forked from SVAIGBA/WMSeg
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwmseg_model.py
executable file
·565 lines (480 loc) · 23.2 KB
/
wmseg_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
from __future__ import absolute_import, division, print_function
import os
import math
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from pytorch_pretrained_bert.modeling import (CONFIG_NAME, WEIGHTS_NAME, BertConfig, BertPreTrainedModel, BertModel)
from pytorch_pretrained_bert.tokenization import BertTokenizer
import pytorch_pretrained_zen as zen
from torch.nn import CrossEntropyLoss
from pytorch_pretrained_bert.crf import CRF
DEFAULT_HPARA = {
'max_seq_length': 128,
'max_ngram_size': 128,
'max_ngram_length': 5,
'use_bert': False,
'use_zen': False,
'do_lower_case': False,
'use_memory': False,
'decoder': 'crf'
}
class WordKVMN(nn.Module):
def __init__(self, hidden_size, word_size):
super(WordKVMN, self).__init__()
self.temper = hidden_size ** 0.5
self.word_embedding_a = nn.Embedding(word_size, hidden_size)
self.word_embedding_c = nn.Embedding(10, hidden_size)
def forward(self, word_seq, hidden_state, label_value_matrix, word_mask_metrix):
embedding_a = self.word_embedding_a(word_seq)
embedding_c = self.word_embedding_c(label_value_matrix)
embedding_a = embedding_a.permute(0, 2, 1)
u = torch.matmul(hidden_state, embedding_a) / self.temper
tmp_word_mask_metrix = torch.clamp(word_mask_metrix, 0, 1)
exp_u = torch.exp(u)
delta_exp_u = torch.mul(exp_u, tmp_word_mask_metrix)
sum_delta_exp_u = torch.stack([torch.sum(delta_exp_u, 2)] * delta_exp_u.shape[2], 2)
p = torch.div(delta_exp_u, sum_delta_exp_u + 1e-10)
embedding_c = embedding_c.permute(3, 0, 1, 2)
o = torch.mul(p, embedding_c)
o = o.permute(1, 2, 3, 0)
o = torch.sum(o, 2)
o = torch.add(o, hidden_state)
return o
class WMSeg(nn.Module):
def __init__(self, word2id, gram2id, labelmap, hpara, args):
super().__init__()
self.spec = locals()
self.spec.pop("self")
self.spec.pop("__class__")
self.spec.pop('args')
self.word2id = word2id
self.gram2id = gram2id
self.labelmap = labelmap
self.hpara = hpara
self.num_labels = len(self.labelmap) + 1
self.max_seq_length = self.hpara['max_seq_length']
self.max_ngram_size = self.hpara['max_ngram_size']
self.max_ngram_length = self.hpara['max_ngram_length']
self.bert_tokenizer = None
self.bert = None
self.zen_tokenizer = None
self.zen = None
self.zen_ngram_dict = None
if self.hpara['use_bert']:
if args.do_train:
cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(PYTORCH_PRETRAINED_BERT_CACHE),
'distributed_{}'.format(args.local_rank))
self.bert_tokenizer = BertTokenizer.from_pretrained(args.bert_model, do_lower_case=self.hpara['do_lower_case'])
self.bert = BertModel.from_pretrained(args.bert_model, cache_dir=cache_dir)
self.hpara['bert_tokenizer'] = self.bert_tokenizer
self.hpara['config'] = self.bert.config
else:
self.bert_tokenizer = self.hpara['bert_tokenizer']
self.bert = BertModel(self.hpara['config'])
hidden_size = self.bert.config.hidden_size
self.dropout = nn.Dropout(self.bert.config.hidden_dropout_prob)
elif self.hpara['use_zen']:
if args.do_train:
cache_dir = args.cache_dir if args.cache_dir else os.path.join(str(zen.PYTORCH_PRETRAINED_BERT_CACHE),
'distributed_{}'.format(args.local_rank))
self.zen_tokenizer = zen.BertTokenizer.from_pretrained(args.bert_model, do_lower_case=self.hpara['do_lower_case'])
self.zen_ngram_dict = zen.ZenNgramDict(args.bert_model, tokenizer=self.zen_tokenizer)
self.zen = zen.modeling.ZenModel.from_pretrained(args.bert_model, cache_dir=cache_dir)
self.hpara['zen_tokenizer'] = self.zen_tokenizer
self.hpara['zen_ngram_dict'] = self.zen_ngram_dict
self.hpara['config'] = self.zen.config
else:
self.zen_tokenizer = self.hpara['zen_tokenizer']
self.zen_ngram_dict = self.hpara['zen_ngram_dict']
self.zen = zen.modeling.ZenModel(self.hpara['config'])
hidden_size = self.zen.config.hidden_size
self.dropout = nn.Dropout(self.zen.config.hidden_dropout_prob)
