|
| 1 | +import numpy as np |
| 2 | +from gempy_engine.core.data.raw_arrays_solution import RawArraysSolution |
| 3 | + |
| 4 | +import gempy as gp |
| 5 | +from gempy.core.data.enumerators import ExampleModel |
| 6 | +from gempy.core.data.grid_modules import RegularGrid |
| 7 | +from gempy.optional_dependencies import require_gempy_viewer |
| 8 | + |
| 9 | +from skimage import measure |
| 10 | + |
| 11 | +PLOT = True |
| 12 | + |
| 13 | +def marching_cubes(block, elements, spacing, extent): |
| 14 | + """ |
| 15 | + Extract the surface meshes using marching cubes |
| 16 | + Args: |
| 17 | + block (np.array): The block to extract the surface meshes from. |
| 18 | + elements (list): IDs of unique structural elements in model |
| 19 | + spacing (tuple): The spacing between grid points in the block. |
| 20 | +
|
| 21 | + Returns: |
| 22 | + mc_vertices (list): Vertices of the surface meshes. |
| 23 | + mc_edges (list): Edges of the surface meshes. |
| 24 | + """ |
| 25 | + |
| 26 | + # Extract the surface meshes using marching cubes |
| 27 | + mc_vertices = [] |
| 28 | + mc_edges = [] |
| 29 | + for i in range(0, len(elements)): |
| 30 | + verts, faces, _, _ = measure.marching_cubes(block, i, |
| 31 | + spacing=spacing) |
| 32 | + mc_vertices.append(verts + [extent[0], extent[2], extent[4]]) |
| 33 | + mc_edges.append(faces) |
| 34 | + return mc_vertices, mc_edges |
| 35 | + |
| 36 | + |
| 37 | +def test_marching_cubes_implementation(): |
| 38 | + model = gp.generate_example_model(ExampleModel.COMBINATION, compute_model=False) |
| 39 | + |
| 40 | + # Change the grid to only be the dense grid |
| 41 | + dense_grid: RegularGrid = RegularGrid( |
| 42 | + extent=model.grid.extent, |
| 43 | + resolution=np.array([20, 20, 20]) |
| 44 | + ) |
| 45 | + |
| 46 | + model.grid.dense_grid = dense_grid |
| 47 | + gp.set_active_grid( |
| 48 | + grid=model.grid, |
| 49 | + grid_type=[model.grid.GridTypes.DENSE], |
| 50 | + reset=True |
| 51 | + ) |
| 52 | + |
| 53 | + model.interpolation_options.evaluation_options.mesh_extraction = False # * Not extracting the mesh with dual contouring |
| 54 | + gp.compute_model(model) |
| 55 | + |
| 56 | + # Assert |
| 57 | + assert model.solutions.block_solution_type == RawArraysSolution.BlockSolutionType.DENSE_GRID |
| 58 | + assert model.solutions.dc_meshes is None |
| 59 | + arrays = model.solutions.raw_arrays # * arrays is equivalent to gempy v2 solutions |
| 60 | + |
| 61 | + assert arrays.scalar_field_matrix.shape == (3, 8_000) # * 3 surfaces, 8000 points |
| 62 | + |
| 63 | + # TODO: Maybe to complicated because it includes accounting for faults, multiple elements in groups |
| 64 | + # and transformation to real coordinates |
| 65 | + |
| 66 | + # Empty lists to store vertices and edges |
| 67 | + mc_vertices = [] |
| 68 | + mc_edges = [] |
| 69 | + |
| 70 | + # Boolean list of fault groups |
| 71 | + faults = model.structural_frame.group_is_fault |
| 72 | + |
| 73 | + # MC for faults, directly on fault block not on scalar field |
| 74 | + if faults is not None: |
| 75 | + # TODO: This should also use the scalar fields probably |
| 76 | + for i in np.unique(model.solutions.raw_arrays.fault_block)[:-1]: |
| 77 | + fault_block = model.solutions.raw_arrays.fault_block.reshape(model.grid.regular_grid.resolution) |
| 78 | + verts, faces, _, _ = measure.marching_cubes(fault_block, |
| 79 | + i, |
| 80 | + spacing=(model.grid.regular_grid.dx, |
| 81 | + model.grid.regular_grid.dy, |
| 82 | + model.grid.regular_grid.dz)) |
| 83 | + mc_vertices.append(verts + [model.grid.regular_grid.extent[0], |
| 84 | + model.grid.regular_grid.extent[2], |
| 85 | + model.grid.regular_grid.extent[4]]) |
| 86 | + mc_edges.append(faces) |
| 87 | + else: |
| 88 | + pass |
| 89 | + |
| 90 | + # Extract scalar field values for elements |
| 91 | + scalar_values = model.solutions.raw_arrays.scalar_field_at_surface_points |
| 92 | + |
| 93 | + # Get indices of non fault elements |
| 94 | + if faults is not None: |
| 95 | + false_indices = [i for i, fault in enumerate(faults) if not fault] |
