-
Notifications
You must be signed in to change notification settings - Fork 40
/
eval_nvidia.py
481 lines (392 loc) · 15 KB
/
eval_nvidia.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
"""Evaluation script for the Nvidia Benchmark."""
import collections
import math
import os
import time
from config import config_parser
import cv2
from ibrnet.data_loaders.llff_data_utils import batch_parse_llff_poses
from ibrnet.data_loaders.llff_data_utils import load_llff_data
from ibrnet.model import DynibarFF
from ibrnet.projection import Projector
from ibrnet.render_image import render_single_image_nvi
from ibrnet.sample_ray import RaySamplerSingleImage
import imageio
import models
import numpy as np
import skimage.metrics
import torch
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
class DynamicVideoDataset(Dataset):
"""This class loads data from Nvidia benchmarks, including camera scene and image information from source views."""
def __init__(self, render_idx, args, scenes, **kwargs):
self.folder_path = args.folder_path
self.render_idx = render_idx
self.mask_static = args.mask_static
print('loading {} for rendering'.format(scenes))
assert len(scenes) == 1
scene = scenes[0]
self.scene_path = os.path.join(
self.folder_path, scene, 'dense'
)
_, poses, bds, _, i_test, rgb_files, _ = load_llff_data(
self.scene_path,
height=288,
num_avg_imgs=12,
render_idx=self.render_idx,
load_imgs=False,
)
near_depth = np.min(bds)
# Adding 15 to ensure we cover far scene contents
far_depth = np.max(bds) + 15.0
self.num_frames = len(rgb_files)
intrinsics, c2w_mats = batch_parse_llff_poses(poses)
h, w = poses[0][:2, -1]
render_intrinsics, render_c2w_mats = (
intrinsics,
c2w_mats,
)
self.train_intrinsics = intrinsics
self.train_poses = c2w_mats
self.train_rgb_files = rgb_files
self.render_intrinsics = render_intrinsics
self.render_poses = render_c2w_mats
self.render_depth_range = [[near_depth, far_depth]] * self.num_frames
self.h = [int(h)] * self.num_frames
self.w = [int(w)] * self.num_frames
def __len__(self):
return 12 # number of viewpoints
def __getitem__(self, idx):
render_pose = self.render_poses[idx]
intrinsics = self.render_intrinsics[idx]
depth_range = self.render_depth_range[idx]
train_rgb_files = self.train_rgb_files
train_poses = self.train_poses
train_intrinsics = self.train_intrinsics
h, w = self.h[idx], self.w[idx]
camera = np.concatenate(
([h, w], intrinsics.flatten(), render_pose.flatten())
).astype(np.float32)
gt_img_path = os.path.join(
self.scene_path,
'mv_images',
'%05d' % self.render_idx,
'cam%02d.jpg' % (idx + 1),
)
nearest_pose_ids = np.sort(
[self.render_idx + offset for offset in [1, 2, 3, 0, -1, -2, -3]]
)
# 12 is number of viewpoints we sample from input cameras
num_imgs_per_cycle = 12
# Get camera viewpoint that is closet to target view using index for benchmark
# Since benchamrk has fixed viewpoint in a round-robin manner
static_pose_ids = np.array(list(range(0, train_poses.shape[0])))
static_id_dict = collections.defaultdict(list)
for static_pose_id in static_pose_ids:
# do not include image with the same viewpoint
if (
static_pose_id % num_imgs_per_cycle
== self.render_idx % num_imgs_per_cycle
):
continue
static_id_dict[static_pose_id % num_imgs_per_cycle].append(static_pose_id)
static_pose_ids = []
for key in static_id_dict:
min_idx = np.argmin(
np.abs(np.array(static_id_dict[key]) - self.render_idx)