else:
raise ValueError()
if self.hpara['use_memory']:
self.kv_memory = WordKVMN(hidden_size, len(gram2id))
else:
self.kv_memory = None
self.classifier = nn.Linear(hidden_size, self.num_labels, bias=False)
if self.hpara['decoder'] == 'crf':
self.crf = CRF(tagset_size=self.num_labels - 3, gpu=True)
else:
self.crf = None
if args.do_train:
self.spec['hpara'] = self.hpara
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None, valid_ids=None,
attention_mask_label=None, word_seq=None, label_value_matrix=None, word_mask=None,
input_ngram_ids=None, ngram_position_matrix=None):
if self.bert is not None:
sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False)
elif self.zen is not None:
sequence_output, _ = self.zen(input_ids, input_ngram_ids=input_ngram_ids,
ngram_position_matrix=ngram_position_matrix,
token_type_ids=token_type_ids, attention_mask=attention_mask,
output_all_encoded_layers=False)
else:
raise ValueError()
if self.kv_memory is not None:
sequence_output = self.kv_memory(word_seq, sequence_output, label_value_matrix, word_mask)
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
if self.crf is not None:
# crf = CRF(tagset_size=number_of_labels+1, gpu=True)
total_loss = self.crf.neg_log_likelihood_loss(logits, attention_mask, labels)
scores, tag_seq = self.crf._viterbi_decode(logits, attention_mask)
# Only keep active parts of the loss
else:
loss_fct = CrossEntropyLoss(ignore_index=0)
total_loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
tag_seq = torch.argmax(F.log_softmax(logits, dim=2), dim=2)
return total_loss, tag_seq
@staticmethod
def init_hyper_parameters(args):
hyper_parameters = DEFAULT_HPARA.copy()
hyper_parameters['max_seq_length'] = args.max_seq_length
hyper_parameters['max_ngram_size'] = args.max_ngram_size
hyper_parameters['max_ngram_length'] = args.max_ngram_length
hyper_parameters['use_bert'] = args.use_bert
hyper_parameters['use_zen'] = args.use_zen
hyper_parameters['do_lower_case'] = args.do_lower_case
hyper_parameters['use_memory'] = args.use_memory
hyper_parameters['decoder'] = args.decoder
return hyper_parameters
@property
def model(self):
return self.state_dict()
@classmethod
def from_spec(cls, spec, model, args):
spec = spec.copy()
res = cls(args=args, **spec)
res.load_state_dict(model)
return res
def load_data(self, data_path, do_predict=False):
if not do_predict:
flag = data_path[data_path.rfind('/')+1: data_path.rfind('.')]
lines = readfile(data_path, flag=flag)
else:
flag = 'predict'
lines = readsentence(data_path)
data = []
for sentence, label in lines:
if self.kv_memory is not None:
word_list = []
matching_position = []
for i in range(len(sentence)):
for j in range(self.max_ngram_length):
if i + j > len(sentence):
break
word = ''.join(sentence[i: i + j + 1])
if word in self.gram2id:
try:
index = word_list.index(word)
except ValueError:
word_list.append(word)
index = len(word_list) - 1
word_len = len(word)
for k in range(j + 1):
if word_len == 1:
l = 'S'
elif k == 0:
l = 'B'
elif k == j:
l = 'E'
else:
l = 'I'
matching_position.append((i + k, index, l))
else:
word_list = None
matching_position = None
data.append((sentence, label, word_list, matching_position))
examples = []
for i, (sentence, label, word_list, matching_position) in enumerate(data):
guid = "%s-%s" % (flag, i)
text_a = ' '.join(sentence)
text_b = None
if word_list is not None:
word = ' '.join(word_list)
else:
word = None
label = label
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b,
label=label, word=word, matrix=matching_position))
return examples
def convert_examples_to_features(self, examples):
max_seq_length = min(int(max([len(e.text_a.split(' ')) for e in examples]) * 1.1 + 2), self.max_seq_length)
if self.kv_memory is not None:
max_word_size = max(min(max([len(e.word.split(' ')) for e in examples]), self.max_ngram_size), 1)
features = []
tokenizer = self.bert_tokenizer if self.bert_tokenizer is not None else self.zen_tokenizer
for (ex_index, example) in enumerate(examples):
textlist = example.text_a.split(' ')
labellist = example.label
tokens = []
labels = []
valid = []
label_mask = []
for i, word in enumerate(textlist):
token = tokenizer.tokenize(word)
tokens.extend(token)
label_1 = labellist[i]
for m in range(len(token)):
if m == 0:
valid.append(1)
labels.append(label_1)
label_mask.append(1)
else:
valid.append(0)
if len(tokens) >= max_seq_length - 1:
tokens = tokens[0:(max_seq_length - 2)]
labels = labels[0:(max_seq_length - 2)]
valid = valid[0:(max_seq_length - 2)]
label_mask = label_mask[0:(max_seq_length - 2)]
ntokens = []
segment_ids = []
label_ids = []
ntokens.append("[CLS]")
segment_ids.append(0)
valid.insert(0, 1)
label_mask.insert(0, 1)
label_ids.append(self.labelmap["[CLS]"])
for i, token in enumerate(tokens):
ntokens.append(token)
segment_ids.append(0)
if len(labels) > i:
label_ids.append(self.labelmap[labels[i]])
ntokens.append("[SEP]")
segment_ids.append(0)
valid.append(1)
label_mask.append(1)
label_ids.append(self.labelmap["[SEP]"])
input_ids = tokenizer.convert_tokens_to_ids(ntokens)
input_mask = [1] * len(input_ids)
label_mask = [1] * len(label_ids)
while len(input_ids) < max_seq_length:
input_ids.append(0)
input_mask.append(0)
segment_ids.append(0)
label_ids.append(0)
valid.append(1)
label_mask.append(0)
while len(label_ids) < max_seq_length:
label_ids.append(0)
label_mask.append(0)
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(label_ids) == max_seq_length
assert len(valid) == max_seq_length
assert len(label_mask) == max_seq_length
if self.kv_memory is not None:
wordlist = example.word
wordlist = wordlist.split(' ') if len(wordlist) > 0 else []
matching_position = example.matrix
word_ids = []
matching_matrix = np.zeros((max_seq_length, max_word_size), dtype=np.int)
if len(wordlist) > max_word_size:
wordlist = wordlist[:max_word_size]
for word in wordlist:
try:
word_ids.append(self.gram2id[word])
except KeyError:
print(word)
print(wordlist)
print(textlist)
raise KeyError()
while len(word_ids) < max_word_size:
word_ids.append(0)
for position in matching_position:
char_p = position[0] + 1
word_p = position[1]
if char_p > max_seq_length - 2 or word_p > max_word_size - 1:
continue
else:
matching_matrix[char_p][word_p] = self.labelmap[position[2]]
assert len(word_ids) == max_word_size
else:
word_ids = None
matching_matrix = None
if self.zen_ngram_dict is not None:
ngram_matches = []
# Filter the ngram segment from 2 to 7 to check whether there is a ngram
for p in range(2, 8):
for q in range(0, len(tokens) - p + 1):
character_segment = tokens[q:q + p]
# j is the starting position of the ngram
# i is the length of the current ngram
character_segment = tuple(character_segment)
if character_segment in self.zen_ngram_dict.ngram_to_id_dict:
ngram_index = self.zen_ngram_dict.ngram_to_id_dict[character_segment]
ngram_matches.append([ngram_index, q, p, character_segment])
# random.shuffle(ngram_matches)
ngram_matches = sorted(ngram_matches, key=lambda s: s[0])
max_ngram_in_seq_proportion = math.ceil(
(len(tokens) / max_seq_length) * self.zen_ngram_dict.max_ngram_in_seq)
if len(ngram_matches) > max_ngram_in_seq_proportion:
ngram_matches = ngram_matches[:max_ngram_in_seq_proportion]
ngram_ids = [ngram[0] for ngram in ngram_matches]
ngram_positions = [ngram[1] for ngram in ngram_matches]
ngram_lengths = [ngram[2] for ngram in ngram_matches]
ngram_tuples = [ngram[3] for ngram in ngram_matches]
ngram_seg_ids = [0 if position < (len(tokens) + 2) else 1 for position in ngram_positions]
ngram_mask_array = np.zeros(self.zen_ngram_dict.max_ngram_in_seq, dtype=np.bool)
ngram_mask_array[:len(ngram_ids)] = 1
# record the masked positions
ngram_positions_matrix = np.zeros(shape=(max_seq_length, self.zen_ngram_dict.max_ngram_in_seq),
dtype=np.int32)
for i in range(len(ngram_ids)):
ngram_positions_matrix[ngram_positions[i]:ngram_positions[i] + ngram_lengths[i], i] = 1.0