| 96 | + else: |
| 97 | + false_indices = np.arange(len(model.structural_frame.structural_groups)) |
| 98 | + |
| 99 | + # Extract marching cubes for non fault elements |
| 100 | + for idx in false_indices: |
| 101 | + |
| 102 | + # Get correct scalar field for structural group |
| 103 | + scalar_field = model.solutions.raw_arrays.scalar_field_matrix[idx].reshape(model.grid.regular_grid.resolution) |
| 104 | + |
| 105 | + # Extract marching cubes for each scalar value for all elements of a group |
| 106 | + for i in range(len(scalar_values[idx])): |
| 107 | + verts, faces, _, _ = measure.marching_cubes(scalar_field, scalar_values[idx][i], |
| 108 | + spacing=(model.grid.regular_grid.dx, |
| 109 | + model.grid.regular_grid.dy, |
| 110 | + model.grid.regular_grid.dz)) |
| 111 | + |
| 112 | + mc_vertices.append(verts + [model.grid.regular_grid.extent[0], |
| 113 | + model.grid.regular_grid.extent[2], |
| 114 | + model.grid.regular_grid.extent[4]]) |
| 115 | + mc_edges.append(faces) |
| 116 | + |
| 117 | + # Reorder everything correctly if faults exist |
| 118 | + # TODO: All of the following is just complicated code to reorder the elements to match the order of the elements |
| 119 | + # in the structural frame, probably unnecessary in gempy strucuture |
| 120 | + # |
| 121 | + # if faults is not None: |
| 122 | + # |
| 123 | + # # TODO: This is a very convoluted way to get a boolean list of faults per element |
| 124 | + # bool_list = np.zeros(4, dtype=bool) |
| 125 | + # for i in range(len(model.structural_frame.structural_groups)): |
| 126 | + # print(i) |
| 127 | + # if model.structural_frame.group_is_fault[i]: |
| 128 | + # for j in range(len(model.structural_frame.structural_groups[i].elements)): |
| 129 | + # bool_list[i + j] = True |
| 130 | + # if not model.structural_frame.group_is_fault[i]: |
| 131 | + # for k in range(len(model.structural_frame.structural_groups[i].elements)): |
| 132 | + # bool_list[i + k] = False |
| 133 | + # |
| 134 | + # true_count = sum(bool_list) |
| 135 | + # |
| 136 | + # # Split arr_list into two parts |
| 137 | + # true_elements_vertices = mc_vertices[:true_count] |
| 138 | + # false_elements_vertices = mc_vertices[true_count:] |
| 139 | + # true_elements_edges = mc_edges[:true_count] |
| 140 | + # false_elements_edges = mc_edges[true_count:] |
| 141 | + # |
| 142 | + # # Create a new list to store reordered elements |
| 143 | + # mc_vertices = [] |
| 144 | + # mc_edges = [] |
| 145 | + # |
| 146 | + # # Iterator for both true and false elements |
| 147 | + # true_idx, false_idx = 0, 0 |
| 148 | + # |
| 149 | + # # Populate reordered_list based on bool_list |
| 150 | + # for is_true in bool_list: |
| 151 | + # if is_true: |
| 152 | + # mc_vertices.append(true_elements_vertices[true_idx] + [model.grid.regular_grid.extent[0], |
| 153 | + # model.grid.regular_grid.extent[2], |
| 154 | + # model.grid.regular_grid.extent[4]]) |
| 155 | + # mc_edges.append(true_elements_edges[true_idx]) |
| 156 | + # true_idx += 1 |
| 157 | + # else: |
| 158 | + # mc_vertices.append(false_elements_vertices[false_idx] + [model.grid.regular_grid.extent[0], |
| 159 | + # model.grid.regular_grid.extent[2], |
| 160 | + # model.grid.regular_grid.extent[4]]) |
| 161 | + # mc_edges.append(false_elements_edges[false_idx]) |
| 162 | + # false_idx += 1 |
| 163 | + |
| 164 | + if PLOT: |
| 165 | + gpv = require_gempy_viewer() |
| 166 | + # gtv: gpv.GemPyToVista = gpv.plot_3d(model, show_data=True, image=True) |
| 167 | + import pyvista as pv |
| 168 | + # pyvista_plotter: pv.Plotter = gtv.p |
| 169 | + |
| 170 | + # TODO: This opens interactive window as of now |
| 171 | + pyvista_plotter = pv.Plotter() |
| 172 | + |
| 173 | + # Add the meshes to the plot |
| 174 | + for i in range(len(mc_vertices)): |
| 175 | + pyvista_plotter.add_mesh( |
| 176 | + pv.PolyData(mc_vertices[i], |
| 177 | + np.insert(mc_edges[i], 0, 3, axis=1).ravel()), |
| 178 | + color='blue') |
| 179 | + |
| 180 | + pyvista_plotter.show() |
0 commit comments