)
static_pose_ids.append(static_id_dict[key][min_idx])
static_pose_ids = np.sort(static_pose_ids)
src_rgbs = []
src_cameras = []
for src_idx in nearest_pose_ids:
src_rgb = (
imageio.v2.imread(train_rgb_files[src_idx]).astype(np.float32) / 255.0
)
train_pose = train_poses[src_idx]
train_intrinsics_ = train_intrinsics[src_idx]
src_rgbs.append(src_rgb)
img_size = src_rgb.shape[:2]
src_camera = np.concatenate(
(list(img_size), train_intrinsics_.flatten(), train_pose.flatten())
).astype(np.float32)
src_cameras.append(src_camera)
src_rgbs = np.stack(src_rgbs, axis=0)
src_cameras = np.stack(src_cameras, axis=0)
static_src_rgbs = []
static_src_cameras = []
static_src_masks = []
# load src rgb for static view
for st_near_id in static_pose_ids:
src_rgb = (
imageio.v2.imread(train_rgb_files[st_near_id]).astype(np.float32)
/ 255.0
)
train_pose = train_poses[st_near_id]
train_intrinsics_ = train_intrinsics[st_near_id]
static_src_rgbs.append(src_rgb)
# load coarse mask
if self.mask_static and 3 <= st_near_id < self.num_frames - 3:
st_mask_path = os.path.join(
'/'.join(train_rgb_files[st_near_id].split('/')[:-2]),
'coarse_masks',
'%05d.png' % st_near_id,
)
st_mask = imageio.v2.imread(st_mask_path).astype(np.float32) / 255.0
st_mask = cv2.resize(
st_mask,
(src_rgb.shape[1], src_rgb.shape[0]),
interpolation=cv2.INTER_NEAREST,
)
else:
st_mask = np.ones_like(src_rgb[..., 0])
static_src_masks.append(st_mask)
img_size = src_rgb.shape[:2]
src_camera = np.concatenate(
(list(img_size), train_intrinsics_.flatten(), train_pose.flatten())
).astype(np.float32)
static_src_cameras.append(src_camera)
static_src_rgbs = np.stack(static_src_rgbs, axis=0)
static_src_cameras = np.stack(static_src_cameras, axis=0)
static_src_masks = np.stack(static_src_masks, axis=0)
depth_range = torch.tensor([depth_range[0] * 0.9, depth_range[1] * 1.5])
return {
'camera': torch.from_numpy(camera),
'rgb_path': gt_img_path,
'src_rgbs': torch.from_numpy(src_rgbs[..., :3]).float(),
'src_cameras': torch.from_numpy(src_cameras).float(),
'static_src_rgbs': torch.from_numpy(static_src_rgbs[..., :3]).float(),
'static_src_cameras': torch.from_numpy(static_src_cameras).float(),
'static_src_masks': torch.from_numpy(static_src_masks).float(),
'depth_range': depth_range,
'ref_time': float(self.render_idx / float(self.num_frames)),
'id': self.render_idx,
'nearest_pose_ids': nearest_pose_ids,
}
def calculate_psnr(img1, img2, mask):
"""Compute PSNR between two images.
Args:
img1: image 1
img2: image 2
mask: mask indicating which region is valid.
Returns:
PSNR: PSNR error
"""
# img1 and img2 have range [0, 1]
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
mask = mask.astype(np.float64)
num_valid = np.sum(mask) + 1e-8
mse = np.sum((img1 - img2) ** 2 * mask) / num_valid
if mse == 0:
return 0 # float('inf')
return 10 * math.log10(1.0 / mse)
def calculate_ssim(img1, img2, mask):
"""Compute SSIM between two images.
Args:
img1: image 1
img2: image 2
mask: mask indicating which region is valid.
Returns:
PSNR: PSNR error
"""
if img1.shape != img2.shape:
raise ValueError('Input images must have the same dimensions.')
_, ssim_map = skimage.metrics.structural_similarity(
img1, img2, multichannel=True, full=True
)
num_valid = np.sum(mask) + 1e-8
return np.sum(ssim_map * mask) / num_valid
def im2tensor(image, cent=1.0, factor=1.0 / 2.0):
"""Convert image to Pytorch tensor.
