-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1_preprocessing_aiib2023.py
43 lines (33 loc) · 1.37 KB
/
1_preprocessing_aiib2023.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from light_training.preprocessing.preprocessors.default_preprocessor import DefaultPreprocessor
base_dir = "./data/raw_data/AIIB23_Train_T1"
image_dir = "img"
gt_dir = "gt"
def process_train():
# fullres spacing is [0.5 0.70410156 0.70410156]
# median_shape is [602.5 516.5 516.5]
preprocessor = DefaultPreprocessor(base_dir=base_dir,
image_dir=image_dir,
label_dir=gt_dir,
)
out_spacing = [0.5, 0.70410156, 0.70410156]
output_dir = "./data/fullres/train/"
with open("./data_analysis_result.txt", "r") as f:
content = f.read().strip("\n")
print(content)
content = eval(content)
foreground_intensity_properties_per_channel = content["intensity_statistics_per_channel"]
preprocessor.run(output_spacing=out_spacing,
output_dir=output_dir,
all_labels=[1],
foreground_intensity_properties_per_channel=foreground_intensity_properties_per_channel
)
def plan():
preprocessor = DefaultPreprocessor(base_dir=base_dir,
image_dir=image_dir,
label_dir=gt_dir,
)
preprocessor.run_plan()
if __name__ == "__main__":
#
plan()
process_train()