-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain.py
180 lines (158 loc) · 5.98 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import argparse
import os
from pathlib import Path
import pytorch_metric_learning.losses as losses
import pytorch_metric_learning.miners as miners
import torch
from tqdm import tqdm
import utils
from retrieval_model import DinoWrapper
torch.multiprocessing.set_sharing_strategy("file_system") # Due to annoying "RuntimeError: Too many open files."
DATASETS = ["Cars196", "CUB", "INaturalist2018", "StanfordOnlineProducts"]
ALL_LOSSES = [
"AngularLoss",
"ArcFaceLoss",
"BaseMetricLossFunction",
"CircleLoss",
"ContrastiveLoss",
"CosFaceLoss",
"DynamicSoftMarginLoss",
"FastAPLoss",
"GenericPairLoss",
"HistogramLoss",
"InstanceLoss",
"IntraPairVarianceLoss",
"LargeMarginSoftmaxLoss",
"GeneralizedLiftedStructureLoss",
"LiftedStructureLoss",
"ManifoldLoss",
"MarginLoss",
"WeightRegularizerMixin",
"MultiSimilarityLoss",
"MultipleLosses",
"NPairsLoss",
"NCALoss",
"NormalizedSoftmaxLoss",
"NTXentLoss",
"P2SGradLoss",
"PNPLoss",
"ProxyAnchorLoss",
"ProxyNCALoss",
"RankedListLoss",
"SelfSupervisedLoss",
"SignalToNoiseRatioContrastiveLoss",
"SoftTripleLoss",
"SphereFaceLoss",
"SubCenterArcFaceLoss",
"SupConLoss",
"ThresholdConsistentMarginLoss",
"TripletMarginLoss",
"TupletMarginLoss",
"VICRegLoss",
]
CLASSIFICATION_LOSSES = [
"ArcFaceLoss",
"CosFaceLoss",
"LargeMarginSoftmaxLoss",
"WeightRegularizerMixin",
"NormalizedSoftmaxLoss",
"ProxyAnchorLoss",
"ProxyNCALoss",
"SoftTripleLoss",
"SphereFaceLoss",
"SubCenterArcFaceLoss",
]
ALL_MINERS = [
"no_miner",
"AngularMiner",
"BatchEasyHardMiner",
"BatchHardMiner",
"DistanceWeightedMiner",
"HDCMiner",
"MultiSimilarityMiner",
"PairMarginMiner",
"TripletMarginMiner",
"UniformHistogramMiner",
]
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--batch_size", type=int, default=256, help="batch size")
parser.add_argument("--lr", type=float, default=1e-6, help="LR")
parser.add_argument("--classifier_lr", type=float, default=1.0, help="classifier LR (only for classification losses)")
parser.add_argument("--sampler_m", type=int, default=4, help="M value for MPerClassSampler")
parser.add_argument("--dataset", type=str, default="Cars196", choices=DATASETS, help="dataset")
parser.add_argument("--dino_size", type=str, default="b", choices=["s", "b", "l", "g"], help="which Dino to use")
parser.add_argument("--loss", type=str, default="MultiSimilarityLoss", choices=ALL_LOSSES, help="loss")
parser.add_argument("--miner", type=str, default="MultiSimilarityMiner", choices=ALL_MINERS, help="miner")
parser.add_argument("--feat_dim", type=int, default=None, help="Output dimensionality. Set to None to use CLS")
parser.add_argument("--device", type=str, default="cuda", choices=["cuda", "cpu"], help="device")
parser.add_argument("--optim", type=str, default="adam", choices=["adam", "rmsprop"], help="optimizer")
parser.add_argument(
"--save_dir",
type=Path,
default=Path("default"),
help="name of directory in which to save the logs, under logs/save_dir",
)
args = parser.parse_args()
utils.initialize_logger(args)
model = DinoWrapper(dino_size=args.dino_size, feat_dim=args.feat_dim)
model = model.to(args.device)
train_loader, valid_loader, test_loader, train_labels_mapper = utils.setup_datasets(
args.dataset, args.batch_size, args.sampler_m
)
if args.optim == "adam":
optim = torch.optim.Adam(model.parameters(), lr=args.lr)
elif args.optim == "rmsprop":
optim = torch.optim.RMSprop(model.parameters(), lr=args.lr)
if args.loss in CLASSIFICATION_LOSSES:
# The loss is a classification loss with a learnable matrix, like ArcFaceLoss
criterion = getattr(losses, args.loss)(len(set(train_loader.dataset.labels)), model.feat_dim)
is_classification = True
if args.optim == "adam":
classifier_optim = torch.optim.Adam(criterion.parameters(), lr=args.classifier_lr)
elif args.optim == "rmsprop":
classifier_optim = torch.optim.RMSprop(criterion.parameters(), lr=args.classifier_lr)
else:
# The loss is a standard contrastive loss with no learnable parameter, like Contrastive or Triplet
criterion = getattr(losses, args.loss)()
is_classification = False
if not is_classification:
if args.miner == "no_miner":
miner = None
else:
miner = getattr(miners, args.miner)()
# Evaluate off-the-shelf model
utils.evaluate(model, valid_loader, "valid")
patience = 3
best_precision = 0
epochs_no_improve = 0
for num_epoch in range(100):
tqdm_bar = tqdm(train_loader)
for images, labels in tqdm_bar:
with torch.autocast(device_type=args.device, dtype=torch.bfloat16):
# Set map labels to start from 0 for classification losses like ArcFaceLoss
labels = torch.tensor([train_labels_mapper[int(label)] for label in labels]).to(args.device)
embeddings = model(images.to(args.device))
if not is_classification and miner is not None:
miner_outputs = miner(embeddings, labels)
loss = criterion(embeddings, labels, miner_outputs)
else:
loss = criterion(embeddings, labels)
loss.backward()
optim.step()
optim.zero_grad()
if is_classification:
classifier_optim.step()
classifier_optim.zero_grad()
tqdm_bar.desc = f"{loss = :.5f}"
cur_precision, _ = utils.evaluate(model, valid_loader, f"valid - epoch {num_epoch:>2}")
if cur_precision > best_precision:
best_precision = cur_precision
epochs_no_improve = 0
torch.save(model.state_dict(), args.log_dir / "best_model.pth")
else:
epochs_no_improve += 1
if epochs_no_improve == patience:
model.load_state_dict(torch.load(args.log_dir / "best_model.pth", weights_only=True))
break
utils.evaluate(model, test_loader, "test")
os.remove(args.log_dir / "best_model.pth")