From a6e7ae2d58b6f82882ef16980444ca53444e0353 Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Fri, 11 Oct 2024 19:13:21 +0100 Subject: [PATCH 01/23] feat: Introduce position size limits in risk manager --- .../risk_management_simulator.py | 0 .../itbot/{ => portfolio}/risk_manager.py | 26 ++++++++++++++++--- 2 files changed, 22 insertions(+), 4 deletions(-) rename packages/itbot/itbot/{ => portfolio}/risk_management_simulator.py (100%) rename packages/itbot/itbot/{ => portfolio}/risk_manager.py (82%) diff --git a/packages/itbot/itbot/risk_management_simulator.py b/packages/itbot/itbot/portfolio/risk_management_simulator.py similarity index 100% rename from packages/itbot/itbot/risk_management_simulator.py rename to packages/itbot/itbot/portfolio/risk_management_simulator.py diff --git a/packages/itbot/itbot/risk_manager.py b/packages/itbot/itbot/portfolio/risk_manager.py similarity index 82% rename from packages/itbot/itbot/risk_manager.py rename to packages/itbot/itbot/portfolio/risk_manager.py index 38cd7b8..d006289 100644 --- a/packages/itbot/itbot/risk_manager.py +++ b/packages/itbot/itbot/portfolio/risk_manager.py @@ -82,22 +82,40 @@ def update_balance(self, new_balance: float) -> None: self.equity_curve.append(new_balance) self.logger.info(f"Updated balance: {new_balance}") - def calculate_position_size(self, current_balance: Optional[float] = None, **kwargs) -> float: + def calculate_position_size( + self, + current_balance: Optional[float] = None, + min_position_size: float = 0.01, + max_position_size: float = 100.0, + **kwargs, + ) -> float: """ Calculate the position size based on the currently selected strategy. Args: - current_balance (Optional[float]): Current account balance, defaults to initial balance. - **kwargs: Additional parameters for specific strategies. + current_balance (Optional[float]): The current account balance. If not provided, defaults to the current balance of the risk manager instance. + min_position_size (float): The minimum allowable position size based on broker or exchange restrictions. Default is 0.01. + max_position_size (float): The maximum allowable position size based on broker or exchange restrictions. Default is 100.0. + **kwargs: Additional parameters that can be passed to specific strategies. Returns: - float: Calculated position size. + float: The calculated position size, constrained by the minimum and maximum position size limits. + + The function first calculates the position size based on the currently selected strategy (e.g., fixed percentage, Kelly criterion, etc.). + It then ensures that the position size is within the bounds of the specified minimum and maximum limits. If the calculated position size is + smaller than the minimum, it is adjusted up to the minimum. If it exceeds the maximum, it is adjusted down to the maximum. This ensures + compliance with broker or exchange restrictions, preventing invalid position sizes. """ if current_balance is None: current_balance = self.current_balance # Use the selected strategy for position size calculation. position_size = self.current_strategy(current_balance=current_balance, **kwargs) + + # Constrain position size within the broker's/exchange's min and max limits + position_size = max(min_position_size, min(position_size, max_position_size)) + + self.logger.info(f"Calculated position size: {position_size}") return position_size def fixed_percentage_strategy(self, current_balance: float, **kwargs) -> float: From 56868612ff0c7a4e4bddbafa2ba83df9a51b80dd Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Fri, 11 Oct 2024 19:13:51 +0100 Subject: [PATCH 02/23] feat: Implement portfolio optimization strategies --- packages/itbot/itbot/portfolio/__init__.py | 3 + packages/itbot/itbot/portfolio/portfolio.py | 133 ++++++++++++++++++++ 2 files changed, 136 insertions(+) create mode 100644 packages/itbot/itbot/portfolio/__init__.py create mode 100644 packages/itbot/itbot/portfolio/portfolio.py diff --git a/packages/itbot/itbot/portfolio/__init__.py b/packages/itbot/itbot/portfolio/__init__.py new file mode 100644 index 0000000..c05c753 --- /dev/null +++ b/packages/itbot/itbot/portfolio/__init__.py @@ -0,0 +1,3 @@ +from .portfolio import * +from .risk_manager import * +from .risk_management_simulator import * diff --git a/packages/itbot/itbot/portfolio/portfolio.py b/packages/itbot/itbot/portfolio/portfolio.py new file mode 100644 index 0000000..02b3851 --- /dev/null +++ b/packages/itbot/itbot/portfolio/portfolio.py @@ -0,0 +1,133 @@ +import numpy as np +import pandas as pd +from scipy.optimize import minimize +from scipy.stats import skew, kurtosis + + +class Portfolio: + def __init__(self, data: pd.DataFrame): + """ + Initialize the Portfolio with the given stock return data. + + Args: + data (pd.DataFrame): DataFrame containing the returns of different stocks. + """ + self.data = data + + @staticmethod + def sor_criterion(weight: np.ndarray, data: pd.DataFrame) -> float: + """ + Sortino ratio optimization criterion. + + Args: + weight (np.ndarray): Weights for the portfolio. + data (pd.DataFrame): DataFrame containing the returns of different stocks. + + Returns: + float: Opposite of the Sortino ratio for minimization. + """ + portfolio_return = np.multiply(data, np.transpose(weight)).sum(axis=1) + mean = np.mean(portfolio_return) + std = np.std(portfolio_return[portfolio_return < 0]) + sortino = mean / std + return -sortino + + @staticmethod + def mv_criterion(weights: np.ndarray, data: pd.DataFrame) -> float: + """ + Mean-Variance portfolio optimization criterion. + + Args: + weights (np.ndarray): Weights for the portfolio. + data (pd.DataFrame): DataFrame containing the returns of different stocks. + + Returns: + float: Optimization criterion value for mean-variance. + """ + Lambda = 3 + W = 1 + Wbar = 1 + 0.25 / 100 + portfolio_return = np.multiply(data, np.transpose(weights)).sum(axis=1) + mean = np.mean(portfolio_return) + std = np.std(portfolio_return) + criterion = ( + Wbar ** (1 - Lambda) / (1 + Lambda) + + Wbar ** (-Lambda) * W * mean + - Lambda / 2 * Wbar ** (-1 - Lambda) * W**2 * std**2 + ) + return -criterion + + @staticmethod + def sk_criterion(weights: np.ndarray, data: pd.DataFrame) -> float: + """ + Skewness and Kurtosis portfolio optimization criterion. + + Args: + weights (np.ndarray): Weights for the portfolio. + data (pd.DataFrame): DataFrame containing the returns of different stocks. + + Returns: + float: Optimization criterion value for skewness and kurtosis. + """ + Lambda = 3 + W = 1 + Wbar = 1 + 0.25 / 100 + portfolio_return = np.multiply(data, np.transpose(weights)).sum(axis=1) + mean = np.mean(portfolio_return) + std = np.std(portfolio_return) + skewness = skew(portfolio_return) + kurt = kurtosis(portfolio_return) + + criterion = ( + Wbar ** (1 - Lambda) / (1 + Lambda) + + Wbar ** (-Lambda) * W * mean + - Lambda / 2 * Wbar ** (-1 - Lambda) * W**2 * std**2 + + Lambda * (Lambda + 1) / 6 * Wbar ** (-2 - Lambda) * W**3 * skewness + - Lambda * (Lambda + 1) * (Lambda + 2) / 24 * Wbar ** (-3 - Lambda) * W**4 * kurt + ) + return -criterion + + def optimize_portfolio(self, criterion: callable) -> np.ndarray: + """ + Optimize the portfolio based on the given criterion. + + Args: + criterion (callable): Optimization criterion function (e.g. sor_criterion, mv_criterion, sk_criterion). + + Returns: + np.ndarray: Optimal portfolio weights. + """ + n = self.data.shape[1] + x0 = np.ones(n) / n # Initialize equal weights + cons = {"type": "eq", "fun": lambda x: sum(abs(x)) - 1} + bounds = [(0, 1) for _ in range(n)] + + result = minimize( + criterion, + x0, + args=(self.data,), # Pass self.data as the second argument to the criterion function + method="SLSQP", + bounds=bounds, + constraints=cons, + options={"disp": True}, + ) + return result.x + + +# Example Usage: + +# # Assume `returns_df` is a pandas DataFrame containing the returns of different stocks +# portfolio = Portfolio(returns_df) + +# # Optimize the portfolio using the Sortino ratio criterion +# optimal_weights_sor = portfolio.optimize_portfolio(portfolio.SOR_criterion) + +# # Optimize the portfolio using the Mean-Variance criterion +# optimal_weights_mv = portfolio.optimize_portfolio(portfolio.MV_criterion) + +# # Optimize the portfolio using the Skewness-Kurtosis criterion +# optimal_weights_sk = portfolio.optimize_portfolio(portfolio.SK_criterion) + +# print("Optimal Weights (Sortino):", optimal_weights_sor) +# print("Optimal Weights (Mean-Variance):", optimal_weights_mv) +# print("Optimal Weights (Skewness-Kurtosis):", optimal_weights_sk) From 0fed90579fc6ad6c312b39b038bb139e95f99cd1 Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Fri, 11 Oct 2024 19:14:12 +0100 Subject: [PATCH 03/23] chore: Add scipy dependency for improved data processing --- packages/itbot/requirements.txt | 1 + 1 file changed, 1 insertion(+) diff --git a/packages/itbot/requirements.txt b/packages/itbot/requirements.txt index 38dee0e..bc5cb37 100644 --- a/packages/itbot/requirements.txt +++ b/packages/itbot/requirements.txt @@ -3,6 +3,7 @@ python-dotenv colorlog docker torch +scipy stable-baselines3[extra] rpyc git+https://github.com/fortesenselabs/trade_flow.git \ No newline at end of file From 84ac880b2633005622db7958966cb684e90208a3 Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 03:57:53 +0100 Subject: [PATCH 04/23] feat: introduce backtesting functionality Adds backtesting functionality for various portfolio strategies, including static, dynamic, and stop-loss/take-profit approaches. These features enable thorough evaluation and performance analysis of different trading strategies. --- packages/itbot/itbot/__init__.py | 21 +- packages/itbot/itbot/backtest.py | 441 ++++++++++++++++++++ packages/itbot/itbot/portfolio/portfolio.py | 6 +- 3 files changed, 459 insertions(+), 9 deletions(-) create mode 100644 packages/itbot/itbot/backtest.py diff --git a/packages/itbot/itbot/__init__.py b/packages/itbot/itbot/__init__.py index cf1dfd1..4b1bdb5 100644 --- a/packages/itbot/itbot/__init__.py +++ b/packages/itbot/itbot/__init__.py @@ -1,5 +1,12 @@ from dataclasses import dataclass from typing import Optional +from enum import Enum + + +class TradeType(Enum): + BUY = "BUY" + SELL = "SELL" + NEUTRAL = "NEUTRAL" @dataclass @@ -9,16 +16,18 @@ class Signal: Attributes: symbol (str): The trading symbol (e.g., "BTCUSD"). - price (str): The price of the trading signal. - score (str): The score of the signal. + price (float): The price of the trading signal. + score (float): The score of the signal. trend (Optional[str]): The trend direction (e.g., "↑"). zone (Optional[str]): The zone classification. - trade_type (str): The type of trade signal (e.g., "BUY" or "SELL"). + trade_type (TradeType): The type of trade signal (e.g., TradeType.BUY or TradeType.SELL). + position_size (float): The size of the position for the trade. """ symbol: str - price: str - score: str + price: float + score: float trend: Optional[str] = None zone: Optional[str] = None - trade_type: str = "None" # Default type is set to "None" + trade_type: TradeType = TradeType.NEUTRAL # Default type set to TradeType.NEUTRAL + position_size: float = 0.01 # Default position size set to 0.01 diff --git a/packages/itbot/itbot/backtest.py b/packages/itbot/itbot/backtest.py new file mode 100644 index 0000000..f9a7f02 --- /dev/null +++ b/packages/itbot/itbot/backtest.py @@ -0,0 +1,441 @@ +import pandas as pd +import yfinance as yf +import numpy as np +from scipy.optimize import minimize +import matplotlib.pyplot as plt + +plt.style.use("seaborn") +import matplotlib as mpl + + +def backtest_static_portfolio(weights, database, ben="^GSPC", timeframe=252, CR=False): + """ + ----------------------------------------------------------------------------- + | Output: Beta CAPM metric | + ----------------------------------------------------------------------------- + | Inputs: - weights (type 1d array numpy): weights of the portfolio | + | - database (type dataframe pandas): Returns of the asset | + | - ben (type string): Name of the benchmark | + | - timeframe (type int): annualization factor | + ----------------------------------------------------------------------------- + """ + import pandas as pd + import yfinance as yf + import numpy as np + from scipy.optimize import minimize + import matplotlib.pyplot as plt + + plt.style.use("seaborn") + + # Compute the portfolio + portfolio = np.multiply(database, np.transpose(weights)) + portfolio = portfolio.sum(axis=1) + columns = database.columns + columns = [col for col in columns] + + ######################### COMPUTE THE BETA ################################## + # Importation of benchmark + benchmark = yf.download(ben)["Adj Close"].pct_change(1).dropna() + + # Concat the asset and the benchmark + join = pd.concat((portfolio, benchmark), axis=1).dropna() + + # Covariance between the asset and the benchmark + cov = np.cov(join, rowvar=False)[0][1] + + # Compute the variance of the benchmark + var = np.cov(join, rowvar=False)[1][1] + + beta = cov / var + + ######################### COMPUTE THE ALPHA ################################# + # Mean of returns for the asset + mean_stock_return = join.iloc[:, 0].mean() * timeframe + + # Mean of returns for the market + mean_market_return = join.iloc[:, 1].mean() * timeframe + + # Alpha + alpha = mean_stock_return - beta * mean_market_return + + ######################### COMPUTE THE SHARPE ################################ + mean = portfolio.mean() * timeframe + std = portfolio.std() * np.sqrt(timeframe) + Sharpe = mean / std + + ######################### COMPUTE THE SORTINO ############################### + downward = portfolio[portfolio < 0] + std_downward = downward.std() * np.sqrt(timeframe) + Sortino = mean / std_downward + + ######################### COMPUTE THE DRAWDOWN ############################### + # Compute the cumulative product returns + cum_rets = (portfolio + 1).cumprod() + + # Compute the running max + running_max = np.maximum.accumulate(cum_rets.dropna()) + running_max[running_max < 1] = 1 + + # Compute the drawdown + drawdown = (cum_rets) / running_max - 1 + min_drawdon = -drawdown.min() + + ######################### COMPUTE THE VaR ################################## + theta = 0.01 + # Number of simulations + n = 100000 + + # Find the values for theta% error threshold + t = int(n * theta) + + # Create a vector with n simulations of the normal law + vec = pd.DataFrame(np.random.normal(mean, std, size=(n,)), columns=["Simulations"]) + + # Orderer the values and find the theta% value + VaR = -vec.sort_values(by="Simulations").iloc[t].values[0] + + ######################### COMPUTE THE cVaR ################################# + cVaR = -vec.sort_values(by="Simulations").iloc[0:t, :].mean().values[0] + + ######################### COMPUTE THE RC ################################### + if CR: + # Find the number of the asset in the portfolio + l = len(weights) + + # Compute the risk contribution of each asset + crs = [] + for i in range(l): + # Importation of benchmark + benchmark = yf.download(ben)["Adj Close"].pct_change(1).dropna() + + # Concat the asset and the benchmark + join = pd.concat((database.iloc[:, i], benchmark), axis=1).dropna() + + # Covariance between the asset and the benchmark + cov = np.cov(join, rowvar=False)[0][1] + + # Compute the variance of the benchmark + var = np.cov(join, rowvar=False)[1][1] + beta_s = cov / var + cr = beta_s * weights[i] + crs.append(cr) + crs_ = crs / np.sum(crs) # Normalizing by the sum of the risk contribution + + ######################### PLOT THE RESULTS ################################# + print( + f""" + ----------------------------------------------------------------------------- + Portfolio: {columns} + ----------------------------------------------------------------------------- + Beta: {np.round(beta, 3)} \t Alpha: {np.round(alpha*100, 2)} %\t \ + Sharpe: {np.round(Sharpe, 3)} \t Sortino: {np.round(Sortino, 3)} + ----------------------------------------------------------------------------- + VaR: {np.round(VaR*100, 2)} %\t cVaR: {np.round(cVaR*100, 2)} % \t \ + VaR/cVaR: {np.round(cVaR/VaR, 3)} \t drawdown: {np.round(min_drawdon*100, 2)} % + ----------------------------------------------------------------------------- + """ + ) + + plt.figure(figsize=(15, 8)) + plt.plot(join.iloc[:, 0].cumsum() * 100, color="#035593", linewidth=3) + plt.plot(join.iloc[:, 1].cumsum() * 100, color="#068C72", linewidth=3) + plt.title("CUMULTATIVE RETURN", size=15) + plt.ylabel("Cumulative return %", size=15) + plt.xticks(size=15, fontweight="bold") + plt.yticks(size=15, fontweight="bold") + plt.legend(["Strategy", "Benchmark"]) + plt.savefig(f"Cum.svg", format="svg", dpi=1200) + plt.show() + + plt.figure(figsize=(15, 8)) + plt.fill_between(drawdown.index, drawdown * 100, 0, color="#CE5151") + plt.plot(drawdown.index, drawdown * 100, color="#930303", linewidth=1.5) + plt.title("DRAWDOWN", size=15) + plt.ylabel("Drawdown %", size=15) + plt.xticks(size=15, fontweight="bold") + plt.yticks(size=15, fontweight="bold") + plt.savefig(f"drawdown.svg", format="svg", dpi=1200) + plt.show() + + if CR: + plt.figure(figsize=(15, 8)) + plt.scatter(columns, crs_, linewidth=3, color="#B96553") + plt.axhline(0, color="#53A7B9") + plt.grid(axis="x") + plt.title("RISK CONTRIBUTION PORTFOLIO", size=15) + plt.xlabel("Assets") + plt.ylabel("Risk contribution") + plt.xticks(size=15, fontweight="bold") + plt.yticks(size=15, fontweight="bold") + plt.savefig(f"CR.svg", format="svg", dpi=1200) + plt.show() + plt.show() + + +def backtest_dynamic_portfolio(dfc, ben="^GSPC", timeframe=252): + """ + ----------------------------------------------------------------------------- + | Output: Beta CAPM metric | + ----------------------------------------------------------------------------- + | Inputs: - weights (type 1d array numpy): weights of the portfolio | + | - database (type dataframe pandas): Returns of the asset | + | - ben (type string): Name of the benchmark | + | - timeframe (type int): annualization factor | + ----------------------------------------------------------------------------- + """ + import pandas as pd + import yfinance as yf + import numpy as np + from scipy.optimize import minimize + import matplotlib.pyplot as plt + + plt.style.use("seaborn") + import matplotlib as mpl + import matplotlib.pyplot as plt + + from matplotlib import cycler + + font = {"weight": "bold", "size": "300"} + plt.rc("font", **font) + + # Maybe from series to dataframe + if str(type(dfc)) == "": + dfc = pd.DataFrame(dfc) + + # find the returns + if len(dfc.columns) == 1: + dfc.columns = ["returns"] + + # CREATE DAILY RETURNS + portfolio = dfc["returns"] + if portfolio.index.name != "Time": + portfolio.index.name = "Time" + + portfolio = portfolio.reset_index(drop=False) + portfolio.groupby(pd.Grouper(key="Time", freq="d")).sum() + portfolio = portfolio.set_index("Time") + ######################### COMPUTE THE BETA ################################## + # Importation of benchmark + benchmark = yf.download(ben)["Adj Close"].pct_change(1).dropna() + + # Concat the asset and the benchmark + join = pd.concat((portfolio, benchmark), axis=1).dropna() + + # Covariance between the asset and the benchmark + cov = np.cov(join, rowvar=False)[0][1] + + # Compute the variance of the benchmark + var = np.cov(join, rowvar=False)[1][1] + + beta = cov / var + + ######################### COMPUTE THE ALPHA ################################# + # Mean of returns for the asset + mean_stock_return = join.iloc[:, 0].mean() * timeframe + + # Mean of returns for the market + mean_market_return = join.iloc[:, 1].mean() * timeframe + + # Alpha + alpha = mean_stock_return - beta * mean_market_return + + ######################### COMPUTE THE SHARPE ################################ + mean = portfolio.mean() * np.sqrt(timeframe) + std = portfolio.std() + Sharpe = (mean / std)[0] + + ######################### COMPUTE THE SORTINO ############################### + downward = portfolio[portfolio < 0] * np.sqrt(timeframe) + std_downward = downward.std() + Sortino = (mean / std_downward)[0] + + ######################### COMPUTE THE DRAWDOWN ############################### + # Compute the cumulative product returns + coef_rets = (portfolio + 1).cumprod() + cum_rets = coef_rets - 1 + + # Compute the running max + running_max = np.maximum.accumulate(coef_rets.dropna()) + # running_max[running_max < 1] = 1 + + # Compute the drawdown + drawdown = (coef_rets / running_max) - 1 + min_drawdon = (-drawdown.min())[0] + + ######################### COMPUTE THE VaR ################################## + theta = 0.01 + # Number of simulations + n = 100000 + + # Find the values for theta% error threshold + t = int(n * theta) + + # Create a vector with n simulations of the normal law + vec = pd.DataFrame(np.random.normal(mean, std, size=(n,)), columns=["Simulations"]) + + # Orderer the values and find the theta% value + VaR = -vec.sort_values(by="Simulations").iloc[t].values[0] + + ######################### COMPUTE THE cVaR ################################# + cVaR = -vec.sort_values(by="Simulations").iloc[0:t, :].mean().values[0] + + ######################### TIME UNDERWATER ################################## + tuw = len(drawdown[drawdown < 0]) / len(drawdown) + + ######################### PLOT THE RESULTS ################################# + print( + f""" + ----------------------------------------------------------------------------- + Beta: {np.round(beta, 3)} \t Alpha: {np.round(alpha*100, 2)} %\t \ + Sharpe: {np.round(Sharpe, 3)} \t Sortino: {np.round(Sortino, 3)} + ----------------------------------------------------------------------------- + VaR: {np.round(VaR*100, 2)} %\t cVaR: {np.round(cVaR*100, 2)} % \t \ + VaR/cVaR: {np.round(cVaR/VaR, 3)} \t drawdown: {np.round(min_drawdon*100, 2)} % + -----------------------------------------------------------------------------""" + ) + + plt.figure(figsize=(15, 8)) + plt.plot(join.iloc[:, 0].cumsum() * 100, color="#035593", linewidth=3) + plt.plot(join.iloc[:, 1].cumsum() * 100, color="#068C72", linewidth=3) + plt.title("CUMULTATIVE RETURN", size=15) + plt.ylabel("Cumulative return %", size=15) + plt.xticks(size=15, fontweight="bold") + plt.yticks(size=15, fontweight="bold") + plt.legend(["Strategy", "Benchmark"]) + plt.show() + + plt.figure(figsize=(15, 8)) + plt.fill_between(drawdown.index, drawdown.iloc[:, 0] * 100, 0, color="#CE5151") + plt.plot(drawdown.index, drawdown.iloc[:, 0] * 100, color="#930303", linewidth=3) + plt.title("DRAWDOWN", size=15) + plt.ylabel("Drawdown %", size=15) + plt.xticks(size=15, fontweight="bold") + plt.yticks(size=15, fontweight="bold") + plt.show() + + +def backtest_tpsl_portfolio(dfc, ben="^GSPC", timeframe=252): + """ + ----------------------------------------------------------------------------- + | Output: Backtest | + ----------------------------------------------------------------------------- + | Inputs: - database (type dataframe pandas): data of the asset | + | - ben (type string): Name of the benchmark | + | - timeframe (type int): annualization factor | + ----------------------------------------------------------------------------- + """ + # COMPUTE TRADE LIFETIME + sum_dates = dfc["duration"] + seconds = np.round(np.mean(list(sum_dates.loc[sum_dates != 0])).total_seconds()) + minutes = seconds // 60 + minutes_left = int(minutes % 60) + hours = int(minutes // 60) + + # CREATE DAILY RETURNS + portfolio = dfc["returns"] + if portfolio.index.name != "Time": + portfolio.index.name = "Time" + + portfolio = portfolio.reset_index(drop=False) + portfolio.groupby(pd.Grouper(key="Time", freq="d")).sum() + portfolio = portfolio.set_index("Time") + + ######################### COMPUTE THE BETA ################################## + # Importation of benchmark + benchmark = yf.download(ben)["Adj Close"].pct_change(1).dropna() + + # Concat the asset and the benchmark + join = pd.concat((portfolio[["returns"]], benchmark), axis=1).dropna() + + # Covariance between the asset and the benchmark + cov = np.cov(join, rowvar=False)[0][1] + + # Compute the variance of the benchmark + var = np.cov(join, rowvar=False)[1][1] + + beta = cov / var + + ######################### COMPUTE THE ALPHA ################################# + # Mean of returns for the asset + mean_stock_return = join.iloc[:, 0].mean() * timeframe + + # Mean of returns for the market + mean_market_return = join.iloc[:, 1].mean() * timeframe + + # Alpha + alpha = mean_stock_return - beta * mean_market_return + + ######################### COMPUTE THE SHARPE ################################ + mean = portfolio.mean() * np.sqrt(timeframe) + std = portfolio.std() + Sharpe = (mean / std)[0] + + ######################### COMPUTE THE SORTINO ############################### + downward = portfolio[portfolio < 0] * np.sqrt(timeframe) + std_downward = downward.std() + Sortino = (mean / std_downward)[0] + + ######################### COMPUTE THE DRAWDOWN ############################### + # Compute the cumulative product returns + coef_rets = (portfolio + 1).cumprod() + cum_rets = coef_rets - 1 + + # Compute the running max + running_max = np.maximum.accumulate(coef_rets.dropna()) + # running_max[running_max < 1] = 1 + + # Compute the drawdown + drawdown = (coef_rets / running_max) - 1 + min_drawdon = (-drawdown.min())[0] + + ######################### COMPUTE THE VaR ################################## + theta = 0.01 + # Number of simulations + n = 100000 + + # Find the values for theta% error threshold + t = int(n * theta) + + # Create a vector with n simulations of the normal law + vec = pd.DataFrame(np.random.normal(mean, std, size=(n,)), columns=["Simulations"]) + + # Orderer the values and find the theta% value + VaR = -vec.sort_values(by="Simulations").iloc[t].values[0] + + ######################### COMPUTE THE cVaR ################################# + cVaR = -vec.sort_values(by="Simulations").iloc[0:t, :].mean().values[0] + + ######################### TIME UNDERWATER ################################## + tuw = len(drawdown[drawdown["returns"] < 0]) / len(drawdown) + + ######################### PLOT THE RESULTS ################################# + print( + f""" + ----------------------------------------------------------------------------- + Beta: {np.round(beta, 3)} \t Alpha: {np.round(alpha*100, 2)} %\t \ + AVERAGE TRADE LIFETIME: {hours}H {minutes_left}min + ----------------------------------------------------------------------------- + VaR: {np.round(VaR*100, 2)} %\t cVaR: {np.round(cVaR*100, 2)} % \t \ + TUW: {np.round(tuw*100,2)}% \t drawdown: {np.round(min_drawdon*100, 2)} % + -----------------------------------------------------------------------------""" + ) + + plt.figure(figsize=(15, 8)) + plt.plot(cum_rets * 100, color="#035593", linewidth=3) + plt.plot(join.iloc[:, 1].cumsum() * 100, color="#068C72", linewidth=3) + plt.title("CUMULTATIVE RETURN", size=15) + plt.ylabel("Cumulative return %", size=15) + plt.xticks(size=15, fontweight="bold") + plt.yticks(size=15, fontweight="bold") + plt.legend(["Strategy", "Benchmark"]) + plt.show() + + plt.figure(figsize=(15, 8)) + plt.fill_between(drawdown.index, drawdown.iloc[:, 0] * 100, 0, color="#CE5151") + plt.plot(drawdown.index, drawdown.iloc[:, 0] * 100, color="#930303", linewidth=3) + + plt.title("DRAWDOWN", size=15) + plt.ylabel("Drawdown %", size=15) + plt.xticks(size=15, fontweight="bold") + plt.yticks(size=15, fontweight="bold") + plt.show() diff --git a/packages/itbot/itbot/portfolio/portfolio.py b/packages/itbot/itbot/portfolio/portfolio.py index 02b3851..2555dd3 100644 --- a/packages/itbot/itbot/portfolio/portfolio.py +++ b/packages/itbot/itbot/portfolio/portfolio.py @@ -120,13 +120,13 @@ def optimize_portfolio(self, criterion: callable) -> np.ndarray: # portfolio = Portfolio(returns_df) # # Optimize the portfolio using the Sortino ratio criterion -# optimal_weights_sor = portfolio.optimize_portfolio(portfolio.SOR_criterion) +# optimal_weights_sor = portfolio.optimize_portfolio(Portfolio.sor_criterion) # # Optimize the portfolio using the Mean-Variance criterion -# optimal_weights_mv = portfolio.optimize_portfolio(portfolio.MV_criterion) +# optimal_weights_mv = portfolio.optimize_portfolio(Portfolio.mv_criterion) # # Optimize the portfolio using the Skewness-Kurtosis criterion -# optimal_weights_sk = portfolio.optimize_portfolio(portfolio.SK_criterion) +# optimal_weights_sk = portfolio.optimize_portfolio(Portfolio.sk_criterion) # print("Optimal Weights (Sortino):", optimal_weights_sor) # print("Optimal Weights (Mean-Variance):", optimal_weights_mv) From 2dca19fe9bfae29fc7577f9e8e1022a212ca0c77 Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 03:58:32 +0100 Subject: [PATCH 05/23] feat: refactor trading logic --- packages/itbot/itbot/mt5_trader.py | 653 +++++++++++++++++++++++------ 1 file changed, 526 insertions(+), 127 deletions(-) diff --git a/packages/itbot/itbot/mt5_trader.py b/packages/itbot/itbot/mt5_trader.py index 16efbc6..bf9e34d 100644 --- a/packages/itbot/itbot/mt5_trader.py +++ b/packages/itbot/itbot/mt5_trader.py @@ -6,15 +6,18 @@ from datetime import datetime from typing import Dict, Optional, List, Tuple from packages.itbot.itbot import Signal -from packages.itbot.itbot.MetaTrader5 import MetaTrader5 +from packages.itbot.itbot.MetaTrader5 import MetaTrader5 as mt5 from packages.itbot.itbot.terminal import ( DockerizedMT5TerminalConfig, DockerizedMT5Terminal, ) -from packages.itbot.itbot.risk_manager import RiskManager +from packages.itbot.itbot.portfolio import RiskManager from trade_flow.common.logging import Logger +SymbolInfo = object + + class MT5TraderException(Exception): """Base exception class for MT5Trader errors.""" @@ -38,9 +41,7 @@ class MT5Trader: logger (Logger): Logger instance for logging events. mt5_terminal (DockerizedMT5Terminal): Dockerized MT5 Terminal instance. mt5 (MetaTrader5): MetaTrader 5 client interface. - db (Database): Database instance for trade logs and risk management data. initial_balance (float): The initial account balance. - risk_management (RiskManagement): Risk management instance. """ def __init__( @@ -49,11 +50,6 @@ def __init__( password: str, server: str, logger: Optional[Logger] = None, - db_name: str = "it_bot_mt5_trades.db", - target_returns: Optional[List[float]] = None, - period_per_return: int = 3, - total_periods: int = 30, - contract_size: float = 1.0, ) -> None: """ Initialize the MT5Trader class with account credentials and configurations. @@ -63,11 +59,6 @@ def __init__( password (str): MetaTrader 5 account password. server (str): MetaTrader 5 server. logger (Optional[Logger]): Logger instance for logging. - db_name (str): Name of the database for storing trade logs. - target_returns (Optional[List[float]]): Target returns for risk management. - period_per_return (int): Number of periods for each target return. - total_periods (int): Total trading periods for risk management. - contract_size (float): Contract size for calculating position sizes. """ self.mt5_account_number = account_number self.mt5_password = password @@ -89,29 +80,30 @@ def __init__( self._initialize_terminal() # Initialize MetaTrader 5 - self.mt5 = MetaTrader5() + self.mt5 = mt5() self._initialize_mt5() + self.logger.debug(f"Terminal Info: {self.mt5.terminal_info()._asdict()}") # Get account information self.account_info = self.mt5.account_info()._asdict() - self.initial_balance = self.account_info["balance"] + self.logger.debug(f"Account Info: {self.account_info}") - # Risk Manager Setup - self.risk_management = RiskManager( - initial_balance=self.initial_balance, - risk_percentage=0.1, - contract_size=contract_size, - logger=self.logger, - ) + self.initial_balance = self.account_info["balance"] # Log account info - self.logger.debug(f"Account Info: {self.account_info}") - self.logger.info(f"Initial Account Balance: {self.initial_balance}") + self.logger.info(f"Account Balance: {self.initial_balance}") + self.logger.info(f"Equity: {self.account_info['equity']}") + self.logger.info(f"Currency: {self.account_info['currency']}") + self.logger.info(f"Margin: {self.account_info['margin']}") + self.logger.info(f"Server: {self.account_info['server']}") + self.logger.info(f"Name: {self.account_info['name']}") def _initialize_terminal(self) -> None: """Initialize and safely start the Dockerized MT5 Terminal.""" try: self.mt5_terminal.safe_start() + time.sleep(5) + self.logger.info(f"MetaTrader 5 Terminal started for account {self.mt5_account_number}") except Exception as e: self.logger.error(f"Error initializing Dockerized MT5 Terminal: {e}") @@ -123,187 +115,594 @@ def _initialize_mt5(self) -> None: if not self.mt5.initialize(): raise RuntimeError("MetaTrader 5 initialization failed") - # self.logger.debug( - # self.mt5.login(self.mt5_account_number, self.mt5_password, self.mt5_server) - # ) # if not self.mt5.login(self.mt5_account_number, self.mt5_password, self.mt5_server): # raise RuntimeError("MetaTrader 5 login failed") except Exception as e: self.logger.error(f"Error initializing MetaTrader 5: {e}") raise MT5TraderInitializationError("Failed to initialize MetaTrader 5") - def _prepare_trade_request(self, symbol: str, trade_type: str, **kwargs) -> Dict: - """Prepare a trade request based on the given symbol and trade type.""" + def round_2_tick_size(self, price: float, trade_tick_size: float) -> float: + """ + Rounds the given price to the nearest multiple of the trade tick size. + + Parameters: + ---------- + price : float + The price that needs to be rounded. + trade_tick_size : float + The tick size (minimum price movement) for the asset. + + Returns: + ------- + float + The price rounded to the nearest multiple of the trade tick size. + """ + return round(price / trade_tick_size) * trade_tick_size + + async def _prepare_trade_request( + self, + symbol: str, + trade_type: str, + position_size: float, + close_trade: bool = False, + **kwargs, + ) -> Dict: + """ + Prepare a trade request based on the given symbol, trade type, and position size. + + Parameters: + ---------- + symbol : str + The trading symbol (e.g., 'EURUSD') for which the trade is being placed. + trade_type : str + The type of trade to be executed, either "BUY" or "SELL". + position_size : float + The volume of the position (lot size) to trade. + close_trade : bool, optional + Whether the trade is a close trade (default is False). + **kwargs : dict + Additional optional arguments, including: + - position_id : int, required for closing trades. + - magic : int, an optional custom identifier for the trade (default is 0). + + Returns: + ------- + Dict + A dictionary containing the trade request details to be sent to MetaTrader 5. + + Raises: + ------- + ValueError + If position_id is required for closing a trade and is not provided. + """ - def round_2_tick_size(price: float, trade_tick_size): - return round(price / trade_tick_size) * trade_tick_size + # Validate the position size + position_size = await self.validate_position_size(symbol, position_size) + # Fetch symbol info and validate symbol_info = self.mt5.symbol_info(symbol) - point = symbol_info.point - trade_stops_level = symbol_info.trade_stops_level - trade_tick_size = symbol_info.trade_tick_size - price = ( - self.mt5.symbol_info_tick(symbol).bid - if trade_type == "BUY" - else self.mt5.symbol_info_tick(symbol).ask - ) + if not symbol_info: + raise ValueError(f"Symbol info for {symbol} not available") - position_size = self.risk_management.calculate_position_size(**kwargs) - - # Validate the position size before executing the trade - position_size = self.validate_position_size(symbol, position_size) - - request = { - "action": self.mt5.TRADE_ACTION_DEAL, - "symbol": symbol, - "volume": position_size, - "type": self.mt5.ORDER_TYPE_BUY if trade_type == "BUY" else self.mt5.ORDER_TYPE_SELL, - "price": price, - # "sl": price - 1000 * point, - # "tp": price + (100 * 2) * point, # RRR => 2:1 - "deviation": 20, - "magic": random.randint(234000, 237000), - "comment": "ITBot", - # "type_time": self.mt5.ORDER_TIME_GTC, - # "type_filling": self.mt5.ORDER_FILLING_RETURN, - } - self.logger.debug(request) + # Get necessary symbol info and pricing data + filling_mode = symbol_info.filling_mode - 1 + tick_data = mt5.symbol_info_tick(symbol) + ask_price = tick_data.ask + bid_price = tick_data.bid + point = symbol_info.point + deviation = 20 # Slippage, customizable if needed + trade_stops_level = symbol_info.trade_stops_level # Reserved for future use + trade_tick_size = symbol_info.trade_tick_size # Reserved for future use + + # Initialize trade request + if not close_trade: + # Determine trade type and price + if trade_type == "BUY": + trade_type_code = mt5.ORDER_TYPE_BUY + price = ask_price + else: + trade_type_code = mt5.ORDER_TYPE_SELL + price = bid_price + + # Calculate stop loss (sl) and take profit (tp) + sl = price * (1 - 0.01) + tp = price * (1 + 0.01) + + request = { + "action": mt5.TRADE_ACTION_DEAL, + "symbol": symbol, + "volume": position_size, + "type": trade_type_code, + "price": price, + "sl": sl, + "tp": tp, + "deviation": deviation, + "magic": random.randint(234000, 237000), # Random magic number + "comment": "ITBot", + "type_time": mt5.ORDER_TIME_GTC, + "type_filling": filling_mode, + } + else: + # Closing an existing trade + position_id = kwargs.get("position_id") + if position_id is None: + raise ValueError("Position ID is required for closing a trade") + + # Determine reverse trade type and price for closing + if trade_type == "BUY": + trade_type_code = mt5.ORDER_TYPE_SELL + price = bid_price + else: + trade_type_code = mt5.ORDER_TYPE_BUY + price = ask_price + + request = { + "action": mt5.TRADE_ACTION_DEAL, + "symbol": symbol, + "volume": position_size, + "type": trade_type_code, + "position": position_id, + "price": price, + "deviation": deviation, + "magic": kwargs.get("magic", 0), # Default to 0 if not provided + "comment": "ITBot", + "type_time": mt5.ORDER_TIME_GTC, + "type_filling": filling_mode, + } + + # Log and return the prepared request + self.logger.debug(f"Prepared trade request: {request}") return request - def validate_position_size(self, symbol: str, volume: float) -> bool: + async def get_bar_data( + self, + symbol: str, + timeframe: int = mt5.TIMEFRAME_D1, + count: int = 100, + utc_from: Optional[datetime] = None, + datetime_format: str = "%Y-%m-%d", + ) -> pd.DataFrame: """ - Validate the position size for the specified symbol. + Fetch historical bar data for a given symbol and timeframe from MetaTrader 5. + + Parameters: + ---------- + symbol : str + The trading symbol to fetch data for (e.g., 'EURUSD'). + count : int + The number of historical bars (candles) to retrieve. + timeframe : int, optional + The timeframe for the data (default is MetaTrader 5 daily timeframe). + utc_from : Optional[datetime], optional + The starting point for fetching data (default is current UTC time). + datetime_format : str, optional + The format in which to return the 'time' column (default is "%Y-%m-%d"). - Args: - symbol (str): The trading symbol. - volume (float): The proposed position size. + Returns: + ------- + pd.DataFrame + A DataFrame containing the historical data with columns such as 'open', 'high', + 'low', 'close', and 'tick_volume'. The index of the DataFrame will be the 'time' column, + formatted as per the specified `datetime_format`. + """ + # Get the current UTC datetime if not provided + if utc_from is None: + utc_from = datetime.now() + + # Fetch rates (historical data) from MetaTrader 5 + rates = self.mt5.copy_rates_from(symbol, timeframe, utc_from, count) + + # Convert the rates into a DataFrame + rates_frame = pd.DataFrame(rates) + + # Check if the rates_frame is empty + if rates_frame.empty: + return pd.DataFrame(columns=["time", "open", "high", "low", "close", "tick_volume"]) + + # Convert 'time' from Unix timestamp to a human-readable datetime format + rates_frame["time"] = pd.to_datetime(rates_frame["time"], unit="s") + + # Format the column "time" according to the specified datetime format + rates_frame["time"] = pd.to_datetime(rates_frame["time"], format=datetime_format) + + # Set 'time' as the index of the DataFrame + rates_frame.set_index("time", inplace=True) + + # Return the relevant columns (the rates frame should already have them) + return rates_frame + + async def validate_position_size(self, symbol_info: SymbolInfo, volume: float) -> float: + """ + Validate and adjust the position size for the specified symbol. + + Parameters: + ---------- + symbol_info : SymbolInfo + The symbol information object that contains trading specifications like + minimum and maximum volume. + volume : float + The proposed position size to validate. Returns: - bool: True if the position size is valid, raises ValueError otherwise. + ------- + float + The adjusted volume that falls within the symbol's allowed range. If the + proposed volume is lower than the minimum or higher than the maximum, it + will be adjusted accordingly. + + Raises: + ------- + ValueError + If the `symbol_info` is None or does not contain valid information about + the trading symbol. """ - symbol_info = self.mt5.symbol_info(symbol) + # Ensure symbol_info is available if not symbol_info: - raise ValueError(f"Symbol {symbol} information is not available.") + raise ValueError("Symbol information is not available.") - self.logger.debug(symbol_info) + # Extract the trading symbol + symbol = symbol_info.name + self.logger.debug(f"Symbol Info: {symbol_info}") - # Check minimum and maximum volume + # Check and adjust the volume based on minimum and maximum allowed values min_volume = symbol_info.volume_min max_volume = symbol_info.volume_max if volume < min_volume: self.logger.warning( - f"Volume {volume} is below the minimum volume of {min_volume} for {symbol}." + f"Volume {volume} is below the minimum allowed volume ({min_volume}) for {symbol}. " + f"Adjusting to minimum volume." ) volume = min_volume + if volume > max_volume: self.logger.warning( - f"Volume {volume} exceeds the maximum volume of {max_volume} for {symbol}." + f"Volume {volume} exceeds the maximum allowed volume ({max_volume}) for {symbol}. " + f"Adjusting to maximum volume." ) volume = max_volume self.logger.info( - f"Volume {volume} is valid for {symbol} (min: {min_volume}, max: {max_volume})." + f"Validated volume for {symbol}: {volume} (Min: {min_volume}, Max: {max_volume})." ) + return volume - def trail_sl(self, symbol, order_ticket, timeframe, stop_loss_dict): - while True: + async def open_trade( + self, symbol: str, trade_type: str, position_size: float, **kwargs + ) -> dict: + """ + Open a new trade in MetaTrader 5. + + Parameters: + ---------- + symbol : str + The trading symbol (e.g., 'EURUSD') for the trade. + trade_type : str + The type of trade ('BUY' or 'SELL'). + position_size : float + The position size (lot size) to open. + **kwargs : dict + Additional parameters to customize the trade request, such as: + - close_trade : bool, whether to close an existing trade (default is False). + - position_id : int, required if closing a trade. + - magic : int, optional, a custom magic number for the order. + + Returns: + ------- + dict + A dictionary containing the result of the trade request if successful. + + Raises: + ------- + ValueError + If the order fails to be sent or if an unexpected error occurs. + """ + try: + # Prepare the trade request + request = await self._prepare_trade_request(symbol, trade_type, position_size, **kwargs) + + # Execute the trade request asynchronously + result = await asyncio.get_running_loop().run_in_executor( + None, self.mt5.order_send, request + ) + + # Check if the trade was successfully executed + if result.retcode != self.mt5.TRADE_RETCODE_DONE: + raise ValueError(f"Order send failed with retcode={result.retcode}") + + # Log success and return the result as a dictionary + self.logger.info(f"MT5 order sent successfully: Order ID = {result.order}") + return result._asdict() + except Exception as e: + # Log and raise any errors that occur during trade execution + self.logger.error(f"Error executing MT5 order: {e}") + raise + + async def close_trade( + self, symbol: str, position_id: int, trade_type: str, position_size: float, **kwargs + ) -> dict: + """ + Close an open trade in MetaTrader 5. + + Parameters: + ---------- + symbol : str + The trading symbol (e.g., 'EURUSD') of the trade to close. + position_id : int + The ID of the open position to be closed. + trade_type : str + The type of trade ('BUY' or 'SELL'). + position_size : float + The position size (lot size) to close. + **kwargs : dict + Additional parameters to customize the trade request, such as: + - magic : int, optional, a custom magic number for the order. + + Returns: + ------- + dict + A dictionary containing the result of the trade request if successful. + + Raises: + ------- + ValueError + If the order fails to be sent or if an unexpected error occurs. + """ + + try: + # Prepare the trade request for closing the position + request = await self._prepare_trade_request( + symbol, + trade_type, + position_size, + close_trade=True, + position_id=position_id, + **kwargs, + ) + + # Execute the trade request asynchronously + result = await asyncio.get_running_loop().run_in_executor( + None, self.mt5.order_send, request + ) + + # Check if the trade was successfully executed + if result.retcode != self.mt5.TRADE_RETCODE_DONE: + raise ValueError(f"Order send failed with retcode={result.retcode}") + + # Log success and return the result as a dictionary + self.logger.info(f"MT5 Position closed successfully: Position ID = {position_id}") + return result._asdict() + + except Exception as e: + # Log and raise any errors that occur during trade execution + self.logger.error(f"Error closing MT5 position: {e}") + raise + + async def close_all_night(self) -> None: + """ + Close all open trades for the current account based on their position status. + + Trades are identified by their position type: + - For positions with zero (0), the trade is closed as a buy. + - For non-zero positions, the trade is closed as a sell. + + The method also logs the account balance before each trade is closed. + """ + # Retrieve current positions + result = await self.get_open_positions() + + for index in range(len(result)): + # Log current balance + before_balance = self.mt5.account_info().balance + + # Get the current row of trade details + row = result.iloc[index] + + # Check if the position is a buy (0) or sell (non-zero) + # Close the trade as a buy/ + res = self.close_trade( + symbol=row["symbol"], + position_id=row["ticket"], + trade_type=row["position_type_decoded"], + position_size=row["volume"], + ) + + # Log the result of the trade closure and the account balance after the closure + after_balance = self.mt5.account_info().balance + self.logger.info( + f"Trade closed: {row['symbol']} | Position ID: {row['ticket']} | Result: {res} | Balance before: {before_balance} | Balance after: {after_balance}" + ) + + async def trail_sl( + self, symbol: str, order_ticket: int, timeframe: int, stop_loss_dict: dict + ) -> None: + """ + Continuously update the stop loss for a given order ticket based on the highest + highs (for sell orders) or lowest lows (for buy orders) of the last three bars. + + TODO: Fix this method + + Args: + ----- + symbol : str + The trading symbol for the position. + order_ticket : int + The ticket number of the order to manage. + timeframe : int + The timeframe for fetching historical bars. + stop_loss_dict : dict + A dictionary that maps symbols to their current stop loss values. + """ + while True: + # Fetch the last four bars for the specified symbol and timeframe bars = self.mt5.copy_rates_from_pos(symbol, timeframe, 0, 4) bars_df = pd.DataFrame(bars) - bar1_high = bars_df["high"].iloc[0] - bar2_high = bars_df["high"].iloc[1] - bar3_high = bars_df["high"].iloc[2] - bar1_low = bars_df["low"].iloc[0] - bar2_low = bars_df["low"].iloc[1] - bar3_low = bars_df["low"].iloc[2] - - if self.mt5.positions_get(ticket=order_ticket): - position_type = self.mt5.positions_get(ticket=order_ticket)[0].type - if position_type == self.mt5.ORDER_TYPE_SELL: - stop_loss_value = max(bar1_high, bar2_high, bar3_high) # Sell order S/L - else: - stop_loss_value = min(bar1_low, bar2_low, bar3_low) # Buy order S/L + # Extract the high and low values of the last three bars + bar_highs = bars_df["high"].iloc[:3].tolist() + bar_lows = bars_df["low"].iloc[:3].tolist() + + # Get the current position details for the order ticket + position_info = self.mt5.positions_get(ticket=order_ticket) + if position_info: + position_type = position_info[0].type + stop_loss_value = ( + max(bar_highs) if position_type == self.mt5.ORDER_TYPE_SELL else min(bar_lows) + ) + + # Normalize the stop loss value based on the tick size tick_size = self.mt5.symbol_info(symbol).trade_tick_size - normalised_sl = round(stop_loss_value / tick_size) * tick_size + normalized_sl = round(stop_loss_value / tick_size) * tick_size - if normalised_sl != stop_loss_dict[symbol]: - current_sl = self.mt5.positions_get(ticket=order_ticket)[0].sl - if normalised_sl != current_sl: + # Update the stop loss if it has changed + if normalized_sl != stop_loss_dict.get(symbol): + current_sl = position_info[0].sl + if normalized_sl != current_sl: request = { "action": self.mt5.TRADE_ACTION_SLTP, "position": order_ticket, "symbol": symbol, "magic": 24001, - "sl": normalised_sl, + "sl": normalized_sl, } result = self.mt5.order_send(request) + + # Check the result of the order send request if result.retcode == self.mt5.TRADE_RETCODE_DONE: - print( - f"[{datetime.now()}] Trailing Stop Loss for Order {order_ticket} updated. New S/L: {normalised_sl}" + self.logger.info( + f"[{datetime.now()}] Trailing Stop Loss for Order {order_ticket} updated. New S/L: {normalized_sl}\n" ) - print() - stop_loss_dict[symbol] = normalised_sl - elif result.retcode == 10025: # Ignore error code 10025 - pass - else: - print( + stop_loss_dict[symbol] = normalized_sl + elif result.retcode != 10025: # Ignore error code 10025 + self.logger.info( f"[{datetime.now()}] Failed to update Trailing Stop Loss for Order {order_ticket}: {result.comment}" ) - print(f"Error code: {result.retcode}") - print() + self.logger.info(f"Error code: {result.retcode}\n") + + # Wait for 1 second before checking again + time.sleep(1) + + async def get_open_positions(self) -> pd.DataFrame: + """ + Retrieve and return the current open positions in MetaTrader 5. - time.sleep(1) # Wait for 1 second before checking again + Each position includes details such as ticket number, position type (0 for Buy), + symbol, and volume. - async def execute_trade( - self, signal: Signal, strategy_name: str = "fixed_percentage", **kwargs + Returns: + ------- + pd.DataFrame + A DataFrame containing the open positions with columns ['ticket', 'position', 'symbol', 'volume', 'position_type_decoded']. + """ + # Define the column names for the resulting DataFrame + columns = [ + "time", + "ticket", + "position", + "position_decoded", + "symbol", + "volume", + "price_open", + "sl", + "tp", + "magic", + ] + + # Get the current open positions + current_positions = self.mt5.positions_get() + + # If no positions are open, return an empty DataFrame + if not current_positions: + return pd.DataFrame(columns=columns) + + # Create a list of lists to accumulate each position's details + data = [ + [ + position.time, + position.ticket, + position.type, + ( + "BUY" + if position is not None and position.type == 0 + else "SELL" if position is not None else None + ), # Decode position type + position.symbol, + position.volume, + position.price_open, + position.sl, + position.tp, + position.magic, + ] + for position in current_positions + ] + + # Convert the list of positions to a DataFrame + summary = pd.DataFrame(data, columns=columns) + + return summary + + async def execute( + self, + signal: Signal, + close_trade: bool = False, + **kwargs: Optional[dict], ) -> None: """ - Execute a trade order based on the provided signal data and selected risk management strategy. + Execute a trade order based on the provided signal data and position size. Args: signal (Signal): The trading signal object containing trade details. - strategy_name (str): The strategy to apply for risk management. options are ['fixed_percentage', 'kelly_criterion', 'martingale', 'mean_reversion', 'equity_curve', 'volatility_based']. Defaults to fixed_percentage + close_trade (bool): Whether to close an existing trade (default is False). + **kwargs: Additional arguments to be passed to trade functions. Raises: ValueError: If symbol information is unavailable or order send fails. Example: - >>> await trader.execute_trade(signal) + >>> await trader.execute(signal) """ - self.logger.info(f"Executing trade with Signal: {signal}") - self.risk_management.select_strategy(strategy_name) + self.logger.info(f"Executing trade with Signal: {signal}") try: + # Validate signal data if not signal.trade_type or not signal.symbol: raise ValueError(f"Invalid signal data: {signal}") # Get symbol information and ensure visibility symbol_info = self.mt5.symbol_info(signal.symbol) if not symbol_info: - raise ValueError(f"{signal.symbol} not found, cannot perform trade operation") + raise ValueError( + f"Symbol '{signal.symbol}' not found, cannot perform trade operation." + ) if not symbol_info.visible: - self.logger.warning(f"{signal.symbol} is not visible, attempting to enable...") + self.logger.warning( + f"Symbol '{signal.symbol}' is not visible, attempting to enable..." + ) if not self.mt5.symbol_select(signal.symbol, True): raise ValueError(f"Failed to enable symbol: {signal.symbol}") - # Prepare trade request - request = self._prepare_trade_request(signal.symbol, signal.trade_type, **kwargs) - self.logger.info( - f"Executing trade with strategy '{strategy_name}' and position size: {request['volume']}" - ) - result = await asyncio.get_running_loop().run_in_executor( - None, self.mt5.order_send, request - ) - # result = self.mt5.order_send(request) - - if result.retcode != self.mt5.TRADE_RETCODE_DONE: - raise ValueError(f"Order send failed with retcode={result.retcode}") - - self.logger.info(f"MT5 order sent successfully: Order ID = {result.order}") + # Execute trade based on whether to open or close a trade + if not close_trade: + self.logger.info( + f"Opening trade for symbol: {signal.symbol} of type: {signal.trade_type} with size: {signal.position_size}" + ) + await self.open_trade( + signal.symbol, signal.trade_type, signal.position_size, **kwargs + ) + else: + self.logger.info( + f"Closing trade for symbol: {signal.symbol} with position ID: {kwargs.get('position_id')}" + ) + await self.close_trade( + symbol=signal.symbol, + position_id=kwargs.get("position_id"), + trade_type=signal.trade_type, + position_size=signal.position_size, + ) except Exception as e: self.logger.error(f"Error executing MT5 order: {e}") + raise # Re-raise the exception for higher-level handling if necessary From 09269cc260fe5d5a35889767c459e444a1f24ef1 Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 03:59:00 +0100 Subject: [PATCH 06/23] feat: Introduce basic ML agent --- packages/itbot/agents/__init__.py | 2 + packages/itbot/agents/basic_ml_agent.py | 86 +++++++++++++++++++++++++ 2 files changed, 88 insertions(+) create mode 100644 packages/itbot/agents/basic_ml_agent.py diff --git a/packages/itbot/agents/__init__.py b/packages/itbot/agents/__init__.py index dfb5373..db9d1b3 100644 --- a/packages/itbot/agents/__init__.py +++ b/packages/itbot/agents/__init__.py @@ -1 +1,3 @@ from .agent import * +from .agent_001 import * +from .basic_ml_agent import * diff --git a/packages/itbot/agents/basic_ml_agent.py b/packages/itbot/agents/basic_ml_agent.py new file mode 100644 index 0000000..677526a --- /dev/null +++ b/packages/itbot/agents/basic_ml_agent.py @@ -0,0 +1,86 @@ +import asyncio +import os +from typing import List, Optional +from packages.itbot.itbot import Signal +from packages.itbot.agents.agent import Agent +from trade_flow.common.logging import Logger + + +class BasicMLAgent(Agent): + """ + An agent that implements Agent, for loading a model, generating signals, and sending them to ITBot. + """ + + def __init__(self, logger: Optional[Logger] = None): + super().__init__(logger) + self.model = None + + def load_model(self, model_path: str) -> None: + """ + Load the trained model from the specified path. + """ + if os.path.exists(model_path): + # Dummy model loading for demonstration purposes + self.model = f"Loaded model from {model_path}" + self.logger.info(f"Model loaded from {model_path}") + else: + raise FileNotFoundError(f"Model file {model_path} not found.") + + async def generate_signals(self, data: dict) -> List[Signal]: + """ + Asynchronously generate trading signals using the loaded model based on the data. + + Args: + data: Data from the environment to generate signals. + + Returns: + List[Signal]: A list of generated trading signals. + """ + if self.model is None: + raise ValueError("Model is not loaded. Please load the model first.") + + # Simulate signal generation delay + await asyncio.sleep(1) + + # Example signals based on input data + signals = [ + Signal( + symbol="BTCUSD", + price=data["price"], + score=data["score"], + trend="↑", + zone="Buy Zone", + trade_type="Buy", + ), + Signal( + symbol="ETHUSD", + price=data["price"] * 0.05, + score=data["score"] - 0.2, + trend="↓", + zone="Sell Zone", + trade_type="Sell", + ), + ] + return signals + + async def send_signals(self) -> None: + """ + Asynchronously send the generated signals to ITBot for further processing and forwarding to MT5. + """ + while True: + # Wait for new data to be added + data = await self.signals_queue.get() + + # Generate signals asynchronously based on new data + signals = await self.generate_signals(data) + + for signal in signals: + # Forward the signal to ITBot's queue + self.trader.execute_trade(signal) + self.logger.info(f"Signal sent to ITBot: {signal}") + + def run(self): + """ + Run the agent in the background, processing data and sending signals. + """ + super().run() # Starts the event loop and processes tasks From 6b2b59303274518e3ef5362be407cd867943beeb Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 03:59:15 +0100 Subject: [PATCH 07/23] feat: Make TelegramInterface asynchronous --- .../itbot/itbot/interfaces/telegram_interface.py | 13 ++++++++----- 1 file changed, 8 insertions(+), 5 deletions(-) diff --git a/packages/itbot/itbot/interfaces/telegram_interface.py b/packages/itbot/itbot/interfaces/telegram_interface.py index 4bfa960..122d1db 100644 --- a/packages/itbot/itbot/interfaces/telegram_interface.py +++ b/packages/itbot/itbot/interfaces/telegram_interface.py @@ -44,7 +44,7 @@ def __init__(self, phone_number: str, api_id: str, api_hash: str, logger: Logger # Initialize Telegram client with the given session name and credentials self.client = TelegramClient("it_bot_session", self.api_id, self.api_hash) - def start_client(self) -> None: + async def start_client(self) -> None: """ Start the Telegram client session. @@ -55,7 +55,7 @@ def start_client(self) -> None: ConnectionError: If the client fails to start or authenticate. """ try: - self.client.start(phone=self.phone_number) + await self.client.start(phone=self.phone_number) self.logger.info("Telegram client started successfully.") except Exception as e: self.logger.error(f"Failed to start Telegram client: {e}") @@ -113,7 +113,7 @@ async def event_listener(event): except Exception as e: self.logger.error(f"Error handling message: {e}") - def run(self) -> None: + async def run(self) -> None: """ Run the Telegram client and keep listening for new messages indefinitely. @@ -125,9 +125,12 @@ def run(self) -> None: """ self.logger.debug("Listening for Signals...") try: - with self.client: + async with self.client: + # Start the Telegram client + await self.start_client() + self.logger.info("Telegram client is running and listening for messages...") - self.client.run_until_disconnected() + await self.client.run_until_disconnected() except Exception as e: self.logger.error(f"Telegram client encountered an issue: {e}") raise RuntimeError(f"Client run error: {e}") From ec23d834d89a1c90ab11a0035584c367e748285d Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 03:59:38 +0100 Subject: [PATCH 08/23] feat: implement basic signal validation and queueing --- .gitignore | 3 +- packages/itbot/main.py | 272 +++++++++++++++++++++++++++++------------ 2 files changed, 199 insertions(+), 76 deletions(-) diff --git a/.gitignore b/.gitignore index c33144e..2a04a4b 100644 --- a/.gitignore +++ b/.gitignore @@ -279,4 +279,5 @@ research/* add_stage.sh catalog/ *.session* -*trades.db \ No newline at end of file +*trades.db +current_open_positions.csv \ No newline at end of file diff --git a/packages/itbot/main.py b/packages/itbot/main.py index c36c526..d21fdaf 100644 --- a/packages/itbot/main.py +++ b/packages/itbot/main.py @@ -3,12 +3,13 @@ import os import random import re -from typing import Dict, List +from typing import Dict, List, Optional from telethon import events -from packages.itbot.agents.agent_001 import Agent001 -from packages.itbot.itbot import Signal +from packages.itbot.agents import Agent, BasicMLAgent +from packages.itbot.itbot import Signal, TradeType from packages.itbot.itbot.mt5_trader import MT5Trader from packages.itbot.itbot.interfaces import TelegramInterface +from packages.itbot.itbot.portfolio.risk_manager import RiskManager from trade_flow.common.logging import Logger from dotenv import load_dotenv @@ -22,60 +23,83 @@ class ITBot: ITBot Class for managing trading signals and executing trades using MetaTrader 5. Attributes: - phone_number (str): Telegram account's phone number. - api_id (str): Telegram API ID. - api_hash (str): Telegram API Hash. - mt5_account_number (str): MetaTrader 5 account number. - mt5_password (str): MetaTrader 5 account password. - mt5_server (str): MetaTrader 5 server address. - trader (MT5Trader): MetaTrader 5 trader instance. - logger (Logger): Logger instance. - telegram (TelegramListener): Instance of the Telegram listener. + trader (MT5Trader): Instance of MT5Trader to interact with the MetaTrader 5 platform. + logger (Logger): Instance of Logger for logging activities and errors. + notifications_handler (TelegramInterface): Instance of TelegramInterface for handling Telegram messages. + db (str): Path to the database for storing trade logs. + risk_manager (RiskManager): Instance of RiskManager for managing trade risks. + position_size (float): Size of the trading position to be executed. + default_chats (List[str]): List of default Telegram channels to listen for signals. """ - def __init__(self): - self.phone_number = os.getenv("PHONE_NUMBER") - self.api_id = os.getenv("API_ID") - self.api_hash = os.getenv("API_HASH") - self.mt5_account_number = os.getenv("MT5_ACCOUNT_NUMBER") - self.mt5_password = os.getenv("MT5_PASSWORD") - self.mt5_server = os.getenv("MT5_SERVER") + def __init__( + self, + agent: Agent, + trader: MT5Trader, + notifications_handler: TelegramInterface, + risk_manager: RiskManager, + db: str = "it_bot_mt5_trades.db", + logger: Optional[Logger] = None, + ): + """ + Initializes the ITBot instance with the given parameters. + + Args: + agent (Agent): An instance of an agent for generating trading signals. + trader (MT5Trader): An instance of MT5Trader for executing trades. + notifications_handler (TelegramInterface): An instance of TelegramInterface for handling messages. + risk_manager (RiskManager): An instance of RiskManager for trade risk management. + db (str, optional): Path to the SQLite database for storing trade logs. Defaults to "it_bot_mt5_trades.db". + logger (Optional[Logger], optional): A Logger instance for logging. If not provided, a default logger is created. + """ # Default Telegram chat channels to listen to self.default_chats = ["intelligent_trading_signals"] # Set up logging - self.logger = Logger(name="it_bot", log_level=logging.DEBUG, filename="ITBot.log") - - # Set up MetaTrader 5 terminal trader - self.trader = MT5Trader( - account_number=self.mt5_account_number, - password=self.mt5_password, - server=self.mt5_server, - logger=self.logger, - ) + self.logger = logger or Logger(name="it_bot", log_level=logging.DEBUG, filename="ITBot.log") - # Initialize Telegram bot - self.telegram = TelegramInterface( - phone_number=self.phone_number, - api_id=self.api_id, - api_hash=self.api_hash, - logger=self.logger, - ) + self.trader = trader + self.notifications_handler = notifications_handler + self.agent = agent + self.risk_manager = risk_manager + self.db = db + # self.position_size = 0 # Define a default position size + + # Change signals_queue to hold only Signal objects + self.signals_queue: asyncio.Queue[Signal] = asyncio.Queue() + + def _validate_signal(self, signal: Signal) -> bool: + """ + Validate the signal to ensure it meets the required criteria. - # Initialize Agent001 instance - self.agent = Agent001(logger=self.logger) + Args: + signal (Signal): The signal to validate. + + Returns: + bool: True if the signal is valid, False otherwise. + """ + if signal.price <= 0: + self.logger.warning("Invalid signal: Price must be greater than 0.") + return False + if signal.score < -1 or signal.score > 1: + self.logger.warning("Invalid signal: Score must be between -1 and 1.") + return False + # Add any additional validation criteria as needed + + return True def _parse_telegram_signals(self, data: str) -> List[Signal]: """ - Parse signals (trading data) from telegram to extract price, score, trend direction, and zone classification. + Parse signals (trading data) from a Telegram message to extract price, score, trend direction, and zone classification. Args: - data (str): Raw trading data as a string. + data (str): Raw trading data as a string received from Telegram. Returns: - List[Signal]: Parsed trading data as a list of Signal objects. + List[Signal]: A list of Signal objects parsed from the provided data. """ + if "₿" not in data: return [] @@ -98,26 +122,31 @@ def _parse_telegram_signals(self, data: str) -> List[Signal]: else "None" ), ) - signals.append(signal) + # Validate the signal before adding it to the list + if self._validate_signal(signal): + signals.append(signal) + else: + self.logger.warning(f"Invalid signal detected: {signal}") return signals async def handle_new_message(self, event: events.NewMessage) -> None: """ - Handle new messages received from Telegram channels. + Handle new messages received from Telegram channels and extract trading signals. Args: - event (events.NewMessage): The Telegram message event object. + event (events.NewMessage): The event object representing the new Telegram message. """ + # Extract the message text message = event.message text = f"{message.message}" # Extract channel information try: - entity = await self.telegram.client.get_entity(message.peer_id.channel_id) + entity = await self.notifications_handler.client.get_entity(message.peer_id.channel_id) except AttributeError: - entity = await self.telegram.client.get_entity(message.peer_id) + entity = await self.notifications_handler.client.get_entity(message.peer_id) self.logger.debug(f"Received event from {entity.username} with message:\n" + text) @@ -125,23 +154,17 @@ async def handle_new_message(self, event: events.NewMessage) -> None: # Parse the message text for trading signals signals = self._parse_telegram_signals(text) self.logger.debug(f"Processed signals: {signals}") - if len(signals) > 0: - for signal in signals: - await self.trader.execute_trade(signal) - async def process_agent_signals(self, signal: Signal) -> None: - """ - Process the signals generated by the agent and execute the trade in MetaTrader 5. - - Args: - signal (Signal): Trading signal generated by the agent. - """ - self.logger.debug(f"Processing signal: {signal}") - await self.trader.execute_trade(signal, "martingale") + self.logger.debug(f"Executing Telegram signals...") + if signals: + for signal in signals: + await self.signals_queue.put(signal) async def run_agent(self): """ - Runs the agent in a loop, generating signals and sending them to ITBot. + Continuously run the agent to generate trading signals and send them to the ITBot for execution. + + This method loads the agent's model and enters an infinite loop to generate and process signals. """ self.logger.debug("Starting Agent") # Load model for the agent (modify path as needed) @@ -150,41 +173,140 @@ async def run_agent(self): while True: # Dummy data passed to agent for signal generation data = {"price": 50000, "score": 0.4} + # await self.trader.get_bar_data() # Generate signals from the agent signals = await self.agent.generate_signals(data) # Process each signal and forward it to MT5 for execution for signal in signals: - await self.process_agent_signals(signal) - # await self.telegram.send_message("@G_ojies", signal.__str__()) + if self._validate_signal(signal): + await self.signals_queue.put(signal) await asyncio.sleep(5) - def run(self): + async def run_trader(self, strategy_name: str = "fixed_percentage"): """ - Start the bot + Run the trader using the specified strategy for risk management. + + Args: + strategy_name (str): The strategy to apply for risk management. + Options: ['fixed_percentage', 'kelly_criterion', 'martingale', + 'mean_reversion', 'equity_curve', 'volatility_based']. + Defaults to 'fixed_percentage'. + """ + signal = await self.signals_queue.get() # Get signal from the queue + + self.risk_manager.select_strategy(strategy_name) + self.logger.info( + f"Executing trade with strategy '{strategy_name}' and position size: {signal.position_size}" + ) + + # Get current open positions + self.current_open_positions = await self.trader.get_open_positions() + self.current_open_positions.to_csv("current_open_positions.csv") + + # Close trade if applicable + try: + # Filter the DataFrame for the specific symbol + position_info = self.current_open_positions.loc[ + self.current_open_positions["symbol"] == signal.symbol + ].iloc[ + 0 + ] # Get the first matching row + + position = position_info["position_decoded"] # Use column name directly + identifier = position_info["identifier"] # Use column name directly + except IndexError: + position = None + identifier = None + self.logger.warning(f"No open position found for symbol: {signal.symbol}") + + # Close trades based on position state and signal received + if position is not None and signal.trade_type in [TradeType.BUY, TradeType.SELL]: + self.logger.info(f"POSITION: {position} \t ID: {identifier}") + await self.trader.execute(signal, close_trade=True, position_id=identifier) + else: + self.logger.info("No open positions to close.") + + # Open new trades based on the signal + if position is None and signal.trade_type in [TradeType.BUY, TradeType.SELL]: + await self.trader.execute(signal) + + self.logger.info("------------------------------------------------------------------") + + async def run(self): + """ + Start the ITBot. + + This method initializes and starts the bot's functionality, including: + - Starting the Telegram client to listen for trading signals. + - Adding a message handler to process incoming messages from specified Telegram channels. + - Running the agent to generate trading signals in parallel with the Telegram listener. + + It sets up the necessary asynchronous tasks to ensure both the Telegram listener and the trading agent run concurrently. """ self.logger.info("Starting ITBot...") - # Start Telegram client - self.telegram.start_client() - # Add message handler to the listener + # Add message handler to the telegrams notifications listener channel_entities = [ f"https://t.me/{chat}" for chat in self.default_chats if "@" not in chat ] - self.telegram.add_message_handler(channel_entities, self.handle_new_message) + self.notifications_handler.add_message_handler(channel_entities, self.handle_new_message) - # Run Telegram listener and agent - loop = asyncio.get_event_loop() + # Start tasks for the agent and the Telegram listener + await asyncio.gather( + self.notifications_handler.run(), # Start the Telegram listener + self.run_agent(), # Start the agent + self.run_trader(), # Start the trader + ) - # Create tasks for both the agent and the Telegram listener - loop.create_task(self.run_agent()) # Start the agent in the event loop - loop.create_task(self.telegram.run()) # Start the Telegram listener - # Keep the event loop running - loop.run_forever() +def main(): + # Set up logging + logger = Logger(name="it_bot", log_level=logging.DEBUG, filename="ITBot.log") + + phone_number = os.getenv("PHONE_NUMBER") + api_id = os.getenv("API_ID") + api_hash = os.getenv("API_HASH") + mt5_account_number = os.getenv("MT5_ACCOUNT_NUMBER") + mt5_password = os.getenv("MT5_PASSWORD") + mt5_server = os.getenv("MT5_SERVER") + + # Initialize Telegram bot + notifications_handler = TelegramInterface( + phone_number=phone_number, + api_id=api_id, + api_hash=api_hash, + logger=logger, + ) + + # Set up MetaTrader 5 terminal trader + trader = MT5Trader( + account_number=mt5_account_number, + password=mt5_password, + server=mt5_server, + logger=logger, + ) + + # Initialize ML Agent instance + agent = BasicMLAgent(logger=logger) + + # Risk Manager Setup + target_returns: Optional[List[float]] = None + period_per_return: int = 3 + total_periods: int = 30 + contract_size: float = 1.0 + risk_manager = RiskManager( + initial_balance=trader.initial_balance, + risk_percentage=0.1, + contract_size=contract_size, + logger=logger, + ) + + # Setup and Start ITBot + it_bot = ITBot(agent, trader, notifications_handler, risk_manager, logger=logger) + asyncio.run(it_bot.run()) if __name__ == "__main__": - it_bot = ITBot() - it_bot.run() + main() From 302b15e21a86776d35e61c46e9dd093b4473de82 Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 04:00:53 +0100 Subject: [PATCH 09/23] feat: Add project experiments notebook --- packages/itbot/notebooks/Project.ipynb | 1603 +++++++++++++++++ .../itbot/notebooks/Voting_project_app.ipynb | 246 +++ 2 files changed, 1849 insertions(+) create mode 100644 packages/itbot/notebooks/Project.ipynb create mode 100644 packages/itbot/notebooks/Voting_project_app.ipynb diff --git a/packages/itbot/notebooks/Project.ipynb b/packages/itbot/notebooks/Project.ipynb new file mode 100644 index 0000000..bc50867 --- /dev/null +++ b/packages/itbot/notebooks/Project.ipynb @@ -0,0 +1,1603 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Python for finance and algorithmic trading (2nd edition)\n", + "\n", + "# Chapter 16: Real life full project\n", + "\n", + "### 16.1. Preparation of the data\n", + "> ###### 16.1.1. Importation of the data\n", + "> ###### 16.1.2. Features engineering\n", + "> ###### 16.1.3. Tain, test and validation sets\t\n", + "\n", + "### 16.2. Modelling the strategy\n", + "> ###### 16.2.1. Find the best assets\n", + "> ###### 16.2.2. Combine the algorithms\t\n", + "> ###### 16.2.3. Apply portfolio management technics\n", + "\n", + "### 16.3. Find optimal take profit, stop loss and leverage\n", + "> ###### 16.3.1. Optimal take profit\t\n", + "> ###### 16.3.2. Optimal stop loss\n", + "> ###### 16.3.3. Optimal leverage\n", + "\n", + "\n", + "https://github.com/Quantreo/2nd-edition-BOOK-AMAZON-Python-for-Finance-and-Algorithmic-Trading/\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import MetaTrader5 as mt5\n", + "import time\n", + "from datetime import datetime, timedelta\n", + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "plt.style.use('seaborn')\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", + "mt5.initialize()\n", + "import ta" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 16.1.1. Importation of the data" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "# INITIALIZE THE DEVICE\n", + "mt5.initialize()\n", + "\n", + "# Create empty lists\n", + "symbols = []\n", + "sectors = []\n", + "descriptions = []\n", + "\n", + "# Get the information for all symbol\n", + "symbols_information = mt5.symbols_get()\n", + "\n", + "# Tuple to list\n", + "symbols_information_list = list(symbols_information)\n", + "\n", + "# Extract the name of the symbol\n", + "for element in symbols_information_list:\n", + " symbols.append(list(element)[-3])\n", + " sectors.append(list(element)[-1].split(\"\\\\\")[0])\n", + " descriptions.append(list(element)[-7])\n", + " \n", + "# Create a dataframe\n", + "informations = pd.DataFrame([symbols, sectors, descriptions], index=[\"Symbol\", \"Sector\", \"Description\"]).transpose()\n", + "\n", + "\n", + "# Create empty list\n", + "spread = []\n", + "\n", + "# Computze the spread\n", + "for symbol in informations[\"Symbol\"]:\n", + " try:\n", + " ask = mt5.symbol_info_tick(symbol).ask\n", + " bid = mt5.symbol_info_tick(symbol).bid\n", + " spread.append((ask - bid) / bid )\n", + " \n", + " except:\n", + " spread.append(None)\n", + "\n", + "# Take the assets with the spread < 0.07%\n", + "informations[\"Spread\"] = spread\n", + "lowest_spread_asset = informations.dropna().loc[informations[\"Spread\"]<0.0035]" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def get_data(symbol, n, timeframe=mt5.TIMEFRAME_D1):\n", + " \"\"\" Function which returns the data of the symbol\"\"\"\n", + "\n", + " # Initialize MetaTrader device\n", + " mt5.initialize()\n", + " \n", + " # Put the data in a dataframe\n", + " utc_from = datetime.now()+timedelta(hours=2)\n", + " rates = mt5.copy_rates_from(symbol, timeframe, utc_from,n) \n", + " rates_frame = pd.DataFrame(rates)\n", + " \n", + " # Convert time in seconds into the datetime format \n", + " rates_frame['time']=pd.to_datetime(rates_frame['time'], unit='s')\n", + " rates_frame['time'] = pd.to_datetime(rates_frame['time'], format='%Y-%m-%d')\n", + " rates_frame = rates_frame.set_index('time')\n", + " \n", + " return rates_frame" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 16.1.2. Features engineering " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "def features_engineering(df):\n", + " \"\"\" This function which creates all the necessary sets for the algorithms\"\"\"\n", + "\n", + " # Allows the variables to be call outside the function\n", + " global X_train\n", + " global X_test\n", + " global y_train_reg\n", + " global y_train_cla \n", + " global X_train_scaled \n", + " global X_test_scaled\n", + " global split_train_test\n", + " global split_test_valid\n", + " global X_valid\n", + " global X_valid_scaled\n", + " global X_train_pca\n", + " global X_test_pca\n", + " global X_val_pca\n", + "\n", + "\n", + " # Create ours own metrics to compute the strategy returns\n", + " df[\"returns\"] = ((df[\"close\"] - df[\"close\"].shift(1)) / df[\"close\"])\n", + " df[\"sLow\"] = ((df[\"low\"] - df[\"close\"].shift(1)) / df[\"close\"].shift(1))\n", + " df[\"sHigh\"] = ((df[\"high\"] - df[\"close\"].shift(1)) / df[\"close\"].shift(1))\n", + "\n", + " # Features engineering\n", + " df[\"returns t-1\"] = df[[\"returns\"]].shift(1)\n", + "\n", + " # Mean of returns\n", + " df[\"mean returns 15\"] = df[[\"returns\"]].rolling(15).mean().shift(1)\n", + " df[\"mean returns 60\"] = df[[\"returns\"]].rolling(60).mean().shift(1)\n", + "\n", + " # Volatility of returns\n", + " df[\"volatility returns 15\"] = df[[\"returns\"]].rolling(15).std().shift(1)\n", + " df[\"volatility returns 60\"] = df[[\"returns\"]].rolling(60).std().shift(1)\n", + "\n", + " # Drop missing values\n", + " df = df.dropna()\n", + " \n", + " # Percentage train set\n", + " split = int(0.80*len(df))\n", + " \n", + "\n", + " \n", + " list_x = [\"returns t-1\", \"mean returns 15\", \"mean returns 60\",\n", + " \"volatility returns 15\",\n", + " \"volatility returns 60\"]\n", + "\n", + "\n", + " split_train_test = int(0.70*len(df))\n", + " split_test_valid = int(0.90*len(df))\n", + "\n", + " # Train set creation\n", + " X_train = df[list_x].iloc[:split_train_test]\n", + "\n", + " y_train_reg = df[[\"returns\"]].iloc[:split_train_test]\n", + "\n", + " y_train_cla = np.round(df[[\"returns\"]].iloc[:split_train_test]+0.5)\n", + "\n", + "\n", + " # Test set creation\n", + " X_test = df[list_x].iloc[split_train_test:split_test_valid]\n", + " \n", + " # Test set creation\n", + " X_val = df[list_x].iloc[split_test_valid:]\n", + "\n", + "\n", + " # NORMALIZATION \n", + " # Import the class\n", + " from sklearn.preprocessing import StandardScaler\n", + "\n", + " # Initialize the class\n", + " sc = StandardScaler()\n", + "\n", + " # Standardize the data\n", + " X_train_scaled = sc.fit_transform(X_train)\n", + " X_test_scaled = sc.transform(X_test)\n", + " X_val_scaled = sc.transform(X_val)\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " # PCA\n", + " # Import the class\n", + " from sklearn.decomposition import PCA\n", + " \n", + " # Initiliaze the class\n", + " pca = PCA(n_components=3)\n", + " \n", + " # Apply the PCA\n", + " X_train_pca = pca.fit_transform(X_train_scaled)\n", + " X_test_pca = pca.transform(X_test_scaled)\n", + " X_val_pca = pca.transform(X_val_scaled)\n", + " " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 16.2.1. Find the best assets" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [], + "source": [ + "def predictor(df, model, reg=True, spread = 0.035):\n", + " model.fit(X_train_pca, y_train_cla)\n", + "\n", + "\n", + " df = df.dropna()\n", + " # Create predictions for the whole dataset\n", + " df[\"prediction\"] = model.predict(np.concatenate((X_train_pca,X_test_pca, X_val_pca),\n", + " axis=0))\n", + "\n", + " if reg==False:\n", + " df[\"prediction\"] = np.where(df[\"prediction\"]==0, -1, 1)\n", + "\n", + " df[\"prediction\"] = df.prediction\n", + " df=df.dropna()\n", + " # Compute the strategy\n", + " df[\"strategy\"] = df[\"prediction\"]* df[\"returns\"]\n", + "\n", + " returns = df[\"strategy\"].iloc[split_train_test:split_test_valid]\n", + "\n", + " return np.sqrt(252) * (returns.mean()-(spread/100))/ returns.std()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 96%|█████████▋| 54/56 [01:20<00:01, 1.14it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Issue during the importation of the data\n", + "Issue during the importation of the data\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\r\n", + " 98%|█████████▊| 55/56 [01:20<00:00, 1.41it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Issue during the importation of the data\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "100%|██████████| 56/56 [01:20<00:00, 1.44s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Issue during the importation of the data\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "# Import the class\n", + "from sklearn.svm import SVC\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.linear_model import LogisticRegression\n", + "\n", + "from tqdm import tqdm\n", + "# Models\n", + "tree = DecisionTreeClassifier(max_depth=6)\n", + "svr = SVC(C=1.5)\n", + "lin = LogisticRegression()\n", + "\n", + "\n", + "# Initialization\n", + "symbols = lowest_spread_asset[\"Symbol\"]\n", + "lists = []\n", + "lenght = []\n", + "mt5.initialize()\n", + "for symbol in tqdm(symbols):\n", + " \n", + " try:\n", + " df = get_data(symbol, 3500).dropna()\n", + "\n", + " df[\"returns\"] = (df[\"close\"] - df[\"close\"].shift(1)) / df[\"close\"].shift(1)\n", + "\n", + "\n", + " features_engineering(df)\n", + "\n", + "\n", + " \"\"\" Decision tree rgressor\"\"\"\n", + " sharpe_tree = predictor(df, tree, reg=True) \n", + " lists.append([symbol, \"Tree\", sharpe_tree, len(df)])\n", + "\n", + " \"\"\" SVR \"\"\"\n", + " sharpe_svr = predictor(df, svr, reg=False) \n", + " lists.append([symbol, \"SVR\", sharpe_svr, len(df)])\n", + "\n", + " \"\"\" Linear Regression\"\"\"\n", + " sharpe_linreg = predictor(df, lin, reg=False) \n", + " lists.append([symbol, \"LinReg\", sharpe_linreg, len(df)])\n", + " except:\n", + " print(\"Issue during the importation of the data\")\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SymbolModelSharpeLenght
85BitcoinSVR2.9461831127
86BitcoinLinReg2.3641351127
87JPN225Tree1.5666491046
84BitcoinTree1.5257411127
91NAS100SVR1.2035141044
93US2000Tree1.1022771044
59USDRUBLinReg1.0683041720
82XPTUSDSVR0.7665401045
92NAS100LinReg0.7459421044
90NAS100Tree0.6303871044
88JPN225SVR0.5470281046
143USDRUB.aLinReg0.4926001704
47USDHUFLinReg0.4722191815
29AUDSGDLinReg0.3842021049
153USDTRY.aTree0.2766103037
83XPTUSDLinReg0.2468101045
96US500Tree0.1453202981
97US500SVR0.1157362981
110AUDUSD.aLinReg0.1038073500
35NZDUSDLinReg0.0865753500
46USDHUFSVR0.0848221815
2AUDUSDLinReg0.0353943500
125NZDUSD.aLinReg-0.0485683500
154USDTRY.aSVR-0.0839403037
120USDZAR.aTree-0.1273273500
95US2000LinReg-0.1466271044
98US500LinReg-0.1515412981
89JPN225LinReg-0.1593061046
70USDTRYSVR-0.1695163052
20AUDCADLinReg-0.1706083500
78XAUUSDTree-0.1856173500
130USDHUF.aSVR-0.2256081800
69USDTRYTree-0.2399243052
79XAUUSDSVR-0.2627073500
124NZDUSD.aSVR-0.2640543500
\n", + "
" + ], + "text/plain": [ + " Symbol Model Sharpe Lenght\n", + "85 Bitcoin SVR 2.946183 1127\n", + "86 Bitcoin LinReg 2.364135 1127\n", + "87 JPN225 Tree 1.566649 1046\n", + "84 Bitcoin Tree 1.525741 1127\n", + "91 NAS100 SVR 1.203514 1044\n", + "93 US2000 Tree 1.102277 1044\n", + "59 USDRUB LinReg 1.068304 1720\n", + "82 XPTUSD SVR 0.766540 1045\n", + "92 NAS100 LinReg 0.745942 1044\n", + "90 NAS100 Tree 0.630387 1044\n", + "88 JPN225 SVR 0.547028 1046\n", + "143 USDRUB.a LinReg 0.492600 1704\n", + "47 USDHUF LinReg 0.472219 1815\n", + "29 AUDSGD LinReg 0.384202 1049\n", + "153 USDTRY.a Tree 0.276610 3037\n", + "83 XPTUSD LinReg 0.246810 1045\n", + "96 US500 Tree 0.145320 2981\n", + "97 US500 SVR 0.115736 2981\n", + "110 AUDUSD.a LinReg 0.103807 3500\n", + "35 NZDUSD LinReg 0.086575 3500\n", + "46 USDHUF SVR 0.084822 1815\n", + "2 AUDUSD LinReg 0.035394 3500\n", + "125 NZDUSD.a LinReg -0.048568 3500\n", + "154 USDTRY.a SVR -0.083940 3037\n", + "120 USDZAR.a Tree -0.127327 3500\n", + "95 US2000 LinReg -0.146627 1044\n", + "98 US500 LinReg -0.151541 2981\n", + "89 JPN225 LinReg -0.159306 1046\n", + "70 USDTRY SVR -0.169516 3052\n", + "20 AUDCAD LinReg -0.170608 3500\n", + "78 XAUUSD Tree -0.185617 3500\n", + "130 USDHUF.a SVR -0.225608 1800\n", + "69 USDTRY Tree -0.239924 3052\n", + "79 XAUUSD SVR -0.262707 3500\n", + "124 NZDUSD.a SVR -0.264054 3500" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "results = pd.DataFrame(lists, columns=[\"Symbol\", \"Model\", \"Sharpe\", \"Lenght\"])\n", + "results.sort_values(by=\"Sharpe\", ascending=False).loc[results[\"Lenght\"]>600].head(35)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 16.2.2. Combine the algorithms" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['US2000', 'Bitcoin', 'AUDUSD', 'NAS100', 'US500']" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "[\"US2000\", \"Bitcoin\", \"AUDUSD\", \"NAS100\", \"US500\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [], + "source": [ + "def voting(df, reg=True): \n", + " \"\"\" Create a strategy using a voting method\"\"\"\n", + " # Import the class\n", + " \n", + " \n", + " # Import the models\n", + " if reg:\n", + " tree = DecisionTreeRegressor(max_depth=6)\n", + " svr = SVR(epsilon=1.5)\n", + " lin = LinearRegression()\n", + " vot = VotingRegressor(estimators=[\n", + " ('lr', lin), (\"tree\", tree), (\"svr\", svr)])\n", + " else:\n", + " tree = DecisionTreeClassifier(max_depth=6)\n", + " svr = SVC()\n", + " lin = LogisticRegression()\n", + "\n", + " vot = VotingClassifier(estimators=[\n", + " ('lr', lin), (\"tree\", tree), (\"svr\", svr)])\n", + "\n", + " # Train the model\n", + " if reg==False:\n", + " vot.fit(X_train_pca, y_train_cla)\n", + " else:\n", + " vot.fit(X_train_pca, y_train_reg)\n", + "\n", + " # Remove missing values \n", + " df = df.dropna()\n", + " \n", + " # Create predictions for the whole dataset\n", + " df[\"prediction\"] = vot.predict(np.concatenate((X_train_pca,\n", + " X_test_pca,\n", + " X_val_pca),\n", + " axis=0))\n", + " \n", + " # Remove missing values \n", + " df = df.dropna()\n", + " \n", + " if reg==False:\n", + " df[\"prediction\"] = np.where(df[\"prediction\"]==0, -1, 1)\n", + "\n", + " # Compute the strategy\n", + " df[\"strategy\"] = np.sign(df[\"prediction\"]) * df[\"returns\"]\n", + " df[\"low_strategy\"] = np.where(df[\"prediction\"]>0, df[\"sLow\"], -df[\"sHigh\"])\n", + " df[\"high_strategy\"] = np.where(df[\"prediction\"]>0, df[\"sHigh\"], -df[\"sLow\"])\n", + "\n", + "\n", + " return vot, df[\"strategy\"], df[\"low_strategy\"], df[\"high_strategy\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "US2000\n", + "Bitcoin\n", + "JPN225\n", + "XPTUSD\n", + "NAS100\n" + ] + } + ], + "source": [ + "mt5.initialize()\n", + "\n", + "# Import the class\n", + "from sklearn.svm import SVR, SVC\n", + "from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier\n", + "from sklearn.linear_model import LinearRegression, LogisticRegression\n", + "\n", + "from sklearn.ensemble import VotingRegressor, VotingClassifier\n", + "import pickle\n", + "from joblib import dump, load\n", + "\n", + "# Initialization\n", + "lists = []\n", + "res = pd.DataFrame()\n", + "low_assets = pd.DataFrame()\n", + "high_assets = pd.DataFrame()\n", + "\n", + "for symbol in [\"US2000\", \"Bitcoin\", \"JPN225\", \"XPTUSD\", \"NAS100\"]:\n", + " print(symbol)\n", + " \n", + " \n", + " # Import the data\n", + " df = get_data(symbol, 3500).dropna()\n", + " \n", + " # Create ours own metrics to compute the strategy returns\n", + " df[\"returns\"] = ((df[\"close\"] - df[\"close\"].shift(1)) / df[\"close\"])\n", + " df[\"sLow\"] = ((df[\"low\"] - df[\"close\"].shift(1)) / df[\"close\"].shift(1))\n", + " df[\"sHigh\"] = ((df[\"high\"] - df[\"close\"].shift(1)) / df[\"close\"].shift(1))\n", + " # Remove missing values\n", + " df = df.dropna()\n", + " \n", + " # Create the sets\n", + " features_engineering(df)\n", + "\n", + " # Compute the strategy\n", + " vot, res[symbol],low_assets[symbol],high_assets[symbol] = voting(df, reg=False)\n", + "\n", + " # Save the model\n", + " s = pickle.dumps(vot)\n", + " alg = pickle.loads(s)\n", + "\n", + " dump(alg ,f\"Models/{symbol}_voting.joblib\")" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 59, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAAHFCAYAAACHC9okAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hc1bXw4d+ZXjUa9d7cLfcGLmDjApjeOwkEUkhIcpMv9eamkEBCCElISEiAECAJJfRqY4xxwb3KKu7qXSNpNNKMNP18f8gWGDfZlq3i9T6PHtlz2jqzZfms2XuvraiqqiKEEEIIIYQQot9p+jsAIYQQQgghhBDdJEETQgghhBBCiAFCEjQhhBBCCCGEGCAkQRNCCCGEEEKIAUISNCGEEEIIIYQYICRBE0IIIYQQQogBQne2L+hydZztSx6X02nB7e7s7zBEH5I2HZqkXYcmadehTdp3aJJ2HZqkXc+uxET7Mbed8z1oOp22v0MQfUzadGiSdh2apF2HNmnfoUnadWiSdh04zvkETQghhBBCCCEGCknQhBBCCCGEEGKAkARNCCGEEEIIIQYISdCEEEIIIYQQYoCQBE0IIYQQQgghBghJ0IQQQgghhBBigJAETQghhBBCCCEGCEnQDtq+fStz5kyjsrKi57U5c6bx1luvsWzZEu644yYWLJjNLbdcy4cfLgXA5Wri/vu/woIFs/nCF25m165iAIqLi7jttutZvHg+zzzzZM/5nnnmSRYvns9tt11PcXERAK2tLXzrW19j0aIL+b//+wF+v//s3bQQQgghhBBiQJEE7QRCoTAPP/wr5s2bz6uvvsP8+Yt46KFf0NbWxjPPPInX6+Xf/36FhIREfv/73wLwyCMPMn78RB544Nc8++zT7Nmziz17dvPss0/zwAO/Zvz4iTzyyIMAPP/8M3g8bfzjH/+isHAnb775Wn/erhBCCCGEEKIf6fo7gM975eMDbNnT1KfnnD46iZvmDz/l4w0GAytWfIjRaOLCCy/iS1/6Cjqdjq997ZuEQkESE5Ow2+243a34fF7Kykr50pe+wowZ52M2mykuLkRVwWy2MGPG+fh8Xt5//x18Pi9FRTuZNGkK2dk5jB49huLincAdfXfzQgghhBBCiEFDetAOUhTlqK/r9XoeeeRPxMbG8tRTf+Xee+/kBz/4H/x+P7GxsSQmJvHKKy+xYsVybrzxVrxeLwBGo6nnu9frxefzYjJ1v3bou8/nw+v1fm5f35m+VSGEEEIIIcQANeB60G6aP/y0ertOlcFgBCASCQMQDnd/NxqNNDbW89hjTxAIBFmx4kN+//uHWbt2NQsXXsILLzzP3/72OLfd9gUuu+zKngQtGAwAEAgEsNlsRKMqgUD3a4fmmdlsNqxW62f29WOzWc/eTQshhBBCCCEGFOlBOygzMxODwcjrr79CQ0MDy5YtASA3dxgPPfQLnnvuGUKhIDExDgBiY52sXPkRf/vb41x//U3ceefd+HxebDYbWVnZbNy4nk2bNtDV1cm4cRMZO3YcnZ0+tmzZxIYN68jLG4bFYmXs2HEUFOygsrKC3bt3MW7cxP58G4QQQgghhBD9SFFVVT2bF3S5Os7m5U4oMdHeE9PKlR/xxBN/pqmpkZgYB7feege33fYFPvzwA5577mnq6+twOGK5+urruPvuL3PXXbdx4MC+nnPFxcXzzjvLKC4u4je/eYCWlhZuvPEW7rnnq0B3FcfXXvsvsbGx/OQnDzBu3HhaW1t44IGfsmtXMTNmnMdPf/qrniGQ4tR8tk3F0CHtOjRJuw5t0r5Dk7Tr0CTtenYlJtqPuU0SNPlhHHKkTYcmadehSdp1aJP2HZqkXYemU2nXqvYa0m2paDXaMxTV0HW8BE2GOAohhBBCCCFOSmV7Nb/d+mfeKl3S36EMOZKgCSGEEEIIIU5KTUcdAJ/UbqQj6O3naIYWSdCEEEIIIYQQJ8XV1QJAKBri4+pP+jmaoUUSNCGEEEIIIcRJOZSgmbQm1tSspzPU2c8RDR2SoAkhhBBCCCFOSnNXCwaNnktz5uOPBFhds76/QxoyJEETQgghhBBC9Jqqqri6mkkwx3NB+vlYdRZWVq/FHw70d2hDgiRoB23fvpU5c6b1fC1cOIcHH/w54XCYOXOm8dZbrwGwevVK9u/fd4KzHam+vo45c6axcaN8uiCEEEIIIQYvb8hHIBIk0RyPSWdiXuZsfOFO1tZt7O/QhgRJ0D7n6aefZ+nSlTz44CN88MH7bNy4jqVLV3L55VfT0FDPT37yfVpamk/6vMnJKSxdupJp02acgaiFEEIIIYQ4Ow7NP0uwxAMwL2M2Jq2Rj6pWE4yE+jO0IUHX3wF83hsH3mNHU1GfnnNy0niuG35Fr/a1WKzY7XZiYmIAMJstLF58Ed/73o/46KMPAfje977Fn//8dwD++MdHqK2tZdSoUfz85w+RlJTMX//6Jz744D1UFebPX8i3v/09mptd3HjjVTz66J8xGAx861tf45Zb7mDJkndJTEzi4Yd/T2pqWp/etxBCCCGEEH3N1dndWZFo7k7QLHoLF2bM4sPKlWyo38LcjFn9Gd6gJz1on/PlL3+RSy6Zy1e/ejcTJ05mwoRJPdv+3//7EQAPPvhbJkyYxM9//r9MnDiZ//znFZKSkiko2M4777zJm2++yq9+9Vsee+yvrFq1ghdeeP6o1zKbzTz22F+pqChjxYoPz8btCSGEEEIIcVqaD/WgHUzQAOZnXoBeo2d55SrC0fAxj/2oajUPb36MVdXrZM7aMQy4HrTrhl/R696uM+HXv/4daWnpuFwufvKT7/HXvz7Ws81kMh38bqajox23u5XzzptJWlo6DzzwGwB+97tfk5mZzZQp0wDIzx/Prl0lXHLJZUdc66KLFpKXN4yYGAeBgPyACiGEEEKIgc/V1QpAojmh5zW7wcac9PNYWb2WzQ07mJU2/YjjomqU5ZWr8IZ8VO9/m/fKlzErbQZz02cTb3aetfgHOulB+xyr1YrdHoPT6USr1dHe3t6zTaPpfrtaW1swmcw4nXGsX7+W+vo6vvvdb/Lss08zfPhIqqsr2b59K/v27aGkpIixY/OPei2tVguAoihn/saEEEIIIYToA81dzWgUDU6j47DXF2bNRado+bDyYyLRyBHHlXkq8YZ8TEmawBW5F6PT6FhRtYZfbPwt/yj+D1UdNWfrFga0AdeD1t++/OUvAt3J06hRY7jnnq/y4YdLAUhISGTMmHwee+xREhOT+MUvHuKPf3yE22+/kdGjx7B48ZUkJiZSU1PFT3/6w545aLff/kWam139eVtCCCGEEEL0CVdXC/EmJ1qN9rDXY40Ozkudxrq6TexzlzImfuRh23e6igE4P3Ua+fGjWZg9j+2NO/m4+hN2NBWy01XMlXmXEGt08HH1J0xKHMelOQvO2n0NFIqqqurZvKDL1XE2L3dCiYn2AReTOD3SpkOTtOvQJO06tEn7Dk3SrkNTb9u1K+zne2t+xti4UXxj0j1HbN/asINnd73EzSOv4cLPFAtRVZWfb/gtvpCPhy/4OXqN7rBtu1r38cLuV/AEP43Bprfymzk/RaMMvUF/iYn2Y24bencrhBBCCCGEOCOaOrtHhSVa4o+63WnqnkvW6m877PVabz0t/lby40cflpxB93Sf/PhR/HjGd5iePJnZaTMYnzCme65aR23f38QAJ0MchRBCCCGEEL1S5qkEIMuecdTtcaZYANyBtsNe39lcAsDExKPXZoDuQiN35d8KwPamQoqad7OrZS/ZMZmnGfXgIj1oQgghhBBCiF4pP5ig5Tlyjro9xmBHo2iO6EErbSsHYEzcqF5dZ7RzBBpFQ0nL3lOOdbCSBE0IIYQQQgjRK6WeCmx6a88i1Z+n1WhxGGJwfyZBU1WV6o5akswJWPTmXl3HojeTE5NFRXsVvlBnX4Q+aEiCJoQQQgghhDght7+NtoCHYY6c4y4TFWeKpS3g6Sm13+p30xnuIsOedlLXy48fhYrKntZ9pxX3YCMJmhBCCCGEEOKESj0VAOQ6so+7n9MUi4qKJ9i9nvChQh+Z9vSTut7Yg8Mhd7fuP8lIBzcpEvI599//FeLj42lpaaGgYDsAer2e3NxhPPDAr8nMzGLOnGmMHz+BJ554BkVReOihX1BZWcFTTz3H9u1b+cMffktDQz0TJkzipz/9FU6nkyef/Ctvv/0GigI33XQbX/xid1nS6667nKamRgCysrJ58cXX++3ehRBCCCGEOJZDBUKGxeYcd7+4z1RyjDM5TzlBS7eloqDg6mo++WAHMelBO465cy9i6dKVPPXUc9TX1/HMM0/2bCsqKuSdd9484pjf/vZBxo+fyD//+QL79+/jhReeZ+fOAv7972f55S9/w5e//HWefvpvlJUdwO1209TUyN///ixLl67kH//419m8PSGEEEIIIXqtzFOBTtGSaTt+ouU0xgL0zEOr9tYBnPC4z9NqtMQYbLj9npOOdTAbcD1orldfpmPrlj49p33adBJvvOWkj9PpdNjtdqLRZEwmE1rtp6ulx8cn8Pe//4ULL5x32DF/+tPfsVgsWCwW9Ho90WiE0aPH8OKLr5GVlUM4HAYgEomyZ88uAH7961+g0+n4n//5PlOmTDv1GxVCCCGEEKIP+MN+nix8nhHOPC7LXYQ/HKDWW09OTCZ6rf64x/aU2j+UoHXU4jTGYjNYTzqOWFMsNR11RNXokFyw+mjOjbs8RatXr+SSS+Zy5ZUXo9PpueOOu3q23XLLHVgsFh5//I+HHZOSkoLFYuGBB/6PtjY311xzPUajkaysHCorK/jNb37J5MlTGTFiJBaLlWuvvZGf//whxozJ52c/+1FPAieEEEIIIUR/UFWV/+x+lX1tpWxp3AFAva+RqBo95vpnn+U8mKC1BtrwBNppD3ac9PDGnnMZY4moETqCvlM6fjAacD1oiTfeckq9XaejvLwMg8FAenoGqqqi0XT3lM2YMZPvfvcHGAwGnM64w6rVmM0mvvOdH/CjH32X9PQMHI5YAEKhED/72Y/YuHE9v/zlb8jKygGgrOwA3/7213E6nfzyl78BYOLESYwYMQKLxcpFFy3k/fffoaWlmeTklLN6/0IIIYQQQhyysvoTdriKAGjuaiUcDdPQ2QRAijX5hMd/2oPm/sz8s5Or4HiI0+QAoC3QhsNoP6VzDDbSgwY88shD/OlPj9LQUE9tbQ2pqd0/QGaziZSUVOLi4o9aSnTOnAuZO/ciamtrel57/PE/sHbtGv73f3/OpElT8fv9tLe3873vfRur1crDD/8BnU5POBzmn/98iuuuu5zKygrWr/+ExMQkEhISz9p9CyGEEEII8VkH2sp5s3QJdoONcfGjiapRXF0tNPoOJmiWEz+rmnVmTFoTrf42KtqrgJMvEHLI5+eznQsGXA9af/jqV7/Bww8/yG233cDEiZO46abbKCws6NWx3/nOD9i6dTMAHk8bb7/9Bqqq8sAD/wfAggWLyM8f31Op8aabrgbg0Uf/zC233MH+/fu49947SUvL4Ne//t1h89yEEEIIIYQ4WzyBDv5Z/B8A7sm/g8qOaopb9tDgazqpHjTo7kVr7mphVc06TFoTeY6cU4rp0HBJd+DcKRQiCRowadIUXn75jcNe+8tfnjrm/mvXbu35c0JCIsuWre75++rVm456zE033XbU13/zm0dPJlQhhBBCCCH6XCQa4dmSF/AEO7h2+OWMcOYRiAQAaOxsotHXhFVnwabvXaEPpymWOl8DREPcPPJarHrLKcUVa+we4ngu9aDJEEchhBBCCCHOcS8Vvc3+tjImJY5jQeaFAKRYkwCo8dbj6moh2Zp01Gk/R3Oo5yvPkc2c9PNOOS6n8dActHOnB00SNCGEEEIIIc5hBU1FvLNnOUnmBO4Yc1NPEhZncqLT6NjdshcVlRRLUq/PmR83iiRzAreOuv60yuM7jDFoFA3uQNtJH+v2t7GlYQeqqp7y9fuDDHEUQgghhBDiHNXY6eLfu1/BqDXw5fFfwKwz9WzTKBqSLYnUeuuBT3vUemNCYj4TEvNPOz6NosFhiDmlxarfK/uQjQ1bGRU3nBjD4KkAKT1oQgghhBBCnIMCkSD/KPo3/kiAr0y7nTTbkUs9JX+mauPJJGh9yWly4Am2E1Wjx9znaEMgq721GDT6Xs+bGygkQRNCCCGEEOIc9HbpEup8DVyYPosLcmYcdZ/PDmtMPokhjn3JaYwlqkbxBNqPun1V9Tp+su4hNtR/WsgvHA3T4Gsi1ZZyWkMs+8PgilYIIYQQQgjRJ4qb92DVW7huxBXH3Cf5YK+ZXqPvWYD6bIs9uFj10Urtu/1tvFO2FIA39r9LR9ALdA/djKgRMmypZy/QPiIJGvDKKy9ywQXTKSjYDsDjj/+RBQtmU11dxUMP/YI5c6YxZ8405s07n9tuu57i4iKWLHm35/XPfi1Z8i4PPfQLvvKVu3rOf2jfQCBAIBDg179+gGuuWcyiRRfy7W9/vWeh6/vv/0rPeebPn83993+Furra/nhLhBBCCCHEENYV7qLF30qmLR295thlKQ71oCVbEvutJ+p4i1W/tv9dApEgo5zD6Qx38dr+dwCo6agDIN2WdrbC7DOSoAE33HAL48dP5JFHHqK4uIjXXnuZe+75GpmZWQCMHj2WpUtX8q9//ZdoVOUvf/kjixZdytKlK/ntb/8IwNNPP8/SpStZtOjS415r6dL3+PDDpTzyyB95/vmX8HjaePzxP/Rsnzv3IpYs+Zh//ON5Ojo6ePDBn5+5GxdCCCGEEOekWm8DAOn24/cwJVsSSTTHMy5+9NkI66gOldqv7qhlp6uY98uX81TRv/jZ+ocpcBWR58jhGxPvIdueydbGAso8lT2FTdIHYQ/agKviuP7jUsr2NPXpOfNGJzFr/rBjbtdoNPz4xz/jrrtu5dvf/hojR47m5ptvO2y73W5Hr9djsVjQarXo9Xr0ej1msxkAi8WK3X7i6jB2u51wOMxzzz3DBRfM5dFH/4zT6ezZrtPpiImJISYmhttv/yK//OX/UVNTTUZG5mm8A0IIIYQQQnzqUA9Txgl6mPRaPb+Y+cOzEdIxHVpTbXnVqsNet+mtjI0fxY0jrkar0XLVsEt5vOBpNtRtpvVgb1v6UQqfDHQDLkHrL5mZWYwfP5GtWzdz7bU3oNVqe7bt3bubSy+dR1dXFw5HLA888OvjnutYC/gpisL8+Yuoqanm7bffYM2alWi1Wr7zne9zzTU3HLF/XFwcAG1tbknQhBBCCCFEn6nx9i5BGwgybGlMS55EVI2SYUsj3ZZKhj0NhyHmsOfukc5hOI2xbG8qRKvREm9yYtaZ+zHyUzPgErRZ84cdt7frTFm9+mO2bt1MUlIy//jH37nwwouw2WwA5OUN4ze/+T06nR6n03lY8nY0BoOBSCTS8/dwOIyiKOj1ekpKihg7Np8vfvEeqqoq+ctfHuPxx//I1Vdff8R5PJ42AJKSkvvuRoUQQgghxDmvxluHTqM7rIz+QKXVaLk7/7YT7qdRNMxImcKyyo8hAsMcuWchur4nc9CAtrY2Hn30YWbMmMkTT/yDjo4OHnvsdz3b9XoDKSmpJCQknDA5Axg2bASlpftZu3Y1TU2NrFu3hry84SiKwqZNG/jJT35IQcF2LBYLZrMJhyO2J/sPh8N0dHRQW1vDG2+8ysiRoyRBE0IIIYQQfSYSjVDvayTNmoxWc+Jn28HkvJQpPX8ejPPP4AQJmtfr5b777mPy5MksXLiQVatWHba9oKCASy+9lBkzZvD444+fyTjPqN///mECgQA//OFPSElJ5Wtfu58PPnifNWtWndL5Lr/8Ki677EoefPDn3HjjVbhcTfz4xz8F4I477mLBgkX83//9gBtvvIrq6mp+8YuHeo5dvXolixdfxJ133oxOp+fBBx/pi1sUQgghhBAC6C5BH46GB8XwxpOVbE0iN6a70N9gTdAUVVXVY2184oknePHFF/nPf/7Dk08+ycqVK9m4cWPP9iuvvJLx48dz2WWXcc899/Daa68xfvz4417Q5erou+j7QGKifcDFJE6PtOnQJO06NEm7Dm3SvkOTtOvgt7lhO8/vepkbR17NvIzZwNBq110te1lW+TFfHf9FLHpLf4dzVImJxy4ueNwetDvvvJP//ve/5OTkEB8ff9i8Kq/Xy759+5g7dy5z5szBYrFQUFDQZ0ELIYQQQggh+l5lezUwOAqEnIqx8aP4zpT7BmxydiLHLRJit9ux2+188MEHPPvss3zta1/r2dbR0Z1hm0ymnu+HXhNCCCGEEEIMLKFIiHfKPmBVzTpMWhMZg3QI4FB3wiqO7777Lj/84Q9ZvHgxX//613teP1ThMBAIAOD3+3u1DpjTaUGnG1iTEY/XxSgGJ2nToUnadWiSdh3apH2HJmnXwaemvZ4/rX+GSk8tafZkvnX+3WTGHV7BUdp1YDhuglZQUMCPfvQjLrroIn7605/i8/nQ6/VEo1Hsdju5ubmsWbMGs9lMZ2cnkydPPuEF3e7OPgu+Lwyl8baim7Tp0CTtOjRJuw5t0r5Dk7Tr4KKqKhvqt/LqvrcIRkPMTjuPG0ZciSFiOKwdpV3PruMlw8dN0J566inC4TAfffQRH330EQCXXXYZtbW1vPLKKzz88MP8+Mc/ZtmyZdx///2MGzeubyMXQgghhBBCnJKucBcv7XmDbU07MetM3DP2ZqYkTejvsMQJHDdBe+KJJ4578KRJk1i6dGmfBiSEEEIIIYQ4PRXtVfyz+EVa/K3kxmRzd/6txJvj+jss0QuyUPVB27dvZc6cafz973/pee2GG67kb3/rXt+to6ODBQtmc/31VxCNRnv2qaur5X/+5+tceulFXH75An796wd65uUB7N27h7lzz2PjxvVA91y9n/zk+yxadCHf/vZ9uN2tABQXF3HbbdezePF8nnnmybNxy0IIIYQQYoiJqlGWV67i99ueoNXv5pLs+XxnytckORtEJEH7nJdf/g9lZaVHvP7BB+9jMBhpampk/fq1Pa8/+eRfcbvdPPfcSzzyyJ/4+OPlvPXWawC8++5bfPvb9x22PMGbb75GUVEhTz/9PG1tbp577h8APPLIg4wfP5EHHvg1zz77NHv27DrDdyqEEEIIIQaDqBqluqOOVdXreK7kJYqaj/6c2B7s4Imd/+St0iXY9Va+OenLXDXsUrSagVWgTxzfCas4nm3u2uV0tvVtcmKJHYszfVGv9nU4Yvnd737NE0/847DX3333Ta688hoOHNjHW2+9xpw5FwLdSxFUV1fx4ovPM2PGTN55ZxkmkxmATz5Zzbe+9V1+/esHes5TVLST0aPHkpOTy8SJkykqKsTn81JWVsqXvvQVZsw4H7PZTHFxIaNHj+2jd0AIIYQQQgwmjZ0udrqKOdBWTpmngq6wv2fbTlcx35/2TdqDHfxn96tkx2QyNm4k75YvoyPoJT9+NHeOuQm7wdaPdyBO1YBL0Prb/ff/Dw8++HPee+/tnteKinZSVlbKgw8+QlnZAX72sx9TV1dLWlo6X/3q/YRCIZYtW8Ibb7xKbGwsDz/8R8aNG88jj/yR+vq6w87v83lxOGKB7rXjfD4vXq8XAKPR1PP90GtCCCGEEOLcoqoqf9r+JJ5gOwCJ5ngmJo5jeGwekWiYl/a+wRM7/0lHsIOwGsHtaqPAVYRW0XL98CuYlzkHjSID5QarAZegOdMX9bq360wYOXI0N9xwC0888WcURQHg7bffAOCuu24FIBqN8vbbb3Dffd9kx45t3HjjrXz/+//L7t0lPPjgz/nnP5/iD394/Kjnt1isBALdn4D4/X6sVhtWa/enG8Fg99y1QCDQs86cEEIIIYQ4t7QFPHiC7Yx0DueusbfgMMYctr2x08XH1Z9g0Br45vgvoVU07HAVcX7KNLJiMvopatFXBlyCNhDce+/XWLVqBY2NDXi9Haxc+RH33fdN5syZC8Abb7zC+++/w733fo1XXnmRzk4fv/jFr3E4HOh0OpzO2GOee+zYcbz22ktUVVVQULCdyZOnYrPZyMrKZuPG9ZhMZrq6Ohk3buJZulshhBBCCDGQVHXUAjDKOeyI5AzgmmGXEWt0MNI5nEx7GgAjnMPOaozizJG+z6Mwm81897s/BGDlyhWEw2Euv/xqsrNzyM7O4YorrqGtzc3KlR/x4x//jNhYJ/fe+wXuuedO0tMzuO++bx/z3NdffxPjx0/innu+QGysk7vuuheA//3fX1BYWMDPf/6/3H33lxk9esxZuVchhBBCCDGw1BxM0DLt6UfdrtVoWZB1YU9yJoYWRVVV9WxecKCtUC6rpg890qZDk7Tr0CTtOrRJ+w5N0q5n3t8Ln6OoeRe/nv1THEb7WbmmtOvZlZh47HaVHjQhhBBCCCEGkOqOWhwG+1lLzsTAIgmaEEIIIYQQA4Q36KMt4CHjGMMbxdAnCZoQQgghhBADRLX3+PPPxNAnCZoQQgghhBADRPWhAiE2KQByrpIETQghhBBCiAGipqMOkB60c5kkaEIIIYQQQgwQNd46zDozcSZnf4ci+okkaEIIIYQQQgwAkWgEV1cLqdYkFEXp73BEP5EETQghhBBCiAHA1dVCVI2SZEns71BEP5IETQghhBBCiAGgsdMFQIolqZ8jEf1JEjQhhBBCCCEGgKaDCZr0oJ3bJEETQgghhBBiAGjobAIgWRK0c5okaEIIIYQQQgwATZ0uNIqGRHN8f4ci+pEkaEIIIYQQQgwAjT4XCeY4tBptf4ci+pEkaEIIIYQQQvQzb9CHL9wpwxuFJGhCCCGEEEL0t0MVHJOlguM5TxI0IYQQQggh+lmjFAgRB0mCJoQQQgghRC9Utlfj9redkXM3Sol9cZCuvwMQQgghhBBiIFlft4W2QBuLcxaiKAoARc27eLLweUw6E1+bcBfDY3P79Jq13npAFqkW0oMmhBBCCCGGuFAkxE5XMb5QZ6/2X1rxEe+XL2dZ5UoA6rwNPFvyIjqNlkAkwOMFT7O9qbBPYlNVlbdLl7K7dR8pliRsBmufnFcMXtKDJoQQQgghhrR3y5exomoNOkXLpKTx3Db6Boxaw1H3japRPIH27uPKPqCqo4Z97gMEIkG+lH87Fp2Zp4v/xT+LX6B9RAfzMmcD3YlWjbeONGvKSZXJ/6BiBR9WriTRHM/XJ95z+jcrBj3pQRNCCCGEEANWTZOXRnfver6Oxhfq5JPajdj0VmJNsWxtLOBAW/kx9/eGfETUCOm2VAxaAztdxRi1Rm4eeQ1TkycyJn4k35lyH3aDjVf3v81bB5YQVaO8U/YBD2/5E8/teglVVXsd38b6rZh1Jr479evEm52nfJ9i6JAeNCGEEEIIMeCU1nl4Z20FRWUtWE06Hv7aTKwmfa+O7Qh6+aR2A1OSJrCjqYhgJMgVuRdjN9h4ftfLtHS1HvPYtoAHgBGxedyTfztdET9Z9gw0yqf9Gpn2dP7f1G/w153/YHnVKva691PVUQvA9qZCsmMyWZg194RxtgU8NPtbGRc/mhiDvVf3JoY+SdCEEEIIIcSAcaDWwztryyku706iEhwmmj1+3ltfwc3zRwAQjkRZvrWaTn+Y7GQ7mUk2EmPNaDQKzV0t/KXgH7i6WlhWuRKdosWiMzM7bQa13gYAWv3uY16/zd+doMUaHSRbj12wI8Ecx/+b8g3+Xvgc5e2VxBod3DvuTp4u+hdvHVhCqjWZ/PjRx73XMk8lAMMcfVtwRAxukqAJIYQQQoizZm+Vm7fXlvPFS0eTHGfpeb3W5eXlFfspqehOnkZnxXL1nFzy0mL436c2sWJbDRdNySDObuSpd0rYutd12Hl1Wg0JKQF8qesIa/yMsObTEKqkI+hlcc5CTDpTzxDCFv/xetC655/FGh0nvBebwcq3Jn+ZtXWbGB8/lkRLPF8efyd/2vEkTxf9m29N/jJ5jpxjHl/WVgFAXuyx9xHnHknQhBBCCCHEWfPWJ+XsrW7jr28W8ZMvTMOo19LuC/L7/xbQ5g0yJtvJ1XNyGZkZ23PM9fPyeOqdXfz2he2YjTrqmn2Myozl8pnZVDd5qW32Ue4twx2/DpQIoYoxFDZlsvC8qQwfG2Ry0gQAYgx2dIqWlq7j9KAFPu1B6w2D1sD8zAt6/p7ryObecXfyZNHzPLHzWe4ddwej40Yc9dhSTzk6RUu2PaNX1xLnBikSIoQQQgghzor6Fh97q9vQaRVqXD6eX7qHFo+fJ98poc0b5Pq5eXz/1smHJWcA541JZvb4FALBCHXNPsbnxfM/N05kXF48i8/PZsI0P+3Ja9HrFW7Ou4lvzr2SBIeJlVtcpGlHotd090loFA1xJucJetBOLkE7mnEJY/jCmJt7SvL/d++bNHUe3uPnD/up7qgjKyYTvbZ3c+vEuUF60IQQQgghRJ+qa/ZhNelw2IyHvb5qRx0Ady8ew/Kt1Wzc1cjGXY0ATBqewOLzs496PkVRuOfysXB59/wznba7j0FVVT6qWs1bpUsw60x8dfxdjHDmAXDbIvjza4X8Z9lefnj7lJ4Fp+NMTprczQQiwaOW2v80QYs5rfdgespkki2JPL/rZdbUbmBN7QbSrClMShzHpKTxdAS9qKgMO84QSHFukgRNCCGEEEL0mb1Vbn774g4AnHYjOSl2clNjyE6xs764nhirgeljkhg/LJ7VBbWU13cQjkS554oxaA4mUcdzKDmr9dbz371vUuqpINbo4OsTv0S6LbVnv0nDE5g8IoEd+5tZXVDHvMnpAMSb48ANDR3NZMemHXH+tkA7Jo2ZFVvryU62kZMag9l4ao/MWTEZ/Gj6t9natJOdriJ2t+5nScVHLKn4CMPB5HCYzD8TnyMJmhBCCCGE6DMfbKoCID/HSY3Lx479zezY39yz/fKZ2ei0GmxmDZfPzDnp80eiET6sXMmSio+IqlEmJY7jxpFXH3VI4u2LRrKvuo2XVuxnRIaD9EQb2nB3YZJfvbSGbMswJo9IZMrIRNISrAC0drUR8Bl5ZeMBALQahWFpMUwakcj5+cnEfq5X8ET0Wj0zU6cxM3Ua/rCfkpY9FLiKKW7Zg1lnkh40cQRJ0IQQQgghRJ9oaO1kZ2kLw9Md/L9bJqOqKm3eIOX17VQ0tOPuCLBoeuYpn19VVZ7Y+U/2uPcTa3Rw2+gbyI8fdcz942JM3H3ZGP7yRhF/fr2QGKuBiq4WDMMhLiFKZZmX8voO3lhTRkqchbHD7ISUIIQc3LZwBO6OAHur29hf62FfjYdXVx1g+ugkrrswjySn5ZjXPRaTzsTU5ElMTZ5EKBIirIYx68yn/H6IoUkSNCGEEEIIcVoi0SgKCsu3VgP0JGGKouC0G3Hau3upTldjp4s97v3kObK5b8KXsOhPnNxMGZnI/CnpfLy9lhZPgIzsRFzA+ZNiuPiKORSWNrN9XzPFZS2sLGrCNAFGpaSwcNqniWRHZ5Ate5pYU1DH5t1NbNvr4qIp6Vw5Kwe75ch5bL2h1+rRI8VBxJEkQRNCCCGEEESjKhrNieeAfV5HZ5D/+8cmfF1hVFTiY0xMGZlwBiKEfe5SAM5Lmdqr5OyQ2xaOZNa4VFLjLQTp4n/XraDF78Zm1jNrXCqzxqUSCEX4cM92PnDByJSUw463WwzMn5LBvMnpbN3TxGurSvloaw3riuq5fGYOC6dmYNBriapqr+bRCXE8kqAJIYQQYkjydoXwB8KYjDpMBm1PcYlzhbcrxNrCerbvd3H1nFzyc+KOue87a8tZsb2Gb10/gWHpJ1defs3OOjo6Q6TEWVBVlavn5KLVnJn3el9bd4I20jnspI7TaBTy0rqrMppUG3qNjtbPldo36rUkJCjgglhj7NHPoyjMGJPM5BGJrNxRy7vrynltVSnLt1aj12poafdz64IRh/W+CXGyJEETQgghxJASiUZZsrGKd9aWE4mqPa/rtAomgw6rWc/di0cfsdbWQNfmDRCJqMQ7TMfcpysQZn1xAwX7XeytbiMc6b7/J98u4Zf3zDhqgYsal5d31lUQVVX+9FohP7lzKslxvZtfFY2qrNpRi1Gv5f++MA2L6cw9WkbVKPvdpcQaHSSaT72HTlEU4kxxR12sus3fuxL7ep2Gi6dnMmd8Cu9vqGTFthoiei0mg5aXVxwgK9mO3aKn4EAzs/JTjlhu4LPCkSiKwhlLasXgIwmaEEIIIYaM+hYf/3hvN+X17cTaDIzNicMfjNAVCOMPRvAHw9S3dLJ0Y2W/JWiBYIT1JQ1MH52EzXziOUhdgTDvb6jkwy3d87tuXTiCeZPS8AcjNHv8uNq6cLV1UdfsY8ueJvzBCABZSTbOz08hEo3y+uoynn53F/dcPgazUYfRoEWjKKiqygsf7iOqqswel8K64gb++MpOfn739F6Vlt95oJmW9gDzJqef0eQMoN7XiDfkY0bKp2uanap4k5PGzib2u8tItMQTY7CjUTS0BU9ukWqLSc+NFw3n+nnD0CgKe6vc/O6lAh57dSeBUARVhaUbq7hh3jD0Wg3Nni6aPX6aPX5aPH7avAGC4ShxMUZ++aXzzvh7KAYH+SkQQgghxKDX0Rlkzc463llXQSgc5fz8ZG5fNBKr6cgE6JfPbaGwrAV3RwCn/eRKpveFNz8p48Mt1awuqOX7t04+aoyH7Ktu46l3S2ht7441GIrw72V7eX1VKZ2B8BH7x9oMXD4zm5n5KcTFdPe0qarKgRoPO0tb+N4T6wFQoGfop7sjwKThCdxzxVjsFgMfbK7i/Q2V3DDvxMMIP9pWA8D8Kemn8E6cnEPzz0bGntzwxqNJtiSyq3Uvj+34OwAaRYPDEIM/EgB6n6Adcmje2agsJzdeNIz/fnyA9EQrE4cl8NHWap5buueIYxxWA6kJVqJRleomL0s29u49F0OfJGhCCCGEGNReXrG/e4hZVMVm1vPlK8YybXTSMfe/YEIqFR92sKGkgcvOzz6LkXYnkqsKalEUqGr08uhLBcwcl9Jd6dBmJNZuINZmpKXdz/It1azcUQvAFbNyuHxmNr6uEP9atpfG1k7y0mJIjDUf/DKR4DCTnmg9Yq6doijce+VYlm6sorXDT5c/TGcgTNfBr+Q4C7cuHAHA1RfksnlPIx9uqeKCCanHHOqoqipvfVLO7ko3o7NiyUi0ndk3DtjvPrX5Z0dzac4CEszxtAbctPk9uANtuP0eApEA6bZUzLpjDyM9kUtmZDF5ZCIJDhMaReGCCals3t2IzWIgwWEiwWEiPsaEQa8FIBiK8OOnNvLhlmoumpx+3CGs/cnbFeKlj/Zz3thkJgyL7+9whjRJ0IQQQggxaO2rbuPDLdUkOEwsnJrBrPGpJxw2OGNsMi+tOMDawnpyU2M4UOth0bQMTIYz/1j00dYagqEot8wfTrXLy7qiBiobO465f4LDxL1XjO0ZjmnUa/mfGyee9HWtJn2vemeMei03zx/B394q5k+vFWI16/AHI5j0WgwH51g57Cba2v0UHGgmKdbMly4fc9LxnKzOUBd73QeIN8URbz52sZPeshmszMucfcTrUTUKcNpDKJNiP60wmRxn4crZucfc16DXct2FeTzz/m5+/98CwpEoCQ4TX7p8DAmOgbFGmrcrxKMv7aCqyUtds08StDNMEjQhhBBCDGjtviDVLi/ZyfYjkq+315YD8JUr8xme0bthaVaTnqmjEtm0q5HfvbQDgEgkyjUX5PVt4J/j7giwYlsNNrOeuZPSMeg1LJiaQXObH7c3QFtHoOe7oihcODGNqaMSz3r1yWmjEsnPjaOkvBWtRsFk0BIIRXoKjhySEmfh+7dOPivDRD+uXoM/EuDSnAVn9DoapX8Kdcwcl8LH22sor+/AbNTR7Gnjl89t5YZ5w8hJsZMab0Wv+zS23RWt/PvDfYzPi+fGi4ad9M9IrctLRUMHM/NTTri0QkdnkEdfLqC6yYtRr6WysYNGdyfJp7BQt+gdSdCEEEKIM+h46yKFI1E2ljQyIsPR66p555od+1388/3d+Pzd863SE6yMyIxlZIYDnVbD7ko3+blxvU7ODrl4eiYHatoYmRlLYWkLH2+vZfH52RgPDjv7vE5/iEhUPaVFiUPhKK+tKmXljlrCkSjXz83DaOi+Tk5KDDkpx68YeLYpisK3rp9Auy9IrN3QU10wHIkSCEWw2c3UNXhIjDWfleTRG/SxsnotdoONCzNmnfHr9QeNovCDW6fg7QoRF2NkdUEdLyzf1zN3TaMoJMeZSU+wYjHp+aSwDlWFhtZODtR6uO+a/F73tnm7Qjz6cgEeX5B1RfV86bIx2K0GwpEoqqoe1nvY3hnk0Zd2UOPycdHkdHJS7Ty7ZA9bdjdxxaycM/FWCEBRVVU98W59x+U6djd+f0hMtA+4mMTpkTYdmqRdh6bB0K6hcHelPItJj92s79VCvuFIlD+/XkhxWfc6S3ExRsbmxDEuN44x2U7sFgPRqMpT75aweXcTWo3CgqkZXHvBpw/uA0UgFKGyoQOHzUB8jOmwB/JwJEpre3c1uuaD31s7AozMiGX2+BRUnY5fPbORhBgTV8zKITvF3uvrhsIRXllZyoptNeh1Gi6YkEp9SyeldR6Coehh+/7kzqknvXbXZ72xpoz31ldw+6KRLJia0fN6a7ufHfub2b7Pxb7qNkwGLb/+yvknnaS9u66cNz8pJz7GxOUzs7lwUtqgXsz4bP27jUQj1PkaWFG1hi2NO7hhxFVclDnnjF93oKhv8bGrwk2ty0tNs49al4+ug4VhYm0G7r1iLOuKGthQ0oDVpOPeK8YyKiuWQDCCPxTBH4gQCHVXLvUHI2gUhbE5Tp5duodte12kxFloaO084rpajYJGo6DVKESjKsFwlPlT0rl90Ui6AmG+/ee1pMZb+eU9M/rsXqNRlYIDzZgNWsYcZ72+3iosbeG9DRU4rAbyUmO49Lys0x622tcSE4/9+1B60IQQQoijqGrs4IXl+yivb+8Z2mXUa5kxJomLpqQf0evR0NpJR2eQERmxvLOunOKyVlLiLDisBmpcXtYW1rO2sB4FyEq2YzXr2FXhJjvFjq8rxIdbqnF3BPja1fkD5kGi2dPFn14tpLbZB3Tf/5SRCSTGminY30x1k5ejfcq7trCeA7Vt7Klqo8ndRWVDB9v2ubh1wQgWTT/xAr7Nni7+8noRVU1eUuMt3Hf1ODKSuotQhCNRKhs72F/tYX9NG6nx1tNKzgAWTs3gg01VLNtchdmopaU9wI59LioaPk1C4mNMtLT7Wba5+qhzuRpbOwmEIqQlHF6ko7Xdz/sbK4mx6HngSzOkjPpxhKNh9roPUOappMxTSUV7FcFIEOguiz8n7bx+jvDsSo23khpv7fm7qqq0eYM0tnaSlWzDYtIzJtvJyEwHLyzfz59eKzzhOTWKQlRVGZnh4Pu3TWbNznoKDzQTUVW0Wg1d/jDRqEokGiUSUYmoKlNHJnL1nFwURcFi0jMuN46dpS3Ut/gOi+9UBEIR1hXVs2xzFa42PwBzJ6Vx8/zhx50T6u0KUdXYQVWjl4ZWHxpFwWbRs2BqJtGoytPvlvT0uu880MzcSWd+GYi+JD1og+DTW3FypE2HJmnXoWmgtmtzWxcP/XsbHl+QnBQ7GUk2/IEw5fUdtLR3P0TkpNiZNzmd88Yks7+mjb++WUwgFGHCsHiKylqIs5v45T0zMBt1RKMqlY0dlJS3squilf01HiJRlexkO9+/dTJ6ncLvXi7gQI2HuxeP5oKJaf127/5gmMqGDsrq2/lwczUeX5Dpo5PQ6zTsq26j2dN9/1qNQl5aDAkOM/GHKtM5TJgNOp5duptaV3dSd+2FeeSlxvDkOyVEoiq/u28mluOUlQd47NWdFJa2cOHEVG5dOPKYww770r+W7WXVwYqJ0H1/o7JimTwikckjErCZ9fzwyQ34AxF+e99MYj7Ti1bf4uMXz24hFI6i1SikJ1jJSraTmWxjd4WbggPN/d6ufelM/LtVVZW/Fz5Lccun5ehTrcnkxmST58hmXMIY7IYzXylysKps6ODtgwuzmwxajIbugi7dXzqMei0+f4jt+1x4u0L86LYpJMQePiSyt+26obiBp9/bxcXTM7llwYhTirejM8jH22tZsa0Gb1cInVbDrHHJlNV1UOPyYjZqmTIykfPGJjMm24m7PcDGXY2U1bVT3dRBS3vgqOeNtRmId5gorW3n9kUjmTYqERQFh/XkhyafacfrQZMEbYA+HIhTJ206NEm7Dk0DrV2DoQi7K9389+MDNLR2ctvCESyc9mmPTzSqUlzeyqodtewsbUZVwWzUEQxF0GgUUuMsVDV5AfjBrZMZne086nX8we5kLyfF3rMYcLOni5//cwuRaJSRGbFoNEr3A8qY5DM27NEfDFPb7KO6yUtFfTtlde3UNvs49GSgKHDL/E97vVRVpayunTZvkDHZzmN+It3pD/Pfj/czJi+B80cnAvDBpipeWXmAq2bnHLcYR2mdh4f+tY1RmbH84LbJZ603sdMfZuveJgAsRh1jcpxHrE+2fGs1L320nwsmpHLx9EyS4yxoNAoPv7CdAzUepo1KpKU9QI3LSyj86TDM7BQ7P/3itEE9rPGzzsS/2+1NhTxT/B/yHDlcmrOA3JhMLHqZl3k29bZdA8EIP31mEy0ePz+4bTKjso7+e+5YVm6v4b8fHyAYjmIx6pg/NZ0FUzNxWA2EwlGWbqxkTWEdrQeTMKtJR6c/3NNb77AayEy2kZ1sJyvZTlqCFY0C2/e5eGNNGaoK4/Li+M6NEwfMaISjkQTtOAbaw4E4fdKmQ5O069DUX+1a2dBBRUM7Le0B3O1+Wtr9tLYHaGn3E4l2/7e4+Lwsbrxo+DHP0eLxs2ZnHWsK6wiHo3zz+gkMT3ewtqgeg07D+fkpJx3Xtr1NPP3ersPmWJmNWmbmpzBvUnrPML/TUd/i4511FZTVeXqGFB1i0GnITrGTlxZDbmoMw9MdPYsdn4rPtm8gGOEHf19POHL8XrQ//LeA4vJWfngKD35nWigc4UdPbsTd8emDY05qDCXlrUwblcjXrx0PQCQapaG1i6rGDupbOpmZn3zaQ8EGkr7+d+sPB/jVpkfxBr385LzvkmRJ7LNzi947mXY9UOPh4Re247QbuG7uMELh7gIyoXCUYCiCPxjB4wui12q4ft6wnh6sA7UeHv7PdqxmHVfMzOGCialHHcoYPbi4+qbdjew80ExcjIkLJqQyIS8eh+3YVUN3V7rZtKuBay/IO+5+A4EkaMchD31Dj7Tp0CTtOjSd7XZVVZX3NlTy5pqyI7Y5rAbiYkwHh7UlMDzd0atPXw/N1TD00TC8UDiCqkJHZ4hPCutYs7OONm/3PJzh6Q7mT+0eVnmynwy7OwKs3FHDB5uqCEe6F3TOSLSSkWgjI8lGToqd9ERrT8W+vvD59l26qZJXV5aS4DBx3thkpo1KIivZ1nMvhaUtPPbqTsZkO/n+rZP7LI6+5GrrYuueJhpaOyksbcHjC2Iz6/nVvecNyGFUZ0Jf/7t9p/QDllV+zKU5C7gy75I+O684OSfbrm+vLe9Z5uJ4hqc7+P6tkwlHovz8n5tPuedtqJEiIUIIIQTd84xWF9QRH2Pkqjm53fOnYow47abD1hg6GVqNhr6sNK7XdSd68Q4t11yQx5Wzc9h5oIVVBbWUlLVyoNbD2sJ6bls4ErNRR7svSI3Li88fxqDXEImodPpD+PxhfF3d3z2+IBX17ah0z9G4fdFIpoxMPOvDfxZMyaC+uZMte5p4f0Ml72+oJMlpZvroJMxGHW+uKUOjKFx34Zldj+x0JMaaWXx+NtBdsGR3pZs4u/GcSc76mjfoY2XNWhwGO5dkX9Tf4YiTcOWsHNITrHj9IYw6LXqdBoNeg0HXPQfOYTXw6qpSNu1q5Pcv76Cl3U9Le4DLZ2af88nZiUiCJoQQ4pxQ3+JjdUEdGYlW/t/Nkwb88JdDtBoNU0YmMmVkIk1tXby4fB+FpS383z829focigJ56THMHpfKeWOTe+a9nW0GvZYvXT6G2y8eSVFpC1v2NLGztJn3N1QCYLfo+fo14067KuPZotNqGJ8X399hDBrVHXXsbt3LrNQZ2AzdQz5XVn9CMBLkqrxLMWglyR1MNBqFaaOTjrvP3YtH09jayb4aDyaDloumpHP1nNyzFOHgJQmaEEKIc8LWvS4ALj0va9AkZ5+XFGvm2zdMYH1xA4WlLWg0ChaTjowEKzFWI8Fw91pHNrMeq1mH1aTHatJjMmoHVIEKo17LtNFJTBudRCAUoai0hRqXlwsmpBHvOPU5b2JgKm2rYFnlx5QcrNC4pmYDd+ffhtPkYFXNOuwGG7PT+m5NLTFwGPRavnfLJA7UtjMqK/asVGQdCiRBE0IIcU7Ytrd7QehJwxP6O5TToigKs8enMnt8an+H0ic+m6yJoUNVVXa37mNZ5cccaOuepzTMkUt2TAYrq9fyh+1P9Oy7OHeh9J4NYRaTngnDpKf5ZEiCJoQQYshrauuiqtHLuLy4E67BJYQ4PYFIkL8UPE2Zp3vo6tj4UVySPZ/hsd1D28bFj2FN7XqiqkqMwcaF6TP7M1whBhxJ0IQQQgx52w8Ob5w2SnpphDjT9rTup8xTyYjYPK4fcSWZ9vTDto+KG86ouGMvYSHEua4P604JIYQQA08kGmXTrkYUBSaNGNzDG4UYDBp93Qt+z8+84IjkTAhxYpKgCSGEGBS6AuFTOuZPrxVS2djBxGEJxFhknosQZ1pDZ3eClmyVHmshToUkaEIIIQa0UDjCU++W8M3HPmHbwaGKveHzh3jkpR0Ul7UyYVg8X7lq7BmMUghxSENnEzpFS4Iprr9DEWJQkjloQggh+oWqqkd9PRKN0toeoKmtC1dbF+sK6ymtawfg38v2MCorlhaPn9I6D3MnpaHVHPlZY6c/xKMvF1DZ0MGcCal88dJRR91PCNG3VFWl0ddEoiUBrUZKqgtxKiRBE0KIc5zPH+I3/9nO9NFJXD0nF1VV2V/jISXOQoz12EMCt+1t4rVVpQTDUWKsBr53yySsvayQWHCgmeeX7iE3zcFtC4fj7giwdGMVtc1eWjwBop9L3s4bm0xqvIW3Pinn0Zd2UNvsIxJVUVVYMDWjZ79wJMr64gbe31CBq83PnAmp3LV49IBaA0yIocwTbMcfCZBskeGNQpwqSdCEEOIct2JbDXXNPt5dV8GUkYnsrXLz4kf70WoUJo9MZOrIRMbmOLF/Zv5Wi8fPM+/vJhxRsZl1VDZ08MGmKq6fO+yE13t15QGWbqpCAQr2uyguayEciQLgsBrIS4shMdZEYqyZxFgzqfFWclPtRFWVHfubqWzowGEzEAxFeOuTMmaMScKg17KmoI4PNlfh7gig0ypcMiOTGy8aLsmZEGdRw8ECISky/0yIUyYJmhBCnMP8wTDLt1Sj12kIhaM8+U4Jja2d2Mx6HFYDW/c0sXVPEwqQnWInPzeOcblxvLe+An8wwt2XjWbGmGR+9OQGPtpaw6JpmWg0Cl2BMImx5iOuV+PysnRTFclOM1+/djzuzhBPv1VEXloMN8wdxvAMxzFj1SoK37hmHBt2NTJvUhobShp5ecV+Hn+9iEZ3Jx2dIQx6DRdPz+SSGVk47cYz+M4JIY6msbN7nmiyJbGfIxFi8Op1gvavf/2Lhx56iMLCQozGT//T27BhA3fddVfP3//f//t/fOUrX+nTIIUQQpwZqwvq8PnDXD0nlxqXl217XSjAV6/OZ2y2k6pGL8XlLZSUt7K/xkNFQwfvb+hefHbCsHjmjE9FURSumJnDC8v38Zc3iqhxeQmEIsyfksG1F+RhMX36X82agjoAbpg3jMwkG1MS7YzLju11L1dCrJkrZ+UAMH9KOmt21nGg1oPZqOOKWTksmpZxWE+fEOLskh40IU7fCRM0v9/Pn/70J5577rmjbi8pKWHs2LE8//zzAJhMpj4NUAghRN9zdwRYW1TPh5urMBq0LJiaQTAUobnNz6xxKeTndFdfy06xk51i5/KZOfiDYfZWtVFc3kqLx8+dl4xCOZhYXTgxjQ82VXGg1oPNrCfGYmDFthq27Gni5ouGc35+MuFIlA0lDcRYDUwc/ul6ZKc6BFGn1fDN68ezp9LNjDHJmI0yKESI/tZ4qMS+zEET4pSd8H8zl8tFeXk5X//61/nLX/5yxPbi4mLq6uq45ppryM/P56GHHsJgkE8vhRBioAlHouw80MInhXUUlbWgqmDQabhlwQhsZj2Y9fz87unHPN5k0DFxeMJhydUhep2Gr187jj1VbuZOTEOv0/LB5ireX1/B0+/tYs3OOkZlxeLzh1l8fhY6bd9UVEx2Wkh2WvrkXEKI09fga8JpjMWolWdBIU6Voh6rzvHnvPHGG/z4xz8+Yojj008/jUajYcaMGXzzm99k0aJF/OQnPznmecLhCDqdlF0VQoizaen6cl5ctpc2bwCAEZmxLDovmwsnpWM1967y4qlobO3k6beK2FTS0PPakz9aQFqi7YxdUwjRPzpDXdz1xneZmDKWn8z9Zn+HI8SgddrjQe666y6i0ShGo5HJkyezb9++4+7vdnee7iX7VGKiHZero7/DEH1I2nRoknY9daqq8q8luwmGIyyclsGFE9LISOpOkDq9fjq9/jN2bQ3w1SvHct6YJF5deYDsZDt61J62lHYd2qR9h6Zjtev75csBSDYmS7sPQvLv9exKTLQfc9spJWhdXV1Eo1GsViuXXHIJEyZM4Lvf/S47d+7ksssuO+VAhRBC9D2PL4i3K8TkEQnctnBkv8QwaXgCk44yNFIIMTSUe6r4oGIFTmMsi7Lm9Xc4QgxqpzQJ4IEHHuDuu+8G4Le//S179+7l2muvZfLkyXz961/v0wCFEEKcnhqXF4B0GVYohDgD6rwNPLfrJVRV5Qtjb8KiP3KJDSFE7/W6B+26667juuuuA+Dhhx/ueX369OksXbq07yMTQgjRJ2qafABkJFr7ORIhxEC3rXEnhc0l3DnmJnSawx8To2qUyvZqltXtZ3P1ThQgyZJIcfNuImqExTkLGOkc3j+BCzGESE1iIYQY4moP9qBlJkkPmhDi+D6oWEGdr4EJCflMTZ5IJBphX1spO10lFLpK8ATbATBoDShAva+RWKODW0Zdy/iEsf0bvBBDhCRoQggxxNW4fOi0GpKcMuxICHFsbn8bdb7uiqtr6zYxOWk8T+z8J3vc+wGw6i2cnzqNC4dNJ1WbgU6jpaXLjcMYg0F75qrBCnGukQRNCCGGsGhUpa7FR1qCBa2mb9YeE0IMTSUtewDQKBr2uQ/wVukS9rj3MyI2j8tyFzLMkYtWoz2s2l+iJb4/QxZiSJL/rYUQYghrdHcSCkfJkAIhQogTKGnZC8DluYsAWFG1BpPWyF35tzLSORytRtaxFeJskARNCCGGsFrXoQIhkqAJcS6LqtHuOWSB9qNuD0XD7HHvJ8mSwIKsudj03UWFrhq2mFij42yGKsQ5T4Y4CiHEEHaoxL5UcBTi3La0YgVLypejoDAmbiTnpU5lQkJ+z9yx0rZygpEg+fGj0Wt03DjiKiraq7kg/fx+jlyIc48kaEIIMYTVHOxBkzXQhDh3NXU282HlSuwGG/GmOHa17mVX615MWhNTkiaQbktldc06APLjRwMwLWUy01Im92fYQpyzJEETQoghpKMzSLPHT25qDJ3+MCUVrTjtRmJthv4OTQjRD1RV5ZV9bxGOhrlxxNVMTZ5Ig6+JTQ3b2NywnfX1m4HuwiBz0s5jlKxjJkS/kwRNCCGGCFVV+csbReyv8fCj26dQ0dBBIBjhipnZKIrS3+EJIfpBmaeS3a37GO0cwZSkCQCkWJO4ethirsy7hH3uUup9jUxKHIfTFNu/wQohAEnQhBBiyNi+z8X+Gg8Az3+wh3Akil6nYe6k9H6OTAjRXyrbqwCYlTb9iA9qNIqG0XEjGB03oj9CE0Icg1RxFEKIISAcifLqqlK0GoVJwxOob+nE1eZnZn4KNrMsICu67XSV4Pa39XcY4iyqPbjwdJottZ8jEUL0liRoQggxyKmqyluflNPk7mLupDTuvWIMDmv3nLOF0zL6OToxUNR01PFU0fM8U/wCqqr2dzjiLKnzNqBTtCSZE/o7FCFEL8kQRyGEGMS6AmGeXbKbrXtdxMUYuWpOLhaTnu/cNJEmd5esfyZ6FLfsBqC8vXtO0tj4Uf0ckTjTomqUel8DKdZkWWRaiEFEEjQhhBikGls7efyNIuqafYzMjOW+a8YRY+nuOctKtpOVbO/nCMVAUty8BwUFFZX3y5czJm6kFI8Z4lxdLYSiYdJsKf0dihDiJEiCJoQQg1DBgWaefncXXYEwC6dlcNNFw9FpZdS6ODpv0EdFexV5jmzsBhsFrmJKWvYwLmHMGb92nbeBWGMMFr3ljF9LHK7WWw9Ausw/E2JQkf/NhRBiEAmFo7y9tpw/v1ZIOBLly1eM5baFIyU5G2KiapRabz1RNXrU7d6Qj+qOul6fb1frXlRUxsWP4bLcRQC8X778jM9Fq21v4DdbHuO/+946o9cRR1fnPVggxCo9aEIMJtKDJoQQg4C3K8SLy/dRcKAZfzBCfIyJ+68bT3aKDGMcaqJqlOd3vczWxgKGOXK5dfR1pFqTe7arqsqThc9R2V7DQ7N/gt1w4nmGJS17AMhPGE26LZXJSRPY0VRIcctu0qwpfFDxMWPiRzIpcRwape+S/ff2riCqRtnbegBVVWVI5VlWJz1oQgxKkqAJIcRZVtXYgaIoZCb1voDHSx/tZ+OuRhIcJuZOSuOy87OxH5xvJoaOqBrl37tfYWtjAXaDjVJPOb/Z/BiLsudxSfZ8DFo9xS27KfNUAlDmqWBi4rhjnqu6o5aSlj0UN+/GaYzt6Um5LGchBU1FvFW6lEA4gDvQxvr6zSRbErk4+yKmJ08+rKhEVI2edOLWHuxgTcVGADpCXlxdzSRZEk/lbRGnqNbXgFVvIcYgH+QIMZhIgiaEEGdRVyDMb1/cAaj8+isze8rhH8/+mjY2lDSQlWzjZ1+cjkYjvRBD1dbGAjY3bCc3JotvTLqX/e5SXtn3Nh9UrGBbYwE3j7yWd8uW9exf+rkEzRfqpKRlD7ta9rK7dR/ekA/oXpD46uzFPT1YabYUpiRNYFvTTgAuyZ5Pe7CDTQ3b+PfuV3i/fDmLsuaS48ji9f3vUutt4H9n/A9xJmev72V1zXpC0TDptlRqvfWUeiolQTuL/OEALV2tDI/NlZ5LIQYZSdCEEOIsWltUT1cgDMDrq0r50uXHL9IQiUZ54cN9ANyxaJQkZ0Pc9qZCAO4cezNmnYkJifmMdA7n/fIPWVm9lr/s/AcAkxLHUdi8i/KDPWm+UCfLK1exunY9wUgQAIchhpmp0xkbP4rRzhFY9ObDrnVF3iU0dDYxK3UG8zJnA3BZ7kI+qlrD+rpNR8wb29FUxIKsC3t1Hy1dblbXrMdusHLLqGv5/bYnKGsrZ2bqtFN+b8TJWVOzHhWVDHtaf4cihDhJkqAJIcRZEo2qfLS1Gp1WQ2KsibVF9UwZlUhqvAUFUBQFBUABjaLQ2hHghQ/3UdXkZda4FIZnOPr5DsSZ5A8H2N26jzRrCsmf6Wky6YxcP+JKZqRM4aU9b9DU5eLa4ZfT4ndT1V5DKBLirwXPUNlRjcNg55Ls+YxPGEOaNeW4PSdJlgT+d8Z3DnstzuTkppFXszhnAR9Xf0JVew3Tkifxwp7XKGwu6VWC5g8HeLLoObrCXdw79Vay7ZmYtEZKDyaTvbHTVcyOpmJuHHkVVqn+eNI21G/l7bKlxBodLMjsXVItxGCmqirBmho6d+8i1NpM/JXXoLVa+zusUyYJmhBCnCU7DzTjavNz4cRUZo1L5eEXtvPn1wpPeNzs8SnctnDkWYhQnE3diwg3UtlezfiEsexvKyMcDTMxMf+o+2fa0/n+tPsJR8PotXryHNlUd9SyonoNlR3VjIsfw73j7kCv1Z92bHaDjauHLe75+7q6zZS2VeAN+lhZs5a9rQe4f9K9mHTGw45r7mrh5b1vUuutZ076+SwadgHNzV5yHdnsbt1HR9B73KImqqqyonoNbx54HwCb3sINI6867fs5lzR3tfDintew6izcP+lenKbY/g5JiFOmqirBulqinZ2g0aDo9Sg6PRq9vvvPBj3h1lZcr/6XzpLinuPCbR5Sv3rfoB3eKwmaEEKcBe6OAG+sKQNg0bRM0hNtfOGSUZTXt6MCqKCioqqgHnxBURRm5qeQnxvXj5GLvuYJdPBJ7QbW1W2iPdgBdFfZcxpjAZiYOP6YxyqK0pOA5TlyWF2zniXlHwFwac6CPknOjmZC4ljK2yt5r/xD1tZuREVlacVHXDv8cgBa/W4+qFjBhvqtRNUoo50juGnE1T0PR3kHE7QyT+UxE1CALY07ePPA+zgMMWg1WlbXrufCjJnn7Ny1UCSEPxLoVaXOQzY3bCeqRrl2xBWHVf8UYjBRo1GaX3+V9o3riXg8vTrGMjafmPNn0bZ6Jd6tm2kfm4/GbCbS0Y7jogWDKlmTBE0IIc6w0joPf3m9CI8vyPwp6aQndj9szZuczrzJ6f0cnThTvEEfKmrPw3VVew0fV69le9NOImoEs87MeSlTCUSCFLiKqPXWE29yktHLkuh5jmwAImqE3Jhsch1ZZ+xeJiSM5e3SpXxSuwEAm97Kx9WfMCZuJIXNJayr3URYjZBkSeDy3IuZkjThsKqPwxy5wKGqk8dO0LY2FgDwrclfoc7XwDPF/+GtA0u4Z9wdh1WVPFf8Z8+rFLiKuSf/diYcfN9C0TAv73mDQCTA4tyFh5XQV1WVLQ070Gv0TD5GdU8hBoOWd97CvWwpWrsd+8xZ6J1xqNEoajiMGgp1f4VDREMhABwXXIh1/EQURcE0YgSVv/gZjf96FgBFp8N+3sxBNeRREjQhhDiDWtv9PPbKTroCEW5dMIKF0zL6OyRxFvhCnTy0+Q94Qz4mJuTjCXZQ5qkAINmSxEWZs5mRMhWj1kAkGuHvhc+xq3UvExPH9fpTXqcxllijg7aAh/lZF5zBu+mOOcmcQFNXM7NSpzMhMZ+/Fz7H4wVPAxBviuOy3IVHlOc/JMeRhUbRUNpWccxrBCMh9rkPkGpNJsWaRLIlkdyYLHY2l/Cjtb9kWGwuNr0Vs86ERWfGdPB7TkwmydakM3Xr/SYUDVPYvItwNMzTxf/muuFXMC15Ei/ueZ3C5hIAClzFTE2eyOW5F5NkSaCivZqmrmamJU/CpDP18x0IcXKigQCh5mb85aW0vvcO+oREsv7v52htve9BBjAkJpFy95doff89rOMnEDNr9qBKzkASNCGEOGPCkSh/e7sYnz/MnZeM4iLpLTtnvF26hPZgBzEGOztcRQCMjR/FRRlzGB034rDeJa1Gyz3jbmdd3WZmpEzp9TUUReHC9JndpfYTjt0r1RcURWFB1oVsatjGNcMvx6q3cH7KNA54ylmUNZeZqdOP28Nl1BrIsKVR1VFDMBLCcJShmPvcBwhFw4yLH9NzzXvG3cGHlSspat5NUfOuo57bprfy4OyfoNd8+khT663HojMP6vlXpW3lBCNBRjtHUNVRw2v73+G1/e8AMNI5nIsyZvN++XK2NhawvamQWanT8UcCACf1cyTE6VCjURRN79dIPNqC9ZGuLto++hD3hx8Q7eoCQDEYSPvGN086OTvEPm0G9mkzTunYgUASNCGE6EOqqlLX7KO4vJVt+1yU1rYzY0wS8yZJqetzxYG2ctbVbSbNmsKPpn+bWl89Jq2JJEvCMY8x6Uy9LmH/WZfkzD+dUE/KnPTzmZN+fs/f7xx700kdPyw2h6qOGqo6ahgem3vE9pKWvQDkx4/qec1piuXmUddy08hr8IU66Qx30RXuoivspyvsZ2vjDgpcxRQ372ZyUvfcvdU163l139sAjEsYzcjYYTiMMTiMDmKNMTgMMWdsrl5f2nXw/ViQdSHJlkQ2N+xgV+te7AYbXxx7C0atgXEJYyhwFfNe2TLW1m0CuhPW0c4R/Rm6GESi/i5Cra1E/QHa6jV4G91EA36i/gBqwE80EMA6fiKmnJzDjlMjEdzLltLy3jvYJk8h8Zbb0Nljjn2dQIDGfz9H1/59pH39m5iyc4gGArStWE7rsqVEfT60NjuOC+ehMZuxTZmKMfPMDdse6CRBE0KI09TRGWR3pZvi8lZKyltxdwR6to3KjOWLl44eVJOTxak70FbOP4tfQEHhttHXo9VoybLLsFboLmqysnotpW3lRyRoqqpS0rIbs85EniPniGMVRcFmsGIzHD5MKcmSQIGrmI31W5icNJ73ypaxtGIFdr2NOJPzYM/b7iPOZ9fbuDv/NkbFDe/Te+xLJS170Gv0jIjNQ6/Vszh3AYtzFxy2j0bRMCVpAhMT8tnUsJ2V1Z8wM3XaOTlfT5ycjq2baX7rDUKNjYcqUx1T69L3yfjO9zGP6E78A9XVNP7nefylB0CrpWPTRnwlxSTdfBv282ce9v+dqqr4y8to+vfzBKqrAKh59LfEXrQAzyeriXR0oLFYib/2epwLFqIxmY8aw7lGEjQhhDhFtc0+nn63hKpGb89rNrOe88Ymk58TR35uHE678ThnEEPJhrotvLj3dQCuG3EFuQeLeIhuww4mXqUH5+J9Vp2vgRa/m8lJE04quUi3pZJlT6ekZS9LypeztGIFCeZ47p94L4mWeOq8DTR1NdMW8OAJtOMJtOMOeNjnPsDq2vUDNkFr6WqlobOJcfFjetXbp9VomZU2nVlp089CdGeHGg7TtX8fvsKd+EqK0CenkHbf/Sc1nE4cXai1lYZnn4FoFPOIkRhSU9GYzNjiYugKg8ZkQmM0ojGaCLe30/Tiv6n98x9wXnwpIVcT7Rs3QDSKfcZ5JN56Ox0bN9D85us0PPMU7Zs2knznF9DHJ9C+aQPNb7xGuKUFAMeF8zCPGEnDc8/QuuQ9NGYzcVdejXPRJWgtst7hZ0mCJoQQp+i1lQeoavQyJtvJmGwn+blxZKfY0Uhv2TlpRfUatIqG+yd9+ahD+M51DmMMCeZ4yjyVRNUoGkVDS1crK6rXsL5uC8ApzaU7P3U6VR1v8X75cmx6K9+c9GUSzN1LU6TZUkizpRxxzK82Psqulj34w/6eYhoFrmJe3/8u3578FRLM8adxp6cnqkbZ3LAdOHy457kg0unDu20rvqJCOneVEPX7e7YF6+rwrF5J7EULUA/2+MjIhFPT/OrLqIEAyV+8G8cFc3teT0y043J1HLG/xmSk4R9P0fL2mwDok5NJuvV2rOMmAOBcdAm2SVNo/PdzdBYXUvGzn2AZMxZfwQ4UgwH7+TOJOX9mz/662Fj85WU4Lpx3ynPMhjpJ0IQQ4hQ0tHays7SFYekxfP/Wyf0djhgA3H4PieYESc6OY5gjh00N29jeVEhx8262Ne0kqkaJMzlZmDWXacmTTvqc05In8caB94iqUe4dd0dPcnY8k5MmsLTiI4qbdzMtZTJRNcq7pR/Q6nezsX4bV+RdfAp3d+qiapRyTxXbmnayo6mQ9mAHOkVL/sGCKeeCzj27aXjmKcJuNwD6xCRiZl+AdcJEDMnJVP7y5zS//ipqKIx7+QcYs3NI+9o3UHRn51E2GgyiaLUo2sN7eFVVJdrZScTrRZ+YeMZ6+NRwmKjfTzTgRw0G0SennNK1fMWFdGzZjCk3j5jZvav+GnPeTIzpGYTb2tDa7BgzMo543/WJiaR/53u0r1+H678v4SvYgSE9g7T77seQcviHJJYxY7GMGXvSsZ9LJEETQohTsHxrNQAXTz93JzGLT3WF/fgj/kFdNfBsOJSgPVvyIgBp1hQWZc9jatLEU543ZdVb+PK4O9EqWkY4h/XqmCkHE7TtriKmpUxmd+s+GjqbANjhKjpugtYV7iIUDRNjsJ9SvJ/VGerig4oVbGvaSVugezFeq87C7LQZzEqbQbzZedrXGOjUaJTW99+l5Z23QFGIu/xKYmbOPuKhPvHGm2l8/llcr7wEQNjtpvGFf5H8hbsPn/MUiRBsqMdfUUG4tQX7eTMxJJ3aMgxqNIrrlZfo2LqFSFsbitGIOW8YitFIpN1DuM1DpN2DGg4D3UP4kr9w16fHqyrh1lZCriYi3g60Njs6hwNtrBONyYSiKKiqSsjlwrdzBx1btxBsqEdRNKAooNF0r/Xl90Mkclhsxpxc0r/5P+gcDgBCbje+nTtAVVH0BhSDHo3BiKI/+N2gx1dUSMu7b4OikHTbHSeV4BkzMjFmZB53H0VRcMyeg3XceDpLirFNnYbGKMP8T4UkaEIIcZK8XSHWFdUTH2NkyshjV+YT5w63vw0Ap9HRv4EMcGPjR2HVW0ixJHNx9jzy4/umgM64hJPraUq1JpNiSTo4zDHAx1Wf9Lxe72uk3tdIqjX5iOPc/jZ+v+0JvCEfd4y58ZR6/D7rxb2vs6OpELPOxPkp05iSPJHRzuHnRJEPNRIh1NRI8xuv492xDV1cPKlfvQ/zsKPPC4yZcyH+qkqIRHBefCn1T/2d9k/WEHa7MQ8bTqSjHX9lJYHqKtRgsOc497KlJN15FzHnnX/U8x5P65L3aPtoOVp7DJYxYwl7PHTuPrjcg1aLzuHAkJGJLjaWYH0dnjWrMI8YgXnkaDyfrKJj6xZCDQ1HPbdiMKBzxKKGw4TdrQdfVDCkpIICRFVUNYqitaJJNqIxmruTOpORSHs7nSXFVP/mQawTJhBsbKRzV8kJi30AaGNjSfnSlzHl5p30+6GqKsXbaomNt5CZe+yeap3DQcys2Sd9fvEpSdCEEOIkvfVJGcFQlAVzMtHKhHUBuA/2fkgP2vE5TbE8csEv+jsMFEXpGeb4y42/wxNsZ6RzODNTp/H8rpcpaCoiNffwBM0b9PGXnc/gDrShU7Q8W/Iie1r3MzttBjkxWcdNNEPRMFsatjMuYUxPz1tx8252NBWS58jmW5O/etg6bkOdt2AH9U/9rSeRMo8aTerXvn7cMu2KopB8+xd6/p7+rf+h5o+/p7O4iM7i7rUG0WgwpKVjys7BlN1dpMf1+ms0PP131FAIx5xPh/RFAwHC7R70CYlHbTtvYQEtb7+JLi6erJ/+vCe2iM8HqorGaj3suGBTE1W/+jmNzz+LGo1CNIpiMGCdNBljegZaewwRbwdhTxuRtjbCHg9hTxuoKrap07CMGYttyjR0Mcd+Dw5RVZXWd9+m5Z23aPt4BQDG7Bwcs+egtccQDQZQg6Hu76EQajBINBhEYzLiXHjJKc/7qqlws/ajAwAMG53InEUjsFgNp3QucXznzm8DIYTg4HwBVT3lxKqwtIWPt9eSnmBl/hRZeFp0a+vpQYvt1zhE712QPpPGzib2uUtRULgk+yKyYzLQKVq2Ne0kw55GrbeBOm89td56mrqaiapR5mdewOy0GTxV9G821G9hQ/0Wsu2ZfDH/FpItiUe91ntly/ioajV5jmy+M+U+QtEw/933FhpFw62jrj+nkjOAtpUrUINB7DNnYR42HMecC096Lpku1kn2L35F2O0mUF2F1h6DMTMDjf7whMEyNp+qh36J678vYhmbj8Zkom3FctpWfETE24EpLw/nxZdimzy1Z35ZyO2m4ZmnUXQ60r7xzcMSR6318KUeDjEkJZF8973U//2vGNLScS66BPu06WdkiJ+iKMRfdQ326TOIhkLoHLE9Qx3PpL1F3b2BzgQLpXtcuBo6uOrWSdgdpjN+7XPNufUbQQhxTmvx+Hn8jUJ8XWG+dcMEMpNO7lNEb1eIZ5fsRqtR+PKVYzHoh/4wJNE7rYE2AJwmGeI4WDiMdu4Zd0f3Ok2RAOaD1RxHx42kuGU3fy98rmdfk9ZITkwW+fGjuDj7IjSKhp/M+A573PtZV7eZna5iHt78GHPSzyfdlto9hNKajFFroMxTwYqqNQCUeSp5v3w5+92ltPrdXJx90VGrTA5lEZ+Pzj27MWbnkHrPV07rXIqioI+LQx937OF2hpRUEm68maZ/PUfdX/5E2N16cO0tC5YxY+ncs5v6vz+BLiEB58KLiZl9AY3P/oOoz0fSHV/AlJ3T63jsU6ZieexxNGbLWakwaUhNO+PXOCTgD1G2r5nYODM33zOdzZ+Us319FW+9sIOrbp2Iwyll8vuSJGhCiHNCeX07f36tEI+ve0jNb/6zjW9cN578nBNXfDtk294mPL4g18zJJSv59AsEiKHj0By0WOlBG3QURelJzgAuz1uETW8l0RJPui2VNGsqcabYIx64tRot+fGjyY8fzdbGAl7e+wYfV39y2D7xJieBSPfvnK+M/wIv7XmDDyq6h6RNTZrI5bmLzvDdDTzegh0QiWCfOu2sXdNxwVy8W7bQubsExWAg/prrcC5chMZkJtjQgHv5MtrXr8X18osHK0WGsE6YiGPuRSd9La3l6D1sA1VjXTtle11otAoxMWYCgRBanab7S6tBp9OQmGKnpsJNJBxl1PgUFEXhvAvzMBh0bFxVxpJXi7juC1MxmiSt6CvyTgohBrx2X5D4+BNPfj6WbXtdPP1uCaFwlFsXjMBhM/CP93bz9Lu7+MP9s3u9btmBmu55RlNGHX0Ykzh39cxBkyIhg16WPYM7x950UsdMS55Efvxoar311PsaqPc1HSw20oA35OPi7IuYmDgOjaLhmeL/cEH6TK4dfjka5dybw+rdvhUA25Szl6ApikLKl79K+/q12M+bid75aXVMQ0oKyXd+kYRrrqNt1cfdc7qsVpK/eHeve8FUVaW50UtcohWtdvC0aXtbF+++vJNQMHLc/RQF9AYdigIjx33a4zv5/Cy6fEF2bqlhxbu7uPT68Wg0Z3dtukgkSm2lG0VR0Go1eNxdBINhxk1JH1Rt8XmSoAkhBrTmti5+/NRGJo5I5CtXjDmpYYWqqvLB5ipeW1mKQa/lm9dPYNKI7qqLxeWtrC2sp7Khg9zUE0/KBjhQ68Fs1JGWMLg+IRVnXpu/DZveil6r7+9QRD8x60wMj809Yh28QCSIQdP9czE+YSyPXvhLdL2cc9ZWt4IO1xY0OgtGSzrOzMvQ6sx9HvvZEunqorOkGEN6xhFl9M80XUwMcZdedsztWrud+CuvJm7x5ajRKBpD74pfuFs6+eTDfdRWtjFxegazFhy9CuVAE41G+ejd3YSCEWbNH0Ziqh2b1URri5dIJEokHCUciRIKRNhX0khzo5fsYXHY7IfPqTv/ojxam31Ulray+ZNyzp977OqQ4VCEjvYAzvi+GQ7ZWNfOqqV7aXX5jtim02nInzx454lLgiaEGNCKylqIRFW2723i8UCIb14/oVdJWjgS5T8f7mPNzjqcdiPfun4C2SmfDkuckBfP2sJ6CktbepWgtfuCNLq7GJcX1+seN3FuUFUVd6CNlKOUZRfCqD38Qb+3yVkk3ElH0yZQNKjREJ1tJQS76knMvRm9eWD14qvhMK1L3sOYnYNt4iRUVaVr7x6C9fWEWlsIt7QQamkm1OxCDYexT5ve3yEfk6LT0Zvf8OFwhO0bqtixsYpoREVRYE9RA+fNzUOrG/g9N9vWV9FY287wMYlMmJ6BoigkJtqJcR1Z8GPC9AxamrxHLQai0WhYdPVYXn9+Ozs2VBGfaGXE2CN/F0YiUd5+sQBXQwfX3DGZlPRTH20QCobZtKacoq21AIwan4Ij1kQoHMVqM7DuowPs2lHP2ElpZ2Uu4JkgCZoQYkDbVekGYGxuHCXlrfz59UK+ef0EjCdI0l5Y3p2cZSXb+PYNE3F+7lO/sTlONIpCUVkLV8/JPcZZPlVa2z2EbcRp/KcihiZfqJNQNCwVHPuBqqqD9gEMoHPPbjq2bUWj16OxWtFarGisFrQWK12RvahqGEN7JvHjr8bXtYP2xnXU7/k75pgRWJzjMFjT0Bmcx3wPVFXtLrHe1UXU30U0EEDR6Q8uYmxAMRi7v2tPr+CR69X/0rZiOdC9XlmwrgZ/WdnhO2k06JxOLGPziZlz4Wldr79Vl7fyyYf78bi7sNoNzFk4goYaDzu31FBxoJlho09tYeyzpaHGw7Z1FdhijFx4ycgT/htSFIWE48y7Npr0XHr9ON7413ZWLdlLbJyFxJTD99/ySTlN9R0ArF2+n+u+MPWUhkNWlrawZtk+vO0BHHFm5l06irSs2MP2qa1so3xfM66GDpJ6OUJmoJEETQgxYEWjKnsq3cTHGHnwa7P51T82sGN/M39+rZBv3XB4kubxBdlb5WbKyETK6tpZXVBHRqKNH90+BZPhyF91FpOe4ekx7K/x0NEZxG45/nCW/QcTtOGSoInPcUsFxxOKhHz43EWYHSPRG49emEeNRECjOe7DoqqqhJoa6dy9q/tr7x4URYNt6jQMaWlEfT5QFLQWC8bMbEzDhqGcgbUKI50+gvX16GIc6BN715sVdDWhj4tH0WoJNjbQ+PyzdO3be/SdFTDemQkmLe0vf0L7fz7BkJxCxO5DO9FOF/voat/XvW8I8IDaGkVtDaPWBVH9YaIBP9Gurl4tXqyxWImddxGxCy/u1Tpcn+VZ9wltK5Z3VxRUFNrXdlestE2dhm3SFHTx8ejjE9DFxp52Itgfag9+SJie7SQajbJqyV72FjeiKN09S9Pn5GAw6nDEmdm5pYY9RQ1HTdAC/hBGU/8PgQ4Gwnz07m5UFRZcMabPYopLsLLwyjEsfb2YD94o5vovTu1ZI62mws2OjdXExJpISLZRtreZPYXdPVy9FQ5FWP3BPvaVNKLRKEyZlcXUWdnodEf+TI2dlEb5vmaKttWSnNaBu7mTWQuGDao5aZKgCSEGrKqmDnz+MJNHJKLXabjvmnH87a1iduxv5k+v7uTbN0zEoNewvriBl1fsx+cPk5tqJxCKAvCFS0cdNTk7ZPywePbVeCgpb+X8/OPPhzhQ60GjKOSmDc5P48SZ45Y10I5JVVU89atpb1qPGg0R8FZhbEgnUFNN2NNGuK2te+Fej6c7mdBq0TkcxMycjXnESNwfLcdfXoopJxdtTAxde/cQbm3tOb8uLg41FMKz6mMAghojXYYYFDWCNejBYLVgzM5Gn5CAPiHx4FcC+sSkXi3Wq6oq4ZZmAtVV+KuqCFRVEqiu+jQGRSHm/FmYR40i5HKh6HToExPRJyahT0pCa7OjhkK4Xn4Bz5rVGLNzcC68mKb/vkjU68U6fgLOSxajGIxEO31EfD4inV4CajVBezUGNRPHzXPxrF5FyNWEXpeAul4lEKpDk2pEk2RESTKiSdCjJGhQMKB26ojuCKBrtqIxmdCYzGjNJjRmM4rBiBoJowa6Fy5WDy5kHKipoXXJe7QueQ+dMw7TsGEk3/HF475HqqrStnIFrv++hMZiIe3+b6OLjcWzehWmvDzMw0ec3g/PABAKhlnyWhGRcJRFV+dTU9HK3uJGElNszL101GG9RPGJNhJT7FSXtbL87V3UVLhZcOVosvLiKdpWw9rlB8gZHs+MC3OJP8klXk73HtwtnbS1dNJQ10753mY6fUGmzMw6oufpdOWMSGDGhblsXlPOsjdLuOrWiWi1Ggo2VQGw8Kqx2OxGqspa2bS6jIwcJzGxJ55TGQ5H+OCNYqrL3SSl2pm3eNRR38NQlwtPwxq0nVUkJU9gX3Ej+4obMZl1nDc3VxI0IYToC7sruj+5HJPTXXFLp+1O0p58u4Rt+1w8/MJ2uoJhmtxdGPVaxuXGUVze/eA0d1LaCXu7xufF8/rqMgrLWo6boIXCUSrqO8hMsh034RPnJqngeGyu6vV4Glaj0dlQFC1d7v24/7nksH20Nju6uHi0djtqMECwoZHW99/t2a5zOuksKQZAY7NhmzoNy5ixWMaMRZ+UDNEoXfv20lzfzprtAULh7h6jNJOP8bUreo49jKIQf/W1xF9xFQARr5fmt9/AV7ADQ1o6+qRkgvV1BKqqiHYeXoBA64jFkj8OQ2oanbt30b5hHe0b1h31/jUmE4reQKSjHW1sLIHKChqeeQr0WpxfWkzcjCvR6roLJoT8LnytRXS6dxEJtgEKcWMux2BOIvZz5d7VcJhoKNQ9X0qnQ434CXbW09VRRodrE9rZGvSmREwxw4mEvIS6GlAMJgyWVBQUotEQ6me+zMpYlHIdvm07CTU24N26hVBjI4k330rbyhUEqqp6rqXodTSYTQR8XQQqytHa7aR9/ZsYkrvnHTkvvqR3PxyDQNm+ZsIHP/D78K0SABKSbFx16yQMxiP/Lxg9IYVPPuzgwO4mANZ/XEpKuoOt6yoBqDjQQsWBFoaPSWL6BTnExvXd2mGqqtJY205zkxd3cydtrZ24WzrxdQQO289k1jF+WjrT5uT02bU/a8rMLFqavJTucbG3qIG8UYnUVraRkGwj+eAHnLPmD2fNsn28999Crr1zMubjjGCJRlU+fLOE6vJWRufDjAsc6A1ewsEIGp0FjUZPJNxJW93H+Fq29xw3cZKHlR8nMHZiGpNnZh21vQaywRWtEOKc0jP/LPvTksg6rYavXp3Pk++UsG2vC4NOw6xxKVwzJ5eEWDPriuopqWjlhnnDTnj+zCQbCQ4Tm3c1sWBKBsM+k9CpqkqNy8fWPU1s3dtEOBJleIY8gIsj9fSgmZzH3/EMioaCRNo8KEYjGrMJjb53FejOpGBXE4373kOjNZMy+su07n8Hf6QUbXYcabfchy4uDp3DgaI7/FEkGgjQvmEdgapK7OfPwjJyFGGPh4jXiyE19cghi1otZA1n9cpthMIq+ZPTqC5vpd4DC3/2G8x6tbtAhctFqLm7UIV3+zZa3noDNRQCVaVt9UqiPh8as7k7oTuY1OmTk7GMzceUlYUxKwtjZjY6x2d+T0Sj+HbuINzRgSEpGTUcJuRqItTURLDZRaipibCnjdj5C0i48WY6d++ibflyDAvS6VL3UldSgTV+IgFvFaGuBgAUjR6Lczy2hKkYzEefy6TodGg/874pOjOmmDxMMXnY4ifTVreCrvb9hJo29Jwz5Hfhb99/zPYyZmSTMfd7RCMhXK++QPvHn1Dz6G+732K7HVRQwyHUcBh/OAyAecRIUr78teMuFD2Y7StuBGDe4lGsXb4fo1nH4hvHH/Nhf8yEVELBCIkpdvaXNLKnqIElrxbh7wwxdVY2KRkxbFpdzoHdTZTuaWLU+BTGTEylyxfEZDGQepL/x7S4vNjsRgxGHRs+LmXnlprDtlvtRjJynMTGWXAmWIhLtJKSHoPmDAz7PURRFGYvGE75vmaKt9WiKArRqMqw0Z8OBc6fnEZHu58dG6pY8moRV906Ef0xPvzcvbOeprpaLphTSYy1iZbyz1+v+zhVDaM3JeJInUdL1buYNZXc+91rUAbpUhaSoAkhBqRQOMr+6jbSE6w4bIcX+NBpNXzt6nz2VLaRmxqD5TOLY84en8rs8am9uoaiKHzpsjH87qUdPPlOCT+4dTJub4DC0ha27mmi0d0FgF6nYfKIBBZNz+y7GxSDUlNnM55AOx0hL96gl46gl+KW3UD/zUFTw2GqH/41gcqKntcUvR6NxYrWaun+brF0F6GwWjFmZGEZPRpVVYm0t2NIS0drPvYwI39FBb7iQhxz56Gz926Ib7CzgeaKN1CjYeJzr0cJaelcvwfNVD2Oqy7APOLYw980RiOx8+Yf9prO4TgsMTrs/lWV5W/vwtseYPoFOUybnUPJjlrWLNvP3uIGpszMxpiegTE9o+cY58JFVD/ym56eOo3FQsKNN+NcsIhIVyfh5mYMqaloTMcffqVoNNgmT+3VewJgmzAJ0+gc6nb9FY3OCmoUr2szoMEUMwJr3HjMjlFoNKc+L0hviicx7yaikSABXzU6gwOdMZ5o2EewqxFF0aBo9D1fGo2e1uqldHn20Lj/WUL+ZshXibVeQvBANc5LLsWSP/6wuYEJCTaa6t1o9P0/p+pM8XYEqKlwk5Iew5iJqWTmOtEbtMeds6XVaZh8fhYAMbEm9pU0Ul/jwWDUMnFGBkaTnszcOMr2NrPlk3L2FDawp/BgYq7AzfdOxxnfu2Vc6qvbeOuFAvQGLSnpMVSXu4mNtzB1Zhax8RZi4yz91mtktRvJHZlA6R4XW9dVABwxL++8C3Pp9AbZW9TAsjdLWHzD+COGIPq7QhRuKuGCmTvQ68OY7LkYbdlEwp1Ew51Ew11Ew52oahhr/GTsidO7e+rbD+Br2UHAW4XJnnOW7rpvSYImhBiQyuo8BMNRxmQfvVdCq9GQn3v6n9qOznZyxawc3l1fwQ/+vqHndYNew7TRSUwblciEYfEytFGwtPwj3iv/8KjbHIYYHIb+mZ/oXr6MQGUFptw8dHFxRP1+Ij4fUZ+PsMdDtL7+uIUiFJ0O86jRGFJT0cU40B5MhnSOWDr37sX16ssQieBethTHvPloLd2JnnnUKHQJ8UTCHUSCHsLBdiLBNkKBFjrdJYBKcvZcdIYMav/4KKHmeoxTs1DtwT69/8a6duqq2sjMdTJ1VjYAw8cks25FKXsKG5h8ftYRhUf0CYlkfP9HtL7/HpbRo7FNmdaz7pXOHtPrRPRUtNWtAjWCM30R5pgRBHzVGKwZPUMd+4pGa8Ac8+lIAq3ehll/9LlP8TnX0rT/eYKddSgaA2o0hPG8DJKuvvWo+yuKMmiTs67OII217QQDYcLhKBqtBq22e5FjzaHvGoXKAy3Apwsz22KOLDF/PDGxZsZMSqVkex3jp2b0JHaKojBsdCK5IxM4sKuRxrp2VKBkex3b1lWy8KqxvTr/5k8qANBqFarL3TgTLFx166Sewhz9KRruIn88lO5R8bYHSEi24XAe/mGHoijMvXQkXZ1BqkpbWbVkL/OvGN3zb9Xb7mfjqlJGj9iFXh8mNv0S7IkzelW11erMx9eyg053MYpGR6irCWv85EFV8VWeOIQQA1LJ5+afnUlXzcmhzRvA4wuSEmdhRIaDcXnxJyzlP9CpqsqK6jX4w36uyBs680L6g6uzhQ8qVuAwxDAzdRo2gw27wYZd3/093hyHVtP98xJubydYV4saCmHMzEQXe+Z+hoONjbS88xZaewzp3/7uUYs6qNEoUb+/uwhFRwddpQfo2r8PjcGIxmqla+9uOkuKjz5Xi+7hbY4L5tK2aiXupe+jOPVoJzrQhJajOPVHfejRGZw4MxcTE7Kw73cPE6iuJmbWbCKGTgLeyj4tj39oLaTPJmJGk45hoxK7ezCqPUcthmBITCLlri/1SQy9FexsoNNdiN6cgsXZ3Stldow8qzEcjUajJ2n4nQS7GjGYEqkteQxfSwExyXMG1UPt8Xg7Aqz+YC/VZa29KWwJgEarMHzMqa85d/7cPOLirYyecOQcZ41GYeS4FEaOS+meP1bTzv5dTUyZlU1cghVfR4Atayvwd4ZITo8hJT2GxBQ7Or2W2ko3dVVtZOXFcfG1+VSVtpCe7cRk7r+kWVVVAt5yvC0FdLbtBjXChPHDKSxKO2x442dptRouvjqfd14uYF9JIxabgVHjUli5ZA9N9R3kZNUSn+nBFDOq18kZgNGWg0Znw9tagLdlOygaLLFjUXQnl2T3J0nQhBAD0u7KVhQFRmWe+QRNq9Fw92Vjzvh1+kJXuIv1dVtIsiSQE5OF3XD0T8TD0TAv7HmNzQ3dk6bnZczBZujd0JnBoNxTyQ5XEZfnXnzEQsDH0z1nqIC2j1cQDQV7hs5pHbHoHLEoBj3e7dvpLClCF5+AISWViKeNRk89aflaFi68manJk4567ojXS+vS92j7eEX33CZAYzaT9o1vYRl97J+vQF0t+ri4Ew6n+7xgfR11f/sLaihE0t33HrPinqLRoLVY0Fos6BMSMeXm4Vx48WH7hD0ewm3unoqK4YNfigLOxVegdzpxXnwpXWV7aYusIIofIhBtCBBtC6J6w2g0FsyZo7CNmYrqCdP67DtUFxUC4Jg7j6Tbv0Br9bv4WncS6mrEYDl+5dTe8HYEKNvrIi7RekQSNnpCCvtKGlnyWhFZeXHkjkwge1h8vxYLaKv7CIDYtAUDLvHRaI2YbN3D8yyxY/G17iTgrcBoywE4Ybz9uSadryOAClhthmPGsOWTcqpKW0lItpE3MgGz1YBWpyEaUYlGo0QiKpFIlOhnvien2U+rDL3BqGPc1PQT7qcoCtMuyOGD14v5+L09JCTbKN3TRDAQAaB8fzPQndQlpNgIdHXPAZw2Jwe9Xtuv666Fgx58rTvxthQcLG4DOmM8ajRIRtoBOnzOniS0y7OPkL8Jq3M8uoNVb/UGLZfdMJ63/rODgk3VFG6pIRpVGT5Ky8jsChSNmfisy0/qZ0tRNFjjxtPRtAGDJQ1nxiVoBlFyBpKgCSHOgKgaxRNox2GMQXMKE3S7AmHK6zrI+9z8MgEv732TrY0FPX9PMMeTG5NFjiOLdGsKiqKhpqOONbXraex0odfoCEXDlLdXMj6hd0NnBjpPoJ2/Fz6HN+RDg4Zrhl/Wq+O6ykpp+vfzBKq7Sz6jKMcc+qeLiyfY2ECwphpVARtwzSqIj6kkNDsTfVz8YfuH29upfvghQk2N6OLiiDl/Fmo0inv5Mmof+z0J191AzKw5RyRRHZs3Uf/U31AMBqwTJnYniRoNhvR0jOkZqNFo90LDgQDRQAA1GCDi8xFyuWjfuB41ECB24cXYps842bfx8Ps9zhyvQ7Q2G8E4F1GXH3vSLGLT5qOGwviKdtKxeRO+HTsJbqzFw8c9x8SMHYPjymsxj+juJTLacvC17qS9aQNxmYvRaHv30BSNRnG3dBIKRgiHIoSCUUKhCJWlLUSjKuOnpR/xAJeWFcv58/LYVVBH6R4XpXtcaDQK6TlOho1KZPSElLOaUHS1l+LvKMNkzzts6OFAZI2fjK91J+7a5d3zfCJdWGLHYI0b35OwfVbI30zTgX9jS5iKI+XsLUIdDkXY/EkFOzdXA6DTa3DEmolxmomNM+NMsDJ8TBLRiErpHhe2GCM33DV1wCXHADnD40lOi6Gxrh1XQwcGo465l44kKy+Oxrp26ms83VUaG7xEo2rP/idLVaOEupqIhDpQ1QhanRVFoyMa8eOOgtfddrDN/Qe/Alhix2CJHX3EuQLeKhoP/BvUCIpGjzVuItb4yRitmQQ762jc/yzjRhfhb+7EW+8h6OsuYuKpX4XZMRJTzHBM9lxMZidX3DyRN/+znUhYZd6luRgjbxIORIjPvhLtMYbmHk9s6nwssWMxWNIGZHufiDz5CCH63NKKFSwpX45Nb2Vi4jhuGnk1Ok3vf93srW4jqqpnZXjjYFLSsoetjQVk2dMZnzCWck8V5e1VbGncwZbGHYftq1O0zEqdwbiEMTxV9DxlnsGdoIWjYfa6S3EaHby+/128IR8GjZ4V1WuYnjKZdNuxC8OE3G7q33kd/9p1oKrYzzufuMuv7O4d62g/2HvURsTTRsTnwzxyNIacbB7d8jjupmqCFgOpHrh6nY/Wt9+k9e030TmdmPKGYR42HGNOLq5XXibU1EjsoktIuO76niqK1vxx1D3xOK5XXsb1+qtYx08gZuYsrBMmEfF6afzP8ygGAzqnE+/WLT0xqyh4TInE+F1oOHoSqTGbSfna17FPO73krLcCvhq8rs3ojPHEps7rLjZhMGCfOh371OlE/V14dxbg3b4NjdlC7Nx5ZM6YiMvV0XMOs2MkOoOTTncR/o5SHClzsSVMQVGOPZy4qb6dj9/fg7u586jbTWY9I8YmH/aaqkaA7oINk87LpNXlo3xfM+X7mqkua6W6rJVgMMzEs1T4R1VV2upWAN29ZwOd0ZqJzhjfXZ5fo0ejNeNr3YmvdSdavZ2gezKKaTR6czLRSBeu0peIhDrwtRaetQQt4A/x1gsFtLp8BxdAttPu7qLN3UmL69OlEeoq20jNiiUUjDBxesaAfVhXFIUrb5lIe1sXiqJgizGiN2hQo0FyR8SQO6L7A5RQKIK7uRNnwskXJYqEvLjKX+lJlD6v6RjHdbqLSci7CYMpCU/DGkwxw7E4RtFS9V73fMqMxVjjJqDRflrQy2hNJy7zctzVS+ls616iwOwYjTlmGB3/n73/jo/rPO/87885Z3of9F5JEGDvFCmqW92yVSzbiu24pGzi2LvZkifJ5vnlt95ni7O72axTnLKxHTuOuyVZVrG6RLH3TgIE0fsAmN5nznn+GBAUBJAAq0jper9eeJGcOW1mAHC+c9/3dY3vJxluJxkuNGrXzF5s7kYefbIOA0iFXyGdmMBdtnnOYLgQiqphdc4/enmjkoAmhLiqUrk0b/Zvx6ZZ0RSNHUN7WOxrYkPFmgUfY7r/Wf0Hs3Tz5Qilw/zw9NOoispn2z45HUh0QyeQGKc70sdYYhwFcFlcrC9fjdviIplLoaBwNtRz1a/p4NhRnu18AbNmocJRyheWPoVZuzZrIH5+5pdsGzxfxGVZcSt31NzKN498i28d/xcW+xoLgcEAaziBu38CUyCIEgpT0hPElDcIeUzEPnYnm7c+gdVUmE5ompraSF39jPNtG9hFX3yIDU0b+MKyTwOQuzdCZMd2kmc7SZ3tJHZgP7ED+6f38Wy9jdJPfnrGG0BH21Ia/st/J7J7F5FdO4kfPkT88CFUhwPN7UZPJCj73Ofx3n4n2dFRjGyhgfCBXX0cG1Cpdqa4pS6FyWYtrBmzWlHt9kKz5bJyVOvMCqfXgmHoRAN7CQ8VRsaKah9CmeMDF9Vmx7NpM55Nmy94LM1kp6Ltd4iO7SEyup3gwEtEA/vwV38Em2fxrDfPp48O89ZL7RgGLGorxeWxYTZrmMwaZouKyaxRWmEn2PsDFNVKSeMT5LMxRju+g8VRRUnjkyiKQnGZi+IyF+u3NhAcj/Ojf9xHz5mJ6xbQYuP7yCZHcPhXYHEsrMrs+0lRFEoaniCdGMTpW4qi2UjH+0hMHiMROslo7zZgG6rJgaJo5LNRFNVCLj1JLh3EZL22H64ZhsHrz59mMhCndWUFWz+yGLNFm74vGc8QCibZ8Vonp4+N0DfVH3PJiiufVnstmS0axWUu9HyKaGA3Y4E96Ln4nNtORIpw+NoAhXw2isVRhd3XiqJo06Oeei6Bnk+RzyXR8wniE0fIZyPYPIuxOmtQFBP5XBzDyKFqNjxeH4mkgmqyoWo2VM2OnosT6PoREz1PA2DoWeKTR4g6a8ilx3GVbMBdumHOa3QVr8FZtIp8NgqGPv194SxeSy49SSraTSrWTTraQ3zyMHB4el+buxFf1d1zHvfDQAKaEOKq2j28n2QuyUON97KhfA1f2/0/2DG055IC2sneScwmlUXV709VvBtJOp/h52eeY/fwAfJGnvvr754xWqQqKuXOMsqdc69BsJtsVLkq6Iv2k9NzlzSSOZ+Xe95gMhXCqlkYiY9ybOIUa8tWXrXjn3M21MO2wV2U2UtYniuh6HAXDZE+lOQZHm/2scM1SORwD1VjWaoDWVxJfcb+MZeJgY3N7KpKE9GP8s6+Ib6y+jcptp//ACCv55lITTKWGGcsEeDFntexaTYeW/Tw9DYmt4eiBwrTKQ3DIDc+TrKrENYUs5mSxz4xd8EMr4+i+x+k6P4HSff3E9m9g8ie3WRHR3GuWIn39jtRFAVLReHNYzab58zzI0COwbiN/Zkq7nt4GSbT+VGmwd4gowfnrlB4tei5JIlwB5GxHeRS46gmB8U1j2JzN17RcVXVjLdiK67iNYRH3iI2fpBA14+wuhpwlazF5m5GM9mJRdNsf60Ti9XEfQ87sJnPYHVWY3XVY7aVTj/u4MDLpKKF5kjBwVfJxAfJZyMkwxEiI9vwVt4x4/z+Eicl5S5GBsJkM3mMXIDo+H58lXde1lSq+WRTAUKDr6FqdvzVH7nqx79WLI6KGesEba56bK56/DUPYFEGGe7ZRyY5Qi4dwuFbhtVVS3DgV6SiXbisC289cCkGeoJMjMUIBZP0dk5QXe/jjgeWoKrnfwYURcHhsuJwWbnnkTZ+9p39JGIZqut9eHyXts7zcuSzcaKB3SRCpymqffiSyryf2zca2I+hp1FUa+GDCwqPzzg3mm7kScf7iYyeb5AenzxCcOClec/hrbwbT/mtc/7eKC11zxjxPqe44XHGu36MotnwVd9JdGwvmfgAmtkzb4hSFBWTxfue2xTMtmLMtmLcpesxDINscoRUtAcUsLkaMNuv7xTkG40ENCE+pLYN7KI/OsiTLR/DcglFFqDw5vT05BkMDFwWJy6zE5fZhUnVeKP/HcyqidurN+O2uGjxNdMROstYIkCZY/5qWAfaAwwG4ixvLMJsurmrKF4pwzD4wemfsX/0MGX2Ej5Sdwebq+b+pPJimr0NDMaG6Y8O0eitm749r+fpCJ1lJD5GOB0hmA4RzybYUrVx3qDVHx1iIDbEqpJlPNx0H/9t71+wf+TQFQW0UDpMKB0mp+fRjTw5PU/eyPNM54toefi1vlKMN7ZDPk9W01A0jdqRYT79rmMoHjdqayNqUwPW+nr8ZbXYikpYq6rcl0vzQvcrvNH/Dn9+4JusK19VCGTJAOPJSXRjZrD7VMtjeK3uOa9VURTMpaWYS0svOmL0XtbaWkprP03JE58k1dODtWb2lKv2oyOkkjlWbaxhMhCn9+wkL/3sOA88vhyzRSOXy/P6L08Rj2VoXFyCv+TKi7/k0iEyiSEyyREyyVGyyVHy2cjUvSrOotX4qu5BM1/eubKZPC8/c5yWZeXTZcs1s5Oi2odxlWwgNPgaqWgn6VgP2ZxGNPtRRkY0spk8dz5QipF4joSeJREsFB1RNTtWVx0maxHRwB5M1hKAqZ5ihalUmcQw4ZG3UVQLzqLlaObzr2VtYxHjozGGenvRUs+g5+Koqhl/zdWtdqrnU4z3PIth5Ciue2zGNdysFNWEr3Q5WaUw6nyuOEg2XRilSka7cJVc/YCWzeR46WfHyOUKP6dOl4WPfGzpjHD2XkUlTjbf3cz2VztZvvbqTHczDANDz2LoGQw9iz71Zz4XJxE8RTJ0EsMoFPEIDvyKitbfXlCz5FS0i/Gep9FzCVSTs/AhRsm6C67T1PMZ0rHewhRUk4N0tJtktAtF0VBNdlTNjjb157l/m6w+TBbfJT9mh3cJFa2/g2ZyopmdOP3LCQ2/jato1YxpjZdLURQsjsqbYnT5epGAJsSHUDgd4ednniNn5Amlw/z2ys9jvoSRlRMTp/nbo9+Zdfu5ghS3Vm2ari64pWojHaGz7BzaN28xh5HJBN964SQWs8on7150aQ/qA2j70G72jx6m0VPH76/9ncse/Wr01rNtcBfd4R4aPLX0RPrZN3qIA6OHiWVnT585NdlBrOUxbq+5cPDYPVxYL3VL5XqqXZVUOSs4MXGaRDaBw7ywfk7pfAZjqkjHyYl2/vbod2aFpHN+rcOJcehtTP4iSp/6DM4VKzByeSI7t5MZHMDW2IS9ZQnmsvILfupqM1l5YvEjhXVsnc/zRv87ADjNDurdtZQ5SihzlFLmKKHKWUHFBUYlrwZFVbE3Nc26Xdd1Du/tRzOprN5Uh9Vq4pVfnKDnzATP/+QoDz+5gvbjI8RjhV5iw4PhywpomeQoJosfVbMQDewlOPCrGferJhc2dzMWRyWukrWX9abu3Xo6x+nvDjLUH6a0wj19zaHJBB0n4pw50YSR81JXM0xD/RCTfQfpPtNIZY0Tr3UbuVQWf+1DKIpGOtZLKtY3vX4FRaWk4TEU1cRI+7fQLB6K6x8lmx5nrOOfCA29SmjoVSyOahy+VuzeVmob/XSdPEEu/AsULY6imIhNHsZbeRfqJX5gdSHpWD/jvc+Qz4RwFq2emo72wXPu581k8aNZfKSi3RiGvqBQcil6z06Sy+m0LC+ntrGImnrfgnp+rVhXQ/OSUhyuSw8ShmEQHdtNOt6Lns+Sz0bJZYJg5C+4j8nix122iXR8kETwGPHJo7iKV19wez2fITK6vTAapij4qj5SKCk/z+97VbNg955v+G6xl+Eu23TJj3GhLPbzvw81s5viuo9es3MJCWhCfCi93reNnJHHb/VxcrKd75z4Ab+x7DPTfZzmc3Cs8Cn2XbVbwYBYNl74ysQwgPvq75rednXpcpwmB7uH9/NI0/0XPIdhGPzds8dJZfL81iNLqSm9+lONroVrVVp6NBHgZx3P4TI7+Y3ln72iqYnN3gYA3hnazbbBXQSShQasLrOTO2puZZGvEZ/Vi8/qIZaJ880j3+bHHc+wb/Qgi3xNlDlKKbb5KLL58VkLU1X2jR7CbXaxrLiwgHtD+Rp+0fUShwPH2VI1u2hFJp+hPzpEb7iX8a5TjE8OEc5E8DQ28WDbx/nuyR/hSupsqt6I6nSiqRqaasKkavi7x3Ef+iWWqmpq//j/i2afmqZkBv89917y83F33e20FrWQzqcpdZTgusxRoWuhu2OCaDjF0jVV028+73t0Ga//8hRnTwf45Y+OEI+mpwtQjgxEWLqqasHHNwyd0OCrRAN70MweHP5lRMd2oZqceMo2Y7aXY7FXXPZI2YV0tQcAyOd0XvvlKVpXFErgjw0XplOZzCqNLY20rN1MNvD31NUG6R9qYdOmANlYoLDOpWQ9UFjXAoXy3ulYH5rZPf3Je9XSr6JoFlTVjNVRReXSr5AInSIZPk061kcmMUho6HVUk4utm2MAeMq2gGoiMrKNRPAYVlcdyUgXTv/yy3oeDEMnMvIO4ZFtgIGnfOusaZYfRIqiYHc3E5s4QCYxhNVZc1WPf+57aPXGWorLLu3/h8sJZ7qeZaL3WZKhU9O3qZoNi728sPZONaOqFhTVMlVIxYLV1YDVWTvV3y5CMnSK8NAbpKLdZFOBwjpZxYSiTn0pJtLxfvLZKJrZQ0njE1id12ddpLixSUAT4kMmlo3zztBuvBYPf7Lp3/IPx/6ZI4HjfO/Uj/n80k/PWxY/r+c5Nn4Sn9XL44s+Ou/2Zs3M6rIV7BjaQ39skAZP3Zzb9YxE6RuLsW5JKZuX3dgLuaFQVfDpzufZO3KQf7v2dy9aRfByvNb7NjkjzydbPo7f5ruiYxXZ/PitPsYS45hVM+vLV7OhfA1tRS2zAnORzc+/Xfe7fP/UT+kO99IV7p1xv4KC0+wgnk1wd+1t0/uvK1/FL7peYtfwPpq8DeT0HL3Rfnoj/YwMd2HtGqRuKEXtSIaa9PmqhFntIIcbTvJAJE91IAs8j2IyYfIXYSoqwuT3kzh5grymUfGbv30+nF2hKteN+T128vAQACvWFBMbP4DFWYvZVspHPrYUk+k07cdHAVi1sYZTR4YZGQjP2D8Rz5DP6bi9s6dF6fkM490/IxXtBMVNPhcrhDPNRtmiz2Kxl8/a52rIZvP0dU3iK7JTXu2l/dgI20c7URSobSqiZVk5jYuLMVsKb0kCmUUYoVN86gu1BLq2oZnd+KtnB3GTxYupaMWM294bqEwWD56yTXjKNpHPJUiGO6bCWj/hWCWnTxfzwCdvxe7IERnZTmj4bYx8CsPIER5+A1fxOjzlm+edmpjN5Og4MYrNmsRp2ja9Pqe44TFsrnqSiQw7X+9g1cYaSspvnGmOockE+7b3MD4S5ZFPr8LlubJeUTZPE7GJAyTDHVc1oOWmWip4/XaKSq/NByqGYZDPhEjFekhFe0hHu8nnYlhddRTXP45mdl602uh7mSwe3GWbiIzuIBE8hqKYps6Tm7GdopjwlG/FU771qo3eipufBDQhPmRe79tGJp/hkcb7sGk2/tWKz/PXh/+R/aOHsWoWnlryxEVHhM6EukjkkmyoWLPgHmeLfU3sGNrD2VDPBQPawY7Cp6O3LL02bxKvhlQuxQvdr5LT8/RFB+iJFPppHQ2cvKoBLZyOsHfkAGX2EtZchaIbiqLwWys+RyA5wfLiVmwXadhpGAbljlL+/bovk8yl6IsMMJ6aYDIVYjIVnPoK4VFUbqu+hex4gHR/P1ZNo9lTz9lwL/915/+kZixL3XCahpEM60PnpwPpbieW1UtxVdRgZNJM7H6H5WcLoyj21jY0u4NscJJccJJk++np/Uqe+CS291Ra/CBIp3Ls397D4mVl2OxmBnqCVNU6yYR+QWyqFLbJWoTdu4Qtdy7BZq9moDfE6k11TI4n6O+aJBHP4HBayOd1XvzxdvRcBF+Jn6bWWhoWV2MyW8nnkgyf/j56dpixgJ9DR9toW+lhads4ruLV1yycAfR3TZLL6jQtKWXNLXWYzCo+v4NFbXNPO3N4W0mGTjHR+zSGnsVdcee8070WQjM5cBWvnp5uNrGvn/GJs7QfG2X91gYcvjYSoROoJgfu4luITx4tFGwY34ereC2e8i2zih3ousHJw0Ps396Dzz3EimUdZMx5dK2Z6iWPoU1N9935xlk6Toyiagp3PXR5ZcOvpkgoyf4dvXQcH5luBXjy8DAbb7+yAjA2dxOqZica2Es0tYRc3orZrGG2aJjMKmazhtVmxnqJ/S37u899D5Vc8YwFQ8+RSY6imRyAQirWS3oqlOWz5z/wUE0OXKUb8Vd95LK//7yVd2Jx1mC2FmOyFqMoSmFat5HH0HMYRm5q9O3aV2MVNxcJaEJ8iJycaOfV3rfwWjz0nvTzH1/aze8/uYovr/oSf3no79kxtBeLZuGJRY9c8D/BI4HjAKwqWb7g8zb7GgA4G+7hHmb3yDEMg/3tASwmleVNxbPuv1HsHjkwvW4JYEXJUo6Nn6Qr0nNZxzsb6mEsOY7X4sZr9eC1eHCaHbzZv52ckeeeutsvq9H3XOo9tdR7Lj51Jt3fR////Drm0jJ8d92Na+06lhQtYgmz1wMa+Tyj3/0O3Tu3T9/2+K230LFsA+U/fxv7RGH6GGYT9mXLcS1bjmPZCixVM5uGtv3WF+h8Zzf2knKs5e/pZZXLkQsF0ZNJLDUfzGk/+97p5tiBQc6cHKFpsR2/L8zKZd1k4gPYPItRVTPJyBmiY7uIju2irsxF6+IlKPk+Kqud9HdNMjIQpromzWDHy2xcM3j+4GkYOg66oU19H2UZGCojkd+KzRHlxJEka7fcg8Vxbd8cnpua1rSkFIvVxO33tVx0e7tnMaCSz0ZQNCuukrXX5LqWLK/gyN5+DuzspbapiOLqezHbSnCVrEMzu/BW3E588ijh0e3ExvcRmziAu2QjBw5W098TonlJKWPDUQIjUUpLo6xZdQrDMHHkeAsDg+WUHTrFxtsb0UwqHVMjn8P94XmuCvJ5nUO7+5gYi3Hng0uw2q6sdUUqmWXfO90Ul7kor/Zw/MAgp4+OoOsG/hIH67bU8/avOjh9bIT1WxsuWnRjPqpmxVt5J8GBl+g7/gLHTs5+rRUFHvn0Kqrr5y/FbxgGwfEEJw4VRpablsxfaOpC9HyGyNhOYuP70XOze+qpmh27txWbuwGrq2FGpdDLpSgaDu+S99ymwNQ0RyEuRL47hPiQGEuM8+0TP0BTVL607LP8+Xd6SWfyfP1fDvLvP72ar6z+Lf7i0N/xZv92rJqVR5rOVzOLJbN858VT3LqigiOB4zhNDhb5Fv5J67kpdmdD3XOu2RoajzM6mWBdSylW841bufHkRKEowb9Z89t4LG7KHWV8bff/oDvch27olxSmIpkof3n4H8jpM6e7aIqGgYHb4mJTxbUpVT2XfDLJ0N/9DXoiQbqvl9F/+jaj3/snbA2NmEtK0VwuNLcbzelEc7mJ7N1N/PAhrLV1uDdsJLpvL+kdu2nYWVgc5dmyFfemW7AvbkG1XHjajqJp+JbNPUqomEyYSy7/DdmNbmIsxtlTnWxafxavJ4zZnKehAjDA5m6mtPGTKKqGoedIRbtITDV2jU0cIDZxgFKXC5ttKYHhIcypX2EizWTQS1XTMvLZBOGJIMl4FE3LYDbnGB6poKzhXrasq+HEoUG2vXyG4weHrnjU5GLi0TS9Zydwe22UlC9s3ZBqsmFzN5CKduEuWX/NRhdsdjN3P9zGL390hNeeO8mTX1w/Y62YoppwlazFWbyK+ORxIiPbiAZ2E5toI5UonQ4Nrcv9LK4/jJ5TqGj5LN6GYva908PZ0wGe//FRTKbC7wWv3044mCQeS+O8wJqo0aEIb754vil3NpPnoSdXoKqX90GNrhu89txJ+ruDM273+u2s39rAorYyVFVhqC/EycPDDPRMUlrhJh7NLPj1ei9n8VqGOt+htmaEkgofBgqGnkfXdfS8zuR4mqN7nVTXbyA0maC3c4Lla6vRTCqGYRAYiTLUF2Z4IMRwf5h0qvA7srhEwZTfTXAQ3KUbL6lwjWHkGe/+CaloF6pmw1W8Fl3PgZHD4qyZKut+4QJDQlxvEtCE+JB4qec1krkkn219EiPuI53poqLIwchkgv/xg0P8u0+t4l+v/i3+98G/5Vc9r2NVLdzXcBeGYfCdF09x6Mw4Y3QS9ke5pXL9gguKnNPsa2D/6GHGkuOUv6fc/oGp6Y3rruDT0Wstk8/SEeyk0llOi//8iFKjt569IwcZSwSocC58mtg7g7vJ6Tm2VG6kyOYnkokQTkcIZ6LEsnEeqL/7mjV9fi9D1xn97rfJjo7if+AhfHffQ2THduLHj5HqOkuq6+yc+9lb26j+yr9Btdnw3nkXQ3/1DVK9PZR//ouXVHr+g0zXDZ75/kGC4wkcTgsOl6Xwp9NCKDDA5g1HsNkyZLJuhoZtOL0lNC5pxlG0AmXqZ0xRTdi9Ldi9LRjGw6Tj/cQnjxKfOMSGtSeATgw9zdETi3EVr2V1Q+ET+8rFkMvl6e4Yp+PEKLWNRSxfV1gX1LK8gr3bujlxaJA1m+swX8IHI2PDEZLxLPWLLj7anUnnePb7h8ik86zbUn9Jb3495VsAcJfesuB9LkdNg5/Vm2o5vKefk4eHWL1p9hRsRdFwFa/C6qxh6NTf0trSRV3rWkrKzJgYRNMPk45F8FTcjtVVh9VVKOwSGImy751ues9OsnRNFR6vjd1vdTHcH2ZR28wKodlsnn3bujm6fwDDgGVrqohFUvSenWTHa51svXd2E++F2L+9h/7uILVNRVTX+xgZCNO4uISW5eUzQl/rykpOHh5mz9vdxCJpUsks9zzSRsuyS5/6Otwf4ejxRjatP4bDfHrW/T4X9A/kCIy08upzJwlPJslm8qy7tZ5Xnj1BV/v41JYGZeU6NcvzFBcnsKqniQUK1UujY3twFa/BW3U3+Wy0UAHRMDBZ/ZisRZgsPkzWIjSzG0PPEBx8hVS0C5tnMSUNT8haL3HDk4AmxIfEQHQIi2ZhU+U6nt9RKPzwxB3NJFJZ/uml0/zPHx7i959cxb9e/dv8xcG/5RddL2HRLORG6zh0ZhzFmmDCsw+bZuH+d1VphMI0lI7+ENuPDdM1FOETdzSzpmVm2GryFgLa2VDPdECLxDPsPjnKmwcHMWkKqxaVXJ8n4zKcCXWR1XPTVQvPaZoKaF3h3gUHtKye453BXdhNNp5Y/Ag20/u3/kDPZBj51j8QO7Af++IWSh59HMVkoviRj1P8yMfRsxny0Rj5WBQ9HicfjZKPRUEz4dmyBdVceKOjOZzU/MEfYWQyqLYrKzRwI9FzyULJ8KnKgAthGAaGYaCqKoO9QcxGJ8vbIphMOVSlMJplNueoLsqgqQa+6vtwFG0gc3yU5tbSi05pUxR1umFwoYz5ASDOyFgxA4MVfPqhmVNBTSaNxUvLWfyetZ1ms8ayNdUc2NnLoV19CxpFC4xE2fXmWQZ7QwCs3VzHxtsb5wwOo0MRdrzeyehghLZVlazaeGlTVG3uJmzu2W0IroU1t9RxbP8AJw8Ps2pj7QWDkNlWzHiwiVJ/Jy7La+iRADl0coDVVY+34rYZ25dWuHnoyZVEwymcbitjw4W+csP9IRa1lZFOZTEMGB+N8fav2omEUnj9du58cAlVdT4y6RxP//NBjh8cIhZNc/fDrZc03bG3c4IDO3txe23c+7G2wr4XqMJeVunGX+JgfDSGpimYLRpvvnAah9NMTUPR3Du9i2EYDPQESadynDg4yPiEH3PRr1NUaik0WVZUQEFRFIbaf0JtzSjbXnyb8GRhlO7grh7ymVHyibNs3JCiuDiNShDeVVBDUWz4ah5E1ayFaacTB4mHTmDkM4Ax94WhTN9ntldIOBM3DQloQnwI5PU8o4kANe4qVEXlZM8kigKt9T6cNjMWs8Y/Pn+SP//xYb76xEr+9Zrf4i8O/h0/PfMLcj3LcfnKsCw6QVLNc6v/gemG05ORFDuOj7Dj6DBjoeT0+f7q6WM8dEs9T9zRNP1m51yp985QF7ZYAzuODXP07AR53UBTFR7Z0oDdeuP+SjoxUfgkeFnxzPUETVOPqyvcO6O8fCQTZf/IIXQM7qm9fcabvoOjR4hmYtxTe/v7Gs4S7acJ/PiHpPt6sbcsoerLX0UxzXwNVLMFtagIc9H8b9IUVUX5gIQzPZ8mOPAy8cnDhRsUlfLFX5i3Ml0klOSlnx9HVRUe/9xaBjv3sXpl+4xtFMUCihVDceMt34ynrFA2funqhZfLB/DXPEAyOkEmOY5hvZO7P1qCr2hhPegAVqyvpv34CAd29mK2aKzedOFw0nlqjDdeOE0+p1PT4CcSSnJwVx9jw1EsVo1sVieXzZPL5smk84SDhd8HS1dVcdv9i27oqWM2u5nmtjI6jo8y2Buiqs5HNJzC5bGiaedHmdKpHIcPl3PH1j4sjGK2leIsXoPNVT81PW7uaYjnKmqWVrgxmVSG+sMcPzjI9lfPTBfoUBRYvamWDVsbME2NZlqsJj721Gpee+4kPWcm+Ol3DnDXQ0vwlzg5tn+AWCSNw2XB6bbidFlxui04XVZcHivRcIrXfnkKTVO4/7Fl8wY7RVHYcnczJw8Ns+G2BtKpHL/88RFefuYET/32pov2GzMMgx2vdXLswPn1j1W1XirrG+bcvqzpYwQ6v8OSRe2ks5tZt6WJ4c4XqPQPUjm9LE3DbCvFYi/HbC/DYivH4qyenu5aaA+xl/DIW5htJfiqPoLZXkouHSx8Zab+zEZQNRsmix9vxW0SzsRN48Z9NySEuGpGEwHyRp5qZwWpTI6zQxEaKtw4p/7T3rS0HItZ5W+fPc43fnqELz+6gq+u/i2+vvtvMOqPoysKSQxygWpyVBFLZvnW8yc5enYCA7CYVDYvq+C2lZU4bCa++exxXtzdS22Zi01Tn9yX2cswYWFP/3F2TARAy+NqA59Hw+FQMJfowLVbC3OlTk6cxqpZpgPZOZXOcmyala5wL9l8lqPjJ9k7coCTkx3TTZebvPUz9ntrYAcKCnfUbLmOj+C85NlOJp59hsSpEwB4tt5G+Wc/PyucfVjlMiFGz3yXfCaM2VaKyeonGe4gPPwmZYs+d8H9xkdjvPCToyTihWlYB3ceo8y3n3xeo7L1c5htJaia7ao18FUUjaq2zwE6jZdQ/vscu8PCx39tNc/+y2F2v9XF3m3dWGwmrFYTVlvhS1VVYpEUE4E4ZovGfU8sp2FxCfFYmhd+fJSBnplrm0xmFZNJo66piNWbalm1rpbx8dhVebzX0rLVVXQcH+XQ7j72bOtibCiKZlIpKXNRVummtNJNMp4hk9GI5h6irc2N1dVwScFT01TKqz0M9obY/uoZrDYzlTVeVE1h9aZayio9s/ZxOC189FOr2L+9h4O7ennuh0fQTCr53NwN3QEsVg1NU8mkc9z54BJKKxZW1r+uqZi6dxVp2nJ3M9tf7eTAjh5uu0BhF8MweO2Xp+g8OYa/xMGy1VWkklkWX2RqpN1dS05Zgsfdzu13RimtBVt2kHjchrNkCxX1LZhtxRctaa8oGp7yzbhK1xf6ik03y/aB+8b9f0SIhZL/jYX4EBiKjwBQ6aqgoz9MXjdoq585IrJmcSn/5slV/NXPj/I3zxzjwVvqiJ9ci73tABWeIu6tvYtvHQhxMh4knsxx5OwEjZVubl9VxYbWchzvKpv87z61mv/497v55c4eNrSVMTAW4/8+f5K0149WNIqpolCePgOM5YEo9ER7WVrcMm+lwfdDX3SAQHKCVaXLZzWMVhWVBk8dp4Nn+OMd/4VkrjByUOeuodnXwJv929k2sGs6oPVFBuiLDrCiZCnF9vlHpa6mVF8vE88+TfzoEQAcy5ZT/PHHsTddn6lk10s+GycV7UIzOy9rmlx4ZDv5TBh32WZ8lXejqBpjnf9MKtpNOtaP1TX7e1TXDY5sf5naqgi+qjs4fqAfm/EaJlOeSOY2bK6520tcqcIb08svrOPx2fn4r61mz9tdxKJp0qkcmVSOWCRFPl8Y3jGZVSqqPdzxwJLpHlROl5VPfHE98Wh6OpSZzOqswHIjj5y9W3m1h6JS53TgrKrzkUnlGBuOMDoUmbFt/eJmbO7L68VVWetjsDeEoig88MRyKmu88+6jqgobb2+kYXExb77YTjqVY+3mOuqaikjEMsRjaeLRwp+xSJqJsRjBiQTL1lTRtury238sXV3Fsf2DnDw8zIr1NXOOzh7c2UvnyTEqqj089OSKBU/BbFj+cYZP/x35xF4me7tRFChf9FGKKpZe0jUudNqxEDcbCWhCfAgMxwoB7fjJLBODhYIPSxtmlzhe1lDEv/vkar7xsyM8v7MX8PK7i3+fpfWF/i3bag5xqjdI/1iM2jIX//Fz69DmqC5W5rOzeXk5O46N8Ow73bxxYIBEOsdtNfexabkDj92OzWTFqlmxahZ6In1849A/8HTn8/z+mt95X97U7Rk+QJHNx2J/84zbQ+kw/3D0ewBsrlw/576tRYs5HTyDRTWztW4TGyvWUuWqwDAMTk10cGjsKE8sfgS3xcWOoT0AbK26wGKQa2T8mZ8z+cIvAbAvbqH4sSdwtCyZZ6+bg2HkSccHSEU6SUa6yCaHC3coKpWtv4vZtvDWDflsnPjkEUwWP76qe6ZHuzwVd5CKdhMeeZvS5s/M+h7taT/FosYTKArYPXvx3xpFI05vXyVr7rqxC6Z4/Xbue3TZrNtzuTz5nI7FaprzZ1JVlTkbYt+MFEVh/a31bHvlDBtva2Tp6koURSGXzTM+FiuU0x+OYnda8JcsfBrpezW1lHD84CCb72peUDh7t7JKD5/80vrp64VCwJ5LLpefMT3zcmiayqY7mnjl2RO89twp6pqKsDvN2B0W4uE0Q4Mh9r7Tg8tj5cFPLDycQaFSZ3H9o4x1fo9sagybu/mSw5kQH2QLDmjf+973+K//9b9y9OhRrNbzayYOHz7MH/3RHzE5OcnnPvc5vvrVr16TCxVCXL6heKEHz+FjachBkcfKouq53xy01Pr4g6fW8I2fHqWt3s+yhvOFO5Y2+DnVW/iE+XP3L5kznJ3z0S0N7Dw+wvM7e1CA3/roUjYvr5j7nP5FrChp49j4KfaNHmJD+ZrrGtIimSjfO/Vj/FYf/3nLH02Xy0/mUnzzyLcJpkN8rOkBVpTM/Qbi7trbWFq8hEpn+YxS+4qicFv1Zn565hfsGtrH7TVb2Dd6CJ/Vy9Li6xeO9GyG4Msvofl8VHzxN3EsXXbTjGxciGEYpKPdxCaPkAy3Y+iFaYUoGlZXI2arn9jEQUKDr1La/OnCPnqedLx/qsrb7OlkANHxfWDkcZfdMmMqos1Vh9XVSCraxeDx/43NVY/V1YDN3YDJ6icTfAWHHVRzGclIBxoQiVej227F5bk5Q4zJpGEy3bhtL6625tYymltnVlc0mTUqqr1UXOD35aUqLnPxxX9962Xvv9Cf26v1ujUtKaG20U9/d5DASHTW/aqqcN+jy7DZL30ky+ZuwFt5F9HAPvzV912NyxXiA2PegJZKpfjGN77BP/3TP815///z//w/rF27loceeojf+I3f4M4772TFihVX+zqFEFdgKDYMOQt+u4c//fx6nHYzpot8utpQ4eF//d6WWW8GVjWX8PS2Lu5YVXXBgHdOud/BbSsr2XZkmC882HrBcHbOY80Pc2Kine+e/BHPd73Mo4seZm3Z3P2xrrYzwcKoYjAdojPURYt/ETk9xz8e+2cGY8Nsrb6F+95TufLdNFWj2jX3VKJNlWv5xdkXea3/bQbjw6TzGe6pvXoNqBcidfYsRi6He8MmnMsW3mD8RmUYOhM9T5MInQRAs/iwe1Zh9zRjdTWgahYMwyCbniAZ6SA8/Hbh7+EzGHoazezBU/M5rHYvlqnCNLqeJZMYIja+H1Wz4SxaNX2+wd4gb73UjtfbSENtHqc9gB46OX1+AwsOe4ZgpI6Vt32Wyf4XMYw8tasekWa04qamKAoPPbmS4EScVCJLMpElmcigojIxEaNxcQnlVXN/2LEQ3orb8JRvvek/MBLiapv3f45AIEB3dzdf/vKX+eu//usZ98ViMTo6OvjKV77C1q1bcTgcHD58WAKaEDeQdD7DeGqSfKKIhgo33gs0SH2vuUbHaspc/PffvoUS79zTat7r1+9v5WO3NlK0gBGEcmcZX139W+wY2sP+0cNsG9h53QJaR/B8n689wwdZ7GvmX07/jNPBM6woWcqnWh697DcQdpOdjzc/xDNnX2D/6GEUFDZXbbhal74gidOFIOFobbuu570WDENnovdZEqGTWJw1+Ks+gsU5u/qgoij4q+9npP3/Eh55GwDN4sVkrSMdPUPv0X+iq6eexqYcfl8UPTcKU0VdDMt6vv93+7nno21U1/s5cWiISChFLKLQ39sA1ONwpCguClHsD1FcFCav2yiuux9FNVFc/7Hr/KwIce2oqkJx6cym1aWlbgKB2SNql0PCmRCzzRvQamtr+bu/+zuefvrpWfdFo4UfTttUWWWbzTZ924X4/Y4bbspEaenCKhyJm4e8pud1TvQAYCRcLFtWcsXPzaXuX34JfU5LS1dza8tqfvPZPyCWj80617V6Xc/u7cZusuGyODg8foziQS97Rw6yuLiR/88d/wqr6cpKMz9Z+gD3Ld3C61078FhdLKm9NgUjLmS4swNUldot6zA5Ln/9zLWykNfVMAwi4+0Mdb1MIjKA01vP4nW/iWa6WPh3YzN/irHBQfbuhsEBFRRoXRSjvm6Y1SsKwTWXVkilvbj8DTi8jfz8B5PkchnOnBhjxZoaBnqC+IrsfOWP7yEaThGLpoiGU0QjaaKRFBPhJG6fjdUbLq+Z8Aed/D7+YJLX9YNJXtcbwxXNvXC5Cp+opNNpoDAd0u2++AsbDCau5JRX3dX8FEjcGD4sr2k8leWFnb3cvrqKiov0PjoxVBgd0pNuyjzWm+K5cZvdTCQmZ1zrtXpdg6kQw7Exlhe3UuOu5lc9r/NCx+uU2Uv4zbZfJxJMA+mrcCaF20q3AlzX10BPJYme6cTW0Egwnof4jfX6L/R1jY4fINj/AgAO3zL8dQ8zGcwyOjRB79kJFi8tx1888+fAMAx2b9c4vKcQmkornOi6gea6A1fpEKqmEgp7OXksT+/Zc5X6JlAUsDnMnDk5ysG9vaRTORYvLWNiolAu3mI3UWx3UVwxc1ThZignf719WH4ff9jI6/rBJK/r9XWxMHxZAS2ZTKLrOm63m8bGRrZt24bdbieRSLBmzZrLvlAhxMJkczp//fNjtPeHSOfyfO6+8wUnopkYnaFuzoa66Qx1MRArVLTTE24aKi5/rcD15LV4GIwV1mtZr3Fj0XPTG1v8i1he0savel7HbXbx5VW/gctyeaW0bySJjg7I52/q6Y26niU8/BaKaqF88RewOArrGSOhJC/85CjpVI4DO3qprvexbE01DYuL0TSVU0eGObynH1+Rnbs/2vaetTKFvk6+SmhohXAwycnDQ3R3jLP+1npCwSQHdvSy8/XC90dd88IrQQohhBBX4rIC2te+9jW6urr4yU9+wte//nX++I//mJdffpmvfOUrLF9+8y9AF+JGZhgG33nxFO39IQC6Bguf/I/Ex/jH4//M8FTFRgCTotHkbaCr3UqRqRzXZVTaej94rIVPlcLpCGWOknm2vjIdoXMBrZlyRym/u/KLlDlKKHXc3G/Is+MB4sePET9+DABH281bwjoW2Ieei+Mpv206nOVyeV559gTpVI4V66uZGIsz2BtisDeEw2VhcVsZxw8OYrWZ+OinVs1bDt7rt7P5rmY231VoszA5HufAjl7CwSQmk0p1ne9aP0whhBACuISA9vjjj/P4448D8PWvf3369tWrV/PSSy9d/SsT4kNgLBEgnI6y2H/hZrqGYRBMh+gO9zIQG8aZrmP3yVGaqzzk8gb9YzHS2TwHRg8zHB+l2dvA0uIlLPI1Ue+uIRTN8Yev7mJZ69UpE309eKdKoEcy0Wsa0HJ6jtOTZ3CY7NNVGJeX3LwjTedkxsbo/+//P/JTa4IViwVb86L3+aouLpeNEh3dia5nUFULimYp/KlaiYzuQNGseMpuAQpNod984TSBkRitKyu49Z5FKIrC5Hick4eGaD8+wpF9AwDc/3jbZfXqKipxUlTqZDIQp7rej8l8Y62dFkII8cEl9X+FeB/94PTPORvu4etb/xSn+fz6mfHkBIcDx+kO99Ed7iWciUzfZ8kUAxv4/AOtbD82TO9olN6RKN2RPgB+e8XnZ0zN6xkp9C1rqLx5Fv6eH0ELX9PzvNm/nVA6zB01t17XsvfXimEY5CYnGfzG/yYfjVL08COYS0uxVFahWq7tVNErEZ88xuTASxj51AW38VbeiWqyYxgG217uoPNUgIoaD7fde74wR1GJk633LmbTHY10ngpgsWrUX8HUxMVLy9jzdjcNi2/u0VQhhBA3FwloQrxPDMOgPzqEbuh0hrpYVVqYHhxKh/n6vm+QzBXerHosblaVLqfRU8feoWMM0c+SFpWaMhdNU2tqOgdD9GT6KLUXzwhnA2MxXtzdC3DTrD+D8yNo4cy1W6wcSod5qec1nGYHDzfee83Ocz1khoeYfPklYgcPoifiAPgfeIiSx564LufPZ2Pkc3Es9vlLdhqGwf7tPXh8dlqWlzPQ/ksmereBYmZ0cg2BCR8KWTAyQBaVLKqm0OJuxWMY7HzjLKeODFNS7uKhT6ycc2TLbDHRtmruvnSXYtWGWtxeG82tpVd8LCGEEGKhJKAJ8T4JpkOkpkYMOoJnpwPazzqeI5lL8WDDPWyu3ECRzT89QrDvaByc/fjrC+vMzjWLPj0yQNKTYkVJYZ1RKpPjue09vLKvH90w2NhWxpJa33V+hJfPOzWCFklfu4D2y7Mvk85neHzRR2eMXt7IcuEwmscz/f2Q7DpL8KUXiR0+CIaBqagI+5IlOBYvwfeRQug0DAMwUK7BCGE2GSA4+DKpaDdgUNL4JA5fG4ahY+g51DkKvBzdN8D+Hb0oioGWeRWL2o2i+dm5t43JcROQRzOZ0DQzmqaimVQS8QxdXadobAlw9nQAf7GDj35qJVbbtf0vTDOpLF56CX0ihBBCiKtAApoQ75Oh2Mj0389VEjw2fpJDgWM0eRt4qPHeGdPujnSOc/akFcdaGx3xk2TyWbwuMz6XhZ5YH3igwVPHgfYxfvDaGYLRNCVeG5+9r4WVzde20MbV5pkeQYvMs+XlOznZjs/qZUvVxmt2jqvFMAwmnvk5ky8+j62pCc/W24nu3UPy9CkArA2NFD34MK41a1He1WA8n0sQOPsD9HyGyrbfvao9ugw9R6D7J+TSE1gcVWRTASZ6n0XPJYmM7iCfi+OrugdXyfrp8wZGoux+qwu7w0Tr4tNY1CHCER+797WSy5nYcnczKzfUzLrOob4QL/7sGGdPB3B7bXz006uwO27cKZtCCCHElZCAJsT7ZCheCGgm1cRQfIRgKsRPO36Bqqg8teTxGeGsezjC3/7iOCbNxPqyteyd2Mn/u+vrRDMxyhvWMxAbxwTs2pumo+M4Jk3hkS0NPLy5HstNWNzAa7m2I2i6oRPLxql3197wa88MXWfsX/6Z8NtvojqdpLq6SHV1AeBYtpyiBx7C3to2K9TkszHGOr9PNjUGQDY5gsUx/7S/XDZKOtZLJjGMkU9jYGCyeDHbSjHbSjFZi1AUlfDwW+TSE7hKN1JU8wCJ0CnGu3/KZP/zGCgYhongwEsMnNlLZ88KJidNJOMZDAPu/kgE0kNE4x6OnlxDZZ2XleurqWuae61XVZ2PRz69ihMHB1m/tQGX23qFz6oQQghx45KAJsT7ZChWmKa4vmw1u0f2863j/8JEKsg9dbdT5aqY3m4slOQbPz1CNqfzlcdWUFercWzfQfJGHotmZsxxEFUzY+Q1OjrytNUX89n7Wqgsvnl7eJk1M3aT/ZqNoCVzKXRDx21xzb/x+yz48kuE334Ta20d1b//78mFgsSPHsG5chW2+oZZ2xuGTnziEKHhN9FzCcz2SrLJYVLRrnkDWirazdjZH4CRv/BGiobZWkw2FUCz+PBV3g2Aw9dGNL2eVLST9jONpFIWli/tpKJ8guUt2+gdWEQo1sLS5ZOQ3o/J4mfJsi9yx6MVC2rwXF7leU8fMyGEEOKDSQKaEO+T4fgIZtXM5qoN7B7ZT3ekF5fZyYMN90xvE0tm+YufHCGSyPKZe1tY01IoVvA/bvtPKCgcHDvCt0/8ANWax5kv56ufXktrvf+qTmV7v3gt7ms2ghbLFAKBy3xjh9hUbw/jzz6N5vVR8+/+AM3txuT1zhnMAFLRHoKDL5NNjqKoFnxV9+IsWsHg8f9NMtKFp/zWC54rlw4y3v0zwMBbeTdWVy2ayTl13yTZ1DjZVGD6CxSK6x6ZXmeWTuXYucOF2bKOFetqKClz4XBtwax0Ext7hab6Dsy2ENnUGKrJSemiz2CyuD4Q36tCCCHE1SQBTYj3QV7PM5IYo8pZToOnFotqJqNneaTpfuwmOwCZbJ6//NlRRicTPLipjnvW1Uzvf25a3tqyVewdOcTxiVNsaWyjraHofXk814LH6mEkMUZWz2FWr+6vqmi2UOnw3RUvbzTZYJDh//t3kM9T8aXfRHPP3SbBMAxSkTNEA3tJRQtTH51Fq/BV3Y1mLuxjtpeTjveh61lUdXazcj2fJtD1I/R8kqK6R3AVr5lxv9lWgt3bMuOchp6dUQSk48QIuazOui31rN1c/669V+IuXkRw4GUSwWMoqpmy5qcwWz8436tCCCHE1SQBTYj3QSA5QU7PUeWsxKSauK1mM2OJwHTBCl03+L/Pn6RzMMzGtjKeuLN5zuMoisKvtT7B810vc2vVpuv5EK656WbV6QjF9qv7Zv7cCNqNNMXR0HVyoRC5iXGSXWeZfP459GQS/30P4Fy2HMPQyWciaBYviqKg51PEJo4QC+wllyn0urO66vFVfQSrs3rGsW3uJrLJUdKxXuyemQ2rDcNgovdZsqkArtKNs8LZXBRFQdEsxGNpRgYiNCwu5sShIVRVoXXl7GmUmslBScNjpErWoWo2LPayK3imhBBCiA82CWhCvA/OFQipdBVKeD++6KMz7v/Z22c50B5gSa2P33h4KepFpoF5rR4+0/bktbvY98m5UvvhTPSiAW00EeCFrleocVWxvKRtxvq9C5keQXsfpzgaus7kSy+QPH2K7Pg42ckJyJ9f+6Xa7ZT++uexrqph7OwPSMf6MPQMmtmD1VlLMnIGQ8+AouEsWo27dCMWx9yP3e5uJjq2i1TkLBZ7JXo+QT6XQM8lSUU6SYbbsbkb8Vfft7BrNww6T43xzitnSKdyON1W4tE0i9rKcDgvXF3R5qq7tCdJCCGE+BCSgCbE++Bcif1q5+zRhmxO59V9/ZR4bXzliRWYTTd2lcFr5Xwlx4sXCvlZx3OcnGznwNgRftn9Mv9mzb9ika/xovvEMoWA5ja/PyNoejbLyLf+gdj+fQBoU+vKTCXFqNUOKM6h+u2k9HaiXe8AYLKWYLYVk4r2kAidQDN7cJVvxVWyFs108T5uVlcdimIiGthDNLBn1v0mi5/ihk9csFdaIpZmbCTK2HCUwHCUsZEoqUQWk1mlaUkp3R0BAJatqbqSp0UIIYQQSEAT4rrL6TmOjp8AmHO0ZyAQI68brGguxmmbvV7ow8JjLUxx7Ir08s7gbsq9xSxxL6GtqAWLVnheOkPdnJxsZ7GviTVlK/lJx7O80f/OvAEtmp0qEnKFUxwNwyCfCWGy+i+yjU54+E1ymTBFtQ+jKGaG/uYvSRw/hr1lCZW/+3tkjQDJ0CkS4dPkcuOFHRMACnZvK96K26dHx3Q9Sy41jtlehqIsrIWCoprwVNxOKtqJqjnQTA7UqS/N5MDmWYQ2tfbx3cZHY7zy7AnCweSM290eKzVLy9h4WwNev4PJQJxwMElVnW9B1yOEEEKIC5OAJsR19kL3qwzGhrmlYj1e6+yy4d3DhRGjxooPd0nxcyNor/dtA+B08AxvsxuLaqateAmrSpaxY6gwGvTx5gdp8NSxe3gfRwMnmEwFKbJdODSdX4N2ZVMcw8NvEhndjqfidnyVd866X89nmOh9hmS4HYB8JozS4SAVP4v94SXYVi1ipPvv0fOFAKSanLhK1uPwtWK2V6BqtlmjWqpqXlA/s/fylN+KxbORXFYnl9PJ5fLksjr5pE4umETPxymv9k5PUUwls/zq6eNEwynqm4spq3RTWummrNI9q0l0UamTotIbt+CKEEIIcTORgCbEdXQmeJZXe9+ixFbEky0fm3ObnuFCafnGyrmr9n1YeN4VXh9tfogNjct5+8w+jgSOT38BLC9uo9FbqBp4e82tfP/UT3hncDcfb37wgseOXYU1aJnECJHRHQBERrahqmZM1iKyyTEyqTGyyTFy6UnAwOpqRDM5SIROQDVYqiswyJIMn0I1uXCVbMDha5uainhtprT+8kdHGOwNXXQbs0Vjw9YGfMUODu/pJxpOse7WejbedvERSSGEEEJcPRLQhLhOEtkk3z35YxRF4fPLnsJmss25XfdIBKtZu6kbTV8NpfZiNlduYJGvkVsq11Na7Manl/Dx5gcZiY9yOHCCvkg/jy56aHqfdWWreKbzeXYO7eWhho9g1uaeIhrNxLCbbJgus3y/nksx2fdLwODEqcUsWzpAaOj1GdsomhWrswarqwFvxe1kRkeIntoHHhV300acNcsxW4vRLL5r3gssMBJlsDeE12+nvMqDZlIxmdTpP01mjVw2z7EDg+x84+z0fnXNRWzY2nBNr00IIYQQM0lAE+I6MAyDH7U/TTAd4qHGe2ny1s+5XTqTZ2g8zuJqL6r64W7gqyoqn71AdcoKZzkPOMtn3W7RzGyqWMcb/e9wJtTF0uIlc+4fy8aptdjJpicvqR9XNjXOePdPpxo1w0Somp6+StzFTSxbFkIzuzHbyzDbytDM7unglQuFGPzGX5AbH6f8C1/Cu/T2BZ/zajh5eAiAW+9ZRP2i4gtut3xdNScODaEoCr4iOw2LSqSRtBBCCHGdfTjLwwlxne0bPcSBsSM0eup5oP7uC27XOxrFMKCh8sO9/uxKtBYtBuBsqHvWfXo+TTx4kocsOR6zZhnt+DZ6Pr2g4xqGwWT/C2RTAayuBiyeW9i/vxC0T5/I4Cr7CJ7yLdg9izBZPNPBxsjnGfrmX5EbH6f444/h3bqwcJbP6xzc1ctAT3BB219IJp3jzMkxXB4rtU0XD6N2h4X1tzawbks9za1laB/SCqJCCCHE+0lG0IS4xsaTk/y4/VmsmoUvLPs0mnrhyns9I4X1Zw0f8vVnV6LJW4+CwplQN4ZhkE0FCr2+Ip2k431g6NSbNRJoOHIJYuP78ZTfOu9xE6GTpGO92DyLKWt+ir3busnle/HadMIp6D4zTsuy2aN6ky8+T6rrLO6Nt1D00bnXHc7l2P4B9rxdCJm1jX5uv78Fj69QaVHXjQWPsHaeGiObybN6U+2HflRWCCGEuBlIQBPiGsrreb578kek8ik+2/ZJSuxzTy/TdYPxSIr2vsJoSaOMoF02u8lOjasSc3KQoRPfIJ8930fNYq8kb6/iH3veYUnpGm7N9RIZ24WrZAOqVqhMqOfT5DIh9Ny5Zs6Fr9jEQVA07JlF5FMp2o+NYDJyLOl4gb11H6f9yOB0QNOzGXLj46R6e5j45S9Qi4opfuoz06NqkVCS4EQCTVNwum34iuwzphKmklkO7OzDYjVRWuGivzvIM98/xINPLKf92CinjgyxdE0Vm25vxGyZ/Ws8ncqSiGc5c3KUI3v7URRoXXnplR+FEEIIcf1JQBPiGtozcpCucA9rylZyS8W6C273N88c49CZQv8rp81EmW92T6oPGyOXY+wH38e5chWu1Wsuad9lnkraEmFyuThO3zJsnkXYPc1oZhedoW5CyTdZ/PxRlKVF6NVxwsNv4im/lfjkEcLDb2MYuTmPa03VMfzXf0Oochkx5wYqo134HAbe5BgDvQY//PovUTJp1GwK1cijGnkyFR8h4q5C/b+HWbmhhlxW5+i+fgzj/HHNFo3SikIJ+9IKN4O9QTLpHJvvambVxhqO7htg5xtn+fl3DwKgqgrH9g/S3THO7fe3UN98Pvhvf/UMxw4MTv/b7jRz54NLcLmtl/QcCiGEEOL9IQFNiGtoOD4CwEfqbr9osYUzA2GcNhMbl5azvLFICjMAobfeILztLWKHD+JoWwosbNqnoedZlhvFpCgMOBaxpfGJGffHJsd4/PUQ7mCORM8w9t9cTDSwh2ig0FNNNTlw+lZPN3FWTQ40zYGi2Bn8z/8TXTNzyrwYDING8ySNf/rfCf/TsxycSBNWHRgWN8xsE0ZRkZNkPMOBHb0AuL022lZWYBgQDiYZG4ky1BdiqC80vY/ba2PFumoURWHVxlqsNhM73zhL68oK1m2p5/Cefg7v6efFnx5j8dIyttyziKG+EMcODOLx2aiq81FU4mTp6irMloU1tBZCCCHE+08CmhDXUCRTWFPmsVw4XMSSWWLJLKuai/ncfXNXHfywySfiTDz/XOHvkQihN1+n/HOfuug+qVgv4aE3yCRHMekZjqaz9CoxtkzdbxgG0T27sP74+ziiOTIrWrCe7ibzizGKf/OjJENnMZl8FDU/jDZHA+vQm2+QC04yuuEJEkE3jbYQbV/6IqrNztrfeYpV0SiqwwGqSj5XaAadz+mYzCpWm5lsJs+JQ0Pk8zorN9RgNs8MTZl0jsBIlMBIlIlAnLaVlTOKdLSurGTJiorp8L7pjiYWtZXx1kvtnDk5Rl/XJIZhYDKrPPzJlfiKHFfwCgghhBDi/SIBTYhrKJqJAeA2uy64zehkAoByeUM9bfKlF9FjMfwPPER4+5uEw+8w1FGE5lmDqs2eqpeK9RE4+wMMPYfZVoLVVceRweNMhntIZJOog6OM/fD7pM52opg0dq5ysunXnqBo52kmfvEMgf/2I4xsFoCw423MZWVodjuqw4Fqt6PZHUT27SHpKOJ02IPTbebu3/woFuv5X6Ga+3wIN5k1TO8JYGaLxupNtRd8zBariep6P9X1/gtu896R1eIyF499bi3HDwyyZ1sXuazOnQ8ukXAmhBBC3MQkoAlxDZ1riHyhhskAI1MBrULeVKNnMkw+/xzBl1/C5C+i+GOPki+OkPENMdzzCor6Np6yW3CXbkQ1FdbppWP9U+EsT0njJ3H4CqOQrSmdXWfe5rU//wOWdMZQANe69exdX8S+6GHusbjxP/Ag0f37yIfDODdtBsMg2dFOZmgQI5OZdX2TGz6BHjTYdEfTjHD2flJVhZUbamhaUsLkeILaxgsHPCGEEELc+G6MdxhCfEBFMlHclguPngGMBmUEDUBPp+n/+n8h3d+PqbiYyt/6HRSTRr4kCinIHQqirfAQHnmbyNgu3CXrMTsqmex7DkPPUdLwxHQ4A/hItJJlL4RR01nGvRr7bylj5eY1BIJnIQpuixPVbKH+//3PACjqzJ5fRi5HPplATyTQk0ny6TT73wpjMqdpaim9rs/NQrg8Nlwe2/t9GUIIIYS4QhLQhLhG8nqeeDZBuaPsotuNTCaBG38ELTMyjKmoGNVimfP+fCxG8kw72cA43jvuRLVeWtXAsR/+C+n+ftybt1D+mV9HtdmITRwmn4viqtiIb6Of7n/5F6hXMK31E9F3FnZUNEqaPond2Ux6cABLVTX5aJTAd7+DZih4P/Up2huhe3AH7R2/mD6fy1xYZ/beYHaOYjJhcnvAXWh5MD4aJRwcobm1VIpuCCGEEOKakYAmxDUSyyYwMPDMN4I2mcBiVvG55g4+14Kh64TefJ10bw/m8gqsVVVYKqswl5ahaLPDR6L9NAP/68+w1tZR8wd/hGa3k4/HSXa0k2g/TbL9NOmBfs7Vjo8dPUz1V3//giHNMAyMTIZ8LEY+HiN5poPI9m1Y6+qp+PyXUEwmDMMgMroTFBVP+WbK19ZgtKxg8oXnCH7/VbQWJ+blpbiLN6KGbfT9n6+R7u/Hs/U2jHQaPR6n9NOfwf+Re3kEuLPuNl7pfZNtg7vwW72Y1Ev79dd5OgBAc+vFA7cQQgghxJWQgCbENRKdquDovkgFR90wGA0mqPA7rktpfUPXSXaeYfynPybV3TV7A03DUl6OpbIQ2NzrNmCpqmLsB98HwyDd18vQX/4FCXcZB0ddeFIBqiNncBoJ7C1LcLS2kerpJn7kMEN/85dUffX3Uc2F9XfZ8QATzz1L/MQJ9HgMIzez15hisVD527+LYir8Wsokhsilx3H4V2CyeAuX53BQ+uSn8d5+J4Gf/Ij4jw6T4uz0MUx+P5Ht7wBgbWjEd/c90/e5LS6eWPwI99XfdenPm2Fw9tQYJrNKXXPRJe8vhBBCCLFQEtCEuEoGokNUuSpQlcKUuXMVHC82ghaKpslk9euy/ix68ABj//I98uEwAO5Nmyl64CGyE+NkhofJDA+RGRkq/H1oCIDJl17AuWIlmcEB3JtvRU+nGT96mgM1q0jbnYTsFfT5V1BV66FtdTWVS0oowmDom39F/OgRxr7/Pcq/8CWCL73AxHPPYuRymPx+rLV1qE4XmtOJ5ir86Vy1GktFxfT1piKdADh8rbMei6W8guqv/j6p3h6iu3eRHujHd8+9ONqWMvr97xI/dpSKz39xzumL860JfK/ASJTDe/qJhFIsaiubVR5fCCGEEOJqkoAmxFVwNtTD/z74TX6t9QlurdoEnO+BdrFAcD1L7IfeeI18OIznttvxbNqMo7UNAGttLaxeM72dYRjkQiFSnWcY+8H3iR8+RNbp56VoK7oOSvMyMnmFTXc04vbaOHl4uNBkuT/C9ldNtCwrp/SOJ8mHM0R2vEN6oJ90bw8mfxElT3wC98ZbLrju693ioQ4MQ6Gv18ESrzHnNrb6Bmz1DTNuq/yN38bQ9QWd40IMw6C3c4Ij+wamm0f7Sxysv7X+so8phBBCCLEQEtCEuAqG4sMADMaGp2+LZqd6oF1kiuNI8FyBEPs1vLpC4Di33qzi81+66LaKomD2+zFv2Ii9pYXxZ5+m191GuiON020hm1HYuKWGtZsLYWXx0nJCkwlOHx3m9NERjh0YLBzIvIlbiuLQ24OtqZmq3/vXmLzeBV3rmeM9WLPDTAa97N7XzfFD42y5qxlPkR2X+8Lr2nTdQNPUyw5nhmFw+ugIh/f0EZoq3lLb6GflhlpqG/3XZRqqEEIIIT7cJKAJcRWEUoVpgxPJ4PRtC5nieL1G0LJjY+jJJM6Vqy5pP5PXR/mvf5G3v70fVc3wyS9twGaf3dPNV+Tgljub2XBbIyMDYfq7Jzm0u5/w5seod4zgu+ue6eqPhnF+NOxc4DEMnejECSKjuxkPWOnrtbJ6Jdg8i1i8tIwzJ8f4xQ8PT53LPt3Q2eu3c+LwEGdPjZFO5dBMKh97ahUV1d6p0DhCOpUlk8mTSefIpPNk07nC3zN5ikqd3PFAC/5iJxNjMba93MHIYARVVViyooJVG2ooLru0KZFCCCGEEFdCApoQV0EwXQhok6nZAe29I2i5vM7Tb3ex8/gw0UQWgHL/tQ1oqd5ugFnTARdifDTGZCBOY0vJdDgzDJ345FFymRB6LoGeS5Cf+lNVFFasvodTR8109yW47Sv3o+sGpw4NcfLQEONjseljq6pOddUozY39OB0pAIq84F1W+NXUvHw9bRvKWbu5nslAnPYTIwz3hzlxaIgTh4amj+N0WykqcTI8EObNF9t55FMree6HR4hH0zMei6KA2WLCYtWwO8wM94f56XcO4PHaCE4UwnJzaylb7ll0wZE6IYQQQohrSQKaEFfBuYA2kZrEMAwURZleg/buEbRIIsPfPnOc9v4QHqeFxTVeWuv9uOYYlbqa0r09QKGy4aXqOD4KwJLl5wt4xCePMtn33KxtFc2Kkc8y0f1D1qxZy64dTno7Jzi6b4DhgTCKAhXVHkzmPCW+HsqKujCb0+i6ykSogViqmdqKI2jaOJrZjdlWKGlfVOpkydIKFi0tI5/XCQxHGegNMhmI07C4hEVtpaiqyvZXz3DswCA//tZ+Mukca7fU0bK0HLPVhNWqYTJrM6YpdrUHePtXHUTCKeqbi1m6upKGxSWX/BwJIYQQQlwtEtCEuApC6RAA6XyGRC6J0+wgmolh1SxYtMLUvt6RKH/99FEmImnWtZTypYfbsFuvz49gqqcHFAVbXd2Ctk8mMnQcH2V8NEZP5zg2u2m6vLxhGEQDewCFkqZPYrL40EwOVM2BomqkY/0Eun9CkesARf6VvP78KXJZncbFJWy5qww9dZzo+H6MfApFteAq2YKnbBMN5sJIYz63homen2PzLJ5zzZemqVTUeKmomb2ebdMdjfScGScaSdPYUsLG2xovum6saUkpDYtL0HUdk0mqMwohhBDi/ScBTYgrZBgGwak1aFAYRSsEtOj09MZdx0f4p1+dJpfTeez2Jh7eXI96FQpO5ONxVMfFe6gZuk66rxdLeQWq7eLFSAIjUY4dGKTz5Cj5fGGtmKLAhtsa0bRC4Y10rJdschSHbykO75JZx7C6ailpeIKxzu/R3DTOvgM+FrfEaGs5Qqi38DypJgeeyrtwl2xANdlm7K+ZHJQt+twlPQ/nmC0m7n98OZ2nxli3pX5BRT1UVUFVJZwJIYQQ4sYgAU2IK5TIJcnq2el/TyaD1LiqiGbj1NuK+NHrZ3hlXz92q8aXH13JqkVXZwpd4vQpBv7if1H21Gfw3Xn3Bbc7VyDEumo1APFYmnxOx+MrhLV8Xufs6QDHDwwyOhQBwOu3s3xtNQ2Li3G6rdPhDJgaPQN36aYLntPqqsdkLaK0ZJTa+laWNJ9Az+Wxe5dg9yzCUbQSVb020zpLK9yUVly4cqYQQgghxI1MApoQVyg0tf7MY3ETyUSZTAVJZJPohk4kDK/s66ey2MFXHl9BZbFz3uMZhkHs4H40lxvHktlNmqEwKjb2ox9APk/8+LGLBrRzBUJC/ka2fWsfk4E4AA2LiykqcXLq6DDJeCFg1jcXsXxdzQVLyqcTQyTD7VgcVVicNRc8p6IoOItWEx5+g7UrD5HLpPFVfQRP+ZZ5H78QQgghxIeZBDQhrlAwFQKg2dfIobGjTKSC0wVCRgM65X47f/K59ThsF/9xMwyD7HiAwA//hfjRI6BpVP3ev8Y1R2n88PZtZAb6AUh1d00XJnnv8eKHDzLx7NPkFY29/TZSmQS1jX4y6Tw9ZyboOTOBxWpi1YYalq2txuu/8BTIXDpE4OwPAfBW3jnv9EFn0UrCw2+SywTRLF7cpRsvur0QQgghhJCAJsQVO1fBsdnbMB3QgsnCVEGyFr74UNu84Wz86Z8RfO0VjEwGAPviFlK9PQz/7V9T/W//A46W82u99FSKiWeeRrFYsNbVk+o8Q25yklDWws43zlJa4aLKmUF56xekz7SDqjKx4TESkzprN9ex6Y4mDMNgsDdEIp6hcXEJZsvF12AZeo6xrh+g5+L4ax7A7lk07/NisniweRaRipzBV3k3iiq/boQQQggh5iPvmIS4QuemOFa7KrFqFiZTQQ50DQDQUllOS61v3mNEdu0AwLVuPY5ly/FuvZ348WMM/c1fMvRX/4ea//CH0z3MBl5/hx2+uygqcdBaoUPnGYKnO/nV4TzxaIahvhBHAFN+LeWtrTTf0kb7vnGsNli9qRYoTEGsafAv+DEmI2fJpcZxFq2+pJGwotoHSUWX4vAvX/A+QgghhBAfZhLQhLhC56Y4+q0+im1FTKaCpJM9YIb1TfXz7q+nUuSCQRxLl1H1u1+Zvt21chWVv/HbDP/fv2Pw//w5tX/4H1GKSnnncIK41U88Cv1RcNU+grYnQjxjpil4GE8ywGR5GxOuOgaTVga3jwBwy11NWG2XV5gjGW4vXFPJ2kvaz2Tx4Sr2XdY5hRBCCCE+jCSgCXGFzo2g+aweimw+huIjJE3tGGkHW+pXzLt/ZqzQCNpcXjHrPvfGTaRiSQZ/+nOO/uW3CDRtIaJ5qbdHWPGxrRzd20d/Vx4jo1FljNEwcZiKL3wJz5atoChMjMXpPTtBMp5hxdrqy3p8hqGTjHSgmVxYHJd3DCGEEEIIsTAS0IS4QqF0GJfZiVkzU2QrNHNGMShOrsCszf8jlhkZBsAyFdBGhyIc3ddPYCRGIp4hmwHqnyhsPA7OdJA7PrUWZ2MRtY1FnPlP/4nxiTT+5Cjutevwbr19+tgl5S5Kyl1X9PjS8X70XAJX8doF9RUTQgghhBCXTwKaEFeg0KQ6RLmjFIBie2Fdl550sNw3/+gZQHa0MIJmqajg7V+1c/JwIbDZ7GY8PhsOlxWH0wIDZzE6jlFfbsLZ+Nj0/p6meoyBtwvn/9ijV+uhTTs3vdE+R1NqIYQQQghxdUlAE+IKJHNJMnoWn80LFCo5qmik+5fQeId3QcfIjBTWiOXcxZw83IHXb+eOB1qoqvPNGLEyjCXED1dia2qesb+tqZnwtrdxrd+Itab2Kj2yc+c0SIY7UFQLNnfjVT22EEIIIYSYTQKaEFdgLDkOFAqEADR661kafYp9oXEaKj0LOkZmdATFZKJvXAdg+bpqqutnV1hUFAXXmtlFOtwbNpENBPDddc9lPoq5GXqeib7nyKUncfiXS5l8IYQQQojrQN5xCXGZsvksP2p/BoAW//m+YD3DMVx2M6Ve27zHMAyD7OgI5rJyTrYXwl7TktJLug7VaqXksScuaZ9z587nYujZGPlcnHw2jp6LkZ/6dzY5RjY1hsVRjb/mgUs+vhBCCCGEuHQS0IS4TD878xz90UG2VG5gTVlhvVksmSUQSrG8sWhBBTXykTB6MonRUs1wf4iKag8ut/VaXzoAE73Pkggeu+g2dl8bxfWPoqqXV55fCCGEEEJcGgloQlyGPcMH2D60h2pXJU+2PDp9e/dwBICGSveCjpOZKhAy5qzFiENT66WNnl2uVLSbRPAYJmsJNk8TmsmJZnahmZyo7/q7TGsUQgghhLi+5N2XEJdoKDbCj9qfxqbZ+M3ln8OinR9d2nW8UPCjrb5oQcfKThUIGcoUAl1Ty7UPaIZhEBp8DYCShkexOKqu+TmFEEIIIcTCqO/3BQhxM0nlUvzj8X8mo2f53NJPUuYomb4vHEuz7/QYVSVOWut8CzpeZrRQUj+UVHF7bbgXsG7tSuj5DNGxXWSSwzh8yyScCSGEEELcYGQETYgFMgyDfzn9M0YTAe6pvZ3Vpctn3P/24SHyusE9a6sX3NA5PTBATjGRSuuUVNqvxWVPi00cJtj/IoaRQ1FMeKvuuqbnE0IIIYQQl04CmhAL9PbgTg6OHaXZ28DHmx+ccV8ur/Pm4UHsVo3NyysWdLxkVxeJE8fJ1y8DwOu/tgEtPnEYw8jjKd+Ks2gFZuvCpmEKIYQQQojrR6Y4CrEAOT3Hs50v4jI7+dLyz6Cp2oz72/tDhGMZtiyrxGaZ/3MPwzAI/OSHAJhuvRe4tgHNMHQyyWHMthJ8VXdjtl2fYiRCCCGEEOLSyAiaEAuQzmfI6lmWFrXgs3pn3R+MpAGoq3DNui+fiJOPRMhHo+SiUfLRKJnBflKdZ3CtWceoowgI4fFdu4CWTY1j6FlZcyaEEEIIcYOTgCbEAmTyGQDM2tz9wKKJwv0eh2XG7eF33mb0n78Luj5rH8VqpeQTn+TMoRBwbUfQMokhAAloQgghhBA3OAloQixAVs8CYLlAw+bIuYDmPB/QcpEIgZ/8CNVqxbV+Aya3B83lRnO70NxurDW1mHx+wsFCJUeP79pVcMwkCueQgCaEEEIIcWOTgCbEAmT1HHDhEbRIvBDg3Pbz9088+zR6MknpU5/Bf8+9Fzx2JJjE6bZgMmsX3OZKFUbQVCz28mt2DiGEEEIIceWkSIgQC5DJFwKY+QIjaOemOLqnpjim+/sIv/M2lqoqfHdcuJx9PqcTjaTxXsP1Z4aeJ5McwWwvR1HlMxkhhBBCiBuZBDQhFuDcFMcLBbRIIoPVrGG1FEbBQtveAsOg5PEnUUwXDkWRcAoAz2WsP9PzGWITh9HzqYtfe2oMjDxWR+Uln0MIIYQQQlxf8nG6EAsw3xq0aCKL21G4z9B1YgcPoLpcOFesvOhxI8EkcOkFQjLJMSZ6fk42FSCTHKGo5oE5tzMMg1S0u3Dtsv5MCCGEEOKGJwFNiAXInpviOMcaNMMwiCYy1JW7AUid7SQfDuPZejuKdvF1ZeFQIaBdSon9XCbMaMe3MPQsoJIMncaovh9FUc5vkw4SDx4jPnmMXHoCAIuzZsHnEEIIIYQQ7w8JaEIsQGZ6iuPsH5lkOk8ub0yX2I8e2A+Ae/36eY97OSNo8ckjGHoWX/V9ZBIjJIJHySaHMdsriE0cJD55lEx8AABFMeHwLcVZvBqLvWzB5xBCCCGEEO8PCWhCLED2IkVCzhcIMWMYBrGD+1HtdhytS+c9bih4aSNohmEQnzyOophwFa8hZekiETxKItQOwZNExnYCCjZ3Iw7/Chy+NlTNusBHKYQQQggh3m8S0IRYgHMjaBbNMuu+yLsqOKa6u8lNTuLZfOt0cRBdN1BVZdZ+uq4zMhDG67djtS3sRzGbHCGXHsfhW4qqWbG5m1EUE/HJw+SzMTSLj/KWL2Iyuy/3oQohhBBCiPfRvFUcdV3nT//0T1m3bh2PP/443d3dM+7ftWsXS5Ysmf76h3/4h2t2sUK8X7IXmeJ4rgeax2EmceIYAM7VawA4c3KUb/3FO7QfH5m139hwlGwmT3WDf8HXEQ8Wju/wLwdA1SzY3E3ks1HAoKj2IQlnQgghhBA3sXkD2quvvsozzzzDd7/7Xfx+P3/2Z3824/4TJ06wdOlS9u3bx759+/jCF75wra5ViPfNuSmOljmKhExPcXRaSJw6CYqCo7UNgO6OcXJZnTeeP82Rvf0z9hvsCQJQU7+wgGboeRLBEyiaDbtn0fTtdl8rUAht775dCCGEEELcfOYNaAcPHqShoYHly5ezZcsWDh06NOP+48ePMzQ0xKOPPsqf/MmfkEpdvCeTEDejrJ4D5l6Ddm6Ko8cMqa6zWGvr0JxOAEaHIlisJpwuCzvfOMvut7owDAOAgamAVl3vm/f8hp5jvPun5LNRnP4VMxpOO4tWUlz/KEW1D1/RYxRCCCGEEO+/eRe+RKNRbDYbADabjWg0OuP+ZcuWsWLFCjZu3MhXv/pV/uqv/oo/+ZM/ueDx/H4HJtPFS49fb6WlMiXsg+Zqv6ba1OBXWbGPUv/MY+cKeYuKVICJXI7itasoLXUTDaeIRdK0LCvngUeX8/2/382h3X0YusH9H1/GyFCEyhovtXVFFz23rufoOvw9kpEO3MWLWbTqMdT3juSV3Xq1HuoNTX5WP5jkdf1gk9f3g0le1w8meV1vDPMGNJfLNT0qlkqlcLtnvnBf+MIX0HUdq9XKmjVr6OjouOjxgsHEFVzu1Vda6iYQiM6/obhpXIvXNBIrfN/GIhkCuZnHHpuIA5A8dRIApX4RgUCUrvYAAP4SB9l8nkeeWsWLPz3K4b399HZNoOcNyqs9F71WQ88R6P4JqUgnNncz3ppPMDGZAj58I9Xys/rBJK/rB5u8vh9M8rp+MMnren1dLAzPO8Vx1apV9PT0cOrUKXbu3MmaNWtIJpPE44U3pffffz9/+Id/SF9fH0eOHGHFihVX78qFuEGcKxJimWuKY7wwxTHf2QGahn3xYqAwvRGgvMoDgMNp4WNPraa63kdwvBD4ai5SIMTQcwS6fjwdzkqbPoU6x/mFEEIIIcQHx7wB7YEHHuDxxx/ns5/9LMFgkD/8wz/ka1/7Gl/84hcB+LM/+zPa29t57LHHWLNmDV/+8pev+UULcb2dr+I4V5GQLD6zTrq3G1tDI6qt0NNsdDCCokBZ5flPSCxWEw8/uZKWZeX4iuxU1njnPJ+uZwl0/YhU9Cw2zyJKmz41Y92ZEEIIIYT4YJr3HZ+maXzta1/ja1/72vRtX//616f/vmHDBl566aVrc3VC3CAy5xpVz1HFMZLIsFgPgq7jWFKoqJjP6wRGohSVOjFbZv6YaSaVex5pu+j5JnqeJhXtwuZZTGnjkxLOhBBCCCE+JORdnxALcKE+aLpuEEtkKaMwZ9tSUwPAZCBOLqdPT2+8FPlslGS4HYujSsKZEEIIIcSHzLxTHIUQkNGzmFQTqjLzRyaWzGIA/nxhTaa5pAwoTG8ELiugpaKFZvAO31IJZ0IIIYQQHzIS0IRYgGw+e4H1Z1NNqtOFQGYpLQXeVSCkeu41ZheTjJwFwOZpvqxrFUIIIYQQNy8JaEIsQFbPYpljNOt49yQArmQY1W5HdbmAQkCz2kz4iuyXdB7DMEhFu1FNTsy2siu/cCGEEEIIcVORgCbEAmT13KwRtGxO5+W9fVjNKtZ4CHNJKYqikExkCAeTlFV5UBTl0s6TGkPPxbC5my55XyGEEEIIcfOTgCbEAmTz2VkVHHedGCEUy/CRVi9GJoP5vdMbL2f9WaQLAJu76QqvWAghhBBC3IwkoAmxABl95ho0XTd4aU8fmqpwW60VAHPpVIGQqYBWUX1pAc0wdJLh0wDYPBLQhBBCCCE+jKREnBDzMAyD7HsC2sGOAKOTCW5fVYktHgQ4P4I2VcHx3Q2q55PPxhjv+TnpeD9WVx0m88L3FUIIIYQQHxwygibEPLJ6DgDL1BRHwzB4YXcvCvDApnqy4wGgMIKm6wZjw1H8xQ6sttlVHy9kovcZ0rFe7N5WSpueuuqPQQghhBBC3BwkoAkxj3NNqi1TI2gne4L0jkRZ11pGRZGD7NgYAKaSUvq6Jshm8pRfwvRGwzBIxwcw20opaXwSVbNe/QchhBBCCCFuCjLFUYh5nAto54qEvLi7F4CHbqkr3D8eIGl28eOfniUeK/RFq6xZeP+zfCaEoWcx28ulcqMQQgghxIecBDQh5pHJTwU01UzXUIRTvUGWNfhpqCiMkmUCY8RKmojHMlTX+1i2porGlpKFHz9VGIGTvmdCCCGEEEKmOAoxj+kRNNV8fvRscwMAeiZDPhQi7y4GYPnaappby1DVhf9oZZNTAc1eehWvWgghhBBC3IwkoAkxj3MBLZM2ONgRoLHSQ2udr3Df2GjhT0dhSqPdabn046cKRUYsMoImhBBCCPGhJwFNiHlkp6Y49gwnAHh4c/30WrHQG68BkHP6AXA4F165cfr4yTEU1Yxm8V2FqxVCCCGEEDczCWhCzCMzVWZ/YDRJRZGD1YsL68vSA/2E39mGpaqKnNMHgN1xaSNohpEnm57AbCuVAiFCCCGEEEICmhDzyeYLlRn1vEpjpQd1KkgFfvpjMAxKPvEpkoksJpOK2aJd0rFz6Ukw8lIgRAghhBBCABLQhJhXZmoNGrqKd2qNWfz4URInjuNoW4ZzxUoS8Sx2p+WSR8Gyyakm13YJaEIIIYQQQgKaEPPKTgc0DY/TgpHPE/jJj0FRKP3kpwFIxjPYL2P92fkS+1LBUQghhBBCSEATYl7ZfGENmqFruB1mwtvfITM0iOfW27DW1pJO5dB1A8elrj/T86Sj3QBYZARNCCGEEEIgjaqFmFf23VMcTToTzz6NYrVS8ujjQGH0DC6txL6ezzDe/VPS8X6srkZUk+uqX7cQQgghhLj5yAiaEPPIvGuKo33/2+SjEYoeeAiTzwdAYiqgORYY0HQ9S6Drh6SiZ7F5FlHa/Gmp4CiEEEIIIQAZQRNiXuf6oLnTafI738bk9+O/74Hp+5OJwv0LWYNmGHkmun9OOtaL3dtKSeMTKMqlVX4UQgghhBAfXDKCJsQ8zk1xvH3oNGSzFD/6BKrVOn3/QkfQDMNgoveXJCMd2NxNlDQ8LuFMCCGEEELMIAFNiHlk9SzmrM7S0ACW6ho8m7fMuH8ha9AMwyA4+DKJ4FEsjmpKGj+JosoAthBCCCGEmEkCmhDzyOSzOJM6CmBraERRZ/7YXGgETT+3dg2IjGwjFtiL2VZGafOvoWqXVvFRCCGEEEJ8OMhH+OKq6I8O8Y/H/5m7a2/jjpots+7P63kimSh+m+/6X9wVSuczOFI6ACavd9b9yfjUGrR3ldmPjO4iNPQqzqLVmKxFhEfexmTxU7boM2gm+/W5cCGEEEIIcdORgCauWDgd4e+OfodQOszTnc/TVrSYMkeh8fJEMsiu4b3sHNpHOBPh36/7Mk3ehvf3gi9RMnM+oGlzBbREBk1TsFgL68mS4TOEhl4FID55uLCfyUXZos+imd3X56KFEEIIIcRNSQKauCJ5Pc/fH/suoXSYZcWtnJg4zY/bn+X2mi3sGNrDyYl2DAxUpTAtsDPYfdMFtFQuQ1HywiNoiXgGu9OCoijk0kHGe55GUUyULf510rE+kuF2/LUPYbL6r/elCyGEEEKIm4wENHFFTk620xvpZ23ZSr607DN88+i3OTnRzungGQAaPXXcWrWJek8t/3Xv/2YwPvw+X/GlS+cyOJIGAJpnZkAzDINkPENxWaHRdGziEIaexl/7MFZnDVZnDZ7y2VM+hRBCCCGEmIsENHFFdg8fAODe+jtRFIVPtzzOP538ITWuKm6t2kiNuwoA3dCxaVYGY4WA1hnqZsfQHp5a8gQWbf7+Ye+nTD47HdDeO4KWSefI5w3sDguGYZAInUJRTDj9K96PSxVCCCGEEDc5CWjissWzCY6Pn6TSWU6tqxqAYruff7/uy7O2VRWVKlcFPZF+snqOV3rf5MTEadaVrWJ5Sdv1vvRLktELVRzhfEDL53VikTQjg2Gg0KQ6mwqQS09g97ZKlUYhhBBCCHFZJKCJy3Zg9Ag5I8+minUoijLv9lWuSrrCvQzFhjkT6gKgK9x7wwe0nJ7DkdLpKV7F6WfaiYRSxCIpDOP8Nh6fnWToFAAO3439eIQQQgghxI1LApq4LIZhsGfkAAoKGyrWLGifamclADuG9pDJF3qHdYV7rtUlXra8nkc3dMxTUy/z5LCmNY5Xr4HeEA6nhfJqDx6vHY/fjtdvp7GlhPHOX4GiYfe2vM+PQAghhBBC3KwkoIlLZhgGz3e9TE+kj2XFrfissysbzqXaVQhoe0YOAqCg0BvpJ6/n0VTtml3vpfrmkW8znprkP6z7PcyqmbyRQctbAVi6poo77p8dwLLpSbKpUWyexaia9XpfshBCCCGE+ICQgCbmZBgGHcGzDMaGyBv61FdhZGk8OcH+0cOU2It5asnjCz5mlascKEwZVFBYU7aCg2NHGYwPU+euuVYP5ZINxIaIZeN8+8QPMKsm7Jk8Ga3QXNrlmnttWSYxBIDd3XTdrlMIIYQQQnzwSEATs3SGuvlh+9OMxEcvuE2ZvYR/s/ZfLXj0DMBuslNs8zORClLnqWFZcSsHx47SFe69YQKabujEswkAOoKdAJRMeMlM/aQ4XHOPjuUzhWIh0utMCCGEEEJcCQloYpafdDzLaHyMDeVrWFm6DItqRlVUNEUr/Klq1LiqLqs8fpWrkolUkFb/Yhq99QB0h3u5s+bWWdsmcynGk5O4Lc5LCoJXIplLYWDQ4msmnc+gKRrxt52kTeMAON1zj6DlpgKaZrk+1ymEEEIIIT6YJKB9CHSFe/n+qZ+ypnQ599bfic1ku+C2yVySodgIi3yNfGHZU1ftGrLZPIGRKK5T9TSP+mla3EyZvQSn2THdE208OclEcpLx5CTjqYnpkSwFheUlbTzceB+1U33VrpVYJgZAib2Ip1qf4HRPkF9lnyatOQBwOOceQTsX0ExmCWhCCCGEEOLySUD7gMvms3z/1E8YTQT4Ve8b7Bjay8NN97GlcsOchTm6wn0YGDR7Gy7vfJkcZ06OEZpIEI2kiIbTRCMpUons1BYKdrz070mxvFahydvAsfGT/OD0z6ePYVI0iu1F1HtqKbYV0Rvp59j4SXoiffznzX+E5Rr2GItNhUKXxYWqqPSMxnDmk6TNHuDCI2j5TBhFtaJeJPwKIYQQQggxHwloH3Av977BaCLA1qpN+KxeXul7ix+1P81bAzt4rPkhlhW3zuhhdq7sfZOv4ZLOYxgGp44Ms++dHhLxzPTtmqbg8tgoKXPh8dlobi3jwI4eejon6Oua4NHmh6h31+KzeSmxFVFiL8Jr9aAq6ozj/+LsS7zS+yZvD+zk3vo7L/fpmFcsGwfAaS6MmPUMR/DkkqTtFagq2OxzT+vMZcKYZHqjEEIIIYS4QhLQPsDGEgFe6X0Ln9XLY4sexmaysaVqI893vcKu4X387dHv0OpfzCeXPEq5oxSArlAPCgqNnvoFnyc0meDNF9sZGQhjMqusu7We+uZi3F4bdod5VhNru8PMT7+zn+2vdvLJL63nwcZ75j3HvXV38s7gbl7tfYut1bdgv0YjVbFsYYqj2+wCoHs4yh1KmoDmwDHHYwHQ8ykMPS3rz4QQQgghxBVT599E3Ky2De4ib+SnwxmA1+rhM22f4I83/j5tRS2cDp7hv+39C17pfZOcnqM70kelsxyH2T7v8XXd4Mjefn7y7f2MDIRpWlLCr/2rTWy8rZHyKg8Op2XOQFNc5mL52mrCwSSvP38awzDmPZfDbOcjdbcTzyV4s/+dS38yFiieKUxxdJodRBIZJiIp/EqWtMmO0z13KJxefyYBTQghhBBCXCEZQfuAyuaz7B0+iNvsYnXp8ln3V7sq+b1Vv8HhwHF+0vEsvzj7Er2RfrJ69oLTG/N5nVQiSyKeYbA3xJmTo4yPxrDZzdzz0VaaW8sWfH2b72pmYixGV3uAXW+eZcvdi+bd586arfyq5w2OBE7wUOO9Cz7XpTg3xdFlcdIzHAXAbuQxFA2He54S+xLQhBBCCCHEFZKA9gF1OHCceC7BvXV3YlLnfpkVpdAsutnXwP/a/zccDhwHmC4QcvrYCKePDpNMZEnGM6RTuVnHWNRWxtZ7F2F3XFrhDs2kcv/jy9j+0gvkomcY7vdQWXvxgGczWalyVjAYGyKn5y74uK7EdEAzuzg6XAheeq4wwue8QA+06RL7UsFRCCGEEEJcIQloH1A7hvYAsKVqw7zbeixufm/Vl/jzA98knkvQ7G0kMBLlrRdPYxhgc5hxuCwUl7lwOM3YHYW/1y8qxuE8H8wMI4+h58AwCn83chh6bvrvejZOKtZLLj2OyVpMNjVOS+MZAKKDP6C0/EuYLJ6LXmuNu5LeaD+jiQDVrsoreIbmdj6gOegZGcCXjZIxVMCYtweajKAJIYQQQogrJQHtA0bXDfaeOcbY2SQttS2UTRX/mE+5s4zfX/s7DMdH8Vu9PP2rgxgGPPLpldQ0FF10X8MwiE8cIjj4Coaeuei272V1NTLQm6e0uI/hU/+Ap/wWXCXr0Exzr4GrdhX6oA1Ehy47oEVGdxIZ24mrZD2esltQtfNry2KZOCZFQzXMdA6GWZUfpexRKyvjHTicrXMeLy9NqoUQQgghxFUiAe0GYxgGeSN/WdP3ouEUP/7ebrJxqGUN1lGNiaYYxWUu8nkdTbt4TZgqVwVVrgqO7OsnMBKjZVn5BcPZuVCWSY6SS4+TinajaDbsnhZQQFFMoGgoqglFMaEoGopmweqsxWIvI5uexNBz2NxNJPRxTh58mSUtfYSH3yAy+g7OolW4SzdhthUTmkyw47VOSivc1KycCmixITax7pKfo3w2RnjkbQw9S2RkG7HAXtxlW3CXbkTVLMSycVwWFwfaA8SSWdYWBbD4oMgSxnmBNWi5bBhQ0aYqPwohhBBCCHG5JKDdQEbio3zv1E+YSE7yHzf+W7zWi0/3e6/Xf3WcbBzixWO0VS2i71iEp793EM2kkk7laGwpYf2t9ZSUuy94jNBkgr1vd2Oza6zdkCY0/BZmW+nUVzGKomEYBsGBXxEb3ze9n9VZS3HD4wue5qeZz19DQ0sJe7a18NobFdTWjNBQP4ih7yc2vp94qpIjR6sJBh0M9gZ5av16AAZjw5f03JwTHnkHQ8/iq7oXw8gTHdtJePgNooE9eMq3ksrG8dmLeHV/P5qh4/WFARc2axq7c+4eaPlMGM3iQVGkKKoQQgghhLgyEtCus4HoELuG93Fv/Z34rIUwoxs6b/S/wy+7XianFwpxvNm/nUcXPbTg43Z3jDPcHSPunmDLw41sqVrL2eYAu97oRDNrON1WujvG6e4YnxXUYpEUgZEYFTUe3nn5MCXFo6xZM0F0eOw9Z1Ex24pRNRvpeD9mWxnF9R9D1RxoFu+cJfUXQlEUHnpyBScPDxEJVXLizBJs5n5qKvrw+4dZt2qCU933M9gbZqwvTom9mIHYEIZhXNI5c+kgsYkDmCx+3GUbURQNd+l6ImO7iY7tJjT4Mo85VLblrXSORLmrNINaWxg10zQDh12fdUxDz5PPRrG66i7rsQshhBBCCPFuEtCuE8Mw2DG0h5+eeW6639i/Xfu7hFJh/vnUjzkb7sFtdvFk28f46ZnneGdwN/c33IX9XWuxDMPg1JFhRgcjZLN5ctk82axOLpsnNJkAxWCo4TitRXcD0NxaSnNr6fS+/d1B9m3vnhHUSstdHNzdRy6rs7i5h1WtfVMnA4dvGc6iFWTTk2RTAbLJMbKpAIYewGwro2zR59DMzqvy/Hh8dm65s/ldt2wgm8kR6H4OOM7GLVae6YWujnFqGis5HDhOOBOZDrkLEQnsAUPHW3kniqIBoGo2fJV34i7dyEjn96lOjpAJFYLYRtcYqu/8qJmmxoGZ58tnI4X7zL7LedhCCCGEEELMIAHtOmkPdvLD9qdxmhw0extoD3byzcPfoifSR0bPsrp0BZ9e8hhui4vx5CTPdf2KF7peRVVVVFTurLiN3a/00t0xPuvYmqZgtmgEGjrwFNkosvlnbaMoCnVNRdQ2+mcFNZvdxMp1fsrd28lkrPirb8FdtBiLo7De693lOgzDIJ+LoZmc13xKn9lioqhqDWOdxzEr3bg9RfSdnaB6aRWHOc5AdGhGQEtkE3RH+hgZGaI7MMjHmh+kzFEydd15EsHjqCYHDv/SWefSTA7ytkpIjuBI5/G7rdgphNVY3InLGSefi87aLxUrbGO2zn7OhRBCCCGEuFQS0K6TzlAXAI+XP87gniyJqjwdobM4THY+0/oJ1pWvnp6ud1v1Zl7pfZM3B7YDoOZM9L5kYIk7qarzcdu9i7HZTZjMGiazhqoq9ET6+J/7n2Orf9NFr+O9QW1kMMyKddWkJt8kGtCpWHQfruI1F93fZL7wGrarzeqqRzU5SYZP0bjkYxzdN4QzUihccmDsCKF0mL7oIF3hHkbiYxgY0/uaVBNfWPYUE8lJ9nc/T1suwYipmHJdx6xps86V1pxYAb+qg8dE3ptGNaz09lWwrO0s+czMgGYYBtHAbkDBWbTyWj4NQgghhBDiQ0IC2nUyEBsCINyhMDYUpSq2imX3LOK2ho2zpuk5zHaeWPwxjo+fZE3Jao69OEk6rhAuG+Tzn9iEwzK7BH37ZCcALf5FC7qec0GtrqmIfC7B+MRBNLMHp//GChqKouLwtREb3099Q5qj+yDeq4EX9o4cZO/IQQAsqpnFviaafA2srWvj2/t/wsGxozy++KP8sP1pmlO9YDXz6mQ/SuA4Gypmh9CYasEKlFnzePIB1HIrwZAH1VwGnJ2eznhOOtZDNjmKw7cUk4ygCSGEEEKIq0AC2nUyEB3Gp3npPxNCUSAeyVB2vBLP4rkrNW6p2sDmyvW88uxJ0uMKzjqd4+VH2D/WxO01m2dt3xE8C0CLv3nWfRdj6DmC/S9h6Fk8lXejqLNHlt5vDt9SYuP7sZt68JeU09se5JGtT2KpT2E32alyllPjqkKbuvbSUjd31Gzhxx3P8p0TP6Q72MlDfje6ycFQPsaRCwS0sA5uw6DCmmdAT6AokM8UccfDaxlr30UuMzOgRcZ2AeAuu+XaPwlCCCGEEOJDQeqCXwexbJxgOkRVqplsJs/KDbVU1fnoPjPOD/5+D0f3D5BJ52bt135shK72AJU1Xj766Do0VWPb4E4M4/w0vnA6ypv92zkb7qbKWYHbsvBeXLl0iNEz/0QidAKLvRJnydqr8nivNqurDs3sIRE6zv2PNmG1mejdmaAlv5zNleup99ROh7NzNlasw6bZ6Ah2sthswoSBr3gNpfZiTky2k81nZ50nlk0wntcpsWcoKio0n25ZuRqrrTDC+e4RtGwqQCrSidVZi9VZcw0fvRBCCCGE+DCREbRrxDAMAiNR+rom6ekfwW0qx5EsJQUsWV7O2s117Hm7i/bjo+x4rZN973SzdHUVK9ZV4/LYiISSbH+tE7NF455H2nA7bKwuXc6BsSMcGz9JPJtg/+hh2oOdGBgoKNxZe+sCr00nOraH8MhbGHoWZ9FK/LUPo6pz9/l6vymKiqd8C8GBX0H6EA88voFf/ugIL/38GA8+sYKahtnTC20mK5sr1/PmwHbucPvBSOIsWsXKRILX+7ZxOniGFSUzi4XEs3GUtEqV06CmagQjZ+CqWIqimlBNzhkBLTK2GwB32ezRTCGEEEIIIS6XBLSrKBHP0N89SX/XJP3dQVLJ86M09awjpYC/xEFRqRNFUbjjgSVsvL2Rk4eGOHZwkMN7+jm6bwB/iYPgeAJdN7jroSW4vTYAbv//t3ff4VGV+d/H39OTzKSTThISegstVFGxISLLimV1Ufy5+ugqtq2IXq5l93p2xYbPujaWVdefi4ooKBaKgBRBEBBCbykQSO+ZTCaZ8vwRiTRBEJhk9vO6Li/JzJmT75lv7nvOd+5z7rvjCDaUbua1Lf9u3W9GRBqDEvozML4fkbZTT97R1HCIiv2f0OwqxmgOIyb1asKi+57xGmbniyN2ILUlX1Ffvp7kXiO4ckJvFs7bxmdztnDVdX1IzYg57jVXZVxOB4OXiPothEZ0wxISS/+4PizZv4LNZduOK9Dqm5346xxgd2K2+DHUWDEYW5qI2RLRssSA34/P48RZmYPZGk1oZLfzcvwiIiIi8t9BBdpP5Pf7yfmmkN3bSigvqW993B5upUdWImmZMayoWEn1eishrnC69U44qhgKDbMy6IJO9Buayt7tpWz+ppCq8gY6JDro0iOe7n0TW7ftHNmJrA69KXdVMCihH9kJ/ekQGvuj4vR5m6gpWkZd2TrAjz2mH1EpV2Ayh5219+JcMhjNRCSMpKrwcyr3zyclbTRXXdeXBR9sYcGHWxn/y/4kJB99P5/dEkZvswcX398n1ikijQhrOJvLtmI1WXB7mmj0unF73RTUHqBXRQYkOgGwWL5/703WCJpcRfi8LurK14PfS3j8sHO+1ICIiIiI/HdRgfYT+P1+vlqyly3rD2I0GUhJj2qZwj4zhpgO9tZC7L11+ynvW8n9qQ+QlnnigspsNtEjK4keWUn4fH6MxhONaPmZlDoYn6+Z0IguP3qR6CZXCWX73sXbXIPZFkNM6tWEhGec6WEHjCN2APUVm3DV7sa1fQ8xqVdzxTW9WfjhVj6dncM1twwgpsP374nHXYWreieW0CRsjnQAjAYjA+Oz+LLwK5YXrj5q/0afieaSROjdsrZZWNz3I2wmS8R3+6ykvnw9RlMI9ph+5/qQRUREROS/jAq0n2Ddyjy2rD9IdIcwxv+yP2F263HbNPs8FDlLSI/oSEbXuFPu0+drxudpwONx4vM1YzAY8Xmb8LgrqC/fQHNjWeu2VntHwiK7ExrZDbOtwwkvU/S4qyjd+x98nnoiEkYSkXhhm73X7FQMRjOJ3e+goXoHFQXzqCtfT0aPgYy6qjvLPtvFJ+/lMOGWAcTFtVzqWVu2FvATET/sqPfmmi5XMzhxABajBZvJis1kw2ayUVxQy6frt+BuMGE1N+Po07/1Nabv1n6rLV6Fz9NARMJIjKbj8y0iIiIi8lOoQDtD+XvK2bh6P5HRoYy/qd8JizOAnLJt+Pw+UsKTj3rc3XCI+vINeJvr8Hka8Hoa8Hmc+H3Hzy74PQP22AFYbLG4anbjdh6gyVlI9aElmG0xRKVcQVhkd/x+P421e3A3HMJZmYPPU090ypWEx598Eev2wGAwYo/uTX3ZOtzOQnxeNz2ykmh0NbNmWS6fvLeZOx68EJ+nEWfFt5gs4YRFH32vmcVoplNE2nH73re7HICqZW4Sog0Yh9panzNbW2ZydNXuBoOJ8LjB5/AoRUREROS/lQq0I+ys3MPKg19zQ7fxxy0eDeD2NuHz+/C7jSz7fBdGk4ErJ/QmzGE7bluvz8v83IVsOriCGxyhpBvqqStdi8EUQrOruPVeMAAMJkzmMMy2WEzmMIzmMExmOwajBb/fh9FowWyLxmrviMXWMhlGRMIIvJ4GXDV7Wi75q9lNRf5crD3voaF6B9UHF7XGEpF40Tkvzpo9PtbvLGXT3nJ2H6gmLMRMfFQocdGhxEeFEh8dRpTDSp2rGXeTl/SEcCxmI19tKWJPYQ3NHi9Wi4mMpAg6J0fQKSmCUNsP/3na7KnfFagHCYnIpP/QNFwNzWxae4B3Zq7lolEtxW544kUYDKde2628pJ6920vx+f2EFxzEmnB0AXZ4BA3AHt3nqJ9FRERERM4WFWjf8fl9vLdrLqWuckobyvjtwHsIs4Qetc1Lm2bSUNdEn8KLaWxoZsSlnYmJC8VZtQ2fpwGT2Y7RHEYTRt7b+zmltXncHB6GzQA486ly5rfuy2yNJjr1Kmz2VAxG63GXJ/q+W+vMeJLZFU3mMByx/XDE9qO+fCOVBz6hPO99mlzFGM12YtN/jiUkHrP1xIth/5C9hTWs2V5MVa2bUJuJ4b0T6dUp5oT3xbmbvCzfdJAF6/ZTXd8EQJTDSk19E0UVDSf9PQZaS9RW3+5pGcUyGCClg4POKRFc1C+ZjKSjj8HqSIVScDsPEBKRCcCwUZk0NjSza+shKg6ux2q1YI85fkHqY1VVOJn/3mY8TV6c7kpMfi/WxKSjtjEd8R5qYWoREREROVdUoH0np2wbpa5yHBY7h5zFzNjyb+7tdwcWU8v9WqUNZZTvayI5vzdFvhoyunWgS9dairbPw9NUddz+rgSICAMMRCeNwdBgxV17AJM9FIPJSuP6/Rx4awYeDHhMFpow4zaYcPlNNHr8+JqacIVF0ff2ifTqknDK+O2xA3BWbcNdnwdAh04TCAnPPO33YWdBFdPf30yzx9f62JptJUSH2xjRJ5EL+iaRGBNGY5OHZRtbCrO6hmZsFhNXDkllZFYyybFhGAwG6l3NlFW7KK1yUVrtoqbeTXiYFbPJQF5RHbUNTQzuEc+QngmE2czUu5rJPVRL7qEa9h2qJb+olsKyetbtKOW5e0cQYv3+z9VmTwVaCrTDDAYDF1yWSGL0CqyWRvLyk1myfCNXTuhDclrUCY+3ttrF/Hc309jQTHTXWPzfbAXAmnR0gWa2RGA0hWJzpGINPXU+RERERETOhAo0WmZj/GL/cuJNRm7v2I9va4tZUZnLv7e/y+19bsZoMLJ6xxY65mbhM3lJG2FlWJcyKvJXgsGEo8NgbPZUiusK+LboG8x+L50ccSSFxmAsslL8xGv4PZ7jfm+j0YIPI1Z/MyF+3/GB1Rew/4ViNlz2C5IjrVh9zTR6/Dg6RNO3dyqO0O8n+zAYDMSmjaMs913sMf3PqDjLK6rl/32Qg8/nZ/I1feiRHk1JZQOrthSxbkcJn64p4NM1BXROjqCkykW9q5lQm5nxF3Ti8uyj4wFwhFpwhFqOG/36IdHhNgZ1j2NQ95bJVDxeHx+uyGXB2v2s2VbCJQNSWrc9fEmo23kQv98HGHBWfEvVwcXYQ914/Mn4LNm4G6v5Yv4ObrwjG1vI0fHV17n5+J3NOOuaGH5JZ3KqnMQ2tSxGfewImsFoJqnXvRiNmhhERERERM6dUxZoPp+PJ554gk8//ZT09HSee+45MjK+n6J906ZNTJ06lcrKSiZNmsT9999/TgM+F/bV5FNbf4D/CXfgr86hP9A/ykFp416+2foqPRIvxrezmKHZ5VgiqrFYbdSWuDFZo4iOHkPFrLkUl35OhcFFpNVIYoc04jtE462pombjBkzh4YQPHoIpMorKwmIO5B7iW3MK/l79GdgzkWiHjZAwM1E2Aw6TD4PPi8FsJu/Nt0jb+i1pn754XMw7zWE0RMYTlpZKcq+uxHbLxJqcQlLPe1q3qXU2sWZbMU3NXixmE4N7xBP73aLXx2pobObluVtoavZyz8/7kN0jHgBHSiSdUyL55WVd2bi7jFVbitiRX0VYiJlrLszg8kEdCQs5N7NCmk1GRg9OZfE3B1iyoZBR/ZOPuhTUZu+Is3Izrto91JWuw12fh8FoI73XDfisPcgcaCA8Kp9vVubzxfwdRESG0uBsYvDIToTaLcx/dzN1NY1kj+xE70EpfDJrI8OaasBgwBJ//ChZe1kzTkRERETaL4Pf7z/2NqCjLFy4kD/84Q+88847TJ8+HYvFwquvvtr6/M9+9jP69u3L2LFjueOOO5gzZw59+/b9wf2VldWdvejPgri4cD759nMiDy4mzGpi5+5OGAwQG1NNdFQtJtPRI1tOn58Qg4EwRyph7j6U/PNNfA1OnCFGbE1+zL6j305beifCbr2LdYeaWL21uPW+rJF9k7h1THfMph9e6Njv81H28UdUb91Gc4gDr9WG2QDuigoMpUWENTmP2r550Eh63/N/8Hh9fLqmgAXr9mN0OXEbLfgMJkxGAxdmJTF2eDodIr+/v87v9/Pax9uwrlpEtr+Y7r/7Dbbk5GPDaVXX0ITVYsJmMeGtr6fys09o2L2L5pJiHNmDib/pZoy24ydOOVMzPt7G19tL+MNN/enVKab18cP33R0WEtGFmNRxJKWktP6d+Xw+PvrPJooP1rZuZ7YYcYTbqK500W9IKkk9O/D6Zzs5WObkwYI5RETayXjqmbMWv5wdcXHhba7/kJ9OeQ1uym9wUl6Dk/J6fh1eFupETjmCtnHjRjp16kSfPn0YMWIEM2bMaH2uvr6e3bt3c9999zFy5EjCwsLYtGnTSQu0tih0ex5hcS3FWe7eeCLcFVT5Y/CbYrEmeHAkuHCHuGmKSudAXR71VQVcWxhKzc6X8BqMLBsSzp5OCfTyjyElLJJYq49okxeL38OSYgNfvbsTv79lRGhIz3gu6JtEn4yYE65bdiSD0Uj8NROIv2bCCZ8vLypn1/rtFO/YR8e8jURu+IqFn/dnfZkf8+4t3Fi3i2RnCX6DAW9kLBvCu7H8Ww8rc4q4oG8iVw/vRHS4jc++LmD/t9v5n6ocDEDhM3+j4+/+iC31+KnoAUJcdTQXlFBdWkrFRx/ira3FYDZjtNupXbmCxtxcYq68ipDMzlgSEk55nACemmp8DQ1YEpOO2/6yQR35ensJSzYUHlWgtSw+bcBoshHdcQxh0X2Pe63RaGT0hN7szCkmMSUCV0MzX36+i+pKFz37JVFkgtff2ojP7+ey3jGE7m3AktjllPGKiIiIiJwLpyzQ6urqCAlpuSwuJCSEurq6o547/PiJnj+R6OgwzOZTT3t+PoXHZrN8VQyNzQ5ih6VQVJWMYc82eh7cRFphCQAeE5i939Kn9VXVFIbEsTI7ktK06PzwKgAAGHdJREFUWtw7urOmrhaoPW7/aYnh/GxkJiP7pxx3n9ZPERcXTs+slstNt87/gpqZr9Cw8BM6mu0Mr94GQETvXuD3U5+bx9Dq1QyJ3sXKDoNYscnHV1uKiY0Kpayintsqv8EAJI4ZTfGCRRx87ml6PfEnwru2FCuNpaWUr1pNxVerqd+7rzUGg8VC+q23kDx+HAB5/3qT4s8XUPz6PwEwhzsI79aN8O4t/zm6dsFst3//Lm7aTP5b/8G5r2WfIYkJxI4YTuyI4Ti6dMZgMNChg4POy/ayeV8FRquZ2NbRv3CiIh/EEhKJxeo47r058t+dMjq0/twpwcLGxd+ypLCUPRXNxEWH8uAvBpDpryLnI4jKTDvptxoSOMpLcFJeg5vyG5yU1+CkvLYNpyzQHA4HjY2NADQ2NhIeHn7UcwBut/uEz59IVdXJp14/3+LiwrHFJREe08i4Md2Ijj1cPGThct/AoZydVC/7DFN5KR57FNVmPwdDiqiNyKDfpddQWvBPMiLSuOf2a6iqc1NR20hlbSMVtW5qnG76ZMQyuGc8RoMBV30jrvrGc3Ic8UMGU//ZfHofygfAkpBIyv0Ptk524a2ro+LTj6letpSLqhYxIjGVxdED2VbuYZJ5DwkNZYQPHUbE9RPxJ6VR8ua/2PqnJ4i6fDQN27bQmJvb8otMJsL69CUkIxOTw4G9T1+sCYlUVLccV8R1N2EbMoKG3btozN1HY+4+qjZspGrDxpbXGwzYUtNIuPU2DBYr+/86Db/HQ2iPnpgcDpxbtnDww3kc/HAe5phYHIOyibrkMkb0SmBfYQ3zl+/l6uGdjjjyCHD7ge+/GDjVEP2uf7xE1P69XG20UN4tmyHX/wJHdAglX+0FwBPZQUP8bZAuvQhOymtwU36Dk/IanJTX8+snXeLYr18/3nnnHXbs2MHq1asZMGAALpcLn89HeHg4GRkZrFixgtDQUBoaGhgw4NTrTrU1yWlRXHPz8XGH2sx0HtwHBn8/bub2NvGHFY8RZm6gvHw+AKPTL8EeasEeaqFjvOO4/ZwPBqORhOuu59CLL2DpEEfH30/BEvP95YCm8HDib7qZqEuvoPzDOdSvX8dVxQe42m7H53Riiooi7oabAIi8YCRGi4Wima9ROf8jMBoJ69Wb8OwhOAYOwuQ4+THaUtNaLo+87AoAPDU1NObl0pi7D9e+vbh27+LAtL9icoTjd7tJuudewge1LAzta26iYds26jZ8g3PTt1QvXohz00aGPPZ/eW/pXlZuLuKqYeknXR/uZJwFBVj276XKGkGUxU/HnWsoemwjUaMuwetsuafv2Cn2RURERETOl1MWaGPGjGHdunXccsstrbM4Pvnkk+Tm5jJ79myeeuopHn74YRYuXMh9991Hnz59TrXLds1msjIyeRhritZxyOkkxZFEnw49Ax0WAI5+/en4+ylYUzpijjjx1PbW+HiS756MK/dKyt9/D1fuPqJHjyFm3HhMYd/PUhg+ZCimyEiaS0uw9x+AOfz0Frs+kjkyEkf/ATj6txTB9TmbKJ7xKp6qSqKvurq1OAMwWqyt2/o9Hg699jLObzdiLi8mu0c8q7cWs2t/NT3To88olj1zPiYMqBg2hsE3XU7NiuVULfyMqoULWrc5dop9EREREZHz5ZSzOJ5tbW3o9EyHc70+LyUNZUTaIrBb2uf0636/H7+nGaPl/K/t1VRSjGvPHiJGXIDB+MMzWdauXUPxP18jdsJ1VGRdyFP/2ciArh24/7qsH3zND+XUXVVF7pTfU2N20O2pacR8dy+br7mZ2tWrqPz8U0xhdtL+9MSPmthEzi9dehGclNfgpvwGJ+U1OCmv59dPusRRTsxkNJHsSAx0GD+JwWDAEIDiDMCakIg14dTvn713XzAYcOZspuvYcXRJieTbPeV8vb2YYb1O7/3fOWc+oX4fNX2GtRZnAEaLhaiLLyHq4ktO+zhERERERM6mHx66EGkDTA4HIZ270Ji7D5/TyR3jemK1GHl74W4qa3/8hCtelwvThq9oMNrof/1V5zBiEREREZEzpwJN2jx73yzw+3Fu20JCdBg3XdaVBreHD5bn/uh95H78OVaPm8LO2SQknNn9ayIiIiIi55oKNGnzHFn9AKhavIjadV+TbSxjWHMBe3fk4/H6Tvl6X1MT7hVf0Gi0kPnzsec6XBERERGRM6Z70KTNs3ZMxZaWjjs/j+IZrwIwCugYlsLewuH0OMWMjsVLv8TqbmBL8gCu7Z587gMWERERETlDKtCkzTMYDKQ9+jjugnwadu0En4+ypUtJrylm867ikxZofr+fskULsWIkbvSVmp1RRERERNo0FWjSLhiMRkIyMgnJyASgqbaW2i8WUbppK4w+eh06r89PRU0jMRE29q78htDaCnJju3DZsK6BCF1ERERE5EdTgSbtUnjfLGq/WER0aR6Hyp00ebzsLKhm1/4q9h6swdnooWOcnQt3fE46kHnNOCxmU6DDFhERERE5KRVo0i6FduuG32who+EQj/1rHb4j1ltP6mAnIzmCwt0HSK0uwBmdRP9h/QIYrYiIiIjIj6MCTdolo8VKSLfuxG3fSqdQDx27ptI9LYruqVF07xxHyaEK8qfNx4Of9J9frXvPRERERKRdUIEm7VZEVj/Ktm/l/zjyCQkxYaypwOCyUlUdRcnni/Hk7yN8yFCiL7gg0KGKiIiIiPwoKtCk3bJn9aPsvVnUrv6K2tVftT5e9N3/QzI7k/CrOzR6JiIiIiLthgo0abes8fGkP/5nmsvL8TW58bvd+NxNhFnA6WomcuRFGC3WQIcpIiIiIvKjqUCTds3WMRVbx9SjHouLC6esrC5AEYmIiIiInDljoAMQERERERGRFirQRERERERE2ggVaCIiIiIiIm2ECjQREREREZE2QgWaiIiIiIhIG6ECTUREREREpI1QgSYiIiIiItJGqEATERERERFpI1SgiYiIiIiItBEq0ERERERERNoIFWgiIiIiIiJthAo0ERERERGRNkIFmoiIiIiISBuhAk1ERERERKSNUIEmIiIiIiLSRhj8fr8/0EGIiIiIiIiIRtBERERERETaDBVoIiIiIiIibYQKNBERERERkTZCBZqIiIiIiEgboQJNRERERESkjVCBJiIiIiIi0kaoQBMREREREWkjVKCJiIjIGdNyqsFLuRUJjKAv0Hw+H/X19YA6mmDh9/vxer2BDkPOsqamJv7zn/+Qn58f6FDkLGpubuaNN94gJycn0KHIOeDz+fTZGmSWL1/OPffcA4DBYAhwNHI26Zy4/QjaAs3v93Pw4EEmTJjABx98AKijCQZvv/02EydO5PHHH6eoqCjQ4chZMnPmTLKystiwYQOxsbGBDkfOkjfeeIPs7GymTZtGdHR0oMORs+xwfzxlyhRycnJ0wteOHZm7xYsXs2zZMlauXAm0nNRL+6Zz4vYnaAs0g8FAYWEhu3btYu3atezatQvQNwbtWU5ODm+88QYjRoxg8eLFTJ8+HdCHR3u3bt06nn32WV555RUee+wxiouLcbvdgNpre+T3+ykvL2fo0KG89dZbPProo/Tq1Yu6urpAhyZn0c6dO3n99dcZO3Ysubm5PPbYY6xatQpQu21vKioqcDqdAOzZs4ctW7bQqVMnHn/8cQCMxqA9VfyvoXPi9ieoWl1NTQ0ul6v150WLFjFo0CB27tzJ0qVL8Xq9+sagnampqaGhoQGAVatWkZKSwuTJk/n5z39OU1MTLpdLOW2HjsxrQkICgwYNYvr06Vx77bXccccdPPLII5SUlGAwGPQB0o4c7oNjY2OZNm0ay5YtY/jw4RQVFZGUlBTo8OQnOrLdbtu2DZ/Px7hx43jxxRfJz89n3rx5VFVVqU9uRyoqKrjhhht44okngJZirGPHjvz+97+nurqaV155BdAXoe2Rzonbt6Ap0F588UXGjBnDvffey6xZswCw2+0888wzZGVlsWjRIjZs2ADoG4P24nBOJ0+ezLx587j77ruZMWMGlZWVLF++nD179jBx4kTWrl0b6FDlNBzZVt977z3S09NJSUkhLCyMl19+mbvuuovdu3czb948QJdhtBeH83rfffcxa9YsRo0aBUBISAh2u51NmzYFND75aY7sj+fOnctFF11EWVkZ7777Lg6Hg8zMTPLy8ti3b1+gQ5XTsGvXLoqKivjyyy/Jycmhc+fOPPvss1xxxRXceOONzJgxg6qqKoxGo86d2hGdE7d/QVGgHThwgHnz5vHss88SFxfHv/71L1asWMHvfvc7kpOTefDBB6murmbx4sXU1tbqhK8dODKnCQkJvPTSSyxYsICQkBA6dOjAm2++yYwZM8jLyyM3NxdQJ9MeHJnX+Ph4XnvtNdasWcO9997LAw88QI8ePbjlllswm82t7VR5bfuO7YP//e9/s2DBAgCcTicpKSmUlZUFOEo5U8f2x//4xz/Yt28fDz/8MHPnzmXo0KEkJSVRUFDQeqmctA8bN27kggsuoH///jzzzDMAhIaGAjB+/HjCwsKYOnUqoC/L2gudEweHoCjQqqurcbvdNDc389BDD9G1a1deeOGF1pn+MjIyGD16NB988AHbtm0LcLTyYxyb086dOzNz5kx8Ph+FhYUsXryYr7/+mg4dOpCSkgLow6M9OFFbfe655+jYsSOpqan88Y9/ZObMmTidTjIzMwHltT04Nq+ZmZnMmDEDr9dLeno6ISEhLF26NNBhyhk6Mr9Tpkyhc+fOTJ8+nVtuuYXnn3+eBx54gBtvvJGePXuSkJAQ6HDlR2pqaqJv377cc889XHbZZezevZuPPvqo9fnOnTvz4IMPcsUVVwQwSjldOicODu26QDt8TXRkZCSdOnVi/vz5OBwOrrnmGurr6/nss89at/3Nb37DU089xfDhwwMVrvwIJ8tpXV0dS5YsobCwkEWLFvHSSy9x6623cvHFFwc4ajmVH8rrhAkTqKmpYeXKlVRUVFBbW8snn3zCpEmTuPzyywMctZzKqfrgjz/+GIBJkyaxefNmqqurAxitnK4T5Tc8PJxrr72WiooKFixYQFpaGi6Xi0ceeYTRo0fTo0ePAEctx3rzzTeZNWtW6xImHo8Hv9+P1WrloosuYtCgQVxwwQUMHz6cV155BY/HA4DVauUXv/gF119/fQCjlx/jyHsEdU4cHNpVgXZsJ+Pz+fD5fKSlpXHhhReSn5/P3LlzufTSSzEYDK3fvPt8PkJDQxk9enQAo5cTOZ2cGo1G3G43w4cP5+9//zuLFy/m1ltvDewByAmdblutq6ujf//+vPbaa8ydO5dJkyYF9gDkhE43rxaLBYCRI0eyatUqoqKiAhe8nNLp5NdkMuHxeIiMjGTixIksX75c/XEb4vf7aWxs5IEHHuDDDz9k1qxZTJkyhY0bN7ZeQr5w4UL++te/ApCWlsbll19OSUnJUSfy0vYcvuz//fffb53NGsDr9eL3+3VOHCTMgQ7gVPx+P263mylTppCfn4/P52PevHlMnTqVgQMHArBixQr27t1LZmYmL7zwAnl5eVRXV7deaqEpYtuWn5LT+Ph4AGJiYgJ5CHICZ5rXmpoaEhMTW/ejSxrblrPRBwOYTKZAHYKcxNnojzVDZ9vicrkIDQ3FaDSSl5fH5MmT6datG0888QTTp0/nf//3f5k8eTJr167l0Ucfxev1YjKZGDVqFB988EHr5eXSNhkMBnw+H2+99RYFBQVcf/31pKamtj6vc+LgYPC34TvwD3cyTU1NXHfddUd1MkBrJ7NmzRqmTZtGz549Wb16NV9//TXjxo3jsssuC+wByHGU0+CkvAYn5TW4Kb/BxeVy8eSTT1JeXs6QIUMYO3Ysf/rTn4iLi2PatGnMmTOHF198kWnTppGcnExoaGhrkS1t3+H2Ci1F2KOPPorNZqNbt2689NJL+P1+fv3rX7N+/Xqeeuoptdd2rk0WaKfbyYSEhOjG5DZOOQ1OymtwUl6Dm/IbfBoaGpg6dSqVlZUMHDiQGTNmMHPmTDZt2sQnn3zCQw89RHZ2Nrfffjv9+vXjkUce0UhKO3G4vVZUVDBgwADuvvtuli5dyooVK0hPT+fVV1/l6aef5pJLLmH9+vWkp6cTFxcX6LDlJ2pzrbOhoYGHHnqIwsJCevXqxfPPP09+fj6DBg0iJyeHL7/8kjFjxpCQkMCSJUtITU3VB0cbp5wGJ+U1OCmvwU35DS5VVVUANDY2smzZMu68805++9vf0rVrV9avX8+kSZNISEjg5Zdfxul0YrfbiY+PV3HWThzbXv/+97+zdOlSBg8ezJ///GeuuuoqsrKyePnllwHIzs5WcRYk2kwLVScTfJTT4KS8BiflNbgpv8GlpKSE22+/nbvuuotXXnkFp9PJ66+/zuDBg6mtraWwsJD4+HgiIyP51a9+RUREBBMnTiQ/P59hw4YFOnw5hRO119/85jf06NGDtWvXEhkZCUBycjI/+9nP2LVrFzNmzAhkyHKWBbznVScTfJTT4KS8BiflNbgpv8Hp/fffp66ujkmTJjFjxgzeeecdsrKyCAsLY82aNbhcLkaNGkVtbS1paWm8+uqrvPDCC3z55ZdkZWUFOnz5AadqrwUFBXTp0gX4fmr9oUOHcvPNN9OrV69Ahi5nWcBncTyyk3n88cepq6vjwQcfxGazsWDBghN2Mjt27FAH04Ypp8FJeQ1OymtwU36Dx9tvv01OTg5dunQhLy+PjIwMxo8fz759+/jiiy/o1asX48aNY8eOHaSmpjJnzhxefvllpk6dym233aactgM/pr1efPHFVFZWUl1dTWZmJklJSTz00EOBDl3OsoCMoL399ttMmTKFGTNmHNXJ3HrrrSxfvpzFixcDHNXJDBkyhBUrVmCxWNTJtEHKaXBSXoOT8hrclN/g87e//Y3XX38dn8/H66+/zqeffkpubi47d+7kV7/6FTabjXXr1gGwdetWDhw4wPLly3njjTe47bbbAhu8nNTpttfZs2czYsQIvvrqK9rgPH9ylpz3Ak2dTPBRToOT8hqclNfgpvwGH5/Px9q1a7npppt4+umnGTZsGKNGjWLPnj3MmjWLqKgoLr30UjZv3ozT6WTQoEE899xzfPDBBwwfPjzQ4ctJ/JT2OmnSJK0bGsTOa4GmTib4KKfBSXkNTsprcFN+g5Pf7+f2229n7Nix+P1+tmzZQnZ2Nn/5y1/4/PPPefTRR9m9ezfp6enY7XYmT57M1VdfHeiw5RTUXuVkzus9aIc7mYEDB7Z2Mr/85S8ZO3Ysf/nLX/D5fNTW1h7VyUjbppwGJ+U1OCmvwU35DU4mk4nx48cDLaMoBw8epEePHowcOZIDBw5QUVGB2+3mz3/+c4AjldOh9ionc14LNHUywUc5DU7Ka3BSXoOb8hv8du/eTXJyMgUFBTzyyCNkZ2fz7LPPajmEdkjtVU4mYLM4qpMJPsppcFJeg5PyGtyU3+CUl5fHoUOHeP755/n1r3/NXXfdFeiQ5CxQe5VjBaxAUycTfJTT4KS8BiflNbgpv8HJbrdz5513cv/992O1WgMdjpwlaq9yLIM/QHN0vvrqqzidTnUyQUQ5DU7Ka3BSXoOb8hucfD6fRlWCkNqrHCtgBZo6meCjnAYn5TU4Ka/BTfkVaT/UXuVYASvQRERERERE5Ggq10VERERERNoIFWgiIiIiIiJthAo0ERERERGRNkIFmoiIBIW6ujruvfdeSkpKuPPOOwMdjoiIyBlRgSYiIkGhpqaGHTt2kJCQwD//+c9AhyMiInJGNIujiIgEhbvvvptVq1Zx8cUXs2PHDpYuXcrUqVMJDQ1l+/bt1NbW8rvf/Y6PPvqInTt3cvnllzN16lS8Xi9PP/0069atw+v1cu2113LbbbcF+nBEROS/lEbQREQkKDz66KPEx8fz8MMPH/V4aWkp7733HnfddRcPP/wwTz75JPPmzWP27NnU1dUxe/ZsAObOncucOXNYsmQJ69evD8QhiIiIYA50ACIiIufSRRddBEBycjJdu3YlNjYWgKioKGpqalizZg07duzg66+/BqChoYFdu3aRnZ0dsJhFROS/lwo0EREJahaLpfXfZvPxH3ter5c//vGPjB49GoDKykrsdvt5i09ERORIusRRRESCgtlsxuPxnPbrhg0bxuzZs2lubsbpdDJx4kQ2bdp09gMUERH5ETSCJiIiQSE2Npbk5OTj7kE7lZtuuomCggImTJiAx+Ph2muvZejQoecoShERkZPTLI4iIiIiIiJthC5xFBERERERaSNUoImIiIiIiLQRKtBERERERETaCBVoIiIiIiIibYQKNBERERERkTZCBZqIiIiIiEgboQJNRERERESkjVCBJiIiIiIi0kb8f3LtR3gr/AHqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display cumulative returns of the strategies on the test set\n", + "data = res.dropna().loc[\"2020-01\":\"2021-01\"]\n", + "data.cumsum().plot(figsize=(15,8))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 16.2.3. Apply portfolio management technics" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimization terminated successfully (Exit mode 0)\n", + " Current function value: -0.25406110980306784\n", + " Iterations: 7\n", + " Function evaluations: 42\n", + " Gradient evaluations: 7\n", + "[0.317 0.501 0.112 0. 0.071]\n", + "[*********************100%***********************] 1 of 1 completed\n", + "\n", + " -----------------------------------------------------------------------------\n", + " Beta: -0.144 \t Alpha: 27.36 %\t Sharpe: 0.603 \t Sortino: 0.954\n", + " -----------------------------------------------------------------------------\n", + " VaR: 66.55 %\t cVaR: 79.59 % \t VaR/cVaR: 1.196 \t drawdown: 20.91 %\n", + " -----------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAAHnCAYAAAAM6DS1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXxTd/cH8E+sberuBm2hFKe465CxDZ45E+YbY/qMCT+mz9yY75m778GGDQYDhmuhFCl19za1JI3d3x9pbu5N0jZpkzRNz/v12muRm+Ry2yY595zvOQKGYRgQQgghhBBCCHFLwt7eAUIIIYQQQgghjkNBHyGEEEIIIYS4MQr6CCGEEEIIIcSNUdBHCCGEEEIIIW6Mgj5CCCGEEEIIcWMU9BFCCCGEEEKIG6OgjxBC+jGVSoUvv/wSS5YswejRozF58mTcd999OHv2LG+7wYMHY9OmTRafg3vf0aNHMXjwYAwbNgzNzc1m21ZXV2PIkCFIS0tjb7vllluwZs0ai89tel9H+/HUU09h8ODBHf43e/ZsdtuamhqkpaVh0aJFZq/V2XPccsst7Gvddttt7OVp06ZBp9NZ3P/Vq1fjiiuu6PL5R48ebfHxHT1u+PDhmDNnDt555x1otVp229mzZ3f4GosXL7bp3zl79mx8/PHHFveJe19paanZc6SmpmLMmDG4/vrrcfDgQfZxht+Pt99+2+w5Dc9z4sSJDo8FIYSQ7hH39g4QQgjpHQqFArfeeisaGhrw0EMPYeTIkWhtbcV3332Hm266CZ999hkmTpzY7effvXs3lixZwrvtzz//BMMwEAgEPdx7vjVr1uCxxx4DAFRUVODaa6/Fxx9/jBEjRgAARCIRu+2mTZsQFxeHvLw8nDhxAmPHjgUAfPDBB1Cr1QCAjIwMPPjgg9iwYQPCwsIAABKJxOx1r776amzYsAHHjx/HhAkTePcplUrs2LEDDz30EHvb4sWL8dRTT5k9j1DY+TlY08c1Nzdjx44dePfdd+Hj44N77rmHve/uu+/G8uXLzZ5DLBZ3+99pDe7xZhgG5eXlWLt2LVasWIHt27cjJiaG3fbLL7/E/PnzMWzYsG69FiGEENtQ0EcIIf3Uu+++i8LCQmzZsgURERHs7a+99hrq6urw4osvYsuWLd0K0CZOnIgdO3aYBX3bt29Heno6MjIyerr7PH5+fvDz8wMAtLW1AQACAgLYQIZr48aNWLRoEfbu3Ytff/2VDfoCAwPZbQICAgAAwcHBFp/DYOzYsYiPj8fWrVvNgr5du3ZBpVLhyiuvZG/z8vLq9Pk6Yvq4sLAwrFixAkeOHMH27dt5QZ+3t3enr9Gdf6c1TI93eHg4Xn/9dcycORO7d+/Grbfeyt4XHR2N1atXY/369d0OMgkhhFiPyjsJIaQfUqlUWL9+Pa655hpewGfw7LPP4u233+52Rm7BggU4ePAgWlpa2NuqqqqQlZWFefPmdXu/eyozMxM5OTmYPHkyLrvsMuzYsQONjY3dfj6BQIClS5dix44dbPbMYNOmTZg1axaCg4N7utsd8vDwYDN4rsjDwwMAzPbxueeeQ0FBAT755JPe2C1CCOl3KOgjhJB+qKSkBE1NTRg5cqTF++Pi4pCamtrt5584cSKkUin27dvH3rZ9+3ZMnjwZ/v7+3X7entqwYQNCQ0ORnp6OhQsXoq2tDRs3buzRcy5duhRNTU28tWt1dXU4dOgQrr766h7usWUqlQqbNm3CwYMH2TWDrsaQLfb29sacOXN496WkpGDFihX49NNPkZ2d3Ut7SAgh/Yfrnh4khBDiME1NTQDgsABMLBZj7ty52LFjBy6//HIA+qDvxhtv7LDpiaOpVCps27YNixYtglAoRGJiIoYOHYrffvvN4ho4a0VFRWHSpEnYsmULZs6cCQDYvHkzgoKCMG3aNN62GzduxLZt28ye49Zbb8Wjjz7a4WuYPk6pVCIhIQGrV6/GzTffzNv2448/xueff272HE899RSuv/56W/5pNrnzzjvZtYlarRYMwyA9PR0//vijxWzyvffei7/++gurV6/G77//7rD9IoQQQkEfIYT0S0FBQQAAmUxm1fZisRgMw5jdbgjgLK3LWrBgAR588EEoFArIZDJcuHABc+fOxc6dO82eu6NAUKfT2a18cffu3ZDJZFiwYAF728KFC/HWW2/xGrp0x7/+9S8888wzUCgUkEql+OOPP7BkyRJeAxkAmDt3Lv7973+bPb6r4NvwOJ1OhxMnTuD111/H3Llz2U6bXDfddBOWLVtmdrutZaa2/lxeffVVDB06FAqFAl999RUOHz6M+++/n9ep1fT5X3nlFVx77bX48ssvzbqpEkIIsR8K+gghpB+Kj49HSEgIzpw5Y/HL9tGjR/H111/jP//5D8LDw+Hv789bn2dgWA9naAjCNWnSJHh6emLfvn2oqKjAtGnT4Ovra7adv78/WltbLe5nU1MTr/FIT2zYsAEAcPvtt7O3GQLZ3377rUdB37x58/DCCy9gz549GDx4MM6dO2dxLIGvry8SEhJsfn7u4wYMGAA/Pz88/PDD8Pf35zVxAfQ/i+68hqnOfi6NjY1mP5fw8HD2dV9//XWsWLEC9913H9avX4/ExESLz5OWloa77roLH374YY/KiQkhhHSO1vQRQkg/JBQKsXTpUqxbtw5VVVW8+xiGwWeffYaCggK2G+PQoUNx8uRJs+c5efIkhEKhxWyOWCzGnDlzsHPnTuzYsaPDTM7QoUORmZlp1gilvr4eBQUFGD58eHf/mayamhocOHAAy5Ytw8aNG9n/Nm3ahKlTp+LPP//sUUMXT09PLFq0CH/++Se2bNmCMWPGYMCAAT3e744sWLAAixcvxvvvv++wNXFDhw7FqVOnzG6/ePEi5HJ5pz8XgUCAl156CRKJBE899ZTFLLHBypUrERcXh//85z922W9CCCHmKOgjhJB+6v7770dsbCyWLVuGLVu2oKSkBBkZGXjooYdw/PhxvPzyy2z3zjvuuAM7duzAO++8g7y8PBQUFOCPP/7Af/7zHyxbtowtFzW1YMEC7NmzB9nZ2Zg1a5bFba6++mooFAo8+uijyMzMRGlpKQ4ePIgVK1YgOTmZXSdnkJ2djX/++Yf338WLFzv9t27atAkMw+Cuu+7CoEGDeP/dddddaGtr63D4vLWuvvpq7N+/H9u3b++wgYtSqURNTY3F/zQajU2vt2bNGvj4+OCZZ57hlWHK5fIOX6Oz4MvULbfcgvPnz+PZZ5/FxYsXUVxcjF27duHRRx/FrFmzMGTIkE4fHxoaiieeeAIZGRn46aefOtzOw8MDr7zyCsrKyqzeN0IIIbah8k5CCOmnfHx88MMPP+Dzzz/Hhx9+iIqKCvj5+WHkyJH49ddfeV/qJ0+ejE8//RSfffYZfvrpJ7S1tSE2NhbLly/nlUuamjRpEjw8PDBhwgR4e3tb3CYkJAS//vor3n33Xdx3331oampCaGgoZs+ejUceecRs7diXX36JL7/8knfbFVdcgbfeeqvD/di4cSNmzpzJGxDO3cfU1FT89ttvvFlythoxYgRiYmJQVlaGhQsXWtxmy5Yt2LJli8X7/ve//9mU1QwODsbq1avx5JNP4ocffmD3/fPPP7fYyAUADh8+bPXavuTkZPz444/48MMPsXz5csjlckRGRmLRokVYuXKlVc9x9dVXY/PmzVi7dq1ZB0+ukSNH4rbbbsNXX31l1fMSQgixjYCx5bQfIYQQQgghhJA+hco7CSGEEEIIIcSNUdBHCCGEEEIIIW6Mgj5CCCGEEEIIcWMU9BFCCCGEEEKIG6OgjxBCCCGEEELcmFuMbKipaXb6awYFeaOhQe701+3v6LjbFx3P3kHH3TnoOPcOOu7OQce5d9Bx7x103K0TFubX4X2U6esmsVjU27vQL9Fxty86nr2Djrtz0HHuHXTcnYOOc++g49476Lj3HAV9hBBCCCGEEOLGKOgjhBBCCCGEEDfm1KCvqqoKjz76KNLT0zFp0iSsWrUK9fX17P27d+/GokWLMGzYMFx++eXYu3evM3ePEEIIIYQQQtyO04I+hmFw7733Ytu2bYiJiUFAQAA2b96Mu+++GzqdDhcvXsRDDz2E4uJiDBs2DEVFRVi5ciUuXbrkrF0khBBCCCGEELfjtKAvPz8fxcXFGDp0KDZt2oRNmzbB19cXWVlZyM/Px/fffw+NRoNHH30Uv/zyC1auXAmNRoMffvjBWbtICCGEEEIIIW7HaSMbkpKScPLkSbS2tkIgEKCxsREqlQoikQh+fn44deoUAGD8+PEAgIkTJwIAMjIynLWLhBBCCCGEEOJ2nLqmTyAQwNfXF1988QWuuOIKaLVaPP7444iIiEBlZSUAIDAwkPd/w+2EEEIIIYQQQmzXK8PZ9+/fD5lMhoCAAAgEAgCAUqkEAEgkEv2OifW7plAouny+oCDvXpnf0dkAROI4dNzti45n76Dj7hx0nHsHHXfnoOPcO+i49w5rjzvDMHjjjTewY8cO1NfXY9CgQXj22WcRERGBv/76C8uWLbP6NYuLi3Hq1CksWbKkm3vtOnol6Pvggw8gl8tx++2349VXX0VUVBQ8PT2hUCig0WgAgP2/VCrt8vkaGuQO3V9LwsL8UFPT7PTX7e/ouNsXHc/eQcfdOeg49w467s5Bx7l30HHvHbYc96NHD+Orr77CW2+9j6SkZLz66n/wxBNPYfDgVBQWFmDevCusft0nnngKwcHBmDJlTnd33ak6C4ydGvQ1NTVBrVYjJCQE/v7+mDdvHj799FMcOXIE4eHhKCoqQmNjI2JjYyGTyQAAkZGRztxFQgghhBBCSA99susc3tp2Gq1tGrs9p4+nGKsWjcJ9c4d2vI2PLwDg55+/x6xZc7Fq1WqUl5fhkUfuBwA88MA9WLToCqxd+zpSUgZBqVTi5ZffxDPPPIX8/Fz4+vphxYoHAQAZGScBAB4ennj44VV4+eXnceLEMcTFxeGpp57BoEGpOHz4AN5++3Wo1WpMmDAJ27Ztxo8//g+33HIdXnjhFcyaNRfvvfc2jh8/gh9++N1ux8JWTlvTt2vXLowbNw4rV64EwzBgGAZnz54FAISEhGDEiBEAgKNHjwIAjh07BgBIT0931i4SQgghhBBC7OCTv8/ZNeADgNY2DT75+1yn2wwbNhxPPLEGVVVVeOutV3H99Utw8uRxzJ07H6mpaXjjjXcB6JeW/etf1+HVV99GVVUlJk+eil9+2YCUlEHYuHEd5s1bgOHDR2LGjFl47LGn8P33XyMvLwfffPMTJkyYjJdffgE6nQ4vvfQcRo0ag88++wZ1dXUAgMjIKIwdOwG7du2ATqfDnj27sGiR9RlGR3Bapm/KlCkYOHAgMjIycOWVV0IoFOLixYsIDg7Gddddh/LycmzduhVr167Fzp07kZWVBYlEgptuuslZu0gIIYQQQgixg/tmD3VIpu++2R1n+QAgNzcHgYFB+OWX9aisrMQ333yO77//GuPHT4JQKIS3tze77cSJU+Dn54empkZkZp7B+fPnUF9fD0DfZ0QkEkEsFsPLywt5eTmoqqrEnXfeDK1WC4VCgerqKjQ2NmL69FmIiIjE1KnTcfToIQDAlVcuwX/+8ywOHdqPhoZ6LFhwud2OQ3c4LeiTSqX4+uuv8eabb+LQoUPQ6XSYN28ennzySYSHhyM8PBwffPAB3nnnHWRlZSE+Ph6PP/44UlJSnLWLhBBCCCGEEDu4b+7QTsswbWHLmr5Lly7i9ddfwosvvo6hQ4fBx8cHnp6eCAsLQ01NFRoa6tltPTw8AABff/0FVColnnjiP3jttRfR1NQEABCJRGhpaUVjowwJCYkoKSnGqlWrkZWVicbGRgQHhyAgIAAHDuzD4MGp2L9/L/vcU6fOgK+vL9566zVMmjQFwcEhdjkW3eXUNX2RkZF4++23O7x/7ty5mDt3rhP3iBBCCCGEEOIuFi5cjOLiIrz99mtobJQhJiYWzz//MlQqFf7+exdefPFZzJ07n/eYuXPnY+3a13D33cuRkjIINTXV0Gg0mDhxCr788hN88smHWLHiQVRUVGDNmifg4+ODe+65Hx4eHnj66Rfw1luv4cSJY0hL0we5QqEQYrEYCxcuxo8/fovLL3+yNw4Fj4BhGKa3d6KneqOLEnVv6h103O2LjmfvoOPuHHScewcdd+eg49w76Lj3Dlc+7m+99SoiIqJw2WUL8O23X+Kff/Zgy5ZdaGlpwfvvv42jRw9h3bqt7Dg6R3KZ7p2EEEIIIYQQ4i5SU9Pw9def46uvPkVYWDhWrVoNALj99pugUMixatVTTgn4utL7e0AIIYQQQoiD1bUo8czvx6DR6nDj5BTMHBINgUDQ27tF+rjFi6/C4sVXmd3++++bemFvOkZBHyGEEEIIcXu/HM7FhhMFAIDNGUVIiQzAA/OG4doJSRT8EbfntDl9hBBCCCGE9JbS+hbe9ZzKRjz8/UFsPlXUS3tEiPNQ0EcIIYQQQtxek0Jt8fYTBdVO3hNCnI+CPkIIIYQQ4vaaFSr28pL0RPZyiUkGkBB3REEfIYQQQghxe81KY6YvLTaYvVxa19obu0Mc5NSpE5g6dSz739y5U/HSS89Bo9HY5fkfeOAePPfcars8lyXbtm3G1Klj0dbWZtfnpUYuhBBCCCHE7XEzfWkxQezlkjrK9Lmjzz//FrGx8Th37ixWrXoIM2fOxtSpM3p7t3oNBX2EEEIIIcTtNXEyfQPD/OElEUGp1qJRoUKjXIUAb49e3Dv38+m5Q1h7Zi9aNaquN7aSj9gD/x45E/cOndzltt7ePvDz84O/vz8AQCr1xv/+9wu+++5rAMANN9yMZctuwbZtm/Huu29hwYJF2LlzOwYOTMbrr78DLy8vvPXWq9i3bw/EYjGWLbsVy5bdAgCorKzE3XffitLSUtx883LcdNNyPPDAPfD09EJtbTXq6+txyy23YceO7aiqqsCdd96HpUuvwZYtm/D55x+jsbERAwcm4ZVX3kZ5eSkeeug+pKePR2FhHm6//R4AQFubEg8/vAJarRbvvvsRfHx8e3TsqLyTEEIIIYS4PW6mz0/qgbgQ45doyvbZ32fnD9k14AOAVo0Kn50/ZNW2d9+9HPPnz8C9996OkSNHIyAgEO+99zYefvgxvPHGO/jii/8iO/siAEAub0Vy8iA8//wryMw8jWPHDuOPPzbg77934YMPPsH99z+ErKxMKBQKAEBNTTWefvo/mDVrDr755gv2NQsL8/Hii68jLi4en3/+CZ54Yg3S08fhxx+/BQA0NTVh5cpH8fnn3yE/Pw9HjhxgHztu3Hj8979fwcNDf/Lh2WdXo6WlBW+//UGPAz6AMn2EEEIIIcTNMQzDW9PnL5UgLtgXOZWNAPTNXIbFBXf0cNIN96RNdkim7560rrN8APDKK28iOjoGNTU1WLNmFZ5//v/AMAzeeONlCAQCqNVqZGWdgVTqDQCYN28BhEL9vMa2tjYUFOQjNjYWKSmDkZIyGIsWXcE+99Chw5GQkIhBgwbjjz82sLenpQ1DfHwCYmJioVKpMHhwKuLjE5GRcQoAIBaLsGHD7wgNDYNYLIZKZTw2EyZMQnR0DE6f1m977lwWvL2lEInsk6OjoI8QQgghhLg1hUoDrY4BAHhJRPAQiyjT52D3Dp1sVRmmNcLC/FBT02zTY3x8fODn5w+NRgORSIz4+EQUFhbg7rtXICIiErt27cCIEaOQk3MJACAU8oOrgQOT8OefW5CdfRFFRYX45pvP8eGHn7VvK7D4mtzbTZ+vpaUF77+/Fg8++ChSU9Nw4MA+MAzD3u/h4cnb/uuvf8Sjjz6Ar776DA8++G+b/u2WUNBHCCGEEELcGndGn5+XBAD4QR+NbXA7d9+9HAAgEokwePAQrFz5MEaNGo0ff/wOzc1NmDZtJhISBrBBn6krrliCixfP4+GH74NE4oGbbroVwcEh3d4fHx8fzJlzGT799GPExcUhIiIS5eVlSEkZbHH7sLBwPPDAw3j22dW4/PKrMHBgUrdfGwAEDDfE7KNsjfztoTtnHEjP0XG3LzqevYOOu3PQce4ddNydg46zbS5VyjDjxU0AgIHh/jj43FL8cbIQ9361DwAwf0Qcvrl3dpfPQ8e9d9Bxt05YmF+H91EjF0IIIYQQ4tZaLGb6fNjbSqm8k7g5CvoIIYQQQohba1IaG2b4S/XdEam8k/QnFPQRQgghhBC31szN9En1mb4QXy9IPfTtLZoUasjkbb2yb4Q4AwV9hBBCCCHErTVxZ/S1l3cKBALEBRtLPKmDJ3FnFPQRQgghhBC3xp3R59de3gmAxjaQfoOCPkIIIYQQ4ta45Z3+Xh0EfbSuj7gxCvoIIYQQQohb4zZyMazpA4C4YG6mr9Wp+0SIM1HQRwghhBBC3FqzhTV9AD/TR2MbiDujoI8QQgghhLg17po+/47W9FF5J3FjFPQRQgghhBC3ZmlkAwDEBvMbuTAM49T9IsRZKOgjhBBCCCFujTuygdvIJcTXk53V16xUQyZXmT2WEHdAQR8hhBBCCHFr3PJOX06mTyAQIJ7GNpB+gII+QgghhBDi1po7yPQBtK6P9A8U9BFCCCGEELfGb+Qi4d0XF+zDXi6qaXbaPhHiTBT0EUIIIYQQt6XSaKFUawEAIqGAXcNnMCgqkL2853yZM3eNEKehoI8QQgghhLitJm7nTi8JBAIB7/4FI+JhuOlgTiWqGuXO3D1CnIKCPkIIIYQQ4rZalJzB7FIPs/sjA70xKTkSAMAwwJaMIqftGyHOQkEfIYQQQghxW9xMn7+XxOI2V6Unspc3nSxw9C4R4nQU9BFCCCGEELfV3EWmDwAuH50AkVBf43k8v4ZGNxC3Q0EfIYQQQghxW6Zr+iwJ8fXC9NRo9vrmU4WO3i1CnIqCPkIIIaQfqGtR4qO/snAop7K3d4UQp+KOa+go0wcASzglnhupxJO4GQr6CCGEkH7gxQ0n8NLGk7jxw79Q26zo7d0hxGl4g9mlljN9ALBgZDw8xPqvxmdL6pFd3uDwfSPEWSjoI4QQQvqBE/k1AACVRodLlY29vDeEOE8TJ+jz8+o40+cv9cDsoTHs9Sve3o6P/spCW/uMP0L6Mgr6CCGEEDfHMAwqZMbZY0oVfYkl/Uczd01fJ5k+ALhr5hAI24f2NSvVeGnjSUx/cSO2nCoEwzAO3U9CHImCPkIIIcTNtSjVkKs07HWFWtPJ1oS4F+6avo5GNhhMGRSFH+6fg+SIAPa24roW3P3lPix950+czK922H4S4kgU9BFCCCFurqJRzruuUFHQR/oPa0Y2cM1Ki8Hfa67Ey9eOR5CPJ3v70bxqTHjqNzz83QFUyuSdPAMhroeCPkIIIcTNmX5BVdIaJdKP8IazWxH0AYBEJMQdM4fg0PNLcfesIRC3z/ADgN+O5mHyCxuwdvsZaHU6u+8vIY5AQR8hhBDi5iob+d06KdNH+hNu907fLso7TQV6e+I/14zH3qevwvzhceztCpUGb245jS/2XrDbfhLiSBT0EUIIIW7ONNOnoEYupB/hrenropFLR5IiAvDNfbOx45mrkBodyN5+vpTGOpC+gYI+QgghxM1VNZqWd1Kmj/QfzVaObLDGnOFxeGLxaPZ6Q2tbj56PEGehoI8QQghxcxVmmT4K+kj/0aS0fU1fZ7jNXSjoI30FBX2EEEKIm6PyTtJfaXU6tHCCPl8vcY+fkxf0ySnoI30DBX2EEEKIm6PyTtKXVTcqsOqnQ3j3z0ybB6S3thl/1308xRAJe/7VN8ibMn2k7+n56Q5CCCGEuCytToeqJtPunZTpI33HR7uy8OPBHABAemIYpqVGWf3YJs56PnuUdgJAoI/xeWStKuh0DISckQ6EuCLK9BFCCCFurK65DVodPztCa/pIX3Kx3NghM7tCZtNjmzkz+vxsHNfQEQ+xiB39oGMYXndQQlwVBX2EEIdiGAZP/nwYc175A0dyq3p7dwjpdypMSjsBGs5O+pbaZiV7udoka90VbqbPz06ZPgAI9DY+V0OrspMtCXENTg36ampqsHr1akydOhXp6em45ZZbcObMGfb+G264AYMHD+b9d+ONNzpzFwkhdna6qBbfHbiE82UNePfPzN7eHUL6nUpZq9ltfTHTp1Rr8e8fDuL+r/9BfQt9ye5PuIFejY1BH7eJi70yfQB18CR9j9PW9Ol0Otx///3IzMxEYmIiYmJicOzYMdx2223YtGkT4uLikJ2dDalUismTJ7OPS05OdtYuEkIcIL+6mb1cVm/+5ZMQ4liVjeZfkvti0Pf1vgv4+XAuAGBobDBWzhvWy3tEnEGj1aGupQeZPqX91/QBpkGfqpMtCXENTgv6zp8/j8zMTMTGxmLr1q0Qi8V45JFHsH37dmzevBmLFi2CXC7HuHHj8PHHHztrtwghDlbByTLU0dl5QpzOdFwD0DfLO3dllbGXi2ubO9mSuJO6FiW4DTurm20t7+SOa6BMH+m/nBb0hYeHY+3atfD09IRYrH/Z0NBQAEBDQwMuXLgAAFCr1Vi9ejUEAgGuuuoqTJgwwVm7SAhxAO5QaJm8DVqdzi4tswkh1jEd1wD0vUxfq1KN4/nV7PVGBWVW+ouaJqXJdduCvmZe904K+kj/5dSg7/LLL2ev19fXY9u2bQCAUaNG4fz58wCA06dP4/Tp0wCA9evXY+3atVi0aJGzdpMQYmflnEwfw+jLYEL9vHpxjwjpXyosZPoUfSzTdzi3Cmqtjr3eKKegr78wLeesbVbadPKQm+mzZyMXbtAnowHtpA/olTl9TU1NuOuuu1BXV4ekpCTMnz8fdXV1SE9Px9KlS7FgwQL8+uuvePPNN/HKK69g/vz5EIlEHT5fUJA3xOKO73eUsDA/p78moeNub44+nrUtJh+GHiL6GYJ+j52FjjNQa6GsWqnWOvTY2Pu5jxXW8K63Onj/+4r+cAyU4I8b0eoYCL0kCAvwturxBXXGUuCU2GC7HLOwMD/Ehvsb91Gnc9rP4r2tp3HgQjmevW48hseHOuU1XUV/+H13JKcHfTKZDHfccQfOnTuHgIAAvPfee5BIJFi+fDmWL1/ObnfnnXfi448/Rk1NDUpKSpCYmNjhczY0mJ/FdLSwMD/U1NCaAmej425fzjieRdVNvOs5xXUI9bRfiU1fRL/HzkHHWc9SAyWFSoOqqiaHDJR2xHHffqqId72+SdHvf7b95fc7r6zB7LYLBTUQxAR3+VidjsH+8+Xs9SHh/j0+ZobjLuHEouW1LU75WWSV1OOxbw8AAJpa2/DD/XMd/pquor/8vvdUZ4GxUxfWtLa24s4778S5c+cQGBiIb775BikpKQCAsrIyZGRkoK1NnxUQCASQSPRfDDWavrX2gBCip9JoUdPMzzLU09oHQpxGodKw643EQgE8xMaPfaWmb5R4lta3ILeqkXebjMo7+w1La/is7eB5saKBXf8Z5ueFJE52rqeCe2FN34HsCvbypcrGTrYkxJxTg741a9YgKysLfn5++Pbbb5GWlsbet2LFCtxwww3Yvn07AP3aPplMhsDAQMTHxztzNwkhdlJloVV8XTN18CTEWbhfjsMDvOHtYSzwUfaRZi7/XKwwu61R3gaGYSxsTdyN5aDPus+RwzlV7OWJyREQCOyX2Q7shaDvSJ7x31PVKKe/AWITp5V3ZmZmsgGdv78/3n//ffa+KVOm4I477sCTTz6JNWvWYP369cjKygIArFy5Eh4e9lt4SwhxnvIG87IyyvQR4jzcJi6RAVJUyBg2S9ZXmrnsu1BudptGx0Ch0sC7n5eK9weWAjxrO3geyTUGSZNSIu22T4Dzu3cyDINjecYOtiqNDnUtbdQYjVjNaUHfzp072ctlZWUoKzPO2wkKCsLLL78MhmHw1Vdf4fTp0wgPD8ejjz6KW265xVm7SAixM0tdA2lWHyHOw53RFxnozSuL7AtjG7Q6HfZzStqEAgF07dkNmVxFQV8/YKmU05ryToZheEHfxOQIu+6Xs7t35lQ1mgWXlTI5BX3Eak4L+latWoVVq1Z1us3SpUuxdOlSJ+0RIcTRLGb6TLt5EkIcprKRm+nzRiGnEUJfCPrOltSzX3TD/LwQ4O3Jru9rUqgQHeTTm7tHnKDWwjD2aguzJ03lVjWhtn05QZCPJwZHBdp1v/ylEggE+lFETQo1NFodxCLHrZriZvkMKhvlGBbXdUMbQgAnr+kjhPQv5ZTpI6RXmWb6pNw1fX2gvPNwTiV7ecaQaAT5GJd7UDMX99em1lr8OVuzpo/7uzM+KdzunWpFQiECvZ2X7TvKyVoaWKqmIaQjFPQRQhymQmYp00dBHyHOUmWS6ZNKjDNt+0Kmr4wzkiktJgj+nOHajTQQ2+3VWMjyAdaVd/LX89m3tNOAv67PsSchLGb6KOgjNqCgjxDiMBUWZmjWUXknIU7Db+TiDS9Opq8vBH3c0r4wfykCOJmVRoW6N3aJOBG3YUt0oLfF2y0xX89n3yYuBoHexpMQjmzmUiFrRXFdi9ntlVaUuRJiQEEfIcRhKNNHSO/irekL5Gf6+kJ5Zw2njC/MT4oAqbFxC2X63B93zuugqECI2ks0GxWqTn9/i+ta2BMevl4SDIsNcsj+8TN9jvts42b5xJwyVcr0EVtQ0EcIcQi1Voeq9rOxAgEgaV/grlRrIW+jM/SEOBrDMLxZmZEBUt6avr6Q6avhZfq8eJm+JlrT5/a4ZZyRAd4I43Sq7Czbx1vPNzAcIqFjvu7yOng6sLyTu55vxpBo9jJl+ogtKOgjhDiEfnCs/nKYn5TXVppKPAlxPJncmA3x8RTDT+oBL96aPtfP9NU2m2T6OOV0MgUFfe6OG/SF+nshzF/KXu8s6HPGej7AeQPauZm+K9MHsJepkQuxBQV9hBCH4H4YRQd5I5jz4UgdPAlxvCqT0k4AJt07XTvTp9bq2C/SQoEAwb6eCOA1cnGtoI9hGLQqqYrBnriBXbi/FBEBxnV9nTVzOZzjuPl8XNxMX72Dgr68qkacL28AoP87WDAiji1zbWht6xNl2sQ1UNBHCHEIbhOXqEAfhHAyfTSrjxDHM23iAsCkvNO1vyxym7gE+3pCJBTyMn2uVN6p1elw5dvbkfr4z/i/X4+gjb6I2wV3TWe4vxThnExfR0FfWYOx6YmXRIQR8SEO279gBw9o33iiAAve2MpWzQyPC4a/1AMRnONQ1cslnpUyOX44eAml9eaNZohroaCPEOIQ3MHs0YGU6SPE2UzHNQAwKe907UyfaRMXAE6di2aLsyX1OFFQA42Owdf/ZOPq93ZYbGRFbMMN7ML8pQjz73pN3xFOlm/cwHB4iEUWt7OHIAeWd76w/jhWfP0PWtqzxx5iIVZfOQaAMXMP9H6J5y2f7MbjPx3Gso92QadjenVfSOco6COEOEQ55wtPVJAPQnw5mT4HdjkjhOhVyDov71S4eDaqponfxAUAb05fkwuNbGg22ZeTBTW47LUtOMRpKEJsx/sd8JMi3K/rTB9/VIPjSjsB/kkIewZ9Z0vq8Mnu8+z1xFA/bH5sEdvEhRv09WYHzyaFClkl9QCAnMpGXGgvQyWuiYI+QohDcL9wRgV6I5gT9NU1u84ZekLcVWWX5Z0unulr5n/hB8Ar73SlkQ1ylXkAWtusxHXv78Snf58Dw1AGpDuqTdb08co7OxjcfjjXGGhPdGATF8C0e6f9fh9PF9Wxl8cNDMPOpxbzylQjA1wj6Cur52ez6SSHa6OgjxDiEPxGLj4I8eUueKdMHyGOxhvXENgHyzu5nTvbM3287p0utKaPuz5ySHQQ261Yq2Pw/LoTWPH1PzSqxkatSjXk7b+jnmIh/KUSk+6d5p8jNU0K5FU1AdCXQ45OCHXoPjqqvDOvqpG9PHtoLPw4GW7ApLyzF9f0lTVQ0NeXUNBHCHGICtM1fdxMH63pI8ThKnhr+vRflvndO/tQeWd7ps/XUwKhQN+5UK7SQK3V9cq+mZJzAuiR8SHY8eRijEk0BhybThbi5U2nemPX+iz+jEYpBAJBl41cuPPsRieE8n7fHcFR3TtzOUFfcri/2f3cTF9vNnIpM2neciSnitb1uTAK+gghdqfR6lDJyTJEBHjz1/RR905CHM7yyIa+k+njzugLbf+yLxQKTEo8XSPbJ28zHktvTzGig3yw/pEFuGXqIPb2P88U98au9VnVFhr5hJvM6TMtmz3MXc/n4NJOQD//UiLSf5VWqrV2+5viBX2RAWb3R7lII5dSk0yfTK7C+TLXW9d3oawBz687jukvbsR9X+2DxkVOFjkbBX2EELurblJA1/5hHOrnBU+JCMG+1L2TEGfRaHVm7e4BQCrpQ2v6eJk+40kjf6mEvdzkIgPaFZyZh4bskqdEhBevGc/eXtmocJnMZF9gup4PAHy8JPBuP75KtRbNJnMReUPZkyMdvo8CgYC/rs8O60yVai07ckIoECAxzEKmz0UauZiu6QOAgzkVvbAn5upalPhy7wVc9tpmzH7lD3z693nkVDZi08lCHM+v7voJ3BAFfYQQuzNt4gKAMn2EOJHpiRdD23pups/lyzubzTM9ABDA6ZjoKs1ceJk+Tkmhp0TEltbqGIZX9k46V2tS3mnQUYlnQ2sb2z1SJBRg7IAwJ+wlEMjJPNtjXV9hTRM7ly8uxIe3DtcgyqS8s7caBZmu6QOAw5f0gXddixI/HLxkcRtHUWt12Hm2BHd+vgej/+93PP37MZxt7y7KVdfcP088O7bYmRDSLxXVNrOXY4N9AQCBJmdDtTodREI670SII1ia0Qf03e6d3C/6AVLXa+bCPZbcwBrQvwcayt1L61sRH+rn1H3rqyxl+gB9AFjY/hlT3ahAcoS+/PFYXhUbLI2MD4GPlzEj7Ej8Dp49/33MreSUdkaYl3YC+oynn5cEzUo12jQ61Le28U6sOoulTN+R3Co0tLZh8ZvbUFjbjNhgHxx54V8O/by/UNaAX4/kYt3xfF5ZuIGnWAhfLw+2ykju4ie8HIWCPkKI3RVygr4BYfovOBKREIHeHpDJVWAYoKFVxXa4I4TYl6UZfUDfmdOn1urYrIlAAF55OHdNn6uUd3IbuXibNA+JDfbBiYIaAEBJHb/xBelYtYU5jQA/AOT+nh/mDGV39Hw+riBf+zZzyanqOugD9H/Xze0BYqVM7vSgT79233j8Q3y9UNeiRKNCheve38l+Dyitb0VlowIxQT52fX2VRosfDlzCL0dyLWbzACB9QBium5CEK9MT8cqmU/j+wCUAgKKfdtKloI8QYneFNcagL4FzVjvY14s9M1/XoqSgjxAH4Y1r4GT6uKViShfO9NU1K9msTbCPF8QiY5bAFcc28DJ9nvwMU2yIL3u5tJ6CPmtdqpCxl7mNS5IijGvcMgprcPX4gQBM1vOlOH49n0GQnQe0G0ZOAEBSJ0FfVKA3cjhB39DY4B6/ti2qmhTQtnfqDPPzwtTBUdhwogAAkFXKD8IqZXK7B31rfjuGHw5eMrs9MkCKayYk4boJyUjhNMHhnvCSu/B7nyNR0EcIsTtu0DeAswg9xNcThvXT9dTMhRCH4WX6AoyZkb6S6eO36+efHOKWd7pM905upk9iXt5pUGqhHI6Ya1GqkVFYy14fOzCcvTwxOQLv7zgLwBjoNStUbLZHIADGcbZ3NHs3cuF17owwb+JiEBHQu7P6uKWdMcE+mJQSyQZ9pioaWgE7r7Hcc76MvewpFmLhyHhcNzEZ01OjLJaScjPw3DW4/QkFfYQQuyusMZ6pTAzjZ/oM7DnTiBDCV2lhXAPQd9b01Vho12/AbeTiKuWd3OHsUk/z8k6Dkn6c6SuobsJb285gaEwQ7pmdxsvemjqaVwVNexZpaEwQr3Rx3MBwiIQCaHUMzpc3QCZvw6mCWrZx0dCYYF422NF4A9p72KSMYRhe0JdiYVyDATeDb00HT52Owepfj2Dn2RL831XpuHZCUo/2tazB+LscE+SLKYM6zq7aOyhtVarZBjEioQCnXr6W9/3CEm/PvnHCy5GoiwIhxK5alWq2655EJER0kPGDifvB3V+7ZxHiDB01cpGIhBAJ9cPNtTrGZUcIcDs3mpaB88s7XePkkZyzRsh0IDg/09d/g77/bDyB9cfz8eLGk7jny32ddo89dKmSvTxlcBTvPl8vCYbH6UsZGQY4lleNw7nG7Z0xn4+L+/uZX93UyZZdq2yUo7U9CxUg9eh0nZ6ts/q+P3gJ3x24hMpGBd7cerpH+wnws9YxwT4YEOaHYe0/lyAfT9w8xTijsqLBvkFfLuc4J4b6dRnwAaaZvv65po+CPkKIXXGbuMSH+PLKLILtvOCdEGJZR41cgL6R7eONa/A3yfRxyjubXLG80yToi+Nk+sob5NDpeqe9viP9c7Ecs17ehAe+2Y8KmXkJK8MwOJ5Xw17ffqYYN320C80dZGoPcIK+qRYySNwZfIdzKnE0t3eauAD8UtJDOZU9GvzNXc+XHBkAgUDQ4bbcv+s958vw/o6zOFdab3F8Q0ldC17ccIJ3vad/+7zyziAfCAQCfHPvbLx2/QTsWn0Fxg00lnNW2jnTx+tw2kk2lMub1vRR0EcIsS9u0Mct7QSAEB9Opo/W9BHiMFUdlHcCgJSz5sxlg74OBrMD/ExfoyuWd5oEfd6eEvaEl1qrQ1VT7w3TdpTX/sjAxXIZ1h3Px4wXN+H7A5d4wW1lo9zsPf9QTiX+9d4O3s8a0Gdvz5bUAdAPJ59gIYjjZvP2nC/H6aI69vqEJOcGfQPD/RHd3qSkWalGRlFtF4/omLXr+QD9SVWDCpkcr/5xCnNf3Yz0p/+Hx348hG2ni9CsUIFhGDz24yE2g2hQ3MNOstz5ezHtJzZignywfHoqooN8eO875Xae1ZdTJWMvd1YCyyWlNX0U9BFC7IvbxCXRZB5VMOfLGw1oJ8Qx5G1qNCn05UseYiGCOWuOAMCL8+XHVQe0czN94Z1k+lyle2dnmT6AX+JZUudezVwYhsFFTqfNZqUaT/x8GPd9tY/NOp0rbWDv95cau5tmldTjqrXbUcw5WXg4hz9vz19qvj5vfFI4DEmw7AoZW6Y8KDLA6V2hBQIBZqQaS1D/uVDe7efiZrA669wJAGkxQbh2QhJMk4EVMjl+OpSDOz/fi7QnfsFlr23B/uwKs8dz1953h2mmz1RUoPE2e2f6ciq56x4DrXoMd00fZfoIIcQOeEFfGP9MZQjnyydl+ghxDG5pZ0SAt1mJWF/I9PHX9Jk2cnG98k7+cHZLQZ/xC7C7reurkMkt/h5tzihiZ+dxW/hfMz4Ja2+aDGH772VBTTOuXLsdF8r0geFBToAyZbDl5iCB3p5Iiw4yu92Zoxq4pqdGs5f/sRBgWYu7Vq2zGX2APth8/9apyHz1Orx/61QsSU9EoEkDG42O4R177gmJAs5ndXdwG7lwf78NuGsOK2Vyi2Wn3cUN+gZ1o7yTm5nvTyjoI4TYVVEn5Z3cFtPcM5qEEPvhz+iTmt3vjDV9rUo1Xtl0Cp/sPtetL3u87p2mIxs43Ttdp7yTk+nzNA/64tx4bAO3ecnwuGDMGxbLXj+Uo1+bd44TeAyLDcaNk1Pwxd0z4SnWfw2talRg6Tt/4mhuFQ7mcNfz8Zu4cE20EOA5ez2fwVROcHqqoAYtyu41CuGtVesi6DMI9ZPi2glJ+O8dM3D2teux6d8L8dD84WxTFYOkCH88OH84e537WW2rJoWKrSbwkogsNpzx9ZLAz0uf1W3T6Oy2jl+t1aHAhuDYgL+mr382cqGRDYQQuyroYFwDAAyODoTUQwyFSoOyhlaUNbTafWArIf0df0aft9n93AHtjmpd/t6Os/hgp36WWkpEAOZwAgFrVPPW9HWc6WuU69csddbwwtF0OoZXJis1mdMHmJZ3ulemL4/zBXxIdBBmpkXjr6xSADBm+kqMQZ9hiPjCkfH46YF5uO2Tv9GsVKNRocINH/7FHkuJSIhxSR3P25uYHIEv914wu603hPpJMSw2GFml9dDoGBzKqcRlw+Nseg55G38MQUKobxePMCcWCTE+KRzjk8Kx+soxqJTJ8ff5MlQ2ynHz5EE4VWhsptOTTB93jZ6hiYslkYHeaOYMkO+sG6m1imqb2XEe0YHe8PWSdPEIPVrTR5k+Qogdtam1KG9vzSwQ8M9uA/oP8bGcAa3H8qpACLGvzpq4AM7J9O3ILGYvnymu62RLcxqtDvWtxkxfiMkaLYlIyJ611zFMt7Mq9mJa2mnpC7A7l3fmcZqPDAz353XWPFVYg9pmJdvgSywUYFBUIHv/5JRIrHtkPrsOjxs8j0kMtbg+0sA0wBsQ5mfx991ZpnPX9V20rcSzTa3Fe+0D5wH9engPsfnJA1tFBnpj2eQU/HvhSIQHSDGAcyK2qAdBn+lg9o7YOlbCGjnd6NwJ0Jo+gII+QogdldS3sANyY4J84GnhjPd4zpnbo7nVTts3QvqLig5m9BlIHby2paKhFZc4X8xszWzVt7SxjTyCfDwhsTDEO9DbdZq5KNSdN3EBTGf1uW95Z1JEACIDvdngQqnW4qdDOez9KZGBvEwzAAyPC8Ef/17I60YJAFMHd1zaCejn43HXc/XWej6Dabygz/pmLodzKjH31c14nxP0GbKh9hbPaa5WUt9icU4nwzCobVZ2WpZd2tB5ExcDW4K+DSfyMfG5dXj692OdjjXhNXGxsrQToDV9AAV9hBA7Kuqkc6cBN+g7lkdBHyH2VtnJjD6AX96pVNv/jPffZ0t510tszGzVNHc8rsHAn9vMpZfX9XFLxaQelrMzcSHcoK/Frk0tehsv6AvXN+/iBmDf/HORvTw01rz5CgAMCPfHH48tRFqM/n6hQIAFI+K7fO2ZaTHs5RmcZiq9YUJSBLtGMaeyscsxBQ2tbXjsx0P417s7eKMaRsSHYM1VYxyyj1IPMRuIaXUMSi2ckLnz870Y/tSvmPLCBqzdfsbiSZuuOncacDt4WprfaJBf3YRHvz+IotoWfLn3Au93xlROpYy9bO24BoDm9AG0po8QYkcFnXTuNEhPDINIKIBWx+BiRQNk8jYEenta3JYQYruqXs70/Z1Vwrtu6zwwXtDnb96IBuCPbWjs5UxfV+MaAP06RD8vCZqVaijVWtS1KM26kvZFKo2W/fkKBMZ13JNSItgMHzfD01kGKyLAGxsfXYDfj+ZhYIS/WSMSSx5ZMAJKlQbh/lIsHp3Qk39Kj0k9xBifFMGOR9h/sQLXT0o2245hGKw7no/n153gdbH28RTjqSvG4PYZgyESOi4nkxjmx/5MCmubMSDc+Fld3ajA9jP60uyCmma8ueU03txyGpNSInDdhCQsHp0IXy+JxRl9lkSadPC0hGEYrP71CNo0xqzjixtPYlpqtMWgrjvjGgDzsnadjoFQ2HtrgXsDBX2EELvpbDC7gY+XBMNig3GmuA4MA5zIr8FcG5s8EEI6VtFFps/Smj6lWgtPsbDHDVEYhsFuk0xfeUMrNFodxCIh1Fodfj+ah7yqRkjEQniIRJCIhZAIhfr/i4Q4y2n6YTqjz8CVBrR3Na7BIDbYFxfK9WMJSutb3SLoK6ptgVZnLOk3/Ps7KrUc3kUg5yf1wB0zh1j9+kE+nnj9xklWb+9o01Kj2KDvWH61WdCXX92Ep345YjY3b+HIeLx07Xh2yLsjJYb6sQ12Ck3W9RV20NHzcE4VDudUYfWvR7FoVALOFBsH0McEddxwJpo7oL2DoG/jyQKzNZBKtRYPfrsfm1ct4pV3MwzDy4rakukTCgXwkojYdaNKtQbentY1gXEXFPQRQuymsJPOnVwTkiPY5g5H86o6DPpK6lrwye5zuFDegFWLRmHyoN5ds0GIq2MYpuuRDbzyTi22nCrEg98dwJDoIKx7ZH6ngUtX8qubzErGtDoGFTI54kJ88dPBS3jq16NWP19Hg7Z5Yxvk9mkF313yLsY1GMQG+xiDvroWjEoIdfi+OVp+Nb+Ji0FMkA/iQ3zNsrxpMY5Zq+YqUjlNarjlnQzD4L+7zuGNLRm8jFZ0oDdevm4CFozsupTVXrhVOAUmA9qL64xB37DYYIT7S7H3Qjm7Vl+p1mL98XzeY3qS6WuUq/Dc/46z1+cPj8OeC2VQaXQ4U1yHd7dn4vHFo9j7K2RytLaXUwd6e3T4/tARqYeYDfrkqv4X9NGaPkKI3fAyfR2s6QO6buZiqO+f/Px6fLXvIg7nVOH59cfNtiOE8NW1tLHNGfylEotfakwzfZ/tOQ+lWouMolpsPV3Uo9c3zWAYGNb17bOxq+GwuBCLtwe4UiMXFXdcQ8dBH3ddn63rHF1VXpX5ej6DSSn87poxQT4I8nHvUv5wTjk1d+zIkdwqvLjxJBvwCQUC3DM7DfueWeLUgA8Av4OnSWaPG6TPGBKNH1fOxamXr8GzS9ORGh1o8fmiOumY2tWavlc2nURNs77ENTJAig+WT8VTV4xm7/9g51nUc0pg+aWdATZXJvT3Zi6U6SOE2IVWp0NxrfEDo9Ogb6Ax6DtTXAulWgsviQjZ5Q14b8dZbDpZyJ5ZNHC3jneEOEJlFzP6AH6zEYVKw/sitSOzBNeMT+r263ODPsPaXUCf2UIKkF0hY++/c0Yq/L09oNbooNLqoNZoodYyUGu1UGl0GBobjKVjB1h8He6avr/OluKq9ETeF0xn4jZy6SrTZ+Au72d5Jp07uSYlR+LXI3ns9WEO6kjpSriZ9UrO2lru731ShD8+um06RsZbPqHhaAmcz2bTWX3FnCDQcJIiIsAbK+YOw31zhiKrtB6/Hc3DhuMFqGtRYkl6YqeVASG+nvAQC6HS6NCkUKNVqYZP+1y9kwU1+P7gJXbbF68ZDz+pB+6ZnYZfj+Qhu0IGtVaH82UNbCfXnG4Mr+fijW1o638D2inoI4TYRXmDnM0whPl5sW/sloT5S5EU7o+86iaoNDr8cjgH+7MrsO10cYePaZSr+uXCa0Js0dWMPgDw4mSjSutbeZmyPefL0KbWWhy30hWtToeD2ZXs9blDY7HjrL6pS0ldC5RqLbuGSCAA/m9Jeqdz2DrDDaAO5VRi6gsb8e9FI7FizlCnv0corGjkApiObXCPTB+3c+fALjJ9jhpD4EpC/bwgFAigYxjUt7RBpdHCQyxi59cCwNL0Ab0W8AH8pRfFtc28z1Vups90hIZAIMDwuBAMjwvBs0vHoryh1WwWrymBQIDIAG/2eSsa5Uj2CoBGq8OTPx9mR7PMGRqDy9sb8YiEQoyMD2ED5byqRk7QJ2Of25b1fAbSft7Bk8o7CSF2kcdZ29HZej4Dbonn6l+PmgV8M4dEY+OjC+DXHjzqGAZNyt4t4yLE1XU1ow/gZ/rOlvAHp7e2aXDwUqXpQ6xytqSebaoSESDF7KHGdvrFdS3IrWxkM/gJIX7dDvgAYMnYgfjXuIHsdblKg5c2nsRX+zpu9e4ocisbuXDLO00baPRV3MHspuWdcSG+vMYk1nTj7OtEQiHC/I3rzAwlntzSxignNGvpjL/UAyG++n1s0+h47xncap2ETqp1JCIhEkL9rDrBYmld3xd7LuBcmX59q5dEhFevn8gr1eRmjXM5JxZyqrrXudOgv49toKCPEGIXp4uMXx6HRFuexcTFDfq45g+Pw/YnLsfPD8zDhOQIBHLWgDS09G7DBkJcSVWjHB/uPIuMwhrjbZzyzogOgz7jFx9L4xR2ZHaccbekVanGjwcv4bEfD7G3TR0UhfhQ/ho2bonb4A7WB1nLSyLCR7dNw/8evoy31mifDUOx7cXaTF9yRABE7V+Sc6oa0dDat9/PmhQqdj2Wp1ho1tBDIBDglqmDAOhPAkzrYti6u+D+3RmaKllTdu1M3BOzhgZsKo0W5e3BqUDQ+fw9W5h28Cytb8EbW0+ztz22aCTvhAigL4E1yG0v6WQYBhfLZeztg7qR6aM1fYQQYgenCoxfPNMHhHW5/fTUaLbWXyAAFo9KwMMLRpiVAAX5eLLDYWW93KWPEFfy5M9HsONsCQKkHjj24tXwl3rwztp31GDBq4vSzZ1nS/Dq9RM7PYvPMAzOFNfhx4M52HAin+2oZzAzLZpX+lVS14KLFQ3s9cGcLoc9MWVQFD67cyamv7gRAHC6qBYMw/R49IQtrM30+XpJMCIuBBlFtWAY4GhuldObeNgTt7QzMczf4my5h+cPx4IRcYgN9oVvJyX/7iQyQIrM9suGdX3cMSrRQS4Q9IX64WT7Z3ZhTTOmDIpCWX0rW24ZFeDdrRJvS0wzfU//fow9UTI4KhD3zhlq9hjuej3DutHyhlb2RImvl8QsULQGf01f/8v0UdBHCOkxhmFwkpNtGGNF0Bcd5IOfVs7FsbxqXD46AYM6KNUI5HTpq+/jZ8YJsaezpfp5do0KFc6XNWBicgQ/o9BB0NfVSIbKRgUyS+osjhRoUqiw/ng+fjyYg6zSerP7PcRC3Dw9FVeOSYSO04upQibH+VL7B32AvqzQ10uCFqUatc1KlDW08tbPOZq1jVwAYPKgSGQU6WecHcqp7NNBH7dzp+l6PgOBQIBUKyo/3Em4P6eDZ6MCDMPwZtT1VsMhLn6mT19qzFvP10lpp624/97fjubyfm/euHESbw4fu3+hfuzayNL6FihUGpzjnGQYEh3UrRM7/DV91MiFEEJsVlTbjPr20stAbw8MDLP8BcDUlEFRmDKo85KfYE55p6yV1vQRYsAtKyyobsLE5IguZ/QBHQd9w+OC2cHoOzJL2KCPYRicKKjBjwcvYdPJQnbOFVdyRABumpKCayckIXVAGGrav0hGBEhR1aiAVsfgcG4Vu709gz6hUIARcSE4lKNfi3imuM6pQZ9Czcn0dZEdmZQSgY/+ygIAdkB2X8XN9Jmu5+vPTDt4NinU7N+q1EMMf2nvZzx5QV97x07u+AbTJi49wa044AZ8yyandLjMw1MiQnyILwprm8Ew+sA0s8g4EH5obPdOJPDW9FGmjxBCbHeywPhmPDoxzK7d83hr+ijTRwiLG3wZWq9XWJHps1TeKRQIsGLuUNz/9X4AwOZThRgQ5ofKRgXWH8/nrcfjPs/i0Qm4ecogjE8Kt3jmPT7Elw1EDV98hQKBWXv/nhqVYAz6ThfV4vJRCXZ9/s7YkukbPzCcHWVxrqweMnkbAr375uw67mB27hqs/i4ikLumT85r4hId6O3U0uOODOAOaG8P3ks66dzZE5bKzEN8vfD0kvROH5cU4c8GpHlVjTjLCfqs6RtgCW9Nn4WTV+6Ogj5CSI+d4pR2pieal4T1BHeYL63pI0SPYRhepq+wpgkqjRZ17YOMhQIBwvysz/TFh/jismFx8BQL0abRIa+6CQ9/f9Di44dEB+HmKSn41/iBXQYsscG+OJ5fw7ttQJhfl+sKbcUtRT1TVNfJlvansHJNHwD4ST0wPC4Yp4vq2HV980f0vRLPc6X12H2ujL0+wMrqjv4gwt/4d1fVqOCNa+hskLkzcctxL1U2olWp5pV3xtmxvNPSyafn/jWW99luSVJEAPs7llvdhEzO33V3x3/Qmj5CCOmhkwW2reezBfdLJWX6CNEzLbEsqGnmlXaG+XtBbGGtDGA5MEmK8IePlwSzhsbgzzMlZvd7e4ixZOwA3DQ5BaMTQ63OVlhqttDTzp2W8IK+4lqnzvSUW9m902BySiTb7fhQTt8L+opqm3Hjh3+hWalfExUT5IPRdj7Z15eZdu90pXENBkE+nhgSHYQL5Q1Qa3U4klvFK+9MsGOmLyLAGwIB2CYxUwZF4prxAzt/EPglwxfKGpBdblwTnNrN8nBvWtNHCCHdp1BpcI7T0MHeH/5BVN5JiBmFyYypgpomtlMg0HlbeEtZNkO3vJeunYBAqSca5G3w85LA10uCYbHBuHJMIvykHmaP64rFoM+O6/kMYoN9EOTjiYbWNjQp1CioabJ7CWlHuK3fuyrvBPRB38e7zgEAW5LaV1Q3KnDDB3+xoxr8pRJ8t2I2PMT2zdz2ZREma/pcbVyDwfTUKFxoD6T2XSw3aeRiv6BPIhIiNUofYHqIhXjtholWnTTidvDcfa4U2vbOUImhfvDpZidYKa3pI4SQ7jtbUg9N+5txckSA3denUNBHiDnT9SitbRqcLTaWP3X25dJSpi+5feZVTJAP3rllip32EryxDQaOCPoEAgFGJYRiz3l9OdiZ4jqnBX3cjIFU0vXXqvFJ4WxnwnOl9WiUqxDgbXtA7WxNChWWffQXu87KSyLCt/fNQVqM+w9dt0Wonxf7821obWOPF+Aa4xoMpqVG4dO/zwMA/swsYT9fPcVCRPjbdz8/vG0qfjhwCZePTuAFc53hrhPljoRJ62YTF4CGs9NwdkJIj/Dn89m/xIfW9BFizjTTB4DXHbOjJi4A4GUhK2PtFzFbWWoI4YigD9A3czE4zWn64Gi2ZvoM6/oAfcnb0TzX7+KpVGux/JO/ca5MnxkSCQX49M4ZmJgc0ct75npEQiHC/b3Y62c4J2NcZU0fAExKjmDHJXCbuMSG+Nq9NDotJhivXD+xy27dXOH+UouzHdN6MAKE+/fZH4ezU9BHCOkR3ny+RPuu5wP4c/oo00eInqWg7wgn6IvoYFwDoB9xYFri6aigLzrIB9xKLrFQ0OFMt57irus77cRmLtYOZ+eanBLJXj50ybVLPDVaHVZ8vY/3+/X2ssm4bHhcL+6VawvnZNpzq4xdTiNdYEafgbenBGMHmn9mx4fYr4lLTwgEAoujQNK62cQFoEwfBX2EkB7hZ/rsH/QF0Zw+QsxYmpVX277OCug6o8ANToJ8PBHi65ixAZ4SEa/UdGC4v8PWf42MN2b6zpbUQaPVOeR1TClsbOQC6Ie0G7jyuj6GYfDkL0d4zX2eWZKO6ycl9+JeuT7urD5DAxNAP7LBlUxPjTa7zZ7jGnrKUol2Wkz3M338NX39r5ELBX2EkG4rb2hFefsidW8PsUPKtgK8PdhMQaNC5bQvcoS4MkuZPq6ILhpGcIeIJ0f4O3R2GHdQuqNKOwH9v9kQ7CrVWlyqlDnstbi4DSGszfQZ1vUBwLnSBjTKXfOE1qt/ZOCnQzns9RVzhuL+ecN6cY/6Bkt/fxKRECG+Xha27j3TB5uXWybYsYlLT5nOf/TxFFtcJ2wt3sgGyvQ5Vk1NDVavXo2pU6ciPT0dt9xyC86cOcPev3v3bixatAjDhg3D5Zdfjr179zpz9wghNjpVaFw3MyohtMMW8T0hEgoRwOka2KhwzS9HhDhTV0GfLZk+R5V2GnAzB44M+gBgJGddnzPm9TEMA4WaG/RZl8X0l3pgWPu6Ph3D4JgLruv79O9z+GDnWfb6dROSuhyoTfS4s/oMIgO9nTZGxFojE0LgL+Wvm4tzkfJOAEgO5783pcUE9egYct/3aE2fA+l0Otx///1Yv349fHx8kJycjGPHjuG2225DcXExLl68iIceegjFxcUYNmwYioqKsHLlSly6dMlZu0gIsdEp3nw+x81poll9hPB19YWls0YuAH9sg6ODvkWj9HPohAIBLh+d4NDXGhXPXdfn+GYuSrWWLd/zFAshElr/tWpyirEJiquVeG4+VYjn151gr88bFou3bprsckGLq4qw8PfnSuMaDERCoVlzFdcq7+Rn+ob0oIkLQGv6nBb0nT9/HpmZmYiNjcXWrVvx66+/YuHChZDL5di8eTO+//57aDQaPProo/jll1+wcuVKaDQa/PDDD87aRUKIjbhNXNId0MTFgL+uj4I+QjrL9HlJRLzsuCXcMifTL1b2tmhUAv7+vytx5IV/IbWHX9q6wmvmUuz4TB9vMLunbbPDuM1cDue4Vqbvza2n2cvjk8LxyZ0z2E6PpGuWAjxXGtfANSOVH/QlhLpOpm9AuD+vEVRPmrgApt07+1/Q57Q5feHh4Vi7di08PT0hFutfNjRU/+bc0NCAU6dOAQDGjx8PAJg4cSIAICMjw1m7SAixgVqrQybnS5UjOncaBNKsPkJ4OvvCEhng3eUavfkj4nE8vwbh/lKb2qh315AeNF+wBbe880JZA9rUWnhaGEZvL4pudO40GJ8UAYFA3+jjbEk9mhQq+HcRrNvD53vO490/M7FsUgrWWCjX1Gh1yK9uYq9/fc8sqxvUEL1wC+WdrjSugYvbzCXY19OlZkZ6e4gRG+zLjpToSRMXgBq5OO20TXh4OC6//HLMnTsXAFBfX49t27YBAEaNGoXKSn1pQ2BgIO//htsJIa7lfFkD20EwLsQX4Z20iO8p3oB2F214QIgzmQ5n5+psXIPBynnDsPv/rsCBZ5dYnIXVVwV6e2JAmD5TodbqcL6s3qGvxx/XYFtwGeDtgWGx3HV91XbdN0vqW5R4aeNJ1Le04cO/snjz2QyqmhTQ6vQ1q6F+Xgh2seYjfYGlTF9XJde9ZUC4P+6eNQRBPp54/PJRvb07Zu6YngqBAJg4KBJjEnu2jEQqEbGZwzaNDlpd/2oM1yunbpqamnDXXXehrq4OSUlJmD9/Ph5//HEAgESi//AxZAMVCkWXzxcU5A2xg1pAdyYszHVS4P0JHXf76u7xvHSygL08eXCUQ38u0Zw1Bmq4x++AO/wb+gJ3Pc5CTvZKKBBAx+kLnxgRYNW/e4YDj01vHvfxKZEoqGkGAOTVt+KycQMd9lrFzcbvKAHenjb/u+eMjMfZEn1gmlFajxtnDbHp8ba+3u8nC6DSGL/oHi+uwxiT8r7sumb2cmK4v9v+DfVEV8ckOMQHIqGADZ4BIDU+1GWP5X9XzMHH9812aBff7nrmxom4f/FIBPt62WX/vD0kaG3P8vn4S+HnhOy6q3B60CeTyXDHHXfg3LlzCAgIwHvvvQeJRAJPT08oFApoNPqzZob/S6Vdn7FsaJA7dJ8tCQvzQ01Nc9cbErui425fPTme+86WspeHRgc69OfixWkeUFrd1Od/B+j32Dnc+TjXyYyfewPD/XkDoIOkkl79d/f2cU+NNDamOXCuFNeMSXTYa5VVGo+7WCiw+d89mrNG6e/MYtTUjLD6sd05zl/uOse7vuloLv5l0lznXL5xrXaEn9Rt/4a6y9rjHubnhcpG40kBn278fhAjgZ99jp/UQ8QGfcVlModWKfWGzk4sOHVVbmtrK+68806cO3cOgYGB+Oabb5CSkgJAX/4JAI2N+jdQmUwGAIiMjLT4XISQ3nXKSU1cAFrTR4gp7lqyobH8dS5dzehzd7xmLg4e28DtotqddW8T2tf1AUBmcT2aHTiSJru8AWdMmtvsz65ky/QNSutb2cuxwT4O2x93Z/p3GBVEx9IV8Nb1qfrXuj6nBn1r1qxBVlYW/Pz88O233yItLY29b8QI/dmto0ePAgCOHTsGAEhPp5kwhLiauhYlWz7lIRZiaA87anWFO7JBJqegjxBu0GfaxtxVG0Y4y4i4YHbweU5lI1qVjvtiJ+9BIxdAv65vqJPW9f12NM/sNoVKgyO5/N4JpfXGdX6xPRiE3d9x1/UJBJabuxDn689jG5xW3pmZmYnt27cDAPz9/fH++++z902ZMgU333wztm7dirVr12Lnzp3IysqCRCLBTTfd5KxdJIRYKYMzlH14XIhDu+MBJo1cKNNHCC/oiw32ha+XBC3twU1/z/R5e0owKCoAF8tl0DEMMkvqMCnFMVVDvJEN3exwOTklElnt6/oO5VRizrBYu+wbl0arw/+O5bPXU6MDcbFcBgDYlVWGmUNi2PvKOJm+GMr0dRu3bDDcX0ojL1yEdz8e0O6038CdO3eyl8vKyrB79272v/Pnz2PUqFH44IMPkJCQgKysLMTHx+ODDz5gyz8JIa7jJHcoew+7aVkjyMe40JqCPkJMygo9xRg3UL9EwksiwqBIxw5b7wtGxhtHN5iWNNpTT0Y2GHCHtDtqXt++C+WobtKvLwv3l+KZJWPZ+/4+V8rblp/po6Cvu7iZvv6efbeXFnUbvss+jl9zM3C0qghV8mYwnCZW1uDO6pO3UabPIVatWoVVq1Z1us3cuXPZkQ6EENfFW883wLHr+QDK9BFiSqHmjwp4/YaJ+O5ANqYNjqIW+9Cv6/v1iL6c8UxRbRdbd5+ijTucvXtfqSYkG+f1ZZbUoVmhsntHwV+P5LKXrxk/EFMGRcLbQwy5SoOCmmbkVzdhYLg/GIZBWQMn00fr0LqNOzrFVcc19CVytQrX7/wWZ+rKebcn+AZhyYDhWDpwOJIDuv4+Qmv6CCHESlqdDqc45Z2OHMpuwG3kIrMwp+/3o3lY9tEu7L9Y4fB9IcQVcDN9XhIx4kJ8seaqdN6g5f7MWc1c5Oqel3cGentiaIx+XZ9Wx+BYvn3X9TW0tmHH2RL2+nUTkuApEWEaZ1TD7vZsn0yuQmt7IOvtIeadcCO2mTcsjp2B+a+xjhsb4i4YhkFxcwNUWvPsm47R4Y7tP5sFfABQ1NKA987+g5mbPsKCLZ/g03OHUCFv6vB1aE0fIYRYKbeykV07FO4vdUr5j7+XBzuLrEWphkqjhUf7bM5GuQqP/3QIbRod8qoacfQ/Vzt8fwjpbfxMH32UmxoSHQSJSAi1VofC2mY0tLY5JIDhZvp68nOYlBKBrFL9ur7DOVWYM9R+6/o2cWbzjUoIweD2xj9zhsZiR6Y+GNx9rgx3z0ozW8/ninPb+orwAClOvnQNZK1tiA91zfl8ruJcfQXWHN2GEzUliJD64cnRs3FN0kgIBfrc1Jun92BDTia7/czoZDS0yZHbWItWjfFEcFZ9JbLqK/HSyZ2YFJmIpQNGYFHCEAR4GLOu/XlNH31SEEJscpKb5RsQ6pQvBUKhAAHeHmxpZ6NchbD2TmiXKmVoa/9CU1zXgroWJUKovI24Of5aMsc2UuqLPCUipMUEsev5zhTX8pqVWGP7mWJcLG/APbPS4NOesTGlsEMjF0DfzOXzPRcAAIdzKrvY2jbc0s7rJyazl2cPNR6PwzmVkKs01LnTzvylHvDvR8O/bSVrU+DN03/j+0snoGtfm1elaMa/D23CVxePIjUwAkXN9TheY8xU3zlkAl4YtxAAoNSqsacsFxvyM7G79BLadPogjgFwqLIQhyoLseboVsyOTcGSAcMxN3YQrekjhBBrOXM+H1ewjycb9NW3trFBXw5nODIAZFfIMNlBnfoIcRXcM9RSCX2UWzIyPsQY9BXV2RT0ZRbX4a7P90LHMDiSW4VfHphn8QSX3E7BN3dd35niOrQo1WxpYE9klzew5a0eYiGuSh/A3hcT5IOUyADkVDZCpdHhdGEtzegjTqFjdPgt9zRezdiFOqXc4jaGrB3X7JgUPJs+n73uJZJgYfwQLIwfgiaVEtuLL2BDfiYOVhbA0N5FpdPiz+KL+LP4IvwknohHFCDRAmpxvyvvpDV9hBCbnCrgZvqcF/Tx1vVxmrnkmgR9lypkztolQnqNPbpGujveur5i25q5bDtTxGYe/rlYgQ0nCixux8v0dbORC6BvVpXWXnap1dlvXh93Nt9lw+PMSlzHJ4Wzl4/lV6OswZjpoyYuxBHO1pVjyfavsOrwH7yAb0ZUErZffg8eHjEdXiLzv6VZ8Sn4aNrVEAkthy7+Hl64Pnk0frlsOY5f8288N3Y+RoRE8bZpVrfhnLoQwpGlEMQ0QNamsO8/zsXRJwUhxGotSjUuVjQAAIQCAUZx2qI7WkcdPHOrzDN9hLg7flkhlXdawg36ztjYzGXfBX7DiOfXHcecobEI8OaX6vEyfT3MuE4aFIlzZfr318M5lbzyy+4wnc3HLe00GJ8UgR8P5gAAjuVVw4cTuFJ5J7GnhjY53szQl3JyhyzE+ATgubHzsTB+CAQCAYaHROOmlHT8VZINkVCIeN8gxPsFYeyAeNTWtnT4/FyR3v64O20S7k6bhNzGGmwsyMKGgkwUNev/vgQiBoJYGX5p3IsHlEMR7NU/TnBQpo8QYrXTRbUwjMRJiwmCt2fPy4+sFcj5siWTdxz0GQYOE+KuGIaBUs3v3knMpUQGsFnQCpkcVY2Wy8hM1bcozWb71TQr8drmU2bbyu0wssGAW5Z+OLfn8/q4s/nC/Lwwc4h5Z9fxA43VGicLqlFcx8n0UXknsZPDlYWYsfFDfMcJ+DyEIjw4fBr2XLkSixLSeOXT0T4BWJ46HjcPGovp0UlI9Avudv+A5IAwrBo1CweWPITv59yECIlxjmkTI8f7Z/f35J/Wp1DQRwixmrOHsnNZyvQp1VoUmZz5y66Q2TyslZC+hBvweYqFEAqpw6IlYpEQw+OC2eunrZzXdyC7kj255S81ntj6dn+22XMoOD+LnpbZTuCUWp4uqkWrsmczxPiz+ZIgFpl/5UsI9UN4+/roJoUaWSX17H20po/Yg47R4cED61DfxinljE7CritX4MnRc+AtcU6jG4FAgFkxKXhiwGLoiozvC99nH0d5a2Mnj3QfFPQRQqzm7KHsXIG8oE/formwpoldd2O8rw21zUqn7hshzkTr+azHK/Estq7Ec99FY2nnnTOHYFaavsySYYDHfz4MjVbH3s/L9PXwZxHs64W0GM66vh7M6zObzTcxyeJ2AoEA4wYag03D+6lIKEBkAA0UJz13rr4SlfJmAICfxBOfz7weP8y5GQP9nXvi2MDH0wNMpT+YFv13ijadFu9l/tMr++Js3Qr6Wltb0dJiXV0tIcQ9MAyDk73UxAXQd+80MGT6TJu4GNC6PuLO7JldcncjOeuOrRnSzjAMbz3fzCExeOW68fCS6NdNZpXU45t/stn77TWywWASt8Qzp/slnn9wZvONjA9BanuTGEu4zVwMIgO8LWYGCemKaaXNvnJjM6E5sYPYtXu9Rf93KoCuxPg38UvuKRQ02bbuty+y6S86OzsbV111FdLT0zFu3DgsXrwY586dc9S+EUJciGEGHqBfXzcwzN+prx/ozene2b6mL6fKctBH6/qIO6NMn/V4HTyLarss/c6rbkJZg35sgZ+XBKMTQ5EY5o+HF4xgt3l9SwYqZfpSNbmdfxaTUyLYyz2Z1/frEeMXbUsNXLgsBX1U2klspdFp8fzxPzHkl1fx4omd7O37K4zNhGZEW844OxO79rbJC74qPwCAlmGw9sze3tspJ7Ep6HvmmWdw33334cyZMzh+/DiuvPJKPPHEE47aN0KIC+Gu5xudGOb0dUSW1vRxZ/QlRRiDUMr0EXfGC/ok1LmzMwPC/BDQPhy7obUNJXWdVylxs3xTBkdC0p7tWjFnKPse06JU47l1xwHYb2SDAbds3rRJlbWyK2TIaF97qJ/Nl9jp9kNjg80C1hjq3ElsoNSqseKf/+GLC0fQolbh0/OHkC2rhlytwvHqYna7aVEDe3Ev9YwZeQFCGo3NjTYWnEVuY43lB7mJDoO+Z555BlVV/NICmUyGMWPGwNPTE76+vhg1ahTq6+s7eAZCiDs5VcAdyu78WnxLc/q4X4ouH5XAXqagj7gz3mB2yvR1SiAQYGSC9SWevNLOVOMXQk+JCK/fMJG9/sepQuw5X2b3TF+onxcMlW+NChVv/aC1fjeZzRfs69Xp9hKR0KwxF2X6iLVa1G1YvvsnbC++wLv9u+zjOFJdBJVO/341ODAckd7OrRCyhHdypsULs2NSAAAMgM2F7l292GHQl5SUhOuuuw6vv/46Ghv1X6zuueceLF68GNdffz2uvfZa3HvvvXjggQectrOEkN5zktPExdnr+QD9lyGD/JpmNClUyK1qYm9bPJob9DVQB0/itpRqY6DhRZm+Lo2M55d4dkSl0eLgJWNJ5fRU/oiDKYOicPU4Y6biyV+OQKvTv89IREI2K9gTIqGQLWVnGEAmV9n0eP1sPutLOw24zVwAGsxOrHO4shCLt32Og5UFZvetyz+DPzmB4HQXyPIB/JMz8jY1rhk4kr2+o+Rib+yS03R4Wuq2227DNddcgy+++AKLFy/GDTfcgNtvvx3Tp09HZmYmAGDo0KGIiorq6CkIIW5CodLwWnmP7oVMX3SgNwZHBSK7QgaFSoMPdp5lS6uCfDwxLDYYfl4SNCvVaFKoUdkoR1QgfXEh7ofW9NmGm+nrrIPnqcJaNnMXH+KLxDA/s22e+9dY7MoqRaNCxSsVlXrYL/gO8vFkS9jrW5W8E15d2XexHFWNnc/ms8R0XR8NZiedaVDK8dLJnfg17zTv9idGzca6/DPIa6pDi1qFn3OMsy2nu8B6PoDfcEmu0mBWTDIkQiHUOh2y6itR1iJDjG9g7+2gA3V6WsrX1xePPPIINmzYgNraWixYsADbt2/H9OnTMXfuXAr4COknskrroWk/o50cEcBrquIsAoEAt04dxF7//O/z7OXkiAAIBAIMjgpkb6MST+KuqLzTNtxmLpklddDpLFcBXCxvYC9PSI6w2GEwzF+K/7tqjNnt9ujcacDrVNzSZtNjf+M0cOloNp8l6QPCwP3nxobQCTNiWUObHEv+/JIX8PlKPPD25Kvw0IjpuGXwOPZ27iD2iREJcAXcv1WFSgs/Dy9MjhzA3rajJNvSw9xCp+8Gzc3NyMrKgkAgwHPPPYcffvgBmZmZWLBgAdatWwedzvZac0JI38NtmMIdduxs10xIYr/ktmmM7z8pkQEAgMHRgextFPQRd8XP9FF5Z1eiA70R1p4ta1GqkVttuUEKdwSM4T3FkpunDDJbA2fP4JvbtKq+1fqgTyZvw5+ZxqYZHc3ms8Rf6oE5Q2MBAHEhvhjg5O7MxDFa1W3IrCvHiepiqHXarh/QBZVWg3v3/YY8zniDRfFDsOeqB3B98mgAwLVJI+El4v89jA+Ph1TsnCHsXfEQCyFqb0Sn1uqg1uqwIC6VvX+nG5d4dvgutW3bNqxZswY+Pj5obm7Gww8/jDvuuANvv/02zp8/j7fffhtffPEFHn74YSxYsMCZ+0wIcbLy9hbmgP4LQW/xl3pgSXoifj6cy7s9ub2rHi/TR2MbiJui8k7bCAQCjEoIxV9ZpQD0zVwGRQaabZdbbVwjnBTecdAjFArw+g2TMP/1Lewwc7tm+nzNOxVbY9MJ62fzWfLh8mnYe6EME5Ii7LI+kTiHjtGhvLUJuY21yGuqRX5THXvZMBQdAK5PHo23J1/V7ddhGAb/d3QrDlUWsre9O2UJrkkaxdsuwEOKJQOG45fcDPa2aS5S2gno3w+kHmK0KNUAAHmbBvPiBmP10a0AgMNVhZC1KRDoKbX4+Cp5Mw5XFSLWJwBjw+Odtt/20OG71FtvvYW1a9di1qxZyM3NxdKlS7Fs2TJ4eXkhLS0NX375JQ4fPoy1a9dS0EeIm+MGfdG9vMD/1mmDzYK+lPYvcNygj2b1EXfFG84uoaDPGrygr7AG100w/xKaV8UdAdNxpg8AhsUF465ZQ/BZe5m5n9R+WQxepq99Nqo1bJnNZ0mAtweuSh/Q9YbEJVQrmvHC8R3YUXIRSq2my+1/y83Ag8OnIdGve9U6n50/zAvknhw92yzgM7h18DjetjOiXCfoA/QnadigT6VGVKA/RoXG4HRtGbQMg91ll3A1p8FLflMd/iy+gD+LL+JUrf59RCgQYMuiuzEixLp1s66gw08LuVyOkBD94uegoCBotVpoNPxfqkmTJuH333937B4SQnpdGSfo6+2ubiPjQzA8LhhnOY1lDJm+1Cjjme2MolrsOV+GWWkxTt9HQhyJMn224zafOppXbXa/XKVBab3+fU4kFCAx1LyJi6nHLx+FE/nVOFtSj5unDOpye2txRyzUW7mmjzubTyLqejYf6bsYhsHGgrN45th2yFSKTreVCIXwFInRolaBAfDNxWN4fpztiZqdJRfx0knjwPWrB47AA8Omdbj9iJBozIlJwe6yHIwIiUJacITNr+lIpuv6AGB+3GCcri0DAOwovojBAeHYXqIP9LJl5u8ZOoaxS8msM3X4aXHHHXfgtttuw6BBg1BUVITrrrsOvr7UzYmQ/siVgj6BQIBbpw3G4z8dBqCvzzeUnIYHSHHZ8FjsPKs/E/fgtwewa/UViAz07rX9JcTelJxMnxet6bPKuIHhEAkF0OoYXChvQENrGy+jVsAp7YwP8YWnFaMwfL0k2LJqEdRaHTzE9vs58Bq5WFneaetsPtI3aXU6PHJwAzYUnOXdHuLljST/UAz0D0FyQCiS/EORFBCKeN9A7K/Ixy27fwQA/JqbgVWjZsFXYn0ztnP1FXhg/zq2Kcu4sDi8MelKi42OuD6deR3O1lVgWHAkhALXKhfmzuqTt+lPos2PS8XrGX8DALYVX8A2k7mDBiKBABMjEnFb6nikh8U5fmftqMOg75577sHs2bORk5OD2NhYDB8+3Jn7RQhxEQzDoLxBzl7v7fJOAFiaPgDvbDuDcpkcM1KjIRIaP1Devmky5ryyGdVNCtS1KLHym/347aF5vG0I6ct4mT4q77SKr5cEI+NDcKqwFgwDHM2twoKRxvU4eZyZn12VdnIJBAK7BnyAaSOXrss7tTod1vFm87lWKR2xn1/zMngBX4xPAN6efBWmdjIDb0Z0EpL8Q5DXVIdmdRv+l3cGt6WOt+r1quTNuO3vnyHX6Esh430D8cWsG+Ap6vp9x0skwTgXXfMmNRnbAAApAWEY4BeMguZ6s+09RWLMjE7CgvghmBszCEFeffNEcqffgpKTk7Fw4UIK+Ajpx2RyFfsl08dTDH+ppJf3CPDxkuCPVYvw6R0z8PHt03n3hfpJ8fHt09j244dyKvHu9sxe2EtCHIO6d3bPpJRI9vKhnErefdyOnp01cXEGbpbOmkzfvgsVqOTO5qOSdrfUpFLi9Yzd7PWrEodh1xUrOg34AEAoEOL21Ans9a8uHoWO6br7vkKjwh17fkaFXH9CxE/iiW9mL0OIV++f+O0p/qw+fUArEAiwnBMMB3h44V8DR+CzGdfh7HVP4MtZN+LapFF9NuADOsn0EUIIYN7EpauSDmeJCfJBTLrlD58pg6Lw74Uj8fa2MwCAt7efwcSUCEwZRLNFSd9Ha/q6Z1JyBD76KwsAcDi3incfd1xDcifjGpyB38il66Dvt6PGxlZXjx9InTfd1HuZ+1Cn1FfdRHv7463JV1o9BuHapJF4PWM3mtVtyG+qw77yPMyKSelwex2jwyMHN+JMXTkAfUnjf6dfi0GB4T3/h7gAf07jpSqZcV3knakTMCQwHBAIMD48HhKhe51Uo3cGQkinXGk9ny0eXTgCk9vP7DMMsPKb/aht7nzROyF9AQ1n757xSeEQtp+0Oldaj0a5ir0vz8pxDc4Q4mv9nD61VocdmSXs9esm2N61k7i+vMZafHnhKHv96fTLbJp75yPxxA3tc/QA4OuLxzrd/u3Te7G16Dx7/T/jFmJmjPv8bg2NNTZ9O11cy14WCASYEjUQUyIHuF3AB1DQRwjpgiuNa7CFSCjER7dNY2deVTUq8NB3B6HTMV08khDXplBTeWd3+Ek9MDxO366eYYCjeVXtlxneuIZkG9b0OUKgtzHok8nboNV1XIpX0dDKNvYJ95diSIxts/mI61NoVHj22HZo2ksyJ4TH44rEoTY/D7d08WBlAVQdjHlYl38G7539h71+e+p43mPdAbeb76nC2k62dC8U9BFCOtVXM30AEBnojQ9uNbaV3nO+DP/dfa4X94iQnuOWd3pRIxebTEoxto4/3L6ur6pRgdb2Dn4BUg+E+vVu50uxSIiA9vIzhtGvq+5ISX0Lezk+hDqsuxO1Tovvs49j6ob3sa9C36hHAOCFcQu7tcwi0S8Ycb6BAIA2rQbnG6rMtpGrVVjTPqQcAGZGJ+O5sfO7tf+ubFSCMeg7X1rP64jszqz6tNDpdNi6dStOnz4NtVoNhuGfKX/xxRcdsnOEkN7H79zZ9xYwzx4ag5XzhrFreV794xTGJ4Vj3ED3WJtA+h/ecHYq77TJ5JRIfLJbX7Z2OEf/pTeXN5Td3yXWLQf7eqJRoQ/2GlrbENLBCIaSOmPQF0dBn8s6W1eO547/iXP1lYj09kO8XxDiffX/xfkGIsEvCHG+QfD38EKtogW/5Gbg+0snUNbayHueO4ZMwLCQ7q9NTw+LQ0mLDABwoqYEo0L5TX/2V+SjRa3/vYvzDcTH06+B2A3LHAO9PZEU7o+86iZodAzOldYjfUBYb++Ww1n1afHKK6/gxx9/xODBg+Hnxx9Y6gpvjoQQxynjnEnuS+WdXE9eMRpHcqtwsqAGWh2DFV/9g79WX8FrmEBIX0HdO7tvfFIEBAJ9Bu1sST2aFSpeaact4xocKcjHEwU1zQDam7l0MNvaMFAeAGKDKehzNVqdDv89dxBvnd7DlmfmNdUhr6nO4vaBHlLINSqoTIZ+R0j98OjIGViWMqZH+5MeFouN7SMfTtWUAEMm8u7fXXaJvXxV4jD4e7jvvMdRCaHsWt6MwloK+gz++usvPP3007jpppscvT+EEBdTLjNm+vpaeaeBRCTEf2+fjnmvbkajQoWyhlY8+sNBfH3PLDpxRfocXiMXKu+0SYC3B4bGBiOrpB46hsGxvGrkulATFwP+2IaOZ/VRps91tWk1uGX3DzhUWWj1Y2QqfrOxIE8pVgydgttTx9vUuKUj3GHiJ2tKefcxDIPdpTns9Tmxg3r8eq5sdGIo1h3PBwCcKqwBMKR3d8gJrPq0aGlpwdSpUx29L4QQF6PTMajkBH1RfTToA/RfiN65ZQru+GwPAGBHZgm+3HsRd81y/zd64l5oZEPPTE6JRFaJfgDzhhMFqGsxBlW9Pa7BwNqxDdw1fXEhfff9ua9TaNTQ6LTw42TGfrh0ghfwjQ6NweuTrgDDMChukaG4uQHFLfr/SlpkKGluQFt7hm9MaCxuHTwOixPT4CWy32zcIUER8BKJodRqUNbaiEp5EyK99Sc6ztVXokqhzy4HekgxJjTWbq/rikZz1vWdLuofzVys+rSYM2cO/vzzT9x7772O3h9CiAupaVZArdWXpAT5ePIGmvZFC0fG486ZQ/Dl3gsAgHf+PIM7Z6ZSto/0Kdygz5vKO202Ky0an/2tX9e37ng+RELj33+yq2T6OEFfZwPaeZk+Ku80U97aiG3FF7C3LBfhUl+8NH4RvCU9z5iZvsaCLZ+iSaXEV7NvxOyYFDAMg59yTrLb3JE6Ac+OvYxdHzc02Hxdno7RoVrRAgZAlLdjfg8lQhFGhsbgaFURAH227/KENAD80s5ZMckQCd271+PQ2GBIREKotToU1DSjobXN7Zd8WPUNLjIyEh999BH+/vtvJCYmwsOD/wdDjVwIcU9l9X23c2dHnlmSjh8PXoJSrUV9SxualWreoFZCXJlOx/A6zVH3TtvNSI3GVemJ2HSyEACgbR/jIhQIkBjmGkEfL9PXQdCn0epQwS2/p6APgD4I21p0HluKzpmVMAZ5euOZsZdZfMwD+9dBxzD4ZMa1bPbLGj/lnEJ9m/7n8MzRbZi25AGcqS1DtqwGAOAtluDxUbO6bIgiFAhtet3uSg+NZYO+UzUlbNC3q9QY9Ll7aScAeEpEGBobhNNF+vWVGYW1mD00potH9W1WfVpkZGRg5MiRAIDy8nLefXSGnBDbZJc34IHvDiAqwBuf3TUTXhLXPVNf3ofHNXTEUyJCiK8XO4qiobWNgj7SZyg1xoDPUyyEUEifwbYSCAR495apKG+Q43h+NXt7fIgvPF3k/Zi7pq++xfKavtK6FjZgjQiQuvRniaOVtciwtfg8thSex6na0g63+zb7GO4dOgnhUn5TwjVHt+JYdTEA4LVTu/Hu1KVWv/bfnAxZUUsDfss9jRM1xextVyUO55V99jZL6/rqlK04XVsGABAJBJgRndQr++ZsoxNC2aDvdBEFfQCAO++8E+PGjYOPj3t86SOkN3217yKySuqRVVKPnw/l4PYZqb29Sx0qk3EHs/e9cQ0dCfb1ZIO++hYlEkL9ungEIa5BSev57MJLIsLX987CFW9tY7tkusp6PkD/HmXQUaavsMbYgKa/du4sbZHh4YMb2MyVKZFAgMmRA1De2oi8pjootRp8lHUAL4xbyG7zT3ke/uJkuTYVnsXqMXMR4d3150KVvBmZdRW8297J3IuGNmNDlpsHpdv6z3Ko9DDjWr3MunK0aTXYU5YDwzC2sWFxCPJ0n8/7zoxODMPX/2QDADL6wbo+qwp2n3zySZSWdnzmhBBivapG44fBrizX/rviz+hzn5M+1jZJIL0ru0KGvRfKoNMxXW/cT9CMPvsJ8fXCD/fPRVK4P7wkItw503VOwFnzHlXUHqwCQFyw+7w/2+LDrP1mAZ9IIMCMqCS8MekKZFy7Cj/PuxXPcgaM/5B9AuXt8+80Oi1eOLGD93i1Todvs49Z9fp7ynLMbquUN6NNqz85Myw4EiNCom36NzlaqNQXCb5BAACVTous+gpeaefsflDaaTA60djM5VRhjdkccndj1SdGTEwMiouLMXjwYEfvDyFuTyY3foAfyqmEXKVx2QYp3DV97hT0cQcdd3QWnfSunMpGLHh9C5RqLZ5dmo4Vc4f19i65BOrcaV8Dw/2x9+mroNbqXOp4hljRyKWQM2oitp+Oa+B2x5waOQBLBgzH/LhUBHnxM1WzY1IwKjQGp2vL0KbT4qOsA3h5wuX4OecUsmX6El8BwGa7vss+gQeHT+tyTMJuTtA3KCAMlxprePfflJLuksugxoTFoqilAQDah8Ybs5Vz+1HQNzDMH/5SCZoUatS3tCG7QobU6KAOt69rUeJ0YS3OlzdgUGQA5o+Id+Le9pxV73DDhg3DI488guHDhyMuLg5eXvzaZGrkQoj1mhRq9rJSrcWhS5WYO8w1WyNz1/S5U9AXzGuS0PEMLNJ7fj6UwzYsOZxTRUFfO17Q14/XcNmTWCSEWORanQqDfLgnpiy/RxXXcjN9/S/oq1W0IL99yLmHUIRv5izrcLyBQCDAqpGzcPPuHwAAP146iTN15chrNJb0PTZqFn7LzUBxiwwylQL/yzuDWwaP6/D1VVoN9lfksdc/mPYv3Pb3z6iQ64NxqViCJQOG9/jf6Qhjw+KwoX1Iu2EtHwAM8AvGoAD3H1JuIBQKMCohFP9c1Ae9V7+3Ax/dNg0zh8RAqdbiXGk9ThXWIKOwFqcKa1BU28J7/ObHFmLswPDe2PVusSroKygowJgxYwAAlZWVDt0hQtxdo0LFu777XKnrBn0y92vkAlB5p6tjGAabMwrZ63JOoNPf8Qazu1BmithXEGdNn6xVBZ2OMWvaU8gt7+yHmT5D4xUAGBkS3eU8uxnRSRgbFocTNSXQMDpesBPrE4B70ybDV+yB59vLPb+4cAQ3DUqHUGD5hMCx6mK0qPWf5/G+gUgLisSjI2fgicObAQDXDBzpUg1cuLjNXAxGhkTj9YlXuGRm0pFWzhuGA9mV0DEM6lvasOyjXUiLDsKlykZ2ZJUlAkHf655s1d5+//33jt4PQvqNJpOgb1dWKV65jnG5N1qVRovqJv36Q4EAiAx0n4Xd3M54nc3AIr3jdFEtSjmlxa1t6k627l+ovLN/kIiE8POSoFmpho5h0KhQmc0QK+KUd/bHoO84J+gbH5HQ5fYCgQAvjFuAG//6Dk1q4/u+AMAL4xZCKpbg+uTRePvMXjSr25DXVIe5f/wXU6IGYErkAEyMSESgp5R93N+c0s5ZMSkQCAS4MXkM1FotqhTNeHD4dPv8Qx0gLTgCY0Jjcaq2FIMDw/D4qNmYH9c/Z9ZOT43G7w9fhvu//gdVjQowDHCurMHith5iIYbFBmN0YhiWpCdiWFywk/e2Z6z6xDh16lSn9xuygISQzmm0OrQo+V9gS+tbcamyEYOjAntnpzpQKZPDsKY5wl8KiYuVP/UErzMeZfpczuZT/MYM8jbK9Bko1cZj0Z9b9PcHwb6eaG7/vKhvUfKCPo1WxxvM7k6VGNbiZvrGh1u3tmpkaAxOXbcK5a1NaGiTo14pR4xvANKCIgEAfh5eWJYyBp+ePwwAuNRYg0uNNfj64jEIAAwLjsKcAYMwOiDG4lw7gUCA5anj7fQvdByhQIj1C25HcYsMCb5Bbj+IvSuTUyLx11NX4P6v/8GBS8aKxoHh/hidEIoxiaEYMyAMQ6KDXGasS3dYFfQtW7YMAoGA19VGIBBAIBBAKBQiKyvLYTtIiDsxzfIZ7M4qNQv6yhpaceBiBfZnV+BYfjXC/aX45t5ZCPWTWnwOeytz0/V8gOngY1rT50pMSzsBoJWCPhaVd/YfQT6e7Boi04qECpmcndEX7i/td78Lreo2ZLU3HxEAGBtuXq7YES+RBAP9QwCEWLz/weHTkdtYi38q8qDWGcv7GABn6ytwtp4/osFLJMakiEQb/wW9TywUtR8HAgBh/lL88uA87L1QDqFAv9bPNLve11n1LrF7927eda1Wi4KCArz33ntYtWqVQ3aMEHfUUdC361wpbpycgoOXKnEgWx/o5XNKdwCgpK4FG04U4O5Zac7YVVTI3HNcAwAE+1B5p6syLe0EaE0fF7+8s++ecSZdC/bpuMtwSb0xy9dbpZ2ZdeXYXXoJkyITMdHJQc+pmlJo2xMRqUERCPCw38nQQE8pvp1zE+RqFY7XFONQZSEOVhYgs64cOgst/adGDYRU3Pl6QtI3iIRCzBnqmj0W7MHqkQ2m4uPj4ePjgxdeeAGbN2+2+44R4o4aOZ07owK92cDqcE4Vhj75C7oaEcMt53E0w3o+QF/e6U6ovNN1/XGq0Ow2Oa3pY9Gavv6D+z7VYPI+Vcr5LHD2jL6jVUX44Ox+7C3PBQAIMwVYN/92jLOyxNIu+9CN0k5beUs8MCM6GTOikwEATSoljlUX4VRjGXbnX8K5hkpIhEI8MGyqQ16fEHvr0SdGSEgIioqKut6QEAIAaJIbM30Dw/0R7i/FmWJ9y2nTgM9LIsL4pHD4eXlg62n93xk3++Zodc3GssdQNwv6+N07lWAY12uk0x8xDGO2ng8A2jQ6qLU6t1pX2l284ex9rHMcsU1nZejcE4DOmNHHMAz2lefhg7P/8AIuANAxDB49uBE7F98Hb0nnc+3s5bgTgj5T/h5emBs7GDeOHouaoc1oUinhKRLDU0R/h6Rv6HYjl5aWFnz77bdISUmx+04R4q644xr8pR5YOnYAzvykXzAuap8XM3VwJKYNjkL6gHB4SUQ4lFPJBn2VTgz6apqNmb5QP9dsO91dUg8xpB5iKFQaaHQMWpRq+Emd82WFdCyjsJZdSxog9YBaq2NLO+VtGgR408+IMn39B7fLsGlFArcEOtaBM/p0jA47SrLxwdl/kFnHX8smgH4+XptOi8Lmerx86i+8POFyZNSW4s/ii0gPi8Vlcal23ye1TotTtaXsdWdmGLn8XXQcAyEd6XYjF0Bf9vnGG284ZMcIcUfcNX0BUg8sm5yCAWH+UKg0GJcUDn8LgUc0Z1SCMzN9NU3GM8thbhb0AfoB7WXtX6DrW9so6HMB3AYuC0fGY8+FMmPQp1JT0Ad+0OdFa/rcGj/T18maPgcEfVqdDpsKs/BR1n5ky2p494kFQlw9cARWDp+KE9Ul+PehTQCAb7OP43x9JY7XlLDbfjnzBsyPt2/gl1VfAYVGX/Id5xuIaJ8Auz4/Ie6qW41cAEAikSA8vO9MoSfEFTTKjR/c/t4eEAgEmDwostPHRAQYg76qRrnFIb2OwM30hTmpY6gzBft6slml+hYlEkL9enmP+jfT0s7FYxJwLL8agP73kDp46impvLPfCLGyvNMRjVxWH92Cn3L4VV6eQhFuSBmDFUOnINY3EAAwwC8E24sv4K/28QXcgA8A/n1oI/4KWWHXwOyvkmz2cm9l+Qjpi6xaIPHhhx8iICAAMTEx7H/h4eGQyWR48MEHHb2PhLiNRpNMnzWkHmL2jK9Gx6C22TkjBrhr+sLcbE0f0PlZdOJ83NLOQG8PTBscBW9PY1BDQZ8ede/sP4I6aOSi1elQ3sAt77RvIxeNTosNBWfZ6z5iD6wYOgWHr34EL0+4nA34AP34rtcnXYEgztByoUAAf4l+3xtVSjywfx00OuPJiu7SMTq8dmoX3j+7n71tohVD2Qkheh2eJszLy0N9fT0AYOPGjZgzZw4CAvhnarKzs7F//35LDyeEWMBt5GKplLMjkQHe7GiBikY5wgMcG4QxDIPaFmPQF+KG5Z0hnayXIc7H7dq5YEQ8PMQieHPWrFEHTz1a09d/dDSyobpJAU37jL4QXy+7/x5cktWw5ZMRUl/suvJ+BHl6d7h9uNQP386+CW+e/hsJfkG4J20y6pStuGbH19AyDI5VF+OdM/vw+OjZ3d4nhUaNhw6sx/biC+xtQ4IisHTAiG4/JyH9TYfvFKWlpbj33nsB6M/kPPDAAxa3u/nmmx2zZ4S4Ie7IBlvWJ0UFeuNCeQMAoFLWipHxjh2o2qhQQaXRD6X18RTzvny7i2Aa0O4y9APZjaWdV4xJBAD4eBpnX8kp0weAhrP3J9yRDXWck3Dchl5RgR0HY9bYV56LT88dwtKBI3Bt0igAQEZtGXv/mLC4TgM+43ax+Hnerez1gf4heGzkLLxx+m8AwPtn/8E1SSMxoJvDwD84+w8v4JsTk4IPp11N8/EIsUGHnxgzZszAvn37wDAMZs6ciQ0bNiA4OJi3jY+PD3x9baslb2pqwrx589Dc3Izz58+zt99www3IyMjgbTtmzBj8/PPPNj0/Ia6M18jFhqAvkvPB7owOnvwmLu5X2gnwyztpQHvntDr9CQCR0DEjE04V1rLlaoHeHpiWGgVAf8LBgMo79RRqKu/sL0J8vSAUCKBjGNS3tKFNrYWnRITKRs4M1faqjyaVEj5iD5v+Ri80VOGOv39Gm06LQ5WFmBGdhHCpHzI4nTFHh5rPabbWymFTsa88F0eri8EA2Fp0Hg8Mn2bz8zAMg00FWez121PH4/mxCxz2fkSIu+r0NGFERAQA4OLFi+xtGo0GYnH3zi42Nzdj5cqVkMlkEImMH1YMwyA7OxtSqRSTJ09mb09OTu7W6xDiqhq7Wd7JPZtb7oSgr5bbxMXf/Uo7gc7boROjvKpGLH3nT4hFQmz690KHNI3YzCntXDgynp3HxyvvVFF5J2BS3kmNXNyaWCRERICU7dpc2ShHQqgf78RfZKA3Hju0Cb/mZsBbLMGIkGiMCo3BqNAYjA6JQbRPgMUZpAqNGg/sX4e29rV2GkaHf8rzcE3SKJzmZPpG9SDoEwmFuGnQWHau3/biC90K+vKb6lDUoq908RF74Jn0yyjgI6QbrP7E2LhxIz755BOUlpZi+/bt+OKLLxAeHo6VK1da9fht27bhzTffRHl5udl9hYWFkMvlGDduHD7++GPr956QPobbvdPaRi6A8zN93GYx7rieD+CXTlHQ17Ev9l5ATfvvw4+HLuGpK8bY9fl1On5p5+LRiexlyvSZ45Z3elF5p9uLDvJhg76yhlYkhPrxRvdIfXX4OldfJSXXqHGkqghHqox/T2FePhgVGoORoTEYFRKDkaHRCPL0xiun/kK2rJr3WnvL87AwfgguNepHNAgFAowMie7R/s+JTYFYIISG0eFMXTnKWxtt7uS5u+wSe3la9EB40DB0QrrFqlMlGzduxCuvvIIlS5awGbrU1FR8/vnn+Pzzz616oU8//RQNDQ0Wu31euKCv01ar1Vi9ejX+7//+D0ePHrX230BIn8Et7/S3cU2fQWWjM8o73XtcA8BvkkDlnR07nmf8YnixXGb3588oslzaCfDX9FHQp0flnf0Lb05rgzHjZ1AlrO308TXKVvxVeglvnd6Dm3f/gOG/voEp69/D1xePmW27rzwXp2vLoGufyZwSEAYfiafZdrYI8JBiStQA9vqfxRc72dqyv0tz2MuzY1J6tD+E9GdWBX1fffUVnnnmGdx3330QtqfUb7zxRrz44ov47bffrHqhZcuWYceOHViyZInZfYa1fadPn8b69euxbt06LF++HNu2bbPyn0FI38Bt5BLYzfJOZwxor2nuX2v6qJGLZc0KFS5wAr1LFbIOt+2uPzoo7QTAG9lA5Z163Ky0ryc1sXB3UUHGcQzlMv3JkSpO0JfdZqyeejp9Hj6feT1WDpuKKZED4Cux/BljKJUEgHmxgxDmpX+NhjYFvr90gr2vJ6WdXAvjh7CXuc1YrNGibsPRamPmkoI+QrrPqhx5UVERRo0aZXb7qFGjUFVVZdULXX/99QD0XUFNhYWFIT09HUuXLsWCBQvw66+/4s0338Qrr7yC+fPn89b/WRIU5A2x2PlnPMPCaJhzb+irx12l0bLrcURCARJigyyutbBkmJfxT7WyUW7XY2DpuVo1xhKyAdGBffaYdyaFM+BeJlc5/N9Y16zAj/sv4Z/zZZgzPA4r5g936OvZQ8aZYvasPwAU1jbDx98L3nYKNnQ6BtvPFLPXb541hPdzCA82rh9khMJu/Yzc6Xe3tknBZqW9PcUYnhwBodC69xBnc6fj3psGxRob6MmUaoSF+RlPykk0yGvVZ+JFAiFWTpiOYKk3DD00dYwO2fU1OFFZjOMVxThRWYLMmnKo29fxxfoG4OsrbsJT+zbjh/P6YG9rkTEomz4gyS4/xxu907H6yFYwYHC0uggCHwFCva1bG3wopxDq9kZSI8OiMTzBPoFoT9Hvd++g494zVgV9UVFRuHjxIuLi4ni3Hz58GFFRUR08ynrLly/H8uXL2et33nknPv74Y9TU1KCkpASJiYmdPr6hwfGZD1NhYX6oqWl2+uv2d335uHPXyflLPVBb22L1YxmGgadYiDaNDs0KNQpK6uHr1fMv3h0dz+LqJvayF9Bnj3lndJyGGHXNSlRXN1kdhNuipK4FL208iT8zi9kxGBuP5SPES4JZaa7xBaYju04V8a4zDHA4qwwj7DQy5ER+NUrq9H8HQT6eGB4ZyPtdYzgnH2plcpt/D/vy+4UlxziltgPD/VFXZ/17iDO523HvTf4S4wntvHIZamqaUdr+cxcEG7/7TI5MhLZFi5oW/nEPhTcWhKdiQXgqMBJQatU4X1+F4pYGTI5MBFoZTAxJwA/QB30MjCd5kj1D7PJzFEGAsWGxOF5TAh3D4OfTJ3FDinVrgzecz2Qvz4hMconfK/r97h103K3TWWBsVXnnHXfcgeeffx4//fQTGIbBsWPH8N577+HVV1+1y5y+srIyZGRkoK1NfwZTIBBAItF/odVoaB0HcQ/dbeIC6P8mogKNZT6OLvHkBqih/u5Z3in1ELNzztRaHVqUjikfXPXTIfxxqpAN+Axe3niSHYXgCsobWnH9Bztxx2d70Ny+9vR4frXZdhftWOLJbeBiWtoJ8Bu50HB2ILeqkb2cEmFbMwzSN0WblHe2KtVobn+vEnGCvgVxqVY9n5dIgjFhsVgyYDjCpfovh9OjBsL0dJeXSIzBgeE923mOBZwSzz9LrFvXxzAM/i6j9XyE2ItVQd91112HlStX4tNPP4VSqcSaNWuwfv16PPnkk7jlllt6vBMrVqzADTfcgO3btwPQr+2TyWQIDAxEfHx8j5+fEFfQ3SYuBs7s4Mlv5OKe3TsB0wHtjmnmcqaojr08OiGUDTTPlTVg3fECh7xmd3x3IBv/XKzA9jPFeH/HWWi0OpwsqDHbzl7r+nQ6Blt4XTsTzLbhjmygRi5AbqUx6EumoK9f4I3raZCjwrCeT6wF42d8n54fb13QZ0mwlw9GmHTpHBESDbHQfstmFnD275/yPLSou36/Pd9QiSqFPrMT6CHF6NBYu+0PIf2RVUHfL7/8gvnz52Pfvn04dOgQTpw4gX379uGGG26wy07ccccdAIA1a9bg1ltvZa+vXLkSHh62fzkmxBU1coK+wG4EffxmLq122aeOcDN9YW6a6QP4Yxsc0cGzobWN/blLPcTY+vgi3Ds7jb3/9c0ZUKq1HT3cqYo55cY/HLyEkwU1kKvMA62L5Q1mt3XHqcIatmtnkI8npg42XypA3Tv5cqoo6OtvIgKkELWv26xrUaKoVh8ECQLlMKTn0sNiEent36PXmRnDn4vck6HsliT4BSMtSD/7WaXTYn1+ZhePAHZzunbOjEmm2XyE9JBVf0Fvv/02mpr0a3yCg4Ph62vf4bxLlizBa6+9hoEDB+L06dMIDg7G008/jVtvvbXrBxPSRzTJjeVptgxmN4gMcE4HT3mbmv2y7yEWws8OawddFbeDZ12L/Tt4Gr6gAUBCqC8EAgHunzuUDaTLG1rx1V7butk5CjfQl8lVWPObcWxOanQgeznbTpm+rko7AZPyTureycv0pURS0NcfiIRCRHBOvBkqB7jr+bjdMbtrVjQ/6LNX506uG5KN6/g+O3+4y/L24zXGJk8zTfaPEGI7q4K+IUOG4NChQ3Z5wdjYWGRnZ7NjGgyWLl2KzZs3IzMzE7t27bJL2SghroSb6etO0BcV5JxZfdxxDaF+Uoc0N3EVIb7G0lVHDGjnB3369TN+Ug88fc049vb3d5x1iTmBNc0K3vVzZcaM3vUTkyFuzzaU1rf2eP2jTsdgC2dUwxVjzEs7ASrv5FKqtSg2NPAQAAPCe5bZIX0Hd13fyYIaQKwFAjjr+ewQ9I0KjUGAh/H9cIwDSimvTx7FvkZhcz12lmZ3un1eo3EG4bDgSLvvDyH9jVVBX0hICF566SVMmzYNy5Ytwx133MH7jxDSNe6aPlsbuQBAlJMyff1lPR/AX9PniMCrkNNpLDHU2FHr7rlDMaC9w1ajQoUPdpy1+2vbqqap40zn5JRIDOQEGT1d15dRVIvy9t/hIB9PTBlkuQu0N5V3sgprmtjxGfEhvvCS0GD2/oJb2p9RVAtBRBME7d/eRoXGINEvuINHWk8sFOE/4xciwTcIDw+fjhjfwB4/pykfiSduHWw84fXJuYMdbqvQqFHSIgMACAUCDPC3T8dgQvozq4I+Ly8vLFmyBFOnTkVCQgIiIiJ4/xFCuibjdO/saSMXRwZ9/WU9HwAEczN9DhjQbinTBwAeYhFWX2ksdfpy3wV2dEFv0Gh1Hf77vT3ESIsJQmp0EHtbTzt4ZpUYm9vMTouxWNoJUPdOLmri0n9xM30NCgUEkcaROvelTbbb61w9cCQO/uthPD56tt2e09Rtg8fDo71BzMmaUpyoLra4XUFTHTs8It43CJ4iqyaMEUI6YdVf0auvvuro/SDE7TXJe9bIxVndO3nlnb7unenjrulzRHlnYQdBH6DvVjk6IRQZRbVQaXR4Y0sGPlg+rcPnYhgGZ4rrEBPkY/dgvL6lDYYZ7F4SEdo0WvZ6+oAwiEVCDI4KZLfv6bq+Ok5WNSbYp8PtuJk+S01l+pNLVbSer7/ilvYLwpohEOvXwkV5B9hlPZ8zRXj7YenAEfg1NwMA8Mn5Q/gi3LxLe06jsXNwSkCo0/aPEHdGrZAIcZKmHq7piwjwhmF5XU2zAmqtY2a8cdd2hfq7d9Dn6O6dRdzyTpOBqQKBAE8vTWevrzuej6yS+g6f65Pd57Dwja2Y/uJGuwf93J95fIgv5o+IY6+PT9LP6hrMaebS0w6e3ACb+zMw5SkWsp0LVRodVBrX6HTaGyjT13/FsDNaGQiijFm+u4ZO7pMdLe9Jm8Re3lF8EflNdWbb5HLW8yVR0EeIXfS9dwtC+qhGhbE8rTtr+iQiIcL89BkehgGqmxRdPKJ7anlr+ty8vNPHcY1clGotO1NLKBAg1kJGa3JKJOYN0zdMYBjgpU0nO3y+Xw7nAtB31txwIt+u+8oN+sL8pXhmyVgMDPfH4KhA3Dp1MADwMn09XdNXz+mUGtJJNlkgEJh08Oy/2b5cGtfQb0W1l3cKQloh8NT/DTBqIe5Pt19ppzMNDgxnB60zAL44f9hsG27QlxIQ5qxdI8StUdBHiJP0dDg7YLKur8Exs/r4a/rcO9PHK++085q+4rpmtkQyJtgHHmLLjTfWXDUGwvYU7r4L5dh3odxsm/oWJS5xMj07Mkvsuq/cJi5hfl4YGO6Pg88txZ41VyI8QB/4J4b6wVOs/8iobFTw1qjaijsegxt4W8Lt4Cnvp81cdDoGuVXGDE8ylXf2K9FB3oC/AoJYY4bdqz4YwT7enTzKtd071Biw/pp3GnVK/udZbpMx6EumTB8hdkFBHyFO0ijvWXknwO/g6ah1ffw1fW6e6XNgeWdRB507TQ2ODsINk4wzqF7adBI6HcPb5nh+tcn1GrvOFazllfQaf+bccR1ikZCXYcoul3X79awt7wRoQDsAVDTKoWjPcgb5eHaaHSV9H8MwKG2R4WhVEdbnZ+LxExsgGlIJgVd7lk8rQKwmupf3smcmRyRieLC+a2+bVoPvso+z92l1OuRzyzv9KegjxB6sDvo0Gg22bduGDz74ADKZDMeOHUN9fcfrTwghfI2czEh3GrkA/AX9FQ6a1ccv9XPvL5emjVwYhulka9t01sTF1KrLR7It+LNK6rHhRAHv/qO5/KBPxzDYnVVqpz01zfR1HOgP5nTw7EkzF2vLOwHA25M7q69/dfA0rGHMqZSxt1ETF/ek1elwpKoQzx7bjgnr3sHE9e/i6h1f46ED67G3PJfdjtEKwBSEIsa/b89pFAgEvGzfN9nHoNDo/75LW2Vo0+l/98O8fBDo6d4nHwlxFquCvurqalx55ZV4+umn8d///hfNzc34+uuvccUVVyAvL8/R+0iIW+hpIxcACPQ2BinNPRyQ3ZHaJv5wdncm9RCzAbhaq7PrKIzOmriYigr0wd2z0tjrr20+hTa1sWnJ0bwqs8fsOGu/Ek9eoN/JbEZ7dPBkGAb1nKxqiA2Zvv60pu+DnWeR9OiPuPa9Hdh73ljyS+v53IdKq8Heslw8cfgPjPnfW7hmxzf46uJRlMubzDdmAF21L3RnYsHU+fJm9/VVlyekIcZH//tcp5RjXf4ZANTEhRBHsSroe+2115CcnIwjR47A01P/Af3mm29i2LBheO211xy6g4S4A6VaizaNvtumh1jY7cHK3McpVfbvZKjSaNHYHpwKBQLe8HJ3xc2c5HDWzfWULZk+AHjgsmFs5rG0vhVf/3MRgH4+XWaxeXe7vefLoVTb53egxsrZjKmcDp7dDfrkbRp2v70kIt5YBkv645o+hmHwwY6z0OgYHLhUiU//Ps/el0JBX5/WptXgz+ILeOjAeoz67U3cvPsH/JRzCnVK/gknf4knRofGYHFCGlYMnYJpmnFgCsIAtf7vITKg7wd9EqEIdw+ZyF7/7Pxh6BgdNXEhxEGsmtN39OhRfPnll/DwMGYnfH198dhjj+Gmm25y2M4R4i6aTNbzcddK2cLLwxj0KdT2/wLMbeIS4usJobB7+9mXpEQG4ni+fiZUTmUjZgyxz1qZolrjsPWEUN8ut/eXeuDRhSPw7P/0a1ve+zMTN0xKxrnSemja1/gNigyAVscgr7oJcpUGB7MrMKe9+2dPcDu2hlqZ6bvYzTV93CxfsBVr03z6YXlndZOiw0w+NXHpu5pVSly381ucra+weH+Ylw8WxA/BovghmBiZCInQ+H7/QtFx7IUxGIoIcI8qjBtSxmDtmb1oUrchv6kOu0ov8Wb0UaaPEPuxKuhTKpWQSMzPxqpUKruugSHEXTVySju7M67BwEti/JN1RKbP2oyPO+FmTrhrp3pCp2NQUmddIxeu5dMG48u9F1BU2wKZXIUPd2bxMl0TkiPg6ynBf3efAwD8mVlil6DP2p97XLAvpB5iKFQa1LUoUdussLkEmNe5s4vSTsCkvLOfZPryqi2U97UbREFfn7Xm2DazgC/WRz9gfVFCGsaExnY4dy8q0Mfket/P9AGAr8QTNw8ai4/PHQQAfHruEHSc75U0mJ0Q+7GqvHPKlCn4/PPPeQFec3Mz1q5diwkTJjhs5whxF9wmLt1dzwcAUm55pyMyfVZmfNwJr7yzyj7lnRWNcracN9jXE35W/sw9xCI8dcUY9voXe85j6+ki9vqEpAje4PS/skrMOn3aSqdjeIFYaCfZN6FQwAs6ulPiWWdDExfAtJFL/wj68jlB32XDY3HdhCR4iIW4etxAxFt5AoG4lnX5Z7A+P5O9fueQCdh2+T04/K9H8Ny4BRgXHt/poPXoIH7QF+kmQR8A3D5kAiTt//aj1cU4XVfG3pdMnTsJsRurgr7/+7//w8mTJzFt2jS0tbXhgQcewMyZM1FcXIynnnrK0ftISJ/Hy/R1s3MnYJLps9N6Lq4yzuw/dx/MbuCINX3Wjmuw5MoxiRgRHwIAaNPocL7MOJtrQnI4xg4MYzNkVY0KZJaYr/ezRX1rG7TtgWOA1AOeXaw35TVz6UaJJ29cgxVrRvtj9858zky+kfGheO/Wqch5exk+vG1aL+4V6a7C5nqsObqVvX5d0ii8MG4hRoREW13qH20S5LlLpg8Aorz9sWTAcPa6Wqc/YeYtliDKp293KSXElVgV9EVGRuKPP/7Aww8/jBtuuAETJ07EU089ha1btyIuLq7rJyCkn2uyV9Dnwc302T/o4wYQQ2KCOtnSfcQG+7INcmqblXaZ12drExcuoVCAZ5emm90eE+SD2GBfiIRCTE6JZG/vaaDKn9HXdeaN28zlYjcyffWt3PJOa9b09b/undxM38Bw/ZdeD3H3mj+R3qVjdHho/3q0qPWfAQP8gvHi+IU2Pw830ycRCRHs416VGPekTTa7Lck/FEIBjZMmxF6sWtP33nvvYenSpbj22msdvT+EuIT6FiUCve3XyMS0kUt38bt32v8L8OlCY6OAUQkhdn9+VyQUCpAcEYCsUv3c0ZzKRoxPCu/RcxbaMK7BkimDojA7LQZ/nzeWOXH3KYbzBbCyh/MarZ3RZzCoh2Mb6pqtH9cA8Lt39pfyztxqYyCfFEGZjr5sT1kuTtXqZ2pKhEJ8OO1q+Ehs74ocESDFuIFhOJ5fg8tHxbtdk60hQRGYEZ2EfeXGMWDJtJ6PELuy6hTKzp07MX/+fNxwww347bff0Nzc3PWDCOmjvtufjeFP/Yb5b2yBRquzy3M2KoxlaXZr5GLnTJ9cpWEzNwIBMCKufwR9gGmJp6zHz1dU2/3yToM1S8aAW/k1ITmCvcxdz1PVw9mC1s7oM0jlDGi/VCGzuZmX7Zk+7sgG9y/v1Gh1vPLggWEU9PVl32YfZy/fnjoBI0NjuvU8AoEAvz80H9ufuNxty3zvM8n2UdBHiH1ZFfRt3boV69evx+jRo/Hxxx9j6tSpeOSRR7B3717odPb5UkyIq/jh4CXoGAZZJfU4WVDT9QOswBvM3qM1fY4r7zxXWs+u7UqOCLC6+Yg7SLbzur6elHcapMUE49apgwHof+7zOF06uTO6Knqa6eMGfVZ0bI0O9Iafl77kUiZXoapR0cUj+HiNXKxY09ffyjtL6lrYER2RAVL4eHU+x5BYp02rwbGqIhypKnRa1/Hi5gbsKcsBAAgA3Dp4XI+ez1MiwqiE0E4bvvRlU6MGIi3IeHIrNTCik60JIbayqrwTAIYMGYIhQ4bgiSeewPHjx7F9+3asWrUKXl5eOHDggCP3kRCn4n6J5ZbOFdc2470dZzE4KhB3zEiFWGT9B6+M072zR5k+B87py+CVdvavM6yDIuwb9FVxfm9ign062bJzL107HjOGRCM5IoC3poeb6avsYaavllPeaU3HVoFAgMFRgTjRfkIku0JmUydBXiMXK16vv3Xv5K/no/EM3aXSanCmrhyHKgtwuLIQJ2pKoNTqf3+uSBiKtVOWQCp2bED9w6UTMISXM6KTkegX7NDX6+sEAgHemHQlHj6wHkn+oZgdm9Lbu0SIW7E66DPIz8/H4cOHcfToUajVakyfPt0R+0VIr9DqdLxMBDcAfPWPU9h4shAAsPtcKT65YwaCrMhUAPoyOIOQHoxCkDpwTt/pIk7QF99/SjsB+45tYBiGF9hYM5agI2KREAtHxpvdHskZzFxpY6bNlK2ZPkC/rs8Q9F2saLBpoD3v2FiV6etf3TvzLDRxIV1T67TIrCvH4cpCHKoswPGaEig0ln9fNhedQ3FLA76adSMivB0zAkOpVeOX3Az2+vIeZvn6i1GhMdi35MHe3g1C3JJVQV9ZWRm2bt2KrVu34tKlSxg1ahRuu+02LFq0CL6+vo7eR0KcpoHTvh4Aajhz685xWuf/c7ECC9/Ygm/unc1b42RJfYsSJwv0AZVAoJ+11l2OLO88U2zs3NnfMn0Dwv0hEgqg1TEorW+BXKXhNRCxRZNCDXX7WlBvDzGk3XyezkRwyjurG+XQ6RgIhQIU1zbj6d+PITbYB2uuSreqNJDfyMW6AJXbwfNShW1BMn84u43dO/tBpi+vipq42OpIVSEe3L8eFfKOh9oDQKS3Hyrl+tLrM3XlWLztc/x62XIM9O/5SS6VVoOV+9fhSFUhZkYnI8EvGPVt+ix8jE8AZsdQ1ooQ0rus+jYyZ84cREdH46qrrsIHH3yA+HjzM8+EuAPuF2AAqOIEfaZldEW1Lbj8zW34YPlULBqV0OFz7jlfDl37GpL0xLAeDT33ctBwdpm8jS0rk4iESIvtX2VIHmIREkP9kFfdBIbRf/Ee3s1GNrw1aw4acC/1ECPIxxMNrW3QtA9XD/OX4r0dZ/FXlr5TYHZFI76/f06XwSu/kYt1mT7urL6L5Q0db2hCq9PxSp2tyZRL+1n3Tm55ZxJl+rr0ffZxPHNsOzSMeX+BBN8gTIxMxOTIREyKSES0TwC+uXgMzx3fDi3DoELehGePbccPc2/u8X6sy8/E9uILAIANBWd59908KN1t1+ERQvoOq4K+b7/9FhMmTHD0vhDS66qb+KVyhrVZrUo1mpX6UiGRUAAviQitbRrIVRrc+flePLZoJP69cKTFNtq7skrYy3M4zTi6w8vDMd07zxTx5/N5dTGg2x0lRwawpXWXKrof9NVzgz4rRhJ0V0SAlJ0pWCGTI8xfivNl9ez9h3Iqccdne/DNvbM7/XnWNXMyfVaWd6ZGGbPb2e0dPK0ZMi2Tq2DooRHo7WHVutj+1r3T0ow+Yk6r02HNsa344dJJ9rZADykuixvMBnkxvoFmj7stdTwS/YJxy+4fwADYW56LS7JqDArs/pgWrU6H/547aPE+iVCIG5LHdPu5CSHEXjr8xN28eTNUKn3HwerqamzevLnD/whxF6ZBn+E6t0NidJAPtqxahIRQY2nz29vO4M4v9qBFyf9SqtHqsOd8OXt9Xg+DPolICFF7YKnVMWwZYU/15/V8Bvx1fbJuPw8v09eD9Xxd4XbwrGqUg2EYFFTzx+nsu1COu7/YC5XG8gkChmFQ22JbIxcACPP3YrN0rW0alNa3WvU4W0s7gf7VvVPepkZ5e0WBSChAfDc7v/YH32Qf4wV8I0KisPOK+7B2yhJckzTKYsBnMDMmGZfFpbLXv7hwpEf78mfJReQ36U+c+Us8cWXiUAjbT4LcmDwGYVJaBkMI6X0dZvoef/xxTJ48Gf/f3n3Ht1GffwD/nLbkvfdOHCd2EmeQSchOICSEXUbYoS1QaCnQFij9tUBLCy0b2rJX2XtDEkiAkEW2kzjxiPde8tCW7veHrNOdhi3Jms7zfr14IZ2l0/ki2/foeb7Pk5SUhDvuuMPtDhiGwbp16wJycIQEW9eAY6bPep9f2pkep0JJZgK++N1a/PKFbfiushUA8OXBRqz95+d48edLUTD8Cf1PJzuhHh7XkBmvwpSskdf/ecKWZQSsA9qlfhitcKDh1O3caTMxPZ67PZYOnt1+auIymgxex8zWPg16h/Tce41vc0UTfvnCd/jvdYshdcisqbUGGEzWDw6iFVKP1x/aOnjurG4HYG1UlJM0+oWtsMGNZ1nQqFOoe+fJTuGoD8d/L2KlMRrwxOHvufvr88vwzwXrverG+fMp8/FVYyUAa2nm72csR5LC+067LMvi6Qp7B/OrSubg9zOW449DatQP9OK01Byv90kIIYHg9i98ZWWly9uEjGeOmb7eIT0MJjNaeUGf7WI7IUqO/924Avd9uBfPfHMUgLXU7awHP8N/rjsDSyZnYfPw+ioAWFaa7VEJ3GgUUok96DOa4eEyrBEd4I1rmJF/agZ9xX6a1ResTB+/mUubWoM6XsAwOTMBK6dm4/GvrGuLvjjYgFte/h5PXr1IsLbIlyYuNvygr7K1z6PSZX7pa2KUZ68nk4ghETEwDWe2DSYzZJLglR9/Vn8UXzQcw8+nzMe0JM+7lPqipn38l3b26jX4w85P0TrUj4yoWGSoYpE5/H/r7TikKqMhEdn/jU0WM8SMiPv9+eLx3ejSWbPLmapYPLzwXMjF3jVMmpOai+lJmTjY3QK92YRXT/yE30xb7PX382PbSRzstlZzyMUSXFtiXQqTGRWHzCgauUEICR8e/Za88sor8eSTTyI2VvhHqKenBxs3bsT7778fkIMjJNgcG7kA1kCQP6+PP5NMIhbhLxechtLsRPzu9R+hN1mg1hpw+VNbcM+5swRB38qpYyvttPF3B8+2Pg3X9l8lkwjKHE8lE3iz+k529PscXPDXyAWqkQsgfB+2q7WCLFFBagz+sG4G9EYz/jv8gcSHe+sglYjx6IaF3NpTfhOXZC8/PeB38DzOG0kyEn4WNNGL9Y5RcimXxRzSm4IW9LUMqfGr79+F0WLBt81V2HzOjchQBS4Yq+ngde4cp0HfY4e+w2f11vckulw/RsQwSFVGQyoSo1evwaDRgNzoePzf7DMxPz1fkFn79bTFXgd8gDVbvXHyPNz8g/X65aXK3fhl6QIoxN7N7nuKdyyXTJhBpZyEkLDl9jflvn370NDQAADYvXs3Pv74Y6fxDNXV1airqwvoARISTJ0DzjPPOtRaQXlnRpzzIOqL5xahOD0O1/z3G7SptbCwLP7ywU/c1+USEU4vTvfLMfp7QDt/Pd/UnMRTtstctEKKnKRoNHYPwmRhUdnSh2k+rG/sDlIjF8fyzrpOe5aoICUWDMPg/86fDYPJjBe/Ow4AeGdXDWQSER68ZD5EIkYwmD0l1rsAtdiHDp49PmZBo+QSLujTGEwez8ccqy8ajsFosZa/qg063L79I7y2YoNfMvaunApNXL5prhr1MRaW5UYr2DQM9uG6rW9iamIG1Abr+ygvOgEXTyj3+VjW5pfir/s2oU0zgC7dEM769L+YlpSJ01JzcVFR+ajB5P6uJnzXWgsAEDMMfjFlgc/HQgghgeb2N5pIJMIf//hHrivbAw88IPg6wzCIiorCjTfeGPCDJCRYHMs7AevYBkF5Z4Jz0AdY18J9+fu12PjsVm5wtc3C4gyo5N59guyOvwe08783/oX8qWh6bhIauwcBWOcW+hb0BWdNX5pDIxd+pi8/xdoAhGEY3H/RXOhNFrz+o/Vi+3/bqyCXiHH/RXN8Gtdgwx/bUNWm5mYFjkTYyMXzwE0ZogHtn9syUsO2tdbg1RM/4coADdoWjGsYhzP6mgb7uIYncrEED80/B22afrRq+tEy1I82TT9ahtTo1LlvDHS4p5W7fev0JZCKfM/6SkViXFsyF3/btxkAUKXuQpW6C+/VHkLTYB/+MHPFiM//5/5vudvr8suQGzP2NduEEBIoboO+8vJyVFRUAACWLVuGd999F4mJp9bsLnLqcVve6dDIxZ20OBXe/fVq3PX2Lu4iGwBWjLFrJ5+/yzv5F9ExHgzzHs/K85Lx6f56AMDBhi5cgWKv9+FLh0pf8DPOrX0aQROWghR710eRiMFDl86H0WzBO7tqAAAvbKvEvrpOwRoyb9f0JUUrkBKjQOeADjqjGQ3dA8hPGTlQ4Tdy8XRNHxCaAe0d2gHs7mhw2n7f3q9xekahXwZ687EsO+7X9H3XWsPdnpeWh/MLp7l8nMFsQptmAGbWggS5ChbWglu3f4gtvCzhhLhknFcwdczHdNWk07C1pRo/ttUJtm9rqRkx6NvVXo9tw9+PiGFwqw/rAQkhJJg8quP65ptv3AZ8bW1tfj0gQkLFZLagZ8hF0KcWrunjl9W5IpeK8c/L5uOBn81FvEqGspxEXDS3yG/H6e8B7fyOiKMN8h7vpvMye/zZhd4QrOkLYHlnUoycG9/RO6THCd66OsfgSyRi8MiGBTh3Vj637UB9Nzd7EgAKfcgsCYe097l9nE3PEC8L6kWQKZzVF5yg76uGSgyPFMSslGxMGp7jpjUZ8ZsfPoDJ4r85mYA1Q2wrYVXJJCN+uBSpvm+p5W6fkeH+d6JMLEFuTAIKYpMQL1ciURGFF5ddijtnroCYYSBmGPzf7NV+KUWPksrx9qqrceSS3+ONFVdw20/0dbj9N2ZZFg8d+Ia7f2HhdBTFnZoNsAghkcOjK7zGxkb84x//wIkTJ2A2W38JsiwLg8GAnp4eHD16dJQ9EBL+ugd13OBovta+IUHZZ5oHF2MMw+DqM0qwYWGxRwOoveHvAe382WdRfipBjVT8cs7Kll5oDSaPxxjYBKt7p1gkQlqskpvrZgvgFFKxy3WnYpEIj1+1CHqTBV8ctGewUmOVWDczH2um53l9DJMyE/DDCesHf8db+3Dm9NwRHy/IgnqxLo//YYRjeWe3bgjNQ2pMTczw61q7z3ilnevzp2JuWi7Wfv4sjBYL9nU14emK7bhl2hl+ez3Ber602ICtGwympsE+yMRipCpjYLZY8H0rL+jL9O6DMBEjwk1lp+PCwukwsxa/d8aMkymxKLMImapYtGj6obeYUdPfzQX7fNvbTmJnu7UiQMKIfOr6SQghwebR1cyf//xnNDc3Y926dfjvf/+L66+/HvX19fjiiy9w7733BvoYCQkKV+v5AOBIcy/MFms0mBgth1zq+RoSfwd8gEOmzw9r+vgX0fy1U6eiWKUMRamxqOnoh8nC4mhzL2YVpHj8fI3eyAXiMokI0QEul02PV3FBn01ecozbtXVSsQjPXLcYH/x0EiazBXMnpKEgJcbnAIOf6fOkg2ePj2v6+B9G8DPTHdoBLP/4afTqtfhd+bIxBWEsy2JQZ0SMUoZenQY72uu4r52VNxkZqljcNn0p/r5/CwDg4YNbsSxrIsqSMnx+Tb7aMO3cqTMbYbZYoJLIPH6f1Kl7cMu37+KrxuOIlcrx6ooNkDAi9Bmsv2NTldEocRFMeSJNFdiB9ZMT0tCisQbgx3rbnYI+lmXx4H57lu+SiTNoLR8hJCJ4dIW3f/9+PPPMM5g9eza+/fZbLF68GOXl5SgsLMSWLVtw0UUXBfo4CQk4ftAXrZBicDhzcqzZ3pnQVQYl2Pxd3skvl4s6xYM+AJiel4ya4azLwfour4I+xyYugc7WuMo656eMfFEsEYv8Vm7s7diGHh+b3AjKO3mZ6XdqDqJXb/25fbFyF24qO92nkj+LhcWlT23CD8fbcM+5sxCfp4d5OO0/KyWbG9Pwy9IF2NR0HHs7m2BiLbjlh/fx+dqfe93m35WaMOrc2abpx1cNlfi84Rh2ttfBzLJgAERL5YiSyqz/l1j/Hy21/d+6TW8x4fWqfdCarL8/+4163Lr9Q6zLL+X2vyijMGwzmVMS07m1g0d72nCuw7rBb5qrsK/LOopHJhLjlqn+y/YSQkggeXSFZzKZkJWVBQAoKChAZWUlysvLsW7dOrzxxhsBPUBCgoXfvr40KwG7ajoAAEazhduePsp6vmBQ8Lp3ag3+DfpO9TV9gHVd3/t7rGVoBxu8W9cXrNJOG1frSwtGCfr8qTg9nrtd3a6GyWxxm93WGkxcwCYVe5cFdVfe+UHtIe52p24IuzrqsSC9wOP92hxq7MZ3ldaukM9tPYYpS+3B6ZrcKdxtiUiMRxeeh1Wf/gdakxEn1J14aP83uGf2aq9f01E4jGs41tuOJw5/h0/qjsCx0p0FMGDUY8CoBzDg4tnu1fZ348nD33P3F42wni/UpiSkcbeP9rYLvsayLP55wN6xc0PxbBrATgiJGB59JJqXl4eDBw8CsAZ9tq6eWq0WGo1mpKcSEjE6eO3rS7NdNy4Ki6BPMKeP1vT5G7+ZC3+GoSf4TVy8KV/0lav342gdNP0pTiVD5vAxGEwWwdgIR4ImLtFyrzI9Khflncd621HZ1yF43Gf1vq0vP8QL7lsGBvA9r8vkWbmTBY8tiE3Cn2at4u4/c3QHdjh0fvQFv3NnoMo7NzUex/z3H8Uvt70NtcH++65hoBfXffsmVn7yb3zsIuDzZfh5aUI6fjFlPnffzFswvSij0Ov9BcuUBPs81WO9wkZ1XzZWciMjFGIJfjX19KAeGyGEjIVHv8kvu+wy/OEPf4DFYsHq1atx3nnnQalUYu/evZg+fXqgj5GQoOjklXdmJUQhXiVDn8YgeEz4lXf6d00flXdaB9SLGAYWlkVVuxpDOiOiPMxKBTvT56q8M5iZPsA629G2rvB4Sy8mprvOfPSMYZSFq+6dH5487PS4z+uP4t7TzvK6xPNwYw93m43VcgPZyxLTXa7X2lA8G181HsfWlmqwAG7d/gE2rbsBMTLf/s3NFgvqOvmZPv9nj2r7u3DT9+9CYzKicbAPVeouvLr8clT2deDm79/jBp7bzE/Lx9q8KViVW4IMVSxMFjMGjQYMGfUYNBkwaNRjyGj9v/U/A4ZM1m1zcvOwOLEIIobBkZ42/NB2kttvSXxqwNfljUV+TCIUYgl0ZhPatYPo1g0hSREFs8WCf/I6dl5dMgepyvD9PgghxJFHV3iXXnopEhMTkZiYiIkTJ+Kvf/0rXn31VSQnJ+Oee+4J9DESEhT8oC8lVonUWKVT0BcOmT6loHunn0c2UNAHlVyK4ow4VLb0gWWtpX/zJ6aP/kQ4BH1ezr3zhasPIQqCmOkDrOv6th5rAWBd17fWzeN87dwJOM7pM8LCWgRBny1IH63Es3GwF+/WHETjYB9uKF2IifHW9ZoVTfZMHxNvr15Znu16TiPDMPjngnOw/OOnoTbo0DSkxp/3fIl/LTzXq+/LpqVXA73JGmgmxygQp5L5tB939GYTbvzOGvDZHO/rwOpP/4M+vVaQ2VudU4JfTzsD05IyBfuQiMSIlysRL1eO+nopKTHoHM76PjR8nmyv7W3XzmATi0SYFJ+Kg93W9/Sx3nacnlGIT+qP4HhfJwAgSiLDjaULQ3mYhBDiNY+v8Favtq9ZWL9+PdavXx+QAyIkVDp4a/pSY5VIi1PhRJta8JiwCPr83L2Tyjudlecmc3PnDjZ4E/T51qjEV2nxwgtwqViEzITgvkcFs/pGaOYiaOLiYUCsN5vQb9BBLrNn7ob0JuzpaETzkPVnM16mxJq8yXi9ah8Aa4knP+jTmoz4suEY3qreL8g4nVB34tM118NotvCaNbGCoG+Fm6APANJVsXhg7lrc+P27AIC3ag5gVU4JVueWePS98dXwOncGYj3fP/ZvQUWPtVRRKhKBZQETa+Ga4ABAhioW/1l8EWal5Pj1tXOiE3D/nDW4Y8fHkIrEuHTCTL/uPxCmJKRzQd/R3jbMS8vDwwe3cl/fOHkeEhVRITo6Qgjxjdugz5sM3n333eeXgyEklDoH+Jk+BVJjnT/RHm0wezDwG7n4u7yTGrlYTc9Lwps7qwEI13uNRjiYPfiZvtzkaL8MrHbUMqSGiGGQrnIOSEoy7eWPI3Xw5P98ucv0aU1G7OtsxI72euxor8OBzibohwdki2aKAL0EB02ArrKFe87a/Ck4J7+MC/psJZ6He1rx8cEjePPoXvQb9U6vdaCrGVV9nTAOibksG6IMYKTDGTdFFKY7ZLscnVNQhq8aK/FRnXWd+59/+hKrciZ53ZmyNoDr+b5trsIzR3dw9++etQrFcSn4+ba3MGi0VjIsSM/H04suRLIy2q+vbXPxhBk4LTUXKoksrEs7baYk8pq59LTj/dpDqO23/h6IlcpxPW+tIiGERAq3V3h1dXVBPAxCQo9f3mnN9DkHfelht6aPRjYEQnleMnfbm2YuwjV9gW/kEqOUIUou4Up0A1HauaXpBK779k2wYHHr9CW4uWyRILCcmGZff1bb0Q+90exylmWHmvfzNfxzpDEasLezETva67CzvR77u5q49XSOGKkFkBpwAidxot6+/byCaZidkoMURRQ6dUPo1A1h0YePo2Gwz2kfIoZBvEyJHr01m/fByUPI09mH0vOzfEuzJkDEjB5A3z93Db5trkK/UY/GwT4c7+tACa8DpCcC1bmzQzuAW7d/yN1fnjUR15XMBcMw+PDM6/DssZ2YHJ+Kq0vmQCLyfP6oLwpik0Z/UJjgN3M51N2C3R32N9wvShd4VOJKCCHhxu0V3quvvhrM4yAkpPRGM7d+TyxikBAlR6pD0CeXiJDg5VqkQOB37xxrps9ssXD7YBhhFvFUNjkzAVKxCEaztSOlWmPwaJ1VsBu5ANYPImwz3kab0eetXp0Gt/34EUysNRD754FvsaOtDo+ffj6XsYlSSJGbFI2G7kGYLSxqO/oxOcu5+Uk7L+hLjJbi+q1vYVPjcW7f7sTJFOg36Jw6SgJAVlQcTkvNgYgRYU3eFLx8fA8AOAV8eTEJuGTCDFxQOB2HuluwcetbAIAPTh7GMqO9TE+wni/LfWknX4JchUWZRVzn0G0tNV4HfdW8oK8ozT9NXCysBbf+8CG6dEMArAPRH154LpeFLElIw78W0DINV0oS7APZT6g7udsJciWumzwvFIdECCFj5tEV3r59+0b8+syZ4V+jT8hIuhwu1sUiEdJihVm99HhVWAwUFpR3jnFN35DOnuVTSiUQiUL//YUDuVSMSZnxqBju6nikqQcLikdf1xfsRi6A9X1pC/oKkv0b9N2z5wsuaLDZ3nYSqz79Nx5deB6WZk0EYF3X19A9CMBa4ukq6OvgZdJrzK34ouGYy9ecGJeMeWn5mJ+Wj7lpeUhTxWBIb8TEP7wCxOjAJA1BmqiDibXgjvKlXDbunPwyLugDAKVEiosmlWN9dhnmpOZyP7tJiijEyRRQG3RoHOzDzr4G6xOkJjDRw42bWO/GCizmBX3ftdTgF6ULRnz85qbjeLFyN6YkpOO8gqkBWdP3zNEd2DY8eoIB8Pjp5yOJ1qF5JE6mRHZUHJqGhGu6byw9HdHS0H/wRwghvvB4ZAPDMGB5c3YYhgHDMBCJRNzcPkIilWNpJwCnTF84lHYCwvJO7RjLO2lcg3tTsxO5oO9QY7eHQV9wG7kAwKyCFGw/YW3SMXeCdxmmkXzZcEzQIXN9fhk+rqsAC6Bbp8EVW/6HG0oX4nczlmFSRjw2VTQBAHZUteHc2dZGKmaLBY8c2oZ+gw6t/fYsWqPBXjKbF52AJVkTuCAvxcW6sii5FBlRcWjploDtjsbHd61BVpJKEMTMTcvDnTNXYF9nE1ZkF2NdfikKMpO5LpI2crEE6/JL8dqJvQCAKlMTgCQw8fbfAeyAAmYjA3h4fb8kcwJ3e2dHPbQmI5QS102RLKwFv93+EXr0GmxrqcG/j2wHmykFI48GeqKQ74fA/UBXM/6+bwt3/4bShTg9jGfjhaMpCemCoC9FEYWrS04L4RERQsjYeHSVt2XLFsF9s9mMkydP4rHHHsPtt98ekAMjJJj4QV/ycIYmzaGRSzg0cQH8O6dvUMdr4kJBn8DUnCS8scPazIU/x80dvdHMnU+xiEGc0r9t9925edVUJMcoUJASi9LsRL/ss1evwZ07P+XuX1g4HY+efh4umzgTN//wPjq01qzev49sx872OlxTsJh77Nu7anD72eVIiVXig5OH8eihbQAAmSIRgLV0sXqwnXv8wwvPxdw0+7o6d/KTY9DSa806dqsNmJaV4vSYm8o8G5Z9fsE0Lugzxw8CTCLkyXrYfhrYXhUaugc9nieYGRWHiXHJqFJ3QW82YVd7PZZkTXD52Jahfm5NoQ2jMoJR9QI5vbho04s4t2Aq1uWXugyARzNo1OOm79/lymbLk7Nwx4xlXu/nVDc5MQ1fNx3n7v9q6iIoJcH5mSaEkEDwqM1bVlaW4L/c3FwsXrwYd911Fx544IFAHyMhAdfhKtPnFPSFR2mUcE7fGMs7BZk+GtfANzXHHkBVNI7ewbNnSDiHLlilstEKKa5fOgUryrL9ts9Xju9B53BZZ5oyGn8+7UwAwMKMQny99pdYzJu1tr+rGX88+h7yi61/TnRGM575xlrq+G1zFfc4fZQ1UBRLLagdsJ5PMcNgWlKGR8eUl2wPgOq7BkZ45Ohmp+YgJzoeAMBILBBNaYUpZpD7Otun9Po1+PPntrVUu31cFW+NWJxMARkj/LBlX1cT/rTnC8x691+4fNOr2Nle59Vx/HHX56gfsI6giJbK8OSiCyANcJOW8aiU18wlQxWLy4tnhfBoCCFk7MbU2zspKQn19fWjP5CQMOcq6ItWSAUBVjjM6AMcMn2GsZV3CjJ9NK5BYEpWAmxLOKvb+6HhBciudA94P4cuXO1qt/9ev718maBbYbIyGq8uvxx3z1wJyfB6un6jHo0JNWDyuwCweOn74+gd0mE7by4eE2UAJGbEJduXCUxJSPc4e5LLK3sca9AnYkQ4r2Cq/dii9WAZ63GxOgmgk6K+a9Dd011azCvx3NZS4/Zx1Wp7aevavFLclHI2LNUpYHuVYGD/oMDCstjWWoOrv3kdAwadq12h36DDm1X7sL21FiaLGe/VHsS7tQe5rz8wdy3yY/yT/T3VLM8uxuyUHMRI5fj7vLVQiOlDMUJIZPO5kcvg4CBefvllTJw40e8HRUiwdfHmqyXHWi/YGYZBWqwSdcMXmOOxvHOIyjvdUsmlmJAWh6o2NSwsi6PNvZhdmOr28aHo3BkIFtaCA13N3P0F6flOjxExItxQthBz0/Jw0/fvonG4W6YobQAWnRSDbXF4aMsepyYwTKwWsgT7xfPMFM+zk/y1bnVjDPoA4ILC6Xj80PfgxVlIkcSi7aQKAIOGbu9eY35aHuQiMfQWM06oO9EypEZmlHMnzhN99kzfxLhkHKnWgO2OBtsdjTsvKEdclgEfnjyMXR3WBjODRgO2t53EmbmTnfb1mx8+4EoQE+Uq6Mz2n+eLiqbjvMJpXn0PxE4uluCDM68FgLBo4EUIIWPlcyMXwFr2+dBDDwXkwAgJJleZPsDaSc92gVmU5v8ZaL7w53B2ftBH5Z3OpuYkoarN2syhoqnnlAj6atTd3DDzJIUKudHOnThtZqZk48u1v8DtP37MdeNkUgbAtsXiraOHAcfZ5rE6WJT27PSMZM+DPn55Z4OXWThXCmOToGjIhEbZD2hkeO/q86HpBzZs3+LTayglMsxJy8P3rbUArF08L5no3Nm6mlfeOSEuBR932Etgp2akYPGkTFwx6TQ8sG8znqr4AQCwtaXaKejTmY3Yyisj5a8TzI9JxH1z1nh1/MQZBXuEkPHEp0YuACCVSpGa6v4CiJBIwm/kkhJjD/p+t24GDCYzTitKxZSs8CiTEs7po/LOQJqanYj391gv4kdr5hLsweyBsr+ribs9Izl71AvfOJkSjy48F1tbqqE1GcGojIDSCJ1iEI7PZOK0GJDYt3qT6eOXd9Z1DoBlWZ8vylmWxcOfH8RQmxxACuJVMszLyUJ1u31eni8lpGdkFHFB3zYXQR/LsqjilXdOjEtGbcde7j5/XMPSrAn2oK+52un7rehuhcHi/KGPVCTCU4suoNEChBBCBDy6ysvKygr0cRASUmqtgbsdr7JfLE3PTcI7v14dikNyy6+ZPr09aKSRDc6m5toD/UOjNHMZL5m+/bzSzhnJnv3uj5LKsSp7Ej6qs47vYZIHgVj7+WAAsAAYhQm2n7R4mRIFXqw3S4ySI0YhxYDOCI3BhO5BHZJjlKM/0YHZYsEf39mNl76zd2ZcU54HhmGQk2TPJjb3DsFotkAq9nzp++KsIvx13yYAEKxntOnWDaHPYP2AKUoig4pRcO8bhVSMrAR7s6hZKTmIlsowaDSgaUiNmv4uTIizdyz9qbORu31h4XRsKJ6FvZ1NmJeWh+ke/rsRQgg5dXh0ldfY2IhHHnkEVVVVMBgMTl//6quvPH7B/v5+rFy5EgMDAzh69Ci3fcuWLfjXv/6FhoYG5OXl4Y477sCSJUs83i8hY8Efch7ua9vkEhEYBmBZwGCywGyxQCzyrScTjWwYWVl2Enf7eEsfDCYzZBLXnRDHSyOXfZ32TN9ML8ovzyucag/60vrBiK3LAdKUMYBWinYIM6UzU0bPIvIxDIO85BhUNFn3U9816FXQ19anwaaKJry3uwa7ajq47WeUZODeC6zz1xRSMdLjlGhTa2G2sGjpHUKeF3PzJsenQS6WQG82oUevwYBBhxiZ/b3Az/JNiEvGyQ57NrEgJVbQ8VUqEuP0jEJ82VAJwJrtcxf0nZaai9nD/xFCCCGueHSV9/vf/x7t7e0466yzoFD4fjEzMDCAm266CX19fRCL7RdOlZWVuOWWW8AwDMrKylBRUYGbbroJH3zwAYqLi31+PUI8xR9yrpSFd3tzhmEgl4i5LJ/eaIZK7lvQRyMbRhankiE3KRoN3YMwmi043tqHqTlJLh87HjJ9WpMBlX3WGXoM4FXG6IyMIsTLlOgzaLmADwAWphdgf2U/IHcO+rzFD/rqOgcwq8B5Vp8Ny7I4WNeFN7+rxNeHGnGwwTlTe97sAjx6xUJBIJ+bHIM2tTUbV9814FXQxzAMMlSxqBuwHmOLph+TeEGfcD1fMmo67OWk/NJOmyWZE7ig79uWamycMp/73vZ22IO+2ak5Hh8jIYSQU5NHQd/Ro0fxv//9D6WlpT6/0Oeff46HHnoILS0tTl979dVXYTKZ8Lvf/Q7XXXcd/v3vf+PRRx/Fa6+9hnvvvdfn14wkFov1IilYs72IkJY3+oBfPhmulDIJF/RpjWaofAzYaE3f6KbmJKGh29rU43Bjj8ugr0OtRQNvDVikBH0NA724c+eniJUp8I/563Cstx3m4YZdE+KSESvz/PuQiSVYmz+FG3puMzUuC/vUBsBhCfgsL7KINoJZfS66axrNFvx4og1fH27EV4ca0dw75PQYm18sm4I/nTfb6XduXnIMdg9nAr0d2wAAmVH2oK91qB+T4u3fuHA9Xwpq60YP+mx2ttdDazJCKZGifrCXm6MYK5VjYlyy18dJCCHk1OLRVV5eXh60Wu3oDxzBf//7X/T29uLmm2/GE088IfiabSTEnDlzAADz5s0DAOzfv39MrxkpugZ0OP/RLzGoM+KNX63EpIz4UB/SKYe/Nk4ZAcGPv8Y2CLt3hv/3HQpTcxLx2QHr3LrDjd0AJqJdrcGOqnb8WNWGH6vaUMNrAAJERiMXndmI67a+iWO91sxeglyJHF6nTm9KO23OK5jmFPSliRKh7joJNlEERmIB4H0W0UYwq69TGPTpjGasefAzHGvpdflciYjB/InpWDU1B6umZgv2xZeXxO8S6n0zlwyVPXhr0agFX6tyyPR90GEvMy1yEfRlR8djYlwyqtRd0JtN2Nleh6VZE/ETL8s3MyUHImZMI3cJIYScAjy6yrvnnntw33334ZprrkF2djZEDuuHZs50bkvt6LLLLsOSJUtgNBqdgr62tjYAQHx8vOD/tu3j3Wf767i28M99ewwPXTY/xEd0ajFbLDCYhi9GGeuauXDnrwHtwjl9VN7pSlmOvdnIp/vr8f3xVqcgjy85RoH8lPAY7zGSv+7dxAV8APBa1V4U89aMzfCh/PK01BxkqmLRorGeH1YnQW+vBd2DejD9CiDROlagOD7FqyyiTf4IA9q/r2xxCvjiVDIsm5KFVVNzsHRKFuJUow+C5weDtgyvN/iz+VqGhO8TftA3MS4FtR32kQuFbkbCLMmcwGUIt7ZUY2nWROztpNJOQggh3vEo6Dt58iRqamrwhz/8welrDMPg2LFjo+7jZz/7GQCgqanJ6Ws6nXUtjFRqveiUSKyH5Wl2MSFBBYmb5gqBlJLi+VqPkeh44w+rO/v9tt/xyt/nZ1Bnb06klEmQ6uIT93ATrbRfvCqjFT6fE355Z0ZKDL33XFhansfd7hrQoWtA5/QYmUSEecXpOGNKFq5dNgXZHqwDC+W5/rTmCF6s3C3YZmFZVPbZM0/LJhb7dIyXls7Cv/Z8CwBg+xU42NQDlgWgVoIZDvoW5U7wad8zzOnc7caeIcE+anvspZxnTMnEHy+cg0UlGZB6+bdh+oQ07nZDz6DXx1mclgoctt7us2i55/frdWjTWANVqUiMmfk5qO20N0GbMzkTybHOjWnWT5mGZ4/tBAB811aL5ORoHOi1d1hdPsG3f6dAC8djGo/oPIcGnffQoPM+Nh4FfY8//jguvPBCbNiwAUql9y2yRyOXy6HVamEyWTMWtv97+lq9vZrRH+RnKSkx6Oz0vvTHlXbep8kVDd3o6OinobBu+PO823QN2D9cUEjFft9/IEh474/Wjn5kRvlWTsgf2WDSGyPiew82EYCClBic5J0bmUSEWQUpWDAxHQsmpmNGfrK9LJjFqOcxEO9jADjc3YIbvnsXbZp+yMUSyERiyHj/l4vFkIkkOM4L7uam5WFvRyNMrIXbppRIkcpG+XSMV+TPwtuHD6Khrx9sazy29lo/6GM7oxGdZsbUgnhsnDDXp30rAYhFDNdZs6G5lzvvu463co87f2YBpqbFQSrx/uc5WS6BiGFgYVkcqOvClr11mJbrunmPKzEW+wcytd1d3Ovz5x8WxibiWG0XNMM/fwlRcrB6k8tjLVGkQCGWQGc2oaq3E3dv+RQVndbvVcQwKJAmht3PbaDe30SIznNo0HkPDTrvnhkpMPYo6BscHMTGjRuRne19uY8nUlNTUV9fD7VajezsbPT19QEA0tPTR37iODHAy7YM6oxo7h1CdmL0CM8g/qTljWuIhCYugHBAu3YM5Z38LKdKRuWd7jx9zRl4YVslcpOinYO8MPL3/Vu4JiI68+jviwxVLJ5b8jM8efgH/Pfoj9z2aUmZkIh8q55IVkbjmfmXY9XfPwHAoFU3/KEcK0K5qRRvrl7p034BQCoWISshiiu7bOwZRHF6PABwXT0BoDTb8/l/jhKjFVg3Mw8f7a0DADzx9WE8u3GJx8/PVNnLO1s19vLOasG4hhTUjtK500YhluKSCTPx0nFrZvZfB7dyX5uSkEZD2AkhhHjEo8VLq1evxubNmwN2ENOmTQMA7Nq1CwCwe7f1j9usWbMC9prhhH/hDVjngZHgiaRxDTb+GtCuoeHsHinPS8bjV56O288ux4Li9LAM+PoNOvzoYiC4O3KxBE8sOh8JchV+M+0MpCjsg8F9aeLCV5gSC2u7FqE0F+WL3spz0cxFrTGgcTgQlIpFKM6Ic/lcT928aip3+7MD9TjR1ufxczOieI1chvrBDndDrerzblwD3x9nr8QMF41vZqXQej5CCCGe8ejKJSsrC4888gi+/vpr5OXlcWvubO67774xHcSGDRvw2Wef4eGHH8bXX3+NiooKSKVSXH755WPab6TgZ/oAoLK1D8vLApNVJc74mb5wvJh3xV+NXAape+e4sbW5GkaLtUSzNCEdb668EnqLCQazGYbh/9vuGy1mFMYmcU1HYmQK3Dd3DW787l2IwODcgrIxHUuUQoqMeBVa+4Sl96lx/gn6vh8u5bSNVDjCy/JNyogXzN3zRWl2IlaWZWNTRRNYFnjq6wo8duXpHj03XqbkyjGHTAb0G3WIkymdmrjsr/E86FOIpXhuySVY89kzaNfay5tmU9BHCCHEQx5d5e3evZvLxrlqxDJW5eXleOKJJ/DII4+goqICubm5uOOOOzBx4kS/v1Y4cgr63LQcJ4HBD5qU0kjJ9PHKO8eQ6RPO6aPyzkj2VWMld/vM3BIkKFRePX9tXinKzs2ATCQWdKD0VVFqrFPQlxbr3TG5wp/VVzfcwfNwk33wetkYSjv5blk9FZsqrH/v3ttTi9vPLkdO0uhl9wzDIDMqDrX91mNqHeofDvr4M/qS8W77Ee6+q3ENjtJUMXhu6c9w4ZcvQm8xQ8QwmJOa6+23RQgh5BTlUdD36quv+u0Fs7Ozcfz4caftK1aswIoVK/z2OpFk0EWmjwSPsLwzMrJd/OMc05w+PWX6xgOD2YRvmqu4+6tzS3zaT36MfwImwJq9+uGEcOxOmh8yffyxDcearR+QHWmyf1DGH7ExFrMLU7GwOB3bT7TBbGFx2/9+xN9+NhcT0kYPiDNUsVzQ16LpR15MAhoGrcfIACiMTRas6StyM67B0YzkbLy07DI8fWQ71uRORlZ0vNffFyGEkFOTR1d5tuHp7ngyp4+455jpq2rtg9ligVgU/vPixgNBeWekNHIRDGf3rbzTYmEFa/oiJeAlzna012HAqAcA5ETHY3J82ijPCLwiF8FRqh/W9M0sSAHDACwL7KxuR4dai4pG/zRxcXTL6qnYPhy4fn+8FYvv+wjnzS7ArWdNc/n92WTy1vW1DvXjaG87LMNr+ybEJUMMkWAGoDdzHRdlFmFRZpG33wohhJBTnEdXeZdddhkYhuEWpAPWEhaGYSASiVBRURGwAzwVOGb69CYL6joHRryoIP7DD5oUEdPIhR/0+Zbp43f9VMokEIloTEik+rrRXj2xOqckLEa+uMpe+SPTl5kQhXkT0rCjyhpIvb2rWtBopTQrYcyvYbNoUgauOWMSXvzOen4tLIv39tTig59O4vzTCnDrWdNdrsfjd/Bs0ahhtNh/RssSM9DQPQizheW+HxV94EIIISTAPPpLs2XLFsF9s9mMkydP4rHHHsPtt98ekAM7VbAsiwGtwWn78dY+CvqCJDIzfbzyToNvQR9/Rh9ddEYulmUF6/lW5UwK4dHYuVqnlho39jV9AHDe7ELsqGoHADy9+QgXQOUnxyBGKRvpqV5hGAZ/+9k8XDCnCP/6/CC+PWodim5hWby7uxbv7zmJC+YU4tYzp6GA9/1mOGT6bEPZAWBqUoawtNOD9XyEEELIWHlUP5iVlSX4Lzc3F4sXL8Zdd92FBx54INDHOK7pjGaYLKzTdlrXFzz8jFfEZPpkYy/vpPV848Oh7hYuqIiXKcOmuUdOUjSkYvufmBiF1G8fLqydkcftu3dIz23313o+R7MKUvD6TSvwyW1nYcnkTG67hWXxzq4aLLrvQ/z6lR/QrrY2rslQ8YI+TT8Od7dw96cmZqKmXc3dH61zJyGEEOIPY1o0lpSUhPr6en8dyynJsbTThmb1BQ+/PDJyMn3uyzs71Fpc/Z9vcNlTm9EzqHO7D42BP6OPOndGqs/qj3K3V2QX+zxU3d/EIhHyU+xNV/wxrsEmIUqOZVOc59b5q3OnO7MLU/HGr1bi49vOwhklGdx2s4XF27tqcM1/vwUAQffTuoEenODN6CtNTBfM6PO0iQshhBAyFj43chkcHMTLL798yoxVCBTHJi42NLYheBzXtkUCd907TWYLfv78Vuyq6QAA/Ovzg/jrxXNd7kNQ3kmZvojUrhnAS8d3c/fP9LFrZ6AUpcWiqs2a1fLHuAa+808rxFeHGwXbAh302ZxWmIq3bl6F3TUd+NfnB/BdpXVu4KHGbrAsK8j0NQ72cbcLYhIRK1MIyjsp00cIISQYfG7kAljLPh966KGAHNipgh/0FabGchcDtR390BvNkEfI3LhIxg+aIqa8kz+njxe0/uPT/VzABwAf76vDXy44DRKxc1JfY6Dyzkj34IFvoDFZ/x0nxadgRXZxiI9IaEJqHABrYOaPJi58K6ZmI0ouEXx4EajyTnfmFFmDv8Jb/wetwQSzhcWQ3oQ4uQIqiZT7t7GZmmTNDtKaPkIIIcHmUyMXAJBKpUhNTfX7AZ1qBnX2Ji5pcUqYzBY0dA/CZGFR29GPyX7sREdcE2T6Iqa80znTt7miCU9+Leyk2zWgw/YTbVjMW4dkM0TjGiLa4e4WvF29n7v/f7PPDJvSTps5RanAJuvtablJft23SibBmvI8vLOrBgCQHKPwy0gIX8SrZNzvkT6NHtEKKTKj4lDNG8gOWDt3siyLjn4tty0rcfSB74QQQshY+dTIRS6XU8DnJwNa+yfBMQopSjLjufuVrVTiGQzC8s7wumh2R+mwpq+tT4NbXvmB2yaX2H+0P9p70uU++DP6aE1fZGFZFn/56SvYai+WZ03EGWE4u21FWTYevHQ+/njuLFy5yP9dRS+aY/+eTytMDdmoijiVvWNo35D1gzx+iafNtKRM6E0W2IpmZBKRoNkNIYQQEigj/rXZvXs31q1bhxMnTgi233PPPTjzzDOxf/9+N88knuKXd0YrZCjOiOfuV1Izl6AQlHdGSqbPoXvnWzuruS6GGfEqPHf9Uu7rnx2oh97FLD8Nr3snjWwIXxXdrWjmrQuzsBY8c3QHdrZbm2hJGBHumb0qREc3MoZhcMXpxbhpZVlA3mOLSjLwp/Nm4dxZ+fjjubP8vn9Pxavk3G211vpzmOki6CtNTI/IygJCCCGRz+1fnIqKClx//fWYO3cuoqKiBF+75ppr8N///hfXXHMN3nrrLUyaFB5zoSIRv3tnjEKKkgx7OSd18AwOTQRm+hzn9J1os7eA//WZ07C8NAu5SdFo6B5Ev9aIb48248zpwlb+Q4JMH118hqO/7d2Ep49sBwAszijCOQVleL1qL/Z2NnGPuWLSbEyISwnVIYbcDSvKQn0IwkyfxprpS48SBn250fFIkKvQohnitkXK7xtCCCGRz22m76mnnsKaNWvwzDPPICtL2Bp7zpw5eP7557Fo0SI8+eSTAT/I8WzAMeij8s6gE8zpi5BP3h1HNpzkNYaYmBYHhmGwflYBt81ViSeNbAhvO9rquIAPALa11uC2Hz8SBHzFcSn47fQlITg6whfPC/rUw0FfpipO8JiyRGsTl0jsFkwIISTyuQ36Dh06hKuuumrEJ1977bU4cOCAv4/plDLAa+QSrZCiKC0OYpF1XUp916CgBI8EhmBOX4R88i4M+kwuW8CfN9se9H11uMnpvcQfzk4jG8KLxmjA7T9+5PbrUpEIv556Bj47++dIkPt3FALxXhyvvLNvuMw60yHTZ+vcqaGgjxBCSAi4Dfo0Go1TWaej5ORkDA4O+v2gTiWO5Z0KqRgFKfaLBX7ZHgmMSPzkXcE7zja1Fmqt9cMDlUzCtcafnJWAScNrRLUGE74+3CTYh4bKO8PW3/dvQf2gNdMfJ1Pgo7Ouw6+nnoGi2CSsyC7GpnU34I4Zy6CUUIY2HMS7KO90bOQyNdHaQVdrsH/IRGtpCSGEBIvboC8/Px+HDh0a8cmHDh1CRkaG3w/qVMLv3hmttF44CEo8aUh7wAkyfREyF9HdnL6ClBhBB8P1s/K52x/+JCzxFAxnp4vPsLGzvQ4vVO7i7v/5tDMxKyUHd8xYhm3n3oyXll12Sq/hC0eCRi4aW6ZPWN5py/RF4odMhBBCIp/boG/t2rV47LHH0NXV5fLrnZ2dePTRR7F69eqAHdypwDHTBwAlvA6ex1v7gnxEp55IvAhzF5wWOAx6Ppe3ru+bo83oG74gBYAhA7+8kzJG4UBrMuA2XlnnsqyJuLBwegiPiHiC38jFlnWPlSkwPy0fAHBGRiGSFNbKmUgcEUMIISTyub3CvfLKK/Hll1/i7LPPxoUXXojp06cjJiYGarUaBw8exHvvvYfs7Gxcf/31wTzeccexkQsATMq0d/CksQ2Bxy+3ipSgz13DGX5pMGANAqfnJuFgQzeMZgu+ONCASxdMBEDlneHoH/u/Qf2ANbsfK5XjH/PXhWz2HPEcP+izjU4BgNdWbMCBrmZMT87ktmmNkfchEyGEkMjn9i+OVCrFq6++ikceeQTvvPMOnn/+ee5rSUlJuPjii3HjjTdCpaImAmPh2MgFEJZ3UqYv8HRGfvfOyPjkXSRiIJOIYDBZBNsLU2OcHnvu7AIcbOgGAHy496TLoI/KO0Nvd3s9nj+2k7v/f6ed6XLANwk/CYLyTvvvdLlYgrlpeYLHCj5kipBuwYQQQiLfiH9xFAoF7rzzTtx+++1obGxEf38/EhISkJubS58++4mr8s785BjIJSLoTRa09mnQp9EL1owQ/2FZVnARpoig4EchFTsFfY6ZPgA4Z2Y+7v3gJ7As8MPxNnT2a5ESq6SRDWHEVtbJDt9fmjUBFxeVh/KQiBfiXIxscIfKOwkhhISC2zV9fFKpFIWFhSgvL0deXh4FfH4kLO+0XjhIxCJMTI/nttOQ9sAxmi2wsNZLbalYBKnYox+JsOCqxLMozTnoy0yIwtyiNACAhWXxyb46ADSyIZw8uP8bnBzoAQDESOX4xzwq64wk/JENtjV97kTiGmJCCCGRL3KucMcpfqYvWmnPtkziNXOppBLPgBFk+SKktNPG8XhjFFIkRStcPvZc3sy+D/fWAaA1feFiT0cDnuOXdc5e7dT5kYS3OMHIBj0sFtbtY2lkAyGEkFCgoC+EDCYzNy5ALGIEHRkF6/pobEPARPKn7o5BX0FqrNvs0NnleRCLrF/bU9uBpp5BGtkQBrQmI367/UOurHNxZhF+NmFGSI+JeE8qFnFrsllWWMHhSMPrmhtpv3MIIYRELgr6QshxPR//gp0yfcERiU1cbBzXHxamODdxsUmOUeCMEnsHwQ9/OilY00flnaHxzwP2ss5oqQwPzT+HyjojVJySv65P7/ZxkdgtmBBCSOSjoC+EBKWdCmEjjRKHsQ0s675ciPguki/AXGX6RnIub1D7mzuqBfsRi+hXQbD91NGAZ47u4O7/ico6I1o8f2zDCM1cqJELIYSQUKArvRBy1cTFJishiltn1TukR2e/LqjHdqqI5Aswp6DPRedOvjOn50Iusf7I13T0c9spyxd8WqNR0K3zjIxCXDphZkiPiYyNoJnLiJm+yC0pJ4QQErko6AuhAUGmT/jHXyRiHEo8aV1fINjWVALuB56HK8cZX0WjZPpilTIsK8122k7jGoLv3h+/RE2/dXYilXWOD/FRno1t0Bojt7qAEEJI5KKgL4SE5Z0yp687lngS/4vkT90VMu/KOwHgPF4XTxtq4hJcezsb8ejebdz9P85ahazo+NAdEPEL/izVPk/LOyPsgyZCCCGRi4K+EBrQ2S8MYhTO2RZ+pu84NXMJCOGn7pFb3pkQJUdClHyER1stL8t2Gs9A4xqCR2e2lnXaZkMuyijE5RNnhfioiD/wG7n0eVzeGVm/cwghhEQuCvpCaEDrvpEL4DC2wYegz2JhBRcYxBn//ERaeSf/eAtG6NzJp5JJsHpartM2EhxPHP4e1eouAECURIYH59MQ9vGCP6tvxPJO/pw++sCFEEJIkFDQF0KOIxsclWTwyzt7vergqTOaseKBTzDld2/i75/sg9liGdvBjlOR/Kk7P9M3WhMXPscST1rTFzwf1B7ibt89ayVyohNGeDSJJPFR/PJO95k+wZy+CPugiRBCSOSioC+EBvUjB30psQquZG9Ib0JTz5DH+952rBnHWnqhM5rx2JeHcckTm9A1oB37QY8zkdzIJTVWyd3mZ4VHc0ZJhqC9PGUbgqNXp0HDYB8AQCYW4xIawj6uxPuQ6Yu0dcSEEEIiFwV9ISTo3ql0DvoYhvG5xLOtTyO4/8OJNqz6+6fYU9vh9XGOZ5Gc6bt4XhEWT87E0ilZuOL0SR4/TyYR4+wZedx9yvQFx6GeFu72tJRMyMR0wT+e8Ms7+4ZoZAMhhJDwQkFfCA1q3c/psynhj21o8XxsQ3u/c1avtU+D8x/5Es99e2zEUlGzxYI7Xt+BBX9+H1uONHn8mpFIa4zcC7DkGCXe/NVKvH7TCsEFpyeuWzwZCqkYDAOsmuo8xoH436Fue9A3My0nhEdCAkHQvVNLw9kJIYSEl8i6yh1nBkZZ0wcAk3wc29Cutgd958zMx/fHW9E7pIfJwuKed3djT20H/nX5ApcNZD7dX4/Xtp8AADz8+UEsdzHbbbzQ8UutpKfOBdjkrATs/Mv5UETLESc+db7vUDrIC/pmpY3fn6lTlSflnUazBSaL9QM3sYiBVEyfuxJCCAkO+osTQvyRDa6CL0CY6fOmvLODl+lbPysfX/1+LabnJnHbPt5Xh7Me/MxpnxYLi0e+sDebqO8a9Pg1w01D1wBM5pEb2JzKpVZpcSpMSI8P9WGcMg518YK+dMr0jTdxvEyferiRy5YjTdj47FZsO2b9t3f8fUOdWwkhhAQLBX0hNFr3TgCYxFvTV9XWN2oQY9Outq/pS4tTIScpGh/99ixctci+9qu6XY01D36GD36q5bZ9frBBEAh2D+qg5zU7iRR/eX8P5v7f+1j/8BcjnjN+IxfqpEcCpVM7iBZNPwBALpZgclJaiI+I+Fssb112v9YIjcGEm178Hp8dqMevX/0BLCscoUOjUgghhAQTBX0h5El5Z7xKjvQ4a5dGvcmCuq4Bj/bdycv02bo8yqVi/P2SeXj8ytO5dv8agwk3vvg97n57F/RGMx794qDTvjpcrA8MZxYLi9e2VwEA9tV1jdi8RjCnj9bXkADhr+crS0yHRETvtfFGLBIJBrTvrGqHenhtX7taC63RTOv5CCGEhAwFfSE0KOje6b4Rh7fr+swWCzoHdNz9FF5rfwC4aG4RPr/jbBSm2me7vbCtEovv/xBHmp2bxbT0ej4qIhw0dA8Izu2WI81uH6s1Uvt0Enj8oG9aUmYIj4QEEr+h0rfHhL93+jUGaE7hcnJCCCGhRUFfCHmS6QMc1vV50MGzZ1AP83CzgHiVTDDE22ZyVgK+/N3ZWFOey21zt36vTa1xuT1cVTT2CO6P1IFUx8/0nUKNXEhw8YO+6RT0jVuCoM/hwya11iCc0Ufl5IQQQoKIgr4QsVhYQTYqaoQB2d7O6uN37kx1yPLxxShleG7jEvzfebMhFtkbCiikYqzjzXFr7YuwoK9ZGPRVtvShqcd1QEuZPhIMlOk7NfDHNtR09Au+1q81nNKNowghhIQWBX0hMqQXBnxikft/ihJ+eacnQV+/sInLSBiGwS9XlOLdX69GRrz1sb85cxqm8jp9Og56D3dHmpyzoe5KPPmZPvrknQRCm6Yf7Vrrhw4qiRRFsckhPiISKPEjzMtUaxyDPqosIIQQEjx0lRsinpZ2AkBxehx3u7ajH3qjGfIRShE7PMz08c2bkIadfzkfHf1aZCVE4d3d9o6ekVbeeaSpx2nbloomQedSG36mjxq5kEA43N3K3S5LzBjxAx4S2fhjGxypNQbBXD7K9BFCCAkm+qsTIvygL1rh/tNhAFDJpchLjkZ91yDMFhY1HWpMyUp0+3h+t820OM+CPgCQScTITowGAC7rB0RWeWfXgI47XrGI4dY2fn+8FTqj2WndHpVbRS4La0GXbgipypiAv9bezkY8f2wnGDDIjo5HdlQcsob/nx0VD5XU/c/wQSrtPGWMlOnr1xoEYxpoZAMhhJBgor86IeLJjD6+kowErtFKZUufx0FfqhdBH1+kBn1Heev5puYkYkBnRE17P3RGM3480YZlpVmCxwvn9FGmL1IMGHTYsOU17O1swq/KTscfZq4I6Ovd9uNHqFZ3uf16glyJrKg4ZEfH48LC6TgzdzL3tb2djdxtCvrGt7iRyju1BvBnsdOHTIQQQoKJ6oxCZEBn4G7HKEcP+vhD2o+N0sHT00YuI+EHfe1qDViW9Wk/wcYv7SzLTsLy0mzu/jcuungK5/TRRVg42t/VhH9XbEfDgPV9b7ZYcOP372Jvp/Xf86XjuwP6/hww6EYM+ACgV69FRU8bvmyoxPVb38IPrdby6C1NJ/B9q71UemZKtrtdkHEgPmqk8k49rekjhBASMhT0hcigll/eOXrQV8SbqdfcM/LcvA5+I5fYkRu5uKOSSxE7HIwaTBZ0D+p92k+wVfCauJRlJ2AFL+jbfKRJEBxYLKwg06eQ0EVYuPnfib1Y/8Xz+Ou+TVj28VN49ugO3Lf3a3zbXM09ZtBoQKumf4S9jE3dgP2DhHRVDG6dthgXF5VjQXo+8qITIHVYo8cC+NX376GqrxO/3/kJt319fhnyY9xn6Enkix9h3mq/1igc2UAfMhFCCAki+qsTIt40cgGAKN5j+AN+XRFk+nws7wSA9DgV+rVqANYOnskxCp/3FSz8TF9pdiKm5SYhSi7BkN6E+q5B1HT0Y0KatTGOzsQL+KRiiHhjK0hosSyLRw9tw78ObuW26cwm/OWnr1w+vkrdicyoOJdfG6uT/fb31LTETNxWvlTwdQtrQYd2EHUDPbhh2zvo1A2hSzeEMz/7L/Rm689qkkKF++acFZDjI+HDsZGLiGFgGf6gSa0xIIGXCaSgjxBCSDBRpi9E1Fp7eWe0fPSgj7/oXztC0MeyrLCRi4/lnQCQzivxjIQOnlqDCdXt1iCVYYDJmQmQScQ4o8S+jmpzRZPg8TZ0ARY+zBYL7t71mSDgk4ucs7ASxv7rq6qvM2DHc3Kgm7tdEOucqRMxIqSrYjEvLR9PnnEhRMMLt2wBHwD8de7ZSFREBewYSXhwXNM3M98+nsOpvJNGxBBCCAkiCvpCpLHbPiw8I2H0i0F+0KfRuw/6BnRGrmRRKZN4VDrqDn9dX0vvyCWl4eB4ax/XrbMwJZbLji7nNW/5hjevj5q4hB+d2YhffvcOXjnxE7ftjIxC/HTRbfjt9CVcKWVpQjp+M30x95iqUdbcjQU/01cQmzTCI4GF6QW4bfoSwba1eVOwNq80EIdGwkyCw5q+JZPtHzipnYaz0+8cQgghwUMfNYZIbYd9DVJByugt51VyXtA3QqaPX9qZFqsEw/heshhpmT7H0k4bfjOXndXtGNQZEa2QUhOXMKM2aHHtt29iV3s9t+3cgql4eMF6yMQS/Hb6ElxYOB2HelqwPKsYO9vruMdVqYOT6fNkTd7NUxfhYFcLvm46jkxVLO6fsyZgx0bCi2Omb8mULPzz84MArCMb+L9z+L/TCSGEkECjvzohwg/6+E1a3InilYCOlOnjN3EZy3o+AMiIt2cg2yJgbIO7oC89XoWy7ERUNPXAaLbgu8oWrCnPcyi1ok/dQ6lN048Nm19DZV8Ht+36yfNwz+xVEPHKOHNjEpAbkwAAKI5L4baf6OsEy7Jj+pDDHUGmz4OgT8SI8OySn+GnzkYUx6UgQeFbMyUSeWKVMswtSsWumg6sKMtGPu8DPadGLlTeSQghJIjC6q9OXV0dVq9e7bT9/vvvx0UXXRSCIwoMg8mMpuEOnAwD5KWMHvQJyjs9zPT5Oq7BJtJm9fE7d5ZmJwi+trwsCxXDQeGWI81YU54nLO+kTF/IVKs7cfnm19A8pOa2/XHWSvyydOGIz8uMioNKIoXGZESfQYtu3RCSldF+PTa1QYsevfW9LxdLkBE1+s8qAIhFIsxNy/PrsZDI8NbNq3CwoRvTcpMg5jWHUmsMGNLbG3jR7xxCCCHBFFZ/dY4dOwYAKCwsREFBAbc9KyvL3VMiUn3XINfRLTM+CgoPskyelnd2qP3TxAWwdu+0iYTyzhOtfdztKVkOQV9pNh778jAAYMvw6AZBeSdl+kJiT0cDrv32DfTqre9bCSPCPxesx4VF00d9LsMwmBiXgoPdLQCs6/r8HfTxs3z5MQmCrCMhrsilYswpSuXuq2QSaAwmWFgWXYM6bjsFfYQQQoIprP7q2IK+jRs34oILLgjx0QRObYc9o1GU5lnmwLGRi7tSNn7nztS4sZWVCTJ9veEd9Kk1Bq4jqkIqFgSsgLWLXkKUHL1DerSrtaho6qHunSFispjxdeNxvHR8N35sq+O2KyVSPLP4YizNmujxvoRBXyfmp+d79LztrbV4/+Rh/KyoHHNGyMjxZ/Tlx4zcxIUQV+JUMu6DOn4lBjVyIYQQEkxhdaV79OhRAMDevXuxfft2ZGVl4aqrrkJycvIoz4wsJzsGuNsFHpR2AoBELIJMIoLBZIGFZaE3WVxmp9r9NK4BAJKiFZCKRTCaLVBrDdAYTILgM5w09di7oWYnRjsFxGKRCEsmZ+KDn04CsJZ48hvoUKYvOAxmE8778gUuULNJlKvw8vLLMCM5280zXZsQZ//d4Gkzl/dqD+LW7R/CwrLY1Hgcey78LeRi1+/rk/0jj2sgZDSxShlXHt87pOe20wdNhBBCgimsapVsmb733nsPn332GZ555hlccMEFUKvVozwzstR28jp3po7eudNGmO0zunxMh9p/jVxEIkawLjCcm7nwR2DkJLku8VtRZg8otlQ0UaYvBLa3nRQEfGKGwZrcyfh4zUavAz4AKI63N3PxZFbfW9X78ZsfPuDKq3v0GmxvO+n28ScH+E1cKNNHvOfY0dOGfucQQggJprD5q6PX6zFr1iwMDQ3h9ttvR0pKCm6++Wbs27cP//nPf/D73//e7XMTElSQSIKfqUnxYNSCK0284Kl8QprH+4lWytCnGS5hjJa7fF4375Pkkvxkn4/RJiclBs3DM/q0YMe8P39wdQy9vACuOCvB5WMuXFSMm1/+ARaWxd66Tpx9mn3daGKc0qPvzcJaAGBcre0K5r/p0RPt3O3VBSV4asWFyIlNGOEZI5sjyQe+td6uGege8Xt57tAO3PbjR07bt3XW4GflM10+p0nbx92ekZvt13MVDj9Lp4JQn+cUN2X2ORlxSIoZ2wdz4SzU5/1UQec5NOi8hwad97EJm6BPLpfj8ccfF2y76qqrsG/fPuzfv3/E5/aGYL1ZSkoMOjsHRn+gC8d5owWS5VKP9yOX2AONxlY1VHBe09fSYx+iLjWzPh+jTQpv2HBlXTdKU+PGtL+xcnfej9Xbh3Mnq2Ruv+9ZBcnYU9sJlgXe+7Ga286aLKOeqy8ajuG32z/EoFGPGKkcMTIFYmUKxA7fjpHKEcv7v+12qjIGeTEJSFfFhF2wOJb3sS+2nrSf83NzyqDQS8b0+tEWKeQiMfQWM1qH+lHd3IE4mfOF9IuVu3DP7i+4+xmqWLRqrBn3j08cxp+mrYJY5Pxvc6Lbnj1MsCj9dq6Cfd5PVeFwnhVi1z/zmgE9LDr3TbkiWTic91MBnefQoPMeGnTePTNSYBw2QZ9er0dTUxOMRiNKSkoAADKZtSzGZBo/fxg1BhNahjN9YhGD3GTfyju1Ljp46oxmrpmJRMQgkRew+SpdMLZhaIRHhlZjz+jlnQCwrDQbe2qtF/IVvOB7tFIrjdGAO3d+igGjNZPab9Sj36gXjBkYjUwkxhmZRXh60YVQSV2XfI1nRosZ+7uauPuzU3PHvE+JSIzCuGQc67VmEKvVXZiVkiN4zLNHd+AvP33F3Z+elInXlm/A0o+fQpduCJ26IezvanI6nl69Bn0G6xpZhViCND93BiWnBlflnQwj/BCPEEIICbSw+atTU1ODNWvW4KqrrkJfXx8AYOvWrQCA8vLykB2Xv9XzPqXISYyG1M2nwK44dvB01Mlr4pISq4RINPZB1fwOnuG8pq+p2x6Q5iS6vzhfUep63dhoQd/Lx/egSze2oNdgMWNz0wk8VfHDmPbDpzMboTUZ/La/QDrS0wad2fq+zY6KQ4bKsyZGo5nIb+bisK7vqYofBAHfrJRsvLHySiQoVFiZPYnb/kVDpdN+heMaEsMuS0sig6ugTymVuOy+TAghhARK2GT6pkyZgvnz52PHjh1Yt24dsrKysH//fsTGxuLaa68N9eH5Db+JS2Gqdxe9KrmUu+1qVl87v4nLGDt32ggyfWE8q8+TRi6AdWh7epwSbbzW6cDI3TsHjXo8fcQeqP11zhqcU1CGAYMeA0Yd1AYdd7uf+7/1dr9Rh+YhNeoHerhZdM8c24ErJ52GNNXYatOP93XgnM+fg0QkwsdnbURRXHh3uf2po4G77Y8sn83EOF4zF14Hz0cPbcM/D3zL3Z+bmouXl1+OaKk1A35mbgneqN4HAPiy8Rj+OGul4EL85AC/cyc1cSG+iVW6CPqoiQshhJAgC6u/PI899hgefvhhfPPNNzh27BjmzJmDO++8E5mZmaE+NL+p7eB37vQu6IuSj5LpG7AP/vVb0BcX/pk+xxl9yTEKt49lGAbLSrPx+o9Vgu0jXYS9WLmLC9hyouNx6cSZkIklSJB7PgfRwlpw5qf/xdHedmhNRjx8cCv+MX+dx8935ZXjezA0nOX74ORh3F6+dEz7C7Q9nY3c7dMcSjDHgh/07eloRN1AD96pPoDHDn/HbV+Qno+Xll4mKKtdmFGAKIkMQyYD6gd6cbyvAyUJadzX+Zm+ghga10B8E+cy6KMRMYQQQoIrrOqV4uLi8Je//AXff/89Dh48iFdffRVTpkwJ9WH51Ule0FfoZRciQXmnwXlkQx+vc2eCH9bzAUASL4CydQ4NN6PN6HO0vDTLaZu7TF+/QYf/HPmRu//rqWdA5mam20hEjAh3zVzJ3X+zeh+qPZwr586Brmbudpumf4RHhh7LsoJM32n+zPTxxjbs62rC6R88Lgj4FmcU4eVllzmto1SIpViaNYG7/1WjsMRTOKOPMn3EN7Guyjsp00cIISTIwiroOxXwM32Fad6Wd46c6bNluwDXFxq+8GQ2YKh5Wtppc0ZJpnUtZZwGosktYAo60WsZdHqc1mTAH3d/DrXBmkHNi0nABUXTfT7OxZlFOD3dOibCzLJ4YN8Wn/elMxtxtLeNu9+hdT7+cNI42If24WOMkcoxKT7Vb/suik1CXrTrsQ/Lsibi+WWXQClx/fNwZu5k7vaXDuv66vgz+mgwO/GR60wfBX2EEEKCi4K+IDvJa+RSmOJl0CfI9LkI+niZuHgXFxq+GO01w4Ggc2di1KiPj1ZIUVwihai4HUysHqLUQdxb9QGu+eZ1fFB7CAe7mrGrvR6rP/0v3q89xD3v1mmLIRX5XpbFMAzummXP9n3VWImHD27lZv9542hPO4wW+/M6tOHdxnhPpz3LNzM52+V4BF9JRGJ8dNZ1uHvmSizNmoCo4QBvXV4pnl3yMyjEUrfPXZY1EdLhYznc04qK7lYAgNqgxQleJpYGsxNfuWrkoqKgjxBCSJDRX54gGtAa0DHcYVMmESHLgwCFb/Sgz17eGafyT3mnoHmMi+xiOPA207etpRpV0SecphxuajqBTU0nXD5nfX4ZziuYNpbDBABMS8rEuQVT8eHJwwCAhw9uxf6uJjx++vlerRHkl3YC4Z/p+6nDvp5vdqr/1vPZJCujcUPZQtxQthAmixk9eg1SlaOXT8fKFFiTOwUf1VUAAJ47thOPnn4eXjuxF1qTNbM9KT4FqTSugfiIMn2EEELCAWX6goif5ctLjvE628Ev7xxyWd5pL7909emyL+QSEUTDa+RMFhYGk9kv+/UnT2f0AcCPbSdx7bdvwgxrlozVScD2ug+2oiQy/HP+OXhy0QV+y07dP2cN5qflc/e/ba7Gms+eQcNAr8f7ONAtDPq6dEMwW7zLGDYN9uFIV6tXz/HV7gCt53NFIhJ7FPDZbJwyj7v9Ud1hNA324YVjO7ltP5+ygNrrE5+5XtNHjVwIIYQEFwV9QXSSP67By9JOYPQ5fcJMn3+CPoZhhGsJw7DE09MZfXs6GnD1N69DPzwrTmyUwnIsHZYTaXj9jKtxU9npWJ0zCcVxKYiTKbAiuxib1t2ASybO9OtFf7xciTdWXoEbSxdy2xoH+3DpplfQrvGsTNMx02dhWa/mCB7tbcOiDx/HzJf/iU/rj3j8PF+oDVqc6OsAAIgZBjOSnRvphNKM5GzMSrHObzRaLLjqm9e59YdpymicWzA1lIdHIlyMwrm8WCmlTB8hhJDgor88QcQvQ8zzsnMnAChHmdPHX9PnqqTIVyqZBIM6axZRozch3k+lo/7iSXnnvs4mXLHlNWiGS/bSlDH4w7Sz8UxHFZZMycQZ+fk4Iz8/GIcLwJqNumvWSsxMycZN370LvcWM+sFeXL75Vby7+hrEy92P3OjTa1HL6yxp06Ed8Hj23+sn9nFrAl89/hPW5pX69o14YHPTCbDDt6ckpCNKGl7vHwC4fvJ87O18B4B1/qHNtZPnQe5Dt1ZCbMQiEWKVUvTzKjGovJMQQkiwUaYviPh/9H0ZqTDayAZ+9854P2X6nF83vDJ9nszoO9zdgg2bX8Wg0fq4FEUU3l51FS4qL8GmO9fh7vWzgnrMfGfmTsa/F18E8XAmsbKvA1d98z9ojO7HYxzqbnG53dN1fSzLYlPTce7+rvZ69Bt0IzxjbF6v2sfdPovXLTOcnJlbgkyVMPseJZFhQ3Ho3htk/HAc0E7lnYQQQoKNgr4gGtTZL+Sj5e47Crozenmn/0c2AKOPigil0Wb0He1tw6WbXkW/0Vr6mihX4c1VV6EoLjmoxzmSVTkleHjhudz9vZ1N2Lj1Ta4M1ZFjaadNu4cdPI/1taN5SM3dN7EWfNdS4/kBe6Fa3Yld7fUArKWdP5swIyCvM1YSkRjXlMwVbLu8eBbiZO4zroR4yrHygjJ9hBBCgo2CviAa5AVMrtZ5jIYffGmD1L0TCO9M30ilnSf6OnDpplfQZ7B2TI2TKfDmyiv9OiPOXy4onI57TzuLu/9day1u+eF9l81Z+EFfGq+rpKeZvk2Nx522bXbTtXSs+Fm+lTmTPC4/DYXLimdy4x4kjAgbJ88b5RmEeMbxQzga2UAIISTYKOgLogFepi/Kh6AvaoSMm85oht5kDRBkEhGUUv+VD4Vzps/djL7a/m5csukVdOs0AKwDwV9fcQWmJKYH/Rg9de3kubht+hLu/mf1R/GHnZ+CZVluG8uy2N/VxN1fmTOJu93hYRMYV2Mpvmmu8rr752h0ZiPeqTnA3b98YniXSsbJlHh2yc+wOmcS/rP4ImRGxYX6kMg44VzeSUEfIYSQ4KKgL4iGdPaAKVrh/R/9kTJu/CxfrFLm126TygjL9BnMJmz89k0u8xUlkeG1FRswPcy6Rrrym2mLcd1ke5nhG9X78Nd9m7jAr1XTj87hLp3RUhkWpBVwj/WkvLNDO8BlCsUMg2SlNVDu0WucxkCM1ZcNlejVW7OsWVFxOCOjyK/7D4QzMovw/NJLcWaYrj0kkclxjTUFfYQQQoKNgr4AMFss+GjvSXy8tw4Wiz1LY+uACQAxCu/X3I00OqGP37nTj+v5gDAv73Qxo++ZoztwQt0JAFCIJXhl+eWYleL/geCBwDAM/m/2alxYOJ3b9p8jP+Kpih/Asiw+rz/KbZ+WlIl0XrlkuwflnfwyzjmpeThnQpnLr/nD61V7uduXTpzptzmHhEQaauRCCCEk1OgqLAC+OtSIX77wHX7xwjZ8dbiR2z7AC/qi5b5k+ngjGxzKLPsFnTv92xI/itd0Rqt37hoaSo4z+hoGevHooW3ctj/MWI65aXmhODSfiRgR/rngHKzKtpdu/n3/Fqz85N/4809fcdumJ2UhlRf0eVLeubnRHtitzCnGmQX2jJY/g776gR782FYHABCFcQMXQoKBGrkQQggJNQr6AqCqzd4Zcd/JTu72EC9givZhjh4/0zekNwnWegk6d/pxRp/j64Zbpq+51x70ZSVE4Z7dn0M33PWyNCEdV5fMCdWhjYlEJMbTiy/EgvR8blslb35cjFSOCwqnCRq5dOoGBe8JR1qTEd+12rt0rsiehOV5xZCJrFmHY73taB7s88vx7+u0rztclF6IDIdxCIScShwbudBwdkIIIcFGQV8A8Msr+Rk4YabP+0YuUrEIUrH1n8zCslzjFgDo463p8+eMPmD0URGhojea0Ttk/b7FIgZ7++qwpbkKAMAAeGDeWkhEkVtGpRBL8cLSSzE9KZPbJhWJcPWkOdh27q9QkpAGpUSG2OFh50aLBb16jdv9bW+r5QLiCXHJKIxNQrRMjvm8wNJf2T7+gPOpSRl+2SchkcqxmzKVdxJCCAk2+rgxAPjr9WyBnsXCCjJ9UT6UdwLWAMw2jFyjN0Ix3KWzP5Br+sI009fRr+Vup8Qo8K9D33L3NxTPxsyU7FAcll9FS+V4bcUGPHpoGySMCFeXzEFOdILgMamqGPSrrcFvu3YQiYooV7vC17xRDSt5paPLs4qxbXhO366Oelzlh+zoiT57hrs4DEdkEBJMcUrhh3xU3kkIISTY6C9PAMTy/sDbyi41BhNslXdKmQQSsW9JVpWcF/QZTEgc3t6nDWB5Z5g2cunkBX2JCVIcHw40ZCIxfj9jeagOy+8S5Cr8hTfDz1GqMhrV6i4A1u6ckxPSnB5jYS3Ywsvircwu5m6X87qaHutt98chCzJ9k+JT/LJPQiKV4+9klY8f+hFCCCG+ovLOAOD/gbfN5hscYxMXG3cBGH9N36lS3tnOC/pkcfbzOzUpA/FyZSgOKSRSlbxmLm46eB7qbuW6eybIlYJuppPiU2Ab8FHT3w2deWzNerQmAxoGewFYm7gUxSWPaX+ERDrH6gta00cIISTYKOgLAH7QZwvGBnmlnTFjyMQp3QxK58/pc1w/MlaRUN5pUtpvz0yO/LJOb/CbubS76eC5qcle2rk8q1gwPiFKKkdejDVnbGFZVPFKM31Rpe6CrZ1MfkwiFGLv168SMp44r+mjoI8QQkhwUdAXAPxObbY1ffxMn6/r+YARMn3BKu8Mo0wfv7xzQGwPdiJlJp+/eJLp449qWJFT7PT1KbyS0KNjLPHkl3YWU2knIU4jG1TUyIUQQkiQUdAXALEKe2bD1r1zrIPZbfgBmFYfpPJOLzN9BrMJJ/u7Rxwf4A/talvQx6LD3MdtHw8NXLyRysv0dWidM33Ng3040tsGwLrecUnmBKfH8NcBjnVdn3A9HzVxISRKLkFClDXbF6eUQUHlnYQQQoKM/vIEQJRcCoYBWNY6T89ktgjHNSh8P+38Qenu1vT5q3tnl3YQ9YO92NPXACZ5AGxP1IhBn9ZkxP+q9uLpih/QoR1EeXIW/jFvLUoTA9Oyn8v0qQwwsNbjSlfFIDMqLiCvF64EA9pdZPr4Yxjmp+UjWupc/jtZkOlrG9Px8Dt3ToqjoI8QhmHwt4vn4oVtx3DVohKIRMzoTyKEEEL8iIK+ABCJGMQqZFzJ5YDO6FDe6fsaJ5XbNX28oG+M5Z0W1oKN376Fr3nrwERFAJs6gKFu54BKZzbi9RP78FTF91yzEAA40NWMsz57BteVzMUd5cugkvo3A9neb51Jx0Tb1zOeauv5AIc1fS4yffx/R1elnQAwJSGdu32stx0sy4JhhBemrZp+tGsGMD0p0+lrfIJMXwIFfYQAwLmzC3Du7IJQHwYhhJBTFAV9ARKjlHJBX7/WIJjRF6MYQ9DHK+/k75O/pm+sjVz2dzULAgUbJkaPdnMjd19nNuKNqn148vAPLoMNwNoY5NljO1E30IMXl102puNy1NGvs97gBX2n2no+QLimr10zIAjYBo167Gir477On8/Hlx0dh2ipDINGA3r1WrRrB5CuiuW+3jKkxqIPHofeYsayrIl4dOG5LucBDhr1aB5SAwAkjAgFMYlOjyGEEEIIIcFFa/oChJ9t69caHMo7/RP02UotTWYLl0lkmLEFlYBwTVeKIgqzku2BlDa+Fy9W7sLLlbtx+geP457dXwgCvjRlNO497Sx8ve6XWJhu/1T7u9Zav67xY1mWK+8UZPpOsfV8ABAjlUMhtr4vdGYTBoz287GtpQYGixmAtYQzOzre5T5EjAiT4903c9naUg398H6+aa7Cqk//g13t9U774Zd2FsYmQSamz5UIIYQQQkKNgr4A4Y9lGNAKyzvHFPS5aKrSz+/cqZCNeb0Ivzzv2slz8fryK2Hpsmd17tn9Be7e/TnaeOMBUpXR+PNpZ+KH836NayfPxZSEdLy58kouGNGbTRjkBSNj1Tukh9FsASRmMErruZWKRJiaFJj1g+GMYRikCTp42v9dNvMytqvcZPlsRmrm0jTYJ7jfphnAxV+/hCcOfwcLa+G2UxMXQgghhJDwQ0FfgMQq7YGdWmvwX9DnYnyCv5u4OF64q2QSoC4Z7JDzvlMUUfjz7NXYft6vsXHyPCgl9u+NYRhBZ8lOnetxAr7gZvRF2QPJ0sSMU3YmXBqvmYttXaXZYsGWpipuu7v1fDYjBn3DJZt8ZpbFP/Z/gw2bX0PX8GueoHENhBBCCCFhh4K+AIkVZPocgj5/NXIZzvQJ1/P5N+griU8DwzBQimWwVKWCNVjnS6UoovB/s1fjx/N/jY1T5guCPb4UftCnHRrzsdl0uCrtPAWbuNgIxjYMZ2D3dTWhR6/hvj49KXPEfUxJ5DdzEXbwbOZl+h5esB5zUnO5+9+11mLVp//B9raTgvLOYsr0EUIIIYSEBVpwEyD8oE+tNWAwAI1cXGb6xti5s0s7iG6dNVBQSaTIjrZ261TJJdAMSGE5nIVnb56P5flFUEpGfy1h0Oe/TF+7WgtE6cEk2gPJWafgej4bfjOXFk0/AGBTo720c3lWMUTMyJ/x8Msxq9Vd0JtNkA+X5zbygr7Zqbk4v3Aa/nVwK548/D1YWEdFXLrpFUh5r1FCQR8hhBBCSFigTF+AxI6wpi/Kz41chOWdY+vceVxQnpfKBQrc65rEKI3N8ijgA4BUBX9wuH+Cvr2djXiw9lOIy1rAqOzn9VRs4mJTEGvvkvl29X6YLRZs4q3nWzlKaScAREvlyItOAGAt3awaztoZLWa08dYJZkXFQSIS4/czluO1FRuQpFABsHZqtTV7kYnEyItJGPs3RgghhBBCxoyCvgDhr+nrdyjvHEumT+mivLNPYy9xHGt5Z6WbRhyuyko9kRKANX03f/8eWo29gm0XFk5HTvSpG2ScVzANscND12v6u/HY4e9Qpe4CAMjFEizKKPRoP5MTeev6+qzr+lqH+mEZ7ryapozmsn8AsDhzAr5a+0vMT8sX7KcoLhkSkdjn74cQQgghhPgPBX0BEuPFyIYBgw7XffsGLvzqRRztEa6lcuSqvJPfvXOs5Z3C9Xy8oM9FhtET/KDPH5m+Ds0AGoZLDVkWsHRG4ze5Z+HR088b874jWbxciesmz+PuP3xwK3d7UUahx5lZ/tgGWzOXpqE+bpurkQ/pqli8ufJK3DptMWx9Y0frFEoIIYQQQoKHgr4AEc7pM2KIX97p0Mjl6SPb8VXjcexsr8cFX70oGKbtiP9crcvyTv8FfZPcBX16L4I+hX/X9B3t4nWVHJKBrU3B7LRTt6yTb+OUeVy2j8/dQHZX+B08bR9A8Mc1ZEfFu3yeWCTCbeVL8c05N+GlZZfiN9MXe/yahBBCCCEksCjoC5AYx/JOfiMX3te0JgNeO/ETd3/AqMeGza/ii4ZjLvfLL7McGt5nHy/oix9D0MeyrPugzx/lnX4I+o50tXK3WY31e02LVY15v+NBnEyJn5cucNq+Inv09Xw2/A6eR3vbwbKsYFyDu+HuNhPjU7AiexKkVNpJCCGEEBI2KOgLkDjH7p06e6DEH9nwfu1h9Oq1gufqLWb8YtvbeL1qr9N+XZVZCoazjyHoaxlSY9Bo3Ve8TCkYA+Brpi/Vz+WdFV288let9XtNiVWOeb/jxXUlcxEnU3D3pydlCmb4jSY3Oh6q4fEbPXoNOnWDDpm+OL8dKyGEEEIICQ4K+gKEv6avQ63hGmEopGJIxNbTzrIsXqjcyT1u4+R5KIixdmG0sCx+t+MTPH7oO7DDzwUcMm7DwVevRgfA+pg4pe/dOwVNXBJSwTAMd1/FC1S9yfQlK6O42126QVhYi8/HBwBH+Zk+rRQSEYPEqLF1LB1PYmQK3FC6kLu/Nq/Uq+eLGBFK4vklnu2jrukjhBBCCCHhjYK+AIlV2IO+9n57Jo/fxOWH1locH26LHyWR4bfTl+CDM6/FtKQM7jEPHvgGf9rzBRcsOWb66vt7sE95EKKZDUCsdkzlne6auACAUvC6RnhKIZZymSczyzplNQHAYmFR3a6GxcI6fY2PZVkc6eZl+jQypMQqIRIx7p90CrqhdCHunLkCt05bjGsnz/X6+VMShc1cPFnTRwghhBBCwhcFfQHCL7PkJeoEpMYsLQAAIeNJREFUpZ3PHbNn+S6eUI5YmQLJymi8vepqnJ5ewH3txcrduPn792EwmyCTiCEZDnLMMj0u+OpF6GQaMFILREWdYKS+Z9LcrecDfC/vBEZf13fdc99i0b0f4oYXvxtxPy1DagwYrOMpWKMIMIqRSqWdTsQiEW4qOx23lS8VjFfwFL+DZ0VPK1qG+rn72dFU3kkIIYQQEmko6AsQhVQMmcT59EYPN3Gp7e/CluYqAAAD4JoSe0YmWirHy8svxzpead5HdRW45ps3MGTUW0s8VXqIprQKhmYzMjNeqNnu8zGPGPT52MgFGLmDp8ZgwpcHGwEAH++rQ8+gzu1++OWn1vV8DAV9AcBv5vJdaw1Mw1nmZEWUx6MfCCGEEEJI+KCgL4BiXczMs2X6vmo4zm1bnl2MwtgkwePkYgmeXHQBrpp0GrdtW2sNln38NDRTaiCe2mLP6vGSex/UH8L2tpNeH6vZYkHVcKkpABTHpwi+zs/0ab3M9AmauTgMaO8b0gvu76vrcrsfftDHaq3nMTWOgj5/4wf8/HLcLGriQgghhBASkSjoCyBXQV/M8Jq+E2p7ALM0c4LL54tFItw/Zw1um76E29Y8pAYrMXP3o8QymI9lgO2xjy34/Y5PoDV5vu6OZVn85+iP0Fus+01TxiBBLhyDMKZM3wjlnfzOowCw92Qn3OFnIjE8roEyff4XK1Mgx0XDFlfbCCGEEEJI+KOgL4BiFFKnbbZGLid4WbUJDlk1PoZhcOv0Jfj7vLUQ8bppsmYGrFqB2wrPAgYVsNQlgTFb/znrBnrwnyOelXkaLWb8bscneGDfZm7bkiznINTVqAhPjRT08WcMAqMEfb38TB8FfYE0hTek3SaLmrgQQgghhEQkCvoCKM5FJ80ouRQsy6Km317GWBznPuiz2VA8G5vW3YAXl16KKd3TYfkpD5bKDIj1wzPZjBKkqLO4x79VvV8w6sGVPr0WGza/hjeq93Hb5qTm4o8zVzo9dkyNXBT2sQ22WX16swmHulvQOyTs5rmvrhNmi3MzGpPFjGo1LyDUDJd3UtAXECUugj7K9BFCCCGERCbvW/sRj8UoXJd3tmr6uSHocTIFknlB0UgmxadiUnwqnpc2ALB2VGzt03Bfz7akQyftQL9Rj6YhNQ52t6A8OcvlvuoGenDVlv+hpr+b23Z+4TQ8NP8clx0f/VneybIsLt/8Kna212NadC4AMff1Ib0Jx1v7MCUrUbCP+oFervxUYpbCbLY+h4K+wJjsIuijzp2EEEIIIZGJMn0B5CrTF62QooqXsZoYlyIYgu6JKF4AVt2m5m4nqBRYnVvC3f+0/ojL5+9qr8e6z58VBHy3ly/FYwvPc9vifyyZPn4jl07dIGr6u7CzvR4AcGiwAWCEGcm9J52bufCbuIh09mHsaXEqp8eSsZuSkO60jWb0EUIIIYREJgr6Asjdmr4qtT2omehBaacjfgC2qaKJuz0tJwlreWMePq074lTi+W7NAVyy6WWuK6NcJMbTiy7Eb6YtHjH49DXT1zOow7F6+1iJDu0gF/BxZML97T3ZAUeVve3cbcOAPTOYHKPw+FiI5/KiE6CUCN+/2VTeSQghhBASkai8M4BcjmxQSHGIn+mLT/Z6v/ygzzIc1IlFDC5bOBFJMXLESuVOJZ4W1oJ/HvgWjx/+nntusiIKzy+9BLNScrx6TU+DPpPZgnMf+RJVbX0QzwHAWEcAfN9aK3yg3ATo7QHGTy6aufA7d1qGrI+NVkihlNFbOBDEIhEmxafiQFczACBepkS0VD7KswghhBBCSDiiTF8AuZvTx5+HN8GXTJ/cOdBZMz0XGfFRkIklTiWeWpMRN373riDgmxSfik/WbPQo4AMAlcwelHla3lnZ0oeqNjUABqzRnp37ZngovQ0jF+6vpr0fvQ7z+4Qz+qznNYWyfAHF7+BJ6/kIIYQQQiIXBX0BFKscvbzTk86djvgBmM01i+2BHr/E8+OTFbjo65fwaf1RbtuSzAn48MxrkROd4Plr+lDeeajRvmYQvKDPaYagzHl/++rsgXFFdytqh9cfihkRMDyYPTmGmrgE0mRB0BcfugMhhBBCCCFjQkFfALnK9JnFJvTorR03lRIpMqNivd6vY6ZvSlYC5k2wX6AvyihE7HApXoumnyvRA4CrJ83BS8suRYzMuyyZUsYL2gwmWCwjj4MAgIP1vIYsvKDPyXCmryzb3rGTP6/vmWM7uNunJRYCFuvbltbzBdbavFIkyJUQMwwuKiwP9eEQQgghhBAfUdAXQK6Cvh6TvanJhNhkiBjv/wlUDuvYrllcImjC4ljiCQAihsF9c87C/XPXQCIaIQBzQywSQSG1P09nHD3bd7DBnuljRwj6bOWdS6fYx0vYgr6WITU+PlnBbZ8bW8zdpvLOwEpRRmP3Bb/Fngt/6/R+IoQQQgghkSOsgj6j0Yi//e1vmDt3LsrLy3HTTTehs9O5qUekcBX0tRvsIxYmxntf2gkIg744pQznzy5wesz6/Knc7WipDC8tuwzXlMz16fW41/WixNNgMuNYS699w4iZPmu55/JSe9C3r64LZosFL1buhom1Dmufm5oLucE+0zCFZvQFnFIiRaoyJtSHQQghhBBCxiCsgr6HH34YL7/8MmQyGbKzs7F582bcfPPNTmMHIoWrNX3NWnsgNDHO+86dAFCeb3/edUsmQyV3fp3FmUW4e+ZKnF84DR+dtRHLsib69Fp83szqq2zpg8FksW9wCPoE4wBkZoBhUZadyA1bH9QZcaipE/878RP3sJ9PWYBOtX0YPWX6CCGEEEIIGV3Y9LvX6/V48803IZFI8P777yMxMRFnn3029u/fj4MHD6K8vDzUh+i1GBeZvvqhHu62L507AWBSRjw+vX0NWnqHsKY81+VjGIbBDWULfdq/O96MbeCXdgJwCvpOS8lBZV8HOrSDYBhALDdDJZdgVkEKvjjYAAB45vBu9ButXTzzYxKxMqcY7235gdtHEjVyIYQQQgghZFRhk+mrrKyERqNBQUEBUlJSIBaLMWfOHADA/v37Q3x0vnEczi6XiFDTP7bOnTazClKwbmY+xKLg/RMKyjtHyfQdbOgS3Hdc0zcvLR/pCnsTm6hYBgzDYHaB7Zyw+Kbb3nH0+snzIGJEaKdMHyGEEEIIIV4Jm6CvtbUVABAfH89ts922fS3SSMQiRPECpSiVGK2afgCAVCRCXoznIxPCgWBW3yiZvkO8TN+03CTA4Bj05SFJFs3dV0RbS3hn2oK+RA2GoAVgHQx+8YRyAEBHHy/oozV9hBBCCCGEjCpsyjt1Oh0AQCKxH5Lttu1r7iQkqCCReN+RcqxSUkZvcJEQrcCQfhAAoIxjYWvjMiEhBRlp8YE7uACIj5FztyUKqdvvX2cwobKlj7t//coy3PxSJ1gWYBjrer4VJSV4t/oI0G59jCzagpSUGKyIU0IiFsGSbm9488sZC5GbkQQA6OjXcttLCpIRp7IfE/GNJ+9j4n903oODznNo0HkPDjrPoUHnPTTovI9N2AR9crn14t1sNnPbTCZrNkmhGLmMr7dXM+LXAyElJQadnQOjPi6Ktw6OURq424XRSR49P5xIYB8L0dY54Pb4D9R3wWi2NnEpSInB1Ix4wCwC2xIPcdoA7p6zEv29WkgN9syhRWzk9leQL0VtjHUtn4QR4aKc6ejsHMCQzsiVlcolIugH9egcMoD4ztP3MfEvOu/BQec5NOi8Bwed59Cg8x4adN49M1JgHDblnampqQCAvr4+bpvtdkZGRgiOyD/4HTyHovq425MT0lw8Orx52siFP5R9em4SilJjoZCKwTYlwLg3F+uypwEAFKw9mDdJ7MGbOZXX4VSajTSV9Q3cOWDP8iXHKAWzCQkhhBBCCCGuhU3QN3nyZMhkMpw8eRIdHR0wm8346Sdru/5Zs2aF+Oh8x83qkxvRL7OWLDIAziuY6v5JYcrTRi6HGu0dSqflJkEiFqEkM57bdrTJGtTJzPbupjqRNbNXP9CDBksHt13Rk8jd7hqwl/mmxFITF0IIIYQQQjwRNkGfSqXChRdeCKPRiAsuuADr169HTU0NZsyYgWnTpoX68HxmC/qYtH5u27KsiciLSXT3lLDlW6bPOlOwNNv+/R5pGg4KeeWdGuhgspjx/LFdYGFt6sL2KXGiVgOLxXq/kxf0JdO4BkIIIYQQQjwSNkEfANx555246qqrYDAY0NjYiOXLl+OJJ54I9WGNSaxSBogsYFIGuW1Xl8wJ4RH5TsnP9BmMLh/z/p5aHOM1cZmaYw32ynhBX8Vw0DekNYEd7urJgsWJvk68Wb2Pe5ylLRb9WiOq2qz76+Q1caFxDYQQQgghhHgmbBq5AIBMJsNdd92Fu+66K9SH4jcxSimYpEEwEmtjk/yYRCzOLArxUflGkOlzKO80mMy49/2f8Py2Sm7baYWp3IB6Qaav2Rr0qTUGwCABZNbmPX/fvwUakzWYjLKo0K+2ZvP21nVhUmYCugYp00cIIYQQQoi3wirTNx5NzowHk2bvNnTVpNMgYiLztLsr72xXa3DhY18LAr6itFg8esVC7v7kTPtMwuo2NUxmC9RaA1i9fZ/fNFdxtxfHTwaGu4XuPdkJAOjiZ/poTR8hhBBCCCEeiczoI4KkZYvARFk7UyrFUlxUVB7aAxoDV41cdla3Y9XfP8WeWnvzlTXlufjijrNRmBrLbYtWSJEeZ83OmSwsmnoGrZk+vXOyOUURhQ2TZ3L3fxret3BNHwV9hBBCCCGEeCKsyjvHow9PHuZun1c4FfHyyC1LdMz0PfvtUdz7/k8wDTdaETEM7lo/EzeuKHU5TqEgNRZtamu2rrZjwBr0mZzfgleXzMHs/FSIRQzMFhYn2tRQawwOa/oi9zwSQgghhBASTBT0BZDRYsYXDce4+xdHcJYPEGb6tlQ04atDjdz9xGg5/nPNYiwqcT9TsSAlFjuq2gEAtR39UGv0YFnhW1AhluDK4tOgkksxJSsBh4fHP+yv7xSs6aNGLoQQQgghhHiGyjsD6PvWWvQZrNmpTFUsZqZkh/iIxkYls49YsGX3AKA8Lwlf/X7tiAEfABTxyj1Pdvajz0V558VF5UhQqAAAswtSuO17azvR1W8P+pIo00cIIYQQQohHKOgLoE/rjnC31+aXRmwDFxt+eafNhoXF+PDWs5CdGD3q8wt4Qd+J1j5rMxiDBOxw/MgA2DhlHveYmbygb0d1O9Ra69pIsYhBYpTcx++CEEIIIYSQUwuVdwaI3mzCl7zSznX5pSE8Gv/IToqCQiqGzmiGXCLCAz+bh0sXTPT4+YUpMdztgw3d1hsWEeSdSZBlDeD6yfNRGJvMPYaf6dtZ3c7dTopWQCRyXjNICCGEEEIIcUZBX4B831qDfqMeAJATHY/ypKwQH9HYxavkeG7jEmytbMEl8yYIZu95Ii8lFgwDsCwwoLMPd08byMKPl5zn1PwlLzkGSdEKdA/qYOaVk9J6PkIIIYQQQjxHQV+AfMwv7cxz3c0yEi0vy8byMt/WJiqkYmTGR6G5d0iwPU4lc3l+GIbB7IIUfHW4UbA9iYI+QgghhBBCPBbZi8zClM5sxNeN9kHl54yD0k5/KUqLddoWp5K5fTx/XZ8NjWsghBBCCCHEcxT0BcC25hoMGq1NR/JiElCWOHJXy1NJQYpz0Bevct+UZbaroC+WMn2EEEIIIYR4ioK+AOjVa7jb5+ZPHTelnf5QkBrjtC1W6T7TV56XBJHD+UumTB8hhBBCCCEeozV9AbA2vxR7OhoAAL+auijERxNeCl1m+twHfbYh7RVNPdw2auRCCCGEEEKI5yjoC4BoqRz/WnhuqA8jLBWmeremDwBmFaQIgj7K9BFCCCGEEOI5Ku8kQZWbHAOxw4y9uBHW9AHWoI+P1vQRQgghhBDiOQr6SFBJxSLkJEYLto1U3gk4N3NJpvJOQgghhBBCPEZBHwm6AocSz9HKO/NTYpCXbA0U0+NVNLKBEEIIIYQQL1DQR4LOcV3faOWdDMPg2Y1LsHHpZLx921mQiOltSwghhBBCiKeokQsJusIU4diG0co7AWBqThKm5iQhJSUGnZ0DgTo0QgghhBBCxh1KmZCgcyzvHGlOHyGEEEIIIWRsKOgjQedY3hmrlIboSAghhBBCCBn/KOgjQZedGIX8ZGuJZ3leEsQiehsSQgghhBASKLSmjwSdWCTC/25agc0VTTh7Rl6oD4cQQgghhJBxjYI+EhKFqbH4+bIpoT4MQgghhBBCxj2qqyOEEEIIIYSQcYyCPkIIIYQQQggZxyjoI4QQQgghhJBxjII+QgghhBBCCBnHKOgjhBBCCCGEkHGMgj5CCCGEEEIIGcco6COEEEIIIYSQcYyCPkIIIYQQQggZxyjoI4QQQgghhJBxjII+QgghhBBCCBnHKOgjhBBCCCGEkHGMgj5CCCGEEEIIGcco6COEEEIIIYSQcYyCPkIIIYQQQggZxyjoI4QQQgghhJBxjII+QgghhBBCCBnHKOgjhBBCCCGEkHGMYVmWDfVBEEIIIYQQQggJDMr0EUIIIYQQQsg4RkEfIYQQQgghhIxjFPQRQgghhBBCyDhGQR8hhBBCCCGEjGMU9BFCCCGEEELIOEZBHyGEEEIIIYSMY+Mu6Ovs7MSdd96J008/HbNmzcIVV1yBgwcPcl/fsmUL1qxZg7KyMpx99tnYunWr4PmHDx/Gtddei9mzZ2PhwoX47W9/i/b2dqfXMZlMWL16NSZNmoS2trZRj2vfvn04//zzUVZWhuXLl+O9995z+biGhgaUlZVh5cqV3n3jIRSp57yurg4333wz5s2bh7lz5+IXv/gFamtrfTsJfhap57SmpgbXX389ysvLccYZZ+C+++6DRqPx7SQEWaSec777778fkyZNwhNPPOH5Nx4CkXqut2/fjkmTJjn99+OPP/p2IoIsUs87y7J47rnnsHz5ckyfPh2XXHIJKioqfDsJQRCJ5/mJJ55w+d6OhN8nNpF43gHrtcgvf/lLzJ07F3PnzsWNN96IxsZG305CkEX6OZ8zZw7mzZuH+++/HzqdzreTEEHG1Zw+i8WCn/3sZzh06BDy8/MRHx+PAwcOQKVS4aOPPoJGo8EFF1wAhmFQVlaGiooKsCyLDz74AMXFxWhtbcX69euhVqsxY8YM9Pb2oq6uDpMmTcK7774LmUwGADAYDPj973+Pzz//HACwbds2pKenuz2ujo4OnHXWWdBoNJg2bRqOHz8OrVaLZ599FmeccQb3uPb2dlx33XWoqqpCbm4uNm3aFNgT5geRes4HBwexfv16NDU1YfLkyWBZFpWVlUhJScGnn36K+Pj4YJw+lyL1nGo0GqxatQqdnZ2YPn06Ojs70dLSgpUrV+LJJ58MyrnzVaSec76ffvoJV1xxBSwWC371q1/h5ptvDtwJG4NIPtfPPfccHnroIZSWlgr2dcstt6CkpCSAZ23sIvm8P/LII/jPf/6D+Ph4FBUVYe/evUhKSsKXX36J2NjYwJ88L0Tqef7ss8/w2WefCZ6zfft26HQ6PPHEE1i1alXgTpofROp5NxgMOPvss9HQ0ICioiIoFAocOXIEhYWF+OSTTyCRSIJy/nwRqee8r68PZ599Nrq6unDaaaehpqYGPT09WLFiBZ566qmgnLtQGVeZvqNHj+LQoUPIzs7GZ599hrfeeov7h//kk0/w6quvwmQy4dZbb8Wbb76Jm266CSaTCa+99hoA4IsvvoBarcY555yDN998E5988gnS09Nx/PhxHDp0CADw448/4vzzz+fefJ549913MTg4iEsvvRRvvfUW7r33XgDAyy+/zD3mf//7H8455xxUVVX58YwEXqSe8+3bt6OpqQmzZ8/Ghx9+iI8++ogLVBw/iQq2SD2nBw4cwMDAAFauXIm3334bb775JgBg8+bNGBoa8ucp8rtIPec2Op0Od999NywWi5/OSOBE8rk+duwYAOB3v/sdnn76ae6/cA/4gMg972q1Gs8//zxEIhHeeOMNvP7661i9ejWkUikOHz7s57M0dpF6ns8++2zBe/riiy+GTqfD+eefH/YBHxC5572mpgYNDQ3Izs7Gxx9/jPfffx+nnXYaamtrUV1d7eez5F+Res4//PBDdHV1YcOGDXjttdfw4YcfQqVSYfPmzThy5Iifz1J4Cd+PEHyQmpqKhx9+GHK5nPt0JDk5GQDQ29uLffv2AQDmzJkDAJg3bx4AYP/+/QCA008/HQkJCSgqKgIAyGQyxMXFoa2tDT09PQCA1157DSdPnsRvf/tbPPzwwx4d12ivC1g/yRSLxbj++uvx7LPP+ngGgi9Sz/mUKVPw0EMPISUlhXtOUlISd9yhFKnndMGCBdi/fz+0Wi0AoKurCwAQFRXFfWIXriL1nNs88sgjqKurw+TJk7nAJFxF8rk+evQoAOsHGW+99RYmTpyIK6+8EtHR0b6ciqCK1PO+Z88eGI1GFBQUoLCwEADw+OOP+3oaAi5SzzOfVqvFvffei+joaNx+++1enoHQiNTzHh8fD4ZhAID7P8uyYBgm7H+vROo5r6+vBwBMnDgRAJCWloZJkyZh//792LlzJ0pLS306H5Fg3AV9Z599Nne/p6eH+3SgvLycq+m1le7Z/m+rDy4uLkZxcTH3/D179uD48eMQiUSYNm0aAODMM8/EHXfcgYKCAo/fgLb9O77u0NAQBgYGEBMTg5tvvhnr16/H8ePHIy7oi8RznpOTg5ycHO7xJ0+exA8//MAddyhF6jmNiYmBSCRCVFQUHnjgAbz99tuQy+W47777IJVKvT8RQRTJ53zfvn145ZVXsHr1akycODEigr5IPNcSiQR1dXUAgFdffZV73tdff4133nmH3uMIzHm3rW2KiorCbbfdhi1btqCwsBB33303Zs2a5eVZCLxIPc8xMTHcY99//300Nzdj48aN3Ieh4S5Sz3tGRgbuuOMOPPLIIzjnnHO48s5f/OIXyM7O9v5EBFEkn3MA3LpgjUaDhoYGAEBLS4vH338kGlflnXz9/f3YuHEjuru7UVRUhNWrV3OLNG1/nG2fTNgyE3zHjh3Dr371KwDA+eefz9UPn3POOSgoKPDqWGyva3s9/sWB7bWvuuqqkK4j84dIO+c2LS0t2LhxIwwGA+bPn48ZM2Z49VqBFKnndMuWLdBoNIiPj4fZbPbqdUItks65Xq/HXXfdhZiYGPzpT3/yat/hIJLOdX9/P5YuXYoVK1bg66+/xubNm5Gfn49jx47h7bff9uq1Qi2Szrvt9SsqKrBr1y5MnjwZR44cwcaNGz1q6BBKkXSebViWxWuvvQaRSIQNGzZ49RrhItLOu8lkAgBUV1ejoqICCoWCy5hFikg65+vXr4dKpcI777yDSy65BGvXrkV3d7fguePVuMr02fT19eHaa6/FkSNHEBcXh8ceewxSqRRyuRxarZb7AbP9X6lUCp5/5MgRXHvttejr60NpaSnuuusuj1/7lVdewc6dO7n7V1xxBeRyOQBwF79Go5H7uuNrR6pIPedNTU248sor0dzcjKysLDz44INefueBE6nnFLB+UtzZ2YkNGzbgjjvuQH5+PqZOnerFdx8akXbOH330UZw8eRJ///vfI+4iIdLOdUxMDJ5++mnBfi6++GI8+OCD2LdvHy6//HIvvvvQibTzbvu6RCLBe++9h7S0NNx1111477338NFHH+EXv/iFD2ch8CLtPNscPHgQtbW1mDFjBpcRiSSRdt737duHhx9+GHl5eXjhhRfAsiyuu+463H///cjJycGSJUt8Og/BFGnnPCYmBi+++CL++te/oqqqCgsWLMDEiROxdevWcXNN7s64y/QNDQ3huuuuw5EjRxAfH4+XXnqJq9tNTU0FYF0YDljfqAAEXYCqq6sFb74XXngBUVFRHr/+0aNHsWXLFu6/1tZWt68bHR0tKKmIVJF6zjs6OnDVVVehubkZ2dnZeOWVV7jnhVqkntOenh6o1WrExsaiqKgICxYsAMuy2LVrl+8nI0gi8Zx/9dVXAIA//OEPmDRpEtcl9cknn8SyZct8PBOBF4nnemhoCCdOnBCMdbGtVbVdzIS7SDzvtsAjPj4eaWlpAMB9gBSumb5IPM8227dvBwCn7sCRIBLP+969ewEAK1asQHZ2NnJycrBixQoA9n+LcBaJ5xywlp++88472Lt3L5544gkYDAYAQG5uro9nIjKMu6Dv7rvvRkVFBWJiYvDyyy9jypQp3NdsNcK2C9Ddu3cDALcuYGhoCDfccAP6+vpQUlKCl156yeuSy7///e84fvw499/555/v9nVnzpzp+zcaRiLxnJvNZtxyyy1oampCRkYGXnvttbCqn4/Ec/ryyy9j/vz5XKcso9HIrS+LhCxUJJ7zhQsXYvny5dx/tjKYgoICLFy40JfTEBSReK5//PFHrFu3DjfddBMMBgNYlsW2bdsAhH4dsKci8bzPnj0bIpEI3d3dXHfrmpoaAOF7gRaJ59nG9vVIqMxwFInnPS4uDoB1Xp1tglplZSUACBrNhatIPOc7duzA8uXLccsttwCwzho8cOAAAGtzmfFsXM3pO3ToEC666CIAQFZWlqCN9sKFC1FaWopLL70UYrGYmxkCAB988AEmTpyIZ599Fv/85z8BAGVlZdynigBw9dVXc52AbCZNmgRg9JkhTU1NWLt2LfR6PaZPn47KykpotVo899xzWLRokeCxu3btwpVXXhkxc/oi9Zx//vnnuPXWWwEAEyZMQF5eHvfcdevW4ayzzhrLaRmTSD2nnZ2dWL9+Pbq7uzFt2jT09/ejrq4O+fn5+PDDD8O6bCJSz7mjJ554Ak8++WRYz+mL1HOt1+txwQUXcHNUo6KicOzYMWRmZuLTTz/16tPpUIjU8w4Af/rTn/DWW28hNjYWJSUl2LNnD+Lj4/H5558jMTHRD2fHfyL5PAPWjFNjYyO2bt0aUeWdkXre+TPjiouLIRKJUFlZiZiYGHz66acj7jvUIvmcr1q1Cmq1GjNnzkRjYyM6OztxwQUX4G9/+5t/Tk6YGldr+r7++mvudnNzM5qbm7n7CQkJuPzyy/HEE0/gkUceQUVFBXJzc3HHHXdwqWh+kFVRUcG9QQFg9erVPh9XdnY2nn/+efztb39DRUUFUlNTceONN7q8aIs0kXrO+a9bXV0tmIdTVlbm8+v6Q6Se05SUFLzyyit46KGHsG/fPsjlcpx//vm44447wjrgAyL3nEeiSD3Xcrkczz33HB588EHs2LEDXV1dWLp0Ke6+++6wD/iAyD3vAHDPPfcgNjYWH3zwAY4ePYqFCxfizjvvDLuAD4js8wyAa2iRkJDg82uFQqSe9/j4eLzxxht4+OGHsWvXLphMJixcuBB33HFHWAd8QGSf86effhoPPPAAjhw5gsTERNx000248cYbfX7NSDGuMn2EEEIIIYQQQoTG3Zo+QgghhBBCCCF2FPQRQgghhBBCyDhGQR8hhBBCCCGEjGMU9BFCCCGEEELIOEZBHyGEEEIIIYSMYxT0EUIIIYQQQsg4RkEfIYQQQgghhIxjFPQRQgghhBBCyDhGQR8hhBBCCCGEjGP/D/VrrztBLGBxAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4UAAAHnCAYAAAAPc/jYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADLGklEQVR4nOydd5gb5bn271GXdrWr7est7muve8MdgjE19N4JBEhPSIAkB1IOSYDkJCe9kELICclJCOQDQgonCSEBYtNdwAb3bq+9u7a376rOfH9oNXrf0UgaSTPSSHp+18XFSJqVxtqVZp73fp77FiRJkkAQBEEQBEEQBEGUJZZCHwBBEARBEARBEARROKgoJAiCIAiCIAiCKGOoKCQIgiAIgiAIgihjqCgkCIIgCIIgCIIoY6goJAiCIAiCIAiCKGOoKCQIgiAIgiAIgihjqCgkCIIgio61a9di5syZ8n9z587FmWeeia9//esYHh4GABw+fJjbZ+bMmejs7MTixYtxzTXXYP369arP/fOf/xwzZ87Eww8/zN3/1a9+FWvXrk3Y//rrr8fMmTOxceNG7v5HH30UixYtQigUwj333MMdx5w5c7Bq1SrceeedOHDgQMJzBoNB/M///A8uueQSLFiwAMuXL8ett96KF198Ud5nYGAAs2bNwlNPPcX97CuvvIKZM2fi1ltv5e6XJAnLly/HT3/6U/m9ueuuu1Tfg5kzZ+KZZ55RfYwgCIIoPagoJAiCIIqSD3zgA1i3bh3WrVuHZ599FnfffTf+8pe/4Pbbb0cwGJT3e+ihh+T9XnrpJfziF7+A0+nERz7yERw5ciThef/whz9g8uTJ+P3vfw82ynfFihU4cuQIuru75fuGh4fx1ltvobm5GevWreOeZ8OGDVi6dCnsdjsA4JRTTpGP4+9//zu+853v4OjRo7j22mtx6NAh+eeCwSBuu+02PPLII7jxxhvx5z//GY8++ihmz56Nj3zkI/jhD38IAKiursasWbMSitF169ahubkZb7zxBvx+v3z/rl270N/fj5UrV8r3/eUvf8E//vGPjN53giAIovSgopAgCIIoSjweDxoaGtDQ0ICJEyfi/PPPx49//GNs3rwZTz75pLxfdXW1vF9jYyMWLlyIr3/96wgEAnj++ee553z77bexa9cufOYzn8GBAwfw6quvyo8tW7YMVquVK8JeffVVVFdX48orr1QtCletWiXfttvt8nG0trZi+fLl+PnPfw6Hw4Fvf/vb8n4/+tGP8O677+Kxxx7DVVddhfb2dnR2duLTn/40vvzlL+OHP/wh3njjDQDA8uXLsWnTJu51169fj1tuuQWCIOD111+X73/zzTdRXV2NuXPnyve1t7fjS1/6EgYGBjJ67wmCIIjSgopCgiAIomSYM2cOlixZgmeffTblfg6HAwBgs9m4+59++mm0tbXhrLPOwqRJk/D444/Lj1VWVmLOnDlcEbZ+/XqsXLkSq1atwpYtW9Df3w8A2LdvH44fP84VhWpUVlbi8ssvx/PPP49AIABRFPHYY4/h8ssvR3t7e8L+V111FSZPnoz//d//BRBVL/fs2YPBwUEAwIkTJ7B9+3acccYZWLJkCVeobtiwAStWrIDFEj/1f+Yzn0EoFMLXvva1lMdJEARBlDZUFBIEQRAlxYwZM7Bz586kj584cQL3338/PB4PzjzzTPn+YDCIZ599Fueccw4A4L3vfS/+8Y9/4OTJk/I+K1asSCgKV69ejQULFsDj8eDll18GEFXlGhoaMGPGDE3HGwgEsH//fuzbtw8DAwNYtGhR0v2XLVsmH8PSpUths9nk2+vXr0dLSwsmT56M1atXJxSFbOsoANTV1eHee+/F008/jZdeeintsRIEQRClCRWFBEEQRElRVVUlm80AwG233YZFixZh0aJFmD9/PtasWYP+/n785je/QVNTk7zf888/j/7+frz3ve8FAJx//vkIhUKckcvKlSuxbds2+P1+HD58GAcOHMDq1aths9mwfPlyuQhTK8CSUV1dDSA6nxhr46ypqUm6f01NjVyoejwezJs3jysKV69eDQBYvXo19uzZg6NHj+Lw4cM4evSo/BjLpZdeijVr1uA///M/ufeNIAiCKB+oKCQIgiBKipGREXi9Xvn21772NfzhD3/AY489hvPOOw8+nw8f/ehHMXv2bO7nnn76abS2tmL+/PkAog6c06dP5wxnFi9eDEEQsGXLFqxbtw4dHR1yYbl69Wp5hu/NN99M2zoaI1aIVVVVwefzcfepMTg4iNraWvn2ihUr5DnHl19+WS78Ojs7UVdXh9deew1vvvkmWltbMXHiRNXn/MpXvoLh4WF84xvf0HTMBEEQRGlBRSFBEARRUrzzzjuYM2eOfLuxsRGTJk1CZ2cnvv71r2POnDn48Ic/jP3798v79Pb2Yt26dejq6sLs2bPl//bs2YP9+/fLhjMulwsLFy7E5s2b8fLLL3OF36pVq3Do0CFs2bIFhw4d0lwUvvPOO/B4PJg8eTImTZqEhoYGbNiwIen+b775JhYuXCjfXrFiBbZs2YLt27fj+PHjWLFiBQBAEASsXLkSb775JjZu3JjyeJqamvDZz34WTzzxBGeuQxAEQZQHVBQSBEEQJcP27duxadMmXHjhhaqPC4KABx54AHa7Hffcc4+sAD7zzDOIRCJ4+OGH8Yc//EH+77HHHoPdbscTTzwhP8fy5cuxdetWvPnmm1w75pQpU9DS0oLf/va3mDZtGteamozR0VE888wzOO+882C322G1WnHjjTfiiSeeUM0v/OMf/4hdu3bhhhtukO9btGgRRFHE73//e8ydO1dWG4Foobpt2zZs2rQpbZF69dVXY+XKlfjCF76Q9rgJgiCI0oKKQoIgCKIoGR0dRW9vL3p7e3Ho0CH84Q9/wAc+8AEsXboUF198cdKfq6+vx2c/+1ls2rQJv/3tbwFEswlXrlyJ0047DTNmzJD/W7RoEc4//3w899xz8hzfihUr8NJLL2FwcBBLly7lnnvVqlX461//qlqAhUIh+Xi7urrk6IhQKIRPfepT8n633347li1bhhtuuAFPPvkkDh06hN27d+MHP/gBPve5z+HjH/84li9fLu/vcDiwaNEiPPXUUwmvu3r1auzatQt79+6VFcRU3H///Thx4kTa/QiCIIjSwpZ+F4IgCIIwHw8//DAefvhhAEBFRQVaW1tx/fXX45ZbboHVak35s1dccQX+9Kc/4dvf/jZmzpyJXbt24ZOf/KTqvrfccgueeeYZPP3007jtttuwYMECANH5Qo/Hw+27evVq/L//9/9UTWbefPNNnHrqqQCihVxTUxNOPfVUfOc73+FURZvNhoceeghPPPEEfvvb3+KBBx6Aw+HA3Llz8dBDD+E973lPwnOvXLkSr7zyivz8MZqbm9Ha2gqXy8XNISajra0Nd999N+6///60+xIEQRClgyDFemcIgiAIgiAIgiCIsoPaRwmCIAiCIAiCIMoYKgoJgiAIgiAIgiDKGCoKCYIgCIIgCIIgyhgqCgmCIAiCIAiCIMoYKgoJgiAIgiAIgiDKmLKJpOjtHcr7a9bUeNDXN5r31y1n6D3XF3o/8w+95/mD3uv8Q+95fqD3Of/Qe14Y6H3PnIYGr+r9pBQaiM2WOieL0B96z/WF3s/8Q+95/qD3Ov/Qe54f6H3OP/SeFwZ63/WDikKCIAiCIAiCIIgyhopCgiAIgiAIgiCIMoaKQoIgCIIgCIIgiDKGikKCIAiCIAiCIIgyhopCgiAIgiAIgiCIMoaKQoIgCIIgCIIgiDKGikKCIAiCIAiCIIgyhopCgiAIgiAIgiCIMoaKQoIgCIIgCIIgiDKGikKCIAiCIAiCIIgyhopCgiAIgiAIgiCIMoaKQoIgCIIgCIIgiDKm6IrCUCiEr371q1i+fDkWLlyIj33sY+jt7S30YREEQRAEQRAEQRQlRVcUfvvb38ajjz4Kh8OBtrY2/OMf/8AnPvEJSJJU6EMjCIIgCIIgCIIoOoqqKAwEAvjd734Hm82Gp556Cs888wymTJmCTZs24a233ir04REEQRAEQRAEQRQdRVUUbt++HaOjo5gyZQoaGhpgtVqxbNkyAMCmTZsKfHQEQRAEQRAEQRDFh63QB5AJR48eBQD4fD75vth27LFiYWDHNmz52gOoO2UpZn38U8z92/H2g1/CaNeRxB8SLGg9972Y++l78negRALhsTFs/NxnIIZCWPzA1+Fg/h7TcfLtt7DjJz+EGAphydf+G676BgBAJBjExs9/Fic3bZD39U6djsVf/Ya8j5mRJAlb/usBHP3nc0CWrdyellYs+MKXUTVjps5HRxAEQRAEQaSiqIpCv98PALDZ4ocd2449Viy8+91v4sjfnsWRvz2L1nPeK18Iv/Odb6Drub8l/bn+rW9jwplno27RknwdKqFgz6O/wL7f/QYA4Js7D50f/njanxnctRNb//trOPSnP8j3eSdPwfzP3wcAOPD/Hsfe/32U+5n+d7bC09qGhffdr9/BG0TvKy9j2/e/ndNz9L+zFVaPB6t+8gudjoogCIIgCILQQlEVhU6nEwAQiUTk+8LhMADA5XKl/NmaGg9sNqtxB5eEhgav6v3S8KC8feSr98Hf3g4AGHhlfdrnPPxfX0Fkxgx9DrDE6MnDaxz6+9/l7eNP/BY9Rw4k3dc/NIR9mzbh2K5dCQpa1//7HZr9w9HnfPFF1Z8/+tQTaAkXbsFD6/t5aOtWXV5v4OV16PniZ3R5rmIlH3/DRBR6r/MPvef5gd7n/EPveWEw8/vefM01qDvjjEIfhmaKqihsbGwEAPT398v3xbYnTJiQ8mf7+kaNOqykNDR40ds7pPqYaHXI28ETJxAcL3jDjOK58iePwDutAwCw638exr7f/hoAMNLdjWAGLYuEfkiShIFjx+TbgcFBBHsSv5KCfj8O79qFYwcOQBJF1eca6u1FoLsbgiBgkHnORQ98HZu+8B8AgOETJ+R9zMwwc/wzP/xxTLriau0/u38fXv7AzQCAkN+v+n4SBEEQBEEUE4MnBiAmqQMKSTLBqqiKwlmzZsHhcGDfvn3o6elBXV0d3nzzTQDAkiXF1U5p9XjkbVb5FJntmrnz4Z02fXx7HvaN3x8cG8vLMRKJ+EdGEA4G5duRUIh7PBwM4siePejau5f7XQJA02mnY/7n7sO699+AsWNHIUYiGBsagtPjwejQ+JeGxYIp116Pbd//Nvw93dF9hofh8ap/gM2Cf2RE3q5ftgI1c+dp/llHdbW8rXw/CYIgCIIgCOMpKvdRj8eDK6+8EqFQCFdccQUuueQS7NmzB4sWLcL8+fMLfXgZYXPHi0IxSVFodbvlbU9Lq7wdoKKwYAz19XG3w0wRMzYygo3//CcO79rF/R5rFy3GGU/+CWue+ANqFy5CzYKF8mPD/f0YGRiQb1dN74C9ohI18+J/z+zjZoUtCr1Tp2b0s3ZvlbwdGW8HJwiCIAiCIPJHURWFAHDvvffi5ptvRjAYxKFDh3DmmWfiBz/4QaEPK2PYgo8tICJcURgvHD2t7fJ2oMhMdUqJVEXhia4uhBgVsXrGTJz2q8dw1l/+gcZVp8r3185fFH++/n4MMe3QteMGQjVz40XhsMmLQlEU4WcWKiomTs7o522VlfJ2JByGlKV7KUEQBEEQBJEdRdU+CgAOhwOf+9zn8LnPfa7Qh5ITNqYo5NpHGaXExrSYskohtY8WjlRFIVsQTn//7Vj8wNchWBLXXWoXxovC4YEB7jlqx1XEmnkL5PvMrhQGRkdlEx138wTub1sLFpsNVpcbEX/071qMRGC1Fd1XE0EQBEEQRNFSdEphqWBVaR8VRTGuklgssDjiZjSOmhpYXdGL7Ug4zBUSRH6IhMMYGRzk7mN/D+ysoW/2XNWCEABqF8SLwpGBAa7QrF24OPrzivZRM6tnY2zr6PgMbKbYmZlJaiElCIIgCILIL1QUFgibitEM20Zqc7k5x0lBEOBppbnCQjLc358QKyGJovx7YwtEZ01t0udx1tWhon2i/POB0agzrmC1wjdrDgCgon0i7OMGLOFQyNS/b3aesHJyZvOEMdgW0jAVhQSRd8LhMI7u24f+3t5CHwpBEARRAKgoLBBqM4XJTGZikNlMYVG2jsaIFYOsUuioqUn5XDWMWhijunM2rON5m4IgcHOFZm4hzcVkJoa9klEKSQUniLxzeOdO7N2yBe+88gqn/hMEQRDlARWFBUK1fTRNUeimucKCkq4oDDHFTLqisJZxIJXvW7SYu83OFZrZbGZMZ6WQ2kcJIv+w32+jijZ5giAIovQhN4cCYfMwRjPjF8Gs4YytoiLhZ0gpLBySJGHo5En5tr26GqHxQk1VKfSlKQoXLk68T6Ee+pisv2RKoSRJ6O/tRe/hwxBFEVPmzIEzQ6OXXPEPD8vbldkqhTRTSBAFhf3+EkWxgEdCEARBFAIqCguEWk4hN1PIPB7D09omb1NRmF8Co6Oyu6i9shK1Cxaj+6V/AYgWhZIkZVQUsipgDGVRWJvCgTQwNobugwfRc/Ag97fgdLsxZc4cjf+q3FHGUVRmGEcRg2sfpaKQIPIOOxMtUVFIEARRdlBRWCDU2kcjGcwUBimrMK8Msg6hS5bC4fPJt8OhEMRIRHYItbpcaWMZHNXV8E6bjqE9uwEAFrsD1Z2zuH0qp02H1e1BZGwUQb8fgbExDPf3o/vAAfT19Kg+b8y0Jl8kxFF4EhcztEDtowRROCRJ4iJ1SCkkCIIoP2imsEBYPYk5hbxSSEYzZiLAzM3VzJsPR7VPvh0JhbgLKvaxVNTMXyhv++bOhcVu5x63WK3wMarfxn/+E9vfeCOhIGSjS9jjyAec8+jUaVk/D7WPEkThECMRTh0kpZAgCKL8oKKwQNjSuY96VGYKFZEUZs6uKzXYlXObpxKOqmr5djgU4lqvHLV1mp6z/pSlzPZy1X1YB1L27wMAGk99D1b+9Bc448k/cceST7iMwixNZgBqHyWIQhJWLCaRUkgQBFF+UPtogVBtH2UuhtWUQnulF/aqKoQGByGJIkLBIBxOp/EHS3AXSVanAxZHXNULB4PcRZUzjfNojCnX3oie9esQGhpE50c/obpP/dLl2P3LR+TbroYGTL3hZky57kZUTpwEABg5dJA7lnzCK4XZF4U2pijMd2FLEOVOSPGZI6WQIAii/KCisECkC69XmykEoi2kA+N24cGxMSoK8wR7kWRxOOU8QSAa+pyJyUwMm8eD1Y/8KuU+7Rddir6tbyNw/DjaL7oEzWecBYuN/9iy8RdFqxRS+yhBFAxSCgmCIAgqCgtE+vB6dcMOT0srBrZvAxBtIa1kDE8I4xC5otABRzXTPhoMKjIKa3V7XYvdjoX/eX/KfWwVlRBsNkjhMMRIBJFIBFarVbdjSIVuSmEFGc0QRKFQziKTUkgQBFF+0ExhgbC6+KJQkiQ+pzCJUugms5mCIHHto07YWaMZpVJY40M+EQSBUyfzpRaKogg/43ZaOWlK1s9FSiFBFA5SCgmCIAgqCguExWqFhWn9FCMR3n00ibV/BZNVGKSiMG9wSqHdzhvNJMwU6qcUaoUrCvM0V8jFUTQ1Zx1HAVBRSBCFRPmdQUohQRBE+UFFYQFROpBqaR91tzAB9pRVmDfY343F4eRzCsNh3n1U40yhnrDmNvkqCjmVcEr2raMAtY8SRCFRGs2QUkgQBFF+UFFYQKwe3oE0XXg9oIilyHNQeTkjKdxH7QqlMJSF0YyeFMJsJhQIyNvuCRNyei5WKST3UYLIL6QUEgRBEFQUFhCbm3cgTRdeDygC7EkpzBuiwn3UXlUl306cKSxAUViA9lFW0bN7q1LsmR5bJSmFBFEoaKaQIAiCoKKwgCgdSPmZwsTwegDwTGiRt4N+PwXY5wlJ4T5qsdm4bD22lbLQRaGyFcwouJZZRjnNBrZ9NGa8RBBEfiD3UYIgCIKKwgLCFoWRSIRTSJK1j1pdLjjr6qM3JAlBUgvzgqhwHwXAxVKwrZSFMJopxEwhWxTaq3MrCi1WK80VEkSBSGgfpUUZgiCIsoOKwgJic8fVwESjGfWiEFC0kJIDaV7glEK7A0DyQsjBxFXki0LMFOrZPgpQCylBFIoEoxnmXEQQBEGUB1QUFpBU7qO2JO6jAOChWIq8owyvB9SLP6vLDavLla/DkinETCHXPpqjUggA9kqKpSCIfCOJIiKKopCUQoIgiPKDisICYvUo2kc15BQCCgdSKgrzgmr7qMocXSHmCQEUJLyevZC05zhTCJBSSBCFQO37gpRCgiCI8oOKwgLCZhFS+6i5URrNAICdySqMUYh5QqDwSiHrxpotXIA9xVIQRF5QmswApBQSBEGUI1QUFhCufTQcVuQUplAKqSjMO8pICiCJUlhbmKLQybxuMbqPAtQ+ShCFQG0RiZRCgiCI8oOKwgKSTU4hALiZopDcR/ODMrweABwqSmEhguujr+uTt/OWU6ij+yjAt4+GqSgkiLygtohESiFBEET5QUVhAWHVwEg4HC88BAGW8bk1NUgpzD9qSqFdxWhGrVDMB7ZKLwSrFUBiK7JRhHV2H+XaR6koJIi8oKoUUk4hQRBE2UFFYQFhjWbYE7PN7YEgCEl/zt08AYIl+qsLBQLU6mMwkiQpIinsAACHyhxdoWYKBUHIq9mMGInI74lgs6WcgdUKtY8SRP5RKwopvJ4gCKL8oKKwgLAtouywf7oLbIvNBldTs3ybWkiNhb1AEmx2uSBXbR8tkPto9LXjBanRLaTKecJUixhaIfdRgsg/qu6jVBQSBEGUHVQUFhArE14fCgSY+9OrLhRLkT+4OIpx51FAPYbBUSClMPraPnnbaLMZrnVUh3lCgNpHCaIQqLqPUlFIEARRdlBRWEBsHnWlMFVGYQxPSzzAnopCY1GLowDUlUJngYxmlK9ttFKod0YhANgqKJKCIPINzRQSBEEQABWFBYVVBLmZQk+F2u4cZDaTPziTGWc6pbCA7aN5nCnk2kcNUArJfZQg8kMypZAcSAmCIMoLW6EPoJxhIynYi2xN7aNsLAUVhYbCxVE44q6wDlX3UZMUhUWoFFL7KEHkn2TfFZIk6TIrTBDFwtF9+zB48iSaJk6Er6Gh0IdDEHmHisICkqz4S5VRGINTCsloxlDEJO2jVrcbFrsdIquamcVoJo9KoV3FhTUbyGiGIPJPsu8KSRQBCzUTEeWBf2QEe7dsAQAcP3IETRMnYvKcObCNu40TRDlA3/gFJNnsIJtfmAw3Gc3kDb59NK4UCoKQkFVYUKWQNZrJs/uoHlAkBUHkF0mSuO8KdtGL5gqJckJ5HdV98CA2/vOfGOrrK9AREUT+oaKwgCQr/rQZzVD7aL5I1j4K8PN0No+HcyfNN848zhSyRZtu7aOkFBJEXmHzRi0OB/dZJgdSopyIqOQ9hwIBHNi2rQBHQxCFgYrCApKsTVTLTKGrvkFe1Q2HQnQRbSDJ2kcBcEphIeMogPzOFBrSPkozhQSRV9jvCUdNDbeoRUohUU6ITFHobp4gbwdGRwtxOARREKgoLCDJij8t7aOCxQL3hBb5NrWQGgenFDoVSiGzsl7worBg4fU6FYWeCmDc2IJVMAiCMAY2z9RZW8ctetHnjygnRGYhsmb+Ank7yGRIE0SpQ0VhAUnaPqpBKQQoliJfpFIKHb54UegsoMkMwJvc5LV9VKdICkEQqIWUIPIIu3jkrKmFhWmPJ6WQKCfY9lF3UzMs4wYzYiSi2lpKEKUIFYUFxGK1csYlMbS0jwI0V5gvJOaEYLEr2kfNpBT6fPJ2Po1m7F59lEKAbyGlrEKCMJYQ1z5aC4sj7rRISiFRTrDto1ZPBZz18UiKMKmFRJlARWGBUVMFtYTXA6QU5otk4fUAn1XIFmWFwO6tgmC1Aoie4Ixc6Y8YEF4PAPYKmiskiHyhnCkkpZAoV1g10ObxwFlXJ98OGrzIShBmgYrCAqPWQqpZKWylrMJ8IKZwH62cOk3e9k6dnrdjUkMQBK5INXKuMGxAeD1AZjMEkU+U7aNWOymFRHnCKoU2txuuurhSGCKlkCgTKLy+wKgVgNnMFFL7qHFI3EwhXxROuvQKDLz7DsRQEFOvvzHfh5aAo6YWgZMnAEQLN4fLZcjrGOE+ClBWIUHkE9ZoxlFby40zkFJIlBPs+cbq9sBZXy/fpqKQKBeoKCwwapmEWtxHAcDT2iZvU/uocaRqH7W6XFj0la/m+5CSwgbYG6UUSqIYX1UVBK6QyxUymiGI/JFgNENKIVGmiMr2UWam0OgZfYIwC9Q+WmBUlUIN4fUA4Gnhi0JJknQ7LiJOqvB6s8FmFYYMciBlDWDsXi8Ei35fI1z7qMEOqgRR7tBMIUFE4Yxm3G64mJlCUgqJcoGKwgJjy2Gm0F5dLZvSiJGI4TEE5UqqSAqzkY8A+4hBzqMAtY8SRD4JJURSkFJIlCcJRjP1NFNIlB9UFBYY9ZlCbUqhIAhw01yh4RRtUWiUUsg5j/p0fW62fZQiKQjCWMKKSAorKYVEmcIrhR642JlCah8lygQqCguM+kyhNqUQoFiKfMC3j5q7KHQyWYlGKYVhA4LrY5D7KEHkD3aBJzpTGP9+I6WQKCciCvdRUgqJcoSMZgqMmqmM1plCQBFLQUWhIYgp3EfNBms0Y9TqJpdRqGMcBUBGMwSRLyRJiheFggC7z8e1j5JSSJQTIus+6vFw5zZSColygZTCAqMWP6HVfRRQxFJQVqEhSCncR82GjQl/Z9th9MSoOAoAsNFMIUHkBbaTwO6tgsVq5Ra9SCkkygk+p5APrw8FAmTkR5QFVBQWmFxyCgFqH80HqcLrzYY1D0YREYOC64Gom6n8OlQUEoRhsO7Eztpo2zkphUS5ojSasXkq5AV6SRTpfESUBVQUFpgEUxlB4AKE00FZhcYjMScLsxvNsDNBRl3U8UYz+haFrHENKd8EYRycycx4UWglpZAoU5RGMwB4sxmaKyTKACoKC4xVMT9odbkhCILmnyel0HiKyX2UbW816qKOzynUt33UO61D3h4bHqaWHYIwCGVwPQAuvJ6UQqJckCSJUwpjHVwUYE+UG1QUFhhlq2gmJjMAbzQTpAB7Qyim9tF8KIVc+6jOSqGrvh6O8QtUMRKhhQ6CMIiQIo4CANelQkohUS5IkgSMXzsJNpvsMk5KIVFuUFFYYJSmMpnEUQCAzVMBh88HIPrFRl9c+iMVk1LIWsobtEAQNtB9FACqOmbI22PDw7o/P0EQyZRC478/CMJscK2jLpe87ayjrEKivKCisMDkqhQC4ALsM1FWJEnC4IkTGOrvpwuAFHDtoxnMexYCSx6MZox0HwWAqhkz5e3RoSHdn58gCMXiTqwodBjfaUAQZoM1kWGvwZykFBJlBuUUFpiEmcIM4ihieFpaMfDuOwCiLaSoqdH0c0f37cO+rVsBADaHA76GBtQ0NsLX0AAHs1pW7hRTeH1e2kfZmUJDlMJ4UThGRSFBGALfPuoDwBeF1D5KlAvKOIoYrjoKsCfKCyoKC4zSfTQbpZAzm8nAsbG/t1feDgeDOH7kCI4fOQIAqKiuRk1jI2oaG+GtqYFgKV9RuZjC6/OtFOrtPgrw7aOj1D5KEIag1j5qJaWQKEM4k5lkSiG1jxJlABWFBUY5Q5hJRmEMLpZidFTzz4VTfMmNDAxgZGAAh3ftgtVuR2NbG6bMnZuRM2qpwM8U2lPsWXhYI5y8GM3o7D4KKGYKh4YgSVJZ/t0RhJGoGs2QUkiUIZxS6KmQt7mZQlIKiTKgfOUfk6AsCrNtH42RiVLIKj4rHnoY8+79IhqWr4RgtXL7RUIhHN23DyePHs342EqBonIfNfiiTpIkw2cKPa1tsFVUAoj+jdLJmCD0hyIpCCKKqBJHAQCuemofJcoLKgoLjLJ9NFP3UQDwtMSVwmAGRjPsxX3jytWYfcddWPuHZ3Hpu3uw6uFHMfX698HV2CTvM3DyZMbHVgoUVU6hwRd1EUXAL/t6eiEIArzT+bxCgiD0hTeaic6hWyi8nihDNBnNUPsoUQZQUVhglDOEWc0UtmbuPpqg+FT75G1HVTXaL7wYS7/1PSz91vfk+4fKtCiUmELI9O6jBlvKc62jVV7dnz8GN1dIZjMEoSuSJHEXuc5ach8lypdkSqGyfZRc2olSh4rCAqNH+6i7eYK8HfT7Na3wipGIvJ/F4Ug6y1i3eKm8PTIwwH15iqJYFhcOInMiMH/7qLFGM7zJjE/3549RzcRSpFIKg34/dm7ciM0vvICBEycMOx6CKCWU3/+x846VZgqJMiSSxH3U6nDAzpippfJhIIhSgIrCAmN15W40Y3U64WpolG8HNcwVchf3Pl/S/Zy1tfBOmw4guro83N8PIOpc+tqzz2LjP/9Z8m0VxRpeb0j7KKcu6+88GoONpUimFJ44ehSbXngBvYcPY2RwEId37jTseAiilAhzJjM1spFTPiJtjCIUDGLnhg3Y8/bb3OIlQaRDTOI+ClCAPVFeUFFYYCw2G1doZDNTCGQeYM9dFPhS5xrWLYmrhUN9fQCAgzt2QBRFBEZH0dfdnenhFhXsCcP0RaFipV/vdhduMcEA59EYnAOpQimMhMPYvXkztr/xBvd3rGUxhCAIIMR8jp21dfK2xVm8SuGR3bvRe+QIju3fjxPHjhX6cIgigs8p5K/BXORASpQRVBSaALYQVBrPaMWTaVHIKYWZFYWBsTFuvrCUvyi5CyOLBRabuVNcBIsFAnOMeheF7N+Wq6lZ1+dmqZg0WS5wg36//Pc61NeHzS++iO6DBxN+JkLqAEFoQs15FChupZA9J2USzUQQkSSRFADgZB1ISSkkShwqCk0A+yWkbF3QCpdVmHFR6Eu5b/0p8aJw8ORJHO/q4h4v5S9KPo7C3CphDM5sRucLu7GREXnbO2Wqrs/NYrHZ4J06Tb49OjiIgzt24O116+BnjqF5zZnyNusgRxBEctQyCoHoKEKMYlIKJUnCyOCgfJvaR4lMEJlzh7Jby1VPSiFRPlBRaAJ4pTC79lHWgTTzmcLUSmHVzFmwVUadJkOBAI7u25f0uUqNYoqjiGGk2YyfaeWsnDItxZ65w84VbnvjDRzasQMYVz5tHg+W/+AnWP3Ir+R9qCgkCG0oZwpjFGtOoX90lPv803cBkQmRJO6jgEIppKKQKHGoKDQBbCGYjfsokEX7KHtRkMZF0mK1om7R4vjzK1pzStmRizeZMbfzaAwjW8A4pXCqcUohwM8Vsn9jdUuW4rwXXsHkK6+B1e2GYIl+jUll4oZLELnCLuRx7aNFmlM4MjDA3aZWciITxFTtozRTSJQRVBSaAF2UQgNnCgF+rlAJtY+aC6OUQlEU4WcWBConG1wUMrEUACBYrZh37xex9pn/Q0X7xOh9ggBbZaW8DykEBJEern20li0Ki1MpVBaF1D5KZEJKoxkKsCfKCCoKTUDtwiUAoq071bPnZPUcbFEYzNh9NH20QN0pyYvCUm4f5ZRCkwfXx2CzFPW8sAuMjsrtm+7mCbBlOf+qlYaVq2XlvHLSZJz1l39g9h13wWK1cvtRUUgQmaHFaKaolUL6HiAyIJIqkoJpHw2SUkiUOOa2UiwT5n32XlRN74Bv7jy4G5uyeg5XUzMEqxVSJIJQMIhIJAKr4uKZJWOlcHGKorCEV8+KcqaQvbDT0X2Uax0dz640EndjE875+wsY3LEdzWecmbQItXmoKCSITEg6U+jgvzskSZIzDM3MMCmFRA6IScLrAchdKUDU8KxYPhMEkQ2kFJoAu7cK02++FfUpWjTTYbFa4WYiAtKphVxRmGamEACcNTXwTuuQbzee+p74c5VJUWgtlplCg1rAWNfPSgOdR1mqpneg7YKLUqqSdkYpFKkoJIi0hJLMFAqCwJnNFINaGPT7E2a9aHGIyIRICvfRivaJcvxSJBzmXG4JotSgorCEyCSWgi0K7WkiKWI0nRYvBKe/7/3yqrIoiiU72C+xwfXOIlQKdbyoY0Pk2biIQkPtowSRGeEkkRQAbzZTDHOFahfppXo+IoyBN5rhFyAFQUDD8pXy7cETJ/J2XASRb6goLCGctXXydrqLY26mREP7KADMufs/MPXGmzHvni+g7cJLuIuJYlMLJUnC0MmTGOrrS7lfUSqFBq30+7mMQvMUhfYKKgoJIhOSzRQCxkbaGIFynhCgjgEiM0QukiKxK6Vh+Qp5e/DkybwcE0EUApopLCFYI5R0K7ycUqihfRQAXPUNWPrf35VvO3w++LuPRZ8vGIQzS+fUQtDX04Ntr70GAJizciV8DQ2q+7EzeUUTSeEwJpJirADto1qwVcQtxEkhIIjUSJIU//4XhIROkaJTClWKQvoeIDIhkkIpBIB6hVJIc4VEqUJKYQlhZYvCFCdF7qIA0eIuG9gV5mKzau7r7pa3j3d1Jd1PLMb2UYf+7aNiJBLPpxQEVE6arMvz6gG1jxKEdliV0O6tSnDzLbaZQqXJDEDfA0RmiCnC6wGgunM27F4vgGhWIds1QxClBBWFJYRWpTDCFIS2igpYbNkJxlz7aJHFUgSYvL3h/v6k+3GRFPbiKwr1Wuln8wk9ra2wuly6PK8e2KkoJAjNcCYztbUJj1sz6DgpNJFwWL5AFyzxyxkxEtHVeZkoXSRJ4otCV2JRaLFaUb90uXybWkiJUoWKwhKCPZmnWuHNNI4iGayVebHNFLJFzujgYFJltSjD6w2IpODiKKYaH0eRCTaaKSQIzYSTBNfHKCalkDWZ8U7v4BdGqYWU0ADfDeRMUM5jcC2kVBQSJQoVhSWE1vbRkE5FoZMpCoupfVSSJK4olCQJI0NDqvuKRRhez17U6aYUmtR5FKCikCAyIZ3JWDHNFLLzhDXzFsDmofliIjM451EVlTAGOZAS5QAVhSWExRlv6UvZPpokuDhTirV9NOj3J6yAjyRpIZWKMbzegJlC3mTGZEUhtY8ShGZCKeIogOJyHx1lFvN8s+dwJiHkQEpogV08sKbIw61duFheGPaPjCDo9xt+bASRb6goLCGsGouBUIbB9clgVcZiah9lVcIYyeYKiz2SQjelkGsfNY/zKEAzhQSRCakyCgG+/dzsSiG7GOlqaua7BkgpJDSQKqOQxep0onbBIvk2tZASpQgVhSWEhTH/SNU+qtdMYbG6jwZUnMPUHOwAhVJYJO6jWmdLM4ELrjebUkiRFAShGfb7X5lRCPCLX2Y3a+EKXJ+PlEIiYyJpMgpZqIWUKHWoKCwhtLrGRbiisDrr1+OMZoqofVRNKUxmNiMWo/uoXd/20Ug4LLfKCBYrKiZOyvk59YRmCglCO1z7aK3aTCHTaWDyRZYw83l3VFXTAhGRMVqVQoAvCo/u24cju3ebfuGEIDKhqIrCJ554AjNnzkz478CBA4U+NFOg1SCAuyjIoX2UtTMv9vZRSZI4Jzv5/qJ0H9W3fZSLo2hr457fDNgrvfI2FYUEkRrOaEZ1prA4lUJ7VTV3UU/fBYQWWEXZlkYpbDz1PajqmCnf3v/uu9i1aRMtQBAlQ3YBdQVi27ZtAIAlS5bAxwSue9Ks7pQLWt1HdYukKNaZQqZ91NXYBH9PNMh+uL8fXoXxjtKuuhjQ22jGb+I4CkDRPkoXggSRkkyMZsyuFPJdLz7uu8Dsx06YA61GM0D0GuuMJ/+I9be9D8ffeA0A0Hv4MMaGh9G5dCmcKsH3BFFMFGVR+PWvfx3t7e0FPhrzwQaKp8wpVMxhZAt7QREKhSBJEgRByPr58gWrfLVdcBF2/8/PAajPFXLto2VqNMOeNB01vpyfT29Y91GaIyKI1JSKUihJErfAaa+qhtVDC0REZnDtoxqKOldDI9b8/hls/Nxnsfe3vwIQXVB+66WX0Ll0KapUsj8JolgomvZRURSxY8cOWCwWPP7447jzzjvx6KOPIlhECpXRsApRqmJAL6XQ6nDE57kkqShOwpFwGKFAAAAgWK1oe++F8mNqDqRF2T6qs1LInjStKXKcCgW5jxKEdrjvf5VIIm5RycRqmxiJyEWrxeGAze2mnEIiYzIxmpH3czpxyje/i8Vf/QaE8bD7UCCArS+/jO6DBw05ToLIB0WjFO7btw+j4wrPww8/DAB49tln8fLLL+OnP/1pIQ/NNFidmbuP2nOYKQSiSmN4JOpMGQ4GYTPZvJmSwNiYvO1paUXtwrjF9OjQECKRCKzjX/JAkYbX67zSzxXGJnwPrG4PIAiAJEEURUiiCMFSNOtdBJE3JEni2kedKqoG515sYqVQqRICIPdRImMyMZphEQQBHe//AKpnzsL6229GsO8kJFHE7s2bMTIwgMlz5sBC5yGiyDBNUfjUU0/h3nvvTfr4M888g9NPPx21tbW488470dfXh1tuuQUvvPACXnjhBaxZsybl89fUeGCzWVPuYwQNDd70O+lEqCm+6qtVKZwwrQ1VORxjRWMDRo8cjr5+MAgXM9NhRtj5uJoZHWiZ2grfzJno37EDkCSMDgzAy1wosQWRr746r7/PbOmujR+j3u2jlTVVpnwP7JWVCI0HWUciEdjoZEwQCYiRiPydZnU40DyxKaHlv6KqOOby2HlCT10tGhq8qG6InwNJKSS0wC4eeOsyP8c3XPJetC94HX+5/HKcePttAFFn0tGhIcw85RTYi6TDiDCGygqnKa+ZkmGaotDpdHLmMUqqq6vxs5/9TL7d1NSE888/H7/5zW+wadOmtEVhX1+i46TRNDR40ds7lLfXGxyLnwS1zhQORWwI5HCMFm880qIYYinYeULHhDb09g6hes78aFGI6FwhWxSyRdXIWCSvv89sGQnEj1mP9lGJubgKihZTvge2CqYoDIdNr1gTRCHg1LWaGhw/PpywTyASLxKLRSm0VFaht3cIAcQ/99RKTmiBXTwIwpbd+a2iDqc/9Re89dlPYs9TTwEABo4fx5633kLn0qV6HSpRhAyPBAATXjMlK1RNUxRecMEFuOCCC5I+Pjg4iO3bt6OyshJtbW0AAMf4CkyoCIqRfKDFfVQURfkxwWqF3VuV02sWmwMpWxRWjuft1cxfiANP/R5A4lxhMYbX6200wz4Ha2ZkJiirkCDSw7WO1tSp7qN1Nr3QcLOR1Srto6QUEhoQs5gpVMNeUYnzHn8c//rs5/Dud/4bAFRjrgjCzBRNj9VTTz2FSy65BJ///OejcxGhENavXw8AWLhwYWEPziRwM4VJTuZcrpO3Kme3UNaoIFQERWGAKQorJk0GANQuWCjfpywKi9F91Gqg0YzFrEUhmc0QRFrCaeYJAX5RSY/vD6PgZ+PHi0IKrycyJJKh+2gqBEHA9Pe9P/7cdC4iioyiKQovvvhiNDQ04NVXX8XFF1+Miy66CDt37sTcuXNx1llnFfrwTIGWFd50znOZwlqaF0X7KDNTWDlxMgDAN29+1KgE42YzzBe5WIzuo3Z9V/p591FzFoV2yiokiLSE02QUAoCVWfwqHqXQB4CMZojMETPIKdQCLVASxUzRFIW1tbV49NFHsWbNGhw7dgzHjx/HxRdfjIcffpgcnsbhcgqTrJLqFUchPwdbFJpcKZQkiWsfjSmF9opKVE2fId/PtnxIRek+qrNSyLmPmrMopBMxQfCMDA7i3VdfxYHt2+X7+OB69e9/NrxeEkVIkoSBEye4BTUzoOo+yraRk1JYNpw8dgyHduyQ46Yygc8p1KEo9PBGTWaeyyUIJaaZKdTCtGnTKH4iBWzRokkpzDGOAuALS7O3j4aCQfkEYK/0wsEYG9UsWIjBXeNmM/39cgAt3z5aJEohWxTqcEIqBqWQZgoJgufwrl3o6+lBX08Papua4K2p4b7/1YLrAb5NXhRFdO3di/3vvAOL1YpFZ5wBlw5qih5EuAVOHwBe6THb90AoGIQkSXAUyeJiseAfGcG2118HAAT9fkxbsCCjn2f/TjKJpEiGYLHAVulFeJiMz4jigyS2EkJL2w/fPuTL+TWdtcVjNBNgVrorJk3i5ilrF8TzCtm5Qi6jz14kRaGRRjNmVQqpfZQgOIJ+v7w9Nhx1GeWUwmQzhYpOg77ubgDRxaGTx44ZcahZoaYU2j3mjNMYHhjAm889hzefew69R44U+nBKCrazZzgLYxfeaCa3mcIYdupcIYoUKgpLCFYpjLX9KNFdKSyimULOeXTSFO6xmvnx1cXhgQF5uzjD640zmjGrUmivjNsr00mYIPjPbaxA5Ixmks4U8jPJgbEx+fZQX5/eh5k1aucysyqFfd3dckbkro0b0dfTU+hDKhnYv4NsFqb1ch9loc4VolihorCEEAQhbQup3jOFziKKpODnCSdxj9XMnQdhfDZ1jDGb4Zw3i6V9VG+jmWKIpKikWSKCYGEXhILjs1ZhLTOFdn5RiVUch01bFJp7ppA9j0iShO1vvGGqAruYYf8OIlksTHPuozq1RtOMO1GsUFFYYqSLI+AuCnRWCs0+U8he3Hha2rjHbJ4KeDsYs5lxtZBrHy2SSAq9LeWLQimklVmC4GAXc2LffSEtM4VMHmsoEOA+//7R0azMPIwgwkVS+ACY131U2coqRiJ497XXMDre1ktkD6cUhkIZz9GLOkZSxKD2UaJYoaKwxLCwWYUqK6V6R1LYq6vlOIdIOGzqXCv2YsbV0JDwuNpcId8+WhxKoVXRRpwrnFpq0hZamikkCB72uyuk0j6aLJKCVQrVHEeHFFmuhUJNKbQ4HBCsVgBRRc4skRqqXTvBIN599VVZxSWyg10ckCQp41nSiBHto1QUEkUKFYUlhjWD9tHYcH4uWKxW+YSsfH6zwReFjQmPq4XYc5EURagU6t0+anPps5KqN3QSJgiebGcK2TZ5te4Ps7Q9qs0UCoLALRCZRS1kv0On3nCzXHwERkex7bXX6DsrB5RjK5leg4g6u48C1LlCFC9UFJYYbHufWkHAXiiwLQ65UCwtpOyKrLOuPuHxmvkL5e3hgQFIksS1oliKxFbaSKMZsyqF7N+yWS4ECaKQKGcKJUniFwWr1RcF081Om2GuUJIkPkrAGzeaYnPizDJXyH6HNqxYiZU/+bk8wz7c34+dGzdSnl2WKIvATIpCkTXkU3gy5AItUhLFChWFJQZXEKicELkTKbOimgvF4kCaTin0zZ4rtx6NDQ9zK5AWu52LsDAzxhrNmFQppJVZguBgP7diJMIZbdmrqmCxqccUW9JE7wz19RW8gOGKW68XlvHvbcCcreSSwqyr9Zz3YtED/yXfd/LYMfQePlyIQyt6cioKFcH1ep3jaaaQKFaoKCwx2Bw5tYLAiKLQWWN+B1IxEpH/7YLVxgXXx7B5PKia2SnfZtukiqV1FAAsDsZoRvfwenO+D1QUEgSP8vt/lMlwSzZPCADWNLPTkXBYzj0sFKnGINi5MNMohVzWa/Q7tOP9H8DUG2+W7zdLW26xkVAUZnANYkRGIQDYKigiiShOqCgsMbiZQjWlkLNf1kkpZFxMzVoU8q2jdXLrjpJapoV08ORJebtY4igAfZVC5eC+WZVCWpkliDiSKAKKBaHRoSF525kkuB5IrhSy54tCt5BGUkQr2c04U8hFG8XP0Y2rTpW3zeLqWmzkMlMYMcB5FKD2UaJ4oaKwxEiXU8grhfrMFLIrs2Zxe1PCtY42NiXdr4YxmxliikKrSWfp1BBsNtkRFoq5yExhf1awWpO2nBWadCfhYwcOYOfGjdyFMUGUKmrfwyOMUpjMZAZIvgA24axz5O1CO5CqOY/G4ALsTawUAoCrPu6CbeZ5fLOinJMFMmwfZc4VVp06pwBapCSKFyoKS4xU7qOSJPFOWzp9CbIthUVRFKrEUcRQi6UAikspFARBN7MZTiV0mjOjEFDMESkuBP0jI9jz1lvoPXwY+995J9+HRhB5R+17WGv7aLLvuvYLL5a3C93qGFbJKIzBLnaaUilkzOCc9XHDM1IKM0eMRBIWPTNSCtnrIZ3iKABSConixZzL/kTWsDmFSqMZiXHaEmw23dSvdC2rZiCYxmQmhm/WHAg2G6RwmM8oLKKiEIi2gInj/2ZRFDkjhkzgcxrNq5ayrW2xC4WYaQCrDrJqCUGUKmoLQWNM5mDKmUKV+Wmr242m95wh3x4dHMS+d95BJBRCVV0dGtvbczzizEilFNpMqBRKWpRCKgozRq0AjGRQFLKzsRXtE3U5JoAiKYjihZTCEsPqSD5PxvXP69gqYUljbmMGtCqFVpcL1Z2zEu83cUGkBhufoZtS6DavUihYLEnNZgJjY/J20O837d8oQeiF6uIco6ikbh9NjN7xTGiFo7oa3ukzxp9KQteePeg+eBC7Nm3CwPHjuR90BqRWCs3nPpqs48JRUyu3+odDIfpuyhC1ojATpZBdJKyeNUeXYwJIKSSKFyoKSwxLipxCI5xHAb4Q1SMXzwi4orA+uVIIALXzFyXcV0zuowCvbOZyocHPwpi3KASSn4jZohAAgorbBFFqpPvMO2prkj6m9l3naW0FALQwc4Usx7u6Mji63OGMZqqSK4Vm6VxJNlNosdngrK2Tb5vVqM2s5FoUsl0kvlmzdTkmgIpConih9tESI1UrJztfYdfJZAZQFKImOQkrYYtCdo5DjZr5C4Df8vdZi6591Ail0JzOozGSKQTKItA/NgaXjosiBGE20n3mUymFgtUaVa8YZdHdEi0K59z9WbgaGhA4cRyRQAC7HvkZAKCvu5tr2TYarn3UpywKzXdBnqoN31lfj8CJqNIaCgTgcJl78c1MqBXRWgtrSZIUSqF+RaG9kiIpiOKEisISg13lVV4YGOE8CqQ2tzELWmcKAd5sJoaZ5+nU4H4nubiPFonRDJB8jiPg93P7BZkQb4IoRdIqhamKQkGA1elEhPnceCa0AIhe7HZ+9I7oa4RC2P/73yE0OIjA2BhGh4ZQUVWlw9GnJ1VOoRlnCvn2Uf5c4qpvwOCO7QBorjBTclEKQ4GAXEDaPB5dZwoLlZsrRiIYGRpCZXV13hZoiNKC2kdLjFQFmlEzhdYSmikEoiuGrNIGFKPRjD5KYYRtezL5Cnaylh01pZAgSpl038OplEIACd9/7vGiULlP85oz5dt93d0ZHGFu8Eqhj3uMjaQwi/uoxCmF/Pco27kSpPbRjMilKORUws7ZSbOLs8Huzb9SKEkS3l63Dm+/9BJ2v/VWXl6TKD2oKCwxuAJNsUrKKYWVOraPFoH7aCgDpdDqdKK6k28lUXPkMzNsAHUuRWExKYVqsRSSJCUohcoZQ4IoNZTO00ocNclnCoHEAPvYTKESdsbwZIGKwgSlMEU8TSFgXb8hCAkFNzmQZk8uRSEb0VI9Wz+TGSB6DRH7PUuSlJfrotGhIYwMDAAAThw9avjrEaUJFYUlhsWZwn2ULQo9eiqFyVtWzYAoivEThcUCBzPYnww2xB5Qd+QzM7oZzbBFocmVQrXA4FAgkPA3GaD2UaLESasU1qZRChUtjh4VpRAAJqw9W3bPHDp5Mm8B7JzRjNJ9VBFPU2iUJjPKtj5nHRWF2aI2PyiJoqbFAFYp1NNkJka+zWZY05xIKGTKazHC/FBRWGKwak7CTKFh7aPmVgo5k5maGk2ZfbXzF3K3i859VC+jGa591Nzvga0isWUnqFAJAVIKidInVVFocThgTRPUrVSzPC1tqvs56+pQt+QU+XZfT4+m4wuHQjiwbRuO7tuXED6u6eeZYiAhp9BkkRTpsl5dbIA9tY9mRDJVUItayBZR1Z36KoVA/ucK2X8PkJkLK0HEoKKwxNDqPqqn0YzZcwr51tEmTT9TozCbKbqZQkOUQpO7jzIrs7G/dbUCMDA2ltWFKEEUC6k+8w5fTVoTCnYRzOpyw64ovFhazjpX3tY6V3h41y4c3rULe7dsweCJE5p+JoYkSQizTtoJSqG5jGa4hTWVxUUntY9mTbKg+nQB9pIo8kWhAUqhWueKkbDtsAAtMBDZQUVhiWFJZTTDRVIYpBSavShsTD1PGKO6cxZXWBVdeL1O2ZHpVrnNhF1FIVArCiVRpIsvoqRJNVPo1NA+z7bLu1taUhaRLWczRWFPj6bvGzbsfkRxMZsOMRKRX8Nitye0tbNKoRmMZqQUzqOAQimk76WMYNUw1igmXSzF2MiI/DfkbmqCM82MbTYUsn0UoMzLTIjFk5ix0y3fUFFYYqR0HzUovN7sRjNcHEV9aufRGFaHA9Wz4i0lRacU6mQ0U6xKodw+mqRVlFpIiVKG/e5XdoWkmycEeEWrolW9dTRG9aw5cLdEZw4joRAG+/pS7i+JIqdqZFoIKVVCZcHKzhSaTSm0qMxlc0ohXchnBFsUxrI0lferwZvMzNX/wADYVcYZjEKMROAfGeHuC1H7qGZ2b96MzS+8gC3r15d9FxEVhSVGSvdRbqbQmJxCMw4388H12opCAKhlzGaKzn2UWenPJadQaZJgZtRmOJTOozGoKCRKGfZzWzFpEvdYqozCGOxMoVocBYsgCHwL6bFjKfcfGxnhji+YYVEYSTFPCJhwpjCNWRcphdnDqmGVkybH709TEHEmMzo7j8bIp1I4OjyccB8phdoYHhhAz6FD0e3+flUfgnKCisISI1XboFFKodlzCjPJKGSZdMXV0Q1BQNPpZ+h9WIbCKYU5rJYXlVKoYkXPKoVVMzrlbXIgJUoZ9ru/sl1ZFKZvlWO7P5I5j7KwLaQn05jNxGzzY2SsFHIZhYn/Fnam0AydK/zCWmJRaKv0yu+3GImYopAtBiRJ4v4WKjIoCnmTGf3nCYE8F4WK1lGAikKtHN61i7tthu+MQmIr9AEQ+sKuRCoLNDEPSqEZP1CZZBSyNCxbgfNf3gCIIrzTphtxaIbBGc3kohRyRaG5lUK1wX5WEaxfuhyDO7cn3E8QpQb7ufW0T+QeSxdcDyiUQqYtLxmNq06D1eVCxO/H2NAQ/CMjcCVZeNSzKLRXVSU8bnW5ozEZ4/lwkiSlNdYxknTdFoIgwFVXj9GuIwCi74fVRpdm6Yj9boHo+c7dGDeRM4NSmE+jmTGVopBakdMzNjyME11d3H1m7HbLJ6QUlhip5vvyMlNowg9UNjOFMbxTphZdQQgYFUlh7pxCWyUzwxEKQZIkrhWkfukyeZuKQqKUYT+3rvp6TuV3aJgprGhrl7e1ZLjZPB40nvoe+XaqIPthXZVCX8LjgsUCm9s8DqRsp0ayaCOaK8wc7u+guppzyE1VFIbDYblTRLBa4Z0+w5Djy2ckhZpZE0VSpOfw7t0J95nxGjaf0HJUicHOvuWvfbR4lEJnBkphMcP+HegWSaHS+mQm2Da3kcFBLnrC4auBd3qH/DgVhUQpo2xZdDc3Y3j/PgDalMJZn7gT4dFRVM2YifqlyzW9ZstZ5+LoP/4OIBpN0TJ1asI+MZc/lmAgkJGaxyuF6lEZVo8H4dGo8YYYDgMFVN60zGXTXGHmKNuIHUw0SarWSdZkxjttOqwGmcgVWimk9tHUBMbG0Ds+S8hixmvYfEJFYYlRGPfReLFgRuk925nCYoY1mikXpbByylRUtE/EyKGDiITDOH7kiPyYp7WVc1GkmUKilGE/8xanA+6meFGoZaawon0iVvzwpxm95oQzz5a3B06cQCQcTmiDDPr9CRerkigiEg7DZrcjEg7j2IEDCIyOQrBYYLFaYbFYov+Nb7O5hg5FRmEMW0UFAsd7ARTebIa9yLQkacGnrMLMSVUUpvqds0Whb44xzqNA/mYKI+Ew/CrnM1KcU3Nkzx5Vp1FSComSgrW8TuU+atczvN5ul2c4pPH/CjnDwSJJEvflmGn7aLHCGs2Ui1IoCAImnHk2dv/yEQBA94ED8mOe1ja4GptgcTggBoMIh0KqF60EUQooP7ftl1yG3tdegcPnQ+PK1Ya8ZkVbO6pnz8HAu+9AEkX09/aibsIEbp9kmYShQAA2ux1H9+3DgW3bNL+mmvsoYC6zmXRGM4BCKaSLeU2wiwsOn49rJU6lkrF/g0aZzACALU+RFKzzqGC1yu3KpBQmJxIOo+fgQfm2vaoKofG/i3IvCmmmsMRgWyESjGY4pVC/olAQBNO2kLKrro5qHzdrV8oYk1No7qIQ4NUKdvXUPaEFgsUCD2OaQS2kRKnCZeM5HOh4/wdw3guv4MLX34Ldm2jOohdcNIXKXKHSZCZGbO578OTJjF6vaman6v1miqXgC/QkSiEz1pBpREe5wrURV/s0zxSyTp1GmcwAivZRA6+Jxpgit2b+QnmbFheSc+LoUfl7oXLyFDSuPFV+LBe39lKAlslLDEuKeAij2kejr+tEZNzUQxRFWHV99uzh5wnLQyUEjGkfVQteNhuNq06DxemEqLiwihWDntY2uY0uMDoKj9eb8BwEUexIKnNs1UkKKD1pOescbPv+twFEzWaUXSNcUTjeXQLEv6fZtu4ZH/woHNU+RAJ+RPx+RAJ+iIHA+O0A6pcuw4S18UUgFjMF2POtvEmUwjqaKcwU3mjGx88UJikKJUnig+uNVArz1D7KFrkNK1bi5KYNAKLvgZm6tsxEDzNLOOXaGzCw/V35drkrhVQUlhhckDxzMhRFUe6fFmw2LrJAn9d1IYQB+bXMQrZxFMUO1z6qWySF+YtCm8eDxlWn4ti/nuful4tCxlWRlEKiVOEWc5KoU0ZQu/gUOGpqEew7iVAggJGBAVQybX1sUVgzfyH63toEIPo9LUkSp+7PvuMuOOvqsjoOtigUC60UcgW6+nmXZgozR+lCy7WPJikKg36//Ji90gsPM2euN/kymmGLwtqFi+VoGEkUIUYiNCKhIDA2hoHjx6M3BAGTr7wGW77xVflxM12/FgJqHy0xlPEQsUKQUwk9Ht1Xj5IVo4UmWK5FoVOn9lEN8zBmY8KZ5yTc52mJnvw5sxkqCokShVvMSRKDYAQWq5Vr4WajKcKhkFz0CVYrmk49TX4sFAggHArJx211uTVFZySDnSkstFKoZS7bRZEUGcPNFFb7YKuohGCN9iiJkYjqxT2nEs6eY6iKxo7oGBkPwRaF1TNnwcG4C9PfUiK9hw/L242rT4OntS2lQWO5QUVhiWGxWiEwK0OqRaHOraNA6rbVQsKZzJRT+6gRRjNFoBQCwIS1ZyXc52mJxlWwSqGaYxtBlAJcy2Iei0Ig2kIag50rZA0+qjpmcvO9wUCAW6TxtLXldMHOnuNOHD1a0MJQi2rrpEiKjFHOFAqCwEWUqBmtcCYzGvI3c8HuNd5opr+nR/7cCDYbvFOnce7CZDbDI0kS3zp6zfUAFA76JhI1CgEVhSUIuxoZu6hnW2jslfrPUbFtMaYqCtmZwrryLAr1Uwrze3GZLd4pU+GdNp27zz2eYci2C40ODalaUhNEscNHyeT3c9u85kxZsRnu70dwfNacbx1dwHVuhAIBbp6wcuKknI6hakZ8fvLksWPYun49AuPHkW+0dFs463j3UfpeSk+Eax+tHv+/T75PTZ3j4igMLgqNnikcOHEC2954Q77duGIVLHY7l0NKSiHPcH8/xsbdWq1uN9rOvzC6bdLr10JARWEJws4LxgoCdqVUT+dR+TVVClEzwJ4YnDm0IxUbVsZoRjel0O3O6ZjyCWtA4ayrkwta3+y5sgPt6OCgqkMiQRQ7YgGVQkd1NRqWr5Rv9/X0AACXL+ibMy9hjo4tCllFPxum33Ibpt54s3x7uL8fb7/0UkGUE77bQv13YXU44u6ZkmRou2GpoDSaYf+vfDzGCNtqOcs451GAv84SIxFdC/2hkyfx7quvyn9b7sYmLP32DwCAax8lpZCHjaFov/gyefbYatJOt0JARWEJwrb5xf7AjW4f5WYKTfSh4uYONIQ2lwqGRFIUiVII8NEUlZOmyNuu+npMe9/75dsHtm2jVXmi5ODcR3U2FdPCBEULqX9kBCeOHpXva3rP6QlKoZ9pH63IsSi02Gw45RvfweIHvy6rlkG/H91M61i+0OI+CijmCqmFNC1KoxmALwojiqJQFEWMsUVh5yxDj89itcLq1n+2VRRFbN+wQT43O+vqcMYfnkVF+8TobbZ9tMCLC8e7urD15ZdxvKuroMcBRK9lepnjmHL19fK2xaSRaoWAisISRC0z0Pii0JwrLfyJo4yKQiOMZlzFoxQ2nXY6Jl15DTytbZh956e5x2Z/8m55hXB0aIgbPCeIUoC9sClElAyXV9jTg8O7d8u32888E77O2VxRGFQohbEL3FwQBAEdt34Qcz/7Ofm+MSboO19obcF3UixFRiiNZgDA7kueVTg2PCwvAHpaWuFg5g+NwggH0rHhYQTHF1Bsngqc8eSf4Z0yVX7cLEYzkiRh91tvYeD4cezevLng14Unu7vlhQJPaxsaVsS7GVgzrkIfZ6GhorAEsaj8gRtvNMP0ZJtopYU7cZRTUaiD0YwkinKOGCwWzsDI7AgWC1b84Ce46M0t3AUqEHWhnfGhj8q3D+7YUfYnAqK0EAusFHqnd6ByclShFyMRdB84ID+26NPRRRp7VZU86iBGIlzBlmv7KEvN3PnydkGKQo1OsORAqh1J0WJr19A+yjuPzjX0+GIYMVcYZBT12kWLE/JHnSZpHw0Fg3IRFgmH4S/AZ49FmU0oWOLlj8Vlzk63QkBFYQmiZq9r9EyhWZXCEDtTWK7to1m2R0YUBgmlFII788Mfk1dUA6Oj3EUrQRQ7hXQfBaIqnVo0TPXMWWg/6yx5H9Z1ky3Ycm0fZfFOnab6GvmCm+9MYfpDDqTaYWf0LA4HbOPz7qmKwpE8mszEYK+19CoKWcMk1sE3BhvlUsjFBeXfMPv+55ug3y/PNgPA5Kuu5R7nlEITiRqFgIrCEoRb9VBxHzWmKDTnh4pXCn2FO5A8Y0ljNNNz+DAO7dyJcIoTlVSk84RacFRVY/Ydd8m3D+3caWjAMEHkk0K6j8ZoOfvchPs6P/5JbnHJVZ+YHWux2+FqbNLtODxt7bK5VCgQSPmdZwRacgoBXikMUlGYEt5kJt4Gaq9OHknB5vn5ZhtrMiMfjwFKIRfdolIUsoZ6BVUKTVQU9h4+LHc91S9djspJk7nHlfne5QwVhSWIWn80+4VkN6R91HzyuxiJyCdkwWqFzYAoDrOSymjm+JEj2LVxIw5u345DO3YkfQ7eebQ4MgozYfott8E9nl8YCgTQtXdvgY+IIPSBmyksgFIIAA0rVnELkO7GJky85HJuH7XsWE9LK9falSsWmw0VjNmUf2REt+fWgqRxppCNyymEollMJPMK0Nw+mi+l0OD2UbeaUsi2jxbQaEapUo4WqChMyCa89oaEfdjFGrNcvxYKKgpLkPTto8a6j5plpUVpWV1K7Y/pYJVC9ktOjESwf9s2+XaqSAYt+VrFjNXlwtxP3yvfPrJ7N83yEEUP+3kXrFZYCjQLbHU60bxmrXx7xkc+Lit2MVizmRgVOWYUquGdVrgWUj68Pvn3KFuoFOoCulhI5hWQLKcwHArJCpvFbod3Kp9jaxSGK4WtKkqhSYxmzKIUjgwOyiqxxelE+0WXJOxjNaknRiGgorAEUcsMzGckhVk+VFxRWEbzhEByN61jBw5wLn9jw8NyuLSSYs0ozITJV10L7/QZAKKfkcO7dhX4iAgiN/iMwvybzLDM+4/Po27pMky87Ep03HJ7wuNsy2QMPU1mYrBzhfk2vNAa61M9sxMYX7gcGx42zXnUjLCFfazbA1A4bzJFCVtkeztmJCxOGIWtIt6dlK/2UbPkFCqLwqDfX5AilVUJ2y64CHZvVcI+FpN6YhQCKgpLEKtKHAFXFHqMaB8134eqXJ1HAf5iMPY3EA6FcGjnzoR92VBpllJXCoFoa9m8//i8fPvovn3cSZcgig0zFYVVHTNw1h//hpUPPczl58ZwqimFhhSFcWVoLM/to1ojKWyeClQy0QLsDBzBw6pONXPmydtexfsXM6PhTWbyM08I6N8+KkkSt4jrmaBSFFZXy+3XkXC4YNdjagVgvhVwURRxnImcYrMJWczY6VYoqCgsQdQKNHbV0YjZOjOG14dUwm3LBXYlNPY3cGT3btWVw4FkRSG7wl2ArLN80XbBRahZsAhA9G831ZwlQZidYlrMUZ0pbMs9o1BJIR1IufnONIZdbMFSSGMOszMyMCBv+5ii0D2hRTabiYTD8vwdW4zky2QG0L99NBwKyX9PVrebM9aJIVgsckQHUDi1UM1BN99/0309PXJx6mpsROOp71Hdj8Lr41BRWIIUPLzeJB+qslYKFUYzQb8fXXv2yPdNuf4meXvg+HHV5yimi8tcEAQBCz5/n3y7++BBWqUnihbONbjASmE61NpHjVEKmaJwZCTrmJ5skDL4Hi3XuUJJkrB3yxZsWb8ew/39affllL858cxBQRDg64y/hyPj3+MjzPd5dWd+TGYA/ZXCINc62pbUJ4FzIC2Q2YwZisKegwfl7SlXXw+L1aq6nxlFjUJBRWEJUvDwepN8qJI5lJUDykiKvp4e+ffimzUHi+//mtxaNjY8rGqBXi5KIQA0nXY6mt6zRr59cPv2wh0MQeQAb2xi7igZp4pSWNGuf1HoamqWxyYioVBe1ZNM4kHKVSkcOH4cR/ftw+CJE3j31VdTtvD7R0bkc5Ozti4hvkRZWEuSVBDnUQCw65xTyJvMtCXdj/VQKJTZjFpRGPs9DA8MYN/WrWkXAHJ6/WCQM9KbfPV1Sfc1a852IaCisARhTzzyTKHh7qMmVArL2GhGGV7PrjA2n3kWbJ4K1C5cLN+nNlfItT0VKOssn8y794vy9omjRzFk4AmLIIyCL0LMvZiTkFNoscDdPEH31xEEAZUKtTAfSJKUUTwI29pYSkrhyWPHcGTPnqSqFftvDQWD2PHmm0mvIziVcN78BLWMVQJHBgcRGBuTCzJHdbUhf1/J0FspTOc8GsNpArOZZDOFoUAA77z8Mrr27sW21183TLU/fuSI/Ny1CxehqmNG0n3Z2WuzXL8WCioKSxC1Ak3kcgr1D683Y/hnWbePKoxmAsxwurs56tbWuOpU+T61FlL+4rI03UdZ6hYuRtuFcbvqg0x0B0EUC5IJMgq14qythcC0dHmaJxjmDFmIWAr2glew2dLGg1RMnCQrmqFgMKkzdDExMjiIba+/jv3vvIO3//1vzv06hl9x31BfH/a984768zHzhDVz5yU8rlQKOZVw9ty8RlPpPVPImcyoOI/GKLQDaSQSkf+9gtUGV1MzgOg1xa7Nm+XFgaDfr5srq5J02YQs7OKZWa5fCwUVhSUIt+qRJ/dRM4Z/hsvYaEawWCAwFyDsidgzvlLasHK1fF86pTCVa14pMe8/Pi9fpPb39qK/t7fAR0QQmcEt5ph8plCwWOCsq5dve9r1N5mJwTqQ5ivAnmvltaf/XQgWC6o6Z8m3S0EtHOrrk7fHhofx9rp1XGEHqP8+ju3fj25mJiwGpxTOnpvweDXz/o0ND2OYNaXJo8kMoH8kRbo4ihiOAmcVhpnWUWddHfe+K7OR1dpMc2V0cFBuTbXYbGi/+PKU+9NMYRwqCksQtf5oriis1F8pNGP4J7tC5iwzpRDgL0LYldhYrlP9KUvlVfnRoaGEuUJ+prD0lUIAqJregSnXxFcVj+zeXcCjIYjM0RqWbhZYB1IjTGZisHEFeVMKs1hYK7W5wqBiPjDo92PL+vVcYci287JjDXvefjth7iyZ82gMR1W1PG8nSRJOdHXJj+XTZAYA7F6mKNTB8IUtCt0TWpLu52TGZQphNBNkrr1cDY0pi3EjlExWJWw593zu/VCD8+EwyfVroci4KAwGg9i5cyd27NjB/eIJ88DOFIqRCERRlNtYBJvNkOwqU+YUlvFMIcCbzbBKYWymIt1codZ8rVKj4/YPytv5UhQIQi/4z625lUKAnys0tCicxmQV5qkozMRkJoZvNtP+WAIuyAGVFthIOCxn5kqSxJ2fTvvVY7LaJ4kitr/xhqx2hQIBuYXS4nByv1MWroWUdR7No8kMALia4iY4/tHRnOfnggYqhaPDw+jau1f195UprPrnqm9AdYpsSCOUzONHj8rbU65JbjATgxu3kaS8uhObjYyKwldffRVr167F+9//frzvfe/D6aefjn//+99GHRuRJRZFKyffOuoxpKdeLQaj0JTzTCGQaDYTvdMCFxMYnaqFtByVQoC3yTdq3oEgjIJtfzL7TCEAuBnDDDa8XW8qp8RnCv15iqXgW/C1qbbVJawUzvzwx+XtWFtnYGxM/l046+rhamjE6kd+LatsgbEx7NywITGKYtaspDOaviSKINtamg/cjU2yO6oYieS0GCFJElewpTSaqc1spjAcCmHrunXYt3Urtr/xRtbHGIMtCp319SmVQr2LQjESiS8yWCxoOn1t2p8RBIHmCsfJqCh88MEH8dBDD2H9+vV47bXXcO+99+K+++5L/4NEXrEqZgpFg+MoAHNa+obKOJIC4JXCGK76Bu5EmspsJptV7lLAVhlv+QlTUUgUGcU2C9xxy+2oaJ+IusWnoP2iS9L/QJY4a2rgrK0DEP1uy4eJC9fKq9EJlm0fHR0aKvoZJ7aQab/4UnnWPTA6inA4zHVjxBYFvFOnYfkPfyrf39/bi4PbtytaR+cnfc1qlSKkon2iISZ76WDNcJSzlJkQCgblvwW71ws7c55SkqnRzLH9++XibLivL+e/Ob4obEDV9Bmwjb/3gtWKCWedk9HxZQJnqtfUrHmumlMLTSJsFIKkReGtt96KrVu3cveFw2FYGacwm81GF00mROk+ysdRGPOlyOYUmuEkJkkS18Nvr64u4NEUBquKSqBcXaxfukw+SY8ODXFf5uWUU8hidbnk90QSRdMo3wShhWLKKQSAmnnzccFrm3HWX54zxASNpTLPDqR8K6+271CHzyfPfUuimLf4DKNglcLKSVNQNb1Dvj06OMgXhZOnyNut57wXs+/8jHz78K5dOHbggHzbNzfRZCaGWpuo2vxhPqiZt0DeHs6hKFQG16eCVQr9o6Mp25Aj4TCO7NnDv1aOhRqr/rnq62Gx27H0m99F/bIVWPbdH6Fu8VLVffWAnbvMpB3djMJGIUhaFF533XW45557cMcdd2Dv3r0AgHvuuQe33347Tj31VKxatQpf/vKX8cUvfjHZUxAFwqLIKeSD640pCs2WU8jOE9qrqmBhFjPKBTW3u1gcRYzoXOEi+TbbQlpshhV6IQgCbxBAC19EEcG3j5p/phBA3mICWAfSfBSFXDxIBvOdpWI2Ew6F5O9Pi9MJR01NQmQEa4LmVbQPz7n7PzBh7VnybbaATFXkVU3rSIg2yfc8YQy2KMxFKdSaUQjwIxBBvx+b/vUvbFm3Dj2HDnEiAQB0HziQoNblqqIrlUIAmHjpFTjzmf/D5Cuvybi9NROCrNN6W+rimUXNtb8cSVoUnn322fjjH/+I0047DbfffjvuvfdedHR04MUXX8TDDz+MX/ziF3jxxRdx9tln5/N4CQ2wCpGoKArtBjiPAoqZQhN8oMp9nhBQbx91T0gM7m1cybSQskVhmSqFAGD3Vsnb1A1BFBPZqFPlAudAmgcFLtvfBddCWsRFIZerN6EFgiAkFLxsoVcxaTL38xarFct/+DNUTJyU8Nyp5tQsdju8jCIJAL4CFYW+efE215GBgaxnWTnn0RQmM0DU8bPlnPO4+wZPnsSuTZvwxt//jr1btmBkcBBiJJKgEgL6FoWu+vqEx511dfF9DVQKYy60WuBmCk0gbBSKlDOFFosFV111Ff76179i2rRpuPrqq/HNb34TTU1N6OzshKvMLhSLBYvC9CWSh5lCs7mP8s6jtSn2LF3UlMJYRiFLsrnCbEwSSgVSColihfvcFolSmC9Yt0p/PtpHs5zvZGfiilkpVMvVY/9tqdpHYzhrarD6F7/mzM4qJk5KOVMHJMZPpHLANJKK9ony+Eo4FOLek0zg2kcnpC4KAeDU//kNTn/sSbRdcDGXWRwJhXB03z5sfuEFbPrXv1QLwJyLQjYOjFEt5ftq40Wh7jOFWRaFFsoqBJCmKNyzZw/+9re/YdeuXbj99tvx7LPPwul04qKLLsL3v/99DOfJ1pnIDGVvND9TaJDRjMtc7qPlnlEIIKF9BojHUbDULV0mB7aPDg3JX+jcKre7zIpC5oJDj3wpgsgXUpHNFOYT71RmptDMSuHs0lMKY7l6rDPoyOAg93uonJRYFAJAzZx5OOW/vyPfZltKk8EqgxaH01Bn21QIgsC3kCpyF7Wi1XlUfl2LBc1r1mL1zx/FRRu2Yv7n/jNBiWVbd1lXcl2VwrpEpdBRm3lkhla4mcJMlEKHubrdCkXSovDRRx/F1VdfjV/84he49dZb8eCDD6Kqqgp33303nnrqKRw/fhznnXceHnnkkXweL6EBdnYhwX3UY5DRjMNcqyyc82iNr3AHUkDU5onU2k7sFZWqeYXlrBTaGKWQ2keJYqJc80W1UDk5Xhj4R0cNv/jL1vTHO3W6vKgXGBsrSAC5HnCqzXhR6G5plZWzSDgsn2dsFRVcW6GSyVdeg9MfexIL/vMrmHdPei8LVpGsntlZUF+BmrnxFtLhLIt8NdVVK+7GJsz6xJ244OUNOP3xp9F+8WXcorHD58PMj8TjQkI5FIWSJPEzhSpFoRmVQjPGqhWCpEXhz372MzzyyCN4/PHH8ec//xmPPfaYrAw2NTXhK1/5Cn7961/j7bffztvBEtpgL+ClfLWP2u3AuFmAGcI/I2UeRwGoF4Vq7aMA0LBylbwdayHlIynKqyhkZwpJKSSKCa4QKYKcwnxi83jiF9SK0HQjkLKcy7bY7aiaMVO+XawtpJxSOK5uKecKY1ROmZrWcKh5zVp0fuQTcGhwE286bQ1q5i+Exe7AjA99NMMj15cadq4wS6VQa3B9KgSLBc3vWYNVP/0FLtr4DhZ88cuYct2NWPPEM/AyOZ65KIWRcFi+/rN5PLB5PAn7sNdkoWBQt+tFSZIURaF291GzjUAVCvXkT0TnCQfGnZKGhoYgSRIXRwEAU6ZMwfe+9z1jj5DIGKXpSz6KQkEQYHW6EPFHP5BiJAJrkmDZfMC2JDiqfQU7jkKiqhSqGM0AUbOZ7T+MfpZjSqFUxkohzRQSxUq2jpflgnfadIx2HQEQdSB1G2S+BigL9Mx+F9Wz5qD/nWgs2OjgIKpTqGhmJaiiFAJRJ9DeV1/m9mVVXD2wOhw4+6//RHh0pCD5hCy5xlJIkqTaipsLrvoGdH70Dvm2GImf53IpCtWcR5VYHQ7YvV6ExqMywqEQ7DrMP4dDobjy7PHAXlWV5ieYY3KS+yiQoii8++678alPfQqVlZUYHBzEJz/5Sbjd7mS7EybConQfZS4SjHIfBaJzhXJRKIooZAhEmJTCBKMZu9ebNAesftlyCFYrpEgEI4ODCAWD3N9N+SmFVBQSxQm5j6amcspUdP/7RQDGzxXm0oLvmz0HsVS+YlUKOcdMxhxFVSmcPFn31xcEoeAFIQBUTp0Gq9uDyNgoQoEAgn4/HBrPqaIoYu/bb8tqmsNXo6q+5Yq7sUne1qsodDWoF4UA4KitixeFwaAuRaFSJcwk6sai6LArV5IWhZdeeinWrFmDgwcPoqWlBfUqtrKEOVGavuRDKQQSi9FCwkVS1JRrUcgbzaRaXbRXelEzfyFObtoAIKoWSuXcPsoYzRTrPA9RnuSiTpUD+cwqzGW+sxRiKbhIihZGKVSJk0hmMlMKWKxW+ObOxYk3XgcQVQtrNZxTw6EQtr/xBucKPvGyKw05RldDY3QESJIQCgYhiiIslpRelKpoUQqB6FzhyIH90Z8JBqGH5BTIMqMQMF+sWqFI+Rv3+XyYP38+FYRFhtJ9lDeaMa4oZD9Ueq60+EdH8fa//413XnlFs2rDK4U+3Y6lmFBeEKazsW5ctVreHjhxorxzCpm2E1IKzUnQ78fRffvyEkJeTEhkNJMS77T47JTfaKUwh4U1Nmx9ZHCw4HP6mRIJh+XzsMVu58xFqmd2JuyvFkdRSmQaYu8fGcHb//43VxBOuuxKLLzvfkOOz2K3c6H3bHGXCUFmQd5Vl6oo1N+BNFuTGUAR5UZFIVFKCDabbPoCSeJsh1kDDb0xalC3+8ABDPX1ob+3Fz2HDmn6GQqvV1MK1ecJY7Ah9oPHj2ftnFcK2CqpKDQ7OzZswN4tW7D15ZdN4XhsFrLNxisX8qkU8vOdmf0uXI1NciElRiKGm+LoDTcD1zwBAqM62Su9CfEIJV8UMg6k6YrCoZMn8fa//839fc759D1Y/qOfGfqZdjU1y9uq+YWBAHoOH075t8grhckFpUwcSANjY+jauzftIk62cRQAuY/GoKKwBImZvsQY6uuLPYDaxUsMe12ubVXHizT2y0nLChtAM4VA4gWhWkYhS/2y5fKJe2RwkCuG2ODgcoBmCs1N0O+XDZGCfj+CWa5qlyLkPpqaivaJcph30O839POdy3ynIAhFHWLPzROquGWy7bEWu10X8xQzwxaFo+OzdGoc7+rC1pdfltUzi82GFT/6Gebe/R8Zzchlg7sp+VyhJEnYun49dm3ciA3PP489b7/N/Y5jpIujiOFgisJUSqEoinjnlVewb+tWvL1uXcpxjlyUQs61v4wXGakoLFHYAi1G3aLF3DCx3nAzhTqutLAn7VGNK7s0U5hoNJPupGv3VqFm/sLEBwQhQXUsddiikGYKzcfgyZPc7XJe2VUi0UxhSix2OyoZlcrIFtJc5zuLea6Qj1BIPPew7bEV7RMLmiOYD9zNcRVOrQiSJAmHd+3CjjfflP9uHFVVWPPknzDp8qvyc4xN8YVjZVEYCgZl5VKSJBzbvx8bnn8ee7dsQYDZl/23uVIphcx1WSql8HhXl/y6oUAAR/fuTbpvMMs4CoD/fFL7KFFyqK0Qt773QkNf06hBXdYFc2w8HiUVkiTx4fXlGkmhKOQ8adpHAX6uMIbV5TJ8hdJssEYzpBSaD3bOBijvk7iScs4X1UrllHj8gZEOpLnOZRe1UsiazKgsSLLKWVXHzITHSw22YymsyOYTRRG7N2/GgW3b5PsqJ07CWX/9FxqWrcjbMbKFq7L7Qi3QXhJFHN23Dxv/8Q/s27oVQb8/I6MZ+bmTFIWSJKFr927uviN79iRdqOWUwoyNZpjxpzJeZNQUJDc6Oopf/epX2Lx5M0KhUMJF+S9+8QtDDo7IHrW+89Zzzzf4NY2x9GUvysOhEEKBQEo750g4DIz/jVrdnrKdq1GuTLub07fnNKxcje0P/YC7rxzfP85ohpRC0zEw3joao5xP4krY94KUQnW8U6fjKP4OwNi5wlzcRwHA18mbzRQTwSRxFDFazj4XLWefi4EdO9D58U/m89AKgsVuh63Si/BwtHU0EgrBNv753LlxI050dcn7NixfgdX/81tOTcsHrhSxFGyR6J02HfZqH05ufBNA9O+8a+9eHDtwgPuZlEqhhpnCgd7ehL/7SDiMrj17MLGTNysSRTF+zIKQdlxGiVHjT8WGJqXwvvvuw0MPPQSr1YrGxkY0NTVx/xHmw6KYX6icMhVVHTMMfU3DlEKFUpPuJE7Oo1EyNZoBgPplKzhDAKD85gkBmik0M8FAAGOKmZxyPokr4QoRmilUxTs17kBqaFGYQ04hAFTNmCl/H/tHRorquyidUmix23Har36HC1/bhPpTluXz0AoGW+TF1DH/6ChXEE6+6lqc/sQzeS8IAYVSqCwKmdu1CxbhrD//Haf97+OoWbBIvl+MRLi/+VRKoYN1H00yE35kzx552zutQ97u2rs3QV1kj8/V0AhrhgtibHddOc8UalIK169fj2984xs477zzjD4eQiesTv4D0Xa+sa2jAGAxaKVFeSIcHRpCdYoVKHbVyVlTm3S/UodVCQSbjVuZS4ajqhq+eQvQ99Ym+b5yVAptbE5hEV2IlQODCpUQIKWQpZzzRbXinRZ3IDVyplDK0cHZ5vGgcso0DO3ZBSA6U+8tkoVOTilUmSksRxw1tRg5dBBAfPGafZ98c+dj2fceKti4RsqZQjaUvqkJgiCg5cxzMGHt2eh67q/Y+t9fQ//WLfI+gtWa8pqDUwpVunGGBwbQ39s7/mQCTvv17/Dv912Hod07ZbVw0qxZ8v6c82hbZvOEALmPxtCkFEYiEXQqpFrC3CiVQqNbRwF+VVrPD5WYi1JYpiYzAL/ypbQET0XjSn6u0OouP6XQ6nLJDoWSKJb1ScJsKOcJgfI+iSuh8Pr0cEphnoxmslEKAcA3uzjNZtIpheWIcq4Q4OfpPBMmFHR+nzPDSaEUuhvj+wmCgNZz3otz/v4iVj/ya9lAaOoN74PFllx3ctalnik8wswStl94MbxTpmLu3Z+V7zu6bx/3+eKD6zMvCo2KVCs2NF0lXnTRRfj1r39ddOGp5Qy76uGsrUPt4lMMf02jwj/VlMJUUBxFFLZ9NJOTstJsRrnAUA4IgsBlehZT21apo6oUlvFJXIkehUip426eAKvbAyB6ca5XeLYSbr7TmV2BXl2Ec4ViJCIXPYLVCmdDY4GPyBw4axPbR9m/PYeGbh4jcdY3yBnXoWCQ+y7h2jNVxsYEQUDb+Rfi3OfX4bLt+3HK17+d8rVSGe/4R0dxnGmp7fxodOa0/eLL5JiLSDjMHRMfR5E4w5oOtruunM8nmtpHx8bG8Mc//hHPPfccJk6cCIdi9ZGMZswHq9q1nndBXuyeszGakSQJwwMDsNlscFdWJj4uigkf0LRKIQXXA+BnATNp36lftjJ6Yhj/kraVaQua3etFsC8afRAOh2EvwzZasxEKBFQXhUgpjCOR0UxaBIsFlVOmYODddwAA/uFh2Gv1HzUoV6WQVQndTc0lHzehFQczzhJbvGavV1x1hS0KLTYbXA2N8Pd0A4iqhU5PdPGENZpxpYg2EwQBjupqTa9lr65GaDx7OhwMyufYrr175euPhpWrUbswOrcoWCyomDgJgRPRbpHg2Bhc48cXyCGOAqCcwhiaikJRFHHhhcbPpBH64WmPfyjaL7okL6+ZjXvTia4u7NiwAQCwcM0aVDCuj4C6QhP0+xEOhWBLkp3Ht4/6NB1HKTJh7Vlw1tYhODiAKVdfr/nnHNXVqJk7H31b3gJQnkYzAJnNmBGl62iMcl7ZZZEkiW8fpYWMpHinTpeLwrGREXgzKAqDfj92vPkmBIsFM5YsgSPJ+8wbzWT3u1DGUkiSZPqIILaVTy24vlxhPQ7k9lGNYe/5wt3ULBeFQaYoDHHto/oYTDpr6+SiMDReFIaDQXQzLqazPsY703paWnFyU/SakS0E2dnMigyD6wFFTmEZLzJqKgrvueceVGuo/AnzMOdTn4YUiaBqxkw0r1mbl9fkwus1XqQdP3pU3j557JimohCI5hUmO4lz7RhlmlEIRO2gL3xzCyKjo1z/vhYaVp0qF4WsgVA5wWUVUiyFKVBrHQXK+yTOwrZgCTYbKTQpyMWB9Oj+/Rg8Ge0iOLh9O6YvWKC6nx6mPxVt7XKUQTgYTBvJVGgkScKhnTvl214mE7LcYTuXzNg+CkTnCmPn/pg6KEkSrxTqlDrgrK3D8L5oGH2sSD524ID8fV7VMQPNa8/ij48ZhQkkbR/NvChkP5/lvMioaaZw1apVuOmmm/DLX/4SBw8eNPqYCB3wtLZh2bd/gM4Pfzxvr5mNe5OfORn7mdXFGJEkzzOa4iQepuB6GZvbnXFBCAAtZ50jb3unTEuxZ+nCZhWSA6k5YE1maubFL8TLud2HhVMJ7dQ6mgrWgTRTs5nhvj55u+fQoQSnxhh6qLaCxYJqxmXR7HOFR/ftkxdvBIsFHbd9qMBHZB5Y47vYdUrIRO2jAOBqTIyliITD8jWd1eni5u1zwcnGUgSDECORaOvoOJ0f/1SCKs7OC8bUQUmSuOtHTxbqtFGeGMWGpqLwsccew4oVK/DXv/4V5513Hs4//3x885vfxMaNG40+PqKIsGbo3iRJEncyVrMGT6YUpjKb4WcKfWmPg0ik6dT3YMl/fQsLP/UpdH6s9IOF1bCRUmgq2HlCwWpF02nvkR9LtnhUbkhcuyIVhalglUJ/BkqhJEkY7u+P3xZFHNu/X3XfXHMKYxRLiP3o8DAOvPuufLvzjjtRu2Bh4Q7IZBRF+6hKViE/T9ioW/uyQxFg33P4sPx+uBoaMfHSKxJ+hi34YupgrKAEAFtFBZeBqBXWh0OrJ0Ypoql9dP78+Zg/fz4+9rGPob+/H+vWrcNzzz2Hm266CT6fD+vXrzf6OIkigG0z1LJyH/T7uZNmJkVhqnYfch/Vh+k334qGBi96e1O7vZYqNFNoLmLtekA0PJk1bSjnkzgLzRNqxzuVVwq1zuoFRkcTctWO7t+P1unTYVVY8OsVD1JdBGYzkiRh96ZN8r+5emYn5tz52TQ/VV44VMLruVxlMxSFTYlFYYhzHm1O+JlsUSqFPYcOybdnfvhjqgH0rJN67PgCzLVj5eQpWRWtVlIKAWhUCoHoSuzmzZvxxBNP4Omnn8ZLL70Ep9OJuXPn6n5Qb7zxBmbOnIlbbrkl4bEf//jHOO200zBv3jzcfPPN2Ldvn+6vT2RHpjmFysJOWSQC/MV4xcRJ8Z9NoRSyqo69zNtHieyhotBcsK2jjatP4wyQyvkkzsK5XTqoKEyFs7ZW7iQRI5GkLaBKWJUwRkzlYJEkiZ8pzKFI980yf1F4ZPduDI231QpWK5b/6GeqF/XljJr7KNs+6jTAATdT0imFbj2LQub96Dl0SL4mtHkqMPXGm1V/Rk0pHGNaRysnTcnqWCw0UwhAY1F422234ZRTTsH73/9+rFu3DosXL8YjjzyCN954Az/96U91PaA9e/bgrrvuUn3sN7/5Db773e8iGAyio6MDr776Km6//XYEmD9YonBk2pOtpvYp5wrZi/Ga+QvlAHb/6GjSljFeKfSlPQ6CUIOdm1AqA0T+YZ1HG1auzmqGudSRSCnMiMqpmc8VDo+7JQK8NX/Xnj2c0Q/3u7Db5XNXNsQCwYHo6ITZLlpHBgdxcMcO+facu/8DNXPmFfCIzImyfZSd1bPY7dzIQqFQmylMl1GYLWz7KHs9OO3mW+GoUje3dDU1y5+lUCAAURS5LrPKyZOzOhYruY8C0FgU7t27F36/H4sXL8batWtx5plnYvHixbDq6GwWiUTwwx/+EFdccQV6enpU9/nlL38JAPj5z3+Op556CqtWrcLhw4fxj3/8Q7fjILKHmynUohSqnISVLaRsUeisrUXFpMnxn0/SQkpGM4QekFJoHkLBoKyQCBYL6pct593iyvgkziLq4HZZTmQzV8gqhfM/95+yIZV/ZAQnjx2TH9OzlddRVQ1PWzRmSpKkjN1SjUQURezatEkugmvmzMOsT9xZ4KMyJ/aqKrmgUYavO2vrTBE1olQKJUkyJI4CiP6blQhWG2Z84MNJf8Zis3EtrMGxMS4CpSJbpTBDT4xSRVNR+K9//Qt//etfcdZZZ2Hjxo24+eabsWLFCtxxxx347W9/q8uBjIyM4Ac/+AFqa2txww03JDx+/PhxHDx4EB6PB/PmRVegVqxYAQDYtGmTLsdA5IY1w5lCtZNwKqXQXlmJqhkz5dtqLaSSKMZ/RhC4C3uCyARbZVwppKIwOSe6urD15ZfRe+SIYa/BRlHULFgEe0UlWYirIHLB9aQUpoObK9RQaClNZhpXnYppN90i3+7as0fe1stkJoaPVQtN1EJ6eNcujIyrpxa7Hct/9DNYbJrsKsoOwWLhRlrYhXEzzBMCUYMXW0UlgOgCe9Dv1xxcnylq7bKTLr+SmxtUg2sh9ft5pZARDjKB7TwpZzdrzf0MkyZNwnXXXYfvf//7+MMf/oCLLroIL7zwAu6//35dDsRut+OLX/wi/vznP6vOKR4dz7PzMe2Ase2jTNYdUTgydR9VbR9NoRTaKipR1TFDvq0WS8GqhHZvVU4tO0R5Q0pheiRRxK633sLA8ePY89ZbhhVnbOto4+pTAYCUQhW4GTaa50qLdxqTVaihfdQ/MiJ/Fzh8NfC0taPjtg9BGC+CBk+elOfqRJ3mCWNUz+JD7M3A8MAADjOZhPPu+QKqZ3YW8IjMD1sIsddAznpzFIWCxYKaufHW35GBAU7RNFopnPnRT6T9OTarMDg2xokJlZOzVQr5cQS2Fbyc0LScMzIygtdffx3r16/HK6+8gr1796KjowO33HILzjjjDE0v9NRTT+Hee+9N+vjzzz+PG2+8MenjsblBG7MCFdv2axgQr6nxwGbLf5BvQ0P5KFWhRp+8ne4iTRRF1VzChKKQeR5fUx2ctR3YPn5bTSlki0J3XW1Zvf9GUa7vYaCtUd6mmUJ1xkZHZWOnSDiM4NgYXBUVur/OIGMy03He2Who8MLfGHfyI6UwCvs+uLwVpv3smua4lszHK+Obau7XSth5wuZlS9HYWAU0VmHGtddix//+LwDgyJ496DzlFO53Yfe4c/43T1xxCrZ9P7ptBqVQjESwa+NG+eK5aelSrP7CPbDoOFZUjKT7PVc01GNoz24AfFFY1dJsms9Fy/Kl6H0t+skY7u/nYjMmdE7V7TgrhUnc7YnnnouO05an/bm6aZMRs3UaGx6Wi1bBasXEBZ2w2u1ZHY/FZoM4vuij1Y04HZUVTtP8XrWgqShcvnw5bDYbli5diuuvvx5r167FhAkTMnohp9PJqXxK0s0nOsZXPdkiIRYo7dIwO9HXl1iAGE252fkPjcVPguku0rgTsMUCjO+fqn3UDztcE+JfImpZhezFu9VbXVbvvxGU298wy4gYP7GQUqiO8uLUb0BRGAoGZWVEsFhgnzkfvb1DGArEV3JJKYzCvg8RwWrKz66ZvlNCvrjq4R8ZgSSKKbtL2NbRylnz5H/HpFs+KBeFJ7q6os/F/k3aHTn/my2tU+VtMyiFh3bulM/BFocDS777Y5w4mf/rLDOh5W9bYMYSuG6pCvNcr7imz5K3hxVKod+h3+dXjNggWK3yZ2XaBz+u6bmFmviCLRtV5Glpxcl+PwBtTsJKLE4XxHD0dyKKIiw6dJoNjwQAk/xeWZIVqpqKwu9973tYvXq1puIrGRdccAEuuOCCrH++adzxqJ/5Uo5tZ1qgEsbA5hSmKwrZL8O6RUtwYsMbAMZPzMwKTcJM4fQO+bZ/ZCThg0vOo4RecO2jeVAKA6OjOLRrF4b7+tA2YwbqW1LPVZgB5cJMQEX9zxVunnDeAtjHHfookiIRzvGSZgrTYq+ohLt5AsaOHYUkSfCPjsJdWZl0f7YorFmwKL49Zx6a3nMGul/6FwCga+9eNLS1yY/rMVNYOXUaLE4nxEAAQb8foWAQ9gK1CA/19eHwrl3y7QVf/Apn2kMkh3Ug5dpHVVopC0XN/IXy9nBfX/y6ymLhHENzxWK1YvI112Pfb3+N1nPfi4aVqzX9nIc5Nw4xRWHllKlqu2s/HocDGNcrpEgEKMPZWE1l8Jlnnol///vfuOqqq7Bw4UKccsopuPbaa/H3v//d6OOTaWpqQnNzM0ZGRrB161YAwOuvvw4AWLx4cd6Og0gOe+JLFybNfhnWLFgoD1lLkiRnzwDKmcIK2Cu9cI9/IUiSlNDywwbBUnA9kQv5mikMBgLYu2ULNvzzn+g+cAAjg4PY/dZbRaFOKpVCI4pCbp7w1NPkbYqkSETvObZygC1mUs0VSpIkG6oAQO38BdzjMz/8MXm7++BBTl3R43dhsdlQ1RE3WitUC6kYiWAXY+7XsHwlOm79QEGOpRhhswrZtkxnnXmKQu/0DnnRjc1RdNXV694evPSb38PFm97F6l/8r+Z2TTdjNMN+52VrMhODzMs0FoX/93//hzvuuANtbW34zGc+g09+8pNoamrCnXfemdfC8KabbgIQzU28/PLLsW7dOrS1teHMM8/M2zEQyeFyXtIphczJt2radG44mC30RIXRDABUd8QH2ZVzhXwchXrODUFogc2MChtUoEmShC3r1uHovn2cyhMJhXCiq8uQ19QTpVKoNiecK6xS2LjyVHnb6ialUImeMQjlQqXGWIoxxmTGWVvHXZgCQPOatajujLbdiZEIju7bJz9m0UEpBADf7MKbzfT19sqLulaXG8u+/2MydMuAZIvVZnEfBaIKnk/F8NHdrH9XniAIcDdPyOhvKJk7aUWuRSEtNGorCh966CF86lOfwne+8x3ccMMNuOmmm/C9730Pn/zkJ/GTn/zE6GOUue222/CpT30KDocDu3btwvLly/Hwww/DSSc/U5BJzgt78vVOVRSFzIUl3z4avUj3pnAgpYxCQi+sLhcs4wPrkigacpLwj4xwiyCuhgZ5+9iBA7q/np6IkUiCssKq/HoQDgbj6sx4PmEMOoEnQu6jmeOdpi3Anm0drV20OEHVEAQBMz/8cfn2AGOOxMY15QLr7KnFGCdTJFHE7rfewruvvZb0s8x2A0y+6hpUTpykuh+hjrM2SVFoovZRgG8hjaFncH0uuJqaIagolpVZZhTGYFvuy3WhUVNReODAAZx33nkJ95977rnYw+Ty6MXll1+OHTt2yGH1MQRBwEc+8hH8+9//xpYtW/CrX/0KU6fm1kNM6Ad74kt3kca2j3pTKIVc++j4rAcbS5FKKbTTTCGRA4IgcGqhEe2cbItZ7aLFOPef6+VCdKivzxSGEjFGh4ZwcPt2uW1tbHgYUNh2690+OsDMi9TMnQ+7N27SwM0UUlEIQJFTqJM6Vepw7aMplEK2XbNm3gLVfSZeegUXrB1Dr/lOdp7LCEfkk93d6D5wAH3d3TjERE2wsC2PRihHpQ7bPspipvZRQP1vXM+MwlywWK1wq3zOcm4fdVJRqKkonDBhAnaqfEFs374dNTU0t0VE4WYKU3ygwqGQ3KducTjgaW3jPsxJi8JxV8NqJsCelELCSNi5QiNaSANMUVjRNhGu+gZMvfRS+b5j+/fr/prZIEkStr3+Og7t3Il3XnsNoihiRMX9NzA2puvJlI2iiOUTxqATeCIiKYUZ453CtI+mUN9Y5SyZoYXV6VSdr9NrvtPBLIoYsUjFdumwbdssbJC5s75BdR8iOc6kRaF52keBxJlZQN+MwlxxqxixVUzKTbW2OOPfmel8MUoVTUXhlVdeifvuuw+///3vsWfPHuzZswdPPPEEvvzlL+Oyyy4z+hiJIkGw2YDxlhpJkpIWhuxqbOWUqRAsFo3tozGlMF4Ujg0PcyGjvNGML8t/CUFEMdpshgsFHl91n/uB+EVl7+HDpjCcESMR+YI5ODaGwRMnkhpdBHVsIeVMZlbxRSE7MyeJYtmGDbPQTGHmVEyaLM8zBcbGuNgrFrYo9CjmCVmm3fR+2Dx8LIse7qMAYDP4+4hdVB0bHlZVI1ml0NXQmPA4kRrVmUJBgMNkAktVx8yE7xCztI8CgKeljbvt8PngqMrNR8KawQhUqaLJb/XWW29Fd3c3vvzlLyMSiUCSJNjtdrz//e/Hxz/+8fRPQJQFgiDA6nQh4o+ePEVRhFVleJgLbJ0WjZhQto9KkgRIUvyDabHA6vYAiLZZOGvrEDh5AmIkgsDYGFye6GOkFBJ6wrYrGhFLwReF0XaY1jPOQOXUaRjeuweRcBjHu7rQNHGi7q+dCcqLwxNdXZzKyaJXVmE4FFLME67gHhcEAVaXC5Hx4xAjEVjL0EKchV3dJvdRbVgdDlRMnITh/VFjGP/ICCqqqhL2Yxc7PK1tCY/HcNbUYMp1N2LXIz+V77PoNFNoZ47LiPZRdlEViMYR+Br5wo8vCkkpzBS14s9R7dPd1TNXLHY7fLPn4uSmDfJ97sbEls1CoVyYqZyc+ygZdZ9oVAqtViu+8IUv4NVXX8Xjjz+OZ555Bm+++SbuuuuutKHzRHlh1ZBVyLalxIb8nfUN8upqJBxGOBjkVmxtHg832F/FtpAybWzcTCEVhUSOGN0+yhaFsVkkQRAw7cab5fvN0EKqvFg8cfQopxRWz5otb+s1V8jlE86Zq7oKTBbiPCLlFGZFurlCSZK4RZBk7ocxZnzwI5ybol4Fut3gGWdloTnEmOvECJJSmBPO2sT2UWe9uVpHY9TMm8/ddjWa5/ftVnwGK6fkZjID8N+Z1D6qoKurK+G/wcFB1NfXw+v14sSJE/L9BBGDcyBV+VAd2b0b3QcPyrdrxwOABUHgPtT+0VHVecIYycxmKLye0BPOaMZwpTBu2jDl6uujQbqIuh4OM/lohUB5sRgKBuV2OsFqRfOatfJjehWFXOvo6veo7pPu+6bc4HMKaaZQK5VTGQdSlaIw6PfLpkrOujpuMUL1+SZOQtsFF8u37ZWJymM2sEqhEd9HysWfob4+7rYkSaQU5ojV7ZG/22O4TDZPGEPpQKpm7lIoEpTCiZNzfk4tokapk7TXZu3atZqDJLdt26bbARHFjVUx58NydN8+7H/3Xfl203vWoOW88+XblZOmoP+drQCiLTxsKxi7Qgrwc4Ws2QzNFBJ6ks+ZQg9TFDrr6tB2wUU4+PSTAIDu/ftRuUDd8TAfKC8WWbxTp8HLXFTrlVXIWvo3rlqtug8phTwSN1NI7qNaieULAur5fwGNraMs8+79Ik5u3ggpEsHESy/P/SBhvFIYUmkflSRJvhaMhELy35jN40mYnSTSIwgCHDW18Hcfk+9zmCyOIobSgdRMyrBHYTRTMVkHpZBmCpMXhb/5zW/k7XfeeQc/+clP8PGPfxwLFy6E3W7Hli1b8IMf/AAf/OAH83KgRHGQLOel59Ah7N2yRb5dv2wFTv2f33B99BVM3lFAMZdkUxaFTPtoTCkU2Sw5iyWhkCSITDGyKJQkSdE+yg/xT7vx/XJR2HvkCCbPmVOwmblU80vVs+agoj0+86iHUsjNEwoC6petVN3PSkohB7mPZodvTjyoe0RFleeLwnZNz+mdMhUXvv4WJFHULdzd6nZDsNkghcPR850owqJjcHyyjoDYzD7nPGqiAqHYcNbUcEWh2eIoYlR3zoKroRH+3h5UdcxIq5DnE0OUQuY7s1zPJ0mvMJYsWSJvf+lLX8IDDzyAtWvjLUIdHR1oaGjAAw88gOuuu87YoySKBrWswuNdXdi1aZN8f828BXjPb56AbfxEE4PtEQ+Mjak6j8aoUgTYS5LEtdM4vFW6nYiJ8oU1mtHb2CHMrrpXVCQsYjSsXAXv9BkY2r0TkXAYvUeOoDlHy+1sCaUqCmfO4opCvw7uo4NMPqFvzlw4qtVd5TilsExP4ixcTiHNFGqmeuYsCBYLJFGEf2QEkXCYW4DR6jyqhp7nIUEQYPd6ERxv64yEQrq6zKp1BAz39clFIdc6aqL5smJD6UBq1vZRq8OBUx/9LQ7/+RlMuuraQh8Oh7OhUV4gAYDKyZNzfk5SCjUazRw6dAiTVC5Gmpub0dPTo/tBEcWL0tL3ZHc3dm6Iu1dVz5iJ0x9/WlXFY9sBgn5/yplC94QWWT2MhEIIBQIUXE/ojpFKIT9PmGhckanhTM+hQ9j68svo6+7W7RhjsAsuyovc6s5ZXEtdUIesQq51NMk8IUBucUrY9lGrTo6X5YDN7ebmCkcVGZyc82ibtvZRo+AWqnT8TpJEUfU7jp0r5IrCeioKs0UZYG/W9lEAqFu0BAu++BX4Omen3zmPWKxWtJ1/EQCg6ZRTEoxnsoH9zkyVtV3KaCoK582bh4ceegh+5iJmaGgI3/rWtzhFkSDYi7T+nh7seOMNOT+sctJkrPl/f4QzSR4Pa7ShVAptFbxSKAgCrxYODSlMZsyV+UMUJzbGIMLQonDCBNV9Jl99nawEjAwMYFjFDRCIqo573noLA8ePY9emTbpn9rGzRs1nnMk9Vt05C1ank/v85ppVyDqPNq5clXQ/q9stb5NSCM6xWa9svHLBN2eOvK1sIc1FKdQboxaqknVCsA6kQTKZ0QVlgL1Z20fNzoqHHsZZz/4Dl7/4omYPlFRYHYmdbuWGpqLw85//PF5++WWcdtppuPrqq3HVVVfh9NNPx86dO3HfffcZfYxEEcG2LB3auVNevfdMaMEZT/055aAya/OtVAqV7aOAwoFUEbRLGYWEHuRNKUzi6uasqUH7hZfIt48dOKC63+jgoPxZCwWDqg6KucB+ttovuhTO8ZVtZ20dKiZNBgB42uOzVrmazbBKTd2SZUn3I6WQh5tRpfa+jPDNZuYKFWYz2RjNGIVR2alsi7idiX8Z6e+Pf7dQHIUuOGqLo33U7FisVtQtWqJb5IuFzifaisLOzk787W9/w5133om5c+di/vz5uPfee/GnP/0J7e3ahq6J8kDtw+mqr8cZT/057Qqrq7EJGF/tUbaDKpVCIDGrkJxHCb0xMixaLbhejWk33SJv9x4+rHocyotYdiZPD9jPlquhEav/538x9YabsfoXv5bNoiraGLOZHJRCiTWMEgTVXK8YVhcphTEkSTJV8VJscGYzqYpCEymFeraPsp9x77Rp8t+PKIryIg3FUeiDspPJSUWhKVCOP5Ujmqzsvva1r+HMM8/Etddeq6vTFVF6WBRzLI7qapzx5J9RqcEu2GK3w9XYJLtysWqHTYNS6GFOlsmMKQgiE+wG5hSmmymMUb9sBapmdGJw53aIkQh6jxzBBMVQ/ajiInbo5EldTWk4Fb6mBnWLlqBh2Qpun0rGPTgXpZC90LV7vSmNOtiV3XING44RCgTkORh7VTW5L2cIqxSODg7KUQyRSEQumASrNbp4WUCMyk5Vjl9UtE3E6JHDAKJzhZXV1Xz7KM0UZk1C+2iKhS8if1iYbNdyPZ9oqvD27duHD33oQ1i5ciU+/elP4//+7/8wrHN7ElEasIqeraICa37/R07RSwfbQsoWhXY1pbBDoRTSTCGhM+zJmr0g0gOtSqEgCJxa2L1/f8LM4IjCGENvpTCioTXbo1MsBWcYxbTKqcG6j0bKdGU3BqtmVVAHT8a4myfIBiCRcFj+G2bnY93NE7gYpULABdgbpBQ6fDWoXRz3ixgeN5sJcZEUpBRmi9JohpRCc0BKocai8Gc/+xlee+01fPOb30RNTQ2++93vYuXKlbj11lu5PEOCmHT5VbC63HDWN+D03z2FmnnzM/p51qwinVJYMXGSrBSEAgH4R0bkx6h9lNADd/MEWakKBQK6tihqmSmMMfnKa+QCaGRwkDOckSQpQSn0j4xwF3C5EtKw4KJXVqGWAjQGexIv15XdGFyLYxsVhZkiCIJqC6nZ3leufdQgpdBZW8sFl6u3j5JSmC3s9YnN4zFV/l85QzPqGotCAHA4HDjttNNwzz334L/+679w4YUX4tVXX8UDDzxg5PERRUbT6tNw8VvbcNGGrag/JblBRDLcTCxFqkgKIDpk7J0WtxFnrbPtZDRD6IDFboeLUfECTCGXK7xSqO4+GsPh86H94svk26zhjNKpN8Yg83nIBWUGqD1Ja7ZeWYVhDa8Vw+qmld0YbCFO84TZwZnNjDuQmmmeEFAYzRioFFbPnCXfHh0agiRJNFOoE676+HvnrKf30SxYyH1UW1G4adMm/PSnP8Vtt92GpUuX4tZbb0V3dzc+9alP4YknnjD6GIkiw1FVDavDkX5HFTxJsmbU3EeBxLlC+RioKCR0oqI1rg7kooCxSKKocIpMP6fEtpAeP3JELp6UKmGMIZ1aSPl2Tm/S9jlPS6tsFJVLViFXgFalaR91Unh9DK591ASKVjGSTimsMEGxzTki6+k+qigKXfX1shooRiIYYRyOrS6XqvkboQ3v9A40nXY6IAiYfstthT4cYhzKKdRoNHPdddfBYrFg7dq1eOihh7B48WI4srzoJ4hUJFNMbBXqpgnVMzpxSOV+ah8l9MLT1g688RqA3Fw1WYLsBVhNrSZL7bolS1E9azYGtr0bNZw5fBgTpkzhnBI9be0YPRz9RBhSFKZYbIllFY4d7QIQLQxdKgp/2tdj1A9HVRql0EVFYQxyHs0dtVgKbqaw1VxKYTr30XAohG2vv45wMIjOpUvhTrK4Gts3Ruz8Wd05C/7eHgBAf2+v/LizvkGXXLhyRRAEnP740wgNDNC1ionglMIyLQo1KYUPPPAAzj//fGzevBl33HEH7rzzTvz617/Gzp07jT4+osxI1p6jNlMI8EohCymFhF6w6oBuRWEGraMxlIYzx8YNZ9iicNqNN8vbQ0y+WC6wbWVK1zwlrEKVrQNpOFulsExP4jFYFZuUwuyo6pgBwRZdKw+MjiIcCplbKUxTFJ44ehSDJ05gdGgI+999N+W+XPtoTXRuuIppIR1gikLKwMwdQRCoIDQZ3ExhmS4yaioKr7zySnzzm9/EunXr8Jvf/AbLly/Hq6++iquuugqrV682+hiJMsKdrH00ieLgTVYU0pctoROsuYQRRaFngraiEAAmXXE1rG4PgOicz1BfH9c+2nT6GXKYvCSKGGEMabJFTUFIBmc2k+V7FUkSoq0GKYVxSCnMHavTyS00jg4Ocu+r2xQzhfHPRLr2UXZh5mR3N/e9o4Qzmhlf/PHNmi3fxzoauxsKG8tBEEZAi4wZGM0AQH9/P3bv3o2dO3di27ZtEEURnZ2dRh0bUYYkbR9NohR6p0yDoDLjlM6ggiC04mljlEKdZgrZljSXRqUQiLZTTrz0cvn20b1747O0goDqGZ2oX7pcflwPs5lMol44s5lslcJs20fL9CQORBWj2O/JYreTM2QOsC2kfT09CqWw8ApsJuH1nAOxJKHnkNqwxfhzKWYKgWj7aAx20YXiKIhShMspLNPziaai8Fvf+hYuv/xyrFq1Cg8++CAikQjuuecevPrqq3jkkUeMPkaijLC53XLrCnd/kqLQ6nSicvIU/k6LhYKbCd2oMEIpZC7W0sVRKOEMZ7q65O3KSZNh83g411895grZi8V0iy16ZBVmZDRDSiEA/u/SPaFFjlEhMqfptNPl7SO7d8t/V1a32xSLjZnkFCqVwZ5DhxIyTmOoxc5UzVRf9KdFB6IUIeMyjUXhunXrcPrpp+N3v/sd1q1bh6997Ws455xzUJGFiQBBpCNBLRQE2MZb5tSoms63kDqqqumiiNANj2KmMNlFVSZkklGopHbhYvjmzku43zcnel/9srhSOKSzUujMQCnMtigMZ9s+WqYru4AyuH5iij2JdEy68hrULooGt7OfdU9rmynMVdgFz3Tto8qs0rHhYdWFomSxM/aKSlRMnJSwP8VREKUI5RRqLAqffvppfPKTn8T8+XwQeTAYxIYNGww5MKJ8UcZS2NyelEVe1YyZ3G2aJyT0xF7plf+mJFHUJRSeczTMYKYQGDecufGWhPurx+d/qjrin4eg359zEcsVaRnMFGabVci1q6ZRZiy0sgtAkVFIJjM5YbFasfTb34fFbufuN0PrKADYFO2jqT7fajOE3QcPJtynNHdiY2eqmbnCGKQUEqWIhYpCbUXh1q1bcdlll2HOnDmYNWuW/N+CBQtw4403Gn2MRJnhnsAP89sqUyvSSgfSdHNPBJEpepvN8EphZkUhAEy6/ErYPPznwjdrDgDAYrNxCyNs+2c2cLNGaVx99cgq5BQLL7WPasFsDpnFjq9zNmbdcRd3n1nMe6wOR/zvXpKS/t0rw+ZjHO/qSphFDCsicljYEPsYLgpcJ0oQch/VWBQ++OCDcDqd+MpXvgK73Y4vfelLuP322+FwOPCd73zH6GMkygylcpJuPpBVRgCKoyD0R9lCmivcTGFzZu2jQLRYmnjZldx97Iq+o7ZO3g7lWhRmYDQTyyqMEczivWIvWNPNcJFbXBTOeZSUQl2Y9Yk7UTUjPlNX0W6e95VdLEk2VxgOBmUV0VZRIc8HipEIThw5wu+r4jwagzWbiUFKIVGKsJ0nZDSTgm3btuELX/gCrrjiCsyaNQtTpkzB3XffjU9/+tN47LHHjD5GosxIaB9NUxR6Ozq423Zf4c0AiNKCM5vJ0YFUjETklXnBaoUzy1V31nDG5vGgcjyKAgCctfELu5yVwgwiKYDcswpJKcwcrn3UJIpWsWN1OrHiRz+Dq6kZnpZWTLri6kIfkgzXQppkrpBdeHI1NWPqtfGuLmULqZrzaAy19lFyHyVKEbZlXJIkXfwDig1NRaEkSagdv8iYNGmSHFp/xhlnYPv27cYdHVGWKLMKbWkMjewVldyFECmFhN7oqRSyF2vO2jpuficTahcsxPRbPwC714u5n/08N3fr1FMpTHHBqEYuWYWSJGUWXk9GMwCofdQoaubOwyWbt+HCN942lYGPFqUwpHA4nnTlNRBsNgBRA6rRoaH4vlz7qI97Hu/U6fLPAYDF4Ui7WEMQxYggCGW/0KipKOzo6MCLL74IAJg+fTo2btwIADhx4kRZn4gJY0hsH1WPo2BhW0ipKCT0Rs9YClYJc9bVpdgzPUse/AYu23EAMz/0Ue5+XYvCDIxfgNyyCiPMSdjqcsPqcKTYm5RCINrmFGBnVE0QsF5qmM3Nms0qTFYUsnPLrsZGuOrr0XrOe+X7WLUwVYu41eFA1fR4N46rvsEULqwEYQSs2Uw5tpBq+qb7wAc+gPvvvx9PPPEELrjgAvzjH//ARz/6Udx5551Yvnx5+icgiAzwJBjNpC8KfXPmyNvulpYUexJE5nBKYY7to5lELmhB7QLNsPZRlQxRJblkFfIZhemzRilXalx5Hm9zctbVweZ2F/iICKNhlTot7aPuxujc8pTr4y2kvYcOyYv67HeEcqYQ4OcKXY1NWR41QZgfqyNeFEbK8JyiqSg899xz8fjjj2P+/PlobW3Fz372M9jtdpx++um4//77jT5GosywV1Vxzoq2ivRF4YzbP4z6pcvRtnYtJl16Zdr9CSIT9HQfzXRGLxv0MpoRIxG52BKsVk2fxVyyCnlV0pd2/3JtH41EIug9cgSjQ0Pce2ymFkfCOLQohSGFUggAzWvOlMczQsEg+rq7AaQ3k6rujM8VUkYhUcq4muKLHrkuABcjmorCm2++GS6XC52dUfeqFStW4Hvf+x7uu+8+1GhYOSaITBAEgWsh1XIh6m6egDP/+Fdc+ve/U04hoTuu+ga5rSQcCiVYumeC3kqhGmz7aC5KobJI09I2lktWoVqAdiqUrT7lYgxwcPt27NywAZv+9S8c2bNHvt9jkiw9wli4olCL0cy4umexWjH5qmvl+2MtpPzcsC/huZres0berluyNKtjJohigI04Gx0eLuCRFAZNReH27dvhYlZkCcJoWLMZLTOFBGEkgsUSzeAbJ5jDCmIkwxm9bGDbR1ml8Oi+fdj84ovoOXRI0/Nko2rmklUYzsB5FFAxBigTtbC/p0fePnnsmLxNzqPlAdc+qsVohmn5nHLtDfJ2X3c3An4/QmlaxOsWLcFpv/4dlvzXtzDjgx9NeJwgSoWq6XF/ijHGjKlc0FQU3nLLLfjP//xPvPzyyzh48CC6u7u5/whCb9isMy0zhQRhNFzUQg4tpPlWCmNFoRiJYN8772BkYAC7Nm3CwIkTaZ8nVah1MnLJKmQvcLUWzJYyDBxO1sJcQRmFZYEmpVClfRQAvFOmomHlavl276FDmj7nLWedi+k330ozq0RJU8VEnI2VoVJoS78L8OMf/xjBYBCvvPIK1z4kSRIEQcC2bdsMO0CiPGk582wc+H+PAwAaV51W4KMhCP1iKTj1LR/to+OKQWBsjHNT27lhAxauWQN7CofPTJ1HY1S0T8TY0S4AUQdSV5pYmRiZZBTGsLrcCA0MACgPpTAcCiWdIyOlsDzQEkmh1j4aY+p1N6L3lfUAxltImbZrp4bYGYIoVbxl3j6qqSj8+c9/bvRxEARH+yWXw9XUDLu3CjVz5xX6cAiCN5vJoX2UUwrzaDTDKgex27s3b0bn0qVJZwXTGVAko6J9Io6//iqAzArocIYzhUBUmYxRDkoh+366J7SgcuIk9L72CqxuN+qXrSjgkRH5glUK1dpHxUhEXmARrFZukQgA2i64GBs//1mEhobgHxnhHsvkc04QpYZ3yjQIFks06md0FJFwGFabplKpJND0L122bJnRx0EQHIIgoJFpcSGIQqOXUsiu7BulFDqqq+UTWyQchiiKqsd88tgxHN23Dy1Tp6o+T7YFbLZZhZEsVFSrK97OJpVZUVg1vQPv+c3vceyF51HVMROu+voCHhmRLzilUKV9lFUJnXX1CTmLNo8HEy+9Ant+/cvE5zZozpkgigGr04mKyVMwvDdq4DU2MoLKMvpMpJwpDIfDePzxx/G+970PK1aswNy5c7Fq1SrcfvvteOaZZ8rG6Y0gCEKvAPts1LBMESwWbjYoHAxySqGtMq407H/3XQyPt18q4fLLMlQKY2SiqrKqh71KY/sooxRGyqB9lH0/PW3tsNjtaDn7PFROnlLAoyLyiS1NJAUbR+FualZ9jinX35Rwn93rhaWMVBGCUIN1IC03s5mkReHIyAje97734Utf+hJEUcT555+P22+/Heeffz5GR0dxzz334JZbbkGAWZEiCIIoVTj1S9FylQmcqYNBSiGQaDbDFoWzPvEp+ObOBxCNctjx5puqF5d8AevT/NpZF4VZmPCw7qPlphTSDGF5wi6YqLWPcvOETeph87ULFnGh9IB2MymCKGXKOZYi6ZLQD3/4Qxw5cgRPPvkkZs+enfD49u3b8cEPfhCPPvooPvjBDxp6kARBEIXG09YOi8MBMRhEKBBAOBSCzW7P+Hk4h00DMzXZWIpwMMgVE5WTp2DVT3+Bv5+zBuGRYfhHRrB3yxZ0LFrEHyuXX5adUmh8+ygTSUFFIVEG2CtTu4+mMpmJIQgCplx3Ezbf9zn5PioKCQKo6ijfWIqkSuFzzz2He+65R7UgBIDOzk7cdddd+POf/2zYwREEQZgFi9UK79Rp8u1s7aojeYikABLNZlil0DOhBd6p07Dka/8t39dz6FBCfiFvNKP9WN1sVqHfr9kVlFcKtbqPlldOIRvxUUFFYVnCfjbSto8mKQoBYPIVV8PCLGyR8yhBKNpHszzP+0dHsXfrVvRs2qjXYeWFpEVhd3c35s6dm/KHlyxZgq6uLt0PiiAIwox4p+d2sogZvwAABIFzEdQbZfuo0rUSACZfdS0mX3WtfP+et9/m/l3Zuo9aHQ64J8SzCrXOYEa4mUKtOYVlrBRSLmFZYquIZ/dGwuEEfwdeKWxEMpx1dWg593z5tqPGp99BEkSRUjWdzyqUMlxslCQJ215/HUf37sWb3/w6IgrnbzOTtCgMhULweDwpf9jtdmMkh9kagiCIYqJq2nR5O5uikDNSqaxMcAXUE7Z9NOT3IxS7UBQEznxi8df+G5XjCqgYiWDHhg1yccXnFPoyev2KtsznCkkpTI0kiggoFF+i/LBYrZxZlFItDLFFYUNypRAAZtz+Ifl7qO6U5ToeJUEUJ3ZvlbxwKklSRiMQADB44gRGBwcBABaHA4LVqvsxGoVxVyQEQRAlhlexgpgp2Rq3ZAOrFI6Mn6AAwFVfz7WM2SsqsfLHj8AyHmI/MjCA/du2QYxE5IxDAHDUZNZalo3ZDF+E0kyhkqDfLweNO+vquX87UV6wXQbKucIg5z6auihsWL4SZzz9F6x+5NfoeP/t+h4kQRQpnNlMhnOFR/fvl7cnX3Utd741Oym9h3/1q1/B7XYnfXw0hwBngiCIYqNqem6uZJEclLdMcSQpCt0trQn71s5fgAVf+DI2/ee9AICje/ei5+BBPlMxU6WQNZvR0D4qRiJym45gtcHqTt2pEsPqLB+lkG0drWin1tFyxu6twtjR6PhOOByGk3lMi9EMS8OyFXofHkEUNVUdM9D90gsAMlsADvr9OHn0qHx7+s236n1ohpK0KGxpacGf/vSntE8wgZkbIQiCKGW80+Pto/7xWYNMWkCzUcKyxVkXbx/lsu0mJBaFANBx+4fQ/e8X0PXc3wDwLWlVM2ZyeYBayFQp5FRUrxfCuFFNOqzu8lEKeedRKgrLmWRKoSRJnNGMqyH5TCFBEOqwXUGZKIXdBw/KM751S5bCNzu1N4vZSFoU/vOf/8zncRAEQZgee6UX7uYJGDt2VJ41cFdWpv/BcbLJ4csWtn2Uxd2iPocmCAKWfedH+Ps5p2O06wgAoKKtHW0XXoKZH/5Yxq+faVHImcxkUDBby8hohkxmiBh2r7oDaTgUki9KbZWVsKXxhiAIIhEulkKjUihJEroPHJBvTy/CduyU7aMEQRAEj3d6B8aORdtDxoaHsy8KjVYKkxSFnubk3R3Oujqc/bd/4di/nkf17DnwzZ6rWbFTkmlWYTiLjEKgvIxm2OKa4ijKG1YpZA2sOJVQQ+soQRCJKGMpJElKey48eeyYvHDnqPah/cJLDD1GI6CikCAIIgOqpnegZ91LADI3m8nnTCHrPsriTuNY6apv4GIqskXOKpQkOavQkqLVNtuCuWyVQioKyxpOKWQ+O+w8IesyTBCEdlwNjXD4fAj29yMSDmPf1q2YMpdfJBVFEYMnT6K/pwd9PT2y4ygATL3xfRmPXJgBKgoJgiAywJuD2Uw+ZwptlV5Y7HaICmdCj4rRjBHEsgrHxrNsA2NjcFdUJN2fM7UhpVAVKgqJGLYkSmGQUwppnpAgskEQBEy59kbs+MkPAQBH9+0DAEyYMgX9vb3o6+nBwPHjqguRgtWKaTe9P6/HqxdUFBIEQWRALlmF+ZwpFAQBjppa+Hu6ufvTKYV6UtE2MV4Ujo6mLAqzySgEyiu8nopCIgZnNMO2j7LOo/VUFBJEtsz//H0Y7TqCQ398GkC0MIwVh2oINhsalq1Ax+0fRuWkyXk6Sn2hopAgCCIDcskqjOSxKASiLaQJRWGKmUK9qWifiOOvvwogvdlMtgWzrUzcR8OhkHzxb3W64KxTnxklyoNk7aNstqizrj6vx0QQpYTFZsOKH/0MEIBDzzytuk9FezsmnHkOms84E42rT4O9QrvHgBmhopAgCCIDPC2tsLo9iIyNIhwMIhQIwK5xdoBrH/XloyjkCwdHtQ+2FNmzepNJVmEky9ZaC/Pel3L7KBcr0tqatQEQURqwM8NsIcgXhbRwQBC5YLHZsOKHP4PV6cL+Jx6D1eVC46mnY8IZa9F8xlnwTpla6EPUFSoKCYIgMkCwWOCdNh39W98GEFULsyoK86AUOhRFoVpwvZFkEkvB5xRqbx+1uuJFbikrhXwcxcQUexLlgKu+Qd5mW0bDTFHoIqWQIHLGYrNh+fcewvx7vwhHTW1RGshoRXvqMkEQBAEAqGJC7MdGRjT/XDjLLL5sUTqQepJkFBpFJkVh9jmFjFJYNkUhzROWO84kRSG7TUohQeiHu3lCSReEABWFBEEQGcM6kI4NDWn+uUielUJl+6i7uXBFYbqsQl2UQgPbR/2jo5AK2J7KFoWUUUiwBV/y9lFSCgmC0A61jxIEQWRIFWM2k0ksBVf4+Hx6HpIqyqIw30phJlmF2c4UWl3GK4UHt2/HoZ07UVFVhQWnn16QeT5eKWzP++sT5oIt+EKBgByuzSuFVBQSBKEdUgoJgiAyxDstcwdSMRKRixbBaoXNkzyeQS8civbRfMZRANGsQg/zmoEUZjPZuo/mQynsPngQADAyOIgRJqA4n/BGM6QUljtWh4Nrsw4HgxBFUW7DFqxWOPKw8EQQROlARSFBEESGeKfGHccCo6OaihFuntBblRe1KUEpzHNRCGifK+TenwxyCo2eKQyHw1wgOLudT6h9lFDCmc0Eg1zrqKumBkISVZ4gCEIN+sYgCILIEJunAu7xVkxJktKaqADZt0fmQsJMYQGKQo/GojBi0plCv0IJLkRRKIoi97qF+D0S5kPZQhpmWkfdjRRcTxBEZlBRSBAEkQXeqZk5kPLzhDWGHJMSpfuoe0L+gutjaMkqZNveYLFkn1NogFKobA8uRFHIvqarobHkHfAIbXBFoUIpdDc0qP0IQRBEUqgoJAiCyALv1Gnytpa5wnAhlML6BllJc9bWZaTA6YWW9lE2W83py6ztzepyyduSKEKSpCyOMjlmKArJZIZQw1XPK4WsyQz7GEEQhBaoKCQIgsgCTinMsCjMxEglF2xuNxZ95auoXbgYi7/23wVxzdRSFLIKh9IcJx2CIPBqoc4tpEoVuCBFIfO+VVBRSIyjzCokpZAgiFygSAqCIIgs8E6LK4V+De2j+c4ojDHtplsw7aZb8vZ6SrRkFXJKYW3mgdtWlwviuEoiRSKA1ZrxcyTDdEohmcwQ4yiVQlYjd5NSSBBEhpBSSBAEkQU5KYXV+W/jLBSella5HTTo93MFYIxQjkUhG+/BupjmiiRJVBQSpkU5U8gZzZBSSBBEhlBRSBAEkQUV7RMh2KLNFkG/P26UkgR+ptBn5KGZCovdjpr5C+Xbx7u6EvbJpX0UiJqvyM+lY9EW9PsTzGtCgQAkg/IQkx4HG0dB7aPEONQ+ShCEnlBRSBAEkQUWux2VkybLt9M5kPJKYf7aR83ApCuvkbd7Dh1KeJxvH828KGRdVQM6FoXJfqdBFbXTSEgpJNTg2keV7qPUPkoQRIZQUUgQBJElrAOpMs9OSaFmCs3AxEsul1XVob6+hJbMXNtH3U3N8rae7Z3J2oLz2UIqSRI3i0lFIRHDWadQCln3UVIKCYLIECoKCYIgsqQyg6zCclYKXfX1aDnzHPl2z+HD3OOsUuioyUIpbI6HuZdaURgJheQWVqvLDUdNfjIuCfPjqKkBxh2Fw6EQgjRTSBBEDlBRSBAEkSWZZBWyBijlNFMYY/JV18rbvYcOcXmCObePNhujFLLqL1vI57MoVLaOFiJWhDAnFquVU9bZbgRXXeaKO0EQ5Q0VhQRBEFninZaBUsiqYWXWPgoAE846Bw6fD0C00Bk8cUJ+LOf20eb4TKFRSmHjitWGvEY62KKQjfcgCABwqswO2quqYbXbC3A0BEEUM1QUEgRBZIlSKWTVLyWRMm4fBQCr04mJl14h32YNZzilMKv2Uf2VQjESic/yCQIaVha+KKR5QkKJqz6xTdRFJjMEQWQBFYUEQRBZ4m6eAKvbAyBa9Kll8AFRsxC2fdRehkohwLeQHu/qkqMd+EiKbJRC/WcKOXOXllbOaVbP2It0BMhkhkiBmlLI5hcSBEFohYpCgiCILBEEAd5pjFqYpIU0HAzKBZDF4YDN7c7L8ZmN2kVL5Gw1MRJBwO+HKIrxjEeLBY4sVFSHzweL0wkAiITDugTYs62j3mnT4TJobjEdpBQSqVArAKkoJAgiG6goJAiCyAEv60DKFBKhQADHDhzAO6++ijf+/nf5/nJVCYFoEc3OxQXGxvhZy2ofBEvmpyVBEHSfK+SKwukdhsVepCNAwfVEClx1ie2j2czlEgRB2Ap9AARBEMUMO1c4dPIkxEgEx7u6OCMVlrolp+Tr0EyJp7UNJzdtABAteGyMIYYzB8dEd1MzRg7sBxAt2jyVlTkdJ6v6Vk2bDldDY9T+X5IQCgYhiiIsWRSwmcIphW2kFBI86u2jVBQSBJE5VBQSBEHkAFsUdh88mHS/mrnz0XbRJei47YP5OCzTwrZABsfG4HS55Nu5KBzuCYxSyBRS2SCJIob7+uTb3mkdsNhscDU0wt/TDSA6V+j0eHJ6nXSIohhXJRVqKEEA6kYz1D5KEEQ2UFFIEASRA2wsBYcgoP6UZWi74GK0nX8hxQmMU8EUhYGxMbgqKuTb2TiPxnA36dM+KkkS9m7ZgtGhIQCAYLHAN3vO+Gs0y0VhMA9FIVvcuhoaYXU4DH09ovhQUwVJKSQIIhuoKCQIgsgB35x58LS0YrTrCASrFY2rTkXbBRej9b0XwN3YVOjDMx2ellZ5O2GmMJf20Qn6FIVde/fi2IED8u1Zn7w72jqKaPRF35a3cn4NrdA8IZEOUgoJgtALKgoJgiBywOp04uy/vYD+rW+jZsEiOGtqCn1IpoZtHw2MjiqC63NRCnMzggkGAug+cAAHt2+X75t4yWWY+5l75dsu9jUCgSyPVDvcPGE7FYVEIk4qCgmC0AkqCgmCIHLEVV+P5jVrC30YRQFrlqJUCvPdPipJEvp7e9F94ABOHjsGSZLkx+oWLcGy7z4EQRDir6Gzw2k6OKWQ4igIFexVVbDY7RBDIfk+F7WPEgSRBVQUEgRBEHnDWVcPi9MJMRBAJBzmQuKzCa6PkUn7aGB0FN0HD6L70CFVU5rKyVNw6q9+BytjggPkrkZmCmUUEukQBAHOunqMHTsq30dKIUEQ2WDKovCNN97AjTfeiJUrV+KXv/ylfH8gEMCiRYsQiUS4/T/84Q/jzjvvzPNREgRBEJkiCAI8rW0Y3rsHADAyMCA/pmf7qCRJnMonSRJOHD2K7oMH0d/To/ocdUtOwdQbb8HEiy+DTcVExp3nAPsAUzBTUUgkw1kfLwptHk/CYgZBEIQWTFcU7tmzB3fddZfqYzt27EAkEkFLSwtmzZol3z99ehL3P4IgCMJ0VDBFIauG5dI+avN4YK+uRmhgANJ4lqDD6ZQf3/P22+hmDGRiOKp9mHztDZh63Y2ontmZ8jX0cjjVCq8U0kwhoQ4bYE8qIUEQ2WKaojASieDHP/4xfv7zn2MsScbUtm3bAACXXXYZ7rjjjnweHkEQBKETbsaBlCWXnEIgWrSFxpXHoN8vF4WSJOH4kSPxHQUBTaedjkUf/TAqV6yBlSkeU+FqirvJGl0USpJE7qOEJtgAe7Uwe4IgCC1YCn0AMUZGRvCDH/wAtbW1uOGGG1T3effddwFE1cS7774bDz74IA6mCIsmCIIgzEcy05RcZgqB5EYwoWAQkXAYQFRRvPC1zVjz+NOYfuWVmgtCIKrCCFYrACAcCkFUjDLoCfv8MRWUINRgHUhJKSQIIltMoxTa7XZ88YtfxOWXX46//vWvqvvElEL28aeffhpPPvkkJk2alJfjJAiCIHJDdT7OYoEjx8In2czf2PCwvO2d1oGK9olZPb/FaoWrsQljR7sAAP7RUXi83iyPNjXK1lF2PpIgWFi3USoKCYLIlrwVhU899RTuvffepI8///zzuPHGG1M+R0dHB5xOJz7xiU+gs7MTX/jCF/C3v/0N3/rWt/D9738/5c/W1Hhgs1mzOvZcaGgw5oKBSA695/pC72f+KfX3fGx2R8J9rpoaNDblVhTWTZ2E/ePbrKuonykK6+fM4t7fTN/rxgXzcWC8KDxx9KhxRSFjMuObOrmk/iZK6d9iBiLnn4O3v/oVAMDUs9fK7y+9z/mH3vPCQO+7PuStKHQ6nfD5fEkft1rTF2wPPvggd/sDH/gA/va3v2HTpk1pf7avbzTtPnrT0OBFb+9Q3l+3nKH3XF/o/cw/5fCehyoT20TtNbU5/7ulqrhRDRsuzyqFjtZJ8utk815PuOhyHBjvVuk5dAhtHR2GqHisUmhraC6Zv4ly+PvON9Zpc3DGk39CaHAQdWefi97eIXqfCwC954WB3vfMSVZE560ovOCCC3DBBRdk/fOhUAiHDx/G0NAQ5s+fDwBwOBwAgPD4rAhBEARhfjwqRjO5OI/GcDe3yNusUjg2MiJve6fl5lbdet4FsHu9CA0NwT8ygqG+PlTlEKWRDDKZITKhcdWphT4EgiCKHNMYzaRjeHgY559/Pq677jrZXObFF18EACxYsKCQh0YQBEFkgM3jgUNRBObqPAponCmcmltRaPN40H7RZfLtnkOHcnq+ZFBwPUEQBJFPiqYorKmpwWWXXYZwOIyrrroKN910E77zne/AbrfjYx/7WKEPjyAIgsgAZaHjqNOjKEx0H5VEEX5OKZyW8+tMvuY6efv4kSOIGOBCGqSikCAIgsgjRVMUAsB9992HD33oQ6ioqMDmzZsxe/ZsPPzww5g3b16hD40gCILIAGUshbOmJufndDU0QrBET2uhYBCiKMI/NgZJkuTH7ZW5GxLUL12OyilTAQCRcBgnjx3L+TmV+BmjGWofJQiCIIzGNJEULJdffjkuv/zyhPudTifuuusu3HXXXQU4KoIgCEIvPG2KolCH9lGLzQZXU7McGTE2NMS1kXqnJ7qeZoMgCJh81XXY+o2o+VnPwYNoaE2ck8wWMRJBKGaUY7FwCihBEARBGEFRKYUEQRBEaZDQPqpDUQgA9acsk7f7e3sVGYW5zROyTL7qGmDcdbS/txe7Nm1CKBjU5bnZQtbd2ASL3a7L8xIEQRBEMqgoJAiCIPKOsijUo30UAJrXrJW3+3p6dHUeZaloa0fruefLt3sOHcKmf/4TvUeOyO2q2cKZzFDrKEEQBJEHqCgkCIIg8k5CUaiTUsgWhYMnT2JkYEC+7Z2au8kMy7Lv/BATL42POoSCQezcsAHbXn+dC5/PFD6OgkxmCIIgCOOhopAgCILIO8qsQr2KQk9LK6pmdAKIOo8O9fXJj1VN02emMIbD58PKHz+C0371GNwt8YzEvu5ubPzXv9C1d29WqiFbUJLzKEEQBJEPqCgkCIIg8o5LMSun10whwKuFMQSrFRUTJ+n2GiwtZ5+H9774Kqbf+gF5zlCMRLBv61ZsWbcOo4ODGT0ftY8SBEEQ+YaKQoIgCCLvWKxWTLrqWgBA8+ln6DZTCKgXhRUTJxlq2GKv9GLJg9/Amc/8H6o6Zsr3D/X1YfOLL+Lw7t2an4trHyWlkCAIgsgDVBQSBEEQBWHpN7+H81/egPf89v/p+rwNK1bB6nJx91XpFEeRjvqly3HOcy9izqfvkYtQSZJw4N134WdMb1IRoOB6giAIIs9QUUgQBEEUBEEQ4J0yVQ6c1wub242G5au4+yqn6uc8mg6r04m5d/8HznnuJW7WMMBETSRDkiRFUUjtowRBEITxUFFIEARBlBzKFtIqHeMotFI9sxPVM2bJtyPhcNqfCQeDECMRAICtogL2qirDjo8gCIIgYlBRSBAEQZQczWfwRaGeGYWZYPd65W0tRSEfR9EOYdy4hiAIgiCMhIpCgiAIouSomtGJivaJAADBZpNjKvKNjS0KQ6G0+5PzKEEQBFEIbIU+AIIgCILQG0EQsOx7D2H7Q99H2wUXw1VfX5DjsFdUytuZKoVkMkMQBEHkCyoKCYIgiJKkceVqNK5cXdBjyKV9lIpCgiAIIl9Q+yhBEARBGIStMkOlcHRU3q6g9lGCIAgiT1BRSBAEQRAGYa+MK4VhDUVhkImtcE9oSbEnQRAEQegHFYUEQRAEYRCZto/G4igAvqAkCIIgCCOhopAgCIIgDCLT9lFRFOVtq9NpyDERBEEQhBIqCgmCIAjCIFi1T0skBasUWt1uQ46JIAiCIJRQUUgQBEEQBmGrzL591EJKIUH8//buPTiq8uDj+C+bDRtyI6DcSkAgJgEJIIiABJ0ql9RGYSZMrY5cHAIv5TojbVqBt05fpepAB2xDaWdACojIRW7lYoswgzMFQUpASAgp14ZwMxASNCGEwL5/MHvcDVCSmHPOnu73M5Nhd3Y358mvqdnfPs85DwCLUAoBADBJvc8p9F8+GhlpypgAAKiNUggAgEkivsdMYbiHUggAsAalEAAAk9S+0IzX673vc71e73ePh4XJ1aSJ2cMDAEASpRAAANOEezxGufN6vQHLQ2sLnCX0KCwszPTxAQAgUQoBADCVO7pu21IEbkfB0lEAgHUohQAAmCjgYjP/YVuKgCuPcpEZAICFKIUAAJgo4LxCv+JXm38pdFMKAQAWohQCAGCium5g7798lJlCAICVKIUAAJiornsVBlxoJrKpqWMCAMAfpRAAABPV3pbifgIvNOMxdUwAAPijFAIAYKKImDjjdg0zhQCAIEQpBADARHWeKQwohcwUAgCsQykEAMBEdT6n0H/5KDOFAAALUQoBADBRna8+6j9TyDmFAAALUQoBADBRw5aPsiUFAMA6lEIAAEzUkOWjLg+lEABgHUohAAAmioiu/0yhm5lCAICFKIUAAJjI3ZCZQkohAMBClEIAAExU5+WjnFMIALAJpRAAABP5X330P21e7/XfkoJzCgEAFqIUAgBgIncdt6S4xUwhAMAmlEIAAEwUUWtLCq/Xe8/nedmnEABgE0ohAAAmckVEBMz8+Z876M//QjPhTZuaPi4AAHwohQAAmCxgCel9ziu8zUwhAMAmlEIAAExWewnpvQTMFEYyUwgAsA6lEAAAk7nvcQXS6xUVAbOD/rddzBQCACzktnsAAAD8t6s9U1h8/Lj+XVCgyKgo9XruOblcrlr7FDJTCACwDjOFAACYLGAD+5s3damoSJJUVVmpb8vKJNVaPspMIQDAQpRCAABM5r989OaNG6qqqDDu+84xDJgp5OqjAAALUQoBADCZ//LRb65eDXjMKIXMFAIAbEIpBADAZP7LR6+VlgY8ds+ZQs4pBABYiFIIAIDJ3NHflUL/paMSM4UAAPtRCgEAMJn/TGFtt2pq5PV65fUrhWxJAQCwEqUQAACTuR9QCmvvURgWFmbFsAAAkEQpBADAdP4XmqntVk1N4NLRyEgrhgQAgIFSCACAySJi6j5TGO6hFAIArEUpBADAZO4HzRQGXHmUUggAsBalEAAAkz3oQjMsHwUA2IlSCACAydzR9ZkpZI9CAIC1KIUAAJgsIjbuvo/dNVPIdhQAAItRCgEAMNld5xS6vvvze9dMYVNmCgEA1qIUAgBgMld4uMKbRhn34x9LNW7fffVRZgoBANaiFAIAYAH/i8083OdJ4/bdF5phphAAYC1KIQAAFvBfQhqf2iOg/NVUVxu3XcwUAgAsRikEAMACTVu1Nm43794zoCTevHHDuM2WFAAAq1EKAQCwwGOvZysuuYuSsv5HLXr0VIR/KfSbKQz3UAoBANZy2z0AAABCQZtnfqjnP//CuH/fmcKmlEIAgLWYKQQAwAYR0cwUAgCCA6UQAAAbcE4hACBYUAoBALCBm3MKAQBBglIIAIANIqK/27fQf0sKZgoBAFajFAIAYAO332b2/lzMFAIALEYpBADABv5bUvhzc/VRAIDFKIUAANjAfZ9S6PJ4LB4JACDUUQoBALCB/5YU/sIjm1o8EgBAqKMUAgBgg/vNFIYzUwgAsBilEAAAG9zvnEJmCgEAVqMUAgBgA3f0va8+Gh7JTCEAwFqUQgAAbHDf5aPMFAIALEYpBADABvddPso5hQAAi1EKAQCwATOFAIBgQSkEAMAGETH3PqeQfQoBAFajFAIAYIPwpk0V5rr7z3B4ZKQNowEAhDJKIQAANggLC7trCamrSROFhYXZNCIAQKgKqlJ45MgRjR07Vn369FFaWpqmT5+uS5cuBTznT3/6k55++ml1795dY8aM0enTp20aLQAA30/tUsgsIQDADkFTCi9cuKCsrCzt3r1bjz76qGJiYrR161aNHz9e1dXVkqSPPvpI77//vqqrq5WUlKS9e/dq3LhxunHjhs2jBwCg/iJq7VUY7qEUAgCsFzSl8NNPP1V5ebmGDRumVatWafPmzWrTpo0KCwt1+PBhSdLSpUslSYsXL9b69es1YMAAFRcXa8eOHTaOHACAhmGmEAAQDNx2D8Bn4MCBat68uRITEyVJTZo0UbNmzXTx4kWVlpbq8uXLKioqUlRUlLp37y5J6t+/v/bs2aODBw8qIyPDzuEDAFBvtfcqpBQCAOwQNKUwOTlZycnJxv39+/ersLBQLpdLPXr00IULFyRJ8fHxxnN8t32PAQDgJO7o2qWQPQoBANazrBSuX79eM2bMuO/jO3fuVEJCgiSpoKBAU6ZMkSRlZmaqTZs2Ki4uliS53d8N2Xe7qqrqgcdv3jxKbnd4g8ffUC1b3nsfKpiHzBsXeVqPzK1jd9YxDzcPuO+JibJ9TGb7b//5ggU5W4/M7UHujcOyUujxeAJm+WoLD79T2PLz8zV27FiVlZWpW7dumjlzpqQ7y0kl6datW8ZrampqJEmRdVhuc/VqZUOH3mAtW8aqpOQby48bysi8cZGn9cjcOsGQ9S134Eb1XncT28dkpmDIPBSQs/XI3B7kXn/3K9GWlcKMjIwHnvd34sSJgEK4ZMkSRUdHS5Jat24tSSorKzOe77vdtm1bU8YMAICZImIC/zi7PJ77PBMAAPMEzdVHKyoqNHHiRJWVlalLly5aunRpwMxi69at1aZNG1VUVCgvL0+S9OWXX0qSevfubceQAQD4Xu6++ijnFAIArBc0F5pZuXKlioqKJN05V/CNN94wHnvttdfUt29fjRo1SnPnzlVWVpbatWun/Px8JSQkaNCgQXYNGwCABnPH1N6nkJlCAID1gqYUfvbZZ8btvLw8YzZQktLT0yVJWVlZunnzplauXKnjx4+rX79++s1vfiMPf0QBAA5095YUzBQCAKwXNKVwzZo1D3xOWFiYJk6cqIkTJ1owIgAAzHX3lhR8yAkAsF7QnFMIAECoYfN6AEAwoBQCAGCTuy4046EUAgCsRykEAMAmd199lFIIALAepRAAAJtE1Dqn0MVMIQDABpRCAABsEhEbF3CfmUIAgB0ohQAA2ITlowCAYEApBADAJi63O6AIUgoBAHagFAIAYCP/vQrDPexTCACwHqUQAAAb+S8hDY9sauNIAAChilIIAICN/DewZ6YQAGAHSiEAADZq0esJSXcKYVxyF5tHAwAIRW67BwAAQCjr+b//p/huqXro8SfkadHC7uEAAEIQpRAAABs1adZMSa+Ns3sYAIAQxvJRAAAAAAhhlEIAAAAACGGUQgAAAAAIYZRCAAAAAAhhlEIAAAAACGGUQgAAAAAIYZRCAAAAAAhhlEIAAAAACGGUQgAAAAAIYZRCAAAAAAhhlEIAAAAACGGUQgAAAAAIYZRCAAAAAAhhlEIAAAAACGGUQgAAAAAIYZRCAAAAAAhhlEIAAAAACGFhXq/Xa/cgAAAAAAD2YKYQAAAAAEIYpRAAAAAAQhilEAAAAABCGKUQAAAAAEIYpRAAAAAAQhilEAAAAABCWMiVwpKSEs2YMUMDBw7UE088oVGjRumrr74yHt+5c6d+/OMfKzU1VRkZGdq1a1fA648cOaKxY8eqT58+SktL0/Tp03Xp0qW7jlNTU6P09HSlpKTo4sWLDxxXbm6uMjMzlZqaqkGDBmndunX3fF5RUZFSU1M1ZMiQ+v3gNnNq7mfOnNHUqVPVv39/9evXTxMmTNCpU6caFkIjcmqeJ0+e1Pjx4/X444/rmWee0dtvv63KysqGhWAxp2bub/bs2UpJSVFOTk7df3CLOTXn3bt3KyUl5a6vPXv2NCwIizk1d6/Xq8WLF2vQoEHq2bOnXn75ZeXl5TUsBAs4MeecnJx7/m4H+39LfJyYuXTn/cfPfvYz9evXT/369dOkSZN09uzZhoVgMadn3rdvX/Xv31+zZ89WVVVVw0JwoJDap/D27dv66U9/qsOHD6tjx46Kj4/XoUOHFBUVpU2bNqmyslIjRoxQWFiYUlNTlZeXJ6/Xqw0bNig5OVkXLlzQ8OHDVV5erl69eunq1as6c+aMUlJS9Mknn6hJkyaSpOrqav3qV7/Stm3bJEmff/652rRpc99xff3113r++edVWVmpHj16qLCwUNevX9eiRYv0zDPPGM+7dOmSsrKydPz4cXXo0EGfffaZuYE1Eqfm/u2332r48OEqLi5W165d5fV6dezYMbVs2VJbtmxRfHy8FfHdxal5VlZWaujQoSopKVHPnj1VUlKi8+fPa8iQIVqwYIEl2TWUUzP3989//lOjRo3S7du3NWXKFE2dOtW8wBrIyTkvXrxYc+fOVbdu3QK+17Rp09SlSxcTU/v+nJz7/Pnz9ec//1nx8fFKTEzUgQMH9NBDD+lvf/ub4uLizA+vHpya89atW7V169aA1+zevVtVVVXKycnR0KFDzQvte3Jq5tXV1crIyFBRUZESExMVGRmp/Px8de7cWZs3b5bb7bYkv4ZwauZlZWXKyMjQ5cuX9eSTT+rkyZMqLS3V4MGD9cc//tGS7OwWUjOFR48e1eHDh5WQkKCtW7dq9erVxi/I5s2b9eGHH6qmpkavv/66Vq1apcmTJ6umpkYrVqyQJH366acqLy/XsGHDtGrVKm3evFlt2rRRYWGhDh8+LEnas2ePMjMzjV/Suvjkk0/07bff6pVXXtHq1av11ltvSZKWLVtmPOejjz7SsGHDdPz48UZMxBpOzX337t0qLi5Wnz59tHHjRm3atMkoM7U/1bKSU/M8dOiQvvnmGw0ZMkRr1qzRqlWrJEk7duxQRUVFY0bU6JyauU9VVZVmzZql27dvN1Ii5nByzgUFBZKkX/7yl1q4cKHxFeyFUHJu7uXl5frggw/kcrn08ccfa+XKlUpPT1dERISOHDnSyCl9f07NOSMjI+B3+qWXXlJVVZUyMzODuhBKzs385MmTKioqUkJCgv76179q/fr1evLJJ3Xq1CmdOHGikVNqXE7NfOPGjbp8+bJGjhypFStWaOPGjYqKitKOHTuUn5/fyCkFp+D9qMEErVq10rx58+TxeIxPWR5++GFJ0tWrV5WbmytJ6tu3rySpf//+kqSDBw9KkgYOHKjmzZsrMTFRktSkSRM1a9ZMFy9eVGlpqSRpxYoVOn36tKZPn6558+bVaVwPOq5059PQ8PBwjR8/XosWLWpgAvZwau6PPfaY5s6dq5YtWxqveeihh4xx28WpeQ4YMEAHDx7U9evXJUmXL1+WJEVHRxuf/AUrp2buM3/+fJ05c0Zdu3Y1ykswcnLOR48elXTnQ47Vq1crKSlJo0ePVkxMTEOisJRTc9+/f79u3rypTp06qXPnzpKkP/zhDw2NwXROzdnf9evX9dZbbykmJka/+MUv6pmA9ZyaeXx8vMLCwiTJ+Nfr9SosLCzo/5vi1Mz//e9/S5KSkpIkSa1bt1ZKSooOHjyovXv3qlu3bg3Kw0lCrhRmZGQY90tLS41PGR5//HFjbbFvWaDvX9865eTkZCUnJxuv379/vwoLC+VyudSjRw9J0o9+9CNlZ2erU6dOdf5F9X3/2setqKjQN998o9jYWE2dOlXDhw9XYWGhI0uhE3Nv37692rdvbzz/9OnT+sc//mGM2y5OzTM2NlYul0vR0dF69913tWbNGnk8Hr399tuKiIiofxAWcnLmubm5Wr58udLT05WUlBT0pdCJObvdbp05c0aS9OGHHxqv2759u9auXcvvt8zJ3Xd+VXR0tH7+859r586d6ty5s2bNmqUnnniinimYz6k5x8bGGs9dv369zp07p3HjxhkfkgYzp2betm1bZWdna/78+Ro2bJixfHTChAlKSEiofxAWcnLmkoxzkisrK1VUVCRJOn/+fJ1/ficLqeWj/q5du6Zx48bpypUrSkxMVHp6unEyqe8PuO8TDt/Mhr+CggJNmTJFkpSZmWmsYx42bJg6depUr7H4jus7nv8bCN+xx4wZY9s5bI3Jabn7nD9/XuPGjVN1dbWeeuop9erVq17HMotT89y5c6cqKysVHx+vW7du1es4dnNS5jdu3NDMmTMVGxurN998s17f225OyvnatWt69tlnNXjwYG3fvl07duxQx44dVVBQoDVr1tTrWHZzUu6+4+fl5Wnfvn3q2rWr8vPzNW7cuDpddMJOTsrZx+v1asWKFXK5XBo5cmS9jhEMnJZ5TU2NJOnEiRPKy8tTZGSkMePmFE7KfPjw4YqKitLatWv18ssv64UXXtCVK1cCXvvfLqRmCn3Kyso0duxY5efnq1mzZvr973+viIgIeTweXb9+3fg/ou/fpk2bBrw+Pz9fY8eOVVlZmbp166aZM2fW+djLly/X3r17jfujRo2Sx+ORJOPN8c2bN43Hax/byZyae3FxsUaPHq1z586pXbt2mjNnTj1/cnM4NU/pzqfNJSUlGjlypLKzs9WxY0d17969Hj+9PZyW+fvvv6/Tp0/rvffec9SbCaflHBsbq4ULFwZ8n5deeklz5sxRbm6uXn311Xr89PZxWu6+x91ut9atW6fWrVtr5syZWrdunTZt2qQJEyY0IAXzOS1nn6+++kqnTp1Sr169jFkVp3Ba5rm5uZo3b54eeeQRLVmyRF6vV1lZWZo9e7bat2+vH/7whw3KwUpOyzw2NlZ/+ctf9Nvf/lbHjx/XgAEDlJSUpF27dv1XvRf/T0JuprCiokJZWVnKz89XfHy8li5daqwfbtWqlaQ7J69Ld36hJQVczejEiRMBv6RLlixRdHR0nY9/9OhR7dy50/i6cOHCfY8bExMTsGzDyZya+9dff60xY8bo3LlzSkhI0PLly43X2cmpeZaWlqq8vFxxcXFKTEzUgAED5PV6tW/fvoaHYREnZv73v/9dkvTGG28oJSXFuMrrggUL9NxzzzUwCXM5MeeKigr961//CtiuxneerO8NT7BzYu6+YhIfH6/WrVtLkvHhUrDOFDoxZ5/du3dL0l1XNg52Tsz8wIEDkqTBgwcrISFB7du31+DBgyV9979DMHNi5tKd5a1r167VgQMHlJOTo+rqaklShw4dGpiEs4RcKZw1a5by8vIUGxurZcuW6bHHHjMe861V9r1B/fLLLyXJODehoqJCEydOVFlZmbp06aKlS5fWe0nne++9p8LCQuMrMzPzvsft3bt3w3/QIOPE3G/duqVp06apuLhYbdu21YoVK4JmLb8T81y2bJmeeuop44pfN2/eNM5vc8IslhMzT0tL06BBg4wv33KbTp06KS0trSExmM6JOe/Zs0cvvviiJk+erOrqanm9Xn3++eeS7D3/uD6cmHufPn3kcrl05coV48rcJ0+elBS8b+KcmLOP73EnrOrw58TMmzVrJunOfn2+neOOHTsmSQEXvwtWTsz8iy++0KBBgzRt2jRJd/ZaPHTokKQ7F78JBSG1T+Hhw4f1k5/8RJLUrl27gEuFp6WlqVu3bnrllVcUHh5u7J0iSRs2bFBSUpIWLVqk3/3ud5Kk1NRU45NJSXrttdeMKxr5pKSkSHrw3inFxcV64YUXdOPGDfXs2VPHjh3T9evXtXjxYj399NMBz923b59Gjx7tqH0KnZr7tm3b9Prrr0uSHn30UT3yyCPGa1988UU9//zz3yeWBnNqniUlJRo+fLiuXLmiHj166Nq1azpz5ow6duyojRs3BvXyDKdmXltOTo4WLFgQtPsUOjXnGzduaMSIEcYestHR0SooKNAPfvADbdmypV6fcNvBqblL0ptvvqnVq1crLi5OXbp00f79+xUfH69t27apRYsWjZBO43FyztKdWauzZ89q165djlk+6tTM/ffMS05Olsvl0rFjxxQbG6stW7b8x+9tNydnPnToUJWXl6t37946e/asSkpKNGLECL3zzjuNE06QC6lzCrdv327cPnfunM6dO2fcb968uV599VXl5ORo/vz5ysvLU4cOHZSdnW1MefuXsLy8POMXWZLS09MbPK6EhAR98MEHeuedd5SXl6dWrVpp0qRJ93xT50ROzd3/uCdOnAjYGyg1NbXBx/2+nJpny5YttXz5cs2dO1e5ubnyeDzKzMxUdnZ2UBdCybmZO41Tc/Z4PFq8eLHmzJmjL774QpcvX9azzz6rWbNmBX0hlJybuyT9+te/VlxcnDZs2KCjR48qLS1NM2bMCLpCKDk7Z0nGRTeaN2/e4GNZzamZx8fH6+OPP9a8efO0b98+1dTUKC0tTdnZ2UFdCCVnZ75w4UK9++67ys/PV4sWLTR58mRNmjSpwcd0mpCaKQQAAAAABAq5cwoBAAAAAN+hFAIAAABACKMUAgAAAEAIoxQCAAAAQAijFAIAAABACKMUAgAAAEAIoxQCAAAAQAijFAIAAABACKMUAgAAAEAI+38yUEzhZDXcngAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from quantreo.portfolio import *\n", + "data = res.dropna().loc[\"2020-01\":\"2021-01\"]\n", + "val = res.dropna().loc[\"2021-01\":]\n", + "\n", + "X = optimization_portfolio(MV_criterion, data)\n", + "\n", + "print(np.round(X,3))\n", + "\n", + "spread = 0.00035\n", + "low_portfolio = np.multiply(low_assets,np.transpose(X)).sum(axis=1)\n", + "high_portfolio = np.multiply(high_assets,np.transpose(X)).sum(axis=1)\n", + "\n", + "\n", + "# Compute the cumulative return of the portfolio (CM)\n", + "portfolio_return_test = np.multiply(data,np.transpose(X)).sum(axis=1)\n", + "portfolio_return_MV = np.multiply(val,np.transpose(X)).sum(axis=1)\n", + "\n", + "from Backtest import *\n", + "import yfinance as yf\n", + "backtest_dynamic_portfolio(portfolio_return_MV)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 14.3.1. Optimal take profit" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sharpe
0.5000005.104012
0.8275865.454733
1.1551725.896520
1.4827596.471672
1.8103456.460114
2.1379317.026310
2.4655176.685002
2.7931035.754480
3.1206905.696021
3.4482766.066583
3.7758626.282718
4.1034486.077587
4.4310346.211205
4.7586216.336364
5.0862076.217365
5.4137936.324012
5.7413796.456680
6.0689666.288717
6.3965526.324227
6.7241386.437504
7.0517246.517112
7.3793106.556839
7.7068976.667520
8.0344836.819133
8.3620696.970746
8.6896556.830832
9.0172416.736185
9.3448286.517918
9.6724146.600616
10.0000006.583894
\n", + "
" + ], + "text/plain": [ + " Sharpe\n", + "0.500000 5.104012\n", + "0.827586 5.454733\n", + "1.155172 5.896520\n", + "1.482759 6.471672\n", + "1.810345 6.460114\n", + "2.137931 7.026310\n", + "2.465517 6.685002\n", + "2.793103 5.754480\n", + "3.120690 5.696021\n", + "3.448276 6.066583\n", + "3.775862 6.282718\n", + "4.103448 6.077587\n", + "4.431034 6.211205\n", + "4.758621 6.336364\n", + "5.086207 6.217365\n", + "5.413793 6.324012\n", + "5.741379 6.456680\n", + "6.068966 6.288717\n", + "6.396552 6.324227\n", + "6.724138 6.437504\n", + "7.051724 6.517112\n", + "7.379310 6.556839\n", + "7.706897 6.667520\n", + "8.034483 6.819133\n", + "8.362069 6.970746\n", + "8.689655 6.830832\n", + "9.017241 6.736185\n", + "9.344828 6.517918\n", + "9.672414 6.600616\n", + "10.000000 6.583894" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def find_best_tp(tp):\n", + " tp = tp/100\n", + " \n", + " # Create the portfolio\n", + " pf = pd.concat((low_portfolio, portfolio_return_test,high_portfolio), axis=1).dropna()-spread\n", + " pf.columns = [\"low\", \"Return\", \"high\"]\n", + "\n", + " # Apply the tp\n", + " pf[\"Return\"] = np.where(pf[\"high\"].values>tp, tp, pf[\"Return\"].values)\n", + " pf[\"Return\"] = np.where(pf[\"Return\"].values>tp, tp, pf[\"Return\"].values)\n", + " down = pf[\"Return\"].values\n", + " down = down[down<0]\n", + " \n", + " # Return sharpe raatio\n", + " return np.sqrt(252)*pf[\"Return\"].mean()/down.std()\n", + "\n", + "pd.DataFrame([find_best_tp(tp) for tp in np.linspace(0.5,10,30)], index=np.linspace(0.5,10,30), columns=[\"Sharpe\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[*********************100%***********************] 1 of 1 completed\n", + "\n", + " -----------------------------------------------------------------------------\n", + " Beta: -0.103 \t Alpha: 49.44 %\t Sharpe: 1.573 \t Sortino: 2.139\n", + " -----------------------------------------------------------------------------\n", + " VaR: 26.09 %\t cVaR: 38.18 % \t VaR/cVaR: 1.463 \t drawdown: 10.1 %\n", + " -----------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAAHnCAYAAAAM6DS1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAD6QUlEQVR4nOzdd3RU5dYG8GcmM+m9916AhN4RpEsRVOxi7yjWey34Wa9e671W1GtvWLEg0hEQRXqHACGFFNJ7zySZ8v0xyck5qZNMTfL81nI55cyZNycos2fvd2+ZTqfTgYiIiIiIiAYkubUXQERERERERObDoI+IiIiIiGgAY9BHREREREQ0gDHoIyIiIiIiGsAY9BEREREREQ1gDPqIiIiIiIgGMAZ9RESDWFNTEz799FNcdtllGD16NKZMmYJly5bh5MmTkuMSEhKwdu3aTs8hfm7//v1ISEhAUlISampqOhxbXFyMoUOHYtiwYcJjN954I5588slOz93+ua7WsWLFCiQkJHT5z6xZs4RjS0pKMGzYMCxcuLDDe3V3jhtvvFF4r1tuuUW4PW3aNGi12k7X/8QTT2Dx4sU9nn/06NGdvr6r1w0fPhyzZ8/Gm2++CY1GIxw7a9asLt9j0aJFvfo5Z82ahffff7/TNYmfy83N7XCOIUOGYMyYMbjmmmuwe/du4XWtfz5ef/31DudsPc+hQ4e6vBZERNQ3CmsvgIiIrKOhoQE33XQTKioq8MADD2DkyJGoq6vDV199heuvvx4fffQRJk2a1Ofzb9++HZdddpnksc2bN0On00Emkxm5eqknn3wS//znPwEABQUFuOqqq/D+++9jxIgRAAA7Ozvh2LVr1yIsLAwZGRk4dOgQxo0bBwBYuXIlmpubAQBHjx7F/fffjzVr1sDPzw8AoFQqO7zvFVdcgTVr1uDgwYOYOHGi5DmVSoUtW7bggQceEB5btGgRVqxY0eE8cnn338G2f11NTQ22bNmCt956Cy4uLrjrrruE5+68807cfPPNHc6hUCj6/HMaQny9dTod8vPz8cYbb+Cee+7Bpk2bEBISIhz76aefYt68eUhKSurTexERUe8w6CMiGqTeeustZGVlYf369QgICBAef+WVV1BWVoYXXngB69ev71OANmnSJGzZsqVD0Ldp0yaMHTsWR48eNXb5Em5ubnBzcwMANDY2AgA8PDyEQEbs119/xcKFC7Fz50788MMPQtDn6ekpHOPh4QEA8Pb27vQcrcaNG4fw8HBs2LChQ9C3bds2NDU14ZJLLhEec3R07PZ8XWn/Oj8/P9xzzz3Yt28fNm3aJAn6nJ2du32Pvvychmh/vf39/fHqq69ixowZ2L59O2666SbhueDgYDzxxBP45Zdf+hxkEhGR4VjeSUQ0CDU1NeGXX37BlVdeKQn4Wj3zzDN4/fXX+5yRmz9/Pnbv3o3a2lrhsaKiIiQnJ2Pu3Ll9XrexTpw4gbS0NEyZMgUXXXQRtmzZgqqqqj6fTyaTYcmSJdiyZYuQPWu1du1azJw5E97e3sYuu0v29vZCBs8W2dvbA0CHNT777LPIzMzEBx98YI1lERENOgz6iIgGofPnz6O6uhojR47s9PmwsDAMGTKkz+efNGkSnJyc8OeffwqPbdq0CVOmTIG7u3ufz2usNWvWwNfXF2PHjsWCBQvQ2NiIX3/91ahzLlmyBNXV1ZK9a2VlZdizZw+uuOIKI1fcuaamJqxduxa7d+8W9gzamtZssbOzM2bPni15Li4uDvfccw8+/PBDnD171korJCIaPGz360EiIjKb6upqADBbAKZQKDBnzhxs2bIFF198MQB90Hfdddd12fTE3JqamrBx40YsXLgQcrkckZGRSExMxOrVqzvdA2eooKAgTJ48GevXr8eMGTMAAOvWrYOXlxemTZsmOfbXX3/Fxo0bO5zjpptuwsMPP9zle7R/nUqlQkREBJ544gnccMMNkmPff/99fPzxxx3OsWLFClxzzTW9+dF65fbbbxf2Jmo0Guh0OowdOxbffPNNp9nku+++G7///jueeOIJ/Pjjj2ZbFxERMegjIhqUvLy8AACVlZUGHa9QKKDT6To83hrAdbYva/78+bj//vvR0NCAyspKnDlzBnPmzMHWrVs7nLurQFCr1ZqsfHH79u2orKzE/PnzhccWLFiA//73v5KGLn1x+eWX4+mnn0ZDQwOcnJzw22+/4bLLLpM0kAGAOXPm4B//+EeH1/cUfLe+TqvV4tChQ3j11VcxZ84codOm2PXXX4+lS5d2eLy3Zaa9/b28/PLLSExMRENDAz777DPs3bsX9957r6RTa/vzv/TSS7jqqqvw6aefduimSkREpsOgj4hoEAoPD4ePjw+OHz/e6Yft/fv34/PPP8fzzz8Pf39/uLu7S/bntWrdD9faEERs8uTJcHBwwJ9//omCggJMmzYNrq6uHY5zd3dHXV1dp+usrq6WNB4xxpo1awAAt956q/BYayC7evVqo4K+uXPn4l//+hf++OMPJCQk4NSpU52OJXB1dUVERESvzy9+XVRUFNzc3PDggw/C3d1d0sQF0P8u+vIe7XX3e6mqqurwe/H39xfe99VXX8U999yDZcuW4ZdffkFkZGSn5xk2bBjuuOMOvPvuu0aVExMRUfe4p4+IaBCSy+VYsmQJfv75ZxQVFUme0+l0+Oijj5CZmSl0Y0xMTMThw4c7nOfw4cOQy+WdZnMUCgVmz56NrVu3YsuWLV1mchITE3HixIkOjVDKy8uRmZmJ4cOH9/XHFJSUlODvv//G0qVL8euvvwr/rF27FlOnTsXmzZuNauji4OCAhQsXYvPmzVi/fj3GjBmDqKgoo9fdlfnz52PRokV45513zLYnLjExEUeOHOnweEpKCurr67v9vchkMvz73/+GUqnEihUrOs0St1q+fDnCwsLw/PPPm2TdRETUEYM+IqJB6t5770VoaCiWLl2K9evX4/z58zh69CgeeOABHDx4EC+++KLQvfO2227Dli1b8OabbyIjIwOZmZn47bff8Pzzz2Pp0qVCuWh78+fPxx9//IGzZ89i5syZnR5zxRVXoKGhAQ8//DBOnDiB3Nxc7N69G/fccw9iY2OFfXKtzp49i7/++kvyT0pKSrc/69q1a6HT6XDHHXcgPj5e8s8dd9yBxsbGLofPG+qKK67Arl27sGnTpi4buKhUKpSUlHT6j1qt7tX7Pfnkk3BxccHTTz8tKcOsr6/v8j26C77au/HGG3H69Gk888wzSElJQU5ODrZt24aHH34YM2fOxNChQ7t9va+vLx577DEcPXoU3377bZfH2dvb46WXXkJeXp7BayMiot5heScR0SDl4uKCr7/+Gh9//DHeffddFBQUwM3NDSNHjsQPP/wg+VA/ZcoUfPjhh/joo4/w7bfforGxEaGhobj55psl5ZLtTZ48Gfb29pg4cSKcnZ07PcbHxwc//PAD3nrrLSxbtgzV1dXw9fXFrFmz8NBDD3XYO/bpp5/i008/lTy2ePFi/Pe//+1yHb/++itmzJghGRAuXuOQIUOwevVqySy53hoxYgRCQkKQl5eHBQsWdHrM+vXrsX79+k6f++mnn3qV1fT29sYTTzyBxx9/HF9//bWw9o8//rjTRi4AsHfvXoP39sXGxuKbb77Bu+++i5tvvhn19fUIDAzEwoULsXz5coPOccUVV2DdunV44403OnTwFBs5ciRuueUWfPbZZwadl4iIekem683XfkRERERERNSvsLyTiIiIiIhoAGPQR0RERERENIAx6CMiIiIiIhrAGPQRERERERENYAz6iIiIiIiIBrABMbKhpKTG4u/p5eWMiop6i7/vYMfrblq8ntbB624ZvM7WwetuGbzO1sHrbh287obx83Pr8jlm+vpIobCz9hIGJV530+L1tA5ed8vgdbYOXnfL4HW2Dl536+B1Nx6DPiIiIiIiogGMQR8REREREdEAxqCPiIiIiIhoAGPQR0RERERENIAx6CMiIiIiIhrAGPQRERERERENYAz6iIiIiIiIBjAGfURERERENCDodDq8997buPLKxZgzZyruuusWpKScQVlZKdas+alX58rLy8XmzRvMtFLLYtBHREREREQDwoED+/Ddd6vwyCNP4LvvfoGrqytefvl5fPjhe9i0aX2vzvXKKy9g796/zbRSy1JYewFERERERDSwfLDtFP678RjqGtUmO6eLgwKPLByFZXMSuz7GxRUA8N13qzBz5hw88sgTyM/Pw0MP3QsAuO++u7Bw4WK88cariIuLh0qlwosv/gdPP70C586lw9XVDffccz8A4OjRwwAAe3sHPPjgI3jxxedw6NABhIWFYcWKpxEfPwR79/6N119/Fc3NzZg4cTI2blyHb775CTfeeDX+9a+XMHPmHLz99us4eHAfvv76R5Ndi95ipo+IiIiIiEzqgx2nTBrwAUBdoxof7DjV7TFJScPx2GNPoqioCP/978u45prLcPjwQcyZMw9DhgzDa6+9BQBQqVS4/PKr8fLLr6OoqBBTpkzF99+vQVxcPH799WfMnTsfw4ePxPTpM/HPf67AqlWfIyMjDV988S0mTpyCF1/8F7RaLf7972cxatQYfPTRFygrKwMABAYGYdy4idi2bQu0Wi3++GMbFi5cbNJr0VsM+oiIiIiIyKSWzUqEi4NpiwpdHBRYNqvrLB8ApKenwdPTC99//wt++mk9Lr74Eqxa9Tmqq6shl8vh7OwsHDtp0gUIDAyCi4sLTpw4jtdeewnl5eVoamqCUqmEnZ0dFAoFHB0dkZGRhqKiQtx++w346afvkZGRhuLiIlRVVeHCC2ciICAQU6deKJz7kksuw969e7Bnzy5UVJRj/vyLTXoteovlnUREREREZFLL5iR2W4bZG35+bigpqTHo2NTUFLz66r/xwguvIjExCS4uLnBwcICfnx9KSopQUVEuHGtvbw8A+PzzT9DUpMJjjz2PV155AdXV1QAAOzs71NbWoaqqEhERkTh/PgePPPIEkpNPoKqqCt7ePvDw8MDff/+JhIQh2LVrp3DuqVOnw9XVFf/97yuYPPkCeHv7mORa9BUzfURERERENCAsWLAI1113I15//RVcccUi7Nu3B8899yImTJiEwsJCvPDCMx1eM2fOPOTkZOPOO2+GXC5HSUkx1Go1Jk26AMePH8EHH7yLm2++HTExcXjyycfw229rkJAwBPb29njqqX/h8OGDuOee24Usolwuh0KhwIIFi1BaWoKLL77E0pehA5lOp9NZexHGMjTyN6XefONApsPrblq8ntbB624ZvM7WwetuGbzO1sHrbh22fN3/+9+XERAQhIsumo8vv/wUf/31B9av34ba2lq8887r2L9/D37+eQMUCvMXWPr5uXX5HMs7iYiIiIiI+mDIkGH4/POP8dlnH8LPzx+PPPIEAODWW69HQ0M9HnlkhUUCvp5YfwVERERERGZWVqvCk6v3Q63R4aqJ0ZiTFAo7OXc6kXEWLboUixZd2uHxH39ca4XVdI1BHxERERENeF/uOou1h7MAABuOZSPEywV3zhqKO2YMZfBHAx7/hBMRERHRgHfyfJnkfl5FHZ77+RB+PnDOSisishwGfUREREQ04KUVVgm3ne3bit32ZxRbYzlEFsWgj4iIiIgGtCa1Blmi7o/v3TJNuJ2SX2GNJRFZFIM+IiIiIrJZTWoN1h3JwuHMkj6fI7O4GhqtfkpZqLcLxkT6Cc+l5FdCq+33E8yoxZEjhzB16jjhnzlzpuLf/34WarXaJOe/77678OyzT5jkXJ3ZuHEdpk4dh8bGRpOel0EfEREREdmsT/44g7s+/ROLX9+Is33MyolLO+MCPeHn7ghvVwcAQH2TGrnltSZZK9mOjz/+Eps2/YF///s1bN68Afv27bb2kqyK3TuJiIiIyGZtP5UHANDpgL9TC5EQ7NXrc6QWtQV98YEekMlkGBLkhT1phQCAM/kVCPfterA19d6Hp/bgjeM7UaduMtk5XRT2+MfIGbg7cUqPxzo7u8DNzQ3u7u4AACcnZ/z00/f46qvPAQDXXnsDli69ERs3rsNbb/0X8+cvxNatmxAdHYtXX30Tjo6O+O9/X8aff/4BhUKBpUtvwtKlNwIACgsLceedNyE3Nxc33HAzrr/+Ztx3311wcHBEaWkxysvLceONt2DLlk0oKirA7bcvw5IlV2L9+rX4+OP3UVVVhejoGLz00uvIz8/FAw8sw9ixE5CVlYFbb70LANDYqMKDD94DjUaDt956Dy4urkZdO2b6iIiIiMhmpRVWCrdzyvqWkUuXZPo8AABDgz2Fx1LyK0Gm9dHpPSYN+ACgTt2Ej07vMejYO++8GfPmTcfdd9+KkSNHw8PDE2+//ToefPCfeO21N/HJJ//D2bMpAID6+jrExsbjuedewokTx3DgwF789tsa7NixDStXfoB7730Ayckn0NDQAAAoKSnGU089j5kzZ+OLLz4R3jMr6xxeeOFVhIWF4+OPP8Bjjz2JsWPH45tvvgQAVFdXY/nyh/Hxx1/h3LkM7Nv3t/Da8eMn4H//+wz29vYAgGeeeQK1tbV4/fWVRgd8ADN9RERERGSjKuoaUVKjEu5nl9Z0c3TXUgsqhdtxgZ4AIMkYspmL6d01bIpZMn13Des5ywcAL730HwQHh6CkpARPPvkInnvu/6DT6fDaay9CJpOhubkZycnH4eTkDACYO3c+5HIZAKCxsRGZmecQGhqKuLgExMUlYOHCxcK5ExOHIyIiEvHxCfjttzXC48OGJSE8PAIhIaFoampCQsIQhIdH4ujRIwAAhcIOa9b8CF9fPygUCjQ1tV2biRMnIzg4BMeO6Y89dSoZzs5OsLMzTY6OQR8RERER2STxXjwAON+HTJ9Gq0VGcbVwv9NMnygoJNO4O3GKQWWYhvDzc0NJSe8CfhcXF7i5uUOtVsPOToHw8EhkZWXizjvvQUBAILZt24IRI0YhLS0VACCXS4Or6OgYbN68HmfPpiA7OwtffPEx3n33o5ZjZZ2+p/jx9uerra3FO++8gfvvfxhDhgzD33//CZ2urYGQvb2D5PjPP/8GDz98Hz777CPcf/8/evWzd4ZBHxERERHZJHFpJ6DP9Ol0OshknX/o7kxueR1UzRoAgJ+bI7xc9B+uE4I8hWPSC6vQpNbAXmFn9JrJNtx5580AADs7OyQkDMXy5Q9i1KjR+Oabr1BTU41p02YgIiJKCPraW7z4MqSknMaDDy6DUmmP66+/Cd7ePn1ej4uLC2bPvggffvg+wsLCEBAQiPz8PMTFJXR6vJ+fP+6770E888wTuPjiSxEdHdPn9wYAmU4cYvZTvY38TaEv3ziQ8XjdTYvX0zp43S2D19k6eN0tY7Bc5+d+PogPd5yWPJb86jXwcXU0+BzbknNx4/+2AwCmxAXi54fmCc+Nf/on5JbXAQD+ePISDOmhScxgue62htfdMH5+XTcjYiMXIiIiIrJJ7cs7ASCnl/v6xNnC1tLOVkMk+/oqQTRQMegjIiIiIpuU2q68E+h9B8/Ugo6dO1sNEe3rO8NmLjSAMegjIiIiIptT39gslF6KZZf2LuhLK+om6Atqy/SdZaaPBjAGfURERERkc9KLqjt9PKfM8PJOnU4nKe+MbxnX0GpoSNt9ZvpoILNK0PfFF18gISEBK1asEB7bvn07Fi5ciKSkJFx88cXYuXOnNZZGRERERDZAvJ/P2b6t4XxOLzJ9xdUNqG5oBgC4OSoR4OEkeT7G3wN2LW32c8pqUadqNmbJRDbL4kFfdnY23nzzTcljKSkpeOCBB5CTk4OkpCRkZ2dj+fLlSE3tvIUqEREREQ1saUWVwu1pQ4KE273J9IkDx7hAjw6jHhyUdojxdxfun+W8PhqgLBr06XQ6/N///R9UKpXk8VWrVkGtVuPhhx/G999/j+XLl0OtVuPrr7+25PKIiIiIyEaIG7DMGhYi3M4rr4NaozXwHJXC7fb7+VqJO3iyxJMGKosGfatWrcKhQ4cwdOhQyeNHjhwBAEyYMAEAMGnSJADA0aNHLbk8IiIiIrIR4izdiHAf+LvrSzPVWh0KKusNOsfG4znCbfEwdrHEUG/h9q+HMvuwUiLbZ7Gg7/z583jzzTcxYsQIXH/99ZLnCgsLAQCenp6Sf7c+TkRERESDR7NGi6yStkYucQEeCPdxFe4bUuJ5IKMYu1P1nyXt5DIsGh3Z6XFLxkUJ+/r+Ti3EsexSI1ZOZJssEvS1lnU2NzfjxRdfhJ2dneT51nJPpVIJAFAo9Jt1GxoaLLE8IiIiIrIhmSXVUGt1AIBgLxe4OCoR7usmPG/I2Ia3N58Qbl85IRphoqBRLMzHFZeMiRTuv/97ch9XbX6lNSocySyBTqez9lKon1H0fIjxvv32Wxw4cAD3338/4uPjkZws/Y/JwcEBDQ0NUKvVACD828nJqcO5OuPl5QyFwq7nA03Mz8+t54PI5HjdTYvX0zp43S2D19k6Bvt1Ty+sxJFzJZg/KgLuzvZme5+BfJ3/Plcs3E4K94GfnxuGhHkDB88BAEobmrr9+Y+cK8aO03kAAJkMeObaSd0e/+TVE7CmpbRzw7EcVGk0iG033qGVta57ea0K8576CfkVdXji8nF44dpJVlmHtQzkP++WYJGgb/PmzQCAlStXYuXKlcLja9aswZo1axAREYHs7GxUVVUhNDQUlZWVAIDAwECDzl9RYVhdtyn5+bmhpMTw7lFkGrzupsXraR287pbB62wdg/26V9U3YeIzP6OqoQnBXi5484YpuHBIsMnfZ6Bf54NnC4TbEd4uKCmpgZ8ogE7JKev253/u+33C7UvGRMJbqej2+BAXR0wfGow/z+RDq9Ph5R8P4pVOgiprXvfP/0xBfoV+WP3q3al4YHaiVdZhDQP9z7updBcYW6S8c8yYMZg9e7bwz7BhwwAAQUFBmD17NkaMGAEA2L9/PwDgwIEDAICxY8daYnlEREREJnEosxhVDU0AgPyKOlyz8nes+H4f6hs5/603TpwvE27HtWTcwn3aPtDmlHVd3nk2vwIbj7U1cHlg3nCD3nP5nCTh9g/70iWNZGzBr4fbmszklNYa3MGUgOqGJuxNK0ShgQ2ABiKLZPoefvhhyf1ffvkFTzzxBCZNmoRXXnkFx44dw4YNG/DGG29g69atSE5OhlKp7NDwhYiIiMiWdRYofLnrLGpUzXjvlmlWWJFtOJpVgqd/OojYAHc8eelY+Ll3vYWnoq4RO07lCfcnxPgDgGRPXnZp11mfd7a2bSOaNzwMw0K8uzxWbGpCIIaHeePk+XKomjWY/u9fcVFSGO6cNRRT4gI7zPizpNzyWhzIaCt5bdZokVdRhwhfljx2pqS6AfvTi7Avoxj704twKq8cOh3g5qjEnueWwNfNsC1kA4lFgr6ejBo1CitXrsSbb76J5ORkhIeH49FHH0VcXJy1l0ZEREQ2RKfTWfXDd0/EQV+wpzPyWzILf57Jt9aSbMKr64/hcGYJDmeW4PfkXLx67WQsGh3R6bG/HspEk1qfxRoZ7iOMWgj2coZCLoNaq0NpjQr1jc1wdlBKXptZXC0Zu/DgfMOyfAAgk8nw+OLRuOl/O6DV6aDTAVtOnseWk+cxLMQLd84cijvnj+jlT24a645kdXgso6iaQR/0/084X1YrBHj704uQUVzd6bE1qmYcOleC+SPDLbxK67NK0Hf55Zfj8ssvlzw2Z84czJkzxxrLISIiIhtXWqPCde/9jsZmDb6+Z7akk6MtEQd9/1k6BXd8shMNTWqU1apQWqOCr5ujFVdnPadyy4Xb5bWNuPOTnbh8fDRevHoCPJ0dJMf+sC9duH3NpFjhtp1cjlBvV2S1ZPlyymolg9UB4N3fk6Ft6Wx54ZAgjI7069U6ZyeG4scHL8K7W5Pxx+m2bOPpvAo8/PUevPTbUdx4QTxunpYAfw/LZYvWdDI/MLOkGkBIx4MHgSa1Bj8dOIe/zxZgf3qR8OWKIapVg7PU2qLD2YmIiIj64ts9aUg+X460wip8uzfN2svplE6nQ1phpXA/IdgT8YEewv3UgsqOLxoEylsC3vZ+OXgOs178DTvPtAVXKfkVOJ6j389nr5DjsnFRkteE+7aVeGa1a+yRW16LH/dnCPcf6mNWbkpcIL5dPgd/PX0Zbp6WACf7thxJSXUD3th0HOOe/gn/+Ho3alr2b5pTRlEVTp4v7/B4ZhfZrMHgqR8P4J/f7MGaQ5mdBnz2CjkmxPjjgXnD8c29c3D1xBjhOUv8zmyRTZR3EhEREXUnJb9CuJ1vha7dhiitUaGyXv+B0sVBgWBPZyQEeQpBTEp+BabEG9aZfCARZz9jAzwwJtIXq1uCs4LKelz37jbcPC0BzywZi9X72oK2ecPD4OUizQLGBXrirxR9Z89dZwskZXr/23YKzS3NTSbG+GNynHHXOi7QA69cOwmPLx6Nb/ek4bOdZ4QAo1mjxXd70xHi5YJ/XjzKqPfpydrDWcJtN0claloyVV2VMA4G4j2fgP6/t3HR/pgUG4CJMf4YHekHR2XbOLd96UXC7WoGfURERES2SRw4FFc3WHElXROvMS7QAzKZTNiPBgBnB2mmL62o7boMD/PG2zdNxfyR4Xj0270oq9VnAL/cdRZ/nslHtartA7m4tLPVgpFh+HTnGQDA+qPZeP7K8bCTy1Fc1YBv97RlgB804d47LxcHLJ+bhLtmDcPuc8V4+ZdDONESyKeaucNnfZNaUtp5+4yheKtl6Ly+vNP6KuoaOwTn5lSnakZey+gKhVyGdY8sRFKoNxR2XRcwuju17f2saWB5JxEREZHN0Wi1SBcFDqU2G/RVCrdbxwwkBHsKj6UM1qBPnOlrKXddMDIcO5+6BAtEmbqs0hqU1zYCAAI8nDB9aMf5hpNiA4R9kcXVDUJHyw93nIKqWQNA3/xlRievNZbSTo6rpsThmSVtI8UKq8yTdc6vqMMLaw5h7JM/Cn/2newVuHPmULT2MTpfVocmtcYs72+ox77bi2GPfY/lX+yy2HumizKckX7uGBXh223ABwBuTm0zHsVfLAwmDPqIiIjIpuWW1wkf6AGgpJP9YbagfaYPgCTTl1pQCV1Lk5HBRHxd4luCYQDwdXPCp3fOwNs3TYWbo7QL55UTYjr9IG8nl2OhKFBcfzQb5bUqfPHXWeGxh+aPMGuH1wAPZ+F2kRmCvvJaFWa/9Bve33ZKKBcGgCXjouDt6ohgTxcAgFanQ3Zp1/MKza2+SY2vd6cC0O/PFH8xY07SL1c8uj5QhJk+Bn1ERERk49rPviurVUGrtb3gSVzqFxeg/zAa4uUC15aAprK+yWZLU41xNKsE16zciqd/OoCSTn6+7j6ky2QyXD0xBjuevATTEoIAAK6OStw0Nb7L91s8JlK4veFYNj764zTqm9QAgCHBnrhoeJgRP03PAiVBX4PJA/k9qYWSYC/cxxXPLhmHF6+eCACI9ncXnrNmiWdGURXEP/pvor2H5pRa0PHLlZ64O7Zl+qoG6Z4+Bn1ERERk08RBAwBotDqU1zVaZzHdEK8zviXD135fX0p+JQaaZ38+hL9SCvDJH2cw5V9r8M6Wk2hoCcLqG5uRW67ff2UnlyHKr/NRG6Hervj+vrnY9NjF+OvpS7sdyTEpNgA+rvoSz6KqBrwnGsb+4LwRkMvNO8fR1VEpBPKqZo3Jg4hUUcbs2kmx2PPcEiybkyg0JhEHfees2MxFHHwB+rESlshkpxVVCrcNDfrE5Z2DtXsngz4iIiKyae0/XALoNKNkTdUNTSis0q/JXiFHuE/baIGB3MxFq9UhWTSDr1bVjJd/O4Ir394CVbMGaUXi/VdusFfYdXYaAIBcLsOoCF8EtZQvdkVhJ8fFo9pKPNUtWd9of3csHtP5wHdTCxDN6CvqxYw4Q6SLMsbjov1gJ5d+XI/ybwuIrTm2QRx8AUB6URXOiLrsmu19uygX7o64vLOa5Z1EREREtietk71CJTW2FfSJP6hH+7tL9qPFB7VlIwZa0JdXUSdk9cSOZJViy4mcPu2/MoS4xLPV/RcldQiQzEVc4tka7JuKeJ5jXCdBTbSfbWT62pddA9LxEubQpNZI5jPGBrh3c3QbSaaPjVyIiIiIbEv7geetSqptq5lLqji4CZAGN0OCvITbAy3oE3/wHxvlJ9mL99uRrD5lZQwhLvEE9Hsnr5gQ080rTMtczVw0Wq1k/l5ngbKkvLPdgHpL6jzo05d4/rA3HZe/tRmr96Wb9D0zS2qgacnshnq7wNlB2cMr9Nwdmelj0EdEREQ2q7i6odMPabaW6ZN27vSUPDeQO3iKS/yGBHvi9plDhfs7TuXhWHapcN+UmT6FnRyXjo0U7t9/URKUPbTtN6VAUXmnKTN94k61fm6Onc6/C/d1g13LvsX8LjKt5tas0UpKS1v3OGaX1uLmD3bgoa93Y29aER7/fh/qVKYLstJ6yIJ2xcVBKYy6aGhSo1mjNdma+gsGfURERGSzOtvPBwClNja2QZLRCpIGNwEeTvB01peX1aiakW/iPWDW1D6TFx/oiaHB+symqlmDv1IKhOd78yHdEI8uGoXbpg/B44tH48apCSY9d0/Mlenr7suDVko7OcK82/aMZlkh25dZUi3spQz2cpHssfw9OVe4rWrWSDKXxhI3uenNlwhyuUzSwXMwNnNh0EdEREQ2S1zaaa9o+9hia41cOpvR10omkwndPAEgxQLNLiyls/b5XTVTiTNw/5WhPJ0d8OLVE/HQfPN37GxPvKevwIRBvKF7IKUlnpbf19f+z/slY6K6PNaU+w7TJV8y9C5z7Cae1WfC7GN/waCPiIiIbJa4icuYSD/hti3Nu2toUiO7TJ9tkctkiPbv+GG0fYnnQKDT6SQDuduCvsgOx/Zm/1V/IOneacJMn6Ez6KLEs/oMDKqq6puwK6UAjS3lo8ZoH/RNGxIkKXmNMdNYCUMyoV1xFzVzqWamj4iIiMh2iD/kTYkLFG7bUnnnueJqYUh1uI+rME9NbMgAHNtQVqtCRcu8RGd7BUK89KMWYgM8kBjiJTnW1KWd1hboaZ7uneIvObprfBMtmne4N60I2aU13e4VPZ5ThsnP/YKrV27Fo9/tNX6d4uArwANKOzk+v3sWbrkwAT/cPxfL5iQKz5uqvFOj1Xb6JYOh3ETNXGoGYTMXBn1ERERks8QfLi+Ibwv6bKmRS3elna0Sgj2F28nnyzs9pr9JFf3csYEekMnaSizbZ/tM2cTFFvi7t2W1iqvqodUa35ynfafabss7RaWyO07nYdKzv2DMkz9i2Wd/4ou/UnAmr0JY06Fzxbj6nS1CgL7uSBbURjYyEXerbS1dHhXhi5evmYQLhwRLyk8zOhm50hfiJje+XTS56c5gz/QprL0AIiIios5U1jcKZZwOCjlGRfoKz5XWqKDV6iy+l6sz0iYunp0ekxTqA4VcBrVWh1N5FcgprUG4r1unx/YX7bM9YovHROKVdUfbnh9gQZ+TvQKezvaorG+CWqtDeZ0Kvm5OPb+wG+JOtW6OSkkJaXtjI/3g4WSPKlHwUljVgLWHs4RZeZ7O9hgX7Y89qYWoF3X4VDVrkFFUhYRgr/anNYhWq5Psrevsd9u+vFOn00m+FOgLQ75c6Y54Vl819/QRERER2Qbxh7yYAA842yvg0fLBTaPVoaK+0VpLk0jrZkZfKw9ne0wfGizc/9XMQ6wtQdw+v32wG+3vjqQwb+F+Uqg3BhpxB8/CSuMzz+2Dmu6CJDcne2z7v8V44pIxmDksRBiZIFZZ34RtybmSgK/Vydy+Z5vzKtoybt6uDpJ5ia383Z2ENdWomk1Sji3+76wvMx/dxY1cBmGmj0EfERER2aS0Tjr1+bq3fcC0lQ6eqQZmIC4b19bh8NdDmWZdkyWk9bC/6rVrJ2F8tB/umZ2IkeE+llyaRZi6mUuqZAZdz5msUG9XPDBvOL5dPgcp/7kWW1cswvNXjsfFoyLg6yYNxAI8nHCZaK5hVyXGOp2ux0YvqQZ8ySGTyaQlnibY12dok5uuuIlGNlQNwqCP5Z1ERERkk6T7mzwBAH5uTsgo0n+ALKlWYUhwJy+0ILVGK+lOGNvNh9H5I8LhqLSDqlmDM/kVOJtf0ecSO1vQU7nd6Eg//PbPhZZckkWJxzYUmiDoM7SJS2fs5HIMD/PB8DAf3DlzGHQ6Hc4VV2NfehGKqhtw7aRYHMsuFTLMyV1k+h5ctRs/7s9AXKAH5iaFYk5SKMZH+0MhGnyfVtBzOTOgL/E8kVMGQF/iOSk2oMtjzxVX44u/UjBjaAhmJYZ0ekxPXzL0ZLBn+hj0ERERkU3q7Jt9P1EGwxaauWSX1qC5pSlGoIeTpFlEe66OSsxNCsW6o9kA9CWej/fToK+moUmYT6e0kyOyn+9P7AvpgHbTl3caQyaTISbAAzGiTJxG1Gwm+Xx5h312xVUN+HF/hrCWtMIqvL/tFDyc7DErMQRzkkIxc1iIwcFXtIFjG84VV+OS1zehrFaFT3aewcd3zMDFo6SzHnvT5KYrkj197N5JREREA5Fao8WOU3nIr6iz9lIM1tmHSz9R10RbCPoMaeIi1r7Es7s2+7ZM3Do/ys9NkgkaLMRz6UyS6TNh0NeZUG8XeDrrA5+qhiacL6uVPC8u2xSramjCmkOZWP7FLiQ9/gN+OXjOoHWKg770Ljp4Flc14Lp3f0dZrX7Pn04HLP/8L+xPL5IcV1hZL2lyI86yGmqwZ/oG33+hREREg9CTq/fj+ve3YeaLa1HbDzrX1TepkVuu/1Aql8kQ5af/ACneq1Rabf1ZfanddLDszKzEUGFeWFZpDY63lL/1N9IsrKf1FmJFAZ7iTJ9xQV/7TrVhPq5Gna8zMplM0lCnfTMX8Z7CyXEBuGlqPII9pcGVVqcTmrgA3f/ue8r01TQ04fr/bUNOu+CzUa3FLR/ukAShp0Vr7anJTVfc2b2TiIiIBrLM4mp8vTsNgL6s6eR52w80MoqqhIHnUX5ucGgZeO5vc5m+SuG2IdkZR6UdFowMF+6v6acNXST7z4IG1jgGQ0n39Bn3Z/GEKPiPCfCAndw8H9HFHVXbN3MR/05nJ4bi1esm49C/r8S2Jxbj8cWjMTbKD+JYK9jLpUNQKCYe25BVUgONtm02YGOzBrd/vFNYg51chpeunih8qVNZ34RbPtghlE6n5FUIr+1rFlQc9DHTR0RERAPOu78nQysqI6xr7NjC3daIM0ni5iji8s5iG8j0SUvyPA16jbjE87fDmZIPw/1BY7MGBzLayu8G2gw+Q5mye+dHO04Lt8dG+Rl1ru4khbZ1UW3fzKWz8lKZTIbEUG88NH8E1j+yECdevhpv33gB7pmdiK+WzepxrETrlzTNGi1yy/Wl5VqtDg+u+hu7zhYIx7523WTcOn0IVt0zG872+pYjmSU1OJpVCgBIyRUHfZ59+dHhLhprwT19RERENKDkltdi9b50yWM1Ktv/ljutqFK4LQ4qbKmRi765RO/3YU1LCIK3qwMAfYZof0axWdZnDpnF1Vj8+kYcPFciPDYsZODN4DOEJOtcrYJa07fg/eT5Mmw/lQcAkMmAO2cOM8n6OjM8XJzpk2b8OxuR0p6vmxOunhSLZy4fh0QDZi9KxjYU6Ye0P/vLQWGAPAA8vng0lk6JAwCMivDFotFtTVyOZuv/nJ3Jk5Z39oW4kUt/+H+gqTHoIyIiGsDe/z0Zaq20WUhNP/iWu6sMmq9b2wftUivP6curqBMGX3u5OHSYjdYVhZ0ci0dHCvf7y8y+tYczcdGr63FSVBa4dEocEgxoYDMQ2SvshMHkWp2uzwPI3958Uri9eHSkWTOnMf7ucGrJpBVWNQizLs21p7D9vr73t53CJ3+cER679cIEPDhvuOQ1oyN9hdvHWjN9ovLOrgLSnrizeycRERENRMVVDfh2T1qHx+sabf8DT1dZB3F5Z2mNClqt9bpfitcYG9C75hLiEs/1R7OFvUu2qKFJjUe/3Ytln/0lNAFS2snxwpUT8N+lk628OusK8jRuVt/ZgkpsOJYt3H+gXQBkanZyOYaFtI0JaQ3gxX+WTbmnULyv74tdKfj3r4eF+4tGR+CFqyZ0+O9mVERb0Hc0uxSV9Y0obBkPYkxA6uKggLzlvRqa1Db935w5MOgjIiIaoD7YfgqN6o4fbGpsvHNds0aLTPHAc1FXTEelndD9Uq3VobK+0eLra2VMi/0J0f5CE4yKukb8dSbfpGszldTCSiz8zwZ8vTtVeCzC1xW//XMB7pg5tE9dFAcSY/f1rdzSluW7aHioQSWTxhJ38Gzd12eucRExAdLyzlZT4gKx8uZpnQaXw0K8YK/QP55dWosDovJnYwJSmUwm/L8DGHzNXBj0ERERDUDltSp8ueuscH9yXIBw29ZHNmSWVAslqcFeLnAVfVAD2u+lsl6JpzEflOVyGS4dK5rZd9j2SjxX70vH/Fc3ICW/UnjskjGR2LpisSQbM5gFGNHBM6ukWtK99cF5I0y2ru4MD+u4r0/chTbehCM4ov07/neRGOKFz++eCceWjrzt2SvsJIFp68B4wPiA1E08q8/G/z9oagz6iIiIBqBPdp4R9psNDfbC5eOjhedsPejrKZjylTRzsV4Hz96Oa2hPXOK56XgOGppso6tqnaoZD3z1Nx5ctVtYk6PSDq9dNxkf3HahZG/UYCcZ21DZu0zfyq1tXXUvHBKEMWbs2imWFNbWwfNIVmmfGxIZIsLXVSipBIAwH1d8s3xOj3+GRou+VNh68nzb2gyYhdkd6b4+ZvqIiIioH6tuaMKnO9uaJTwwbzjcHcWd6/p30OdnI7P6UiX7Dj17/frhYd5Co4u6RjW2J+eaamlGefqnA5LsSmyABzY+ejFunBo/6Ms52wvyagv6ejP/Mq+iTnKNH5xvmSwfAAwN9oR7S8Yrr6IOhzJLJH+WTRn02SvsMDsxBADg7eqA75bPkWRHuzJK1MylSVSiHm9k0yA3ydgGBn1ERETUj33x11mhO120vzsWj4mAi6NCeL5fZfo6+WZfPLaht9kVUymtUaGiTr+f0MlegRAvl16fQyaT4TJRiecaC5R4bkvOxZVvb+kwxqOVVqvDr6J2+ldPjMGWxy/GUFHzD2ozLSFIuL3zTD5KDfwS4n+/JwuNRCbE+GNybEAPrzAde4UdFo+JFO6v+jsVueW1AAC5TIYoP/cuXtk3794yDZ/eOQN/P7MEMQZm6kZ3UT5sbEA6mDt4MugjIiIaQOobm/HhjlPC/QcuGg47uRxuokyfrQd9qeL9RZ18s+8ryvS9tPYIVny/z+LB3x+n84TbsQHukMv7lgETl3huT841a3OJ9KIq3PHxH9idWoiHv94jfNAXy6uoE0o6vVwc8PZNU+HsoOxwHOlF+LphfLQ/AECj1Un26HWlpLoB34i66j44b4TFM6hXTogRbv984BxaqkwR6ecGhy722vWVu5M9Fo6KgJeLg8GvifJzh0e7ElBTBKSSWX3M9BEREVF/tWp3Kspr9RmoUG8XXD5Bv5fPVZzps+GRDVqtDuk9lJpNSwgS9gmptTp8uesspvxrDQ6es8yQc61Wh3dEXRcXjAzv87niAj2EphWNai02nTjfwyv6RqvV4Z/f7BG6uWp1Ovywt2O2z1x7uwayqya2BVA/HTjX4/Ef7jgNVbMGADAi3AczhwWbbW1dmRDtj1BvfXa6dV8hYDu/c7lchpERPpLHTBGQejiJyztt9/+D5sCgj4iIaIBQNWvwwba2LN99c5OgtNP/VS/O9NnycPa8ijrhA7G3q4Mw/FpsfLQ/fv3HfEyI8Rcea2hSS4Y+m9PGY9lIL9IHR26OStw2fahR57t0bKRw21yD2lftTpW0vgeA7/amQ6OVjvRINbI5zWC0eEyEMGLgRE6Z5Bq2V1HXiC/+ShHuPzTf8lk+QB9UXTEhusPjtvQ7b98h1tgmLoA001etGlyZPkXPhxAREVF/8MO+dKFtfICHE66ZHCc8Jx57YK3h7Lnltbjrkz+RWVINFwclXB31/7g4KPS3HZSSJjPdfcgbH+2PXx+ej3VHsnH3Z38CAP48kw+1RguFnfm+09bpdHhblOW75cIh8HA2rpvlpWOj8OLaIwCAv1LyUVqjknQoNVZ+RZ1kKHarvIo6/HmmALNaGm0A0kyfKVv3D2Sezg6YmxQmDFn/af85/N+lYzo99tOdZ1DXqC+fTQjyxLzhYRZbZ3tXTojB25tPSh6Ls6Hfeft9fXFBxgd97izvJCIiov6sWaPFe78nC/eXzU6UzMESB301qmboRCVdpqbWaPH17lRsbPkQ3OrjP87gaHYpKuubkFdRh7MFlTicWYK/Ugqw8VgOVu/PwKbjOcLxPX0AlclkWDwmAkEtQ86rGppwOLPE5D+P2PZTecJAa0elHe6aNczoc4b5uGJ8tL5dv0arw4ajWUafs5VOp8MTP+wT9nHGBLjjlgsThOe/Fe0tA1je2VdXirJmvxw8B622439fNQ1Nkmz0g/OH93kvqCnEBnhgVLsSyngb+p2PjmwX9JkgIJV277TdigdzYNBHREQ0AKw5eA7ny/SNObxcHHDT1HjJ80o7uRAEarQ6NLSUUJrDO1tP4tFv9+L2j3diT1qh8PjplmDJUDMM2Oskk8kkmartp/K6Odo4Op0Ob20+Idy/aVqCyTJyl0kGtWeZ5JwA8NuRLGw92TYK4r9Lp+CWC4cI97ecyBE6Tup0OqFsFWDQ1xuzEkOERiV5FXXYl17U4Zgvdp1FVUt2KdrfHZeIOmhai7ihC6APBG1FgIczgj3bxjuYIiBlpo+IiIj6LY1WK2kscvesYZ12XHQRPVZnpg6eao0WX/51Vri/K6VAuJ0mCih+fnAetj2xGL8+PB9f3zsbH942Ha9fPwX/umI8Hl00Cp/eOQMLDWyQMjsxVLi945T5Zt3tTi0UMon2CjnumZ1osnMvHhMpNKfZn1GE/Io6o89ZXqvCk6sPCPdvnpaASbEBSAjyFDKLaq1OmBdXVts2hsK5j2MoBit7hZ1kb+b6dtna+iY1Ptx+Wrh/39wk2Mmt/zH80rFRwpdBQ4O9JBUBtuCB+SOgtJNj/ugIjAz36fkFPXATN3Kx8S7GpsY9fURERP3chqM5yCiuBgC4Oylx6/QhnR7n5qhEWa0KgL7EUzzk3FQ2Hc1GcXXbrLKUggoAQFV9E4pa9hs6KOSYGOtvsg+90xKCoLSTo1mjxam8ChRU1iHI0/QBizjLd+2kWAR69jxk2lB+7k6YmhCIv1IKoNMBvx3OwrI5xgWVz/1ySPh9B3s640nRPrOlU+Jw8Jw+gP1mTxqWzU5EakFbUB4b6MFB7L00a1gIvmj5wiO9qFry3De7U4XfRYiXS6dNVKzB180RXy6bhU3Hc3DDBfE9v8DCbp6WgGsmxSIs2BMlJTVGn4+ZPiIiIuq3Pv2zbZ/QbdOHSj7YiIm/xTfXrL7PdpyW3E/JqwQApIk6Gkb7e5g0y+HqqMREUSfPP07nm+zcrQ6eK8buVH2pqp1chuVzk0z+HuISz9+OZBl1rj9O5wkZPAB45dpJks6Fl4yJFP48ZBRVIzm3XPI7sqW9Xf1FpGiGXGZJW9DX2KzB+6L9tvddlAR7hWln4RnjwiHBePmaSUhsGR1iaxxNODfQnXv6iIiIqD/SanVIPt+2V+7maQldHmvuoK+oqh4b2wUr2WU1qG9sNnuDEHGJ53YzlHi+LcryXTE+GuG+biZ/j4tGtHVyTCmo7HOznTpVMx77bq9w/9KxkZjbrkuks4MSc5Partmm4zntfkeefXrvwSzcxxWtydG8ijo0tuyb3XkmT+iq6+/uhGtFXXXJsiTD2QfZyAYGfURERP1YfmUd6pv0LeC9XBy6LTkUd64zx4D2H/dnQNOua6FOB6QWVrUbBWD6oG9WUlszl79SCtCkNl2jmhM5ZUKDGJkMuH/ecJOdW8zbxQFO9vqdNw1N6j5nIl5dfxS55fo9gV4uDvj3VRM6PU68Z3LT8RzJnks2cek9B6WdsA9SpwNyWhornc6rEI65ZGykSTNX1DviKghm+oiIiKjfEO/D6umDumRsg4k/8Oh0Ony/N73T9zqTV9EuoPA06XsD+pl+od76D9y1qmYcOme60Q3iJjmLR0earcOhTCaTdCssqOx9M5cjmSX4ZGdbue9zV4yHr1vnezdnDguBQ8tQ8ZT8SmGPH8Cgr68iRRng7FL9HjTxFx4JQZ6WXhKJuDgohIZJDU1qNGu0Vl6R5TDoIyIi6sfSiiqF270J+mpNVNqk0+mQWliJt7ecFJrJuDoqcYuozPRMfgVSCwxfZ1/IZDKzlHieza8Qhm4D+tlq5hQoCfrqe/XaJrUG//x2D1qrQqcPDcZV3TQMcXFUYvrQtrEYDS0ZY6WdXBK8kOE629cn+cLDhkYiDEYymQzu4g6eg6iZC7t3EhER9WPSsknPbo91dRCXd6r79H46nQ6ZJTXYnVqIPakF2JNWJOnWCegbkogHKx/LLsP5cn2pm1wmQ7S/O8xhdmIIvtyl7564/VQenl4yzuhzvrO1rQHHvOFhGBZi3mYXgR5tQV9hL4O+d7cmIyW/EoB+5MJ/rpvcYwfOhSMjJHP8AP0MOYUd8wJ9EeXXFixnldRAq9UhnQPvbYqbkz0q6/XBXk1DE3xcTTNr09Yx6CMiIurHetMgxVX0DXdvmhicL6vF7tSClkCvEPndBCMOSjvcMWOIpDvhocxiIfsU4esKBzPtabogPhAOCjka1VqcLahEbnktQr1d+3y+rJJq/HooU7hv7iwfAAR59S3Td7agUjJSYsUloxHm0/PPPnd4KOzkMsleTAYmfRfRLujLLa+FqqWhi4+rI7wHSYBhywZrB08GfURERP2UTqfrXdAnzvSpus/0ldao8PrGY9h+Kg/nWxpSdMXT2R6T4gJwQVwQls4cAmfIoNFq4ai0g6pZA3ETyp6ykcZwdlBiUlwg/jyjH9mw41Qebuqmm2lPVm5NhrZl8RcOCcLoSD+TrLM7QR69D/q0Wh0e+WaPsD9pTKQvbutiVmN73q6OmBQbIIyjABj0GUOS6SutkWbig3hdbcFg7eDJoI+IiKifKqtVoaKuEYC+nK+1c2BX3Hqxp++VdUfwze60Tp9zdVRicmwApsQH4oL4QAwL8RLm7vn5uaGkpAZ2cjkSgjxxPKdM8lpzBxSzE0NMEvTlVdRJ5tw9OH+ESdbXE/GevsIqw4K+L/5KwaFMfRMWpZ0cr18/pVdzEBeMDGfQZyLivZA5pTU4k9/WuZP7+WyDl4uDcDuzpAYXxAdZcTWWw4JtIiKifiq1XZavp/1b4qCvpoc5fYcz2zo5OtsrMGNoMJ68dAw2ProQZ167Fl/dMxvLZidieJhPlwHGkGDPDo+ZP+hra+ay62yBMCutt/73e7KQOZsQ44/JsQEmWV9PgkWBuyF7+nLLa/HSb0eE+/dfNBxDgr169Z7zRaMbACAuwLNXr6c2zg5K+Lvru6WqtTrhCwiAsw9txYQYf+H2jpZRLIMBgz4iIqJ+qrcDz10MHM6u1mhxrqUTJwAcfvFKfHffXNx30XCMjvQzuMlHZ8GHuYO+aH93IdtS36TG/oyiXp+jpLoB3+xpy3I+NH9EjwG1qYgbueQbMLLhqdUHUNfSlCcu0AMP9GGGYIiXC+a0DGoP93FlGaKRIkUlnvvS2/78MYNqG8RfDP2Vkm/SmZ62jEEfERFRPyUN+jx7PN7NwKAvu7QGTWp9livQwwmezg5dHtudoZ0EfeaacSc2O7FtUPv2PnyT/93edKH5xohwH8wQjTUwNz93R9jJ9QFmeW1jt5nKmoYmbDl5HoB+aPwb10/pc5Oc92+Zhk/unIF1/1woacJDvSfe16dmgxybExvgjghffZOjukY1DmQUW3lFlsGgj4iIqJ9KK6wUbhvygdLVwKCvt8FkV9qXdwZ7OkuaKJjLLNE3+b0t39Jqdfhmd6pw/86ZQy2W5QMAO7lcKA8EgKJu9vW1H9cxLtq/y2N74uZkj4tHRcDfo/NB7mS4iE5mHLo6KhEk2q9J1mOumZ62jkEfERFRP9Xb8k6Dg74i08wV83d3kjRNiLVQpmNyXAAcWzJe6UVVyC6tMfi1f6bkI6elW6mnsz0WjY40xxK7FWTggPbe/v7JMqL8Os6hjAvoec8tWc4sUTXAtuTBsa+PQR8REVE/VNPQJAQESju5pGtgVyRBX6Nhmb54I4IJmUwmKfG0VCMLJ3sFLogPFO73Jtv3tSjLd9XEGCF4tKRAA4O+1F5meskyxHv6WvH3Y1umxAX2+Yuh/opBHxERUT+ULsrGRfu7G9RcRTynr0bVDJ14gJ6ItGzUs89rBIDRkb7C7RHhPkadqzf6Ur5VVFWPLSfOC/dvmBpv8nUZQjyrr7sOnu3LO8k2MOizfU72CkxNaBvVMBi6eDLoIyIi6of6UtqnsJPDyV4/olenA+obOw5o7+3A954smz0Ml42NxM3TErBkXJRR5+oNcfnW7tRCNDR1P4weAL7fmw5NS+ONiTH+VgukgkRjGwoM3NPHoMJ2eDo7SMqaAf5+bJG04dPA39fHoI+IiKgf6usHflcHhXC7sxLP/Mp6YQSAp7M9fN0cjVgl4OvmhP/dNh2vXDsJSgNHPZhChK8bYgL0e6tUzRrsTet+dINWq5OMabhxat+GupuCeGxDQUXnYxtUTWph76FMps/2ku1oX27NTKztmTVM+sVQXQ+zS/s7Bn1ERET9UF/3c4m7Z7YOaK+oa4RGqx/R0L4jaH9uPjFb0sWz+2/y92cU4XxLEOXl4oCLR0eYdW3dETdyKewi05daUAltS3luuI+rkMEl2yAu8XRQyBHeMiKAbEe4r5vw/05VswbzXlsvmatYq2rG2YJK7DiVh1V/p+KVdUdw/5e7cPU7W/HCmkPQajsvj7dV/D8EERFRP9TX/Vwu4kyfqhmr96XjH9/sQaSfGzY8crHJxjXYgtmJIfhox2kAwI7T3e/ZOZVbIdy+aHioVRq4tDKke+eZ3HLhdn//PQ1E4qAv2t8DdnLmWWzRrRcOwf+t3g8AyCiqxpI3NyM+0APF1Q2orG/q8nW7zhZgSnyg5IslW8c/gURERP2MqlmD7NK+lfa5ObZl+mpVzfjir7PQaHXIKKrGt3tSB9Q+sYkxAXBuyYBlltTgXHF1l8eKM6dDgjoOlbckcffOoqqGTjMKZ/LaglRjOqySeYj/22k/r5Jsxy0XJuCVayZKOhunFlZ1G/ABgI+rI4YEW/f/E73FTB8REVE/k1lc3efSPlfHtmOrG5okM/m+3HUW/u5tAUd/D/oclHaYlhCELSf1HTm3n8pFtP+wTo+VBLtB1v25newV8HS2R2V9E5o1WpTVquDnLh2aniLKTPb339NAtHBkBGYMzUBueR2Wz02y9nKoCzKZDDdfOARzh4fhiR/2YevJtjJwe4UcIV4uCPFyQbCXC0K89bdDvF0wNtJPUirfHzDoIyIi6mdSjRip4CrK9KUXVUuGtGeX1goZRGBgNJ+YlRgiBH07TuXhzpk9B3228HMHejoL2YaCyvqOQV8eyzttmYPSDt/dN9fayyADBXu54Iu7ZyGzpAZV9Y0I9XaFj6sj5PL+u6e5PZZ3EhER9TOSrFRA77I8bqIypqPZJV0e52SvQIhodEB/JR7dsDetEPWddCwtq1WhrFYFwHZ+7iDPtjW0b+ai1miRWlAp3Gemj8h4MpkM0f7uGB3pBz93pwEV8AEM+oiIiPodSVaql6WI4r0rR7NKuzwuNsB9QHzoCfV2RUKQJwCgUa3F7tTCDseIr2eMjfzc3TVzyS6tQZNa3201wMMJ7v2szIyILI9BHxERUT9jTIdNcdBXVNUg3Ja3G80wkEoGxUOYf0/uOLrBmMypuUhm9VVKZ/XZWikqEdk+Bn1ERET9iFqjxbnivnfYdHVQdvr40ilxkvsDqWRw7vAw4fam4zlQa7SS58WzCeNbsoLWFuQlmtXXLtMnbr4zkH5PRGQ+DPqIiIj6kZyyWjQaUdon3tMndu+cRASL9rINpDEA46P9EOChb4RSWqPC3rQiyfOpNjimIsij6/LOgTRWg4gsg0EfERFRPyLOSvWlFNGlk6DPUWmHCF83PLtkHBRyGYYEe2LmsJBOXt0/2cnlWDQ6Urj/25EsyfO2GEQFdrOnT/JnwEbWS0S2jUEfERFRPyJt4uLZ69d3lumLDfSAXC7DJWMjkfr6Umx7YnGvZv/1B5eMiRRubziWLZR41qmakV+h3zOnkMsQ5Wf4oHtzEmdd88rroGuZy6jT6drtQfS09NKIqB9i0EdERNSPGJuV6izoE2cMnewVsJMPvI8H46L8hI6YFXWNQhdP8f64SD93KO1s42f3cnGAl4sDAKC+SS1k+/Ir61HXqAYAeDrbw8/d0WprJKL+wzb+z0ZEREQGMTbo66y8czCUCMrlMiwaHSHcby3xTDVi/IW5xQa0ZR0ziqoBdCztlMmsP16CiGwfgz4iIqJ+QqfTSTs39qG0r9NM3yBp+y8u8dx0PAfNGq1N74+L8W9bT3rL792YcR1ENHgx6CMiIuonCirrUatqBtD30j7XToI+W8twmcvYKD+EtOyVq6hrxK6UApveHxcb2EPQZyMzBYnI9jHoIyIi6ifal3b2pbTPxUHaoMWWmpeYm0wmw+IxbSWe/7d6H45nlwr3bS/T1/Z7aQ36Ugsqhcdsbb1EZLsY9BEREfUTpijts5PL4SzqzGlLzUss4bopcVDI9cFydmktCqsahOfEe+hsgTTT17Knr8i47q1ENDgNnv/LExFRv1KnakZBZZ21l2FTjJ3R18rNqa3Ec7Bli+IDPfHpXTPhoJB+BArzcYWzQ+eD660lwtdNCFDzK+pwvqwW5bWNAABnB4VQqkpE1BOLBn1FRUV4+OGHMXbsWEyePBmPPPIIysvLhee3b9+OhQsXIikpCRdffDF27txpyeUREZGNyKuowwXPr8G4p37Gr4cyrb0cm5FqoiHi4n19gy3oA4CLhofh2/vmSpra2OL+OKWdHBF+bsL9LSfOC7cTgr0gl7NzJxEZxmJBn06nw913342NGzciJCQEHh4eWLduHe68805otVqkpKTggQceQE5ODpKSkpCdnY3ly5cjNTXVUkskIiIb8fbmEyiqaoBWp2PQJ2LsYPZWrqKMVvwg7QA5JS4QPz80DxG+rnBU2uG2GUOsvaROxYo6eG46niPcHhLiZY3lEFE/ZbGg79y5c8jJyUFiYiLWrl2LtWvXwtXVFcnJyTh37hxWrVoFtVqNhx9+GN9//z2WL18OtVqNr7/+2lJLJCIiG1BQWYcf9qUL9yvrG624GttRXqtCWa0KgH6AujGlfYmh3gD0TVzGR/uZZH390fAwH+x59nKceu1azE4MtfZyOiXe17cvvUi4zaCPiHpD0fMhphETE4PDhw+jrq4OMpkMVVVVaGpqgp2dHdzc3HDkyBEAwIQJEwAAkyZNAgAcPXrUUkskIiIb8L9tp9Ck1gr3qxuarbga2yHO8sUEuBtV2vd/l45BmI8rRob7INzXrecXDGByuUzS2MbWiJvLaHU64fawlsCdiMgQFv2/nEwmg6urKz755BN8/PHH0Gg0ePTRRxEQEIDCwkIAgKenp+TfrY8TEdHAV1rTgFV/S8v6q5jpA4B2Q9mN23/m4+qIh+aPMHZJZAExXfyumekjot6wyldbu3btQmVlJTw82mYMqVT6khWlUr/PQKHQL62hoaHzk4h4eTlDobAz02q75uc3uL8dtRZed9Pi9bQOXvfOvfV7MlTNGslj1armPl+vgXSdz1fWC7dHxfjb9M9my2vrbyY6dvyoprCTIzbQA0orfPYh/vm2Fl5341gl6Fu5ciXq6+tx66234uWXX0ZQUBAcHBzQ0NAAtVoNAMK/nZycejxfRUV9j8eYmp+fG0pKaiz+voMdr7tp8XpaB6975yrrG/He5hMdHq9VNaOgsAqKXs6SG2jX+URmiXA7xN3JZn+2gXbdbYG3q4MwqgEAIn3doFTY8TpbAf98Wwevu2G6C4wtOrKhuroaZWVlcHd3R2BgIObOnQsA2LdvH/z9/QEAVVX68pXKykoAQGBgoCWXSEREVvLZzhTUqvT79+ICPeAumiVX1dBkrWXZjDQTjWug/ie2XYknf/9E1FsWC/q2bduG8ePHY/ny5dDpdNDpdDh58iQAwMfHByNG6PcW7N+/HwBw4MABAMDYsWMttUQiIrKSWlUzPtl5Rrj/wLzh8HR2EO5X1w/uoK9O1Yy8Cv2geoVchig/9x5eQQNJ+6AvPohBHxH1jsXKOy+44AJER0fj6NGjuOSSSyCXy5GSkgJvb29cffXVyM/Px4YNG/DGG29g69atSE5OhlKpxPXXX2+pJRIRkZV8tessKur05WsRvq64bGwUPtxxGijTPz/YM33pxdXC7Ug/dyh7WepK/Zu4gycAxAV4WmchRNRvWexvDScnJ3z++edYtGgRSktLUVhYiLlz52L16tXw9/fHqFGjsHLlSkRERCA5ORnh4eFYuXIl4uLiLLVEIiKygoYmNT7Yfkq4f/9Fw6Gwk8PDyV54rMqCmb7X1h/F9Bd+xfqj2RZ7z56kFlQKt1naN/i07+DJPwNE1FsWbeQSGBiI119/vcvn58yZgzlz5lhwRUREZG3f7UlDSY2+g3OwpzOumhgDAPBwbgv6qi2U6cstr8Wbm/TNZO7/chdGhHnbxBw78X4+lvYNPu3LO9tn/oiIesL6ECIispomtQbv/Z4s3L93bhLsW9rQizN9lRbK9J3JqxBuq5o1WPHDfuhEA7GtJa2oUrjN0r7BJ8LXVQj8psYHwtlB2cMriIikrDKygYiICAB+OnAO+S3z53zdHLF0SltJv7uT5TN94owaAPxxOg+/Hs7EknHRFnn/rrBz5+BmJ5fjpwcvwt60IkwfGmzt5RBRP8RMHxERWYVao8XKLSeF+8tmJ8LJvu27SHF5p6X29LUP+gDgmZ8OCk1mrKFJrUGWaD4VS/sGpwAPZ1w2LgpeLg49H0xE1A6DPiIisoq1h7OQVaoPZjyd7XHztATJ89JGLpYJulILK4XbrR0yS2tUuPytzfhy11mLZRzFMourodHqS0xDvV1Y2kdERL3GoI+IiCxOq9XhnS0nhPt3zBgKV0dpMONu4UYuOp1Okul74crxwu2U/Eqs+H4fRj6xGg9+9Tf2pxdZbK+fpIlLoKdF3pOIiAYW7ukjIiKL23QiB6ktwYyroxK3zRja4RjxcPaqhmazr6moqgE1Kv37uDkqcdO0BJTXNeLtzSfQqNYC0Dd3Wb0/A6v3ZyAmwB3XT4nDVRNj4OvmZLZ1pRZxPx8RERmHmT4iIrIonU6Htza3ZflumZbQ6T4ldwuXd7ZvliKTyfDwgpE4+tLVePGqCRgW4iU5PqOoGs+vOYzR//cj7vh4JzKKOu4HNIV0NnEhIiIjMegjIiKL2pNWiOTz5QAAR6Ud7p49rNPjJI1cLFDeKd7PJy6j9HJxwG0zhmLbE4ux6bGLcePUeEkpqlqrw4Zj2bjtoz/Msy7JYHbPLo8jIiLqCss7iYjIog6eKxFuXz4+usvSSHEjl2oLdO/saSyCTCbDqAhfjIrwxXOXj8O6I9n4Zk8aDp4rBgCkFlahWaMVGsCYgkarRUZxdbfrIiIi6gkzfUREZFHi4GpEuE+Xx7m3y/SZu3FKb2bhOTsocc3kWPz2zwXwdXMUHi+taTDpmnLL66Bq1gAA/Nwc2a6fiIj6hEEfERFZVJqkjLLr4MpJaQd7hf6vqSa1Vgh+LLGu3mTU/N3bMpXF1SpTLqldIOpp0nMTEdHgwaCPiIgsRqvVIb1IXK7o2eWxMplM0szFnGMbKuoaUVKjD9gcFHKE+bga/Fo/UdBXUm3aTF9fA1EiIiIxBn1ERGQxeRV1aGhSA9A3SBGXRnZGvK+v0oz7+sQZtdgAD9jJDf/rUZrpM23Ql1rAzp1ERGQ8Bn1ERGQxqb3MXHlYaEC7MRk1cwZ9aUUczE5ERMbrU9BXV1eH2tpaU6+FiIgGuN40SwGks/rM2cHTmL1zfu5t2UpTlnfqdDqWdxIRkUn0Kug7e/YsLr30UowdOxbjx4/HokWLcOrUKXOtjYiIBhhxcGVI5kqc6bNUeWdvg6sAd2fhtikzfcXVDahuaAYAuDkqEeDR+WgLIiKinvQq6Hv66aexbNkyHD9+HAcPHsQll1yCxx57zFxrIyKiAaa3wZWHhRq5SMsobaO8s/21kslkJjs3ERENLl0GfU8//TSKiookj1VWVmLMmDFwcHCAq6srRo0ahfLycrMvkoiI+r++lCu6SzJ9jeZYFuobm3G+TL9lwU4uQ5S/e69eb67unakFlcJtlnYSEZExFF09ERMTg6uvvhoLFy7EsmXL4OHhgbvuuguLFi1CdHQ0tFot0tPT8cgjj1hyvURE/ZZOp0Otqhm+Zh4ybqtKa1RCiaazvQIhXi49vsbTuW0YubkyfeIREpG+brBX2PXq9WbL9LGJCxERmUiXQd8tt9yCK6+8Ep988gkWLVqEa6+9FrfeeisuvPBCnDhxAgCQmJiIoKAgiy2WiKi/ya+ow/+2n8KJnDKkFlSisr4JE+IC8M2y2XB1VFp7eQZpbNZAB8BR2btgqD3JWAQDyxWlc/qajXp/Q9fVW+5OSjgo5GhUa1HXqEadqhkuJvjdGrPPkIiISKzbPX2urq546KGHsGbNGpSWlmL+/PnYtGkTLrzwQsyZM4cBHxFRDx79di8++eMMDmQUC1muA2lFeOy7vdD1g4zf6bxyDF/xA8Y8+SMyRJmnvhCXdhq6b046p8885Z1pRZXC7b5k1GQymaTE01TZPgZ9RERkKt0GfTU1NUhOToZMJsOzzz6Lr7/+GidOnMD8+fPx888/Q6vVWmqdRET9jk6nw4FzxZ0+t+ZQJr7enWbhFfXeu1uTUaNqRkVdI776O9Woc/VlLIJkTp+ZuneaIrgydYlnZX2jcB4HhRxhPq5Gn5OIiAavLoO+jRs34sILL8SyZcswa9YsfPbZZwgPD8frr7+Od999Fxs3bsTFF1+MzZs3W3K9RET9RkFlPWpV+pJEDyd7HPr3lVg6JU54/ukf9yP5vO02w2poUmPryfPC/f3pRd0c3TPxHjVDgytx0Fdlpj19qQXGB32mbuYiDkRjAjxgJ+/TWF0iIiIA3QR9//3vf/HGG2/g77//xs8//4w333wTKpUKADBs2DB8+umneOaZZ/Dpp59abLFERP2JZCZdkAdCvFzw76smYHi4DwCgUa3FXZ/uRI0ZRxH0xrHsUqTkVwj3/zidh7pGtXA/Obccdaq+76vrS0ZNvKevygyZvmaNFlklbY1c4gJsI9MnnWfI0k4iIjJOl0FffX09fHz0H0y8vLyg0WigVqslx0yePBk//vijeVdIRNRPdVbO6GSvwPf/mA8XB30frcySGjxqA/v71h/JwoLXNmDOy+uw41QeAGDdkSzJMRqtDoezSvp0/uqGJhRU1gMAlHZyRPq6GfQ6SXmnGYLjzJJqqLX6ax/s5dLnBiySoK/GFEFfpXDb0FJYIiKirnQZ9N1222245ZZbcO2112LRokW4+uqr4erKPQVERIaSfHAXZZASgr3wn6WThftrD2fhq11nLbm0Djaf0JdxarQ6PLl6PyrrG7H1ZG6H4/and75HsSfpogA42t8dCjvDyhXbd+/Uak0bHJsqoyYt71QZtSaATVyIiMi0uhzZcNddd2HWrFlIS0tDaGgohg8fbsl1ERH1e93tYVsyLhp704qwqqU5yjM/H8SYKD8MD/Pp9FxZJdV4ae0RDA3xwkPzRxg07qA3UkUBalZpDW75YAfqm/TVHTIZ0JqI3J/Rt319fQ1ilHZyuDgoUNeohlanQ21jsyQQNJapgqsAE5Z3qjVanBTt9WTQR0RExur2q9bY2FgsWLCAAR8RUR/01CDkX1eMR2KIFwCgSa3FXZ/82WUJ45OrD2Dd0Wy8tv6YkJUzFa1WJxlQDgD7M9oyetdOihVuH84sQbOm952b+9LEpZWHGff1pRZUCreNKaM05Z6+NYcyhXN4uTggpo/7DImIiFqxHRgRmV11QxNO5ZZbfd+aJZXXqlBWqy/zc1TaIdS7Y3m8k70CH90xQ9jfl1Vag39+s6fDdSqtacCfKfnC/S/+SjHpWvMq6tDQpO7y+btnDRNGBqiaNTiZU9br95DuUetdEONuxn19xgSjYp1179TpdCit6V2pp1arwztbTgr375w5FEoDS2GJiIi6wr9JiMisalXNmPb8r5jz8jqs3Jps7eVYjLhsMDbQA3J55+WY0f7ueP36KcL99Uez8cVf0v19649mQyPay/ZXSoHRg9K7WquXi4PkufhADyQEe2FijL/wWF9KPMVZz94OQDdXpk+r1Un2GppuT18DtFodln+xC8NX/IBHvt1j8Hk2HstGesvv1s1RidumD+3zmoiIiFox6CMis/r7bIFQqrbuaJZ1F2NBkgxSD+V5l46Nws3TEoT7z/1yEMdF2bQ1hzI7vMbYQeliaUWVwu2Fo8Ixb0SYZG0AMDE2QHist81cVM0a5JTVAtDvD4z2d+/V6801qy+vog6qZg0AwMfVEd6ujn0+l6PSTghO1VodjmaXCr+37/akG1QSq9Pp8NbmE8L9W6cPkfzsREREfcWgj4jMShz85FfUWXElltXbBiHPXTEeSWHeAFr39+1EVX0TcstrcSCjY5C1el+60GjF1Gv979IpWDQ6AleMj8Y9cxIBABNj2oK+A+eKe9VF81xxFbQtJavhPq5wsu+yh1inJB08TZjpk+7nM37fnDjbt+rvtmytVqdDeW3PZZ7bknNxKk8/J9HJXoE7Zw4zek1ERERAN907xbRaLTZs2IBjx46hubm5w36TF154wSyLI6L+TxxQlNc2QtWsgaPSzmzvt+l4DtYcPIfrL4jH9KHBZnufnvS2QYij0g4f3TYdF726HrWqZuSU1eIf3+zG2Eg/4ZgLhwQhu7QG2aW1qKxvwm+HM3Ht5DgTrFWclfSEr5sjPr5jhuSY2AB3eLs6oLy2ERV1jUgrqkJCUM8/F9D5vMLe8HBuKzmtbGjs9eu7YuqxCP7uTkJp5trDWZLnSqpVCPBw7vK17bN8N06Nh69b3zOPREREYgZl+l566SU89thjOHz4MDIzM5GVlSX8k52dbe41ElE/Jg5+AKDAjNm+OlUz7v9yF9Ydzcb172/D2sMdyyItRTL/LciwgCLK3x1vivb3bTyWg9c3HhfuXz4uWlIG2n7vX1/odDohUOlurTKZDBPE+/rSDd/XJwmu+tCJ0kOS6Wvu9eu7YqomLq383duCtNay0VYlPQxs//tsIY5klQIA7BVy3DM70ej1EBERtTIo0/f777/jqaeewvXXX2/u9RDRANI+oACAgsp6RBmwp6u+SY0/z+Rjy4kc5JXX4eGFIzElLrDb16QVVaGuUV/yqNHqcO/nu6DR6nD5+Oi+/xB9UKdqRl5LcKuQyxDlZ/getkVjInFbehE++1PfobO1hNNBIceCUeFQa7R4dd1RNKq1OJ5ThuTz5UJZaF+U1apQUafPnjnbKxDi5dLlsRNjArD5uH5cxP6MYtwkCkC7Iw78DQ2AxdydlcJtU+7pE3cU7W1zmc6Iyzvb66mLpzjLd93kOAR6dp0VJCIi6i2Dgr7a2lpMnTrV3GshogEmv7JeCMJa5XWT6SutUeH3k+ex5cR5/JmSL8mWVDY04fcVi7t9v9RCaYCp1elw/5d/Q6cDrphgucAvvbht5l2kn3uvW+4/s2QcDmWW4ISomcusxFBhb9ucpDBsOKavsjieUyoEfTqdDsm55fB1c0SQZ9fBm1hquy6j3Q19nyRq5nKgFx08pRk1T4Nf18rTqa28s6reNOWdOp3OLOWdXSntJtN3IKMYe9IKAQB2chmWz00yei1ERERiBn0SmT17NjZv3mzutRDRACPOpLQqqKyX3M8srsb/tiXj0jc2YeQTq/GPb/Zgy8nzHcrjskpqevV+rbGLVqfDA1/9jR/3Z/R6/X1lzEw6AHBQ2uGj26fD3aktw7VkXJRwW7yXLlN0Xb7dk4aLXlmPCU//jA+2nzJoLmJvSi8TQ72FJiy55XXdBvCt1BotzomC4L5cD0+XtvJOYwefA0BBZR0e+XYvKluawrg6KhFkgsyafzd79kqqu870vS3K8l05IVqYiUhERGQqBmX6AgMD8d5772HHjh2IjIyEvb20hTQbuRBRZ9IKO86Sa+3gqdXqcPsnfwjlgp2JD/TAueJqqLU61KqaUatqhqujssvj00QNSf51xXh8tycdZ/IroNXp8OCqv6HT6XD1pFgjfiLDSBqj9DGDFOHrhs/umomnfjyAEWE+WDgqXHguyt9NuC0OqH47kgVAPzLgX78cwoGMYrx14wWS7pftpfWig6XSTo5xUX7YdbYAgH5fX0+lszlltWhS68cVBHg4dbuWrsSIgtGU/MquD+xCSXUDTudV4HReOZJzK7DxWLbkS4VR4T7dZjgNJd7T115pF907j+eUYcfpPAD6Lyruu2i40esgIiJqz6Cg7+jRoxg5ciQAID8/X/KcKf6iJKKBSRz8tCqo1Ad9x3NKOwR8MhkwPtofC0boZ8VF+btj4jM/CzPeiqrq4erYdWAiLiOcHBuIy8dH4+p3tuJ0XgV0OuChr3dDq9OZpONld8Rz74zZK3ZBfBD+ePLSDo9Hi/YIZpa0BX3tg+xNx3OQkl+Bj26f0eW+vzRJE5ee1zoxxr9XQZ8k69mHJi4AEOXnBid7BRqa1CiubkBJdUOn++c0Wi1S8iuFAC+9pAbHMku63U83fWgw/nPd5D6tq7325Z1Jod5Izi0HoA88O/POlrYs3yVjIhHbx2tERETUHYOCvttvvx3jx4+Hi4the0SIiIDOyzvzK/TlneKMTUyAO5bPScLc4aHwdZN+cA7wcBYFfQ2SrI9YY7NGKAGVyfTndLJX4McHLsI1K39Hcm45dDrgH9/sgVYHLJ1ivsDP1HvF2hM3wskqqYFWq0NdY3OH0llAX/65+PWNeOnqibiuk5+5t2sVD2k/cK7nIe2phb0LKjtjJ5djaLCn0N3yVF45ZriHSI5pUmuw+PVNkn2Q3UkK88bTl43FhUNMN9ajfdB3w9R4rPh+H4DOG7mcza/AxmM5wv0H5jHLR0RE5mHQnr7HH38cubm55l4LEQ0waUUdM32t+8DEwcaSsVG4bkpch4APAAI92h4rrOoY1LTKLKkWBoCHebcNAPd2dcTqBy4SNTsB/vnNHqz6O7UPP1HPmtQayf7D2ADDO3caysvFAV4u+uYmqmYNCqrqpWMXAj3wwW0XwsVBIRzzj2/24OFVuyUD3WsamoRAUWknR6SvG3oyJtIXCrm+wiMlv1Lo/NkVUwXAiaFtmcrTuRUdnv/7bGGXAZ+TvQJjIn1x/QVxeOnqiVj3zwXY8tgikwZ8AODt4ojoloB8aLAXZg1rC0w7a+Ty9paTwu15w8MwLKTvXViJiIi6Y1CmLyQkBDk5OUhIMKw9NxFRWa0K5bX6gMDJXoFmtQZqrQ4VdY1oaFIjVdLsxLPL84ibYxRXdd3Eo7vgwsvFAavvvwjXvvu7EBg89t1eOCjkJt/jl1lcDY1WH3yGervA2aHrPYjGiPJzEwKuzOJq5JW3NVWJC/TEpWOjMCzEG3d+shNnW/btfb8vHSfOl+HjO2Yg2t9dEihG+blBYUCXUWcHJYaH+eBotj7rdvBcMS4aHtbl8cY2tWklDvpaSybFUtu9z6LREZg0NBihbk6I8HWFnbx3HVT7Qi6X4fv75uL3k+cxb2Q4fFzb9viV1qig1eogbwmYM4urJQPcH5zPLB8REZmPQUFfUlISHnroIQwfPhxhYWFwdJRuVmcjFyJqTxyExQa4o7y2UcjyFVTWG5wBMjTTl9pDQxIvFwf8cP9cXPfu7ziWrQ/8/rXmEK6cECN8EDcF6c/labLzthft7y6UO54rrhZKYPXv6yH8e+OjC/H49/vw04FzAIDTeRWY9+p63DM7UQgGe7vWibH+QtC3P72oy6BPP6dR1LkzwPD3aC8xxEu4faqToE983W+cGo87Zw6Dn58bSgzo+mpKYT6uuG3GUOG+m6MSNapmqLU6VNY3wrslEHz392QhMz19aDBGR/pZdJ1ERDS4GPTVZ2ZmJsaMGQOlUonCwkJkZWVJ/iEiai+1XUARLBr6nVlcjfPl+iBFLpMJJXGdCRBl+oq6CfokDUm6CGA8nR3w/X0XCR1Ay2sbUdZFV8W+Sm1XZmku7ff1SQaNiwagOzso8c5NU/HadZNhr9D/L79W1Yz/bDgmdPts/5qeTIwRz+vrel9fQWU9alXNAAAPJ3v4ddPdsidDg72EMRwZxdVoaJLOfzRVRtHUxA1nWjt45pbXYvW+dOHxB7mXj4iIzMygTN+qVavMvQ4iGmCkA7k9oNFqhfu7zhagdYRcpJ8bHJR2XZ4nUBT0FfaxvFPMw9keod4uQiOZgsr6TjtB9lW6mZu4tBJ38DxXUt1u3p6n5FiZTIYbp8ZjZLgP7vxkpyQr2GpuUqjB7z0+xl+4fTynDA1NamEPpVhqu0DUmG7PLo5KRPm541xL+ezZgkqMivAF0Nmgdc8+v4+p+bg6CmM1SqtViA8E/rftFNQtJcATY/wxOS7QmkskIqJBwKCg78iRI90+P2bMGJMshogGDvGH8PhAD1S3DMIGgD9T2ka/9NTGP8CzLSDrajC3RqtFRpHhH/qDPNuCvsKqeoyAT7fH94algg9xpu9sfqUQyLV2Lu3MiHAfbFmxCN/uTkNueS28XBzh6WKPCTEBGBlu+DXwcXVEXKAH0gqr0KzR4mhWKabEdwxcTH0tEkO8hADqdF6FEPSV1qiEQesuDgoEm2DQuqmIs5slNQ3QanVYvT9DeOyhBSOssSwiIhpkDAr6li5dCplMBl3rV/PQf3Msk8kgl8uRnJxstgUSUf/U/gN/634+QDquoadsWIC7KNNXWQ+dTtchY3S+rBaNLQPA/d2d4OHc/QDwIFFQUCBal7E0Wq2kOYp5M31tnTazStv2rYk7l3bG09kB985NMvr9J8YECL/jfRlFPQd9Jpg/NyzUG+uOZgOQ7utrn+W1pfmxfqKOtKU1KuSW1wolr96uDphu4g6iREREnTEo6Nu+fbvkvkajQWZmJt5++2088sgjZlkYEfVftapm5LcEUwq5DJF+bggu7HzOZ0+BkbuTEo5KO6iaNahvUqNW1Qw3J2lQl9rLkkpJ0NfNPsHeyi2vg6pZAwDwdXMUxiqYg5uTPXzdHDvMf7PUfraJsf74erd+7EVX+/pMPa8wSdTBUxr0VYrex9Po9zElXzdppk98TRKCPG0qQCUiooHL4JEN7YWHh8PFxQX/+te/sG7dOpMvjIj6L8koAH93KO3kXZbc9TSwWyaTIdDDWchmFVY1dAj62peS9iRQkukzXdAnXYenyc7blSg/9w5BnyXeF5A2czl0rhhqjbbDyAdTB32JoaIOnnkVwgiE3gb9luQnDvqqVSbPfhIRERnCqMFFPj4+yM7ONtVaiGiASO0k+BF37xSLNeCDb4BobENnHTx7m+kJkjSHMWXQJ16H+T/QR/t3HKZuqaAn1NtFCOTrGtU4lScdmF5WqxI6ozoq7RDq7Wr0ewZ6OAvZ01pVs9ABtrdBvyX5ipoEldWo2jU48rTCioiIaDDqcyOX2tpafPnll4iLizP5ooiof+ss+PFzc4JCLhO6FgJAsKezMD6hO+LMXFEnHTx7m1EK8mo7X76ZMn2WCL6i/Do2bLFU0CeTyTAxNgBrDmUC0M/rEzeDkcxpDPQwySxEmUyGpFBv7DpbAEBf4hnh62bb5Z2u0vLO8rq2zKytZSWJiGjg6nMjF0Bf9vnaa6+ZZWFE1H91FvzI5TIEejojt7ytcUqsgR96/d27zvR1bNdvQHmnmTJ9li4z7Gy+oSWDnokx/kLQdyCjGHfNGiY8Z64yxmEhXqKgrwJTE4KEUR72CjnCfYzPKJqSeBxISY1K0sWWQR8REVlKnxq5AIBSqYS/v38nRxPRYNdVEBbs5SIJ+gwNULoL0gqr6lHT0g3R3UkpCRC74uXiIDSHqVU1o6ahqcM+wd7SB5+Vwn1rZPoCPHruXGpKE2Pb9vXtzyiSdFY117VIFDVz2Z1agNmJbXvOo/3dO+wrtDbxnr7c8lphPqWro1LSUIiIiMicDPrb8d1334WHhwdCQkKEf/z9/VFZWYn777/f3Gskon6ksVmDrBJ90xX9zDhR0NfuQ66h+68CPLou72zfPMWQboitzWFamaKDZ3F1A6ob9MGnm6NScn5zifKT7umzdGOQ+EBPeLYEmaU1KmGGHtDu99JDs57euCA+EHYtpaL7M4rx/b504TlbbIzi6qiEg0L/V624WCYuwLZGSxAR0cDWZaYvIyMD5eX6lti//vorZs+eDQ8P6V+oZ8+exa5du8y7QiLqVzJLqqFt+XQb5u0KZ9HMuPbNXAzNAAV6dl3e2dd9dEFeoo6glfVGd720xqw4F0clAjychEDY0uWCcrkM46P98XtyLgB9ENYa5Jur1DXYywVLxkXhpwPnAACr/k4VnjNlcGkqMpkMvm5OkjmVAEs7iYjIsroM+nJzc3H33XcD0P+ldd9993V63A033GCelRFRv9RdEBbk2T7o8zTonP7uhmX6evNBWpLpM0EzF0s3cWkV5ecuCvo8Lfa+rSbGBghB34GMIiydEoe6dnMaO2s4Y4z75iYJQZ+YrQZSfu6ODPqIiMiqugz6pk+fjj///BM6nQ4zZszAmjVr4O3tLTnGxcUFrq62tWmeiKyru+AnWNQ108vFQTK4ujuBopENhVX17faO9a0FvqkHtKdaqYPk7MQQ7EsvgkIuw4yhwRZ731YTY9r2du9P1w9pF48liPTTz2k0pYRgL8wbEYYtJ85LHrfVQMrXreM+U1vMShIR0cDVbSOXgAD9Jv2UlBThMbVaDYXCoP4vRDQIdRf8DAluG649JtLX4HO6OirhbK9AfZMaqmYNqhuahYYlqX1sGCLOOha0y8L0hbUyfXfPTkRsgAfCfFwR1Uk3T3MbEe4jNMXJKq1BUVW9Ra7FAxcNlwR9cpkM0f62GfT5dfLlhi3uPyQiooHL4K9ff/31V8yfPx+jRo3C+fPn8eyzz+K9994z59qIqB/q7gN/tL87Xrl2EpaMi8Kzl483+JwymUwyq6+1g2dFXSNKa8QDwDsfAN+Zzs7XVwWVdTh4rli4n2DBLI7STo75I8MlXS0tyV5hh9GiAH5/enG7Ji7mCW7GRPlhanygcD/C1xWOSjuzvJex2mf6HBRyhPuySoaIiCzHoKDv119/xUsvvYTLLrsMdnb6v1SHDBmCjz/+GB9//LFZF0hE/YdGq0VGUfdZnpunJeD9Wy/sdQYoQFTiWdyyh00yADzAA3Zyw8sIxZ1ECyqNC/r+t+0UmtRaAMDYKD+bmxVnbhNj2kY3fLjjFM4WVAj34wI8zfa+Dy0YIdweF227I4TalzFH+/fuzyoREZGxDPpb57PPPsPTTz+NZcuWQd7yF9V1112HF154AatXrzbrAomo/zhfVovGluDH390Jns4OJjt3gLt0Xx9g3Cy4QBMFfaU1DZIOkg/NHzHoWvFfNTEG9i1jCY5klQqNXQDzlrpeEB+E926ZhntmJ+LJS8eY7X2M5ecuDfpsde8hERENXAYFfdnZ2Rg1alSHx0eNGoWioiJTr4mI+ilz7uWSzuprDfpEmb5evp+/uxPkLcFZaY0KTWpNn9b10Y4zUDXrX5sU6i0ZFj5YRPu748F5bVk38Ty62ADz7jO8fHw0nrl8nOTPh63xa1feaeh8SiIiIlMxKOgLCgqSNHNptXfvXgQFBZl8UUTUP5lrNhsgHbFQ2FLeKX6/+F42xlDYyeEvysC0HwVhiMr6Rnz+V9v/Gx+cN3zQZflaLZ+bhNh2v4NQbxc4OyittCLb0b680xqjNYiIaHAzKOi77bbb8Nxzz+Hbb7+FTqfDgQMH8Pbbb+Pll1/mnD4iEkjKLU3cnTDAU7ynr5Pyzj40TzG2xPOzP1NQq2rWv3+gBxaOiuj1OQYKB6Ud/rN0suQxYwfeDxTtG7mwvJOIiCzNoNkLV199NdRqNT788EOoVCo8+eSTCAgIwOOPP45rr73W3Gskon5C2rXR06TnDmiX6atvbEZuuX7Ugp1chig/t16fM8jTBceyy/TnbBf0HcsuxTe703Dp2EhMTehY0VCrasYnf5wR7j8wbzjk8sGZ5Ws1KTYAN1wQj6936/c4JoVZp6OorfF2cYCLgwJ1jWo4Ku2sMlqDiIgGN4OCvu+//x7z5s3D0qVLUV5eDnt7ew5lJyIJnU5n1j194vLOlPwKHMkqFe5H+rnBXtH7dv3iAe35ldJZfcu/2IVzxdVYezgTR1+8Ci6O0jLFr3adRUVdIwD9uIDLxkb1+v0HoucuHwe1RosaVTPumDHU2suxCXK5DM9ePh4f/3Eat88YarOjJYiIaOAyKOh7/fXXMXHiRPj4+MDbm9/cElFHhVX1qGkpdXR3UsLf3amHV/ROpK8bovzckFlSgxpVM1Z8v094rq8BpjjoE2f6ympVOFdcDQCoUTVjX0YRZieGCs83NKnxwfZTwv37LhoOhR1b8AOAi6MSb954gbWXYXNunBqPG6fGW3sZREQ0SBn0KWXo0KHYs2ePuddCRP3Y3rS2Tr5xgZ4mb2gil8uwYnFbW/6MlqAM6PssuK729IkzlgCwK6VAcv+7PWkoaRkKH+TpjKsmxPTp/YmIiIgswaBMn4+PD/7973/jgw8+QFhYGBwdpZ3IPvvsM7Msjoj6B61Wh3e3Jgv3ZwwNNsv7LBodgZHhPjieUyZ5PD6ob5m+YE8X4bY46EstqJQct+tsW9DXpNbgvW1tWb575yTBgeV6REREZMMMCvocHR1x2WWXmXkpRNRf/Z58HmfyKwAAzvYK3Dp9iFneRy6X4anLxuKqd7ZKHu9rC3xppq9tT19akTTTdzqvAiXVDfBzd8JPB84hv0J/rK+bI5ZeENen9yYiIiKyFIOCvpdfftnc6yCifkqn0+GtzSeE+zdPS4CPq2M3rzDO1IQgzBgajJ1n8oXH4vo4AFwc9BVVNUCt0UJhJ+9Q3gnos32XjInEyi0nhcfunjUMzvYG/W+UiIiIyGrYeYCIjPJnSr4w9sBBIcfds4eZ/T2fumwsWrcMxgV69HkAuLO9AsEtgV+zRouU/EoAHff0Afp9fb8dyUJWaQ0AwNPZHjdPS+jT+xIRERFZEr+iJiKjvL25LfO1dEqcZJ6euSSGemPlTdOw6XiO0UHmmCg/5B/NBgAczipBpJ+bUL4p9ldKPo5klQj375gxFG5O9ka9NxEREZElMOgjoj7bm1aIfen6rp0KuQz3zk2y2HtfMSEaV0yINvo8Y6P8sL416MsswchwH+G5aH93FFc3oFbVjHxRoxcXBwVu4ww6IiIi6idY3klEffa2aH/bVRNjEOrtasXV9M3YKD/h9pHMEqSKSjuHBHvigrjADq+59cIh8HJxsMj6iIiIiIxlcNCnVquxceNGrFy5EpWVlThw4ADKy8vNuTYismHHskvxZ0szFblMhvsuGm7lFfXN8DAfKFsGq2cUV+NARtu8wfhAT0wbEiQ53lFph7tmmX/fIhEREZGpGFTeWVxcjFtuuQWFhYVQqVS47LLL8Pnnn+PEiRP46quvEBPDwcREg424Y+elYyMR7d+3DprW5qi0Q1KoN45mlwIAfjucJTwXF+iBpDBvyfHXXxAPP3cnSy6RiIiIyCgGZfpeeeUVxMbGYt++fXBw0Jc0/ec//0FSUhJeeeUVg9+spKQETzzxBKZOnYqxY8fixhtvxPHjx4Xnt2/fjoULFyIpKQkXX3wxdu7c2bufhogs4kxeBbacOC/cf2Be/8zytRob3VbiWaNqFm7HBXogLsADUX5uAPTdSe+dk2jx9REREREZw6Cgb//+/bj33nthb9/Wqc7V1RX//Oc/cezYMYPeSKvV4t5778Uvv/wCFxcXxMbG4sCBA7jllluQk5ODlJQUPPDAA8jJyUFSUhKys7OxfPlypKam9ukHIyLzeWdLW5ZvwchwDAn2suJqjDc20q/DYzIZEBPgAZlMhg9vn44bp8bjy2WzEezlYoUVEhEREfWdQUGfSqWCUtlxDlZTUxN0Op1Bb3T69GmcOHECoaGh2LBhA3744QcsWLAA9fX1WLduHVatWgW1Wo2HH34Y33//PZYvXw61Wo2vv/66dz8REZlVRlEV1h7JEu4/OH+E9RZjIuJmLq1CvV2FwevDw3zw2nWTMX1osKWXRkRERGQ0g4K+Cy64AB9//LEkwKupqcEbb7yBiRMnGvRG/v7+eOONN/DEE09AodB/kPL19QUAVFRU4MiRIwCACRMmAAAmTZoEADh69KiBPwoRWcK7W5PR+r+CmcNCJCMO+qtQbxf4t9unFx/oYaXVEBEREZmWQUHf//3f/+Hw4cOYNm0aGhsbcd9992HGjBnIycnBihUrDHojf39/XHzxxZgzZw4AoLy8HBs3bgQAjBo1CoWFhQAAT09Pyb9bHyci6ztfVoufDmQI9x8aAFk+AJDJZB2yfXEM+oiIiGiAMKh7Z2BgIH777TesX78eZ86cgVKpRGxsLC655BKhsUtvVFdX44477kBZWRliYmIwb948PProowAglJG2ZgMbGhp6PJ+XlzMUCrter8NYfi3NHciyeN1NqzfX819rD0Ot1af5pieG4OJJA6dz74VJodh0PEe4PyYu0Kx/1vjn2DJ4na2D190yeJ2tg9fdOnjdjWNQ0Pf2229jyZIluOqqq4x+w8rKStx22204deoUPDw88Pbbb0OpVMLBwQENDQ1Qq9UAIPzbyann1ugVFfVGr6u3/PzcUFJSY/H3Hex43U2rN9ezsLIen+84Ldy/d9awAfW7GNJu5ESgi4PZfj7+ObYMXmfr4HW3DF5n6+B1tw5ed8N0FxgbVN65detWzJs3D9deey1Wr16Nmpq+XfS6ujrcfvvtOHXqFDw9PfHFF18gLi4OgL78EwCqqqoA6INDQJ9lJCLr+2D7KTSqtQCAMZG+mJYQ1MMr+pcR4T5QyGXCfZZ3EhER0UBhUNC3YcMG/PLLLxg9ejTef/99TJ06FQ899BB27twJrVZr8Js9+eSTSE5OhpubG7788ksMGzZMeG7ECP3eoP379wMADhw4AAAYO3aswecnIvMoq1Xhq7/bxqc8NH8EZDJZN6/of5ztFXho/gg4KOS4a9YweDr3vnSdiIiIzEOn0yG1shgZVaWobW609nL6HZnO0JkLLXQ6HQ4ePIhNmzZh3bp1cHR0xN9//93j606cOCGUh4aEhGDIkCHCcxdccAESExNx3XXXwc7ODklJSUhOTgYArFmzRsgGdsUa6V6mma2D1920DL2ePx3IwP1f6v87HxbihW1PLB5wQV8rtUYLhZ1B34f1Gf8cWwavs3XwulsGr7N18Lpbh7OnPW5c+zU2ZLdtM3FWKDHMKxCTAyMxOSAS4/zC4Ky07+YsA1935Z0G7ekTO3fuHPbu3Yv9+/ejubkZF154oUGv27p1q3A7Ly8PeXl5wn0vLy9cf/31WLlyJd58800kJycjPDwcjz76aI8BHxGZX2pBlXB77vDQARvwATB7wEdERERtdDod9hRmYn9xDsJcPbEoYhicFG3BW0F9Ne7avBpHi3Mlr6tXN+NQyXkcKjmPlSd3QSmXY5RPSFsQ6B8mOc9gZ1CmLy8vDxs2bMCGDRuQmpqKUaNGYcmSJVi4cCFcXV0tsc5uMdM3ePC6m5ah1/PWj3Zg8/HzAIB3b56GKyZEm3tpAxr/HFsGr7N18LpbBq+zdfC6m05dcyN+PncCX6QcQGpVifC4u9IBl0UNh5+TK0pVddiccwZFDbXC88HO7ihrrEejRt3t+ZVyOUb7hmJyQCQmB0ZirF8YnBRKs/08tsDoTN/s2bMRHByMSy+9FCtXrkR4eLjJFkdEti+tsC3TxwYnRERE1Ffnqsvw1dmDWJ1+FNWd7M2rbm7EV6mHOjyukMnx74kLcUP8OOh0OpSp6nCgOAd7i7KwpzALZyuLJcc3a7U4UJyDA8U5ePvkX7CX22FyYCSuix2DuWEJcLDrdcFjv2bQT/vll19i4sSJ5l4L0aCh1eogl/ePEskmtQZZom81YwPcuzmaiIiISEqr02JnfgY+T9mPP/LSOzzvorDHgvChOFxyHpk15R2e93J0wgfTrsIFQfpKI5lMBl8nVyyMGIaFEfrGkGWqOuwrysaewkzsK8rC2coSyTmatBr8mZ+BP/Mz4OXghLuGTcbypKmQywbHto4ug75169Zh3rx5sLe3R3FxMdatW9flSRYvXmyWxRENRIczS3DzBzsQ6OGE1Q9cBG9XR2svqVuZxdXQtAxkD/V2gbPDwC6NICIiItP5Mz8dT+7fiKxOgrlodx/ckjABV8WMhJu9I3Q6HfYWZWF7bhqUcjl8nVwR4OSKJcNHQl2j6fZ9fBxdcHHEMFzcEgSWNtRiX1E29hZlYW9hlqSEtKKxAa8e3QGl3A7LEi8w7Q9so7oM+h599FFMmTIFPj4+ePTRR7s8gUwmY9BH1Auf/HEaZbUqlNWq8OnOFDy6aJS1l9QtcWlnfKCn9RZCRERE/UqjRo0H/v4FZap64TEZgNmh8bglYQIuDI6WZNpkMhmmBEZhSmCU5Dxejs4o6eWccF8nVyyKTMSiyEQAQG5tJVZnHMMP6UeRV6f/bPPKke2YGBCB0b6hffwJ+48ug76UlJRObxORcc6KOmF+vzcN/1g4AnZy2y0tSC3ifj4iIiLqWYO6WdIs5ffcs0LA56xQ4ob4cbgpYTwi3bwtvrZQV0/8Y+QM3D98Gi7f/BmOluZBrdNi+V8/YfOiZXC3t+3KK2MZ9EnzpptuQnV1dYfHy8vLcfnll5t8UUQDlUarxbnitiAqv7Ief5zOt+KKepbOJi5ERETUjbzaSty8/RvEffsi7t/1M1qHA/yQflQ45q5hU/DMuHlWCfjElHI7vDftSrgpHQAAObWVeHzvOvRydHm/02Wm78iRI8jJyQEAHDhwAL/99luH8Qzp6enIysoy6wKJBpKc0lo0qrWSx77enYo5SbZbVpBaUCncjmN5JxEREbXQ6rT4Nu0I/n14K2qbmwAAazJPYn74UIz2DcGf+RnCsVfHjLLSKjsKd/PCfyZfgmV//QgAWJd9Clfnj8LMkIE7H7zLoE8ul+Opp56CTqeDTCbDyy+/LHleJpPBxcUF9957r9kXSTRQpBZWdnhsW3IuiqrqEeDhbPkF9UCj1SKjuC3Lz0wfERERNWnU+C0rGR+f3odTFYUdnn/h0BZcET0S2pbs2dTAKIS7eVl6md1aFJmIa/LS8EPGMQDAJ6f3Dc6gb9SoUUhOTgYAzJo1Cz/99BO8va2bjiXq78RNUVpptDr8sC8DD8wbDgDQ6XQoqKxHRlE1zhVXIb24GtklNYgL9MATl4yBws5y+/9yy+ugatZ3y/Jzc4SXi4PF3puIiIhszw/pR/Ha0e2SgemAvhNnRWM9KhobkFtXhXdO/iU8d03saEsv0yAPjpiOH88dh1anw58FGThbWYwET39rL8ssDJrTt2PHji6fKywsRGBgoMkWRDSQiYO+cVF+OJSpbx/8+Z9ncCavHOnF1ThXVI36JnWH1/6enIuEIE9cPSnWKutlaScREVH/0KBuRmF9NQrqq6HWajEpIAL2Rg4jV2s1eOHwVnx6Zr/kcUc7BW4fOgkPjZiOnzKO4Yn9GwAArTvk3JUOmB8+1Kj3NpdwNy/MCxuCTTlnAACfndmPVycPzKkEBv32z58/j1dffRWpqanQaPTf+ut0OjQ1NaG8vBynT5826yKJBgpxEPXQ/BFY/sUuVDU0obCqAb8ezurx9ceySy0c9FUKt1naSUREZDuya8qxtzALBfXVKKyvQUFLkFdQV43KpgbJsQvCh+Kj6VdDJpP16b1qmlS4d9dPksHqAU6uuHXIRFwfNxZejvotKkvjxuKr1EM4U1EkHLckeoSko6etuWPoJCHo++nccawYPVv4eVo1qJtxsiwfh0tycaqiEHEevnhg+IV9vp7WYFDQ99xzzyEvLw+LFy/Ghx9+iDvvvBPZ2dnYtGkTnn/+eXOvkWhA0Ol0SBONP0gK88bSKXH43/ZTHY71dLZHTIAHYvzdodXp8NOBcwAg2V9nCakF7NxJRERkS06XF+Ld5F1Yn31a2DPXk005Z7D5fAoW9CHjllNTgVv/+BZnK9uGmy8MH4q3py6Bk8JecqydXI7nxy/AVVu/EB6z1dLOVhP8wzHcOwgnywvQqFHjm7TDuDx6BA6XnMfhklwcKjmPU+UFaNZKG/GN8g3B9GDLfRFvLIOCvqNHj+Kjjz7CuHHj8Mcff2D69OkYNWoUoqOjsX37dlx11VXmXidRv1dQWY9aVTMAwMPJHv7uTnh88Wh4uTqgqr4JMf7u+kAvwB3eLg7Ct0ephZVC0JdZ0rvBpMYSB6kczE5ERGQ9zVoN/rlnLX45d6LHYxUyOQKd3WAnkyO7tgIA8OyBTZgeFANnpX0Pr25zsDgHt//xPcob24arPzB8Gh4ZNVMyVF1scmAklidNxXvJf+OamFEY7h1k8PtZg0wm05en7l4DAHj16Ha8cnR7t6/xsHdEhJVHT/SWQUGfWq1GSEgIACAqKgopKSkYNWoUFi9ejO+++86sCyQaKNLazbuTyWRwUNrh/ouGd/u6CB83yGUyaHU65JbXQtWsgaPSztzL1WcmWd5JRERkE549sKlDwDc1MAojfIIR5OKOIOeWf1zc4evoArlMjsrGBkxfuxJlqnrk11fjrRN/4v/GzjXo/X7KOI7H9v6GJq1+a5e93A7/mXIJroge2eNrnxgzB4+OmgmF3PyfV0xhcWQiXjryO4obatFV7jTG3Qfj/MIwxi8Mc0LjEeDsZtE1GsugoC8iIgLHjx9HUFAQoqKihK6eDQ0NqK+v7+HVRAR0DPoM5aC0Q5iPC7JLa6HTAdkl1UgINn/b4+LqBlQ36DOTbo5KBHg4mf09iYiIqKOvUw/hq9RDwv15YQl4aMR0DPcJ7vZ1ng5OeGrsRXh4968AgI9O78WVMSMR302HSq1Oi9eO7sC7yX8Lj/k4OuOTGddivH+4wWvuLwEfADjYKfCPkTOwYt96AICzQolRviEY5xeGsX5hGOMb2mGfX39jUNC3dOlSrFixAlqtFvPmzcOSJUvg5OSEw4cPY+TInqN9IjKuKUq0vweyS/WtkTOKLRP0dZaZJCIiIsvaX5SNp/ZvFO5fEpmI96ZdafDfy1dGj8T3aUewvzgHap0WLxzeilWzb+j02PrmJjy4e43Q2AQAEjz98MWspQhzta05e6Z2Q/w4jPMLg0anRYKnf78KWg1hUNB33XXXwdvbG97e3oiLi8OLL76IVatWwdfXF08//bS510g0IKQW9n1/XLS/O/44nQcAOGehZi6pBZXCbZZ2EhERGUen0xkcqGm0WvxdeA6r049hc84ZqHX6JiJJ3oF4fcqlvfoiViaT4cWJF2Puuv9BB+DP/AyUqerg4+jSYX23/vEddhdmCo/NDInF+9OuhJu9o8Hv158N8Qqw9hLMxuCBHfPmzRNuX3rppbj00kvNsiCigaqv5Z0AEOPvLty2VNDHJi5ERETGUWs1WJN5Eh+c2o30qlJ4OzjDz8kVfo6u+n87ucLPyQV+jq7wd3JFRWMDtuel4o+8dJSq6iTn8nF0xqczru3QMdMQQ7wCMM4vDAdLzkOr02FbbmqHrpp7CjMlAd/tQyfi6bEXDbiM12DVZdDXmwzeCy+8YJLFEA1U5bUqlNWqAACOSjuEerv26vVR/m2bhS0W9BkRpBIREQ1267NO4eUj24TumQBQoqpDiaoOQFHXL+zEcO8gvDZ5MUJcPfu8nvnhQ3Gw5DwAYHPOmQ5B35dnDwq3r4sdg3+NX9Dn9yLb02XQl5WVZcFlEA1s4gAqNsADcnnv9sfF+LcFXQz6iIiIDKfVabscL2AKBfXVqGtuRKyHn/DY1vMpWPbXj0ad19fRBZdFDcfVMaMwzDvQ2GViXvgQvHB4KwDgr/wM1DU3wkXpAADIr6vClvMpwrF3DJtk9PuRbeky6Fu1apUl10E0oKUaGUAFeznDQSFHo1qLkhoVqhua4O7U+/IOQ1XWN6K4ugEA4KCQI8ynd5lJIiIia6lorMfhkvM4UJSDg8U5OF6WD38nV3w95wZJYCa2Kz8DOgAXBsf06r1OVxTisk2fokHdjOcnLMCtQyaiSaPG84e2Csd42jvhrmGTcUP8WKg0apSq6lDSUIvihlqUNNSiRNXy75ZxAZMDIzEnNB4jfYJNGqxGunljiKc/UiqL0ajVYGd+Bi6OGAYA+DbtCDQtg94nB0QioZvuntQ/GbSn78iRI90+P2bMGJMshmigMnbenZ1cjkg/d5xtaa5yrrgaoyJ8TbS6jsRZvpgAD9jJzfcNKRERUV/pdDrk1VXhQLE+wDtQnIOzlcUdjsutq8K9f/2E3xbeAUc7peS5d0/uEoZxvzhhIW4eMsHg938/eTfq1frxRs8f2oIxvqE4WJyDrJpyAPoh3jsvXQ5fp7YvT4NdrFc9My98CFJars/mnDO4OGIYmrUafJt2WDjm5oTx1loemZHBIxtkMhl0urZxhTKZDDKZDHK5XJjbR0Sdk5ZKevbpHNH+1gn64lnaSURENuhsZTHu2vkDMqrLDDr+dEURXjmyHc+Nny88tj03Fa+2BHwA8NKRbZgblmBQYFbaUIuN2aeF+81aLe796ydUNjUIjz044kJJwGdtC8KG4u0TfwHQ/+zNWg0255xBcYN+LJS/kyvmhQ+x5hLJTAwK+rZv3y65r9FokJmZibfffhuPPPKIWRZGNJCYYn+cJTt4SjOTnmZ9LyIior544/jOTgM+hUyOJJ8gTPAPx3j/cJyrLsPLR7YBAD45sw/Tg2MwMyQO56rLcP+un6ETvbZO3YRnDm7CJzOu7fH9v08/iiatRvKYuGlLhJsXbk4wPGtoCYnegQh18UBuXRWqmxvxfvLf+C2rLXmzNG4slOzWOSAZFPSFhIR0eCw8PBwuLi7417/+hXXr1pl8YUQDRZ2qGXkV+rbLdnIZovzcenhF56IsGvSxiQsREdmu+uYmbM9NFe5PC4rGxIAIjPcPx2ifEDgr2/a963Q6HCzOwbaW4+/560ckePojt1Yf+AD6cQhlqnoAwOacFGzJSek246XRavGNqCRyfvgQbM5JkRzz1NiL4GBn8HQ0i5DJZJgXPgSfntkPAPjPsT+E5+xkMlwfP9ZaSyMzM2qjjo+PD7Kzs021FqIBSTzvLsrPHfaKvn2DFm3BoM/YxjNERETmtD0vFSqNGgCQ4OmH7+behIdGTMcFgVGSgA/QBzqvT7kU/i1llrXNTThckouihhoAgIOdAqtm34BrRSMMnjqwEavTj+JkWT5UmuYO778zPx3naysB6Bu1vDvtClwTM0p4fmJABOaH2WaZ5PywoZ0+fuewyQhydu/0Oer/+tzIpba2Fl9++SXi4uJMviiigcRUWbP25Z06nQ4yWe9GPxiivkmN3HJ9bb9cJkOUH/8CICIi27Iu65Rw++KIxB6P93F0wcqpl+PmHd8KwSIAyAD8Z/IlGOETjCfHzsXvuWdRpqpHQX01/rFnLQB9BizG3RdDvQIwPjQc4Q5e+PTMPuEc18SOhqOdEi9MWAg7uRxF9TV4aeLFZvk72hQm+IdjpE8wjpflw8/RBUuiR+DKmJEY5mX8WAiyXX1u5ALoyz7/85//mGVhRAOFqYI+XzdHuDkqUaNqRo2qGaU1Kvi5O5liiRIZRVVo/U89ys8NDkrW9hMRUUeNGjXs5XYWD27qm5uwIy9NuL+oZexATy4IisbRqx5Bbl0VapsbUdPciFAXD8S3jCfwcnDGC+MX4t5dP0lep9HpkFpVgtSqEqzN6ti88IaWkkhnpT1em3xJX38si7GTy7Fm/m04V12GWA9fKLiHb1DoUyMXAFAqlfD35wwPGnjUGi0OnCtGfKAHfN2MD6rSiiqF28YEfTKZDNH+7jieo9+0nlFcbZagTzJInqWdREQkUlBfjQ1Zp/Bb1ikcKc3FBP9wfDrzWng5OFtsDe1LO+N7MVPOzd4RQ+0du3z+kqgkBDi7YU9hJk5XFOFMRZEwfqEz04NjEOXuY/jibYS9nQJDvAKsvQyyoD43ciEaqF5ZdxTv/Z4Mb1cH7HvucrgZOQRdOv7A06hzSYK+oipMijX9/7DZxIWIiMRKGmqxIfs01mUl40BxjqTb5YHiHNyw7Wt8N/cmuHcTTJlSb0s7e2tiQAQmBkQI9+uaG5FSWYwzFUXIbCjHkfzzSKkshru9I54ae5HJ35/IHAwK+s6fP48333wTaWlpaGpq6vD8li1bTL4wImtZfzQLAFBe24hDmSWYOazvX3o0qTXIKqkR7scGGLc/LtS7bdZPUXVDN0f2XSrHNRARDXoVqnpszDmDdVnJ2FOUBW27LT5ix8vycfP2b3DHsMlYn3UKuwszMdYvFG9NXQIPe9NWpPS1tNMYLkoHjPULw1i/MPj5uaGkpMZs++qJzMWgoO/xxx9HUVERFixYAEdHy3yLQ2QNDU1q5JTVCvezS2u6ObpnmcXV0Gj1f1GGervA2UFp1PncnNpeX6fq2E3MFDiYnYhocPvq7EE8e3ATmrXaDs/JZTJMCYjE4sgkNKib8Nwh/Rf/B0vO4+Cf54Xjfs9NxXW/f4VvZt8IL0fTlH7qdDp8l36kz6WdpsSAj/obg4K+06dP45tvvkFioulT6ES2JKOoGuIvM8VB39mCSrz82xFE+7njvouS4O3a8xcg0lJJT6PX5yoKGusa1d0c2TfNGi0yReMgYgMY9BERDSbNWg1ePbpdEvDJAEwIiMAlEYlYGDEMfk6ukte0Bn7tnSgrwFVbv8D3c2+Cb7vX9FZmdRmePbhZkuUzR2kn0UBlUNAXERGBhgbzlJIR2RJx0xUAyBIFfS+tPYytJ3MBAN/vS8f/XToGSyfHQS7v+tu+1CLTZs1cHNuCvlozZPqySmqgbslMBnu5wNXRuMwkERHZrqyacvxy7gTmhMZjhE8wAOBgcQ6qmlQAAC8HJzw4/EJcHJnY5fy2O4ZNBgC8fHQ7gpzdcWlkElyU9nj5yDboAKRUFuOa37/E+oV3wknRtz3yewuzcMO2VWjUaoTHgpzdcWP8uD6dj2gwMijoe/rpp/HCCy/g1ltvRWhoKORy6Uz3MWPGmGVxRJYmzswBQHZJW6nniZYGKgBQUdeIR7/di293p+GlayZiVIRv5+crqBRum6IpiotD23+ytY2mD/rSJPv5mOUjIrJ1Fap67CnKgqeDE6LdfRDo5GZQ6eGJsnxc9/tXqGpS4dMz+7B7yYPwdHDCttxU4ZhLIpOEoK47dwybjNuHTpK8b4CzGx7e/Su0Oh3OVpZgdfox3DxkQq9/Pp1Oh+cPbRECPhmA6+PH4vFRs01WNko0GBgU9GVmZiIjIwMrVqzo8JxMJsOZM2dMvjAia+gQ9JXqN2vXqJpRWNUx2300uxQL/7MBN14QjxWXjIGXi0OX5zN1eWe9Gco7U9m5k4io31BrNbj69y9xpqJIeMxZoUS0uw+i3X0Q5e6DGHdf4X5rd83jpXlYum2VkNGralJhTeYJ3DpkIn4/f1Y415zQeIPX0j7QvCJ6JIrra/Hikd8BAB+f2YcbE8ZBLpN39vIuHSvLw8nyAgCAg50CP8+7FaN82VWeqLcMCvreeecdXHnllbjhhhvg5GT6uWBEtiJVlJkDgPomNUprVJLmLjEB7rh0TBTe+/0kGtVa6HTAV3+nYt3RbDx56Rhc11LyqdFqkSHaH2eKIMrVzOWdkiCV+/mIiGzahuzTkoAPAOrVzUguL0RyeWGH430dXRDj7oMzFUWobm6UPPdN6mFcGBSDzJaZdM4KJSYHRhq1vpsSxuHd5F2oalIhq6Ycv59PxbzwIb06x6qzh4Tbl0QmMuAj6iODvm6pra3FHXfcgdjYWISEhHT4h2ggUGu0yCzp2K0zu7RGUvY4LNgLjy4ahZ1PXYrZiW1//ivqGvHIt3ux+PWNOJ5ThtzyOqia9eUovm6OHbKAfWHJ8s74IE+Tn5+IiExDp9Pho9N7hfthrp7w6GFOXqmqDvuLc4SAz9PeCY52+r9XUiqL8Z9jO4RjpwXFwNHOuH3dLkoHXB83Vrj/0ek9vXp9RWM91mYlC/dvjB9v1HqIBjODMn3z5s3Dtm3bcMstt5h5OUTWk1Vag2ZNx/bUWaU10jEGLcFQpJ87Vt0zG1tOnMfTPx1AbnkdAOBIVikWvLZeMjjd2KHsrVzM2L1Tq9Uhvci0mUkiIjKPv/PO4XhZPgDAQW6HdQvugI+jC8ob63Guukz4J6O6FJnVZciqLpc0QvFycMIPc2/Gx2f24seM4wCA9dmnhefn9qK0szu3DJmAj07vhVqnxf7iHBwrzTM4W/dTxnE0toxnSPIOxGhm+Yj6zKCgLyQkBG+++Sa2bt2KiIgIKBTSl73wwgtmWRyRJbXfz9cqp7S23d68tmBIJpNh/shwXDg0GCu3nMT725LR1FLyuTetqNPXGENc3mnqOX15FXVoaNL/5ert6gAfA0ZSEBGRdbx5cKdw+4qYkcJIBB9HF/g4umC8f7jkeI1Wi/z6KmRUlaG4oQZTg6IR7OKBpXFjhaCvlQzAbBMFfcEuHrgkKgm/nDsBAPj49F68d+GVPb5Op9NhVWpbaeeN8eM5G4/ICAYFfQcOHMCIESMAALm5uWZdEJG1iAM7V0elsGcuq7QGqT10tXS2V+DxxaNx1cQYPPXjAfxxOk/yvKmCvvblnTqdzmR/CUp+Ru7nIyKyWRlVpdhwri0rd5cBHTbt5HKEuXohzNVL8vg4vzDEefgirapUeGyUb0iHWXzGuHvYZCHoW599Cv+snoFo9867XrfaXZiJc9X6rtluSgcsiRpusvUQDUYGBX2rVq0y9zqIrE7cxGXG0GCsP5oNQD+UvbWRi1z2/+3dd3xUZfb48c9MJr1NSA9JID303kFQmgqCgmsX++qK+l1d2V11y29XV3d1V1fRXXtBXCtWUEFQkd4RAqRBQirpvU/5/THJzUwaSZjJZJLzfr18OffOvTNPHiLOmfM856iIDuo8IIoO8uG9e+fz7bFs/vjxfnLLalCpYE5iqFXG6KJxwkWjplFnQG8w0qAz4ObsZJXX7mgJqxBCiP7ntVOte/kWhMcT6xvY69dSqVTcGDfJosF6T6p2dseoIaHMDoli57kM9EYjv93zFR8tuqXLSp4fnz6qPF4ZPQ4P5971+BNCmHQr6Dt8+HCXz0ufPjEQpJk1Ul8wKlwJ+sz78w0L8DpvkKVSqbhsXCRzR4Sx+VgWEUO8rLanD0z7+hp1pk341fVNNgn6ZD+fEEL0T+kVpp53LbqT5TufldHjePLwVhqb9/wtDE+44Nds64+TF3H5plfRG43sLTjLB+lHuMGsyEtbBwqzlMdXRUuWT4gL1a2g74YbbkClUmE0GpVzKpUKlUqFWq0mKSmpi7uF6HtGo5HThZWEDzl/kAbNRUzMgp65I8LQqFXoDEaL63oSDHm4aLhqcnT3B91Nnq4aympMQV9NQxMB3tbZeydBnxBC9G8Go4E1u79UgrOJAeHMCB5+wa/r5+bBb8ZfzL+O/sCy4aMZ4Rd8/pt6aNSQUO4eOZP/nNgFwN8Ofcf8ofEEe3i3u7aorpqs6nLA1JtvzBDrrJYRYjDrVtC3bds2i2O9Xk9GRgbPP/88Dz/8sE0GJsSF+OMnB3jjx1OMjfTnq99choum68Avr7yG2uYiJn6ergT7uhM+xIvMYssWDtZosH6hbNGrz2g0WrRr6A8/pxBCCEvrUg5yoCgbAI1azd9nLLXavu7Vo2dz98gZaNTWWT3SkQfHzWNT1knOVpVR0VjPnw58wytzr2l33aHmnxFg7JBQXJy69XFVCNGFbvXpa9uXLzIykrlz5/Loo4/y1FNP2XqMQvSI0Wjko73pgGlp5uZj2ee5o32WS6VSMSyw/beP/aHAiZcN2jYUV9VTXtsImDKJYVoPq7yuEEII68ipLuepw1uV4zVTL2GkX4hV38OWAR+Au8aZp2csU443nT3J5qzkdtcdKmotGjgxMMKmYxJisOhW0NcZf39/zp49a62xCGEV5ypqqTLLgL27M/W893RUnXOYf/vKZf1h2aOHeQVPK2X6Ogp6hRBC2F+drpGP0o9wy/fvUaMzfTkX6xvAI9MW2nlkvTMrJIprYycox4/u20RlY73FNYfNMn2TAsP7bGxCDGS9LuRSXV3NO++8Q1xcnNUHJcSFaNtvb0dKPmcKK4kO8unWPS2B3fCOMn39IOiz6NXXYK2gr1x5LEs7hRCi7+kMek6VFXCwKJtTZQWU1NdQUl9LSnkhVU0NynUq4J8zluGqcdwlj3+YtJDvc1Ipqq+hoK6Kvx/eypPTlwLQZNBztLnpPMAkyfQJYRW9LuQCpmWfzzzzjE0GJkRvddRkff3OVP60YnK37okL1gIwLMAy6AvVeuDtbv+S0ZbLO22T6RNCCGFbFY11HCrK4VBhNgeLsjlSnEOtruu/0zUqNX+YtJDJbRqvOxo/Vw/+OvUyfvXTJwCsSz3IVdFjmRIUyYnSczToTVsXwj19Oyz0IoTouV4VcgFwdnYmKCjI6gMS4kJ1FPR9sDed314xocNKnqYiJuY96pqXd7YJ+vpLMGTRoL3eOnv6Ui2C3v7xcwohxEBztDiX99MOc7Aoi9TyIoznvwWAaB9/ro+dyNUx46zaNN2elg4bxafhx/gux7QFY82eL9m89B6LIi6S5RPCeroV9A0dOtTiuLi4mICAAJsMSIgLZb4/T6UCoxHKahr4+uhZVkxp30KhpLpeaYHg4aJhqJ8n0EHQ10+CIU/z6p02Wd7ZP35OIYQYSDZmnmD1jk/QGzsP9cI8fJgcFMHEgHBCPH3wd/Uk2MOLKG//AbfXWqVS8bdpS9hTkEl1UyPpFcWsPb6DjMrW3rgTZT+fEFbTZdC3f/9+Hn/8cf71r38RHx+vnP/jH/9IRkYGTz31FBMmTOjiFYToe+ZZu+umx/L+HlMlz3U7UjoM+syzXLFmRUy83JwJ8HajuMq0wTwuVGvDUXeftZd3VtY1cq6iDgAXjbpdsCuEEOLCfJmRxP07N1gEfE4qFaOGhDApMIIpgZFMDoogzHNwfekW5unL7ycs4A/7vwbgpaQdeGpclecnS6ZPCKvptHpnUlISd911F6GhoXh6elo8d9tttzF06FBuu+02UlJSbD5IIbqrrKZBCdLcnJ1Ys3Q8GrUpiNt3upCUvLJ296R1sbQx1ux4RJifLYbcY57mQV8H1Tsrahu59eXvufGlrRRX1Z339cyb0kcH+aBxuqCivkIIIcx8duYY95kFfLG+AXy4cBWnrnuEr5fczeNTL2dZ1OhBF/C1WJUwWanQ2WQwUN5o+v+Wm5OGkUOs25JCiMGs0093L730Epdffjmvvvpqu+WdU6dO5Y033mDOnDm8+OKLNh+kEN1lHsDFBPkQqvVk8djWDe/v7krr8p62Sxt/c/k4ooN8uGZaDFOiA20w4p7zcjPb09dBn773d6ex+Xg235/M5a+fHTrv63UV9AohhOi91PJCHtz1OYbmgC/eN5CPFt3CrNBoPJztXxisP1Cr1DwzYxnOasuPpOP8w3C2cd9AIQaTToO+Y8eOccstt3R58+23387Ro0etPSYheq2jvWmr5rQuTf54Xzq1jbrz3tNidkIou/58Fc+vmt1v9lOcb3lnUk6p8vjTA2fIKq7q8vVSpV2DEEJYndFo5M8HvkVnNACQoDUFfEHusoS+rXhtEPeNnmNxTpqyC2FdnQZ9tbW17ZZ1thUQEEB1dbXVByVEb1lUoWwOYGbHhzK8eZ9aZV0TXx3KtLjHsnKn1tZDvGAeZkFfR83Z0wpafx69wchL3yV1+XrSrkEIMdDoDHrSyov4KjOJp49s47bv/8eMT//N/C//w3uphzA0B2K2tDk7mR35ZwBQq1SsnbOSgAFSedMW7hszhzjf1iKBM0KG228wQgxAnRZyGT58OMeOHSMiovNvWo4dO0ZoaKhNBiZEb3QUwKjVKm6eHc/jn5uWOq7bmcK1M2IBqKprJL+8FgBnJ7USHPZnls3ZLbOWBoPRYo8emNpVPHjZOEK0Hh2+XkftKoQQwpEcL8ljb8FZTpUVcKqsgNTyQhoM+g6v/d3er/hf2iGemHY5EwKsVx2yqK6aM5UljB4SgpNazV8Pblaeuzl+MiP9ZH9aV1ydNLx58fU8fnALsb4BXBwWa+8hCTGgdBr0LV26lOeff55p06Z12J6hqKiIf//73yxdutSmAxSiJ8yXasabZa2umR7LPzYeoVFn4HBmMUnZpYyOGEK6WVYsKtDbIYqYmO/pa7u8M6+8pt3y1UadgZe3neD/rZzS7rXqG3VklZiy9WqViuggCfqEEI4ju7qMJw59x6azJ3t0388leSz7+nVemL2Cq6LHXvA4cqrLWfr1axTX1+CqdiLGN4Cs6nIAfF3ceHjcxRf8HoNBlI8/b15yvb2HIcSA1GnQt2rVKr799luWLFnC1Vdfzbhx4/D29qaiooKff/6ZDRs2EB4ezl133dWX4xWiU7UNTeSU1gDgpFYRFeSjPBfg7caS8cP47GAGAO/uTOEf189okxnU9ul4e8uzi+WdqfkVZtdplEzgup2pPLB4DEO83NpcX64UGIj09+qweb0QQvQ3eoOBfx/bzn+Sdnaa0Qvx8GaEXzAjtMGM8AsmQRvEN1mnlHuMwB/2f82s0KgL2mdnNBr57Z4vKa43/f+nwaDnZFmB8vya8Zfg59bxSgshhOgrnQZ9zs7OvPvuuzz33HN8/PHHvPHGG8pz/v7+XHPNNdx77714eMhfZKJ/SC+oVB4PD/DGRWMZwNw0O14J+jYcOMMfr5rskPvZLFo2tFnemVZQrjxePimKI5nFnMoro65Rx+s/nuK3Sy37ap4yK/riKD+/EEI8+/OPPH/8J4tzl0WOYEbwcEb4BZPoF4Sfa/vPJyOHhHB1zDhu2PouZ6vKqGis5y8HNvPSRVf3eiwfph/hp+a9e20laoO4KX5Sr19bCCGspcvm7G5ubjzyyCM8/PDDZGdnU1lZiZ+fH5GRkf2mkqEQLcyrUMZ2EMDMiA0mNtiX9IIKahp0fHYwo03lSscIeiz39Flm+syD2IRQLXMSQvnVW6YPRm/+mMyv5o/C2721TPip3Na+hY7y8wvRl44W57I9L52ro8cx1Etr7+E4vEa9jpdP7CavtoIhrh4McfM0/dvVgyFuHspjd40zKpUKg9FAra4JD40zapVp+f3ucxm8YBbwjfMP469TL2NSN6s9DvMewt+nLeX6re8C8EVmElfHjOPioXE9/nnyayst9u7dNWI6NydM4dusU5TU13DXyBlopO2AEKIf6DLoa+Hs7Ex0dLStxyLEBTlf1k6lMhV0+fOGA4CpoIt5c/N4B1ne6apR46RWoTcYadQZaNTplaxm2zm4KDGUZzb5cKawkoq6Rt7ekcL9i8Yo1yTntAZ9jvLzC9FXCuuquHbLO9ToGnkreT+fLL6VWN/+0a/TUT1//CeeP/bTea9zddKgUamp0TUCpn1xd4+cydUx43hg56cYm6+bHRLFewtuxknds/3Yc8JiWBE9lk/PHAPgsX2beGXuNUR4+aF1de/WaxiNRn6/5ysqmxoAGO49hN9OuAR3jQv3jp7do/EIIYSt9f+qFUJ0k0UVyk4CmF9Mi1H2rSVll5JRZOphp1JBTLBPh/f0NyqVyqJXn/m+vrZBn5NazX0LRyvnXtl20qLQS3KuLO8UojNvntqnBB3F9TVcu+UdMipL7Dwqx6Uz6Hk/7XC3rm3Q65S5B6horOfpo98z49N/c67W9Pf2EFcP/j37qh4HfC3+NGkRWhdTgJdVXc5lm15l9If/YPqG5zhUlH3e+99LO8S23DTl+J8zl+GukYbrQoj+SYI+MWB0Z3+en6crV0wc3u58xBAv3F26lfjuFzw7aNtQXFVPWY3pG2cPFw1D/Ux9NldOjSas+XFJdT3/22X6kKLTG0jNL1dep6MlsUIMVtVNDbybetDiXEFdNddueYfs6rJO7hJd+TEvncI6U7XgADdPHho3j1sTprJ8+GjmhEYz0i+YEA9vXNoshzQ/1huNyuPnZl1JiEfvv6wLcPfiD5MWtjufU1PBv47+0OW9KeWF/PnAt8rxbYlTmR48vNdjEUIIW3OcT7lCdKFRpyezqLWQS1xw5wHMqtnxfLzvtMU5R8tyebq2b9vQdk9jy75bF40TqxeM4rGP9wPw361JrJoTT3ZJNY06U4PiEF93fNzlG2ohWnyQdpiKxnoAgt29qGisp16vI6+2kmu2vMOGxbcR5ulYf2/Y2wfpR5THv4gZz0Pj5nV4ndFopEbXiMFoxFPjghEjH50+yr+O/khBnSnLd8eIacwPj7/gMV0bO4E6fRM/5qaTVV1GWkUxAPsKs2jQ63B1av8xqV7fxOqfPqFBb/rCLUEbxKMT2wePQgjRn0jQJwaEjKIqdAbTN8Bhfp4WmbC2JkUFMiLMj1N5jlvEpKPlnZbLWy1/nutnxvHct8corqonr7yWT/afYYina+v1oVrbDlgIG6jXN3H/jk85XpLHv2ZdyayQKKu8bpNBz6sn9yjHvx47l2HeQ7jt+//RYNCTXV2uBH7BHr0v9e8ISutraDDocXPS4K5xxlWtOW8ht5yqcp4/8iNfZCQR6O7FS3NW4qZxZmt2qnLNtbHjO71fpVLh5exqce6GuElcFTWGLzNPAPCLmHG9/6HavNdtidO4LXEaALM/e4HMqlIa9DoOF+UwI2R4u3ueOPgdyeWFgGnv4UtzVuKu6fz/OUII0R9I0CcGhK4CnrZUKhWr5sTzyIf7zO7R2mpoNuHVwfLOrnoOurtouPuSkfztC9N+mhe3HOea6bGt13eRGRWiv3o35SDfZJ0C4De7PmfHVQ/gbIVKiV9lniCv1rRywN/Ng6tjxuOucebVeddy548f0GQwkFlVynXfvcPHi24lwN3rgt+zvzhXW8mW7BT2F2ZxqCib7OYG4y1UmAIdd40zbk7OuDlpcNM44+7kjJvG9JFiX0EWeqNpFcHZ6jKu3/oul0WOQNd8bnJgRK8K4rhrXLg2dsL5L7wAs0KiyKwy7XXefS6jXdD3XXYKb6fsV47/PHkxiX7BNh2TEEJYg+zpEwNCWg9bL6yYEm2xh8/RMn2ebq1jr25oyfSVK+c6+nlumZOAb/MSzoyiKt748VSX1wvRn9XpGvlP0k7lOKemgi8zky74dY1GIy+f2KUc35Y4TcnizA+P578X/QJNc+uAtIpirvtuHWX1tRf8vn0hr6aCfxzZxmdnjmFoDsAA6nRNvJd6iGu2vM2UT57l0X2b+DzjeLuAD8AI1Ot1lDXUkV9bSUZVKafKCjhcnMPuc5nsPpepBHwtzlSW8JLZn5WtA7cLYZ4t3n0uw+K5/NpKHtr9uXK8OCKRm+Mn99XQhBDigkjQJwaErrJcHfFxd+Ghy8YCMHF4ABOGB9hqaDbh6WKW6Wte3pl+nkI23u4u3DFvhHJcXFVvdr3WBqMUwnbWpx6iqL7G4tx/knZaBDO9sbfgLCfLCgBw1zhzS/wUi+cvjRzBi3NWom5e4phcXsj1W9dR0Vh3Qe9ra6crirni69dZe3wH9+/8lBXfvsWpsgI+Of0zcz9fy+/2fsXuc5kY29zn5qQh2N0LXxe3dgVWujI9eBgPjp2rzFMLd40zVwwfZYWfyDbMM3uHi3OobTJVENUbDPzfzk8pazD9OYd4ePPPGcukZ7EQwmHI8k4xIHSncmdb9y0aw42z4vF1d0Gtdqz/cbdd3llV10heuSnb4OykZnhAx/uM7piXyMvbTli0bQDJ9AnH0jbL1yKlvIhtOWksjEiwOF/RWMeu/Ax25J/hp/zTlDfU8bdpS7gyaky711iXckB5fHX0OPzcPNpds3T4KBoMOn698zOMQFLpOW7cup73F9yMt4vbhf+AVpZaXsh1361TKmcCHCzKZuFX/213rQpT4LMoPIEpQZGMHBJisWRWbzDQoNdRp2+iXtdEvV5Hna6Jer3pcb2+iQmREfgbTPM21NOXh/d8qdy/dNjIdvv1+pNAdy8StEGklBfSZDBwoCiLuWGx/PfELnafywRMc7R29soOfzeEEKK/kqBPODyDwUh6Qc+DPjC1cHBE5kFfdUOTxc8fHeSDxqnjJP4QLzdumZPAf7edUM75eboS4N3/PqiK/iOrqgyVCiK8/Gz2HkajkfzaSlLKC0kuKyS5vIDkskLKGmrxdnFD6+JGoLsXk4MiKaitUrJ8IR7eXBY5greSTfusXkzawbyhsRwuyuFQag7fpp/iaEkuBqNlDuuRvRuZFxZr0Yi7oLZK2SMIsCrBMstnbmX0OJr0eiWgOVqcywM7P+WtS26w2pxYw6myAq777h1Kmpegujlp0BsNNBksM6IBbp78atQsrowa02VxGie1Gg+1Cx7OnVf7DfT3pqi5B+p1cROpamrg8UNbcHXScPfImVb4qWxrVkgUKc2FWnblZ+Dl7MozR79Xnn9gzEUdFngRQoj+TII+4fBySqupb9ID4O/lhr/XwA9gPMxaNlTXN/Uo03n3/JG8uf0UDc3tGmKDfWWJkujU+tSDPLZvE3qjkUsjE1kz/hIStEEX/Lpnq0r5Ke80yeWFJJcVkFxeqLRIaKe2tR3LxrMnLZ66f/QcFkcm8l7qIRoNeg4V5TDqg79Tq2vq8v2rmhp47eQe1ky4RDn3fvphpdjItKBIRpynQMd1cRNpNOh5dN8mAL7LSSW9oqhXRUps4URpvmnPYfOSRE+NC+vm34ifqzu/2/MVB4qymwOxGfxq1CybZSnvGjmDSyMT8dC44O/maZP3sKZZIVG8mWwq9LUtN42NZ08o/QEnBYbz4Li59hyeEEL0igR9wuH1ZmmnozNv2VDToOvRHAT7enDdjDje2ZECQGKY1iZjFI7v84zjPLJ3o7LP69usZDZnJbMieiwPjZvHMO8hvXrdlPJCLt34crtsU0+FeHhzXdxEXJ00rIwex/vppuq0bQM+FTDWP4yLwmJwVjvx7M8/AvD6qb3cOWI6fm4e6Ax61ps1Y+8qy2duVcIUfso/zbdZyQC8n3aEP05e1OU9mVWlfJmRxDBvP6YHD7dJ24efi3O5Yeu7SiDt7ezK+gU3MSkwAoANl97GydICwjx9GNIHgZgts8TWNj1kGGqVCoPRqGT8AHycXXlxzko0VqgQK4QQfU2CPuHwBmXQ52ZZyCWnpHWvTnfm4OEl4zh6tpiqhiZun5tokzEKx7Y1J0XZs2bOCGw4c4wvMpK4IW4iD4y9iBAPnw5fo8mg5y8HNlPeWMfjUy5T9kB9mH6kw4DP29mVRG0QiX7Byr9DPXyobmqgvLGO9Ipi9pzLZE9BJk0GPU/PWKY0z7539Cy+zEyiRmcqvBHu6cui6ESm+kUyKyRKeW+9wcDGzBOkVhRRo2vklZO7+f3EBXyXk8q5WtOSxAA3Ty6LHNFufJ25IW6SEvR9cuYov5twCS4dNPUG0zLWW7a9x+nKEuVcjI8/M0KGMyN4uFWCwENF2dy0dT1VTQ0A+Lq48d6CmxkfMFS5Rq1SM9o/9ILeZ6DydXFnzJBQfi7Jszj/9+lXOFTwKoQQ5iToEw4vtYftGgYCT1fLlg0WcxCsPe/9Ad7ufPu7pQQGtu69EaLFidJ87t7+sbLUMd43kMenXsYrJ/fwfW4aADqjgXWpB/nw9FFuS5zK6lGz2xW2eDfloNLTzNvZlaemL8VoNLI5O1m55o4R07goNIZEbRBhnl0vNZ4ZEtVpBi7Kx5+Nl9/FibJzjPUPI8p7CEFBPu1+v53Uah4aN497fvoYgDeT9xGnDeQ1s2bsN8RN7DRo68jc0BhCPXzIr62kpL6W73JSWTJsZIfXZlWXWQR8AKcrSzhdWcL61EMARPv4MyN4uFJQpav9c23tLzjLqu/fo7q56qTWxZ0PFq6SAK+HZoZEWQR918ZOYFnUaDuOSAghLoy0bBAOb1Bm+syWd5ZWN3C22JTpU6kgJrjjrIsQ3fX6qb006E0VXiO9tPxv4c3MCo1m3fwb+XTxbUwLilSubdDrePnEbmZ89m/WHv/JomXCx6ePKo+/zEyiXt9EakURZ6vKANMes0cnLmR+eDxDvbQXvLc0ThvIlVFjiPbx7/K1Lh82gsTmfYm1uib+b+dnJJWeA0CtUnFj3KQeva+TWs01seOV4/fTDnd67cGibOWxj7Nrh20QzlSW8F7aIe7bsYErvnkdnUHf4WtVNtbzyemf+TbrFCX1New+l8FN29YrAZ+/mwcfLb5FAr5euHhorPI42sefx6dcZsfRCCHEhZNMn3BoRqPRIuiLHyT95jzNlncm5ZQolQkj/b0sms4L0VN6g4GtOanK8QuzV1gs35waPIxPFt/G9rzTPH10G8dK8gGobmrkH0e+R61Ss3r0bFLLCzlemq/cV9FYz9acVM5UtGa5Lh4aqyzP7EtqlSnb98vtH7V77qqoMQz10vb4Na+LncALx37CCGzPSyevpoIwz/ZfQh0qbA36fjlqJnePnMmR4hz2nMtkb8FZDhdl02AW5KWUF7ItJ43Fke2XYT+463OLrKmTSqUUHAl08+TDRbcQb4WiO4PRzJAo/jBpIafKCnh4/MU9yrYKIUR/1Of/t62srGThwoVUVVVx8mRrFbZt27bxr3/9i6ysLIYNG8aaNWuYN29eXw9POJiiynoq6kzfanu5OROqHRx9k8yXd1bWtRatkCbr4kIdKspWqj0Gu3sxMTC83TUqlYp5Q2OZGxbDN1mneObo96RVFAOmBumr4iez4cyxdvdtOP2zRa+4RRH22096aWQityVOZWtOKsO9hzDOP4xJgREWGZ6eiPDyY3ZoNDvyz2DEtG/xwXHz2l1nnumbHBiBu8aZmSFRzAyJAqBe38SRolzeSN6r7BN8L+1Qu6CvsK6KLWYBH6AEfMHu3ny06BZifAN69bMIk3tGzbL3EIQQwmr6NOirqqpi9erVlJeX4+TUuqQlOTmZBx54AJVKxejRo0lKSmL16tV89tlnxMfH9+UQhYNJKyhXHscG+wya1gPmyzvNxQUPjuWtwna25KQojxeEJ6BWdb4LQKVScfmwkSyMSODiL14is6qUisZ63kjex2cdBH3f56YpgYmTSsUlQ+Os/wN0k1ql5vGpl/P41Mut9prXx05kR/4ZwLS0tW3QV9VYT3JzNUi1SmVRWKWFm5MzM0KGE+bpowR9P+SmkVtdbpGB3JKdohTZ8XZ2pUGvo9GgJ8JLy/8W3EyUj7/Vfi4hhBCOr8/29H399dcsW7aM/fv3t3vu3XffRafT8eCDD/LBBx+wevVqdDod69ev76vhCQeVmm++n09rv4H0MfPqneYGy55GYTvfZbcGfYsiErp1j7PaiQfGzFGO//3zdvKae+v5uborwY3erEH6jODhFo3RB4LFkYnKctWs6nLKGmotnj9a3NokfoQ2GC9n105fa5j3EOaERgOmiqkfpB+xeP6bs61N5B8efzEnr/89W664h++X3SsBnxBCiHb6LOh75ZVXKCsr4/7772/33OHDpk3vU6dOBWD69OkAHDlypN21QphLG4SVO8Fyeae5+FBt3w5EOLSc6nLu2f4Ra3Z/SXVTA6cripXKki3LDrtrRfRYhjWXs9eZFXNZNnw018VOaHe9PZd22oqrk4Zos4DrTJsqnRZLO4Mizvt65gVlPkg/ohR0KW+oY9e5DOW5yyJH4ObkzEi/ENw1svdMCCFEe30W9N1www1s3ryZK6+8st1z586ZqqZptVqLf7ecF6IzlkVcBk/Q5+6iQd3BUtbBFPiKC5NRWcKKb99k49mTvJ9+mPt3bOBbsz1iF4XG4K7pOKPcEY3aiQfGXtTu/MrocSwdNqpdlcruZhEdTaxP6z66tPIii+fMg76WJuldWRSRgH9zG4z82kp+zEsHYGtOqhJYj/MP67BgjBBCCGGuz4K+a6+9luDg4A6fq6+vB8DZ2fQBQ6MxZTHq6ur6ZnCinbVbjnPNC1s4nFF0/ovtKK1gcC7vVKlU7bJ9wb7u+LjLt/yDncFooFGvw2hs21a9VXpFEVdvfltZggnwXU4qz/78o3Lcm6BsRfRYIs32nUV5D2FCwFC0ru4sNHu9UX4hhPeiQqYjiDUrnpJeWaw8NhgNHC7KUY4ndyPoc3HS8IuY8crxe819/L7Jal3a2ZMm8kIIIQavflHb3dXVlbq6OnQ6U1+oln+7u3dvv4efnwcaTfteR7YWGOjd5+/ZF5Jzy3jyC9OSW4MKtv91pZ1HZKll3strGiioMH0x4KJRMykxFI3T4Gk96e3uQlV9a+XOkRH+vfqdHKi/x/2dLeZ9Z84Zrv3ybYrragBwUqlxdlLjrHYy+0dNWUMdNc293My19OZToeKacRMI9Oj5GP8y53Ju++Z/AKyePIegIFO7h/+bNpdNZ00Vm28fP73Pfu/6+vd7YkQENNewya4rV97/RHE+VU0NAIR4ejMxKqJbhadWT72Il0/sBkyB+XOntrM9P115/sbxUwgc0v/+G5a/V/qGzLN9yLzbh8z7hekXQV9QUBBnz56loqKC8PBwysvLAQgJCenW/WVltee/yMoCA70pKqrq8/ftCz8dy1IeH80oorCwst9UxTSf94NnCpXz0UE+lJXW2GtYduHuYvlFR5S/V49/Jwfy73F/Zot5NxqNPLBlgxLwAeiNBvQ6A/XoOrzHQ+PMWxdfz6sn97AtN005PykwHFUNFNX0fIwLA+N5Y9511OgauSp8jPJzjnQLZsPi2yipr2Hx0MQ++b2zx+93kMpTeXyi6Jzy/ltSW5fOTvAPp7i4ut29HfHDjcURiUo/vn8d+EF5LkEbiJ/erd/9Nyx/r/QNmWf7kHm3D5n37ukqMO4XaZGxY8cCsG/fPgClwuekSZM6vUfYjnlFzJoGHUWV9XYcTefM9/MNxlYFbds2yH6+wW1vwVlOlHV/H7TWxZ31829iVmg0L85ZSbxvoPLc4gsssrI4MpEV0WPbfVk0LXgYlw8biZO6X/yvxyaiffxp+amzqsuU7Okhi/187XsfduX52VcxL6x9/8BLZWmnEEKIbuoXmb6bbrqJTZs28eyzz7JlyxaSkpJwdnbmxhtvtPfQBiXzYArgdGEFQb79r7S6RRGXQVi10lOCPmHm9VN7lcc3xU/iqWlL0RkN6Ax6mgxt/m00EOzupVR69HZxY938G/nzgW/wdHblthFT7fVjODx3jQvhXlqyq8sxGI1kVpWSoA3iYKFlU/ae8HJ25e1LruexfV/zXtoh5fzlEvQJIYTopn4R9I0fP561a9fy3HPPkZSURGRkJGvWrCEuzn6Newcz8zYIAGcKK5kR172ltn3JsojL4At4vNws//ONC9baZyDC7s5WlbLFrPLm7YnTUKlUOKtM+/i685VNuJeWNy6+3naDHERifQPIri4HIK2iCG9nVzKqSgFwVTsx2j+0x6+pUTvx9+lLifMN4M3kfVwWOZJRQ3r+OkIIIQanPg/6wsPDSUlJaXd+wYIFLFiwoK+HI9rQ6Q1ktFkz3fa4v0jNL1ceD8agzzzT5+vuQqCPmx1HI+zpreT9tNTqnBsWQ7w2yK7jGexifQL4IddUbOV0RTFVjQ3Kc1ODh+Hm1P1WGOZUKhV3jpzBnSNnWGWcQgghBo+Bu7FC9EpmcRVNeoPFudOFFZ1cbaX3LKrkle9PkFXc/eCyrlFHdqmpEIJapSI6aHAHffGhvv2m2I7oW1WN9XyQflg5vnPEdDuORgDEmLdtqChme15rtc25YTH2GJIQQohBrl8s7xT9h3n2rMWZgsr2F1qJwWDkhpe2klFUxfqdaWz/w3LU6vMHL6cLKmlpQxbp74Wbc9+37LA38+Wdg6lHobD0TsoBqpvbL8T5BnRY8EP0rTizojgp5YXk1rR+cTZX/nyEEELYgWT6hIW2RVwAzhZXoTcYOrj6wuWW1SjLR9MLKjh6tvg8d5ikFZQrj+NDB1+WDyAx1E95PC1GlvMNRgcKs/jXz60l/Fv28gn7Mm/QfrKsgIpGUwXkYHdvEmXprRBCCDuQTJ+w0FHQ16AzkFdWS4S/l9Xfr21m8dtj2UyMCuz4YjMW7RoGaZbryslRlFTXo1apWDk12t7DEX0sv7aSX/74IU3NX8iMHhLCNbET7DwqATDE1QOtizvljXUW5+eFxUhQLoQQwi4k0ycsmFfENF8yaat9fW2DzM1mjeG7Yt5LcDD26ANwdXbi3oWjuWfBqAHd90y0V6dr4pc/fkhRvakR+xBXD16fdx2uTvI9Xn+gUqmIM8v2tZClnUIIIexFPiEMUE16Azf9Zysp+eXcPCueXy0cjYdL13/cBoPRIgi7KDGULcdzAMgorGKeDVpCmQeZAKnnKsgorCQqyKfr+8zaSgzGyp1icPgp7zR/ObgZXxc35oXFMiNkODvyz/BuygEl4HNSqfjv3F8Q7qW172CFhRjfAA6YNWRXAXNCJSMvhBDCPiToG6B+OJnLT8n5APzz65/53+40HrtyEldNjup0eVFuWQ11jToA/DxdmRwdpAR9pwttU8ylbU9AgM3HsrlnwahO72nbVkKCPjEQ7T6XwW0/vE+D3vTf5P7CjrPgf5y0iFkhUX05NNENsW0yfeMChuLn5mGn0QghhBjsZE3YAJWcV25xnFdey+q3d7DsX990WizFcp+cL9Fm2bYzNgj6jEZjh3sIvz3PEk/zthKhWg+83V2sPjYh7OlocS63fd8a8HUkxMObv029nDukRUO/ZF7BE6RVgxBCCPuSTN8AZZ5BU6tUGJr7GxzMKOKypzfxi2kxPLJsAqFaz9Z7zCtihmiJsQj6rL+nr6iynvJaU6l5N2cnGnR6jEY4cKaIkup6/L06bjbeNjgVYiBJLS/kpq3rqdGZ/tsIdvfioXEXs6cgkyNFOYR4+nBL/BQuGzYCZ/Xga1XiKGLaZPqklYYQQgh7kqBvgEo1C4zeuvti9p8u5LUfTtKoM2XIPt53mo1HznL/otHcM38U7i6adsHUsABv5Ti7pIZGnR4XjfU+ZJoHmQmhWlw0Thw4U4jBaGTr8RyundHxhyTzip+DtYiLGJiyqsq4/rt3laqPWhd3/rdwFQnaIG6Mn2Tn0YmeiPDUEuzuRUFdNcHuXkwIGGrvIQkhhBjEZHnnAGQwGEk3C+AmDg/gD1dOYvsflnPpuAjlfF2jjqc3HuWixz/ny0OZlsFUiC/uLhqG+pkygQajkbPF1VYdp3mQGR+q5dKxrWP79njnSzwl0ycGooLaKq7/bh0Fdab9qp4aF9YvuIkE6evmkJzUal6ddy23Jkzl9YuvQyNZWSGEEHYkQd8AlFdeQ61ZQZaWZZLDA31465eX8PEDixgR1trYO6e0hrvf3M6BM0XKuZZgKibYdks82wZvl46LVI63n8pXisq0u8+s4mdcqNaqYxLCHsrqa7lh6zrOVpcB4Kp24s1Lrme8ZIcc2qTACJ6YdjkTAsLtPRQhhBCDnAR9A1DbYKpttc7ZCaFs+f1S/nHddIZ4uba738MswxcV2Br0ZRRWtbvWauMMNhWOaQk26xp17EjJb3dP2yxmvGT6hIOrbmrg5u/fI6Xc9KWLk0rFy3OvkYqcQgghhLAaCfoGoO4sf9Q4qVk1J4Hdf17B3ZeMRKNuDQxHDvVTAkXzCp7WbtuQ2kGvvcVmSzw3H8tuews5pdUdZjGFcET1+ibu+OEDjhbnAqZebv+edRULIxLsOzAhhBBCDCgS9A1AHQVTnfH1cOH/rZzCj39YzrKJwxkR5sfvrpigPB9jo7YNlXWNFFSYilW4aNRK0ZhLx7Yu8dx8LBu9wWBx38mcUuVxbHD7LKYQjqLJoGf1T5+w61yGcu5v05ZwVfRYO45KCCGEEAORVO8cgCyXTWq7dU9MsC+v3DG33flwfy/l8bmK2gseWwvzMUYH+aBxMn3/MGFYAEE+7hRW1lFSXc+hjGKmxrQWskjOKVMeSxEX4agMRgO/2f0Fm7NTlHO/nzCfVQlT7DgqIYQQQgxUkukbgKxZ3dLXrPF5ZV3jBb2WOfM+guZtF9RqFQvHtBY92NymUXtybmumLz5Ugj7heIxGIw9+/zmfnjmmnPvVqFmsHj3bjqMSQgghxEAmQd8AU1xVT1lNA2BZkKW3fDxag74qqwZ95oGp1uK5tks8zZ3KNcv0dTOLKUR/8s+jP/Dy0V3K8Y1xk3h04gJZqiyEEEIIm5Ggb4Axz6DFhviiVl/YB0l3ZyelyEuDzkB9k/6CXq9FahfZyNkJoXi4mFYeny6sVAJEo9HIKbM9fbK8Uzia91IP8fzxn5Tj5cNH8+S0JRLwCSGEEMKmJOgbYFLbtEG4UCqVyibZPvPgtO0yTTdnJ+aNDFOOW5Z4llTXU1ptymK6WyGLKURfMhqNvGAW8F0yNI5/z74KJ7X8NSyEEEII25JPGwOMNffztfBxaw36KqwQ9NU16sgqqQZArVIRHdR+nIs7WOJpHtDGBvtccBZTiL6UVlFEbo3pd9jHxY1X5v4CZ7WTnUclhBBCiMFAgr4BJq0H7Rq6y9qZvjOFlRiNpseR/l64Obf/4Ltg1FCcmoO6Q5lFFFXWWQS08W32AQrR332fm6Y8nj8sHneNSxdXCyGEEEJYjwR9A0y6eWAUqrXKa/q4OSuPK+uaLvj1utNHcIiXm9KqwWiELcezbZLFFKKv/JCbrjxeHJVox5EIIYQQYrCRoG8AqaprJK/c1EvP2UnN8OaG5xfKPNNnjbYN3Q3e2lbxtEUWU4i+UN3UwP7Cs8rxouES9AkhhBCi70jQN4CkF7QGU1GB3krD8wtlvqfP2kFfV8s0Lx0boTz+KTmPExaN2Tu/T4j+Zld+Bk0GAwAj/IIZ6i1fWgghhBCi70jQN4B01fvuQni7my/v7LtMX2SANyPC/ABTu4iS6noANGoVwwOtk8UUoi/8kNe6n++SoXF2HIkQQgghBiMJ+gYQW+1583U3z/T1bE/fF4cyuPWV79mddg4And7AmcJK5fnY84xzsVm2r0V0kA/OVspiCmFrRqPRYj/fxUNj7TgaIYQQQgxG8sl5ALFYNhlqvaDP2713yzsr6xr59bu72Hwsm/vf3oHRaCSzuIomvWmZW4ivOz7uXVcw7Cjok6WdwpGYt2rwdnZlUmD732khhBBCCFvS2HsAwnrSCswbs2ut9rq+vQz6UvLLqW/SA5BXXktqfjlniqpax9iN4G1cpD+hWg/ymwvUmO6T/VAC8moqOFSUzdywWHxc3Gz6Xj/lnealpJ0YjEYC3Dzxd/MkwN2z9XHzvwPdPPFuMxbzVg1zQqOlN58QQggh+pwEfQNEfZOezOaASqWCmGAfq722+Z6+qh4s7zTPPALsTD1HTYNOOY7vRvCmUqlYNCaCd3akKOck6BtcapoaOFNZwgi/YDTNAdPWnBTu/ekTanVNLAyP561LbrDZ+xuNRh7a/TnnaqvOfzFwaWQiz828Em8XNyoa6/gg/Yjy3MWyn08IIYQQdiBB3wCRUViJobnjecQQL9xdrPdH62vWsqGiB5k+8xYLADtT8/FybQ0guxu8LR4rQd9gZDQa+TzjOP/v4LeU1NcS6aXllyNn0mjQ8cSh75Tf9225adQ0NeDp7GqTceTUlHc74AP4NiuZvJp3eHXutdy3YwPpFcUAuKqdmB8uQZ8QQggh+p4EfQNEmg2asrfwNmvZUNWjoM8y07c3rYBwfy/luLt782bFh6D1cKG8thFPV2digiXoG+hyqst5ZN9GiwIoWdXl/GH/1+2uNRiNHCnOZXZotE3G8nNJnvJ4rH8od42YQUl9DcXN/5g/zq4uB+BYST5zPn9BadMA8I8ZVxDkLlVnhRBCCNH3JOgbICwal1s5KPIxW97Zk0xfapugr7y2kfLaUuW4uxk7F40TL946hzd/TOaXi8fgYcUspuhf9AYDb6Xs5+kj26jVdb2U2FmtVoKqA4VZNgv6jhW3Bn2zQ6K5Knpsp9e+l3qI3+/9CiNYBHx/mXIpV8eMt8n4hBBCCCHORz49DxCpNmrXAFhU2Ozunr7aRh05pdWdPq/1cCHAu/vFN+aPCmf+qHACA70pKur+UjvhOE6VFbBmz5ccLc5VzqmAWxOn8sCYi/gq8wSvntxNTk0FK6PHMi14GL/d8xUAB4uybTauY+aZvoCwLq+9MX4SPi6uPLDzUyXoe2jcPO4YMd1m4xNCCCGEOB8J+gYIW/XogzYtG+obMRiMqNWqLu85XVBB85arDsWFaFGpun4NMTjU65tYe2wHLyXtRGdszY7F+wbyzMxlSouD20dM49bEKVQ01uPn6kFWVZly7eGiHPQGA05q63ahMRqNFkHfOP+ugz6AK4aPJtDdi7eT9zM7NJob4yZZdUxCCCGEED0lQd8AoDcYOFNoHvRprfr6zk5qPFw01DbqMBqhpqHJIhDsiHkQOiLMj1N5ZRbPSzEWUa9vYnvuaZ48/B2nK0uU8y5qJ+4fM4fVo2fj4mT5V5RapcbP1QOACC8twe5eFNRVU9XUQEpFISP9Qqw6xsyqUiqbGgDwc3Un3FPbrfumBw9nevBwq45FCCGEEKK3JOgbALKKq2nQmTIkwb7uFtU2rcXH3ZnaRlO7hcr6ngV980cNpaq+kZzSGuWcBH2D1/a8dNalHOCn/DPUtdm3NyUwgqdnLCNOG3je11GpVEwKjODrrFMAHCrM7lbQV9VYz98Of8fmrGRuHzGN+8dc1Om1Fks7/cMkOy2EEEIIh2TdtVDCLiybstsmmDLf11dZe/5iLqnmhWVCfJkdH2rxvAR9g1NmVSm3bPsfm7NTLAI+L2cXnpy2hA2X3tatgK/FlKBI5fGBbuzr21uQyaKNL7M+9RBF9TU8feR7MqtKO73ePOgb7z+02+MSQgghhOhPJNM3AKTmlyuPbRVMWQR93ajg2XaPoVqt4oO9reX34628BLUv6Ax6tuWkUaNrxEPjjIfGBQ+NM+4aZ9ybH3toXHDXOOPc3ERcWPoqM8li3160jz8LwxO4Y8Q0wjx7/rvbst8PTJm+zjTodTx95HtePbkb862mRuCNU3t5fOrlHd73c5tMnxBCCCGEI5KgbwCwDLC0NnkP7x4EfU16AxmFlRZjCtF6tL6WmzND/TytP0gbMhqNPLjrcz7LON6t653Vajw0Lrg5OePn6k6QuxeB7l7MDInimpjxg3aZ4KazJ5XH/5h+BTfGX1iRk9FDQnB10tCg13G2uozCuqp2vfBOlp3jgR2fklxeqJxz1zgrmcYP04/w8PiL8XVxt7jPYDRwvCRfOT5f5U4hhBBCiP5KlncOALas3NnC16xXX+V52jZkFlWhM5jyKWFaD7zcnAnVevLgZWMJ8nHnseUTz1v9s7/55MzP3Q74wNSjraKxnoK6KpLLC/kp/wwbzhzjN7u/4K3k/VYbV3JZAalmwUx/draqlKTSc4CpWMsVw0dd8Gu6OGkYH9C67PKAWbZPbzDwUtJOlmx61SLgmxsaw/bl95GgDQKgVtfE+2mH2732mcoSanSmLziC3L0IkcbqQgghhHBQkulzcEaj0WJPn62WTfYk02feKD7WLAj97dIJ/HbpBKuPzdYyKkv4w76vleNx/mEEuXtRp2uiVtdEra6x+XEjdXrTOUMX/SoeP7SZ8QFDmRgYfkHj2p6Xzo1b1wPwyeJb+321yG+aC64AzAmNxsel+30auzI5MIJ9BWcBU5P2JcNGklVVxq93fcb+wizlOjcnDX+YtIhbEqagUqm4a8R0Ht7zJQBvntrHnSOmozFbltt2aedgzc4KIYQQwvFJ0NcP6PQG/vHVESrrGvnDlZPOWxnT3LmKWqrrTZk3X3cXAn2s80G6Ld8eBH2pfbDctK80GfTct2ODkvGJ9vHno0W34Ons2uk9RqORBoOOuiZTIFjaUEthXTX/PPoDx0vzaTIYuGf7R2xeeg9+bh6dvs75vJt6UHm8JTul3wd9X59tDfouHzbSaq87Jah1X9/rp/byVWYSVU0N1JoVihnnH8YLs1cQ4xugnLsyegx/P7KN4voa8mor+frsKZZFjVaeb1u5UwghhBDCUcnyzn7gi0OZvPhdEut2pvLid0k9ujc133Jpp62yEeaBaFV918s7+2K56YXSGww8f2w7Yz78B5dtfIUXj+/gjFmvOKPRyO5zGVy35R0l4+OsVvPinJVdBnxgaiXg5uSMn5sHQ720jPEPY354PK/MvQbf5uxWXm0l9+3YQHVzD7ieatDr+CnvtHJ8tosKlP1BXk0Fh4tzAHBSqVgUnmC1154UGIGLWYauoK5aCficVCoeGjePzy+7wyLgA3Bzcubm+MnK8Ssnd2M0y9AeK+5ZU3YhhBBCiP5KMn39wJGzxcrj7afyeGTZxG7f21cBlvmevorztGwwX94Z3w+DvryaCu7f+amyJLCsoY7jpfn8/cg2tC7uBHt4o1apOFVWYHHf7ybMv6CMT6S3H/+edRW3/fA+ANvzTzPrs+d5aOw8boif1KOKn3vOZVpksrpqO9AfmC/tnBUSdUEZzrb8XD14btaVvHpyD8nlhTToTf0ko338eWH2Cos9f22tSpjCf5J20mDQ83NJHh+dPsq1sRM4VJTNQbMWEGP8Qzt9DSGEEEKI/k6Cvn7APEhKyimlur4JLzfnzm/o5F5btkGwzPR1HvQZDEbSCywrd/Ynm7OS+c3uLyhvrOvw+fLGunbPOalU3JY4jV+OnHHB778wIoH7x8xh7fEdAJTU1/LY/q95K2U/L81Zyagh3QsutuakWhyfrSrDYDSgVnU/eb/7XAaUq5jhO8zm+9W+zrLN0s4Wy6PGsDxqDHqDgcyqUmp1jST6BZ83kA509+KOEdP5z4ldADxxaAtzw2JYs/tLpbXD/KFx7SqCCiGEEEI4Elne2Q+YZ+v0BiMHM7pfjdGiMbtNM32tQV9Xmb6fUvKoazRlWoZ4uRLgbZs9hj1Vr2/iD/u+5o4fP1CCOrVKxW/GzeOF2StYHJGIq5PldyAalZob4iby05X38/+mXNqjgKorvx1/Cc/PvoowDx/lXHpFMcu+eYMPOqgi2ZbRaGRbrmXQV6/XUVBX3e0x/JCbxrVb3uGaL9/m9VN7uz/4XsivrWR/c1ZVBSyOSLTZezmp1cT4BjDGP6zbmdNfj51LeHOPwLKGOpZseo3UiiIAPDTO/G3aEpuNVwghhBCiL0imz86q6hrJL6+1OLcvvZB5Izpfkmaur5Z3dndP37+/OaY8Xj5xuM3G0xNp5UXcu+MTi+WaYR4+vDhnJVODhwGwInoseoOBkoYaCmqrKG2oJVEbTLCH9TM8KpWKldHjWDJsJG+e2sfzx36iRtdIg17Hw3u+ZH9hFn+bdjnumo4L+qRWFJFdXd7u/NmqUkLNAsmuvJi0U8lkvXxiF7cmTrVZQ/l/Hf1Bea9pwcMIdPeyyfv0loezC09Mu5xbvzctuy2oq1Ke+/2EBYR7ae00MiGEEEII65BMn52lm2XqWuw7XdDBle2VVtdTXFUPgJuzE+FDbPdh2qcbe/r2pJ1j32lTllKjVnHvwtEdXtdXjEYj76cd5vKvX7UI+C6NTGTzFfcoAV8LJ7WaIHdvxviHMTcs1iYBnzk3J2fuHT2br5f8kgRtoHL+o9NHueLr1zldUdzhfW2XdrY4W1XWrfc9WXZO2c8IpsInm7OSezDy7jtZeo4P048oxw+Mucgm73OhFoQncFnkCItzkwLDuSVhip1GJIQQQghhPRL02Zl5pq7F4YwiGpr0Pbo3NtjXpg3Pfbqxp+/5za3Ny38xLcamQej5VDbWs3rHJ6zZ8yV1zQVPXNVOPDltCa/NvRY/V+sVErlQMb4BfHXZXVwdPU45l1xeyOWbXuWrzPbVXLdmpyiPI8yyUN0t5vLWqfbN4d9OsV7D+BZGo5G/HtysZPkuHhrLRWExVn8fa/nLlEvxbM6uuqideGbGMpzU8lekEEIIIRyffKKxs9QOgr4GnYGfs0o6uNpSX+3nA8ugr7Ku/fLOo2eL2X7KVOJerVJx36IxNh1PV2qbGrn+u3V8mXlCORfnG8DGJb9kVXNj7v7Gw9mF52ZdydMzrsC1eZllja6RX/30CX/Y97VSkbK0voZDza0PVMCq+NZMVHfaNpQ11PJZxrF25/cWnCW5rHsZ5u76PjeNnecyAFMxnD9OWmTV17e2ME9f1i+4iRXRY3nrkuuJ1wbZe0hCCCGEEFYhe/rszLz6ptbDhfLmpZN70wuYGtP1h86+7Ifn6apBrVJhMBqpa9TRpDfg7NT6ncG/vzXbyzdpONFB3dtbZm16g4H7dmxQeusB3BA3kb9MubTTPXL9hUql4oa4SYzzD+OX2z9Slmu+nbKfI8U5XBs7gY9PH8XQ3EtuUmAEEwPDlfu7s7zzg7Qj1DcHkKOHhBAfEMSnqaY/u3UpB3hy+lKr/Cw6g54nDm1Rjm+Im+QQQdSUoEimBEXaexhCCCGEEFYlmT47Mw/cfjGtdenbvvTzZ11S88uVx7ZujaBSqSz29VXWtS7xPJlbyuZjrT3NHlhsvyzfXw5uZktO6/LHJ6ZeztMzlvX7gM/cqCGhfLPkbi6NbK1y+XNJHo/u28SR4lzl3MKIBIZ5+ynH51veqTcYWJd6QDm+LXEa94yfpRxvOHOMqsZ6a/wI7DmXSVrznkQvZxd+M26eVV5XCCGEEEL0nAR9dlTfpOdssanMvkoFN86MU547cKYQvcHQ5f19memDNks8zYq5vGC2l++ycZEkhvlhD+8k7+fN5H3K8a9GzeLWxKl2GcuF8nFx47W51/LnyYvRtGkV4aRSsWTYSFbFTybY3Ru35lYTFY31lDXUdvRygKkATEvVTz9Xd5YNH81F4TFKEZkaXSMbzrRf+tkbe80KxayMHkdAP6vYKYQQQggxmEjQZ0cZhZXKUr1Ify/iQ7WE+LoDprYIJ3M7X65XU99EblkNAE5qFVGBtm8ebRH0NbdtSC+o4MvDmcr5/7t0rM3H0RGdQc8zR39QjpcOG8kjE+fbZSzWolKpuGvkDD5ZfCvj/MMY5x/GnyYv4sDVD/HK3GvwdnFDpVIxzHuIck9XSzzfMguIb4ibhLvGGZVKxc1m+wK/M8uSXoh9ha1B3/Q2VVKFEEIIIUTfkqDPjlLN9vPFhWhRqVRMiw1Wzu1L77xJe3phpfI4KtAHF41teqyZ8zZf3tmc6Xtxy3Ga41YuHjmUcZH+Nh9HR/YVZilN10M8vHlu1lVWa6Zub5ODItm05JdsWvJLfjlyJkHulgH+8G4s8UwpL1SKqqhVKlbFT1aeWxAerzzeX5hFY/Oev95q0OsslqFODZKgTwghhBDCngbGp2IHZbE8M9i0PHNaTGvQt7eLfX1pFgGj7Zd2QttMXyPZJdVs2H9GOfdrO2X5AIs+c5dGjMBd49zF1QPLcItMX8dB39vJrS0ZFkckMtSs1UO4l5bI5uM6XZNFEZzeOF6Sp1QbHebtZ/N+h0IIIYQQomsS9NmRedAXH2oK3KabZ/pOF2BsSaO1kZrft/v5oE2vvrpGXvouCZ3BNL6ZcSFKtdHs6jL2nMuk0kpFQc7HaDSyJbs16FsckdAn79tfnG95Z0VjHZ+c+Vk5vj1xWrtrZoREKY93N2cEe2tfYZbyeJpk+YQQQggh7E5aNtiRZSEWLQAJoVqldUNxVT2nCyuJDW4f1KUVlJvda/2g73BRDhvPnqCgtoqi+mr0BgM+Lq0Badq5Ct7fk6Yc3z4/jnUpB/jszDEOFJkqeXpqXLgmdjx3jJhukY2ytpNl58ipMc2lj7Mr00OG2+y9+qPzVfD8KP2o0qA+URvU4R67WSFRfJh+BIBd5zL4v7Fz211jNBq71eNwn1kRl2myn08IIYQQwu4k6LMTnd7AmcL22Tq1WsWU6CC+SzI14N6XXtBx0NdBwGgtBbVVXLPlbaWfWwsV2agC/TEWefPWTyk0GnSohtSijWxk9dH16IyW1UZrdI28lbyft5P38+jEhfxq9Cxs4VuzpZ3zw+NxVtt+f2N/0tXyToPRwNsprUs7b0uc1mHgNtMsUD5UmE29vgk3p9YlsnW6Rq7dso6s6jJujJvE3aNm4uPi1u519AYDB80yfVOl550QQgghhN3J8k47ySqppkFnCpKCfd0tlk6aL/HsaF9fo05PZlGVchwXbN1G6DvyT7cL+ACMGFFHF6OKLKE+PB/1xCzUcUVUulZYBHxOKhXhnr5m98GLSTs6Xap6oTZbLO1M7OLKgWmop6/S1qGgrpraptZ2Gj/kpitLPn1d3FgR3XEPxRAPH6J9TEV4Ggx6DhflWDz/TVYyh4tzKK6v4fnjPzHz0+f5b9IuJYPYIqW8kMqmBgCC3L1smuEVQgghhBDdI0GfnVgUYmmTybOo4Hm6fQXPjKIq9M176cKHeOLhat2iJZY91sbyziU3MHpIiHJOHVqJOrAalZNlEDcxIJzHp17Goat/w54Vv+Z/C27G1ayHXEt1TWvKri7jZJkpMHZROzFvaKzV36O/06idCDcrzHK2unVfn3nfwutiJ3bZpH6W2b6+XW329Z0sO2dxXN5Yx98Of8fsz15gfepBmgx6wLJVw9SgyG4tBxVCCCGEELYlQZ+NnMgp5VQXffYsi7hoLZ4bEzEEdxdTsJRdUq3041PuzS9XHlt7aSdY7sm6MW4S88Pj+XjRrYzwCmt3bZCLDw+Pv5idVz3Al5ffyW2J0whw90KlUnFRWIxFpqelMbg1bc5u7Ss3OzQaL2dXq7+HIzDf19eyxPN0RTHb804DoAJuSZjS0a0K8yWee85lWjyXUt765YOXc2vgWFBXxe/3buTiL17ii4zjFr870qpBCCGEEKJ/kKDPBnannmPBU19xyZNfdtp2wXJPnmWmz0XjxKThAcrxvjavkVpgu8qdBbVVZDQHDa5qJ8YFDAXA28WNRxIvw5Dvg7HGBUO+D6F5cez/xf/x67FzO13GF2mWgcrqonF4TzTqdXx25hirf/qEfx79Xjk/GJd2tjCf/0PNSzPN9/Itikgg0iww7MiM4OHK4yPFORbLRFPKWoO+TxffzpPTlhDk7qWcy6wqZfWODWw8e1I5Ny1Y9vMJIYQQQvQHEvTZwKHMIuXxtqScDq9pG/QZjUYMZvviLJu0WwZ96eZZQisHfeaZmgmB4cryTIAhnu4Ys/wxJA3FmOXPmouno3HqumiKeaBhvuzwQty9/SPu3/kpX2QmUd0cmDipVCyMiD/PnQPXhIBw5fFrJ/ewM/8MH6UfVc7d1kGbhrYC3L1I0JrabjQZDBwoMhVkqWisI6+2EjAtoY3TBrIqYQq7rnqARyYuwLeDgi7ezq4kaoPbnRdCCCGEEH1Pgj4b0Hq0LjEsqW7fq85oNJJmlq3z9FYx74sXmfjxv1ifehCD0dBlMRdbVu4035PVttx++BBPnNSmPVqR/l5cNTmK84n0ag36sq0Q9JXW1bI1J9XiXJiHD3+ffgVB7oO3CfiVUaOZFGgK/HRGAzdvW0+NzhQQx/sGWuzX64r5Es/dzUs8U8tbv8SI9Q1QqqO6a1xYPXo2u1f8H/ePmYO7xtnsdaJwUstfL0IIIYQQ/YG0bLCBAO/WzEdxVfugL7+8lup6U9VDH3dn/nliK6crSwD4/d6NfJ5xnL9OXoJGrUJnMJJ6roLS6nqGeLmhNxhIt+HyTvMiLtPb7MkK8Hbn2Ztm8cOJHO5fPAZnp/N/qDcP+qyxvHNX7hlaysfE+Qbw0kVXM0IbPOgLhmjUTrwwewWLN75MdVMjTYbWrPGtiVO7PT+zQqJ4K9m0LLSlSXtyWeuXDi2ZQHO+Lu78bsJ8bkucyqsn95BbXcFvJ1xyIT+OEEIIIYSwIgn6bMDfqzXo6yjTZ56pCxpm4Me8dIvn9xac5YpvXyVkRCg5J5wAFftPF3LpuEhySmuobzJVSgzwdsPP03qFS8rqa5WCHRqVmkmBEe2uuWZaDNdMi+n2a1p7eefOnDPK4/nh8Yz0C+ni6sFlmPcQnpi6hF/v+kw55+Psysrosd1+jenBw1FharNxrCSPqsZ6ks2KuHQU9LUIcvfmD5MW9WboQgghhBDChmT9lQ2cL9OnBH1OBs75ZivnRw8Jwak5I9Og15HvlY16dB54NChLPNvuBdQbDHx25hgvn9hFVWP79+qJ/WZNtcf4h+Lh3Hl5/+4yL+SSW12B3mDo/OJu2JnbGvRND5bqkG2tjB7L8uGjleNrYyfg2YOKplpXd0Y1t+fQG43sL8yyCPpG+Mk+PSGEEEIIRyOZPhs4f6avHADV0DLqMDWyDnTz5MNFt5BdVc7De74gqdTUF03l2Yh6dB5fFBj4nW68RX+/kGBnrt78FgeKTIHj12dP8cHCVb0O1rraz9db7hoXgty9KKyrRmc0kF9badFTrieqmxo4UpALmFoQTA6U6pBtqVQqnp5xBf5unjQZ9L1aZjkrJEr5/dt1LsOicmdXmT4hhBBCCNE/SabPBnzcnZX9bjUNOmobdRbPp56rAPdGVCGVyrk/T7kUXxd3RvuHsvHyu3hk4gJc1aaYXKWCIq9zLPzqv3yfn4IqoApVRCnf6HYrAR/A4eIcfvXTx+iaG2X3lHnlTmtm0SI6aRzeUwcLs9E3Vzgd4ReM1tX9Qoc2IHk6u/LXqZfx1PSlXTZj78xMs6IvX2WeoLyxDjD15xvqad09pEIIIYQQwvYk6LMBlUqFv5dZBc82SzzTzlWg8q+mpbbG7JAoiyV5GrUTq0fP5rtl9+Beb9kLbY/xOOqYYtRhFTQZTcGd2qxIx7bcNH63dyNGo5Ge2Jl/huOl+abxY90smrWKudgiEynamxoUqSwzzq9t/WIiQRs06AvmCCGEEEI4Ign6bCTAuzULZb7Es7S6npLqelTeDcq5m+Ind/hhOtongJU+szBk+GPUd/xhO1EbxKbL7+L+MXOUcx+mH+H1U3u7Nc782kru/eljrvtuHYbmQHGkX4hVs2jmxVwupG3D3uYWAmAqOCJsw9vFjbH+Ye3Oy9JOIYQQQgjHJEGfjQzpJNOXdq4CVEbwbA36JgaG05kZcSEYC30wHAvHq2oIxipXDCWeaAr9eH7WVWxa8kvG+Ifx2/GXcE3MeOW+tcd3UNfcp60jTQY9L5/YxdzP1/Jl5gnlvJezi9XL7Ztn+s42Z/q+zEjixq3vsq1Nz73O1OmaOFqSqxxPC5L9fLY0s4O+ftJsXQghhBDCMUnQZyOdZfrSCpr38zmZsmpDPX0J62Kf1LSY5g/ajRoqTvpiOBmGMT2IUcZYVsaMw9WpZd+fin/MuILw5tcqbajl/bQjHb7mrnMZLP7qZZ449B21uibl/JVRY/hx+X3MD4/v3Q/dCYvlndVllNbX8Otdn7E97zQP7f4cg/H8FT2PFOcovedifQMIcPc6zx3iQpg3aW+R4CeZPiGEEEIIRyRBn42Y7+kzb9uQml+Oyrv1eHIHvfDMhWg9GB7g3e58R03ZndVO3D1qpnL8ysndNJkVdTlXW8nqnz7h2i3vkFpRpJyP9w3ko0W38OKclYR4+JznJ+u5YRbLO8vZdPYkjc3jKqmvJbemorNbFeZFZqYFyX4+W5sSGImz2vKvh0RZ3imEEEII4ZAk6LORTjN95yrAbD/f5KCugz6AabHtP2zHhWg7vPa62An4u3kAkFtTwRcZx2ky6Hn15G7mfv4iX2QmKdd6alz446RFbL7ing6X81lLsLs3LmonAIrra3g//bDF88lmLQE6s7dAirj0JQ9nFyYEtC47DnTzxN/N044jEkIIIYQQvSVBn4101qA97VwFKq/uZ/rAbImnmY4yfWDqi3dH4nTl+Llj27l04yv89eAWasz2+C0fPpofr7yPu0fNxLk5ILMVJ7XaotT/sZJ8i+eTywu6vP9EaT57CzKVY2nK3jdmmC3xlCIuQgghhBCOq18FfU1NTTz55JNMmzaN8ePHs3r1aoqKis5/Yz/U0fLOmvomcmsqULmaljZ6aJwZ4Xf+4hjTY9tfE99J0AewKmEKns392c5WlZFS3ppJi/MN4MOFq3jpoqsJtcFSzs6YV/Bsq6tMn95g4Ld7vkLfXFn04si4LvdACutZPny0ssRzcWSinUcjhBBCCCF6S2PvAZh79tlneeeddwgKCiIwMJCtW7dSUlLC+++/73D9wTpa3pleWGmR5ZsQEI6mG1m24YHeBPm4U1hpapLtqlET4d95IROtqzs3J0zm5RO7lXMeGmceHDuPO0ZMw8Wp7//Yh3l1EfR1kel7O2U/P5fkAeCqduKF+Suhd73nRQ/Fa4PYvPQeiuqqLbJ+QgghhBDCsfSbTF9DQwMffPABGo2GTz/9lC+++IKoqCiOHDnCzz//bO/h9VhHmb7U/HLL/XzdWNoJpsqc5tm+mGBfnNRd/9HdPXKmksm7Ytgoflx+H78aPcsuAR9ARJugz7xIyOmKEhr1unb35FaX848j25Tj+8deRPyQQNsNUrQTrw1iVmg0alW/+atCCCGEEEL0UL/5JJecnExtbS1RUVEEBgbi5OTE1KlTAThypOPWA/1Z20yf0Whst59vUjeKuLQwD/oSQrXnvT7Q3YsdV93Poat/w3/n/sLuSyLbLu+cFxZLhJcWAJ3RwOnKEovnjUYjj+3/WmkpEe8byL2jZvXJWIUQQgghhBhI+k3Ql59vKu6h1WqVcy2PW55zJJ6uGlw1pumtb9JT26AjuaAEPFuLqUzqoil7W7+YFsPE4QGEaT345SUju3WPm5MzwR7t2z3YQ9vlncujxlgUB0kus1ziuSnrJFvNGrf/Y8YVdstSCiGEEEII4cj6zafo+npTBkyjaR1Sy+OW5zrj5+eBRmPbCpQdCQzsOqAK8vUgu6QaAKOrhpTKAlTNcU60dwCxQ7tfETEQ2P/0dRiNRofb3wgwyccZjVqNzmDAQ+PCDRMmkdVQrgR2WY3lynyW19fxl4OblXvvHDuDy0eNUo7PN++iZ2Q+7UPmvW/IPNuHzHvfkHm2D5l3+5B5vzD9JuhzdTXtgdPrW6t06HSmfV5ubm4d3tOirKzWdgPrRGCgN0VFVV1eo/VwIbt51WLS6UJy1eeU5yYHhp/3/oHmsYkLeT/tMKvHzKa2vJFIV63y3JG8HGU+Htm7kfyaSgCC3L14cORFynPdmXfRfTKf9iHz3jdknu1D5r1vyDzbh8y7fci8d09XgXG/CfqCgkxZr/LycuVcy+PQ0FA7jOjCme/r+zz5JARUK8dXx46zx5Ds6q6RM7hr5AzlOLGD5Z37C87ybupB5fxfp16Gr0vrPAohhBBCCCF6pt/s6RsxYgQuLi5kZGRQWFiIXq/n4EHTh/9JkybZeXS901rB08jnRa2BTECTPzNDouwzqH4k2scfTXNVyJyaCkrra/j93o3K8wvD41kS2b39i0IIIYQQQoiO9Zugz8PDg6uvvpqmpiZWrlzJ8uXLOX36NBMmTGDs2LH2Hl6vBHiblqWqgqqodqoBwKhXscBn8GX5OuLipCHGN0A5fnDX56RWFAGmvoJPTL3cIfcvCiGEEEII0Z/0m6AP4JFHHuGWW26hsbGR7Oxs5s+fz9q1a+09rF7z93IDjR5VRJlyzpjny4SwEDuOqn8xX+K5LTdNefzbCfMZ2tzSQQghhBBCCNF7/WZPH4CLiwuPPvoojz76qL2HYhUB3m6oQitQaQwAGOs1GPN9iQvR2ndg/cgIv2C+yEyyODfOP4zbEqbaaURCCCGEEEIMLP0q0zfQuLqpUAVXKseGrCFgVBMXYt9G6f1Jop9l2wonlYqnZ1yBk1p+NYUQQgghhLAG+WRtQ3sqU1A5GQEw1jpDmQeB3m74ebqe587Bw7xBO5gqfI4a4pjVWoUQQgghhOiPJOizkeqmBr7KO64cG/O0gEqWdrYR7qklrrmYS5T3EB4aO8++AxJCCCGEEGKA6Vd7+gaS91IPUdVUDzTv5SvxBJClnW2oVCo+XHQLP+amc8nQODycXew9JCGEEEIIIQYUCfpsoF7fxKsndyvHxjxfwNR6QIK+9oLcvbkmdoK9hyGEEEIIIcSAJMs7bWBrdioFddUAqHUajMXeynPxsrxTCCGEEEII0Yck6LMB84biwTVhYGw9lkyfEEIIIYQQoi/J8k4buDxyBC/MXoEK+OTbAnLIA8DbzZlgX3f7Dk4IIYQQQggxqEjQZwMqlYoV0WMB2O69UzkfF+JrkQUUQgghhBBCCFuT5Z025u/lpjyWpZ1CCCGEEEKIviZBn41NigpUHl+UGGbHkQghhBBCCCEGI1neaWOXjo3k5dsvwmA0snxilL2HI4QQQgghhBhkJOizMbVaxfJJEuwJIYQQQggh7EOWdwohhBBCCCHEACZBnxBCCCGEEEIMYBL0CSGEEEIIIcQAJkGfEEIIIYQQQgxgEvQJIYQQQgghxAAmQZ8QQgghhBBCDGAS9AkhhBBCCCHEACZBnxBCCCGEEEIMYBL0CSGEEEIIIcQAJkGfEEIIIYQQQgxgEvQJIYQQQgghxAAmQZ8QQgghhBBCDGAS9AkhhBBCCCHEACZBnxBCCCGEEEIMYBL0CSGEEEIIIcQAJkGfEEIIIYQQQgxgEvQJIYQQQgghxACmMhqNRnsPQgghhBBCCCGEbUimTwghhBBCCCEGMAn6hBBCCCGEEGIAk6BPCCGEEEIIIQYwCfqEEEIIIYQQYgCToE8IIYQQQgghBjAJ+oQQQgghhBBiABtwQV9RURGPPPIIs2fPZtKkSdx88838/PPPyvPbtm3j8ssvZ/To0SxZsoQff/zR4v7jx49z++23M3nyZGbNmsVDDz1EQUFBu/fR6XQsXryYhIQEzp07d95xHT58mBUrVjB69Gjmz5/Phg0bOrwuKyuL0aNHs3Dhwp794HbkqHOemZnJ/fffz/Tp05k2bRp33303Z86c6d0kWJmjzunp06e56667GD9+PBdddBGPP/44tbW1vZuEPuaoc27uiSeeICEhgbVr13b/B7cDR53rXbt2kZCQ0O6f3bt3924i+pijzrvRaOT1119n/vz5jBs3juuuu46kpKTeTUIfcMR5Xrt2bYe/247w90kLR5x3MH0Wueeee5g2bRrTpk3j3nvvJTs7u3eT0Mccfc6nTp3K9OnTeeKJJ6ivr+/dJDiQAdWnz2AwcO2113Ls2DGGDx+OVqvl6NGjeHh48MUXX1BbW8vKlStRqVSMHj2apKQkjEYjn332GfHx8eTn57N8+XIqKiqYMGECZWVlZGZmkpCQwCeffIKLiwsAjY2N/O53v+Prr78GYPv27YSEhHQ6rsLCQi677DJqa2sZO3YsKSkp1NXV8dprr3HRRRcp1xUUFHDHHXeQlpZGZGQk3333nW0nzAocdc6rq6tZvnw5OTk5jBgxAqPRSHJyMoGBgWzcuBGtVtsX09chR53T2tpaFi1aRFFREePGjaOoqIi8vDwWLlzIiy++2Cdz11uOOufmDh48yM0334zBYOC+++7j/vvvt92EXQBHnuvXX3+dZ555hlGjRlm81gMPPEBiYqINZ+3COfK8P/fcc7z88stotVpiYmI4dOgQ/v7+fPvtt/j4+Nh+8nrAUed506ZNbNq0yeKeXbt2UV9fz9q1a1m0aJHtJs0KHHXeGxsbWbJkCVlZWcTExODm5saJEyeIjo7mq6++QqPR9Mn89Yajznl5eTlLliyhuLiYKVOmcPr0aUpLS1mwYAEvvfRSn8ydvQyoTN/Jkyc5duwY4eHhbNq0iQ8//FD5g//qq69499130el0PPjgg3zwwQesXr0anU7H+vXrAfjmm2+oqKhg2bJlfPDBB3z11VeEhISQkpLCsWPHANi9ezcrVqxQfvm645NPPqG6uprrr7+eDz/8kL/+9a8AvPPOO8o17733HsuWLSMtLc2KM2J7jjrnu3btIicnh8mTJ/P555/zxRdfKIFK22+i+pqjzunRo0epqqpi4cKFfPTRR3zwwQcAbN26lZqaGmtOkdU56py3qK+v57HHHsNgMFhpRmzHkef61KlTAPz2t7/lP//5j/JPfw/4wHHnvaKigjfeeAO1Ws3777/P//73PxYvXoyzszPHjx+38ixdOEed5yVLllj8Tl9zzTXU19ezYsWKfh/wgePO++nTp8nKyiI8PJwvv/ySTz/9lClTpnDmzBnS09OtPEvW5ahz/vnnn1NcXMxNN93E+vXr+fzzz/Hw8GDr1q2cOHHCyrPUv/TfrxB6ISgoiGeffRZXV1fl25GAgAAAysrKOHz4MABTp04FYPr06QAcOXIEgNmzZ+Pn50dMTAwALi4u+Pr6cu7cOUpLSwFYv349GRkZPPTQQzz77LPdGtf53hdM32Q6OTlx11138dprr/VyBvqeo875yJEjeeaZZwgMDFTu8ff3V8ZtT446pzNnzuTIkSPU1dUBUFxcDICnp6fyjV1/5ahz3uK5554jMzOTESNGKIFJf+XIc33y5EnA9EXGhx9+SFxcHKtWrcLLy6s3U9GnHHXeDxw4QFNTE1FRUURHRwPwwgsv9HYabM5R59lcXV0df/3rX/Hy8uLhhx/u4QzYh6POu1arRaVSASj/NhqNqFSqfv/3iqPO+dmzZwGIi4sDIDg4mISEBI4cOcLevXsZNWpUr+bDEQy4oG/JkiXKcWlpqfLtwPjx45U1vS1L91r+3bI+OD4+nvj4eOX+AwcOkJKSglqtZuzYsQBceumlrFmzhqioqG7/Ara8ftv3rampoaqqCm9vb+6//36WL19OSkqKwwV9jjjnERERREREKNdnZGSwc+dOZdz25Khz6u3tjVqtxtPTk6eeeoqPPvoIV1dXHn/8cZydnXs+EX3Ikef88OHDrFu3jsWLFxMXF+cQQZ8jzrVGoyEzMxOAd999V7lvy5YtfPzxx/I7jm3mvWVvk6enJ7/5zW/Ytm0b0dHRPPbYY0yaNKmHs2B7jjrP3t7eyrWffvopubm53HnnncqXof2do857aGgoa9as4bnnnmPZsmXK8s67776b8PDwnk9EH3LkOQeUfcG1tbVkZWUBkJeX1+2f3xENqOWd5iorK7nzzjspKSkhJiaGxYsXK5s0W/7n3PLNREtmwtypU6e47777AFixYoWyfnjZsmVERUX1aCwt79vyfuYfDlre+5ZbbrHrPjJrcLQ5b5GXl8edd95JY2MjM2bMYMKECT16L1ty1Dndtm0btbW1aLVa9Hp9j97H3hxpzhsaGnj00Ufx9vbmT3/6U49euz9wpLmurKzk4osvZsGCBWzZsoWtW7cyfPhwTp06xUcffdSj97I3R5r3lvdPSkpi3759jBgxghMnTnDnnXd2q6CDPTnSPLcwGo2sX78etVrNTTfd1KP36C8cbd51Oh0A6enpJCUl4ebmpmTMHIUjzfny5cvx8PDg448/5rrrrmPp0qWUlJRY3DtQDahMX4vy8nJuv/12Tpw4ga+vL88//zzOzs64urpSV1en/AfW8m93d3eL+0+cOMHtt99OeXk5o0aN4tFHH+32e69bt469e/cqxzfffDOurq4AyoffpqYm5fm27+2oHHXOc3JyWLVqFbm5uQwdOpSnn366hz+57TjqnILpm+KioiJuuukm1qxZw/DhwxkzZkwPfnr7cLQ5//e//01GRgZ///vfHe5DgqPNtbe3N//5z38sXueaa67h6aef5vDhw9x44409+Ontx9HmveV5jUbDhg0bCA4O5tFHH2XDhg188cUX3H333b2YBdtztHlu8fPPP3PmzBkmTJigZEQciaPN++HDh3n22WcZNmwYb775JkajkTvuuIMnnniCiIgI5s2b16t56EuONufe3t689dZb/O1vfyMtLY2ZM2cSFxfHjz/+OGA+k3dmwGX6ampquOOOOzhx4gRarZa3335bWbcbFBQEmDaGg+kXFbCoApSenm7xy/fmm2/i6enZ7fc/efIk27ZtU/7Jz8/v9H29vLwsllQ4Kked88LCQm655RZyc3MJDw9n3bp1yn325qhzWlpaSkVFBT4+PsTExDBz5kyMRiP79u3r/WT0EUec882bNwPw+9//noSEBKVK6osvvsgll1zSy5mwPUec65qaGlJTUy3aurTsVW35MNPfOeK8twQeWq2W4OBgAOULpP6a6XPEeW6xa9cugHbVgR2BI877oUOHAFiwYAHh4eFERESwYMECoPXPoj9zxDkH0/LTjz/+mEOHDrF27VoaGxsBiIyM7OVMOIYBF/Q99thjJCUl4e3tzTvvvMPIkSOV51rWCLd8AN2/fz+Asi+gpqaGX/3qV5SXl5OYmMjbb7/d4yWXf//730lJSVH+WbFiRafvO3HixN7/oP2II865Xq/ngQceICcnh9DQUNavX9+v1s874py+8847zJgxQ6mU1dTUpOwvc4QslCPO+axZs5g/f77yT8symKioKGbNmtWbaegTjjjXu3fv5oorrmD16tU0NjZiNBrZvn07YP99wN3liPM+efJk1Go1JSUlSnXr06dPA/33A5ojznOLlucdYWVGW444776+voCpX11LB7Xk5GQAi0Jz/ZUjzvmePXuYP38+DzzwAGDqNXj06FHAVFxmIBtQffqOHTvGL37xCwCGDh1qUUZ71qxZjBo1iuuvvx4nJyelZwjAZ599RlxcHK+99hr//Oc/ARg9erTyrSLArbfeqlQCapGQkACcv2dITk4OS5cupaGhgXHjxpGcnExdXR2vv/46c+bMsbh23759rFq1ymH69DnqnH/99dc8+OCDAMTGxjJs2DDl3iuuuILLLrvsQqblgjjqnBYVFbF8+XJKSkoYO3YslZWVZGZmMnz4cD7//PN+vWzCUee8rbVr1/Liiy/26z59jjrXDQ0NrFy5Uumj6unpyalTpwgLC2Pjxo09+nbaHhx13gH+9Kc/8eGHH+Lj40NiYiIHDhxAq9Xy9ddfM2TIECvMjvU48jyDKeOUnZ3Njz/+6FDLOx113s17xsXHx6NWq0lOTsbb25uNGzd2+dr25shzvmjRIioqKpg4cSLZ2dkUFRWxcuVKnnzySetMTj81oPb0bdmyRXmcm5tLbm6ucuzn58eNN97I2rVree6550hKSiIyMpI1a9YoqWjzICspKUn5BQVYvHhxr8cVHh7OG2+8wZNPPklSUhJBQUHce++9HX5oczSOOufm75uenm7RD2f06NG9fl9rcNQ5DQwMZN26dTzzzDMcPnwYV1dXVqxYwZo1a/p1wAeOO+eOyFHn2tXVlddff52nn36aPXv2UFxczMUXX8xjjz3W7wM+cNx5B/jjH/+Ij48Pn332GSdPnmTWrFk88sgj/S7gA8eeZ0ApaOHn59fr97IHR513rVbL+++/z7PPPsu+ffvQ6XTMmjWLNWvW9OuADxx7zv/zn//w1FNPceLECYYMGcLq1au59957e/2ejmJAZfqEEEIIIYQQQlgacHv6hBBCCCGEEEK0kqBPCCGEEEIIIQYwCfqEEEIIIYQQYgCToE8IIYQQQgghBjAJ+oQQQgghhBBiAJOgTwghhBBCCCEGMAn6hBBCCCGEEGIAk6BPCCGEEEIIIQYwCfqEEEIIIYQQYgD7/wpIzSYor1LHAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4UAAAHnCAYAAAAPc/jYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d7wcV3n//5nZfnu/6sVFkmXZsizLkiwMBgdsbFoInRAcmxIICabGppoWAqEGYvKlJYaE+sOmg7GBQNwwtmWQbclFsmXJ6uVKt2+b3x97d/ac2TMzZ2bOmbJ73q/Xfb12926ZnZ05c57zfJ7PoxmGYUChUCgUCoVCoVAoFG2JHvUGKBQKhUKhUCgUCoUiOlRQqFAoFAqFQqFQKBRtjAoKFQqFQqFQKBQKhaKNUUGhQqFQKBQKhUKhULQxKihUKBQKhUKhUCgUijZGBYUKhUKhUCgUCoVC0caooFChUCgUieNZz3oWVq5caf6tWbMGF198MT7xiU9gYmICALB3717qOStXrsSqVatw7rnn4uUvfzluv/125nt/9atfxcqVK/GVr3yFevyf//mf8axnPavp+a961auwcuVK3HfffdTjN9xwA9atW4dSqYRrrrmG2o4zzzwTF1xwAd72trdh9+7dTe9ZLBbxn//5n3jhC1+ItWvXYuPGjbjyyivxu9/9znzOiRMncMYZZ+DGG2+kXnvnnXdi5cqVuPLKK6nHDcPAxo0b8f/+3/8z983b3/525j5YuXIlfvSjHzH/p1AoFIrWQwWFCoVCoUgkr3/963Hbbbfhtttuw89//nO84x3vwM9+9jO87nWvQ7FYNJ93/fXXm8/7/e9/j69//evI5XJ405vehKeeeqrpfX/4wx9i2bJl+P73vw+yle+mTZvw1FNP4eDBg+ZjExMT+NOf/oR58+bhtttuo97n3nvvxYYNG5DJZAAA5513nrkdv/rVr/DZz34W+/fvxyte8Qrs2bPHfF2xWMRVV12Fr33ta/jrv/5r/PSnP8UNN9yA1atX401vehO++MUvAgB6e3txxhlnNAWjt912G+bNm4c//vGPmJmZMR9/9NFHMTY2hs2bN5uP/exnP8Ott97qab8rFAqFovVQQaFCoVAoEklHRweGh4cxPDyMJUuW4LLLLsOXvvQl3H///fjBD35gPq+3t9d83sjICM455xx84hOfwOzsLH79619T7/nnP/8Zjz76KN71rndh9+7duOuuu8z/nX/++UilUlQQdtddd6G3txcveclLmEHhBRdcYN7PZDLmdixcuBAbN27EV7/6VWSzWXzmM58xn/fv//7veOihh/Dtb38bL33pS7F48WKsWrUK73znO/GhD30IX/ziF/HHP/4RALBx40Zs3bqV+tzbb78dV1xxBTRNw913320+fs8996C3txdr1qwxH1u8eDGuu+46nDhxwtO+VygUCkVroYJChUKhULQMZ555JtavX4+f//znjs/LZrMAgHQ6TT1+0003YdGiRfiLv/gLLF26FN/97nfN/3V1deHMM8+kgrDbb78dmzdvxgUXXIBt27ZhbGwMAPD444/jyJEjVFDIoqurCy9+8Yvx61//GrOzs6hWq/j2t7+NF7/4xVi8eHHT81/60pdi2bJl+O///m8Atezlzp07cfLkSQDA0aNHsWPHDjzzmc/E+vXrqUD13nvvxaZNm6DrjUv/u971LpRKJXz84x933E6FQqFQtDYqKFQoFApFS7FixQo88sgjtv8/evQoPvKRj6CjowMXX3yx+XixWMTPf/5zPOc5zwEAPPe5z8Wtt96KY8eOmc/ZtGlTU1C4ZcsWrF27Fh0dHbjjjjsA1LJyw8PDWLFiBdf2zs7O4oknnsDjjz+OEydOYN26dbbPP//8881t2LBhA9LptHn/9ttvx4IFC7Bs2TJs2bKlKSgkpaMAMDg4iGuvvRY33XQTfv/737tuq0KhUChaExUUKhQKhaKl6OnpMc1mAOCqq67CunXrsG7dOpx99tm46KKLMDY2hv/5n//B6Oio+bxf//rXGBsbw3Of+1wAwGWXXYZSqUQZuWzevBnbt2/HzMwM9u7di927d2PLli1Ip9PYuHGjGYSxAjA7ent7AdTqE+syzv7+ftvn9/f3m4FqR0cHzjrrLCoo3LJlCwBgy5Yt2LlzJ/bv34+9e/di//795v9IXvSiF+Giiy7CBz7wAWq/KRQKhaJ9UEGhQqFQKFqKyclJdHd3m/c//vGP44c//CG+/e1v49JLL0VfXx/e/OY3Y/Xq1dTrbrrpJixcuBBnn302gJoD52mnnUYZzpx77rnQNA3btm3DbbfdhtNPP90MLLds2WLW8N1zzz2u0tE69UCsp6cHfX191GMsTp48iYGBAfP+pk2bzDrHO+64wwz8Vq1ahcHBQfzhD3/APffcg4ULF2LJkiXM9/zwhz+MiYkJfPKTn+TaZoVCoVC0FiooVCgUCkVL8eCDD+LMM88074+MjGDp0qVYtWoVPvGJT+DMM8/E3/3d3+GJJ54wn3P48GHcdttt2LdvH1avXm3+7dy5E0888YRpOJPP53HOOefg/vvvxx133EEFfhdccAH27NmDbdu2Yc+ePdxB4YMPPoiOjg4sW7YMS5cuxfDwMO69917b599zzz0455xzzPubNm3Ctm3bsGPHDhw5cgSbNm0CAGiahs2bN+Oee+7Bfffd57g9o6OjePe7343vfe97lLmOQqFQKNoDFRQqFAqFomXYsWMHtm7diuc973nM/2uaho9+9KPIZDK45pprzAzgj370I1QqFXzlK1/BD3/4Q/Pv29/+NjKZDL73ve+Z77Fx40Y88MADuOeeeyg55vLly7FgwQJ861vfwqmnnkpJU+2YmprCj370I1x66aXIZDJIpVL467/+a3zve99j9i/88Y9/jEcffRSvfvWrzcfWrVuHarWK73//+1izZo2ZbQRqger27duxdetW1yD1ZS97GTZv3oz3ve99rtutUCgUitZCBYUKhUKhSCRTU1M4fPgwDh8+jD179uCHP/whXv/612PDhg14wQteYPu6oaEhvPvd78bWrVvxrW99C0CtN+HmzZtx4YUXYsWKFebfunXrcNlll+GWW24x6/g2bdqE3//+9zh58iQ2bNhAvfcFF1yAX/7yl8wArFQqmdu7b98+s3VEqVTC1VdfbT7vda97Hc4//3y8+tWvxg9+8APs2bMHjz32GL7whS/gPe95D97ylrdg48aN5vOz2SzWrVuHG2+8selzt2zZgkcffRS7du0yM4hOfOQjH8HRo0ddn6dQKBSK1iLt/hSFQqFQKOLHV77yFXzlK18BAHR2dmLhwoV41atehSuuuAKpVMrxtX/1V3+Fn/zkJ/jMZz6DlStX4tFHH8Vb3/pW5nOvuOIK/OhHP8JNN92Eq666CmvXrgVQqy/s6Oignrtlyxb8f//f/8c0mbnnnnvwtKc9DUAtkBsdHcXTnvY0fPazn6Wyiul0Gtdffz2+973v4Vvf+hY++tGPIpvNYs2aNbj++uvx9Kc/vem9N2/ejDvvvNN8/zrz5s3DwoULkc/nqTpEOxYtWoR3vOMd+MhHPuL6XIVCoVC0DppR184oFAqFQqFQKBQKhaLtUPJRhUKhUCgUCoVCoWhjVFCoUCgUCoVCoVAoFG2MCgoVCoVCoVAoFAqFoo1RQaFCoVAoFAqFQqFQtDEqKFQoFAqFQqFQKBSKNqZtWlIcPjwe+mf293fg+PGp0D+3nVH7XCxqf4aP2ufhofZ1+Kh9Hg5qP4eP2ufRoPa7d4aHu5mPq0yhRNJp5z5ZCvGofS4WtT/DR+3z8FD7OnzUPg8HtZ/DR+3zaFD7XRwqKFQoFAqFQqFQKBSKNkYFhQqFQqFQKBQKhULRxqigUKFQKBQKhUKhUCjaGBUUKhQKhUKhUCgUCkUbo4JChUKhUCgUCoVCoWhjVFCoUCgUCoVCoVAoFG2MCgoVCoVCoVAoFAqFoo1RQaFCoVAoFAqFQqFQtDEqKFQoFAqFQqFQKBSKNkYFhQqFQqFQKBQKhULRxqigUKFQKBQKhUKhUCjaGBUUKhQKhUKhUCgUCkUbk7igsFQq4Z//+Z+xceNGnHPOOfj7v/97HD58OOrNUigUCoVCoVAoFIpEkrig8DOf+QxuuOEGZLNZLFq0CLfeeiv+4R/+AYZhRL1pCoVCoVAoFAqFQpE4EhUUzs7O4jvf+Q7S6TRuvPFG/OhHP8Ly5cuxdetW/OlPf4p68xQKhUKhUCgUCoUicSQqKNyxYwempqawfPlyDA8PI5VK4fzzzwcAbN26NeKtUygUCoVCoVAoFIrkkY56A7ywf/9+AEBfX5/5WP12/X9J4cTD27Ht4x/F4HkbcMZbrmY+5+QjD+NPH7sOU0/trT2g6Vh46WVY845/8v2544/vwn3vfTdmDh2ce08NQ+dvwlnvfi+yvb3c7zO17yncf937UJi/AGs/8GHoqZTvbQqL4skTuPead+DkIw+bj/WftRbnfuwTSHd0cr9PeXoa97333aiWSlj34Y8j19/P/9qpKWx9/7UoTYzj3I/+C/LDIwCASrGIre+/Bkfv/aP53J7TV2DdR/4F+aFh7vePCsMw8MAn/xn7br0Z8Cnl7li4CGvfex16VqwUvHXx5vHvfguP3fB1VIuzAICOwQGs+Id3YPRpT494y6LjwO9+i4c+9ymUxk86Pk/P5XH6FVdh2UtfEdKWJYeTjz6C+z/8fkzv38f/Ik3DgmdfijXvuhaapknbtqn9+2rXj9F5WPvBj5jXj6mn9uK+9/4TquUSBs89D4PrN2Dw3PXIdPcw3+f4tj/jwU9/ApN7nzQfGzp/E8657mNIZbPStj8IpYlx3Pe+a2CUSlj/iU8j09Ud9SYlnoc+9ykcu38rzrr2/ehducr3+zz42U/hyN134ez3fhD9a84SuIUKRTJIVFA4MzMDAEinG5tdv13/X1J48LP/iqdu/jmeuvnnWHjJZeg5fUXzcz73r9j3q19Sj4098GcsePalGDh7ra/P/eM7/hGH77zd8p7bsP/WX+GCL/8XBtaew/U+D//Hv2PPT34IAJj3jGdi/rP+wtf2hMnD//HvePKmH1CPjT34APrXnoPTr3gd9/vs+tY38fi3/xsA0L/mbKx845u5X/vgZz+JXd/6BoBa0LfmndcAAPb+9EfY+Y3/bNq2rmWn4Kx/ei/3+0fF0fvuwUOf+1Sg9xh78AGkO7uw+fqvCNqq+FM8eQL3/NPbUZ2dNR8bA3By71O4/PZ7ItuuqLn3mndg4onHuZ57z/aHsOjy53ta2GkH/vzxj2D/rb/y/LqxB7ZhwXMuxeA550rYqho7rv8C9vz4JgDAvIueZV4/Hv7Kf+Cpm38OANj/61tqT9Y09K5chcH152PwvA0YWr8BnUuWYvu/fQYP/dtnYJTL9PY/+ABGNm/B4ue/SNr2B+HJH96IJ777LQBAYf58rH3fhyLeomQztv1BbPvExwAAqUIem7/0NV/vM77zMTzwydr7jO96DM/9/R+QyuWEbadCkQQSFRTm5k7QSqViPlaeuyDk83nH1/b3dyCdDj+bNTzMXgWsnjhu3t738esws3Bh03NO3HEb87X7P/kRlJcv97wtJw4ebAoI60w+uRu3XnYxTt+0CQvOOMN1lfjIzTebtw9+6fNI/fZmh2eHxyGH/+354Q/Zr/nv/0LvzoeZ/2Ox73//17x99AffwaG9fJPX4vQ0Hvnud837R374/+HQiaMAgP333st8zeEf/QCHJsa4t000TvuT5ODOnUI+78Sdt+HQ+98l5L2SwOTYGBUQ1pnYtRNPvfsfkWnDSYlRrXIHhABQmZ7C/ve9C7lO70Eh7/GdRI78/re+X3vg0x9HZdkycRtDcAjA0V82FjvJ68fYbxnbbBg4sWM7TuzYjl3/cwMAQNN1GNWq/Wd8/f8hdzf7Whc1h+9pLPY8fsPXMW9mUkpWtpWPbZIju3ebt0/cebvv68exp54yb08+uRv3v+JFWLxmjaf3aJd9HjfivN/nvfzlGHzmM6PeDG4SFRSOjNSkdmNjY+Zj9dvz5893fO3x41OyNsuW4eFuHD48zvxfxWiUc5aOH0cxk2l6TpnIfnYtPwUTj+8CAMwcPYqijwnQE39sSBMXPe+FWP3Wd+DE9gdx33vfjdL4OIxqFY/ccQeO7d6NU9eupTKyVorjje9VHBtD8VCcT0ugVCxi/MgRALUJxeq3vQsPfvoTAIDp48c9bf8E0QKlND7O/drHH3gAVWJVe+bECfO1M8eOmY/Pu+hiHPjfXwMAZk+ejP2+BYDi8cYix4JLnos177yW+7VjDz2Iu9/6JgBAZXY2Ed9XFDPEfutZsQowDJx8tLZAcWLXLvQMDka1aZFRJILkTHc3nnnjz5jP+/2rXoKZw7VjpXjkCLTJyVC2LwmUy2XMzu0PLZXCX/zsVmguEv/7P/Q+HLrt9wCAkuQxffZkQxY8S4y/ZeI3HL3wGZg9fgxjDz0IWAJAMiAcXL8Ba9//Iez6n2/gie9/p7b9xNgaN0rkd5+YwLGHH0b3wECEW5RsZolrZ5Drx+zc/KDOE/fdh8H+fqQZczOFgpeTR0+gahMHRIldwipRQeEZZ5yBbDaLxx9/HIcOHcLg4CDumVt1W79+fcRb5w0t09j1diueVSIj2rlosRkUVixyGR6mxsdx7MAB8/6ad16D3pWr0L/mLAyedz7ueMMVGHtgGwDgyFNPYWJsDKs2bEBnD7uWo1QsMrczrpwgArmBc87F0PmbzPslRqbGDsMwMD0xYd6vOqxWk8zOzODAE09Qj5GT3yKxADC0YaMZFHrZtighj8mO+Qs81WOQx7/T6n8rUimVzNv5kREURkbNoHBqfLwtg8IyMbbkh0dsj6UUoQ5pt+PGjWli0a5r2XKusoBsH1EbLbnFEzn2kdcPchxZ9eZ/xLyLnoXS5ASO3b8VR++5G0fv/SOO3nsPZo8dRSqXw9nvvQ6nX/UGaLrekJsCsW5RVbFcL4/s26eCwgCQx0+QuYh1XlUuFrH30UexbPVq3++pUCSNRAWFHR0deMlLXoJvfetb+Ku/+iv09vZi586dWLduHc4+++yoN88Terqx+sQTFNYNSQB/QeHeRx81by94zqVUMXb38lNw8Y9vxtYPXItd/12T58xMTuLP//d/OOWsszC6ZEnT+5HBCm9gFCVjRFA476JnIT/S2J9eAq+ZqSnqdzE4L0JPPfpo034qEYEguQ19hGSlmJCgkNwn6Y4OT6/Vs41zIQnHkkjKxLmc6e5B76ozzPtT4/FbXQwD8lzIDQ7ZPk8jlAxxDgKigFy46l15hsMzG2iphnpF5v40DIO+fthM6lOFAgAg09mF0S0XYnTLhebrp/buQbqrmzL50jPu19Q4YA1cjuzbh2VnninV2KeVIedDQa4frHnV/l27MH/5cuTmjkWFotVJVEsKALj22mvx2te+FsViEXv27MHFF1+ML3zhC1FvlmfICU3V5gJMrijmR0YbjxPZBR5mpqZwhNDLn/GPb296TrpQwIZ//Rw2fuE/kCrUJvXVSgWP3X8/Ht26lR54KxVhq3NhYBgGFRSOPv0i5IcaQaGXwGvaMlHnuQjNTk/jAFH3UKdcKpn7jswU9q48w5R6VUqlRARK5LGa8mj4kco26ubiPJmTQYUKCrvRQyzWTJ50dt5sVUgVQm7APlOqpVRQaAe5oMAyMWOh6Q15qcz9Sf6+AD120EEhe3FJ0zR0Ll7S5PpMBYUxPh6swUdxZgbjhIxc4Q1qLiI4KKxWq9SCukLR6iQuKMxms3jPe96DP/zhD/jTn/6E66+/HsPD8bfst6J7lI+Sma2yx0zhgSeeMC+Sw5suwND6DbbPXfaSl+PZv/h1rb5pjkN79mDbbbehPBeMWi/qcQ9aZiYnMTs9DaA20Rg89zzkBgbowIszsLVmb3i++55HHjF/44Fz1iE/Os/8X2l2tmnlPD8ySmVIkiAhJWslPWcKM+2bKSQXeGqZwoZUyboA0S5QQaFTpjCkzFYSITOF3bxBIVlzKDMotDiFU/LRAIoDLSHjCOtac2Sfh7YhCoqKD+WO2/sMEM67KmBXtBOJCwpbBUo+yrgAG4ZBB4VErzqv8tEpIuNw2muvdH1+78pVePYvbsXSv3qZ+djkyZM4PlfAbQ1S4p4pJLOEI1suhJ7JQNN15Ih9yht4NQWFLt99ZnISh55s9NA665r3o0BkfYuzsyiXSuYxkOnuRrpQQH7Y+7ZFSYUh++JFz7VvprBsyRR2LlqMzJyJVKlYTIR8uFwq4ej+/eaiUeD3ozKF9rVWupKP2kJnCvn6fpJBocy9aT2m7VQnaa/jiMs1NS5YawoB4Oi+fbHe5jhTlSAf7VvdKOGI+/xGoRCJCgojQnORupCDm57NIkM0lvcaFJIXIaeVd5J0Ryc2fuE/sPQlLzcfK85l25oyhTEfNKl6wmc0rIHJOk3eybc1KHQLYvY88oj5+w5tOL8mXR2hP5dcOa/LhP3KW6OCrin0Jh/VM40m03Fe4ZcBnSnshqbrGCCMDaYSICHdfvfd2PHHP+LBu+4SMrHlrilU8lEm1UoFM1Nzbtuahp7TTud6nR7S/rQucllLE+rYyUft4FHfxIEq4/pdnJnBOOGiqeCnIkE+Si7K+vFwUCiSigoKI4Ja5WYMZNaC+0xXwwXUa00hq3ifB22uaXCdet1bkuSjRrWKE4TV9LynX2Te9pqNMwzDU03h9MQEDu3da94/65oPQNM0qj60NDNDBX31/+WSlikMIB9N5RpBYZwnczKoWIxmAGCAMBqKu9lMtVLByaO1XpsTx48LWSCi5aMONYVky5w2O26cmJ6cNOWfHQsWcp+PYclxeTOFnhUHxOJSnBcJyCBm5IKnmbePE4uXCn7IINuoVn3/9uRYnCMWjOO+6K1QiEQFhRHhVhRvldFkuhs9RbyuXAW50OZHGvVv9Yt5OUHy0fGxMXN/5UdGqfqavEXG6cbM1FRTEOj03fc88og5ORvZ8jSMXLCl9rmWDCVpMlMYncsUJiwopI9Xryv87ZsptMpHAdCZwpgHhSXLApWIVfUyt9GMqilkQdYTksZFbkRdU2gYBnX+ky1HeNAS6D7aT7QK8brYq6hhleP6/e3J4DI/1FAoxHl+o1CIRgWFEaG5tKSwymjSXV3mfa9GM0Em7IV5RFBolymM8aBZz2IAwLxnXkzZfheGvbWlYE3Q7YKYqfFxHCazhP/0vsbnjtKZQspkZrguH20EhUmTj6a8GkSk00D9dzGMtprgW41mAGDwzDPNx+IuH7UuEIkICnnlo2HJHZOGn3pCwFJTGGKmsD6pty5eem3RQKpv4ry4RGWkiOObVWuocMc6//D721O/C3H9rQbIPioUSUMFhRFB1T8wBhyrcUeQTCH1Xh5XX8kAxi4ojPOqLDkB6bWsmpMSkaJl9ZoFyw3SLiB+8uGHzdvznvFMDG3YaN63Zihp+Whtm3JD/vooRkUlwMKDpmnQs+2ZLaRkt/VMoUU+GucJSVN7ARFBoQ/5aJz3UdhQPQpXeAgKw2pJYaM0oa9T3vvCJaUlBXnNIIPCOC+uxhnrmON3P1JS/q5u6hhUv42iXVBBYUSQTmmsSbA1u5fpIoJCrzWFpCTHa6ZwdL552wwKbVZ644hTU/WCxwb2rKwN67ebPHkSRwmL8TXXvI/6f96SoWQazSRMPhqkphAAUtn2rCuk5KM9tUxh5/z5yPb1AajtV54Fi6iwOo56VTFYMQyDPygMKYhJGtM+ehQC4WUK7YJCp7GaB6qmMKZjCJl10tJpZHsaBnIq8PCHsEwhefx1dlKlNuq3UbQLKiiMCC81halCAXouZ77G2q7CjSA235neXrNlQLVSQblcpmp+gHhndpzc7HJe5aPECjzr/es8uWOHeXvBsy/BINHzCLBkCq1GM3PbZA0c404Q+SjQvnWFlHx0buGnZvB0hvl4nCWkTQtEAeuiqpWKOaHXcznHRSw9rYJCK4Zh0DWFnuSjxHQgAqOZ4EFh/N1HqX6uhYIKPAQgqqaQzhR2UXOlOC98KxQiUUFhRFCrsq6Zwlp9RZrMFnKuyBuG0Xh/TaN6wnFtp6ahQDZbn5lplo/GeMB0CogLHlpSsJxHgebfbmJsDMcOHDDvr3n3e5teY21J4WY0k4SaQrrptLeWFED79ipkuY8CtEHIZIzNZqwLREHlo1Q94cCgY12Zko82Q5ph5QaHzIwzD2FkXqvVavMxw5KPelS0AJY6/ZgeDxXL4llaBYWBacoUCpCPpru6kCKuY+q3UbQLKiiMCLdMIau+gqwr5JVpURmcfN5z8T4A5C11hU11RDEeMK3fn8RLpnBmcrIx2RoaNo1RDIsxCllLuOi5z0P/mrOa3ivT2YV0Z804yKhWGz3FQLSkGBwyP6NcLMY+UAq+yu8sp25FDMNomojU6V3VyBSyFiPiguiaQlo66txTlexTqFpS1CCPFfIY4iEM+ShrnK1WKk3qF6+KFgCJqEu2Lp6RwW+cr6Nxpqmm0Mdv33T8dXSqgF3RlqigMCK8uY82B4W8k6+gxfsAUCDaUsxOTzet9MY5YHFafc729ZnBSKVcdtynU9RkazVSuUaAWf+txsfGcPzgwdqDmoYz332t7fuR2cL6/tNSKWT7BwDUnPRyc7eB5sl3nDCq1UDZaADQs+2XKaTrMDuhE5Py3pWNthSTcZaPSgwK865BIRHEBPrU1mGKko7y1xMC4bSksFt8q1argRrXA+69f+MAJR/t7KQWKlXg4Q8RNYXkuJUqdEDTdUraqwJ2RbuggsKIcHMfZQaFPsxmnDJlvJBtKZhtGWI8YDr1aNQ0jbtJPOXot3Il9FzzqvQJovnwosueh75VjYm9FbJmsE5uYJAKDHIJkZBanUf9ZKP1bPtlCmnpaDf1P9Ipd3piIrZyONHy0TLVjsLeZAaw1BS2yTHjhl+TGSAc+ajdOFatVCwT89Z0H7WOlaSqIs7X0bjCahfhp5yFriesyUZJF2312yjaBRUURoTuIVNYH5zSPjKFQWV9AG2MYufAGdeLsFtQXO8LCDgHXnRvqWE6Uzj3+5EX/N4zGr3mWJD7tE5h3nz6OQkxm7HWyfgh1YaZQtK5s+48Wic3OGgeI9VKBTOTk6FuGy/WTKHVjTTI+2UdGtcDtHw0ruNP2MxOT5u3u5af6um1pNGMNPmojZNutVIJLB91U9/EAatEURnNBKPKmAf5yhRSzqM1GT/12whotaNQJAEVFEaE5qWmkCEf9VVT6EOSA9DBip2ULREXYcb35239QO/HPFKkMQqr+bJLVpbs/2huywidPUxKW4pqwHYUQHvWFFKr04Q1fR0yW8jK0McB4UYzlHzULShU7qNWyOuGdaHBjTDko3YLbxVLUOhLPppNQKaQzIZ2dCiJYkBY+yyofLRu6Kd+G0U7ooLCiCDrH9z6FNYDDD/y0YolmPFDYaS5gb2VuK5ysoJrEmsjeTusq9g6I1PoZaWbJR+1Zg/zQ/zuqFFCfe9O786jQLjuo8cPHsQTDz1EZVWigNWOgqSHbEsR06BQZk2ha6ZQuY82YW154IUw9qdtTWG5bDFh8VNTGP+FJatyx9ogXR3H3pARFGbmDL+UfFTRjqTdn6KQgZc+hfXByY/RjFumjIc8UVNo+zlxvQgT28Uy2skP8WXjrIY9qXwjiGH12XIz9WHJR62BYlIyhUGt5IHwMoXF2Vlsv/tuGIaBqfFxrN64UdpnuUFm+9PdzUEh6R4Zx6DQmt0BBNQUejCa0VWmsAkvY5AVqqZQ2BbRONUUOtV/85C4msKODuipFPRcDtW5/WJUq3TGVuEIS9bpp6awynCBVtJeRTuiMoUR4aWmsD44pbsaciA/QaGfCy1Au4/yfE6ccMvekcGZXb2L9X1ShYJrTaHbvrZKRa3bAsy1vqhvW4yDQhHy0bBqCmcmJ80J44nDhyNdzKg41BQClqAwBg6khmFgdnra3H9W6Sggtk9hdmDA4Zl0Zktms/UkQS2Cec0UhuE+SoyxZBBnXWDw1ZIiYe6j9QU01STdP1Lko3NqF/Japn4XRbuggsKI0NLOq9xuNYW+gkKf7qPZ/n6qBxTzc2J4EeZplVAY4ZNokt8vXShQNYVs+ahzcEQa3JjbYqkzTGKm0HdNYUg9xsjfqFqtYnJsTNpnuUFLlhiZwhUrzdvTExORn2OPbt2Ke265BY9u3QqAHRSKNJpxbUkRgltm0rC6W3ohDKMZcoztWLzEvF2tVAIrDsgxJK5BIWustEpIFfyw9ldg+WhnvaZQyUcV7YcKCiPCj/soZTTjoyWFX/mopmlMuaPd58SFCiUdzTNbJfBm46yyLF2G0YxVPjqUPPdREUGh1wldtVLh3j/W4/TksWOePkskZcpopjlTmOnuQcfCRQBqk/QZoi1K2BjVKg7v3QsAOLx3LyrlMrN3ZmQ1hTENAsImyCJgGEE2eZ52LVlm3hYhHyXdR6sxXSRguYErmaJ/WOONn31YYchHVQZX0Y6ooDAi3NxHXY1m/DSv9ykfBYDCqLOENI4XM576GtJEh999tEDJHVmZQrd9nRscAixBapPRjIc+hZVKJTIzGkoS1eHTaMZnprA4O4v7f/c73H3zzdj/+OOuz49TUOhmNAPEp66wYvlNZqamhAeF1Wq1sU80Ddn+fsfn6y5qi3bDMAxXZYQTst1cK+WyeXzomQzV/7ZSqQQyyam9Z/wXCSqMsVK5XPpHRqawLh9VwbqiHVFBYUT4qimMSD4KsINCMrsRtbSNBU+NirVBvN1kyBpc6wGNZvR0uhYYEljrDKksZrHI3DbDMPDUzp24+5e/xD2/+hWOHzrk+LkyCFoLBPjLFBqGgUfvuw/Tcxm0w0895foa66Rr/NixyAKKikumEKCDwskIg0LrpGhmaoopH61WKr4n5OT7Zfv6KSMZFko+SmMdf1jKCCdk1xSSi265oWGqp6kQ+WiGGENiejywMoXK5dI/rCDaz/jDch9V8lFFO6KCwoigVjVdagqjdh8FgDxD7tixYCHzc+ICNUmykTVmunvMYNk6MbF7r3Te3WiGJzgig8BUoYDMXNNc87FcDpneuf51htE0CZ+amMC2227DEw8+aNqZH9m3z/VzRROkjqkOOaHjXWB46rHHMHb4cON1HMeg9TmlYjGyxvBU83qG+ygA9JJtKSI0m7Hut9nJSWamEPCf7SDfL+fSoxBQLSmseB1/rMgOskklQ2F0lNrGpub1flpSZOiF1jgeE8yaQpWR8g2zeb0f+SijeX26Q/0uivZDBYURoblY8LMyhaTEzE9NoWj5aL3eCYh/ptAuc6dpGp2R4+jDmLIazdQzhR6d/0hXVzt5LqtXoWEY2PvYY/jT//4vxo8fp7czYE2XH+jg2598NJXzlik8eewYdu/YQT3G8zrWxT0qCamb0QwA9K5abd6OUj7KmykE+HuoWvFiMgNY3CZjGACETVBViGyjGTJTmB8ZpTIxzc3r/QS1OjSdmNLE8JhgOTVbg2MFPzLdR5WsV9GOqKAwIij5qFufwg7/mUJrfz2/5C1BSypfQLavUfMTx4sZ78p5nqOusNloxrl5Pc+khswU2hn5WB1Ip8bH8ef/+z/sfugh9mJCBMF5RUBLCi+ZwlKxiEfuvbdp0sczkWUdp+NxCApt5KPdp51uTnRnJicjm5ywgkK7TGHZ58JE2YPJDBBOC4UkwaOMcEJ230cyU5gfGqHGiqbm9X5N0TLxNpupMBbQrMGxgh/WeB5cPlqbZylZr6IdUUFhRLgVxbNWfX3VFAboW0VizWTlBgdpCWUMB006SLOfZPAYulhrCsnm9YbUoLDxnKceewz3/+53mCDaKPSdsRpnv+86834Uv4MY91G+PoWGYeCx++/H7PQ0AFpCyBMQsyZdUWUKyxxGM+lCAZ3Llpv3pyNyILXut5nJSftMoc+gkKo545GPqub1FEFLBaTXFBIqjPzISJNsUoSqhaorjLl6RclHgyPTfdRa86pQtAMqKIwIt0whyzU03dFpOlbyGjqIMAEBmlso5AaHkCo0Z8viBD3JsJdTkYEXK1NIufqhFqRbA2LDMDwZzQBA56LFzNskpBHO2OHD5nZoqTTW/NN78eyb/xeD686jtiVshEzmss5y6joHnngCxw4cMO+v+9DHzNt+5aPTExO2WS+Z8GQKAf66wj2PPIJ7brkFB598UswGEjTVFE5N0Y3m+/rM276DQrKmkCdTqFpSUFQYC4leCLOmMD8yQgWuTc3rfSsO4n1MsFQV5G+lgg9vyHQfVS0pFO2ICgojwmlCYxdgaJrmWULqNVCxozA6n7pfyxQ219XFCd6AmAwKWZlCa9ZW07SmFgrkhUjPZFydEwFgyV++BEMbNqJ31Wqc9tor2ds2NNL0WP+as/CcW3+HM69+J/RMJvLgnJ7M+awp5MgUToyN4fEHHzTvn3bl67H4BX/p+joSu+M0CgkpNRGxMZoB+NpSlMtl7Hn4YcxOT2P3Qw+J28g5rPutWq1SWctOouec35rCMmU0w1FTmFI1hSS8ygg7NMktPsgFjc7FS5oyZCLaJ7kttkYNa6y0BscKfmTUFNYN35T7qKIdUUFhRDiZJBjWAIN4bl3aAPDV7ogymskODFDubrnBISrIjOOgyWtxTso4WZlCVmBtdR/1s5+zPb24+Me/xKW/vR1dhESQpOf0FeZtPZPBWe/5IP7iF79BH2FAEnVwLqSm0CVTWC6X8fC995rnRt+q1TjnAx/x7FpK7h8y8AhbQkodM7ruGEz3rlxl3rbLFJZmZsxxpFQsBm4ib8VtRb5r6TLztt+aQko+OjDg+nzZxihJI6gqRKZ8tFqpULL3wXXnObqP+r1WaXHPFDKuSUo+6h+WsVrQmkJW8/ooDNwUiihIuz9FIQMtY9+n0MlFLtPVg2nU2g7wTPyC2pTX0TQN+eERTO2r9YKrBYUJko86yKnIbJxrUDiXlUtZ+hSKyshaWXjJc7Hqzf+A2ePHserv3oKeFSubnhN1cB7U4AJwrik0DAM7//Qns3VEKl/ABV/7BlK5HAzis3kCA/J8GH36M/DkTT8AEH6m0NoXy6mnHE+m0Cp/Lc3OIpUWN7w7HVdaOk0ZUQmRj3JkCjWVKaSgz8N4taSYOHHCfM/e006rKU2c5KMiWtvE8JhQ7qNiYWYKfexD6tgzM4VKPqpoP1RQGBFOMhenDBclH+WQaQWVFJHk581vBIUDA7QDZwwHTW75KJEpLDJaUrBc8cjvblgyhUGCbyt6JoO17/+w43OiDs7pTKE/+aju0KLl0J49OEI0pt/w6c+j+5RTa6/L+s8Ujj79mWZQODE2hmq1Cl0PRzxR4TCZqdO1/FTomQyqpRJmp6dRLpWQJvYX0BwUFmdnke/091swt9fh/M4NDPhyRrYSqKYwhgFA2AR1mpZp3EMuuszfsgUAPekmpcN6Lke3lvAAdV2N2UKlYRiNMUrTzO+vZIr+EVFTaBgGuyWFZbHVMAzHxTuFohVQ8tGIIAvirYOYU4BBTiC91xR6Nx8gKRAOmYnLFDoExAWXlhSUg2vdHCDnkCn0mS3zS9QusCICYjK4IydzU+Pj2LVtm3l/+ctfhaUvfql53yp5c5vMUpLHJcvQOSd7rFarmCTkbbIhJZaZ3l7H56ayWXSfepp5f5qRLSxbjlu7fpt+cTqucgNDnherWJQ9Nq8nZfWqJUXwUgGZQSEpz56/eTMAWmpOLgikAygt4mw0Yw3a6wGGykj5h+k+6vF3t86R6uOKnk7bXpcUilZFBYURoTlkCp0CDK9tKUQ4utVZdNnzANQm8POfeXHsXdN43fhylpYUTb8HsZ/r72OtKRTVD9IPURvNVAQExKTRTP07GIaBh++5xzy2uk85Fef+8yep11lNf9wu3FYp8NCGjeb9MOsKeRrXk5AS0klGUMjKFIrEMSgcHPS8WMWCbNFBupnaQWaTVKZQQE2hLqem0DAMjB8/bt6fVw8KiYU6ckHAj/S1jtN1NWpY0lFAyUeDwOxT6HEf0lnCLup/KmBXtBsqKIwInbem0EE+ymPoIMLRrc6yl74Cl/zmNjz/nm3oWLAw9kEhb6Yw09llyh6NarVpUksGWvWJDJUplCgf5cEq4w17MiTCfZR1PkwcP27W0OnZLC742jeY7+/FbMZ6PkQWFJLyUYd2FHV6VjjXFUYaFA4Meh6XrDQ5LnNI3ZV8lCZoXbMs4x6yfUmmqwsDZ9SOZfJ6RH6e33pCwLucPEzsMrlKPuofEe6jLOmoeZ+43qjfRtEOqKAwIjRLywLyokjVsDUZzUQnHwWAvjPONFs4WAOjuOElULNmC0lYGUfdEhCL3s9e0FMpx0UGmTTVY/g1mmEcSyUicBq54ELKcZV6bZY/O2A1sxg6vxEUjh87FlpwQclHHdpR1KHMZhgOpNZG8sLlow7HVLa/37OCwUqT4zJHSxdd9SmkECofFbJFNcjFlsHzzjczvHbbGER+7+TqHTXUdZ0IPuK+uBpnRNQUOqk2lDOsot1QQWFEaJpmO5F3urh7qd3x01DdC1G7XrrhJVBzakvBymCkLJJFkYY+foiqvpM8brV0hjqmvcA6F3gnuWSm0JN8NJ9H74pVZk1fqVg0HU5lQ2UKu90zhW4OpNZjVnSm0NloZtDs7QX4Cwr9KBpkN1tPGkGdpmW1pCClo2Rm3i4jGETREtXiGA9VG0Mu1STdH9b5TR2vcxHqvOmi5aPqt1G0GyoojBC7+gfK2KTgv6bQqd+hCMJa4SzOzGDHPffg0fvv9/Q5TvvRCtWWwpJlYQUnVsmmqH6QfokqQKcnov4zpKxMIW+m18m51Ir1d9J0HUPrN5iPhdWaouIxU9i5ZKn5G5dmZ5uCwCb5aKhGM4P0uOTDaMbP+SO72XrSCCwflRRkj1syhXX0TIaSANdJF/y75lILRDE7JqixksiGKvmoP8h9pQVwnXWSj1KZQtWrUNEGqKAwQnRyUkNmCslBysF91K12R7ak0Wq2IouDu3fj6L59OPTkkziybx/36yoO+9EK1ZbCKVNoGs3QQQyvqY0s9Iga2ItyXXXPFNq/txejGVZ7EaqukMhqyIQ0VUl3uWcK9VSK6lFpzRay+hSKhPwtrD0EswMDVLbTT6bQT486TbmPUtCLYPFwHy2Xy5isy511HYPrzqX+zxqXg9RkO7l6R41dUKiMZvzRtLA25+ZqGIanwNBJPppWAbuizVBBYYTYZQqdpFRe+oGJNJlhQbleShwwZ4msx8zUFPfrvGQf6nWSQPOEmhVIWOWaLDOaMKEyhSFOhkT0KATY7qO8ixq88tFqtWoGD1oqbQaiQ+dvNp9z8uhRj1vuD2oiwmE0AwC9K1eZt5uCQmvmkOGiGwTytyC3A5iTjwZ0H/WTKdRV83qKoM3fSaMZUUH2BLHI0rtiVZNUOsUYM4S5j8YsKKRcrKlMoQoK/WB1Vve7SE1dw7qU+6iivVFBYYRQsjdSPuogA6ImXy4yLdl1bmFlCsmLqdVQw/F15Mq5i5yKDAo9ZwojNpqpfWb0mUKr9MYLrGwfb40UaTRTdZjM0r9RY38NnLPOzDpNT0w0Zd1kQNcUustHAXuzGevxB9SCJC/nihvkb9FjDQr7B6jJVLlc9hykVXyMVTL76iURcnLrZxFQRpBNSkdJU6c6rPM6yLWKUhzE7JigM4WE0QzxfVXgwY/VuIe6BvoNCjsc5KPqt1G0ASoojBA79zw660RfNL3UFMpukxBWTSE5+Jc91Ct5+f5OmUK3msLYGc1EVlMo1kqeWz7Kmym0eb90Rwf6z1pr3g+jrpB2H+XNFLLNZuyCWJFmM3Sm8Azqf7nBQaSy2cYxaGMAwfv+vGOVpjKFFEEXpmQE2ZPE4sXguec1/Z8VvAaTj8Y4U2gnH+1QgYcfrMY9OkNtwgMtH7UazSj5qKK9UEFhhGhB3Ue91BRKCFT0sDKFZFDoIfvhRT5L1RQ6GM3Y9SkM6vwXlKjko6KOMVZgZ200b/vaNF8dkdNvFHa/Qq9GM0CzA2l94m4XFIpsS0EFhavooDA7MACAbvzsVUIa2GgmZgFAFHgx1mIhw310dnravN21dFnT/1nb2aruo3SNOyEftZiEqQUOPqw1muQ12UsDe0f5aIfK4iraCxUURojOVVNoaV7vwWhGdqASVnaKnOz4zRS6TTQKI6PmbcdMYb1PoZN8NIALp1+sctawENGjEABSObdMoZN81E+m0D4oDCNT6LUlBQAUFiw0A8hyqWRmAss2GUFZmcLC/AXoX7sOANC3eo0pufKyYOX0/txGM0o+ShFUGSJjf5JBYcfCRU3/ZxvN+B9HSPMhJyl5FNCmXA2ZoqbrTPdlhTPUPKmjw3emsOrgPqpMgBTthgoKI4R0SrPNFFqb15Muf15qCmW4j+ZpCaWsiRn5PbzUe3kJCnNDjeb1VpMOVsZRT6WoCQj5W0QjH40+UxgkKGRlCnmlqUHlowBd7zQxNiZ9H/rJFGqaRtXz1esKbeWjkjKF6UIBT//md7Dx376EZ3znB9DmXP/SAcxm/Lj3KqMZmqAOyPWm8oCY/VmtVhsLbJqGwrz5Tc9hjcuiXYzjgp37KKCCDz9Y5aNCago76bFYtQtRtBsqKIwQ2z6FDq0USHlDxcXQIaicyA1N00JZ4fRTU2htbOtmNJMuFMzJuWEY1OfYZTFIox2qxUAk8tGIagptHPW8QmX7DKP2+1FGQQ7yUR9GM9bfqDAyis45eVu1WsXk2Bjvpvui7CMoBIDelavN2/W6Qlv5qMBMoXVhJD88gmUvfQVVi0t+DzcVgxV/8lHVkoIkqJRbdKawSGQJ80PDVMBWh+VYHKymML59CqsOqgoVfHjHGmRTdf5e5KPEc5trCpX7qKK9UEFhhNitajoFc3o6zX0BqQZ0o+MhjGDEWlPIc7En96GeyUAn62VsyNmYzdhlXEnJJjkxj8R9NBdNUEhnCv27j2q6Tk3ym817nJrX82UK3WpMw6orNAzDl3wUaK4rBOhjr3PJUvO2KPko7wJLJkADez8BjWpeT0Ofi8HkoyKCbLKVUMeiZukoYJMpDFSbzFbfxAGr3JFEuVx6x9ojN8UwK+OBu3m9+l0UbYAKCiOEnNRUbeSKrFVT3hX5MBqqh9GWwjoY80jT/GQeCjZtKewmrDohV4lcPloIx/THisi6VapXoSUQcZSPZvkkY26BTVhBYZWQWmvpNJVtd4PVloKsKew9o5FJFJUpJPepls5Qxj4kQXoV+qmH0/XogsK4BaFelREsNMH7k6onXMAOCoU3r49zn0KHBTSVkfKOtZ5dTp9ClcFVtBcqKIwQuwuY26o574p8GA3Vw84UAnwOpH6CQipTSKxy05lbMlPIlo9G06cw+kxhEPkoYAnuPPR+JDOFTpMBt8CDrCscP3ZM2sTfmiWs1+TxwHIgJTOFfasaQaGomkK7/o5WvLTLseJnAYvKLIcYpB1+6incffPNeHTr1tgEh5QyIpul6gN5kSkfZZnMAHaZwgBBIZktislvU8fJlEtlpLxDj+ed0EmzMp/uo0o+qmh3VFAYIXaNdt2cLHkNHfwERl5J+dTx82IYRtNgXOKQpvlZNSfbUpBZFjvZISkfpYLCKGoKI5KPOjX+9YpuyRTyNjQXYTQDAL0rViHT2wugJsmcmZzk23CPWJsueyE/NIzcwCCA2veZnZqigkIyUyhKPlrhXFzKWOqdveBPPhpNUPjUY4+hXCzi0J49VL/IKAmaJQQALSXWaIbOFC5kPod1PAVRWlgl6HHCyZRL9cPzDi3HLYjJFHZaM4UqWFe0FyoojBDdZlLjFszxWr+LmCi4Qa7qVyRchA3DaKpv8Zop5HXFzA+5y0fJizdZ2E4iKyvrBJUpTKD7KGBZJLFkCp0kZVSGkdNohpWN0nQdQ+s3mPdltaYIus+s2UIyKOw+9XQz41MplYRMZHhrk0OXj6ai6VNIjj/TExOhfa4TQdtRAJaaQgHQ7SjYQWE7Na+nTLkK9plClZHiw3pdJmX4Xn57p6CQXOhUQaGiHVBBYYTYNa93s+KnJl8OWbMwGqrLli2y3pMnKOTNMpHYZQp5jGZIopGPRrOi6WSz7hXKybapRiq4fJTnfKDqCo8fd95gnwR1ieyxBIVkTWF+eJhyBBWRLaTl0/bjSJowzPHSTxRwNwFiEVWfQvL3i2NQ6FepILqmsMiRKWQ2rw/iYmzj6B0HnBaDohq/k0xTTWHWe69ewzAc5aMqWFe0GyoojBC7C5iXTKGT0Uwo8tG8XPkoMyj0KB/lDYjzw41ehfZGM2z5KEkURjNRNT8W6XDrlCl0lo/yScZ43m/o/M3mbVlmM9Sx6WMBoXdlIyicPHmSklNn+weQHxk175cE1BXyGv6Ial7Pq2qIqiUFOTmUJTH2StCFBkC8HJdyH7WTjzICwCBKC17TqShwWkBTMkXvWI17dB99Cq21uNa2KVT/SI9jmkKRRFRQGCE8zeuZ7myctTthB4Uy5KOs1TnPRjOcE2+7ybTdhNXONbJ9M4XBagqt7qO82SM/RjMpG8v+gXPWmZPjaYs0UxR+stgkpHz05LFjZkCU6e5GKpulMt4iMoW8v0PY8lEtgub1VpfPuGQKRWTsRbakqJTL5jitpVKUiRcJ67cOcq0ie//GzWjGyZRLNa/3jrVHbsrHwqhbTbxyH1W0GyoojBDNxn204rJqzjv5ElFn4obfhrG8sAZiz0YzvPLRoeZMIdU+IJWiVhJTNjWFUQSF6UIruI/S7nHkOcErH+VvSWFTD9rRgf6z1pr3ZdQVBl2sITOFpEQvO2dAQy5uCJGPci6wCMsU8hrNCDZG4cF6fMUyU+hz/NE0DSCccIPsU9L5tjBvvm2f2HapKbTKFK0BiJIpescqxyUXFXnnIk7tKADlPqpoP1RQGCHkBay+qlmtVs1VWi2dbpIzAB5aUoScKYxrTSG/fJSoKSwWGb2/8lT7AJZ8NFUoeGoxIIqo5KNCawqJoLBiafHhtE95jWbcanXryO5XGHSxJtvbi8L8BU2P54eGAND9NsOUj/IqGFhYnQR5sDPqkol1PCoVi57rJ2UgaqwXVac5y9GOArCpKQxgihbFMcEDGaDqmeZen8p91DtWlYruw32UlISS86o6KlOoaDdUUBghOsM+myub4ad5vaw+hZKb14uoKeRdOU/lcsj29dXuGAbKxaJjrZPOeF+77KFsopKPVkW2pCAyfnTfR+dJoi/5qMPEmQwKxyWYzYhwBSazhXXqrSryoxFlCgkFg9dAqcqZFSaJQj7KyhZMxyBbyBu4uyEnKGTXEwLNiyJaOsNcCOWFXFiKU6aQXvRgteFQ8lGvVK1GMzm+6wAJqToix6866ndRtBsqKIwQVmE/z8Xdj3xUlqRRdqZQSE2hh0lSztKWwimQYGYKObMcoomqeb0f10g7yIs6bd/ufOzymkvwBh49p68wb5cE9fojEbHPyLrCOrnBWqYwP0zUxooOCkMwmuENaqLoScc6t2ZiUFco6jwkHUiD1BXyOI8CzcdT2uVcd4M0bwtTMeGGNYCxojJS3rEG2rqPXr3kcVpY0Ky+0DMZc6HEMIxYHVMKhQxUUBghLPdRnou7nz6F0lpSFOKfKfTy3QuWthRO78PKCqYl9YN0Q3bG1g6xfQqJTCER+LsFCX5qCp3eM+Wz3xUvIs7LnpWrmh7LDQwAoFurFAXIR3kDjnSQoNCHi62m05evMLKFrPEobpnCIAuAwjKFHM6jAGNMDaho0TLxlI+6GXKp2jXvWN1H/Yzbsy6LF5qmUdc1FbArWh0VFEYIy32UR+KWIfqB8buPhiAfjWlNoZdJUo5sSzEz4yjBZWcKw29HAUSTKWyquQx4jOk5G/moyz6lDGo4+xQ6u5nKzTaIqP9yyhQWRueZj4mWjzq10Eh3dJpGJVajIDf81ABrmibUMZOHuGYKRZ2Hosx76Mm2Q02h1YVT4MJSXOWjTJfLiJQeSaXZuKcDetZ7XT3PcaqyuIp2QgWFEaIxMoU82Yy0j+b1SZWP2rmPuk1Y6Ibb/BMNq/TOKatDXoQanxVRpjCC2gfyc/RcztZhkBcqU0hmjlyOXcpx0OG44M1Gya5LEhIUrljZ9Fg9KMwNDpqP8SyguMEbcGia5ktCapVleamzFN1bz41k1BTGSz5acMwUWhbaggaFNo7eUaPko2Ihf9t6HWrKR59CHpmzcoZVtBMqKIwQln02X6bQj3w0mUYzzEHYskrIwu/E29rA3mmySl6E6kQnHw3ffZTXzZMXO/dRYfJR4n9Ov5OfFWcviAgK0x2d6Fy6jHqsLh+1mg4FDZZ4+jua20U4kDqZYJEYhtFwXE6xHZftIIOYKOWjUUsVRS0ASjGacawppI+noOOIngD5KCvwVX0KvUFfe2rHO9XnlnMf8hyn6rdRtBMqKIwQln02j4wqw+k+2qotKQD3DAiVFfIQqFEN7GdnHbNLOqOmMLJMYQTuo9S+EWCwQwaFlHzUZZ+SE0ER7qO8mUe/iAqmrRLSeqZQT6eFZtC81Ktluvik7bbv79FoRE9HHxRWSiUhGdkg+FVGWBERFJZLJfO313M5KnNtRc9mqdrQoOOnJln67Rdr/ZsVlY3yBqs/ru6nppCsfbVxyaWyuB5rpRWKpKGCwghhXcB47Op53EcNouk6NI2acIvET28gL9gGhS5mM1RWyEPAQmYKS7OzqFCTLXrCatenMAqiqElxm+h4hVzp9duSwmkywNuihbdG0S+iTEF6V9BmM/WWFIDYWl8vQawf+aifesI6cZCPAtFLSIXJR4maQr/yUUqSN2+BY49RTdOoczGoIZrsBR2/WOvfrCj5qDcqjFZIXlVL5XLZVKTo2ay5qGZFmQAp2gkVFEYIy32UJ5uh53Lmxc+oVtmr1xbZo6yG6qSFeJwyhX4t2smawuaWFBxGMxHJR/Vs1jT5MAwj9AmyiKCQnNBVvGQKOYM43mBMT6cb2QsJ+5LO6vg/XpozhURQKHCRwEsPQd52OdT7BzBJoXoVhpAZstuXM1EHhT7cW1noAno/UtmXRfYmM3XI7Q1sVhXXmkIlHxUKtQjSWbv2kEZlPPuQqnudv6DJzbiO6lWoaCdUUBghft1HNU2jzWYYky+qsD1g7ycnSMlGWH0KAbrpLAu/DcKpTOHMjHNLCsYEWVbrDzc0TZPuBGuFDgoF1BTm2JlCt33Kkx0wDIOaJLqa10jMFoqq9SWDQi2dpsYEkTWmXmToVFsKzgb2QWTulNzR0yv9YXdeRZ0prPgc76yIkI/y1hPWSVNBocBMYYyCQiqzxTjnlXzUGyz1Ann94/ntyeO0c6GDQ67K4iraCBUURojGWJXllWq51RX6dfPzClXLJllqRwUNbjWFPuVU+SEiKCwW6SbqlkBCj1GmELD0jAzh4uXmqOcVckLnST7K4RZqXSRwy5zLdCAVZQrSfdoKdCxaDAAYOm8D9Z1Erm57CWJ56539vr8VyvE25ExhYd588/Z0xG0pKLl8IPlo8CDba1BIZs6Ct6SIp3zUrZ9rWgUenqCMyObMrVIeF/JmeR1yid9LBeytiWEYmBofj1UdclSk3Z+ikIVf91HAvXYnjB6FQLhGMx3zF2DiiccBcNQU+sw+6JkMcgODmD12FAB94WiSj8aoJQUQfgN70ccYa3/W3jt4TaFXOTH5njIzhUH2WyqbxUXfvQkHfv9bLLrs+dT/dFmZQpcgNt3ZcB/1U1PoOVMYYU1h3+ozMX1gP4AYyEdF9SnUgwfZvO0o6qQl1RTGaYLnJhkPe0Ev6ZD9V/PDIwAA3eNchKcdBaDko+3Arm3bcOCJJ9Dd34+znvY0aeVWSUBlCiPErU+hU4Yk49KrULS0zw7ZgQi1Mj9/gXnbS02h1+wD2cCenOw19SlkZAqjko8C4ZvNiHa31bPsVgRe5KN2x6BXcxeZmUJRpiAA0H3KqTj9itehQLjmAmLdaHkNegB/RjNB9oeoFgq8VKmgcI15e3piItLMVBAHVxIRzeupTKGNoyOJyJpC1jU1DrgF7aLbyLQ6JTIoHKoZxHiVzPNmtFUWt7WpVCo4+OSTAIDx48epY6sdSVRQuG3bNlx55ZU477zzsGXLFrz97W/HwYMHo94s37jVFDpNkNJeMoWSGtdb31t2TSE5cHvKFHr8/uQEe3ZqyvZ9WO8bqXw05KAwiGskC90uUyhYPsqzSBJWUCjr3Ew51Pp6PTY8taQIWlPo8fxhSfBlQk42OxYvMes4q5UKNckMG1ELNFHIR9uiptDlHNJ0nR6/Y7TtcYScuOfqmUKP/WV5Fy9UvWdrM3H8ODVWxGnciILEBIX79+/HVVddhdtvvx2nnXYaurq68LOf/Qyvf/3rUYy4R5RfWPUPvFIq15rCKOSj0jOFjRqekoeaQq/fP0fUFTrKR2PUkgKQ3x7ESpDJPAu7tinu8lEiU2gTGHg9HmTKR71k3vxid14+9qc/4c6f/QxPPPQQ93t5yeQFdx/1dhyF3qeQMgwpoP/MRrZwz8MPS/98O0T1viTlo372p2EYKJLuowt43EdFykfj2bye5xxSMkV+yOt/frA5U2hw7D86KLQ/TpUzbGtz8uhR6n6cxo0oSExQ+Itf/AInTpzAC17wAnznO9/BT37yE8ybNw8PP/ww/vznP0e9eb4g7bOZfQqdjGZc5KMiJWpOhF1TWEdWTSFAN7AnB4imTCGreb3ErKwb6YTLR1N+g0KOrJ7XrCYpZZWaKZR0brLko5VKBQd37wYAPPXYY64LK9bXA97ko7xGM0mtKUwVOnDGW99h3j+0Zw/Gjx2Tvg0sRGWfyUyhnz6F5VLJ3JZ0RwcyPT2uryGPmXSX+/Od4O1ZGjY855AKCvkpsWoKLfJRp/HAy+KFch9tbU6ooJAiMUHh0572NPzLv/wLXvOa1wAAstksent7AQDHIroQB0VjrGrSMjdRRjMS5aOS2yDQmUJCPuowoaUuCLpOZZJ4INtSkFhX4Nk1hfKysm7IdoK1IsrxsA45oSNJC2he7zUQS3mUIvHitTWGX1L55u2vWsaJ45zSe09GM4FrCj32KQyY2fKKdbFt/jMvxsJLLjMf27ltWySTCinyUR/fg5aOLuIybFj20lci3dGJwvwFWPicSz1/Jol1kSAuEzyeRVry2G9HmeKBJ57Arm3buGq6KPnonLJHT6W4F4m8LF4o+WjrUq1WMX78OPVYXMaMqEiM++iKFSuwYsUK8/4f//hHPPzww9B1HWeffXaEW+YfVqNd3gkYuaLKmnyFIVED5MtHK3aZQqegkLwA5/OenaTIBvYk1skWs6YwSvlo3r6OTAaijzGy+TCJu3y0MYxxGc1wuY/KyRRaz29ZLmd2mUKSYwcOYGTxYsf3MQzDf/N6XzWF3oJkchIYdkuK+jF/zof/Gfv/99eozs5i8sQJHNy9G/OWLZO+LXbbFUw+GsxopsgpySMZuWALXvDnHUjl8tDTwaYkmqZBS6dhzF0TDcOIhZMgTxuads4UTp44gZ1ziq9SsYiV69c7Pp92H20s4qZyeZTLtfYw1WoVuk1Dei+LF0o+2rpMnjjR9JuqoDAm3Hjjjbj22mtt///rX/8aixbVLjLbt2/HW97yFgDAi1/8YsybN8/1/fv7O5Am6k/CYni42/Z/s0ONwI5VUzg4b9D29f3zh8zbbpnCroFex+0IgmE0LOiNuQydyIsw+T0WndVYFCiXSrafRb4m09Hh+btPnbaE+fjgvAHqvYq55sHD+pww6extfG7Y8tG+4b7A33t6qJf5+OB8+/MAACo93jKFnX09rtua65STdeU9NoPuy66+xutZC04AMHb4MKqVCt3rz4I1YBsZZf9GdbTFjQUVP5nCniFvx1EuT/z2IRvNDC2oHZfDw2uw/t3vxh8/8hEAwO4dOzC4YAEyNnJoGdtU/+5aOo3RBQO+3ytL7E8/8lFysj1w6jL+41vgmJnKZk3pslGtAjaBQZiQx/jQgiHmfsl3dzGf3w5MEy7fx/bvR7lcRtpmgcCoVqlF4YUrlyE1t4iXzudQnqwFhUalAti8B7l40bt8qeOYM07Mtdrtd2l1rNJRQPx1pKszF9mc0A+xCQpzuRz6+vps/5+am7g8+OCDuPLKKzE2NoYzzzwT73nPe7je//jxKfcnCWZ4uBuHD4/b/v/kRGNgY03cJoqwff2s1rh4s+rryPcpGbrjdgQllc+jMqfPr1YqSAVc7SUhv8d4OY1UoQOV6SkYhoFKpcK8cJCv0XJ5z999Nsc+gcdn6d+jMtucrRx3+M1kU0Jjch+KfJSY9E+Vgx9j49PsC+74rOH43pRz2JxkzLpYQB4TZS3tuq0VTY4skVz00fLsY9Nt3OChaDS2v/6Z1glNpVzGiaNH0T8yYvs+1qDQbbsmysTn+qgpnK2mPH33MnGYh11TeHKmCn1uW5f87Zvw0H/dgMk9T6JcLOLJHTtwakgKFuo3yuUCHTtB9ycZFGoDI9KObycoCWFM6gqp69iMAY3x/Y10lvn8doD8vtVqtaZiWMTONJO10Nm+fhwbmwFQm39onLJ/8jhND89zPB4nics875imSAZWkxkAvhbDnJiYnAUimhM6YReoxiYovPzyy3H55Zc7Puexxx6jAsKvf/3r6OzsDGkLxcNyH+VuXu/i8heW+yhgCQqrVYjKxxrW2sBsFtn+PkxP1wL8crHoGhT6kVLVC9etpC2yH5ZbZpRGM6H3KSRrCh3qX3mxcx91q1fUdN1VMua5eX1WzgSNljZLNIBiOPGxvsexAwf4g0KO/Ra2+2jYRjN2Y0u6UMA5H/pn3H7lXwOo1UeNLl2Krl7nzKrobQoqXw/a4oO3IbhMKAO3mEjBeH6jdq5ds45NR/ftsw8KqR6FdP2/UyseEi9tU9pZ1tvKGIbBDArbXT4ava6Ck8nJSbzpTW/C2NgYVq1ahf/6r/9yzCwmAc21ptChT2FXQ2riXlMot85Nl2Q2UyGDjrn6q2xfv/mYnQMp9d05etJZyQ0OUbU15ntZ9qOmaU1BYGyMZkKvKRThPmrTp9BjCwlWdsCrGy/1fgIvEtWAxyYvrFpf1kTz+MGDjt+vQtUTuu83clwql8tc+y5QS4qw+xQSY611WxdeehnmXXSxeX/Xn/8caaDqB7J5vS/5KOnoyFlTKBothr0KecbKdg4+rGPT8UOHbK/vVDsKy4IWb69C3nYUAJAhxzTOOmlF/Jk6eZI5d1ZBYUL41re+hSeffBIAkE6ncc011+DNb34z3vzmN+Puu++OeOv8weqpxGud78V9VGZLCkBehoo1AcuRQaGN2UxQe3Y9lUJ2YLDpcVZwYnUgjdJoJpWT45hph/g+hWyXWJ7f0K2FhNfMOdkeQ1ZNocxjRSf2mZ18FKhNjqZOnrR9H9oNmW+/mb+XYXCNB0HGKi3kPoVO47OmaVj3kY+bCpDx48dxeO/eULcpeKZQpPtoRJlChgInanjO+3Qbtz5oMvuoVnFs/37mc4sM59E6lELCYdz2ktEuzGsY3JFtLBTJhlVPCMRnzIiKxASFt9xyi3n7gQcewK9//Wvzb7/N4BF3RPUpdKspFDFhdyIlqWk66ztkeYJCqlWCv5Vz6wokwG7tYe1VGK18NNyVZtELD7pNptBrZo91DHpdKODpfegHKqiQKR8lvqOTfBQAjjm0pnDKjNmR9ighDSQfJYMYyQshzU6szdvac9rpWPGGN5n3n3joIenZBZGlAkGCQsMw4iEfjVmm0LAsjthdj9s5U8j6vkf27WM+t2TjPArQDtaO8lGqR6HzcZrt7zcXfyvlMnf/VUW8YdYTQgWFsakpdON73/te1JsgnCA1hW79wMLKSAASM4WMLEW2v+GsV7KZbPmZyFopDI/iBB6kHmNdzFOWTGGk8tFCyDWFgo8xu36SPIsaVKaQMah7bZ9BbksSM4WsnpWU82lPD0pzGcJjBw5gMdHuh8QtCGKR6erC7JHDAPiCwiCtTcgaONEGAVYMwzA/Q0ulbY/X1Ve/E7t/8H1MH9iP0uws9jzyCJafeaa07RK5OBOk72NpdtZ8Tba3jyuzLANWq6coIbdBz2Zt3X7J367dDE1Y16uxw4dRKhabXHypHoWD1kyh+wK118ULTdPQMX8BJp54HEAty0jOvxTJ5CTR3zw3NGxes8JobRRnEpMpbEWsLmmUtXgq5dh03U0+Ssuc5BvN1BE5gWZNFrP9feZjdplCEXKqnHUFMpNhXszJekotbT9RDIOw5aOijzFrgA3w71MvmUKuzGOWT4bkldCCQobhAvl7zb/4OWZWaGJszFYWxStnJwmUKfSYaddDNJqhfzv77cx0dWPtBz5s3t+/axemxuW5z4k1miHGOI/7k67TiiZLCAAa2bc0Bqv+PD0KAXpBpN0yhax6Z8MwmBJSp0whzzXQz+JFYd5887aSkCaf0uyseRylcjn0rW4s2kU/YkSLCgojxJoppK3FnRtbpzs6gbn/VyuVpglR0Lo6L0jLFFIyUIZ81C5TSGY3/GYKLfJRW3MAomE8K6gJkyjloyKOMTKw8/q+rkYzHhqwA3TmUVamUOZijVumsGP+fAxvusC8bych9SNNJBeseKRWgWoKU8GarXvBS4C85EV/Ze5fwzCwa9s2adtHBx1Bg0L/+9OLeYdM3MaCsOEN2pX7aI2+M9eYt1kSUif3UWoxz2Yf+lm8KMwngkLi9YpkMkks0vWsPCN2kvMoUUFhhFhlLl5WfDVdp1yxrCvyrSYf9VRTKEBOlRvmCwrJi5Ds1h9uyMrY2iG67QmrJQVv4ESZNgkwmpE1sfQanPqFlSm07oMFz77UvH/swAHm+/gJ/CkVA0c9XZDjKGgLBS/QsnTn7dQ0Ded+7BNm5u3EkSM4Kqn2PS7yUXKyXIionhBwHwvChnchiOfa1qqQ+2jZS15h3h47coQKAgHafdSq6CEXae2ugX4WLzrmN8xmZlWmMPGQ5mq9Z6wOvbVRnFFBYYRoFvdRrxf3tMPkK9Q+hbKMZtzcR+0yhQICYmuvQjtTEHLyHaXJDGD5HZJYUxig7yMlH2XVFBLHEs+5xeti55WKgHpXHlhZY2uAt/CS55r3Txw+LKw22WuvQj8S1TphXszpvpzuY2rf6jU47YqrzPuPP/iglMUaWUYzgeSjUQaF6Xi5j/KeQznC8brUxkFh92mnYWjDxtodw2haTClyZgpFBoXKgbS1IIPCvlWrAy2GtRoqKIwQ3VpT6LGHWaarx7xtlWlRExjJwYrO2TDWK6zaQNJohqum0KecyhoU2v0eZCAWlbFCnTCb13upf+VFT6eb+kPy9vLz1pKCx8006fLR5smRtUa3a9ly9KxYZT7nxJEjTe/jx8XYzQRLxGfUCbNPoZ/ga8273oNsf20hqzg9jWkJtYUiZdyU+6jH13pxdJSJLOdgv/AaKeUGG0Fhu2UKrfto8QtfbN4nJaSGYfDXFNpcA/045Bbmq6CwlSBrvHvPWE3NxWUblsUdFRRGiGZZ0fTqwudkNhNq83oyIBDZ6JvRWoI0mrF1HxUgp7K2pLC1Ec/FSD5KWppLngx5qX/1gjVbyC8f9VJT6LF5vbQ2KxLlo4wFAtZ5seA5l5iPsSSkfrJ4TrJ2FsFaUhA1cJKPeV7DEJJsby+6lp9q3pexWMOqvfZLkJYU9GQ7wprCdLyMZnivR/nBIfO2VTLZ6ljHxcXPe4HpmXDiyBEzEKuUy+Z5nsoXat4KBKTxm914MOtD5kzWFM6qmsJEYxgGJq3y0RBr0+OOCgojxMlohie75yTTClM+Kiv1zposeq0p9C0fHbLIR+1qComMjOyMrBuyMrYsZNWsWoNCX/JREe6jOUnN6ykTJImZQoaUmGXAtPA5DQnpsYMHnQ2rJMhHDSLjDF1nSoidIOWjsvG72JQis84SJhxBWnpYITP1wYxmonQfjZdpBO85lFXyUQC1c6swOo8ywqpLSJ2yhACQ4hi3/WS0O5T7aMswOzVlHm/Z/n7kh0dCrU2POyoojBBN06iV2YoHIwPAS02h3GBFS4cRFNa+g9V9lPV5QeRodXIDA9RvY+s+Sky+I88UhikfFdy4vo7VgZQ3EHGTj3rNnMvKFIaVwWeZDrGkqwPnnmfWMpVmZzExNka9jz/5KCFrdzGaqVhk7l4zztTFPMzsuIdzXXaQQtVedwQ7pvzKqIxqlZoskxb+YRPrmkKHcyjb22tecyrlcihmYXGBdW4teeFfmo8deeopAJYehcyg0P0aWPRRU5gfGTUXTEqzs23127QapPNo76ozm+bhcRgzokQFhRFDZgvJCRTPhNHO+r2pvUVAm3I3ZPUKY/XBSxcK5oTXWofJfp2/767pOnJEETuXfDTiTGGa0YZAFlRwI7CWkszQAQLlo16DwqykTKGkYNqKzpgcUYtOc8eqnkph/rPtJaR+ttethyr1/gGNd8K8mPvNjsu2O5dWU+hhf5IBYW5wKNL2PG4LRGHDez3SdL1tzWZY+2jR5S8wA7GTx45hdnrakimk1TyARS1jU0ZgHquaxr14oWcylCO5yhYmF8pkZvVqAOEalsUdFRRGDFlX6NUh0U6mRQ6GejbLbLoukjDlo4C7hFSUtJG86Ni2pKAyhXKDbzcik48KXHRoyhTyykezzhI9r8dEijSrkHVMS1ysIdUBrEwhuQ8Wkq0pLP0KZctHg+4PXZJKgYXfxSZZCwys9wxqXuR3LKeko4uiqycE6ExhHDI6Xs6h7ABhpNZGdYWscSA/NIyRpz3dfPzovn208+ggI1Po4j5KBnP5oSFqnHeDbEuhehUmF8pkZtVcUBhANt9qqKAwYsieSvRKvrdMISkftZqAyCYc+SgRFPY3gkKW2YyoiTfZwN5uEkjWMMh0k+SB1bBcFrIyXuRFHeCX6TllCv1kzqkaRVm9N2XKRy2ZQsMwbOsZRy96phm4TJ08iZmpKfN/fpx8PWUKA7qxhtqn0Oe4IlvOKFKS7DdTSNdpRRsUapkYy0ddjnHKbKaNMoV24+Li57/IvH1k3z5qn7BqCskaf1aWmF68WOxpGwuqrrAlsPYoBPzL5lsRFRRGDDlh8CoftbN+D7NxPRCst5UTdpOwsDKFpFzEXj5KZgoj7lNYiKamUGQtJZnxq703b02hfTbGT+ackqBJk0RLlI+m002SGLtAPtPZhZEtF5r3jxPZQj/BPzkueakp9CNDliVdZ+FbPipZzihWPkpMCfxmCiNsRwE0t3qKGi8Gcrk2DAqdzKYWXfZ8cxwbP34cE8ePm//LDblkChnXwCAOuZQDqQoKE0m1WsX0xIR5v3dlrSWTqilsoILCiCEb2JPZPq/y0bJNUBhG9kqXZPZgN4G2ms1YEfX9CxzyUbJvIlkPEgWs7JAsZBmmWOWjvI6uThNBP5lzsgmyvJYUchdsrA3snVoqkI3sybpClmOpG5lO/pYUQTPOUdUUepKPpsMLCqOSjxZj4jwKWFQDMZjgeRkrKflomwSFtNlUgTKbyg0MYPTCZ5j3jx86ZN5mZgpdagqDLF4o+WjymR4fN8eEzkWLzTm0ch9toILCiCEDqrJH91E7mVaUmcKw5aOsC6eogGXhZc+r3dA0zL/42cznLHnRX2HwvA3oP+tsLHvZK31/lghY2SFZyOq319SSwo98VEBbBbcWF34J89y0NnJ2yu4uIOoKTxw5Yi62+Kop9Ckf9RMky1IpsPDb+oE6liRso8hjyrd8NE6Zwkycawo9yEfbpKawyjDAIllCNLInYWYKXfoUBjlOlXw0+VDOo6vPNG+H2e827oTX5EnBhKx/IDOFPNbilKED8VpZzpB2yFplsVsBz/X1mbfdMoVBApbBdevxvLv/BKNaRdfSZczn5IeG8Bc/+ZXvzxBNKl9AeaI28FUrFei6nHUfWdnopqCQ02KfMppxyBRyu5lKkvxR2yL53LS2paA/m96vHQsWom/N2Rh74M8wDANjhw9jaMECXwssdrJ2FoHdR0OUCsZVPuqn7tMOv0F2rILCuMlHKSMgt0xh+7mPup1XCy+5DHomg6rlWp9nBoXOteBkMOc1o002ulfy0WRC1RPOmcwAdHKm3VGZwojRbdxHeYIZnppCmXVLdUIxmiH2BynZZF04RQYsnYuX2AaEccSaHZKFrIyX1Q3OT/N660TQT2Cju7jY+UVWhpWFtW+lW1aOJSGl66E4g8KOTmBOAlatVBwn5hUf8lSSyFpSeAi+tFDlowGDQhHy0YiDwtgZzXi4rucH2zAoJINmxkJZtq8P8y56VtPjrKCQasXDyhQSJloFr/JRlSlMPKTzaN8ZjaCQuo7EYCEpSlRQGDGk+2iZakkhSD4aQu88WRMzO7mWl5rCqNtEhA2rabkMZBmmNNUUcmf27IPCqo/MuazsTljN6wH6WCDPEz2bpSy465AS0uMHDzb1AeXdXk3TuCWkQRdw9IjcR62ZVidSDllsEYiVj3q3Zq9WKo0ARteRH50XaBuC4tazNGy8yI5zbSgf5dk/i1/wl9R9LZWiykjqZFxMrmiXXI+ZQsJopjg9HYsFB4U3WM6jgOpTSKKCwoih+hR6bV7PYTQj0hnSDir1Lk0+yuc+2mS9H3FD+bCxmovIQlbgreesLSl4awB55aN875eSUFPopzVGEMhVc/I8sdun/WevNetmyqUSTh4/7vt3thubrNDv7/1claVSYOE3oNckt6QQOd77kY+SE+3CyCht7x4B5EJrHIJCL+NPOxrN8CxiL7zkudS1ITcwwFzYIs3erPuvUi6bj2mpFPIjo562M93RiUxvL4DaeRzHTO7M1BQO7dnj6vrcjpRLJVPmrqXT6D7lNPN/snptJxEVFEaMfaaQp09hj3nbrqYwFPlolEYzlsGPfI2eyzEvHK1MKi9H9mhFWlCYsbSk4G5ez5kp9NHiQtTEknwfPZORPnlO22QK7cYETdOw4NmXmPcf27rVc+9U8zM4G9gHPY6i6lPoJasp41gicXKV9YqfsZx2Ho22RyFgaV4fgwmeFwffduxTyHNeZbp7MP+Zf2Hezw+zA7rcgH1pCSn5LMybz9WayEqczWaq1SoeuOMOPLp1Kx65776oNyd2kFnCnlNPp+YaYS4uxp32mjHHEN02U+g+6Uh30dbv9YM5dPloKDWFZKawz7xtXQ30UwPVSrRappBbPsrrPsp5TDj1PfRL2Ocl+RklKlNov08XEHWFZBP7bH9/U8DuBK98tOIz0KoTWU2hF6MZiW6YhmFQgWbwoJAIsjlfMxu3oFCysY9XvBw3VqOZdpig8u6fJS9quJB2LGIfZ+mubvN8s7bhEXGcdsxvSE7j1pZidmrKrJkcJ/o5KmrYOY8Cqk8hiQoKI8ZuosVzcdfTaWYQELZ8VNZqvZ1cK0fIR62rgWFPvOOG1VxEFkEn83Y0ZQoFyEf9ZM5l1CX5bWngF0o+yilNH93y9KZ+m11Ll+H8z36R6h/mRiakTCGVbQ3VaIZ/bNElGp9YFzy8/EYsfMlHY2QyA8iX63rFi+w4lc02FlQMoy1kgLz7Z9HlL8DSF78UPStW4oy3XM18jqZpVGBNLhrPCuilGecG9uRcSOa1P6mQmULSZAaQVwKVRJQPa8RoNhIyLz3BKjO1wa5cLiOVTofvPiphlcVpBZx0Hy2XSjAMw5wMUW6GIbTjiBspl+a9opAVfKeylppCH5k9IfLRnNxMYRjnJWU0Q0wYnIL4VD6Pp33j29h94/fRtWQZFvzFc9B96mm2z7eDckZ2mNgGPY7CdI3zuxAi0/hE9Hnox2gmTs6jgCUIj1mmkOe4yQ0OoTSX1SgXi8hYHJlbDd79o6fT2PTvX3Z9v9zAAGYO1tyTS8UicnNjrYjjNM4N7K1BITkvUtDOo72WoFBlChuooDBi7DKFvJOOdHc3cPgQgLnJVz7vqYZBBDJW651WwFOFAvRcDtXZWdMhMTW3DbL65yWF0OSjko4xUvoFeMjsEcegk9EMd5ApYSIftiuunfuo22cPrd+AofUbAn025QLInSlsVfmoPOMT0W62fgwXgjg6yiB2fQo9Bu65wSFMPPE4gJoDaYEoE2lFgppNWcn1s816RGS041xTWLa41RrVKp35b2MMw7DtUQiomkISJR+NGM2maSZ3ppAh0xLZzJgH0sxFzgSavlBommbbliJoM+ykE5Z8VF7zep/uo1m+mkJ++SgtQRNxoQhb1m2fKZR/XvDKR4OaYukhWon7DwqJrLNE+Sirx5tX/ATZ5GS74FOWJxKqHjgGEzyvx42TWUorInqxzFqXWYcOCv3VFFLy0RhnCgG5SqGkUZyZMeeJ6c6upppS5T7aQAWFERM0U8gydAg7IyGjx4tbYGtnNhN2ljRu6BH0KRQpH7X2KRSR2fOTTdE0TbhrZNiuwKmcjdFMCAtFlAkWr3y0Vd1HJcoZRS80+KkpJGV0nXEwmknHRz5qGIZn2XGuBR1Iy8UiZVxFIro+PWfT1oPKaPs8TruWLjdvnzx6FDOTk77eRwbWvpaqrrABLR09o0lWq/oUNlBBYcTY2dLzTrRZK/Jh1y7JWK13WwGnzGYibMcRN0LLFFIZWXFZr1TOEhRyZwrtJ4J+J86iMzxhL1j4lY+KwE/zej/Baliyn2q1ar6/lkp5cmINLygUUFPoccW8Ui6bx5aeyVABTVRomfhM8AzDMINrLZ3mOm7sgpqkUpqdxb2/+Q3uvfVWHHzyyab/i17EztlkCkXUFHafdjqGNmwEUPttn9yxw+dWisfJdK/dmaRMZs5s+r+fxbBWRQWFEaOxLhKa1mTNbwfL0CH0TKGE1LvbRD5rUzcQZnPwOJIOKygkJrcig+/mTCFnn0KHZvNVG8Mi1/cUbG0f9rFJmg7xNK8XiR/3UT/HUVg1hUEMXZyOzaCIlnF7NZqhpKPzF8SiL2ycMoXUccN5TacyhZbsTxI5cfSoOf48uWOH86KdANUJq4F9uVQyxyE9l0OWCLy9oGkazn7fdeb9w089hckTJ/xvrECa2nMp+agJVU9oMZkBQPWsjHohKWqiH8HbHPICVseLtTjL0EG0+YAbMlbr3SaLdg3sww6I4wbZhiCRzesJyWYqn+c+D5yyMWRW00vgQdY3itiXYde7koFnhdoH8usZwzKaCctKPMjxLjNzJXqs9zo5ilvjesC5vjhs/BzfrSYfJce94swMjh44QP9fsAQ6y6jJpOoJ5y8M5Mo5fP4mLHjOpeb93du3+34vkahMoT2UfHRVc1Co3EcbqKAwYkhnujpeJq7u8tEw+hSKT727TXZsawrbPCiMok+hyKwXHRR6CeDspZ5++wOKlv1VJGVX7bCTE4bRvzPtq3m9H/loOFLBIGNqslpSeBvL4+Y8Cjg7EYeNn+O71YxmKpbr0IEnnrD9v4hxkZKPzmVaqaDQpvG9F8669v3AXGB5/NAhnDhyJPB7BkXVFLIxqlX3oFDVFJqooDBiNFam0ENtiKvRTAgTQBlmD27BnZ37qKym6kmBNBcJy31UWqaww5/Do3NNoRf5qNjJfNjyUTJrTBK6fLQF+hT6XVgALAsWooNCaqFBgHzUYylA3BrXA3RJRqzko5zusGSmsBVqCq3XoRNHjlCTdOE1hYzSEtG9NPtWrcayl77CvP/EQw9FHkwo91E205OT5jiQHxlFjlCZ1aHGvTbfbyoojBhWptDLpCMONYXSjWbcgkLbmkL5AXHcSIXgPmoYBjVwim1e35hApz1lCh3koz4nzinBk/mwz8u0ze8SxmIJ5T7aAn0Kg/x2MttmiD6mvO5PKiiMQTsKwLJAFCf5KOd41mo1hazFyf2PP878v4jFstwgkSmcmxPJWLxY885rzAWfibExHNu/X8j7+qFSLjftZ5UprEEuQPStbjaZAewNH9sRFRRGDKum0MukjVyRL8dAPhqW0Qy52lNS8lET0qBI1oqXdR8Hqc+wQmcKPQRwTkYzAvrLic4UhuIKHGWmsLvHvM0rH/WzXWH1KQzy24nOOJOQ+1aIfDTtTT4qOgMjAnKhNepVfz/HTavLRwHg8N69NvMVEX0KmzOFsxJqXzsXL8FpV7zOvL+bYaITFqzjRGUKa0y6mMwAFoOtNt9vKiiMGI2xQuFlcsSSj8rqIWeHjKDQ7TtQ7qM2RjPtKB8Nowkr9dvYBB5+IQMxL+eBk2TMb+AhWvYnqw7TDrtzP4wxgcd9VETGOaw+hcEyheG0pIhaPlqIS1BI7O+oJ8Z+xp50V7c59lQrFcdFlSTAylhVymUc3rOn6f8ijGbSHZ3m4mh9/xUl1b6u/se3m3Ow6YkJHJz7TmHDkhmrTGENynl0FTtTGGa/27ijgsKICZwpZKzIix5k3ZCdKfQiHw07II4bXi3l/UDXyYgNbrqWNZoDdy8/lft1lCmM5XtTx5JP8xrhNYUhN68nCVs+Wi6XmceiVTbmJ+Mclnw0SK0yKW0W0e+SRHTvSy/70zAMiywvJu6jDmNB2PgJ2jVNa6m6QnIf9KxcZd4eO3wYgHijGU3TmtpSyJI55wYHserN/2je3/Pww8zMqGyYmUIVFAKwyEdtM4XKfbSOCgojhllT6CGYSTMMHULvU5gWbwvv2qeQdB9VLSlMwui3IzMb233Kqdjw6X/Dqa+5AmveeQ336xz7FAqQj4qvKZQfmNm6j4YRkGazjXHMMJgTFBH1v17ljn4JlCkMy31USJ9C/vGjUiqZn5/KF6gxOUpEuwYHwe8x3koSUnIfDJ230bxdr5eU4QNg3X8yDZFWvOFNyI+MAqi13Ni/a5fQ9+eBVXsadZY8DlTKZcxMTtbu6Dp6Tl/BfJ5yH22ggsKIYTWv95J9scpHq9Vq46DWdeoCKQuyV5ioi7Cr+yhHn8K2lI9KaA9iRXZwc8qrXoPzPvlZdC5ewv0aR6MZ3/JRec3r04IzrCzsmmWHtViSdpGQiuixp0chH/Uo/ZUZpIhWRpDyUbfxwzrRFllbHITYuo96GCtbqVcheYyS9Xz17yXjekJmCqfGx83jIN3VRamrRJDu6MSZb3+XeX/vY4+Fnt1VmUI2ZJawe9ly2zFS04lQSAWFiihhNq/3JB+ljWZoqRx/8+8gyJAsuklK0h2d5mSrWqmYz29399HQawo9tHiQiVM2xm8tX0p08/qQj0277xpWUMiqdyYRsYBDrfCG1pLCf1AovCWFaOmdh7Gc6lEooPebKKgazogneH6PGyrTlXAHUvIY7SSOkzIzKBQzNpGeA6TRiCyJ8ymv+ht0LT8FQC2Dvvexx6R8jh3MTKEKCun+hKvX2D4vLMOyJKCCwogR3bw+Cvmk9D6FjMmtpmm02YzEVcckEYY2Po7ZWDtTmGq1aq78aamUp8y56ExhkF53frALPMNwPgWAdCddV2jFTw83K1G0pPC6/zSJQYpU+ajLc+PYoxCgr6lRS+isi7S8tFKmkNwHhfkLzKbv5VIJ1WqVrouVIB+dPHHCvC2rbYqeyeCsf3qveX//rl3U+SEb5T7KhjSZsasnBFRNIYkKCiOG3bzeg8QtlzMnuka1Skkpw3A4BMJoScH+HqwG9tTEOwSJXtwgV/rDkY/GYx/rqRQlAakfh9bsnJfMedJbUtgZzYS1WOIlU+g34xxGDS0QLPgSvbhAIjr77EV+Hsd2FECM+xR6kY8OtI7RDKX66eykrtvkMSSyvREpH6WDQnkZ7cXPfxGGzz0XQC0g2/PII9I+y4pyH2VDtaNY5RQUqkxhHRUURgwrc+ElmNM0jardIWUEaZ+r717RZRjNcDQcp8xmWJlCJR+V8hlhBze8sLKFgQxCki4ftQm0wvrNqKCQWKwyHxMtH41pplCm0Yxw50YP40cc21EAMa4p9LBImRtsTaOZVKFABWzkMSSyvVGWdB8lxh6ZDrmarmPzxz5m3j/45JOYmpiQ9nkkSj7KhpKPcmYKVU2hIlJ0Rp9Crxd3cvJVJAaHsDICUvoUkk2Z7TKFDLMZnmCylQlDBhF2vz1eWIYeQbaVyvAI2JdhS5ujbF4PuPcqFJFxjqIlhdesJlVTmCT5qJv7KPGbkhP9qNFTKVOiCES78u83aKfko0mvKbRck0lpJxUUClT2kJ9BIks+WmfJs5+N0QufUbtjGNgbUrZQyUebKc3OmudOKpdD55Klts8lXaxVplARKUGb1wN0UEheQMLKlEmXj9p8D1avwipHMNnKUCtekoijfBRgZ2Rox0+Psj/BLSlEZ3Xc0G1qKMMK5NOejGb8BoXiVQosggRfGhmkGIbQSYdMoxm3/Un+pmGpUniJS1sKv661rSQftV6T7TKFIhdx7RYpwpA5r7664UQ6MTYm/fMA5T7KgpSO9qw8gyo1sKKHoLBKCioojJig7qMAvSJfJBzhwsqUyZBw8UzCcv3NEpuwJ95xI3yjmfjsY43h8hhkMp+S2rw+JGm3JVuopTNMdYIMPNUU+gxU9ZBWeAMZzWiatCBF9AKNF/loXBeHAMuCToSTPL/7qJXko9ZrcnbQRj7aIkFhYf5883YYCxLVapUpz2/3oJBqWr/6TMfnqj6FDVRQGDFM91GPGb50V8Plj8oUhuU+KmGVhSe4szawNyxNsuMkbQwLltmKaOLq8EpNvBlGM17PKztHU79EUe9q/Zx0iC1EMqT7qEtNoX/5aAR9Cn1sq6wgRXRg5sWaPY4uxHXI62pcMoW+5aMJDgpZ12Rb+ajAsYksLSEpzF8g7DPskCkXZ2GXSW53+egUp8kMoNxHSVRQGDFB3UcBB/loSBNAGT1eKJtqTvdR8rO1VNpT+4FWIYyCadENs0WhMzJ7gVwjBWZ3jGq1cXzqOrWtMrE2sA8zo5MmmkTLk48SF/PQ+hR6D4BkOZCKCKxJvIwfcR0HAEsbkAgnx36Pm2xff6N1Q7GY2Ikque+1dAZ6JkMFvMUQ5aPZ/v5wZPuCFSZu2NWctnumcJLTZAZQQSGJCgojhlnz43FwJN1HozGaIbJTggZBnowfZTRTLAqxuE86YctH45oprLKMZry6RubEuY9WSLOFvDjrdTes506Y2XNvLSmS4z7qJwDSJQQpMpQRXsaPWMtHBZtE+cXvcaOn05QSJqnZQvr718ZTMmCbmZpq/F/gMZTu6Gg6HzoXLRb2/k6kCNfqUIJC4tgge8O2c1BoGIYlU3iG4/OV+2gDFRRGjHD3UaqmMPzm9aKgDUL4MoVxdcUMlZDlo3GqKXQ1momwlQBlthBiVsW6OBKmIYgn91Gf+4SUSwPxPeZl1BSS76NnMo5GCrx4kZ/HWj6abl4gioIggXMrmM2w2s6Q8lGZ1xKrA6nMdhQk5IJEGMceGRSSfRjbWT46OzVlHlvZ/n7kh0ccn0+p3dp4vwEqKIwcTUCmMNPVkGmRA0RoNYWCTyjeFXCr+2hcg5UwIes726l5PcAhH/XakoKRefQL1WIlxMDM2vsrzMyuW6YwqCQTqJm4JCE7zjJBErtNYs7DlskUxtB91GvgTAY1SW1LwTpG7ExgRC/kZi2fU5DcjqKOzL6kLMgFA9JIp50zhaTzaN8ZZ7oqcyhfDGlblQxUUBgxTPdRj6vm5OSLDATCypaJnpSRkyY9l2vKBtTJEfLRklU+GjOL9LCgpLxt1qcwxSjwD9S8PidOBkQaKoThgFen2WgmzJrCxrjEMpqh+5f5364wJKRBXY2piaIEMy5R2WdeGZVhGHTdd+xqCuPhJhhEvt4KZjOslkC2QaHwTCH9OWGNu9ZjT/bxRy4YUJnCNg4K6ab1zs6jgPjERpJRQWHEMN1HPQ6O5OQryPv4RbSEi3aMtP8O1ub17e48CrR3SwpWpjDIZF5kppAKCheGI2MCGEYzIU7eSfdRWc3rAUAPoVdh0EyhDKMZGbW9vE7SVumv3cJdVISdrbEjyDWp1YLC+jGatWksL1w+OmiVj4YUFGpaqGYzSj7aDFVP6GIyA4SzmJ4U4jWStyGi+xTS7xNSUChYwsVba5Tu7DJXeKqVCpWNiFOwEiZhNGGNq2yMFcQF2VaRfQrpoDDMTKHFaCZG8lFRizhaCL0KRRrNiLKpZ2VhgsI7jsd9AS428tEA2XBSPlpOqHyUtSiX6e6hMjN1RI9N2f5ogkIg3D6ZdKZQyUcB2nm0jysolL+wmBRUUBgx7MHRv9EM9T4hXqyp7xHwpOKtNdI0jaorLFI9j+I3UQmDMFy04us+6taSwmOmUGCfwmJEmUI90pYULjWFxGOB5KOS21KIaCeSmEwh54o5LdWP31hLGkdE1bzeqFYbv7WmNZ2LbrRcpnBuMUXTNKaEVLSKISr5KCCvBQ0L8tgozJtvtjIJQ7oaV8jrbdfyU12fr1pSNFBBYcQwW1IEqSkkCDNbpgtsIu1lBZwMCmcJ59U4rl6HATW4SfoMavU3RrVE7n0Ko3MfJTOFnWHKRy3fOdSawo5Oc4JSrVSa9iFPL1IeZDewp9uJ5H21E5HRkkLGeahxOphWOCX+URGHTGHFUnPp9bjJDTaCmpYIComFC6szqPX/IqA+Q9drAVNIhClfJo+N3OAgZS7WrtlC8ntnurocnllDRq/tpKKCwoixZgr9XDyilo8CYjXZXlahSbMZuhFu/CYqYRBKplDQZF40GiM7wLJE54Uymgm4L+NTUxjimKBpjhJSUZku2Rd0qp2Iz+NdRo2RjPPQV01hDE29ZBj7eIVuQ+P99yEzXa3kPgrQWdA64ltSNPZfYXiEuQAvC5EqEzdIaXF+cIhqQ9SOQWGVUHZo6TTX7x5Wa6MkoILCiLEesH4uHnZGM1HJR8XWFDp/B9JshsoUxkjWGCZe+oz5JbbyUdeWFN6yKVSNYoCLq2EYFvfREIPCvLUlRbhBPLlgVXYICoNkumQf8yKOd53hjBsUOfJRH0FhjBaG6miZ6N0Eg7rrkoFTa/QpJIJClnxU8HGUHx41b3csXiL0vd0Iy2jGMAyUCC+F7MAgNWdqR7MZv9f8uDgWR40KCiPGajTjpz7DtqYwzEyhLq6ux4tjpG1NYYxkjWESuvtojOqJWJKxINkU6sIeYF+Szrjpjg5kent9v5dXrH0Kw86gpx0a2Aex6yeRfTHndUN2QoZ8lM5EhduSIkgGPgxk7G+vBM2mtrJ8lOVAKvo4Gjp/IwbP24BUPo+Vb3iT0Pd2Q6RztRMzU1PmeZru6kIqm6XUIW2ZKfQ5NoWhskoCzS4nilDRLC0p/AyMZu2O5UAO82JNTcwCvpeXFXC7mkIlH4WUgc0wjNg6D7IkO0GaR6cESYBo6ehiXzVpfmnOFIY7gafko5ZehaIyXSJNrlhUBEglZWQOgvZOZKHpOnUtMQyDebzGPVNIjQURTfCC9nOl5KPFou1vEWfs2heFYTSjp9O4+Mc3ozIzE/p8IKyawj0PP2ze7l9zNgB6P7ZjUOh3sVFPpVFFTYqrMoWKyGjKFPqYHGm6ziymDTNbppPBSMBB0MuEgwwKyUlnnGSNYcJbE+QXMjjSs9lY9SdjXYiDNPgWdWGPynkUYLSkCDmDTspHK5YJiqiMs0iTKxZBZYCApd5VSk2huPGOR20Q116ldfQYNKMOuo/SHR3m72pUq03nTxKwm6CHIR8FanXNURyfYchHJ8bGcHjvXvP+mne/BwCUfNRnqx7Vq7BGfGZ0bUpTTWHB36SNVVcYrtFM+H0KASDb38d8PI426WEgWz4a5wxBipSPzn132iTEo9GMlExh2EGhtSVFuIslaZtMociMM3UxlzAJElJTKEiKTCIrMPMaFMZxAU5jjAVhI2IfJb1Xod05Hob7aJSkJNQQkxiGgccffNC8v/CS52Jk85baZ7d5ptDveadqCmuooDBiNF2nsi1+JZ+Zrp6mxyKTjwrsU+j2HXL9zRcXoJ1rCkM03YiRdBSwkY8GyPKIWu2NNii0tKQIebGElI+SRjMiM84ipesshLiPSmiREMREyQlSbWAnxxVVDyqLuNUU+g3ak96r0NZ9lJEpjGPG2S+yM4XHDhzAyaNHAdQWcda+/8Pm/+LWkoLVo1bq5/k872SrrJKCqimMAVo6DWNuwPd7gWWZzfjNOvpB5AnlVz5KEkfzgzDg7TPmFxl1TKJgGs0I6lMoLlMYXgNlgNGSIkL3UXJyIHJxgepTKGECFkSCXEeG8URFUrbOs3w0hgtweq5x7hYjyrDRv4+/fZR0sxm7wDgbQk1hlMg0mjEMA7u3bzfvn/raK9F96mnm/ThlCndt24b9jz+OBaecguVr1oTymX6v+aqBfQ2VKYwB5Kqm34k2q1dhuC0p5ASFXtxHSeK4eh0G0msKY9yfjJUpDGL2oGfFZBvilCkMO7trZzQjUvoYpmTa72KTjL55sqTcPGqDuMtHB9auM28f3L07ktoqMfLRZPcqtFu4yA+yagrjdxz5RabRTHFmBtMTEwBqAeCat/8T9X+qT2GENYVGtYoDTzwBANj3+OOhbYt/+ahyHwVUUBgLSAdSv5M2a02hnsuFagIir6aQv08hSSutOnohCRNkWbAuxEEmzqksYe0tKCjsDDko1C2ZwvBbUjQMsGwzhQEXF3TZx7yAJvG6hL55sqTcrSAfXfKCv0R+eARAbRJ95KmnQt8GEUF7K8lHqUwho+wjTu2NgkKOu6KDQnIc7Vi4iMomAxajmQgzhRWiiTwMI7Rem6Tc37d8tA0NeuqooDAGkJlCUfJRa38y2ZAOgEFXWbxMOLJ9fczH4xawhIXslhSy6phEQDWsNozaHzmh97i9mkWO6ifgMKpVyn20MH+B5/cIQpya15OTmaB2/SSyW1KIyGrKyBzI6hfaCu6jqXwep1/5evP+vp07Q5eEiakpbEz4k9jA3i5rQzqrmv+PWY16EGTKR90yYWRAGmWmsGqpJQxrUcN3SwplNANABYWxgBxARMlHw75Q+zWaKc7O4pH77sOuBx7wld3JdPcw6+jiuHodBtbssOjBLc4ZAmsNoDWA9drjS0+lAgfZZD1TbmioqcZPNtagMOzFElujGZ+24SxkX8xF1O5Rx2bs5aPJdx8FgFP/5kpz2yZPnsSJI0dC/XxyEpzpbjaC46G15KP0WEQ6kMatvVFQZBrNuNX1xyVTaP3ssIJC3/JRVVMIQAWFsYAMqPxeYJsyhSHXe/m1hT/w+OM4vHcv9u/ahaMHDgDwJlHUNI1ZV9hKq45ekTm4xdp91JKNEZGN0gNKSGenpszbnYsW+9qGIDRlCkPO7lItKezko0FrCmXX0VLuo36NZsTLR724NHuBHMt55KNxzBQCtaBj+Stfbd5/aufOUD9fRC1xK8lHrec5GfDGbYExKFFmCtMxMZqxfnZYLVX8Zug1gWq3JJPYoPBNb3oTVq5ciRtvvDHqTQkMOYD4HRytNYVhD7JUA2kPryMvnDOTkwC8TxhZQWFcJyphIFNCKjLDI5qUxRhGROAR1GyGnhhGERRajGbCzhSS8lFZRjMCTa5YCDmOJMtHZbWk4MsUxnesXfn6N5kZqLFDhzB58mRony0mKEy4fJRqCUSPPWRQ2GrXaxnGUnXcxk49Fw+jmUpEmUK/aibVvL5GIoPCH//4x/jNb34T9WYIg6op9JnRyHR2UffDlolR2SkPAxF5AtczCV4nO6wG9nGeqMhGZuYkzpNBJ/mo3wA2aFsKamK4INx2FEAMWlLYZApl1RRKaV7vMLHlRZOQOZB1LvLIcZMgHwWArmXLseCSy8z7Jw4fDu2zRagEki4fderxmSXko3E+hvxALiZKzRQyaolJNYM1MAuTOMhHvYzXVGsjFRQmhyNHjuBjH/tY1JshFNIgw3dNYcSZQr9mD+QJXJ7LJHiVRSn5KI1M+WiFcvaK14WcyuoZhhCpaypgbUiU7SgA+ntrqRSlSgiDNE+fwpjLR0XU0VI9NCXUFIqVjxL7k+Oz42Y4ZaV/zVnm7RKRrZZJtVptBHGahsK8+b7eJ+nyUSeZcWvLR8OpKWQF0+T5aMQpKIxAPqr6FHoncUHhddddh5MnT2LFihVRb4owSOmlKPlo6EYzPk8oVlAoQj7aahcZL/DUBPklKZnCJvmoT3dGVu9DL0QdFKa7uswFo8K8+Z7NdoJCykftjGaCHkeyjWaEuI9KMJ6oSArMqJYUNtsa59Y0VjK9febtsCSYlOPwyKjvxZhsb695ba2Uy5HKAb3itjBHBrxxP4a8ItNoxm1BhjKaUfJR7tcp99EanoPCYrGIRx55BA8//DCKIa9c/exnP8Mtt9yCK664AmeeeWaony0TjXIf9Wk0Y3EfDTtTJiIorDCCQh7ZX47R8yjuq9cyCctoJm51INYAToQRR9DakCIVFEYgH81msf5fPo3Rp1+E9f/yqdA/39qnsL4PRQYVspsOi8g4kxMOOfJROUYzdsd8nF2IrZBti8ohZQpFLQZpuk719EtStpAMhrR0pikwzlHy0XgfQ15JBVxMdMLtGkyWDMRJPhpan0K/8lFd1RQCQNr9KQ3uuusuvPOd74RhGCiXy9B1HZ/85Cdx4YUXBt6QG2+8Eddee63t/7///e/jIx/5CJYsWYK3vvWtuO666zy9f39/B9Lp5tYFshke7nZ9Tq7QOIkH5g1wvcaKtmQedb+zv8fX+/gl30FIFjycUOSgVWbUFI4sHEKHy/foXzhK3U8XChgZ8WcB3gqkJK54kb9X73B/qMeYG+XhXvO2taawo7fb17ZmO4OtupKTw8Vnr0In5zaI3K/Db7wS573xSmHv55VUPo/KzAwwlzlIpdPUcdQ9EGysKhC/kWz56OD8QV/bOjbUODZlyEfnLRmhJqJByOSIhRCOzx5ZNIxuj/skzHFjcklDuhnWxJQ87/tPXR7o+3aOjmD2SK0Wsjw7i1xCFjzpyXm+aR+cOKVRZ9nZ3xura0kQhoe7sbe/8V1kykd7Bvua9tv4aCPYjrIJexzko17m01liHi5ycbGrM5eoY9tTUPixj30M119/Pc4++2wANcOXD37wg0JMX3K5HPpsGpEDwL/+679ibGwMn//855H3MSgePz7l/iTBDA934/DhcdfndZ1xFnD77bW6vAXLuV5jZbJMB7wlLe3rffxSKjdOoqCZQnLQG5uqYNLle5Sy9GqQnsuH+t3jhqERK16C35v8vWaqqVjt5+l0p3m7ODNDS5N1f+dDVfNnoATUMmP1zISeyWBSK2CKYxt4x42kkO7qrgWFqO2TVDpN/TazRrDjaLbU+F1ky0fHZw2kfWzrxFRDOitiolatVhvfVddxdGwGmiZm0lUhNo/HaObEVBUzHvZJ2Mf3tNaY7EWRKUwNjQb6vqmePvN2kjKFVjMp6z7oWLcJhfkLMHPoIOY97y9bYsyrH9vTxcZJJDNTyBo7J2YN5nPDJir5KPmdJ4vgPq7KHOOeHyYmZ4EYHtt2gaptUHjllVfi7W9/O9asWWM+Vi6XkSKkael0mqoTCcLll1+Oyy+/3Pb/K1euBAD8zd/8DfX4tddei5tuugnf/OY3hWxHFJz17mvRfeqp6D/zLBRGRt1fwCAdtXzUZ3bKWlPoxyDEWlPYalIUr4TVkiJu+7ljwUJA0wDDQHF6mpoA+peP+neRIyeGhfkLWqo5sxcy3d1mpoPlMBxUPkq1w5HhPipChhywtYnjNuULQmtFecaPZMlHG9eHaOSjwVrRJNVsxu1akenqxuV3bUXpxBjywyNhbpp0wmpJwdqvqbj2KSwWYRiG9Lp2NyMeO3TlPgrAISh85StfiWuuuQannHIKrr76apxyyim45ppr8LrXvQ6pVMqs2fnoRz8ayoZefPHF1P2HHnoI+/fvx+rVq3HuueeGsg2yyHT34PQrXhfsPbqsLSmSUVNYsQaFxIRJz2SoWhw7rEFh3PrnhY1MbbyshtkiSOVyKMyfj+l9+wAA0xMTjf/5PB/I+gyvk3lyYhhF4/q4kCba5bAk4oHdRxPWp1BE5kDm4ozbWG4YBnUuxL1+O+qaws6ABlNJ7VXI4w2QymaRarGAEAjRaMbFfTRONYWGYaBSLiMt2QHbf/N6VVMIOASFz372s3HxxRfjBz/4AV73utdh48aN+Id/+Af87ne/w86dO6FpGpYtW+ZLyumH66+/nrp/zTXX4KabbsJrXvMavPjFLw5lG+KMnskglS+gMlO7GIXekoJcXfYwCJIncLVSoWzreScbVqOZuK9cyyYso5k47ueuxUvNoHBqvCHZ8DtxdcsUOq18Ru08GheoXoUMiXjQoEK2lbiInoqiW1JIDQpdFpWsnx22o61Xshb30TCyFUWB535SexUmpZelDIIoTNxwavMBWFpSxKimEKgdv7KDQt/N65X7KAAX91Fd1/HSl74Uv/zlL3HqqafiZS97GT71qU9hdHQUq1atCi0gVPBBTr7Clo9Sdr6crzGq1aZBq0hc9HhP6Gy/ko+StKt8FAA6lyw1b5NBoRD3Ucux+tif/oS7b74Zh/fuZb5WBYU1WA3shbqPSpb9CGlJkZEoH5WYKWSNH9QYkIv/HEDPZKhsdUVQyYsdhmFghmhc37EgmOtwUuWjbsFLKxNeppAVFBaYzw0bVpYyjOPX72IETyuedsAxKNy5cyduvvlmPProo3jd616Hn//858jlcnj+85+Pf/u3f8MEIc8Km3/5l3/Bww8/rLKEBGSvwtDlo7p3Q44K43nFOUMKgP+EbpKPttmqpBWZzbzj3p+sc/ES83bJxwKDFZ2Qj5IrvjNTUzi4ezfKxSL2Pvoo87VUtiDgxDDJZBgN7GX1KRS9CEJJJTWNOh68oAnOHPitm+HBLfNKfbbP/p9hE6aEtFIum8d3KpdHdqC5ZZIX8oR8NElBoVs/vVZGZqbQ7Roc15YUQPhBYdrD+KT5SGy0IrZB4Q033ICXvexl+PrXv44rr7wSH/vYx9DT04N3vOMduPHGG3HkyBFceuml+NrXvhbm9iocICdfoctHfdT1VBkrtiUiKOStDcx0d1OSp3a7AFmRKaeLu8EEmSkk8TtxtsvwkBPLoo2kS2UKa6RdMoVxrim0ml75lR0Kl48Sx6LMTKGbfDSOC0MsqKBQ8sR0lswSLlwYWKqaVfLRxKFn/deiu+F2DSYzhXGTj5YlH79+jArrUDWFKlPYzJe//GV87Wtfw3e/+1389Kc/xbe//W0zMzg6OooPf/jD+OY3v4k///nPoW2swpko5aN+9NisFTRaPsp3IdF0HRmibiSOwUqYkIObTPloHCVBnYttgkK/NYU2MiByQaMy55prRQWFNVjyUZGLCzIz46IkcCkHGbIf/E58ePAkH03IZJ+qK5ScKaTO+0VLHJ7JRysYzbTbNVmX2bye9F1IkPsoID9TSH6mnst5cvxW7qM1bPeYrus4ceIEAGB8fByGYVDtKABg+fLl+PznPy93CxXc9Kxc1bh9+umhfjalx+YNChmDBikfTXuYyJN1hUlZvZaFTPfRuE8IOxezXT5914LZXNzJ/WBdnaw/RgeFSj4KNCbkIjNdVD2zzPqdAAoETXRNocvEMAhe5KNxXBhiEWZbCjooDL4YRBnNJCgoTOJxIgrRNcQkrvJRMigk+5mGTBQ1hdZWPV6QbViWFGzdR9/xjnfg6quvRldXF06ePIm3vvWtKLTZiZ00zrz6nUgXCuhZsQq9K88I9bN1H5lC1qBB1xTyH2+5/gFMYGftde0uHw0pcxLH1d/CgoXQ0mkYFmmyf/koO8NjPXbLpRJSxDlQKhbN52e6e6jAqN1Iu9YUCjSaCfROzVDbGaDVDVVjJOCcJOuxww4K474wxCITpnxUYDsKoDkoDMM9VQRJPE5EQSlMRC/Mupz7mq5Dz2ZRnTvOq9VqU0InDOzcR8P6TK/joiaxNj1J2AaFL3rRi3DRRRfhySefxIIFCzA0NGT3VEVMyA+PYO37PhTJZ/vp8cLMFPqQjwJ0zUgcg5UwkeU+moT+ZHoqhY6FizC5+wnqcb/bmsqyDQOsx26lVAKI4050tiDJMN1HiaA9aBaBqikMeVWeF7nuo4KNZlwWleIuIWeRC9Fohjz3CwIMplK5HDLd3SiNjwOGgXKphAwRdMSVJB4nogivJYVN/8d83gwKjUoFiElQKHtBhto3HhfxZC6mJwlHwW1fXx/OPvtsFRAqXPFjC89cSSLlox4uJKQ8qO3lo5JkEEnpT9bFMJvxLx9lGwZYj13rRFNkn7Kkw3IfFVpTmABjJafWJn6gz0WxizNui0pJdB/NhFhTWBScKQRos5mk1BXGXVUiE9E1xCQ82TCyzpjl8h4GUctHvWanZRqWJQn+KkyFwgE/8lGW+yglH/VUU9iw/Q4i82oFqJpCge8rool3GHQsbjZ3ECEfJWV/TfJRy7GsTGYaWDOFhmHQEqiAxxJpECDXWClAptAm4+wXqc3rXVQfMk1uZEHVFIYoHxV17lO9ChPiQJrE40QUsvoUUr2d52SiLOJgNhO10YzXBStVU1hDBYUKIfg5oVgrSbRenn8StuRFL641Ke7owMJLLuN+XSsSRqYwznKgLkZQ6D9TyJb9NWUKLRc70pZeVLYgqZAtKcp1p9a541JLp+k+gz7w43zMi6jgS0+LbUnBIyHzC0tGVQ/mgWS6SobVp9CoVjFLLGwW5i8Q8r5J7FWYxONEFLLko1QtcS5vq9ZJ5RpBoRGnoFDygkaQcVG5j9YIdjVWKObwU8fmtoLlZSI/tH4DXrB1O4bn9eFkKXz9fJyQVVMoynRDNqxehb6b12fZzeubagodMoUi6oqSjFU+KnpxwU89My8VQTJNq/toULMQmY3BrePHsYMH8fA99yBXKGDt05+emMUhkrDcR4uzs+aYmxscFLZ/sgl0IE3icSIKPSenTyFvLTY5JkQhHzUMgxo7tVQKRqWCaqWCSqUCo1LByWPH0Ds0RBm0BSWQ0YzKFAJQmUKFIKgTinMQcgsKvZ7UucFBylCgXZE1uMnMToikkykfFZspZLmPkpDZgnbPFGa6uszblXJZeK2Rn3pmXkQ5KOqpFN0zK+B2ypWPEuMHgENPPolqpYLpiQkcP3TI8vvFdxwgofoUSgyqaIMpdnscP+QT2KswiceJKKiyA5FBIed5H7V8lFKDpFLIDQ2b/ysXi3jo7rux/e678eCddwr93CALEWRNoXIfdWFqagrf+MY3cP/996PEaNT89a9/XcrGKZKDHwkXSz5K0m51CKKQ5aIlszeaSIRmCm0u7m5GM6R8tN1rCtOWmkLqOBJwjvupZ+ZFZLZDz2ZRmVssqFarSHlorOy0XaIn3NZFJfLYLs7MJDIDFJZ8lG5HIS4oTHpNYVKOE1FQbsOySjgc1DpRB4XWetLc4CBmDh4AAJw4ehTjx44BAMaPH0e1UoEuyB01yEKEch+twRUUfvCDH8TNN9+MCy+8EP1Ek3CFoo6fE0p0plBRg5TTyZKPxjlTmB8ZRSqfNyfggP/gI2VjGOAUFFar1cbETddRmDff12e3CumOTkDTAMOoyYdICZQAGbIWVvP6oEFhJmMek0EnHVTWXrR8VKfluOQ+sAaFSRmjw5KPkotBImXjSZePtl2mMCsnU8gb9Fgb2IeNdYwge20e3rOHfm61KiwoDDI2yVxcTBJcQeHtt9+OT37yk7j00ktlb48ioeg+7HxF1hQqGoQhH43zZFDTNHQsWoLxxx4BUJuM+73o2F3crVnuCplNIesJh0eoVeN2RNM05EdGzZXi6YkJ838iJovWIEYkIiXTWlpcr8Kw5KNgBIVkLWRSJvuZ7m5zYaJSLtcmogEytXaIblxfJ4lGM6LqcZOIlkqZxxsMI3ANcR3e7Cu5CBpFprBi2c4ccfyOHT5MPbdaqQCCrpGB5KOqphAAZ01hpVLBqlWrZG+LIsH4qetxlY8mZMIRN8isrbRMYYyNZgCgc3FDuiWjv5xTplBWXVGS6T7lVPP25IkT5m0RCz+Ue6nMmsKAGTlqgUFoTaHYc9G6Yl6xBIXWCV8S0HSdkpBWJGUL6XNfXFCYxD6FScwoi0LTNCltKXjP+1jJRzs6KPmz03ODEkg+KsmgL2lwBYXPf/7z8c1vfrOto2eFM1G7jyoaWI0iRJEkORBZVxgoKMwFDQrbu56wTvepp5m3J0+eNG+LcM5MQksKwBJsBZwkknVlpDRSBNZSAHIflGZnpTqfyiQbQgP7oqT+pPkk1hQSx3icyw1kIcNshletQ7qfRi0fTRc6KPmo03PFfm6ATGEE+ywucMlHp6en8eMf/xi33HILlixZgqylYaYymlH4mZipmkI5tLt8FAC6iKAwHcDMhNdopmIXFLZ5O4o6ZFA4QWQKxchH5cl+RC6EiMocGIaBGbIPpuBstHX8sMpHM8SEM+6LQyS14PlxAPKCQhmN6wFQ8rukyEeTYkwmCz0jTi5eJ4ny0ZRFPtr03AjcWVnIXFxMElxBYbVaxfOe9zzZ26JIMMpoJj7I6tuWJDc5KlMYQOpqd2F3aklBTwyVfBQAeoigkJS/CWlJ4aOemReRUkk7KbLnbSJ6PabyBWQFm79ZjarI875cKlG/X9zHARLZbSkq5bI5DuiZDPKEDX9Q0l3d0DMZVEsl06xJZH83GSRRZiwSkXJx8304F6nSMZKPpgsFKtPt9Fyhn9vR6em1yn20Bteocs0116C3t1f2tigSjB+jGfeawva7kIggjJrCuGcIeletNm8HWbFP2chwWPLRuplAUZLZRJLpPuU05uNCagpD61MYNChsbGeQSaK13YkIAwsSanJUrTbJz8gsZdzHAZJMX2MOIyNTSC4GFeYvoPtSBkTTNOQGhzB9YD+AWlAb56DQmmFux/ZSlHO1oMCHu08h8b+o5aOpQgdVE+v03KAEUTP5mcO2Ilyj1gUXXIDXvOY1+K//+i88+eSTsrdJkUCCykczPT1N/2/HOgQRhNO8Pt4X+Z7TTsc5130MCy55Ls665n2+34fXaAZo7B9qcqjkowBqmVuNMYkVMVkMrSVFwG0VlSmkHC4lGBmR4wdr4Y5qKRLzcYBEdlsK2QZTSZKQkse3ls60pQOzjEwh7zWYqimMIlNokQ47yUdjWVOogkJnvv3tb2PTpk345S9/iUsvvRSXXXYZPvWpT+G+++6TvX2KhOAnO0WewIXR5l5uSTIxiBOyBrekucmtfOObceF/fQv9Z57l+z14W1IAjbpCWbb0SUbPZNC1dFnT40LkoxIv5iIl01pGTPAqq26tDhUUEpM7FkkYB+rIlo/KPu9zCepVSC+m5Bye2brIril0dh+NT01h2tKnEKD3jayg0Lv7qDwX6yTBFRSeffbZ+Pu//3t85zvfwR133IE3v/nN2LNnD17zmtdgy5YtsrdRkQD8NP4kB4786GjT/5M04YgTSj4qjkxXl3mbnCCzLmTlUgnlUsl8XiqXR3ZgQP5GJgTSbKaOiEyTTCtxkcd8SpAbofSgUPcSFCZnHCBrL0uyM4UygkIyUxhzB1KR/T2TiihlAAm/0UycmtfX3EfJQHBky9MbzxW4fUHkoypTWINblF6pVLBt2zbcfffd+MMf/oD77rsPuVwOa9askbl9ioRAmZtwnuRUpnCkOShs14tJUEIxmuloj4A93dVt3q5PkI1qlXmMWyVphQULhdd7JRlWXaGIoMLPghQv0oxmgtQUSm55Qo4fbkFhouSjRKZQRp9CWe0o6pC93uLeqzBpqhIZ2KlMgsAb9KSilo9axk09ncbKv3sLHv5//47T//b1KE9PMZ8b+HMDSNv99NpuRbiCwquuusqUip511lnYuHEj/v7v/x5r165FilylVbQtfk6oqkOmUEun27IOQQSqJYU40pZMoWEYthbaZJYQADoXK+dRElamUEifwpDko0GPeat8dGZyEk/t3ImewUEML+SvPY2NfFTTqNqluEPWFMqQX0rPFCZUPpoO4P6cZJR8dG5b5sbNs9/zAax593ugp9PY+sH3Stm+YPJROYvpSYMrKNy1axdmZmZwwQUX4MILL8SmTZuwatUq2dumSBB+jGbIgcNaU5hK0GQjboQhH22XLK6eSiFV6EBlbmWzWqlQq5EklVKJOqZlTAyTjKxMocwVXplGM0889BCO7t+PA7t3o2dwEDnOAFl27RpvUJjK5xOVCZedKSRdYaXUFCbIaKYdSw2siOpLSkJfg+3Hi1QhXvLROnVVR0pSy4wgyg6ZipMkwRUU/va3v8Xu3btxxx134M4778SXvvQlaJqG888/H5s2bcKrXvUq2dupiDleV+ur1aoZsGjpNHKW2qt2vZCIQBnNiCXT3W0GheVy2dZevFwqUbU+Kiik6T711KbHRMiQZfYpFNuSgjBXMAxMnjxZu2MYmJ2a4goKjWqVkikW5i8ItE0seGsKk9ZmICuxJYVhGJidmTHvFzxkfnmhMoWJqilM1nEiCuv5LgLulhQ+MoXVOfVCoasr8GKPW+1jWlLLjGCZQnm16UmCu6Zw6dKlWLp0KV75yldi//79+PrXv47vfve7uOWWW1RQqIDu8YSiV+DzyFj6YLbrhUQEsmQQ7SgfBeYkpIcOApibJDvIRykJmWpHQZEfGUW6qxvliXHzMRHHkawVXsMwqAlLUKmrVU5G1oXxZhKKROCRHxqWoqggVR9OQWHS6oplykdLs7Pmb5jp6UWms8vlFd5JbE1hm7qI69nGuSmqT2GFVz5q01/XDsMw8OCdd+Lk0aMYWbwYp69bJ247Gb8/GbS69av2QpBFPFVTWIMrKJycnMTdd9+N22+/HXfeeSd27dqF008/HVdccQWe+cxnyt5GRQLwnCm0SBEz3XSfwlSb1iGIQJNU59uO8lEAyJBmMw4Zhoo1KFSZQgpN09B9yqk4/uf7zcdEHEfWZuuisEpHg66eU8YTlQqVreLdbur4klSzyms0kzQ1R7avz7wtWj5K946Uc94nST46Q0hp093dDs9sXfSs3Eyhs/uot0zh9Pg4Th49CgA4sm9f4KDQLWNHyVsFBYXVatWce2qplGdPClVTWIMrKNy4cSPS6TQ2bNiAV73qVXjWs56F+fOb+8op2hevNYXWrFO2KVOYrAlHnKAmySLlo5aGtO2CtS2FXXBgzRSqHoXNdJ96GhUUCjGaScvpLyVaLk1mNK2Tet5JI73oICko5JSPJm2MThU6oGezqBaLqFarqFQqwozyZDeuB5JlNHN0/37z9sjm9mxbJrslhbN81FvQdWIuIKw/3zCMQItgbsGrDCMca3ba6/brKlMIgDMo/PznP48tW7Yg36YyAIU7XlPvVneyTA8dFLar5EQEYbiPtpO81+pAquvs9q7lUkl6vVfSsTqQxlk+6iaB8gqZKSRloIDPTKGkRQdepUHSFoY0TUO2tw8zhw8BqJ2vUoJCSb9Ltr9Rd18uFgNP3GVRnJ01s07QNCx87vOi3aCIkN2SwmlRhhyvKqUSqpUKXeJjgQwKgdr8LJXmri5rwjVTKKGPYtBFPGreFIE5T1zgal5/8cUX4//+7//w0pe+FOeccw7OO+88vOIVr8CvfvUr2dunSAheU+/WQSPTY5GPJmzCESdkBIWGYQh1YkwSGUuvQvLCnCGkUVPj4+b+zvb3t60VuxM9lqBQjHw0jL6cArYz3ZAzNQWFPjKFsjLRvEFh0jKFAF1XKLIuL4ygUE+nke2X21ZDBMeILOHQho3MHsTtgPyWFPbX4NzAgHmNLhWL2HHPPbYZOcMwcPLIEeoxt/6kblALaozaYxnuo0HLW7QAQXArwRUU/uIXv8A//uM/YtGiRXjXu96Ft771rRgdHcXb3vY2FRgqAHhfrbdmnTJd3QCx6pnECUdckNGSgryotVsPSWumkO6v2ZDRz0xOmrc7JUnIkk7XKeIzhX7a4fAg2lY/RZwzVvdI7kwhUaslS6ZIjR8OJFHNkZHkQFoMyWCKlJDG1WyGlI4uft4LI9ySaIlSPpru6MQZ//A28/7xgwdtA8PpiYmmBYag5i9RyEd5TXjskFWbnjS4QuPrr78eV199Nd74xjeaj73mNa/Bl7/8ZfzHf/wHnvOc50jbQEUy8BqIWAc3TdeR6e5Gac6mXWUK/SOjYLpdpaMAnQ201hQW5s3D+GOPNL2mY4GqJ2RhbUshIuMsyzWO19SBF0o+agkKeSVU4chH2WvFZL9OgJ0BiDu5BGcKgVpQOL7zMQBzCwsxM3EpF4s4QWSdFl3WntJRAEiRRjMhy0cBYPXb3onK9BS2f/FzABqB4arzzqOkpCcsWUIAtr14efEkH5WRKfSh7JDZ2ihJcGUKd+/ejUsvvbTp8UsuuQQ7d+4UvlGK5EGt1nMMgKxBg6wrbCd5omhkyEfbtUchAKQ77eWjhdF5zNd0SHIgTDqZzi4Mb7oAQK2+0Cob90MoNYUiZK4JkY/a1R51LV1K3U+a+ygAZIgG9iIzhWEZTJFtKeIoHz124IB5LA+sXdfWDsxUplDAuGTt7eym1tE0DWe95wM44y1Xm4+xMobWekIguHw0cqOZoDWFKih0Zv78+XjkkebV8B07dqCf0Lgr2hfPLSmIQac+aJATxHYLPEQiowkrvQrXKeQ9k4I1U1ilgkJ2vUw7T4bcuOArN+D8z38Jz/zBT4QYZVCZcWmNkEUYzdjXGPFsd7lUMidrqVwe2YEBl1f4w66msGvpcup+EhUDWQlBYbVSMeXAWiqFvM1CkQji7kB6hJCOLnp++0pHAbpPoYhMoZ/ej26BIaueEAguH3XraSzDaCaomkm5j9bgko++5CUvwQc/+EGMjY3h3HPPBQDce++9+NznPoeXv/zlUjdQkQx0j0Eha9DIEpnCJE444oKMlhSisyZJwlpTSLqypbt6kO7sQnlygnqNCgrtyQ8NYfnLXiHs/Uj5qKyWFELko2n7lX2eoJCWKC6U5jxpV1PYuYwOCpO4cEcatYgKCsnfpTA6j8pci4bsVVi2SJCjplwuY+zwYfP+4stfEOHWRI/TIpAf/Bqp1ANDAE1S0qWrVjEXF4JkCnlM6cixQ06m0Id8VMJiehLhGr2uvPJKHDx4EB/60IdQmVtdyGQy+Nu//Vu85S1vkb2NigTg1eyBNWhkiF6F7RZ4iES2fLTdXDVJ99FyqUQZhqQLBWR6e5qDQolmEwqapBjNkJPEps/i2G66F96SwNtjh22mcNky6n4SzcCoTKGgTFsYPQrrkNnhkkD5qwiOHzxoBj+9q1ajy7KI0G6Q8lER2TC37JsTdoHhxNgY8/lBAjUyANYzGeYiieyaQl/yUVVTCIAzKEylUnjf+96Hq6++Grt27UIul8OyZcuQy+XcX6xoC7yusrBW4TPdpHw0ec52cUHTiQyCqikMjLV5vXVfZHv7ML1vH/UalSkMjzD6cgrpp0hMEq1wZQop51F5x5ed0UzXkmXU/SSOA9m+PvO2jExhx0K5i0HkZNoQNJkWxVFiDFz8/BdFtyExQWqm0I+RCiMwJF2Q9UwG1blzIkimkGfcpPooSnAf9aPskKGwSiK2QeE+yySnztBQrdD5KFGcumCBatLc7nh1AGQNHN2EXb11AqLghxrcBL1nO7uPph1qClOFDkr2DMzVFbVpb64oIPsUAhDW1Fu4fNTBGMKrfFSmmQklxyXI9PYiNzCI2WO1a78KCmuE5TwKACmyTi1GE9dKuYzjhw6Z9xdd/vwItyYeiG5JIUK5wAoM6wxv3oKDv/9fAMGCQp4FZMpoRkq7Du/7R5ZhWdKwDQqf9axncV9Yt2/fLmyDFMkkaPN6ADjtiqswfWAfsr19WPCcZrdbBR/y3UeTJxsLglOmMN1RoGTPAFCYN9/WwVEhHk3ToKXTMOYmMjKCQhFuyI5BoVf5qNSgkH3spgsF5EdHG0FhAh2iZTSvL4YYFFIN0WOUKRw7dMg8X7pPORW9K1dFvEXRQ7agES0fDbJIxQoMs/39GFy/oREUBji2eGof9UwGWipVO4YNA9VqFbrO5XvJ+bnKfdQvtkHh//zP/5i3H3zwQfzHf/wH3vKWt+Ccc85BJpPBtm3b8IUvfAFveMMbQtlQRbzxusrCOoFz/f047xOfEb9xbYZs99EkZgiCQNYUWltSpAoFqpUKIL+uSNGMnk6bq9txbcPiFBTyTBrDCj7sgsJUoQOFkXk4sf0hAMlUDMhwHw0rgwsAei6emULSdXTxC/4ywi2JD1QAL6IlhQ/3UTvqgWF+3nzs/dmPserN/4CTjz3a+CxR8lEbmaumaUjlC2YtfrVSERoUBm1JoYxmGKxfv968fd111+GjH/0onvWsZ5mPnX766RgeHsZHP/pRvPKVr5S7lYrYI0I+qhCDdKOZNvu90l328tF0oQNZS6ZQ9sRQ0Yxsx10x8lGHmsI4ZQpt3EfThQIWXHIpDvzuN9CzWQxv3iJtG2SRdPmoaEmiCKqVCo4fPGjeX9TmrqN14igfJdE0DSuuegNWXFVL7Ew99ZT5P9mZQqAW2JJBIVz6LroR1CFdZQprcBnN7NmzB0stjWsBYN68eThE6MgV7YvnPoU+7ZUV7pA1VsImyMTKYbsF8enORl/GSrnctC+aMoXKeTR0SOc4xKRGxUqQmkKjWsUs0fC+Y768On47o5lURwdOu+J16D/7HHQsWIhCAutmrc3rg0qNDcOwBIVyVQIpUpIYE/no2JEj5pjYuWgx+s5cE/EWxYNUTqx8tCr5Gmy9zvmFN2MnuldhYPmoqikEwNm8/qyzzsL111+PGeKiND4+jk9/+tNURlHRvlhT724nVTvLEWUjP1PYXkG8nk5TQQFZi5QqFJqMZmQ6QyrYeFUq8CA6O64FCAqLs7OmpCk3OBRYPuaEfU1hBzRNw9D6DVKDUpmkslmkO+Ymv4YRaPIL1ALL+nGS7uxEpqfH5RXBIOvU4jJxpVxHX/Aiaf0zk4boTKFss7d0Z6N2PsiCA6/MlTKbEbDAETRoVu6jNbgyhe9973vxt3/7t7jwwguxfPlyGIaBnTt3oq+vDzfccIPsbVQkAE3ToOl6Y/AzDMDh4qCCQnmomkLxZLq6UJmutQQoEjbe6UJHk9GMakcRPjKc4yg5kmSjGbeVcrIdRediudkoVlCopdOO258ksn19KE9NAqgFdekA34vKEi5YJD0g0mOWKaxWqzh24IB5X0lHG4g2mpFt9iYqU1jhlY8WxPYq5P1cO5T7aA2uoHDVqlW4+eab8dOf/hSPPfYYNE3Dy172Mlx22WXoJA4kRXujpdMw5rIohmHA6fIY9ARW2CO7vqrd3EeBubYUh2tSeXLVt96nkETJR8Mnjs2QrQRxHw1TosiqKZSZmQybTF8fsK9WPxW0rpBuXC9/MYg0monDxPXk0aPmPiyMzsPAOedGvEXxgTKaiYE80g2y96GomkJu+aiITGFgoxmi7CYm9bpRwBUUfvzjH8fFF1+MV7ziFYEdghStS03C1QgKnWj3zJNMlNGMeDKEtIYkXWhuSSF70q5ohnS5CyoJrCM+KPTfvD5MMxNWprCVFu5yAttShNmOAqADjThkCknp6KLnvbCpZ2g7Q57voltSyK4pDOI+yh8UCpaPinQfbWO4gsLHH38cb3zjG5HNZnHhhRfi4osvxoUXXoiuLvZESdGeeAlG6F5vrTPhiAOUUYSSjwohQzSwJ0nl6ZrCMOqKFM2Q9TBBVrlJRNfR6llRmULZQWHzxL6Vznmr2UwQKFlvCEEh2bw+6kyhYRg4SrSiUA3racjzPY7uo1aoMTQM+SiRKawIr7n04z5KyEfbOFPItazz5S9/GX/4wx/wqU99Cv39/fjc5z6HzZs348orr6T6GSraGz3NHxSqlhTykJEpbHe5b5qxAKalM9AzGXQuXmKuevafvVYZLUQAubAUZJXbfI9KhQrERCxc6Wn/RjNh9sJjyUdbaeGOaksRMFMYZrAOiK9TC8LJY8dQmtt/uf4BDJ2/KdLtiRuU0YyIPoXE7y1HPkrUFIYiH41vpjDqBZco4coUAjCzhBdccAEuu+wyfO9738OPfvQj3HnnnXj1q18tcxsVCYGaTCj5aGTY9RkLQrv/XmQD+zrpuUL5bF8fLvjy17H/N7fi9CvfEPamKWAxSRAwwTj81FONWqmRUXQuXRb4PckJvRUvRjMdi8I3mmmlOmKRvQrDrPUELO6jEQeFtHT0BdCV/I5CuNGM7JYUHAtrh/fuxaE9ezBv2TIMzp/PfA5vqYnMmkI/i1jWcS9ou5qkwhUUbt26FXfffTfuvvtubN26FYZhYN26dbj66quxefNm2duoSAi8fV4Mw7DYFrdfkCET2TWF7RgUsjKF5ER5wbMvxYJnXxrmJikI0gJrCg3DwL6dO837p7/hTZQznV+c3iNO8lHWdrZSHXFWpHyU+l3kG0yJrlPzS5N09HkvjGxb4opooxnZap1UoVBzjDcMVKtVGNUq3fO4WsVjf/oTqpUKxo4cwZrNm9E7NNT0PrwyV9FBYVD1mVcH/VaF60r3yle+Erqu41nPehauv/56nHvuucg6rHoq2hONUz5KDpB6JqNWGAWj+hSKh1VT2EoT5aSTLhAmCQEnGCcOH8bU+DiA2sTl1Fe/NtD71XHKFDpNGsulkhno6rkccoODQrbHDnamsHWO9SxpNBMgKKxWqyjWezdrGgrz2JkTkZAN0aPMFE6MjZnfPdPTg5HNWyLblriiE/Wf4ltSiD8fNU1DurML5Yna2FepVJAmgsJKudzYBsPAjnvuwdqnPx15S1aONzij5KMx2T9eHPRbFa6g8KMf/Sjuuusu3HXXXbj77ruxYcMGbNq0CRs3bsSKFStkb6MiIfC2QlD1hHKhHOCktKRov98s3dkcFKZaqM4q6YiUjz61a5d5e/mr/oaSGwbByX3UaVJE98JbKF3SxHKQbFn5aICaQjMgBJAfGkaKaBchi7hkCknp6MLnPq9leliKRK7RjJxrcLqjgw4Kid/VOq6Wi0XsuPtunPW0pyFFqAt45aNpgZlCUeoz1cCeMyh8yUtegpe85CUAgEcffRR33nkn7rrrLnzqU59CV1cXbr/9dqkbqUgGVPNPh0Gw3aWIslEtKcSTcZGPKqJFlHx0anwcY4dq/SihaVj5+r8LumkmWsaffJQymVm8RNj22MFuSdE657yoTCHdozCcNjTWmsIo6p6s0tHFz1MN61lQRjMJkI8Czm0pWIHb5MmTeOz++7Fi/XrzOOSWjxL/cwsKx48fx8Enn8TwwoVsySqpPstmfavPeEugWhlPTWXGxsbw2GOP4ZFHHsH27dtRrVaxatUqWdumSBhUMOLwvHaXIspGtvtoinApaxfSSj4aa6jJjM9V50q5jCcefNC8v/A5l6Jr2fLA21bHb5/CsB0uW14+KqimkArWQwoKNV2PfOI6dfIkZuaMj9KdnRi98KLQtyEJCDeaCSNTSCouLEEhOQcgM8NH9u3DU489xnydo9FMgS9TaBgGHr73XhzcvRs7/vhH5nNFeVRQDezbNCjkyhR++tOfxu23344dO3ZgYGAAF154Ia655hps2bIFnZ3tN0FUsCH7vMBhEKQDDBUUikZlCsXDzhS2336IK+RChZ9M4dT4OHbccw+m52oJAWDl371FyLbVcZLYOQWFYTdIZ7kXt1JWPNsvpnl92L9LnVQ2h/LcMV6tVqGH3DB+8uRJ8/bo058Zimw2ieipFGVcEjSrG0ZvZ6e2FOTn9599DvrWnIWdN3wdALB7+3Z09PRgYHTUQ0sKIih0GP9mJidN9+VyqYTJEyfQPTBgu21B5id6SmUKuYLC2267DRdddBGuu+46nH322bK3SZFQeI1mVKZQLl5ag/BgzDmR1d5cg96GkwB2Swp17MYFyk7dY6bw0J492PnnP1OvO+21V2Joo1hnbU3TakYGcxP6dGcnypOTAFzko2Q7iogyha20ECQjUxhmUKhnM8DcIRGF2QwZLOQG5JoeJR09m0Vlrva0Wq0iFcBUj86G5R2e6R8yKHSSj6YKBaz78Mdxcsd2HP7DnQCAR+69F2uf/nQP7qN8fQrHjx+n74+NNQWFFc7PdIMa+1RQaM9NN93EfLxYLGLbtm1Yv3690I1SJBPeIl1VUygX0RKICjHxSOXz7dm7R2UKY42T7MmOSqWCXdu24dCTT5qP6dks1n/iMzjlFXJ67+qZrLl9+dF5mNhVa33BazQju3E9QI8fdVrpWM/09JjW+5Vyucl6nxerAVBYiHa19EoYGatWQc9kzKDQqFaBAEFhGGZvToZdFUs2LpXN4oKv3oBbLnkmpvY9hUq5jO13380vH+U0mmkKCi33ra8PckxGLc2OA1xB4QMPPID3v//9eOSRR5iD0Pbt24VvmCJ56JwnlHVwUYiFt7aTlyrnIN/KsFpStNJEOelQRjMcmcKpiQk8/Mc/mq0nAKBr6TJs+c//Rt8ZZ0rZRgDQM2lU5mKJwsioGRTyGs1Elylsncm/puvI9vaiODYGoJYtzPhQP4Sdwa0juv+dlXqPupRNX021qMuPKLfYsHo7Oy2usTKA+aFhbPnP/8FvXvhcVGamMT0xQb1GREsKaxA4wQoKiW1NdQSoKdRVTSHX8tjHPvYx5HI5fPjDH0Ymk8F1112H173udchms/jsZz8rexsVCYG3lo1XXqDwhy5YPqp+LyDd2ZwpbKWJctJJdzR+H6vsycrhvXvxp9/9jgoIl/zlX+E5v/4/qQEhQE8S8yOj5m27yb1hGJglWh8U5i+Qt3FzsGsKW2vynxEgIY1MPpqTlyksFYu499ZbcffNN2PsyBHmc9q9vtwL5G8VJIBv6u1sE7AHhTcoJBfhBs5eiw2f+Tf2+wVsXl8pl6kaVgCYmZpCaXbWftuCyEc5HfRbGa4ja/v27fjv//5vrFmzBt/73vewfPlyvPzlL8fIyAi+/e1v49JLL5W9nYoE4C8oVBcV0Yg2mlE1oECmu6fpMXXsxgeeTGGlUsHjDzyAg7t3m4/pmQzO/ed/xSmv/ptQZNFklocnKCzOzJgLO7nBwVAm4a3uPgrU2lJM7n4CgL+gsFwqmZNmPZdDbjC82rpUVl4D++MHD5r9Fw/t3o0+hv2/qPqtdkBUVjesPsFOtdlO87alf/kSjD3wZ+y4/gvU46TDqBUyKLQbsydOnGAubI+PjWFgtDF+ito/olVWSYQrU2gYBgbmCjuXLl2KRx55BADwzGc+Ezt27JC3dYpEwVukq1Ya5cITFJZLJdNW3A3lFkuvoJqPqWM3NvDUFO68/34qIOxcvAQvu+sunPrXrw2tTpacJBaISU3V5jyNohdeq8tHgeBmM9Z6wjDrrGU2sCfPnaIlG2N+plrU5UbUbxWGdBSgFRdNLSlcykjOes8HMe+ii6nHnLaVPHbsMoXjx44xH7dKSEUdkzqng34rwxUUnn766fjd734HADjttNNw3333AQCOHj0aSaGzIp5w1xSS+m91URGOW3BenJnBPbfcgntvvRVH9u1zfT8VxNeObeuquFoljw887qMnjh41by9+/gtxya//D0Nr10rfNhKyd1luaLhmeAIAhsEcM2mTmfB64VlptXE6299n3vbTloJsR9G5eImITeJGz8nLFFJBISFbtntOu14PeNGzYjKF5G+RHx4OtE1OOBnNuJWR6KkUNn/pq+g+bQUAYHjjZkcDJx75KFlPOLLlwsbjc/XArNcHko+qPoV88tHXv/71eNvb3oZUKoXLL78cX/ziF/HmN78ZO3bswMaNG2VvoyIhaJw9XpQcUS5uxdJjhw+bF/bDe/diaIFznZKqKayR6epCZbqRXW21iXKS4elTSE5yzvvk55iSYNmQNSu5gQHomQyqc0GJUa02ZemiMjMhW2cArTf5F50pDBOZmUJyrLfWbbGe087XAx6o3ypAkBGWYoC3eb3dtS/b14dn//LXOHLXnRjefIHzZ7kYzRiGQQWFp1/1Rhy6/f8A1DKFZN9HYfJR5T7Klym85JJL8N3vfhdnn302Fi5ciC9/+cvIZDJ4xjOegY985COyt1GREHhXWcLot9POuMlHyQGUvNjYEVY9Q9xJWxxIW22inGTIyUy1UmEe99UYKBRSucZ4lxsYhJ5uZBJYk8aozEyswWmrTf6poNBHpjDKoDCVFWNewoK8NpdLJWYGRylH+BGVKQxrcYhSXDgZzTj87pnOLsy/+NlUz0MWbpnC2elpc2Ei3dGJBc+5FNn+WhlbuVTCzFyPVy/b5gZvW7VWhisofO1rX4t8Po9Vq1YBADZt2oTPf/7z+OAHP4j+/n6pG6hIDrzOTapQXS5u8lFysOcJCtUkoEbG4kCqjt34kMpmzfHHMIym8adarTYu8rpOyTjDZMkL/xIA0LVsOQbWrnOdNEYWFFocSFvtvM8S8xY/mUJSzleYN1/INvFCHjPCawotk3NWtrCqasy5ITOFgYJCUq4cVqbQo3zUK27N68ks4cC566GnUhhcdy7z/6K2TWUKOYPCHTt2IK8yOgoXNM5WCCViZTbT0ytzk9oSt9UuajW4WHRt9q3kQjWsDexbbaKcdHgnNOl8IVRjEJJVb/5HXH7XVlz6u7ugZzLQ0h6CwkVRZgpb61gPKh8lTVjyhGFQGOghZQoBttlMRZV/cCNK6hvW4hDZeslJPiri2ueWKSSDvqHzzgcADJx7nvnYBFFXKM59lAiJVFBozxVXXIEPfOADuOOOO/Dkk0/i4MGD1F9YFItFfOpTn8KFF16IdevW4aqrrsKTTz4Z2ucrnOE1mimGtOrVrniRjwL2hgKs57fa5NAL1gb27bwv4ggpV3KSPkX9u3UtXWa2FaAyhW5GMyGOldTkCK23GJTtC5YpLJGZwpF5QraJlzAzhaxrQ5zOpbiTEmQKFEWm0LElhYAMsZ7LmUZbBsNoi3QYHVxfCwYHz3HPFAYJWHVOX4xWhsto5ktf+hKKxSLuvPNOaoW1Xui5fft2aRtIcu211+KnP/0pRkZGcMopp+C2227DG9/4Rvz0pz9FimGjrQgXLc2nxyZbIYS5+t0uuNV2Wgf72elpFCxZMLvnt3N2zNrAvtUmykmHDAodM4UxkrzpDpnCcqmEylzAomezyA0294yTRZN8tKO1zvtsX59525f7KOkG2cKZQjf5aJzOpTgiLFMYQU2hY/N6Adc+TdOQyhdM87ZqpYLUXGKhWqnUehTOMbiuFhQOrFtvPjZ58iSq1Sp0XRcnHxXc4zmJcAWFX/3qV2VvhyuPPvoofvrTn6K7uxs/+tGPMDAwgJe+9KU4evQodu3ahdNPPz3qTWx7eIp0q5VK40KjaeiY7+x8qfAOq88YiXXC7FZXqOSjNayZwnYOkOOIUwP7uPbaJPsWWieNRcrMZFGoktcm+ajE3mhRQAWFHjOFRrXaKIHQNOSH5LUIYOF0zATFq3xUZQqdEWE0UymXzWNUz2SQHx4Rsm0seBfWRP3uqXyeGRROnjxp7q+upcuQGxwEUHNszvb3o3j8OIxqFZVSCXouJ0zayuug38pwBYXnn3++7O1w5Y477gAArF27FgMDNQei73//+1FuksICT5HuLCW7GaUucAoxeKkpBNyDQtG1BEkl02XNFLbvvogj/M558QwKrecqJRlbHK7MngwK9VzOsd9YEglSU0gGSrn+/tCvYalciJlCJR8NhAijGXIcKCxYKPVcJNUw1jFURn/pVCEPzKlAyeOKbFo/eB4df6Q7u1Cck45WymVkcjlhx6TqU+gSFJbLZfzgBz/Az372MzzyyCOYmJhAT08PVq9ejec///l4wQteENrq5Z49ewAAuq7jqquuwn333Yc1a9bguuuuw6mnnhrKNiic4Um9h9Vvp61x6VPoNShUk4Aa6S66r12cgguFs9FMXLMbTkYzUTmPAvTkKN1iWULA4j7qUT5Km8yE6zwKyO1T2FRTaMkUGoZhaSnVeseGSET0KQyzrtipT6GMhTXy+KkQx/I4o56wDrk4W99GUWomXl+MVsY2KJycnMTrX/96bN26FevXr8dll12Gnp4eTExM4KGHHsI111yDG2+8EV/+8peRI1au/HLjjTfi2muvtf3/5s2bAQC///3vsWjRIixfvhx33303/vZv/xa/+MUv0Nnp3BNFIR+dJygktPFhr363C64tKawXfiUf5UJlCuONUwP7uNbFkq0xYhUUEmqDVIvVEwK1cUzPZFAtlVCtVlGpVLh9CSiTmdFwTWYA52MmKNbskLWmkDyP9FyOuuYrmhEhH6XqCSUHhXo2Cy2VgjHX67VeswfIWVizcyClg0JLppAo42AFhaL6FLar+6htUPjFL34RTz31FH7wgx9g9erVTf/fsWMH3vCGN+CGG27AG97whsAbksvl0Efo/K0sWFCrPRsYGMBPfvITdHR04IorrsCdd96J3/72t3je857n+P79/R1Ip8MfwIaHu92f1CJ0dBMBA0emcOi0U6Tsn3ba5yysAXndEKqOdcLsKh8lnj8wb6Bt9+/hBXTt0LzFw9KkPO26j4PQNdhn3nZyzuvo66H2b5T7OldoLKhaMwnkeTm66rRQtzNNTGZzXV3CPzsOx3euvx/Thw4BqElIeYNC0mSmb+mi0L9Ld3/j88LOFJLnUaajIxa/Y9wg90lnD+HmKUA+Ony6nDkTSaarC8U5k5dquWwuQpC//ejiEeT7g29HvqsTdTuZ+vsXZ2bM75zK53Ha0zciRUi0O/v7cHTudn1uQh63QwuGfO+jfGcjSBWVKezqzCXqPLENCm+55RZcc801zIAQAFatWoW3v/3t+PrXvy4kKLz88stx+eWX2/7/y1/+MgBg8eLF6JirHVmzZg3uvPNOHDhwwPX9jx+fcn2OaIaHu3H48HjonxsVM7ONE5NHPorBUeH7p932uR2arpsrk9agkCUftT6HhHz+VElr2/07YzSGy1Q+jyNHJ6V8jjqG/VHWGxOHpkwhcb+sZ8z9G/W+rhBdoZwyhZWeoVC3swpiLMjlhX521Pu8TrqnD5gLCivFIsDZi5kMlLSegdC/y0ypcW2V3qdwZoa6NlCZwrzY46IVsB7bxJRISE0hBsTPmaykOjqBuaCwUqmYQQL5249NVpAqB98OI03Ia+fen8wS9p99Do6NzQBoLMRUs4TklJEpHJ8xAJ/7qFgmzi1BQeHE5Kzv7ZGJXaBqu8x98OBBrFmzxvFN169fj3379gXbMk42btwIoOZCeuTIEQDAY489BgBYsmRJKNugcIYymrEZACn5aMiSqHbCSULKchVzMltQ8tEama7GIKpqaeIHZTTjUFMYJxt9yojCyWgm5LGS7NfVqjLpbF+veduL2QzdjiIK+SiRXZYcFBrVKrXAohrXe0PEbxVWO4o6aYYMv1qtNsYnXackzEFgyUfppvUbml7jXlMYxGiGKIESfG4lBdtMYalUMjNydhQKBUxOylktt7J27Vo87WlPw2233YYXvehFWLRoEbZu3YpTTjkFF110USjboHBG53BuUkYz4aClUsDcRMf6W1gv/EDtd8nYDPS0nX9rThB5SBMXo1adKCeZdEfzZKFOXBc29EzjEkxOGg3DoGp9CwsWhrpdlNFMjPaXSMgG9iUPQSFZZ1cIuUchIKZOjQU18ScozswgPSffE93AvNUR7T4q22gGYPcqtNbsiTKYJBdX6+MfVU94bnNQSDqksuSjovoUtmtNYaJ8pj//+c/j5S9/OYrFIh5//HFccskl+M///E9kBa1aKILh1uPFOtEJ2zyhnXBqS2EXFNoRV5OOsCEnkZmeHodnKqLAqU9hXI9hu0ljXbYH1Hpzhb3N5OSoVRdAyLYUFQ8OpFSmcCSKoFBOppB1XQDoIFg5UXsjaABvVKtUG6+OEBaHSAfS+u8ta1HNmik0qlVMjI2Zj1mdRwH3TGGQsVK5j7q0pPjGN76BgsMOnpoKt06vq6sLH/7wh/HhD3841M9V8EHKR1mrLKVi0byIZbq7ke3pbXqOQgzkSr+bfBRwdiCNa5YlbLpPPQ3z/+I5OPC73+K0K66KenMUFqjJjLXHVkwns1qGPQmJWlFBLirFKYgWid9MYZHKFEYgHxWQfWJhFxSS31fJR70RtCVFcXbWvH7nBoeoIEoWrLYUsnoVU5nCSgWT4+PmcdgxfwEK85pbvqQtQaFRrTbOA02DHqAbgluP53bANihcsGABfvKTn7i+wfz54ffpUcQTtz6FYWvj2xm738IwDOZEYtZhgSeuWZaw0TQNT//md1GemopVXZqiRoo7Uxif385ugk+3o4ggKKQyhfHZXyLJEm7nvDWFhmFQLSmiyBSmcnL6FLIWCwG6BYfKFHojaKYwihZelDyTlSkUeO1LFehMIdW0fsNG9vZZgkKyv2EqH0zaqqVVUGgbFP7mN78JczsULYBbn0JKG79YmQPJxG7Fy241mJSoWIlrliUqVEAYTzKMWhPzfkyPYT3DnjRG2aMQaD/5KG8D+3KxaI6nme7uSBbJYpMpVOOgK1Sm0E9QGMHikHtNoST5aLWKqRMnzPuD5zZLR4HmcZ5UhQQ9H90SG+1AomoKFfHGNVOo6glDg/otiMetk+U6dplCwzDoVULluqmIKSkH99G4ZjjIGhZy0liM0HkUANV/s1XVAX4yhWSAlB8JXzoKALqkTKH3mkIVFLoRNICPQkbOkuHLWlQjj6FKpWJpWs8OCtOEC3ilUhE6tpO+GO1qNONYU6hQeEFzKdKNuk6mnbBz0aIu/LoOzF2o7IxmyAuZnslQk1iFIk6wVrjrxFY+mmW3pKDHyqgzhfHZXyLxFRQSiorCvIiCQg+BRrVaxRMPPYRysYjlZ56JjEO9lZ18tGgjH23VxQKRpETKR0NaHKJaUjDko2JrChuZwuL0NGbmuhlo6TT615zNfI3VaKYqMHutMoUqU6gQiFuRrupRGB7kSr+dfJSU8BZnZpgXrYrKEioSAss1j3U/TrI3LW0jH424/pqcHLXq5J80muENCqOuJwSAVJY/U3j84EHs37ULh/fuxVNzfZ3tIM+R3NCwebuo3Ed9I1Q+GkGmkN0HUKR8tHEMnTh61Lzdf9bZtqY6TTWFArdNVzWFKihUiMPNfVRlCsPDbsWLHECzff3ID4+Y94uMukI1CVAkBVbTZfN+TI/jFFlTaJMpDKM3mRVVU8gmaudRwJJddgk0yMWFccLqnwU51nctW2beJgNh5T7qDVLqG1g+GkGm0GxJQdbtiTSaIQI/8lgdXH++7WuaagoFZjGV+6gKChUCoVZZWA6XqqYwNHjko+lCgWqKzZKQxjXDolBYoVa4rZlCYlITJzmkRgSF9UxCuVw2M1d6Novc4FD426W3gXy033umkOpRGEHjesBbn0LyPJgaH3ec6JILKZ2LlwBzLo6lYtG8ntPnUWsuFogkSKbQMAzMkOqqCDOF0moKbbKBQzb1hEBzplBkFtOtBKodUEGhQhjUKovlf5Vy2VyN1dLpyFZZ2wWeTGG6o4OS8bKCQpHSDIVCJuSihVOfwjjJIXWGfJQ0memYv5CSgocF2ec0TvtLJBkyU1gqcU0CqUxhRPJRO8daFuSEuVwsUqYxTs/NdPcgNzBo3i/NXbuVcsQbVP2nxyCjUiqZ+zuVL1CLGDJhLa7Jko+mbUpSBtdvsH+No3xUuY8GRQWFCmFQqyyWixWVJZy/IJKJTjtBBuh2mcJUoYPK2KpMoSLJpPIFM7tRrVZta2njNJml+pjNbS81VobUm8xKYd6Cxja0qKojlc02JriGYevMTELVFEa0sJnK+csUArVsoR3Wa0N+hCgtmAsmlXzUG0H6FFrNpoL03/OCm/uoLKOZOrnBQcfyorRE+ahuo7BqJ5SVoEIYTqss9ERH9SiUDbnS7zQ57vAgH43TZFqhsKLpOtKFDpSnag52lUoF6bmFqti6j6ab5aNRm8wAwBlveSuKY8fRc/oKx1X7pJPt78P0dG1/l0slpIksHAvKfZSoxw4TLzWFVsOlqZMn0Tc8zHyudeKfHx7Fie0PAZgLhnt71SKhR4LIR2eouuLw5kys2mxZ8wDWew1t2OQYAOupFFKFDlTmzlsy+51S7qOBUUGhQhiOQaFyHg0Vnj6F6Y4Oyu7eTT7aqjIyReuQ6mgEhdVyGWAEhXFa3GBlEmYj7lEIAF3LlmPLV2+I5LPDJNvbh+l9+wC41xUahkH3KYyB0YxboGGVUU9yZwoLzExhXM+juBIkU1iMyIPBvSWFHKOZOnb9CUkyXV3MoDDotqmaQiUfVQhEdzihlPNouNi5aDnJR4uumUK1MqyINyyTBMMwqMlznCazVEsKlnxULaBJhWpL4eJASkrV9FwOmZ4eqdtmh5dMoV/5aLqjE4WRZmdqVWPujQzRaJ3XzKgObTITYlAYsdHM4LnuygSyrpBcqAlcU6jcR1VQqBCHneMloCY6YcPrPqrko4pWgmpgzzRJKIRWm8MDyzSEGiuJ81MhnqzFbMYJq8lMVMeRF0kiSz5qN9m1Tvzzww0jnRIjU6iUI+6Q/R5Ls7OeAo2o5kysfq/S5KNWoxldx8A557i+jqwrpDOFAYNCl7Zq7YAKChXC0FJ8mUIlH5UPj/to7cI/Yk5My6VSk9mCmgQokoSbSULTJCRiWEEheQ5m+wdC36Z2wktbijiYzADNmUKnQMMaFFYrFebin/W5aSUfFUK6UEB6LltoGIanbGExInWVW00h+f+gWDOFfatWc71/posdFAZuSUF6MfjoK9kKqKBQIQw7cxPAYp6g5KPSId1d7eSj6Y5OaLru2KvQWoOoUMQZ93qYeE1kyaCwOneeKjOP8PDSwJ4ymYkyKEyluA0xrPJRoJYtZGEtFSBbUtT3jXIf9U5+mM4W8hJFj0IAyPT0mMdXXTItawy1LtINnsdnaiVLPqqTiY1A75RcVFCoEIZukyk0DAOzxAVVSaLkYycfZdUGOElIVU2hIkmQE9UqyzkvZkEW1cesnilU2ZjQyPb1mbe9yEejalxfh2xg75TRsGYKAfu6QmoBsFCgstRl1afQN7mhIfM2b1BYrVQaz9V1FObNl7FpTDRdR26Q2OZikTo2ZNYUDq4/n+t1VKaQWMwJLB8lF1tUplChCIadHrs4M2Pezw0MqNXvELBbSWat+Dn1KlQTVEWSYDVejnN2Q880L6RVqcl5vLa31fASFJIT+vxQNO0o6pCulk51hf4zhQXkBhpBIat5vbqO80EeK7xBIbmIXhgZpRQFYWANZGUtDluDwiEO51EASHc2DHzIuWZg+ahyH1VBoUIcdoGIko6GD09QWB9AyUyh1YE0ztI7hcIKmQmU3WNLBJT76NzkPs7b22p4kY9SY2GnuLoqP6QkZAqb5KODtHzUMAw6YxSz+ty4QslHXY6xOlG7tZOBbHF2VlprKk3XMbihlh3sXXUGuk45let1pHyUejyw+6h9CVS7oPoUKoRhl3qfjagJaztDWitT8lFGjaBTplDJRxVJgnSlYznniTRJEIG151xT+wyGZbtCHFRLCpdMYZx6tlK1qF6DwokJGNUqNQEGLN+vowOpQgdS+TwqMzOoVqvU/tHSmdCzV0klTziQFnkzhWQ94eIogkKnTKHYY//p3/weDvz2VoxsuZDb0TdjExQGnaPoyn1UZQoV4rDNFKp2FKFjZ/rDGtw7OeWjUU+EFAo30oxMoax6GBFQvV2r1eb2Gbq6RMsk40E+GqfaVD3nnik0DIPa5npdmlGtYnpysun5VlWIpmlUXSF5bUgX1GIFLzkfRjNRz5lyw7TkVVbzegDI9vZiyYv+Cvlhfkm2XaYw1SGwplAFhQpFMOya10cthWhH+GoKa4N7YSGv0Uy8JtQKhRVWTWGcJdBUewHDiHX7jFYk5yFTKHNi7BWeXoXU2J3Po/eM1eZ9loSUpQoh6wrJ0gKlGuHHV00hpa6KIFNoCWTjNg/IdEqSjzq0VfOKYRiYPHkSFQ9tSOKACgoVwrA7oSgphMoUhoKtfNQlU1icnnatQVQo4gqZKWQ3Xo7XMaxbagrjHMC2IhmfNYVRT4ytvQpZVC0LDL2rzjDvs8xmWNcGsi0FnSlUxyYvVikmD5QPQwRzJqvkNW6SdttMocg+hQGDwt3bt+P+//1f3HbtuxKVdVRBoUIYdm0QVKYwfKhMIfE4yz0u092DTE9P7f/VKjU5UpNURZJgNV6Os4OuRriPVi1yv6gliu1ApqcHmKtjqpTLzj3/LC0bosRai8rCWiPYu5IICi2ZQsMwqOCyPvG3k4+qY5Of/HCwTGE0RjONoJAMUOMiaberKQycKRRYU3h0/34AwMTevZjc82Sg9wqT6H9dRcugpZsli4ZhRK6Pb0e8uI8C9r0KKzHOsigUVkj5KNNoJmZBYcrSp5CeyMfLFKcV0VMpc0EMcJaQ0gF71O6jHjOFLkFhUy3rXKBMykdnlXzUFzmPRjOGYVBS3SjUVeQ2z5BBYUwk7VRLCoKgi36kwipodo+qZSfO17ijgkKFMHTGCVUpl82TI5XLUzbXCnnYySDsjGPsHEjjPKFWKKyQtV7slhTxmsxqGYt8NEbZqHaBty1FnEy3yOb1XJnCQgd6Vqwws6LTk5PUeWFXy2orH1WZQm4yPT1mZrdaqVDBAotSsWj+ppnuHmS6exyfLwNrTWGdqI/7Orby0YBBq50vhh/ifN1xQgWFCmGwGn/S2viF3JbDimCwagopiZCmUQ52PEFh3KR3CoUV9+b18TqGSVt/q1tkkiYSSYa3LUWcxkKyeb1tptDSfijd0YmupcvmXmRgemKi8VybpvT27qPxOo/ijKZplBzTTUJK93WORllFZgpJ4iIbZslH9UyGbinhA5Huo3EaL7yggkKFMJhBISmDWLw09G1qV1hNWK2TYzJAV/JRRStAyvqqrExhTCY1dXRLpjDO9Y+tSpazLUWc3EdTHJlC1gIDKSGdJCSk1gCyjnIfFUPOS1AYsfMoUJM7Znp7mx6P+rivw8oUihgvRQWF9Z6zQG1erOSjiraEFYioesJoYA1uVYd+bUo+qmgFMqyWFDGWZFpbC6jzLXyoTCGnfDTqxQWeTCFrgcHOgdRu8Y+Uj5KoBQtvkHJMt7rCqE1m6pCtNOrE5XdnZQpjFRRa2sEkCRUUKoRhbcQMWKUQynk0LFjyUSdpWscCui0FUPsN7eSmCkUcSbGa18c4261naHVFnAKPdiFLZETsMoV27pxRwVNTyJKEUkEhmSm0WYzI2gSFasHCG5QDqUvrk7gspJOtNOrEJVOYKnQ0uaCK2DZR7qPWet4koYJChTBYLSlmYjLAtRssoxmrRTkJWbtQvyhVqElQQdWDKmIP6diZBPdRzbFPYbImE0mFp6bQzp0zKvSMu/soK1PYwxEUUpnC/sa+IYlLxigp5Dz0KqT6Oke4kJ4bjm+mUNM0qn4cELOIRrmP2pxXPDipsuKOCgoVwmA1ry/GQB/fjjDlow5294V5801nuuLMTE3KFmPZnULBIm3JFMbdvKXJaCbBk4mkQtUU2mRx7Nw5o0LPufcpZC0wdJ9ympkNmZ2aQtmll6edW7hasPAGKcX0UlMYaaZwuNlsJk6us+kuui2FkEyhoOb11LnXmazWQiooVAiDFYjMxMBJqx1hZW2d3LBS2SzyI6Pm/eLMTGLdsxTti57JNDX2piWZ8TqONU2jJEtltRATOhmyJYVdpjBmvwtPppBlHpPKZtF96mnm49Nz2UK7bHqq0MGUyqrrgTf81hRGuZCeZziQxmlRLd1J1xWKOCZFtaSIc8mCGyooVAjD2ry+Wqk0VsU0DR3zF0S0Ze0HqwmrmzW/1WzGzqZcoYgzVAP7cjnW8lGAnuBXiKAk6gbp7ULOo3w0Div/qax7ptAu+8cym7Fz6NU0jWpLUUddD7zB6z5aKZfNbLWWTlMLtWHDaksRp8UAq9mMiLFdVPP6uF9znFBBoUIYeoou0p2dmTHvFkZGKamUQi5u8lHW6lWnJShM8mqXon3J9DSMQ0rFoqNsOg6QZjNkUJK0yURSyXiVj8ZgLCSz4baZQptt7l252rxdb0vhZIxBtqVgvZ/CHbtm8FYo6ej8hU1mKmHCyhTGaUyytqUQcUyKMppJsspKBYUKYVgDEWqAW7wkik1qW0htfB27XlR1CkSvwqLKFCoSirXnZtx7/+mE2QwZFMZxW1sRnj6FcVv5t0qkWdiN366ZQsv3Y7WliMM+SBK8zevpOVO0HgysmsI4LQZkJMhHRbWkqMR8IdIJFRQqhNEUFFIuWqqeMEzc5KOsAdQ5U6gmAYpk4CSDjuNxTE7wK1TtWnwmYK1MlqOmMImZQi75qEtNIQBkmZnC+J1HcSY7MGhm/cqlkm0gT9UTRuzWnme4j8ZpMcCaKRSxbbqMPoUx2mc8qKBQIQxN100HS8DSo1C1owgVP/JRx5rCGEyEFAoerIsbdCPh+F2gKaMZqqZQnXNhkO33WFMYg9+Fp6bQbvzuXLLUPA9Ks7Mozc46Br05Rk1hHALjJKGnUlTPR7tehXHq65xj9CmMU4DTLB+NT6YwbsoCL6igUCEU0r1pJkYDXLvBGtxcjWZI2d3UVKJXuxTtC7m4MTMxYd7Ws1lqJTguUJlCVVMYOumOTjMwr1Yq1LhXJ25jodfm9eQ266kUelasNO9PjY8r+WgI5Dl6FcalHQVQc/e0LqLFaTGg2WhGbE1hIPloglsLqaBQIRSyVyEZFEYthWg3SPkoqyUFa7WbamA/M6Pko4pEQi5uTBNBYVyPYaqmkJpMxGcC1spomubawD5uYyGXfNShhtwqIXVquZFlBIXq2PQOKcfkCQqj7uusaVpTtjAOWfI6GUufQiGZQsa8yQ9xNzdzQgWFCqGQGaqZyUnztsoUhgurCaubfDQ3OAQ9V1uBrpRKKBHusUo+qkgK5OLGNDEGxTW7QbqPkhP8uG5vK+JWVxg3Kb1X+ah1vLeazTgZY+QIea35HHVseoanLUWcMoVAc11hnH53a/N6Me6j4o1m4rCI5AUVFCqEQp5U5MAXhwGunXCTj7IGKk3T6CwLMaFO2sCmaF/IYzgJK7Zkn0ISdc6FR9alLYWbc3PY8DSvdyoX6F1pyRR6lI+qelfvkA6krAb2hmGgGLugkHYgjVOGWIbRjKopVEGhQjBU+n2OTFc3skTvMIV8yMGNKR+1GajICxEpvUvawKZoXzLdPcj09DQ9HteJrEZkCkniGsS2Im5tKeK28q/nvPUpbJKPrlxl3p4aH3f8fiz5aByypUnDrVdhcWbGDERyAwOxuOZaG9inOqLfpjrWmkIR5yXZa1uY+2jCxnEVFCqEQhrN1OlQ7ShCh9WSgidrYl+PpSYBiuTAWmWPw2SeRUplCiOHko+yMoVxa0mRCSYfLSxYiEx3TX5XLpWoUg++5vXq2PSKm3yUko7GpNzG2sA+DoFqnXSnBKMZGX0KY7TPeFBBoUIoGiMo7FSN60OHKR/lcMQiJ9Nxc9xTKHhhBYVxzW5ohNEMSSqfD3lL2heyLUXJtaYw+rEwSJ9CoFYq0EPUFZJBSrN81BIU6jr1+Qo+3DKFdF/neMyZrDWFcVgQqSMjU2hVWPkNDJM8d/r/27vz6CjKdH/g36ruTmch0NkISNgNARNkXwTFcdh0ojATzjj6k8UrOMyIeke9jINcPV511KNzwJmgzjmgA4gLLoADOo4D9+g9oiAaFMI2rGJYw5KACSFb//6IXanqrk66O52u963+fs7x2JCErjzVXf0+9T7v8zIppKjybdCqJ0JtfLzRN5rxCeVCFexciTAQIgqVfsbbR9QPZ9WkfNSRmGh6LaX2kaDbi89sptCQYAlQhqy20mjG6/U2J4uKYnqDQb+uUM+/1NSRlGz4eWdiEhTdfsQUmsTMlruPitZkBjBuowGINQ5ol30K/fbajpRojanCwU8diiqzmUJRSiHiSavlo0EuVGaDaUCsO4RErTGfKRRnQKNn1miG77fYcme0vLG4aIM8h26fQrOZQkMSGySJ69T/KvN/22RWMUE3WyjqzRXRuTo191XQV+34iFg+6g6YKRTn3PtvSRGt96V+CVSwWfjWiHYTKRxMCimqFJPNoblHYey1unl9kAtVsHMl6oCayIz5mkIxP5xVV2D5KN9vsZWY0fLG4qKVg6kJza8Zs5nClvYd9NFvS6Fn9tngTmNS2Fb62Vb9Z7GPYY9CQcZM/jOFIl1D/dcURut1GY11haG8/0TFpJCiSt+9yUeUu17xpLXuo8EuoEndOFNI8jMbVImwlYAZs6RQtrvLsnPrk8JWykdFGOSprcwUNoYwUxGsfNSRGPj76belcKbI1U1RFPq4miXy+jWFooyZ9CWvakICVJOb/lZpjy0pAECJQgdS0RpThYNJIUWVfp9CH1Hq4+NJ6/sUml+oXCkdDO3Zte8XqBU1UWtk6j6qmM4UyjWQkJ2hfNRsplDfpEuAFvP6GwlmCUYoVSGJmZkBWw6obrfpWlZ9+Shfm5FxuJsT+cZWZgpFGTMlpKcja9Q1AICuP51o8dEYORISDGtro5V8GfoxRJgUinYTKRxMCimq/MtHFacTSdldLDqa+KX/YDdfUxj8QiXTeiwiM0ldugY0DBB1MKuadB8VNYG1K/1MYWuNZkS4FuoTjFZnClt43fuXkDpNZgkBlo9Gg7581NvYaJiFqq+r09YZOtyJhpsUVlIUBdevXovx6/+JMUuXW304ATJHjgYAdOrb1/RmdiSiPlMoWdUHk0KKKsWvfDS56xXsomeBgNbKjY3NgwdVhaobVPiTaT0WkRnV5WpKDHVEHczq14f5cOP62EpIS9duItTX1QXMvgm3prCVfQpb2rhez7+ENFhFiKF8VIDfX0aK3+eu/rwZSke7dROqu6vD7Ubm8JGme1Bb7ZqXX8GIRcX4+caNURtnRmVNoWCNqcLB0TpFlf9MYTL3KLSE/4WtQfcB5ExMbPFDx6wDKQcCJBv/17EIg3kznCm0nupwGGbD/GcLRRvktbZPYagzmwEzhUF+twRdUsgbhJHTzxbqX1PGzqMcM4UqMTMTfW6fjtTu0VuDqS/NjqT7aKNuFlhxOk3XjIuMSSFFlf9CZFG6aMUb/y0pGkPYuN5HpvVYRMH4v45FGMybMZ0p5Pst5lpqNiNai3n/GSf/GY1Iy0eD/W4dr8zVHqf0YNISKYe79aQwRZAmM/HKldpRe1xfVxf2zxveeyb7g4pOvPlgklrATCEvcJbwPw/hdMMy3/jb+oEQUTiSu8k8U8j3W6y5MzKA/U2P9c1mDBvBQ4yBnupwQFHV5uPyeg1raA0t8VssH+1v+HOwGyfZ436C/Ad/j6pjZcj79T1tOPL4Zpgp1JePCthkJl6509K0x5EkhaE0eRIZk0KKKv/N63mBs4a+g5bX6/W7ULW8Xsn/nInWipooFMlX+M8UCpoUJgRuXi/jYEJ2wWYK/dcTirLeS01wo6GmKZlobGyEQ7emqiHENZCu1I5I7paD6mNlP36v+etOURQUzF8QjcOOa4ZtKYKWj/JGupUSPLqk0KTpVGuMexTKdx1n+ShFlf8+hSyFsIb/msJQGw8AgUmhqDMsRC0JeB0L2rzF/0YawPecFYJtS2FIsIJ057SCvuzYf+1TOJUh+hJSUW+c2EXQNYW6RjMpObyRbqUE3UxhXVvLRyW8ucekkKLKsMcLOFNoFf2aQvjNFLY24Ezq0tXQyYsDBZJR4JpCMV/HZo0IRD1WOwtlplCkGVz9Bvb+HUjD2UJDnxRyP9r25QjWfZQzhcJo60xhKPtBi4xJIUVVQPmoyfo0an8tzhS2MkhQnU4kdmneW1LGCxuRNN1HXYHlo3zPxZ5hr0LdTGGo6/NiLdSZwtaOOWPoCO1xCjtftiv9Nch3jhobG1FbU9P0l4oSsJUOxVZCG9cUinoTKVRcU0hRpZ+hcqenS/mmsIOWksJQyuiSu+Xg0vHjAOS8sBG5MzLgSExEw48DLlHXd6gulo+KIDHTfKZQ1Dv/jhZmCsMpH+12489w1X8+hEunT6Hf3b+J7kGSgVn5qJYQAkjM6gyHyRpjip1ozhTKWPHBpJCiSj9TyDII6xg2cvXbkiKUC1XyFd1w9sfHHKCSjBRFQebI0Tj1f58gweMR9g682Uwhb8TEXkjlowJdC/WvG/+ZwnCWCyiqioF/+O/oHhyZMjSa+fGcNeg+m/WzVGQNffdR/61pQhHODRkRMSmkqFKdzTNULEWxjj4p9O8+GkqSp99fUtQZFqLWjFxUjO/WvIPs638qxFYCZhSTLSn4nou9YI1mRG0cobqbk8KAmUJBS17jnWFNoa981HCuxGyGFU8MM4VtbTQj0E2kUDEppKjSl4+yyYx1WiwfDWHAqT93Ml7YiICm1/GA+x6w+jBaxPJRMQSbKTSWg4mTYIU6UyjSMcc7s/JR2csN7SYhLV17HNGWFJKvKWSjGYoqlo+KwT8pDHdD1bSBg7THqX2ujO7BEZHGvNEMB4ex5vYbDHq9XgDi3vnXrz1reU2hOMcc78zKR3muxJLg8WiPI9q8PsylOqJhUkhR1XnMtQCakpKuN4y3+Gjil/+WFOGui8kcMQpDn3keg3/3O/Sfd397HCIRwXymkGVksae6XIYBoW+2MNzS+1hRQ0wKZZytsCuz8lHjDVu+761m6D7KNYVEbdPr1tvRoWcvuDMy0TG3n9WHE7faWj4KALl3zkFWVirKyy9G/fiIqIlpoxmBko944s7IRG1FBYCmbSkS3G6/BEucQbs+KWy50Yx8A1O7Mt2SQtCbDvHKmZwC1eVCY10dGhsb0dDQAIduPNUaUW8ihYozhRRViqIga/QYJoQWUxy6RjOQ/0JFZFdmm9fzPWoNd7qu2cyPswThdm6OlZY2rxe1Y2q8M6wpZPmokBRFadO6Qtln6ZkUEtlQi+WjEl6oiOxKvw7bh7M71nBnZmmPxS8fDW3zepE6psY700Yz7BQrnLZ0IJW9fFSqpHDnzp2YMWMGhg0bhrFjx+Lhhx/GuXPnrD4sIuG0VD7KbnRE4lBNNqt2JouTfMQTs20pRB3ktbR5vbHZhTjHHO9Ud2BSyM9m8RiazYQ5Uyh7N1lp1hSeO3cOc+bMQUVFBfLz81FTU4N169bh1KlTWL58udWHRySUgO6jukGCSHe7ieKdarJPob5LIcVOon5bCpOkUKSZnJa2pGBJophaLR8V6PUVz9rSbEb29540SWFJSQkqKiowYsQIrFq1CvX19bjxxhvxxRdf4OLFi0hNTbX6EImEoU8K/ctHZbxQEdmVvgwQaBo4KqpURTy2YbZXobDlo0E2r29sbNS201AcDtOZaLKGMzGw0YzsM0t2pN+epq4N5aMiNaYKlTSfPGm6zB1oWgzq9XqRmJiIBF70iAz0g8qA8lEJL1REduU/U8hZQusYykd9jWYELe8LNlNouAGYmAhFUWJ6XBSc2ZpCUcuT45lhTWG45aOSV2VJM1M4bNgwzJw5E6+99hqmTZuGmpoanDx5EgsXLoRbt/cLEbWyeb2EFyoiu/LvPurgekLLuFspHxVpkBds83pRj5cA1aR8tEHQ8uR41pYN7GXv/CtMUrhmzRosWLAg6Nc3btyovYlKS0sBAB6PBx7dyWtJWloynM7Q9xqJlqwslrXGGmMOVDV0av6D30xh55wsdAgjRoxn7DHmsWN1rBNrjFUwiamplh9TexP297uyh/aw3qR8NPOKTGGOvYOng/ZYP1OoP153hw7CHG+8aCneDV2ayxLNZgrTs9N5viIUzbhldO+qPW7LmsKsblnwSHY+hUkK3W53iwneV199hVWrVmHIkCF48cUXUV5ejlmzZuGhhx5Cnz590L9//xb//fPnq6N8xK3jxt+xx5g3qTl/SXvsXz5aUd2ISyHGiPGMPcY8dkSI9aULl41/kZBo+TG1JxFiHky12nxn32ym8OJlCHPsNc1VasaZQl35muJOEuZ440Frr+0LNYEzuvrXV1WdwvMVgWhfU2pdzTO24c4U6m/KXKjxok7Q8xksiRYmKSwsLERhYWHQrz/++OMAgFtuuQUZGRnIyMjA6NGj8dFHH2HLli2tJoVE8SRgSwrdoIElKkTi0K8NA1jyZyXD5vV1dQGdm0UqB9M3kAm6ppDXeqEYGs2YlI/yfIlBv6awLs66j0rTaKZTp6ZyuJ07dwIA6uvrsX//fgBA586dLTsuIhEpDmOjGW3QoKrsRkckENVlvDcrUjOTeONwu+Hq2LHpD14v6uvqhB3kqUH2KeQaNXGpuv4X2kyhoDcd4lmkjWYC+zfI9/4TZqawNb/4xS+wYsUKrF27FgcPHsSFCxdw5MgRdOvWDddff73Vh0ckFP1MoWHhM7vREQkloPsoB4aWcmdkou7CBQBNJaSidm7WJxD6YxQ1iSVjZ2HTfQolTCLsKNJGM16vF/BtB+N0BjQRk4E0M4W9evXC66+/jnHjxuG7775DZWUlJk2ahBUrViAlRZwLNZEIFNW8qRIHCURiUfwGDpzdsZb/thSiJlmOIEmh7DMVduZICtySgjO74klIb24IFE5SKHvnUUCimUIAyM/Px9KlS60+DCLhGTav1xHpTjcRAarDAUVVtRJvzhZYy39bCn1ppn6fOavpE74GzhRKweE2JoX+TeB4vsTgTE6B6nKh8cfy8YaGBjiCjKn0ZN+jEJBoppCIQhcsKeSAk0g8+nW+sg4m7EKfFF6ubu5a7khKEqr03mwjdP/HnHkSi+p0QnE2z8V4Gxs5sysgRVGM6wpDnC1stMG5ZFJIZEOKav7W5iCBSDyKbl2hrGVHdpGU3UV7/ENFhfZYtEFe0PJRG8xW2Jl+XWFDfb1uDZpLyjVodhVJsxnDrK+ky9qYFBLZkKIopokhBwlE4tEPBnnjxlpZI0drj8+fPq09Fu3aqa/6CDpTKFgiS8YZXv12B84kcUqTCUhICz8ptMOsL5NCIpsyKyHlgJNIPPqkkCXe1socdY22dYBhj0LBrp36GeWgawoFO2YyJoX6ZIPnSiyGpDCC8lHRbiKFikkhkU2ZJYUccBKJR9WtM5J1MGEXzqQkZI4YFfD3ol07Q+s+yteSaPTNZowzhWK9vuJdJOWjdnjvMSkksimzbSlkvVAR2Zm+0Qzfo9brMu4nAX8n2nkx7HkXtPsoEw3R6Lel0M9AcaZQLPqksC6SNYWSnk8mhUQ2pTi4ppBIBoZGM9w2xnLZ424I+DvRBnnO5MCN0AHueye6oGsKea6E4o6kfFRfbi7pDRkmhUQ2Zb6mkANOItGoCfo1hbxxYzVPwUDDmiJAvEGe/0yh98culnZY12Rn+vNWz/JRYUWyJUWDDd57TAqJbMqsfFTWCxWRnalOJoUiUR0OZF97veHvRDsviqqa7lXI7qNic/zYxAgwzhSK9vqKd5F0H23kmkIiEpXpTKGkFyoiO/PkFwBoWlvYMTfP4qMhAMi+TuykEDBvNtNgg3VNdhZ0ppDnSihtX1MoZ1WWs/VvISIZmXYflfRCRWRng/77f9CxXx4yBg9FYmam1YdDALKvN64rFLH0vinBOA+geV2hcV2TeIlsvDNsSaFvNMNZXaG409K1x5GUj8r63mNSSGRTZpvXy3qhIrIzd3o6+v/mXqsPg3Q69OiJlJ69UPXdEQBiXjsdJnsVsvuo2PQzhSwfFVeCx6M9jqR8VNbzyfJRIpsy36dQzgsVEVGs6bemcOkGiaJwtlI+ypJE8TgSm9cUsnxUXG3fvF7O88mkkMimzNcUynmhIiKKtf7z/hPJOd3RoXcf9Ljl51YfTgDDmsIfy0btMFthZ4byUXYfFZYzpQMUZ1MxZWNDg+F9FYwdbsiwfJTIpszXFMp5oSIiirUOPXvh5i+/Bbxe03J8q5ltS9HA7qNC058z3zYiABN40SiKAndaOmrKTwMAaqqrkZya2uLP2GE9r3hXOSKKDoVrComI2kJRFCETQsB4PW9obGxKMn5MNFSXC6rLFexHySL6mUI9WWeW7Cxt0GDtcfmxY61+fwPLR4lIVIoj8O0t64WKiIiM9Ndz/xI33gAUk8NtnhTys1k8fW6brj0+ffSoYWbXjB1Kt5kUEtkU9ykkIrIv/30KG2xQvmZ3QWcKeb6E03XiZLgzmrYIqq2pQcXp06bf521sxOmyMlyqqtL+TtaZXyaFRDalqFxTSERkV/7dRw0zhSni7atIwZNCfjaLx5GQgF6/vE3786mjRw1fb6ivx4nDh/H1//4v9peUoEHXpTQxq3PMjjOa2GiGyKbYfZSIyL70TUsa/JJCF5NCIQUrK+Rns5j63D4d+/66BABw7uRJ1F2+DEVVceLwYZw4dMiw1yTQlPQX/P4RJGZmWXG4bcakkMimuE8hEZF9BZSP2qAlvt053G7zv+f5ElLHfnnIGD4CZ7/aBq/Xi71ffYWqykpDqTYAJHTshH5z5+HK/5gDt26PQ9kwKSSyqYBGM6oKNSHBmoMhIqKoaql81MUkQ0j62V09rikUV5/bZ+DsV9sAABfOnjV8LSm7C/rf+zv0+X/T4UyWf3aeawqJbEr1W1PoTEqCoigWHQ0REUWTf/fRBq4pFF7QNYUsHxVW9yk/D0j4UvteiZF/fhk3b9uBfnPm2iIhBJgUEtmWf/koS0eJiOxDf01vaGgwbJ7NmUIxBZ0p5PkSlqtDKq5e+BgcScnIGDYc1/7tddz0f1vR+9bbbLcXKMtHiWzKPynkQnYiIvvQzzoFdB9lkiGkoGsKedNWaLl3/RpX/sfdtq+24kwhkU35b0nBhexERPbhZPmodIIlf8FmEEkcdk8IASaFRLbl32jGLjXvREQU2H3U0GiGM09CMltTqLrdUE26hRPFGpNCIpsKLB/lIIGIyC6cfmsKuSWF+MySQidnCUkQTAqJbCqgfJRJIRGRbehLDgPWFLJ8VEiqOzApdCTzs5nEwKSQyKYCu4/yzjERkV20WD7KmUIhqS4XFJVLO0hMTAqJbCqgfJSDBCIi29Bf0xsbGtCg25KC13sxKYoS0FSGN2xJFEwKiWzKv9EMy0eJiOwjYJ9C/Uwhy0eF5b+ukOv9SRRMColsyn9NIfcpJCKyj5bKR5loiEtNNO5VyPJREgWTQiKbClxTyEECEZFd+DeaYfdROQSWj/KzmcTApJDIprimkIjIvlSHA2pCgvbn+tpa7THLR8XlXz7KpJBEwaSQyKYCt6RgUkhEZCf6hKJOlxTyJqC4/GcKWT5KomBSSGRT/o1muMaEiMhe9GvF65kUSsHhNq4p5EwhiYJJIZFNcU0hEZG96a/rXq9Xe8ykUFwB3Ud5rkgQTAqJbIprComI7M0/wfDhmkJxBZSP8oYtCYJJIZFNcU0hEZG9BbuuM9EQV2CjGX42kxiYFBLZVMBMIQcJRES2YnZdV10uqE6nBUdDoWD5KImKSSGRTfk3muHdSCIiezFbK85rvdi4JQWJikkhkU35l4/ybiQRkb34r08DWBUiuoCZQibxJAgmhUQ2xe6jRET2ZpYAOngDUGj+iTzPF4mCSSGRTQWuKeQHDxGRnZjd7ONm6GLz36eQM7skCiaFRDYV2H2UHzxERHZitn7QkcxrvcgCZgp5w5YEwaSQyKb0jWYUhwNqQoKFR0NERNFmNsvEqhCxsfsoiYpJIZFN6ctHHYmJUBTFwqMhIqJoM9u8nkmh2PyrdljFQ6JgUkhkU4ra/PZmeQoRkf2wfFQ+gWsK+flMYmBSSGRT+jWFXMhORGQ/pt1HmWQILWCfQpaPkiCYFBLZlL581JnCbnRERHZj2n2USaHQDI1mFMW0BJjICkwKiWxK32iGd46JiOzHLAFkZYjY9EmgIzGJ6/1JGEwKiWzKMFPIQQIRke2YzTLxJqDYHO7mc8bPZhIJk0Iim9KvKWR3MyIi+zFLALnFgdgcSbqZQn42k0CYFBLZlGGmMJlrComI7Mas0ygTDbGldO+JhLQ0AED64KEWHw1RM6fVB0BE7cOdmak9TszuYuGREBFRe2D3Ufk4k5Nxw3vrUf7FZvSYOs3qwyHSMCkksqmuN0xAr1/ehuoTJ9Bv9q+tPhwiIooyQyfLH7F8VHyeAfnwDMi3+jCIDJgUEtmU6nJh1F9etvowiIionZhvScHyUSIKH9cUEhEREUmI5aNEFC1MComIiIgkZFY+atZ8hoioNUwKiYiIiCSkulxQXS7D35ltaE9E1BomhURERESS8t/Ano1miCgSTAqJiIiIJOW/hpD7FBJRJJgUEhEREUnKPwnkTCERRYJJIREREZGk/DuQmjWfISJqDZNCIiIiIknpy0dVtxuKyqEdEYVPyCvHtm3bkJeXhzvvvDPgay+//DKuu+46DBw4ELNmzcLhw4djf4BEREREAtA3mmHnUSKKlHBJ4cGDB/Hggw+afu3111/HCy+8gNraWuTm5mLLli2YM2cOLl++HOOjJCIiIrKevnyUTWaIKFLCJIUNDQ1YsmQJpk2bhtOnT5t+z/LlywEAy5Ytw5o1azBmzBiUlZVh48aNMTxSIiIiIjHoy0fZZIaIIiVMUlhVVYXi4mKkp6fjjjvuCPj6mTNncPToUSQnJ2PgwIEAgNGjRwMAtm/fHtNjJSIiIhKBfnbQmZxi4ZEQkcyESQpdLhceffRRbNiwAQUFBQFfP3HiBADA4/Fof+d77PsaERERUTzRrylk+SgRRcoZqydas2YNFixYEPTrmzZtwvTp04N+3bdu0OlsPmTf45qamlafPy0tGU6nI9TDjZqsrNSYP2e8Y8yji/GMPcY8dhjr2GPMoys1vZP2OKlTqhZfxjn2GHNrMO7REbOk0O12G2b5/DkcLSdsCQkJAJrWHvrU19cDABJ1d8mCOX++OoSjjK6srFSUl1+M+fPGM8Y8uhjP2GPMY4exjj3GPPpqdUO5Rqcb5eUXGWcLMObWYNzDFyyJjllSWFhYiMLCwoh/Pjs7GwBQUVGh/Z3vcdeuXdtyaERERERS0ncf9d/InogoVMKsKWxNdnY2unTpgqqqKpSWlgIAvvzySwDA0KFDrTw0IiIiIkvou486uE8hEUVImqQQAGbMmAEAmD17NoqKivDZZ58hJycH48ePt/jIiIiIiGIvffAQ08dEROGIWfloNMyePRt1dXV44403sH//fowaNQqPP/443G631YdGREREFHOZI0fjupVvorayEj2mFll9OEQkKcXr9XqtPohYsGIRKhe/xh5jHl2MZ+wx5rHDWMceYx4bjHPsMebWYNzDF6zRjFTlo0RERERERBRdTAqJiIiIiIjiGJNCIiIiIiKiOMakkIiIiIiIKI4xKSQiIiIiIopjTAqJiIiIiIjiGJNCIiIiIiKiOMakkIiIiIiIKI4xKSQiIiIiIopjTAqJiIiIiIjiGJNCIiIiIiKiOMakkIiIiIiIKI4xKSQiIiIiIopjTAqJiIiIiIjiGJNCIiIiIiKiOMakkIiIiIiIKI4xKSQiIiIiIopjitfr9Vp9EERERERERGQNzhQSERERERHFMSaFREREREREcYxJIRERERERURxjUkhERERERBTHmBQSERERERHFMSaFREREREREcSzuksLy8nIsWLAA1157LYYNG4YZM2bg22+/1b6+adMm/OxnP0NBQQEKCwvxySefGH5+586duOuuuzB8+HCMHTsWDz74IE6dOhXwPPX19Zg8eTLy8vJw8uTJVo+rpKQERUVFKCgowPjx4/Hee++Zft/Ro0dRUFCAiRMnhveLW0zWuB85cgT33XcfRo8ejVGjRmHu3Lk4dOhQZEGIIlnjefDgQdx9990YPHgwxo0bhyeffBLV1dWRBSHGZI253lNPPYW8vDwUFxeH/ovHmKxx3rx5M/Ly8gL++/zzzyMLRIzJGnev14tly5Zh/PjxGDRoEG677TaUlpZGFoQYkDHOxcXFpq9t0a8lPjLGHGgaf/zmN7/BqFGjMGrUKNxzzz34/vvvIwtCjMke85EjR2L06NF46qmnUFNTE1kQJBRX+xQ2NjbiV7/6FXbs2IFevXrB4/Hgm2++QXJyMt5//31UV1dj2rRpUBQFBQUFKC0thdfrxdq1a9GvXz+cOHECU6dORWVlJYYMGYLz58/jyJEjyMvLw7vvvouEhAQAQG1tLR5++GF8+OGHAIBPP/0UXbp0CXpcp0+fxk033YTq6mpcffXV2LdvHy5duoSlS5di3Lhx2vedOnUKs2fPxv79+9GjRw/861//at+ARYmscf/hhx8wdepUlJWVYcCAAfB6vdi7dy+ysrKwYcMGeDyeWIQvgKzxrK6uxqRJk1BeXo5BgwahvLwcx48fx8SJE7FkyZKYxC5SssZc76uvvsKMGTPQ2NiIe++9F/fdd1/7BSxCMsd52bJleP7555Gfn2/4t+6//37079+/HaPWdjLHffHixfjrX/8Kj8eDvn374uuvv0ZGRgY++ugjdOzYsf2DFwZZ4/zBBx/ggw8+MPzM5s2bUVNTg+LiYkyaNKn9gtZGssa8trYWhYWFOHr0KPr27YvExETs2rULffr0wfr16+F0OmMSv0jIGvOKigoUFhbizJkzGDFiBA4ePIhz585hwoQJePHFF2MSO6vF1Uzh7t27sWPHDuTk5OCDDz7A6tWrtRfI+vXr8dprr6G+vh4PPPAA3nrrLcybNw/19fVYtWoVAOAf//gHKisrMWXKFLz11ltYv349unTpgn379mHHjh0AgM8//xxFRUXaizQU7777Ln744QfcfvvtWL16NZ544gkAwIoVK7Tvef311zFlyhTs378/ihGJDVnjvnnzZpSVlWH48OFYt24d3n//fS2Z8b+rFUuyxvObb77BxYsXMXHiRLz99tt46623AAAbN25EVVVVNEMUdbLG3KempgYLFy5EY2NjlCLSPmSO8549ewAAv//97/HSSy9p/4meEALyxr2yshKvvPIKVFXFm2++iTfeeAOTJ0+Gy+XCzp07oxyltpM1zoWFhYbX9K233oqamhoUFRUJnRAC8sb84MGDOHr0KHJycvD3v/8da9aswYgRI3Do0CEcOHAgylGKLlljvm7dOpw5cwbTp0/HqlWrsG7dOiQnJ2Pjxo3YtWtXlKMkJnFvNbSDzp07Y9GiRXC73dpdlszMTADA+fPnUVJSAgAYOXIkAGD06NEAgO3btwMArr32WqSlpaFv374AgISEBHTq1AknT57EuXPnAACrVq3C4cOH8eCDD2LRokUhHVdrzws03Q11OBy4++67sXTp0ggjYA1Z437VVVfh+eefR1ZWlvYzGRkZ2nFbRdZ4jhkzBtu3b8elS5cAAGfOnAEApKSkaHf+RCVrzH0WL16MI0eOYMCAAVryIiKZ47x7924ATTc5Vq9ejdzcXMycORMdOnSIJBQxJWvct23bhrq6OvTu3Rt9+vQBAPzlL3+JNAztTtY46126dAlPPPEEOnTogP/6r/8KMwKxJ2vMPR4PFEUBAO3/Xq8XiqIIf02RNebfffcdACA3NxcAkJ2djby8PGzfvh1btmxBfn5+RPGQSdwlhYWFhdqfz507p91lGDx4sFZb7CsL9P3fV6fcr18/9OvXT/v5bdu2Yd++fVBVFVdffTUA4MYbb8T8+fPRu3fvkF+ovn/f/3mrqqpw8eJFpKam4r777sPUqVOxb98+KZNCGePevXt3dO/eXfv+w4cP47PPPtOO2yqyxjM1NRWqqiIlJQXPPPMM3n77bbjdbjz55JNwuVzhByKGZI55SUkJVq5cicmTJyM3N1f4pFDGODudThw5cgQA8Nprr2k/9/HHH+Odd97h6xvtE3ff+qqUlBQ89NBD2LRpE/r06YOFCxdi2LBhYUah/cka59TUVO1716xZg2PHjmHOnDnaTVKRyRrzrl27Yv78+Vi8eDGmTJmilY/OnTsXOTk54QcihmSOOQBtTXJ1dTWOHj0KADh+/HjIv7/M4qp8VO/ChQuYM2cOzp49i759+2Ly5MnaYlLfB7jvDodvZkNvz549uPfeewEARUVFWh3zlClT0Lt377COxfe8vufTDyB8zz1r1izL1rBFk2xx9zl+/DjmzJmD2tpaXHPNNRgyZEhYz9VeZI3npk2bUF1dDY/Hg4aGhrCex2oyxfzy5ct45JFHkJqaisceeyysf9tqMsX5woULuOGGGzBhwgR8/PHH2LhxI3r16oU9e/bg7bffDuu5rCZT3H3PX1paiq1bt2LAgAHYtWsX5syZE1LTCSvJFGcfr9eLVatWQVVVTJ8+PaznEIFsMa+vrwcAHDhwAKWlpUhMTNRm3GQhU8ynTp2K5ORkvPPOO7jttttw88034+zZs4aftbu4min0qaiowF133YVdu3ahU6dO+POf/wyXywW3241Lly5pb0Tf/5OSkgw/v2vXLtx1112oqKhAfn4+HnnkkZCfe+XKldiyZYv25xkzZsDtdgOANjiuq6vTvu7/3DKTNe5lZWWYOXMmjh07hm7duuG5554L8zdvH7LGE2i621xeXo7p06dj/vz56NWrFwYOHBjGb28N2WL+wgsv4PDhw3j22WelGkzIFufU1FS89NJLhn/n1ltvxXPPPYeSkhLccccdYfz21pEt7r6vO51OvPfee8jOzsYjjzyC9957D++//z7mzp0bQRTan2xx9vn2229x6NAhDBkyRJtVkYVsMS8pKcGiRYvQs2dPvPrqq/B6vZg9ezaeeuopdO/eHT/5yU8iikMsyRbz1NRU/O1vf8Mf//hH7N+/H2PGjEFubi4++eQTW43FWxJ3M4VVVVWYPXs2du3aBY/Hg+XLl2v1w507dwbQtHgdaHpBAzB0Mzpw4IDhRfrqq68iJSUl5OffvXs3Nm3apP134sSJoM/boUMHQ9mGzGSN++nTpzFr1iwcO3YMOTk5WLlypfZzVpI1nufOnUNlZSU6duyIvn37YsyYMfB6vdi6dWvkwYgRGWP+z3/+EwDwhz/8AXl5eVqX1yVLluCnP/1phJFoXzLGuaqqCv/+978N29X41sn6BjyikzHuvsTE4/EgOzsbALSbS6LOFMoYZ5/NmzcDQEBnY9HJGPOvv/4aADBhwgTk5OSge/fumDBhAoDm8yAyGWMONJW3vvPOO/j6669RXFyM2tpaAECPHj0ijIRc4i4pXLhwIUpLS5GamooVK1bgqquu0r7mq1X2DVC//PJLANDWJlRVVeG3v/0tKioq0L9/fyxfvjzsks5nn30W+/bt0/4rKioK+rxDhw6N/BcVjIxxb2howP3334+ysjJ07doVq1atEqaWX8Z4rlixAtdcc43W8auurk5b3ybDLJaMMR87dizGjx+v/ecrt+nduzfGjh0bSRjanYxx/vzzz3HLLbdg3rx5qK2thdfrxaeffgrA2vXH4ZAx7sOHD4eqqjh79qzWmfvgwYMAxB3EyRhnH9/XZajq0JMx5p06dQLQtF+fb+e4vXv3AoCh+Z2oZIz5F198gfHjx+P+++8H0LTX4jfffAOgqflNPIirfQp37NiBX/7ylwCAbt26GVqFjx07Fvn5+bj99tvhcDi0vVMAYO3atcjNzcXSpUvxpz/9CQBQUFCg3ZkEgDvvvFPraOSTl5cHoPW9U8rKynDzzTfj8uXLGDRoEPbu3YtLly5h2bJluO666wzfu3XrVsycOVOqfQpljfuHH36IBx54AABw5ZVXomfPntrP3nLLLbjpppvaEpaIyRrP8vJyTJ06FWfPnsXVV1+NCxcu4MiRI+jVqxfWrVsndHmGrDH3V1xcjCVLlgi7T6Gscb58+TKmTZum7SGbkpKCPXv24IorrsCGDRvCusNtBVnjDgCPPfYYVq9ejY4dO6J///7Ytm0bPB4PPvzwQ6Snp0chOtEjc5yBplmr77//Hp988ok05aOyxly/Z16/fv2gqir27t2L1NRUbNiwocV/22oyx3zSpEmorKzE0KFD8f3336O8vBzTpk3D008/HZ3gCC6u1hR+/PHH2uNjx47h2LFj2p/T0tJwxx13oLi4GIsXL0ZpaSl69OiB+fPna1Pe+iSstLRUeyEDwOTJkyM+rpycHLzyyit4+umnUVpais6dO+Oee+4xHdTJSNa465/3wIEDhr2BCgoKIn7eOYfaawAAARhJREFUtpI1nllZWVi5ciWef/55lJSUwO12o6ioCPPnzxc6IQTkjblsZI2z2+3GsmXL8Nxzz+GLL77AmTNncMMNN2DhwoXCJ4SAvHEHgEcffRQdO3bE2rVrsXv3bowdOxYLFiwQLiEE5I4zAK3pRlpaWsTPFWuyxtzj8eDNN9/EokWLsHXrVtTX12Ps2LGYP3++0AkhIHfMX3rpJTzzzDPYtWsX0tPTMW/ePNxzzz0RP6ds4mqmkIiIiIiIiIzibk0hERERERERNWNSSEREREREFMeYFBIREREREcUxJoVERERERERxjEkhERERERFRHGNSSEREREREFMeYFBIREREREcUxJoVERERERERxjEkhERERERFRHPv/stcXkQajLW4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "tp = 2.1/100\n", + "pf = pd.concat((low_portfolio, portfolio_return_MV,high_portfolio), axis=1).dropna()-spread\n", + "pf.columns = [\"low\", \"Return\", \"high\"]\n", + "\n", + "pf[\"Return\"] = np.where(pf[\"high\"].values>tp, tp, pf[\"Return\"].values)\n", + "pf[\"Return\"] = np.where(pf[\"Return\"].values>tp, tp, pf[\"Return\"].values)\n", + "\n", + "backtest_dynamic_portfolio(pf[\"Return\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 16.3.2. Optimal stop loss" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sharpe
1.000000-1.375686
1.310345-0.930839
1.620690-0.465171
1.931034-0.290011
2.2413790.615358
2.5517241.055019
2.8620691.367951
3.1724141.349833
3.4827591.653049
3.7931032.049993
4.1034482.301406
4.4137932.468525
4.7241382.327854
5.0344832.891617
5.3448282.980758
5.6551722.874903
5.9655172.937626
6.2758622.865577
6.5862072.793819
6.8965522.722424
7.2068972.651456
7.5172412.651950
7.8275862.705142
8.1379313.138970
8.4482763.348709
8.7586213.326903
9.0689663.304941
9.3793103.282833
9.6896553.444431
10.0000003.432601
\n", + "