# Zero-pad up to the max ngram in seq length.
padding = [0] * (self.zen_ngram_dict.max_ngram_in_seq - len(ngram_ids))
ngram_ids += padding
ngram_lengths += padding
ngram_seg_ids += padding
else:
ngram_ids = None
ngram_positions_matrix = None
ngram_lengths = None
ngram_tuples = None
ngram_seg_ids = None
ngram_mask_array = None
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_ids,
valid_ids=valid,
label_mask=label_mask,
word_ids=word_ids,
matching_matrix=matching_matrix,
ngram_ids=ngram_ids,
ngram_positions=ngram_positions_matrix,
ngram_lengths=ngram_lengths,
ngram_tuples=ngram_tuples,
ngram_seg_ids=ngram_seg_ids,
ngram_masks=ngram_mask_array
))
return features
def feature2input(self, device, feature):
all_input_ids = torch.tensor([f.input_ids for f in feature], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in feature], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in feature], dtype=torch.long)
all_label_ids = torch.tensor([f.label_id for f in feature], dtype=torch.long)
all_valid_ids = torch.tensor([f.valid_ids for f in feature], dtype=torch.long)
all_lmask_ids = torch.tensor([f.label_mask for f in feature], dtype=torch.long)
input_ids = all_input_ids.to(device)
input_mask = all_input_mask.to(device)
segment_ids = all_segment_ids.to(device)
label_ids = all_label_ids.to(device)
valid_ids = all_valid_ids.to(device)
l_mask = all_lmask_ids.to(device)
if self.hpara['use_memory']:
all_word_ids = torch.tensor([f.word_ids for f in feature], dtype=torch.long)
all_matching_matrix = torch.tensor([f.matching_matrix for f in feature], dtype=torch.long)
all_word_mask = torch.tensor([f.matching_matrix for f in feature], dtype=torch.float)
word_ids = all_word_ids.to(device)
matching_matrix = all_matching_matrix.to(device)
word_mask = all_word_mask.to(device)
else:
word_ids = None
matching_matrix = None
word_mask = None
if self.hpara['use_zen']:
all_ngram_ids = torch.tensor([f.ngram_ids for f in feature], dtype=torch.long)
all_ngram_positions = torch.tensor([f.ngram_positions for f in feature], dtype=torch.long)
# all_ngram_lengths = torch.tensor([f.ngram_lengths for f in train_features], dtype=torch.long)
# all_ngram_seg_ids = torch.tensor([f.ngram_seg_ids for f in train_features], dtype=torch.long)
# all_ngram_masks = torch.tensor([f.ngram_masks for f in train_features], dtype=torch.long)
ngram_ids = all_ngram_ids.to(device)
ngram_positions = all_ngram_positions.to(device)
else:
ngram_ids = None
ngram_positions = None
return input_ids, input_mask, l_mask, label_ids, matching_matrix, ngram_ids, ngram_positions, segment_ids, valid_ids, word_ids, word_mask
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None, word=None, matrix=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.label = label
self.word = word
self.matrix = matrix
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id, valid_ids=None, label_mask=None,
word_ids=None, matching_matrix=None,
ngram_ids=None, ngram_positions=None, ngram_lengths=None,
ngram_tuples=None, ngram_seg_ids=None, ngram_masks=None):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
self.valid_ids = valid_ids
self.label_mask = label_mask
self.word_ids = word_ids
self.matching_matrix = matching_matrix
self.ngram_ids = ngram_ids
self.ngram_positions = ngram_positions
self.ngram_lengths = ngram_lengths
self.ngram_tuples = ngram_tuples
self.ngram_seg_ids = ngram_seg_ids
self.ngram_masks = ngram_masks
def readfile(filename, flag):
f = open(filename)
data = []
sentence = []
label = []
for line in f:
if len(line) == 0 or line.startswith('-DOCSTART') or line[0] == "\n":
# We randomly concatenate short sentences into long ones if the sentences come from the training set.
# We do not do that if the sentences come from eval/test set
if flag == 'train':
if len(sentence) > 32 or (0 < len(sentence) <= 32 and np.random.rand(1)[0] < 0.25):
data.append((sentence, label))
sentence = []
label = []
continue
else:
if len(sentence) > 0:
data.append((sentence, label))
sentence = []
label = []
continue
splits = line.split('\t')
char = splits[0]
l = splits[-1][:-1]
sentence.append(char)
label.append(l)
if char in [',', '。', '?', '!', ':', ';', '(', ')', '、'] and len(sentence) > 64:
data.append((sentence, label))
sentence = []
label = []
if len(sentence) > 0:
data.append((sentence, label))
sentence = []
label = []
return data
def readsentence(filename):
data = []
with open(filename, 'r', encoding='utf8') as f:
lines = f.readlines()
for line in lines:
line = line.strip()
if line == '':
continue
label_list = ['S' for _ in range(len(line))]
data.append((line, label_list))
return data