7A7nw/NV6SXsBvEoPAypFewEJg5dAik17ACtejcD2SXsBvEoPAypFewOXQItv5jl7Aw/UoXI+SXsAbL90kBpFewMP1KFyPkl7A30+Nl26SXsCYbhKDwJJewKjGSzeJkV7ACtejcD2SXsBSuB6F65FewH0/NV66kV7AZDvfT42PXsBkO99PjY9ewBkEVg4tkl7ArBxaZDuPXsBg5dAi25FewMP1KFyPkl7A7nw/NV6SXsB7FK5H4ZJewDVeukkMkl7Aw/UoXI+SXsAK16NwPZJewNEi2/l+kl7AtMh2vp+SXsDRItv5fpJewF66SQwCk17A30+Nl26SXsBeukkMApNewIts5/upkV7A30+Nl26SXsAZBFYOLZJewN9PjZdukl7Ai2zn+6mRXsDl0CLb+Y5ewO58PzVekl7A+n5qvHSTXsDTTWIQWJFewFK4HoXrkV7A30+Nl26SXsB9PzVeupFewArXo3A9kl7ANV66SQySXsAZBFYOLZJewJqZmZmZkV7ANV66SQySXsD8qfHSTZJewPyp8dJNkl7ARIts5/uRXsAMAiuHFpFewF66SQwCk17A5dAi2/mOXsC6SQwCK49ewPyp8dJNkl7AyXa+nxqPXsDJdr6fGo9ewKwcWmQ7j17AyXa+nxqPXsDl0CLb+Y5ewF66SQwCk17Aw/UoXI+SXsBEi2zn+5FewO58PzVekl7AqMZLN4mRXsDufD81XpJewCcxCKwckl7AtMh2vp+SXsB7FK5H4ZJewFK4HoXrkV7A30+Nl26SXsDufD81XpJewH0/NV66kV7A0SLb+X6SXsCamZmZmZFewBkEVg4tkl7A/Knx0k2SXsDufD81XpJewA==",
+ "dtype": "f8"
+ },
+ "marker": {
+ "color": "#00cc96"
+ },
+ "mode": "markers",
+ "name": "98032",
+ "showlegend": true,
+ "subplot": "mapbox",
+ "type": "scattermapbox"
+ },
+ {
+ "customdata": [
+ [
+ "98168",
+ 171800,
+ 1950
+ ],
+ [
+ "98168",
+ 280000,
+ 1923
+ ],
+ [
+ "98168",
+ 340500,
+ 1947
+ ],
+ [
+ "98168",
+ 215000,
+ 1943
+ ],
+ [
+ "98168",
+ 240500,
+ 1997
+ ],
+ [
+ "98168",
+ 269950,
+ 2002
+ ],
+ [
+ "98168",
+ 249950,
+ 1952
+ ],
+ [
+ "98168",
+ 210000,
+ 1950
+ ],
+ [
+ "98168",
+ 175000,
+ 1947
+ ],
+ [
+ "98168",
+ 282000,
+ 1956
+ ],
+ [
+ "98168",
+ 245000,
+ 1963
+ ],
+ [
+ "98168",
+ 185000,
+ 1932
+ ],
+ [
+ "98168",
+ 260000,
+ 1940
+ ],
+ [
+ "98168",
+ 283000,
+ 1942
+ ],
+ [
+ "98168",
+ 320000,
+ 1939
+ ],
+ [
+ "98168",
+ 225000,
+ 1962
+ ],
+ [
+ "98168",
+ 262000,
+ 1997
+ ],
+ [
+ "98168",
+ 173000,
+ 1947
+ ],
+ [
+ "98168",
+ 170000,
+ 1947
+ ],
+ [
+ "98168",
+ 290000,
+ 1929
+ ],
+ [
+ "98168",
+ 300000,
+ 1933
+ ],
+ [
+ "98168",
+ 325000,
+ 1966
+ ],
+ [
+ "98168",
+ 231500,
+ 1941
+ ],
+ [
+ "98168",
+ 340000,
+ 1949
+ ],
+ [
+ "98168",
+ 192500,
+ 1926
+ ],
+ [
+ "98168",
+ 248000,
+ 1959
+ ],
+ [
+ "98168",
+ 82500,
+ 1951
+ ],
+ [
+ "98168",
+ 275000,
+ 1926
+ ],
+ [
+ "98168",
+ 284000,
+ 1960
+ ],
+ [
+ "98168",
+ 230000,
+ 1961
+ ],
+ [
+ "98168",
+ 300000,
+ 1991
+ ],
+ [
+ "98168",
+ 179900,
+ 1943
+ ],
+ [
+ "98168",
+ 166000,
+ 1957
+ ],
+ [
+ "98168",
+ 305000,
+ 1962
+ ],
+ [
+ "98168",
+ 250000,
+ 1934
+ ],
+ [
+ "98168",
+ 239950,
+ 1941
+ ],
+ [
+ "98168",
+ 283000,
+ 1947
+ ],
+ [
+ "98168",
+ 234500,
+ 1954
+ ],
+ [
+ "98168",
+ 265000,
+ 1961
+ ],
+ [
+ "98168",
+ 220000,
+ 1952
+ ],
+ [
+ "98168",
+ 275000,
+ 1944
+ ],
+ [
+ "98168",
+ 230000,
+ 1986
+ ],
+ [
+ "98168",
+ 299950,
+ 1958
+ ],
+ [
+ "98168",
+ 308000,
+ 1942
+ ],
+ [
+ "98168",
+ 145000,
+ 1954
+ ],
+ [
+ "98168",
+ 189000,
+ 1944
+ ],
+ [
+ "98168",
+ 226950,
+ 1957
+ ],
+ [
+ "98168",
+ 325000,
+ 1963
+ ],
+ [
+ "98168",
+ 200000,
+ 1960
+ ],
+ [
+ "98168",
+ 122000,
+ 1946
+ ],
+ [
+ "98168",
+ 205000,
+ 1954
+ ],
+ [
+ "98168",
+ 84000,
+ 1949
+ ],
+ [
+ "98168",
+ 220000,
+ 1951
+ ],
+ [
+ "98168",
+ 210000,
+ 1951
+ ],
+ [
+ "98168",
+ 228950,
+ 1942
+ ],
+ [
+ "98168",
+ 135000,
+ 1942
+ ],
+ [
+ "98168",
+ 198500,
+ 1932
+ ],
+ [
+ "98168",
+ 360000,
+ 1931
+ ],
+ [
+ "98168",
+ 235000,
+ 1934
+ ],
+ [
+ "98168",
+ 235000,
+ 1959
+ ],
+ [
+ "98168",
+ 150000,
+ 1979
+ ],
+ [
+ "98168",
+ 245000,
+ 1962
+ ],
+ [
+ "98168",
+ 160000,
+ 1933
+ ],
+ [
+ "98168",
+ 203000,
+ 1953
+ ],
+ [
+ "98168",
+ 296000,
+ 1953
+ ],
+ [
+ "98168",
+ 173250,
+ 1936
+ ],
+ [
+ "98168",
+ 318000,
+ 1967
+ ],
+ [
+ "98168",
+ 278000,
+ 1960
+ ],
+ [
+ "98168",
+ 300000,
+ 2007
+ ],
+ [
+ "98168",
+ 225000,
+ 1944
+ ],
+ [
+ "98168",
+ 232000,
+ 1936
+ ],
+ [
+ "98168",
+ 239000,
+ 1950
+ ],
+ [
+ "98168",
+ 276500,
+ 1942
+ ],
+ [
+ "98168",
+ 150550,
+ 1945
+ ],
+ [
+ "98168",
+ 207000,
+ 1952
+ ],
+ [
+ "98168",
+ 294000,
+ 2003
+ ],
+ [
+ "98168",
+ 380000,
+ 2013
+ ],
+ [
+ "98168",
+ 240000,
+ 1957
+ ],
+ [
+ "98168",
+ 600000,
+ 2012
+ ],
+ [
+ "98168",
+ 170000,
+ 1948
+ ],
+ [
+ "98168",
+ 203000,
+ 1951
+ ],
+ [
+ "98168",
+ 235000,
+ 1962
+ ],
+ [
+ "98168",
+ 217000,
+ 1942
+ ],
+ [
+ "98168",
+ 235000,
+ 1980
+ ],
+ [
+ "98168",
+ 190000,
+ 1943
+ ],
+ [
+ "98168",
+ 272000,
+ 1934
+ ],
+ [
+ "98168",
+ 199950,
+ 1938
+ ],
+ [
+ "98168",
+ 261000,
+ 1941
+ ],
+ [
+ "98168",
+ 260000,
+ 1958
+ ],
+ [
+ "98168",
+ 170000,
+ 1950
+ ],
+ [
+ "98168",
+ 165000,
+ 1965
+ ],
+ [
+ "98168",
+ 123000,
+ 1964
+ ],
+ [
+ "98168",
+ 118125,
+ 1944
+ ],
+ [
+ "98168",
+ 212000,
+ 1944
+ ],
+ [
+ "98168",
+ 330000,
+ 1962
+ ],
+ [
+ "98168",
+ 324950,
+ 1946
+ ],
+ [
+ "98168",
+ 174000,
+ 1922
+ ],
+ [
+ "98168",
+ 216000,
+ 1942
+ ],
+ [
+ "98168",
+ 305000,
+ 1942
+ ],
+ [
+ "98168",
+ 291000,
+ 1942
+ ],
+ [
+ "98168",
+ 200000,
+ 1942
+ ],
+ [
+ "98168",
+ 250000,
+ 1929
+ ],
+ [
+ "98168",
+ 285950,
+ 1948
+ ],
+ [
+ "98168",
+ 339950,
+ 1981
+ ],
+ [
+ "98168",
+ 285000,
+ 1962
+ ],
+ [
+ "98168",
+ 185000,
+ 1928
+ ],
+ [
+ "98168",
+ 207000,
+ 1954
+ ],
+ [
+ "98168",
+ 175000,
+ 1962
+ ],
+ [
+ "98168",
+ 224000,
+ 1930
+ ],
+ [
+ "98168",
+ 293550,
+ 1965
+ ],
+ [
+ "98168",
+ 287000,
+ 1933
+ ],
+ [
+ "98168",
+ 312000,
+ 1937
+ ],
+ [
+ "98168",
+ 286000,
+ 1954
+ ],
+ [
+ "98168",
+ 255000,
+ 1952
+ ],
+ [
+ "98168",
+ 245000,
+ 1959
+ ],
+ [
+ "98168",
+ 175000,
+ 1925
+ ],
+ [
+ "98168",
+ 235000,
+ 1930
+ ],
+ [
+ "98168",
+ 213500,
+ 1961
+ ],
+ [
+ "98168",
+ 309000,
+ 1961
+ ],
+ [
+ "98168",
+ 250000,
+ 1960
+ ],
+ [
+ "98168",
+ 243000,
+ 1970
+ ],
+ [
+ "98168",
+ 258000,
+ 1916
+ ],
+ [
+ "98168",
+ 292000,
+ 1955
+ ],
+ [
+ "98168",
+ 124000,
+ 1949
+ ],
+ [
+ "98168",
+ 224000,
+ 1949
+ ],
+ [
+ "98168",
+ 352000,
+ 1964
+ ],
+ [
+ "98168",
+ 330000,
+ 2013
+ ],
+ [
+ "98168",
+ 270000,
+ 1959
+ ],
+ [
+ "98168",
+ 309000,
+ 1962
+ ],
+ [
+ "98168",
+ 221900,
+ 1939
+ ],
+ [
+ "98168",
+ 196700,
+ 1954
+ ],
+ [
+ "98168",
+ 150000,
+ 1949
+ ],
+ [
+ "98168",
+ 245000,
+ 1946
+ ],
+ [
+ "98168",
+ 309950,
+ 1950
+ ],
+ [
+ "98168",
+ 134000,
+ 1942
+ ],
+ [
+ "98168",
+ 406500,
+ 1966
+ ],
+ [
+ "98168",
+ 265000,
+ 1928
+ ],
+ [
+ "98168",
+ 150000,
+ 1954
+ ],
+ [
+ "98168",
+ 92000,
+ 1947
+ ],
+ [
+ "98168",
+ 292000,
+ 1988
+ ],
+ [
+ "98168",
+ 250000,
+ 1997
+ ],
+ [
+ "98168",
+ 255000,
+ 1965
+ ],
+ [
+ "98168",
+ 394950,
+ 2002
+ ],
+ [
+ "98168",
+ 264950,
+ 1959
+ ],
+ [
+ "98168",
+ 205000,
+ 1941
+ ],
+ [
+ "98168",
+ 202000,
+ 1946
+ ],
+ [
+ "98168",
+ 270000,
+ 1961
+ ],
+ [
+ "98168",
+ 290000,
+ 1942
+ ],
+ [
+ "98168",
+ 195000,
+ 1959
+ ],
+ [
+ "98168",
+ 240000,
+ 1954
+ ],
+ [
+ "98168",
+ 319000,
+ 1964
+ ],
+ [
+ "98168",
+ 250000,
+ 1931
+ ],
+ [
+ "98168",
+ 192500,
+ 1900
+ ],
+ [
+ "98168",
+ 218000,
+ 1956
+ ],
+ [
+ "98168",
+ 206000,
+ 1944
+ ],
+ [
+ "98168",
+ 225000,
+ 1940
+ ],
+ [
+ "98168",
+ 320000,
+ 1960
+ ],
+ [
+ "98168",
+ 215000,
+ 1947
+ ],
+ [
+ "98168",
+ 200000,
+ 1949
+ ],
+ [
+ "98168",
+ 225000,
+ 1947
+ ],
+ [
+ "98168",
+ 214950,
+ 1954
+ ],
+ [
+ "98168",
+ 234550,
+ 1946
+ ],
+ [
+ "98168",
+ 209977,
+ 1948
+ ],
+ [
+ "98168",
+ 205000,
+ 1944
+ ],
+ [
+ "98168",
+ 245000,
+ 1933
+ ],
+ [
+ "98168",
+ 335000,
+ 1945
+ ],
+ [
+ "98168",
+ 229000,
+ 1941
+ ],
+ [
+ "98168",
+ 235000,
+ 1948
+ ],
+ [
+ "98168",
+ 209000,
+ 1962
+ ],
+ [
+ "98168",
+ 327200,
+ 1942
+ ],
+ [
+ "98168",
+ 244500,
+ 1939
+ ],
+ [
+ "98168",
+ 248500,
+ 1958
+ ],
+ [
+ "98168",
+ 315000,
+ 1937
+ ],
+ [
+ "98168",
+ 161000,
+ 1954
+ ],
+ [
+ "98168",
+ 220000,
+ 1954
+ ],
+ [
+ "98168",
+ 259000,
+ 1964
+ ],
+ [
+ "98168",
+ 270000,
+ 1962
+ ],
+ [
+ "98168",
+ 200000,
+ 1949
+ ],
+ [
+ "98168",
+ 285000,
+ 1953
+ ],
+ [
+ "98168",
+ 260000,
+ 1954
+ ],
+ [
+ "98168",
+ 295500,
+ 1933
+ ],
+ [
+ "98168",
+ 279000,
+ 1952
+ ],
+ [
+ "98168",
+ 350000,
+ 1947
+ ],
+ [
+ "98168",
+ 246000,
+ 1953
+ ],
+ [
+ "98168",
+ 201000,
+ 1962
+ ],
+ [
+ "98168",
+ 294000,
+ 1957
+ ],
+ [
+ "98168",
+ 290000,
+ 1942
+ ],
+ [
+ "98168",
+ 235000,
+ 1941
+ ],
+ [
+ "98168",
+ 300000,
+ 1963
+ ],
+ [
+ "98168",
+ 305000,
+ 1968
+ ],
+ [
+ "98168",
+ 168500,
+ 1935
+ ],
+ [
+ "98168",
+ 369900,
+ 1978
+ ],
+ [
+ "98168",
+ 110000,
+ 1927
+ ],
+ [
+ "98168",
+ 110000,
+ 1943
+ ],
+ [
+ "98168",
+ 229000,
+ 1954
+ ],
+ [
+ "98168",
+ 150000,
+ 1959
+ ],
+ [
+ "98168",
+ 225000,
+ 1962
+ ],
+ [
+ "98168",
+ 78000,
+ 1942
+ ],
+ [
+ "98168",
+ 297975,
+ 1947
+ ],
+ [
+ "98168",
+ 350000,
+ 1972
+ ],
+ [
+ "98168",
+ 200000,
+ 1938
+ ],
+ [
+ "98168",
+ 235000,
+ 1961
+ ],
+ [
+ "98168",
+ 365000,
+ 1950
+ ],
+ [
+ "98168",
+ 135000,
+ 1943
+ ],
+ [
+ "98168",
+ 235000,
+ 1966
+ ],
+ [
+ "98168",
+ 182200,
+ 1929
+ ],
+ [
+ "98168",
+ 274950,
+ 1958
+ ],
+ [
+ "98168",
+ 280000,
+ 2012
+ ],
+ [
+ "98168",
+ 81000,
+ 1943
+ ],
+ [
+ "98168",
+ 215000,
+ 1931
+ ],
+ [
+ "98168",
+ 165000,
+ 1943
+ ],
+ [
+ "98168",
+ 185000,
+ 1969
+ ],
+ [
+ "98168",
+ 209950,
+ 1943
+ ],
+ [
+ "98168",
+ 180000,
+ 1962
+ ],
+ [
+ "98168",
+ 175000,
+ 1963
+ ],
+ [
+ "98168",
+ 109500,
+ 1942
+ ],
+ [
+ "98168",
+ 187000,
+ 1952
+ ],
+ [
+ "98168",
+ 210000,
+ 1938
+ ],
+ [
+ "98168",
+ 340000,
+ 1941
+ ],
+ [
+ "98168",
+ 280000,
+ 1943
+ ],
+ [
+ "98168",
+ 208000,
+ 1951
+ ],
+ [
+ "98168",
+ 265000,
+ 1920
+ ],
+ [
+ "98168",
+ 499950,
+ 2001
+ ],
+ [
+ "98168",
+ 170000,
+ 1950
+ ],
+ [
+ "98168",
+ 173250,
+ 1954
+ ],
+ [
+ "98168",
+ 242000,
+ 1944
+ ],
+ [
+ "98168",
+ 146000,
+ 1937
+ ],
+ [
+ "98168",
+ 280000,
+ 1942
+ ],
+ [
+ "98168",
+ 187250,
+ 1926
+ ],
+ [
+ "98168",
+ 219000,
+ 1948
+ ],
+ [
+ "98168",
+ 212500,
+ 1938
+ ],
+ [
+ "98168",
+ 280000,
+ 1968
+ ],
+ [
+ "98168",
+ 115000,
+ 1950
+ ],
+ [
+ "98168",
+ 124000,
+ 1950
+ ],
+ [
+ "98168",
+ 157000,
+ 1950
+ ],
+ [
+ "98168",
+ 245000,
+ 1910
+ ],
+ [
+ "98168",
+ 170000,
+ 1959
+ ],
+ [
+ "98168",
+ 285000,
+ 1958
+ ],
+ [
+ "98168",
+ 292000,
+ 1948
+ ],
+ [
+ "98168",
+ 206000,
+ 1921
+ ],
+ [
+ "98168",
+ 311000,
+ 1962
+ ],
+ [
+ "98168",
+ 215000,
+ 1946
+ ],
+ [
+ "98168",
+ 259000,
+ 1960
+ ],
+ [
+ "98168",
+ 158000,
+ 1942
+ ],
+ [
+ "98168",
+ 273500,
+ 1944
+ ],
+ [
+ "98168",
+ 315000,
+ 1964
+ ],
+ [
+ "98168",
+ 250000,
+ 1951
+ ],
+ [
+ "98168",
+ 424305,
+ 1910
+ ],
+ [
+ "98168",
+ 306000,
+ 1959
+ ],
+ [
+ "98168",
+ 195000,
+ 1940
+ ],
+ [
+ "98168",
+ 83000,
+ 1918
+ ],
+ [
+ "98168",
+ 210000,
+ 1948
+ ],
+ [
+ "98168",
+ 202000,
+ 1950
+ ],
+ [
+ "98168",
+ 283450,
+ 1979
+ ],
+ [
+ "98168",
+ 262000,
+ 1962
+ ],
+ [
+ "98168",
+ 335000,
+ 1953
+ ],
+ [
+ "98168",
+ 199950,
+ 1958
+ ],
+ [
+ "98168",
+ 268000,
+ 1967
+ ],
+ [
+ "98168",
+ 182000,
+ 1950
+ ],
+ [
+ "98168",
+ 179000,
+ 1900
+ ],
+ [
+ "98168",
+ 211000,
+ 1959
+ ],
+ [
+ "98168",
+ 215000,
+ 1967
+ ],
+ [
+ "98168",
+ 270950,
+ 1942
+ ],
+ [
+ "98168",
+ 185000,
+ 1969
+ ],
+ [
+ "98168",
+ 347500,
+ 2014
+ ],
+ [
+ "98168",
+ 355000,
+ 2014
+ ],
+ [
+ "98168",
+ 350000,
+ 2011
+ ],
+ [
+ "98168",
+ 268000,
+ 2014
+ ],
+ [
+ "98168",
+ 334950,
+ 2014
+ ]
+ ],
+ "hovertemplate": "zipcode=%{customdata[0]} lat=%{lat} long=%{lon} price=%{customdata[1]} yr_built=%{customdata[2]} ",
+ "lat": {
+ "bdata": "ZDvfT42/R0DYgXNGlL5HQGfV52orvkdALGUZ4li/R0Dl0CLb+b5HQAXFjzF3vUdA5dAi2/m+R0DaG3xhMr1HQLAD54wovUdA1QloImzAR0AhsHJokb1HQKwcWmQ7v0dAqoJRSZ3AR0C9UpYhjr1HQJMYBFYOvUdAgSbChqe/R0BvEoPAysFHQHPXEvJBv0dAImx4eqW8R0DvycNCrcFHQI/C9Shcv0dABOeMKO29R0CutmJ/2b1HQFTjpZvEwEdAn82qz9W+R0B1ApoIG75HQNqs+lxtvUdAO99PjZe+R0BE+u3rwMFHQCL99nXgvEdAKxiV1AnAR0DgnBGlvcFHQEvqBDQRvkdA+MJkqmC8R0Dl0CLb+b5HQHWTGARWvkdADeAtkKDAR0CcxCCwcsBHQERpb/CFwUdA1zTvOEW/R0CTOgFNhL1HQOcdp+hIvkdABoGVQ4u8R0B/2T15WMBHQHctIR/0vEdAn6ut2F++R0Cu2F92T75HQJyiI7n8v0dAvjCZKhi9R0Dn+6nx0r1HQBQ/xty1vEdAlIeFWtO8R0DVCWgibMBHQBniWBe3wUdA9dvXgXO+R0CCc0aU9r5HQHRGlPYGv0dA2IFzRpS+R0Ac6+I2GsBHQM4ZUdobvEdA93XgnBG9R0DhehSuR8FHQDeJQWDlwEdAIGPuWkK+R0BcIEHxY7xHQOlILv8hvUdAMQisHFq8R0CjI7n8h7xHQDm0yHa+v0dA9pfdk4e9R0CsHFpkO79HQLn8h/Tbv0dAdCSX/5C+R0Ch+DHmrr1HQNXnaiv2v0dABoGVQ4u8R0B4CyQofrxHQNlfdk8evkdAI0p7gy+8R0B0tRX7y75HQBKDwMqhvUdAd76fGi+9R0B0RpT2Br9HQK7YX3ZPvkdAVcGopE7AR0C6SQwCK79HQGiz6nO1vUdAqDXNO07BR0A/NV66SbxHQFioNc07vkdAPSzUmua9R0AgQfFjzL1HQBE2PL1SvkdAETY8vVK+R0Av3SQGgb1HQH6MuWsJwUdAnl4pyxC/R0ChZ7Pqc71HQJ7vp8ZLv0dAdLUV+8u+R0DlYaHWNL9HQLFQa5p3vEdA1QloImzAR0CoNc07TsFHQNzXgXNGvEdA2PD0Slm+R0CC4seYu75HQBzr4jYawEdAukkMAiu/R0BIv30dOL9HQGdEaW/wvUdAKxiV1AnAR0DV52or9r9HQPCnxks3wUdA78nDQq3BR0CSy39Iv71HQKHWNO84vUdALNSa5h2/R0BxPQrXo8BHQFOWIY51wUdAvHSTGAS+R0AhH/RsVr1HQFXBqKROwEdAIv32deC8R0Ai/fZ14LxHQLpJDAIrv0dA5x2n6Ei+R0CPU3Qkl79HQOY/pN++vkdAMZkqGJW8R0AU0ETY8LxHQJF++zpwvkdAnu+nxku/R0DT3uALk8FHQNbFbTSAv0dAh6dXyjK8R0DgnBGlvcFHQERpb/CFwUdAf2q8dJPAR0AE54wo7b1HQLn8h/Tbv0dAseHplbK8R0Ba9bnair1HQLpJDAIrv0dANxrAWyDBR0D2l92Th71HQOauJeSDvkdAnl4pyxC/R0DZX3ZPHr5HQPCFyVTBwEdAImx4eqW8R0BXW7G/7L5HQJVliGNdvEdAApoIG56+R0Af9GxWfb5HQJJc/kP6vUdA0m9fB87BR0CEDU+vlL1HQJF++zpwvkdAdLUV+8u+R0C8dJMYBL5HQLAD54wovUdAEHo2qz6/R0AhsHJokb1HQOXyH9Jvv0dA4XoUrkfBR0CMSuoENMFHQFRSJ6CJwEdAufyH9Nu/R0BLWYY41r1HQLn8h/Tbv0dALUMc6+K+R0C6SQwCK79HQOm3rwPnvEdA6bevA+e8R0AGgZVDi7xHQP7UeOkmwUdAi2zn+6nBR0D+1HjpJsFHQMbctYR8wEdA2T15WKi9R0AFo5I6Ab1HQKg1zTtOwUdAyeU/pN++R0As1JrmHb9HQBUdyeU/vEdALGUZ4li/R0D/snvysMBHQFfsL7snv0dAI0p7gy+8R0AdWmQ7379HQLhAguLHwEdAkDF3LSG/R0DV52or9r9HQAaBlUOLvEdAjNtoAG/BR0A6I0p7g79HQIbJVMGovEdAOpLLf0i/R0CM22gAb8FHQMsQx7q4vUdAc9cS8kG/R0A5tMh2vr9HQAAAAAAAwEdAI0p7gy+8R0BIv30dOL9HQJXUCWgivEdA2IFzRpS+R0Ba9bnair1HQNxoAG+BvEdAzczMzMy8R0DysFBrmr9HQFXBqKROwEdAMEymCka9R0BYqDXNO75HQHNoke18v0dA5dAi2/m+R0BKDAIrh75HQPKwUGuav0dA8KfGSzfBR0Db+X5qvLxHQCJseHqlvEdAzqrP1Va8R0DcaABvgbxHQEvqBDQRvkdA9pfdk4e9R0B24JwRpb1HQHZxGw3gvUdASL99HTi/R0Djx5i7lsBHQBBYObTIvkdA097gC5PBR0B/arx0k8BHQH9qvHSTwEdAf2q8dJPAR0B3vp8aL71HQNxoAG+BvEdAvJaQD3q+R0AgY+5aQr5HQD7o2az6vEdATRWMSuq8R0AwTKYKRr1HQGaIY13cvkdAAwmKH2O+R0Ch1jTvOL1HQGrecYqOvEdAo5I6AU28R0Dpt68D57xHQHicoiO5vEdAumsJ+aC/R0DcaABvgbxHQNxoAG+BvEdA8x/Sb1+/R0CDL0ymCr5HQGFUUiegwUdA9wZfmEy9R0Bq3nGKjrxHQARWDi2yvUdAW9O84xS9R0CdgCbChr9HQLByaJHtvEdAumsJ+aC/R0B+HThnRMFHQNnO91PjvUdAdZMYBFa+R0DT3uALk8FHQIC3QILiv0dAkKD4Mea+R0B1kxgEVr5HQA==",
+ "dtype": "f8"
+ },
+ "legendgroup": "98168",
+ "lon": {
+ "bdata": "CKwcWmSTXsBCYOXQIpNewDEIrBxalF7AMzMzMzOTXsA/NV66SZRewGDl0CLbkV7AWmQ730+VXsCJQWDl0JJewPyp8dJNkl7AMzMzMzOTXsDpJjEIrJRewM/3U+Olk17AJQaBlUOTXsAzMzMzM5NewKabxCCwkl7AokW28/2UXsBOYhBYOZRewPp+arx0k17ARrbz/dSQXsB56SYxCJRewDEIrBxalF7AQmDl0CKTXsBCYOXQIpNewHe+nxovlV7AUI2XbhKTXsDsUbgehZNewG3n+6nxkl7ATmIQWDmUXsBaZDvfT5VewIlBYOXQkl7AokW28/2UXsBOYhBYOZRewCUGgZVDk17A6SYxCKyUXsCyne+nxpNewDVeukkMkl7AkxgEVg6VXsAX2c73U5NewAaBlUOLlF7Ad76fGi+VXsDufD81XpJewAisHFpkk17AokW28/2UXsCF61G4HpVewJhuEoPAkl7A2/l+aryUXsCF61G4HpVewLByaJHtlF7AUrgeheuRXsCF61G4HpVewKjGSzeJkV7A001iEFiRXsCTGARWDpVewD0K16NwlV7AaJHtfD+VXsCWQ4ts55NewJZDi2znk17A/Knx0k2SXsBoke18P5VewFCNl24Sk17A+FPjpZuUXsCwcmiR7ZRewBfZzvdTk17APzVeukmUXsDpJjEIrJRewGDl0CLbkV7AhetRuB6VXsAlBoGVQ5NewPhT46WblF7A0SLb+X6SXsD6fmq8dJNewBfZzvdTk17AaJHtfD+VXsDRItv5fpJewD81XrpJlF7AmG4Sg8CSXsA1XrpJDJJewDEIrBxalF7AmpmZmZmRXsDdJAaBlZNewHe+nxovlV7AbxKDwMqRXsCHFtnO95NewAisHFpkk17AFK5H4XqUXsDdJAaBlZNewHe+nxovlV7AhetRuB6VXsBU46WbxJBewL6fGi/dlF7AaJHtfD+VXsDb+X5qvJRewNv5fmq8lF7A2/l+aryUXsAlBoGVQ5NewIXrUbgelV7AUrgeheuRXsBcj8L1KJRewAisHFpkk17Asp3vp8aTXsBQjZduEpNewNNNYhBYkV7Ad76fGi+VXsDb+X5qvJRewHE9CtejkF7ARIts5/uRXsAIrBxaZJNewFpkO99PlV7ATmIQWDmUXsBeukkMApNewBfZzvdTk17A3SQGgZWTXsC+nxov3ZRewHnpJjEIlF7ATDeJQWCVXsCoxks3iZFewClcj8L1kF7AUI2XbhKTXsBOYhBYOZRewDEIrBxalF7AhetRuB6VXsB9PzVeupFewGiR7Xw/lV7AJQaBlUOTXsAlBoGVQ5NewGiR7Xw/lV7AI9v5fmqUXsAX2c73U5NewHe+nxovlV7ARIts5/uRXsDufD81XpJewGq8dJMYlF7A+n5qvHSTXsB3vp8aL5VewPhT46WblF7Ai2zn+6mRXsB56SYxCJRewJMYBFYOlV7AkxgEVg6VXsCF61G4HpVewPhT46WblF7AKVyPwvWQXsBSuB6F65FewFpkO99PlV7AWmQ730+VXsBoke18P5VewCPb+X5qlF7AhxbZzveTXsD6fmq8dJNewAisHFpkk17AGy/dJAaRXsDByqFFtpNewFTjpZvEkF7A3SQGgZWTXsDNzMzMzJRewIXrUbgelV7ATmIQWDmUXsDNzMzMzJRewNv5fmq8lF7A3SQGgZWTXsB3vp8aL5VewN9PjZdukl7AhxbZzveTXsCmm8QgsJJewAaBlUOLlF7A6SYxCKyUXsCkcD0K15NewJMYBFYOlV7APzVeukmUXsBt5/up8ZJewJMYBFYOlV7AMQisHFqUXsAGgZVDi5RewN9PjZdukl7A30+Nl26SXsAzMzMzM5NewNv5fmq8lF7AWmQ730+VXsB56SYxCJRewDMzMzMzk17AUrgeheuRXsC+nxov3ZRewNv5fmq8lF7AhxbZzveTXsDsUbgehZNewHE9CtejkF7AsHJoke2UXsAlBoGVQ5NewGiR7Xw/lV7AYhBYObSQXsAlBoGVQ5NewNv5fmq8lF7ATmIQWDmUXsA/NV66SZRewNv5fmq8lF7ATmIQWDmUXsAUrkfhepRewFK4HoXrkV7A+n5qvHSTXsCTGARWDpVewDEIrBxalF7A+FPjpZuUXsAGgZVDi5RewD81XrpJlF7ARIts5/uRXsAzMzMzM5NewDeJQWDlkF7APzVeukmUXsBcj8L1KJRewF66SQwCk17AjZduEoOQXsAzMzMzM5NewFpkO99PlV7AF9nO91OTXsCF61G4HpVewD81XrpJlF7AF9nO91OTXsBQjZduEpNewIXrUbgelV7Ad76fGi+VXsB7FK5H4ZJewDeJQWDlkF7AtvP91HiRXsBEi2zn+5FewAisHFpkk17Aw/UoXI+SXsD4U+Olm5RewGiR7Xw/lV7AMQisHFqUXsAzMzMzM5NewHe+nxovlV7AFK5H4XqUXsCF61G4HpVewIXrUbgelV7AhetRuB6VXsBvEoPAypFewFCNl24Sk17ARIts5/uRXsBOYhBYOZRewPCnxks3kV7AQmDl0CKTXsCamZmZmZFewPhT46WblF7A3SQGgZWTXsAK16NwPZJewLByaJHtlF7AtMh2vp+SXsApXI/C9ZBewKJFtvP9lF7ATDeJQWCVXsDhehSuR5FewKabxCCwkl7AF9nO91OTXsC0yHa+n5JewAaBlUOLlF7Abef7qfGSXsBQjZduEpNewGiR7Xw/lV7A8KfGSzeRXsAxCKwcWpRewKabxCCwkl7ANV66SQySXsCF61G4HpVewGiR7Xw/lV7AFK5H4XqUXsBOYhBYOZRewEJg5dAik17ATDeJQWCVXsAUrkfhepRewA==",
+ "dtype": "f8"
+ },
+ "marker": {
+ "color": "#ab63fa"
+ },
+ "mode": "markers",
+ "name": "98168",
+ "showlegend": true,
+ "subplot": "mapbox",
+ "type": "scattermapbox"
+ },
+ {
+ "customdata": [
+ [
+ "98188",
+ 267500,
+ 1957
+ ],
+ [
+ "98188",
+ 240000,
+ 1993
+ ],
+ [
+ "98188",
+ 238000,
+ 1959
+ ],
+ [
+ "98188",
+ 469000,
+ 1966
+ ],
+ [
+ "98188",
+ 245000,
+ 1949
+ ],
+ [
+ "98188",
+ 130000,
+ 1928
+ ],
+ [
+ "98188",
+ 255000,
+ 1958
+ ],
+ [
+ "98188",
+ 220000,
+ 1959
+ ],
+ [
+ "98188",
+ 255000,
+ 1949
+ ],
+ [
+ "98188",
+ 300000,
+ 1957
+ ],
+ [
+ "98188",
+ 598800,
+ 2013
+ ],
+ [
+ "98188",
+ 345000,
+ 1983
+ ],
+ [
+ "98188",
+ 156000,
+ 1941
+ ],
+ [
+ "98188",
+ 380000,
+ 1974
+ ],
+ [
+ "98188",
+ 245990,
+ 1942
+ ],
+ [
+ "98188",
+ 288350,
+ 1963
+ ],
+ [
+ "98188",
+ 325000,
+ 1984
+ ],
+ [
+ "98188",
+ 259500,
+ 1957
+ ],
+ [
+ "98188",
+ 200450,
+ 1957
+ ],
+ [
+ "98188",
+ 216000,
+ 1998
+ ],
+ [
+ "98188",
+ 197000,
+ 1961
+ ],
+ [
+ "98188",
+ 277500,
+ 1963
+ ],
+ [
+ "98188",
+ 253779,
+ 1947
+ ],
+ [
+ "98188",
+ 267000,
+ 1962
+ ],
+ [
+ "98188",
+ 281000,
+ 1966
+ ],
+ [
+ "98188",
+ 179950,
+ 1954
+ ],
+ [
+ "98188",
+ 240000,
+ 1955
+ ],
+ [
+ "98188",
+ 160000,
+ 1942
+ ],
+ [
+ "98188",
+ 255500,
+ 1942
+ ],
+ [
+ "98188",
+ 294950,
+ 1940
+ ],
+ [
+ "98188",
+ 239000,
+ 1955
+ ],
+ [
+ "98188",
+ 235000,
+ 1956
+ ],
+ [
+ "98188",
+ 535000,
+ 1982
+ ],
+ [
+ "98188",
+ 335000,
+ 1991
+ ],
+ [
+ "98188",
+ 185000,
+ 1947
+ ],
+ [
+ "98188",
+ 245000,
+ 1955
+ ],
+ [
+ "98188",
+ 147200,
+ 1954
+ ],
+ [
+ "98188",
+ 220000,
+ 1959
+ ],
+ [
+ "98188",
+ 249000,
+ 1961
+ ],
+ [
+ "98188",
+ 368500,
+ 1992
+ ],
+ [
+ "98188",
+ 185850,
+ 1943
+ ],
+ [
+ "98188",
+ 530000,
+ 2007
+ ],
+ [
+ "98188",
+ 421000,
+ 2000
+ ],
+ [
+ "98188",
+ 489000,
+ 1982
+ ],
+ [
+ "98188",
+ 225000,
+ 1949
+ ],
+ [
+ "98188",
+ 255000,
+ 1943
+ ],
+ [
+ "98188",
+ 253000,
+ 1962
+ ],
+ [
+ "98188",
+ 240000,
+ 1960
+ ],
+ [
+ "98188",
+ 325000,
+ 1954
+ ],
+ [
+ "98188",
+ 239975,
+ 1959
+ ],
+ [
+ "98188",
+ 324950,
+ 1964
+ ],
+ [
+ "98188",
+ 330000,
+ 1986
+ ],
+ [
+ "98188",
+ 193000,
+ 1951
+ ],
+ [
+ "98188",
+ 110000,
+ 1947
+ ],
+ [
+ "98188",
+ 213000,
+ 1951
+ ],
+ [
+ "98188",
+ 284000,
+ 1968
+ ],
+ [
+ "98188",
+ 525000,
+ 1966
+ ],
+ [
+ "98188",
+ 183000,
+ 1962
+ ],
+ [
+ "98188",
+ 345000,
+ 1993
+ ],
+ [
+ "98188",
+ 170000,
+ 1966
+ ],
+ [
+ "98188",
+ 340000,
+ 1960
+ ],
+ [
+ "98188",
+ 265000,
+ 1954
+ ],
+ [
+ "98188",
+ 242000,
+ 1951
+ ],
+ [
+ "98188",
+ 249000,
+ 1943
+ ],
+ [
+ "98188",
+ 309950,
+ 1961
+ ],
+ [
+ "98188",
+ 270000,
+ 1965
+ ],
+ [
+ "98188",
+ 254000,
+ 1957
+ ],
+ [
+ "98188",
+ 240000,
+ 1959
+ ],
+ [
+ "98188",
+ 245500,
+ 1955
+ ],
+ [
+ "98188",
+ 270000,
+ 1986
+ ],
+ [
+ "98188",
+ 355000,
+ 1965
+ ],
+ [
+ "98188",
+ 322000,
+ 1960
+ ],
+ [
+ "98188",
+ 261000,
+ 1961
+ ],
+ [
+ "98188",
+ 204950,
+ 1956
+ ],
+ [
+ "98188",
+ 375000,
+ 2003
+ ],
+ [
+ "98188",
+ 356000,
+ 1980
+ ],
+ [
+ "98188",
+ 217500,
+ 1959
+ ],
+ [
+ "98188",
+ 198000,
+ 1951
+ ],
+ [
+ "98188",
+ 325000,
+ 1992
+ ],
+ [
+ "98188",
+ 110700,
+ 1941
+ ],
+ [
+ "98188",
+ 265000,
+ 1983
+ ],
+ [
+ "98188",
+ 368000,
+ 1965
+ ],
+ [
+ "98188",
+ 273000,
+ 1955
+ ],
+ [
+ "98188",
+ 355000,
+ 1956
+ ],
+ [
+ "98188",
+ 190000,
+ 1987
+ ],
+ [
+ "98188",
+ 219950,
+ 1964
+ ],
+ [
+ "98188",
+ 170000,
+ 1958
+ ],
+ [
+ "98188",
+ 225000,
+ 1939
+ ],
+ [
+ "98188",
+ 219950,
+ 1957
+ ],
+ [
+ "98188",
+ 335000,
+ 1963
+ ],
+ [
+ "98188",
+ 377500,
+ 1999
+ ],
+ [
+ "98188",
+ 275000,
+ 1931
+ ],
+ [
+ "98188",
+ 173000,
+ 1957
+ ],
+ [
+ "98188",
+ 272450,
+ 1954
+ ],
+ [
+ "98188",
+ 233000,
+ 1955
+ ],
+ [
+ "98188",
+ 349950,
+ 2005
+ ],
+ [
+ "98188",
+ 440000,
+ 1929
+ ],
+ [
+ "98188",
+ 375000,
+ 1962
+ ],
+ [
+ "98188",
+ 230000,
+ 1956
+ ],
+ [
+ "98188",
+ 221000,
+ 1954
+ ],
+ [
+ "98188",
+ 165000,
+ 1943
+ ],
+ [
+ "98188",
+ 360000,
+ 1999
+ ],
+ [
+ "98188",
+ 239000,
+ 1971
+ ],
+ [
+ "98188",
+ 234999,
+ 1948
+ ],
+ [
+ "98188",
+ 240000,
+ 1959
+ ],
+ [
+ "98188",
+ 370000,
+ 1994
+ ],
+ [
+ "98188",
+ 314000,
+ 1963
+ ],
+ [
+ "98188",
+ 275000,
+ 1963
+ ],
+ [
+ "98188",
+ 320000,
+ 1957
+ ],
+ [
+ "98188",
+ 259000,
+ 1955
+ ],
+ [
+ "98188",
+ 237000,
+ 1954
+ ],
+ [
+ "98188",
+ 294950,
+ 1957
+ ],
+ [
+ "98188",
+ 314000,
+ 1992
+ ],
+ [
+ "98188",
+ 330000,
+ 1999
+ ],
+ [
+ "98188",
+ 706000,
+ 1972
+ ],
+ [
+ "98188",
+ 175000,
+ 1967
+ ],
+ [
+ "98188",
+ 298500,
+ 1959
+ ],
+ [
+ "98188",
+ 280000,
+ 1956
+ ],
+ [
+ "98188",
+ 179000,
+ 1949
+ ],
+ [
+ "98188",
+ 376000,
+ 1965
+ ],
+ [
+ "98188",
+ 312000,
+ 1966
+ ],
+ [
+ "98188",
+ 707000,
+ 1926
+ ],
+ [
+ "98188",
+ 239950,
+ 1986
+ ],
+ [
+ "98188",
+ 360000,
+ 2007
+ ],
+ [
+ "98188",
+ 319000,
+ 1963
+ ],
+ [
+ "98188",
+ 289950,
+ 1956
+ ],
+ [
+ "98188",
+ 216500,
+ 1971
+ ],
+ [
+ "98188",
+ 171000,
+ 1920
+ ],
+ [
+ "98188",
+ 383962,
+ 2001
+ ],
+ [
+ "98188",
+ 263000,
+ 1958
+ ],
+ [
+ "98188",
+ 408000,
+ 2006
+ ],
+ [
+ "98188",
+ 400200,
+ 2013
+ ],
+ [
+ "98188",
+ 262000,
+ 2006
+ ],
+ [
+ "98188",
+ 500000,
+ 2008
+ ],
+ [
+ "98188",
+ 399500,
+ 2014
+ ],
+ [
+ "98188",
+ 495000,
+ 2014
+ ]
+ ],
+ "hovertemplate": "zipcode=%{customdata[0]} lat=%{lat} long=%{lon} price=%{customdata[1]} yr_built=%{customdata[2]} ",
+ "lat": {
+ "bdata": "OPjCZKq4R0DFjzF3LblHQAHeAgmKt0dAZmZmZma2R0DvOEVHcrlHQHlYqDXNu0dAqvHSTWK4R0CPwvUoXLdHQIqw4emVukdAcayL22i4R0ALtaZ5x7lHQCo6kst/uEdAGeJYF7e5R0DT3uALk7lHQESLbOf7uUdAqFfKMsS5R0A5tMh2vrdHQH9qvHSTuEdAq8/VVuy3R0AcfGEyVbhHQG40gLdAukdAzojS3uC7R0CppE5AE7lHQF3+Q/rtu0dAKxiV1Am4R0DyQc9m1bdHQClcj8L1uEdAb4EExY+5R0BvgQTFj7lHQHlYqDXNu0dARwN4CyS4R0AN4C2QoLhHQNcS8kHPtkdAbef7qfG6R0DEQq1p3rlHQCqpE9BEuEdAZ9Xnaiu2R0Dl8h/Sb7dHQH0/NV66uUdAwFsgQfG7R0AbL90kBrlHQOcdp+hItkdA8x/Sb1+3R0BmiGNd3LZHQJkqGJXUuUdA30+Nl266R0D5oGez6rtHQOELk6mCuUdAfT81Xrq5R0DXNO84RbdHQNEi2/l+ukdAV1uxv+y2R0CKH2PuWrpHQIv9ZffkuUdANqs+V1u5R0DtDb4wmbpHQGaIY13ctkdAhxbZzve7R0CHFtnO97tHQGFUUieguUdAEOm3rwO3R0DufD81XrpHQNNNYhBYuUdAYHZPHha6R0AbDeAtkLhHQDSAt0CCukdAF7fRAN66R0Am5IOezbpHQJzEILByuEdA/fZ14Jy5R0AVjErqBLxHQJF++zpwtkdAw2SqYFS6R0C1FfvL7rlHQKMBvAUSvEdATtGRXP67R0A17zhFR7pHQJhuEoPAukdAwFsgQfG7R0B56SYxCLxHQOM2GsBbuEdAVOOlm8S4R0CneccpOrpHQClcj8L1uEdA0ETY8PS6R0CaCBueXrlHQEMc6+I2ukdAufyH9Nu3R0DwhclUwbhHQAfOGVHau0dAxSCwcmi5R0Am5IOezbpHQMbctYR8uEdAyAc9m1W3R0CcoiO5/LdHQO5aQj7ouUdAVn2utmK3R0CCc0aU9rZHQCnLEMe6uEdAnRGlvcG3R0C28/3UeLlHQAn5oGezukdAIGPuWkK2R0DhC5OpgrlHQHE9CtejuEdAxf6ye/K4R0Ap7Q2+MLlHQLn8h/Tbt0dA/7J78rC4R0CBlUOLbLdHQFafq63Yt0dAnu+nxku3R0BU46WbxLhHQCh+jLlruUdASgwCK4e2R0Cmm8QgsLpHQGWqYFRSt0dAt9EA3gK5R0DvOEVHcrlHQKmkTkATuUdAx7q4jQa4R0C7Jw8LtbZHQBrAWyBBuUdA1zTvOEW3R0DSb18HzrlHQKfoSC7/uUdAqaROQBO5R0DAWyBB8btHQAdfmEwVvEdAC7Wmece5R0C6SQwCK7dHQOELk6mCuUdAMnctIR+8R0DfT42XbrpHQMWPMXctuUdAmbuWkA+6R0A=",
+ "dtype": "f8"
+ },
+ "legendgroup": "98188",
+ "lon": {
+ "bdata": "qMZLN4mRXsBEi2zn+5FewLTIdr6fkl7AJzEIrBySXsCamZmZmZFewLTIdr6fkl7AUrgeheuRXsC0yHa+n5JewNEi2/l+kl7AmpmZmZmRXsC28/3UeJFewMUgsHJokV7AmpmZmZmRXsBSuB6F65FewNEi2/l+kl7A/tR46SaRXsDFILByaJFewDVeukkMkl7AxSCwcmiRXsBg5dAi25FewMUgsHJokV7AiUFg5dCSXsDFILByaJFewCcxCKwckl7AYOXQItuRXsD8qfHSTZJewIts5/upkV7A0SLb+X6SXsDRItv5fpJewG3n+6nxkl7ACtejcD2SXsCLbOf7qZFewFK4HoXrkV7AfT81XrqRXsAnMQisHJJewArXo3A9kl7AppvEILCSXsC0yHa+n5JewLbz/dR4kV7ARrbz/dSQXsBvEoPAypFewMP1KFyPkl7A/Knx0k2SXsC0yHa+n5JewKabxCCwkl7Ai2zn+6mRXsA1XrpJDJJewDVeukkMkl7AbxKDwMqRXsCmm8QgsJJewOF6FK5HkV7AppvEILCSXsDRItv5fpJewPyp8dJNkl7AbxKDwMqRXsCoxks3iZFewKabxCCwkl7ANV66SQySXsApXI/C9ZBewH0/NV66kV7Aw/UoXI+SXsCmm8QgsJJewFK4HoXrkV7A30+Nl26SXsDhehSuR5FewMUgsHJokV7Ai2zn+6mRXsC28/3UeJFewDVeukkMkl7AqMZLN4mRXsB9PzVeupFewCcxCKwckl7A8KfGSzeRXsAZBFYOLZJewBsv3SQGkV7ARrbz/dSQXsCoxks3iZFewArXo3A9kl7ARrbz/dSQXsBQjZduEpNewNNNYhBYkV7AYOXQItuRXsDufD81XpJewArXo3A9kl7AJzEIrBySXsDwp8ZLN5FewMP1KFyPkl7ANV66SQySXsAnMQisHJJewG3n+6nxkl7AbxKDwMqRXsBg5dAi25FewH0/NV66kV7AppvEILCSXsAK16NwPZJewBkEVg4tkl7AJzEIrBySXsCmm8QgsJJewDVeukkMkl7Aw/UoXI+SXsDD9Shcj5JewCcxCKwckl7AppvEILCSXsCoxks3iZFewMUgsHJokV7AqMZLN4mRXsA1XrpJDJJewFK4HoXrkV7ANV66SQySXsCmm8QgsJJewPyp8dJNkl7Ai2zn+6mRXsCoxks3iZFewN9PjZdukl7ACtejcD2SXsAnMQisHJJewLTIdr6fkl7A0SLb+X6SXsCoxks3iZFewG8Sg8DKkV7AYOXQItuRXsBSuB6F65FewBkEVg4tkl7A/Knx0k2SXsAMAiuHFpFewLbz/dR4kV7AbxKDwMqRXsBEi2zn+5FewEa28/3UkF7A7nw/NV6SXsAK16NwPZJewESLbOf7kV7ADAIrhxaRXsDufD81XpJewO58PzVekl7AqMZLN4mRXsA=",
+ "dtype": "f8"
+ },
+ "marker": {
+ "color": "#FFA15A"
+ },
+ "mode": "markers",
+ "name": "98188",
+ "showlegend": true,
+ "subplot": "mapbox",
+ "type": "scattermapbox"
+ }
+ ],
+ "layout": {
+ "height": 600,
+ "legend": {
+ "title": {
+ "text": "zipcode"
+ },
+ "tracegroupgap": 0
+ },
+ "mapbox": {
+ "center": {
+ "lat": 47.37824972477064,
+ "lon": -122.27162568807339
+ },
+ "domain": {
+ "x": [
+ 0,
+ 1
+ ],
+ "y": [
+ 0,
+ 1
+ ]
+ },
+ "style": "open-street-map",
+ "zoom": 10
+ },
+ "margin": {
+ "b": 0,
+ "l": 0,
+ "r": 0,
+ "t": 40
+ },
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermap": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermap"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "ZIP codes with lowest mean for housing prices"
+ }
+ }
+ }
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# make interactive plot of map\n",
+ "fig = px.scatter_mapbox(\n",
+ " plotall_df,\n",
+ " lat=\"lat\", # (Latitude)\n",
+ " lon=\"long\", # (Longitude)\n",
+ " color=\"zipcode\", # colour 'Zipcode'\n",
+ " hover_data=[\"zipcode\", 'price', 'yr_built'], # show house data when hovering over items\n",
+ " zoom=10, \n",
+ " height=600,\n",
+ " mapbox_style=\"open-street-map\", # use free map carto-darkmatter\n",
+ " title=\"ZIP codes with lowest mean for housing prices\"\n",
+ ")\n",
+ "\n",
+ "# Optional: Größe und Ränder anpassen\n",
+ "fig.update_layout(margin={\"r\":0,\"t\":40,\"l\":0,\"b\":0})\n",
+ "\n",
+ "# 5. Visualisierung anzeigen\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 5.2 Hypothesis 2 : The Price-per-SqFt growth rate year-over-year in the target neighborhoods will exceed the city average Price-per-SqFt growth rate over the next 3 years based on the available history."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 60,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "'2014-05-02'"
+ ]
+ },
+ "execution_count": 60,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# lets have a look at the growth rates for all ZIP codes in Kings county for the years we have data for. \n",
+ "df.date.min()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 61,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "'2015-05-27'"
+ ]
+ },
+ "execution_count": 61,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "df.date.max()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We only have data for a full year. So we will go for quarterly price increments in the zip codes and use the mean value for those. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " zipcode \n",
+ " Time_Period \n",
+ " Mean_Price \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 98001 \n",
+ " 2014Q2 \n",
+ " 255090.250 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 98001 \n",
+ " 2014Q3 \n",
+ " 286790.881 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 98001 \n",
+ " 2014Q4 \n",
+ " 276810.100 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 98001 \n",
+ " 2015Q1 \n",
+ " 276137.506 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 98001 \n",
+ " 2015Q2 \n",
+ " 328520.436 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 350 \n",
+ " OVERALL MARKET AVERAGE \n",
+ " 2014Q2 \n",
+ " 553337.125 \n",
+ " \n",
+ " \n",
+ " 351 \n",
+ " OVERALL MARKET AVERAGE \n",
+ " 2014Q3 \n",
+ " 537657.723 \n",
+ " \n",
+ " \n",
+ " 352 \n",
+ " OVERALL MARKET AVERAGE \n",
+ " 2014Q4 \n",
+ " 529852.653 \n",
+ " \n",
+ " \n",
+ " 353 \n",
+ " OVERALL MARKET AVERAGE \n",
+ " 2015Q1 \n",
+ " 528932.859 \n",
+ " \n",
+ " \n",
+ " 354 \n",
+ " OVERALL MARKET AVERAGE \n",
+ " 2015Q2 \n",
+ " 561311.773 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
355 rows × 3 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " zipcode Time_Period Mean_Price\n",
+ "0 98001 2014Q2 255090.250\n",
+ "1 98001 2014Q3 286790.881\n",
+ "2 98001 2014Q4 276810.100\n",
+ "3 98001 2015Q1 276137.506\n",
+ "4 98001 2015Q2 328520.436\n",
+ ".. ... ... ...\n",
+ "350 OVERALL MARKET AVERAGE 2014Q2 553337.125\n",
+ "351 OVERALL MARKET AVERAGE 2014Q3 537657.723\n",
+ "352 OVERALL MARKET AVERAGE 2014Q4 529852.653\n",
+ "353 OVERALL MARKET AVERAGE 2015Q1 528932.859\n",
+ "354 OVERALL MARKET AVERAGE 2015Q2 561311.773\n",
+ "\n",
+ "[355 rows x 3 columns]"
+ ]
+ },
+ "execution_count": 87,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# lets use a new column with the Quarters and get some statistics here. \n",
+ "growth_df = df.copy()\n",
+ "\n",
+ " # Convert the 'date' column to datetime objects. Necessary when dataset was read from cleaned data!\n",
+ "growth_df['date'] = pd.to_datetime(df['date'], errors='coerce')\n",
+ "\n",
+ "# Ensure 'zipcode' is treated as a string for grouping\n",
+ "growth_df['zipcode'] = growth_df['zipcode'].astype(str)\n",
+ "\n",
+ "# Use to_period('Q') for correct quarter grouping --> add quarter information\n",
+ "growth_df['Quarter'] = growth_df['date'].dt.to_period('Q')\n",
+ "\n",
+ "# Convert to string for plotting purposes (e.g., '2014Q2')\n",
+ "growth_df['Time_Period'] =growth_df['Quarter'].astype(str)\n",
+ "\n",
+ "# Aggregation: Mean Price per ZIP code and Time Period\n",
+ "quarterly_mean_price = growth_df.groupby(['zipcode', 'Time_Period'])['price'].mean().reset_index()\n",
+ "quarterly_mean_price.rename(columns={'price': 'Mean_Price'}, inplace=True)\n",
+ "\n",
+ "# Calculate Overall Market Trend\n",
+ "# Aggregate by Time_Period across ALL ZIP codes\n",
+ "market_trend = growth_df.groupby('Time_Period')['price'].mean().reset_index()\n",
+ "market_trend.rename(columns={'price': 'Mean_Price'}, inplace=True)\n",
+ "\n",
+ "\n",
+ "# Add a unique identifier for the overall market line\n",
+ "market_trend['zipcode'] = 'OVERALL MARKET AVERAGE' \n",
+ "\n",
+ "# Concatenate both DataFrames\n",
+ "df_final = pd.concat([quarterly_mean_price, market_trend], ignore_index=True)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Here we have a dataframe with all the ZIP codes and their mean prices over the 4 quarters of data that we have. \n",
+ "\n",
+ "Lets boil it down to the interesting zip codes and then plot it. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The growth rate of the whole market in Kings County from May 2014 to May 2015 was 1.4411915417894532 Percent\n"
+ ]
+ }
+ ],
+ "source": [
+ "interesting_zip_str = ['98002', '98168', '98032', '98001', '98188']\n",
+ "# Filter out the Overall Market line \n",
+ "df_zips = df_final[df_final['zipcode'] != 'OVERALL MARKET AVERAGE'].copy()\n",
+ "\n",
+ "# Prepare DataFrames for plotting\n",
+ "df_plot_zips = df_zips[df_zips['zipcode'].isin(interesting_zip_str)] #interesting_zip contains 5 cheapest ZIP codes\n",
+ "df_market = df_final[df_final['zipcode'] == 'OVERALL MARKET AVERAGE']\n",
+ "\n",
+ "# Now lets see the growth rates \n",
+ "# 1. Get prices for the start and end period for the Top 5\n",
+ "start_prices = df_plot_zips[df_plot_zips['Time_Period'] == '2014Q2']\n",
+ "end_prices = df_plot_zips[df_plot_zips['Time_Period'] == '2015Q2']\n",
+ "\n",
+ "# Merge to align start and end prices for growth calculation\n",
+ "growth_df = pd.merge(\n",
+ " start_prices[['zipcode', 'Mean_Price']],\n",
+ " end_prices[['zipcode', 'Mean_Price']],\n",
+ " on='zipcode',\n",
+ " suffixes=('_start', '_end')\n",
+ ")\n",
+ "\n",
+ "# 2. Calculate the individual growth rate for each ZIP code\n",
+ "# Growth Rate = (End Price - Start Price) / Start Price\n",
+ "growth_df['Growth_Rate'] = (\n",
+ " growth_df['Mean_Price_end'] - growth_df['Mean_Price_start']\n",
+ ") / growth_df['Mean_Price_start']\n",
+ "\n",
+ "# get growth rate of whole market \n",
+ "growth_market = float((df_market['Mean_Price'].loc[354] - df_market['Mean_Price'].loc[350])/df_market['Mean_Price'].loc[350])\n",
+ "print(f\"The growth rate of the whole market in Kings County from May 2014 to May 2015 was {growth_market * 100} Percent\")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "So we have the growth rate for the whole market from May 2014 until May 2015"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 127,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "0 0.288\n",
+ "1 0.032\n",
+ "2 -0.058\n",
+ "3 0.220\n",
+ "4 0.115\n",
+ "Name: Growth_Rate, dtype: float64"
+ ]
+ },
+ "execution_count": 127,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "growth_df['Growth_Rate']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " zipcode \n",
+ " Mean_Price_start \n",
+ " Mean_Price_end \n",
+ " Growth_Rate \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 98001 \n",
+ " 255090.250 \n",
+ " 328520.436 \n",
+ " 28.786 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 98002 \n",
+ " 230637.594 \n",
+ " 238125.926 \n",
+ " 3.247 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 98032 \n",
+ " 272273.263 \n",
+ " 256533.333 \n",
+ " -5.781 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 98168 \n",
+ " 216970.690 \n",
+ " 264798.636 \n",
+ " 22.044 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 98188 \n",
+ " 280897.273 \n",
+ " 313293.182 \n",
+ " 11.533 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " zipcode Mean_Price_start Mean_Price_end Growth_Rate\n",
+ "0 98001 255090.250 328520.436 28.786\n",
+ "1 98002 230637.594 238125.926 3.247\n",
+ "2 98032 272273.263 256533.333 -5.781\n",
+ "3 98168 216970.690 264798.636 22.044\n",
+ "4 98188 280897.273 313293.182 11.533"
+ ]
+ },
+ "execution_count": 128,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# convert float values to percent. \n",
+ "growth_prc_df = growth_df.copy()\n",
+ "growth_prc_df['Growth_Rate'] = growth_prc_df['Growth_Rate']*100\n",
+ "growth_prc_df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 133,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "hovertemplate": "zipcode=%{x} Growth_Rate=%{y} ",
+ "legendgroup": "98001",
+ "marker": {
+ "color": "#636efa",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "98001",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "98001"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "0tkK5TTJPEA=",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "zipcode=%{x} Growth_Rate=%{y} ",
+ "legendgroup": "98002",
+ "marker": {
+ "color": "#EF553B",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "98002",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "98002"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "/9DWLnD5CUA=",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "zipcode=%{x} Growth_Rate=%{y} ",
+ "legendgroup": "98032",
+ "marker": {
+ "color": "#00cc96",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "98032",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "98032"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "fd/laKwfF8A=",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "zipcode=%{x} Growth_Rate=%{y} ",
+ "legendgroup": "98168",
+ "marker": {
+ "color": "#ab63fa",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "98168",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "98168"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "QipdMyMLNkA=",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "zipcode=%{x} Growth_Rate=%{y} ",
+ "legendgroup": "98188",
+ "marker": {
+ "color": "#FFA15A",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "98188",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "98188"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "YqVUnuYQJ0A=",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ }
+ ],
+ "layout": {
+ "barmode": "relative",
+ "legend": {
+ "title": {
+ "text": "zipcode"
+ },
+ "tracegroupgap": 0
+ },
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermap": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermap"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Mean price development of cheapest 5 ZIPcodes over 4 quarters"
+ },
+ "xaxis": {
+ "anchor": "y",
+ "categoryarray": [
+ "98001",
+ "98002",
+ "98032",
+ "98168",
+ "98188"
+ ],
+ "categoryorder": "array",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "zipcode"
+ }
+ },
+ "yaxis": {
+ "anchor": "x",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "Growth_Rate"
+ }
+ }
+ }
+ }
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# show growth rate of those 5 ZIP codes over 1 year\n",
+ "fig = px.bar(\n",
+ " growth_prc_df,\n",
+ " x='zipcode',\n",
+ " y='Growth_Rate',\n",
+ " color='zipcode',\n",
+ " title='Mean price development of cheapest 5 ZIPcodes over 4 quarters'\n",
+ ")\n",
+ "\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " zipcode Mean_Price Growth_Rate\n",
+ "0 98001 255090.250 0.288\n",
+ "1 98001 286790.881 0.288\n",
+ "2 98001 276810.100 0.288\n",
+ "3 98001 276137.506 0.288\n",
+ "4 98001 328520.436 0.288\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "hovertemplate": "zipcode=98001 Time_Period=%{x} Mean_Price=%{y} ",
+ "legendgroup": "98001",
+ "line": {
+ "color": "#636efa",
+ "dash": "solid"
+ },
+ "marker": {
+ "symbol": "circle"
+ },
+ "mode": "lines",
+ "name": "98001",
+ "orientation": "v",
+ "showlegend": true,
+ "type": "scatter",
+ "x": [
+ "2014Q2",
+ "2014Q3",
+ "2014Q4",
+ "2015Q1",
+ "2015Q2"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "AAAAAJIjD0GgLVaGG4ERQWZmZmYo5RBB2DumBqbaEEG+5Vu+IQ0UQQ==",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "zipcode=98002 Time_Period=%{x} Mean_Price=%{y} ",
+ "legendgroup": "98002",
+ "line": {
+ "color": "#EF553B",
+ "dash": "solid"
+ },
+ "marker": {
+ "symbol": "circle"
+ },
+ "mode": "lines",
+ "name": "98002",
+ "orientation": "v",
+ "showlegend": true,
+ "type": "scatter",
+ "x": [
+ "2014Q2",
+ "2014Q3",
+ "2014Q4",
+ "2015Q1",
+ "2015Q2"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "AAAAwGwnDEEAAAAA4PsMQc3MzMwsegxBAAAAAGBPDEET2ktobxENQQ==",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "zipcode=98032 Time_Period=%{x} Mean_Price=%{y} ",
+ "legendgroup": "98032",
+ "line": {
+ "color": "#00cc96",
+ "dash": "solid"
+ },
+ "marker": {
+ "symbol": "circle"
+ },
+ "mode": "lines",
+ "name": "98032",
+ "orientation": "v",
+ "showlegend": true,
+ "type": "scatter",
+ "x": [
+ "2014Q2",
+ "2014Q3",
+ "2014Q4",
+ "2015Q1",
+ "2015Q2"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "XkN5DUWeEEGEDz740F0OQfmKr/gqygxBFDuxE+twD0GrqqqqqlAPQQ==",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "zipcode=98168 Time_Period=%{x} Mean_Price=%{y} ",
+ "legendgroup": "98168",
+ "line": {
+ "color": "#ab63fa",
+ "dash": "solid"
+ },
+ "marker": {
+ "symbol": "circle"
+ },
+ "mode": "lines",
+ "name": "98168",
+ "orientation": "v",
+ "showlegend": true,
+ "type": "scatter",
+ "x": [
+ "2014Q2",
+ "2014Q3",
+ "2014Q4",
+ "2015Q1",
+ "2015Q2"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "WO5phFV8CkFg75ga6HENQWG8lX1+Yg1BVVVV1ayADkG66KKLeikQQQ==",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "zipcode=98188 Time_Period=%{x} Mean_Price=%{y} ",
+ "legendgroup": "98188",
+ "line": {
+ "color": "#FFA15A",
+ "dash": "solid"
+ },
+ "marker": {
+ "symbol": "circle"
+ },
+ "mode": "lines",
+ "name": "98188",
+ "orientation": "v",
+ "showlegend": true,
+ "type": "scatter",
+ "x": [
+ "2014Q2",
+ "2014Q3",
+ "2014Q4",
+ "2015Q1",
+ "2015Q2"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "dNFFFwUlEUHx8PDwEK8QQRzHcRyfjBFB11prrbkVEkGjiy66NB8TQQ==",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "Time_Period=%{x} Mean_Price=%{y} ",
+ "legendgroup": "",
+ "line": {
+ "color": "black",
+ "dash": "solid",
+ "width": 4
+ },
+ "marker": {
+ "symbol": "circle"
+ },
+ "mode": "lines",
+ "name": "OVERALL MARKET AVERAGE",
+ "orientation": "v",
+ "showlegend": false,
+ "type": "scatter",
+ "x": [
+ "2014Q2",
+ "2014Q3",
+ "2014Q4",
+ "2015Q1",
+ "2015Q2"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "v3rWP/LiIEFQPO1xc2ggQex4Hk55KyBBeRuSt0kkIEEq+IeLPyEhQQ==",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ }
+ ],
+ "layout": {
+ "legend": {
+ "title": {
+ "text": "zipcode"
+ },
+ "tracegroupgap": 0
+ },
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermap": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermap"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Mean Price Development (cheapest 5 ZIPs) vs. Overall Market Trend. Market grew by 1.44 percent"
+ },
+ "xaxis": {
+ "anchor": "y",
+ "domain": [
+ 0,
+ 1
+ ],
+ "dtick": 1,
+ "title": {
+ "text": "Time_Period"
+ }
+ },
+ "yaxis": {
+ "anchor": "x",
+ "domain": [
+ 0,
+ 1
+ ],
+ "showgrid": true,
+ "tickprefix": "$",
+ "title": {
+ "text": "Mean_Price"
+ }
+ }
+ }
+ }
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# 1. Plot the 5 cheapest ZIP Codes\n",
+ "fig = px.line(\n",
+ " df_plot_zips,\n",
+ " x='Time_Period',\n",
+ " y='Mean_Price',\n",
+ " color='zipcode',\n",
+ " title=f'Mean Price Development (cheapest 5 ZIPs) vs. Overall Market Trend. Market grew by {growth_market *100:.2f} percent'\n",
+ ")\n",
+ "\n",
+ "# 2. Add the Overall Market Trend line (using add_trace)\n",
+ "# We use px.line() to generate the trace data structure and then add it.\n",
+ "fig.add_trace(\n",
+ " px.line(df_market, x='Time_Period', y='Mean_Price').data[0]\n",
+ ")\n",
+ "\n",
+ "# Update the appearance of the Market Trend line to make it stand out\n",
+ "fig.data[-1].line.color = 'black' # A prominent, neutral color\n",
+ "fig.data[-1].line.width = 4 # Thicker line\n",
+ "fig.data[-1].name = 'OVERALL MARKET AVERAGE' # Correct name in the legend\n",
+ "\n",
+ "# Axis Formatting\n",
+ "fig.update_yaxes(tickprefix=\"$\", showgrid=True)\n",
+ "fig.update_xaxes(dtick=1) # Ensure every quarter is clearly displayed\n",
+ "\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "As we can see, all but one ZIPcode has better growth rates than the whole county.\n",
+ "We have two ZIP codes that stand out : 98001 and 98168. \n",
+ "Even though the growth rate over one year was better for 98001, we had a decline here and only picked up a lot in the last Quarter. \n",
+ "98168 did not show declines, so this might be the better ZIP code (less risk) to invest in. \n",
+ "It is hard to predict for the next 3 years, but clearly it seems like the two ZIPcodes are interesting prospects. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 5.3 Hypothesis 3 \n",
+ "\n",
+ "The best time to buy a house is in Summer, since this is when people think about vacation and not about buying a house. "
+ ]
+ },
+ {
+ "attachments": {
+ "image.png": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgYAAACnCAYAAABq4JTCAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAEvTSURBVHhe7b1faBxHuv/93Rfr7FodYgVJg9BEkdjNbjDjkRux8jEsOBYii2xGVzJrwUQwJrkwBBIlg+1BwphgLBQvkziBgC8SJJAFCie60hxH52eEnXDMmgjMSKPBxCcsI49HGI3EkclpGWcE+9501VZXV/8ZaUbJOs8HdKHuVnfVU0899a2nqlu/am1t/QcIgiAIgiAA/H/yAYIgCIIgfrmQMCAIgiAIgkPCgCAIgiAIDgkDgiAIgiA4JAwIgiAIguCQMCAIgiAIgkPCgCAIgiAIDgkDgiAIgiA4v3L7wFEkEsHrr7+Ompoafmx+fh6jo6OW6xKJBDo7Oy3HoLhWvl8ul0M8Hhf+onqoyig/P5lMIhAIIJlMIp1OW64FgJaWFgwPDwMALl26hO7ubvT29sqXoVQq4dq1a0ilUsrnQmEbEfacuro6fh/VecMwHO2XSCQQCoUc66KClVW2i4pkMom2tjbMzMxgfHxcPu153q9ddF1HPB5HNpu1HJdttLCwgOHhYTQ2NvJrGLlcDplMRtlWIk5lFZGfy9omFouht7fX9R6JRAK6ruPatWt4+PAh4vE4amtr5cu4Ddg9Zbzax8v2DFYX2Wai/zpdAx/leNaR49nm5qayv8nXedktmUwik8n4ajtN05TPhOAHInL/YshldKpLtWH9Xe4Xcnn8xA9V/5H7hMq/i8UiLl26hHw+z4953Ut1HxGxT7kRiUTw5z//GX/9618tz4eiPVVtKV/DkOvthWvG4Pe//z2uXbuGvr4+9PX1YWZmBp2dnUgkEvKlKBaLGBwc5Nf29fUpRcHs7Cz6+vpw8eJFPghXE13XMTExgVAohIsXL/KyDQ4OQtM0TE1NIRKJAAAymQxqa2uh67p8GwDAwYMHUVdXh1wuxxutVCphbGzMUu/+/n6LA2xublqePTY2Bl3XHet+8OBBaJqGUqmEAwcOyKerTjAY5DZREYlEEAwG5cMcXdfxwgsvYHNzE+FwWD7NKdcuIoODg7bBGWbQFduir68P8Xgc4+PjlmO5XM7ms346jlPbpNNp1/q2tLSgra0NGxsbWFhY4Mfn5+dt5RX7jexfrN9cvXoVLS0t/DqGX9snEglcuXJFaa9CoYCGhgbL9arr3Aa3Z51IJIKTJ0/y+Dg4OMiFuhg/yol7LFapArtMd3e34yAUiUQwNTUFTdMs/s36l+w7fuuym8zMzFh8bWBgwCZS5P7bJ/Wd1tZWS3yZn59Hb28vYrEYv+bgwYP47rvv+DUXL16EpmkYHh622MjrXvl8HqdPn7aUhf3kcjkUCgVPUZBIJHDq1Cn827/9m3yK+wu7p9tYrOqrfmKbiKsw+OijjyyVGR8fRy6XQ1tbmzIoudHV1YVCocALmE6nMTc35zkI7YSWlhacPn0ahmFgaGjI4lisIQuFAk6ePAld1z2DOxsIlpaW5FNlkUqlkE6nEQgElB3vwIEDWF1dRTab3Zatd0KpVLINejIHDhzg16nQdR0//vgjbt++7VhHFV52YSQSCQSDQZso2A2c2iadTmN1ddWx7CpRuR1Yv6mrq8PBgwfl075sH4vFoOs6xsbGbDMOAFxIEc788MMP+Oyzz7j/5fN5pFIp1NTUWGzuJ+61tLTg6tWrOH/+vG2mrKKlpQWHDx+WDwOCECkUCjh9+rTF11KpFEZHR7lgYPity78a77//viXmT05OolgsWuJ7KpXCRx99xH936l9+7qUiFoshGAzi5s2b8ilOLBbD9PS0MgPCyGQyFiG+k7HYD67CQEWxWJQPobGxEYZhOAY8XdcRCASQyWQsx9PptOcgtBO6u7tRV1eHVCrlWLaJiQkAQE9Pj2twd5rxbZdHjx7JhwDTVqFQCJlMBktLS9A0TTkAVItSqYR8Po9QKGSzAYTyff/99/IpQAhauVwOd+7cAcy/8YuTXRixWAydnZ2YnZ3ddVHg1TZuGadKiUoAWFtbU4oyP7bXdR3d3d1Ip9O7br9nia+//hpff/215djDhw9RKpXQ1NQElBH36uvroWkaZmZmcPHiRWxublqul+nu7gYALC4uyqfQ1dWFUqnE45qMSpj4qctu8eKLLwKmj7vhNeaoyOfzMAxDPmzDqX+J+L1XOBz2zBY0NTXx7Mf8/Lx8GjCFgEyxWISmaaivrwfM/q9pmnKMLpeyhcF2GkTXddTU1Ngae319HYZhOKbEdko4HPYcyJkYYMrr5s2bSqXMZnx37twpq+5ONDU1wTAMrK+vW46z56bTaSwsLMAwDHR1dVmuqTb3799X2gCmgAKA5eVl+RQgpNqXlpa4bQ8fPuxb1TrZBeZsqKenB/Pz88qOUm282mZubk45i2Ci0itA+IWl+R8+fGg57sf2rA6zs7PCXxLVwG/cS6fTGBgY8OXTTNjduXMHT58+tZ0LBAJYXV21zG5lZGHyS8HvwOnUv0T83IstucrCUGZ0dNSW3fmpKUsYJBIJBAIBixplBmpra8P09DSmp6ct6/aMUqlkM7Rf1bUdWLn8iBhReS0sLGBjY8MW3Fn63K3D+YXNelUiIxwO846dz+eRy+WUGYxqkk6nUSgUbIMKG+Cy2awt2DEOHDgAwzC4GMtkMra0nBNudnn++edx8uRJFAoFZfp7N/BqG9UxCKLSK0D4gYmjbDZr80U/tg+Hw47Ci9gZTAiIWaFKx72BgQGsrq4qRcSLL76ImpoaTz+ThYkKVV12g4aGBtTW1uLUqVN8PJH3Y/gdc2TY8snk5KR8isP619zcnK1/ifi5V1dXFzY2NjA3Nyef2jEsFosikGWeOjs7uV0mJia2NXZ4CoNkMskf0tjYaNsEkldsuigUCjh16pRlk4cbmqb5nlFWG1VwVzUCo6amxuLE09PTts09tbW1OH/+PD8fDoeVG0KY4hc79tLSkuPsvZrcvHkTdXV1PG0JYWnGKVgwO4nr6G6zE792AYBXXnkFNTU1rmt1ACzBgv349UM3/LaN6pibqBQ78bQiwMn+FYlEcObMGZs4Ktf2MmI/n56etm1qqpZdnxXYgJIuY4mm3LgXi8VsE7NqsJ26VAp5k/DY2BiCwaAlpvodc1rMvRvMX4vFonJmztb4p6encfLkSYyOjtpikN97MVi8UE1yKgHbPC/6QtrMPDGbsE2kiUTCUzTJeAqDeDzOH5TJZDCtUHAy8XgcuVzONuN0ws+svtqIsyg5uLvN+EqKtxJkhxF338/Pz6OtrU0ZVFmaXhxAnDIY1Ub1XK/1MpVwSEtLNSJ+7QJzPXVjY4NvFHWiEjtyVfhtG/mYm6iE4q0E+Y0W0b9mZmbQ2NiIaDRquQe2YXsZ1s8HBweV6dFq2fVZgO0mLzebVU7c8zuT3SnbrUu1SKVSuHbtmm2SIqMac2QBAUApekUxkkwmEY/HbTNtv/disL+tdFvp5psrwWAQX3zxhev98/k8Ll26hI2NjbKXoz2Fgcj4+DhmZmZ8vUkgb4yoqanhG0sYLCVUDVi6zo8ql/dNyMHdbcZXLqOjo8jlcuju7rY4HhtA5Fn0lStX0NjY6MvmlSSfz+POnTv8uZFIBIFAwHXGHg6HbTPc6elptLW1obGx0bVjO9mF8fTpU1y9ehUAcPr0ac82rSTltI2ccXITleUyPj6O+fl56Lpu8wW/tpf7JbEzkskkOjs7MTMzo3x9sxJxr6WlBZFIxPJ2gwq2YdBrEsFSzrIA9KrLT4XfjZBevj06Oor5+XnHjdUwB3I28WWTARVu92oxNwE7TQa2SyQSQSKRgGEYOHPmjOMETaSccVCkLGEAYbeo/J6zG05/4+SglUK1xiqjShGLwf3VV191nfFtB7bBUXQ8NoDI7+/2mek0CDvbdwsxFd3V1WVZv5ZhdpRnwH3mu8Fur4EyVHYRSafT+OKLL1BXV2d7z7ialNs2YsapkqIS5qbBUqlkmQGUY3s5G0ZsD5ZaDgaDGBsbUw7YlYp77JsF8nJOZ2cnF6vs4z9Ob1WJ6NL+AT91eVZ49OiRUqyJ+NmDAZd7sfatxGSAEYvFeCZHzkhXg7KFAXNyp81nUKRP5Rk4Q3bQSjM3N4eNjQ1EIhHHQWRgYACGYdg2iLAAevTo0YrN+Bgp8319cebnNoCkUikUCgVfKeFKkk6nkc1mEQqFEAwGXdfL3NqS3ccrYKnsIpNKpTA7O4vGxkbLu9jVpNy2Yf7e0dFRcVGZNl83E5ddyrE9K69TZobwB1u6cfuWRqXinrzuzn7m5+f5chyb4XuJa918q0FcEvRTl58SP/aSxxwnmpqalBtCRfwKN6d7sX7lVo5yYBmInMcXM1WwSYO498gPjsJAN79AJw5Eqk0puq7jwoULwl/+86t0LO3M0tJyMOuu8vvU+XweV69ehaZpGBkZsQRCppID5lfkZKOxTt3e3l6VnaXizE833493c2o/2Y9qwF5rcxoYITiu26uhfmeqqhmxDEupt7W1Oa7xVYrttA3LOAWDQUs/qBTstcjDhw/jj3/8Y9m2v3LliuOmJBYUCXe89tvgJ4p7TDh3dnba9oKJqegrV67w437qslu8++67Fp9kY45YPj9jTiQSwcjIiOUa9taTuE9jZGTE8rwW4aN47I0Dv/dihF3e/GEbHZ32UqlgryF7xZFIJIJ3332X/87qgm28nrxHPsBImzscRQeCwzeXX375ZUxPT/Pfi8Uizpw5Yxls2d/09vbyb06rvvVcaVg9EokEzp8/bznn9nwW3BsbG13VVo25rnvq1CnLcZWdRNhMrrOzE9FoFLW1ta5ZiXQ6je7ubnR1dfEBgKUWRYrmd74h7PoXKfn8ZjcjbaYni8WirQMwWKo9bb7Gp2JhYQGRSASHDx92FVmiXWKxmOMzR0dH+ZpoMpnkfupmE6eyuaHrelltw+y6tLQEXdddB2wIbyWIeM0M2IDT29uLaDRatu3z5kYqlp6UfbdYLNpew6q0XZ8FVDaB9F3/nyLujY+PY25uDsPDw8ryMRErtpufuuwGv/71r20+qYqlXmMO83nxGraRV4x99+/ftz1P7n9+7wVh/0g5G0v94DTOQPKnf//3f7eUM5fLcXFQDq7/RIkgCIJ4dmiR/tmPPAgSBEgYEARBEAQh4rjHgCAIgiCIXx4kDAiCIAiC4JAwIAiCIAiCQ8KAIAiCIAgOCQOCIAiCIDgkDAiCIAiC4JAwIAiCIAiC86tXXnmFvmNAEARBEARAGQOCIAiCIERIGBAEQRAEwSFhQBAEQRAEh4QBQRAEQRAcEgYEQRAEQXBIGBAEQRAEwSFhQBAEQRAEh4QBQRAEQRAcEgYEQRAEQXBIGBAEQRAEwXH9JHJPTw/6+/tRU1PDj929exfJZNJyXTweR0dHh+UYHK4FgGAwiMHBQczNzWF2dlY+XRVUZVxeXsbQ0BD/fWRkBIFAAJ988gkWFxct18Is99mzZwEAly9fxtGjR3H8+HH5MpRKJUxNTWF2dlb5XLjYBsJz9u3bx++jOm8YhqX8IvF4HPv373esiwpWVtkuKkZGRtDa2orr169jcnJSPu153q9d2tvb8fbbb+PevXuW47KNMpkMzp49i4aGBn4NY3l5GdlsVtlWIk5lFZGfy9omGo3i+PHjrveIx+MIh8OYmprCysoK3n77bezdu1e+jNuA3VPGq328bM9gdZFtJvqv0zXwUY5nHTk+PnnyRNnf5Ou87DYyMoJsNuur7TRNUz4Tgh+IyP0LDn6wtraGy5cvo1AoWK6tNqy/y/1Ctq1cN/m8U99hqNpAvqdoK7kNGcxOAGw2FBH7lIj8TBmxD8vXym1ZyXbcIx8Q+d3vfqcMfvF43OZcfgvADLxbMEcDgA8++IA7DjPi+Pg4r2M2m0VrayvC4bCyo4XDYezbtw+ZTIbX06nBRWSnZTYYGRmxOSfM52iahq2tLYRCIdd7V4Pm5mb09PQ4PrenpwfNzc3yYU57ezteeOEFPHnyBKFQSD7NKdcuIm+99ZZlcA4Gg4BDh2eIgXZkZASapvnyWRGntslkMujq6nKsbzAYxEsvvYTHjx8jk8mgvr4eUHRuGdm/mD9//PHHyrL7tT0TZnfv3sU777xjOTcyMsLLx3Cz6y+Rnp4enDhxwiag3n77baVP37hxA5OTk7z9VD4uDorZbNZyTubo0aNoaGjAkydP5FP8mY8fP8bZs2e5j7Djsu+Ew2Hcv3+f+wErx9mzZ5U+thu4idr29nb83//9H6LRKCDEctH2k5OTyr9n7fbNN9/wY+KET7SXzNbWlmusl/sRY2RkBACUfyf7ACMej+Oll17CrVu3AOEerM6qsbiS7ei6lPDpp59aKjM5OYnl5WW89NJLPBD7pb29HZ999hkGBgZsqqtaBINBvPHGGzAMAxcuXLAM9oVCAe+88w5WVlZw4sQJtLe3I5PJuAZUdtyr03oxOzuLTCaDQCCA9vZ2+TRCoRBWV1dx7969bdl6J5RKJT7oOREKhbC1tYVSqSSfAkwH/fHHH/G3v/3NsY4qvOzCiMfjaG5udu2k1cKpbRYXF7G6uupYdiYqHzx4UFYHlVlcXMTNmzexb98+hMNh+bQv20ejUYTDYUxMTChFydDQkDKoEv/khx9+wNjYGPe/QqGAr776Cnv27LG0y5EjR7CyssLtydqPiW+Ycerjjz/GuXPnbDNlFcFgEIcOHZIPA8Lgv7Kygnfeecfia7Ozs/jwww+haRreeusty/FPP/2U/+7lYz81i4uLfKCEi+1lgsEgjh07htXVVUvcYLYod/D0QzQaRXNzs0WIeNHT04NwOIxvv/2WlyebzVpEhGosrmQ7ugoDFevr6/Ih1NfXwzAMV6OyGebExAQmJiawtbUlX1Jxjh49in379uGrr75yLNvU1BQA4LXXXnMN7vKMb6c8evRIPgSYAmr//v3IZrPIZrPQNK3sRt0JW1tbyOfz2L9/v80GEMr397//XT4FCEHrwYMHmJ+fB8zByi9OdmFEo1F0dHTgxo0buy4KvNomm81i7969yvpWSlTC7IOq/uPH9u3t7ejq6kImk9l1+z1L3L59G7dv37YcW1lZwdbWFpqamgDT1oFAwNbmmUzGIr7r6+uhaRquX7+ODz74QJkFEDl69Cjg4EtHjhzhM1sVKmGiwsnHqg0bJ1TjjBvM9m6EzWyfOEizNhIHYRUsg7aysiKfciUUCmFlZaWsvhYKhfD48WOeLYCU7WSsr69D0zRbdk9ku+1YtjDwIwJUzM7O4s033yzLQDuFGdhtIGdigCmvb775Rqk82YzPy4H80tTUBMMwbB2APTeTySCTycAwDBw5csRyTbX5/vvvlTaAKaBgppZVsM6XzWa5bQ8dOuQ76+FkF5hK+rXXXsPdu3eVHaXaeLXNrVu3sLa2Zsu2MFFZboBwwilI+bE9q8ONGzeEvySqQTgcxp49e2y+vL6+DsMweDsuLi7izTff9OXTTNh9++23ePr0qe1cIBDA6uqqJTsqIwsTFU4+9nPFj6A4cuQIDMOwjAdin640bMlVJeCcYJOPnWYWGdttx7KEQTweRyAQsKjRYDAITdPQ2trK13XGx8dd1ehuwMrlR8SIyiuTyeDx48e2TsPS55VwIDbrVYkMlqpeXFxEoVDAgwcPlBmMapLJZLCysmIbVNgAd+/ePccOGAqFLJ0vm836TmW52eW5557DiRMnsLKyokx/7wZebaM6BkFUlhMgnGDi6N69e7bg78f27Bqn9iO2DxMCYjtvbW3ZgnKhUIBhGJZjfunv78fq6qpSRDQ3N9uer0IWJjLMx27evGnzsWpTX1+PvXv3YmBggI8n4rKBivb2dpw4cQL37t1zFN5skJZjC5uIvPzyyxgfH3d8ZlNTE/bu3Ytz587xa+LxuOUamSNHjthm/l6wiZeXcGex2E0E7qQdPYXByMgIN0R9fT3efPNNy0MK5lp9NBrlPysrKxgYGOAbJf6VUAV3t0aoqamxOPHk5CQ+/vhjy4AqO1QoFEI0GrV1blXqMZvNOs7eq8k333yDffv28bQlhKUZp8DD7CSqXbfZiV+7AMAf/vAH7Nmzx3OtThSo7KcSfui3bVTH3ERlR0eHpayyqJb969ixYxgeHraJo3JtLyP280lF0KuWXZ8VWBDOlLFEo2ma70waTOEsT8wqBet3k5OTOHHiBD788ENMKvphtWF+xX4mJibQ3Nxsi6k9PT18IH/vvffw5Zdf2vqEiCo9D1OINDQ04NVXX8Xw8LDlmaI4YG8JsZ/r16+jo6PDJiAYfpcoRMSJlzzOyLz11lvQNM3mC5VqR09hMDQ0xI2RNV+hcTIGY2hoCMvLy7YZ588ZcRYlB3e3GV+pVMLExITFaeRNP0+ePMEHH3yAaDSKu3fvorW1FVFFUGVqURxAnDIY1Ub13JDHeplKOMhLNSJ+7QKzTR4/fsw3ijqxvLxsaQvWUXaK37aRj7mJSphvJYhljcViFvuK/nX9+nU0NDQo3+op1/YyrJ+fPXsWa2tr8umq2fVZIB6PY2BgoOxslp9sJmMnsz8/iAPyJ598grfffhufffaZa1/bDWZnZzE1NWWbpMzOziIWiyEajWJ4eBjHjh2ziWqGSjSLlEolyz60WXMTtNs+jMnJSVy/ft3xmu0sUYhLgU60m5v4m5ub8eWXX9p8oVLt6CkMRLyMIeJnY0Q1Yek6P6pc3jchB3e3GV+5JJNJLC8vo6ury9JYzHnlWfTly5fR0NDgy+aVpFAo4Ntvv+XP7enpQSAQcJ2xh0Ih2wx3cnISra2taGhosHRsGSe7MJ4+fYrPP/8cAPDGG294tmklKadt5IyTm6gsl8nJSdy9exfhcNjmC35t/1P3y2eNkZERdHR04Pr168pXz/bs2cPXvxlBc5nTL0FzN734doMKtgHPaxLBNjs6LSctLi7ik08+AQRB/FMib+qUKRQKuHz5Mh4/fqzcj6USzSKqfWjsWrd+wuwnXxM0NwE7TQacUO2BEOnp6cF7770HwzAwPDzsOEFj7KQdyxIGcDHGz5GsYo1VRpUiFoP7n/70J9cZ33ZgGxzFxmIDyPXr120zs4mJCUDY2b5biKloL6dldpRnwNFolO+09iq/yi4ii4uL+PLLL7Fv3z6cPXt218RBuW0jZpwqKSphrj1ubW1ZAmA5tpezYcT2CJqvGDY3N2NiYkI5YDvFSq+BWYZ9s0Bezuno6OBidWRkhGeI5D0uMqq9EDJe+xB+brhNBJuampSDPzyE8tbWlu82EmHt62ZfGSYWnbIa0WiUZ6XkjLQb223HsoUBe4CbwbzSp7vFrVu38PjxYxw7dszmLIz+/n4YhmFbe2IB9NVXX3VVm9uBparEmZ/bADI7O4uVlRVfKeFKsri4iHv37mH//v3KjTsibsGG3ccrYKnsIjM7O4sbN26goaHB8i52NSm3bVjGSdf1iveDRfN1M3HZpRzbs/I6ZWYIf7BZqNu3NOTMI8OtvVRMSuvu7Ofu3bt8OY5lK7zEdbv5VoPbkiC2IV6qiR97sYFVXp5hY5HTgOsklFmbyRtHRZziAruXfNyNsMsyAstAbOcjY9ttR0dh0N7ejpGREctApNpg097ebiss+yqdW9p5NygUCvj888+haRref/99W+r+448/RiAQwOeff25zGrFTqzat7BRx5tduvqLiNoD4yX5UA7Y7VtUBGMxxnVQ5XDqgjGpGLMNS6q2trbZNcpVmO23DMk7Nzc1V6QfstchDhw6ho6OjbNt/+umnMAwD7733nk2AsUBCuBPy2G8DYTlOFHFsYBZjaCVhwlm1MU5MRYsfwrlw4YLFD4LCh+HkzW3V5q233rKUhY05oq3j8Ti3J8NpM17YzPY5fR+FTUZEodxjfmBI3AQ4NDRkGT+i5htUqo2CIZc3f6Lm3hy5/G5ChIkGrzhSyXZ0/CTy4uIi+vv7+XegGapPVf72t7+1HFtbW8Pw8LBtsP0pWDTfEY7H4zh37pzlnNvnaFlwb2hocFSbEHaNDwwMWI6r7CTCZnIdHR34y1/+4vkZVOa8R44c4QMASy2KiN/uZmlGEfkTu16w9OT6+rqtAzBY58sIn4qWyWQyOHbsGA4dOuQqskS7RKNRx8EumUzy9d2RkREe6Nxs4lQ2N8LhcFltw+yazWYRDoddB2wIbyWIeM0M2IBz/PhxnDx5smzbF4Q3iVS+u7a2Zgsklbbrs4DKJpA+9c3OHz9+nH+73y3uVILJyUncunULZ8+eVZaPiVjWbt9//73ND7x8sFr85je/sZVFjqXZbBb9/f2W/4WwtraGCxcu2HzRT4Y7mUzaxgf5mc8995zlPNsULMdRp8yFF/XmPjencu7Zs8dmFwbzp0q246/c/okSQRAE8ewQlP7RznYHDuLZhoQBQRAEQRAcxz0GBEEQBEH88iBhQBAEQRAEh4QBQRAEQRAcEgYEQRAEQXBIGBAEQRAEwSFhQBAEQRAEh4QBQRAEQRCcX7W2ttJ3DAiCIAiCAChjQBAEQRCECAkDgiAIgiA4JAwIgiAIguCQMCAIgiAIgkPCgCAIgiAIDgkDgiAIgiA4JAwIgiAIguCQMCAIgiAIgkPCgCAIgiAIDgkDgiAIgiA4rp9EjkQieP3111FTU8OPzc/PY3R01HJdIpFAZ2en5RgU1yaTSbS1tTmeryaqMuZyOcTjcf57MplEIBBAMplEOp22XAsALS0tGB4eBgBcunQJ3d3d6O3tlS9DqVTCtWvXkEqllM+FR93Zc+rq6vh9VOcNw7CUXySRSCAUCjnWRQUrq2wXFawtZ2ZmMD4+Lp/2PO/XLrquIx6PI5vNWo7LNlpYWMDw8DAaGxv5NYxcLodMJqNsKxGnsorIz2VtE4vF0Nvb63qPRCIBXddx7do1PHz4EPF4HLW1tfJl3AbsnjJe7eNlewari2wz0X+droGPcjzryPFxc3NT2d/k67zslkwmkclkfLWdpmnKZ0IRb6HoXypYnzMMA5cuXUI+n5cvqRrs2XK/kG0rXyf6rIjch5zqL9pKfhYUbcgoFosWG8nXqe7lhBwTRT+R78sQn6/qq3L5/OKaMfj973+Pa9euoa+vD319fZiZmUFnZycSiYR8KYrFIgYHB/m1fX19NlEAwNe9Komu65iYmEAoFMLFixf58wcHB6FpGqamphCJRAAAmUwGtbW10HVdvg0A4ODBg6irq0Mul+OGLpVKGBsbs9S7v7/f4qCbm5uWZ4+NjUHXdW4TmYMHD0LTNJRKJRw4cEA+XXWCwSC3iYpIJIJgMCgf5ui6jhdeeAGbm5sIh8PyaU65dhEZHBy0Dc4wO5PYFn19fYjH4xgfH7ccy+VyNp91C8QMp7ZJp9Ou9W1paUFbWxs2NjawsLDAj8/Pz9vKK/Yb2b8uXryIQCCAq1evoqWlhV/H8Gv7RCKBK1euKO1VKBTQ0NBguV51ndvg9qwTiURw8uRJHh8HBwe5UBfjBwvos7OzlvZT+TiLVfJgrqK7u1sp1mA+c2pqCpqmWfyb9S8n32H09PTYBubdZmZmxuJrAwMDNlEwNzdn8dnXX3/dErcSiQR6enp4/7l48SJCoZBtzEmaE0IWi7LZLBKJhC0Gyn2xr68Pp0+ftogCPz6hIplM2sYouX95Pf/gwYP47rvv+LmLFy9C0zQMDw+7trcKV2Hw0UcfWYLu+Pg4crkc2trayn5QJpOxVHQn9/JLS0sLTp8+DcMwMDQ0ZFFt+Xwep0+fRqFQwMmTJ6HrumdwZwPB0tKSfKosUqkU0uk0AoGA0mEOHDiA1dVVZLPZqtpHRalUsg16MgcOHODXqdB1HT/++CNu377tWEcVXnZhJBIJBINBmyjYDZzaJp1OY3V11bHsKlG5HdLpNObm5lBXV4eDBw/Kp33ZPhaLQdd1jI2NKWdPTEgRzvzwww/47LPPuP/l83mkUinU1NRYbN7V1YVCocDtydpPFN8tLS24evUqzp8/72tAbmlpweHDh+XDgCBECoWCZdCA2b9GR0e5YFCh6zpCoZB8+GfH1NSUxUcnJiYscYvVY3Z2lrcRs30oFOJtxCY5c3NzfHyYnJzExsYGurq6+P394NcnZBKJhGum2i+pVAofffQR/90rVrjhKgxUFItF+RAaGxthGIZrwFMFmmKxCE3TUF9fL5+qCN3d3airq0MqlXIs28TEBGCqZLfg7jTj2y6PHj2SDwGCQ2cyGSwtLUHTtLIbdSeUSiXk83lL5xFh5fv+++/lU4AQtHK5HO7cuQOYf+MXJ7swYrEYOjs7LR1+t/BqG7eMU6VEJQCsra0pRZkf2+u6ju7ubqTT6V2337PE119/ja+//tpy7OHDhyiVSmhqagJMWwcCAWQyGct16XTaMojV19dD0zTMzMzg4sWL2NzctFwv093dDQBYXFyUT6GrqwulUonHNRmVMBHp6enB6uoqcrmcfGpXePHFFwHTx51Ip9P4z//8T8ux9fV1GIbBsyi6rqOmpsZ2Hzbwsn7BMmPidfl8HoZh8N8hXPfw4UPLcRE/PiHDxpVsNusqCvw8X4VTrPCibGHgRwT8XAiHw54DORMDbPZ38+ZNpcJjM747d+5UpO5NTU0wDAPr6+uW4+y56XQaCwsLMAyjbOW6U+7fv6+0AczAAQDLy8vyKUBItS8tLXHbHj582HfWw8kuMNV9T08P5ufnlUKz2ni1zdzcHIrFoi3jxDp/oVCoyGDsFCT82J7VYXZ2VvhLoho4DU7yIJZOpzEwMODLp5mwu3PnDp4+fWo7FwgEsLq66jrIyMKEEYlEEAqFcPPmTcvxZxE2ULO2EZfOWlpaoGmachJcacQ+Ww2cYoUXZQkDlvIQ1SgzYltbG6anpzE9PW1Zt3eCBUsvJ94urFx+RIyYuVhYWMDGxoYtuLP0eSXKyma9KpERDoe5TfL5PHK5nDKDUU3S6TQKhYJtUBHVrRzsGAcOHIBhGFyMZTIZ36ksN7s8//zzOHnyJAqFgjL9vRt4tY3qGARRKc8ctwMTR6oZhh/bh8NhR+FF7AwmBMQgXyqVbEFZNSP1y8DAAFZXV5Ui4sUXX0RNTY2nn8nCBGbfjkQiyGazFRGv26WhoQG1tbU4deoUH09U+zFk5D6mGvAh2IiRSqVQKBTQ3d3N+2w0GoWmaRbx3NTUhNraWpw/f56XS96roELlEyKsfP/4xz8wMTHB7y3vA9nO81msEJdJ/OIpDJLJJC9IY2OjZRMIhLV6cUNEoVDAqVOnEIvFLPcSYZv/nFJePxWq4O4mYmpqaixOrGpUuUHD4TD6FJvdmOIXO/bS0pLj7L2a3Lx5E3V1dTxtCWFpxsnJmZ3EdXSn2QnKsAsAvPLKK6ipqfGczYgClf24+aFf/LaN6pibqOzs7LSUVRbVsn9FIhGcOXPGJo7Ktb2M2M+nFUGnWnZ9VmBBOF3GEo2mab4zaTCFszwxqxTRaBQw19d/SuRNwmNjYwgGg7aYKqLrOp80sNjBBvyenh7LXo4///nPttR6PB7H6uoqj0Wqt7lGR0ct5WKb591Eix+fYAN+f38/ksmk46ZBv8+PxWK8f548eRKjo6PKeOqFpzCIx+O8MJlMBtM+FFw8Hkcul7PNOGE24sTEBILBIL744gtlsPwpEGdRcnCX1ahIyWOnKKTd9/Pz82hra1MGVZamF23ilMGoNqrnhsNh13S4SjikpaUaEb92gbmeurGxwTeKOqHaPb+djiHjt23kY26iEoq3EuQ3WkT/mpmZQWNjIw/iIuXaXob188HBQWUKtVp2fRZIJBI4depU2dksP9lMxk5mf16wzahue7F+KlKpFK5du2abpDBisRjOnz8PwzBw5coVy7l4PM4nqdPT0/jrX/+K27dvW7I1bDwqFovcr7/44gskEgmbOBYZHx/HzMyM416Ncn1CbNe0uQ+ksbFRWWe4PF8UVslkEvF4HBMTE64xU4WnMBBxKowK1cbCSCSCRCIBwzBw5swZxwGmErB0nR9VLu+bkIO724yvXEZHR5HL5SypKwgDiDyLvnLlChobG33ZvJLk83ncuXOHPzcSiSAQCLjO2MPhsG2GOz09jba2Nlcnh4tdGE+fPsXVq1cBAKdPn/Zs00pSTtvIGSc3UVku4+PjmJ+fh67rNl/wa3tVvyS2TzKZRGdnJ2ZmZmyvl8HM+LANdYwWc5nTLy1mml+cEatgG928JhFss2OxWIT+L7AZ1WkDXyKRQG9vL+bn522TMYY4se3v78d3330HTdP4JueBgQEYhmHJlKTMt6OcNmAznJYrvHxCZnNz0za2pM035OQ6izg9n5FOp/kknk1s/FKWMICPwjgRi8W4gnJqxEqjWmOVUaWIxeD+6quvus74tgPb4Cg2FhtA5Pd3+8x0GoSd7btFWkhFd3V1WdavZZgd5Rlwn5kac3sNlKGyi0g6ncYXX3yBurq6bb2bu13KbRsx41RJUQlz02CpVLJseizH9nI2jNgeLeYrhsFgEGNjY8oB2ylWigOzH7rNbxbIyzmdnZ1crLLUt9NbVSK6sO7dY36zQF7SYoLyypUrrjPnnwpx8PUzI2cwu6TTaS7QVJkblnmTRZ0bfnxC5tGjR0rxyPB6S8sL1X4SP5QtDFSvd8jI6dMW4TUqPwqqUszNzWFjYwORSMRxEGGKcW5uznKcBdCjR49WbMbHYIpUnPm5DSBsvcxPSriSpNNpZLNZhEIhBINB5aZAhhhsZNh9vAKWyi4yqVQKs7OzaGxsdHwXu9KU2zYs49TR0VFxUZk204zisks5tldttiLKhy3duH1LQ848MtzaS4W87s5+5ufn+XIci6te4lo3MwRsSVBeu2Y/OeEDYOUMvNVAtlfE/PaA15c9Zdg4JG4gdsoqM6EvbxwVkeOCH5+QSTvsA2J1dhtn5eerKFeEMhyFgW5+gU40mGozha7ruHDhgvCX//wqHUs7s1cy3NLQ1SCfz+Pq1avQNA0jIyOWQMjUXcD8ipw84LFO3d7ejo2NDZtw2CnizE833493G0D8ZD+qAduZ6+aArMO5vRrqd6aqmhHLsJR6W1tb1Wcz22kblnEKBoOWflAp2GuRhw8fxh//+MeybX/lyhUYhqH8uhsLJIQ7XvttICzHySKumql7JpxVG9PEpVx5Pf7nwrvvvmvxSTbmiLY+cOCAr5h84cIFS7xRbXhnm6zFfTuRSAS6rlv6vHwv9gaV+HaQH59gmwOZPzChrwuTIVm8wefzR0ZGLLZrET7wV+6m0j3yAUbafLdWdiCVSnv55ZcxPT3Nfy8Wizhz5oxlsK0x1z9PnTrFjzGcvl9dCVg9EokEzp8/bznn9lwW3BsbGy07vWWc6qWykwibyXV2diIajaK2ttY1K5FOp9Hd3Y2uri4+ALDUokjR/DY2hF3/IiWHb4o7kTbTk8Vi0XFgZKn2tKnCVSwsLCASieDw4cOuHVq0SywWc3zm6OgoTycmk0nup242cSqbG7qul9U2zK5LS0vQdd11wIbwVoKIV2aNDTi9vb2IRqNl2z5vvknElvdk3y0Wi7ZAUmm7PguobALp+/gsBvT29vJv9rvFnUowPj6Oubk5DA8PK8vHROzPsd1+/etf23xSFUvZMoeMGN+ef/55S/zL5XIYGBiwXJ9Kpfj/LRFtJT9TvlfJ3BQsx1Evn1DBniPWW/YRP8+/f/++zXZescQJ13+iRBAEQTw7tEj/aGe7AwfxbEPCgCAIgiAIjuMeA4IgCIIgfnmQMCAIgiAIgkPCgCAIgiAIDgkDgiAIgiA4JAwIgiAIguCQMCAIgiAIgkPCgCAIgiAIzq9eeeUV+o4BQRAEQRAAZQwIgiAIghAhYUAQBEEQBIeEAUEQBEEQHBIGBEEQBEFwSBgQBEEQBMEhYUAQBEEQBIeEAUEQBEEQHBIGBEEQBEFwSBgQBEEQBMEhYUAQBEEQBMf1k8g9PT3o7+9HTU0NP3b37l0kk0nLdfF4HB0dHZZjkK6NRqM4fvy45fz169cxOTlpOVYtVGVcXl7G0NAQ/31kZASBQACffPIJFhcXLdcCQDAYxNmzZwEAly9fxtGjR211AoBSqYSpqSnMzs4qnwsHOzLYc/bt28fvozpvGIal/CLxeBz79+93rIsKVlbZLipGRkbQ2trq2IZe5/3apb29HW+//Tbu3btnOS7bKJPJ4OzZs2hoaODXMJaXl5HNZpVtJeJUVhH5uaxtmH+73SMejyMcDmNqagorKyt4++23sXfvXvkybgNVn4HCb2W8bM9gdZFtJvqv0zXwUY5nHTk+PnnyRNnf5Ou87DYyMoJsNmtrO799hsH8QMTpWpFoNIpQKORaxmrB+rvcL2TbyteJPisi215Vf9nH5WehjPFLfp7qXirEtlXVRb4vY21tDZcvX0ahUAB81sUPrhmD3/3ud5iamkI0GkU0GsX169fR0dGBeDwuX4q1tTWcPXuWXxuNRi0N0Nraig8++ICfu3v3Lo4fP45oNGq5T6Vpb2/HZ599hv3791uef/bsWWiahvHxcfT09AAAstks9u7di3A4LN8GABAOh7Fv3z48ePCAN0SpVMLExISl3rFYzNKoT548sTx7YmIC4XAYIyMjwt3/STgchqZp2NraQigUkk9XnebmZm4TFT09PWhubpYPc9rb2/HCCy/gyZMnruUv1y4ib731lm1whhl0xbaIRqMYGhrC5OSk5djy8rLNZ+VOrsKpbTKZjGt9g8EgXnrpJTx+/BiZTIYfv3v3rq28Yr+R/euDDz5AIBDAxx9/jGAwyK9j+LV9PB7H5cuX8eDBA9vzV1ZWUF9fb7neya6/VHp6enDixAkeH5lQf/vtt9He3m65rr+/Hzdu3LC0n8rHWaySB3MR2Wdlf4H5zPHxcWiaZrmW9S8n34EpJuQB8Kfg+vXrljq++eabNlFw8+ZNi8/29/db4hazfSaT4bbfv3+/xfbt7e14//33YRgGv9e9e/ds7ehn/PLrEzJswsD6+Y0bNzAwMGC5NwBsbW3Zxpp33nmHj0V+6+IHV2Hw6aefWoLu5OQklpeX8dJLLzk6lhMjIyMW1TI1NYW1tTXX4LVTgsEg3njjDRiGgQsXLlieXygU8M4772BlZQUnTpxAe3u7Z3Bnx7PZrHyqLGZnZ5HJZBAIBJQNFgqFsLq6inv37m3L1juhVCrZBj2ZUCiEra0tlEol+RRgDp4//vgj/va3vznWUYWXXRjxeBzNzc02UbAbOLXN4uIiVldXHcuuEpXbYXFxETdv3sS+ffuUAtaP7aPRKA9E8qACgAspwpkffvgBY2Nj3P8KhQK++uor7Nmzx9IuR44cwcrKCrcnaz9RfAeDQXz88cc4d+6cbaZcLmwwXFlZsQwaMPvXhx9+CE3T8NZbb1n+Lh6PY3Jy0lWU/Jz4j//4D4uPTk1N2eLWkSNH8PjxY0xNTQEOtn/ttddgGAY+/fRTy70Mw8Brr73Gj/kZv/z6hEh7ezv279+PTCbD/46Ns4cOHSor9vutix9chYGK9fV1+RDq6+thGEZZAa9QKMAwDPlwRTl69Cj27duHr776yrFszGlee+011+DuNOPbLo8ePZIPAYKjZLNZZLNZaJrm6FTVYGtrC/l8Hvv377fZAEL5/v73v8unANNOhw4dwoMHDzA/Pw+Yg5VfnOzCiEaj6OjowI0bN3ZdFHi1jVvGqVKiEmYf3Nrakg/7sn17ezu6urosgYgon9u3b+P27duWYysrK9ja2kJTUxNg2joQCNjaPJPJWAax+vp6aJqG69ev44MPPsCTJ08s1zP8xNkjR45ga2uLxzUZ1eAI894sK7S8vGz5m92EZSJV4wxjcXER//Vf/2U5tr6+DsMweKYrGAxC0zSbvcS+w2K6fE2hUMCDBw9cJ2Wq8cuPT8g0Nzdjz549trgn15/Va2VlxXKcsZO6qChbGPhxTj+whpMNUElCoZDnQM7EADPcN998o1R4bMb37bff7rjuANDU1ATDMGz1Z8/NZDLIZDIwDANHjhyxXFNtvv/+e6UNYAoomKllFWEz1Z7NZrlty1G+TnaBORt67bXXcPfu3Z9kRuvVNrdu3bLNIiB02pWVlYoMxk5Bwo/tWR1u3Lgh/CVRDcLhMPbs2WPzZXkQW1xcxJtvvrljn2ZCZHV11XVNWRYmMLNEz9LSEBu4NU2z+L9T31GhaZptSY1RqfHLSThUapxluNVFRVnCIB6PIxAIWNQoM1BraysmJycxOTlpWbd3gqWynJTtTnFSjCrW19e54TKZDB4/fmwL7ix97iYy/MJmvSqRwVLVi4uLXO2pMhjVJJPJYGVlxTaosAHu3r17jh0iFArBMAxup2w265j2lnGzy3PPPYcTJ05gZWVFmf7eDbzaRnUMgqiUZ47bgYmje/fu2YK/H9uza5zaj9g+TAiI7by1tWUbhFSzTS/8xFk2+/TyM1mY/Jyor6/H3r17MTAwwOup2o8ho+pj33zzDfbt24f+/n5AyJaxvuMkHiAICCf8jl8qnxBZXFzEvXv3EA6HeVtGo1E0Nzfjm2++4dc1NTVh7969OHfuHLeLuNdvJ3VR4SkMRkZGeEHq6+stm0AgrNWLGyJWVlZsmyeC5joau9f6+rptDezngCq4swFRpcRramosTjw5OWnb3CM3aCgUQlSx2U2Vesxms46z92rCOtXRo0f5MbY04+TkzE7iOrpqdsLwaxcA+MMf/oA9e/ZYOosKMXCyH9EPt4vftlEdcxOVHR0dlrLKwV72r2PHjmF4eNgmjsq1vYzYzyeloIMq2vVZgQm2cpZoVEHcCb9x9l8d5lfsZ2JiAs3NzbaYKtLe3s4nDZNC7JidncXU1BTC4TAmJydx7tw529tNLM6Jey6i0Sjq6ur479jm+OXXJ5LJJDKZDO/nr732mm3/FHtLif2wFwFE0eS3Ln7wFAZDQ0O8MFnzFRovBTc0NGTbPCE7NkwnkAPQT4U4i5KDu0qNMuRd41Fppyik3fd3795Fa2srt4EIS9OLA4hTBqPaqJ4bCoVc0+Eq4SAv1Yj4tQvMNnn8+DHfKOqEave8GCy2i9+2kY+5iUoo3kqQ32gR/ev69etoaGjgMyCRcm0vw/r52bNnsba2Jp+uml2fBeLxOAYGBsrOZvnJZrqhirPPGmxwlycpjGg0inPnzsGQNt3BbJcTJ07gww8/5D5bX1+Pzz77jMcQdv/m5mY+6IdCIdtegXLHL78+wQRHfX09v/eHH36IEydOuI6zk5OTuH79umWviN+6+MFTGIioCuOEmJ5XkUwmcffuXcdNbjvFLbUiI6/nyMHdbcZXLslkEsvLy+jq6rLUmw0g8iz68uXLaGho8GXzSlIoFPDtt9/y5/b09CAQCLjO2EOhkG2GO2nudG5oaFB2bIaTXRhPnz7F559/DgB44403PNu0kpTTNnLGyU1Ulsvk5CTu3r1rSTsy/Nreq18S5TEyMoKOjg5cv35duUa/Z88evqGOETSXBSqB2J5svdprElFvbnb8V1lOclqHj8fjOH78OO7evWubjPX09CAcDuPmzZsWQS5uNmfMzs4iFovxgXloaMh1rxM8xi8vnxDp7++HpmmWJYlFhw2iMqxsYl/eTl1UlCUM4FCY7fLo0SNlx6kUWcUaq4wqRSwG9z/96U+uM77twDY4is7JBhD5/d2omU6DsLN9txBT0UeOHLGsX8swO8oz4Kj5/rDba6AMlV1EFhcX8eWXX2Lfvn04e/bsromDcttGzDhVUlTC3DS4tbVl2fRYju3lbBixPdhMr7m5GRMTE5hUZE+cYmW1BmaWIZL3uMh4rXv/KyAOvqoZObO5bGNmI7lNRNhEwOvVYnn88uMTMmxSKpeTxV63cvrBb11kyhYGTgYX8UqfMpqampSbcyrFrVu38PjxYxw7dsxxEOnv74dhGLh165blOAugr776asVmfIxZ8319cebnNoDMzs5iZWXFV0q4krCNMfv370dzc7NyUyDDLdiw+3gFLJVdZGZnZ3Hjxg00NDTY3sWuFuW2Dcs46bruqx+UA5tNiMsu5dieldcpM0P4gy3dyGvBInLmkeHWXuWgirNe4rrd3IDntiT4c0O2V4/5gTXVlwcZTqKMiWi38Uu1LKdCHr/8+ISMUwaP1dmtnG5xieG3LjKOwqC9vR0jIyOWgUi1maK9vd2WLmFfpWNp556eHly4cMFyTdTcgS6neipJoVDA559/Dk3T8P7779tS9x9//DECgQA+//xz24AndurHjx/bhMNOEWd+7eb78W4DiJ/sRzVgr7W5OWDQfH/e7dVQvzNV1YxYhqXUW1tbHdf4KsV22oZlnJqbmy39oFKw1yIPHTqEjo6Osm3/6aefwjAMvPfeezYBxmazhDshj/02EJbjRBHHBmYxhvrBT5yFIJzljWkw4/B7772nXI//ufDWW29ZfJKNOaKt/cRkJwHc399vExniBEM1xvkdv/z4RNTcm8P8gcVXcd8Q8xGxTw8NDVnqwZ4vvp3kpy5+2SMfYCwuLqK/vx+XL1+2HFeptN/+9reWY2traxgeHras2R87dsxyDdtUVW6By2XRfEc4Ho/j3LlzlnOq72YzWHBvaGhwTcOwdd2BgQHLcZWdRNhMrqOjA3/5y1+wd+9eV1WXyWTQ1dWFI0eOcGdhO8VF2LezIez6F1F9h9sNlnpbX193HBhZqj2TyTjaifnAoUOHXDu0aJdoNOo42CWTSZ5OHBkZ4YHOzSZOZXMjHA6X1TbMrtlsFuFw2HXAhvBWgojXt/TZgHP8+HGcPHmybNsXhI1UKt9dW1uzvYZVabs+C6hsAun79Oz88ePH+aeG3eKOG15xljE5OYlbt27h7NmzyvIxESv/3c+B3/zmNzafVMXShoYG29gEKb4NDQ3Z4r7KZp2dnfz+qvhYzvjl5RMyi4uLuHDhgq2tZB957rnnLPVwer5XXfzyK7d/okQQBEE8OwSlf7LjJUKJXyYkDAiCIAiC4DjuMSAIgiAI4pcHCQOCIAiCIDgkDAiCIAiC4JAwIAiCIAiCQ8KAIAiCIAgOCQOCIAiCIDgkDAiCIAiC4PyqtbWVvmNAEARBEARAGQOCIAiCIERIGBAEQRAEwSFhQBAEQRAEh4QBQRAEQRAcEgYEQRAEQXBIGBAEQRAEwSFhQBAEQRAEh4QBQRAEQRAcEgYEQRAEQXBIGBAEQRAEwXH9JHIkEsHrr7+Ompoafmx+fh6jo6OW6xKJBDo7Oy3H4HAtg/3NzMwMxsfH5dMVR1XGXC6HeDzOf08mkwgEAkgmk0in05ZrAaClpQXDw8MAgEuXLqG7uxu9vb3yZSiVSrh27RpSqZTyufCwDXtOXV0dv4/qvGEYlvKLJBIJhEIhx7qoYGWV7aIimUyira3Nsf28zvu1i67riMfjyGazluOyjRYWFjA8PIzGxkZ+DSOXyyGTySjbSsSprCLyc1nbxGIx9Pb2ut4jkUhA13Vcu3YNDx8+RDweR21trXwZtwG7p4xX+3jZnsHqIttM9F+na+CjHM86cnzc3NxU9jf5Oi+7JZNJZDIZW9v57TMM5gciTtfKZXSqS7Vh/V3uF07lkW3iZNuWlhacOXMG/+///T9LPFX5d7FYxKVLl5DP5/kxEad7ycRiMYTDYWV5GKo2EpmZmQEAZRxgsDpvpy5OuGYMfv/73+PatWvo6+tDX18fZmZm0NnZiUQiIV+KYrGIwcFBfm1fX5/SAWE2figUkg9XBV3XMTExgVAohIsXL/KyDQ4OQtM0TE1NIRKJAAAymQxqa2uh67p8GwDAwYMHUVdXh1wuxw1dKpUwNjZmqXd/f7/FYTY3Ny3PHhsbg67rSCaTwt3/ycGDB6FpGkqlEg4cOCCfrjrBYJDbREUkEkEwGJQPc3RdxwsvvIDNzU2Ew2H5NKdcu4gMDg7aBmeYnURsi76+PsTjcYyPj1uO5XI5m8/KgViFU9uk02nX+ra0tKCtrQ0bGxtYWFjgx+fn523lFfuN7F8XL15EIBDA1atX0dLSwq9j+LV9IpHAlStXlPYqFApoaGiwXK+6zi3gPetEIhGcPHmSx8fBwUEu1MX4wQbc2dlZS/upfJzFKreBQvZZ2V9gPnNqagqaplmuZf1L9h2/ddlNZmZmLHUcGBiwiYJkMmmL6yqfjEQi+Otf/4pAICCfwsGDB/Hdd9/xv7948SI0TcPw8LCyf7ndSySZTLoO5ox4PG6pJ/uZn59HsVjE3NycLXaxn7GxMWxubuLmzZvANurihqsw+OijjyxBd3x8HLlcDm1tbWU/SKSnp8emCKtBS0sLTp8+DcMwMDQ0ZHGsfD6P06dPo1Ao4OTJk9B13TO4s4FgaWlJPlUWqVQK6XQagUBA2fEOHDiA1dVVZLPZHdu6XEqlkm3Qkzlw4AC/ToWu6/jxxx9x+/Ztxzqq8LILI5FIIBgM2kTBbuDUNul0Gqurq45lV4nK7ZBOpzE3N4e6ujocPHhQPu3L9rFYDLquY2xszDaowAxWfkTSL5kffvgBn332Gfe/fD6PVCqFmpoai827urpQKBS4PVn7ieK7paUFV69exfnz53ccF5kQKRQKOH36tMXXUqkURkdHuWBg+K3Lz4lEIuGa3YUgtE6dOmXJeoukUil89NFH/Hen/uXnXjDLNT097SruvIhEItB1HXfu3HGMFS0tLYhEIlhdXeXt5rcufnAVBiqKxaJ8CI2NjTAMw7ESIrqu4w9/+AP++7//23FgqRTd3d2oq6tDKpVyLNvExARgihW34O4049sujx49kg8BQjYlk8lgaWkJmqaV3ag7oVQqIZ/PIxQK2WwAoXzff/+9fAow7XT48GHkcjncuXMHMP/GL052YcRiMXR2dmJ2dnbXRYFX27hlnColKgFgbW1N2Xf82F7XdXR3dyOdTu+6/Z4lvv76a3z99deWYw8fPkSpVEJTUxNg2joQCCCTyViuS6fTFvFdX18PTdMwMzODixcvYnNz03I9w0+c7erqQqlU4nFNRiVM/NRlt3jxxRcB08edYLE4m806igII9xobG8PY2Jiyz6hQ9S+/92psbOTZtVwuJ5/2xYEDB7CxsYG5uTn5FIdlLlm2wAlVXfxQtjDw45xuDAwM4H//93/xP//zP/KpihMOhz0HciYG2Ozv5s2bSqXMZnxuKq4cmpqaYBgG1tfXLcfZc9PpNBYWFmAYBrq6uizXVJv79+8rbQBTQAHA8vKyfAoQHHZpaYnb9vDhw76zHk52gamke3p6MD8//5PMaL3aZm5uDsVi0ZZxYoGsUChUZDBmaf6HDx9ajvuxPavD7Oys8JdENdB1HTU1NbZBbn19HYZh8LXgdDqNgYGBHfs0EyKrq6uuA6YsTP7VEP3cjVQqhYGBgbL7nKp/+b1XPB5XLmf4hU0+vDKLXV1dMAzDdWyDQ138UJYwYOkbUY22tLRA0zS0tbVhenoa09PTlnV7kVgsZvv7asHK5UfEFItFaJqG+vp6LCwsYGNjwxbcWfrcrcP5hc16VSIjHA7zjp3P55HL5ZQZjGqSTqdRKBRsg4qo1OVgxzhw4IDFYTOZjO9Ulptdnn/+eZw8eRKFQkGZ/t4NvNpGdQyCqJRnjtuBiSPVbMmP7cPhsKPwInYGEwLigFUqlWxBOZ/PwzAMyzEv/MTZF198ETU1NZ5+JgsTFaq67AYNDQ2ora3FqVOneD3l/RhssPvHP/6BiYkJfp28d2I7sP41Nzdn61+7AZt4uQn3iLnHSxUnRXZSF09hkEwmueEbGxttm0Dy5lq9uCmiUCjg1KlTiMVi/DqWwtxOIXcTVXBnA6JKidfU1FicWOWgtbW1OH/+PD8fDofRp9jspko9Li0tOc7eq8nNmzdRV1eH7u5ufowtzTgFC2YnUe26zU782gUAXnnlFdTU1HimzsTAyX5EP9wufttGdcxNVHZ2dlrKKgd72b8ikQjOnDljE0fl2l5G7OfT09O2DcbVsuuzAgvC6TKWaDRN8z2Q+Y2zlWA7dakU8ka7sbExBINBS0xtampCbW0t+vv7kUwmd7zRLhaLcZ8+efIkRkdHlTGo2ogTL1WsYLgtNVSqLp7CQNw1mclkMK1QcDLxeBy5XI7POFvMTYCrq6vbKuRuIM6i5ODuNuMrKd5KkDf9iLvv5+fn0dbWpuzMTC2KTuGUwag2queGw2HXdLhKOKSlpRoRv3YBgMXFRWxsbPCNok6ods9Xwuf8to18zE1UQvFWgvxGi+hfMzMzaGxsRDQatdwD27C9DOvng4ODyn1E1bLrs0AikcCpU6fKzmb5yWa6IcfZSrDdulSLVCqFa9eu2SYpMJfuWJ9Km3snGhsbbdd5IYqRZDKJeDyOiYkJ1zhTDfwskagmACKVqounMBAZHx/HzMyM5+tskNLz0WgUmqbtyhICg6Xr/Khyed+EHNzdZnzlMjo6ilwuh+7ubktjsQaXZ9FXrlxBY2OjL5tXknw+jzt37vDnRiIRBAIB1xl7OBy2zXCnzR26Xh3WyS6Mp0+f4urVqwCA06dPe7ZpJSmnbeSMk5uoLJfx8XHMz89D13WbL/i1vdgviZ2TTCb591hUa8s1NTV84xqjxVwWqARie7INg16TCLbZURaAXnX5qVBthNzc3LTF47T5VtlONkym02k+8WWTgd3Cz74B1QTAiZ3UpSxhAGG3qPyesxO/+93vEAqFbEGVvfbR29u7LUXjB9Uaq4wqRSwG91dffdV1xrcd2AZHsbHYACK/v9tnptMg7GzfLdJCKtrLaZkd5Rlwn5nmc3sNlKGyi0g6ncYXX3yBurq6baUMt0u5bSNmnCopKmGuPZZKJcumx3JsL2fDiO3RYr5iGAwGMTY2psyeOMVKp4F5p7AMkbzHRUaX9g/4qcvPiUePHikFF8PrzSYv/OzBqDRMLDplAhhNTU2eG+pFtluXsoUBc3KnzWeQ0qfT09MYGBiwBSz2ysfMzIxt30KlmJubw8bGBiKRiOMgMjAwAMMwbOs1LIAePXq0YjM+Rsp8X1+c+bkNIKlUCoVCwVdKuJKk02lks1mEQiHPzS5ysBFh9/EKWCq7yKRSKczOzqKxsdHyLnY1KbdtWMapo6Oj4qIybaZMxWWXcmzPyuuUmSH8wWZubt/SkDOPDLf2KgcxzjL/8hLXurnXS1wS9FOXnxLZXuKERXWd29jkh2oJNzcqsYygYrt1cRQGuvkFOnEgUm1K0XUdFy5cEP7yn1+lc0s77wb5fB5Xr16FpmkYGRmxBEKmkgPmV+RkQ7NO3d7e7rjRYyeIMz/dfEXFbQDxk/2oBmx3rNPACNOWhw8fdlWyfmeqqhmxDEupt7W12TbJVZrttA3LOAWDwar0A/Za5OHDh/HHP/6xbNtfuXIFhmEgkUjYBBgLJIQ7XvttICzHySKuexvfkfAbZ5lw7uzstO0Fi0QiSCQSMAwDV65c4cf91GW3ePfddy0+ycYcsXxMHOvCBEIlePwwMjJieV6L8FG8yclJy7WVgG0OlPdSMZEjv8EiwjKXThmRStZlj3yAkTbfrRUdCA7fk3/55ZcxPT3Nfy8Wizhz5oxtsP0pYPVIJBI4f/685ZzTd8MhBHf2wQqnutSY67qnTp2yHFfZSYTN5Do7OxGNRlFbW+ualUin0+ju7kZXVxcfANrMneIiRfPb2BB2/YuUhO/g+yFtpieLxaLjwMgcNm2+xqdiYWEBkUgEhw8fdhVZol1isZjjM0dHR/maaDKZ5H7qZhOnsrmh63pZbcPsurS0BF3XXQdsCG8liOQcvvfOYANOb28votFo2bbPmzvcY7GY0neLxaItkFTars8CKptA+q4/iwG9vb38E7lucccNv3F2fHwcc3NzGB4eVpaPiVjx7/zUZTf49a9/bfNJVSxlv4vXbseu9+/ftz3Pq/9VA7bPze01Yq9sfSXr4vpPlAiCIIhnhxbpH+1sd+Agnm1IGBAEQRAEwXHcY0AQBEEQxC8PEgYEQRAEQXBIGBAEQRAEwSFhQBAEQRAEh4QBQRAEQRAcEgYEQRAEQXBIGBAEQRAEwSFhQBAEQRAEh4QBQRAEQRAcEgYEQRAEQXBIGBAEQRAEwfn/Ad2XArk/Wf4YAAAAAElFTkSuQmCC"
+ }
+ },
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "We can use the plots and evaluations from 5.2 for this. \n",
+ "- For the whole market, (and for years 2014/2015, which is very little data to prove this...) the prices are lowest in Q1/2015.\n",
+ "- When looking at our 5 Zip codes, we find this picture : \n",
+ "98001 has its low in Q2/2014, 99002 also in Q2/2014, 98032 has it in Q4/2015, 98168 in Q2/2014 and 98188 in Q3/2014. \n",
+ "\n",
+ "So a recommendation for Erin would be to buy in Q2 (even though that is backed by little data and is likely to be different when looking at 10 years time. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### 5.3 Hypothesis 4 : \n",
+ "The average House SqFt in target neighborhoods is significantly smaller than the city average, suggesting the low price is partially driven by unit size, not just location risk.\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 134,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "np.float64(2080.3218502569803)"
+ ]
+ },
+ "execution_count": 134,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# lets have a look at average SqFt in our neighborhoods compared to all of Kings County. \n",
+ "\n",
+ "df.sqft_living.mean()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "So we have a mean sqare footage of 2080 in all of Kings county. \n",
+ "Lets compare that to our 5 ZIPcodes. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 135,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "interesting_zip = [98002, 98168, 98032, 98001, 98188 ] # limit to ZIP codes to 5 with lowest mean value for price\n",
+ "poor_areas_df = df[df['zipcode'].isin(interesting_zip)]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 136,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/plain": [
+ "np.float64(1714.3853211009175)"
+ ]
+ },
+ "execution_count": 136,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "poor_areas_df.sqft_living.mean()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "So yes, we have an average sqare footage of 1714 compared to 2080 in the county. \n",
+ "Lets plot that, looking at our Zip codes separately. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 155,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " zipcode \n",
+ " sqft_living \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 98001 \n",
+ " 1903.784 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 98002 \n",
+ " 1627.744 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 98032 \n",
+ " 1738.048 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 98168 \n",
+ " 1468.625 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 98188 \n",
+ " 1802.772 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " zipcode sqft_living\n",
+ "0 98001 1903.784\n",
+ "1 98002 1627.744\n",
+ "2 98032 1738.048\n",
+ "3 98168 1468.625\n",
+ "4 98188 1802.772"
+ ]
+ },
+ "execution_count": 155,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "size_houses_poor = poor_areas_df.groupby('zipcode').sqft_living.mean()\n",
+ "size_houses_poor_df = size_houses_poor.reset_index()\n",
+ "size_houses_poor_df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 156,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " zipcode \n",
+ " sqft_living \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 98001 \n",
+ " 1903.784 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 98002 \n",
+ " 1627.744 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 98032 \n",
+ " 1738.048 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 98168 \n",
+ " 1468.625 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 98188 \n",
+ " 1802.772 \n",
+ " \n",
+ " \n",
+ " 5 \n",
+ " 99999 \n",
+ " 2080.000 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " zipcode sqft_living\n",
+ "0 98001 1903.784\n",
+ "1 98002 1627.744\n",
+ "2 98032 1738.048\n",
+ "3 98168 1468.625\n",
+ "4 98188 1802.772\n",
+ "5 99999 2080.000"
+ ]
+ },
+ "execution_count": 156,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# lets use that dataframe and put the value for the market in there\n",
+ "new_row = pd.DataFrame({'zipcode': [99999], 'sqft_living': [2080.000]})\n",
+ "\n",
+ "size_houses_poor_df = pd.concat([size_houses_poor_df, new_row], ignore_index=True)\n",
+ "\n",
+ "# Convert zipcode to string for plotting purposes (e.g., '2014Q2')\n",
+ "size_houses_poor_df['zipcode'] =size_houses_poor_df['zipcode'].astype(str)\n",
+ "size_houses_poor_df\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "hovertemplate": "zipcode=%{x} sqft_living=%{y} ",
+ "legendgroup": "98001",
+ "marker": {
+ "color": "#636efa",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "98001",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "98001"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "Sth3vyK/nUA=",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "zipcode=%{x} sqft_living=%{y} ",
+ "legendgroup": "98002",
+ "marker": {
+ "color": "#EF553B",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "98002",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "98002"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "2OhdkflumUA=",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "zipcode=%{x} sqft_living=%{y} ",
+ "legendgroup": "98032",
+ "marker": {
+ "color": "#00cc96",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "98032",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "98032"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "1XjpJjEom0A=",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "zipcode=%{x} sqft_living=%{y} ",
+ "legendgroup": "98168",
+ "marker": {
+ "color": "#ab63fa",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "98168",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "98168"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "apUvhn/ylkA=",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "zipcode=%{x} sqft_living=%{y} ",
+ "legendgroup": "98188",
+ "marker": {
+ "color": "#FFA15A",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "98188",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "98188"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "l5aWlhYrnEA=",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "zipcode=%{x} sqft_living=%{y} ",
+ "legendgroup": "99999",
+ "marker": {
+ "color": "#19d3f3",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "99999",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "99999"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "AAAAAABAoEA=",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ }
+ ],
+ "layout": {
+ "barmode": "relative",
+ "legend": {
+ "title": {
+ "text": "zipcode"
+ },
+ "tracegroupgap": 0
+ },
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermap": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermap"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Mean square footage in cheapest 5 ZIPcodes vs market (99999)"
+ },
+ "xaxis": {
+ "anchor": "y",
+ "categoryarray": [
+ "98001",
+ "98002",
+ "98032",
+ "98168",
+ "98188",
+ "99999"
+ ],
+ "categoryorder": "array",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "zipcode"
+ }
+ },
+ "yaxis": {
+ "anchor": "x",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "sqft_living"
+ }
+ }
+ }
+ }
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# show mean square footage of those 5 ZIP codes compared to the market\n",
+ "fig = px.bar(\n",
+ " size_houses_poor_df,\n",
+ " x='zipcode',\n",
+ " y='sqft_living',\n",
+ " color='zipcode',\n",
+ " title='Mean square footage in cheapest 5 ZIPcodes vs market (99999)'\n",
+ ")\n",
+ "\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "So indeed : the sqare footage of our houses in the selected ZIP codes are in general below the counties mean. "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Lets have a look at the mean price/sqft values for our 5 Zip codes, and then have a look at all ZIP codes to see where we stand with them. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "interesting_zip = [98002, 98168, 98032, 98001, 98188 ] # limit to ZIP codes to 5 with lowest mean value for price\n",
+ "poor_areas_df = df[df['zipcode'].isin(interesting_zip)]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " zipcode \n",
+ " price_per_sqft_living \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 98001 \n",
+ " 151.348 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 98002 \n",
+ " 151.174 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 98032 \n",
+ " 154.220 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 98168 \n",
+ " 175.373 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 98188 \n",
+ " 169.007 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
"
+ ],
+ "text/plain": [
+ " zipcode price_per_sqft_living\n",
+ "0 98001 151.348\n",
+ "1 98002 151.174\n",
+ "2 98032 154.220\n",
+ "3 98168 175.373\n",
+ "4 98188 169.007"
+ ]
+ },
+ "execution_count": 6,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "price_per_sqft_poor = poor_areas_df.groupby('zipcode').price_per_sqft_living.mean()\n",
+ "price_per_sqft_poor_df = price_per_sqft_poor.reset_index()\n",
+ "price_per_sqft_poor_df "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.plotly.v1+json": {
+ "config": {
+ "plotlyServerURL": "https://plot.ly"
+ },
+ "data": [
+ {
+ "hovertemplate": "zipcode=%{x} price_per_sqft_living=%{y} ",
+ "legendgroup": "98001",
+ "marker": {
+ "color": "#636efa",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "98001",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "98001"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "EoBjiiLrYkA=",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "zipcode=%{x} price_per_sqft_living=%{y} ",
+ "legendgroup": "98002",
+ "marker": {
+ "color": "#EF553B",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "98002",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "98002"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "GAk0J5LlYkA=",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "zipcode=%{x} price_per_sqft_living=%{y} ",
+ "legendgroup": "98032",
+ "marker": {
+ "color": "#00cc96",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "98032",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "98032"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "9/8SQQZHY0A=",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "zipcode=%{x} price_per_sqft_living=%{y} ",
+ "legendgroup": "98168",
+ "marker": {