" + ], + "text/plain": [ + " Sharpe\n", + "1.000000 -1.375686\n", + "1.310345 -0.930839\n", + "1.620690 -0.465171\n", + "1.931034 -0.290011\n", + "2.241379 0.615358\n", + "2.551724 1.055019\n", + "2.862069 1.367951\n", + "3.172414 1.349833\n", + "3.482759 1.653049\n", + "3.793103 2.049993\n", + "4.103448 2.301406\n", + "4.413793 2.468525\n", + "4.724138 2.327854\n", + "5.034483 2.891617\n", + "5.344828 2.980758\n", + "5.655172 2.874903\n", + "5.965517 2.937626\n", + "6.275862 2.865577\n", + "6.586207 2.793819\n", + "6.896552 2.722424\n", + "7.206897 2.651456\n", + "7.517241 2.651950\n", + "7.827586 2.705142\n", + "8.137931 3.138970\n", + "8.448276 3.348709\n", + "8.758621 3.326903\n", + "9.068966 3.304941\n", + "9.379310 3.282833\n", + "9.689655 3.444431\n", + "10.000000 3.432601" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def find_best_sl(sl):\n", + " sl = sl/100\n", + " \n", + " # Create the portfolio\n", + " pf = pd.concat((low_portfolio, portfolio_return_test,high_portfolio), axis=1).dropna()-spread\n", + " pf.columns = [\"low\", \"Return\", \"high\"]\n", + "\n", + " # Apply the tp\n", + " pf[\"Return\"] = np.where(pf[\"low\"].values<-sl, -sl, pf[\"Return\"].values)\n", + " pf[\"Return\"] = np.where(pf[\"Return\"].values<-sl, -sl, pf[\"Return\"].values)\n", + " \n", + " # Return sharpe raatio\n", + " return np.sqrt(252)*pf[\"Return\"].mean()/pf[\"Return\"].std()\n", + "\n", + "pd.DataFrame([find_best_sl(sl) for sl in np.linspace(1,10,30)], index=np.linspace(1,10,30), columns=[\"Sharpe\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[*********************100%***********************] 1 of 1 completed\n", + "\n", + " -----------------------------------------------------------------------------\n", + " Beta: -0.141 \t Alpha: 12.1 %\t Sharpe: 0.211 \t Sortino: 0.308\n", + " -----------------------------------------------------------------------------\n", + " VaR: 85.45 %\t cVaR: 99.35 % \t VaR/cVaR: 1.163 \t drawdown: 22.16 %\n", + " -----------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAAHnCAYAAAAM6DS1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gbVdbGX3XJttx7j+PEjtN7IQlpQCoEQg0t9BJgYZdl4cvCLn3ZpS0lu/Sl1xACKSSkkl6d4hQnce/dlou65vtD9uiOJNuyLcmyfX7Pkyczo5nR1Vhl3nvOeY+I4zgOBEEQBEEQBEEQRL9E3NsDIAiCIAiCIAiCIDwHiT6CIAiCIAiCIIh+DIk+giAIgiAIgiCIfgyJPoIgCIIgCIIgiH4MiT6CIAiCIAiCIIh+DIk+giAIgiAIgiCIfgyJPoIgiAGOwWDARx99hKVLl2Ls2LGYNm0a7r//fpw6dUqwX1paGtatW+f0HOxjBw8eRFpaGkaMGIHGxkaHfSsrKzFs2DBkZGTw22699VasWrXK6bntH2tvHE8++STS0tLa/Tdnzhx+36qqKmRkZGDhwoUOz9XROW699Vb+uVasWMEvz5gxAxaLxen4n3rqKSxZsqTT848dO9bp8e0dN3LkSMydOxdvvPEGzGYzv++cOXPafY7Fixd36XXOmTMHq1evdjom9rHi4mKHc6Snp2PcuHG44YYbsHfvXv64tvfHa6+95nDOtvMcOXKk3WtBEARBdB1pbw+AIAiC6D20Wi1uu+021NXV4ZFHHsHo0aPR3NyMzz77DDfffDPef/99TJkypdvn37ZtG5YuXSrY9uuvv4LjOIhEoh6OXsiqVavwpz/9CQBQVlaG6667DqtXr8aoUaMAABKJhN933bp1SEhIQE5ODo4cOYIJEyYAAN5++20YjUYAQGZmJh5++GGsXbsWERERAACZTObwvMuWLcPatWtx+PBhTJ48WfCYTqfD5s2b8cgjj/DbFi9ejCeffNLhPGJxx/Ow9sc1NjZi8+bNePPNN+Hv7497772Xf+yee+7B7bff7nAOqVTa7dfpCuz15jgOpaWleP311/HAAw9g06ZNiIuL4/f96KOPcMUVV2DEiBHdei6CIAjCdUj0EQRBDGDefPNN5OfnY/369YiKiuK3/+Mf/0BNTQ2ef/55rF+/vlsCbcqUKdi8ebOD6Nu0aRPGjx+PzMzMng5fgFqthlqtBgDo9XoAQFBQEC9kWH766ScsXLgQO3fuxLfffsuLvuDgYH6foKAgAEBoaKjTc7QxYcIEJCYmYsOGDQ6ib+vWrTAYDLjyyiv5bUqlssPztYf9cREREXjggQdw4MABbNq0SSD6/Pz8OnyO7rxOV7C/3pGRkXjllVcwa9YsbNu2Dbfddhv/WGxsLJ566in8+OOP3RaZBEEQhGtQeidBEMQAxWAw4Mcff8S1114rEHxtPPPMM3jttde6HZGbP38+9u7di6amJn5bRUUFsrKycNlll3V73D3l5MmTuHDhAqZNm4bLL78cmzdvRkNDQ7fPJxKJcPXVV2Pz5s189KyNdevWYfbs2QgNDe3psNtFLpfzETxfRC6XA4DDGP/2t78hLy8P//3vf3tjWARBEAMKEn0EQRADlKKiImg0GowePdrp4wkJCUhPT+/2+adMmQKVSoVdu3bx2zZt2oRp06YhMDCw2+ftKWvXrkV4eDjGjx+PBQsWQK/X46effurROa+++mpoNBpB7VpNTQ327duHZcuW9XDEzjEYDFi3bh327t3L1wz6Gm3RYj8/P8ydO1fw2JAhQ/DAAw/gvffeQ3Z2di+NkCAIYmDgu1ODBEEQhEfRaDQA4DEBJpVKMW/ePGzevBmLFi0CYBV9N910U7umJ57GYDBg48aNWLhwIcRiMZKTkzF8+HB89913TmvgXCUmJgZTp07F+vXrMWvWLADAL7/8gpCQEMyYMUOw708//YSNGzc6nOO2227DY4891u5z2B+n0+mQlJSEp556Crfccotg39WrV+ODDz5wOMeTTz6JG264oSsvrUvcddddfG2i2WwGx3EYP348vvzyS6fR5Pvuuw+//fYbnnrqKXz//fceGxdBEMRAh0QfQRDEACUkJAQAUF9f79L+UqkUHMc5bG8TcM7qsubPn4+HH34YWq0W9fX1OHv2LObNm4ctW7Y4nLs9IWixWNyWvrht2zbU19dj/vz5/LYFCxbg1VdfFRi6dIdrrrkGTz/9NLRaLVQqFX7++WcsXbpUYCADAPPmzcMf//hHh+M7E99tx1ksFhw5cgSvvPIK5s2bxzttstx8881Yvny5w/auppl29e/y8ssvY/jw4dBqtfj444+xf/9+PPjggwKnVvvzv/TSS7juuuvw0UcfObipEgRBEO6BRB9BEMQAJTExEWFhYThx4oTTm+2DBw/ik08+wXPPPYfIyEgEBgYK6vPaaKuHazMEYZk6dSoUCgV27dqFsrIyzJgxAwEBAQ77BQYGorm52ek4NRqNwHikJ6xduxYAcMcdd/Db2oTsd9991yPRd9lll+HZZ5/Fjh07kJaWhtOnTzttSxAQEICkpKQun589btCgQVCr1fjDH/6AwMBAgYkLYP1bdOc57Ono79LQ0ODwd4mMjOSf95VXXsEDDzyA+++/Hz/++COSk5OdnicjIwN333033nnnnR6lExMEQRDtQzV9BEEQAxSxWIyrr74aa9asQUVFheAxjuPw/vvvIy8vj3djHD58OI4ePepwnqNHj0IsFjuN5kilUsydOxdbtmzB5s2b243kDB8+HCdPnnQwQqmtrUVeXh5GjhzZ3ZfJU1VVhT179mD58uX46aef+H/r1q3D9OnT8euvv/bI0EWhUGDhwoX49ddfsX79eowbNw6DBg3q8bjbY/78+Vi8eDHeeustj9XEDR8+HMeOHXPYfu7cObS0tHT4dxGJRHjhhRcgk8nw5JNPOo0St7Fy5UokJCTgueeec8u4CYIgCCEk+giCIAYwDz74IOLj47F8+XKsX78eRUVFyMzMxCOPPILDhw/jxRdf5N0777zzTmzevBlvvPEGcnJykJeXh59//hnPPfccli9fzqeL2jN//nzs2LED2dnZmD17ttN9li1bBq1Wi8ceewwnT55EcXEx9u7diwceeACpqal8nVwb2dnZ+P333wX/zp071+FrXbduHTiOw913342hQ4cK/t19993Q6/XtNp93lWXLlmH37t3YtGlTuwYuOp0OVVVVTv+ZTKYuPd+qVavg7++Pp59+WpCG2dLS0u5zdCS+7Ln11ltx5swZPPPMMzh37hwKCwuxdetWPPbYY5g9ezaGDRvW4fHh4eF44oknkJmZia+++qrd/eRyOV566SWUlJS4PDaCIAjCdSi9kyAIYgDj7++PL774Ah988AHeeecdlJWVQa1WY/To0fj2228FN/XTpk3De++9h/fffx9fffUV9Ho94uPjcfvttwvSJe2ZOnUq5HI5Jk+eDD8/P6f7hIWF4dtvv8Wbb76J+++/HxqNBuHh4ZgzZw4effRRh9qxjz76CB999JFg25IlS/Dqq6+2O46ffvoJs2bNEjQIZ8eYnp6O7777TtBLrquMGjUKcXFxKCkpwYIFC5zus379eqxfv97pYz/88EOXopqhoaF46qmn8Je//AVffPEFP/YPPvjAqZELAOzfv9/l2r7U1FR8+eWXeOedd3D77bejpaUF0dHRWLhwIVauXOnSOZYtW4ZffvkFr7/+uoODJ8vo0aOxYsUKfPzxxy6dlyAIgnAdEdeVKT+CIAiCIAiCIAiiT0HpnQRBEARBEARBEP0YEn0EQRAEQRAEQRD9GBJ9BEEQBEEQBEEQ/RgSfQRBEARBEARBEP0YEn0EQRAEQRAEQRD9mH7RsqGqqtHrzxkS4oe6uhavP+9Ah667e6Hr2TvQdfcedK29D11z70HX2vvQNe8d6Lq7RkSEut3HKNLXTaRSSW8PYUBC19290PXsHei6ew+61t6Hrrn3oGvtfeia9w503XsOiT6CIAiCIAiCIIh+DIk+giAIgiAIgiCIfgyJPoIgCIIgCIIgiH4MiT6CIAiCIAiCIIh+DIk+giAIgiAIgiCIfgyJPoIgCIIgCIIgiH4MiT6CIAiCIAiCIIh+DIk+D8JxHN5999+49tolmDdvOu69dwXOnTuLmppqrF37Q5fOVVJSjF9/3eChkRIEQRAEQRAE0V8h0edBDh06gK+//hyPP/4Uvv76RwQEBODll5/De++9i02b1nfpXP/4x/PYv3+Ph0ZKEARBEARBEER/RerNJ6uqqsLrr7+O3bt3Q6vVIiMjA48//jhGjx4NANi2bRtee+01FBYWIikpCX/+858xa9asHj/vf7eexqsbj6NZb+rxudoIUMrwpwWjcf+84e3u4+8fAAD4+uvPMXv2PDz++FMoLS3Bo48+CAB46KF7sXDhErz++isYMmQodDodXnzxX3j66SeRm3sRAQFqPPDAwwCAzMyjAAC5XIE//OFxvPji33HkyCEkJCTgySefxtCh6di/fw9ee+0VGI1GTJ48FRs3/oIvv/wBt956PZ599iXMnj0P//73azh8+AC++OJ7t10LgiAIgiAIgiB8F69F+iwWCx588EH8+OOP8Pf3R2pqKg4dOoQVK1agsLAQ586dwyOPPILCwkKMGDECBQUFWLlyJc6fP9/j5/7v9tNuFXwA0KQz4r/bT3e4z4gRI/HEE6tQUVGBV199GTfcsBRHjx7GvHlXID09A//855sAAJ1Oh2uuuR4vv/waKirKMW3adHzzzVoMGTIUP/20BpddNh8jR47GpZfOxp/+9CQ+//wT5ORcwP/+9xUmT56GF198FhaLBS+88DeMGTMO77//P9TU1AAAoqNjMGHCZGzduhkWiwU7dmzFwoVL3HotCIIgCIIgCILwXbwm+s6cOYOTJ08iPj4eGzZswLfffosFCxagpaUFv/zyCz7//HOYTCY89thj+Oabb7By5UqYTCZ88cUXPX7u++cMh7/CvUHNAKUM989pP8oHABcvXkBwcAi++eZH/PDDeixadCU+//wTaDQaiMVi+Pn58ftOmXIJoqNj4O/vj5MnT+Cf/3wJtbW1MBgMkMlkkEgkkEqlUCqVyMm5gIqKctx11y344YdvkJNzAZWVFWhoaMDMmbMRFRWN6dNn8ue+8sql2L9/H/bt2426ulrMn7/IrdeCIAiCIAiCIAjfxWvpnZGRkXj99dehUCgglVqfNjw8HABQV1eHY8eOAQAmTZoEAJgyZQoAIDMzs8fPff+84R2mYXaHiAg1qqoaO9zn/PlzeOWVF/D8869g+PAR8Pf3h0KhQEREBKqqKlBXV8vvK5fLAQCffPIhDAYdnnjiOfzjH89Do9EAACQSCZqamtHQUI+kpGQUFRXi8cefQlbWSTQ0NCA0NAxBQUHYs2cX0tLSsXv3Tv7c06dfioCAALz66j8wdeolCA0Nc+u1IAiCIAiCIAjCd/FapC8yMhKLFi3CvHnzAAC1tbXYuHEjAGDMmDEoLy8HAAQHBwv+b9veF1mwYDFuuulWvPbaP7Bs2WIcOLAPf//7i5g0aQrKy8vx/PPPOBwzb94VKCwswD333A6xWIyqqkqYTCZMmXIJTpw4hv/+9x3cfvtdGDx4CFategI//7wWaWnpkMvl+Otfn8XRo4fxwAN38VFEsVgMqVSKBQsWo7q6CosWXenty0AQBEEQBEEQRC8i4jiO8/aTajQarFixAqdPn8bgwYOxbt06jBo1ChaLBbt27UJ0dDSKioowb948yGQyZGVldXg+k8kMqVTipdH7Ln/7298QFxeHJUuW4D//+Q+2bNmCAwcOoLGxES+99BJ2796NnTt38pFWgiAIgiAIgiD6P16/+6+vr8edd96J06dPIygoCP/+978hk8mgUCig1WphMlkNV9r+V6lUnZ6zrq7Fo2N2hivpnd4mOXkIPvnkA7z11luIiIjEn/70JKqqGnHddVdBq23B448/ibo6bW8Ps0f44nXvy9D17B3ounsPutbeh66596Br7X3omvcOdN1dIyJC3e5jXhV9zc3NuOuuu3D69GkEBwfjk08+wZAhQwBY0z8LCgrQ0NCA+Ph41NfXAwCio6O9OcQ+zeLFV2Hx4qsctn///bpeGA1BEARBEIRv8fHOs9h6ugQ3TU3FknHJvT0cgvAaXm3OvmrVKmRlZUGtVuPTTz9FRkYG/9ioUaMAAAcPHgQAHDp0CAAwfvx4bw6RIAiCIAiC6IdUNmjx9A+HseNMCe79aBfu+2gXapp0vT0sgvAKXov0nTx5Eps2bQIABAYG4q233uIfu+SSS3DLLbdgw4YNeP3117FlyxZkZWVBJpPh5ptv9tYQCYIgCIIgiH5KWUMLLIyVxc/H8rH/Qjk+uHsWJqdG9eLICMLzeC3St2XLFn65pKQE27Zt4/+dOXMGY8aMwdtvv42kpCRkZWUhMTERb7/9Np/+SRAEQRAEQRDdpVlndNhW1ajDX78/1AujIQjv4rVI3+OPP47HH3+8w33mzZvHt3QgCIIgCIIgCHfRpLeJvoSwABTVNAEAcis14DgOIpGot4ZGuEiTUQ+NQYdoPzXEIq9WqfV5yLvfgxw7dgSPPHI/v65UKjFr1lw8+eTTbmmb8NBD9yIsLAzPPvtyj8/ljI0bf8FLLz2Lbdv2QqFQeOQ5CIIgCIIgvEETE+kblxyOKo0WOqMZLQYTGnVGBKrkvTg6ojOOV5dg+W+fQWPUQymRIjUoHCNDY3F96hhMiEgg0d4JJPq8wAcffIr4+EScPn0Kjz/+CGbNmoPp0y/t7WERhNcwmS04lFuJkfGhUNOPKkEQBNELsKLPXyFDTLAf8lrbAJTVt5Do82Ea9Fo8+Pv30Bj1AACd2YSs2nJk1Zbj64vHkB4cidvSJuKalFEIkFGgwhkDQvS9d3ofXj+xE80mg9vOGSBT4LFRl+K+4dM63dfPzx9qtRqBgYEAAJXKDz/88A0+++wTAMCNN96C5ctvxcaNv+DNN1/F/PkLsWXLJqSkpOKVV96AUqnEq6++jF27dkAqlWL58tuwfPmtAIDy8nLcc89tKC4uxi233I6bb74dDz10LxQKJaqrK1FbW4tbb12BzZs3oaKiDHfddT+uvvparF+/Dh98sBoNDQ1ISRmMl156DaWlxXjkkfsxfvwk5Ofn4I477gUA6PU6/OEPD8BsNuPNN9+Fv3+A264jMTB46tuD+GLveSSHq7H7maWQSiglgyAIgvAuLXoTv+yvkCKaEX3l9S1IiwnupZERBrMJa/NOwcJxuCZlFBQSm0ThOA4Pb12Dwqb6do8/V1+J/zu4AS8e/Q3LUkbh1rSJGBZC5jwsA0L0vX9mn1sFH2DNKX7/zD6XRN8999wOkQhoaWnB6NFjERQUjH//+zX8/e8vIi4uHg8+eDfGj58IAGhpaUZq6lBMmzYDjz/+CA4d2o/6+nps374Vq1d/gAsXzmPPnt+h1VqbrFdVVeKNN97Ft99+if/970PcfPPtAID8/Fy88ca7+Mc/nscHH/wX77zzPr766lN8+eWnuPrqa6HRaLBy5WMYNCgF99xzGw4c2IPExGQAwMSJk/CXv6zC8ePHAADPPPMUmpqasHr1hyT4iG6x+WQhACC/uhE5lRr6YSUIgiC8DlvTF6CUITrIj18vq2/ujSERAC7UV+GRPT/iVG0ZAOCDM/vx6rSrMC4iHgDwQ+4JfHsuk99/9YxrMT1mEM7WV+Kn3FP4Kf8UtCbr37bZZMBn54/gs/NHMDEiAbemTcSipAyBiByoDIgrcG/GNI9E+u7N6FzwAcBLL/0LsbFxqKqqwqpVj+Pvf/8/cByHf/7zRYhEIhiNRmRlnYBKZf3yueyy+RCLrXnJer0eeXm5iI+Px5AhaRgyJA0LFy7hzz18+EgkJSVj6NA0/PzzWn57RsYIJCYmIS4uHgaDAWlp6UhMTEZmplXISaUSrF37PcLDIyCVSmEw2K7N5MlTERsbx4u+06ez4OengoSiM0Q3MJktqGb6IDW0uHcChiAIgiBcgU3vDGhN72yjrL6lN4Y0oLFwFnxy7hBeOrYVerMtCnu+oQpXbfoQl8amokrbhPMNlfxjN6aOxZWDRgAALokehEuiB+GvEy7DmpyT+Pz8YVxoqOb3PVxVhMNVRfj74V9xQ+pY3DJ0PJLUod57gT7GgBB99w2f5lJEritERKhR1ZoS0Bn+/v5QqwNhMpkgkUiRmJiM/Pw83HPPA4iKisbWrZsxatQYXLhwHgAgFgvFVUrKYPz663pkZ59DQUE+/ve/D/DOO++37uu8aJXdbn++pqYmvPXW63j44ceQnp6BPXt2gWP61sjlwlzoTz75Eo899hA+/vh9PPzwH116zQTRRnWjDszbC/Ut+t4bDEEQBDFgYSN9/koZ5FIJv15Oos+rlDY34E/71mF3WS6/TSGWQCIWo8VkBAdgZ+lFwTGpQeF4buICh3MFyVW4c9hk3JE+Cfsr8vF59hFsKjwLE2cBANTqW/Cf03vx39N7MTtuCP5v3DykD8DUzwEh+nqbe+6xplxKJBKkpQ3DypV/wJgxY/Hll5+hsVGDGTNmISlpEC/67FmyZCnOnTuDP/zhfshkctx8820IDQ3r9nj8/f0xd+7leO+91UhISEBUVDRKS0swZEia0/0jIiLx0EN/wDPPPIVFi65CSsrgbj83MfCo1GgF6/UU6SMIgiB6gWa7SJ8igBF9DST6vMVPeaew6uAGNBhsWUAZIVF4a/o18JfJ8cT+XwRiEAAGBYXhvzOvg5+sfbMdkUiEadGDMC16ECq1jfj6wjF8ef4oSls0AAAOwPaSC/i9NAcPjrgEj4yaCaVE5pHX6IuIODbE00dxNeLmTroS6SPcB1139+KN67k1qxi3/mcbv/7ctRNxz+wMjz6nr0PvY+9B19r70DX3HnStu8at/9mGrVnFAID/3Tcb4WoVFr+6EQAwMiEUW55c0tHhAOia94R6vRarDm7AuvwsfpsIwIMjpuNPo2dB3lp3x3EcDlQUoKS5HsnqUKQEhiEtIbpb191kMWN7yQV8ln0Eu0ovghU9KYFh+Hzuzf0q5TMiQt3uYxTpIwjCo1TYzZ7WN1OkjyAIgvA+zXphy4ZoqunzGr+X5uCP+35CeYtNuCUGBOPNS67GpKgkwb4ikQhTo5Pd8rxSsQSXJ6Tj8oR0ZNdX4sn9v+BwVREAIFdTg7/s/wXfXH67W57L1yFnDoIgPIp9emcD1fQRBEEQvYDAyEUpQ2SgCm39vKsbdTCYzL00sv7NwYoC3Lz1c4HguzF1LLYsecBB8HmStOBIrJl/B16avAji1j/8nvI8nG51De3vkOgjCMKj2Iu+OqrpIwiCIHqBZkGfPhlkEjEiA1X8tooGrbPDiB7yWfZhPq0yTOmHj2bdiFenXdUrTdTFIjFuS5uIRYm2MpP3z+z3+jh6AxJ9BEF4FPsfUYr0EUTvYLFw+Of6TDz5zQHUMm1UCGKgIIz0WSuc2F59ZObifjiOw8HKAn79f3OW44rE9F4ckZV7h0/ll9flZaGs1eylP0OijyAIj0LunQThG2w5VYQ3Np3Ep7uz8b/fs3t7OAThdez79AEQ1PVR2wb3U9LcwKd1+kvlGBka08sjsjI2PB6TIhMBACbOgk/OHuzlEXkeEn0EQXgUR9FHkT6C6A2yy+r55cIach8kBhYWC4cWgy29009hjfSxDdpL65u9Pq7+RHZ9JW7Y8ike2PU9tCarwD5UWcg/Pj4iHlKxpL3Dvc69GbZo35cXjqLZ2L/vT0j0EQThMTiOQyW5dxKET1DVaEvp1BnJsIIYWLCCTyWXQiK23gIL0jsp0tdt8jQ1uOm3z7C3PA+/FJzGJ+eskbPDjOib2BpZ8xUui09Dcmu7hgaDDt9czOzlEXkWEn0EQXiMBq0BepNFuK1Fj37QHpQg+hzVjbaoO4k+YqAhTO20dSyLofTOHlPWosHyrZ+jUtvEb1ubdwqAMNI3ycdEn0Qsxj3DpvDr6/KyOti770OijyAIj+HMCc1k4QQOagRBeIcqjS3SpyfRRwwwmvTCdg1txAT788vUq6/rVGmbcPNvn6OoqV6w/WxdBQ5WFCC7vhIAIBGJMDY8vhdG2DFLkoejtWsHTtSUQGPovyZXJPoIgvAYVRrn9tdU10cQ3qeKifTpqR8ZMcBgI33+jOgTGLmQe2eX2FV6EZf/8h+cb6gCAEhFYqQFR/KPP3NoE788IjQGfjK518fYGaFKf4xoNZcxcxz2l+f37oA8CIk+giA8Rns9j6iujyC8TzVb02cg0UcMLJr1js6dgGN6J5UfdI7RYsbzR7bg5q1foEpnNb8RAXhz+tX4y9g5/H6n68r5ZV9L7WSZEZPCL+8uy+3FkXgWEn0EQXiMSo3zWdMGLUX6CMKbGM0W1DXbPncU6SMGGsLG7LaavgCljE/31JssqG2m36fOeObQJrx3Zh+/HqH0xxfzbsHSQSMxKzYVQXKlwzG+ZuLCIhR9Ob04Es9Coo8gCI9h366hDerVRxDehTVxAaimjxh4CBuzywSP9XcHT53Z2PlOLrKh4Aw+P3+EX58TNwS/LXkAl8amAgDkEikWJw13OM6XRd/EqEQoJNaJgBxNDUqbG3p5RJ5B2vkuBEEQ3YNN75RLxTC0OnnW00wqQXiVSo3QnEBLoo8YYAhq+hRC0Rcb4oeLFdYb/fL6FgyPD/Xq2NyF3mzCxYYqnK2r4P+dq69EpbYJkyIT8eW8W6GSyjo/UTuUNNXjif0/8+uLkzLwn5nXQSQSCfa7OmUkvrxwlF8fpA5FhCqg28/raZQSGSZFJvKpnbvLcnFD6th297dwFoggcnjdvg6JPoIgPAYb6UuJDMS50noAQANF+gjCq1RrKNJHDGya23HvBISRvrI+ZOZSp2vBtzmZOFVThrN1FcjRVMPcTk3iocpCrC84jesGj+nWc5ksZjy0ew0aWt0t4/2D8MrUJU6Fz6TIRMT6BaK0RcOv+zozYlI6FH0cx+F0bTl+yD2Bn/JOoU7fgn9PvwZLB43sjeF2CxJ9BEF4DDbSNzQ6mBd9deTeSRBepco+vZNq+ogBRpPOVtMXYBfpYx08y+r6hug7WlWE+3Z9h/KWRpeP+T7neLdF35snf8fhqiIA1vYL78xYhiC5yum+YpEYN6SOxRsndwEAZscN6dZzehO2rm9PWS4snAVikRjlLRqszT2FH3JP8O0n2thceI5EH0EQBCBs2ZAWE8wvU6SPILxLVaMwvZMifcRAg+3Txxq5AHYOnj4e6eM4Dp9mH8azR36F0WJxeDxJHYJhIVFID47CsJAoRKkCcM3mT2DhOOwrz0dxUz3iA4K79Jz7y/Px1qnf+fU/jZ6NCZ1E7x4aOQNyiQT+UgUWJWV06fl6g+Gh0QhRqFCn16Ja14zVWXuxvzwfu8tzYXESPY3xC8T9w6f1wki7D4k+giA8gtZgQoPWKu6kYhGSI9T8Y1TTRxDexb5nptFsgdligURMfm7EwIBN7/TvKL3Tx41cXjuxE2+2RtAAIEiuxJ9Gz8aY8DikBUfAX6ZwOGZGTAp2lVpdKX/IPYFHR13q8vPV6VrwyJ4feeEzNSoZK0dM7/Q4hUSKh0fOdPl5ehuxSIzp0Sn4peA0AOAfmdsc9lFJZViQOAzXpozGJdGD+tz3J4k+giA8AnuTGRmoQoi/7YeoTQwSBOEdqu0ifYA12uen6Fs3LQTRXZp1zvv0AXbpnfXNXhtTVylpqse7Wbv59ZGhMXjv0uuRqA7p8LjrBo+xib6cE/jDyJkumZBwHIfH9/+MstbavBCFCm/NuKbPiR1XmRFrE31tiABMix6EawePxoLEYQhwIqr7CiT6CILwCBWM6IsIVCHYT86v11GkjyC8in2kDwB0RjP8FN138iOIvkQT06cvQCm8/U0Kt2WiXCxvQKPWALVKDl/j3aw9fErnmPA4fH/5CpfcOK9ISIdapkCjUY/8xlocqSpyqYXCZ9mHsbnoHL/++rSliPEL7P4L8HEWJA7Da8d3oELbhMGBYbh28GhcM2gU4rqYDuurkOgjCMIjsM6dUUEqBPsxkT6q6SMIr2Jf0wdYRR9BDBQ66tMX4q/AyIRQnCqqhcnCYXd2GRaOSfL2EDuktLkBX188xq8/MWaOy+0XVFIZliQPx1cXrMd/n3O8U9F3tq4Czx3ZzK/fkT4JlyWkdWPkfYcQhR92LX0YNbpmJAaE9LmWDJ3RP+OzBEH0OpUNbHqnH4KYSF89uXcShFexd+8EyMyFGFgIjVwcxdLsjDh+eceZUq+MqSu8c2o3H+WbEJEgcJt0Bda185f809Ca2m/YrjUZsPL3H6C3WL8jhoVEYdX4y7o+6D5IgEyBJHVovxN8AIk+giA8RIXGVgwfGagSiD6N1gizE9cxgiDcj8lscZpSTW0biIFEcwfN2QF70VcCrp1+d71BaXMDvrmYya8/NvrSLouSCREJSFZbm843GvU4VFnQ7r7PHtmM8w1VAAClRIrVM66FUkKp4H0dEn0EQXgEQaQvSAWJWIxAle1Hg1I8CcI71DTp4Oz+ldI7iYFEcwc1fQAwflAE1K1pnyV1zbhQ0eC1sXVElbYJT+z/BYbWqNv4iHjMjBnc5fOIRCJBdPBUTZnT/bYUncMX54/y689NWoAhwRFdfj7C9yDRRxCERxDU9AVaG7hSXR9BeJ8qjWM9H0CijxhYNHXg3gkAMokYM9Jj+PUdZ0rc+vwcx6FS2wiD2dT5zgAsnAVfnD+CWevewc7Si/z2P46e1e3Uw+Gh0fzy6dpyp/t8fPYgv7w4KQM3pY7r1nMRvgcZuRAE4REq7Fo2ALCmeNZYt1HbBoLwDs7q+QCq6SMGDhYLhxaDTWw5S+8EgDkZcdh4vBCAta7vvjnD3fL8DQYt/rBnLbYWn4dEJEJCQAhSAsMwODAMg4PCW5fDEakKgJmz4Ke8LLybtRsXGqoF57k9bWK3onxtjAy1idqsWsdIn95swuGqIn79mQlX9MvatoEKiT6CIDxCOdPgNjLIKvrYXn3UtoEgvIMz506AavqIgQPbmN1PLoVY7FzIzGLq+g5cKEeLwQQ/ec9ulc/XV+KuHd8gr7EWAGDmOOQ31iK/sRbbSy4I9g2QyaGSyFClE/YKTFKH4KXJi3BpbGqPxpIWEgmJSAQzxyGvsRaNBh3UciX/+LGqYuhbI5GD1KGI9Q/q0fMRvgWldxIE4Xa0BhPfDFoiFiE6yNr4Nojpe0TpnQThHaqd9OgDAJ2h74m+L/eex3X/3oxdZ33PXZHwXVjnTvt2DSxxIf5IiwkGAOhNFuw/7zwF0lV+L83BlZs+5AVfp+M0GgSCL0Amx2OjLsXWJQ/2WPABgFIiw5AgW33emboKweP7yvP45WnRg3r8fIRvQZE+giDcTkmd7UcrJtgPUol1fimYifRR2waC8A7tpXfq+likr7JBiye/OQCThUOFRovfn17a20Mi+gisiYu/ouNb39kZscguqwcAbD9Tgrkj4rv1nHqzCQ/tXoMmo3WCUyWV4Y1pSzE3fgjyGmuR21CDHE01cjQ1yGmoRq6mBo1G6+9isFyFuzOmYEXaJAQrVN16/vYYERqDc/WVAKwpnpOjbP0I91Xk88vTopPd+rxE70OijyAIt1Nc28Qvx4cG8MvCXn0U6SMIb8AaucilYhhM1nYpfa2mb//FcpgsVhvS4trmTvYmCBtFmnrATw+0yOHfQaQPsLZu+O+2MwCAz3ZnIybYDw/OG9FuSigAHKjIx4+5J3FD6liMj0gAAOwqvYhavbXMIVzpj6/m3YqMViOVjJBoZIREC87BcRyqdc2o0jZhUGAoVFI5PMGIsBj8kHsCgNDMRWsyIrOqmF+fSqKv30GijyAIt8PekMWH+vPLIYx7Zz3V9BGEV2AjfbHB/sivbgQA6IyuuQj6Cvsv2FLRtAYTTGYLn0VAEPYYzCZsLT6Pby5mYkfJRUhGcrCUBSJAHu10/2ajHkVN9ZgwKAIpkYHIrdTAZOHw4rpj2Hm2FG/dNh2xIf4Ox+nNJty941vUG7TYWHAWB5c9Cn+ZAuvysvh9bkwdywu+9hCJRIhQBSBCFdDhfj1lBDOOU4yZy9GqIr4txJCgcESq1B4dB+F96NuSIAi340qkj2r6CMI7VDNGLglhts9jn4v0XRDWV7F1WgTRRnZ9JZ47shkT17yOe3d9h+0lF8DBGiEWRWsgVVkcjtGajLjm108w75f/4PnMzfhq5TyMH2Srfdt7vhxzX/oZG447NjQ/Xl2CeoN1YqXeoMW3F4+jxWjAluJsfp8rB41w98vsNsOZCOOF+ireuIXq+fo/JPoIgnA7RTW2SB97k8nW9NVRTR9BeIUqxsiFjbz3JdFX3ajD+XJhs+xGLYk+worGoMMX549g8cYPMPfn1Xj/zH7U6Foc9hOJgCqloznLVxeO4nSddfsX549AprJg7WPz8diCURC3tiyobzHg7g924r7/bkcLM+HAiiUA+OjsAWwpzobWZN1nSFA4hgVHue219hS1XIkkdQgAwMRZkN1a37evPJ/fh1I7+yck+giCcDvCSJ/tJjOYIn0E4VXMFgtqmmwTLHFMelpfMnI5cLHCYRvbbJsYmHAchxeP/oZx37+KJw+sx/FqYUP1GL9A/GHkTCwJG89vKxSXosVo+/3RmY1YnbXXdk4AP+ScgEwixhOLx2LNo1cIPjcfbT+Dy/+xHscLrD309jPmJwBQ0FSH545s5tevTB7hc73uRtj162s26gXXblpUci+MivA0JPoIgnA7wpo+JtLnR+6dBOFN6pr1sHDW1LZgPzkCVDYTC10fivQ5E32NJPoGPCdqSvGf03uhM9vqU+ViCZYkDccXc2/BgWsexZ/HzsEIeTI4ndXGwgAT1rQamQDAdxePo0LbKDjvtzmZ4Fo/N1NSo7Dt/67E0vHJ/OM5lRoseXUj3tx8HEcri2BPpdY28Xllsu+kdrYhaNJeU4ZDlYUwcda01/TgSIQqHWsXib4PGbkQBOFWjGaLoDE7W/hONX0E4V1Y585wtQpKqYRf70vpnQcuOKbkNWrpO2Sgc6TKJrgSAoJx97ApuGbQKIQo/QT7tejN4MoDIUq29sv78OwB3Dx0PEwWC945tdvhvAWNdThYWYAprRGvID85Vt8xE7OHx2PVdwfRpDPCZOHwyo4DkGRYP0dRKjVq9c0wWmw1gyNCozE4KNzdL7vHDGfMXI5UFaGsRcOvUz1f/4UifQRBuJWyumY+shAVpIJSZrvJZN0768i9kyA8DuvcGRGohFJmm+vtK6KvvkWPM6V1Dtsp0kecrCnll+8ZNhV3DZviIPgAq+kPV6UGZ7KmWeZoavD+mf14+9RulLYKnnClP65NGc0f8+3FTME5RCIRrp88GEf/eSNv8iIKtE2qXJYw1CGq54tRPkCY3nmmrgK/FZ/n12fEpPTGkAgvQKKPIAi30l5qJwD4KaSQtvY60hnNfeamkyD6KmykL0KtgoKZhOkr6Z0HL1agdR5JAIm+gcXuc2X4YMcZaJgILyv6RofHtntsk84IWMTgqmxtCF44+hveOLmLX78vYxpWpE/i19cXnEGjQQd7BkcHYe1j8yGXigWib2pUMu7NmCrY11dFX4QqAFFOWkNclTwC8+KH9sKICG9Aoo8gCLfSnokLYJ0pZR08KcWTIDyLINKnVgpEX1+ZdHFWzwcATTr6/hgoFNU04aZ3f8MzPxzGvzYcBwA0GnTIabCaqUhEIodm5yzNrW6bXHkgJCLHW98QhQq3pU3A6LBYpAVHArC2cVibd8rp+WQSMdR+UiDAlrEyNToZw0NjcHvaRIhFIqxIm4T4gODuvFyvMCkyiV+O9lPjvUuvxzszlvmc6QzhPqimjyAIt9JRpA8AQv0VfN+w0vpmRAapvDY2ghhosO0awgOF6dZ9xb2Tbco+OjEMJwprAFCkbyBxorAGZos13JuZbxV6WbXlaAsApwVHQiWVtXM04/RqkOGxlMtRKq5EpbYJVa2GK4+PmQ1/mXVC8sbUsXi21X3z/w5uwKfZhzA3bijmxQ/FuIh4/pyKYBNEYusIEv1D+WbmL05ehGcmXAGFxLdvsZ8aNw8qqQxJ6hDcPWwK//qJ/otvvyMJguhzdBTpA4D02BC+39apolqMSfK9IneC6C9UNbLpncJIn85gcnaIT9GsM+JUkdV8QyQC5o2IJ9E3AKlpsr2Pa1uX2dTOUWHtp3YCQLPe9l6fGJGES4ZOaXffa1JG4ZXMbbwjaHZ9FbLrq7D69F4Ey1VYODgD08MHwRxo+60bHih8fl8XfACQqA7B65cs7e1hEF6E0jsJgnArRTW2H8IEJ5G+kQmh/PKpohqvjIkgBipspC8i0M69sw9E+krrW3hjqKQwtaBfGrl3DhxY0VfjRPSN7kT0NTHN1P0V7UcEASBM6Y9P5yzHnLghUIglgsfqDVp8dfYoHtz9A6r9bRHoFGVk5y+CIHoZ35+KIAiiTyFM73SM9I1MCOOXSfQRhGeptov0yQUtGyzODvEp2Jv9cLUSaqXthp0ifb1Pra4ZeosZMX6Bnn2eJlvtnEZrhNFswYmuRPqY90qAsmPRBwCXxKTgkpgUtBgN2FOei63F57Gt+DwqmP57LPEyylghfB8SfQRBuA2LhUNpfcc1fWyk72xJHYxmC2QSSjogCE/AGrmEq1UwMNG9vhDpq2VEX2iAQtBcvolEX69R0dKIV4/vwLc5mZCJxPjvpdfjsoQ0jz0f+z4AgILaBuQ3WtN+ZWIx0kOiOjyefa8EdBLpY/GTyXF5QjouT0gHx3HIqi3D/roCrMs+xYtOrl4Fi1HSyZkIovehOy2CINxGpUYLg8kaPQjxV8DfyYxqaICSjwDqTRacL6v35hAJYsBgsXDCSF+gqs/V9NUy/TzDApRQK+X8eqOWRJ+3aTEa8PqJnZjx01v4+uIxWDgOeosZTx5Yj2aj53qv1tiJvoPlhfzysJCoTmvompiaPn9F9+IdIpEII8NisWrq5diw6F7c6j8P5jPRsJyPErSRIAhfhUQfQRBuo4gxcYlzktrZBqV4EoTnqWvR846HaqUMSpmkz7l3sml9oQFKQWoepXd6D7PFgm8uHMOMn97C6yd2osUkvPYV2ka8dWq3x56/plEo+o5Xl/DLnaV2mi0WaA2s6HM90tcR0f6BQKMK4ETQUPshog9Aoo8gCLfBOnc6M3FpY1SiTfSdLCTRRxCeoJoxcYkMtLZGUcpsUY6+0KePjfCE+ivsavroRtsb/F6ag/kb3sPj+38W1LQNC4kSNCP/4Mx+5GpqcL6+En/c+xNW/v4DKloa3TIGNuILAOcabCYqnYm+FibK5yeXQix2Tx+6ID9b1LmBIn1EH4Bq+giCcBudmbi0IXTwrPXomAhioMK2awhXKwFAmN7ZB0SffU1foIrSO71Fdn0lXji6BTtKLgq2R6kC8Ocxc3Dd4DEQiYAjlUU4Vl0Mg8WMm7d+jtLmBphbHVcrtI34/vIVPWr4zXGcQ3pnXnMVv9wV505XTFxchX0vUnon0RegSB9BEG6juIbt0ddBpI9J78wqroXZ0r6LoNFsweHcSkFtEkEQncOauES0RvqkYhHErTfgZgsHk9m3HTzt0zv95FK06YcWg6nD7w6i+xyuLMT89f8VCD6VVIY/jp6F3UsfwY1DxkEiFkMsEuP5SQvQJumKmup5wQcAByoK8O3FzB6NpUln5GvFAQAyE+rNLQAAhViCocEdt0to7KJzp6sEMaKvgdI7iT4AiT6CINyGq5G+iEAVYoL9AFijDRdbm7WzmMwWfLP/AqY/uxZXvrYJM5//SWC7TRBEx1RphO0aAKsZBRvt8/UUz9pmYXqnWCwSuC826XzfjKYvsi4vC8ZWQS0CcGPqWOxe+jD+OHoW/GRywb6jw+NwY+o4wTa2hcPzR7egqp1WB64giPJJzRCn2VI7h4fGQCbu2DnzAvP7EhWk6vY47Alk0jupvpToC1B6J0EQboM1cuko0gdYUzzL6q2ztSeLapEWGwLAWnS/9kgeXt94AnlVtnqQumY9MguqMT0txgMjJ4j+h6BdQ6DtZlcpk/DGFjqTGf5wX/TD3bCRvrAAq3BVK2X8TXajziCorSLcw9l6m7B6a/o1uDplVIf7Pz3hcrSYDKjXa7EifRKmxwzC3J9Xo7CpHg0GHf5++Fe8O/Pabo2Ffw/ITBCnl0PkZ/3biwCsHDG90+OP51fzy2OT3NdPL5AifUQfgyJ9BEG4BYPJjIJqm0hLCld3uL+9g6fZYsFPR/Jw6Qvr8PCnewSCrw2qmyAI16kWRPqEoq8NX6/rExi5tIo+NkWPevX1nIqWRmgMtuvMcRzO1pbz65Ojkjo9R6BciXdnXosvL7sVlyWkQSWV4+Upi/nH1+VnYVfpxQ7O0D41TTpAxAkEHzjgjUuuxhWJ6Z0ef8xDoi+IavqIPgZF+giCcAsXyhv4uov4UP9OZ99ZM5ffThXj93NlyLbr2RekkiPEX4H8VjFJP6wE4TqCmr7W9E4AUEj7RnqnzmhGc6vzokQsQmBrY3a14GabRF9P2Fqcjft2fQ8RgE2L7sOQ4AiUNDdA09pzL0iuFKRqdoVLY1NxTcoo/Jh7EgDwWfYRXBqb2uXz1DTpgJAWXvBxHBBbm4xrB4/u9FizxYIThYzoGxTR5edvDza9k36biL5Ar0T6NBoNJk+ejIyMDMH2G2+8EWlpaYJ/N910U28MkSCILpLFuHCOYARde7BtG/KrGwWCT62U4fGFo3HwuWWYOyKe30622AThOlV2jdnbUMr7huirs6vna3OA9NW2DdWNWry//Uyv9B7Nb6xFdn0lLJzrxjYagw5P7P8FerMJOrMJX104CgA4U2eL8mWERPfIefPhETP45X3leTBZuv5+q2nSQxRom8DgyoJgqvJz6diL5Q38xEFkoAqxwa4d5woqmQQyifU2Wmc0+3zUnCC8HulrbGzEypUrUV9fD4nE9sPDcRyys7OhUqkwbdo0fntqatdnhQiC8D6nihnRF9e56IsO8kO4Wilw5fRXSHHP7AzcNzcDwX4KAMIUGrJoJwjXYfv0tRfp0xl91wjF3rmzDbWPpnf+9ftDWHc0HxKxCB/ePQvzRyd65XnX5Z3Cyt1rAADBchUmRyViSlQyJkclYXhINCRi5/P7/8zcjkrGYOVgZQEA4EydrZ4vIzSqR2NLDQpHjF8gylo0aDTqcby6BBMiu3Zdapt0EKmZ9NMGFWpb9OA4rlNBKkjtTA7vkYC1RyQSIVAl51OQG7UGKGXuM4ohCHfjVdG3ceNG/Otf/0JpaanDY/n5+WhpacHEiROxevVqbw6LIAg3cLq4a5E+kUiE6yYNxn+2nYafXIo7Z6XjgbnDBTd3ABDoZ7vBo0gfQbgGx3GoZurhWCOXvtKrz5mJCyBM7/Ql18QTBdYIn9nC4f6Pd+GrlZdh2tBojz/vh2cP8Mv1Bi02F2Vjc1E2AEAtU2BCZAKmRCVjSlQSRoXFQiaW4ER1CT47f1hwnqzacjQadDhTK4z09QSRSISZsYP5tg27SnO6LPpKGjW21E4LgCYFDBYLmnRGwXvBGZkFnqnnayPIzyb6GrQGQUSdIHwNr4q+9957D3V1dXj44Yfx9ttvCx47e/YsAMBoNOKpp56CSCTCVVddhcmTJ3tziARBdAOLhbMTfWEd7G3j6avHY9mkFMSHBrRbAygolieHNIJwiQatga+x9VdI4Se3/dyzRi56k++Kvhq7xuxtCIxcfCj6r2WipnqTBbe/tx0//OEKjE507fuwO9RqW3CixnEivY1Gox47Si7y/fZUUhkmRCSgtLkBFqafHgBYOA5HqoqEkb6QnkX6AGAWI/p+L8vBn8bM7tLxebpKoE3zNykAizVyWdus71z0MZG+ccnuq+dro63OFPDe79P6zAL8fc1hzB+VgBeup3tkwnW8WtO3fPlybN68GUuXLnV47MyZMwCA48eP48cff8SaNWtw++23Y+PGjd4cIkEQ3aCwppGfcQ/xV7hcNyESiTA8PrRD0xf2R50ifQThGlXtOHcCdu6dBt8VfbVNwpq+NoQ1fb4j+uyvZZPOiOXv/oaLFY59SN3FjsILvHgbHRaLnVetxD+mLMZVySMQpXJ0UNaajNhdloscjTUqqRBLMDduiO18JRdR0GidwJOIRBgS3HOhND06hW/enlldggaDtsP97Sm3MDWSjbb3cg1TGuCMFoMJZ0vrAAAiETA6yf3iO7AXfp+eX3sEJXXN+GjXOYFjNkF0hlcjfTfccAMAoLi42OGxiIgIjB8/HldffTXmz5+Pb7/9Fv/617/w0ksv4YorrhDU/9kTEuIHqbTj5pyeICKiY0t6wjPQdXcv7riev+fYZobHpUQiMrJ7bm/OSIwJ5pd1Zku/+fv3l9fRFxiI1/pMlYZfjgnzF1yDQH+mvs9P7pHr445z6phIVHxkIH/O6HBbD1CTyHf+vjomahqokkOjNaC2SY+bV2/DrueuQUInbWy6w9bMbH550ZDhmJqagqmpKXgM1hTf3IYa7C7KwZ6SXPxelIsCTa3g+Ccmz8Xw8BhsK7kAAFiTdwJtVz0tNAoJ0Z2n6ndGBNQYH52AI+VFsHAcTjWX4+q4jvv+sWiktvdylCQUZa0jNEnFHf7t95wrhdli3Tc9NgSD3RhxbXveyGB/20aZxOPvxYr6FhTW2OowmznOZ97/3mAgvVZP4DMtG26//Xbcfvvt/Ppdd92F1atXo6qqCkVFRUhOTm732Lq6Fi+MUEhEhBpVTvqIEZ6Frrt7cdf13HemhF8eGhno1r8Rp7elTNU0aPvF35/ex95joF7ri4W2m/tgpVx4DSw2h8eqmia3Xx93XfPiStvNvlIs4s8pNtvEYGVts0/8fS0WTuCE+uWDc3H9279BazChsLoRlz37E37643xBbWJP4TgOv+XbRN+EoHiHaxEIBRZFZ2BRdAYwHihpqseBygIcqypGnH8Q7h48BXV62z1Ug94WPRuiDnfbtZ0WkYwj5UUAgF/OZWF6yCCXjqvSNsEot9Z2chZgmDoaZSgDAOQV16Gqg1KCHccL+eWR8aFuey3s+1shsRnDFJU3ePy9uO1UkWD9YmEtMiLcN8nqywzU7/Ku0pEw9pnm7CUlJcjMzIReb/1wi0QiyGTWFA6TyXfdxQiC6Hq7hq7Apn5SeidBuEZ7PfoAQCmzzff6tJFLcztGLj6Y3slG+ZQyCSakROKje2bxlv4XKxpwx3vbwdnV0fWEHE01ihrrAVgNW8ZGxHd8AIC4gGAsSxmNFycvwoMjpkMiFiNcFYDBgY7iKSPUfSY0M2MH88u7Si+6fB12l+byy6ImJQZHBPPrtc0dp3cK6/ncb+ICAIFK7/bqY41pAOHnnCA6w2dE3wMPPIAbb7wRmzZtAmCt7auvr0dwcDASE71je0wQRPfI6qJzZ1cIJCMXgugyAtFn5yjYV9w72Zqt9oxcfKVPn85gm5xuq5mcnRGHt2+fjrYuAYdzq3CqqNbZ4d1iZ2kOv3xJzCDIxN0vc5kcleSwzR0mLm2Mj0iAv9T6XV7c3IC8Rteuw85i22tU6gME4r+GcXd1BiuQxnjAxAUQNmj3xqQkK2QBEn1E1/AZ0XfnnXcCAFatWoXbbruNX1+5ciXk8o7dmQiC6D2qNFpUNFh/eJQyCQa7sZ4PcJzVt1jcN1NOEP0VoZGLfaSvb7h3spG+UH/f7tOnNQojfW1cNX4QZg+L49eLa5vgLn5nRN+lMYM72LNznIs+90X6ZGIJLom2pXTuKr3o0nGHq2wpmmFcMMKY9zJr9GNPdaMWRa21bwqpGBlxIV0dskt4s48sx3E4bh/p03Qc7SQIFp8RfUuXLsU//vEPpKSk4Pjx4wgNDcVf//pX3Hbbbb09NIIgOoCN8mXEhbTbCLi7SCVi+Cus6WgWjkOz3jdu8gjCl6lmIgDh9pE+xvhM78ORvtp2Wjawok/jIy0b2EifSi60S4gJsbkZt02Q9RS92YT9Ffn8+qWxqT0635RIoegLU/ohUhXQzt7dg03x3FBwptP9K7WNKGqxum9yFiBOFipwca3pQPSxEbGRCWF8mq27EWSieDjSl1/ViHq7bJfOHEwJgqVXjFzi4+ORnZ3tsP3qq6/G1Vdf3QsjIgiiuwhSO+Pdm9rZRpBKjuZWQ5cGraHT3kwEMdDpsGWD3PfTOzmOE0b6mLS+AObz3+Qr6Z2CSJ+d6Auyib6yevcYzx2pLITWZBW8yepQJKp7FsmKCwhGnH8QSpqt7SUyQqIhEok6OaprLEgchr8d3gQzx+FARQFyNdVICWy/1u54tc0gDE0KRAT4C94HtR2kdx5jRN9YD9XzAXY15x4uP7Cv5wMovZPoGj4T6SMIom8iNHHxTBNitm7CG8XyBNHXqdS0b+TCRvp8VfQ16018c3mlTCJoLu+TRi7tpHcCQFQwG+lzj+jbwaRHXhrbs9TONtgUT3fW87UR5afGvPih/Po3FzI73D+fqfvjtHKEBSjsavo6iPQVeEf0eTPS51z0UaSPcB0SfQRB9Ag20jfSzSYubagFDmm+cZNHEL4Kx3GC9M6OjFx8Nb2TvaG3b3MQoLCJvma9CWamBUVvoTMyRi5yoehjI33lbhB9JosZa3NP8euz43qW2tnG8iHjAFibsi8dNNIt57TnptbnAIDvc47DaGn//VfQWGdb0ckQGqAUpPm2F+mzWDgcFzh3esbEBQCCVLb3oqeNXOxNXABrTb07HWGJ/o3P9OkjCKLv0aQzIq+1CbRELEIa00jdnQRRpI8gXKZRZ4SeiZK11cS2oeoDRi7t1fMBgFgsQoBSxpu4NOtNgohLb6AztJ/eGcWKPjekd24vuYAKrbVfWZSfusf1fG1MiUrGoWWPQSISI8rPM02wZ8WmIkqlRoW2EVW6ZmwtPo8FicOc7iuI9OmlCAtQIthPDrFIBAvHoUFrgNFscajXy6vS8AIsNECBxDD31iayeCsLxWAyI6uohl+XiEUwWzjojGY0600CR1uCaA+K9BEE0W3OlNShbZIxNSrIwcDAXbA3dJ6umyCIvk6VRhjls6/NErRsMHiuDy7HcWjppvESG8UJddLQ3NdSPLVOWja0ER3s3kjfVxeO8cu3Dp/Qo1YN9sT6B3lM8AGAVCzBDalj+PWvmddij32kLyxACYlYjGB/2+9BnZNonyC1Mync7bWJLEFe+m06W1rPT+QkhgUghnlPsZ93gugIEn0EQXQbdubRUyYugDCFhiJ9BNExbJ2PfT0fYOfe6aFIn8FkxpLXNmHYE9/gu4M5nR9gR42gXYPC4XFBrz4f+E5or2UDYB1/WzRKozV2WwgDQGlzA7aXXODX7xg5pdvn6i1uSB3LL+8svYjSVvMYFrPFguKmetsGvRRhauv7gE33ddagnU2DHJvkuXo+wOrUKhVbRaXOaPZYuvTx/Cp+eWxyuMCcqbqD2kaCYCHRRxBEt/FkU3YWtReL5Qmir1MtMHFROTzujebsO8+W4mheFQwmCz7ZdbbLxwvTO30/0sdeR/uMB7FYhKgg29+hJ20bvr2YCUtresUl0YOQGuJZUeMJktShmN7as8/Ccfgu57jDPqUtDTBx1sgWZ5AAFjHfq7Gztg0C0efBej4AEIlEghTPRg+5ybJupGOSwhHOTOZQpI9wFRJ9BEF0G2+YuADCFBoSfQTRMWykLzzQUTApvSD6Dl6s4JdL67qe0ig0cuks0ucLoo/p0ydzTLeMZts2dDPF02yx4JuLNsfL5YwpSl+DNXT55sIxWDihGY8gtVNvFdFtEb6O2jbojWacLrH9Lo1J8oyjNIsnUzz1RjNe+Okovj9ki5aPTQoXmDORgyfhKiT6CILoFkazBdll9fx6RpznRJ+wWL73b/AIwpdhe3c5i/QpveDeeSinUjAeo7lrDpud1fQFCnr19f53gqBlg5Pa5mg3tG3YVnKe76MXolBhfjsGKH2BKxLTESy3vjeLmxuwpyxP8LjAxEVnFfghAY7pnfaRvjMltXyrj0ERaqfvHXfjqbYNORUNWPivDXj3tyy+dj4tJhhjk4WRvmqK9BEuQqKPIIhucb6snv9xjQ/1R4iTuht34a1ieYLoDwgbszup6fOwe6fWYMKJQlu9L8cJ+wa6AlurFebku0WY3tn73wlC907HSF9PHDwNZhNeP7ET9+36jt923eAxUEj6rgG7UiLDssGj+HV7Qxf7SF+wn5yvi+yobYN9GqQ3EDRod6Poe/jTPThTYrsOM9Nj8NXKeZBLJYLJHIr0Ea7Sd78xCILoVYRN2T0X5QMANRm5EITLVHXQow8QthRoEyubTxairL4FN04d4lS0dIVDFyscIntldc2IC/F3+RydRfoCfK6mr333TgACt8XyTmr6tCYDfi/NxUVNNQob67C/Ih+5GpuIVssUWJE2yQ2j7l1uTB2Hj84eBAD8WnQWtbpmhCqt75ECJtLX5tzZRkeRvkwv9edjEUT6WtzzXjRbLII01eevnYQ7L02HuNU0JoJJ22Y/7wTREST6CILoFlnMD9LIeM/WTVBNH0G4TjVb0+dCpC8zvwor3tsBAKhp1OFPi8b06Pn3nitz2NbV6FZNB336AECtZMwzfCDlW9iywfHWijVycXYtOI7D4cpCfJ9zAr8UZKHJ6Px7bmx4HF6ddhUS1SFuGHXvMiwkCmPD45BZXQKjxYI1uSdxT8ZUAMJIH6eXIjTS9h4QRvrsRB/briHZO5E+QUshN/0+ldW38Jk0YQFK3D1bmMorcO+kSB/hIiT6CILoFt6M9HmqZoIg+iP2ffrsYVs26IxmHGBMVzYcL+yx6NtzttRhW1fNSwSRPv/O3Dt7/ztB6N7ZWaTPdi2Km+qxJvcEvs85Iahjs8dPKsNfxs7FirRJkIj7T2XOTUPGIbO6BIA1xfPuYdYWFAVNwkgfa4TDvh8qmPd6XbMeuZUaAIBMIsZwD7YRYglUub99SEF1I7+cHOHYNzGMrenzAdF3saIBQSq50+8bwncg0UcQRJexWDicZpw7Pf3j6qmaCYLoj7A1PpFO0zuFRi55VbYbzLOldahu1DmNELqC2WLB/vPtR/o4jsOfvtyHdUfz4a+QIkytRFhA2z+F9X+1EvUtNtEX4sy9k7nR9jkjF6eRPptoKW1owg85x/F9zgnsLc9z2BcABqlDMSsuFcnqUCSpQzA+PAEhSj+n+/YlSuuaUduk5ycKr0wegb8f/hUtJiPON1ThWHUxktWhfKSTM4sAkxjjBtlSNYdEB/HLZ4rrwHEcRCIRjjNRvoy4kB6nKbuKJyJ9+cxnMincUfRF+FDLhvWZBbjnw51QSMXYvuoqpEQG9up4iPYh0UcQRJcprGnk62hC/BWIDfbszQibyqVpMfA/8gQx0GnRGwGRCH6tjpHNOiOfaqiQigURsTbsWzawUQUAOHChHIvHJXdrPGdK6pymW5a1ir6s4lp8vf+idewGU6cmFEEqm4EHSyCb3ukDok/L1vQ5ifTxkargFpQlF+DRvacd9lHLFLgyeQSuGzwa4yMS+tR3nMlswb82HEeTzohHrhgpELltFFQ34tLnf4LeZMHKy0bgr0vHI6D1Nbe1ovjqwjHcPGS87SCdDIAIk1Ii+U1txmF1zXo0aA0oqG5EckSgILVznJdSOwHPlB/ks5E+J6Iv2E8BqVgEk4VDo84IndHsNZFrz4bMfACA3mTBuqN5eGzB6F4ZB9E5/SdHgCAIr5FVbKu3GJkQ6vGbE4VMwv+gmSwctB6ymSeIvsTFigaMW/UDRv7lW5wrtX4mWVOHcLXK6WdTKhFD0moIYeE4XCxvEDy+90J5t8fEtmpgDTfaRN/5sgaHYzqCjeqw+JyRSyfunQFKGfwDRBAPrgIkNpMbEYBLYwfjnRnLcOy6x/HK1CWYEJnYpwQfYI32vLX5FD7edQ5XvrYJea1pliybjhdC31qn9u5vWXhvu1X4sj37fs7Pwpk65v2nl0IpkwhKCEQiEUYn2urI25xiWROXMV4ycQGELYXc5S5dwEb6nKR3isUin2nQzhoTnSio6WBPorehSB9BEF0mq9j2xT7Ca3UTcuiM1h8XTYuBj2wQxEBlQ2YBn0727YGL+Ns1EwWRswgnjdnbUEglaGmNCJbaGYvsPd990cc2ZV88Ngmf7s4GYEvvzGXEwO0z0nDLJUNR06RDTZMO1Y06frmmSQelVIIH5o1w+jxqD9RR9QRBTZ+T9E4AkCTVQiS1ip5QuR/uHT4V16SMQqy/c2HblzhVZPtNKKxpwpWvb8JXK+dhZIJNnJ0vrxcc8/c1RxAd5IcrxyUjLTgS2fWV0JqM+E/WXn4fTifD6MQwyKVCIT06KQw7W2tHjxdU48pxyQLRN9ZL7RqA3on0AUB4oIoXXNWNWiSEBbjlubsK23fyWH4VZeL4MHTXRBBEl2FNXLxXLC/ne301aA2CZscEMRBp1ttSCotqmgHYmbg4aczehlJuE332XChvQGWDFpFBXTNl4DgOh3Jtkb6rxifbRF9DCziOQ26lLdI3OjGs2yZQah+L9AndOx0jfbtKL6I5oJ5fvztpFh4a2ffbLrRRUN0kWK9u1GHZm5ux/s8LMTQ6GACQXVbvcNwjn+1BuFqJm4aMw98P/2o9V5OwR9/EYZEOx41OtIm6E4U1KKpp4h1fA1UyDPZiXZm7jcY4jhMaubQn+gJ638yF4zg+ig9Y64lL61u61J6F8B6U3kkQRJfJKvaec2cbrJkLOXgShLA3XEmd9aZbGOnrQPRJO67/2deFFE+T2YINxwtw/VtbUNEaeVArZZg0OBL+CmnrWM2oa9Yjh4n0DY7qfoSLTe+saGhBaV1zt8/lDoTuncL5dK3JiP87uIFft1T7I4Lr+y0XWApqbCJF2po63Kgz4r1tZwBYxcF5Jo04sTUqZTBZcMd7OzBClQC52PE9yelkgnq+Ntj0zpOFNTiaX8Wvj0kK5/vZeYMgN6d31jXroWmti/WTS9uN2LOf795q0K7RGgXvfQACQx3CtyDRRxBEl6jSaPkbO5Vc6rUZVXZmn0QfQVidN9sorrWKnmoNW9PXQXqnk2gUm5HlSopnRUMLXt90ApOeWYO7P9iJPcwxl6RFQyIWCyLyZfUtgvTOnrj8hQUoIZdab2E0WiMW/WuDIMXQ23TUnH111h6+7xxnEoMrCBO0begPFDGRvn8tn8ovt6VcltQ18y6rIf4K/PCHKxDdGklu1BnxwPt7cWn0EMcT66WY4ET0xQT78Q6WzXoT1hzK5R/zVn++Ntwd6WOjfEnh6nZTJX3BwbO83nGy5Xg+iT5fhUQfQRBdgo3yZcSFeK1nFEX6CEIIO8Ne3aiD1s4Ns6P0Tmeib2Z6LL/cXqSP4zjsv1CO+z/ehQl//QH/Wn9ckN4lFolw9aQUvHDdZABAbLAtzetEYQ2fkhqkkiPMSSsGV1HJpfjX8ml8VKm8QYurXv8Vv59z7BHoDQQtGxj3TqPFjM/OH+bXuaIQwCTpcrN6X6a+Rc/XliplEiwak8RPIGSX1aNFbxQY+AyNDkJCWAC+XDmPn8wrb9AiK1OYpstZgNSQMIT4O75PRCIRRjN1e9vPlPDL3qznA4Q1ffWt7tI9ga3nS4pov06P/Xz3VqSPNXFpgyJ9vguJPoIguoQgtdNL9XyA3WyqXQrN8YJqzH3pZzz0v92wWHr2g0sQfQW9SZhWVVLXLHDv7MjIxVnd2TUTU6BojZ7lVmpQxsziN+mM+HR3Nua+9AuueXMz1h3Nh4n5rEWolXh0/igcen4Zvn98IV/Tw0b69mTb+velRAb22Ozh+smD8eXKeXxzbK3BhD9/tb/HN93dQejeaUvv3F2WixqdVeAFSf3AVVrrsyqc3Cz3Vdh6vqRwNdQqOVJbU3ctHIes4jqcZ+r5hsYEAwAy4kLx8b2z+ZYcxflmyM2MwDNIMSklqt3nZVM82T/52CTvOXcCgJ9CitDWCQyd0SxIYe4ObI++9ur5ACA8kK3p6533U4WTiPWJwhr6HfZRSPQRBNElesPEBRDOpjbY9QF789eTOFNShzWHc/F7du/M9BOEt2GFBgAU1zahSuNipM9JTd/Q6CBMZFLpXvzpGD7fcx6rvjuIsau+x5PfHMDZ0jrBMZMGR2L1HTNw5IVr8ZclYx0MHKKZfm1s9NBdDZxnpsfi5z8t5OvoCmuaeMMnb9Jeeufa3JP88uyoobA2aQDK+lF6Z6EgHdEamRrDRNuOF1QLTFzSWkUfAExPi8Fbt01vXRNBV8oYdLVTz9cGK/raiAvx77IBUU8RiUQYz7SIOJpb1cHeneOKiQtgF+nT9E6kr8xJxLpRZ+yx8CU8A4k+giC6xGkm0jfSSyYuAKBmRJ+9RfsFxiDAmUMcQfRHdPaRvtpmwYx/eEctG5xE+pIj1Jg2NJpfX3M4F098vR8f7zrH12MB1tTKWy4Ziq1PLcG6Py7A1RNSHCz124hhIn1sdGtwlPtqgdNigpERZzNGsRemdboW/Jh7Eit//wHzfl6N98/sc2s00Gyx8P3nAJvoazEasLnoHL/96pSR/LKzCElfhRUpia0ixb6PXnuiDwCWThiEvy+bAADgKtXgdFJwFsBSqcbEwe2LvlFORJ83m7KzjB9kE31H8nom+vI76dHXBluz60uRPgDILKjG2ZI6zHnxZ1z52ibUNvWOKLWnulErmKQYaFDLBoIgXKZZZ0RulXUGTyIWIT3Wew50QUxfrgZG9JnMFsGXOPuDSRD9GZ1dy4Xi2maXa/rse8mF+CsQ7KfAleOS8camkzCaLQ7HDI4KxIoZ6bh+ymBBunVHxLTTWmVwpHt706XHBuNo68322eI6REZJsK3kPLYVX8Cx6mJYGJH33JEtqNY246lx89zST4w11FHKJPw5NxedQ4vJKpaHBIVjRkIygD0ArJEZk9kCqaTvz70X1tjSO9tcOe0jfaw4aGvhwHLfnOEoq2vBe9vPwHIiHpBYEKbyx6AORE9UkB9igv0E0SZvm7i0MSGFifT1UPR1K9LnYk0fx3E4mFOJ5HC1W9oesRHr9NhgnCutB2BN5X5j4wm+PvGXzALcPiOtx8/XHYxmC347VYSv9l3AjjOlsHAc3l0xA9dMTOmV8fQmJPoIgnCZ0yV1fO3EkOggp3VBniKwHSOX0rpmQW1RHok+YoBgb5V+saKBj8jJJGIE+7UvzOwjfW1peYOjgrBj1ZXYk12GsoYWlNW1QCoRY+n4QZieFt1lkdTejaW70jvbGBITCAQ3QxSsxetlv+DF9foO9199ei8MFjP+NuGKHgs/LfN3UPhzMJhNkEukWJt3it9+TcooyKUShKuVqG7UwcJxqGrUIia47/czs3ebBKwmX1KxCCYLJ3BsDfFXtFtr+szVE1Cp0WLtkTzALMElQzt/v41KDLMTfd6t52tjTGI4xCIRLByHc2V1aNQaBNkprqI1mHhzFIlYhLjQ9o1cQgMUEIms9Yx1zXoYzRa+PrI9nv7hMD7aeRaBKhkOPLvMqUlOV6iot0UY549K5EXf9wdzBPuV1Hq/pUpepQZf7buAbw9cdBDFv54oJNFHEATREVmMJfrwOO+ldgJCIxe2F5K9yMujWgJigGBv5JLJWKWHq5Ud3jDbiz42ojA4KqhHPfRY2ov0dRTB6SoVLY34rGYHJGnW7yf7RDcRgHER8ZgbNxSZ1cX4rfg8AODDswcgFYvx1/GX9+j528S3KL4WTXENmLTmDdyTMRW7Si/y+ywdZE3tjA724xtpF9U09wvRV8gaubRG+lRyKdJjQwTGX4C1brS996VYLMIbt1yCuBB/5FRqsOqqcZ0+9+jEMGw+WQTAKpJGebHkgMVfKUNGnPX1cpw1vZF1w3UVNmslPtS/QxEnlYgR6q/km9L/4+djuG1GGi+87dl3oRwf7TwLwNrm5HBuJS4fmdDlMbKwEdwrRiXgzV9POt3PW+mnOqMZG48X4Mu9FzrsNdpilyUxUCDRRxCEy5wusdXKeKspexvt9ULKt8vPL65thsFkbrfGiCD6C/ZGLiVMg/KOevQBjkYuHdUO9YRwtRISsQhmJhofE+wHf6bvZk8oaqrDjb99hoIWYR1foFyJ2bGpmBM/BLNjUxGqtIorg9mEh3avwcZC683ve6f34Y60SYgLCO72GHQGEyAxQxRjnXCq1jXj5WNb+ccnRiQgIcCaCp8WHcybYZ0srMGkDmrW+gJmiwXFtTbRl8AIjlGJYQ6iz76ezx6FTIJVS8e7/PxsOmd6TDD8FO55X3WH8YMi+Nd7JK+qW6Iv30nUtCMSwvx50bd662ms3noaM9JisHzaEMwfnchn4+iMZjzx9X7BsT2NvpktFlQwpknpsSFICg8QuLm24emWEmdL6vDl3vNYczgX9S2OLZ2iglQYlxyBTScKAThmSQwU+n4yOUEQXoNtfuxNExfAXvTZTCXyq4SRPQvHCWpMCKK/Yh/pY+mong8Q9pIDOq4d6gkSsRhRQcJo32A3pXZebKjC1b9+zDc+BwdYygJhPhODHy+9D+/OvBbLUkbzgg8A5BIpVs+8FpMiE9sOwfe5J3o0Dp3RDFFEE0Ri5+YwV6eM4pdZkZLZD/qZlda18On1EWol/OS2WMIYJ/3yhnYi+rrK9KExmJkegwClDI8uGO3Wc3cV1syluw6e+S7W87Xx5JJxiAwUftZ3Z5fhgU9+x7hV3+OZHw7hXGkd3tp8EjkVwt9KdpKoO9Q06vnJnBB/BZQyiaBHYiBTh++J5vEcx2Hd0Tws/OcGzHnpZ3y065xA8IlFIlw+Mh6f3j8HR56/Fg/MG84/NlBFH0X6CIJwCaPZInBg82a7BkDYsqGjSB9gNXNJdVN6GkH4Kh3duHTUow8AlPaRPg+JPsAa2StlbjDdUc+nMxtxy9YvUN5i/fwrxBKkNA1BVqG1lu9iWQPSY5wbTUnFEqxIm4RDldZZ/+8uZuKRkTMgFnVvHlxrMEEUafseWpA4DIcqC1Cja0Gowg9Lkm03m6y7ZGZ+zww/fIHCmvYjU85aKnQW6esqUokY3z58OcwWCyTi3o1jTGBE37H8KlgsHMTirtWLFrA9+lyIvl86LBZHXrgWW7OK8dW+C9h+uoQ3Lapr1uODHWfxwY6zcJZRW1Lbs8lR1sSlrTXLfXOHY8upYoSrlXjx+sm49T/bAHhG9O06V4r7P/7dYXtiWABumjYEN0wZLEifZj0ItJTeSRAE0T7ny+phaLUlTwgLQLBfzwrAu0p7Ri7O3Dpzqa6PGAB0KPo6ifTZ1/QNinCvsQpLtF2kL8UN7Rp+yj2F4mZrqxY/qQwfz74J2/bXIAtnAABnS+uxuIOSsMsT0xAkV6LBoENhUz32VxTgkuhB3RrLsZoiiFTW7AMxJ8GblywFB2BvWR5GhEYjRGF7/RlxoZBJxDCaLcirakRds77HZhq9CZvKl2gn+tJjg6GQigXtLNwt+trobcEHWEVaaIACtU161LcYkFOpwZDork0+5ts1uncFmUSMBaMTsWB0IkrqmvHtgYv4et8FFDPpm20GbCH+CtQ1WydGehrpY+v5olp7I45JCkf2qzfBbOFgZhxzq5t04DjOLW65bRzOsU2ayKXWa7B82hBMHxrjVGwrGcfigRrp6/1PCUEQfQK2P9/weO+1amhDJZNA2vpFrjOaoTeawXGcU9Fnn/JJED3FnX3d3AHHcYKG4PZ01KMPEM56K2US/qbNE8SE2Im+iEBUtDTCYO7ebDvHcfjgrK0+6bFRszA9JgXDYtvv1WePUiLD1YNsaZffXszs1lgAYEv5GX452hgBf5kCATIFrkhMd6gVVMgkgu/P4308xbPASWP2NuRSCTIYw68Qf0WntaZ9GZFIJIj2Hc2rdPlYjuPwxd7zOHCxgt/mSqTPnrgQf/xxwWgcfHYZvnnoMlw5Lpk3g1HJpXjjlmn8vj2t6StnXFNZwyapRAyFTAI/uRQBrbW7BpNF0GrJHeQxv/MvXj8Z/73zUsxMj203uqpiUtrt290MFCjSRxCES5xim7LHO6bteBqRSIRAPzlqm6yzlI06A0xmzumMXS61bSDcxO+lOXho9xoMD43GB7NuQIDMN6IyRrMFHenQrkT6ksLVbp2BtyeGjfSJOLyWtwlZmaUQAYj2C0RiQDASAkKQEBCMRHUI4v2DkRgQjHBVABoMWtToWmAwmzAyLAZikRi7y3KRXW+d5feTyrB8qDWkx/YNPdeJ6AOAG1PH4n/ZhwAAGwrO4PlJCxAk75r4rdE143B9Hr+ehLhOjxmbFI7jBdb66MyCaszO6PwYX6WohnXudBQpY5LC+NrFjpw7+wvjB0Viy6liAFYzlxunDun0mJK6Zjz+5T7sPFvKbwtSyZHSg16WYrEIlw6LxaXDYlHdqMOBC+VIjwtBYlgA3+ahvEHrUpuH9igXRPqcu/RGqJV8G5lKjdatGULshK8rKeNspE87QCN9JPoIgnCJNsc5wPvOnW0EqWyir6HFgEqmTkCtlKGx9ceFIn2Eu3jx6G+o1bdgd1ku3jy5q8f2/u6is/SkTkUfU9PnKROXNthefZIgHbLqrVbqHICyFg3KWjQ42Fpf1xGXRA/C+7Oux/tnbFG+G1LH8kJtSHQQ3ystv7oRLXpjh26OI8JiMDwkGqfryqE3m/BzXhZuTZvYpdf23cXjMHPW9EWuSYFIv+BOjxmbHIFPfs8GIGyz0RdhI30J4Y495aakRvOvdVwv9dDzJsJIX8c1mxzH4ev9F/H3NYf53y7AanT0zooZbuuDG65WYvG4ZH49KlCF8gYtLByH8voWJIS13wuwIyoabL+/7fXjDFer+LZK1RodhkZ366mcwtbzu9ICRsVcT0rvJAiC6ICzTLsGb5u4tGHfq4+94bgkzfZrUlRjbdtAED2hoqURp+tsvZ4+PHMAFxt8w3xD35no6yS9k20VMHu4ZyNNbOpXUGT302T3ludh8YYPsLO1/50IwF3DpvCPq+RSDIq03vxxHATGU+1x45Cx/PLLx7birh3f4J1Tu1Gp7TxbwGyx4IvzR/h1rkLt0o26wMEzv9rnUoe7QkEnNWiLxybh4ctH4qapqXjwshHeHFqvMCYpjDdNyS6rh9FscbpfaV0zbl69DX/6ch8v+EQi4L45GfjtqSVOnU/dBdvwvbgHZi5l9ayRi/NJJtZZtMqNvfrqmvV8baJSJkFUoHPRycI6FmsNpj79uesuFOkjCKJTmnVGPh9fIRUjtp1ZPU/D1h1lFlQLIn1pMcE4WViL0rpmWDgORTVNbmswTQxMfi/LEaybOAuePrQJX827tdfT1DqbqQ7vJNKXHhuCTU8sQpVG6/H0wvGDIjA4MhA5lRqERHFoaC3teeOSpZgQkYCipnoUNtWhqKkeRU11KGz9v1bXgmCFCqEKP+RorOmQeY22jIMrEtORrBZOQGXEhvDW9GdL6zG2k+jS0kEj8fyRLTBYzNAY9dhcdA6bi87h6wvH8PvShzs0CPmtOBsFTdbJMM4kBlfrL4gmtEdKRCACVTJotEbUNOlQXNvc7WhLb9KkM/I94uRSsdMbf7FYhP9zocl6f8FPIUOIv9XMheOAuiY9IpnrwnEcvj1wEX9bc1jQemhQhBpv3jrdK30b40L8+ShkT8xcKlxJ72Qmnyrd6ODJTvgmR6hdckmViMWQS8W8IZ3eZHFbNLWvQKKPIIhOYRuwRgX59doN79zh8Xy9xC/H8gUpJYPCAzEoQs1bw+dXNZLoI3rEzpKLDtt2l+ViU+FZLEzK6IUR2WBFX1iAkr/5BgCJWIRQFxwhPRlNYJFLJdi+6koU1zZi/tZ3+e2XRA9CrH8QBgU6rxFm3f7W5J7A4/vWwWixRU7uGTbV4Zj0uBD8klkAoHMzFwAIUfjhbxOuwMuZW9FktBlNFDTVoaCpFimB7V+jD5g0U65SDVjEUMo7v60Si0UYkxSO38+VAbBG+/qi6GPbNSSEBviEg6YvEB6g5MsQqpu0vOiraGjBn77ch22nS/h9RSLg7lnD8OSV4wQ9Dj1JXIitjUFPzFzYmr6YdiaC2TTzKo37GrSzJi5dMbxRyiS86NMZTQNO9NEnlCCITil3Ys3cGywYnQhx603godxKHGEa4CZFqAW287lU10f0ALPFIoj0TYtO5pefPbIZWpN7nei6CuvcGRWkgr/CdsMYFqDscn8wTyOXStAobkaLyRrdiPMPQqx/x5My7OTSspTR+HzuLVC3GulMjUrmG6yzsA6e50o6F30AcHv6JJy+4UlsXfIARofF8tsvNrRfb3eyppSvQxRDBK7c+t3j6k0km+J5rI/26ytkUjv7omj1FGyUvbrRJnTueG+HQPAlh6vx46Pz8dy1k7wm+AAgLpQRfU4ifRYLh21ZxR06y+qNZl7YikWidl1ZIwLZa+G+SF8eY+IyKNz1FjCCtg2GgVcCQqKPIIhOcSWNwxtEBKowJTUKgLVmh/3BGhShFhRzO2vlQBCucrK2FHV6601KpCoA7116PUJb+62VNDfgnaw9vTk8QU2fUiZBPFOnE+GjtviHGbOWiU4EW2dMj0nBjqtWYvWMa/Hh7BucZhwMiw3ml8+W1rt8bolYjPSQKIyLiOe3XehA9LFRvhRpLGC03kyqXLx5H8tEWTP7YNsGo9mCD3ee5ddd7Sk3EGAFUJvoM5otOF5o+zvfNWsYtv3fEv73zJt0Ful7a8sp3PKfbVjwzw24+o1fsetsqUP9G5uqGRmobDfKy34XuTO9M7+LTezbGOgN2kn0EQTRKaxLV1Rg70X6AGDJuCSHbSq5FJGBKsGXPzVoHxgUN9XjjRM7kVld7Nbzsqmdl8YORojCD0+Nm8dv+2/WXuQz9WXeRicQfVLEM7P34b38GW1jZ8lFvJu1B/Wt4vkQK/oiErp1zmi/QFw5aES7rRUSw9R81KSmSYeqLt5opjLpnDntiL6yFg1+yT/Nr6eJbALW5Uhfkq3W8GRhDUztGH74Kk9/fwh7z9tMjq4an9x7g/ExwgJsqdVtadfVjVq+xUq4WokXrpvUobOsJ+ks0vf7OVvriAMXK3DjO79h8asb8dupIl78CUxcOqjxjxAYuXSe3llW34yy+s5TTlmHbjbDpzPYSZmB6OBJoo8giE4RRPp6ycSljYWjk2A/wZ/c2meM7dVDkb6Bwf2/f4/XTuzEzb99jgaD+2aSd5XaUjsvjU0FANyQOoZP/9NbzHj28K9ue76uwt6wKDwY6dOajChsrEOtrhlGi2s3SfU6LR7evQa3bPsCLx/bivt3fQeO43CkqojfZ2JU1yN9riAWi5AWE8yvu1LXx5IaZBN97aV3/u/cIZha2zRMjkqCv9l27V0VfZFBKj7iojOaca4LUcne5tPfz+HT3dn8+hOLx2DqEDd68fdxnKV3VjL1bL09ccpG+oprmxyieKVOhOCx/Grc9t/tuPwf67E+s0AgzDrK/mHdO6s7mYDZk12GaX9fi6l/+1EgPJ2R54ZIH5siP1AgIxeCIDpFEOnrxfROwHqzNHlwFA5crOC3JUVYb7oSmRSjotqmHjWeJXyfPE0Njldba2Q0Rj12l+ZicfLwHp+3Xq/FsdbIoQjAzJgUAIBYJMaLkxdhycYPwAH4rfg8thWfx9z4oT1+zq6is0vvZCc8Ep00ye4KFs6CfeX5+D7nODYWnoXWZHMZVEqkCJIroZYroZYpEChTIlCuhFqugFqmhL9Mju9zj6OosZ4/Zk95Hj44ux+VWmsNWKBMgbQgz7kUDosL4VMmz5bWYWZ6bCdH2BgsEH1VAjMZAGgxGgRtGu4ZNgU/l9pq8tiaoc4YmxzOR1oyC6p7rf9pV9h7vgyrvj/Ery8dn4xH54/qxRH5HmFO0jvZiHNEL4u+EH8FVHIptAYTmvUmaLRGBPlZ2yFZLJwginfzJUPw/cEc3vwkq7gW93y4U1CD2J6JCyBMda1q1Dl8ntowmS146tuD/Pfaqu8OYceqKyF18vvdqDXw11UhFQtEbGcI0jsp0kcQBOGIL6V3AtbeTyxthdx+cinfTsJssbZtIPovW4vPC9a3l1xwy3n3lOXC0jr7PTo8DqFK203FmPA43Jhqs6B/5vAm6MxGh3N4GnaWWimT4MapqZiZHoNJgyNxy/Qh3Tonx3HYWHAGM396Bzf+9hnW5J4UCD4A0JlNqNA24WJDNTKrS7CrLAe/FJzGVxeO4b0z+/D6iZ0CwdfGC0d/45fHRyZ41OkxnanrO1fiOJaOiFKpebMYjVGPKp3wO+T7nONoMFhvOJMCQnBZfBq07N9C7robIFvX15Fphq+QX6XBPR/ugtli/WyMSgzDa7dc0uvtS3wNVujU8JE+tgaud39DRSKRsK6vzvYer2nS8QIvSCXHq8un4eCzy3DvnAyBYGoxsEZS7Ys+lVyKAKU1jdVotqC+xbkB1pf7LuBiRQO/frGiAV/vd3RPBoRN2RPDXWvX0AbrrktGLgRBEE5g0zvba8LqTRaNEYq+JCa9I5nJ7991tuMUEaJvs6UoW7C+o+QCLFzPa6N2lNpuNma1pnayPDVuLoLk1hu7gsY6vH96v8M+nsbeyCVQJce3D1+OdX9cgJhg5zPfZosF75zajWcP/4panTCF61RNKa7d8j/cu+s7h1rFCKU/guRK3jnXFYLlKrw69Ur+OlmYFDJnrpvuhHXw7Gp6p0gksov22cSYhbPgw7MH+PW7hk2BRCyG1iD8W7jKGLsm7b5Mo9aA2/+7nW+IHRmowv/um+1V18m+QlgAE+lrreljf0N7W/QBdnV9jJkLW+PXtk90sB+eXTYRh59fhocuHyFwCgYgqCd2RoQg2ueY4tmkM+LVDccdtr+64Tha9I4TamzpxqAupHYC9pE+Su8kCIJwgO3TF9nL6Z2A9Udo8uBIHMypBACkMzU8szJise+C1WDglV8ysWRcUqeNqom+R52+BYcqCwTbqnTNOF1bjpFhrqfzOWNvWS6/fGnsYIfHQ5X+eGLMHKw6tBEA8Nap37EsZRTiAoJ79Lxdwb6mzxXezdqDfx7fDsCacvndZbcjROmH73OO4/F962BmhFmQXIlrUkbh+sFjMCI0BiKRCBzHocVkQINBh0ajHo0GHTRGPTQGnWA5JjgQ86PTEe0XiCaTAX+3q33sjnNnV0hnRF92WT3MFkuXIoupgeF82nBOQzWmRQ8CAGwrvsA3hw+UKXBD6hgAgI6Jerjq3gkAoxPCIBaJYOE4ZJfVo1lnhL+yd8w9OsJssWDl/3bjfLk1EqOQivHJvbPbnVwY6DiL9FUJfkN7//eIFWrF7Yi+WLu0yXC1CquuGo8H543ARzvP4pv9FxEb4ocFozr+PEcEqvgavCqNFkOjgwWPr96axadrxgb7wcJxKG/QolKjxXvbz+CxBaMF+wvr+Vw3cQEgmKQYiJE+En0EQXRIs86IJp11tk0hFSO4Nfe/t3nphslY9d0hjEgIxaTBtvqgu2cNw5d7z6OgugkNWgOe/fEI3r59Ri+OlPAE20suCEQKu70z0We0mCEViZ2mpRU21qG42Xpz6yeVYUx4nNNz3DJ0Ar66cAyn68qhM5vw3NEteO/S67vxSrqHfaSvM/I0Nfj3yV38+tm6Cizf+jkuT0jDayd28tulIjFWpE/CH0bNRIhCOMEjEongL1PAX9Zx4/eICDWqWm/Mbk+biM+yDyNXUwMAkInFGB3m/Jq6i3C1EhFqJaoaddAZzSiobhLUPHYGa+bCtm344KwtonvTkPH8dWAFuKoLkT5/pQxpMcE4W1oHC8fhRFENpvmgIco/fs7Eb1k2d9xXb56GcYMiOjhiYCNo2dDkaOTiE5G+EOcOnqyJS2w7tXoh/go8vmgMHl80xqXn6qhBe1l9M/6z1eaE+5clY2E0W/D4V9bP2uqtp3Hr9DTBNRU6d3Y/0jcQjVwovZMgiA5ho3xRQX4+U7+REReKtY/Nx/PXThKMSSWX4qXrp/DrPxzKxd7zZb0xRMKD/MakdmaE2HpdtVfXx3Ec9pbn4Y7tX2Hwly9g+dbPYXLiRrm/Ip9fnhSZBJnY+U28RCzGC5MX8usbCs5gN+P46Wm6EunjOA7/d3AD9Hav91RtmUDwZYREYftVD+LvE+c7CL7uIhNL8MyEy/n18REJUEk9H80aFtf9FE9W9LW1bThdW4Z95fkAAIlIhDvTJ/H72LfP6Apsk/bjPpji+cOhHLzzWxa/vvKyEbh2kmP0m7ARpJJD2lpn1qQzQmswCWr6etvIBQDiGLffktomZrnZ6T49ISKw/fTOf60/zn9+hseFYNmkFNwwJRVDooMAWK/fN/uF3+ndde4E7EXfwIv0kegjCKJDygWN2Xv/x8oV5gyPw5Xjkvn1v3xzQBAZIfoGWpMBx6tLcLGhCk1GPb9dbzZhJ1N399ykBWiT/ZnVJajT2d6zBrMJP+Qcx/z17+GGLZ/it+LzsHAcdpflYjeTxtnGvvI8fnlqdHKH45sYmYhlKTbnwqcPb4LB7J3Z464IjbV5p/jXKhaJcF/GNId9pkQl4Ycr7kAK06fOXcyNG4rnJi7AkqTheGHSws4PcANsXd+5kh60bdBYhdgHZ2y1fIuSMgSpvPamOl1hDGPmcszHRN+xvCo8/uU+fv2yEfF46sqxvTiivoFIJBI4eNY06VCp8a2avnhXIn0h7pn4YUUuK37PltThmwO27/FnrpkAiVgMqUSMOy9N57e3pRW30d0efYDwu3IgNmen9E6C6CXasy72NQQ9+nygns9Vnl02EdvPlKBJZ0ROhQart2Y51AYQrqEzG1HarMEgdajH37N5mhpsL7mAHSUXsb88TxCdUssUmBGTghGhMWgyWl3gkgJCMDkyCWPD43GsuhgWjsOushxcGjMYn58/gs8vHEFZs8bpc20pysbsOJvTJcdxfDQHAKZ1IvoA4P/GXYbNRefQZDTgYkM1tpdcwPzEYd178V3AVaFRp2/Bs0dsNXV3pk/G0xMuR5I6BP93cAMAYEHiMLw94xooJZ6JwIlEItw5bDLuHDbZI+d3htDMpb5LxyapQyEViWHiLChpbkCepgbr8k/xj989bKpgf4EA74J7JwCMY81cvOjgWVrXDLlUIkibY6nSaHHH+zugb3VyTIsJxrsrZnjUdbU/ER6g5F2vqxt1PtWnD2jfyKWUaddgX9PXXdj0zmrmOjz/01G+Yf3sjDhBaxVWzBUybp0teiPKW6+rVCzqUrsGgJqzk+gjCC9jtlhwy+ptOFFYg7dvm465I+J7e0gd4mvtGlwlOtgPTy4Zi7+29pT6968nsXT8IAzqQm0PYe1LduWmD3GuvhLz4ofinRnLENBJTVdX0JmNOFBe0Cr0bEYZzmg06rGx8Cw2Fp7lt12WkAaRSITZcal8b71XMrfh8X3roLOLuiklUsyMGYwtxdbU0C1F2Xhx8kKIRdYb2fzGWpS1WAVigEyOkaExnY4/yk+Nm4dMwHtnrBGRAxUFXhF9rtb0vXR0K2paI58xfoF4fMxsAMBtaRMxOSoJ1bpmTI1K4q9BfyGdSe8818X0TplYgiR1CHJa6xD/dvhXGC1W8TM+Ih7jIoTf2WzEoKvpnWkxwVDKJNAZzSita0ZFQ4vHJ9d2nCnB8ne3Qi4VY8tfFiONEchtfHcwh4/KhPgr8On9c6BW+UY9d1+AjfQVVjfx7xGlTMK3MOhNooP8IBIBHAeUN2j5nrZspC/ebaLPMb3z93Ol2HHGapYkFonw9NLxgmMSw2yppWzrpYJq23JiuNppH7+OYCdlBqLo61/f8gTRBziaV42dZ0tR16zHK+sze3s4nSKI9HXQhNUXWTEzDaMSwwAAepMFT313EJwT8w+ifVaf3otz9VaX1K3F53H1rx+jtLmhk6M651hVMVZs/wojvnkFt2z7Ah+fO+hU8CWrQ5EUEAJFO7V1lyWkAQDmMBG7oqZ6geCLUgXgybFzcXjZH/H+rOsRorBOXlRoG3GixtbWg43yTYpMgrSd57SHjQjaO4p6Cvvm7M44WFGAry8e49dfmLRQINjTgiNxSfSgfif4AGBodBDfYiK3SiPoK+YKqUE2oxK2TvSejKkO+7ryt2gPqUTMf0cB3unX999tVuMMg8mC7w46r0PNrbRFxx9bMApJ4V2rnRrosI7Rp0ts32uRgSqfyPBRyCR8mqmF41Be3wKj2cKXc4hE1olTd8Cms1Y16mCxcHh+7VF+2w1TBgtqcAFrJLLtMpU1tPCTXHlMamdyN96Tgpq+AZje2f++6QnCx6lpsqU3nC6uQ6PWebNSX0EQ6etD6Z2A1WzjlRun8D8eu86W4pdj3rkp7w+UNNXjP6f3CradravAko0f4GRN93sgmi0W3LXja2wtPu8QjVNJZbgsfihenrwIB655FHuufgR7r/kDLt78V2xd8gBWpE3im2cPCQrne76NDItBhFI4Mz0iNBqfLFiO/dc8iodGzkCI0g9SsQTz4ofy+7C9/lgTF1dSO9uYEJnA1xRm1ZYL6g+dwXEcDlUU4FhVcbcnIfSmjo1c9GYT/nLgF359fmI6rkhMd9ivv6KSS3lnP44DzpfVd+l4tq6vjXj/IMxPEF5Ds8XCN7MGui76AGGKp6fr+mqbdNh7vpxfb2t7Y085k+bHRl0I12DTZs8yNaW+VBfPpkYW1TShvL6FT7eMUKsgl3b9vewMtqavSqPFD4dzkVVsFcJKmQR/XjzG4Ri5VMK3BOE4W90hOxnRVedO6/MxNX0U6SMIwtM06mzNRi0ch8O5Vb04ms7pq+mdbYxJCscdM203as+sOeTzQttXeOnYVuhbRVmsXyCkrRGhCm0Tlm3+BJsLz7l0HnsRlNdYgyqmOfjgwDDcM2wKvpp3K07d8AQ+mbMct6ZNRDxjliESiZAeEoUXJi/E0Wv/hB+uWIH1C+/h3TXFIjGem7QASeoQXJGQju8vX4FNi+7D8ozxkEuEKXeXMzfuW4qsr4HjOOxnTFzaerO5QpBchfRWB1ELx+FoVVGH+3+fcxzXbP4EV276ELN/fhcfnj2Aer1j0+KO0Bk6NnL57+m9fGNxf6kcz01c0KXz9wfYfn1dTfF0JvruHDbZIfprn2bbnSjO2CRbVNHTkb4tp4pgttgmGk4UVDuNgpb30VpuX4Ft0H6GEX2+4NzZRmpUEL98srBGkNrZ1Vq5jmAFcJVGi1d+sWU43T93eLv9HhOYusPCGmtd3wXG1CU1OsjhmM5QMemdA9HIhUQfQXiZJjvBceBiRS+NxDXY9M5oH5ql7Ap/WTKWTzGpaNDilfXHe3dAfYAjlYVYl2+zan97xjJ8edmtCJJbf8C1JiPu3vkNPjizv8No1aN71iL965fx/JEt/LasWlukYVZsKnYtfRh/mzgfM2MHu2Qm4ieTY0pUskO/uCXJI7D36j/go9k3Ymp0crs34JfGDIaiVQhm11chv7EWuZoaVGit9SKBMgWGh3StX9okpuH4oYrCDvdl0wUvNlTj74d/xYQfXsOf9v6EzGrXon9axshFYTcjn6upwVsnf+fXnxg7B7H+Xb9B6usMiw3ml7tq5jLYzsU0QCbHjanjHPZjowVdaczOImjbUFANi8VzKejrM4WZDiYLh8x8x4nHMibSF9PH0vp9AVbosO6YvuDc2Qbba/FIXhVK69tvzN4TVHIp1K11jCYLx4vLcLUSKy8b0e5xiUz6ZmFrLR8r+oZ0Q/SxE2RU00cQhMfRMJE+ADiY4+Oij7FYjuyjM76BKjmeu3Yiv/7JrnM4UVjTiyPybTiOw98O2xwfFydlYHJUEi6JHoR1C+5CUoA1gsIBePbIZqw6uMFpz7vS5gb8kHsCAPDh2f3QmqwTHqcZ0TcyrHOzFHfjJ5NjZkwKv76l6JygVcPkqKQuuxROjkzilw92UteX76R2UWc24duc41iy8UMs2PAevjx/FM0dpInq23GM5DgO/3dgPe96OiosBivSJjkcPxDoiZmLfaTvxtRxCJQ7Ol32pJ6vjfhQfz4ypNEakVPp3G22pzS0GPD7OceepQcuCH+D9EYz6pqt7z2JWNSuwyfRPu1dM1+K9E1gRN/RvEqBi6e72jW04ex1P75wdIemNvZmLhzH4UIFI/qigrs8DhX16SMIwps02Ym+4wXVPptm0KQz8uNVSMUI9uu77m1XjkvGpcOsltAWjsNfvt4Ps8XSyVEDk3P1lbzBiUIswarxl/GPpQZF4OeFd2NCRAK/7bPzR7Bi+9doNOgE52HTHM0cx5/zDCP6uhpRcxdsiufbp3bj70c28+tdSe1sY1KULdKXWV3Cp8Xaw3EcChptAmTVuMscrkFWbTn+cuAXTPjhdTx/ZIvTcwnEBhPp+zHvJPa0ClixSIRXpiwZsDb7grYNXezVFyhXYpA6FEBbM3bn7SaEzp3dE30ikcgrrRu2nCqC0Wz9zpOIbVFw+7o+gXlXoGrAvn96QniAc9HnSyUS6bHB8FdYI1/lDVocYUpN2JYO7sBeBA+OCsTyS4a2s7cVVvQV1jShtK6Zvx8JUskFTd9dReje6Zv3XZ6kW5/k5uZmNDU1db4jQRAO2NeTGUwWr/Zn6grsj39kkJ9PuI51F5FIhJevnwyF1Pq1d6KwBp/tPt/Lo/JNTtfaogGz4lKRECB0VgtT+uOby2/DVcm21JydpRcdnD2PVRULjjtSWQSO45BVZzt/RmjviL558UN585U6vVYgrGbFpnb5fNF+gXwEVG824VQ7Rje1+hY0tkbw/KVy3D98Gn5dfB9+XnA3rh88hk87BawtKt47sw8/5JxwOA9v5OKnR05LBcwWC+p0LXj2sE283pU+GSPDYh2OHSgkhQfwQqyqUYfqRl0nRwh5KHUOEkVReDBlDhLVjm0NgM5rK11lDJvi6STd0h1sYFI7b5tuu+E+klfFi0FAmNrpLgfHgUZYO5E+X0rvlIjFGJtke9/tOFvCL8e1U2fXXexf91+vGg9ZJ+0WEgSirxFni20TN0Oig7p1PzLQm7N3SfRlZ2fjqquuwvjx4zFx4kQsXrwYp0+f9tTYCKJf0mgX6QOAgz5a18emdvbVej6WQZGBeOSKUfz6yz8f6/KN4ECATb/MaCcSp5TI8PaMa/CHkTP5befqK/HQ7jX8+lE70XesqhgV2ka+b5y/VI7kdm6mPU2EKgBTopIF24aFROHNS5ZiSHCE84M6gY32Hax0XtfHpnYmqUMgEomskZ6IeLx+yVIcufaP+PuEK/goEwD8XuZoq68zmIFALSQjS/HY0R8w5cc3cdv2L1Grt17bWKYn30BFIhYjLSaYX+9KiifHcXhn7UXkHfDD6u/yBb3CWNhogaqLjdlZ2JtvT0wCNumM2Mnc1N8zOwPxrdEcrcGErCJbujtr4kKir3u0F+nzpfROABifYvuuY11o3VnTBwgjnJMHR+KKUQkd7G1FUNNX04Szxbbvzu7U8wHCzyild3bC008/jfvvvx8nTpzA4cOHceWVV+KJJ57w1NgIol9in94J+K6ZS0U/dHBbedkIDG5t0N5odyNEWDlTZ3s/Du8gEicWifHnsXPwxiVLIWmddT1UWYjCxjrozSZk1Qrrh45UFdkJyqhe7RH3z6lLcPOQ8fjT6FnYedVK/LbkAVw7eEy3zzeJqes7VOG8ro8VfcmMsGsjROGHuzOm4r1Z1/PbDlYUOJi76E1miEJtNThlLRpkVtveyy9MXuhgdDMQEaR4dkH0Fdc242Jr/ZDBZMEbmxyjrYB9TV8PIn2M6DtdXOf2G9KtWcXQt97UD48LwaDIQEweHMU/zv4GCSJ9/eR739v4KaRO0319qWUDAEwYFOl0u7vTO5dOGASVXIpgPzleumGyS1G66CAVHw2sbdLjCJOGPDQ6uFvjEBi5GEj08Tz99NOoqBDeiNbX12PcuHFQKBQICAjAmDFjUFvrWJBOEET7OIv0HcmtgsnsWF9WXt+CtUdy8cTX+3HXBzuQVeTdz1tfb9fgDIVMglkZcfw62zeRsEY4WGHWkehr47rBY3ApkxL5W3E2smrLYLAzd6nVt2BDwRnm3N43cWEZFBiGV6YuwWOjZwmacXeXyUyk70hVESyc42earedLciL62kgPjuSdUqt1zcjVCI2HdEYzRH7OW4/MT0wX1CwOZIYJzFzqXT5u/4Vywfp3B3OQw5hItOEOIxcACPFXIKV1MspotuBMsXu/61nXzkVjrZMTk1Ntou/gRdsNdTmld/YYkci5AQ7btN0XYJ1j25BJxIhw8zgnpEQi88XrcPTF65AR1/73HotELOaj0QCw5YQte6K7kT5Bc/YBWNPX7rTU4MGDcf3112PhwoW4//77ERQUhHvvvReLFy9GSkoKLBYLLl68iMcff9yb4yWIPg8b6ROJrI1HWwwmZBXXIjJQhf0XKrDvQjkOXKwQNCIFrLNdax+b77WxCiJ9/ejHP0hlM6RpaKGefSxlLRrUG6xiP1CmQLx/sEvHXZ6Qxrci+K0oG2YnggeAoA2EK4KyLzFIHYZwpT+qdc1oMOhwrr7SIT22oJNIXxtikRiTI5OwpdjaPP5ARQEGM46SWqMJYETf69Ouwq7SHCgkUjw94XJ3vaQ+T3fNXPbbOVqaLRxe23gCq++YKdiuY41cepDeCVijfW3f+ZkF1QJL/Z7Qojdi22lbqvXisckAgMmptijPodxKWCwcxGKRML2TIn3dJixAiWLGETM0QNFpHZu3CQtQIiUyUHCvER3sB7HY/fX7Qd0wgksIC0BelbVHXxVTbuIe0TfwIn3tir4VK1bg2muvxYcffojFixfjxhtvxB133IGZM2fi5MmTAIDhw4cjJqZ3Z2oJoq/RqLPdqI1LjsDRPGvR/g1vb4FG6xgFZMmr8oyVd3v0x0gfIPzx0ZDoE8BG+YaFRrtcLD833mYMcaCiAGLmuDj/IJS0Grywhin9TfSJRCKMj0jA5taG72dqKxxEnzC9s+N6xslRNtF3sLIANw8dD8AajdVLtRBLrCmfMX6BuD51LK5PHeu219JfGBYXzC9nl9XzwqYznKXc/3Q0D49cMVLQ9F3rpvROwFrX9+PhXADAsfxq3NWjs9nYfrqEv8FNiwnmb5iHRAUhNECB2iY96pr1uFBej7TYEOrR5ybsI32+ZOLCMn5QhED0ubMxe09JDFMDEJYJKGUSxIcGOD+gE9hemmTkYkdAQAAeffRRrF27FtXV1Zg/fz42bdqEmTNnYt68ed0WfBqNBpMnT0ZGRoZg+7Zt27Bw4UKMGDECixYtws6dO7t1foLwZdj0zrnDbWmGzgSfQirGtCG2m8bqRp1HG/faIxB9/WjGl209UU+iT8CZuu61U4jxC8So1p57Js6C38ty+cfuGuZody8ViTG0m4YpvkxCQDC/XKV1NP9g0zs7ivQBVtHXxkGmRtBotgB+th5+I3s5TdaXCVer+JvvFoMJhTWNnR5TVt+M/GrrfkqZhG/1wnHAvzYcF+zrjpYNbYyza9LuLtYfZ1I7x9jeUyKRSFjX11ozVUFGLm6hL4k+FnebuPSExHBHcZcaFdTtSCT7GdWbLF69n/IFOhR9jY2NyMrKgkgkwt/+9jd88cUXOHnyJObPn481a9bA0o0eV42NjVi5ciXq6+sF28+dO4dHHnkEhYWFGDFiBAoKCrBy5UqcP0+W6kT/gk3vXDp+kKA5qVImwYy0GPx58RisfWw+sl9djjWPXoFAlXUfs4VDbXP7DZvdjeDH38cK0HsCG+lr0JLoY7E3WukKl8WnOWzzk8pwQ+pYQeQPsDa/Vkrab8zbV4lU2W5SKrVCgdFk1KNaZ033kosliPYL7PBcI0Kj4Se1XqOS5gYUN9UDaE1LYlI7R/RCg/u+hNDMpb7T/dnUzgmDIrDqqnH8+sbjhThZaKuvZFPEVD0UfRnxoXz6X26lhm+Q3hO0BhO2ZrGpnUmCxycy7o0nC2vAcZywpq8fTfZ5G/v6PV8VfRMcRJ/v/M3ZXn1tdDe1E7BOdAhSPE0DK8WzXdG3ceNGzJw5E/fffz/mzJmDjz/+GImJiXjttdfwzjvvYOPGjVi0aBF+/fVXl59s48aNuPLKK3Ho0CGHxz7//HOYTCY89thj+Oabb7By5UqYTCZ88cUX3XtlBOGD6I1m3hZZJhEjOUKNHx+9Aq/cOAXr/rgA2a/ehO8euRx/XDAaU1KjoGj9cmKLqqsbtU7P7QnYlg2R/ejHP1BQ0+c9Ee2L/JBzHI/vW4eiJmsE6nRd10xcWC5PcBR9Y8LjECRXIT1Y6BI3op9Gp4SiTxjpY+v5EgKCO216LRVLMDHCZg5zoDXapzeaIfK3iT6K9HVMemwwv+yKgyeb2jl1SDRGJoQJImRstE8g+uQ9S+9UyiTIYIxnThT2PNq362wpmvXWaOTgyEDBtQCAEfFh/HJWcS3qmvW8y2eAUiaYlCS6RliA0D3XV0VfWkww/Jj3brwvRfqciL7UHog+wK6ub4CleLb7i/Pqq6/i9ddfx549e7BmzRq88cYb0OmsLncZGRn46KOP8Mwzz+Cjjz5y+cnee+891NXV4eGHH3Z47NixYwCASZMmAQCmTJkCAMjMzHT91RCEj8OmdgYoZRCJRBiZEIbbZqRh0uBIyKXOZ4rZ3j5VGu+4TWoNJj4qKRWLBCmRfZ1gP9uP8UBO79xanI1H9/6Eby5mYsX2r6Ex6Pj0Q6lI3OV+dRkh0Yi1i16Nj0gQ/N9Gf6vnayNSZestZS/68lw0cWFxluLZYjAB/rbJCor0dQwb6TvngpkLG+mb0upw+edFo9EWrN6aVYwjudZUSNYBsKfpnYDQTfFYfs9Fn71rp32N7ogE2/vwXGkdihjjEYry9Ywwu0ifr/Xoa0MqEWMCE/FNilB3sLd3SQhzHMvQqJ6JPkFd3wAzc2lX9LW0tCAszDoDFBISArPZDJNJqIinTp2K77//3uUnW758OTZv3oylS5c6PFZebp1dDg4OFvzftp0g+gONTCqhugszqBFMbUCVlyJ9bGpRaIDSZUOPvoDAyGWApnc2G/VYdXAjv55dX4l/Hd/Orw/uRvqlSCTCZXbRvvER8a3/C0VfRr8Vfe2nd7raroGFFX0HKvIBABcbqiFqNXERm6WIVvnOTZovwrZt6Cy9s0qj5fvzyaViXoSlxYbg6gkp/H7/XH8cgLDXl7KHkT4AGJtsu/k+3kPRpzeaseVUEb9un9oJWFtFtNniG0wW/H6ulH+MTFx6hn2Ddl/r0cfy50VjkBIZiAWjEzEjzXcmkcICFIIoJNCz9E5gYEf62v2GuvPOO7FixQoMHToUBQUFuP766xEQ0D23nDZuuOEGAEBxcbHDY21RRJnMepMhlVqHptV2foMbEuIHaTsREk8S4cbZEI7jUFzThIRw+vHuDHded29TxAi2kACly68lMcoWPdFaOLdeg/bOVdJsiyhGBqn69HW3x48R0Q0thl55bb19Pf+1cwfvqNnGJ+dsqffjYxK6NcZrR4zBp9mH+fXL0tIR7heAy6TpwF7bfpcOSUWI0js3ld681iJ/2+RIla5Z8NwVRpsIHBET49K4LgtJh2KrFHqzCXmNtTCpOBQabOLRz+SPyMiOawN7g95+f7NcEqjk2+PkVmoQEKRqNxVzF5PaOTE1ComMYHzxlmlYdzQPZguH3dllyKpogEhqmzsPD/Hr8eueOzYJ+GwPAOBEUQ3CwwM6nXBr7zk3HMvns0tSogIx20mkDwAmpEah+JDVeGnnOZtTYnJUoE/9HX0JV67LkEThxM6QhDCfvZ4LItRYMHlwbw/DKSlRgXyPYolYhEnD49rNinKFAKa8Q9WF+7D+QLui795778WcOXNw4cIFxMfHY+TIkR4diEKhgFar5aOJbf+rVJ3PjNTVtXS6j7uJiFCjqqpzFzBXWfHedmw+WYTbpg/FKzdNddt5+xvuvu7epqjMdpOtkklcfi3+zBdcflm9265BR9czt8h2YxmolPfp624Px3GQScQwmi3QGc0oKq13S2qWq3jyfWy0mJGrqYFMLIZCLIVCIoVSKoNCIoVUJIZIJMKpmlK8fex3/hixSAQLJ3QxG+wX1q0xZiijEO8fhOLmBkyOTATXzKGquRGBnBwTIhJwpKoIl8YOhqnRjKpGz7+nvP2dwXEcZGIxjBYLNAYdCstqoJJabzLOVdkERZjIz+VxjQ2P4+v5fso6gaOltibFfkbXz+MtfPF7OjlcjbyqRlg4DvtOFWNUYpjT/bYcy+eXJySHC15HsFSCG6ak4qt91n6U//fFPgxmBLdJb+rx6w6RSqBWytCoM6KyQYvM7HIkOKlraqOja/31znP88vyRCaiudnSTBYAhzGs4cN6WXRXcz7733YWr72+JSWh2KOc4up7dIDbYjxd9yeFqNPTwnl/KTHyUVWoQ66/oYO++R0citsNchNTUVKSmprp9QM6IjIxEQUEBGhoaEB8fz7t7Rkf3zxQgFo3WgM0nrSkYX+27gBevnwypjzXwJNwD26OvS+mdTC1ApcY76Z21TKQvNKB/fSmKRCIEquSoabK+xoYWPZT9oH5FY9Bh/vr/orDV5dEesUgEhUQKi8XCi7xLogdhQkQC/n3qd8G+XXXubEMhkeL7K1Zgb1meINVTJBLh68tuxYmaUowNj+/WufsCIpEIEcoAlLZY+15Vapv4VM58ja2mb1Cga+mdgPVv1Cb6Xj62Ff5iW6Q6iBs4s9Q9IT02hG/yfK60rl3RJzBxSXW8/3h0/ih8fzAHRrMFh3MrUcS0gOhpnz4AEIutdd77LljF1/my+g5FX3sYzRb8etI2OeAstbONUQm2a8FO/vQnx+beIMw+vTOw7//G9AZsXd+QmJ6ldgKAUs42aB9Y6Z0+oyxGjRoFADh48CAA8A6f48eP77UxeQvW3MNk4VBU43w2juj72Bu5uIqwps87Ri61TUxNXz+bCQOEvfr6S9uGjQVn2hV8gPWGTmsyQm+x1iEpxBK8PGUR7smYikCZ8G/ck5q7hIAQ3DhkHMKUQhc4lVSOKVHJUEh6fnPsy0Q4cfDUm00oaxWCYpEI8f7BLp/vtrSJCG+9lhXaJuQ222q9gkW+l9rpiwjbNjg3czGaLcguq+fX7fuXAUBCWABuvmQIv17O9DJVyd2TLRARaPu+767R1N7zZfyxsSH+GJMU3u6+IxOcT0BQj76eoZBJMHmw1bV4VGIY33qJ6Boj423vz7FJPe/tqpKxDdrJyKVXuOWWWyAWi/H666/jxhtvxNtvvw2ZTIabb765t4fmcZr1wqbcuZWaXhoJ4WnYHn1dM3Jh3Du9ZORS28RG+pQd7Nk3EfTq6ycOnruZhujhSn/E+AUiVOEHf6kcUpHw614sEuGZCVcgJTAcwQoV7s6wpZVH+6kdBBvhOlFOHDyLmurQFkOJ8w+CvAvCN0zpj9emXeWwnTOJESylG3NXGCZo21DvdJ/SumaYW5s1RwWp2p2Y+8MVo5ymg7sj0gcAQW5oKcO6di5up5avjaggP8HEYhtk5NJz/nf/HLx/16X4euW8fmWG5k2unjgID84bjgevGIk7L03v8fkEkT4ycukdxowZg7fffhtvvPEGsrKykJiYiD//+c8YMmRI5wf3cVr0wjddbpUGc3tpLIRnYSN9apXrLRDY9M5qr6V3su6d/S/SF8S0begPos/CWbCn3Cb6vpx3C4bb9W8zWczQm03Qm01QSKTwZ6J7dw+bgh9zTyK/sRbXpoz22rj7I5F+jg6e+Uy7hqSAEIdjOmNu/FDcNnQCPjt/xLaxWQ5VgM/8jPs0rIPnuXYifflMvVVSB6Zq0cF+uH1GGt7bfkawXemmSJ/gu6kbWQgmswWbTriW2tnGyIQwbD9TIthGkb6eE+ynwJJxyb09jD6NXCrB01dPcFutMDs5M9BaNvTKr0V8fDyys7Mdts+bNw/z5s3rhRH1Lmz0B6BIX3+mUdvN9E5W9DXqYLFwEIs9O2vIRvpC+nl6Z30/aNB+tq4CNTprgXuY0g/DnNTkScUSSMUSgdhrI1CuxK+L70NJcwOGBvU8hWYgE6F0TO/MZ9o1JHehno/l6QmXY295HnI0NQAArlkBZYj3nav7IskRaihlEuiMZlQ0aFGl0Tr0TSuodk30AcBDl4/A53vOW3smtqJykxlUT7MQDuZU8On50UEqjE/u/PM8IiFUIPrEIpEgw4Qg+guClg0k+hyxWCzYsGEDjh8/DqPRCM7O5e3555/3yOAGCpTeOXBo6qaRi1Jmc3QzWTjUt+g9nnIpiPT597/0zkBV/0rvZFM7p0enQCzqevZ+gEyBtOBIdw5rQBLl55jeyZq4JAV0T/SppHL8Z+Z1uOHXz1HbpAdXEQjlIBJ9riARizEyIRSHc6sAACcKazBvhNBQiBV9yZ2IvnC1CnfPHoa3Np/it7ktvbOHoo9N7Vw4JsmlCcKRCUJjm8hAJRnKEf0SQXP2AZbe6dIn+qWXXsITTzyBo0ePIi8vD/n5+fy/goKCzk9AdEizfXonib5+S2M3a/oAYbTPG2YuAiOXfpne2b+MXHaXMqIvJqWDPfsOBdWNeGvzKYG5Rl/AWYP2Cw1V/LaUQOfOka6QERqN+8Pnw3IiATBIofBiq5G+zmjGzOR4gWPj8/wuRPoA4IF5wwXmHO76ngxWdf+7yWyxYONxW2rnIhdSOwFHM5eofuBmTBDOUFGkr2N+++03/PWvfx0Qpiq9gb3oK6lrhs5o9mrfMMI7dNe9EwDC1Up+QqC6UYu0mGB3Ds0BNtJnbz3dHwjuR0YuOrMRByptE3Az+4Ho4zgOK97bjnOl9fh0dzYOPXcNJOK+EXkQuHe2WCN95+sr+W1pIT2LpuqZ/l/uii4NBMYkdiz6Cpk+dknhnbdJCPZT4N+3TsfLPx/DFaMS3SaUAnvw3XQ4t4pv6xOuVvLukZ2RGBaAQJUMmtYSBKrnI/orwvTOgRXpc+nXoqmpCdOnT/f0WAYs9umdHAcUVGmQFtv1Yn/CtxG6d7pu5AIIHTy90atP4N7ZD2v6hEYufbum72hlEfRm64/XIHUo4gKCe3dAbuBsaR3OtbosltY1o6HF0GdcZFn3zipdE2p1zajSNQMAlBIpEnv492FnpynS5zqjk2wR1uMFNeA4jndU5DhOEOlL7qDBMcv80YmYPzrRrePsyXeTILVzdKLLEyUikbU/4N7W5uzk3En0V5RMeqeOWjY4MnfuXPz666+eHsuAxd69EwByKMWzXyJ07+xqeifTq0/j2fTOFoOJv7FUSMXwU/S/aEKQwMilb0f6fmfq+WbGDu7FkbiPrVlCJ8G+5LIWzrS7qNY142ydreH30OCIbtVbsrCz05QR4jopEYF8Wn1Nkw4ldc38Y7XNen5Szk8u7dXshu72ELVYOGw6bhN9rqZ2tsH28ksKc030EkRfQ0WRvo6Jjo7Gu+++i+3btyM5ORlyuTBCQUYuPcM+0gcAeW6wpSV8j0bmB7yr6Z3Cmj7PRvrse/T1x/5CbC8sTR+v6dtT1v/q+badLhas96WCe7lEilCFH2r1LbBwHPaV5/OPDQ3quVEOG+kj0ec6YrEIoxPDsKc1mnW8oAbxodY0zoIqYZSvN7/zumvkkllQjdJ6q4NviL8CU4dEd+l575k9DPsvlEMqEeO6Kf1j8ogg7FHKB25zdpdEX2ZmJkaPtvZtKi0tFTzWH28GvY19TR9AZi79lR4ZuajZXn2ejfQJTFz6YWon0H+as9fpWnCyxvq9LBaJMC06uXcH5AbqmvU4klsl2NaXRB9greur1VtvwFlnVXe4o+pJ9HWb0UnhvOg7UVDN97DrqomLJ2F/Gxp1RpgtFpfSNNdn5vPLC0YnQtZF982oID9s+POiLh1DEH0NqunrhLvuugsTJ06Ev79/5zsTXca+Tx9Aoq+/0tQj0cekd3o60tfcv3v0AVYThjb6cnrn2rxTaGuiMzosFkHyvt9ba+fZEljsWgP1tRnZKFUAslvNW47X2FJVhwb3vAci1fR1nzGJtrq+E4U1/LKwR1/nJi6eRCIWC0xVNFpjp9/DHMcJ6vkWjelaaidBDBRY0deXygbcgUvTQH/5y19QXFzc+Y5Et2g2kOgbCBhMZv5mTSIWCXrFuII3WzYI2zX0DfOMriKM9PVNIxe92YTVp/fw61cPGtWLo3Ef9vV8QN+L9EUyZi6sgE13e6Sv/9XbehK2bcOJwmpYLNa/TVd69HmDrpq5nCisQXGttUYxSCXH9LSupXYSxECB/c4caC0bXBJ9cXFxKCws7HxHols4M3Kp1GidRgCJvot9lK+rqdFspK/aw+6d/b1HHwAEKGRo+xM0600wmi0dH+CDfHcxE+Ut1pvVCKU/bhoyrpdH1HPMFgt2nOn7oo9t29BGgEyOWP+gHp9by6QkKaQU6esK8aH+/HeaRmtEXpV1gjWfqelLctG505OwNceuZCJsYAxcLh+VADm9LwjCKSo5E+nrY78rPcWlKcIRI0bg0UcfxciRI5GQkAClUjjzT0YuPcNZTR9gjfaNSux+E1/Ct2jqQY8+AAi3i/SxduPupq6Zrenrn5E+sViEIJWcv6HSaA19qh+hwWzCO1m2KN/9wy+BStr195WvcSy/WvD+a0Pbx2ovopyIvqFBkW75zAoifXK6ue8KIpEIYxLDsb11YuFEYQ0GRwWhsIbp0ecDzpVsJkJnRlMcx2EDk9q5uIuunQQxkGCzrCjS54S8vDyMGzcOMpkM5eXlyM/PF/wjegbr3hkfaqubbJuBJPoHjT3o0QdYbcT9W1snGM0Wj9ahsTV9/TXSB/RtM5c1uSdR0twAAAhV+OHWoRN6eUTuYWuW81KCvlbTx6Z3tuGOej5AeKOiopq+LsO2JjheUA2twYSyVtdLiViE+LDerekDuvbddKakjnf8DlDKMDM91qNjI4i+jMDIhSJ9jnz++eeeHseAho30jUwI4/PyqVdf/6Kxh5E+AIgMVPE/7lWNWo+ZrAyE9E6grW7GOsPfl+r6WowGvJO1m1+/N2Mq/GRdn0jwRbYxoi8m2I+/Ge9raTjO0jvd4dwJAHoTGbn0BPsm7UW1tihfXIh/l10vPUFX0jvZ1M7LRsSToytBdIDQvbNvTSb2FJdE37Fjxzp8fNy4vl9H0puwkb6RCaHYdMJaP5lHoq9f0RPnzjbC1TbRV63RYaiHavUFffr6aXonIGyC7IsOnnX6Fty78zsUNdXhqkEjcfewKShv0eCh3WtQ0FgHAAiSK7EifVIvj9Q9lNU343SJ9XXJJGJcPjIBn+7OBtD3RF+Un+dEn85ARi49YUyiLdJ3qqgGBy5U8Ou93a6hja6kd54pruOX542I99iYCKI/MJDTO136tVi+fDlEIhE4xoFMJBJBJBJBLBYjKyvLYwMcCDQzYmBUgm0Gkhw8+xeNOtsPt1rVPdEXEeidtg21zQMj0hfo4w3aX8nchv0V+QCAd7P24MOzB2DhLDBabKYzj42ehQBZ//gbbTttM3CZkholMC+i9E4bFOnrGZH/3959h7dVX/8Df19tWZYt75k4duI4w1kkJGSSkIQAIQmEUfampaxvaaEUKG0pFFpoGWX8WkZp2KvslUAgjCQkIYPE2XEcxzPeS9bW/f0h6+pzZUnWuJIl+7yehwdtXd/I8j33nM85qVqMz0/D/vp2mG0O/OndH4X74ifoY0fKBK5CqO8wCpfjofMoIfGMPVGWaCcTIxVU0Ld+/XrRdYfDgaqqKjzxxBO4/fbbo7Jhw4XN4YTF7jqAk3EcxhekCfdVMd3ESOLrNkVe3skOaG+O4oB2UaYvgZqbhCo1jjN9+9ob8dphcZWFxeH5A5WkUOL+mWfhwtFTY7xl0cOu51tcXgCHw3OiMdH+OOsUKmgVSpjsrt/7VJUGOT4CwXCYaTh7xB64cCbOe3wtAPFna7Bn9Lmx5Z0Drelzl0ADQF5aUtS2iZChgMo7B1BQUNDvtpEjR0Kn0+G+++7DRx99JPmGDRfsuAadWoHc1CRoVQqYrHa0Gy1o6zEP6YPu4USK8s5YDGjneV6U6Ruqw9kB8YD2eGrkwvM87tu2VpjvNiXD1Zjhp9Z64fpT889DccrQ6e5rsTnw3YEG4fqSiYX4lrmeaN07OY5DtjZZKMMtM0jTuRPwCvqoNX9Y5pTm4ppTx+E/3xwQ3R4vmbJgyzstNgda+ua2ymUcspkuz4SQ/lQKGTgO4HlX4sXhdEIuG/x1vLEQ0WKAjIwMVFdXD/xA4he7nk+nVkAm41Ccpce+vnUtVc3dFPQNEZF27wTEYxtaojSg3Wixw9qXfdYo5UgKcYh8IonVgHae53GosRMb9tdh06FGpKdo8YdV0/0G1OtqDmJjYxUAQM5xeHTuORibmoUfm2vQajZiceFYKGWxO9j/dFc11u+tw88XjUdZftrATwjD5iON6O3LuBRn6TE6JxXbjjYJ9ydapg8AcrR6UdAnBZ7nYWbn9FGmL2x3rzwJX1bUisc1xMGMPiD4KoT6dk9pZ06KdtgcvBISLo7joFUqhL83ZqsDOs3w+L0Ju5FLT08P1qxZg9LSUsk3ajgxijJ9ruxPSXaKEPRVNnVherE060DI4OpmztaGX97pOQHQFKUB7aIZfUP8hEOoA5DD0dRpwiVPfyE0KHGz2xx48sr5/R5vcdjx5+1rheuXjZ0hBAwnZ4+MyjYGcqKzF7988VtY7U4cbuzEh785Myrv82WFZz3faRNdzSjYBfeJtqYPALKZDp5SreezOZxwL69XyDgo4qDTZKLSaZT4x6VzcME/1wFwLbGImzV92uBOSNUyAWtems7v4wghHhqVXAj6TDY7dGEekyWasBu5AK6yz4cffjgqGzZcsJm+pL4ZbMVZKcJtR5s6Y75NJDq6JSjvZEt3mqMU9LX2DI8ZfUBoHfLC9e62o/0CPgB4/8cq/G7lSSjwOlB78cAWUWfO26csisp2BWvb0WYh87v7eAucTh4ymTRlim48z4tGNSwpdy0pEAd9iZfpO3/0FHx2fD/0Sg3OLpooyWuKSjuHcBY+VuaV5eGeVSfhmS/34sr5ZaLmToOJbeTSxawH91bHBn0GWs9HSDBczVxcJ1MS8YRiuMJq5AIASqUS2dnSlKsMZ+yaPnf2Z3S2J+iraqJmLkOFFEEfWw4YrTVoohl9Q3g9HxCb4ezHWjy/wzOKs2C02LG/vh12J4/nvtqHP513snB/i6kHT+z+Vrh+25SFSNMM7oHcT8dbhMsWuxN17UaMkHh4dWVTl7CfklQKzB7jmkWiTfAua0sKy/Dj+b9BslINrUKaM8nsuAY1reeTxM2nT8LNp08a7M0QEY+TCZDpa6Ogj5BQaYdpM5eg6kKeeuoppKamoqCgQPgvOzsbHR0duOWWW6K9jUNaj2hNn+ugoDibzfTR2Iahgm3kkhzmyAZ2/Y7VHp0vqjajJ9OXMcTLOw0htEUPF3tQ9sslE3HXymnC9Vc2HhIFmw/v+grdNtd2jE7JwJVlnoBwsPxU3Sq6XtUs/XcS27Vz/rg84XOuVXk+76YE/cOcpU2WLOADxOMaqHPn0JXi1b3Tu9LKjc305RuovJOQYIg7eCbeCcVw+c30VVZWoq2tDQDw/vvvY/HixUhNTRU95uDBg/juu++iu4VDnHcjF8C1ps/taFMXeJ6XrOsbGTyiOX1hNnJhv6jcoz6kNqwyfSG0RQ9XbZun0UJBejImFaZjQmE69tW2wWix46XvD+KW0ydhb1sDXmdGNPxhxrKYNmvxhed5UaYPAKqaurBgXL6k7/MVM5+PHS6d6OWd0cB2MdWoKOgbqtRKOTRKOcw2BxxOHr0W3+uOxGv6KNNHSDASfb14uPwGfbW1tfjFL34BwNXp5uabb/b5uMsuuyw6WzZM+GrkkpGsRopWiS6TDb1WO050mpBLZRsJT1TeGW6mT8EGfdHP9A35Ri5RXtPH87wo01eYroNMxuE3K6fh2mdcZfPPf70f1y0cjz9tWwv3ufyF+WOwuHCs5NszkJ+Ot2JbZRPOm1mCNJ0aVc3d/dYTHZV4fmiP2YYfjpwQri+e6BkRREFffxYa1zBsGJJUaOx0rd3uMFl9B33MSaU8yvQREhTK9Hk59dRT8c0334DneSxcuBDvvfce0tPTRY/R6XRITo6PQaaJylcjF47jUJKdgl19ZVVHm7so6BsCpJjTp2KDviiVu7GZvqE8ow/wKqEyWSVvUtJpsgondrQqhZA5vXjeWNzz6iY0dprQ1GXCn7/+BptPHAPgGtHwhxmnS7YNQW9rrxXnPvY5TFY7vj/YgP/ecFq/LB8gfcn5NwfqYXO4stblhemiA1dReScFfQCokctwkpqkFoK+zl5Lv6ZPADVyISQc7Hcnrenrk5OTg9zcXBw4cADjx49HTk4OMjIykJOTg5ycHAr4JGD0Gs7uJu7gSev6Ym3T4UZ8sqsadod0JZTdpsjn9KkUnl9Zm8MJp9P3Oo9IiMo7h3j3ToVcJjRQ4nlxNlYKta2es/CF6TqhTFulkOPnp01w3cHxeL12i/C4K8pOxliJZrqF4lBjhxBYrauoQUOHUTjxxKqS+PuI7dq5uLxAdN9wLcEJhD3ZQ41chjbvdX3ebA4nGjpc3zEcB+Sk0mB2QoIhyvQNo78tQQ/4ef/993HGGWdg6tSpqKmpwR//+Ec8/fTT0dy2YaHXR3kn4N3Bk4K+WNp5rBnnPb4W1z23AW/+cESS13Q4ncJMGI5D2APPOY7zWtcn/ZeVqLxTN7TLO4Hg52GFgy3t9D5Lf9ncsdBrlOByO2FXug7oUlUa/HrKQkm3IVhtzKgOngc++PEYfqrun+mrbumW7GSI08ljPbueb2Kh6H5R985hVIITiCjTR41chjTDAN2Fm7pMwszGLL1WVAlCCPFPK8r0DZ+/LUEFfe+//z4efPBBnHPOOZDLXV8q48aNw3PPPYfnnnsuqhs41IkauTAfQraDZyUFfTHFri/afPhEgEcGr8fMjOZQKyMqIWSzfdEI+sTD2Yd2pg/wbo0u7bq+unY20yeujNBrVTh/7ihwBR3Cbb+Zsghp6sEp0WrtEQe8b2+txJ6aNuG6+4+k3SlepxiJPbVtaOqbN5mmU2PaqEzR/SqFDLK+7KjV7pQ0856o2KBPTUHfkDbQSJmGdnY9H5V2EhIs9oTZcFo6EFTQ95///Af33nsvbrjhBshkrqdcfPHFuP/++/HWW29FdQOHOqOPOX2AuIMnZfpiiz34ZQeVR0LcuTOy9u3qKK/rG07lnQCQEsVmLt5NXLx1pTeCk7tO1fMmJcYpRkr6/qFo8/qs76trF7LTualaTBmZIdx3VKL5oWxp56IJBZDLxH+SOI4TresbTmsv/GHPSlOmb2hL9Vpz7K2+vVe4TJ07CQmeKOgbRn9Xggr6qqurMXXq1H63T506FSdOSJMJGa7Y5h5Jat9B37GWbjicdIY7VtiDX++g7+0tlXhy3Z6Q2/uLZvRFGvQpoxf0OZxO0c+fNhzKO6OY6ROPaxAHfRWtDfjg+G7hurM6Hc9+td/vazmdPO57dxuuefZr1LRKk2ljtfX4L22dUpQpPhEl0aw+dj7fEq/1fG7UwVPMQuWdw0YqM0fU19+c+g7P9wvN6CMkeBolNXLxKy8vDwcOHOh3++bNm5GXlyf5Rg0nvub0Aa4F3Jl61wG31e4UndEj0dUqCvo8B8JbK5tw60vf48EPduD8J9aGlAVk297rteE1cXFTR3FWX1VzN+x9zWFyUrXD4qAyjTmwkiqz6ybO9HnKO3mexx9//FwY0cC3a4HOJKzdXYPDjZ0+X+uLihr8a/0+fPbTcfz1o52SbicgXsvpbcrIDBRn6YXrUlQftHSbsKuvO6iM47BwPAV9waA1fcOHuLyz/0mZhg4m00flnYQETVxBMnz+rgQV9F1zzTX405/+hNdeew08z2Pr1q144okn8NBDD9Gcvgj5a+QCiLN9lU2+DwSJ9NhAr63HDL5vpfwupqlFRW0bLnhiHVq6gwsSqls85XDsGrJwRLO8c2+tZw3XhIL0AI8cOtgGK7USZ9Dq2sTdO93eP7wHW05UAwAUnAyzNROE+/61fq/P19pypEm4/O2BeuFzKZVAmb6pRZmidcZSzOr7al+90IRiRkmW3/Eg2mG69sIfC63pGzYGKu9k1/TRWCdCgidqEkbdO8UuvPBC3HTTTfj3v/8Ns9mMe+65B++++y7uvPNOXH755dHexiHN38gGAChhxzacoHV9scKWN5ptDuHfqLnbJHrc/vp2nP/EWjR3iW/35fuDDcLlk0sia8cfzQHte2vbhcsTC9Ikfe14VcRksI61SDd43GxzoLnvpIBcxiE31XVQZnbYcOc3HwmPu3Lcybhj8Uzh+jtbK3Gis39mf8exZuFyS7cZh/xkBMPVxjTwKc1NFd03eWSG+PtIgpNQ60WlnYV+HyfK9A2jMhx/2MCXLVEiQ8+AjVyYTB+VdxISPA2b6RtGJxODCvreeOMNLFu2DN988w02bdqEH3/8Ed988w0uuuiiaG/fkOevvBMASnKkPbNOguNd4ue+7iu4O9jQgdWPr/V5kO7G8zy+Y4K+BeMiK4mO5po+NtM3sXB4ZPqKMj1BX7WEQV8dU9qZm5oEhdz1dfv8vh9Q3eXazwaVFrdNXoiZo7MxozgLgKuc+/kN4rV9docTu5lOmgCw6VCjZNsKiE92XLtwvHC5KDMZGckaUXBc02qENYITDjzP45v99cJ171ENLDbo6x1Gf5z9qWcO9LP0Q3/N7XA20HrjeirvJCQsojl9w+hkYlBB3z/+8Q90dbkyTenp6TSUXULGAOWdNKA99qx2h2j9HQC0druDPs9B8fkzS4RW8kdOdOK8x9cKQ3K9HTnRJZyRTdEqMZnpghgOdRTn9O2rY8o7C4dHpm+UV9AnVdmkeFyD6yx8k6kbT+75Trj99qmLYFBrwXEcblxaLtz+0ncH0c2Uc7GD0902Sh70eTJ9Z08rwiVzSpGTqsXdK6cDcM2WzO87sHTyPI5HUArbY7YJ5WoapRzj8g1+H0tr+sSOMScARzF/I8jQkxqgs7DD6RSdbKTyTkKCp1EOz78rQQV948ePx6ZNm6K9LcNSoEwfDWiPPXZGnZs709fElHdeu3A8/t/VCyDvm7dX2dSF1Y+tFR3ou313wJPRmDM2t19b+lCp2Tl9Ep6hauk2o7HT9TNqlHJROd9QlqnXIKkvsOgy2STr4Fnb1n9G34dVFTDaXa8/NjULl42dLjxm2aQRwu98l8mGVzceFu7beaz/kPRNhxvhdEoToNocTiEIk3EcDEkq/OPSOdj14IVYOX2U8DipRsmw+zhdpwbH+Z9bKZ6nNHzOyPpzjOmcOorJvpKhR9y9U/y3qbnLDEff73+aTi06OUIICSwj2VMl4eu4bagK6ugzIyMDDzzwAObPn49LLrkE11xzjeg/Eh67wymklTkO/b602XKq4609EZVTkeD46t7oq7wzU6/Byumj8K9rToWiL/A71tKN1Y993q+d/rdsaWdZfsTbGK01fWyWb1y+QShHHOo4jotKiSfbudM9rmFfu2fEzSVjp0Mh8/xbymQcblgyUbj+7Nf7hN/5HT6CvnajBQcbOiTZ1g7mZIdBp/J7YkLczCWSoI99v8CzICnT52Gy2oWSPrmM8zn7kQwdBq3/8s4G0bgGyvIREorxBQbh8oH6DslOoMa7oI7qNBoNzjnnHMybNw9FRUXIyckR/UfCw65P0amV/c52J6kUyO/rLBhpORUJjq8Ohi3dZjidvKhTZ5ZeC8BVBvfcdQuh7AuQjrf2YPXjn+N4X+BgdzhFa6/mR7ieD4jemr59TBOX4dK5021kpqdkXaqgr85Hpu9AhyfoG5/W/7vz/JmjhXVaDR29eH/7MQDizrG5qVrhslQlnux6vvQAsxnZ7G9VBAPaO4yeA1hD0kBBH3XvdGP/BhSk6aBSUPfOoSxJrRCqScw2h+j7XrSeL42Cf0JCkanXCmPReq12HG8dHn0zgqoHeOihh6K9HcNSoNJOt5IsPer7Us9Hm7owJifV5+OINPxl+tqMFqGUxpCkEgVeZ0wZiReuX4jrnt8Aq92J2jYjzn18Lf73f6ejtceC7r7B7PmGJFHJbriiNaevgmniUj5Mmri4sev6jknUNKnWa1yDw+nEoQ5PB87xhv5dXDVKOa5bNAEPfbgDAPDMFxVYPmUkDtR3AHBVBFy7cDz+8oHr/o2HG3DdovH9XidU7JiS9GT/QVhxNjOrT6JMX+oAI0zE3TuHd9DHnpCg0s6hj+M4pCaphJORXSYrspSukz4N7dTEhZBIjM9PE5rs7a/vGBZrpIdH/VacCtTExY1dQ0PNXKKv1cfcvdYei1dpp7bfY5ZOGoEXf36asN6uvt2I1Y+vxcvfHxQeM39cXsC1S8GK1py+fXVspm94NHFxY8s7pcqoe5d3Vve0w+xw/c7n6vRI1/g+O3/F/LHCGsODDR14fO1uOPuay4zNNeD0ySOEx/5w+IQkZSmiTF/AoI+ZHRrBGBl27ay/+Xxuw3Weki9soM2eqCBDF5sJZ2f1seWdFPQRErrxzHHOfub4ZyijoG8QsUFfkp9MXzEFfTHV5quRS7dZNKMvO6V/0AcAp00swJobFguNJxo6evHmD5XC/fMlWM8HRGdNn8XmwOHGDuH6cA76pMj0OZxOIUMPAIVpOhxg1vNNyMj1+1xDkhqXzRsrXH/mC8+w9mlFmSjNSRVKQDt6raJgPVytzOeeXeDurShDL3Stre8wht3qmj14NQyY6aPyTrdq5rNZPAzOShNXx2c3dlZfA41rICQi45mu0fvrKegjUSYq7/TTeYs6eMaWv/LOpi426PN/UHzq+Hy8/MvFPjupzS+LfD0fEJ01fYcaO2DvyxgVZSZDrw18ID7UFEm8pq+pyyTsz/RkNZLUShzoaBLuL88K/Fm4ftF4oUGQkxkhMXVUJjiOw5yxnqBx4+GGfs8PVbBr+tRKudCUhueB6jBLPMWNY6iRS7CqmKCviMo7hwW2gyf7e8P+TcpJpaCPkFCNy6dMH4mhXirvjDu+yzvN4vJOP5k+t3lleXjlxsVCiR7g6oaZnRr4ecGKxpy+4dzEBQBGZCTDXXlb32GMOJj2Na7hIBv0ZQYO+grTk3HOjOJ+t580KhMAMKfUE/RtP9rc73GhYjPcgco7Aa/vpDCzomwnwtQBTjCIg77hXd7JnpAopqBvWMhkMu9sM7HmroGrTwgh/o3NMwiVK1XN3cPipGLQQZ/dbsenn36KJ598Eh0dHdi6dSva2toGfiLxq8c8cCOXkZl6oXtXfUevqOMnkZ6v8s6WbrNoMHswf2DnlObitZuWCKVrVy8YJ9k2RmNO315mXMPEYVbaCQAqhRz5Bk8Gi12PFw7Rer6+znpseedAQR8A3LikXHTdNcTc9W/DNnQ6wRz8hatN1MjFf6YPcDWXcgu3+iCkNX2U6QPg6gTMjoMZSWv6hgX27w07K7bZRzdpQkjwklQK4eSZk+dxqLFzkLco+oIK+pqamrBy5Ur8/ve/x//7f/8P3d3dePHFF7FixQpUVlYO/ALEJ3H3Tt+ZPqVchpEZntKzYxF0zCMD81XeabY5cIw5w54d5B/YWWNysO3+87H5T+fiivllkm1jNNb07WUyfROHWedON7Yb4rEISzzrmc56Bek6mOw2VHW7AmsOwPiMgUfdjC9Iw6IJBcL1SSPShdEgmSm+z/6Hiy3vzBggCJNiVh+7NmmgkQ1J7HD2Ydy9s67dKJQM56ZqRZUEZOgSBX19J3isdodw4kTGccjQB/4dIoT4Jm7mMvQTWUEFfX/9618xZswY/PDDD1CrXV8ujzzyCMrLy/HXv/41qhs4lIm6d2p8B32AeMH+0QhmY5GBsRkPJTOcnB2CnRlgTZ+3ZI1S8jbAUq/p43leNJh9uAZ9og6eLZFl+tggKjtFi8rOFmFtXpE+HUnK4NZM3nbmZCHTf8bkkcLt4pIvCTJ9oZR3SjCrTzycnco7g8F27iyiLN+wkcUGfZ2u33X2RE9migZyGa3UISQc49l1fX2jkYayoL4ptmzZghtvvBEqleePc3JyMn7zm99g165d0dq2IS+YOX0AUJJD6/piged50cE6u2aGPeAa7PUTUs/pM9kcwhorpVyGwvThOehX1MEzwkxfh1cmix3KPi6t/3w+f04uycaHvz4TL1y/ED8/bYLoNd2NXrpMtrC7aLqJRzYEPqnBZvrCndUnauQy4HB2Ku8EqHPncJWT2j/Tx5Z25lLnTkLCNo7t4DkMmrkEFfSZzWYolf0zUVarFTwf+Yyo4SqYRi6A+Mz60aahX3M8WDpNVqF8KlmjFP0xZT/mgx70STynjz2Q1qkVkswSTERSdvBsM3oOytKSVNjf7mniUuZjKHsgJxVn4aypRVAwmWeZjEOGXrpsn2hN3wDlnSMykoXsY0NHL3qZk1fBau+lkQ2hos6dwxOb6XM3b2lhm7hQ505CwsaOpxoOYxuCCvrmzp2L5557ThTgdXd349FHH8WsWbOitnFDXdCZvmwq74wF9sA3I1ntcwg7xwWeYxYLUnfvZA+kh/M6ITbTF2nQ12FkghqdONM33jDwer5gsM0bIlnXZ7LahQZRSrkMyQFKzd2PYdcZV4XYwdNicwifObmMG/D9KNPncow6dw5Lvtb0seMaKNNHSPhGZuiF4x5X077Il0vEs6CCvrvvvhvbt2/H/PnzYbFYcPPNN2PhwoU4fvw4fve730V7G4cs0Zq+oIM+Ku+MllavWWUZPtY2pes0oozLYJA+0+d5DV/zBYcLcdDXE1EVA7tmLU2nFo1rCKW8M5BMvTTNXNq91vMFk+ktiWB+qHcTl4HeTxT0SdStNhEdYzN9tKZv2DAkqYT15d1mG3qtdlF5J2X6CAmfTMaJSzyHeLYvqCO83NxcfPjhh/j444+xf/9+KJVKjBkzBitXrhQau5DQGYMs78xPS4JaIYPF7kRrjxmdvVakDlASRULHzujL0Gt8ZvQGu7QTiG6mbzgHfWk6NVK1KnSarDBZ7WjuMotmK57o7UaPzYLCZAPU8sD7iV2zJlPyaOx1HbCrZXKM0kvTKIcN+iI5O+l9siMYxdkpwN46AKHP6msPoYkLAGiVwzPT19Rpwo3//RZqhRwP/myWKPs8ijJ9wwbHcchK0aK+3TX7s7nLRJk+QiQ0Lj8NO461AHAFfQvG5Q/yFkVPUEd4TzzxBM4991xccMEF0d6eYaWHKe9MCpDpk8tkKMrUCzNEqpq7MLUoM+rbN9ywHQwzktWiNVNuWSF07owWqef0iYM+eYBHxpdOqwn/PbAVZYZsnDFyvCSvOTIzGXtqXJ1Mq1u7haBvY8NRXPrlK7DzTnAA8nWpGKVPF/4r0qdhVEo6RiWnQ6tQirJnTdYO4fKY1CwoZNLsY1F5Z1/g5nTyuP6FDaioacNfLpyFJeWFA76OeEZfcCfxxB08I8v0DWS4rul78dsD2HioEQCw8h+fCc160nTqoPYbGTqyUzRC0NfUZRKt4c2hTB8hEWE7eK7dXYNrTh0v6t4+lAQV9K1btw7/+te/MGXKFKxevRpnnnkm9Ho60xip3iDm9LmV5KQIQd/RJgr6oqF/eaePoC8OhuBKnumzJV6mz+504OqvXsfWpuMAgG9W3YzRqZH/TozK1AtBX1VzN04ucZVifly9D3be1SmVB1Bn7ESdsRMbG6v6vUaZIRsWuQqwK6FSyLC99bhwn1SlnYDvTN93Bxvw6S7X+13//AZ8fPtZA47gYJvODNTExa042/P9H+qsPtG4hiAqFjReIxt4nh8WzYYONXYIl9nMzigq7Rx2clKSALQCcH0W2M9DDmX6CInI7FLPOvvNh0/g1jXf4amr5otGobR0m7Cnpg0VtW2o6Pu/jOPw14tmYe7YvMHY7LAEdYT3ySefYP/+/fjwww/xzDPP4C9/+QsWLVqEc845BwsWLICMZsSEhS3vTB4o6MuidX3RJhpQrdeIDqrd4qK8M5pr+pTxF/TV9LTjP/u3YFxaDi4YPQUyToYn93wnBHwAsLOlVpKgjx2Pcpg56K7p6ej/YD8OdjRBVqKGc38eUlNk+Pe+zcJ98/JKIt5Gt8yU/o1c2BEKZpsD1zz7NT777fKAYxjEmb7gMtmRZPpCGdcAuBrHKOUy2BxOOHkeVrtTdOJjqDre6ntWJJV2Dj/eHTybuzx/q3IMg/83iZBENrEwHTefXo6n1lUAAN7ffgwcx6EoU98X5LWisdP3Eor/fHNg6AV9ADB+/HiMHz8ev/3tb7Ft2zZ89tlnuP3226HRaPD9999HcxuHrGC7dwLUzCUWWr3a1vvM9MVDeafUc/riuLzzWHcbzvv8Pzhhch0Af1K9D5ePnYHHdn8jelxVd5uvp4esLM8gXD7U0CFcrjV6Ln901nVIUWpwrLtN/F+X6/88AC7FAi6nG7ZMHka7q5yxzJCFc4snSbKdAJDlo5FLjVegcLy1B7988Vu8dtMSvwOcwynvLEjXQaWQwWp3ornbjG6TFXptcOuMxWv6gns/rUoOm8n1WTfZ7MMi6Ktp8fxbKmScME6GZvQNP+zJxhOdPso7rcO3wREhUrh75Ukwmm148duDAID3fuxfxeNNr1HiZ6eMifamSSrk0/pHjx7F5s2bsWXLFthsNixYsCAa2zUsBNvIBRAPRKagLzqCaeSSNSQzffFZ3llv7MRF69YIAR8AfFV3GF/VHe732GNd0gR94/I8tf0H6jsAADzPizJ9JSkZSFVpfWYWH9n5FZ7Y8y0AgBvRhm6ZpwPoH2ecIdl6PsCrvLPvINA76AOAbw804KEPd+L350z3+TpseWew40jkMhlGZuhx5ERfyXlzN6aMzAjquZ0hzOhz06oU6DK5TpKZrPYhv6ats9eKTpNrP2mUcjx33ULc9spGAMBFsxPrIINELps52Vjb1oOOvt8hed+8zrZW42BtGiFDAsdxeOCCWTBa7HhrS2W/+zVKOSYUpKG8MB3lIzIwaUQ6yvIMcXXMFIygtraurg6ffPIJPvnkExw6dAhTp07FVVddhbPOOgvJyckDvwDxKdiRDQAw2ivoGy7rWmLJe21TilYplJW5xUV5p+TdO+NvZEOTqRs/W7cGtUZXUKGUyWBzirOaHFzr6wBXRlAKo3NShKzK8dYeGM029PIWWByu39VUlQapKv+fgVsnL8Bbh3ajwdIBTu4J+JYUjsWC/NGSbKObrzl9NW2eoO/U8fn4Zn89AODpLyoweUQGVk4f1e91wsn0Aa7vJHfQV9XUFXTQF2p5J+DdwXPoZzWOt3o6dY7ISMaS8kL8eP/5kMu4QR8ZQ2KPPdm4v87TUj4jWeM3g08ICY1MxuEfl85BfpoOe2paUZqbivLCDJSPSMfo7JQh8d0b1BHe4sWLkZ+fj1WrVuHJJ5/EyJEjo71dQ57D6Qwpw5KdooWM4+DkeXSbbbA7eSjlFPRJqVU0nF0DjuOQnqzGCaaWOy4auUid6YuzRi7t5l5c/MXLQsmmUibDC4suhsPpxK82vodOqyvA+ePJZ+BP2z4HAFR3SzNbR6WQoyTb0zTpUGMHkOz5XBToUgM+Xy1X4NzMmXi6dh3c52QUnAz3Tj9dku1jsd1l23oscDidqG3znPH/+yWz8bs3fsD6vtEKv3plI0pzUzG+IE30Om1hjGwAwm/m0sFm+oIY2QAMvwHt7Hq+kRmuE6vDoaSV+MaebHR/N3nfTgiJnEIuw50rpg32ZkRNUGHrmjVr8NVXX+H//u//KOCTSC+T5UtSKSCTBQ7gOI4TBXls9olIw7u8EwAyvcrd4qG8U8WMbLA5nHA6wx8iDniVdw7ygWWX1YxL178sDDOXcxyenn8+TisoxdIRZVh79g24ceJcPDP/fFw7bhY0ffPyOqwmtFt6JdmGcfniEs9aprRzRLJhwOenOPTgGz2Z+avGzZSkyYw3pVyGtL41cU6eR317r5DxU8plyDMk4emrFgjrgU1WO65+9ivROAlAPKoklExfcZjNXNj3Tws20zfMxjYcZ2byuYM+MnyxYxnYv/2+mo0RQog/fk/rf/TRR1i2bBlUKhWamprw0Ucf+X2RFStWRGXjhjK2E1CwB1oKuUxo3GGnoE9SJqsdvX0Hk0q5DHqNa40lm02Ry7igW9pHE8dxUCs8nwWL3RFRhi5e1vT12qy4cv2r2N3aAMBVvvno3HNwVtEE4TGFyQbcPX2pcH2UPh0H+gLE6u52pKkjb19elm8AdrguH2joQE6KJ0gpDCLoazdawNekw2mTY8H4PNx90pKIt8mfTL1GCKJ29g2XBYD8tCTIZTKkJqnwn58vwvJHPoHRYkd1Sw9ufPFbvHLjYqEsTJTpC3JNHyBuLlUVwoB2dk1faghr+tyGR3knm+mjbp3Dnb/gjjJ9hJBQ+D3Cu+OOOzBnzhxkZGTgjjvu8PsCHMdR0BcGds1GsH/UVQq5sA6QMn3S8s52uNdLso0tMvWaATOysaJWyiUM+gZ/TZ/ZYcO1G97AtuYa4baHTjkb55VMCfi8USmeoO9YdxumZhZEvC3jmA6eB+rbYSvwBCkjdIb+T/DS0WsFeA58gwFnnToFKnn09mmmXoPDfeVeO441C7ePSPdkh8ryDHjiinm47rkNAIAN++vx14924p5V08HzvOiznxbCSY1wm0t1hNW9kwn6bMMh08cEfZmU6RvutCoFUrRKoZmRWzxUnhBCEoffo5EDBw74vBxtx44dw7Jly/rd/sADD+CCCy6I2XZEW62PNRsDUTABB2X6pOVvXROb+YinP7CudX2uA4BI1/X1DvLIBpvTgRu+eRvfNRwVbvvTjGW4bOyMAZ87Su8ZPC5VMxe2vPNgQwdURk/QF2ymzy3amWF2jenOak+mb4TXd8ryqUX4vzMm4YnP9wAAnlrnauyycHw+rH0nD7QqBZJCCPrzUpOgUcphtjnQbrSg3WgJKmgUrekLupHLMCvvpEwf8ZKVovUR9FF5JyEkeEGt6bviiivQ1dX/TG5bWxtWr14t6Qbt378fAFBSUoLFixcL/xUURH4GP56wf9RHBHkmV8l0DrJKMJ+NeLSyg9mZclv2cnYcNHFxUzHNXCL9LAxmeafD6cSt372LL2sPCbfdMXURrpswO6jni4I+icY2FGUmQ9MXZJzoNKG6y9MkJpg1feFkssLFln3tqfH8/IU+TiTdsXwqTpvg+R79v5c3YtWjnwvXQw1QZTJONCg8mHV9Ticv3j9hlXcO7aCP53nUtlGmj4j5KuWMh8ZihJDE4fcIb8eOHTh+/DgAYOvWrfjwww/7jWc4cuQIjh07JukGuYO+6667Duedd56krx1PfHVnG4iSaeBBmT5ptXYznTuZA+l8g85zOU2HeKFhMh/mCDN9gxH08TyPr+oO47Hd32BXS51w+03l83DrpOBnf4ab6eN5HptOHEOGOgnj0nJE98llMozJTUVFTRsAHnVGT7e8giDKO9vDGEkQLjboY/8dC9P7f6fIZTI8c/UCnPnwx6hq7obJasf+ek9Am2sIfT1kSXaKMM/waHMXTirOCvj4brMNfF/foWSNMugW2MNpTV9Tl0n4nTYkqZAS5NB7MrT5CvpoTR8hJBR+j/BkMhl+//vfC/PgHnroIdH9HMdBp9PhxhtvlHSD9u3bBwDYvn07Nm7ciIKCAlx55ZXIzJS++91gCqd8hz1A8p5ZRiLDZh/YErXl04rw3+8OoKXbjKsWlA3GpvkkmtUXcdDHrOlTRj/o29fWiNs3fyA0bHG7etxM/G7a4pDmT7JBX3WQQR/P8/jdDx/j1cPboZTJ8OnyX2C8V+A3Ls/gCvoUTlicrmBKr1QjVTVwOZVoDl2QIwnC5a/keES67xMUqUkqvPjzRVj56GeiUrE0nRo3Ly0P+f1LRB08B27mEk6WDxhe3TurmfV83mW6ZPjynemj8k5CSPD8HuFNnToVFRUVAIDTTjsN77zzDtLT0/09XDLuTN///vc/4bYPP/wQH374IVJTA8/ISiQ1bHlnRnAZJLa800blnZJiDyTZdU3JGiU+++3ZwsmPeCGa1RfhgHZTjNf0/faHj0QBn0omx88nzMZvp50W8j7OS0qBSiaH1elAs9mIHpsFycrA2bV/7vkWrx7eDsB18uS9o7sxnukICjDr+tRM9izZENT2sWvWor2mz3ukiFugYKEsPw1f37MKe2pakaXXIj9Nh6yU8IY8F4s6eA5c3inKgoawb4ZTeWc4Tb7I0Ocz6KNMHyEkBEGd1v/qq6/83tfY2Ijc3FxJNsZisWD69OkwGo24/fbbkZWVhVtuuQU7duzAv/71L9x5550+n5eWlgSFIvYNKLKywvuD3NVrFQ5+1Eo5ykfnBNUVUqtWCpeTUzRhv3+ii8bPLWcOKtNSk+J+3+qYLIk2WR3R9rJZ4/yc1Kj+7CabDXuYgO+mafPxm5MXoUAf/gmdYkMGDra5Onh2KSwozvJfFfBSxVY8sutr0W2bm6v7/cwzx+W5LjBB3+j0zAH3jclqF0rzVAoZRhak+Q0UpdjPpSMz+t2mkMswaUxOwNLJrCw9poyN/Ht7WqknQ1rTbhz4Z2rwlJNmG4L/PctkS6sV8pD3Xbz/PrNamQzsuJHpCbXtrETd7ng1uiBNdF0hl6G0yPVdR/s69mifDw7a75EJKuirqanB3/72Nxw6dAgOh+uAhud5WK1WtLW1CSWZkVKr1fjnP/8puu3KK6/Ejh07sHPnTr/Pa2+XZihzKLKy9GgOYTYVa18d03AhTYdWJusXCMd7hnA3t/SgOSXymWSJJpL9Hkhbp+cz5LQ5/L6HzelAY28XUlQa6JVqyLjQsyNSkDGfhRPN3WHvk6wsPbpNnsyUxWiJyv5129FcCwfvCjJLUjJw16TFgBloNof/niOSDELQt+N4DfK5FJ+P+6b+CH65/u1+t+9sqsWBmkZkaDyBRV5fFopTew7As5XJA+6b+najcNmQpEZLi+/fbak+xwofa3vzDElobzP6eLT00pmTJYfq29HU1BUwG1rdt/4PAHQKedD7wMmUILd19oa076L1nREtB463CpeztKqE2na3RNvniUDj9XuVpdegtbWH9vUgoH0+OGi/BydQYBxU0PenP/0JdXV1WLFiBf7973/j+uuvR3V1NT777DP8+c9/lmxDLRYLamtrYbPZMG7cOACASuXKaNjtQ6ek53iYazZEa/qokYuk2GYoaqXvQK7e2IkVnz6HEybXv5+M45Ci1MCg1iJV5fq/QaUV/p+q1sCg0iJDo0NJSgZGJBugkEmTkdZEa01flBu57GmtFy5PSs+T5DWD6eC5t60BP9/wFux9Aef4tBwoOBn2tLmyjt83HMWq4knC4wvSdEjWKGFUseWdA2cjw12zFi5fa3pG+GjiEi3ZKVro1AoYLXZ0mWxo7bH4HSQNiNc7pobQ5GY4rekTdXam8k7Sx7u8M9DvGSGE+BLUEd7OnTvx7LPPYsaMGfj6669x6qmnYurUqSgpKcH69eslm59XWVmJc889FwaDAWvXroXBYMCGDRsAuNYYDhXhdO4EvNb0UdAnKTZw0vgpFX6mYqMQ8AGAk+fRYTWhw2oK6j1UMjnGp+XgoVPOxuSM/Ii2N3pr+qIb9O1u85R2TsqQJugr0nvKnnx18Kzt6cAV61+F0e7KaOYlpeClxZfi9cM7hKDvW6+gj+M4jMszYIfSMyy+MJjB7MxMv1AGnYcrSa1EkkohmrUY7BphKXAch+KsFFTUuvb70aaugAej7eyMvhCa3AzbNX00roH0yUkVB300roEQEqqgatPsdrswJ6+4uFgY1r5ixQrs2bNHso2ZMGECZs+ejY6ODqxYsQIXXXQR3nzzTaSkpOCaa66R7H0Gmyjoywz+TC4FfdEjCvp8dLDstJrwVqWnxDhJoez3mIFYnQ781FqP2zd9AJ4pzwyHShT0STmnL7prY0WZvggDX7dAYxs6LCZcvv4VIVhPUarx8uJLkZeUglPzRwuP+7a+st+/SVm+QbSmL5gZfe0xnNHn5h1kxTLTB7jGNrgNNKuvk+2SG1Kmb3iMbLA5nKhnliv4Gr1Bhqc0nRpyZu0/jWsghIQqqNP6RUVF+Omnn5CXl4fi4mKhq6fJZEJvr7Tr6Z544gk8+uij+Oqrr7B//37MnDkTd911F/LzpTlAjAc1zJncUA7Q2KCP5vRJS1ze2T/wef3wDvTaXeu7xhmy8cWKX8LOO9FlNaPD4sr2uf/faTEL1zutJtQbu3C0q0UIPPa1n8CG+iNYVFAa9va6t5HL7sK/jn+J4mIlTs4eGfLr2OwO2J2uYEcu40SfMamZHTYc6mgWrkejvLO629MoxOyw4doNb+BwZwsAV6b1+UUXCXP5pmTkI0WpRpfNgobeLlR2tWBMqmfOXGlOKmARd+8cCNudMpSgJhJZKVrRiaRYBwrF2Z4TV0cH6ODJZkJD697JlHfahm6mr66tB86+kw+5qVpRGTcZ3uQyGTL1GpzodFWWZKZQeSchJDRBBX2XXHIJfve738HpdGLZsmU499xzodVqsX37dkyZMkXSDUpNTcV9992H++67T9LXjSfiTF+Ya/poZIOkLAGCPrvTgRcPbBWuXzf+FHAcByUnR4ZGJ2oAEsgftn6G/xzYAgB4uuL7iII+jVIOqOzgRrXikAn407bP8cnyn4f8Or1epZ3RHEuxv/2EsKZulD4dKUHMvAtGYbIBco6Dg+fR0NsFk90GtVyO275/H1tOVAuPe3TuOZiTWyxcV8jkmJ1bjLU1rsqFb+orRUFfXqYGXJ3rAFzmlMGgGvjMeixn9Ll5j22I9Ww38ay+wEEfmwlNDWVOn3J4lHfSej4SSFaKVgj6KNNHCAlVUKf1L774Yvztb39DVlYWSktL8Ze//AU7d+5EZmYm7r///mhv45DC87zXjL4w1/TRcHZJme1seac46Pv8+AHUGTsBAOnqJJxTMgnh+PmE2VD0dfv84UQ1tjfXDPAM/9QKOaCzwB2jVXW1Bn6CH71MJksb5awCO6phskTr+QBAKZOLsnC/3/IJbt/0IT6q3ivcds9JS3FOcf9/N7bE87uGo6L7ktgmoJbg1jqyM/rSdLE5E+99xj/WQZ94Vl/gzmodYWZCh0t5Jxv0FdF6PuIlhwn0KOgjhIQq6K4Ny5YtEy6vWrUKq1atisoGDXVtRguMfQfaOrUipOHN4jV9ka0JI2JmJnvgnel7bv9m4fLlZTOgkYe+ng9wZaTOKZ6Ed47+BMDVGOaFRReF9VoqpQxckifA6LJZYHHYoZaH1ohFFPRFu4mLqHOntOXao1MyhdLONyt3ie67qmwmbpg4x+fz5ueVCJc3Nx6D1WGHqm8fWjizcJ/DLEdLt3nAYcii4eMx6N4JiBs6yGUc8gyxHeVSzGT6jjZ1ged5vxnjTlN8N3JxOJ1hDamXCtvZmQazE28XnTIGG/bXIztFi9MmFAz25hBCEozfo7x777036BehbF/walrFf9RDKacTBX0RdmwkQE1PO2797l102yzoVmoBcAA4UffOlw5uw/bmWgCAUibDlWUnR/SevyyfKwR9a2sO4HBHM0oNWQM8qz+1Qi4K+gCgzdKLvCTfM+r86bV65tBFf1xDdDJ9AHDDxDnY2VKLdou4k+qyEeNw38ln+P09G6VPx4hkA2p6OmC0W7G9uRazc0cBAGr7srsAwFuUONTYEVLQF4vunYC4kUtualLAoezRkJGsRopWiS6TDb1WO5q6TMhJ9R14ispf42xkw8c7q/GbVzdiRnE2Xv7lYshk0St19odd7x1KZ2cyPJx90ijsKs1FilYpauZFCCHB8HuUd+zYsRhuxvAhPpMb2h91BTVykUy31YyrvnoNB92NRVIB2WQl+DoD2h09MDsM+OPWz/Hq4e3Cc1aNmoRsbWRn38sM2VhaOBZf1B4CANy++QOsOe1SGNShlepolHLAK+hrNRlDD/ossencaXHYcbCjSbheLnHQNye3GNvP/w22Ndfgq9rD2NJUjbLULDwwa3nAzA3HcTg1fzReOeT6d/7oWIUQ9O1qqWN+AAUONXRi7tjA2y2e0xejRi5Mpi/WpZ2AZ2zDT31DxY82dfkP+tiRDaGs6WMzfRHOpfTnn2t3o8tkw1f76vBjVTNmjs6OyvsEIlrTR+WdxAeaz0cICZffoO/ll1+O5XYMG+wMpsIQD9BUCirvlILD6cSN373jCfj6cFobuDHNuHLTGsg3uxqDuE1My8Xvpy+V5P1vnjRfCPq2N9fivLX/wcuLL0O+buDh3wKZE5xGnPFotRhD3pZYlXceYJq4FOnTkBpEU5RQqeQKzM0txlymWUswzimeJAR9HxyrwB9OXoZem1Vo8AIAfKcWhxs7BnytWM/pA4C5ZbnCgPSzpobewVUKJdnioG92aW6/x/Ra7UKXXJVCFtLnLdrlnXaHE4caOoTrNa09gxL0VUdwUpAQQggJJKi/ujt27Ah4/0knnSTJxgwH4Q5mByjTJ5X7t6/D13VHhOsXjJ6Cdw7tAS/37FM24Fs1qhx/n7MSWoU0a7SmZ43AH2csw30/rgUAHOxoxqrPXsBrSy4PutSzje/fMKPFHEbQx3bv9DGfUCp72KHsEo1qkMqs7CIUJaehuqcdnVYz1h4/gBOmblidrgCF71EDJhUONXYO8Epemb4Yde/MSNbgh/tWo7bNiCkjM2Lynt5Kgmjm0trtWSOZmawJqbSdLbk22xxwOnlJyy+PtXSL5l02dIT+uxQpo9mG1h7XPlLKZTFfm0kIIWRoC3pkA8dxouHFHMeB4zjIZDJhbh8ZWE0EQR+7ps9KQV9YXjn0I57f/4Nw/ZZJ83HntMX4/JNedOqbwenNSM/k0G41QcHJ8LuTFuMXE+ZIPsrg+gmzkaHR4Teb3ofN6URDbxeu/OpVfHLWz5GmGfhgr9nevzV+mzm0mZmvHd6Of+/ZAi6dB9+WHNVM3+4oDGWXCsdxuGDMVPx919cAgLeO7EJdL7Oer8lV0ns4iKBvMOb0AUCmXotM/eB18/Nu5uKLO6ABgIwQS9RkMg4apVzIFJptdiSpw2uo5MuB+g7R9fr22Ad9NW3srEXdoDaUIYQQMvQEdZS3fv160XWHw4Gqqio88cQTuP3226OyYUNVTZgz+gBAIfcEHpTpC93Gxir8fsunwvUzR47HHVMXAQCsJoDvTAMPYPM/LoEFVsjABRWAhWt1yWRkanS4bsMb6LXbcLynAzd99w5eWnwpFLLA6+uabB39bgsl09dhMeGeLZ/A5nSCK+bAt+uiuqaPXR83Oc4yfQBwQckU/GPX1+ABfNNQKdyuU6hg7tTDCqCpy4R2o8Vv2abJq3wxSR3dxjjxpIQd0O4n6GthMn0ZyaGvS9JrlML+bTNaJA36Dta3i67Xt4d2AkUKx8Mc5UMIIYQEI6hTiQUFBaL/Ro4ciVNPPRV33303HnrooWhv45DhdPKis7kj0kNc0yf3HJTbKOgLydGuVvx8w5vCurLy9Fw8MfdcyPrm5lns4uHsGRpdVAM+twX5o/HPeauF6982HMVDO9YHeIZLvaW9322hBH2bTxwTZj1yCh7QWaKW6avubsO+9hMAAAUnw+TM+Mr0AUBBsgHzmPENbquKy1GalSZcD5Tt827iEs1B9/FmdE4qZH0/78GGDlS3+Cg/7vZ0Vg2nGUVemk643NAhbVB2gFnPBwD1g1DeSeMaCCGERFNE9SMZGRmorq6WaluGvNYeM6x960YMSSrotaGt+VGI5vRR0BesDosJV331GjqtrkxDjjYZ/1l0MZKUrv1vdzjhcLpKl+UyTlRGGwtnjByP/5u8QLj+732b8H7VHr+Pd/JO1Jr6B31tIQR9GxuqRNe5FFPUgr6PjnmGpJ+aPzoqTVykcOHoqf1uu6R0OsbmGYTrgZq5sE1cYjWjL16kaFVYNMETzL+x+Ui/x7T2eILicIK+/DTPSRipyy/3x0WmjxnXQJ07CSGESCzsRi49PT1Ys2YNSktLJd+ooarH7JmJlhJiwAcASqa8k4K+4NicDtzwzVs42uXqLKiWK/DCootFnTLNTAt49SDNPvrNlIXY29aIL92jHDZ9gNLUTEz0UQpZ09MBs9PW7/ZQMn0bG4+KrnMp5qiVd354zLPmd2VxeVTeQwpnjBwHvVKNbpsrOJmQloMpGfkYk9siPCZQMxfRYPYYde6MJxfPKcX6va4y3rd+OILbl08RrUsTZ/pCD/wLDJ5Mn5RBn9nmQFWTODPZ2mOG2eZwjUaJkUiafBFCCCEDCbuRC+Aq+3zkkUeismFDEdspURfGehQlU95Ja/oGxvM8/rj1M3zf6MlqPT73HEzNLBA9ThT0xfAgjyXjZPjnvNVY8elzqOxqhdlhx3Ub3sQnZ12PdI1O9Fh3qSQA8BY5OHXfOqcgG7k09nbhcGeL+Ea9BUqF9OWIRzqbhe1Vy+Q4vbBM8veQilahwrnFk/DSoR8BAJeNnQGO4zA21yA8JlB5Z3tv7Aezx5Ol5YXISNagtceM+o5ebNhfj8UTC4X7W7y6d4YqnynvrGuTLug70tgJJ99/BE5jhxGjskKbexmJSGa4EkIIIQMJq5ELACiVSmRnx36OUSIzWtigL/RSOsr0hea/B7cKB/CAK5u2YlT/TBO7nk87SEEfAKSoNHhh0UU4+9Pn0GOzoqanA7/89h28uuQyUWOX/WzQ16kFl+06WAw207exsarfbZyMRysG7k4Zqg+Z0s7TCsdCr4rvwcK/nbYYVqcDGRodLi2dDgAozfVkhQ95rf1yczp5VDENTGLZuTNeqBRynD+zBP/+ah8A4PVNR/wHfWGVdzJBn4Rr7g409C+VBlwlnrEK+nieF5V3jqA1fYQQQiQWVORRUFAw8IPIgIwWT0leOJ39RGv67BT0BbL1RDX+uO1z4fqqUeX41eRTfT7WzGRgByvT5zYmNQv/nLca13z9BgBXgPbgji/xhxnLhMfsa2/0PKFbA2QZAY6H0W6FyW6DVhE4i7yJWc8ngwxOuD5LtfYWf08JC8/zotLOVT4C7nhjUGvx9zmrRLcVZ+mhkHGwO3nUtRthNNsgk3HYWd2CbZVN2FrZhB+rmtBl8vx+x2pGX7y5eE6pEPSt21ODlm6zEOC1RDCyARAHfVKuuTvoNa5BeI8YNnNpM1qEk4I6tQIZycPvpAEhhJDoCiryqKmpwWOPPYbDhw/DarX2u3/t2rWSb9hQxJZ3hhP0KRXUvTMYPM/jvh/XCiVbUzML8Pc5q/x2U/Tu3DnYTh8xDr+eshCP/rQBAPDsvs0oT8/D6pLJALwyfb0qyOxyOJWuz1ab2YiCZIPf1+Z5XlTuOpobgcO8qxlTlfmEv6eFZX/7CRzpKyNNUiixuDAx1/+qFHIUZ6cIpZ1n/+NTVJ7oCvg7OHmQhqQPtrI8A6YXZ2F7VTNsDife2VqJGxZPBCAezh7OyIZoNXJhm7jkG5JQ39cZNJbNXMTzW/XDqvMrIYSQ2Agq8rjzzjtx4sQJnHnmmdBo4rs8K170WmzYU9OGGSVZQjMDUXmnKpw1fcycPicFff58dnw/fuobBq6WyfHvBRcEzH5ZmDV9sWzcEMivJi/A3rYGrK05CAC4Y/OHGJOaiUMdzajudh2k8jwAkxKcXQ70BX0tAwR9x7rbUGd0BS86hQojLYU4LHcFfdWmFvTarEJX00ixWb6lhWXQKhI3+1WamyoEfd6DvN2yU7SYOTobZ0weiVUnFcdw6+LLxbPHYHtVMwDg7S2uoI/n+YiGswNAbmoSZBwHJ8+jpdsMi80hyUka9t9z4YQCvLbpMIDYDmin9XyEEEKiLaigb9++fXj11VcxceLEaG/PkMDzPE7/68eobOrCFfPG4m8XzwbgCgTdwsr0MZ3wrFTe6ZPd6cDDu74Srl81bmbAIAgATHHQvdObjJPh8bnnYsVnz+NIZwssDjtWffa8MFsPANCrAngZeLtnm1stgbMT7Hq+U3KK4DwiB88rwSXZ4ASPrU3HsbBgjCQ/w9qaA8LlVXHctTMYM4qz8Omu46LbSnNTcXJJNmaNzsbM0dkoyqQMDQCsPGkUbn9tMwBXQGVzOGGy2oXvLJ1agaQwxoMo5DLkpmqFTFyDBI1Wuk1W1PUFd0q5DPPL8oSgryGG5Z2i9Xw0roEQQkgUBPWXt6ioCCaTaeAHEgBAY2cvKvuaOnxRUYu/9d3eG2EjF3ZNH3Xv9O1/R3cLJYV6pRo3l88f8DmWOOje6YtepcELC12NXbptFlHAl6PVo36v6+CQt3o+F619zVx6zDbsPt6KaaMyRfP32Pl88/JK8PnebvBmLbgk1wmJTY1VkgR9VoddGJMBAPNy+w8+TyRXLRgHi90Jo9mGGSVZmFGSHVaJ4nCg16qQk6rFiU4TnDyPhnYj7E5Pd8xwmri45afpROWXkQZ9B5nGPGNyUlHEBFyxLO+spkwfIYSQKAsq8rj33ntx//334+qrr0ZhYSFkMvHw6pNOOikqG5eo2INsdjafuHtnGOWdChrOHojZYcM/dn0tXL9h4hykaZICPMOFDfq0yugMKA/X6NRMPDl/Na7+6nXwABScDNeOPwW/mrwAYze8CQBwWGVwfzJaTEa0dJtw5sOfoLbNiHOmj8L/u8bVwMbJO0WZvrl5xXjPugN8lwbIdZ2k2HTimCTbXdPTAUffmsq8pBTJSkYHi1alwK/OmDzYm5EwRmYk40Sn60Th8dYeqJgMejgz+tzy03RAX+lonQTllweYoG9cvgF5zCxAKV4/WKLB7BT0EUIIiYKgjnCrqqpQWVmJ3/3ud/3u4zgO+/fvl3zDElkyE9AZLXbwPA+O48TdO8Mob1JSpi+gdyp/Qn2vK3jJ1Ohw3fhTgnpePMzpC2RJYRneOP1KbGqswspR5SgzuEalqBUyWOxOwObZ5hazEbe+tBG1fXPMPthxDPdfMAuZeg0OtDehra/8M12dhHGGbFfJcZcGPA9wHLCntR4Whx1qeWTBb1W3J8tXkjI8m5oMZ4Xpydh21BWc1bT2IDXJE/SHM6PPTepmLgfqPE1cyvIMyErRCJ1a240WmKx20Um8aPFu5EIIIYRILai/Zv/85z9x/vnn47LLLoNWG/5Z2uFCIZdBo5TDbHPAyfMwWe1IUiu9hrNHVt5ppaCvnx9OVAuXr58wGzplcG3P47W8kzU3txhzc8XNQdRKuSvoY9b0ba6qw859ns8JzwNf76vDBbNGi7N8ucWQcTJXybFDDlgUgMYOB8+jursNYw2RzeCs6moTLhenpEf0WiTxjGTKJI+39iDP4QnWwmni4iYe2xBZ0Levrg0f7jgmXB+Xb4BcJkOuIUk4adLQ0YuS7OjO6nM4ncL7AZTpI4QQEh1BRR49PT247rrrUFhYOPCDCQBX+aY7g9RjdgV9bHlnUhjlnSrK9AW0t61BuHxKTlHQzzPb4697ZzBcJXM28Eymb3dDM4Ac0ePW763FBbNG4/uGo8Jtc/NcAaRwIsKsBDSuy0c6WyIO+tj1fJTpG35GpHsCl5rWHlFpeiRrIUVBX0f4a+6+P9iAa579Gt195fcpWiVmjnb93uQZdEzQZ4x60NfYaRLK9TOSNdBpQv/bQAghhAxENvBDgGXLluHLL7+M9rYMKckaZl1fX1mnpMPZKegTMdmtqOwLNDgA4w05gZ/AMNviZzh7KIROozYms6dw/SxstmDDvnqYbDZRJtSdNXQ3F+JNngPNyq7Ih7RXMUFfsZ6CvuGGLVE83tqDNmZGXySNXAoiyPT1Wmz4/Kfj+M2rm3DJ018KAZ9eo8QL1y9Cmk7d9x6erGRdDJq5HG+h9XyEEEKiL6jIo6CgAI899hjWrVuHoqIiKBTip91///1R2bhEptd41rC4m7mYIizvVFLQ59f+9iZhGHtJSkZIjUMsNs++1MTJyIZgCFlJprwTSgeSVAq8cfNSnP/EWtR39KLTZMWbe/bCaLcCAAp0qRilT4fTyXs+k2ZP0OfufhqJqm4q7xzO2PLOmtZu0Vq8iLp3GkIL+mpae/D29iq890MlNh1qcJVDM3JTtXj1piWYUOD5jEpZQhoM0Xo+GtdACCEkSoKKPLZu3YrJk12d62pra6O6QUMFG9S5gz5ReWcYw9kp0+cfW9pZnp4X0nPjcTh7MISOiEx5JxROTB2VgeLsFCwuL8TL3x8CAHxw2NNsaV5uMTiOg4nJcCptarj3QqRBn8luEwbAyzgOI5PTIno9knjy03TCIPXGTpMoeIok6MvUa6CUy2BzONHRa0WvxSYqled5HturmrFuTy2+rKjF/vp2v69VXpiOF3+xCIXp4kCL7eDZEIOgjx3XMIIyfYQQQqIkqKDv5ZdfjvZ2DDnJzLoMX+Wd4WT6EmlNn7tjaaxUtDUKlyem54b03IQt71T2fR6cHGSQwQknODmP/HRXs6UlTNBX0VkH9B1rz81zzcxj50ZqnUlwH3pWdrVE9O9XzWT5RugMUEXYCZQkHqVchjxDkjD2YE+N5zMRSdAnk3HIT0sSAqW69l6U5qYK9//lgx14+osKv88fn5+GJeWFWDqpECeNyoRc1n+Fg6hDaATrBoMlHtdAnTsJIYRER1BHYzt27Ah4P83p608U9PVl+qQczm5z8AEeKS0n70SbuRdp6iSfB0msXpsVT1V8h5cO/ogxqZl4ePaKiJuCBGNvuyfoiyTTl1BBn1CKykHuUMApd5VvZqS5Pnvzxua6xjo47ehV9cAdws3JHQVAXG6cxKkgU6rRZbOgx2bFCVM3cpPCa2DBNnEppiYuw9aIjGQh6GPHokQ61D4/TScEffXtRiHo43ker206LHqsSiHDovJCnDo2D0vKC4PKpMW6vPM4U95ZROWdhBBCoiSoyOOSSy4Bx3HgeU+gwXEcOI6DTCZDRYX/M6vDFTt8XaryTtGaPqbjZDRUdbXiid3foqKtAVXdbbA47ChPz8Xbp18Fvar/QRvP8/jgWAUe2L4Ojb2uM9c/NtfgzE+exZ9mLMNlY2dELfNndzqwv/2EcD3kTJ+oe2fiZKXYANVu4YC+BIVe77o9Sa3EnLF5+Lr2CLi+j05paqYQzLHlnUkqJQpSM7GzpQ4AUNnVGnbQR+v5COBqSvLDkRP9bk+PNOjzs66vucuMdqMFgGsO6tNXzcf8sjyMGpGO5ubufq8TzOs3xCDTJ57RR0EfIYSQ6AjqCHf9+vWi6w6HA1VVVXjiiSdw++23R2XDEh2b6TNKVN7Jtj23O6Ob6fv9lk/xTUOl6LaKtkb86ce1+MecVeLbWxvwh22fYWvT8X6vY3HYcdeWT7CxsQpPzj8PSpn0mbTKrlZYHK4AJjdJjwyNboBniJmtiZ7pA5xWGbi+oE+T5Amul0wswIbuPcL1ubklwmUT83NrVQqMYYO+zpZ+cwE/O74fz+//AWeOGIdrx5/iN4inzp0E8L0+LU2nFp28Coe/TNyBBs/6vXH5BpwxZWRYr8+uG2w3WtBrtSMpSgPaLTYHGjtdgaWM41CQTkEfIYSQ6Ai6e6e3kSNHQqfT4b777sNHH30k+YYlumRRps8Oh9MpKnHShnEQEavunTzPY1drnc/73jyyE2eMGIelI8rQajbi4Z1f4bXD28GGoJkaHW4sn4u3juzCgY4mAMDH1ftw+dgZwnoyKVVE0MQFACxspi+BuneyASpvkwvlmwq157OxpLwQ9+4zCddPzvLML2TLO7UqOUanGITr3s1ceJ7H3T98jGazEVtOVGNPWwMenr0Sah/r9apoRh+B76xVpKWdgPdIBU/Qd7ChQ7hclmcI+/VlMg55hiSh7LKh3YjROakDPCs8tW09cBfQ5BmSIg6ICSGEEH8i+guTkZGB6urqgR84DOm9Grl4Z1VkstBLHRUxKu9ss/Si0+qaq6VTqLDnZ7/FylEThfvv2Pwhnqn4HgvefxKvMgGfgpPhFxNm49tzbsHPJ8zBx8uvxyxmSHp9b1dUtndfBE1cAK/unaoECvrYAJXp4GmFJ6OcmqIAp3Ot9eN5gO9UC/eJgz5Xps+t0ivo67KZ0Wz2HGD/7+huXPrly+iwmOCNyjsJABT6CPoiaeLixmb6/AZ9+YaI3oPt6Lm1simi1wrkOI1rIIQQEiNhN3Lp6enBmjVrUFpaKvlGDQU6r0YukZZ2AuLundFs5HLUK1OTpk7CX2Yux5YT1Thh6kGL2YgHd3wpes7C/DG47+QzMJoJHDRyJcrTc7Glbyh4mzk662NEnTvTQg/62AysOkEzfbB7PhvtVs9+/qGxGkIK0KjC5gPNOGfaGACBg74jXgPa3es0WT+cqMaqz57HS4svRZHeFdz12CxoMrkOZJUyGQp00cmQkPjnK9MnddBXzwxPPyRRpg8AlpYXYtNh1/fK65uP4OI50fk7R4PZCSGExErYjVwAV9nnI488EpUNS3TJGvGcvkg7dwKAnMkOOnkeDqczYDfNj3Ycw6Of/YTTJ43Ab8+eOmDnTTfvoA8A0jRJeGTOKlyx/lXRY0fp0/Gnk5dhccFYn2u8MtSeA7RWs/Sd8Hiej7i805ygc/rUzBpPNtPXwuzn7xuPCpf5Li2+rK8TxjGw2ecklQJF+nQoOBnsvBN1xk702qzCkPsGoydLm9LX5RNwradc+dnzeHHRJTgpq1BU2lmkT4ciCms4SWLIMyRBIeNE64+lD/qMwt8lqco7AeD8WSX4ywfbYXfy2Ha0CYcbO0WjIaQiyvTRuAZCCCFRFFYjFwBQKpXIzo5+K/5Elaz2zvRF1rkTcHVMdTcYAFzZvkBLQP783o+obTPiQH0HjjZ14akr5wfVqMRfy/3TCkpxw8Q5+NfeTdApVPi/yQtw7fhTfK7rckvXeNbftFqkz/TVGTuFUtQUpRojkg0hvwa7pi+hGrl4relzY4PrjQ1Vnsd0aVDf6fo8jC9IE3Xv1KoUUMrkKNKnobLv3/9oVyvKM1xBdCNTmru4cCyWFpbhto3vweJ0oNXciwvW/Rf/nLcaDqdnPWGxnko7hzO5TIaCdJ1o+LgUa/oMSSokqRTotdrRa7WjpdsMu9OJLpOrmiJFq0RuatIArxJYpl6LpZNG4LOfXM2p3vzhCH5/zvSIt90blXcSQgiJlaBSPwUFBaL/1Go1BXwD0Hmt6eu1Rp7pA8Tr+gINaHc4naL1Lh/vrMZV//4KvUyZqT++Mn1uv59+Or4952Zsv+A3uLF8XsCADwDS1Z6Dr/YolHf+1FovXJ6QnhvWWAgz82+TUJk+UXln/6DvRG83DnU2AwBkPAd0uw64v9xbC8CrvLPvtfyVeDaaPGVouUkpWFlcjjdOvxJpatcgeIvDjhu+eQtPV3wvPI6auBDv7JUUmT6O4zCxME24/t3BBhyo7xCul+UZJBkPcwlT0vnWD0ei0jyLMn2EEEJiJWDQt3XrVqxYsQKHDh0S3X7vvffijDPOwM6dO6O6cYmMzfQZvdb0JUUQ9KmC7ODZbrTAqxoXG/bX46KnvkRnrzXgewQK+ly3ZSJZqe53uy/s+IRWi3TlnfXGTtyz5RPc+t3/hNvCKe0EvLp3JlLQx64/tHouH+5sQZvZiE2NnixfcVI24HR9dr6scAd9/bvJjk5hgj6mmQub6ctNch2cnpw9Eh+eeZ2Q0eMB7G33rK+kwezEe2xDpgSZPgA4bWKhcHn93jpRaefYCEs73RaOz0dOquukRnO3Gev7fm+kRDP6CCGExIrfoK+iogLXX3898vLyoNOJ555dffXVKCgowNVXX42DBw9GfSMTkXf3TlF5ZwwyfS3dZuEy2wZ829EmnP/EWrR09++6CABO3oljTNBXoDWEva2AONMnVSOXbU3HMf/9J7Hm4DZYnJ7A5bSC8JotiBq5JGrQZ5ODN7rW31kcdrx2eAe+Z4K+ZaPGwp38+PFoM9qNln6NXAD47eDJNnJhh7YXp2TgwzOvw8zs/jPRqLyTeAd9GRJk+gBg8UTPGKGv99Vhf51nRl+k6/ncFHIZLpw1Rrj++ubDkryuW5fJKgyTVytkyE7RSvr6hBBCCMtv0Pf000/jrLPOwrPPPttvTt/MmTPxwgsvYP78+XjqqaeivpGJiB3O3m32Ku/0s6bPyQ9cPqSUe8qWrAGCvtYeT9A3vTgLfz7/ZOF6RW0bznn0c1H5p1u9sUsIpHibDBc89mXA4HIgGcyavjaJ1vS9U/mTMIwdAKZmFuCVxZdhQf7osF7PMhS6d4ID3+gJxv57cCu+b/A0cVlaVIppRa6Azsnz2LC/rt+cPgCi7qui8k4fmT63NE0SXlt6OVaNKhfdzr4WGZ5GeA0bz9RLE9iUF6YLWbh2owWf9q29A4BxeWn+nhayi2d7gr71e+vw328PwOmUpnPycWatY2FGclhjfAghhJBg+Q36du/ejSuvvDLgk6+55hrs2rVL6m0aEtg1fUazTbSWzteavnu2fILS1x7En39cGzD4UzJBSbCZvoxkDa5fNAGPXzYXsr50T2VTF1b94zNUnugUPY8t7YRJiYMNHaiobUO4UlVa4T07rWbYnJHPF6xkgpG/zDwLH515HRYWjAnwjMBE3TtV4WdhY807K6ntSUVWXzltY2836oyuf1udQoWpmQVYXO4pifuywjvo61/eebSrVWjMwmb68phMn5tGrsST81fjt1NPQ15SCm4unyfKCJLhybs5iRRr+gDXur7FTIlnj9nz/SpVpg8AirNTMHesawyMw8njrje34JzHPsehxo6IX/t4KzuugdbzEUIIiS6/QV9vb2+/sk5vmZmZ6OnpCfiY4UqrlAvBjsXuRAezjs67vHNfW6OrVNFhx7P7NuNP29b2G4/hpgxyTR8b9LkPtH42ewyeve5U4TXq2o0457HPsZcJ6tigjze7AtfmLt+loMGQy2QwqDxn99slyPaxYwFOLRgTUdMGnue95vQFN9YiHnhnJUemp+DyspP7PW5WThGUMjmWMAfJX++rQ4+FbeTi+kwa1FohcLQ47KgzdsLisAtjIGQch2yt77VHMk6GWycvwLbzf43fnbQksh+ODAlspk8u45CqVUn22qdNLOh3W5pOjawUaQJLt79fMhujczwnMLYdbcLShz7CPz7ZJaoSCBXbxKWIOncSQgiJMr9HuKNGjcLu3bsDPnn37t3IywuvecZQx3GcaFYfGzjp1OLyzrcrd4mu/+fAFvx919c+X1fBlADZ7KEFfQCwfGoRXvrlaUJmp6XbjPMeX4ttR5sAAAfbmz0v4g76mNcKB1vi2Rrhur5uqxknmOHfI3SGiF7PyuxDpVwW9CzDeNAv6MtIxuVjZ0DlNRtvbm4xAGDSCHFJ3ObDnqYrWibDyZZlVna1oInp3Jml0dHsPRK0nFQtTi7JAgAsnVQoaQnjgrI80fchAIzNTZWkcydrVFYKvrxrJX51xmTh/ax2J/7+6U84/a8f4ce+785QURMXQgghseT3CPfss8/GE088gZaWFp/3Nzc34/HHH8eyZcuitnGJju3geaKTDfo8B9g2pwPvVvUPrp/Y8y2eYdrfuwWb6WPX9HmXVC0cX4A3b1mKFK1r+zpNVvzsyS/wzf56bDpeIzxOikwfAKQzHTzbIhzQfqTd83kcpU+POEhL1M6dAKBWin/2ERl6ZGmTsapYvLZuXp4r6PMuiWvo8ATg7jV9QP9mLv6auBAyEI7j8OYtp+P9287As9culPS19VoVZo3JEd0mZWknS6OU484V07Dudytw0ijP78ehxk6sfPQz3P3mD+g2Be6K7I3N9I2g8k5CCCFR5veI+YorrkBqaiqWL1+ORx55BOvWrcPmzZvx+eef429/+xuWL18OvV6P66+/Ppbbm1DYZi5NXZ4D7CQmq/JV7WEh+5WbpBd1oHxwx5d4+eA20WsqFaF37/Q1EPnkkmz87//OEAJCk9WOK/61HlXdzJo+iTJ9og6eEZZ3HmYykVLMgTNbE7NzJ9B/e93ZgmvHnSLclqFJwvg0z4HxEmZdH0uU6UsRN3MJ1MSFkIFoVQrMGpMjOmElFbZkGYhe0Oc2viANH/7mTNx//kzhe5zngRe/PYiFD3yA9XuDH+twvIVd00eZPkIIIdHl96+wUqnEyy+/jHPOOQdvv/02br31Vlx99dX41a9+hQ8//BAXXnghXnnlFSQlJfl7iWGPDfrYTF8SkwF8iyntPL9kCv596oU4JadIuO3uLZ/gf0d/Eq77yvR1W8346FgFmk2eM8eioM9P84TyEel4/7YzkJ/mysRZHQ44lK6GCDwPwOwuAY0s0ydleScb9EkxB47N9CVS506g//a62+OXZ+ThzmmnYUJaDh6cdTZknOczs6AsDyof6xb9lXceoUwfiWOnlYvX9ZXlG6L+nnKZDNctGo9v7l0lGh1R39GLK/7fVzhQ3x7g2S48z4sHs9OaPkIIIVEWsFWhRqPBXXfdhdtvvx01NTXo6upCWloaRo4cKfm6iaFInOnrX97ZYurB+lrP4PsLx0yFVqHEf0+7BBd98RJ2tdSBB/Drje9Dp1DhjJHjRXP6bA4nmk09OOfzF1Dd3Y4ifRq+OPuXSFKq0BagvJM1OicVH/z6DFz05Beo7GoRZrmpnWqYeNd7NXdJl+lrjbC8U/JMn6hzZ2IHfWy24JZJC3DLpAX9nqPTKHHKmBx8e6BBdLuovDPFq7wzgzJ9JD6V5qRidE4KKk90QaOUY0JB7GZDFqYn4+VfLsb726twz1tb0W60wMnz2FvbjnH5gcdGNHeZhe+eFK0ShiR1LDaZEELIMBZUvY1SqURJSQmmTp2KoqIiCviCxDZsYYMLd/fO96v2wN43nmFG1giU9B1sJyvVeHnxpSgzZAMAHDyPG799B9/WV4oyfV1WMy5f/wqqu11nlqu72/Hc/s0ABi7vZBWmJ+O9287AyALPgce49CzhcnOEmT7Rmr4IyzsPtUkd9Hk6WGoSLdOn9J3pG4ivEk93904AKNClQi13XW82G3Gww7PPfY1rIGSwcByHZ65agAtmjcbTV81Hmi62wRPHcTh3RgmWT/VUZ/SYB17bR+MaCCGExFritCpMQGymj+UOBtnSzgtGTxU9Jk2dhNeXXo5ivevMtdXpwDVfvw6jsu9ggePx6OF1qGhrFD3vmYqNqOvuRGdfUwEZxyEtiLPIWSlaXLakWLg+Pj1buBxpI5cMdk1fBOWdPM8Hnelr6TbjgifW4sJ/rkO70eL3caLB7Am8ps+QpEJKkO3wvddBAeLyTrlMJtq3W5qqhctU3knizeSRGfjnFfNwFhN4xZq7KRYAdDEzA/2h0k5CCCGxRkFfFCX7GMIOuMo7m0092Nd+AgCgliuwYtTEfo/L1urxxtIrkN93oG122LFHuw+yskbIph3HgR5PiZ67hNJot+LhnZ5xDxnJ6qDbpB/v8axFGZ+RLcwZ7Oi1wmoPfx5VukaaRi4tZiO6rK4MZrJShSyN/4Oll747iO8PNeK7gw147ut9fh8n7t6ZOIPZAaAoU488g2vf+mvQ4ktxdgpGZ4uDN63XUHq2xNNk9xzEUnknIf2xJ/i6gujieZzGNRBCCIkxCvqiSOcn05ekUogGjJcZspCi8l2CWZBswBunXykMzHZwDnAGEzilp3PnndNOw2NzzxGuv1f9E6BxHXj4a+LirddmxY/Nx4XrY1IzkZ7syRC2RNDBM0PtKe+MZE0fOzi+JCUjYJlxBTNwfuOhRr+PS+TunUq5DGvvPBsv/nwR/nbRKQM/gbHYK0jUeq1nZJu5sCjTR0h/bJa92zRwpq++3fM9WJhOQR8hhJDoo6AvivQa3+V2OrUS1UxWrSg5cPOBkpQMvLr0cqR6BYYamRJ3nbQEN5fPx2kFpcIQbifPQzbC9fqZA6znAwCjzYIrvnoVhztdM/CUMhkmpOcgS68VHhPJ2AapMn1s0FesD7ye71BDh3B557EW9FrtPh9nZrt3KhPv1yErRYszpowUdYQNBlviqZBxUHmtZxzjI+hLVqqQrKSGE4R407NBXxDlnb0Wz/eRPsiybEIIISQSiXeUm0D8lXcmqRQ41uXJRI1KGbjj3IS0XHx81vWYiNFwHsmC46dC/LnkAtxUPg8cx4HjOPx++lLh8Vx6L6CyB+zcCQA9NgsuX/8qfjjhWbd157TFyNbqkZXieW5LBOv6REGfuRc8z4f1OmzQ5y8TBbjW6VU1exol2BxO7Khq9vtYN22ClXdGYtaYbBT0jeqYWNj/88eWd7pRlo8Q31KYqo5ghrSLugYnWAMpQgghiYmCvijy18hFq1LgWDcT9OmDazNenJKBcvlo8K3JgFkJu0McPE3KyMe8XE8zFi7VhAwmW+et22rGpV++jK1NnrLO309fihsmzgUAZIoyfeEHfRq5EjqF62y2nXeiy2aG0WbBv/ZuxCfV/tfbefMu7/SnsqkTTq/AcvPhEz4fyx58JdqcvkioFHK8cctSPHLFXLzw80X97ve1f6lzJyG+6bWhrekTrSVOsFExhBBCEtPwSW0MAl9r+pJUCshknCjoK9IHnunEYgdr2x3OfvcvLhyL7xurAACcoRcZyb7L8TqtJlz25SvY2VIn3PanGctw3YTZwvVsJtMXSXkn4Mr2GXtcB0Ot5l68cXgHntm7EQDw2fKfY1JG/oCvURVk0HeQKe1023TY97q+RO7eGakxOamYXV6IZiYr6pakVKFAl4o6Y6dwGzVxIcQ3tpS/J4jyTjNTbq4ZZt87hBBCBgdl+qIo2cc6K/eMvnAyfQDEw9md/YO+RQVjPFdSTTAk918v0mEx4ZIvXhYFfPfPPFMU8AEQr+mLcGwDO6C93dKLr+oOC9d3Mdvhj8PpFO2z4gD77FBDZ7/bdh5rFmX13Nigjw6+xLxLPKm8kxDfQh3ZICrvHEZl5YQQQgYPBX1R5Ku8U6dWoN3Si86+0QMauQI52uAzKEoZE/TZ+wd9o1MyoXG6MnScnEeHrEt0f7u5Fxd9sQY/tdYLtz04azmuHjer32tlpniCvki6dwLidX01PR041OlZY9fQ2+XrKSJ1xk5Yna4DpWxtMvR+up0CvjN9FrsTO471X9dnYoazD7dM30C8103mhvA5JWQ4ETVyCXFNH33vEEIIiQUK+qLId9CnRHU307lTnx5w9IA3JVPeafNR3slxHHRmT0am0uyZ5ddmNuJnX6wRDXT/2ykrcEXZyT7fK4tpAhP5gHbP2IZv6o+I1tw19vYvL/Qm6twZoLQTEHfunDLS89jNPkY3WOx08OWPdwdPyvQR4puebeRitg3YrIo92UQVBoQQQmKBgr4o8hX0JYXZxMVNKWfX9Pk5sOjwZOh+6qwBALSYenDhujXCQHgOwN9nr8SlY6f7fS+pRjYAQAaT6WNLO4HgMn2iJi4BxjWwnTs5Drh83ljhvs1H+jdzEXfvpIMvVr9MH63pI8QnlUIuBG8OJw+TnxExbvS9QwghJNYo6Isif2v6qkVBX/BNXACvNX0+Mn0A0N2kAO90ZQ+relqxq6UOF65bgwMdTQBcAd9jc8/BRaUnBXyvLFEjl8gyfWnMmr5Ws3hWX2MQQd+uVs+6v2A7d47MSMZpEwuE+7ZXNYsOtoDh270zGLSmj5Dgsdm+rgEGtNOaPkIIIbFGQV8U6XzM6dOplZJl+myO/o1Jeq12mCxOoMsTsJ239kVhDZ2M4/DEvNU4f/TUAd8rI1kDd+Vpu9His1tosDI0Or/3DVTe2W0147Pj+4Xrs3NH+X0s28RlbK4BeQYdirNcGSqzzYGd1S2ixw/n7p0DydYmC51l85NSkBng35CQ4Y5d19dlDryuTxT00cgGQgghMUBBXxQp5LJ+6zWSVArRmr7Igr7+5Z2tfWWYPFPiaXG4So3kHIen5p2H1SWTg3ovhVyGNJ1r5APPA6094Zd4suWd3rptFvTYLH7v/+BYBUx215nz8sw8TAkwrIMMaQAAL1dJREFU3oFt4lKWZwAAzC7NFW7b7DW6gc64+8dxHJ499UL8YsIcPLfwZ5DL6OuCEH/YTF/PQJk+pvyTKgwIIYTEAh3FRZn3uj6dWuE1oy+SNX39M2/uwIzvEAdZCk6Gpxecj5XF5SG9n3hsQ/hBHzuywZdAJZ5vHNkpXL5q0syAjW/YoG+sEPTlCLf94LWuj7roBTYxPQ/3zjgdUzILBn4wIcNYSpCZPrvDCbvTdcKO48SzVwkhhJBoibu/NjabDQ8++CBmzZqFqVOn4qabbkJzc/9W+4lC7xX0qVQcmkw9AFzjF/J1oa2TGmhNnzvTB4sSyQ5XOZ6Ck+H/nXoBzi6aGNJ7AV4dPCNY15c+QGlgg9F30Heg/YQwx08lk+OS8f4bzwDAocYO4fJYH5m+rZVNsDIdO2lOHyFECnpmVl93gEyfxau6IJTuzYQQQki44q6e7dFHH8WaNWuQnZ2NrKwsfPnll2htbcXrr7+ekH8cdV5Bn1XhKWMckZwGhSy0QEM1QNDHztObzU3BlKlqnFZQiskBSiIDyUqRpoOnr0yfVqEUyjYbTb7X9bFZvtNHlCFDq0Nzj+/HWmwOHGM6d5bmpgIACtJ0GJmRjOOtPTDbHPjpeCtOLsl2PcdOQR8hJHLiRi7+M30mOtFECCFkEMRVps9iseCNN96AQqHAu+++iw8++ADFxcXYuXMnfvrpp8HevLB4d/A0yzyBU1GInTsBcabPV3lnS4/49X81+dSwAz4AyGQyfS0RzOpLVWmg4MQft9MKSoXLvjJ9Focd/zvq+Xe/aEzgbqOVTZ1wOD2dO5NUnnMac0Tr+jwlnlTeSQiRgmhAu9l/ps9MM/oIIYQMgrgK+g4cOIDe3l4UFxcjKysLcrkcM2fOBADs3LlzgGfHJ+81fT3wjCsItYkLIF7TZ7UHKO+EOGALF5vpa4og6OM4DulMM5d0dRJOzh4pXPe1pu+L2oNot7jeMz8pBfPzSgK+h3fnTha7ro9t5mKhkQ2EEAmkaJigL0B5p5kyfYQQQgZBXAV9DQ0NAACDwSDc5r7svi/RJHuNbehyeoK+UJu4AIBSEXymLyNZgqBPtKYvsgHt7Ky+qZkFyGPmvvka2/DGYU+gf+GYaQN2jzzcyAR9fev53LzX9blLY6l1OiFECuyavkCNXLzX9BFCCCGxEFd/ccxmV1ChUHg2y33ZfZ8vaWlJUAxCliarb/5bIJkG8Vq2bibTN6WwIKjXYGWkexqicApZv+d3WTxnmEsK00J+fW+jCz2BaafZFtHr5elTcLBvQPy8ohKMz/cEYs1Wo+i1a7ra8U19JQCAA4dfzpyHrFTX/f62odXkWS9ZXpwpelxWlh4jM/U43tKNXqsdNd0mzCrNhc3pCZzzc1Ij3l+JaDj+zPGA9nvsxGJf5zPvYef9v6em3ShcTk5SDdnPwVD9ueIR7evYo30+OGi/Ryaugj612jUTzsEMHbfbXesfNBr/Wav29l6/90VLVpYezc2Bh4oDgNxrlF6jyZONSndqg3oNVi+Tyes1Wfs9v761R7iscvIhv743FbP99a09Eb1eiS4DG3AEADAtpQAaqydQr+1qF732v3ZvBA/Xm8/LK4bOqkRzc3fA/V7FZPr0cnm/x80anY3jLa7bPttWhRKDDr3M2htjlwnNCdgsKBLBfo6JtGi/x06s9jXHlNs3dRj9vmdjs6eUXcFhSH4O6PMdO7SvY4/2+eCg/R6cQIFxXJV3Zme7Oip2dHQIt7kv5+XlDcIWRU40soFzotXqCso4AIXJhpBfb8A1fT2ebJf05Z3hr+kDgFsnzccvJszB305ZgZOzRyJLmwxZX5DVbDbC2jdE3sk78SbTtfOiMdOCev16JvjPT+s/ImL2GM+6vk2HXOv6xN074+ocCCEkgQQ7ssFspXXEhBBCYi+ujnLHjx8PlUqFqqoqNDU1ISMjAz/++CMAYPr0wPPZ4pVoZIPBBHfibJQ+HWp56LtfKfccJPha09du9AR96RIEfWwzmLYeCxxO54Br6/y+ljYZ9844XbiulMmRpdHhRN/cwiZTDwqTDdjUeAw1PR0AXF0/l40cN+Br8zyPeqZsKi+t/4gItpnL1qNNsDuc1L2TECIJtpFL0CMbaB0xIYSQGImrTF9SUhLOP/982Gw2nHfeeVi1ahUqKysxbdo0TJ48ebA3Lyxs905Zpqf08uxRoQ9KBwCl3FN+6D2nz+ZwwmR1Zcs4DtCpI4/pVQo50nSuslsnz6ONySRKIZdp5tLQ18Hz9cM7hNvOLZ4MjVzZ73neus029Pb97FqVAqlM+3S3okw98vvWWPaYbdhT0yrKlqoVcfXrQAhJIMlMpq8nwMgGtpGLlqoLCCGExEjcHeXedddduPLKK2G1WlFTU4PFixfjySefHOzNCpswp0/uAAye8sPVxeEFsYoAw9nZAw29RinZMPtMCUs8veWKOnh2ocNiwufH9wu3XVwabGmnJ8uXb0jy+bNzHIdTmC6eX++vFy5rlHLJ9hchZPgJNtNHc/oIIYQMhrg7zahSqXD33Xfj7rvvHuxNkYQ708elG+GeTT45Iw+lhqywXk8VIOjrZg409Jr+ma5wpTBZM6PFHuCRoctN8iw4beztxvtVe2Bxus6ET0rPw8T04NZysuv58gz9SzvdZpfm4N1tRwEAG/Z5gj5aW0MIiUQKu6Yv4HB2mtNHCCEk9uIu6Btq3CWWHFPaubpkStivx2b6vNf0sQcaKT7KG8PFHpi4y0elkudV3rmpsUq4HmwDFwBo6GDX8/Vv4uI2h8n07TjWLFym9XyEkEhoVQrIZRwcTh5mmwNWuwMqHyeTaB0xIYSQwRB35Z1DjV6jAlQ2cCmutXByjsOqUeVhv54yQKaPLSli1xJGSqvynBtgD1ikwJZ3flV3GBVtrq6aarkC55RMCvp1GjqCy/QVZ+mRk6oFADicnnkUdMadEBIJjuNE3Zr9ZfvMVra8k867EkIIiQ0K+qIsWaMAl+nJQi3IH40sbXLYrxfsmj621ChSbEDEthuXQp7OE/Qd6WwRLp81cjxSVdqgX4cN+vIDBH0cx4lGN7jRGXdCSKT0TIVFt591fWY7lXcSQgiJPQr6oqwwXQdVjicgOS+C0k4AUCkCZfrEjVykwmb6pC/v9D1E8qLSk0J6HfG4Bv/lnQAwmynxdKODL0JIpFKY790uP7P6zDSygRBCyCCgoC/KjnS1wK5ylXbqFCosG1EW0esFWtPXY2YauURpTR/beU4KudqUfrcVJadhdk5RSK8TbHknQEEfISQ62LJ6f2Mb2GoJDTWQIoQQEiMU9EXZ+rrDwuXTCkqhVUQWjCmZwejsjDkA6DJHJ9MnbuQibXlnklKFVJV4iPyFY6ZCxoX20RQ1cjEEzvSNyUlBll78ntS9kxASKbaBlr+xDeKRDbSmjxBCSGxQ0BdlX9UeEi6fVlga8espFQG6d7LlnRJm+kTlnRJn+gDx2AYZx+GC0VNDen6P2SaUUqkVMmQkqwM+nuM4nOK1rk+jooMvQkhk2O/dLrMNJzp7ceOL3+L+936Es69xlIXKOwkhhAwCCvqiqMNiwo/NNQAADsCi/DERvybbvdPu5MHzng6U3Wx5Z4Jk+gBxieep+aORr0sN6fn1Xlm+YIaszxkrLvGkTB8hJFJsA60ekxWPfbYb7/1YhWe+3IsN+11zQWlOHyGEkMFAQV8UfVtfCUdfUDYlswCZEXTtdOM4DnKZJ6ixM2MHYpHpk3pNHwBMyvAMYL9i7MkhP7+BHcyeFng9n5t3B0/q3kkIiRS7pq/LbMO2o03C9ZrWbgDeQR9VGBBCCIkN+osTRevrPKWdiwsiL+10U8plcDhdBw42u0PI/kUr06cVNXKRPtN3Y/k8qOQKFOhSsTSMRjehrOdzG5tnQHqyGm09riY7dMadEBIpdk1fS7cZhxo6hOs9FtcJM/bEGZ1sIoQQEisU9EWJw+nE13VHhOunSRz0uYMvm4Mt74zOnL5ojmwAgBSVBr+esjDs59cHOaOP5ZrXl4tPdlUDoKCPEBI5dmTDj0ebxJUYfSflTFTeSQghZBBQeWeU7GqtQ5vFFYxkaXSiEsZI+RvQzpZ3JmukHNnAlndKn+mLlKi8M8igDwBOm1ggXB6REXnpLSFkeGPL6vfUtInu6+n7fmYbuWgp6COEEBIjlOmLkq+8RjWEOoIgEKUo6PMcQLDlnSmSDmdnG7lIn+mLlKi8c4DB7KyfnTIatW096LXYcekc6TKxhJDhiS2rdzJNtgBPJYZ4ODv9CSaEEBIb9BcnSr6qZYK+wrGSvraogydT3tklauQiZffOOM/0hTCYnSWXyfDbs6dFY5MIIcNQoAZaQtBnZef0UaaPEEJIbFB5ZxSY7DbsaWsAACg4GebnlUj6+kof5Z08z6NHNJxdwvLOuM/0sWv6gs/0EUKIlAKtpe7xkemjRi6EEEJihYK+KNDIFSjWpwMAzh89BSkqjaSv72tNn9nmEC6rFDJJDya0cZzp67Xa0W50deBUyDhk6qXd14QQEqxAJ9t8BX00soEQQkis0F+cKOA4Dh+edR0OdzRjcma+5K+vUjBBn90V6EUrywfEd6avod2zni/XkASZbODB7IQQEg2Byuq7zTY4nE7h5BzHAWoFnXclhBASGxT0RUmaOgkzc4qi8tpsps/udB1AdJmiM6MP8B7OHl+ZPlFpZwhNXAghRGqBvnt7zFZR5061Qg6Oo5NUhBBCYoNOMyYgX2v62Bl9UjZxAcTNBuIt6AtnRh8hhESDXCaDTu37XGq32UYz+gghhAwaCvoSkIIpYXSXd7Iz+qQu74z2cPZIsOWdedTEhRAyyPxl+4wWO3ot1LmTEELI4KCgLwGpFJ6DBU+mjynvlDrTpxBn+pxOPsCjY+tEpyfTl2PQDuKWEEKIeGxDskaJJOakWWuPWbhMTVwIIYTEEgV9CUi0ps/RP9OXEmBWVDhkMk7UcMBsj58Sz9Yei3A5M5mCPkLI4GK/fycUpInGOLR2M0GfijJ9hBBCYoeCvgSklHvKO619QV+XOXqNXACvZi5xVOLJnjmncQ2EkMHGfv9OKkxHMlNu39xtEi5TeSchhJBYoqAvASnlnoMFewwauQDiAxRTHDVzaWHOnGckU9BHCBlc7PfQ5JEZoiCwmfm+Uiso6COEEBI7FPQlIDbTJ6zpE41skLa8E0iMTF+GXj2IW0IIIcBVC8qQk6rFySVZWHHSKNFJuOYuJtOnojV9hBBCYof+6iQgn2v6RMPZo5Hpi79ZfU4njzZmTR9l+gghg21GSTZ2/uUCYQZfMvN9zFYmUHknIYSQWKJMXwJiu3dafTRyiUZ5p5ZpOhAvYxvaey1w8q5OoilapWi/EELIYGGHriermUYuTGWCloI+QgghMURBXwJi5/T5yvSlRKG8Mx4zfaLSTsryEULikGhNXxeNbCCEEDI4KOhLQEqmvNPXmr7kqHTvjL9MH9v+nDp3EkLiUTK7po/p3qmmTB8hhJAYoqAvAbFr+mx2H5k+ief0AXGa6WOCvnTK9BFC4hDbWItdg0xr+gghhMQSBX0JSKmIfaZPNLIhXjJ9NKOPEBLn2O9j9xpkgIazE0IIiS0K+hKQcoDundHI9LEjG+JlTl8rde4khMQ5f92UaU0fIYSQWKKgLwGJyjudTjidPHosnqAvWSP9wQR7Vtpsi49MXwuzPoaCPkJIPPIb9FG3YUIIITFEQV8CUnmt6TNabHBXDenUCshl0v+zapmz0iZr/GX6qLyTEBKPdP6CPirvJIQQEkMU9CUghVf3zq4oD2YH4jPTRyMbCCHxzn95JwV9hBBCYoeCvgTkvaavh2nioo/Cej4ASIrDTF9LNwV9hJD4Rmv6CCGExAMK+hIQm+mzDkamj7p3EkJIUJI1vk/EUaaPEEJILFHQl4BUXpm+bhMT9EUp0yda0xcH3TudTl408yo9WT2IW0MIIb75OxFHw9kJIYTEEgV9CUi8po9Ht5kp7xwmmb72Xosw8ypVq4KKOuERQuKQWimHStH/Ty1l+gghhMQSBX0JyHtNX7Rn9AFew9njINMnauJCpZ2EkDiW7ONkHDv7lBBCCIk2CvoSkFLBrulzoJtp5OLr4EIK7AFKPGT6xE1cqLSTEBK/fFVgUKaPEEJILFHQl4DEmT5enOmLVnkns6bPHAeZvrZuyvQRQhJDsrr/97KaStIJIYTEEAV9CUgh85rTF4tGLsyaPlMcZPpoRh8hJFH4qsCg4eyEEEJiiYK+BMQ2BbDZneiJRSOXOMv0seWdNK6BEBLPfJ2Mozl9hBBCYomCvgQk7t5JmT7K9BFC4hmt6SOEEDLYKOhLQP26d5pim+mLRvdOu8MZ0uNbmRl9FPQRQuKZz/JOCvoIIYTEEAV9Ccg70yce2RCdoC8pipm+rZVNmHL3W1jy4IfoYX6WQKi8kxCSKLxPxqkVMnAcN0hbQwghZDiioC8BqQIEfcmaaM3pE6/p4/sGo0vhlY2H0NZjwd66dry/vSqo51B5JyEkUXhn+mg9HyGEkFijoC8BKQKUd0Yr0yeTcaIGMhZ7aOWYgbQyWbuKmrbgnkNBHyEkQfQL+qhzJyGEkBijoC8BKeWesqCmLhNa+gIgjgNSotTIBQC07Lo+CUs8u5nuo3trBw76nE4ebcyavnQazk4IiWPe5Z20no8QQkisUdCXgJTMUN9usw3uSst5Y/OgVUWvbIg9O222SRn0ecpT99a1w+EMnEVs77XA2fdDp2pVUNGQY0JIHPMuu6fyTkIIIbFGQV8CUsp8/7NdPGdMVN9XnOmTroMnO3LCZLWjqrk74OPZ0k5q4kIIiXf9GrlQpo8QQkiMUdCXgBTy/l3fDEkqnDmlKKrvG7VMH7MmERi4xJPt3JlO6/kIIXGOyjsJIYQMNgr6EhA7p8/tvJNLon4gEY1Mn9PJo8ciHtMwUDOXNiboy9DTej5CSHxL1lLQRwghZHBR0JeAlD7WsF0ytzTq7xtOpo/neeyqbkFzl8nn/UaLZ02iW8UAmT5ReWeyNqjtIISQweKd6dPSmj5CCCExRkFfAlJ6lXdOGZmBCQXpUX9f0ay+IDN9z2/YjzMf/gRz7nvPZ+DX5WMYeyjlnZTpI4TEu2Q1rekjhBAyuCjoS0BymQwcE/ddPCf6WT4A0DKZvmBHNrz/o2vYeo/Zhq/31/e7v8drPR8ANHebcaKz1+9r0ow+Qkgi0ampvJMQQsjgoqAvQY3MSAbgGvp77ozimLwnm+kz2QbO9DmdPPbXdwjXjzR29nuMr0wfELjEs93omdFHQR8hJN7JZJxoQDsFfYQQQmKNgr4E9fRVC3Dp3FK8dMNpUR3Izgo101fd0i163JETPoI+H5k+ANhb2+73dduYoC9NR+WdhJD4x67r00RxniohhBDiC/3lSVDTi7MwvTgrpu8pWtMXRKZvX704cPMV9PUwmT6Og9DUpaKm1e/rtvV4gj4a2UAISQSU6SOEEDKYKNNHghZqpm9/nTjoq2rqgs3hFN3GDmafyDSj2VsXINPHrOlLp0wfISQBsJk+auRCCCEk1uIq6HvrrbdQVlbW77/q6urB3jQCcZvxoDJ9XoGb3cmjuqVbdBs7mH1GSRbkMleHmqrmLlEW0I3neVF5Z0YyBX2EkPjHZvq0FPQRQgiJsbgq79y/fz8AYPr06TAYDMLtSUlJg7RFhKUNcU6fd6YPcDVzGZOTKlzvZgK7LL0WY3JScbChAzzvChpnjs4WPb/XYhcCTo1SDi2tjSGEJAC9xrP2WkNz+gghhMRYXP3lcQd9f/vb3zBixIhB3hriTdS9c4A5fUazDce8snpA/3V9bKZPr1WivDAdBxs6ALjm9XkHfS3dnll/6To1OE48s5AQQuJRVopn/TE1oCKEEBJrcVPe6XQ6cfDgQchkMrz55pu47bbbsGbNGlitvrs7kthjmw8MlOk70Be4efMO+tiRDXqNK+hz8zW2oZUZzE4HToSQRHHl/DKU5qZi7thcnD6ZTmoSQgiJrbjJ9FVVVaG31zWQ+7nnngMAfPrpp9i0aRP+/e9/D+amkT5sKeVAmT52PV9OqhYnOl0ZuiMnukSP6zazmT4VCtKSheu+gr4WJuijzp2EkEQxLj8N3957zmBvBiGEkGEqZkHfu+++i7vuusvv/R988AFOPfVUpKen47bbbkN7ezuuuuoqbNiwARs2bMDChQv9PjctLQkKRewXxmdl6WP+noMpJ9MTkDm5wD//sbYe4fIFs0vx1Oe7AbgyfZmZyUJZptnu6eY5IjcVU0dlCtcPNnTAkJYEJfNv23qwXricl5E87P4NooH24eCg/R47tK9jj/Z57NC+jj3a54OD9ntkYhb0qdVqUXMWb6mpqXj22WeF6zk5OTjrrLPw6quvYufOnQGDvvb2Xgm3NDhZWXo0N/dfszaUWZnxCp09loA///YjJ4TLs4qz8F+NEj1mGzp7rdhX2YzsVC0AoLXLs0bPabHDabYjP02H+nYjLDYHfthbh3H5acJjWro8mT6dQjbs/g2kNhw/x/GA9nvs0L6OPdrnsUP7OvZonw8O2u/BCRQYxyzoW758OZYvX+73/q6uLhw4cADJyckoLCwEAKhUrm5nNlv/1v0k9oJd08fzPPYzg9knFKRhTE4KdlW7Bq4fOdEpBH3dJvGaPgCYVJiO+nYjAGBPTZs46KPyTkIIIYQQQkISN41c3n33XaxatQr33HMPeJ6HzWbDxo0bAQBTp04d3I0jAIJf01fXbhSGrqdqVcgzJInGNBxmmrmwIxtStK4gfyLTzGWv17q+Vq/unYQQQgghhJDA4iboW7lyJbKysvDDDz9g5cqVWLFiBQ4dOoTy8nIsWbJksDePANAwc/pMATJ97Hy+8QVp4DhOFPQdEQV9nkYu7uHFEws9mT3vZi6i7p00mJ0QQgghhJABxU3Ql56ejjVr1mDhwoVobGxES0sLVq5cieeeew4yWdxs5rCmZeb0mQNk+tjOnRMKXAFcaS4T9DW6gj6zzQFrXyMXpVwmlI9OGpEhPHZvbRt4nheui8o7dVTeSQghhBBCyEDiZmQDAIwePZrGM8QxbRCZvprWHry9tVK4Pr4v6BvDBH2H+4K+HrN4MLu7o2dhug4pWiW6TDZ09FpR125EYbqrc6iovJMyfYQQQgghhAyIUmgkaJoBMn27qluw/JFPUNk3i08h4zBvbC4AYFSmHnKZK6irazei12IT1v0BniYuAMBxnGhdX0WNp8ST7d5JjVwIIYQQQggZGAV9JGhs906TzS4qu/x4ZzXOfexzNPeVXyrlMjx62VyMykoBAKgUcozK9LSRrWzqQpdJPJidVe6jmQvP82hhMn1p1MiFEEIIIYSQAVHQR4KmkMuglLs+MjwPWO1O8DyPp9btwfXPb4DZ5sr+penUePOWpbhg1mjR80fnpAiXjzZ1oYft3KnxH/RV1LmCPqPFLqwB1KoUSFLFVXUyIYQQQgghcYmOmklItCo5bCZX4NVttuKhD3fitU2HhftLslPw8i8XoyQ7pd9zRzKZvto2oxBAAuLyTgA+yzvbepjOnZTlI4QQQgghJCgU9JGQaJQKYS3epc+sx+7jrcJ9p4zJwQvXL/S71q4wXSdcrmntQSbzOL1WHPSV5qZCpZDBaneits2Ijl4L2owW4X5q4kIIIYQQQkhwqLyThITt4MkGfBfOGo03bl4asLmKuwMnANS29fgczO6mUsgxNs8gXN9X2462Hiboo0wfIYQQQgghQaGgj4SE7eDpdueKaXj88rlQM41efBkhCvqM6PIxmJ1VXuAp8dxT24o2o6e8M4M6dxJCCCGEEBIUCvpISHRqT9CnVsjwr2sW4FdnTBZm7AXiXd7ZzXTv9M70AUD5CLaDJ2X6CCGEEEIICQcFfSQk58woBgBkp2jxzv8tw6rpxUE/N02nFoLGXqsdx1t7hPu8G7kA4mYue2vbRJk+mtFHCCGEEEJIcKiRCwnJ9Ysm4IzJI5FrSBJ13wwGx3EoTE/GwYYOAMD+unbhPl+ZvokFacLlQw0dmMRk/qh7JyGEEEIIIcGhTB8J2YiM5JADPje2xPNYS7dw2VemT69VCQPd7U4ePxw5IdxH3TsJIYQQQggJDgV9JKZGZHiaufC853a9j0wfIC7xrG7xlIOm66i8kxBCCCGEkGBQ0Ediih3bwErR9s/0AeJmLizK9BFCCCGEEBIcCvpITI3wE/T5GtkAAOWFFPQRQgghhBASCQr6SEyxa/pYvhq5AMDEwjSft6dReSchhBBCCCFBoaCPxJS/8s5kte9MX25qUr9B7EkqBTQDDIInhBBCCCGEuFDQR2IqK0XTL2BL1ighk/ke7s5xXL9sH5V2EkIIIYQQEjwK+khMcRyHgjRxiWeKn/V8bt7r+mgwOyGEEEIIIcGjoI/EXGGGuMTT37gGN+8Onuk0mJ0QQgghhJCgUdBHYs67mYuvweysiZTpI4QQQgghJGwU9JGY827mMlCmb3R2imgdIK3pI4QQQgghJHgU9JGY857V528wu5tcJsOEAk8zlzQq7ySEEEIIISRoFPSRmPMu7/Q3mJ01rSiTeb7vsQ+EEEIIIYSQ/hSDvQFk+Bnh1cglRRO4vBMAbjq9HIcaO5FlSMKKaUXR2jRCCCGEEEKGHAr6SMzlpGqhkHGwO3kAgH6A8k4AyDPo8NatpyMrS4/m5u5obyIhhBBCCCFDBpV3kpiTy2TIZ2b16YPI9BFCCCGEEELCQ0EfGRRsiedAjVwIIYQQQggh4aOgjwyKOaW5wuUpTJMWQgghhBBCiLRoTR8ZFL9cMhE5qVqMyEhGWZ5hsDeHEEIIIYSQIYuCPjIotCoFLp07drA3gxBCCCGEkCGPyjsJIYQQQgghZAijoI8QQgghhBBChjAK+gghhBBCCCFkCKOgjxBCCCGEEEKGMAr6CCGEEEIIIWQIo6CPEEIIIYQQQoYwCvoIIYQQQgghZAijoI8QQgghhBBChjAK+gghhBBCCCFkCKOgjxBCCCGEEEKGMAr6CCGEEEIIIWQIo6CPEEIIIYQQQoYwCvoIIYQQQgghZAijoI8QQgghhBBChjAK+gghhBBCCCFkCKOgjxBCCCGEEEKGMAr6CCGEEEIIIWQI43ie5wd7IwghhBBCCCGERAdl+gghhBBCCCFkCKOgjxBCCCGEEEKGMAr6CCGEEEIIIWQIo6CPEEIIIYQQQoYwCvoIIYQQQgghZAijoI8QQgghhBBChrAhF/Q1Nzfjrrvuwrx58zB9+nRcfvnl+Omnn4T7169fj7POOgvl5eVYvnw5NmzYIHr+nj17cM0112DGjBmYO3cufv3rX+PEiRP93sdut2PZsmUoKytDY2PjgNu1Y8cOrF69GuXl5Vi8eDH+97//+Xzc8ePHUV5ejqVLl4b2gw+yRN3vx44dwy233IJTTjkFs2bNwi9+8QscPXo0vJ0goUTdn5WVlbj++usxdepULFiwAPfffz96e3vD2wmDIFH3O+uBBx5AWVkZnnzyyeB/8BhL1P28ceNGlJWV9ftv06ZN4e2IGEvU/c7zPJ5//nksXrwYU6ZMwUUXXYSKiorwdkKMJOK+fvLJJ31+vuP9+8QtEfc54DoOueGGGzBr1izMmjULN954I2pqasLbCYMg0ff7zJkzccopp+CBBx6A2WwObyckiCE1p8/pdOJnP/sZdu/ejVGjRsFgMGDXrl1ISkrCBx98gN7eXpx33nngOA7l5eWoqKgAz/N47733MHbsWDQ0NGDVqlXo7OzEtGnT0N7ejmPHjqGsrAzvvPMOVCoVAMBqteLOO+/Ep59+CgD45ptvkJub63e7mpqacOaZZ6K3txeTJ0/GwYMHYTKZ8Nxzz2HBggXC406cOIFrr70Whw8fxsiRI/HFF19Ed4dJJFH3e09PD1atWoXa2lqMHz8ePM/jwIEDyMrKwscffwyDwRCL3ddPou7P3t5enH766WhubsaUKVPQ3NyM+vp6LF26FE899VRM9l0kEnW/s3788UdcfvnlcDqduPnmm3HLLbdEb4eFKZH38/PPP49HHnkEEydOFL3WrbfeinHjxkVxr0Uukff7Y489hn/9618wGAwYPXo0tm/fjoyMDHz++edISUmJ/s4LUaLu608++QSffPKJ6DkbN26E2WzGk08+idNPPz16Oy1CibrPrVYrli9fjuPHj2P06NHQaDTYu3cvSkpK8NFHH0GhUMRk/4UrUfd7R0cHli9fjpaWFpx88smorKxEW1sblixZgqeffjom+24wDKlM3759+7B7924UFhbik08+wZtvvin8o3/00Ud4+eWXYbfbcdttt+GNN97ATTfdBLvdjldeeQUA8Nlnn6GzsxMrV67EG2+8gY8++gi5ubk4ePAgdu/eDQDYtGkTVq9eLXzwgvHOO++gp6cHF198Md588038+c9/BgCsWbNGeMyrr76KlStX4vDhwxLukdhI1P2+ceNG1NbWYsaMGXj//ffxwQcfCMGK95moWErU/blr1y50d3dj6dKleOutt/DGG28AAL788ksYjUYpd1FUJOp+dzObzbjnnnvgdDol2iPRkcj7ef/+/QCA3/72t3jmmWeE/+I94AMSd793dnbihRdegEwmw+uvv47XXnsNy5Ytg1KpxJ49eyTeS9JI1H29fPly0ef6wgsvhNlsxurVq+M64AMSd59XVlbi+PHjKCwsxIcffoh3330XJ598Mo4ePYojR45IvJekl6j7/f3330dLSwsuu+wyvPLKK3j//feRlJSEL7/8Env37pV4L8WP+D6FEKLs7Gw8+uijUKvVwtmRzMxMAEB7ezt27NgBAJg5cyYA4JRTTgEA7Ny5EwAwb948pKWlYfTo0QAAlUqF1NRUNDY2oq2tDQDwyiuvoKqqCr/+9a/x6KOPBrVdA70v4DqTKZfLcf311+O5554Lcw8MjkTd7xMmTMAjjzyCrKws4TkZGRnCdg+WRN2fc+bMwc6dO2EymQAALS0tAACdTiecrYtnibrf3R577DEcO3YM48ePF4KTeJTI+3nfvn0AXCcy3nzzTZSWluKKK65AcnJyOLsiphJ1v2/btg02mw3FxcUoKSkBAPzzn/8MdzfERKLua5bJZMKf//xnJCcn4/bbbw9xD8Reou5zg8EAjuMAQPg/z/PgOI6+V6K436urqwEApaWlAICcnByUlZVh586d+OGHHzBx4sSw9ke8G3JB3/Lly4XrbW1twpmBqVOnCvW87rI99//dtcFjx47F2LFjhedv27YNBw8ehEwmw+TJkwEAZ5xxBu644w4UFxcH/eFzv773+xqNRnR3d0Ov1+OWW27BqlWrcPDgwYQM+hJxv48YMQIjRowQHl9VVYXvv/9e2O7Bkqj7U6/XQyaTQafT4aGHHsJbb70FtVqN+++/H0qlMvQdEWOJvN937NiBl156CcuWLUNpaWncB32JuJ8VCgWOHTsGAHj55ZeF561btw5vv/123H/GE3W/u9c26XQ6/OY3v8H69etRUlKCe+65B9OnTw9xL8RGou5rvV4vPPbdd99FXV0drrvuOuFkaDxL1H2el5eHO+64A4899hhWrlwplHf+4he/QGFhYeg7IsYSeb8DENYG9/b24vjx4wCA+vr6oH/+RDOkyjtZXV1duO6669Da2orRo0dj2bJlwgJN9x9n91kJd2aCtX//ftx8880AgNWrVwu1wytXrkRxcXFI2+J+X/f7sQcH7ve+8sorB20NmZQSbb+71dfX47rrroPVasXs2bMxbdq0kN4rWhJ1f65fvx69vb0wGAxwOBwhvU88SKT9brFYcPfdd0Ov1+MPf/hDSK892BJpP3d1dWHRokVYsmQJ1q1bhy+//BKjRo3C/v378dZbb4X0XoMtkfa7+/0rKiqwZcsWjB8/Hnv37sV1110XVDOHwZZI+9qN53m88sorkMlkuOyyy0J6j3iQaPvcbrcDAI4cOYKKigpoNBohW5ZIEmm/r1q1CklJSXj77bdx0UUX4eyzz0Zra6vouUPRkMr0uXV0dOCaa67B3r17kZqaiieeeAJKpRJqtRomk0n4BXP/X6vVip6/d+9eXHPNNejo6MDEiRNx9913B/3eL730En744Qfh+uWXXw61Wg0AwsGvzWYT7vd+70SWqPu9trYWV1xxBerq6lBQUICHH344xJ88OhJ1fwKus8TNzc247LLLcMcdd2DUqFGYNGlSCD/94Em0/f7444+jqqoKf/3rXxPqQCHR9rNer8czzzwjep0LL7wQDz/8MHbs2IFLL700hJ9+8CTafnffr1Ao8L///Q85OTm4++678b///Q8ffPABfvGLX4SxF2Ij0fa1208//YSjR49i2rRpQkYkUSTaPt+xYwceffRRFBUV4T//+Q94nse1116LBx54ACNGjMDChQvD2g+xlmj7Xa/X48UXX8Rf/vIXHD58GHPmzEFpaSk2bNgwpI7LvQ25TJ/RaMS1116LvXv3wmAw4L///a9Qs5udnQ3AtTAccH1IAYg6AB05ckT0wfvPf/4DnU4X9Pvv27cP69evF/5raGjw+77JycmicopElqj7vampCVdeeSXq6upQWFiIl156SXjeYErU/dnW1obOzk6kpKRg9OjRmDNnDniex5YtW8LfGTGUiPt97dq1AIDf/e53KCsrEzqlPvXUUzjttNPC3BPRlYj72Wg04tChQ6KRLu61qu4DmXiXiPvdHXQYDAbk5OQAgHACKZ4zfYm4r902btwIAP26A8e7RNzn27dvBwAsWbIEhYWFGDFiBJYsWQLA8+8Q7xJxvwOu8tO3334b27dvx5NPPgmr1QoAGDlyZJh7Iv4NuaDvnnvuQUVFBfR6PdasWYMJEyYI97nrg90HoFu3bgUAYV2A0WjEL3/5S3R0dGDcuHH473//G3LJ5V//+lccPHhQ+G/16tV+3/ekk04K/weNM4m43x0OB2699VbU1tYiLy8Pr7zyStzU0Cfi/lyzZg1mz54tdMmy2WzC2rJEyUAl4n6fO3cuFi9eLPznLoMpLi7G3Llzw9kNUZeI+3nTpk1YsWIFbrrpJlitVvA8j2+++QbA4K4BDkUi7vcZM2ZAJpOhtbVV6G5dWVkJIL4PzhJxX7u570+U6gy3RNznqampAFyz6twT1A4cOAAAoiZz8SwR9/vmzZuxePFi3HrrrQBcswZ37doFwNVcZqgaUnP6du/ejQsuuAAAUFBQIGqjPXfuXEycOBEXX3wx5HK5MC8EAN577z2Ulpbiueeew9///ncAQHl5uXBWEQCuuuoqoQuQW1lZGYCB54XU1tbi7LPPhsViwZQpU3DgwAGYTCY8//zzmD9/vuixW7ZswRVXXJFQc/oSdb9/+umnuO222wAAY8aMQVFRkfDcFStW4Mwzz4xkt4QtUfdnc3MzVq1ahdbWVkyePBldXV04duwYRo0ahffffz/uSyYSdb97e/LJJ/HUU0/F7Zy+RN3PFosF5513njBHVafTYf/+/cjPz8fHH38c0pnpwZCo+x0A/vCHP+DNN99ESkoKxo0bh23btsFgMODTTz9Fenq6BHtHWom8rwFX1qmmpgYbNmxImPLORN3n7Ly4sWPHQiaT4cCBA9Dr9fj4448DvnY8SOT9fvrpp6OzsxMnnXQSampq0NzcjPPOOw8PPvigNDsnDg2pNX3r1q0TLtfV1aGurk64npaWhksvvRRPPvkkHnvsMVRUVGDkyJG44447hDQ0G2RVVFQIH04AWLZsWdjbVVhYiBdeeAEPPvggKioqkJ2djRtvvNHnAVsiStT9zr7vkSNHRDNxysvLw37fSCXq/szKysJLL72ERx55BDt27IBarcbq1atxxx13xH3AByTufk80ibqf1Wo1nn/+eTz88MPYvHkzWlpasGjRItxzzz1xH/ABibvfAeDee+9FSkoK3nvvPezbtw9z587FXXfdFZcBH5DY+xqA0NAiLS0t7PeKtUTd5waDAa+//joeffRRbNmyBXa7HXPnzsUdd9wR9wEfkNj7/ZlnnsFDDz2EvXv3Ij09HTfddBNuvPHGsN8zEQypTB8hhBBCCCGEELEht6aPEEIIIYQQQogHBX2EEEIIIYQQMoRR0EcIIYQQQgghQxgFfYQQQgghhBAyhFHQRwghhBBCCCFDGAV9hBBCCCGEEDKEUdBHCCGEEEIIIUMYBX2EEEIIIYQQMoRR0EcIIYQQQgghQ9j/B8xrCGx0k6LBAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4UAAAHnCAYAAAAPc/jYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADIEUlEQVR4nOydd5wkZbn9T3Wenp6cdmdmcw5sZNkEEiUsQSWJioqA16wEAyhG8Hr151WvAa+iXsMVr3gFuWYRBd2FBZZdYIFddlk2x5ndyTOd6/dHT9e8b3V1ru6u7j7fz4cP1T3dPbU93VV13vM851FUVVVBCCGEEEIIIaQqsZV6BwghhBBCCCGElA6KQkIIIYQQQgipYigKCSGEEEIIIaSKoSgkhBBCCCGEkCqGopAQQgghhBBCqhiKQkIIIYQQQgipYigKCSGElB3nnXce5s2bp/23ePFinH/++fjyl7+M4eFhAMChQ4ekx8ybNw/z58/HihUr8OY3vxmbNm0yfO0f/OAHmDdvHu677z7p/n/913/Feeedl/D4t771rZg3bx62bt0q3f+Tn/wEy5cvRygUwh133CHtx6JFi7Bu3Trceuut2L9/f8JrBoNB/Nd//Rfe8IY3YOnSpVi9ejVuvPFGPP7449pjBgYGsGDBAjz44IPSc5988knMmzcPN954o3S/qqpYvXo1vve972nvzW233Wb4HsybNw8PP/yw4c8IIYRUHhSFhBBCypJ3v/vd2LhxIzZu3Ig//OEPuP322/H73/8eN998M4LBoPa4e++9V3vcP/7xD/zoRz+C2+3G+973Phw+fDjhdX/zm99g+vTp+NWvfgVxlO+aNWtw+PBhHD9+XLtveHgYzz//PCZNmoSNGzdKr/Pss89i1apVcDqdAIDTTz9d24+//OUv+PrXv46jR4/iuuuuw8GDB7XnBYNB3HTTTfjhD3+I66+/Hr/73e/wk5/8BAsXLsT73vc+fPvb3wYANDQ0YMGCBQlidOPGjZg0aRKeeeYZ+P1+7f7du3ejv78fa9eu1e77/e9/j7/+9a9Zve+EEEIqD4pCQgghZYnX60VbWxva2towdepUbNiwAd/97nfx3HPP4de//rX2uIaGBu1x7e3tWLZsGb785S8jEAjg0UcflV7zhRdewO7du/Gxj30M+/fvx+bNm7WfnXHGGbDb7ZII27x5MxoaGnD11VcbisJ169Zpt51Op7YfXV1dWL16NX7wgx/A5XLha1/7mva473znO3j55Zfxi1/8Atdccw2mTJmC+fPn46Mf/Sg+//nP49vf/jaeeeYZAMDq1auxbds26fdu2rQJN9xwAxRFwdNPP63dv2XLFjQ0NGDx4sXafVOmTMHnPvc5DAwMZPXeE0IIqSwoCgkhhFQMixYtwsqVK/GHP/wh5eNcLhcAwOFwSPc/9NBD6O7uxgUXXIBp06bhl7/8pfYzn8+HRYsWSSJs06ZNWLt2LdatW4ft27ejv78fALB371709vZKotAIn8+HK6+8Eo8++igCgQCi0Sh+8Ytf4Morr8SUKVMSHn/NNddg+vTp+O///m8AMfdyz549GBwcBACcPHkSO3fuxLnnnouVK1dKQvXZZ5/FmjVrYLNNnPo/9rGPIRQK4Utf+lLK/SSEEFLZUBQSQgipKObOnYtdu3Yl/fnJkydx9913w+v14vzzz9fuDwaD+MMf/oALL7wQAHDJJZfgr3/9K06dOqU9Zs2aNQmicP369Vi6dCm8Xi+eeOIJADFXrq2tDXPnzs1ofwOBAPbt24e9e/diYGAAy5cvT/r4M844Q9uHVatWweFwaLc3bdqEzs5OTJ8+HevXr08QhWLpKAC0tLTgzjvvxEMPPYR//OMfafeVEEJIZUJRSAghpKKor6/XwmYA4KabbsLy5cuxfPlyLFmyBOeccw76+/vx85//HB0dHdrjHn30UfT39+OSSy4BAGzYsAGhUEgKclm7di127NgBv9+PQ4cOYf/+/Vi/fj0cDgdWr16tiTAjAZaMhoYGALH+xHgZZ1NTU9LHNzU1aULV6/XitNNOk0Th+vXrAQDr16/Hnj17cPToURw6dAhHjx7Vfibyxje+Eeeccw4+85nPSO8bIYSQ6oGikBBCSEUxMjKCuro67faXvvQl/OY3v8EvfvELXHzxxWhsbMT73/9+LFy4UHreQw89hK6uLixZsgRALIFz9uzZUuDMihUroCgKtm/fjo0bN2LOnDmasFy/fr3Ww7dly5a0paNx4kKsvr4ejY2N0n1GDA4Oorm5Wbu9Zs0arc/xiSee0ITf/Pnz0dLSgqeeegpbtmxBV1cXpk6daviaX/jCFzA8PIyvfOUrGe0zIYSQyoKikBBCSEXx0ksvYdGiRdrt9vZ2TJs2DfPnz8eXv/xlLFq0CO9973uxb98+7TE9PT3YuHEjjhw5goULF2r/7dmzB/v27dMCZzweD5YtW4bnnnsOTzzxhCT81q1bh4MHD2L79u04ePBgxqLwpZdegtfrxfTp0zFt2jS0tbXh2WefTfr4LVu2YNmyZdrtNWvWYPv27di5cyd6e3uxZs0aAICiKFi7di22bNmCrVu3ptyfjo4OfPzjH8cDDzwghesQQgipDigKCSGEVAw7d+7Etm3bcNlllxn+XFEU3HPPPXA6nbjjjjs0B/Dhhx9GJBLBfffdh9/85jfaf7/4xS/gdDrxwAMPaK+xevVqvPjii9iyZYtUjjljxgx0dnbi/vvvx6xZs6TS1GSMjo7i4YcfxsUXXwyn0wm73Y7rr78eDzzwgOH8wv/7v//D7t278ba3vU27b/ny5YhGo/jVr36FxYsXa24jEBOqO3bswLZt29KK1GuvvRZr167FXXfdlXa/CSGEVBYUhYQQQsqS0dFR9PT0oKenBwcPHsRvfvMbvPvd78aqVatwxRVXJH1ea2srPv7xj2Pbtm24//77AcRmE65duxZnnXUW5s6dq/23fPlybNiwAY888ojWx7dmzRr84x//wODgIFatWiW99rp16/CnP/3JUICFQiFtf48cOaKNjgiFQrjlllu0x918880444wz8La3vQ2//vWvcfDgQbz66qv41re+hU9+8pP44Ac/iNWrV2uPd7lcWL58OR588MGE37t+/Xrs3r0br732muYgpuLuu+/GyZMn0z6OEEJIZeFI/xBCCCHEetx333247777AAC1tbXo6urCW9/6Vtxwww2w2+0pn3vVVVfht7/9Lb72ta9h3rx52L17Nz7ykY8YPvaGG27Aww8/jIceegg33XQTli5dCiDWX+j1eqXHrl+/Hv/7v/9rGDKzZcsWnHnmmQBiQq6jowNnnnkmvv71r0uuosPhwL333osHHngA999/P+655x64XC4sXrwY9957L173utclvPbatWvx5JNPaq8fZ9KkSejq6oLH45H6EJPR3d2N22+/HXfffXfaxxJCCKkcFDVeO0MIIYQQQgghpOpg+SghhBBCCCGEVDEUhYQQQgghhBBSxVAUEkIIIYQQQkgVQ1FICCGEEEIIIVUMRSEhhBBCCCGEVDFVM5Kip2eo6L+zqcmLvr7Rov/eaobvubnw/Sw+fM+LB9/r4sP3vDjwfS4+fM9LA9/37GlrqzO8n05hAXE4Us/JIubD99xc+H4WH77nxYPvdfHhe14c+D4XH77npYHvu3lQFBJCCCGEEEJIFUNRSAghhBBCCCFVDEUhIYQQQgghhFQxFIWEEEIIIYQQUsVQFBJCCCGEEEJIFUNRSAghhBBCCCFVDEUhIYQQQgghhFQxFIWEEEIIIYQQUsVQFBJCCCGEEEJIFUNRSAghhBBCCCFVDEUhIYQQQgghhFQxFIWEEEIIIYQQUsWUnSgMhUL413/9V6xevRrLli3DBz7wAfT09JR6twghhBBCCCGkLCk7Ufi1r30NP/nJT+ByudDd3Y2//vWv+NCHPgRVVUu9a4QQQgghhBBSdpSVKAwEAvif//kfOBwOPPjgg3j44YcxY8YMbNu2Dc8//3ypd48QQgghhBBCyo6yEoU7d+7E6OgoZsyYgba2NtjtdpxxxhkAgG3btpV47wghhBBCCCGk/HCUegey4ejRowCAxsZG7b74dvxn5cLAKzuw/Uv3oGXl6VjwoVuF+3fihS9+DqNHDic+SbGh66JLsPijdxRxT0mxiQSD2PbpOxAc6MeKe74CT2trqXcpLaqqYvu/3YOjf3sEyLGU29vZhaV3fR71c+eZvHeEEEIIISQVZSUK/X4/AMDhmNjt+Hb8Z+XCy9/4Kg7/+Q84/Oc/oOuiDdqF8Etf/wqOPPLnpM/rf/EFTD7vArSsOL1Yu0qKzOE//BZ7fvpfAADv5C4s++zdJd6j9PRsfgI7vvm1vF6j/6UX4aitxdrv/tCkvSKEEEIIIZlQVqLQ7XYDACKRiHZfOBwGAHg8npTPbWrywuGwF27nktDWVmd4vzo8qG0f/tLn4O/uBgAMPLkp7Wse+rcvIDKPbooRJ0q9AyZwTCiFPvrgA+gMl27BI9P38/DLL5vy+/o3/RMnPv0xU16rXKmEz3C5wPe6+PA9Lw58n4sP3/PSYOX3fdKb34yWc88t9W5kTFmJwvb2dgBAf3+/dl98e/LkySmf29c3WqjdSkpbWx16eoYMfxZ1uLXtYG8vgi4XACA8Nqbdv/Z7P0LdzNkAgFd//EO89vOfAABGjh9HsKmpULtNSkygr0/bHj55EoHjx6EoSgn3KD2jwliYWe+8EbOuvyHj547s34dNN78DABAaG0PwhJUP8YQQQggh6Rk8OYBoEh1QSpIZVmUlChcsWACXy4W9e/fixIkTaGlpwZYtWwAAK1euLPHeZYfD69W2ReczKmw3LV6CupmzYttLlgI/j90fEIQjqTzCoZC2HY1EMDY0BG99fQn3KD2B0YlFl+aly9G0+LSMn+sWFjgi484/IYQQQggpHmWVPur1enH11VcjFArhqquuwhve8Abs2bMHy5cvx5IlS0q9e1lhrzEWheK2KBxru6do2xSFlU0oGJRuDw8MlGhPMicg9PR6O7uyeq6jbmLFShTEhBBCCCGkOJSVKASAO++8E+985zsRDAZx8OBBnH/++fjWt75V6t3KGlHwRZM4hfZkonC0+KWwpHiEy1EUCgsV3q7urJ7r9E2IwmgkAjXH9FJCCCGEEJIbZVU+CgAulwuf/OQn8clPfrLUu5IXkigcL5lTVVUqn3MIbqK3e+JCOzA2BlVVLd9nRnJD75aNCD20VkRVVQRFUZilU6jYbHD46hAejtXdR8JhOJxOU/eREEIIIYQkp+ycwkrBbtBTqEaj2n2KwwmbcGHs8NbC1dQce5yqIhgIFGlPSbExKh+1snsWDAS0/XM1NkkLHpniFEpIIywhJYQQQggpKhSFJUJ0AeMlo3I/YU3Cc8SyvCBLSCsSVVUTykejkQj8IyMl2qP0SC5hV3YuYRyxhDTMsBlCCCGEkKJCUVgijJzCaJKQmThiX6GfYTMVSbL0TSv3FUr9hMJnNBucQroqE0gJIYQQQooLRWGJMOopFC+GxXTSOF6GzVQ8epcwzrCF+woDefQTxhGdQpaPEkIIIYQUF4rCEmE0p1ByCmtrE55T2yWHzZDKQ99PGGckjVMY9PtL9pnIJ3k0jjSWgk4hIYQQQkhRKbv00UrBnq6nMJ1TSFFYkYjJo74ZMzG89zUAE2Ez8cRZVVUx3N+PU8ePo+/YMYwMDgIA5p9xBlomTSrqPueTPBpHCpqhKCSEEEIIKSoUhSUirVPoTXQKpbEULB+tSMTy0abTliLYdwrB/n5EQiGMDg3BPzqKvmPHcOr4cYQMEmhPHjlSdFFohlPorBN6Clk+SgghhBBSVCgKS0T6nsLE9NFaOoUVj1g+6mpqQtNpS3H8n48DAJ577LG0z0/Wk1hITOkpZPkoIYQQQkjJYE9hiRDLRzNNH3W3tMLu8cSeEw4nDDkn5Y/4N3U3NaNpydKkj3U1NGDaNddh0e2f0O4LFfkzEY1EJhxLmw01kybn9DpS0AxFISGEEEJIUaEoLBGGTqEgCu0GolBRFKk8j25h5RGWnMJmTDrnfOnndbPnYP4HP4LzHv4j3vDSHqz55ncx9Y1XGT6/GAT8fm27pr0DNkduxQcODq8nhBBCCCkZLB8tEYY9hYJDYtRTCADerikY2vMqgFhfYa0w342UP1L5aGMT2tefhbN+9j8YO3oUHWedDd/0GQnPcTc1a9vFFoVBE2YUAoCLcwoJIYQQQkoGRWGJ0KePqqqqSx9N7CkE2FdY6Ujlo81NUBQFnRdclPI5zsZGQFEAVUU4FJJSSguNHDKTWz8hADiE8lGWRRNCCCGEFBeWj5YIm8MBm8ul3Y5Go1JPoVH5KACWj1Y4YZ1TmAk2ux2uhgbD1yg04mewNsfkUYAjKQghhBBCSglFYQnR9xWmG0kB6GYVcixFxSEKOrEsNB0u4bHFDJsRRWFNJ0UhIYQQQkg5QlFYQkQ3MBqJSBfDRumjAFDbTaewkhEFnStHUVhMpzBomlPInkJCCCGEkFJBUVhCHDUTbmAkEpHLR5P0FHrZU1ixqNHoRPKmosAplISmw900UWpaqvLRmhxnFAK6OYXsKSSEEEIIKSoUhSVEFH6RSEQOmknWUzi5MxYqAiDo9yMajRZ2J0nREMWQs64eNrs94+dK5aNl2FPoqPVp2/HgJUIIIYQQUhwoCktILj2FNqdTGhAepFtYMcilo5mFzMQpxViKcCiklXra3G64mjMvd9Wj2GxSAilLSAkhhBBCigdFYQkRhZ++pzBZ+SgAeIW+Qj9FYcUghcxkKbBK4RRK4yg6u/Ieg+Gs5wB7QgghhJBSQFFYQvQD7KMZlI8CcpkeE0grh1zGUcRxNws9hUUSVFLITB6D6+M4fRNhM2E6hYQQQgghRYOisISIbmA0HNb1FBqXjwIMm6lUch1HAZQmfVR0JN2trXm/njSWgk4hIYQQQkjRoCgsIQlOoVg+msoppCisSHIdRwHIIrJY5aOiI+lqaMz79ZzsKSSEEEIIKQkUhSXEru8pFJ3CVD2FLB+tSKTy0SyDZkrhFJouCutZPkoIIYQQUgooCkuIQzeSQppTyPLRqkMUWe6s00cnHl8Kp9DZ2Jj36zlYPkoIIYQQUhIoCkuIWD4qujs2lyvljDopaGZsjDPdKoRQHkEzklMYChXlMxFh+SghhBBCSEVAUVhCRDcwFAho246a5P2EQGywubOhAQCgRqPSc0n5IpePZtdT6PB6Yfd4AMQ+E6LrXChMLx8VnEKWjxJCCCGEFA+KwhIiOoWiS2T3Ju8njMOwmcpDLh/NfhB8sWcVyiM0GvN+PWfdRE8hnUJCCCGEkOJBUVhCxJ5CySlM0U8Yx6srISXlTz5BM/rnFCNsRuopHHeu84EjKQghhBBCSgNFYQmxJ3EKMxKFolPIBNKKIJSnKHQXOYFUKh+tN1kU0ikkhBBCCCkaFIUlRBR/sihM3VMIsHy00ogKfYCK3S6VUmaKVD5aBKdNEoVmpI8KQTNhOoWEEEIIIUWDorCESOJPSIu0pwmaAVg+WmlIpaMNjVAUJevXcBexfFQvYkVBlyvinEI6hYQQQgghxYOisITYkwyoz9opZPlo2ZNvP2HsecULmpH6CevqcxKxejiSghBCCCGkNFAUlpBkvYP2DEQhncLyRVXVhJERYrmnqzn75FGguD2FZpeOArqRFCwfJaTocOYtIYRUL45S70A1k8wRzMQp9LS1w+ZyIRoMIhwKIRwOw+Hgn9PqBMbG8MI//4loJIJFa9fCNy6oRBGXyzgKQBaThRaFEWkcRW7Oph4GzRBSOgZOnsSuZ59Fjc+HRWvWQLFxzZgQQqoJHvVLSLLy0Ux6ChWbTXILgywhLQuO7t2LoN+PcCiEo3v3aveHTRBZYk9hoYNmzB5cDwCOWh8wXoYajUToWhBSRI7s2YOg34+B3l4MnDxZ6t0hhBBSZCgKS0gy8ZeJUwiwhLQc6Tt+XNse6u/XtkeHhrRt7+TOnF7bVaLyUWdj/uMogNhCh9Pn025zViEhxSPo92vbLN8mhJDqg6KwhNjsdtg9noT7MxWFYtiMn6LQ8vhHRyXxNzY0pF18DfX1afc3r1iZ0+uXrKfQhBmFcRxiXyFLSAkpGmI4VTQaLeGeEEIIKQUUhSXGyC3MySlk+ajlEV3COMMDA4hGIhgeGNDua1mxKqfXL1X6qFnlowDg9HEsBSGlIBQIaNsqRSEhhFQdTCYpMY6aGgT75Psy6SkEAC8H2JcVhqKwrw82m027CPNNmw5Pa2tOr+9saIj15KkqIuEw1Gi0YGERohPpNCl9FACc9ULYDEvYCCkK0UhESkTWpyMTQgipfOgUlhi7wViKXMpHKQqtTSQcRn9vb8L9Q319GDp1Srvdsmp1zr/DZrdL4yEKGTYjlnYWyilk+SghxUFfWUCnkBBCqg+KwhJjJAAZNFN5DPT2ahdaDmFI+3B/v9RP2Hr6GXn9nmKFzchpqY2mvS7HUhBSfPSikD2FhBBSfVAUlhgjAZhx+Whnl7YdHBvjidzCnBJKR2dd/044xh3ioN+P/p4e7Wctp+fWTxinWGEzheopFINmWD5KSHEIC/2EAEUhIYRUIxSFJcZoVmGmTqHd7YanY5J2W4wUJ9ZBVVWpn7DzwovRtHSZdjvuiDlqvGiYvzCv3+USZxUWUBSKgs1pZvloHYNmCCk2LB8lhBBCUVhiHAY9hfYMRSHAEtJyYHRwUBPsTl8dWletRsvyFQmPa16xEja7Pa/fJTmFhewpFJ3CApWPsqeQkOLA8lFCCCEUhSXGuKcwUSgmQwqb4VgKSyKWjk46//WwORxoXp44izDffkKgeGMpCjWn0Olj+SghxYZOISGEEIrCEmPkCjoMSkqT4e2a6CukU2hNpNLRCy4EADQvS3QK8+0nBAC3UD5aqJ5CNRqdKO1UFDjr61M/IQsYNENI8WFPISGEEIrCEuMwCJXJpnyUYymsTSgQmEgXVRRMPvcCALGyX097h/TYXIfWixQjfVR0CZ11dabOQhQFJkUhIcUhoXyUcwoJIaTqoCgsMYbloxmmjwK6AfYsH7UcfSdOaNstK06Hu6UFAKAoCpqFvsK6mbPgbm5OeH62iJ+nQl3YFSp5FJDLRwtZ/koImYDlo4QQQigKS4zeFbR7PFk5LwyasTaiKOx8/UXSz1qEvsJ8htaL2NxubTuqqqa8ph45ZKYpxSOzR/w8+0dGTH1tQogxDJohhBBCUVhi9P2Ddk/m/YQAUNs9VdsOjI1BLZAQINmjRqOSKJw83k8YZ+bb3gHfzFnwtLVj3ns/YMrvtDld0u8vBIVKHgUA34yZsDmdAGIjVgqZoEoIiaHvKaRTSAgh1Yej1DtQ7dh1SaOZziiM46yvh8NXh/DwEKKRCMLBIJyCW0RKx2Bfn5agWdMxCY0LF0s/97S2YcPGZ6BGo3mPoohjd02IwkKt9ocLNKMQAGwOB+pmzcbAzh0AgNGhIdSbUFZLCDFGVVWEdIsvdAoJIaT6oFNYYvQi0FGb+TgKINabVtvNElIroh9YryhKwmMURTFNEAKAzVVkp9BkUQgA9XPna9tjQ0Omvz4hZIJwKAToKkzoFBJCSPVBUVhi9KJQ7xxmAsNmrIk4n1BfOloobEVwCiNS+ah5MwrjNMybEIWjFIWEFBSjQCc6hYQQUn1QFJYYuy5pNJsZhXEYNmM9/KOjmstlc7nQcebZRfm9RXEKhYtIp4mD6+PUz52nbY8OD5v++oSQCfT9hABFISGEVCMUhSUmoXw0y55CQJ5V6KcotARi6Wj7+tfl9HfNhWI4hQUvH50jiEI6hYQUFCOnkOWjhBBSfVAUlhgzykdrWT5qOcTS0c7XF6d0FADsZZ4+CsRmNiqOWAZWcGyMCaSEFBCWjxJCCAEoCkuOI8/0UYDlo1YjEg5joLdXu915wUUpHm0u0pzCMnUKbU4n6mbO1m6PsYSUkIIRNhKFkUgJ9oQQQkgpoSgsMXb9nMJcegpFp5CisOQM9PZqLl39nLmonTI1zTPMIz7jDyiOU+gsgFMI6PoKWUJKSMEIGfQUsnyUEEKqD4rCEmNGT6GnvUMrtwsHg4iEw6bsGzEmFAzixSeewPaNGxH0+xN+fko3iqKY2Fzl7xQCTCAlpFiwfJQQQghAUVhy7B7ZGdSXk2aCzW6Ht7NLu023sLD0HDyIgd5eDJ46heMHDkg/U1VVnk9YxNJRALC5iusUFkoUik5hqlmFo4ODePmpp/Dso4+iv6enIPtCSCXDoBlCCCEARWHJUWw2aSxFrimVtSwhLRoBwR0M6t7r0cFBzT101tWj5fQzirpv9gI7haqqSnMKnfX1pv8OIP1YinAohL0vvohtjz+OvuPH4R8ZwaHduwuyL4RUMkY9haqqQtUNtCeEEFLZOEq9AyQ2mzAyFksNzaWnEGDYTDERL6JCumRMsXR00nkXwOYo7ldMP6dQVVUoimLa64uC0FFbW7B/X93M2VDsdqiRCAKjo4iEw7A7HFBVFT2HDmHfyy8n9EIZ9UYRQlKT7HujRqNQ7PYi7w0hhJBSQVFoAexeL3DqJIDcykcBXdgMx1IUFLF8Ur/KLpWOvr64paNAzHlWHA6o432lZovCYpSOAoDd5YJvxiwMvboLQMwttCkKXtu+HYOnThk+h720hGSPWD6q2Gxa6Wg0GoWNopAQQqoGlo9aAFEI5lo+SqeweIhCUBRJoUAAQ319sRs2Gyafe0Gxdy32qws4q1CeUdhk6mvraRBKSPdu347n/vEPSRB6Wtuw4l+/ot2mKCQkOyKRiDZ+QnE4pO80w2YIIaS6oCi0AGLJaK7lo+wpLB6SUyhs9wlBJy3LV8Ld3FzU/Ypjd0+IQrMv7Ao9uF5E7Csc6usDxnucFLsd8973IWx48lnMfOs7JvYtHGYfFCFZIC5wuZtbpDmnDJshhJDqguWjFqCmowPj/hI8bR05vUYty0eLhlhuJV5U+YVAlPZ1ZxZ1n0TEsRRmX9gFhf4jV1NhRa84liJO+7ozsfJLX5UEo83lQjQYBFQV0WgUdpa8EZIRYj+hu6UV4dER7TYH2BNCSHVBUWgBFnzoVoweOYKW5SvQtGRpTq9RI46k8PtN7yUjMVRVldyySDgc672x2SSx6GnPTdybgTjA3myncEwQvnUzZpr62nra1p0Ju6cGEf8YatrbsfyeL6P7sjckfK6dvjoExntyI+EwRSEhGSIds1pbMXZsogSbTiEhhFQXFIUWoPX0M3DRI4/n9RqOmhq4W9sQ6O0BVBVBvx/uHEtRSXKikUjCxVIkFILN7ZYusNwtLcXeNY1CloCJMwPr5sxL8cj8qWnvwIV/eQwDO1/GpPMugLPWZ/g4h883IQpDIUD49xNCkqM/ZgX6Jnp22VNICCHVBUVhBeHt6o6JQsRKSCkKzSesG0EBxMZSON1uuRSruYSisEhOYf2cOaa+thH1c+aifs7clI9x+CbEYoQlb4RkTFgsB29ugc11QLtNUUgIIdUFg2YqiJr2dm1bPz+PmIORKIz3FUqhDS2tRdsnPfYC9RSq0agsCmcXXhRmgtNXp20zgZSQzJHKR1taYXcVLrmYEEKItaEorCAUx4RDBJ7QC4J+LiEwIRSlUqwSJY8C8gB7M1f7/aOjWrpnTcckOOvqTXvtfHCKTiEXQwjJGPGY5WpulkKq6BQSQkh1QVFYQdgcE9XAUUbzF4RkTqGqqrr+nNI5hbYCrfaPiiEzBe4nzAYHnUJCciKsdwoLOM6GEEKItaEorCAUQRRyXlthSOYURkIhbY6eo7YW9hKGnYjD6828sBNDZurnpu7zKyYsHyUkN0L6nkIny0cJIaRaoSisIESnkCf0wmDUqxkOBnWlo6ULmQHk4fVmfg7kkBnriEIpaIaikJCM0aeP2kSnkKFNhBBSVVAUVhCKkDpJp7AwJHMKpYur1tKVjgKFcwpHRadwtnVEoZOikJCc0C9m2QoUUkUIIcT6UBRWEDZhaDdP6IUhWU+hVcZRAJBW+836HKiqal2nsI7lo4Rki6qqcmJyU7OUPsqeQkIIqS4oCisIOoWFJ5lTaJVxFEBhnMJgIKAJLqevDp72DlNe1wzEofZhikJCMkI8ZjnrG2BzOukUEkJIFUNRWEHY7AyaKTTJhtdbqaewEOmjYshM3Zy5UBTFlNc1AyedQkKyRt9PCIDpo4QQUsWUlSh84IEHMG/evIT/9u/fX+pdswQ2J4NmCk1G5aMt1hGFZl3YSaWjc60zjgJg0AwhuWDUB805hYQQUr040j/EOuzYsQMAsHLlSjQ2Nmr3e73eEu2RtVDoFBacjIJmSlw+ai9ACZgUMmOhfkIAcNRSFBKSLWGDPmiWjxJCSPVSlqLwy1/+MqZMmVLivbEeNvYUFpykTqFUPtpczF1KQPwcFMQpnD3HlNc0C2ddvbZNUUhIZhgtZLF8lBBCqpeyEYXRaBSvvPIKbDYbfvnLX+Lw4cNYtmwZ3vKWt8AllMtVM5JTyBO66USj0QnRYbPBUeNFeCQmlvwjI9rjSu0U2tzmr/bLyaPWKh/lSApCssdoIYtOISGEVC9lIwr37t2L0dFRAMB9990HAPjDH/6AJ554At/73vdKuWuWQeoppFNoOqJL6KpvgLOubkIUjn82AQsEzZjsFIZDIQT9fu21a6dOy/s1zYQ9hYRkj5FTWIh+ZEIIIeWBZUThgw8+iDvvvDPpzx9++GGcffbZaG5uxq233oq+vj7ccMMNeOyxx/DYY4/hnHPOSfn6TU1eOBz2lI8pBG1tdekfZBIHG2q1ba7ymo/YT1jT2gJXXR1GDh6I3SGI8K550+FuLN7fXU9980Q5pRmfA9ElbJg9Gx2Tm/J+TTMJ102IYIpCQjJD7ClsndaFtrY69LY2aPdFI5FS7BYhhFQMvlp3UXVAvlhGFLrdbik8Rk9DQwO+//3va7c7OjqwYcMG/PznP8e2bdvSisK+vtGUPy8EbW116OkZSv9AkxgLTAgAOoXmIzqF9roG2ASHKo5id2AgaINSxL+7nrHgxOfAjNX+wNiYtu2dOqOon+lMUFUVisMBNRyGGo0iGonAZi/+AhAh5YToFAZdtejpGcKIf0IIcmGREELyY3gkAFjsmglIblhZRhReeumluPTSS5P+fHBwEDt37oTP50N3dzcAaL2EIYPwj2pEEZxQikLzEZ1CV2MjnL7EL5W7uankM/zM7guKCu6bw0AIlxpFUeD0+RDs7wcQcwspCglJjdFsVY6kIISQ6qVs5hQ++OCDeMMb3oBPfepTUFUVoVAImzZtAgAsW7astDtnEWwOpo8WEqmnsLEJLgNn293SVsQ9MsbsvqCI8Bp2T03er1cIHD4OsCckG9Klj9IpJISQ6sIyTmE6rrjiCvzgBz/A5s2bccUVVyAUCmHv3r1YvHgxLrjgglLvniVQHEwfLSSSU9jUBGdtomtW6sH1AGB3mXthJ/YW2WusKQqZQEpIdoQlUUinkBBCqp2ycQqbm5vxk5/8BOeccw6OHTuG3t5eXHHFFbjvvvtgs5XNP6Og2BxMHy0kolPobmyCqykxcKXU4ygAwOY01ykURaHD48n79QqBo45OISGZEgmHte+1zeWCw1urbcehKCTVhKqq2L1tG7Y88giOvPYar6FIVVI2TiEAzJo1i+MnUkCnsLDoy0eN+utKPbgeAGwml4CJF4eWdQprKQoJyRR9P2G8D9pegBmnhJQDo4ODOHHwIABg74svYqivD7OXLoXdUVaXyYTkBS22CkKcT8dVLvMJ6YJmXI3V5xTareoUCgI9TFFISEqM+gkBlo+S6kX8TgBA7+HDeGHjRgRGi59cT0ipoCisIBQ7y0cLieQUNiUJmrGCU1jInkKLikIny0cJyZhwElFodj8yIeWC0XljdHAQe7ZvL8HeEFIaKAorCJuT5aOFRB5JYeGeQpP7gmRRaM3yUUctg2YIyZSQMLje3TKxkGVz0ykk1UlEOM952tq17bHh4VLsDiElgaKwgqBTWFgSRlI0NCY8xgqi0G72nMJycAqZPkpIxsg9hWL5qLCgJHzvCal0xHm8ratWa9viAgohlQ5FYQXBnsLCkuAUGvUUWqJ8dOJzYIpTWAZzClk+SkjmhA0G1wPmLygRUi6ITmHN5E7teioSDvOcQqoGisIKQrHbtW2e0M1FVVWdU9gIR01NgnNmBafQVoVOIctHCckcuXx0QhSKycUsHyXVhOgUOn0+uNvatNt0C0m1QFFYQdApLBwRQRA6fD5tJqTeLXQ1WcApdJrsFJZDTyHLRwnJmKTpo87yDZqJRiI4tHs3ju3bx/MfyRrRKbR7vfC0TvQVUhSSaoEDWCoIcU4hV3nNRd9POLHdiLFjRwHEShjF9L5SYfasMelkWWNNp5Dlo4Rkjn5OYRwpuVhVoaqqNsPQ6hx57TXs37EDAOD2etHU3p7mGYRMIJ43HLU+eITPT5CikFQJdAorCJtjwiECV0pNJZRUFArbwsVVKTF9TmE5DK/3URQSkinySIqJ45aiKKanFxeLvhMntO3RwcES7gkpR8SKGIfXKyWQ0ikk1QJFYQWhOCZ6CqMUhaYiXUQ1GYtCT2vp+wmBws4pdFi1fFTsKRQEPCEkkWQ9hYD5PcnFQFVVDPf3a7e5MESyRXYKayVRSKeQVAsUhRWE6BSWy8m8XEhaPioIRCuEzACFnlPI8lFCyhk1Gp04nilKQl+0vQzHUowODUn7ymMAyZYInUJCKAorCZuDcwoLhTyOotFw222V8lGHA4pt4qud7wIBg2YIqRykUvj6Bum8AcgD7MtlcXGor0+6HSkTMUusg5g+6vDqegr9/lLsEiFFh6KwglAoCguG5BQKQ+tr2idNbE/uLOYupcRMt7AsnMI0PYVDfX04unevFLBBSDUilcIblLyXY0/hsF4UcmGIZEmCU8j0UVKFMH20gpCcwjI5mZcLkjCq8Wrb065+M/Y/9L+IBgOY+ZbrS7FrhthcLkTGVzfz+SzEEwgBAIoiuQhWwl5TA8VmgxqNIjr+n23cLQ0FAnjxiScQjUQw1NeHuStWlHhvCSkdUj+hQXVDOQ6wT3AKKQpJluh7Ch21tdptikJSLVAUVhCKg3MKC4WUwOmZuGjytLbiwj//3XLR7WYlkEpi2O221L9RRFEUOHw+hMZTByPhsOZ4DA8MaP+OwVOnSraPhFiBZDMK45TbAPtIOIzRoSHpvnLphSTWQZ8+6hCqTxg0Q6oFlo9WEHQKC4f4ftrciSWUVhNL4oVdPp+FcigdjZOshDQwOjqxPTbG7wapatKKQsEpLAdRKKaOxqFTSLJFP6fQWV+vLSxGIxF+pkhVQFFYQShO9hQWCkkcWWBAfToK4hRaNGQmjiOJKPQLohCqigBDA0gVE5bKR5sTfm43eaRNodGXjgIUhSQ7VFWVegrtXi8UReFYClJ1UBRWEDY7RWGhiKZxCq2GWX1BEals1tr/7mQJpIGxMelx+tuEVBN0CgmRUaNRYPyaSXE4tIURaSwFFxNJFUBRWEEoTs4pLBTJegqtis018VmI5rFAIAfsWNspzKR81Og2IdWEJAqNnMIy6yk0dArZU0iyQJ88GkccS8GwGVINUBRWEOJsOoBuoZnI5aPlIAoFpzCPC6RkqatWxJmhU+inKCRVTDidU+gsn/LRwNiYNkPOLiQjR8Nhnv9IxkR1yaNxxLEULB8l1QBFYQWhKApsTiaQFgI5aKYMRKHTfKfQUYblo9FoNGHwMMtHSTWTbiSFlD5qccdNnE/YvHyldtxTVdXygpZYB9kpFEQhnUJSZVAUVhiKnQmkhUAqHy2HnkK3SU5hGfUUOusSy0eNBCDLR0k1I/cUGojCMppTOCT0E7asPD1pXzEhqdAnj8bxtLVp23QKSTVAUVhh2JhAWhDEFXNxJd2qFMIptHz6aG3iBaGRAKQoJNWKqqppRaGYPmr1nkKxCqBu9lzJ5WFfIcmU5D2FHdo2nUJSDVAUVhgKZxUWhHJzCgvSU1hOTmEoBCCJUzg2xgUTUpVEIxHtvGD3eCQRFaec0kfD499zAHA3NRkuDBGSjuQ9hXQKSXVBUVhh2BzsKSwEqiQKy6CnUFztrxan0KB0zMgVVFU1oc+QkGogXT8hIKePWn1hUQzNcTU2SRf0UYpCkiHJewrpFJLqgqKwwpCcQopC0ygnxwyQRaF56aPW/nc7jcpHk4TKsISUVCPpZhQC5ewUNidNICYkFUmdQqGnMOT385qKVDwUhRWGjeWjBUEaXu8qg55Cs5zCsgqaqde2w+MneXH8hLOhQdv2M4GUVAHhUEi6kM1WFFr9HCI5hU1N7CkkOSF+VuxCT6HDV6dVyESjUS40kIqHorDCoFNYGMqtp1AMi8jnwi5S7uWjgvhrW71W26ZTSCqdnsOH8fSf/4znHntMc/zDUvlo4uB6oHyG16uqipDgFDobGiWXhxfwJFPEz4pTWFhQFEV2C1lCSiocisIKgz2FhUGV0kfLoKfQac6FXTmVzXraJmZKjQ4NxWYUiqJwzTptm6KQVDonDhyAGo1idGgI/b29ACrLKYyEw8D4Oc7h9cLuclEUkpyQznO68CWxr5BhM6TSoSisMBQny0fNRlVVnVNYBqLQpLCIcgqaqZ87D56OSQBiZWWnjh7VFkbcLS2onz1HeywH2JNKR3T544sjkihM4hTadCMpVFVF34kTGB0eLtCe5oY+ZAYwrhYgJB2RJD2FgJxASqeQVDoUhRWGzc7yUbMR30fF4YRis/7XxjSnUBTDNdYWhYqiYPJ5F2i3j+7bp23XTp0G75Sp2m0/nUJS4YgLOoHxtN1MnEJx0SsaieDwnj14efNmPP/YY/CPjBRob7NHDJlxNcUErjSSgj2FJEOSzSkEADfLR0kVYf2rW5IVijC0nE6hOUhuWRkMrgfM6yksp/JRAJh83uu17cGTJ7Xt2u6pqO2eot3mrEJS6Yjf+/gIlrDkFBqPpLDpziF9x48DiC0QnTx2rBC7mhP6kBkAHElBciJZ+igA1LB8lFQRFIUVhs1u17Z50WsOcvKo9UtHgcQSsFwRRaHD4uWjANDxurOlsKU43u5uOH112sWjGo1y1ZdUNFGj8lExaKYliSjUjaQQS62H+vrM3s2cEUNm4uWjRmNpCElHxk4h59uSCoeisMIQV3nzGUVAJlAlt6xcRKE5YRHl5hS66hvQdsaahPtrx0tHa7tZQkqqg6iBUxjKwCmU0kcjESmsaejUKbN3M2fknsJGALLLw/JRkilyT6FP+llNG51CUj1QFFYYkkvC8lFTKLdxFICJTmEZ9RTGmXz+6xPui5eO1gp9hUwgJZWMkSgMZ5k+6h8dlSpOgn6/ZUKapMH1jYnlo3QKSaZEUziFnvaJVOugRT77hBQKisIKQxxeT6fQHMppgHscW5X2FALGotA7Lgq9ur5CQioV8bsbDoW0/wAANhuc4+6aHvHYYbRwYpUSUskpbDYImqEoJBmSKn20fu58QFEAACODg9JiBCGVBkVhhcHh9eYjXlyVS0+hvQA9heUiCuvnzpfEH2DsFLJ8lFQy+u/96OCgtu1qaJT6z0XE9FGjc4hVSkjDBj2FHElBckHuKZRFoauhAU2Ll2i3By3y+SekEFAUVhjS8HqWj5qCWmYzCoFCOYXlUT6qKIrkFjrrG+CsqwcA1E4RnEKKQlKhqNGoNtg9zoggCj1JSkeB9AtfVnEKQwZzCp3CBX2UPYUkQ6T0UZ0oBIC2teu17cHe3qLsEyGlgKKwwqBTaD7lXj6aj1MYKUOnEAA6BVHomzZN266bNTHAvr+3F2MWG8hNiBkYfedFUZgseRSQqwyMGB4YsITgkp3CRgDsKSS5IZ3ndD2FANC+bkIUDgijjgipNCgKKwyxp5BOoTnI5aPlMadQHF6fl1MoCeLycAoBYNI556PjdefCXlODee/9oHZ/3azZaF93ZuyGqmL/jh0l2kNCCoeRaBsZGNC2k4XMAIAtTTWEGo1iWHitUmE4p9BXp91HUUgyIRqNTpwjbTbDxc+21eu0vsLhgQH2FZKKhaKwwqBTaD7lmD4qlrlWW08hEBvNcs4vH8SVr+zHtCuv0e5XFAVLPv157fbJo0fZI0IqDqPvvNRTOB7MYkSyha/Gxadp21YoITVMHxVcnkg4zHMgSYuUPFpTA2Vc/Im4GhvRuGhx7IaqWqavlhCzoSisMKSeQp4QTUEaXl8uPYXO/HtLVVWV+ynLSBTGEd+HOC3LVmDKFW/Sbu9/+WV+V0hFYeQUisexVD2F9iQ9hVPfcKW2XeqLYlVVJafQ2dAIIPZ9t5m0IGY2I4ODkltLrEGq5FGRtjUsISWVD0VhhaE4JhLlWD5qDmoZumViWITRhVE4GNRmlyVDKpt1u6HYKudwseTOT2uCcfDUKZw6frzEe0SIeaQTQ64kg+sBwOZOdAqddfWYdM752u1SO4XRSERbyLF7PHAIM1TFoJCoRUpIB06exHOPPYbnHn8cR/fuLfXuEIFUyaMiWtsBKApJ5VI5V3kEgM4hovthCpJTWC49ha7kTuHI4CC2/v3veOYvf8HJo0eTvkY5Buxkim/6DMx6x7u02/tffpmLKKRiSCcKUwXNiP3IcWqnTkXD/AXaRXPQ78fLmzdjzwsvoK8ECypSP+G4SxjHacGxFANCYuVrL76IfiZYWgYpeVT47OhpWyP0Ffb3W+azRYiZUBRWGIqdPYVmU5Y9hUmcQjUaxavPPYdQIAAAOLJnT9LXKMdxFNmw8JaPacEUY8PDOH7wYIn3iBBzUNOkg6YeSWEgCrunwuZwoHn5Cu2+vhMncGzfPrz81FNFdw5DYvKozvW0YgKpVM6rqnhlyxb4R0ZKt0NEQ3IKaxKTR+O4m5rQsGBh7IaqshedVCQUhRWGzZl5+uhAby+e+tOf8Mwjj2DPCy+gv6eHbokBkjgql57CJHMKj7z2Gob7+7XbQ319SS+cpAb8CnMKAcDT2ooFH/iwdvvAzp2WuYgkJB/yKR9VFCVBGHq7Y/M95733A4YLRD2HD+ewl7kjOoXu8eTROI5awSm0wOgMIPHvEQ4GsePppxHm8abkSE5hbXKnEADa1wolpHR7SQVCUVhhZOMUHt23L9ZbNjaGY/v24aUnn8TTf/4zdm/bhpPHjlnmhFpqyjJoxmBO4djwMA7s3Ck9Tk2x4imJ4ZrKcwoBYO6/vA+ejkkAgFAggCOvvVbiPSIkf9KJQk+K8lEgcYB97ZSpAIDOCy7CFc/vwAV/fBRL7vqc9vNTR48WtTJFnlGYQhRaRHQZBf+MDg1h99atrOgpMXJPYXKnEADahSH2R/fuRc+hQwXbL0JKAUVhhZFN6mTIIGgkHArhxMGD2Pn003j6T3/CzmeeQc+hQ1W9oiklcJaLKNTNKVRVFa8+/7zhxWKyFc9KLx8FYsECiz96h3b78KuvaqW1hJQr6YbLp3IKgcQB9rXjTiEAuOob0LJsBeb9y/vhbGgAAATGxjAijLwoNFJPYYIotF75qHgO6XjdOdr2qWPHcOCVV0qwRyROpumjANBx9jmomdwJIPYd27V1K/YxvZpUEBSFFUY2TmFIOLFOufyN2sEuTjQSwcmjR7Fr61ZsffTRtGmVlYpcPloeZZRigmA0GsVAby8GxxPTFJsNi27/hPbz/p4ew9eIVHDQjMiM696G+jnzAMQuEA7u2lXiPSIkP1I5hfYar5TWaYS+IsIriELtMU4nOi+4SLt9KkVoldlITmFTo/Qz8cLeKumjohs18y3XY+57PqDdPrRrF3qPHCnFbhHozu9pnEKnrw7n/PIh1M2ao913+NVX8fLmzdL1FCHlCkVhhSH1FKYRheJq6/K7v4TLt2zHBX/4KxZ88BbUzZotPTYUCFTtiass00d1TqG4ij/t6jdj7rvfp42YGBkYkD4LcarBKQQAm8OBJZ/6jHb72L59GBseLuEeEZIfqYJm3CkG18fRH+fi5aN6ui6+VNs+eexYhnuXP6FMnUKLtEDoj6VL7/qcNOJj97ZtPOaUCNEpdKZxCgGgfs5cXPCHR9D5+okFkf6eHrzwj38U1S0npBBQFFYYiiOzoBlVVeUEt6ZmKDYbWpavxJJPfRaX/PNpXPzYk5h+zXXaYwardDZPtBznFOpGkwRGR7Xb9XPnwdXQgKaly7X7jOYuleO/O1c6L7wErWesARB7v/brei8JKSekhSzhWAAA7ta2tM8X04vtNTVw6cJc4kw69zzNVRwdHCxaomaqnkIrjqRQdX3pNocDa7/7A/hmzgIQO9aeYPpxSYhITmF6UQjESqjP/PH9WHjrx7T7/KOjeOGf/8TJKl08J5UBRWGFYXNkNqcwEgoB4z931NYm9JAoioKGefMx9z3v1+4bPHWqKmvny7GnUJ8gKF6s1XZ1AwA61p+l3WfUVygHzVS2KFQUBUs/8wXt9skjR0o+oJuQXBG/u16dy5eRUyiUn9d2T4UyPp9Nj7PWh0lCj1yx3MKUPYVe64lCowU2V2MjFnzwFu3+wNhYsXeLQJ8+mpkoBGJtGKd9/JNY/4OfavM7o5EIdm7Zgv07d1bltRIpfygKKwzFYde2Ux2UxPIbd4rQgYb5C+Gsr489JxCoytlKcvpo+YgjMUFwTPi71XR2AQDazzpbu8+or1Caz5hiflOl0LpyFbovvUK7zQABUq6I313ftOnSz9wpZhTGEY8dtVONS0fjiCWkpzIUhaqqou/ECYwMDGT0eD1yT2EZlI9Kx9KJUnxPe7u2zYCr3Onv6cHhV181bINIR6ZzCpPRfenlOP/3f0Gt8D07tGtXbOSI8DklpBygKKwwJKcwRfmoJApTDTK229G6arV2Oz6+IDA2hpefeippomUlIa3ylklPISCXjYnlo3GnsPX0MzQ3cWx4OCFIqJrKR+MsufPTUOyxhZXBkyfRd+JEifeIkOyRROH0GdLPMhGF4nHOKGRGpPPCi4FxJ3Hw5MmMxM2xffvw8ubNeO7xxzE6NJT28Xpkp7BR+pnDguWjyWbdeto6tO0gRWFO+EdH8dLmzdj38ss5Jblmkz6ajMb5C/H6P/4NU17/eu2+vuPHseeFF3J6PUJKBUVhhSH1FKZwOaSTapJ+kTjxXitgQhS+tn07+o4fx/H9+yv+wllyCstIHIkXH9pnwWbT5vI5vF60nn6G9hh9CWmlD683om7WbMx6+w3a7SN79pRuZwjJEal8tLNLWiDKLGhGcArTiEJPa5u0cHjq+PG0ry+GluUyBFx0YNxN8r/HacGRFMlCuzxtE/2dRiOiSHpGBga0Vpih/v6sny+d5zLsKTTC3dSEy3/3OylZdjiH/SGklFAUVhi2DINmMi0fBYC21Wu17cGTJxEYG5PKhAIVXlJajj2FQGLABADUdEySPiPt61+nbfenEIWVnD6qZ/YNN2vbfsFhJaRcUHWl3/GFICAzp1Ac4p0seVSk6xIhhTTNaAo1GpUulnNxyDKdU2iVkRTRJOcQjxD6EwoGWa6eA+JnIafyUROcwjg2ux3z3/+hiddm+SgpMygKKwxbDk5hOlHYvHS5VmboHxnBId0ct0qfzyOKI3EF3eoY7at3vHQ0TvuZycNmolUyp1CPu2Xi+8CTOilH9OWKNZMna7fTHe8BYNpV18LmdMLb1Y3JF1yY9vFdF23Qtvt7elI6dKNDQ9L+ZeuQRSIR7dhkc7mkHj0AcNT6pMdagWQLbDanEy7B6WRfYfaI1x+59PDJTmH+vfNOX522bRWnmpBMoSisMJQM00dlpzB1OZHd40HzshXa7WP79yd9rUok2Sqv1bG5Ep3C2m5ZFLYsX6mVzARGR6UgoWp1Cp119dp2OBzm6j0pO/THrPiQeXtNjVT5kYwpl12BK57biUs3b4NTEFnJqJsxEw3zFwCIOYH9KVoK9CV+2TqF+n5CfTKqJAotclEuL7DJ5xCGzeSHKATDObitZjqFQOw7Fu9Lj0ajFZ+5QCoLisIKQ3QKUx2M5J7C9D0mqS4kKv1EVq6OmaFTOJ48qj3G6UTbmom/rVhCWo1BM0DsIjo+ew2qKr0PhJQD+u/ugg/egnN//Tts2LQlo55CILZYKJ5P0pHpIHt9n1W254905y6HxXoKVd0xRL/A5mmbEIUMm8ke/aJ0ttUdEZN6CuMoigJnHd1CUp5kLQqDwSB27dqFV155BcEKd4jKEcUpnMQzdQpb0pcTta5ek/RnudTxlxPJkuOsjpFTqC8fBeTRFGIJaaRKRSGQ6BYSUk5EdcPSFZsN7evWwzu5s2C/s+uSy7TtvuPHky5K6ud/6lOP0yGFzDQmhqRZThSKfwunE4pNvuwSRSHDZrJHf/0RylIU5jqnMBXi+YMtCKScyHwZEMDmzZvx0Y9+FKqqIhwOw2az4Stf+QrOOuus9E8mRcFmz94pzKTHpPX01bHYcQOhWenlo9JJvYx6Cu2GTmGiKOwQwmYGenqgqioURdENr6+e8lEAcNbXI9Abm90YCYWAKhPFpLyRF7KK89ltOm0JvJ1dGD1yGOFQCIMnT6JRSNcEYiJtdHBQui8UCGjHnExIFTIDAE5hJIUVXH69QNdDpzA/9KIwHAwCWYg7afHThJ5CAHAITiEXFUk5kZVT+MUvfhH33nsvNm3ahKeeegp33nknPvvZzxZq30gOKM7sewpdGZQTuRoa0LBgoXa7eelyw9eqRFL1g1gZmzNxpqKRU9i4aLE2liQUDGpzw8q1bNYMuNJLyplSJCYriiKlkBoNsh82GFavqmpW1SahFIPrAcDulZ3CUvcEp+vNZk9hfuidwWzCZvSlvbkMrzeCYTOkXEkqCm+88Ua8+OKL0n3hcBj28QZaAHA4HFwFsRg24e+TcfpoBj2FgJwwt/gTn5Jeq9Qn3kKhP2mUk1NocxuIQl1PIYDx0rLEFNJqDZoBAFc9y0dJ+VKq2apSX+HRownnhWFd6WicuEPmHx3Fi088ga1/+xu2b9qEnVu24LXt23Fw1y4cP3AAp44fl5xGI6fQZrdLx6tSu4XycdTIKeQA+3wwdAozRF8Noy/tzRWpp5CLiqSMSFo++pa3vAV33HEHZs6ciVtuuQUzZ87EHXfcgZtvvhl2ux3RaBSRSAT33HNPMfeXpCETp1BVVdkpzFAULvjQrfC0tcViys89H86GBoTGV37DwSCcZdRvlynie6jY7VkFL5QavVNod3uSusIdZ70Oh37/fwBiorBz5szqLh8VnUKKQlJmlKoPum31WrgaGxHs70fQ78fIwAB8jY3az5MNFw/5/UB9PQ6/+qq2KDU2PJz297mE1xZx1NYi4h8DEPv+2kt43JYrLgycQnGAPUVhVhi5zNk4hVLyqAkhM3EYNEPKlaRHyte//vU4//zz8etf/xo333wzVq9ejQ996EN4/PHHsWfPHiiKgunTp8NTZWVlVkfsKUw2vF5cuXL4fLC7Eh0lIxw1NZjzrndrt90trZooDFWqKCzTfkIACX/Xms7OpH074hD7gd5eqNFo1aaPArGewji5zL4ipJTIIymK9921OZ2YfMFF2P+/vwQQSyEVRaHoFNbNnouhV2Mzb+MOWbx0PVM8HZMM73f4fAicjInLUs8qTHccZflo7kQikYTF72zaWSImzyjUXsvHnkJSnqRcPrPZbLjmmmvwhje8AT/96U9x7bXXYsOGDXjve9+L5gxjrUlxEdNHkzmFoRxKR41wNzdj+LU9Ca9ZSZRr8igQG+wsUjtlatLH1s2ajZrJnRg7egSRcBjDAwPShaWjyspH2VNIyplSHre6L75UE4Wnjh7FtPnzAcRSRgNjY9o+dbzu7ARRKM5JXf3N7wI2GwI9PfD3HMfYiRMI9PRgrOc4Ar09qJ8zD91CuaqImCIZLfFFeVpRyKCZnDEqFc2qfFR0Cn3p53Fmith+wPMHKSdSisI9e/bg1VdfRXd3N26++WZce+21uO+++3D55ZfjzW9+M2688Ub4TPwikfwRyxuTOYXyOIrWnH+X+NxwhZ7M0iXHWRm9KDTqJ4yjKAra15+lXcwN9PbSKRyHK72k3JCPW8X97k469zzYPR5E/H6MDg1hbHgYNT6fNJ+waclS6XgU8vsRjUQmxlPYbJjyhiszrmLRY6WxFOnKR90trVBsNqjRKMLBIKLRKGwm9bZVOoaiMAsRJjqzZopCh4/tB6Q8SXrk+clPfoJrr70WP/rRj3DjjTfii1/8Iurr63H77bfjwQcfRG9vLy6++GL88Ic/LOb+kjTYHOl7CuVxFPk4hROjLCrWKSxBip9Z6HsKjZJHRTrOnCgh7e/pqeqgGTqFpJxJF25SSBzeWnS87hztdjyFVJxP2LxiVULAin90VLvt7ezKWRACgLNW6OmyUvmowTnEZrfDJZ5LK3SBtRAYXXdk4xQOC6FFDXMXmLJPAHsKSfmSVBR+//vfxw9/+EP88pe/xO9+9zv84he/wPB443dHRwe+8IUv4Gc/+xleeOGFou0sSY/iyK581JXBjMJkiEPvK1UUqmXsltndmTuFANC+fiKBdOjUKXl+U015/dvzRXQKeVIn5Uape6GlFNJjxxAOhXBs/37tvtbTV6FG10snlo76ps/M6/eXk1MIsK8wV/J1Ckd07rVZiKKQPemknEgqCm02GwbGQ0SGhoagqqo0jgIAZsyYgf/4j/8o7B6SrMikfDSXcRRGVJ9TWF7CKMEpTCMKa7unwDcjdjEWjUblWWdV7BTypE7KCVVVJxYEFQU2IZG6WHS+/mIt3n/o1Cnsfekl7bzj6+5G5+svloRQ0O+XnELftOl5/X5LicIM+js9rewrzAWjY3M21yLi3ExTRSHnFJIyJWlP4e23345bbrkFPp8Pg4OD+MhHPoKaKoulL0eydQrzKh8t455CVVVx8uhRKIqC5kmTkqZySjMKDeb+WRm9Q5CufBSIlZAO731Nfh2n07T5TeUCnUJSruhFSLJjWyHxtLaiddVq9Dz1JADgxIED2s/W/du/we52w9M+kRwaTHAKp+f1+8X5hQdfeQX1zc2oKVH+QSZl+HQKc8OwfDTDRbxwKKR95hS7HY3zF5q2Xzx/kHIl6ZXeG9/4Rvz973/Hd77zHTz66KP4l3/5l2LuF8mRbHsK8yofFQRluTmFvUeO4JUtW7DzmWdw6ujRpI8ra6fQJTsE3q7UTiEAtAt9hXHKrWzWDDiSgpQrVgnH6rrksoT7GhcswpxrrwUQO38o49VHkVBIGkfhmz4jr989481v0YK2AmNj2L5pE0aE/rFiIv09kvR3clZhbiRLH0127SMyIriE9XPnm3qec7B8lJQpKZf/GxsbsWTJErS25p5QSYqLkm36aF49hROfi3IThf09Pdr2yfEgBCPKOmhGcApdDY0ZDedtX3dWwn3VVjoKAC4GzZAyxSoLWV0Xb0i4b+ln79aqDhSbTRrHIAbR1E6dntfvbly4GGf++H7t2BUKBPDipk0T6aZFRHQKHUmEh6ddCN0pwT6WK8muOzJx58TS0ealy8zaJQAsHyXlS3XVhFUBtgzmFDJ9FPCPhyYB8sWIHjFoptyG14tOYSYuIRAr+2pYuEi6r+qdQp7USRmhWmS2qm/adOlY0nHm6zDp7HOlx4iiUBRP+ZaPAsDkc8/H6+7/lTZIPBwK4cShQ3m/brZkFDTTSqcwF5IljWZyPSI6hU2nLTFtnwCmj5LyhaKwwlDs2TmFrrx6CidEYTYx0FZgTBCF/pGRpCdi+YReXqLQLohYb/eUjJ/XcebZ8ut4vabtU7ngEFd6Q6GMypEIsQLyMau0Czrz3/tBALGL5GWf/2LCzz0dHQn3uRob4apvMOX3t69dj9M+8Snt9phQolos5L70JOWj7fJ4DpIZUmmm0DubyfWIPDdzmYl7RVFIyheKwgpDTJrLzCnMvXzUUevT+jaikUjZHPzCwWDCSmIyt7CUQ6DzpXnFSm1bL/RS0XGmXEJajeWjdo9H+y6pqip9DgixMrIIKe0xa/o11+GSxzfj4sc3o3Hh4oSfi2IoTr7jKPQ0zJ+YPzcqLAYWC46kKBzieVxM107XxxcJhycWhm02NOqqY/LFXuPV+mWjkQjPH6RsoCisMBSbTVox0wtDVVXlnsI8RlIoilKWfYVjQspdnKSiUCzFymOYcilonL8Q5z38R6z7/n9h9g03Zfy8tjXrtBMakLwPppJRFIUD7ElZYrXqhvq58+Cd3Gn4sxqhfDSOGaWj0u+fPUfbHhsfr1VMOJKicIgL3HUzZxneb4QYOlQ/a3ZG/fbZEDt/0C0k5UfSkRQio6Oj+OlPf4rnnnsOIYNSqh/96Eem7tQzzzyD66+/HmvXrsWPf/xj6Wff/e53cf/996O/vx8rVqzA5z73OcyYkV9SWaVhczoRHT8oqtGodIEvrqA5fL68Z1i5W1owdvQIgJgo9JRBqeGYwWrx4KlTho9Vy9gpBIC2M9Zk/RxnXT2al63AyWefAVCdTiEQ6ysMnDoJINZXWF5LAqRakUWItY9ZRuWjvmnmns89HZPgrKtDaGgIkXAYoUAAriIudEl/jyRjveJJrGokgkgohGgkAptuLjSRiUajE2JLUVA7bTrwz8cBpHcKpdLRpcsLsn8OXx2C478nEgrBWWaLyqQ6ycgp/OxnP4t7770Xdrsd7e3t6OjokP4zkz179uC2224z/NnPf/5zfOMb30AwGMScOXOwefNm3HzzzQhwZU1C6ivUCXizSkeNXqNc+gqNROFwf79hD6bVVt2LRfv6iRLSUvcllQo6haQcKafEZE9b4vVDbZ7jKPQoioK6OfO026NF7ivM5O+h2GxwM2wmK6TRWvUN8GRRtSSHzJg3tF6kFE7hiYMH8fLmzRjo7S3K7yOVR0ZO4aZNm/CVr3wFF198ccF2JBKJ4Lvf/S5+8IMfYGxszPAxcdfwBz/4AU477TS8613vwhNPPIG//vWvuPTSSwu2b+WGzelAZPwt1ItCqXS0xQRRKLxGuZzIjERhNBLByNAQfA0NCffHsfqqu5lMuewN2Pntb0CNRk1vwi8XpAHEFIWkTFAt1FOYDrGXLo4vz3EURtTPnoNTW7cAiB3/G4W5gIVGHl6f/O/haWuH/3hsPFIwEIC7DKpuSonoBrqam+FqbDL8mRHDBUwejSOOpShGgnUoEMCrzz8PNRqFf2wMK849N/2TCNGRkVMYiUQwf/78gu7IyMgIvvWtb6G5uRlve9vbEn7e29uLAwcOwOv14rTTTgMArFkTK43btm1bQfet3EiVQFpIp7BsegoFUVg7dZq2PWRQQioFzVRR+UfTaUtwzq/+D+f/8IeY/4EPl3p3SoLoFHIsBSkXyqm6ocYwaGa66b+nfs5cbdtoUbCQyKIweSk+B9hnh37esqtJEIUprkUikYjkFhdMFBbZKRweGNCu9/zDw0zMJjmRkSi8/PLL8bOf/aygHzKn04lPf/rT+N3vfofFixNTyo4ePQoAaGxs1O6Lb8d/RmKkSiCVxlHkETITx908UbJRDuWjqqpKQTPTr7lO2zYKm7HKIOhS0L5uPRa8852WL0ErFJJTSFFoOXoPH8bWv/8dh3bvLvWuWIpyOmbpnUKby4WaSZNN/z2iKLRi+SjAsRTZIpWPNjXBJVwbpnIKRwcHgfHrIt+MmZKjZyaOOnmsUaERS2JVVeU5i+RERuWjY2Nj+L//+z888sgjmDp1Klw6xySToJkHH3wQd955Z9KfP/roo7j++uuT/jzeN+hwTOxyfNvv96f9/U1NXjgcxW/cbmsrzAEnFQ5haHkqp7Cxa1Le+9cybSJVrhycwsDYmPae1LS2YsGVV+Clf/8yAGOnUCzFamhtKMnfs9RU478ZAOo7hAUPlo9aClVVseeFFxAOhXBg505Mmj4djjxDsyoF0Zmqbayz5Pd3Yp/qtBAYAGiYMQPtHebMKBRxnLEcG8e3S+kUtkxuSfr3aJ7ahX3j23QK0yNey9RP7kD79C7Dn+kRS0cnn7HK9O9H/PXq24XzR5GcQpFQMMhjogXw1boteQxORkaiMBqN4rLLLsvrF7ndbsnl02NPk7QVF6IR4QAb/6J5MgjC6OsbzWAvzaWtrQ49PcUflqvaJt7LVE5htCb//Qu5fRPbZXAik0pHZ80BumfD5nYjGgjAPzqKYCAAl7CaK67yjgbVkvw9S0mpPsNWIOyYOK6wp9BaDPf3a0JdVVWEQyFeAI0jHrOCUZvlvr/6Y4q7rV0ThZ4p0wqyv9G6tlgqdyiEoN9f1M+L+PcYHIvAluzf1zghIootXMsR8VpGranDmOIx/JmeESF51DtvkamfN/GzHXZMXEcUxSkU/l0AEA4EgFpzR22Q7BkeCQAWOwYDyRf7MxKFd9xxBxoa8lu9u/TSS/MKg4mnnPYLH/z49uTJ5peblDOK4KZGC14+Wl7po+LJtn7WHNhdLjQtWYqTzzwNIOYWtgifp3JK8iPmIpaPsqfQWvT39Ei3RTem2slkLp6VqGlrx/BrewCYP44ijs3hgG/GLAzu2gkgdh6oE3rQCon493Ck6ClsXDjRNjOic31IImL1hrupSe4pTCHChouQPAoATl/x2g/CoRD8o7LxUQ6VW8R6ZNRTuG7dOrz97W/Hj3/8Yxw4cKDQ+2RIR0cHJk2ahJGREbz44osAgKefjl3Ir1ixoiT7ZFVsDmEFNGXQjAmisKW8gmZEUVg3ezYAoHXlGdp9+r7Cak0fJRxJYWX6T5yQblMUTiAHzVj/mOXpmKRt+0weRyFSqrCZqJQGm1ykNy6aEIWjw8P8TKdBv8DtbGjUboeDQcMMjGg0GuspHKdpcWFCZoDiBs0YLSKUw/UYsR4ZicJf/OIXWLNmDf70pz/h4osvxoYNG/DVr34VW7duLfT+Sbz97W8HANx000248sorsXHjRnR3d+P8888v6n5YHUXondQ7heLBSbzozZVySx+VROHMWQCAlpWrtPv0olAaXm/xJD9iLi4GzViScDiccvGm2lEzFCFWofvSywHEQma6LrqkYL+nVGEzskhP7hQ66+rhmzEzdkNVMVLkQJxyQ7/AbXe54KidaGcxOmaPDg5qYrF2ylQpnMZsHKUWhWXQzkOsR0blo0uWLMGSJUvwgQ98AP39/di4cSMeeeQRvP3tb0djYyM2bdpU6P0EEBODoVAI999/P3bv3o3Vq1fjc5/7HNxlcOIrJqJTqF8tk0Vh/s2vYglqfHVOUZS8X7dQiMmjdbPmAABaT58QhcP9/YhGo7DZYusl0gndxc9ZNSGNpKBTaBkGe3sTjmtRXUVENVNO6aMAMPWKN6Fx4WK4GpvgaW1N/4QcqZs9R9suplOoZlHO27R4CYb3vgYgdqFfV0DRUu5IcwrHr0NcjY0Ij8T+tmGDoBWpdHTp8oLun6uI5w99yAxQHu08xHpkJAqBWMDL9u3b8fTTT+Opp57C1q1b4Xa7DcdH5MuVV16JK6+8MuF+RVHwvve9D+973/tM/52VhNhTqE8flUShCVHMNocDrsZGBMf7O8PBIJwWFemRcBjBsTEAgGK3wzdtOgCgZtJkeLu6MXr4EKKRCEYHB+EbPxlnWvpDKg+OpLAm+n5CgE6hSDn2QdcLgq1gv2POPG27WKJQVdWsynkbF5+Gg7/9DYDx4JBp01I+vprRj6SI/b8Zo4cPAQBCoRD07/ZIEYbWxym5U0hRSHIgI1F40003aaWip512GlavXo0PfOADWLp0adrUUFJ8bKIoTOEUOnw+mIG7pVUThSELi0LRJaydOk2a59hy+irtZDLU1zchCsts1Z2YB51Ca0JRmBp5IYvHrDj14z3kAOAfGZEqQgqFeP6wuVxQ0vw+MfhkWOh9I4lIw+vHnUJ3mgH2oqPWvGRZ4XYOxespjEQiGDVY5KAoJLmQ0RHxtddeg9/vx4oVK3Deeefh/PPPx4oVKygILYothVMoXtyaUT4KAC4hsMbKdexS8qjQXwLIYTODwrxC6aTuludzkspGcgopCi1BYGzM0OWhKJxAXsjiMSuOw1sLb1c3gNhiqV9YJCwU2ZSOArJ7Jfa/ERlVVXVOYbx8NLkoVKNRjAqisLGAITOAXIlVyEXF0cFBwOBzQlFIciEjUfj3v/8df/rTn3DBBRdg69ateOc734k1a9bgwx/+MO6///5C7yPJEiVJT6GqqnI8dq05TqGneaIPxMoHIr8UMjNb+lnL6cZhMyrTR6sWySlk+aglMHIJASDCnkINJiYnRyohLUKQSyTDkJk4ntY21EyKjUSKRiKcV5iESCSiXdvYPR44amLvrRgcoxdio8PD2oJJzaTJBe1fBYrnFI4kEbphCy/QE+uSce3EtGnT8Ja3vAXf/OY38Zvf/AaXX345HnvsMdx9992F3D+SAzaH8fB6qXTUW5u2lCVTnMKB2MqOSsDv17Zrp0yRfta46DSt3yMwOorg+GPLsT+HmIO9pkbrz1WjUbpRFkAUhTbXhAvGv80EUmIyj1kSYtiMUcmd2WTrFAKxvsI4RgEiRNdPKLiDqZxCcbh787LCjzErVk+h+BmZdM652raVF+iJdclIFYyMjODvf/877rnnHlx66aU477zz8NRTT+GGG26gU2hBFKFXTrxAkERhnTkuISA3z1s5BTAoiMKaSZ3Sz+wul9TPEXcL5Z4QXmBVE4qiFM0tVFUVwwMDOPDKK9jz/PPSLC0SQ1VVSRR2nPk6bZuicAL2QSen2LMKJde2Jr1TCMiz80QhQyaQx1FMjMWSWll0C9TFGlofR1x4j0YiBbs2Ep3C9nVnQRlv64qEwzwuZoiqqhgdGuL7hQyDZlavXg2Hw4FVq1bhrW99K8477zxMnjy50PtGcsRmNw6aMXtGYRyxLMbKXypJFBp8fltOX4XeZ54CEBOFLZMnyyd1zimsOpz19Qj2xXpMI6EQUADn5dj+/Tj4yivS57PvxAmsPP9809z8SmBkYEC7GHQ3N6N5xek4+re/ArD2YlSx4TErOcWeVSj3pGcm0EXBMsLFIUPEqh93iyAKUziFkihcUth+QiC2qOioq0No/PdGwmGpusEMhvv7pc9I85JlcDU1I9AbWzwLBYNwZ7gYUc3s3rYNPYcOwdfUhCVnnmnpsWqFJiNR+B//8R9Yv349PGnilIk1UJwZiEITxlHEEctirHxxJonCjkkJP29deQZeGd8eGg+bUbnqXtUU2ikMBYN47YUXEgIlAmNjOHXsGFo6O5M80zqcPHoUR/fuxaTp09FawP2VXMKzz9P6iAAgyp5PjSjLR5OidwoLPVdXdgozFYUTgmV4YMDys39LwbDgoNbPW6Btu0VRKDiFqqrK4ygKnDwax+mTRaHTJFGoqiqO7duHvS+9pF2j+GbMhLulBe6WForCLOg7fhw9h2LJ88N9fQj6/VX9nmW0DH3++efjn//8J6655hosW7YMp59+Oq677jr85S9/KfT+kRyQnEKxfLQAyaNAeTiF0Wh0IhlVUeBpa094jBg2MzwwgKjQzA6bTZr/SKoDV4ETSP0jIxOBCW43GhYu0n52dN8+03+f2ajRKHY/9xwGenvx6nPPFXRRSBSFk845r2zK1osNg2aS425p1WbaRSMRaaGwEEjBbhkEzQCAt3uKFpgSCYUQGJ+tW84ERkcxePJk0jRVVVVxYOdO7HzmmYwc3GEhDK5lxUpt29PRoW37R0e17bHhYe1v4WlrQ037xOMKiRQ2Y+L5Y88LL+C17du16ztHjRervvofAORyWg6wT000GsVrL74o32fRa9hikZEo/OMf/4gPf/jD6O7uxsc+9jF85CMfQUdHB2699VYKQwsi9RQKB+GwNKPQTFEoOIUW/UKJozLcLS3SjMI4NR2T4O2OBdBEIxEMCauRdpeLq7VViOgUFkIUBoULvvazzsbrfvo/Wk/IQG9vUUrc8mFseFh7XyLhcMEuYCPhsDQqpuOss8tiMaoUqAzHSoqiKKifLbiFBf5+5eLaKoqCxkUTYTPl3lcYGBvD1r/9Dds3bcKurVsTxmQBsTFQB3ftwsmjR/HSk0+mFOuqqkpOYcvyCVHYMG8+MH6eHhsaQmT8uCCVji5dnu8/KWMKETYTGBvD8f37tdsN8xbgwkf/ifZ1ZwKILXzEsfKIMCtw9LXXEkbTVPsCY0ai8N5778Utt9yCr3/963jb296Gt7/97fiP//gPfOQjH8F//ud/FnofSZYkdQql8tHqCpqRQ2aS98O2Cm7hQG+vts0yrOpEnFVYiPJRsTfG29kFb1c3ZlxxhXbf0b17Tf+dZqJPRwwUaPbb4KlT2rGsbvYceCd3yscdikINuaeQTqGeOrGvsMBhM/LfIvOStEoaYt/f06NdF/QePoxd27YlCENR5AX9fux85pmk32n/yIhWGupsaEDttOnazxzeWtTNnKXdji+qScmjRSodBQBXAdoPRBFTP2cuLvjjo6ibMVO7T+yxZAJpcoJ+Pw7u2pVwf7WfSzIShfv378fFF1+ccP9FF12EPXv2mL5TJD8y6Sl0VFn5aKaisEUYYi+KQpZhVSeOApX/xBGdNe/kWD/ekve/X7vvxMGDBR18nC8jOlEolmyZiVg6OvncCwDojjsWXYwqBewpTI3UV1hEpzAb11YcS6H/jpUbAd0xwUgY6pNgh/r6sGf7dsNyU7GCp2XF6QkVPI0LF2vb8feu2MmjcQpx/hDfz4aFi6TeakAuH6UoTM7+nTsN3dtqP5dkJAonT56MXQaKeufOnWhqajJ4BiklNgeDZvTIITMpRGGSIfZ2k1PDSHlQiJVeEelz2dkNAOg65xzUz50PILbIEm+CtyL6dMSCicITJ7TtjrPPAQA6hUngSIrU1BdxVmHOTqE4lqLcRaFBSXnv4cM4LBgKRuNBThw4YFgpIfcTnp7w88ZFsihMCJkRgnwKjdMntB+Y5RQKx9jaKVMTfi6Wj3KAvTEBvx89Bw9qt12Cjqn2c0lGovDqq6/GZz/7WfzqV7/Cnj17sGfPHjzwwAP4/Oc/jze96U2F3keSJYoj/ZxCc8tHy80pTEwejdO4cLF2sSkNgWYZVlXiLHDQjOQUjid3KoqC2e+6Sbv/6N69SQMaiomqqlIwjv5iC0BCf4YZBP1+rQxMcTjQvnY9gPI47hQbVVXl4xYXsxKonzNP2y70rEJJoGcxHqRu9hzt8x30+wseiFNIRBEjDo0/deyYti3+HTped462vfell6QqAUAuNW1enjiEXnRZRwcH4R8Z0a59XI1NqOnsyv4fkSNi0IxZi4riOaN2yrSEn3tYPpqW4/v2aeex1tPPQOuq1drPqv1ckpEovPHGG7FhwwZ8/vOfx2WXXYZLL70Ud999N66++mp88IMfLPQ+kiyxOezatuQUChe15paPWn/FPt04ijh2l8swrpq9OdVJoUdSBCVROHGxMv3qN2thUGPDw1Ipc6nYtXUrnn30UbyyZQuA2MWJvrS1EE6heFHYevoZcHhrAcgR/xGLHneKjb50lOFYiXi7p2jH81AgUNCExlz7O212u5REXM7zCkURs/TTX9C2RwYHoaoqwqGQFohic7lx5n/9HM3x8BhVxStbtmiiMRqNSqWgzUsNRKFYPjo4KD9+2fKifiecBQiaSecUuixUPtpz6BC2b9yInsOHS7ofItFoFMeEoJ45736vVFFh1Wq3YpGRKLTb7bjrrruwefNm/PKXv8TDDz+MLVu24LbbboPdbk//AqSo2Bzp00dNLR8tt6AZg8H1ImLYTByWYVUnhXQKVVXVfS4nZvw5fXWYfu112u1SB85Eo1H0jp/YTx49irHhYcOytkKLwknnnKdtl8Nxp9io0jgK9hMaYbPb4RPDSAroFuZaPgrIZY7lWkKqqqq08NW8fAU84+MgopEIxkZGJJewbuZMOLxenPmjn8EzvngbDoWw45lnEA6FYkJy/Lvu7Z4CT2sr9NRMmqz11UXCYZw8ckT7WTH7CQE55b0QPYW+qYlOoVWCZlRVxZ4XXsDgqVMFH1eUDSePHtUWITytrei+5LKyMDaKRVJReOTIkYT/BgcH0drairq6Opw8eVK7n1gLcZ5e8vLRanYKU4tCMWwmDsuwqhNpJIXJTmEoENAWbVyNTQmBAXNuuFnbPnXsWEJgQzHRuyknjx41vFCNhEKmOi+qquqG1p+rbbN8NBH2E2aGfoh9ocg1aAaQ+wr1Kb/lQtDv145x7pYWOGpqEnr+xLCfeGlvzaTJOPO//lsLShobGsKurVulfkKjxVsgPtJj4neIZapNS4orCqVFRRPOH9FoVG456OpOeIzHIj2FoUBA+zdHIxHLjFcSF1hnv+vdsDmdUiCXVcRrqUg6jfu8887L2GbfsWOHaTtE8ieToBkzy0elL5RFL84y7SkE5LCZOLzAqk6kkRQmO4XyyT2xz6V+zlx0nHU2jv/zcQDAsf37MW3BAlP3IVP0K869R47AXWPsfPhHR+EzaRFldGhIW9V11tVLK/2iiLbqcafYiO8Dk0eTI/UVFvBiNS+nsALCZqRSx3FXq2nxEhz7+6MAEv9ddbNma9sty1di1f/7Bp768PsAAH3Hj0uzSpuXrUQyGhedph03xWsgo9aQQiIuvptx/hBdV097h2FJslQ+GgpBVdWSlJEHdYJ0ZGAAvoaGou+HyPDAAIbGP0OK3YGZ178TgHx9p1b5uSSpKPz5z3+ubb/00kv4z//8T3zwgx/EsmXL4HQ6sX37dnzrW9/Cv/zLvxRlR0nmFNspdFg8Gj4aiWgHZMVul9K5jKhp70DtlKkYOXhAu4+lWNWJq3Eilczs3qNAkn5Ckdnverd2cXN8/35MmTsXtiQl+5FwOHbibWqCzZZRZ0DG6P/tIwMDUqiM+H3xj47C19hoyu+VXMJzzpX+7XQKE5GDTbiQlYxiJZDmMx6kYf4CKHY71EhEm83ncDrTP9FCiNUNtd2x/jf9uA3xO10n/F0AYPo116F/x0t45bvfBiCXYBqFzMQRncI4zro6wx68QmJ2T6GRyNZjd7ngrKtDaGgIGO/ZdJag0kkfjmSFhQ3RJZxy2RWoGS9lFvvTrXgNW0ySXjmsXLlS++9Xv/oV7rnnHrz1rW/FwoULMWfOHFx55ZX4whe+gB//+MdF3F2SCcl6CosyvN6CF2fiwcnT1g4lgwtmvVvIVffqJJ4ICsREnJkpoPI4CmNR2Pn6izTBGAoG0ZukXF9VVWzftAnbN23SgmDMxEgQx48nNqcLk89/vXa/mQmkUj/h686VfsaewkQoCjOjWLMK83EK7R4P6ufN126XY9iMtPDVHSt1bFokiMLBQal8t372xN8lzpJPfQ6Tzj1fuk+x2SQnVY+RKGxasqzojpnZojBdP2EcceG7VH2FIYuJwlAwiF5hvNOcmyYMLSloxoLXsMUko+XkgwcPYtq0xA/gpEmTcEKYH0WsgZKsfLRA6aM2iyc3ZRMyE0ffV0insDpxeGu1E6w+GCZfjAbX67E5HJj1zhu120f37TN8nBj8curYMdNdzVCK0qeG+QtQN2tihd+ssJloJILBkye125POlkWhze0Gxi/y1GjUEmM7So0kQljynhTfjFnaZ8c/OlqwC0FZFGZ/Din3EtKAQVJm7fQZWoJwKBCQg2ZmzYIem92Otd/9oVRa2rBgIRxeb9LfWz97bkIOQPPSZTn9G/JBrDQxmteYLX5pHEVy19MKswr15aPD4zMjS8WJAwe069PGhYvQcvrENZ7VjY1ikpEoPO2003DvvffCL1wQDQ0N4d///d+xcmXyum5SGmzOIgfN1Fj7CyUenNKFzMRpXUmnkMQQT75mhr0kG0ehZ+Zb36Fd4Az39WFImNMVR3/BOCgEMphBKpHZdNpS+IRFQ7OcwsFTp7TjiW/a9ISLIEVRuMKrI59gk2rCUVMjld+NFWC+JpC/c1v2olAUMd1TAMTHbSxMeGxNx6Sk1yWuhgac+eP7tYTm2e96d8rfa3M6UT93vnRfsZNHAaB22nRJAAfyXFQMiCX7qZzC5mZtu1ROoX4BNTpeBl0KVFWVFlTn3PxeyTXmSIoJMhKFn/rUp/DEE0/grLPOwrXXXotrrrkGZ599Nnbt2oXPfvazhd5HkiWKfUIURsdXZqLR6MSH3WaDPUlIRC7oL8ystmIvXnynC5mJ07hosVTuwwus6kUUI2aOXBAvmFINVPa0tmLKFW/Sbh8zGE8xrBOKQ0IggxmkurBoXLwYtVOna7fNEs5S6aiufCyO1Rekio3KoJmMKUYCaT7lo4Dcf1eOCaTi8dIrHEcbhRLSOHVzEktHRepnz8GGjU/j8q0vYdbb3pH2dzctln9HKUShzW6XRosM57lYl4tTWLLyUQOHslSf4b7jx7XzkrO+HlPfeJX0czqFE2QkCufPn48///nPuPXWW7F48WIsWbIEd955J377299iypQphd5HkiU2sRl9XKDp+wnNrK23ORxJS1atgJw8mplTaHM6pXITisLqJd4LA5hTAhRH/FymcgoBYM6NEyvjPYcPJ5xw9SfbQZNFoegU6i+umhYvkYXz2JhUoZArUsiMrp8wDsNmZCRnysVjVirE/rVCxeXL5by5lI9OCJvRoaGy+oyrqmroFAJyX2Gcel3IjBEOb23SUns9ovB0eGvhmzEzo+eZTdOyiUCcfEVRIIOgGUA3q7BU5aMGrmip3G4xYGbW229IGP9k9RaoYpI0fVTkS1/6Es4//3xcd911pqfaEfNRhDSv+AdcGkdRa17ITBy7pwbh4diJNRqJWOpzkosoBIDWVavR89STAABnfWmjlEnpKET5qKqqUilRus9ly/KVaFq6HH3Pb4MajeL4gQPonjNHey39yXa4rw/RaNS076EYpz7jrdej75MvAKoKxWZDw8JFcHi98HRMgv/4MWD8YtBTW5vz7wsFAtq/SbHZ0L7+TMPHiSu8kSo/mQO6kRQ59LBVE/k4haqqYqivD4qioK6pKenj5PLR7J1CZ109fDNmYnjva4CqYmRoCHUmJfsWmlAgoC0OOesbpNLQxtMSQ2LEvmQzENNJW1aenlHAXCEQF5fzcQqjkcjEtYzNlnIh0d1c+gH2+p5CoDSicGx4eGKBUVEw+503JTxG7Pctp4WXQpDRt2Tv3r14z3veg7Vr1+KjH/0o/vjHP2K4gDHOJD9Ep1A1cgqF2WtmYbfwrEK5pzCz8lEAmPPu96Jh/gLUz5mHaVdeU4hdI2VAIcpHg36/5uK7mhIH1xshuoXH9u3Tvtv+kZGEZLtoNIoRg97DXBGdwoa587H4o3fA2dCAhbd+DM7xRSYxDS/f96m/t1fbbl6+Eq4kizIs+5Hh8PrMySeB9NTx49i+cSNe+Oc/cfLo0aSPyzdoBijfvkLZ1ZJLHRvmLUgQaZk4hdnQsuJ0LPjQrWhbdyaW3PV5U187G5p1TmGulVRSMNmkyXJFmA4paKYEolBV1YT0UWDi3z8yOIh9L71UlHJSsZew84ILDctumWQ9QUai8Pvf/z6eeuopfPWrX0VTUxO+8Y1vYO3atbjxxhuleYbEGog9hfGVOjF51Gli8mgcK3+ppJEUGfYUArF5hRf//Qlc/PiTRZ9vRKyD5BSaVD4ql452p3jkBFOveBNcTc3afvQdPw4geUmSmSWk4mqzq6kJi277ON60Yy8Wf/QO7f7aadO17bxFodhPeM55SR/H8lGZfMsVq4k6oXx0bGQkq4v1k4cPa9sHdu5M+tx8nUIgca5fuSD1v3XL509HTY30/gOJMwrzRVEULPnkZ3Der3+L5iXF7yeM45s+Q1uIDweDOVebZDKjME4u5aPH9+/H9k2bcOrYsZz2TyQSDmuffbunBo5xlzgcDGK4vx/bN23C4T17sOOppwrabhQJh3HiwMS86Tk3vcfwcQwsmyBjP93lcuGss87CHXfcgX/7t3/DZZddhs2bN+Oee+4p5P6RHJDSR42cwtoCi0KLfamk8tEM00dFij3biFgLr9ALY9asQmnVtyt1P2Ecu8eDmW97u3Y73ichXih6xofxAuaKQnG12T0uTPXfC58oCvNMmRsQnMKO152T9HFWPu6UAnlYOp3CVLibmuBubQMQ++xkc7EupvuODg0lvZA2Q6RXglMoHkPjiLME7W532r7qckVRFDQvXa7dztUdy7SfEMi+fHSovx+vPv88Bk+exJ4XXshp/0SkhfiODjQJf+sdTz+tmRRBv19qTTCbE4cOade+vukz0HHW2YaP43lkgoxE4bZt2/C9730PN910E1atWoUbb7wRx48fxy233IIHHnig0PtIssQo9EXqKawipzAcDk8M2Xa54CqTfgxiHZy1Ps2hU6NRw16JbJEScTMMTgCA2e+4UZuv1t/Tg7HhYSl5dLYw03Do1ClTBKyqqtKJO/5e6BETSPNxClVVld6fVKmBVj3ulApVcqboFKZDLFnMtK8w6PcnCMhDu3cbftfyTR8FIKVXjgwOWi7ILRmBNEmZYohO3aw5Jev5KwaSKMyxr9BvMPMxGWL56MjAAF745z9x4tAhw2Okqqp4bft27XbQ709oR8gWfctOo3AM1zuXhep5VFVVSuqec/N7k37GOJJigoyCZt7ylrfAZrPhvPPOw7333osVK1bApRsMSqyDzSH0FI5/wMOiU1gQUWjNMq6Q5BJOoutHcqJ2ylQE+2LOW2B0FO4cZo6JBDKcUWi0H50XXowjf/4jgJhbKLoH0668Brvu+y6C/f0IBYPwj4ygxpdfsFQkHNYuRO013qSOhzirMJ9AHnGsjc3tTtlvadXjTqng8PrsqJ8zFz2bnwAAjA4Po6mjI80zjB344f5+DPT2orGtTbpfdm5zE+metnbUTJqMsWNHEY1EMDY8DG8BzuFmIzlbBk5h+7qztO3WM1YXZZ9KRVORnUJvZxc8be3w95wAAAz19WGorw/7XnoJHdOmYdK0aXCPH1dPHDyYIFSDfn9e5w39dVeTQbCQ9thAAMjzHGXE4MmTWqqwvaYGM669LuljbQya0choaeaee+7Bhg0b8Nxzz+HDH/4wbr31VvzsZz/Drl27Cr1/JAfSOoWFSB+1aNBMNgmPhCTD7ARS8XOZacR6nDnC4OZj+/drLp6zvh6106ajddXEBZYZJaRy6WjypEWfST2FkivZkDr1l2U/Mhxenx31c+Zp25k6heIMUHFR4tDu3dLjVFXVObe5i/RynFeYzilsXrYcq7/1n1jw4duw+KN3FnPXik7zMkEU9vfn5Pam6tHUY3M6cd5Dv8e0q66FTTBwQoEADu3ahS1//St2btmCvhMnsP/llxOen2/vvFQ+2t6RMDNSJFygkRniGIrp174VzrrkAYsOcXGxyp3CjETh1Vdfja9+9avYuHEjfv7zn2P16tXYvHkzrrnmGqxfv77Q+0iyxJZGFFZT0IzUT5jlxTchccSeGDMSSINST2FmQTNxOs46G3WzZgOQywWbliyDoiimi0IpZEboVdHjae/QjgPhYDDnXhFRhLoak4tQAHDUeLVtikL2FGaLGG6SaQKp2E+45K7PaSOgBnp7JcEojQdxu/OqUim3vkJVVeXB9QZOIQBMv/rNWHLnp6VglErE29WtlXRGwmGM5dBzHRCeo09zNaJu1mys+fb3cPmW7TjtE5+Sr39UFSePHMHLmzcblm8azRjMBrF81NPejvo587TWHcVulxJZgwUoHw2MjeGk0Oc75103p3y8zaKmRinIqoi7v78fr776Knbt2oUdO3YgGo1i/vz5hdo3kiOSU1ik9FGbRdObgroyBkJywewE0kAeixWKzYbZNySe5OIJe61nrNHuGzLDKRSOHe5m437C+H55hRXsXMWzWOruamhM+Vh7jTUXo0oF00ezQxxLMZqBUxiJRKRRL9PedDWmvulq7fahV1/Vts10bctNFIZDIe2z6PB6q76XX1EU2S3Msq9woLdXE2+K3Z7VOcPT1o6Ft3wUlz39PNbd9xO0rzOe+RpfaATyF4X68lGb04nV3/4eui7agDN//HMp8KUQTuGxffu0kU/t685Ew7zUOsVOp1AjI1H47//+77jyyiuxbt06fPGLX0QkEsEdd9yBzZs344c//GGh95FkidRTWKzyUYuWcYWkMob2Eu4JKWdqpwgJpHk6haqqyiMpcnCwp197HRxeeTh805Jl0v+BWApovsEU+nEUqZD6CnNMIJWdwsaUj7XqcadUmFWuWC14O7u071E4GEwb3y+W/tXNnA13czMWfPAW7eenjh3DyOAgAHNCZuI0CSMV8pl1VywCulAU9vIjpwTSaDSK/Tt24MUnntDuq5sxC7ZxdzobbA4Hplx2Bc799W9x0d82Ytbbb4B9vNKi8/UXYdY7JkLK8i4flZzCWJ9u5/kX4swf/xydF1wkBeEUImim59AhbTvZGAoRcdFGrfLzSEaicOPGjTj77LPxP//zP9i4cSO+9KUv4cILL0RtbW36J5OiozgmDhiaU1jo8tEaa660iAecePw4Idli5gD7YCAgDa7P5eLdVd+AaVdfK90XT+l01EzMhVJVVaoSyAWjcRTJMGNWoehMOtM5hQyakaBTmB2KzSY5JOncQtF5b10dc+Qb5s1H1yWXaffHewvNdAq93VO0BZJIKGTavNRCcWz/fm07XShKtaDvK0zH2PAwtm/cKPWquurrseLfvpr3vjQuWITTv/J1XPHcy7jwkX9g/X/9XAo8M7N8tMYgvMndKohCk53CSDisfT8Uux2dr78o7XP07U9WX3QpJBmJwoceeggf+chHsGSJnCAUDAbx7LPPFmTHSO6kcwoLIgotWpMtXdCmKH0jJBW1Js4qFD+TnjwWKmYLfRLO+nr4ps/QbkvDi/Ncic2mx89nwlgKOWimMeVj6RTKsKcwe8QS0nR9hWKPrti7u+DDt2rbvYcPwz8yIgv0FAm6maAoChoXlccQ+xMHD+K4IAq7L3tj6XbGQtTPW6Btp6o2UVUVJw4cwHOPPy6Jx/Z1Z+LixzejY/1ZSZ+bLa76BjQtPg02ux3ezomKlXwXHUK6oBk94nnPbKfQr0u9tTmdKR4dQ7HZpEAe1ULGRrHJSBS++OKLeNOb3oRFixZhwYIF2n9Lly7F9ddfX+h9JFliFDQTrtbyUUkUVnYzOykczrp6baVejUbzWt3MRmSlonH+Qiz++Kfgmz4Ty7/wJWkGk1Sek+dKbCYzCuOYMcA+u/RRa1YolAo6hdlTN1sQhSmcQlVVMST0grWefoa23bJsBTped652+9Crr5o+HqRR6Cu0agLpyMCANPx8yhVvxPRr3lzCPbIO4kJdOBg0XFgMh0LYtXUrdj/3nPb5Uex2LLnrczjnVw8XNEFdfO1gHqIwGolox3DFbje87jLz/KRHFIW+6TMzfp5VjY1ik5Eo/OIXvwi3240vfOELcDqd+NznPoebb74ZLpcLX//61wu9jyRLFGc6pzB5NG+uWPXiTBKFwoGIkGwRQ1Ty6SuURE+eAQyLbv0oLn3yWcx481ul+z0mOoWhDEdSAECt0FOYq1MYyap8dOJiO1LFJ/I44t+qEBUhlUimYTNjIyPago6zvkFKLgWAhR+5Tds+cfCg9Pk3o79TjPW3olMYDoWwc8sW7YK6bsZMrPrat9hPOI7DW6ulXEaj0QThMXjyJJ577DH0Hj6s3Vc7dRou+P1fseADH0k6eN0sPO0d2u8IBYM5CyOpn7C1zXC/PQUsH5VSWqdlXrps1WvYYpPRp2zHjh246667cNVVV2HBggWYMWMGbr/9dnz0ox/FL37xi0LvI8kSsQm5aD2FFl1lEQ84dApJPoglpP48VlJlUZi7U5gKMxv5JWczTQm22D8UGB3NqcyWQTO5k82AaxJDKh9NIQqlfsIz1iSInba169Fy+ioAsfOu2AuWb/koMNEzDFhPFKqqit3btmnVAXaPB2f++H44C1CVVK4oiiJdg4jH5cOvvortmzZJZZszrnsbLvrbRjQvXVaU/bM5HPAICe3BHMWaVDo6yTjx3aV7H8zs4ZOcQqFyJR0cSxEjI1Goqiqaxy8Gpk2bpg2tP/fcc7Fz587C7R3JCUOnULgQLUz5qPVWWaKRiFCC4YCz3nyHlFQPZg2wF0VPOicsV6SewjxXYkNZBM04a31aoJOqqjmVIeVcPlrFJ3Ig9r7F3zuby23Yy0MS8c2Yqc0aDIyOSguoIvFUUQBoXXl6ws8VRcHCD0+4haPC480o5a2bPUf7vAf9/pwv2gvBkT17cEqYC3fGN76D+rnzSrhH1sSo1zvo92OfMEDe6fNh3X0/xhlf/3bRRbU46iLXElIpZCbJMcjucsEpHNvDJvYVSj2FQo97Oqx4DVsKMhKFc+bMweOPPw4AmD17NrZu3QoAOHnyZFW/eVbFZpfnFKqqWoTh9dZbZZH7CZtYxkLywqwEUmnuX5pyzFwx1SnMoqcQ0PUV5vA+ZRU0U0OnMI58McQxAJlid7mkkKZkg8XFhSDfDONepckXXISGhYsSf0eeIymAWAWQ+NpWcQsHenuxb8cO7facm/4FU99wZQn3yLqITmFcCImfq5rJnbj4sScx5bI3FH3fAHk8UsAggTQUDKL3yJGU6aRBKWQm+WzoQo2lEHvZs3EKrXgNWwoyEoXvfve7cffdd+OBBx7ApZdeir/+9a94//vfj1tvvRWrV69O/wKkqChOOWhGFSJ2bU5nQQIIrLhiL4tC9hOS/DBrgH02IxdyRTzh5jscOJuRFIBctpivKHSmLR/l6m6cQI4XQwSon50+gdSfQWmuoihY+KFbE+63mXTOtVpfYdDvxyvPPquN2GletgJLP3N3iffKuogJ6PEKDtFZa1y4CN6u7qLvV5xUTqGqqnhx0ya8smULnv3rX7H3pZcMq1DSjaOI4ylA2IyqqnIJfVY9hVxgBDIUhRdddBF++ctfYsmSJejq6sL3v/99OJ1OnH322bj7bh4ArIY+fbTQyaNA4pwXKyBdzLawn5Dkh1cYYJ9rsiaQXc9criQbSaGqKsaGhzPu4YhGoxNVBjZbRiXY+SaQciRFbkiihaIwK6SwGQNRmHCxOSX5xWb35W9McBLNCJoBgPq587XtfErYzSAajeKVLVu0C3pXYyPW//CnsAvR/kRG30sHyILI09Ze9H0S8U6eSCDVO4WhYFD7bkSjURzZswfPPvooDuzcKR2z042jiOMuwFiKYCCgXX+6Ghrhqk/dfiAiJgRb5Rq2FDjSPwR45zvfibvuugtz5sTSttasWYM1a9YUdMdI7ijinELxog6FS6STvlAWuThj8igxkzrhQs8/OopoNApbDolwZqaPJiNZac6Op55C34kTaOrowIIzzkhbYigJ2IbGjBLw8h1gT1GYG1LAQgrRQhJpFBw4o3EP4VBIO4/aa2pSLjLa7HbM/8BHsOWjH9HuM2MkBSAfL8JJeh+Lxf4dOybmNioK1n3/x9IAdJKI6I6FjURhHnNrzSCVU2jUYxgJh3Fw1y4c3bsXXbNnY/KMGXL6aCpRmEXfe3xRxlVTk/KcKyWPTp+e8jX1WDUssdhkdEWzc+dOeExa6SKFR+8UShHvBRhHAVjz4kw80KRLTSQkHQ5v7URpj6rCnyKpMBXFSB81Ks0JBQLoO3ECANB3/DgOjgeGpUJy2zP8DuUzwD4SiWiJyTanM21qo8OCZeulgk5h7jQJMwCNyjJllzB9v+b0q98sXWCLva/54BKcevG8XmxOHjmCI3v2aLcXf+JT6Djr7JLtT7kgXodoQTNiQnrJnUJBFOqcQtE5rJs1R3Ktw6EQ9u/YgWcffRTDwizPlOWjolOYQhSqqopdW7fi2UcfxY6nnkpZ5SInj85I+jgj2IoQIyNReMMNN+Azn/kMnnjiCRw4cADHjx+X/iPWQrHZpBV98SLU4StM+ajYM6Fa5AslX9CyfJTkT/2ciUS9VDPNUqF33wqBvnxUVdWEPsiDr7yC/t7elK8TEgVspqJQ6OMIZFk+qu+3THfxLYrGaj6RA/pxFFNTPJLo8c2YqbVWhAKBhAvibGPu7W43FnzoFu12w7wFpuynUyiHCxdAFEYiEby8eTOee+wxwzJaICYWdj/3nHZ78nmvN+yjJIlIIymExbo4nrYSO4WC06s/X4hOYduadbjobxux+pvflRagQoGAVJmS2inMLGhmoKdHm93Y39ODk0eOJH2sFDKT5UgejqSIkVH56He/+10Eg0E8+eST0klaVVUoioIdQvIUsQaKwwF1/IsmXWgVqnxUuDizyhBplo8Ss6mfMxfHHnsUQPJAinQUwyl0eGth99Qg4h+LlZBHIobhOLuefRbLzj4briSVINLCSob76pk0GTaXC9FgEKFgEOFwGA5HRqcaRLLst7RiwFUpUFVVFi6cUZgVis2GxoWL0PvMUwBiJaTNwncik5AZPbNvuBmOWh/USART33iVKfsp9vQWonz01LFjWjXBwV27MG/lyoTH9J84oZXSeid3Ys13vl/wweqVgjtd+WiJx8jU6OYUqtGo9rcVF0q8nZ2w2e2Yfs11mPrGq/DaL/4bL3/jqxg7Kgu2VD2SmQywV1UV+3Vj7w688gpaOjsNFwzzqZbgAmOMjM7UP/jBDwq9H8RkbA4nonFRKFxoFcoptGLQTCiH0jdCUiEFUuTgFKqqmtUcvnxwt7Rg9PAhALEEUiNRGAoEsGvrVixau9bwJCt+hzIZRwHEeqpqp0zF0J5XAcTcQkeG/85s+y2tWLZeCoJ+v1ah4WpsLFibQCXTeNoSTRSODAygWSh9yzRkRkRRFMy49i2m7qMYnFGI8lHRDRqK9wvqEMsIp77pqoL1RVci7jTlo6XuKbS73XC3tiHQ2wOoKoKBANzjYkk8f4il0TanE7Pf8S5Mv+Y67Pnpf2HHN7+GwKmTmHzeBSmT7jNxCk8dO4bh/n7pvrHhYfQePoy27sSU1lwH1wPsKYyTkSg844wzCr0fxGQUh13blpxCX4F6CoVGetUiXyiWjxKzEUVhLk5hREoCroXN6Uzx6Pxwt7RqojAUDEon9Y7XnYvj/3wMUFUM9Pbi0O7dmDJ3bsJrhHMQhUDMTYmLQv/oKGpzEYUZlNbqF6Pi1SvVRj69NCRG02lLtW19X6G+p7BUSE5hAUSheHEeGBtDwO+HW1dFIDtbyefQkUSM5hRaKX0UiLm/gd4eALHFprgolJxCQRTGcdTUYN573o9Zb38nBna9IvXpGuFO4xSqqooDgkvo6ZgE//FjAGJuYWtnZ4JDLZaPZu0UcoERQJqewnA4jF/+8pd4xzvegTVr1mDx4sVYt24dbr75Zjz88MMZx5qT4mMTEkjFA33BykeFL5RlykfFBm6WjxITEHsKx0ZGsj4GFqOfMI4+3U28sJ1+7XVY+OHbtNsHdu7EgEF/oXjh6W7KvNQ11wH22YpCxWaTe0EsUqVQbPJJ3SMxxItYfQJpLuWjhcBR69MuhKORiOmfd71jY+QWiuKgZhJFYTaIC2uhYBCRcFhbKFTsDku4rjXiWAphITGZU6jH4a1Fy7IVUuChEZ40Iyl6Dh3S+lrtNTU478HfaYsi/pER9Bw6JD0+Eg5r13yK3Z51Ei5HUsRIKgpHRkbwjne8A5/73OcQjUaxYcMG3HzzzdiwYQNGR0dxxx134IYbbkDApKGTxFwU4QtZjKAZySm0yBeK5aPEbNwtLdpqbzQSyXpWmCR6snDeckFfniOe1Gu7urHoo3egbc067b5Xnn1WKmWKPy9OVk5hjrMKsxlcH4crvBxHYQb1c+dpzn1gdFRbwEmYUVjCEB9FNys0YnJfYVgvCoUkyTiSKOygKMwGu8sl/f3GhBYEd0uLJXozawwSSFVVlf/ugnDMFfF8Eg4GpevGaDSKg6+8ot2e954PoG7mLMx7zwe1+w7u3i0tyornN29nV1pRqoflozGSfgK//e1v4/Dhw/j1r3+N//7v/8ZnPvMZ3HLLLbjrrrtw//3346GHHsLevXvxk5/8pJj7SzJE/EKIB3qnr/BOoRW+UKqq5lz6Rkgq8ukrLMbg+jhu3VgK6aTZ1Q2bw4E1996nidxQIIDdW7dKJ9pcRlIA8liKbISz9P5kOHiYYTMcR2EGdpcL9UJK6PDgIIDY9yLuHDjrG7IaiF0IxH5Rs0tI9WV86ZxCD0Vh1oglpGLCa6lDZuJ4DWYVRkIh7djq8HpN6Vm2ORwJzmmcEwcOaMc0Z10d5r0vJgbnvvs9cHhrAcQWG8XPq5Q8Oj37EnqOpIiRVBQ+8sgjuOOOO7Bw4ULDn8+fPx+33XYbfve73xVs50juJHMKi1E+Gu/tKSWRcFjbB3uNF440884IyZS6PPoKi5E8GscjlI8G/f6JE6jNpq0Geyd3YvW3/lN7XH9PDw6/+urE/ubsFE64VYUsHwWstyBVCgIWKW8sd5qWJPYV+i3iEsZxNhQubEZfxjc8MCB9pxIcoxRz6IgxrmSisMTjKOLUTBbGUoz/rQOSS9hlWt+2UdhMJBKRZugu+PBt2kKMs64evpkzJ/ZP+G7K39PpWe+LzSOMVavS8wiQQhQeP34cixcvTvnklStX4kiKmSGkdIgBFmKiWKHKRxWbDTaXS7td6hJSuZ+QITPEPPKZVRjKQfTkinjCFYMzajomSZUEk8+7AAs+eIt2e/+OHRg4eRKAvL9Z9RROlUVhpotEeZePVukKbz6pe2SCpsWnadvx70xAGvUxvdi7lEAhnUJ9+agajUr9leHxmaex/ajTXBuSOWLFhSwKSx8yA8TGTcSJXzsGpSqT7Hr1UmE0luLYvn3awoO7uQVzbny39Jzarinatl/YL/kYmP3CGJ3CGElFYSgUgtfrTfnkmpoajGQ5nJgUB8U+cdEnflnMGqJrhJVW7KWyN4bMEBNpmCuEzWTpFEYkp7CwZWjiYoh4YVfbPSXhsYs/8Sm0rlqt3d717LM4dewYQsIKcTZOobOuXiuTUqPRhGHgycjNKazu8tFoJDLx/tpsWQcskAnEsBljp7D0LmyhxlKo0aihyBT7CoNMHs0b8XpELh+1iCgUykeNncLkITPZoncKw+EwDu3erd236PaPJyw8eIXzl+QU5pE8CrCnME7pu1pJQbA5E5tsGxcuRsO8+QX7nVZKb2LIDCkU0liK4eGsSqWl4JYCl4+KJ1zxJOc1mO9kcziw9j9/qAm/oN+PHU8/rUsfze57VJtDAmkkB1HosNBiVLEIBQI4tHs3+k6ckN5bb2dXQcecVDoNCxcB46Vxo0NDiITDlgmZiSOWj5o5wD6Z6yj2FZodNlKNiNcj4mfL02oNUVgzuVP7DgTGxhAJh2Wn0ExRqHMKj+7Zoy3oeydPxsy3vTPhOeKippSOmqejT6cwRsp4np/+9KeoSdGLNZpl8h4pHqJTGGf6m99a0N9pJacwRKeQFIiazi44an0IjwwjHAohFAjApZvllQypPLKI5aMi3q5EUQjEBMXqb30X/7z+zQk/a5i/QPp+Z4Jv2jSc2vYsgNgqbkMGZdzhHJzUanQK9+/YgeMHDgAAmoWxACwdzQ9nrQ91M2djaE/MrRgdGpKdwhLOKIxTqPJR8ZxpczoRHX/tob4+bf4nk0fzJ9nMZKv0FDq8XtTNmoOhV3cBqoqRwcGCOYXiWIqx4WFpzMTiT9wluXdxvAaiUFXVvMO26BTGSCoKOzs78dvf/jbtC0zmapEl0a8WKzYbpr3pqoL+TitdnMlOIXsKiXkoioK62XPQ9/w2ALGTWcaiUPxcZtGjlwvJemmNykfjdJ5/IVb+21ex52c/gbOhAbXdU+CbPhMzrst+Qal2SvZhMwyayYxBwb05deyYts3k0fxpWrJEE4X9PT26wfUWKB8tUNCMeM5sWrIMAzt3IDwyjKDfj+DYGNxeL0NmTCC5KLSGUwgALctXxEQhgOH+fp1TaN41v3iOOr5/v1Z145s+A9OuutbwObUG5aOBsTHt2O9qbMzp3FqN5xEjkorCv/3tb8XcD2Iyit0u3Z507vkFP+gUcoh0JByGzWbLeI5PrlH6hGRC/Zy5migcHRpCQ2tmbnQxnUJnXb204h8nmVMYZ/Y7b8Lsd96U9+8XBUqmYylyCprxTixGRaqg7Ec/N0/EZwEnq9xpX3cWDjz0awDAod27pdA0yzmFZpaPiv2CrW1wrPDi+D8fBwAM9vWhTScKPR00BHIh2WKd2yJOIQA0L1uOfb/6HwAxpzioSx81C9EpFNswlnzyM0nnDBo5heK8x7rZcxOekwkMLIvBnsIKRe8UTr/2LQX/nfaawqy0DPX14Zm//AXP/OUvUg15KuT0UZaPEnPR9xVmSjFHUiiKYvjZTycKzcKX5QD7aCSiHTcUuyPjZEMrVSgUA3Funh46hfkz481vRcP8WCBbNBLRLlbdLS1wpAnfKwaFGkkh9Tu3tKBl5SrtdryvUDyv0inMjaROoUV6CgGgeflKbXu4v1+ecVugoJk4DfMXovvSK1I8p0U75kfCYYRDIekcLJ6bs8HG8lEAFIUVi9hT6Kj1oevCSwr+Ox0FatTtOXwYkXAYoWAQJw4ezOg5LB8lhUQaS5FFAqksChvN3CVDjFalSyIKM3AK5dLRhoxnYVVb2Y8UvT59BnwzYnO7FJsNLcLFHMkNm9OJ07/y9YT7c5l9VgiK0VPobm5Gy4qJz1I8iZU9hfljdD2i2O2WqmhqXLhYMxb8IyOIjDvSNpcLLhP300gULrnrsykrwhRFSUgglZzCWbNz2pdCXb+WGxSFFYqYPjr1TVdlHRKR0+8s0EqLWAo6MjiY9XOsdLAllUHOTqGUPtpo5i4Zoj/pOnw+KdK+kNRM7oQyXgIUCgS0C4tk5CqYq1kUNi46Dec//Ecs+ugdWP9f/w3f9Bkl3LPKoXXVasx6+w3SfbnMPisEYk9hOlGoRqPYv3Mn9rzwQtrHhnULqY0LJ+ZUjwwOJg6un8Ty0VxwGYhCd3Nzxq0xxcDudqNhwaKE+2smd5o2uB6Qy0cBoGXFSkw+7/Vpnyf2FfrHxmSncNacnPaFTmEM63wKiak0LFgIILZ6PMsg1rcQFKqMS7yYHM1QFDJ9lBQS37TpmuAJ+v1pBQ8QW33Uvhc2G5y+ukLuIoBEpzBVyIzZ2BwOw1CAZMj9hJmX1lZblHhAl4bpaWvH4ts/UZRqkGpiySc/K/Xh13aXvp8QAJzinMI0x51Tx4/j0K5dOLZvH/a9/HLKx+qra2o6u7TFmfhoDqmnsJ3lo7ngamhIyHyw4szH5uUrEu4zewaqq6kJNpdLu73kU5/PSHSKY5USnMLZuYnCajuPJIOisEJZdNsnsPLfvoqz/+dBNC9bXpTfaS9Q0Ix4sTg2PIxIBoKT5aOkkNicTvimTbgymbiFkhNW31CUlWF3s7wg4i2iKATkkrt0JaT68tFMqWan0Apz8yoVV2MjVn75a1Dsdih2B7ouubTUuwQAcNZnXj4qVtb0HDqU8vH66hpFUSS3aODkSa2/0llXZ4n+ynJEsdm0ebBxrJQ8Gqd5mYEoNLGfEIi9F/Pe+0Eodjtmvf1daF+3PqPniYuNY0ND2mKFYrfnPJbH7qFTCKSZU0jKF0dNjSkJgtlQDKcQiB0EfCnKy6LR6EQDvqJknGJISDbUzZ6YZzY2PJzyMwkUv3QUSHTJi9VPGMc3bRqOj29nJQqzKh+trqAZeZi6NUoaK5XuSy7Fhk1boNhslkgeBSCVf6cLmhGdvWgkgp5DhzB5hnGJsRQ0M76Q2rhwMXqe3AQA6DtxQvt5DZNH88Ld3IJAb4922yozCkVaDJzCmgKMoFty56ex+OOfhE3nnqZCXNzs75l4H2unTksIWcwUu1teXIzP5qw26BQS0yhUpK/+xJeur1C++G7K6mBDSKbUCw3tWTuFTcXpc00oHy2yKKzNIoFU/J47s+h7rLYocSloxgJz8yod37TplhGEQKJTKEb56xFFIQAc3bcv6eNFUegZX0xqXDTRVyhefHsmWa/csZzQ5xxYURTWzZ6bkABt5jgKkWyv0aSeQuF4WD93ntHDM9sHp1Mq6031vapkKAqJaeRqv/tHRhAUoq716J3CdH2Fcj8hS0dJYRDnIWUtCgs8ozCOp+RO4XRtO61TKC7mZPH+VJNTqEaj8iDpIpcDk9Jjczphr5ko3UzVThHUjXAaGxrC4Ph4CT3iuIl4wqQYNiMu2jB5ND/0FRxuC5aP2ux2NC1dJt1ndvloriTrja/PMXk0juQWVsECoxEUhcQ0crk4O3XsGJ599FFseeSRpBfW+gG92TiF7CckhaIuW6dQFD1NjYXYpQT0iyJl01OYRfmoo0DzUa1IwO8X5ua1sq+rSnFlOKtQ7xQCwLF9+xLu088IjY+9aJg3PyEUBeCMwnxJcApbrecUAkjIo6jptIYo9EyabPi5rMsxeTROtfWnG0FRSEwjl6CZE4cOAYitgJ88ejTh59FIBKrutbJzCpk8SgqDGH09NjKSttykFE6h/vNf7PJR0SkMpHmPcn1/qulELvYT5hqoQMqfTGYVRiMR6VwY5+SRIwmVOXIwW5PWS2X3eAwvtD3sKcwL/WK1FYNmACTMPbWKU2iz21FjsC+5zijUXleodlMr/FySDIpCYhq5OIXi4G8jt0XvEgKxE5jRCqj2c+GER6eQFAp3S4vWGxiNRFJ+JgG9E5b5yIV8cAsr0IrdDk+Ry75cDQ2a6xeNRqXvpp7cRWH1RIlLyaMWmZtHio+zYUIUJnMKReHnae9Ay+mrAMR6pU4cOCA9Vq6ukReSGhcuTHjtGvYU5oV+sc6KPYWAnECq2O3S+aTUGJWQ1gstHbkgnksiFX4uSQZFITGNbAMfopEI/IIQHDMIokh2whPFpB4OrifFom62UEKa4jMJ5N4zlw/upiZ0vO5cAMCUy98Im6P4gdNSCWmKsBl5TmFjxq9frU5hLUNmqhbJKUwyq1DqPe3sxOx33KjdPrZ/v+Tap+rDF/sK49RwRmFeuPTloxZ9P73dUzD5ggsBANOvutZSoX36VghXQ0PeGRJitRudQkLyxObO7uJMX3LnN3AKkw3nTdVXyBmFpFiIK5NGixoicvpocZxCAHjd/b/CxY89gTXf+X7RfqdIpmEzDJpJj183uJ5UJ2JPYbLyUbFyoWZSJ6Zc/katsiEwOiqNmDAaRxHHUBROYvloPkjXJQZzC62Coig46ye/wKVPPYdV3/hOqXdHQu8U1uXpEgIMmgEoComJZBv4oO8NDAWD0oUhkHwVNFVfYaoTHCFmkk3YTCl6CoFY/0XDvAVQbKU53ItljilFYa7D62uEkp8KF4WcUUgA2SlMVk0TEEXh5MmwezyYcd1btfvEwJlU1TXiWIo4VnW2ygVRFLqbmy3lwOlRbDb4pk6z3Mw+vVNYP8cEUVhFVSfJoCgkpmHLMmjGqARU77bIs8smToSpnMKwrmmekEIhhs2kKmkGSjO83gr4cigfzW54ffWcyKUZhRSFVYsza6cw5uzNuv4G7b6+48e1z5PUh6/vd+uYJIkYZ10dU2/zpG72bK1apHXVmhLvTXmS4BTmGTID0CkEKAqJiWRbxmUk7PRui1g+2rpqtbY9OjSUkEoapxRDwkl1UjdbTiBNRa49c+WOOMA+kMQpjITD2jHD5nTC4avL+PWLETQTCYdx8uhRBHRz34qJFGZks6GmszCDpIn1cdWnH0mhLx8FgLqZs7QeYwA4vn8/gNQtF4qiSG5hDZNH88ZZ68O5//t/WPHFL+P0r3y91LtTliSKwvzGUQDVtcCYDIpCYhrZfqEycgoFUVg7ZaoWQ6xGo0kvwtlTSIqFb9p0KOPhLcGxsaQ9sIAsCt1FSh+1Apn0FOrHyGRTqmQvwpzC17Zvx85nnsHz//hHyUpURUFa0zEJdperJPtBSo9YNZNR0MzkCSE3+50TgTPH9+9HNBpNG87WsGCRtu1h8qgpNC5cjDk3/gs8rRyblQte3Xil+tn5i0JxJAVFISF5ko31HgmHDV0DvVMouSu+OjQumIjHTlZCKp3g6BSSAmJzOiXRk2yhQlVV+bNcxJ7CUuPt7NIGDQf9fsPRHZIozDL2XF+hkG5eZLaoqoqTx44BiJXZpZuTWij8nFFIxnHW51Y+CgCdF16sLa6GgkGcOno07UKqOMTcN31G7jtOiEnYPR40j89RrJ082ZTPZTWNN0oGRSExjWycQtElVIQma30Cqei8OOrq0LBwYsXS6OIsGo1qz1HsdmlFlZBCIJWQGoTNBP1+9Bw+rJU729xuOIRwlErH5nSi9fQztNs9hw8nPEbsafK0ZLdybrPbYXM6tdvJyspzJRgISCV66eZRFgqGzJA44nnNqHxUVdWEoJk4NocDM9/2Du320X375H5nA1E45bI3YNqV16B19VrMf+8H895/Qsxg3fd+hKWf/jze8Oc/S+eAXBFHUtAptBDPPPMM5s2bhxtuuEG6PxAIYOHChZg3b57039e/zppsK5DNnEJRFLavO1Pb1o+p0AfNNMxP7RTqY+1LlbhIqod6XQKpf3QUJw4exO7nnsOzjz6KZ/7yF+zeulV7TDWFzMSZds112nbPwYMJPw+LQRc5lFNlOyM1G8Z0x5lSiUI/RSEZR+wpNCofDYdC2uKIo7YWTl2P7sy3vl1bjB08eVJazDIqH7U5nVjzne/j/N/8wZRAD0LMoHbKVMx//4fRvHBh+gdnAINmgOJPMk7Dnj17cNtttxn+7JVXXkEkEkFnZycWLFig3T97Ng9SViArp1C40Gpbsx59L76AYF+fFqbgHndSxBOe01eHxjROoTyOgqWjpPCIDe6Hdu3CwVdeSfn4KZe9scB7ZD2mXP4GbP3UxxENBDAyOIiRgQHUCgmK+p7CbLF7axEaX2iKhMNwmLBqHGdU5/6WKmwmwBmFZBxnmqAZsZ8wHjIj4p3cic4LL8HhP/4OgHwBzD58Uq0waMZCojASieC73/0ufvCDH2AsyUl3x44dAIA3velN+PCHP1zM3SMZkE36qOjyNcxfgLqZs3Hy2WcAxNyWuCgUy0ed9fWomzUHNqcT0VAIgbExhEMh6QIwzJAZUmTE8lGjfjaby4WWlavQvnY92te/Dm1r1xVz9yyBq74BXRdvwMGHHwIAnDh0CDNEUShF4mf/vfW0tcN/PNb3Jy4qmYE+EMsSTiFFYVUjBc0YiULhM+rtTBSFQCxwJi4K49g9Ho6bIFVLIStOygXL1NaNjIzgW9/6Fpqbm/G2t73N8DEvv/wygJibePvtt+OLX/wiDhw4UMzdJCmwZzGnULzQionCWdptMaxDKh/11cPucqFOGFKqdwtDDJkhRaZp8WlSSai9pgYdZ5+L0+64C+f95g+4ctcBnPfg77D4Y3eifd16yw0BLhYzrnmLtt1z6JDU+yd+bz1ZBs0A8oVv0GQnT3+MsUJPIWcUVjeuhtROYSBJyIxIx1lnwzdjpnQfF1JJNUOn0EJOodPpxKc//WlceeWV+NOf/mT4mLhTKP78oYcewq9//WtMm8aTZKmxud2AogCqCjUahaqqhhfAoUBAcwbsbjdqp02X+hTEsBmpfLQu1hfROH8hBl5+CUDMcawXnAWppzAHx4GQbHF4a3HB7/+KnqeeRMOChWhavAQ2h2UOrZah4+xz4WnvgP/EcYQCAfT39KCpowOAvnw0++9tPE0RkC+I80VV1QSnsBTlo5FwWHuPFIcDniQX+qQ6sNd4odjtUCMRRKNRRCMR2ITAtmTJoyKKzYZZ73gXnv/8p7X7cindJqRSsLkpCot25fLggw/izjvvTPrzRx99FNdff33K15gzZw7cbjc+9KEPYf78+bjrrrvw5z//Gf/+7/+Ob37zmymf29TkhcNhT/mYQtDWlvkQ5krA4fEgPH7RFI1EYDe4OBYvspoXLkTHpEYMLT8N28fvk5xCQRR2TJ+MhrY6dK1agf0P/ir2WimcwqbOjqp7/wsB38P0tLUtw8zVy0x8vcp8z+e/7a14bjwY7MShQxOiUCgf7Zg1Net/f9vsGdgzvm2mUxgMBBJmTwb9/qQLXoVCdAnrpkxBx6TGov3uQlCpn+9i4m5shP/kSQCxxVNXElHYNmdG0vfb9/5/wYv/dg8i498/36R2/m3yhO9faTDjfT/R1qhtm1U+6qt1l9Vnomii0O12ozFF6p7dnl6wffGLX5Ruv/vd78af//xnbNu2Le1z+/qMhyYXkra2OvT0JA5or2RsbjcQF4XRKIz+qmI/Ye2c+ejpGYLaOrHSLyahiaUxQ0Ebgj1DcEydcBVHdKv4olMY9viq7v03m2r8DJeaSn7POy67EhgXhaeOHkU0GoXNZpMWc/yO2qz//dH6CYfDTKdQnzwKxBa7IqEQHEUcHi/2E9ZMmVbWn49K/nwXE7uvDhgXhZFQCBDaN8SFkYivOcX77UL35W/E/v/9JQBA8TXwb5MH/GyXBrPe99HgRCaAWU7h8EgAsOBnIplQLZoovPTSS3HppZfm/PxQKIRDhw5haGgIS5YsAQC4xk/KRpHMpDTEwmb6ARh/qQZOnsQBIZ2xYX4sRdY3faK3wT86img0CkVRpL+tY7x8tEEYYD86OCit2qcbwksIKR2NCxejZnInxo4eQTQaRWBsDDW1tXkHzXiFOWxmOoX60tE4Ab+/ZKKwdgpbJUgsvCleU6MPmwkmmVFoxPwPfBiHfv9bRMZG0XXhxWbvJiFlg9hTaPa823KhbBpfhoeHsWHDBthsNvzxj3/E1KlT8fjjjwMAli5dWuK9I3FsKYZ/9h4+jF3btk3MT6rxYuobr4pte73wdnZh9MhhQFXhHx2F2+MBxtMcbW437OMXYTWTJsPV1IRgXx8i4TACY2PwjCemiSdHBs0QYj1qu6dg7OgRALGySJfbrR0rbE4nHL7sS23EnkIzg2D04yjE31ErJEAWGnlwPZNHCeBMETYjuuXeNP2njfMXYsM/n0JoeAgN8xakfCwhlQyDZiyUPpqOpqYmvOlNb0I4HMY111yDt7/97fj6178Op9OJD3zgA6XePTKOUaSvqqo4vGcPXnn2WU0QuptbcO5v/gCvcDEnRvv7h4flcRTChaKiKGhcMDGvUCxHlYJmmprM+CcRQkzE2z1F2w6MjSXMKMylV090QwLjPX9mIPYse9o7tG2zE07TwXEURI+zThhLIZwro5GIdh5U7Ha429rTvpa3q5uCkFQ9HF5fRqIQAD772c/iPe95D2pra/Hcc89h4cKFuO+++3DaaaeVetfIOPpZhaqqYu9LL2HfSy9p9/umz8Dr//Q3NC+RHV4xHntsZEROHtWtyjcsMB5iz/JRQqxNrSgKR0fl72wO4ygAwFnr05wTNRqVFodyRZ88Ounsc7VtM/sWM0F2Clk+SuSxFGKFjOiUe1rbpFRSQkhy6BRatHz0yiuvxJVXXplwv9vtxm233YbbbrutBHtFMkGcVRgOhfDKli04efSodl/LytNx1s8egNvAxRNXwANjY/KMwjq9KJzoK0zuFLJ8lBCrof+ei/2Enjwi8b2TOzEwMBB7Xb8fTuFYlAtBv1+rVnD66tC8bDn2/ep/tJ8VEz9nFBId4jkxkkQU1iQZXE8ISYQjKcrMKSTWR3QKd2/bJgnC7g2X4dz//a2hIASA2q5ubTs4NiaXj9bJfUaNCxOdQjUanVgxVRRpoDghxBqI5aP+0VGExZCZ1txFYc0kcwfYjwkuYf28+aiZ3GXq62dKOBjUjoV2jydnN5VUFmJPoVhVIw+upygkJFNEU4Plo4SYgN0z8aUSHYC5734f1t33E8me1+MVRGFgbEwqiUlwCufNB8Z7j8aGh2N9FLrHc4A4IdajNk1PYa6IrogZA+bF0tGGeQukvsViOoV+4d9SO2VqUecjEuviqhdEofAdCkmicFJR94mQcsZeI7c/VSMUhcRURKcQAKAoWPq5e7D8C/8KxZb64yaJwtHRlE6hw1sL3/QZ2u3RoSFdPyFLRwmxIl5dRYAosHIZR6G9rskJpKM6p1B8/WL2FAZGRrRt9hOSOOJ3RTz3BcVy7LYOEEIyg04hRSExGTEl1OZ0Yt33foT578ksHdbTMQnKuLsXCgYlp9FRlxhTr08gDZvkOBBCCofD69W+n6qqSj3BnjxKI80cSxH0+9Hf26vdbpg3H+7WNijjoR3hYLBoK8l+hswQA8Q0XNEdlHp021hqTEim6IMSqxGKQmIq0695M5x1daiZNBnnPPAbTLn8jRk/12a3S6vxYqqoqy5xJliDrq8wxHEUhJQFYtjMcH+/tm2WU5hP+ejY8DBe2LhRS/y0u91oOm0pbHY7PB3CWIoiuYUUhcQIUfCJ7iBFISG5QafQoumjpHxpW7MOVzy3E3aPJ225qBHerm6MHDwAQC7fMnQK58sJpF5hbAXHURBiXbzdU3Dqua0AIJWJm9VTmItgCwWD6Dt+HPteeklbYFJsNpz+79/UytG9k7swduQIgFgJqae2Nuf9zRRxHIVvCkUhieFpnZg/KApBuXw0/YxCQkgMmyAK1WgUqqpWXQ83RSExHYfXm/NzxX6j0eFhbVsfNAMYOIXCyZDjKAixLmLYjEg+5aPeSbJTmMkJfWx4GKeOH8epY8cweOoUIAy9t7lcWP/Dn6Lzgou0+2omCWEzRUogFYNmvBxcT8ZxNTVBcTighsOIhMOIRiKw2e06p5CikJBMURQFdo8HkfFFxWgkAnuVBRZW17+WWB5RFKqCfa8PmgEA37TpsNd4ERmLDcAeE0RksrEXhJDS400iCvMpH3U2NGjHg2gkgkg4DIfTKT1GVVUM9/Xh5LFjOHX8uDR2Qnotnw9n/fxXaDtjjXS/mX2LmaCqquwUsnyUjKPYbPC0tmHsWGzsUzAQgLumRhKFHF9CSHbY3O4JURiNwl7i/Sk2FIXEUiRzEIxEoWKzoWHBQpzaugUAMCAEQ7B8lBDrUtvdnXCfzemEw5f4Pc8URVHg7ezE0J5XAcScPFEUnjp2DK8+/7x00ax7ATQvW4HuSy7F9Guuk1zBOF5hLEUxEkhDgYAWeOD01XH2KpFwC6IwFAjA7nBAHXe7nXV1cNTUpHo6IUSHo8aL0MAAACASCsHpcpV4j4oLRSGxFKJTKGJUPgrE+grjolAMl2D5KCHWpdagDNLd3JJ3/0bN5AlRGPD7pT7jvS++mCAI7S4XOs4+F50XbUDn6y9CTXvqCP9il4+KLmHtNLqERKamvR3949vBcVEYx9vBcRSEZEvt1GnaQsvYyEhR+satBEUhsRTJRaGxgyD2FYpwTiEh1sWofNRtQv+TNKtQEG3hUGgixdNmw/RrrkP3xZdi0VWXo38k8+jxYpePyoPrKQqJjPidCVEUEpI3DfMXoPfpzQBiWRVN7dXVl0tRSCyF16CsDEjhFC4wFoUuikJCLIurvgHO+nqExBmFJswWFZ08sbxT7Deunz0Hq7/xHQCA0+sFRoz7Co0o9gD7AMdRkBSIIycoCgnJn4b5C7Tt0SQ955UM5xQSS+Gs9RnOGEwmChsWLDS8383yUUIsjd4tzCdkJo40lkJw2cSTe8O8BcgVUXSG/H6tf6tQcEYhSYWnTRhgHwhI5dEUhYRkT8M8edRZtUFRSCyHUQmpw+czfKy7qUkq6YrDnkJCrI2+r9CMpMRkTp4oCuvnzsv59e0ej3ZsUVU1eWiNSfhHRrRt31SOoyAy0gB7v1/6PNZUWdkbIWbQMG++tj02PFzwhT+rQVFILIdeFNprvLClmBXTqHMLHbW1sFdZYhQh5YY+adgUp3Byl7YtOoVjklM4H/ngmz5D2+7v6cnrtdIR4IxCkgKPrqdQ7HP1TppUil0ipKxxt7TAMx44Fo1EpIW5aoCikFgOvSh01hm7hHH0JaR0CQmxPonlo/n3FHo7jYNgzHIKAaD70su17RMHD+b1WqnQzyg0Smwl1Y0oCoMsHyXEFKq5r5CikFgOvYOQrJ8wToMubMaMi0tCSGHRf889rfl/b93NLbCNzyYMh0KIhMOIhMOa46bY7fDNmJXX75h+1bVQbLFT50Bvr9T3ZyZBoWfR3dwMZ23qxTFSfSQ4haIoZPkoITkh9p1TFBJSYhKcwvqGlI9v1I2lYMgMIdanEE6hYrOhdtpEeedQXx9GheRR34yZeZeW10yajEnnnKfdLpRbKIXMTJtekN9ByhtXYyOU8dYKcfEDoFNISK5ITmGVhc1QFBLLkVg+ajyjME7drDmaOwBwRiEh5UBtty5oxiSHv+N1Z2vbfSdOYEw4qeeTPCoy/c1v1bZPHDxYkDACuXSUyaMkEcVmg0cIaAoHg9p2DUUhITnB8lFCLEStXhT6UotCu8uFutlztNvsKSTE+rhbWuCsj5WGK3Y7PCaVu00+93xtu//ECckpzLefME7XhZfA2RCrYAiMjmLw5ElTXldEHkfBfkJijFhCGsfh9cZmcBJCskY8T4wNDyMajZZwb4oLRSGxHJ72Dsn5i184pkIcYk+nkBDroygKlnzys6iZNBkLb/2YaT1z7evOhG28RHR0aAj9J05oP8s3eTSO3ePB1Ddepd0uRAkpnUKSCeJYijhuA6FICMkMp69Oa29QVRVjwsJipvQeOYJnHnkEL/7oB2U11oKikFgOxWZDTedEtLwjjVMIAN2XXqFtd5x1dopHEkKswux33ogrtr2Mxbd/wrTXdHhr0bZmnXZbHEBsllMIADOEEtLeI0dw4tAhU0/+olPo4+B6kgQjAVjTztJRQvIhnxLSUDCI3du2ITg2hv1/+RMiY4UJIysEFIXEkoglpK4MnMKuSy7F+f/3J1z79NNoXbW6kLtGCLE4k8+9IOE+xWZH3czZpv2O5mUrtAuHaCSC3Vu3YsfTT0thH/kgl49SFBJjagxEoVFJKSEkc/IJmzmyZw+ikQgAoH72HNhryqeUm6KQWBIxbMaRJmgGiJWita5ajfYVKwq5W4SQMmCS0FcYxzd9Ouxut2m/Q1EUrP7296RjVd/x49j297/j2P79ebmG0WgUwbi4VJSE8C1C4hg5hW6DklJCSObkOpYiFAzi6N692u1FH70DiqKYum+FhKKQWJKuiy/VtiedfW4J94QQUm7Uz50Hr1CCDgD1JiWPijQtOg0XP/YEZr/rZu2+SDiMPc8/j5eefBL+kZGcXld0G2vaO0wVs6SyMOoppFNISH40zF+obWfjFB597TVEwmEAQN3MWei+7A2m71shoSgklqTrkktx4V8ex4ZNW6QQGUIISYeiKJikKyFtMLGfUMTpq8PKf/1/OPfB38E3c5Z2/0BvL7Y99hiOvPZa1q5hgDMKSYZ4DPoHxTEVhJDsqZ89B4otJpH8o6NSb3oywqEQjrz2mnZ70e2fgM1uL9g+FgKKQmJJFEVB02lLUCdcZBFCSKZMPk8WhfUmJY8mo33telz0139i/vs/pF1MRCMR7H3xRWzfuFEajZEO9hOSTDESgHQKCckPu8eD5uUrtdtGlR/xZNLew4ex7+WX8dKTT2ouoW/6DEx5w5VF3WczcJR6BwghhBCzaT/zLCgOB9Txk7SZyaPJcNTUYOmnv4Duy9+IZ279IAZ27gAADPX1Yfs//4mVF1wAhzBuJxnyOArOKCTJMRKAZs38JKSaWfHFr+DvV1+B8PAQQoEAXnrySXTPnYuRwUGMDAxgZGBAE4F6ytElBOgUEkIIqUBc9Q2YdtW1AID6WXOk4IBC07JsBV7/58ew6PZPQHHE1l7DoRDGMgwsoFNIMsXV2CjN9QXoFBJiBs1Ll+Gsn9wP23hPt390FK8+9xyOvvYaBk+eTCoI29efJc2xLSfoFBJCCKlIVv2/b2D2O29Ew7wFsDmKe7qzu1xY/NE70PvMUzj+j8cAAOEkFxF6ApxRSDJEsdngbm3D2NEj2n1G4TOEkOxpX3cm1n3/v7DpxrdDHR8zIeJqbELT0mVoPm0pmpYsRePiJfBNn1FWiaMiFIWEEEIqEpvTiRahL6QUOH0TI3WSrSzr8bN8lGSBRxCF9poaOLy1Jd4jQiqHrgsvwfof/hQvf/Pr8LS2oum0pWg6bQmaTluKmsmdZSsAjaAoJIQQQgqEs75e246EQmkfH4lEEAoEAACK3Y6ayZ0F2zdSGYg9hCwdJcR8ui7agK6LNpR6NwoOewoJIYSQAuEQnMJMykfF0lFvZ1fRy15J+SEKQYpCQkiuUBQSQgghBcKVpVPo54xCkiXiWAqKQkJIrlAUEkIIIQXCUZe7U8jkUZIJNZ2dhtuEEJINFIWEEEJIgXDWCU5hBqJQcgq7GTJD0jP1jVejfu581EzuxKzr31nq3SGElClsViCEEEIKhFNwCjMpH5WdQopCkh53UxMufuwJQFWh2LjWTwjJDYpCQgghpEBkO5Ii6Pdr27Vd3QXZJ1J5KIoCVFA0PiGk+HBJiRBCCCkQ4kiKcIYjKeKIyaWEEEJIIaEoJIQQQgqEVD6agVMYFUSh3eMpyD4RQggheigKCSGEkAIhBs1k4hRSFBJCCCkFFIWEEEJIgcjHKXTUeAuyT4QQQogeikJCCPn/7d17cFTlwcfxX5INC+TCgg2BEpCLScAEkIuABJ1aLqmNwkyYWh25OASGcp2RNq3AW6evUmWgA7ahtDMgBUTkIrdysUWYwZmCICUgJEDKtSGAEC4JkAshsO8fvHvcDQaSNXvOHvf7mcmwYXdzTn7dyv72ec7zAAHiiIo2FgC5d/eu3G73Qx9/794943ZEE0YKAQDmoBQCABAgYeHhioyONr5/2LYUbre7xvTRJgE9NwAAPCiFAAAEkM91hQ+ZQuo9ShgeGcmecwAA0/AvDgAAAeSo4wb2LDIDALAKpRAAgADy3qvwYYvN+JRCFpkBAJiIUggAQABFem1C/9Dpo4wUAgAsQikEACCAfEYKHzZ91GflURaZAQCYh1IIAEAARUbXcaEZVh4FAFiEUggAQABF+rHQjIPpowAAE1EKAQAIIO8tKVhoBgAQjCiFAAAEkM9IIQvNAACCEKUQAIAA8l5opvoh00fv+owUUgoBAOahFAIAEEDeW1I8dKTQe/VRFpoBAJiIUggAQAD5tXk900cBACaiFAIAEEAOr2sKHzZ91Gf1UfYpBACYiFIIAEAANfJn9VGmjwIATEQpBAAggBx+7FPI9FEAgJkohQAABJD3PoXVLDQDAAhClEIAAAIoonFjhTkckiT3vXs+I4Le7jJSCACwCKUQAIAACgsL8xktrO26Qp/poyw0AwAwEaUQAIAAi6zDCqQsNAMAsAqlEACAAPMuhXUbKWT6KADAPJRCAAACrOb00arKShUWFKjk8mXj71loBgBgFUohAAABVnP66Om8PJ0rKNDRfftUVVkpiS0pAADWoRQCABBgNUcKS4qLJUlut1sVt25J8i2FDhaaAQCYiFIIAECAeW9gX1Za6rOJvecaQxaaAQBYhVIIAECANfIaKSy9etXnPs+G9uxTCACwCqUQAIAAqzlS6M0zashCMwAAq1AKAQAIsMjY2Frv+9bpo1xTCAAwEaUQAIAAi4yOqfW+u9XVcrvdcvuMFDJ9FABgHkohAAAB9qiRQu9RwnCnU2FhYWacFgAAkiiFAAAEXGR07aWw+s4d9igEAFiKUggAQIA9cqSQRWYAABaiFAIAEGCRMQ+/ppCN6wEAVqIUAgAQYJExdb+mkJVHAQBmC6pSeOTIEY0ZM0a9e/dWWlqapk2bpkuXLvk85i9/+YueffZZde3aVaNHj9aZM2csOlsAAOrGER1d6313q6trbFxPKQQAmCtoSuHFixeVlZWl3bt364knnlB0dLS2bt2qcePGqaqqSpL00Ucf6f3331dVVZUSExO1d+9ejR07Vrdv37b47AEAqF1Eo0Y+C8g0iW9l3GahGQCA1YKmFH766acqLS3V0KFDtWrVKm3evFmtWrVSQUGBDh8+LElaunSpJGnx4sVav369+vfvr6KiIu3YscPCMwcA4NG8p5DG9R9g3H5woRlKIQDAXEFTCgcMGKDZs2dr5MiRkqRGjRqpWbNmkqRr167pypUrKiwsVNOmTdW1a1dJUr9+/SRJBw8etOakAQCoI4fXYjNxfZ+R/n8vwnt37+pudfU3j2vS1PRzAwCENofVJ+CRlJSkpKQk4/v9+/eroKBA4eHh6tatmy5evChJcrlcxmM8tz33AQAQrJr+sI1unT4lSXqs19OKjI7WnZs3JUl3vC6DYKQQAGA200rh+vXrNX369Frv37lzpxISEiRJx44d0+TJkyVJmZmZatWqlYqKiiRJDsc3p+y5XVlZGajTBgCgQaRmT9dXtysVn/acmqd2lSMmppZSyEIzAABzmVYKnU6nzyhfTREREZKk/Px8jRkzRiUlJUpJSdGMGTMk3Z9OKslnhbbq/59u07gOn6o2b95UDkeEv6fvt7i42vemQmCQecMiT/ORuXnMzDouY7CezBhsfN/E5VLFhQuSpCqvUhjdIvZ7/Rr4Pv9uwYSczUfm1iD3hmFaKczIyFBGRsZDH3Py5EmfQrhkyRJFRUVJkuLj4yVJJSUlxuM9t1u3bv3I41+/Xu7fiX8HcXExKi6+afpxQxmZNyzyNB+Zm8fqrMOaRBm3vUcKq9zh39vXgNWZhwpyNh+ZW4Pc66+2Eh00C82UlZVpwoQJKikpUefOnbV06VKfkcX4+Hi1atVKZWVlysvLkyR9+eWXkqSePXtaccoAAPgtMvqbf5h9po+y0AwAwGRBs9DMypUrVVhYKOn+tYJvvvmmcd/rr7+uPn36aOTIkZo7d66ysrLUpk0b5efnKyEhQQMHDrTqtAEA8Iv3aqQsNAMAsFLQlMLPPvvMuJ2Xl2eMBkpSenq6JCkrK0t37tzRypUrdeLECfXt21e/+93v5HQ6TT9fAAC+i0ivUljFQjMAAAsFTSlcs2bNIx8TFhamCRMmaMKECSacEQAAgeM9fdTN5vUAAAsFzTWFAACEEu+RQm+UQgCA2SiFAABYwFFLKXSw0AwAwGSUQgAALOA9fdQbI4UAALNRCgEAsEDt00dZaAYAYC5KIQAAFqh1pLAJI4UAAHNRCgEAsEBt1xQyfRQAYDZKIQAAFqht+igLzQAAzEYpBADAAiw0AwAIFpRCAAAsEBkT+61/z0IzAACzUQoBALCAIzr6W/+ekUIAgNkohQAAWCDc4VBEzesHw8IU7nRac0IAgJBFKQQAwCI1F5uJaNxYYWFhFp0NACBUUQoBALDIA6XQydRRAID5KIUAAFjEUWMFUjauBwBYgVIIAIBFHpw+ysqjAADzUQoBALBIZJTvCqQRTSiFAADzUQoBALCIo8ZIoaPmaqQAAJiAUggAgEW+bfVRAADMRikEAMAikTUXmqEUAgAsQCkEAMAiLDQDAAgGlEIAACxS85pCRgoBAFagFAIAYJEHpo+y+igAwAKUQgAALML0UQBAMKAUAgBgkciYWJ/vHUwfBQBYgFIIAIBFHEwfBQAEAUohAAAWYZ9CAEAwoBQCAGCRB0ohI4UAAAtQCgEAsMiDm9dTCgEA5qMUAgBgkXCnU+GRkcb3TB8FAFiBUggAgEXCwsJ8FpthpBAAYAVKIQAAFvK+rtDBNYUAAAtQCgEAsJB3KWT6KADACpRCAAAs1KJHL0lShNOp2KTOFp8NACAUOaw+AQAAQln3//lfuVJS1eKpnnK2aGH16QAAQhClEAAACzVq1kyJr4+1+jQAACGM6aMAAAAAEMIohQAAAAAQwiiFAAAAABDCKIUAAAAAEMIohQAAAAAQwiiFAAAAABDCKIUAAAAAEMIohQAAAAAQwiiFAAAAABDCKIUAAAAAEMIohQAAAAAQwiiFAAAAABDCKIUAAAAAEMIohQAAAAAQwiiFAAAAABDCKIUAAAAAEMIohQAAAAAQwsLcbrfb6pMAAAAAAFiDkUIAAAAACGGUQgAAAAAIYZRCAAAAAAhhlEIAAAAACGGUQgAAAAAIYZRCAAAAAAhhIVcKi4uLNX36dA0YMEC9evXSyJEj9dVXXxn379y5Uz/96U+VmpqqjIwM7dq1y+f5R44c0ZgxY9S7d2+lpaVp2rRpunTp0gPHqa6uVnp6upKTk/X1118/8rxyc3OVmZmp1NRUDRw4UOvWrfvWxxUWFio1NVWDBw+u3y9uMbvmfvbsWU2ZMkX9+vVT3759NX78eJ0+fdq/EBqQXfM8deqUxo0bp6eeekrPPfec3nnnHZWXl/sXgsnsmrm3WbNmKTk5WTk5OXX/xU1m15x3796t5OTkB7727NnjXxAms2vubrdbixcv1sCBA9W9e3e98sorysvL8y8EE9gx55ycnG99bQf7f0s87Ji5dP/9xy9+8Qv17dtXffv21cSJE3Xu3Dn/QjCZ3TPv06eP+vXrp1mzZqmystK/EGwopPYpvHfvnn7+85/r8OHDat++vVwulw4dOqSmTZtq06ZNKi8v1/DhwxUWFqbU1FTl5eXJ7XZrw4YNSkpK0sWLFzVs2DCVlpaqR48eun79us6ePavk5GR98sknatSokSSpqqpKv/nNb7Rt2zZJ0ueff65WrVrVel6XL1/WCy+8oPLycnXr1k0FBQWqqKjQokWL9NxzzxmPu3TpkrKysnTixAm1a9dOn332WWADayB2zf3WrVsaNmyYioqK1KVLF7ndbh0/flxxcXHasmWLXC6XGfE9wK55lpeXa8iQISouLlb37t1VXFysCxcuaPDgwVqwYIEp2fnLrpl7+/e//62RI0fq3r17mjx5sqZMmRK4wPxk55wXL16suXPnKiUlxednTZ06VZ07dw5gat+dnXOfP3++/vrXv8rlcqlTp046cOCAHnvsMf3jH/9QbGxs4MOrB7vmvHXrVm3dutXnObt371ZlZaVycnI0ZMiQwIX2Hdk186qqKmVkZKiwsFCdOnVS48aNlZ+fr44dO2rz5s1yOBym5OcPu2ZeUlKijIwMXblyRU8//bROnTqla9euadCgQfrzn/9sSnZWC6mRwqNHj+rw4cNKSEjQ1q1btXr1auMFsnnzZn344Yeqrq7WG2+8oVWrVmnSpEmqrq7WihUrJEmffvqpSktLNXToUK1atUqbN29Wq1atVFBQoMOHD0uS9uzZo8zMTONFWheffPKJbt26pVdffVWrV6/W22+/LUlatmyZ8ZiPPvpIQ4cO1YkTJxowEXPYNffdu3erqKhIvXv31saNG7Vp0yajzNT8VMtMds3z0KFDunnzpgYPHqw1a9Zo1apVkqQdO3aorKysISNqcHbN3KOyslIzZ87UvXv3GiiRwLBzzseOHZMk/frXv9bChQuNr2AvhJJ9cy8tLdUHH3yg8PBwffzxx1q5cqXS09MVGRmpI0eONHBK351dc87IyPB5Tb/88suqrKxUZmZmUBdCyb6Znzp1SoWFhUpISNDf//53rV+/Xk8//bROnz6tkydPNnBKDcuumW/cuFFXrlzRiBEjtGLFCm3cuFFNmzbVjh07lJ+f38ApBafg/aghAFq2bKl58+bJ6XQan7L84Ac/kCRdv35dubm5kqQ+ffpIkvr16ydJOnjwoCRpwIABat68uTp16iRJatSokZo1a6avv/5a165dkyStWLFCZ86c0bRp0zRv3rw6ndejjivd/zQ0IiJC48aN06JFi/xMwBp2zf3JJ5/U3LlzFRcXZzznscceM87bKnbNs3///jp48KAqKiokSVeuXJEkRUVFGZ/8BSu7Zu4xf/58nT17Vl26dDHKSzCyc85Hjx6VdP9DjtWrVysxMVGjRo1SdHS0P1GYyq6579+/X3fu3FGHDh3UsWNHSdKf/vQnf2MIOLvm7K2iokJvv/22oqOj9atf/aqeCZjPrpm7XC6FhYVJkvGn2+1WWFhY0P83xa6Z//e//5UkJSYmSpLi4+OVnJysgwcPau/evUpJSfErDzsJuVKYkZFhfH/t2jXjU4annnrKmFvsmRbo+dMzTzkpKUlJSUnG8/fv36+CggKFh4erW7dukqSf/OQnys7OVocOHer8QvX8/JrHLSsr082bNxUTE6MpU6Zo2LBhKigosGUptGPubdu2Vdu2bY3HnzlzRv/617+M87aKXfOMiYlReHi4oqKi9N5772nNmjVyOp165513FBkZWf8gTGTnzHNzc7V8+XKlp6crMTEx6EuhHXN2OBw6e/asJOnDDz80nrd9+3atXbuW17cCk7vn+qqoqCj98pe/1M6dO9WxY0fNnDlTvXr1qmcKgWfXnGNiYozHrl+/XufPn9fYsWOND0mDmV0zb926tbKzszV//nwNHTrUmD46fvx4JSQk1D8IE9k5c0nGNcnl5eUqLCyUJF24cKHOv7+dhdT0UW83btzQ2LFjdfXqVXXq1Enp6enGxaSef8A9n3B4Rja8HTt2TJMnT5YkZWZmGvOYhw4dqg4dOtTrXDzH9RzP+w2E59ijR4+27Bq2hmS33D0uXLigsWPHqqqqSs8884x69OhRr2MFil3z3Llzp8rLy+VyuXT37t16Hcdqdsr89u3bmjFjhmJiYvTWW2/V62dbzU4537hxQ88//7wGDRqk7du3a8eOHWrfvr2OHTumNWvW1OtYVrNT7p7j5+Xlad++ferSpYvy8/M1duzYOi06YSU75ezhdru1YsUKhYeHa8SIEfU6RjCwW+bV1dWSpJMnTyovL0+NGzc2Rtzswk6ZDxs2TE2bNtXatWv1yiuv6MUXX9TVq1d9nvt9F1IjhR4lJSUaM2aM8vPz1axZM/3xj39UZGSknE6nKioqjP8jev5s0qSJz/Pz8/M1ZswYlZSUKCUlRTNmzKjzsZcvX669e/ca348cOVJOp1OSjDfHd+7cMe6veWw7s2vuRUVFGjVqlM6fP682bdpozpw59fzNA8OueUr3P20uLi7WiBEjlJ2drfbt26tr1671+O2tYbfM33//fZ05c0azZ8+21ZsJu+UcExOjhQsX+vycl19+WXPmzFFubq5ee+21evz21rFb7p77HQ6H1q1bp/j4eM2YMUPr1q3Tpk2bNH78eD9SCDy75ezx1Vdf6fTp0+rRo4cxqmIXdss8NzdX8+bN0+OPP64lS5bI7XYrKytLs2bNUtu2bfWjH/3IrxzMZLfMY2Ji9Le//U2///3vdeLECfXv31+JiYnatWvX9+q9+MOE3EhhWVmZsrKylJ+fL5fLpaVLlxrzh1u2bCnp/sXr0v0XtCSf1YxOnjzp8yJdsmSJoqKi6nz8o0ePaufOncbXxYsXaz1udHS0z7QNO7Nr7pcvX9bo0aN1/vx5JSQkaPny5cbzrGTXPK9du6bS0lLFxsaqU6dO6t+/v9xut/bt2+d/GCaxY+b//Oc/JUlvvvmmkpOTjVVeFyxYoB//+Md+JhFYdsy5rKxM//nPf3y2q/FcJ+t5wxPs7Ji7p5i4XC7Fx8dLkvHhUrCOFNoxZ4/du3dL0gMrGwc7O2Z+4MABSdKgQYOUkJCgtm3batCgQZK++d8hmNkxc+n+9Na1a9fqwIEDysnJUVVVlSSpXbt2fiZhLyFXCmfOnKm8vDzFxMRo2bJlevLJJ437PHOVPW9Qv/zyS0kyrk0oKyvThAkTVFJSos6dO2vp0qX1ntI5e/ZsFRQUGF+ZmZm1Hrdnz57+/6JBxo653717V1OnTlVRUZFat26tFStWBM1cfjvmuWzZMj3zzDPGil937twxrm+zwyiWHTNPS0vTwIEDjS/PdJsOHTooLS3NnxgCzo4579mzRy+99JImTZqkqqoqud1uff7555Ksvf64PuyYe+/evRUeHq6rV68aK3OfOnVKUvC+ibNjzh6e++0wq8ObHTNv1qyZpPv79Xl2jjt+/Lgk+Sx+F6zsmPkXX3yhgQMHaurUqZLu77V46NAhSfcXvwkFIbVP4eHDh/Wzn/1MktSmTRufpcLT0tKUkpKiV199VREREcbeKZK0YcMGJSYmatGiRfrDH/4gSUpNTTU+mZSk119/3VjRyCM5OVnSo/dOKSoq0osvvqjbt2+re/fuOn78uCoqKrR48WI9++yzPo/dt2+fRo0aZat9Cu2a+7Zt2/TGG29Ikp544gk9/vjjxnNfeuklvfDCC98lFr/ZNc/i4mINGzZMV69eVbdu3XTjxg2dPXtW7du318aNG4N6eoZdM68pJydHCxYsCNp9Cu2a8+3btzV8+HBjD9moqCgdO3ZMP/zhD7Vly5Z6fcJtBbvmLklvvfWWVq9erdjYWHXu3Fn79++Xy+XStm3b1KJFiwZIp+HYOWfp/qjVuXPntGvXLttMH7Vr5t575iUlJSk8PFzHjx9XTEyMtmzZ8tCfbTU7Zz5kyBCVlpaqZ8+eOnfunIqLizV8+HC9++67DRNOkAupawq3b99u3D5//rzOnz9vfN+8eXO99tprysnJ0fz585WXl6d27dopOzvbGPL2LmF5eXnGC1mS0tPT/T6vhIQEffDBB3r33XeVl5enli1bauLEid/6ps6O7Jq793FPnjzpszdQamqq38f9ruyaZ1xcnJYvX665c+cqNzdXTqdTmZmZys7ODupCKNk3c7uxa85Op1OLFy/WnDlz9MUXX+jKlSt6/vnnNXPmzKAvhJJ9c5ek3/72t4qNjdWGDRt09OhRpaWlafr06UFXCCV75yzJWHSjefPmfh/LbHbN3OVy6eOPP9a8efO0b98+VVdXKy0tTdnZ2UFdCCV7Z75w4UK99957ys/PV4sWLTRp0iRNnDjR72PaTUiNFAIAAAAAfIXcNYUAAAAAgG9QCgEAAAAghFEKAQAAACCEUQoBAAAAIIRRCgEAAAAghFEKAQAAACCEUQoBAAAAIIRRCgEAAAAghFEKAQAAACCE/R/RIawbAzr92AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sl = 10/100\n", + "pf = pd.concat((low_portfolio, portfolio_return_MV,high_portfolio), axis=1).dropna()-spread\n", + "\n", + "pf.columns = [\"low\", \"Return\", \"high\"]\n", + "pf[\"Return\"] = np.where(pf[\"low\"].values<-sl, -sl, pf[\"Return\"].values)\n", + "pf[\"Return\"] = np.where(pf[\"Return\"].values<-sl, -sl, pf[\"Return\"].values)\n", + "\n", + "\n", + "backtest_dynamic_portfolio(pf[\"Return\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 14.3.3. Optimal leverage" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[*********************100%***********************] 1 of 1 completed\n", + "\n", + " -----------------------------------------------------------------------------\n", + " Beta: -0.174 \t Alpha: 93.37 %\t Sharpe: 2.178 \t Sortino: 2.529\n", + " -----------------------------------------------------------------------------\n", + " VaR: 5.95 %\t cVaR: 20.88 % \t VaR/cVaR: 3.508 \t drawdown: 13.32 %\n", + " -----------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAAHnCAYAAAAM6DS1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADmbklEQVR4nOzdd3hU1dYG8HcmM+m994SSAgQIBOm9SBfsChaqqAjKvajwKXrtelVQUS+oqIgVFZDee2+hBEgB0kjvfZJM+f6Y5GSGtEkyJeX9PQ9P5pw5c86aEyBZs/deS6RSqVQgIiIiIiKidkls6gCIiIiIiIjIcJj0ERERERERtWNM+oiIiIiIiNoxJn1ERERERETtGJM+IiIiIiKidoxJHxERERERUTvGpI+IqAOrqKjAunXrMH36dPTp0weDBw/Gs88+i6tXr2odFxISgn/++afOc2g+d+bMGYSEhCAsLAxFRUW1js3MzES3bt3QvXt3Yd+TTz6J1157rc5z3/1cfXEsW7YMISEh9f4ZPXq0cGxWVha6d++OSZMm1bpWQ+d48sknhWvNmjVLeDxs2DAolco641++fDmmTp3a6Pn79OlT5+vre13Pnj0xZswYrFq1CgqFQjh29OjR9V5jypQpTXqfo0ePxtdff11nTJrP3blzp9Y5QkND0bdvXzz66KM4ceKE8Lrqvx+ffvpprXNWn+f8+fP13gsiImoeiakDICIi0ygrK8NTTz2FvLw8LF68GL1790ZJSQl++uknzJw5E9988w0GDhzY7PMfOHAA06dP19q3e/duqFQqiESiFkav7bXXXsO///1vAEBaWhoefvhhfP311+jVqxcAwMzMTDj2n3/+gZ+fH27duoXz58+jX79+AIDVq1ejsrISABAZGYlFixZh8+bNcHNzAwBIpdJa133wwQexefNmnDt3DgMGDNB6TiaTYc+ePVi8eLGwb8qUKVi2bFmt84jFDX8Ge/frioqKsGfPHnz22WewsbHBM888Izw3f/58PP3007XOIZFImv0+daF5v1UqFVJTU7Fy5Uo899xz2LVrF3x8fIRj161bh/HjxyMsLKxZ1yIioqZh0kdE1EF99tlnSEhIwPbt2+Hh4SHs//DDD5GTk4N33nkH27dvb1aCNnDgQOzZs6dW0rdr1y5EREQgMjKypeFrsbOzg52dHQCgvLwcAODg4CAkMpq2bNmCSZMm4fDhw/jjjz+EpM/R0VE4xsHBAQDg7Oxc5zmq9evXD/7+/tixY0etpG///v2oqKjAfffdJ+yztLRs8Hz1uft1bm5ueO6553D69Gns2rVLK+mztrZu8BrNeZ+6uPt+u7u746OPPsLIkSNx4MABPPXUU8Jz3t7eWL58OTZt2tTsJJOIiHTH6Z1ERB1QRUUFNm3ahIceekgr4av2xhtv4NNPP232iNyECRNw4sQJFBcXC/syMjIQFRWFcePGNTvulrpy5Qri4uIwePBg3HvvvdizZw8KCgqafT6RSIT7778fe/bsEUbPqv3zzz8YNWoUnJ2dWxp2vczNzYURvNbI3NwcAGrF+OabbyI+Ph5r1qwxRVhERB0Okz4iog4oOTkZhYWF6N27d53P+/n5ITQ0tNnnHzhwIKysrHDkyBFh365duzB48GDY29s3+7wttXnzZri6uiIiIgITJ05EeXk5tmzZ0qJz3n///SgsLNRau5aTk4OTJ0/iwQcfbGHEdauoqMA///yDEydOCGsGW5vq0WJra2uMGTNG67mgoCA899xzWLt2LWJiYkwUIRFRx9F6Px4kIiKDKSwsBACDJWASiQRjx47Fnj17MHnyZADqpO/xxx+vt+iJoVVUVGDnzp2YNGkSxGIxAgMD0aNHD2zcuLHONXC68vLywqBBg7B9+3aMHDkSALBt2zY4OTlh2LBhWsdu2bIFO3furHWOp556CkuWLKn3Gne/TiaTISAgAMuXL8cTTzyhdezXX3+Nb7/9ttY5li1bhkcffbQpb61J5s6dK6xNVCgUUKlUiIiIwC+//FLnaPKCBQuwb98+LF++HH/++afB4iIiIiZ9REQdkpOTEwAgPz9fp+MlEglUKlWt/dUJXF3rsiZMmIBFixahrKwM+fn5uHHjBsaOHYu9e/fWOnd9iaBSqdTb9MUDBw4gPz8fEyZMEPZNnDgRn3zyiVZBl+Z44IEHsGLFCpSVlcHKygpbt27F9OnTtQrIAMDYsWPxr3/9q9brG0u+q1+nVCpx/vx5fPTRRxg7dqxQaVPTzJkzMWPGjFr7mzrNtKnflw8++AA9evRAWVkZvv/+e5w6dQrPP/+8VqXWu8///vvv4+GHH8a6detqVVMlIiL9YdJHRNQB+fv7w8XFBZcvX67zl+0zZ87ghx9+wNtvvw13d3fY29trrc+rVr0errogiKZBgwbBwsICR44cQVpaGoYNGwZbW9tax9nb26OkpKTOOAsLC7UKj7TE5s2bAQCzZ88W9lUnshs3bmxR0jdu3Di89dZbOHToEEJCQnDt2rU62xLY2toiICCgyefXfF2nTp1gZ2eHF198Efb29lpFXAD196I517hbQ9+XgoKCWt8Xd3d34bofffQRnnvuOTz77LPYtGkTAgMD6zxP9+7dMW/ePHz55Zctmk5MREQN45o+IqIOSCwW4/7778fff/+NjIwMredUKhW++eYbxMfHC9UYe/TogQsXLtQ6z4ULFyAWi+sczZFIJBgzZgz27t2LPXv21DuS06NHD1y5cqVWIZTc3FzEx8ejZ8+ezX2bgqysLBw/fhwzZszAli1bhD///PMPhg4dit27d7eooIuFhQUmTZqE3bt3Y/v27ejbty86derU4rjrM2HCBEyZMgVffPGFwdbE9ejRAxcvXqy1Pzo6GqWlpQ1+X0QiEd59911IpVIsW7aszlHiagsXLoSfnx/efvttvcRNRES1MekjIuqgnn/+efj6+mLGjBnYvn07kpOTERkZicWLF+PcuXN47733hOqdc+bMwZ49e7Bq1SrcunUL8fHx2Lp1K95++23MmDFDmC56twkTJuDQoUOIiYnBqFGj6jzmwQcfRFlZGZYsWYIrV67gzp07OHHiBJ577jl07dpVWCdXLSYmBkePHtX6Ex0d3eB7/eeff6BSqTBv3jwEBwdr/Zk3bx7Ky8vrbT6vqwcffBDHjh3Drl276i3gIpPJkJWVVecfuVzepOu99tprsLGxwYoVK7SmYZaWltZ7jYaSr7s9+eSTuH79Ot544w1ER0cjKSkJ+/fvx5IlSzBq1Ch069atwde7urrilVdeQWRkJH799dd6jzM3N8f777+PlJQUnWMjIqKm4fROIqIOysbGBj///DO+/fZbfPnll0hLS4OdnR169+6NP/74Q+uX+sGDB2Pt2rX45ptv8Ouvv6K8vBy+vr54+umntaZL3m3QoEEwNzfHgAEDYG1tXecxLi4u+OOPP/DZZ5/h2WefRWFhIVxdXTF69Gi89NJLtdaOrVu3DuvWrdPaN3XqVHzyySf1xrFlyxaMHDlSq0G4ZoyhoaHYuHGjVi+5purVqxd8fHyQkpKCiRMn1nnM9u3bsX379jqf++uvv5o0quns7Izly5fj1Vdfxc8//yzE/u2339ZZyAUATp06pfPavq5du+KXX37Bl19+iaeffhqlpaXw9PTEpEmTsHDhQp3O8eCDD2Lbtm1YuXJlrQqemnr37o1Zs2bh+++/1+m8RETUNCJVUz72IyIiIiIiojaF0zuJiIiIiIjaMSZ9RERERERE7RiTPiIiIiIionaMSR8REREREVE7xqSPiIiIiIioHWsXLRuysoqMfk0nJ2vk5ZUa/bodHe+7fvF+mgbvu3HwPpsG77tx8D6bBu+7afC+68bNza7e5zjS10wSiZmpQ+iQeN/1i/fTNHjfjYP32TR4342D99k0eN9Ng/e95Zj0ERERERERtWNM+oiIiIiIiNoxJn1ERERERETtGJM+IiIiIiKidoxJHxERERERUTvGpI+IiIiIiKgdY9JHRERERETUjjHpMxCVSoWvvvocDz00FWPHDsUzz8xCdPQN5ORkY/Pmv5p0rpSUO9i9e4eBIiUiIiIiovaMSZ+BnD17Gr/9tgFLly7Hb79tgq2tLT744G2sXfsVdu3a3qRzffjhOzh16riBIiUiIiIiovZMYuoAjGHN/mv4ZOcllJTL9XZOW0sp/j2xN54d26PO521sbAEAv/22AaNGjcXSpcuRmpqCl156HgDwwgvPYNKkqVi58iMEBQVDJpPhvfc+xooVy3D79k3Y2trhuecWAQAiIy8AAMzNLfDii0vx3nv/wfnzZ+Hn54dly1YgODgUp04dx6effoTKykoMGDAIO3duwy+//IUnn3wEb731PkaNGovPP/8U586dxs8//6m3+0BERERERK1bhxjpW3Pwml4TPgAollVizcFr9T4fFtYTr7zyGjIyMvDJJx/g0Uen48KFcxg7djxCQ7vjv//9DAAgk8nwwAOP4IMPPkVGRjoGDx6K33/fjKCgYGzZ8jfGjZuAnj17Y8SIUfj3v5dhw4YfcOtWHH788VcMGDAY7733FpRKJd59902Eh/fFN9/8iJycHACAp6cX+vUbgP3790CpVOLQof2YNGmqXu8DERERERG1bh0i6Xt2dA/YWOh3UNPWUopnR9c9ygcAN2/GwdHRCb//vgl//bUdkyffhw0bfkBhYSHEYjGsra2FYwcOHAJPTy/Y2NjgypXL+O9/30dubi4qKioglUphZmYGiUQCS0tL3LoVh4yMdMyd+wT++ut33LoVh8zMDBQUFGD48FHw8PDE0KHDhXPfd990nDp1EidPHkNeXi4mTJis1/tAREREREStW4eY3vns2B71TsNsLjc3O2RlFdX7fGxsND766F28885H6NEjDDY2NrCwsICbmxuysjKQl5crHGtubg4A+OGH71BRIcMrr7yNDz98B4WFhQAAMzMzFBeXoKAgHwEBgUhOTsLSpcsRFXUFBQUFcHZ2gYODA44fP4KQkFAcO3ZYOPfQoSNga2uLTz75EIMGDYGzs4te7wMREREREbVuHWKkzxQmTpyCxx9/Ep9++iEefHAKTp8+if/85z307z8Q6enpeOedN2q9ZuzY8UhKSsT8+U9DLBYjKysTcrkcAwcOweXLF7FmzZd4+um56NIlCK+99gq2bt2MkJBQmJub4/XX38KFC+fw3HNzhVFEsVgMiUSCiROnIDs7C5Mn32fs20BERERERCYmUqlUKlMH0VINjbgZSmMjfcb2yScfwMPDC/feOwHr16/D0aOHsH37fhQXF+OLLz7FmTMn8fffOyCRtO3B3dZ239s63k/T4H03Dt5n0+B9Nw7eZ9PgfTcN3nfduLnZ1ftc284ASBAa2h0//PAtvv9+Ldzc3LF06XIAwOzZM1FWVoqlS5e1+YSPiIiIiIiajllAOzFlyjRMmTKt1v4///zHBNEQERERkb6t3nsVp+MysOy+Pujp1zrqNMgVSkjMuGKsteN3iIiIiIiolbuUmI33/7mIg9dT8M7mC6YOBwDw3j8X0HnJL1jx11lTh0KNMFrSt2nTJoSEhNT5Z9myZQCAAwcOYNKkSQgLC8PkyZNx+PBhY4VHRERERNRqHYi6Izy+kpQDU5flyC2W4at9UahUKPHdoRu4mVFg0nioYUZL+ry8vDBmzBitP46OjgCA0NBQREdHY/HixUhKSkJYWBgSExOxcOFCxMbGGitEIiIiIqJW6Uh0qvC4oKwCmYVlJowGOB6TDs288/dTN00XDDXKaEnfoEGD8PXXXwt/Fi9ejOLiYgwYMABPP/00NmzYALlcjiVLluD333/HwoULIZfL8fPPPxsrRCIiIiKiVqegtAIXE7K19sWk5ZsmmCqaSSgAbDx9E5UKpYmiqZtCqcSNlDz8ciIWK/46i7/O3jJ1SCZjkkIuKpUKK1asgEqlwuuvvw6RSISLFy8CAPr37w8AGDhwIAAgMjLSFCHqxcWL57F48bPCtqWlJUaOHINly1bopZLmCy88AxcXF7z11gctPldddu7chvfffwsHDpyAhYWFQa5BRERERA07EZsGhVJ7OmdsWgGGh3qbJB6VSoUjN7STvqwiGQ5E3cGE3v4miyk1vxSR8VmITMzGxYRsXEnKQWmFXOu4Hj7O6ObjZJIYTckkSd/Ro0dx5coVTJw4EcHBwQCA9PR0ABCmfFZ/rd7fln377Xr4+vrj2rWrWLp0MUaOHI2hQ0eYOiwiIiIiagPuTrAAIDY93/iBVLmVWYiUvJJa+389GYcJvf2Rll+CA9dSMCLUG34utgaJobCsApcSsxGZUPUnMVunKa83MwqY9BnLTz/9BAB46qmnhH0ymQwAIJVKAUAYCSsra/yb5+RkDYnErN7nV50/jHdP7kVxZXmzY76brdQCrw++F0v6jaz3GEdHawCAj48bOnf2RnGxelje09MFu3dvwZo1awAAc+bMwdy5c7Fp0ya8++67mD59OrZu3Yrg4GCsWbMGlpaW+M9//oN9+/ZBIpFg3rx5mDt3LszNJcjJycJzz81GUlIS5s+fj/nz5+PJJ5+EhYUFMjIykJOTg2eeeQZbt25FamoqFi9ejBkzZuCvv/7CZ599hvz8fAQFBeGrr75CcnIynnrqKQwaNAg3b97ECy+8oH6vthI8++x8KBQK/PDDD7C1Ncw/Xl011HiSmo730zR4342D99k0eN+Ng/fZNExx30/EZdTaF59TbLK/A3+cvy08Dg90xaWqqacHrqVg44V4rPjtNArLKtDFwwHXPpupl5YOmu91w5FoLFh7EBXyxqeTejlZQwQRUquSVIWZqEP+2zF60peZmYkTJ07Aw8MDffv2FfZbWFigrKwMcrl6CLb6q5WVVaPnzMsrbfD5VWcP6TXhA4DiynKsOnsITwRE1HtMfr46roceehgiEVBaWorevfsAsMB7772H//znPfj4+OL55+chJKQXiopkKCkpgY9PIN588z0sXboYO3fuQ35+Pnbu3IWvv/4WcXGxOH78KMaNm4qKCjlSU9OwatVX+OOPX/DVV19h+vTHUFEhR2JiElat+goffvgOPvvsc3z55Tf49df1WLv2G4wbNxUpKZl47rkX0alTZ8yf/xR27NgDf/9AAEDv3hFYsmQZLl1ST7lduHAR8vIK8PXX36GsTIWysiK93sumcHOzQ1aW6a7f3vB+mgbvu3HwPpsG77tx8D6bhinue0JWIW5VVcY0E4uEaZ7XknKQmVkIkUhk1HgAYMe5eOHxYwO6wEpqhlNxGVCqVHjx+6PCc7cyCnDuRiq6eji06Hp33/f//HG6zoTPxkKC8ABX9Al0RZ+qr16ONnh703n878A1AMCdjMJ2+2+noWTW6EnfyZMnoVKpMGzYMK397u7uSExMREFBAXx9fZGfnw8A8PT0bPE1n+k+GCsvH0aJvKLF56pmK7XAM90H63Ts++9/DG9vH2RlZeG115biP//5P6hUKvz3v+9BJBKhsrISUVGXYWWlHhkcN24CxGL1P+Dy8nLEx9+Gr68vgoJCEBQUgkmTpgrn7tGjJwICAhEcHIKtWzcL+7t3D4O/fwB8fHxRUVGBkJBQ+PsHIjJSnchJJGbYvPlPuLq6QSKRoKKi5t4MGDAI3t4+QtJ37VoUrK2tYMbGm0RERERGdSQ6TXg8qrsPTsWlo6RcjryScmQXyeBm3/gAia6yi2S4nJgNP1dbBHk41JlQVsgVOBlXs/xqRDdvWFtIcaqO0UgAiE7Nb3HSpykhqxCJ2cUAAEupGR4Z0EWd5AW6oauHPczEtX9fdbA2Fx4XlOovH2hLjJ70nTlzBgDQs2dPrf29evVCYmIizpw5gx49euDsWXWTx4iI+kfSdLWgx2As6KFbgqarpnzSY2NjAzs7e8jlcpiZSeDvH4iEhHjMn/8cPDw8sX//HvTqFY64OHV7CvFdf1k7d+6C3bu3IyYmGomJCfjxx2/x5ZffVB1b96c7mvvvPl9xcTG++GIlFi1agtDQ7jh+/IhWrxdzc+2iLT/88AuWLHkB33//DRYt+pdO75mIiIiIWk5zPd+IUG9kF5XhUmIOAPW6Pn0lfXKFEo+t3otrKXkAAE8HKwwN8cKwEC8MDfGCt5MNAOBCfBZKytUz8gJcbRHoZg93B2u88ddZ5FclVM62FsgtVs+yi03LB/oE6CVGQPt+DAvxwkePD2r0NY4aSV9eqX5n/7UVRk/6UlPV36iuXbtq7X/iiSewY8cOrFy5Env37kVUVBSkUilmzpxp7BD1bv78pwEAZmZmCAnphoULX0R4eB/88stPKCoqxLBhIxEQ0ElI+u42dep0REdfx4svPgup1BwzZz4FZ2eXZsdjY2ODMWPuxdq1X8PPzw8eHp5ITU1BUFBInce7ubnjhRdexBtvLMfkydPQuXOXZl+biIiIyNTS80vx1JoDMBOLsOG5MXC1099omT7JFUocj6kZ6RvRzRtXk3Nqkr60AgwJ9tLLtSITs4WEDwDSC8rw19nb+Ousev1eF3d7DA3xQlZRTb2N6uqh1uYSfDd/JDYcj8W4MD9UyBX41y8nAei/tcRhjVYRI7rpVr3UwbpmQKOjjvSJVJpDPEYwZcoUxMXFYefOnejSRTt52L9/P1atWoXExET4+/vj5ZdfxqhRoxo9pynm5XIuvWnwvusX76dp8L4bB++zafC+Gwfvc8u8+fc5fHPwOgDg35N6Y+nkcJ1eZ+z7fu52Ju77dBcAwNvJBuffeRBf77+Gd7dcAADMGh6CDx4dqJdrfbLjEj7deblJr/lu/khMDq89incxPguTP9kJAAjxcsTh16e1KLbq+16pUKLHK7+jSFYJADj2xnSdpo4eup6CGV/tB6AeHdy4+N4WxdNatao1fdu3b6/3ubFjx2Ls2LFGjIaIiIiIOprD11OEx5cSsxs40rQ0pzKO7OYNkUiEEC9HYV9sWoFBrvXVrGHo7G6PYzFpOB6ThrO3MiGrVGgdbyYWYWg9o4zBGjHezixEpUIJaQO1IeIzC/HjsRiMCPXG6B4+9R4XmZAtJHw+Tjbo4m6vy1vTmt6Zz+mdRERERETtW2peCWLTa5Klq8m5JoymYXev5wOAYM+akS19TZ0sKK3Axaq2CyKRetqki60lwgNcsejenpBVKnD+diaOxaThWHQa0gtKsWBMd60CKZpsLaXwcbJBSl4JKhVK3M4s1EpWNaXll+D+z3Yjo6AM3xy8jk9mDMLMIcF1Hqt1P6qSYF1weieTPiIiIiJq5VLySmBvKYWdVd1JRlMcjdZudJ5ZWIaMglJ4OFi3+Nz6dHciNjREXdHe19kWllIzyCoVyCmWIbtIBlc7yxZd63hsGpRVK756+bnAxVb7fJZSMwytKuiy/D7dzhni5Sg0cI9Jza8z6SurkGPON4eQUVCzTnDpr6egAvBEHYnfkWjtkU9dsXonwBr8RERERNRq/XMhHv1e/wv9VvyFTI3koLk0R4uqXUnKafF59U0zEevt7wLnqkRMLBYhSGO0Ly49v8XXunsETR9CvR2Fx3WNSKpUKrz86ymhKI2ml389hV9OaBc4zC8tR6RGEjwkWPe2bg4aHxYUyiqgVBq1pEmrwKSPiIiIiFqtdYdvAAAKyyqx60pSi86lVKpwVKMaZrXWOMXzaAOJmNa6vnTd1vWpVCrkFsvqvlYzKmI2RjPGupK+/+2/hr/P3Ra2X53aB738a6rTv7bxDLIKa5L8E7HpdSbBupCYiWFrKQUAqFTqxK+jYdJHRERERK2S5hRHQF3woyWi7uQK/eM0XUlufSN9mlMZq9fzVdMslHI6Lh059SRz1ZJzijH+o+3o8eofWHlXhU7NZufW5hL06+TWwshrx3h30ncg6g7e/eeCsD1zSBBeHN8Tfywahy4e6uIs5XKlVhP4lo5Gao72dcQpnkz6iIiIiKhVOhGbBoXGVLzbLUz6NBOpMF9n4XFrG+nTTMRsLCSIuCsR0yzmsuVCAsJe/QOD3tyE5384im8OXse525koq1A3UL8Qn4VJH+8Q3uOaA9e0pjdqJlNDgj1hLjHTy3vQjDE+qxDlVdU/Y9Pz8dwPR1HdNK5/F3e8/8gAiEQiOFpbYGqfQOF1Z25mAFCPUh6uo6hNU2hX8Ox4SR8LuRARERFRq3T3+rsWJ30a55szIhT/t/EMZJUKpOaV6KUgir5oxjk4qHYiFtHJXSjmUi0huwgJ2UXYfD4eACARixDq44Sb6QVaxxXJKhGXUSBMv2xOs3NdWFtI4e9ii6ScYiiUKtzOLISXkzVmrz0ktF3wdrLBuvkjtd7fgK7uwuMztzIBALcyCpCcU38SrAvtCp4dr20DR/qIiIiIqFU6clelzcTsIsgVymadq7S8EmerkggAGN3DB919nITtqzpO8cwrKcfin47j6TUH9FJYpi6NJWKudpbY8q+JmDsiFH0DXWEuqf0rvVypQlRybq3+eoC6eToAVCqUOBFTM4VSn0kfoL2u71pKLhasOyIk7lbmEqxfMBqudlZar+nXyR3iqlYMN1LzUFBagX2Xk4Xnmzsa2dEreHKkj4iIiIhaHc0pjtXkShWSc4rRScem3JpOxWWgsiph7ObtBA8Ha/T0cxHWDF5NzsWo7vU3BgcAuUKJBeuO4FhVMZggz+t4fXpEk2NpiK6JWG9/F/SuKnxSXqnAjdQ8RCZkIzIxG5EJ2biZUVPgpYu7PQYGeeCXE3EAgIsJ2Xh8cFCzm53rKsTLEfui7gAA3tp0HtlFNWsPP39yCML8nGu9xtZSijA/Z1xJyoFKBZy7nYl9l2sK+DRnaifA6Z1M+oiIiIio1TkSXbvKJqCe4tmcpE979MwLALSqReoy0vfyT8eFhA/QT7uEuzUnEbOQmiE8wBXhAa6YXbWvsKwClxNzkFlYhvG9/HA5KVsj6VOP9DW32bmuNIu5aCZ8Syb2wtS+gfW+bkAXd6GNxonYNBy6dkd4bngzRyO1R/o4vZOIiIiIyOQ0ExJLac10vlvNXNdXV/XHnhojTY316vv1ZBxW77qitS8lt6RZsTREX4mYvZU5hoV64cH+nWFrKUVvf1dh2mR0aj5KZJUNVgjVh7oask/o7Yelk8IbfN2Arh7C419PxqGorOWjkdpr+jreSB+TPiIiIiJqVeQKJY5rjKg9cE9n4XFzirmk5JUgrqqfnYVEjAFd1ElFiJcjpGbqX4eTcoqRX88I0NlbmVj2++la+1PzS5scS2M0E7GRelxjZ2spFZIwpUrdr1Cz2fnQEN2bnesqyNMBmjlrN28nfPnUMIjFDSeyA7rUFHMprEr4gJYlwZrTO/M40kdEREREZFqRidlaFR7v7ekrPNecpE+z0fmArh6wMlevcDKXmCHU21F4LqqO1g13cosx99tDwnrA7j5OQqKYV1KO0vLKWq9prvzS8rsSMS+9nRsA+nZyFR5/sedKs5ud68rKXILRVesknW0t8OOCUbCpapLeEFc7K6Ffn6aWJMEdvZALkz4iIiIialU0pziO7OaNLh41Pd+ak/Q1NI1Rc13f8VjtdYSlFXLM/uaQsB7Nzd4KPy4YDS9Ha+GYlDz9jfadiE0XErFwf1c42Vg08oqm6RtY0+rgUmLNdFZ9V+3U9OWsYVg7ZwSOrpgOf1c7nV9XPRpbraVJsIMVp3cSEREREbUaR+5qxO3vYguzqimBKXklQuNxXSiVKhzVKApzd4IzTCOR+P5wNPJK1FP/VCoVlmw4IYz+ScQibPz3RPi52MLbyUZ4TUqedoXRlqhr3aE+RQS61rnfEOv5qjlaW+C+iEC4NHEkUXNdH9DyJNjJRrN6J6d3EhERERGZTEFphdBGoXqtmbnEDH7OtsIxCVlFOp/v6p1cIZFzs7NEN28nrecnhwega9VIYpGsEl/viwIAfL7nKrZeTBCOe//RgRhWlYj5aCR9qXoa6VOpVDiskfQND9Xv1E4ACPJ0hN1d0yub2+zc0AZqrOsDWp4Es5ALEREREVErcTw2TZji2MuvZq1ZZ42qjU2p4HlEK5HyrlVERGImxitTwoXt7w7fwE/HYvDRtkhh3+zhIXhyaLCw7a2V9OmngmdCVhGSc9SjhoZKxMRiEcIDtEf7mtvs3ND8XGzhrTGNtqVJMNf0ERERERG1EvVNceysUdijKev6dJkyOTk8QGgULqtU4FWNSp1Dgj3x1kP9tY73cdaY3qmntg2a6w4NmYhpFnMBDDu1syVEIhFenhIOa3MJpvfvXGuNX1M5WNUkfYWyCiiVqpaG2KYw6SMiIiIig8ouKsPH2y/hr7O3oFAqGzz2aHTdSZpmf7bbmQU6XbdEVolztzOF7fpGi8RiEZZN6VNrv7+LLdbOHSFU66ymNb0zXz9J3+Ebhu2ZVy0iUHsE0ZBFXFrqsUFBiP30cfy1dFKjbR4aIzETw7ZqaqtKpU78OhImfURERERkUG/8dQ4rd13GovXHMfnjnbiUmF3ncQlZhUjMVk9xtDaXoJ/GFMfOWkmfbmv6Tt3MEFotdPN2goeDdb3Hju7hg3s616wjszaX4McFo+ssQKKZ9OljpK9SocSJ2HRh25CJWEQnN1hI1ClAZ3d7rfvaGpmJ9ZeuaI72dbQpnkz6iIiIiMhgKhVK7L2aLGxfTsrBpI934JXfTgkFVqppTsW8e4qjdtLX+PTOYlkl3vvngrA9olvDa8JEIhHeebg/bC2lsDaX4OvZw9DNx6nOY7Wrd5ZApWrZVMENx2JQXNWX0NfZxqCJmLOtJb6cNRz39+uEr2YNa3az87ZIs0F7fgdL+iSmDoCIiIiI2q8L8VkoKddusaBSARuOx2LHpUS8Pi0Cjw7sCrFYhMP1TO0EAG9HG1hKzSCrVCCnWIb80nI4Wtddwl+pVGHRT8cQnZoPADCXiPHYwK6Nxtrb3wUX330IcqWqwfYA9lZS2FpKUSyrhKxSgdyS8ia3JKh2PCYNb/x9TtieFtHJ4InYlD4BmNInwKDXaI20K3h2rLYNHOkjIiIiIoPRHL0b39MPY8N8he3c4nL865eTmL5qFy4lZuNETP1THMViEQLdapp7xzcw2vfpzsvYfblmdPHjxwchxLvuUbu72VmZN9oPTiQSaVWWTK0a7Vtz4Bre/PtcrRHM+iRmF+GZdUegqCoq0tvfBf+e1Fun11LTdeQKnkz6iIiIiMhgNJO+hwZ0wU/PjsYPz4zSWhd37nYWJv53B4qqpjh6O9loFW6ppjnt8XJSTp3X23YxASt3XRa2nxndHY/oMMrXVD4afQNTckuw50oy3tp0Ht8cvC70+mtIsawSs9YeFBJEd3sr/LBgFKzMORHPUDry9E4mfURERERGUFhWgbO3MoXCIh1BXkk5LiWpi7aIRSIMDfGESCTChN7+OLpiGhbd27NWZUwAGNnNu84pjoODPIXHf529Xev5qORcvLjhhLA9ops3VkyP0MdbqcXbSXukb8+VmpHFCwlZDb5WqVThhfXa00+/f2YUvBxtGnwdtYz2SB+ndxIRERGRHpVWyDH2g22YtnIXlv9xuvEXtBPHY9JQXeOkT6Cr1ho8awsp/m9aXxz4v/swLES7yMqoeqpXTu/XSUgSL8RnITY9X3guu6gMs9YeRFmFev1gZ3d7rJkzHJI6kkp98LmrmItmn72b6Q23lPh4xyWtJPHjxwcZpBk7adNe08eRPiIiIiLSoxMxaUjOUbci+P3UTWQUlJo4IuPQ7D1XX4+8IE8H/LFoHNbMGY5+ndzw+KCumBjuX+exLraWGNezZk3gn6dvAQAq5ArM/fYwUvLU7RPsLKX4ccHoegu96INm0nf4RirS8mu+p1lF6kIzddl6IQGf7b4ibC8w0PRTqo3TO4mIiIjIYDTXtSmUKvxRlay0ZyqVSut9N9RwXCQSYVpEJ2xbOgkrnxjSYG82zSqcf529BblCif/beAZnb2VWnQv43+zhCPJ00MO7qJ+Pc03Sdz0lr9bzdY32XU3OwYsbjgvbI7t543UDTT+l2hy0kj5O7yQiIiIiPdJsRQAAv52Mg1LZst5urd3tzEJh5M3WUoq+epq+OLK7D9zs1O0R0gvK8PwPR/HLiTjh+demRWCMRoVQQ/FuZP3dzQztpC+rsAyz1h6CrFIBAOjibo81c0YYbPop1eZgxemdRERERGQAyTnFuJWh3V4gIbsIp26m1/OK9uHuRut1FWxpDqmZGA/27yxsb4tMFB4/cE9nPD+2h16u0xgvp4aTvjiNkb7q6aepmtNPnx2tNfJEhufIkT4iIiIiMoSjd43yVdMcnWqPNAubjKynMEtzPVrHGrjwABd8MmOQwRubV7OUmsHVrv6G7NUjfSqVCsv/OINztzWmn84Zjq4ehp1+SrWxTx8RERERGYRWnzqNEaodlxKRWywzRUgGVyFX4ESsRqP1BtbzNUeotxN6+7sI2x4OVvj+GeP3uPO5a7Svfxd34fHNqtHdM7cy8evJmgR/xfQIjOlh+OmnVBurdxIRERGR3imUShzXSH6eHxsmJCsVciX+Ple711x7cCE+CyXl6tYJ/i62CHSz0/s1Xp4cDpEIcLKxwPfzTdPjzvuupG/28FBUDzQmZBWhvFKBPVeShOcnhwfg2THGmX5KtWmO9BXKKtr9ulpNTPqIiIiIDORqci7yStRrh9ztrRDq7YiZQ4KF5389GQeVqv394qk5tXNEPY3WW2pMmC+ufvgoTr/1gN6KxDSVZgVPM7EIY3r4wNfZFgCgVKmQkFWIIzfShGMeH9TVaNNPqTapmRg2FurRYJVKnfh1FEz6iIiIiAxEs09ddfIzPSJQmIYYnZqPyIRsU4VnMEfuet+G4mJrCXsr0xVD8dEYXYzo5AY7K3MEaazVOxGbjhup6nYOUjMxBgV5GD1G0tZRp3gy6SMiIiIykLr61NlZmWNa30Bh/y8n21dBl9xiGS4n5QAAxCIRhgbX3ZS9PRjVw0eYzjljUBAAoKtGf8Dvj0YLj/t3cYe1hdSo8VFtTi1o0K5SqXDwWgouJba9D2qY9BEREREZQLGsEuerKjYCwPDQmuRn5pAg4fGW8/EollUaNTZDOh6TjuoZq30CXdt1W4IQL0cceX06tv57Ih4Z2AUAtKpyarbqGK7nYjbUPJojffklTWvb8H8bz2Dm1/sx8b87EJWcq+/QDIpJHxEREZEBnIxLh7yqUESYrzPc7K2E5yI6uSG4akSotEKOLRfiTRKjIWit5+sAiU6QpwPu6ewurNUL8qy7FYMhp7mS7rwcrYXHFxKydH7d+mMx+PFojLBdLlfoNS5DY9JHREREZACaUzs1R/kAQCQSaRd0aSc9+1QqldHW87VWdfXfc7KxQE9fZxNEQ3cbG1bTLmNHZKJOrzkZl47XN54RtqdFBKJvoKveYzMkJn1EREREBtBY8vNg/84wl6h/FYtMzMb1lLY1XazazkuJ6PN/G/Hw53vwy8k4pOSVAADsLKXo08Z+MdYHF1sLONlYaO0bEeoFsZhVO1uDsWG+sKj6d3c9JQ+3MwsbPD4puwjzvj1cM2rv54yVTwxpc1VYmfQRERER6VlyTjFuVf0yaSk1Q/8utas2uthaYmJvf2G7rY72vffPRaQXlOF4bDpe/vWUsH9IiCekZh3vV02RSFRrtK8jjni2VraWUozs7iNs77hU/2hfiawSs9YeEtquuNpZ4scFo2FdVX23LTH6v8RNmzZh0qRJ6NWrF6ZNm4YTJ04Izx04cACTJk1CWFgYJk+ejMOHDxs7PCIiIqIWO6qxrm1gVw9YSs3qPG7m4Jopnn+dvY2yCrnBY9OnxOyiekdKRnaA9Xz1uXtdH4u4tC5T+gQIj7fXM8VTqVRh0U/HtVpurJs/Cj5ONnUe39oZNenbuHEjli9fjrS0NPTu3RuxsbF4/vnnkZiYiOjoaCxevBhJSUkICwtDYmIiFi5ciNjYWGOGSERERNRiuq5rGxLsCX8XdTPvgrIK7LqcZPDY9EnzfbrZWQojexYSMcb29DNVWCbX1cNeeBzk6QDvNpootFf39vQT/q5eScpBUnZRrWNW7rqs9e/xo8cGon8Xd6PFqG9GS/oUCgW++OILAMCXX36JDRs24KmnnoKdnR0uXLiADRs2QC6XY8mSJfj999+xcOFCyOVy/Pzzz8YKkYiIiKjFFEoljsWkCdsjG0j6xGIRHh9c077hlzY2xVOzUucL9/bEqbcewNsP3YO/XhzfZkdE9EFzZO/+fp1MGAnVxd7KXOvDmLuneG6PTMSnOy8L2/NGddP6d9oWGS3pi4uLQ1ZWFiwtLTF48GAAwPLly3H8+HE88MADuHjxIgCgf//+AICBAwcCACIjI40VIhEREVGLXUnKEZo+ezhYIcTLscHjHxvYFeKqohAn49IbLSzRWsgVSpyISRe2R3Tzho+TDeaP6o5+ndvuiIg+9PB1xt8vjsfqp4fihXt7mjocqsOU8LqneF67k4vFPx0XtoeHeuHN+/sZNTZDMFrSl5SkHh61t7fH+++/jz59+mDy5MnYv38/ACA9Xf2fhqOjo9bX6v1EREREbcHhG9p96hqr8ufpaI2xYTWFJX472TZG+y4n5aCgTJ3cejlaC30HSW1wsCce6t+lQxazaQvu7eUHSVVF1YsJ2fjtZByyCsswa+1BYW1toKsd1swZAUk7+B4arfRMWVkZACAzMxNbtmxBWFgYzp8/j0WLFuHPP/+ETCYDAEilUnVgEonW6xri5GQNiaTuBdKG5OZmZ/RrEu+7vvF+mgbvu3HwPptGR7/vJ29lCo+nDuis0/14bmJv7L16BwDw59nb+Hj2MEgb+d3G1Pf53JEbwuPx4QFwd7dv4Oj2w9T3vaPS9313c7PDmF5+2HNJPTD1r19OwtpCgtJydcJnZyXF1v+biuB20l/RaEmfhUVNv5J169ahV69e+Oqrr/DFF19g48aNsLCwQFlZGeRy9Y2u/mplZdXoufPySg0TdAPc3OyQlVV70ScZFu+7fvF+mgbvu3HwPptGR7/vxbJKnNZYzxfu7aTT/ejn6wwPBytkFJQho6AUvx2O1mrncLfWcJ93nk8QHg/o5GbyeIyhNdz3jshQ933FfX1xOT4L6QXqQabqhE8kAr56ehjcLKRt6vvdUGJstLFKLy8v4XFISAgAoGdP9Rzn9PR0uLur534XFBQAAPLz8wEAnp6exgqRiIiIqEVOxqXXNHH2dYarXeMfXgOAxEyMRwd2FbZ/beVTPAvLKnAxIQuA+hfkYaFejbyCqPXp4uGA42/cjyUTe2m1VVl+X1+Ma2fVZ42W9HXr1g12durs8/Tp0wCAW7duAQD8/f3Rq1cvAMCZM2cAAGfPngUAREREGCtEIiIiohbRtVVDXR7TSPrO3MzQW0yGcCI2HQqN5NbF1tLEERE1j42lFK9M6YPjb96PV6aEq4vvjAszdVh6Z7Tpnebm5pg/fz5WrlyJxYsXIzw8HBcuXIC5uTlmzJiBwsJC7NixAytXrsTevXsRFRUFqVSKmTNnGitEIiIiohY5clcRl6YIdLODpdQMskoFimSVKCitgIO1ub5D1IvD11OEx01NbolaIx8nGyyZ2NvUYRiMUUvRLFiwAK+88gqcnZ1x5coVhIWFYf369ejcuTPCw8OxevVqBAQEICoqCv7+/li9ejWCgtp2TwwiIiLqGJJzinGrqt2CpdQM9zSxkbNIJIKPc01vuzu5xXqNT1/O3srEb6duCttNTW6JyPiMNtJXbe7cuZg7d26dz40dOxZjx441ckRERERELafZqHxQkKfWGiFd+Trb4laGOnG8k1uMHq2scmBKXgnmfnsIlQolAPXUzkFBHiaOioga0/abThARERG1Atrr+ZpX2MRXY6QvJbekxTHpU2mFHLPXHkR2kbrNlrOtBb5/ZhTMxPx1kqi1479SIiIiohZSKJU4Fl3TqmFkM6c8+jrbCo/vtKKkT6VS4V8/n8DV5FwAgEQswrfzRsLPxbaRVxJRa8Ckj4iIiKiFLifmoKCsAgDg6WCFYC/HZp3Hx6l1run7Ys9V/HMhQdh+75EBGBzEtlpEbQWTPiIiIqIW0lzPNzzUGyKRqFnn8dUq5GKYkT5lVasFXe25koSPtkcK208PC8FTw0L0HRYRGRCTPiIiIqIWakl/Pk3a0zv1O9InVyjx+sYz6PKvX/DKb6d0ek1Mah4W/ngMqqo8cXCQJ955uL9e4yIiw2PSR0RERNQCRWUVuBCfJWwPD21eERcA8HK0hplYPUqYVSSDrFLR4vgAoKxCjnnfHsa6I9GQVSqw4Xgszt/ObPA1ucUyPL32IErK5QAAPxdbfDNvBKRm/PWRqK3hv1oiIiKiFjgZlw551ZTJMD9nuNpZNftcEjMxPB2she0UPYz2FZZVYMZX+7HnarLW/m8OXq/3NZUKJRasO4LEbPX1rc0lWL9gNFxsLVscDxEZH5M+IiIiohbQnNrZ3KqdmrTaNuS1bF1fZkEZHli1G6dvZtR6bselJCTn1J1UvvX3ORyPTRe2Vz89FN18nFoUCxGZDpM+IiIiohY4otGqoSXr+arpq21DQlYh7lu5E9dS8oR9K6ZHCNNPlSoV1h2+Uet1f5y6iXVHooXtl6eEY1J4QLPjICLTY9JHRERE1ExJ2UW4nVkIALCUmuGezu4tPqevS8vbNkQl5+K+T3cJ0zPNxCJ89sQQPD8uDM+M6i4c9+vJOBTLKoVtlUqlValzSp8ALJnQq1kxEFHrwaSPiIiIqJk0R/kGB3nCQmrW4nP6OLVspO9kXDoe+Gw3sopkANTJ6Lr5I/HooK4AgFHdfdDFwx4AUCSrxG+n4oTXxqTlIy2/FADgaG2Oz58c0uz2E0TUejDpIyIiImqmo5r9+bo1v2qnJu1efU0b6dt9OQkzvtyHoqrRO3srKX57YRzG9/IXjhGLRZivMdr33aEbQu++wxrrE4eFeMHaQtqs90BErQuTPiIiIqJmUCiVOKYx0qePIi5A89f0/XYyDnO/PYxyuRIA4G5vhU0vTcDArh61jn14QBc42VgAAJJyioVCL/rqN0hErQuTPiIiIqJmuJyYg4KyCgCAp4MVgr0c9XJeH42RvrS8EiiUykZf89W+KPzrl5NQVnVRD3S1w9Z/T0QPX+c6j7c2l+D+fp2E7b/P3YasUqFV5XO4npJYIjI9Jn1EREREzXA4WntUTF9r36zNJUI/PLlShYyCsnqPVSpVeHvTeby75YKwL8zXGf/8ayICXO0avM4D93QWHm+7mIBj0alCM/guHvbwc7Gt76VE1MYw6SMiIiJqBkNOhdRe11f/FM+3Np/H/w5cE7YHBXng75fGw92h8QbxfQNdEViVGBbJKvH25prEUV9TVYmodWDSR0RERNREucUyXIjPEraHheg76dNc11d3MZfsIhm+PXRd2J7Q2w+/LhwHeytzna4hEonwYP+a0b6bGQXC4+Fcz0fUrjDpIyIiImoChVKJhT8eg6Kq4mVPP2e42lnq9Ro+Ooz0HY9JQ9USPvTyd8G3c0fCsoktIzSneFaTiEUYHOTZpPMQUevGpI+IiIioCd7dckGrtcGSib31fg1d2jZoTi8d39MPErOm/1rX2d0efQJctfb16+wOW0u2aiBqT5j0EREREelo4+mbWHOgZkrlSxN6YWJv/wZe0TyNtW1QqVQ4Eq2fNYWaUzxbei4iap2Y9BERERHp4EJ8Fl7+7ZSwPb6XH16eHG6Qa2mO9KXUMdJ3IyUPafmlANQN2Hv7uzT7WtMiAmEmrqk8OpJJH1G7w6SPiIiIqBFp+SWY880hVFQ1Pg/1dsSXTw+DWKyfNg1302yXkJRTXKtX377LScLjoSFezZraWc3VzgpPDwsBAAzo4o5efs1PIImodZKYOgAiIiKi1qysQo7Zaw8hs1DdL8/JxgI/Lhht0HVvjtYW8HCwQkZBGWSVCiRkFaGLh4Pw/L4rycLjEXpor/Duw/3x7Jge8HGyMVgiS0Smw5E+IiIionqoVCr8+5eTuJyUAwAwE4vw7bwRjTY+14cQL0fh8Y3UfOFxeaUCR66lCNv6mI4pEong52LLhI+onWLSR0RERFSPr/dfw+bz8cL2uw/3x5BgL6Ncu5u3k/A4JjVPeHzudibKKuQAgE5udvA3QgJKRG0bkz4iIiKiOuyPuoP3/rkgbD8xJFhY+2YMmkmf5kifvqp2ElHHwaSPiIiI6C6x6fl47oejQvPzAV3c8d4j/SESGW/6Y4i3o/A4WmOkT7M/nz7W8xFR+8dCLkREREQaqgu3FMsqAajbJ3w3fxTMJWZGjSPYyxEiEaBSAfFZRSirkKOkXI6rybkA1OsLhwR7GjUmImqbONJHREREpGHX5STcziwEAFiZS/DjgtFwtbM0ehzW5hJ0crMHAChVKsSlF+BYTM0oX0QnN9hZmRs9LiJqe5j0EREREWnQnD75/Nge6OHrbLJYQu+a4qk1tZPr+YhIR0z6iIiIiKqoVCqtQimju/uYMBog1EuzmEse1/MRUbMw6SMiIiKqEpOWj4wCdRN2Bytz9A5wMWk83TRG+rZHJiK9KjZHGwv09jdtbETUdjDpIyIiIqqiOco3LNQLZmLT/qoU6lMz0ncnt0R4PDrMFxIz/hpHRLrh/xZEREREVY7cSBMet4Y1c4GudrCQ1P51bVxvPxNEQ0RtFZM+IiIiIgCySgVOxaUL261hzZzETIwgL8da+8f28jd+METUZjHpIyIiIgJw7lYmZJUKAEAXd3v4udiaOCK1bt5OWtud3e3Ryd3eRNEQUVvEpI+IiIgI2uv5hod6mTASbaF3jfSNaEWxEVHbwKSPiIiICGi1PfBC7xrpa02xEVHbwKSPiIiI2r30/FLEpufX+3xWYRmi7uQCACRiEQYHeRopssZ183EUHre22IiobWDSR0RERO3aydh0DH5rM0a88w/+PHOrzmOORtdU7Yzo5AY7K3NjhdcoL0cbPHBPZwDAM6O7t6rYiKhtkJg6ACIiIiJDScwuwrzvDqOsQg4A+Hz3FTzUvzNEIpHWcUejW+fUzmpfzRqGjx4bCFtLqalDIaI2yKgjfQkJCQgJCan1588//wQAHDhwAJMmTUJYWBgmT56Mw4cPGzM8IiIiakeKZZWYtfYg8krKhX23Mgtx7naW1nEqlUqriMvIVpj0AWDCR0TNZtSRvhs3bgAAOnfujE6dOgn7fXx8EB0djcWLF0MkEiEsLAxRUVFYuHAhNm/ejODgYGOGSURERG2cUqnCop+OITo1v9Zzf5y+if5d3IXtmLR8ZBSUAQAcrc3Ry9/FWGESERmFUUf6qpO+efPm4euvvxb+DB48GBs2bIBcLseSJUvw+++/Y+HChZDL5fj555+NGSIRERG1A5/svITdl5OF7dnDQ4TH/1yIR2l5pbB9WKNq57AQL5iJWfKAiNoXo/6vdv36dQDAhQsX8K9//QuffvopsrOzAQAXL14EAPTv3x8AMHDgQABAZGSkMUMkIiKiNm7bxQSs2nVF2H5mdHe898gAdPVwAACUlMuxPTJReL61tmogItIXk4z0/f3339ixYwe++eYbPPjggygoKEB6ejoAwNHRUetr9X4iIiKixlxNzsHin44L2yO6eWPF9AiIRCI8NqirsP/30zcBALJKBU7fzBD2Dw9l0kdE7Y/R1vSVl5cjIiICJSUlWLp0Kdzc3LBo0SJcvHgRa9asgUwmAwBIpepFyhKJOrSysrJGz+3kZA2JxMxwwdfDzc3O6Nck3nd94/00Dd534+B9Ng1T3feM/FLM/fYwZJUKAECQlwP+enkSnGwtAQALJvbCB1svQqFU4VRcBgoVSsRnFwnHh3g7om+ol0libw7+/TYN3nfT4H1vGaMlfRYWFvjiiy+09j399NO4ePEiIiMjYWFhgbKyMsjl6pLK1V+trKwaPXdeXqn+A26Em5sdsrKKjH7djo73Xb94P02D9904eJ9Nw1T3vUKuwEOf70VyTjEAwM5SinXzRkFeVomsMvX6PQmA0d19sC/qDgDguTUH4ediK5xjSJBnm/k7w7/fpsH7bhq877ppKDE22vTO8vJy3Lp1C9HR0cI+c3N1c1G5XA53d3UVrYKCAgBAfn4+AMDT09NYIRIREVEboFSqsGb/NXy8/RISs4ugUqmw/I8zOHc7EwAgEgH/mz0cQZ4OtV77xNCaiuAHr6dg/bEYYZvr+YiovTLaSN+tW7dw//33w9HREXv27IGjo6PQhy88PBz5+flITEzEmTNn0KNHD5w9exYAEBERYawQiYiIqA34+9xtvLX5PADgs91XcE9nN5y5lSk8//q0CIwJ863ztePCfLFwXBi+2heltV8iFmFwED9oJqL2yWhJX/fu3TFo0CCcOnUKU6dOhY+PDyIjI2Fvb485c+YgMzMTO3bswMqVK7F3715ERUVBKpVi5syZxgqRiIiI2oDdV5KEx0qVSivhe/CeznhubI96XysSifD69AgEeznilV9PolyuBAD06+zO5udE1G4ZtXrn559/jsceewyAupJn//79sX79enh7eyM8PByrV69GQEAAoqKi4O/vj9WrVyMoKMiYIRIREVErJlcocTwmrc7nwgNc8PGMQRCJRI2e55EBXbDppQkIcLWFlbkEi+7tqe9QiYhaDZFKpVKZOoiWMsXCTi4oNQ3ed/3i/TQN3nfj4H02DUPf9/O3MzH1010AAC9Ha/y4YDR+Oh4DpVKF5ff1hZt94wXgNCmVKlQolLCUGr8KeEvw77dp8L6bBu+7bhoq5GK06Z1ERERELaXVSD3UG738XfDJjMHNPp9YLIKluG0lfERETWXU6Z1ERERELXEkWiPpY7VNIiKdMOkjIiKiNqGwrAIXE7IBqNsyDGtDjdSJiEyJSR8RERG1CSdi06FQqksR9PRzgYutpYkjIiJqG5j0ERERUZtw93o+IiLSDZM+IiIiahO0kr5unNpJRKQrJn1ERETU6iVkFSIhW12y3cpcgn6d3E0cERFR28Gkj4iIiFq9I9E1DdkHB3nAoo311SMiMiUmfURERNTqaU/t5Ho+IqKmYNJHRERErZpcocTxmJqRPiZ9RERNw6SPiIiIWrVLidkoklUCALwdrRHk4WDiiIiI2hYmfURERNSq3T21UyQSmTAaIqK2h0kfERERtWpHormej4ioJZqV9JWUlKC4uFjfsRARERFpKSitwMWEbACASAQMDWF/PiKipmpS0hcTE4Np06YhIiIC99xzD6ZMmYJr164ZKjYiIiLq4E7EpkGhVAEAevm5wMXW0sQRERG1PU1K+lasWIFnn30Wly9fxrlz53DffffhlVdeMVRsRERE1MFprucbHsqpnUREzVFv0rdixQpkZGRo7cvPz0ffvn1hYWEBW1tbhIeHIzc31+BBEhERUcekuZ5vJNfzERE1i6S+J7p06YJHHnkEkyZNwrPPPgsHBwc888wzmDJlCjp37gylUombN29i6dKlxoyXiIiIOoiErEIkZqtrCFibSxDRyc3EERERtU31Jn2zZs3CQw89hO+++w5TpkzBY489htmzZ2P48OG4cuUKAKBHjx7w8uKCaiIiItK/I9E1DdkHB3vCQmpmwmiIiNquBtf02dra4qWXXsLmzZuRnZ2NCRMmYNeuXRg+fDjGjh3LhI+IiIgMRqs/H9fzERE1W4NJX1FREaKioiASifDmm2/i559/xpUrVzBhwgT8/fffUCqVxoqTiIiIOhC5QonjMTUjfezPR0TUfPUmfTt37sTw4cPx7LPPYvTo0fj+++/h7++PTz/9FF9++SV27tyJyZMnY/fu3caMl4iIiDqAyMRsFMkqAQDeTjbo6mFv4oiIiNquepO+Tz75BCtXrsTx48fx999/Y9WqVZDJZACA7t27Y926dXjjjTewbt06owVLREREzReXXoCisgpTh6ETzamdI7t5QyQSmTAaIqK2rd5CLqWlpXBxcQEAODk5QaFQQC6Xax0zaNAg/Pnnn4aNkIiIiFpEpVLh9T/P4vsj0fB2ssHxN6bDyrzeXwFaBa7nIyLSn3r/x58zZw5mzZqF4OBgJCYm4pFHHoGtra0xYyMiIiI9+OFINL4/Eg0ASM0rwZWkHAzo6mHiqOpXUFqBiwnZAACRCBga4mniiIiI2rZ6k75nnnkGo0ePRlxcHHx9fdGzZ09jxkVERER6cCw6DW/8fU5rX2Ern+J5IjYNSpUKANDLzwXOtpYmjoiIqG1rcG5H165d0bVrV2PFQkRERHqUkFWIBd8fgUKp0tpf0MqTPq2pnazaSUTUYg22bCAiIqK2qaisAk+vOYi8kvI6nqs0QUS6OxLNpI+ISJ+Y9BEREbUzSqUKL6w/htj0AgCAhUSM4aFewvOteXpnQlYhErOLAQDW5hL06+Rm4oiIiNo+Jn1ERETtzH93RGLv1TvC9sczBmNoSNtI+n49eVN4PCTYE+YSMxNGQ0TUPjDpIyIiakf+uRCPz3dfFbafG9MDDw/oAntLqbCvsJVO79x5KRGr99bEPr6XnwmjISJqP3Rq0qNUKrFjxw5cunQJlZWVUKm0F4S/8847BgmOiIiIdHclKQcvbTghbI/q7oPXpvcFANhZmQv7i2Stb6TvekouFq0/LmwPC/HCowNZTI6ISB90Svref/99/PLLLwgJCYGdnZ3WcyKRyCCBERERke6yCsswe+1ByCoVAIAuHvb43+zhMBOrJ/U4aCR9BaWtK+nLKZZh1tpDKK2QAwACXe2wZs5wSMw4IYmISB90Svr27duH119/HTNnzjR0PERERNRE5ZUKzP32EFLzSwEA9lZS/LhgNBysaxI97ZG+1jO9s1KhxPzvDiM5R128xdZSih8XjGJvPiIiPdLpI7Ti4mIMHTrU0LEQERFRM3y47SLO3c4CAIhFIqyZMwJdPRy0jrG3qlnT15pG+lb8eRan4jIAACIR8NWsYQjxdjJxVERE7YtOSd+YMWOwe/duQ8dCRERETaRQKvGbRsXLFdMjMKq7T63j7I24pq9EVokPtl7ENwev16oDoGn9sRisPxYjbC+b2hf39mTxFiIifdNpeqenpye++uorHDx4EIGBgTA3N9d6noVciIiITONyYg4KqloweDpYYcGY7nUep5n0Gbp652d7ruDLvVEAgABXW4zv5V/rmJNx6Xh94xlhe3pEIBbdG2bQuIiIOiqdkr7IyEj07t0bAJCamqr1HAu5EBERmc7h6JqfyyO6edf7c9nGQgKxSASlSoWyCjkqFUpIDVQoZfflZOHxybiMWklfUnYR5n17GHKlehSwp58zPn1iCH+nICIyEJ2Svrlz5+Kee+6BjY2NoeMhIiKiJjhyQzvpq49IJIK9lRT5Vev5Cssq4GKAYilJ2UW4mVEgbF9JytF6vkRWiVlrDyGvpBwA4GZniR8WjIa1uU6/khARUTPo9BHfq6++ijt37hg6FiIiImqCorIKXIjPEraHhdSf9AF3VfAsM8y6vv1XkrW2o+7kQlk1oqdUqrDop+O4kZoHADCXiPH9M6Pg48QPlYmIDEmnpM/HxwdJSUl6u+iPP/6IkJAQLFu2TNh34MABTJo0CWFhYZg8eTIOHz6st+sRERG1Rydi06HQmCLpatfwyJ1Wrz4Drevbd1n794ViWSUSsosAAL+fvoldGs9/9NhA9OvsbpA4iIiohk5zKcLCwvDSSy+hZ8+e8PPzg6Wl9g+VphRySUxMxKpVq7T2RUdHY/HixRCJRAgLC0NUVBQWLlyIzZs3Izg4WOdzExERdSRHonWb2lnNTqNtgyFG+hRKJQ5cTa61/0pSDjq72+OfC/HCvrkjQvHYoCC9x0BERLXpNNIXHx+Pvn37QiqVIj09HQkJCVp/dKVSqfB///d/kMlkWvs3bNgAuVyOJUuW4Pfff8fChQshl8vx888/N+nNEBERdSSa6/lG6pD02VtqVvDUf9J3NTkXucXldezPQVmFHGduZgj7nh3bQ+/XJyKiuuk00rdhwwa9XGzDhg04f/48unXrhhs3bgj7L168CADo378/AGDgwIEA1FVDiYiIqLak7CLEZ6mnTVqZS9CvU+PTJO2tDZv0aSahzrYWQgJ4NTkXZ25loFyuBAB09XCAr7Ot3q9PRER10ynpq07K6tO3b99Gz5GcnIxVq1ahV69eeOSRR/D6668Lz6WnpwMAHB0dtb5W7yciIiJtR6LThMeDunrAQmrW6GvsLWumdxqiV5/mdNN5I7vhv9svAVCP9B2+3rSpqEREpD86JX0zZsyASCSCSqUS9olEIohEIojFYkRFRTX4+uppnZWVlXjvvfdqHV893VMqVf8wkkjUYZWVlen0JpycrCGRNP7DTt/c3OyMfk3ifdc33k/T4H03jvZ8n0/fzhQeT76nk07v1cOlZnRNIRbp9f4UlVXg/O2aSqKL7+uDbw/dQF5JOfJLK7DpfM16vvsGdmnX3xtj4T00Dd530+B9bxmdkr4DBw5obSsUCsTHx+Pzzz/H0qVLG339r7/+irNnz2LRokUIDg6ulfRZWFigrKwMcrkcAISvVlZWOr2JvLxSnY7TJzc3O2RVTash4+F91y/eT9PgfTeO9nyf5QolDmi0Rojwc9HpvUprPrtFWnaRXu/PvqvJqFSop2/28HGCWaUSYb7OOBajHpHMKlR/kCs1E6OHm327/d4YS3v++92a8b6bBu+7bhpKjHVK+nx8fGrt8/f3h42NDd566y1s27atwdfv3r0bALB69WqsXr1a2L9582Zs3rwZAQEBSExMREFBAXx9fZGfnw8A8PT01CU8IiKiDuVyUg4KqtbkeTlaI9jTQafXaVfv1N/0zoyCUny4rWYdfvX0zV7+LkLSV+2ezu6w0ZhmSkREhqdT0lcfFxcXJCYmNnpc3759YWdXk3mmpaXh+vXr8PLyQvfu3WFtbY3ExEScOXMGPXr0wNmzZwEAERERLQmPiIioXdIsmDIi1BsikUin19lr9OkrlOmnkEtCViEe+3IfErOLAQAiETAtohMAde/Au3E9HxGR8TW7kEtxcTHWr1+PoKDGe+wsWbJEa3vTpk1Yvnw5Bg4ciA8//BCXLl3Cjh07sHLlSuzduxdRUVGQSqWYOXOmjm+DiIio4zh8o3lFUbSSvtKWJ31RybmY8dU+ZBWp1+abiUX49tnR6OXvAgDo5edS6zVM+oiIjK/ZhVwA9bTP//73vy0OIjw8HKtXr8aqVasQFRUFf39/vPzyyzollERERB1JYVkFLiaoC6aIRMCwUC+dX2uvMb2zUNay6Z0n49Ixa81BFFWdx1Jqhm/mjsCMkd2EtTcBrnaws5QKxzjZWKCnb+3RPyIiMqxmFXIB1JU23d0b7wlUlwceeAAPPPCA1r6xY8di7NixzTofERFRR3EiNh0KpfpD2DBfZ7jYWur8Wjs9jfTtvpyEZ78/IvTdc7Ayx/pnR2NAVw+t48RiEXr6ueBknLoF04hQL4jFuk1FJSIi/RHrctCXX34JBwcH+Pj4CH/c3d2Rn5+PRYsWGTpGIiIiqnKkmVM7AXVyVq25a/p+OxmHud8eFhI+DwcrbFoyvlbCV21wUM3+8b38m3VNIiJqmXpH+m7duoXc3FwAwJYtWzBmzBg4OGhXB4uJicGxY8cMGyEREREJjmo0QB/ZxKRPc6SvqKwSKpVK5yIwKpUKX++/hne3XBD2dXKzw+8vjIO/a/1lwheM6QGZXAEnawtMiwhsUrxERKQf9SZ9d+7cwYIFCwCoG7G/8MILdR73xBNPGCYyIiIi0pKYXYT4qvVyVuYS9OvUtGUWllIzmEvEqJArUalQoqxSAWvzxld6KJUqvLPlPNYcuC7sC/Nzxq/Pj4WbfcM9dW0tpXhtGqtxExGZUr3/048YMQJHjhyBSqXCyJEjsXnzZjg7ay++trGxga2trcGDJCIiIu2pnYODPGAhNWvyOeytzJFdVW2zqKyi0aSvUqHE0l9OYuOZWxrX9sSPC0ZpjRwSEVHr1eD/9B4e6nn40dHRwj65XA6JpEXt/YiIiKgZjkQ3fz1fNc2kr7CsEh4N9HUvrZDj2XVHsC/qjrBvYm9/fD17OCybkXASEZFp6FTIBVCv65swYQLCw8ORnJyMN998E1999ZUhYyMiIqIqcoUSx2PShO3mJ30abRvK6i/mUlhWgce/3KeV8M0cEoRv541gwkdE1MbolPRt2bIF77//PqZPnw4zM/V/9KGhofj222/x7bffGjRAIiIiAi4lZqOwTN3vztvRGkENDdE1QKtBewNJ30fbInH2VqawvXh8T3z8+CCYiXX+vJiIiFoJnf7n/v7777FixQo8++yzEFf9Z//444/jnXfewcaNGw0aIBEREWmv5xse6q1z1c272VlqV/Csi0qlwvbIRGH7jfsjsPy+vs2+JhERmZZOSV9iYiLCw8Nr7Q8PD0dGRoa+YyIiIqK76GM9HwA4WNckfQX1jPRFp+Yjs7AMAOBkY4FnRndv9vWIiMj0dEr6vLy8tIq5VDt16hS8vLz0HhQRERHVKCitwMWEbACASAQMC23+z147y5o1fUX1JH2ao4rDQrw4pZOIqI3TqQznnDlz8J///AdZWVlQqVQ4e/YsNm3ahB9//BH/+te/DB0jERFRh3YiNg0KpQoA0NPPBS62ls0+l9aaPlkFzt7KxLLfT6OXvzM+mTEYEjMxDutpVJGIiFoHnZK+Rx55BHK5HGvXroVMJsNrr70GDw8PvPrqq3jssccMHSMREVGHdjRao2pnaMuSMK2kr7QC7265gBupebiRmoeBXT0wLaITztysWboxvAWjikRE1DrolPT9/vvvGD9+PGbMmIHc3FyYm5uzKTsREZGRaE63HNnCkTfNlg0peSW4mJAlbH+5LwoeDtaQVSoAAF09HODrzJ/3RERtnU6T9D/99FMUFhYCAJydnZnwERERGUlCViESsosAANbmEkR0cmvR+ew0RvqORtdMGwWAWxmFeHvzeWGbUzuJiNoHnZK+bt264eTJk4aOhYiIiO5yRGNq5+BgT1i0sDG6g0bSVz2ipyk6NV943NJRRSIiah10mt7p4uKCd999F2vWrIGfnx8sLbUXkH///fcGCY6IiKij05za2dL1fABgpzG9syFSMzEGdfVo8fWIiMj0dEr6LC0tMX36dAOHQkRERJrkCiWOx9SM9A3v1vKiKpqFXKpZm0swLSIQv526Kezr19kNNpa6JYhERNS66ZT0ffDBB4aOg4iIiO4SmZiNIlklAMDb0RpBHg4tPmddSd+QYE8sHt8Tf5y+BaVKvcZPH6OKRETUOrDbKhERkQF8ufcqwv9vI9YevNbsc2hN7ezmDZFI1OK47OoYvRvRzRuBbvZ4sH9nAICZWISJ4f4tvhYREbUOOo30ERERke5yi2X4YGsklCoVPtwaiXkju8FM3PTPWe9O+vRBYiaGjYUEJeXyWuf+8LGBCPd3QYi3I4I9HfVyPSIiMj0mfURERHp2PCZdmCYpq1Qgp6gc7g5WTTpHQWkFLiZkAwBEImBoiP6apNtbmQtJn4+TDbq42wNQr+2bM7Kb3q5DREStA6d3EhER6dmR6FSt7YzC0iaf40RsmpA49vJzgYutZSOv0J3mFE99TRslIqLWS+ekTy6XY+fOnVi9ejXy8/Nx9uxZ5ObmGjI2IiKiNkelUuHwjbuSvoKyJp/HEFM7qznZWAiP2YuPiKj902l6Z2ZmJmbNmoX09HTIZDJMnz4dP/zwA65cuYKffvoJXbp0MXScREREbcLNjEKk5pVo7UsvaPpIn+Zoob6TvplDgnExIRsh3o4YG+ar13MTEVHro9NI34cffoiuXbvi9OnTsLBQfzr48ccfIywsDB9++KFBAyQiImpLjtw1ygcAmU0c6UvIKkRidjEA9Tq7fp3c9BJbtYcHdMG1jx7F3lenwMqcy/uJiNo7nZK+M2fO4Pnnn4e5eU1vH1tbW/z73//GpUuXDBUbERFRm3M0unbS19SRPs3EcXCwJ8wlZi2O6252VuZcy0dE1EHolPTJZDJIpbX7+lRUVEBVtciciIioo6uQK3AiNr3W/owmJn2HrmtM7WSTdCIiaiGdkr4hQ4bg22+/1UrwioqKsHLlSgwYMMBgwREREbUl5+OzUFqhboUg1hhFa0ohlx2XErHnarKwPbyb/lo1EBFRx6RT0vd///d/uHDhAoYNG4by8nK88MILGDlyJJKSkrBs2TJDx0hERNQmaE7L1KyKqetI3/WUXCxef1zYHtXdB0EeDvoLkIiIOiSdVm97enpi69at2L59O27cuAGpVIquXbvivvvuEwq7EBERdXSaSd/DA7rg4PUUAEBmoQwKpRJm4vo/a80plmHW2kPCSGGAqy2+fHoo190REVGL6ZT0ff7557j//vvx8MMPGzoeIiKiNimnWIYryTkAADOxCKO6+8DJxgJ5JeVQqlTIKSqHu4NVna+tVCgx/7vDSM5RV+y0sZBg/YLRcNZjQ3YiIuq4dJreuXfvXowfPx6PPfYYNm7ciKKiIkPHRURE1KYcj0lD9dL3PgGucLA2h6eDtfB8QxU8V/x5FqfiMgAAIhHw9ezhCPF2Mmi8RETUceiU9O3YsQObNm1Cnz598PXXX2Po0KF46aWXcPjwYSiVSkPHSERE1OppTu2sbqbuoTGyV9+6vvXHYrD+WIyw/eqUPri3p5+BoiQioo5I546s3bp1Q7du3fDKK6/g3Llz2LVrF5YuXQpLS0scP3688RMQERG1UyqVqvGkr7B2Bc+Tcel4feMZYXtaRCAWj+9pwEiJiKgj0mmkT9Pt27dx6tQpnDlzBpWVlejfv78h4iIiImozbmYUIjVfPZJnZylFnwBXAICHxvTOjHztkb7knGLM/+4w5Er1nNCefs5Y+cQQFm4hIiK902mkLyUlBTt27MCOHTsQGxuL8PBwzJo1C5MmTYKtra2hYyQiImrVNEf5hoZ4QWKm/kzVw75mpC9do1dfiawSs9YeRG5xOQDAzc4SPywYDWtznSfgEBER6Uynny5jxoyBt7c3pk2bhtWrV8Pf39/QcREREbUZR6JrT+0EAA/HmpG+zEL1SJ9SqcKin47jekoeAEBqJsa6Z0bBx8nGSNESEVFHo1PSt379egwYMMDQsRAREbUqy34/jS3n49G/izumRXTChF5+sLGUah1TXqnAidh0YVuzKbt29U71SN8Xe69i1+UkYf9Hjw3EPZ3dDfUWiIiI6k/6tm3bhvHjx8Pc3ByZmZnYtm1bvSeZOnWqQYIjIiIylZi0fKGq5r6oO9gXdQeWUjOMC/PF9H6dMLqHLyylZrgQn4Wyqobqga52CHC1E87hbq9dvbOsQo7Pd18R9s0b1Q2PDw4y0jsiIqKOqt6k7+WXX8bgwYPh4uKCl19+ud4TiEQiJn1ERNTuaK7TqyarVGBbZCK2RSbCzlKKib39UVIuF57XnNoJaCd9WYUynIrLgKxSAQDo5GaHN+/vZ6DoiYiIatSb9EVHR9f5mIiIqCPQTPrGhfniTm4JbqTmCfuKZJXYeOaW1muGh3ppbVtIzeBkY4G8knIoVSr8fe628NzoHr5CwRciIiJD0umnzVNPPYXCwsJa+3Nzc/HAAw/ofLGMjAwsWbIEERERGDRoEJYuXYrc3Fzh+QMHDmDSpEkICwvD5MmTcfjwYZ3PTUREpC/llQqcjKtZp/fuw/1x8LX7cPi1+/DShF4I1JjCWc1MLMKQYK9a+zXX9e28lCg8HnnXqCAREZGh1DvSd/HiRSQlqReanz17Flu3bq3VnuHmzZtISEjQ6UIqlQoLFizAjRs3EBISgoqKCmzbtg3x8fH4888/ERsbi8WLF0MkEiEsLAxRUVFYuHAhNm/ejODg4Oa/QyIioiY6H5+pNQ3TvyrJC/F2wqveTnhlSjguJ+Vgy/l4bL2YgLT8UswaFgIHa/Na5/JwsBJGCKvPKTUTY1BXDyO9GyIi6ujqTfrEYjFef/11qFQqiEQifPDBB1rPi0Qi2NjY4Pnnn9fpQrdv30ZSUhJ69OiBv//+GxUVFRg8eDCioqJw+/ZtbNiwAXK5HK+88grmzp2L//3vf/jss8/w888/4+23327ZuyQiImqCwzfqbsFQTSQSITzAFeEBrnjj/n4oKKuAk41FnefycLCqta9fZ7daVUCJiIgMpd6kLzw8HFFRUQCA0aNH46+//oKzs3OzL9SlSxdcuHABJSUlEIlEKCgoQEVFBczMzGBnZ4eLFy8CAPr37w8AGDhwIAAgMjKy2dckIiJqDs31fCNCG56GKRaL6k34AMBDY3qnruckIiLSJ53W9B08eLDehC89Pb3O/XURiUSwtbXFd999h6lTp0KhUODll1+Gh4eHcB5HR0etr005PxERUUtlF8lwNVm93txMLMLgYM8Wnc/DvvZIX12jh0RERIaiU3P25ORkfPTRR4iNjYVCoV6PoFKpUFFRgdzcXFy/fr1JFz127Bjy8/Ph4OAAkUgEAJDJZAAAqVQ93UUiUYdWVlbW6PmcnKwhkZg1KQZ9cHOrvZCfDI/3Xb94P02D9904mnOfD8SkCY8HBHmii79Li2IIvuv1LnaWGN03AGbi9lu5k3+/jYP32TR4302D971ldEr6/vOf/yAlJQVTp07F2rVrMX/+fCQmJmLXrl3NWm+3evVqlJaWYvbs2fjggw/g5eUFCwsLlJWVQS5X9zuq/mplVfsT0rvl5ZU2OYaWcnOzQ1ZWkdGv29HxvusX76dp8L4bR3Pv87azNW0YhnT1aPH3yqrqw81qQ4M9kZtT0qJztmb8+20cvM+mwftuGrzvumkoMdbpY8bIyEi8++67WLRoEYKDgzFixAisXLkSCxcuxIEDB3QOpLCwEDk5ObC3t4enpyfGjRsHADh9+jTc3d0BAAUFBQCA/Px8AICnZ8um1RARUduUmF2Es7cyoVKpjHZNlUqlvZ5PD9Mw3e+a3jmc6/mIiMjIdEr65HI5fHx8AACdOnUSmrVPnToVV69e1elC+/fvxz333IOFCxdCpVJBpVIJr3VxcUGvXr0AAGfOnAGgbhMBABEREU14O0RE1B6cjE3HyHf/wbSVu/Dd4RtGu25sWj7SC9TLChyszNG7hVM7AXXSpznYd3cDdyIiIkPTaXpnQEAALl++DC8vL3Tq1Emo6llWVobSUt2mVg4ZMgSdO3dGZGQk7rvvPojFYkRHR8PZ2RmPPPIIUlNTsWPHDqxcuRJ79+5FVFQUpFIpZs6c2fx3R0REbU5SdhHmfXdY6Gl3NDoN80d1N8q1D0fXjPINDfGCxKzl6+4spGZ4fFAQfj0Zh/v7dYKvs23jLyIiItIjnZK+GTNmYNmyZVAqlRg/fjzuv/9+WFlZ4cKFC+jdu7dOF7KyssIPP/yAjz/+GCdPnoRSqcS4cePw6quvwt3dHe7u7li9ejVWrVqFqKgo+Pv74+WXX0ZQUFCL3iAREbUdJbJKzFp7CHkl5cI+zceGdvRGTREXfVbY/HTmYCyb2geudpZ6OycREZGudEr6Hn/8cTg7O8PZ2RlBQUF47733sGHDBri6umLFihU6X8zT0xOffvppvc+PHTsWY8eO1fl8RETUfiiVKiz66ThupOZp7c83UtJXXqnAybiaNkEj9DwN062O1g1ERETGoFPSBwDjx48XHk+bNg3Tpk0zSEBERNQxfbrzMnZdTqq1P9dISd+525nClNLO7vbwd2V5cCIiah/qTfqaMoL3zjvv6CUYIiLqmLZdTMDKXZeF7dnDQ/DD0RgAQEFpBZRKFcRiUX0v1wutqp0stkJERO1IvUlfQkKCEcMgIqKOKio5Fy9uOCFsDw/1wtsP9cdfZ2+jSFYJpUqFQlkFHK0tDBqHZhEXtlUgIqL2pN6kb8OGDcaMg4iIOqDsojLMWnsQZRVyAEAnNzusnTsCEjMxHG0sUCSrBKBe12fIpC+7qAxRybkAADOxCEOC2SOWiIjaD53W9F28eLHB5/v27auXYIiIqOOokCsw99vDSMkrAQDYWkrx47OjheTOycYCyTnFANQVPAPdDBfL0eiaqp0RndxgZ2VuuIsREREZmc4tG0QiEVQqlbBPJBJBJBJBLBYLffuIiIh0oVKp8H8bz+DsrUwAgEgE/G/2cAR7OgrHOFrXJF55JRUGjUdrPZ8eWzUQERG1BjolfQcOHNDaVigUiI+Px+eff46lS5caJDAiImq/fjwag19OxAnbr02LwNgwX61jnG1qpnMaslefSqXCEY31fCO5no+IiNoZnZI+Hx+fWvv8/f1hY2ODt956C9u2bdN7YERE1D7FpOZhxV9nhe0H7umM58f2qHWco0bSl19quKQvNi0fGQVlAAAHK3P0DnAx2LWIiIhMQdySF7u4uCAxMVFfsRARUQew+UI8FEr1coFe/i74ZMYgiES12zE4GWmkT7Nq57BQL5iJW/SjkYiIqNVpdiGX4uJirF+/HkFBQXoPioiI2i/N9XOLx/eElXndP4o0q3XmGzDpO3KjpogL1/MREVF71OxCLoB62ufHH39skMCIiKj9yS2W4XJSDgBALBJhaHD9TdA1p3fmGijpk1UqcCouXdgewfV8RETUDjWrkAsASKVSuLu76z0gIiJqv47HpKP688O+ga5wsK6/NYKz1po+w1TvPHcrE7JKBQCgs7s9/FxsDXIdIiIiU2p2IRciIqKm0qySObyRUTXtlg0yg8czIrT+UUciIqK2TKekLzk5GatWrUJcXBwqKmp/2rpnzx69B0ZERO2LSqVqUj88zUIu+Qbq08f+fERE1BHolPS9+uqryMjIwMSJE2FpaWnomIiIqB26lVmIlLwSAICdpRR9Al0bPN7RwNU7swrLEHUnFwAgEYswOMhT79cgIiJqDXRK+q5fv45ffvkFPXrU7qNERESkC81RtSEhnpCaNdwaQXN6Z0FZBRRKpV7bKRyLqanaGdHJDXZW9a8vJCIiast0+ukZEBCAsrIyQ8dCRETtmGbSN1KHKplmYjEcNBIxfRdz4dROIiLqKHQa6VuxYgXeeecdzJ49G76+vhDf9Ulr3759DRIcERGZVrGsEsv/OA2JWIz3Hh0A63p66jWmQq7AiViN1gg6JllONhYoKFMne3kl5XCx1c8Sg+ScYhy6niJsj2TSR0RE7ZhOP73j4+Nx69YtLFu2rNZzIpEIN27c0HtgREQAUFhWgavJOejXyR0WUjNTh9PhrDlwDX+dvQ0A6OrpgIXjwpp1nvPxWSitkAMAAlxtEehmr9PrHG3MgWz1Y300aE/MLsKqXZfx99nbkCvVvSMcrc3Ry9+lxecmIiJqrXRK+r744gs89NBDeOKJJ2BlZWXomIiIAAAJWYWY+ukuZBfJ8NTQYHz0+CBTh9Th7I+6Izw+eC2l2Umf1lTKJjRAd7KpGdlraTGXmNQ83LdyFwrLKrX2Pz08RK9rBYmIiFobnZK+4uJizJs3D76+voaOh4gIAFBUVoGn1xxEdpG6P9vOy0lM+owsp1iGK8k5wva525koLa+EtYW0yefSTPqGN2EqpVavvhas6csrKcestYe0Er5BQR54cXwvDGd/PiIiaud0+mhz/Pjx2L9/v6FjISICACiVKryw/hhi0wuEfdlFMpRXKkwYVcdzPCYNKlXNdqVCiVM3M5p8nlyN5FEsEmFosO5JlrNW24bmNWiXK5RYsO4IErKLAADW5hL8ufhebHppAkZ084ZIJGrWeYmIiNoKnUb6fHx8sGrVKuzduxcBAQGQSLRf9s477xgkOCLqmD7aHom9V+/U2p+WX6LzWjBqOc3RuWpHo9MwpkfTZn0cj0kXkse+ga5wsNa9NYKjHhq0/2fTea32DF88PRRDQzi6R0REHYdOSd/Zs2fRq1cvAMCdO7V/ESMi0pct5+PxxZ6rwrZYJIKyKmNIzStl0mckKpUKR6LTau0/Vse+xhyJbn5rBKcWNmj/9WQc1h2uKTa2dFJvTA4PaPJ5iIiI2jKdkr4NGzYYOg4iIlxOysGSn08I26O7+8DaQoLtkYkAgJS8ElOF1uHczChEatX9trWUorxSgUqFEjdS85BZUAZ3B92KeqlUKhxuQT88R2uNkb7SpiV9J6LTsOz308L25PAALJnYu0nnICIiag90SvouXrzY4PPs00dELZVZUIY5aw9CVrVur4uHPb6ePRyf774iHJPKpM9oNKd2DgvxQn5pOU7FqdfzHY1JxUP9u+h0Hs3k0c5Sij4Brk2Ko7kjfXdyi/HwpztRqVACAHr4OOGLp4ZALOb6PSIi6nh0SvpmzJgBkUgElcaKfpFIBJFIBLFYjKioKIMFSETtX3mlAvO+O4TU/FIAgL2VFOsXjIaDtTm8nWyE4zjSZzx3T8nMLZYJSd+x6DSdkz7N5HFoiBckZk1rjeBko1G9U8ekr7RCjtnfHEJmQRkAwNnWAj8sGN2sqqNERETtgU5J34EDB7S2FQoF4uPj8fnnn2Pp0qUGCYyIOgaVSoVlv5/GudtZANRr+NbMGYEuHg4AAG8na+FYXUf6VCoVKzK2QHmlAidi04Xtkd28kVMkw3+3XwIAHI1O1fket2Q9H9D0kT6VSoUlG04gKjkXACARi/DdvJHwc7Ft8rWJiIjaC52rd97N398fNjY2eOutt7Bt2za9B0ZEHcN3h2/g99M3he0V90dgVPea/3M0R/pS80obPd9bm87h15NxmDE4CK9Ni2jyyBIBF+KzUFYhBwAEutohwNUOvs42cLAyR0FZBdILyhCbXoAQL8cGz1MhV+DkXcljU2lV79ShT9/ne65i68UEYfv9RwdiUJBnk69LRETUnrTotyEXFxckJibqKxYi6mCO3EjFf/4+L2w/MqALFozurnWMj1bS1/BIX1J2EdYcuI7CskqsOXAdc745hNLyygZfQ7XVVXjFTCzGkJCa5OlodO12Dnc7H5+F0qrkMcDVFgGudk2Oxd7SHOKqEcViWSUq5PX3atx9OQkfbYsUtp+7tyeeHBrc5GsSERG1N80u5FJcXIz169cjKChI70ERUftXVFaB5344KrRj6Bvoio8eH1RryqCLrSXMJWJUyJUoKKtAiawSNpZ1r806fFdfuX1Rd/DAZ3uw4bkxcLPXrdok1T8lc3iIF3ZeSgKgXtc3f1T3Wq/VOo9m8hja9FE+ABCLRXCwNhemdhaUVtT5vcwukmHRT8eF7cFBnlg5ayjydRgdJiIiau+aXcgFUE/7/Pjjjw0SGBG1b4eupwq/yHs4WOH7Z0bBUmpW6zixWARvRxskZBcBAFLySxDs6VjnOY/W0UPuclIOJn+yE788PxZBng76ewPtVE6xDFeTcwAAZmIRhgTXjO4N10jcTsalo1KhhLSB6bNHWtCqQZOzjYXwdyW3pLzOpG/f1WQUy9Sjun4utvhm3ghIJbX/PhEREXVEzSrkAgBSqRTu7u56D4iIOgbN0aQnhgTDw8G63mO9nTSSvty6kz65QonjMTVJ33NjemDtwetQqlRIzinGfZ/uxI8LRmNAVw/9vYl26HhMGqo/3+sb6Ap7q5rqmYFudvBzsUVyTjFKyuW4EJ+FgfXcz5xiGa5oJY9ezY5Ja11fPcVcNP8+zR4eAhdby2Zfj4iIqL3RaU2fj4+P1h8LCwsmfETUbE1t2K1LBc/LSTkoKFMX+vBytMaK+yOw/tnRsDJXf7aVX1qBR1fvxdYLCS2Mvn1raEqmSCTCsJCa5K2hdX13J48O1ub1HtuYxip4KpRKrVHelowqEhERtUcNJn1nz57F1KlTERsbq7V/xYoVmDBhAiIjI+t5JRFR/ZrasFuXCp6aycrwUC+IRCKMDfPFppfGw81OPepTLldiwfdH8L/9UbWmq5M6GW9sSqZmInisjum01fSxnq+ao0bCmF9aO+m7mpwrJINudpbo5u3UousRERG1N/UmfVFRUZg/fz68vLxgY2Oj9dzs2bPh4+OD2bNnIyYmxuBBElH70tSG3d46VPCsb+QwPMAV25dOQlePmvV8b2++gNf/PAuFUtnk2NuzuIwCpOark2p7KynC60jGh4Z4orrWTmRiNgrLardR0CV5bIrGRvruvhZ7NBIREWmr9zetr776CpMmTcI333xTq09f//79sW7dOgwbNgxffvmlwYMkovalqQ27tdo25NdO+grLKnAxIUvYHhaifU5/Vzts/fdEDOhSMy39+yPRePOvc02Ku73TJRl3trVETz8XAIBCqdJq4l5Nl+SxKRy1kr7aSWZLG8ATERG1d/UmfVeuXMHTTz/d4IvnzJmDS5cu6TsmImrHyisVWomCLg27Ndf0peTWTvpOxKZDoVRP1+zp5wxXu9pFPJxsLPD7onsxLSJQ2PfjsRiUV9bf962j0XVK5nCNdX3H6ljXd/RGzbTPIcGNj+Q2xrmBkb5iWSXO365J+IeHMOkjIiK6W73VO0tLS2tN67ybq6sriouL9R4UEbVfF+KzUFbVsDvQ1U6nht0+TrbC45S8EqhUKq0pfLpOJbSUmuHrWcNx+mYGMgrKoFCqkJZfgkA3++a8FZ2oVCpcTMjGtTu5uJ2pXss4+Z7OmNbb32DXbI7ySgVOxmUI2w0l48NDvfHlvigAdbfJ0PfIm6N1TdKXWyLTeu5UVesIAOjh4wR3B/ZjJCIiulu9SV9gYCCuXLkCPz+/el985coVeHk1vww3EXU8TanaWc3eSgobCwlKyuWQVSqQV1IOZ42S/JpVJBsbORSLRfB3sUNGQRkA4E6uYZO+tzadx9qD17X2bYtMRP6jA/D08FCDXbepzsdnaiXj/g0k4/d0cYel1AyySgVuZRbiTm4xfJ3ViXlzRnIb4+dSk/THpOZrPafPtYNERETtVb1zbqZMmYLPP/8c2dnZdT6flZWFzz77DOPHjzdYcETU/jRnFEgkEtVbwTMxuwjxWeoeflbmEvTr1Hg7GV/nmnPdyTXcbIVKhRK/noyr87nX/jyLQ9dTDHbtpmpKMm4pNdPqd6g52teckdzG9PB1hkSsHtm9lVmIgtKadX1HNK49vIVVQomIiNqrepO+p556Cg4ODpg8eTI+/vhj7N27F6dOncLu3bvx0UcfYfLkybCzs8P8+fN1vlhWVhaWL1+OoUOHIiIiAk8++SQuX74sPH/gwAFMmjQJYWFhmDx5Mg4fPtyiN0dErUtOsQxXtRp2e+r8Wu96irlojvQMDvKAhdSs0XNVj0oB6pE+Q4lMyEaRrBIA4GxrgVemhKOXf00RlAXrjiA6NU+ncxWUVuDLvVex72qyQWJt6ohZfev6mjOS2xhLqRm6+dS0YbicpP4w8k5uMW5mFAjH9O/SeMJPRETUEdWb9EmlUmzYsAHTp0/Hn3/+icWLF2P27Nl46aWXsHXrVjzyyCP4+eefYW1tXd8ptCiVSjz//PPYtGkTbGxs0LVrV5w9exazZs1CUlISoqOjsXjxYiQlJSEsLAyJiYlYuHBhrR6BRNR23d2w295K94bdPvW0bWjOyKGxRvo0E6kJvfyxZGJv/PTsaGG6YpGsEk/+7wCyCssaPdc7W87jvX8u4qk1B3HmZkajxzdFdpEMUXdyAeiejGuOqh2NSYOyqpCOoSppavZyjExQJ32aI4wDunrAyrzeFQtEREQdWoMl1SwtLbF8+XKcOHECO3fuxO+//449e/bg+PHjWLp0qc4JHwBcv34dV65cga+vL3bs2IE//vgDEydORGlpKbZt24YNGzZALpdjyZIl+P3337Fw4ULI5XL8/PPPLX6TRNQ6tKRht7dj7QqecoUSx2NqfvHXPekzzkifVgJU9X49HKyx5dUpsLGQCNeftfagMCWyLkqlCjsvJQnbX+y5qtc4tZNxN52S8e4+TnCpWleZW1yOaym5yC5q/khuY/oEaiR9ieqkT/Pv00hO7SQiIqqXTnW0pVIpOnfujPDwcAQEBDSr8a27uztWrlyJ5cuXQyJR/7Lj6qr+IZ6Xl4eLFy8CUPcABICBAwcCACIjI5t8LSJqfVrasFtzemdK1UjfpcRsFJapp096O1ojSKMBe0N8XQw/0pdfWi6MSIlE6qbm1XoHumLNnBEQV/1fejEhGy/+dFwYLbvb1Tu5Wq0KDl5PwfWUXL3FqpU86fh9EYtFGKbxno5FpzUredSV5kjf5cRsKJRKHGtGwk9ERNQRtax5UhO4u7tj8uTJGDt2LAAgNzcXO3fuBACEh4cjPV1d7c3R0VHra/V+ImrbWtqw28e59vTOu5NIXT+Q8r2rKEx9yVZLnIhNh7IqA+rt76JVbRQAxob54u2H7hG2t0Um4r876v6QS/N9Vvtyb5Re4lSpVM2ekqk5xfNIdKpWFdURofqt7NzV0wHWVdM30wvKsPfqHSERdre3Qqi3o16vR0RE1J6YZAFEYWEh5s2bh5ycHHTp0gXjx4/Hyy+/DEA9qghAGA0sK2t8rYuTkzUkksaLN+ibm1vLq9JR0/G+65ex7udv524Lj8f09IOXp26jctV6VtYU6Yi6k4dKMxFO3soU9k3p37lJ78XVzhLZRTJUKpSQS8Xw0ZjyqQ9n42sahk+M6FQrNjc3Oyx7uD/Sisrw1W71dM3Pd19F787ueGpkN61jT96qvYZv68UE/HfWMHRyb1m7iet3cpFWlYw72lhgbESgzs3U7x8ShH/9chIAcPZWJpxsa/rpTRvcVe9/t/p1dcfR6+rE8qv9NUnv+HB/uNdzH/j/hWnwvhsH77Np8L6bBu97yxg96cvPz8ecOXNw7do1ODg44PPPP4dUKoWFhQXKysogl6vXtVR/tbJqvNFunkb5dmNxc7NDVlWZeDIe3nf9Mub93KGR9A3s7N7k6zqYmSHY0wGx6QUoKa/EnC/340yceiaASAT09nZq0jm9nWyQXaRu9H0pNgPmXfQ32qdSqbArMlHYvsffRSs2zfu+bFI4biTl4mBV+4YFaw/B0VyCQUHqqZMlskqc1ChYEubnjKjkXCiUKry/8Qzef3Rgi2LdfKKmpcSQIE/kNWGNoyWALh72uJVRCFmlAml5NSO5gfbWev+7FebtJCR9F27XJNX9O7nVeS3+f2EavO/GwftsGrzvpuHsYoPvz5/GP/FXUalUwt7cAnZSS/jYOKCzvQs627sg0M4Z1lL9LStoixpKjI2a9JWUlGDu3Lm4du0aHB0d8cMPPyAoKAiAevpnYmIiCgoK4Ovri/z8fACAp6f+CgEQkWmUVypwMq5mtKo5DbvFYhHef3QAHvp8LwBgf9Qd4bmefi5CURFd+Trb4EqSuujIndxivZb7T8gqQnKOeq2gjYUEEZ3c6j1WYibGmjnDcd/KXYhOzUelQom53x7G9qWT0NndHqdvZqBSoQQAdPN2worpEXh09T4AwG+nbuJfk8Lhate0965Jc+ro8GZMyRwe4oVbGYVa+4aGeOk8WtgUfeqZEjw8hOv5iIjaolxZCU5nJOJURgKu56bDy8YB/d390c/ND5YSCYoqyhFbkIU1208iJjez0fN5WdsLSWAne2fhsZ+tE6Ri488KbE2MmvS99tpriIqKgp2dHdavX4/Q0FDhuV69eiExMRFnzpxBjx49cPbsWQBARESEMUMkIgM4H58pVKfs5GYH/2Y27B4S7IUH7umMTRqjhkDTK4EChq3gqblGbkiwJ8wbmX5uZ2WOn54dg8kf70BWkQx5JeV48n8HsH3pJBzWWm/nhWEhXsJon6xSgWMxqbi/X+dmxalOxmvWTTcnGR8e6o0fjsZo7WvO90MX4YG1k74ePk5wd2h8RggREZmeZpJ3Kj0B0fm1E7kt8c2vUJ1WWoi00kKcSI/X2m8mEsHf1gndnT3Rz80P/dz90NPZC5IOlAgaLem7cuUKdu3aBQCwt7fHF198ITw3ZMgQPPHEE9ixYwdWrlyJvXv3IioqClKpFDNnzjRWiERkIPps2P3m/f2w72qy0PQcaF6yYshefYeb0ZrCz8UW658djQc+2wNZpQK3Mwsx99tDyCyoWddcXaxmRKg3opLV1Tvj0guaHee525mQVSoAND8ZHxzsCTOxCAqNYjjN+X7owsfJRliLWY1VO4mIWrfssmJ8GXUcJ9LjcSOv+X1m7aQWmBM6AH3dfFFYIUN+RRmSi/NxuzAHtwtzkFSUB7lKWedrFSoV4otyEV+Uix2J1wEAAXZO+N/wh9HLpWP8HDFa0rd3717hcUpKClJSUoRtJycnzJw5E6tXr8aqVasQFRUFf39/vPzyy8L0TyJquzSbaA9v4SiQu4MVlk3tg9f+VM8GsDJvePpkfQw10lepUOJEbM3oWVOSkj6Bblj91FDMX3cEAHBKY0qshUSMAV08AADBGkVwYtOan/S1pIVGNXsrc/QNdMW5qjV2LRnJbYxIJEKfAFfs05jay6SPiKj1Kqksx7Rd65BYnFfn8xKRGL1dvTHIIxB93XyRVJSHs5lJuJqbBrFIBDupeu3euC4heMQvHI4W9c/sqFQqkFycj/iqJFDzT1ppYa3jE4vycP/u7/HfQVPxYOfeenvPrZXRkr6lS5di6dKlDR4zduxYoaUDEbUPhmjY/fTwEJy9nYmdl5LwypRwWEibPj3DUCN9F+OzUFw1CunrbIPOTayuOaVvIJZnFeGDrRe19g/o6gGrqpYFwV6Owv7Y9Pxmx1pX8/jmGB7qLSR9hk7CwgNrkj5LqRn6VyXCRERkGnKlAkdSb+G3mxdxMesO7u/UC69FjIVYJMaHkQe0Ej7NJG+QZyD6ufnBRmqhdb553QfVuoYuBXSkYjNhDd+Yu54rk1fgZkE2IrNTcC4zCfvvxKKoshzlCjlePL4Z13PT8VrEOIhFRutmZ3QmadlARB2HIRp2m4nF+N/s4VCqVDATN+8/6LtH+lQqlc59/hpy96hmc8656N4w3M4swB+nbwn7NKdMdtVoQh+fWYhKhRLSJhZOUSfj6imiLU3G54wIxdHoVJRVKvDCvT2bfR5dDNRI8oYEe8KyGQk/ERG1TF55KU6mJ+BE2m3svROD9NKahGzt9ZMoqpThoc698WP0WWH/m/3GY0ZQ31pJnjFYSczR08UbPV288VTIPbhdmIO5h35DXEF2Vcyn4G5lhwU9Bhs9NmNh0kdEBqU5hVCfa71EIhHMWpCkOVqbw8ZCgpJyOcoq5MgtKW9yBdC6aI6eNff9ikQi/PfxQUjOKcHJuHRYSs0wsbe/8LytpRQ+TjZIySuBXKlCfFYhgj0dm3SNYzE1cUZ0coNdC5JxZ1tLbP33pGa/vikGBXlg0b09cSM1D28+0M8o1yQiamtUKhVK5RUoqFCvgfa2aVpv3Ppczk7B51eOYt+dGDTU6OjXuIvYdPuKcMwon66Y122gXj5c1YfO9i7YOnEeXjqxGXuS1cXIPri4H/e4+6Ovm6+JozMMJn1EZDAqlUp7CmErWn8lEong62yLmLR8AOrRvpYmffml5YhMyK46v7p1QXOZS8zw68Kx+OdiAoI9HRDopj1NNMjTASl56rWIsWkFCPZ0RE6xDKt2XYGngxXmjuwmTAetiz7W85mCSCTC/03ra+owiIhMKrEoF4dTbuJGfgYKymUoqChDQYUMhRUy4atmUZNHu/bBRwOnNLtaZWT2Hay6fAQHU+LqfN7V0gYPdu6N9NJC/JMQBQCQKdRVu20k5vho4NRWk/BVszO3xP+GP4wH9/yAyOwUyFVKPH/0T+ye8iwcLaygVCmRWVaMpKI8JBXnIbHqa2pJIcKcPfF6xL3Nnm1kCkz6iMhgYtMLkJavbtjtYGWO3v4uJo5Im5+LZtJX3OL4jsekQ1k1lzXc3xVONi2bwmIhNcMjA7rU+Vywl6NQJVS9ri8AH22LxIbjsQCA30/dxOdPDa2zyI1KpdJO+gzUYoGIiPSnUqnA2msn8cfNSMQX5TbptX/cjERpZQW+GPZAk/rVXchKxqrLR3A49abWfhGAPq6+GOrVCUO8OqO/uz+kYjMolEqIRCKttguvRYzT20ijvpmbSfD18IcwftsaFFaW405JAe7b9R3EIhGSi/NRXpW43u1URgKGeXfBaJ+2U3CSSR8RGYxmYmGoht0toe9iLsYcPdOs4BmXlg+VSoW9V5OFfbcyC3Hfp7vw/LgeWDpJu9hNbFo+0qtaQbTGZJyIiLQlFuXihWN/IzI7pfGDq1iYSWAtkSKvXP3//bbEa6hQyvH18IdhYdZwCnA+MwmrLh/BkbRbWvtFAKYG9sCLvUYgxNG91uvMxGJ8NmQ6rMyk+O3mRUwN6IEnglt3z20/Wyd8MnganjmyEQBwuzCn0de4W9kitI7335ox6SMig2ntUwj12bZBpVLh8I2aH8YGT/o0KnjGpRcgJi0fGRo9/QBAqVLhy71R2B91B58/ORS9qpI7zYbvrTEZJyIidVXMG3kZOJmegFVXDqO4skJ4zkoixWCPQAz27AQPazvYm1vCoeqPfdUfSzMpVCoV3ji3Cz9UFVTZkxyDV09tw2dD76/zmjfyMvD2+T04lnZba78IwH2BYXix13AEN5LsSMRm+HjwfXhnwERYmklbdhOMZFJAd8wJHYDvo89o7XeysIK/rZP6j536a4CdE8JdfWBrgoI0LcGkj4gMorxSgZNxGv3qQpu/vs1Q9DnSF59VJCSONhbN6x3YFEEaI303Mwpw8FpNwjk4yBMiEYR+gdGp+Zj88Q68NKEXFk/ohSM3aiqMtsZknIiovUgsysWBO3E4lBqH1JIC2EgsYCe1gK25BWylVY81vsoUlYjNz0J0fgau52WgTF6pdT6JSIyX+4zG3G4DdEqoRCIR3r5nIszFEqy9fhIA8Nfty5gV2h/hrj5axyYX5+HB3d+jsLJc2CcWiTCtKtnr6tC0n2ttJeGr9tY9EzDCuwtkCjkC7ZzgZ+sEe/OWF3hrLZj0EZFBnLudCVmlAgDQ2d3eYA27W0KfI31aU1mDvZrcQqGpHK0t4OFghYyCMpTLlfjlZM3i+vvv6YQZg4Lw49FovLPlAmSVCsiVKnyy8zL2XE1GXHpNQ/fWmIwTEelTcWU5pGKzRqc0NleOrASl8gr42ToJ+zLLivDckT9xJjNJb9cJsHPCV8MeqpWsNUYkEuH1iHFILM7F7qRoAMCHF/fj93ufFo5RKJV46fhmIeETi0S4v1NPvNhrODrbu+rtPbRmIpEIY3yDTR2GwTDpIyKD0KzaObyVJhaaI30pdSR9JbJK2Fg2/kmlSqXCHo31dMYaPQv2dBSmdN7OLKy5fqg3xGIR5ozshpHdffDShuNC8/Tq3nxA603GiYiaQqVSIUdWgoSiXCQU5SGhKBeJRblVX/OQW14KJwsrfD70gToLb2SVFeOrqONQQYWXeo2Ak4W1zteOzL6Dx/b+hBJ5BRZ0H4z/6zsWhRUyPL7vJ8TkZ7X4vXlb2yPCzQ8DPALwUJfezZ5SKBKJsLzPWOxLjoFCpcLx9HgcTb2F4d7qYmH/u3ZCSFDNRCL8ee8s9PcIaHH81How6SNqA2JS82BpLkFAG/oFvS1Uh3Szs4Kl1AyySgXySsqRll8CL0d1Ivj2pvP434FruL9fJ3w1a1iDpaZ/OBJtkvWLQZ4OOBaTprWvi7s9/FxqRjA7u9tj85IJ+ObgdXy0LRLl8poS3hzlI6K2LLEoF/8++Q+u5qShRF7R4LF55WWYdfBXvNZ3HJ7pPkj4P/1o6i28eHwTsmTqD/6Op8Xj17FPwsO68Z+3JZXlWHRsk3DttddPIjovA3kVpULCZyYSYaR3V4zxDUYfVx+UK+QoqixHcWV5zdcK9dfqUbZgBzeEOLoj1Mkdntb29V6/qbo4uOLRrn3wa9xFAMCHkfsx1KsTruSk4ZNLh4TjXuw1gglfO8Skj6iV++bgdfxn0zmIIMLuVyejp1/rr7SYXSQTRpTMxCIMCfY0cUR1E4tFiOjkJqx9OxWXgQfu6YzCsgp8c+g6AGDz+Xi8NLFXvc3Pj8ek4Y2/zwnbjwzogs7u+vsh3RDNCp7V6ko4zcRiPDc2DKN7+OLFn47jcpK6Mtn0fp0NHiMRkSGoVCr8++Q/OJ2RqPNrlCoV3rmwF8fSbiPQzhlFlTKtBuIAEJOfiQf2fI/fxz2lNV2zLu9c2IuEu1onaFa7FAFYNeR+PNC5l84xGtqS3iPx9+0rKFfIcSUnDYM2fY6Ukpop/31cfbC45zATRkiGwqSPqBU7eC0Fb206D5UKUEGFrRcT2kTSdyymZtQropMb7KzMTRhNwwYHeQpJ38m4dDxwT2eciE2HQlnza8C+q3fqTPoSsgrxzLojwrHhAS748LGBRokbAII0KnhWa2iUMcTLEduXTsK+qDtwsrFA/y5tq9w0EVG1PcnRWgmfndQCAXZOCLRzRoCdc9VX9baZSIwFRzbifJZ6Gv7dPecAwNnCGgUVZVCoVEgsysOE7WvR3ckTXjb28LSyg5eNPbys7dFN4QnLcgku56Tg59gLwuvH+gZj/51YrXN+OHBqq0r4AMDL2h5zQgfgf9dOAIBWwmctkeKLoQ80u4E7tW5M+ohaqZsZBXjuhyNCs29A3V+tLWjtrRo0DQryEB6fissAABzVWI8IAHuvJmPhuDCtfcWySsxaewh5JerpOB4OVvj+mVGwMjfef6t3J6ISsQiDgxoeVZWYiTGxt78BoyKi9q5CIUd0fiaSi/PR09kL/nYNj4gZ4vrvXtgnbM8K6Y93+k9scBr+H/c+jf87vR1/3LpU67kRXl3w2dD7cTHrDp47+icqlAoUVMhwKiNBp3gm+XfD2hGPYFfSDSw9+Q9kCjlej7gXM1tpf7qFYUOx6fZlZJSpq1ZLxWL0cvHG6xH3opN96/9gmZqHSR+RCSiUSpiJ66/uWFBagVlrDqKwTLtUc0wbSPpUKpVW0jeyla7nq9Yn0E1Y13c7sxBp+SVa8QPA+dtZyC2WwdlWXbpZqVThhR+PCd8PC4kY388fJawHNBZXO0s421ogt1idePbr7A5bHQrPEBHpqkIhR0x+Jq7kpOFKTiqu5qYiOi8TFUp1dWYzkQjzug3Cv3qPgI3UAkqVEjmyUrhYWkMsMkwV4/Ux54RplQ7mlvh375ENJnyAulH5J4OnYUZwBKLzMiFTVEKmkCPYwQ1jfIMgFokx3j8UP42ZiUXH/hbW+DXGw8oWHw2cCpFIhEkB3THGNxglleVwtjTuz4OmcLSwwtaJ83A6MxGBds7o4ezZ5torUNMx6SMysnO3M/H0moPwdLDGxsX3wtVOuweMQqnEcz8cxa2qaoyWUjNUyJVQqlRIyilGaYUc1kYcTWqq2LR8pFdVlHSwMkfvgNb9qaGl1ExrXd/vp24iPqtI6xilSoWD11PwUH91lbP/7ojUqtb53xmD0dfAffnqE+zpiNM31SOUrX1UlYjahsSiXHxz/RQuZafgRl6GkODVRaFSYe31k9iaEIVAO2dczU1FcWUFPKzssKzvGDzYuZdek7+Eolx8duWIsP1SrxFwstSt2qZIJEKEmx8i3PzqPWaoV2ecfnAJEopykVZSiPTSQqSXFQmPsytKkFyYj9zyUthJLbB62INa17cwkxisNYQ++dg64kFbR1OHQUbU+v9WErUzq/dcRV5JOfJKyrHmwDW8Pl17+sd7Wy7i0PWaRtufPTkEH2+/hFuZhVCpgJvpBejl33oTqcMaUyOHhXo1OKLZWgzq6iEkfWsOXBP2i0RA9ezafVfv4KH+XfDPhXh8vvuqcMxzY3rgkQFdjBqvpgm9/XD6ZgYspWaYHhFosjiIqG0qriyHjcRcGCmTKxWYdfBXxBVkN/g6f1tH2EgtcCNP/aFTWmkh0kprWsdklBVhyYkt+CH6DN7pP6nBRKsxSpUSG29ewsZbl3BWo+9doJ0zng65p9nnrY+FmQQhju4Icay97tnNzQ5ZWUWQKSohFZm1iZ9xRACTPiKjqpArhOQCADYcj8FLE3oJU/I2nrmF/2kkHS9O6IlpEZ2w5UK8MPIXk5bfqpO+IzdqWgi0lZGnQcGewM7LAKA1pfbxQUH4tarp+aHrKbgYn4WXNpwQnh/V3QevTe9r3GDvMn9kd/T0c4GXgzUC3YxTNZSIWo/UkgIcuBMLK4kUrpa2cLW0gauVDVwsbSBtoCDHtdw0vHFuN85kJGKsbzC+HfkopGIzbImPqpXw+dk6opeLN3o6e6G3izfCXLzgZGENlUqFv29fxjsX9iJHViocLxGJIVep28NcyUnDQ3t+wF/jZzc78Xvj7G78GHNWa58IwJv9xsPcRKNqnA5JbQ2TPiIjOh+fhdIKubBdWFaJ30/dxLxR3XAxPguv/HpSeG58Lz+8MrkPAHXVxd2X1dMJW3MxF9n/t3ff4VGV2QPHvzOT3nsjPaRB6L2FLioKir2vbS1YVl1cy7bfruu6uqu74uq6omvvCqig0nsntAAJSUjvCel9yu+PSW5mSCEJaRPO53l4yL1z7507b0KYM+95z2nSsTelNagdrP35zjc+1BtbK7VZDzuAX84bwY6kPHLO1VBV38QNr2+gvsmY5hTh48Jbd8cP+Ke86i4UbxFCDE1FdVVcvX4VhXVV7T7uZmOPd3MA6G3nhJe9I152juTWVPB56hGlUNimnDP8O3EXj8TN5LXj25Tz74udyuOj4jtMn1SpVFwfMZYFgdHszE/DSq1hjGcArjZ2vHlyN/85uYcGnZYmvZ6Htn/Fz1c92OVUzBabc86YBXwalYpZ/hHcFzuVOcOGd+taQlzKJOgToh+dXyAE4J2tp7h8TBD3vLNVCTqi/d14465ZqNUqZbvFmYLy/rjVHjl0tkgJisLPaxI+mBnX9fmwxyRgDXBzIMrPlctGBfHe9iQAJWB3sbfm/Qfn4eoweFtRCCGGNp1ezyM7v+kw4AMob6yjvLHugqmaAP86vp2Khjoyq8oAY4GUJ8fMwcXG7gJnGguDXB1qXuF4xdh5XBc+hqvXv0NFYz15tZU8tvtbPph3a5fX+J2rr+HXe9Yq2wsCo/j7tCV42VvG/y1CDCaSiCxEP2ov6MsqrebKl9dR2Fz8xN3RlvcfmGtWhdE06BvMFTzNWjXE+A/gnXTfdJPWDWBMTVWpVCwcFWi2X61S8dbdsxnu27YxuhBC9Jc/7fmZPQUZgDHVcXHICGb6hRHj5oOXnSPqC1SzBJgdEMEYT2NGRpNezzun9ymPPThyepcCvs6Eu3jyr5nXKttbc1P5d+KuLp1rMBh4et/3ShVNbztHXp2+VAI+IXpIZvqEaIfBYLhg+efuOlddz/HsUgA0ahV3zIzi/R3JABRX1Sv7/3vv7DZrs8J9XFGrVIO+gqdpERdLWc/XwnRdH7Te/7ThfjjbWVNVb1zr97trJjBv5LABuUchhABjyuNL+zcp20+MmcOTY+aYHaPT6ylrqKW4vobS+hqK66qNf9fXUKdtYs6w4cwNGM7ZylIu++E/NOhalx6429pzd8yUXrnXBYHRPDxyBm82NwN/+cgWXG3sufMCBVjWpJ/gp6wkZfvv05cO6jYIQgx2g+9doxAD7Icjmaz4dA9Thvvy3v1zlRTLi7UruUCpBDk+1IvHF43mk90pNOla15H9+frJzIxuO0NmZ60hzNtZqeCZUlDBmEFWzCW/vIbEbGPfpK40CR9sxpv061OrVMr3wdZaw8u3TOOfPx1nyYRQHpg/YoDvVAhxKduRl8ZDO75StuP9w3l8VHyb4zRqNV72ThecGYtw9eLpsfP48+ENyr6HRs7Aydq21+756XHzOFySw/7CTAzAc/vXUdZQy2Oj4jv8gPWtk61Fs+6Imsj8wKheux8hLkWS3inEeV76LoHy2kZ+Pp7NofTiXrvudpNZsPiYAPzcHLh2Ypiy77YZkfwiPrrD86MGcYpno1bHw//bqWxPCPPG2d6y1rvZWWv48w2TifBx4XfXTsDTqTWt6ZqJYWz77VKevGJMr88ACyFEV61NP8FdWz6hVmvMPPBzcGblrOsuuqDUfbFTmeFn/P8o1NmDX0RPvuh7NWWl1rBq9k2M9WrNknjl6Fb+79DP6A36NscnluZzqrkVhK3GimfGz+/V+xHiUiQzfWJIOpZVyn+3nOLy0UFcPT60y+dll1YrrREAUgrKmRzRtk9PdxkMBradbpv6+OcbJuNoa4WXsz2PXBbXaUAR7e/Gj8eM/YlSBlnQ97uvDigNwlUqeGzR6AG+o565fUYUt8+QT5OFEIODTq+nsK6KQ0XZ7C5I59OUwzQnjBDo5MpH827HsxdSHjVqNR8vuJ19BRmM9PDDwbr3P7Rzt3Pg84V3cv+2L9iZfxaAVaf3UdZQy9+nLzVrL/FF2hHl6yuDY3G1se/1+xHiUiNBnxiSHv1gJykFFaw5lE7sMPcuF90wnY0DSCus7ODI7kktrCSvzLgY3dnOmnEhXgC42Nvw4k1Tu3SNwVrM5YMdSXy464yy/czV42XNmxBCXIBOryevtoKsqjIyqsrIqi4js+ocWdVl5NVUUt3UQL3JOjtTka5e/Hjjg9g19N7bOGu1hlkBEb12vfY4Wdvy/rxbeWzXt6zLPAXAN2ePU9lYz5vxN2BvZU2DTsvqsyeUc26MGNun9yTEpUKCPjHkZBRXklJQAYDeYODtzad45dZpXTr3/OqaqYUVvXJPptedGe2Plab7qThR/q2B62AJ+vacKeC3X7X2T7pmQiiPXhbXyRlCCHFpatLr+CwlgQ3ZyWRUnSO3ppwmfdvUxguZ4B3I+3NvJcjFneLijts1DFa2GivenHU9z9r8wKcpCQBszDnD7Zs+4n/zbmVHfhrljcZq1sMcXZnhH9bZ5YQQXSRBnxhyzg/cvtqfytNXjcXbpfP0EJ1ez86kfLN9pqmeF3VPvVDVMsLHFY1ahU7fXMGzoQkHW+sLn9hHskqquG/VNrR6Y7LRqCAP/nH7DFnzJoQQ59mRl8YfD/7EmYrurxN3sbYlztOfSd7BTPYNZqZf+EWv4RtoGrWav029Gg9bB95obuGwvyiL63/+H84mBWSujxjT5Z5+QojOSdAnhpzt5wVuDVo9721P4jdXj+v0vGOZpVTUNZrtyyypolGrw8ZK08FZF9bQpGP3mdam33N6GPTZWmsI9XZWUk7PFFQwtjlNtL/V1Dfxi7e3UlbTAIC3sx3/e2DeoGwjIYQQA6VBp+WpPWtZk36i3ce97RwJdnYnxNmDYCd3Qp3dCXZyJ9DJDVcbO+ytrIds0KNSqXhm/ALcbR2UyqEtxVtaSGqnEL1H3qGJIUWr07MrOb/N/vd3JPHIwjgc7TqeGduW1LZxuk5vILOkmki/njfiPpxeTF2jcV1GqJczIV7OPb5WtL9ba9CXXz4gQZ9eb+DRD3dxOq8MABsrNe/9ci7D3KV/khBicKnTNlFYV0VBbSUFtVXYqDXM8g/H+SKbjndFo07LQ9u/YkNOsrLP0cqGR0fNYn5gFMFObjj2YlsES/XAyOm429qzYu936Fr6GgFTfUMIcfYYwDsTYmiRoE8MKUcyS5Qm2gFuDlhbqcksqaa8tpHP9qZy39zYDs81TQu1UquUtMW0wgoi/VzR6fXsSy0k0MOpW4GbadXO+Ji2Pfi6I9yntWl7TnNhmP726o/HlCqiAH+7eSoTwy++wqkQQvREbVMjW/JSOF1WSEFta4BXUFtJRWN9m+NtNVYsCIzi+vAxLAiM6rWU9FNlBRwtySXCxYsoV29W7PvOLOC7NmwUv51wGb4OPf/gb6i6cfg4XG3seXjHVzTodQDcNLzz7BwhRPdI0CeGFNPAbc6IYcQFevDcl/sB+O/WU/wiPrrdIipVdY0cNunJd+XYEL5LyABa1/X97fujrNxwApUKbpgcwa8XjyXIs/Omt9A76/lauJr0vquua7qoa/XED0cy+cf6Y8r2/XNjuXlaZL/fhxBCbMlN4cvUI2zKOdNhlcv2NOi0rMs8xbrMU1wXPpp/TF+KlbrnKfwA35w9xlO716Jtp+ccwMMjZ/Ds+AWy5rkTi4Jj+HThnbyUsIkIVy+uDRs10LckxJAiQZ8YUrafN6u2cFQQr6w7SllNA9ml1fxwJJNrJratBLb7TAE6k4IkkyN8WoO+wgoMBgNf7k8FwGCAL/enseZwOnfOiubxRaPxcm4/Vai0up4T2aUAaNQqZkRd3EyfacPzlhnN/nIy5xyPfbhL2Y6P8ef3107s13sQor9p9TryaysZ5ug6ZNdW9bf0ylKK6qpxtLLBwdoGRysbHK1tcOji+rVGnZbfHfiRT1IOX/BYK5UaXwdn/Byc8bV3JqPqnNm6sW/OHqe6qZE346/HVtP9t0QGg4G3Tu7mxYRNHR7zwIhpEvB10RTfEFZfce9A34YQQ5IEfWLIqKhtJCGjBDA2CJ8Z7Y+DjRV3x8fw6o/G2ak3NyWydEJom/98d5jOxsUEmPX1Sy2sJDm/nMKKOrNzGrV6Vm09zWd7Unho/kgemD8Sp/PWDO5KzqdlicL4UC9cHS6u4a2zyfWr6hs7ObJ3VdU18ou3tyhrE8O8nXn73tk9aj0hhKWobKzn5o0fcLw0n9Ge/vxlymLGeQUO9G1ZtLXpJ3hk5zcYOnjc3sraGAxaWaNSqWjQaWnQafGyc2R+YBSz/SN49dg2DhZnm50X5erN/MAogpzc8HNwxs/BBT8HZ7zsHNsEksnlRfw7cRffnj0OwM/ZSdy+6WOuChmBh50DYc6ejPTwu2CQptXr+L9DP/O/pNa2NSHO7jhY2ZBSXozWoJcZPiHEoCFBnxgydp3JR98cYY0O8sTTyTj7dvfsGN7clEh9k44T2efYfaaAmdHmM26mFT9nxwYQ6t265iKtqMJsXd6EMG9UwKHmdNCaBi1/X3+M93Yk8avLR3PnzGhsrY2pQqYzj7NjLi61E84L+voxvfO7hAxyzhnXEDrZWfP+g/Nwc5ACBGLoMhgMPLF7DcdLjb8bjpfms2T9Km6LmsBvxs3H3dZhgO/Q8hTVVfHc/nUdBnxgLLxSp237u62soY6UihL+c3KP2f4loSN5fPRsot26vq442s2Hf824Fm87J94+Zbze3sIM9hZmKMf8YeIi7h/RcX/X8oY6Ht7xFTvyzyr7pvqG8O7cm3G1sadBp6VW2yg/J0KIQUM+phdDhlmAZbJ2zsvZjhunRCjbb246aXZeVkkVZ5vX7dlZa5gU7kOAmyN2zYHbueoG1hxKV46/ZdpwvnvqCt5/YC7R/m7K/nPVDfz+64PM+L/VfLkvFZ1e3+E99dRApXeavo4nLh9NlJ9bvz23EJ3ZnX+Wd0/vo6apoVev++bJ3fycnWS2zwB8fOYws9e8wRepR9B3sH5rKNEb9N1+nVq9joTiHP57ag9r0k8o5/92/3qlsIqbjT0j3H0JcXbHx94JR6vuZUGoVSp+O2Eh/551fbcCvhaq5vOfHjuv3cdXnthJva7937Fnyou4av07ZgHfVSEj+HjB7bjaGPvB2mqsJOATQgwqMtMnhgSDwWA2G3d+gPXA/JF8tPsMBgNsPZXL6dwyYoe5A+azfNMj/ZRZuggfF07mGtsSHMsqVY6JjwlApVKxaHQwC+IC+eZgOq/8cESZCcstq+Hxj3bz2o/HySuvBcDF3rpX2isMRHqnTq9np0kbjHkjh/XL8wpxId+lJ/Lwzq8BWJd5is8X3olND9ZlnW93/ln+dmSzsn1TxFhK6mvYnJsCwLmGWp7as5bPUhJ4cepiRrj7XfRz9peKxjocrWzaFC7R6nWcqSjmeEkeJ87lk1F5jozqc+RWV6A16NGoVFirNSZ/1FirNVipNdioNVg1b6tVKlIqSqg2CcL/l7SfRUExrM86rez7z+wbmOkfbnYPeoOeeq2WGm0j1U0NGAA7jRXWag3HS/NYn3WazTlnsFKreWXaEuYOu7giUiqVisdGxzPFN4StuSmUNdTxU/ZpSutrOddQy5qzJ7g5crzZORuyk3h057fUaFt///5q9GyeHDNb1nwKIQY1CfrEkJBRXEV2aTUADjZWTAzzNns83MeFK8YEs/6osdXAW5tP8vqdM4GOZwgjfF2VoE/Z5+NiVrFTo1Zz45QIlo4P5aNdZ/jnT8cprTZ+kp1RUqUcNyPKv1fWvw1EeufxrFLKa41vcHxd7c1mN4UYKIeLs3li92pl+0BRFn86tIEXplzZ6Xnn6muo1TYR6OTW7uPFddUs3/mNkio+2SeYl6ZdjZVKzYbsZH5/8EdyayoAOFSczRU/vM3dMVN4asycfun91lO51eX8JWEj32WcxN3WnqWho7g2fBR5NRWsyzzFltwUattJq2yhMxjQ6bTdqpLZ4nBxDoeLc5Ttm4ePaxPwAahVahysjcVdvO3NKyPPD4xifmAUYPyQrzfXyE3xDWGKbwgAoc4e/CVhIwCrTu/jpuHjUKlUGAwGVp7YyStHtyjpqfZW1vxzxrUsDhnRa/cihBB9RYI+MSSYFmKZEeWHjVXb8tsPL4hTgr7VB8/yzNXj8HGxN2vmbhr0mRZzae9xU7bWGu6bG8vN04bz3y2neGvzSapN0i9nX2R/vham6Z3V/ZTeue28dYlSkODSU9lYjwGDkrrWV6qbGihs6bNWV0VBbRU1TQ3Yaayxt7LGxcaOUGcPHK1suHfr50o/rxbvJx9gtKc/10eMIa+mkoTqXA5nZZFSUUxqRQkpFcWUNRgLMt0bO4U/Trzc7OfZYDDw6z1rKak3ztp72znyZvz1WDfPii0KjmGWfzivn9jB26f20KTXozMYWHV6H99nJPLajGuJD4hgMKltauTNk7t56+RuGpoDtrKGOt5PPsD7yQcucHbPBTi4MMrTny25KTTpW9NDfe2d+N3Eyy7q2n35O+iWyPG8enwbddomksqL2FOQzjivQJ7cs4YfMk8pxwU5ufHu3JstapZXCHFpk6BPDAnbutALb0KYN5MjfDiQVoRWb2DV1tMsHhdCRZ1xFsvfzYEov9ZAL8LXpc01LrQuz8nOmievHMOds6JZueEEH+86Q6i3M8smtf1UuyeczNI7m3r9E+/29Pa6RGE5GnRa3jixkzcTd9Fk0DPRO4jLgqK5LCiGcBfPHl/XYDDwReoR9hRmKEFeYV0V1U3dT1l2t7VnjOcwtuUZW6o8vfd7nj+wvt1iIKbePb2fAAdXHhg5Xdn3ScphJYUT4F8zl+HnYP57wMHahmfGL+D6iDE8v389uwuM630L66q5f9sXbF7ycIeziKYqG+ux01j1SjpqewwGA6vTT/BiwkYKaqsufALg7+DCGK8AxngGEOXqQ4izO8FO7thbWdOk16HV62ky6GjS6Wgy6GnS6dAadDTqzB+LDfTHqdFYffNMeRG/2fs9B4uzsVKpeWnq1X3+4cHFcLO158aIsXyQfBCAV49vp6qx3qzNwzTfUN6efQMedo4DdZtCCNFtEvQJi9ek07M7uUDZ7iwwWb4wjgNpWwD4aPcZJYUL2s5iRZw302elVjE9smuf6no52/F/103i99dOQK1S9VpgZq1RY2etob5Jh95goLZBi+N5bSJ6U3V9k1nT+vhemrEUg9/eggye2fc9aZWt61kPFGVxoCiLFw5vJNLVi8uCYrgsKJpxXsPaXc+k0+t5+9QeKhrreXxUPA7WxpnqNekn+PXe7y76Hq3ValbNuZk4Dz+W/LiK5OYy+Vptx4VHrFRqpYH2C4c3EOzszhXBsaRVlPDHgz8px90bO6XTWbvhrt58vvBOvstI5I8Hf6K4voYabSNP7/2OTxbc0em/+ef3r+OD5INoVCoCndwId/Ek3MWTMGdP5esAR5cerxE7WpLLHw7+aJZSCTDKw58/TFqETq/nq7Rj7Mw/i4edA1cGx7I4ZARRnRREsdFYYdPF/uXebs4UFxsDzSg3H765/G4SinNwtLYl1t23R6+pP90TM0UJ+vYXZpo99ovoyfxh0iJl9lcIISxFvwd9lZWVLFy4kKqqKk6dak2V2Lx5M//4xz/IysoiJCSEFStWMGfOnP6+PWGBjmSUKJUsA9wdifBpO0PXYsHIQIb7upJaWEF1fRPvbG0tLBAfax7QnH+dCWHebfrwXYhG3fsL+13sbahvMqaoVdU39WnQtyelAG1z0/q4QA+8nAfvJ/Si92zOOcMvtnzaaWn9lIoSUip28e/EXXjbObIgMJprw0cx3S9MOeaNxJ28cnQrADnV5fw7/noadVpeObql3WvaqjVKfzXf5l5rzta2NOi01OmaKKmrIb2qlLPNgegr05Yoa7FWzbmZa396T0nNdLe1Z4SXHyEO7kS6ejPc1YtIV2887Ry5bdNHHCjKwgA8svMbQp09yKouU9arRbt588y4BRccJ5VKxdKwUQQ6uXHNj+9iAHbkn+Wz1ARujZzQ7jkZVeeUgEJnMJBZVUZmVRlbc1PbjEWoiyd3RU/izuhJ7V6rSa/jUFE2NhoNIU7uaA16/nZkM1+lHTM7zsvOkWfGzeeGiLHK76QZ7ayp6ytqlZqJPsH99nwXK8LVi3nDItliMutrrVbzlymLO/y+CiHEYNevQV9VVRXLly+nvLwcjab1U7KkpCQee+wxVCoVcXFxJCYmsnz5clavXk1UVFR/3qIYACVV9ew5U8CMaD+lt153mKYfzontfM2ZWq3ioQUjeeoTY28m05m+WdHmM4ROdtb4uzmQ31yBc7CkNjrbWVNUaQz6Kusb8aPvyoJLauelp6XhdMu/DCdrG34zbj6LQ0awJSeFDdnJ7MhPMyvoUVxfw2epCXyWmsDz4xfyUNwM0itLef34DuWYtRmJ3Dh8LJlVZWRVlwPGsv2vz1qGf3Og52Zj36VZcUPzv1vTY8NcPNm6dDkZVecIdnLH084Rb+/WGSdTq+bcxJIf3yWj6hwNOi3J5UXKY9ZqNStnXoe9Vdc/TJngHcT9I6bx31N7AfjzoQ3MCRhOgGPbdcFfph7p0jUb9DqSy4t4bv86wpw9mNXOrOOTu9ewOv1Eh9ewVqu5L3Yaj42aNaiLzAxGD4yYpgR9XnaOvDPnJiZZUOAqhBDn67egb/369bzyyivk5eW1eeyjjz5Cq9Xy9NNPc++99/LWW2/xz3/+k48//pg//elP/XWLYgDo9QZufH0Dp/PKGBPsyY9PL+52KuT2pO41QL9uUjh/+/6IEjgBjArywMu57ZuicaFe5DcXf1kYF9St++orprON1X1cwbO3m8uLwe+bs8eVmTQXa1s2Xv0Qw5rXqN0cOZ6bI8dTp21kR95ZNmQnsSn3DKX1tcr5LyZsJNTFg4+TD7UptPLc/nXUm6y1Wx43k3k9KLvf0e8Id1uHLvVG87Bz5MP5t3HNj+9yrqH13l1t7Pj9xEWM8Oh+cY4VY+eyITuZjKpzVDU18LsD63l37i1mx+j0er5MO6psvzHrOqLdfEivNM5epleWkl51jrOVpcqMJcCv937HpqsfMgvc9hdmdhrwLQqK5rcTLiPsItZeXspm+Ifz+sxlJJcXcVf0pHYDeCGEsCT9FvS9/fbblJWV8eijj7Jy5UqzxxISEgCYPHkyAFOnTgXgyJGufSIqLNep3DJO57X2wjuSUcL489otdKa8toEjGSUAqFQwM/rCb9ZsrTXcOyeWv36XoOzraBbr99dOxN3Rlolh3sQFeXT5vvqSSz81aM8urSbNtGl9RPcbIIvBrbyhjq/SjuJkbcsNEWPQGwy8dmyb8vgDI6crAZ8peysbFgXHsCg4Bp1eT0JJDi8e3sjB4mwMwEPbv1LWzalVKhysrKluaiSzqrUFiq+9M7+ImdzHr7Bj4S6ebF7yMMdL8/C2dyLI0Q03267NNLbH3sqGf0xfyvU//w8DsCE7mbL6WtztWoPQ7flpSlEVLztHFoeMwFqtaXedW251OYt+eJvyxjpyayr48+ENvDxtCWCc6fzL4Y3Ksd52jtTpmqhuamSkux+/nbCw3ZlB0T3LwkcP9C0IIUSv6beg79Zbb2XOnDk0NTW1CfoKCoxFONzc3Mz+btkvhi7TWTqAbw+ldyvo25VcoKRojgn2xKOL6aF3zoriXz8dp7bRmKLW0SxWiJczf791eruPDRSzCp51fdeg3fR7My3SDztrKVwwVGj1Oj5LSeDlo1uUFgafpyYwzTeUnOYedO629twbO/WC19Ko1UzyCea9ubdw1Y/vkFlVpgR8AHdFTyLazYdn9v1gdt6vRsd3K4WyL3jbOym933rDFN8QxnkFklCSgwHYXZDOVaEjlce/MEntvC58dKfFQIY5ufGXKVeyfOc3AHyaksCVwSOYM2w467NOk1BiLNJio9bw/ZX3M8zRlXpdE/ZWNh1eUwghxKWr34K+m266CYCcnJw2j9XXG5tZW1sb3wBYWRlvq66urs2x7XF3d8Cqnb5sfc3b27nfn3Oo2ZNWaLa97mgmbz44t9MCKKbjfiCjtbLkFRPCuvw98caZl26fzpMf7GJu3DCWTB/eJ0VX+oK3m0n6mrXmon8OOzp/39nWdU6LJ3Z9bEXX9MV4HsjP5L6fPqeotgqNSm38o1ahRoVGrUbdvF3T2Eh+TaXZuec30H56ynzCAry6/NzeOPPddfcT/9nrVDQYf6f7OTrztwVLcLaxZW1WInvzMgAIc/Xk0Wmzsdb0/e/t/v65XTQ8RgnIDpZnc7e3MXAuqa1mQ3ayctxDk2fi7dn5vd3rNY3NhSl8e+Y4AL/c/iXLx89kdcpx5ZiHx81kXNjgSD03Jb8v+oeM88CQcR8YMu4XZ1C0bLC1taWurg6t1jjr0vK3vX3XKgWWldVe+KBe1lGBANF1tY1adp02n+krKK9l7e5UZnXQGsB03A0GAz8daS2nPSnYs1vfkxsmhLF0TDA2VhrOldZc+IRBwtok/SyvuOqifg47+jnW6fVsOpatbE8M8pCf917UF78/SutruP779yisq+7Web72zpTW15jNzvnaO3F94Ohu36MnDrwdfyP3bfucBp2Wv06+isZKLaVoeXHiYm7e+AHlDXW8MOkKys/1/e/tgfg9PcE1UPl609lk5flXndpLU/Max/FegXjpHbt0b38Yu4jtWamU1tdSq23klQOtlU9dbey4d/iUQfdvU/5/7B8yzgNDxn1gyLh3TWeB8aAI+nx8fMjMzKSiooLAwEDKy8sB8PPr/mJ6YTn2pRTS2E4/rdWHznYY9JnKKK4iu9T4BtfR1ooJ3UgLbWEzADPEF8u5H9I7j2WWKk3r/VztifJ365PnEb1Db9Dz+K7V3Qr4HKyseSRuFvePmEZSeSGP7vyWjKpzADw+enaP0wRn+oez99pfoTXo8bZ3UvZHunmz69rH0BkMOFnb9ujalmC8VyAOVtbUapvIrC4js7ma6GcmqZ03DR/X5et52jny0fzbeWrPWk6XmWdGLI+b2aXCNUIIIcSgCPpGjx5NZmYm+/fvZ+TIkRw4cACACROkH85QZrpmbFK4NwfPGlM11x3N5K83TcX2AmvITM+fEeVnkQFcT5gFfX1UyMV0bONjOm+DIQbef07uYVtea5+3VXNuYqJ3EHoM6AwG9Ho9OoMBnUGPvvnvICc3JbAb5xXIz1c9wEdnDuFsbcetkeMv6n5Mi5eYuhTWm9lorJjqG6qU+9+Zf5Zhjq5KWwh7K2uWmKzz64rRngH8fNUDrMs8xT+ObSO1ooSxXsO4O2ZKr9+/EEKIoWlQBH23334769at49VXX2XDhg0kJiZibW3NbbfdNtC3JvrQDpPA4vHLR/PcF/vJKq2msq6JradyuXxM5z2Rtp02D0wuFc79UL1T+vNZjq25Kbx8pDXl76GRM7g8OLbb13G0tuXBkTN689YuWbP8w82CPtP2C7cMH9+jnnlqlZqrQ+O4MngE+bWVeNk7YqcZ2EI4QgghLMegqFwxduxYVq5cSUhICImJiQQHB7Ny5UoiI7vfv0lYhoLyWpLyygGwsVIzLdKPayaGKY+vPpTe6flNOj27z7RWd72UApO+Tu+sqmvkcHprgZz4LqTaiv7XpNfxtyObuXPzJ8p6vPFegTw9bt4A35mY6R+ufL0xO5n9hca1x1YqNQ+MmHZR19ao1QQ6uUnAJ4QQolv6faYvMDCQ5OTkNvsXLFjAggUL+vt2xAAxneWbHO6Dg40V104M4/Wfjc2GN5zIprq+yaw9gamE9GKqm2e5hrk7EuHj0vc3PUj0dXrnnpQCtHpjG4y4IA+8nLtWUEn0vkadloNFWTTqdUS7+eDv4EJBXRW789P5MPmgUiUSjMVX3oy/vtM2AKJ/xLj54G3nSHF9DY0mDeqvDR/Vbt9DIYQQoq8NivROcenZ1k76YEyAOzEBbiTllVPfpOOn41lcP7n9BsOma85mx15aa85M0zur+yDoM03tnHMJpc0ONgcKM/nNvu9JqShR9tlbWVOnbfs9j/cP558zr8XHXspZDwYqlYqZ/uGsTj9htv8hSZ8VQggxQAZFeqcYujafzOGJj3ZzNLP1jateb2BHUr6ybZqaee3E1rSoNZ2keJoFJpdQaieYz/RV9kF65/YOvjeif5Q31PGbvd+z7Of/mQV8QJuAT6NS8cy4+Xy84HYJ+AaZ+ADzD6wWBcUQ5eYzQHcjhBDiUiczfaLPlNc2cP+q7dQ1atmTUsC+/1uGSqXiZO45SquNzZs9newYOcxDOeeaCaH89bsEwBjYlVbX4+lkXvSgrKaBo5mlAKhUMDP60lpzZpry2tszfVklVZwtMjbttrPWMClc3qT2F4PBwPcZJ/nDwR8pNin84WhlQ6y7LykVxVQ01mOr1jDRJ5gZfmFcERxLpFv3W5WIvme6rg+M7RWEEEKIgSJBn+gzu5ILqGvUApBVWs3JnDLigjzMZuniY/xRq1tTM4O9nJkY5s2h9GK0egM/HMnkrlnRZtfdnZyP3mBcczY22At3x6Hb86s9Ln1YvdN0lm96pN8F22aI3pFdXcZz+9exNTfVbP9lgdG8MOVKAhxdMRgMnGuoxdHaRop4WAB/BxdujBjLl2lHuTFiLOO9Ay98khBCCNFHJOgTfcY0uANjquf5QV97qZnXTAzjUHP1yDWH0tsEfZd6+qGTXes/2+qGJvR6g1ngfDGkVUP/0up1rDq9j38c22aWuulr78yfJ1/BFcGxynpVlUqFp53jQN2q6IFXZ1zDHyYtwtVGiiEJIYQYWLKmT/QJg8FgVmwFYPPJXGobmjhwtkjZN6uddgBLxoeibn6juy+1kNyy1lQ3g8HAttO5yvalGJho1GocbIyBn8EANQ29M9un0+vZlWwSUEurhj51tCSXxeve4YXDG5WATwXcFT2JrUuXc2XIiEuqQNFQJQGfEEKIwUCCPtEnMoqryC6tNtt3OL2Y9ceyaNQae4pF+7vh79Z25sLbxZ6Z0X7K9neHWwu6pBZUkHPOGAQ62loxIezSXM/kYt/7bRuOZZZS0VwYxs/Vnih/t165rjBX3dTAU1vXsOTHVZwsa+01GePmw5or7uUvUxbj0oPm3UIIIYQQHZGgT/SJ82f5APQGA3/7/oiy3dks3bUdNGrfeCxL+XpGlB/WmkvzR9jJzmRd33kVPA0GA5tP5rDhRDaG5rWPXbHtEm6D0V+Ol+Yxd+2/eSNhp7Iu1VZjxbPjF/DjVQ8wwTtogO9QCCGEEEPRpfmOWfQ50z58w9xbZ/NaZukAZnfSA+7KsSHYWhl/PE9knyO1sAKAjcezu3T+UNdZg/YNJ7K5/c3N3PWfLby/I7nL15T1fH1Lq9fx0I6vyK+tVPbF+4ezecnDLI+bKU3VhRBCCNFnJOgTva5Jp2f3mda0td9eM6HNMTZWaqZG+nZ4DRd7G+aNbK12t+ZQOk06PVsTc5R9l3Jg4txJeqdpf8NX1h2lovbCvfyq6ho53Fw8B2BW9KU7tn3lu4yTZFaVAeBsY8vrM5fxyYI7CHX2uMCZQgghhBAXR4I+0esS0ouV/nGBHo4sGR+Kj4t5MYMpEb5KMZKOLDsvxfPQ2SKz64b7uPTynVsOZ7P0ztagT683mFU3Latp4I2NJy54vd1nCtDpjemGo4I88HKWNWW9SW/Qs/LEDmX7iYlzWBY+WlJohRBCCNEvJOgTvW77eWvD1GoV80YMMzumK7N08+MClUbkZ4sqeWNDotn5l/IbZvP0ztaZvBM55yiraTA7dtXW0+SX19CZ879nonf9mJVESkUJAE7WNjw8Thp1CyGEEKL/SNAnet0Ok5mmOc3r7ubHmTcmju9COwB7GyuuGBOsbG851dqqYc4lvJ4POk7vPL83IkB9k46/rzvW6fUu1DtR9JzBYOD1462zfL+Inoy7ncMA3pEQQgghLjXSnF30ql3J+SRkGNeGqVQwI9oY3MXH+ONgY0Vto5YAd0dGDuvaOqZrJoTx1f40s31qlUq57qWqo/RO0+DthikRyth9vjeVX84bQXQ7bRiySqpIL64CjIH2xDCfPrrr3mMwGNhbmMGxkjyWhsUR4Ojap8+3rzCD/5zcQ5Neh5O1LU5WNjha2+Jk3fy3lQ2O1ja42NgxyTvYLKjbnHtGac1gp7Hi/hHT+vRehRBCCCHOJ0Gf6DWZJVX88t3ttHQJmBM7DHdHW8BYmGXV/XNYezidO2ZGo1Z3LTVzVow/nk52lFbXK/vGhngq171UtZfeWdvQxEGTxvfPLx1PUWUd20/noTcYeHHtYT54cH6ba5muAZw23Bdb68FRRVJv0LO/MIuv0o5ytrKUEe6+xAdEYKexZuWJHewvMrbv+CHzJD9ceX+fpfs26XU8vONriuqqL3ww4Ghlw0NxM7gnZgqfnDnMP45tVR67I2oinnZte1MKIYQQQvQlCfpEr6iub+Ku/2xR1pP5utrzj9vMZzTmjhjG3PPW9l2ItUbN1eNDzFoPxF/iqZ1gnt7ZUtxmb0ohTTpj4/vYAHd8XR347dIJ7EjKw2CADSdy2JdayNTh5lVTB1urhuzqMr5OO8ZXaUfJqi5X9h8qzubDM4faHH+sNI8jJbmM9w5s81hv2J2f3uWAD6BG28jfj27ln8e2ozXolf0u1rY8MHJ6X9yiEEIIIUSnJOgT7dpwIpu9KQXcMzuWIE+nTo/V6w088v5OkvPLAbC1UvPe/XPxd+udGY1rJoSZBX2DITAZaKbpnZXN6Z3mzdWN6a9xQR4smxjONwfPAvDCmsN8/9QVyqyYVqdnV3K+yXkDM7Z12kbWZ53my9Sj7C5Iv/AJ5/k8NaHPgr7vMloLCC0NjePy4BiqmxqpaWqgWttIdVMDNU3GvxPP5SsFW0wDvlh3X16dvhQ/h0u34qwQQgghBo4EfaKNzJIq7v3vVrR6A2mFlXz4UNuUQFMvrzvCzydam6a/fOt0xod599r9TAr3IdrfjeT8coI8nZjQi9e2VE7tpHd2NGP3m6vH8f2RDBq1eg6nF7PuaBZXjQsB4FBaERV1xvP93RyI8uvbtXEt9AY9OdUVnC4rZFPOGb7PTKS6qW0/QVcbO5aGxhEfEMHRkly256VxrqGW2QERTPcL45Gd3wCwNj2RP0xchKN119J+DQYDlU31uFjbdZoW2qDT8mPWaWX7/hHTGOvV8Wy1Tq/ny7Sj/P3oFgrrqrHVWPHkmDn8csQ0ab4uhBBCiAEjQZ9oY1NiDtrmnm0H0oowGAwdvjFeezidf/3U2gfuwfkjuHFKRK/ej1qt4qOH5vPjsSxumBWFtUaKzrqcl96ZW1ZDSkEFYJxpnRLRmsIZ5OnE3fExvL3lFAB//S6BRaODsNao2Xg8Szludkzft8HQG/T8dv96vk0/3m6QB6AC4gMiuCliHJcFR2OnMb7Wy4NjeWb8AuU4g8HAa8e2kVZZSo22kR8yT3HT8HGdPn9ZfS1fph3l4zOHSK86xzVho3h95rWoVe3/TG3NTaGqyZiyHOLkzhjPzmdCNWo1t0SOZ2loHHsLMxjh4Ye/zO4JIYQQYoBJ0CfaMJ0xqqhrpLCiDj+3tiXmj2eV8quPdivbc0cM47fXTOiTewrydOKX80bg7e1McXOlyf6WX1vJp2cOU1pfg63Gqt0/dudt26jN94c4u2PVCzM+poVcKuua2GHyPZsy3Bf78xrfP7ZoFJ/tTaGyromzRZV8uvsMd8XHsPFY6wxtf6R2fnP2eLvr8gDCXTy5MWIsy8JHd6kap0ql4pbI8bxweCMAn6cktBv0GQwGEkpy+Cj5EN9nJNKg1ymPrUk/QbSbN4+Oim/3OUxTO5eExXU5KHawtmF+YFSXjhVCCCGE6GsS9AkzjVodu88UmO07U1DeJugrrqzj7re3UN9kfAMd4ePCW3fHo1EPzVm4Q0VZ3L/tC4rrO29yfiG+9k78Y/o1zBk2/KKu42TfvKbPuZ5zKr1Zc/X2+ux5ONnx6GWj+MvaBAD+sf4Yi0YHsz/F+L1WqYyVUvtSnbaRvx3ZrGy72dgzwsOXke5+LA4ZwQTvoG7PNF4fPoaXEjajNeg5WJxNSnkxkW7G9N/qpgZWnz3OR2cOcaqssMNrvHJ0K5N8gpnqG2q2v7apkY05Z5TtpaFx3bo3IYQQQojBQoK+Iey/W06RlFfGjVOHt6nY2JFD6cXUNmrN9iXnl5tVzGxo0nHvO1vJK68FjKmG7z84D1cHG4aiL1OP8My+H2g0mSHqqcK6au7Y/DFPjJnDr0bHd5hWeCEudtaoPKtRDy+mAticoQOMs38dVTe9d04s721PIr+8luKqeu5btQ1dcxpvXKAHnk52PbqXrlp1eh8FtcZZWm87R3Ze+xhOXVyD1xEveycWBkUr6+6e2LOGKT7BVDc1sib9BDXatimkoz39uT1qIl+nHeNAURZ6g4HlO77m56sexMu+tWjRxpxk6rTGIjnRbt7EuHft35AQQgghxGAjQd8QtTelgD98cxCAz/amEh/jz4rFY5kY3nnjbdPUzhYtVTnBmCr37Bf7OHjW2IBdrVLx5t3xDPftnwIgvaEl3e+90/vZkpuCo7UNcR7+xHn4E+DogouNHTZqDQeKstiSk8KZimLlXA9bB5bHzUSlMhb5qNdpaWjnT6NOZ3xc37ovr6aCisZ6DMCrx7axO/8st0SOZ2FQNK429t16DdZWalRB55TtGsdywBtvZztiA9zbPcfexooVi8fy5Cd7ADic3vq6+jq1s6Sumn8n7lK2nxo796IDvhY3Dx+nBH1HS3I5WpLb5hg7jRVLw0ZxZ9RExjQXYpkTMJzLf3ibcw21FNZV8+COr/hw3m04WNugN+j5PPWIcv4SmeUTQgghhAWToG+I2ngix2x7R1I+O5LymTtiGCsWj2FcaPsVMNsL+s6YBH3vbkvis72pyvZvrxnP/JF9Uyq/tzXotPyQeZL3Tu/nWGnr66xqaqCgtopNJql87Yl19+W9uTcT5NR+UHUhxXXVLN/5NXsKMgDYX5TF/qIsrFRq5g4bzr2xU5nhF9alFMevzh5BZds686hyNgaT8TEBnTa+v3FqBG9vOUVyfhl41KLS6DAUO7ebEtqbXju+XSncEunqxc0XKLjSHXMChjPGM8Dse9oi0tWL26Mmcn3EmDaBdYCjK/+aeS13bP4EgH2Fmdy++WNWzbmJ3x34kZ35Z5Vjr5agTwghhBAWTIK+Icp0jZeprady2XoqlwVxgfx68VjGBHsqj5VW13M8u7TNOWfyKzAYDJRU1fPnNa1FOK6fHM6D80f2/s33sqK6Kj4+c5iPkg/2aE2ercaKa8JG8adJl3e5JUB7vO2d+HTBHfz96Fb+nbgLQ/N+rUHPxpwzbMw5w0h3P+4fMY0loSOx0bT/z7NBp+X1EzvN9qnstGCtveCMnUat5vml47lr9WrUocaZQrVLExPDOp8BvhjbclP55MxhZfv5CQt7pZhNC41azerL7+FQcTZ5NZUU1FZSp21ipn84U31DOg2i5w6L5NnxC/hrwiYADhRlMeXbfyppnQC3Ro4n3MWzo0sIIYQQQgx6EvQNQUUVdZzKLQPAWqNm3Yor+e+WU3x7MB29wRhqbErMYVNiDotGB/HrK8cSF+TBruR8mh9mQpg3Z/LLqapvUip47kjOp1FrbDgdE+DGK7dO7/MS/xfjaEku7yXt5/uMRJr0erPHbNUargkbxV0xk7HVWHGiNJ/TZYWUNdRS2VRPbVMjoc4ezA+MYrpfKPZWvbNe0Uqt4ZnxC7g5cjzrMk+xPvOU2QzVybICfrV7NS8d2cQ9MVO4LWpCmxmqz1MSyK+tbHtxpwbiu1CMxT/ACk1ImRJ06r0q2ZafwqLgmIt5ae3aV5jBfds+VxqVT/cLZf6w3q9qaaOxYrpfWI/OXR43Exu1hv879DOAWcB3V/Qk/jTpil65RyGEEEKIgSJB3xC0I7k1iJgY7s2oIE9W3jWLxxaN5rUfj7HmcLoS3P18PJufj2dz5dhg6htb0wVb0v1a1n0l55ebpX5eOzEcO+vB2Wy6pK6aZ/evM2uq3cLX3pm7oidxW9QEPO0clf3Rbn0309WeUGcPlsfNZHncTM5WlvLu6X18kXqEep2xiE5BbRUvJmziX8d3cHPkOO6NmUqQkxvpVedYmdg6y2do1KCyMX7fvPzB17Vtaw1TtU2NLN/5NQaVwWz/r/euZazXMHwdnHvtNR4tyeUXWz5VXlOgoyv/nHHtoPyg4P4R07C3subZfT8owfBTY+bwq9GzB+X9CiGEEEJ0hwR9Q5BpcDbbpJJjpJ8rb94dz+OLRvHqj8f5LiFDeWz90SzTSzA7NoD88lol6EvKL2OHScpof/R064kfs07zzL7vKa2vNds/0TuIe2KmcEVILNa9mFrYG8JdPPnLlMX8esxcPjpziP8l7VfSUGu0jbx7ej//SzqAi7Ud5Y11ynnWemvqM93RRBYBYOXacMHn+sPBn0irNKbw2muscbGxo7CuirKGOp7cvYaPFtzW44qipkrra7hj88fKOj4feyc+W3hnl/rvDZTboyYS4OjKV6lHWRwygqtCB3/qshBCCCFEV0jQN8QYDAbzoK+d4Cw6wJ23753N45eP4h/rj7UJ+JztrBkX4kVCRmt1xzWH0impqgfA3dGWUYEeffQKeu4fR7fy2vHtZvuWhsbxyxHTlIqNg5m7nQOPjY7ngZHTWX32OO+c3ktyufF7oDcYzAI+gEh9CCcqGjEYjH32SvWV1DQ1dLju8IfMk3yWmqBs/2XKlYwcFsDlX72FAdien8ZnKUe4LWrCRb+WT1MOU9ZgvF93W3s+W3gnYRawLm7esEjmDYsc6NsQQgghhOhVQ7OT9iXsdF4ZxabBWVDHwdmIYR68e/9cNjxzFYtGBSn7l04Iw0qjJsrPTdl3NLO1wMvsGP9OK0QOhLSKEv51Yoey7efgzMfzb+ff8ddbRMBnylZjxc2R49l09cN8NP82ZvmHK4+52tgxd9hw/m/S5cTZhIFOA3XG/nx6DBxpp10BQG51Ob/Z+72yvTQ0jhsixjIneDgPjpyh7H/r5G70Bn17l+gynV7PpymtweUfJl7e7+mzQgghhBCilcz0DTGms3zxMf5o1BeO60cFefL+g/M4lXuOs0VVLIgztmCI9nczHtCy/stgDPQ6S+2s0zaSeK6A/JpKRnr4Ee7i2S9rol45ukUpUjPRO4gP5t/a7d53g41KpWLusEjmDoskv7aSem0Toc4eynj+8ZSxD6Ohyg6Vg7H4yIGiLGaaBIkAWr2OR3d9S0Wj8cOAICc3/jr1KuU6T4yezacph6lorCej6hxbc1OZH9jzYivb89PIri4HwM3GnqtCR/T4WkIIIYQQ4uJJ0DfEbDML+rq37m7EMA9GDPPAYDDwx4M/sSb9BJpJtaA2YNCD4Zwjhhx35bpavY4zFcVKQ+yjJbkklxehM7QWCfFzcGamXziPjJrJcNf2ewNerOOlefyQeUrZ/uOkyy0+4Dufv4NLm32Rfs3r46rswLcKgINFWW2Oe/3ETg4079eoVLwx6zpcbOyUxx2sbbh5+HjePmVs2v7u6X3tBn1fph7hbGUpM/3DmeIb0uHayI+TW9t63Dh8LHYa6y6+SiGEEEII0Rck6BsEahu1PP7hLirrGnn9zpkXrMDYkbpGLftTC5XtrpTvb8/2vDRWnd5n3GieKFSpQeVVA541/On4Oorrqjl+Lt+svH17Cmqr+PrsMRLP5bNpycM9up8L+VvCZuXrK4NjGWth6Zw9dd3kCIoq66gx1POfkh8BOFycjVavU/rgHSjM5J8m6xyfHDOHCd5Bba51d8xk3jm9F73BwI78s5wpLyLKJCVzT0E6T+5ZC8AbibtwtbFjfmAUi4JimBMQoawjzKupYFNua5P72yIvfn2gEEIIIYS4OBL09ZHdZ/JRoWJapO8F0xs/2pXMD0cyAfjnT8f5601Te/Sc+9MKaWjuozfc15VAD6ceXeejMwfNtg16Y9AHgAqzWbXzqYDhrl4EOLiSUJJDVZOxomRSeRFFdVX42PdeS4AGnZaNOclsz08DQK1SsWLsvF67/mBnZ63hiSvGAPDd17vJq62kVtvEqbJCRnsGUN5Qx6O7vlXSXqf6hvBI3Kx2rxXo5MaioBilzcV7Sft5aerVyuPrzvueVzTW8+3Z43x79ji2ag0z/cNZFBzDmfJi5flm+IUR4erV669bCCGEEEJ0jwR9fWDLyVxue3MTAJ89soA5sZ3PPG09lQfN3cG2nmq/EEdX7Didr3zd05YKeTUVbMxpnan5pc9lvPX9GXBqQB1Uhsql3ux4fwcXxngFMNZzGOO8hjHKM0BJHdTqdVz38/84XJwDwOHiHK4Iju3RfZn6Kes0rxzdSmpFsVkq6Q3hY4h065sU0sFukk8wazMSAXgpYRP/mX0jv9n3Pbk1FYCxAMzrM5d1usbz3tgpStD3ddoxfjNuPu62DhgMBjab/Ex42DpwrqG1JUaDXsfm3BQ256aYXe+OqIm99vqEEEIIIUTPSdDXB07nlSlf7zid32nQV9eoZW9eJuqxBWClI6vMgW+SErk2ekS3+6VtN+mjN6eHQd8nZw6bzdTMCgzhLVKg2g5NSgAf/no6Z6qKCHHyYIxXAH7trDVrYaXWMNknxCToy77ooK+qsZ5f7V6t9H9rYavW8MSYORd1bUt2RUisEvTtyD/L7DUrlV5/AH+fvvSCPfKm+IQwwt2XU2WF1Ou0fJaSwMNxMzlTUUxOc/DobG3LoeufJLm8iJ+yk9iQnczpssI21/Kyc+SyoOhefIVCCCGEEKKnJOjrA15OrUUyCivrOjkSPjp6HG1kLiqNMdBSedXw+IGv+fspN26IGMuNEWMJdHK74HPml9dwKtcYbFpr1Ewb7tvt+27S68z6uN0ZPYnx3t642FtTWdfEFaNDmBM0nDkM7/I1J3gHKl8fLsru9j2d77PTCUrApwKCnd2JcfPlruhJXRqnoWpx8AgeGzWL10/sBDAL+G6PmtClYFulUnFv7FSeal67937SAX45YprZLF98QAQ2GitGeQYwyjOAFWPnkVl1jg3ZyfyUncTBoiz0BgO/GTcfG438ehFCCCGEGAzkXVkf8HFtrRxZ3EnQtzMvjReT1ikBn6ns6nJePbaN145tY6Z/ODdGjOXy4FjsrVorIebVVPBF6hG+TDtKcW0NKn8nDPmuTAr3wdGu+xUTf85KoqiuGgBfeycuC4rGWq3huyev4HBGCYvHhnT7mqZFQ46X5tGo0/Y4GDAYDPz32B5l+w+TLue+2J6tfxxqVCoVT4+bT6SrN7/es5YGvQ6AKFdv/jBxUZevszQsjhcTNlJaX0tebSU/ZSeZBX0L2qnqGeLswf0jpnH/iGmUNdTSpNf16tpNIYQQQghxcSTo6wM+Lq1BX1EHQd+psgJ+seVTtBjfnBsaNegzPFG51KH2qgErY0EWA7Az/yw788/iYm3LNL8w6rSNnGuo5VRZoZKKCaAOLsPgUcOI4K7PxLWoaqzn3ZaKncAtkROUkvzRAe5EB7h3+5oA3vZOBDu5kVVdToNex8myAsZ5BV74xHYcKs7mRLFx3aK9lTU3RIzp0XWGsmvDRxPq4sGv96xFbzDwn9k3YG9l0+Xz7TTW3B45UWl0/8aJnUr6pgqYG9D5z5a7bc8qzwohhBBCiL4jQV8f6ErQ986pvcpsjKFBgyrZH28rZ4oz69FlefCbO6M5WJnGjrw0WsK6yqYGfs5O6vS5VU6NfFS2hUnpbiwJi+v02Aadlq25KaxOP8Gm7GTlfjQqFbdGju/iq72wCd5BZDU36z5cnMM4r0B0ej2FdVX4OTh3ee3iB8mtVUWvCR015Hrx9ZZxXoFsXrK8x+ffET2RfyfuQmvQk3iuQNk/xmsYXvY9qwgrhBBCCCEGTvcqhYgu8XCyRaM2tmkoq2mgoUln9nhVY71Z2wN9ig+TAwOZP7J5BsygRl/qyCcL7mD/dU/w9Nh5hDi3P9M2wy+MZ0dejj7bHYNxchCtQc8Te9ZwojSvzfF6g549Bek8vfc7xn/1d+7b9gXrMk8pAR/AVSEjL1j0oztMUzwTirPR6fX8YuunTP7mNVbs/b5L1yipq2a9yZjdGS2VIfuKn4MLV4WObLO/vdROIYQQQggx+A2qmb6mpiZeeeUV1q5dS0NDAzNmzOCPf/wj3t6WVYZfo1bj5WxHYYVxlq+kup5h7o7K42szEpWm5oZaa6ixJT4mgBAvJz7flwrA9tN5PHnFGAIcXXlsdDyPjprF4eJssqvLcbO1x83WnmGOrvjYO/PmxkQMeW4YzjngMrqMGlUtDTot9237gh8X/xJ3WwdOlxXybfpx1qYnkl9b2e59j3T3Y1n46F4vtW9WzKU4h09TDrM11/g6v0g9wtNj5+Hr0PkasM9Tj9DYHJiO9wpklGfPqpOKrrknZgpr0k+Y7Zs/LHKA7kYIIYQQQlyMQRX0vfrqq3zwwQf4+Pjg7e3Npk2bKC0t5bPPPrtgg/PBxtvFXgn6iipqzYK+z1OPKF8bipwBFXNiAwj0aD0mIb2YqrpGnO2N67FUKhUTfYKZ6BPc5rmUVg31NiwPmc9b+Ruoamogt6aCWzd9RJNeR3J5cbv3GeTkxjVho7g2bBRRbj4X+7LbFevui72VNXXaJnJrKngxYZPZ41tyU7ilk3TSoyW5vHVyt7Its3x9b7x3IOO8hnGkxNg30tfeiTgP/wG+KyGEEEII0RODJr2zoaGBzz//HCsrK7799lvWrl1LWFgYR44c4dixYwN9e93m28G6vqSyQo42v5E26MFQ6oS7oy2jgjzwcrYnLsgDAK3ewJ6UAi6krlHL/tTWPmnXjYlh5axlynbiuYI2AZ+7rT13RU9i9eX3sOfax/nNuPl9FvCBsV/fGJOZuaqmBrPHN5lUhzzf7oJ0btrwARWNxqbw/o7tpx6K3vfLEdOUry8PjrW4D16EEEIIIYTRoJnpS0pKora2lsjISCWdc/LkyaSnp3PkyBHGjh07sDfYTebFXOqVr81m+cocQath1mh/NGpj/D07JoDE7HMA7EjKZ9HotjN7pvanFdKgNS7mi/RzZZi7I8Pco3lqzBz+cWybcpydxopFQTEsCx9NfECEUpmzv0zwDmJfYWa7j+3MT6Ne14SdxrzNxIbsJB7a/pWy3tDd1p5vrrmnzXGib1wVMpKSyTXkVJfz6Kj4gb4dIYQQQgjRQ4Mm6MvPN5bid3NzU/a1fN3ymCXxNg36KmoBY7XMb862zloaio2VEGfHts6CzY4J4N8bEwGTtM1ObD/deozpdR4fHY+dxpqk8kLiAyK4PCgGR2vbHr6aizfRpJgLQLx/ONnV5aRXnaNW28S+gkzmDGttB/DN2WM8uXsNuuaWFL72zny28A4m+AVRXFzVr/d+qVKpVNwdM2Wgb0MIIYQQQlykQRP01dcbZ8OsrFpvqeXrlsc64u7ugJVV/85cAXh7d1x8JGJYa7XNqiYd3t7OvLRvE2UNzamejVZQYQwMr50RibeX8VpXutpj9x8N9U060gorqVNBsFfHz7M7pTW1c8mUCLN7+r3P5T16XX3hMscY1NtU6A0GrNRqXl90Pe+d2Mfrh4394HaXpnPD2HEAvHlkF0/sWq2cG+7myfrrHyDM1RPofNxF98l4DgwZ9/4h4zwwZNz7h4zzwJBxHxgy7hdn0AR9trbGWSidrrV1gFarBcDOzq7Tc8vKavvuxjrg7e3c6YyTg8n6p8yiCv5v649mBUz0RU6AiuG+rtgbMLvWlOG+ygze6t0p3Dq9/aqJhRW1nMgqBcBao2akj8ugngV7Ztx8PktJ4KG4GXjpHZjhEcrrGIO+H1JP8tyoBbx+YgevHN2qnBPj5sMnC+7AqdGG4uKqC4676B4Zz4Eh494/ZJwHhox7/5BxHhgy7gNDxr1rOguMB03Q5+NjLCRSXl6u7Gv52t/f8qoGmqZ3JjadZWNCjrLtr/YgJ9/4TTFNyWwxJyZACfq2n87rMOjbntSa9jo5wgcH28G91u3huJk8HDdT2Z7kE4yztS1VTQ1kV5fz0I6vzPoXjvcK5IP5t+Ju6zAQtyuEEEIIIcSQMGiqd8bGxmJjY0N6ejpFRUXodDoOHToEwIQJEwb47rrP19UY9Km8K8l3bg34pvmG4pQdBHrj0M9pJ+iLj20Ncncm56PT69t9DtP1fPExlte3zkZjxeyACGXbNOCb5R/OZwvvkIBPCCGEEEKIizRogj4HBweuv/56mpqauO6661i6dClpaWmMGzeO0aNHD/TtdZu3sz041aMKLVX2TfcL5ZWJ15CUY2yObq1RM224b5tzYwPc8XY2prSW1TRwormapym93sDOpPaLuFiSBYFRbfZdERzL+/NuHdDCM0IIIYQQQgwVgyboA3j22We56667aGxsJDs7m/nz57Ny5cqBvq0eqdDVookqQtU8wjFuvrw/91YOprYGgZPCfXC0a5uSqVKpzGbudiS1rV56Oq+M4ipjgRt3R1tGBXr08ivoH3OHRaI2Wf94Y8RY3oq/HlvNoMk8FkIIIYQQwqINqqDPxsaG5557jv3793Ps2DHefPNNpWefJanXNXH/ti/A2liUxtCk5vejFuNgbdNhi4XzxceaBn1tWzeYXSfGH7XaMhtne9o58tsJCwl2cuOpMXP4+/QlWPVzD0EhhBBCCCGGMplO6QM/ZyVxrNQYlBn0oE/xQTPLGr3eYBbAxcd0XKBmtsljB9KKqG1oMivUsn0IpHa2+OWI6fxyxPSBvg0hhBBCCCGGpEE10zdU+Ng3l0s1gCHTE6rsKayoa5uSGdRxSqavqwMxAW4ANOn07E1t7cdX26hlv8m2JRZxEUIIIYQQQvQPCfr6wDS/UDZe/RBL7GZiKHIBoKiy7rxqm/5o1J0P/2yTYM703P2phTRojRU9o/xcCXB37M3bF0IIIYQQQgwhEvT1kVh3X2LcWitzFlfWmadkdmF2rqNiLl1dFyiEEEIIIYQQEvT1IR8XO+XrzJJq85TMLgRrUyN9sbEyfouS88vJL68B6HbwKIQQQgghhLh0SdDXh3xcWhuLbzmVq6RkRvq5MqwLKZkONlZMDvdRtncm5VNYUUtSXjnQ3Ocvsm2fPyGEEEIIIYRoIdU7+5CPi73ydV2jVvm6OymZ8bEB7DpTAMD2pHww6Wk3OcLHrKKnEEIIIYQQQpxPZvr6kGnQZ2pON1IyZ8eY9+vbdiq39TFZzyeEEEIIIYS4AAn6+pCnsy1qlXnT9O6mZMYFeuDhZAtASVU9645mKo/Jej4hhBBCCCHEhUjQ14c0ajVeznZm+7qbkqlWq5gV3dqovbF5XaCHky1xgR33+RNCCCGEEEIIkKCvz52f4tmTlMz2ZvRmxwSgVqvaOVoIIYQQQgghWknQ18fOD/rie5CS2V57B0ntFEIIIYQQQnSFBH19zDToc3e0ZVQPUjKHuTsy3NfVbF98rH8HRwshhBBCCCFEKwn6+pi3SdA3O8a/xymZs2Nag7woP1f83S7c508IIYQQQgghJOjrY4tGBykVPG+fGdXj61w1PlT5eonJ10IIIYQQQgjRGWnO3scmhHmz+w/XYDBAmI9Lj68zdbgvHz44j/zyWm6aOrwX71AIIYQQQggxlEnQ1w9CvXse7JlaOCqoV64jhBBCCCGEuHRIeqcQQgghhBBCDGES9AkhhBBCCCHEECZBnxBCCCGEEEIMYRL0CSGEEEIIIcQQJkGfEEIIIYQQQgxhEvQJIYQQQgghxBAmQZ8QQgghhBBCDGES9AkhhBBCCCHEECZBnxBCCCGEEEIMYRL0CSGEEEIIIcQQJkGfEEIIIYQQQgxhEvQJIYQQQgghxBAmQZ8QQgghhBBCDGES9AkhhBBCCCHEECZBnxBCCCGEEEIMYRL0CSGEEEIIIcQQJkGfEEIIIYQQQgxhKoPBYBjomxBCCCGEEEII0Tdkpk8IIYQQQgghhjAJ+oQQQgghhBBiCJOgTwghhBBCCCGGMAn6hBBCCCGEEGIIk6BPCCGEEEIIIYYwCfqEEEIIIYQQYggbckFfcXExzz77LDNnzmTChAnccccdHDt2THl88+bNXHnllcTFxbF48WK2bdtmdv6JEye45557mDhxIjNmzODJJ5+ksLCwzfNotVoWLVpEdHQ0BQUFF7yvhIQEli1bRlxcHPPnz+ebb75p97isrCzi4uJYuHBh9174ALLUMc/IyODRRx9l6tSpTJkyhQceeICzZ8/2bBB6maWOaVpaGvfffz9jx44lPj6eP//5z9TW1vZsEPqZpY65qRdeeIHo6GhWrlzZ9Rc+ACx1rHfv3k10dHSbP3v27OnZQPQzSx13g8HAqlWrmD9/PmPGjOHmm28mMTGxZ4PQDyxxnFeuXNnuz7Yl/D5pYYnjDsb3Ig8++CBTpkxhypQpPPzww2RnZ/dsEPqZpY/55MmTmTp1Ki+88AL19fU9GwQLMqT69On1em666SaOHz9OaGgobm5uHD16FAcHB9auXUttbS3XXXcdKpWKuLg4EhMTMRgMrF69mqioKPLz81m6dCkVFRWMGzeOsrIyMjIyiI6O5uuvv8bGxgaAxsZGfvOb37B+/XoAtm/fjp+fX4f3VVRUxBVXXEFtbS2jR48mOTmZuro63nnnHeLj45XjCgsLuffee0lJSSE4OJiNGzf27YD1Aksd8+rqapYuXUpOTg6xsbEYDAaSkpLw9vbmhx9+wM3NrT+Gr12WOqa1tbVcdtllFBcXM2bMGIqLi8nLy2PhwoW88cYb/TJ2PWWpY27q0KFD3HHHHej1eh555BEeffTRvhuwi2DJY71q1SpeeeUVRo4caXatxx57jJiYmD4ctYtnyeP+2muv8Z///Ac3NzciIiI4fPgwnp6e/PTTT7i4uPT94HWDpY7zunXrWLdundk5u3fvpr6+npUrV3LZZZf13aD1Aksd98bGRhYvXkxWVhYRERHY2dlx8uRJwsPD+f7777GysuqX8esJSx3z8vJyFi9eTElJCZMmTSItLY1z586xYMEC/v3vf/fL2A2UITXTd+rUKY4fP05gYCDr1q3jiy++UL7x33//PR999BFarZYnnniCzz//nOXLl6PVavn4448B+PHHH6moqGDJkiV8/vnnfP/99/j5+ZGcnMzx48cB2LNnD8uWLVN++Lri66+/prq6mltuuYUvvviCP/3pTwB88MEHyjGffPIJS5YsISUlpRdHpO9Z6pjv3r2bnJwcJk6cyJo1a1i7dq0SqJz/SVR/s9QxPXr0KFVVVSxcuJAvv/ySzz//HIBNmzZRU1PTm0PU6yx1zFvU19fz/PPPo9fre2lE+o4lj/Xp06cBePrpp3nzzTeVP4M94APLHfeKigreffdd1Go1n332GZ9++imLFi3C2tqaEydO9PIoXTxLHefFixeb/UzfeOON1NfXs2zZskEf8IHljntaWhpZWVkEBgby3Xff8e233zJp0iTOnj1LampqL49S77LUMV+zZg0lJSXcfvvtfPzxx6xZswYHBwc2bdrEyZMne3mUBpfB+xFCD/j4+PDqq69ia2urfDri5eUFQFlZGQkJCQBMnjwZgKlTpwJw5MgRAGbOnIm7uzsREREA2NjY4OrqSkFBAefOnQPg448/Jj09nSeffJJXX321S/d1oecF4yeZGo2G+++/n3feeaeHI9D/LHXMR4wYwSuvvIK3t7dyjqenp3LfA8lSx3T69OkcOXKEuro6AEpKSgBwdHRUPrEbrCx1zFu89tprZGRkEBsbqwQmg5Ulj/WpU6cA4wcZX3zxBZGRkdx55504OTn1ZCj6laWO+8GDB2lqaiIsLIzw8HAAXn/99Z4OQ5+z1HE2VVdXx5/+9CecnJz49a9/3c0RGBiWOu5ubm6oVCoA5W+DwYBKpRr0v1csdcwzMzMBiIyMBMDX15fo6GiOHDnCvn37GDlyZI/GwxIMuaBv8eLFyva5c+eUTwfGjh2r5PS2pO61/N2SHxwVFUVUVJRy/sGDB0lOTkatVjN69GgALr/8clasWEFYWFiXfwBbrn/+89bU1FBVVYWzszOPPvooS5cuJTk52eKCPksc86CgIIKCgpTj09PT2bVrl3LfA8lSx9TZ2Rm1Wo2joyN//etf+fLLL7G1teXPf/4z1tbW3R+IfmTJY56QkMCHH37IokWLiIyMtIigzxLH2srKioyMDAA++ugj5bwNGzbw1Vdfyc84fTPuLWubHB0deeqpp9i8eTPh4eE8//zzTJgwoZuj0PcsdZydnZ2VY7/99ltyc3O57777lA9DBztLHXd/f39WrFjBa6+9xpIlS5T0zgceeIDAwMDuD0Q/suQxB5R1wbW1tWRlZQGQl5fX5ddviYZUeqepyspK7rvvPkpLS4mIiGDRokXKIs2W/5xbPplomZkwdfr0aR555BEAli1bpuQPL1myhLCwsG7dS8vztjyf6ZuDlue+6667BnQdWW+wtDFvkZeXx3333UdjYyPTpk1j3Lhx3XquvmSpY7p582Zqa2txc3NDp9N163kGmiWNeUNDA8899xzOzs78/ve/79a1BwNLGuvKykrmzp3LggUL2LBhA5s2bSI0NJTTp0/z5Zdfduu5BpoljXvL8ycmJrJ//35iY2M5efIk9913X5cKOgwkSxrnFgaDgY8//hi1Ws3tt9/erecYLCxt3LVaLQCpqakkJiZiZ2enzJhZCksa86VLl+Lg4MBXX33FzTffzFVXXUVpaanZuUPVkJrpa1FeXs4999zDyZMncXV15V//+hfW1tbY2tpSV1en/ANr+dve3t7s/JMnT3LPPfdQXl7OyJEjee6557r83B9++CH79u1Ttu+44w5sbW0BlDe/TU1NyuPnP7elstQxz8nJ4c477yQ3N5dhw4bx8ssvd/OV9x1LHVMwflJcXFzM7bffzooVKwgNDWXUqFHdePUDw9LG/J///Cfp6em89NJLFvcmwdLG2tnZmTfffNPsOjfeeCMvv/wyCQkJ3Hbbbd149QPH0sa95XErKyu++eYbfH19ee655/jmm29Yu3YtDzzwQA9Goe9Z2ji3OHbsGGfPnmXcuHHKjIglsbRxT0hI4NVXXyUkJIT33nsPg8HAvffeywsvvEBQUBBz5szp0Tj0J0sbc2dnZ/73v//xl7/8hZSUFKZPn05kZCTbtm0bMu/JOzLkZvpqamq49957OXnyJG5ubrz//vtK3q6Pjw9gXBgOxh9UwKwKUGpqqtkP33vvvYejo2OXn//UqVNs3rxZ+ZOfn9/h8zo5OZmlVFgqSx3zoqIi7rrrLnJzcwkMDOTDDz9Uzhtoljqm586do6KiAhcXFyIiIpg+fToGg4H9+/f3fDD6iSWO+c8//wzAM888Q3R0tFIl9Y033mDevHk9HIm+Z4ljXVNTw5kzZ8zaurSsVW15MzPYWeK4twQebm5u+Pr6AigfIA3WmT5LHOcWu3fvBmhTHdgSWOK4Hz58GIAFCxYQGBhIUFAQCxYsAFq/F4OZJY45GNNPv/rqKw4fPszKlStpbGwEIDg4uIcjYRmGXND3/PPPk5iYiLOzMx988AEjRoxQHmvJEW55A3rgwAEAZV1ATU0NDz30EOXl5cTExPD+++93O+XypZdeIjk5WfmzbNmyDp93/PjxPX+hg4gljrlOp+Oxxx4jJycHf39/Pv7440GVP2+JY/rBBx8wbdo0pVJWU1OTsr7MEmahLHHMZ8yYwfz585U/LWkwYWFhzJgxoyfD0C8scaz37NnD1VdfzfLly2lsbMRgMLB9+3Zg4NcBd5UljvvEiRNRq9WUlpYq1a3T0tKAwfsGzRLHuUXL45aQmXE+Sxx3V1dXwNivrqWDWlJSEoBZobnByhLHfO/evcyfP5/HHnsMMPYaPHr0KGAsLjOUDak+fcePH+eGG24AYNiwYWZltGfMmMHIkSO55ZZb0Gg0Ss8QgNWrVxMZGck777zD3//+dwDi4uKUTxUBfvGLXyiVgFpER0cDF+4ZkpOTw1VXXUVDQwNjxowhKSmJuro6Vq1axaxZs8yO3b9/P3feeafF9Omz1DFfv349TzzxBADDhw8nJCREOffqq6/miiuuuJhhuSiWOqbFxcUsXbqU0tJSRo8eTWVlJRkZGYSGhrJmzZpBnTZhqWN+vpUrV/LGG28M6j59ljrWDQ0NXHfddUofVUdHR06fPk1AQAA//PBDtz6dHgiWOu4Av//97/niiy9wcXEhJiaGgwcP4ubmxvr16/Hw8OiF0ek9ljzOYJxxys7OZtu2bRaV3mmp427aMy4qKgq1Wk1SUhLOzs788MMPnV57oFnymF922WVUVFQwfvx4srOzKS4u5rrrruPFF1/sncEZpIbUmr4NGzYoX+fm5pKbm6tsu7u7c9ttt7Fy5Upee+01EhMTCQ4OZsWKFcpUtGmQlZiYqPyAAixatKjH9xUYGMi7777Liy++SGJiIj4+Pjz88MPtvmmzNJY65qbPm5qaatYPJy4ursfP2xssdUy9vb358MMPeeWVV0hISMDW1pZly5axYsWKQR3wgeWOuSWy1LG2tbVl1apVvPzyy+zdu5eSkhLmzp3L888/P+gDPrDccQf43e9+h4uLC6tXr+bUqVPMmDGDZ599dtAFfGDZ4wwoBS3c3d17/FwDwVLH3c3Njc8++4xXX32V/fv3o9VqmTFjBitWrBjUAR9Y9pi/+eab/PWvf+XkyZN4eHiwfPlyHn744R4/p6UYUjN9QgghhBBCCCHMDbk1fUIIIYQQQgghWknQJ4QQQgghhBBDmAR9QgghhBBCCDGESdAnhBBCCCGEEEOYBH1CCCGEEEIIMYRJ0CeEEEIIIYQQQ5gEfUIIIYQQQggxhEnQJ4QQQgghhBBDmAR9QgghhBBCCDGE/T+nMTQ4lt5DjgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4UAAAHnCAYAAAAPc/jYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAD1wElEQVR4nOydd5gjV5X236pSanXunp6c83hmbM84zNhj4wgYGwMLBmyiMQaWsEtaWJtlwdgmLMuS1+xn8pLN4gAm42UBJ5xxTuMcJ/bMdFSo+v5Qq3TvVVWpwq0knd/zzPOoNWrptqS695573vMexTAMAwRBEARBEARBEERHosY9AIIgCIIgCIIgCCI+KCgkCIIgCIIgCILoYCgoJAiCIAiCIAiC6GAoKCQIgiAIgiAIguhgKCgkCIIgCIIgCILoYCgoJAiCIAiCIAiC6GAoKCQIgiBSx4knnog1a9aY/zZs2ICTTjoJ//Zv/4axsTEAwFNPPcU9Zs2aNVi7di02b96M1772tbjuuussn/sb3/gG1qxZg69//evc/Z/61Kdw4oknNj3+da97HdasWYPbbruNu/+73/0uNm3ahHK5jPPOO48bx/r163H00Ufj/e9/Px5//PGm5yyVSvj2t7+Nl7/85TjkkEOwZcsWnHPOOfjTn/5kPmbfvn1Yt24dLr/8cu53b7jhBqxZswbnnHMOd79hGNiyZQv+3//7f+Z784EPfMDyPVizZg2uuuoqy/8jCIIg2g8KCgmCIIhU8ra3vQ3XXnstrr32WvzqV7/CBz/4Qfzyl7/Eueeei1KpZD7ukksuMR/35z//Gd/61reQz+fxzne+E08//XTT81555ZVYunQpfvrTn4Jt5bt161Y8/fTTeP755837xsbG8Le//Q1z587Ftddeyz3PrbfeiiOOOALZbBYAcPjhh5vj+N3vfocvfOELePbZZ3HmmWfiySefNH+vVCrhrW99K775zW/iDW94A66++mp897vfxUEHHYR3vvOd+OpXvwoA6O/vx7p165qC0WuvvRZz587FzTffjKmpKfP+hx56CKOjozjqqKPM+375y1/iD3/4g6f3nSAIgmg/KCgkCIIgUkmxWMTIyAhGRkawePFinHrqqfja176GO+64Az/72c/Mx/X395uPmz17Ng499FD827/9G6anp3HNNddwz3nnnXfioYcewoc+9CE8/vjjuPHGG83/O/LII6FpGheE3Xjjjejv78cZZ5xhGRQeffTR5s/ZbNYcx4IFC7BlyxZ84xvfQC6Xw+c//3nzcf/5n/+Je++9Fz/60Y/w6le/GosWLcLatWvxT//0T/jEJz6Br371q7j55psBAFu2bMHtt9/Ove51112Hs88+G4qi4KabbjLvv+WWW9Df348NGzaY9y1atAgXXHAB9u3b5+m9JwiCINoLCgoJgiCItmH9+vU47LDD8Ktf/crxcblcDgCQyWS4+6+44gosXLgQJ598MpYsWYKf/OQn5v/19PRg/fr1XBB23XXX4aijjsLRRx+Nu+66C6OjowCARx99FLt27eKCQit6enrwyle+Etdccw2mp6eh6zp+9KMf4ZWvfCUWLVrU9PhXv/rVWLp0Kb7//e8DqGUvt2/fjv379wMAdu/ejfvvvx8nnHACDjvsMC5QvfXWW7F161aoamPp/9CHPoRyuYxPf/rTjuMkCIIg2hsKCgmCIIi2YvXq1XjwwQdt/3/37t246KKLUCwWcdJJJ5n3l0ol/OpXv8KLXvQiAMBLXvIS/OEPf8CePXvMx2zdurUpKNy2bRsOOeQQFItFXH/99QBqWbmRkRGsXr3a1Xinp6fx2GOP4dFHH8W+ffuwadMm28cfeeSR5hiOOOIIZDIZ8+frrrsO8+fPx9KlS7Ft27amoJCVjgLA8PAwzj//fFxxxRX485//3HKsBEEQRHtCQSFBEATRVvT19ZlmMwDw1re+FZs2bcKmTZtw8MEH4/jjj8fo6Ch+8IMfYM6cOebjrrnmGoyOjuIlL3kJAODUU09FuVzmjFyOOuoo3HfffZiamsJTTz2Fxx9/HNu2bUMmk8GWLVvMIMwqALOjv78fQK0+sS7jHBwctH384OCgGagWi0Vs3LiRCwq3bdsGANi2bRu2b9+OZ599Fk899RSeffZZ8/9YXvGKV+D444/Hxz72Me59IwiCIDoHCgoJgiCItmJ8fBy9vb3mz5/+9Kdx5ZVX4kc/+hFOOeUUDAwM4F3vehcOOugg7veuuOIKLFiwAAcffDCAmgPnypUrOcOZzZs3Q1EU3HXXXbj22muxatUqM7Dctm2bWcN3yy23tJSO1qkHYn19fRgYGODus2L//v0YGhoyf966datZ53j99debgd/atWsxPDyMv/71r7jllluwYMECLF682PI5L7zwQoyNjeGzn/2sqzETBEEQ7QUFhQRBEERbcc8992D9+vXmz7Nnz8aSJUuwdu1a/Nu//RvWr1+Pv//7v8djjz1mPmbnzp249tpr8cwzz+Cggw4y/23fvh2PPfaYaThTKBRw6KGH4o477sD111/PBX5HH300nnzySdx111148sknXQeF99xzD4rFIpYuXYolS5ZgZGQEt956q+3jb7nlFhx66KHmz1u3bsVdd92F+++/H7t27cLWrVsBAIqi4KijjsItt9yC2267zXE8c+bMwYc//GFcdtllnLkOQRAE0RlQUEgQBEG0Dffffz9uv/12vPSlL7X8f0VRcPHFFyObzeK8884zM4BXXXUVqtUqvv71r+PKK680//3oRz9CNpvFZZddZj7Hli1bcPfdd+OWW27h5JjLli3D/Pnz8cMf/hArVqzgpKl2TExM4KqrrsIpp5yCbDYLTdPwhje8AZdddpll/8Kf//zneOihh/D617/evG/Tpk3QdR0//elPsWHDBjPbCNQC1fvuuw+33357yyD1Na95DY466ih89KMfbTlugiAIor2goJAgCIJIJRMTE9i5cyd27tyJJ598EldeeSXe9ra34YgjjsDLXvYy29+bNWsWPvzhD+P222/HD3/4QwC13oRHHXUUjj32WKxevdr8t2nTJpx66qn4/e9/b9bxbd26FX/+85+xf/9+HHHEEdxzH3300fjNb35jGYCVy2VzvM8884zZOqJcLuN973uf+bhzzz0XRx55JF7/+tfjZz/7GZ588kk8/PDD+MpXvoKPfOQjeM973oMtW7aYj8/lcti0aRMuv/zyptfdtm0bHnroITzyyCNmBtGJiy66CLt37275OIIgCKK9yLR+CEEQBEEkj69//ev4+te/DgDo7u7GggUL8LrXvQ5nn302NE1z/N1XvepV+MUvfoHPf/7zWLNmDR566CG8973vtXzs2WefjauuugpXXHEF3vrWt+KQQw4BUKsvLBaL3GO3bduG//mf/7E0mbnllltwzDHHAKgFcnPmzMExxxyDL3zhC1xWMZPJ4JJLLsFll12GH/7wh7j44ouRy+WwYcMGXHLJJXjBC17Q9NxHHXUUbrjhBvP568ydOxcLFixAoVDg6hDtWLhwIT74wQ/ioosuavlYgiAIon1QjLp2hiAIgiAIgiAIgug4SD5KEARBEARBEATRwVBQSBAEQRAEQRAE0cFQUEgQBEEQBEEQBNHBUFBIEARBEARBEATRwVBQSBAEQRAEQRAE0cF0TEuKnTsPRP6ag4NF7N07EfnrdjL0nsuF3s/oofc8Oui9jh56z6OB3ufoofc8Huh9987ISK/l/ZQpDJFMxrlPFiEfes/lQu9n9NB7Hh30XkcPvefRQO9z9NB7Hg/0vsuDgkKCIAiCIAiCIIgOhoJCgiAIgiAIgiCIDoaCQoIgCIIgCIIgiA6GgkKCIAiCIAiCIIgOhoJCgiAIgiAIgiCIDoaCQoIgCIIgCIIgiA6GgkKCIAiCIAiCIIgOhoJCgiAIgiAIgiCIDoaCQoIgCIIgCIIgiA6GgkKCIAiCIAiCIIgOhoJCgiAIgiAIgiCIDoaCQoIgCIIgCIIgiA4mdUFhuVzGpz71KWzZsgWHHnoo3v3ud2Pnzp1xD4sgCIIgCIIgCCKVpC4o/PznP4/vfve7yOVyWLhwIf7whz/gH/7hH2AYRtxDIwiCIAiCIAiCSB2pCgqnp6fx4x//GJlMBpdffjmuuuoqLFu2DLfffjv+9re/xT08giAIgiAIgiCI1JGqoPD+++/HxMQEli1bhpGREWiahiOPPBIAcPvtt8c8OoIgCIIgCIIgiPSRiXsAXnj22WcBAAMDA+Z99dv1/0sL+x64D3d9+mIMH34E1r3nfS0fv/+hB3Hnpy7EwIaN2PDBf5YyhrEnHsft/3oeuhctwcbzP4psd4/r35145mnc8Yl/RdfceTjkYxdC1TTXvzu543nc9pEPY+yxR8z7Zh25FZs+8Smo2SwAYGrXLtz+sfOx/8H7zccMH3YENl34aWj5vOvXYint34fb/uWfse++e8z7Bg8+FJsv/gwyxW7Xz1OZmMDt/3o+9EoZmy78NHL9/a5/t1oq4baPfBiViTFsuvAzKMyaZd5/+7+eh9233mw+tm/Vamy66DMozBpxfE69WsUdH/8IpnbswKEXXIzi/AWux5MU7vn8Z/HUr38JGLqv3++aOw8Hf+RjGDhog+SREXHw3P/9L+790n+gfGC/4+PUfAGrzn4rlr76zIhGxrPrlptw979/BnOPOx5r3vkPUBTF8fF7/nYH7vzUhZjeXauDV7QMlvzdGVjz9+/2PYZ9D9yPOz95ASaeedr3c5goCua/8BRs+ND5Lf+WuJjauQO3/cs/48AjD7d87ODBh+KwT/07tELB8XHjTz6Bu/7tk9DyBWy6+DPIdHU1Paa0fx9u/9hHMHr3nb7H7ob+tQdh00WfQX5wMNTXaSfu+fy/Y8/fbsPBH/kY+tesk/KcD/zXf2LH9X/Bhg//CwY3bJTynGHz6E9+iCeuvBxr3/2PmHPMC+IeTqJ5/i9/wj1f+HeU9+8DUFtLVr75HCx7zVkxjyxeUhUUTk1NAQAymcaw67fr/5cW7vnCv+Pp3/4KT//2V1jw4lPRt2q14+Pv/eLn8PRvfomnf/NLLHjRSzC48eDAY7jjgo/imd/9BgCw86/X49j//jGK8+a7+t0H/us/8eTPrwAAzD3uBMw78WTXr3vfl7+Ap375c+6+0XvuxuyjtmHR6a8AAGz/72/hiSv+p+kxI1uOwpJXvtr1a7Fs/9538Pj//KTpOYcOORQr3/xW18/z+OU/xSM//G8AwMD6jVjz9ne6/t3HfvpjPPKD7wIA+lauxvoPfBgA8NTVV2H7f3+7aWw9S5dj4z//i+NzPnHlz/DQNy8FAHQvWYJD/uUC1+NJAnvuuB13//unAz3H6D13Q83mcMy3vy9pVESc3Pyh92HiqSddPfaW++7FwtNO93SwI4tbPvx+7LvvXjz/5z9icOMhmHPscY6Pv+MTH8XOG67j7tt75x1YeNrp6F602NcY7v7cZ/DM73/r63etGL37Lsx/0SkYPnSztOeUyf2XfAVP/uJKV48dvedu9K5YiXXvfq/tY3bfcRv+8sYzMb2rFqgPH34Elp/1hqbHPfrjH+Kxn/zQ15i9MHrP3ehfu87VYTEB7LjhOtz9758CAGhdXTj6v74V+DnHHnsUd3ziowAAQ9fxgu9fFvg5w2Zyx/O4+Z/eC6NSweRzz+CUP14f95ASzc3/9F6MP/E4d9+t996Dhaed7ilB0m6kKijMz2SIqtWqeV+lUgEAFFqcBA4OFpHJuM9myWJkpNfyfn3fXvP2s5/5BKbmOwdje6/9k3n7mc9ehPLSpYHGVSmX8ezvfm3+PHr3XfjdMUfg4Be/GD3Dwy1/f/fvfmfefv5rX4L2R/ebkmevvMLy/ue/8TXkb6ptmHb96U/Wj/nW/0PX7TfZPvcOh9fdYfec3/8O+h6+3/L/LJ/n5kY2b/f//Ag7nnzE4dE8T//lL+btnVf8FDv21jYiz916q+Xjd/38cuwYG3V8zseZv2vvb36JHVPjrsfTCqf3UxbPPviglOfZf+tN2PGvH5LyXHESxXueZCqlkuuAEACqkxN49qMfQr7be1AY5L2eGhvDvvvuNX++7T1vx+bTT7fNsBmGgT03/9Xy/5656KPonzPH1zhGb7jW1+858dznP4PqkiXSnxcI/v1+7uqrPT3+4a98AUPPPmn5uex6/HHc88c/Qp/ZRwDAju9+Az33NnsU7LrhBu+D9cnO//kxhp8PlvntlHnkEWbt3H/j9VLWgN1PPdV4zttucf2ccb7nOx55BMbM93j8ke1tsRa6xev7XpqYaAoIAaA6NYlnP/ohFHrkBYVzX/taDJ9wgrTnC5tUBYWzZ88GAIyOjpr31W/PmzfP8Xf37p0Ia1i2jIz0YufOA5b/V9EbC1Rpzx6UMs4fRWVy0rw9vXs3SsVioLHteuYZ6ExwDQDTExO49ec/x9ojjsDgzHttR+lA4+8q79uH0g53l2W1UsHYnj21HxQFS19zlnn6Oj06aj5PeWzM/J3+teuw7/77mh7jlcm9jUB83kkvxLPX/N7Xc5b27TNvV8bGPP3uAeax08z7NsWMbeSobWY2YXr//pbPP/rMM43xjI/7fn/iYoIZ77IzX49Vb32H6989sP0h3PD3tSyvPj2dur+daGacub6KCxfhmG//wPJxfzrrVWZ2p7RrF5RxeYchbtj5OL+p2L9jB3bcfTcGbYK7qfFxVGc2bbnBQRQXLDKliKU9e1DyKddk14Zjvv0DFBcu8vU8d1zwL9hxXe3QqrJ3L0oWEsq4MQwD47t3mz8f9+PLkR+e1fy4SgV/fPXLURk7gIl9+7D7gQfQNzTEPebZRx/FI3fd1fS70zbrWWl/Q8q8/gMfxoKXvDTIn9LE83/+I/520cfN16K5zB17n3jCvF2VtAZMMc9RLZVS8VnsfqRxOK1Xq6kYc1zsZd6bgQ0bMbVzJ6aefw5AbS1RJ+TFC/t374NuEwfEiV3CKlVB4bp165DL5fDoo49ix44dGB4exi233AIAOOyww2IenTdUJmvppp0Gmx2tMqeaftnN1GDOO/lF2PXXG1A+cAB6tYp7//pXrNi4EXMdspGVctm8LQaXTozt2wfM/L29K1aif21D/8/+XeztnqXLzaCQfV2vTDObp5GjtplBYXl62tPzcH+77r4GzjAMTDAbi3KpZHl76JBNZlBYYe63ojQ1hSlmM+xlPEmB/VwGNx7sqX5DYa4jndrStAVTzPehb8Uq2+8DW1scR0uivRb9cZ944AEMzJ5tmZWaYA7SBtatB5jHGAGu2wozVw5tPgxds/1lHHMDjRq2pF5Jpakpc/7NdPdgzguOt83MLn75K02p/vNPPGEGhYZh4LF77sEzzCZa0TQYM+uY3RrDrkl9q9dIrzOb3tMIdoOsc52EXq3iAHOgGuQ6YmHXYy/7mzjZzxyW6NUqDMNIbF1w3LAHj8OHHYHn/niN+XOnt7dLlftosVjEGWecgXK5jFe96lV4+ctfju3bt2PTpk04+ODgNXZRoswYqgDuJjIuYAo4SenVKvY+/7z588bzPooTf/6bhkGJYWD7nXfisXvusb1A2GDFSyAyxkzgw4cdwWm37YLC4oKGcUrV52JpGAZKbPCxofF9KbcIvETYsXlZMKYmJrjHs8Eoe5utL201tv31rOsMshbFKGE/l+L8hZ5+V814u46I5DPNnNJ2L7avs1MYdUXUC7lhGNjHBIXKjNHW2Ogo9jz3nOXvsEFh39p1/HfX5/gNw+DmxGxvn6/nAQBFbWwHkroxYt/D/nUHOW56l531evP2rqefRrVSQbVaxQO33MIFhIMbD8ER//Fl82e7gzh23s/2WJ+yByHXP9ByDATPgb17uXlf1qFoJWVBYblU4q4NILnXcBIYY4LCwQ0Hm/M3ADNp0amkKigEgPPPPx9vfvObUSqV8OSTT+Kkk07CV77ylbiH5RlV87ahsQuY/LBv1y7zOboXLsLAQRswsPYgnPyrP2Dw4EPNxz29fTseuOWWpiDUMAzf2TL2VG9402HI9jYWV/ugsBEo+D1BrZRK5jizPb3oWbqM+z8vsJswL4EImyUEahN5/bNng7++1WssH2MFezoIpD9T2OXROVXNBt9YE8liig0KHcxX2IU86s9+bHTUnIsKs0Y4yfMTDzxgOR72+u9fs47Lcvs90NB13XwtJZNp6bLphKIx24GEXkvce7jW2WVyePPh6FtVm0v1ahXPPvYY7rn+ek4lM/9FL8GJV/4KvStWmve5yRRmJNYc1ckxbqOUKXTHPmH9CyVTmII1VdwHAHRI6gSbKRzYsBGKGt9akjRSFxTmcjl85CMfwV//+lf87W9/wyWXXIKREWfL/iTi5ZRb13X+NCxgUMguigtPf7l52to1Zy5OvOJqzH/xS7jH3n399SgxmaxqpcKN2fBwknaAqQcd3nw4t7jqdkEhEyj4DYjZwKO4YCHyTH2J10yh34BYDAoNXTcD7grz/nYvWmxu7gxddzypFDOFaTjVFGE/m+4FXjOFzHVEi2BbwGcK7c1O2IU86iCGrUmZe+LJWPcP74PWVavznti/n5tj63BZrjVrpWQKxSxhELlYGjZG3Hu49iDHxyqKgmVnvs78+fF77+UOJVe99R3Y9q3vIVMsctLZ2IJCptWW1zWpUwnrUFSUjyb1eqhjFRSmIZiNg2qlYpbcKKpaO6CL8YAxaaQuKGwXvGxmxSAwiHzUMAzsZuRNC4Vi+UyxG9u++T2sOvfvzfvG9u7FXddeawYc4qLpdvIpTU2ZUkEtn0f/uoOQcSMfZYJCvyeofFC4AJmeXqi5XG381aqnYJN9rJdAZPxAc7FxZXoahmFwi1B+aBj5oYYDrN0GoVIucydeQPoWgkq5bL6faj6PnGAG0QqvMmwi+Uy7zhTGJ3ccZYPC40+cyRa+zbxPzBYauo4J1jxrzTop8le2njDX5186CiAVEqpx5mBtYJ1zUAgAS854Lf93AYCi4NALP4XNF3/G7K/LBmRugsIw5KPZ3j5zrHq1mrq5PGp0XeeC/Pp9MhDVQ0lfW8SMKZDOA+IoYOeQ3pWrkOnqSoVKIiooKIwJLxsCMWAJIh/dv3u3OeHlh2dh+LAjmh6jaho2X/RpbLroM2adydT4OPbM1CGKE6bbiZidwAcPORRqJsMtrvW/yzAM7m/sYnonyggKu+YvgKIonGudl5NZWZlCoFZLyL6f2b4+qNksci6CQnFBBJK/eIlwwfq8BZ4zHWo2Z97u9BO+dsAwDF4+6pApVGOqKayUyw3Fg6Jg7gtqduNr3/mPyMzMZ5MHDmDX042WApMTE+a12TVnDnIDA1CzwbPcXKawr9/Xc5iwNYXBnikUDMPAJBNY961e2/J3umbPwbyTX2T+rOZy2PbN72HN2/jeslw9X7ls+X3iMoUh9DFTFIX7DElC6szY6GhT4CNr/Wva4yQ4wLI6HAaSsRfYt3s3Hrr9dsugNS7Y92pw4yEA4i1FSBoUFMZEXEEha4Kw8KUv48wFRFaf+w4sf8ObzZ/rG3hxsXI7+XD1hJtrwSgrw6mfehtCnUxhVkMeXLVZsFthZWaSH24deImIAavbv12vVjFpYZlfLpW4167/rWym0K7mUZSO1l8nTXCfy0Jv0lEA3MaaTtbTT5XJHGuFgmW7gTpxyR337dxpniYPrt9oziP5oSGsfltDYfHEAw+Y88MkcyDUNyN7VDzWlVvBB4XyMoVJ3BhNjY+b81t+eBYKs+y/Gywb//lfUJgzFz1Ll+PEK36JhS85rekxajaLTHGmz6Uwx9fhM4XhNLfm6gpJQupImJJJcT9QTfDaYnU4DMS/HhqGgQdvvRU7nnwSD952W2LmFNFkBkiHdD4qKCiMCVVzbzIgykWDBIVsYDLnmONaPr7IZOnqDpnihOk2EBnj6glrLUTYxbX+d3GLb3cPtEKhUWNnGL4Cn+mpKfN23c3UTeAlIr73bifeibExS1lCuVTinEfrm+D8MFPzaNMyox3qCMRaT6/IqMsikoNoMuOUOY5L7si2oph74snc/615x7uR7a9le6bGx7Fjpgn2uEUtnAyTJFY+GsR5FEi++yjX0uOg9a5/b2Dderzs9ntx6nU3Y3jz4baPyw7YZ+nYujIlk4HKtEORiZvaRqKGVfaJPVAOQpoyhVb7ACD+vYBeraI0s+8qTU4m5j0UTWaAdEjno4KCwphQPGwImgKRABcX+1zsqaQdeSZLVw9O/MhHDcPgTrSGNtWCQquaQquCfk5W4yMo5oKPmRpFLlPosleh76DQQjpaf12unrAeFLaQj+q6zrX38DqepMAF6x6dRwGqKUwC4/v24bF77+VOYP3i1mQG4HtURhnEHGAy9HOPO5H7v1x/P9a84z3mz08++CB0XW8ymQGETKEU+ai8oDCJGyPeebR1PSGLoiiOqhjAOSATDyrD6v+Wd1HbSNSuF7tgKOhcUK1UmtZRL2Z6UbNv1y7L++MOwsS9UhIy3+JcPLC+HhQm+0AsSigojAkvLSlkykfFxa0VhRGLoNCH0czEgQMN6c+sETMrpHV1mYu1oevQdZ0f40zLCvYU3E+vwpJFRio/5L2mUHxtt5s5triZDYTL09PWmcIWWczx0VHzfWfltWkLjNggwE9QqGoa3wS8wyf0OHjg1lvx9MMP44Gbbw78/rutJwTik/yw81/3okVN/7/6be8wD9ymJyaw44knBNfMWisFrqYwCZnChMtHxy3eQ5k49QkM23m0TpZ6FbpifP9+cz/RNWeu6fwLBF8Drd73pMpHq9Uqp8Cqt2AB4t8LNAWFCTjkmBwbM9+X4rz5yM/M09xaEsvIkgMFhTHhpUdVWEGhm8WNyxTOTJZ+pBVi0/r6SauiKMgIvQq5MdaDwn7/BfiGYfAZqRlJLJeNc5kpFLOUfjKFI1uParxuU01hLSjMtWiZwdYTznnB8Y3xpMA+m6XEyXq9y0cBQYaX0MW7XdF13TT/mJqYCHw6zbUnaRUUxhTEsHL+jIULZbanF2vf9Y/mz08++CCmOIOU2sYteZnCZEuouEyhC+dRr4hmMyxWB5VhQL0K3cGuGwPrN0DLNwzHgqplLJU5Cc0UlqemzLmva+48zpQvbtWQuE8tJ+D7zElHmZ7cST8QixIKCmPCSy1UaEFhd3fLxxdGZpu3SzaZQjcbmgMW9YR1soKElDv97q4twDlGPuo1U1iamjI3OfmhIbM+kZWPuq4ptKg1cQObKZh9zAvM23Y1hQXGYMNqbGxQOHLUNin29nFgJev1Cnst6Sn629sBmXMTIGQKF9q3owDiqQMRjabs5tBV57zNPFArMRu34oKF5nwnvaZQptFMoGeSj2jUVQ+sZeLUliKqTGF+gIxm3CAeHLMu1EGDIav3PalBIXdY0d8PrdCodY17zE1eGAn4PvMmMxvN21RT2ICCwpgI5D4aIBvk1UGNdXgrW/TUA9xNwrzzKF/sn+lxyBTWawr7GxseryeodmYmflpSiJlCNwFxuVQyTzbVXB6zmDYgzTWFtUDVqSWFYRh8ULjlKGj5gvlz3CeEbjEMo6l/pB/UHGUK40J2UOilptCLBF8Wuq6bmwY1m4WWy1k+LlPsxrr3vK/pftYgRUZLDbF5fRCSbDQzyRh1dS9c5Kr0wStO0s2qxUFlGJDRjDvEz0NlrsOga0CaMoVi70w1xwSFlClsYtzCeRQg91EWCgpjwsuGoGmjZRi+Jj7RuVMrts4UZordpl7fmKn381pTWK1UGtIfRcHQIYfyryE4kFoFrrkA/Zus2lEA/uSjTZlCN/WUrOxp9RoUZs9pvK6d+6iDfHRybMzctOQGBtG7chW/KCZ0ARMpl0rm9zjb2+e7IbSSoaAwLqwOrPzS1KPQoXE9EI85gJdedSve9BZ0zZ3H3de3ptFbjz0Y9LuBY+fC4M3rk2s0w9UTrt8Qyms4mbxYlTSEAdUUukPM1rNusIEzhRb7i7gDLDs4KXt3NzTmfYh7LUxaTaFhGJy3wwCXKUzugVjUUFAYE1ym0GNLCsDfiTwXEHZ1cW0xnBDNZsTFqlUQwhdCr2460RbbUlhtvFhplNe/nWtcz2Sj/PQp9COd5UwmDlrPy1aF9zM/y8JoRghYWde1ka1HQ1EUUxILJHcBEylJyBICcmR4hD+a3HgDZAorpZI5R2V6ejg5nxVx1IF4kRFmurqw7h/fz93Xv6ZhkCLje8vXusmrKUzadcQdrK2RbzIDAFmXQWFYPQoBID9oPwaiAV/X28Nl7IMeilodEKchU5jp7uGD47jlowlzH52enDQP9bN9fZxqjOSjDSgojIlAmUKb+1rh5ZSbRWxL4bUlxQHBZEZEbEthtQBnA2QKWZOZbhv5qN8+hYZhtPz8xgWDhMxM70Wg9t6x2ZF6LWFukM8Usq/BSkdnbdkKAFymMO7FwC1BexTWUT0csBBykZkp9NKjEIjHGEXngrDWGaPlr3sTVys7uPEQ87bioVetHRWpRjPJzRRaubfKxslopuJz7fQ8BkY+mgS5XVIR9whcTWHA765lpjCha6r4PmgSM6ZBSVqmkJOObjyEW1/IaKYBBYUxoQRoSQH423z5Pe0U6wq9yke5pvWbDmv6f8dMYV0+GsB91K7tQW5w0GxnUCmXXU2iVq/dakPHnnIPrD0IiqJwmUB2wanXEmq5HLfpZF9XrCcEwNUUpiUwkhUUsr0KyWgmWmTWFLLXac/ipS0fH4e5klejLi2fx1GXfhuzjz4GGz78L2aPQiCBmcIEb4zCdh4F3LekCDNT6DQGokGzfFRiptCmL3ASEfdKbE1h3PuAJAeFA0w9IZBslUTUZFo/hAgDL/JRK0lWlJnCwqyGA+nkxETTRdPqFI1rWr+5OSh0qim0al7vy310hi4mKFQ1DbmBQZT21oKsSqmEHCPDtMLqfdd13VaKK+rY6xua/PAsTDzzNPfYbF8fJ4PJD89CeeaEvFIqIZvLYXpy0tw8a4WCWSzNZQoTuoCJyHAeBQQn35T87e2CODcFCQq99CgE4pePujUcmXXYETjhZ79out/LwaDteGRmChPqPlopl825QtE09C5fGcrrOLWDiMp9lFpSuEPcy2gSDVZS6z7a3QMw2f649wHi2hD3IYed8yhA8lEWyhTGRNzyUS+nnXkmUzjJ9Nuq47QRn56cNIMyrVCwrAfJOriP1v8viNGMU/Dh1YHUaxH6NNO7LTcwYJrMsK9rNRbA2oGUzRIOH3aEmW3grKhTEhiVZAWFOaopjIsm23FJmcJWJjNAAoxmAgYHXPN6v/JRqTWFyZSPTjLS0d4VK20dX4PCZunEg8eo+hSKRjM0n1nT5LrJyEeDvmdpdR8VjWbi3gckOVM4uFHIFJLRjAkFhTERpCUF4M/Qwav0qU6BqSlkF+g6TnV1bNP6oUM2ccGwORZH99GZ5vXMKbjYFsIJvVptFI6rapMbYMGj2YzVZ+G0oeNc89ZtMHXsbKBdR7zPyoGUM5mZkY4CvHw0qQuYiLyaQsoUxkWT0YysmsLFboJCZi5JYVAYNFOoV6vm913RMtC6ugKNBwltScHOoWxLD9m4bV4fZk2hlss11dgTzTjJR4Ouf6kNCnt6k2U0I7x+nEFheXqaaQuWQ++KVdz/k3y0AQWFMeHFHENaTSHn2OX+tJN1H52wyBQC9hMQ17T+sMMtH+OmptCvfJSTjo7MbgpKcw4un1ZYvbbT5MvVEx7UqIWxyhQWhsSgsHlsvMlMIyhMvXw0UE0hGc3EhcyaQi/tKICY5KPMtR60tixoTaFoMtPKmKcVSa0pjMJ5FKg1/65TKZe598DqoDIsgtTPdwq64D4qs5bOUj6a0HVF3CtpSa4pjFE+yrWiWHdQ0z6Q5KMNKCiMiaCZwsA1hZ7ko42g0C4gs5uAuHrCTdZBoZvm9X4XSi7wWNgceHhtS2GVpXSafLkNzdpGUMhmKM2xMO8zIPRRLJVQKZfN51NUlQuy02Y0Y+g6H7ALGVwvsJlCMpqJFplBIft9KC5Y1PLxcdcUZlz0eXXCS115q7EErScEkrsx4p1HwzGZAWoHtdxaxKwzUdUUAkJdIZnNWCLW0rEHLEECuGq1annIG3fWzY4mF9YEy0erlUpsexPeZOaQpv9Paj11HFBQGBOeagol9Sn0u6GxkjqKWE1AhmHwzqMWJjPATIE0M8am4mn4zxTy2ajmjWbBY02hZabQtXyUyRQKASDAB6hAs3yUzRIObNjIvW8y5TNRUGKysvnhWVwthFe4jEsKAuJ2QlZLCsMwuO+tm7otJQa5o9SawoDuqXzj+n6HR7pDUZj3M/CzOWMYBg7s3cvVkdrBH6yFlykEwPXGrMQVFA6Q2UwrnGrpgqwBdkF4UtfUJsOdJMlHLfaocX2fOZOZjRub/j+pKok4oKAwJrh6EodJzNB1y4s72pYUs1s+xiowmti/3xx7YfZsWzMRN+6jWleXufnXbd4TK1o5XHJmLi3ko4ZhWGYK7YJCvVrljHnYDY0YANbum2X7c6VUEuoJj+Yey9UUpiAwYj+X7kWts0JOBN1cE/6RlSlk5zOtq8ibntjASYDicB8NWlPYwZnCnU89hTv/8hfces01nGxYpDQ9bR7WaYWCK1faILgJCrMh1hTWxkCZwlY01dJJKp+wOxhO6prKlQR1dyeqjCRJQaFTOwogngPGpEJBYUxwznMOX0K74C9K+WhucLDlJs0qSOPrCY+0/V1no5na/ymKwrnruZ1c2EWVrY2swwZnrRZgvVq13CzZbegmx8bMx3cvWsxtJqzdR8VMIS8fPWDRn7BOkhYDN7DvtVXW1AsKZQpjo8loxm9QyF3z7lQMsctHA9aWcQZJQWsKAzqPAtE68O3dscN8nX27dtk+TqwndHNYEAQ7s5mo3EedxkDUMAyj2WhGUkuKNGcKa83rk1NGkpSgsFqpNA7nFQUDFn1OkyqdjwMKCmNCcXnKbRf8Be9T6F4+qmqaZRDDYjUBsfWEdtJRgD9xr5TLfBE5E0hxRgAu//5Wmzgv8lG717RbhLji5oM22L6ueZ8QHOUY+WhpcpILsmdt2co9NkmLgRtkZlxk2pET3pCVKdS5ucnd9yEOxziZGSMlE2z80jOFEZ6Ws2N3NOqykd+HhZugMPyaQusxEDXY74uaz0PNZKDl5BwMsnsAds+T1KBQFzOmCSojsUpoxPF9ZueQ3uUrLEunSD7agILCmFAZ+ajTyZbdJsvPibweYEPTqq7Q6m8Y44JCa5MZgHdzYyWcmWI3t1HxU1fYKvjwIh+1e027z89pQ2PZkkKUjzJjG9+/31zsepYtbwogtQQtBm7gDygCZlyy7q4lQj6yagr9ZOBizxR6OFizImgrFemZQjW603LXQaGNUVdYWEk3xXrXoAZDXsbgps6907A6mAkjU9g1b76U5wwT8b1IShmJmM2tE4cc2qk/YR1qSdGAgsKYcOs+apspjLAlBdCcxQIAMBbo4sJeqVQaQZGqYvCQQ22fW3QfbdzPL75+HEhbnfB66VPo1XmV29AIQWGmm3cKA5zloywjR21ruk9NyGLgliRtrgn/yGpe7ydzzGbaUtmnMGAtbFVoSRGUKINsX5nCkE1mACA30LzGiAZtoUtYyWjGEatrUFZLCnYPUFzQ8CBI4kFrk4y2p4crI4lzLdR13XJOjuP7PNainhAg+SgLBYUx4dYkgb3o2cUoSvkoYF33VRhpGNCIgQjrOtq/ao1jZtJuLGI/KF+ZQhspah3RzMVpMxRIPiqcciuK0jIIzPb3W25ARo7c2nSfLPe1qJBq2BGw3xvhH2lGMz7mprjlo8HdRwNmCsM0mgkZLii0+dsNw+Dm0CiCwqyFfNTpoDIMOLMbyhQ2wR9u14NCOS0p2Pe7yGYKkxgU6ro57ylaBmoul5hMoZ2SLZZMITOHDNoEhWqE9dRJh4LCmGBPiZ16q7ELEtcvMGBQ6HUjbpUpLMyeY95uCgpZ6ehhRzg+t5rJQCt0Nd0vZjNZ23U/mUKrwFQrFMxg0U7yYD6Xh0xhpVQy+66puRx6lq9oekxhuPGeZnt7m9oyqJrGnRrXEU1mAPD9iRK4gImEZu2fgoC4nQglKHSbKYy7eX3cNYWS5aNQ4qkptFO9TE9OmnNZbmCAW2/CwqqmMMrG9QBlClthtabLatpetpGP+pXFh4l4kKYoCl9TGONaaLcORP19NgyDU2wNrG9uRwGQfJSFgsKYcGtHzl5c7KIYPFMYvKawa+5c87b4N3AmM4fZ1xOa47HYCIqBK3saLks+Cgj9AB3qCm0zhRYLBtufsG/laj4zXH9dJktpZ+TTVGc4axa6lyxtepyWoKa1bmiVwfWCSpnCWNB1vem616vV4KYpLmtM468pjPd7y/cpTJf7qBv5KC+/Xw+FKVcIC6ssHfeZywi+W46BWlI4YS0flRMMcZlCpoVVEtdUq0N+znAuxkA2KUHh5NhYoy3anDko2HhjkHy0AQWFMcFKhxzlo8yF3TWHycwF7FPoVT7KSkUBQCt0cafT7HjqjYnrDDk4j9axylyKQRwnH/XhPmqXHc27dCD1kinkNjQHrbd53YZc1M7Ihw1YgVo9odXmSFahfVTIrClUqKYwFmxNsCKam9SIF3KrGp4gBJWP8m0SggcrakRBtmjcYhsURlxPCFhn6WRK3d2NYaBpDEQDq4MZWbV0ZbugMOmZwpk2KVpCWlPZrQ1RGyfxJjOH2D6O3EcbUFAYE26lQ1ymcM5cy/vdEkQGI56w5AYGoBWs9eulqSkz45bpKqJv1ZqWz2+1wRJP4nP9IWUKXZrNeKkp5CQLNlbqbjKFOaHOcOTIZukoINQUJnABE5G50dKycupJCG9IbZdjUSfUiqgXctY8Qc1muQ2YH4LKRyuSjWbA1i+H+H429bZ0UZMdhfMo0Fo+GnY7CoCCwlZYrR1hZApZ+Shbv5cULIPjhNQUsvM5W9ri1gtCFqzJjF09ISCsJaGOKPlQUBgTflpSdAnyUS+TlFXDVy+IRjO5wSHb0zkuS7hpM3+ib4NVfU6zfNRbTaFbK3HW4KXiIB9lJzQ2YLX6/Ma5U27rDQ0baNvKR8Wg0KKeEEihfFRiE3AymomHsHqounYfjTgolCkdBYI3r5edKYyqrqYpKExUpnDAvG2ZKZTwubci091jlpfo1Wois1RxYtXTVJbRGt+ncJiv1U/YusrVN5vy0WS0pmKvmeKChebtcsRBIZsptKsnBHgTR5KPErHA1pM4fQm53oL9/Xx2zsNFz05oai7Hv74LRKOZ/OAg73TFjOWAy/6ELHX5A0tWuI9tSeHmxMmtlbhr+Shn+tP4HXEREoub7Zouzz3xZPP2/JNeZD02Rj6aKRZtpahJXrysoJYU6Udquxw/zeu1YC0dvKJLzhi5rSu3I8yWFGHiJijUdR2TY2Pmz/1rogkKOfdRq5rCCDKFiqKQ2YwDVmuHKkEtwgbgipZBtrfP934rClplCuNcC9mxdTNBYZQ1sqJ7sV2PQoDkoyzN7hdEJLj9EoqBTabYjeqMq2W1WoVmYWDS8nl8nHaKmazcwKCtfn2Mqyd0FxRa1hQKhhPsabibhZL/m4u2j3MtH2VeszBrBOOPPwageRGanpw0Xzvb14euufMsn29w/Uaceu3NKI+NYcimjyObKZx15FbbrCvrvpa0xcsKmafvbPP6Tp/Qo8S2pjCidjlRmwPIzhipAfsUVmRnCiMymnETFE6Nj5ub2q5587gDwTBhg+u6GifqmkKgtr5O79oJoLaRzjHBSadjLR8Nnilks1i5wQEoigKt0IXyTLYpaeuq5fsgqGYMw4jEoMlpbGymMMoDjtLUlBmEZrp70L14ie1jKShsQJnCmOBaUriUj2Z7eriTSi8yraCZmUyxyAWTucEhqBY1hYauczruYRcmM7UxNWcKm4xm2Ob1Lv52txJFNvBych91mynk6gkP2uA4KfeuWGkbEALAnOOON28vedVrbB+nprhPYeAm4FnKFMaBXfAXNFPott45SrdMQDR2kJsp9Jrd0KtV87uuaBloXc0tfTyPJ0E1haLzaFSomsavM+WyMFeF7z4KALkB7+2XOgWr+mMZ5RNs6Uj9EDw1mcKZ96HWliL+A2Jxr1QvNTJ03fz8wv5ecyYzGzY67sOoJUUDyhTGhOvm9cIEyAZ0Xk7kORmqhVTTDYWREYyN1yQ9ucEBLlNYNzcZP3DAnIi65s5DF2OO44SblhQ5j83r3W402Uyhk7yBncTYzKm4CHG1MDbSUbcMrFuPU/7vBpT378Pw4UfaPs7O9CepyDx9D1qbRfgjrJpC10YzES/kftpmOOG2hMAKzmSmt1dKNiBJNYVsTfZARPWEdXL9A2Z2qFIqxZYprBN1HVbSCct9lD1orhsOJaUZvBV2B/1aPg99JsCN65BUVFXkBgYxteN5ALVr6rGHHsJzjz2GOUuWYOUh9q6gQWCTEwMOzqMAtaRgoUxhTCguN7LiBMhe/L4zhT4XNjY7lhsYtHS64uoJHYIYEVctKfq9nZ66/Zv9tKQosEGhsKmR7ZrXv2YtZh2xxXHjx7mvJexEU0Q0ANJsDIDcIqOehPCOXUYweA9Vl/LRgPJLr8iuLWNrInWP4+c2XTKcRxGdhMpNUDgRg/NoHdGBNOqaQqAzexVWKxWUZkpjWj2uTl3GrWaDu49a9v1LSaaQlbMnoT2VqNJir6mp8XE899hjAIDnn3gitMBVzBQ6EbXqJMlQpjAmVMaO3LV8tLuHO6H2ItPinqfob2ErDDfMZnIDgzDYBsQzfwN7IQ5v2uz6uS0zhULdTqa7B4qqwtD1WlG4rkO1MY8B3Gej3AaF7Eki68bqKB8NmCl0S5JPNEW4gLDQ5cqd1gmV5KOxIDNTyH4n3NbrRV5T6KNthhNcLazH7y3fjkJOvZ2dEZdsxHXLMih04d4cFqIDaSyZQovWGO1MpVzG7X/8I0pTU1h16KGYvXix7WMtm9fn5QaFpqtpSoJCtjwmCU7kujBXstfU7ueeazzQMKDrOrQQ5h72cH6gZVBI8tE6lCmMCfaU2FE+KkyAvjOFEjY0plumqmLOtmMt69jYBYxt/toKq42gOE5FUXgjgBaLpetMoYuaQsMwuNdjJafsxNvkmheR9EmWJXcUSM+4kHw0FkJrXp8C+WhQx1wgmHsqO5Zc2jOFwnxVrVQwNT5e+0FV0btyVWhjsUJ0/pTdisTVGAY7y310365dZpbw6e3bHR9rdR2yRmt++/RazUFaoVGrm7TDVrs5M2k1hdnubi4o3PPss9xjwxhjpVzG9MQEgNqhcate2exa0unyUcoUxoToEmVHk9FMjPLRFW94M/pWrkJh9hz0LF2G3bffav5f/cL2+zqWzeutsod9/SiNjgKoXfhZZgIU4QJhh8U829cHNZuFXi5Dr1Zrrq5C9optXqtkMtxGjA3CJsfGzMcVFyyU4grohjS1pBAXjKAEybgQ/uHMBIaGMb1nd9P9fp7LffP6+IxmpLiPBuivydcUSgoK1WS4j04wh2q9S5chI8FExwtcmYJQU0jy0XBg3+OJAwcwNT6Ogs3aYJkpZEsIfH53LTOFXenIFLIZ7CQcEIvvJft9np6c5B4bxn6FVaz1rV7L+V9YQZnCBpQpjAnxS2j3RRRPxTijGZ/yUb+n3IqqYvbRx6Bv5uRWs9Cu+z1VtTK/sdrscA3sW2w+3Y5FURTkhpzNZsRNmJ1un5OOrt/gOD6ZpKklhczG9UCwzTXhH/ZzLMyZY3m/G0Tb/4zLGtOgLR28Ir+mkD+d9vI3hF1TGKX7qGEY3OY1LufROqxyhG0vBPg3afOKKGFtd8TvxN4dO+wfayE151RLEjKFaaspZOfM5NUU8kGhSBhjZE1mBg9ubWRDQWEDCgpjQlHVlhbgoiFHpltOSwoZp9wAoBacg0K31vKAddBmNU4vDey91IKwTeKtJKSiXMvO7Uy2yYxb0tSSQnaNDus+mvQsaTvBfo5ds+da3u8Gvsa0wDszOxBrn0IZQaGi+DbLqUhuXA8AiClTCABVNijk6gmjdR4F+CbXY6Ojvte0IHBBYYdlCgFgD1t35vBYM6MnIRCylKUmWT5qUxKUhJpC8b1kv88ifoN4J9hM4cB653pCgNxHWSgojBGlRYaDvei1riIUVUWmGDwolCWBscpO+c1IWi22dvLROq1OUL38za3MZkRjB7uJl93QRGUyAzQvBEk+7ZKecaHm9bFgmyn0uMj7VRfEWlMoKTjgsp0eNnDVMOSjMdUUAvzBAO88Gn1QOLz5cPP2gb17ubk/sprCgc6qKRS/E/t277b8njSpCszm9cHVItY1henIFNrKR+OqKWSzuT29jkFh2PLRVs6jgDD3SR9NuqCgMEbUFkYDVgGWlJpCWZlCi+yU7nPD32Qqk8lwk1sdv0YzrbKjrHGMVVAoyrXcyEeD9ij0gqKqqXHhdFvr6RbWjjzJf3e7wWcKG0Ghl/6p4vN4OUhSMjEGhQHbqNTxa5LESufZGrhAY4nIbMHq+8EFhTE6jwI1g7SuefPNccVRU5jv4JpCoDaPj+7c2fQ4Q9fN76aazZq1YqqE8gndYr/AZQoTFhTqNodUSfAXEPebWcZNVySMMbJ1i32r17Z8PMlHG1BQGCPcpsbiwrA6CeKCQr8tKcLIFFrKRz3UFIo9CW2ChVxYmUK2ptBCPirWFGoW8tFKuWxORkomg97lKx1fUzZWfSOTiOxNFte8PsF/d7vBZwr9y0fFU2W3RL2QhzGHqj4D21Ayhax8VMozWuOUKSyXSqYLpZrLoWfpshBHYg+bLazDBiFh0+mZQgDY+/zzjo/j6ugyGf7762Md4OWYtXlIS4CTpx12h94ypLRBEQ/68k41hZLfVzGb7EZeT+6jDSgojBG1xSmx1UlQVkJNoQw7daC5ptDQ9cYkpKrQuoqun0vMGNkFC5wzXIu/X/ewiWslH23KFFqcxrFZwr6Vq7nMXRSwG5a0BIVyXBxJPhoH7CaqS5Z81EOwFfVCHkbGSPF5oBFOSwrnGndZWAaF9TmUyRL2rVztur5UNsOHNQeFsiTDbuDWuXK57ec1q+/Enuefb/q7na5BNeD6Z200k8yawiYZLbOni7slRX0vCNQO7rRCgWuxYvV4qa/vow8yZQobUFAYI61MBqys+zn30Zjlo2JvIP4UrwhFUdw/V1cXd9Jn5/LGZgo99Snsdl7QW8lH+UxhL78AzUxCXD3hQdG75rFBepIzZtL7vWXJaCYOuEzhbP/uo34zcJFnCiU3rwf8O+eG05Ii/ppCTn4fwxxaxypTGFXjeqCW+WLXwFZrXdqx+k6Up6e52jDxceIewc78zc8YTKMZpiWF18OuMOFaZGkZLhCMuyWF1T4w5yAflT3GNLQ3SjIUFMaIF/lo/cvt12hG5yRakoJCIVvG14p52+wrisJdwK4yhRLlowU2U9jCfbQmH22eeEvM73UvWuz4emGQlrYUocpHO3xCjxKupjCIfNTngVWcLSlkOThzga2HzVG9MTPAm/xIG0tcQSFbT7imdS1QWAwefCh3aAsAmYjaUdRhJaTlDgoK2bVzjyAhdZorgrZisHQ1TajRjBjAsgfwQTOmQbFa38WWFKz0V/b76ueQkdxHG1BQGCOejGbqQSErH424T6GIWMMW1Lqb/Z1sj/XpN3sq7iUobNUkvVWfQvGzUPPNEy/3mIg3EEAyCszdIL0lBTWvjxxWIgRV5TLtgYJCT/LR+JrXSzPr8pEp1KtVTNWDQkVBz9LlUsbSqkWSLKzWrfrGkJ17i/MXhDaGVmS6upqs7GUdBLilkxrYs9fW4le8yrwt1hU6mZRZ1fn7HYOVfDRJa4vTGqrF7C2gW+wDs/39XOA1ctTRjceHmil0tw+L2sk6yVBQGCMtW1JwQc3MxSXDfVRSbYSW5yWUQV+D/R27zaHfPoWtW1J4cB/t6eFOJQ2LoDBKqVGdJBSYu0H25prcR6NHPHDRhJNfv43YPbWkiPB0184KPyhKi4NBK6aYLGFx/gJkurocHu1lLOHbshu6bpkZsDxYi2EOZRHrCqMeTyc1sGeDvYWnvcz8Lo6NjprGQ4Dz4bbMmsL6XiRTSKZ81GmvpeabS1uixGo+VzMZrDrn7YCiYOWbzzHdfcMYY9BMIQWFKeKuu+7COeecg8MPPxzbtm3DBz7wATxv4VCVFuJqSSGteT1zImU0ZQq9vwa76Nr9vqc+hR5qgAoejGYy3T1NJ/yGYfDGQJIs673A1RQmaAETkR8Uknw0apquB03jjKW8LPReMvosUS7kuo0VflD8ZLknx8bM270rV0kZBxBN5tVuY232uZXcriYIYl1hVI3r63SSAyk7BxQXLMDIlqPMn/fu2GH5OHGPEEQ+amfcktSWFE6HJ5qwL4sau33Xpgs/hVc9/CQO+8x/hDpGfzWFFBTWSU1Q+Oyzz+Ktb30rrrvuOqxcuRI9PT345S9/ibe97W0opVRa4aumUEqfQknyUWEzzjX59REUspO83YYg59J9lDuRVpSWQZoo1XFyPcv29EJRlKbCditL6yhJS6ZQdn0rW/vj5u+enpjA7mefTdTJb9qwkor7nZv89jb1k2Xziy75IKOOn7+BDQr7QgoKw8q82n0vzKAwhMNLv8w67Aju5+hrCgfM250kH81092DeC19s/rznueesH+fgPuo10GDXJDWfN+uVE1tT6LCGhllT+Ph99+HGX/0KTz7wgP3YHK7h+j5MK4S3V/GVKYxIOp8GUhMU/vrXv8a+ffvwspe9DD/+8Y/xi1/8AnPnzsUDDzyAO++8M+7h+aKVQYbVhe9HpqWzTlUZ3qkqCIqicJMmu3D5yZSxmy03mUIn+SgXoLlwQlWzWcdF2CqoFk8mY5ePprCmUIrRjIdMYbVSwe1/+hPuv/lmPHbPPYFfu1MJ7cAqoe6jYRyqAf6y3JPj4+bt3uUrpI0livfTNihMoHy0e8lSrn9trDWFbZwpFOuTtUIB8096kfn/ozt3Wh4ayJSP2gUyfuv0y6US9u3aFcl11FRbGVJNoV6t4umHH0a1UsETDzzQZAJkPTbruZIbY4jy0Vau83UoU9ggNUHhMcccg8985jN44xvfCADI5XLon8ka7dmzJ86h+cZLSwozEPEh0xIbvnppFdEKdiJmZZd+giIuU2jz+5zRTqViewH7kSg69Sq02qyIfQHj3tBwct4EnWqKSO9T6KHX2/j+/eZhwq5nnun4BcAvVtk9Lij0LR/1EhRGd7ob1ETLjlZqESs4+egKiZnCCGo0PWUKYw4KFUXB8OGNbGGsNYVtnCkU5eOKoqB35Sr0LF0GoPbd2L97t8VjhWAoQKbQbu3WurzLR6vVKv72pz/h7uuvx6N33+1pHG5xlNGGVFMo9st8+I47Wpfa2FwzYWYzA8tHpY4mfaQmKFy9ejX+7u/+DgcffDAA4Oabb8YDDzwAVVXN+9KGJ/koMwF6PZEP65Qb4E982AnCzwLKWlHbtXRQNc1V/yanfkZ25IaGzNtiWwqrxUgV+gHFLX3SLBxRk4j8PoXuJXjsa1dKJc7an3CP1Xed/c576qHqs44sSsc43llY3rXtp53KFBsUyswUquFvjLwEhXFnCgFg3oknm7cH1h0U6Wt3SqbQap+jKArmncxISGeyUo4GKwHKJ3hVVuN5/chHx0ZHMT05CaCW5QyDOGoKxWu3PD2N7Xfe6Vhq4ypTmAT5KLWkMMm0fkg0XH755Tj//PNt//+aa67BwoULAQD33Xcf3vOe9wAAXvnKV2Lu3Lm2v1dncLCIDBOERcXIiH1Akmcao7bKFA4vmG0+V76vF9O7djY9xg72MYWBfscxeSXbVUDdG6zCBFL9s4c9v86WD74X008+ivzgIA5901m2Zg6FwUGUZ/pZVcplZCwex/3N/X2uxtI3by52z9x2yhTOWTIXPSO9yHYVMDlzn+i+Wn9MlBT7G6+XlqBw7tJ5yA8Ee5+qfe5PiMXrZWzfPhQkH5R0Auz72DNrECMjvSgOMtJun5nCWQtGXM8bmb2N14syKCwODkibQ/Nd3hpNV0olc27S8nksOXQdXw8TgCmtEXhELh+dKYVgN97zlsyV9rf5Zfh970FXVoGayWDDm87iemOGzf4lDYfGTgkK2f3JQWe8Ag99478A1FpTGBs2cN+Pwbn8HqPQ4799BDuGroHGfiG3v6Eecrumspn8KK6jvpn5t86eWY15UeY+wGpO3/3MM9g1dy5GZvbm4tjs9oHPMWOUrWpiX39gjrt9qDHceIzsz6ynOy91zx02iQkK8/k8Bhi5hIg2E8nfc889OOecczA6Oor169fjIx/5iKvn37s3+ozAyEgvdu48YPv/VaMh42wVFE5UVPO5VEY+6mbzxT6P0tXtOCbPZK3loyUl5/111CIO+/KlAIA9+6YBNDeRBwCVOcmzM5vh/uZC0dVYlJ4B87ZTULhvGpjceQDQeNki95ipmcdESFlvfJ+SVBTPIrq8jU4aUMvB3id2A1B3grWTSDcFhXv3Ytb8+ZaPJexh551KJo+dOw9AzzL27T5rCsermut5Y2xfw6o+9KCQ+XuNXJe0ObTCrAG6i7+BrSfsWbYcu3aPOzzaG6X9zBoZQ00h+39aV1Hq3xaEBa87BwCwe+9ki0fKZUppHBh0inyU3Z9k121CprsHlfExTE1MYHJsjHvslJHhrsMqGof+QWoKjXzj+p6caFz3btdULigM6XCWHW9Z5fda49ONa1fmPsDu2n3krrvQNzyM/IzUlp0r7faBE8wZR5iZQvE7Ysfo/vDWkrHxaSDivaAb7ALVxASFp512Gk477TTHxzz88MNcQPitb30L3Sk+5eec51y6jwK8iYvXTKEXy3c32NUUypapsuRcmM34kSHlGfkom/UUT7DN3jt5h5rCGL6XYouQJGLn8hYERVWhaJp54ugpKNy3L/DrdyJWc0rUzshRSn5CM5ppUVcuwrejWC1tHED0RjNKJgNj5ueqoLSIu54wCXRKn0K7z13L5TD3uBPw1K9+AaCWLXTyChDXY/9jYOWj3msK2Ws0LMWOk4yWLSMJSz4664gtmHzuWYw/+QQq5TIe/tvfcNCWLVAUxdVcGVVNIclHvZOamsLx8XG8853vxOjoKNauXYvvfOc7jpnFNMDVFLZsXs/WFHqr3QnLTh3gteGVgEYzbsmybSncBIUBjWbYxUArFKDOTCBsDQM7Dq1QiFRmZL5uCmoKw6q75FwcHf72pqBwdJTMZnxg5fAmJyj0YjQTU02hxLlN8WCSBAhBocR6QgBQlGhbUrDzrSi/T0I9YdywNYVWhh7tgtP1z7WmaAoKRfdRb1Js2zGwgWnBe+1b1PLRptYcIdXrcRLbufNw5BcvAWYOX0d37MDzjz/e9Di7fWBk7qMu5xE1wvr0pJOaoPCHP/whnnjiCQBAJpPBeeedh3e9611417vehZtuuinm0fmjZUsKu0yhR5e/MBdbtg1CUKMZt2R7+8zbboJCtwFqfrhhP87+LXaLlmabJY1nQxPmRCuLSDbXDpO6GKxUKxVuESfcYfU5ckYzft1HPTh7xhUUSj3MCJIplOg8CkSUKWS+F4VZ9kFh1I3ik4hoNNOum1WnNWH+SS80b+/fs8c0cLF6LHswGCRTmLFpSWEwrb3s0HWdMy+LQj4q7m9EV/QwXjPT04PZR2/D6re/y7zv0XvuweTYmKu+s2yfwjCb17udR6glRYPUBIW///3vzdt33303rrnmGvPfs88+G+PI/OOpJYVNuwZX8lFO+ihZPsr28fHpIugVtoG9VPkomylk5KN2EzCXKYwoS+pEmJIMWdi5vAVFzTpLsc3Xt7hexkZHpY2jU7C6JvxkCsUaU7/y0fRmCt19b+twPQpXSM4URiwfzQ+PmLeT0NInaWhdXeacbuh6Yg/6guIU4BRGZmNo02G1HwwDpakp5rGibFJOppAtsRF7Mbf6DKYnJrhrJ5JModATWvXhmOr5NWf2dwef91H0rV5rvtZDd9zBHdRnii4yhWG2pHC5D6WgsEFiagpbcdlll8U9BOmoDi0p7OrYarcD1BSGmClkCfOkl21gb5sp9BF8sI2KK3aZQrbeIJ/gTGFSg8LQarP8ZQqBWlA4e9EiaWPpBKw28Oz33m1QyNWY5nLcaX8r2BYK0fYpjCdTaBgGprjG9SuljQMQ6mpCgg8KG/Ntc6aQgkJFUZAbGMTUjlo7hkq5DC2GsoSwaXUYMP/kF2PP7bc23R9W8/qmFg+FAqozwaherTp+BqLqJLRMIbs3dMgUhlVTWL8+tUIBW778NfzhpS+EUanggNAz3FWfwhDlo1RT6J3UZArbESfJW5WrY+sy69gAIBvAaMbu5MYvbLaMJSqjGTfuo+JJmh1u5KNcppBxXq1EJJ11Qg1RkiGL0DIuTKbQaUNAmUI5WAX3fjKFfnsUAq1rsmXit+6xFUrWfZ/C0uSkuYHKDQ4iPzjo+HjPYxHMmcJ4T6mm0Bud0KuwlTR73skvsvy9JqOZrP9gyEnyyJnNtHjepqBwxg1bNk6BT5B+jW5fk32Phg45FOvf/yHL37EzNowsU+g2KGRa33R6ppCCwhhxOiV2+mKzP7s5ZYmqppAl1JrCKOSjpZL5mdg9l2qTKYzrlFvLWUt5k0RYdUNuNwRWwcr4vn2JDaKTitVGzmutc9PzeLxuYpOPhlVT6GHD2SfZebRO2O8p15NOrClkDwgkH16mFc6BtE3NZpycNAFgcOPB6Jo7j7tP0TRO1gnwe5FA7qPdYlDoXo7JyrvrhHEd6Q7vWZD3wQmnuXrdP7wfg4dsavod20xhIZwxAs5ZVDtIPtqAgsIYcWpJ4XQBepVphSnLUW3loyEGhSEZzWSKRfNUkO07aFuEblNTaLWwRYEa0mIgk9jloxaLuq7rmDiQvD5CScZqI8cdVrnNFAY4sFIidIwLaw5tVVfOwtcTypWOmuMJWUbFZQpnUU1hKzqhLUWrz11RFMw7ic8WZorFpsw2K0n02hCdDySEIMtLUGhhWhbGgaNTEMuZ44RcU2i+ZjaLrV/+WlOgbms0w7bPkjhGruxKUVyrxEg+2oCCwhjhzDEcM4X8JBWkplC2rNMyU6iq0LqKUl+HJee1JYWHDQYrIa0HerZ21Xbuo3FlCgMU2kdFaBkXH0Yz7Mb6AElIPcHX7M5kCj3K2gFn2VYrYutTKLWm0L18lHceDSkoDFlGpTtlCqmmsImOk4/afO7zXygEhRaPY9UiusfvrtMeKYh8FJB/HbUy5wpLmtlK5dO3eg02nv8x82dF05Cx2QdG4pBqcXBgR5QHjEmHgsIY4TKFDkFhc6YwQFAoO1NoUVPo5WL0Q9ZF83q/vRmtehXancrZuo/GZjST/EyhHlrGxbvRzOyjjzFvU12hN6xrCr0pGMTHZbu9Zdi9tnMIgh9JkhuczMZE+B6FYQWFzHhCeH7bTCHVFFrCBYWdIB+1WTvnHHsclwGzCkrYcg7PmUKnFg8uM4WVcplzLTd/R/JazLbGUDStSa0Vlgu5m+tz9bnvwMKXvhwAsOy1r+MOmbgxRhC4JrXnbdKhoDBGnOzInS7AbBD5qPTm9RZBYYgmM4CQKXRhNOOldo11IK1P8LaZQlv30XD/fjvUlNUUSt1c+2heP/uYF5i3KSj0htXimw1YU+j1uhE3HGEu5mHNoW4PM4Co5KPhNrDnawrt5aNxHawljY7IFLpomZUpdnOHeFYbfi2AwYpTMMFlCh3mNat6QiDcPnyZ7p6mA3hRMSRrXnSzdiuqiqMv/TZecc92HP65L9k+F9unMKy2GdleLz1vyWimDgWFMaI6uOe5zhR6NpqRW+9mVVMYduNhN5lCGfJRM1NoIZUD7IOwJMhHk5opDK+mkHEftZnURdkNu8mY2L8/sYF00tB1vbHRUVVoXbVNky/30YCHBFGd8MZtNKNXq42m2KqKnqXLpI2BJUqjGaeWFJQprJEbaKx15Q7IFDqpR+a/8MWNx1ls+N0eDHodg2bTi1nESjoKyL+OWr1fiqoGei9cva7DHKgoCvJDQ45qMXbvFFbbDC973Sja8aQFCgpjxKmehN+EiDWFjQvSjaGDXVAjA8tMYdhBIbMgVMply0nXb/DRSj5qZzTDjS+ulhRpqCnkToUluo+66M2k67qZ/VCzWRRmjaBn2fLa7xgGxvfvlzaedkZs9Fxf/IO2pPBz3URRV9hUwxOD7JnNQnQvWGjr+hx8QOFlCg1dbxxWqSoy3T3cdVtJgNoiaXREptDlRn7xy19lupDWJYosQYzWHDOFXQ2pY9XheafsgsIYmrOHIc+UOQeq2Swws24YhhFO4OphjFRT2KD9OqGmCLfyUfFULEk1hWxRc52wgyI1m0Wm2I3KRG2jVK1UkBGaXvudHDijGSv5KPPes/JRlvia16dLPiq3CXjrzbXVYjp06CaMPfoIgJqEtFdy77d2xG5TojFGM3q1CsMwWtYWB83A1eqya8FEWIu5IRwmsCYJQXFSi7CwG87elaukvb5ImJlCKxMIrVCAPhMMsvVYYatN0kKn1RQ6ZaDyQ0N4ybU3YXrnTstMuV/5aKtDH9fy0TiCwl7r90vL5VB/VBhBYdC1W1EUaPkCqlOTAGpj1GzqD73gd69LNYUNKFMYI26NZpz6FHp3H5UbsKgWG6QopD9OvQrFE2kvTqhcTaGV0QyzWbHPFMazoQmzIawswpKPKi7cR62uqaFDNpv3UV2hO+xMnFRN4641zz1UfXwfoljM+WBGbgZLcSnz4usJ2yEorL2P7Iabr8sm+SgA5AbbO1NoGIYnB+Jsd4+tdNqNWsQKdp5S83lO0g24N5qxqyn06oTaCl5dYb3XYPsAymj5wLV6gJzrUwuhV6HfumRqSdGAgsIYcduSQvxye6kpZOt/rBq+BsXq+WRvnKzI9tn3KvRrSwy4kI9yNYV2mcK4jGbCcR2TSSTW/i6Cwnr2feiQQ837KCh0R1gqBn/y0fANAkJ1b3Y4GGTh21GskDoGFju3QBlwm9mZ7w27fvCZQgoKASDXP2DebsugkHXSzGQCyaL9rn+tAgk3mULDMLhrtHvR4sb/xSAfDWK60+o1ta6ilHlClTxGIECmMELTsqRDQWGM+HUfzQin8W4t+DNM/Y8srAKjKBb0HGM2IzqQcpsPjydalkYztu6j1gtYbEYzhXAawsokNPkok3GxO5m1+hwHDz7EXBAmDhxwXQvXyTjOTYGk7d4z7GxQFdYJr18nYze4yXADfFDYF2amMMQ+hVafNbvhZiGjmRrtLh+V6TjrN1PYKpDgMoU2z1uamjIDxmxfPwpz5vgaixvcrKFB6itbv6acQ2/OJVXSfiXI/oIkpDUoKIwRp1Nipy+3MlOkbz7W4YIKUzoKWNcURiIfZTKFonw0yEaTlY9a1RRyfQqFOkarx0RJGCdvsgnr++h0wGL12vWeeJliN/pWrzHvH9u3T9qY2hVZKgbxufwoDCKXj9rU8PjFdaaQlY8uDzFTGJF8tL6m2SlXKCiske3rMw05qpVKYg3E/CIzC+83O9aqB6kb+Sh3aLNyFdQsE6CGebhio0oKM1Moy0gwdDMcj/sLkpDWoKAwRhQH+Wgrnb3bE3luIWYCKVmoFmYrUdTUsW0pnOSjXnrVAF7lownLFKauJUU4mUJXRjPMZzR4yCbzNklIW+O2h6orZ+TA8tEIgkJOeSA7U9j6e1sulcwskVYooGvefKlj4Majhuc+avW9sQ0KPdSBtzOqpvF9edtMQiozC6/m/LVh8CQftXleXt69kleuhCkftc0UMkGphCxcGGoJL70Kn3/8cdx6zTV4evt2x8cFCgrJgRQABYWx4jZTaPXlZoNCp80Xm0ULI1izzBRGkClzWiiDnD7m+vvNjWa1Umnun+XGfTSulhSCfCZpE5vo8iZXPtpaOmT32kOHUlDoBadm024VDJbP5ScoDFHuWCcscySgtumvY/e95Tacy1eEWvcXWaawux4UNstHM8XuUP/GtJFt47pCmVl4v0oZT/JRu0whZwS1ku8/GsF1JCLbdC6Mumq3n5dhGHj0nnswNT6Ox++91/EaCDJOko/WoJk3Rly3pLAI5lxnCiU7RolYuo9GYLTi1MA+yCZOUVXkBofMn8ulkq3rlm2mMCb5qKKqvusqooCd+NVczlZ+6wcn06Y6dgctQ5Qp9IRTYB91uxx2Do2iplC60YyLWlguKFy5Wurri7Cn5ZFkCrusyg+oRyFLO/cqtJL0+0Xz2ae31V7LTVDItYxZscrVIaVf3Eg5ZZvOhXGY61bZND05ab5+q37CwWoKw1NJpAkKCmPEb0sKgD8hcltTGIYBTBx9CgEhUygazQQsXmfNZqYnJszbWlcXd7JvFRBrhQL3mKhJcl1hqNb+mdZyHbtrYeCgDebmfGp8vC0NHWTCB9cS3Ud99SmMuKZQ8tzmJqidiqieEAjXzdXqsM5KPko9CnnybWw2I70h+gyRZwoFd2C3rWb84OY9Y/dlsuWjsuZAt2MU+z9OuAwKKVPoDwoKY8R1SwpJNYVhyBqtagojMZrpddmSwsdYCkxd4RQTFIoZQCv30bj7ayW5gX24GRd/fQqB2nvWv269+TNlC50JzX3UT1AYQR2ITIdEEdXFYYZYrxQqrBxX8lNbZWQs5aMUFHJkBxoHoOU2zhQGDgpzwTOFVoeVrdxH9Wq1sU9QFPQsXc6tR9L7FHLzkfXhKrsvky4flTQHus0UikGh60wh1RT6goLCGFHdtqSwrCnssXysSNhBYVw1hU7N64NmR/M2QaH4XFby0bj7a/mV0EQBW/vq1QCoFVyfQo9GM4DQr5AcSB1xur44o5kWhxJijakv+WjqM4Wt5ZpRBoWRyUfNmsJ4lCZpop3bUshUMvkNhFqNoVWfQnaP0LNwITJdXdHJR2OoKZSVyXfbNqMpKHRYn4O4pHJriaffbC8oKIwRO/mooeuNi0RVoXVZnKa6NZoJ8ZQbADTLPoXhn/TmXLqPivI2V8891KgpZOWj4iRj9bfHfcotuz+RTKKqzXLXkkIICg/dbN4+sHev1LG1G041u14yhbqum4GHms1aXk+tYIOqaIxmos0UGoYhtKMIOSiMyGim4T5qlSmkoJAl3yE1hUGvLb+BWCun91byUTZoGVy7tjYWF4eUfnFjziW9pjCgIZgVblVNTfLRAwfsD35Zp+gA8lGqKSRiwU4+KsoDrBrOJyVTqFpmCiMwmgnJfRQQ5KPMhkyUaqgW8tG4T7mT3JaiHKITruI5U8i//iBlCl3jLB91Ny81PY/PDWGYma06YdZlt2pJMT05aW5w80PDXC11GETVkqL+PmYsMoVRrB9polOMZoJ+7mJbIrfBWKv9Qqs5jQsK19R63iouyhn8oruYj8KsKZSVXHCdKWT2YMCMXFe4r06gmsIInKzTAAWFMcJlCpmLws1myW2T6NCNZgoWdXVRGM2w7qNORjO+5KMNoxmuprBJPhqP86oTnNFMwmoKWYe2niVLpT4326PKq9EMAPSvWWdmLUqTkyhNTUkdXzvhunm9l6DQ55wRuXxUdqawxfg56eiqcJ1HgQiNZhz6FMZdl500sgMD5m2Sj9qjKIovpQxfU9g8hsLIiHm7ND3d9P/sNTqwahUA/1lLN7iRSGph1hSGkCl0UveUJieb7rerK5TVvJ6CQiIWFJteNm702/6MZuRLG+Oqq8v2uTSa8RGk5YcaQSEbHIiToWbxt8ctH01ypnBSsO2WSdCaQjWTwcDGjebPZDZjj9Oc4vawSnwevzWmYfYDqxNnpjBSkxkIZguSn9ttn0JyH+XpGPmohM9d89GSqZXkMD88C5hRa1VKpaZ1lc1kDayuHdxEZTRj5+KthlpTGJ18VMwS1rGqK9R13fzMFU2zPHByguSjNSgojBG7jSzf0NV6omQvTLdBYRg1hWo2a06YtTtUaF1F6a8jwrqPVstl+/cvoNEM95pCfSKbnQryejJRE2w0E+YG16v7qNW1MHQw9St0g9Mmym2tMyApUxhF8/oQ6mnqqDZqkTqsTKoviqAwqprCelBo2aeQMoUsuXbOFLJziYT9CZuh85UptPjuqZkMtycoC9lCLlNYDwoz4bSkEM25bOWjkvsVh9K83kXgyr63bBLFKlMoBstWZVdOkPtoDQoKY4QzSbCRj9pd9EmpKVQUhTvxyRSLni9GP2iFgnkSZBgGd9Iks08hS7N81CJLSi0pbGEn+L6VcjOF3msKLYLCQykodIOz0Yy/mkK/jaujON2VWfck0qr2iDtICdlkBgi5ptAiuLbMFJJ8lCM32CmZQglBoY9DUTf7ra45c8zbrIS0XCqZgbqWz6N30aLaOCQHZexz1dc3RctY+hoAgOqit6IXQm9JYTNGtuRkzrHHmbetehWmwck6DVBQGCN20ievNYVOF33YQSHAT8RR1tRlbRxI+c2H980mKx/lXs9NTWHcmcKENq+vlMsozyyeai6H4oKFUp/fq/uodVDYcCAdGx3t6IXBCaf5yXdQ6FM+GnVNoWxpYyv5a+Ty0YgyhVmnmkLKFHLk+gfM222XKZQdFPpw3XSz3yqMNILCMlNSwtXJL19hHqqEJWsXD6jsDuA12e6jIbeksFuz2flvwYtfYn6+05OTTddC0DGy9dQkHyViwa4lhZuJktWSu5aPhrTYsrV1UdaDZG3MZoL+zTmboFD8LBRFaQoMY3cfLSQzKGQn955ly/mMhATYRdjO2p89PLFa/HuXrzCDk3KpZFng3umwdRtW7XKyPmsK/RvNRFtTGGZLCnH81WoV0zPfQUXV0C3ZnMmKJPQpjNusK2lk2aBQKJVIO7L3J34MXtwoAQqzZ5u32UyhXZ08Wysscx12+36FWVMYSksKu6CQlc+vXou+1WvMn8cPHLAfYy9lCv1CQWGM2NVBuem1wl6YruWjIclyuExhhEFhzqYtRdAJTMvlOCMb87ksirpFCWncGxrOijqhQWHfSvkuipxcx2JCZ68prdDFuT7WUVQVgwcfav58gCSkTbRql+PbfdRvS4oQ3TLrzxlu83r7oJatJ+xetMhXH0fP41Ebn6fMd5MzgWAOE6yNZihTyJLp6jLfJ/FwK+3I3p/4cd10k2Fig0K2pnDSpuaXC07DyhQ6XCdcTaHslhTSgkJniathGE0lJwMHbTB/Fs1mAmcKqaYQAAWFsRIoU+jDfTSsLB574hPlgs6azdgGhT4XGiuzGcvGtsJGLW47dU4+k6DNQ9gyuFaF/fw1ZR+4D7H9CikobEJvcW35DQr9zhth1xQaum4+r5rNSg/MOJmZ6GrIXjOSa3DtCOu0XPys64cJ1plCch8V4eoK20hCKnt/wh7SujkUdXvo0zV7rnmbdSS3W9fcGJ/5wa1bq5/WHK5fN6I+heXpafN1sz29yM8a4YNCoa4w6BjJfbQGBYUx4qam0K7onr3fTqYV9il3HT5TGGFQ2M87kAIW8jaPtsR1rOoKrTauYqF33HbqmmTZiCzCbEcBCIYdVplCl5sPsa6Q4Gk1n2hFvtbZKbBIQ59CN/bvQXDKFIZ9zViOJyT5qN0BgFWmkGoKm2FVMeU2MZsJY3+iepRtsgenaj7P7clYbDOFdkFhSO6jblRkgNzWVK1KBvzSqk+heCimKAoG1jeCQtFsJughY9iqk7RAQWGM2PWocnMa5Mb63e2EFxS2pjCMjZMdOQujmVbyNrdYOZBafRZiTWHcGxo1H17T3CDwMpC4M4Xug8JOXhysaBVcq5rGtaRxa4LlN1OohlxTGPahmtP3lnceXSH9ta2IJFPImApZHdqRfLSZ3ED7ZQrD2J9wgYYLpYxbp3LWaKaeKTQMg5OPsu7ArfqP+sVtNowznAuoGJK1pxJp5T5qFXAPrFtv3jexf7/UVmRh9mhNExQUxghb12TXksJePtq6pjDsHoV1YpOPWtQUtpK3ucVKPmr1HooN7OMOClvp9OOgafEMIeuhtliE3QYgxYWLkBscMn9nyqZ5bqcSlrTdf01hdJnCMFQAbmsKo5KPIqSWFOy8nGODQousQ9xzaBLJtWEDezHYkIFX91G37WasWlJMT06a+7b84BDXT9JrxtItbtcxv94CVgcOYflStDLDsVJK5IeHTb8HXdcdyoa8f5/IaKYGBYUxYrchcNWctKvLbBrPpfcZeDem8GSN7MUd5YKes3AflbWJyw8NNd1n2dg2L7iPJqmmMCGZwumJicbiOTTMSaFkobRwH3V7iqgoCvUrdMDNQVOU9c5h24gHdbRrhWojexZNFqLLFIYjoaraBYXkPuqKduxVyG/iJbU58FhTyLWvctgjifLRputzFW+e5qZFkh/cBj6qR8MdwzBw/y234K+/+Q0eu/de29eUeTDWSuJqpy5iA1OZ/ampprAGBYUxYmdHzk76dicziqLw2UKLrFAUJjMA7/gVbUuKZqMZWZs4S6MZi0k4ye6jSQkKuSzhKvnOo0DrRdiLVHHokEZQSA6kPNwmyua7nnHZlkJKTWHIjnHc31uUHxRyZmPM97ZSKplzmtbVha6586S/tuV4Qno/XctHFSXSEoS00I69CvnvhCTzkpy3DB1bH8geMotkenrN+le9WkW1UnE0gnJqNRME1+6jHvcB0xMT2P3MMwCA5x57zP41JR6Mqa3ko5y6iAkKi43yBLtWZH5c8Ml9tAYFhTGi2DjPuS0mbnUiH0WPQkDIFEaYKbNqXi8tU2glH3XjPpqkmsKEyEe5E7+QDDNaWYB7OZVmM4XjFBRyuNmUsKe0dvXO4nP5zhSG1CS6TthzqCh7rv8NYj2NrDqeVsjuH1rHPlPIy0czxWJkf2uaYKWJbZkplHSYzJZzuAmGJoXm83YoioKCICF1yuSzwWlYmUKnbBjXksLF67OHn9VKxUG5Fk6mUByjruuYmpio/aAo6FnWeH/tatYD1xSS0QwACgpjRclYn0y4/XKzm5RWQWGYwQp7cUeZKePko1aZwiA1hVbyUYvnazKaiVk+6nVRjAL+RFW+yQzQ2gLcy7XQs3SZebvcJqfysnATJLmpdxb/LxXuoyHMoYqqmmUALFz/s6jqCRGi0Qx70MkEhWo2ywWicR+qJZV2rymUtW/wKh/lDyyd1yZOQjo1xdX8ioedbKYwrJpCx5YUBW/eAgf27uV+tvW4kLi/cfI/mBofNyWcxfkLkGFqj7lMoZ181FdQSPJRgILCWLFzznN7MsPKbFrJR8NcbOcedwKA2kU15wXHh/Y6IlZGM7IWGjFTqHUVLU/R2aDQril6lISdOfFD2D0KgdZyHS8LBpd1TEhgnRTcZFz9yEd99ykMqYVCnUha+lhIn/ksRDjXjBVRuI/mmPdRURQuWxh3S5+k0o59CsPIQHmVj3pZm7pG3GcKI3EfddmSojw9jQlmrFaMCUGhzAycHU7+B07SXHbfyypRZPYpTMreKQ4oKIwRxaYOyu2Xu1VbCl5qEN5iu+SM1+LkX1+D0264DT2Ll4T2OiKWRjNsDVCACUwMCrM2Dc+5dhwJOOXmpFcJmdiikI/aXUt1vCxsrZxMO5nQ3Ef9BoU2agtZROHgbHWgEcVBihWR9CkUDD3YukJZMsJ2g6spbJdMoaS1miVIprCVKzYrH52emMD05CSA2jXTzahLgGiMZpwcWwuz55hyWF3Xcd+NN3L1kyy6rmNs3z7+dSRm4Oxgr3unoFBUSthmCl2WXdlBNYU1KCiMETHzVK8pcbtZyiREPqooCoYP3YzuRYtDew0rWhnNBJnARPmo3WaFreGTZasdBO60K8Zx1KlWKmZfJ0XT0B3SoQHb40pvlSlssblPooNrUnCTiXcTFBqGwZ1G+zUXiVQ+GtL1zQW29UyhTf+zsFHUxqFSaEYzwrzMbg6TMIcmkXbsUxiGLFHzMHeLa1PPkqWOj2d7Fe7fvdu83b1oUZO3QFgHi27fM0VRsPU/LzWz8FMTE7jvppsslRvj+/Y11/RFkCl06lPodCimuTKaIfmoXygojBFFUZrkfrqum19INZttmmxYkmI0ExetjGaC2Fxnuns4dyy7CVjlMoXxn3InTQLBFfIvWcotljLx4j7aMlPo0FC803Ezp2RtLMPtnidTtJZmuyF099EQzDBEuPqjmYNBrkfhimjaUQDCxkgidkYzAN+rMAlqiyTS7i0pZO1PVA8GK17XJramcP+ePeZtqx6iYa0hXrKrw4duxlFf+4ZZs3xg7148dNttTfOkVdsl20xhSH0KxffIKYPLKeRsM5o+3EfJaAYABYWxI04eXk7PvLSkaMfFVuvqMidyQ9dNq+g6QRYaRVGQHx5u+Vxs0J6EwFsJqfm0X5x6OclEabEI6x6+F5xzXALewyQhSz4qa24K+3Q3ioM18WCQ6+s5awTZ3j67X5U/lghqCh3lozEbdSUVVj7aLuZXYexPvKg8vK5NXUxQyI7dSnbK1TZKvI68rGMAsOCUU7HpE58yf9797LN4/L77uMeIJjOAU6ZQ3sGYnfMyICol+EMxVy0p/NQUknwUAAWFsSNuCLxMlJzRTCv5aBsutoqiNGULZS40+aFGXaHdc6lJqylM2MTmxd0tCK0COS8ZZNZohuSjPO6a1zvL2pueJ8BGQ42wpjCsOVQVWhNxzqMhHqRYokTQvL5JPsoazcQ/hyaRbG+veeCnV6ttMS+FceCieagp9Lo2FWbPtbxfDFqAEDOFPgK01W/7e6x66zvMn59++GGuF6G3oFDe9VkzmWp2IC2XSqZEWsvnUZy/gPs9zmhm5ne87p0tx0PyUQAUFMaOuKnxslliJ9KWRjNtuthyDqSVitS/OT/kIlPI1BQmIShESH3G/MI3oA3PWr/VIuxlwWhlWtPJ8PIlF+6jbjKFATJhUcpHo8oUxuU8CoS3MXJvNJOAOTSBKKqKbJuZzYRx4OLFfdSLyQzAy0dZrOSjYa0hvOzeff3toZ/4JOa/+CXmz9vvugt7n38e5VKJk6qbrxOB0QwgNLC3cl5esbKptMDKaMZL2ZUdSfNjiItk7SA7EFH2xm+WWslHPWQK23SxZaVVVTFTGHChYeWjdtklNlMYpsOrW5Kmi4/KRZGVorQ0mmklH9U0biFKwvuYFDwbzbioKQwk8w7baIYNgkMyQRHrYaPo62k7lpDmD8eaQtZoJgF12Uml3dpShNOSwn2fXq9rU2HWiGVPUassYxhGM81JA/fzpqppOOqSr2Pw4EPrT4b7b7kFzz/+uOXjZbZ6cEKzqCvk579mpQRrNFMfpwxDsKT5McQFBYUxozrIR1sFGa02X2FMukkj1+8gHw24iWPbUriSjybAOS9JE1tT1iPETCGbbYFQnwB4PyAhB1Jr3DWvd26VIz5PWmoKwzpYUzSnTGF0JjOA0JJCIs6ZQsZopg3LHGTRbm0pwqkpdCcfNQzDs4pFzWY59RBQy1oV5jTLSsNoSWHourmuKVqGy7K5IVPsxrHf+zGKCxYCqEkvxfrCOrrEVg9OcOvszOu0Ctat+nPLqHukg+AaFBTGjLiJ91RT2KJ2p91rCoFmB1KZC03v8uXm7e6FiywfM7Jla+P2UdsCvZ4MFCU5RjOlqSlzos/29XGZV9k0OfkKC7HXE9ZWxjWdips5xXNNYYC5SQyoZBPFwZqa5f8GNgvUNXd+KK9pP5iQMoUOG0tyH3VHbmDAvN1umUJZnztbzuF0mMevTf2u1yZRQtq7fCXfG3gGzlFY0vohHnhbvW4rumbPwQt+cFnTwQzAZ6Lt5KOyr082U2gnHxWxMpqRoTyhmsIaFBTGjLiR9fLlznoICtu1ppBrYF8uC5uPYJu4pa85C8vOfD2WvvpMLH3NmZaPGTlqG0688lc4/rIrseCUUwO9ngySlCnkG9Cu9rWIecGqCTgw40xbX5hVFVpXUfzV5ueiusImdF1vvBeqym3mWbwGhcEyheGe7kZxsMYFth7XAPljCd99VJSPLjzlNAC1+qJ5J5wk7TXbDa5XYZtlCmW1OmBNwpzmbW5tWuV+bWJ7FQL28u4wHKxlzQv9a9Zh2ze/x6trAIxsbRxqy2z14IRWsKgpZI22LDK4VkYzrCIlYxHwuiFJe6c4SW1Q+M53vhNr1qzB5ZdfHvdQAiFuZL21pKCawmw/38Be5iYu292DI7/wVWz58te44JNFURSMbDkKc449LvSgxw1h9RnzA18bEJ50tA63EDMbgqaeeC4+J07W0sELBAtnh+5wUp1tk5pCwzD4zUZIc6hYfxTnvB3G+8keJiiaxtUQAsDC007Hqdffipfddm+T0yDRoN16FYYiH3WZKfS7NnXNEYJCG9lpGEoTme/XnGOPw+H//kXz58LsORhYd5D5s637qOSDMa5XYbXqqkerldGMl7IrO5Lm3B4XmdYPSR4///nP8b//+79xD0MKiqP7qPug0KpJtJdGp2kl28tkCiW7j6aRJOniozKZqSM2Aa/j50RabBNAuHe+8+w+GsCgSdX4WlKZcDU8mYwvRzs3OJUQRJ4pDEF+Ln5vrA4Tepctb7qP4OFqCttMPhp1Swq/rZKa5KM2v2vVgy/oobHsfoHLz3w91EwGT/78Cqx++7uw9847Gq8lsdWDE5pQuz/F9GgtjMy27NGqFZtr1mWMkeSjNVIXFO7atQuf/OQn4x6GNJyMZlrWFDL/L26+6s3cAQCK4sm+OE3kmExhaXqaOZH2XojdDiQ1KLSSgcjGzgbcz2LKZgopKKxRdSnRiat5vezvexjyNis451y2B51LqbNMwpDjdoJiJQraST5qGAZ3kK1J2p+w3y+n98ivAVqTfNSmZYyiKFA0DQYTXAUOCkMwfFl6xmux9IzXAgD2P/SAeb8usdWDE2JNoZsMbqtMoV/Dv7Ccl9NG6uSjF1xwAfbv34/VqyNu6hsSji0pAhjN+JHMpRHWaKY0OWne9luInXrU5BjNcO5uEVjriwcsdZycD22fy2VtSifhtrZEE2o+rBZYefLR8BbyqIIZtqaQ3cjGMW+HcVru5/ojmuGCwpRnCtnvhFbogiqp7MFt4OxXxdIsH7V3B5a9hoRd38weQOkSgy0nVLamsFp19bmwQaHVOH0bzZB8FEDKgsJf/vKX+P3vf4+zzz4b69evj3s4UnBuSdEiKLSw5jV/7oB2FADfkmJaCAo7kaQUS1erVUxPTNR+UFX0LA1fHmZnDuNnc886QlJNYQ2376OqaZYbDLvnChIoRJYpDDGYYb9r7GY/Dvl7GA2cZcveOpX84IB5O+2ZQv47IW+tdhM4VyuVxl5BVdGzdJnr5y/MbgSFhZHZjnsr0VU4KGEHaBnGOExmqwcnNKGv5JQLdRG377XsU0jy0SAkRj56+eWX4/zzz7f9/5/+9Ke46KKLsHjxYrz3ve/FBRdc4On5BweLyGSiN+EYGXG+kHIF5jRJCAqHF8x2/P1KT+Pjc8oU5gf6W44jrZQXzzNvl6amzNuFNv6bndCHG39znEEhWyzet3gx5i6c5fBoOWQL1vUk7LXQPTTg6nuR62puqtvpsAdPrd7HXG8PJidrhwLVSgWa4HTHzXPzR3xfqzsGmA1AiEFhV4jzSaHY+K6xm/3CgLvvqkye6m1sDMOQjxYHanL/Tpybg1JZ0mhPUk57UMjMJYV+edeWPsS3K7CSbXJr09Klntam3hdsxbW9vSgfOIClLznFctz1+7RcDvVPSXamsG9kSPo1NDZnyLxtlYELY09V7G/M30a1yqmLFm7eaPl61f7GOl+dUaKw4xyYM+xrnN0hzH0A0NOdT9V8l5igMJ/PY4DpwyPy7//+7xgdHcWXvvQlFAT3Mjfs3TsRYHT+GBnpxc6dBxwfU2WStaJ8dKKqOf6+YRimbr1uu6/OyAfZ51G7uluOI62M69aBsdLGf7MTo/umWj8oAlgZSPfylZF8FjpjkmFnNKNnC67GoitMxiTCoPDA3r0Y3bkTIwsXolCMtp6sFdz7mMk7vo9qV3MvKbvnGm8xzzkxNtHYHEvPFDIbVyPXFdp3uKw3Nq1sUBjHHDYxyXxWIQSFRq628erEuTkoE2hshttJPir7e57t70d53z4AtespK9TBBVubMjjxql9jz+23YeFLX9b0u9yez8b4zC/se1bWctKvofEKs35aBIVKV1H6a5aNxjor1hTqIwttX0/NZqGXy4BhNO2bp5Wsr3FOTjPzvefftmdsfBpI4HxnF6gmJig87bTTcNppp9n+/5o1awAAb3rTm7j7zz//fFxxxRX43ve+F+r4wkJsvuxF6qYoCjLd3Sjv3w+g5sRUN8jolOJ+u1YRneg8CiRHPuq3kD8IdjUcflx4OfOPCIJCwzDw9MMP4/H77gMAjO7YgY3HHBP663rBW72zc1uKNLSkiMoFlHWgjl8+SkYzSaWdWlKEeW3lBgYbQWGp5BgU+lmbBtatx8C61uVLsh2swza+0lrIR/22enB8TUbdUy6VTLWXksmge9Fi+98rFqHPfMbValWKm7WSID+GOElMUNiKk07im9ree++9ePbZZ3HQQQdh8+bNMY0qOKpTSwoXF36mu8cMCqvVqvmBRuWcFzfZfuugMKxG00mH3dTFObFF3Y4CaLYBr+NnA8IFmCG/j9VKBQ/dcQd2P/OMed/+vXuhV6vSDBhk4OV9zLZoYC+rViVMt92oghm2lQpnNBPHHBbCxqjT2wTJIiu0pJDhaBkXYV5buYFBjD/+GADr4NlvOwqv2NW4+yXs+j62plBmqwcnWJfv8Zl9LAD0LF3GBdUimWK3Gfjr1aoUZ9akHKjHTWqCwksuuYT7+bzzzsMVV1yBN77xjXjlK18Z06iCI9roe70IrYpuxdvtfDqb6e6BoqpNk26nbj6S0pKCdx6NKFNoczLr5xRRzclvPmyFYRi458YbcWDPHvE/MDUxgWKC3Bq9vI9sQKO3CAqDHFrZOc7KILKgMGsTFMaRKWQd+CQ9Z6esRWGj5XLIFLtRmajNrdVKBRnmu5MmQs0UssGzRVA4EZGKRfbBYthGM63cR8PYU7EtKSaYoLBvpXN3Aa4thdCfWkafwk4OClPlPtqOqAHko+JjuKCwAxrXAzUJrVW2sJ3/ZieSYKtsGEZkp7EsSkiZwjDlo6WpKS4gZBf7yQPJqkOQJR+V2RA5TMc47nsTYp9XriVF7PJR+fNHp6hWoiDH+C6kua5QhtzPjhzr0iq8R+LaFGarJIV1sJYtHw1hbmjpPhqGZJXpJe3lcxEDWGpJIY/UBoWf+cxn8MADD6Q6SwjUtNN1uIbzcHcRZm0aRXeSZCfb29d0X8e2pFDjv6TLpRKqMye0mWIRhTlzI3ldVoanB2xJwS7oYWYK2ZPs3uUrsOysN5o/syfaScDLSbVTA3tD181FV8lkuI2BV8JcyKPLFNr0KYw5KAxDPkotKYLRLnWFYctH64jvUWl62txjZbp7UBiZLfW1WdRMiPLRGPoUhrGPVG1MI1tlcB0zhX5bUrByVQoKibhgF2F2AnPb0NXuRD7Mk7ikkbUwm+nUE+kkSCDEQv6o6l5Um0AuyTWF3Nj6B9C3qiGbmUxwUNjqfXQKCmVmjqIymgkzmLFrXh/HHBaG/FzvENVKFLhtzp50IpOPCplCTsGyanWoaxNXgiBDPhryddSqKXwYr6kJJkB1epevcPw9sUe3lExhCCZbaYSCwpixrSdxmeliL1S9QzOFOUv5aHsHwnYkoQErLwOJpp4QAJRMa/mo21NEtgA+TPmoeJ2ytRRJDgo9yUcdgsJMwJpJ1rkzVPloRDWFfAAV/RwWRlDIHwJ0poJDFk4BT5oINVPIZFPFfo5Rrk2yM4V62Fm7bNbMlhmGAd2Hx4Xn18xbZwrtGtebY2HmEVE+6nfeJPloDQoKY4ZNWXOnxC4vwEzRpqawg4r7rTKF7f4328KcfCYhU9gXYVBoZw7j51qQbSduhxiw9q1qvF+TY2OJWpw4h7cWwTX7/7pQU8gHWwGDwqjkoyFm7bjAlqEt5aMdquCQBZspTHMD+zDrTLlsqlOmMORa91DdR0O6jjgHUjEDF3JNYZ1cfz/yw8OOv+csH/V38JSEA/UkQEFhzKg28tGMRZ2cFXYn8p2eKWz3v9mO5MlHozGZAYST2ZS0pODG1tuL/KwR5GfMJKqVitm3KQl42ZRkHFpS8JnClMhHQ8xwsd9blliMZthMoaTn7KQDyrBhTVSqbRIUSs8UOriPTkWZKWQVANLdR8O5jti6wqb+fyEoFzSLmsLeFs6jQK1PYZ3y9DT3fE6tLJxIwt4pCVBQGDOsY6If5zl3NYXtvRBbZgrb/G+2Q0lAX7s4GtcD9iezfhY2NusYlXw009MDRVEwsGaNeV+SJKSy5KMViQ2RlTBbUkjofeUGxWYTE8ccFnamsFMP62TBBjzlFMtHw5RCcg6tQlA4EeGBpdhuLAhNPaxDuo40oVdh6EYzFjWFboL1jE1QGOTwjoLCGhQUxoxqYzLg9vSMvVA7Vz7anFXt1M1H3H0KdV3H9MSE+XPv8uWRvTa7ubZzH3UrgZFdD2KH1dgG164170tqUOjJaMZBPhp0blJCaLZehz2kC7d5vXVQmI2hR2UYclxyH5WHWEuVVsI8tOYcWplrWK9WG2uToqBnabhrk51yxQ+iY7MawLHZCdFsJnSjGYuaQjeyXtZopsQGhQHml7j3TkmBgsKYYetJqn5qCkk+ihzVFJqwm7o4dPFTExPmhNo1bz43eYeN6qJPoeuaQuYEM7KawpkgYDANmcKW8lGX7qNBg8KQTncnDhzA1HitSbiSyaC4YKG05xaxzRTGLR+lPoWJw85MK22EGRTmbRxaJ2euZwAoLljI1c+FgZ0bth9EKXtYrqmO/f8iqil0oy5ig1e2xCJIjTrVFNagoDBm2NOkMuc+6u7LzW667dxH2/101rJ5fYduPuI+7YrLZAawzu7p1aqvnnh2AaZsrAKkoXXrzPsmEtLAXtf1xsZGVTmZkRXs9ac7BIVBr9OwgsLnH3/cvL3gRS+xPHiShW1NYSzyUfmZ105SrYRNVIdVYRPmoXVWqCmszwtiO4qw4erSA35WrFTYqi+zLMQG9uG7j1oFha0zhXY1hUG+SyQfrUFBYcxw7qM+5EqcoQMjJ6l00Oms1Yat3f9mO+LutROXyQxg3RfK70knZxIQZqaQk4zXDm+SWFMothVodVLt1mgm6IaQld9L66un69jx1FPmz8tf90Ypz2uHfaYw/fJR7lBGy1jWEBHuiWpeCpswg41MV5dpYGLouimzjbrWXZFoNMONfVl4slfNwX00HPmoEBSqKnqWLmv5e6zrfklWTSG1pABAQWHssPUkug9jg4xFTaFYlNzup7PUkqJB3EYzcZnMANaZQr/XgcxTXies2jz0LVtmbv5KU1PcAU9ceFUeZN3WFAbtUxiC5Gfvc8+ZB3Rds+dgzvEnSnleO2xrCmNuSSGl4XZEsrdOQXabg7gIuxF7zkJCyqtYwj+wlNnWKKr+ipkuvtUD1zc1FPkoX1PYvXCRKzUP15LC4mDVD3HvnZICBYUxY/dFdJ8pbK7d0XXd3CB5kcylFdFophP+ZluUeDOFUzFmCq1OZv32xLPreSgbqwBJy2Y5E4QkZAvF1hmtiK6mUP73/fknnjBvL3vdG7m2QWFglSlUczkuAIgMVe6WoJNq26MgqlY5YcJm76AoodSdsyUl9QMetqYwigNLmZ9VVGUZbKaQlaxqha5Q5kFRPur2b2ODQu7+QPJRMpoBKCiMHbuF363Uzcrlr9MWYrFPYadKR4H4i6XjrSlsPpn12xOPNXSQ0WPKjoqNuRR7GjyZgLpCr5lCt0Fh0moKpycnsXfHDvPnZWe+PvBztsJqDYirJjrUTGEMbqrtRlStcsKEyxIWi6Fkj0WzGcMwuHk0igNLmVLfqBQ4tq0eesIxjBMP793+bXZBYZC9H9UU1qCgMGYULZjzXNbC0KGTTGaAZvlop0pHgXgntkqpZJ4uqrl8qI6NVlhJq3h5podMYVTyUZsAiQ2ovWQKw/rMvWZctSJvnW/nBhvELQ7g508Zf/uOJ580b88++hj0LFka+DlbYaUWieswT3aLD5mfNRFdq5wwiaKHMicfLZVQnp42XzdTLKJr7rxQXpdFlnzUMIxYMoUlzsAlnGtXzBS6DdY1m+xyoExhzM7tSYGCwpixMxlw35Kiuaaw0xbibG8vwJw2xtHfKykogvwrysCQO81cvrxpLGFjZdfut6ZQi0E+yn5ve1c23PHcBoWP338/bv7tb/Hso4/KG+AMXtUHqqY12ZtbPVfgPoWSM+O7nn7avL389W8K/HxusMwUxjSHyXYvroZck9RpRHVYFSZepeh+yAoN7EXpaBS1rZxTbIBrqVIqmYoSrasLXfPmBx6bHWxNYVlS/z8nxJpCt/WStplCch8NDAWFMWNnMuC6JYWFTMuvZC6tKKrKLS6dvPlQFIULkKOEL4YP3/JbxKovlN8AhJOPRpUpZMbXt9pbUFipVPDUQw+hXCrhiQcekDtI+Hsf3fRQlRkUBl3IdV3n3uv5L3xxoOdzi1VLirgk8Nz7KeH5Oq2UIWw4+WhKN65RKJnYTGG5XI7MqIVFkZTVnRDq9MM8bOVqCiW1enBCdCN207gecKgpJPloYCgojJmgjYvVXM58DsMwoOu6YB/fGVkztndPJweFQHy9CtnTWLeTu0zYU3RroxkP7qMW7S1kYxiGrbsb+/5Njo+33FRUSyUzU1YplZocP4Pi53TfTVAYNPiR+V2fnpgwn6NrztxQ+4GxKJlm+WhcEnjZmVfRfZQIRttlCkP6nufZTGGpFEutu6zm9VH2V2TVHVyrh5A+J0VRMOuILQCAgXUHoTBnrqvfs9vjBZOPyu/RmkYoKIyZoHbkiqJwj61WKh3VjqIO6zbW6SfScZnNxNmjELCpKfRZvxLF5osdm+julu3tM+teDF3H1MSE6+cCgAqzoMuAs/0OYIIFyM0UcnU7Ab/r3In8qjUOj5SLZaYwJtm/7F5dnbgWhYmsQCNOovhONMlHY1ibrA4p/cAHtOEGhXZGM2HuqY797x9j6yVfx3E/ucK1rJfko+FBQWHMBM0UAuAsncWgsFMCJLaBfadvPuJqwhqHRIdFsQgQ/GcKmQU9gqAwayHz7vVgNiP2MiwxduIy8PM+usoUJqimkHUn7FsV3ffXag1IQk2hdKOZDldwyIALNNogKAzrOyG6j8bRPzeMTGHYAW2GkY+yY3ZbzuSH3MAAlvzdGSiMzHb9O2o2a12LLalPIQWFRGzIaFycERxIo3D3ShpsppCCQkZSF9FrGoYhFPMnMFPoJSiUmIGyo1VtDStzmmgRFIqZwrLsTKGP1gKsdL3ujOwkmfWDzAOQqPuY1UlWTaFkoxnKFEpFlnlJnETxneBqCqemOKVF7/LlVr8iHSvjs6nxcex46qmm+dqJKA9b2ZpCliReu5pFtpBaUgTHOiIhIsOyJYWqctruVogyrU7PFHb6iTS7sYtKPjo9MWEGYvnhWdznERVqK/dRLy0pctHKR63kgl4cSMMOCis+Tvdb9VDNFIuBTROsssN+4TKFEWa6k1pTKD8o7Iz69jCR1eYgTqLYn7BB4di+feY62DVvPqesChNxDalWq7jzL39BuVTC6MKFWL15c8vn0KtVTLGHVctWhDLWOnb7ziTuIzPFbpT37ePvo5YUgaFMYcxYZQq9NnTNUE0h16uwU/5mO+I48eJMZkIuhrejlfuoJ/loxDWFVuYtfR4a2EeaKXS5uW/pjCzh8EZmZisOMwrAuiVFbH0KFblbgk48oAyTKA6rwiaaPoUD5m1WmRDl2sTu7XRdx9TYmNnH98CePa6eg81wFhcstK2lk0UmRZlCq/ciWE1hPAZ9SYOCwphRss1BoddMl7j56sSgcN5JL2zcPuHkGEeSAJToM4UVpoatMHtOJK8pYtVGwrd8NMsv6GHQamxiA3unhSrKoDCI+6jsuUnW6W55errRC6xQCLUXmIiVWiQu2b/sA6VpZlPrpWaIsKbdagqjaF7PEmWtO1fOYBjc3+32s+PrnMMPaG0zhQlUX1mNNVCmUHI7nrRC8tGYUa02BB5NBhyNZhJ4MYfBvBNOwin/dz1mzR1CuT+eoCQpxJEpbCWFjAKrehspmcIoagotrtOu+QuQKXajMjGOSrmMSqmEbD7f8rkAmCfSoYw1gNGM7MbVsr7rYt1OmL3ARFSLg8F2kY9GaaffCbCHyGnNZkTiPtrXV+vXK7xHUbZKEtUmFT9BYcR1zrb9/xKYXMhatLgJIg1WST4KgDKFsWPlPOd1U+1UU9hJdRz9a9ZhYGX0BidJIw6jmSRkp63qbfy3pJDTeNiJVgGSoijcybaT2UykmUKX7yP7ON2iplDG4YGsmsKJGIMXq4PB2OSjEt1cy6WSeTih5vIoLlgY6PkI6lPoFkVVketvrmuP1EBKKGdg/263n91ExI7ItkYzCewxKhrNBK1RJ6OZGhQUxoxlTaHHiZLdXInuo1TH0XnE0acwCd859rqpSwH9ZwqbpaiycTM2t3WFyZSP8rXO4vPIkY/yS5jfxTwOy/o6imRr9UAwtexyazRXRpp9bVdESWIaN69RHSBaSUijdMUW3Uc5+ShT5+hE1PNSxtZoJnnJBTErGPS7REFhDZqlY8YyU0g1hUQAuExhDEFhXD3WivMWmLenJyebFmIvG+3o5aPWY3PrQCoGhaVQjWbkyEelGM0oipTeenGZzADWB4PxtaSQ2OKD3dCSdFQKiqJEomIIk6jKW8SgUMsXUJy/wObR8hEPFrlMoYuA3jCMyOcl+0xh8vaRotQ1aOAax2F6EqGgMGYsGxd7DOScgsJOqSkkGshuQO0GPy0LZJMbHIRWqC1qerWKarksBCHuJTBqLlr5qN01z0qGvASFlVJJWjDb1FvQZd1Gq5YUsjLKMgKZKHuBichYA2Qhc2PEb2gpKJSFVf+7pGMYhk3v2BCbovcPcD/3RpytFoN3cY5uta6Up6fN38l0d6MwZ678QQqouZzle5RExVmTfDRwz1tyHwUoKIwdq8bF3oNCRqbVVFOYvIuZCJfYjWZiyhQqioLigsZJMLsp1QoFy4yM7XNZOJnKxs175rem0DAMU0IbFDGwdruxisJoBuDdO/183/VqtWH9riih9wITscwUxhUUSqxH5qVvVOstC/bAKg0OpNVKBXf83//hxl/9Cnt37DAPiIBwv+e5wQHu56gPe5zcR4HWn12T+ZWHNmV+URRFuqtnWIiZQpKPyoGCwpixalzsdaIk+SjBEoe1clK+c6w8iA2ivBbKR9EPjA3a7K753mUrzI369MQEt6FiETccgLy6Qr+fLXtYpVvKR2UFhcEW86mJCTMrVpy/IPReYCKK1cFgXAcrEh34OJMMyhRKI21mM6M7d2LiwAHouo7H7rkntprCvqhrhTPOmcJWdYVxZdqt5r8k7iNFxUrQAwaSj9agoDBmLFtSeNwsZQVDB07qRfLRziOGPoVR9J5yQxcbFDKbUq8yJVXTQpeTuHnPtHwe3UuWmj9P2WQLowoKvdRtRGE0A/BNh/1836PuBSaiigeDihLIWj0Isk7LdV3nehT2rog2+9rOiBmopMP2sJ04cID7Ocy1QgwKo85WcyUIPjKFEzGZXzXVFcY4HzkhHvQGzhSqlCkEfASFpVIJDz74IB544AGUJPfC6kSsW1L4zxSWpqbM21pXEarWnIkk2ht2kxyPfLQvkte0gs0Uspt9P0XoSsgOpJyMyiEzJDaxt3wuq6BQ0vzs97PNRlZTGEw+ym2+YshoiZnCTLEYiVTMciyS5o6p8XHz94vz5ydyU5lWonBGlonV3ATUDiC0QiG0122qKYw4U6hm7I1mgNZZ3imuTU58QWGc85ETTfLRoDWFJB8F4LF5/Y033oh/+qd/qtWrVCpQVRWf/exnceyxx4Y1vrZHRksK9vFsdiDbQwtxJxKH0UwSWlIAgnyUCwq9j0nN5qDPXE+GrgOSD1jcZs16V64Cfv9bAPZ1haFmChmZqzf5aAv30YQYzYitE6JGFVpSxCnVkmXEwTuPrpHynESNtMlH7YLCTHd3qMFGblDMFEZcK9yqprCFfHQiJvMrsS1FEqWjAKB1ifLRoO6jZDQDeAwKP/nJT+KSSy7BwQcfDAD4+c9/jo9//OP43//931AG1wlIyRQyp7CsFX0nNa4nGsRtNBPn944NCqcnJ83bfha2sK3fq1xNoVOm0LkthdWGAwhJPurhNLal0Ywk6ZjMoDCWTKFw2BBnTzBZEqo4W3y0O2JT9KRjHxSGG2zkBgbM24XZcyK/rlq5jzplefVqtSG/VhT0Ll0eyhitEDOFSexRCIRrNNPJ2B4LnnPOObj77ru5+yqVCjTmjctkMpwVPeEdy0xhgD6FbGYoqRczES5xaOOrLkxTooB1H2UJGhTqYdcUOlyrvS0a2NudOMvqVei3B6XGHFbp1apF38j4awrj6AUmoigKdzgY56GKrAOlOFt8tDtspjCMeUk2dnvEsF2qe5hAaujQzaG+lhVBgsLJ8XHzdvfCRaHKbEWag61k7iOb+hQGbklB8lHAIVN41lln4bzzzsPy5cvxvve9D8uXL8d5552Hc889F5qm1TTS1SouvvjiKMfbdlg6zwVoSRHkeYj2IMpeTEBjww/U6rvUfD7S12exa06c9eF0GWamUAyQnAJpLlM4U6vFyq7sNl2yMoUVn9JgVdOgdRVRnaydeOshtctRA9QU8r3AelCYPUfKmLyiZjLmOGLtCSZJek49CsMjCmdkmdhmCkMONvrXrMUh//oJ7L79Nmz88EdCfS0ruLZGhgEILYKcPjvu+onY/EpsSZHEHoUAtaQIC9ug8IUvfCFOOukk/OxnP8O5556LLVu24B/+4R/wpz/9Cdu3b4eiKFi6dCkKEZ5gtCNNznMIZjQT5HmI9iDqyU0MbuIsSs/29iHb24uykFHzlSkMcfPFZvfUXK6prowlPzSE/NAwpvfsrsmKJidRYBZEu01XGEYz3g+sus2gUGyXI8uQKMj3XcwSxmbwkskCqJmEJammUDyAcINhGFw9FMlH5RK2rF027DWvZrPQZ4KjrMc2QX5Y+65/DP017ODcR3Udop7DqaYwTkl7RjSaSeg+UqOWFKHgmFJQVRWvfvWr8Zvf/AYrVqzAa17zGnzuc5/DnDlzsHbtWgoIJaBYtaTweIKm5XLcBrbxPMm8mIlwidpoJik9Cut0WWQLfRnNZMLbfHlt4cGeFot1hexzaYXGgh53SwrAuYdqEmoKOTOHGNpR1GEPB2W9L35QFCXw/FGenjbl5JnubhTmzJU1PALpDgoXnf4K83a7fy9E91ExCHSUj3I9PqM9VGmqKUxoWzPxUCF4S4rmA7FOxDEo3L59O37729/ioYcewrnnnotf/epXyOfzOP300/HlL38ZYzZOeIR7rDIEfi5Cq2wh9SjsTMLuryfCbfT74mtHUcdKQuovUxheTSGfMWsdaPU6mM2wz9WzdKl5O5zm9QGCwpDko0EarsddT1iHlZrFfbAi1bhnRXzZ13Yl7Fpn2bDX/Mq3nItlZ70Bw4cdgbXvfE+Mowofbm9n8Tm5rSmMupWGKB+Nez6yQ5PckgIgCSngEBR+97vfxWte8xp861vfwjnnnINPfvKT6Ovrwwc/+EFcfvnl2LVrF0455RR885vfjHK8bYeV45Gfi9DqgiCjmc4k6omtkrBMYXHBwqb7/CwYYVq/e82+sQHLhCCNZU1+igsXmZ9/tVJpaXvuhiDtRtigsFIqNWpPMxlokmpPlYwc+WjUmy8W1nAsdtk/e6jk49fjrIfqBNLckiLXP4AjP/8VnHz17zBw0IYYRxU+iqo6OlrafXaGYXBzfJQ9CoFm+Wjs85ENYu9TGftdkpA6BIWXXnopvvnNb+InP/kJrr76avzoRz8yM4Nz5szBhRdeiO9973u48847IxtsO6KoKpfZ8btZsswUJvRiJkImYqMZXhIY/0FEcX5zUOivT2FE8lEXY+tlNgZOmcJsby/yw7PMn2XUFQaRj7Lfh9LUFHO/vLlJWk1hxJsvFs59NOZrKEjmFUhO9rVdUVIsH+20PYlTrbita/TUlPl/2Z5e5GeNhDI2O5qbwse/plsh22gGIAdSwCEoVFUV+/btAwAcOHAAhmFw7SgAYNmyZfjSl74U7gg7AHZD4HezZJkpJPloRxL1xOZVChk2Vm0pktaSwut75tSrUAza8rOYoFCChDSo0UwdNiiUuTn0+32vsr3AVJWzsI8aLlMY8zWU9r6P7Q43L6UsKIz7ux01Vu7ydew+u0mhzjlq+XVa5KNqNstdCzIymiQfdXAf/eAHP4j3ve996Onpwf79+/He974XXUJamZCDmslCnznR93sBWjl5JfViJsKF7dsWdVCYhO+cVU2hH2lJVPJRN+9ZceEiqPk89OlplKenUSmVkJkxlxKfqzBrNvbhHgAJCwqZsciUtvuV/Ewxm6/uhYukyVn9kKiaQpXZhPqYPzjznpUrZQyJYOBckRO+cTUMg8uIiZK/dkfN2m6xbdeUuOXXzc3r41/T7ehbsw6jd9+JrpER5AYGAz9fkJ637YLtN/YVr3gFjj/+eDzxxBOYP38+ZjGnz4Rc2JoYvydp1jWFyb2YifCI0300CXWslkYzfmoKc+HJtCoeJbeqpqF3+Qrsu+9eALWNQ+/QEIBaxst8rp5eFELMFAZxH+Uyhb0SM4U+awq5zdfqNdLG4wfOfTTuoDDAabmYfe2NMfvarqQpU8gdKBW7I++hGzfswaKInXyUr3OO/lAlLS0pAGDLV76Gxy77ETa+/kxHqa5bKFPoEBQCwMDAAAYGBiIaSufCtqXwewFSTSFRJ/I+hYzRSRK+c13z5jfd52ejrUTVksLlQVDfytVmUDjBBoXs+9/dw9WglKQHhf4zhWWuplDe4YHqUz46kaAG61ymMGbZfxD5+RTjmti9cBE0alslnTS1pODnufjXhqhhZeEibuSjccxLTc3rE1yGNLD2IBz6sYswMtKLnTsPtP6FFlBNYYuWFEQ0cLpon5slaklB1FGUGI1mEhAUZrq6kB8a5u9LcksKl2Oz61Uo1uxwmULJRjNeW1KwGwo+UxiOfNRvprA3ZkMUrasRPGX7+2McifB+evzdJGVf25U0uY8mTUUSNYqT0YyroDD6eSkMA5e0EGTuaxcoKEwArPxJZqawEydhIoZMYYCgISzEBvb+jGaSU1MI8IGLXVCY6elBfmS2+XNQ+ahhGAFrCpmgkKsplCkfZU7j/cpHY5BpsSw/8w1QMhkMbtiIoUM3xzqWIPJzvuk2mcyEASdrT3g2I4lrQ5Q4yUcNC/lotVLB9OQkgFrWqnvpstDGZodYU9ipQSHVFBKxoUqQj1oFgJ10MRMN4gwKk5ApBGoOpKN3z7TLURRfBgdh1u7wbTxcZgqZTTbbx0p8LvakN2hQyNYraoUuqA59t6xgD6s4wwmZLSl8SH4Mw0iUS+by170RC089Hdn+/tibvbNBodf5YyLmeqhOQM2ks6aw05xHAWejGavPjm1a3714MbScfVAZFhlRPtpBwXyQua9doKAwASgSbHWtNr1J2aATERPQPdArSVz4WbOZTLHoa6MdVZ9Ct+9Z74oV5u2piQnoug5VVZsyeSrjohlUPso/t/fA2krBAEjOFPpw22V7geX6+5EfHm7xG+GTS0j9fpDT8rilb51AquSjTL1zkmvTwkL12JIibudRwCJT2EGfGxnNuAwKJyYm8N///d+44447UC6Xm96sb33rW6EMTqRUKuHLX/4yrrrqKoyNjWHz5s34+Mc/jsWLF0fy+mHBZQp99ymkmkKiRpx9CpPS6JYLCn0GINzmK8SaQrfjyxS7UVywEBNPPwUYBqbGx1Hs7W16rlxfoyYtcKaQ3dT19Hn+fbugUGqfQh8LuZgljDs7lyh8npYnLfvaroTpiiybpLUrihrVIdNn9dkloc5ZdB/tpOQCyUdd1hR+/OMfxyWXXAJN0zB79mzMmTOH+xcV559/Pr7+9a8DAJYvX45rr70W73jHOziJUxpRJNiRi5svRdOaTnyIziDqiS2JCz8bFPqVv4QqHxUcQ91i1cSezzr2ITfjSgoAFeZ1/BA0C2z3t8kNChuHan6CwrhO5JOKX7OFJGZf2xFOPprwjSu7N0vK2hAlju6jFvvWuJ1HAd59VMlkOOVJu0Puoy4zhddddx0++9nP4pRTTgl7PLY89NBDuPrqq9Hb24urrroKQ0NDePWrX43du3fjkUcewapV6ZWqSGlJIfxeprubTr87FE4XH8HrVRIoH+1evMS8nRv019Q2Ovmo+wxc78pVeO5P/wvAJijs7oGWbzhZ2vXC8jNOP3OTXVAoU0rm5xAkCSfySYXdGPk17uldtYbWn5BIa6YwKWtDlHh1H427RyFQk7H3LFuOsUcfwfChmzrqOib5qMugsFqtYu3atWGPxZHrr78eAHDIIYdgaOYk/Kc//WmcQ5IGu/n0K78TN18kHe1cyGgGGN58OOYedyJ23nQDVr3lbb6eg5X+SA8KuYbzHjKFq3izGSt3UDWTgaJpprudoeu+m0YH3dRlbeWjMltSeJc7skY9fSsoKGTx834CVE8YFWmqKax0ek2hh6BQlF/HlSlUVBXH/fB/8Mw1v8fCU18ayxjigp37SD7qwOmnn47vfe97sUbOTz75JABAVVW89a1vxaZNm/DGN74R27dvj21MsghDPtqJp3JEDa5PYYe2pFBUFcf9+Gf4u/sfw5JXvtrXc7DSnyTUFALNvQoNXTfHpmQy0GakPly2MMDGka8X9ZMpjMBoxofkhzKF9vhtSUHvaTSwh1Vpch9NytoQJU5BoRjQJ0l+3bN0GVa/9e0ozpsf2xjigDKFLjOFk5OT+PnPf47f//73WLx4MXJC8awMo5nLL78c559/vu3/H3XUUQCAP//5z1i4cCGWLVuGm266CW95y1vw61//Gt02m486g4NFZDLe7NRlMDLSeiLsYlz9RhbPdfU7IplFfG1n10C/r+dpBzr1767T1dMICMKe2HRdNxc3RdMwd9FI28hNegcb36MwawrnLZ3XVNxv9x0ubtlk3p4cG+M2Xfm+PvP3Ml0FVCZq9uZ6tQrNobbFcZzM8/eODHm+tkp56+/fyKI50q7Trp7Ge+fm+16tVFCamgJQC6SXHr4RmsPmrdPI5v0ZLLHZ10WHHeL4+Xb6HB2EPUON9y7pG1d2/hiaP9IRnzv7Nxa67X0dRGk/2+Nz6KCDOuK9komM98vv3OdET3c+VZ+lq52Crut46UvDTSPn83kMOFhyz59fO7EYGhrCL37xCxSLRZx99tm44YYb8Mc//rHl+PbunZA5XFeMjPRi584DLR8372WvwtN/+hO6Fy9FZvXBrn5HZEI0GSwUfT1P2nH7nrcz06XojJe4k+BiN3btGnN4dLqYLDUWBZkyLb1abWT3NA17DpShjDXeR6fvsKEWke3rQ3n/flQrFS47oxa7zd9Tcg1zAFmZwmom7/na0qvWrz1WVqFKuk5LZeY1XCzk7HvWv3w59oxOAZiSMpZ2oMq9nf4yhcbIQtvvCs3RwRifaszvSZePsvPHpJ5p+89d/G5XDPsDUnFeZnsUdi1d0fbvlUxkzSncciUpKBwbnwYS+FnaBaqugsLzzjsP/f39rR8YgNNOOw2nnXaa7f9feumlAIBFixahONOcecOGDbjhhhvw3HPPhTq2sFl+5usx/+QXITc45Lk5dB2qKSRMImzAyrUsaDPJssI0Hpa5+RIlmV4yq4qioHflauy57RYAwIHRUfP/2Pefk5gFMJsJ2m5E1TRoXUVUJ/lDOanuox7lo2zwMhhzrXwS8VN/KmZfWaMnQi5sTWGa5KNJqTePEsVDn0I20x6XyUyn47eeup1wNfsfffTReOMb34jvfOc7eOKJJ8IekyVbtmwBUHMh3bVrFwDg4YcfBoDU9ykEgMKsEd8BIWBRU9iBEzBRI0pb5XauGeE2XxLfx6AbJdbEY4wJCtlAK5SaQkn1zoDkmsKMt+/7BBsUrlkjbRztQtC+jz1LljrWUhHB4A6rEr5x5eaPNjs0dINjTaEoHyWjptjh9k4xjiNOXAWFP/rRj7B161b85je/wSmnnIJTTz0Vn/vc53DbbbeFPT6TQw45BMcccwwmJibwile8AmeeeSb++Mc/Yvny5Tj++OMjG0dSUTMZaIXGRrATewIRNaLsU8gFOH3tteiH5fLntx1FHS4o3Lu38VxMUK7l5ctH/WaCrYJCmUoGr0EMZQqdUXwoDfi+jxRoh0ma3Ec7PVMoBoWqg6yfb0dBQWEckNGMy6Dw4IMPxrvf/W78+Mc/xvXXX493vetdePLJJ/HGN74R27ZtC3uMJl/60pfw2te+FqVSCY8++ihe/OIX49vf/naT8U2nkik2Nl+daP9M1FDUhhwxykxh1mc7laSihdQPjD8995EpZDbdUxMNWSYbFKqFxuZDPJH2goxNnRgUal1F3y0yrPDaV4/dfA2spsb1In7cRycoyxEZYfZPlU1Q9+K0IwaFrKMoGxRy8mtNQ8+SpZGMj+CJ8kA9qbi2pKtWq7jrrrtw00034a9//Stuu+025PN5bNiwIczxcfT09ODCCy/EhRdeGNlrpolMdzem9+yu3e7AUzmihhJAhuwVGfLCpMLWg8gMroMG0nZ2/6HLR31u6pql7c5O0V7xcrprGAamBPnogeh8mVJBUPlo7yoKtMOEDTRkytrDIKgqIu2INYX5oWFMPvsMAJjthBRF4eXXS5eR/Domoiy9SSqugsK3vvWtplR048aN2LJlC9797nfjkEMOgRbhBpRwht18tVt9F+Eetk9h2BNbRYK8MKmoTKZQpqFDJWCdTc+SpVAyGRjM8wB80CZLPirj8xUDX9lzk+qhpnB6ctJ8P/JDwygMDeFAAp3h4sTPaTlrp0+ZwnBJi3zUMAzhUEnuYVAaULP8Fjvb2ws1l4NeKgGofX6KpiWiaT1BRjOAS/noI488gqmpKWzevBknnngiTjrpJGzevJkCwoTBZgo6Ub9P1IhSF9/O8qBIagp9XKdqNouepcub7s/aZQpluY9Kko/Kzhh4Od2ljFZrvJotGIaBKcZOn+qhwkUNSdYuG3be0QoFqD57paYZdg0B6kFh84EdPy/R9RMXJB91mSn84x//iMcffxzXX389brjhBnzta1+Doig48sgjsXXrVrzuda8Le5yECzLFxqat3TbohHtiM5ppt0xhNnz5qN/rtG/lKhx4+EHuPq4lRV6ObT0fwMoxmpF9YOXl+85ntCgotMRjTfL0xEQj+zo8C7mQ21d1OmlpSdHOB4ZuUQX5aKanB1o+j8pYbR6qf34TZDKTCMhoxmWmEACWLFmCs846C1/+8pdx5ZVX4vTTT8f//d//4aKLLgpzfIQHRrYeDaDWJ2r4sMNjHg0RF5x7YMiv1c41hVztToIyhYC1RI+XjzYyhYGMZpg+lH5ln2JQKPt74mUhJ0OU1ng9VOKkb6vJeTRswjqskk07Hxi6RZSPZrp7uAO7+txM7SiSAdUUuswUjo+P46abbsJ1112HG264AY888ghWrVqFs88+GyeccELYYyRcsvbd/4j+NWvRu2IFivPmxz0cIib8uAf6pZ0tx9kG8OG5j/rbLFlJH9lgS5VQUyjWBMlyH5WdNVA0933bSKbVGq+n5RRoR0ta3EfbuYetW6zko6IJmGh+RZnC+CD5qMugcMuWLchkMjjiiCPwute9DieeeCLmzZsX9tgIj2i5HBae+tK4h0HETGw1hW228LPSnyTVFALWm2/bmkKfY2drgtRczrcjntgeR7581L05AHciT5svS1ijKq+Zwl6S5IYOe1iVZPlopY0PDN2iCHNmtqe36fMrTU0x5ldDyA8ORjpGogEZzbgMCr/0pS9h27ZtKDDN0QmCSCg+mk/7pb0zheFYv8uotbFqS8EauHDuoz7lo7I+W/FvDFM+6hTEVMpllKenAdSyLcVFi6WOo13gDpVcPJ4PtFeGMCKCJazDKtmQfBRN5jqZ7p6mA7vKjBMpABTmzI1sbEQzJB91WVN40kkn4S9/+Qte/epX49BDD8Xhhx+OM888E7/73e/CHh9BEB6Jz2imvfpQReI+6nOzlOvrb9pAcDWFheCZQllZ4GajGbkbRLeZca4X2PIVUMk92xKvSgNydI0Wzn00wRvXdq43dwubFQRq74NYU1ih9ykxkNGMy6Dw17/+Nf7xH/8RCxcuxIc+9CG8973vxZw5c/D+97+fAkOCSBhcn8KQX4szImkzh7mwandkBVuihDRrU1Po12hGhvMokJyaQuoF5g4vEqpKqdTIvubyKC5YGOrYiBS5j7bx2uAWMVNoVVMoa54lgkM1hS7lo5dccgne97734R3veId53xvf+EZceuml+K//+i+86EUvCm2ABEF4I7ZMYZudckbiPhpgs9S7chV2XPcX82f2lFmz6IXlFVnyr6S4j5LDnzu81BRyWcIVlH2NAoUNNAwDhmFAURT7X4gJko+iqQ47290DTagppKAwOVCm0GWm8PHHH8cpp5zSdP+LX/xibN++XfqgCILwT5TF0jKcNJMKJx+VWVPInKAH2SyJ2S7Z7qOy5F9s/1RA/gaR/b47BTG8IQoFhXZ42RhxgfYqakcRBYqipMKBtMooFDo12BHdR2vyUb5dUDuvoWlDidCPIam4CgrnzZuHBx98sOn++++/H4PklEQQiSLKia2dM4UK02MqPPmo//eMy3YpCjLFRkaOqymUIR8NkikU/sYg2VErVFY+6vA4Cgrd4UVpwDfdJpOZqOAkpAndvFLzen4NAerN64VMIXtI2KHvU1JQJCsdkizvtsOVfPSMM87Axz/+cYyOjmLz5s0AgFtvvRVf/OIX8drXvjbUARIE4Q3WQStM+aiu641JT1WhdRVDe604CM1ohgnSAgWFjKlHtrePk5BpEjKFnAFCt/+gMBulfNThb63XvgFAcf4CqWNoK1T3NckkyY0HNZcFJmq3E5splKSISDOsUyxQm6dVQdpPhjzJQaZ89PknnsAjd92FObv34AXHnRR0aJHhKig855xz8Pzzz+MTn/gEqtUqDMNANpvFW97yFrznPe8Je4wEQXggKl08XxvXnci6liCE0Q/M0PVG5k7I7nmluGAhFr705Xjq6quw4g1v4v6PNTPwu2mUJh9NSE1hhWp3XOFFaUA9CuNBSUFbCgp2mt1Hs909Te2CqPYyOchsSfH09u3Qq1U8e8P1mHj2GRTnzQ86vEhwFRRqmoaPfvSjeN/73odHHnkE+XweS5cuRZ75chMEkRBUV6rwwLS7PEjVNEBRzGyrDEMH/j0LHkhv+/p3ML1nD/JDQ9z9quw+hRKNZqS3pFBb1xTqum5unhVNg9bVJXUM7YRb+aiu65gaHzd/7l2xIsxhEQxcW4oUBIWdKots6lPY08NlCg0xU9ih71NSkHmgzvafVCLak8nANih85plnLO+fNWsWAGD37t3mffPnpyMCJohOIKoGrO3co7COmstBn5EdGroeuOYgjI2SGBACaLI994OssWrFkFtSZFq3pBA3Xu2W1ZaJ243R9MSE+f9d8+Z37MY/DtLQloIMVACFMQRSs1lo+Ty0Ai8frVCmMDGoLk3L3JDWTLltUHjiiSe6Xjjvu+8+aQMiCCIYitq4bqMKCjO96Zn0vKBmG0GhruuBLfej2iixDZJlZAqDLGqqpqFr/nxMPvMMMt3dyPbJPUBwE8Rw9U0pWqDjwG1LigmqJ4wNtlYtqS6J7WxC5hb2c6ofhok1hTq9T4lB1oG6zDKRqLENCn/wgx+Yt++55x7813/9F97znvfg0EMPRTabxV133YWvfOUrePvb3x7JQAmCcEdUfQr5Rb9NM4WSrd+jOhWWnikMONbDPv05PPSN/4dlZ72B69MlAzcLOfe3SA5K2w3XfR8PHDBv966iesIoSZt8NNOhNbzs51Q/WBNrCiv0PiUGWfJR2WUiUWIbFB522GHm7QsuuAAXX3wxTjzxRPO+VatWYWRkBBdffDHOOuuscEdJEIRrYjGaadMTTi4olPBeRtWomN14+DaaYbJrQeUvC170Eix40UsCPYcdbiS9JGVzj9s+p5NMPSFlCqMlbfLRTpUWdy9chEx3DyrjYxjceAgAvt5brCkkA6x4YUsRghyop9nUzJXRzJNPPoklS5Y03T937lzs2LFD+qAIgvBPVEXNnbDRZoNCGZuvqEwFpPcpTPCmTs20bknBLdIB2mt0Am7nD2rxER9cpjCB8lHDMFJbUyWTbG8fXvCDy7Djumux7KzXA2huF0Tuo8lBlnw0zZ+pq9l/48aNuOSSSzA1NWXed+DAAfzHf/wHl1EkCCJ+IjOa6YA6LdZSXIZMK6qNkiqhT2Fagn7P8tEE/y1JwO380QlGU0lFTXhLCkPXze9O3WClUxnZchTWf+BDZksC6lOYXNyqJFrBr53pmhtdZQr/5V/+BW95y1tw7LHHYtmyZTAMA9u3b8fAwAC++93vhj1GgiA8IGtia0UnWGnLNnSIKjjhagplZAoTLIFxZTSTkgA3CbiVn1PNWHyE0UNVJp2wNvilqU8hd7hK11GcyPJjSHNpjaugcO3atfjtb3+Lq6++Gg8//DAURcFrXvManHrqqejuTo+rDkF0Am76tsmgE7IvrExLtnw0TEmmKFHyQ1o2dq5qCtmNV4L/liTgdmPUCUqBpCLbAEs21GbBHnZurlYq5sGLkslwCg8iesIwmklboO8qKPz0pz+Nk046CWeeeSbUFDVhJIhOJCr5aKUDZC+soUOq5KOC7NUwDE8OaGJNUJI3dorG9Cm0+YzS8rckAfZQyWn2oPc0PpLekoIy8/awgV+ZaXCepf6pscPtnQI8T5olwa6CwkcffRTveMc7kMvlcOyxx+Kkk07Csccei56U/bEE0RHEYDSTttMwtyjZ1gGHF6LaSCuqCjWXgz6z6TB03VVGrQ5bE6RkMomuCXIjl07zIh01bpUGackktyNpko9SZp5HY2oKK4xZE81L8SNNPsqqKFJ2KOJq93jppZfir3/9Kz73uc9hcHAQX/ziF3HUUUfhnHPO4foZEgQRP/G0pEjXxOcWjbV+l1xTGHYdVhAJaZo2ddz33eYxabYIjxo384eu6+Z3StE0aF1dkYyNqJF0+Shlke2xzRRS/9TYCcNoJm3rjatMIQAzS3j00Ufj1FNPxWWXXYarrroKN9xwA17/+teHOUaCIDwQR1DYrqecYcpHww621HwBmGkwrlerALORbEUlRfIvtrcUyUcloHrMvKasOXM7oEjunyobtl1Jtn8gvoEkELGmsE67rqFpQlbpTZpLa1wFhbfffjtuuukm3HTTTbj99tthGAY2bdqE973vfTjqqKPCHiNBEB5QlBiMZlJ2GuaWMOWjYQdb0jKFCf9s2YXc7vtOmy/3uJFQpen70Y7I7p8qm4mZwygA6F2xMsaRJA87Mxm6juInFKOZlB1CugoKzzrrLKiqihNPPBGXXHIJNm/ejByjaScIIjnE0pKiTTfaoWYKQ37PuAb2AYLCTG+yP1tXNYVk++4ar30fk55Jbkdk90+VzeTYmHm7b9XqGEeSPNiaQhaal+InjJYUaau3dhUUXnzxxbjxxhtx44034qabbsIRRxyBrVu3YsuWLVi9mi54gkgSbmqsZJDm0zC3cC0pZNcUhi0fZTeOM70Kn3/8cTz3xBNYsGIFZs2fb/u7acoEufm+UxDjHld9H1NspNAOyD6sks0kkynsW7kqxpEkD/awjoXmpfihTKHLoPCMM87AGWecAQB46KGHcMMNN+DGG2/E5z73OfT09OC6664LdZAEQbgnjj6FbZspzMg1dIg0U5jnM4V6tYpH7r4berWKh++4A0Nz5kC1cSRNU1Coem1JkfC/J24UtXV9YHXmkAEAst30fkaNysraE1ZTqFermJqYqP2gquhdTvJRFtVGZZd0Q69OQHFRT+2GKA3lZOPJu350dBQPP/wwHnzwQdx3333QdR1r164Na2wEQfggij6FxkyQUXtBBZlidyivEzeyZVoVJsMSdU1hpVw2P7NqpYL9e/bY/m6aAn6qgZOLK/lohN9johk2U5i0mkJWOtq9cJFtZqxTYQ/rWNKWUWpHwpCPpm29cZUp/I//+A9cd911uP/++zE0NIRjjz0W5513HrZt24bu7vbcDBJEaokgU8hmCtrZfVCmoYNhGI1AGhHIR9lMYbXKLVQAsHfHDgyMjFj+bppq8FrJRw3DSFWQGzeu5KMRZryJZpIsH2WDwv41lDQQscsU0rwUP9Lko9z6ma7P1VVQeO211+L444/HBRdcgIMPPjjsMREEEYAojGa4Sa+NZS+qROt3NpDWCl220k1ZaAU+UygGhaM7dgDr11v+bpqCqFaSH13XzfvVbJbLoBLNuJGfV1Isj2oHVMmuyDKZYILCXqonbILcR5OLLJVVmmvYXQWFV1xxheX9pVIJd911Fw477DCpgyIIwj9RGM3whdTt23RX5ok8b84RfqDFypQMi0zhxIEDmJ6cRN6i8XiaMkGt+hRyUkfaeLWEMoXJh5OPJqymkDOZWbUmxpEkE1XToGQyMIT5OOmHb52AIumgNs3zo6ug8O6778a//uu/4sEHH7SUUN13333SB0YQhD+i6FNYSVHLgiDIlI9GXXyu5p0zhUBNQjp3yZKm+9NUKN+qDiTNTnBx4CZTSO9pvLCuyEnOFFI7Cmu0XJ5bQwG6jpKADJWVruuNvYKqQusqyhhaZLgymvnkJz+JfD6PCy+8ENlsFhdccAHOPfdc5HI5fOELXwh7jARBeECWLt6JNBdSe0Gm0UzU7xnbD0uvVps2IcCMhNSCNJ10cpIfi//vlO+qLDy3+Ghj+XhSke2KLAvDMDDFBoUrKSi0wkpCStdR/MjYO3HrTQr9FlxlCu+77z58//vfx4YNG3DZZZdh2bJleO1rX4vZs2fjRz/6EU455ZSwx0kQhEtkOWg5kaZMUhDUjDzr96izK6pQUyjKlQBgdOdO6LoOVeXPB9NUU9jqM6Ksljfc2LLTexov7GFVktxHpycmzPHkh2chNzAQ74ASilVdMx1YxQ97wOh375T2vZGrTKFhGBgaGgIALFmyBA8++CAA4IQTTsD9998f3ugIgvAMt6kL6TXSlEkKgszNV9SBltiSgq2tY8c0tnev5f11sj3JrhnlJD9WNYUpCnCTgKsWH9S8PlZkGmDJhJOOribnUTusMoV0HcWP9ExhCj9TV0HhqlWr8Kc//QkAsHLlStx2220AgN27dyfqlIogCHkNWJ1Is7uWF6QazUQsuXM0mmEkLXstJKRpCqRamQNUUr5IR42rPoXcd5ne06iR3T9VFpzJzGqSjtrBSvvrJH2e7QTkB4XJPlC1wpV89G1vexve//73Q9M0nHbaafjqV7+Kd73rXbj//vuxZcuWsMdIEIQH3BhFBIXXzbfvYqZkQ5KPxpEpZF5/5Mit2PnXGwDUgsIl69Zxv5umTHCrICbtcp7IUZvPikvT08hks6bMOO2n4WmHrSlM0sE8bzJDzqN2WGYKaW6KHRl7p7TXW7vKFL74xS/GT37yExx88MFYsGABLr30UmSzWRx33HG46KKLwh4jQRAeiNpopp1PODnrd5lGM5HUFNo3r19wymlmK4fxfftQmp7mfjdN2TUvLSlo49Ua0YFv1zPP4Obf/Q63/uEPqMy8l51y/ScVTj6aoKCQyxRSj0JbxJpCJZOx7V9IRAfJR10GhW9+85tRKBSwdm1NI75161Z86Utfwsc//nEMDg6GOkCCILwRtdFMGic+t4QnH43AfdQhU9g1fz5mHX6k+bPoQpqm005RPiou5p3yXZWFuDHa+dRTgGGgNDVlSo3TdGjQjnDy0YTUFBqGgUlqR+EKMSjMdvekzqWyHZESFHJ9cZO9dlrhKii8//77UWBOnQmCSDBKBEYz7MTXxjVFakjy0SgWCzVnHxRme3ox94STzJ/ZukJd1xsBsKpCs2hunyQUReFqJEVIPuoN0YGvwlzr5ZmMcpoODdqRVtnxOCiXSuZ3JdPdja5582MeUXJRhZrCNAYP7YiMoLAirLNpw1VQePbZZ+NjH/sYrr/+ejzxxBN4/vnnuX8EQSSHSOSj1ap5u50zBWFlCqN4z9jTaEPoU5jt7cW8E042fx7dudP8roj1hGk4wXb6zqepPjIJiEZV7PtXnp6GXq2a14KiZaDRgXHkJLElBS8dXZ2KeSMumjKFfekzJGlHZLekSON648po5mtf+xpKpRJuuOEG7kI3DAOKouC+++4LbYAEQXiDrQkKSz5a4eq00jfxuUXNyTN0iNxohq0pFDKFmZ4e9K9Zh8LIbEzt3IFKqYSx0VH0Dg6mMgukZjLmuA1d58xSSD7qDTHAZlUBpelp4XuUvubM7YDMwypZsCYzvSQddUSsH6RMYTIQ66n9kHZndldB4Te+8Y2wx0EQhCQib0nRxgsa6/KXvpYU9n0Ksz29UFQVc48/EY/99McAanWFYlCYliCKcyAV/o/ko94QT8vFTKEoQyaiR6asXRZcppCCQkeaMoV0HSUC7kDM53N0RKbwyCOPbP2gCLjrrrvw2c9+Fvfeey8KhQKOOeYY/PM//zOGhobiHhpBJAYZEohWdMrGUKahQ+Q1hXl799F6cDT3hJPMoHDvjh1YtGaN0Jg8HbImp+x4JeWLdNQoKqMGApyDwpQcGrQbMl2RZTFJ7ShcI9YUtvMamiZUyfLRNB5COgaFlUoFP/vZz/DLX/4SDz74IMbGxtDX14eDDjoIp59+Ol72spdFJh3Zs2cPzj33XIyOjmL9+vWYmprClVdeieeffx7f+c53IhkDQaQBLlMY0mt0TKYwK08+GrVjI5cpFILCenA09wUn1ExaDAMH9u5FpVTi6kXTIh91rClkTZEoiGkJ+17q1Sr3vReDQno/4yGJzeu5HoXUjsIRrSDIR+k6SgTSW1KkcG9kGxSOj4/jbW97G26//XYcdthhOPXUU9HX14exsTHce++9OO+883D55Zfj0ksvRT6C/iq33XYbRkdHccQRR+D73/8+KpUKTjnlFNxwww04cOAAeumiIggA0fcpbOdsgcx+YFFnVzUmU8jWgGqFgvl35YeHMbTpMOy57RYAwOiuXdxzpGVRUzR7N8ZOyWrLgp0/2IAaqNUUcocbbew8nGS4eSkB8tFqpYLS5CSA2venZ+mymEeUbNigHqi1pCDiR3ZLirQobVhsg8KvfvWrePrpp/Gzn/0MBx10UNP/33///Xj729+O7373u3j7298e6iABNPVDVBQFhmGgUCggJ1xgBNHJhN2n0DAM6Gw2qdgt/TWSQnh9CqOQjzbGXi6VbF973gknmUHh3h070MfMtWk5wXbaJFNQ6BFGaVARgkJD183NP9DeB0JJRqaCQQZslrBn2XJufEQz7IEdQNdRUpCxd0qjURuLbUuK3//+9zjvvPMsA0IAWLt2LT7wgQ/g6quvDm1wLIcddhje9KY34ZZbbsGrXvUqvOxlL8Nzzz2Hf/7nf44kU0kQqUGQdMs+SeYmvWKRk6u2G7LcR0UXxygkt1ymkAkKxQ0I269wdMeOVNbgsb0UWfmr2FKhnaXOsmBrksWgEAAmx8fN2/R+xkPS3EdZk5n+1WtjHEk6oD6FyUSGSV/aVVS2mcLnn38eGzZscPzlww47DBdffLGUgVx++eU4//zzbf//D3/4g7kpu/vuuwEAAwMDGBgYcPX8g4NFZDJa6wdKZmQkfV+KtEPveW1yMzcLhuHY3Nsr7KSX6+tr6/c7Pz7bvM1mR73C/q6Wz2PugmHHx8t4TwtT1q/RNTjAPf/wC4/DtYODmN67F6WpKRzYu9f8v76RoVR8voW+XtRzFex7zb3vhQLmzBuESBr+vihRZjm/H1NMUOj3+0HveTDK3YzMLQlBIZMpnHPw+o7+fN387X3DvKxwcN5IR79nMpDx/o2V+83bMoLCOUvmojtln6ttUFgul1EsFh1/uaurC+PMAhGEfD7vGODdcsst+P73v49NmzbhP//zP7Fz5068+c1vxgc/+EEsX74ca9c6n07t3TshZZxeGBnpxc6dB1o/kJAGvec1FE0zNwuGYUCmHRQ76WndPW39fk9PN9459u/2CveeFbsd3zNZ3+GpMZvxFopNzz/7BcfjyauuAADsff558/6ylk/F52uwbozMe10RsoTi30LzRTOj+6cc/58NCv18P+g9D47OZHD1BNQUTjCZwsyCpR37+br9bk8KCfgpI9Ox75kMpK2Zow1pvF/5KLvm7J9WMJHQz9UuiHbVkiIKTjvtNJx22mm2/3/BBRcAAE4//XQMDw9jeHgYW7duxW9+8xvceOONLYNCgugoQnQg5eUR6Suk9kKmu1EvGSQoLE01Ntr5IecsoSxEh7s6VpKWeSecbAaFXL1oSmRNma7GASYrH+XrCdv7uyoLRXGWg7NBYRrlUe2AkmG2boZRO/iLyAneCmpH4Y2mPoV0HSUCrt+tj6BQ13XzMF7RNK6sIS04BoX//d//jS6HP2piIrrsW39/La171113AahF4w899BAAYPbs2ba/RxCdSJi9CqOujYsTNZeDksnAqFRqBju6DtVHDSVn1x5RY2fRzKCOVfH73ONPtHxsWlzxNEbVwga1vBMcbbzcwJktWMDW1qbRSKEdUBQFai4HfaZW2ND1lp9bWOi6zh0U9K5cGcs40kRTTSFdR4kgqPsobzLTHetBjV9sg8L58+fjF7/4RcsnmDdvntQB2fF3f/d3+O53v4srrrgC27dvx/79+/HYY49hwYIFOO644yIZA0GkBRkF03Zw2Zc2X8wURUG2pwel0VEAtb+9biduGAbK09PIFayDLxbWiCGqoFDJZPja0hmsgqOuOXMxsH4DRu+5W3hsOrJrGebwUrfLFFJQ6AovwQW9p/GhZhtBoW4Ylq6Buq5j+513olIqYcXBB7uaq7wyNT5urjFd8+a3/ZogAy0vtKRIyTzb7ihasH1TOzhd2waF//u//xvlOFqydOlS/OAHP8AXv/hF/O1vf4OqqnjRi16ED3/4w+jubl9LfILwAzu5yc4UcnVaHbApzBS7zaBQr1SAXA6GYeCu667DgT17sGTdOixc5dysma256Vsdjbyqlk3Iozo1yd1vt5Gfe8JJTUFhWjLBmgv5aCd8V2XgxU2YgsL4ULP2vTnr7Hn2Wex44gkAQKFYxLIW5oF+4KSjEc1taaepJUVK5tl2J2i2nVNRpXRuTExNoRvWr1+Pr3/963EPgyAST5gN7KspbFkQBFbaU//bJ8fGcGDPHgDA80880TIojKvmRis0B4UZm4bj8044Gfd/9Uv8Y1Py+Wbs5KMdlNWWhZegkGRv8eGmLcU001NyfP9+V89bKZdRKZdRaGE0WIc78KJ6QleIzeszKc0qtRtBawrbQZmSqqCQIAh3sGYRoRrNdMBixpnNzAQc7ImgVS83FrHmpq9FACkT1aKu0G6xGj78SGS6e1AZbwSwafl8NRfy0bSe3EaNN/koyd7igm0QbxcUsqoO9mDKjumpKdx2zTXQq1WsPeIIDLsoD5qMoV467WgFyhQmEZk1hVmbw9ek075dpwmig+E2dmE2r++AxYz9G+t/O7vZqpbLjgsIW3NTnD8fmWJ0cnfR5Q6w/8y0XA5zjnkBd19aNiuu3EcpKHSFp6AwJd+PdkRhgkLdJihkv/+lqamWB1ijzz9vHqrseuYZV+PggsKVFBS6gc0UKpkMVIt5moieoPumdjiEpKCQINqRiIxmOkH2YtWWgn0P6q6kdnAmM6ujbZ1j5UDqlP2be8JJ3M9pCfo591G2TyHrPkpSR1d4ko92wPWfVDj5qM0cXxWCwMkWfaXZw67y9HTLMRiGIdRLU1DoBnZeznb3pNKlsh0R5z6ve6dKG5TWUFBIEG1ImEYznZZ9YTN7VkEh0Lz5YpmIsYeX1Qm002c278STzduKpkWa1QwC6z5qbzRDUkc3cO1sWpDWjU87oOa8ZQoB/oDK8vHMPOYmKCxNTZmZxVx/P/LDs1r+DsErONJy8NYpBJGQtsOBOQWFBNGGBC2YdqLTzDssawqFzVZF+JllIoZ2FHWsGtg7bUK6Fy3G4r87AwCw7LWv85Q1ihPWfdTWaIY2X66wk4+KBwwke4sXNdO6prApKGyRKax6zBSKKgjKeLmjZ8VKdC9eAgCYd/KLYh4NwRJEQtoO6w0ZzRBEG8L1KZT83O2gm/cCK7esSxPFzKBTpjBOy3YtZ5EpbHGCufU/L8WmCz+Nwqz0nPq7ch9N6clt5KjWG/ueJcuw/8H7zZ9J9hYvbKbQjdEM4CJTyAaFpRIMw3D8jFkVRC+ZzLhG1TS8+A9/xug9d2P4iC1xD4dgCHKg3g4qqnQcAxME4YmojGbSehrmBauaQnGzZRcUGoYRWzsKwEY+2uIzUxQlVQEhwLuPUp/CYNhlCnuWLeN+pvczXtiaQt2uplAMCls4kIrzWqVUcnz8ZIwqiLST7e3DyNajoQbsjUfIRZp8NKUqKgoKCaINiUo+mtaJzwutjGYAe/no9OSkmbnKDw4hPzQU0iitsTKaacfNfIbko9KwqynsXbaC+zmtJ+Htgps+hVZGM07rgTivlVsEhRPUjoJoM4L4MVCmkCCIRMLVgkkOCjlHx5ROfF7gjGZsagrFn+twJ+lronUeBWxqCtswkGfdR9nPgvuuknzUFVaZQiWTQXHBQu4+ej/jRc02qn/c1hQauo7piQnb5xSDyFZ1hXGqIAgiDAJlCpnrJ60GQhQUEkQbwp52hduSIp0Tnxes+hQ2ZQpt5KNxmswAzc3rta5iW8qVMtS8XhpW5kLZnl4URka4+zrh2k8yrTKFhmFYHlY5mc00ZQodgsJKqWT+v5rLNx0aEEQakVZT2JNOt2sKCgmiHQnJaMYwDG7T3Y5ZJxHWYbX+t7s1momzHQXQ3Lw+29uenxe5j8rDKlOY7e1FYWS2cF86Nz3tAtsA3aqmkK2tZXEym/EiH+XmtpUr2/Kwieg8uEyhx99thwNzCgoJog3h6oIkZgrZSa9ds04iQWoKecv2OIJCPlPYrpI/1n20vhnuxAMMGSiKAgiOk5neXhRmUaYwSagZZ/mo3UGVk9mMl0xh3HMbQYSBVmismbrNum5Hiblecv390sYUJRQUEkQbEkQX7wSfeUlHY/OguAkKrWRazc6jcchHc9zP7drAXbOQj/KGSN2p6bmYBMT3KtvTi7yYKWzTA4a0wGYKLYNCmw3thE1QaBhG0+GWU1AYtwqCIMIg29cI5pz6D4tUyuWGnDqbTa2cmlZJgmhDwjKa4d212jPAEGEzTF5aUpSnp81aw0x3N7rmzQ9xlNY0ZQrbtK5OK/BBoVhPRVlCb4gS0mxvL3IDA1Czjd54JMeNF/az0FsEhbmBAfO2XaZQ1/WmtcJJPso+T+/KVS3HSxBpgM3wOfUfFmEz5z3LV3CZ/DRBQSFBtCFhGc3wmvn2DDBEuEyhjfuoldEMlyVcuTqWRt9NNYVtGhypmsbLfqpVbkHvlAMMWYhtKTI9tUb1eUZCSsY98aIwQaHVHM9+//vXrTczi+xhld3j67iWj1I7CqJN4DKFHoJCNnPevzp6p3FZUFBIEG0I56Al8XnboQ+PV8RMoV6tNsm1rKRaEwmouRHdR9t5Iy9KSLnval/7/t1h0JQpnHHSY+sKST4aL63cR7lMYf8AepYuN3+2yhZazWElm6CwWq1iqt7aQlXRu3yl63ETRJJhs+qegsIErPcyoKCQINqQKOSjnWI0wWYK9UrFcvPUMlMY00l6U6awjT8zMSiscPWvFMB4QVH5rHb9AIhtS9HO36U0oLWQj1aEA7w+RuLpNiis2MhHp5jf71m0uGmeIYi04jdTmIT1XgYUFBJEGxKN0UxnbLS1XM6UXhmGYVlnk9RMISupBNr7M8t08TLfTpQ6y0LMFNYPgBa+9OUAas7Ds485LvJxEQ04oxkr+ajQo7N3RSOb5zooLJctA07OZCbFWRGCEMn1+aspTMJ6L4N0VkISBOEImykMLShsYymiSKa7G6WZYLA0NdX0/5ZNohPgziee4HesfJSyWp4QawrrhwnLz3oDhjcfhsLIHOSHhuIYGjGDkmFqClvIR7M9vehd4ZwptHNaLJdKyAuHS1RPSLQr2X7vmcJqpYLpNpFTU6aQINoQcVMnC3aSbOesk0im2MhCWQWFerXKnahXymXzcWo2i+7FS8IfpAVqrnPkoxkmKGzKFLZxMBwKYksK5v3rX7OOAsIEoOZauI9yc3UP+la2yBTabICtzGbYTGEvtaMg2oicj6BwcnzcvJ12OTUFhQTRhkTiPtpBG23WbMYqKAT4TRW76YrTnropU9jTvi6cWlejgX2T+2gHHWDIwE4+SiSHVkYzlSb5KJMpHB9vWhfs+hpaBYW8szK1oyDaBz8tKbjM+dp10scUJRQUEkQ7Ekmfws7ZaLObYrugkN2EsfUFcdpTq001he27uc8UmaBQMARq5787DNhDJYCC6iSi5RtBYas+hdmeXuT6+1EYmQ2gFkSacjeLx7OINdSGYSRCGk8QYeDHaGaiTUxmAAoKCaItCc1opkOzL9luZ/kowG+qklJz0+Q+2saBvCbIR8VMCeGepppCev8SB9tuRp/pn8pidYDnZDbjNlM4NTFhZibzs0a4zApBpB0/NYX8ep/eHoUABYUE0ZZwfQolBoW8zXn7ShFFWtUUAnzAnJSTQ62D+hRmRPloBzrlykIRagpJPpo8MowKoGWmcGau7mWknhMOQWF+eJZ5WwwK2WCyf026N8AEIZLzkynknEcpU0gQRMIQN3Wy6NyaQiYotGnozC4gkwmxp27KFHa37+ZeY+SjotEMBYXeaG5eT+9f0tAKvNuuCHtIVW/J0ufgQMrOXz3Llpm3RfkoGyQWFyz0OmyCSDRs83o3NYW6rmOKMZpJe40tBYUE0YZQn0K5uKkprL83erWKqYTYUzfVFLZxIJ9xaEnRSQcYMmiWj3aOKiAtqMyBj2v56Cr7oJB9fM8SJigUDsG4EgL6XhBthtZVhDJjDKfruuW1xTLFmDZ1zZuf+n0RBYUE0YYoqmLeDq2msIM22mymkHX6Yzdm9ZN2drPVvXBRUwP5KNGYBtdAewdH5D4qD5KPJh+thXy0YhEUOmUKuaBwqX1QaPW8BNEuKIriSUKaFFWQLCgoJIg2hDvpJ/fRwGRsZJfFefPN2/X3ZiJBNTesGQUUhauNbDcyjvJRCmq8wLqPaoVCbC1VCHu0rhbyUTZTPjN/FRcthjpzUFSenuY2vLZBoSAf7dQ1gOgcOLMZGwOmOtx6H6PTuCwoKCSINiQs+Sjn6NhB2Rc2U8jSxQaF9UxhQpxHgVowlB8aBgD0LF4CRVFa/EZ6ETfJJB/1Dzt/dNJ1niacMoV6tWoqGhQtYz5W1TT0LFtuPo7NFnJBIfOYJvloh64BROeQ6x8wb1eFQxGRiQSt9zKgoJAg2pEQjGbsNhqdgJ1BC5sprFhkCntj7uGlZrPY8pX/wpJXvhpHfumSWMcSNlxNYVOfQtq8eoFVGlCWNZloDi0pxCw5exjUt7KxcbULCovz5psZRfGAhTKFRLvD9SpskSlM0iGwDEgTQhBtSBiZQqeNRrtjlykszl9g3rbKFPYnoMZg3oknY96JJ8c9jNBhpbGVSqWRPVFVLotIuIA5VCIzkWTCZQqFoNCpR6ddr8KKUC+enzULk888A6AmIdVmJMR8rS4dGBDtR85lr0LDMDDJOo+SfJQgiCTCGkWEERR2mhzPVj66oBEUVioVGLrOLRK9KbenThNs4Mc6xGa7O+sAQwbsoRJlg5IJ15JCkI9a9Sis02thNmMYBhdYZrp7kB+y7lVI8lGi3cm6NJqZnpgwr5v84BDyQ0Ohjy1sKCgkiDaEcw+UFBR2auN6wKXRTLmMqYkJU2JbmD2HczEjwoUNCtlNLDlneoc1mqH3L5loDi0pnCSefRZtKbhAr9gNRVVRmDVi3seazXTyOkB0BrmBxrrt1KuQLRXpW7su1DFFBQWFBNGGhC4f7bDsgd3GuGseIx+tVPii8zaQkqQJVj7KBoXZPtq4ekVRGPkoZYMSCSsfNXSdm+edWgdx8tGZHmu8CqQ21+Vntc4Udto6QHQGbjOF7VZPCFBQSBBtSRiZwk7tUQgAWYtWDlqhgPzgoPlzpVzmanT6VrfHIpEWWKMZdoPcad9VGXDuo/T+JRJFVfkG9oyE1Clwy/X1ozB7DoBaMDk9MWEpN+UyhWxQSP0/iTbHbU0hlymM2VROFhQUEkQbwroHympI0cknxFY1hZnuHu5EsSlT2CYnh2nBzkwm291Z31UZcDWFJB9NLHYS0latg9hs4cTYmHDgVwsKrTKFTVlF+m4QbYivTGECTOVkQEEhQbQhYchHO7VHIWD992Z7e7lNUXNQ2B6LRFrIWGRzAcp0+YFvSUHvX1KxM5tplc3rW8nXFYrO0gCQH2aCwpmaQlamqmazXFBKEO0C16fQJig0DKMtD4EpKCSINkRRGbdFko8GJlMsNt2X7e2DqmlcwDixf795OwntKDoJ20xhh31XZcDKzzNkJpJY7NpStFJ1iA6kVgd+ojQe6OyDQaJzyLqQj5amp83rLNPdg6658yIZW9hQUEgQbQgnHw2lT2FnbRTVbJar3wEamy1201V/r7N9fcgzNTlE+LAbZBY751jCHtZ9lOSjycWugX2rthG9K/lehVZBZG6ACQpnMoWdfDBIdA45F/JRUTraLm2PKCgkiDaElY9KyxR2cE0h0CxPrEtHrWzZ+1avbZtFIi0oqgqtyyqj23nf1aCwwQYrpSKSBZcpdGk0AwB9KxtSN1dB4czG2Kn/IUG0C2ym0E4+ypvKtY8qiIJCgmhH2Ob1wn8ZhoHnHnsMj993n3kC7IZObl4PNGdM6rU62T6LTVcbLRJpImMhIaWg0DtLzngt1Hwe3YuXYM4Ljo97OIQNfuWjxYWLTOVDeXoa05OT5v/VM+u5QYtMYYcfDBKdgZgptFJbsfWE7VQqkol7AARByMfJaObA3r3Yfued5s9L1rlrulrpcCty0YE0Y8pHLTKFbVJ0njas6gpJPuqdhS85DS//2wPI9PRAZVUHRKKwCwpbzdWqpqF32XLsu/8+AMDY6Gjj8fVMIZMhLs9sjCsUFBIdgFYoQCsUUJ2agmEY0KtVaBk+XGpHkxmAMoUE0ZawzadF+Sg7mbGbgVZYOdR1EmJwYdYUWjRHb6dFIk1YOZDS5tUfuf5+CggTjhv5qJ2qgzWbsQoKtXy+IceeaUXBSunIaIZoZ1q1peBrCtdGMqYooKCQINoQ1ihCzBSyC3tpasr1c3a6fFTMFGZngkQr053+Nlok0oRVppCCQqJd4VpS2MlHbYI3ti0F+7tssJcbHDBvV8rljj8YJDoHrgexEBSWSyWzTYuay6O4cFGkYwsTCgoJog1xMpphF3a2lqQVbjYa7YyYKaxb9Ys1hVqhgOKChZGNi2hgVVNI8lGiXVFtmte7Cd7YBvYs7ONFsxmqKSQ6hdyAfaaQyxKuXNlWigoKCgmiDVEcjGbYupBqpcIt9E5UOtyOvClTaNYU9nP3965cxb3/RHRoNv0kCaIdsZOPsnO1rXyUyRSysNdLXmhLwbe6oOuKaF+c2lJMsM6ja9pLFUQ7F4JoQ5z6FIpBoFsJaaefEjcFhT3WNYV9q9rHiSxtZKxaUpDMjWhTrOSjdWOMOnaZcrtMIScfpUwh0aE4NbDnM4Xttd4nMii8+eabsWbNGpx99tlN//e1r30Nxx57LDZu3Ig3v/nNePTRR6MfIEEkHEf5qDDBTbsICt1uNNqZrOg+atOnkILC+LB0H+1AqTPRGWiFZvkol80rFm2lbbm+fhRmz2m6nw32xAb2na4WIToHrqZQOEifEBrXtxOJCwq3b9+OD3zgA5b/94Mf/ABf/OIXUSqVsGrVKtx4440499xzMT09HfEoCSLhqA5GM2Km0EVdIbfR6O7uSHlkppvfBDXko/z95DwaHxlL+ShtXon2hMsUzshHeYmn83e/z0JCytUUOhrN0HVFtC9sS5amTCErH22z9T4xO7tqtYqvfvWreNWrXoUdO3ZYPuY73/kOAOAb3/gGLr/8chx99NF46qmn8Ic//CHCkRJE8mHdR8VMYcWHfJQ2A17ko+21SKQJTZCPKpkMNMaMgyDaCas+hbzE07nuz0pCaicfLYs1hXTYQrQxORv5aLVSMQ36FE1Dz7LlkY8tTBITFI6Pj+MrX/kKhoaG8PrXv77p/3ft2oUnnngCxWIRGzduBABs3boVAHD77bdHOlaCSDpsn0LRaEaUj7oKCjnZUGcaDNgbzTTej3ZcJNKE6D7aqQcYRGdgVVPIzdV9zt//3pX8AZaiZbhA07GmkGp1iTbGrk8hazLTs3QZtFwu0nGFTWKCwmw2i3/913/F1VdfjQ0bNjT9/7PPPgsAGBgYMO+r367/H0EQNdiawlbyUTdtKdjsYqbFRqNdEYPCek1hcf4CKJkMAGBg3fq2WyTShFhTSNJRop1hs+B1+WjFQ6awT8gUZnq6oSiK+bNjTSEduBBtDJspZA9a2rVpfZ1MVC90+eWX4/zzz7f9/2uuuQZveMMbbP+/XjeYyTSGXL895aEBN0F0Am77FAJ+5KOdmSnkTsYVBZliLUgszJqFw//t83jmd7/Bun/8/+3de3BU9f3/8dduNllyJQFDuATkUghKCuINNNavCkg1Ct8JrcpPUEdwUBS+oy1thZ+O4320P2gL2s5XtIJ4QUXxWkulgzOgIgUVw62AUgQUw1VIQq77+yPu4Zy9kGTd7J5z9vmYYdjsJXt4s9ns+3zen/f7ziQdHSQZ/yfG1ySFcLFWy0dbSdxCx1KE3j+jIPpKIT9bcLOoK4WmpLCzy5rMSAlMCv1+v2WVL1RaK8MfM344+95k6oAYPCPWyfTGGE1BQZZ8vsQPmCws5I0z0Yi5dKDzyb1V5pXCQCDwo5PCnNMKUjLGdT0LjcvpOTnqVnTyl0bh/0yX/md63J4rFeMbD991K7B8nVWQ32osiXXiEfP4OFrUxbgcKSls7b26a5czleb3q+mHk+6ZIT8vnn69jMuhcwp79OupDBLDMLy2kyPecW/u29O4bE4KzU1mep0zzHX/3wlLCsvLy1VeXh7z44uKWlonHzlyxLgueLlHjx6tPv7w4ZqYnztWhYW5qqo61vodETfEvMXx6vqTX5iSwkiD6uvr6hQIBCxlQ6HM5RPNGZkpGePqhpPV9r7snA6LAa/h2NU0hryGO2WdMpbEOvGIefxU150cWB8Idh81N8VI79RqrHP69dfRrVskSZ7MbMv9q5vTjcsN9fUnxxJ5PDpS0yzPCf4fzXhtJ0dHxN382o+2Uujpfrpj/7+jJbO22VPYmqKiInXv3l3V1dWqrKyUJH3yySeSpLPPPjuZhwbYjmVPoen6SEmhAgHVtzLWpbEdbc7dKrNHD2MUR1Zx7yQfDSIJKx+lGQZczNxoJlhF1djOTtHmZjOhPy/m8tEG0++IVB1LhNSRkRe+p7C5qUknqqtbrvR4InbvdTpH/VRPnjxZkjRlyhRVVFRo9erVKi4u1qhRo5J8ZIC9eKLMKQztPBrU2qxCa5vzFE0Ki7pr2L0PqNtFF2vY/70v2YeDCMK7j6bm/lekBsuewkhzCtvwXm1uNhPamMaXlS1venroQ+g8Ctczj5pqbGhQIBBQbTAhlJTVq1fEubhOl7Dy0XiYMmWKGhoa9MILL2j79u0aMWKE7rvvPvmZQwVYRGs0EzqjMKi1fYXWkRSpmRRKUsm06SqZFr+9g4iv0O6jrBTCzdL8J5PCQAyNZiSpy9nnGJdzQ8bpeDweZeQX6ESVdXZ0qo4lQurwpqfLl52jxuqWPYRNjY2WzqOdS85I1qF1KFsmhRUVFaqoqAi73uPx6LbbbtNtt92WhKMCHMQTZaUw1qSQ4fVwgNDy0VQ+gQH3M68UNkUcXt/667/nmJ+r9DdzVLv/Gw2cemvY7ZGSQh9JIVJARkGBkRTWHj9umVGYN9B9nUclmyaFAH4cT5RuvtGSwtZmFTZSPgoHCJtTyAkMuFjE8tF2VnV4PB4NufPXUW/PiNA1np8rpIJuF16kXS+/KEk6sHev5eR5ngvHUUgO21MIoG08aa3vKTQnju1ZKWQ+FewqdE8h5aNwM3NSGKl8NB5NwczNZoI4MYhU0Oe/JxiXD+zbZ+k8mjdwUKSHOB5JIeBCls5wUfYU5vQ9uX+kXXsKOUsMm0qjfBQpJFL5aHu7j7YmI5+kEKmp6KKL5e/SVVLLZyRrUshKIQCH8HhNIymi7Ck0lz+0a08hHwhgU+HdR3mtwr3MIykidR+Nx3t1pKQwVccSIbV409NVfPX4sOs7FXZTRufOER7hfCSFgAtZ5hRGKR81lz/U1dZa7hfK+kGDJgOwJ6/fL3lODrCnfBRu5vH5TlaFBAIKNDdb3uPjUj4aaaWQnyukiNNNJaRBeSWDk3AkiUFSCLhQtMHC5uQuu7i3UX7U3NQUtQmNxPB6OIPH47F0IGVVG27m8XisA+ybm+O/UliQH3YdP1dIFaedP1KZPXtarnNrkxmJpBBwpWgrhZb9Jnl5yuzew/g6WglpIBAI2VPIWWLYly/blBRyAgMuZ9lXWF9vvN9709OVFocZzhmd88Ou48QgUoXH61WfcdYReW5tMiORFALuZCqhi1Y+mp6Tq8weJ8+A1UcZS9H8QwMDqWVYsjc9PZ5HCsRV76v/W5LUZdhwZRX3Tu7BAB3M2+lk4ldfX29czojTah6NZpDq+oSUkLq1yYzEnELAlSxzCqM0mvHl5lpWCuuirBRaW5yzSgh7G/7AI/rJjTcrp19/eUwnRwA3MpePNtTVGZcz8uKz95uRFEh1BUOHKa9ksL7ftlVev1/5Z5Ym+5A6DEkh4EJRG82E7DfJ6tF6+SiD6+EkHo/H1eU9gJm5fNSSFMapO6I/YqMZfg8gdXg8HpX977P69zP/q55jxsof4USJW5AUAi4UrdFM6AyrzO6tl49aSk7jdPYZAPDjpfmjJIUdWD7q4+QgUkzeoBKd++j/S/ZhdDj2FAIuFHVOoTnBy81TZo/2lY8yjgIA7MO8UlhvSgrjdQIvPS/PskddYqUQcCuSQsCFIpWPBgKBsP2Bbek+2hSyuggAsIeo5aNxSgo9Xq8y8vMt1/F7AHAnkkLAhTxe05ndH5JCSxfRTpny+nzKMncfjZYUmochUzYEALbR0Y1mpPASUhqOAe5EUgi4UKSVQmvDmJZf6p26FRmlQQ11dWpubg77XjSaAQB7SjONpOiIPYWSNSn0ZmTEZf4hAPshKQRcyOM5+aMdTAqt+wlbOtN509PVqbCbcX1DhNVCykcBwJ4Ss1KYb1zmdwDgXiSFgAtZ5hT+wJLcmT4wtDarMHSMBQDAHix7Cs3D6zuofJTfAYB7kRQCLhSpfNS6UnjyF3tmK7MK2VMIAPZkHklh1lErhT5WCgHXIikE3Mg8pzDCnkLzL3ZLB9IIswotewqzaTAAAHZhXik0Y6UQQHuRFAIuZB5eb6wURikDNXcgbb18lDmFAGAX0ZLC9Dh2CCUpBFIDSSHgQu1JCjNbGUthmW3IBwIAsI1ElI9mFhUZl/2nFcbt+wKwF5JCwIUiNpox7ymMVj5K91EAcIy0zI5PCntefoUKR16o7N699ZMbp8Tt+wKwF1+yDwBA/LU2p9C84pfVyp7CaA1qAADJZR5JYZaRl6fwd/PY+DIzddnr7ygQCMjzw1xbAO7DSiHgQuY5hYpUPpoTufto3YkTRhIZxEgKALCnaIPk47lSGERCCLgbSSHgQhFHUkRJ7tJz8+T7oatooLlZjaaVQSl611IAQHJFXCn0eJSenZ34gwHgaCSFgAt50iI0mjGXgYacRbY0mzGVkDY3NSnQ3PzD90yL2ukOAJB4kd6TfdnZlmZjANAWvGsAbhThA8GpGsZkRRlgH/oYyocAwD68EcpHaQgGIBYkhYALebwRGs2YVgpDR0uYO5DWRUkKGUcBAPaSlhlePkpSCCAWJIWAC1lKhyLuKQwpH40ylqKRwfUAYFsRy0c7oMkMAPcjKQRcqNVGMyFnks0dSM17Cuk8CgD2FWl4PSuFAGJBUgi4UOjw+kAgENJFNMdye2Z3U6MZc/koMwoBwLYirRTyXg0gFiSFgAuFNoRpamoyyki9fr/SMjIst2eZuo9G21PIBw0AsJdIIyl4rwYQC5JCwKXMq4WWFb+QVUIppHw0yp5CZhQCgL1EGl7PezWAWJAUAi5lTgob6+uNy5H2m/hPKzTu31hfr+amJkmUjwKAnVE+CiBeSAoBlzJ3ILV0Ec3rHHZfb1qaOhUVGV8HVwutzWnoaAcAduLxesNmFZIUAogFSSHgUuZZhZaVwigfGMzNZuoiJYV80AAA2wldLaT7KIBYkBQCbmVeKbSUgUZe8cvqHj6WguH1AGBvoWMpQrtLA0BbkBQCLuVJi5wURkvuMnuEj6WwJJOcfQYA2wlbKeQEHoAYkBQCLmUpH21DwxhzB1LKRwHAGULHUnACD0AsSAoBlzI3mmlqw4pfZvfwsRQkhQBgb6FjKSj1BxALkkLApSwjKdqwUmgeYB9pTyFnnwHAfsLLR+kUDaD9SAoBl4qWFEbdUxhhpbAtjwMAJE9aJuWjAH48kkLApTwej3G5LQ1jQpPCQCBA+SgA2FxY+SjdRwHEgKQQcKn2lo/6srKUkZ8vSQoEAqqvq1NzU9MP38wjX1Z2hx0rACA25kYzXr9faRkZSTwaAE5FUgi4lXlOoWV4ffT9JubVwtpjx4zLvuxsS+MaAIA9mPcUpmezSgggNnzKA1zKvFJoGUJ/iv0mmd1PNpupPX7cuMweFQCwJ6+pfJQyfwCxIikEXMo8p9AoA5WUkXeKlULTrMIa00ph+ikeAwBIHnP5qI/OowBiRFIIuFS0cs9TrxSaykfNK4V80AAAW/KZy0dZKQQQI1smhevWrVNJSYluuukmy/XHjx/XQw89pEsuuUTDhw/XL37xC33wwQfJOUjA5jxpkX+8T/WhwZwUWlYKKR8FAFvykhQCiAPbJYU7d+7UXXfdFfG22bNna/HixZKk0tJSVVZW6tZbb9X69esTeYiAI5j3FAZ509PD2pebZfU8uaewoa7OuMyMQgCwJ0ujGU7gAYiRbZLCpqYmLViwQBMmTNB3330XdvuhQ4e0YsUKZWVl6c0339Rzzz2nKVOmqLm5WcuWLUvCEQP25vGE/3i3Nr/K3GjGjLPPAGBP5vL+jIKCJB4JACezTVJYXV2t+fPnq0uXLrr++uvDbvf5fJo3b57uu+8+5f3Q9KKwsFBSS8IIwCrSSmFrewPN5aOWx3H2GQBsqfjKq5Tdu48yCgrU95r/k+zDAeBQvmQfQFB6erruueceVVRU6L333gu7PS8vT1dccYXx9YkTJ/Tqq69KkoYPH56w4wQcI0KjmdaSQn/XrvJmZKjZNNew5XEkhQBgR51OK9SVH21QoKmJwfUAYpawpPC1117T3XffHfX2lStXatKkSW36XvX19ZoxY4a2b9+url276tprr231MQUFWfL5wldOOlphIR+mE42Yt8jwp4ddl9Ulv9X4ZPfsqWO7dlmu61zUlbgmELFOHGKdeMQ8MYhz4hHz5CDu8ZGwpNDv9ys/Pz/q7WkRSt0iqaur0/Tp07V69WplZGRo7ty5p/y+QYcP17TxSOOnsDBXVVXHWr8j4oaYn9TUHOHKTlmtxsdfWBSWFNZ7MohrgvAaThxinXjEPDGIc+IR8+Qg7u0XLYlOWFJYXl6u8vLyH/U9mpqaNHPmTK1evVp+v19PPPGERo4cGacjBFwmQvnoqWYUBmX2DG82Q/koAACAe9lmT2FbzJ07V6tWrVJ6err+/Oc/q6ysLNmHBNhW5EYzbUgKI3QgZSQFAACAezkmKdy/f78WLVokqaXpzPPPP6/nn39ekjR48GDNnDkzmYcH2I7HGyEpzDt1oxlJyorQgZTuowAAAO7lmKTwn//8pxoaGiRJBw8e1MqVK43bamoSv18QsDtPpO6jbSkf7REhKWSlEAAAwLVsmRRWVFSooqLCct3EiRM1ceLEJB0R4DyetEgjKdpSPhopKWx9hREAAADOZJvh9QDiK9JKoS+n9eQus0eEPYWUjwIAALgWSSHgUhH3FLZlpbCoe/jjcnLickwAAACwH5JCwKVi7T6a5vfL3/W0k1936iRvenpcjw0AAAD2QVIIuFWMjWYka7MZSkcBAADcjaQQcKlYG81I1mYzdB4FAABwN5JCwKUi7Sls6xB6a1JI51EAAAA3IykEXCrWOYWSlGXqQMpKIQAAgLuRFAIuFdpoxpPmU1pmZpseax5L4aPzKAAAgKuRFAIuFbpSmJ6TI4/H06bHdr/4EnkzMlou/9elcT82AAAA2Icv2QcAoGOE7ils635CScrqVawrV69TRs1h+QYNjfehAQAAwEZICgGXCu0+2t6GMdm9+6iwcIiqqo7F87AAAABgM5SPAm4VWj5KwxgAAABEQFIIuFRooxmSQgAAAERCUgi4VOieQpJCAAAAREJSCLhUaPdRXxtnFAIAACC1kBQCLhXeaIakEAAAAOFICgGXCp9T2L7uowAAAEgNJIWAS7GnEAAAAG1BUgi4VFj30TxWCgEAABCOpBBwqfDyUVYKAQAAEI6kEHCp0JVCH+WjAAAAiICkEHCpsJVCkkIAAABEQFIIuBXlowAAAGgDkkLApcIazbBSCAAAgAhICgGXCi0fZU8hAAAAIiEpBFzKMqfQ45EvKzt5BwMAAADbIikEXMpcPpqekyOPx5PEowEAAIBdkRQCLuXxnkwCfTSZAQAAQBQkhYBLmVcKMzp3TuKRAAAAwM5ICgGXMu8ppMkMAAAAoiEpBNzK1H2UGYUAAACIhqQQcClLo5ncvCQeCQAAAOyMpBBwqYKfDjUudx1+ThKPBAAAAHbmS/YBAOgYBUN+qv96cZlq93+rPuMrkn04AAAAsCmSQsDFul9yWbIPAQAAADZH+SgAAAAApDCSQgAAAABIYSSFAAAAAJDCSAoBAAAAIIWRFAIAAABACiMpBAAAAIAURlIIAAAAACmMpBAAAAAAUhhJIQAAAACkMJJCAAAAAEhhJIUAAAAAkMJICgEAAAAghZEUAgAAAEAKIykEAAAAgBRGUggAAAAAKYykEAAAAABSGEkhAAAAAKQwTyAQCCT7IAAAAAAAycFKIQAAAACkMJJCAAAAAEhhJIUAAAAAkMJICgEAAAAghZEUAgAAAEAKIykEAAAAgBSWcklhVVWV7r77bl100UU655xzNHnyZH3++efG7StXrtSVV16p0tJSlZeXa9WqVZbHf/HFF7r55pt17rnnqqysTHfddZf2798f9jyNjY0aO3asSkpK9O2337Z6XBs2bFBFRYVKS0s1atQoLVu2LOL9du/erdLSUo0ZM6Z9//Akc2rcd+3apRkzZmjkyJEaMWKEpk2bpi+//DK2IMSRU+O5c+dO3XLLLTrrrLN08cUX64EHHlBNTU1sQUgwp8bc7MEHH1RJSYnmz5/f9n94gjk1zmvWrFFJSUnYnw8//DC2QCSYU+MeCAS0cOFCjRo1SsOGDdN1112nysrK2IKQAE6M8/z58yO+tu3+XhLkxJhLLZ8/br31Vo0YMUIjRozQ9OnT9fXXX8cWhARzeszPP/98jRw5Ug8++KBOnDgRWxAcKKXmFDY3N+vaa6/Vxo0b1bdvX+Xn5+uzzz5TVlaW3njjDdXU1GjChAnyeDwqLS1VZWWlAoGAXn/9dQ0aNEjffPONxo8fr6NHj2r48OE6fPiwdu3apZKSEr366qvKyMiQJNXX1+u3v/2t3n33XUnSBx98oO7du0c9ru+++05XXHGFampqNHToUG3btk21tbV66qmndPHFFxv3279/v6ZMmaLt27erT58++sc//tGxAYsTp8b9+PHjGj9+vPbs2aMzzjhDgUBAW7duVWFhod5++23l5+cnInxhnBrPmpoaXX755aqqqtKwYcNUVVWlffv2acyYMVqwYEFCYhcrp8bc7F//+pcmT56s5uZm3XHHHZoxY0bHBSxGTo7zwoUL9fjjj2vIkCGW7zVz5kwNHjy4A6P24zk57vPmzdNf/vIX5efna8CAAVq/fr26du2q9957T3l5eR0fvHZwapzfeecdvfPOO5bHrFmzRidOnND8+fN1+eWXd1zQfiSnxry+vl7l5eXavXu3BgwYoE6dOmnTpk3q37+/3nrrLfl8voTELxZOjfmRI0dUXl6uAwcO6LzzztPOnTt16NAhjR49Wk888URCYpdsKbVSuHnzZm3cuFHFxcV65513tHTpUuMF8tZbb+m5555TY2Oj7rzzTr300ku6/fbb1djYqCVLlkiS/va3v+no0aMaN26cXnrpJb311lvq3r27tm3bpo0bN0qSPvzwQ1VUVBgv0rZ49dVXdfz4cU2cOFFLly7V/fffL0latGiRcZ/nn39e48aN0/bt2+MYkcRwatzXrFmjPXv26Nxzz9Xy5cv1xhtvGMlM6FmtRHJqPD/77DMdO3ZMY8aM0csvv6yXXnpJkvT++++ruro6niGKO6fGPOjEiROaM2eOmpub4xSRjuHkOG/ZskWS9Jvf/EZPPvmk8cfuCaHk3LgfPXpUTz/9tLxer1588UW98MILGjt2rNLT0/XFF1/EOUo/nlPjXF5ebnlNX3PNNTpx4oQqKipsnRBKzo35zp07tXv3bhUXF+vNN9/Ua6+9pvPOO09ffvmlduzYEecoxZdTY758+XIdOHBAkyZN0pIlS7R8+XJlZWXp/fff16ZNm+IcJXuy76mGDtCtWzfNnTtXfr/fOMty2mmnSZIOHz6sDRs2SJLOP/98SdLIkSMlSZ9++qkk6aKLLlJBQYEGDBggScrIyFDnzp317bff6tChQ5KkJUuW6KuvvtJdd92luXPntum4WnteqeVsaFpamm655RY99dRTMUYgOZwa9zPPPFOPP/64CgsLjcd07drVOO5kcWo8L7zwQn366aeqra2VJB04cECSlJ2dbZz5syunxjxo3rx52rVrl8444wwjebEjJ8d58+bNklpOcixdulQDBw7UDTfcoJycnFhCkVBOjfu6devU0NCgfv36qX///pKkP/3pT7GGocM5Nc5mtbW1uv/++5WTk6Nf//rX7YxA4jk15vn5+fJ4PJJk/B0IBOTxeGz/nuLUmP/nP/+RJA0cOFCSVFRUpJKSEn366af6+OOPNWTIkJji4SQplxSWl5cbXx86dMg4y3DWWWcZtcXBssDg38E65UGDBmnQoEHG49etW6dt27bJ6/Vq6NChkqSf//znmjVrlvr169fmF2rw+4c+b3V1tY4dO6bc3FzNmDFD48eP17Zt2xyZFDox7r1791bv3r2N+3/11VdavXq1cdzJ4tR45ubmyuv1Kjs7W4888ohefvll+f1+PfDAA0pPT29/IBLIyTHfsGGDFi9erLFjx2rgwIG2TwqdGGefz6ddu3ZJkp577jnjcStWrNArr7zC61sdE/fg/qrs7Gz96le/0sqVK9W/f3/NmTNH55xzTjuj0PGcGufc3Fzjvq+99pr27t2rqVOnGidJ7cypMe/Ro4dmzZqlefPmady4cUb56LRp01RcXNz+QCSQk2MuydiTXFNTo927d0uS9u3b1+Z/v5OlVPmo2ffff6+pU6fq4MGDGjBggMaOHWtsJg3+Ag+e4QiubJht2bJFd9xxhySpoqLCqGMeN26c+vXr165jCT5v8PnMHyCCz33jjTcmbQ9bPDkt7kH79u3T1KlTVV9frwsuuEDDhw9v13N1FKfGc+XKlaqpqVF+fr6ampra9TzJ5qSY19XVafbs2crNzdW9997bru+dbE6K8/fff69LL71Uo0eP1ooVK/T++++rb9++2rJli15++eV2PVeyOSnuweevrKzU2rVrdcYZZ2jTpk2aOnVqm5pOJJOT4hwUCAS0ZMkSeb1eTZo0qV3PYQdOi3ljY6MkaceOHaqsrFSnTp2MFTencFLMx48fr6ysLL3yyiu67rrrdNVVV+ngwYOWx7pdSq0UBh05ckQ333yzNm3apM6dO+uPf/yj0tPT5ff7VVtba/wgBv/OzMy0PH7Tpk26+eabdeTIEQ0ZMkSzZ89u83MvXrxYH3/8sfH15MmT5ff7Jcn4cNzQ0GDcHvrcTubUuO/Zs0c33HCD9u7dq169eumxxx5r57+8Yzg1nlLL2eaqqipNmjRJs2bNUt++ffXTn/60Hf/65HBazP/whz/oq6++0qOPPuqoDxNOi3Nubq6efPJJy/e55ppr9Nhjj2nDhg26/vrr2/GvTx6nxT14u8/n07Jly1RUVKTZs2dr2bJleuONNzRt2rQYotDxnBbnoM8//1xffvmlhg8fbqyqOIXTYr5hwwbNnTtXp59+up555hkFAgFNmTJFDz74oHr37q1LLrkkpjgkktNinpubq7/+9a966KGHtH37dl144YUaOHCgVq1a5arP4qeSciuF1dXVmjJlijZt2qT8/Hw9++yzRv1wt27dJLVsXpdaXtCSLN2MduzYYXmRPvPMM8rOzm7z82/evFkrV640/nzzzTdRnzcnJ8dStuFkTo37d999pxtvvFF79+5VcXGxFi9ebDwumZwaz0OHDuno0aPKy8vTgAEDdOGFFyoQCGjt2rWxByNBnBjzv//975Kk3/3udyopKTG6vC5YsECXXXZZjJHoWE6Mc3V1tf79739bxtUE98kGP/DYnRPjHkxM8vPzVVRUJEnGySW7rhQ6Mc5Ba9askaSwzsZ258SYr1+/XpI0evRoFRcXq3fv3ho9erSkk/8PdubEmEst5a2vvPKK1q9fr/nz56u+vl6S1KdPnxgj4SwplxTOmTNHlZWVys3N1aJFi3TmmWcatwVrlYMfUD/55BNJMvYmVFdX67bbbtORI0c0ePBgPfvss+0u6Xz00Ue1bds2409FRUXU5z377LNj/4fajBPj3tTUpJkzZ2rPnj3q0aOHlixZYptafifGc9GiRbrggguMjl8NDQ3G/jYnrGI5MeZlZWUaNWqU8SdYbtOvXz+VlZXFEoYO58Q4f/jhh7r66qt1++23q76+XoFAQB988IGk5O4/bg8nxv3cc8+V1+vVwYMHjc7cO3fulGTfD3FOjHNQ8HYnVHWYOTHmnTt3ltQyry84OW7r1q2SZGl+Z1dOjPlHH32kUaNGaebMmZJaZi1+9tlnklqa36SClJpTuHHjRv3yl7+UJPXq1cvSKrysrExDhgzRxIkTlZaWZsxOkaTXX39dAwcO1FNPPaXf//73kqTS0lLjzKQk3XTTTUZHo6CSkhJJrc9O2bNnj6666irV1dVp2LBh2rp1q2pra7Vw4UL97Gc/s9x37dq1uuGGGxw1p9CpcX/33Xd15513SpJ+8pOf6PTTTzcee/XVV+uKK674MWGJmVPjWVVVpfHjx+vgwYMaOnSovv/+e+3atUt9+/bV8uXLbV2e4dSYh5o/f74WLFhg2zmFTo1zXV2dJkyYYMyQzc7O1pYtW9SzZ0+9/fbb7TrDnQxOjbsk3XvvvVq6dKny8vI0ePBgrVu3Tvn5+Xr33XfVpUuXOEQnfpwcZ6ll1errr7/WqlWrHFM+6tSYm2fmDRo0SF6vV1u3blVubq7efvvtU37vZHNyzC+//HIdPXpUZ599tr7++mtVVVVpwoQJevjhh+MTHJtLqT2FK1asMC7v3btXe/fuNb4uKCjQ9ddfr/nz52vevHmqrKxUnz59NGvWLGPJ25yEVVZWGi9kSRo7dmzMx1VcXKynn35aDz/8sCorK9WtWzdNnz494oc6J3Jq3M3Pu2PHDstsoNLS0pif98dyajwLCwu1ePFiPf7449qwYYP8fr8qKio0a9YsWyeEknNj7jROjbPf79fChQv12GOP6aOPPtKBAwd06aWXas6cObZPCCXnxl2S7rnnHuXl5en111/X5s2bVVZWprvvvtt2CaHk7DhLMppuFBQUxPxciebUmOfn5+vFF1/U3LlztXbtWjU2NqqsrEyzZs2ydUIoOTvmTz75pB555BFt2rRJXbp00e23367p06fH/JxOk1IrhQAAAAAAq5TbUwgAAAAAOImkEAAAAABSGEkhAAAAAKQwkkIAAAAASGEkhQAAAACQwkgKAQAAACCFkRQCAAAAQAojKQQAAACAFEZSCAAAAAAp7P8DfFr5s0cdCb8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "leverage = 1.5\n", + "tp = 2.1/100\n", + "sl = 7.3\n", + "pf = (pd.concat((low_portfolio, portfolio_return_MV,high_portfolio), axis=1).dropna()-spread)*leverage\n", + "pf.columns = [\"low\", \"Return\", \"high\"]\n", + "\n", + "pf[\"Return\"] = np.where(pf[\"high\"].values>tp, tp, pf[\"Return\"].values)\n", + "pf[\"Return\"] = np.where(pf[\"Return\"].values>tp, tp, pf[\"Return\"].values)\n", + "pf[\"Return\"] = np.where(pf[\"low\"].values<-sl, -sl, pf[\"Return\"].values)\n", + "pf[\"Return\"] = np.where(pf[\"Return\"].values<-sl, -sl, pf[\"Return\"].values)\n", + "\n", + "# Plot the CM\n", + "backtest_dynamic_portfolio(pf[\"Return\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Why has the performance does not grown since 06-2021? There are some explanations. The period's volatility is less than the other, and the strategy does not work on it, or the weight of the algorithm needs to be adjusted because the market situation has evolved." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Congratulations!\n", + "\n", + "You have read the whole book. It is normal if you do not have to understand all the notions. To a better understanding, I advise you to use your news skills in your projects.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.12" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/packages/itbot/notebooks/Voting_project_app.ipynb b/packages/itbot/notebooks/Voting_project_app.ipynb new file mode 100644 index 0000000..b492e88 --- /dev/null +++ b/packages/itbot/notebooks/Voting_project_app.ipynb @@ -0,0 +1,246 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 1, + "id": "7d0ca1c9", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "------------------------------------------------------------------\n", + "Date: 2021-09-24 07:11:13\n", + "Balance: 987.03 USD, \tEquity: 987.03 USD, \tProfit: 0.0 USD\n", + "------------------------------------------------------------------\n", + "------------------------------------------------------------------\n", + "Date: 2021-09-24 07:11:13\n", + "SYMBOL: US2000\n", + "BUY: True \t SHORT: False\n", + "POSITION: None \t ID: None\n", + "OPEN LONG TRADE: Request executed\n", + "------------------------------------------------------------------\n", + "------------------------------------------------------------------\n", + "Date: 2021-09-24 07:11:13\n", + "SYMBOL: Bitcoin\n", + "BUY: True \t SHORT: False\n", + "POSITION: None \t ID: None\n", + "OPEN LONG TRADE: Request executed\n", + "------------------------------------------------------------------\n", + "------------------------------------------------------------------\n", + "Date: 2021-09-24 07:11:13\n", + "SYMBOL: NAS100\n", + "BUY: True \t SHORT: False\n", + "POSITION: None \t ID: None\n", + "OPEN LONG TRADE: Request executed\n", + "------------------------------------------------------------------\n" + ] + }, + { + "ename": "KeyboardInterrupt", + "evalue": "", + "output_type": "error", + "traceback": [ + "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[1;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", + "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[0;32m 138\u001b[0m \u001b[1;31m# Verfication for launch\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 139\u001b[0m \u001b[1;32mif\u001b[0m \u001b[0mdatetime\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnow\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mweekday\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mnot\u001b[0m \u001b[1;32min\u001b[0m \u001b[1;33m(\u001b[0m\u001b[1;36m5\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m3\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 140\u001b[1;33m \u001b[0mis_time\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdatetime\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mnow\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mstrftime\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"%H:%M:%S\"\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;33m==\u001b[0m \u001b[0mstart\u001b[0m \u001b[1;31m#\"23:59:59\"\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 141\u001b[0m \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 142\u001b[0m \u001b[0mis_time\u001b[0m \u001b[1;33m=\u001b[0m \u001b[1;32mFalse\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", + "\u001b[1;31mKeyboardInterrupt\u001b[0m: " + ] + } + ], + "source": [ + "from MT5 import *\n", + "import numpy as np\n", + "import pandas as pd\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", + "from sklearn.svm import SVC\n", + "from sklearn.tree import DecisionTreeClassifier\n", + "from sklearn.linear_model import LogisticRegression\n", + "import time\n", + "from sklearn.ensemble import VotingClassifier\n", + "import pickle\n", + "from joblib import dump, load\n", + "import os\n", + "from sklearn.preprocessing import StandardScaler\n", + "\n", + "path = \"\" # Ex: C:/Desktop/Python_for_finance_and_algorithmic_trading/ChapterN/\n", + "\n", + "\n", + "def create_model_weights(symbol):\n", + " \"\"\" Weights for Linear regression on the percentage change\"\"\"\n", + " # Import the data\n", + " data = MT5.get_data(symbol, 3500)[[\"close\"]].pct_change(1)\n", + " \n", + " # Create new variable\n", + " data.columns = [\"returns\"]\n", + "\n", + " # Features engeeniring\n", + " data[\"returns t-1\"] = data[[\"returns\"]].shift(1)\n", + "\n", + " # Mean of returns\n", + " data[\"mean returns 15\"] = data[[\"returns\"]].rolling(15).mean().shift(1)\n", + " data[\"mean returns 60\"] = data[[\"returns\"]].rolling(60).mean().shift(1)\n", + "\n", + " # Volatility of returns\n", + " data[\"volatility returns 15\"] = data[[\"returns\"]].rolling(15).std().shift(1)\n", + " data[\"volatility returns 60\"] = data[[\"returns\"]].rolling(60).std().shift(1)\n", + " \n", + " # Split the data\n", + " data = data.dropna()\n", + " split = int(0.80*len(data))\n", + " \n", + " # Train set creation\n", + " X_train = data[[\"returns t-1\", \"mean returns 15\", \"mean returns 60\",\n", + " \"volatility returns 15\",\n", + " \"volatility returns 60\"]].iloc[:split]\n", + " y_train = np.round(data[[\"returns\"]].iloc[:split]+0.5)\n", + " \n", + " sc = StandardScaler()\n", + " X_train = sc.fit_transform(X_train)\n", + " \n", + " # Create the model\n", + " tree = DecisionTreeClassifier(max_depth=6)\n", + " svr = SVC()\n", + " lin = LogisticRegression()\n", + "\n", + " alg = VotingClassifier(estimators=[\n", + " ('lr', lin), (\"tree\", tree), (\"svr\", svr)])\n", + "\n", + " # Fit the model\n", + " alg.fit(X_train, y_train)\n", + " \n", + " # Save the model\n", + " alg_var = pickle.dumps(alg)\n", + " alg_pickel = pickle.loads(alg_var)\n", + "\n", + " dump(alg_pickel ,os.path.join(path,f\"Models/{symbol}_reg.joblib\"))\n", + " \n", + " \n", + " \n", + "\n", + "def vot_cla_sig(symbol):\n", + " \"\"\" Function for predict the value of tommorow using ARIMA model\"\"\"\n", + " \n", + " # Create the weights if there is not in the folder\n", + " try:\n", + " alg = load(os.path.join(path,f\"Models/{symbol}_reg.joblib\"))\n", + " except:\n", + " create_model_weights(symbol)\n", + " alg = load(os.path.join(path,f\"Models/{symbol}_reg.joblib\"))\n", + " \n", + " # Take the lastest percentage of change \n", + " data = MT5.get_data(symbol, 3500)[[\"close\"]].pct_change(1)\n", + " \n", + " # Create new variable\n", + " data.columns = [\"returns\"]\n", + "\n", + " # Features engeeniring\n", + "\n", + " # Mean of returns\n", + " data[\"mean returns 15\"] = data[[\"returns\"]].rolling(15).mean()\n", + " data[\"mean returns 60\"] = data[[\"returns\"]].rolling(60).mean()\n", + "\n", + " # Volatility of returns\n", + " data[\"volatility returns 15\"] = data[[\"returns\"]].rolling(15).std()\n", + " data[\"volatility returns 60\"] = data[[\"returns\"]].rolling(60).std()\n", + " \n", + " X = data[[\"returns\", \"mean returns 15\", \"mean returns 60\",\n", + " \"volatility returns 15\",\n", + " \"volatility returns 60\"]].iloc[-1:,:].values\n", + " \n", + " # Find the signal\n", + " prediction = alg.predict(X)\n", + " prediction = np.where(prediction==0, -1, 1)\n", + " buy = prediction[0] > 0\n", + " sell = not buy\n", + " \n", + " \n", + " return buy, sell\n", + "\n", + "\n", + "# True = Live Trading and False = Screener\n", + "live = True\n", + "\n", + "if live:\n", + " current_account_info = mt5.account_info()\n", + " print(\"------------------------------------------------------------------\")\n", + " print(\"Date: \", datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\"))\n", + " print(f\"Balance: {current_account_info.balance} USD, \\t\"\n", + " f\"Equity: {current_account_info.equity} USD, \\t\"\n", + " f\"Profit: {current_account_info.profit} USD\")\n", + " print(\"------------------------------------------------------------------\")\n", + "\n", + "\n", + "info_order = {\n", + " \"RUSSEL 2000\": [\"US2000\", 1.1],\n", + " \"Bitcoin\": [\"Bitcoin\", 0.1],\n", + " \"Nasdaq 100\": [\"NAS100\", 0.3]\n", + "}\n", + "\n", + "\n", + "start = datetime.now().strftime(\"%H:%M:%S\")\n", + "while True:\n", + " # Verfication for launch\n", + " if datetime.now().weekday() not in (5,3):\n", + " is_time = datetime.now().strftime(\"%H:%M:%S\") == start #\"23:59:59\"\n", + " else:\n", + " is_time = False\n", + "\n", + " \n", + " # Launch the algorithm\n", + " if is_time:\n", + "\n", + " # Open the trades\n", + " for asset in info_order.keys():\n", + "\n", + " # Initialize the inputs\n", + " symbol = info_order[asset][0]\n", + " lot = info_order[asset][1]\n", + "\n", + " # Create the signals\n", + " buy, sell = vot_cla_sig(symbol)\n", + "\n", + " # Run the algorithm\n", + " if live:\n", + " MT5.run(symbol, buy, sell,lot)\n", + "\n", + " else:\n", + " print(f\"Symbol: {symbol}\\t\"\n", + " f\"Buy: {buy}\\t\"\n", + " f\"Sell: {sell}\")\n", + " time.sleep(1)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "ca127ff4", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.8" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From a797040f2f0c7a843b9c9d23d96f3996cebf774d Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 04:28:54 +0100 Subject: [PATCH 10/23] feat: Multi-symbol signal generation --- packages/itbot/agents/agent.py | 13 ++++-- packages/itbot/agents/agent_001.py | 13 +++--- packages/itbot/agents/basic_ml_agent.py | 60 ++++++++++++------------- packages/itbot/main.py | 43 +++++++++++++----- 4 files changed, 80 insertions(+), 49 deletions(-) diff --git a/packages/itbot/agents/agent.py b/packages/itbot/agents/agent.py index d73ddbb..10aab1a 100644 --- a/packages/itbot/agents/agent.py +++ b/packages/itbot/agents/agent.py @@ -1,6 +1,8 @@ import asyncio from abc import ABC, abstractmethod -from typing import List, Optional +from typing import Dict, List, Optional + +import pandas as pd from packages.itbot.itbot import Signal import threading import logging @@ -21,6 +23,8 @@ def __init__(self, logger: Optional[Logger] = None): self.signals_queue = asyncio.Queue() self.loop = None + self.selected_symbols = ["BTCUSD", "EURUSD", "XAUUSD"] # List of symbols you want to trade + @abstractmethod def load_model(self, model_path: str) -> None: """ @@ -32,12 +36,13 @@ def load_model(self, model_path: str) -> None: pass @abstractmethod - async def generate_signals(self, data: dict) -> List[Signal]: + async def generate_signals(self, symbol: str, data: pd.DataFrame) -> List[Signal]: """ - Asynchronously generate trading signals using the loaded model and input data. + Generate trading signals using the loaded model and input data. Args: - data (dict): The data for the agent to make decisions. + symbol (str): The trading symbol for which signals are being generated. + data (pd.DataFrame): The input data used by the agent to make trading decisions. Returns: List[Signal]: A list of trading signals generated by the model. diff --git a/packages/itbot/agents/agent_001.py b/packages/itbot/agents/agent_001.py index 1053d96..6149418 100644 --- a/packages/itbot/agents/agent_001.py +++ b/packages/itbot/agents/agent_001.py @@ -1,6 +1,8 @@ import asyncio import os -from typing import List, Optional +from typing import Dict, List, Optional + +import pandas as pd from packages.itbot.itbot import Signal from packages.itbot.agents.agent import Agent from trade_flow.common.logging import Logger @@ -26,15 +28,16 @@ def load_model(self, model_path: str) -> None: else: raise FileNotFoundError(f"Model file {model_path} not found.") - async def generate_signals(self, data: dict) -> List[Signal]: + async def generate_signals(self, symbol: str, data: pd.DataFrame) -> List[Signal]: """ - Asynchronously generate trading signals using the loaded model based on the data. + Generate trading signals using the loaded model and input data. Args: - data: Data from the environment to generate signals. + symbol (str): The trading symbol for which signals are being generated. + data (pd.DataFrame): The input data used by the agent to make trading decisions. Returns: - List[Signal]: A list of generated trading signals. + List[Signal]: A list of trading signals generated by the model. """ if self.model is None: raise ValueError("Model is not loaded. Please load the model first.") diff --git a/packages/itbot/agents/basic_ml_agent.py b/packages/itbot/agents/basic_ml_agent.py index 677526a..b1cb059 100644 --- a/packages/itbot/agents/basic_ml_agent.py +++ b/packages/itbot/agents/basic_ml_agent.py @@ -1,6 +1,8 @@ import asyncio import os -from typing import List, Optional +from typing import Dict, List, Optional + +import pandas as pd from packages.itbot.itbot import Signal from packages.itbot.agents.agent import Agent from trade_flow.common.logging import Logger @@ -26,15 +28,16 @@ def load_model(self, model_path: str) -> None: else: raise FileNotFoundError(f"Model file {model_path} not found.") - async def generate_signals(self, data: dict) -> List[Signal]: + async def generate_signals(self, symbol: str, data: pd.DataFrame) -> List[Signal]: """ - Asynchronously generate trading signals using the loaded model based on the data. + Generate trading signals using the loaded model and input data. Args: - data: Data from the environment to generate signals. + symbol (str): The trading symbol for which signals are being generated. + data (pd.DataFrame): The input data used by the agent to make trading decisions. Returns: - List[Signal]: A list of generated trading signals. + List[Signal]: A list of trading signals generated by the model. """ if self.model is None: raise ValueError("Model is not loaded. Please load the model first.") @@ -42,26 +45,28 @@ async def generate_signals(self, data: dict) -> List[Signal]: # Simulate signal generation delay await asyncio.sleep(1) + self.logger.debug(symbol) # data = {"price": 50000, "score": 0.4} + # Example signals based on input data - signals = [ - Signal( - symbol="BTCUSD", - price=data["price"], - score=data["score"], - trend="↑", - zone="Buy Zone", - trade_type="Buy", - ), - Signal( - symbol="ETHUSD", - price=data["price"] * 0.05, - score=data["score"] - 0.2, - trend="↓", - zone="Sell Zone", - trade_type="Sell", - ), - ] - return signals + # signals = [ + # Signal( + # symbol="BTCUSD", + # price=data["price"], + # score=data["score"], + # trend="↑", + # zone="Buy Zone", + # trade_type="Buy", + # ), + # Signal( + # symbol="ETHUSD", + # price=data["price"] * 0.05, + # score=data["score"] - 0.2, + # trend="↓", + # zone="Sell Zone", + # trade_type="Sell", + # ), + # ] + return [] async def send_signals(self) -> None: """ @@ -71,14 +76,9 @@ async def send_signals(self) -> None: # Wait for new data to be added data = await self.signals_queue.get() - # Generate signals asynchronously based on new data + # Generate signals based on new data signals = await self.generate_signals(data) - for signal in signals: - # Forward the signal to ITBot's queue - self.trader.execute_trade(signal) - self.logger.info(f"Signal sent to ITBot: {signal}") - def run(self): """ Run the agent in the background, processing data and sending signals. diff --git a/packages/itbot/main.py b/packages/itbot/main.py index d21fdaf..a37544c 100644 --- a/packages/itbot/main.py +++ b/packages/itbot/main.py @@ -3,11 +3,12 @@ import os import random import re -from typing import Dict, List, Optional +from typing import List, Optional from telethon import events from packages.itbot.agents import Agent, BasicMLAgent from packages.itbot.itbot import Signal, TradeType from packages.itbot.itbot.mt5_trader import MT5Trader +from packages.itbot.itbot.MetaTrader5 import MetaTrader5 as mt5 from packages.itbot.itbot.interfaces import TelegramInterface from packages.itbot.itbot.portfolio.risk_manager import RiskManager from trade_flow.common.logging import Logger @@ -162,27 +163,49 @@ async def handle_new_message(self, event: events.NewMessage) -> None: async def run_agent(self): """ - Continuously run the agent to generate trading signals and send them to the ITBot for execution. + Continuously run the agent to generate trading signals for multiple symbols + and send them to the ITBot for execution. - This method loads the agent's model and enters an infinite loop to generate and process signals. + This method loads the agent's model and enters an infinite loop to generate + and process signals for each symbol. """ self.logger.debug("Starting Agent") + # Load model for the agent (modify path as needed) self.agent.load_model(f"{os.getcwd()}/models/001.model") while True: - # Dummy data passed to agent for signal generation - data = {"price": 50000, "score": 0.4} - # await self.trader.get_bar_data() + tasks = [] + + # Loop over selected symbols and create tasks to fetch data and generate signals concurrently + for symbol in self.agent.selected_symbols: + tasks.append(self.process_agent_symbol(symbol)) + + # Run the tasks concurrently + await asyncio.gather(*tasks) + + await asyncio.sleep(5) # Add delay between iterations + + async def process_agent_symbol(self, symbol: str): + """ + Process agent's trading signals for a specific symbol. + + Args: + symbol (str): The trading symbol to process. + """ + # Fetch data for the symbol + self.logger.info(f"Fetching data for {symbol}") + data = await self.trader.get_bar_data(symbol=symbol, timeframe=mt5.TIMEFRAME_D1, count=10) - # Generate signals from the agent - signals = await self.agent.generate_signals(data) + # Generate signals from the agent + self.logger.info(f"Generating signals for {symbol}") + signals = await self.agent.generate_signals(symbol, data) - # Process each signal and forward it to MT5 for execution + # Process each signal and forward it to MT5 trader for execution + if signals: for signal in signals: if self._validate_signal(signal): await self.signals_queue.put(signal) - await asyncio.sleep(5) async def run_trader(self, strategy_name: str = "fixed_percentage"): """ From 221a17ebb3c25d7bfe22aa6b01d14a11946f4494 Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 05:03:30 +0100 Subject: [PATCH 11/23] Refactor: Remove unnecessary imports from `mt5_trader.py` and add development dependencies. --- packages/itbot/itbot/mt5_trader.py | 2 +- packages/itbot/requirements.txt | 6 +++++- 2 files changed, 6 insertions(+), 2 deletions(-) diff --git a/packages/itbot/itbot/mt5_trader.py b/packages/itbot/itbot/mt5_trader.py index bf9e34d..ea94b0c 100644 --- a/packages/itbot/itbot/mt5_trader.py +++ b/packages/itbot/itbot/mt5_trader.py @@ -4,7 +4,7 @@ import time import pandas as pd from datetime import datetime -from typing import Dict, Optional, List, Tuple +from typing import Dict, Optional from packages.itbot.itbot import Signal from packages.itbot.itbot.MetaTrader5 import MetaTrader5 as mt5 from packages.itbot.itbot.terminal import ( diff --git a/packages/itbot/requirements.txt b/packages/itbot/requirements.txt index bc5cb37..b177445 100644 --- a/packages/itbot/requirements.txt +++ b/packages/itbot/requirements.txt @@ -6,4 +6,8 @@ torch scipy stable-baselines3[extra] rpyc -git+https://github.com/fortesenselabs/trade_flow.git \ No newline at end of file +git+https://github.com/fortesenselabs/trade_flow.git + +# dev +ta +seaborn \ No newline at end of file From a7ac74539d4b290f6dc05f0908f49631b074e178 Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 08:24:08 +0100 Subject: [PATCH 12/23] feat: Add trained models --- packages/itbot/models/.gitkeep | 0 packages/itbot/models/ETCUSD_voting.joblib | Bin 0 -> 38181 bytes packages/itbot/models/IBM_voting.joblib | Bin 0 -> 44357 bytes .../Volatility 150 (1s) Index_voting.joblib | Bin 0 -> 26341 bytes .../Volatility 200 (1s) Index_voting.joblib | Bin 0 -> 40485 bytes .../Volatility 250 (1s) Index_voting.joblib | Bin 0 -> 24933 bytes packages/itbot/requirements.txt | 1 + 7 files changed, 1 insertion(+) delete mode 100644 packages/itbot/models/.gitkeep create mode 100644 packages/itbot/models/ETCUSD_voting.joblib create mode 100644 packages/itbot/models/IBM_voting.joblib create mode 100644 packages/itbot/models/Volatility 150 (1s) Index_voting.joblib create mode 100644 packages/itbot/models/Volatility 200 (1s) Index_voting.joblib create mode 100644 packages/itbot/models/Volatility 250 (1s) Index_voting.joblib diff --git a/packages/itbot/models/.gitkeep b/packages/itbot/models/.gitkeep deleted file mode 100644 index e69de29..0000000 diff --git a/packages/itbot/models/ETCUSD_voting.joblib b/packages/itbot/models/ETCUSD_voting.joblib new file mode 100644 index 0000000000000000000000000000000000000000..fab734b50f4b8cdaa06a09a29853d8ed8a31f71a GIT binary patch literal 38181 zcmb^32V716|2Xj5(o#x9L{VfkWGB3CLI_btgm&F%X_%1^Qe>2DZ6g_J5PIMC)J}Wv zz4!XRZguhfjQ{`p`2T)AdU~I8?s=d0Jn#1zH<#Gm#W*NqKQ1$^Pna6&TA9llnp+#1 z>6seJYM-*OF)=rGa}hW&wxDdPYi(^}WMXLLcHeEWgWCnSMJ_ys);1<)x;7S8)^0~} zoz>LJ&1Ek0P^Kp4ct~wC3j;$_S#47bV-wt4-_2#}&WS~JLt`sLJg9~F??ZB08k*~x z+MIR6gDrP+VK=bVHFa}xVY9I?byI;^t1B8sm1SI5lyRkPBJX@gCN|n8<~D{_`i7P^ zZZ}*6f30X+>+51RjNMdOTqf%?N}zq((8QQ#rmUsN>?9?WUf8-p~`r3P$({w83#8q)U~n2=EVZ@Gu9dVXq#hSz%8`tyIrO; z4rF3xX^Xi%i&@dPGStO7{B;!CwB0V;`udjIx~7&i-QU|?_{=QKEo>~zP4u<(u_(J~ zVl?rwies}rg$10(tT*dZW`9&0o5lg<-@R-GrZ-lJ+D5kK<7Kd>=~`m7vso|>!lQ?| zIiYQ1g1N@tjghOs&HEews8{mv{+ zKn3>b?aFL_Jwy}y-D6qJZGZ3M!f9w}ZDNYe^{ebI+}1QJ6Y~>{o_oWE*V4*DPgl=T3bgdZObiCCV)jwyq zi=dIIF7^m>Z5uodtc@(J%-n9^fn3;34Yl1|M46R{y&O~5XPl+x#&{Cz>M`nJ@=iv$ z#atho^N-*07XAfHGT3Y@` zWNTZ!iL;AiEEeY2+(4JHFSZ-j@L2n(vO40jg%u-RnxG4Zfz4TLHQEv867I=rwARh( z#&tJ!w?)`OEbHBN@7_IDJ7fQ-Qf%DxTzGU%O)XAqW7}C`1qx8Pks6 zpq*eGiFfQsbl z?jOC#R78qClRpw%yi0gI@PedHE|CkXNea?l0F|FazrZPvG z@oA3nFHTa7xeX75ee*w0sox#sciy>}waiS?{lr8GR9P6K0A8ptsuZgQM=Nc83tMv= zH&t-q7@v#&k^ubC1KAF&{-X=Ju-Lin#!DVkLn9k)eVU0W4yn9WjB5$z8t256hqJ2< z4QD=@1!EsB<{an7IQ7QzFfr4*xy%?Jk_`>C|N6;PGn26)SKHV^+r|PXPa_*Qo3Wz2 zrTrHtr78t`c_8hxDi?JYsNvF#FB4iKb_^2d*xor*#v%U5RrF+e#thj}Is}u2Cm; zr!Y59VQ%;x-cd^7pjMol_D-d|0G9vWj!WCA%yii%wzE%!%;VvzW+GL9-tzc$>w;r> zz#O*6cDuBNIm{ii{vEs5 z=E4$Ygt72<`jaNMbN@YldflNu@_DXf5BiarO!K2kjWF_AN6l3oKr)_HebpD z@rlpJ11god%FH)2{O9~rD9m~uk0<&oKHtQF_$R_Y(k~nFE+^Sb4Mi$6b3tU{^YK7| z%3Nip%MAZ5{Xg235%s^0-%|O=`-6Ta%wQ%s7OwdfUtnUp&_wu0{x$W)DAb?V;|9_- zOX08OXYMCB5pU{5_(xEdn8HbA_Fv|CGXD8ADsw+(xtZbrcKMmjhWoQ{xB7TDEzeZ_`WR#h(q>clB5L!V~f4O@x2!<|)TXp)QJUs-~tFg51RC zW5FerU*|uwT}A&Mf0@?lLRdCedY^Gb-rvR_WvNb`-SP3gb(KW4i#!@suwd`o>1H=ZnDp6BDqETl4% zW5#2Ke~r%^|Cr;$c)Ugbb$n(z|JHx!Oza>&5i;u)SIhR(*y+@jj5CN1%<*A-H)-m` z?v%L`3t|)DAMw-Gxw(Fg-+%4D%>9_8{n=g;_*-|-hs#9urS{;^w|wPrVP z9dc;(8YzV3u`9AKjK@4+;03;e_G54jF5hS%3NJFv9Nj~{G**MwGZ|} zX#aY>>bRW$@A>bx;hrTszm@)f&wtE({#*ZDJF$bpMEFPf+m`rGTt8FFU^DYTW8q#Z zbCua{%FnC&zkf5)%*isKt7>nFlL^6#nLmjulF z$1@Y3j|a!7%vEN-nc+X?A9w!i{TDO-hKYrZ6X74}TNZU^fp_zb-8!;GV9t!d2rp?- znXAlnnc-j4XXgLk(r3nFhJTIEb5l&eT+PKWWJcH+MI_xSg` z_ALIU!pv*B_*(~$A2ELNCyrAI`^SEACc^5!#UC$L`o#9SfB8INVtd0x$gGSu7{5PB z1@*CozsEP2$9pJYQyjcp^SyqTMFZTE+>XB$P#9{)`2Aac$B+EGe9V;obNlblt$0f& zsjn#q(R$?$t-HmbUYh@^)ifIp3fy0MBe5FfCr2-v9GwnzjB0vb3t?l){)7dLY}~5? zMy}3f6~b6Hg)3m|jH5OgTjD`3yw2NMw&7R3G3)WK`57-y5SWh@sQF*&n;DClZ)V8c z&J5co>Z5)lO#GMj_`QFPRz$T{L^-V5c4g(ZD@E`$`@&h%EoG2!fSpguwiH~Wx)&XB zEras0iKqnld^ImNt}KI^u-$BnAC$uSVL{%{S*4)Ia(X~QxC}fVFn($vD|74z6h8{# zZzD__TZo=0AG4exf9ns=^PHaLIsJfqM)0ieS35J?eY}4r{wn8qN&dY)zSYjoTIg8? zHNqz{bNCEQhgXoKgHQ^;b5rof&3Ntk=LzMz-_Hp($oJ z{ucc@51HrXU-NrC#6olMS~YaIiK}sUWdH5_9X~&6CfXqr+?nqyZ1pCdWGhTO$zD&} zK-=g<0~(d4gwJp{(UfVMRhSL^&+o)&TYm4b_4lI64cay*+V;P{=W^l17nQnJ_{Pv_ z?4dW`*t;Xtbc=3m}dFxwB`?=Uau|EovnEThZ!kPS)?8s%u0pvN8?=9ww9I_RyKcqRk7>g?@T-Vdd~Xi`y)m=j5&sJJ;ZpX#(1vB zm>U@PSBz_1#yrcoR%Sep5kidTvW#aGjOPT5dvwPAD&wA09L+=X5#!#AQEbM&2;+W$ zaZSy*E@fPkGUi>zwGrbwfpLw+m}ePt9%H^^bUG?hLduA7jj$cr-*gr1`p z$Pc|mf#@B2k3OJ}C>Sxi_7@b62#Q3}C?2JtA1D>&pr0rY6`(>?ipo$0szTMM7S*8! z)QZ|sC+b4oXb=sdVZ_Qpp|BxdG#T+B0W=j&L(`E6nvF!!TqK6Xkpx1CDL1E}K`hvpISM&{iM-hmQ5>YZrMd>IX6`(>?gep-rszr6E9yOvS)P_1xC+b0c zs2>fWVKj=^S@F3s;z7J<3KBqqXeye9gwaei3(ZDiNCHWrB}fJ>L(9<$v=XgCYtcHS zh&CWV%4iExLEF%7vS!O@j}9VDbO>poBj_kPhP06ZGD60PhK?gsWQNQU<5|W@ zWQ$Ir)94JkfG#2jbQxVij_5kNg>EBPbO+r-_mLZNM-Pw(dW@c;XXrWdLB7Zzy+wiO zBML!b=ramO-%tc1C=$h>SQL*E5aWjpu_F$|i6$d{GzE#E*+>+LAxR{K7|%tPAZa9n z}qnN=F$e6J?=nl#hy0393Xjs2(+ zj8u>++KDvKK6Dsqp`%C}=^}k(fN01RSs+Vfjcm~wbPkr-*gdU?O=qY-JJdrPYiC&>MC;$bbPbd@-6p5lxG>SvPEe25DlRb#JFf-L9B=kO+s9V8%;)h zh#v`|>1YNLL8535nv2BIJTxCkq6KInT7(v(rAQjdB001gDWLUeBch^BXfxW1wxb5_8*~<(L+6nlvPYNDRdfyAKu+i;az-xb zE_#R_p(p4C@V4!uVoP!Rfrf>9{?g1(~fh>oIAG>SusCLU+Ug(ZUL^3gV|G;#*%_yC4=uTTgZ{9xsS>-O2Fxwyn@JdFS1Gf>GPl;siZhv zMEQYKH@Hq0IAdj*PV%l8spl?ohI@PESl13#!uL5!mF7zeN#6z~zGikhG5Wf(=;GCI z*iaN?xYf0kT$7G2d~T6NHsAa%TBi^R4%3Ei1^uWYwN9a;nf)zf!(F`yHPbe7V1{Mi z@W)zWUZEJyy|tK}P+SqqGq(md-Pr7Uc%YUTI9QE_CZv(#_ht6}lp3HPdKl5UxQ^Hz zR=yL;S3wq^;(S-H^A_Z4)_JzH){>Q-i+C(ED##m^CYv)$zrwXk`U*Qls>qqMX~PW{ zd&%?r!xqwfwdB>++n!!8s|e2znY;JR+R15^Td}i!ilJy|==2o(2J+hxO}=N%0aMht5Mk$OhKbWmIT~8Ol!t_MR>yeM;0a#o0|{vNosSl&vxFQP;@+ z<+^NgCf4k0(~eN`$gM+UFt`ucbEMCm5y&Cu63!o&p4&n6rfQq^e@Y{X%IrKZ2D8Zu zd+BQmq=&c}C|o+yQc3J(;wX+&zd*FZ*Ol!r*y*&JT~YE6`iY+6)qYx84y-pVFg~!Z zjkwN99rSGOgDN(Opl>yUT zBZBQP66^LOyYmw`zgwmyB-cj{?g@L5wzd^wjcUIaA5DaNnqHQ3^=nDcQ}MFW<2?|f z&2G$A69=x2?g{e>@%hO#6J^5(-Ei_y)^iiBZ1Ox+b=Io6gU}_qV=BK|FL*iZ-n8gh z9$EZxROY>2FIbt>HqDCs3N}Nmo4ajui0t!(FUt6QCI4ATpnMYc>-qC-*C(ZumfhvP zKZQD>K<`cFm4n$(YFrk>x8O55x3PbSoo^5lqO%^<1UJF*qz}@aR^enH&&Ktu-WP*M z_?}hD3mS;i?QSwC9}8hsYt{|R6%j?#NrCrS2T4Gdez8$o1g!sZZ`r;(@5t4bQj^@I z6jB*}O6Yl~4eU`|u)xJLog7?os9Qbq2`v2Sd))4cA1EbX_iyoUBCgUe575ul5YzJ! z$!jFzU`FiI4(m;&gj3OgSHia+il*;3xLXPe z&B;XYrH)We$xo2}J{Yr@Rt_gtZV0n{QBRKCBD{_j)#Pmg_sn#^e4t$MEec#)Kw{Nn z{6;#P$dnyR*4{KK0EHjw8T56Ikk6Ob7&t&Dwf&OIg*RmZ=j4-@JY+J6<=6J`oNg~7 zaY;zzg0m&ekiD-HA>|9KZ@+DASM7x6ph++*>pdS`V(lH)F(A^A*5JaWb*Y$JZ3>HTMpdlsGGs3Nf7>5mEmmsy-6-ZYWK zpth4wQoG>I*)DSl;g2NA#4Yva;S@+*cNvbX?1D$ z|6%hM-2_tl_>fUSQ!HFk`t~~aSvL{Q;&{D4r=85z*6#isR0m!8d8ZdfRFU}3ku}5O zJ+M#msp;|ywczEyX`Vt%2U&aZ6zc;@1Z15{2^87e1!?@}3+!<`Z1E^_oH3)9?D}M2 zHTiWHTRk#?RI=#YJ5k>WkFKJal7SJ!)(+tksYlPr`w6q z?#Z80c6Nb6-^GpW4=B`n9{G5VX%za9&FPs%vnwXge`2a+8t6k06$Nv3jA`z?=ZXrAdE#jzkC zIy6u9SiI{YHP;=do4413@g7&ti$3YFJ3~-tRnZ_h(w)5P6J!y#w}RKL*5LcujXF=- zB01<>nRI!9)H-sbK+IPVOaCC9MPYEcE)D zMqis_Cs7alsIAk$_hk!5t2;yHaMH^k>4%HRvQW1iw{R%bq)_!9^b2#Pj*^XXEQTs( zEL0DX4b}c?qhP?|v8rqr2fY}ytQurGVBRgCM>bj%YQ=0@hw7(2#HeUn`mNYDNG|5& zs$DbyPET)2B^31$d)~tdtX*Zq-g-F0{BjR8oxOg@U95+kRvgY6N+|~)R~HtEj3U_T zbLh}^wko3ev&yJnv=_o{eLbo-eglWMTqAu}<>aIHzRDeQ8sO^tiaAq~0!erH;nglW zZG?5JILCdLaxx@CTUco4371`LZ#{-ya_^$4vX*TFDVjQ*#2v{(tyh1j6TmM(J^MI| ze|-`^)oTUUQ`c?^m21zmp^AtR2nm*l_3mXvb9%Jbvwk*e`d9P%_)bo$ZA|_hzsr3v zgCm$f!Gn!@dD8Q`t=z+KH)!RmxRL}|`AwqC%9V|JQNzPUf~_CUu=TOBCuS0N`sp6E zol~f>OUf&)w+mA(s&Wo{RIyPT`5STrLink@cCX5sMEIz}97kKf8+DK;sZHR| zC+D7%7^YD5Q<4gI&u61w-_YXccZQcbe0t})7IO+!R#)rir~ARMYKg?TG&Nr8R$k*r z;kSB0RC=J&YF!H{?470H$;V3_FgX!nx{00YPwt`7{{MWImdyX({>7F3bFJ|$0b&-cTEHtSA@<`Gz;rlhv% zM;DR0;3V~uy&D#-viH2K%1WhPco$fH@U4g{piq@Hue7~i(@8cB zDPO#HwG(9aT?$&hb^sa=T|2*IQ9q&QJlN~Q#X@C$Vcwb@(n5+9WaiJP7Nm#W>{r=; zm_qHIJkQ#Wy9XY;;gLS{(wo%&2$0%yd=&U|JPa$+0NJI!Rz-)4qKUEYtHCg|9WzUh*Y1W_ z`I)oi_6!iOyGEw#*Vh1?4anI$w;S4R-D0n<7$#d}23C^U1+YiHYRC4y&9FM)iGK6! zej-$Hp+aJJ71+D({r2)yJ-lmTpJo`idT>;LGt&O%hrI!rzzW~>*bJL3i~b8)w2lxWlP-bq#`(Z zzozr_nqpFU_?eo9S~aPBtZ zQ;ke|$rQd*pEfo&z|?$0@;+84NvpCM>ZjaP<@%lk_Z(B|+S!_k zD1VcFG|u;KqY3TN&Vgjq?O@4pd^_PW`M@F^91aaRW>HP*LFCAEdaSnT0Lk|`e)^I_ z4k`G#^+x;J80eaF&y{a)3wfAIDrGm-z=LB&1J?&);NF!4QGNb$a!6U{x^hPyxwqd= zVJ9UHa`Q)8B!x4{sNKrI7MU;BQgqG=4d;>dT=!F7bwonI6IUM5h%;a) zQE$IPi@{OcPBz;820m(BpiG;Kn9*!>@b*D1m9WqdA`yf0ufE4lHE!#90{+7P=$rLDbEIA7X7T#rk%rt_U_Eah*wFl zr1$B8^ZdQQUt|zAqp*i?Z8>)8XGS?()y*{w;_L=H+w!6h3jL%l$85UEp-SMp_2vWr zt}dwa5_6FYW~a|}$Y$;Hts>fpFisYkzE+3{2jqYjRR!-(@n>yzr^(X1pJDwhIoB{_P zYgSxeS5BM`$AxLRW|PpxZr@e+#KN5L+10Uz<%GUvNMWyIF_G~cO|QP-NrGRcy*lPq zNN(J=**4Ub41wDtA1tIaK**8z+xe7>$i=OEt`Y7fgrhcAGi6#1G5oSBa9T(id0;2K z&m*vboXTG+yzNRhiL?xt;TK4Ok~d^-^_4cVEG~Rxw7VYo)?OVvnUerJ=g$&-Ue!U4 z{Fv#}z>xrVPilzA2^K;r_q#7X-zrJb6xl7NuR7sd-D>kVjy$kUZLm?(Y$5t{Z>Ent z&4R4-RhvJ4%Ye??k!xzD+sK}gCwKFfRYHfyd`W5c3@GXI<`+5GMr@=UK3-3(gnEH2 zgU1(B!EZ|N6*b`=a%$0xtw;4^K=Odn*GNVD-o}oXJaUVh$ip>OBNSQ}=$!~Sx@Tqv z+1l56SUE3^Osi-wc|W-xT-GGtzK8GSHDzDllzuY+7j_+bv3@%*b=Q0^%XMW-bj>+|i{1<@z4qDSkNXlEYw&t2@9AG=`E zz7On1&l<^vRAcv^>U_`^Ut-JB)&qAHUBb3+EFkyd?(?2V_6D`Yme~itjlx;Qjluf6 zn?bALsm+ZIKZ)8E$>F08Eilc^3kk6PA+$=f8orvpSL930Ag`$Q z%Vb2pki9c^?RcBo2r>(nRv8_ufaLp~_RB*OiQlEZA76jufoq*d^$N!hViuutO77Dq z(jaBk!FHex6e?R+)QOkj_gw5^OfO`RsCm6xO!Uja$!j!sIkkZt6xIk(PPtF2%C!!Q zm6m~U>P>%ZkrWUe$W3=x=S^N1tlXm@76~>VBj3lURgxQv>r%p=#1T!Oxt~t#?}7Dk z)zbr=iXrmKM(@It-$+GIa30Tx2Do!qP}(CimxQfM@Sm!mKrUX>yZF(u9tzlXq|DSB zh|(Qf;g!l6#Dn~N84l%eG-ln=XF~Plo!yN{*0c;FAgdIWQB@9=cjLnMf2t>1C*(#q zKPx1>IlY~$L~~&N>pOz%+qwzubEeZGg+elyE%Q*_qBclSj(FbmBZ16&JNb3Ie=#}t z+UZuTTs=(RY3M1SR7t!(pO>*-hWG8?FDvfqZiPEJJ(ZuW-;+72I!n*&t0co)y@ZVM z?>Q9r-VqYJUP;o-`l8o>UH(VXiJ+uv|I9$Jovh!a^{thwflOiFZD=1I3`dGu z-wxiZCF?^jPktcMK`wr5<*YazMaq%`ggERoiIrSVq=SA3p&dTH?NIbnBKKZ-DB@NI znPTi)F~zip>`}b$|6UibSIZlYTp7$Gb%8e{6I!}RTS;J%-IO+>#y9EUBGN?om(NOA z>D)#{o=8n<3MeDy9S?dfb+A1j32(F(eGWHLF5JqGt%7+Hs!L~{4+f3a=q9%ZnE-d3 z{a=PPL3$ADTPk$Gs><#=s%|mh=DX7CO=`TKQVxEqgsYdQIwxMshOPLd<(76M2_LpQwM!um%06~Bd8{}I zamtCyvRU!^>_eY}?!oUMP_9%)wJRW@()(C!h1-bcN7>KIj-Yb1*&mzR8@7VTvUBq%$tKwT~CDf+gY~noWN!;yv`&8HVkQ>q6 zmiKN|LTbhNQjR_!ayor($UN?L^59m1{>7Y1qUgAV4B>Uq@>NMcPTp@L5_*E&(_@3l z)zwZ@U%!ndS3W!WJY3mGuC2TodG$vL+}3LQoGjA-+L0s2bniEk>UUCpD#zl9UGVJ+ z=_>_9fhXeC7V9RmK<}1(hxrG19rn)K(Xj{~N8Ri_=G08qKK5;y$`(O1FYbyiJo5qq zdf30co!LVC>^F3XEhr?ExbH8n9{))yp4(I(xY$f;a()PU91n%d4{a}L1*Sr_3;EMuL*k>xdw)4w6xF{t(BGOGG%(lSh3=9T9LnJA-RxH{n?L zL@zES2sQ;g<*wS1OF|wgrLfQGCa2HbJULvR4?l{n+7e6SiOonLB`2YW7&t1A$Z>yw zxaTI9)qF!CcITAL6|)9N>1@hI@!J_Nr8?$(UQQY)K2kie&V87Kaun_suYC)1J2&gS z`r!j>4EyK2t{5RP`>tnr$rk~CZ?S>BBIhxR-l$~ytRFaIe zmyd-Wj*@=O{%KQrDk1XrP=)iyEC^OQ?CJ7tl-yfs@qG8qY16#zbee zV{{0p#q`?g&TAvv=|Hrd;6psJK+AbA``LJ9HOHyab2>w3Dkmpw%HWNfI*-%Jxi*V zu+TStm#u7r)iXb}*GPONKg`6b$+KhORA7v#Ss4fQ!+upB-nA@LvBa+Q^K0qQ=o>oN zU(gOGF1*`wL9&jBY*g4xiHL-cN9*n!2C|7`OcBy1eZa-IO zSrn12zTJ67tRED}hOcH$EilXb%D!E-HRO%{GdUf_6ks{)FjMNbKOA|!QC;$D4N0v1 zl=^%y6=Zu`*%AWcW=RBP7M5wlm05l<2bdi8ZD;bm)BB^X@{r>-5b z=RN)sQe+w*zP{W=yr(R-dyUsIJreQnrfiEKZMA2fZ{5^|&*@~Q=KzIphkT*4a1b0&L(aHC$NQM|fN} z+_GCy3CglZHc!2sE|T7QvfNgh-+EcSi; zC5K$lUmf~UppOVgs8p<{B@yxVygEs*b|P=T|Jq8IUSfIUYlUl2GNC8#tkjxov+N83}*q^o<$;8K2LlhFx!h4J$~<;{G;r zQP1P3>xK-HH|_4?l-r+)qnMiH^5Hg;y2VV+u_qbtlbaU!g}s3{2ToZ@U1=wJgW5bn zIwy#JbZ>&IZakdvv3#{Hv4i;bOk2?6QvwFoQ)HW#cf!%!1#WBOaC^tVl1Qmaa`FCT z;S$GsqA@E;@A9P%awUYWv$w5)xV*5wL6yrTFU1v>%-PjTRL(s)=FUUMe(=O;ASV%= zXC1p-W7SJuSmYfWva^A#Nuw&?KX}879aO(>`2OVLGmV%op|8;9_B~u$As%u{CLNzy zjN`_n@*R7Yh7w`f^G?E}p`=;*WyVlKKe2lrz?1K<4iD{Hgr3X~hFz|)dz(M?laqBT z6hF>PCEhO_ntgQAiGuVk;T_xXy^E*wwX>&+VcovgDTmz3p@)xUOP2+OUZj$4zy54G zgmiL6-%r0qE| zCO>9*sBx+!!bp(XJZC=~7vH?AnjbwxmaP(ax~bJ0p9jxBKj}<4xx2q=R+8@!=@hSU z44jh;cip)w4-5qp#ivDXE@y_w@BwKr<_}+>a3M2c?6}Iig?JxJSZPh#z3pTG_zoj>LgUspt z$&bzt6WQGo%O7wi!-0-9BXS-waF|8PBFltA$9eks+D8SzmgjqRe^ESmOuDpsjVKHK zsr)0Co9uz`OkAb+`L|+X65Rv)PqEM+Crf_aR}c$&+3C^Yhcbz^Ym4H2m0@Bscr7M9 zv=b8Er$n4~uK@m%BP8?Q2(c~keREE;9wJZ398`Q>LiYdM;{W0F2F43RKE-WA0L%+$Lw}exIHsVQEV6t>UZOdrfPEYp)I^T z(@s{eep6p{ZU9!vs|hyLRT7Q0S6$*=+X>6mHwVh>qgX?iEnDBJO8{M zm@gU{>%#TEp2Q~{2hHo6S9qz#l5g8w_v>l45_^x_xO+x<@Gwi@gMKj~?mv85R##UN zp*@#pv}QMf&&(jpL8C~b8yP1n__CHz9&yI2AE<$H!TAkuex{SRB?8~4WaX1sFCAN{ z8QEa)IH5n+n^{oL_*5PmE)c&Q2B}S9JsT*HL7Ij!J zI$haGf;l5XS(VZW&Eq7`x#tP+%w*4+r=6^HPx~#ai^>bg(uHfKZC9qj#$6n$KTCRu zVf8ufx@GmiZ)|9yAN2{OO6*Jf)CP&=TOWU$SB+5JG;g8X{y1=UF*3Vwyo2n_Y){KQ z)C;3sL19C49Ld1jCG2W1Mu_AEtv2_%a%fOp6l&-98AOVnOrEOQMSPZAUXY7_KW7z~ z6XVVHl|1JZ(HsiyBHS}VU+BcgfalvnI41E0RwszZCk(|B&|UMmOt2S{O8F0l$Y&FY z8`@vAJHNr_$Zan;_q`%5d7EDZT`4E70Wk|EPpg4hllxD3(o3Q1qLkk=wIZ@=*$&o3 zy#Jpv=L74=krHC@&GpgI{#>FEWPRhL-XL5$mUC#KQyrXIkUpM z*)ik6!kzgK!B_iA!+zOLVt=;5Scsf&e=zd&VHw>1 z`J`ASpnwGbxTR&P5kWqQJ)6NTkqE`S%Fr{eSc@b9};-N@$5Ou=%lzbaGG zM0|W^i@H22BnL925?$pINV~tYd-lN^(rkFZ{L(R;AL1|j2T6Mpj-#H+ZeI!rHQee% z{?yxWw4?lR?ZSI-I`Yz;%q1aUE_zD8p1&G4I!FnqK4^p_}QqZUuy(@F5#rI z?6t_3R_Fj1Xzl4a%0}IOe(~ww!QKn?K80FNPi>MIAmIzpV$3F38Vbf0~o3YQz>j8SfJ$Mx4|14tImJT|vL6 zCl@tw4c%@7VbKXtTRzl79DljNzb?;tS4YUe02R|hr>K=P?5tq@gideAbBc{ySn^h&md zh^xY^)JX;J5-kpL(yvCc91`HkB11Z-dfx13r>5r|&U}UM8O@I^j=ivjLM?S$Y)SWI zr_O!2WT^;V-<7hOo7o4ofsnWm`^*YaJMdidoYvlP|N; zMJr}sJeJl2gD3r83a5;K-mw1*u}vdHFwf-OC&eN7W}YAtEH(;qw@02kz( z=MIB};=9I2q!aYdQ&!G&7{u>o-4IW`P(dzK7L?^RcEVe>4<)bl3rND+jWI4PC*Fan0%cihUuj2$0Br-%!{8-I?Bd{IRRrJHB z#I}Izop7JwCGBKt`L)3jyDUhV>6x}&qXm8j>0DH}*+As9cIv7YG{Kd*1*4f;>p&%F zg@=_&6OoVquDfM*GsK=%C|xg}4YzuvMs{`fkx&6StATsT5ZAYJn*w_tTo989bjfQb zE(>(jyT#kVuc6)EKspM%-hL8wTvtzER)LtP(_H*?HVe%OxvHo7z9dbU<1`$D%_1YeeHijCbM2B69Z8?Yk-djUdmJ zuyE$cb-*_eZ|;W06OHp>ddAkZ(8I09wgbn%hJZE0COdk-_31m7?4|6~$1$G-y~LVf zi+-cwG5%qY6j%*%j|agfdCx7k0XAx0xqOF+Xgln0%T*94!TCHiOT!?7o$CKo&SAuZ zof>jfIE+iI4QRPx=6Wf-)S^(6*7yF?sI#QPlF7o!)Vh3$_{`H&sN3u_)i+%kfy!Na zsmBI;$oC|*L&3g0RE0D3RQ7qjK=GSZVItH;RA*kid~7QZH9`0hEBlLK$V_Sq7)os* zi<|0-me1y<`c1dEvQ}gW)|4;&99cX-*uJP4u35`X-MjCF08NsUy7#?`#?M8eu)>bM zY=sxTPglxh<5!(Tb?|0e>hT~MMq_O1lLGsJ7HH4gUqzv&>FZ0RI5&{QP3G6-5B9?x z$;JmK#X5m~Hs6bt&nWco{vl~c7j{Dl_v`6W_`cf9d6B51C@Vcoo5fs}pF-`~D^R@i zNgiy@T;u%40>9_ia`M0ieF`-@Vx`8xxh=rzf7iD-F_(PZc)<3p28HU@*u7J^tRBo2 zih~n^DoNw(?wuMq-h9+3GSw=ng{4c3w=7SuBGHji>l$n*)Mp)Pdat=UAwX>Q?f!k( z{<9U=2I;X-r#rYwWklsd@AvC%6nsy$cwxhIZPM~M`2N~kZ>=^$%6|qN zFzkVr?(}Jp(+-InN4Cu#sUxRzG?O&ma!_xTga23QEV5cfSF(34AN`Sh_PvinoYWhq zgihvEbb@Q<7UTE9?L;hC{=KsXCsk*vnR^)DD1>dDnc`%hOp*`jtQs=spoVWc=Qsad z34A$m%G8gr(|bk^?h@RI|L;>@{PA$bk3^}Y&=7WXkd;sKRO>c#QJroPp(6P~Qc_+i zpR|LUzUp&V%*vB2)ab%eKmWzusJ!}4R|2m6Sx%$ZG&^4PxdyMwOOb^=>y_;so9elk`5ivo==1I`UADZblY z3k3nu;`TwkWK`(rbG^oQaCFT=%~u6>gnMvOoZjjJ(rm49b*V=s$oZ!~kh&dDYL}5~ z!(XdOYqUj-kzPDVKGu%5xDx;$#5tPwiVYIh=VV52W)aM{i2lsKDhRHbi8wWE7$#R5 zW`7Xh5d}-K)D}Ipz>AV{g%I!#|0rOzXMZ@gZ=HlUGq_ z8omdupwFv}sf8!EkFS}W5(i@J?9m(4aGtY^yI7=IN?uw-EdAD+2D23H^YtP#;FZKA z)-_k#!7a>-hjQpU9Mjga2zRRn!YV~B{7pu=r)s1AT z`t36ZXSV@Ybk|bv2!6W48+~cJ)ok?XI&&{doF0I-70$^<2U+PV*B`U(?Jj})gHs;U zCk;ZFb?Ool*+rh@<<5Dvq8sdO=c;d2?}Al>y!j1z!({K3w3Z#tl>ok9F81+vLz{@n zH#zw}Qb%w5BpJ~G^Q#U_lGy%{Xy>s-Ii=N-SjnSH3Y$=XoP%9?`8_k?5y~{}B)NOB9B+!X0=b?~u z0R(cB3$9;^VxzCOeK{p~9fb}{{bp73#e?yu?DdWp2FaAA6>W}IdE{ngL%M#Yf7~UC?g;Gp_sOfXE`P5!klt*f-=S)CO&5{+5c*$$K4mu`fbIbV)zMLD;Kd{$>{?X zi}3H%vYSLba)y#-^G_JE=}}5PI0&uT%H2*mS&%uZXOwWH9Ktw$Q@X$wBA@zP1Ih`?ezKl*8eAI4PFsrh$~dwNzH=vkcC?x><%Rf z?*7-m_1C~NnLynp#~30vO~&mOK3DhT;`EMQo&%CZM3Q8blIvfl&6}_5MjXEFmrUG~ zOA=C9G&R|K$bt-E{hS?-;M$^1TUE15LEEH1DL*m{c5aoavbYfh7w)@^9K!bk?1}OD zF-Ga|s`y@c>G3eqT$z4%Zgm5cSO0vTW|~O~sVfL2)Sp~YZaZD9)CrHpgVb)`O@{WC zpIdwvClllN?fX}~jD!sZTeG%bY$E#VA{CKMFUgGtUzd`EOxWxsK82+uhIDAnY}Lvm zg!VdBren?r@_oH%Ew5q)(W1Dh^Uld8>_!{zO`q8ct9{HLF5>b6YHm`-MwK|C;pKJ0 zNHh|z9oaf`>|77Alz)FZxy_r%j;7ltw042^3XTu<$1~w;{}ii(gRx|imZiwjH)YV` z8LTJ3QbBy$Pe^BeDslgSD;|q`K(a+8Fa<;^8ac?%7@rYoEBaHGXX& zj&rQ7^KN#KH{VM(-ni9ExZfF7@_M$B;!OcOaG{-K@9j!FS^a<7yAp7yyDm;tqGT(j zMM+U{l%>*2Qb?0mo5)sKqA1STvrU%lOT%F7jJ?8qf0~c) z>HXfP1<&`^)Bkz+yEFHkd(Q8FpPB1-&pn3*Jj*_$10e>kx?aq*%&Ygggy~*$ zC9@b?cU0)j!B`3`&VOT+g9EnjX6j9?B{bF{&B@jJ?u{AH)gPcAteyuvi);AHu=Dc^ zVlt0&*hHXUddE|KRD-I8E@dlHyU|=_;d!$6L($21yyV0S26&EM}Mrb2{ZWA9*bN*U7pl=3F}U>Pb>PW!WwEgu951vOY4a*^vs zt_UKz5a`$At^J?91O0m0Et@;*(Y!Q8&Zk;ANFfiUDomt+v^|^C%Bn0lCn8tUg~#^I zR~?ktV^#qe)869O4{YAD;Bc%0lU($iKhojPFm5|8!4{OWm&U_uo`s^EO&30Is_-oL{*TW#pXg-Y-ajnbVU@`m(yft+_ua>R2hltqAanu&V)< zo{hdqyV{^caVBF9HwB!mO4>v@s6gyvc(jH$!kPJDVrnI+;OfT_T$P^*ICmraYpl&+ zDO9R%b1fg*HR?~ro+$y*iej|-aWfEH=c-+_$pC*|4lT)5x8Pyt`BP4mD41Nt&h^!k9xb}J7K}Hy0_}Ds7QW-Cfj;JGRm20 z=f13=3v!P{vzFFmfSjGk#*fn*;GE^vDQo3>K&0yFYlE2pMTzKOi`JQkTzP!Nf1&)QJ z<1CP%xGo$W>3!Z2=Jf_75~??l*RYVnm!C3`?aV@UD@8qw5-&g&HDO-2Ew(;ZH=AeK zLxnCoxl8?jcEFlz0+aapKETEg`37@(%CI=>9s43SRzsi(5|cgD2JJ2x=6AgM!C!xs z40-(k>{40cD;(Df{HIIO-dt{gkZg&~nrF+AtB3U}S&KHXm5xhVF4Y8Y=eW*I;jcvL z;k>H-8`^;PO;WDKy-rA+dr0{9%_MNTyHm#IT{BE{;JKAfs|J$LlB02(8d0eDX|3x* z*nB%;We|Us3Y(YOdgd&pV&@M!Bc}4Sfe#Ir*koA?+QET5YiTJ+HR$3Y*%Pf`w$$1s zoreOh{(JDPP34F;J-D~=LK`TTDK2{u8-djObaY$qQBjHoaf66tE38(ZK$(?%1KBe8 z*7Prp0X6G#+4lx{ux8#qoPg#hgzx6L9(9C8!SJBd{M2VO2uV}j+>5G^sD~2GtqY5T z*&b+O$wz~Q)I$E!K04A0JI|_fE&}ywJTt#+Q3*wh+Nchd4^d>V>Qp}gEY4HG@tCta z#_Q;)eZ0=!fk??wGQ3XM{(ttZ19g^IJgJX(_~yg;=sh()FUzz6&gVT$wp*GGAeyW@ zPs0x3eKZ^|JTC+5tv#l4SKmV7(@pFN=K07^OaIejEWYaQjz?~+e6PW8qu`7ws)5L? z>w^kGr4z0SiR|^4rNON!P4ULzWKbtqNg8uhL3B_G&qcFZEY1tZR&k05ljh&FP{fzP z9q%<8QwwTASxn<4Pd*v>T=z@HEg?f%Y>EHUlzM1+e859AJPJ)C?sT-VD*{ipRl6ef z>S6sg^*W`xMC5DbCGcl-0<80qPC_s1AiIxn*!gTey668mz;Na6NI7}&a9 zX$LVEyB=_GleM5 z)L0;S=VfrO6PrL?-U)Vs%bSuzQ&7Cbj#w*^Dj@6EBnrRogeR5h#VcHM(fLWj=1nmf z5RA82T=Jp|nxY04Dg>pXY;`xH3VH`~LaD{dM?S#Z3#_R+^m0UYyLV3cZYjv+YD!)8 zrGv9?zrsr;Rv5nOKF8r@%ef(Ib`UhQhe!t50Jr1d$#>4{lEi0N$Uj0I?Y1uNA{8j*M)Glr?EsLH?BZ@2CxX|} zl8@EgC5W)AgRtg23+XUEHl-H-6zQ)fF4PvyK-Y12U(>@ZBoQmz=0xd06m6oVS$Z!M z&fafAhBO8Q-SNIb@4(_}3eWoD@cGEo-fUXqV+I^}!mhUy#i4#VYUQ%aj;M3d5u9KY z1KJLn?~zTugUoym-zC!$AU5TIv@xcCDSp8Qfx>ijZWgCV=-ZcY5ABGBE!Z*GiwkDz z`jsHHtVFIWQSXo`=l*qgWd@YnY59oyVdqF+_5O?hR3%C_P1jYlXMo^g|G-%1Qk2?! zi8o3q2-WuQwD77K04GglaKg@i#$MVQnI~U?G8DZ;W{32FXqYIM(J~TBZaqe)iDyEw zx6rzUT7977wMO7huO(ceKgXXT#)ILueIYvP{c!7IXwIsr08}Q{Fm;Ye0x~vE`eVW@ z24tIiS1ed@7fsus_Qrm04D=livQaQ%B^`}zcyLNI2RRt+$9vv>1x=zNHN?GG{1V}g zxBMy^a%%dZMUX8+cbjclq+%Jc!tlXvD{t)l8B2&@IkqU;K+AZ3Ns5J}dV5yLwNxsa z@9FZY^yNLU`{+wN=QRN4d?;*pd?R+wal8KA#f8vpWOdoqvL7aImfIg5Q;D+b0@ili zXaElG-rak)4q$P2k3?6dHlkM5tP3yFEYT)|b=zhg7=VKLZ8zfT+tK!asaYpEB_W^V zyj69v0}yfZ8JqZ#c0@22FlbOu2Z<;#0m7VqIKw-)ht|-G!~){iC{T0JM|UNeg7`MhU{zWXZ^?lHg9Qnu^ z--BFFI8MCp?~CN)a|y;0{jju{vNy=D34L(q@dIltn*5!4BS zA(UAnd~M*?=tpQRu16#tmyI}#e~p}-s$TxE8A^I4ANCYzKsKj3wKI9>;J8pSQhIR< zEH=K!Dv{rYme*Ds=QOH@XmfrJ&A2*9u=89Ob20!p&QoJ;*7gCrnWPWZsTz>e`O+J5 z7(aWQBkW`p1!DIa%92H~eQ^DhnqA}?q~yFx)ITa7B9}XNy|?uIo%bvX6ms9|t^Byl0(E+OZRq>j+^(g2__Ob#|KbY~R zt(fmwJ8X%Qw~nCGv3Q0`C;4g;+VsIXA>(N~2yH)8Rq(zIoi*UQ%$=1D!gF^KuYPKW z2jrd2^t|xiH9uy%*>MX`;Jq zJJABc8#8Avu7Z-1?S8AbbpVk;r^w=170TkcZ=ScJp^^M_oLIhm=8^Qj&-65sG>Ms? zP6f+7pp5-^N)DZB$Ii8L4ptY!N&@KVe|e&PCo7hJ3CoH9_4*yye*Mrja+i9sKV%iX z;xDg%+3$CI5P=cgz88-e3mHPMCUqF+jL;1-i`iR;+uy5iwEe|9;-w@P6_5G&?boKT zZcAt!bG@VW_ebR)K9Ou;gky0gLsuKroz|jkvacI%lXGuMO|Yg6xBt`c|8>s{mI-*& zN*cE3wZ>}|nWT|<_y4l%d&k{!RCR5#R{gLa-zz`X{S_uY>I==s;?#$(AO9TqEkB6B zZ~Vq;9#9+DYr1Zy{qVdD3~{*9TbKRK@}3YBLBZkyzSaIM|%muml8Pe$nA$xM~TgE>wI z6EqKAE}TOJrnLt(d+f@YFqqHOg=?g&{9g&;|Ka4c5o58xn0SGw)aM~EyS2ZYaQ-j< zKWq8xdY8#J|NcH20_d;!{2gxJ`#O_v9>$r;HxIYJSKny+Gx_E*AD_uLkGbB_`un5u zOul*8A12>C+-CC4!|fj(XRPFyeDkn9Oul)zJyzq4w;m?n{ExAl$v6LF>=|$Tf9oGa zVEn!h#tL61-~7Y#lF2uJvpkb;{^tHnzWJN`j} zlI3%SSv?nCGaXYsoVMOc3nNpV&$Xyr1Wp>8=;;v5R$5vZnVejyt!rs^%+SMSqTes JW=Y$X{|0N>CNBU0 literal 0 HcmV?d00001 diff --git a/packages/itbot/models/IBM_voting.joblib b/packages/itbot/models/IBM_voting.joblib new file mode 100644 index 0000000000000000000000000000000000000000..2247df3853588dec0adea15d6b8d82f8b828586a GIT binary patch literal 44357 zcmd4Zd0b7~-#G9Fjfw`TL}kvD3`wMQ2t_1Qh@|^7+L{`h8rk?=_gm!Zcg9bK#%pA2XKJBm zXJupSr-SQk<~DvbNoG>!rk0qbu7#DMk-4m{xs{12?rq>l6WYO8++$>7V}yxXS^iFv z%i73N&)m+@4-;GIN1J45uV?P(MPs+KGWSy@GuBkM%v4!MV^zVGPDbAOjZN)zO)c$= zYz&O7?fg7xg1=UDZ4LA=8zz40tTa9YdI@w-8kw3l>Tc`q8*8^iJuTVzPefhP25R_U3k`xYOw|3sXy7TRjVFb0b^bAN%^Lv(W_p+={)! zm|lxw^o>93P}kT-&j5>Lsr%zg)t}A5!b0PtCvI${XJ?Piiv^xSU#IV*Yl(dUw@^hi zXd?84Of9VKF}IGG6$2Y1J*>lDsZghB(0B|CtabIwt*Lsyx6}A7tSqhUtSn6pbPcd5 z8dNE&^pA>Tw{^e*PGi=at%JoM)yBS8OXYVj6UF2Gs6<_3d&{3?u%+r*W3{te(G%g- z$K06d+L>Z*u^G*bY%Gn;@k<+hV?P?FA-&&XbFod)Zdxi^>UOd_`AolS=#^JhsI@OZEI?d&GoD7G#*>3jj5#>z2|z;CR^KB>Fep6 zViP)IZg>s!45&uBwx&*)g=DNIs)QF+Z2JU$uwI$9VMOC(p1_l+dN%ZK`m@#O)jvyv zCTMJ~hdshl*A7nuTVpF53qMaxh{kSir0YkU$*e@|<#==h`dMmef+w+_KD{3JcF@Bu zmIm0Ie+&oQKh6&9LVh%1?DyuT`m&bx7S@is)}{tHy!g=sHR!7wZEW-$57_8gTmL1p zt-U_u?Be(l3v+B~s7K!y+YM{@NBgL=UBqQ88~Smnf;0|8J4b9a>JjD=?#X7n*3Zk+ z!*7qD47L!flAnf##*fZC5Voi$dl#Lry*I2Lv{Qxi)IBTGA7 zeMdWNesuwReGYo%PB8oT&#;r+Si;!yv(BmesRw_Ki`2u^qf}jbR;hYaL8?C0gnHbQ zYDQ0K@{g2${_~IYA{bj}lYft^y7YmS%F9TYpE`v))r;P%7$e~yy^1R2NflOSrFRJI z2GgmcR55i!syKB9RYIMGI@1eVohpeZqvfwt69-LQ?8X00#tms~rhn8XmHN-R{8co8 zKZ^Eaky$=g#=?zV%<^&JnUAB9uHWBkjP+NI(GR@(cQgLC2j*fNcoHUmV;S=pKTgGe z9zmVm{hzJ!vwe5mx|?JnbDcc6CZyh_?E#&|&R*X8-op(!W}3XeFD(C__1}#><*zj| zcr>_IcKJ(k;}Ro1M!%WQXj~cUBI;u566#WQPU_pvvN4kVaZ&tvj^gzb$3Q*$a6olb;bvpR^>fD)5y$L5t_bu#N8_Mh)-W|8=1BAN zGDrUxFH-bt8zzK(^RK7W?+)@i@7&B zx+;z1=e6i>2T=W^2eNCe`J)TcSe^Ye@RrBi$kg+u z6|a0$EBZd%%xjz<{nY!B2ga4wk0$zaNH#Lm{rfjU7N$RjTwN0@T{|nhcpBUJ+5ITW zYwCY+QmV6HFMmV*pw5lqTMPv-d`C4=7sD_ZLum}(<8~PgLvURV!%%w4_ACB4>w^Ay zx~s2s_p?{0sI#gI;6VDT1F>TxF#F9sM$O;QJA|iljUV>V5WzwG1h7sFzTD*{3f7` z%w|TQhb|NfGdcSBLI3dl41S#lxLVnMpqf-WO?#_aRZJuq-~SAhf5m6qOS5qPGk)gD z)Oc8XbK^_7u5vQ{FY(t|hfdW09TVCsRRW{`i8$ z#pYLhenvc@f5w;IHr@)!^y-_5{h#su&p_>0{ZCZjNDuT+pZjQxHF8-L}Wd0b}r z_v0Uwn$ek4F4YA=0^w2BFyvaXFRcA@r4-)O=BkbJCsi03?+O8 zkF7WGCK2ZN@bl|=|8f4A$uY-=pX+ld%YhFoyFBHpf=y0?GE=hBK~_jE-6x&t741= z=J$V$9}nfrOMmshKep3jP#DoznB``M|J(92<1xekZF~tvMwtEUk9Kt5Cw|8N&&NMzJ^l6iwt&Li&b+S7W^DK)|19V3HAA;(uE1%@ z3R1z0Ko2X;D9lwU#)32>{3Cwl{&y`PtM0dP`{JP9%!)!NZ_;2m^Z{z>ThsX3O^nm_h z9+w&Z+wuQ?{{M{qKgVb5+mdwUNICIhMxck%dKBjBe8$3RM)*hm1-k0O;e6QcDvzED z((uQL&0>A_SA6EUzMPrh?@*wAFq3iq6%ywC)z7at{c693jQwSP$73#a?z=e3i2t21 z&-0&OuB9+{V%8fo{I~l1Gy8vzUyB$CEoFp%>=#pL(nbEK^KUUD9`mu9nJ;>%&DRf_ zA0#if?EXOhI=-)_F!y8Tn;HH+|IGWBf4lxO<1xd($7deruh+*FzmCs*^ps`n_(%CE zSF`)c|EuHwkuDzT_w|FBZ)W&!`TwI|(sN3o|3m*U?@LzvTxI!VKj}S6v5fvx`G0-? z$4Hjt-_HM)j2%`n!avIC^Zv{PDfCDj&ODewnD@CqcboaE|1-WB zE&d<*!Yur*e|bi}*D=CB>d$(5Z!iel^a$>os32eeOhC?=!q}Z<4P!x(x#4$6snD;2 z%BK9$V6_zTZ}%SxjQ!U#!aokvxwxkU{(tX(%z9^r|5pG1)_&_5<=(^y|ET|%E4Tb% z_?_FR=2!*!_(#RCJUmTd?9QUZSRl*|zr)Om&>mnuzx?(7T$aMzZ3AOLnYrP2C_P)9 zCFcM4`lm4RyO9z8Sxsxp!=ZNVm729zzW!gI|IGUPxAULb?#%Gt+W+t8KeL)u7z>*j z;UDcUJ!9Yk@X}77>&5dg=+A-$J5iYNna5>@|91R;>wjAq32kMBe;md~V@V#IZLC^R zi1$xV|M-GM^FKd6o9c`WTU;wh3Nyp>P}-EjTxI5)8U8*0SBx|l@AzCnN|_Ppp^F)X zx%zvalhZ-Z+#ct?|2{c}vp#Gd|C~PM{CPx$AD;?h_~TPaZcw&ZHLWfs;kr6%-gQ+( z$1ZD&s7@`}DoS4}AjUsF^<>qLPY!7c^p^eDSWT9HY{aEv#%cI_e3kt1DJNZ>^iL(( z|KpR#2SwZsnJjAG)psQZw@t!fhVivD4S%;Q%w(qV?o zR60p@)sGKR`td0x^S51_x9wUjiL@w*uqerAyPXDwr@)z|#<}XpqfVLvB zkleRTS8TXfLw?@=M3Y5FuEzDrwEit$|I8n=oXi{>&YpZIc~b<*xm(`*Orh-``D55<%U}J3*>9NTWajAS_BzIXdH+cN@B9B;XO^28GE?g$ z^j;8Q(L(6GV&1kmMtZ;Nhq)&+T^>ze77?CG(ym)Jp4V2vxL^Ft2wQ*UiJZRI!Vl&?f73MIrq^F|Eu`N`NFK1|1|xd`!V}b_&?J7d;Y3#2tCehtsqmw9p3t5 zIhi?S?zj9T&FHCIB?%O4SREcvLAJ7b)Z30#5xcRjm0}#F%F^X1n40MdkzLfAk86b%I%+%*)FS zb;cGNr|!@9)KovJi3<1o^sml_Y#HR|s~K)vduwYe8@s>1D%&}o{nxt?*I)Dee}8{T zzsAy^r|5Hv^y?!1+DyMcrO$ED=Sk>uqV#!9`kW~Jxs5)zN}qqB&(YB5JEYJYvGx>#`>TzJex0XZbLrPxHMAYki%g&2*oia{ z{gvZxv=1FXhmamJK!(T|QIR>aMAqm8vO#vp0i8rn=rlTuT+w;thAtv+L_=55Rdfyc zp&RH9x{L0i0Q3+&LV@ThdWN2(*XS*Jk3vv5qId5P=o9*kq7k52^c5wdB$SL&Q5wod zd8iN-p<+~u%25TXLA9s>HKJzJf;vza>P9`N7xke5G=xUbC>lpBtk~v=1979th#v_e zAta2Zq3LJ_l0Z^u4w{GP^XE&@GPE4Yq18wpDWY{q2@$jzZAGd`4bk8IY)3oLPNa$U zq5Vh;X`{pF2s(;%kv=j;R78I@XpStA9kNFb=rlTm&LLNH9$i2ekq7cZmykE2AzySI z-9-NA7P^D(q6g?9dV~VeWAp?)Lod)P^cuZG!6*cUqA(PWB2Xmyh(4h&C>jAuM9JtI z%0UIF5EY{`RE{c8C8|Qzs20^B`n*#MYC|2U6Lq0()Ps6aAL>T~Xc*}GX^U_IVksz9erXx`#hQ!fKB#q{vxoAFGh!&wGXenBWR-x5s9ipI(XcJOFTahZ-hIS$i zq=|N;eMk!(K-%aqI)Zf2F=T{H&~apgY>^$ZM<>xK(3Tr?joKr)EljW`fD;zji5X!<)RK_rZ(BQYe7 zBoO^Qh%}mw=AwCMK3aelA{n$4(dXTkBl^72Y9x;o5PcqIJ)%FC6GTCqkP1>o+mI&O zgZ85RNDCcA+UPJkf^^VPq>GLrePo18kSRKj%#Z~-gU%rrbOE^|59Eow&?R&k`5<3( z9oq3oDnKQu z3{|2kRE_FTJ!(R&s13EFPSlSE(HNRQtk{@rh!b%k9>k0I&=fQk2_O+9io}pOnu%s1 zX*3(nMf1@Dv=A*qi_uafi&mhOXcbz66wq3<9&JF%h=MkvO-Kc8LFz~Y?LxcJ9<&!7 zKnKwwq=SwjJ!F6kkr6UMrsz1bKvu{aoj^9o7M(<=kRx(J&gd+1L2k$$d7{hc3c8AX z&^6?TZlK%f9=eYL&~x+>1)(?SEqaeWpeXbi#h_RehrXhClz>vvca(gJHave3C*nf%-}vw%KE#ivps7dz2_a!5 zf@UBIGz&>0DYO7BL$YW&l0z$yJX(Vk&|0L3)*~gf0VyMbHlr;_4Q)s2Xb0Mb_Mp9J zKRSpGp`%C_=^=e&fDDl_q9RjdhRl%#vP4$M8l6B6=rlTu&LJ1%irmmeG6m*^FGjozTQC>Xs*At(%eKvC!;`hoz(qBxXvifcb3VU}Ql5k@@OV;&<7SfQ^G&sAimIUlvFx7p8l_E}S zyy$pwg6#ato1T7-EvA}J{9|${faT)PW0n;YsPW< zraas_ORc?!Gkt9#7?74M5=lU40n`~1WNXpvM!gD1vDNm=~KQUfC0?Ji8;(0fhlWTig`>gn+D17hwOWww@$B1*W zyZ3F6A#YuI7K93mQf%ZT*Xw-crEq%k*6Mn2P`XMjR(>lKq11_NV5?p*nKGw1VgEkK zUb5-?E!jod;uL$Y)U8XFSCWUr;}s*XYd~9bzsje_0+bMe;HT_M1t|NB>(1`-DI*SC z(wgqwT$E*XY9AL^3s6Q}ABz@$90mt?vh*<&6y&@=%nwkA6H5#z_g2&+@A)9e{0-6$0l~St$GX zKVN>M&qFzQGU*zxU?(_7$2q*V;G(c?XnFb~vy1pFzO~1Vn>D8Y*4?w~E%+(BuG8+8 zN|%y7yb0NSx?^B@Z$h2*94Dpne3;CxMJyB%Yj;f}sE4FEvjw*db5NW{a>8e;vr;^a zub*U{k^%NRqN>|24KA+x9eAdI+3$k348S!5?sD`$~$6FgXWX^WOq;<2- zDPX@`eW3Yxy!)n)bbZQc)MV z_*p-+n=&aTAnBeM`Oj5x}g8O zV&aNxeMDnl?QtiIY64s0EPcfWz+gdw)v;wG=cM#P;w)dbbFXg~#KhduxO{4u z%ym~>61Xa!tSFYaqj0kmlv(C&X_FWxelA<3&sg@7hm)SiJKm}#`$V3P?R(fuu6)%7 z1=)I1H{-&Ur}oKYion^;5eg+lT3r18y~#Mg*|bt?aprAMKNC0d#k852HL^x}?|Vkl zmhNxiYD^;^W?OXl23CUicbho&)*hlIzxrG1+$xaDd7JjFz64ZwBX#zC93Y|Zh+fDPG=fZL2}Nqd+mV@B&_ePp^9n+T$>%C z*A-g{%3bt$kKz_jf%HQA+Y5Aj+dQgiRR zyKyjac zt#+AI1-jFD(x=~UCg~@)epE`SB+vIbR+srEgCeJFcjdb*aQ42my`(n}c3;<7FDR1% zmO8sGTlmJ3xZZE0Ph^9MtZ?j_^Ro+JB;x+_dvSxLW%2Vbx99hf%?F#8Uc`CDqYE#l zbu90M^U_hb#~Qlf%fp;C4{MWP$%n(wM#Wp4SR=h%+-EIpZEQ8rI%!<0wR z@!*u)Q_*U2qPDSJSFIKn9PGHEF)f0eux)}<@!yE`#Fv*fJBy&xQutZN;bxfDASG6K zy$sg&)x59!ln2~mtTW}^(m=^JFk`n`A-NQ;y--mmlx%s*KTQk!W%g|G3E~A{et&O^ z!GdNeTyp57!dMxpl{?J$@p&h4>nrMf!`loqwt2DdwulA3dL844mVDBirW%rM&wZst?vVxgw5&CAPWY3TV)i~<3)0}Z z@eb9p;z4q%=jGR{mXl(7bJra*(q@ag?R>PwR?d>yHkC9Nt`hxpXUBGduWM7n10hzJ3p6j^x0NE94 z9gr^<47U|MrpCYOAqr=PPW0~VCn28`mkJkDlP8Z?^S#dqv89@kXU()Yv-%YTicTR@<2_H z<}h2g3Of4dwrtB`q3pO>a>D3*1$nmIq;8`_DfF;8^UVI(P8w?4BWy<7VK8m>_;^hj zG@X~OmjBp93I~1TuISf;=If{Hi_`N!`r!_xww*;}n%^0f_jg;MsWv}MQ>6+-{k}dG z>}e+>Z&X@(Lz1B7>+^+4;vH~QbB5?{t5LGoZ7{LzdpgPRNW37ITMI3-4zwqFbdew# zeeKH9V(=d;4|6${3LATM?IpQ@%-i$KpzJ_5Y~Qx!Y9nMr)p5Qw)5=0J8rYJUS%dx3 z!+-mh9o4Wrgm>lJi5Buue2a$pf+A9@;@*<~trA!+F1^0_U_PI(?4fd*c}~ zjY|&xW>y4j^Ny5->(qks715kYc17fk%VuLE*0+#6o@QLp+yj>W=dASSHj%Cr#RU>y zVo8o&nm~197bGgJ?r9mi2FsVv<9RPo3m1)puEq6@fRs4zgN&92;`GL9GLg)JH!1xZ z4_ZeF35-=@Rh$}=opJ85{w~3oqhlM5?v1yT8$O1m9|dB`(-#y0v&qlEXmY!n%FTYV zn6KzX>e@zVSvptTKdcs1BHG^9H+GS!^Evg-?I|Y9@_eR5s#KAT^@;nIzUU*79n*Ez zXcYl_dn{Mul_*%Lm^jpTsEP26ycD=3(Li3F8g?}MTul5lf=|AA*+Xm|`+H3ZxJIs? z{ubZakV+D!N69Q(G(c>;&5wag6_{4pXWW{20y~Q2#5VcXLg$;k=%eMdtT%3 z!cPu|%+*LQfVw*Ctn(h}By+{^_U8h*F#pNX!7azLK)ydC@P1}4ybThTT<4MrxlNk{ ztd~I;C)qSr)-jCHY}>!78$3$Av7F<@i1|{X$ksTP?^5 z)+IHkv=fJ}M>>?9W#o|6+}p)F^I?5TxgqW*^(11JcjTuT-y!XCp4N%Q^`!M_P1T2!HDuEb+sneWnJ^_M*;{!_D=8Az zExr-{jfj{OCBKnBlF(Zb{`+e zg&yb2BAppEu-U}tY}L|MqBJz`^XH@j5ZJSibFM}!>=k{b*{RY^w%UaxtBPbp=AxGQ zrQ7>Kd8@ha&e@~nJX`du>l4u+^>vw^)%`Bezv(EJptA>^KQsE^0+2dsRpikQze&pS%ACr9rG<^&G7tkNZbA7P6$2Zy_aWC zA6em}+$o;?iL7{Y!gkweJnMN z*t3Ra7;{_`y*V`#l)lW1apo!{iZ+G(=N%$RQB{fGPTyhBR*SCSRU9Q=)D6y`E;kU% zYX955&I2I4ysOV_V?7CY6*TAchH`lKhP|(vdl>Yq>TA;u)stHnm)*)gUk1X@7wq{w zZ4^QyH}LFw-AbrOQ`fl4HNuh8`_+W!v&2*`Zpmj28zjSSLn%^bxuEQ1_x;$ZVGz3* zAW*8>LhN>$w?13i3^&474X$|71FGB};;rRra8dKgamDCvI2*o7u+e`2YLEL51u1SAw~-%WUTjWw7qcOr5>Ly&yljCDPp?A508;_V+qQk|wRh zIZ?&Kz-7PF^wN}gviR`0qQF2L*>XH+ZS4q4%rXuWE7zQSGD}t=E_PiIoWFP?*uR=3 zrY+_`S+#2nxlP%*fBa=0*zzthozp%F^ET$~Z@60wLgp+x&PUb3y{p9X(zY>ZbI8(` zF3*Or!X+JEGj4uDGCms}kbdjBNW3)WYa)*UqbN`rwMoIw94@COCSN zrn_}rBXq}&*@V3A2RHA^`zf26h(mRoE{A<1c@btPGOMZ+&b{dnzVI*`){%z!g>w?& z(yPTbC3m`EVd`p@l;@{lL3-2>+oC-3b@v7_vD9|x8fupc<|_w(LN*{m+u8Rh5PEXj<>Lg`+iKCa2;$DR(x16TuJn@AZ;YR2HuX& zw0@lz2K=%Y-nQ1k zWryi}8sTwd^MpdPpM4&5Jd_t*$x{aV9HXYXUuz&5pJ)-DA+g}(6l#9_O*hQ_ek@Q& zC5z-8JpEm0axv(d5=HejS+L35&+PWTRuW#`>NTu_&sDiXdy^}(;Ke1;bgnlEWb3Di z5Sms8aOXy<#b=hl(UaOkx#D?*f6WN+g%e(-ZX%Flr(BJDXS5tm%ME z)A_~bGIgNkeRjfQV>B$5TxUiGdf~L$oJvpYr^Ns8OI?+^QnFXIVv4>~{z#uJo)u!?mh?B3=csDzQOuX?dfWk5;*O0bcHqr+XTwTMr zuVh2JsApsssRhn<7ER5fT3EVl=B_!()nwpSkk0EZRUqH9cJJ8yT44F!@yyG;g$xN$ zMH&w_LgDgKuCujS@XqH-sQRZ?;+Z2Nq$5`YVuHou?k}rg!`o>NT>dTOxt96?v(|Em zZo4UC)6@dVB?ot$)2$(0ukLSd4yu9|{5DUeXV<{@%e)nS5TYPw*tX2v@Ur&?lQ(B>N`-UU6O8>B>EmBO?O&jhv(HIW(1^lzP2 z?E#(<>v^LKlfd}N8cVZ+7SfnwloNgIp zMrCi8ylF03lfY-?w6G77XYp!g9m#{1(3fL(0AnOsVD3dlargfB0mVk47l!km|V^ilQe2f+6P96 z^vLqgWeLsjY?qEo+WQtlJAcsf;EqvJN)>k#c+>)_7S&3UPuj?0`6*|kN=8YojO3G` zBh?@jdFi#hcptg!E}%Y;HcGrrFFu*EssGif(d0 zXvxU9Y87;EHamBBO&!U&e_@Z{nSL^~fR9~^8|M*T)SpbOE+bht#mDY9^$=Up3fVIK za;Wt7rOi6kNmdfIL#h^iq*JmvS-`3ehIi?`Rejn)8U}8qtY@vlDuQ7_Y zLu-)es%>&Uj?dwL!|MIYPSWLQR2e6F7F{89=-LKoBSNmP^d zH`lkykL1InO5t7V7b{7a-m5lusR&r5u6SL1K@o^MpK^`c*+2pw%(=p49YH=DoCu24 zsR7!d?CX{4T_io`+>z-CpTLQ#WjX6zJ=90>sEk$Bk&swrj~O@~)IZPWO;zfIGe_AB zcRXt%T7ynSJ)7$wrKH3l6{*D#z?p8qEaE))7LK(T_ z(`U}rp9&pzvz++)3gJ=nhCA&Gs|b9Od#1B7maO0qq4{h{hu+iIrz?MYM^^0~zt4B; zI|Ru1_YMiP!ja&M!D~O&g155iy5knP;NW*%e&6H<&=X9(aQS8v@LY_Q``(rUxdW0j zEx*)*XUv?yYwv2ojwU@AGCP_yDukWvT~G=9H+94EbUUF-Q)$3jTe<@KcM;4_vc}*xAlT&y+0iJ$f@!-nkY&?vyZQkLiL>`^^I8ruD;# z*GHzFooEJ84_CH#LFusM`wHLQuT{Xds8`YcOBH0YpGjI=R1bF2FH9+xEg*eY)M!C; zGf=Wx6#OZ5;5l8SN@pyI(Cja|iN0=u)p||!MGqQ5kJ7q8bN*9Uc-MSK6)he*W{9j! zJ2?h}p|j*LH*+9zcTrMjaXS=shLMTb0wR#N&EXMmE(pDo>S&nP27Q-h z?nh}A5z&wSmd^|G;SlxlrkpE9kZ@aO>IRj561;vO@cq&Yz;?eUL=5Hu&crsi`#Y~m8K_OY%bpB$VADi)@LFuw(lu~{S7m7f!@?8+qW>+<9F z`;@?3l_SY>6|=$pq6<`A8}*{pzCn7#&i%5>t6{xN zZm_ySDX6g5sil-elPz7!A)&49U>3Y6@N#+v8G4?Q!u2SPvSv#Qlmc?q@wEGm+B&#((X8%Oel^%iM#ql!J|?rv z?DiBNse)5ZhX*omGyn%zy7$t6I5MH#W3hN0{vEE;&f{0i+dzM_en@xXd!k>+A6Kxy z1}1%E-^O*U5{|6C-^;zOn(SDsIk&8)25bk-Gp&c~3Hul8s!MG_M2O{#%)RA}u&|6* z!TCZhIci}l(aQe~IM@$o9FmKN{%P0aPA{v1*YCydOvUS>ScTdpodIk|#g$4rC)$>GkT(INyJXDnn}=Cwd*bXLIT{ zkrS?)S9e{?hY>Fq%OtKYqWJpSP}Yji;C@lAxhy=I@bBL2yjZ3L2G$gA@e=KamE;v$ z`^^T3Hr`hy8`DARI%yW&F_pwm3Y-mj@`!4Hd9v`QevmY2)~p^If`#$k+k)0t5{bMK zb|0Z`cmb35HBD&+_9wj)tec9VUR6e%t+a(uhE$yjx-&`djH-Cwf(|gPbh9ZtTS>Sc z=7-Tr8XzsA=P}o*8i1&=>#ia>u=TUCGM9QM1V`*{wm4S@rVdhOn?97lvbfE18z1(< zDwdpg2Ll>mv{SxbVty=0==MZNe&__&M9F8zyIO%qMNC34zl_}3H)leAhcV0^**GWU zN)-$lMZkvCd@#7pBi+MQ19^9RN{cr%LEf>uPL3OE$%v}{o4M_Eq#@$6wvtIb^d#Ss z3z?oxqTSTOw=9T($cyevc3-WADF?ZQ*R9O}PQPh-uO^j3z_H~+&713?seAa*o1S=* zIk)G`#NjV+CvVdem;J4vXvnUf7avZZ`1`x>(JliQiP({N`%dsF9JO=h?j*4#A~AgX z63GMK!8PYxJ0Z_-p2mHdO5)?+sJ2kK1a2#{>ukn;xuSBe=eEv7P)Y5{YGCPvkp6bv zTNd@OZr=5loUDAJEc&bFWS?h#Nv8?mgV>UpHc22Aq_A6tvzO#3 zw=aof=ZGnBKPZvN(GTA@^aMFCYbRM*0XlMnUC>~wwPR*V4tZYXxave`BUzdze3xCa z8r0&PG^M7-G0*K=t+ynMZ`DAvB6%*)f7@^T9Pz3++2Wo|CtfI1*H zvJ3zIRi;cf-?l3V=DtoyOzJFzuxZitl=?i zHtA$naP`31%bQQ_`tTmgG9)fI=9EE<|ID2E>a{RkB#uwTuLWG{_@d7ZG(*m(v)jLS z;Pdza-<7hj3czIRrNknoukb`mKFr`vHH4iqQeS!gJS>PRP+Agp=y?713 zc(Pktr)WueB2+xG-0txp4}2&xFOF~SCNI|Oh(GbW1+sUKz0ZoS1Y%Kf)~~jiSmqT= zw)#fH`(2ra5!!{o>u)-^=|l|?)ZD(4JLns!i04vllIVnom#J%p2Qo=u%RaS^hL7Za z=$$2N@0P*R;$3DUUm8hkY*=9cTMcoXrhj>3!64L@q<_3WKa7k-@38C4Ehc6`EQ0St z@ILnFrZF4MI&#!1{J?|MkHod$%$^9$XCPO}=~Zf7q+xhs`ud%P1mdI~l^yAV-YCjo zes&e{iq$(%cs+x#vWCiu@5jHJxWi`q;U@m>ygTE`ZIL?C6m>^*(VTwZogFQAJiiQD zofi1ChIf z8-bQQ<9Qqn5VTasaHV1gx#bchoLlyi_`Q;4Prlkh<}^Ik=e8Lo8eDv0kHdq(wkKFy zX9fQMABHx%Sa8%5_Kppm8aVEs`kYg1>DEPdx34_!vp0koC*H1@dA=9yKW80#bF7P; za*9_xhkrkmn&l-Qv9T9=UafJ6kn18Aqh9l!1Mzv|1bHFe-VIU*XBUNK)RBW96;!N~L`woJ} zUaN7Xs48-Tv+>}I)K)mVO-AF@-C?-2Rd>-fl`=A4a_LKdS~m!3jc&K<8-`gmDt8ZD zt|n1OEcW@mZUSo~mddobgD`T$x;Sih61ldx!RGvtCTQ64WGPjr7oT5jIV;N^fgl^D zSMPK#jOT6qoUAXe`9T;BcK#g6mkX4%jkJ8ODyV&^&2eYyTiB61`NpZ+tT8w$6mDD05@TK#{oZwB zJoGMH1y;Tt5M^}uL}^kb>?)m*pWj{sN?VrB>U4bt-bbG{PMIA~Hq3L0lO1k?>PcL8 zD7trvx^+f_hv6e~bLwp!e#deMKk+^F-L61*c5yf>@JJrHJI%*hDy0QJ%8zcls2L0t z>p4%HHPVUVB9^f>_YOFGwz%AEQX#3?e<4ZJvYH4zzW3I5<_L&#Pg*^({V|cw+5TD6 zumIfDOU`;F55rfp7h4WoOoIK6oT-|jwQ#Czq0Tze33WC)HyzC0K>91=BTrAo6Si#@ zDbZyu5PQUdx8`0x>`v4b*YkJ_U*zOhebsIRIU9GQ&;C{560oq8yC4d}#3m^OoCqTW zW%D;GCl!HgnA?{f$<5?o@`H^h9^E2mFZ!A*t*ZnL<2{zg3mb^h)6?pjN-3oIieOSn zBfc+V9eFz>T0y)P*VlOMNQQynsChl_N+Fu+#c}*{6$#O}f7ER-8n&dpeA)Q+DX{Da zRW{)7BzF0mX1^1APORJ-ia&bYoW5s~1+e2Q3u`x2 z_Z<#OPsH~|*G5*(rT9U>tt0`R;VOLJL-k-k)eUFOnu(3xIxEw;CZ%q88f@BFd}d3Nyds`_rY@uJAc+PjH7zI4;RdUGbQ za){?26Rd=5GO{mA()!54zMi{|XVQVghwN6|TLCVdFPCd}w2=~TuX_hn6UaTokY$=r z24JLRRb}tsV^W#CI;;I5&U3%B`C#*`o^1DftM*{WFbUYNtts|43%Js3`dV%zfXQiN z0qN;wMBwBZN8pC6V>j-5GPCM8@Ctif+Suae9pnzwF_=udnh zCj%}$*D9)nl#%08*wPcow>x4)!7GDE&kPh-xSb2)8$2&B3eAIiPH`u4YQssV&_ma@ zFEj}Elv(t2QZqzb2$k_VeFEQiMMQl{HB`Hl+Hzlxh6KU5G^3In(se&U_TI))$Vq;* zZ=X;JtbMs>@bisqGUHMI+gsV?FmGV<(RI9aVE0POL$bbxyit;Td;eK3nA&ApC(mkt z&tf00RnBfA!!{qcPq)s3^mQR;00Hb=U4+iuYY*L%BULxo(#;=J|;mKd{6suMWP-?)hS^OHe)!iA1&WfDnfZ!ZE$1c zNhJyDW3AeIZ5-CU@z8Sp%uCU`$(>ubM3ge9@H*f${{1#v7yB8@NM4En>x^kHyaXv! zN&aW7Q}Ft-+WdP9{@&&0l?oGwYy1?sjzz|<^&By_C-q6${ZVI5b0cxaSlp4;b} zB+nk>v?ph;_rA%LxVXfP6GHqH70n0ymnXd=wp`;UodTv(?t0yz4oG*By4M9IE-Tn# z-dUTR?=nCzT&1Z4(;FOD|#uB8 z9|V+@#dyZx?V*SWp~bwERl_rHymK2Qs%Nh`YEd7M5`yv{x-JsJ+rm&gP#_{v_25bsk)@cb-n72v8+#M;yD!O38HPP`@^q z{$|PvC0Q1Vv#;>j$_{qQ(W>Pe9rZs#wp@?KzEiA}D<>0o9rErcr%TFno2v$3f7c_M z&}l3bzDrzp2d#(6cS$P&t@k|;IQ43iG508W-SmDzb2k`7@3XPpNZ)H>fqS7JQUgS0qOm!y^wB`a-aX%B#MZ36-6|K zJ!a!t4gr=~!ZEuJHeQ_bt&0Q~oqAZ&)K4BgNmC}DhCv{+Kp@nTjgrG}QnrG-0j_OZ zsy}g~9VXLm>1sb7Cvgt~^FK9L!nT{MdqiHl$0*pq1^B!2ssk`nUY@=f^rpZVfy&0o?XX0AHd zt?iw}=2Y{P+iUPW`RXvW`UP$9`Oc9^T#tLmoYhlO1afd5u5uEaFupJIRdrmp>O>_` z0}~_D(`{sr?D{!Awyh-d?0kcBtVN`C(TDDYJeGHK=MT4rtzOb5-A$6^ z4$PS4Pz^4f5}7YX^B`}TxOxQsUaVi^#p%f`g*Z=9|9Vs}8Pu1ZzcuH46`8SpWNYWN zCa`niHhJatjKo~zXqhRHOxjmdzCdp$m>tspoV6hvgxAJ8^l`+K@_9LWN%wo;-NT-9 zl(JZu_V&qw=0!BfThBkC>Dv!dRNX1C>N^w*a%Lt6R+8b9PclASE`x&xQe{asrEu&< zTc5&kp@GK#r+Fdb* z@U^S0-+=SmTLce{$G9gG|L-1BcDoxvWzD4zBOlYDZ0uR`S%I&_Wo~cB@pI{LsmH|N zkWV3LY>5mtZF~+bi#}di?$rR(12V$+4c>#cs?wr{&5`7+?ch~UoX?D}FLV?W4grn> zy=xjiCW2(zfpq7ZQ0O$*)t!oeCvE5T-rYDf4L&MaENb+>2Ps!x?O)hfMhv~D8$39e z0YPq0?6vT{Sny}ptt-?^2v_um0a5&Y*QETfc`B4l5_68{p6|RGBDAEKU9u^PG>tWH z^|0&%XM2_2iQ)g&$k9eF>GL6t;Ck+TR~7cxrtDc)gz!B~qnq%n z{gd0^eJ}4ao9}7l6nu+nI^9UN56uuYnb}WLTnvikZ+F7T0k0jKy|Y2=@XR5#+AhMk z_u1|f?rtPxRm41pQ*|VI!c}~K&Lm2ObBd(52V2Ym!I8dQG4ElbTh`>*>v5u961d7# zrxX-&PHr@DXQu>Oc{@fA4iW0-Yn%D4-w~BLGhB3>SSU*VT;b=A4v|wVe74g#a$x&4 zE2+5eePq`{xlygV6XeNz2j`x*{V+1(G3Yz;ojfmIzwg_Q5%T7oZr~l9&yrYhp2Ox| z1>sm0W$B&OPaJG(TzSubB|Ad6X+8M7FW7U@SZH@AajJeC7UkRkeVd=%GC9=*&jfvI zmiLvDOP%MZUs&HozVvzyCUP~958?_}ZVTQ9tIVAWxzEZ8yST>Er;+VY?rA+q$nFC% zs`|vG7LrTk#*5CHD&p_JtO{3CMYCY`3m<=vfFYt`(iNX~s*1Q6E%seQ`3`$om2b{l z(m-}EePsVCxCVk(&h+!^%>mm9&;C5Ud@`)u>~~$c8eTL#tc==P1K(Cyd1zfNBn1w| zm5E}Vz_Y&kv!Z<}G<5BJ6gB@V%x)=i_x#=q@rQEv%i??b-tQfT1GTMW_>`h_)1g8T z%o$;S7+wL()mBKd8Kn>+G$!(XMII#NxqW|_kP2@Xbbr~clt>=U;`ZKmMhLI z#d(~)Dh{5;#bo;~AF1W%ykJdn_hg-@A`sv%kK}ZWBGX4W_oVekl9eSAm)XT%66Y~T zg}eBE-A&8wMdtca@H`m4@i_i}SW;RtvqbvpNplWsvFN@U!Y87jawWPNZr?Z0pP%!U z?2H?GmKT=|){oB_Q1SO=-R0R^qb8R_(9y(%1)tmD^A5gdz23B{aSfn+6KYpK-`Pc+f^h^T5h*pdKPS4 z(sFCwt5y;$rYNG2n@BDyWJ`p9hy#65O~F@Rs)>?kH0#~t1LV1D+l6O`+DSg&ru_P2 zz2wG=+bU;S3SezS&G(6IiSR;wrh2nZFS*C7FO)ei918Zim*2N9aPtzyFUI5g(V+8$_md~-vLTRTYU&)t1=Ljsv1w9X%Yvj@$08*F%O+~L{U zP5ZxU=91pePmkt(tA~$IzVzIvse{=*SFc~nj{86DeFsz(Nw+Q-Kv0w<2q-}efQngE zghEAvqKE-dBuQ3s5CjxZf+A6}0tzTd5GARAvWb#&&hfw@pL58PUORJ!xy%3gX5L!! z-+$&_dM$0bs%v-kuIhcN_O}E0rM}x5w4I1TpQ#MfTlAq}>H7XsOg|t}y3WBLs!@Q< zw;EzB9<*+GJl-zX3^@;H?^R&-za$L{ZkBZ&aEPPp+^K?E7+EW)FqG1PHYt?a`5nXb zq#NGet(R_xz(&ns9@kz(Rb!ty^tBe6WIFryV(b4YtNO5aHucE3MA%?`FA>Um&I`t8 z^aE}BMx6lKUZg0PEyao1eMTzX4!le^09tf`&3IlMn#=07)5Yv}nMmwwTT91*-q(tc z*fNFW-;PJV>8^oSF-a^J@ApB2ww{srb<8fKrK|BVODD9eIc-if>410MxgU4VVtCg6z3ZrGYy>*c4JsbivX&0W zT-jiz@F)-@SV~`>XzhcznX{Z+n0{&>wlGZiTo34J@=n#dE`&QJDmJkt9>tqN$ay{@ zywJJsgjQpC@nM)E&N@RkWgx-)!ZaNFa$D$;>^NG-pJO*+}AuJ49%SQBb371d#l+xu%G1Cy7{cqkwF^au*BH?lwZepIp(I-X5uC)6zh$hhhbY=Rgljfqz_a=J z{tl}duxjBkzfU)Y9!zu5DO0?M>#u_Hp0a-f)|AIeCIZc9pO@DDMM)wsj^U#0+$SLX z?Ge{N(Xa4@Rj+ZS&>R?X0}!}|fn;;=QpM3>Sbw28%{F!f98-PG`MakepqQ%K+M*vJ z?x6Rna%D&%)0VRT;skuD$Ups*Dj#`FUB*jS*224DoPg&J61W*Wox`V;gVmlHVb_Wd zxFT*epd>|tL9>-r=`yj1&vb^e_(c+wuI?RFS(t!Wmk?zRkqSf_ol2%YT@0rOb?qBm z$01W|L^8mx78tFi5)VzoK3vG0M3m0YY z@fp9w7>Z0k;ulX6_e)q=HZ3n)(gBVq8V(n#6JVY2sP&i(0gNK(?N|HYfMF%eY0sSl z@aBl?^JAD@7in^a@!D7|tfz9DaqT0(=Q-!pnfwoc@A@>yd#nt7Dx>I4PaXt5=2q>B zOZ`yQt6Z)VRtYIQZQ7KFhTxjD%PUvK=N|fv{x-KXFNG*$6EtFJ7?sjH{ejR zd|^6uif7+BswExSA&#H<~>$eEy`G+jiD5xHb??-xhTb`JPwK zZ9jwQ&k0B5KA#(g2d~|4jP~K+wdXg{Xk-aAcj-2~6z>DMh6a%*7%uH{DKbCGvf=Av*R3a`G4_+H|n zLc0D@oH!A}Tjpe2v^oJPu!TyE4guX5>yC=!O>o^Mz2gc`1Cn}tTe1Yx&z^thT~y0c z1N&)IFcI2;67r(!8ybo5{9K!pIAt#IiR|llH*Q008^ClehG*pkF9>WeYy^Evv2=UP zK09wMLyOD`%&)=e`0k5yn7yQd&bN=7iqTW~xKLs?rnec-D1R4P1v@W!$yW8_kxH~2 zr)o(LCf9Nko21%c1n;q@psNcJ##b0bt?Pk=^jg{DVLfocM^aWM5r<4muc|!FYXb!l zKiOtl0u&kSd{Ew3i*AL|*C|T(Kw#5Fl?Cm7%&uzobL9JW6#6NJAXw7|1yr>z%EF@% z=yAJ5yQdL-yuPYTMYaY~XYOt0o*ILbC3b};8Jf^3Z}u}ivv{D5c_`$RKLBr?dCzIB z#n%5v6&Q1@J0W&gu!9`^1U!0n#%Ub-V~Xx)X% zjrXp1LA&Awb$j1-U`d;m+lTo_&b2eu|BzwU@t6Sqpg?YTgX1p7u zo~Oh*@pZtYLyHhWVGy~5-CmF*4#UN+>(OebMq%oDsj<99DXNL%XOKxDLd!m#_w0u- zeZdtY;-$e_v~A|?pyjP87<@Kx&`*949WW4mWc-GNdiy`v#08UpD3~7-&CvuBbitYU z>O@eX>Yw6W!2A~)wi=d;_CVrVlD&OY7i`Yyv*L3egCt@<L8mvZt2-Clf|5A{*fVk(z?eakz7m_C3|C6J)EWyA z-cfVvPJSb@4jo6wstCyT=y^7&rVl99wwy=rTsgWDbL63Wbtk%Fqnu7N5C(lmCR(g# zyAWmWg3X2a9)usRlihT=2#)byviZE&gO18<(2YFUh|<})?zR=>fh7L+Vs}C#GGZv4 znK6q%lqYX&m{#cmfzGLe_byBzd_2i~Z!b2V&E-b*MeD)k*d9@d9S!K!#Vc;Q1}&hE zL}CPK`yfkw+_m!)3F(MAE3QuxhZ5$&Z6^ZpAir57$3$ZoS*{%_Id0tq6#*84RnQOi zd4w2ggHd!z_^3>OTNAtt+{3cUU;v&uNsUOwj-bTNx{HGPwSY>d3QpwpfmV7u^NZ3U zlo?~-^rWo<&PFiFE^zh&wWL8lmk%CYOWkObMN&hB0c^o0~3 zBzZcaGSu+qmxEQPOxrL2g-kb4-*7$ppsN~0PpOp_;~SAVpc zc?F2n*d1`nhydf4dX)6lF+VfbE7kJ)4KR|Ciau^3LEY0A5mb7Kp!{<3#+AHAxK)zy zzG3k_P|ijPs9=7Kg~6p)mHYG2j;HC?^|a}L_Y6{cNk@YB4&j%j%tw&8NSaVdNeucX z%RRL5B&JV%t9AU`-fqP4zFezwq!4tP<%T6Ii{Z``t=js-(!C3WSu-CFJ@bjasEZ&p_w8WFNI z-`hS4M{U{^bj_*|!-GkmBbfezEpBh0EoL{>I=g?PPgXe`THOB7DytSKs++hx0rPj+ z!Dxs}s{wWqHJ$;tLg-`W zw5s@wqKBCO;_VyHBC{)IuBVm8I8|JHqPxXfPHw9@Ovk5>lFVws!mxeNG0w(K& z9MPOf)Vq=Z9K5+K8YY6-xe4%9Y`Z7j1-H&9@i(^(Ksl{@v-%1>IL#d+sMH&e_SHRh zSKEbyLwEDy^e{O*us3fmwyO#@P|KbprZs_EnWkQ70S=T-b4mxSZ$mqBW!!_DIw4GX z?7m1yJH&JdS}Rj_Vz{fnk(g8$v?jbYd`%jF+nex3EBiW-BIjMrzMVr5j@N0>X>UaP zawoF(@{J?^fMk+)EoM)pw)IhJ$7(UV8xD<>j1*#b`@9A8DXNeY@%0N^^9ao684$d53Kn`|FXnV+Uh)QWfxQ zJx{ecsR+3Tj=bvwDE(=890h1~YecQ0 zWdcgx`p~^AvJpf-v?fwf453+FIW@PP_2|eXr&$F>BRu3`segZ_67@TcM)zU+ID^}V z8A-Q?Aw8`0tr15*`sCsNY`m`r!Y@pBGO>?af$W__5+F|Z5b0x~>4j19v8 zuiz6#%YMYIAo;fLTnh+(o^&0ZA%e`iPOdA~qlmxs$em5;jhH?>>s9n0wO z2PA#X@lheRo*35-7O|Mb>~*GihJ3jj&}s1tc2t7}@cc$i*Iutq_+(!odircNc;fVo zOfmcDyn*JYA)#$B=EB3+WmyB4&q&OnlO>SBiD!>>!}P@)un0k$%24N)y_R&273f6C zbYv!O5ccPAZobDyL^fK^p27(@B%=E?tx~iVzM8aciUG_H{Lxn15SkWHM`hG2TrjzQ za@5+R4G)>+G9+d8F~DtdbrI3TgOK)6dg93%RD6s>&(gmHd^2(!n;o(5QDXj6mSiSk zHJULAo#+DE>mz9q6D`1?hO;|Fh56N&-+%wju^+5!IOjO+24EZQk#_5gJ;*tt)yiik z4Kc~ht-p);nX|SU711_MfD7t*a?`FHr8BYIH_yi-<&DuD4=FMHQNdH&z?Xyy&*K=H z#e0#9a@L#!wmuPP%JS#tZAV3RVHRgto6*+&^mLDp6+WOkFb&aP|C-v1_%&9_DDl;zqTwCN#iSH)FNysY7lHkb)izGK)zqW41%d7>G5akq zg(hK^re;KWLx-r?R*A$yX0wD3_COe2k)!>FD#Xm>eOB#dGMGuMurIDHhD+^smQB<+ z)S{W%CQmAY12k_6u2zv?ZSw<%I0GDruTdUemDUSib~xQnR%=CUekT&%p1|Q-68e~IPHF{Mr8xgrblbkySz~rQxc$9A|Y80tX+_k$F&8=Be5dR3X-x^z; z$cwK+!f|7PeD@>K4$JCiXWA#hXCX<_=x`4*d@82YSCoWEVty}Qex8B_C2z~&YnVUs zI%Chs27o!`lp&S(b)Xs5Ts)nIgZ4ceA$Z~|^zJ;tm`|UKE>4Z+g}mtp!$TCx!u-`J zUu>1l)bV`u;B!Ie9?TDvS&2Y%)uI!L7i?sqp$P*4n{V%|-gSYqn7U2(Vngpw~Za;!vhdidt7y1681i| zSML=Kk0G5-3MzZ|YP8bx){60fQHXfy;>?2i9lF%Zcq*-`M>~@CnP><0L5x<1xwi-& zZF~M;=Do=fVsMC{Si5%~GPif*XLi@1i`UdAS0%R~{D8C67LR0bra0BOFLxekmaLbF zOAJG{yJJ4{69*8-gKL?}b+hQ+V19~3YX>rxSkDycjt6~yuPem+14uA=TEe+pK0%FeM4tDC zw(=O*if4U0L(z{`CS^319B@iDmih~59wJeGfhsd(-9i2?XHCp;?Lg4reZ za__74$b@|%2eX(~j6>rvt$_^YSMt~^Ufmk=b3m$fyo(9l&@xZS{m$bXtZ)k7tFvVk zWrRfs3uqUBeyhi~n~CF~cT6u+qtfbRtdM8@m+_^>D@_ zZ4kzKz%53=MkAyWrn{q4o3VAxNy&aW!E2eAKk2pS!DE@I_xx<5YG4fzU6RIc-5r4j z%S&ZE>OIiJ?lx#otcNn%S$WRM1`t9gU(V=}{8H9Og)FjA z?~_fJr>MH&N^OHw;Fe)%=V$1#v#$kf)vtOF#irq~TJXwnodkG)d*H;bjy70NIC
s{f6WS1! zZ5!E&hro=)2k%-jd8o3iX*B*r3;S2BUPhsqw3hjKn4+Z5P* z|8<~ACJ8-%IB>i1RRQuGNs{+39R}C!k{l#lF{+3%g8j8o zjILtiz^!wCf|b~Vyj-sDp1)cNkzc=l)rLUU|{@GSU9oLx~)nnXj!7CjvmMR57v!)upItKoUlXKvRQ z4akX0S~UAp6&w!HzW17<4wCk{P&=&7Mt7fYn0k}h2})aT>YtErMO#beGpl8Bh~-QF z@bsrPc=o1gBE1+u#4aYiq9Pht&o-KNCsx4$c^@7PzYef><}q!Mt%le&rFC`g*n0I) zu#ERuBM8s-OU$aMXL4-g2x4WtEC5ezWKX?~g%?m6)9^ zJ^R4K9e+IP5KlQ`Lg)suw{K<6ixA*iQ~dtTD~3?-iPx*JDB-ZFE=OvRaU23ZD4trG zffZ{o-NZ!Ueak+}L`62-r|`jUCJ1J)_JMQ`@T^gcLh7wOGIs2=Ab9bby! zDM#q0Pq6iY)XrH5#O!sAiPRxfor92gjcHhukbu7JI=r1YOG5JAY6+Vg@WA0+Yuf+cKyufp`;k>}; zQoY=rFNzM2d!aRmo6!;VEtQX3R;lVVcEVGyXIp&x`{C@-uIq9dU0^Yqq_X!PKF!acdtE>w&O;~H3_qSsD{zjXCk-??<|8#%vU1itlsH_qWgZEzhUl_=%g0c_V%6cRBJ~`SSTY2mXHY@{h(v zgiV{_16%LX_s1+xwRf^Q4z`~;6upsadEWmK|CZ~&bKsvh@0Z8z-!pD(k%{MaPh+^q zFURt{_=oZVk^7BCH9A&2u^nBy{;m9H=URduNrnT5l$_VHY#(g?X}iYmEEQL}pVO^9 z?wz@!s%WV_NzhP$E2D4enpcwYY7=9{()G{!^ILhuonZy4nw~#>|8MR7E@$mkCa-^3GC!8*0|E8KXGD#6E?}^`; zUta~oe#~^$jkQ$2Q}#W-Z{_zqByMX}^$anh8d}Exl1}m5@05S%5#8^d#r`7m3;BId zV)gyN=>2~KO#kKmeVmVOt=_!1)HOH1WsdB8DBzVd}*ovzq^0`Q=do1m;Q3TlJTX#obF#W4rF}kZ`;4W>OKD~9WuVO z%#U9f_H#M>XZiV`zK@JAEsZA`UqWPjX{r1_-OuIcf9JqIf4(h`O64m+QZCVA(EW zc^>@lo(E)nX;}{a@*ynCgJpT}zgr&s(fE_`rGJqZe%pU-Nug`=Q+(-nREBc#7d*!5 zw>Dh5+!i;r+!zei4YV{>wam=*4Ag(k8Slnyc3WRd-PBOf!dy?^Oi=Zvg`tM7uiNTV zznp!1`5k=ubg6Ysbhqk0(LJJDY;n)mjYCya%h*&)L){#sc3bPNs=1M>B}PNfP{+*o Op0C+W-CrIk_c4z0zoH^5Wc9YHNVQy0dNxd6$ zysf!~F_mtmXl!L`Y-wO&tVlU*%`mevWicgo_3o%yP;G6^Ow5ewtQ)M^XILj#3QSRB zTZWk>m0?Y{W$EK%ehWH_DN7_}VP=Jsq*z)T8Cxh)EUZnsbM$83u8y%O-54io zZ8eaju#K@5)q>%`!ig!dn8S?hs1~dXOaX?q1xpKh(f0_%&hUg1cm1z3RdhbJyURz;u1wA zmYsnUE;55|Y|LVgA>7D4RP4*x7+W=Vow1=AS8E3j|3{TF+>p*Sn(I~OFjF%tGh7l| z8w)cAw5a?M)O7BVazUm;6m}1<-O^m4wJ6yfEz@xaw+&B~~+!k;MZOj(t7;Zvl zmNs_SS_f>3A>EjYeb}E0O?nG+xS^p9g=%3#qYi{KM_O82Su?Dy%nT`pxF}m_Q)qI% zjuWswj0-4D_|5jPYz)f+SvR-+1Ad0*SiFJwXnrj zMpSNGTyNOJz4fEX?}+!U>D+v2l1xD(h6AoO+CE|r$K*FrVO?->X6djLa1HUTWNq29 zrPn*X|1?PqmH|_gYGGk*Pr-F(gB?7n&&uAsaC0*=wX!s}Vo(em7`Xa1CF~3Yxz6n& z+IOF<2e-MrkUpQ&cGC3v#zop*+I|{^YbuROlcX8YOlb#QXy)9MM)aoC_wTp#-t$73 zBL>D*3U^?oiSiO2NgG8Izrbx(ypeEFtD=o|p-E}-aT^3~24iXCXyY}FXcK4?X_GWb zG?@#y)@ic1Gg|d`O+08)a4Y^V3^!u(n+@_NjrO}Q`->(qsA#>rMEUr5J8oNv@(JUf zk4Ga4>lcsl^?Qt)vGPDQ{+AgG^D^enWp49{JbJt0?>T4+IQ?ELef4`IUvs*i`ehiS z;AZMj9|`YIZSgB_d<||3i8MtACYGU1AE@k6fAmOgd)z#o%c02aA}>8&yP3hOTm{-} z+8o+k+B{7m+I&rZnj)^u1^r_JZQ&N$qTZ@i8VJL6y?EeAc?-=JH+fMjinSfX#*TqI zB2HrHX6evhcf+`r@~k5D*Vq02a$6De5ANDydV7nap*7uDv3FAJ>!W!7#A6_pI~>p) z)I|7sx-2K$5%HKkXhz_+Ii?_YTEnT0CPtdRX^#6JPg2~u4JU-#<{!J%Km!@DU4-y5 zk)@kCuLPQW+))5usBm41-GWCeilMcg6@#U@o+;Qj7yXjK`avyFVAs+?O_0fVoV5jC z@>m#~FervJGYdSVj-Yd|C5R(o-js)DR|XBwd^Brr91&uUV{yA)uMNDJmc<;`HzXSy zQGPu$+S06d$fcNCQyA8G@-$(v7`;V#LHiS(Qj>&R`Ab@$rU;g=u#~{kk7lYl9?REQ z%3=8ihbv(D79TIf@*Ov2yG4U~-SgkOyQYd0%TAN5$)_oS2h#oqB!DY{Xg6}aswa-| zVZCElHY9wVqChUm1D`=BNaUkr;*hAn$vpi*g1y&*pS&>cf|A*)JQznPa3k0p>em+Dm&aj+q&$!qtWO%yAI6J3;&=UoMX@!AvDtZ(L_r?B8+`tN37I(L zT}zWhh=2h}ULC+e3C_^^%H#*^90(_o$UFP(7vhBr4?f?wFSjea75zAL@k()H9w`0c zyhgu1(GLjulefc*&fXWd)4GcF17`j~UyV#05_*LERlhG@28a;~y;6Zp91iF0i1H*+ zpZJihKfeL42(;?#watL(gaTKdUh}8z4~faDXcJC{X@m7iYskbQVK*WFvHc{{AF7{J z4}?BZE^%JKAo~wkdUnBC&t-DHVR^8hP~ghby8ZT#-e7~S9pD6*d-_v2+AM|(h`(KI|Ekzdqr2LjLOioXs@?MWesMj6dkFB@>5)9wC3#?~C^X2>2$XfK+7|c&{#ZWcetjZeLjIb6;Zf;V>IGRq^v}L*u|p@nj-=5^qO_ zCkN;Md~|Dn{zK^#`4V!d{QuSdN0fgkeOaE}Q+~JKW!&^el;IrFk)Rh3f1Dp=$h_zz z!frwiW&falg;fW}KSGa?L+KCYzo|S!{y0DN1}+??R)%h0(@6pIJh)64%$1&0GI2PK zw?kaQ6X95r9|d#Jr`7U}bDZ*E_Mj7_)9d>C?{r@HOr9K6PHlx96)SlebJRtns z7i~3}7o8-}+adb*Abqy>_+04iK1Wl4nCJVVOZV#&ek0^i{u`7oPU5fopSVux%U_~D z|5<$jq&Yk}NF0#Q>_VhIs{fB7(IT;iHQ?z4kLQsnI{;K@PlgluP83;t^P5lRZ-zm=beN7zlsq3r*) z{6zl5GItRXFd*e#mRF*_!=ddb@+IU@`4jf`rT5p{|4{midG@a6$-(h9T&sW$0!K#3 zEBpW>-uXVUn@k)k^LCaK0R!@Mg3(16;gdQP>(jUtI#6pHhkSG^UpKX;t;J=MThP_gU zi2hH+x|a|+*e;dlQ1_N7pt#a^Q-Jx5jM!>7Wz`0ocy%Z)z1(Y_Eu)>{Z! zOJ+lI5_cFQuiN zxGotgxzqgwY*+8N5f5_|C!DqOuK+#uJFT-7qv1r_$j4EpH6XM3dVJ7le_ndUJedKD zd$%IE?ZMqLdB@3M(z}(y_gL;$%{%`QcJ^+mJXyj^hiD!3{ozEszB2>mBf|S+3AoB@ z;J+`B{oWG)RsB|8B4r{S>#G4`lV4|phRP#{hFOKsv`A&jIZgpgxO??;`}iCP3FdCu zFs*khEYx=()6Z0*-cc0Hm`q{(Aeu_YPlPY@ zKGYc5`)rVS^8D+__>Ug74e>mR@E3l5M=bRI)FTqU9-@H6yy~XO3t*84$?mCaV#^bINxoalw zdYilE;9mE0*Y4cwVD7aj_d1w6*Kx0>xYyL&d6PT0ug7e_aIYgaVYqJCjM<9O#&GX% z@53Cx&@g70gBWv+1;z$ri#dupjyZ=pk8#0Vz%Vh~djzhS8yFVG4Ra6k0ON&ui1Ehw zV4h%}Vtg?#FfTE$Fn*Y~m;lTNOd#eXCI}OP3B@1`8}k_xh6%?+U?MS5m^e&4CIOR( zNy4OJ(lF_m3``~_3zLJ%!xUkPF{PLaObw^A!_~`G$$be8(hXQZU(=T+9zl zKBfRuh$+F8VahR;m?}&)rUBE4X~wi*S}|>y4ooMe3)6$)^$zqlpyAi!^Vc(58M5N zx#S;yu3;pxld3?DRMUyeLsIrEjWI9 z68%KC5;|`jkdfTbjJ#4*1?}XT;Jm@U<=#g1pnlK!?w9I%L<+g&ZB(xpTvv+tbFwTYObfxOE7GY@KX5Wn4 zI(5jY>GZ|LAM;U^i~dmxEfYOgGP^Ii`vJ6gs#lGR zqLKBKlv9B*^+<`lUV78xTD0!G&`L?Zhse(VbDQ;^PPFLJ)NbK<)hK4Mo0zoI7i1^b zrXX~*1bxz#p0&Ha6LF+AuVB8bgcEA5)1#(Fqs=zt^*5gJvtNHwu%1znuGqn;OvCE8D zi(1iG1J#b16FKNX@&qeagC^weIeT}kRuUB6Kd}7MnMPzkN5;SXGY4e}Pm#WUx&%y& zpZm^K=AaEz4Ufk(aFFf9`MX-Cl|zqf z)Aj{uQGIk$t1d#rI8-}%ABjD4-BSH(qi@Jk-Q%E_MKWS5G_AUm*@I3^U*Fgumxb9fJenQvm9ok%9c^(Lp(ry_nC&nwV0irIc95KL_rWTu4wQE- zeB;E=eC%?!;Zv?LazWrZ)gdG@8(w>whU~xAf&A-MoO(PNL3YJBHF;+e`7~REUALeW zO@4;%oyjf-?HQ+w=NR@tyxPv3Rxv)dzVj^uBFu0;?FFPmXaLrb1%7&Y3x$ z^MC`JTpAcN;~L=1_H)i^x_s=T5>=nQs@lMGXUCEyFRKMg`)YRdar zi{0zcY;VRk_1Gdr-8a8PXj?0q9*!@v9$p?E%ui2-XD%O`wU-xeFg`e zyd`mCWLq+tJO0e(%MRseTuN%k$gnyzHZCyZ)|-0dC(T*1FY7ycy|cEFe@Q+1vLapQ z?7VWc>MrN1Z{#OSmL?W0Np3-|99h4M)Q+3(2jhW#!U2HBwyg1!y^c} zWp-l4tPVJQ_2zre@*+62=hmmCr&>{9&e&xtsw8r!>w^5f6RJ_V(Vmqz#|MINmZMz$ z&T6<@SDoH*C>g%RkBJa^+Jzc*_I$FB;Ujk)ke)DXTLCItxBb(IeZ?@Nq^u!3u^TSa z3pGEEj6`z`C+l6+s6|dfHqrlO5{THEj+d1Ei2{c^->j+Sz%bnz#?uY( zxbOOgLl$g9_6ig3Iz1$jErYHNzvIz@ZW$W)*t2Vq_3)HAy7PVl{~WiCGyFPG?F^Fe zwz@nNe(z;LR7W1z%UQ{dQb|E(2gj!EqUx&8&ow}If$cmi`w|q=r6eQj@(P7$Gtw;1*T6o@B9-A) zUy-82=y%6vw1Mm?!QpZ4S5Srh+pegOo$#P8GFCs01N+nNsgn3A;hu!|ofQ%dkSHAR ziKaD{PgOy2?aW zA)}nn^B01hkH&>})&;2cfpuMkXeM(0KH<%j1^M84{!kTvaxOBLxaB+7z8D=@)4qew zehJ-mQ)f+InhRH_k2h})FGG#bF3w&x<^wq1nxyseQv@`m9=(>BR)p;1GhByTCIVSP zQ!e99Jt&SFBYbaE1B&>(*f&C{8oa8b=BAGfMbDGomYB-5qx+wyG$sfpg6*EBuL7OP z@KE`yXrNFt5`A6Edn${S93 z|7=9BJytli9;g9p21(RxH_Mj%g!idZe%Wt}(CbAn>eqK> zfaTg?Rqr1pvV7w>2|YzTj>OqpZ{Z}t+x;spyiMo8-Xr{v55zVi8O!vOD`l!-Y4aWa zDfQm4h9)Y6Ue}_tmpSOmt!U)?d0nfLb`_`=%nE6ji9**lTsM5XHVw&aFL|}0s1YKT zZ1I!ZdkN_8_g*(JPC$X5PHyWqNCD%cp>)&wI;3>tuARu4UU7|Ui$d>Q*aw4-eb5nADK?3P1$DEh-&tP z*GTIWp$Jj{+3a~esKv2PNJlrJBaDoVkuGH6$^@SJ33djm!k>OkK2q8 z$%XkhSK7tBr~{@)i~VhNIzaHl!y0ONu=4u7?}~BBV84l$d*7NwPS$!XaJ9S(wa=wI;w=Mml-EL0QH?jaZ?#hP>=i7xSiE-cIyFerS ze46`ut+yaKdX;XHr)WFOI{SV5#ehPX#7BRiv0j8cd9|N|*OfXjH1FtIW?KNX?!9?8 zmI#vNzAMltE0f4R=3c>k$I_9&l#MM$&m_qD`=1zf*yJMG$u1W&l@5>-8b*qiYzLp% zSjOXpZSeSe(-fm!Kfybx%JTWROxTiD#@C3Sw`Qzg{w?Wd11O2_FwfR+h0cYk-pj7= zvlAZXP`}0Vk!{Ulr_M~wfP6WUdQVaTs976{sOopX!nLi=Z&#PW^@Ud-sT_C%%9p)j z#*tbf%)rNM(#=pbN16Q?|RSb9F38a=PUDMXO0zqoPo z+gA;sRjZc%{#GM6zEyhe!3v8)ldyPHG24 zXeqA$;F*s)l}27v9mhwuG`q?e?~{ghrL~gJoi0GJFHak8pm5;onCTThc-*bXc^XTZ zUym$HhC%#C{M_U_)!;)yHLQG0i+CH`iDt`miUvnDfU?%enCgZ2^HcZiC3S@gAnu@$ z?1$iP$f$7Hz+7AnpZ=w8U<~Qp)$jo;dZI}8mGK^SXLT!Y-&#-*gB!mnkjtblX_u6sS#mF z=!E#zB)fb_moHc{VpthS1|L*8zaazZPK=CCTV0QiG0VlOcNKuXsImUDS`M0-S|_(s z$`jQ#932~d;S)$pFKxP+Sc3#M3wbAgZ9)2~7HZw$kw_zXHOZo)0zKAJ6gSFmKt-0@ z%tr)7f(zfIOvkD9XwoLJU3ZTcLg{y9kuOCV$eDlEsuiqU6umVxXTg~wCAjxWm(EQ_o}%iOmZ%M(q4^>W6Hi4erknr9q&p#?zbSN0=BAtBtp&=k?|8+vtiYU zyW0<1Wx@Cl;hU~EH-K^ct0}t*3emz45$ZvYa){Q_FuXk@4ixS$xIq&YMv5QKAJj1_ zK$I(TvGw!9;8sx-r{LIgq&hO=*nZV~lw8}DN7-2j9#4b~NCy(o#H(}t#j?Ud&GM3^ z*0*NJ`nu(fi@zXyg5E23=GwD{ba++#g`LM z(%u^!mA%!-zCFG(XHyvzJnU%Oom~heiw{5dUssMY8S{>f>CS~9&s2rivyed|o#pxif^6v3YP8WD>8*#w8rT``jT$t%fPeL6D=iW^4ZHDEioG+`0=R>N4 zXUBwLiSY2nl0bLSxXJXH>w|3*!4f?n^@V^~IF7X_P_jdao4z+Z-s>IXffWKMN*b7h0bBsvJJi zPYU^2w!<;8oh_Ei1yIS-b?#}egfmOksd|V5VWI0hZHL#vo3`s3qSk>Z_I#ZQd0h*P z(9&^VxAO-`ol`zFSv4Da!dz#&udjxSEz4shdYWM6U8#odxfN*U)*0HjE@Z)4>Kr|# zGe5z=i>^0DvmEUib~0-0?h<(Ojvs9dsD!P#`zP@m)WS);q&l;`9)B)8Flw)GECT+S z1`!{d;Z5lH7d~ax=w*b)33^o;3g00ZXHI6LwoRh#lTVhTQJ)^F1Y{K=+V;>Fd%b_a zZmV&#rY^2VzEff|>;G*qE!O&b=y zb1XpLUmkg{YE_Q%?$yLnN#D_0y+CQk_8>Il7<=?h%>=YU`<%Kty8(TwTBCA|`2`LM zeF}E1$w1y~r6>5!Za~uh{CD_gHNZ#P7g8x+ji@r5we)sNF3hdgIW1{~Key+bwnVwC z26^1B8^>yGLS?t5MRx|=M(b_ER2Q4D(K*kg64{hiB(2lhHqJT|RCKS+9w}Ii?*r^n z88Na33GE@1---T2dUIGkNvdUt6ZlA2$u}Dv`TWu+;dK+*r>^w1HK!d(xi8(8w>KST zAMuv|s=-0NYsVfQv9|-oeRlmEc|0FI^S7BeJh}osy)pA!@!nQcGe(Z?om+tFZ534^^Rr>2;^0I7O)I+s1j-&YNdC1|$t6?waHlXzSZSn6n@Uu4r7>bJ} z$Dw-;{KaTZHF9LhbiVWDXIrY@ph|}1z`e%zQ^u**qLG_Zh3itfP^6Q=3R+eLnhjfB z(y|a#rP@|SQAunD`JvW_RiBWuU@TL8P9-{QbED1d*f6$F($l?FtKOsI93uyYU=A{u zI!k?#Ai|zI!g9&`AJw2xDNxh3^gcYOT@v6?Ey&K;@8KdjsT(v6q;9J-3s7kANAkNo zKDN_ZAsF$X2^e$BTBBdqz)LGF@h?aC*=92u^+-7_;IqJ7S4TV#Is!tZ6VG>|QSnoR z;$tgdaj>$%N=ggdHHt4h&-#gS%uFeZUR1&)&D7B$EzQ7xK=SU33;2Fc#lEkZ>DQ6; z@(jDTVilmdojNNZq6(e0I4L3&)_}HzznJc*)dhCPM~c4MS%(hX457KlRihinS8Uqm z*8tMglJ6&E)6sZy>hPA;9Mm;#&f|o!O>i*VMaGhoj6yxe_N>ZlKw(=Ym>Dk%VH0&m z?hFME+GXl6Iwz71a`aO_G7G9up2|7@XHuoeQ$D9D=v6toZ{_mPRWB3L`F+b?Z!AU~ zYbM!jTut#JT2U z8!9fiU=k`@3eW0}-!*^!8Dte^&ieka11TCRw2(yc^+IF$B(1|a=+eFU<{4Xi5Pj1J zGryKRv^DBgj^nddq>>&Vr*9j8?mCG%-xR7r;i2Voub7vi%rIl=uH%*HxYur-r<(O} z{9@yQAbcM(EH0bM*H(fi+^w2hjMv9W=l2KsA`aU4>CkIdWC@baET$iN>xnEnDh_|~ zYesEf=Y<)xRiUjjtoPWQ%7kY@Jr~r@S0a^bs5xd=1!_KQN(+8@3oVR~o|*2F2ycwX zzB|998Kp`w7R;$^gne(8_}^LS4RlSq>7AH5bg6m4%NfT*&`IWjyHEDK17F9so{`b@ z$ZiU|+vBzY+Nqpiu4@nr!zlSC;={Yp#alO`onoWcamxdo|cEc_}8pL71%9p79~`Y&WtqtH`|E@er=AHFb<& zi;$B=!T#uMezrC>X?pInT6EB&M)~=J;pFH|SG`4;0_@tL$K5w&ix49#?6mm(E=VhF z5syDq2otA!YOQ7Qv;Cf)y=Q%mpX?@(Tkvi5XH=TM`FXkT4`eGn@=;Se2MQ&0pI*4a zM(^)S?Rmj$Mvf6iM|WPY1hL(wqwnE$Rd(yiBF-vgYA;jY8B=P9$3AnW0h zJ84FB=+3OR`SyJ6FwcYB#K7w%zl+)aRJ<-cdqy>WmPQrWB?!!T8j}uzUE=P>qV0(P zP_=qAzW%R^G+LN&CJ#-|8au&iRRw7K?mgLhr5#Rq#V()Vm4XiMbMYJdGY>6#rV%6} zN+R1_wbHUvs6b_<-}3fLg(Bm1H_|0v_JDkglkLQyDwO%j?WO#+Vq`e%(zz-09#|{n zJIuwU76sP4D0z4*73D76hgOpK$=80~9NwDMj&7`s41S^&iLMD;ak(ni3H7UwZquI8 zg!Vt`v9g z=}ibAGtKoVyUkC=bI44zPY%A9^C zBOj4X8?~>Ug4Jhk=1vaEf#|35H`ww)u<+hJWhtF>sJWUsI^BRoCV5^FTk@(6DJxu+ z3SCwUmdB2=cOGeiWp70nKl_>p=bl-GZeLT1l0;VDGK?yOx1CY0S1BQg--?~}u%`(f z5H`WRryg{=8kVPum!Ml28{)C zv{}!ApO5`%MF=U8)(Qnv)6Uwe*P!(<1xDER9%S8Hbgl%ITpd{2ULo zV{ z)XB>8`^OZ*o4Fo$=S{`)K~S+MH8%-OmRxnp$;=<+j~h23uCNi2HEbMpU$)@+yD(34 zT{>{2mU+&6UXSQb-(SVtZ$n;n%N&-}=fTX`jHPa!4JhMlV|ko&8#fmZ>E&57s`JvfX5uJ6aI(moX-{W;@5oKs2%jYT`eBR7%Q@j_aguSn*g@%$ep zkEAp~tF4T$-kuJ0LMk` zkAI5Ym1H!d*l)^hKk9TJoBt8k?R2w#VZZ%kl?2FG-g#P=;(QDd7xVhV`NR-#V(M@JwM0p z(M`#PZDzVci$>K#*Sv3Tu93|!(W%@$;zAKDl;ux;+*ylg(u|@*Htlf62u&Zu^nf=J zim^M6eSvvSTd6KZWw5bRcK68|Ve;{VGu4aMTi8>7s{dSL4wLU+2%lxx~wf=38K39BU=;u`A%0F?DUvvVP_k5em zIL}YcdlGbnwYwXsU9??189x^_t$bvW=0`woQ?DxpB8~_^>=ZV z*h07|q^)?nG6QWEuGr+1SBmDHw|#k{>IG;YIBXQYwG3^IsM`|!AQ`QSJ|MmELLR!& zZRRwuJq77^wBOuO--wJhH5|UL6^2Mf&!mr~SE749)ft8}zrkoPru8=Cax}eZsm#gq zX~;ACPQ%fc&(Xr@ce_tNN=1t!^u`DnHK5BA4ri3*M8Jc40m(K^{ zZ|d#m)NL#gbM}vA1q_IcMnszi5+@9X8s@R-}7~(2vm(M4o>*j%rx<%h0C6-v^ z)3Qd$*R2>mzoZ(OHLPbVZs-7?sS_(sv24IkqK018aUX?Uv2%YT7meC9C$=Z(B?7uv z?GuF8o2|P@3r1|ug6JbP`?i0mgU2+FWy7DAB0jp1_aYAtj8=^D)!dj4PG`bf`6X(R z`%)%Tg;k7Nl_|^D1me#Xdq-XSag2|hG-ABup;h51?5h9wmfTcCF7Q3?wf!@)c9rzy z_|+nXPUFUQRw5FLEbm_bG9O8$TS{?VeKp%&c%(nU?k|f=T_@8B>JN?*HI3CPWjz9R_v-K zWLQ$%YSG4l@9QH*Ty6UT%eJkHKC`G9*%sXVDrnLHVZ{QjDG%#Vi_f85Z_~?Be&V#w zM$0<5efY%d%}OQkin>s!Hmn#;%#+wTZ*n*2Z#<~!Zc>caSLIfCOi4$RzvKi48#cn+ z*%eM7gBzf(cID$o@1xNe>&|R!PTgg|JBMem|M2$=2Copdgr6X)%ck; z5G%L!VoT|JNO#coslHzi5yc*|J8Uap_oQ5rd-@6JkZM_As+K9bQY0_4ROcNM^ll1~ z56uLBi=}cCd>fFfmY@9weBILt75aLNJVY}yonZQ@0YZcpSU;Xn3Q>AllD0cP&30MUu#Y}q&luM{a(!h=iE02A7JfSyex-)7$*-SC(&WRR zZ^iGF_~-Ax!JqHx-Tu71Xf)kyj9Tzt*88jZ{ImG1&%%MZf_QxXi}o*h{Mke7Q|VvU z`!%0o=R?zCa=iZSbOd&6Gr#*I`7fu#5RH8Q`bF(;dd;gwG@W`@{ag62_7lf9(qv+{ zZA|#n@d>?jDQ26KSI%G7BlQ2%@-ttd@|eXH|84fox%M=S8d&wW=PzRGH>)5g{%=qB zKV2VxSNd;$+s)9%oNF^hYVTnd)vw*wDs->}RMjXgIbhqQ0t`*+U2e9?K}n{fj#Q{?N(dsEsKcFPO7&Fiy_gui#keKqQu zU)M0C{+IX-sPp&q{HnM1&*+H`e1*b|R}vC)1ow@@-1i3CabK}WVh*R^cOv$^DtO3} z3@oRJ_f>Mg8|Aj1D2r(C3r;EAlv!FneBAGIFh>l$*7)}Y);}oZAHVOx^B1@&6M2lF z{N)APpz{B#?SZ#m8?qhztLgq#J>GilFWbReul;4cU+v?q*Z%Evc(LK5xC& zUw+(*ua&&@+W%Vn|1SUY)@%RI`{D2M=l`^Hcl^M154c<38)S@`l2%kp{J!(SKX5SclO1*pGYeZqiUIyj4jTTMhqb-3_t$0=Xu`BZ wv}v?Uw57BdyAv$tB<`=5@P2}YVs7lfeM>t2?G-EhGZnV@J?XZ*SJo*0A8HcSjQ{`u literal 0 HcmV?d00001 diff --git a/packages/itbot/models/Volatility 200 (1s) Index_voting.joblib b/packages/itbot/models/Volatility 200 (1s) Index_voting.joblib new file mode 100644 index 0000000000000000000000000000000000000000..81681a4e13ae07b8c4586c6ad899bbc8855b14eb GIT binary patch literal 40485 zcmbr`2|N|w|2Tg8o)i_)qO_?L6%t-oNTpQLDrCRPmMv6T6@?-sT9lObz0h*5Eu!rE zzVFL*?fd_w-0JgwfBHVY-~VqO@24{}cg`~BoH;Xd?(KbwBWMmM%a6rJ)bX&jxv_(- zjJd6&xs8dnxr~vEos*TVWuTAH?jI}a*2a#GRu)#~4uMw#mz)kf5xCfg&)m_;%Es8q z&cQLz0Jqt!9Rhu3Gn2Bmvc)8gZ0yX;t!0d??JTYEXwyKSsaqyib)ItA+Z2sjwqn%UVHIXW3Tnd3H> zqn))2o}CY;wTXqLW1tU@jj^kd6($>~ZRW#o<819@W%MJBKp#Fcb9)DKQ;cX9=);Y% zOza%Z1GQOv_>LMo{7BNl2}{joYjnuY#1Rwcv6eM*Fm|%C!*wB}i5fD(h(FHWhf`K& zjf`BNv&nfpWhV!7^FW_z%xWCpl=+#lIhJa=hPkQLcq~2K|KA#g*VJLW(Brl0!(nM< zYlUaxXm4%hG=3&N946Rifj+$B=Y}WYL=DvD@|j{|WozVUY-4Y2?r8Mm*g$PIAE7_@ zV(+jRuSL=Eoj>c)$il(c6i><4=*NdzKbwPv#YbQ~aSL-}CueM4JYm7{?eSxbY_Tuk z9_ln5pK0R>S=rb-V`<&6D5ehP##o2HQlX0I`0$#V+8Y^L+f$8y@AsKxV`ppUWM^w- zYGjJ1qC=fSo%^HW*d1N)1Vxzj=ICPcN42r<+^zn*m(9TZepI57g|qF?b8w^@+het} z+l?o}XM&|UY~*BxrNw4EZ0=xdZjB#0m{saXadlu93iJ`ies67MB4g`pWAA2UZ)J+ZOQ6pbo$*aI2M1%f zJr2h9_Wu#t(b;6;>f-zn3rlQkW;}i@wj0*)kM_}K^Tc&Khw*%=Q+znhoZPV0s0Wy9 zcqE&JVxYIzg+SfF#n?iu%7HpMIzMXX#~*DLr$7@QK4WWZyQ4pH{Mtg!CY z6sif;l6uICdU!k~{vRp*{PVB$-c9WB;r~6Z8jTOERKAIXCs75dlfB1#)x=2nN3Wtz z^`Z)EvyOKN>;}`RGpM54W>hiiOscpx3su4!Tb()^FGky6mnIIHM%au0hk~2=uvz_4 zn^fw*>+;vB3H@58Hax@2%B3R7dRce6~h*&QA8uPIw_=5`XWOZok@&W4xpjrDFNjUblXo zw=MJjgO~QSA6JWvshxwl%#WMm&ubL#pEw2@j}He_H+3GiiMWC1@j}Eg`;R-qc%Sp( z9KWq$YEzjb&ClE1_+Pw9jo;faA?%y~c}e~5AivAb!>naymO+On&On=Wd=$V3mGLUY zYQfRU$kfi+)+tb1)`#=wz33kq$o|m-*>}tT(FJ{2j|b}DBagMYg_Dsf)yf)&RDOr? zX9?yO_rxs^@2*Z%yz^1*#*g7)-s1wtFTEdSn7Gph`poz_B%7NV{qvKlHda4|Tq8?6 zBPTn&d0IFHI{i46C)EGNMXAk#z5FRPTAK&MXBY}$_?&8~EsEg_4Ci9_68A60@D*;a z#PIca%FeQXTy>BCeYtBZo)2`^rf9Qj3*kWes{^rPBQX2T^ogctwg+z7+eY<~kIBMT zhXyKuhkfFJ@qpq*VQw*xpEj|Bxs97N#XSQ=!f^5Hv`vMez>F{+p3_vhz7 z*C|=)Ritz;S7dx*2`u}M&o@w*n;a7>yc6M{`FkH6AoO#NryqXI0cQDr9=7IJ{u9sA zEIiBve}|ckojpW1dbVfFj!Y2wy&unB$Bg$*-k$X6a5vRdEU(MZ|DEF@-yQx!@tF6_OqY)i~P!e^3NSCQzybd@}V!^ z&`R2!hR^a}Erux*pZ^SGDa=iwi52GOf5f-9RsG%nnAgeA!-amuXO^28{;m9fq>D-X zZa-!`X85=G%+ z|F`;Q#$$&6J$@nlzxID-KmS?&g}=(r?AHr_e(>ktaQO;0ipK!Ug0Qg)$oivWvv{5V zHGYUr#8~iW%%AJ_kLR&b5>;2M)f}z>@@M>h&tLJyCgRQhFY)KC>LGW(#`x|St$^4+ z<7awOn1|1tSeeD#@jJW{mEZGo{1dEzQ@{7)+QDD>i%;yAmX<$>7_xd!_ZlQpzpxEPyUQ0 zL-`r9urSNb4F6XCzuo_tubwg!3I35kUD3D*nDx(mzWjOEJj%r3|Lgq!NEf62uD=x% z2{B(+ndxFkQ~Sfe}5ale!pjPxfokJG2$=O4tL9QM4HqP@?eUL_%=`Y`*eT2k1sJ3`zdKN?WQq!SXpQ^#)$5KC0 z|2Y%+|E@nX&iIY%c2~mMo@2J&J1cD`djoa<& z?1}a&ooKHrSjnOIJzA>*8b?g8&p$9xK4$WG9c2tB2{eAIfa|O`2QG>I`}4JaHHv;U zjqr0E{5H{kc@tsXzv}B((mz({@bSa=(gIU{EOGxj{-5dpGyc!*)`@tuf7Q>=&wsaP z5OY4!*<@m-Y3;;JlQLC>s_IPzDut?sb1dtr>QoIaW_JI5&YG(E`+yC|Z{5iin zexDqF*BE~v9lz&{zh8~td&i&C$Dg&wpO?pX2lNrqP#lU!Dd;OoL*Gz3%0O8t2Nj?qRE$bcIjTfe zs0P)e2GoSwQ3vWoy{I1zq9HVbM$wOs#md6Mg?JDz;zN^=5E4ey&~!8di6L<$fo7rE zXbzG@^N+LoLk`FV9YwCl4Y{LZ=ma{A&Y*MXJn}{tkstC$0Voh%L!syfx`}R~ z+b9w}KvC!+dWK%0SLh9Ti{7CR=rbaShT>5oNMT zhH6kPszddt5w)OJ)Pd-z6ERQ^>P3C1AN`o@WMg4rMeK+Rjn8@WB0eODgpe?rj%FZH zB!*@p2{a4MLGzImT7VXz#b_y7hL$54B#Y$GY9x;okRlp?ms3H2)Q~3Hh&H1wXe-h| z+t7Bj6YWBKkP$kFOpygTjI5C@azaOu8*)d-kOw-2PNOsE9J+{nQ2+`=!6*b>N1^Bz zx{L0kN9ZYfj$WXb=oNa6-lBKtJ^F;k=NRHpJW4`eP%=tI-%tk1MmZ=C<)Z>rj7m@` zDnsR{8r7mY)PNdMGipU`s2z162I@jRs22^QVKj!=*;!aP(fESR&oVv-HvS$q{w~0c zcn~k*L;Oep2_q3S4NXVlXbzf(#&2B<(IPbdzP236AX&5u$s+}%h?Ec@3erHDXam}W zHY07c6>Ud5kS^Md_Mm-89~mMeWQxp?IkH4lbO;?r*2oswAqV7)T#zd|fli?_=qx&i zJkfb{0eK-mbOrgNKoo?oqfiuv?xK4r65U77(F^nny+-fQd-NF*lzrJ6+K4uztw;y$K)Of|?M8c$ zK01I5kP$kF%#b;xDo`b=Mh&P5HKR7vj=E4c8bE_+2o0kVG>X{Ruw4;1;zyIvWHbd$MIvY# z5=XPqTqKF+p@m2qtw1Z$DzpZzMeC3l5A8?#=m0W6hR7J1 zATwl+ED;r1p+m?9*&%y$1UVo_{KrqO-^ooktgt7xG4zkPq@hm(dmEkFKI? zC=A^|H_>erj_#lcbPq+M2Pg_XM32!E6pdm~Ec$>xqR)ti5>O&aL0?fC`i|03Cdxv& zs1OyQ3RH=zPz|a_O{fLYQ77s~eW)J|pdmDZMiC2+*Q|&QaUd?lje^$VXXA^H5cApI z#oToKM{NJ)8UKIyy?~P6me%*QSaM6kJFhtI6LB%37-^{H5Xq}`?HkNFDXe!J1+^D* zP;Pz9o5R~23sa2_eoCF*2b)?1N(*_rp~Tnm^}(0JM7q|2b9He$aP(@6#y{wSO`7d3 zyTixGno0`|(Iy6%+$vig#X15Jsf#sdX?2oMuWZ_Q`Ws1MBHb~YqZ?N4Yl`k#%uahy z*)q$@D*>9)su>4e1SvMl99aWWs)^;=Q`oi8<3kHTYV?+5!+d1<@ZU+(Yw z(oNDFP6}qLvQo~?4j8bzF+${uR;@8C8YAztE1q+*_JhRXTM903he_fhJLUBngJf&v zyA?}T4TE7u>$d4(y`|I%WH4maZnD+#tSEZ$RW11ZLaHc;tAv1R_RZY zmEb&GWb5RSLE^tgZ*05$cX-6PSuW@!FU4O-u21G|CB!YtD7w3*n$+{(I3c)t09LQl zOUm5bLqY>j+PKSBLb;8xjC4Q`ObN=Cu0NMcUR2RbH3xIxdQ)T3{K>^&Z?S20!kPh+ z^r6(EO#id2l!`R>NtA&Ch;M)0>^)Qh$L;D58OQa)@ESY4s*zfv zGM|=ZakQP>ncaSFM@v79ge$CH-Bb+=R?Mk6qk4oWb98o8-|U5hjoH!LLNeim@%!qm zso6xKb1Tivs~fhTm=+`-eUEsYxN+fDSRJ`@Fat%p; z*yp%(InGzi5sJNP&_t%2O>w(zSWPIW3KwYX?gbk!*XqaSNu^o!QxJMzd0d**RcW)&D6J)aOff`+ZC2g{#Hi%1AyS_9QLM~(EbLRR^_;gAb5^fGcrs(6h3h&woF-@>;xRFmzrESPn z!+9c4(CflOX#<-LDf{p@o)jLBTA0VuN$iH?+LZVzVFBmL=stcHidmHvo40>2 z$refBed8VreSQnSZ#ctAxvwEN$(Co7n0g#O=9$(AkLDi~xu-J>E#Ak{)C)LheLH;< zgRF|li`K-cj0=O%yW5>HsKrGyo@@9_G%^Ry+ib|Xe-zv6?(oeT)oQZY!zI^4q7z)k zDk}C#cEJq0S-fFu(}<0j*Z_x87n~^AqP_hN9S+GP+a49Ege9vN3QjuqgOud+%88g%kUMKBt$n=LmnBa=o2fDRHqh^EtI@umr`?T5H zQlSwzox?@V9Fs}*@`@#;i<*Ef`pBmCn9t-{r8ciza3f)z+Ff8Y&;=IGM%il;Tj8eI zB>Heo0mwZ!-=(5C1YaVo69z}Jq00D9`K&c%FdD1jyWOM%x^yp7i9i$Co2FSarLu{{ z3LV!id{6@#vmeb2QEwvxL+ieD=hhRc=eg`>YkOe-q6FWSG2O6hd((7AMjL*gRd1ea z*b3Bv7aROD0*F)2hoYAk8_E0ygGwH)qww-#()9Z?zQd48Ny{exM{r=Oq@MN7VOYlc zWlrs~MmSF4y0Y4`l>|jdCNGj328OXJ!>qC#P9EPiQ@N&#Om;Z$yJ}rFl)T-g)>{mh!nYvrGsm7jrw@yb_= zB3$d_&u0e`23I5aRn7NKecKIRgF70P zH+&)K=cjqxmG1_*w?@L(zcfMpM)y0H`0L1KuCefaEOpR*n%7seq#ig9E&h-jLnqE( zJtAoLYN6RkckFFe4XiY)d>3-Ol;p0;OlQOXDe&n@(etUQH9k5x)364t?q=Bt4TlkqN2xm`S%-+WTt)HVngSvw8LZ4w ze2cJOc^z(gu9pKEAx1L2kz9X=JFqA$&Zd^$)ZwiOgd8+sBZvbjp|R>Let zmX_Jl9#YQdSGTaBh^(5`eKguN3#Q!(ZVK$kBD+*OKi-&;N%WlsMNc+0!j&7@kro^= zpx0$P$0aX^XfqzX&iK*>Tj*PIQ)#83r}oJ|$|Ro%y7owS#EydVO0(y;s;Xf`bAz#* zL@7BEQ$%Z7)C=Dm91k)gvWcjm$*s8fVG^T1(#}(tOB7B!LR9hdhjUT%R> z_6O}LK?6j^TY}}g>mUh94&ZaFw5M|G>>5cT^{sH@krtR?BfTQ_TOFKFX({ZG=^ok zttK?fX|$>Ly1rhZ!9OrA@cIxZ|4Aa-1~ z;p?cSFyBQzYV)#e(rRaQ@mK{Xt$6#&B=*5v(mY9_BE)ilaLX)@%4OrAje2semKM$e zp(_I?TL);wY(@5CC4n|_>Q=cll`|h~7)#EpEyU-)BpL6m0<9!ac(>>1(l$81J|rr8 zEgdce_d0G2>mcV8D62cKrhrPR%VQSzcu><1C$y|iQaDoF%@%tNvh2bow+TOkG?TLE z70o$75sUgN)=l7Q&4ZP@gtDNgsL*JNeILlPYqj3EpF|iB`KnKxEP|9SgMr=DHi+w= zrMc>99?Uc1<;;mGhgLJ)*=`(kNYK(b!SgsBCIxSuw}Bh`*+pHQS#NuQ-dP(~J~@@_ z3q7-Eg~1nq%LY*zlFg(}{WguYw4LbP$nQQ|K1#A7Y;t4c8M1eC?@`K^ZdmeVrgD;V z1ANr-=QnDICdvaGimAT4rOR^XWFc{-OU3q;Kb(`_UA>NAv*9oos9 zt@F==WI9=TU3*HXO*PrA|8ZMtUp-m)a;DXl=Y?ccWtbvjTm|v|JzljnJ;Yf|SZ7&M z7ip~7sTbECM-pTCcKfQe5!Zw#8wX6PNa}&BP5K-R2Xo6dGde)}^CAMcKi5HO zE?rC&F83cTI>g3CtK$waG(Xf% zrtZ3Fxi+pJyu>RH@Shwb5rVUK)W~#_fE>3jzZE^;bTBU2pqY!76YgK}_C*L34ZYQ(jtd6Y*@?oiizYMWY9Zp=E>1(w0Wfh_ z*2}6z3cBsbdziBAbC`z6_mR4{Z->iz}hco%QeLY;(Cpt@*<-Qj34nQnng6i zyR=<<&F16y8}g3LYh4wrQR;jCdY~Jc&+p9ZkZUJO7lSufUrGR-dS}hTSQNJ~%B?0XCof zO?&6YgVL*gJibYd5bu6xtnOws5zfu(4$;UW{CRAj9h7rHaq7qN%&aE3mFph&8Q&S) z%!HE!b0@CC!Sx#au4?yceyg^>T0q5Dp0ki^ycc*h(ZAy3{qseCHTB5yV>Hg)?4Eixd8RSaYfcUltoe;TMep*o{H>E{ohpq%$11ah)8Rp6Bfx|`* zJ2^LVQ9}B^Qw-Ys$dbp_$9w{6KzF;z`o!lQVDxAj?VKAc%}}ngPpySPMDn-YulMhR zH9ecTqTBk2%;QTZOlQ9)o)=!Oc=Wgx44<59JQ6cR3L-*U;}4gU{YPe7zFXc0Q}d)_ z9g^F~i~-IThuCsByw`c*D+8DDVJ+YIRD$Ko2Tyb1o%0JpJR0+ZIFI(eO@wsxz z{F(3B%_Z&|fYs-@CC2jtzcOxv17d_MMp-Q!puxdQc4Q8md(n|}~k$_8&YQ#;7oVtQ9_^M~vM!bT=AHC@5fW81f2k#r*khpAHQb>9eDOG;3!^E}|j$T=D z^LauMTvzs6R&!>UT-bl-Zh=n`xvu#6W<*pSWGwL(G)x8E8y5o0+q1}-=U*+%cJz_`w#&?4Fy0ac-zUApURS||w*N4# ziveGSHl*)s90vW_i~8%o))L@?AfNN) zaIaP;V7F{Mkyu|;7{OObq~6Reb2#5m*yJ_VD2v8H2%qX*2ihlMBN+CuQNs@+D>uu1 zc$Y-Jh@Im!qL-5$T3gM{iZbwdE-mfT3I^F?u+QnD9i12*iBRBg>LfDS+##X~A0T3$ zhs>Gw0+Mu7E2LSY1HNQf3Umap(+2fVh%Z~#NSsSG(g(ISlZB~Qco>5tq`5!o>BE)9 z@RdWnDcGtSKC(4`H1HZFx9bdjqqe4#h2(v*VqzY7cC7q`ywWI{F87AA@cv6u;4SAd z))okQ9qhsxvIAuHo~b!4b?-@RU0a;@=2$3x8yP1r)kB0EGzQf#B!Yz7UA30TdU#Le z7wYXPgt-@GmiM2Jg>XarDQ7P*;Mxt#QKy<3*sYFEuk}W6QPlcv!d-#=`sVVbnh+s5#F z_r(NH3wV^#^T4{UUe zJW)s5DYU{2&acFCGR(Wl@|0ZO?f0hpVFT&6lzv>bww-Ve_H%#GY$u;?6c%inlMDlt zhmqV)4~f#%Telpc2@2QOpAk&{OiXk)21rk@Ag4DR+*e#x zeI%9KqYG8^fZOQOCZVK0(lTd6e5zI}(UXpwXRxpp)GYUh4o>eUOYX4UlV+(U7hR*S zm7K|i#OHGk4w{US#n#awNm*G$=xc>hLIfR7J}NEdA8jFKNiSoEjNg#Yvd5bmE(}1M z$f4`Jnjz%+bh@qF{w{JQkUMFmcRBF(?yf85?J>bbga$7%M_}lr|}DHr~>}Rc%`Ev0}$1c)GSf|fiR3; zKeJ7%CE3Ru)5hk%05A2O?dkR`v}eBju3aY^p{#S+*=M^tU`XL+>T^QgKlM zEGT+uI(KRY*tM6$jM#G0SWe9PF43AzHr=1ZX(H81zK$IDbRvkAcK1l6RrKsv#PeEA zd-u^}WQLv;zl+rnX}f-I1GmFBu(^MG(W$K+;P^1vT?nuDbv&z$3hfifwcG1FHhWcp z^d3`ocg=emU-l}*wXZ4c}cMGa-L)6>n0K^ zwB;le#6WzNrej6d04$lD9iJs%2#TF6LsQ~=A##g|TrNv5=r;?c-==>BqqOS_U$5wZ z`=avm{L3qVqds(MsC79JSoB0kK&%}EORlIT+>3#+3+{2c!d=9f{maHj(hbn(?#~Bx zRfK!)lAXq?DWLyuWe-ER4+g@;_J_M}+B`cEWWRnB zd={Ea_>^-;ogRJyJC32e6|7Y_Zt(cg&lVE@+*+mA{TXD}86o-DA|H5TI+(bIrHVXU zW0BX#+Ch~1Cta9wFAwrb>Iv=sk8tnC#}bhR9V9QsuE5H+1Jb?K7w;Xq44vgF&qHi_ z$t3AQD}JjQc+64k_d%c)#$Mc%H8WtPon=3ly~DBxLgUul3pvX{yHUI^;OrR&f&7jE z?>*&Ymivcj-cWphNn3bZP&SvO8`tR^#ddl4h_9u-XNfMfg-5?M(}1c zw7iu(L1Sg39G-iMHS1^tY^fL(=5xm9xD~3GUuBGfR-S9gWSQ^e-kYHCaK9S3*r}>_ z?o=1NbT`)Xdf7=Fwk7E;HEf1g4=&1kJ{bc(5o-2UIT|S%+IDuz6jsVs_xH2=GrOTf z=F6H{tIElM<;Qi0JUJ-fsP341sR5Q%uCw+RdN{KCvq^m5iN`5w4ov4@(y8m9kh;M!r)P=r?Lslg|5g z6*Cu=fZW`~i}60SaJ)1jui#BG&T}1V(dn!KAqUf@b#X`q_0*iZkMRF+3lgR4@l7sM0k?*QXTyFq<5ZBpkg)%f zM>cu5N!oYL&N_JBxbyA9d)Y*2t+Btn27aGtrai1`oJTxGuHHxf0o#SDBo0F1TZ+ow887qZfM(|wNsz&m*>P6V$w|tbM4OveY+TimV?~RNn zfn8*nc9F3_YYar=dlRNB#l!Q9T5pPO;5>2n4aZz=HVXHRDbZnjdO$BZkLBzpoR`{K zJZLG@~g;kMUMv!s#AC-nOpqd6#3_K50F z!GCAdQ2mk3XvcG~GgnqQc$I_lIMl<=Q(P8+6DIK4?H9z*>7=pb$PRB+2(@4)dz7+e% zbh5MLQ}V@Gbl8?Or-LiFil}u*%(pnvN7mAe3@%0Hg2CNV`|D}KUL5bxxACeX{2>hstYqj!_ezA%EX8he zvALOLvT-)iKPPJV>`V>WAA9k^wW)M+|7l_2d`d3a^*ta>qdg9Cx;BXcBMsgR7;Ctv zM3JT5r$3A}SHXExo8<)ulHsx7Ds9JAIFE5({no|$DsYp@lTR9Dfakr-@>e#rL+SK+ zpY`; z!InxFkI42$*wk~xShp<)e4p7ZY+S>D=?rqXRJs)$hK_aYswjfbX@isEr5PY{!Fltf zLOKXsbA6PmQbUrsVjn(=W}#5U-80Vcvr-ZtpL7PP2(TNq(QUlm12280EOPI*!REO} zMqgF>3C*RHYV)BVmLBXnN#EEG&Nu6)$O)GcS+BFp9PTopdIo3T)}^`dY3Az{yWD$8 z8%=q5jX1t{%(LO6de*_afJz@}pH?z+*IIABsdU(QDYbwlyAKArPraIVznxt9&M(Pk zPz(}FKh4|ztQbtp{6q~!$B3WgO^FT8)nx0fb%8PR-$2iFETPbtjrP92q%V-QgveY!B#G`^T5D|K<0R61@6F-q?Ssb^WPuT~Zjo-m~)#EX~av_@~rNxeJ}IkPDE z+f5wrk4(SZT+UA0RpcYu5IzEH=Zj`*jnPPf$l~lhSGj5R`a-K;pDTxf{URaVF?Bdk zSTYcu%t{M*v`gWDGYjR@VTOPsXD5WMFSNS1hJ|*p;r-1u0z;79SL|^2`YWi^d+cu% zGDcX&8aS@x^uh%Rx${Hg6t&np_q*67D6XCljB-kbPoNpU@3kXoLgXjlmeXC1CxJo<&WZOT6&<&p;x%e!lN zQX7b9qsYna((SNb;+^|7oCi80*yO!eBp3E~9#p!5zgwtxnf*YVyALM2TM8!N?i;kg{-$#o=Rez6oL7599R7t!S<}lm|%oZ07W@%(ns>u#DO6;cMR zJNEY!6n4R_sUx4Y&FQeoKZ(8!zb}n#ziz7LFbGR`sZF7-XFzw!BhQizg}}ExF^VUV zg`(ne%WnQO7K-@+-Ize57I<%cbL$3a7E1QilQ&COk3f2y-27yZx4@Fqe)r>X{5h9> ztD;`!06bS$jFyrrA&vp&9=n2ah}!F6t%ijxl$)~4r!U{xO&;D%pX@tujaY?~>davd z%9!5Pq8;msiJ#!Nu;wKnK=(Zl`}PuU%I5IsB|Ea3E(I< z7UgbF8Uq8)pjj18K~$sugYI^VRsK&Sx#)b$+K^qj?ofOYU5CCa{M1kOOhMOMAd^s5W%rL8?Y{^6|fR>H#jxcrc69|?SMsJe@t0cS^bgPw(dAp`Ege%s^YNbH!& z@NQZ^c-&@HPjjh)h8;>*BfjLo)o0Vw-J%$f%|DZUp%NiWPoJyrlxQJ$cjmw03-5$w z0rll>x9i9Xo3SFr8F}QR3G01dw_ac{WT)=?oIn%>+B=@BCqv?qSLGUOo8YiP$R%4w zElG|Q+&5);9xUB$ezxvxFFaQozIBz7PoADU;s5S1-e0b*`!0X3A5zvHuq#%*M{IOh zgVXdnAwBTv9*)vvh>SR^J~F+RfU(x1_}FixdqtZ--8ti+D|hmBPG2(I}}9v!1_?r-pu3KVDw33x-xGwESqf><8)yNKE^dL zLR?FTW^(q9gxF$e-c=acT-XX8mOf+0IJ=3o)R9FN3Li=IrN+?RJ_ArKS3>c~Eh3kX z`lwgf*MU5RfA-k40q~AX->YcTP2{z=C_i2Lnp{78;*6T?5D2)gog1&&L%vkf^V>CE z!0q$#FYb!4QhcthZPpzaAi9Q<`+L58AagdWsBgT>N!eI-Gb_t}fNV>mKV=DOh6Rf? zC)p=IBL|W)+RmqO(>|YzI+9E8B(`y2+_t0xKHt5=dZKZFRFIL&%W~VmFjf8Q(J6f( zI_K)kiwZR)L2+{GshzzrmCxdlt8^uNbl&|cF>a91D1{~V_JxF+lCmYPq80Yk6nzR^ zO(#tUrmgHOFNHTFhDQuvmcq)KmAff7dWp7BLG;b<86?E&N??