Skip to content

Very slow computation time compared to other methods #300

@Wulfhartus

Description

@Wulfhartus

Hi,
I'm trying to compute short vectors of thousands of lattices in small dimension using SageMaths (Jupyter) on Windows 11.
I tried the function SVP as used in the example files:

from fpylll import LLL, IntegerMatrix, SVP
A = IntegerMatrix.from_matrix([
    [-1, -1,  0, -2,  0,  0, -1,  0,  1,  1, -1],
    [ 2,  0,  0,  0,  1,  0, -1,  1,  0,  2,  1],
    [ 0, -1, -2,  2,  0,  0,  0, -2,  2, -1, -1],
    [-1, -1, -1,  1,  1, -1,  2,  0,  2, -1,  2],
    [-1,  1, -1,  0,  1,  2, -2,  1, -1,  2, -1],
    [-1,  1, -1, -1,  0,  0,  1,  3,  0,  0, -2],
    [ 1,  0,  0,  0,  0,  1, -2,  1,  0, -3, -1],
    [-2, -2,  0,  2, -1,  0,  0,  1,  0,  2,  0],
    [-1,  3,  1,  1,  1, -2,  0,  0,  1,  1,  2],
    [-1,  1,  3,  2,  1,  1,  2,  0,  2,  0, -1],
    [ 0,  2,  1,  0, -3,  3, -1,  1,  3, -1, -1],
])
t=time.time()   
u=SVP.shortest_vector(A, method='proved')
print(time.time()-t,'s')

The time taken is flabbergastingly long : 0.39350318908691406 s.

I have another method, using Fincke-Pohst algorithm implemented in PariGP (qfminim) and that can be used within Sage. Its execution time takes 0.0020112991333007812 s. I wonder why fpylll is so much slower than this.

Why is fpylll so slow and how to get it to work faster ?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions