Skip to content

Latest commit

 

History

History
71 lines (59 loc) · 2.77 KB

File metadata and controls

71 lines (59 loc) · 2.77 KB

2601. 质数减法运算

给你一个下标从 0 开始的整数数组 nums ,数组长度为 n

你可以执行无限次下述运算:

  • 选择一个之前未选过的下标 i ,并选择一个 严格小于 nums[i] 的质数 p ,从 nums[i] 中减去 p

如果你能通过上述运算使得 nums 成为严格递增数组,则返回 true ;否则返回 false

严格递增数组 中的每个元素都严格大于其前面的元素。

示例 1:

输入: nums = [4,9,6,10]
输出: true
解释: 在第一次运算中:选择 i = 0 和 p = 3 ,然后从 nums[0] 减去 3 ,nums 变为 [1,9,6,10] 。
在第二次运算中:选择 i = 1 和 p = 7 ,然后从 nums[1] 减去 7 ,nums 变为 [1,2,6,10] 。
第二次运算后,nums 按严格递增顺序排序,因此答案为 true 。

示例 2:

输入: nums = [6,8,11,12]
输出: true
解释: nums 从一开始就按严格递增顺序排序,因此不需要执行任何运算。

示例 3:

输入: nums = [5,8,3]
输出: false
解释: 可以证明,执行运算无法使 nums 按严格递增顺序排序,因此答案是 false 。

提示:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= 1000
  • nums.length == n

题解 (Rust)

1. 题解

impl Solution {
    pub fn prime_sub_operation(nums: Vec<i32>) -> bool {
        let primes = [
            0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79,
            83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
            179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269,
            271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373,
            379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467,
            479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593,
            599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691,
            701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821,
            823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937,
            941, 947, 953, 967, 971, 977, 983, 991, 997,
        ];
        let mut prev = 0;

        for &num in &nums {
            match primes.binary_search(&(num.min(num - prev) - 1)) {
                Ok(i) => prev = num - primes[i],
                Err(0) => return false,
                Err(i) => prev = num - primes[i - 1],
            }
        }

        true
    }
}