-
Notifications
You must be signed in to change notification settings - Fork 39
/
test.py
223 lines (193 loc) · 7.97 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# -*- coding: utf-8 -*-
# @Author: fyr91
# @Date: 2019-10-22 15:05:15
# @Last Modified by: User
# @Last Modified time: 2019-10-30 22:06:32
import os
import cv2
import dlib
import numpy as np
from imutils import face_utils
import tensorflow as tf
import pickle
import onnx
import onnxruntime as ort
from onnx_tf.backend import prepare
def area_of(left_top, right_bottom):
"""
Compute the areas of rectangles given two corners.
Args:
left_top (N, 2): left top corner.
right_bottom (N, 2): right bottom corner.
Returns:
area (N): return the area.
"""
hw = np.clip(right_bottom - left_top, 0.0, None)
return hw[..., 0] * hw[..., 1]
def iou_of(boxes0, boxes1, eps=1e-5):
"""
Return intersection-over-union (Jaccard index) of boxes.
Args:
boxes0 (N, 4): ground truth boxes.
boxes1 (N or 1, 4): predicted boxes.
eps: a small number to avoid 0 as denominator.
Returns:
iou (N): IoU values.
"""
overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])
overlap_area = area_of(overlap_left_top, overlap_right_bottom)
area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
return overlap_area / (area0 + area1 - overlap_area + eps)
def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
"""
Perform hard non-maximum-supression to filter out boxes with iou greater
than threshold
Args:
box_scores (N, 5): boxes in corner-form and probabilities.
iou_threshold: intersection over union threshold.
top_k: keep top_k results. If k <= 0, keep all the results.
candidate_size: only consider the candidates with the highest scores.
Returns:
picked: a list of indexes of the kept boxes
"""
scores = box_scores[:, -1]
boxes = box_scores[:, :-1]
picked = []
indexes = np.argsort(scores)
indexes = indexes[-candidate_size:]
while len(indexes) > 0:
current = indexes[-1]
picked.append(current)
if 0 < top_k == len(picked) or len(indexes) == 1:
break
current_box = boxes[current, :]
indexes = indexes[:-1]
rest_boxes = boxes[indexes, :]
iou = iou_of(
rest_boxes,
np.expand_dims(current_box, axis=0),
)
indexes = indexes[iou <= iou_threshold]
return box_scores[picked, :]
def predict(width, height, confidences, boxes, prob_threshold, iou_threshold=0.5, top_k=-1):
"""
Select boxes that contain human faces
Args:
width: original image width
height: original image height
confidences (N, 2): confidence array
boxes (N, 4): boxes array in corner-form
iou_threshold: intersection over union threshold.
top_k: keep top_k results. If k <= 0, keep all the results.
Returns:
boxes (k, 4): an array of boxes kept
labels (k): an array of labels for each boxes kept
probs (k): an array of probabilities for each boxes being in corresponding labels
"""
boxes = boxes[0]
confidences = confidences[0]
picked_box_probs = []
picked_labels = []
for class_index in range(1, confidences.shape[1]):
probs = confidences[:, class_index]
mask = probs > prob_threshold
probs = probs[mask]
if probs.shape[0] == 0:
continue
subset_boxes = boxes[mask, :]
box_probs = np.concatenate([subset_boxes, probs.reshape(-1, 1)], axis=1)
box_probs = hard_nms(box_probs,
iou_threshold=iou_threshold,
top_k=top_k,
)
picked_box_probs.append(box_probs)
picked_labels.extend([class_index] * box_probs.shape[0])
if not picked_box_probs:
return np.array([]), np.array([]), np.array([])
picked_box_probs = np.concatenate(picked_box_probs)
picked_box_probs[:, 0] *= width
picked_box_probs[:, 1] *= height
picked_box_probs[:, 2] *= width
picked_box_probs[:, 3] *= height
return picked_box_probs[:, :4].astype(np.int32), np.array(picked_labels), picked_box_probs[:, 4]
onnx_path = 'models/ultra_light/ultra_light_models/ultra_light_640.onnx'
onnx_model = onnx.load(onnx_path)
predictor = prepare(onnx_model)
ort_session = ort.InferenceSession(onnx_path)
input_name = ort_session.get_inputs()[0].name
shape_predictor = dlib.shape_predictor('models/facial_landmarks/shape_predictor_5_face_landmarks.dat')
fa = face_utils.facealigner.FaceAligner(shape_predictor, desiredFaceWidth=112, desiredLeftEye=(0.3, 0.3))
threshold = 0.63
# load distance
with open("embeddings/embeddings.pkl", "rb") as f:
(saved_embeds, names) = pickle.load(f)
with tf.Graph().as_default():
with tf.Session() as sess:
saver = tf.train.import_meta_graph('models/mfn/m1/mfn.ckpt.meta')
saver.restore(sess, 'models/mfn/m1/mfn.ckpt')
images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
embedding_size = embeddings.get_shape()[1]
video_capture = cv2.VideoCapture(0)
while True:
fps = video_capture.get(cv2.CAP_PROP_FPS)
ret, frame = video_capture.read()
# preprocess faces
h, w, _ = frame.shape
img = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (640, 480))
img_mean = np.array([127, 127, 127])
img = (img - img_mean) / 128
img = np.transpose(img, [2, 0, 1])
img = np.expand_dims(img, axis=0)
img = img.astype(np.float32)
# detect faces
confidences, boxes = ort_session.run(None, {input_name: img})
boxes, labels, probs = predict(w, h, confidences, boxes, 0.7)
# locate faces
faces = []
boxes[boxes<0] = 0
for i in range(boxes.shape[0]):
box = boxes[i, :]
x1, y1, x2, y2 = box
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
aligned_face = fa.align(frame, gray, dlib.rectangle(left = x1, top=y1, right=x2, bottom=y2))
aligned_face = cv2.resize(aligned_face, (112,112))
aligned_face = aligned_face - 127.5
aligned_face = aligned_face * 0.0078125
faces.append(aligned_face)
# face embedding
if len(faces)>0:
predictions = []
faces = np.array(faces)
feed_dict = { images_placeholder: faces, phase_train_placeholder:False }
embeds = sess.run(embeddings, feed_dict=feed_dict)
# prediciton using distance
for embedding in embeds:
diff = np.subtract(saved_embeds, embedding)
dist = np.sum(np.square(diff), 1)
idx = np.argmin(dist)
if dist[idx] < threshold:
predictions.append(names[idx])
else:
predictions.append("unknown")
# draw
for i in range(boxes.shape[0]):
box = boxes[i, :]
text = f"{predictions[i]}"
x1, y1, x2, y2 = box
cv2.rectangle(frame, (x1, y1), (x2, y2), (80,18,236), 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (x1, y2 - 20), (x2, y2), (80,18,236), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, text, (x1 + 6, y2 - 6), font, 0.3, (255, 255, 255), 1)
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()