+ "color": "#ab63fa",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "98168",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "98168"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "9HfPx+vrZUA=",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ },
+ {
+ "hovertemplate": "zipcode=%{x} price_per_sqft_living=%{y} ",
+ "legendgroup": "98188",
+ "marker": {
+ "color": "#FFA15A",
+ "pattern": {
+ "shape": ""
+ }
+ },
+ "name": "98188",
+ "orientation": "v",
+ "showlegend": true,
+ "textposition": "auto",
+ "type": "bar",
+ "x": [
+ "98188"
+ ],
+ "xaxis": "x",
+ "y": {
+ "bdata": "p25T2jsgZUA=",
+ "dtype": "f8"
+ },
+ "yaxis": "y"
+ }
+ ],
+ "layout": {
+ "barmode": "relative",
+ "legend": {
+ "title": {
+ "text": "zipcode"
+ },
+ "tracegroupgap": 0
+ },
+ "template": {
+ "data": {
+ "bar": [
+ {
+ "error_x": {
+ "color": "#2a3f5f"
+ },
+ "error_y": {
+ "color": "#2a3f5f"
+ },
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "bar"
+ }
+ ],
+ "barpolar": [
+ {
+ "marker": {
+ "line": {
+ "color": "#E5ECF6",
+ "width": 0.5
+ },
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "barpolar"
+ }
+ ],
+ "carpet": [
+ {
+ "aaxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "baxis": {
+ "endlinecolor": "#2a3f5f",
+ "gridcolor": "white",
+ "linecolor": "white",
+ "minorgridcolor": "white",
+ "startlinecolor": "#2a3f5f"
+ },
+ "type": "carpet"
+ }
+ ],
+ "choropleth": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "choropleth"
+ }
+ ],
+ "contour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "contour"
+ }
+ ],
+ "contourcarpet": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "contourcarpet"
+ }
+ ],
+ "heatmap": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "heatmap"
+ }
+ ],
+ "histogram": [
+ {
+ "marker": {
+ "pattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ }
+ },
+ "type": "histogram"
+ }
+ ],
+ "histogram2d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2d"
+ }
+ ],
+ "histogram2dcontour": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "histogram2dcontour"
+ }
+ ],
+ "mesh3d": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "type": "mesh3d"
+ }
+ ],
+ "parcoords": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "parcoords"
+ }
+ ],
+ "pie": [
+ {
+ "automargin": true,
+ "type": "pie"
+ }
+ ],
+ "scatter": [
+ {
+ "fillpattern": {
+ "fillmode": "overlay",
+ "size": 10,
+ "solidity": 0.2
+ },
+ "type": "scatter"
+ }
+ ],
+ "scatter3d": [
+ {
+ "line": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatter3d"
+ }
+ ],
+ "scattercarpet": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattercarpet"
+ }
+ ],
+ "scattergeo": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergeo"
+ }
+ ],
+ "scattergl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattergl"
+ }
+ ],
+ "scattermap": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermap"
+ }
+ ],
+ "scattermapbox": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scattermapbox"
+ }
+ ],
+ "scatterpolar": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolar"
+ }
+ ],
+ "scatterpolargl": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterpolargl"
+ }
+ ],
+ "scatterternary": [
+ {
+ "marker": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "type": "scatterternary"
+ }
+ ],
+ "surface": [
+ {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ },
+ "colorscale": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "type": "surface"
+ }
+ ],
+ "table": [
+ {
+ "cells": {
+ "fill": {
+ "color": "#EBF0F8"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "header": {
+ "fill": {
+ "color": "#C8D4E3"
+ },
+ "line": {
+ "color": "white"
+ }
+ },
+ "type": "table"
+ }
+ ]
+ },
+ "layout": {
+ "annotationdefaults": {
+ "arrowcolor": "#2a3f5f",
+ "arrowhead": 0,
+ "arrowwidth": 1
+ },
+ "autotypenumbers": "strict",
+ "coloraxis": {
+ "colorbar": {
+ "outlinewidth": 0,
+ "ticks": ""
+ }
+ },
+ "colorscale": {
+ "diverging": [
+ [
+ 0,
+ "#8e0152"
+ ],
+ [
+ 0.1,
+ "#c51b7d"
+ ],
+ [
+ 0.2,
+ "#de77ae"
+ ],
+ [
+ 0.3,
+ "#f1b6da"
+ ],
+ [
+ 0.4,
+ "#fde0ef"
+ ],
+ [
+ 0.5,
+ "#f7f7f7"
+ ],
+ [
+ 0.6,
+ "#e6f5d0"
+ ],
+ [
+ 0.7,
+ "#b8e186"
+ ],
+ [
+ 0.8,
+ "#7fbc41"
+ ],
+ [
+ 0.9,
+ "#4d9221"
+ ],
+ [
+ 1,
+ "#276419"
+ ]
+ ],
+ "sequential": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ],
+ "sequentialminus": [
+ [
+ 0,
+ "#0d0887"
+ ],
+ [
+ 0.1111111111111111,
+ "#46039f"
+ ],
+ [
+ 0.2222222222222222,
+ "#7201a8"
+ ],
+ [
+ 0.3333333333333333,
+ "#9c179e"
+ ],
+ [
+ 0.4444444444444444,
+ "#bd3786"
+ ],
+ [
+ 0.5555555555555556,
+ "#d8576b"
+ ],
+ [
+ 0.6666666666666666,
+ "#ed7953"
+ ],
+ [
+ 0.7777777777777778,
+ "#fb9f3a"
+ ],
+ [
+ 0.8888888888888888,
+ "#fdca26"
+ ],
+ [
+ 1,
+ "#f0f921"
+ ]
+ ]
+ },
+ "colorway": [
+ "#636efa",
+ "#EF553B",
+ "#00cc96",
+ "#ab63fa",
+ "#FFA15A",
+ "#19d3f3",
+ "#FF6692",
+ "#B6E880",
+ "#FF97FF",
+ "#FECB52"
+ ],
+ "font": {
+ "color": "#2a3f5f"
+ },
+ "geo": {
+ "bgcolor": "white",
+ "lakecolor": "white",
+ "landcolor": "#E5ECF6",
+ "showlakes": true,
+ "showland": true,
+ "subunitcolor": "white"
+ },
+ "hoverlabel": {
+ "align": "left"
+ },
+ "hovermode": "closest",
+ "mapbox": {
+ "style": "light"
+ },
+ "paper_bgcolor": "white",
+ "plot_bgcolor": "#E5ECF6",
+ "polar": {
+ "angularaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "radialaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "scene": {
+ "xaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "yaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ },
+ "zaxis": {
+ "backgroundcolor": "#E5ECF6",
+ "gridcolor": "white",
+ "gridwidth": 2,
+ "linecolor": "white",
+ "showbackground": true,
+ "ticks": "",
+ "zerolinecolor": "white"
+ }
+ },
+ "shapedefaults": {
+ "line": {
+ "color": "#2a3f5f"
+ }
+ },
+ "ternary": {
+ "aaxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "baxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ },
+ "bgcolor": "#E5ECF6",
+ "caxis": {
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": ""
+ }
+ },
+ "title": {
+ "x": 0.05
+ },
+ "xaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ },
+ "yaxis": {
+ "automargin": true,
+ "gridcolor": "white",
+ "linecolor": "white",
+ "ticks": "",
+ "title": {
+ "standoff": 15
+ },
+ "zerolinecolor": "white",
+ "zerolinewidth": 2
+ }
+ }
+ },
+ "title": {
+ "text": "Comparison of the price per sqft in our 5 ZIP regions"
+ },
+ "xaxis": {
+ "anchor": "y",
+ "categoryarray": [
+ "98001",
+ "98002",
+ "98032",
+ "98168",
+ "98188"
+ ],
+ "categoryorder": "array",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "zipcode"
+ }
+ },
+ "yaxis": {
+ "anchor": "x",
+ "domain": [
+ 0,
+ 1
+ ],
+ "title": {
+ "text": "price_per_sqft_living"
+ }
+ }
+ }
+ }
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# for plotting, we need to convert the zipcode to a string\n",
+ "price_per_sqft_poor_df['zipcode'] =price_per_sqft_poor_df['zipcode'].astype(str)\n",
+ "\n",
+ "# show a comparison of the price per sqft in our 5 ZIP regions\n",
+ "fig = px.bar(\n",
+ " price_per_sqft_poor_df,\n",
+ " x='zipcode',\n",
+ " y='price_per_sqft_living',\n",
+ " color='zipcode',\n",
+ " title='Comparison of the price per sqft in our 5 ZIP regions'\n",
+ ")\n",
+ "\n",
+ "fig.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Our previous favorite 98168 is indeed the most expensive of all Zip codes. Our second favorite 98001 (even best in growth) is significantly cheaper (by 16,7%). "
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "Lets have a look at all ZIP codes and see where our ZIPs stand in terms of price/sqft. \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " zipcode \n",
+ " price_per_sqft_living \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 98001 \n",
+ " 151.348 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 98002 \n",
+ " 151.174 \n",
+ " \n",
+ " \n",
+ " 2 \n",
+ " 98003 \n",
+ " 157.113 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 98004 \n",
+ " 475.610 \n",
+ " \n",
+ " \n",
+ " 4 \n",
+ " 98005 \n",
+ " 314.967 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 65 \n",
+ " 98177 \n",
+ " 292.982 \n",
+ " \n",
+ " \n",
+ " 66 \n",
+ " 98178 \n",
+ " 189.173 \n",
+ " \n",
+ " \n",
+ " 67 \n",
+ " 98188 \n",
+ " 169.007 \n",
+ " \n",
+ " \n",
+ " 68 \n",
+ " 98198 \n",
+ " 178.434 \n",
+ " \n",
+ " \n",
+ " 69 \n",
+ " 98199 \n",
+ " 376.660 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
70 rows × 2 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " zipcode price_per_sqft_living\n",
+ "0 98001 151.348\n",
+ "1 98002 151.174\n",
+ "2 98003 157.113\n",
+ "3 98004 475.610\n",
+ "4 98005 314.967\n",
+ ".. ... ...\n",
+ "65 98177 292.982\n",
+ "66 98178 189.173\n",
+ "67 98188 169.007\n",
+ "68 98198 178.434\n",
+ "69 98199 376.660\n",
+ "\n",
+ "[70 rows x 2 columns]"
+ ]
+ },
+ "execution_count": 16,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "# take all data grouped by zipcode and filter for mean value for price per sqft living\n",
+ "price_sqft = df.groupby('zipcode').price_per_sqft_living.mean()\n",
+ "price_sqft_df = price_sqft.reset_index()\n",
+ "\n",
+ "# for plotting, again we need to convert the zipcode to a string\n",
+ "price_sqft_df['zipcode'] =price_sqft_df['zipcode'].astype(str)\n",
+ "price_sqft_df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAN6CAYAAABfcvo/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzsnQl4FGXW/W/2nS2EsO+CKAOyfCg4sgsyiPgBIzL8BVkElIAIRkEF2ZFFEFFwxBUYQEA/lhEFZBUBEQTZQRZF1oQEJISEbP1/zsWqVHe6kw5rJzm/eWqS3Kp+6z3VTbd96t77etlsNpsQQgghhBBCCCGEEHIH8b6TJyOEEEIIIYQQQgghBNCUIoQQQgghhBBCCCF3HJpShBBCCCGEEEIIIeSOQ1OKEEIIIYQQQgghhNxxaEoRQgghhBBCCCGEkDsOTSlCCCGEEEIIIYQQcsehKUUIIYQQQgghhBBC7jg0pQghhBBCCCGEEELIHYemFCGEEEIIIYQQQgi549CUIoQQkiepWLGieHl52W0BAQFSvnx56dy5s3z//fc3NO6zzz6rY3322We3fM6E3AzXrl2T1157Te655x59reN1in8HeY0NGzbo3Js2bSqeym+//eby+hrvPTjGHfBe4vheldNmff8xrhc2R3ANHR/r7+8vpUqVknbt2smKFSskL2JcM7wfE0IIyd/43u0JEEIIITfDww8/LFWrVtXfL126JDt27JBFixbJ4sWLZcqUKTJ48OC7PUVCbgnDhw+XyZMnS2RkpLRv316Cg4OlePHid3weMGMqVaokFSpUcNuYKcjg/al79+45Hrd792755Zdf9Pdy5crl6hy1a9eWBx54QH+/cuWK7Nq1S/773//qNnDgQJk+ffoNzp4QQgi5vdCUIoQQkqfp3bu33d305ORk6du3r8yZM0deeeUVefzxx6VatWpujzdhwgQZOnSoZhoQ4knAbAXIAkS2VF6lQYMGcvDgQTXVCgJ///vfdcuOEydOSP369fV3GOktWrTI1TmefPJJGTlypPl3RkaGvPHGG/p+9u6776qJ2bx58xtUQAghhNw+WL5HCCEkXxEYGCjvv/++hISESHp6unz11Ve5ejzMqHvvvVcKFy582+ZIyI1w8uRJ/ZmXDSkAMwr/xlBqS0SuXr0qHTp0kPj4eGnWrJlMmjTppsf09vaWMWPGSOXKle0MTUIIIcTToClFCCEk3xEaGirVq1fX363lRda+LJ9++qk0bNhQzSdrf5icekrt3LlTS3FQvgQDrFixYlo6Ex0dLb///nuW48+cOaOZDzVq1NAv42FhYfI///M/8t5770laWlqudCETAnPDT5yrW7duaqJhHsgGQzwpKcnl448cOaJZZFWqVNHHQHvjxo1l3rx5To83+tWgpw2yc9CjJiIiQr/wuttzC2WULVu2lPDwcPHz89Of9913nzz33HOyZ8+eLMfji/mgQYO0NMzoERYVFaVxV8+NdZ45XTcrCQkJMnv2bDUEYPTAyMT2t7/9TV5//XUtB3WGtafQsmXLNAMFrwPHOVy8eFHefPNNLavC847nH2OPHTtWjQh3Mc5ns9n0b1e9h8DChQs1ywbzwfXDdezZs6c+967AtUWvqvvvv998jdarV0/NEcfXE54DvPYBXoOO/YxupqeUtY8TtH744Yc6DzwneK22atVKtm7dKrnlwIED+jyg1LdMmTLacwmvQ7wuPcGswb8FlO7htY75+Pj43JJxMY5R0pfbMku8Xl544QV9H8VrolChQvrvFrF9+/ZlOf7QoUPSo0cP898tXn94HWZ3ffH+98477+i/Cbwf4b2lY8eOsnfvXrfml5v3sj///FMzx3AuvJ4wx9KlS+trYsSIEZKampqr60MIIeTWwfI9Qggh+ZLLly/rT3z5cGTAgAEyc+ZMadSokbRt21aOHz/u1hdq9PNBaR9KY2ACoSQGX9qPHj2q/avwpd5aSrhp0yYtq4E5gS/ajz76qDar3r59u84BTYjR8wVmTW5AqQ++rPv6+uoXMcxh/fr1MmrUKPnuu+90wxc1R3MIJhbKG5Gl8o9//EO/qP3444/yzDPPyLp16+STTz5xej489oMPPtDH4Ys8TAxn19WR0aNHqxmAeeJawxDAOZHx8/HHH+v1qlWrlnn8+fPn5ZFHHpFff/1VihYtqqWXuNb/+c9/5Ntvv9XjbyXo39OnTx/9Mowv37imeK5gPI4fP16/UG/btk0NDGe8/fbbai6i7Oqxxx5TA9IwFGCEIPbHH3+ocYjyLTzPeO7RG+rLL79Uc8adjLxOnTrJhQsX5PPPP9e/rf2JjH5qMHHw2kPZqvG6KFGihPz8889qwH7xxRd6TszJCl77MNVgMOE64HWBL+h4Pb366qv6OLye8HwA6EDPIoyFL/eY2+0ABsf8+fP19YDXAUybNWvW6L+pjRs3yoMPPuj2WFOnTtXXG16/MCWKFCmir0FoXLt2rT7HOOZuMG3aNNWJf6/I6rzVPcKyex90BeYDIxPvVTDK8JrAv0O8VvA+gNdVzZo1zeO//vprfR3gvQX/jmDyxsTE6POE95VVq1bp9beC8f75z3/K0qVL1SSEQYnXGN6PUN6J87sit+9lMIDxuoWZhtc4zDK8ds+dO6dm2pYtW/TGAV4XhBBC7gI2QgghJA9SoUIFpI3YPv300yz7fvnlF5u3t7fu/+STT8w4/sZWqFAh29atW52O2717d6fjLlu2TOOBgYG2L774Isvj9u/fbztw4ID599mzZ23h4eE2Ly8v28yZM23p6enmvgsXLtiaN2+u440aNcptzW+++aapoX379rarV6+a+/744w9btWrVdN/QoUPtHrdnzx5bQECAzv3LL7+02/fbb7/Z/va3v+njPv/8c7t9TZo0Mc/3/vvv23JDcnKyLSgoyBYaGmo7dOhQlv0478GDB+1inTp10nM98sgjtkuXLpnxuLg424MPPmjOxfG5Mea5fv36bK8bflrBNfvuu+/snhuQmJho69atmz7mhRdecPna8/Hx0deFI3heqlSpose88cYbtmvXrtmN3aVLF93Xo0cPW24w9Dtj1qxZuq948eK2Xbt2mfGMjAxTf5EiRWwxMTF2jzOu6xNPPGG7cuWKGcdxdevW1X3/+te/7B5z4sQJjeM63Ah4nvB4PG/OxjXGPnz4sLkvLS3N1rNnT93XqlWrXJ1vw4YNtmPHjmWJ43VZtmxZHfPHH390W6Px/OOYmwHXwdfXV8f67LPPsj3O1XNvvPYdX9vgzJkztrCwMN0/YsQIt+a0Y8cOm5+fn75vvfvuu1n+beDfLY4xOHfunK1w4cJ6jrFjx+rrzeCnn36yFS1aVPd9+OGHduO89957Go+MjLR730xNTbU9//zzpl68H9/sexl+R6xNmza2lJQUu8dAH14f1n+jhBBC7iw0pQghhOQbUwpGxtdff20aAqVLl7b7om180Rk9erTLcV2ZUg888IDG3377bbfm9+qrr+rxUVFRTvefOnVKv/xFRETYfZHLDsNcgNkD08uRFStWmKZbUlKSGe/cubPGp0yZ4nTc7du36/569eo5/cILAy23wNTAY2vVquXW8SdPnlQjEV+GYfA5AqPlVptS2QHzCIYBnh9Xrz2YJNkZRI8//rjT/QkJCbYSJUro+PHx8bfElDJe8zASHMHrC88D9o8bN86Mf//99xoLDg5Wc8ERmA/Yj+cFBt6dNKWWL1+e5XF4zWMfTAlHc+FG+fe//61jRkdH31FT6vfff9fXVnbvETdqSuE9b+PGjaapGBISov++3OHJJ5/UxwwYMMCt48eMGeP0vcMA7znYf88999jFq1atqnH8W3EE710lS5Z0akrdyHvZpEmTNDZ16lS3NBFCCLmzsKcUIYSQPA3KfIx+Nii/QDnesWPHtNfIypUrtUzDkdyWHKHMA+VD6KXUq1cvtx6DkhbQuXNnp/tRyoY+RrGxsVqulhvQW6dkyZJZ4ihzQqkZSnZQtmWUyXzzzTfZzgXlZ+jDhWXkURLjyI2UaKFMBiWL6Bs1ZMgQLWfLDpRlYa5169bV3jWOoDeOtdTvVoLynYkTJ0r//v319YQyOPTOQVkRnh+U9DnD1XXJ6bnHtcY1R0+dn3766abnf+rUKX3NO5b2GeDfBnQBlKwZGP2vUNIXGRmZ5XEoZ0S/NDwvKMW6U6D80LHMEOA1jxIvlJXFxcXlakyUHKLsC72zULKJ5xgbyhDB4cOH5U6Bf2MoccNrC+WJt6J0EKW7xvsgXl9NmjTR9wCU2qHvWbly5XIcAwtDoEQS4Bq5g/Eacva6A8b7Jd7jUN4KTp8+rSXP4P/9v/+X5TEoZXzqqaeyxG/0vQw9/AB6pKG8FeXHhBBCPAf2lCKEEJKnQaNao68OTAR8CXvooYf0Sy2+3DoDZsmNrHqG3kDursqH/isAXzpzAl9O0aPKXYxG06604Qs7jAqA342+Mu58McXxMMwcx7wR8AUQxg2+dGND82P0AkJvLfR+sfbPMeabnTbsc9Yc/UZB3xs0Vt68eXO2x+H6GT2V3LkuxnMPjdhyeu5vFnzJBzAk0ZDaGTBprcdaf8/umuNx6L1lfdztBv/OXPVZgz6YhM7MU1egdxtMueyMLOPfyJ3g+eef175l+HcGoyy3PeWcAfPQaGqO8fBvDaYiFicICgpyawxcn8TERP3dWCgiJ3J6DeFGAeYCIwj/xtFc3Pi3jn//MJCc4Wy8G30vQ78q9EdDT0CYZzDucEMAnx3oC4hrhBsOhBBC7g40pQghhORpevfubddc3B3c/ZJ2M+CuPoAp4yxby4qrRto3g7FSmzGP7LIZrDhriHyj1wuGHFb9QuYQMm2QkYSmx8h2QAP0//u//9Omw7cb6zVwfO3AkMIqjMg0wRd7mE+GSYAv0GfPnjWvpbvXxTifqwwkK1itjNhzKw0CmCbIqsFiAK+88op07dpVzUSYITjP6tWrpXXr1i6f41vN+++/rysmwkBHllZOrw93wYIKjqtL5jdu5r3srbfekn79+qlBiX/zP/zwgy4AgA2ZVMggzOl9mhBCyO2BphQhhBCSA1iBCsCgwCpP7mRL4U4+SlZwhx4lJbcSrL7nCmPp97Jly5rZCDBP8KUcKwTe6tW9cgLnhjFnlLohMwhLs3/44Ye6whZWfQNGdlZ2S9e72ocv+CAhIcHpfuMcVpARgvJOGBP46bjyFvajbPNGwHOPVb1QunS7VqezYlw7I5PEWbaUkb1lzYIzfjf2OcPZ4/ISMCHw2v/f//1fLdF0JLelszcDzJCXXnpJf8eqjblZQfBOAHM8ODhYV6tDOaN1hT1X4HWB17qr1xDeL41yOeM1ZPzEipIoq3SWLeXs3/rNvpfBjMSqp9gASmdRPoifKO2DMU0IIeTOw1xVQgghJAfQy8borWNdajw72rRpoz8XLVp0y+eD7A6UnjkCcwXGRFhYmJbuAB8fHy2Xu11zuZFeU/gCaJRFGv2aGjdurGU16IODL7mOoITMVeme8SX34MGDWfbhC7a1j5L1yzJ66MDAcbYU/Lx58244e+Z2PvfOgAFplOchC8cR6DDizZo1M+MoawLffvutnD9/Psvj0JfH6KWG58fRBERPLE/HMEScZaThusyfP/+OzAP9lP75z39Kamqq9mt67rnnxNOwvlfMnj3brccYr6HPP//c6X7j/RLlcsa/U7xeK1eurL87u/7oGYayxuzmdyv+bSFDCr3jAF7nhBBC7g40pQghhBA3QLkZeP31183myFbQyNtqikRHR6vZgV5Kb7/9tqSkpDjNeIL5kVuQKYC+NPhp/dKLhuIAZSpoFmydO4wEzAlfHp2Vs+3bt0+++uoruVUgO+mjjz5y2qsH2SsApXJGVg+y0ZDNgrlBm/VxMK7w5dGVSdSyZUuzNMra+wjZTjAA/vjjjyyPQdkUzn/p0iWZO3eu3b5t27bJsGHDblg7zgkTBF+skSnnLIMLWVjufvF3h5dffll/jhkzRg08A1yzsWPH6pduvB6tZsjf//53zdbB66hv375q4BkgiwUx8PTTT9v18IGxiNcTNHh60+gaNWrozyVLlmimowEMyREjRmhJ6e0G//bRuwzXC/3uZsyYIZ4K3t/Qiw+ZXDNnzszybw7/rtEPywCvJ/wbhpk8fvx4u+NhauK1B/DeY2XQoEH6EyWHVhMazwtey0ZTdEdu5L0MZcLGQgpWYBDCkAUsoyWEkLvIHV7tjxBCCLklGMuyf/rpp24/xtWy6lawBLmrcceNG2fz8vLS/ffee68uT/7EE0/Y7rvvPqePwbLsxYsX130lSpSwNW/e3Na1a1fb448/bqtSpYrGH3zwQbfnj2Xf8Zhu3brZihUrpsum//Of/7S1a9dOl33HvoYNG9quXr2a5bGLFi2yBQcH6zFly5a1tWrVSufSpk0b/Rtx6HG23DyWpM8tu3bt0sf6+fnZ/ud//sf21FNP6VanTh2N4zp+9NFHdo85e/aseV2gr0OHDrb//d//tRUpUkTjuNbOrnNKSoqtfv36uq9w4cK2tm3bqq6IiAhbmTJlbD179tR9uH5Wpk2bZr4m8Dx06dLF9vDDD+vcnnnmGfM1duLECbvHuYpb2bdvn61ixYp6HObfuHFj27/+9S/bk08+qa8XnCMyMjJX1zS7129GRobOGft9fX1tLVq0UD3Vq1fXWFBQkG3lypVZHnfs2DFTD16jnTp1srVv395WqFAhjdWtW9cWHx+f5XE4DvvLlSun5+nVq5du7oDXEx6L15cVXE/EMR9XuHPtraSmptrq1aunjwkNDdXXBl6HGAevzVdffTXXc8ntHN544w3zuWvdurW+x+S0zZ49O8v1cvbcG/9GHV/bN8Pnn3+u18bQj+ca/xYfeOABfd06nmvFihW2wMBA830Rrwe8/vA6RKxHjx5ZzpGenq7vW9jv7++v1+Xpp5+2VapUScd6/vnndR+uxc2+l7344osaw3vxo48+qsfivQSvd8TxHvHHH3/csutHCCEkd9CUIoQQkie5G6YU2Lp1q37pwhcZfHGDeVK7dm3bK6+8Yvv999+zHH/+/Hnb8OHD9ct9WFiYfgHDF6dGjRrpl7s9e/bk2pTCz+PHj+s8YGxgzKpVq9pGjBhhS0xMdPl4fIl+6aWXbDVr1lQTC1/+cB2bNm1qe+utt2xHjx69ZabU5cuXbe+8846aSvfcc48aAjhntWrV1FTbsWOH08dduHDBNmDAAL1GxrXq16+fLTY2Ntvn5uLFi7aoqCg9Hs8Lnp8+ffro9bdeN0eWLl2qzwWMI8wR5tbMmTPV5LkZU8q4BpMmTVKjEONjXqVKlVKTLjo62rZly5ZcXVN3Xr/z58/X59M4H0yjZ5991nbo0CGXj4mLi7MNGzbMVqNGDX1N4As/zEO8JpwZnMZj+vbtaytfvrxpYLh7r/NOmlIgISHB9tprr6lBB30wI2AO4jV4I3PJ7RyM121uNqsZc6dNKbB//341GWESBQQEqNkLMxX/xrDPkQMHDuicjX9/eP01a9bMtnDhwmwNw7ffflvHxTnCw8PVEN29e7f+G3dlSuX2vQwG+dChQ21///vf9X0B7yswrGFWjh8/Xt9zCCGE3D288H93M1OLEEIIIe6BUhc040UJS35facsZWGURJTtYMSu3Ky4SQgghhBDPgz2lCCGEEEIIIYQQQsgdh6YUIYQQQgghhBBCCLnj0JQihBBCCCGEEEIIIXcc9pQihBBCCCGEEEIIIXccZkoRQgghhBBCCCGEkDsOTSlCCCGEEEIIIYQQcsfxvfOnLDhkZGTImTNnJCwsTLy8vO72dAghhBBCCCGEEEJuO+gUlZCQIKVLlxZvb9f5UDSlbiMwpMqVK3e3p0EIIYQQQgghhBByx/njjz+kbNmyeceUgpM2fPhw+b//+z+JiYmROnXqyPTp0+V//ud/dP+VK1dk6NChsnTpUomLi5NKlSrJwIEDpV+/fuYYycnJMmTIEFm4cKFcu3ZNWrduLTNnzpTIyEjd/8svv8hbb70lmzdvlgsXLkjFihX18S+++KI5Bva9+uqrcujQIbl69apUqFBB+vbtKy+99JLbWpAhBd79aoIEhQTewqtECCkIPPVQz7s9BUIIIYQQQgjJNZcvX9YkHcMXyTOmVO/evWXfvn0yd+5cTfOaN2+etGzZUg4cOCBlypSRwYMHy7p16zQOM2n16tXywgsv6LFPPPGEjgHj6Ouvv5bFixdL4cKFJSoqSjp06CA//PCD7t+5c6eUKFFCx8BF2rJli/Tp00d8fHz0WBASEqK/16pVS3+HSQVTCr/jWHcwSvZgSAWHBN22a0YIyZ8UKlTobk+BEEIIIYQQQm6YnFoZedlQ6OchJCUlqYu2bNkyadu2rRmvV6+etGnTRsaOHSs1a9aUzp07azaVs/1//vmnREREyPz586VTp066H9lONWrUkK1bt8pDDz3k9Nz9+/eXgwcPquHlChhbMKVgmLnrDMIUm71qGk0pQkiu+dfDfe/2FAghhBBCCCEk1xh+CDya7G62e9Tqe2lpaZKeni6BgfalbkFBQZqpBBo1aiTLly+X06dPa+Os9evXy5EjR6RVq1ZmFlRqaqpmVxnce++9Ur58eTWlXIELVaxYMZf7d+3apRlVTZo0uQVKCSGEEEIIIYQQQgo2HlW+hyyphg0bypgxYzSzCT2gFixYoGZS1apV9ZgZM2Zo+RwaZfn6+moX99mzZ0vjxo11/7lz58Tf31+KFCliNzbGwj5nwGz64osvtOTPEZwnNjZWDbORI0dqeaEr0L8Km9UZVJCLZs1HQ/aas/y0WxXPDbd7LtRETa7wtLl7oCa87xjgvQ4bjHtrgqurOMqRkSprHcOIAxzvThzvsxjXGse4OB4rjGLLKW7M0VWcmqiJmqiJmqiJmqiJmqiJmvKXJsd9ecKUAiiN69mzp/aPgqC6detKly5dNAPKMKW2bdum2VJoPr5p0yYtvUNPKWt2lLugf1X79u3lzTffNLOtrHz//ffaXB3nRIN1mGOYjzMmTJggo0aNyhIPSCgsAenB+nu6f4qkBV0V3+Rg8UnxN49JC0iW9MBk8bsaKt5pmU8LjsVj/BMLiVd6ZmJbasgVyfBN07HFllmjmRJ6WWzeGRJw2d6Uu1boknhleIv/FUvanJdNrhX6U7zTfcUvMdQM23wydByfVH/xTbo+b4Dz4bw+1wLF91pmNhs1URM13R5NO3bssDPIsSEzFJmdBpUrV9YeeXgvQwm0NUMU5jyyPK0fXOiTB+PeOjaoX7++pKSkyJ49e8wY3oOxyATOhzJoa/Zq7dq1daGI48ePm3Gk5+KGAlYePXXqlBlHSXWVKlXkxIkTavJTEzVREzVREzVREzVREzVRU/7WlJiYKO7gUT2lrEAAMo1KlSqlPaRgDC1ZskQvLlbms/acQvYSLvS3336rPaFatGghFy9etMuWgoE1aNAgu9Xz0Dy9WbNm+vhx48blOCf0rIJpdvjwYbczpdBIffa3Dj2l8nFmx22L5wZPmzs1OcfT5u6Bmp56qJcZ4h0ZaqImaqImaqImaqImaqImakrPI5rgh4SHh+fYU8rjMqUM0FAcG8ylVatWyaRJk7RXFDZcFCvGxTaanvv5+cnatWulY8eOGoOJdPLkSS0NNNi/f780b95cunfv7pYhBXAOq+nkSEBAgG5Ov2A6Npx31YD+VsVzw+2eCzVRk+SRuXuYJnzwOGK80bsbdzZGbuP4wHEWNz6kbjZOTdTkKk5N1JTd3KmJmqiJmrKbOzVREzXJXdXkal+WY8XDgAEFB6569epy9OhRiY6O1tSwHj16qNmERuOIIU0N2U8bN26UOXPmyNSpU/XxyKTq1auXDB48WBuXw5EbMGCAGlLGyntIPYMh1bp1az3O6DWFC410NvD+++9rc3ScG6BMcMqUKTJw4MC7dm0IIYQQQgghhBBC8gseZ0ohtWvYsGFajgdTCdlOyGSCIQUWLlyo+7t27Srx8fFqTGF/v379zDGmTZumrh8ei8wmmE8zZ84096MMEPWT8+bN080AY/32229mVhTOg1pLOHyou5w4caL07Zv7JdqfeqhntulqhBBCCCGEEEIIIQUNj+0plR9ADSUyt3KqoSSEEEIIIYQQQggpaH5I1iJCQgghhBBCCCGEEEIKWvleQkKCDB8+XFfYi4mJkTp16sj06dN1+UOAVfiGDh0qS5culbi4OKlUqZL2ebKW7yUnJ8uQIUO01M9avhcZGWkeg8bnzz//vKxfv15CQ0O14fmECRPMZlxfffWVzJo1S3bv3q1j3H///TJy5EgdK7cs2PKJBFlX3yOEkBug2yO5Lx8mhBBCCCGEEE/F4zKlevfuLWvWrJG5c+fK3r17pVWrVtKyZUs5ffq07kdj8m+//VZ7QR08eFAGDRokUVFRsnz5cnOMl156SVasWCGLFy/WRuhnzpyRDh06mPuxPGHbtm0lJSVFtmzZIp9//rl89tlnMmLECPMYNDZ/9NFHZeXKlbJz505p1qyZtGvXTnbt2nWHrwghhBBCCCGEEEJI/sOjekolJSVJWFiYLFu2TE0jg3r16kmbNm1k7NixUrNmTencubNmUznbj3pFrKA3f/586dSpk+4/dOiQ1KhRQ7Zu3aor8H3zzTfy+OOPq1llZE998MEH8uqrr2oDdH9/f6fzQ7YUzm01r9ypofzgm2nMlCKE3DTMlCKEEEIIIYTkp55SHlW+l5aWpllMgYGBdvGgoCDZvHmz/t6oUSPNiurZs6eULl1aNmzYIEeOHNEV9wCymlJTUzW7yuDee++V8uXLm6YUfv7tb3+zK+dDWR7K+fbv368lg45gNT6UFmJFQFegzA+b9UlQYPtZrT8vh79vdTw33O65UBM1ucLT5p4XNP2V6Wm9l4CVRrE5xn18fMTLy0vfV60gbozjThwlzRjXGse4OB7vi9hyihtzdBWnJmqiJmqiJmqiJmqiJmqipvylyXFfnjClkCXVsGFDGTNmjGY2wTRasGCBmkhVq1bVY2bMmCF9+vSRsmXL6pOCCzR79mxp3Lix7j937pxmOhUpUsRubIyFfcYxVkPK2G/sc8aUKVO0n9VTTz3lcv7oSTVq1Kgs8aDEwhJsC9bf0/xSJCXwqvhfCxbf1MyMrFT/ZEkNSJaApFDxSc98WnAsHhN4tZB4Z2RWWyYHXZEM3zQd28uGb7DXSQq+LDbvDAm+Yq//augl8crwlqCrmQ6lzcsmSaF/ine6rwQmhZrxDO8MSQ65LL5p/uKffH3eIN0nTa4FXxG/lEDdDKiJmqjpzmgCMOFxt8GgcuXKUqJECdm3b59mm1rNeLwPouTY+sFVq1YtfY/csWOHnab69etrSfOePXvsPlTQzw/nQ8ap9UZB7dq15cKFC3L8+HEzjjsheO9GFuqpU6fMOLJXq1SpIidOnNBsVAO8j2OjJmqiJmqiJmqiJmqiJmqipvylKTExUfJc+R44duyYZkGhpxMufN26daVatWqaAYUeUjCHYELhZ4UKFfS4YcOGaWN0ZEehbK9Hjx52GUugQYMG2hdq4sSJamr9/vvvsmrVKnP/1atXJSQkRHtIoRTQCsZ87rnntKzQmoHlTqZUuXLl5IOVDuV7BSmzg5qoyRWeNvc8oKlb4768I0NN1ERN1ERN1ERN1ERN1ERNHq8Jfkh4eHjeKt8DcO3QnByuGkSUKlVK+zjBoYMz99prr6kBZfScghOHFfJgUsEwKlmypLqKly5dssuWOn/+vO4D+Ll9+3a782K/sc8KVvBD83U0Tc/OkAIBAQG6Of2C6eUk5oxbFc8Nt3su1ERNkkfmngc0GW/07saNFUVvJo4PHGdx40PqZuPURE2u4tRETdnNnZqoiZqoKbu5UxM1UZPcVU2u9mWZi3goyFqCIXXx4kXNaGrfvr32isLmePEMB9Boeu7n5ydr16419x8+fFhOnjyppYEAP7GyX0xMjHkMVvyDe3ffffeZMZQOIusKP62N1wkhhBBCCCGEEELIzeFxmVIwoJAWVr16dTl69KhER0drvSLMIZhNTZo00RhqJ1G+h6yqOXPmyNSpU83ayV69esngwYO1KTmMpgEDBqgRhSbnoFWrVmo+PfPMMzJp0iTtI/XGG29I//79zUwnlOx1795dpk+fLg8++KDZawrnxTkIIYQQQgghhBBCyI3jcT2lFi1apD2i0IwLplLHjh1l3LhxphEEcwj7V69eLfHx8WpMoUfUSy+9pKlsIDk5WYYMGaIZTujxhJX1Zs6caVeah55SWG0Pq/chKwsG1FtvvWWmmDVt2lQNL0dw3GeffXZLl0AkhBBCCCGEEEIIyS+464d4nCmVn6ApRQghhBBCCCGEkILGZTf9EI8r30tISJDhw4drM3P0fKpTp46W0GH5Q3DlyhUZOnSoLF26VOLi4qRSpUoycOBA6devnzmGkSmFJuXWTKnIyEjzGPSYQqbU+vXrJTQ0VDOgJkyYYGZKnT17VsfAUoYoI8Q53nnnnRvSNO+HT+xX3yOEkBukR+O+d3sKhBBCCCGEEHJL8LhG51jpDk3H586dq83I0f8Jq96dPn1a96NX1Lfffivz5s2TgwcPyqBBgyQqKkqWL19ujoFSvhUrVuiKeSjBO3PmjHTo0MHcj+UJ0bgcq/Rt2bJFPv/8cy3JGzFihHkMzKyIiAjtNVW7du07fBUIIYQQQgghhBBC8jceVb6XlJQkYWFhsmzZMrvV7rCiXps2bWTs2LFSs2ZN6dy5s2ZTOduP1DCYSWhU3qlTJ91/6NAhqVGjhmzdulWbnX/zzTfy+OOPq1llZE998MEH8uqrr0psbKz4+/vbzQv9pR544IFcZ0oZ6Wrvr5zGTClCyC2BmVKEEEIIIYQQTydPlu+lpaVpFlNgYKBdHCvebd68WX9v1KiRZkX17NlTSpcurY3Kjxw5ItOmTdP9O3fulNTUVM2uMsDqfeXLlzdNKfz829/+ZlfOhxI/lPPt379fSwZvBGRXYbM+CQpsP6v1h37szqzAWxXPDbd7LtRETa7wtLnnEU14j7TeS/D29tbNMe7j46OLP+B91QriAMe7E0dJM8a1xjEujs/IyNAtp7gxR1dxaqImaqImaqImaqImaqImaspfmhz35QlTCllSDRs2lDFjxmhmE0wjrKAHE6lq1ap6zIwZM3S1vbJly+qTggs0e/Zsady4sbk6HzKdihQpYjc2xsI+4xirIWXsN/bdKOhJNWrUqCzxkKuFJViC9fdU3xS5FnhVAq4Fi19aZkZWin+ybkHJoeKTnvm0JAdclTS/FAlOKiTeGZnVlkmBVyTdN01CEguLl36Dvc7V4MuS4ZUhoYn2+q+EXBJvm7cEX810KG1ik8TQP/V8OK9BhneGjuOb5i+B167PG6T7pElS0BXxTw0U/5RM45CaqIma7pwmmPC422BQuXJlKVGihOzbt0+zTa1mPN4Hd+3aZffBVatWLX2PRL88K/Xr19eS5j179th9qKCfH86HjFPrjQKUNV+4cEGOHz9uxnEnBO/dyELFCqoGyF6tUqWKnDhxQrNRDfA+jo2aqImaqImaqImaqImaqIma8pemxMREyXPle+DYsWOaBbVp0ya98HXr1pVq1appBhR6SE2ZMkVNKPysUKGCHjds2DBtjI7sKJTt9ejRwy5jCTRo0ECaNWsmEydOVFPr999/l1WrVpn7r169KiEhIbJy5UotBbyR8j1nmVLlypWT9792KN8rYJkd1ERNTvG0uecRTd0e7s07MtRETdRETdRETdRETdRETdQknqwJfkh4eHjeKt8DcO3QnByuGkSUKlVKe0jBoYMz99prr6kBZfScghO3e/duNalgSpUsWVJdxUuXLtllS50/f173Afzcvn273Xmx39h3owQEBOjm9Auml5OYM25VPDfc7rlQEzVJHpl7HtBkvNG7GzdWFL2ZOD5wnMWND6mbjVMTNbmKUxM1ZTd3aqImaqKm7OZOTdRETXJXNbnal2Uu4qEgawmG1MWLFzWjqX379torCpvjxTMcQKPpuZ+fn6xdu9bcf/jwYTl58qSWBgL8xMp+MTEx5jFY8Q/u3X333XfHNBJCCCGEEEIIIYQUVDwuUwoGFNLCqlevLkePHpXo6GitV0RJHsymJk2aaAy1kyjfQ1bVnDlzZOrUqWbtZK9evWTw4MFSrFgxNZoGDBigRhSanINWrVqp+fTMM8/IpEmTtI/UG2+8If3797fLdEIGFrhy5YrWW+Jv1EfSuCKEEEIIIYQQQgi5OTyup9SiRYu0RxSaccFU6tixo4wbN07NJgADCftXr14t8fHxakyhR9RLL72kqWwgOTlZhgwZok3S0eMJK+vNnDnTrjQPPaWw2h5W70NWVvfu3eWtt96ySzEzxrOC8/3222+3dAlEQgghhBBCCCGEkPyCu36Ix5lS+QmaUoQQQgghhBBCCCloXHbTD/G48r2EhAQZPny4NjNHz6c6derI9OnTdflDo5Ru6NChsnTpUomLi5NKlSrJwIEDpV+/fuYYRqbUwoUL7TKlIiMjdT8e17VrV11iEb9jiUP0rBo/frx5sb766iuZNWuWluxhjPvvv19GjhypY+WWz7//xH71PUIIuYX0btr3bk+BEEIIIYQQQnKNxzU67927tzYdnzt3rjYjR/8nrKp3+vRp3Y9eUd9++63MmzdPDh48KIMGDZKoqChZvny5OQZK+VasWCGLFy/WnlNnzpyRDh06mPvRKB0mFB5z5MgR+eyzz+S7776zM7Y2bdokjz76qKxcuVJ27twpzZo1k3bt2smuXbvu8BUhhBBCCCGEEEIIyX94VPleUlKShIWFybJly6Rt27ZmHCvqtWnTRsaOHSs1a9aUzp07azaVs/1IDYuIiJD58+dLp06ddP+hQ4ekRo0asnXrVrPZuSPvvvuuTJ48Wf744w+X80O2FM49YsSIXKWrvfvfacyUIoTcNpgpRQghhBBCCMmL5XselSmVlpYm6enpEhgYaBfHSnubN2/W3xs1aqQZTsicgp+2fv16zXZCRhVAVlNqaqpmVxlg9b7y5curKeUMZFKhXA8r+7kiIyNDSwvRfJ0QQgghhBBCCCGE3Bwe1VMKWVINGzaUMWPGaGYTekBhBT2YSVWrVtVjZsyYoavtlS1bVlfKQyne7NmzpXHjxubqfP7+/lKkSBG7sTEW9lnp0qWLZmUhQwuleR999JHLuU2ZMkX7WT311FMuj0HvKWxWZ1BBLpo1Hw2L+jnLT7tV8dxwu+dCTdTkCk+be17WJKKGvjXx1cfHR1cQhdlvBXHjeHfieJ/FuNY4xsXxMOux5RTH+zQ2V3HHubuKUxM1URM1URM1URM1URM1UVN6ntDkuC9PmFIAvaR69uwpZcqUUUF169ZV8wgZUIYptW3bNs2WqlChgvZ+6t+/v5QuXdouO8odpk2bJm+++aZmWg0bNkz7VaEhuiMoBRw1apQaWGiK7ooJEybocY6EJRWWYK9g/T3VN0WSAq5KUEqw+KX5m8dc80uWa/7JEnwtVHzTM5+WJP+rkuqXIqHJhcQ7IzOx7WrgFUnzSdOxvWz4pnqdK0GXJcMrQwpdtTflLgdfEm+bt4QmZabN2bxskhD8p/hm+EpwcqgZz/DO0HEwP8zTAOfDeQNSA3UzoCZqoqa7qwns27dPDXZrhijMefTBs35w1apVS437HTt22GmqX7++pKSk6AIQBngPxiITSLlFGbQ1e7V27dpy4cIFOX78uBlHei5uKCD79NSpU2YcJdVVqlSREydOSGxsrBnHzQVseA/GOQwqV66s77XURE3URE3URE3URE3URE3UJHlSU2JiouS5nlJWIACZRqVKldI+TshSWrJkiV5crMxn7TmF5ui40GiAvm7dOmnRooVcvHjRLlsKBhaaoqMJujNQHvjII4/ok4ZzGmAFP5hkaJpuPae7mVLlypWTd1c49JRiZgc15RZPmzs1OecuzbF3s768I0NN1ERN1ERN1ERN1ERN1ERNHqMJfkh4eHiOPaU8LlPKICQkRDeYS6tWrZJJkyZpryhsuChWjIttND338/OTtWvXSseOHTV2+PBhOXnypJYGusJ4vNVUQukgDCkYUzkZUiAgIEA3p18kvZzEnHGr4rnhds+FmqhJ8sjc87Am4wPAEXx43WwcHzjO4saH1M3GXc2dmqiJmqgpu7lTEzVREzVlN3dqoiZqkruqydW+LMeKhwEDCg5c9erV5ejRoxIdHa2pYT169FCzCc3IEUOaGrKfNm7cKHPmzJGpU6fq45FJ1atXLy3FQ1NyOHIDBgxQQ8pYeW/lypVy/vx5TX8LDQ2V/fv365gPP/ywVKxY0SzZ6969u0yfPl0efPBBsx8VzotzEEIIIYQQQgghhJAbx+PK9xYtWqT9nVCOB1MJ2U7jxo0zjSCYQ9i/evVqiY+PV2MKjc9RlgfXECQnJ8uQIUM00wmZT61bt9ZeUSVLltT9WLHv9ddflwMHDuh+lNh16NBBhg4dapb8NW3aVA0vR2BUffbZZ7d0CURCCCGEEEIIIYSQ/IK7fojHmVL5CZpShBBCCCGEEEIIKWhcdtMP8bjyvYSEBBk+fLg2M4+JiZE6depoCR1K7QAaniOjaenSpRIXFyeVKlWSgQMHSr9+/cwxjEwp9IKyZkpFRkbqfjyua9eu2s0ev6ObfPv27WX8+PF2F2vDhg1aBojyPmRTvfHGG/Lss8/mWtPHGz+2b3ROCCG3gX7NM98HCSGEEEIIIcTTydrZ6i6DlfTWrFkjc+fOlb1790qrVq2kZcuWcvr0ad0Pkwir7M2bN08OHjyoK+pFRUXJ8uXLzTFQyrdixQpdMQ8leFhRD+V5BmjoBRMKj8GShyjH++677+yMLSyRiObmzZo1k927d+t5MDf0vCKEEEIIIYQQQgghN4dHle8lJSVJWFiYLFu2zG61O6yo16ZNGxk7dqzUrFlTOnfurNlUzvYjNSwiIkIblXfq1En3Hzp0SGrUqCFbt241m5078u6778rkyZPljz/+0L9fffVV+frrr2Xfvn3mMU8//bRcunRJTbHcpKtNXT6VmVKEkNsOM6UIIYQQQggheal8z6MypdLS0iQ9PV0CAwPt4ljxbvPmzfp7o0aNNMMJmVPw09C0HNlOyKgCO3fulNTUVM2uMsDqfeXLl1dTyhnIpPrqq690ZT8DHGsdA6AM0NUYhBBCCCGEEEIIIcR9PKqnFLKkGjZsKGPGjNHMJvSAwgp6MIKqVq2qx8yYMUNX2ytbtqz4+vpqKd7s2bOlcePG5up8/v7+5ip6BhgL+6x06dJFs7KQodWuXTv56KOPzH041uhBZR0Dbh+Oh1HmCPpXYTPAsQpy0az5aFgk0Fl+2q2K54bbPRdqoiZXeNrc84EmGPsGPj4+uiKpNWbEAW4AuBPH+yxuAFjjGBfHZ2Rk6JZTHO/T2FzFMbY1addVnJqoiZqoiZqoiZqoiZqoiZrS84Qmx315wpQC6CXVs2dPKVOmjAqqW7eumkfIgDJMqW3btmm2VIUKFWTTpk3Sv39/KV26dJbMppyYNm2avPnmm5ppNWzYMO1XhYboN8qECRNk1KhRWeJFkotIsHew/n7N95pc9b8qwanBEpAWYB6T5JckyX7JEpoSKn7pfmY80T9RUnxTpNC1QuKTcf0JBgkBCZLmk6Zje9nwjfQ6fwb+KRleGVI0qajdHC4GXRRvm7cUTi5sxmxeNrkUdEl8M3wl7FqYGU/3TpfLgZfFP91fQlJCzHiqT6pcCbgigWmBEpSaacpREzVRk2do2rFjh12GKMz5Xbt22X1w1apVS41767Ggfv36kpKSogtAGOA9GItMIOUWZdAGMOVr164tFy5ckOPHj5txpOfihgKyT0+dOmXGUVJdpUoV7dUXGxtrxnFzARveg3EOg8qVK+sCFCifxk0AaqImaqImaqImaqImaqImavqfPKUpMTFR8lxPKSsQgEyjUqVKaQ8prLq3ZMkSvbhYmc/acwoNyHGh0etp3bp10qJFC7l48aJdthQMLDQrRxN0Z6A88JFHHtEnDedE5hUMsXfeecc85tNPP9UxrE9STplSWLVv6jKHnlLM7KCm3OJpc6cm59zlufdu0lsK+h0ZaqImaqImaqImaqImaqImavK665rgh4SHh+fYU8rjMqUMQkJCdIO5hBXvJk2apL2isOGiWDEuttH03M/PT9auXSsdO3bU2OHDh+XkyZNaGugK4/GGqYRjV65caXcMVgXMboyAgADdnH5h9HISc8atiueG2z0XaqImySNzz+Oa8EHliLNYbuP4wHEWNz6kbjZufHi5G6cmaqImasouTk3URE3UlF2cmqiJmuSOaHK1L8ux4mHAgIIDV716dTl69KhER0draliPHj3UbEIzcsSQpobsp40bN8qcOXNk6tSp+nhkUvXq1UtL8YoVK6aO3IABA9RMMlbeg9l0/vx5TX8LDQ2V/fv365gPP/ywVKxYUY/p16+fvPfee/LKK69oOSEysBYtWqQr8hFCCCGEEEIIIYSQm8Pjyvdg/KC/E8rxYCoh22ncuHFqNhkNyLF/9erVEh8fr8YUGp+jLA+uIUhOTpYhQ4Zok3RkPmHVPPSKKlmypO7Hin2vv/66HDhwQPejxK5Dhw4ydOhQu5K/DRs26Lg4DvWVw4cPl2efffaWL4FICCGEEEIIIYQQkl9w1w/xOFMqP0FTihBCCCGEEEIIIQWNy276IR5XvpeQkKAZSWhmHhMTI3Xq1JHp06drqR1Aw3NkNC1dulTi4uKkUqVKMnDgQC23MzAypRYuXGiXKRUZGWkeg55TOM/evXu1d1X37t01I8uoe0SWFFbn2759u17Me+65R0v8unbtmmtNH67/2L7ROSGE3Cb6t8x8LySEEEIIIYQQTyZrZ6u7DFbSQ0PxuXPnqmHUqlUradmypZw+fVr3o1cUVtmbN2+eHDx4UFfDi4qKkuXLl5tjoORuxYoVsnjxYu05hRX1UJ5n8Msvv8g//vEPeeyxx3QJwy+++EIfD7PLYMuWLbqc4ZdffqlLMaKnVbdu3eS///3vHb4ihBBCCCGEEEIIIfkPjyrfS0pKkrCwMFm2bJm0bdvWjGNFvTZt2sjYsWOlZs2a0rlzZ81ycrYfqWEREREyf/586dSpk+4/dOiQ1KhRQ7Zu3arNzl977TU1vn766SdzDJhYTz31lGZnYQ7OwJyQbfXJJ5/kKl1t8tKpzJQihNwRmClFCCGEEEIIySvlex6VKZWWlibp6ekSGBhoF8dKe5s3b9bfGzVqpFlNyJyCn4am5UeOHNGMKrBz505JTU3V7CoDrN5Xvnx5NaUASvqcnQNlf3i8K3Ax0XydEEIIIYQQQgghhNwcHtVTChlKDRs2lDFjxmhmE7KSsIIezKSqVavqMTNmzNDV9rAaHvo/eXt7y+zZs6Vx48bm6nz+/v52q+gBjIV9AD2m3nnnHR0b2VGIjx49WvedPXvW5aqAyKz697//7XL+MLuwWZ1B4GW7vgH9gUUCEbM89kbjxrh28b8e4lb8Fs6FmqiJmu6+Jpj7wMfHR1ckNf42QBzgBoA7cbzP4gaANY5xcXxGRoZuOcXxPo3NVRxjW5N2XcWpiZqoiZqoiZqoiZqoiZqoKT1PaHLclydMKYBeUj179pQyZcqooLp160qXLl3MDCaYUtu2bdNsqQoVKsimTZukf//+Urp0abvsqOxAVtXkyZO1OfozzzwjAQEBWg74/fff6wV3BNlY6CkF8+v+++93Oe6ECRNk1KhRWeJFU4pIsG+w/n7N55pc8bsqoWnBEpAeYB5z1TdJknyTpVBqqPhl+JnxK76Jcs03RYqkFBIf2/UnGFz2S5BUnzQpeq2IeFm+ol7y/1MyvDKk2LWidnOID7go3jZvKZJS2IzZxCbxgZfEL8NXCqVmliyme6XLpYDLEpDuL6FpIWY81TtVLvtfkaD0QAlOyyxHpCZqoibP0bRjxw4zQxTmPPrmWT+40CsPxr1xnEH9+vUlJSVFe+gZ4D0Yi0wgSxRl0NbM0tq1a8uFCxfk+PHjZhzpubihgD5+p06dMuMoqa5SpYqcOHFCYmNjzThuLmBDtivOYVC5cmUpUaKE7Nu3T8u6DaiJmqiJmqiJmqiJmqiJmqjpUJ7QlJiYKHmup5QVCECmUalSpbSHFFbdW7JkiV5crMxn7TmF5ui40GiAvm7dOmnRooVcvHjRLlsKBhaaoqMJugGkIzOqaNGi8ttvv8l9992nq+0ZK/0BNErHuaZOnaoZWtnhLFOqXLlyMuX/MntKMbODmqiJmm5nvE+z3gX6jgw1URM1URM1URM1URM1URM1ed11TfBDwsPDc+wp5XGZUgYhISG6wVxatWqVTJo0SXtFYXPMZjIuttH03M/PT9auXSsdO3bU2OHDh+XkyZNaGmgFFxEZVgClfDCQkJllsGHDBnn88cdl4sSJORpSABlX2MTJF1X9smp38swvtjcTzzKuEXcxx1txztsdpybPmjs15S1N+LCy4vj3jcTxXuksbnxI3Wzc+PByN05N1ERN1JRdnJqoiZqoKbs4NVETNckd0eRqX5ZjxcOAAQUHrnr16nL06FGJjo7W1DCUz8FsatKkicaQpobsJ2QyzZkzRzOZADKpevXqJYMHD9am5HDkBgwYoIYUVt4zQPneY489pk/EV199JW+99Zb2jTIuNkr2YEi9+OKLam4Z/aiQisZm54QQQgghhBBCCCE3h8eV78EYGjZsmJbjwfyBITRu3Dg1mwDMIexfvXq1xMfHqzGFLCaU5cE1BFhFb8iQIZr9hHI6NDafOXOmlCxZ0jxP8+bN5eeff9b9qMF88803pU2bNub+Z599Vj7//PMs84MphgyqW7kEIiGEEEIIIYQQQkh+wV0/xONMqfwETSlCCCGEEEIIIYQUNC676YdkLSIkhBBCCCGEEEIIIeQ243E9pRISEmT48OG6wl5MTIzUqVNHpk+fbq6Ih1X4hg4dKkuXLpW4uDipVKmSDBw4UPr162eOYZTvLVy40K58LzIy0jwGjc+ff/557R0VGhoq3bt3lwkTJpjNuDZv3iyvvvqqLrd49epVLRPs27ev3ep97jJr7UcS+Nfqe4QQcid4sdXzd3sKhBBCCCGEEJK3TKnevXvLvn37ZO7cuboy3rx586Rly5Zy4MABKVOmjDYwX7duncYrVqyovaVeeOEFPfaJJ57QMWAcff3117J48WJNF4uKipIOHTrIDz/8YC5P2LZtW+0xtWXLFjl79qx069ZNG6mPHz9ej8HKf3hcrVq19HeYVDCl8Ls7K/ERQgghhBBCCCGEEMkbPaWSkpIkLCxMli1bpqaRQb169bQJ+dixY6VmzZrSuXNnzaZyth/1ihERETJ//nzp1KmT7ke2U40aNWTr1q26At8333yjK+udOXPGzJ764IMPNDMqNjZWV9hzBowtmFIwzHJTQ/nWV28zU4oQckdhphQhhBBCCCHE03tKeVSmVFpammYxBQYG2sWDgoI0Uwk0atRIli9fLj179tTsKKyEd+TIEZk2bZru37lzp6Smpmp2lcG9994r5cuXN00p/Pzb3/5mV86HEj+U8+3fv19LBh3ZtWuXZlXB+HIFSgWxWZ8E4GXz0g3YxCaCX/XH9Zg17qUWYW7imTEzrke6GcfADnPRo53M0VWcmqiJmjxQk82mK5LifdWKj4+P/sR7rTtxlDRjLGsc4+L4jIwM3XKKe3t76+YqjrGt90dcxTE2NVETNVETNVETNVETNVETNXm+Jsd9ecKUQpZUw4YNZcyYMZrZBNNowYIFaiJVrVpVj5kxY4aWz5UtW1afFFyg2bNnS+PGjXX/uXPnNNOpSJEidmNjLOwzjrEaUsZ+Y58VnAfZU7igI0eO1PJCV6An1ahRo7LEw1OLSHBKsP6e5HNNEnwTJSw9RILSA8xjEn2SJNE3SQqnhYl/hp8Zv+ybKMk+16RoamHxtV1/gsElvwRJ8UqV4qlF7L5Ix/n9KRleGRKRUtRuDrH+F8Xb5i3hqYXtvkAj7m/zkyKpYWY8zStd4v3/lMCMACmUFmLGU7xT9bwh6UG6GVATNVGT52nCHQm8D8JQt35woSQZ75E7duyw01S/fn1JSUmRPXv22H2ooJ8fxkLGqfVGQe3ateXChQty/PhxM447IXjvRhbqqVOnzDiyV6tUqSInTpzQ91Pr+ys23FjAOQwqV64sJUqU0FJuZNBabzBQEzVREzVREzVREzVREzVRk+drSkxMlDxXvgeOHTumWVCbNm3SC1+3bl2pVq2aZkAdPHhQpkyZoiYUfqL5OI4bNmyYNkZHdhTK9nr06GGXsQQaNGggzZo1k4kTJ6qp9fvvv8uqVavM/WhmjtK8lStXaimgAZ4sNFfftm2bNlh/7733pEuXLm5nSpUrV04mfjnVLN9jZgc1URM13QlNA1r1LZB3ZKiJmqiJmqiJmqiJmqiJmqjJ665rgh8SHh6et8r3AFy7jRs3qqsGEaVKldIeUnDo4My99tprakAZPafgxO3evVtNKphSaF4OV/HSpUt22VLnz5/XfQA/t2/fbnde7Df2WcHqfgDlfjgG2VKuTKmAgADdHMEXVf2yasUr84ut/bH6/7mIO/cUnY3tMu51e+PURE0u49R02zThQwIYK4o6kps4xnIWNz6kbjZufHi5G6cmaqImasouTk3URE3UlF2cmqiJmuSOaHK1L8tcxENB1hIMqYsXL2pGU/v27bVXFDbHi2c4gEbTc6yit3btWnP/4cOH5eTJk1oaCPBz7969EhMTYx6zZs0ade/uu+8+l3PCORwzsAghhBBCCCGEEEJI7vG4TCkYUEgLq169uhw9elSio6O1XhEleTCbmjRpojHUTqJ8D1lVc+bMkalTp5q1k7169ZLBgwdLsWLF1GgaMGCAGlFocg5atWql5tMzzzwjkyZN0j5Sb7zxhvTv39/MdHr//fe1OTrODVAmiGysgQMH3sWrQwghhBBCCCGEEJI/8DhTCvWG6BGFZlwwlTp27Cjjxo1TQwosXLhQ93ft2lXi4+PVmML+fv36mWNgJT5kU+GxyGzCynozZ860y6z673//q6vtwaxCVlb37t1l9OjRdllROA96SiHtDGWF6EfVt2/fXGt6vkXvbGsoCSGEEEIIIYQQQgoaHtfoPD+BnljI3MqpsRchhBBCCCGEEEJIQfNDPC5TKiEhQYYPH67NzNHzqU6dOjJ9+nRd/hBgJTysgrd06VKJi4vTRuQoqbNmSiUnJ8uQIUM0q8qaKRUZGan78ThkWmGJRfyOJQ7Rs2r8+PHmxTp79qyOgaUMUUaIc7zzzjs3pOm9NbPN1fcIIcQTGPzYC3d7CoQQQgghhJACjsc1Ou/du7c2HZ87d642I0f/J6yqd/r0ad2PXlHffvutzJs3Tw4ePCiDBg2SqKgoWb58uTnGSy+9JCtWrJDFixdrz6kzZ85Ihw4dzP0o7YMJhcccOXJEPvvsM/nuu+/sjC2YWREREdprqnbt2nf4KhBCCCGEEEIIIYTkbzyqfC8pKUnCwsJk2bJl0rZtWzOOFfXatGkjY8eOlZo1a0rnzp01m8rZfqSGwUyaP3++dOrUSfcfOnRIatSoIVu3bjWbnTvy7rvvyuTJk+WPP/7Isq9p06bywAMP5DpTykhXG7dkCjOlCCEeBTOlCCGEEEIIIbeLPFm+l5aWJunp6RIYGGgXx0p7mzdv1t8bNWqkGU49e/aU0qVLy4YNGzTbCc3Nwc6dOyU1NVWzqwywgh5W0nNlSiGT6quvvtKV/W4GZFdhsz4JwAv/s3np7zaxIYBfNG5gxL3UIsxNPDNmxv86p1txDOwwFz3ayRxdxamJmqgp72nC+60VLAAB8B5sBQs94N6FNe7l5aXHY0EIbDnFkZ2KzVUcY1vvj7iKY2ycw925UxM1URM1URM1URM1URM1UVPGXdHkuC9PmFLIksJqeGPGjNHMJvSAWrBggZpJVatW1WNmzJghffr0kbJly+qTggs0e/Zsady4se4/d+6c+Pv7S5EiRezGxljYZ6VLly6alYUMrXbt2slHH310U/OfMGGCjBo1Kks8Iq2IBKcF6+9JXtfkT99EKZweIkG2APOYK95JcsUnSYqkh0mA7fpKg+BPn0R9THhaYfGV608wiPdJkBSvVCmRVsTui+sF3z8lXTIkMq2o3RzO+14UH/GW4mmF7b6cnve7KP42PymWHmbG0yRdLvj9qfPDPA2ueaXKRd8ECc0I0s2AmqiJmvKeJvTLs1K/fn1JSUnRXnvWDxX088PdDWScWm8UoKz5woULcvz4cTOOOyF474bRjxVUDZC9ihVMsZppbGysGcf7ODbcWMA5DCpXrqy9/vbt26fvz9YbDHhv37Vrl92Hca1atfR9n5qoiZqoiZqoiZqoiZqoiZrEIzQlJiZKnivfA8eOHdMsqE2bNumFr1u3rlSrVk0zoNBDasqUKWpC4WeFChX0uGHDhmljdGRHoWyvR48edhlLoEGDBtKsWTOZOHGiGYNJdenSJb3wGAOZUmiIfqPle84ypcqVKyfjl7wtgcHXv3Qys4OaqImaPEHTwEf75Ms7MtRETdRETdRETdRETdRETdTkddc1wQ8JDw/PsXzP40wpA7hqEFGqVCntIYVV95YsWaKOHwwoa88pNEeH+4cG6OvWrZMWLVrIxYsX7bKlYGChKTqaoDsD5YGPPPKIOok4pxX2lCKE5DfYU4oQQgghhBByt3tKedzqewYhISFqDsFcWrVqla6Wh15R2ODUWTEcQKPpuZ+fn6xdu9bcf/jwYTl58qSWBrrCeLxjhhUhhBBCCCGEEEIIufV4VE8pAAMKyVvVq1eXo0ePSnR0tNYroiQPZhNK7BBD7SSynzZu3Chz5syRqVOn6uPhxPXq1UsGDx4sxYoVU0duwIABakgZTc5Xrlwp58+f15rM0NBQ2b9/v4758MMPS8WKFc257N69W38iSwv1lvgb9ZH33XffXbo6hBBCCCGEEEIIIfkDjyvfW7RokfZ3QjkeTKWOHTvKuHHj1Gwy+kBh/+rVqyU+Pl6NKTQ+R1keahpBcnKyDBkyRJukI/OpdevW2iuqZMmSun/9+vXy+uuvy4EDB3Q/+j516NBBhg4dalfyZ4xnBef77bffbmm6GiGEEEIIIYQQQkh+wV0/xONMqfwETSlCCCGEEEIIIYQUNC676Yd4XPleQkKCDB8+XJuZx8TESJ06dWT69OlaameU0iGjaenSpRIXFyeVKlWSgQMHSr9+/cwxjEyphQsX2mVKRUZGZjkfxsASiqdPn7Zrjv7VV1/JrFmztGQPY9x///0ycuRIHSu3vLP6Q3P1PUII8WRe+Uf/uz0FQgghhBBCSAHB4xqdYyW9NWvWyNy5c2Xv3r3SqlUradmypZpGAL2isMrevHnz5ODBg7qiXlRUlCxfvtwcA6V8K1askMWLF2vPKayoh/I8Z6D/VK1atbLEN23aJI8++qj2n9q5c6c0a9ZM2rVrJ7t27bqN6gkhhBBCCCGEEEIKBh5VvpeUlCRhYWGybNkyadu2rRnHinpt2rSRsWPHSs2aNaVz586aTeVsP1LDIiIiZP78+dKpUyfdf+jQIalRo4Zs3brVbHYOkAn1xRdfyIgRI6RFixZ2mVLOQLYUzo3jc5OuNmrxZGZKEULyBMyUIoQQQgghhNyp8j2PypRKS0uT9PR0CQwMtItjpb3Nmzfr740aNdKsKGROwU9D0/IjR45oRhVAVlNqaqpmVxlg9b7y5curKWWAJuejR4/Wlfu8vXO+DBkZGVpaiObrhBBCCCGEEEIIIeTm8KieUsiSatiwoYwZM0Yzm9ADCivowUyqWrWqHjNjxgxdba9s2bLi6+urhtLs2bOlcePG5up8/v7+WTKeMBb2AfSI6tKli0yePFnNquPHj+c4tylTpmg/q6eeesrlMRgXm9UZBF42L92ATWwi+FV/ZK7uZ8S9NG8tN3H7FQI1rke6GcfADnPRo53M0VWcmqiJmvKPJtwcsIL3WdwAwA0D68qkPj4+atZjyymO92lsruIY25q06yqOsXEOxzkiDqxzzC5OTdRETdRETdRETdRETdRETRm3VZPjvjxhSgH0kurZs6eUKVNGBdWtW1cNJGRAGabUtm3bNFuqQoUK2vupf//+Urp0abvsqOwYNmyYml7/7//9P7eORyngqFGjtKywRIkSLo+bMGGCHudIyfSiEpwerL8nel2TSz5XpEhGqITYAsxjLntflQSvJCmWUUgCbX5m/KL3FbnqdU0iMoqIn+36Ewwu+FyWa5KqY3tbvlye97kk6ZIhpdPtM7rO+MSLj3hLZHqmWZchNjnrGy8B4ifF0zPT6VK90iXG55IE2wKkaEaoGU/2SpU4n8sSZguSQhnX9VATNVFT/tK0Y8cOM4b3YCwygZRblEFbs1exQMSFCxfsTH2k5+K9FX38Tp06ZcZRUl2lShU5ceKExMbGmnHcXMCGbFecw6By5cr6Xrtv3z4t67ZmveKGA3r7WT+M0RcQNyOscwf169eXlJQU2bNnDzVREzVREzVREzVREzVREzVF3DlNiYmJkud6SlmBAGQalSpVSvs4IUtpyZIlenGxMp+15xSao+NCowH6unXrnPaHgoGFpuhogv7AAw9oE3U4ewCXAC4hnujXX3/dzljCCn4wydA03XpOdzOlypUrJ6MXTTF7St3tLIj8mNlBTdRETbdO0+DWffP0HRl34tRETdRETdRETdRETdRETdSUcVs1wQ8JDw/PsaeUx2VKGYSEhOgGc2nVqlUyadIk7RWFDRfFinGxjabnfn5+snbtWunYsaPGDh8+LCdPntTSQPDll1/auXw//fSTGk/ff/+9uoYGKB1EHMZUToYUCAgI0M0RfFHVL6tWvDK/BNofq/+fi7hzT9HZ2C7jXrc3Tk3U5DJOTR6nCR92Wabi5eU0bnxI3Wzc+PByN+5sLrmNUxM1ZTd3aqImaqKm7OZOTdRETdSU3dypSTTual+WY8XDgAEFB6569epy9OhRiY6O1tSwHj16qNnUpEkTjSFNDdlPGzdu1GblU6dO1ccjk6pXr14yePBgbUoOR27AgAFqSBkr71mNJ4BUN4D0NiO7CiV73bt3l+nTp8uDDz5o9qPCeXEOQgghhBBCCCGEEHLjeJwphdQu9HxCOR5MJWQ7jRs3Tg0pgKwl7O/atavEx8erMYX9/fr1M8eYNm2aun54LMrpWrduLTNnzszVPD788ENNRUO/KmwGMKo+++yzXI01qFWfbNPVCCGEEEIIIYQQQgoaHttTKj+AGkpkVeVUQ0kIIYQQQgghhBBS0PwQj8qUSkhIkOHDh2sj85iYGKlTp46Wz6HLPECz86FDh8rSpUslLi5OKlWqJAMHDrTLkkKGE0rvfv75Zx3PseE5QEd5lAD+8MMP2tUeHeLHjBkjzZo1s+szhXNh1T/UbTZo0ED7WqGzfW6Z/M2/zUbnhBCSl3m9XdTdngIhhBBCCCEkn5C1s9VdBKvorVmzRubOnaur47Vq1Upatmwpp0+f1v3oE4UV9ubNmycHDx7U1fSioqJk+fLl5hhXr16Vxx57TF577TWX53n88ce1NA8r9cF0gtGEmNE3CuYXxihfvrz8+OOPsnnzZgkLC9MyQDRaJ4QQQgghhBBCCCH5pHwPq+HB+Fm2bJndSndYTa9NmzYyduxYqVmzpnTu3FmzqZztt7JhwwbNfHLMlEJT84iICNm0aZM88sgjGkNGFdLJYIjBBNuxY4dmZ2HFvnLlyukxMMmQUfXrr79K1apVc5Wu9sbCScyUIoTkC5gpRQghhBBCCLlV5XsekymFzKX09HQJDAy0i2O1O2QqgUaNGmlWFDKn4KWtX79eS/GQUeUu4eHhurIfVuxLTEzU8/773/+WEiVKqMEFsB/Hffzxx1reB8MMv2N1vooVK95i5YQQQgghhBBCCCEFD4/pKYUsqYYNG2pvJ5g/kZGRsmDBAtm6dauZmTRjxgzp06ePlC1bVnx9fXWFvdmzZ0vjxo3dPg/6Q3333Xfy5JNP6jkxBgwplAUWLVrUnAsyrXAM5gPuueceWbVqlZ7XFVjpD5vVGdRz2rx0u45N8KuX5qcZMY3qn7mPZ8bMuB7pZhwD2xzj1+eY2zg1URM15X9NMPLxPurj4yMZGRm6GbiK430Wm6s4bkhYk3ZdxTE2zoE5WEEc4Hh34ngfx7jWODVREzVREzVREzVREzVREzWl3zJNjvs83pQC6CXVs2dPKVOmjIqpW7eudOnSRfs+GabUtm3bNFuqQoUKWoLXv39/KV26tJbduQMuJB4DI+r777/XTKyPPvpI2rVrp83NS5UqpZlRvXr1kocffliNMVzQKVOmaFkhjsFjnDFhwgQZNWpUlnhZWzEJsgXr71e8kiVerkhRCZVQW2ZW2J9eV+VPuSoRtkISKP5mPN4rQa7INSlpKyp+cv0JBjFef0qypOrY1i+RZ70uSppkSDlbuN0c/vCKE1/xllK2opnXQmwaDxQ/KWErbMZTJV3HCZUAKWYLM+PJkiIxXpelsARL4b/0UBM1UVPB0oTyZrwHohcfyqGPHz9uHo/0XNxUOHPmjJw6dcqMo2S6SpUqcuLECYmNjTXjuMGADRmvSOs1qFy5sr5H79u3T9+PDe69914tx961a5fdhzFKq/39/XVuVurXr6/Zrnv27DFj+GxBeTbOd+jQITNOTdRETdRETdRETdRETdRETUdumSZUpuWpnlJWMHlkGcEgQg8pNB5fsmSJXliszGftOYXm6LjIyHRyp6fU2rVrtdwPcWtdIzKhYERhxT2U6qFR+tmzZ9UVBHhRIJMK+55++mm3M6XQk2r4gsmWnlKenQWRHzM7qImaqOnWaXrlH309+o5MfrzLRE3URE3URE3URE3URE3U5JvHNMEPQVuknHpKeVSmlEFISIhuMI5QMjdp0iRd9Q6bYRIZGBfaXbA6H3Acx3hijGPwNy6ydT/+zu5cAQEBujmCL3X6xc4upv/v5Njcxp17isYXTLfiXrcmTk3U5HLu1JRvNFlLmI0PKUdyGzc+vNyNuyqjzk0c7+fO4tRETdnFqYmaqImasotTEzVREzVlFy9omnyzaX1kNxfxIGBAIeMJqWRYCQ+ZTkgL69GjhzprTZo0kejoaM2CwjGfffaZNiz/3//9X3OMc+fOye7du+Xo0aPmqnn4Oz4+Xv9G3ypkPHXv3l1++eUXTU/DmBjPyMB69NFH1RBDmd/Bgwdl//79OgdcVMyJEEIIIYQQQgghhNwcHlW+t2jRIhk2bJiW4xUrVkw6duwo48aN07I9w3DC/tWrV6vJhL5SaHz+0ksvmVlNI0eOdNrX6dNPP5Vnn31Wf0d94+uvv64/kX11//33y4gRI6RNmzbm8TDFMA5qJ+Eg1qlTR+fy0EMP3fIlEAkhhBBCCCGEEELyC+76IR5lSuU3aEoRQgghhBBCCCGkoHHZTT/E43pKJSQkyPDhw7WheUxMjGYoTZ8+XTvNAzQ9RzPypUuXSlxcnFSqVEkGDhwo/fr1M8dITk6WIUOGyMKFC7XxeOvWrWXmzJkSGRmp+/G4rl27ajd7/I5u8u3bt5fx48fbXaz//Oc/2s/q119/1YuJTKrJkydrs67c8NbX/7Y0OieEkPzNiPZRd3sKhBBCCCGEkDyAR/WUMlbTQ+nc3LlztR8UVspr2bKlnD59WvcPHjxY+07NmzdP+z0NGjRIoqKiZPny5eYYKOdbsWKFLF68WDZu3KjLIHbo0MHcj3I8mFB4DHpKoTfVd999Z2ds/fDDD9KtWzddkQ89pTDW9u3b5bnnnrvDV4QQQgghhBBCCCEk/+FR5XtJSUkSFhYmy5YtM5uOg3r16mmW0tixY6VmzZrSuXNnzaZyth+pYRERETJ//nzp1KmT7j906JDUqFFDtm7d6rIn1LvvvqtZUH/88Yf+PWXKFJk1a5YcO3bMPGbGjBkyceJE7XmVm3S1YfMnMVOKEFJgYKYUIYQQQgghBZvLbpbveVSmVFpamqSnp0tgYKBdPCgoSDZv3qy/N2rUSDOckDkFP239+vWa7YSMKrBz505tXo7sKgOs4Fe+fHk1pZyBTKqvvvpKV/czwCp9MKhWrlyp5zl//rwsWbJE/vGPf9wm9YQQQgghhBBCCCEFB4/qKYUsKZhBY8aM0cwm9IBasGCBmklVq1Y1s5Ww4l7ZsmXF19dXS/Fmz54tjRs3Nlfo8/f3lyJFitiNjbGwz0qXLl00KwsZWu3atZOPPvrI3Pfwww9rTylkZaFHFQwzHPP++++7nD/6V2GzOoPA66//XccmSE27/pcRM6I3Es+M3bq4Ec1dnJqoiZqoCfGMjAzdDPA+jc1VHDcjrEm7ruI+Pj660irej60gDnC8O3F8dmBcaxzj4njHObqKUxM1URM1URM1URM1URM1UVOay7k77ssTphRAL6mePXtKmTJlVFDdunXVPEIGlGFKbdu2TbOlKlSoIJs2bZL+/ftL6dKl7bKj3GHatGny5ptvaqbVsGHDtF8VGqKDAwcOyIsvvigjRozQRulnz56V6Oho7Tv18ccfOx1vwoQJMmrUqCzx8lJMgiRYf78iyXJBrki4hEqoZGaEXZKrupWQQhIk/mb8giTIFbkmpaWo+Mn1Jxiclz8lSVJ1bOuXwtNyUdIkQyqIfTP23yVOfMVbykhRu6+PiAeJn0RKYTOeKuk6TqgESHEJM+NJkiLn5bIUkWDdDKiJmqiJmqyakH1qLXNGSXWVKlXkxIkTEhsba8ZxcwEb3oOR1mtQuXJlXYBi3759etPAmvWKGw67du2y+zCuVauW3ozYsWOHnab69etLSkqKLmphgM8VLJyB86G025qRW7t2bblw4YIcP37cjCPlGDdJqImaqImaqImaqImaqImaqMl9TYmJiZLnekpZgQBkGpUqVUqzlbDqHsrncHGxMp+15xSao+NCowH6unXrpEWLFnLx4kW7bCkYWGiKjibozkB54COPPKJPGs75zDPPaIYUGpy7OsadTKly5crJa/MnW3pK5f0sCFdxaqImaqImxN9o9wLvMlETNVETNVETNVETNVETNRVgTZcvX5bw8PAce0p5XKaUQUhIiG4wl1atWiWTJk3SXlHYcFGsGBfbaHru5+cna9eulY4dO2rs8OHDcvLkSS0NdIXxeMNUunr1qj7pjucBrny8gIAA3RzB17TMr3BGLPP/by7ufC53I05N1HS34tTkWZqMDy9348Z7q7txx/fmG4njQ9RZPLdzpyZqym2cmqgpu7lTEzVREzVlN3dqoiavPKTJ1b4sx4qHAQMKpk/16tXl6NGjWjKH1LAePXqo2YRm5IghTQ3ZTxs3bpQ5c+bI1KlT9fHIpOrVq5eW4hUrVkwduQEDBqghZay8h+blaFyO9LfQ0FDZv3+/jok+UhUrVtRj0D/queee0xX4jPI9ZFo1aNBASwUJIYQQQgghhBBCyI3jceV7ixYt0v5OKMeDqYRsp3HjxqnZBNCsHPtXr14t8fHxakyh8TnK8uAaApTdDRkyRJukI/MJphJ6RZUsWVL3Y8W+119/XftGYT9K7Dp06CBDhw61K/lD/6oPPvhA6y0Rb968uUycOFH7Xd3KJRAJIYQQQgghhBBC8gvu+iEeZ0rlJ2hKEUIIIYQQQgghpKBx2U0/JGsRISGEEEIIIYQQQgghtxmP6imVkJAgw4cP19X1YmJipE6dOjJ9+nTt/QSwAh9K7JYuXSpxcXFSqVIlGThwoPTr188c48MPP5T58+fLzz//rOM5rsJn8PXXX8vo0aN1mcXAwEDtVYVxDX766Sc9186dO7UsEL2k0Gwdyy3mlnErPpAAc/U9QggpOIz+3wF3ewqEEEIIIYQQD8WjMqV69+4ta9askblz58revXulVatW0rJlSzl9+rTuR/Pyb7/9VubNmycHDx7UxuNRUVGyfPlycwysmvfYY4/Ja6+95vI8X375pTzzzDPaPP2XX36RH374Qf71r3+Z+2F+YYzy5cvLjz/+KJs3b5awsDDtTYXV/wghhBBCCCGEEELIzeExPaWSkpLU+Fm2bJm0bdvWjNerV0/atGkjY8eOlZo1a0rnzp01m8rZfisbNmyQZs2aZcmUSktL0xX2Ro0apav0OWPHjh2anXXy5Eltgg5gktWqVUt+/fVXqVq1aq5qKF+ZN5GZUoSQAgkzpQghhBBCCCl4XHazp5THlO/BLEpPT9dSOitBQUGaqQQaNWqkWVE9e/aU0qVLq/F05MgRmTZtmtvnQVkfMq+8vb21PBCr+T3wwAMyefJkNb1A9erVJTw8XD7++GPNuMK88HuNGjXU0HIFVvLDZn0SgNdf/7uOTeACXv/LiBnRG4lnxm5d3IjmLk5N1ERN1OQYx3s73m+xZWRk6GZgxPEea70/4iru4+Oj5dQY0wriAMe7E/f19dVxrXGMi+Md5+gqTk3URE3URE3URE3URE3URE1pLufuuM/jTSlkSTVs2FDGjBmj5k9kZKQsWLBAtm7damYmzZgxQ/r06SNly5bVJwQXZ/bs2dK4cWO3z3P8+HH9OXLkSJk6daqaTG+//bY0bdpUDa5ixYrpXGB4PfnkkzofcM8998iqVav0vK6YMGGCZmA5UtErXIK8gvX3y7YkiZUrUlxCpZBXZvZUvC1RLspVKelVWILF34zH2BIkQZKlrFdR8bc8XWdslyRJUqWiVzHxtlRhnrTFS5pkSGWv4va6bRfEV7ylvFcxM5YhGXLCFidB4ielvTKzyVIkTf6wXZQwCZQSXmFm/KqkyFnbn1JUgqWYV4gZpyZqoiZqcqUJmacRERFSpUoVOXHihMTGxprH470cG957cQfFoHLlylKiRAnZt2+fZtEa3HvvvZr5umvXLrsPY2Sx+vv767ms1K9fX1JSUrR3oPWDEpmwON+hQ4fsboCgZ+CFCxfMzwmAuzv4TDpz5oycOnXKjFMTNVETNVETNVETNVETNVHTLpeaEhMTJU+V74Fjx45pFtSmTZv0otetW1eqVaumzcbRQ2rKlClqQuFnhQoV9Lhhw4ZpY3T0nnKnfA9N0Lt27Sr//ve/1eACyG7CE4ASwL59++rFhkmFC42eVbjIOCeefDRAxxPvbqYUyv9enTfJUr6Xv7IgqImaqImasosPb9ePd5moiZqoiZqoiZqoiZqoiZoKmKbLly9rBVqeKd8DcOw2btyojhoElCpVSntIwZ2DUYRSOhhQRs8puHC7d+9Ww8jRlHIFxgT33XefGQsICNBzoIeUYVz99ttvmqWFJ8CIFS1aVHtePf30007HxjjYHMHXtMyvakYs8/9vLu7cU7wbcWqiprsVpybP1WTNLjU+1BwxPrzcjbvKWM1NHB+izuKu5pjbODVRk6s4NVFTdnOnJmqiJmrKbu7URE1eeUhTdlVmdnMRDyQkJETNI2Q5oWSuffv2uuodNscLZ7h/7oLG6DCODh8+bMYwLkwoZF8ZK/jhPHjCDYy/c3MuQgghhBBCCCGEEJIHMqVgQCElDI3Gjx49KtHR0VpC16NHD/Hz85MmTZpoDOVzMJCQVTVnzhztDWWAxuXY8Hhj1Tz0iCpfvrz2i0LaWL9+/eTNN9/U0jqMgybn4J///Kf+fPTRR/U8/fv3lwEDBqgR9dZbb6nTh5JAQgghhBBCCCGEEJKPTCnUGqJHFBpxwUDq2LGjjBs3Tg0psHDhQt2PnlDx8fFqKGE/TCaDDz74wK7ZuNEE/dNPP5Vnn31Wf4cJBYPpmWee0bLABx98UNatW6fleQBG2IoVK3QcNF83Vur79ttvzfK/3PB6u37Z1lASQgghhBBCCCGEFDQ8qtF5fgN9sdD1PqfGXoQQQgghhBBCCCEFzQ/xqEwpkJCQIMOHD9eG5jExMZqhNH36dF3+EFy5ckWGDh0qS5culbi4OKlUqZIMHDjQLlsqOTlZhgwZoplVWA2vdevWMnPmTImMjDSPsfaLMliwYIFdE/P//Oc/MmnSJPn111/1YrZp00azrNBBPjeMXvaBBAQH3uAVIYSQ/MW4jgPv9hQIIYQQQgghHoDHNTrv3bu3rFmzRubOnav9oFq1aqUr650+fVr3Dx48WMvo5s2bJwcPHpRBgwZJVFSULF++3BzjpZde0vK7xYsXa9+pM2fOSIcOHbKcCyV9Z8+eNbcnn3zS3PfDDz9It27dpFevXrJ//34da/v27fLcc8/doStBCCGEEEIIIYQQkn/xKFMK/Z2+/PJLzU5CL6iqVavKyJEj9eesWbP0mC1btkj37t2ladOmUrFiRenTp4/Url1bDSOA1LCPP/5Ym583b95cV9uD+YTHbdu2ze58RYoUkZIlS5pbYGBmNtPWrVt1fGRhIRvr73//u/Tt29c8DyGEEEIIIYQQQgi5cTyqfC8tLU3S09PtzCGA1fY2b96svzdq1Eizonr27CmlS5eWDRs2yJEjR2TatGm6f+fOnZKamqrZVQZoXI7V92A0PfTQQ2Ycq+shM6ty5cpa/odV/oyyPjQ4f+2112TlypVatodSwiVLlsg//vEPl/NHqSA2aw2l4fx5y/Vxbfo/0b+8/oplF8/QqOu4Me6tjBtzcRV3d+7URE3URE3O4niv18d6e+uG931re0NXcR8fH32PNh5vjQMc704cC11gXGsc4+J4rLaKLae4MUdXcWqiJmqiJmqiJmqiJmqipoKsKc1hX54wpcLCwtQMGjNmjNSoUUN7QKHPE8wkZEuBGTNmaHZU2bJl9UnBBZo9e7a5yt65c+fE399fs6CsYCzsMxg9erRmUgUHB8vq1avlhRde0H5VyIwCDz/8sPaU6ty5s/aowgVt166dvP/++y7nP2HCBLuV/wwqeYdLkHew/n7ZliznbQlSwitMCnllmm/xtkSJs12V0t6FJVj8zTiOxWPKexcTf7n+BIPTGX/KVUnRsa1fCn/PiJc0yZAq3sXt5nAs44L4irdU8C5m92UTcZyvjHdhM54i6ToO5hfpFWbGcT6ct5hXsBTzCjHj1ERN1ERNudG0Y8cOjeN9HBtuLCDL1QA3CkqUKCH79u3TDFrrDQa8t+/atcvuw7hWrVr6vm+Ma1C/fn1JSUmRPXv22H1Qokchznfo0CG7mx/Iur1w4YIcP37cjKOfID6PUAaOlWENIiIipEqVKnLixAmJjY0149RETdRETdRETdRETdRETdS0QxITEyVPrr537NgxzYLatGmTXvi6detKtWrVNAMKPaSmTJmiJhR+VqhQQY8bNmyYNkZHdtT8+fM148masQQaNGggzZo1k4kTJzo974gRI7TM748//tC/Dxw4oOOhPxUapaPnVHR0tL4QUB7obqZUuXLlJHrORAkIDiowWRDURE3URE3Zzf3N9s9ffyzvMlETNVETNVETNVETNVETNUl+1AQ/BIvE5bT6nseZUgZw1SCiVKlSmq2ELCaUz8HxgwHVtm1b81iU4MH9QwP0devWSYsWLeTixYt22VIwsNAUHSaTM77++mt5/PHHNSsqICBAnnnmGf0dDc4NUEL4yCOPqNuIebm7BOIQNaW4+h4hhACuvkcIIYQQQkj+xvBDcjKlPKrRuZWQkBA1fmAurVq1Stq3b6+9orDBqbNiOIAAjc39/Pxk7dq15v7Dhw/LyZMntTTQFbt375aiRYuqIQWuXr3q9DzAQ308QgghhBBCCCGEkDyDR/WUAjCgYPpUr15djh49qiVzqFdESR7MpiZNmmgMtZPIftq4caPMmTNHV9sDcOJ69eolgwcPlmLFiqkjN2DAADWkjCbnK1askPPnz+vfaKq+Zs0aGT9+vLz88svmPNA/6rnnntNV/4zyPWRaoQwQDdYJIYQQQgghhBBCyI3jceV7ixYt0h5RKMeDqdSxY0cZN26cmk0AzcqxH83J4+Pj1ZhC43OU5Rkr56HsbsiQIdokHT2eYCrNnDlTSpYsqftR5ocxYHpBPpqoP//882pCWbOj0FT9gw8+0CZgKAVEY3T0pCpTpswtTVcjhBBCCCGEEEIIyS+464d4nCmVn6ApRQghhBBCCCGEkILGZTf9EI8q30tISJDhw4drI/OYmBipU6eOTJ8+XVe8A2h2PnToUFm6dKnExcVJpUqVZODAgdKvXz9zjA8//FBX4Pv55591PMeG5wD7Xn31Vfnpp5+0TxSysVD+Fxoaah6DfTgXVv1DBhbK9iZNmqTLLeaWEf83i43OCSHkLyb+88W7PQVCCCGEEEKIB+BRjc6xih76O82dO1f27t0rrVq1kpYtW8rp06d1P/pEofRu3rx5cvDgQe3xFBUVJcuXLzfHQIPyxx57TF577TWn58DKeRgTJXs//vijjrd//3559tlnzWNgfmGM8uXL6zFYdS8sLEzLANFonRBCCCGEEEIIIYTcHB5TvpeUlKTGz7Jly6Rt27ZmHKvptWnTRsaOHSs1a9aUzp07azaVs/1WNmzYIM2aNcuSKYVMKjwejcuN/lEwwGrVqiW//vqrmlU7duzQ7Cys2FeuXDmnx+QmXe3Fz95iphQhhPwFM6UIIYQQQgjJ37hbvucxmVJpaWmSnp6uq+FZwSp7yFQCjRo10qwoZE7BS1u/fr0cOXJEM6rcBY3P/f397Rqa4xzAOA9W/gsPD5ePP/5YUlJS1DDD7zVq1JCKFSveIsWEEEIIIYQQQgghBReP6SmFLKmGDRvKmDFj1PyJjIzU1fO2bt1qZiZhNTystFe2bFnx9fVVY2n27NnSuHFjt8+DFfRQBjh58mR58cUXJTExUXtHAWRPGXNBptWTTz6p8wH33HOPrFq1Ss+bneGFzeoMAm/x0g3Y9H+if3n9FbOPW6MiGRp1HTfGvZVxRGzZxF3PnZqoiZqoKWdNuAmhj/X21g03JKxJu67i6AGIHn/G461xgOPdieN9HONa4xgXx2dkZOiWU9yYo6s4NVETNVETNVETNVETNVFTQdaU5rDP400pgF5SPXv2lDJlyqiYunXrSpcuXbTZuGFKbdu2TbOlKlSoIJs2bZL+/ftL6dKltU+UO9x///3y+eefqzE1bNgwPQ+apcMEM7KnkBnVq1cvefjhh9UYwwWdMmWKlhWiAbqRWeXIhAkTZNSoUVniVX3DJcg3WH+/lJEk5zISJNI7TIp4Z45zISNRt7I+hSXEy9+Mn02/LH/akqWST1Hx98p8uv5IvySJthSp6lNcvL0yv/wdT4uTNMmQar4RdnM4khYrvuItlX3DzViGzSZH0mP1fOV8MkscU2xpcjw9Xgp7BUopn8w0O5wP5w33DpHi3iFmnJqoiZqoKTeaUCINcIMBGzJekdZrULlyZSlRooTs27dP348N7r33Xi3H3rVrl92HMUqrkQFrjGtQv359zXbds2ePGcN7Psqzcb5Dhw6ZcbyvYyGLCxcuyPHjx804Uo5xowT9CE+dOmXGIyIipEqVKnLixAmJjY0149RETdRETdRETdRETdRETdS0QxOA8lRPKSuYPLKMSpUqpT2k0Hh8yZIlemGxMp+15xSao+Mio2G5Oz2lrJw/f15CQkLU4UON48KFC+Wf//ynluqhUbq17xReFEWLFtV9Tz/9tNuZUuhJ9dJnE82eUgUhC4KaqImaqCk7TWP+94Xrj+VdJmqiJmqiJmqiJmqiJmqiJsmPmuCHoC1STj2lPCpTygBGETYYSiiZmzRpkq56h80wiQyMC30jIDsKfPLJJ9rL6tFHHzVX8MN5cJENjL+zO1dAQIBujuBLnfHFztmXOvu4s6jruOO4dyLueu7URE3UlNt4QdTkWAZtfHg54iruqow6N3G8nzuLGx+8NxunJmpyFacmaspu7tRETdRETdnNnZqoySsPacqu9ZHdseJBwICC+4ZG40ePHpXo6GhNC+vRo4f4+flJkyZNNIYUNZTvbdy4UebMmSNTp041xzh37pxueLyxah56RJUvX16KFSumsffee0+bpoeGhsqaNWt0zLfeesvMqII5hRhKAwcMGKBGFPbjoiL7ihBCCCGEEEIIIYTcHB5Vvrdo0SLt84RyPBhIHTt2lHHjxmnZHoDZhP2rV6+W+Ph4NabQ+Pyll14ys5pGjhzptK/Tp59+Ks8++6z+3q1bN/n666+1LBCm18svvyzPPPOM3fEwqzAOaifhINapU0fn8tBDD93yJRAJIYQQQgghhBBC8gvu+iEeZUrlN2hKEUIIIYQQQgghpKBx2U0/xKPK90BCQoIMHz5cG5rHxMRohtL06dO10zxAdtPQoUNl6dKlEhcXJ5UqVdLV8/r162eOkZycLEOGDNHG5Wg83rp1a5k5c6bZQwpY+0UZYKU9o4m50SjdETQ/L1myZK40vb5kltnonBBCiD1Tnn7xbk+BEEIIIYQQchfwOFMKq+mhZG7u3LlSunRpmTdvnrRs2VIOHDggZcqUkcGDB8u6des0XrFiRS3le+GFF/TYJ554QsdAOR/K8xYvXqzOXFRUlHTo0EF++OGHLCV9jz32mPm3s1X6Dh8+bOfqYTlEQgghhBBCCCGEEHJzZG23fhdJSkqSL7/8Ulfba9y4sVStWlV7ROHnrFmz9JgtW7ZI9+7dpWnTpmpKoadU7dq1Zfv27bofqWEff/yxNj9v3ry51KtXT80nPG7btm1254MJhawnY8MKfI7AhLIe46xDPSGEEEIIIYQQQgjJHR7lsKSlpUl6enoWcwir7W3evFl/x6p5y5cvl9OnT+tKfevXr5cjR45Iq1atdP/OnTslNTVVs6sM0Mwcq+9t3brVblysrle8eHFp0KCBfPLJJzqeIw888ICUKlVKV+RzzLQihBBCCCGEEEIIIfmgfC8sLEwaNmwoY8aMkRo1amgPKPR5gpmEbCkwY8YMzY4qW7as+Pr6aubS7NmzNbPKWKHP398/SykexsI+g9GjR2smVXBwsFkCiH5V6E8FYER98MEHUr9+fe1L9dFHH2l21o8//ih169Z1On8ch83a2At4i5duwKb/E/3L66+YfdwaFcnQqOu4Me6tjCNiyybueu7URE3URE2514SbEdabAnhfx+YY9/Hx0X6AuIFhBXGA492J47MD41rjGBfHZ2Rk6JZT3Jijqzg1URM1URM1URM1URM1UVNB1pTmsC9PmFIAvaR69uyp/aMgCAZQly5dNAPKMKVQhodsqQoVKsimTZs04wk9pazZUTmBZuoGaKaemJgokydPNk2p6tWr62aADK1jx47JtGnTdI7OmDBhgowaNSpLvJp/uAT5B+vvl9KT5Ex6gpTyCZMiPkHmMbHpibqV9y0sId7+ZvxM2mW5lJEslf2KSoBX5tP1e+olSbSlSDW/4uJtadp+LDVOUm0Zcq9/hN0cDqXEip+Xt1TxCzdjGTabHEqNlRAvf6ngl2niXbOlybHUeCniHSilfTP7aSVmpMjvaZekuE+IRPiEmHFqoiZqoqab0YRsV5ReG1SuXFlLp9FfEGXd1qxX3HDYtWuX3YdxrVq19GbEjh077DThpkJKSors2bPHjOFzBQtn4HyHDh2yy8hFKfiFCxfk+PHjZhx9CXGT5MyZM3Lq1CkzHhERIVWqVJETJ05IbGysGccNE2zURE3URE3URE3URE3URE0FWVNiYqK4g5fNWc2aBwAByDRCxlLnzp01i2nJkiV6cbEyX9u2be2ao+NCf/vtt9oEvUWLFnLx4kW7bCkYWIMGDdIm6M5AY/THH39cV+4LCAhwekx0dLSWETqWAWaXKVWuXDkZ+PFEc/W9gpgFQU3URE3UlJ2mif+M4l0maqImaqImaqImaqImaqImyT+a4IeEh4eryWVdPM7jM6UMQkJCdIO5tGrVKm1+jl5R2HBRrBgXG6CxuZ+fn6xdu1Y6duxorqB38uRJLQ10xe7du6Vo0aIuDSnjGJhkrsBjnT0eX+qML3bOvtTZx51FXccdx70TcddzpyZqoqbcxqkp88PL3Tg+kG82jg9RZ3Hjg/dm49RETa7i1ERN2c2dmqiJmqgpu7lTEzV55SFNrvZlOVY8DBhQcOBQOnf06FHNTkJqWI8ePdRsatKkicaQpobsp40bN8qcOXN0tT2ATKpevXrJ4MGDpVixYurIDRgwQA2phx56SI9ZsWKFnD9/Xv9GU/U1a9bI+PHj5eWXXzbn8c4770ilSpXk/vvv1+wp9JRCFhb6TxFCCCGEEEIIIYSQm8PjTCmkdg0bNkzL8WAqIdtp3LhxakiBhQsX6v6uXbtKfHy8GlPY369fP3MM9H2C64fHopyudevWMnPmTHM/xnr//fe1lA8GGJqow9R67rnnzGNQwzlkyBBd5Q/N0FEb+d1330mzZs1yrWlcp+ezTVcjhBBCCCGEEEIIKWh4bE+p/ABqKJG5lVMNJSGEEEIIIYQQQkhB80M8LlMqISFBV8ZDM/OYmBhdGW/69OnaaR6g4fnQoUNl6dKlEhcXpyV2WDHPmimFcjtkOSGrypopFRkZqft/+eUXeeutt7RpObrUV6xYUR//4osvmmN89dVXMmvWLO0jhTFQxjdy5EgdK7cMXTzTbHROCCHENdO6DLrbUyCEEEIIIYTcIbJ2trrLYCU99HiaO3eu7N27V1q1aiUtW7bUMjqAXlFYZW/evHly8OBBXVEvKipKli9fbo6Bsjz0jVq8eLH2nMIyiB06dDD379y5U5c1xBj79++X119/XUsC33vvPfOYTZs2yaOPPiorV67U41G2165dO13ykBBCCCGEEEIIIYTko/K9pKQkCQsLk2XLlknbtm3NOFbUa9OmjYwdO1Zq1qwpnTt31mwqZ/uRGhYRESHz58+XTp066f5Dhw5JjRo1ZOvWrWazc0f69++vJheambsC2VI494gRI3KVrvb8RxOYKUUIIW7ATClCCCGEEEIKTvmeR2VKpaWlSXp6uq6IZwUr7aHUDjRq1EizopA5BT9t/fr1cuTIEc2oAshqSk1N1ewqA6zeV758eTWlXIELhcbqrsjIyNDSwuyOIYQQQgghhBBCCCHu4VE9pZAl1bBhQxkzZoxmNqEH1IIFC9RMwgp5YMaMGdKnTx8pW7as+Pr66ip7s2fPlsaNG+v+c+fOib+/vxQpUsRubIyFfc7YsmWLfPHFF/L111+7nNuUKVO0n9VTTz3l8hj0nsJmdQaBt3jpBmz6P9G/vP6KWePGcTnFMzR6e+OOc3QVpyZqoiZqulWacHMC7+vYcJPCmszr4+MjXl5eeowVxAGOdyeOzw6Ma41jXByPGxDYcoobc3QVd5w7NVETNVETNVETNVETNVFTQdKU5rAvT5hSAL2kevbsKWXKlFFBdevWlS5dumgGlGFKbdu2TbOlKlSooL2fUHpXunRpu+wod9m3b5+0b99e3nzzTTPbyhGUAo4aNUrLCtGLyhUTJkzQ4xy5N6C4BAUE6+8X05PkdNplKe1bSIr6BJnHxKRdkZj0RCnvV1hCvQPM+OnUy3IxI0mq+BWTAO/Mp+u3lItyxZYi9/oXF2+vzIS3X1MuSKotQ+4LsJ/ngWsx4uflLff4FzdjGbYMOZASK6Fe/lLRv6gZv5aRJr+mxkkR7yAp45eZZncl45r8lnpJInxCpIRvqBmnJmqiJmq6VZp27NghlStX1vdavD+jrNua9YobDujtZ/0wrlWrlt6MwGOt1K9fX1JSUmTPnj1mDJ8rWDgD2bEo7bZm5NauXVsXvzh+/LgZR8oxbpKgN+GpU6fMOMrEq1SpIidOnJDY2Fgzjhsm2JDBi3MYUBM1URM1URM1URM1URM1FSRNiYmJkud6SlmBAGQalSpVSvs4IUtpyZIlenGxMp+15xSao+NCowE6ekK1aNFCLl68aJctBQMLTdHRBN3gwIED2sAcjx83bpzTeWAFP5hkaJpuPae7mVLlypWT/h+9ZfaUKuhZENRETdRETdnNfeI/+/MuEzVREzVREzVREzVREzVRU3re1gQ/JDw8PMeeUh6XKWUQEhKiG8ylVatWyaRJk7RXFDZcFCvGxTaanvv5+cnatWulY8eOGjt8+LCcPHlSSwMNsOpe8+bNpXv37i4NKZQOwpCCMZWTIQUCAgJ0cwRf0owvdgb46/rXsazHOuNuxF3NMbdxaqKm3MapqeBqwoet44eaI9ZjbjSOD1FnceOD92bjruZOTdRETdSU3dypiZqoiZqymzs1UZNXHtLkal+WY8XDgAEFB6569epy9OhRiY6O1tSwHj16qNnUpEkTjSFNDdlPGzdulDlz5sjUqVP18cik6tWrlwwePFibksORGzBggBpSxsp7SD2DIdW6dWs9zug1hQuNdDajZA+G1fTp0+XBBx80j8F5cQ5CCCGEEEIIIYQQcuN4XPneokWLZNiwYVqOB1MJ2U7IZDKMIJhD2L969WqJj49XYwqNz1GWB9cQJCcny5AhQzTTCeV0MJ9mzpwpJUuW1P0jR4502vsJY/3222/6e9OmTdXwcgRG1WeffXZLl0AkhBBCCCGEEEIIyS+464d4nCmVn6ApRQghhBBCCCGEkILGZTf9kKxFhIQQQgghhBBCCCGE3GY8rqdUQkKCDB8+XFfYi4mJkTp16mhfJyx/CLAK39ChQ2Xp0qUSFxcnlSpVkoEDB0q/fv3MMT788EPtCfXzzz/reI4r8VlBeR96Rv3yyy+6nOEDDzxg19/qzTff1KbogYGB0rhxY3n77belYsWKudIU/cX74h90ffU9QgghN8aM/5e5eiohhBBCCCEk7+NxmVK9e/eWNWvWyNy5c2Xv3r3SqlUradmypZw+fVr3ozH5t99+K/PmzZODBw/KoEGDJCoqSpYvX26OcfXqVXnsscfktddey/F8r7zyipQuXTpL/MSJE9K+fXttiL579241qC5cuCAdOnS4xYoJIYQQQgghhBBCCh4eZUolJSXJl19+KZMmTdKspKpVq2pTcvycNWuWHrNlyxZtNo5G5MhYQpPz2rVry/bt281xYFQhm8pYbc8V33zzjTZMnzJlSpZ9O3fulPT0dBk7dqxUqVJF6tatKy+//LIaVKmpqbdBPSGEEEIIIYQQQkjBwaPK99LS0tQIQqmclaCgINm8ebP+3qhRI82K6tmzp2Y4bdiwQY4cOSLTpk3L1bnOnz8vzz33nJYBBgcHZ9lfr1498fb2lk8//VSeffZZLRtE9haytvz8/FyWAmKzNvYCXuIl3nJ9ZUCb/g+x63EDI24cl1M8Q6O3N+44R1dxaqImaqKmO6EJ63JglVV8Vljx8fHRn/j8cCfu6+urY1njGBfHZ2Rk6JZTHJ8P2FzFMbZ1HRFXcYxNTdRETdRETdRETdRETdSU3zQ57ssTplRYWJg0bNhQxowZIzVq1JDIyEhZsGCBbN26VbOlwIwZMzQ7qmzZsvqk4ALNnj1bM6vcBRcTRhP6UNWvX19+++23LMegVxWyqJ566inp27evXlTMbeXKlS7HnTBhgowaNSpL/P7A4hIUdN34ik9Lkj9SL0tZv0JSzDfIPOZc6hU5n5YoFf2LSJiPvxn/I+WyxKcnyT0BxSTQO/PpOn7toiRkpMj9gRHi7ZX5xe1Q8gVJtWXI34JK2M1hb1KM+Hl5y72Bxc1Yhs0me5NjJMzbXyoHFDXjyRlpcvhanBT1CZJy/pld8hPSU+R4ykUp4RsiJf1CzTg1URM1UdOd0ISVO9AfEP3/rB/GtWrVEn9/f9mxY4edJry/p6SkyJ49e+w+KNGjEGMdOnTI7uYHsm5Rpn38+HEzjhVD8Hl05swZOXXqlBmPiIjQLFqUesfGxppxfDZhw80SnMOgcuXKUqJECdm3b59mBRvce++91ERN1ERN1ERN1ERN1ERN+U5TYmKiuIOXzWp3eQDHjh3TLKhNmzbphUfZXLVq1bScDj2kUGoHEwo/K1SooMcNGzZMG6Mji8kKsqiaNWuWpdH5u+++K4sWLZKNGzfqOWBKwYSyNjo/d+6cGl1PPvmkdOnSRRumjxgxQo0w9LyCK+hOplS5cuWk74cTJOCvRufMgqAmaqImaroxTe90fbFA3mWiJmqiJmqiJmqiJmqiJmryzWOa4IeEh4eryVWoUOaNbI83pQzgqkFEqVKlpHPnzlo+t2TJEnX8YEC1bdvWrjk63D80QHfHlILRtGLFCjtjCRcNF7Br167y+eef6wqAGO+nn34yj8E5YDIhcyunflUA88d8+3w4nqvvEULITcLV9wghhBBCCMkbGH5ITqaUR5XvWQkJCdENhhJWvkPzczQYxwanzorhALoLMqXQwNwAKW2tW7eWL774Qh588EFzBT9n5wG5ORchhBBCCCGEEEIIyQOmFAwoJG9Vr15djh49KtHR0Vqv2KNHD20w3qRJE42hdhLleyjBmzNnjkydOtUcA6V32PB4sHfvXu1XVb58eSlWrJj+tBIaer33CWorUUcJkImF5umjR482y/dee+01PWedOnXu6DUhhBBCCCGEEEIIyW94nCmF1C70iEKpHAykjh07yrhx48wV7xYuXKj7UWYXHx+vJhH2o2m5wQcffGDXcNxogm6spOcOzZs3l/nz52uGFjas0IdG5yjpgyGWGyZ37p9tuhohhBBCCCGEEEJIQcNje0oVpBpKQgghhBBCCCGEkPxCnu0phTI5NBlHM/OYmBgtlZs+fboufwjQ8Hzo0KGydOlSiYuL01XzBg4caJcp9eGHH2qW088//6zjOTY6NxqgO2P79u3muVBK+Oabb8r+/fslMDBQM67efvttqVixYq40DVnwPhudE0LIbeL9bmyATgghhBBCSF7EvpO3B4CV9NasWSNz587VXlCtWrWSli1byunTp3X/4MGDtYRu3rx5cvDgQRk0aJBERUXJ8uXLzTHQpPyxxx7THlDOaNSokZw9e9Zuw3lhcNWvX1+POXHihLRv317L+Hbv3q0G1YULF6RDhw536EoQQgghhBBCCCGE5F88KlMqKSlJvvzyS1m2bJnZB2rkyJGyYsUKmTVrlq6Yt2XLFunevbs0bdpU9/fp00f+/e9/a4bTE088oTEYVUZGlDP8/f2lZMmS5t9Y0Q/nHDBggHh5eWls586dkp6eruc0VuF7+eWX1ajC8UaPK0IIIYQQQgghhBCSx02ptLQ0NYJQKmcFjcU3b95sZjkhK6pnz55SunRpNZ6OHDmiK+XdKBgPpYBY4c+gXr16akYZzdFRNojsLWRtuTKkrl27ppu1hhJ4i5duwKb/E/3L66+YNW4cl1M8Q6O3N+44R1dxaqImaqKmu6nJaI2Izw8rPj4+TuO+vr76GGscNyRwfEZGhm45xfH5gM1VHGNbWza6imNsnAOff+7MnZqoiZqoiZqoiZqoiZqoKS9octyXJ0ypsLAwXeFuzJgxUqNGDYmMjJQFCxbI1q1bpWrVqnrMjBkzNDuqbNmy+qTgAs2ePdvMrLoRPv74Y2ndurWOaYBSvtWrV8tTTz0lffv21YuKua1cudLlOBMmTLBb9c+gZlBxCQoO1t/j0pLkZMplKedfSMJ9M1fxO5t6Rc6lJkqlgCJSyMffjONYPKZ6YDEJ9M58uo4mX5SEjBSpGRQhPn9ld4GDSRckxZYhtYNL2M3hl6sx4u/lLTWCipuxdJtN9iTFSJi3v1QNLGrGkzPS5GBynBTzDZLy/pkNyS6np8ixaxcl0i9ESvmFmnFqoiZqoqa7qQlZtsiA3bFjh50mlGOnpKTInj177D4o0TcQDRcPHTpkd/Ojdu3aWqZ9/PhxM47mjPg8OnPmjK4KaxARESFVqlTRUu/Y2Fgzjs8RbLhZgnMYVK5cWUqUKCH79u3T+Rrce++92vNw165ddv+BUatWLWqiJmqiJmqiJmqiJmqipjyrKTExUfLk6nvHjh3TLKhNmzbpha9bt65Uq1ZNy+nQQ2rKlClqQuFnhQoV9Lhhw4ZpY3RkMVkxGpo7Njq3gicI4yxatEg6duxoxs+dO6dG15NPPildunTRhukjRoxQIww9r4wyv5wypcqVKyd9PphgNjpnFgQ1URM1UdOt1fTuMy/m67tM1ERN1ERN1ERN1ERN1ERNvnlME/yQ8PDwHFff8zhTygCuGkSUKlVKOnfurOVzS5YsUccPBlTbtm3NY9GkHOYSGqDn1pRCVhayr9BI3VqWhxUAMd5PP/1kxnAOmEzI3HrooYfcXgKx9wfjufoeIYTcJrj6HiGEEEIIIZ6F4YfkZEp53Op7BiEhIWpIwVDCyndGg3FscOqsGA5gboEfh55R3bp1y9InCiv4OTsPuJFzEUIIIYQQQgghhBAP7SkFYEDBLKpevbocPXpUoqOjtV4RTchhHDVp0kRjqJ1E2d3GjRtlzpw5MnXqVLvSO2x4PNi7d6/2qypfvrwUK1bMPG7dunVaS4lMK0eQiYXm6aNHjzbL91577TU9Z506de7Q1SCEEEIIIYQQQgjJn3hc+R56O6FHFErlYCChz9O4ceM07QvAbMJ+NCGPj49XkwiNz1966SWzz9PIkSOdNhw3VtIz+Ne//iW///67/PDDD07nsnDhQpk0aZI2+woODtZG5xMnTlST7FamqxFCCCGEEEIIIYTkF9z1QzzOlMpP0JQihBBCCCGEEEJIQeOym36Ix5XvoUwOTcbRzDwmJkZL5aZPn67LHwI0PB86dKgsXbpU4uLipFKlSjJw4EDp16+fOUZycrIMGTJEM52wGl7r1q1l5syZEhkZaR6DxyBDCksbYqnE3bt3O83aGj9+vGZKYenEqKgoLR3MLYP+8x4bnRNCSB7mg2cH3+0pEEIIIYQQku/wuEbn6O+0Zs0amTt3rvaCatWqlbRs2VJXxwODBw/WVfHmzZsnBw8elEGDBqlZtHz5cnMMlPKtWLFCFi9erD2nzpw5Ix06dMhyrp49e+rKfs745ptvpGvXrmp2wbiCqYUeU++9995tVE8IIYQQQgghhBBSMPCo8r2kpCRtSL5s2TJtNG5Qr149adOmjYwdO1Zq1qypRhKyqZztR2oYsprmz58vnTp10v2HDh3SbKitW7fKQw89ZHdO9J9C1pVjphT6TWGlPxhbBjNmzNAeUydPnjT7V7mTrtZj5jhmShFCSB6GmVKEEEIIIYTk8/K9tLQ0SU9Pl8BAewMHK+1t3rxZf2/UqJFmRSHLqXTp0rJhwwYtr0MWE9i5c6eaSciuMkBjcqy858yUcgXK/tDc3HEeaMCO5ugVK1Z0+hhs1icBeIuXbsCm/xP9y+uvmDVuHJdTPEOjtzfuOEdXcWqiJmqipvyuKSMjQzcDb29v3VzF8VlmvefjKu7j46M3OfD5ZwVxgOPdifv6+uq41jjGxfGOc3QVpyZqoiZqoiZqoiZqoiZqst0iTY778oQphSwprHA3ZswYzWxCD6gFCxaomVS1alUzWwmr7ZUtW1afFFyg2bNnS+PGjc3V+fz9/aVIkSJ2Y2Ms7HMX9KFCGSBW62vWrJkcPXpU3n77bd139uxZp6bUhAkTnK76Vys4QoL+MrgupCXJ79f+lPIBhaW4b5B5zJmUK3I29YpUCSwihXwCzDiOxWPuDQqXIO/Mp+vX5Hi5nJ4itUJKiI/lC9T+qxckxZYudUIy+2eBXYnnxd/LR+4PLm7G0sUmuxPPSyEff7knsJgZT8pIkwNJFyTcN0gqBFxf9RBcTr8mvyZflJJ+oVLaP9SMUxM1URM15XdNKAPHTQkDZORWqVJFTpw4IbGxsWYcn03YcLMEd4UMKleuLCVKlNBycGQFW2+a4PNq165ddv+BUatWLf0s27Fjh52m+vXrS0pKiuzZs8fuwx99F3E+ZAZbb6TUrl1bLly4IMePHzfjuGOFz1hqoiZqoiZqoiZqoiZqoqbbpSkxMVHyXPkeOHbsmGZBbdq0SS983bp1pVq1apoBhR5SU6ZMURMKPytUqKDHDRs2TBujIzsKZXs9evSwy1gCDRo0UHNp4sSJbpXv4bKgofq7776rmVdIN3vxxRf1+G3btsmDDz7oVqZUuXLlpNfM8Wb5Xn7IGMiPWRDURE3URE3ZaZrZbRDvnFETNVETNVETNVETNVETNYl7muCHhIeH51i+53GmlAFcNYgoVaqU9pDCqntLlixRxw8GlLXnFJqjw/1DA/R169ZJixYt5OLFi3bZUjCw0BQd2U/umFIGuJjIsIKjuHbtWvnHP/6hqwLi75xgTylCCMkfsKcUIYQQQgght76nlMetvmcQEhKihhTMpVWrVkn79u01YwkbnDorhgNoND338/NTA8ng8OHD2pwcpYG5BWOXKVNGU9BQSogx3DGkCCGEEEIIIYQQQkge6SkFYEAheat69eraxyk6OlrrFVGSB7OpSZMmGkPtJLKfNm7cKHPmzJGpU6fq4+HE9erVSwYPHizFihVTR27AgAFqJlmbnGNsZF8hCwq1kUam1H333acGFGoykZnVtGlTSU5Olk8//VRX4sP5CCGEEEIIIYQQQsjN4XHle4sWLdIeUSjHg6nUsWNHGTdunJpNACYS9q9evVri4+PVmELjc5TloaYRwEQaMmSIZjahxxOals+cOVNKlixpngdmkzODCQ2/0MQcplS7du1k7969apLB1MI8nPWSutl0NUIIIYQQQgghhJD8grt+iMeZUvkJmlKEEEIIIYQQQggpaFx20w/xuPK9hIQEGT58uDYzR0PxOnXqyPTp03X5Q4CSO6yKh+bkcXFxUqlSJRk4cKD069fPHMPIlFq4cKFdplRkZOZy4UZWlRVkVj399NPm3++//76899578ttvv0n58uXl9ddfl27duuVaU9ScGWx0Tggh+ZiPeg2521MghBBCCCEkz+FxphRW0tu3b5/MnTtXSpcuLfPmzZOWLVvKgQMHtOE4ekVhhT3EUWaHMr4XXnhBj33iiSd0DJTyff3119oDCs5cVFSUdOjQQX744Qe7c6FP1GOPPWb+bV2tb9asWVomOHv2bDXEtm/fLs8995wULVpUy/oIIYQQQgghhBBCyI3jUeV7aDgeFhYmy5Ytk7Zt25pxrKjXpk0bGTt2rNSsWVM6d+6s2VTO9iM1DKvjzZ8/Xzp16qT7Dx06JDVq1JCtW7eazc6RKYVsrCeffNLpXBo1aiQPP/ywTJ482Ywh++rHH3+UzZs35ypd7ZkZY5kpRQgh+RhmShFCCCGEEJL78j1v8SDS0tIkPT1dAgPtDRystGcYQTCLli9fLqdPn9YG5OvXr5cjR45Iq1atdP/OnTslNTVVs6sMsHofyu9gSlnp37+/FC9eXBo0aCCffPKJjmeAsj9n80DGFMYnhBBCCCGEEEIIIfmkfA9ZUljlbsyYMZrZhB5Q6PMEM6lq1ap6zIwZM3S1vbJly4qvr694e3triV3jxo3N1fn8/f3tSvEAxsI+g9GjR0vz5s0lODjYLAFEvyr0pwLoQ/XRRx9pJlXdunXV7MLfMKSwMl+pUqWyzB9GFjarMwh8xEs3kCE2gfWFv7z/ilnjiFm7XbmKp2v0+thyi+O2v87rOEdXcWqiJmqipoKuCTdVAD6TsOEGi/VGh6u4j4+PZu4aj7fGda7p6W7F8XmIca1xjIvjMzIydMspbszRVZyaqImaqImaqImaqImaqMldTY778oQpBdBLqmfPnto/CoJgCHXp0kVNIcOU2rZtm2ZLVahQQTZt2qQZT+gpZc2Oyglr+R+aqScmJmqpnmFKYT9MLJT74eLD1OrevbtMmjRJnxRnTJgwQUaNGpUlXjushAQFB+vvF1KuyonkP6ViYGEp7n89Bs5cS5DT167IPcFFpZBvgBn/LemSxKYmyf0hxSXQJ/PpOpIYL3+mX5MHwkqIt1fmfPZdiZWUjHSpW6ik3Rx+vnxO/L19pGZohBnLsGXIzoTzUtgnQKqFFDPjyelpsjcxVor7BUnFoExz73LaNTl8NV5KB4RK6YAwM05N1ERN1FTQNe3YsUPjuGGCDRm8SFU2qFy5spQoUUJ7JqJU3ZrJi5sou3btsvsPjFq1aukNFmNcg/r160tKSors2bPHjOGzEr0PcT6Uq1uze2vXrq03Uo4fP27GkUaNGz9nzpyRU6dOmXGUvlepUkVOnDghsbGxZpyaqImaqImaqImaqImaqCkpl5rgseS5nlJWIACZRshIQg8pZDEtWbJELy56QVl7TqE5Oi70t99+q03QW7RoIRcvXrTLloKBNWjQIG2C7gw0Rn/88cd15b6AgMwvR8iMOn/+vM7jww8/lFdffVUuXbrk1JhylilVrlw5eXbGOLOnVEHIGKAmaqImaipomt7vfv2GBu+cURM1URM1URM1URM1URM1pasfEh4enmNPKY/LlDIICQnRDebSqlWrNEMJBhE2R0PIuNhG03M/Pz9Zu3atdOzYUWOHDx+WkydPammgK3bv3q0r61kNKYCx4BiChQsXqnHlKlMKj3V8vPEFyPgSZIC/HGPGFx1nuIqn38a47RbFqYmachunJmrKa5rwHwnOPpAdcRV3fPyNxPEfBs7ixn9M3GycmqjJVZyaqCm7uVMTNVETNWU3d2qSfKvJ1b4sx4qHAQMKDlz16tXl6NGjEh0dralhPXr0UIOoSZMmGkOaGrKfNm7cKHPmzJGpU6fq45FJ1atXLxk8eLAUK1ZMHbkBAwaoIWWsvLdixQrNfsLfaGa+Zs0aGT9+vLz88svmPJC2hqbmDz74oBpjGB8pa59//vlduzaEEEIIIYQQQggh+QWPM6WQ2jVs2DAtx4OphGyncePGqSFlZCthf9euXSU+Pl6NKezv16+fOca0adPU9cNjUU6HpuUzZ84092Os999/X0v5YIChiTpMp+eee848Bulmb7/9tmZZ4fhmzZrJli1bpGLFirnW9F63AdmmqxFCCCGEEEIIIYQUNDy2p1R+ADWUyNzKqYaSEEIIIYQQQgghpKD5IR6XKZWQkKAr36GZeUxMjK6MN336dO00D9DwfOjQobJ06VKJi4uTSpUq6Yp51kwpNCsfMmSIZlVZM6Wwgp4BHvPDDz9oSR660qOnlCPodo+V/X766SftUo8ywFdeeSXXml74/F2z0TkhhJCCwSe9M0vCCSGEEEIIIVlx3rH7LoKV9NDjae7cubJ3715p1aqVtGzZUk6fPq370SsKq+zNmzdPDh48qCvqRUVFyfLly80xUJaHvlGLFy/WnlNYBrFDhw5ZztWzZ09d2c+Vq4dzozxw586dMnnyZBk5cqSuwEcIIYQQQgghhBBC8pEplZSUJF9++aWutNe4cWPt9QQjCD9nzZqlx6CvU/fu3aVp06ba36lPnz5Su3ZtbUoOkBr28ccfa4+o5s2b62p8n376qT5u27Zt5rneffddzYKqXLmy07n85z//kZSUFPnkk0/k/vvvl6efflqzq4yG6oQQQgghhBBCCCEkn5hSaWlp2mAcK+JZwUp7mzdv1t8bNWqkWVHInEI7rPXr1+tKechqAshqSk1N1ewqA6zeV758edm6davbc8GxMMb8/f3NGMoA0fgcq/ERQgghhBBCCCGEkBvHo3pKhYWFScOGDWXMmDHa5wk9oBYsWKAGEbKlwIwZMzQ7qmzZsuLr66ur7M2ePVsNJHDu3Dk1kooUKWI3NsbCPnfBsehX5TiGsa9o0aJZHoP+VdisJYDAR7x0AxliE3SWx1/ef8WsccQyo67j6Rq9Prbc4rjtr/M6ztFVnJqoiZqoiZqyzh03WgzwWYUNN16s64v4+PiIl5f9sUZc55qe7lYcn4cY1xrHuDg+IyNDt5zixhxdxR3nTk3URE3URE3URE3URE3U5GrujvvyhCkF0EsKvZ7KlCmjgurWrStdunTRDCjDlEIZHrKl0O9p06ZNWoZXunRpu+you8GECRNk1KhRWeJ1wkpIUHCw/h6belWOJ/0plYIKS4Tf9Rg4de2KnL6WINWCi0ph3wAzjmPxmJqhxSXIO/PpOnQ1Xv5MuyZ1wiLFxyvzC9GeK7GSkpEu9QuVtJvDjsvnxN/bR2qFRpixdJtNdiSc0/PdG1zMjCdlpOk4xf2CpXJQYTOO8+G8pQPCpGxAqBmnJmqiJmqipqyaduzYYcZRKl6iRAldXAOl6tZMXtxE2bVrl91/YNSqVUtvsFjHAPXr19fScizEYYDPSiwGgvL1Q4cO2WUZo7z9woULcvz4cTOOVVBw4wf9Fk+dOmXGsaBHlSpV5MSJExIbG2vGcRMIG7KScQ5qoiZqoiZqoiZqoiZqoqYiOWhKTEwUd/CyWe0uDwICkGlUqlQpbUaOVfeWLFmiFxcr87Vt29auOTouNBqgr1u3Tlq0aKEldtZsKRhYaIqOJuhW0LMKK/k5rr7XrVs3PT/2GaBUEH2q4uPj3c6UKleunHR7d6y5+l5BzRigJmqiJmoqaJo+ePZFM847Z9RETdRETdRETdRETdRUkDRdvnxZwsPD1eQqVKiQ3XF2usRDCQkJ0Q3m0qpVq7T5OXpFYcNFsWJcbIDG5n5+frJ27Vrp2LGjxtAH6uTJk1oa6C449vXXX9fzYTyAVQGrV6/u1JACAQEBujmCL0DGlyAD/OUYM77QOMNVPP02xm23KE5N1JTbODVRU37QhP9wcMT4oHbE2bG5jeM/DJzFjf+YuNm4q7lTEzVREzVlN3dqoiZqoqbs5k5Nkm81udqX5VjxMGBAwYGD+XP06FGJjo7W1LAePXqoOdSkSRONIU0N2U8bN26UOXPmmKviIZOqV69eMnjwYClWrJg6cgMGDFCT6aGHHjLPg7GRfYX+UEhDMzKl7rvvPk03+9e//qWleBjr1Vdf1XS16dOny7Rp0+7atSGEEEIIIYQQQgjJL3hc+d6iRYtk2LBhWo4HUwnZTuPGjVOzCcBEwv7Vq1drGR2MKTQ+R1keXEOQnJwsQ4YM0SbpKKfDqnkzZ86UkiUz+400bdpUDS1HUFtZsWJF/R01nOhX9dNPP0nx4sXV3IJB5S5IV8O8c0pXI4QQQgghhBBCCMkvuOuHeJwplZ+gKUUIIYQQQgghhJCCxmU3/ZCsRYSEEEIIIYQQQgghhNxmPK6nVEJCggwfPlxX2IuJiZE6depoLycsfwjQB2ro0KG6Kl5cXJxUqlRJBg4cKP369TPHMMr3Fi5caFe+FxkZaXeuzz77THtRYdlDOHf//Oc/5f3339d9v/32m47tyNatW+16U7lD30/eNVffI4QQUrD4vO/Ld3sKhBBCCCGEeCQeZ0r17t1bm4rPnTtXSpcuLfPmzZOWLVvKgQMHpEyZMtrAfN26dRpH7yf0lnrhhRf02CeeeELHQH+pr7/+WhYvXqzpYlFRUdKhQwf54YcfzPPAjHr77bdl8uTJ8uCDD0piYqIaUY589913cv/995t/Y0lDQgghhBBCCCGEEHJzeFRPKayCFxYWJsuWLZO2bdua8Xr16kmbNm1k7NixUrNmTencubNmUznbj3rFiIgImT9/vnTq1En3Hzp0SGrUqGFmOV28eFENrhUrVkiLFi2czsXIlNq1a5c88MADN1VD+fS0McyUIoSQAgozpQghhBBCSEHjsps9pTwqUyotLU3S09MlMNDewAkKCpLNmzfr740aNZLly5dLz549NTtqw4YNWn43bdo03b9z505JTU3V7CqDe++9V8qXL2+aUmvWrJGMjAw5ffq0mlUoGcS4yJwqV66c3bmRfYVywGrVqskrr7xiZmM5A6WC2KxPAvARL91AhtgELiD+8v4rZo0jlhl1HU/X6PWx5RbHbX+d13GOruLURE3URE3U5Hru+Gzz9vbWDZ9x1ntBPj4+unIsjrGCuM41Pd2tuK+vr45rjWNcHI/PO2w5xY05uoo7zp2aqImaqImaqImaqImaqMnV3B335QlTCllSDRs2lDFjxqhZhB5QCxYsUDOpatWqesyMGTOkT58+UrZsWX1ScIFmz54tjRs31v3nzp0Tf39/KVKkiN3YGAv7wPHjx/UJGD9+vPargnv3xhtvyKOPPip79uzRx4eGhqpJ9fDDD+s5vvzyS3nyySe1l5UrY2rChAkyatSoLPF6hUtIUHCw/h6TclWOXf1TKgcXlhL+12Pgj+Qrcio5QaqHFpUivgFmHMfiMbUKFZcg78yn6+CVeLmUdk3qFY4UH6/ML0S7L8dKSka6NChS0m4O2y+dE39vH3mgUIQZS7fZZPuf5/R8NUKLmfGkjDQdJ8I/WKoEFzbjOB/OWyYwTMoFhppxaqImaqImanKtaceOHVK5cmUpUaKElqcjK9h60wSfV8jKtf4HRq1atfSzCI+1Ur9+fUlJSdHPKuuHP/ou4i4UMoOtN3Rq164tFy5c0M89A3zm4TP2zJkzcurUKTOOLOMqVarIiRMnJDY21ozj8xYbbgDhHAbURE3URE3URE3URE3URE3pLjShRVKeK98Dx44d0yyoTZs26YWvW7euZikhA+rgwYMyZcoUNaHws0KFCnrcsGHDtDE6sqNQttejRw+7jCXQoEEDadasmUycOFHNqNdff11WrVolrVq10v14QkqWLCkrV67UxujO6Natmz5533//vduZUsi86jptrFm+V9AzBqiJmqiJmgqapg97vcg7Z9RETdRETdRETdRETdRUoDRdvnxZe3LnqfI9ANdu48aN6qpBRKlSpbSHFBw6OHOvvfaaGlBGzyk4cbt371aTCqYUjCW4ipcuXbLLljp//rzuAxgT3HfffXaOYfHixeXkyZMu54aG6Cj9c0VAQIBujuALkPElyAB/OcaMLzTOcBVPv41x2y2KUxM15TZOTdSUnzThPyAcP6gdsR5zo3H8h4GzuPEfEzcbdzV3aqImaqKm7OZOTdRETdSU3dypSfKtJlf7ssxFPJSQkBA1j9CUHBlN7du3115R2BwvnuEAGk3P/fz8ZO3ateb+w4cPq9mE0kCAkjwjbhAfH68pb8i+cgXML8PQIoQQQgghhBBCCCE3jsdlSsGAQlpY9erV5ejRoxIdHa31iijJg9nUpEkTjaF2EgYSsqrmzJkjU6dONWsne/XqJYMHD5ZixYppmtiAAQPUkEKTc4ByQJhcL774onz44Yd6DEoAcR6U+IHPP/9cayHr1Kmjf3/11VfyySefyEcffXQXrw4hhBBCCCGEEEJI/sDjTCnUG8IgQjMumEodO3aUcePGqSEFFi5cqPu7du2q2U0wprC/X79+5hhYiQ/ZVHgsejyhR9TMmTPtzgMj66WXXtIyQBwLs+vbb781zwPQcP3333/XtDMYVl988YV06tQp15r+3XNgtjWUhBBCCCGEEEIIIQUNj2t0np9ATyxkbuXU2IsQQgghhBBCCCGkoPkhuc6U+u2332TZsmXyww8/yIEDB7QPE5ptoUk4lhxEv6YnnnhCKlWqdEMTT0hIkOHDh2sz85iYGC2fmz59ui5/CK5cuSJDhw6VpUuXSlxcnJ5n4MCBdplSycnJMmTIEM2qsmZKRUZGmsdgzo4sWLBAnn76afNvPHb06NEyb948OXfunPaTGjFihK4OmBue+2i6ufoeIYQQYmXu89F3ewqEEEIIIYTcFdw2pf773//qCnebN2/Wnk9YJQ8r4v3tb3/Tv9GQHI3Av/zyS+3n9Pe//117Pz3++OO5mlDv3r1l3759MnfuXCldurQaQlhVDwZYmTJldOx169ZpvGLFirJ69Wp54YUX9FiYYQBleV9//bUsXrxYnbmoqCjp0KGDGmlWPv30U3nsscfMv62r9YGnnnpKV+37+OOPpWrVqnL27Fm7ZRMJIYQQQgghhBBCyG00pdAg/JdfftHm4IsWLVKTyFX6FVK01qxZI0uWLFFTp3bt2rJ161a3JpOUlKSmFjKxGjdurLGRI0fKihUrZNasWTJ27FjZsmWLdO/eXZo2bar7+/TpI//+979l+/btakohNQwm0vz586V58+am+YQsrm3btpnNzg0TqmTJkk7ngv5SaKJ+/Phx7W0FYIIRQgghhBBCCCGEkDtkSmFFOhhF1vI3V8CsQoNxbCh5Q+mdu6SlpUl6eroEBtqXumGlPWRogUaNGsny5cu1hA7ZURs2bJAjR45oc3Owc+dOSU1NVePMAE3Ky5cvr+aY1ZTq37+/ZmYh4wvlf1jhzyjrwznq168vkyZN0qytkJAQNb3Q/BzzcQbK/bBZDTrg4+WlG8iw2QRNvPCXt6WE0Ih7i5dYKwtdxdP/agVmjHsr4whliC3LHF3FqYmaqImaqOnmNOHzz4qPj8/1/enpbsWxIAeylq1xfJ7heGT4WrN8XcWx6Ac2V3GMbW1D6SqOsXEOaqImaqImaqImaqImaiq4mtIc9t2UKTVhwgS5EZCFlJvHhoWFScOGDdX4QWYTTDD0eYKZhPI5MGPGDM2OKlu2rD4puECzZ882M6tghPn7+2cpxcNY2GeAXlHIpAoODjZLANGvCv2pADKkYITBIEN/K/TOwjHoY4XMK1fXadSoUVni9YtESlBwsP4ec+2qHE28JFVCikiJgOsx8EdSgm73hhWTIn4BZvxY4iU5f+2q1C4cIUE+mU/XgYQ4uZR6TeoXKWn3xWrXnzGSkpEuDxYtZTeHHy+eFX9vH6lTuITdlyHEcb77wsLNeFJ6mo6D+WGeBjgfzls2KEzKBYWZcWqiJmqiJmq6cU2qYdcuu//AqFWrln6W7dixw04TbpakpKTInj177D780XcRmcKHDh0y47iBgmxlfH7hM80AZe34jD1z5oyudGsQERGhpfknTpyQ2NhYM47PW2y4AYRzGOCGTokSJbTkHpnO1htB+AymJmqiJmqiJmqiJmqipoKrKTExUfLk6nvHjh3TLKhNmzbpha9bt65Uq1ZNM6AOHjyofa1gQuFnhQoV9Lhhw4apcYTsKJTtIePJmrEEGjRooBlfEydOdHpeNDCH2fTHH3/o361atZLvv/9ejSw8oeCrr76STp066cV1li3lLFOqXLly0mXqGLPROTMGqImaqImaqMk6FzQ6L2h3zqiJmqiJmqiJmqiJmqgpf2uCHxIeHp7j6nu5NqVguqDJOLKLYCBhtTxkOCGTCU3D//Wvf6kzdrPA+IEIrHjXuXNnzWJCnyoYRDCg2rZtax6LEjy4f+gDhSboLVq00Mbr1mwpGFiDBg3SJujOQGN0NGXHyn0BAQHatwqN0Y8ePWoeA1PsvvvuU/fwnnvucXsJxKfeHs3V9wghhDiFq+8RQgghhJD8huGH5GRKeedm0L1792oKGMrnsLIdTKmrV6/qTzRA79Wrl9x///1q3tws6OEEQwrm0qpVq7TJOnpFYYNTZ8VwAEG9evXEz89P1q5da+4/fPiwnDx5UksDXYGVA4sWLaqGFHj44Yc11Q1mmAHMKJwbaW2EEEIIIYQQQggh5MZxq6cUgDmDRt8xMTEybtw4eeaZZ6RMmTLm/tOnT8ucOXN0hbx27drpan0wlnILDCgkb1WvXl2zlKKjo7VeESV5MJuaNGmiMZTPIfsJK+ThvFOnTtXHw4mDOTZ48GBdNQ+O3IABA9SQMpqcYzW/8+fP69/oGYXVAsePHy8vv/yyOQ9kfKG3Fc6LPlGo0cR5UVroqtE5IYQQQgghhBBCCHEPt8v30GAc5W/IQGratKnL41A+9+ijj8q7776rq9vlFmRcoUcUyvFgKmEVP5hgRl8n9HjCfpQPxsfHqzGFzC2U5Rkr56EEb8iQIdokHeWGrVu3lpkzZ2rjdYAyP4wB0wvyUXr4/PPPy3PPPWeXhYUGYjC0UMaHWsinnnpKTTd3TSl309UIIYQQQgghhBBC8gvu+iFum1LoFwXT55tvvnHrWMP8KcjQlCKEEEIIIYQQQkhB47KbfohvbvpJDRw40K1jmzdvLtOnT5cbAY3Thw8frs3MUSpYp04dHQvLHxplhEOHDpWlS5dKXFycVKpUSefVr18/cwwjU2rhwoV2mVKRkZFZzocxsIQiyg+tzdE3bNigq/U5cvbsWTPjyl16ffiO+LHROSGEkFwyv/8rd3sKhBBCCCGE3DbcbnSOUjl3zRiYPzj+RsBKeujxNHfuXDXCWrVqJS1btlTTCKBXFDKwsAIgGqqjpDAqKkqWL19ujoFSPvSNQjN29JxCw/IOHTo4PR/6T9WqVcvlfNAkHUaUsZUoUeKGdBFCCCGEEEIIIYSQGzClkHGERuPu4OvrKykpKZJbkpKS5Msvv5RJkyZJ48aNtdfTyJEj9eesWbP0mC1btkj37t21r1XFihW1nxQynbZv3677kRr28ccfa+NzZGxhNb5PP/1UH7dt2za782HMS5cu2TU4dwQmFMw4Y3Nc+Y8QQgghhBBCCCGE5B63y/fAb7/9Jj///HOOx504ceIGpiKSlpYm6enpuiKeFTQW37x5s/7eqFEjzYrCKnilS5fWMrsjR47ItGnTdP/OnTslNTVVs6sMsHpf+fLlZevWreYKfAcOHJDRo0fLjz/+KMePH3c5pwceeEANuZo1a6pB9vDDD7s8Fsdhs9ZQAm8vL/H5qwk7Wnhl/OUGGo3ZQYbNJmju5S1eYgnnGDfGNUj/q0VYbuJef83RAIdmSG7i1ERN1ERN1HQ7NOFz0YqPj8/1/enpWW4GYU7WOOaF4zMyMnTLKY6bLthcxTG2tQ2lqzjGxjncnTs1URM1URM1URM1URM15T9NjvtuiSmFXk/YcgKTtf5HuruEhYVJw4YNZcyYMVKjRg0tA8QKejCTkC1lrAKI7KiyZcvqk4ILNHv2bM2sMlbn8/f3N3tDGWAs7AMwjrp06SKTJ09Ws8qZKVWqVCn54IMPpH79+nr8Rx99pNlZMLHq1q3rdP4TJkyQUaNGZYk3KFpSgoKD9ffz1xLl1yuXpEpoEYkMCDGPOXn1spxMSpD7ChWTIn6ZptyvVy7K+WtXpU6RCAnyycxU23/5glxMvaZj+3hlZm/9fOm8XMtIl4bFStvNYWv8GQnw9pG6RTL7aqXbMmRr/Fkp4hcg9xcqbsaT0lNl56UYKREQLPeEFjXjl1KTZd/lOCkXFCblgzMblVETNVETNVHT7dG0Y8cOO034TEIm8p49e+w+/NF3EZnCWDXWekMHmcQXLlyw+5xDw0l8xqK0HSvdGkREREiVKlX0xlJsbKwZx+ctNtwAwjkMKleurNnE+/bt00xn640gfAbv2rXL7j+aUCqPz2dqoiZqoiZqoiZqoiZqyv+aEhMTxR3cXn3v888/l9yCMrvccuzYMc2C2rRpk154GEDVqlXTDCj0kJoyZYqaUPhZoUIFPW7YsGHaGB3ZUfPnz5cePXrYZSyBBg0aaOPyiRMnal8qPDlohG5tam5tdO6MJk2aqImFflfuZkqVK1dOnpoyWvz/anTOjAFqoiZqoiZqclfTnL6D8+WdM2qiJmqiJmqiJmqiJmrK35rgh4SHh+e4+p7bptSdBq4aRCBjqXPnzrrq3pIlS9TxgwHVtm1bu+bocP/QAH3dunXSokWLLAYTDCw0RUcTdJTkoYm68UVCv1xkZOgFfP31151mO4Ho6GgtI0TmVm6WQOw0eRRX3yOEEJJruPoeIYQQQgjJixh+SE6mVK7K97IDpg5SxpAOdiOle46EhIToBnNp1apV2vwcvaKwwamzYjiAAI3N0ZB97dq10rFjR3MFvZMnT2ppIEAzdWvq2U8//aTZWd9//72msrli9+7dapIRQgghhBBCCCGEkJvDbVMKtYVYva5du3ZStGhmvw24XgMGDJBFixapYYR9aAgeFRV1QxOCAYXMperVq8vRo0c1Own1iijJg9mEEjrEUDuJ7KeNGzfKnDlzdLU9ACeuV69eWqJXrFgxdeQwPxhSRpNzR+MJZhpAzaWRXfXOO+9IpUqV5P7775fk5GTtKYUsrNWrV9+QLkIIIYQQQgghhBByA6bU22+/reVxzzzzjF28b9++akjdc8892tRqy5Yt8uKLL2qTrCeffFJyC0wu9IhCOR5MJWQ7jRs3Tg0pgD5Q2N+1a1eJj49XYwr7+/XrZ46BlfiQTYXHosdT69atZebMmbmaBxqLDRkyRE6fPi3BwcGq7bvvvtPeU7nl4z6Dsk1XI4QQQgghhBBCCClouN1TqmbNmpql9P7775uxP/74Q00hZCEhYwmNty5duqRd4StWrChr1qy5nXPPNzWUhBBCCCGEEEIIIfmFW95TChlDKKOz8t///lf7RyEzCoYUQPlbt27dZPr06Tc08YSEBBk+fLg2M4+JiZE6deroWDC6ABqeDx06VJYuXSpxcXFaYjdw4EC7TCmU2yHLCVlV1kypyMjMZcHxmB9++EGXNkTZHvpFuQJlhJgHelfBdMstz37wjvgFstE5IYSQW8cXA9kEnRBCCCGE5G3sO4ZnAxqJGyV0BliJDiCDygpK92Au3QhYSQ8ZVnPnztUV8lq1aiUtW7ZUUwygVxTKCOfNmycHDx7UFfXQv2r58uXmGFhhb8WKFbJ48WLN4Dpz5ox06NAhy7nQ3Bwr+2UH+mR16dJFHnnkkRvSQwghhBBCCCGEEEJuwpRCc/D/z965wNlUd/9/zcUYhsIYzNXMECkR+Skq91xSeFCKSih53BIpKkVIJJInXSTCg1B/l5RLrgmVW+7EuA/mRibGM9f/67Oave1z5pxxzhnjNp/389qvOa29z3fvz57n9Zpt7bU+C0bnBhkZGWr8jeopawUSgNcTpvC5CybiYTIeJu3Vq1dPKlasqKbp+Pnpp5/qMfCs6ty5szRo0EBbBLt37y7Vq1eX3377TfejNGzKlClqfN6oUSOdxjd16lT9nvX6P/74Y+nVq5dER0fnek1vvfWWanzyySfd1kMIIYQQQgghhBBC8piUQiJo1qxZMnr0aPn55581oYP2umeeeSbHsdhfqVIlcZf09HRNdvnbtbph0p5RlVW3bl2tikLlFOywVq9erZMBUVEFtmzZotVNqK4yQFIpIiJCNm7c6Nb1IOmGaiurjxYhhBBCCCGEEEIIyTsue0r17NlTp89h8h18pJAQQtveq6++anMczM9//PFHGTFihNsXU7x4cTVNHz58uPo8oQJr9uzZmkxCtRSYOHGiVkehRRA+VpiyN3nyZK2sAqdPnxY/Pz/1trKCtbDPVeBX9fzzz2uboKsm5fCvwmY19gI+4iU+Xl76GfctMzsbiPtokJmVJXCc9xYvsYSvGDfWNcjI9q13J46ItyWOQzPFnTg1URM1URM1XWtNeJFjgL+HuCa82DHAdcELEe332K4Ux99TbM7iWNs6G8VZHGt72V2fEVcNlmvMLU5N1ERN1ERN1ERN1ERNN68m+315TkrBTwo+TZs3b5ZDhw7p1L0HHnggx3FIyqCiykgSuQu8pOD1FBoaqoJq1qypnk6ogDKSUmjDQ7UUrmHdunVatRUSEmJTHZVXXnzxRenYsaNbOkaNGiXDhg3LEX8gsJwUKVpUP5+6dEEOJJ+TisVLSLB/gHnMkQvn5ejFZLn79lJSyu9ypdj+5LNy+tJFqVkqSAJ8Lnt67fgrQc6m/k/X9vW6XPD2e9IZ+V9mhjxUOsTmGtYnxEphbx/5v1KXWy3TszLll4RTUsKvsFS7vbQZv5CRJpuT4qSsf1GpXLykGU9KvSQ7/0qUiKLFJTLgcqKOmqiJmqiJmq69Jvw9BvhbiWEgaF/ft2+fTZUx2tsTEhIkJibGjGMKCl78wG/xxIkTZhxt92jVP3z4sMTHx5txvATChqpknMMA7e9lypTRgSFov7dWJ+PF0LZt22wemqpVq6YvjYzrNqhVq5akpqbKjh07zBg1URM1URM1URM1URM13dyaLly4IK7glWVNd91AQAAqjYKDg9WMHFP35s+frzcXk/latmxpY46OGw0DdLTcNW7cWM6ePWtTLYUEFkzRYYJuBZ5VmORnP30P38U5bd6KZ2bq/xm++OILTZy5UikVHh4u7Ue/K4WK+N8wb9dvxYoBaqImaqKmgqZp+r9fuWnfnLkSpyZqoiZqoiZqoiZqoqabVxPyIYGBgZrkyq37zOVKqWtNQECAbkguLVu2TM3P4RWFDTfFinGzAYzNUdW1cuVKadeuncb2798vx44d09ZAV0HLoPWXvXDhQvXTgmE6qrgcUbhwYd3syZAs8bbL/enVOsgH4h8/+i8UF+PGP1DyEs+6SnFqoiZ349RETbldOzXlHseDiRU8GNjHrA8TeY0bDxmuxh1di7txaqKm3K6dmqiJmqgpt2unJmqiJrmumpzty3GsS0dlX7T1bbA9MCdHNdKjjz4qgwYNktKlL7dFuAMSUMjAVa5cWQ4ePCgDBw7U0rAuXbposgk+VoihTA3nW7t2rUyfPl2n7QFUUnXr1k369+8vpUqV0oxcnz59NCFlbTfE2qiEgs8UytCMSqm77rpLy81Q6mYF5We4B1WrVvVIFyGEEEIIIYQQQgjx0Og8t6TUxYsXtSLpo48+0ol18H1C6527oLQLZupox0NSCdVOI0eO1IQUmDNnju7v1KmTJCUlaWIK+3v06GGuMX78eE0g4btop2vWrJlMmjTJ5jxo+UNCy6BGjRr6E72VkZGRcjWZ1qOfy2bphBBCCCGEEEIIIQWBq+4pBUNyVDM988wz8tlnn0lBBj2UqNy6Ug8lIYQQQgghhBBCSEHLh1x1Tyl4OmFy3bfffuvR95OTk2XIkCFqZh4XF6cVTBMmTFCneYCWO7QHwpw8MTFRoqKipG/fvjaVUjAixwTArVu36nr2pucAVVZo68NEQaOqCucpVqyYTSvhO++8I7t379b2REzi+/DDD92upHru0/FSyP/yFCZCCCHkajLv5dev9yUQQgghhBDiNjmdra4C8GU6c+aMR99FW92KFStkxowZsnPnTmnatKk0adJETp48qfvhFYUpezNnzpS9e/fqRL3evXvLokWLbFoJmzdvLm+88YbT86D9D8kmnOv777+XdevWSffu3c39aONr3bq1NGrUSP2mkKDCmMW2bdt6pIsQQgghhBBCCCGE5HNSKjY2VooXL+7292A4jgorTNpDVVLFihVl6NCh+vPTTz/VYzD9rnPnztKgQQOtWEIiqXr16vLbb7+Z6yBRhWoqq7G5FSSzkNj68ssv5f7775eHHnpIJk6cqH5VuHajDRHT90aMGCEVKlSQmjVryquvvqoJKkwAJIQQQgghhBBCCCE3UFIK/YLTpk2TBx980O3vpqenayIIrXJWMGlv/fr1+rlu3bpaFYXKKdhhrV69Wg4cOKAVVa6yceNGbeerVauWGUM1Ftr4fv31V7MNEf89depUvSboQvUWjjNM1wkhhBBCCCGEEEKIZ7jsKfXdd99dscoJ0/fQVnfq1CmZO3eu2xeD6qo6derI8OHDpUqVKlK2bFmZPXu2JpFQLQVQ0YTqqLCwMPH19dXE0eTJk7WyylVOnz4tZcqUsYlhLUz7wz4Ar6rly5fLk08+KS+99JImpnBtP/zwg9N1MekPm9XYC/h4eekGkEjLzM4GWqcZZmZlCRznvb28xDrj8EpxY12DjGzfenfiXtnrG2Rlr+9ynJqoiZqoiZquqybjmvC3ygDX5ePjI5mZmbpdKY6/p9icxbG2dTaKszjWxjnwoskK4qrBco25xfF3mZqoiZqoiZqoiZqoiZpuTk32+/KclGrfvr2e9ErD+u6991756quvTGNyd0E1UteuXSU0NFQFoW3u6aef1nY6Iym1adMmrZYqX768ekH16tVLQkJCtIrpaoHkFAzb0SqI88Mw/e2339b7AB8q6z9CDEaNGiXDhg3LEa8TGCxFihbVz6dSLsj+5LNyR/GSElwkwDzmyIXzulW9PVBK+V2uFNt/PklOXboo95UsIwG+lyu0dpyLl6TU/0nd0sHi43W54O23xNPyv8wMeTgo1OYafo4/KYW9faR2YDkzlpGVKT/Hx0pJv8JSrUSQGb+Qnia/J52Rcv5FpfJtpcx4Uuol2XEuQcoH3CaRAZfd86mJmqiJmqjp+moCqOjdt2+fTZUx2tvhhxgTE2PGMQUFL37Qrn7ixAkzHhQUpO3q8FSMj48343gJhA1VyTiHQXR0tL7g2bVrl76YMrjzzju1Gnnbtm02D03VqlUTPz8/2bx5s40mVC2npqbKjh07zBj+/uM5gpqoiZqoiZqoiZqoiZrkptR04cIFcQWvrCtlmbJZu3ZtrvvRcockUblylx+U8wIEoNIoODhYOnTooFP35s+frzcXk/latmxpY46OGw2fKCtr1qyRhg0b5pi+h6TZgAEDNG6ALB40zJs3T/71r3/pBECs9/vvv5vH4Bzh4eFaueXIr8pRpRSObzt6mDl970Z7u34rVgxQEzVREzUVNE1z+r52U705uxXfBlITNVETNVETNVETNVGTj3ntyIcEBgZqkuu22y6/3PW4Uqp+/fpyLQkICNANiSNMvoP5OQzGseGmWDFutqugDe/cuXNafQXvKLBq1SpdA8bnxgQ/R+cBzs5VuHBh3ezBPyK87XJ/uoKDfCD+geIIZ/GMqxDPukpxaqImd+PURE25XTs1uRfHgwEeVuwxHibyGjf+Broad3Qt7sapiZpyu3ZqoiZqoqbcrp2aqIma5LpqcrYvx7Fyg4EEFDJwlStXloMHD8rAgQO1NKxLly5qMI7kGGIoU0NlFiq4pk+fLuPGjbNpvcOG74OdO3eqX1VERIT6RqGMrXnz5tqe99lnn2miq3fv3vLUU09pGyBAJdb48ePl3XffNdv33njjDT1njRo1rtv9IYQQQgghhBBCCLkVcKl9r1mzZvLmm2+6ZSYOMBnv/fff10STq8AgffDgwdoqhwRSu3btZOTIkdq2B5Bswn6YkCclJWmSCMbnr7zyitlCMXToUIfeTpik9/zzz+tnfBeJqMWLF2uGEOf5+OOPpVixYubxc+bM0Qot9FUWLVpUK6xGjx6tSTJXQLkarvtK5WqEEEIIIYQQQgghtwqu5kNcSkr17NlTpkyZoiZX8Hdq3LixVgtZEzgA1URoifvpp5/Um+no0aPSrVs3+eSTT6QgwqQUIYQQQgghhBBCChrnr2ZSCsCdfcKECTJr1ixJTEzUqiRUMpUsWVLb7eD9hA2fEe/UqZO8/PLLEhUVJQUVJqUIIYQQQgghhBBS0Dh/tZNSBnBX//nnn3UCHUYRIkEF4KqOtja0uD300EPq/+QJqLbC5DtM2IuLi9OKLCTDMP4QYArfoEGDZMGCBXpuJL369u0rPXr0MNe4dOmSTtdD+x2m4aH9cNKkSVK2bFnd/8cff2hb4fr163V0YmRkpH4fSTQr//3vf7V9788//9Sb2aJFC/nggw9Uqzu/hMdGvmNO3yOEEELyg+/6D7rel0AIIYQQQohbSSm3jc7hoN6wYUPd8oMXXnhBdu3aJTNmzFDT8ZkzZ0qTJk1kz549EhoaKv3799dJeYgjmQRvKbQX4thWrVrpGvCXWrJkibYQ4ibAO6pt27byyy+/6H60GJYpU0bXCA8Plw0bNqgvFRzlcSzAsc8995yanT/++ONy8uRJTVzBHP27777LF+2EEEIIIYQQQgghBQW3K6Xyk5SUFJ2St3DhQp1+Z3DfffdpldKIESOkatWq6muFaipH+5GFCwoK0jbD9u3b635UdGHiHqq7HnjgAYfn7tWrl+zdu1cTXmDs2LHy6aefyqFDh8xjJk6cqEbnMGF3BVZKEUIIuVawUooQQgghhNzylVL5CVoDMzIyxN8ugVOkSBFttQN169aVRYsWSdeuXbU6as2aNTodDxVNRhVUWlqaVlcZoK0wIiIi16QUbhS8sAzQhvjGG2/IDz/8oAkvtBLOnz9fHn30UafXj1ZBbNZfAvDx8tINIAeYKSLeyAhmx0BmVpYgO+jt5SWXo1eOG+saZGTnGN2Je2Wvb5CVvb7LcWqiJmqiJmq67ppwTfgbaoDrQgVwZmambleKYxItNmdxrG19j+UsjrVxDvxNt4K4XqvlGnOLozKbmqiJmqiJmqiJmqiJmm5OTfb7boqkFKqkkAwaPny4VjbBA2r27NmaTKpYsaJZrYRWu7CwMP2l4AZNnjxZ6tWrp/tPnz4tfn5+UqJECZu1sRb2OQLte9988422/Bk8+OCD6imFqix4VOGGoo0vt0mCo0aNkmHDhuWIPxgUIkWKFtHPsSkXZN9fZ6XS7SUlpEiAeczhv8/rVq1EoJQqfDkph2Pxnf8LLCsBvpd/XduTEiQp9ZI8VCbE5h8nvyaclksZGVK/bKjNNaw9c1L8fXzk/tLlbP4Rg3hJP3+5t1RpM34hPV3XCS4SIHfeXtKMJ/3vkmw/myCRxW6TqGKXM53URE3URE3UdP014eUKKoOtL3SqV6+u3okxMTFmHG+s8Dc2NjbWpvIXVcYVKlTQwSbx8fFmHH9vseEFEM5hgIm8aIVHyz0qna0vgvA3eNu2bTYPTdWqVdO/z5s3b7bRVKtWLUlNTZUdO3bYPNDAS5KaqImaqImaqImaqIma5KbUdOHCBbnp2vcA2uVQBbVu3Tq98TVr1pRKlSppBRTa69BWhyQUfpYvX16PGzx4sBqjozoKbXtdunSxqVgCtWvXVh8stN9Zwc1FHCbnb731lhmHhxXWgz8VjNJPnTolAwcO1P8jTJkyxeVKKXhWtX5vqNm+dyO+Xb8VKwaoiZqoiZoKmqZvX3n9pnlzdiu+DaQmaqImaqImaqImaqImH/PakQ/BkLirPn3vWoGsGkQEBwdrtRKm7qF9Dhk/JKCsnlMwR0f2b+nSpeoJ1bhxYzl79qxNtRQSWP369dMkkzXxhIQUvj9y5Eib8z/77LNaIQWzdAO0ED788MOabcR1XQl6ShFCCLlW0FOKEEIIIYTcbJ5SeMnrNqhOspZ62YPSMRyTFwICAjTxg+TSsmXLpHXr1uoVhQ2ZOitGBtAwPS9UqJCsXLnS3L9//345duyYtgYa7N69WxNSnTt3zpGQAhcvXnR4HnCD5vEIIYQQQgghhBBCbho88pRCMmfGjBnSsWNHh/uREMI++3IzV0ACCkmfypUry8GDB7VlDv2KaMlDsql+/foaQ+8kqp/Wrl0r06dPl3Hjxun3kYnr1q2b9O/fX43LkZHr06ePJqQMk3O07DVq1Ejb8nCc4TWFpBN6LAH8o1588UWdwGe076HSCm2AMFgnhBBCCCGEEEIIIdc4KXWlSiH4KhlVRe6C0i54RKEdD0mldu3aaSUTElJgzpw5ur9Tp06SlJSkiSns79Gjh7kGJvGhygnfxbUgqTRp0iRzP9oAUek1c+ZM3Qyw1pEjR/Tz888/L8nJyfKf//xHBgwYoK2ASGTZe1K5wn9798+1XI0QQgghhBBCCCGkoOGypxTa34yETYMGDdQUHEbg9pw7d04TN3FxcfLnn39KQcbVHkpCCCGEEEIIIYSQgpYPcTkpNWzYMN2sU4YcgeVQJfX555/rFD13QXXSkCFD1Mwcia0aNWrIhAkTdOodgOH5oEGDZMGCBZKYmChRUVHSt29fm0qpL774Qqfwbd26VdezNz23gkqq+++/X/744w8dZ3jvvffaaPnwww91vaNHj0rp0qWlZ8+e8uabb7r1S3h0OI3OCSGE5C8LXqXROSGEEEIIubmSUi637z355JNStWpVTdTgMxJBmERnBQkrGJQjsVO2bFmPLhyT8OD5BM8qeDehvQ4VWZiUFxoaqh5QmLCHeGRkpCxfvlwTRTi2VatWpkl58+bNdUOrX2689tpr+l0kpex5+eWXdf2xY8fKPffco+2C2AghhBBCCCGEEEJI3nC5UsrK119/LfXq1dMqpatJSkqKFC9eXBYuXCgtW7Y045io16JFCxkxYoQmxjp06KDVVI72W1mzZo2asjurlPrxxx81yfXtt9/K3XffbVMptXfvXqlWrZomyGC67gmslCKEEHKtYKUUIYQQQgi5ZSulrHTu3Nn8jHa648eP6+fw8HApVqyYeEp6erpO7PO3S+Bg0t769ev1c926dWXRokXaGogKJySeDhw4oObm7nDmzBmdroc2wKJFi+bYv3jxYomOjpbvv/9eK66Qu0PF1pgxY9SA3VkrIDbrLwH4eHnpBrBOpoh4Z1eWGWRmZQmyg8ZxnsYzsnOM7sQR8c5DnJqoiZqoiZquvyZck3XqLa4L7fSZmZm6XSmOASHYnMWxtvU9lrM41sY58DfdijEAxX4yr7O4r68vNVETNVETNVETNVETNd2kmuz3XdWkFPj999+19Q3JIkMMLhYtfUjc1KpVy+01USVVp04dGT58uFSpUkVbAGfPni0bN26UihUr6jETJ06U7t27S1hYmP5ScM7Jkydr5Zar4GZiuh58qHCdhoG7lZiYGPWRmjdvnkyfPl1v6iuvvCLt27fX9kFHjBo1Sn237HmoTIgUKVpEP8devCB7/zorlW8vKSFFA8xjDv99XmKSz0u1koFSqvDlpByOxXf+r3RZCfC9/OvanpQgif+7JA+XDbH5x8mm+NNyKSNDGpQLtbmGNadPir+PjzwQVM7mHzGI43z3liptxi+kp+s6wUUDpMrtJc140v8uybakBIkqfptEFbuc6aQmaqImaqKm668Jb6H27dtn80KnevXqkpCQoH/TDPDGCn9jY2NjddKtQVBQkFSoUEEOHz6sE2oN8PcWG14A4RwGeHFTpkwZrShGpbPBnXfeqdXJqD62PjSh+tjPz082b95sowl/h1NTU2XHjh02DzTwkqQmaqImaqImaqImaqImuSk1XbhwQfKtfe/XX3/VCXw4WceOHVWs0fKGJBJuICqYateu7e7ScujQIa2CWrdund74mjVrSqVKlWTLli26PvydkITCz/Lly+tx8I2CMbr9NEBn7Xsff/yxzJ07V9auXavnQFIKrYjW9j0kvnCe/fv36/kBjNPRKoj/Ezhq6XNUKYXqscdHDDXb927Et+u3YsUANVETNVFTQdP0/wa8ftO8ObsV3wZSEzVREzVREzVREzVRk4957ciHBAYGXr3pe1aQ/EEiB1VS5cpdfltrtMU9+OCDmuRZsWKFeAqyahARHBysHlJoE5w/f75m/JCAsnpOwRwd2b+lS5e6lJRq06aNtudZ/yGBm4Yb2KlTJ/XMeuedd+S9996TtLQ08xhkBtHqB/PzRx555Ioa6ClFCCHkWkFPKUIIIYQQcrN5SuElr3hSKfXSSy/lSEgBtNyhymjTpk2SFzDFDwkpJJSWLVsmrVu31gQRNmTqrBgZQFdBpRSm7W3fvl23H374QePffPONjBw5Uj8jsYasHyq3DFDKBlChRQghhBBCCCGEEEI8xyNPKSSFcjOtQtWRfeLIVZCAQvEW2uMOHjwoAwcO1H7FLl26SKFChaR+/foaQ+8kkkNowYPn07hx48w1Tp8+rRu+D3bu3Kl+VREREWpSjp9WDHN29Faij9KoBkPrIFoJP/roI0169erVSyukjHY+QgghhBBCCCGEEHINk1KYgPfJJ5+on5R91dCxY8dk0qRJWmnkCSjtgkcU2vGQQGrXrp1WLyEhBebMmaP70WaXlJSk58d+mJYbfPbZZzaG44YJ+tSpU9Xg3BWQVEOLX58+ffT7qNxq0aKFfPjhh25rmt23f67laoQQQgghhBBCCCEFDY88pWAIjkQNqqX+9a9/mZVDMAVfuHChGnD9/PPP6gJfkHG1h5IQQgghhBBCCCGkoOVDPKqUqlGjhvpKvfnmm7Jo0SK5ePGixmEC3rx5cxkxYoTcddddHl14cnKyDBkyRM3M4+Li9FwTJkzQ8YcAhueDBg2SBQsWSGJiohqq9+3b16ZS6tKlSzJgwACtqsI0vGbNmmn1FvyuDPCdX375RUcbYnogvKWsYA2saUz9e+yxx/ScntDhow9pdE4IISTfWfTa4Ot9CYQQQgghhLiMR0kpgKQTEkfwWoqPj9dYUFCQx15S1kl6SBTNmDFDQkJCZObMmervtGfPHgkNDZX+/fvLqlWrNB4ZGamT8Hr27KnHtmrVStd45ZVXZMmSJTJv3jzNzPXu3Vvatm2rSSgr8ItCcm3Hjh0OfbHgW4Xk1bfffpsnTYQQQgghhBBCCCHkKrTv2ZOSkqI/kcTJ6zowJEcLYMuWLc34fffdp35OqMCqWrWqdOjQQaupHO1HaRiSY7NmzZL27dvr/n379mk11MaNG+WBBx6wOefQoUO1Asq+UsoKfKjOnTvndqWUUa7WfNjbrJQihBCS77BSihBCCCGE3PLte4ah+TvvvCM//PCDJCQkaKx06dKaTELc3gDdFeBRhQolf7sEDpJd69evN03W0TKIKidUR61Zs0YOHDgg48eP1/1ot0tLS9PqKgNM78PEPUdJqasJWgWxWX8JwMfLSzeAHGAmjNSREcyOgcysLEF20DjO03hGdo7RnTgi3nmIUxM1URM1UdONock6GRfX5ePjoxXN2K4UR6UzNmdx/H22vsdyFsfaOIf9lF7E9VozMlyKw58S61rj1ERN1ERN1ERN1ERN1JRxU2iy33dVk1KoPHrooYe0euiRRx7RKiQjPn36dJ1ahyRS5cqV3VoXVVJ16tSR4cOH65rwgJo9e7YmkypWrKjHTJw4Ubp37y5hYWH6S8ENmjx5sjlh7/Tp0+Ln5yclSpSwWRtrYV9+MmrUKJupfwb1yoVKkaL/VJGdvHBB9pxLkjtLlJLQgADzmEPn/5KY5PNSvVRpCbQk5facTZKTFy/I/UFlJSB7AiHYmhAvif+7JPXKhYivpWVyw5lTcikjQxqFhNlcw6rYE+Lv4yN1ywabsfTMTFl96qSUKuwvNUsHmfELaWmyIe60hBQNkLtKljLjiZcuydbEeIkqfptUuO12M05N1ERN1ERNN4amzZs327zQwcARvDiKiYkx43hjhb+xsbGxOunWAFXGFSpUkMOHD5tt+QB/b7HhBRDedBlER0dLmTJltOXeqJg2XgThbzCGolgfmqpVq6Z/n63XCGrVqiWpqak2rfR4oIGXJM6HZwtqoiZqoiZqoiZqoiZq+r+bStOFCxck39r32rRpIxs2bJCVK1fKPffcY7MPF9u4cWOtaILnlLscOnRIq6DWrVunN75mzZo63c8wHB87dqwmofAT1Vg4bvDgwXouVEehba9Lly42FUugdu3a0rBhQxk9enS+te85qpQKDw+Xlu++Y7bv3ahv12/FigFqoiZqoqaCpunb/gNvijdnt+LbQGqiJmqiJmqiJmqiJmryMa8d+ZDAwMD8ad9bu3atTrezT0gBeD7BWHzcuHGeLK1ZO6yPrBpEBAcHq4cUMnTIzL3xxhuagDI8p5CJQ0IJSSokpcqVK6dZRSSRrNVSZ86c0X35SeHChXWzB/9Y8LbL/emv30E+0PgHx7WMZ12lODVRk7txaqKm/L72gqYJDyv2GA8TeY0bDxmuxh1di7txPOxQEzVREzU5i1MTNeV27dRETdQk11WTs305rkU8AJ5NuZmaFy1aVI/JCwEBAZqQOnv2rCxbtkxat26ta2Kzv3lGBtAwPS9UqJBWcRns379fPbDQGkgIIYQQQgghhBBCrj8eVUrVqFFDvvzyS3nhhRe0V9EKqpumTJmibXeegAQUysLgR3Xw4EEZOHCg9iuiJQ/Jpvr162sMSTG076GqCj5WRmUWrqdbt27Sv39/KVWqlJaJ9enTRxNSVpNzrP3333+rzxQqsIz2vbvuukt7IMGePXu06iopKUmSk5PNY+69916PtBFCCCGEEEIIIYSQPHhKrVq1Spo3b679gUgWwfPJqEj6+uuvJTExUZYuXaoeTu4yd+5c9YiCGReSSu3atZORI0eayS8kkbB/+fLlmixCYgrG56+88orp63Hp0iVtL4RJOjyemjVrJpMmTbJp32vQoIEmtOyB4VdkZKR+xs+jR4/mOMbVW+bqCERCCCGEEEIIIYSQWwVX8yEeJaXATz/9pBVLf/zxh00cVUQffPCBmp0XdJiUIoQQQgghhBBCSEHj/NVMSmEUISqS7Fv1jMolo5oIx+TFTBwtckOGDFEj87i4OG0TnDBhgo4+BGi3GzRokE7BQzVWVFSU9O3bV3r06GGu8cUXX+gEvq1bt+p68KSyGp4bLFmyRN59913V5u/vr22B9tP1pk2bpm2BGIuIm/jEE0/IJ5984vYv4ZF3hpjT9wghhJD8ZMmgN673JRBCCCGEkALOeReTUi4ZnSM5hCSOQaNGjUwjcSSh7r//ft3yOt0OHlUrVqyQGTNmyM6dO6Vp06Y6Ue/kyZO6Hz5RaAucOXOm7N27V/r166eT/hYtWmSucfHiRW0txJQ+Z3z77bfy7LPPaushKr1++eUX6dixo80xSEa9+eabmgTbvXu3VoahDZAQQgghhBBCCCGE5B2XKqWKFSsmH330kSaNAKbfITFkn8jJCzAbL168uCxcuFBatmxpxjFNr0WLFjJixAipWrWqdOjQQaupHO23smbNGvW0sq+USk9PV6+oYcOGqSG6I/Cd0NBQWbx4cZ7aEFkpRQgh5FrDSilCCCGEEHKzVEq5NH2vevXqWjnk4+NjtvD9/vvv2vaWG23btnX5gpEsysjIyLEmpuytX79eP9etW1erorp27SohISGaeEJr3fjx410+D9r6UHmFxBoqwNB+aPhgIekFUK2VmZmpx1WpUkXbAHHuDz/8UMLDw10+FyGEEEIIIYQQQgjJQ1IKvk7t27c3K4sw5Q4xbM7AMUgyuQqqpOrUqSPDhw/XRFDZsmV1et7GjRulYsWKeszEiRN10l5YWJj4+vpqYmny5MlSr149l88TExOjP4cOHaqJNlRNIdmEaXxIcGHiH45BUuq9995TjUjEvfXWW/LII4+oB5Wfn5/DtTHpD5s1Mwh8vLx0A6hLy5Qs8RYvyQ4pmVlZgpI14zhP4xnZhW/uxBHxzkOcmqiJmqiJmm4cTXjJY/wdxssk/D3DZuAsjr+p2JzF8TfdWlztLI61vSzXYY3rtdo9GziL4+881rXGqYmaqImaqImaqImaqCnjptBkvy9PSalatWrJwYMH5dChQ3LmzBlN4MBvCX5PVxN4SaEKCq1zEFOzZk15+umnZcuWLWZSatOmTVotBVP1devWSa9evbRqytVrMW48rr9du3b6eerUqZromjdvnrz00kt6TFpamnz88cfqawWQIINn1urVq516S40aNUrbAu1pGBIm/kWK6OcTF/6W3WeTpErJkhIWUMw85uD5v+TQ+b/k3sDSUtr/n2PBrrOJcvLCBXmgbDkp5lvIjG9OiJPES5ekQUio+HpdtgZbf/qUXMpIlyahthVdP508Lv4+vvJQuWAzlp6VKStPnpBS/v5Sq3QZM/53epr8cvqUhAQESNWSgWY84VKKbEmIl+jbbpeKt102vacmaqImaqKmG0fT5s2bzUpjVDonJCSYL2QAXrTg5U9sbKycOHHCjAcFBUmFChXk8OHDEh8fb8bx9xEbXtyg/NogOjpaypQpI7t27dIWfIM777xT2+a3bdtm89BUrVo1faljXJ/1GSM1NVVf+hjgGQBDTnC+ffv2mXFqoiZqoiZqoiZqoiZq2ndTaLpw4YJcNU8pe2AQjol3MDfPD3DxqDIKDg5WDylM3Zs/f77eWEzms3pOwecKNxkG6K54SiGpBKP2n3/+WR566CEzDi1IbI0cOVKTVEiOHT9+XH8xBqjegnfViy++6HKlFNr9mg992/SUupHfrnsapyZqoiZqoqYbR9N3Awbe8G/ObsW3gdRETdRETdRETdRETdTkY1478iGBgYFXx1PKHiRt8pOAgADdkFBatmyZjBkzRiuXsOGGWDFutKvAGL1w4cKyf/9+MymFdY8cOaLVV+DBBx/UnzjGSEolJSVp9tE4xhFYF5s9+MeCt13uD/+Y0X+JODjWEfkZz7pKcWqiJnfj1ERN+X3tBVETHlisGA8T9rgbNx4yXI3bX4cncTzsOIpTEzXlFqcmaqImasotTk3URE1yTTQ525fjWLmBQAIK2bfKlStru+DAgQO1LAyVWYUKFZL69etrDCVqSA6tXbtWpk+frt5QBjAux4bvg507d6pfVUREhPpFIUOHKq933nlHq5iwDkzOwRNPPKE/K1WqJK1bt5aXX35ZvvjiC/3O4MGD9VpQfUUIIYQQQgghhBBC8sYNlZRCWReSP2jHQwIJnk9op0NCCsyZM0f3d+rUSSuXkFDCfiSZDD777DMbXyfDBB3VXc8//7x+RhIKWbtnn31W+yLRurdq1SopWbKk+T0ku1555RVtFUQGEQkxtAga1+IO8/u/mmu5GiGEEEIIIYQQQkhBwyNPKeIa6KGED9aVeigJIYQQQgghhBBCClo+5IaqlALJyckyZMgQNTSPi4uTGjVqyIQJE9RpHsD0fNCgQbJgwQJJTEyUqKgo6du3r021FFruZs2aJVu3btX17M3OASqt+vTpI4sXL9ZKKFRl4TzFil2eooR83YcffqjrHT16VEqXLi09e/bUyX3u0G7sB+KbbXROCCGEXG9+fMO9v2OEEEIIIYTkBzdcUgrT9DBucMaMGRISEiIzZ87UqXh79uyR0NBQ6d+/v7baIR4ZGSnLly/XRBGObdWqla5x8eJFad68uW5o93MEWgBPnTolK1asUKNz+FZ1795dk1kG8JTC+mPHjpV77rlHE1nYCCGEEEIIIYQQQsh1at9DKdakSZNk9erVWtH0+eefS+3atTVpM23aNE0QVaxY0a014e8EU/KFCxeql5N1Yl6LFi1kxIgRUrVqVenQoYNWUznab2XNmjVqTG5fKbV3716566675Pfff5datWppDH5Rjz76qPpZIcGFY6pVq6YJMhiv56VcrcmQt1gpRQgh5IaBlVKEEEIIIeRGaN/LOQPQBZC4QVvd22+/rZ937NihbXUABuVIUE2cONHtddPT0yUjI0P87RI4mLa3fv16/Vy3bl1ZtGiRnDx5UtvrkBQ7cOCANG3a1OXzbNy4UZNURkIKoBoLbXy//vqr/jfa+qKjo+X777/XFkFUZaGKi5VShBBCCCGEEEIIIdepfW/gwIHq1bR9+3YpU6aMblbatGmjyRx3QZVUnTp1ZPjw4VKlShUpW7aszJ49W5NIRtUVkl1oswsLC9MJekgkTZ482Zyy5wqnT5/Occ1YCwk17AMxMTHqIzVv3jydxIdkGabxtW/fXtsHHfG///1PN2tmEPh4eYmvl5d+zsSWlSXeXl42GUHEMrOP/efIf8jIypKsXOLGugbp2YVv7sS9stc3yMpe31kc143rN6+dmqiJmqiJmm4qTXqtmZm6GeDvKTZncfwdtBZXO4v7+PiIl5eXvmiygrhqzshwKY6/y1jXGse6ON7+Gp3FqYmaqImaqImaqImaqCnzumiy33dVk1LwWUKCBi1wMBu3BxVGx48f92Rp9ZLq2rWr+kdBUM2aNeXpp5+WLVu2mEmpTZs2abVU+fLlZd26ddKrVy9tuUO109UCvyAkmJCQqlSpksamTJmirYL79+932NI3atQoGTZsWI54w7Aw8S9SRD+f+Ptv2ZWUJHeVLClhFlP1g3/9pVuN0kFSusjlSrFdiUly4sLfUrdcOQkoVMiMb46Lk4RLl6RhaJj4eF/+x8b6U6fkUnq6NAkPt7mGn44fF39fX3koONiMZWRmyYoTxyXQ319qWZJ0F9LS5OdTpyQ0oJhUDSxlxhNSLsnm+DiJvv12qXj77WacmqiJmqiJmm4uTSA2NlarnQ2CgoKkQoUKcvjwYYmPjzfjeAmEDVXJKL+2/q3HCx60uaP93uDOO+/UauRt27bZPDShJd7Pz082b95sowlVy6mpqVp1bYC//xhwgvPt27fPpnK6evXqkpCQoC+PDFAajpdZ1ERN1ERN1ERN1ERN1CQ3hKYLFy5IvnlKFS1aVMaPHy8vvfSSJqUg7KeffpJGjRrpfhiDv/vuu2alkCdAAL4fHBysHlJoD5w/f77eXEzms3pOoa0ONxq+UK54Sn311VcyYMAAjRsgi4e2QVRG/etf/5J33nlH3nvvPTVBN8AvAdqRlHvkkUdcqpQKDw+XZm8PkULZLYk3+9v1W7FigJqoiZqoqaBp+n7wG3wbSE3URE3URE3URE3URE35pgn5kMDAwCt6SnlUKYUKKVQoISnliAULFqjnVF4ICAjQDYmjZcuWyZgxYzRBhA03xYpxs10FLYLnzp3T6itUPgG05GGN+++/X//7wQcf1Bt86NAhzSQCZA0BKrQcUbhwYd3s0X8U2OX+jH+4ODpW3IinX4V4lptx4x9jOeLURE3URE3UdNNoMh4yXI0bDxmuxvHglNc4HnYcxd29dmqiJnfj1ERNuV07NVETNVFTbtdOTaJxZ/tyHCse0K9fP+ncubOWZj3xxBMaQ0Ln4MGD2r4GD6hvv/3Wk6U1AYUMHNrjsB78q1Aa1qVLFylUqJDUr19fYyhTQ3Jo7dq12mI3btw4cw34QmHD98HOnTvVryoiIkJ9o1DG1rx5c3nxxRfls88+00RX79695amnntI2QIBWQLQOopXwo48+Un1oE0SFlNHORwghhBBCCCGEEEI8w6P2PTBy5EgZOnSoJpCQsEGWDZ/xc8SIEfL66697dEFz586VwYMHazseEkjt2rXTc6FtDyDZhP1oocMkPCSmYHwOjytkDQGuy5G309SpU+X555/Xz/guElGYsodrxnk+/vhjKWbxBkH/ZZ8+ffRcqNpq0aKFfPjhh3pdV3MEIiGEEEIIIYQQQsitgqv5EI+TUuDYsWNaEYWKJCSm0ObWtm1bNcMiTEoRQgghhBBCCCGk4HHexXyI2+17Fy9elIcfflhb33r06KEVSoQQQgghhBBCCCGEuIPbSSlMn8P4QKNV7mqTnJwsQ4YM0Ql7cXFxapg+YcIEHX8IMIVv0KBBaqaOyX9RUVHSt29fTZAZXLp0SafrzZkzR6fhNWvWTCZNmiRly5bV/dOmTVOPKkecOXNGRx6ize/rr792aPK+e/dutzT9a8wH4ps9fY8QQgi51Vn21pvX+xIIIYQQQshNQE67dReASTgMyfODF154QVasWCEzZsxQg/KmTZuq6fjJkyd1f//+/WXp0qUyc+ZM2bt3r5quwxtq0aJF5hqo3oJX1Lx589QIHd5QaCs06NChg5w6dcpmQ+IKJupISAEkwqz7jx8/rl5ShrE7IYQQQgghhBBCCPEcjzylkAxCcgZVTC+99JJWK2Eanj2uGoIbpKSk6JS8hQsXSsuWLc34fffdpybjMFCvWrWqJpVQTeVoP/oVg4KCZNasWdK+fXvdv2/fPp24h6mADzzwQI7zxsfHS2hoqEyZMkWeffZZh9eGyiwktlAlBnN1d3ooG735FiulCCGEFBhYKUUIIYQQUrA5n1+eUuDuu+/Wn3v27NHkjzMyMjLcWjc9PV2/42+XwEHCa/369fq5bt26WhXVtWtXCQkJkTVr1siBAwdk/Pjxun/Lli2Slpam1VUGd955p0RERDhNSk2fPl3bEo0kliOQsMKauSWk0CqIzfpLAD5eXuKb3e6YiQ1TCr28bMrUEMvMPtbaGJmRlSVZucSNdc17mJ1jdCfulb2+QVb2+s7iuG5cv3nt1ERN1ERN1ERNlrheU3q6zTX6+Pg4fDZwFvf19dWpvtY4rANwPIarYLtSHNN1sTmLY23ruzlncayNc1ATNVETNVETNVETNVGTuKTJft9VTUq9/fbb+eIphSqpOnXqyPDhw7WyCR5Qs2fP1mRSxYoV9ZiJEydK9+7dJSwsTH8puEGTJ0+WevXq6f7Tp0+Ln5+flChRwmZtrIV9zhJOHTt2dFjtBdD+9+OPP+aagAOjRo2SYcOG5Yg3Dg8T/+y1j//9t+xMTJK7S5WU8GLFzGP+PPeX/PnXX1IzKEiCilxOyuFYfOfB4HJSrFAhM/7bmThJuHRJGuE+eF/+XayLPSWX0tOlaUS4zTUsP3Zc/H19pV5IsBlLz8yS5cePS6C/v9Qu+0/bIvg7LU3XCStWTO4JvFztFp9ySX6Pi5MKt98ud5S43YxTEzVREzVREzVZNYFt27bZPDRVq1ZN/z5v3rzZRlOtWrUkNTVVduzYYfNAAy9JvFlDtbMB/k5Xr15dEhISJCYmxozjLRyeG/D3+sSJE2YcldOYDIwqZ1RFG+AZAhteauEcBpgejDb+Xbt2afW29eUWniuoiZqoiZqoiZqoiZqoSVzSdOHCBcm39r385NChQ1oFtW7dOr3xNWvWlEqVKmkFFNoGx44dq0ko/ETVEo4bPHiwGqOjkgmJI5iYWyuWQO3ataVhw4YyevRomzgSXqi+wk1DG6CzZNOHH36ov1DcYHcqpcLDw+WRt4ZIoezqL75dpyZqoiZqoqZbXdPSt94scG8DqYmaqImaqImaqImaqMnHvHbkQwIDA6/YvnfDJaUMkFWDiODgYPWQwtS9+fPna8YPCSir5xTM0ZH9gwH6qlWrpHHjxnL27FmbaikksGCKDhN0K926dZOtW7dqhs8RuD1Iij322GNmi6Cr0FOKEEJIQYSeUoQQQgghBZvz+ekpZfDLL79oQgcnsWbZALJmVjNydwkICNANySVM+hszZox6RWFDps6KkQEEqHYqVKiQrFy5Utq1a6ex/fv3y7Fjx7Q10AoSXXPnztVKKGdget/Bgwc1eUUIIYQQQgghhBBCrg4eJaWSkpK0Uum3337TSiIkoIyCK+Ozp0kpJKDw/cqVK2syaODAgdqviJY8JJvq16+vMfROovoJSSMYlY8bN06/j0wcEkj9+/fX6X/IyPXp00cTUvYm5998842Wmz3zzDNOrwd+U/fff79O/SOEEEIIIYQQQggh1zEphaQQTLfg34SEDcyvkEyKiorSFjf4NMEY3BNQdQWPKLTjIamEaqeRI0dqQgrMmTNH93fq1EmTY0hMYX+PHj3MNXANqKbCd+Hx1KxZM5k0aZLDhFPbtm1zmKJbr+Xbb7+VCRMmSF74f68NzLVcjRBCCCGEEEIIIaSg4ZGnFHyenn76aa1OSkxMVAf3FStWqJcTQKKncOHCOjmvIONqDyUhhBBCCCGEEELIrUK+ekqdO3dO7r77bv1cLHtsNPyZDJo2bSpvvPGGJ0tLcnKytv3BzDwuLk5q1KihlUoYf2icZ9CgQbJgwQJNiKE6q2/fvjaVUl988YVWccHvCuvZm56DyMhIOXr0qE0M3lJYGxw5ckTXtgdVYPZtgFei9ftjaHROCCGkwLLi7beu9yUQQgghhJAbEFvHcBcJCQmR06dP62dURJUpU0b++OMPc//JkyfVU8oTMEkPVVczZsyQnTt3aoKrSZMmuiaAVxSm7M2cOVP27t2rE/V69+4tixYtMte4ePGiNG/e/IqJsXfffVdOnTplbvCesuenn36yOQZG6oQQQgghhBBCCCEkb3hUKVWvXj1NHL355j8jnzt06KDT8YwpeB999JH6OLlLSkqKejgtXLhQzwGGDh0qixcvlk8//VRGjBghGzZskM6dO0uDBg10f/fu3eXzzz9X0/VWrVppDIkqsGbNmlzPV7x4cSlXrlyuxwQGBl7xGEIIIYQQQgghhBByDZJSqFZCUgom4qiUQuJo9+7d5rQ9JJQmTpzo9rqYhJeRkSH+dq1umLS3fv16/Vy3bl2tiuratatWbCHxdODAATU3d5f3339fhg8fLhEREdKxY0d55ZVXxNfX9pYg0XXp0iWpVKmSvPbaa2biyxG4H9isPZTA18tLN5CJLStLvL28bMrUEMM+Hy8vsdaYZWRlSVYucWNdg/RsizB34l7Z6xtkZa/vLI7rxvWb105N1ERN1ERN1JSLJvx9x4sr3Z+RYXPtzuL4ewzbS2scVdjGCzBsV4pj6Ak2Z3GsbbXWdBbH2jgHdLhy7dRETdRETdRETdRETQVdU7rdvqualLrnnnt0MyhZsqS2ucFrCheBCiRPwPfq1KmjiaIqVapI2bJl1SwdPk4VK1bUY5DsQnVUWFiY/lJwgyZPnmxWVrkKfKhq1qypE/5QfYWJfmjPg3m74ZX14YcfyoMPPqjnQAVXmzZt1MvKWWIKnlTDhg3LEW8cES7+RYro5+N//y07EhKlamApCc/24wJ/njsnB879JfeVCZKg7GMBjsV3HgoJlmLZEwjBb2fOSHzKJWkcESa+Xpf/+bD2ZKxcSk+XZuUjbK5h2dFj4u/rK/VDQ8xYelamLDt6XEoX8ZfaZcua8b/T0nSdsGLFpFrpQDMen5Iiv52Jk4olbpc7LB5d1ERN1ERN1ERNuWnavHmzVKtWTfz8/PSzlVq1aklqaqpO9TXAswS8JGGMuW/fPpuXVNWrV5eEhASJiYkx4zDRxHNDbGysTu81wCCWChUqyOHDhyU+Pt6M4xkCG15q4RwGmCYMS4Jdu3Zp9bbBnXfeqd6U27Zts3kQpCZqoiZqoiZqoiZqoqYMh5ouXLgg+TZ9Lz85dOiQVkGtW7dObzwSR6hS2rJli3pIjR07VpNQ+Fm+fHk9DgklGKPDe8oKqqgaNmzo0Ojcnq+++kpeeuklNVJH9ZcjnnvuOf3l/fzzzy5XSoWHh0uTN94yjc75dp2aqImaqImaCpqmxYNfv+XfBlITNVETNVETNVETNVGTj3ntyIfADulK0/c8SkpNnz7dpeOQxPEUZNUgIjg4WD2rkCyaP3++ZvyQgGrZsqWNOTqyfzBA9zQphfbDqlWrataxcuXKDo/55JNP1NcKFVXujEBsMPhNTt8jhBBSYOH0PUIIIYSQgsX57HzIlZJSHrXvPf/88073Wafu5SUpFRAQoBsSSsuWLVMj9bS0NN2QqbNiZADzwvbt23VdlKbldgySZIQQQgghhBBCCCEkb3iUlEILmz0ozzpy5IhMmjRJjh07Jl9//bVHF4QEFIq3UK108OBBGThwoPYrdunSRQoVKiT169fXGHon0b63du1ardwyvKDA6dOndcP3wc6dO9WvCobm8JCCR9Wvv/6qVVSI479hcv7MM8+oPxbA9aMXskaNGvrf3333nbb4ffnllx7pIoQQQgghhBBCCCH57CmF1rrIyEhtd3OXuXPnqkcU2vGQQGrXrp2MHDlSy74Akk3Yv3z5cklKStLEFIzPkVQyqrQwDdCR4fjUqVO1ymvr1q3Ss2dPbdWDB1RUVJQ8++yzOlXQ8JNCUmr06NFy9OhR7d1EYgzJsPbt21/1cjVCCCGEEEIIIYSQWwVX8yH5kpT69NNPZciQIeoAX5BhUooQQgghhBBCCCEFjfP56SnlygQ96xQ6d0hOTtaEFszM4+LitH1uwoQJOv4QwPB80KBBsmDBAklMTNQqp759+0qPHj3MNS5duiQDBgyQOXPm6HU0a9ZM2wrLZo/KnjZtmrYDOuLMmTPqK4V2PSTX4COFNe6++26twMJa7vL4qDHiW5hG54QQQgo2K4fS8JwQQgghhOQxKbVu3TqH8XPnzum+jz/+WNq0aePJ0jpJb9euXTJjxgwJCQmRmTNnSpMmTWTPnj0SGhqqLXarVq3SOFoE0caHVjwc26pVK10DrXxLliyRefPmaWaud+/e0rZtW/nll190P6b5NW/e3Oa8aOtDMsswOoeORx55RN577z2d3IfWv8cff1y9qAyfKUIIIYQQQgghhBDiGR6172FKnXXKngGWwiS8J554QiZOnCiBgYFurZuSkqLG4wsXLlRfKoP77rtPWrRoISNGjJCqVatqUgnVVI72ozQsKChIZs2aZfo/wTuqSpUqamj+wAMP5DhvfHy8JrymTJmi3lLOQLUUzv3222+7Va5Wb9CbrJQihBBS4GGlFCGEEEJIweB8frbvrV69OkcMSSpMroPxuKf+Senp6TrFz9/fNoGDSXvr16/Xz3Xr1pVFixZJ165dtTpqzZo1cuDAARk/frzu37Jli6SlpWl1lQFMyjF5z1lSCtP7ihYtmquJeWZmprYWwnzdGWjzs7Yt4pcAfMVLfLOTeJnYsrLE28tLvK3rZ2XpPh8vL7Gm+zKysiQrl7ixrnkPs3OM7sS9stc3yMpe31kc143rN6+dmqiJmqiJmqjJBU14eYW/81bwMku/ZxfHkBH74/GsgePxNxnbleJ4iYbNWRxrW9/NOYtjbZwDzymuXDs1URM1URM1URM1UVNB15Rut++qJqXq168v+QGqpOrUqSPDhw/XyiZ4QM2ePVuTSRUrVtRjUIGFaXthYWH6S8ENmjx5stSrV8+czufn56ctd1awFvY5AhVSHTt21OSXM8aOHat+Vk8++aTTY0aNGuVw6t8jkeHin732seS/5Y/4RLmndCmJKF7MPGb/2XNy4OxfUqtskJQpevk6cCy+83BosBT3K2TGN506I/Epl+SR8mHi6335nw+rj8fKpfR0aREVYXMNPx4+Jv6+vtIwPMSMpWdmyo9HjkvpIv7yQPA/flsgOTVN1pyIlfDixaR60OVqt7iLKfLr6TipWPJ2qVzy8v2lJmqiJmqiJmpyRRMeUDZv3myjqVatWpKamio7duyweaCBlyTerKHa2QB/p6tXr66DVGJiYsw43sLhuSE2Nlan9xqgcrpChQpy+PBhrYo2wDMENrzUwjkMoqOjtY0fNgKo3ra+3MJzxbZt22weBKtVq6bPHNRETdRETdRETdRETdQkNpouXLggrpAv0/fyapKOKih4OuHG16xZUypVqqQVUHv37tXkEJJQ+ImqLBw3ePBgNUZHdRTa9mBibm+0Xrt2bWnYsKGMHj3aJo6EF6qvcNPQBugIrPniiy9qW6G1AsuVSqnw8HBpNOgt8c2u/uLbdWqiJmqiJmoqqJp+eufNW/ZtIDVREzVREzVREzVREzX5mNeOfAgsna7UvudRUgoT7xx5SuUGjkfCyVWQVYOI4OBg9XFCldL8+fM144cElNVzCuboyP4tXbpUTdAbN24sZ8+etamWQgKrX79+aoJupVu3brJ161bN8DkCE/yQJINpuvWcrkBPKUIIIeQy9JQihBBCCCkYnM9PTym076Fyaffu3XLXXXdJ5cqVNb5//36dkgczcmdVR64SEBCgG5JLy5YtkzFjxqhXFDZk6qwYGUCA8xYqVEhWrlwp7dq1M6/r2LFj2hpoBYmuuXPnatudI9A6iIQUElPuJqQIIYQQQgghhBBCiFzdpFSbNm20lW3FihValWQFMfguwReqdevWbq+NBBSKt5DoOnjwoAwcOFD7FdGSh2QTEmKIoXcS1U9r165Vo/Jx48bp95GJQ/VT//791ZQcGbk+ffpoQsre5Pybb77RcrNnnnnGYcte586dZcKECXL//febflQ4L85BCCGEEEIIIYQQQjzHo/Y9mFchMfXuu+863D9kyBBZsGCB7Ny50+0LQuUSPKLQjoekEqqdRo4caSaCkBzC/uXLl0tSUpImpmB8jrY8o6Xw0qVLMmDAAK10gsdTs2bNZNKkSVKuXDmbc8FLCq2I//3vf3NcR4MGDTThZQ8SVdOmTbuq5WqEEEIIIYQQQgghtwqu5kM8SkqhWuj999+Xl19+2eH+jz76SN544w25ePGiFGSYlCKEEEIIIYQQQkhB43x+JqXgGQXn9/Xr10uxYpfHRoPk5GR58MEH1eMJYwPdBd9HpRXMzOPi4qRGjRraQofxh4YP1KBBg7QSKzExUSud+vbtKz169DDXMCql4AVlrZQqW/afUdl//PGHJtVw/RidGBkZqd+3Jtmef/55+frrr3NcHzy04KXlzi/hodfeoNE5IYQQkgur3x1yvS+BEEIIIYTcDEbnI0aMkPbt26vXE5I3FStW1Piff/6piZwzZ87otDpPwCQ9JLNmzJghISEhMnPmTGnSpIkaqIeGhqpXFCbsIY5kEtr4evbsqce2atVK10Ar35IlS/QacBN69+4tbdu2lV9++UX3w6S9TJkyukZ4eLhs2LBBWwBhmI5jARJhSFwZwHuqevXq8sQTT3ikixBCCCGEEEIIIYTksVIKIBn0+uuva9WRlXvvvVen2aE6yV1SUlKkePHiaqJunXaHiXotWrTQZBiqtDp06KDVVI72IwsXFBSkRuVInIF9+/ZJlSpVZOPGjTnMzg169eole/fu1YSXI1CZhcTW4cOH1cfKFVgpRQghhLgGK6UIIYQQQgpepZS3pydo2rSpbNu2TWJjYzXZgw2ft27d6lFCyqhGysjIEH9//xweVmi1M8zJFy1aJCdPntQpfatXr5YDBw7o9RhVUGlpaVpdZYCKroiICL1GZ+BGwVjdGVOmTNE1XU1IEUIIIYQQQgghhBC5uu17VjDRzn6qnaegSqpOnToyfPhwrWyCBxQm6CGZZLQITpw4UVvtwsLC1NfK29tbJk+eLPXq1TOn8/n5+UmJEiVs1sZa2OcItO9988032vLnCCTbfvzxR62+yg34V2GzZgaBr5eXbiATW1aWeHt52WQEEcM+Hy8v+efIf8jIypKsXOLGugbp2YVv7sS9stc3yMpe31kc143rN6+dmqiJmqiJmqgpj5rwYsoK/sbj5RNeVhlgyi5a7eFbie1KcTwjYHMWx9rWgnFncayNc9hfI+Kq2XKNucWpiZqoiZqoiZqoiZoKiqZ0u31XNSm1cuVKrYgaOHCgGfvqq69k6NChmpTp2LGjjB071rwgd4CXVNeuXdU/Ct+vWbOmPP3001oBZSSlNm3apNVSqFpat26dtt7BU8paHeUq8K9q3bq1vPPOO2a1lT3wyUKSq02bNrmuhbbFYcOG5Yg3jYwQ/yJF9POx88myPT5RqpUuJRG3FTeP2Z90TvafPSf/V66MlCn6z7Fge1yCHEv+W+qFBUtxPz8zvjH2jMSnpEjTyHDx9b78z4fVx05KSnq6PBptW9H1Q8xRKeLrKw0jQs1Yemam/HD4mJQuUkTqhPxjAg+SU1Nl9fFYCS9eTO4tU9qMx11MkU2nzsgdJUtI5VKXk37URE3URE3URE151bR582Yzhr//GHCCKma04Fsrp+HviCElMTExZhyl4XiZhZdIJ06cMONo569QoYK23sfHx5txvNjChkprnMMgOjpaPSfxbABLAWvFNZ4DUCFufRCsVq2avgizXjuoVauWpKamyo4dO6iJmqiJmqiJmqiJmgqkpgsXLki+eUo9/PDDmhCCUTjYuXOnJo9wAahomj9/vrz33nvqOeUpEIBKo+DgYPWQwtQ9rIubi8l8Vs8pmKPjRi9dulQ9oRo3bixnz561qZbC9fbr109N0A1gnt6wYUP9/siRIx1eB25PpUqV5LHHHpPx48e7XSkFI/UGr79pekpd7zfRt+LbdWqiJmqiJmq6+TWteHvwTf020JU4NVETNVETNVETNVFTQdF0/vx5CQwMzJ/pezAEb9eunU11E07y888/S9GiRaVHjx4yffr0PCWlAgICdENyadmyZTJmzBj1isKGm2LFuNmG6XmhQoW0msu4xv3798uxY8e0NdBg9+7d0qhRI+ncubPThBRYu3atHDx4ULp163bFay5cuLBu9ugDt13uz3jItwcP8+JGPP0qxLPcjBv/cMkRpyZqoiZqoqZcr52anMfxoGUPHnYcxY0HpLzGnVV0O4s7uhZ349RETbldOzVREzVRU27XTk3U5HUTaXK2L8ex4mEVkzXThQql5s2ba0IKoKzMqKJyFySgkIGrXLmyJoPQIojSsC5dumiyqX79+hpDmRqqn5A0QgJs3Lhx+n1UUiGB1L9/fzUux3X26dNHE1LG5D2UniEhBUN2HGd4TeFGo5zN3uD8/vvv16l/hBBCCCGEEEIIIeTq4FFSCi1pv//+u3o/IXGEJM+AAQPM/UlJSQ4rhlwBpV2DBw/WdjwklVDthEomJKTAnDlzdH+nTp30PEhMYT+qswzQZoesH76LdjoknyZNmmTuRxsg+ieROLMmz7DWkSNHbK7l22+/lQkTJkheWPLm67mWqxFCCCGEEEIIIYQUNDzylIKZ97vvvqu+TmiDO3funBw6dMj0cHrqqafk6NGjOjWvIIMeSlRuXamHkhBCCCGEEEIIIaSg5UM8qpR688031Q3+hx9+kIiICJk2bZqZkEL10po1a+Tll1/26MKTk5NlyJAhamYeFxcnNWrU0EoltAQCGJ4PGjRIFixYIImJiRIVFSV9+/a1qZS6dOmSVm6hqspaKVW27D9Tif744w95//33Zf369epSHxkZqd93ds2//PKLtg2ihW/79u1ua2oxfLRpdE4IIYQQ56wdMeR6XwIhhBBCCLlGeJSUgmEVWuYcGYSj5c7waPIETMJDOyDM00NCQrS9rkmTJjopLzQ0VD2gMGEPcSSTli9fLj179tRjW7VqpWtgwt6SJUtk3rx5mpnr3bu3tG3bVpNLYMuWLTrWEGugFXHDhg3SvXt39ZTCsVZQBfbcc8/pRL8zZ854rIsQQgghhBBCCCGE5LF9L79ISUmR4sWLy8KFC7U10AAT9Vq0aCEjRozQaqUOHTpoNZWj/SgNg1n5rFmzpH379rp/3759UqVKFW0nNMzO7enVq5dOFUTCywpaEe+44w5NWKE6y51KKaNcre6rb7BSihBCCHEBVkoRQgghhBSc9r2cMwCvI+np6ZKRkSH+/rYJHEzaQ6sdqFu3rixatEhOnjypU/pWr14tBw4ckKZNm5pVUGlpaVpdZYDpfWgzzM3jCjcKVV5Wpk6dKjExMfLOO+9cZaWEEEIIIYQQQgghBRuP2vfyC1RJ1alTR4YPH66VTfCAmj17tiaTKlasqMdMnDhRW+3CwsK0jRBT9iZPniz16tXT/Wgd9PPzMz2uDLCWs7ZCtO9988032vJn8Oeff6p31c8//6zncQX4V2GzZgaBr7eXbiAzC1uWeHt5SXYoO56l+3y8vMTLEs/IzBKUsjmLG+sapGMRN+OI+FjiqJ3LyHIeRwjXf/naqYmaqImaqImaro4mvKDS//b11ZdPeFll4OXlpZXLmZmZul0pjmcEbM7iWNtaMO4sjrVxDuParHHVbLnG3OLURE3URE3URE3URE0FRVO63b6bIikF4CXVtWtX9Y+CoJo1a8rTTz+tFVBGUmrTpk1aLVW+fHlZt26dtt7BU8paHeUq8K9q3bq1VkMZ1Va4gR07dtQpg5UqVXJ5rVGjRul37GkWFSH+RYro52N/Jcu2uESpHlRKIm4vbh6zP/Gc7Es6J/cHl5GggH+OBdvPJMjR839L/YhgKe7nZ8Y3njwjcRdTpFlUuPh6Xy54W3X0pKSkp0vLCuVtrmHJoaNSxNdXGpUPNWPpmZmy5NAxCSpaROqE/mMCD5JTU2XV0ViJuK2Y3Fu2tBmPv5AiG2LPSKWSJaRy4OWkHzVREzVREzVR09XStHnzZv37jwEnqGJGC761crp69eo6pASVzAYoDcfLrNjYWDlx4oQZRzt/hQoV5PDhwxIfH2/G8WILGyqtcQ6D6Oho9ZzEswEsBawV13jZtW3bNpsHwWrVqumLMFyzlVq1aulAmB07dpgxaqImaqImaqImaqKmgqTpwoULctN5SlmBAFQaBQcHq4cUpu7Nnz9fby4m81k9p2COjhu9dOlS9YSCKfnZs2dtqqWQwOrXr5+aoBvAPL1hw4b6fatpO8zNS5YsaWb5ALKIuFWIwVy9UaNGLlVKwUi93mtvmp5SN8qb6Fvx7To1URM1URM13fyalr096KZ8G+hKnJqoiZqoiZqoiZqoqaBoOn/+vAQGBl7RU8rtSqmLFy/Kww8/LC+++KL06NFD8ouAgADdkFxatmyZjBkzRr2isOGmWDFutmF6XqhQIVm5cqW0a9dOY/v375djx45pa6DB7t27NbHUuXPnHFMEccN27txpE5s0aZImvJAYi4qKcnjNhQsX1s0efeDOfui2f8i3B/9QEDfixsN8XuJZbsaNf7jkjFMTNVETNVFTbtdOTVeOW1vm8bDjqIXeeEDKa9z68smVuLN2fnfi1ERNuV07NVETNVFTbtdOTdTkdRNpctUGye2kVNGiRbXUCzcjP0ACChm4ypUry8GDB2XgwIFaGtalS0Cgs0IAAPK0SURBVBdNNtWvX19jKFND9dPatWtl+vTpMm7cOP0+Kqm6desm/fv3V+NyJJj69OmjCSlj8h5Kz5CQatasmR5neE3hRqOcDb8cTPmzgpI1GLDbxwkhhBBCCCGEEEKI+3jkKdW8eXNNHr300ktytUFp1+DBg7UdD0klVDuhkgkJKTBnzhzd36lTJ0lKStLEFPZbq7bGjx+viSV8F+10SD6h0skA1U7on5w5c6ZuBljryJEjV13Tj0Nez7VcjRBCCCGEEEIIIaSg4ZGn1N69e+WJJ56QGjVqaGIK7WyoXLIHSaWCDHooUbl1pR5KQgghhBBCCCGEkIKWD/EoKWXtPcytjc/emKugwaQUIYQQQgghhBBCChrnXcyHeNS+9/bbb+ebp1RycrIMGTJEJ+zFxcVpNdaECRN0/CHAFL5BgwbJggULJDExUau0+vbta9O+98UXX8isWbNk69atup79JD7QqlUr2b59u54Dk/aaNGkio0ePlpCQENMcHWtiQh9uIuIdO3aUd955x2wldJVmw943p+8RQgghxDV+fu/t630JhBBCCCEkH/EoKTV06FDJL1544QU1Ip8xY4YmguD5hIQRkkOhoaFqTI4peIhHRkbK8uXLpWfPnnosEk3GhED4XmGD/5QjGjZsKG+88YYEBwfLyZMn5dVXX5X27dvLhg0bdD8ST88995zUrFlTE1p//PGHThzElL/33nsv3/QTQgghhBBCCCGEFAQ8at+zB5VExYoVczom0FVSUlKkePHisnDhQmnZsqUZv++++6RFixYyYsQInX7XoUMHraZytN/KmjVrNPnkqFLKnkWLFkmbNm3UGN1ZJRQSYr///rv8/PPPbpWrPdB/MCulCCGEEDdhpRQhhBBCyM1Jvrbvgc2bN8tbb70l69atk9TUVK1YatSokSQkJEi3bt3klVdekQYNGri1Znp6uvpQ+fvbJnBgor5+/Xr9XLduXU0gde3aVaujkHg6cOCATtzzFEzx++9//6trO0tIHTx4UJYuXSpt27Z1ug4SWtisvwTg6+2lG8jMwpYl3l5ekh3KjmfpPh8vL7F2RmZkZgmyhs7ixroG6VjEzTgiPpY40pQZWc7jCOH6L187NVETNVETNVHT1deE92ZWf0pYB+AFGKqWsV0pDg9MbM7iWNv6bs5ZHGvjHHhOsWK8jLP30HQW9/X1pSZqoiZqoiZqoiZqKhCa0u32XdWkFFrckIBCO90zzzwjX375pbmvdOnSmgn7/PPP3U5KoUqqTp06Mnz4cKlSpYqULVtWZs+eLRs3bpSKFSvqMRMnTpTu3btLWFiY/lJwgyZPniz16tVzW8frr78u//nPf7Td74EHHpDvv/8+xzFIVMGbCskmnPfdd991ut6oUaNk2LBhOeItoiPEP3s64ZG//pZtZxKkeplAiby9mHnM3sRzsi/xnDwQUkbKBFyeZLj1TIIc/etvaVg+RIr7XU6Y/XLijMRdTNG1rQ/yPx05KSnp6fJ4xfI217D44FEp4usrTSJDbR74EQ8qWkQeDCtrxpNT03SdiNuLSc2ypc143IUU+eXkGalUqoRUCbxceUZN1ERN1ERN1JQfmvA8sW/fPpuXVNWrV9cXYDExMWYcb+Hw3BAbGysnTpww40FBQVKhQgU5fPiwxMfHm3E8Q2DDSy2cwyA6OlrKlCmjNgKo3ja48847teJ627ZtNg+C1apVEz8/P31RZ6VWrVr6wm7Hjh02D2nwx6QmaqImaqImaqImaioImi5cuCD51r6HZBMudNOmTWokjov86aefNFEFkJj5+uuvbW6Kqxw6dEiroFCBhRsPT6dKlSrJli1bZO/evTJ27FhNQuFn+fLl9Tj4RsEYHd5T7rTv4ReHKqmjR4/qNeMXh8SU1cT9+PHjqhGeUgMHDlRT9ddee83lSqnw8HB56NU3zPa9G/FN9K34dp2aqImaqImabn5N60YOuWneBt6KbzipiZqoiZqoiZqoiZq8PdSEfEhgYOAV2/c8SkoFBARoVRASNJiAh2ybNSmFyinsQwWSpyCrBhEwIoeHFKbuzZ8/XxNHSEBZPadgjo7sH9rrPPWUwveRQEIVGKq1HAFzdVRLIUll3OzcoKcUIYQQ4jn0lCKEEEIIubU9pbw9WRy+S9asmj2YZgfj87yAxBcSUkgoLVu2TFq3bi1paWm6IVNnxcgA5gXj+9ZKJ0fH4Px5PRchhBBCCCGEEEJIQccjTyn4L6FqqV+/fg4rnKZOnSr169f36IKQgELxVuXKldVcHC1z6Ffs0qWLJsOwLmLonUT73tq1a2X69Okybtw4c43Tp0/rhu+DnTt3ql9VRESElCpVSn799VedovfQQw9JyZIltWUQ0/zQW2lUScH4HOe75557pHDhwtoTiTZBVG05M0MnhBBCCCGEEEIIIfmYlIL/EpJDaKF7+umnNQbPJXhIwesJhllI8ngCSruQ/EE7HRJI7dq1k5EjR5qJoDlz5uj+Tp06qR8UElPY36NHD3ONzz77zMZw3DBBR7Ls+eefl6JFi8p3330n77zzjibRUJHVvHlznSaIBJTeGF9fGT16tBp9IUmG8/Tu3VunCrrLsncG5VquRgghhBBCCCGEEFLQ8MhTCqxatUr+/e9/y59//mkTR7URPKU8rZQqiD2UhBBCCCGEEEIIIQUtH+JxUsoAIwDRJgefJSSk7rvvPpvpde4AA3FUWMHIPC4uTmrUqCETJkzQ0YcAZueDBg2SBQsWqMF6VFSUGqpbq6S++OILmTVrlmzdulXXc2RyjsqqJUuWyPbt23Vc4blz53JcC9r7cC5M/YOe2rVry5gxY3Tcoru/hP/rR6NzQggh5Fqy4X2apBNCCCGE3JJG51aQOHriiSfUa6lWrVoeJ6SMKXorVqyQGTNmqA9U06ZNpUmTJmqcDvr3768T9jAFb+/evepphZa6RYsWmWtg4h9a8d544w2n50lNTdVrRqWXI5D8whrwoIL/1Pr169WTqlmzZmp0TgghhBBCCCGEEELyhseVUphSN3nyZPnhhx/kyJEjGouMjJRHH31Uk0v+/u5VBqWkpGjiZ+HChepVZYDKqxYtWsiIESOkatWqmvyy+lVZ91tZs2aNNGzY0GGllMG0adM0sWVfKQVTc1RnHTt2TMLDwzWGJFm1atW0XbFixYouaWKlFCGEEHJ9YKUUIYQQQsiNXynlkdE5TMgfeeQR2b9/v5qEG0kamJ2jkuk///mP/PTTTxIWFubymunp6ZKRkZEjmYUpe6hUAnXr1tWqqK5du0pISIgmnmBEPn78eLmaYPJfYGCgTJkyRSuucF34XKVKFU285Zaow2b9JQBfby/dQGYWtizx9vKS7FB2PEv3+Xh5ibXYLCMzS5A1dBY31jVIxyJuxhHxscSRpszIch5HCNd/+dqpiZqoiZqoiZpuLE14rvD29tYNFgPYDIw4/r5b3805i/v4+GglONa0grhqzshwKY4hKljXGse6ON7+Gp3FqYmaqImaqImaqImabgZN9vuualKqV69ecvToUZk7d660b9/eZt+8efOkc+fOegyqnlwFVVJ16tSR4cOHa/KnbNmyMnv2bNm4caOZ9Jo4caJ0795dk134heDmoFrLmK53tcC1IOHVpk0bvR5wxx13yLJly/S8zhg1apTN1D+DlhUixL9IEf185K+/ZcvpBKlRNlAiby9mHrMn8ZzsTTgndcLKSNmi/xwLcCy+0ygyRG7z+2cCIVh/4oycuZCia1sf5JcfPikp6enS+o7yNtew8M+jUsTXV5pGhdo88CNeJqCIPBRW1oyfT02TFYdPSvnbi8l95Uqb8TMXU2T98TNSObCE3BV4ufqMmqiJmqiJmqjpRtOEquegoCD1uzx8+LBOBjbAcwQ2vNjC2zuD6OhoKVOmjOzatUsruA3uvPNOrbqGj6b1QRAV1PCmxLmswM4AVgE7duyweUhDFTbOt2/fPpuXb/CrTEhI0CnGBniziOeh2NhYfRloQE3URE3URE3URE3UdDNounDhguRb+16xYsXk5ZdfVsNwRwwePFgTSPBmcodDhw5pFdS6dev0ptesWVMqVaqkZuPwkBo7dqwmofCzfPnyehzOBWN0eE9drfY93OwGDRrojYZnFW4yzolfPgzQ8Yt3tVIK7X91+r9htu/dam+iqYmaqImaqImabkRNq94dzDec1ERN1ERN1ERN1ERNmddHE/Ih6EDLl/Y9VBIhW+aMcuXK6THugozd2rVrNaMGAWgNhIcUsnNIFKGVDgkow3MKWThM0EPCyD4plRcwvQ8+WajSwi/AiJUsWVKrv5566imH3ytcuLBu9ugDd/ZDt/1Dvj14qBY34sbDfF7iWW7GjX+45IxTEzVREzVRU27XTk3XTpO1stl4oLLHeHByNe6sWtqdOB7gHMWdXaO7cWqiJmdxaqKm3K6dmqiJmqjpamvKrcssz9P3unTpolVGmHRnD6qjpk6dKt26dRNPCQgI0IQUqpzQMte6dWudeofN/sYZ2b+rCXThPNZJgsZ/X+1zEUIIIYQQQgghhBREPKqUuvfee2XJkiXa3gb/KMPzCZPppk+fLqVKldIqpu+++87me23bts11XSSgUBIGo/GDBw/KwIED9RxIghUqVEjq16+vMbTPoX0PVVU437hx48w1Tp8+rRu+b0zNQ9VWRESEXhfAVL2kpCT9ibIyVFsB6EBrIkzccR74YvXp00cTUe+//75m+tASSAghhBBCCCGEEELyhkeeUo7KvHIs7OVl03OI/7bvibQHxunwiIIRFxJI7dq1U98qmHQBJJuwf/ny5ZpUQmIKxuevvPKKWdU0dOhQh2bjqN56/vnn9TN+fv311zmOWb16tXpJgRUrVug6MPSC3ho1aui1PPDAA3K1RyASQgghhBBCCCGE3Cq4mg/xKCmFCiVPQKVTQYJJKUIIIYQQQgghhBQ0zruYD/G90ZJLycnJMmTIEDU0j4uL0wqlCRMm6PhDw7Nq0KBBsmDBAklMTJSoqCjp27ev9OjRw1zj0qVLMmDAAJkzZ45Ow2vWrJlMmjRJypb9Z6w0/LDQEuiIM2fO5DBx/+WXX1Rz1apVzVY/d2g8ZJQ5fY8QQggh14+NY9653pdACCGEEELyYnSen7zwwgvaOjdjxgz1g2ratKlO1jt58qTu79+/vyxdulRmzpwpe/fulX79+knv3r1l0aJF5hpo51u8eLHMmzdPq7piY2Nt/Kww0e/UqVM2GxJXSDzZJ6TOnTsnzz33nDRu3Pga3gVCCCGEEEIIIYSQW5sbKimVkpIi3377rYwZM0bq1aunxuPwiMLPTz/9VI/ZsGGDmqvD+ykyMlI9papXry6//fab7kdp2JQpU9T8vFGjRnLfffepnxS+t2nTJj0GRunlypUzN0zwW7VqlcOJgajA6tixo9SpU+ca3w1CCCGEEEIIIYSQWxeP2vfyi/T0dDVD9/e3bXVDEmn9+vX6uW7duloV1bVrVwkJCZE1a9bIgQMHZPz48bp/y5YtkpaWptVVBpjgh+l7GzdudGhUjgl+RYsWlfbt29vEkcyKiYnRqqwRI0Zc8frRKojN2kMJfL29dAOZWdiyxNvLS7JD2fEs3efj5SXZnu1KRmaWwPTLWdxY17yHWMTNOCI+ljhcxjKynMcRwvVfvnZqoiZqoiZqoqabQxOeNTDABBueOazWms7ieHmFgSr4rhXEVbPdIBdncUzxxbrWONbF8Zj0i+1KceMancWpiZqoiZqoiZqoiZq8bgBN9vtuiqRU8eLFtSJp+PDhUqVKFfWAmj17tiaTUC0FJk6cqNVRYWFh+kvBDZo8ebJWVhkT+vz8/KREiRI2a2Mt7HMEKqtQDYXkl8Gff/6p3lU///yznscVRo0a5XDy32N3lBf/7LUPn0uWLacSpEa5QIkqUdw8Zk/8WdmTcE7qhpeVsgGXr2PzqQQ5ci5ZGkeFym2FC5nxn4+dljMXUqTlHRFSyDINcfmhE3IxPV3aVI60uYYF+49IUV9faVohzIylZWbKwv1HpUxAEXk4opwZP/+/NFkec0LKlygutYJLm3GcD+e9M7CE3BVU0oxTEzVREzVREzXdLJo2b96szxDY8FILFdYG0dHR2saPybuo3ra+3MJzxbZt22weBKtVq6bPHFjTSq1atSQ1NVV27Nhh85AGf0ycb9++fWYczx6o+E5ISNAXYQYwBsWzECwIMJXYICgoSCpUqCCHDx+W+Ph4M05N1ERN1ERN1ERN1HQjabpw4YK4gkfT9/KTQ4cOaRXUunXr9MbXrFlTKlWqpBVQ8JAaO3asJqHws3z58nrc4MGD1Rgd1VGzZs1SE3NrxRKoXbu2NGzYUEaPHm0TR8IL1Ve4aWj1A7ipqKhCO59hoI42Qpir52Z07qhSKjw8XB7oN9g0Oi8ob6KpiZqoiZqoiZpuRE2rR7zBN5zURE3URE3URE3URE2Z+asJ+ZDAwMArTt+7KkkpnKRYsWLmBVwNkFWDiODgYDUmx9S9+fPna8YPCaiWLVvamKMj+wcDdHhDwZT87NmzNtVSSGDBFB0m6FaQeNq6datm+Kzm5iVLlrTRg18YbhViy5cvV78qV0cg1uo7iNP3CCGEkBsATt8jhBBCCMl/jHzIlZJSHhudo7KoefPm6sWE7Bem3AGUjbVu3Vq9nvJCQECAJqSQXFq2bJmuCa8obMjUWTEygADVToUKFZKVK1ea+/fv3y/Hjh3LYVaORNfcuXNzGJzjhmHyH6qijA0VU5UrV9bP999/f560EUIIIYQQQgghhBR0PPKUwiQ7VAqFhobKM888I19++aW5r3Tp0poJ+/zzz3VCnrsgAYWKJCSADh48KAMHDtR+RbTkIdlUv359jaF3EtVPSIbBqBzT9gAycUgy9e/fX0qVKqUJpj59+mhCyt7k/JtvvtFyM2iwgqRX1apVbWLoo4QBu32cEEIIIYQQQgghhFyjpNQbb7yhplmbNm2S5ORkm6QUgHfT119/7cnSmtCCRxTa8ZBUateunYwcOVITUmDOnDm6v1OnTpKUlKSJKew3vJ8AJvEhsYTvwuOpWbNmMmnSJIcG523bts1hin61WTl8cK7laoQQQgghhBBCCCEFDY88pdBah0lzffv2lcTERHVw/+mnn0yfJSSpsO/ixYtSkHG1h5IQQgghhBBCCCGkoOVDPKqUQtWS1andnpMnT6rxuSeg8mrIkCFqZh4XFyc1atSQCRMm6PhDwwdq0KBBOgkPCbGoqChNgFkrpS5duiQDBgzQqiprpVTZsmV1P76HSiuMWMRntObBs+q9995zeLN++eUXbRtE615u0/ec0fDNUeJDo3NCCCHkhuC3sTQ7J4QQQgi5EfDI6BzeTJiE52xq3tSpUzWJ4wmYpLdixQqZMWOGmo03bdpUmjRpookuAK8oTNmbOXOm7N27Vyfq9e7dWxYtWmSugQl7ixcvlnnz5qnnVGxsrLbpGaC1D0kofOfAgQMybdo0rfSyJrask/iee+45nehHCCGEEEIIIYQQQq5j+96vv/6qSSckap5++mlN2nz44YdSvHhxGTt2rBw/flw2btwo1apVc2vdlJQUXWPhwoXSsmVLM46Jei1atJARI0ZotVKHDh20msrRfpSGoZ1w1qxZ0r59e92/b98+9cDCNdmbnRt8/PHH8sEHH+i1W3nqqafkjjvu0Al/qM5yp1LKKFer2XsQK6UIIYSQGwRWShFCCCGE3Bjtex5VSt1///3yww8/6HQ8JKQA2uW6d+8uGRkZus/dhBTAJDx8H1PurGDS3vr16/Vz3bp1tcIJlVPIp61evVqrnVBRBbZs2SJpaWlaXWWA6X0RERGalHIEKqm+++67HNVdqPiKiYmRd97hwyshhBBCCCGEEELI1cQjTykAU/P9+/dr5dCff/6pHlMVKlTQqiUvLy+P1kSVVJ06dWT48OFa2QQPqNmzZ2syqWLFinrMxIkTNfkVFhYmvr6+2oo3efJkqVevnu4/ffq0+Pn55Zioh7WwzwqqvFCVhQqtxx9/3GaKIDTBu+rnn3/W87gC/KuwWTODwMfbS3y9/7knmVnYssTby0uyQ9nxLN3n4+Ul1tuXkZklKGVzFjfWNUjHIm7GvbKv0QC1cxlZzuMI4fovXzs1URM1URM1UdNNpCkzU58f8CLMWjCOmKM4qqXxbIOXZ1YQV80ZGS7F8TyBda1xrIvjcU1Wv05nceMancWpiZqoiZqoiZqoiZq8bgBN9vuuelLK4N5779XtagEvqa5du0poaKgKqlmzpiaPUAFlJKU2bdqk1VLly5eXdevWSa9evSQkJMSmOsoVxo8fr1VQqLQaPHiw+lXBEB03sGPHjjJs2DCpVKmSy+thIiG+Y0+rSuXFv0gR/RxzLlk2xyZIzeBAiS5R3Dxmd/xZ2R1/Th6MKCvlAv45FvwemyCHzyXLI9GhclvhQmZ83dHTcvpCijxeKUIKeV8ueFt66IRcTEuXtndG2lzDd/uOSNFCvtK8QpgZS8vMlP+376iUDSgi9cqXM+Pn/5em60SWKC7/F1LajON8OG+V0iXk7qCSZpyaqImaqImaqOlm0oQKabzcwt9/lJQbREdH6/CTXbt26Qsra8U1XnZt27bN5kEQVeF4EbZ582YbTbVq1ZLU1FQdqGKAZxoMbcH5YCtgrQavXr26JCQkaHW2Acrd8YIO13rixAkzDosCvAQ8fPiwxMfHm3HooSZqoiZqoiZqoiZqulE0wW883zylUL20bNkyNQh3RJcuXdTj6cknnxRPgQBUGgUHB6uHFKbuwVwdNxeT+ayeUzBHx42GAfqqVavU6+rs2bM21VJIYMEUHSbojkB74MMPP6y/NPxiS5YsaWb5ALKIuFWILV++XCvFXKmUCg8Pl//rO1h8sz2lCtSbaGqiJmqiJmqiphtQ0/r33+IbTmqiJmqiJmqiJmqipnzUhHxIYGDgFT2lPKqUQoVRjRo1nO5HUgfH5CUpFRAQoBuSS0iAjRkzRr2isOGmWDFuNkD7YKFChWTlypXSrl07jaHN8NixY9oa6Azj+0gqodUPk/+soIIKCS8kxqKiohyuUbhwYd3swQO6PhlLzof8HMfiF+1G3HiYz0s8y8248ZCfM05N1ERN1ERNuV07Nd0YmoznCOvLJyvO4s7a+d2J4wHOUdx46MtrnJqoyVmcmqgpt2unJmqiJmq62ppctUHyKCmFJA9a7JyB8jFUU3kCElDIwFWuXFmN1AcOHKilYai+QrIJZuSIIfGF6qe1a9fK9OnTZdy4cfp9VFJ169ZNW/FKlSqlGbk+ffpoQsqYvAcj9jNnzmj5W7FixWT37t265oMPPiiRkf+0FWDKnxWUrMGA3T5OCCGEEEIIIYQQQtzHo6QUkkbnzp1zuh/VTaho8gSUdsHfCe14SCqh2mnkyJGakAJz5szR/Z06dZKkpCRNTGF/jx49zDVQpYWsH76LyqdmzZpppZMBElowR0crH/ajxa5t27ZqbJ4frB45ONdyNUIIIYQQQgghhJCChkeeUqhWQlLq999/VxMrK0jyoAIJFUuYXFeQQQ8l7sOVeigJIYQQQgghhBBCClo+xKNKKVQUPfbYY9KwYUP9fPfdd2scjuyYQId2OEzH84Tk5GQZMmSImpnHxcWpd9WECRM00QVgeI5zLliwQBITE9XfqW/fvjaVUpcuXZIBAwZoVZW1UgpeUdZeTHvQcvjUU0+Zxuevv/66OttfvHhRK7Jeeuklp0bpudHgjVHi48BrihBCCCHXn98/HHq9L4EQQgghpEDiUVIKk/WmTJkiL7/8srRp08aMo+iqePHi2hpnnY7nDpikh+TWjBkzJCQkRGbOnClNmjSRPXv2SGhoqHpFwXAccfg/YRJez5499dhWrVrpGkgcLVmyRObNm6eZud69e2t73i+//GJzrqlTp0rz5s3N/7ZO64PJOr6HkYb4jCQVklL43L17d4+0EUIIIYQQQgghhJA8tO9Zy7FWrFghhw4d0v+uUKGCNG3aVBNTnpCSkqLfXbhwoU1SCxP1kAgbMWKEGo136NBBq6kc7UdpWFBQkMyaNUvat2+v+1HtVKVKFdm4caNpdo5KKVRjWZNqVwKJLSSlkDBzp1ytRq9BrJQihBBCblBYKUUIIYQQcn3a93LOAHQDLAwz8ddee003fPY0IQXS09MlIyNDp9xZgTE5KpVA3bp1tTXw5MmTWpm1evVqOXDggCbDwJYtW9RkHdVVBpjeFxERoUkpK7169ZLSpUtL7dq15auvvtL1nLFt2zbZsGGD+mkRQgghhBBCCCGEkGvQvnfs2DH9icSO9b+vhHG8qyChVadOHRk+fLhWNsEDCj5PSCZVrFhRj5k4caK2z4WFhYmvr69O2UO7YL169XT/6dOn1Xzd2ooHsBb2Gbz77rvSqFEjKVq0qNkCCL8q+FNZwXni4+M1YTZ06FBtL3QG/KuwWTODwMdbxNf7Hw+rzCxsWeLt5SXZoex4lu7z8fISq91VRmaWIFXmLG6sa5CORdyMI+JjiSM3l5HlPI4Qrv/ytVMTNVETNVETNd28mvA3HuCZAhtekFlfVPn4+GiFtXGcNa6aMzJciuO5Beta41gXx2dmZup2pbhxjc7i9tdOTdRETdRETdRETdR0PTTZ78tTUgreTTgh2uuQ8DH++0rY30RXQGtc165d1T8KgmrWrClPP/20VkAZSalNmzZptRTMx9etW6cVT/CUslZHXQlr+x/M1C9cuCAffPBBjqQUJggiWYVzwmAdyTFcjyNg8j5s2LAc8VaVI8W/SBH9fPhssvweGy/3BZeWqJKXq8p2x52V3fFn5aGIslK2WFEzvjk2XmLOJssjFULltsKXJx2uO3pKTv+dIq0qlxdf78sFb0sPHpeLaenStkqUzTV8t/ewFC3kK80rhpux9MxM+W7vESlbrIjUKx9sxs//L1WWHjyh11crJMiMn/n7oqw9elqqlC4pd5cpacapiZqoiZqoiZpuZk2bN2/WeHR0tJQpU0a9LfHMY624xssuVE1bn23gO4nnIuP7BrVq1ZLU1FTZsWOHGcMzDYa2oIQdtgLWavDq1atLQkKCxMTEmHGUu+MFXWxsrJw4ccKMw6IAdgmHDx/Wl2bWl2jYUD2OcxhQEzVREzVREzVREzVdD03IsVw1T6lp06ZpEuq5557Tn8Z/X4nOnTuLp0AAKo2Cg4PVQwqJofnz5+vNhReU1XMK1Uu40UuXLlUT9MaNG8vZs2dtqqWQwOrXr5/T6XkwRsdEQUzuK+zE/wmeVUia7d+/3+VKqfDwcKnVZ5D4Fv6nJbEgv4mmJmqiJmqiJmq6ETX9POpNjfMNJzVREzVREzVREzVRU9ZV0YR8SGBg4BU9pVyqlHr++edz/e/8AIbi2JBcWrZsmYwZM0a9orDhplgxbrZhel6oUCFZuXKlelwBJJHQcojWQGds375dSpYs6TQhBXAOa9LJHnzX0fczcGnZD932D8Q5jsUv2o248TCfl3iWm3HjIT9nnJqoiZqoiZpyu3ZqujE14SHP0QOVPfbHeRLHA5yjuPHQl9e4s2unJmqiJmrK7dqpiZqoiZqutiZn+3IcK25y8eJFrf5BK9vAgQPlaoMEFDJwlStXloMHD+o5UBrWpUsXTTbBaBwxlKmh+mnt2rUyffp0GTdunH4flVTdunWT/v37S6lSpTQj16dPH01IGZP3Fi9eLGfOnNH/hqk6Jgi+99578uqrr5rX8cknn6gnFs4N0CY4duzYHO19hBBCCCGEEEIIIcR93E5KwRgcGS9UMeUHKO0aPHiwtuMhqYRqp5EjR2pCCsyZM0f3d+rUSZKSkjQxhf09evQw1xg/frxm/fBdVDY1a9ZMJk2aZO7HWkg6oZUPCTD4RCGp9eKLL9pUReE86LWEXvRdjh49Wl566SW3Na15b3Cu5WqEEEIIIYQQQgghBQ2XPKXswaQ6mGuhRc4Vb6mCCnooUbl1pR5KQgghhBBCCCGEkIKWD3G7Ugo89dRTmphq2LChVhdhGh/a6ezB5DxCCCGEEEIIIYQQQq5KpZTVEMtRpRSWRNzeLd4VkpOTZciQITphLy4uTmrUqCETJkzQ8YcAU/jgZ7VgwQJJTEyUqKgo9Xmytu9hgt6AAQO01c/avle2bFndj+mB8KhyBLymMPJwzZo1mnSz59SpU1KuXDm3MoPVewwSn1wM1AkhhBByfdny0dDrfQmEEEIIIbcM+VopNXXqVMkvXnjhBdm1a5fMmDFDQkJCZObMmdKkSRPZs2ePhIaGqoH5qlWrNI4KreXLl2vVFo5t1aqVrgGvqCVLlsi8efP0JvTu3Vvatm0rv/zyi+7v0KGDNG/ePMdEQSSzkJCygsl91htov58QQgghhBBCCCGEXKNKqfwiJSVFihcvLgsXLpSWLVua8fvuu09atGghI0aMkKpVq2pSCdVUjvYjCxcUFCSzZs2S9u3b6374X1WpUkU2btxoTuCzEh8frwmvKVOmyLPPPqsxo1Lq7NmzUqJECY/0sFKKEEIIuTlgpRQhhBBCyE1SKWUFLXZHjhzRz6hcykslUXp6urb8+fv728ThV7V+/Xr9XLduXVm0aJF07dpVq6OQPDpw4IBO3ANbtmyRtLQ0ra4yuPPOOyUiIsJpUmr69Ok6VdBIYlm59957tQUQybChQ4fKgw8+6PT6cRw26y8B+HqL+Hj/0+aYmYUtS7y9vCQ7lB3P0n04ztoQmZGVJVmO4plZgmyir3UR3EMs4mYcEeP6QFb2+ujM9PHKGcehuP7L105N1ERN1ERN1HRza8IzCOwJsOFZxPrOzsfHR20JcIwVxFWznV2Bszim+WJdaxzr4nhM/cV2pbhxjc7i9tdOTdRETdRETdRETdR0PTTZ77vqSSlM3nv99ddl27ZtNnF4QL3//vs2SSFXQZVUnTp1ZPjw4VrZBA+o2bNnazKpYsWKeszEiROle/fuEhYWpr8U3KDJkydLvXr1dP/p06fFz88vR3UT1sI+R6BCqmPHjjZm7cHBwfLZZ59JrVq1NNH05ZdfSoMGDeTXX391auA+atQoGTZsWI546yqR4p+9dkxSsvx2Ml5qhZSW6FLFzWN2nTkru+LOysPly0q5YkXN+G8n4iXmbLI0rRgqtxf2M+NrDp+S03+nSOsq5aWQxePrhwPH5WJaurS/O8rmGubvPixFC/nKo5XCzVhaZqZ8u/uIlC1WRBpEBZvxv/6XKj8eOCFRJYpL7bAgM37674uy5vBpuSuopFQtW9KMUxM1URM1URM13eyaNm/eLNHR0fpyDTYCqN62vtzCcwWeeawPgtWqVdNnDnzXCp4dUlNTZceOHTYPafDHxNtCVHAb4NmjevXqkpCQIDExMWYcbxbxLBQbGysnTpww46gGr1Chghw+fFgrvQ3wXIQNL+pwDgNqoiZqoiZqoiZqoqbroenChQuSb+17MCF/4oknNNHz3HPPSaVKlUz/JXhBoXpq7ty58q9//cvdpeXQoUNaBbVu3Tq98UgAYX1UQO3du1fGjh2rSSj8LF++vB43ePBgvSYkwtC2BxNza8USqF27trbjjR492iaOhBeqr3DT0AaYG/Xr19eKK2h0tVIqPDxc7uuJ9r1/qr8K+ptoaqImaqImaqKmG1HTL2Pe5BtOaqImaqImaqImaqKmrKujCfmQwMDAK7bveZSUuvvuu6VQoULy888/a3WTFZz4oYce0ovYvXu3eAqyalgLFUvwkMLUvfnz52vGDwkoq+cUzNGR/Vu6dKmaoDdu3DiHFxQSWP369VMTdCvdunWTrVu35qj4csTAgQO1jRCJLFegpxQhhBByc0BPKUIIIYSQa+8pdbmu3g1QFoZqJPuEFMDJkOhBOVheCAgI0IQUkkvLli2T1q1bq1cUNmTqrBgZQIBqJyTM0F5ogAquY8eOaWugFSS6UNGF63WF7du36zURQgghhBBCCCGEkLzhkacU+gfRoueMM2fOmC197oIEFIq3KleuLAcPHtTqJJwPSTAkm9BChxh6J1H9tHbtWjUqHzdunH4fmTgkmfr37y+lSpXSJFmfPn00IWVvcv7NN99oudkzzzyT4zo++ugjiYqK0qqwS5cuqacUqrCWL1/ukS5CCCGEEEIIIYQQksek1JgxY+Spp55SnyZUMFlBa93nn3+uCR9PQGkXPKLQjoekUrt27WTkyJGakAJz5szR/Z06dZKkpCRNTGF/jx49zDUwiQ/VVPguPJ6aNWsmkyZNcmhw3rZt2xym6ADGYgMGDJCTJ0/qZD4Ydv3000/qS+Uu60YPzrVcjRBCCCGEEEIIIaSg4ZGnVKtWrdSV/c8//5SQkBBzMh4qm+DujiqpO+64w/ZEXl6ycOFCKUi42kNJCCGEEEIIIYQQUtDyIR4lpSIjIzXJ5A443jqi0BnJyckyZMgQrbhCi2CNGjVkwoQJOv7Q8IEaNGiQLFiwQBITE7XFrm/fvjaVUmi3Q5UTqqqslVKYFgj++OMPef/999W0HKMToQfff/nll22u5ZNPPpH//Oc/cuTIEZ269+abb+q0QXd/Cfe89Lr4+NHonBBCCLnZ2PbxsOt9CYQQQgght2xSyqP2PSRp8gtM0tu1a5fMmDFDq7BmzpwpTZo0kT179khoaKh6RcHbCXEkk+Dx1LNnTz0WFVwAE/aWLFki8+bN05vQu3dvbdP75ZdfdP+WLVukTJkyukZ4eLhs2LBBunfvrobpOBZ8+umn2iY4efJkTYj99ttv8uKLL0rJkiXl8ccfzzf9hBBCCCGEEEIIIQUBjyql8ouUlBSd6Ic2v5YtW5pxTNRr0aKFjBgxQqpWrSodOnTQaipH+5GFCwoKklmzZkn79u11/759+6RKlSqycePGHGbnBr169ZK9e/dqwgvUrVtXHnzwQfnggw/MY1B99euvv2qFlSuwUooQQgi5uWGlFCGEEELIDVYplV9gEl5GRob4+/vbxDFpz0gEIVm0aNEi6dq1q1ZHrVmzRv2tYG5uVEGlpaVpdZUBpveh/S63pBRuFIzVDdD25+g6UDGF9Q3jdSv4DjbrLwEU8vISH+9/2h0zs0QysrLEx8tLskMKYtjn6+0l1sZIZ/H0zCxBNrGQdZFc4mmZWfp9XxfiWdnrIITrvFKcmqiJmqiJmqjpVtWEZxNUUsOGAJ+tIK7fy8hwKe7r66sThq1xrIvjMzMzdbtSHINcsDmLY23r+0ZncWqiJmqiJmqiJmqipvzUZL/vpkhKoUqqTp06Mnz4cK1sggfU7NmzNZlkmKlPnDhRW+3CwsL0l4IbhBa7evXq6f7Tp0+Ln59fjol6WAv7HIH2PUwLRMufAXyovvzyS2nTpo3UrFlTk134bySk4EMVHBycY51Ro0bJsGE536i2vitS/IsU0c8xSefl1xPxUiu0tESXupwt3HUmSXaeOSsPR5aTcsWKmvHfTsTJoaRkaXZHmNxW2M+MrzkcK6eSU6TNXZHi6+1txn/Yf0wupqVL+6rRNtcwf1eMFC3kK49WjjBj6ZmZMm/XYSlXvIg0iAox4+f/lypL9h+XqJLFpXZYGTN++u+LsjrmlNxdpqRULXs5gUdN1ERN1ERN1HSratq8ebO+3MJzxbZt22weBDGZF88cOMZKrVq1dIrvjh07bB7SYAeAl2Co4La+8Kpevbo+W1i9N/FmEc9CGCCDicQGqAavUKGCHD58WOLj4804nouw4UUdzmEQHR2tlgWwRkBFugE1URM1URM1URM1UVN+arpw4YLcdO174NChQ1oFtW7dOr3xSAhhmh+SQmivGzt2rCah8LN8+fJ6HLyfYIyO6ii07XXp0sWmYgnUrl1bGjZsKKNHj7aJ4+YiDpPzt956y4zjhqOlD95WuEVIaj3zzDMyZswYTW4ZpulXqpSCZ1XNHoPEp/A/7Xt8E01N1ERN1ERN1HTzaNow9q0C+4aTmqiJmqiJmqiJmqjJ20NNyIcEBgbmz/S9awGyahCBiiR4SGHq3vz58zXjhwSU1XMK5ujI/i1dulQ9oRo3bixnz561qZZCAqtfv35qgm4A83QkpPD9kSNHOrwOVEadOXNGr+OLL76Q119/Xc6dO6e/mCtBTylCCCHk5oaeUoQQQggh+ecpdeXMynUiICBAE0FILi1btkxat26tCSJs9gkhIwNomJ7D72nlypXm/v3798uxY8e0NdBg9+7dmpDq3Lmz04QUwFooY8M55syZI4899phLCSlCCCGEEEIIIYQQcpN4SgEkoFC8VblyZTl48KAMHDhQ+xXRkocEUf369TWG3klUP61du1amT58u48aN0+8jE9etWzfp37+/GpcjI9enTx9NSBkm52jZa9SokfpG4TjDawqJJ/RYAvRSwtT8/vvv18QY1sf3vv766+t4dwghhBBCCCGEEEIKcFIKSSO0sk2ZMkXNtJC0scdRf6EroLQLHlFox0NSqV27dlrJZEy7Q7US9nfq1EmSkpI0MYX9PXr0MNfAJD5UM+G78HhC8mnSpEnmfrQBwtRr5syZuhlgrSNHjpg9kB9++KFWWeHcqKqCIXpkZKTbmtaPeSPXcjVCCCGEEEIIIYSQgoZHnlKoVELl0L333isPP/ywlCxZ0uFx77zzjhRkXO2hJIQQQgghhBBCCClo+RCPklIYCdigQQOZO3euXG2Sk5NlyJAhamYeFxcnNWrUkAkTJuj4QwDD80GDBsmCBQskMTFRoqKipG/fvjaVUpcuXZIBAwZoVZW1UsqYmDdt2jRtB3QETM2hD6xZs0bb++A/hSl6mM73/PPPu/1LqNqdRueEEELIrcz2iTREJ4QQQgi5JkbnKSkp0qRJE8kPMAlvxYoVMmPGDNm5c6c0bdpUz3Xy5EndjyQRpuyh7W7v3r06Ua93796yaNEicw1M2Fu8eLHMmzdPPadiY2Olbdu25n5M8zt16pTNhsQV/KqMhNThw4d1wh/a9rZv367nwbXB84oQQgghhBBCCCGE5A2PKqXatGmjhuCTJ0+WqwmSXcWLF5eFCxdqQsgAE/VatGghI0aMkKpVq2pSCdVUjvYjC4drmzVrlrRv317379u3T6pUqSIbN240zc6twF8qNDRUPbKeffZZjb3++uuyZMkSNTc3eOqpp+TcuXOaFHMFVkoRQgghBQNWShFCCCGEuF8p5ZHROVrhUFn03nvvyUsvvSSBgYFyNYAxOgzG/f39beKYtLd+/Xr9XLduXa2K6tq1q4SEhGiLHSblwdwcbNmyRdLS0mwquTC9LyIiwmlSCtP7ihYtaiaxAI61rwaDZlRMOQOtgtisvwRQyMtLfLy99HNmlkhGVpb4eHlJdkhBDPt8vb3EEnYaT8/MEmQTC1kXySWelpml3/d1IZ6VvQ5CuM4rxamJmqiJmqiJmgq6JutwF0zz1fUyMmyO9/X11WEx1jgGw+D4zMxM3a4UxyAXbM7iWNv6vtFZHGs7Gkrj7NqpiZqoiZqoiZqoiZrc0eTq4DuPklKVK1dWAahWwoYkknFyA1wgMmLugCqpOnXqyPDhw7WyCR5Qs2fP1gRRxYoV9ZiJEydK9+7dJSwsTH8puEGo2KpXr57uP336tPj5+UmJEiVs1sZa2OcIVEh17NhRk18GONbwoLKugUQTKrqsxxqMGjVKhg3L+aa0zd2R4p99/KGk8/Lr8XipFVZaKpS6nC3ceTpJdp45Kw9HlpPg4kXN+K/H4+RQUrI0uyNMbvf3M+OrY2LlVHKKrl3I+3IX5pJ9x+RiWro8cU+0zTXM2xkjRQv5Sss7I8xYWmamzNt5WMoVLyINo0PM+F+XUmXJ/uMSVbK43B/+TzsjOJV8UVbHnJK7y5SUe8qVMuPURE3URE3URE0FXdPmzZvNeK1atSQ1NVV27NhhxvCcBH9MPBuhgtsAzxPVq1eXhIQEnWhsgDeLeBaCBQEmEhugGrxChQpqM4BKbwM8F2HDizrr81d0dLRaE6DyG88v1hd2eFbatm2bzcNttWrV9DnKqoeaqImaqImaqImaqCnFTU0XLlyQfGvfg9k3kk5XYurUqe4uLYcOHdIqqHXr1umNr1mzplSqVEkroOAhNXbsWE1C4Wf58uX1uMGDB6sxOiqb0LYHE3NrxRKoXbu2+kONHj3aJo6EF6qvcNPQBmiAc2IdrG3www8/aFvhxYsXHSalHFVKwSC9xkuDxKfwP+17fBNNTdRETdRETdR062na+OFbt9wbTlfi1ERN1ERN1ERN1ERNjq4d+RB01eXL9L1rAbJqEBEcHKweUpi6N3/+fM34IQFl9ZyCATmyf/B6WrVqlTRu3FjOnj1rUy2FBBZa72CCbqVbt26ydetWzfBZQeUVEmIfffSRTZINa7haAUZPKUIIIaRgQE8pQgghhJBrNH3vWhAQEKAJKSSXMPGudevW6hWFDZk6K0YGEKDaqVChQrJy5Upz//79++XYsWPaGmgFia65c+dqYsoeHGtdA2AqoP0ahBBCCCGEEEIIIcR9PPKUMkB1EiqMkPmyln4ZPPfcc26viQQUirfgW3Xw4EEZOHCg9iuilQ7Jpvr162sM7XOoflq7dq0alY8bN06/j0wckkz9+/eXUqVKaUauT58+mkyyNzn/5ptvtNzsmWeeyXEdPXr0kP/85z/y2muvaTshKrCQwMJEPkIIIYQQQgghhBCSNzxq37t06ZJ07txZvv32W01GoZfQWMbqNWXfA+kKSPzAxwkJLySV2rVrJyNHjtRkk2FAjv3Lly+XpKQkTUzB+Bxteca5cX0DBgxQk3R4PGFqHiYGlitXzuZc8JKKioqS//73vw6vBZP9sO6ePXvU9Aum7vDTutrlaoQQQgghhBBCCCG3Cq7mQzxKSqEKCVPwRowYoRVIDRo0kK+//lrb7eDBBId3VC9VrVpVCjJMShFCCCGEEEIIIaSgcT4/k1IRERHSvHlz+eKLLyQxMVHHCv7000/SqFEj3Y+faL/79NNP3b7w5ORkrUiCmXlcXJzUqFFDJkyYoOMPDR+oQYMGyYIFC/TcqHTq27evttsZGJVSc+bMsamUKlu27GXhDqYHorLqqaee0s/fffedXv/27dt1jbvvvluGDh2qa7n7S7jrhddodE4IIYQUMHZ88u71vgRCCCGEkFvP6BzJotq1a+tneDsZ0/IM0HKHpI4nYJIeDMVnzJghO3fulKZNm0qTJk3k5MmTZpUWpuzNnDlT9u7dq9PwevfuLYsWLTLXQMvd4sWLZd68eeo5hcqttm3b5jgXpumdOnXK3Nq0aWPuW7dunTzyyCPyww8/yJYtW6Rhw4by+OOP55jSRwghhBBCCCGEEELcx6OkFCqOUKUEihYtKiVLltQJd9aMGKqV3CUlJUV9qsaMGSP16tWTihUranUSfhpVVxs2bFA/K7QMRkZGqp9U9erV5bffftP9yMJNmTJFjc9RsYVpfEg+4XubNm2yOV+JEiXUZ8rY/P39zX1oQ4TJOSq07rjjDnnvvff0J5JdhBBCCCGEEEIIIeQ6JKXuv/9+Wb9+vfnfqCD64IMP1DAcFU7jx4/PMenOFTAJD+bo1uSQUY1lnA/m5KiKQuUUOg9Xr14tBw4c0IoqgKqmtLQ0ra4ywPQ+tBxu3LjRZt1evXpJ6dKlterrq6++Ms3aHQFDd7QWwnydEEIIIYQQQgghhOQNX0++BA8ntMbBa6lw4cIyfPhwTfg8++yzur9ChQry8ccfu71u8eLF1Tgd61WpUkUrsuDzhLVRLQVgsI7qKEzD8/X1FW9vb5k8ebJWVhnT+fz8/LQKygrWwj6Dd999VyupUOmFSX49e/ZUvypoc8TYsWN1/5NPPun0+nE/sFkrxkAhby/x8f7HwyozSyQjK0t8vLwkO6Qghn2+3l5idbtyFk/PzJKs7LXFhXhaZpZ+39eFeFb2OgjhOq8UpyZqoiZqoiZqoqac146XbVbw3IIXYNbpxPC49PHx0Zdf2K4Ux3MPNmdxrG19yeYsjrVxDvtrRNzRBGVncWqiJmqiJmqiJmqiJkfXbr/vqialHnroId0MwsPD1d8JHlC4CFQm4YZ5AiqtunbtKqGhobpWzZo15emnn9YKKCMphTY8VEuVL19evZ9Q8RQSEmJTHXUlYKZuADN1eGKh2stRUmrWrFkybNgwWbhwoZQpU8bpmqNGjdLj7PlX1Ujxz/beOpR4XjYdi5f/Cy8tFQIvm33tPJUkO06flXpR5ST4tqJmfNOxODmUmCzNK4fJ7f5+ZnzVwVg5lZwibatGiq/P5YK37/cek4up6fJk9Wiba5j7R4wU9fOVx6pEmLH0jEz5ZsdhKVe8iDSqGGLG/7qUKt/vPS5RpYrLAxGX9Z46f1FWHTolVcuWlHuCL1eMURM1URM1URM1UVNOTZs3bzZjeKaBJQBsBvbt22dTDQ4bgoSEBImJiTHjMAbFCzr4Yp44ccKMY7gMXv4dPnxY4uPjzThe1mFD9TjOYRAdHa3PLrt27VKbBAM8q+EFHrwyrQ+31apV05d71msHtWrVktTUVNmxYwc1URM1URM1URM1UZNcSZPVdzw3PJq+dy2AAFQaBQcHS4cOHbRKaf78+XpzMZmvZcuWNubouNEwQF+1apU0btxYzp49a1MthQQWTNFhgu6IJUuWyGOPPaZeWKj+MsAEPyTJUBlmPaerlVJI2FXv/ro5fe96v7W9Fd9EUxM1URM1URM13Yiatkx4+6Z+w+lKnJqoiZqoiZqoiZqoydG1Ix8SGBh4xel7LpUzoRoJGC1yxn9fCeN4TwgICNANyaVly5ap+Tm8orDhplgxbjaAsXmhQoVk5cqVOgUQwIT92LFj2hrojO3bt6thuzUhhdZBJKSQmLpSQgrgu9bvWx9OM/GUa/fgm+EgHYgHXEc4i6e5Ec9yM45QZpbrcWqiJmdxaqImQE3UVNA0OaoaxwOco7jx0JfXuPEw6GrcWWW7O3Fqoqbcrp2aqImaqCm3a6cmuWU1udo959JRmHQH8SjXQimW8d/OQAYN++0ze66ABBS+X7lyZTl48KAMHDhQS8O6dOmiyab69etrDGVqqH5au3atTJ8+XaftAVRSdevWTfr376+m5MjI9enTRxNShvk6JuidOXNG/xum6itWrNDpeq+++qpNyx6m/E2YMEGN3Q0/KpwX5yCEEEIIIYQQQgghnuNS+x4SPwAJIet/XwnjeHeYO3euDB48WNvxkFRCtdPIkSPNRBCSQ9gPc/KkpCRNTMH4HG15RqIMLXgDBgzQSie00zVr1kwmTZok5cqV0/1o88MaSHpBPkzU//3vf8uLL75oZguReHOkE4mqadOmuaQF5Wq47iuVqxFCCCGEEEIIIYTcKriaD7lhPaVuBZiUIoQQQgghhBBCSEHjvIv5EM9G5OUjycnJOhkPZuZxcXE6GQ8tdHCaBzA8HzRokCxYsEASExMlKipKJ+b16NHDXOOLL77Q9rutW7fqevam50eOHJHhw4erKToqrzC575lnnpE333xT2xONY7C2PRs3bjTbAF3lgVdGmkbnhBBCCCmY7Pz03et9CYQQQgghNxQuJaVg9u0uaKWbMmWK29/DJD2MG5wxY4Ymi2bOnClNmjSRPXv2SGhoqHpFIZmEeGRkpLbx9ezZU49t1aqVrnHx4kVp3ry5bmjTswcjFGGM/vnnn2vrHs6H1j1M/Bs7dqzNsT/99JPcfffd5n/DPZ4QQgghhBBCCCGE5A2X2veQ/LE3NkfiJz4+Xj9jah1ARRIICgrSyXkxMTFuXQyM1IsXLy4LFy60mXaHiXotWrSQESNGSNWqVaVDhw5aTeVov5U1a9ZIw4YNc1RKOeKDDz6QTz/91Lxmo1Jq27Ztcu+990peytWqdH2NlVKEEEJIAYeVUoQQQggpKJx3sX0v5wxAByBBc/jwYXNbsmSJTsJ74403tMUObXTY8BmVSWiBwzHukp6erhP7MBHPCiberV+/Xj/XrVtXFi1aJCdPnlST8tWrV8uBAwekadOmkhdwo2Csbg+qr8qUKSMPPfSQnpcQQgghhBBCCCGE5B2PPKX69OnjsDKpdOnSOikPySkcg9Y3d0CVVJ06ddTvqUqVKlK2bFmdoAcfJ7TZgYkTJ+q0vbCwMPH19dVpeZMnT5Z69eqJp2AKH9a1tu4VK1ZMPvzwQ3nwwQf1HN9++620adNGvayMNkF7MOkPmzUzCAp5e4mP9z+VZplZIhlZWeLj5SXZIQUx7PP19hJrTZqzeHpmlmRlry0uxNMys/T7vi7Es7LXQQjXeaU4NVETNVETNVETNV1Zk15rVpa+gDNAJbqPj4/aCmC7UhzPJNicxbG2tQjeWRxr4xx4IWgFcb0XlmvMLY5nMWqiJmqiJmqiJmqiJvtrt993VZNSmzZtkvbt2zvdD3NyJJM8AV5S8LCCfxQE1axZU55++mnZsmWL7kfyCOdH1VL58uVl3bp10qtXL/WUgveUu6DiCt5TTzzxhPpKWRNs8K8ygNF6bGystvk5S0qNGjVKhg0bliPe9p5I8S9SRD8fTDwvm47Gy/9FlJaKgZdL2HacSpIdp85K/ehyEnxbUTO+6WicHExMlhZ3hsnt/v+YsIOVB2Pl1PkUXbuQz+WCt8V7jsnF1HTpcG+0zTV8sz1Givr5yuN3RZixtIxM+eaPw1LutiLSuGKIGf/rUqos3nNcoksVlwfKlzHjp85flJUHT0nVciWlWvDlqjJqoiZqoiZqoiZqurIm1fDXX+ptaa0Gr169uiQkJNjYHmj7f5Uq+uxx4sQJMw6LhAoVKmjlumGjAPCyDhuqx3EOg+joaK34hn8mbBIM7rzzTrU2gE2B9eG2WrVqWvG+efNmG021atWS1NRU2bFjhxnDcxqej6iJmqiJmqiJmqiJmuw1wbP7qnlK2RMeHq6JJ2ftbI899phs377dRry7QAAqjYKDg9VDClP35s+frzcXk/msnlMwR8e5li5d6panFH5BDRo00Gl606ZN0wxgbnzyySdaHXbq1CmXK6Vwr6q98LrpKXWjvbW9Fd9EUxM1URM1URM13Yiatn4y7KZ6w3krvrWlJmqiJmqiJmqiJu9rogn5EAyKu5KnlEeVUi+99JK8/fbb0rp1a23TM1rr/vzzT61k+vHHHx1WDLkDjNKxIaG0bNkyGTNmjKSlpelmnzwybra7FVJIWMEkferUqVdMSAEk2pAkc0bhwoV1swcPp5l4yrV78M1wkA7EA64jnMXT3IhnuRlHKDPL9Tg1UZOzODVRE6AmanIWL0ia8ACHh0p7jIe+vMaNh0FX446uxd04NVFTbtdOTdRETdSU27VTk9yympzty3GseMBbb72lFUFoZfv+++9znHzQoEF6jCcgAYUMXOXKldXraeDAgVoa1qVLFzVXr1+/vsZQpob2vbVr18r06dNl3Lhx5hqnT5/WDd8HO3fuVL+qiIgINTNHQgoVUvg+fKSsZWvlypXTn19//bWWnaEiDHz33Xfy1VdfyZdffumRLkIIIYQQQgghhBCSx/Y9A/QtrlixQo4dO6b/jSQPfJ3gx+Qpc+fO1Ql+aMdDAqldu3Zqno62PYBkE/YvX75ckpKS9JwwPn/llVc0awiGDh3qsFILFVHPP/+8tuohyeUI43YgKTV69Gg5evSoJtqQGEMyLDcvLU9HIBJCCCGEEEIIIYTcKriaD8lTUorkDpNShBBCCCGEEEIIKWicdzEfcmUjJSfAuGrOnDnqL/Wvf/1LW+QATohWtzNnzni6NCGEEEIIIYQQQgi5xfHIU+rcuXPSvHlz+e2336RYsWI6KQ+G5wD/3bdvX3nuuefkvffec3vt5ORkGTJkiE7Yi4uLU0+nCRMm6PhDgCl88KxasGCBJCYmSlRUlJ6vR48e5hqXLl2SAQMGaNIM3lfNmjWTSZMmSdmyZc1j0HL473//W1avXq3X3LlzZxk1apRpxoU2P7Tw2XPXXXfJ7t273dJ0/8sjzOl7hBBCCCHusOvz4df7EgghhBBC8gWPKqWQFEJiBqbkMTExOUYDwnfphx9+8OiCXnjhBfWpmjFjhlZfNW3aVH2qYE4O+vfvL0uXLpWZM2fK3r17pV+/ftK7d29ZtGiRuQb8pRYvXizz5s1TI/TY2Fhp27atTZVXy5YtJTU1VTZs2KDJJ/hMYaKgARJhp06dMrfjx4+rx9UTTzzhkS5CCCGEEEIIIYQQksekFKqUUBn1yCOPmObiVipVqiRHjhxxe92UlBT59ttvZcyYMVKvXj2pWLGimpbj56effqrHIImEqiZMz4uMjFST8+rVq2vVltE+OGXKFJ3G16hRI7nvvvvU4Bzf27Rpkx4Dk/Q9e/ZoYuvee++VFi1ayPDhw+WTTz7RRBVA7yMm8Rnb5s2b5ezZs04N0gkhhBBCCCGEEEJIPrfvIfGDtjlnpKWlSXp6utvr4juoYvL397eJFylSRNavX6+f69atq1VRXbt2lZCQEFmzZo0cOHBAxo8fr/u3bNmi50d1lQEm50VERMjGjRvlgQce0J/33HOPTTsfWvzQzocKMLQM2oNEF9bEtD9noFUQm9XYCxTy9hYf73/yf5lZWZKRlSU+Xl7ibUnoIYZ9vt5egv9djmdKZpbkiKdnZkpW9to299BJPC0zU7/t60I8S7IkPTNLvL1EfLwcxb30+g2oiZqoiZqoiZqoKf80WZ+pvL29dcvMzNTNPo7nKGsFu7M4KtvxYtH+eQ1xvRcZGS7FYXuAda1xrIvj7a/RWZyaqImaqImaqImabj1NruaEPEpKVahQQbZu3ep0PyqR4L3kLsWLF5c6depo1VKVKlU0aTR79mxNIqFaCkycOFGro8LCwvSXghs0efJkrawCp0+fFj8/PylRooTN2lgL+4xjrAkpY7+xzx60//34448ya9asXK8fnlTDhg3LEW9XLVL8ixTRzwcTzsvGo3FSOyJIKpa+7ED/x6kk2RGbJPUrBEvIbUXNOI7Fdx6tEi63+/uZ8ZV/xkrs+YvSrnqkzcPwot3H5GJqujxVI9rmGuZsi5Gifr7S6u4Im4djxINvKyqN7wgx439dStV1ogNvkzrly1y+D+cv6nmrBpeU6sGlzDg1URM1URM1URM15Z8mVGsbBAUF6XPY4cOHJT4+3ozjuQgbXtTh5aFBdHS0lClTRnbt2qUV6dYXdnhW2rZtm83DbbVq1fQ5ynpOUKtWLa0m37Fjh82DJzw/cb59+/bZvExEFXtCQoLaPBigCh3Pd3iuOnHiBDVREzVREzVREzX53bqa4D3uCl5Z1nSXi3z00Ufy+uuvy/Tp06Vx48Z6kStXrtQqpnfffVfef/99+eKLL6Rbt27uLi2HDh3SKqh169bpja9Zs6a2A6ICCh5SY8eO1SQUfqJqCccNHjxYjdFRyYTEEVrsrBVLoHbt2tKwYUMZPXq0JrWOHj2qnlgGFy9elICAAPXCQjuffbLpww8/1F8obrA7lVLh4eFyT9fXTaPzW+Wt7a34JpqaqImaqImaqOlG1LT1P5c9L/nWlpqoiZqoiZqoiZpuBk3IhwQGBmqS67bbLr8cvCpJKXwFiR20tCE7hml8qDTCNDxc1EsvvWR6QHkKsmoQERwcLB06dNCpe/Pnz9eMHxJQMCq3mqMj+wcD9FWrVmmiDP5P1mopJLBgig4TdBiaowVw+/bt5n5kCpEFRAWYtX0PWpEUe+yxx8wWQVfB9eN673x+IKfvEUIIIcQjOH2PEEIIITcbRj7kSkkpj4zOkRFDtRKqlJ577jmtLIJhOBJV8HjKa0IKoGoJCSkkl1DR1Lp1a/WKwoZMnRUjAwhgbF6oUCGt3DLYv3+/HDt2TFsDAX5isl9cXJx5DCb+4UbZtx1iet/Bgwc9qvoihBBCCCGEEEIIIVfRU8rgoYce0u1qggQUqpMqV66syaCBAwdqvyJa8pBsql+/vsbQO4nqJySN0EaIaXsAmTgkkPr37y+lSpXSRBMmBSIRBZNz0LRpU00+PfvsszrpDz5Sb731lvTq1UsKF7ataEI12P333y9Vq1a9qjoJIYQQQgghhBBCCjJ5SkrlByjtgkcU2vGQVGrXrp2MHDlSE1Jgzpw5ur9Tp06SlJSkiSns79Gjh7kG2uxQTYXvwuMJk/UmTZpkU1n1/fff67Q9JKtQldW5c2f1w7K/lm+//VYmTJiQJ02/Tngr13I1QgghhBBCCCGEkIKGy55SrVq1cm9hLy9ZuHChFGRc7aEkhBBCCCGEEEIIKWj5EJcrpVBZ5O/vL+XKlbNxXc8tKeUJycnJMmTIEDUzh+cTTMdRqYTxhwCG54MGDZIFCxaosXpUVJT07dvXplIKk/8whQ+m5VjP3vT8yJEjMnz4cDVFR+teSEiIPPPMM/Lmm2/aTNeDTkzdw3qY1le6dGnp2bOnHucOtfuMoNE5IYQQQq4auyfT/JwQQgghNz8uJ6VCQ0Pl5MmTmpjp2LGjPPXUU5qgutpgkt6uXbtkxowZmiyaOXOmNGnSRPbs2aPXAK8oJJMQj4yMlOXLl2uiCMca1VwXL16U5s2b64ZWP3v27dunxuiff/65VKxYUc/34osv6sS/sWPHmse9/PLLuj5i99xzj7YLYiOEEEIIIYQQQggh16h9D8BUHBVI8+fP11IsmI7D26l9+/ZSvHjxPF6KSEpKiq6Dtr+WLVuacUzUw4S/ESNGqOF4hw4dtJrK0X4rmATYsGHDHJVSjvjggw90amBMTIz+9969e6VatWqasILpel7K1So/N5CVUoQQQgi5arBSihBCCCEFqn0PIAmF7T//+Y/88MMPmqDq3bu3ViohKYQKqscffzzHBDtXSU9Pl4yMDG0TtIJJe+vXr9fPdevWlUWLFknXrl21OgqJpwMHDqi5eV7AjYKxusHixYslOjpa2xZRcYXcHSq2MK3PepwVmKpjs/4SQCFvb/Hx9tbPmVlZkpGVJT5eXuJtaXFEDPt8vb0E/7scz5TMLMkRT8/MlKzsta04i6dlZuq3fV2IZ0mWpGdmibeXiI+Xo7iXXr8BNVETNVETNVETNV1bTaj4xmaAAS/Y8Bxlfd/oLI6hL7BawLOXFcT1XmRkuBT39fXVda1xrIvj7a/RWdy4RmqiJmqiJmqiJmqSW0aT/b6rOn0Pk/Bat26tGzyevvvuO/nss8+0gmno0KE2VUzugCopTMOD31OVKlWkbNmyMnv2bNm4caO22YGJEydK9+7dJSwsTH8puEGTJ0+WevXqiaccPHhQ17W27qFiCj5S8+bNk+nTp+tNfeWVV7QqDO2Djhg1apQMGzYsR7zdvZHiX6TIP+eKPy8bj8RJ7fJBUjHocrZwx8kk+SM2SRpUDJbg24ua8Y2H4+Rgwnl59K5wub3IZb+rlftjJfb8RWl/b6T4+lx+iF2085hcTE2Xp+6LtrmGOVtipKifr7S6J8KMpWdkyuytMRJ8W1FpXDnEjP+VkiqLdh2T6MDbpE5UGTN+6q+L8tOBWLknuKRUC72cmKMmaqImaqImaqKma6vp8OHDEh8fb8bxXIQNL+rwos0AL9jKlCmjld+oSDe48847tYp827ZtNg+3qBKHv+bmzZttNNWqVUtSU1Nlx44dNg+e8PzE+WCNYH2ZWL16dUlISDAr0AHeluL5LjY2VqcsGwQFBUmFChWoiZqoiZqoiZqoSW4dTbBHuurte/agKgiVRKiYQuUUEkRITj377LOeLimHDh3SKqh169bpja9Zs6ZUqlRJtmzZoi11SBwhCYWf5cuX1+PgGwVjdFQyudu+B58sVH81aNBAvvzySzOOxBfOs3//fj0/gHE6WgXxfwJHLX2OKqXCw8Ol6vOvm+17t/JbW2qiJmqiJmqiJmq6Npp2fj6Mb22piZqoiZqoiZqoSW5UTciHBAYGXrF9z+2kFC58xYoVWsGECXgwFUcyCK17//rXvyQgIECuBsiqQURwcLBWYKEiC15WyPghAWX1nII5OrJ/S5cudSsphawhklEPPPCATJs2TW+2wTvvvCPvvfeepKWlmTFkBosWLarm54888sgVNdBTihBCCCH5AT2lCCGEEFKgPKU2bNigFVFoZ0tMTNREDpI2Tz75pE7ku9oguYUNCaVly5aplxMSRNisySNgZADdARVSSFih8mnq1Kk51nzwwQc164fKLZS3AZSyAVRoEUIIIYQQQgghhBDPcTkp9dBDD2m/4qOPPipPP/20REZGavzYsWO6OQKtd+6CBBSKt9AeB6+ngQMHar9ily5d1MsKrXaI4VqQHMJEQHg+jRs3zlzj9OnTuuH7YOfOnepXFRERoSblSEihQgrfRxugtZeyXLly+hPVX7h+tBJ+9NFHmvTq1auXVkgZ7XyEEEIIIYQQQgghxDNcbt+zVhKhdzA3sCSOse+BdIW5c+eqRxTa8ZBAateunYwcOVLLvgCSTdiPFrqkpCRNLMH/CSbkxnXBbN2R4Tgqop5//nlt1UOSy9m1W9v7+vTpo+dC1RYmDH744YdOp+95Wq5GCCGEEEIIIYQQcqvgaj7E5aTU119/7fZFdO7cWQoyTEoRQgghhBBCCCGkoHH+aielrhXJyckyZMgQNTOPi4uTGjVqyIQJE3T8IYDh+aBBg9RkHd5WUVFR0rdvX+nRo4e5xhdffKH+V5iWh/Xsjc4NA3RH/Pbbb3ouZ9VWMDp3dbShaXT+DI3OCSGEEHL12D2FRueEEEIIufmTUrbu3jcAmKSH6X4zZsxQL6imTZuqvxN8oED//v11yt7MmTNl79690q9fP+ndu7csWrTIXAMTAZs3by5vvPGGw3PUrVtXTp06ZbPhvEhw1apVS4959dVXcxxz1113yRNPPHGN7gQhhBBCCCGEEELIrYvLRufXgpSUFPn2229l4cKFUq9ePY2hYmnx4sXy6aefyogRI3QKINoCYVQO4Cf1+eefa4VTq1atNIZElVER5Qg/Pz/T0Bxgoh/OCf8ow5eqWLFiuhn88ccfsmfPHvnss8/y8Q4QQgghhBBCCCGEFAxuqKRUenq6mqP7+/vbxDFpb/369WaVE6qiMBUvJCREE08HDhyQ8ePHe3xerIdWQGfm5+DLL7/UqXsPP/yw02P+97//6WYtVwOFfLzFx+eforTMzCzJyMoSHy8v8fa+bBifkZklmVlZ4uvtZWMkn5GZKZlZkiOenpEpWdlrW3EWT8vIFHzb14U4OjrTM7MEl+fj7SjuJT6Wa6cmaqImaqImaqKma6sJU4GxWQfSYMNzlNWZwVncx8dHNeLZywriei/shtU4i/v6+uq61jjWxfH21+gsblwjNVETNVETNVETNckto8l+302RlCpevLjUqVNHhg8fLlWqVJGyZcvK7NmzZePGjVKxYkU9ZuLEiVodFRYWpr8U3KDJkyeblVWeMGXKFGnWrJmu6YhLly7Jf//7X/Wyyo1Ro0Y59KFqd2+k+Bcpop8Pxp+XjYfjpHZkkFQMutxXueNkkvxxMkka3BEswbcXNeM4Ft959O5wub2InxlfuT9WYv+6KO3vjbR5uF2085hcTE2Xp+6LtrmGOVtipKifr7S6J8LmYXr2lhg9X+PKIWb8r5RUXSe69G1SJ6qMGT/110X5aX+s3BNSUqqFXp5ASE3URE3URE3URE3XVtPhw4clPj7ejOMZBhte1MG7wSA6OlrKlCkju3bt0op0gzvvvFP9Nrdt22bzcFutWjWtKN+8ebONJtgbpKamyo4dO2wePOHDifPt27fP5mVi9erVJSEhQWJiYsw4fCXwfIfpxpiybBAUFCQVKlSgJmqiJmqiJmqiJrl1NLnqxX3DGZ0fOnRIq6DWrVunN75mzZpaobRlyxb1kBo7dqwmofCzfPnyetzgwYPVGB3eU1YMQ3N7o3Mr+AVhnblz50q7du0cHoPE2HPPPafHIlHmTqVUeHi4VO38uml0fiu/taUmaqImaqImaqKma6Np5+RhfGtLTdRETdRETdRETXKjakI+JDAw8OabvmeArBpEBAcHS4cOHXTq3vz58zXjhwRUy5YtzWNhUo6EEQzQ3U1KoSoL1VcwUi9UqJDDYxo3bqw3Eed1B07fI4QQQkh+wOl7hBBCCLmRuWmn7xkEBARoQgoJpWXLlknr1q3VkBwbMnVWjAyguyAfN3XqVK2CcpaQQlnb6tWrpVu3bh5rIYQQQgghhBBCCCE3sKcUQAIKyaLKlSvLwYMHZeDAgdqvCBNyJI7q16+vMfROou1u7dq1Mn36dBk3bpy5xunTp3XD98HOnTvVryoiIkJKlbrsy7Bq1SpNOqHSyhlfffWVJsdatGiRz8oJIYQQQgghhBBCCg43XPsevJ3gEYV2PCSQ4PM0cuRILfsCSDZh//LlyyUpKUkTUzA+f+WVV0z/h6FDhzo0HEdV1PPPP2/+d8eOHeXo0aPyyy+/OLwWVF9hfVRS4Rryq1yNEEIIIYQQQggh5FbB1XzIDZeUupVgUooQQgghhBBCCCEFjfMu5kNuuPa95ORkGTJkiJqKx8XFSY0aNWTChAk6/hDA8HzQoEGyYMECSUxMlKioKOnbt6/06NHDXOPSpUsyYMAAmTNnjk7Da9asmUyaNMlmct6xY8fk3//+t/pFFStWTDp37iyjRo1SR3sDfPfdd9+VmTNnaoUW2vjefvttnQ7oDrX/PZxG54QQQgi5LuyeOuJ6XwIhhBBCyM2RlIK/065du2TGjBkSEhKiCaEmTZrInj17JDQ0VPr3769eUIhHRkZqG1/Pnj312FatWukaaOVbsmSJzJs3TzNzvXv3lrZt25ptehhPiOl95cqVkw0bNsipU6dMs/P33nvPvJYnn3xSzpw5I1OmTJGKFSvqcZ4YqhNCCCGEEEIIIYSQG7h9LyUlRQ3JFy5cqEkjg/vuu0+NxkeMGCFVq1aVDh06aDWVo/0oDQsKCpJZs2ZJ+/btdf++ffukSpUqsnHjRnnggQfkxx9/lMcee0xiY2PN6qnPPvtMXn/9dYmPjxc/Pz9ZunSpPPXUUxITE2Njju5JuVrljq+yUooQQggh1wVWShFCCCHkRm3f85YbiPT0dK1i8vf3t4lj0t769ev1c926dWXRokVy8uRJndKH9rsDBw5I06ZNdf+WLVskLS1Nq6sMML0Pk/eQlAL4ec8999i086HFDzdt9+7d+t84R61atWTMmDFaoVWpUiV59dVXNXFGCCGEEEIIIYQQQm6h9j1USdWpU0eGDx+ulU1IGs2ePVuTSGifAxMnTtRpe2FhYer/5O3tLZMnT5Z69erpfng/odKpRIkSNmtjLewzjrEmpIz9xj6ACikkwpAgg79VQkKCtgnCxwpT/BwBDypsBkhygUI+3uLj80/+LzMzSzKyssTHy0u8vf+ZFggyMrMkMytLfL29zCmC/8QzJTNLcsTTMzIlK3ttK87iaRmZgm/7uhBHsi89M0tweT7ejuJe4mO5dmqiJmqiJmqiJmq6cTXpz4wMXdPAx8dHj8MLQSuIG8e7EsezGNa1xrEujoflgdX2wFkcz3LYnMXtr91ZnJqoiZqoiZqoiZpuHE32+26KpBSAlxSMxFGdBEE1a9aUp59+WiugjKTUpk2btJKpfPnysm7dOunVq5d6Slmro/IKfkG4yf/973+15AyMGzdOWwJhmo7qLXtglD5s2LAc8XY1o8Q/+/iDcX/Jxpg4qR0VJBXL/LMu2HEiUf44kSQNKgVLcIkAM77x0Bk5GH9eHq0aIbcX9TPjK/eelNi/Lkr7mlE2D7eL/jgqF1PT5an/q2BzDXN+PyRF/XylVfXyNg/Ts38/JMG3F5XGVULN+F8XU2XRjqMSXfo2qVPhcvLu1LkL8tO+WLkntKRUCws049RETdRETdRETdR042oC8Ou0Vnujihwv8LZt22bzcFutWjV9ubd582YbTageT01NlR07dpgxPKdhEA3K8mGVYIBnpOrVq+sLPbzkM8DzFF46wj7hxIkTZhy2CxUqVJDDhw+rjYIBXkBiQ0U8zmEQHR0tZcqUoSZqoiZqoiZqoqYiN66mCxcuyE3nKWUFAlBphIl38JDC1L358+frzUXlktVzCubouNHwgYIJeuPGjeXs2bM21VJIYPXr109N0DFBD0mt7du3m/vxS8EN37p1q078wzQ+GKMfPHjQPGbv3r1y11136S/qjjvucKlSKjw8XKo++5rpKcW3ttRETdRETdRETdR0LTXt/GoE39pSEzVREzVREzVRk1xLTciHBAYGXtFT6oarlDIICAjQDcmlZcuWqbcTvKKw4aZYMW62YXqOKXorV66Udu3aaWz//v1y7NgxbQ0E+Dly5EiJi4vTrB9YsWKF3igkncCDDz6o0/uQDCtWrJjGkIzCuZFBdEThwoV1swcPoZkZtlP78ECZkZEzH4gHUBHX41jbEY7iWW7GccpMh/EsyXRw7dRETc7i1ERNgJqoyVmcmvJfk/GQaA8ecPMax0Opo7jxIJvXuLNrpyZqoiZqyu3aqYmaqEmuqyZn+3IcKzcYSEAhA1e5cmWtUho4cKCWhnXp0kWTTfXr19cYytRQ/bR27VqZPn26ttYBVFJ169ZN+vfvr1PzkGjq06ePJqIweQ/AFB3Jp2effVaTXfCReuutt7QN0EgqdezYUb2tcF605KEcDudFa6Gj1j1CCCGEEEIIIYQQ4jo3XPve3LlzZfDgwdqOh6QSqp1Q1WT4OiGBhP3Lly+XpKQkTUzB+BxteUa5+qVLl2TAgAFqko52OkzWgw9UuXLlzPMcPXpU/v3vf8uaNWu0Igvteu+//75NNg+9mkhooY0PZWdPPvmkjBgxwuWklKsjEAkhhBBCCCGEEEJuFVzNh9xwSalbCSalCCGEEEIIIYQQUtA472I+5IZr30tOTpYhQ4aomTk8n2A6PmHCBHWaB/B4GjRokCxYsEASExMlKipK+vbtKz169DDXMCql5syZY1MpVbbs5ak28JhCpdTq1avVMwqVUpieZ62UwuQ9tPf9+eefejNbtGghH3zwgVZNuUPtHsNNo3NCCCGEkOvN7mkjrvclEEIIIYRITmer6wwm6cF0fMaMGbJz5071f2rSpImcPHlS98MrClP2Zs6cqdPwMFGvd+/eOk3PAK18ixcvVqNyeE5hDGLbtm3N/XCCx/Q+jFncsGGDfP311zJt2jSdymeAlr3nnntO/al2796ta/3222/y4osvXuM7QgghhBBCCCGEEHLrcUO176WkpEjx4sVl4cKFmjQywEQ9VCnBz6lq1arSoUMHraZytB+lYUFBQTJr1ixp37696Q1VpUoV2bhxo5qd//jjj/LYY49pssqonvrss8/k9ddfl/j4ePHz85OxY8fKp59+KocOHTLPM3HiRBk9erT6XblTrlb56VdZKUUIIYSQGwZWShFCCCHkRmjfu6EqpdLT07WKyd/f3yYOY/H169fr57p162pVFCqnkE9D+92BAwe0ogps2bJF0tLStLrKANP7IiIiNCkF8POee+6xaedDix9uGqqiAKb1HT9+XH744Qc9z5kzZ2T+/Pny6KOPXpN7QQghhBBCCCGEEHIrc0N5SqFKCsmg4cOHa2UTkkaYoIckUsWKFc1qJUzbCwsLU/8n7//f3nmAR1Fub/wkm0AgWCCGEHqKhCAmEqI0DSBIVVBAEbkqoCgKosDlCihXEBBFRBGv1wv+RYqAgEqxUKRFpIZi6BgSRHqKSExo2c3/eQ/OsJvsQkLdbN6fzzxZzsx+M+9k3cycOef9vL1l0qRJEhcXZ87Oh0qnW2+91WFsjIV1xjb2CSljvbEONGrUSD2lUJUFjyokzB566CH5z3/+4/L44V+FxQBJLuBr8RaL5Xz+z2bLFWturli8vMTb+/xsgcBqyxVbbq74eHuZswiej9vEliv54jlWm+T+PbY9ruLnrDbBu30KEEcSLseWKzg8i7ezuJdY7I6dmqiJmqiJmqiJmoqWJoyPf+P6xh6LxXL+fVZrgeK4FsNY9nGMi+1t2LfNdsk4ruWwuIpjbPvCfldxjE1N1ERN1ERN1ERN4haa8q4rEkkpAC+pHj16SKVKlVRQTEyMdOnSRSugjKTUunXrtFqqWrVqEh8fL71795aKFSs6VEddKTt37pSXX35ZfaZQRXXkyBEZOHCgGqr/3//9n9P3wCh9+PDh+eIdY0LEr1QpfZ10/E9Zm3xc7gkJlPDyt5jbJB5Ml18OZkiTiGAJvsXfjK9NPiZJx09Kmzuryi2lSpjxZbsOyeE/s6VTTIjDxe2CX36T7LM58vjdYQ7HMGvjPildwkfaRVdzuJieuXGfBN9SWppFVjLjf546q+OEBt4sDUIvJO+O/JklP+46LHdWKitRlS+YvVMTNVETNVETNVFT0dKEUno8wNuyZYvDxW1UVJQ+3EtISHDQFBsbq16ciYmJZgzXaZiIBmPBKsG+wj06OlrS0tIkOTnZjKOEHw8dYZ9gb4UA24WwsDBJSUlRGwUDPIDEgop47MMgNDRUypcvL9u3b1frB/vKeGqiJmqiJmqiJmoSt9CUlZUlRc5Tyh4IQKVRcHCwVith1j20z+HkYmY+e88pmKPjRMMAffny5dKsWTP5448/HKqlkMCCKTpM0JFoQlJr69at5nr8UnDCN2/erDP+Pfnkk1ohBYNzA7QQ3nffffqLxXEVpFKqSpUqUvsf/zI9pfjUlpqoiZqoiZqoiZputKYtnw4vlk9tqYmaqImaqImaqMn7umhCPiQgIOCSnlJuVyll4O/vrwuSS4sXL5YxY8aoVxQWnBR7jJNtmJ77+vrKsmXLpGPHjhrbs2ePHDhwQFsDAX6OGjVKjh8/rlk/gBn/cKJq1aql/87OztZfet79AFd5vJIlS+qSF1yE2qwXfuEAF5RWa/5xcAEqUvA4xnaGs3huIePYpc1pPFdsTo6dmqjJVZyaqAlQEzW5ilPT9ddkJKjyXusYFCaOsZzFjQvZK40b118FjVMTNVETNV0sTk3URE1yXTS5WpdvW3EzkIBC0iciIkKSkpK0ZQ6lYd27d9dkU+PGjTWGMjVUP61atUqmTp0q48aN0/ejkuqZZ56R/v37S7ly5TTR9NJLL2kiCjPvAZiiI/mEaigku+Aj9frrr2sboJFUgn9Uz549dQY+o30PlVb33HOPtgoSQgghhBBCCCGEkMvH7dr3Zs+eLYMHD9Z2PCSVUO2EqiYkmwASSFi/ZMkSycjI0MQUjM/Rlmc89UPb3YABA9QkHe10SCp9/PHHUqFCBXM/v/32m7zwwguycuVKrch6+umn5e2333bI5sG/6pNPPtHWPrQC3n///fLOO++o39XVnAKREEIIIYQQQgghxFMoaD7E7ZJSngSTUoQQQgghhBBCCClunCxgPiR/EyEhhBBCCCGEEEIIIdcYt/OUyszMlKFDh+oMezAix0x448eP1+kPAWbhGzRokMybN0/S09MlJCRE+vbtK7169TLHmDhxosyYMUNn0sN4eWfiswftffXq1ZNffvlFpzO866678m0DbyscB8y9Tpw4UWhN9zz3pjn7HiGEEEKIJ7Fj6qgbfQiEEEIIKaK4XaXUs88+qzPhTZs2TbZt26am5M2bN5dDhw7pehiYL1q0SKZPny67du1S8/E+ffrIggULzDEwc16rVq1kyJAhl9zfv/71r4sal2O2vy5dush99913lRQSQgghhBBCCCGEELdKSp06dUq++uornREvLi5OwsPDZdiwYfoTs+CBNWvWqCl5kyZNpHr16mpyHh0dLRs2bDDHQaIK1VTGbHuu+OGHH9QwfezYsS63wax8mP3vscceu4pKCSGEEEIIIYQQQoo3btW+l5OTI1arVfz8/BzipUqVktWrV+vrhg0balVUjx49tMIJs+ft3btX3n///ULt69ixY9KzZ09tAyxdurTTbZYvXy5z5syRrVu3ytdff33JMdEKiMXe2Av4WrzFYjmf/7PZcsWamysWLy/x9j4/WyCw2nLFlpsrPt5e5iyC5+M2seVKvniO1Sa5f49tj6v4OatN8G6fAsThfZ9jyxUcnsXbWdxLLHbHTk3URE3URE3URE3FVxOOFddvBtgPLA9s2LfNdsm4t7e3Lq7iGNt+Xh5XcYyNfeB60h7E9VzYHePF4piJmZqoiZqoiZqoiZrkijTlXVckklI33XSTNGjQQEaMGCGRkZESFBQkM2fOlLVr12q1FJgwYYJWR1WuXFl/KThBkyZN0sqqgoKT2a1bN/Whio2Nlf379+fbBn5V2AZtggWdOW/06NEyfPjwfPGOsSHiV6qUvk46dlLW7jsm94SWl/CgC+Mm/p4hv/yeLk1qVpTgWy8kydYmHZOk4yelTVRVuaV0CTO+bOchOXwiWzrFhjhcIC7Y8ptkn82Rx+uFORzDrPX7pHQJH2lXp5rDhefM9ft0f81qVTLjf2aflQVbf5PQwJulQXiQGT9yIlt+3HlI7qxcTqKqlDPj1ERN1ERN1ERN1FR8NWFWnd27dzs8TEQVe1pamiQnJ5txzMCD67vDhw/LwYMHzXhgYKCEhYVJSkqKpKammnFc62HBw0fswyA0NFTKly8v27dv1yp7A1S2w0MUHqH2F+xRUVFSokQJSUhIcNCEa8CzZ89KYmKiw8U0fEypiZqoiZqoiZqoSa5IU1ZWlhQEr1z7dJcbsG/fPq2Cio+P1xMfExMjNWrUkE2bNqmHFFrtkITCz2rVqul2gwcPVmN0eE/Zgyqqpk2b5jM6//DDD2X27NmyatUq3QeSUjBMtzc679Chg+737bff1n9//vnn2hZ4MaNzZ5VSVapUkdpPDDSNzt3xCacnPrWlJmqiJmqiJmqipuujafuUkUXmqa0nPommJmqiJmqiJmqyuaEm5EMCAgI0yXWxQh+3S0oZIKsGEcHBwdK5c2eddW/u3Lma8UMCqm3btg7m6Mj+wQC9IEmphx9+WBYuXOh40Wa16gns2rWrTJkyRbfHPg1wmvBLwzaY3Q+Js0uB48fxRnQewNn3CCGEEOKRcPY9QgghhLjKh1wqKeVW7Xv2+Pv764KE0uLFi9X8HDPhYUGmzh4jA1hQUCk1cuRI898oaWvZsqV8+eWXUq9ePY2hZdA+Azl//nx555131Gi9UqULZfeEEEIIIYQQQgghpPC4XVIKCShUJUVEREhSUpIMHDhQ+xW7d+8uvr6+0rhxY42hdxLte2jBmzp1qowbN84c4+jRo7rg/WDbtm3qV1W1alUpV66c/rSnTJky+hO9leijBOi/tAc9kUiG1a5du9CaNkz8d4F9qQghhBBCCCGEEEKKA26XlEJpFzyi0I6HBFLHjh1l1KhRmpACs2bN0vVos8vIyNDEFNbDtNzgk08+cTAcN0zQJ0+erOblhBBCCCGEEEIIIeTG4raeUsWph5IQQgghhBBCCCHEUyiynlKZmZkydOhQNTM/fvy41KlTR8aPH6/THwKYjw8aNEjmzZsn6enpOmte3759HSqlTp8+LQMGDNCqKsyGB7+ojz/+WIKCLky1fODAAXnhhRdkxYoV2r739NNPy+jRo9XR3t4kPS9HjhyRChUqFEpTvZ5visWXRueEEEIIKR5sn07zc0IIIYRcGrdLSmEmve3bt8u0adOkYsWKMn36dGnevLns3LlTDcb79+8vy5cv13j16tVlyZIl8uKLL+q27dq10zH69esn3333ncyZM0czc3369JEOHTrIzz//rOthYI7Z+5BcgnE5Ek1PPfWUtgi+9dZbDsezZ88eh6xe+fLlr/MZIYQQQgghhBBCCPE83Kp979SpU2pIjpnukDQyqFu3rrRu3VpnzIPReOfOnbWaytl6lIYFBgbKjBkzpFOnTrp+9+7dalyOGfXq168vP/zwgzz44IM6655RPQUfqldffVVSU1OlRIkSZqUUZv+79dZbr6hcreZjA1gpRQghhJBiAyulCCGEkOLNyaLYvpeTk6NVTH5+fg5xzLS3evVqfd2wYUNZsGCB9OjRQ6ujkDzau3evvP/++7p+06ZNcu7cOa2uMsDsfZhxz0hK4eedd97p0M6HFj+08+3YsUNbBg3uuusubQFEMmzYsGHSqFEjl8eP7bDY/xKAr7e3WCze+tpmyxVrbq5YvLzE29vL3NZqyxVbbq74eHuJl5d93Ca2XMkXz7HaBNlE37/HvVT8nNUmeLdPAeLIU+bYcgWHZ/F2FvcSi92xUxM1URM1URM1URM12R/7+WO16WKA/VsslnxxzG6MxVUc14b2z1BdxTE29oHrSXsQ13NhtRYoDisHjGsfd3Xs1ERN1ERN1ERN1OT82POuKxJJKVRJNWjQQEaMGKGVTUgazZw5U5NI4eHhus2ECRPkueeek8qVK+svBSdo0qRJ5gx7R48e1UqnvNVNGAvrjG3sE1LGemMdCA4O1uqp2NhYTTR9+umn0qRJE1m/fr3ExMQ4PX54UtnP+mfQ8e4Q8StVSl8nHTspa5OOyT1h5SU86EK28JcDGZL4e7o0jqwoFW8tbcaxLd7TJrqq3FK6hBlftuOQHD6RrWPbXzgu2PybZJ/Nkcfrhzkcw6x1+6R0CR9pF1PN4UIS8eBbS0uzOyqZ8T+zz8qCLb9JaPmbpUH4hfOE/WG/tSuXk+iq5cw4NVETNVETNVETNVGTvSaQlpYmycnJZhxPS3F9h0p1zLJsgAr3sLAwSUlJ0Yp1A1zrYcHDRzxlNQgNDVU7Bdg9oMre/iEkrv+2bNnicMEeFRWl14YJCQkOmnCNd/bsWUlMTHS4mIaPKfaHSnv7B6TR0dHURE3URE3URE3UJAXTlJWVJUWufQ/s27dPq6Di4+P1xCMBVKNGDa2A2rVrl4wdO1aTUPhZrVo13W7w4MFqjI7qKLTtde/e3aFiCdxzzz3ajvfOO+9oUuu3336TxYsXm+uzs7PF399fvv/+e20FdEbjxo214gp+VwWtlKpSpYrc+fhAsZQoWaSecHriU1tqoiZqoiZqoiZquj6atk4d6ZZPbT3xSTQ1URM1URM1UZPNDTUhHxIQEFC02vcAsnarVq3SrBpEoGIJHlLI0CEzN2TIEE1AGZ5TyMRt3bpVk1RISsG8HFnFEydOOFRLHTt2zJw1Dz83bNjgsF+sN9a5Aokto43QGSVLltQlL+fwC7de+IUDXFBarfnzgbgAFSl4HBeDznAWzy1kHLu0OY3nis3JsVMTNbmKUxM1AWqiJldxavJMTcaF7JXGjQvcgsaNmZSvJI4LbWdxaqKmi8WpiZqoiZouFi9umnxcrMt3LOKmoGoJCSkYjaOiqX379uoVhSXvyTMygIbpOWbRW7ZsmcMMegcOHNDWQICf27Ztk+PHj5vbLF26VLN3tWrVcnlMSH7hmAghhBBCCCGEEELIleF2lVJIQKEsLCIiQpKSkmTgwIHar4iWPCSb0EKHGHon0b6HqqqpU6fKuHHjzN7JZ555Rvr37y/lypXTRNNLL72kiSiYnIMWLVpo8unJJ5+UMWPGqI/U66+/Lr179zYrnT744AMJCQmRO+64Q06fPq2eUsuXL5clS5bc0PNDCCGEEEIIIYQQ4gm4XVIK/YbwiIIZF5JKHTt2lFGjRmlCCsyaNUvXd+3aVTIyMjQxhfW9evUyx8BMfKimwnvh8YSZ9T7++GOHyqpvv/1WZ9tDsgpVWU8//bS8+eab5jZoARwwYIAcOnRISpcurW2CP/74o/pSFZb1k/590R5KQgghhBBCCCGEkOKG2xmdexLwxELl1qWMvQghhBBCCCGEEEKKWz7E7SqlMjMzZejQoWpmDs+nOnXqyPjx43X6Q/DXX3/JoEGDZN68eZKenq4tdn379nWolJo4caLOwrd582YdD75U9qbnoF27duoRhX2ULVtWTdIxM1/FihXNbZCve++993Q8zNZ32223yYsvviivvfZaoTTVe2a4WHzzG6ATQgghhJAbw/YZb93oQyCEEEKKPW5ndP7ss8+q6fi0adPUjBz+T0gYoY0OwCtq0aJFMn36dNm1a5e88sor0qdPH1mwYIE5RnZ2trRq1Upn6nMF2vBmz56tJuhfffWV7Nu3Tzp16uSwzcsvv6xeUpjZb/fu3boPzMBHCCGEEEIIIYQQQjyofe/UqVNy0003yfz586Vt27ZmHDPqtW7dWkaOHCm1a9eWzp07azWVs/X2rFy5UpNPziql8oKE08MPP6weVPCvQsILPlLbt29X0/UrKVer2ak/K6UIIYQQQtwIVkoRQggh144i2b6Xk5MjVqtV/Pz8HOKYaW/16tX6umHDhppA6tGjh7baIfG0d+9eNTe/XGCY/sUXX+jYhqH6woULJTQ0VA3RUXWF3B0qtjBbHwzYnYGEFhb7XwLw9fYWi+V8UZotN1estlyxeHuJt5eXuS1iWOfj7SVeDnGb2HIlXzzHZhOkE33/HteMW22CLGPe+DmrTfBuH2dxL4x/IQ6tObZc8fYSsTiNe+nxG1ATNVETNVETNVETNRU1TcZzWVx72uPj46Pr7OPYDybKsWHfNtsl45hwB4urOMa2fy7sKo6xsQ9cI9uDuLNjdxWnJmqiJmqiJmq63pryrisSSSlUSWE2vBEjRkhkZKQEBQXJzJkzZe3atRIeHq7bTJgwQZ577jmpXLmy/lJwgiZNmiRxcXGF3t+rr74qH330kbb71a9fXxNQBsnJyeojNWfOHJk6daqe1H79+mmL3/Lly52ON3r0aBk+fHi+eMd7QsWvVCl9nXTsT1n76zG5J6y8hAfdYm7zy4F0STyQLo1rVZSKt/qbcWyL97SpU01uKVXCjC/bcVAO/5GtY9tfZC3YvF+yz+TI4w3Ony+DWWuTpHRJH2kXU93hQhLx4FtLS7M7KpvxP0+dlQWb9kto+Vukwe1BZvzwiSxZtv2Q1K5STqKrBphxaqImaqImaqImaqKmoqYJ13aYbTkxMdHhYho+pniqC+sG+wek0dHRkpaWpteIBngCjGvWw4cP68zRBoGBgRIWFiYpKSmSmppqxnH9igUPVLEPAzwILV++vFboo3PAoGbNmlrtv2XLFoebEFTzlyhRQhISEhw0xcbGUhM1URM1URM1iTtoysrKkiLXvgfg7YQqqPj4eD3xMTExUqNGDdm0aZO21MHfCUko/KxWrZpuN3jwYDVGRyVTYdr38ItDlRSST0gm4ReHxBQyfkh8YT/wnML+AYzT0SqID4Gzlj5nlVJVqlSROx/7p1hKnG/f4xNOaqImaqImaqImaqKmG69p89QRHvEkuiBxaqImaqImaqKm660J+ZCAgIBLtu+5XVLKAFk1iAgODlYPKcy6N3fuXE0cIQFl7zkFc3Rk/2CAfrmeUng/Ekhr1qzRaq033nhD3nrrLTl37py5DTKDpUuXliVLlsgDDzxwSQ30lCKEEEIIcU/oKUUIIYTceE8pt5t9z8Df318TUkgoLV68WNq3b68JIizI1NljZACvBOP9RqVTo0aNNOuHyi0DlLIBVGgRQgghhBBCCCGEkMvHrTylABJQKN5Ce1xSUpIMHDhQ+xW7d++uJuSNGzfWGHonkRxatWqVej6NGzfOHOPo0aO64P1g27Zt6ldVtWpVNSlfv369bNy4Ue69914pW7asJp4wmx96K1ElBdAKiNZBtBJ+8MEHmrTq3bu3VkgZ7XyEEEIIIYQQQggh5PJwu/a92bNnq0cU2umQQOrYsaOMGjVKy74Akk1YjxY6+EEhMQX/J5iQG74Cw4YNc2o4PnnyZOnWrZsmqV5++WX55ZdftE0QFVmYYe/111+XSpUqmdvDFOyll17SfaFyq3Xr1vLee++5nH3vcsvVCCGEEEIIIYQQQjyFguZD3C4p5UkwKUUIIYQQQgghhJDixskC5kPcrn0vMzNTW+lgZn78+HGpU6eOjB8/Xqc/BDA8HzRokMybN0/S09MlJCRE+vbtK7169TLHOH36tAwYMEBmzZqlHlEtW7aUjz/+WIKCzk9LjPd17dpVp1jEa0xxCM8qGJsbJ2v16tXy6quv6kx72dnZWpH1/PPPa0VWYanffRiNzgkhhBBCiijbZo2+0YdACCGEeCRul5TCTHrbt2+XadOmScWKFWX69Onq77Rz505trevfv78sX75c49WrV9fWuhdffFG3bdeunY6BxNF3330nc+bM0cxcnz59pEOHDvLzzz/rehilIwk1cuRICQwMVO8p+EWhHXDGjBm6Ddr18L6oqCh9jSQVklJ4jXZBQgghhBBCCCGEEHL5uFX73qlTp9SQfP78+dK2bVszXrduXfVzQhKpdu3a0rlzZ62mcrYepWFINCG51KlTJ12PaqfIyEhZu3at1K9f3+m+P/zwQ3n33Xfl999/d3l8SGwhKYWEWWHK1SI79GOlFCGEEEJIEYWVUoQQQsi1ad/zFjciJydHrFar+Pn5OcQx0x4qlUDDhg1lwYIFcujQIZ2lb8WKFbJ3715p0aKFrt+0aZOcO3dOq6sMMHsfZt5DUsoZMDT/+uuvdWY/V2zZskXWrFlz0W0IIYQQQgghhBBCSBFs30OVVIMGDWTEiBFa2QQPqJkzZ2oyKTw8XLeZMGGCts9VrlxZfHx8tBVv0qRJEhcXZ87OV6JECbn11lsdxsZYWGdPly5dtCoLFVoPPfSQfPrpp/mOCftJTU3VhBlm9UN7oSvgX4XFPjMIfC3eYrGcz//ZcnPFassVi7eXeP89WyBADOt8vL3MWQTPx21iy5V88RybTVDjhrHtybHaBKVveePnrDbBu32cxb0w/oU4kn05tlzx9hKxOI176fEbUBM1URM1URM1URM1ebImPDS1WCxiw75tNjOO/TuL4/oUi6s4xrNvVnAVx9jYB65D7UHcOK6CxHHNjHHt466OnZqoiZqoiZqo6WpoyruuSCSlAFrjevToof5REBQTE6PJI1RAGUmpdevWabUUzMfj4+PVDwqeUvbVUQXh/ffflzfeeEMrrQYPHqx+VTBEt+enn35Sc3XsEwbrSI7heJwxevRoGT58eL54h3ph4leqlL5OOvqnrNt7VO4OD5LwCreY2yT+liaJv6VL4zsqSXBZfzOObfGe1jHV5JbSF1oAl237XY78kS0d6oc5XGQtTEiR7DM50rnR7Q7H8OXPv0rpkj7yUGyIw0UX4hVuLS3N7qxixv/MPiMLE/ZLaNAtUr9GBTN+5I8sWbbtoNSuWk6iqt1mxqmJmqiJmqiJmqiJmjxZE/xOo6OjJS0tTZKTk8242jRERmrV/cGDB804rCTCwsIkJSVFH27aP+zEgmtPtDMYhIaG6sQ72A8eltpX++NBKyr27W9C4HmKh7AJCQkOmmJjY+Xs2bM6mY8BrqcxYRD2B0sL+04EaqImaqImaqKma6UpKytLipynlD0QgEqj4OBg9ZBCYmju3Ll6cjEzn73nFKqXcKIXLVqkJujNmjWTP/74w6FaCgmsV155xeXseWgPvO+++/SXhn06A55VSJrt2bOnwJVSVapUkahHB5ieUkXhaaAnPuGkJmqiJmqiJmqiJmq6XE0bp77ptk+iPfHpOjVREzVREzVJkdeEfEhAQMAlPaXcrlLKAIbiWJBcWrx4sYwZM0a9orDgpNhjnGzD9NzX11eWLVsmHTt21BiSSAcOHNDWQFcY77dPKjnb5mLrS5YsqUtecHFj877wCzcutKx6ieQILtakEHGM7Qxn8VxX8VzncezS5jSeKzZr/mOhJmpyFacmagLURE2u4tRETe6uybjINi7O81LYuDFeQeO4EbnSOG4enMWpiZouFqcmaqImarpcTa7W5dtW3AwkoJCBi4iIkKSkJBk4cKCWhnXv3l2TTTAaRwxlaqh+WrVqlUydOlXGjRun70cl1TPPPKOteOXKldOM3EsvvaQJKWPmve+//16OHTum5W9lypSRHTt26JiNGjWS6tWr6zb/+c9/1Bwd+wZoExw7dqz07dv3Bp4dQgghhBBCCCGEEM/A7ZJSKO2CvxPa8ZBUQrXTqFGjNCEFZs2apeu7du0qGRkZmpjC+l69ejl4RSHrh/eisqlly5YOXlFIaMEcHa18WI8Wuw4dOqhnlH1VFPaDXktk+NB3+c4778jzzz9faE3rJg+7aLkaIYQQQgghhBBCSHHDbT2lPAH0UKJy61I9lIQQQgghhBBCCCHFLR/iVpVSmZmZMnToUDUyP378uNSpU0fGjx+vbXYAZueoZpo3b56kp6dLSEiIttPZV0lNnDhRZsyYIZs3b9bx8hqeA1RWfffdd7J161Z1hj9x4oTT4/n888+1LRAO9DiJjz76qLb1FZb63YaZRueEEEIIIcQz2fbl6Bt9CIQQQkiRIr+z1Q0Es+gtXbpUZ7jbtm2btGjRQpo3by6HDh3S9fCJwgx706dPl127dulsen369JEFCxaYY2RnZ0urVq1kyJAhLveD6RWRYHrhhRdcboNk1GuvvaZJMHhO/fjjj9oGSAghhBBCCCGEEEI8qH3v1KlTctNNN8n8+fOlbdu2Zhyz6bVu3VpGjhwptWvXls6dO2s1lbP19qxcuVKaNm3qtFLKvhIKia28lVJ4T6VKlWThwoXSrFmzKy5Xi3ykHyulCCGEEEI8HFZKEUIIIYVr33ObSqmcnByxWq3i5+fnEIcp+erVq/V1w4YNtSoKlVPIpa1YsUJb61BRdTVBtRaMzrGfyMhIqVy5sjz22GPy+++/X9X9EEIIIYQQQgghhBRX3MZTClVSDRo0kBEjRmgiKCgoSGbOnClr166V8PBw3WbChAny3HPPaZIIM+Jhhj3MohcXF3dVjyU5OVmTUm+99ZZ6WiG79/rrr8sDDzwgiYmJ6kPlDMzkh8U+Mwh8Ld5isZzP/9lyc8VqyxWLt5d4e3mZ2yKGdT7eXuLlELeJLVfyxXNsNkGNG8a2J8dqE5S+5Y2fs9oE7/ZxFvfC+BfiSPjl2HLF20vE4jTupcdvQE3URE3URE3URE3URE1e+pAV4BoVC64nsRgYcTyItW9WcBW3WCyq0RjXPq7nwmotUBzXzRjXPo5xsX3eY3QVpyZqoiZqoiZqKoymvOvcPikF4CXVo0cPbZ2DmJiYGOnSpYts2rTJTEqtW7dOq6WqVasm8fHx0rt3b6lYsaJ6T10t8Ms5d+6cfPjhh2YVFhJkFSpU0OosV95So0ePluHDh+eLd6gfJn6lSunrpCN/yrq9R+Xu8CAJD77F3CZxf5ok/pYuje+oJMHl/M34uj1HJenon9I6pprc4n+hBXBZ4u9y5I9sHdvX58LF0cKNKZJ9Jkc633u7wzF8ufpXKV3SRx66O8SMncuxyZc//yoVbi0tzaKqmPE/s87IwoT9Ehp0i9SPqGDGj2RkybJtB6V21XISVf02M05N1ERN1ERN1ERN1ERNt0lCQoLGAwMDJSwsTFJSUiQ1NdXcHg9WsaDSH+0MBqGhoVK+fHnZvn27WloY1KxZU20otmzZ4nATEhUVpQ9Jjf0ZxMbGqncqHqIa4JoakwZhf7t373boRoiOjpa0tDR9IGug1hORkXL48GE5ePCgGacmaqImaqImaiqMpqysLClSnlL24OBRZRQcHKweUph1b+7cuXpiMTOfvecUzNFxkmGAfrU8pSZPnqzJMbTr4RdjgOoteFf17NmzwJVSVapUkahOA0xPKU96GmhATdRETdRETdRETdRETV6yYer5h5N8uk5N1ERN1ERNxV3TyZMnJSAg4JKeUm5VKWXg7++vCxJKixcvljFjxmjlEhacEHuME301adSokf7cs2ePmZTKyMjQ7CMqtFxRsmRJXfKCixubt+Mx4kLLqpdIjuDCRgoRx9jOcBbPdRXPdR7HLm1O47lis+Y/FmqiJldxaqImQE3U5CpOTdTkKZpww2CPcTGfF+OivaDxvONeThw3D87iro6xsHFqoiZXcWqiposdOzWJx2pytS7ftuJGIAGF7FtERIQkJSXJwIEDtSyse/fu4uvrK40bN9YYStSQHFq1apVMnTpVxo0bZ45x9OhRXfB+sG3bNvWrqlq1qpQrV05jBw4c0CQTfiKDt3XrVo3Du6pMmTJSo0YNad++vbz88ssyceJEzeoNHjxYjwXVV4QQQgghhBBCCCHkynCr9r3Zs2dr8gfteEggdezYUUaNGqVtewDJJqxfsmSJJpWQmILxeb9+/czy7WHDhjn1dUJLXrdu3fQ1fk6ZMiXfNvCLatKkib5GqRnG/frrrzWDiIQYTM/Rjne1p0AkhBBCCCGEEEII8RQKmg9xq6SUp8GkFCGEEEIIIYQQQoobJwuYD8nfREgIIYQQQgghhBBCyDXGrTylQGZmpgwdOlRn2Tt+/LjUqVNH2+Yw/SHATHyDBg2SefPmSXp6uoSEhEjfvn2lV69e5hjwgZoxY4Zs3rxZx3M2Ax/aAr/77jv1k8KUhXln4AP2M7oYzJw5Ux5//PFCaWrw1Bvm7HuEEEIIIaR4kzjn7Rt9CIQQQohb4HaVUs8++6wsXbpUpk2bpiblLVq0kObNm8uhQ4d0ff/+/WXRokUyffp02bVrl7zyyivSp08fWbBggTlGdna2tGrVSoYMGeJyP2fPnpVHH31UXnjhhYseD7yojhw5Yi4PP/zwVVRLCCGEEEIIIYQQUjxxq0qpU6dOyVdffSXz58+XuLg407h84cKF8t///ldGjhwpa9askaeffto0JIfR+f/+9z/ZsGGDtGvXTmNIVIGVK1e63Jdhhv75559f9JhQYVWhQoWrppEQQgghhBBCCCGEuFlSKicnR6xWq/j5+TnES5UqJatXr9bXDRs21KqoHj16SMWKFTXxtHfvXnn//fevyTH17t1bq7dCQ0O1RbB79+5O2/rAmTNndLE39gK+Fm+xWM4Xpdlyc8VqyxWLt5d4242DGNb5eHs5jG+12cSWK/niOTabwKIeY9uTY7UJnOvzxs9ZbYJ3+ziLe2H8C3F43+fYcsXbS8TiNO6lx29ATdRETdRETdRETdRETQXXhOtd+7mGMNMzlrxxi8WiGnGNbA/iOp7VWqC4j4+Pjmsfx7jY3obzabNdMm4co6s4NVETNVETNVGTxe7Y864rEkmpm266SRo0aCAjRoyQyMhICQoKUg+ntWvXSnh4uG4zYcIErY6qXLmy/lJwgiZNmmRWVl1N3nzzTbn//vuldOnSsmTJEnnxxRfV0woeVs4YPXq0WYFlzyMNwsSvVCl9ve/In7Juz1G5+/YgCQu+xdxm2/50SdyfJnG1K0twudJmHNviPa3qVpdb/EuY8eWJB+VIRpZ0aBjmcDH17YYUyT6TI4/dd7vDMcz+6VcpXdJHHrwnxOEi7cuffpUKZf3l/qjKZvzPrLPy7cYUCalwi9SPuFAldiQjW5Yn/i61qwXIndUDzDg1URM1URM1URM1URM1FVwTHqhiNiIDPPwsX768bN++XTsHDGrWrKlV+1u2bHG4CYmKilJP1ISEBAdNsbGxalGRmJjocIMAb1bsb/fu3Q4PfaOjoyUtLU2Sk5PNOGZKwnX44cOH5eDBg2Y8MDBQwsLCJCUlRVJTU804rsmxUBM1URM1URM1RdlpysrKkoLglWuf7nID9u3bp1VQ8fHxeuJjYmKkRo0asmnTJvWQGjt2rCah8LNatWq63eDBg9UYHd5T9qCKqmnTpk6Nzg3Qvod2P2dG53n597//rR5Tv//+e4ErpapUqSLRHfqbRufF8WkgNVETNVETNVETNVETNV3QtGXWKD5dpyZqoiZqoibxZE3IhwQEBGiS6+abb5Yik5QyQFYNIoKDg6Vz585aoTR37lzN+CEB1bZtW3NbtNch+wcD9GuZlMJsfQ8++KCcPn1aSpa89Gx6OH4cb632r3D2PUIIIYQQonD2PUIIIZ7Oyb/zIZdKSjk+GnIj/P39NSGFhNLixYulffv2cu7cOV2QqbPHyABea7Zu3Sply5YtUEKKEEIIIYQQQgghhBQRTymABBSKtyIiIiQpKUkGDhyo/YowGPf19ZXGjRtrDL2TaN9btWqVTJ06VcaNG2eOcfToUV3wfrBt2zb1q6pataqUK1dOYwcOHJCMjAz9idIyJJwAvKvKlCmjM/4dO3ZM6tevr8brS5culbfeekv++c9/FlrT2qnDL5oZJIQQQgghhBBCCCluuF373uzZs9UjCu14SCB17NhRRo0apWVfAMkmrIfxOJJKSEzB+Lxfv36mr8CwYcOcGo7DD6pbt276Gj+nTJmSb5sVK1ZIkyZNtBUQ+0FiC6cIyaoXXnhBevbsma9S60rL1QghhBBCCCGEEEI8hYLmQ9wuKeVJMClFCCGEEEIIIYSQ4sbJAuZD3K59LzMzU4YOHapm5sePH5c6derI+PHjdfpDAMPzQYMGybx58yQ9PV1CQkKkb9++0qtXL3OMiRMnyowZM2Tz5s06njOjc1RfwbgcbXuYsjCv0TkM0NEy6Ay09WFaxILS8B//ptE5IYQQQgi5avzy1Ts3+hAIIYSQK8btjM4xkx78m6ZNm6ZeUC1atJDmzZvLoUOHdH3//v21tW769Omya9cunTmvT58+smDBAnOM7OxsadWqlQwZMsTlfs6ePSuPPvqotuQ5AzP+HTlyxGFp2bKleloVJiFFCCGEEEIIIYQQQty8fe/UqVNqSD5//nxp27atGa9bt660bt1aRo4cKbVr19aEEaqpnK23Z+XKldK0aVOnlVL2FVFIbOWtlMpLamqqVKpUSf7v//5PnnzyyUKVq93x0MuslCKEEEIIIVcNVkoRQghxZ4pk+15OTo7OhIfZ7uzBTHurV6/W1w0bNtSqqB49ekjFihU18bR37155//33r+mxYYa/0qVLS6dOnVxuc+bMGV3sfwnA1+ItFsv5ojRbbq5Ybbli8fYS77+N2QFiWOfj7WUatp+P28SWK/niOTabIJ2Ise3JsdoEWca88XNWm+DdPs7iXhj/Qhx5yhxbrnh7iVicxr30+A2oiZqoiZqoiZqoiZqo6Tprwj6sVoe4xWI5P16euI+PT77tsR9sb8O+bbZLxjHRDxZXcYxt/6zbVRxjYx+47i/IsVMTNVETNVFT0dSUd12RSEqhSqpBgwYyYsQIiYyMlKCgIJk5c6asXbtWZ78DEyZM0Nn2KleurL8UnKBJkyZJXFzcNT02VEg98cQTmiBzxejRo53O+vdIw3Dx+/t9SUdOyPrdRyW2RpCEB1+o3krcnybbUtIk7s7KElzO34yv231E9h35U1rdHSK3lC5hxpf/8rscyciSRxqFO1yofLshWbJP58hjcTUcjmF2/F4p7ecjD94T6nDRhXiFsv5yf3QVM/5n9ln5dn2yhFS4RerXDDbj2B/2e0f1AImqfpsZpyZqoiZqoiZqoiZqoqbrqwkX/AkJCQ6aYmNj1aIiMTHR4QYB3qx4Ur17924zjmva6OhoSUtLk+TkZDOOp9q4Dj98+LDOhm0QGBgoYWFhkpKSoh0EBrgmx4KHxNiHQWhoqFpebN++XbshDGrWrKkdDFu2bHG4sYqKilKfV2qiJmqiJmqK9QhNWVlZUuTa98C+ffu0Cio+Pl5PfExMjNSoUUM2bdqkHlJjx47VJBR+VqtWTbcbPHiwGqPDe+patO8hKYYKLZxYtAoWplKqSpUqctfD/cz2PT4NpCZqoiZqoiZqoiZqoqYr1bRl7tse+3SdmqiJmqiJmqTIa0I+JCAg4JLte26XlDJAVg0igoOD1UMKs+7NnTtXM35IQNl7TsEcHdk/GKBfi6TUM888ozP5IQtYGOgpRQghhBBCrgX0lCKEEOIJnlKOj13cCH9/f01IIaG0ePFiad++vZw7d04XZOrsMTKA1wIkw2bPnq2JKUIIIYQQQgghhBBydXArTymABBSKtyIiIiQpKUkGDhyo/Yrdu3cXX19fady4scbQO4n2vVWrVqkJ+bhx48wxjh49qgveD7Zt26Z+VVWrVpVy5cpp7MCBA5KRkaE/UVq2detWjcO7qkyZMuZYX375pZak/eMf/7ju54IQQgghhBBCCCHEU3G79j1UJcEjCu14SCB17NhRRo0apWVfAMkmrF+yZIkmlZCYgvF5v379zB78YcOGOTUcnzx5snTr1k1f4+eUKVPybbNixQpp0qSJ+W94SYWEhMgXX3xxzcrVCCGEEEIIIYQQQjyFguZD3C4p5UkwKUUIIYQQQgghhJDixskC5kPcrn0vMzNThg4dqmbmx48flzp16sj48eN1+kPD42nQoEEyb948SU9P1yqmvn37Sq9evcwxJk6cKDNmzFBzcoyX1+h8//79MmLECFm+fLlWXlWsWFHb81577TWdvtAwSX///fdlw4YNejJvv/12bRvs2rVroTU1euLfNDonhBBCCCHXja3f0AidEEKI++N2SSnMpLd9+3aZNm2aJoumT58uzZs3l507d0qlSpWkf//+mkxCvHr16trG9+KLL+q27dq10zGys7OlVatWuqDVLy+7d+9WY/T//e9/6iGF/fXs2VNn/Bs7dqxus2bNGomKipJXX31VgoKC5Ntvv5WnnnpKM30PPvjgdT8vhBBCCCGEEEIIIZ6EW7XvnTp1Sg3J58+fL23btjXjdevWldatW8vIkSOldu3a0rlzZ62mcrbeHlQ7NW3aNF+llDPeffdd+e9//yvJyckut8ExIUH12WefFapcrXbbl1kpRQghhBBCrhuslCKEEHIjKZLte5jlDjPh+fn5OcQx097q1atN4/EFCxZIjx49tDoKiae9e/dqq92VgBNlzMx3sW0iIyNdrj9z5owu9r8E4GvxFovFW1/bcnPFassVi7eXeP9tzA4Qwzofi5fgvwtxm9hyJV88x2YTpBMxtj05Vpsgy5g3fs5q03f7OIt7ifh4X4jnSq7kWHPF20vE4jTupcdvQE3URE3URE3URE3URE3upQnX1QY+Pj46uzWusw0wQZDFYtHuASyXint7e+viKo6x7Z91u4pjbOzD/viMuJ4Lu2O8WJyaqImaqImaxK015V1XJJJSqJJq0KCB+j0h+YOqpJkzZ8ratWu1zQ5MmDBBZ9urXLmy/lJwgiZNmiRxcXGXvd+kpCQd12jdczUr4MaNG7XlzxWjR492Ouvfw/eGi1+pUvp63+ETsn7XUYmNCJKwiheqt7Ylp8m2lDS5787KEhzgb8bX7zoi+w7/KS3vDpFb/M/7XYEVW36XIxlZOravz4ULku/WJUv26Rx5tEkNh2OYs3KvlPbzkbb1Q83YuRybzFm1VyqU9ZemdaqY8T+zzuo4IcG3SL3IYDN+JD1LVmz9Xe6oHiB3ht5mxqmJmqiJmqiJmqiJmqjJvTQlJCSYNwjwZsXDVVhY2D/0jY6OlrS0NIdOATzVxnX44cOHdTZsg8DAQAkLC5OUlBRJTU0147gmx4KHxNiHQWhoqJQvX15tMtANYVCzZk3tYNiyZYvDjRVsM+Dtahy3QWxsrJw9e1YSExPNGDVREzVREzW5vybYIxW59j2wb98+rYKKj4/XEx8TEyM1atSQTZs2ya5duzRxhCQUflarVk23g28UjNHhPVXY9r1Dhw5J48aNpUmTJvLpp5863WbFihXqI4X2PvhKFaZSqkqVKlKnXT+zfc8dnpx54tNAaqImaqImaqImaqImarqgae2sEUX26XpB4tRETdRETdQkbq0J+ZCAgIBLtu+5XVLKAFk1iAgODlYPKcy6N3fuXM34IQFl7zkFc3Rk/xYtWlSopBSyhkhG1a9fXz7//HM92XlZtWqV7mvcuHFaoVUY6ClFCCGEEEJuBPSUIoQQUhQ8pfJnYdwEf39/TUghobR48WJp3769nDt3Tpe8ySMjA1gYUCGFhBRM0idPnuw0IYWkFhJS77zzTqETUoQQQgghhBBCCCGkiHhKASSgULwVERGhXk8DBw7UfsXu3buLr6+vttohht5JtO+hkmnq1KlayWRw9OhRXfB+sG3bNvWrqlq1qpqZGwkpvB9tgPa9lBUqVHBo2Xv55ZelY8eOOh5Af+SlDNEJIYQQQgghhBBCyMVxu/Y9GIrDIwrteEj+ICE0atQoLfsCSA5h/ZIlSyQjI0MTS6hi6tevn/Y0gmHDhjk1HEdFVLdu3bRVD0kuZxinA9tNmTIl33okxVBBdTXL1QghhBBCCCGEEEI8hYLmQ9wuKeVJMClFCCGEEEIIIYSQ4sbJAuZD3K59LzMzU4YOHapm5sePH5c6derI+PHjdfpDAMPzQYMGybx58yQ9PV1CQkKkb9++0qtXL3OMiRMnyowZM2Tz5s06njOjc1RZvfTSS7Jw4UL1k0JFFvZTpkwZXb9nzx4dc+fOnXoSK1asKE888YS88cYb2kZYGO59fCiNzgkhhBBCyA1jy/wxN/oQCCGEEPdPSmEmve3bt8u0adM0ETR9+nRp3ry5JocqVaok/fv3l+XLl2u8evXq2sb34osv6rbt2rXTMbKzs6VVq1a6oNXPGV27dpUjR47I0qVL1Twd7XxoA0QyCyDx9NRTT0lMTIwmtH755Rfp2bOnGqq/9dZb1/WcEEIIIYQQQgghhHgabtW+d+rUKTUknz9/vs56Z4AZ8lq3bi0jR46U2rVrS+fOnbWaytl6e+D91LRp03yVUrt27ZJatWrJxo0bJTY2VmOLFi2SNm3aqJcVElzOQEIM7/npp58KVa52Z+u+rJQihBBCCCE3DFZKEUIIccf2PW9xI3JycsRqtYqfn59DHDPtrV69Wl83bNhQFixYoDPoIZ+GWfL27t0rLVq0KPB+1q5dq0kqIyEFUI2FNr7169c7fQ9m8kPiCkbnhBBCCCGEEEIIIcSD2vdQJdWgQQMZMWKEREZGSlBQkMycOVOTSOHh4brNhAkTtM2ucuXK4uPjo4mkSZMmSVxcXIH3gxn8ypcv7xDDWJjtD+vsQRIM3lRnzpzR/b755psux8U2WOwzg8DX4i0Wy/n8ny03V6y2XLF4e4n337MFAsSwzsfiJfjvQtwmtlzJF8+x2QQ1bhjbnhyrTVD6ljd+zmrTd/s4i3uJ+HhfiOdKruRYc8XbS8TiNO6lx29ATdRETdRETdRETdRETe6tCQ9z8fDXALNWWywWtabAcqk4rrmxuIpjbPsGDFdxjI194GG0PYjrubA7xovFce1OTdRETdRETV5uqynvuiKRlALwkurRo4f6R0EQPJ26dOkimzZtMpNS69at02qpatWqSXx8vPTu3Vtb7lDtdLX58ssv1SwdnlIDBw6UsWPHyr/+9S+n244ePVqGDx+eL97+vtvFr1QpfZ18+ISs33lEYmtWkNCKF1oKtyenyrbkNLkvqopUCPA34xt2HpF9h09Iy3tC5Gb/Cy2AK7cckCPpWfJw3O0OFx7fr90n2adzpFPTCIdjmLtij5T285E2DcIcLmjmrNgjFcr5S5M6Vc34yawz8t3aZAkJvlXuqRVsxo+mZ8mKLQfkjpAAqR0aaMapiZqoiZqoiZqoiZqoyb01oX1i9+7dDp0I0dHRkpaWJsnJyWYcrRZ4OHz48GG1tTAIDAyUsLAwSUlJkdTUVDOOB8VY0LmAfRiEhobqQ2B4xcKiw6BmzZrasbBlyxaHG6uoqCgpUaKEJCQkOGhCZ8PZs2clMTHRjOEeAZMgURM1URM1UVMpt9WUlZUlRc5Tyh4IQKVRcHCwekhh1r25c+fqycXMfPaeUzBHx4lGe11BPKU+++wzGTBggMYNkMVD2+CcOXPkkUcecXpMMFdHtRSSVEYG8FKVUlWqVJGYB18xPaXc8cmZJz4NpCZqoiZqoiZqoiZqoqYL8c3z3ikyT9c9sWKAmqiJmqipuGk6efKkBAQEXNJTyu0qpQz8/f11QeJo8eLFMmbMGJ0lDwtOij3GyS4oaBE8ceKEVl/BJB1gRj+MUa9ePZfvw3rsHz+dJaVKliypS15wIWDzdjw+XJRY9XLCEVzYSCHiGNsZzuK5ruK5zuO4OLI5jeeKTY/HEWqiJldxaqImQE3U5CpOTdQEqOnaasLNA25o8mLccFxp3Nm18cXizo6lsHFqoqaLHTs1URM1yQ3V5Gpdvm3FzUACChm4iIgINRdHyxxKw7p37y6+vr5qNI4YytTQvrdq1SqZOnWqjBs3zhwDvlBY8H6wbds29auqWrWq+kahjK1Vq1bSs2dP+eSTTzTR1KdPH3n88cfNmfe++OIL3d+dd96piSaUnw0ePFirthAnhBBCCCGEEEIIIZeP27XvzZ49W5M/aMdDAqljx44yatQobdsDSDZh/ZIlSyQjI0MTU2ip69evn2YNwbBhw5x6O02ePFm6deumr/FeJKIWLlyoGULs58MPP5QyZcqYXlKozkJPJU4R9vOPf/xD95N3dsArnQKREEIIIYQQQgghxFMoaD7E7ZJSngSTUoQQQgghhBBCCClunCxgPsSt2vdgID506FA1Mj9+/LjUqVNHxo8fry7zAGbngwYNknnz5kl6erqEhIRI3759pVevXuYYEydOlBkzZsjmzZt1vLwm5wDrXn31Vdm4caP2RqJKCu1/RpUUWLZsmR4LWv/gbfX0009rxVZB+yLtubfz66bROSGEEEIIIe7OlgXv3uhDIIQQUgzI72x1A8EsekuXLpVp06ZpMqhFixbSvHlzOXTokK7v37+/zrCHWfB27dolr7zyirbgLViwwBwjOztb/aKGDBnidB+YEhFjhoeHy/r163W8HTt2mG194JdffpE2bdroOJjiEK182AcSYoQQQgghhBBCCCHkynGb9r1Tp06pGfn8+fOlbdu2Zhyz47Vu3VpGjhwptWvXVqNxVDA5W2/PypUrpWnTpvkqpVBJhfcfOXLEdJtHAiwqKkp+/fVXTVYhoYXkGCqpDOA99dhjj2kFF46zMOVqd7Z6iZVShBBCCCGkyMBKKUIIIdejfc9tKqVycnLEarXmMxHHLHurV6/W1w0bNtSKJVROIZe2YsUKNSJHRVVBOXPmjJQoUcJh+kPsAxj7wTbOjuP06dOyadOmK9JJCCGEEEIIIYQQQtzIUwrVRw0aNJARI0ZIZGSkBAUFycyZM2Xt2rVavQQmTJigM+1VrlxZvZ2QWJo0aZLExcUVeD/333+/tgG+++678vLLL0tWVpbZlofqKdCyZUv54IMPdP+ojsKMf2+++abDNs5AMguLfWYQ+Fq8xWI5nwSz5eaK1ZYrFm8v8f57tkCAGNb5WLwE/12I28SWK/niOTaboMYNY9uTY7UJSt/yxs9ZbfpuH2dxLxEfuyRdruRKjjVXvL1ELE7jXnr8BtRETdRETdRETdRETdTkWZpsOCabzYzjuhuLqzgeLts3YLiKw88VM2bjgbQ9iOu5sFoLFMe9AMa1j2NcbJ/3GF3FqYmaqImaqOnaacq7zu2TUgBeUj169JBKlSqpmJiYGOnSpYtZnYSk1Lp167Raqlq1ahIfHy+9e/eWihUrqk9UQbjjjjtkypQpmpgaPHiw7gdm6UiCGdVTqLxC0goG6k8++aSULFlSW/5++uknhwqrvIwePVqGDx+eL94+rob4/V2NlXzoD1m/84jE1qwgoZXKmtts35cq25JT5b7oKlIh4ILh+oadh2XfoRPSsl6o3Ox/oQVw5ebf5Eh6ljwcd7v4+Jz/xYPv1+yT7NPnpNP9NR2OYe7y3VLaz1faNAwzYzk5VpmzYo9UKOcvTWKqmfGTWWfkuzX7JKTirXJPrYpm/Gj6X7Ji8wG5I+Q2qR0WaMapiZqoiZqoiZqoiZqoybM0wYf14MGDZjwwMFDCwsIkJSVFUlNTzTgeFmNB9wJaNAxCQ0OlfPnysn37drXpMKhZs6Zaa8C31f7GClYa6GZISEhw0BQbGytnz56VxMREM4brd0yEhP3t3r3bobMhOjpa0tLSJDk52YyjfQQPvamJmqiJmqgp8LppQgFQkfKUsgcHjyqj4OBg9ZDCrHtz587VE4uZ+ew9p2COjpMMw/KCeErZc+zYMZ1ZDxk+9DjOmjVLHn30UXM9Tg0qo8qWLSv79++XWrVqyYYNG8zZAAtSKVWlShWJafuy6SnlCU/OPPFpIDVREzVREzVREzVREzVdiG+a9w4rBqiJmqiJmqhJLlcT8iEBAQGX9JRyq0opAySKsCChtHjxYhkzZoycO3dOl7yVSsaJvhxQHQU+++wz9ZB64IEHHNbjJKMKC6CVTxNMMTEux0NFFZa84ELA5u14jLgoserlhCO4CJBCxDG2M5zFc13Fc53HcXFkcxrPFZsejyPURE2u4tRETYCaqMlVnJqoCVCTe2kybkQKGjduRAoax83VlcZxre4sXthjpyZqKmycmqjpYsdOTaJxV+vybStuBBJQyL5FRERIUlKSDBw4UMvCunfvLr6+vtK4cWONoUQN7XurVq2SqVOnyrhx48wx4P+EBe83ZtaDX1XVqlWlXLlyGvvoo4/UNL1MmTI6yx7GfPvttx0qqtC+16pVK/1Fff3117p+9uzZLn8ZhBBCCCGEEEIIIaTguFX7HpI+8HlCOx4SSB07dpRRo0Zp2x5AsgnrlyxZIhkZGZqYgvF5v379NGMIhg0b5tTXafLkydKtWzd9/dRTT8l3332nbYFIev3zn/9U76i8huibN2/Wdjz0aL7xxhvSunXrazIFIiGEEEIIIYQQQoinUNB8iFslpTwNJqUIIYQQQgghhBBS3DhZwHyI66nkbhCZmZnyyiuvaBUU2vTQZrdx40ZzPaqb+vTpo87wWA/z8U8++cRhjIkTJ0qTJk1UOCqoTpw4kW8/qLTq2rWrboO2vWeeeUbHNkDFFd6bd4HXFSGEEEIIIYQQQgi5MtzKU8qYTQ/TDU6bNk1NxqdPny7NmzeXnTt3SqVKlaR///6yfPlyjVevXl1b+V588UXdtl27djpGdna2+kFhQbufM5CQwsx68JSCgTp8q9AKOGPGDF2Plr5evXo5vKdZs2YuZ967GPc9+po5+x4hhBBCCCGexuZvx97oQyCEEFIEcav2vVOnTqkp+fz586Vt27ZmvG7duurnNHLkSKldu7Z07txZhg4d6nS9PStXrpSmTZvqLH72Jua7du3SCitUYMXGxmps0aJF0qZNG/WzMmbcs+eXX36Ru+66S+Lj4+W+++4rVLlaVIs+TEoRQgghhBCPhUkpQgghRb59LycnR6xWq/j5+TnE0aa3evVqfY12vgULFsihQ4d0pr4VK1bI3r17pUWLFgXez9q1azVJZSSkAKqxMNPe+vXrnb7n008/lRo1ahQ4IUUIIYQQQgghhBBCikj7HqqkGjRoICNGjJDIyEgJCgqSmTNnahIpPDxct5kwYYK22cFTysfHRxNJkyZNkri4uALvB7P4lS9f3iGGsTDjH9bl5fTp0/LFF1/IoEGDLjouZurDYp8Z1LEt3mKxnM//2XJzxWbLFW9vL/H+e8ZAjdtydZ3F4iX4z8Bqswlq2VzFMbY9OVabuc+CxnEYFu8L8VzJFas112Ucx43jN4+dmqiJmqiJmqiJmqiJmoq1JjxYtm/AwDU6lrxxi8WiPq14GG0P4qrZai1QHNfuGNc+jnGxvc1m0+VSceMYXcWpiZqoiZqoyfuyNeVdVySSUgBeUj169FD/KAiKiYmRLl26yKZNm8yk1Lp167RaCmboaKfr3bu3ttyh2ula8M0336gB+9NPP33R7UaPHi3Dhw/PF2/fpIb4+ZXS18mHTsiGHYclNjJYQitdaCncvi9Vl/vuqioVAi6YqWNbvKdl/VC52f9CC+DKTb/J0fQsebhJDYcLj+9/3ifZp89Jp2Y1HY5h7rLdUtrPV9o0CnO4QEE8qJy/NKlbzYyfzDqj44RUvFXuueNCKyP2h/3WCr1NaocFmnFqoiZqoiZqoiZqoiZqKt6a0LmAFg2D0NBQfQgMr1hYdBjUrFlTOxa2bNnicGMVFRUlJUqUkISEBAdN6Gw4e/asJCYmmjHcI8DnFfvbvXu3Q3dFdHS0pKWlSXJyshlH+wgeeB8+fFitOgwCAwMlLCxMUlJSJDU11Yzj4TcWaqImaqImagq9bE1ZWVlS5Dyl7IEAVBoFBwerhxRmxps7d66eXCSJ7D2nYI6OEw1fqIJ4Sn322WcyYMAAjRsgi4e2wTlz5sgjjzySz+AcPZDYb2ErpapUqSIxrfuanlLF8ckZNVETNVETNVETNVETNXm2po3z32HFADVREzVREzWJcezIhwQEBFzSU8rtKqUM/P39dUHiaPHixTJmzBidJQ8LToo9xskuKGgRPHHihFZfwSQdYEY/jFGvXj2HbZFBhG8VKrMuRcmSJXXJCy4Ecr0dj0//gEv+fCAuAqQQcePi40ri+GwVJq4XJXo8eeLURE3URE3UdNFjpyZqoiZq8lRNxo1IQeO4ubrSOG6InMWNm6grjVMTNbmKUxM1XezYqUk07mpdvm3FzUACChm4iIgISUpKkoEDB2ppWPfu3cXX11caN26sMZSpoX1v1apVMnXqVBk3bpw5BnyhsOD9YNu2bepXVbVqVfWNQhlbq1atpGfPnvLJJ59ooqtPnz7y+OOP55t5D1VVqNbC7H6EEEIIIYQQQggh5Orgdu17s2fPlsGDB2s7HhJIHTt2lFGjRmnbHkCyCeuXLFkiGRkZmpiC8Xm/fv00awiGDRvm1Ntp8uTJ0q1bN32N9yIRtXDhQs0QYj8ffvihlClTxtwelVMY/6mnntJjuFZTIBJCCCGEEEIIIYR4CgXNh7hdUsqTYFKKEEIIIYQQQgghxY2TBcyH5G8iJIQQQgghhBBCCCHkGuN2nlKZmZkydOhQnenu+PHjUqdOHRk/frxOfwgwC9+gQYNk3rx5kp6eLiEhIdK3b1/p1auXOcbp06d1dr1Zs2bpbHgtW7aUjz/+WIKCgvLtD2NgCsVDhw7lm6UPs/f1799fduzYobPovf7662b7X2GI6zhYLD75DdAJIYQQQggpDmz64YL/KyGEEOK2lVLPPvusLF26VKZNm6YG5S1atJDmzZtr0gggSbRo0SKZPn267Nq1S1555RX1hrKfHQ/+UvCKmjNnjhqhHz58WDp06OB0f88884xERUXli2PWvbZt20rTpk1l69atuh8cG4zYCSGEEEIIIYQQQsiV4VaeUqdOndJZ8ubPn68JIYO6devq7HcjR46U2rVrS+fOnbWaytl69CsGBgbKjBkzpFOnTrp+9+7dOuPe2rVrpX79+ub7/vvf/8qXX34p//73v6VZs2YOlVKvvvqqfPfdd7J9+3Zze8zOd+LECU2KFaaHMrr5i6yUIoQQQgghxRZWShFCSPHiZAE9pdyqfS8nJ0esVqv4+fk5xEuVKiWrV6/W1w0bNtSqqB49ekjFihW1xW7v3r3y/vvv6/pNmzbJuXPntLrKoGbNmlK1alWHpNTOnTvlzTfflPXr10tycnK+Y8G29mMAtAGiYsoVaBXEYv9LAD4Wb7H4nC9Ks9lydfH29tLFwIhbLF7mLILAarUJ0oau4j5/j3vhHNrO77MQcQxrsVyII09ptea6jLs6dmqiJmqiJmqiJmqiJmqiJmeacJ0PLBaLw78NED//PmuB4j4+Pn8f64U4xsX2mEEby6XimIEbi6s4xrZ/fu8qTk3URE3URE35jz3vuiKRlEKVVIMGDWTEiBFa2QQPqJkzZ2qCKDw8XLeZMGGCPPfcc1K5cmX9peAETZo0SeLi4nT90aNHpUSJEg7eUABjYR1A4qhLly7y7rvvarLKWVIK2+b1oMK/kWhCRRcSZXkZPXq0DB8+PF+8fdOa4ud3fvvkg3/Ihu2HJLZWRQmtXNbcZnvScV3uq1NNKtxWxoxjW7ynRcMwucX/QrJuZcJ+OZr2l7RvGiG+f//iwferf5Xs0+ekU/NaDscw98edUtrPV9rce7sZO2e1yldLd0lQQBlpElvdjP+ZdVp++ClJQiqVlXtqV7pwTtL+0v3WCg2U2uHlzTg1URM1URM1URM1URM1UdPFNCUkJJgPi3GdvmXLFocbK9hp4Bre2M4gNjZWzp49K4mJiQ43PfCbxdN3dEQY4PocXrFpaWkO1/d4Uo97C1h6HDx40IyjuyIsLExtO1JTU8047jOw4ME39mEQGhoq5cuX104K3A8YUBM1URM1UVN+TVlZWVLk2vfAvn37tAoqPj5eT3xMTIzUqFFDK6DgITV27FhNQuFntWrVdLvBgwerMToqm9C21717d4eKJXDPPfeoP9Q777yjvlT45cAIHaDaCuvs2/ewT4yDsQ2+//57bSvMzs52mpRyVikFg/S6LfuIxfd8+x6fnFETNVETNVETNVETNVFTcdP08zdvF+uKAWqiJmqipuKm6eTJkxIQEHDJ9j23S0oZIKsGEcHBweohhVn35s6dqxk/JKDsPadgQI7sH7yeli9fns8fCiCBhdY7mKDfddddaqJu/OHEKcAvBCfwtdde02onVF4hIfbBBx+YY0yePFnHsM8cXgx6ShFCCCGEEEJPKUIIKW6cLIqeUvb4+/vrguQSZrwbM2aMekVhQabOHiMDaJie+/r6yrJly6Rjx44a27Nnjxw4cEBbA8FXX33lUHq2ceNGrc766aeftJQNYFtURtmDWQGNMQghhBBCCCGEEELI5eN2SSkkoFC5FBERIUlJSTJw4EDtV0QrHZJNjRs31hja51D9tGrVKpk6daqMG3f+6Qsycc8884y26JUrV04zci+99JImkwyTcyPxZID+S4CeS6O6qlevXvLRRx/Jv/71L01YoQJr9uzZOiMfIYQQQgghhBBCCPGwpBRKu+DjhHY8JJVQ7TRq1ChNSAH4QGF9165dJSMjQxNTWI8kkgFm4kM1Fd4LjyfMmvfxxx8X6jhCQkI0AYV2v/Hjx6vp16effqpjFZb4r0ZftFyNEEIIIYQQQgghpLjhtp5SxamHkhBCCCGEEEIIIcRTKLKeUpmZmTJ06FA1Mz9+/LjUqVNHK5Uw/SGA4fmgQYNk3rx5kp6erhVNffv2daiUmjhxos7Ct3nzZh0vr+k5QJUV2voWLlxoVlVhP2XKnJ/Kdv/+/Tp2XtauXWu2ARaUxh0G0eicEEIIIYSQG0jCovdv9CEQQgjJg6NjuBuAmfRgKD5t2jSdIa9FixbSvHlzOXTokK6HVxRm2Zs+fbrs2rVLZ8Pr06ePLFiwwBwjOztbWrVqJUOGDHG5H7T/7dixQ/f17bffSnx8vDz33HP5tvvxxx/lyJEj5gIjdUIIIYQQQgghhBDiQe17mBHvpptukvnz50vbtm3NOBJBrVu3lpEjR0rt2rWlc+fOWk3lbL09K1eulKZNm+arlEIyq1atWjrrXmxsrMaQ6GrTpo16WVWsWNGslNqyZYvcddddV1SudlezF1gpRQghhBBCyA2ElVKEEHL9KJLtezk5OWK1WsXPz88hjpn2Vq9era8bNmyoVVGYEQ/JIySe9u7dq+bmBQUteEhSGQkpgGostPGtX79eHnnkETPerl07OX36tNSoUUNn4sO/XQFTdSz2vwRgsXiLj8/5ojSbLVcXb28vXQyMOLb1uhAWqzVXZyPMH7cJ0onGuBfOoU1/FiaOcTG+AcbF+F5eXmKxeOWLuzp2aqImaqImaqImaqImaqImd9Vks51fDHDtj8VVHPcl9s/vXcUtFovuE/cy9iB+XrO1QHEfHx8d1z5+Xosl3zG6ilMTNVETNbmLprzrikRSClVSDRo0kBEjRkhkZKQEBQXJzJkzNYkUHh6u20yYMEHb7DAbHn4pOEGTJk2SuLi4Au/n6NGjUr58eYcYxsJsf1gH4C313nvvSaNGjXQfX331lTz88MPqZeUqMTV69GgZPnx4vnj7+2uKn18pfZ188A/ZuO2Q1L2jooRWLmtusyPpuGz/9bjcG1NVKtx23tcKYFu8p0XDMLm5zIVqq1Ub98vRtL+kfdOaDn+kf/jpV8k+fU46PlDL4Ri+WrpTSvv5Suv7bnf4Y454UEAZaXx3dTN+8q8zOk5IpVvl7jsrXThvaX/pfmuFBcod4RfOHzVREzVREzVREzVREzVRk7trOnz4sHZFGAQGBkpYWJikpKRIamqqGcd9BhY8+MYTfoPQ0FC9h9i+fbt2eBjUrFlTH3ijw8L+ZjEqKkpKlCghCQkJDprwYPzs2bOSmJjocCMHD13sb/fu3Q4P56OjoyUtLU2Sk5PNOKoPcL9ETdRETdQU7aaasrKypMi174F9+/ZpFRQ8nnDiY2JitEpp06ZN2nY3duxYTULhZ7Vq1XS7wYMHqzE6qp0K0r731ltvyZQpU2TPnj0O2+NkI6n0wgsvOD22p556Sn95P/30U4ErpapUqSJ1W/QWH9+SHvOUyROfnFETNVETNVETNVETNVGTZ2va8P17rIKgJmqiJmryvj6akA8JCAi4ZPue2yWlDJBVg4jg4GD1kMKse3PnztWMHxJQ9p5TMEdH9g++UAVJSn322WcyYMAAjRvgZKJtcM6cOQ7te/b85z//Ud8qGJ4XBHpKEUIIIYQQ4h7QU4oQQtzPU8rxkYMb4e/vrwkpJI4WL14s7du3l3PnzumCTJ09RgawoKBF8MSJE1p9ZbB8+XIdo169ei7ft3XrVj0mQgghhBBCCCGEEHJluJWnFEACCsVbERERkpSUJAMHDtR+xe7du4uvr680btxYY+idRPveqlWrZOrUqTJu3DhzDPhCYcH7wbZt29SvqmrVquobhd7KVq1aSc+ePeWTTz7RRFefPn3k8ccfV/N0gPY+9ELWqVNH//31119rhdWnn356g84MIYQQQgghhBBCiOfgdkkplHbBIwrteEggdezYUUaNGqUJKTBr1ixd37VrV8nIyNDEFNb36tXLHAOJJnvDccMEffLkydKtWzd9/cUXX2giqlmzZlp5hf18+OGHDscCw/XffvtNezeRGPvyyy+lU6dOhda06uu3L1quRgghhBBCCCGEEFLccFtPqeLUQ0kIIYQQQgghhBBS3PIhblcplZmZKUOHDlUz8+PHj2v73Pjx43X6QwDD80GDBsm8efMkPT1dQkJCpG/fvg6VUhMnTpQZM2bI5s2bdby8RucAVVYvvfSSLFy40KyUwn7KlCljmqS///77smHDBj2Zt99+u7YNokKrsDR++FUanRNCCCGEEEIkYckHN/oQCCHEbXA7o3PMpLd06VKZNm2aekG1aNFCmjdvLocOHdL1/fv311n2pk+fLrt27ZJXXnlF2/AWLFhgjpGdna2eUUOGDHG5HySXduzYofv69ttvJT4+Xp577jlz/Zo1ayQqKkq++uorSUxMVE+rp556SrclhBBCCCGEEEIIIR7Uvnfq1Ck1JJ8/f760bdvWjNetW1dat24tI0eOlNq1a0vnzp21msrZentQ7dS0adN8lVJIZtWqVUs2btwosbGxGkOiq02bNuplZZid5wXHFBQUpIbnhSlXu6tpL1ZKEUIIIYQQQlgpRQgpFpwsYPueW1VK5eTkiNVqFT8/P4c4ZtpbvXq1vm7YsKFWRaFyCvm0FStWyN69e7WiqqCsXbtWk1RGQgqgGgttfOvXr3f5PpxMmK8TQgghhBBCCCGEkCvDrTylUCXVoEEDnfUuMjJSq5JmzpypSaTw8HDdZsKECdpmV7lyZZ0VD4mkSZMmmTPsFYSjR49K+fLlHWIYCwknrHPG7NmztbLqf//7n8txz5w5o4t9ZhBYLN7i43M+/2ez5eri7e2li4ERx7ZeF8JiteZq8i1/3CaocTPGNcjJsf2tp+BxjIvxDTAuxvfy8hKLxStf3NWxUxM1URM1URM1URM1URM1UdPFj91oVMHD+Lz3I1hnHz+vxSI2m02XS8Vxb4TFVRxj2zfKuIpjbOwDRQP2IO7s2F3FqYmaqKn4asrJs65IJKUAvKR69OghlSpVUkExMTHSpUsX2bRpk5mUWrdunVZLVatWTb2gevfurS13qHa6FqAaC55SSH7dcccdLrcbPXq0DB8+PF+8fbNI8fMrpa+TD2bIxsRDUrd2RQmtfKHqasevx2T7r8fl3rrVpMJt583WwcZtByX59z+kRaNwubnMhRbAVRtS5GjaXzq2j90f4x/i90r26XPSsYXjcX61ZIeU9vOV1nE1zFiO1SZfLd4hQQFlpPE9IWb85F9ndJyQyrfK3XdWNuPYH/ZbKyxQ7rg9yIxTEzVREzVREzVREzVREzVRU8E04Wbt7Nmz6ltrgPseTOyEzozdu3c7dIxER0dLWlqaJCcnm3G0xOAh/uHDh9V+xCAwMFDCwsIkJSVFUlNTzTge6GNBhwn2YRAaGqoP67dv365WKgY1a9bUzpItW7Y43ADDc7dEiRKSkJDgoAkdKNRETdRETVF2mrKysqTIeUrZAwGoNAoODlYPKcy6N3fuXD25mJnP3nMK5ug40fCFKoinFDyhBgwYoHEDZPHQNjhnzhx55JFHzPiqVat0X+PGjXMwQi9opVSVKlWkbvMXxcf3/B8uPmWiJmqiJmqiJmqiJmqiJmoqvprWfveeR1RBFCROTdRETcVX08mTJyUgIOCSnlJuVyll4O/vrwsSR4sXL5YxY8bIuXPndMFJscc42QUFLYInTpzQ6iuYpIPly5frGPXq1XNIaj344IPyzjvvXDIhBUqWLKlLXvCHSrwcj8/4Y+d0Wye4iht/7K4kjs+W83iu5OTkP0ZXx05N1FTYODVR08WOnZqoiZqo6WLHTk3UVFQ14UbOuMHMC9Y5ixs3hlcaN24YCxp3diyFjVMTNV3s2KlJPFaTq3X5thU3Awko/CGJiIiQpKQkGThwoJaGoX3O19dXGjdurDGUqaF9D5VMU6dO1UomA/hCYcH7wbZt29SvqmrVquobhTK2Vq1aSc+ePeWTTz7RRFefPn3k8ccfN2feQ8seElIvv/yydOzY0fSaQikazc4JIYQQQgghhBBCrgy3a9+DofjgwYO1HQ/JHySERo0apW17AMkhrF+yZIlkZGRoYgpVTP369TOfOgwbNsypt9PkyZOlW7du+hrvRSJq4cKFmiHEfj788EMpU+Z83zi2mzJlSr4xkBRDBdXVnAKREEIIIYQQQgghxFMoaD7E7ZJSngSTUoQQQgghhBBCCClunCxgPsSt2vcyMzNl6NChamR+/PhxqVOnjowfP15d5gHMzgcNGiTz5s2T9PR0CQkJkb59+0qvXr3MMSZOnCgzZsyQzZs363h5Tc4BKq++++472bp1q7bjwV8qL8uWLdNjQesfvK2efvppfV9B+yLtadLuX2Lxye81RQghhBBCCCEFZeOP42/0IRBCyFUlv7PVDQSz6C1dulSmTZumyaAWLVpI8+bN5dChQ7q+f//+OsPe9OnTZdeuXfLKK69oC96CBQvMMbKzs9UvasiQIS73g+kVH330UXnhhRecrv/ll1+kTZs2Og6mOPzyyy91H0iIEUIIIYQQQgghhJArx23a906dOqVm5PPnz5e2bduaccyO17p1axk5cqTUrl1bOnfurBVMztbbA9+npk2bOq2UMvj88881sZW3UgoJLSTHNm7caMbgPfXYY49pBReOszDlanUaP89KKUIIIYQQQsgVwUopQointe+5TaVUTk6OWK1W8fPzc4hjlr3Vq1fr64YNG2rFEiqnkEvDDHl79+7ViqqryZkzZ5wex+nTp2XTpk1XdV+EEEIIIYQQQgghxRG38ZRC9VGDBg1kxIgREhkZKUFBQTJz5kxZu3athIeH6zYTJkzQmfYqV66s3k6YNW/SpEkSFxd3VY+lZcuW8sEHH+j+UR2FGf/efPNNXXfkyJGLJrOw2GcGgcXHW3x8zuf/bLZcXby9vXQxMOIWi7f8PYmgYrXmagIuf9wmqHEzxjXIybHpz8LEMS7GN8C4GB+zGVosXvniro6dmqiJmqiJmqiJmqiJmqiJmq6dJjzIB+f/bRGbzaaLAe6PsLiKowjAvlHGVRxjYx/G/uzj5zVbCxTHPRvGtY+7OnZqoiZq8ixNede5fVIKwEuqR48eUqlSJRUTExMjXbp0MauTkJRat26dVktVq1ZN4uPjpXfv3lKxYkX1nrpaoPLq3XffVQP1J598UkqWLKktgz/99JP+QlwxevRoGT58eL54u+a1xM+vlL5OOZAhGxMPSt3alSSkajlzmx17j+lyb2w1CQq80B6Y8MtBSf49Qx64N1xuvulC9Vb8+mQ5mvqXtGseKT4+53/xYNHKPZJ9+px0aFXb4Ri+XrRdSvv5SqsmEWYsJ8cqXy/aIUG3lZG4eqFm/GTmaVm0aq+EVC4rsdGVzfix1ExZtT5FIsPLyx01gsw4NVETNVETNVETNVETNVETNV17TQkJCRpHSwwe5B8+fFgOHjxobh8YGChhYWGSkpIiqampZhwP9bGgywStNAahoaFSvnx52b59u9qpGNSsWVMtUOCva38DHBUVpRNFGcdhEBsbq769iYmJZgz3c5iwCvvbvXu3QwdKdHS0pKWlSXJyshmnJmqiJs/SlJWVJUXKU8oeHDyqjIKDg9VDCrPuzZ07V08sZuaz95yCOTpOMgzQr5anlAFODSqjypYtK/v375datWrJhg0bzNkAC1IpVaVKFYlt9oL4/O0pVRSfyHjiUyZqoiZqoiZqoiZqoiZqoqaipumnb991myoIT6zsoCZqoibrVdOEfEhAQMAlPaXcqlLKwN/fXxcklBYvXixjxoyRc+fO6ZK3Usk40dcCnGRUYQG08iHBhOotV6CiCkterPqHx/EYjT92+ba1OtfiKm78UbuSOD5bzuO5kpOT/xhdHTs1UVNh49RETRc7dmqiJmqiposdOzVRU3HUhJtSe4wbxry4ihs3jAWN593f5cRxT+UsXthjpyZqKmycmuSGanK1Lt+24kYgAYUv3IiICElKSpKBAwdqWVj37t3F19dXGjdurDGUqKF9b9WqVTJ16lQZN26cOQb8n7Dg/WDbtm3qV1W1alUpV+58We6BAwckIyNDfyKDt3XrVo3Du6pMmTL6Gu17rVq10l/U119/LW+//bbMnj3b5S+DEEIIIYQQQgghhBQct2rfQ9Jn8ODB2o6HBFLHjh1l1KhR2rYHkGzC+iVLlmhSCYkpGJ/369dPM4Zg2LBhTn2dJk+eLN26ddPX+DllypR822A2vyZNmujr+++/XzZv3qzteOjRfOONN6R169bXZApEQgghhBBCCCGEEE+hoPkQt0pKeRpMShFCCCGEEEIIIaS4cbKA+RDXU8ndIDIzM9V8HFVQaNNr2LChbNy40VwP0/M+ffqoMzzWw3z8k08+cRhj4sSJWvEE4aigcmZkjkqrrl276jYwQn/mmWd07LyVW3fddZeULl1ajwctfYQQQgghhBBCCCHkynErTyljNj1MNzht2jQ1GZ8+fbo0b95cdu7cKZUqVZL+/fvL8uXLNV69enVt5XvxxRd123bt2ukY2dnZ6geFBe1+zkBCCjPrLV26VA3U4VuFVsAZM2bo+h9++EG3mTBhgrRo0UJ27dolPXv21EQYkmKFocmD/xKLT4mrcHYIIYQQQgghxZ2Nyz+80YdACCFXBbdq3zt16pSaks+fP1/atm1rxuvWrat+TiNHjpTatWtL586dZejQoU7X27Ny5Upp2rSpzuKHaigDJJhQYYUKrNjYWI0tWrRI2rRpo35WSHA98cQTmqyaM2eO+T4kqDATIAzSDQ+rgpSr1bnveSalCCGEEEIIIVcFJqUIIe5OkWzfy8nJ0dnw/Pz8HOKoTlq9erW+RjvfggUL5NChQzpTH8zJ9+7dq9VMBWXt2rWapDISUgDVWJhpb/369fpvGJw7Ow4krX777bcrVEoIIYQQQgghhBBSvHGr9j1USTVo0EBGjBghkZGREhQUJDNnztQkUnh4uFmthDY7eEr5+PhoImnSpEkSFxdX4P1gFr/y5cs7xDAWZvzDOtCyZUud1Q8z9aHaKikpSd577z1dh7Y/tA7mBYksLPaZQWDx8RIfn/P5P5stVxdvby9dDIy4xeIt9kVYVmuuJt/yx22CGjdjXIOcHNvfegoex7gY3wDjYnxUg1ksXvniro6dmqiJmqiJmqiJmqiJmqiJmq69JjzIt1gsYrPZdDHAvREWV3G8z75RxlUcY2OfKBqwB3Fj/wWJ4x4L49rHz2vJf+yu4tRETdRUNDXlXVckklIAXlI9evRQ/ygIiomJkS5dusimTZvMpNS6deu0Wgrm4/Hx8dK7d29tuUO109UC/lH79u2TBx98UNv4UG728ssvy7Bhw/SX4ozRo0fL8OHD88XbPVBL/PxK6euUAxmy8ZeDUvfOShJStZy5zY69x2THnmNy793VJSiwjBlP+OWgJB/IkAfibpeby5Q04/HrUuRoaqaObf8HbdHKPZJ96px0aF3b4Ri+/mG7lC7lK62aRDj84UM86LabJK5+iBk/+dcZWbRij4RUKSux0ZXN+LHUv2TVumSJvL283FEjyIxTEzVREzVREzVREzVREzVR0/XThE4RPMQ/fPiwdnIYBAYGSlhYmKSkpEhqaqoZxwN9LHgfWmkMQkND9WE9PH1hpWJQs2ZN7SzZsmWLww1wVFSUlChRQhISEhw0oQPl7NmzkpiYaMZwL3f33Xfr/nbv3u3QfRIdHS1paWmSnJxsxtHmQ03URE3iMZqysrKkyHlK2QMBqDQKDg5WDynMjDd37lw9ud98842D5xTM0XGi4QtVEE+pzz77TAYMGKBxA2Tx0K4HD6lHHnnEjOMEo3oKv7xly5ap79Tx48f13wWplKpSpYrENu0lPj4li/wTGU98ykRN1ERN1ERN1ERN1ERN1FTUNK3+4b0bXgXhiZUd1ERN1GS9apqQDwkICLikp5TbVUoZ+Pv764LE0eLFi9VgHBVLWPJWKhknu6CgRfDEiRNafQWTdIAZ/TBGvXr18o2Nqi2AVkK811lCCpQsWVKXvFhz8MtzPD7jj12+ba3OdbiKG3/UriSOz5bzeK7k6LFLgY6dmqipsHFqoqaLHTs1URM1UdPFjp2aqKk4azJu/Iwbxry4ihvvK2gcN8FXGseNq7N4YY+dmqipsHFqkhuqydW6fNuKm4EEFL50IyIi1Mdp4MCBWhrWvXt38fX1lcaNG2sMZWpo31u1apVMnTpVxo0bZ46ByiYseD/Ytm2b+lVVrVpVfaNQxtaqVStt0fvkk0800dWnTx95/PHHtQ0QoPwNlVlNmjSR06dPy+TJk7WKCvsjhBBCCCGEEEIIIVeG27XvzZ49WwYPHqzteEggdezYUUaNGqVtewDJJqxfsmSJZGRkaGIKxucwJUfWEMD3yZm3ExJLMC4HeC8SUQsXLtQMIfbz4YcfSpkyZcyk1EMPPaQJLZwiVEjhOPJWUl2NKRAJIYQQQgghhBBCPIWC5kPcLinlSTApRQghhBBCCCGEkOLGyQLmQ5xPI0cIIYQQQgghhBBCyDXE7TylMjMzZejQoTrDHma5q1OnjowfP16nPwSYhW/QoEEyb948SU9Pl5CQEOnbt6/06tXLHGPixIkyY8YM2bx5s46Xd/Y9gFa87777TrZu3apTFsL43J5ffvlF3n77bVm9erW28lWvXl338fLLLxdaU5PWA8XiU+KyzwkhhBBCCCGEFJaNqybc6EMghJCL4naVUs8++6wsXbpUpk2bpn5OLVq0kObNm8uhQ4d0ff/+/WXRokUyffp02bVrl7zyyivqDbVgwQJzjOzsbDUyHzJkiMv9nD17Vh599FF54YUXnK7HzHzly5fX/ezYsUNee+019bL66KOProFqQgghhBBCCCGEkOKFW3lKnTp1SmfJmz9/vrRt29aM161bV1q3bi0jR46U2rVrS+fOnbWaytl6e1auXClNmzZ1Will8Pnnn2tiK2+llDN69+6tibDly5cXqoeyTsPnWClFCCGEEEIIua6wUooQ4u6eUm7VvpeTkyNWq1X8/Pwc4qVKldI2OtCwYUOtiurRo4dUrFhRE0979+6V999//5ofH04mZgR0xZkzZ3Sx/yUAi4+X+PicL0qz2XJ18fb20sXAiFss3vL3JIKK1Zqrs//lj9sE6URjXIOcHJv+LEwc42J8A4yL8TGbocXilS/u6tipiZqoiZqoiZqoiZqoiZqoyX004f4KYLZxLLjXsq9JcBW3WCy6T+P99vHzmq0Fivv4+Oi49vHzWixis9l0uVTcOEZXcWqiJmqyuKWmvOuKRFIKVVINGjSQESNGSGRkpAQFBcnMmTNl7dq1Eh4erttMmDBBnnvuOalcubL+UnCCJk2aJHFxcdf02NasWSNffvml+lC5YvTo0TJ8+PB88XYt7xA/v1L6OuVAhmzc8rvUja4sIVUvJLh27DkqO3Yfk3vrVZegwJvMeMLW3yX5twx5oPHtcvNNF5J18WuT5ejxTB3b/g/aouW7JfvUOenQ9k6HY/j6u21SupSvtLq/psMfPsSxv7gGoWb8ZOZpWbR8j4RULSuxd1Ux48dSM2XVmmSJrFFe7oioYMapiZqoiZqoiZqoiZqoiZqoyf00JSQkaBz3TljwMB8P2g1CQ0PVsmT79u3atWJQs2ZN7TTZsmWLww1wVFSU+vEa4xrExsaqPUpiYqLDzSl8gbG/3bt3OxQcREdHq29vcnKyGUdFBe4BDx8+LAcPHjTjgYGBEhYWJikpKZKammrGqYmaqEncWlNWVpYUufY9sG/fPq2Cio+P1xMfExMjNWrUUI8ntM6NHTtWk1D4Wa1aNd0OXk8wRof31LVo38MvAOPA5Pz1118vVKVUlSpVJDbuefHxKVlsnshQEzVREzVREzVREzVREzVR043X9NPi9zTOyg5qoiZqut6akA8JCAi4ZPue2yWlDJBVg4jg4GD1kMKse3PnztWMHxJQ9p5TMEdH9g8G6Fc7KbVz504dA/vAjH2FgZ5ShBBCCCGEkBsFPaUIIe7uKeWYnncj/P39NSGFhNLixYulffv2cu7cOV2QqbPHyABebTDrHhJSTz/9dKETUoQQQgghhBBCCCGkiHhKASSgULwVEREhSUlJMnDgQO1X7N69u/j6+krjxo01ht5JtO+tWrVKpk6dKuPGjTPHOHr0qC54P9i2bZv6VVWtWtU0Kj9w4IBkZGToT5SWbd26VePwripTpoy27N1///3SsmVL6d+/v45nJMDQh0kIIYQQQgghhBBCLh+3a9+bPXu2ekShHQ8JpI4dO2qVEsq+AJJDWL9kyRJNKiExBePzfv36aU8jGDZsmFPD8cmTJ0u3bt30NX5OmTIl3zYrVqyQJk2auBwD+9u/f/9VLVcjhBBCCCGEEEII8RQKmg9xu6SUJ8GkFCGEEEIIIYQQQoobJwuYD3G79r3MzEwZOnSompkfP35c6tSpI+PHj9fpDwEMzwcNGiTz5s2T9PR0CQkJkb59+0qvXr3MMU6fPi0DBgyQWbNm6Wx4aMH7+OOPJSgoyNwGbXsvvPCCVkahXQ++UaNHj1ZH+7z8/PPP2jZYu3Zts82vMDRt+U8anRNCCCGEEELIDWLDTx/d6EMghBQFo3PMcrd06VKZNm2aekG1aNFCmjdvLocOHdL18HfCLHvTp0+XXbt26cx5ffr0kQULFphjoJVv4cKFMmfOHPWcOnz4sHTo0MFcDw8pzN539uxZWbNmjbbxYRa+f//73/mOB7PyPfXUU9KsWbPrdAYIIYQQQgghhBBCPB+3at87deqUGpLPnz9fk0YGdevWldatW8vIkSO1Wqlz585aTeVsPUrDYEQ+Y8YM6dSpk67fvXu3REZGytq1a6V+/fryww8/yIMPPqjJKqN66pNPPpFXX31VUlNTpUSJC1VNjz/+uNx+++1qcI7qrMJUShnlajH1e7JSihBCCCGEEEJuEKyUIuT6UiTb93JycrSKyc/PzyGOmfZWr16trxs2bKhVUT169JCKFSvKypUrZe/evfL+++/r+k2bNsm5c+e0usoAs/dh5j0jKYWfd955p0M7H1r80M63Y8cObRk0jNGTk5O1KgsJr0uBVkEs9r8EYPHxFh+f80VpNluuLt7eXroYGHGLxVv+9mtXrNZcnY0wf9wmSCca4144hzb9WZg4xsX4BhgX48M43mLxyhd3dezURE3URE3URE3URE3URE3URE3uqAkx7BP3nPag+OD8+6wFisPuBWPZx89rsYjNZtPlUnFvb29dXMUxtn3tiKs4xqYmarK4qaa864pEUgpVUg0aNJARI0ZoZROSRjNnztQkUnh4uG4zYcIEnW2vcuXK+kvBCZo0aZLExcWZs/Oh0unWW291GBtjYZ2xjX1CylhvrAO//vqrelf99NNPTn2mnAFPKmcz9rVrfYf4+ZXS18n70yVhy+8SE11ZQqsHmNvs2HVUduw+Ko3qh0iF8jeZ8Y2bD0jKbxnyQNMacvNNF5J18T/vk6PHM+Wh1neIr8/5XzxY9ONuyT51Vjo8FOVwDF8vTJTSpUpIq+Y1zdi5HKt8s3CbBAXeJHGNwsz4yczTOk71qmXl7piqZhz7w34jawTJHZEVzDg1URM1URM1URM1URM1URM1UZM7a0K1Bu4Rt2zZ4nBTHxUVpfePCQkJDppiY2PV7iUxMdHhhhtexxgL3Tj2RRTR0dGSlpamRQ0GqBLBfS06dDC7vAE6e8LCwiQlJUU7dQxwj4sFRRfYh0FoaKiUL19etm/frt1F9sUX1ERN0W6qKSsrS4pc+x7Yt2+fVkHFx8friY+JiZEaNWpoBRQ8pMaOHatJKPysVq2abjd48GA1Rkd1FNr2unfv7lCxBO655x5p2rSpvPPOO5rU+u2332Tx4sXm+uzsbPH395fvv/9efaxQUfXMM8+YBurDhg27ZPues0qpKlWqyN33Pi8+f7fv8ekFNVETNVETNVETNVETNVETNVHT9dX08/LxxbJahZqoyXaDNCEfEhAQcMn2PbdLShkgqwYRwcHB6iGFWffmzp2rGT8koOw9p2COjuwfDNCXL1+upuR//PGHQ7UUElgwRYcJOgzN0QJon2BCphBZwM2bN+uMfmXLljVPKMAv7PyXm0WWLFki999//yU10FOKEEIIIYQQQm489JQixD09pRxT2W4EqpaQkEJyCRVN7du3V68oLMjU2WNkAA3Tc19fX1m2bJm5fs+ePXLgwAFtDQT4iZn9jh8/bm6DGf9womrVqqU/sR5JK2NBxVRERIS+rlev3nU7D4QQQgghhBBCCCGeiFt5SgEkoFCRhARQUlKSDBw4UPsV0ZKHZFPjxo01ht5JVD+tWrVKpk6dKuPGjdP3IxOHtrv+/ftLuXLlNMH00ksvaSIKLXkA7XlIPj355JMyZswY9ZF6/fXXpXfv3lKyZEndBrP82YM+Shiw540TQgghhBBCCCGEEA9ISqG0Cx5RaMdDUqljx44yatQoTUiBWbNm6fquXbtKRkaGJqaw3vB+ApiJD9VUeC88njCz3scff+xQWfXtt9/qbHtIVqEq6+mnn5Y333zzmmhasXjsRcvVCCGEEEIIIYQQQoobbuspVZx6KAkhhBBCCCGEEEKKWz7E7SqlMjMzZejQoWpmDs+nOnXqyPjx43X6QwDD80GDBulMeOnp6WpK3rdvX4dKqdOnT8uAAQO0qsq+UiooKEjX432otMIUi3iN1jx4Vr311lsOJ+s///mPfPTRR7J//36pWrWqvPbaa/LUU08VWlPTBwbQ6JwQQgghhBBCCCEu2fDzf6S44XZG55hJD6bj06ZNU7Nx+D81b95cDh06pOvhFYVZ9qZPny67du3SGfX69Omjs+kZYIa9hQsXypw5c9Rz6vDhw9KhQwdzPVr7kITCe/bu3Suff/65/Pjjjw6Jrf/+97/aJjhs2DDZsWOHDB8+XD2nMC4hhBBCCCGEEEII8aD2vVOnTslNN90k8+fPl7Zt25pxzKjXunVrGTlypBqNd+7cWaupnK1HaVhgYKDMmDFDOnXqpOt3794tkZGRsnbtWtPsPC8ffvihvPvuu/L777/rvxs2bCiNGjXSmAGqr9avXy+rV68uVLlazD3PslKKEEIIIYQQQgghxaJS6mQB2/fcqlIqJydHrFarznJnD2baMxJBSBahwgmVU8inrVixQqudUFEFNm3aJOfOndPqKgPM3of2OySlnIFKqq+//lpn9jNA25+z49iwYYOOTwghhBBCCCGEEEIuH7fylEKVFGbDGzFihFY2wQNq5syZmkwKDw/XbSZMmCDPPfecVK5cWXx8fLQVb9KkSRIXF6frjx49KiVKlJBbb73VYWyMhXX2dOnSRauyUKH10EMPyaeffmqugw8V/v3www9LTEyMJrvwbySk0tLSJDg4ON/xI5GFxT4zCCw+3uLjcz7/Z7Pl6uLt7aWLgRG3WLzF60JYrNZcTb7lj9sENW7GuAY5OTb9WZg4xsX4BhgX43t5eYnF4pUv7urYqYmaqImaqImaqImaqImaqImaqImaqOnyNOXk5IjFYvn7fVaH7ZH/wPj28fNaLGKz2XS5VBz5Eyyu4hjbvpnOVRxjYx84Xnvsjz3vuiKRlALwkurRo4dUqlRJBSEhhOQRkkJGUmrdunVaLVWtWjWJj49Xr6eKFSs6VEcVhPfff1/eeOMNrbSCfxT8qmCIDtAeiCQW2v1w8pHUevrpp2XMmDH6S3HG6NGj1XsqL+3a1BY/v1L6Onl/uiRsPiAxd1WR0OoB5jY7dh2RHbuOSqMGIVKh/IXSto2bD0jK/nR54P4IufmmC5Vb8T8nydFjmfJQm9ri63P+Fw8WLd0l2afOSod20Q7H8PWCX6R0qRLS6oFIM3YuxyrfLEiUoPI3SVyj80k/cDLztI5TvVo5uTumqhk/evykxK/eJ5ERQXJH5IWkHDVREzVREzVREzVREzVREzVREzVREzVdmaaEhASJjY2Vs2fP6sRsBsiNYPI3tMLBnsi+mys6OloLZ5KTk8042uZQ6IOusIMHD5pxWB2FhYVJSkqKpKammnEU/WBBbgT7MAgNDdWJ4bZv367FPPbdaCgE2rJli0OSLCoqSouEoCMrK0uKnKeUPRCASiNUJMFDCrPuzZ07V08uZuaz95yCOTpONAzQly9fLs2aNZM//vjDoVoKCSyYosME3RloD7zvvvv0l2ZfBYXKqGPHjmls4sSJ8uqrr8qJEyecJqacVUpVqVJF7m74nPj87SnFDDI1URM1URM1URM1URM1URM1URM1URM1Aft4/LL3PaZSCvmQgICAS3pKuV2llIG/v78uSC4tXrxYK5SQIMKSNyFknGzD9NzX11eWLVsmHTt21NiePXvkwIED2hroCuP99kklgLGQMQSzZs2SBx980GWlVMmSJXXJi1U/bLY8+zv/Qc63rdVxu0vFjQ/ylcTx2XIez5WcnPzH6OrYqYmaChunJmq62LFTEzVREzVd7NipiZqoiZouduzURE1FUZOPj4/T1wZIBDmLG8mjK40bSaWCxp0dixF3tS7ftuJmIAGFD0lERIQkJSXJwIEDtTSse/fumiCCGTliKFND9dOqVatk6tSpMm7cOH0/KqmeeeYZbcUrV66cZuReeuklTUgZM+99//33Wv2E8rcyZcrIjh07dEzMtle9enXdBmVrMDWvV6+eJsYwPkrWpkyZckPPDyGEEEIIIYQQQogn4HZJKZR2wd8J7XhIKqHaadSoUZqQMqqVsL5r166SkZGhiSms79Wrl4NXFLJ+eC8qn2BabnhFASS0YI6OVj6sR4tdhw4dZNCgQeY2KDd77733tMoK+27atKmsWbPGTFoVBKO8bf5Xb1y0XI0QQgghhBBCCCHFm5N/T5bmSVou5Rjltp5SngCMxmAiRgghhBBCCCGEEFLc+P33301LpCJRKeVJoNILwM8KbYWEeAqGiT++YFgFSDwJfraJp8LPNvFU+Nkmngo/26Sog/qnzMxMqVix4kW3Y1LqGmIYhyEhxS8S4ongc83PNvFE+Nkmngo/28RT4WebeCr8bJOiTEGKc5xPI0cIIYQQQgghhBBCyDWESSlCCCGEEEIIIYQQct1hUuoaUrJkSXnjjTf0JyGeBD/bxFPhZ5t4KvxsE0+Fn23iqfCzTYoLnH2PEEIIIYQQQgghhFx3WClFCCGEEEIIIYQQQq47TEoRQgghhBBCCCGEkOsOk1KEEEIIIYQQQggh5LrDpBQhhBBCCCGEEEIIue4wKUUIIYQQQgghhBBCrjtMShUSm80mVqv1Rh8GIdcMTMjJSTkJIaRowO9rQggpWvB7mxBHfPL8m1yEnTt3yltvvSVHjx6V22+/XZ588klp2LDhjT4sQq4KZ86ckZIlS0pOTo74+vre6MMh5Kqwf/9+Wbp0qXh7e0uVKlWkRYsWN/qQCLkq4Lvax8dHH5ZZLBb9ic85IUUdfm8TT4Xf24Q4xyuXqdoCsWfPHqlXr560bt1aqlevLj/88IPeuCMx1bdv3xt9eIRcETt27JChQ4dKZmam/pEcMmSI1K9fX0qUKHGjD42Qy2bbtm3StGlTfYiQmpoqx44dk8cff1zefPNNCQ4OvtGHR8hls2vXLhk7dqycOHFCbrvtNunfv79ERETc6MMi5Irh9zbxVPi9TYhrmJotAMjbTZ06VVq2bCkzZ86U0aNHy08//SQPP/ywTJ48WcaMGXOjD5GQy+bXX3/Vir/AwECpU6eO3HTTTdKkSROtCjxw4MCNPjxCLou//vpLnn/+eXniiSdk7dq1snr1apkzZ458/fXX0qNHD9m3b9+NPkRCrughGawEUN2alJQkd911l3z22WeSnZ19ow+PkMuG39vEU+H3NiEXh+17BcDLy0sOHz6sbXsGuHFHhZSfn5/MmjVLKlWqJF27dr2hx0nI5YCEK6qi/ve//5mxCRMmyPDhw+X06dPSr18/CQoKuqHHSEhhQXk8WlIbNWqk/65QoYK0atVKb3QQ++c//ylz587VykBCihL4fkYlyeeff67/PnfunH5f9+zZU7KysqRXr15swSZFEn5vE0+F39uEXBxWSl0Co7sxJiZGs9vIdNsnpvDkBtUlH3/8MTPdpEhy6tQph1538NJLL8moUaPko48+km+++UZj6HsnpKiA72u0fdh/Z+MisEaNGrJs2TL1K0HVKyFFDbR+lCtXzvxexo3MyJEjtb1pwIAB+tk21hFSlOD3NvFU+L1NyMVhUqoAVVKgTZs2+kcSrXooLzYSVmXLllUvHjzFiY+Pv8FHS0jhqVq1qn5+UQ2Ip5Rnz57VOEro//Wvf8nAgQPl999/pxEjKVL4+/urX8OkSZPk22+/1RguAnGDExUVJYMHD9Z4RkYGZ8EhRYpq1arJokWL5M8//9TvZXymwWuvvaYPyvDEPT09nd/ZpMjB723iqfB7m5CLw09+AQkLC5PZs2fLF198IYMGDZK0tDQzYYU/mPhjecstt9zowySk0OAPIar9OnbsqH8QYW6Otj3w3HPPaeI1ISHhRh8mIRflyJEjsmHDBlm8eLE+bQcdOnSQBg0a6MOEJUuWaMwoj4fJ6MmTJ7UF2/guJ6Qo0L17d73BefHFF/UzbNy0g2effVZv1vfu3XujD5OQS8LvbVJc4Pc2IReHSalCgF5gGC5++umnWkXy5Zdf6kwK48ePl+PHj+u0tYS4M/iD9+qrr+ofR3xuYXKOJNQbb7yhJcOdO3fWJ5C44AMwY8STS/a5E3cmMTFRb2IwGyo+w3fccYfp9YdqPzwweP311zUGcCGYnJws5cuXN2+ECHFHYIb79ttva4UIJlpBu3V4eLjexOD7HG0faAsxvqPhwYPvbaMVmxB3hd/bxFPh9zYhhccrl/WvhWbz5s1aXrx//35td4LhIv5ootqEEHdl586dOsseLgKRaPrxxx+lbt260q1bN70oREn8iBEjdArmTz75RP9YLl++XJOw69ev1zY/QtwNfF7j4uL06fozzzyjCVV8P2/ZskUnn0ASdvfu3fqZxmcZNz6lSpXSdmx8vjH7DSHuyI4dO+Tee++V6OhofYq+Zs0aeeihh3Tyifvuu08fLMyYMUM/8//973/1wQIelmHyCrRkV6xY8UZLIMQp/N4mngq/twm5PJiUukxQeomKkszMTAkODtaSYkLcFfhE4cIPF3UTJ040n+TgKSSePOLpDVr1UPmHxBQSVmjbQ2IKfyhh9E+IuyZb27ZtqzMyIclqgDZrJFpRFYibHUxEsW3bNv1sBwYGSrNmzfTJJSHuCJ6sP/bYY9rugQknjAdiqNLGJCv4fLdo0UI/47jJgadlaGioftejopvf2cSd4fc28UT4vU3I5eNzBe8t1tx88826EFIUQIseZrQJCQnRfyMXjQs7eDagdQ+JJ7Sftm7dWp/g4AklPt94HxOuxJ1BSwdK3o3ZT3FRiOQrSufxGtMwP/DAA+r7V79+fV0IcXfwGcaDL+OGHU/TccMybdo0eeGFF2Ts2LFavfrggw/qAl8efGffeuut2gpCiDtz5swZfm8Tj4Pf24RcPqyUIsTDgfcC/jDiSQ0q+6ZPn67JJvyvj1k+UCn1j3/8Q5NSKCEGWEcTUVJUuOeee6RMmTLa1mHc8MCfAdx9992agIWvAyFFBczy265dO4mIiNAWD3yP43sZlgGoMmnZsqU88sgj8uGHH97oQyWkwKbmf/zxh9SqVcv8bkb1CL+3SVEH19i4nsY1dvv27aVmzZry8ccf83ubkEJAo3NCPBTDCBSeZ2jDe/rpp+Wbb76R//3vf5pwwh9QbIPS4dGjR2sZPXrhARNSxF3JysrSCz+0UBvgM43P7hNPPKH/tjcMhW8J3kOIu4Mn7KhShREukqxoX8Jn++uvv9bvcWMacdzUo8oVDxgOHDigNz2EuDOHDh2SO++8Uy0D1q1bp7FJkyZpax6/t0lRZuvWrZqIwucVSVbMrgcvNH5vE1I4mJQixAPBTc0HH3ygTyYNGjduLO+8846aLcI4FOAPJsAfUjyRhwE6Ie4KnjTCGBef5cjISPniiy80jtfwZ1i6dKk8+uijegGIC0GAmVHxucbNDi8Cibuyfft2ad68ufqR1K5dW958801tX+rTp4/etMODBJ9pY7Ymo90Dn20+RCDuDmb6/fPPP3VB5R8MzWFWDt+dRYsWafUIv7dJUeOXX37RCYRgxG9cPz/88MPSu3dv/d5euHAhv7cJKSD0lCLEw4CBOWbYQ5l8enq6Pm03fKHQ046nOTA1/+233/QGH4aMMFjEBSGTUsSdE1J4ev7UU09JbGysbNq0Sc1w8fQRM5+i1QmfXzylhA8JyufRpvrdd9/pk3mUzxPirp/tJk2a6OcZyw8//CADBw7UCShgjHv69Gn9rkbLB254cGMDg1x8vo2beELcGXwnt2nTRs3NUf0Hb51hw4ZJ586ddRayIUOGaCUVHjDwe5sUBRITE6VRo0b64ABeaAZINuGzjWRqx44d+b1NSAGhpxQhHgQSTn379tX+dngy4I/lP//5T73Bwcw1AOtQPowpl1EphSoptELhiQ5n/iDu2tbUpUsXTTShIsqgadOmeiNj78+A1r6RI0fqe3Czg0Ss4WFCiLuRlpamNy5IrKK6FeCyDJNODB8+XEqXLq1JqYSEBHnllVekUqVK+p2NKtjFixfr+whxZ2ATgO/je++9V/2jYO4MywAkqvAQLSgoSKu3UR144sQJfm8Tt+fo0aP63RsdHa2VfviM41p7z549+sAXn19UvKI9FXF+bxNyafgIghAPAk9fMOtHQECAPoFEhdTjjz+u64zEFLZBtQmqTtDXjtlvcGOPP5qEuCOo4sPNSqdOnRxMRTGbJG52jBt5LLjwQ5uq/XaEuCt4qt6qVSvzsw2QVF2yZInewOBzj5vzcePG6ZN5tIvgc47ZyFDlSoi7g+9gXHvgQRnaVNGqB/8o+Fwi4YpkLL633333Xd2e39ukKICOhN9//13mz5+vHlK4TkFLKq5L8JnGQzP8hN0AvAL5vU3IxWFSihAPm44WF3pGGx78SfCHEFUm+InqKCSq4NOAiz4kpghxd/AkHdV9t99+u/4bTyXx+UUiFU8ljZt7LKj6wxTLRowQdwYPEFDRiptyMGvWLHnjjTf0JzymjCft+Dcqp+D9R0hRwvgeRmX2ypUrdQYymEDje7xq1aqyZs0a9eTBDbv99oS4K/CF+s9//qPt1bi+RhUgZq/G9zmA3yV8pWCA/uCDD2pVICHk4jApRYiHYSSkjBt3VEwhIQXTRVzsoQUEfg64mZ86daq2h/AikLg7RkIKT9EN01B8rmGIa4CWEDyBRwsrvEj4uSZFASMhZTx9R6ue0UqNp+xIym7evPkGHiEhlw++p/FdfP/990tKSor6/n3//ffqC4iZy1DFDZ8dtDTh+5vf26QoEBwcrNcceDiGBwhISBmf9a5du6qv1KpVqzQpRQi5NExKEeKh4Kkk/kDiJh4tfPhD+eSTT8qCBQtk3759snHjRhqbkyIHEq3GhZ/xb/Dvf/9b254wqxPNcUlRBa0dRnsHvrvPnj0rZcqU4ZN2UmQxvqvR1gQjfyRZMZsk/o0F6+HNg4QUIUWJihUrarUUfNAAPsu4PoGtAFpW6R1FSMGh0TkhHo7xvzj+WDZr1kyfTKKEHj5ShBRFDM8RPImE7w6qqF5//XVtA6FZP/EkkGydMmWK/Pjjj2a1ICFFEXjuTJs2TWdPRZLV/uECIZ4EWrBnzpwpS5cupYcUIQWEj5MJ8XBw0YdWPpTIr1ixQpNSTEiRooxRHYU2vkmTJqmH1OrVq5mQIh7DnDlztPUDXlK4sWFCihR18H3drVs38/ubCSniaeD7GtfZ+P5etmwZE1KEFAJOb0FIMQFGovAlYRsI8RRgmAtQIYWn74R4CphxLzU1VX766Se2gBCPgbPqEU//3j506BC/twm5DNi+R0gxgaXyxBPJysqiNxrx2HYnw9SfEEKI+wMfQBj3E0IKB5NShBBCCCGEEEIIIeS6wzpaQgghhBBCCCGEEHLdYVKKEEIIIYQQQgghhFx3mJQihBBCCCGEEEIIIdcdJqUIIYQQQgghhBBCyHWHSSlCCCGEEEIIIYQQct1hUooQQgghhBBCCCGEXHeYlCKEEEIIIYVm5cqV4uXlpT8JIYQQQi4HJqUIIYQQQq4SSNJcahk2bJjD9n369DH/vX//fodtLRaLVK1aVR555BHZunVrgY/jm2++kdatW8ttt90mJUqUkIoVK8pjjz0my5cvv+qaCSGEEEIuF5/LfichhBBCCHFg2rRpLtchGbVv3z6pV6/eJcfp0qWLtGnTRqxWq+zatUv++9//yg8//CDr1q2Tu+66y+X7cnNzpUePHvL5559LnTp1pH///lKhQgU5cuSIJqqaNWsmP//8szRs2PCyNRJCCCGEXC2YlCKEEEIIuUr84x//cBr/9NNPNSH10ksvaQXTpYiJiXEYq1GjRtKuXTtNTv3vf/9z+b733ntPE1KvvPKKjBs3TqutDF577TVNmvn48PKPEEIIIe4B2/cIIYQQQq4hO3bskL59+2rl0rvvvntZY9x///36MyUlxeU2p06dktGjR0vNmjVl7NixDgkpgyeffFLuuece89/Jycny6KOPSrly5aR06dJSv359+e677/K97+DBg/Lwww+Lv7+/lC9fXvr16ydnzpxxehzr16+XVq1ayS233KJjNm7cWKuzCCGEEELywkdlhBBCCCHXiOzsbPVygjfUrFmzpGTJkpc1DqqsQEBAgMttVq9eLRkZGVolhf1dimPHjmkbH44RSTOMPWXKFK3Imjt3rvpYGckutP0dOHBAt4M/FSqunPlTIYZKsLp168obb7wh3t7eMnnyZE2q/fTTTw4JMUIIIYQQJqUIIYQQQq4RaNfbuXOnJntq1KhR4PchUZSWlqaeUrt379bKJICqJlfAewrceeedBdrH22+/rYkpJIvuvfdejfXs2VOioqLUi6p9+/aaVJo4caLs3btXZs+ebe4f20VHR+fzs+rVq5c0bdpU/a+MSq3nn39e7rjjDnn99ddlyZIlBT4HhBBCCPF82L5HCCGEEHINmDFjhnz22WfaMvfUU08V6r2oMgoMDFST8iZNmmil1DvvvCMdOnRw+Z6TJ0/qz5tuuqlA+/j++++1cslISIEyZcrIc889p7MAIplmbBccHCydOnUyt0NbHrazB7MD/vrrr/LEE09Ienq6JtWwZGVlaaVVfHy82Gy2Qp0HQgghhHg2rJQihBBCCLnKIDmDqiFUR3388ceFfj8SPqhKQqXSrbfeqpVGl2r9u/nmm/VnZmZmgfbx22+/OZ0JMDIy0lxfu3Zt/RkeHp7PoyoiIiKfZvD000+73Oeff/4pZcuWLdDxEUIIIcTzYVKKEEIIIeQqAgPwzp07y9mzZ9VHCtVHheX222+X5s2bF+o9MDgH27ZtU1Py641RBQUz97vuusvpNpdzLgghhBDiuTApRQghhBByFfnnP/8pW7ZskfHjx+uMe9cLtOGhCmnmzJkyZMiQS5qdV6tWTfbs2ZMvDg8rY73xc/v27eoZZV8tlfe9YWFhZsVWYRNqhBBCCCme0FOKEEIIIeQq8c0338hHH32kM9hhprrrCXyeXn31VTU8x08kkfIyffp02bBhg75u06aNvl67dq25Hv5PMDavXr261KpVy9zu8OHDOiOfvRE7trMHM+4hMTV27Fj566+/8u07NTX1quolhBBCSNGHlVKEEEIIIVeBI0eOyDPPPKMVSjD2RgLIGUjcNGjQ4Jocw8CBA2XHjh3y3nvvyYoVK9ScHGbpR48elXnz5mkSas2aNbrtoEGDtKqqdevWmkArV66czhKYkpIiX331lfpZGTPtIdEGs/ZNmzap6fm0adM0CWYPtv/00091PHhgde/eXSpVqiSHDh3SY0EF1cKFC6+JbkIIIYQUTZiUIoQQQgi5CqCd7Y8//tDXL7/8ssvtYAR+rZJSSAxNnTpV2rdvr5VMqFrCrHyYyS8uLk7GjBlj7jsoKEgTVKiqmjBhgpw+fVqioqI0cdS2bVtzTCSfli1bJi+99JJuh3937dpVk0+tWrVy2D9mCkTl1YgRIzSRhYopJMVgqP78889fE82EEEIIKbp45Tqr7SaEEEIIIYQQQggh5BpCTylCCCGEEEIIIYQQct1hUooQQgghhBBCCCGEXHeYlCKEEEIIIYQQQggh1x0mpQghhBBCCCGEEELIdYdJKUIIIYQQQgghhBBy3WFSihBCCCGEEEIIIYRcd5iUIoQQQgghhBBCCCHXHSalCCGEEEIIIYQQQsh1h0kpQgghhBBCCCGEEHLdYVKKEEIIIYQQQgghhFx3mJQihBBCCCGEEEIIIdcdJqUIIYQQQgghhBBCyHWHSSlCCCGEEEIIIYQQIteb/wcIOroKG2H01AAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# use a barplot to plot all price/sqft values over the ZIP code\n",
+ "\n",
+ "plt.figure(figsize=(12, 9))\n",
+ "sns.barplot(\n",
+ " data=price_sqft_df,\n",
+ " x='price_per_sqft_living',\n",
+ " y='zipcode',\n",
+ " palette='crest', # green\n",
+ " order = price_sqft_df.sort_values('price_per_sqft_living', ascending=True)['zipcode']\n",
+ ")\n",
+ "plt.title('Price per square foot in all ZIP codes', fontsize=16)\n",
+ "plt.xlabel('ZIP Code', fontsize=12)\n",
+ "plt.ylabel('Median price per square foot (USD)', fontsize=12)\n",
+ "plt.xticks(rotation=45, ha='right') \n",
+ "plt.ticklabel_format(style='plain', axis='x')\n",
+ "plt.grid(axis='y', linestyle='--', alpha=0.7)\n",
+ "plt.tight_layout()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "It seems we also have some of the cheapest ZIP codes per sqare foot in our favorite list. \n",
+ "Our list was : 98001, 98002, 98032, 98168, 98188. \n",
+ "- 98001, 98002, 98032 are within the 4 cheapest ZIP codes. \n",
+ "- again, this seems to confirm that Erin should go for 98001 as a first place to look for houses. "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " zipcode \n",
+ " price_per_sqft_living \n",
+ " \n",
+ " \n",
+ " \n",
+ " \n",
+ " 13 \n",
+ " 98023 \n",
+ " 148.922 \n",
+ " \n",
+ " \n",
+ " 1 \n",
+ " 98002 \n",
+ " 151.174 \n",
+ " \n",
+ " \n",
+ " 0 \n",
+ " 98001 \n",
+ " 151.348 \n",
+ " \n",
+ " \n",
+ " 20 \n",
+ " 98032 \n",
+ " 154.220 \n",
+ " \n",
+ " \n",
+ " 18 \n",
+ " 98030 \n",
+ " 155.156 \n",
+ " \n",
+ " \n",
+ " ... \n",
+ " ... \n",
+ " ... \n",
+ " \n",
+ " \n",
+ " 53 \n",
+ " 98119 \n",
+ " 432.352 \n",
+ " \n",
+ " \n",
+ " 47 \n",
+ " 98109 \n",
+ " 433.559 \n",
+ " \n",
+ " \n",
+ " 48 \n",
+ " 98112 \n",
+ " 438.878 \n",
+ " \n",
+ " \n",
+ " 3 \n",
+ " 98004 \n",
+ " 475.610 \n",
+ " \n",
+ " \n",
+ " 24 \n",
+ " 98039 \n",
+ " 568.242 \n",
+ " \n",
+ " \n",
+ "
\n",
+ "
70 rows × 2 columns
\n",
+ "
"
+ ],
+ "text/plain": [
+ " zipcode price_per_sqft_living\n",
+ "13 98023 148.922\n",
+ "1 98002 151.174\n",
+ "0 98001 151.348\n",
+ "20 98032 154.220\n",
+ "18 98030 155.156\n",
+ ".. ... ...\n",
+ "53 98119 432.352\n",
+ "47 98109 433.559\n",
+ "48 98112 438.878\n",
+ "3 98004 475.610\n",
+ "24 98039 568.242\n",
+ "\n",
+ "[70 rows x 2 columns]"
+ ]
+ },
+ "execution_count": 28,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "price_sqft_sorted_df = price_sqft_df.sort_values('price_per_sqft_living', ascending=True)\n",
+ "price_sqft_sorted_df"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA90AAAGGCAYAAABmGOKbAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAlBdJREFUeJzt3Qd8U2X3B/DTQWmhZe+9ZInsvfeQPQQRBdnIkOEfZYiCgCjygooiCgoCAgKCgOy9kSF7yixlTylQKG3z//wO3pC0CU1Ca2ny+76fvC3PTW7uyW1izj3P8DKZTCYhIiIiIiIiojjnHfe7JCIiIiIiIiJg0k1EREREREQUT5h0ExEREREREcUTJt1ERERERERE8YRJNxEREREREVE8YdJNREREREREFE+YdBMRERERERHFEybdRERERERERPGESTcRERERERFRPGHSTUSJWq5cucTLy8vqljRpUsmRI4e0adNGtmzZ4tJ+3377bd3X9OnT4/yYiZ7Ho0ePZMiQIfLSSy/p3zr+TvE+SGw2btyox169enV5EfEzIHbnzp2L8fkb2w2vqyWjHX8PloYPHx7jsT4+PpImTRqpUqWKTJw4UR4/fiyJ9TVLjO9ZInKd73M8lojohVGpUiXJly+f/n7nzh3Zs2ePzJs3T+bPny/jxo2TAQMGJPQhEsWJYcOGyRdffCEZM2aUpk2bSrJkySRdunQJkjzkzp1bcubMqb+T5wkMDJQOHTrEer8rV67IqlWr9Pfs2bM79Rz4O69fv77+jiT7xIkTsnXrVr3NnTtXVq9eLcmTJ3cxAiKi/waTbiJyC126dLGqoDx8+FC6d+8uM2bMkPfff18aNWok+fPnd3h/Y8aMkUGDBknmzJnj6YiJXIOLSYBeHKh2J1Zly5aVY8eO6UUDSpxwsSe2ngDh4eFSrVo1/b18+fJ60cgZBQsWjPEcS5culebNm8v27dvl888/l08++cSFoyci+u+wezkRuSV/f3/59ttvtQISGRkpCxcudOrxSLbxZS9lypTxdoxErggODtafiTnhBiTbeI9hKAi5r969e8vOnTslU6ZM8ttvv4mfn99z77Nx48by5ptvWl2EIiJ6kTHpJiK37vpYoEAB/d2y+6sxPhCmTZsmFSpU0OQabcb9YhvPuXfvXu1Wie61SPAxzrBYsWIycOBAOX/+fIz7X7p0Sbu4FypUSJONoKAgKVOmjHzzzTcSERHhVFzGWEf8xHO1b99eLxLgOFDNR3tYWJjdx588eVJ7AeTNm1cfg9irVq0qs2bNsnl/jLk1xlyiuoovvOnTpxdvb2+Hx7uim3/t2rUlbdq0kiRJEv1ZuHBh6dq1qxw8eDDG/W/duiX9+vXTrsvGGH18eUe7vXNjeZyxvW6WQkNDZcqUKdKiRQtNZHGhBrdXXnlFhg4dqsMVnjWfAP5mFi9eLDVr1tS/g+jHcPv2bfn444+lePHiet5x/rHvUaNGyYMHDxx6/Syfz2Qy6b8tx7pGfy3Q7bZWrVp6PHj98Dp26tRJz709eG0xVvzll182/42WKlVKxo4dG+PvCecAf/uAv8HoY2+fZ0y35ZhXxPrDDz/oceCc4G+1bt26smPHDnEF3ms//fST/i2iSovXJlu2bPpvjBG25+zZs/LWW29p4ojH4L3z4Ycf6vh6e5w9B5cvX5a+ffvqexjvS5wDdMXGPjBExhZnP1cs3zuuxOQsnDu8t/CeX7BggWTJkiXO9o2/CXB2aAPej6iMly5dWv+eAgICJE+ePNK6dWtZsWLFc70vLP3xxx9a4cf98TwYh47PCUeOz5nPi6ioKH2dMcQqVapU+lpnyJBB/3vUp08fDv0gelGYiIgSsZw5cyIDMU2bNs3m9nz58un2d99919yGf+PWu3dvk7e3t6ly5cqmtm3bmsqVK2c6d+6c3qdDhw529zt27Fh9HLbnz5/f1Lp1a1Pjxo1NhQoVsvmYTZs2mVKnTq3bcuXKZWrSpImpXr165ra6deuawsPDHY75448/1se1b9/elDZtWlPGjBlNr732mqlRo0am5MmT67ZKlSqZwsLCYjx23rx5Jn9/f71PwYIFTc2bNzfVrFnT/LiOHTvGeEy1atV0W8+ePTXuwoULm15//XU97tmzZ8d6vCNGjNDH+/r6mqpWraqv9auvvmoqUqSIycvLyzRhwgSr+1+5csX00ksv6WPwGrVo0cLUrFkzU6pUqUx58+bV18/W62wc54YNG575uuGnpS1btmh7+vTp9W+hTZs2GhteW7Tjb+jGjRt2//bwd4SfpUuX1thwHJs3b9b7HDlyxJQ9e3bdnjlzZlP9+vX1bwXnDG3Fixc33blzx+SI9957z/x3iRt+N26IAaKiovTvwni9cW5xrvB3irZkyZKZVqxYEWPfp0+fNseD16Fly5b6OgcFBWlbyZIlTbdu3TLff8qUKXofbMPfjuWx4OYInCc8Hq+XpbNnz2o7jgf7SpIkicaB95kRR9KkSU07d+40OQOvM84vHo994nlxvmrUqKExR/9KZLzWffv2NaVIkUKPB8dQu3ZtU0BAgG7D32V0rpyDy5cvm7JkyaLbc+TIYWratKn+HVapUsWUJk0aU8qUKWM8jyufK67G5IodO3aY/Pz8dJ/ffvut3fsZf8/R37fG+zX634dh1KhRuh1xOGr//v2mrFmz6uPwmuJzCK9zhQoVNP7oz+Xs+8Iwfvx4c1xly5bVvzN8PuDfAwYMMP99R+fK5wU+s7ENn+s4j3gu/B0Yn6GLFi1y+PUhovjDpJuI3DbpPnDggDk5/umnn8ztxpchfFnDF0Nb7CXdixcvNn/B+fXXX21+aTp69KjVl2kkb0guJ02aZIqMjDRvQyKHL+TYHxJTRxlfRnHDl/MHDx6Yt124cMH85X7QoEFWjzt48KAmKzj23377zWobLja88sor+riff/7ZZjIb25dnWx4+fKhfZgMDA03Hjx+PsR3Pe+zYMau2Vq1a6XMh4bD8gnnz5k29MGIcS1wl3XjN1q5da3Vu4P79++bkCRcc7P3t+fj46N9FdDgvuEiA+3z44YemR48eWe0bX47tXeh4FiN+W7777jvdli5dOtO+ffusEkEjfly8uHbtmtXjjNcVCcW9e/fM7bgfEgtse+ONN+wmx66ILek29n3ixAnztoiICFOnTp3MSaUzcPEGjytRooQ+h6XHjx+bfv/9d6s2ywscQ4cO1ec2HDp0yHyhavv27c99DowLU926ddP7WULijL9PS65+rrgak7Nw4cxIbt9+++1n3teVpBuvEZJZbMeFPEfg79pIaPG+Dg0NtdqOz5o1a9Y89/sC/93BZwL+2zN//nyrbbNmzdJzZut948rnxfnz57UtW7Zs+jcRHf5bhPsQUcJj0k1Ebpd048vTsmXLzF9gUEGy/MJkfMn75JNP7O7XXtKNSgPa//e//zl0fB988IG5GmpLSEiIVt1QRYn+Zdse48sokllbX7SWLl1qvqhgWe1GRQft48aNs7nfXbt26fZSpUrZTGbxRd5Z+HKKxxYtWtSh+wcHB+uXVXwxxQWM6JDExHXS/Sz4sotqJc6Pvb89JIG2GMkXeiDYgi/9GTJk0P3bqpa5knQbf/Nff/11jG34+8J5wPbRo0fHqPSjAotkKbo9e/bodpwXXKD4L5PuJUuWxHgc/uaNarejPURQ4TQuluE95wjjMwDvB1vvzR49etj8HHHlHOCiDtoWLlwYr58rrsbkDJwTo0cBqru2ety4mnRj3/hcQM8B43GOvmZffvmluVpsebHBHlffF126dNF2fN7aggultt43rnxeGJ/ZuChARC82jukmIrfQsWNH83hSjGtr2LChnD59WscpLl++3OaSMq1atXLqObDszf79+3Usc+fOnR16zLJly/Qn1gy3JWvWrDqO+Pr16/L33387dTwY24rxmNFhpnaMmb5796789ddf5nF/xnhFe8eCMY4YB79v3z6d/f15Xy/A2G+MzcW47ffee0+OHj36zPtv3rxZj7VkyZI65js6jHMsWrSoxAdjJuRevXrp3xPGv/bs2VMnfsL5wVhLW+y9LrGde7zWeM0x9nb37t3PffwhISH6Nw+2lnHCewNxwYYNG8ztxvhzLMuE5Zmiw/hVjA/Fedm0aZP8V3x9fc1LRVnC33zq1Kl17PHNmzcd2tfKlSv1Jz4X8J5zBt5PtsapYxw1XLx48bnPAWZyB6yYgEkf7927F6+fK87E5Kz+/fvrcl547yMWjE9/HvibMz7b8V7E2GqMl8fv//vf/3QWc2f+BvDZjfW+Y+Pq+8J4nDHRW3T2llhz5fMCExFi3Df+Gzd69Ggdp09ELyYuGUZEbrdON76MYSIZLE+DL0z48m4LkkFXZo3GpGWOzmp+5swZ/YlJdGKDL8jOLGtmTGRlLzYkJEgCAL8jCXd0nVzcP3py4uzrZcCybUhMx48frzdMLFWuXDmpU6eOTuRkuca0cbzPig3bbE2+5qpr165Jy5YtNVF4Frx+SPais/e6GOceMeIW27l/XkaihAsuKVKksHkfXISyvK/l7896zfG4AwcOPFcy5iy8zzAplC2IDxdBbF0cssWY3BBJirPsza5uvMaWx+DqOcDfx5o1a+SXX37Rv0UkhbjoVLlyZX3vYJK+uPxccSYmZ/z888+6agQ+czGruLNrcse2TjcueOIY8do0adLE5kXHuPobcPV9EdtnmL12Vz4vkHBjMlBcyMEkeLjhfWP8t++NN97QZJ2IEh6TbiJyy3W6HYFZa+MbqiCAL862qu2W8EU9rhkzXRvH8axKiyXMZhxXrxcSA8ygi0oOKkKoKK9atUor75ild9GiRTpDc3yzfA2i/+0g4cYs9iNGjNDqFZJrI+HDjMuYWdp4LR19XYzns1cps4SZrckaEixPOQ48B1YPwCzZeJ9s27ZNb999953esGIA3idGhfZ5P1fiIyas6NCjRw/9/YsvvogxK72rbK3T7Y5c/bzARRrMvr9kyRJdXQJ/N/hbwe2jjz7SizmY/ZyIEhaTbiIiBxnVISRg//zzj0PVblR60L3zgw8+0K6BcelZXQmNZWKwHBKgmozkEEvcYPkhy+ryfwHPjQTB6IqNSg2qMljqBssoGVUoo7r+rGVu7G0z1v/FEmC22FrK7f79+9o1E0kIfmJoQvTtGFbgCpz748ePa3dWV7rmO8t47YxeDbYqrUY1zbIXg/G7sc0WW49LjO9dnI8X8RwYUMHFDUsP4iLP+vXrtVq5dOlS7TFidE2Pz88VV+D9jCX3UCFv166dLvf3Iv4NHDt2TP8GkKTGxtX3BX7HEAN8TqErvKOfX8/zeYH/FllWyC9cuKDLhWGJMiy1+F8OCyEi216My8hERIkAujIaY/iw1q8jGjRooD/R1TKurV69WrtGR4fkEV/6jfVkARUydOeOr2NxFsZ7Yp1bo9u+MV4a64Vj7CbGottKkNCV017XcuOLL75YR4f1bS3H0Bpw8SQyMlKTo+gJN6D6aK/CnZDn3hZcYDG6LtuqDCIOo71GjRrmdqMiiTGvV69ejfE4jPE35jLA+Yl+kcPZdeYTgtE9Ge8NrG39op0DW/A+QA8QJN2Ac5BQf1vPgvOPcch4H2POBazL/SL/DeCzG+/52Lj6vsDa3IChArbg4oktcXlOkcCj1070vxsiSjhMuomInIDu0DB06FD57bffYmzHRGGWSR8qVkjmMJYZk/6Eh4fbrFgjuXMWqtbvvPOO/jQgocCEZYCunpaTGOHYkSjhmDD20lZ368OHD+vkR3EF1eWpU6eax5NbQvUO0JXbqAiiGoWJkXBsiM3ycUjMMbGZvSTYqF5hTKnlGEtUq7t166bVn+jQjRPPf+fOHZk5c6bVtp07d8rgwYNdjh3PiW6g8+fP14qkrQo8quhxmaT83//9n/4cOXKkXqAw4DUbNWqUfgHH32PXrl3N2zBuGGPs8XfUvXt3vUBhuHHjhrbB66+/bjVGFxdO8PeEGG7duiUvMiSDTZs21Rjx05ifwTJxRPfchDoHSMTQPTs6/M0YE3NZdimOz88VZ73//vt6QQtzNaBL838xbMcVGEaCiyJIlvHa43PBEj5r1q5d+9zvC1SYcZETyTNeD0uYAO7333+Ps88LxPLrr79a/Tcg+ucrh64QvSASevp0IqL4WqfblSWXYlsyDLDUj7HWasGCBXVpGCzZUrhwYZuP2bRpk67Zi21Y8gVLb7Vr106XhjGWF8J6sI4yltLBWrNp0qQxZcqUyfTaa6+ZGjdubF5nt0KFClbrdxvmzZunS+AYa7tirWMcS4MGDfTftpa6iW0prmcxlvjC8kVlypQxtW7dWm9YKxnteB2nTp0aY0ko43VBfFhfuXnz5rq2MdrxWtt6nbGcEJYowraUKVOaGjZsqHFh2SSsGWys7xx9ybAJEyaY/yZwHrAebqVKlfTY3nrrLfPfWPS1ne21Wzp8+LApV65c5rWZsaYw1vVt1qyZ/r3gOTJmzOjUa/qsv18sA4VjxnYsLVSrVi2Np0CBAuZl5pYvXx7jcadPnzbHg79RrJWOpY2w7BzasCaxrWXNjDXVsf4xnqdz5856i4slw561FJkjr310OP7y5cvr4/z8/EzVq1fXc4H3I/5Gor+mz/oMALRjO+73vOfAWEYKyxu++uqr+p7ET/wdo71IkSKmu3fvPvfniqsx2YP1w42/x2LFiunjYru99957z71Ot6v++usv/bw03o/4jMDnXcWKFfW8RH8uV98XY8eOtfpMwd8ZPv/w7/79+9v9+3b282LRokXmvyl8ZmEpNRyj8beGv/MVK1bE2etHRK5j0k1EiVpCJN2wY8cO/SKNZA4JJZJDfOl8//33TefPn49x/6tXr5qGDRumX9KCgoL0yxCSXHzZw5fLgwcPOnz8lutNnzlzRo8DX8Swz3z58pk++ugjXV/aHiQq+OKHL/JI0rF2MV5HJCGfffaZ6dSpU3GWdCNRwPq4SJpfeuklU2BgoD5n/vz59aIB1rq15caNG6Y+ffroa2S8VlhD+Pr16888N7dv39a1i3F/nBecn27duunr/6x1un///Xc9F/iii2NE8j5p0iRNoJ4n6TZeA3wJx4UQ7B/HlTlzZv0SPnDgQNP27dudek0d+fudPXu2nk/j+ZAUv/3226bjx4/bfczNmzdNgwcPNhUqVEj/JnBxBhdH8Ddh6wKO8Zju3bubcuTIoc/jyLElVNINjx490vWQq1Spoq+N8bdVp04d07fffhunCaoz52Dz5s2mfv36mcqWLatJIY4LP/E3M3HiRNO9e/dsPoeznytxnXQb93fmFv28/pdJN+Az5MMPPzS98sor+lmEhDVPnjyafK9cuTJO3hewePFiXa8cz4HPFJyTBQsWxPr37cznBS5Q4jhwgSZ37tx6bLgggAS9V69ez3y/E9F/ywv/l9DVdiIictzw4cN1vB66i+N3T4NZ6tE9HkvlODtjPREREdF/jWO6iYiIiIiIiOIJk24iIiIiIiKieMKkm4iIiIiIiCiecEw3ERERERERUTxhpZuIiIiIiIgonvg6+4Bz587J4sWLZdu2bXL06FG5ceOGeHl5Sbp06aRQoUJSqVIladKkieTOnTt+jpiIiIiIiIjI3bqX//HHHzJu3DjZunUrFuCUvHnzSp48eSR16tT679u3b8vZs2fl9OnTev/KlSvLwIEDpVGjRuKpoqKi5NKlSxIUFKQXJoiIiIiIiMg9IA8ODQ2VLFmyiLe39/Ml3eXLl5cDBw5I06ZNpXXr1lK7dm1JkSKFzfvevXtX1qxZIwsWLNCKeLFixWTHjh3iiUJCQiR79uwJfRhEREREREQUTy5cuCDZsmV7vu7lNWrU0AQ6Y8aMsd4XyXjLli31duXKFfnqq6/EU6HCbZwEexcpiIiIiIiIKPFBwRlFViPvs4ezl8fzSUiZMqX8888/TLqJiIiIiIg8MN9zeiI1ct7LuYs8s48/ERERERE9df76uYQ+BKI443TS/ejRI5k1a5asXr1aJ03DwHGU0/Plyyf169eXN954Q/z8/OLuCImIiIiIiIgSKae6lx86dEgnUzt//rzO1IZSemBgoNy7d09L6pihGzOaL1myRJcP83RGd4NsabKz0k1ERERE5CBWusmdupc7nAkiscb621evXpXRo0fr5GBYJszy56hRo3SJrMaNG8v9+/fjKhYiIiIiIiKiRMnhpHvatGkSHBwsy5Ytk0GDBknWrFmttuPfgwcPlqVLl+p63dOnT4+P4yUiIiIiIiJyv6QbyXbdunWlevXqz7xfzZo1pU6dOpp8uwJjxPv16yc5c+aUgIAAqVixouzevduq4t67d29dBw3bCxcuLJMnT7bax8OHD6VXr16SNm1a7f6O5ctQoTdgzfG2bdvq9O7YB7rCR1/abOvWrVKpUiXdB+5TsGBBmTBhgksxERERERERkWfydWY897vvvuvQfZF4u7o+d5cuXeTw4cMyc+ZMyZIli07aVrt2bTl69KhW0wcMGCDr16/X9ly5cumEbj179tT7ovs79O/fXy8SzJ8/X/vYI0lv0aKFbNu2Tbfv3btXMmTIoPtA4r19+3bp1q2b+Pj46H0hefLk+nvRokX1dyTh3bt3199xXyIiIiIiIqI4m0gN1V5UlDt06BDrfX/++Wfp0aOHhIWFiTNwf8yEvnjxYmnYsKG5vVSpUtKgQQMdM16kSBFp06aNDBs2zOZ2DGJPnz69zJ49W1q1aqXbjx8/rtXsHTt2SPny5W0+Nyrjx44d04TeHiTuSLpxQcARnEiNiIiIiMh5nEiNPHKdbiwVliRJEofu6+vrK+Hh4eKsiIgIiYyMFH9//xgJPyrNgO7mmB29U6dOWt3euHGjnDx50tz1G1Xsx48fa3XcgK7hOXLkeGbSjRcqTZo0do9t3759WhFHYv+s1wg3y5MASfySmJPuqMgojRFVdW+fp4k42rANr52Xt9fT9ohIiYqK2R7xOEJnkMe+rV5DO+2Pwx/r7PK+SXxjbTdFmfRc4Jh9fH1itvt46/EbGBNjYkyMiTExJsbEmBgTY4rLmHAMYBwDnscS9ov7W7YjRtwfz4tbbO2IHTd77di3ZX3SXjv2jecwjtmy3daxMyYvt4kp+r7iZJ3uc+fOyV9//RXr/TCRmitQ5a5QoYKMHDlSK9MZM2aUOXPmaLKMdcBh4sSJ2r0bY7oRMF7QKVOmSNWqVXX7lStXdJ3wVKlSWe0b+8I2W5BM//rrr9olPTo8z/Xr1/UFHT58uHZ/t2fMmDEyYsSIGO3tOr5hvpBw/OgJ2bxus1SqXkkKFi5gvs/eP/+Svbv2St2GdSRbjmzmdtwXj2neprmkTvM0puWLV0hIcIi82bGd1YfW/F8W6Lj3jt3ftjqGad9P1/Htr7V7Uv03PoDRnjV7Vnm1aQNz++1bd2T+L/Mlf8GXpGqtJ68r4PnwvCVKlZBS5Uqa2xkTY2JMjIkxMSbGxJgYE2OKy5j27NmjP0uXLq3FvIMHD1olQ2XKlNGiGXq0WhbqihUrJjdu3JAzZ86Y21GJRG6BVZZCQkLM7egdmzdvXs1d8H3f8vs/bijs4TkMWBoZQ1QxFNayRy8KfMg9UKSzTNAwTBV5iRGLgTEFuE1Mjq7Y5XD3ciS3uDLgCOwS941+VcARp0+f1ir25s2bNaiSJUtK/vz5tYKN7t/jxo3TJBs/Mdka7odZ0xctWqTVbXQr79ixo1XFGcqWLSs1atSQzz//3KodJwPtffv2lQ8//DDG8eDk4gNg586dOmv7N998o5OwOVrpxpjx3JnysNLNmBgTY2JMjIkxMSbGxJgYk4MxHT9/zKMrqIwpKlHEhHwPE2/H1r3c4aQb47Sd5cj4b3tw1QBBZM6cWcdwI/FdsGCBXgFBgm055hvVZ1wNWblypY7JrlWrlq4dblntRoKOWdExyZoBk7Mh4cbjsfZ4bNC1HOO5T5w44VAMHNNNREREROQ8jukmjxzT/TwJtCswYRluSJ5XrVolY8eO1bHauEVPYI0rIsakahh7vm7dOl0qDJAkY41xdF03HDlyRGdZR1yOJNyA54heQSciIiIiIiKKkzHdsSWk6JePPveOdkO3BQk2iu8FChSQU6dOycCBA7X/PbqMI5muVq2atmEsAKrXmzZtkhkzZsj48eP18bjS0LlzZ11aDBOj4YpDnz59NOE2JlFDl3Ik3PXq1dP7GWO9kbzj+OHbb7/Vydfw3IBu7OjS7uiyaUREREREREQO93nGAHUkt6g8W0IpvX379pIsWTLtCo6kFeOeXYX9YfkuJLvYb+XKlTURN2ZOnzt3rg5eb9eunRQuXFg+++wzrVRjiTIDZjJv1KiRVroxwVqmTJlk4cKF5u3opo5B+FinG8ds3LBfy4sIGCtevHhxHUSPJBzjwT/55BOXYyMiIiIiIiLP4vCY7u7du+uYacxgblnJfv3112XevHny0ksv6cxvmAkclePffvtNmjVrJp6MY7qJiIiIiJzHMd3kTmO6Hc4Et23bptVjy4T7woULmnCj6zbGSM+fP19/Ypp2VIaJiIiIiIiIPJnDSffFixfN45sNf/zxhybhWG4LU6cDZgxHt3Csf0ZERERERETkyRxOujHG2RhXbdi6dav+xORmlrBIeWhoaFwdIxEREREREZF7z16eN29e2blzp3nCMiwGjjWxUf3OmDGj1X1v3bplngWcRI6cPfzMPv5ERERERETknpxapxtLdRUqVEgqVqwov/zyi1y7ds3mElpbtmyR/Pnzx/WxEhEREREREbln0t2zZ09Zu3atLqOFcdyY9Bzdyv/v//7P6n6YXG3FihUyatSo+DheIiIiIiIiIvdLujGee+nSpbJnzx45ffq05MyZU8qXLx/jfo8ePZLZs2fr+thEREREREREnszhdbrJ9XXbiuYpLz4+Dl/fICIiIiIiB/11cktCHwJ5qLtxvU43ERERERERETnH4aTb29tbfHx87N6SJ08uhQsX1jHeN27ccPIwiIiIiIiIiDx8IjVMoGbPgwcP5MSJE/Lll1/K/PnzdXmxzJkzx9VxEhEREREREblv0v3NN984dL+9e/fqrOYjRoyQyZMnP8+xERERERERESVqcT6mu1SpUtK1a1dZvny5S48PDQ2Vfv366ezoAQEBuib47t27zdvv3bsnvXv3lmzZsul2dGmPntw/fPhQevXqJWnTppXAwEBp2bKlXL161eo+wcHB0rBhQ0mWLJlkyJBB1yCPiIgwb1+4cKHUqVNH0qdPr4PiK1SoIKtWrXIpJiIiIiIiIvJM8TKRGhLh6Emuo7p06SJr1qyRmTNnyqFDh6Ru3bpSu3ZtuXjxom4fMGCArFy5UmbNmiXHjh3TBB1J+JIlS8z76N+/vy5vhm7umzZtkkuXLkmLFi3M2yMjIzXhDg8Pl+3bt8vPP/8s06dPl48++sh8n82bN2vSjYsHqN7XqFFDGjduLPv27Xuu14aIiIiIiIg8R7wsGYau5RMnTnR6QrWwsDAJCgqSxYsXa1JsWT1v0KCBjBo1SooUKSJt2rSRYcOG2dyO6dpRncZa4a1atdLtx48fl0KFCsmOHTt0bfEVK1ZIo0aNNBnPmDGj3gfV8g8++ECuX78ufn5+No/v5Zdf1ue2TM6fhUuGERERERHFLy4ZRh63ZBieEFXjSpUqOf1YdO9GFdrf39+qHd3It27dqr+juzmq2qh843rBhg0b5OTJk1oRB1SlHz9+rNVxQ8GCBSVHjhyadAN+vvLKK+aEG+rVq6cv2pEjR2weW1RUlHZ9T5MmjdNxERERERERkWdyuPyKMc6xVakxezm6fV++fFnmzZvn9MGgyo2x0yNHjtTKNJLiOXPmaJKcL18+vQ8q6N26ddMx3b6+vrqU2ZQpU6Rq1aq6/cqVK1qpTpUqldW+sS9sM+5jmXAb241ttowbN07Hk7du3dru8T969EhvBiTx4JvE11zpRvIeFRkl3j7eeuwGtGGbj6+P1SzxuAhhijLFbI+I1IsO2LclHZdukpjtjyNEvERfs+jt2C/2b8B+sX8vby9dDi56O44bx28+dsbEmBgTY2JMjIkxMSbGxJgSKCZjXib9t4/Pk2ONijLf1167xujtbbddY7DoFGyvHfvGc1jOD2W0G6+FI+2IUV9/i3bGJC90TNH39dxJN7pq4yBj641evHhx+emnn6RMmTLiCozl7tSpk2TNmlUDLVmypLRt21Yr2EbSjeXIUO3GZGsYe41J07JkyWJV3Y5L6KqOLvPo9o5J1+wZM2aM3i+6pm0amKv3Z06ek13b9knp8sUkT/5c5vsc3ndMDu8/LlVqlpdMWZ8+x65tf8mZk+elXuMakiJVkLl94+ptcuXiNWnWpoHVh9PyRWvlwf0wafVmY6tjWDBrqSRLHiCvNq9t9WGF9oxZ0kv1uk97Jty9E6r7yZ0vh5StVNLcjufD8xYuml+KlChkbmdMjIkxMSbGxJgYE2NiTIwpoWLas2ePuXdssWLFdIjrmTNnzPdH918U9DC0NCQkxNyOIal58+aVs2fP6hBTA4p7uKE3LXrxGvLkyaO5wOHDh7XgaNmrFgU/zP1kmaAVLVpUi4HG8RlKly6tc0sdPHjQ3Ia8B/kTng9DYw2MSV7omO7fvy9xOqYbE5I9C5JKJMGZMmWSuIAAUCnGWt8YR40q84IFC/RkLFq0yGrMNyZfw4nBBGvr16+XWrVqye3bt62q3Tg2TLqGSdYwJhtJ+/79+83bcRJxgv766y8pUaKEuX3u3Ll6EQCTslk+p6OV7uzZs0vJApVZ6WZMjIkxMSbGxJgYE2NiTIwpHmLafmCN21VQYzt2xiQvREzI97BiVmxjuh2udGPt7f9S8uTJ9YbkGUt1jR07Vsdq42b5Rgfj5BiTqiVJkkTWrVunS4UBur1jiTB0XQf8HD16tFy7ds1cucaM6XihMPO6AV3bkXAj8Y4t4YakSZPqLTp8KJie/n08/YCKjNb47weRLfba9YPI0XaT7Xb80dhsjzJJRFTM9uh/8OZ2xsSYGBNjYkzPPHbGxJgYE2N61rEzJtdiip6QG0lXdM62W16McKQ9+nG40o6k0FY7Y5IXMiZ7j4mxD3nBIMHGG6hAgQJy6tQpXT8bXQE6duyoyTSSf7ShWwKq16jAz5gxQ8aPH6+PRyW8c+fOurQYJj1DIt2nTx9NtDFzOWDSNSTXb731libzGMf94Ycfajd1I2lGl/IOHTrIV199JeXKlTOP9cbz4jmIiIiIiIiIYuPQ7OWY2Rtjp52FmcXxWGegNI/kF4l2+/btpXLlypqII+EGVJ3Rj75du3aaOH/22Wdate7Ro4d5HxMmTNAlwVDpxgRr6PJuOREcrnr88ccf+hPJ+JtvvqnP9cknn5jv88MPP2jXAxwLurgbt759+zr9OhAREREREZFncmhMd8+ePeXHH3/UMc8YX40x0xj3HBgYaHU/LKmFCc/Wrl2rY6DPnz+vVedvv/1WPBHX6SYiIiIiil9cp5te9HW6HZ5IDRONoas1ul3fvHlT+7Gj+3bq1Km1OzjGXuOG39GOSjSqwrlz5xZPxaSbiIiIiCh+Mekmt0m6DehyvWXLFl07G9OkIwEHzNqGLuHoro0u4UZ3cE/GpJuIiIiIKH4x6aYXPel2OhPEDG01atTQGxERERERERHZx/Lrf2DLvlXPvPJBREREREREHjx7ORERERERERE5j0k3ERERERERUTxh0k1EREREREQUT5h0ExEREREREb1IE6lt3rxZChUqJOnTp7e5/caNG3L06FGpWrXq8x6fW2hYs6v4+vol9GEQEREREbmlDTtnJvQhEMVtpRvLha1Zs8bu9nXr1nFJMSIiIiIiIvJ4LiXdJpPpmdsfPXokPj4+rh4TERERERERkWd1Lw8ODpZz586Z/338+HHtZh7dnTt35Pvvv5ecOXPG3VESERERERERuXPSPW3aNBkxYoR4eXnpbfTo0XqzVQVHlRuJNxEREREREZEnc7h7eevWrWX+/Pny66+/amLdp08fmTdvntUN21esWCEhISHSqVMnlw4oNDRU+vXrp5XygIAAqVixouzevdu8/d69e9K7d2/Jli2bbi9cuLBMnjzZah8PHz6UXr16Sdq0aSUwMFBatmwpV69ejVG5b9iwoSRLlkwyZMggAwcOlIiICPP2y5cvyxtvvCH58+cXb29vPSYiIiIiIiKieKl0Y7Zy3IyqN2Ymz507t8S1Ll26yOHDh2XmzJmSJUsWmTVrltSuXVtnQ8+aNasMGDBA1q9fr+25cuWS1atXS8+ePfW+TZo00X30799fli1bphcBUqZMqUl6ixYtZNu2bbo9MjJSE+5MmTLJ9u3bNcFu3769JEmSRD799FPzuHTMzv7hhx/KhAkT4jxOIiIiIiIicn9epthmRYsFKs8XLlzQ37Nnz66VZVeFhYVJUFCQLF68WJNiQ6lSpaRBgwYyatQoKVKkiLRp00aGDRtmc/s///yjyfLs2bOlVatW5vHnuGCwY8cOKV++vFbjGzVqJJcuXZKMGTPqfVAt/+CDD+T69evi52e9vFf16tWlePHi8uWXXzoVz927dzXpr1yqNZcMIyIiIiKKJ1wyjBKCke8hB02RIkXcrtMN6PL9/vvvy9atWyUqKkrb0A27SpUqMnbsWCldurTT+0T3blSh/f39rdrRjRzPA+huvmTJEu2+jur2xo0b5eTJk+Zq9N69e+Xx48daHTcULFhQcuTIYU668fOVV14xJ9xQr149eeedd+TIkSNSokQJl14TVMdxszwJ4OvrozfAaxUVZRJvby99vQxGu4+Pt46ZN0RGRv07Tj56e6Tgcomx36evYaT5OR1tx24tZ5vH8+F58Xx43ujt9o6dMTEmxsSYGBNjYkyMiTExpoSICXnEk1h8/j2mJ/kJ2GtHHLjZa39yrKZY27FvPIflUFWj3YjZkXZfX99/X/+n7YxJXuiYou8rTpPuP//8U6u/qAijO7jR7fzYsWMyZ84c7XqOZLhs2bJO7RdV7goVKsjIkSN1n0iKsT8kyfny5dP7TJw4Ubp166ZjuhEwXtApU6boc8KVK1f0uFKlSmW1b+wL24z7WCbcxnZjm6vGjBmjk81FV7dRafH3D9Dfg89dk/17TknRknklR64M5vucOHpBb2UqFpQMGZ8e+/69pyX47FWpWruYBAU92Qfs2HJUrl+9o/u2/BDasHqfhD0Il1eblbM6huW//ykByfykRt0SVh9WaE+XIZVUqFLY3B4aGiYbVu2T7LkySPFSec3t167ekZ1bjspLBbNJgcLZze2MiTExJsbEmBgTY2JMjIkxJWRMe/bs0UJdsWLF5MaNG3LmzBnz/VGJRG6BXq6Ye8qA3rF58+aVs2fPam9XA/IM3FDYQwXTkCdPHp0LCkNh0UPXssCH3GPfvn1WCVrRokU1L8GxWUJxMjw8XA4ePGiV4JUpU0afD710DYxJXuiY7t+/L/HWvRxVZCwfhuozxkVbwoRllSpV0vHea9ascXbXcvr0aa1iYzkyBFWyZEmdzAwVbCT148aN0yQbPzHZGu43ePBgWbRokR4XupV37NjRquIMuABQo0YN+fzzzzVpP3/+vKxatcq8/cGDB5I8eXJZvny5dlV3pXu5rUo3utxXL9fW3L38Rb9K6I5XPhkTY2JMjIkxMSbGxJgYk3vHtGLjVLeqoMZ27IxJXoiYkO9h8u546V6OSvdHH30UI+E2KsZIalGtdgWuYmzatEmvGiCIzJkz6xhuXLHAlYohQ4Zogm2M+caVif3792sSjqQbx4QrElgv3LLajYsBxvHi565du6ye15jd3FZMjkqaNKneonvyYWF9svDhFBVl3WZ8QNlir934IHqedvwt2m432Wy3d+yMiTE5286YGNOzjp0xMSbGxJiedeyMiTFZxoREKHrSFZ2z7ZYXKRxptzwGV9uRFNpqZ0zyQsZk7zEuLxlm9SBv72f2X0fWb+sFcQaqzki4b9++rRXppk2b6lht3KLv27giYkyqhlnI161bZ95+4sQJXSIMXdcBPw8dOiTXrl0z3wdVeVydwBJkRERERERERHHBpUo3JjP79ttvdR1rdPG2hOR20qRJ2sXcFUiwccWtQIECcurUKV0/G/3v0WUcyXS1atW0DWMB8Nyois+YMUPGjx9vHgvQuXNnXVosTZo0mkhjTXEk2phEDerWravJ9VtvvaWTvmEcN5YGw9relpVqVNCNGdoxfgD/Rn9/JuZEREREREQUb2O6MfgcE5eh2t28eXMdc21UlLHcF8rsW7Zs0QHyzpo3b56O0cbgeSTNLVu2lNGjR2syDUiQsR3rc9+6dUsTb3Rnx9rcxniRhw8fynvvvaeTsGGMNWYmx4UAy67jGNON2cox4Ruq6h06dJDPPvvMqouA5fgTA54P49kdwSXDiIiIiIjiH5cMoxd5yTCX1+k+evSoDB06VLtlYxIySJYsmVaRsV42q8FMuomIiIiI/gtMuskt1+lGUo0JzTCW2pi6HdO5P+9YbiIiIiIiIiJ34XLSbUCSbWT1TLiJiIiIiIiInnI5S8aEaZjcDEuEBQYG6g2/Y41tjJcmIiIiIiIi8nQujek+fvy4VK5cWdfCrlOnjhQqVMjcjgnOUqdOLVu3btUZyD2Zo338iYiIiIiIKHGJ1zHdgwYN0q7kmMX8lVdesdp2+PBhqVWrlt4HY76JiIiIiIiIPJVL3cuxNva7774bI+GGIkWKSO/evXUpLiIiIiIiIiJP5lLS/fjxYwkICLC7HUuH4T5EREREREREnsylpLtEiRIydepU7btuq1/7jz/+KCVLloyL4yMiIiIiIiJKtFwa0z1ixAipX7++FCxYUGcwz58/v7afOHFCfv75Z7l586Z8++23cX2siVbLViMlSZKkCX0YRERERERkYfmyUQl9COQBXEq6a9asKcuXL5eBAwfKZ599ZrWtePHiMnPmTKlRo0ZcHSMRERERERGR+ybdBw8elJw5c+p06IbatWvr7OVXrlwxr8uN+2TKlCn+jpaIiIiIiIjI3cZ0Ywz3smXLrCrd69at09+RZJcrV05vTLiJiIiIiIiInEy6MVP5gwcPzP/GcmBXr1515KFEREREREREHsuhpLtYsWIyfvx4mTZtmixcuFDbdu/erb8/6+aK0NBQ6devn3ZVR7JfsWJFfS7DvXv3dB3wbNmy6fbChQvL5MmTrfbx8OFD6dWrl6RNm1YCAwOlZcuWVhcJMNEbJoLLkiWLJE2aVLJnz677xMzrBhx/nTp1JH369JIiRQqpUKGCrFq1yqWYiIiIiIiIyDN5mUwmU2x32rNnj7Rq1UqCg4OfPMjLS2J7GO4TGRnp9AG1adNGDh8+LN99950mxbNmzZIJEybI0aNHJWvWrNKtWzdZv369LlmWK1cuWb16tfTs2VOT5CZNmug+3nnnHe0OP336dB2HjoTa29tbtm3bpttv374tc+fOlTJlymhSferUKU3SsczZ7Nmz9T5I/PH8mBAuVapUesFh3Lhx8ueff2p3e0cgicfz167zf5y9nIiIiIjoBcPZy+l5GPkeltJGofa5km6IiIiQ06dPa8W4evXqMnToUJ1M7VmqVavm1EGHhYVJUFCQLF68WBo2bGhuL1WqlDRo0EBGjRolRYoU0cR82LBhNrcjYCTSSJ5xoQCOHz8uhQoVkh07dkj58uVtPvfXX38tX3zxhVy4cMHu8b388sv63B999JFD8TDpJiIiIiJ6cTHppv8i6XZ4yTBfX18pUKCA3jp06CCNGjXSydPiEhJ7VMf9/f2t2tGNfOvWrfo7upsvWbJEOnXqpJVojC8/efKkVsNh79698vjxY6sLAlhPPEeOHHaT7kuXLmml/FkXCaKiorTre5o0aeze59GjR3ozGN3VfX289ab7MZkkKsok3t5e4u3lZbF/k27z8fES/M8QGRUluCxir93Yr/k1jIwyP6ej7TgMH++n7SYxSWSkyW47jhvHbz52xsSYGBNjYkyMiTExJsbEmBJhTE9iiNKbAT1kcUNeYlmftNfu4+OjvXyRy1hCu8YcrfevvXbkW9ivZTv2i/tHP0Z77cYxMibv/ySm6PuK03W60dU6PqDKjbHTI0eO1Mp0xowZZc6cOZos58uXT+8zceJE7WKOMd0IGC/olClTpGrVqrodS5j5+flpl3BL2Be2WWrbtq1W1VFhb9y4sXZZtwddyzGevHXr1nbvM2bMGBkxYkSM9ho1cou