Args:
image: input image
cent: shift
factor: scale
Returns:
Pytorch tensor
"""
return torch.Tensor(
(image / factor - cent)[:, :, :, np.newaxis].transpose((3, 2, 0, 1))
)
if __name__ == '__main__':
parser = config_parser()
args = parser.parse_args()
args.distributed = False
# Construct a dataset to get number of frames for evaluation
test_dataset = DynamicVideoDataset(0, args, scenes=args.eval_scenes)
args.num_frames = test_dataset.num_frames
print('args.num_frames ', args.num_frames)
# Create ibrnet model
model = DynibarFF(args, load_scheduler=False, load_opt=False)
eval_dataset_name = args.eval_dataset
# extra_out_dir = '{}/{}'.format(eval_dataset_name, args.expname)
# print('saving results to {}...'.format(extra_out_dir))
# os.makedirs(extra_out_dir, exist_ok=True)
projector = Projector(device='cuda:0')
assert len(args.eval_scenes) == 1, 'only accept single scene'
scene_name = args.eval_scenes[0]
# out_scene_dir = os.path.join(extra_out_dir, 'renderings')
# print('saving results to {}'.format(out_scene_dir))
# os.makedirs(out_scene_dir, exist_ok=True)
lpips_model = models.PerceptualLoss(
model='net-lin', net='alex', use_gpu=True, version=0.1
)
psnr_list = []
ssim_list = []
lpips_list = []
dy_psnr_list = []
dy_ssim_list = []
dy_lpips_list = []
st_psnr_list = []
st_ssim_list = []
st_lpips_list = []
for img_i in range(3, args.num_frames - 3):
test_dataset = DynamicVideoDataset(img_i, args, scenes=args.eval_scenes)
save_prefix = scene_name
test_loader = DataLoader(
test_dataset, batch_size=1, num_workers=12, shuffle=False
)
total_num = len(test_loader)
out_frames = []
for i, data in enumerate(test_loader):
print('img_i ', img_i, i)
if img_i % 12 == i:
continue
# idx = int(data['id'].item())
start = time.time()
ref_time_embedding = data['ref_time'].cuda()
ref_frame_idx = int(data['id'].item())
ref_time_offset = [
int(near_idx - ref_frame_idx)
for near_idx in data['nearest_pose_ids'].squeeze().tolist()
]
model.switch_to_eval()
with torch.no_grad():
ray_sampler = RaySamplerSingleImage(data, device='cuda:0')
ray_batch = ray_sampler.get_all()
cb_featmaps_1, cb_featmaps_2 = model.feature_net(
ray_batch['src_rgbs'].squeeze(0).permute(0, 3, 1, 2)
)
ref_featmaps = cb_featmaps_1
static_src_rgbs = (
ray_batch['static_src_rgbs'].squeeze(0).permute(0, 3, 1, 2)
)
_, static_featmaps = model.feature_net(static_src_rgbs)
cb_featmaps_1_fine, _ = model.feature_net_fine(
ray_batch['src_rgbs'].squeeze(0).permute(0, 3, 1, 2)
)
ref_featmaps_fine = cb_featmaps_1_fine
if args.mask_static:
static_src_rgbs_ = (
static_src_rgbs
* ray_batch['static_src_masks'].squeeze(0)[:, None, ...]
)
else:
static_src_rgbs_ = static_src_rgbs
_, static_featmaps_fine = model.feature_net_fine(static_src_rgbs_)
ret = render_single_image_nvi(
frame_idx=(ref_frame_idx, None),
time_embedding=(ref_time_embedding, None),
time_offset=(ref_time_offset, None),
ray_sampler=ray_sampler,
ray_batch=ray_batch,
model=model,
projector=projector,
chunk_size=args.chunk_size,
det=True,
N_samples=args.N_samples,
args=args,
inv_uniform=args.inv_uniform,
N_importance=args.N_importance,
white_bkgd=args.white_bkgd,
coarse_featmaps=(ref_featmaps, None, static_featmaps),
fine_featmaps=(ref_featmaps_fine, None, static_featmaps_fine),
is_train=False,
)
fine_pred_rgb = ret['outputs_fine_ref']['rgb'].detach().cpu().numpy()
fine_pred_depth = ret['outputs_fine_ref']['depth'].detach().cpu().numpy()
valid_mask = np.float32(
np.sum(fine_pred_rgb, axis=-1, keepdims=True) > 1e-3
)
valid_mask = np.tile(valid_mask, (1, 1, 3))
gt_img = cv2.imread(data['rgb_path'][0])[:, :, ::-1]
gt_img = cv2.resize(
gt_img,
dsize=(fine_pred_rgb.shape[1], fine_pred_rgb.shape[0]),
interpolation=cv2.INTER_AREA,
)
gt_img = np.float32(gt_img) / 255
gt_img = gt_img * valid_mask
fine_pred_rgb = fine_pred_rgb * valid_mask
dynamic_mask = valid_mask
ssim = calculate_ssim(gt_img, fine_pred_rgb, dynamic_mask)
psnr = calculate_psnr(gt_img, fine_pred_rgb, dynamic_mask)
gt_img_0 = im2tensor(gt_img).cuda()
fine_pred_rgb_0 = im2tensor(fine_pred_rgb).cuda()
dynamic_mask_0 = torch.Tensor(
dynamic_mask[:, :, :, np.newaxis].transpose((3, 2, 0, 1))
)
lpips = lpips_model.forward(
gt_img_0, fine_pred_rgb_0, dynamic_mask_0
).item()
print(psnr, ssim, lpips)
psnr_list.append(psnr)
ssim_list.append(ssim)
lpips_list.append(lpips)
dynamic_mask_path = os.path.join(
test_dataset.scene_path,
'mv_masks',
'%05d' % img_i,
'cam%02d.png' % (i + 1),
)
dynamic_mask = np.float32(cv2.imread(dynamic_mask_path) > 1e-3) # /255.
