给你一个整数数组 nums
,返回 nums
中最长等差子序列的长度。
回想一下,nums
的子序列是一个列表 nums[i1], nums[i2], ..., nums[ik]
,且 0 <= i1 < i2 < ... < ik <= nums.length - 1
。并且如果 seq[i+1] - seq[i]
( 0 <= i < seq.length - 1
) 的值都相同,那么序列 seq
是等差的。
输入: nums = [3,6,9,12] 输出: 4 解释: 整个数组是公差为 3 的等差数列。
输入: nums = [9,4,7,2,10] 输出: 3 解释: 最长的等差子序列是 [4,7,10]。
输入: nums = [20,1,15,3,10,5,8] 输出: 4 解释: 最长的等差子序列是 [20,15,10,5]。
2 <= nums.length <= 1000
0 <= nums[i] <= 500
impl Solution {
pub fn longest_arith_seq_length(nums: Vec<i32>) -> i32 {
let max_num = *nums.iter().max().unwrap();
let mut dp = vec![vec![0; max_num as usize * 2 + 1]; max_num as usize + 1];
let mut ret = 2;
for i in 0..nums.len() {
for diff in -max_num..=max_num {
if nums[i] - diff < 0 || nums[i] - diff > max_num {
dp[nums[i] as usize][(diff + max_num) as usize] = 1;
} else {
dp[nums[i] as usize][(diff + max_num) as usize] =
dp[(nums[i] - diff) as usize][(diff + max_num) as usize] + 1;
}
ret = ret.max(dp[nums[i] as usize][(diff + max_num) as usize]);
}
}
ret
}
}