给你一个由 n
个节点(下标从 0 开始)组成的无向加权图,该图由一个描述边的列表组成,其中 edges[i] = [a, b]
表示连接节点 a 和 b 的一条无向边,且该边遍历成功的概率为 succProb[i]
。
指定两个节点分别作为起点 start
和终点 end
,请你找出从起点到终点成功概率最大的路径,并返回其成功概率。
如果不存在从 start
到 end
的路径,请 返回 0 。只要答案与标准答案的误差不超过 1e-5 ,就会被视作正确答案。
输入: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.2], start = 0, end = 2 输出: 0.25000 解释: 从起点到终点有两条路径,其中一条的成功概率为 0.2 ,而另一条为 0.5 * 0.5 = 0.25
输入: n = 3, edges = [[0,1],[1,2],[0,2]], succProb = [0.5,0.5,0.3], start = 0, end = 2 输出: 0.30000
输入: n = 3, edges = [[0,1]], succProb = [0.5], start = 0, end = 2 输出: 0.00000 解释: 节点 0 和 节点 2 之间不存在路径
2 <= n <= 10^4
0 <= start, end < n
start != end
0 <= a, b < n
a != b
0 <= succProb.length == edges.length <= 2*10^4
0 <= succProb[i] <= 1
- 每两个节点之间最多有一条边
import heapq
class Solution:
def maxProbability(self, n: int, edges: List[List[int]], succProb: List[float], start_node: int, end_node: int) -> float:
graph = {start_node: [(1, start_node)]}
seen = set()
heap = [(-1, start_node)]
heapq.heapify(heap)
for i in range(len(edges)):
if edges[i][0] not in graph:
graph[edges[i][0]] = []
if edges[i][1] not in graph:
graph[edges[i][1]] = []
graph[edges[i][0]].append((succProb[i], edges[i][1]))
graph[edges[i][1]].append((succProb[i], edges[i][0]))
while len(heap) > 0:
prob0, node0 = heapq.heappop(heap)
seen.add(node0)
if node0 == end_node:
return -prob0
for prob1, node1 in graph[node0]:
if node1 not in seen:
heapq.heappush(heap, (prob0 * prob1, node1))
return 0