dynamic_mask = cv2.resize(
dynamic_mask,
dsize=(gt_img.shape[1], gt_img.shape[0]),
interpolation=cv2.INTER_NEAREST,
)
dynamic_mask_0 = torch.Tensor(
dynamic_mask[:, :, :, np.newaxis].transpose((3, 2, 0, 1))
)
dynamic_ssim = calculate_ssim(gt_img, fine_pred_rgb, dynamic_mask)
dynamic_psnr = calculate_psnr(gt_img, fine_pred_rgb, dynamic_mask)
dynamic_lpips = lpips_model.forward(
gt_img_0, fine_pred_rgb_0, dynamic_mask_0
).item()
print(dynamic_psnr, dynamic_ssim, dynamic_lpips)
dy_psnr_list.append(dynamic_psnr)
dy_ssim_list.append(dynamic_ssim)
dy_lpips_list.append(dynamic_lpips)
static_mask = 1 - dynamic_mask
static_mask_0 = torch.Tensor(
static_mask[:, :, :, np.newaxis].transpose((3, 2, 0, 1))
)
static_ssim = calculate_ssim(gt_img, fine_pred_rgb, static_mask)
static_psnr = calculate_psnr(gt_img, fine_pred_rgb, static_mask)
static_lpips = lpips_model.forward(
gt_img_0, fine_pred_rgb_0, static_mask_0
).item()
print(static_psnr, static_ssim, static_lpips)
st_psnr_list.append(static_psnr)
st_ssim_list.append(static_ssim)
st_lpips_list.append(static_lpips)
print('MOVING PSNR ', np.mean(np.array(psnr_list)))
print('MOVING SSIM ', np.mean(np.array(ssim_list)))
print('MOVING LPIPS ', np.mean(np.array(lpips_list)))
print('MOVING DYNAMIC PSNR ', np.mean(np.array(dy_psnr_list)))
print('MOVING DYNAMIC SSIM ', np.mean(np.array(dy_ssim_list)))
print('MOVING DYNAMIC LPIPS ', np.mean(np.array(dy_lpips_list)))
print('MOVING Static PSNR ', np.mean(np.array(st_psnr_list)))
print('MOVING Static SSIM ', np.mean(np.array(st_ssim_list)))
print('MOVING Static LPIPS ', np.mean(np.array(st_lpips_list)))
print('AVG PSNR ', np.mean(np.array(psnr_list)))
print('AVG SSIM ', np.mean(np.array(ssim_list)))
print('AVG LPIPS ', np.mean(np.array(lpips_list)))
print('AVG DYNAMIC PSNR ', np.mean(np.array(dy_psnr_list)))
print('AVG DYNAMIC SSIM ', np.mean(np.array(dy_ssim_list)))
print('AVG DYNAMIC LPIPS ', np.mean(np.array(dy_lpips_list)))
print('AVG Static PSNR ', np.mean(np.array(st_psnr_list)))
print('AVG Static SSIM ', np.mean(np.array(st_ssim_list)))
print('AVG Static LPIPS ', np.mean(np.array(st_lpips_list)))