Skip to content

Latest commit

 

History

History
75 lines (63 loc) · 2.77 KB

File metadata and controls

75 lines (63 loc) · 2.77 KB

391. 完美矩形

给你一个数组 rectangles ,其中 rectangles[i] = [xi, yi, ai, bi] 表示一个坐标轴平行的矩形。这个矩形的左下顶点是 (xi, yi) ,右上顶点是 (ai, bi)

如果所有矩形一起精确覆盖了某个矩形区域,则返回 true ;否则,返回 false

示例 1:

输入: rectangles = [[1,1,3,3],[3,1,4,2],[3,2,4,4],[1,3,2,4],[2,3,3,4]]
输出: true
解释: 5 个矩形一起可以精确地覆盖一个矩形区域。

示例 2:

输入: rectangles = [[1,1,2,3],[1,3,2,4],[3,1,4,2],[3,2,4,4]]
输出: false
解释: 两个矩形之间有间隔,无法覆盖成一个矩形。

示例 3:

输入: rectangles = [[1,1,3,3],[3,1,4,2],[1,3,2,4],[2,2,4,4]]
输出: false
解释: 因为中间有相交区域,虽然形成了矩形,但不是精确覆盖。

提示:

  • 1 <= rectangles.length <= 2 * 104
  • rectangles[i].length == 4
  • -105 <= xi, yi, ai, bi <= 105

题解 (Rust)

1. 题解

use std::collections::HashMap;

impl Solution {
    pub fn is_rectangle_cover(rectangles: Vec<Vec<i32>>) -> bool {
        let (mut minx, mut miny, mut maxa, mut maxb) = (i32::MAX, i32::MAX, i32::MIN, i32::MIN);
        let mut area = 0;
        let mut count = HashMap::new();

        for rect in &rectangles {
            let (x, y, a, b) = (rect[0], rect[1], rect[2], rect[3]);
            minx = minx.min(x);
            miny = miny.min(y);
            maxa = maxa.max(a);
            maxb = maxb.max(b);
            area += (a - x) as i64 * (b - y) as i64;
            *count.entry((x, y)).or_insert(0) += 1;
            *count.entry((x, b)).or_insert(0) += 1;
            *count.entry((a, y)).or_insert(0) += 1;
            *count.entry((a, b)).or_insert(0) += 1;
        }

        if (maxa - minx) as i64 * (maxb - miny) as i64 != area {
            return false;
        }

        for (&(x, y), &c) in count.iter() {
            if (x == minx || x == maxa) && (y == miny || y == maxb) && c != 1 {
                return false;
            } else if ((x != minx && x != maxa) || (y != miny && y != maxb)) && c != 2 && c != 4 {
                return false;
            }
        }

        true
    }
}