-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze.py
185 lines (154 loc) · 5.63 KB
/
analyze.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from ufl.operators import ge
from utils import Params
import argparse
import os
import xml.etree.ElementTree as ET
import h5py
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import tri
import mpi4py
import dolfin as df
def parse_args():
parser = argparse.ArgumentParser(description="Analyze")
parser.add_argument("folder", type=str, help="Input folder")
parser.add_argument("--plot", action="store_true", help="Plot front")
return parser.parse_args()
def pathlength(x, y):
return np.sum(np.sqrt(np.diff(x)**2 + np.diff(y)**2))
def get_boundary_edges(cells):
edge_dict = dict()
for cell in cells:
for id1, id2 in [[0, 1], [1, 2], [2, 0]]:
key = (min(cell[id1], cell[id2]), max(cell[id1], cell[id2]))
if key in edge_dict:
edge_dict[key] += 1
else:
edge_dict[key] = 1
edges = []
for key, val in edge_dict.items():
if val == 1:
edges.append(key)
return edges
def get_other(vs, v):
assert(len(vs) == 2)
if vs[0] == v:
return vs[1]
assert vs[1] == v
return vs[0]
def get_closed_loops(boundary_edges):
node2node = dict()
for v1, v2 in boundary_edges:
if v1 not in node2node:
node2node[v1] = [v2]
else:
node2node[v1].append(v2)
if v2 not in node2node:
node2node[v2] = [v1]
else:
node2node[v2].append(v1)
nodes_left = set(np.unique(boundary_edges))
loops = []
while len(nodes_left) > 0:
v0 = nodes_left.pop()
v1 = node2node[v0][0]
v1_prev = v0
loop = [v0]
while v1 != v0:
loop.append(v1)
nodes_left.remove(v1)
v1, v1_prev = get_other(node2node[v1], v1_prev), v1
loops.append(loop)
return loops
if __name__ == "__main__":
if mpi4py.MPI.COMM_WORLD.Get_size() > 1:
exit("Cannot be run in parallel")
args = parse_args()
ade_params = Params(os.path.join(args.folder, "params.dat"))
mesh_params = Params(os.path.join(args.folder, "..", "params.dat"))
topology_path = None
geometry_path = None
timeseries = []
root = ET.parse(os.path.join(args.folder, "c.xdmf")).getroot()
for grid in root[0][0]:
assert(grid.tag == "Grid")
time, c_path = None, None
for element in grid:
if element.tag == "Topology":
topology_path = element[0].text.split(":")
elif element.tag == "Geometry":
geometry_path = element[0].text.split(":")
elif element.tag == "Attribute" and element.attrib["Name"] == "c":
c_path = element[0].text.split(":")
elif element.tag == "Time":
time = float(element.attrib["Value"])
assert ( time is not None and c_path is not None )
timeseries.append((time, c_path))
assert (topology_path[0] == geometry_path[0])
h5f = h5py.File(os.path.join(args.folder, topology_path[0]), "r")
topology = np.array(h5f[topology_path[1]])
geometry = np.array(h5f[geometry_path[1]])
# Filling in the holes
boundary_edges = get_boundary_edges(topology)
loops = get_closed_loops(boundary_edges)
new_nodes = []
new_cells = []
i = len(geometry)
for loop in loops:
x = geometry[loop, :]
if (all(x[:, 0] > df.DOLFIN_EPS_LARGE)
and all(x[:, 0] < mesh_params["Lx"] - df.DOLFIN_EPS_LARGE)
and all(x[:, 1] > df.DOLFIN_EPS_LARGE)
and all(x[:, 1] < mesh_params["Ly"] - df.DOLFIN_EPS_LARGE)):
x_mid = np.mean(x, axis=0)
new_nodes.append(x_mid)
for j in range(len(loop)):
j_next = (j + 1) % len(loop)
new_cells.append([loop[j], loop[j_next], i])
i += 1
new_nodes = np.array(new_nodes)
new_cells = np.array(new_cells)
Nextra = len(new_nodes)
topology = np.vstack([topology, new_cells])
geometry = np.vstack([geometry, new_nodes])
triang = tri.Triangulation(
geometry[:, 0], geometry[:, 1], triangles=topology)
imgfolder = os.path.join(args.folder, "images")
if not os.path.exists(imgfolder):
os.makedirs(imgfolder)
tL = np.zeros((len(timeseries), 2))
for it, (t, c_path) in enumerate(timeseries):
c = np.array(h5f[c_path[1]]).flatten()
c = np.hstack([c, -100.*np.ones(Nextra)])
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
tcset = ax.tricontour(triang, c, levels=[0.5])
paths = tcset.collections[0].get_paths()
L = np.zeros(len(paths))
touching_btm = np.zeros(len(paths), dtype=bool)
for i, path in enumerate(paths):
x = path.vertices
L[i] = pathlength(x[:, 0], x[:, 1])
touching_btm[i] = any(x[:, 1] < 1e-3)
if args.plot:
plt.scatter(x[:, 0], x[:, 1])
Lm = sum(L[touching_btm]) if any(touching_btm) else max(L)
tL[it, 0] = t
tL[it, 1] = Lm
if args.plot:
ax.set_title("t = {:04.6f}".format(t))
ax.set_xlabel("x")
ax.set_ylabel("y")
plt.savefig(os.path.join(imgfolder, "front_{:06d}.png".format(it)))
#plt.show()
plt.close()
np.savetxt(os.path.join(args.folder, "t_vs_L.dat"), tL)
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
ax.plot(tL[:, 0], tL[:, 1]-1, label="data")
ax.plot(tL[:, 0], 1000*tL[:, 0]**2, label='t^2')
ax.plot(tL[:, 0], 100*tL[:, 0], label="t")
ax.set_xscale("log")
ax.set_yscale("log")
ax.set_xlabel("time")
ax.set_ylabel("front length")
plt.legend()
plt.show()