You are given an integer array nums
. The absolute sum of a subarray [numsl, numsl+1, ..., numsr-1, numsr]
is abs(numsl + numsl+1 + ... + numsr-1 + numsr)
.
Return the maximum absolute sum of any (possibly empty) subarray of nums
.
Note that abs(x)
is defined as follows:
- If
x
is a negative integer, thenabs(x) = -x
. - If
x
is a non-negative integer, thenabs(x) = x
.
Input: nums = [1,-3,2,3,-4] Output: 5 Explanation: The subarray [2,3] has absolute sum = abs(2+3) = abs(5) = 5.
Input: nums = [2,-5,1,-4,3,-2] Output: 8 Explanation: The subarray [-5,1,-4] has absolute sum = abs(-5+1-4) = abs(-8) = 8.
1 <= nums.length <= 105
-104 <= nums[i] <= 104
# @param {Integer[]} nums
# @return {Integer}
def max_absolute_sum(nums)
sum = 0
max_sum = 0
min_sum = 0
ret = 0
nums.each do |x|
sum += x
max_sum = [max_sum, sum].max
min_sum = [min_sum, sum].min
ret = [ret, (sum - max_sum).abs, (sum - min_sum).abs].max
end
ret
end
impl Solution {
pub fn max_absolute_sum(nums: Vec<i32>) -> i32 {
let mut sum = 0;
let mut max_sum = 0;
let mut min_sum = 0;
let mut ret = 0;
for x in nums {
sum += x;
max_sum = max_sum.max(sum);
min_sum = min_sum.min(sum);
ret = ret.max((sum - max_sum).abs()).max((sum - min_sum).abs());
}
ret
}
}