|
| 1 | +/- |
| 2 | +Copyright 2025 Google LLC |
| 3 | +
|
| 4 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +you may not use this file except in compliance with the License. |
| 6 | +You may obtain a copy of the License at |
| 7 | +
|
| 8 | + https://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +
|
| 10 | +Unless required by applicable law or agreed to in writing, software |
| 11 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +See the License for the specific language governing permissions and |
| 14 | +limitations under the License. |
| 15 | +-/ |
| 16 | +import FormalConjectures.Util.ProblemImports |
| 17 | + |
| 18 | +/-! # Hartshorne's conjecture on Vector Bundles |
| 19 | +
|
| 20 | +*Reference*: [Varieties of small codimension in projective space](https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society-new-series/volume-80/issue-6/Varieties-of-small-codimension-in-projective-space/bams/1183535999.full) |
| 21 | +by *R. Hartshorne* |
| 22 | +-/ |
| 23 | + |
| 24 | +universe u v u' v' w |
| 25 | + |
| 26 | +open CategoryTheory Limits MvPolynomial AlgebraicGeometry |
| 27 | + |
| 28 | +variable (n : Type v) (S : Scheme.{max u v}) |
| 29 | + |
| 30 | + |
| 31 | +namespace AlgebraicGeometry.Scheme |
| 32 | + |
| 33 | +section AlgebraicVectorBundles |
| 34 | + |
| 35 | +variable (S : Scheme.{u}) |
| 36 | + |
| 37 | +@[category API, AMS 18] |
| 38 | +theorem WEqualsLocallyBijective_addCommGrp {T : Type u} |
| 39 | + [TopologicalSpace T] : |
| 40 | + (Opens.grothendieckTopology T).WEqualsLocallyBijective (AddCommGrp : Type (u + 1)) := by |
| 41 | + sorry |
| 42 | + |
| 43 | +@[category API, AMS 18] |
| 44 | +theorem WEqualsLocallyBijectiveOver {C : Type v} [Category C] |
| 45 | + (J : GrothendieckTopology C) (A : Type u') [Category A] |
| 46 | + {FA : A → A → Type*} {CA : A → Type*} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] |
| 47 | + [ConcreteCategory A FA] (X : C) [J.WEqualsLocallyBijective A] : |
| 48 | + (J.over X).WEqualsLocallyBijective A := by |
| 49 | + sorry |
| 50 | + |
| 51 | +instance instWEqualsLocallyBijectiveOpensAddCommGrp {T : Type*} [TopologicalSpace T] : |
| 52 | + (Opens.grothendieckTopology T).WEqualsLocallyBijective AddCommGrp := |
| 53 | + sorry |
| 54 | + |
| 55 | +instance instWEqualsLocallyBijectiveOver {C : Type v} [Category C] |
| 56 | + (J : GrothendieckTopology C) (A : Type u') [Category A] |
| 57 | + {FA : A → A → Type*} {CA : A → Type*} [(X Y : A) → FunLike (FA X Y) (CA X) (CA Y)] |
| 58 | + [ConcreteCategory A FA] (X : C) [J.WEqualsLocallyBijective A] : |
| 59 | + (J.over X).WEqualsLocallyBijective A := |
| 60 | + WEqualsLocallyBijectiveOver J A X |
| 61 | + |
| 62 | +/-- |
| 63 | +A vector bundle over a scheme `S` is a locally free `𝓞_S`-module of finite rank. |
| 64 | +-/ |
| 65 | +structure VectorBundles where |
| 66 | + carrier : AlgebraicGeometry.Scheme.Modules S |
| 67 | + rank : ℕ |
| 68 | + isLocallyFreeFiniteConstantRank : SheafOfModules.IsVectorBundleWithRank |
| 69 | + (J := Opens.grothendieckTopology S) carrier rank |
| 70 | + |
| 71 | +instance (S : Scheme) : Coe S.VectorBundles S.Modules where |
| 72 | + coe := fun 𝓕 => 𝓕.carrier |
| 73 | + |
| 74 | +/-- |
| 75 | +Vector bundles form a category. |
| 76 | +-/ |
| 77 | +instance (S : Scheme) : Category (VectorBundles S) := |
| 78 | + InducedCategory.category VectorBundles.carrier |
| 79 | + |
| 80 | +def VectorBundles.toModule (S : Scheme) : S.VectorBundles ⥤ S.Modules where |
| 81 | + obj 𝓕 := 𝓕.carrier |
| 82 | + map f := f |
| 83 | + |
| 84 | +@[category API, AMS 14] |
| 85 | +theorem hasFiniteCoproductsVectorBundles (S : Scheme) : |
| 86 | + HasFiniteCoproducts S.VectorBundles := |
| 87 | + sorry |
| 88 | + |
| 89 | +instance (S : Scheme) : HasFiniteCoproducts S.VectorBundles := |
| 90 | + hasFiniteCoproductsVectorBundles S |
| 91 | + |
| 92 | +/-- |
| 93 | +A splitting of a vector bundle `𝓕` is a non-trivial direct sum decomposition of `𝓕` |
| 94 | +-/ |
| 95 | +structure VectorBundles.Splitting |
| 96 | + {S : Scheme} (𝓕 : VectorBundles S) (ι : Type) [Fintype ι] [Nonempty ι] where |
| 97 | + (toFun : ι → S.VectorBundles) |
| 98 | + (iso : 𝓕 ≅ ∐ fun (i : ι) => toFun i) |
| 99 | + (non_trivial : ∀ i, IsEmpty (toFun i ≅ 𝓕)) |
| 100 | + |
| 101 | +instance {S : Scheme} (𝓕 : S.VectorBundles) (ι : Type) [Fintype ι] [Nonempty ι] : |
| 102 | + CoeOut (𝓕.Splitting ι) (ι → S.VectorBundles) where |
| 103 | + coe := fun s => s.toFun |
| 104 | + |
| 105 | +--TODO(lezeau): here we would really need some sanity checks and |
| 106 | +--easier results. |
| 107 | + |
| 108 | +end AlgebraicVectorBundles |
| 109 | + |
| 110 | +/-- |
| 111 | +There are no indecomposable vector bundles of rank 2 on `ℙⁿ` for `n ≥ 7`. |
| 112 | +This is conjecture 6.3 in _VARIETIES OF SMALL CODIMENSION IN PROJECTIVE SPACE_, R. Hartshorne |
| 113 | +-/ |
| 114 | +@[category research open, AMS 14] |
| 115 | +theorem harthshorne_conjecture (n : ℕ) (hn : 7 ≤ n) |
| 116 | + (𝓕 : VectorBundles ℙ(Fin (n + 1); Spec (.of ℂ))) |
| 117 | + (h𝓕 : VectorBundles.rank 𝓕 = 2) : |
| 118 | + Nonempty (VectorBundles.Splitting 𝓕 (Fin 2)) := |
| 119 | + sorry |
0 commit comments