/f4D+HhLyjxw+ck0KF0ov2bI9XYLt1Kmbcur0LSlRPLOkS5fc3H748FUJuXhXKpTPIYGBfub2PXsuyo2bD6R69dzi6/v0Q2Xr1vPy8GGE1K6d1+oY1q49Lf7+vlK5ck5zW0RElKxdd1rSpkkmpUtnNbffuxcuW7edl6xZUkiRIhnN7Tdu3Jc9ey9JnjypJV++tOZ2xsSYGBNjYkyMiTExJsbEmBJjTHD27Fm5fv26uR15Bm4o7KGCaciTJ49kyJBBh8Iif7As8CH3wHLKlgla0aJFNS/BUF1LpUuXlvDwcF2W2TLBw9BXPB966VoWHzG/1o0bN+TMmTPmdlRXkS+heBgSEmJuR4/fvHnzMqYM/01M9+/fF0c43L38v4Iu7Khib968WYPCOOv8+fNrBfvYsWOa/CLJxk9Mtob7DR48WBYtWqTVbXQr79ixo1XFGcqWLavjsz///HNzG5LwO3fu6InCPlDpnjRpUoxjwj67du2qCfqzutTbqnRjkrb69d83dy9316uEjIkxMSbGxJgYE2NiTIyJMSW2mP5YOvKFrKC6Y1XYHWNCvofJu+NsTPd/DVcNEETmzJl1HDWqzAsWLNArIEiwLcd8d+nSRa+GrFy5UidZq1Wrlk6WZlntRoKOydH69+9v8/nQfb1KlSp6ZQXPacCEa7gIMH/+fKvndATHdBMRERERvbg4ppv+izHd1peMXiDJkyfX5BfJM5bqatq0qY7Vxg1XLiwZV0SMSdWSJEki69atM28/ceKEzryOruv2GI+3rFSjazuq5vjpbMJNRERERERE5NKY7viEBBvFd0zYhqW8Bg4cqP3vkfwimUYXcLRhLACq15s2bZIZM2boOuKAKw2dO3eWAQMG6KRnuOLQp08fTbiNSdSWL1+us7CjPz7W8T5y5Ijus1KlSroMmdGlHBPGffXVVzphnDEeHM+L5yAiIiIiIiJKdEk3SvMYX43u4kiaW7ZsKaNHj9aE2+juje3t2rWTW7duaeKN7T169DDvAzOZoxqOx6JyXa9ePaux2kicMS4cXc2xHeOuW7RoIYMGDTLf54cfftD+/li/GzcDEnGs/01EREREREQUG5fHdKP/OhLZDRs2yLVr1+T777/XycqQCCMpbdKkiXnGcU/FMd1ERERERC8ujummF2qdbkuoQqOb94ULF+Sll17S6dIx0RmgOo0E/Pz589o1m4iIiIiIiMhTuZR0Y/xzaGio7N+/X9dAw81Ss2bN5I8//oirYyQiIiIiIiJKlFyavXz16tXy7rvvSuHChXWts+iwIDmq4ERERERERESezKVKd1hYmKRPn97udlTB6anfFgx7Zh9/IiIiIiIick8uVbpR4d68ebPd7b///ruUKFHieY6LiIiIiIiIyDOT7n79+unSXZ9//rnO1AZRUVG6rvZbb70lO3bs0OW4iIiIiIiIiDyZy0uGYW3s4cOHCx6OhBvrYuN3/Bw1apR88MEH4ukcnUKeiIiIiIiI3DPfcznphuDgYPntt9+0wo3EO2/evNKiRQudSI2enoRabT4VXz//hD4cIiIiIiKKxcoZ7LFLCbxO94MHD6RKlSrStWtX6dGjB7uRExEREREREcXVmO5kyZLJ2bNnbS4VRkRERERERETPOZFa/fr1ZdWqVa48lIiIiIiIiMhjuJR0Dxs2TE6ePKkzlW/dulUuXrwot27dinEjIiIiIiIi8mQuJd0vv/yyHD16VH755RepVq2a5MiRQ9KnTx/j5orQ0FBdkixnzpwSEBAgFStWlN27d5u337t3T3r37i3ZsmXT7VgzfPLkyVb7ePjwofTq1UvSpk0rgYGB0rJlS7l69ap5+82bN7VanyVLFkmaNKlkz55d94mB8JY2btwoJUuW1Pvky5dPpk+f7lJMRERERERE5JmcnkgNPvroo3gb092lSxc5fPiwzJw5U5PiWbNmSe3atTXJz5o1qwwYMEDWr1+v7bly5ZLVq1dLz5499b5NmjTRfWByt2XLlsn8+fN1Njkk1JhVfdu2bbody5o1bdpUlzbDxQHMvo4kHdX52bNn630wbr1hw4Y6WRwuLqxbt06PLXPmzFKvXr14iZ2IiIiIiIjcy3MtGRbXwsLCJCgoSBYvXqwJr6FUqVLSoEEDTZKLFCkibdq00S7utrZjunYk0kieW7VqpduPHz8uhQoVkh07dkj58uVtPvfXX38tX3zxhVy4cEH/jXXGkbjjAoDh9ddflzt37sjKlSsdiodLhhERERERJS5cMozieskwl7qXx5eIiAiJjIwUf3/rBBXdyDF2HNDdfMmSJTqOHNcLNmzYoOPL69atq9v37t0rjx8/1uq4oWDBgtoFHkm3LZcuXZKFCxdqV3kD7mu5D0CF294+iIiIiIiIiOKke7kB3bX/+usvzeyjoqKstqH7uWU12hGocleoUEFGjhyplemMGTPKnDlzNNHFmGqYOHGidOvWTcd0+/r6alfxKVOmSNWqVXX7lStXxM/PT1KlSmW1b+wL2yy1bdtWq+qosDdu3FimTp1q3ob74jHR94GrGbg/LgRE9+jRI70ZjDHiPj5e4uvzpDt+VJRJokwi3l7o5v60i77R7uPtJZY99yOjTGKy1R5pEnRRMPZriIh80nHBmXavf4/RgOfD8+L58LzR2+0dO2NiTIyJMTEmxsSYGBNjYkyJP6YozTFQDLTsFIw2W+0+Pj6a+6CAaAntT2KOdKgduQ32a9mO/eL+OCbLfMteu3GM9toZk1ecxhR9X3GadGPsM7p/79q1S58QB28EZPzuStINGMvdqVMnHb+NQDGRGZJjVLCNpHvnzp1a7cZka5s3b9bx2BjTHb0yHZsJEybIxx9/rJXywYMH63jxSZMmiavGjBkjI0aMiNFes3Q68Q9Ipr+HXA2TQ6fvyst5Uki2jE8T91MX7snfF+5LyYKpJF0qP3P7oVN3JeRamFQsmkYCkz09XbuP3pYbd8KlRun0Vh9CW/bdkIfhUVKnXAarY1jz5zXx9/OWKiXSWX1YoT1tKj8pUzi1uf3egwjZsv+mZE0fIK/ke9pNAs+H582bLbnkyx5obmdMjIkxMSbGxJgYE2NiTIzJXWJCL1gU+JAjoLhoyJMnj2TIkEGHn6IIZ9mrFgW/ffv2WSVoRYsW1WLgnj17rGIqXbq0hIeHy8GDB81tyHvKlCmjz4ehsQYU+ooVKyY3btyQM2fOmNvRpRlFShxrSEiIuR3DbPPmzavzU12/ft3cjngYU8E4j+n+/fsSb2O6O3fuLHPnzpWffvpJypUrp4Fh3e7cuXNrIovK9IoVK2JUip2BAFApxsRlGMONWcsXLFigJ2PRokVWY74xwRlODMZaY5K1WrVqye3bt62q3UjQMSs6JlmzBd3Xq1SpoicZz4nKORL+L7/80nyfadOm6T4sT2pslW7MjF73jTGS5N8x3Z51lZAxMSbGxJgYE2NiTIyJMTGmxBXTkh/fTfAKqjtWhd0xJuR7WDErtjHdLlW6ly9fLt27d9dkGMtvGcGhC/i3336rM4UjOUXXcFclT55cb0iekdCPHTtWx2rjhueyZJwcY1K1JEmS6GzjWCoMTpw4IcHBwdp13R7j8UbSjPsiTktr1qx55j6wtBhu0eHDxevfDwzz85lEoqK16X2xwQZ77cYH0fO0m+y1m2y32zt2xsSYnG1nTIzpWcfOmBgTY2JMzzp2xsSY4ismI9cwkq7o7LUjGXvediSFttqNRPJ52xmTxGlM9h4TYx/iAszgjbW6AetgAyrRBkxqNmTIEFd2rQk2rhwUKFBAl/IaOHCgdgXo2LGjJtOY7Axt6JaA6vWmTZtkxowZMn78eH08KuGoxKOreJo0afSKQ58+fTRZNmYuRzKNdbvRNQDHf+TIEd1npUqVdBkywFJh33zzjbz//vva3R0V9Hnz5umM5kRERERERETxlnRj/LQxKRkqu+gzf+DAAV37GjCzuKvreKM0j/HV6C6OpBnV6tGjR2vCDejWju3t2rXTseVIvLEdSbIBXdxxFQSPReUas45bjtVGwo7J19DVHNvRBRzV+UGDBpnvg67ySLBxn6+++krHC2CiNa7RTURERERERI5yaUw3qs4YyL5x40b9d9++feXHH3/UZBjdtNEVHMkpxmB7Mq7TTURERESUuHCdborrdbpdqnSj6zbGN6NKjEr38OHDtYu2MVs5JiHDLONEREREREREnsylpPuVV17RmyF16tSydu1aHeuNAetYb5uIiIiIiIjI07mUdNtjuUQXERERERERkadzKenGbOGOaN++vSu7dzsLf+j1zD7+RERERERE5J5cmkjN1vpo5h1azFoefSFxT+PowHoiIiIiIiJKXOJ1IjXMXB4dEuxz587p0lzBwcHy888/u7JrIiIiIiIiIs+udMemYcOGkitXLvn222/Fk7HSTURERERE5Nn5nv1+4s+hUaNG8uuvv8bHromIiIiIiIg8c/Zyw+nTp3UNb3qiyfvfi2/SgIQ+DCIiIiIicsLar3on9CGQpybdmzdvttmOdbqx7euvv5ZmzZo977EREREREREReV7SXb16datZyg0YHu7j4yOvvfaaTJw4MS6Oj4iIiIiIiMizku4NGzbEaEMSnjp1asmZMycnDSMiIiIiIiJyNemuVq1a3B8JERERERERkZuJl9nLn0doaKj069dPK+YBAQFSsWJF2b17t3n7vXv3pHfv3pItWzbdXrhwYZk8ebLVPh4+fCi9evWStGnTSmBgoLRs2VKuXr1qdZ9169bpvoOCgiRTpkzywQcfSEREhHn7xo0bpWnTppI5c2ZJnjy5FC9eXH755Zf/4BUgIiIiIiIij650586d2+aY7mfB/TGreWy6dOkihw8flpkzZ0qWLFlk1qxZUrt2bTl69KhkzZpVBgwYIOvXr9d2rAW+evVq6dmzp963SZMmuo/+/fvLsmXLZP78+bpuGpL0Fi1ayLZt23T7gQMH5NVXX5WhQ4fKjBkz5OLFi9KjRw+JjIyUcePG6X22b98uRYsW1WQ8Y8aM8scff0j79u11f1gSjYiIiIiIiCg2XibMfuakt99+W/bu3StHjhzRSnOBAgW0/cSJE5ocFylSREqVKhXjcdOmTXvmfsPCwrTyvHjxYmnYsKG5Hftq0KCBjBo1Svfdpk0bGTZsmM3tWJg8ffr0Mnv2bGnVqpVuP378uBQqVEh27Ngh5cuXlyFDhsiaNWusKuhLly6V1q1by7Vr1/QYbMExIQH/6aefnFosvVr3sVwyjIiIiIgokeGSYeRIvocc9FnzmrlU6cZyYEiMkbjWqlXLahvakLyOHDlSu2c7A927UW329/e3akc38q1bt+rv6BK+ZMkS6dSpk1a30Q385MmTMmHCBN2OiwGPHz/W6rihYMGCkiNHDnPSjTXEbT0HuqXj8Zid3Ra8mEje7cF+Ldcnx0kAX28vvUGUySRRJhH809uit4DR7uMt4iVP2yNNJjHZao8yCa6WGPs1v4bYiZPtaPGxaMeeI6PQO0HExytmu71jZ0yMiTExJsbEmBgTY2JMjMmdYrIcfurt7a035CuWdUus3oRevZb3Ndo15shIh9p9fX11v5bt2C/uHxUVpbfY2o1jtNce/dgZkzxXTNH3FadJ90cffSR9+vSJkXBDnTp1tDv3hx9+6HTSjQpzhQoVNGFHcouq8pw5czRZzpcvn94HS5F169ZNx3QjYLygU6ZMkapVq+r2K1euiJ+fn6RKlcpq39gXtkG9evXkyy+/1H3jAgHaP/nkE912+fJlm8c2b948rYx///33do9/zJgxMmLEiBjttQunEf+AZPp78K2HcjDknhTJGig50jxN/E9efaC30jlTSPogP3P7gZBQuXDrkVTOl1qC/J+cePjzzD9y/d5jqV0ojfj6PP2Q2Hjitjx8HCX1i6S1OoaVh2+KfxJvqV4gtbktItIkK4/clHSBSaRcnpTm9tCHkbLp5G3JljqpFMv2tOp/PTRc/jx7V/JlSCb5Mz6JhzExJsbEmBgTY2JMjIkxMSZ3jWnPnj3m9jx58kiGDBl0KCx66FoW+JB77Nu3zypBw1BV5CWW+4DSpUtLeHi4HDx40CrBK1OmjBb50EvXsjBYrFgxuXHjhpw5c8bcjuoq8qVLly5JSEiIuR09fvPmzStnz56V69evm9uRO+GGYiWegzFFxklM9+/fl3jrXo4X6rPPPpO+ffva3I6EFl24Hzx44Oyuddw3qtibN2/WoEqWLCn58+fXCvSxY8d0zDWSbPzEZGu43+DBg2XRokVa3Ua38o4dO1pVnKFs2bJSo0YN+fzzz/Xf48eP1wQZL1TSpEm1uzr2M3fuXO2+Hn2JNIzj/u6773RctzOV7uzZs0utd74wdy/31KuEjIkxMSbGxJgYE2NiTIyJMSW2mJZ90cPczqowY4oeE/I9TN4dW/dyl5JujKvGk6HLN2YHjz77eKVKlfQFwdUFVyEZRhCYPRxJMGYtX7BggV4BQYJtOeYbk6/hasjKlSt1kjVU4G/fvm1V7UaCjlnRMcmaAaGjso31xc+dO6fj03ft2qVXLwybNm3S50KSjgq7Mzimm4iIiIgo8eKYbkqwMd2YsAyTlKFEj0nVjK7ff//9t/z888+6PBdmDn8eWKYLNyTPq1atkrFjx+pYbdxw5cKScUXEmFQtSZIkuiQYlgozJngLDg7WruuWcKUD48IBXc1RlUZl3YDx4qhwozrubMJNRERERERE5PJEasuXL9fltD799FOrbVjP+scff9Rx065Ago0KNGZEP3XqlAwcOFCTe3QZRzJdrVo1bUMXd1SvUYnGsl+oRAOuNHTu3FmXFkuTJo1eccD4cyTcmETN8MUXX0j9+vU1gV+4cKF2l8e4baMbgdGlHF3okbwb48HR3x/7JSIiIiIiIoqNS93LLSEZPX/+vP6OJDhTpkzPsztNfDG2Gt3Fkdwi4R09erQm08bzYTvW575165Y+J6rQ6DZurB2OWcjfe+89rV5jjDUuAEyaNMnq2GrWrCl//fWXbsdA/o8//liXHTOggo+qfXRI+lEBdwS7lxMRERERJV7sXk5x0b38uZNuso9JNxERERFR4sWkm+Ii6bYeHO0gjJdG92xLP/30k66FjaW5UHWOPssbERERERERkadxKekePny4HDhwwPzvQ4cOSffu3XUNterVq8vXX3+tS3oREREREREReTKXkm6sl43Fwg0zZ87UcvqWLVvk119/la5du+rkZkRERERERESezNfVNbQt+6xjfWzMBJ4sWTL9N9a5njVrVtwdZSK3ZGz3Z/bxJyIiIiIiIvfkUqUb61nv3r1bf8eyXocPH5a6deuat2NW8aRJk8bdURIRERERERF5SqW7Xbt28sknn8jFixflyJEjkjp1amnatKl5+969eyV//vxxeZxEREREREREnpF0Dx06VMLDw2X58uU6Y/n06dMlVapU5io31rHu27dvXB8rERERERERUaLCdbpfgHXbiIiIiIiIyD3zPZcq3eScxmN+FN+kAQl9GEREREREFAfWDe+R0IdA7j6RGhERERERERHFjkk3ERERERERUTxh0k1EREREREQUT5h0ExEREREREb0oSfeDBw+kVKlSMnny5Hg5oNDQUOnXr5/kzJlTAgICpGLFirJ7927z9nv37knv3r0lW7Zsur1w4cIxjuXhw4fSq1cvSZs2rQQGBkrLli3l6tWrVvcJDg6Whg0bSrJkySRDhgwycOBAiYiIMG/funWrVKpUSfeB5ylYsKBMmDAhXmImIiIiIiIi9+T07OVIUs+ePSteXl7xckBdunSRw4cPy8yZMyVLliwya9YsqV27thw9elSyZs0qAwYMkPXr12t7rly5ZPXq1dKzZ0+9b5MmTXQf/fv3l2XLlsn8+fN1Cnck6S1atJBt27bp9sjISE24M2XKJNu3b5fLly9L+/btJUmSJPLpp5/qfZInT66PK1q0qP6OJLx79+76e7du3eIldiIiIiIiInIvLq3T/cYbb2g1eeHChXF6MGFhYRIUFCSLFy/WpNiAynqDBg1k1KhRUqRIEWnTpo0MGzbM5naskZY+fXqZPXu2tGrVSrcfP35cChUqJDt27JDy5cvLihUrpFGjRnLp0iXJmDGj3gfV8g8++ECuX78ufn5+No8PiTuSblwQcGbdtqqDxnPJMCIiIiIiN8Elwyje1+lGwvvaa6/JW2+9pdXf3Llzaxfs6NKkSePUftG9G1Vof39/q3bsG5VmQHfzJUuWSKdOnbS6vXHjRjl58qS56/fevXvl8ePHWh03oGt4jhw5zEk3fr7yyivmhBvq1asn77zzjhw5ckRKlCgR49j27dunVXEk9vY8evRIb5YnwXiRff/tGBCFm0nE28u6bz/asM3HS8SyD0GkScT0jHZjv+bX8N9LKM60e/27f4Pp3/3ba8dx4/jNx86YGBNjYkyMiTExJsbEmBiTB8VkOSzVx8dHewFbthnt+rjISIfafX19BfVQy3bsF/ePiorSW2zt3t7eerPXjn1b1lzttTMmcSim6PuK06T75Zdf1p/o8o2Ksj3RDzA2qHJXqFBBRo4cqZVpJMVz5szRJDlfvnx6n4kTJ2r3bozpRsB4QadMmSJVq1bV7VeuXNFKdapUqaz2jX1hm3Efy4Tb2G5ss4TnQfUbL+jw4cO1+7s9Y8aMkREjRsRor5MrlfgHJNPfg0MfyYHrD+SVdMkkR1BS831O3A6Tk7cfSumMgZIhWRJz+4Hr9yU4NFyqZE0hQX5PTjzsvBwq18MipE7OVOJr8emx4cI/8jAiShrkTm11DCvO3hZ/X2+pkT2luS0iyiQrzt2RdAG+Uj5zkLk9NDxSNobclexBflIsfXJz+7UHj+XPK/ckX2p/KZD66UUWxsSYGBNjYkyMiTExJsbEmDwppj179lgV+JB7oEhnmf9gmCryEsv7QunSpSU8PFwOHjxoleCVKVNGK6bopWtZfCxWrJjcuHFDzpw5Y25HdRX5EnruhoSEmNvR4zdv3rw6HBg5jGVOgxuKlXgOQ548eXR+KwzvRa9jxuRcTPfv35d4616O5NORMd0ff/yxs7uW06dPaxV78+bNGlTJkiUlf/78WsE+duyYjBs3TpNs/MRka7jf4MGDZdGiRVrdxkWAjh07WlWcoWzZslKjRg35/PPPNWk/f/68rFq1ymqCOHQdX758uXZVN+DkYvK2nTt3yqBBg+Sbb76Rtm3bOlzpzp49u9RE93L/J29wXiVkTIyJMTEmxsSYGBNjYkyMKXHHtHzo00Icq8KeG9Pdu3d14u146V6OpDu+4CrGpk2b9KoBgsicObOO4cYVC1ypGDJkiCbYxphvXJnYv3+/JuFIujE5Gq5I3Llzx6rajdnLsQ3wc9euXVbPa8xubtzHgK7zgO7ouA9it5d0J02aVG/R6WmNdmnDeDNHhzezONEeEQftJifbjQ+oGO2MiTExJsbEmBRjYkz22hkTYwLGlPhjQuIVna02Z9uRFNpqNxLJ5203EklH2xmTPDMme4+Jl3W6kdk725U8Nqg6I+G+ffu2VqSbNm2qY7Vxi/5iG1dEjEnVMAv5unXrzNtPnDihS4Sh6zrg56FDh+TatWvm+6xZs0avTmAJMnvwHNEr6ERERERERERxnnSjz3v9+vV1CTGU1FGdBvTNR4KMCc5cgQR75cqV2q0biTC6hKP/PbqMIymuVq2arqmN/eM+06dPlxkzZkjz5s3NYwE6d+6sS4tt2LBBu6XjsUi0MYka1K1bV5NrTAR34MABfc4PP/xQ1/Y2KtXffvutLF26VP7++2+9/fjjj1pNf/PNN119yYiIiIiIiMjDuNS9HLN416xZU9fNRhI6depU87Z06dJp5fv777+X6tWrO71vPBZjtDF4HrOft2zZUkaPHq3Va5g7d65ub9eundy6dUvHdWN7jx5Pp+3HTOaohuOxqExjZvJJkyZZVcb/+OMPna0cyTiq6h06dJBPPvnEqqqN50Fij24D6PaO8eCYrZ2IiIiIiIgo3iZSQzKN5BiTi4WGhurscGvXrtVEHDCD988//2w1G50n4jrdRERERETuh+t0kzPrdLvUvXz37t3aZRtdsW3NYo4KePSlt4iIiIiIiIg8jUtJN7p6W07XHt3FixclMDDweY6LiIiIiIiIyDOTbkxItmDBApvbsNTXtGnTdMIzIiIiIiIiIk/m0kRqGLONpBprZRtrVmMWcIzhxgzf169fl2HDhsX1sSZaSwd3fmYffyIiIiIiInJPLk2kBuvXr9fZv7GcliXM8o3ZzFnpdnxgPREREREREblnvudSpRswU/mJEydk3759curUKR3jjYS7VKlSNidXIyIiIiIiIvI0LifdhhIlSuiNiIiIiIiIiOIo6X706JFMmTJFli9fLufOndO2XLlyyauvvipdunQRf39/V3ftdpp897P4+nOdbiIiIiIisra2b5eEPgR6EWcvDwkJkeLFi8u7776rE6ilT59eb/gdbdiG+xARERERERF5MpeS7l69esn58+dl3rx5uib3pk2b9Ibff/31VwkODtb7EBEREREREXkyl7qXr1u3Tvr37y+tWrWKse21116Tv/76SyZOnBgXx0dERERERETkWZXuoKAgyZAhg93tmTJl0vsQEREREREReTKXku6OHTvK9OnT5cGDBzG23bt3T6ZNmyadO3d26YBCQ0OlX79+kjNnTgkICJCKFSvK7t27rfbfu3dvyZYtm24vXLiwTJ482WofDx8+1O7tadOmlcDAQGnZsqVcvXrVvP3mzZtSv359yZIliyRNmlSyZ8+u+8Q6a4bLly/LG2+8Ifnz5xdvb289JiIiIiIiIqJ4716OidKWLVsmBQsWlA4dOki+fPm0/e+//5YZM2ZImjRppGjRorJw4UKrx7Vo0SLWfWPm88OHD8vMmTM1KZ41a5bUrl1bjh49KlmzZpUBAwbI+vXrtR2zpa9evVp69uyp923SpInuA13fcXzz58/XxcqRUOO5t23bptuRRDdt2lRGjRqlE8BhnXEk6bdu3ZLZs2ebZ2fHtg8//FAmTJjgystEREREREREHs7LZDKZnH0QktZYd+zlJZa7xr8jIyOf+ZiwsDDtlr548WJp2LChub1UqVLSoEEDTZKLFCkibdq0kWHDhtnc/s8//2iyjOTZGHN+/PhxKVSokOzYsUPKly9v87m//vpr+eKLL+TChQsxtlWvXl0vNHz55ZfiDFTOkfRX++xrLhlGREREREQxcMmwxMvI95CDpkiRIm4r3Rs2bJD4EBERoYl59DW+0Y1869at+ju6my9ZskQ6deqk1e2NGzfKyZMnzdXovXv3yuPHj7U6bkBFPkeOHHaT7kuXLmlVvlq1avESFxEREREREXkml5Lu+EpOUeWuUKGCjBw5UivTGTNmlDlz5miybHRhx6zo3bp10zHdvr6+WnWfMmWKVK1aVbdfuXJF/Pz8JFWqVFb7xr6wzVLbtm21qo4Ke+PGjWXq1KnPdfzoko6bwRgj7uv15AZRJpGofwfTe//bZtnu4yVi0SyRJhHTM9qN/Roi/u1c4Ey717/7N5j+3b+9dnvHzpgYE2NiTIyJMTEmxsSYGBNjci4mFB71376+2lPYsncwegv7+PhIVFSU3mJrR26Em7127NuyN7K9duwbz2Ecm2W7xhytB7O9dnePKSLavuI06Y5PGMuNKjbGbyPQkiVLanKMCraRdO/cuVOr3ZhsbfPmzToeG1Vvy+q2I1Ad//jjj7VSPnjwYB0vPmnSJJePfcyYMTJixIgY7bXTBol/smT6e3DYYzkYGiZFggIkR0AS831O3n+kt9Ipk0l6v6en5cDdMLnw8LFUTh0oQb5Pu/X/eeeBXA+PkNrpgsTX6+k7eePNe/IwKkrqp7fu3rDy+l3x9/aW6mkDzW0RJpOsvB4q6fx8pVyqJ8cHoRFRsunWPcnmn0SKpXjaLR7Ph+fNlzyp5E+e1NzOmBgTY2JMjIkxMSbGxJgYE2NyLaY9e/Zo3lOmTBntpoyhsZY9fosVKyY3btyQM2fOmNvRpRlFSvTYDQkJMbdjmG3evHnl7Nmzcv36dXM7Cpa4Ie/Bcxjy5Mmjq1JhTi0UIi17CqOIuW/fPqukE/N2ocCJY7ZUunRpCQ8Pl4MHD5rbPCGm+/fvS7yN6f4vIABUijNnzqxjuDFr+YIFC/RkLFq0yGrMNyZfw4lZuXKlTrJWq1YtuX37tlW1Gwk6ZiDHJGu2oPt6lSpV9CTjOV0Z022r0o2Z0Wt9/nRM94tyRc0drxIyJsbEmBgTY2JMjIkxMSbGlNhi+qPn2x5RFXbHmJDvYcWseBnT/V9Injy53pA8r1q1SsaOHatjtXGLPpGbcXKMSdWSJEki69at06XC4MSJExIcHKxd1+0xHm+ZNDsLy4/hFp2+saJd2oj69w0dHd60tthrj4iDdpOT7faOnTExJmfbGRNjAsbEmOy1MybGBIyJMbl7TEjiDEgKLf8dPZF83nYjkXS03daxONvu5cYx2XtMjH3ICwYJNq4cFChQQJfyGjhwoHYFwNrgSKYxnhxt6JaA6vWmTZt0mbLx48fr41EJxxrh6CqOpctwxaFPnz6acBuTqC1fvlzX7UbXAKzjfeTIEd1npUqVdBkyw/79+/UnquzoyoB/o+sB1gYnIiIiIiIiSnRJN0rzGF+N7uJImlGtHj16tCbcMHfuXN3erl07XVcbiTe29+jRw2qsNq6C4LGoXNerV89qrDYSdky+hq7m2I4u4FjHe9CgQVbHUqJECfPvGFOOZcjwfOfOnftPXgsiIiIiIiJK3OJkTDcSZVSM7ZXwPRXX6SYiIiIiomfhOt3uv053zE7xDsLsbvXr15dkyZLp4HF08wbMQte0aVNdP5uIiIiIiIjIk7mUdG/fvl0qV64sf//9t7z55ptWs8ilS5dOM/3vv/8+Lo+TiIiIiIiIyDOS7iFDhugaakePHpVPP/00xvYaNWrIn3/+GRfHR0RERERERORZE6nt3r1bxowZo8tjYWbv6LJmzSpXrlyJi+NzC0ve6fDMPv5ERERERETknlyqdGMmccsu5dFdvHhRJ1YjIiIiIiIi8mQuJd1Y73rBggU2t92/f1+mTZum62kTEREREREReTKXku4RI0bo7OUNGzaUFStWaNuBAwdk6tSpUqpUKbl+/boMGzYsro+ViIiIiIiIyDPW6V6/fr288847OoO5pbx582ryzUq34+u2ERERERERkXvmey4n3Yb9+/dr4o0x3ki4Uen28vJ6nl263Umo+8MkSRIQkNCHQ0REREREbuaPN99O6EPwWHcdTLpdmr3cUvHixfVGRERERERERHEwpnvOnDny9tv2r6h07NhR5s2b58quiYiIiIiIiDw76Z4wYYKu0W1PQECA3oeIiIiIiIjIk7mUdJ84cUJKlChhd3uxYsXk+PHjz3NcRERERERERJ6ZdGPutTt37tjdfvv2bXn8+LFLBxQaGir9+vWTnDlzasW8YsWKsnv3bvP2e/fuSe/evSVbtmy6vXDhwjJ58mSrfTx8+FB69eoladOmlcDAQGnZsqVcvXrV5vPdvHlT94XJ3yxjWrhwodSpU0fSp0+vg+IrVKggq1atcikmIiIiIiIi8kwuJd2ocmNcd3h4eIxtjx49ktmzZz+zEv4sXbp0kTVr1sjMmTPl0KFDUrduXaldu7ZcvHhRtw8YMEBWrlwps2bNkmPHjmmCjiR8yZIl5n30799fli5dKvPnz5dNmzbJpUuXpEWLFjafr3PnzlK0aNEY7Zs3b9ake/ny5bJ3716pUaOGNG7cWPbt2+dSXEREREREROR5XFoybMWKFdKoUSMpX768DBo0SF5++WVtP3z4sIwZM0Z27dqlSXDDhg2d2m9YWJgEBQXJ4sWLrR6LZcgaNGggo0aNkiJFikibNm1k2LBhNrdjunZUp5H4t2rVSrejq3uhQoVkx44desyG7777Tn799Vf56KOPpFatWlqhT5Uqld3jQ5x4btzfEVwyjIiIiIiI4hOXDHPTJcOQ4P7444/St29fadasmbkd+TuS5ilTpjidcENERIRERkaKv7+/VTu6kW/dulV/R3dzJPSdOnWSLFmyyMaNG+XkyZPmidtQlUbXdlTHDQULFpQcOXJYJd1Hjx6VTz75RP788085c+ZMrMeGdcjR9T1NmjR274MqP26WJwF8/r0BrnBE/dvFwHI186h/txn3c7U98t+fzrR72ejy4Ew7Y2JMjIkxMSbGxJgYE2NiTIwpYWJCDmXw9vbWG3IX3KK3I9eyrLnaa/fx8dHht5b7Ntr1uSMjHWr39fXV/Vq2Y7+4f/RjtNf+IscUfV9xvk43lgxDl210BT99+rS25c2bV7uDI/F2BR6HsdMjR47UynTGjBm1GzuS5Xz58ul9Jk6cKN26ddNx2AgYLyiS/KpVq+r2K1euiJ+fX4yKNfaFbYDEuG3btvLFF19oMu5I0j1u3DgdT966dWu790GVf8SIETHaq/snE/+AZPr7xYgIOfL4kRRKklSy+j59+U8/DpfTEY+luJ+/pP33BMOR8EdyMTJCyicNkOTeT99qex89lJtRkVLdP7n4WHxKbHv4QB6aTFIrILnVMawLuy/+Xl5Syf/JcUCkSWTdw/uSxttHSiV9eqHjflSUbHsUJll8fOVlv6ez1N+MjJS94Q8lj28SyZvEz9zOmBgTY2JMjIkxMSbGxJgYE2NKmJj27NljbkePX+RkZ8+elevXr5vbkTvhhmIlqrKGPHnySIYMGbTHMnodWxYtkU9haK1l0olhuci1LJ8TSpcurUOPDx48aJW0lilTRp/PcpJtFFQx8faNGzes8jBUjJEDYmhwSEhIoojp/v37Em/dy+MTEnhUsTGmGkGVLFlS8ufPrxVsjOFG8oskGz8x2RruN3jwYFm0aJFWt9GtHOuEW1acoWzZsjou+/PPP9dx4TiZc+fO1W2olmObve7l2GfXrl2127tlBd2RSnf27NmlgUX3cne5ouaOVwkZE2NiTIyJMTEmxsSYGBNjSmwxLXr9zURRFXbHSjfyPUzeHSfdy4ODg/UnqsKW/46NcX9n4CoGJj/DVQMEkTlzZh1HjSsWuFIxZMgQTbCN7uu4MrF//35NwpEQZ8qUSa9IYCZyywQas5djG6xfv14naVuwYIH+2zgZ6dKlk6FDh1pVq5GYY3I3TMr2rIQbsHa5rfXLI228SZ7+ucS873/dboqjdsbEmJxtZ0yMKa6O0dl2xsSY4uoYnW1nTIwpro7R2XbG5L4xIQmMzkg8ozMSSUfbbe3b2XYvLy+njtHZ9oSMyd5jYuzDkTvlypVLd4ykF6V349+xiX5VwBnJkyfXG6rPWKpr7NixOlYbt+gvtnFFxJhULUmSJLJu3TpdKsxYVxwXCtB1HX777TerrgZYkgzV9S1btmjSb0DXdrQj8XZljDoRERERERF5NoeS7p9++kmTbCSzlv+OD0iwUXkuUKCAnDp1SgYOHKj979FlHM9frVo1bcNYAHQvR1V8xowZMn78ePNYACwDhi7kmPQMZf4+ffpowm1MomaZWAPGEwDGEBjVcXQp79Chg3z11VdSrlw583hwPC+eg4iIiIiIiChOkm5Mmvasf8cl9IfHGG0MnkfSjGr16NGjzQk/qs7Y3q5dO7l165Ym3tjeo0cP8z4wkzmq4XgsxljXq1dPJk2a5NRx/PDDD9rfv1evXnozIBGfPn16HEZMRERERERE7srpidQePHigk4NhfW5UnMk+rtNNRERERETxiet0v/jrdMcciR6LZMmS6YBxjLcmIiIiIiIiIom7pBvQbRszf79gq40RERERERERvVAcm+M8mtdff1169uypa1tj/WrMZo4JxqLDGttEREREREREnsrpMd1guWSXrVnMsUu0P8+SYZ7Ux5+IiIiIiIjcM99zqdI9bdq05zk2IiIiIiIiIo/gUtKNZbOIiIiIiIiIKB6SbkvXrl2Tc+fO6e8Y250hQ4bn3SURERERERGR585eDuvWrZPSpUtL5syZpUKFCnrD72hbu3Zt3B4lERERERERkadUuhctWiSvvfaaZMyYUd5//33Jnz+/tp84cUJmzpwpDRo0kHnz5knz5s3j+ngTpR5r54lf8mQJfRhEREREREQOm17vjYQ+BM+dvfzll1+WJEmSyJYtWyQoKCjGDG6VK1fWmcuPHDkinsyYza7tb1OYdBMRERERUaLCpDtuZi93qXv5mTNnpGPHjjESbsCTde7cWc6ePevKromIiIiIiIjchktJd8GCBXUCNXuuXr1q7nJORERERERE5KlcSrrHjh0rkydPlsWLF9sc7/3999/LuHHj4uL4iIiIiIiIiDwr6Z44caKkT59eWrRoIdmzZ5caNWroDb+3atVKlw37+uuvpUmTJuZb06ZNY91vaGio9OvXT3LmzCkBAQFSsWJF2b17t3n7vXv3pHfv3pItWzbdXrhwYU3+Lf3www9SvXp17ebu5eUld+7cifE8J0+e1ONJly6d3g9j0Dds2GB1HzxvrVq1JFWqVJI6dWqpV6+eHDhwwJWXi4iIiIiIiDyUS0n3wYMH5dGjR5IjRw7x9fXVdbpxw+9oe/jwoRw6dCjGLTZdunSRNWvW6AzouH/dunWldu3acvHiRd0+YMAAWblypcyaNUuOHTumCTqS8CVLlpj38eDBA6lfv74MGTLE7vM0atRIIiIiZP369bJ3714pVqyYtl25csWc3GMfiOXPP/+UrVu36vh1JN6PHz925SUjIiIiIiIiD+TS7OXxISwsTBNbdFlv2LChub1UqVK6BNmoUaOkSJEi0qZNGxk2bJjN7ZY2btyo1ffbt29rtdpw48YNrdJv3rxZqlSpYq6wo+KNhB9J/p49e6RMmTISHBys1XvARYCiRYvK33//Lfny5XMoJs5eTkREREREiRVnL4+b2ctdWqc7PqDyjGXG/P39rdrRjRyVZkB3c1S1O3XqJFmyZNHEGl3FJ0yY4PDzpE2bVgoUKCAzZsyQkiVLStKkSXUMOrrEI4EHbMf9fvzxR62Y47jwe6FChSRXrlx2943qP26WJwF8TE9uECUiJi9c7bDuZmC0e5tEvBxoj8T/eT3dr1U7nlMcbMdOcXwWbdhllI1jtNfOmBgTY2JMjIkxMSbGxJgYE2Nyv5iQo1ny8XlydMiPHGlHT2iTyWTVjiHAuH9UVJTeYmv39vbWm7127NuyjmyvHfvGc8RlTNH39cIn3ahyV6hQQUaOHKnJbcaMGWXOnDmyY8cOc2UZY8m7deumY7oRLF7MKVOmSNWqVR1+HrzQa9eulWbNmulzYh9IuNFtHWO3jWNBQo/74HjgpZdeklWrVunz2jNmzBgZMWJEjPaSEUkl4HFS/f2ad6Sc8Y2Q3JG+kiHq6VsqxCdCQnwipUBEEklpevoWOeMTIdd8IuWVCD8JwDviX8d8H8s/XlFS8nFSqzfmgSThEi4mKfPv8xl2J3kkfuIlxR77mdvw57Pb75E+X6GIJOb2MC+T7id9lI/kiXwaL57vWJLHkjXKR7JZtDMmxsSYGBNjYkyMiTExJsbEmNwvpn379lklnej56+fnpz2DLZUuXVrCw8N1GLJl0orew//8848cP37cqqiK4b3ogYylqA2oGCMPvHTpkoSEhJjb0Us5b968uiT19evXze3ICXFDERbPYciTJ4/md4cPH9be1JYrcKEHdFzGdP/+fUlU3cvh9OnTWsVG128EhEo0lh7DuGuM4caM6Eiy8ROTreF+gwcP1hnT0S3cke7lCBfJNMZmDx06VE/61KlTtYKOydMyZ86sJweTseHEYMw4TgqeEy8s7oPHOFrpRvf0Nxc87V7OK2qMiTExJsbEmBgTY2JMjIkxMabEENPUWq2tjpGVbrGKCfkeekjH1r38hUq6DbhigACQAGMMNyY2W7BggV79QIJtOeYbk6/hSggq1Y4k3evWrdMJ2tBu+cKgkt25c2cZNGiQuVv55cuX9YQBrnKgEo5tr7/+ukNxcEw3ERERERElVhzTHTdjul2avTy+JU+eXBNuJMbo0o3lvVCZxs1Igg3G1RBHYXZziL4f4+qJcR/8G1dCLLfj3848FxEREREREXm2FyrpRoKNijX662MmcVSq0cW7Y8eOeuWgWrVqMnDgQK1i4z7Tp0/XCdGaN29u3geW/dq/f7+cOnXKPOs4/n3r1i39N8aNo2LdoUMHXXcbYwCwT+zPqKDXqVNHE/5evXppt/YjR47oMaArAY6JiIiIiIiIKNEl3SjLI9FFot2+fXupXLmyJuJJkjyZTGDu3Lk6cL1du3ZSuHBh+eyzz2T06NHSo0cP8z4mT54sJUqUkK5du+q/Mcka/m2s5Z0uXTpN7NFlvWbNmjpAHrOjY6kyDOgHPP/SpUt10DySdCwthgH9eBwq8ERERERERESOcGlMNx7yww8/6PhmzDiHqnCMHdsYpO5pOKabiIiIiIgSK47pTsB1ut9//30ZP368FC9eXN58803zUltERERERERE9JxJ988//ywtW7aUefPmufJwIiIiIiIiIo/g0phurGMdfV1sIiIiIiIiIoqDMd3NmjWT9OnTy5QpU5x9qEdxtI8/ERERERERJS7xuk73pEmTZOfOnfLpp5/KzZs3n+c4iYiIiIiIiNyWS5XuoKAgiYqKkocPH+q//f39xcfHx3rHXl6a8XsyVrqJiIiIiIjcU7zOXo5J1JBUExEREREREZHEbdI9ffp0Vx7msb7Z/4f4B3KdbiIiIiIiIhhQspl4CpfGdBMRERERERFRPFW6DSEhIbJv3z7tw44x3tG1b9/+eXZPRERERERE5HlJNyZQ69Chg/z222+abGN8tzEfm+VYbybdRERERERE5Mlc6l4+ZMgQWbhwoYwePVo2btyoCffPP/8sq1evlgYNGkixYsXkwIEDcX+0RERERERERO6edC9YsEA6duwoH3zwgbz88svaljVrVqldu7b88ccfkipVKvn2229dOqDQ0FDp16+f5MyZUwICAqRixYqye/du8/Z79+5J7969JVu2bLq9cOHCMnny5BiV+F69eknatGklMDBQZ1u/evWqeTvWFq9fv75kyZJFkiZNKtmzZ9d9Ysp3S7/88oteQEiWLJlkzpxZOnXqxHXJiYiIiIiIKH6T7mvXrknZsmX1dyS+cP/+ffN2JLmohLuiS5cusmbNGpk5c6YcOnRI6tatq8n8xYsXdfuAAQNk5cqVMmvWLDl27Jgm6EiYlyxZYt5H//79ZenSpTJ//nzZtGmTXLp0SVq0aPE0aG9vadq0qT7m5MmTOhv72rVrpUePHub7bNu2TbvHd+7cWY4cOaL72rVrl3Tt2tWluIiIiIiIiMjzuJR0Z8yY0VzxRRU4derUcuLECfN2VIxRbXZWWFiYjhMfO3asVK1aVfLlyyfDhw/Xn999953eZ/v27TqevHr16pIrVy7p1q2bVqOREAMmdfvxxx9l/PjxUrNmTSlVqpRMmzZNH7dz5069D473nXfekdKlS2tFvVatWtKzZ0/ZsmWL+Vh27Nih+3/33Xcld+7cUrlyZenevbv5eYiIiIiIiIjiJekuV66cbN261fzvxo0byxdffKHdsVGhnjBhgpQvX97p/UZEREhkZKT4+/tbtaOabjwfupujQo3KN8aSb9iwQavVqIjD3r175fHjx1odNxQsWFBy5MihibQtqISjMl+tWjVzW4UKFeTChQuyfPlyfR50T0e3+ldffdXpuIiIiIiIiMgzuTR7Oaq/6G796NEjHRM9cuRITWjfeust3Z43b175+uuvnd5vUFCQJrvYX6FChbSiPmfOHN03qt0wceJErW5jTLevr692FZ8yZYpWxuHKlSvi5+en48otYV/YZqlt27ayePFirbDjwsHUqVPN2ypVqqQXEdq0aaNVe1wQwH2eNVYdrwduBmOMuFfUkxuYMLk7biYRrycTvlu1a5sz7dFWatN2bDI52O4d81iwX72/g+2MiTExJsbEmBgTY2JMjIkxMSbG5ExMUVFRVstOYxUsHx+fGO3I93Cz146irbGS1rPasW88B/I6S2gH3N+RduSg2C/ao+8rTpNudLXGzYCJyDC+GmOwcXCoLONgXIFKOSYsw8Rs2FfJkiU1OUYF20i60U0c1W50Dd+8ebNOmoZJ0Syr245ARf7jjz/WSvngwYN1vPikSZN029GjR6Vv377y0UcfSb169eTy5csycOBAHfeN7uu2jBkzRkaMGBGjPf0tkWT/5uJh/iL/BImkvCcSYNED/14ykXvJRVLdFUka/rQd98Vj0t4W8bU437dSioT7iWS4Zf1HfCO1SKS3SMZo871dTSviEyWS7vbTNvyxX00n4vdYJM0/T9sjfERupBEJeCSSMvRp+yM/kdspRQIfPLkZGBNjYkyMiTExJsbEmBgTY2JMjMmZmG7cuCFnzpwxt6dMmVILr+iFHBISYm5Pnz69FnXPnj0r169fN7ejCIsbcjkMMTbkyZNHMmTIIIcPH9biqgE5Kgqz+/bts0qkixYtqkXbPXv2WMWEocjh4eFy8OBBcxvy0zJlyujzHT9+3Gpes2fxMlmm/y8QBIBKMWYNR7UZs5ajezdOxqJFi6Rhw4ZWk6/hxGCCtfXr1+sY7du3b1tVu5GgY9I1TLJmC7qvV6lSRU8ynhNVe1S4UdG3dx9HKt24IPHphl/EPzBZorv65I5X1BgTY2JMjIkxMSbGxJgYE2NiTAkfU7/iTRJ9pRv5HlbMQhKeIkUK6+AtHyMOQDUZjC7cxr9jY9zfFcmTJ9cbkudVq1bp5GoYq40bXkRLxskBTJyWJEkSWbdunc6iDpjkLTg4WLuu22M83kiaHzx4EKNab7zw9q5ToKs9btHhj03/4MTGGyX6fY03iqPtdkbl29q33Xav+G1nTIzJbjtjYkyM6Uk7Y2JMjIkxMSb7x86Y3DIm73+T4+dtN3I0R9vt9ch2ph3JO9od7d3t0L0wUzh2jPI8Su/Gv+1BUort0a8KOAIJNh5foEABOXXqlHbpRlcArAuOZBqTnaENk6uheo0lwWbMmKGzlQMq4VjmC13F06RJo1cc+vTpowm3MbkbJkfDxGjoGoB1vLEkGPaJcdyYsRwwfhvLg2HWdKN7OSrlWCoNXdmJiIiIiIiI4iTpxgzhgITb8t/xAaV5jK9Gd3EkzahWjx49WhNumDt3rm5v166d3Lp1SxNvbLdcYxtjtXEVBI9F5RpJszFWG5CwY/I1dDXHdnQBxzregwYNMt/n7bffltDQUPnmm2/kvffe067qWILs888/j7fYiYiIiIiIyL28sGO63QH6+KPyPnrT0zHdREREREREnm5AyWbiLvlebGO6XVqnm4iIiIiIiIjiqHs5lvByFsZ021tai4iIiIiIiMgTOJR0Yxmu6BOnYXZvY5201KlT60/MNG6spYaZx4mIiIiIiIg8mUNJ97lz56z+ffToUalbt64MGTJEZ/ROly6dtmOBc0xihtnEly1bFj9HnAj1Lt7omX38iYiIiIiIyD25NJFarVq1JE+ePDoDuC1Yauvs2bOydu1a8WSODqwnIiIiIiKixCVeJ1LbuXOnlCxZ0u72EiVK6H2IiIiIiIiIPJlLSTfWz16xYoXd7cuXL9d1rYmIiIiIiIg8mUtJd/fu3eWPP/6Qpk2bahdyjPnGbc2aNdKkSRNNyHv06BH3R0tERERERETkbhOpRffhhx/Ko0eP5IsvvtDk22qHvr4yaNAgvQ89sSl4jyQP4mzuREREREREjqiZs5x49ERqBsxWjup2cHCw/jtnzpxSu3Zt82zmns4YWL/k0Dom3URERERERG6UdDs6kZpLlW4Dkuu2bds+zy6IiIiIiIiI3JZLY7ohMjJS5s6dq+O7mzdvLocOHdJ2ZPkLFy6Uq1evxuVxEhEREREREXlG0n3nzh2pVKmSvPHGGzJnzhxZsmSJXL9+XbcFBgbKu+++K1999VVcHysRERERERGR+yfdmCjtyJEjsmrVKjlz5oxYDgv38fGRVq1a6bJhzgoNDZV+/frp2PCAgACpWLGi7N6927z93r170rt3b8mWLZtuL1y4sEyePNlqHz/88INUr15d+9R7eXnpBQJbli1bJuXKldP9pE6dWpo1a2a1Hc9bq1YtXfoM2+vVqycHDhxwOiYiIiIiIiLyXC4l3b///rv06dNH6tSpo4ltdPnz59clxJzVpUsXnZht5syZ2l29bt26OjHbxYsXdfuAAQNk5cqVMmvWLDl27Jgm6EjCUWk3PHjwQOrXry9Dhgyx+zy//fabvPXWW9KxY0dNpLdt26ZVe8vkHvvIkSOH/Pnnn7J161YJCgrSxPvx48dOx0VERERERESeyaWJ1DBuO3fu3Ha3IzGNiIhwap9hYWGaDC9evFiqVq2qbcOHD5elS5fKd999J6NGjZLt27dLhw4dtJIN3bp1k++//1527dql64MDEnHYuHGjzefBcfXt21eXO+vcubO5HVVzw/Hjx+XWrVvyySefSPbs2bXt448/lqJFi8r58+clX758TsVGREREREREnsmlpDtv3rzy119/2d2+evVqqyTWEUiGMTmbv7+/VTu6f6PSDOhujqp2p06dJEuWLJpYnzx5UiZMmODw8+C4UTn39vaWEiVKyJUrV6R48eKahBcpUkTvU6BAAUmbNq38+OOPWjHHceH3QoUKSa5cuezuG2uX42Y5hTyYokx6M3h5e1n9+0mjaK+BuGh/8qTiULseC4YHxEU7Y2JMjIkxMSbGxJgYE2NiTIyJMcVBTBH/FnGRt+EWFRWlN4PRjlzNcrizvXYMg0ZM0YvDaAfc35F2X19f3S/aHS00u5R0oxv4Bx98oBVnjHsGBICEE9VhdAHH2GpnoPt2hQoVZOTIkZrcZsyYUSdp27Fjh7myPHHiRK1uY0w3gsWLOWXKFHNl3BEYg25U0cePH69J9P/+9z+NBQl8mjRp9FiQ0GOcN44HXnrpJR3Djue1Z8yYMTJixIgY7Q+D74h38ifd0n2D/MQvfXJ5fPOBRISGm++TJLW/JEkdIOFX70lk2NOT55cumfimSCqPLt6VqMdP/8iSZgoUn2RJ5GHwP1ZvBv9sKcTL11vCzlmPZQ/IlUpMEVHyMOTJhQDjjxrtUWER8ujKPXO7dxJv8c+eUiJDwyX8xgNzu0+AryTNHCQRdx7K49sPze2MiTExJsbEmBgTY2JMjIkxMSbGFJcx7bm6R9vTp0+vRd+zZ8+aJ+8G5IS4IYdDT2xDnjx5JEOGDHL48GHtTW0oWLCgzte1b98+q0QavZn9/Pxkz54nz2coXbq0hIeHy8GDB58eo4+PlClTRp8PvaPv378vjvAyWab/DsJDkPyi+osDx2RlSJJv3ryp2T6WEUOXcGedPn1aq9ibN2/WgEqWLKnjw/fu3atjuMeNG6dJNn5isjXcb/DgwbJo0SId+20JSXONGjXk9u3beoyG2bNnS7t27bRbOmIAXCzACUMXdhw7Tg6ScJwYjBnHScFz4oXFBGuovjta6Ub39MUH1kryoORud/UpRjtjYkyMiTExJsbEmBgTY2JMjIkxxUFM1bKXfuEr3cj30EMaSTgm8o7TSjcOFskvxlcvWLBA/v77b30BcAWidevWTlWeLeHxmzZt0isGCCBz5szSpk0bvVqBRBhdvZFgN2zY0HxVYv/+/ZoQR0+67cE+wbL7e9KkSfU5goODzYk5JoJDlR0nzGjDLOYYc/7666/b3Df2g1t0+OPBLXqbLXHVbv7Dd6BdJ8OLi3bGxJh0g+1mxsSYGBNjerLBdjNjYkyMiTE92WC7mTF5Xky+0XoYG8l0dEZy7Gi7vZ7LzrTjGNH+rF7QVvuQ51C5cmW9xbXkyZPrDVVqdOkeO3asTs6GW/QXGi+m5RWP2JQqVUoT4xMnTpiPHftFko3quTEDOp5HT/i/jH8781xERERERETk2Z4r6Y5rSLBRqsdEZqdOnZKBAwdqF28s7ZUkSRKpVq2atqF7NxJkVMVnzJihY7MNmBgNNzwesPQYxmhj+S+M10bZv0ePHjobObp+Yz+YRA1ee+01/Yml0PA8vXr10qXRkGh/9tlneiUDXdaJiIiIiIiI4jTpNpbkchSqwuiK7Qz0hccY7ZCQEE2QW7ZsKaNHj9aEG+bOnavbMSYbS3ohYcZ2JNGGyZMnW01mZnR1nzZtmrz99tv6O5JsJNBYqxvd1suVKyfr16/X7uOARB9LlWE/mNzNmOkcE8QZ3dOJiIiIiIiI4mwiNSSeWM4rU6ZMVgPS7e7Yy8s8U7inwrj0lClTypJD66wmUiMiIiIiIiL7auYsJ4kl34uzidSyZs2q61unS5dO3njjDZ1MDAk4EREREREREdkWc/o3Oy5cuCAbNmzQbtZYuxrjoTFjOLpth4aGOrobIiIiIiIiIo/hcNINmMgM61tjojIsFYY1ybCONRYfb9GihbZZrlNNRERERERE5MkcHtNtz71792ThwoU6gdmff/4pw4cPl2HDhsXdESZijvbxJyIiIiIiosQlzsd024KqNpb5wizl+/bt04nWcuXK9Ty7dCvG9QycDCIiIiIiInIfRp4XWx3b6aQba1avWbNG5syZI7///rs8ePBAx3ZPmTJFmjdvLsmTc5Zuw82bN/Unxr8TERERERGR+8EcZ6h4P3f38u3bt8vs2bNl/vz5mkyWL19eZzFv3bq1zmhOMd25c0fX/g4ODn7mSaDEfXULF1Uw0SCHELgnnmP3x3Ps/niO3R/PsWfgeXZ/dxPZOUYqjYQ7S5YsusT2c1e6K1euLAEBAfLqq69K27Ztzd3IkVDiZkvJkiXFkxkvPBLuxPBHQ67D+eU5dm88x+6P59j98Ry7P55jz8Dz7P5SJKJz7Ehx1anu5WFhYfLbb7/pxGmxZfxeXl4SGRnpzO6JiIiIiIiI3IrDSTfW4yYiIiIiIiKieEi6O3To4MRuCZImTSoff/yx/iT3xHPs/niO3R/PsfvjOXZ/PMeegefZ/SV103P83Ot0ExEREREREZFt9qdYIyIiIiIiIqLnwqSbiIiIiIiIKJ4w6SYiIiIiIiKKJ0y6iYiIiIiIiOIJk24iOzjHIBERERERPS8m3U6KioqSyMjIhD4Mikd37tzRn15eXgl9KERE5MAFUl4kdV88t56B72P3ZuK5ZdLtjKNHj0r79u2lXr168s4778j27dsT+pAoju3fv18aN24sBw8eTOhDof8Y/4PgXoKDg+X48eMJfRgUjx49eqQ/IyIieJHUTZ04cUJmzJih55jcE9/H7o/v4yeYdDvxB1OxYkWtcpcpU0Z27Nghffv2la+//jqhD43iyIEDB6Rs2bJSoUIFKVq0qNU2JmTu49SpU/LZZ5/J4MGDZc6cOXLv3j1tx3/seZ7dw759+6R06dJy+PDhhD4UiidHjhyRtm3bSp06dfRC6ebNmyU8PDyhD4vi+L/JhQoVkn/++Ud8fX21jZ/R7oXvY/fH9/FTTLodgD8OXKFBhRtf0seMGSNbtmyRZs2aybRp02Ts2LEJfYgUBx/8SLaRiOF84pzfunVLzp49q9t59dV9zjMumq1cuVJ7qqDnyttvvy2rVq3S7Uy83eM/8FWqVJE333xTWrVqldCHQ/Hg77//1ovg6dOnlxIlSkhQUJBUr15dPv30U+3hQIkfeptVqlRJ/u///k/effddm0P9KHHj+9j98X1s7cklB3omfBG/dOmSXLlyxdyGDwf8Afn7+8vcuXMla9as0q5duwQ9TnLNzZs39QJKwYIFZcSIEdrWuXNn/bDAeX/ppZfkq6++kmLFijH5TsTCwsJk0KBB+j795ptvtO2vv/6S7t27y7hx4+TBgwfSvHlznuNEDN3J8SWuX79+Mnr0aO3Ktm3bNrl9+7akTZtWk3FK/HARvHz58vL999+b2yZOnKif3w8fPpT+/ftLxowZE/QYyXUnT56UypUr62c1LoLji/mUKVPk9OnTur1bt26SL1++hD5Mek58H7s3vo9jYqU7FkbVq2TJktq1HN3MLRPvTp066RW6SZMm6Zd2SnzwZbx+/fqSPHlyGT58uHYxv3z5siZjOK+PHz/WpNz4oGAlNHEKCAjQ3gvp0qXTf+M/AHhfz5w5U5OzH374QauklDjh83nIkCGSLFkyadKkiba1aNFChwH16NFDatWqJb1795Zr164l9KFSHFxAMxhjBPv06aMXWnBBbdGiRR5ZRXEXu3bt0mE/uBB+7tw5qVmzpvzyyy/a9Xjjxo1SpEgRWbZsmd6X5zjx4vvYve3cuZPv4+hM5JBTp06Z0qVLZ+rUqZMpNDRU26KiovRncHCwycvLy7RixYoEPkpyVmRkpPn3AQMGmDJmzGhq2LCh6cqVK1b3e/nll00dOnRIgCOkuDrHd+/eNdWoUcP0zjvv6L8jIiJMjx8/1t+PHDliypYtm6lv374JeqzkmgsXLpjOnj1rOnr0qKlevXp6K1iwoKl+/fqmv/76y3T+/HnTsmXLTH5+fqbBgwcn9OHSc/rqq69MQUFBposXL+q/Hz16ZN42YsQIU2BgoP53mRL3Oc6SJYspR44cpiZNmuh7/OHDh6awsDBTjx49TKlSpTKFhIQk9GHSc/j666/5PnZDRo4EfB9bY9LthPXr15uSJk1q6tWrl+n69evm9suXL5uKFStm2r59e4IeHznu3r17moT9888/Vu3jxo0z/fbbb+YLKkjMoGXLlqZWrVolyLGS6/bt22dq1KiRnm+YP3++XiDDOTYS8vDwcP199uzZptSpU2uCRonH4cOH9YJJv3799N+7d+82VapUyVSnTh1NxC198803evEU/+E33uOU+ODLedWqVU3ly5c33bhxQ9vwJc7473H27NlNCxcuTOCjpLhIysqVK2fas2ePVTsurqVNm9a0ZMmSBDs2ct7ff/9t2rVrl/nfDx48MFWvXp3vYzdy/Phx05tvvmk6d+6cuW3ixIl8H/+L3cudUKNGDZk/f75MnTpVux7/+uuvcuzYMR3viy6L2bNnT+hDJAeXfkO302rVqumMiujuYqy9/t5770mjRo3M43p9fHy0Ozn+XbhwYW1j9/LEAV3FMb735Zdf1qEDgGECvXr1kjfeeEOWLl0q3t7ekiRJEt2WKlUqyZQpk/m+lHhWHMA5xCSXGBaCWct//PFH/YzOli1bjPds5syZdYgBx+4nnnGBH3zwgXTs2FH/W4vJl/z8/OTjjz/WLolt2rTRYSOYXwWSJk2q72HjfU0vPkxYOmHCBP3vL75XGdDVGON9o/+3F0O+MmTIoO9lSjzLsZYqVUp/Wg75wgRb+Czm+9g9/nuM4bb4Tr1hwwZzO4Z18X38BJNuJ2FJA8x6jMm38EUA/164cKGOSzC+4NGLnXBXrVpVEzF82L/++uv6Ze7QoUPm++ALneU4o48++kgnY3rrrbe0jV/WE8+Mmfiwx/JgBpw7jNvv0qWLtGzZUiZPnqwTJGLSFowzwrlHIk6J4z/wWHEAk6ZhDCgSaVwQxQW0AgUK6IU1Y3kS4z2LhC1//vyeM37MDT6vcVEF7+fQ0FBNtDE+H/MwYHzgsGHDtB0XWlavXq1f9MaPHy937tyJsewjvZjw3178NxnfoTAGFBdEv/jiC/N2TGCK5MzyfTx79mxNyHLmzJlgx03OfVbjv8f4727Xrl2ttmE+nQEDBujYX76PE/9/j3GhDBfPfvrpJ/1uZSTYfB//yyh5k3PQLRldFw8ePGjV1ZxeXDdv3jTVrVvX9O6771q1o3tTnz599HfLLqerV682NW7c2JQpUyYdF0qJA7ql4ZxhXK8xRABdjxs0aGAqXLiwdnXasGGDdl3EGN/cuXObihYtakqfPj3PcyJx4MABHeozZMgQ8zABDP8oU6aMzfkaTp8+bRo2bJiOH0N3dEocXcjRTbFr165W3VPbtGmj5/n77783d1Fs27atvn/z58+v82/s3bs3AY+cHIUuqPny5TO9//775vfrjz/+qHOrnDx5Msb9t23bpv/9xvt4//79CXDE5CycR3xWDx06VP+N4VzoTvzDDz9o13FjXhV8LvN9nDih23iKFCnM/z2eM2eOKWXKlKatW7fG+G+xp7+PuWSYi1KkSKE3SjzQlQVXTo21e1HtQlUzd+7c2q3J8gocrs6hHd1hsNQBZl+kxANXXC9cuCCLFy/WajbOffHixfWcfvnllzpUBD8xxADLTOF8Y+kSj7rimog9evRI3n//ffnkk0/M7+NRo0ZJuXLl5LvvvpN33nnH3GMB1VLMao4r8aigoJcLvfjQ6+Tq1av6ngW8R7G8DD6PUfHGckMY0tWgQQOtmOB9jP8m43HGCgX04sL7Fsut4pzi/Wm8X8uUKaNdiqP3Rrl48aK+f7du3SqbNm1iBTQRQE9BzEIeGBio//01hniFhITI3bt3dS1u/Bu9z1555RW+jxOh+/fv6/coLP+FWecBPUjR6wy9RFetWmXucQae/j72Quad0AdB9F9B91Ksuw1IxPAfd3RRPH/+vH6JM2D5Nyw9hK6qGNdNiQvG9mJNbszBgHUiMd4XS8MBxhthXPesWbN0/D4lfvjPGL7Evf322/plDV/ecAENX+TDw8N1SFCuXLn0Ri8+fO4i6cK4fHQfx3sV5xXnGef0zJkz8uabb2rSbYwBNubeoMQDQ3pWrFghY8aMMbfhvOfNm1emTZsm1atXt7r/9evX9RwzGUtc37nGjRunQ0SQcCG5/t///qcXuHFBtGnTpjpUxPj+xfdx4oPlwIz/thrfmZF0Y5gIvnthaVbj4jjgYioSceM7mSdh0k0eyfID4MMPP5Q9e/bIypUr9d/4AoAveFjf1/IKHSUuly5d0qvstWvX1v+oW/7HHBdecIXdcuwgJX6YXwM9WbZs2aJjCClxiX6RE5UQrK+O8Z3vvvuu1X2wDe9rfJln74XEw96FbOPzGf9tRvUbEy/VqVNHt61Zs0YnaGKynTjP8enTp2XEiBHaoxAJN+bcMGBCUyTeqHBjvg1KfOfY1oUSjNFHT9EmTZro9zB79/M0nDGIPBISbsvrTUYCju4wQ4cO1USNCXfiliVLFq12o9IN+LDHOcckiOnTp9cvceRe0HMBX9TRxTwsLCyhD4ecnKUcQz7QS8WAbouff/659O/fXysnYHzRCwoK0i/vXG0gcZ9j47/D+HxGd2S8b3GOjeF76Hper1497bFCifMco+cChv9gYtM8efJYnXecV7yPMYs1Jc5zHD2RRkKOIQX4/oVi1t69e23ezxMxqyCPZVx1Q3KNboroAoXxgqh6Y6ZFSvyiz7uA8/3111/LjRs3WAl1Q+ihgvH66K3yzz//mGdLpRfbqVOndB6G27dv60UxzGZsVDUxPh/jBjFmEMOAMCs9uqZi6AiGCDHpTtzn2PKLOC5+G8t04r/LI0eO1M/rP//8Uy+iUuJ9H+fIkUO/Zxnn2/iJGevxfuaqIYn/HBuMC6OYYwUrw+D9i+XiiN3LiXTyB4zrRoK2du1aXbaC3A8m7cEEHviyvm7dOla63fQiGr4MoNq9YMECjuFOBJBQo+s4uhVjEi1Uw7Cc48CBA7VHCmAbxnVjmU58oUOVG2P40TUV4wUpcZ5jTIZoq8s4zimSbkx+iOU6+d9k9zjHlt2Ljxw5ouN9J06cqJNqYaw3udf7GDDPCi6sYGlAX19fj692s9JNHg9d15B0Y7IljEEh94Rziy/uGO/LMaDux/iPeapUqXS8LyugiQMqXKiCYFKdNm3a6Jc3zH4LRuKN+7Rv317Xc8aMx5joEl/Ss2bNmtCHT895ji2/sKNbKnqoYKI8jAndt28fkzE3OsfGZzQm3kKyhm7K+KzmOXav97HlBRb0VMJqE5i0mFjpJjJfweOXdPeH8WPogkxEL+7nL2Ykb9u2rbz33nta3caXOYz3xeSI6KZK7nWOMfYTX+RxjrGsJ8aAZsuWjRdH3fAc48IKJlTDfZHE8f3sfucYlXBcWDHG79NTrHQTiTDh9hBMuIle3M9ffCHHF3FUUVAPeOONN7Ra0q9fP51zw1jaEcs5eno3RXc9x/iyjh5JOMfknuf47Nmz2rXc398/oQ+Z4vGzeubMmTqvCj+rn2Klm4iIiF4I+EpirMeNKspbb72lFRMsO7R7924pXrx4Qh8ixdM5xiRNmMiU59i938e7du3inCpugJ/VzmPSTURERC8My2WksE73/v37ZePGjRz76UZ4jt0fz7H74zl2DruXExER0QsDX+DQfRETqWHFAXyR45c498Jz7P54jt0fz7FzuDAeERERvXAwkdZff/0lRYsWTehDoXjCc+z+eI7dH8+xY9i9nIiIiF44luv6knviOXZ/PMfuj+fYMUy6iYiIiIiIiOIJu5cTERERERERxRMm3URERERERETxhEk3ERERERERUTxh0k1EREREREQUT5h0ExEREREREcUTJt1ERERERERE8YRJNxERESUKGzdu1PVg8ZOIiCixYNJNRESUiCEJje02fPhwq/v37t3b/O9z585Z3dfHx0dy5MghzZs3l/379zt8HIsWLZIGDRpIunTpxM/PT7JkySKtW7eW9evXx3nMREREiYlvQh8AERERuW7mzJl2tyHZPn36tJQrVy7W/bRt21ZeffVViYyMlGPHjsl3330nK1askJ07d0rx4sXtPs5kMkmnTp1k+vTpUqJECRkwYIBkypRJLl++rIl4rVq1ZNu2bVKxYkWXYyQiIkrMmHQTERElYm+++abN9qlTp2rC3adPH61Ax6ZkyZJW+6pUqZI0adJEk+/vv//e7uP+97//acLdr18/GT9+vFbLDUOHDtWLAr6+/LpBRESei93LiYiI3MyRI0fk3Xff1crzF1984dI+atasqT/Pnj1r9z5hYWEyZswYKViwoIwbN84q4Ta89dZbUrZsWfO/z5w5I6+99pqkSZNGkiVLJuXLl5dly5bFeFxISIg0a9ZMkidPLhkyZJD+/fvLo0ePbB7Hn3/+KfXr15eUKVPqPqtVq6bVdSIiohcBLz0TERG5kQcPHuhYaozNnjt3riRNmtSl/aBKDmnTprV7n61bt8qtW7e0yo3ni83Vq1e1mzmOERcFsO+ff/5ZK+oLFizQceRGMo9u6cHBwXo/jA9HxdzW+HC0oZJfqlQp+fjjj8Xb21umTZumFw22bNlilfATERElBCbdREREbgTdyY8eParJbP78+R1+HBLhGzdu6Jju48ePa2UZUJW2B2O/4ZVXXnHoOT777DNNvJEMV65cWdu6du0qRYsW1bHgTZs21aT5hx9+kJMnT8q8efPMz4/7FStWLMZ48h49ekiNGjV0/LlRae/evbu8/PLL8uGHH8rq1asdfg2IiIjiA7uXExERuYnZs2fLTz/9pF2627dv79RjUSVOnz69ToJWvXp1rXR//vnn0qJFC7uPuXv3rv4MCgpy6DmWL1+ulWcj4YbAwEDp1q2bzqKOiwXG/TJnziytWrUy3w/dxnE/S5hd/e+//5Y33nhDbt68qRcNcLt//75Wyjdv3ixRUVFOvQ5ERERxjZVuIiIiN4DkE1VfVLcnTZrk9OOR0KKqjEpzqlSptFIcW9f0FClS6M/Q0FCHnuP8+fM2Z1IvVKiQeXuRIkX0Z758+WKMES9QoECMmKFDhw52n/Off/6R1KlTO3R8RERE8YFJNxERUSKHCcbatGkj4eHhOo4b1WNnvfTSS1K7dm2nHoMJ1ODQoUM66dl/zahiY7I4e8uaufJaEBERxSUm3URERInc//3f/8m+ffvkq6++0hnL/yvoJo4q8pw5c2TIkCGxTqaWM2dOOXHiRIx2jCE3ths/Dx8+rGO2Lavd0R+bN29ec8Xd2QsGRERE/xWO6SYiIkrEFi1aJN98843OAI6Zvv9LGGf9wQcf6IRq+IkkObpZs2bJrl279PdXX31Vf9+xY4d5O8ZfY+K0XLlySeHChc33u3Tpks5objnRG+5nCTOWI/HGcmX37t2L8dzXr1+P03iJiIhcwUo3ERFRInX58mXp3LmzVpgxcRgSXFuQmFaoUCFejmHgwIG6Lvj//vc/2bBhg05+hsnYrly5Ir///rsm2du3b9f7Dho0SKviWOILFwiwVjdmWcda4L/99puOJzdmKseFBEwGt3fvXp1UDUuGIcm3hPtPnTpV94cx6B07dpSsWbPKxYsX9VhQAV+6dGm8xE1EROQoJt1ERESJFLpb3759W3/v27ev3fthorH4SrqR+M6YMUOX+0IlGlVnzGqOmdCrVq0qY8eONT93xowZNQFHVXzixIny8OFDXS4MiXHDhg3N+0RyvW7dOl3+DPfDv9u1a6fJdf369a2eHzOto3I+cuRITdRR8UbSjwnbsHQYERFRQvMy2eoLRkRERERERETPjWO6iYiIiIiIiOIJk24iIiIiIiKieMKkm4iIiIiIiCieMOkmIiIiIiIiiidMuomIiIiIiIjiCZNuIiIiIiIionjCpJuIiIiIiIgonjDpJiIiIiIiIoonTLqJiIiIiIiI4gmTbiIiIiIiIqJ4wqSbiIiIiIiIKJ4w6SYiIiIiIiKKJ0y6iYiIiIiIiCR+/D/J7jDo0LYavgAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "# use a barplot to plot all price/sqft values over the ZIP code\n",
+ "\n",
+ "plt.figure(figsize=(10, 4))\n",
+ "sns.barplot(\n",
+ " data=price_sqft_sorted_df.head(12),\n",
+ " x='price_per_sqft_living',\n",
+ " y='zipcode',\n",
+ " palette='mako', # green\n",
+ " order = price_sqft_df.sort_values('price_per_sqft_living', ascending=True)['zipcode'].head(12)\n",
+ ")\n",
+ "plt.title('Price per square foot in chosen ZIP codes', fontsize=16)\n",
+ "plt.xlabel('ZIP Code', fontsize=12)\n",
+ "plt.ylabel('Median price per square foot (USD)', fontsize=12)\n",
+ "plt.xticks(rotation=45, ha='right') \n",
+ "plt.ticklabel_format(style='plain', axis='x')\n",
+ "plt.grid(axis='y', linestyle='--', alpha=0.7)\n",
+ "plt.tight_layout()\n",
+ "plt.show()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "this again shows that our ZIP codes that we selected fair quite well in the price/sqft competition. "
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": ".venv",
+ "language": "python",
+ "name": "python3"
+ },
"language_info": {
- "name": "python"
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.3"
},
"orig_nbformat": 4
},
diff --git a/README.md b/README.md
index 1595553..4989cba 100644
--- a/README.md
+++ b/README.md
@@ -1,98 +1,34 @@
-[](https://github.com/neuefische/ds-eda-project-template/actions/workflows/workflow-03.yml)
-# ds-project-template
+# EDA Project - AIPM course
+
+Welcome to the EDA project of week 5 in the AIPM course.
+
+## Short description of the problem
+1. Through EDA/statistical analysis I will present at least 3 insights regarding the overall data, one of them geographical.
+2. I will present at least 3 recommendations for my client Erin Robinson. She invests in poor neighborhoods, does buying & selling, wants mainly to have her costs back and make a little profit. She is a socially responsible woman.
+3. Recommendations will include
+* where to best invest for making a profit (geographically) (even if small).
+* advice for doing renovations and when to do them
+* emerging areas - still quite cheap but with growing interest
+* what time of the year is best to buy and sell, directed at her area of interest (poor neighborhoods)
+4. Assumptions and information from Erin to better specify her search :
+* "poor" areas means that it is within the 20% cheapest houses in the county
+* average house condition in area is quite low (average grade is <= 4)
+* house has not been renovated in last 30 years.
+* overall grade of the unit and condition of house is above average
+* price is relatively cheap
+* plot size is relatively big
+5. Hypothesis
+* There are poor areas that are growing faster than others, making them more interesting
+* Within poor areas, the houses with bigger plots are not much more expensive than the ones with smaller plots (therefor look
+for bigger plots)
+* When doing renovations, prices increase to make a nice but measured profit
+
+## Description of the contents of the repository
+* EDA.jpynb contains the Jupyter Notebook with the code I've written for this project and comments explaining it.
+
+* README.md this file that describes the contents of the repository. This file is the source of information for navigating through the repository.
+
+* EDA_Project_insights.pdf (and EDA_Project_insights.ppt) is a short presentation giving a high-level overview of my methodology and recommendations for my client Erin.
+
+* cleanup.py - a Python script for processing and cleaning my data, using functions and docstrings.
-Template for creating ds simple projects
-
-## Requirements
-
-- pyenv
-- python==3.11.3
-
-## Setup
-
-One of the first steps when starting any data science project is to create a virtual environment. For this project you have to create this environment from scratch yourself. However, you should be already familiar with the commands you will need to do so. The general workflow consists of...
-
-* setting the python version locally to 3.11.3
-* creating a virtual environment using the `venv` module
-* activating your newly created environment
-* upgrading `pip` (This step is not absolutely necessary, but will save you trouble when installing some packages.)
-* installing the required packages via `pip`
-
-At the end, you want to make sure that people who are interested in your project can create an identical environment on their own computer in order to be able to run your code without running into errors. Therefore you can create a `requirements file` and add it to your repository. You can create such a file by running the following command:
-
-```bash
-pip freeze > requirements.txt
-```
-
-*Note: In rare case such a requirements file created with `pip freeze` might not ensure that another (especially M1 chip) user can install and execute it properly. This can happen if libraries need to be compiled (e.g. SciPy). Then it also depends on environment variables and the actual system libraries.*
-
-### Unit testing (Optional)
-
-If you write python scripts for your data processing methods, you can also write unit tests. In order to run the tests execute in terminal:
-
-```bash
-pytest
-```
-
-This command will execute all the functions in your project that start with the word **test**.
-
-## Set up your Environment
-This repo contains a requirements.txt file with a list of all the packages and dependencies you will need.
-
-Before you can start with plotly in Jupyter Lab you have to install node.js (if you haven't done it before).
-- Check **Node version** by run the following commands:
- ```sh
- node -v
- ```
- If you haven't installed it yet, begin at `step_1`. Otherwise, proceed to `step_2`.
-
-
-### **`macOS`** type the following commands :
-
-
-- `Step_1:` Update Homebrew and install Node by following commands:
- ```sh
- brew update
- brew install node
- ```
-
-- `Step_2:` Install the virtual environment and the required packages by following commands:
-
- ```BASH
- pyenv local 3.11.3
- python -m venv .venv
- source .venv/bin/activate
- pip install --upgrade pip
- pip install -r requirements.txt
- ```
-### **`WindowsOS`** type the following commands :
-
-
-- `Step_1:` Update Chocolatey and install Node by following commands:
- ```sh
- choco upgrade chocolatey
- choco install nodejs
- ```
-
-- `Step_2:` Install the virtual environment and the required packages by following commands.
-
- For `PowerShell` CLI :
-
- ```PowerShell
- pyenv local 3.11.3
- python -m venv .venv
- .venv\Scripts\Activate.ps1
- python -m pip install --upgrade pip
- pip install -r requirements.txt
- ```
-
- For `Git-Bash` CLI :
-
- ```BASH
- pyenv local 3.11.3
- python -m venv .venv
- source .venv/Scripts/activate
- python -m pip install --upgrade pip
- pip install -r requirements.txt
- ```
-
diff --git a/workflow.md b/workflow.md
index 30da3da..1b14883 100644
--- a/workflow.md
+++ b/workflow.md
@@ -58,7 +58,7 @@ This is a recommended workflow, especially for people who are on their beginning
### Exploring the data
-- Check distributions of the continuous variables, for example by producing histograms for each of them.
+- Check distributions of the continuous variables, for example by producing histograms for each of them.
- Check the distributions for the categorical variables, by producing plots/tables of counts.
- Look at the histograms and check for clues or patterns: can you identify groups, are the distributions skewed, do you have extreme values or outliers, where is the data centered. Do you need to remove some data?