{-2YibjqD?-9^J!`q zSLS;50sYI8FKHERAfZ287XPsdlHL5Sx3Q*xmC8XWxx8{%`ejL|qDTsPuY6Mbp;*|9=E%0K2 z?U$>2&ygOr-Huysm62kV{gn})+CbOf&Xr}Ki;3Idw&0la*T@2ubT`h+wcs%4{S4pQ z6!K(oMJw+}J8}2DQ+r&i6$D-9%W~N_kI-RsrS2ZbD_sY`Hh|)BnN|gNTwje@Z@}MEJScjc;y45$o@b?04^+VJx^uU(7Sxh; zx9V=)+b{$-E7THVXBB~duc_ga@&Z!n!8#{#Jqtza$xX-GO`RZpKRGJhg$8`LT<)xu zVWnJ_^tvJ9Hw4P_thSB?WWm_Y!snL;udNy$^MB1Fg0cf?UecXJUN~$@zC{Z;Dx%uz zUe-iN+RQe;v>4Jnl~>EJHy`8`Meju#l*8A2cbcbf4)mYjRkvzk70~x^7_Oz~!*Y>} zxknF_k#k!KCmZ6T!lzYMfu-YKz4?4`BYWDei%sSF$&lIb2#bhIq(%kcfCuF z4SWluev{%O_vR7Pl7Ygu`gWL^_{x&L{~dg>)w=)GsDapmUZ(Q=PT*M~>m7~rFo#=P zmn_~iK+Mxlj0R1@`JD4fnptIMh+5wAWsF&aq_1UeXSrfHh~D&(*k^-&zTeChPcJXidlK6onIV%rX4nOIp{wzh#R4P&`k^RAOb zuIOH?@S+wzncX)HzS0Jt=uvBre_{})``cIjU@FgvmKE>wL7?U7g2SUYZzT+iq;koH7Y0N!xWAa>G=NLTVlGmMzI!uPvSkJXU+)ZuYDQ2U-Tp7 zPIf-H^+_+W(hwA0f%AGhH0pf=14qdI?t)NplNxeMJm%!5eGI6XMcX5j+(M+Ile=Sz zSZKvFXG9Aq#lpLu2+FFfiA2%Cu|&LKn4}!}e&$Qqt6~hG(3Vn-_23@1`uj zd+aQ&gxxh~UVJ><504YxoNIsALk=j63RuPE!VxP~y@HwjaB=l=ciqE1dQsq1fQ zugiqhwIOjXl3B2AMp#O0^%syH)?v(kUJNlDE0Z{#o53X^Om{fHisSSY5})CF$kQ=<{$uqdLrS`$WqmfWRM&fW=tDPH zx~2NA8R!AycVfF*kN1Hp!zbo4qZxGC-0Neq-jSo~tRu2JQ(#abWt+~{8sgivkv88m zo*2id=ZN&xl1X3nMT5dhh{JAUyRQ=XJ)!I-)k~7u4;RtCX9Tvt{gT;~)pEVM{=$UL=hO2X|jdS;kFUQW@E;y1bW|vK#5tCY&V|D^^#s zhjY?KMoxE2h2j4X=ZK`Dzr}Mz;Vh z-&5{PT_6kX0Q+{9C;rvs;oi|xgQinx>JjoECW{V}hm5Yn)4cMC&2Xle@&!*`wQdav(2=RNPo>-GH6)9PxiXWhekp0)1ZJvb76KkcMBhxQOS zI9dei{EANA zE4ol(-sol+Y=lvjB&R3O#~?;>__f@NA_x=S9CuT>315T^SylFQf^Vhp{!Ps7;O(X} z+I-#vWxI6d2k{L;!t_;PBZkc|m}DI}pS=j@3~cM}ChYN4;iddJnw8kp&Ez!yHi0AM z1t{&I)A0;-OTM8{CWxGO1nI{aaE{i(T@upekdwdm~}^&sHh+I(H19Ud<&b);V%!D|D&S%pgn@igz1 zjL`fckh8xfC%(G~vtCt;c)zZOG;T0sy*dK@>CW6d;pM2hp=#Fa-Z~Ji6!vYN{TK~< zJYsKJ5_Zo8tGW$qA7aq{WO7|*ITmXRWs$G;qm&Y80lvk+7=_>Z_LTm*w(4?CS;D*@xq>eW7hMUZ>#SV%!!C(f3(rO_H( zAq)0!YY}$Lk6yx85_uVDwVW%WPCEzvrwz&6KHmdp*4>})<2itNn@`jWax}ux=?%lI z;>;v7?v*LZ5g)Oof8VRMgkCd=#gGSn>4kJ^cA0YWD4K0J&$myk5y|30obPpqV2jZl zmn|IK_%x*8*Yt*3XzT4|Ba#P@On91(G_7bwv2L&V%7mZSUdP8l8rpZAoP@4)cuBq)G4?~;J#@Ou4(Bmy^_`o8_FBr zOL#y(mcj`3JX8e!**DT79QNBX^?bL%zp;SDuruv()JJo&abM0t1P zv@(_DuOl14+O~9k7XJ`f&3E>R(WIes?t>4x`rQznaB#J%-!M3QoNZz$@Buxp&R2bE zMdXd}Ygl=bWfX+(R~p|Z?CJFv4zAmAuniPmgdLx-XouwIUFuSoN0BYuS<~Y3eJrir z@&N9=LHkbj0!ay0iquvi|Gw!o41ZSb-egYrD}|rYVSU_=&DKYrI`Q?vlEb{(DHDV6 zqQ{b|7X2EfBe?j|QU@T#N83T2JOJa@WK<&8G~%O;H+6Q))kCVoYEEn87;Ih;Y`I)^ z5G7P^y8C-FQO?JEvx?}6Mk#+!UaM|HFVf&XvDs8)&zFSxRK8+d5H$nrxzp&7Ne${*0O^p6WG&y zRra!fD=Gwd8>p1gfI57gUivH%_Zn!g5E>l>Wgc_o9Q8UBwvQ@IN*~6Wt%WtB>e;xp zFC|&*VkwHU7kH+zHK1_QL9TYQax~xRE7axS2E7S;WkP%&gQ5Nv?%l+9Wc<8#e4R`M zP@Fi~o~RLiNU794?QN|PY?KvsVht6{-5!t&Z3;nVzLHZ>M=_Xd3&?A$)#7tq{p}u< zXIT8g#8>b_I)n(UVSb>*M42-XRh2t2!LT!IS=La}`eQxIckKOQ;wA!4scm!kKaR}%P^?^}Hu<7#JA=s@f z!Q0@%Oi^F*q~!FqkEq4VqZrjj$6QYra=P&#E-jB|j$pIFQty!K@-alb9g%M|&b1GB zzMWm;llvZo6OJg;5_(`Rt)cp@cs-UEaPHoy+K-!bA6!{X#9L5ix#_<;Ooj7)%9n{y zIKm#@BCuPj8$zy0$)*zf^GzM5>Sc^lgq7?UN}p13Z$R9@hi8Lm&YhIo%ajTU+BYiA zj?p1^+m~D}>ih$&c9xyNSky z&^xAC1GwY%ir7I;I_$g8>*zx4Lu&cr$pw9#_)|snF7_K0u>5h=^7svP5FIUd;rd)U zTGq1Gs|V(Rv4Y~D`Mm}(dtPMes91-JIcH)+lNz9bv%SEdtq)pcJ3@@Q3{mm{eYOZ| zF?K!T@J!v537$osOM=`QaJEnwYbW7adt1*cYOIsyCtB=;9swkcMtF8B)@~5agVA z-Tvs|7@kqkR1nXgKwkO^RIT` zecTtQN@6BuKLq~gZzq6mpE#RQGmiF)*>snjZ2^YlwmVLmBj{9hYuR+OHf)dEjzw!& zNCPhM{5KAy6L!hKJ2f@$P>Q)mcOM->POfh?ImJdf zJABT>kzPaK-^+put$Q%x9W^URmw~>T?5T+XQ6TJMP{pp73|dW|?KVWbX{4=*xa5sW zP^mRtv1Usnm^sC3gzGXcQp_MT;YwiT%l<(*Ei6JaF^5 zd^Vsf3Z?CO-X_u;SP5^_RbUi>49Pe#3#6i7RaY#*T)HuyW}3c z78ti{feZ!Z8O)9=77yTSoxr_eF*Rsc#aG}e)dKtxZ{I%^rQk(hW~HCf>hZ0A;C`*q zMzEQglaeY@ggXiZOy{gFMTraZ%5DU=!;Zzv&;0!C5r(hrJtG=cjp2#U&6I9bL6ldV z4NuNTY=3Z1 zaHbtv$F=Ma9fCeKLIP}*ik1~QcZ%6b1%-Yd zT5G#uS*J*SnrS~uzwez@;@b!Fa;0t@X(iVG?o}^mBvIg{bYbE&QWp$R9pbd^1Y>lr zQY1Iy4eXXL&eA9NLP;!T88IZzd2F(4&(m9>K#0D89zTub*RyVQ8@Uw5gr%ekS?FMM zZ)1{X_7G%m2&osctVgqoS?tbit-xj0E$KQk1PS8N{9YWD_~N<cH^L-NljswECUZM77J_E9z5r?=!S3(GijnC z(Ug%4cXyw7D9=x8E>|Vf4bM_h^CczCV__01rBHX<)<|N?8Ai;Jn@uQ@rODB> zpa?i-#yigGAnX#R7!Z&$h>1HlD7mQ&pa%Os=jukygDCl&G$?LJueTkSUW2z&Ui5T3=?Z_z=)#v$iMJJntk4BE!ws4xUC zc8rXMETrJVMGXV}ojq76k$QeX1q0Oi7<<>P498VWk&TDjDp4kFXWaq8=_HM%u`TDd z%VE~u36AaNshHfNu;y?&9R@n8I3lliqnNDvt~NgwO5`tM?u8MfaO~2d6smO(TsqAf z?3D8sBoqwwcjXSjL=TzWsk9O*2Ap@D{7{ZJ^VAL;oHq>bV?QLVWeq_sm&%^<87=s7 z+b>LueHc)Zv>=1?Xeh`;c#vnTDnr3_c_Bnn6Vio)T$z>3k+7fdl(4FNC6*lYP1vwy z9L6rJE##g<_@B*Xv`Q1-1y|&i<)6n&D!MlBzJ_NT;ScgIO7b2R9Cdx)J@scHEei0_ zZpbf#J(Y_+SPwMem07Opt~*#r`A^;{%qKm@junaqr? zYh(aKsS2p~ZmYn$<(s^d2|uy5!CU7*03F{2o%51E-cIbN6u3shhM+TjRuHpkG2C`u zCR?RaN38Qf`iqC1uuz^yUQi?r9N1JAD|>&$C2Vg)PhahZi1^ety_+RqZ|hVzN4pSL zzR78R_G=Sl2&El3a;yNuk)d@kgg6)9$Sixr(*tUCW|j`8pFlFBf`UbaKe334pX*)X zoMmtBCmzT|x|9PfRleQeXz=sVk&o|ydyU}Fc`WHrqUfm5y`0!*1V7x-l1Aw5ND#jV z^AK2gd1mj3y#ZX>kA`n8=mzt{!?>UP4l>5AqS|HqFh5v)bS5$kVvvs_toK{1Fu%#IE|`YX;T`q`#rdmp%#Ybxz&OGU3|PKj1M zW9aE2fXBBE!N7^7>-m17;X<;sqkZ`dis_-GLtTTNz%O*!DmA_f-L-8^{EBB#SZ-~z z2rzyHaCt`dyx=^vXdl>`t38e4SnvM6M7Fp8sLwVTokjW0@rUiymj4J6{-lFR;irX zkK*yx=R~x_k)F(3Sn;$JVk3^}hSd@A+7DI-Sx*$fUXxYgCNF8QD&ixP%c&?_B(=xl zd3imAa)pw+uXljO$*b7*OB37;Psuq)#8qT#*Ek35c>=1O%0w+B8YZrLx!P?;G2Ggu z(seDV3f!;lT+SNUfTCje+1Ki|gK66mZBfE6q*&FNb>jIOj5M%b-AUjJ*V>IXCFoMI zjp?UHH~A*e_T6%okC8j3^mmaN>`dVfHW+`5%dz8UJ^EpYF+2R>bws-&32Il6`3TpZoREs_h1M zH+^pJ8`8F#cE9;^`_GR5z5V~G`tA#LMEu*gLf6mjQPd8Xu5V^O-wI#;?s;T%$cbN4 zsr!%TGk2y`?#c}x@YDqN#dPkr&-CPH9e2zk;-UX;zWo?)k^}$z`}p6*FRNhA^)9Y7 zjNd*XXE&$yhnzn#`tO%Z;cczk>W5$cW&Tz(=gnff_MiWr`FH8@f9ts0=24^qQi>4- z@`OBEethr$tRB2uJLjqNeIici)AjeS`#(7@O#T0Ncjwhh92p*O`|jxaUghX9 zICcJ90s7frCQJM_#V_#N`1>Uih>+j^P8H$Fda3g7tL{-F>5UHb5? z$a@Ok_@RfN1oHLXM^pI5SC_*SzVX%P@vW?nAM=>xz~8qnzTg|D{vp2c1r=ase8K}J zi*HX}MuJ8{w)zHM+~#^_2FG;_Y{)0g^nR;Z>&0hdVrrmgZ7yL;K51$rp`&kWe$2?% zi%s^^{f6(VbG|E$*o~}=gpDp6NgCzYp7HfssB_%F(%Rsd9+?=8$ginGw$QOB#yDwi PXybdv*GB)h2TJ@8t&pG6 literal 0 HcmV?d00001 diff --git a/packages/itbot/models/Volatility 250 (1s) Index_voting.joblib b/packages/itbot/models/Volatility 250 (1s) Index_voting.joblib new file mode 100644 index 0000000000000000000000000000000000000000..6be3f4612531e663d2e3467dcf69dd0542de374c GIT binary patch literal 24933 zcmeI52Ut_fw)jI=1O=tp6|pO#SWv+g1Vu%PVpog-0s-k=EP#rD#0uCzv7n$RihxLS zA}SzAk=`M6r1uX02_)jt>pSP%d*6Hi_r8~J|5$rw?^!dmrcbgrPTbzJc?csPnuOJH zV+z^QRGMOHMKRGarbv@)&8!Vg4ZLVV`$kTbjLBA3hWdsSOD|8a#m-)*y%y2n;#VScAW_lE3X_B#-fg!$I*NZlJC+l=K#lVt+m71B3 zspK=Kn39dHPk3QvtGsC3dNyQZFLxT3wVAP(3QSvDUOz)=IgLXJJ6c$27t}YjCK;Mq zQ!I5U=GI2a znHk&S+|hW9b@UCaylCT0$o3>dtkz3ak2b-?#@O1BG@`?c#;->)x1{LefO=juJ{(HN z%!=ZrN}%!Eku675T3X{&^O};3%yg`<@^Qv1NtR@5Lo<9XL}FQpgaeM`p2o9MdX4ld zFB_c;ILp?S6p9y3lx;?)Q+hOF3Qm=nGDX*r8EOyq|3`%~Ue}VDXr@(Z+y;iGhBzly z=EjEB%$(4;b#R$^(Z)0LhBIMJ^-|@f37Z(2lB~!k=Ef8&(#XADs+=^TAAND{&}Ujv zg6TPGLz2EFSr=!?lr(ZtWwba51eyR-xjuz#ZG(#!XLush&Af+Xit7UQp^B>0M45^V zP0Vd@YER&#=vq?9*oNP=P({>f<8^h-Nn~SlDtXMGCTL=2YG!R_YN$)n#aU6O&Zf>8 zF&vkbEzY0_+iq62CO?>sOKYFfSS=IB@r@Xfq;F$7ng=T?*&Lgl%Z#anUk9h=ILX=& zrxq9Eaf+oW#TZ|-)Y12%@#-<_EiP^@8jk_l#Dt8i46~l$&^)?k6n&Yo#8QP+KvPF8 zqxIs->anac0eRqfIckG}9sL7~fm6e; zOV*`QNLGdpI0=c^Ow{S_REZtK_=D}rwg!d9%WlBjRI(+rnvRwl)BH2lX~O!(WLzUm zN!GX-Sm~Qtns~WkMKmsB3dxH$gKb1y%W>?w%vNe@fEzJchiM0aolLpKR2LWL58c7I zk=B8$kQZ$VuJ^`#Cgvwd=7zesd-0+Pt23R7mX_ob`z^`l=6?umWuwDtT|6V9 zaEeX!$jp0jxnT>Bl#eQ>3qCiqWX4Msrt#=mpTMO?J;FZ2cXH~>dAYl}dhPaFgiDA+ z-b-CweZ)E=e^d$9UOF^>vazw59SN76IX3Y0(NvDag{zyPfvE|_)S9Go!WtL9s*sHi z57W5A?D{<_TfloM%V*T))VZNgZ;N@8}bRDPCXLFz>6BzI=5V)cYS)GF#^H|i8s4rYbG)j*6YPL)vAqfVtx zqfS>PP-nQ~Qm4+sjnVXb)5M)73D@HPAmMs6PQxFpNu~a3%kNne`XOs0r|kT3uui-+ z*!knbEg$zrB(I+=#_`=^%!pTy72|&xF&`^pF09^rIXjM#rub_Ns$3U-EtS#oop~wr zxNLPK7+iI6t&)F*Zl5twR%#AI-ZE^R{9^;l?~^`O*c1O~kt5ruMCLtvfxIuW^s(yA zd{*HuqAsQ`p)RE^Q{|;DSLLKi>J6~C{RC%%^*H#4QIR1v_YJD{FW8pp{B>vaJ)MBHcpFd{JP9F2!LtYK}F**(qZFvt9h2Px**h85wu`Nt+T zRzb$nK8|f=c9h=7SvgSUVD3wU_lsR-RM;LZehA;9CBI`c`!umcdvG zVfm73peljoD=g<=8G`*6Vfh-nWv~ooYPMPVL#qq=wYjUxUGTC|C8~0$3gM3Qdj;ac zg}|;ilI)5!CY^M*bwNi9AHQaADfqK*WL_sa5ZO+4`7zru^TYPXr!98^dFVM2muKz$ zTnf5BTp-BU5}EfhKkRzImP4$Q(W?YHOA@%*CnHjb$ab>*r?5QO>A_B+bw~2xLW*SO zjfhep{TP3X&G+=P=F$WKw!$&_D%U3#w&exM-t8-eZ)5&A|0dtV^RoQM|9E}${J!7i zSakLd|JMs?rQrMHbtm2L;rUqp<5=>CWWK7^PJ|Kfp;B;ST^|+4zK3VqjV*t+pNR5( z(~q*Hu=5Y$wTNsdI~-g796qM7?C@^hv#ScPhiO(>|Yk_6@o^+^I!(+ z`lyiq%juuxQorl%tYQ%PL-^H1wv(N1w){E$?EBdE9d*z79$t`jgAhypkpBBo;~B`y zlyopwwFJ~z*GGiYnEfWQ{3rbyUg*^`0$r}+kW}E)beQ&Ic)|uE+sRHhTmCNnKhz5x zv}Lqj;4^kOw){E#w)r-kcg7{dRCa_Tay^ml6lR@FX2~D&f0Zzl#EPfvm-1()haE3l z{v7`Se*yX8JEg!L;zy!!+Dc?a_owO4bB*syKad9Ob}|}n#`o~-dNG})@Q3ubMBHKk zyZmg}5i%uFo5*&GvQ8w}9%E8wp$`{*&a`?Z-P4J`)L-^(VyqK!w#S%s(mX0aA9a=i zyPq0$kM&<{yRqfZ_G7F2Azw@{BHN!GjxGOgcy_&D*Uum0shU&(a}q3OBv^#OAMGRe zH{;Lym-Ejq=h1wRwSRWMGMjCXG1=nL-htF}o{pbiT?z-s{IT`+5!ud}tdm(R$*$Mf zd4EG;Bdh-B{nG!i?_=AYEq}KEo!XugtG8wYdwd#=MwZBm?oaDK`#yGjqwcZxKZkY0 zT$cRtKD|5LP+25W)Sp!fTUgge1aa42?teF|vUPZ_RtgF~hIdjYvYqUFv*pkEAH6RR ze%JrbV=0nmD;$%rBIZpXUR_t8^Ej;-6vzB=`DuPnzZA>=5B*nR}U@A|(*EJcf1@`v&#=2mr}Hx9PriVl>(GIoR`@~`*5>|pQg4N^|F`a?DYMRey3`)SHKL-aL5AoJZ&_b$oKGUyRqf(?DvCS ztYWPFu*0$C@52AH`Df>oJx?5UOZ@Hhv**{N;m3UsKeo>0wIv(d;JuHZ7e{#3&*}Q> z@|kxu$C`XL_$UKXt0+E7fmeIY?mOxXXy4*}I9aEd)&Gsg%Cy^L31?vmX9g6f4Hn@8 zuJRhCRmY*aeodhqf=%!RfBFdjK6hlY>p_^5=1 zwmSI8WyP1ylC_{e^2vdeFU(IR%YQ6ABFtz)Dj=U3?cF>WaZag+QU4FW+`st9mAKAD z4e)kkV)>4Bos~X98CZ@qSO&1$?RBZ`_=tnTHzxRC>m7@4KJ)VR2G;fHU-XTpbgaIy zQ_l7eddB=T!QPS2V^;WDmSo#uEc`^PTOVdrmqEqUH2Zkjl3(s$>y@i{RH=?-XZHM! z9cv2|I!D?b!}Iwm@aSXOA_n-CU!QwGr4U|SUfZm7r2H3s5)Kc<9UkOD$L1CIsDu~c zIfstF$cDv_y>{|NJr(tBmB4aVFfGP*mc>FPa&(^ z%i+##=BJJ&KmT$++m37vf0S&yu_fMXdc(TIMu)YNv!1n+BTrSJZgQsrl}J^@dl;Lk zN>pVPwz_}3CrsTkcEi@OQx!MrHh1dwU-x-we0ZatY>9Ww-A6Wk1V{Ex**o(;x7>fU z75SU}I(Gi>{w8}s`%7C$9K-AkvinDGRhAEpmo&OhPW7T1D2;25sEfNTkPf3;L*uM$ z%+1X#t$*ICQ*#^J>~a3S&+y~^DYGAA_NC16j5#M@uA7-_Fy{J+xfWs0lbCZo=DeIa zw`R_(nR8U;{FFIYW6slNW9DKcG0gb`a|~vVFU&EJIgT*r5-TvwEx^^7HJEjn4H$V0 zb1uW24-hemn9Uev40DdeEJdaX)G(TuJ(vR+=KS#x<`{;I(Z%RtC>R3_6=R4wjxoiU zVazeib%!0s9&-|N8gmBYh&hWnk8#DgV=iJmFqbh`F*h)`F!wO`F^@6NFhQ8-m=~B= z7-p4zi;2O+Vi4v%<`X6!lZg3@NymJ}WMHx|*_a$m9;N_Oh$+F8Vi=ezObw(j~T=aVTLgT4t!vEG2=0lFhUqHj09#XW*TNXW+p}wvk0>ovlO!& zBZFCmk;SaT$YIuF6fl5cPQsKh%9yPf70fowPK+i-3$q8a7qbtuA9DzE6vNyP(!uCs z3@}uT5r(-9X@arDSYfO&wwM!`)0i_DN6cBwdCUcjE5;pj33CPGh4IGRz}&>#!T4Z& zF?TWdFn*Ya7?!CBocM$X!<;AZVfPAGS@tFFjAQLn1z@nn5CGN zm{l0&d~+>E4znJ!5d#<{%vQ`c%y!HU%ub9tMgy}8vm2v@*^AkS*^fDlIfBu~9L10@ zIv9P75ylu}g0a9@VyrOM7+cHpmF`<|+OgJV26N!n!L}T7z=$JUnM@#}H36qTZf=R`s zVKOnfn0!nTrWjL(DaTY`DlyfVTFf_0J*ElMjA_BNV%jmCm|n~Ph7*@J7ls?dgW)BaWGYnT45ynTMH=S%#6uti-Iwti^1=Y{YEBC}K8a zwqUknc3@O7YM5P^1DJ!D!1Y{9Z_q zJ(VAkwI)Sku>m#6@Yz+5#$8ol@_8+Hx?vY8N+aL9yD9~l4KDF?UtfZZfhi5lcpv30JvVKPjsSq1NA1cLM)>065@ z#h|&_9=oERmZN#K502?l3PEYrvIm_7ZOE)QK>zILZ?MfJ@WTBaE$Brjw_8GE8&WTm z4?Sd71kc00X$Gt7kzp2Nd-eSmWRR4h^HuFJvY(Q0Q+#6?Di-pP8&a=9liqwLy`9?# ze1YmqJx%M7u;K2|?E;U{8S(ei56@3S%O|bw7Z$68?6YFG?k~tC$}cWma)sz?bJ^Qew>;=|8$5FPa0KvgTdlkO-ZvEGrnOV=Xg&BX z4IvwIHXy}bH3!S)O1LY*do*e|AEj-1y1r550qCUKS<9X(NBynOde({5!|J2jfrA#U zK>5f|`c$6>9Jf~=e;rbbgggSJ9JM>)u35mHrIBBdrDx^&w$C4s!|6v$sEHiJY3gpn zW;(5CxzPizoXr(bm~%w7c1}CI&FrP!a;=5L$(P3)PisdGn(b>MC-*~6zJW;0s%lhI zTs(7`G#y^dcePS>=!Viw5ygpSB}i9z{?*mx+2}~Lu79@YR z9!U#K$(+I03XjY3a@MSgKw-&guJ1D$X!CwYr@3$IAy@H(&_s?zq_^foibvxY^jy5t zXMa!*T28Fpw%(k9>YMMBB==V#jncd`d&Tona4(2yWtdOeD~fBtjOI~#^pC?GwH6I)Ivq63*i+tuwp^#(-mtV+6IXh}mQ>gxF*G0)7V6QxB{+&Lg|58E$6$~OjVK^^sR|yeoVzLwV zbJIf@Z|Q8@3kS#d3%$|$_(TdJ6xw0)_@9JrpRqJBG73T9^reow4we55B3SnWuPbBQg5Df z_oJazp+UvTeW>E}DnBm4uPA+7kLd7{PQ>uPmFO8eh?I?#Pp)3@5hZMkUi$t#4?QDw z)jS8II8=C5T!HsQI(oo;edCSS1bV35iVg8@4XCkqicac`5^x(bml{yuqR*_kJJSpf{h~T6jXH4J8daoNgP;f@3@NS9C8oWPd zDY3>hFQW}zmA5xHR<1w}k)r(kDfABSWzc%Zcqu273)C3rHX==bX%b2{weQWA!NArWkKw1omvQ+=6`{6e+x`~ zVnwf9Pz)Jo?1QpJ8e#6lm}55K*|1JXXUM%H9ls?~%469oe}c*Sz7F^1MFK@66ABupti)mJMm24#(eYHYiPL zT-gPDFDLk!EUbjWNwt0(x%(ku`v#@yVNEa;aI{h_coi_2z-t#Hrz zz1?un02~NxnjPy=3oFzd0+O$_g5D6X_mYjBpt))*O)|a=o_|rv?p)pkp_}8AYupLM zg>n8dSBdsnU=zy6L z&*bc;_aLvmgp-gn1os}x^a%BSgxR|t-$e#xfLy}CS-HXe@ZPj@C@~@d`KxNYP2W?6 z99_?zLBwwx=Ya_wkos?t77e7#65W&#(fF$y2HV+RBiEou7@lLlK(o{`^T@ zEC(_6-YU&DQaRdqe2VE+%Mv6sx!|mIbRAU6?CETfEC5-!dXkh_g+!*=@~!2rhZ{qF zE&aA%;M`H?xQlNpkVM=$ncmh4n7dK<21iLgST1z0z2lXMKCBW{+Bah97OH-7rT$mECs&BeyXjB4XEn<`J^^L;511;h`u_;o&4Z6=J!TcJu zN?0dC;Yua)TFIy|*6M`wqGuB^f64XqbBM$=;x(A*j3Q*;Lh;ffii6R?uVK0wm3I ziz|mq0Cg)}ndqJk*DdO(rvwSaiDm&iINm3qp0u)=wcOu;BD+HLh153?tfHI_)@=u^ zHMhew_SqL};7(_H!O{iM=%GYVkx6h4(hu2T zH!Y(H9OE8{#mm1zNLyh=)rUf`en#**anRp%?` zb>kT@I1#>3c7H)?wo_EY!V5r#G38U!lXj5*Fg$zixpHJ>r@W41Ln-X;D_#C6rUJY> zSG>P$+60uHUxLYQjfk(@#j{Mb33^;BEJOGbpz*#y*LM3PA#1Qk%H!HZ!(&s@)qeXtFzlCPe(`0%vqi@oi@BDh)}f1MPPJ+7 z4n;l}TE*5adV^Z0Yn6$)HlW4BX+JDPKNNQ` z;B93C@EKBWZNa~X(5IyC-Wn!AA6InZ!I!F5*ndj;p87=waPAwHA6h()p5b4;{i9C- ztl1N1xB|C#`(q28kTVb6CGqTzz{(hSbXX#kDBTWyLlM;Hxr0bVsMaXJIS(}*7UI0b zM|;z9oNAsa8MkK$MY!(s5BBImo+%4&8Mk)B8a-8w=6f-S zw6Q6?kc)$!Gc#Ynu9}Q!Q*1YZ z_|WRETvnVA@$$t&3I4NPNLBRoi)xn+Fs<}RaeT*1^tduTJZf(hxV#v=9C9fI`R?)T zbDqaTN5%IOKQmJ~K*#(%Bahjp{gw6NDTpHP*gE$+zbFA2$CAwtg|_*wJ2y z8kjseT)rKQT;3#n_AEymEcQx!tmPmY&9sKIYwx2es_VG>FJ^;bd_!N zPk6{_7to0ki~@30pVQIZFAk206S?TAQPq6u#%-`~AgjMZVF1bmEy09an$x5*YZtlsZ z4Tg81;&n?TKfkI+g+eJ6QQ@7?WTLU*j?Fhz&X~4h>#}}?^ps;1?{O2SHA?cnm&D(5 z*WF8aq1%CmcX-AoH46|KGX;&soHLM24*k^Zl4$gnJ7>{yJ6_^C#z)QL3Uv_Ix85yP zbr6kHZ1)+b(E}3S7I^zqw7_a#T4wX)PPF?xx3LPP6Jq2OZU($c1%r}ro&!?3)AZ)#pOQX0SFSpt70I2zyEbPD&A2QGip zmg>ufNBhM}9~ze-v&1vn$LRIwc)F!s`oK5X49gql4b-FByuo+eh7F*0{mt`5($(n2 z{$PQNj~l^E`rw+|%kemLMqflqaS#^n%1l}`y%Xu&7r8oVQ7Z_*P&T zR81tuguvDJuXOV^v_gC}->2zI-b1muQoF{dQdq!s|AB^fEn2)98tde1;Mh3WdYq#g zS)tHf_qiA_>~6-sXd&aLnT5Rt8$abA6I` zNDR0%2b+f`W`bVL7L9XZ#puo3na}ddvrt@q_|WN)G+6w3le?v9IXXmhGVk0Hh8+Cw z`zNi8gX=rOUXs^*MzS|H%qR0Tp>_R<$$J`lK%@T($Ntn3Ad}krbgO!i9#^tj^0OYe zCA+t8&S3^@czfhoWJwP?eqxP)z4lu;`fksHf_^#@p7ow_?Q|zH_1)UGZ9*|Rl>1c6 zKe7Tjtqd;mR{D(A`>m-9t*$}iL&{yH9)_Y=zKpw^ORA7cseR0pP%7HI@$HVvwo+sh z77@kaa|h*8NsAwy%SRG-qK1XPd7$%y1xhVV)#%=WJ>_#~Z76chL*tl|Dp2sQq<7EyP_E<&T@Wm{*lfTp5y?wYRuAZ;pvRrAu3UI)|Dp5pY~j)} zv?+Wt4`wbmj@R>J!wIA%! zUUl2tAqU;nUHWB*XeP2$6si&XScPt=MNRium59_r?X;w5JoJf^HUZ@kf@9K$6mHC~ zMSTu8sA(VDP~{2tU3xBfT}{pn`7oyq>5I)$R;#Q-x|2c_PBpZkC#336?%fPDxSl+# zO>+>qp&E66XnvHtrwd(k zSjPWSp%z`q7#|>%7YH9BD@*!ba?;h544S{RWrNYlR{_cfpW&i=aXl@bK!5LG5E=?) zsHv!qI|;YLo%0^a>{ezZTBNK*?SWyWUp-wkNUa=29Y?q66ME5r?f|(U zqYgbhe$%x>t_7v-zkJFft{R2=+?H4|zXwTg@5{b(qzzeiOD3#X90+k5Ygg$$=|l0Y z>E|`VTT#z?d&T<2?da-y?ym|V<;Wxd!t@u5deGt5j#G)RiqL|^r!7uYx1k$JeO6E3 z5a`$I0$sOmZbV7dwT8~Pzx4>JZCevWpuf9cG2M`32sN8cko8f^L@Ph|9_Oj$q=()# zGYDD{h0VINSdDnzo&a5spXeZE*=)SwQJ-QXWU1058 zedsw1tkODfr`mym{c@Zk`*%U5vK=-1n%R*J42->ko8 z+gCJQBSObbBO7Xk0~C-*BkJTfJJ7bh3RYie;#g()070CG9p&U880UpQIHJ>t1_~xe zL?7TL+KGNt=e2Br+LoxKN$p<&5lY*IavQ)tPb*edHXj~7(en*)?S;!Pd9?1H3qTFt zMm5fO{$nXFnVu&W2pnc_ym?~=AW-6wz_!pPu-^9Vc+W1p-gk_0eHxz(+my36$L#8X z&Do48s|%Yz`f=G{@r^!MpXOgQtTF(`8XLaWc6y>A)%Jrvnw-Q}ldheqKhO^8Yi~wm zwYG!w1<8jJ8_U7;vS!%lf^IP3?l7Gj9ReTUgs-wstOTjNQ#)JsHbD90E3~b5YvJyE zzPcCfp&->fW8L`+1E8?*wxK0YEl3$RY0ac`far6EP!(S{@O)KS_72aFuj#;$ey{+(yr+>-L!^3dmY1~Q<+ATPKMDfb_ zO(ihz)OiW<*Bx+$OkS^}xR=>!{q67C4#}ug#m*0Wqtm`kvi{^D%Qy zL&=vWaAjCnT%DH-8|!?Z&sRh4nyk#kJW;`6Xz>)Y5@zo#5!(#UG`3N*Z`>-=~%AxKCK&q#?3yY z=kSq}_|*1pTqJipn)$+@HNzkoylZbiYB1`CBa#xNOzkT4D&cyN!xIE`xqi{?MTGA*b74)tUMYa09mxDG~pDO734gbz9o}Zkr%$otU zmK_RFI<3&SvBFt+eG~ZU%E!3aB_QqP?+jBk`k`*9vwopo9q_$6=4@tC2{%Qk&h;%# z;2j<8<#IX?q(8rX?yuAgZ4(l^cdxDmjs+*V_KJ7I^d0WpCvQ|hNlegmk6rb^S9t%E z{NxTOS2$dBm{b8n{0AldXV<~!`!Bt?@jO<{>*#Ek^Hm`HcBRg1u3!+>_6hWWd>FXj z^$~e8pyb@VC6{XGFn^=$vBYmth_UkGK5TfdAMmzF0G<9;K{J$Jfg_}K4U+@;{BPh>7jOxp06MGw1R-Ls>b zs+Kv(_R13O?xZ#t*l_KWqjU>Q5U5Eb?8^m7dr}f-csQKU&ai#r*$8P`!*4{N*utgp zPBL3#(va}``69jB{ZVI)Jckw|8g$^OW#E)TEWS8uV79M@F7YK5fiH0q?kF*3z3H*JSbLtUZ0`DCmkZ zGEz~?2cF(t&MvS&qG_dLT^=e}_TU!J&3fDq>DVqZq=R_MdB)32(I}*RrsG=NE_4Pi zt&%aUftkI6pC3-ELcYiA3JXo~zUyH5+CGnXSiWXUL-0utSYf1B8S$YTT}pafE85xu z8@5k2*?FoGT}cg+Y}(n4ayLm#Tol|4d;P?`U1W375nq#Z>;66@A$Q!n`ZZopr#mm+ zd@&CNW-r`1Z_gmw7vG-aJJg8RbGK*TIh_hq2NajTJ;zILE1CGwLW%*^2YElF=aj*T z&o5$HIR)t36%JoWv+IMl+tTriN$bw3c^wPREJ}lbZQ3^u zjT4|-`#VlbzTODRR~6-=v*Y7*T6{I9p-?=`keo|=oSGC)OiyMuc2c>3w< z<^2yi)4}9nmExnaE?6rTbDFDe7zz4$+;&|28nkT&l*T!CK*j24Ytfi?L|2pzyiTb? zM*V4ObOif2+0N6^q{+%g@!qG-EjL|)dD&Eech(3^1g+29Z1yg)bwHb7Fa*% zl^C+K2Jw8`TeT&m1NG&$WyVcx1i{t5nWmr9A%^kgbmoa6WWHfX{Y#@>5a|edB6Oe* zs65tIe5W|+d(QY2dKnKu>kxr@I*OB6cIQn{7#A1a*5dl>fHDFRJT`mz?;lT0mR^?h z_G%Ui+^NKPx9J&*ju1KIuE|FnTB35`qdWu5rd@Sa9#@K7w`^FG$j=6f#QDgRpS}JT3V9%(st)hZt?hdT;&mtGg?aywSB7|J(gYBugu!3)j;v zzK=goUeSe0UJ5PU*ZU3Wbh49%` z+1)54NpP2?M-5tME4S6tpa%%X$%MoEo6x}v9`}~{WBtv|F;j}Uh}Ybd&y)@fqX5%u zE<>&ibShAdc*|%I7@vstPD}G);Tyx|oA|k$)B_Sa@8@z5HA&026!Z^4ZjEKpyhI*4 zXY|>fS{CDok@M+kSErW45&G8sHTye|yTFpuw;Xwh9}ZZC(;Bl;N}qHr^%LGdcq~G2 zTu&fcQZ>TIooj&0g}2C+w0`8Uv!7~~)(6$&TP7@1>43P+(kr5c`q8E^4zBloy+HX~ zx=&|)EIdj1Fva~20|_gpWlDT0f=rbZ?s18gDCbk9Jb7~~`s!3dun{SQhUxhg%12w# ze!B#dgt$VaMolGeiikonJbB^5Hc9wu`&tGb-dB%nw1Xuhq&|HY%-DjA)$Sj5>w&0{yQZ6 zv=ANPI#<=X>lF06Ud-g1k%A@}7FgIwodA_E0SUsnbo9wWi{pi0F4|!+Evhs(6Me31 zXu2Q~2Z!XEdegev!Dn26?+V9qBDjkGHQ){@N=j7nH#xC zm0e)$)Li1*8ISh(O5V@UeT{A}QaELBx(eJ*%_fvw>jd8EYo@N5*n*P7Hi_P{t%h-d z=O@Rb7D$b;ez^BsD#{K^@L9YBr{lT9oLhb^P|$p;B50Zm3?4Muw^O4Ndit9MFX>gH ze#1WD1x8g6QoEnFJ2MDw&96(jBgue|dz_DiQ(6&q$~}F$QUUA}^$GALb)a%Lr@nJb zo+BH9cfqeNN5YJPv+g&9^U>Gkm9t%JT7G-l#}!EKXNI>%@I?Rdqko~sQTg#Ybuf0q6wPcIoMENVnwLmpdZ zFe3i#`u{Bc|0&mD;q14(Rki=q?E@@(|F4%Xn@;u|-QN7C`HXz(zQo`a{{DaDGxogB zUv)#c^u=v^+0P^Y{qTP^p8o8^)ym&k&+UDGPO=5==h{EhdBc7_@2|%nHNlPS8iM}m zeE-#S|KEK~3;gwR`TxycC4p*vF4pYl1^@H&@%o&<_?8vb|8l)N2j{-5-1g-!>oHD# z610K07`6_U9p|^Hg2V7`V!B)v49KczOID@)Wj+7Z<+rZjX8MGE4gYfb#-2}f{pmsF zu_p(|UdF{Stg?q+eGWg~Z(cTl3BOZo^i`9;&B@qujQzed9p*DGTiAKwA9+C@iK*F3 z&7Xt$JPU2Y*lRI=U7-DgO#bnC7nZ${_iA<=6G(r1!S_S{|EufS|Ha3&z_0xuYrXd` zw?Ec;@4Ft>dhfgYf2;jj>%HIRleOOa?RB%G4n?q@y!=Vn^qfA9V}YrXehR!>;#y?;4A)_U(R z>tU_;5No}MSnEB+TJQa3J^$71fwkWIm(w@4-aGjhR!JPgBkLpk(cBV7-_S#$37e8l z@cVXue8KkEE8}gf4UMg&NjmtQ@KpSo@y#Q0RM{D&1o;%bmrUh gS^olnbewX6`IcV%?tfGKnsh7to?a`~D}ki{ALf)%=l}o! literal 0 HcmV?d00001 diff --git a/packages/itbot/requirements.txt b/packages/itbot/requirements.txt index b177445..9478a06 100644 --- a/packages/itbot/requirements.txt +++ b/packages/itbot/requirements.txt @@ -7,6 +7,7 @@ scipy stable-baselines3[extra] rpyc git+https://github.com/fortesenselabs/trade_flow.git +joblib # dev ta From 899f976c31e0ee8c47c4efbd396bd07048ef49a1 Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 08:24:40 +0100 Subject: [PATCH 13/23] chore: Rename Project notebook to `model_experiments` --- packages/itbot/notebooks/Project.ipynb | 1603 ---- .../itbot/notebooks/model_experiments.ipynb | 6495 +++++++++++++++++ 2 files changed, 6495 insertions(+), 1603 deletions(-) delete mode 100644 packages/itbot/notebooks/Project.ipynb create mode 100644 packages/itbot/notebooks/model_experiments.ipynb diff --git a/packages/itbot/notebooks/Project.ipynb b/packages/itbot/notebooks/Project.ipynb deleted file mode 100644 index bc50867..0000000 --- a/packages/itbot/notebooks/Project.ipynb +++ /dev/null @@ -1,1603 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Python for finance and algorithmic trading (2nd edition)\n", - "\n", - "# Chapter 16: Real life full project\n", - "\n", - "### 16.1. Preparation of the data\n", - "> ###### 16.1.1. Importation of the data\n", - "> ###### 16.1.2. Features engineering\n", - "> ###### 16.1.3. Tain, test and validation sets\t\n", - "\n", - "### 16.2. Modelling the strategy\n", - "> ###### 16.2.1. Find the best assets\n", - "> ###### 16.2.2. Combine the algorithms\t\n", - "> ###### 16.2.3. Apply portfolio management technics\n", - "\n", - "### 16.3. Find optimal take profit, stop loss and leverage\n", - "> ###### 16.3.1. Optimal take profit\t\n", - "> ###### 16.3.2. Optimal stop loss\n", - "> ###### 16.3.3. Optimal leverage\n", - "\n", - "\n", - "https://github.com/Quantreo/2nd-edition-BOOK-AMAZON-Python-for-Finance-and-Algorithmic-Trading/\n" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import numpy as np\n", - "import pandas as pd\n", - "import MetaTrader5 as mt5\n", - "import time\n", - "from datetime import datetime, timedelta\n", - "import numpy as np\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "plt.style.use('seaborn')\n", - "import warnings\n", - "warnings.filterwarnings(\"ignore\")\n", - "mt5.initialize()\n", - "import ta" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 16.1.1. Importation of the data" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [], - "source": [ - "# INITIALIZE THE DEVICE\n", - "mt5.initialize()\n", - "\n", - "# Create empty lists\n", - "symbols = []\n", - "sectors = []\n", - "descriptions = []\n", - "\n", - "# Get the information for all symbol\n", - "symbols_information = mt5.symbols_get()\n", - "\n", - "# Tuple to list\n", - "symbols_information_list = list(symbols_information)\n", - "\n", - "# Extract the name of the symbol\n", - "for element in symbols_information_list:\n", - " symbols.append(list(element)[-3])\n", - " sectors.append(list(element)[-1].split(\"\\\\\")[0])\n", - " descriptions.append(list(element)[-7])\n", - " \n", - "# Create a dataframe\n", - "informations = pd.DataFrame([symbols, sectors, descriptions], index=[\"Symbol\", \"Sector\", \"Description\"]).transpose()\n", - "\n", - "\n", - "# Create empty list\n", - "spread = []\n", - "\n", - "# Computze the spread\n", - "for symbol in informations[\"Symbol\"]:\n", - " try:\n", - " ask = mt5.symbol_info_tick(symbol).ask\n", - " bid = mt5.symbol_info_tick(symbol).bid\n", - " spread.append((ask - bid) / bid )\n", - " \n", - " except:\n", - " spread.append(None)\n", - "\n", - "# Take the assets with the spread < 0.07%\n", - "informations[\"Spread\"] = spread\n", - "lowest_spread_asset = informations.dropna().loc[informations[\"Spread\"]<0.0035]" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [], - "source": [ - "def get_data(symbol, n, timeframe=mt5.TIMEFRAME_D1):\n", - " \"\"\" Function which returns the data of the symbol\"\"\"\n", - "\n", - " # Initialize MetaTrader device\n", - " mt5.initialize()\n", - " \n", - " # Put the data in a dataframe\n", - " utc_from = datetime.now()+timedelta(hours=2)\n", - " rates = mt5.copy_rates_from(symbol, timeframe, utc_from,n) \n", - " rates_frame = pd.DataFrame(rates)\n", - " \n", - " # Convert time in seconds into the datetime format \n", - " rates_frame['time']=pd.to_datetime(rates_frame['time'], unit='s')\n", - " rates_frame['time'] = pd.to_datetime(rates_frame['time'], format='%Y-%m-%d')\n", - " rates_frame = rates_frame.set_index('time')\n", - " \n", - " return rates_frame" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 16.1.2. Features engineering " - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "def features_engineering(df):\n", - " \"\"\" This function which creates all the necessary sets for the algorithms\"\"\"\n", - "\n", - " # Allows the variables to be call outside the function\n", - " global X_train\n", - " global X_test\n", - " global y_train_reg\n", - " global y_train_cla \n", - " global X_train_scaled \n", - " global X_test_scaled\n", - " global split_train_test\n", - " global split_test_valid\n", - " global X_valid\n", - " global X_valid_scaled\n", - " global X_train_pca\n", - " global X_test_pca\n", - " global X_val_pca\n", - "\n", - "\n", - " # Create ours own metrics to compute the strategy returns\n", - " df[\"returns\"] = ((df[\"close\"] - df[\"close\"].shift(1)) / df[\"close\"])\n", - " df[\"sLow\"] = ((df[\"low\"] - df[\"close\"].shift(1)) / df[\"close\"].shift(1))\n", - " df[\"sHigh\"] = ((df[\"high\"] - df[\"close\"].shift(1)) / df[\"close\"].shift(1))\n", - "\n", - " # Features engineering\n", - " df[\"returns t-1\"] = df[[\"returns\"]].shift(1)\n", - "\n", - " # Mean of returns\n", - " df[\"mean returns 15\"] = df[[\"returns\"]].rolling(15).mean().shift(1)\n", - " df[\"mean returns 60\"] = df[[\"returns\"]].rolling(60).mean().shift(1)\n", - "\n", - " # Volatility of returns\n", - " df[\"volatility returns 15\"] = df[[\"returns\"]].rolling(15).std().shift(1)\n", - " df[\"volatility returns 60\"] = df[[\"returns\"]].rolling(60).std().shift(1)\n", - "\n", - " # Drop missing values\n", - " df = df.dropna()\n", - " \n", - " # Percentage train set\n", - " split = int(0.80*len(df))\n", - " \n", - "\n", - " \n", - " list_x = [\"returns t-1\", \"mean returns 15\", \"mean returns 60\",\n", - " \"volatility returns 15\",\n", - " \"volatility returns 60\"]\n", - "\n", - "\n", - " split_train_test = int(0.70*len(df))\n", - " split_test_valid = int(0.90*len(df))\n", - "\n", - " # Train set creation\n", - " X_train = df[list_x].iloc[:split_train_test]\n", - "\n", - " y_train_reg = df[[\"returns\"]].iloc[:split_train_test]\n", - "\n", - " y_train_cla = np.round(df[[\"returns\"]].iloc[:split_train_test]+0.5)\n", - "\n", - "\n", - " # Test set creation\n", - " X_test = df[list_x].iloc[split_train_test:split_test_valid]\n", - " \n", - " # Test set creation\n", - " X_val = df[list_x].iloc[split_test_valid:]\n", - "\n", - "\n", - " # NORMALIZATION \n", - " # Import the class\n", - " from sklearn.preprocessing import StandardScaler\n", - "\n", - " # Initialize the class\n", - " sc = StandardScaler()\n", - "\n", - " # Standardize the data\n", - " X_train_scaled = sc.fit_transform(X_train)\n", - " X_test_scaled = sc.transform(X_test)\n", - " X_val_scaled = sc.transform(X_val)\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " # PCA\n", - " # Import the class\n", - " from sklearn.decomposition import PCA\n", - " \n", - " # Initiliaze the class\n", - " pca = PCA(n_components=3)\n", - " \n", - " # Apply the PCA\n", - " X_train_pca = pca.fit_transform(X_train_scaled)\n", - " X_test_pca = pca.transform(X_test_scaled)\n", - " X_val_pca = pca.transform(X_val_scaled)\n", - " " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 16.2.1. Find the best assets" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "def predictor(df, model, reg=True, spread = 0.035):\n", - " model.fit(X_train_pca, y_train_cla)\n", - "\n", - "\n", - " df = df.dropna()\n", - " # Create predictions for the whole dataset\n", - " df[\"prediction\"] = model.predict(np.concatenate((X_train_pca,X_test_pca, X_val_pca),\n", - " axis=0))\n", - "\n", - " if reg==False:\n", - " df[\"prediction\"] = np.where(df[\"prediction\"]==0, -1, 1)\n", - "\n", - " df[\"prediction\"] = df.prediction\n", - " df=df.dropna()\n", - " # Compute the strategy\n", - " df[\"strategy\"] = df[\"prediction\"]* df[\"returns\"]\n", - "\n", - " returns = df[\"strategy\"].iloc[split_train_test:split_test_valid]\n", - "\n", - " return np.sqrt(252) * (returns.mean()-(spread/100))/ returns.std()" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - " 96%|█████████▋| 54/56 [01:20<00:01, 1.14it/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Issue during the importation of the data\n", - "Issue during the importation of the data\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\r\n", - " 98%|█████████▊| 55/56 [01:20<00:00, 1.41it/s]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Issue during the importation of the data\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "100%|██████████| 56/56 [01:20<00:00, 1.44s/it]" - ] - }, - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Issue during the importation of the data\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "\n" - ] - } - ], - "source": [ - "# Import the class\n", - "from sklearn.svm import SVC\n", - "from sklearn.tree import DecisionTreeClassifier\n", - "from sklearn.linear_model import LogisticRegression\n", - "\n", - "from tqdm import tqdm\n", - "# Models\n", - "tree = DecisionTreeClassifier(max_depth=6)\n", - "svr = SVC(C=1.5)\n", - "lin = LogisticRegression()\n", - "\n", - "\n", - "# Initialization\n", - "symbols = lowest_spread_asset[\"Symbol\"]\n", - "lists = []\n", - "lenght = []\n", - "mt5.initialize()\n", - "for symbol in tqdm(symbols):\n", - " \n", - " try:\n", - " df = get_data(symbol, 3500).dropna()\n", - "\n", - " df[\"returns\"] = (df[\"close\"] - df[\"close\"].shift(1)) / df[\"close\"].shift(1)\n", - "\n", - "\n", - " features_engineering(df)\n", - "\n", - "\n", - " \"\"\" Decision tree rgressor\"\"\"\n", - " sharpe_tree = predictor(df, tree, reg=True) \n", - " lists.append([symbol, \"Tree\", sharpe_tree, len(df)])\n", - "\n", - " \"\"\" SVR \"\"\"\n", - " sharpe_svr = predictor(df, svr, reg=False) \n", - " lists.append([symbol, \"SVR\", sharpe_svr, len(df)])\n", - "\n", - " \"\"\" Linear Regression\"\"\"\n", - " sharpe_linreg = predictor(df, lin, reg=False) \n", - " lists.append([symbol, \"LinReg\", sharpe_linreg, len(df)])\n", - " except:\n", - " print(\"Issue during the importation of the data\")\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
SymbolModelSharpeLenght
85BitcoinSVR2.9461831127
86BitcoinLinReg2.3641351127
87JPN225Tree1.5666491046
84BitcoinTree1.5257411127
91NAS100SVR1.2035141044
93US2000Tree1.1022771044
59USDRUBLinReg1.0683041720
82XPTUSDSVR0.7665401045
92NAS100LinReg0.7459421044
90NAS100Tree0.6303871044
88JPN225SVR0.5470281046
143USDRUB.aLinReg0.4926001704
47USDHUFLinReg0.4722191815
29AUDSGDLinReg0.3842021049
153USDTRY.aTree0.2766103037
83XPTUSDLinReg0.2468101045
96US500Tree0.1453202981
97US500SVR0.1157362981
110AUDUSD.aLinReg0.1038073500
35NZDUSDLinReg0.0865753500
46USDHUFSVR0.0848221815
2AUDUSDLinReg0.0353943500
125NZDUSD.aLinReg-0.0485683500
154USDTRY.aSVR-0.0839403037
120USDZAR.aTree-0.1273273500
95US2000LinReg-0.1466271044
98US500LinReg-0.1515412981
89JPN225LinReg-0.1593061046
70USDTRYSVR-0.1695163052
20AUDCADLinReg-0.1706083500
78XAUUSDTree-0.1856173500
130USDHUF.aSVR-0.2256081800
69USDTRYTree-0.2399243052
79XAUUSDSVR-0.2627073500
124NZDUSD.aSVR-0.2640543500
\n", - "
" - ], - "text/plain": [ - " Symbol Model Sharpe Lenght\n", - "85 Bitcoin SVR 2.946183 1127\n", - "86 Bitcoin LinReg 2.364135 1127\n", - "87 JPN225 Tree 1.566649 1046\n", - "84 Bitcoin Tree 1.525741 1127\n", - "91 NAS100 SVR 1.203514 1044\n", - "93 US2000 Tree 1.102277 1044\n", - "59 USDRUB LinReg 1.068304 1720\n", - "82 XPTUSD SVR 0.766540 1045\n", - "92 NAS100 LinReg 0.745942 1044\n", - "90 NAS100 Tree 0.630387 1044\n", - "88 JPN225 SVR 0.547028 1046\n", - "143 USDRUB.a LinReg 0.492600 1704\n", - "47 USDHUF LinReg 0.472219 1815\n", - "29 AUDSGD LinReg 0.384202 1049\n", - "153 USDTRY.a Tree 0.276610 3037\n", - "83 XPTUSD LinReg 0.246810 1045\n", - "96 US500 Tree 0.145320 2981\n", - "97 US500 SVR 0.115736 2981\n", - "110 AUDUSD.a LinReg 0.103807 3500\n", - "35 NZDUSD LinReg 0.086575 3500\n", - "46 USDHUF SVR 0.084822 1815\n", - "2 AUDUSD LinReg 0.035394 3500\n", - "125 NZDUSD.a LinReg -0.048568 3500\n", - "154 USDTRY.a SVR -0.083940 3037\n", - "120 USDZAR.a Tree -0.127327 3500\n", - "95 US2000 LinReg -0.146627 1044\n", - "98 US500 LinReg -0.151541 2981\n", - "89 JPN225 LinReg -0.159306 1046\n", - "70 USDTRY SVR -0.169516 3052\n", - "20 AUDCAD LinReg -0.170608 3500\n", - "78 XAUUSD Tree -0.185617 3500\n", - "130 USDHUF.a SVR -0.225608 1800\n", - "69 USDTRY Tree -0.239924 3052\n", - "79 XAUUSD SVR -0.262707 3500\n", - "124 NZDUSD.a SVR -0.264054 3500" - ] - }, - "execution_count": 49, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "results = pd.DataFrame(lists, columns=[\"Symbol\", \"Model\", \"Sharpe\", \"Lenght\"])\n", - "results.sort_values(by=\"Sharpe\", ascending=False).loc[results[\"Lenght\"]>600].head(35)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 16.2.2. Combine the algorithms" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "['US2000', 'Bitcoin', 'AUDUSD', 'NAS100', 'US500']" - ] - }, - "execution_count": 27, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "[\"US2000\", \"Bitcoin\", \"AUDUSD\", \"NAS100\", \"US500\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 57, - "metadata": {}, - "outputs": [], - "source": [ - "def voting(df, reg=True): \n", - " \"\"\" Create a strategy using a voting method\"\"\"\n", - " # Import the class\n", - " \n", - " \n", - " # Import the models\n", - " if reg:\n", - " tree = DecisionTreeRegressor(max_depth=6)\n", - " svr = SVR(epsilon=1.5)\n", - " lin = LinearRegression()\n", - " vot = VotingRegressor(estimators=[\n", - " ('lr', lin), (\"tree\", tree), (\"svr\", svr)])\n", - " else:\n", - " tree = DecisionTreeClassifier(max_depth=6)\n", - " svr = SVC()\n", - " lin = LogisticRegression()\n", - "\n", - " vot = VotingClassifier(estimators=[\n", - " ('lr', lin), (\"tree\", tree), (\"svr\", svr)])\n", - "\n", - " # Train the model\n", - " if reg==False:\n", - " vot.fit(X_train_pca, y_train_cla)\n", - " else:\n", - " vot.fit(X_train_pca, y_train_reg)\n", - "\n", - " # Remove missing values \n", - " df = df.dropna()\n", - " \n", - " # Create predictions for the whole dataset\n", - " df[\"prediction\"] = vot.predict(np.concatenate((X_train_pca,\n", - " X_test_pca,\n", - " X_val_pca),\n", - " axis=0))\n", - " \n", - " # Remove missing values \n", - " df = df.dropna()\n", - " \n", - " if reg==False:\n", - " df[\"prediction\"] = np.where(df[\"prediction\"]==0, -1, 1)\n", - "\n", - " # Compute the strategy\n", - " df[\"strategy\"] = np.sign(df[\"prediction\"]) * df[\"returns\"]\n", - " df[\"low_strategy\"] = np.where(df[\"prediction\"]>0, df[\"sLow\"], -df[\"sHigh\"])\n", - " df[\"high_strategy\"] = np.where(df[\"prediction\"]>0, df[\"sHigh\"], -df[\"sLow\"])\n", - "\n", - "\n", - " return vot, df[\"strategy\"], df[\"low_strategy\"], df[\"high_strategy\"]" - ] - }, - { - "cell_type": "code", - "execution_count": 58, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "US2000\n", - "Bitcoin\n", - "JPN225\n", - "XPTUSD\n", - "NAS100\n" - ] - } - ], - "source": [ - "mt5.initialize()\n", - "\n", - "# Import the class\n", - "from sklearn.svm import SVR, SVC\n", - "from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier\n", - "from sklearn.linear_model import LinearRegression, LogisticRegression\n", - "\n", - "from sklearn.ensemble import VotingRegressor, VotingClassifier\n", - "import pickle\n", - "from joblib import dump, load\n", - "\n", - "# Initialization\n", - "lists = []\n", - "res = pd.DataFrame()\n", - "low_assets = pd.DataFrame()\n", - "high_assets = pd.DataFrame()\n", - "\n", - "for symbol in [\"US2000\", \"Bitcoin\", \"JPN225\", \"XPTUSD\", \"NAS100\"]:\n", - " print(symbol)\n", - " \n", - " \n", - " # Import the data\n", - " df = get_data(symbol, 3500).dropna()\n", - " \n", - " # Create ours own metrics to compute the strategy returns\n", - " df[\"returns\"] = ((df[\"close\"] - df[\"close\"].shift(1)) / df[\"close\"])\n", - " df[\"sLow\"] = ((df[\"low\"] - df[\"close\"].shift(1)) / df[\"close\"].shift(1))\n", - " df[\"sHigh\"] = ((df[\"high\"] - df[\"close\"].shift(1)) / df[\"close\"].shift(1))\n", - " # Remove missing values\n", - " df = df.dropna()\n", - " \n", - " # Create the sets\n", - " features_engineering(df)\n", - "\n", - " # Compute the strategy\n", - " vot, res[symbol],low_assets[symbol],high_assets[symbol] = voting(df, reg=False)\n", - "\n", - " # Save the model\n", - " s = pickle.dumps(vot)\n", - " alg = pickle.loads(s)\n", - "\n", - " dump(alg ,f\"Models/{symbol}_voting.joblib\")" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 59, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2gAAAHFCAYAAACHC9okAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3hc1bXw4d+ZXjUa9d7cLfcGLmDjApjeOwkEUkhIcpMv9eamkEBCCElISEiAECAJJfRqY4xxwb3KKu7qXSNpNNKMNP18f8gWGDfZlq3i9T6PHtlz2jqzZfms2XuvraiqqiKEEEIIIYQQot9p+jsAIYQQQgghhBDdJEETQgghhBBCiAFCEjQhhBBCCCGEGCAkQRNCCCGEEEKIAUISNCGEEEIIIYQYICRBE0IIIYQQQogBQne2L+hydZztSx6X02nB7e7s7zBEH5I2HZqkXYcmadehTdp3aJJ2HZqkXc+uxET7Mbed8z1oOp22v0MQfUzadGiSdh2apF2HNmnfoUnadWiSdh04zvkETQghhBBCCCEGCknQhBBCCCGEEGKAkARNCCGEEEIIIQYISdCEEEIIIYQQYoCQBE0IIYQQQgghBghJ0IQQQgghhBBigJAETQghhBBCCCEGCEnQDtq+fStz5kyjsrKi57U5c6bx1luvsWzZEu644yYWLJjNLbdcy4cfLgXA5Wri/vu/woIFs/nCF25m165iAIqLi7jttutZvHg+zzzzZM/5nnnmSRYvns9tt11PcXERAK2tLXzrW19j0aIL+b//+wF+v//s3bQQQgghhBBiQJEE7QRCoTAPP/wr5s2bz6uvvsP8+Yt46KFf0NbWxjPPPInX6+Xf/36FhIREfv/73wLwyCMPMn78RB544Nc8++zT7Nmziz17dvPss0/zwAO/Zvz4iTzyyIMAPP/8M3g8bfzjH/+isHAnb775Wn/erhBCCCGEEKIf6fo7gM975eMDbNnT1KfnnD46iZvmDz/l4w0GAytWfIjRaOLCCy/iS1/6Cjqdjq997ZuEQkESE5Ow2+243a34fF7Kykr50pe+wowZ52M2mykuLkRVwWy2MGPG+fh8Xt5//x18Pi9FRTuZNGkK2dk5jB49huLincAdfXfzQgghhBBCiEFDetAOUhTlqK/r9XoeeeRPxMbG8tRTf+Xee+/kBz/4H/x+P7GxsSQmJvHKKy+xYsVybrzxVrxeLwBGo6nnu9frxefzYjJ1v3bou8/nw+v1fm5f35m+VSGEEEIIIcQANeB60G6aP/y0ertOlcFgBCASCQMQDnd/NxqNNDbW89hjTxAIBFmx4kN+//uHWbt2NQsXXsILLzzP3/72OLfd9gUuu+zKngQtGAwAEAgEsNlsRKMqgUD3a4fmmdlsNqxW62f29WOzWc/eTQshhBBCCCEGFOlBOygzMxODwcjrr79CQ0MDy5YtASA3dxgPPfQLnnvuGUKhIDExDgBiY52sXPkRf/vb41x//U3ceefd+HxebDYbWVnZbNy4nk2bNtDV1cm4cRMZO3YcnZ0+tmzZxIYN68jLG4bFYmXs2HEUFOygsrKC3bt3MW7cxP58G4QQQgghhBD9SFFVVT2bF3S5Os7m5U4oMdHeE9PKlR/xxBN/pqmpkZgYB7feege33fYFPvzwA5577mnq6+twOGK5+urruPvuL3PXXbdx4MC+nnPFxcXzzjvLKC4u4je/eYCWlhZuvPEW7rnnq0B3FcfXXvsvsbGx/OQnDzBu3HhaW1t44IGfsmtXMTNmnMdPf/qrniGQ4tR8tk3F0CHtOjRJuw5t0r5Dk7Tr0CTtenYlJtqPuU0SNPlhHHKkTYcmadehSdp1aJP2HZqkXYemU2nXqvYa0m2paDXaMxTV0HW8BE2GOAohhBBCCCFOSmV7Nb/d+mfeKl3S36EMOZKgCSGEEEIIIU5KTUcdAJ/UbqQj6O3naIYWSdCEEEIIIYQQJ8XV1QJAKBri4+pP+jmaoUUSNCGEEEIIIcRJOZSgmbQm1tSspzPU2c8RDR2SoAkhhBBCCCFOSnNXCwaNnktz5uOPBFhds76/QxoyJEETQgghhBBC9Jqqqri6mkkwx3NB+vlYdRZWVq/FHw70d2hDgiRoB23fvpU5c6b1fC1cOIcHH/w54XCYOXOm8dZbrwGwevVK9u/fd4KzHam+vo45c6axcaN8uiCEEEIIIQYvb8hHIBIk0RyPSWdiXuZsfOFO1tZt7O/QhgRJ0D7n6aefZ+nSlTz44CN88MH7bNy4jqVLV3L55VfT0FDPT37yfVpamk/6vMnJKSxdupJp02acgaiFEEIIIYQ4Ow7NP0uwxAMwL2M2Jq2Rj6pWE4yE+jO0IUHX3wF83hsH3mNHU1GfnnNy0niuG35Fr/a1WKzY7XZiYmIAMJstLF58Ed/73o/46KMPAfje977Fn//8dwD++MdHqK2tZdSoUfz85w+RlJTMX//6Jz744D1UFebPX8i3v/09mptd3HjjVTz66J8xGAx861tf45Zb7mDJkndJTEzi4Yd/T2pqWp/etxBCCCGEEH3N1dndWZFo7k7QLHoLF2bM4sPKlWyo38LcjFn9Gd6gJz1on/PlL3+RSy6Zy1e/ejcTJ05mwoRJPdv+3//7EQAPPvhbJkyYxM9//r9MnDiZ//znFZKSkiko2M4777zJm2++yq9+9Vsee+yvrFq1ghdeeP6o1zKbzTz22F+pqChjxYoPz8btCSGEEEIIcVqaD/WgHUzQAOZnXoBeo2d55SrC0fAxj/2oajUPb36MVdXrZM7aMQy4HrTrhl/R696uM+HXv/4daWnpuFwufvKT7/HXvz7Ws81kMh38bqajox23u5XzzptJWlo6DzzwGwB+97tfk5mZzZQp0wDIzx/Prl0lXHLJZUdc66KLFpKXN4yYGAeBgPyACiGEEEKIgc/V1QpAojmh5zW7wcac9PNYWb2WzQ07mJU2/YjjomqU5ZWr8IZ8VO9/m/fKlzErbQZz02cTb3aetfgHOulB+xyr1YrdHoPT6USr1dHe3t6zTaPpfrtaW1swmcw4nXGsX7+W+vo6vvvdb/Lss08zfPhIqqsr2b59K/v27aGkpIixY/OPei2tVguAoihn/saEEEIIIYToA81dzWgUDU6j47DXF2bNRado+bDyYyLRyBHHlXkq8YZ8TEmawBW5F6PT6FhRtYZfbPwt/yj+D1UdNWfrFga0AdeD1t++/OUvAt3J06hRY7jnnq/y4YdLAUhISGTMmHwee+xREhOT+MUvHuKPf3yE22+/kdGjx7B48ZUkJiZSU1PFT3/6w545aLff/kWam139eVtCCCGEEEL0CVdXC/EmJ1qN9rDXY40Ozkudxrq6TexzlzImfuRh23e6igE4P3Ua+fGjWZg9j+2NO/m4+hN2NBWy01XMlXmXEGt08HH1J0xKHMelOQvO2n0NFIqqqurZvKDL1XE2L3dCiYn2AReTOD3SpkOTtOvQJO06tEn7Dk3SrkNTb9u1K+zne2t+xti4UXxj0j1HbN/asINnd73EzSOv4cLPFAtRVZWfb/gtvpCPhy/4OXqN7rBtu1r38cLuV/AEP43Bprfymzk/RaMMvUF/iYn2Y24bencrhBBCCCGEOCOaOrtHhSVa4o+63WnqnkvW6m877PVabz0t/lby40cflpxB93Sf/PhR/HjGd5iePJnZaTMYnzCme65aR23f38QAJ0MchRBCCCGEEL1S5qkEIMuecdTtcaZYANyBtsNe39lcAsDExKPXZoDuQiN35d8KwPamQoqad7OrZS/ZMZmnGfXgIj1oQgghhBBCiF4pP5ig5Tlyjro9xmBHo2iO6EErbSsHYEzcqF5dZ7RzBBpFQ0nL3lOOdbCSBE0IIYQQQgjRK6WeCmx6a88i1Z+n1WhxGGJwfyZBU1WV6o5akswJWPTmXl3HojeTE5NFRXsVvlBnX4Q+aEiCJoQQQgghhDght7+NtoCHYY6c4y4TFWeKpS3g6Sm13+p30xnuIsOedlLXy48fhYrKntZ9pxX3YCMJmhBCCCGEEOKESj0VAOQ6so+7n9MUi4qKJ9i9nvChQh+Z9vSTut7Yg8Mhd7fuP8lIBzcpEvI599//FeLj42lpaaGgYDsAer2e3NxhPPDAr8nMzGLOnGmMHz+BJ554BkVReOihX1BZWcFTTz3H9u1b+cMffktDQz0TJkzipz/9FU6nkyef/Ctvv/0GigI33XQbX/xid1nS6667nKamRgCysrJ58cXX++3ehRBCCCGEOJZDBUKGxeYcd7+4z1RyjDM5TzlBS7eloqDg6mo++WAHMelBO465cy9i6dKVPPXUc9TX1/HMM0/2bCsqKuSdd9484pjf/vZBxo+fyD//+QL79+/jhReeZ+fOAv7972f55S9/w5e//HWefvpvlJUdwO1209TUyN///ixLl67kH//419m8PSGEEEIIIXqtzFOBTtGSaTt+ouU0xgL0zEOr9tYBnPC4z9NqtMQYbLj9npOOdTAbcD1orldfpmPrlj49p33adBJvvOWkj9PpdNjtdqLRZEwmE1rtp6ulx8cn8Pe//4ULL5x32DF/+tPfsVgsWCwW9Ho90WiE0aPH8OKLr5GVlUM4HAYgEomyZ88uAH7961+g0+n4n//5PlOmTDv1GxVCCCGEEKIP+MN+nix8nhHOPC7LXYQ/HKDWW09OTCZ6rf64x/aU2j+UoHXU4jTGYjNYTzqOWFMsNR11RNXokFyw+mjOjbs8RatXr+SSS+Zy5ZUXo9PpueOOu3q23XLLHVgsFh5//I+HHZOSkoLFYuGBB/6PtjY311xzPUajkaysHCorK/jNb37J5MlTGTFiJBaLlWuvvZGf//whxozJ52c/+1FPAieEEEIIIUR/UFWV/+x+lX1tpWxp3AFAva+RqBo95vpnn+U8mKC1BtrwBNppD3ac9PDGnnMZY4moETqCvlM6fjAacD1oiTfeckq9XaejvLwMg8FAenoGqqqi0XT3lM2YMZPvfvcHGAwGnM64w6rVmM0mvvOdH/CjH32X9PQMHI5YAEKhED/72Y/YuHE9v/zlb8jKygGgrOwA3/7213E6nfzyl78BYOLESYwYMQKLxcpFFy3k/fffoaWlmeTklLN6/0IIIYQQQhyysvoTdriKAGjuaiUcDdPQ2QRAijX5hMd/2oPm/sz8s5Or4HiI0+QAoC3QhsNoP6VzDDbSgwY88shD/OlPj9LQUE9tbQ2pqd0/QGaziZSUVOLi4o9aSnTOnAuZO/ciamtrel57/PE/sHbtGv73f3/OpElT8fv9tLe3873vfRur1crDD/8BnU5POBzmn/98iuuuu5zKygrWr/+ExMQkEhISz9p9CyGEEEII8VkH2sp5s3QJdoONcfGjiapRXF0tNPoOJmiWEz+rmnVmTFoTrf42KtqrgJMvEHLI5+eznQsGXA9af/jqV7/Bww8/yG233cDEiZO46abbKCws6NWx3/nOD9i6dTMAHk8bb7/9Bqqq8sAD/wfAggWLyM8f31Op8aabrgbg0Uf/zC233MH+/fu49947SUvL4Ne//t1h89yEEEIIIYQ4WzyBDv5Z/B8A7sm/g8qOaopb9tDgazqpHjTo7kVr7mphVc06TFoTeY6cU4rp0HBJd+DcKRQiCRowadIUXn75jcNe+8tfnjrm/mvXbu35c0JCIsuWre75++rVm456zE033XbU13/zm0dPJlQhhBBCCCH6XCQa4dmSF/AEO7h2+OWMcOYRiAQAaOxsotHXhFVnwabvXaEPpymWOl8DREPcPPJarHrLKcUVa+we4ngu9aDJEEchhBBCCCHOcS8Vvc3+tjImJY5jQeaFAKRYkwCo8dbj6moh2Zp01Gk/R3Oo5yvPkc2c9PNOOS6n8dActHOnB00SNCGEEEIIIc5hBU1FvLNnOUnmBO4Yc1NPEhZncqLT6NjdshcVlRRLUq/PmR83iiRzAreOuv60yuM7jDFoFA3uQNtJH+v2t7GlYQeqqp7y9fuDDHEUQgghhBDiHNXY6eLfu1/BqDXw5fFfwKwz9WzTKBqSLYnUeuuBT3vUemNCYj4TEvNPOz6NosFhiDmlxarfK/uQjQ1bGRU3nBjD4KkAKT1oQgghhBBCnIMCkSD/KPo3/kiAr0y7nTTbkUs9JX+mauPJJGh9yWly4Am2E1Wjx9znaEMgq721GDT6Xs+bGygkQRNCCCGEEOIc9HbpEup8DVyYPosLcmYcdZ/PDmtMPokhjn3JaYwlqkbxBNqPun1V9Tp+su4hNtR/WsgvHA3T4Gsi1ZZyWkMs+8PgilYIIYQQQgjRJ4qb92DVW7huxBXH3Cf5YK+ZXqPvWYD6bIs9uFj10Urtu/1tvFO2FIA39r9LR9ALdA/djKgRMmypZy/QPiIJGvDKKy9ywQXTKSjYDsDjj/+RBQtmU11dxUMP/YI5c6YxZ8405s07n9tuu57i4iKWLHm35/XPfi1Z8i4PPfQLvvKVu3rOf2jfQCBAIBDg179+gGuuWcyiRRfy7W9/vWeh6/vv/0rPeebPn83993+Furra/nhLhBBCCCHEENYV7qLF30qmLR295thlKQ71oCVbEvutJ+p4i1W/tv9dApEgo5zD6Qx38dr+dwCo6agDIN2WdrbC7DOSoAE33HAL48dP5JFHHqK4uIjXXnuZe+75GpmZWQCMHj2WpUtX8q9//ZdoVOUvf/kjixZdytKlK/ntb/8IwNNPP8/SpStZtOjS415r6dL3+PDDpTzyyB95/vmX8HjaePzxP/Rsnzv3IpYs+Zh//ON5Ojo6ePDBn5+5GxdCCCGEEOekWm8DAOn24/cwJVsSSTTHMy5+9NkI66gOldqv7qhlp6uY98uX81TRv/jZ+ocpcBWR58jhGxPvIdueydbGAso8lT2FTdIHYQ/agKviuP7jUsr2NPXpOfNGJzFr/rBjbtdoNPz4xz/jrrtu5dvf/hojR47m5ptvO2y73W5Hr9djsVjQarXo9Xr0ej1msxkAi8WK3X7i6jB2u51wOMxzzz3DBRfM5dFH/4zT6ezZrtPpiImJISYmhttv/yK//OX/UVNTTUZG5mm8A0IIIYQQQnzqUA9Txgl6mPRaPb+Y+cOzEdIxHVpTbXnVqsNet+mtjI0fxY0jrkar0XLVsEt5vOBpNtRtpvVgb1v6UQqfDHQDLkHrL5mZWYwfP5GtWzdz7bU3oNVqe7bt3bubSy+dR1dXFw5HLA888OvjnutYC/gpisL8+Yuoqanm7bffYM2alWi1Wr7zne9zzTU3HLF/XFwcAG1tbknQhBBCCCFEn6nx9i5BGwgybGlMS55EVI2SYUsj3ZZKhj0NhyHmsOfukc5hOI2xbG8qRKvREm9yYtaZ+zHyUzPgErRZ84cdt7frTFm9+mO2bt1MUlIy//jH37nwwouw2WwA5OUN4ze/+T06nR6n03lY8nY0BoOBSCTS8/dwOIyiKOj1ekpKihg7Np8vfvEeqqoq+ctfHuPxx//I1Vdff8R5PJ42AJKSkvvuRoUQQgghxDmvxluHTqM7rIz+QKXVaLk7/7YT7qdRNMxImcKyyo8hAsMcuWchur4nc9CAtrY2Hn30YWbMmMkTT/yDjo4OHnvsdz3b9XoDKSmpJCQknDA5Axg2bASlpftZu3Y1TU2NrFu3hry84SiKwqZNG/jJT35IQcF2LBYLZrMJhyO2J/sPh8N0dHRQW1vDG2+8ysiRoyRBE0IIIYQQfSYSjVDvayTNmoxWc+Jn28HkvJQpPX8ejPPP4AQJmtfr5b777mPy5MksXLiQVatWHba9oKCASy+9lBkzZvD444+fyTjPqN///mECgQA//OFPSElJ5Wtfu58PPnifNWtWndL5Lr/8Ki677EoefPDn3HjjVbhcTfz4xz8F4I477mLBgkX83//9gBtvvIrq6mp+8YuHeo5dvXolixdfxJ133oxOp+fBBx/pi1sUQgghhBAC6C5BH46GB8XwxpOVbE0iN6a70N9gTdAUVVXVY2184oknePHFF/nPf/7Dk08+ycqVK9m4cWPP9iuvvJLx48dz2WWXcc899/Daa68xfvz4417Q5erou+j7QGKifcDFJE6PtOnQJO06NEm7Dm3SvkOTtOvgt7lhO8/vepkbR17NvIzZwNBq110te1lW+TFfHf9FLHpLf4dzVImJxy4ueNwetDvvvJP//ve/5OTkEB8ff9i8Kq/Xy759+5g7dy5z5szBYrFQUFDQZ0ELIYQQQggh+l5lezUwOAqEnIqx8aP4zpT7BmxydiLHLRJit9ux2+188MEHPPvss3zta1/r2dbR0Z1hm0ymnu+HXhNCCCGEEEIMLKFIiHfKPmBVzTpMWhMZg3QI4FB3wiqO7777Lj/84Q9ZvHgxX//613teP1ThMBAIAOD3+3u1DpjTaUGnG1iTEY/XxSgGJ2nToUnadWiSdh3apH2HJmnXwaemvZ4/rX+GSk8tafZkvnX+3WTGHV7BUdp1YDhuglZQUMCPfvQjLrroIn7605/i8/nQ6/VEo1Hsdju5ubmsWbMGs9lMZ2cnkydPPuEF3e7OPgu+Lwyl8baim7Tp0CTtOjRJuw5t0r5Dk7Tr4KKqKhvqt/LqvrcIRkPMTjuPG0ZciSFiOKwdpV3PruMlw8dN0J566inC4TAfffQRH330EQCXXXYZtbW1vPLKKzz88MP8+Mc/ZtmyZdx///2MGzeubyMXQgghhBBCnJKucBcv7XmDbU07MetM3DP2ZqYkTejvsMQJHDdBe+KJJ4578KRJk1i6dGmfBiSEEEIIIYQ4PRXtVfyz+EVa/K3kxmRzd/6txJvj+jss0QuyUPVB27dvZc6cafz973/pee2GG67kb3/rXt+to6ODBQtmc/31VxCNRnv2qaur5X/+5+tceulFXH75An796wd65uUB7N27h7lzz2PjxvVA91y9n/zk+yxadCHf/vZ9uN2tABQXF3HbbdezePF8nnnmybNxy0IIIYQQYoiJqlGWV67i99ueoNXv5pLs+XxnytckORtEJEH7nJdf/g9lZaVHvP7BB+9jMBhpampk/fq1Pa8/+eRfcbvdPPfcSzzyyJ/4+OPlvPXWawC8++5bfPvb9x22PMGbb75GUVEhTz/9PG1tbp577h8APPLIg4wfP5EHHvg1zz77NHv27DrDdyqEEEIIIQaDqBqluqOOVdXreK7kJYqaj/6c2B7s4Imd/+St0iXY9Va+OenLXDXsUrSagVWgTxzfCas4nm3u2uV0tvVtcmKJHYszfVGv9nU4Yvnd737NE0/847DX3333Ta688hoOHNjHW2+9xpw5FwLdSxFUV1fx4ovPM2PGTN55ZxkmkxmATz5Zzbe+9V1+/esHes5TVLST0aPHkpOTy8SJkykqKsTn81JWVsqXvvQVZsw4H7PZTHFxIaNHj+2jd0AIIYQQQgwmjZ0udrqKOdBWTpmngq6wv2fbTlcx35/2TdqDHfxn96tkx2QyNm4k75YvoyPoJT9+NHeOuQm7wdaPdyBO1YBL0Prb/ff/Dw8++HPee+/tnteKinZSVlbKgw8+QlnZAX72sx9TV1dLWlo6X/3q/YRCIZYtW8Ibb7xKbGwsDz/8R8aNG88jj/yR+vq6w87v83lxOGKB7rXjfD4vXq8XAKPR1PP90GtCCCGEEOLcoqoqf9r+JJ5gOwCJ5ngmJo5jeGwekWiYl/a+wRM7/0lHsIOwGsHtaqPAVYRW0XL98CuYlzkHjSID5QarAZegOdMX9bq360wYOXI0N9xwC0888WcURQHg7bffAOCuu24FIBqN8vbbb3Dffd9kx45t3HjjrXz/+//L7t0lPPjgz/nnP5/iD394/Kjnt1isBALdn4D4/X6sVhtWa/enG8Fg99y1QCDQs86cEEIIIYQ4t7QFPHiC7Yx0DueusbfgMMYctr2x08XH1Z9g0Br45vgvoVU07HAVcX7KNLJiMvopatFXBlyCNhDce+/XWLVqBY2NDXi9Haxc+RH33fdN5syZC8Abb7zC+++/w733fo1XXnmRzk4fv/jFr3E4HOh0OpzO2GOee+zYcbz22ktUVVVQULCdyZOnYrPZyMrKZuPG9ZhMZrq6Ohk3buJZulshhBBCCDGQVHXUAjDKOeyI5AzgmmGXEWt0MNI5nEx7GgAjnMPOaozizJG+z6Mwm81897s/BGDlyhWEw2Euv/xqsrNzyM7O4YorrqGtzc3KlR/x4x//jNhYJ/fe+wXuuedO0tMzuO++bx/z3NdffxPjx0/innu+QGysk7vuuheA//3fX1BYWMDPf/6/3H33lxk9esxZuVchhBBCCDGw1BxM0DLt6UfdrtVoWZB1YU9yJoYWRVVV9WxecKCtUC6rpg890qZDk7Tr0CTtOrRJ+w5N0q5n3t8Ln6OoeRe/nv1THEb7WbmmtOvZlZh47HaVHjQhhBBCCCEGkOqOWhwG+1lLzsTAIgmaEEIIIYQQA4Q36KMt4CHjGMMbxdAnCZoQQgghhBADRLX3+PPPxNAnCZoQQgghhBADRPWhAiE2KQByrpIETQghhBBCiAGipqMOkB60c5kkaEIIIYQQQgwQNd46zDozcSZnf4ci+okkaEIIIYQQQgwAkWgEV1cLqdYkFEXp73BEP5EETQghhBBCiAHA1dVCVI2SZEns71BEP5IETQghhBBCiAGgsdMFQIolqZ8jEf1JEjQhhBBCCCEGgKaDCZr0oJ3bJEETQgghhBBiAGjobAIgWRK0c5okaEIIIYQQQgwATZ0uNIqGRHN8f4ci+pEkaEIIIYQQQgwAjT4XCeY4tBptf4ci+pEkaEIIIYQQQvQzb9CHL9wpwxuFJGhCCCGEEEL0t0MVHJOlguM5TxI0IYQQQggh+lmjFAgRB0mCJoQQQgghRC9Utlfj9redkXM3Sol9cZCuvwMQQgghhBBiIFlft4W2QBuLcxaiKAoARc27eLLweUw6E1+bcBfDY3P79Jq13npAFqkW0oMmhBBCCCGGuFAkxE5XMb5QZ6/2X1rxEe+XL2dZ5UoA6rwNPFvyIjqNlkAkwOMFT7O9qbBPYlNVlbdLl7K7dR8pliRsBmufnFcMXtKDJoQQQgghhrR3y5exomoNOkXLpKTx3Db6Boxaw1H3japRPIH27uPKPqCqo4Z97gMEIkG+lH87Fp2Zp4v/xT+LX6B9RAfzMmcD3YlWjbeONGvKSZXJ/6BiBR9WriTRHM/XJ95z+jcrBj3pQRNCCCGEEANWTZOXRnfver6Oxhfq5JPajdj0VmJNsWxtLOBAW/kx9/eGfETUCOm2VAxaAztdxRi1Rm4eeQ1TkycyJn4k35lyH3aDjVf3v81bB5YQVaO8U/YBD2/5E8/teglVVXsd38b6rZh1Jr479evEm52nfJ9i6JAeNCGEEEIIMeCU1nl4Z20FRWUtWE06Hv7aTKwmfa+O7Qh6+aR2A1OSJrCjqYhgJMgVuRdjN9h4ftfLtHS1HvPYtoAHgBGxedyTfztdET9Z9gw0yqf9Gpn2dP7f1G/w153/YHnVKva691PVUQvA9qZCsmMyWZg194RxtgU8NPtbGRc/mhiDvVf3JoY+SdCEEEIIIcSAcaDWwztryyku706iEhwmmj1+3ltfwc3zRwAQjkRZvrWaTn+Y7GQ7mUk2EmPNaDQKzV0t/KXgH7i6WlhWuRKdosWiMzM7bQa13gYAWv3uY16/zd+doMUaHSRbj12wI8Ecx/+b8g3+Xvgc5e2VxBod3DvuTp4u+hdvHVhCqjWZ/PjRx73XMk8lAMMcfVtwRAxukqAJIYQQQoizZm+Vm7fXlvPFS0eTHGfpeb3W5eXlFfspqehOnkZnxXL1nFzy0mL436c2sWJbDRdNySDObuSpd0rYutd12Hl1Wg0JKQF8qesIa/yMsObTEKqkI+hlcc5CTDpTzxDCFv/xetC655/FGh0nvBebwcq3Jn+ZtXWbGB8/lkRLPF8efyd/2vEkTxf9m29N/jJ5jpxjHl/WVgFAXuyx9xHnHknQhBBCCCHEWfPWJ+XsrW7jr28W8ZMvTMOo19LuC/L7/xbQ5g0yJtvJ1XNyGZkZ23PM9fPyeOqdXfz2he2YjTrqmn2Myozl8pnZVDd5qW32Ue4twx2/DpQIoYoxFDZlsvC8qQwfG2Ry0gQAYgx2dIqWlq7j9KAFPu1B6w2D1sD8zAt6/p7ryObecXfyZNHzPLHzWe4ddwej40Yc9dhSTzk6RUu2PaNX1xLnBikSIoQQQgghzor6Fh97q9vQaRVqXD6eX7qHFo+fJ98poc0b5Pq5eXz/1smHJWcA541JZvb4FALBCHXNPsbnxfM/N05kXF48i8/PZsI0P+3Ja9HrFW7Ou4lvzr2SBIeJlVtcpGlHotd090loFA1xJucJetBOLkE7mnEJY/jCmJt7SvL/d++bNHUe3uPnD/up7qgjKyYTvbZ3c+vEuUF60IQQQgghRJ+qa/ZhNelw2IyHvb5qRx0Ady8ew/Kt1Wzc1cjGXY0ATBqewOLzs496PkVRuOfysXB59/wznba7j0FVVT6qWs1bpUsw60x8dfxdjHDmAXDbIvjza4X8Z9lefnj7lJ4Fp+NMTprczQQiwaOW2v80QYs5rfdgespkki2JPL/rZdbUbmBN7QbSrClMShzHpKTxdAS9qKgMO84QSHFukgRNCCGEEEL0mb1Vbn774g4AnHYjOSl2clNjyE6xs764nhirgeljkhg/LJ7VBbWU13cQjkS554oxaA4mUcdzKDmr9dbz371vUuqpINbo4OsTv0S6LbVnv0nDE5g8IoEd+5tZXVDHvMnpAMSb48ANDR3NZMemHXH+tkA7Jo2ZFVvryU62kZMag9l4ao/MWTEZ/Gj6t9natJOdriJ2t+5nScVHLKn4CMPB5HCYzD8TnyMJmhBCCCGE6DMfbKoCID/HSY3Lx479zezY39yz/fKZ2ei0GmxmDZfPzDnp80eiET6sXMmSio+IqlEmJY7jxpFXH3VI4u2LRrKvuo2XVuxnRIaD9EQb2nB3YZJfvbSGbMswJo9IZMrIRNISrAC0drUR8Bl5ZeMBALQahWFpMUwakcj5+cnEfq5X8ET0Wj0zU6cxM3Ua/rCfkpY9FLiKKW7Zg1lnkh40cQRJ0IQQQgghRJ9oaO1kZ2kLw9Md/L9bJqOqKm3eIOX17VQ0tOPuCLBoeuYpn19VVZ7Y+U/2uPcTa3Rw2+gbyI8fdcz942JM3H3ZGP7yRhF/fr2QGKuBiq4WDMMhLiFKZZmX8voO3lhTRkqchbHD7ISUIIQc3LZwBO6OAHur29hf62FfjYdXVx1g+ugkrrswjySn5ZjXPRaTzsTU5ElMTZ5EKBIirIYx68yn/H6IoUkSNCGEEEIIcVoi0SgKCsu3VgP0JGGKouC0G3Hau3upTldjp4s97v3kObK5b8KXsOhPnNxMGZnI/CnpfLy9lhZPgIzsRFzA+ZNiuPiKORSWNrN9XzPFZS2sLGrCNAFGpaSwcNqniWRHZ5Ate5pYU1DH5t1NbNvr4qIp6Vw5Kwe75ch5bL2h1+rRI8VBxJEkQRNCCCGEEESjKhrNieeAfV5HZ5D/+8cmfF1hVFTiY0xMGZlwBiKEfe5SAM5Lmdqr5OyQ2xaOZNa4VFLjLQTp4n/XraDF78Zm1jNrXCqzxqUSCEX4cM92PnDByJSUw463WwzMn5LBvMnpbN3TxGurSvloaw3riuq5fGYOC6dmYNBriapqr+bRCXE8kqAJIYQQYkjydoXwB8KYjDpMBm1PcYlzhbcrxNrCerbvd3H1nFzyc+KOue87a8tZsb2Gb10/gWHpJ1defs3OOjo6Q6TEWVBVlavn5KLVnJn3el9bd4I20jnspI7TaBTy0rqrMppUG3qNjtbPldo36rUkJCjgglhj7NHPoyjMGJPM5BGJrNxRy7vrynltVSnLt1aj12poafdz64IRh/W+CXGyJEETQgghxJASiUZZsrGKd9aWE4mqPa/rtAomgw6rWc/di0cfsdbWQNfmDRCJqMQ7TMfcpysQZn1xAwX7XeytbiMc6b7/J98u4Zf3zDhqgYsal5d31lUQVVX+9FohP7lzKslxvZtfFY2qrNpRi1Gv5f++MA2L6cw9WkbVKPvdpcQaHSSaT72HTlEU4kxxR12sus3fuxL7ep2Gi6dnMmd8Cu9vqGTFthoiei0mg5aXVxwgK9mO3aKn4EAzs/JTjlhu4LPCkSiKwhlLasXgIwmaEEIIIYaM+hYf/3hvN+X17cTaDIzNicMfjNAVCOMPRvAHw9S3dLJ0Y2W/JWiBYIT1JQ1MH52EzXziOUhdgTDvb6jkwy3d87tuXTiCeZPS8AcjNHv8uNq6cLV1UdfsY8ueJvzBCABZSTbOz08hEo3y+uoynn53F/dcPgazUYfRoEWjKKiqygsf7iOqqswel8K64gb++MpOfn739F6Vlt95oJmW9gDzJqef0eQMoN7XiDfkY0bKp2uanap4k5PGzib2u8tItMQTY7CjUTS0BU9ukWqLSc+NFw3n+nnD0CgKe6vc/O6lAh57dSeBUARVhaUbq7hh3jD0Wg3Nni6aPX6aPX5aPH7avAGC4ShxMUZ++aXzzvh7KAYH+SkQQgghxKDX0Rlkzc463llXQSgc5fz8ZG5fNBKr6cgE6JfPbaGwrAV3RwCn/eRKpveFNz8p48Mt1awuqOX7t04+aoyH7Ktu46l3S2ht7441GIrw72V7eX1VKZ2B8BH7x9oMXD4zm5n5KcTFdPe0qarKgRoPO0tb+N4T6wFQoGfop7sjwKThCdxzxVjsFgMfbK7i/Q2V3DDvxMMIP9pWA8D8Kemn8E6cnEPzz0bGntzwxqNJtiSyq3Uvj+34OwAaRYPDEIM/EgB6n6Adcmje2agsJzdeNIz/fnyA9EQrE4cl8NHWap5buueIYxxWA6kJVqJRleomL0s29u49F0OfJGhCCCGEGNReXrG/e4hZVMVm1vPlK8YybXTSMfe/YEIqFR92sKGkgcvOzz6LkXYnkqsKalEUqGr08uhLBcwcl9Jd6dBmJNZuINZmpKXdz/It1azcUQvAFbNyuHxmNr6uEP9atpfG1k7y0mJIjDUf/DKR4DCTnmg9Yq6doijce+VYlm6sorXDT5c/TGcgTNfBr+Q4C7cuHAHA1RfksnlPIx9uqeKCCanHHOqoqipvfVLO7ko3o7NiyUi0ndk3DtjvPrX5Z0dzac4CEszxtAbctPk9uANtuP0eApEA6bZUzLpjDyM9kUtmZDF5ZCIJDhMaReGCCals3t2IzWIgwWEiwWEiPsaEQa8FIBiK8OOnNvLhlmoumpx+3CGs/cnbFeKlj/Zz3thkJgyL7+9whjRJ0IQQQggxaO2rbuPDLdUkOEwsnJrBrPGpJxw2OGNsMi+tOMDawnpyU2M4UOth0bQMTIYz/1j00dYagqEot8wfTrXLy7qiBiobO465f4LDxL1XjO0ZjmnUa/mfGyee9HWtJn2vemeMei03zx/B394q5k+vFWI16/AHI5j0WgwH51g57Cba2v0UHGgmKdbMly4fc9LxnKzOUBd73QeIN8URbz52sZPeshmszMucfcTrUTUKcNpDKJNiP60wmRxn4crZucfc16DXct2FeTzz/m5+/98CwpEoCQ4TX7p8DAmOgbFGmrcrxKMv7aCqyUtds08StDNMEjQhhBBCDGjtviDVLi/ZyfYjkq+315YD8JUr8xme0bthaVaTnqmjEtm0q5HfvbQDgEgkyjUX5PVt4J/j7giwYlsNNrOeuZPSMeg1LJiaQXObH7c3QFtHoOe7oihcODGNqaMSz3r1yWmjEsnPjaOkvBWtRsFk0BIIRXoKjhySEmfh+7dOPivDRD+uXoM/EuDSnAVn9DoapX8Kdcwcl8LH22sor+/AbNTR7Gnjl89t5YZ5w8hJsZMab0Wv+zS23RWt/PvDfYzPi+fGi4ad9M9IrctLRUMHM/NTTri0QkdnkEdfLqC6yYtRr6WysYNGdyfJp7BQt+gdSdCEEEKIM+h46yKFI1E2ljQyIsPR66p555od+1388/3d+Pzd863SE6yMyIxlZIYDnVbD7ko3+blxvU7ODrl4eiYHatoYmRlLYWkLH2+vZfH52RgPDjv7vE5/iEhUPaVFiUPhKK+tKmXljlrCkSjXz83DaOi+Tk5KDDkpx68YeLYpisK3rp9Auy9IrN3QU10wHIkSCEWw2c3UNXhIjDWfleTRG/SxsnotdoONCzNmnfHr9QeNovCDW6fg7QoRF2NkdUEdLyzf1zN3TaMoJMeZSU+wYjHp+aSwDlWFhtZODtR6uO+a/F73tnm7Qjz6cgEeX5B1RfV86bIx2K0GwpEoqqoe1nvY3hnk0Zd2UOPycdHkdHJS7Ty7ZA9bdjdxxaycM/FWCEBRVVU98W59x+U6djd+f0hMtA+4mMTpkTYdmqRdh6bB0K6hcHelPItJj92s79VCvuFIlD+/XkhxWfc6S3ExRsbmxDEuN44x2U7sFgPRqMpT75aweXcTWo3CgqkZXHvBpw/uA0UgFKGyoQOHzUB8jOmwB/JwJEpre3c1uuaD31s7AozMiGX2+BRUnY5fPbORhBgTV8zKITvF3uvrhsIRXllZyoptNeh1Gi6YkEp9SyeldR6Coehh+/7kzqknvXbXZ72xpoz31ldw+6KRLJia0fN6a7ufHfub2b7Pxb7qNkwGLb/+yvknnaS9u66cNz8pJz7GxOUzs7lwUtqgXsz4bP27jUQj1PkaWFG1hi2NO7hhxFVclDnnjF93oKhv8bGrwk2ty0tNs49al4+ug4VhYm0G7r1iLOuKGthQ0oDVpOPeK8YyKiuWQDCCPxTBH4gQCHVXLvUHI2gUhbE5Tp5duodte12kxFloaO084rpajYJGo6DVKESjKsFwlPlT0rl90Ui6AmG+/ee1pMZb+eU9M/rsXqNRlYIDzZgNWsYcZ72+3iosbeG9DRU4rAbyUmO49Lys0x622tcSE4/9+1B60IQQQoijqGrs4IXl+yivb+8Z2mXUa5kxJomLpqQf0evR0NpJR2eQERmxvLOunOKyVlLiLDisBmpcXtYW1rO2sB4FyEq2YzXr2FXhJjvFjq8rxIdbqnF3BPja1fkD5kGi2dPFn14tpLbZB3Tf/5SRCSTGminY30x1k5ejfcq7trCeA7Vt7Klqo8ndRWVDB9v2ubh1wQgWTT/xAr7Nni7+8noRVU1eUuMt3Hf1ODKSuotQhCNRKhs72F/tYX9NG6nx1tNKzgAWTs3gg01VLNtchdmopaU9wI59LioaPk1C4mNMtLT7Wba5+qhzuRpbOwmEIqQlHF6ko7Xdz/sbK4mx6HngSzOkjPpxhKNh9roPUOappMxTSUV7FcFIEOguiz8n7bx+jvDsSo23khpv7fm7qqq0eYM0tnaSlWzDYtIzJtvJyEwHLyzfz59eKzzhOTWKQlRVGZnh4Pu3TWbNznoKDzQTUVW0Wg1d/jDRqEokGiUSUYmoKlNHJnL1nFwURcFi0jMuN46dpS3Ut/gOi+9UBEIR1hXVs2xzFa42PwBzJ6Vx8/zhx50T6u0KUdXYQVWjl4ZWHxpFwWbRs2BqJtGoytPvlvT0uu880MzcSWd+GYi+JD1og+DTW3FypE2HJmnXoWmgtmtzWxcP/XsbHl+QnBQ7GUk2/IEw5fUdtLR3P0TkpNiZNzmd88Yks7+mjb++WUwgFGHCsHiKylqIs5v45T0zMBt1RKMqlY0dlJS3squilf01HiJRlexkO9+/dTJ6ncLvXi7gQI2HuxeP5oKJaf127/5gmMqGDsrq2/lwczUeX5Dpo5PQ6zTsq26j2dN9/1qNQl5aDAkOM/GHKtM5TJgNOp5duptaV3dSd+2FeeSlxvDkOyVEoiq/u28mluOUlQd47NWdFJa2cOHEVG5dOPKYww770r+W7WXVwYqJ0H1/o7JimTwikckjErCZ9fzwyQ34AxF+e99MYj7Ti1bf4uMXz24hFI6i1SikJ1jJSraTmWxjd4WbggPN/d6ufelM/LtVVZW/Fz5Lccun5ehTrcnkxmST58hmXMIY7IYzXylysKps6ODtgwuzmwxajIbugi7dXzqMei0+f4jt+1x4u0L86LYpJMQePiSyt+26obiBp9/bxcXTM7llwYhTirejM8jH22tZsa0Gb1cInVbDrHHJlNV1UOPyYjZqmTIykfPGJjMm24m7PcDGXY2U1bVT3dRBS3vgqOeNtRmId5gorW3n9kUjmTYqERQFh/XkhyafacfrQZMEbYA+HIhTJ206NEm7Dk0DrV2DoQi7K9389+MDNLR2ctvCESyc9mmPTzSqUlzeyqodtewsbUZVwWzUEQxF0GgUUuMsVDV5AfjBrZMZne086nX8we5kLyfF3rMYcLOni5//cwuRaJSRGbFoNEr3A8qY5DM27NEfDFPb7KO6yUtFfTtlde3UNvs49GSgKHDL/E97vVRVpayunTZvkDHZzmN+It3pD/Pfj/czJi+B80cnAvDBpipeWXmAq2bnHLcYR2mdh4f+tY1RmbH84LbJZ603sdMfZuveJgAsRh1jcpxHrE+2fGs1L320nwsmpHLx9EyS4yxoNAoPv7CdAzUepo1KpKU9QI3LSyj86TDM7BQ7P/3itEE9rPGzzsS/2+1NhTxT/B/yHDlcmrOA3JhMLHqZl3k29bZdA8EIP31mEy0ePz+4bTKjso7+e+5YVm6v4b8fHyAYjmIx6pg/NZ0FUzNxWA2EwlGWbqxkTWEdrQeTMKtJR6c/3NNb77AayEy2kZ1sJyvZTlqCFY0C2/e5eGNNGaoK4/Li+M6NEwfMaISjkQTtOAbaw4E4fdKmQ5O069DUX+1a2dBBRUM7Le0B3O1+Wtr9tLYHaGn3E4l2/7e4+Lwsbrxo+DHP0eLxs2ZnHWsK6wiHo3zz+gkMT3ewtqgeg07D+fkpJx3Xtr1NPP3ersPmWJmNWmbmpzBvUnrPML/TUd/i4511FZTVeXqGFB1i0GnITrGTlxZDbmoMw9MdPYsdn4rPtm8gGOEHf19POHL8XrQ//LeA4vJWfngKD35nWigc4UdPbsTd8emDY05qDCXlrUwblcjXrx0PQCQapaG1i6rGDupbOpmZn3zaQ8EGkr7+d+sPB/jVpkfxBr385LzvkmRJ7LNzi947mXY9UOPh4Re247QbuG7uMELh7gIyoXCUYCiCPxjB4wui12q4ft6wnh6sA7UeHv7PdqxmHVfMzOGCialHHcoYPbi4+qbdjew80ExcjIkLJqQyIS8eh+3YVUN3V7rZtKuBay/IO+5+A4EkaMchD31Dj7Tp0CTtOjSd7XZVVZX3NlTy5pqyI7Y5rAbiYkwHh7UlMDzd0atPXw/N1TD00TC8UDiCqkJHZ4hPCutYs7OONm/3PJzh6Q7mT+0eVnmynwy7OwKs3FHDB5uqCEe6F3TOSLSSkWgjI8lGToqd9ERrT8W+vvD59l26qZJXV5aS4DBx3thkpo1KIivZ1nMvhaUtPPbqTsZkO/n+rZP7LI6+5GrrYuueJhpaOyksbcHjC2Iz6/nVvecNyGFUZ0Jf/7t9p/QDllV+zKU5C7gy75I+O684OSfbrm+vLe9Z5uJ4hqc7+P6tkwlHovz8n5tPuedtqJEiIUIIIQTd84xWF9QRH2Pkqjm53fOnYow47abD1hg6GVqNhr6sNK7XdSd68Q4t11yQx5Wzc9h5oIVVBbWUlLVyoNbD2sJ6bls4ErNRR7svSI3Li88fxqDXEImodPpD+PxhfF3d3z2+IBX17ah0z9G4fdFIpoxMPOvDfxZMyaC+uZMte5p4f0Ml72+oJMlpZvroJMxGHW+uKUOjKFx34Zldj+x0JMaaWXx+NtBdsGR3pZs4u/GcSc76mjfoY2XNWhwGO5dkX9Tf4YiTcOWsHNITrHj9IYw6LXqdBoNeg0HXPQfOYTXw6qpSNu1q5Pcv76Cl3U9Le4DLZ2af88nZiUiCJoQQ4pxQ3+JjdUEdGYlW/t/Nkwb88JdDtBoNU0YmMmVkIk1tXby4fB+FpS383z829focigJ56THMHpfKeWOTe+a9nW0GvZYvXT6G2y8eSVFpC1v2NLGztJn3N1QCYLfo+fo14067KuPZotNqGJ8X399hDBrVHXXsbt3LrNQZ2AzdQz5XVn9CMBLkqrxLMWglyR1MNBqFaaOTjrvP3YtH09jayb4aDyaDloumpHP1nNyzFOHgJQmaEEKIc8LWvS4ALj0va9AkZ5+XFGvm2zdMYH1xA4WlLWg0ChaTjowEKzFWI8Fw91pHNrMeq1mH1aTHatJjMmoHVIEKo17LtNFJTBudRCAUoai0hRqXlwsmpBHvOPU5b2JgKm2rYFnlx5QcrNC4pmYDd+ffhtPkYFXNOuwGG7PT+m5NLTFwGPRavnfLJA7UtjMqK/asVGQdCiRBE0IIcU7Ytrd7QehJwxP6O5TToigKs8enMnt8an+H0ic+m6yJoUNVVXa37mNZ5cccaOuepzTMkUt2TAYrq9fyh+1P9Oy7OHeh9J4NYRaTngnDpKf5ZEiCJoQQYshrauuiqtHLuLy4E67BJYQ4PYFIkL8UPE2Zp3vo6tj4UVySPZ/hsd1D28bFj2FN7XqiqkqMwcaF6TP7M1whBhxJ0IQQQgx52w8Ob5w2SnpphDjT9rTup8xTyYjYPK4fcSWZ9vTDto+KG86ouGMvYSHEua4P604JIYQQA08kGmXTrkYUBSaNGNzDG4UYDBp93Qt+z8+84IjkTAhxYpKgCSGEGBS6AuFTOuZPrxVS2djBxGEJxFhknosQZ1pDZ3eClmyVHmshToUkaEIIIQa0UDjCU++W8M3HPmHbwaGKveHzh3jkpR0Ul7UyYVg8X7lq7BmMUghxSENnEzpFS4Iprr9DEWJQkjloQggh+oWqqkd9PRKN0toeoKmtC1dbF+sK6ymtawfg38v2MCorlhaPn9I6D3MnpaHVHPlZY6c/xKMvF1DZ0MGcCal88dJRR91PCNG3VFWl0ddEoiUBrUZKqgtxKiRBE0KIc5zPH+I3/9nO9NFJXD0nF1VV2V/jISXOQoz12EMCt+1t4rVVpQTDUWKsBr53yySsvayQWHCgmeeX7iE3zcFtC4fj7giwdGMVtc1eWjwBop9L3s4bm0xqvIW3Pinn0Zd2UNvsIxJVUVVYMDWjZ79wJMr64gbe31CBq83PnAmp3LV49IBaA0yIocwTbMcfCZBskeGNQpwqSdCEEOIct2JbDXXNPt5dV8GUkYnsrXLz4kf70WoUJo9MZOrIRMbmOLF/Zv5Wi8fPM+/vJhxRsZl1VDZ08MGmKq6fO+yE13t15QGWbqpCAQr2uyguayEciQLgsBrIS4shMdZEYqyZxFgzqfFWclPtRFWVHfubqWzowGEzEAxFeOuTMmaMScKg17KmoI4PNlfh7gig0ypcMiOTGy8aLsmZEGdRw8ECISky/0yIUyYJmhBCnMP8wTDLt1Sj12kIhaM8+U4Jja2d2Mx6HFYDW/c0sXVPEwqQnWInPzeOcblxvLe+An8wwt2XjWbGmGR+9OQGPtpaw6JpmWg0Cl2BMImx5iOuV+PysnRTFclOM1+/djzuzhBPv1VEXloMN8wdxvAMxzFj1SoK37hmHBt2NTJvUhobShp5ecV+Hn+9iEZ3Jx2dIQx6DRdPz+SSGVk47cYz+M4JIY6msbN7nmiyJbGfIxFi8Op1gvavf/2Lhx56iMLCQozGT//T27BhA3fddVfP3//f//t/fOUrX+nTIIUQQpwZqwvq8PnDXD0nlxqXl217XSjAV6/OZ2y2k6pGL8XlLZSUt7K/xkNFQwfvb+hefHbCsHjmjE9FURSumJnDC8v38Zc3iqhxeQmEIsyfksG1F+RhMX36X82agjoAbpg3jMwkG1MS7YzLju11L1dCrJkrZ+UAMH9KOmt21nGg1oPZqOOKWTksmpZxWE+fEOLskh40IU7fCRM0v9/Pn/70J5577rmjbi8pKWHs2LE8//zzAJhMpj4NUAghRN9zdwRYW1TPh5urMBq0LJiaQTAUobnNz6xxKeTndFdfy06xk51i5/KZOfiDYfZWtVFc3kqLx8+dl4xCOZhYXTgxjQ82VXGg1oPNrCfGYmDFthq27Gni5ouGc35+MuFIlA0lDcRYDUwc/ul6ZKc6BFGn1fDN68ezp9LNjDHJmI0yKESI/tZ4qMS+zEET4pSd8H8zl8tFeXk5X//61/nLX/5yxPbi4mLq6uq45ppryM/P56GHHsJgkE8vhRBioAlHouw80MInhXUUlbWgqmDQabhlwQhsZj2Y9fz87unHPN5k0DFxeMJhydUhep2Gr187jj1VbuZOTEOv0/LB5ireX1/B0+/tYs3OOkZlxeLzh1l8fhY6bd9UVEx2Wkh2WvrkXEKI09fga8JpjMWolWdBIU6Voh6rzvHnvPHGG/z4xz8+Yojj008/jUajYcaMGXzzm99k0aJF/OQnPznmecLhCDqdlF0VQoizaen6cl5ctpc2bwCAEZmxLDovmwsnpWM1967y4qlobO3k6beK2FTS0PPakz9aQFqi7YxdUwjRPzpDXdz1xneZmDKWn8z9Zn+HI8SgddrjQe666y6i0ShGo5HJkyezb9++4+7vdnee7iX7VGKiHZero7/DEH1I2nRoknY9daqq8q8luwmGIyyclsGFE9LISOpOkDq9fjq9/jN2bQ3w1SvHct6YJF5deYDsZDt61J62lHYd2qR9h6Zjtev75csBSDYmS7sPQvLv9exKTLQfc9spJWhdXV1Eo1GsViuXXHIJEyZM4Lvf/S47d+7ksssuO+VAhRBC9D2PL4i3K8TkEQnctnBkv8QwaXgCk44yNFIIMTSUe6r4oGIFTmMsi7Lm9Xc4QgxqpzQJ4IEHHuDuu+8G4Le//S179+7l2muvZfLkyXz961/v0wCFEEKcnhqXF4B0GVYohDgD6rwNPLfrJVRV5Qtjb8KiP3KJDSFE7/W6B+26667juuuuA+Dhhx/ueX369OksXbq07yMTQgjRJ2qafABkJFr7ORIhxEC3rXEnhc0l3DnmJnSawx8To2qUyvZqltXtZ3P1ThQgyZJIcfNuImqExTkLGOkc3j+BCzGESE1iIYQY4moP9qBlJkkPmhDi+D6oWEGdr4EJCflMTZ5IJBphX1spO10lFLpK8ATbATBoDShAva+RWKODW0Zdy/iEsf0bvBBDhCRoQggxxNW4fOi0GpKcMuxICHFsbn8bdb7uiqtr6zYxOWk8T+z8J3vc+wGw6i2cnzqNC4dNJ1WbgU6jpaXLjcMYg0F75qrBCnGukQRNCCGGsGhUpa7FR1qCBa2mb9YeE0IMTSUtewDQKBr2uQ/wVukS9rj3MyI2j8tyFzLMkYtWoz2s2l+iJb4/QxZiSJL/rYUQYghrdHcSCkfJkAIhQogTKGnZC8DluYsAWFG1BpPWyF35tzLSORytRtaxFeJskARNCCGGsFrXoQIhkqAJcS6LqtHuOWSB9qNuD0XD7HHvJ8mSwIKsudj03UWFrhq2mFij42yGKsQ5T4Y4CiHEEHaoxL5UcBTi3La0YgVLypejoDAmbiTnpU5lQkJ+z9yx0rZygpEg+fGj0Wt03DjiKiraq7kg/fx+jlyIc48kaEIIMYTVHOxBkzXQhDh3NXU282HlSuwGG/GmOHa17mVX615MWhNTkiaQbktldc06APLjRwMwLWUy01Im92fYQpyzJEETQoghpKMzSLPHT25qDJ3+MCUVrTjtRmJthv4OTQjRD1RV5ZV9bxGOhrlxxNVMTZ5Ig6+JTQ3b2NywnfX1m4HuwiBz0s5jlKxjJkS/kwRNCCGGCFVV+csbReyv8fCj26dQ0dBBIBjhipnZKIrS3+EJIfpBmaeS3a37GO0cwZSkCQCkWJO4ethirsy7hH3uUup9jUxKHIfTFNu/wQohAEnQhBBiyNi+z8X+Gg8Az3+wh3Akil6nYe6k9H6OTAjRXyrbqwCYlTb9iA9qNIqG0XEjGB03oj9CE0Icg1RxFEKIISAcifLqqlK0GoVJwxOob+nE1eZnZn4KNrMsICu67XSV4Pa39XcY4iyqPbjwdJottZ8jEUL0liRoQggxyKmqyluflNPk7mLupDTuvWIMDmv3nLOF0zL6OToxUNR01PFU0fM8U/wCqqr2dzjiLKnzNqBTtCSZE/o7FCFEL8kQRyGEGMS6AmGeXbKbrXtdxMUYuWpOLhaTnu/cNJEmd5esfyZ6FLfsBqC8vXtO0tj4Uf0ckTjTomqUel8DKdZkWWRaiEFEEjQhhBikGls7efyNIuqafYzMjOW+a8YRY+nuOctKtpOVbO/nCMVAUty8BwUFFZX3y5czJm6kFI8Z4lxdLYSiYdJsKf0dihDiJEiCJoQQg1DBgWaefncXXYEwC6dlcNNFw9FpZdS6ODpv0EdFexV5jmzsBhsFrmJKWvYwLmHMGb92nbeBWGMMFr3ljF9LHK7WWw9Ausw/E2JQkf/NhRBiEAmFo7y9tpw/v1ZIOBLly1eM5baFIyU5G2KiapRabz1RNXrU7d6Qj+qOul6fb1frXlRUxsWP4bLcRQC8X778jM9Fq21v4DdbHuO/+946o9cRR1fnPVggxCo9aEIMJtKDJoQQg4C3K8SLy/dRcKAZfzBCfIyJ+68bT3aKDGMcaqJqlOd3vczWxgKGOXK5dfR1pFqTe7arqsqThc9R2V7DQ7N/gt1w4nmGJS17AMhPGE26LZXJSRPY0VRIcctu0qwpfFDxMWPiRzIpcRwape+S/ff2riCqRtnbegBVVWVI5VlWJz1oQgxKkqAJIcRZVtXYgaIoZCb1voDHSx/tZ+OuRhIcJuZOSuOy87OxH5xvJoaOqBrl37tfYWtjAXaDjVJPOb/Z/BiLsudxSfZ8DFo9xS27KfNUAlDmqWBi4rhjnqu6o5aSlj0UN+/GaYzt6Um5LGchBU1FvFW6lEA4gDvQxvr6zSRbErk4+yKmJ08+rKhEVI2edOLWHuxgTcVGADpCXlxdzSRZEk/lbRGnqNbXgFVvIcYgH+QIMZhIgiaEEGdRVyDMb1/cAaj8+isze8rhH8/+mjY2lDSQlWzjZ1+cjkYjvRBD1dbGAjY3bCc3JotvTLqX/e5SXtn3Nh9UrGBbYwE3j7yWd8uW9exf+rkEzRfqpKRlD7ta9rK7dR/ekA/oXpD46uzFPT1YabYUpiRNYFvTTgAuyZ5Pe7CDTQ3b+PfuV3i/fDmLsuaS48ji9f3vUutt4H9n/A9xJmev72V1zXpC0TDptlRqvfWUeiolQTuL/OEALV2tDI/NlZ5LIQYZSdCEEOIsWltUT1cgDMDrq0r50uXHL9IQiUZ54cN9ANyxaJQkZ0Pc9qZCAO4cezNmnYkJifmMdA7n/fIPWVm9lr/s/AcAkxLHUdi8i/KDPWm+UCfLK1exunY9wUgQAIchhpmp0xkbP4rRzhFY9ObDrnVF3iU0dDYxK3UG8zJnA3BZ7kI+qlrD+rpNR8wb29FUxIKsC3t1Hy1dblbXrMdusHLLqGv5/bYnKGsrZ2bqtFN+b8TJWVOzHhWVDHtaf4cihDhJkqAJIcRZEo2qfLS1Gp1WQ2KsibVF9UwZlUhqvAUFUBQFBUABjaLQ2hHghQ/3UdXkZda4FIZnOPr5DsSZ5A8H2N26jzRrCsmf6Wky6YxcP+JKZqRM4aU9b9DU5eLa4ZfT4ndT1V5DKBLirwXPUNlRjcNg55Ls+YxPGEOaNeW4PSdJlgT+d8Z3DnstzuTkppFXszhnAR9Xf0JVew3Tkifxwp7XKGwu6VWC5g8HeLLoObrCXdw79Vay7ZmYtEZKDyaTvbHTVcyOpmJuHHkVVqn+eNI21G/l7bKlxBodLMjsXVItxGCmqirBmho6d+8i1NpM/JXXoLVa+zusUyYJmhBCnCU7DzTjavNz4cRUZo1L5eEXtvPn1wpPeNzs8SnctnDkWYhQnE3diwg3UtlezfiEsexvKyMcDTMxMf+o+2fa0/n+tPsJR8PotXryHNlUd9SyonoNlR3VjIsfw73j7kCv1Z92bHaDjauHLe75+7q6zZS2VeAN+lhZs5a9rQe4f9K9mHTGw45r7mrh5b1vUuutZ076+SwadgHNzV5yHdnsbt1HR9B73KImqqqyonoNbx54HwCb3sINI6867fs5lzR3tfDintew6izcP+lenKbY/g5JiFOmqirBulqinZ2g0aDo9Sg6PRq9vvvPBj3h1lZcr/6XzpLinuPCbR5Sv3rfoB3eKwmaEEKcBe6OAG+sKQNg0bRM0hNtfOGSUZTXt6MCqKCioqqgHnxBURRm5qeQnxvXj5GLvuYJdPBJ7QbW1W2iPdgBdFfZcxpjAZiYOP6YxyqK0pOA5TlyWF2zniXlHwFwac6CPknOjmZC4ljK2yt5r/xD1tZuREVlacVHXDv8cgBa/W4+qFjBhvqtRNUoo50juGnE1T0PR3kHE7QyT+UxE1CALY07ePPA+zgMMWg1WlbXrufCjJnn7Ny1UCSEPxLoVaXOQzY3bCeqRrl2xBWHVf8UYjBRo1GaX3+V9o3riXg8vTrGMjafmPNn0bZ6Jd6tm2kfm4/GbCbS0Y7jogWDKlmTBE0IIc6w0joPf3m9CI8vyPwp6aQndj9szZuczrzJ6f0cnThTvEEfKmrPw3VVew0fV69le9NOImoEs87MeSlTCUSCFLiKqPXWE29yktHLkuh5jmwAImqE3Jhsch1ZZ+xeJiSM5e3SpXxSuwEAm97Kx9WfMCZuJIXNJayr3URYjZBkSeDy3IuZkjThsKqPwxy5wKGqk8dO0LY2FgDwrclfoc7XwDPF/+GtA0u4Z9wdh1WVPFf8Z8+rFLiKuSf/diYcfN9C0TAv73mDQCTA4tyFh5XQV1WVLQ070Gv0TD5GdU8hBoOWd97CvWwpWrsd+8xZ6J1xqNEoajiMGgp1f4VDREMhABwXXIh1/EQURcE0YgSVv/gZjf96FgBFp8N+3sxBNeRREjQhhDiDWtv9PPbKTroCEW5dMIKF0zL6OyRxFvhCnTy0+Q94Qz4mJuTjCXZQ5qkAINmSxEWZs5mRMhWj1kAkGuHvhc+xq3UvExPH9fpTXqcxllijg7aAh/lZF5zBu+mOOcmcQFNXM7NSpzMhMZ+/Fz7H4wVPAxBviuOy3IVHlOc/JMeRhUbRUNpWccxrBCMh9rkPkGpNJsWaRLIlkdyYLHY2l/Cjtb9kWGwuNr0Vs86ERWfGdPB7TkwmydakM3Xr/SYUDVPYvItwNMzTxf/muuFXMC15Ei/ueZ3C5hIAClzFTE2eyOW5F5NkSaCivZqmrmamJU/CpDP18x0IcXKigQCh5mb85aW0vvcO+oREsv7v52htve9BBjAkJpFy95doff89rOMnEDNr9qBKzkASNCGEOGPCkSh/e7sYnz/MnZeM4iLpLTtnvF26hPZgBzEGOztcRQCMjR/FRRlzGB034rDeJa1Gyz3jbmdd3WZmpEzp9TUUReHC9JndpfYTjt0r1RcURWFB1oVsatjGNcMvx6q3cH7KNA54ylmUNZeZqdOP28Nl1BrIsKVR1VFDMBLCcJShmPvcBwhFw4yLH9NzzXvG3cGHlSspat5NUfOuo57bprfy4OyfoNd8+khT663HojMP6vlXpW3lBCNBRjtHUNVRw2v73+G1/e8AMNI5nIsyZvN++XK2NhawvamQWanT8UcCACf1cyTE6VCjURRN79dIPNqC9ZGuLto++hD3hx8Q7eoCQDEYSPvGN086OTvEPm0G9mkzTunYgUASNCGE6EOqqlLX7KO4vJVt+1yU1rYzY0wS8yZJqetzxYG2ctbVbSbNmsKPpn+bWl89Jq2JJEvCMY8x6Uy9LmH/WZfkzD+dUE/KnPTzmZN+fs/f7xx700kdPyw2h6qOGqo6ahgem3vE9pKWvQDkx4/qec1piuXmUddy08hr8IU66Qx30RXuoivspyvsZ2vjDgpcxRQ372ZyUvfcvdU163l139sAjEsYzcjYYTiMMTiMDmKNMTgMMWdsrl5f2nXw/ViQdSHJlkQ2N+xgV+te7AYbXxx7C0atgXEJYyhwFfNe2TLW1m0CuhPW0c4R/Rm6GESi/i5Cra1E/QHa6jV4G91EA36i/gBqwE80EMA6fiKmnJzDjlMjEdzLltLy3jvYJk8h8Zbb0Nljjn2dQIDGfz9H1/59pH39m5iyc4gGArStWE7rsqVEfT60NjuOC+ehMZuxTZmKMfPMDdse6CRBE0KI09TRGWR3pZvi8lZKyltxdwR6to3KjOWLl44eVJOTxak70FbOP4tfQEHhttHXo9VoybLLsFboLmqysnotpW3lRyRoqqpS0rIbs85EniPniGMVRcFmsGIzHD5MKcmSQIGrmI31W5icNJ73ypaxtGIFdr2NOJPzYM/b7iPOZ9fbuDv/NkbFDe/Te+xLJS170Gv0jIjNQ6/Vszh3AYtzFxy2j0bRMCVpAhMT8tnUsJ2V1Z8wM3XaOTlfT5ycjq2baX7rDUKNjYcqUx1T69L3yfjO9zGP6E78A9XVNP7nefylB0CrpWPTRnwlxSTdfBv282ce9v+dqqr4y8to+vfzBKqrAKh59LfEXrQAzyeriXR0oLFYib/2epwLFqIxmY8aw7lGEjQhhDhFtc0+nn63hKpGb89rNrOe88Ymk58TR35uHE678ThnEEPJhrotvLj3dQCuG3EFuQeLeIhuww4mXqUH5+J9Vp2vgRa/m8lJE04quUi3pZJlT6ekZS9LypeztGIFCeZ47p94L4mWeOq8DTR1NdMW8OAJtOMJtOMOeNjnPsDq2vUDNkFr6WqlobOJcfFjetXbp9VomZU2nVlp089CdGeHGg7TtX8fvsKd+EqK0CenkHbf/Sc1nE4cXai1lYZnn4FoFPOIkRhSU9GYzNjiYugKg8ZkQmM0ojGaCLe30/Tiv6n98x9wXnwpIVcT7Rs3QDSKfcZ5JN56Ox0bN9D85us0PPMU7Zs2knznF9DHJ9C+aQPNb7xGuKUFAMeF8zCPGEnDc8/QuuQ9NGYzcVdejXPRJWgtst7hZ0mCJoQQp+i1lQeoavQyJtvJmGwn+blxZKfY0Uhv2TlpRfUatIqG+yd9+ahD+M51DmMMCeZ4yjyVRNUoGkVDS1crK6rXsL5uC8ApzaU7P3U6VR1v8X75cmx6K9+c9GUSzN1LU6TZUkizpRxxzK82Psqulj34w/6eYhoFrmJe3/8u3578FRLM8adxp6cnqkbZ3LAdOHy457kg0unDu20rvqJCOneVEPX7e7YF6+rwrF5J7EULUA/2+MjIhFPT/OrLqIEAyV+8G8cFc3teT0y043J1HLG/xmSk4R9P0fL2mwDok5NJuvV2rOMmAOBcdAm2SVNo/PdzdBYXUvGzn2AZMxZfwQ4UgwH7+TOJOX9mz/662Fj85WU4Lpx3ynPMhjpJ0IQQ4hQ0tHays7SFYekxfP/Wyf0djhgA3H4PieYESc6OY5gjh00N29jeVEhx8262Ne0kqkaJMzlZmDWXacmTTvqc05In8caB94iqUe4dd0dPcnY8k5MmsLTiI4qbdzMtZTJRNcq7pR/Q6nezsX4bV+RdfAp3d+qiapRyTxXbmnayo6mQ9mAHOkVL/sGCKeeCzj27aXjmKcJuNwD6xCRiZl+AdcJEDMnJVP7y5zS//ipqKIx7+QcYs3NI+9o3UHRn51E2GgyiaLUo2sN7eFVVJdrZScTrRZ+YeMZ6+NRwmKjfTzTgRw0G0SennNK1fMWFdGzZjCk3j5jZvav+GnPeTIzpGYTb2tDa7BgzMo543/WJiaR/53u0r1+H678v4SvYgSE9g7T77seQcviHJJYxY7GMGXvSsZ9LJEETQohTsHxrNQAXTz93JzGLT3WF/fgj/kFdNfBsOJSgPVvyIgBp1hQWZc9jatLEU543ZdVb+PK4O9EqWkY4h/XqmCkHE7TtriKmpUxmd+s+GjqbANjhKjpugtYV7iIUDRNjsJ9SvJ/VGerig4oVbGvaSVugezFeq87C7LQZzEqbQbzZedrXGOjUaJTW99+l5Z23QFGIu/xKYmbOPuKhPvHGm2l8/llcr7wEQNjtpvGFf5H8hbsPn/MUiRBsqMdfUUG4tQX7eTMxJJ3aMgxqNIrrlZfo2LqFSFsbitGIOW8YitFIpN1DuM1DpN2DGg4D3UP4kr9w16fHqyrh1lZCriYi3g60Njs6hwNtrBONyYSiKKiqSsjlwrdzBx1btxBsqEdRNKAooNF0r/Xl90Mkclhsxpxc0r/5P+gcDgBCbje+nTtAVVH0BhSDHo3BiKI/+N2gx1dUSMu7b4OikHTbHSeV4BkzMjFmZB53H0VRcMyeg3XceDpLirFNnYbGKMP8T4UkaEIIcZK8XSHWFdUTH2NkyshjV+YT5w63vw0Ap9HRv4EMcGPjR2HVW0ixJHNx9jzy4/umgM64hJPraUq1JpNiSTo4zDHAx1Wf9Lxe72uk3tdIqjX5iOPc/jZ+v+0JvCEfd4y58ZR6/D7rxb2vs6OpELPOxPkp05iSPJHRzuHnRJEPNRIh1NRI8xuv492xDV1cPKlfvQ/zsKPPC4yZcyH+qkqIRHBefCn1T/2d9k/WEHa7MQ8bTqSjHX9lJYHqKtRgsOc497KlJN15FzHnnX/U8x5P65L3aPtoOVp7DJYxYwl7PHTuPrjcg1aLzuHAkJGJLjaWYH0dnjWrMI8YgXnkaDyfrKJj6xZCDQ1HPbdiMKBzxKKGw4TdrQdfVDCkpIICRFVUNYqitaJJNqIxmruTOpORSHs7nSXFVP/mQawTJhBsbKRzV8kJi30AaGNjSfnSlzHl5p30+6GqKsXbaomNt5CZe+yeap3DQcys2Sd9fvEpSdCEEOIkvfVJGcFQlAVzMtHKhHUBuA/2fkgP2vE5TbE8csEv+jsMFEXpGeb4y42/wxNsZ6RzODNTp/H8rpcpaCoiNffwBM0b9PGXnc/gDrShU7Q8W/Iie1r3MzttBjkxWcdNNEPRMFsatjMuYUxPz1tx8252NBWS58jmW5O/etg6bkOdt2AH9U/9rSeRMo8aTerXvn7cMu2KopB8+xd6/p7+rf+h5o+/p7O4iM7i7rUG0WgwpKVjys7BlN1dpMf1+ms0PP131FAIx5xPh/RFAwHC7R70CYlHbTtvYQEtb7+JLi6erJ/+vCe2iM8HqorGaj3suGBTE1W/+jmNzz+LGo1CNIpiMGCdNBljegZaewwRbwdhTxuRtjbCHg9hTxuoKrap07CMGYttyjR0Mcd+Dw5RVZXWd9+m5Z23aPt4BQDG7Bwcs+egtccQDQZQg6Hu76EQajBINBhEYzLiXHjJKc/7qqlws/ajAwAMG53InEUjsFgNp3QucXznzm8DIYTg4HwBVT3lxKqwtIWPt9eSnmBl/hRZeFp0a+vpQYvt1zhE712QPpPGzib2uUtRULgk+yKyYzLQKVq2Ne0kw55GrbeBOm89td56mrqaiapR5mdewOy0GTxV9G821G9hQ/0Wsu2ZfDH/FpItiUe91ntly/ioajV5jmy+M+U+QtEw/933FhpFw62jrj+nkjOAtpUrUINB7DNnYR42HMecC096Lpku1kn2L35F2O0mUF2F1h6DMTMDjf7whMEyNp+qh36J678vYhmbj8Zkom3FctpWfETE24EpLw/nxZdimzy1Z35ZyO2m4ZmnUXQ60r7xzcMSR6318KUeDjEkJZF8973U//2vGNLScS66BPu06WdkiJ+iKMRfdQ326TOIhkLoHLE9Qx3PpL1F3b2BzgQLpXtcuBo6uOrWSdgdpjN+7XPNufUbQQhxTmvx+Hn8jUJ8XWG+dcMEMpNO7lNEb1eIZ5fsRqtR+PKVYzHoh/4wJNE7rYE2AJwmGeI4WDiMdu4Zd0f3Ok2RAOaD1RxHx42kuGU3fy98rmdfk9ZITkwW+fGjuDj7IjSKhp/M+A573PtZV7eZna5iHt78GHPSzyfdlto9hNKajFFroMxTwYqqNQCUeSp5v3w5+92ltPrdXJx90VGrTA5lEZ+Pzj27MWbnkHrPV07rXIqioI+LQx937OF2hpRUEm68maZ/PUfdX/5E2N16cO0tC5YxY+ncs5v6vz+BLiEB58KLiZl9AY3P/oOoz0fSHV/AlJ3T63jsU6ZieexxNGbLWakwaUhNO+PXOCTgD1G2r5nYODM33zOdzZ+Us319FW+9sIOrbp2Iwyll8vuSJGhCiHNCeX07f36tEI+ve0jNb/6zjW9cN578nBNXfDtk294mPL4g18zJJSv59AsEiKHj0By0WOlBG3QURelJzgAuz1uETW8l0RJPui2VNGsqcabYIx64tRot+fGjyY8fzdbGAl7e+wYfV39y2D7xJieBSPfvnK+M/wIv7XmDDyq6h6RNTZrI5bmLzvDdDTzegh0QiWCfOu2sXdNxwVy8W7bQubsExWAg/prrcC5chMZkJtjQgHv5MtrXr8X18osHK0WGsE6YiGPuRSd9La3l6D1sA1VjXTtle11otAoxMWYCgRBanab7S6tBp9OQmGKnpsJNJBxl1PgUFEXhvAvzMBh0bFxVxpJXi7juC1MxmiSt6CvyTgohBrx2X5D4+BNPfj6WbXtdPP1uCaFwlFsXjMBhM/CP93bz9Lu7+MP9s3u9btmBmu55RlNGHX0Ykzh39cxBkyIhg16WPYM7x950UsdMS55Efvxoar311PsaqPc1HSw20oA35OPi7IuYmDgOjaLhmeL/cEH6TK4dfjka5dybw+rdvhUA25Szl6ApikLKl79K+/q12M+bid75aXVMQ0oKyXd+kYRrrqNt1cfdc7qsVpK/eHeve8FUVaW50UtcohWtdvC0aXtbF+++vJNQMHLc/RQF9AYdigIjx33a4zv5/Cy6fEF2bqlhxbu7uPT68Wg0Z3dtukgkSm2lG0VR0Go1eNxdBINhxk1JH1Rt8XmSoAkhBrTmti5+/NRGJo5I5CtXjDmpYYWqqvLB5ipeW1mKQa/lm9dPYNKI7qqLxeWtrC2sp7Khg9zUE0/KBjhQ68Fs1JGWMLg+IRVnXpu/DZveil6r7+9QRD8x60wMj809Yh28QCSIQdP9czE+YSyPXvhLdL2cc9ZWt4IO1xY0OgtGSzrOzMvQ6sx9HvvZEunqorOkGEN6xhFl9M80XUwMcZdedsztWrud+CuvJm7x5ajRKBpD74pfuFs6+eTDfdRWtjFxegazFhy9CuVAE41G+ejd3YSCEWbNH0Ziqh2b1URri5dIJEokHCUciRIKRNhX0khzo5fsYXHY7IfPqTv/ojxam31Ulray+ZNyzp977OqQ4VCEjvYAzvi+GQ7ZWNfOqqV7aXX5jtim02nInzx454lLgiaEGNCKylqIRFW2723i8UCIb14/oVdJWjgS5T8f7mPNzjqcdiPfun4C2SmfDkuckBfP2sJ6CktbepWgtfuCNLq7GJcX1+seN3FuUFUVd6CNlKOUZRfCqD38Qb+3yVkk3ElH0yZQNKjREJ1tJQS76knMvRm9eWD14qvhMK1L3sOYnYNt4iRUVaVr7x6C9fWEWlsIt7QQamkm1OxCDYexT5ve3yEfk6LT0Zvf8OFwhO0bqtixsYpoREVRYE9RA+fNzUOrG/g9N9vWV9FY287wMYlMmJ6BoigkJtqJcR1Z8GPC9AxamrxHLQai0WhYdPVYXn9+Ozs2VBGfaGXE2CN/F0YiUd5+sQBXQwfX3DGZlPRTH20QCobZtKacoq21AIwan4Ij1kQoHMVqM7DuowPs2lHP2ElpZ2Uu4JkgCZoQYkDbVekGYGxuHCXlrfz59UK+ef0EjCdI0l5Y3p2cZSXb+PYNE3F+7lO/sTlONIpCUVkLV8/JPcZZPlVa2z2EbcRp/KcihiZfqJNQNCwVHPuBqqqD9gEMoHPPbjq2bUWj16OxWtFarGisFrQWK12RvahqGEN7JvHjr8bXtYP2xnXU7/k75pgRWJzjMFjT0Bmcx3wPVFXtLrHe1UXU30U0EEDR6Q8uYmxAMRi7v2tPr+CR69X/0rZiOdC9XlmwrgZ/WdnhO2k06JxOLGPziZlz4Wldr79Vl7fyyYf78bi7sNoNzFk4goYaDzu31FBxoJlho09tYeyzpaHGw7Z1FdhijFx4ycgT/htSFIWE48y7Npr0XHr9ON7413ZWLdlLbJyFxJTD99/ySTlN9R0ArF2+n+u+MPWUhkNWlrawZtk+vO0BHHFm5l06irSs2MP2qa1so3xfM66GDpJ6OUJmoJEETQgxYEWjKnsq3cTHGHnwa7P51T82sGN/M39+rZBv3XB4kubxBdlb5WbKyETK6tpZXVBHRqKNH90+BZPhyF91FpOe4ekx7K/x0NEZxG45/nCW/QcTtOGSoInPcUsFxxOKhHz43EWYHSPRG49emEeNRECjOe7DoqqqhJoa6dy9q/tr7x4URYNt6jQMaWlEfT5QFLQWC8bMbEzDhqGcgbUKI50+gvX16GIc6BN715sVdDWhj4tH0WoJNjbQ+PyzdO3be/SdFTDemQkmLe0vf0L7fz7BkJxCxO5DO9FOF/voat/XvW8I8IDaGkVtDaPWBVH9YaIBP9Gurl4tXqyxWImddxGxCy/u1Tpcn+VZ9wltK5Z3VxRUFNrXdlestE2dhm3SFHTx8ejjE9DFxp52Itgfag9+SJie7SQajbJqyV72FjeiKN09S9Pn5GAw6nDEmdm5pYY9RQ1HTdAC/hBGU/8PgQ4Gwnz07m5UFRZcMabPYopLsLLwyjEsfb2YD94o5vovTu1ZI62mws2OjdXExJpISLZRtreZPYXdPVy9FQ5FWP3BPvaVNKLRKEyZlcXUWdnodEf+TI2dlEb5vmaKttWSnNaBu7mTWQuGDao5aZKgCSEGrKqmDnz+MJNHJKLXabjvmnH87a1iduxv5k+v7uTbN0zEoNewvriBl1fsx+cPk5tqJxCKAvCFS0cdNTk7ZPywePbVeCgpb+X8/OPPhzhQ60GjKOSmDc5P48SZ45Y10I5JVVU89atpb1qPGg0R8FZhbEgnUFNN2NNGuK2te+Fej6c7mdBq0TkcxMycjXnESNwfLcdfXoopJxdtTAxde/cQbm3tOb8uLg41FMKz6mMAghojXYYYFDWCNejBYLVgzM5Gn5CAPiHx4FcC+sSkXi3Wq6oq4ZZmAtVV+KuqCFRVEqiu+jQGRSHm/FmYR40i5HKh6HToExPRJyahT0pCa7OjhkK4Xn4Bz5rVGLNzcC68mKb/vkjU68U6fgLOSxajGIxEO31EfD4inV4CajVBezUGNRPHzXPxrF5FyNWEXpeAul4lEKpDk2pEk2RESTKiSdCjJGhQMKB26ojuCKBrtqIxmdCYzGjNJjRmM4rBiBoJowa6Fy5WDy5kHKipoXXJe7QueQ+dMw7TsGEk3/HF475HqqrStnIFrv++hMZiIe3+b6OLjcWzehWmvDzMw0ec3g/PABAKhlnyWhGRcJRFV+dTU9HK3uJGElNszL101GG9RPGJNhJT7FSXtbL87V3UVLhZcOVosvLiKdpWw9rlB8gZHs+MC3OJP8klXk73HtwtnbS1dNJQ10753mY6fUGmzMw6oufpdOWMSGDGhblsXlPOsjdLuOrWiWi1Ggo2VQGw8Kqx2OxGqspa2bS6jIwcJzGxJ55TGQ5H+OCNYqrL3SSl2pm3eNRR38NQlwtPwxq0nVUkJU9gX3Ej+4obMZl1nDc3VxI0IYToC7sruj+5HJPTXXFLp+1O0p58u4Rt+1w8/MJ2uoJhmtxdGPVaxuXGUVze/eA0d1LaCXu7xufF8/rqMgrLWo6boIXCUSrqO8hMsh034RPnJqngeGyu6vV4Glaj0dlQFC1d7v24/7nksH20Nju6uHi0djtqMECwoZHW99/t2a5zOuksKQZAY7NhmzoNy5ixWMaMRZ+UDNEoXfv20lzfzprtAULh7h6jNJOP8bUreo49jKIQf/W1xF9xFQARr5fmt9/AV7ADQ1o6+qRkgvV1BKqqiHYeXoBA64jFkj8OQ2oanbt30b5hHe0b1h31/jUmE4reQKSjHW1sLIHKChqeeQr0WpxfWkzcjCvR6roLJoT8LnytRXS6dxEJtgEKcWMux2BOIvZz5d7VcJhoKNQ9X0qnQ434CXbW09VRRodrE9rZGvSmREwxw4mEvIS6GlAMJgyWVBQUotEQ6me+zMpYlHIdvm07CTU24N26hVBjI4k330rbyhUEqqp6rqXodTSYTQR8XQQqytHa7aR9/ZsYkrvnHTkvvqR3PxyDQNm+ZsIHP/D78K0SABKSbFx16yQMxiP/Lxg9IYVPPuzgwO4mANZ/XEpKuoOt6yoBqDjQQsWBFoaPSWL6BTnExvXd2mGqqtJY205zkxd3cydtrZ24WzrxdQQO289k1jF+WjrT5uT02bU/a8rMLFqavJTucbG3qIG8UYnUVraRkGwj+eAHnLPmD2fNsn28999Crr1zMubjjGCJRlU+fLOE6vJWRufDjAsc6A1ewsEIGp0FjUZPJNxJW93H+Fq29xw3cZKHlR8nMHZiGpNnZh21vQaywRWtEOKc0jP/LPvTksg6rYavXp3Pk++UsG2vC4NOw6xxKVwzJ5eEWDPriuopqWjlhnnDTnj+zCQbCQ4Tm3c1sWBKBsM+k9CpqkqNy8fWPU1s3dtEOBJleIY8gIsj9fSgmZzH3/EMioaCRNo8KEYjGrMJjb53FejOpGBXE4373kOjNZMy+su07n8Hf6QUbXYcabfchy4uDp3DgaI7/FEkGgjQvmEdgapK7OfPwjJyFGGPh4jXiyE19cghi1otZA1n9cpthMIq+ZPTqC5vpd4DC3/2G8x6tbtAhctFqLm7UIV3+zZa3noDNRQCVaVt9UqiPh8as7k7oTuY1OmTk7GMzceUlYUxKwtjZjY6x2d+T0Sj+HbuINzRgSEpGTUcJuRqItTURLDZRaipibCnjdj5C0i48WY6d++ibflyDAvS6VL3UldSgTV+IgFvFaGuBgAUjR6Lczy2hKkYzEefy6TodGg/874pOjOmmDxMMXnY4ifTVreCrvb9hJo29Jwz5Hfhb99/zPYyZmSTMfd7RCMhXK++QPvHn1Dz6G+732K7HVRQwyHUcBh/OAyAecRIUr78teMuFD2Y7StuBGDe4lGsXb4fo1nH4hvHH/Nhf8yEVELBCIkpdvaXNLKnqIElrxbh7wwxdVY2KRkxbFpdzoHdTZTuaWLU+BTGTEylyxfEZDGQepL/x7S4vNjsRgxGHRs+LmXnlprDtlvtRjJynMTGWXAmWIhLtJKSHoPmDAz7PURRFGYvGE75vmaKt9WiKArRqMqw0Z8OBc6fnEZHu58dG6pY8moRV906Ef0xPvzcvbOeprpaLphTSYy1iZbyz1+v+zhVDaM3JeJInUdL1buYNZXc+91rUAbpUhaSoAkhBqRQOMr+6jbSE6w4bIcX+NBpNXzt6nz2VLaRmxqD5TOLY84en8rs8am9uoaiKHzpsjH87qUdPPlOCT+4dTJub4DC0ha27mmi0d0FgF6nYfKIBBZNz+y7GxSDUlNnM55AOx0hL96gl46gl+KW3UD/zUFTw2GqH/41gcqKntcUvR6NxYrWaun+brF0F6GwWjFmZGEZPRpVVYm0t2NIS0drPvYwI39FBb7iQhxz56Gz926Ib7CzgeaKN1CjYeJzr0cJaelcvwfNVD2Oqy7APOLYw980RiOx8+Yf9prO4TgsMTrs/lWV5W/vwtseYPoFOUybnUPJjlrWLNvP3uIGpszMxpiegTE9o+cY58JFVD/ym56eOo3FQsKNN+NcsIhIVyfh5mYMqaloTMcffqVoNNgmT+3VewJgmzAJ0+gc6nb9FY3OCmoUr2szoMEUMwJr3HjMjlFoNKc+L0hviicx7yaikSABXzU6gwOdMZ5o2EewqxFF0aBo9D1fGo2e1uqldHn20Lj/WUL+ZshXibVeQvBANc5LLsWSP/6wuYEJCTaa6t1o9P0/p+pM8XYEqKlwk5Iew5iJqWTmOtEbtMeds6XVaZh8fhYAMbEm9pU0Ul/jwWDUMnFGBkaTnszcOMr2NrPlk3L2FDawp/BgYq7AzfdOxxnfu2Vc6qvbeOuFAvQGLSnpMVSXu4mNtzB1Zhax8RZi4yz91mtktRvJHZlA6R4XW9dVABwxL++8C3Pp9AbZW9TAsjdLWHzD+COGIPq7QhRuKuGCmTvQ68OY7LkYbdlEwp1Ew51Ew11Ew52oahhr/GTsidO7e+rbD+Br2UHAW4XJnnOW7rpvSYImhBiQyuo8BMNRxmQfvVdCq9GQn3v6n9qOznZyxawc3l1fwQ/+vqHndYNew7TRSUwblciEYfEytFGwtPwj3iv/8KjbHIYYHIb+mZ/oXr6MQGUFptw8dHFxRP1+Ij4fUZ+PsMdDtL7+uIUiFJ0O86jRGFJT0cU40B5MhnSOWDr37sX16ssQieBethTHvPloLd2JnnnUKHQJ8UTCHUSCHsLBdiLBNkKBFjrdJYBKcvZcdIYMav/4KKHmeoxTs1DtwT69/8a6duqq2sjMdTJ1VjYAw8cks25FKXsKG5h8ftYRhUf0CYlkfP9HtL7/HpbRo7FNmdaz7pXOHtPrRPRUtNWtAjWCM30R5pgRBHzVGKwZPUMd+4pGa8Ac8+lIAq3ehll/9LlP8TnX0rT/eYKddSgaA2o0hPG8DJKuvvWo+yuKMmiTs67OII217QQDYcLhKBqtBq22e5FjzaHvGoXKAy3Apwsz22KOLDF/PDGxZsZMSqVkex3jp2b0JHaKojBsdCK5IxM4sKuRxrp2VKBkex3b1lWy8KqxvTr/5k8qANBqFarL3TgTLFx166Sewhz9KRruIn88lO5R8bYHSEi24XAe/mGHoijMvXQkXZ1BqkpbWbVkL/OvGN3zb9Xb7mfjqlJGj9iFXh8mNv0S7IkzelW11erMx9eyg053MYpGR6irCWv85EFV8VWeOIQQA1LJ5+afnUlXzcmhzRvA4wuSEmdhRIaDcXnxJyzlP9CpqsqK6jX4w36uyBs680L6g6uzhQ8qVuAwxDAzdRo2gw27wYZd3/093hyHVtP98xJubydYV4saCmHMzEQXe+Z+hoONjbS88xZaewzp3/7uUYs6qNEoUb+/uwhFRwddpQfo2r8PjcGIxmqla+9uOkuKjz5Xi+7hbY4L5tK2aiXupe+jOPVoJzrQhJajOPVHfejRGZw4MxcTE7Kw73cPE6iuJmbWbCKGTgLeyj4tj39oLaTPJmJGk45hoxK7ezCqPUcthmBITCLlri/1SQy9FexsoNNdiN6cgsXZ3Stldow8qzEcjUajJ2n4nQS7GjGYEqkteQxfSwExyXMG1UPt8Xg7Aqz+YC/VZa29KWwJgEarMHzMqa85d/7cPOLirYyecOQcZ41GYeS4FEaOS+meP1bTzv5dTUyZlU1cghVfR4Atayvwd4ZITo8hJT2GxBQ7Or2W2ko3dVVtZOXFcfG1+VSVtpCe7cRk7r+kWVVVAt5yvC0FdLbtBjXChPHDKSxKO2x442dptRouvjqfd14uYF9JIxabgVHjUli5ZA9N9R3kZNUSn+nBFDOq18kZgNGWg0Znw9tagLdlOygaLLFjUXQnl2T3J0nQhBAD0u7KVhQFRmWe+QRNq9Fw92Vjzvh1+kJXuIv1dVtIsiSQE5OF3XD0T8TD0TAv7HmNzQ3dk6bnZczBZujd0JnBoNxTyQ5XEZfnXnzEQsDH0z1nqIC2j1cQDQV7hs5pHbHoHLEoBj3e7dvpLClCF5+AISWViKeNRk89aflaFi68manJk4567ojXS+vS92j7eEX33CZAYzaT9o1vYRl97J+vQF0t+ri4Ew6n+7xgfR11f/sLaihE0t33HrPinqLRoLVY0Fos6BMSMeXm4Vx48WH7hD0ewm3unoqK4YNfigLOxVegdzpxXnwpXWV7aYusIIofIhBtCBBtC6J6w2g0FsyZo7CNmYrqCdP67DtUFxUC4Jg7j6Tbv0Br9bv4WncS6mrEYDl+5dTe8HYEKNvrIi7RekQSNnpCCvtKGlnyWhFZeXHkjkwge1h8vxYLaKv7CIDYtAUDLvHRaI2YbN3D8yyxY/G17iTgrcBoywE4Ybz9uSadryOAClhthmPGsOWTcqpKW0lItpE3MgGz1YBWpyEaUYlGo0QiKpFIlOhnvien2U+rDL3BqGPc1PQT7qcoCtMuyOGD14v5+L09JCTbKN3TRDAQAaB8fzPQndQlpNgIdHXPAZw2Jwe9Xtuv666Fgx58rTvxthQcLG4DOmM8ajRIRtoBOnzOniS0y7OPkL8Jq3M8uoNVb/UGLZfdMJ63/rODgk3VFG6pIRpVGT5Ky8jsChSNmfisy0/qZ0tRNFjjxtPRtAGDJQ1nxiVoBlFyBpKgCSHOgKgaxRNox2GMQXMKE3S7AmHK6zrI+9z8MgEv732TrY0FPX9PMMeTG5NFjiOLdGsKiqKhpqOONbXraex0odfoCEXDlLdXMj6hd0NnBjpPoJ2/Fz6HN+RDg4Zrhl/Wq+O6ykpp+vfzBKq7Sz6jKMcc+qeLiyfY2ECwphpVARtwzSqIj6kkNDsTfVz8YfuH29upfvghQk2N6OLiiDl/Fmo0inv5Mmof+z0J191AzKw5RyRRHZs3Uf/U31AMBqwTJnYniRoNhvR0jOkZqNFo90LDgQDRQAA1GCDi8xFyuWjfuB41ECB24cXYps842bfx8Ps9zhyvQ7Q2G8E4F1GXH3vSLGLT5qOGwviKdtKxeRO+HTsJbqzFw8c9x8SMHYPjymsxj+juJTLacvC17qS9aQNxmYvRaHv30BSNRnG3dBIKRgiHIoSCUUKhCJWlLUSjKuOnpR/xAJeWFcv58/LYVVBH6R4XpXtcaDQK6TlOho1KZPSElLOaUHS1l+LvKMNkzzts6OFAZI2fjK91J+7a5d3zfCJdWGLHYI0b35OwfVbI30zTgX9jS5iKI+XsLUIdDkXY/EkFOzdXA6DTa3DEmolxmomNM+NMsDJ8TBLRiErpHhe2GCM33DV1wCXHADnD40lOi6Gxrh1XQwcGo465l44kKy+Oxrp26ms83VUaG7xEo2rP/idLVaOEupqIhDpQ1QhanRVFoyMa8eOOgtfddrDN/Qe/Alhix2CJHX3EuQLeKhoP/BvUCIpGjzVuItb4yRitmQQ762jc/yzjRhfhb+7EW+8h6OsuYuKpX4XZMRJTzHBM9lxMZidX3DyRN/+znUhYZd6luRgjbxIORIjPvhLtMYbmHk9s6nwssWMxWNIGZHufiDz5CCH63NKKFSwpX45Nb2Vi4jhuGnk1Ok3vf93srW4jqqpnZXjjYFLSsoetjQVk2dMZnzCWck8V5e1VbGncwZbGHYftq1O0zEqdwbiEMTxV9DxlnsGdoIWjYfa6S3EaHby+/128IR8GjZ4V1WuYnjKZdNuxC8OE3G7q33kd/9p1oKrYzzufuMuv7O4d62g/2HvURsTTRsTnwzxyNIacbB7d8jjupmqCFgOpHrh6nY/Wt9+k9e030TmdmPKGYR42HGNOLq5XXibU1EjsoktIuO76niqK1vxx1D3xOK5XXsb1+qtYx08gZuYsrBMmEfF6afzP8ygGAzqnE+/WLT0xqyh4TInE+F1oOHoSqTGbSfna17FPO73krLcCvhq8rs3ojPHEps7rLjZhMGCfOh371OlE/V14dxbg3b4NjdlC7Nx5ZM6YiMvV0XMOs2MkOoOTTncR/o5SHClzsSVMQVGOPZy4qb6dj9/fg7u586jbTWY9I8YmH/aaqkaA7oINk87LpNXlo3xfM+X7mqkua6W6rJVgMMzEs1T4R1VV2upWAN29ZwOd0ZqJzhjfXZ5fo0ejNeNr3YmvdSdavZ2gezKKaTR6czLRSBeu0peIhDrwtRaetQQt4A/x1gsFtLp8BxdAttPu7qLN3UmL69OlEeoq20jNiiUUjDBxesaAfVhXFIUrb5lIe1sXiqJgizGiN2hQo0FyR8SQO6L7A5RQKIK7uRNnwskXJYqEvLjKX+lJlD6v6RjHdbqLSci7CYMpCU/DGkwxw7E4RtFS9V73fMqMxVjjJqDRflrQy2hNJy7zctzVS+ls616iwOwYjTlmGB3/n73/jo/rPO/87885Z3of9F5JEGDvFCmqW92yVSzbiu24pGzi2LvZkifJ5vnlt95ni7O72axTnLKxHTuOuyVZVrG6RLH3TgIE0fsAmN5nznn+GBAUBJAAq0jper9eeJGcOW1mAHC+c9/3dY3vJxluJxkuNGrXzF5s7kYefbIOA0iFXyGdmMBdtnnOYLgQiqphdc4/enmjkoAmhLiqUrk0b/Zvx6ZZ0RSNHUN7WOxrYkPFmgUfY7r/Wf0Hs3Tz5Qilw/zw9NOoispn2z45HUh0QyeQGKc70sdYYhwFcFlcrC9fjdviIplLoaBwNtRz1a/p4NhRnu18AbNmocJRyheWPoVZuzZrIH5+5pdsGzxfxGVZcSt31NzKN498i28d/xcW+xoLgcEAaziBu38CUyCIEgpT0hPElDcIeUzEPnYnm7c+gdVUmE5ompraSF39jPNtG9hFX3yIDU0b+MKyTwOQuzdCZMd2kmc7SZ3tJHZgP7ED+6f38Wy9jdJPfnrGG0BH21Ia/st/J7J7F5FdO4kfPkT88CFUhwPN7UZPJCj73Ofx3n4n2dFRjGyhgfCBXX0cG1Cpdqa4pS6FyWYtrBmzWlHt9kKz5bJyVOvMCqfXgmHoRAN7CQ8VRsaKah9CmeMDF9Vmx7NpM55Nmy94LM1kp6Ltd4iO7SEyup3gwEtEA/vwV38Em2fxrDfPp48O89ZL7RgGLGorxeWxYTZrmMwaZouKyaxRWmEn2PsDFNVKSeMT5LMxRju+g8VRRUnjkyiKQnGZi+IyF+u3NhAcj/Ojf9xHz5mJ6xbQYuP7yCZHcPhXYHEsrMrs+0lRFEoaniCdGMTpW4qi2UjH+0hMHiMROslo7zZgG6rJgaJo5LNRFNVCLj1JLh3EZL22H64ZhsHrz59mMhCndWUFWz+yGLNFm74vGc8QCibZ8Vonp4+N0DfVH3PJiiufVnstmS0axWUu9HyKaGA3Y4E96Ln4nNtORIpw+NoAhXw2isVRhd3XiqJo06Oeei6Bnk+RzyXR8wniE0fIZyPYPIuxOmtQFBP5XBzDyKFqNjxeH4mkgmqyoWo2VM2OnosT6PoREz1PA2DoWeKTR4g6a8ilx3GVbMBdumHOa3QVr8FZtIp8NgqGPv194SxeSy49SSraTSrWTTraQ3zyMHB4el+buxFf1d1zHvfDQAKaEOKq2j28n2QuyUON97KhfA1f2/0/2DG055IC2sneScwmlUXV709VvBtJOp/h52eeY/fwAfJGnvvr754xWqQqKuXOMsqdc69BsJtsVLkq6Iv2k9NzlzSSOZ+Xe95gMhXCqlkYiY9ybOIUa8tWXrXjn3M21MO2wV2U2UtYniuh6HAXDZE+lOQZHm/2scM1SORwD1VjWaoDWVxJfcb+MZeJgY3N7KpKE9GP8s6+Ib6y+jcptp//ACCv55lITTKWGGcsEeDFntexaTYeW/Tw9DYmt4eiBwrTKQ3DIDc+TrKrENYUs5mSxz4xd8EMr4+i+x+k6P4HSff3E9m9g8ie3WRHR3GuWIn39jtRFAVLReHNYzab58zzI0COwbiN/Zkq7nt4GSbT+VGmwd4gowfnrlB4tei5JIlwB5GxHeRS46gmB8U1j2JzN17RcVXVjLdiK67iNYRH3iI2fpBA14+wuhpwlazF5m5GM9mJRdNsf60Ti9XEfQ87sJnPYHVWY3XVY7aVTj/u4MDLpKKF5kjBwVfJxAfJZyMkwxEiI9vwVt4x4/z+Eicl5S5GBsJkM3mMXIDo+H58lXde1lSq+WRTAUKDr6FqdvzVH7nqx79WLI6KGesEba56bK56/DUPYFEGGe7ZRyY5Qi4dwuFbhtVVS3DgV6SiXbisC289cCkGeoJMjMUIBZP0dk5QXe/jjgeWoKrnfwYURcHhsuJwWbnnkTZ+9p39JGIZqut9eHyXts7zcuSzcaKB3SRCpymqffiSyryf2zca2I+hp1FUa+GDCwqPzzg3mm7kScf7iYyeb5AenzxCcOClec/hrbwbT/mtc/7eKC11zxjxPqe44XHGu36MotnwVd9JdGwvmfgAmtkzb4hSFBWTxfue2xTMtmLMtmLcpesxDINscoRUtAcUsLkaMNuv7xTkG40ENCE+pLYN7KI/OsiTLR/DcglFFqDw5vT05BkMDFwWJy6zE5fZhUnVeKP/HcyqidurN+O2uGjxNdMROstYIkCZY/5qWAfaAwwG4ixvLMJsurmrKF4pwzD4wemfsX/0MGX2Ej5Sdwebq+b+pPJimr0NDMaG6Y8O0eitm749r+fpCJ1lJD5GOB0hmA4RzybYUrVx3qDVHx1iIDbEqpJlPNx0H/9t71+wf+TQFQW0UDpMKB0mp+fRjTw5PU/eyPNM54toefi1vlKMN7ZDPk9W01A0jdqRYT79rmMoHjdqayNqUwPW+nr8ZbXYikpYq6rcl0vzQvcrvNH/Dn9+4JusK19VCGTJAOPJSXRjZrD7VMtjeK3uOa9VURTMpaWYS0svOmL0XtbaWkprP03JE58k1dODtWb2lKv2oyOkkjlWbaxhMhCn9+wkL/3sOA88vhyzRSOXy/P6L08Rj2VoXFyCv+TKi7/k0iEyiSEyyREyyVGyyVHy2cjUvSrOotX4qu5BM1/eubKZPC8/c5yWZeXTZcs1s5Oi2odxlWwgNPgaqWgn6VgP2ZxGNPtRRkY0spk8dz5QipF4joSeJREsFB1RNTtWVx0maxHRwB5M1hKAqZ5ihalUmcQw4ZG3UVQLzqLlaObzr2VtYxHjozGGenvRUs+g5+Koqhl/zdWtdqrnU4z3PIth5Ciue2zGNdysFNWEr3Q5WaUw6nyuOEg2XRilSka7cJVc/YCWzeR46WfHyOUKP6dOl4WPfGzpjHD2XkUlTjbf3cz2VztZvvbqTHczDANDz2LoGQw9iz71Zz4XJxE8RTJ0EsMoFPEIDvyKitbfXlCz5FS0i/Gep9FzCVSTs/AhRsm6C67T1PMZ0rHewhRUk4N0tJtktAtF0VBNdlTNjjb157l/m6w+TBbfJT9mh3cJFa2/g2ZyopmdOP3LCQ2/jato1YxpjZdLURQsjsqbYnT5epGAJsSHUDgd4ednniNn5Amlw/z2ys9jvoSRlRMTp/nbo9+Zdfu5ghS3Vm2ari64pWojHaGz7BzaN28xh5HJBN964SQWs8on7150aQ/qA2j70G72jx6m0VPH76/9ncse/Wr01rNtcBfd4R4aPLX0RPrZN3qIA6OHiWVnT585NdlBrOUxbq+5cPDYPVxYL3VL5XqqXZVUOSs4MXGaRDaBw7ywfk7pfAZjqkjHyYl2/vbod2aFpHN+rcOJcehtTP4iSp/6DM4VKzByeSI7t5MZHMDW2IS9ZQnmsvILfupqM1l5YvEjhXVsnc/zRv87ADjNDurdtZQ5SihzlFLmKKHKWUHFBUYlrwZFVbE3Nc26Xdd1Du/tRzOprN5Uh9Vq4pVfnKDnzATP/+QoDz+5gvbjI8RjhV5iw4PhywpomeQoJosfVbMQDewlOPCrGferJhc2dzMWRyWukrWX9abu3Xo6x+nvDjLUH6a0wj19zaHJBB0n4pw50YSR81JXM0xD/RCTfQfpPtNIZY0Tr3UbuVQWf+1DKIpGOtZLKtY3vX4FRaWk4TEU1cRI+7fQLB6K6x8lmx5nrOOfCA29SmjoVSyOahy+VuzeVmob/XSdPEEu/AsULY6imIhNHsZbeRfqJX5gdSHpWD/jvc+Qz4RwFq2emo72wXPu581k8aNZfKSi3RiGvqBQcil6z06Sy+m0LC+ntrGImnrfgnp+rVhXQ/OSUhyuSw8ShmEQHdtNOt6Lns+Sz0bJZYJg5C+4j8nix122iXR8kETwGPHJo7iKV19wez2fITK6vTAapij4qj5SKCk/z+97VbNg955v+G6xl+Eu23TJj3GhLPbzvw81s5viuo9es3MJCWhCfCi93reNnJHHb/VxcrKd75z4Ab+x7DPTfZzmc3Cs8Cn2XbVbwYBYNl74ysQwgPvq75rednXpcpwmB7uH9/NI0/0XPIdhGPzds8dJZfL81iNLqSm9+lONroVrVVp6NBHgZx3P4TI7+Y3ln72iqYnN3gYA3hnazbbBXQSShQasLrOTO2puZZGvEZ/Vi8/qIZaJ880j3+bHHc+wb/Qgi3xNlDlKKbb5KLL58VkLU1X2jR7CbXaxrLiwgHtD+Rp+0fUShwPH2VI1u2hFJp+hPzpEb7iX8a5TjE8OEc5E8DQ28WDbx/nuyR/hSupsqt6I6nSiqRqaasKkavi7x3Ef+iWWqmpq//j/i2afmqZkBv89917y83F33e20FrWQzqcpdZTgusxRoWuhu2OCaDjF0jVV028+73t0Ga//8hRnTwf45Y+OEI+mpwtQjgxEWLqqasHHNwyd0OCrRAN70MweHP5lRMd2oZqceMo2Y7aXY7FXXPZI2YV0tQcAyOd0XvvlKVpXFErgjw0XplOZzCqNLY20rN1MNvD31NUG6R9qYdOmANlYoLDOpWQ9UFjXAoXy3ulYH5rZPf3Je9XSr6JoFlTVjNVRReXSr5AInSIZPk061kcmMUho6HVUk4utm2MAeMq2gGoiMrKNRPAYVlcdyUgXTv/yy3oeDEMnMvIO4ZFtgIGnfOusaZYfRIqiYHc3E5s4QCYxhNVZc1WPf+57aPXGWorLLu3/h8sJZ7qeZaL3WZKhU9O3qZoNi728sPZONaOqFhTVMlVIxYLV1YDVWTvV3y5CMnSK8NAbpKLdZFOBwjpZxYSiTn0pJtLxfvLZKJrZQ0njE1id12ddpLixSUAT4kMmlo3zztBuvBYPf7Lp3/IPx/6ZI4HjfO/Uj/n80k/PWxY/r+c5Nn4Sn9XL44s+Ou/2Zs3M6rIV7BjaQ39skAZP3Zzb9YxE6RuLsW5JKZuX3dgLuaFQVfDpzufZO3KQf7v2dy9aRfByvNb7NjkjzydbPo7f5ruiYxXZ/PitPsYS45hVM+vLV7OhfA1tRS2zAnORzc+/Xfe7fP/UT+kO99IV7p1xv4KC0+wgnk1wd+1t0/uvK1/FL7peYtfwPpq8DeT0HL3Rfnoj/YwMd2HtGqRuKEXtSIaa9PmqhFntIIcbTvJAJE91IAs8j2IyYfIXYSoqwuT3kzh5grymUfGbv30+nF2hKteN+T128vAQACvWFBMbP4DFWYvZVspHPrYUk+k07cdHAVi1sYZTR4YZGQjP2D8Rz5DP6bi9s6dF6fkM490/IxXtBMVNPhcrhDPNRtmiz2Kxl8/a52rIZvP0dU3iK7JTXu2l/dgI20c7URSobSqiZVk5jYuLMVsKb0kCmUUYoVN86gu1BLq2oZnd+KtnB3GTxYupaMWM294bqEwWD56yTXjKNpHPJUiGO6bCWj/hWCWnTxfzwCdvxe7IERnZTmj4bYx8CsPIER5+A1fxOjzlm+edmpjN5Og4MYrNmsRp2ja9Pqe44TFsrnqSiQw7X+9g1cYaSspvnGmOockE+7b3MD4S5ZFPr8LlubJeUTZPE7GJAyTDHVc1oOWmWip4/XaKSq/NByqGYZDPhEjFekhFe0hHu8nnYlhddRTXP45mdl602uh7mSwe3GWbiIzuIBE8hqKYps6Tm7GdopjwlG/FU771qo3eipufBDQhPmRe79tGJp/hkcb7sGk2/tWKz/PXh/+R/aOHsWoWnlryxEVHhM6EukjkkmyoWLPgHmeLfU3sGNrD2VDPBQPawY7Cp6O3LL02bxKvhlQuxQvdr5LT8/RFB+iJFPppHQ2cvKoBLZyOsHfkAGX2EtZchaIbiqLwWys+RyA5wfLiVmwXadhpGAbljlL+/bovk8yl6IsMMJ6aYDIVYjIVnPoK4VFUbqu+hex4gHR/P1ZNo9lTz9lwL/915/+kZixL3XCahpEM60PnpwPpbieW1UtxVdRgZNJM7H6H5WcLoyj21jY0u4NscJJccJJk++np/Uqe+CS291Ra/CBIp3Ls397D4mVl2OxmBnqCVNU6yYR+QWyqFLbJWoTdu4Qtdy7BZq9moDfE6k11TI4n6O+aJBHP4HBayOd1XvzxdvRcBF+Jn6bWWhoWV2MyW8nnkgyf/j56dpixgJ9DR9toW+lhads4ruLV1yycAfR3TZLL6jQtKWXNLXWYzCo+v4NFbXNPO3N4W0mGTjHR+zSGnsVdcee8070WQjM5cBWvnp5uNrGvn/GJs7QfG2X91gYcvjYSoROoJgfu4luITx4tFGwY34ereC2e8i2zih3ousHJw0Ps396Dzz3EimUdZMx5dK2Z6iWPoU1N9935xlk6Toyiagp3PXR5ZcOvpkgoyf4dvXQcH5luBXjy8DAbb7+yAjA2dxOqZica2Es0tYRc3orZrGG2aJjMKmazhtVmxnqJ/S37u899D5Vc8YwFQ8+RSY6imRyAQirWS3oqlOWz5z/wUE0OXKUb8Vd95LK//7yVd2Jx1mC2FmOyFqMoSmFat5HH0HMYRm5q9O3aV2MVNxcJaEJ8iJycaOfV3rfwWjz0nvTzH1/aze8/uYovr/oSf3no79kxtBeLZuGJRY9c8D/BI4HjAKwqWb7g8zb7GgA4G+7hHmb3yDEMg/3tASwmleVNxbPuv1HsHjkwvW4JYEXJUo6Nn6Qr0nNZxzsb6mEsOY7X4sZr9eC1eHCaHbzZv52ckeeeutsvq9H3XOo9tdR7Lj51Jt3fR////Drm0jJ8d92Na+06lhQtYgmz1wMa+Tyj3/0O3Tu3T9/2+K230LFsA+U/fxv7RGH6GGYT9mXLcS1bjmPZCixVM5uGtv3WF+h8Zzf2knKs5e/pZZXLkQsF0ZNJLDUfzGk/+97p5tiBQc6cHKFpsR2/L8zKZd1k4gPYPItRVTPJyBmiY7uIju2irsxF6+IlKPk+Kqud9HdNMjIQpromzWDHy2xcM3j+4GkYOg66oU19H2UZGCojkd+KzRHlxJEka7fcg8Vxbd8cnpua1rSkFIvVxO33tVx0e7tnMaCSz0ZQNCuukrXX5LqWLK/gyN5+DuzspbapiOLqezHbSnCVrEMzu/BW3E588ijh0e3ExvcRmziAu2QjBw5W098TonlJKWPDUQIjUUpLo6xZdQrDMHHkeAsDg+WUHTrFxtsb0UwqHVMjn8P94XmuCvJ5nUO7+5gYi3Hng0uw2q6sdUUqmWXfO90Ul7kor/Zw/MAgp4+OoOsG/hIH67bU8/avOjh9bIT1WxsuWnRjPqpmxVt5J8GBl+g7/gLHTs5+rRUFHvn0Kqrr5y/FbxgGwfEEJw4VRpablsxfaOpC9HyGyNhOYuP70XOze+qpmh27txWbuwGrq2FGpdDLpSgaDu+S99ymwNQ0RyEuRL47hPiQGEuM8+0TP0BTVL607LP8+Xd6SWfyfP1fDvLvP72ar6z+Lf7i0N/xZv92rJqVR5rOVzOLJbN858VT3LqigiOB4zhNDhb5Fv5J67kpdmdD3XOu2RoajzM6mWBdSylW841bufHkRKEowb9Z89t4LG7KHWV8bff/oDvch27olxSmIpkof3n4H8jpM6e7aIqGgYHb4mJTxbUpVT2XfDLJ0N/9DXoiQbqvl9F/+jaj3/snbA2NmEtK0VwuNLcbzelEc7mJ7N1N/PAhrLV1uDdsJLpvL+kdu2nYWVgc5dmyFfemW7AvbkG1XHjajqJp+JbNPUqomEyYSy7/DdmNbmIsxtlTnWxafxavJ4zZnKehAjDA5m6mtPGTKKqGoedIRbtITDV2jU0cIDZxgFKXC5ttKYHhIcypX2EizWTQS1XTMvLZBOGJIMl4FE3LYDbnGB6poKzhXrasq+HEoUG2vXyG4weHrnjU5GLi0TS9Zydwe22UlC9s3ZBqsmFzN5CKduEuWX/NRhdsdjN3P9zGL390hNeeO8mTX1w/Y62YoppwlazFWbyK+ORxIiPbiAZ2E5toI5UonQ4Nrcv9LK4/jJ5TqGj5LN6GYva908PZ0wGe//FRTKbC7wWv3044mCQeS+O8wJqo0aEIb754vil3NpPnoSdXoKqX90GNrhu89txJ+ruDM273+u2s39rAorYyVFVhqC/EycPDDPRMUlrhJh7NLPj1ei9n8VqGOt+htmaEkgofBgqGnkfXdfS8zuR4mqN7nVTXbyA0maC3c4Lla6vRTCqGYRAYiTLUF2Z4IMRwf5h0qvA7srhEwZTfTXAQ3KUbL6lwjWHkGe/+CaloF6pmw1W8Fl3PgZHD4qyZKut+4QJDQlxvEtCE+JB4qec1krkkn219EiPuI53poqLIwchkgv/xg0P8u0+t4l+v/i3+98G/5Vc9r2NVLdzXcBeGYfCdF09x6Mw4Y3QS9ke5pXL9gguKnNPsa2D/6GHGkuOUv6fc/oGp6Y3rruDT0Wstk8/SEeyk0llOi//8iFKjt569IwcZSwSocC58mtg7g7vJ6Tm2VG6kyOYnkokQTkcIZ6LEsnEeqL/7mjV9fi9D1xn97rfJjo7if+AhfHffQ2THduLHj5HqOkuq6+yc+9lb26j+yr9Btdnw3nkXQ3/1DVK9PZR//ouXVHr+g0zXDZ75/kGC4wkcTgsOl6Xwp9NCKDDA5g1HsNkyZLJuhoZtOL0lNC5pxlG0AmXqZ0xRTdi9Ldi9LRjGw6Tj/cQnjxKfOMSGtSeATgw9zdETi3EVr2V1Q+ET+8rFkMvl6e4Yp+PEKLWNRSxfV1gX1LK8gr3bujlxaJA1m+swX8IHI2PDEZLxLPWLLj7anUnnePb7h8ik86zbUn9Jb3495VsAcJfesuB9LkdNg5/Vm2o5vKefk4eHWL1p9hRsRdFwFa/C6qxh6NTf0trSRV3rWkrKzJgYRNMPk45F8FTcjtVVh9VVKOwSGImy751ues9OsnRNFR6vjd1vdTHcH2ZR28wKodlsnn3bujm6fwDDgGVrqohFUvSenWTHa51svXd2E++F2L+9h/7uILVNRVTX+xgZCNO4uISW5eUzQl/rykpOHh5mz9vdxCJpUsks9zzSRsuyS5/6Otwf4ejxRjatP4bDfHrW/T4X9A/kCIy08upzJwlPJslm8qy7tZ5Xnj1BV/v41JYGZeU6NcvzFBcnsKqniQUK1UujY3twFa/BW3U3+Wy0UAHRMDBZ/ZisRZgsPkzWIjSzG0PPEBx8hVS0C5tnMSUNT8haL3HDk4AmxIfEQHQIi2ZhU+U6nt9RKPzwxB3NJFJZ/uml0/zPHx7i959cxb9e/dv8xcG/5RddL2HRLORG6zh0ZhzFmmDCsw+bZuH+d1VphMI0lI7+ENuPDdM1FOETdzSzpmVm2GryFgLa2VDPdECLxDPsPjnKmwcHMWkKqxaVXJ8n4zKcCXWR1XPTVQvPaZoKaF3h3gUHtKye453BXdhNNp5Y/Ag20/u3/kDPZBj51j8QO7Af++IWSh59HMVkoviRj1P8yMfRsxny0Rj5WBQ9HicfjZKPRUEz4dmyBdVceKOjOZzU/MEfYWQyqLYrKzRwI9FzyULJ8KnKgAthGAaGYaCqKoO9QcxGJ8vbIphMOVSlMJplNueoLsqgqQa+6vtwFG0gc3yU5tbSi05pUxR1umFwoYz5ASDOyFgxA4MVfPqhmVNBTSaNxUvLWfyetZ1ms8ayNdUc2NnLoV19CxpFC4xE2fXmWQZ7QwCs3VzHxtsb5wwOo0MRdrzeyehghLZVlazaeGlTVG3uJmzu2W0IroU1t9RxbP8AJw8Ps2pj7QWDkNlWzHiwiVJ/Jy7La+iRADl0coDVVY+34rYZ25dWuHnoyZVEwymcbitjw4W+csP9IRa1lZFOZTEMGB+N8fav2omEUnj9du58cAlVdT4y6RxP//NBjh8cIhZNc/fDrZc03bG3c4IDO3txe23c+7G2wr4XqMJeVunGX+JgfDSGpimYLRpvvnAah9NMTUPR3Du9i2EYDPQESadynDg4yPiEH3PRr1NUaik0WVZUQEFRFIbaf0JtzSjbXnyb8GRhlO7grh7ymVHyibNs3JCiuDiNShDeVVBDUWz4ah5E1ayFaacTB4mHTmDkM4Ax94WhTN9ntldIOBM3DQloQnwI5PU8o4kANe4qVEXlZM8kigKt9T6cNjMWs8Y/Pn+SP//xYb76xEr+9Zrf4i8O/h0/PfMLcj3LcfnKsCw6QVLNc6v/gemG05ORFDuOj7Dj6DBjoeT0+f7q6WM8dEs9T9zRNP1m51yp985QF7ZYAzuODXP07AR53UBTFR7Z0oDdeuP+SjoxUfgkeFnxzPUETVOPqyvcO6O8fCQTZf/IIXQM7qm9fcabvoOjR4hmYtxTe/v7Gs4S7acJ/PiHpPt6sbcsoerLX0UxzXwNVLMFtagIc9H8b9IUVUX5gIQzPZ8mOPAy8cnDhRsUlfLFX5i3Ml0klOSlnx9HVRUe/9xaBjv3sXpl+4xtFMUCihVDceMt34ynrFA2funqhZfLB/DXPEAyOkEmOY5hvZO7P1qCr2hhPegAVqyvpv34CAd29mK2aKzedOFw0nlqjDdeOE0+p1PT4CcSSnJwVx9jw1EsVo1sVieXzZPL5smk84SDhd8HS1dVcdv9i27oqWM2u5nmtjI6jo8y2Buiqs5HNJzC5bGiaedHmdKpHIcPl3PH1j4sjGK2leIsXoPNVT81PW7uaYjnKmqWVrgxmVSG+sMcPzjI9lfPTBfoUBRYvamWDVsbME2NZlqsJj721Gpee+4kPWcm+Ol3DnDXQ0vwlzg5tn+AWCSNw2XB6bbidFlxui04XVZcHivRcIrXfnkKTVO4/7Fl8wY7RVHYcnczJw8Ns+G2BtKpHL/88RFefuYET/32pov2GzMMgx2vdXLswPn1j1W1XirrG+bcvqzpYwQ6v8OSRe2ks5tZt6WJ4c4XqPQPUjm9LE3DbCvFYi/HbC/DYivH4qyenu5aaA+xl/DIW5htJfiqPoLZXkouHSx8Zab+zEZQNRsmix9vxW0SzsRN48Z9NySEuGpGEwHyRp5qZwWpTI6zQxEaKtw4p/7T3rS0HItZ5W+fPc43fnqELz+6gq+u/i2+vvtvMOqPoysKSQxygWpyVBFLZvnW8yc5enYCA7CYVDYvq+C2lZU4bCa++exxXtzdS22Zi01Tn9yX2cswYWFP/3F2TARAy+NqA59Hw+FQMJfowLVbC3OlTk6cxqpZpgPZOZXOcmyala5wL9l8lqPjJ9k7coCTkx3TTZebvPUz9ntrYAcKCnfUbLmOj+C85NlOJp59hsSpEwB4tt5G+Wc/PyucfVjlMiFGz3yXfCaM2VaKyeonGe4gPPwmZYs+d8H9xkdjvPCToyTihWlYB3ceo8y3n3xeo7L1c5htJaia7ao18FUUjaq2zwE6jZdQ/vscu8PCx39tNc/+y2F2v9XF3m3dWGwmrFYTVlvhS1VVYpEUE4E4ZovGfU8sp2FxCfFYmhd+fJSBnplrm0xmFZNJo66piNWbalm1rpbx8dhVebzX0rLVVXQcH+XQ7j72bOtibCiKZlIpKXNRVummtNJNMp4hk9GI5h6irc2N1dVwScFT01TKqz0M9obY/uoZrDYzlTVeVE1h9aZayio9s/ZxOC189FOr2L+9h4O7ennuh0fQTCr53NwN3QEsVg1NU8mkc9z54BJKKxZW1r+uqZi6dxVp2nJ3M9tf7eTAjh5uu0BhF8MweO2Xp+g8OYa/xMGy1VWkklkWX2RqpN1dS05Zgsfdzu13RimtBVt2kHjchrNkCxX1LZhtxRctaa8oGp7yzbhK1xf6ik03y/aB+8b9f0SIhZL/jYX4EBiKjwBQ6aqgoz9MXjdoq585IrJmcSn/5slV/NXPj/I3zxzjwVvqiJ9ci73tABWeIu6tvYtvHQhxMh4knsxx5OwEjZVubl9VxYbWchzvKpv87z61mv/497v55c4eNrSVMTAW4/8+f5K0149WNIqpolCePgOM5YEo9ER7WVrcMm+lwfdDX3SAQHKCVaXLZzWMVhWVBk8dp4Nn+OMd/4VkrjByUOeuodnXwJv929k2sGs6oPVFBuiLDrCiZCnF9vlHpa6mVF8vE88+TfzoEQAcy5ZT/PHHsTddn6lk10s+GycV7UIzOy9rmlx4ZDv5TBh32WZ8lXejqBpjnf9MKtpNOtaP1TX7e1TXDY5sf5naqgi+qjs4fqAfm/EaJlOeSOY2bK6520tcqcIb08svrOPx2fn4r61mz9tdxKJp0qkcmVSOWCRFPl8Y3jGZVSqqPdzxwJLpHlROl5VPfHE98Wh6OpSZzOqswHIjj5y9W3m1h6JS53TgrKrzkUnlGBuOMDoUmbFt/eJmbO7L68VVWetjsDeEoig88MRyKmu88+6jqgobb2+kYXExb77YTjqVY+3mOuqaikjEMsRjaeLRwp+xSJqJsRjBiQTL1lTRtury238sXV3Fsf2DnDw8zIr1NXOOzh7c2UvnyTEqqj089OSKBU/BbFj+cYZP/x35xF4me7tRFChf9FGKKpZe0jUudNqxEDcbCWhCfAgMxwoB7fjJLBODhYIPSxtmlzhe1lDEv/vkar7xsyM8v7MX8PK7i3+fpfWF/i3bag5xqjdI/1iM2jIX//Fz69DmqC5W5rOzeXk5O46N8Ow73bxxYIBEOsdtNfexabkDj92OzWTFqlmxahZ6In1849A/8HTn8/z+mt95X97U7Rk+QJHNx2J/84zbQ+kw/3D0ewBsrlw/576tRYs5HTyDRTWztW4TGyvWUuWqwDAMTk10cGjsKE8sfgS3xcWOoT0AbK26wGKQa2T8mZ8z+cIvAbAvbqH4sSdwtCyZZ6+bg2HkSccHSEU6SUa6yCaHC3coKpWtv4vZtvDWDflsnPjkEUwWP76qe6ZHuzwVd5CKdhMeeZvS5s/M+h7taT/FosYTKArYPXvx3xpFI05vXyVr7rqxC6Z4/Xbue3TZrNtzuTz5nI7FaprzZ1JVlTkbYt+MFEVh/a31bHvlDBtva2Tp6koURSGXzTM+FiuU0x+OYnda8JcsfBrpezW1lHD84CCb72peUDh7t7JKD5/80vrp64VCwJ5LLpefMT3zcmiayqY7mnjl2RO89twp6pqKsDvN2B0W4uE0Q4Mh9r7Tg8tj5cFPLDycQaFSZ3H9o4x1fo9sagybu/mSw5kQH2QLDmjf+973+K//9b9y9OhRrNbzayYOHz7MH/3RHzE5OcnnPvc5vvrVr16TCxVCXL6heKEHz+FjachBkcfKouq53xy01Pr4g6fW8I2fHqWt3s+yhvOFO5Y2+DnVW/iE+XP3L5kznJ3z0S0N7Dw+wvM7e1CA3/roUjYvr5j7nP5FrChp49j4KfaNHmJD+ZrrGtIimSjfO/Vj/FYf/3nLH02Xy0/mUnzzyLcJpkN8rOkBVpTM/Qbi7trbWFq8hEpn+YxS+4qicFv1Zn565hfsGtrH7TVb2Dd6CJ/Vy9Li6xeO9GyG4Msvofl8VHzxN3EsXXbTjGxciGEYpKPdxCaPkAy3Y+iFaYUoGlZXI2arn9jEQUKDr1La/OnCPnqedLx/qsrb7OlkANHxfWDkcZfdMmMqos1Vh9XVSCraxeDx/43NVY/V1YDN3YDJ6icTfAWHHVRzGclIBxoQiVej227F5bk5Q4zJpGEy3bhtL6625tYymltnVlc0mTUqqr1UXOD35aUqLnPxxX9962Xvv9Cf26v1ujUtKaG20U9/d5DASHTW/aqqcN+jy7DZL30ky+ZuwFt5F9HAPvzV912NyxXiA2PegJZKpfjGN77BP/3TP815///z//w/rF27loceeojf+I3f4M4772TFihVX+zqFEFdgKDYMOQt+u4c//fx6nHYzpot8utpQ4eF//d6WWW8GVjWX8PS2Lu5YVXXBgHdOud/BbSsr2XZkmC882HrBcHbOY80Pc2Kine+e/BHPd73Mo4seZm3Z3P2xrrYzwcKoYjAdojPURYt/ETk9xz8e+2cGY8Nsrb6F+95TufLdNFWj2jX3VKJNlWv5xdkXea3/bQbjw6TzGe6pvXoNqBcidfYsRi6He8MmnMsW3mD8RmUYOhM9T5MInQRAs/iwe1Zh9zRjdTWgahYMwyCbniAZ6SA8/Hbh7+EzGHoazezBU/M5rHYvlqnCNLqeJZMYIja+H1Wz4SxaNX2+wd4gb73UjtfbSENtHqc9gB46OX1+AwsOe4ZgpI6Vt32Wyf4XMYw8tasekWa04qamKAoPPbmS4EScVCJLMpElmcigojIxEaNxcQnlVXN/2LEQ3orb8JRvvek/MBLiapv3f45AIEB3dzdf/vKX+eu//usZ98ViMTo6OvjKV77C1q1bcTgcHD58WAKaEDeQdD7DeGqSfKKIhgo33gs0SH2vuUbHaspc/PffvoUS79zTat7r1+9v5WO3NlK0gBGEcmcZX139W+wY2sP+0cNsG9h53QJaR/B8n689wwdZ7GvmX07/jNPBM6woWcqnWh697DcQdpOdjzc/xDNnX2D/6GEUFDZXbbhal74gidOFIOFobbuu570WDENnovdZEqGTWJw1+Ks+gsU5u/qgoij4q+9npP3/Eh55GwDN4sVkrSMdPUPv0X+iq6eexqYcfl8UPTcKU0VdDMt6vv93+7nno21U1/s5cWiISChFLKLQ39sA1ONwpCguClHsD1FcFCav2yiuux9FNVFc/7Hr/KwIce2oqkJx6cym1aWlbgKB2SNql0PCmRCzzRvQamtr+bu/+zuefvrpWfdFo4UfTttUWWWbzTZ924X4/Y4bbspEaenCKhyJm4e8pud1TvQAYCRcLFtWcsXPzaXuX34JfU5LS1dza8tqfvPZPyCWj80617V6Xc/u7cZusuGyODg8foziQS97Rw6yuLiR/88d/wqr6cpKMz9Z+gD3Ld3C61078FhdLKm9NgUjLmS4swNUldot6zA5Ln/9zLWykNfVMAwi4+0Mdb1MIjKA01vP4nW/iWa6WPh3YzN/irHBQfbuhsEBFRRoXRSjvm6Y1SsKwTWXVkilvbj8DTi8jfz8B5PkchnOnBhjxZoaBnqC+IrsfOWP7yEaThGLpoiGU0QjaaKRFBPhJG6fjdUbLq+Z8Aed/D7+YJLX9YNJXtcbwxXNvXC5Cp+opNNpoDAd0u2++AsbDCau5JRX3dX8FEjcGD4sr2k8leWFnb3cvrqKiov0PjoxVBgd0pNuyjzWm+K5cZvdTCQmZ1zrtXpdg6kQw7Exlhe3UuOu5lc9r/NCx+uU2Uv4zbZfJxJMA+mrcCaF20q3AlzX10BPJYme6cTW0Egwnof4jfX6L/R1jY4fINj/AgAO3zL8dQ8zGcwyOjRB79kJFi8tx1888+fAMAx2b9c4vKcQmkornOi6gea6A1fpEKqmEgp7OXksT+/Zc5X6JlAUsDnMnDk5ysG9vaRTORYvLWNiolAu3mI3UWx3UVwxc1ThZignf719WH4ff9jI6/rBJK/r9XWxMHxZAS2ZTKLrOm63m8bGRrZt24bdbieRSLBmzZrLvlAhxMJkczp//fNjtPeHSOfyfO6+8wUnopkYnaFuzoa66Qx1MRArVLTTE24aKi5/rcD15LV4GIwV1mtZr3Fj0XPTG1v8i1he0savel7HbXbx5VW/gctyeaW0bySJjg7I52/q6Y26niU8/BaKaqF88RewOArrGSOhJC/85CjpVI4DO3qprvexbE01DYuL0TSVU0eGObynH1+Rnbs/2vaetTKFvk6+SmhohXAwycnDQ3R3jLP+1npCwSQHdvSy8/XC90dd88IrQQohhBBX4rIC2te+9jW6urr4yU9+wte//nX++I//mJdffpmvfOUrLF9+8y9AF+JGZhgG33nxFO39IQC6Bguf/I/Ex/jH4//M8FTFRgCTotHkbaCr3UqRqRzXZVTaej94rIVPlcLpCGWOknm2vjIdoXMBrZlyRym/u/KLlDlKKHXc3G/Is+MB4sePET9+DABH281bwjoW2Ieei+Mpv206nOVyeV559gTpVI4V66uZGIsz2BtisDeEw2VhcVsZxw8OYrWZ+OinVs1bDt7rt7P5rmY231VoszA5HufAjl7CwSQmk0p1ne9aP0whhBACuISA9vjjj/P4448D8PWvf3369tWrV/PSSy9d/SsT4kNgLBEgnI6y2H/hZrqGYRBMh+gO9zIQG8aZrmP3yVGaqzzk8gb9YzHS2TwHRg8zHB+l2dvA0uIlLPI1Ue+uIRTN8Yev7mJZ69UpE309eKdKoEcy0Wsa0HJ6jtOTZ3CY7NNVGJeX3LwjTedkxsbo/+//P/JTa4IViwVb86L3+aouLpeNEh3dia5nUFULimYp/KlaiYzuQNGseMpuAQpNod984TSBkRitKyu49Z5FKIrC5Hick4eGaD8+wpF9AwDc/3jbZfXqKipxUlTqZDIQp7rej8l8Y62dFkII8cEl9X+FeB/94PTPORvu4etb/xSn+fz6mfHkBIcDx+kO99Ed7iWciUzfZ8kUAxv4/AOtbD82TO9olN6RKN2RPgB+e8XnZ0zN6xkp9C1rqLx5Fv6eH0ELX9PzvNm/nVA6zB01t17XsvfXimEY5CYnGfzG/yYfjVL08COYS0uxVFahWq7tVNErEZ88xuTASxj51AW38VbeiWqyYxgG217uoPNUgIoaD7fde74wR1GJk633LmbTHY10ngpgsWrUX8HUxMVLy9jzdjcNi2/u0VQhhBA3FwloQrxPDMOgPzqEbuh0hrpYVVqYHhxKh/n6vm+QzBXerHosblaVLqfRU8feoWMM0c+SFpWaMhdNU2tqOgdD9GT6KLUXzwhnA2MxXtzdC3DTrD+D8yNo4cy1W6wcSod5qec1nGYHDzfee83Ocz1khoeYfPklYgcPoifiAPgfeIiSx564LufPZ2Pkc3Es9vlLdhqGwf7tPXh8dlqWlzPQ/ksmereBYmZ0cg2BCR8KWTAyQBaVLKqm0OJuxWMY7HzjLKeODFNS7uKhT6ycc2TLbDHRtmruvnSXYtWGWtxeG82tpVd8LCGEEGKhJKAJ8T4JpkOkpkYMOoJnpwPazzqeI5lL8WDDPWyu3ECRzT89QrDvaByc/fjrC+vMzjWLPj0yQNKTYkVJYZ1RKpPjue09vLKvH90w2NhWxpJa33V+hJfPOzWCFklfu4D2y7Mvk85neHzRR2eMXt7IcuEwmscz/f2Q7DpL8KUXiR0+CIaBqagI+5IlOBYvwfeRQug0DAMwUK7BCGE2GSA4+DKpaDdgUNL4JA5fG4ahY+g51DkKvBzdN8D+Hb0oioGWeRWL2o2i+dm5t43JcROQRzOZ0DQzmqaimVQS8QxdXadobAlw9nQAf7GDj35qJVbbtf0vTDOpLF56CX0ihBBCiKtAApoQ75Oh2Mj0389VEjw2fpJDgWM0eRt4qPHeGdPujnSOc/akFcdaGx3xk2TyWbwuMz6XhZ5YH3igwVPHgfYxfvDaGYLRNCVeG5+9r4WVzde20MbV5pkeQYvMs+XlOznZjs/qZUvVxmt2jqvFMAwmnvk5ky8+j62pCc/W24nu3UPy9CkArA2NFD34MK41a1He1WA8n0sQOPsD9HyGyrbfvao9ugw9R6D7J+TSE1gcVWRTASZ6n0XPJYmM7iCfi+OrugdXyfrp8wZGoux+qwu7w0Tr4tNY1CHCER+797WSy5nYcnczKzfUzLrOob4QL/7sGGdPB3B7bXz006uwO27cKZtCCCHElZCAJsT7ZCheCGgm1cRQfIRgKsRPO36Bqqg8teTxGeGsezjC3/7iOCbNxPqyteyd2Mn/u+vrRDMxyhvWMxAbxwTs2pumo+M4Jk3hkS0NPLy5HstNWNzAa7m2I2i6oRPLxql3197wa88MXWfsX/6Z8NtvojqdpLq6SHV1AeBYtpyiBx7C3to2K9TkszHGOr9PNjUGQDY5gsUx/7S/XDZKOtZLJjGMkU9jYGCyeDHbSjHbSjFZi1AUlfDwW+TSE7hKN1JU8wCJ0CnGu3/KZP/zGCgYhongwEsMnNlLZ88KJidNJOMZDAPu/kgE0kNE4x6OnlxDZZ2XleurqWuae61XVZ2PRz69ihMHB1m/tQGX23qFz6oQQghx45KAJsT7ZChWmKa4vmw1u0f2863j/8JEKsg9dbdT5aqY3m4slOQbPz1CNqfzlcdWUFercWzfQfJGHotmZsxxEFUzY+Q1OjrytNUX89n7Wqgsvnl7eJk1M3aT/ZqNoCVzKXRDx21xzb/x+yz48kuE334Ta20d1b//78mFgsSPHsG5chW2+oZZ2xuGTnziEKHhN9FzCcz2SrLJYVLRrnkDWirazdjZH4CRv/BGiobZWkw2FUCz+PBV3g2Aw9dGNL2eVLST9jONpFIWli/tpKJ8guUt2+gdWEQo1sLS5ZOQ3o/J4mfJsi9yx6MVC2rwXF7leU8fMyGEEOKDSQKaEO+T4fgIZtXM5qoN7B7ZT3ekF5fZyYMN90xvE0tm+YufHCGSyPKZe1tY01IoVvA/bvtPKCgcHDvCt0/8ANWax5kv56ufXktrvf+qTmV7v3gt7ms2ghbLFAKBy3xjh9hUbw/jzz6N5vVR8+/+AM3txuT1zhnMAFLRHoKDL5NNjqKoFnxV9+IsWsHg8f9NMtKFp/zWC54rlw4y3v0zwMBbeTdWVy2ayTl13yTZ1DjZVGD6CxSK6x6ZXmeWTuXYucOF2bKOFetqKClz4XBtwax0Ext7hab6Dsy2ENnUGKrJSemiz2CyuD4Q36tCCCHE1SQBTYj3QV7PM5IYo8pZToOnFotqJqNneaTpfuwmOwCZbJ6//NlRRicTPLipjnvW1Uzvf25a3tqyVewdOcTxiVNsaWyjraHofXk814LH6mEkMUZWz2FWr+6vqmi2UOnw3RUvbzTZYJDh//t3kM9T8aXfRHPP3SbBMAxSkTNEA3tJRQtTH51Fq/BV3Y1mLuxjtpeTjveh61lUdXazcj2fJtD1I/R8kqK6R3AVr5lxv9lWgt3bMuOchp6dUQSk48QIuazOui31rN1c/669V+IuXkRw4GUSwWMoqpmy5qcwWz8436tCCCHE1SQBTYj3QSA5QU7PUeWsxKSauK1mM2OJwHTBCl03+L/Pn6RzMMzGtjKeuLN5zuMoisKvtT7B810vc2vVpuv5EK656WbV6QjF9qv7Zv7cCNqNNMXR0HVyoRC5iXGSXWeZfP459GQS/30P4Fy2HMPQyWciaBYviqKg51PEJo4QC+wllyn0urO66vFVfQSrs3rGsW3uJrLJUdKxXuyemQ2rDcNgovdZsqkArtKNs8LZXBRFQdEsxGNpRgYiNCwu5sShIVRVoXXl7GmUmslBScNjpErWoWo2LPayK3imhBBCiA82CWhCvA/OFQipdBVKeD++6KMz7v/Z22c50B5gSa2P33h4KepFpoF5rR4+0/bktbvY98m5UvvhTPSiAW00EeCFrleocVWxvKRtxvq9C5keQXsfpzgaus7kSy+QPH2K7Pg42ckJyJ9f+6Xa7ZT++uexrqph7OwPSMf6MPQMmtmD1VlLMnIGQ8+AouEsWo27dCMWx9yP3e5uJjq2i1TkLBZ7JXo+QT6XQM8lSUU6SYbbsbkb8Vfft7BrNww6T43xzitnSKdyON1W4tE0i9rKcDgvXF3R5qq7tCdJCCGE+BCSgCbE++Bcif1q5+zRhmxO59V9/ZR4bXzliRWYTTd2lcFr5Xwlx4sXCvlZx3OcnGznwNgRftn9Mv9mzb9ika/xovvEMoWA5ja/PyNoejbLyLf+gdj+fQBoU+vKTCXFqNUOKM6h+u2k9HaiXe8AYLKWYLYVk4r2kAidQDN7cJVvxVWyFs108T5uVlcdimIiGthDNLBn1v0mi5/ihk9csFdaIpZmbCTK2HCUwHCUsZEoqUQWk1mlaUkp3R0BAJatqbqSp0UIIYQQSEAT4rrL6TmOjp8AmHO0ZyAQI68brGguxmmbvV7ow8JjLUxx7Ir08s7gbsq9xSxxL6GtqAWLVnheOkPdnJxsZ7GviTVlK/lJx7O80f/OvAEtmp0qEnKFUxwNwyCfCWGy+i+yjU54+E1ymTBFtQ+jKGaG/uYvSRw/hr1lCZW/+3tkjQDJ0CkS4dPkcuOFHRMACnZvK96K26dHx3Q9Sy41jtlehqIsrIWCoprwVNxOKtqJqjnQTA7UqS/N5MDmWYQ2tfbx3cZHY7zy7AnCweSM290eKzVLy9h4WwNev4PJQJxwMElVnW9B1yOEEEKIC5OAJsR19kL3qwzGhrmlYj1e6+yy4d3DhRGjxooPd0nxcyNor/dtA+B08AxvsxuLaqateAmrSpaxY6gwGvTx5gdp8NSxe3gfRwMnmEwFKbJdODSdX4N2ZVMcw8NvEhndjqfidnyVd866X89nmOh9hmS4HYB8JozS4SAVP4v94SXYVi1ipPvv0fOFAKSanLhK1uPwtWK2V6BqtlmjWqpqXlA/s/fylN+KxbORXFYnl9PJ5fLksjr5pE4umETPxymv9k5PUUwls/zq6eNEwynqm4spq3RTWummrNI9q0l0UamTotIbt+CKEEIIcTORgCbEdXQmeJZXe9+ixFbEky0fm3ObnuFCafnGyrmr9n1YeN4VXh9tfogNjct5+8w+jgSOT38BLC9uo9FbqBp4e82tfP/UT3hncDcfb37wgseOXYU1aJnECJHRHQBERrahqmZM1iKyyTEyqTGyyTFy6UnAwOpqRDM5SIROQDVYqiswyJIMn0I1uXCVbMDha5uainhtprT+8kdHGOwNXXQbs0Vjw9YGfMUODu/pJxpOse7WejbedvERSSGEEEJcPRLQhLhOEtkk3z35YxRF4fPLnsJmss25XfdIBKtZu6kbTV8NpfZiNlduYJGvkVsq11Na7Manl/Dx5gcZiY9yOHCCvkg/jy56aHqfdWWreKbzeXYO7eWhho9g1uaeIhrNxLCbbJgus3y/nksx2fdLwODEqcUsWzpAaOj1GdsomhWrswarqwFvxe1kRkeIntoHHhV300acNcsxW4vRLL5r3gssMBJlsDeE12+nvMqDZlIxmdTpP01mjVw2z7EDg+x84+z0fnXNRWzY2nBNr00IIYQQM0lAE+I6MAyDH7U/TTAd4qHGe2ny1s+5XTqTZ2g8zuJqL6r64W7gqyoqn71AdcoKZzkPOMtn3W7RzGyqWMcb/e9wJtTF0uIlc+4fy8aptdjJpicvqR9XNjXOePdPpxo1w0Somp6+StzFTSxbFkIzuzHbyzDbytDM7unglQuFGPzGX5AbH6f8C1/Cu/T2BZ/zajh5eAiAW+9ZRP2i4gtut3xdNScODaEoCr4iOw2LSqSRtBBCCHGdfTjLwwlxne0bPcSBsSM0eup5oP7uC27XOxrFMKCh8sO9/uxKtBYtBuBsqHvWfXo+TTx4kocsOR6zZhnt+DZ6Pr2g4xqGwWT/C2RTAayuBiyeW9i/vxC0T5/I4Cr7CJ7yLdg9izBZPNPBxsjnGfrmX5EbH6f444/h3bqwcJbP6xzc1ctAT3BB219IJp3jzMkxXB4rtU0XD6N2h4X1tzawbks9za1laB/SCqJCCCHE+0lG0IS4xsaTk/y4/VmsmoUvLPs0mnrhyns9I4X1Zw0f8vVnV6LJW4+CwplQN4ZhkE0FCr2+Ip2k431g6NSbNRJoOHIJYuP78ZTfOu9xE6GTpGO92DyLKWt+ir3busnle/HadMIp6D4zTsuy2aN6ky8+T6rrLO6Nt1D00bnXHc7l2P4B9rxdCJm1jX5uv78Fj69QaVHXjQWPsHaeGiObybN6U+2HflRWCCGEuBlIQBPiGsrreb578kek8ik+2/ZJSuxzTy/TdYPxSIr2vsJoSaOMoF02u8lOjasSc3KQoRPfIJ8930fNYq8kb6/iH3veYUnpGm7N9RIZ24WrZAOqVqhMqOfT5DIh9Ny5Zs6Fr9jEQVA07JlF5FMp2o+NYDJyLOl4gb11H6f9yOB0QNOzGXLj46R6e5j45S9Qi4opfuoz06NqkVCS4EQCTVNwum34iuwzphKmklkO7OzDYjVRWuGivzvIM98/xINPLKf92CinjgyxdE0Vm25vxGyZ/Ws8ncqSiGc5c3KUI3v7URRoXXnplR+FEEIIcf1JQBPiGtozcpCucA9rylZyS8W6C273N88c49CZQv8rp81EmW92T6oPGyOXY+wH38e5chWu1Wsuad9lnkraEmFyuThO3zJsnkXYPc1oZhedoW5CyTdZ/PxRlKVF6NVxwsNv4im/lfjkEcLDb2MYuTmPa03VMfzXf0Oochkx5wYqo134HAbe5BgDvQY//PovUTJp1GwK1cijGnkyFR8h4q5C/b+HWbmhhlxW5+i+fgzj/HHNFo3SikIJ+9IKN4O9QTLpHJvvambVxhqO7htg5xtn+fl3DwKgqgrH9g/S3THO7fe3UN98Pvhvf/UMxw4MTv/b7jRz54NLcLmtl/QcCiGEEOL9IQFNiGtoOD4CwEfqbr9osYUzA2GcNhMbl5azvLFICjMAobfeILztLWKHD+JoWwosbNqnoedZlhvFpCgMOBaxpfGJGffHJsd4/PUQ7mCORM8w9t9cTDSwh2ig0FNNNTlw+lZPN3FWTQ40zYGi2Bn8z/8TXTNzyrwYDING8ySNf/rfCf/TsxycSBNWHRgWN8xsE0ZRkZNkPMOBHb0AuL022lZWYBgQDiYZG4ky1BdiqC80vY/ba2PFumoURWHVxlqsNhM73zhL68oK1m2p5/Cefg7v6efFnx5j8dIyttyziKG+EMcODOLx2aiq81FU4mTp6irMloU1tBZCCCHE+08CmhDXUCRTWFPmsVw4XMSSWWLJLKuai/ncfXNXHfywySfiTDz/XOHvkQihN1+n/HOfuug+qVgv4aE3yCRHMekZjqaz9CoxtkzdbxgG0T27sP74+ziiOTIrWrCe7ibzizGKf/OjJENnMZl8FDU/jDZHA+vQm2+QC04yuuEJEkE3jbYQbV/6IqrNztrfeYpV0SiqwwGqSj5XaAadz+mYzCpWm5lsJs+JQ0Pk8zorN9RgNs8MTZl0jsBIlMBIlIlAnLaVlTOKdLSurGTJiorp8L7pjiYWtZXx1kvtnDk5Rl/XJIZhYDKrPPzJlfiKHFfwCgghhBDi/SIBTYhrKJqJAeA2uy64zehkAoByeUM9bfKlF9FjMfwPPER4+5uEw+8w1FGE5lmDqs2eqpeK9RE4+wMMPYfZVoLVVceRweNMhntIZJOog6OM/fD7pM52opg0dq5ysunXnqBo52kmfvEMgf/2I4xsFoCw423MZWVodjuqw4Fqt6PZHUT27SHpKOJ02IPTbebu3/woFuv5X6Ga+3wIN5k1TO8JYGaLxupNtRd8zBariep6P9X1/gtu896R1eIyF499bi3HDwyyZ1sXuazOnQ8ukXAmhBBC3MQkoAlxDZ1riHyhhskAI1MBrULeVKNnMkw+/xzBl1/C5C+i+GOPki+OkPENMdzzCor6Np6yW3CXbkQ1FdbppWP9U+EsT0njJ3H4CqOQrSmdXWfe5rU//wOWdMZQANe69exdX8S+6GHusbjxP/Ag0f37yIfDODdtBsMg2dFOZmgQI5OZdX2TGz6BHjTYdEfTjHD2flJVhZUbamhaUsLkeILaxgsHPCGEEELc+G6MdxhCfEBFMlHclguPngGMBmUEDUBPp+n/+n8h3d+PqbiYyt/6HRSTRr4kCinIHQqirfAQHnmbyNgu3CXrMTsqmex7DkPPUdLwxHQ4A/hItJJlL4RR01nGvRr7bylj5eY1BIJnIQpuixPVbKH+//3PACjqzJ5fRi5HPplATyTQk0ny6TT73wpjMqdpaim9rs/NQrg8Nlwe2/t9GUIIIYS4QhLQhLhG8nqeeDZBuaPsotuNTCaBG38ELTMyjKmoGNVimfP+fCxG8kw72cA43jvuRLVeWtXAsR/+C+n+ftybt1D+mV9HtdmITRwmn4viqtiIb6Of7n/5F6hXMK31E9F3FnZUNEqaPond2Ux6cABLVTX5aJTAd7+DZih4P/Up2huhe3AH7R2/mD6fy1xYZ/beYHaOYjJhcnvAXWh5MD4aJRwcobm1VIpuCCGEEOKakYAmxDUSyyYwMPDMN4I2mcBiVvG55g4+14Kh64TefJ10bw/m8gqsVVVYKqswl5ahaLPDR6L9NAP/68+w1tZR8wd/hGa3k4/HSXa0k2g/TbL9NOmBfs7Vjo8dPUz1V3//giHNMAyMTIZ8LEY+HiN5poPI9m1Y6+qp+PyXUEwmDMMgMroTFBVP+WbK19ZgtKxg8oXnCH7/VbQWJ+blpbiLN6KGbfT9n6+R7u/Hs/U2jHQaPR6n9NOfwf+Re3kEuLPuNl7pfZNtg7vwW72Y1Ev79dd5OgBAc+vFA7cQQgghxJWQgCbENRKdquDovkgFR90wGA0mqPA7rktpfUPXSXaeYfynPybV3TV7A03DUl6OpbIQ2NzrNmCpqmLsB98HwyDd18vQX/4FCXcZB0ddeFIBqiNncBoJ7C1LcLS2kerpJn7kMEN/85dUffX3Uc2F9XfZ8QATzz1L/MQJ9HgMIzez15hisVD527+LYir8Wsokhsilx3H4V2CyeAuX53BQ+uSn8d5+J4Gf/Ij4jw6T4uz0MUx+P5Ht7wBgbWjEd/c90/e5LS6eWPwI99XfdenPm2Fw9tQYJrNKXXPRJe8vhBBCCLFQEtCEuEoGokNUuSpQlcKUuXMVHC82ghaKpslk9euy/ix68ABj//I98uEwAO5Nmyl64CGyE+NkhofJDA+RGRkq/H1oCIDJl17AuWIlmcEB3JtvRU+nGT96mgM1q0jbnYTsFfT5V1BV66FtdTWVS0oowmDom39F/OgRxr7/Pcq/8CWCL73AxHPPYuRymPx+rLV1qE4XmtOJ5ir86Vy1GktFxfT1piKdADh8rbMei6W8guqv/j6p3h6iu3eRHujHd8+9ONqWMvr97xI/dpSKz39xzumL860JfK/ASJTDe/qJhFIsaiubVR5fCCGEEOJqkoAmxFVwNtTD/z74TX6t9QlurdoEnO+BdrFAcD1L7IfeeI18OIznttvxbNqMo7UNAGttLaxeM72dYRjkQiFSnWcY+8H3iR8+RNbp56VoK7oOSvMyMnmFTXc04vbaOHl4uNBkuT/C9ldNtCwrp/SOJ8mHM0R2vEN6oJ90bw8mfxElT3wC98ZbLrju693ioQ4MQ6Gv18ESrzHnNrb6Bmz1DTNuq/yN38bQ9QWd40IMw6C3c4Ij+wamm0f7Sxysv7X+so8phBBCCLEQEtCEuAqG4sMADMaGp2+LZqd6oF1kiuNI8FyBEPs1vLpC4Di33qzi81+66LaKomD2+zFv2Ii9pYXxZ5+m191GuiON020hm1HYuKWGtZsLYWXx0nJCkwlOHx3m9NERjh0YLBzIvIlbiuLQ24OtqZmq3/vXmLzeBV3rmeM9WLPDTAa97N7XzfFD42y5qxlPkR2X+8Lr2nTdQNPUyw5nhmFw+ugIh/f0EZoq3lLb6GflhlpqG/3XZRqqEEIIIT7cJKAJcRWEUoVpgxPJ4PRtC5nieL1G0LJjY+jJJM6Vqy5pP5PXR/mvf5G3v70fVc3wyS9twGaf3dPNV+Tgljub2XBbIyMDYfq7Jzm0u5/w5seod4zgu+ue6eqPhnF+NOxc4DEMnejECSKjuxkPWOnrtbJ6Jdg8i1i8tIwzJ8f4xQ8PT53LPt3Q2eu3c+LwEGdPjZFO5dBMKh97ahUV1d6p0DhCOpUlk8mTSefIpPNk07nC3zN5ikqd3PFAC/5iJxNjMba93MHIYARVVViyooJVG2ooLru0KZFCCCGEEFdCApoQV0EwXQhok6nZAe29I2i5vM7Tb3ex8/gw0UQWgHL/tQ1oqd5ugFnTARdifDTGZCBOY0vJdDgzDJ345FFymRB6LoGeS5Cf+lNVFFasvodTR8109yW47Sv3o+sGpw4NcfLQEONjseljq6pOddUozY39OB0pAIq84F1W+NXUvHw9bRvKWbu5nslAnPYTIwz3hzlxaIgTh4amj+N0WykqcTI8EObNF9t55FMree6HR4hH0zMei6KA2WLCYtWwO8wM94f56XcO4PHaCE4UwnJzaylb7ll0wZE6IYQQQohrSQKaEFfBuYA2kZrEMAwURZleg/buEbRIIsPfPnOc9v4QHqeFxTVeWuv9uOYYlbqa0r09QKGy4aXqOD4KwJLl5wt4xCePMtn33KxtFc2Kkc8y0f1D1qxZy64dTno7Jzi6b4DhgTCKAhXVHkzmPCW+HsqKujCb0+i6ykSogViqmdqKI2jaOJrZjdlWKGlfVOpkydIKFi0tI5/XCQxHGegNMhmI07C4hEVtpaiqyvZXz3DswCA//tZ+Mukca7fU0bK0HLPVhNWqYTJrM6YpdrUHePtXHUTCKeqbi1m6upKGxSWX/BwJIYQQQlwtEtCEuApC6RAA6XyGRC6J0+wgmolh1SxYtMLUvt6RKH/99FEmImnWtZTypYfbsFuvz49gqqcHFAVbXd2Ctk8mMnQcH2V8NEZP5zg2u2m6vLxhGEQDewCFkqZPYrL40EwOVM2BomqkY/0Eun9CkesARf6VvP78KXJZncbFJWy5qww9dZzo+H6MfApFteAq2YKnbBMN5sJIYz63homen2PzLJ5zzZemqVTUeKmomb2ebdMdjfScGScaSdPYUsLG2xovum6saUkpDYtL0HUdk0mqMwohhBDi/ScBTYgrZBgGwak1aFAYRSsEtOj09MZdx0f4p1+dJpfTeez2Jh7eXI96FQpO5ONxVMfFe6gZuk66rxdLeQWq7eLFSAIjUY4dGKTz5Cj5fGGtmKLAhtsa0bRC4Y10rJdschSHbykO75JZx7C6ailpeIKxzu/R3DTOvgM+FrfEaGs5Qqi38DypJgeeyrtwl2xANdlm7K+ZHJQt+twlPQ/nmC0m7n98OZ2nxli3pX5BRT1UVUFVJZwJIYQQ4sYgAU2IK5TIJcnq2el/TyaD1LiqiGbj1NuK+NHrZ3hlXz92q8aXH13JqkVXZwpd4vQpBv7if1H21Gfw3Xn3Bbc7VyDEumo1APFYmnxOx+MrhLV8Xufs6QDHDwwyOhQBwOu3s3xtNQ2Li3G6rdPhDJgaPQN36aYLntPqqsdkLaK0ZJTa+laWNJ9Az+Wxe5dg9yzCUbQSVb020zpLK9yUVly4cqYQQgghxI1MApoQVyg0tf7MY3ETyUSZTAVJZJPohk4kDK/s66ey2MFXHl9BZbFz3uMZhkHs4H40lxvHktlNmqEwKjb2ox9APk/8+LGLBrRzBUJC/ka2fWsfk4E4AA2LiykqcXLq6DDJeCFg1jcXsXxdzQVLyqcTQyTD7VgcVVicNRc8p6IoOItWEx5+g7UrD5HLpPFVfQRP+ZZ5H78QQgghxIeZBDQhrlAwFQKg2dfIobGjTKSC0wVCRgM65X47f/K59ThsF/9xMwyD7HiAwA//hfjRI6BpVP3ev8Y1R2n88PZtZAb6AUh1d00XJnnv8eKHDzLx7NPkFY29/TZSmQS1jX4y6Tw9ZyboOTOBxWpi1YYalq2txuu/8BTIXDpE4OwPAfBW3jnv9EFn0UrCw2+SywTRLF7cpRsvur0QQgghhJCAJsQVO1fBsdnbMB3QgsnCVEGyFr74UNu84Wz86Z8RfO0VjEwGAPviFlK9PQz/7V9T/W//A46W82u99FSKiWeeRrFYsNbVk+o8Q25yklDWws43zlJa4aLKmUF56xekz7SDqjKx4TESkzprN9ex6Y4mDMNgsDdEIp6hcXEJZsvF12AZeo6xrh+g5+L4ax7A7lk07/NisniweRaRipzBV3k3iiq/boQQQggh5iPvmIS4QuemOFa7KrFqFiZTQQ50DQDQUllOS61v3mNEdu0AwLVuPY5ly/FuvZ348WMM/c1fMvRX/4ea//CH0z3MBl5/hx2+uygqcdBaoUPnGYKnO/nV4TzxaIahvhBHAFN+LeWtrTTf0kb7vnGsNli9qRYoTEGsafAv+DEmI2fJpcZxFq2+pJGwotoHSUWX4vAvX/A+QgghhBAfZhLQhLhC56Y4+q0+im1FTKaCpJM9YIb1TfXz7q+nUuSCQRxLl1H1u1+Zvt21chWVv/HbDP/fv2Pw//w5tX/4H1GKSnnncIK41U88Cv1RcNU+grYnQjxjpil4GE8ywGR5GxOuOgaTVga3jwBwy11NWG2XV5gjGW4vXFPJ2kvaz2Tx4Sr2XdY5hRBCCCE+jCSgCXGFzo2g+aweimw+huIjJE3tGGkHW+pXzLt/ZqzQCNpcXjHrPvfGTaRiSQZ/+nOO/uW3CDRtIaJ5qbdHWPGxrRzd20d/Vx4jo1FljNEwcZiKL3wJz5atoChMjMXpPTtBMp5hxdrqy3p8hqGTjHSgmVxYHJd3DCGEEEIIsTAS0IS4QqF0GJfZiVkzU2QrNHNGMShOrsCszf8jlhkZBsAyFdBGhyIc3ddPYCRGIp4hmwHqnyhsPA7OdJA7PrUWZ2MRtY1FnPlP/4nxiTT+5Cjutevwbr19+tgl5S5Kyl1X9PjS8X70XAJX8doF9RUTQgghhBCXTwKaEFeg0KQ6RLmjFIBie2Fdl550sNw3/+gZQHa0MIJmqajg7V+1c/JwIbDZ7GY8PhsOlxWH0wIDZzE6jlFfbsLZ+Nj0/p6meoyBtwvn/9ijV+uhTTs3vdE+R1NqIYQQQghxdUlAE+IKJHNJMnoWn80LFCo5qmik+5fQeId3QcfIjBTWiOXcxZw83IHXb+eOB1qoqvPNGLEyjCXED1dia2qesb+tqZnwtrdxrd+Itab2Kj2yc+c0SIY7UFQLNnfjVT22EEIIIYSYTQKaEFdgLDkOFAqEADR661kafYp9oXEaKj0LOkZmdATFZKJvXAdg+bpqqutnV1hUFAXXmtlFOtwbNpENBPDddc9lPoq5GXqeib7nyKUncfiXS5l8IYQQQojrQN5xCXGZsvksP2p/BoAW//m+YD3DMVx2M6Ve27zHMAyD7OgI5rJyTrYXwl7TktJLug7VaqXksScuaZ9z587nYujZGPlcnHw2jp6LkZ/6dzY5RjY1hsVRjb/mgUs+vhBCCCGEuHQS0IS4TD878xz90UG2VG5gTVlhvVksmSUQSrG8sWhBBTXykTB6MonRUs1wf4iKag8ut/VaXzoAE73Pkggeu+g2dl8bxfWPoqqXV55fCCGEEEJcGgloQlyGPcMH2D60h2pXJU+2PDp9e/dwBICGSveCjpOZKhAy5qzFiENT66WNnl2uVLSbRPAYJmsJNk8TmsmJZnahmZyo7/q7TGsUQgghhLi+5N2XEJdoKDbCj9qfxqbZ+M3ln8OinR9d2nW8UPCjrb5oQcfKThUIGcoUAl1Ty7UPaIZhEBp8DYCShkexOKqu+TmFEEIIIcTCqO/3BQhxM0nlUvzj8X8mo2f53NJPUuYomb4vHEuz7/QYVSVOWut8CzpeZrRQUj+UVHF7bbgXsG7tSuj5DNGxXWSSwzh8yyScCSGEEELcYGQETYgFMgyDfzn9M0YTAe6pvZ3Vpctn3P/24SHyusE9a6sX3NA5PTBATjGRSuuUVNqvxWVPi00cJtj/IoaRQ1FMeKvuuqbnE0IIIYQQl04CmhAL9PbgTg6OHaXZ28DHmx+ccV8ur/Pm4UHsVo3NyysWdLxkVxeJE8fJ1y8DwOu/tgEtPnEYw8jjKd+Ks2gFZuvCpmEKIYQQQojrR6Y4CrEAOT3Hs50v4jI7+dLyz6Cp2oz72/tDhGMZtiyrxGaZ/3MPwzAI/OSHAJhuvRe4tgHNMHQyyWHMthJ8VXdjtl2fYiRCCCGEEOLSyAiaEAuQzmfI6lmWFrXgs3pn3R+MpAGoq3DNui+fiJOPRMhHo+SiUfLRKJnBflKdZ3CtWceoowgI4fFdu4CWTY1j6FlZcyaEEEIIcYOTgCbEAmTyGQDM2tz9wKKJwv0eh2XG7eF33mb0n78Luj5rH8VqpeQTn+TMoRBwbUfQMokhAAloQgghhBA3OAloQixAVs8CYLlAw+bIuYDmPB/QcpEIgZ/8CNVqxbV+Aya3B83lRnO70NxurDW1mHx+wsFCJUeP79pVcMwkCueQgCaEEEIIcWOTgCbEAmT1HHDhEbRIvBDg3Pbz9088+zR6MknpU5/Bf8+9Fzx2JJjE6bZgMmsX3OZKFUbQVCz28mt2DiGEEEIIceWkSIgQC5DJFwKY+QIjaOemOLqnpjim+/sIv/M2lqoqfHdcuJx9PqcTjaTxXsP1Z4aeJ5McwWwvR1HlMxkhhBBCiBuZBDQhFuDcFMcLBbRIIoPVrGG1FEbBQtveAsOg5PEnUUwXDkWRcAoAz2WsP9PzGWITh9HzqYtfe2oMjDxWR+Uln0MIIYQQQlxf8nG6EAsw3xq0aCKL21G4z9B1YgcPoLpcOFesvOhxI8EkcOkFQjLJMSZ6fk42FSCTHKGo5oE5tzMMg1S0u3Dtsv5MCCGEEOKGJwFNiAXInpviOMcaNMMwiCYy1JW7AUid7SQfDuPZejuKdvF1ZeFQIaBdSon9XCbMaMe3MPQsoJIMncaovh9FUc5vkw4SDx4jPnmMXHoCAIuzZsHnEEIIIYQQ7w8JaEIsQGZ6iuPsH5lkOk8ub0yX2I8e2A+Ae/36eY97OSNo8ckjGHoWX/V9ZBIjJIJHySaHMdsriE0cJD55lEx8AABFMeHwLcVZvBqLvWzB5xBCCCGEEO8PCWhCLED2IkVCzhcIMWMYBrGD+1HtdhytS+c9bih4aSNohmEQnzyOophwFa8hZekiETxKItQOwZNExnYCCjZ3Iw7/Chy+NlTNusBHKYQQQggh3m8S0IRYgHMjaBbNMuu+yLsqOKa6u8lNTuLZfOt0cRBdN1BVZdZ+uq4zMhDG67djtS3sRzGbHCGXHsfhW4qqWbG5m1EUE/HJw+SzMTSLj/KWL2Iyuy/3oQohhBBCiPfRvFUcdV3nT//0T1m3bh2PP/443d3dM+7ftWsXS5Ysmf76h3/4h2t2sUK8X7IXmeJ4rgeax2EmceIYAM7VawA4c3KUb/3FO7QfH5m139hwlGwmT3WDf8HXEQ8Wju/wLwdA1SzY3E3ks1HAoKj2IQlnQgghhBA3sXkD2quvvsozzzzDd7/7Xfx+P3/2Z3824/4TJ06wdOlS9u3bx759+/jCF75wra5ViPfNuSmOljmKhExPcXRaSJw6CYqCo7UNgO6OcXJZnTeeP82Rvf0z9hvsCQJQU7+wgGboeRLBEyiaDbtn0fTtdl8rUAht775dCCGEEELcfOYNaAcPHqShoYHly5ezZcsWDh06NOP+48ePMzQ0xKOPPsqf/MmfkEpdvCeTEDejrJ4D5l6Ddm6Ko8cMqa6zWGvr0JxOAEaHIlisJpwuCzvfOMvut7owDAOAgamAVl3vm/f8hp5jvPun5LNRnP4VMxpOO4tWUlz/KEW1D1/RYxRCCCGEEO+/eRe+RKNRbDYbADabjWg0OuP+ZcuWsWLFCjZu3MhXv/pV/uqv/oo/+ZM/ueDx/H4HJtPFS49fb6WlMiXsg+Zqv6ba1OBXWbGPUv/MY+cKeYuKVICJXI7itasoLXUTDaeIRdK0LCvngUeX8/2/382h3X0YusH9H1/GyFCEyhovtXVFFz23rufoOvw9kpEO3MWLWbTqMdT3juSV3Xq1HuoNTX5WP5jkdf1gk9f3g0le1w8meV1vDPMGNJfLNT0qlkqlcLtnvnBf+MIX0HUdq9XKmjVr6OjouOjxgsHEFVzu1Vda6iYQiM6/obhpXIvXNBIrfN/GIhkCuZnHHpuIA5A8dRIApX4RgUCUrvYAAP4SB9l8nkeeWsWLPz3K4b399HZNoOcNyqs9F71WQ88R6P4JqUgnNncz3ppPMDGZAj58I9Xys/rBJK/rB5u8vh9M8rp+MMnren1dLAzPO8Vx1apV9PT0cOrUKXbu3MmaNWtIJpPE44U3pffffz9/+Id/SF9fH0eOHGHFihVX78qFuEGcKxJimWuKY7wwxTHf2QGahn3xYqAwvRGgvMoDgMNp4WNPraa63kdwvBD4ai5SIMTQcwS6fjwdzkqbPoU6x/mFEEIIIcQHx7wB7YEHHuDxxx/ns5/9LMFgkD/8wz/ka1/7Gl/84hcB+LM/+zPa29t57LHHWLNmDV/+8pev+UULcb2dr+I4V5GQLD6zTrq3G1tDI6qt0NNsdDCCokBZ5flPSCxWEw8/uZKWZeX4iuxU1njnPJ+uZwl0/YhU9Cw2zyJKmz41Y92ZEEIIIYT4YJr3HZ+maXzta1/ja1/72vRtX//616f/vmHDBl566aVrc3VC3CAy5xpVz1HFMZLIsFgPgq7jWFKoqJjP6wRGohSVOjFbZv6YaSaVex5pu+j5JnqeJhXtwuZZTGnjkxLOhBBCCCE+JORdnxALcKE+aLpuEEtkKaMwZ9tSUwPAZCBOLqdPT2+8FPlslGS4HYujSsKZEEIIIcSHzLxTHIUQkNGzmFQTqjLzRyaWzGIA/nxhTaa5pAwoTG8ELiugpaKFZvAO31IJZ0IIIYQQHzIS0IRYgGw+e4H1Z1NNqtOFQGYpLQXeVSCkeu41ZheTjJwFwOZpvqxrFUIIIYQQNy8JaEIsQFbPYpljNOt49yQArmQY1W5HdbmAQkCz2kz4iuyXdB7DMEhFu1FNTsy2siu/cCGEEEIIcVORgCbEAmT13KwRtGxO5+W9fVjNKtZ4CHNJKYqikExkCAeTlFV5UBTl0s6TGkPPxbC5my55XyGEEEIIcfOTgCbEAmTz2VkVHHedGCEUy/CRVi9GJoP5vdMbL2f9WaQLAJu76QqvWAghhBBC3IwkoAmxABl95ho0XTd4aU8fmqpwW60VAHPpVIGQqYBWUX1pAc0wdJLh0wDYPBLQhBBCCCE+jKREnBDzMAyD7HsC2sGOAKOTCW5fVYktHgQ4P4I2VcHx3Q2q55PPxhjv+TnpeD9WVx0m88L3FUIIIYQQHxwygibEPLJ6DgDL1BRHwzB4YXcvCvDApnqy4wGgMIKm6wZjw1H8xQ6sttlVHy9kovcZ0rFe7N5WSpueuuqPQQghhBBC3BwkoAkxj3NNqi1TI2gne4L0jkRZ11pGRZGD7NgYAKaSUvq6Jshm8pRfwvRGwzBIxwcw20opaXwSVbNe/QchhBBCCCFuCjLFUYh5nAto54qEvLi7F4CHbqkr3D8eIGl28eOfniUeK/RFq6xZeP+zfCaEoWcx28ulcqMQQgghxIecBDQh5pHJTwU01UzXUIRTvUGWNfhpqCiMkmUCY8RKmojHMlTX+1i2porGlpKFHz9VGIGTvmdCCCGEEEKmOAoxj+kRNNV8fvRscwMAeiZDPhQi7y4GYPnaappby1DVhf9oZZNTAc1eehWvWgghhBBC3IwkoAkxj3MBLZM2ONgRoLHSQ2udr3Df2GjhT0dhSqPdabn046cKRUYsMoImhBBCCPGhJwFNiHlkp6Y49gwnAHh4c/30WrHQG68BkHP6AXA4F165cfr4yTEU1Yxm8V2FqxVCCCGEEDczCWhCzCMzVWZ/YDRJRZGD1YsL68vSA/2E39mGpaqKnNMHgN1xaSNohpEnm57AbCuVAiFCCCGEEEICmhDzyeYLlRn1vEpjpQd1KkgFfvpjMAxKPvEpkoksJpOK2aJd0rFz6Ukw8lIgRAghhBBCABLQhJhXZmoNGrqKd2qNWfz4URInjuNoW4ZzxUoS8Sx2p+WSR8Gyyakm13YJaEIIIYQQQgKaEPPKTgc0DY/TgpHPE/jJj0FRKP3kpwFIxjPYL2P92fkS+1LBUQghhBBCSEATYl7ZfGENmqFruB1mwtvfITM0iOfW27DW1pJO5dB1A8elrj/T86Sj3QBYZARNCCGEEEIgjaqFmFf23VMcTToTzz6NYrVS8ujjQGH0DC6txL6ezzDe/VPS8X6srkZUk+uqX7cQQgghhLj5yAiaEPPIvGuKo33/2+SjEYoeeAiTzwdAYiqgORYY0HQ9S6Drh6SiZ7F5FlHa/Gmp4CiEEEIIIQAZQRNiXuf6oLnTafI738bk9+O/74Hp+5OJwv0LWYNmGHkmun9OOtaL3dtKSeMTKMqlVX4UQgghhBAfXDKCJsQ8zk1xvH3oNGSzFD/6BKrVOn3/QkfQDMNgoveXJCMd2NxNlDQ8LuFMCCGEEELMIAFNiHlk9SzmrM7S0ACW6ho8m7fMuH8ha9AMwyA4+DKJ4FEsjmpKGj+JosoAthBCCCGEmEkCmhDzyOSzOJM6CmBraERRZ/7YXGgETT+3dg2IjGwjFtiL2VZGafOvoWqXVvFRCCGEEEJ8OMhH+OKq6I8O8Y/H/5m7a2/jjpots+7P63kimSh+m+/6X9wVSuczOFI6ACavd9b9yfjUGrR3ldmPjO4iNPQqzqLVmKxFhEfexmTxU7boM2gm+/W5cCGEEEIIcdORgCauWDgd4e+OfodQOszTnc/TVrSYMkeh8fJEMsiu4b3sHNpHOBPh36/7Mk3ehvf3gi9RMnM+oGlzBbREBk1TsFgL68mS4TOEhl4FID55uLCfyUXZos+imd3X56KFEEIIIcRNSQKauCJ5Pc/fH/suoXSYZcWtnJg4zY/bn+X2mi3sGNrDyYl2DAxUpTAtsDPYfdMFtFQuQ1HywiNoiXgGu9OCoijk0kHGe55GUUyULf510rE+kuF2/LUPYbL6r/elCyGEEEKIm4wENHFFTk620xvpZ23ZSr607DN88+i3OTnRzungGQAaPXXcWrWJek8t/3Xv/2YwPvw+X/GlS+cyOJIGAJpnZkAzDINkPENxWaHRdGziEIaexl/7MFZnDVZnDZ7y2VM+hRBCCCGEmIsENHFFdg8fAODe+jtRFIVPtzzOP538ITWuKm6t2kiNuwoA3dCxaVYGY4WA1hnqZsfQHp5a8gQWbf7+Ye+nTD47HdDeO4KWSefI5w3sDguGYZAInUJRTDj9K96PSxVCCCGEEDc5CWjissWzCY6Pn6TSWU6tqxqAYruff7/uy7O2VRWVKlcFPZF+snqOV3rf5MTEadaVrWJ5Sdv1vvRLktELVRzhfEDL53VikTQjg2Gg0KQ6mwqQS09g97ZKlUYhhBBCCHFZJKCJy3Zg9Ag5I8+minUoijLv9lWuSrrCvQzFhjkT6gKgK9x7wwe0nJ7DkdLpKV7F6WfaiYRSxCIpDOP8Nh6fnWToFAAO3439eIQQQgghxI1LApq4LIZhsGfkAAoKGyrWLGifamclADuG9pDJF3qHdYV7rtUlXra8nkc3dMxTUy/z5LCmNY5Xr4HeEA6nhfJqDx6vHY/fjtdvp7GlhPHOX4GiYfe2vM+PQAghhBBC3KwkoIlLZhgGz3e9TE+kj2XFrfissysbzqXaVQhoe0YOAqCg0BvpJ6/n0VTtml3vpfrmkW8znprkP6z7PcyqmbyRQctbAVi6poo77p8dwLLpSbKpUWyexaia9XpfshBCCCGE+ICQgCbmZBgGHcGzDMaGyBv61FdhZGk8OcH+0cOU2It5asnjCz5mlascKEwZVFBYU7aCg2NHGYwPU+euuVYP5ZINxIaIZeN8+8QPMKsm7Jk8Ga3QXNrlmnttWSYxBIDd3XTdrlMIIYQQQnzwSEATs3SGuvlh+9OMxEcvuE2ZvYR/s/ZfLXj0DMBuslNs8zORClLnqWFZcSsHx47SFe69YQKabujEswkAOoKdAJRMeMlM/aQ4XHOPjuUzhWIh0utMCCGEEEJcCQloYpafdDzLaHyMDeVrWFm6DItqRlVUNEUr/Klq1LiqLqs8fpWrkolUkFb/Yhq99QB0h3u5s+bWWdsmcynGk5O4Lc5LCoJXIplLYWDQ4msmnc+gKRrxt52kTeMAON1zj6DlpgKaZrk+1ymEEEIIIT6YJKB9CHSFe/n+qZ+ypnQ599bfic1ku+C2yVySodgIi3yNfGHZU1ftGrLZPIGRKK5T9TSP+mla3EyZvQSn2THdE208OclEcpLx5CTjqYnpkSwFheUlbTzceB+1U33VrpVYJgZAib2Ip1qf4HRPkF9lnyatOQBwOOceQTsX0ExmCWhCCCGEEOLySUD7gMvms3z/1E8YTQT4Ve8b7Bjay8NN97GlcsOchTm6wn0YGDR7Gy7vfJkcZ06OEZpIEI2kiIbTRCMpUons1BYKdrz070mxvFahydvAsfGT/OD0z6ePYVI0iu1F1HtqKbYV0Rvp59j4SXoiffznzX+E5Rr2GItNhUKXxYWqqPSMxnDmk6TNHuDCI2j5TBhFtaJeJPwKIYQQQggxHwloH3Av977BaCLA1qpN+KxeXul7ix+1P81bAzt4rPkhlhW3zuhhdq7sfZOv4ZLOYxgGp44Ms++dHhLxzPTtmqbg8tgoKXPh8dlobi3jwI4eejon6Oua4NHmh6h31+KzeSmxFVFiL8Jr9aAq6ozj/+LsS7zS+yZvD+zk3vo7L/fpmFcsGwfAaS6MmPUMR/DkkqTtFagq2OxzT+vMZcKYZHqjEEIIIYS4QhLQPsDGEgFe6X0Ln9XLY4sexmaysaVqI893vcKu4X387dHv0OpfzCeXPEq5oxSArlAPCgqNnvoFnyc0meDNF9sZGQhjMqusu7We+uZi3F4bdod5VhNru8PMT7+zn+2vdvLJL63nwcZ75j3HvXV38s7gbl7tfYut1bdgv0YjVbFsYYqj2+wCoHs4yh1KmoDmwDHHYwHQ8ykMPS3rz4QQQgghxBVT599E3Ky2De4ib+SnwxmA1+rhM22f4I83/j5tRS2cDp7hv+39C17pfZOcnqM70kelsxyH2T7v8XXd4Mjefn7y7f2MDIRpWlLCr/2rTWy8rZHyKg8Op2XOQFNc5mL52mrCwSSvP38awzDmPZfDbOcjdbcTzyV4s/+dS38yFiieKUxxdJodRBIZJiIp/EqWtMmO0z13KJxefyYBTQghhBBCXCEZQfuAyuaz7B0+iNvsYnXp8ln3V7sq+b1Vv8HhwHF+0vEsvzj7Er2RfrJ69oLTG/N5nVQiSyKeYbA3xJmTo4yPxrDZzdzz0VaaW8sWfH2b72pmYixGV3uAXW+eZcvdi+bd586arfyq5w2OBE7wUOO9Cz7XpTg3xdFlcdIzHAXAbuQxFA2He54S+xLQhBBCCCHEFZKA9gF1OHCceC7BvXV3YlLnfpkVpdAsutnXwP/a/zccDhwHmC4QcvrYCKePDpNMZEnGM6RTuVnHWNRWxtZ7F2F3XFrhDs2kcv/jy9j+0gvkomcY7vdQWXvxgGczWalyVjAYGyKn5y74uK7EdEAzuzg6XAheeq4wwue8QA+06RL7UsFRCCGEEEJcIQloH1A7hvYAsKVqw7zbeixufm/Vl/jzA98knkvQ7G0kMBLlrRdPYxhgc5hxuCwUl7lwOM3YHYW/1y8qxuE8H8wMI4+h58AwCn83chh6bvrvejZOKtZLLj2OyVpMNjVOS+MZAKKDP6C0/EuYLJ6LXmuNu5LeaD+jiQDVrsoreIbmdj6gOegZGcCXjZIxVMCYtweajKAJIYQQQogrJQHtA0bXDfaeOcbY2SQttS2UTRX/mE+5s4zfX/s7DMdH8Vu9PP2rgxgGPPLpldQ0FF10X8MwiE8cIjj4Coaeuei272V1NTLQm6e0uI/hU/+Ap/wWXCXr0Exzr4GrdhX6oA1Ehy47oEVGdxIZ24mrZD2esltQtfNry2KZOCZFQzXMdA6GWZUfpexRKyvjHTicrXMeLy9NqoUQQgghxFUiAe0GYxgGeSN/WdP3ouEUP/7ebrJxqGUN1lGNiaYYxWUu8nkdTbt4TZgqVwVVrgqO7OsnMBKjZVn5BcPZuVCWSY6SS4+TinajaDbsnhZQQFFMoGgoqglFMaEoGopmweqsxWIvI5uexNBz2NxNJPRxTh58mSUtfYSH3yAy+g7OolW4SzdhthUTmkyw47VOSivc1KycCmixITax7pKfo3w2RnjkbQw9S2RkG7HAXtxlW3CXbkTVLMSycVwWFwfaA8SSWdYWBbD4oMgSxnmBNWi5bBhQ0aYqPwohhBBCCHG5JKDdQEbio3zv1E+YSE7yHzf+W7zWi0/3e6/Xf3WcbBzixWO0VS2i71iEp793EM2kkk7laGwpYf2t9ZSUuy94jNBkgr1vd2Oza6zdkCY0/BZmW+nUVzGKomEYBsGBXxEb3ze9n9VZS3HD4wue5qeZz19DQ0sJe7a18NobFdTWjNBQP4ih7yc2vp94qpIjR6sJBh0M9gZ5av16AAZjw5f03JwTHnkHQ8/iq7oXw8gTHdtJePgNooE9eMq3ksrG8dmLeHV/P5qh4/WFARc2axq7c+4eaPlMGM3iQVGkKKoQQgghhLgyEtCus4HoELuG93Fv/Z34rIUwoxs6b/S/wy+7XianFwpxvNm/nUcXPbTg43Z3jDPcHSPunmDLw41sqVrL2eYAu97oRDNrON1WujvG6e4YnxXUYpEUgZEYFTUe3nn5MCXFo6xZM0F0eOw9Z1Ex24pRNRvpeD9mWxnF9R9D1RxoFu+cJfUXQlEUHnpyBScPDxEJVXLizBJs5n5qKvrw+4dZt2qCU933M9gbZqwvTom9mIHYEIZhXNI5c+kgsYkDmCx+3GUbURQNd+l6ImO7iY7tJjT4Mo85VLblrXSORLmrNINaWxg10zQDh12fdUxDz5PPRrG66i7rsQshhBBCCPFuEtCuE8Mw2DG0h5+eeW6639i/Xfu7hFJh/vnUjzkb7sFtdvFk28f46ZnneGdwN/c33IX9XWuxDMPg1JFhRgcjZLN5ctk82axOLpsnNJkAxWCo4TitRXcD0NxaSnNr6fS+/d1B9m3vnhHUSstdHNzdRy6rs7i5h1WtfVMnA4dvGc6iFWTTk2RTAbLJMbKpAIYewGwro2zR59DMzqvy/Hh8dm65s/ldt2wgm8kR6H4OOM7GLVae6YWujnFqGis5HDhOOBOZDrkLEQnsAUPHW3kniqIBoGo2fJV34i7dyEjn96lOjpAJFYLYRtcYqu/8qJmmxoGZ58tnI4X7zL7LedhCCCGEEELMIAHtOmkPdvLD9qdxmhw0extoD3byzcPfoifSR0bPsrp0BZ9e8hhui4vx5CTPdf2KF7peRVVVVFTurLiN3a/00t0xPuvYmqZgtmgEGjrwFNkosvlnbaMoCnVNRdQ2+mcFNZvdxMp1fsrd28lkrPirb8FdtBiLo7De693lOgzDIJ+LoZmc13xKn9lioqhqDWOdxzEr3bg9RfSdnaB6aRWHOc5AdGhGQEtkE3RH+hgZGaI7MMjHmh+kzFEydd15EsHjqCYHDv/SWefSTA7ytkpIjuBI5/G7rdgphNVY3InLGSefi87aLxUrbGO2zn7OhRBCCCGEuFQS0K6TzlAXAI+XP87gniyJqjwdobM4THY+0/oJ1pWvnp6ud1v1Zl7pfZM3B7YDoOZM9L5kYIk7qarzcdu9i7HZTZjMGiazhqoq9ET6+J/7n2Orf9NFr+O9QW1kMMyKddWkJt8kGtCpWHQfruI1F93fZL7wGrarzeqqRzU5SYZP0bjkYxzdN4QzUihccmDsCKF0mL7oIF3hHkbiYxgY0/uaVBNfWPYUE8lJ9nc/T1suwYipmHJdx6xps86V1pxYAb+qg8dE3ptGNaz09lWwrO0s+czMgGYYBtHAbkDBWbTyWj4NQgghhBDiQ0IC2nUyEBsCINyhMDYUpSq2imX3LOK2ho2zpuk5zHaeWPwxjo+fZE3Jao69OEk6rhAuG+Tzn9iEwzK7BH37ZCcALf5FC7qec0GtrqmIfC7B+MRBNLMHp//GChqKouLwtREb3099Q5qj+yDeq4EX9o4cZO/IQQAsqpnFviaafA2srWvj2/t/wsGxozy++KP8sP1pmlO9YDXz6mQ/SuA4Gypmh9CYasEKlFnzePIB1HIrwZAH1VwGnJ2eznhOOtZDNjmKw7cUk4ygCSGEEEKIq0AC2nUyEB3Gp3npPxNCUSAeyVB2vBLP4rkrNW6p2sDmyvW88uxJ0uMKzjqd4+VH2D/WxO01m2dt3xE8C0CLv3nWfRdj6DmC/S9h6Fk8lXejqLNHlt5vDt9SYuP7sZt68JeU09se5JGtT2KpT2E32alyllPjqkKbuvbSUjd31Gzhxx3P8p0TP6Q72MlDfje6ycFQPsaRCwS0sA5uw6DCmmdAT6AokM8UccfDaxlr30UuMzOgRcZ2AeAuu+XaPwlCCCGEEOJDQeqCXwexbJxgOkRVqplsJs/KDbVU1fnoPjPOD/5+D0f3D5BJ52bt135shK72AJU1Xj766Do0VWPb4E4M4/w0vnA6ypv92zkb7qbKWYHbsvBeXLl0iNEz/0QidAKLvRJnydqr8nivNqurDs3sIRE6zv2PNmG1mejdmaAlv5zNleup99ROh7NzNlasw6bZ6Ah2sthswoSBr3gNpfZiTky2k81nZ50nlk0wntcpsWcoKio0n25ZuRqrrTDC+e4RtGwqQCrSidVZi9VZcw0fvRBCCCGE+DCREbRrxDAMAiNR+rom6ekfwW0qx5EsJQUsWV7O2s117Hm7i/bjo+x4rZN973SzdHUVK9ZV4/LYiISSbH+tE7NF455H2nA7bKwuXc6BsSMcGz9JPJtg/+hh2oOdGBgoKNxZe+sCr00nOraH8MhbGHoWZ9FK/LUPo6pz9/l6vymKiqd8C8GBX0H6EA88voFf/ugIL/38GA8+sYKahtnTC20mK5sr1/PmwHbucPvBSOIsWsXKRILX+7ZxOniGFSUzi4XEs3GUtEqV06CmagQjZ+CqWIqimlBNzhkBLTK2GwB32ezRTCGEEEIIIS6XBLSrKBHP0N89SX/XJP3dQVLJ86M09awjpYC/xEFRqRNFUbjjgSVsvL2Rk4eGOHZwkMN7+jm6bwB/iYPgeAJdN7jroSW4vTYAbv//t3ff4VGV+d/H39OTzKSTThISegstVFGxISLLimV1Ufy5+ugqtq2IXq5l93p2xYbPujaWVdefi4ooKBaKgBRBEBBCbykQSO+ZTCaZ8vwRiTRBEJhk9vO6Li/JzJmT75lv7nvOd+5z7rvjCDaUbua1Lf9u3W9GRBqDEvozML4fkbZTT97R1HCIiv2f0OwqxmgOIyb1asKi+57xGmbniyN2ILUlX1Ffvp7kXiO4ckJvFs7bxmdztnDVdX1IzYg57jVXZVxOB4OXiPothEZ0wxISS/+4PizZv4LNZduOK9Dqm5346xxgd2K2+DHUWDEYW5qI2RLRssSA34/P48RZmYPZGk1oZLfzcvwiIiIi8t9BBdpP5Pf7yfmmkN3bSigvqW993B5upUdWImmZMayoWEn1eishrnC69U44qhgKDbMy6IJO9Buayt7tpWz+ppCq8gY6JDro0iOe7n0TW7ftHNmJrA69KXdVMCihH9kJ/ekQGvuj4vR5m6gpWkZd2TrAjz2mH1EpV2Ayh5219+JcMhjNRCSMpKrwcyr3zyclbTRXXdeXBR9sYcGHWxn/y/4kJB99P5/dEkZvswcX398n1ikijQhrOJvLtmI1WXB7mmj0unF73RTUHqBXRQYkOgGwWL5/703WCJpcRfi8LurK14PfS3j8sHO+1ICIiIiI/HdRgfYT+P1+vlqyly3rD2I0GUhJj2qZwj4zhpgO9tZC7L11+ynvW8n9qQ+QlnnigspsNtEjK4keWUn4fH6MxhONaPmZlDoYn6+Z0IguP3qR6CZXCWX73sXbXIPZFkNM6tWEhGec6WEHjCN2APUVm3DV7sa1fQ8xqVdzxTW9WfjhVj6dncM1twwgpsP374nHXYWreieW0CRsjnQAjAYjA+Oz+LLwK5YXrj5q/0afieaSROjdsrZZWNz3I2wmS8R3+6ykvnw9RlMI9ph+5/qQRUREROS/jAq0n2Ddyjy2rD9IdIcwxv+yP2F263HbNPs8FDlLSI/oSEbXuFPu0+drxudpwONx4vM1YzAY8Xmb8LgrqC/fQHNjWeu2VntHwiK7ExrZDbOtwwkvU/S4qyjd+x98nnoiEkYSkXhhm73X7FQMRjOJ3e+goXoHFQXzqCtfT0aPgYy6qjvLPtvFJ+/lMOGWAcTFtVzqWVu2FvATET/sqPfmmi5XMzhxABajBZvJis1kw2ayUVxQy6frt+BuMGE1N+Po07/1Nabv1n6rLV6Fz9NARMJIjKbj8y0iIiIi8lOoQDtD+XvK2bh6P5HRoYy/qd8JizOAnLJt+Pw+UsKTj3rc3XCI+vINeJvr8Hka8Hoa8Hmc+H3Hzy74PQP22AFYbLG4anbjdh6gyVlI9aElmG0xRKVcQVhkd/x+P421e3A3HMJZmYPPU090ypWEx598Eev2wGAwYo/uTX3ZOtzOQnxeNz2ykmh0NbNmWS6fvLeZOx68EJ+nEWfFt5gs4YRFH32vmcVoplNE2nH73re7HICqZW4Sog0Yh9panzNbW2ZydNXuBoOJ8LjB5/AoRUREROS/lQq0I+ys3MPKg19zQ7fxxy0eDeD2NuHz+/C7jSz7fBdGk4ErJ/QmzGE7bluvz8v83IVsOriCGxyhpBvqqStdi8EUQrOruPVeMAAMJkzmMMy2WEzmMIzmMExmOwajBb/fh9FowWyLxmrviMXWMhlGRMIIvJ4GXDV7Wi75q9lNRf5crD3voaF6B9UHF7XGEpF40Tkvzpo9PtbvLGXT3nJ2H6gmLMRMfFQocdGhxEeFEh8dRpTDSp2rGXeTl/SEcCxmI19tKWJPYQ3NHi9Wi4mMpAg6J0fQKSmCUNsP/3na7KnfFagHCYnIpP/QNFwNzWxae4B3Zq7lolEtxW544kUYDKde2628pJ6920vx+f2EFxzEmnB0AXZ4BA3AHt3nqJ9FRERERM4WFWjf8fl9vLdrLqWuckobyvjtwHsIs4Qetc1Lm2bSUNdEn8KLaWxoZsSlnYmJC8VZtQ2fpwGT2Y7RHEYTRt7b+zmltXncHB6GzQA486ly5rfuy2yNJjr1Kmz2VAxG63GXJ/q+W+vMeJLZFU3mMByx/XDE9qO+fCOVBz6hPO99mlzFGM12YtN/jiUkHrP1xIth/5C9hTWs2V5MVa2bUJuJ4b0T6dUp5oT3xbmbvCzfdJAF6/ZTXd8EQJTDSk19E0UVDSf9PQZaS9RW3+5pGcUyGCClg4POKRFc1C+ZjKSjj8HqSIVScDsPEBKRCcCwUZk0NjSza+shKg6ux2q1YI85fkHqY1VVOJn/3mY8TV6c7kpMfi/WxKSjtjEd8R5qYWoREREROVdUoH0np2wbpa5yHBY7h5zFzNjyb+7tdwcWU8v9WqUNZZTvayI5vzdFvhoyunWgS9dairbPw9NUddz+rgSICAMMRCeNwdBgxV17AJM9FIPJSuP6/Rx4awYeDHhMFpow4zaYcPlNNHr8+JqacIVF0ff2ifTqknDK+O2xA3BWbcNdnwdAh04TCAnPPO33YWdBFdPf30yzx9f62JptJUSH2xjRJ5EL+iaRGBNGY5OHZRtbCrO6hmZsFhNXDkllZFYyybFhGAwG6l3NlFW7KK1yUVrtoqbeTXiYFbPJQF5RHbUNTQzuEc+QngmE2czUu5rJPVRL7qEa9h2qJb+olsKyetbtKOW5e0cQYv3+z9VmTwVaCrTDDAYDF1yWSGL0CqyWRvLyk1myfCNXTuhDclrUCY+3ttrF/Hc309jQTHTXWPzfbAXAmnR0gWa2RGA0hWJzpGINPXU+RERERETOhAo0WmZj/GL/cuJNRm7v2I9va4tZUZnLv7e/y+19bsZoMLJ6xxY65mbhM3lJG2FlWJcyKvJXgsGEo8NgbPZUiusK+LboG8x+L50ccSSFxmAsslL8xGv4PZ7jfm+j0YIPI1Z/MyF+3/GB1Rew/4ViNlz2C5IjrVh9zTR6/Dg6RNO3dyqO0O8n+zAYDMSmjaMs913sMf3PqDjLK6rl/32Qg8/nZ/I1feiRHk1JZQOrthSxbkcJn64p4NM1BXROjqCkykW9q5lQm5nxF3Ti8uyj4wFwhFpwhFqOG/36IdHhNgZ1j2NQ95bJVDxeHx+uyGXB2v2s2VbCJQNSWrc9fEmo23kQv98HGHBWfEvVwcXYQ914/Mn4LNm4G6v5Yv4ObrwjG1vI0fHV17n5+J3NOOuaGH5JZ3KqnMQ2tSxGfewImsFoJqnXvRiNmhhERERERM6dUxZoPp+PJ554gk8//ZT09HSee+45MjK+n6J906ZNTJ06lcrKSiZNmsT9999/TgM+F/bV5FNbf4D/CXfgr86hP9A/ykFp416+2foqPRIvxrezmKHZ5VgiqrFYbdSWuDFZo4iOHkPFrLkUl35OhcFFpNVIYoc04jtE462pombjBkzh4YQPHoIpMorKwmIO5B7iW3MK/l79GdgzkWiHjZAwM1E2Aw6TD4PPi8FsJu/Nt0jb+i1pn754XMw7zWE0RMYTlpZKcq+uxHbLxJqcQlLPe1q3qXU2sWZbMU3NXixmE4N7xBP73aLXx2pobObluVtoavZyz8/7kN0jHgBHSiSdUyL55WVd2bi7jFVbitiRX0VYiJlrLszg8kEdCQs5N7NCmk1GRg9OZfE3B1iyoZBR/ZOPuhTUZu+Is3Izrto91JWuw12fh8FoI73XDfisPcgcaCA8Kp9vVubzxfwdRESG0uBsYvDIToTaLcx/dzN1NY1kj+xE70EpfDJrI8OaasBgwBJ//ChZe1kzTkRERETaL4Pf7z/2NqCjLFy4kD/84Q+88847TJ8+HYvFwquvvtr6/M9+9jP69u3L2LFjueOOO5gzZw59+/b9wf2VldWdvejPgri4cD759nMiDy4mzGpi5+5OGAwQG1NNdFQtJtPRI1tOn58Qg4EwRyph7j6U/PNNfA1OnCFGbE1+zL6j305beifCbr2LdYeaWL21uPW+rJF9k7h1THfMph9e6Njv81H28UdUb91Gc4gDr9WG2QDuigoMpUWENTmP2r550Eh63/N/8Hh9fLqmgAXr9mN0OXEbLfgMJkxGAxdmJTF2eDodIr+/v87v9/Pax9uwrlpEtr+Y7r/7Dbbk5GPDaVXX0ITVYsJmMeGtr6fys09o2L2L5pJiHNmDib/pZoy24ydOOVMzPt7G19tL+MNN/enVKab18cP33R0WEtGFmNRxJKWktP6d+Xw+PvrPJooP1rZuZ7YYcYTbqK500W9IKkk9O/D6Zzs5WObkwYI5RETayXjqmbMWv5wdcXHhba7/kJ9OeQ1uym9wUl6Dk/J6fh1eFupETjmCtnHjRjp16kSfPn0YMWIEM2bMaH2uvr6e3bt3c9999zFy5EjCwsLYtGnTSQu0tih0ex5hcS3FWe7eeCLcFVT5Y/CbYrEmeHAkuHCHuGmKSudAXR71VQVcWxhKzc6X8BqMLBsSzp5OCfTyjyElLJJYq49okxeL38OSYgNfvbsTv79lRGhIz3gu6JtEn4yYE65bdiSD0Uj8NROIv2bCCZ8vLypn1/rtFO/YR8e8jURu+IqFn/dnfZkf8+4t3Fi3i2RnCX6DAW9kLBvCu7H8Ww8rc4q4oG8iVw/vRHS4jc++LmD/t9v5n6ocDEDhM3+j4+/+iC31+KnoAUJcdTQXlFBdWkrFRx/ira3FYDZjtNupXbmCxtxcYq68ipDMzlgSEk55nACemmp8DQ1YEpOO2/6yQR35ensJSzYUHlWgtSw+bcBoshHdcQxh0X2Pe63RaGT0hN7szCkmMSUCV0MzX36+i+pKFz37JVFkgtff2ojP7+ey3jGE7m3AktjllPGKiIiIiJwLpyzQ6urqCAlpuSwuJCSEurq6o547/PiJnj+R6OgwzOZTT3t+PoXHZrN8VQyNzQ5ih6VQVJWMYc82eh7cRFphCQAeE5i939Kn9VXVFIbEsTI7ktK06PzwKgAAGHdJREFUWtw7urOmrhaoPW7/aYnh/GxkJiP7pxx3n9ZPERcXTs+slstNt87/gpqZr9Cw8BM6mu0Mr94GQETvXuD3U5+bx9Dq1QyJ3sXKDoNYscnHV1uKiY0Kpayintsqv8EAJI4ZTfGCRRx87ml6PfEnwru2FCuNpaWUr1pNxVerqd+7rzUGg8VC+q23kDx+HAB5/3qT4s8XUPz6PwEwhzsI79aN8O4t/zm6dsFst3//Lm7aTP5b/8G5r2WfIYkJxI4YTuyI4Ti6dMZgMNChg4POy/ayeV8FRquZ2NbRv3CiIh/EEhKJxeo47r058t+dMjq0/twpwcLGxd+ypLCUPRXNxEWH8uAvBpDpryLnI4jKTDvptxoSOMpLcFJeg5vyG5yU1+CkvLYNpyzQHA4HjY2NADQ2NhIeHn7UcwBut/uEz59IVdXJp14/3+LiwrHFJREe08i4Md2Ijj1cPGThct/AoZydVC/7DFN5KR57FNVmPwdDiqiNyKDfpddQWvBPMiLSuOf2a6iqc1NR20hlbSMVtW5qnG76ZMQyuGc8RoMBV30jrvrGc3Ic8UMGU//ZfHofygfAkpBIyv0Ptk524a2ro+LTj6letpSLqhYxIjGVxdED2VbuYZJ5DwkNZYQPHUbE9RPxJ6VR8ua/2PqnJ4i6fDQN27bQmJvb8otMJsL69CUkIxOTw4G9T1+sCYlUVLccV8R1N2EbMoKG3btozN1HY+4+qjZspGrDxpbXGwzYUtNIuPU2DBYr+/86Db/HQ2iPnpgcDpxbtnDww3kc/HAe5phYHIOyibrkMkb0SmBfYQ3zl+/l6uGdjjjyCHD7ge+/GDjVEP2uf7xE1P69XG20UN4tmyHX/wJHdAglX+0FwBPZQUP8bZAuvQhOymtwU36Dk/IanJTX8+snXeLYr18/3nnnHXbs2MHq1asZMGAALpcLn89HeHg4GRkZrFixgtDQUBoaGhgw4NTrTrU1yWlRXHPz8XGH2sx0HtwHBn8/bub2NvGHFY8RZm6gvHw+AKPTL8EeasEeaqFjvOO4/ZwPBqORhOuu59CLL2DpEEfH30/BEvP95YCm8HDib7qZqEuvoPzDOdSvX8dVxQe42m7H53Riiooi7oabAIi8YCRGi4Wima9ROf8jMBoJ69Wb8OwhOAYOwuQ4+THaUtNaLo+87AoAPDU1NObl0pi7D9e+vbh27+LAtL9icoTjd7tJuudewge1LAzta26iYds26jZ8g3PTt1QvXohz00aGPPZ/eW/pXlZuLuKqYeknXR/uZJwFBVj276XKGkGUxU/HnWsoemwjUaMuwetsuafv2Cn2RURERETOl1MWaGPGjGHdunXccsstrbM4Pvnkk+Tm5jJ79myeeuopHn74YRYuXMh9991Hnz59TrXLds1msjIyeRhritZxyOkkxZFEnw49Ax0WAI5+/en4+ylYUzpijjjx1PbW+HiS756MK/dKyt9/D1fuPqJHjyFm3HhMYd/PUhg+ZCimyEiaS0uw9x+AOfz0Frs+kjkyEkf/ATj6txTB9TmbKJ7xKp6qSqKvurq1OAMwWqyt2/o9Hg699jLObzdiLi8mu0c8q7cWs2t/NT3To88olj1zPiYMqBg2hsE3XU7NiuVULfyMqoULWrc5dop9EREREZHz5ZSzOJ5tbW3o9EyHc70+LyUNZUTaIrBb2uf0636/H7+nGaPl/K/t1VRSjGvPHiJGXIDB+MMzWdauXUPxP18jdsJ1VGRdyFP/2ciArh24/7qsH3zND+XUXVVF7pTfU2N20O2pacR8dy+br7mZ2tWrqPz8U0xhdtL+9MSPmthEzi9dehGclNfgpvwGJ+U1OCmv59dPusRRTsxkNJHsSAx0GD+JwWDAEIDiDMCakIg14dTvn713XzAYcOZspuvYcXRJieTbPeV8vb2YYb1O7/3fOWc+oX4fNX2GtRZnAEaLhaiLLyHq4ktO+zhERERERM6mHx66EGkDTA4HIZ270Ji7D5/TyR3jemK1GHl74W4qa3/8hCtelwvThq9oMNrof/1V5zBiEREREZEzpwJN2jx73yzw+3Fu20JCdBg3XdaVBreHD5bn/uh95H78OVaPm8LO2SQknNn9ayIiIiIi55oKNGnzHFn9AKhavIjadV+TbSxjWHMBe3fk4/H6Tvl6X1MT7hVf0Gi0kPnzsec6XBERERGRM6Z70KTNs3ZMxZaWjjs/j+IZrwIwCugYlsLewuH0OMWMjsVLv8TqbmBL8gCu7Z587gMWERERETlDKtCkzTMYDKQ9+jjugnwadu0En4+ypUtJrylm867ikxZofr+fskULsWIkbvSVmp1RRERERNo0FWjSLhiMRkIyMgnJyASgqbaW2i8WUbppK4w+eh06r89PRU0jMRE29q78htDaCnJju3DZsK6BCF1ERERE5EdTgSbtUnjfLGq/WER0aR6Hyp00ebzsLKhm1/4q9h6swdnooWOcnQt3fE46kHnNOCxmU6DDFhERERE5KRVo0i6FduuG32who+EQj/1rHb4j1ltP6mAnIzmCwt0HSK0uwBmdRP9h/QIYrYiIiIjIj6MCTdolo8VKSLfuxG3fSqdQDx27ptI9LYruqVF07xxHyaEK8qfNx4Of9J9frXvPRERERKRdUIEm7VZEVj/Ktm/l/zjyCQkxYaypwOCyUlUdRcnni/Hk7yN8yFCiL7gg0KGKiIiIiPwoKtCk3bJn9aPsvVnUrv6K2tVftT5e9N3/QzI7k/CrOzR6JiIiIiLthgo0abes8fGkP/5nmsvL8TW58bvd+NxNhFnA6WomcuRFGC3WQIcpIiIiIvKjqUCTds3WMRVbx9SjHouLC6esrC5AEYmIiIiInDljoAMQERERERGRFirQRERERERE2ggVaCIiIiIiIm2ECjQREREREZE2QgWaiIiIiIhIG6ECTUREREREpI1QgSYiIiIiItJGqEATERERERFpI1SgiYiIiIiItBEq0ERERERERNoIFWgiIiIiIiJthAo0ERERERGRNkIFmoiIiIiISBuhAk1ERERERKSNUIEmIiIiIiLSRhj8fr8/0EGIiIiIiIiIRtBERERERETaDBVoIiIiIiIibYQKNBERERERkTZCBZqIiIiIiEgboQJNRERERESkjVCBJiIiIiIi0kaoQBMREREREWkjVKCJiIjIGdNyqsFLuRUJjKAv0Hw+H/X19YA6mmDh9/vxer2BDkPOsqamJv7zn/+Qn58f6FDkLGpubuaNN94gJycn0KHIOeDz+fTZGmSWL1/OPffcA4DBYAhwNHI26Zy4/QjaAs3v93Pw4EEmTJjABx98AKijCQZvv/02EydO5PHHH6eoqCjQ4chZMnPmTLKystiwYQOxsbGBDkfOkjfeeIPs7GymTZtGdHR0oMORs+xwfzxlyhRycnJ0wteOHZm7xYsXs2zZMlauXAm0nNRL+6Zz4vYnaAs0g8FAYWEhu3btYu3atezatQvQNwbtWU5ODm+88QYjRoxg8eLFTJ8+HdCHR3u3bt06nn32WV555RUee+wxiouLcbvdgNpre+T3+ykvL2fo0KG89dZbPProo/Tq1Yu6urpAhyZn0c6dO3n99dcZO3Ysubm5PPbYY6xatQpQu21vKioqcDqdAOzZs4ctW7bQqVMnHn/8cQCMxqA9VfyvoXPi9ieoWl1NTQ0ul6v150WLFjFo0CB27tzJ0qVL8Xq9+sagnampqaGhoQGAVatWkZKSwuTJk/n5z39OU1MTLpdLOW2HjsxrQkICgwYNYvr06Vx77bXccccdPPLII5SUlGAwGPQB0o4c7oNjY2OZNm0ay5YtY/jw4RQVFZGUlBTo8OQnOrLdbtu2DZ/Px7hx43jxxRfJz89n3rx5VFVVqU9uRyoqKrjhhht44okngJZirGPHjvz+97+nurqaV155BdAXoe2Rzonbt6Ap0F588UXGjBnDvffey6xZswCw2+0888wzZGVlsWjRIjZs2ADoG4P24nBOJ0+ezLx587j77ruZMWMGlZWVLF++nD179jBx4kTWrl0b6FDlNBzZVt977z3S09NJSUkhLCyMl19+mbvuuovdu3czb948QJdhtBeH83rfffcxa9YsRo0aBUBISAh2u51NmzYFND75aY7sj+fOnctFF11EWVkZ7777Lg6Hg8zMTPLy8ti3b1+gQ5XTsGvXLoqKivjyyy/Jycmhc+fOPPvss1xxxRXceOONzJgxg6qqKoxGo86d2hGdE7d/QVGgHThwgHnz5vHss88SFxfHv/71L1asWMHvfvc7kpOTefDBB6murmbx4sXU1tbqhK8dODKnCQkJvPTSSyxYsICQkBA6dOjAm2++yYwZM8jLyyM3NxdQJ9MeHJnX+Ph4XnvtNdasWcO9997LAw88QI8ePbjlllswm82t7VR5bfuO7YP//e9/s2DBAgCcTicpKSmUlZUFOEo5U8f2x//4xz/Yt28fDz/8MHPnzmXo0KEkJSVRUFDQeqmctA8bN27kggsuoH///jzzzDMAhIaGAjB+/HjCwsKYOnUqoC/L2gudEweHoCjQqqurcbvdNDc389BDD9G1a1deeOGF1pn+MjIyGD16NB988AHbtm0LcLTyYxyb086dOzNz5kx8Ph+FhYUsXryYr7/+mg4dOpCSkgLow6M9OFFbfe655+jYsSOpqan88Y9/ZObMmTidTjIzMwHltT04Nq+ZmZnMmDEDr9dLeno6ISEhLF26NNBhyhk6Mr9Tpkyhc+fOTJ8+nVtuuYXnn3+eBx54gBtvvJGePXuSkJAQ6HDlR2pqaqJv377cc889XHbZZezevZuPPvqo9fnOnTvz4IMPcsUVVwQwSjldOicODu26QDt8TXRkZCSdOnVi/vz5OBwOrrnmGurr6/nss89at/3Nb37DU089xfDhwwMVrvwIJ8tpXV0dS5YsobCwkEWLFvHSSy9x6623cvHFFwc4ajmVH8rrhAkTqKmpYeXKlVRUVFBbW8snn3zCpEmTuPzyywMctZzKqfrgjz/+GIBJkyaxefNmqqurAxitnK4T5Tc8PJxrr72WiooKFixYQFpaGi6Xi0ceeYTRo0fTo0ePAEctx3rzzTeZNWtW6xImHo8Hv9+P1WrloosuYtCgQVxwwQUMHz6cV155BY/HA4DVauUXv/gF119/fQCjlx/jyHsEdU4cHNpVgXZsJ+Pz+fD5fKSlpXHhhReSn5/P3LlzufTSSzEYDK3fvPt8PkJDQxk9enQAo5cTOZ2cGo1G3G43w4cP5+9//zuLFy/m1ltvDewByAmdblutq6ujf//+vPbaa8ydO5dJkyYF9gDkhE43rxaLBYCRI0eyatUqoqKiAhe8nNLp5NdkMuHxeIiMjGTixIksX75c/XEb4vf7aWxs5IEHHuDDDz9k1qxZTJkyhY0bN7ZeQr5w4UL++te/ApCWlsbll19OSUnJUSfy0vYcvuz//fffb53NGsDr9eL3+3VOHCTMgQ7gVPx+P263mylTppCfn4/P52PevHlMnTqVgQMHArBixQr27t1LZmYmL7zwAnl5eVRXV7deaqEpYtuWn5LT+Ph4AGJiYgJ5CHICZ5rXmpoaEhMTW/ejSxrblrPRBwOYTKZAHYKcxNnojzVDZ9vicrkIDQ3FaDSSl5fH5MmT6datG0888QTTp0/nf//3f5k8eTJr167l0Ucfxev1YjKZGDVqFB988EHr5eXSNhkMBnw+H2+99RYFBQVcf/31pKamtj6vc+LgYPC34TvwD3cyTU1NXHfddUd1MkBrJ7NmzRqmTZtGz549Wb16NV9//TXjxo3jsssuC+wByHGU0+CkvAYn5TW4Kb/BxeVy8eSTT1JeXs6QIUMYO3Ysf/rTn4iLi2PatGnMmTOHF198kWnTppGcnExoaGhrkS1t3+H2Ci1F2KOPPorNZqNbt2689NJL+P1+fv3rX7N+/Xqeeuoptdd2rk0WaKfbyYSEhOjG5DZOOQ1OymtwUl6Dm/IbfBoaGpg6dSqVlZUMHDiQGTNmMHPmTDZt2sQnn3zCQw89RHZ2Nrfffjv9+vXjkUce0UhKO3G4vVZUVDBgwADuvvtuli5dyooVK0hPT+fVV1/l6aef5pJLLmH9+vWkp6cTFxcX6LDlJ2pzrbOhoYGHHnqIwsJCevXqxfPPP09+fj6DBg0iJyeHL7/8kjFjxpCQkMCSJUtITU3VB0cbp5wGJ+U1OCmvwU35DS5VVVUANDY2smzZMu68805++9vf0rVrV9avX8+kSZNISEjg5Zdfxul0YrfbiY+PV3HWThzbXv/+97+zdOlSBg8ezJ///GeuuuoqsrKyePnllwHIzs5WcRYk2kwLVScTfJTT4KS8BiflNbgpv8GlpKSE22+/nbvuuotXXnkFp9PJ66+/zuDBg6mtraWwsJD4+HgiIyP51a9+RUREBBMnTiQ/P59hw4YFOnw5hRO119/85jf06NGDtWvXEhkZCUBycjI/+9nP2LVrFzNmzAhkyHKWBbznVScTfJTT4KS8BiflNbgpv8Hp/fffp66ujkmTJjFjxgzeeecdsrKyCAsLY82aNbhcLkaNGkVtbS1paWm8+uqrvPDCC3z55ZdkZWUFOnz5AadqrwUFBXTp0gX4fmr9oUOHcvPNN9OrV69Ahi5nWcBncTyyk3n88cepq6vjwQcfxGazsWDBghN2Mjt27FAH04Ypp8FJeQ1OymtwU36Dx9tvv01OTg5dunQhLy+PjIwMxo8fz759+/jiiy/o1asX48aNY8eOHaSmpjJnzhxefvllpk6dym233aactgM/pr1efPHFVFZWUl1dTWZmJklJSTz00EOBDl3OsoCMoL399ttMmTKFGTNmHNXJ3HrrrSxfvpzFixcDHNXJDBkyhBUrVmCxWNTJtEHKaXBSXoOT8hrclN/g87e//Y3XX38dn8/H66+/zqeffkpubi47d+7kV7/6FTabjXXr1gGwdetWDhw4wPLly3njjTe47bbbAhu8nNTpttfZs2czYsQIvvrqK9rgPH9ylpz3Ak2dTPBRToOT8hqclNfgpvwGH5/Px9q1a7npppt4+umnGTZsGKNGjWLPnj3MmjWLqKgoLr30UjZv3ozT6WTQoEE899xzfPDBBwwfPjzQ4ctJ/JT2OmnSJK0bGsTOa4GmTib4KKfBSXkNTsprcFN+g5Pf7+f2229n7Nix+P1+tmzZQnZ2Nn/5y1/4/PPPefTRR9m9ezfp6enY7XYmT57M1VdfHeiw5RTUXuVkzus9aIc7mYEDB7Z2Mr/85S8ZO3Ysf/nLX/D5fNTW1h7VyUjbppwGJ+U1OCmvwU35DU4mk4nx48cDLaMoBw8epEePHowcOZIDBw5QUVGB2+3mz3/+c4AjldOh9ionc14LNHUywUc5DU7Ka3BSXoOb8hv8du/eTXJyMgUFBTzyyCNkZ2fz7LPPajmEdkjtVU4mYLM4qpMJPsppcFJeg5PyGtyU3+CUl5fHoUOHeP755/n1r3/NXXfdFeiQ5CxQe5VjBaxAUycTfJTT4KS8BiflNbgpv8HJbrdz5513cv/992O1WgMdjpwlaq9yLIM/QHN0vvrqqzidTnUyQUQ5DU7Ka3BSXoOb8hucfD6fRlWCkNqrHCtgBZo6meCjnAYn5TU4Ka/BTfkVaT/UXuVYASvQRERERERE5Ggq10VERERERNoIFWgiIiIiIiJthAo0ERERERGRNkIFmoiIBIW6ujruvfdeSkpKuPPOOwMdjoiIyBlRgSYiIkGhpqaGHTt2kJCQwD//+c9AhyMiInJGNIujiIgEhbvvvptVq1Zx8cUXs2PHDpYuXcrUqVMJDQ1l+/bt1NbW8rvf/Y6PPvqInTt3cvnllzN16lS8Xi9PP/0069atw+v1cu2113LbbbcF+nBEROS/lEbQREQkKDz66KPEx8fz8MMPH/V4aWkp7733HnfddRcPP/wwTz75JPPmzWP27NnU1dUxe/ZsAObOncucOXNYsmQJ69evD8QhiIiIYA50ACIiIufSRRddBEBycjJdu3YlNjYWgKioKGpqalizZg07duzg66+/BqChoYFdu3aRnZ0dsJhFROS/lwo0EREJahaLpfXfZvPxH3ter5c//vGPjB49GoDKykrsdvt5i09ERORIusRRRESCgtlsxuPxnPbrhg0bxuzZs2lubsbpdDJx4kQ2bdp09gMUERH5ETSCJiIiQSE2Npbk5OTj7kE7lZtuuomCggImTJiAx+Ph2muvZejQoecoShERkZPTLI4iIiIiIiJthC5xFBERERERaSNUoImIiIiIiLQRKtBERERERETaCBVoIiIiIiIibYQKNBERERERkTZCBZqIiIiIiEgboQJNRERERESkjVCBJiIiIiIi0kb8f3LtR3gr/AHqAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "# Display cumulative returns of the strategies on the test set\n", - "data = res.dropna().loc[\"2020-01\":\"2021-01\"]\n", - "data.cumsum().plot(figsize=(15,8))" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 16.2.3. Apply portfolio management technics" - ] - }, - { - "cell_type": "code", - "execution_count": 86, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Optimization terminated successfully (Exit mode 0)\n", - " Current function value: -0.25406110980306784\n", - " Iterations: 7\n", - " Function evaluations: 42\n", - " Gradient evaluations: 7\n", - "[0.317 0.501 0.112 0. 0.071]\n", - "[*********************100%***********************] 1 of 1 completed\n", - "\n", - " -----------------------------------------------------------------------------\n", - " Beta: -0.144 \t Alpha: 27.36 %\t Sharpe: 0.603 \t Sortino: 0.954\n", - " -----------------------------------------------------------------------------\n", - " VaR: 66.55 %\t cVaR: 79.59 % \t VaR/cVaR: 1.196 \t drawdown: 20.91 %\n", - " -----------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAAHnCAYAAAAM6DS1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzddXxTd/cH8E+sberuBm2hFKe465CxDZ45E+YbY/qMCT+mz9yY75m778GGDQYDhmuhFCl19za1JI3d3x9pbu5N0jZpkzRNz/v12muRm+Ry2yY595zvOQKGYRgQQgghhBBCCHFLwt7eAUIIIYQQQgghjkNBHyGEEEIIIYS4MQr6CCGEEEIIIcSNUdBHCCGEEEIIIW6Mgj5CCCGEEEIIcWMU9BFCCCGEEEKIG6OgjxBC+jGVSoUvv/wSS5YswejRozF58mTcd999OHv2LG+7wYMHY9OmTRafg3vf0aNHMXjwYAwbNgzNzc1m21ZXV2PIkCFIS0tjb7vllluwZs0ai89tel9H+/HUU09h8ODBHf43e/ZsdtuamhqkpaVh0aJFZq/V2XPccsst7Gvddttt7OVp06ZBp9NZ3P/Vq1fjiiuu6PL5R48ebfHxHT1u+PDhmDNnDt555x1otVp229mzZ3f4GosXL7bp3zl79mx8/PHHFveJe19paanZc6SmpmLMmDG4/vrrcfDgQfZxht+Pt99+2+w5Dc9z4sSJDo8FIYSQ7hH39g4QQgjpHQqFArfeeisaGhrw0EMPYeTIkWhtbcV3332Hm266CZ999hkmTpzY7effvXs3lixZwrvtzz//BMMwEAgEPdx7vjVr1uCxxx4DAFRUVODaa6/Fxx9/jBEjRgAARCIRu+2mTZsQFxeHvLw8nDhxAmPHjgUAfPDBB1Cr1QCAjIwMPPjgg9iwYQPCwsIAABKJxOx1r776amzYsAHHjx/HhAkTePcplUrs2LEDDz30EHvb4sWL8dRTT5k9j1DY+TlY08c1Nzdjx44dePfdd+Hj44N77rmHve/uu+/G8uXLzZ5DLBZ3+99pDe7xZhgG5eXlWLt2LVasWIHt27cjJiaG3fbLL7/E/PnzMWzYsG69FiGEENtQ0EcIIf3Uu+++i8LCQmzZsgURERHs7a+99hrq6urw4osvYsuWLd0K0CZOnIgdO3aYBX3bt29Heno6MjIyerr7PH5+fvDz8wMAtLW1AQACAgLYQIZr48aNWLRoEfbu3Ytff/2VDfoCAwPZbQICAgAAwcHBFp/DYOzYsYiPj8fWrVvNgr5du3ZBpVLhyiuvZG/z8vLq9Pk6Yvq4sLAwrFixAkeOHMH27dt5QZ+3t3enr9Gdf6c1TI93eHg4Xn/9dcycORO7d+/Grbfeyt4XHR2N1atXY/369d0OMgkhhFiPyjsJIaQfUqlUWL9+Pa655hpewGfw7LPP4u233+52Rm7BggU4ePAgWlpa2NuqqqqQlZWFefPmdXu/eyozMxM5OTmYPHkyLrvsMuzYsQONjY3dfj6BQIClS5dix44dbPbMYNOmTZg1axaCg4N7utsd8vDwYDN4rsjDwwMAzPbxueeeQ0FBAT755JPe2C1CCOl3KOgjhJB+qKSkBE1NTRg5cqTF++Pi4pCamtrt5584cSKkUin27dvH3rZ9+3ZMnjwZ/v7+3X7entqwYQNCQ0ORnp6OhQsXoq2tDRs3buzRcy5duhRNTU28tWt1dXU4dOgQrr766h7usWUqlQqbNm3CwYMH2TWDrsaQLfb29sacOXN496WkpGDFihX49NNPkZ2d3Ut7SAgh/Yfrnh4khBDiME1NTQDgsABMLBZj7ty52LFjBy6//HIA+qDvxhtv7LDpiaOpVCps27YNixYtglAoRGJiIoYOHYrffvvN4ho4a0VFRWHSpEnYsmULZs6cCQDYvHkzgoKCMG3aNN62GzduxLZt28ye49Zbb8Wjjz7a4WuYPk6pVCIhIQGrV6/GzTffzNv2448/xueff272HE899RSuv/56W/5pNrnzzjvZtYlarRYMwyA9PR0//vijxWzyvffei7/++gurV6/G77//7rD9IoQQQkEfIYT0S0FBQQAAmUxm1fZisRgMw5jdbgjgLK3LWrBgAR588EEoFArIZDJcuHABc+fOxc6dO82eu6NAUKfT2a18cffu3ZDJZFiwYAF728KFC/HWW2/xGrp0x7/+9S8888wzUCgUkEql+OOPP7BkyRJeAxkAmDt3Lv7973+bPb6r4NvwOJ1OhxMnTuD111/H3Llz2U6bXDfddBOWLVtmdrutZaa2/lxeffVVDB06FAqFAl999RUOHz6M+++/n9ep1fT5X3nlFVx77bX48ssvzbqpEkIIsR8K+gghpB+Kj49HSEgIzpw5Y/HL9tGjR/H111/jP//5D8LDw+Hv789bn2dgWA9naAjCNWnSJHh6emLfvn2oqKjAtGnT4Ovra7adv78/WltbLe5nU1MTr/FIT2zYsAEAcPvtt7O3GQLZ3377rUdB37x58/DCCy9gz549GDx4MM6dO2dxLIGvry8SEhJsfn7u4wYMGAA/Pz88/PDD8Pf35zVxAfQ/i+68hqnOfi6NjY1mP5fw8HD2dV9//XWsWLEC9913H9avX4/ExESLz5OWloa77roLH374YY/KiQkhhHSO1vQRQkg/JBQKsXTpUqxbtw5VVVW8+xiGwWeffYaCggK2G+PQoUNx8uRJs+c5efIkhEKhxWyOWCzGnDlzsHPnTuzYsaPDTM7QoUORmZlp1gilvr4eBQUFGD58eHf/mayamhocOHAAy5Ytw8aNG9n/Nm3ahKlTp+LPP//sUUMXT09PLFq0CH/++Se2bNmCMWPGYMCAAT3e744sWLAAixcvxvvvv++wNXFDhw7FqVOnzG6/ePEi5HJ5pz8XgUCAl156CRKJBE899ZTFLLHBypUrERcXh//85z922W9CCCHmKOgjhJB+6v7770dsbCyWLVuGLVu2oKSkBBkZGXjooYdw/PhxvPzyy2z3zjvuuAM7duzAO++8g7y8PBQUFOCPP/7Af/7zHyxbtowtFzW1YMEC7NmzB9nZ2Zg1a5bFba6++mooFAo8+uijyMzMRGlpKQ4ePIgVK1YgOTmZXSdnkJ2djX/++Yf338WLFzv9t27atAkMw+Cuu+7CoEGDeP/dddddaGtr63D4vLWuvvpq7N+/H9u3b++wgYtSqURNTY3F/zQajU2vt2bNGvj4+OCZZ57hlWHK5fIOX6Oz4MvULbfcgvPnz+PZZ5/FxYsXUVxcjF27duHRRx/FrFmzMGTIkE4fHxoaiieeeAIZGRn46aefOtzOw8MDr7zyCsrKyqzeN0IIIbah8k5CCOmnfHx88MMPP+Dzzz/Hhx9+iIqKCvj5+WHkyJH49ddfeV/qJ0+ejE8//RSfffYZfvrpJ7S1tSE2NhbLly/nlUuamjRpEjw8PDBhwgR4e3tb3CYkJAS//vor3n33Xdx3331oampCaGgoZs+ejUceecRs7diXX36JL7/8knfbFVdcgbfeeqvD/di4cSNmzpzJGxDO3cfU1FT89ttvvFlythoxYgRiYmJQVlaGhQsXWtxmy5Yt2LJli8X7/ve//9mU1QwODsbq1avx5JNP4ocffmD3/fPPP7fYyAUADh8+bPXavuTkZPz444/48MMPsXz5csjlckRGRmLRokVYuXKlVc9x9dVXY/PmzVi7dq1ZB0+ukSNH4rbbbsNXX31l1fMSQgixjYCx5bQfIYQQQgghhJA+hco7CSGEEEIIIcSNUdBHCCGEEEIIIW6Mgj5CCCGEEEIIcWMU9BFCCCGEEEKIG6OgjxBCCCGEEELcmFuMbKipaXb6awYFeaOhQe701+3v6LjbFx3P3kHH3TnoOPcOOu7OQce5d9Bx7x103K0TFubX4X2U6esmsVjU27vQL9Fxty86nr2Djrtz0HHuHXTcnYOOc++g49476Lj3HAV9hBBCCCGEEOLGKOgjhBBCCCGEEDfm1KCvqqoKjz76KNLT0zFp0iSsWrUK9fX17P27d+/GokWLMGzYMFx++eXYu3evM3ePEEIIIYQQQtyO04I+hmFw7733Ytu2bYiJiUFAQAA2b96Mu+++GzqdDhcvXsRDDz2E4uJiDBs2DEVFRVi5ciUuXbrkrF0khBBCCCGEELfjtKAvPz8fxcXFGDp0KDZt2oRNmzbB19cXWVlZyM/Px/fffw+NRoNHH30Uv/zyC1auXAmNRoMffvjBWbtICCGEEEIIIW7HaSMbkpKScPLkSbS2tkIgEKCxsREqlQoikQh+fn44deoUAGD8+PEAgIkTJwIAMjIynLWLhBBCCCGEEOJ2nLqmTyAQwNfXF1988QWuuOIKaLVaPP7444iIiEBlZSUAIDAwkPd/w+2EEEIIIYQQQmzXK8PZ9+/fD5lMhoCAAAgEAgCAUqkEAEgkEv2OifW7plAouny+oCDvXpnf0dkAROI4dNzti45n76Dj7hx0nHsHHXfnoOPcO+i49w5rjzvDMHjjjTewY8cO1NfXY9CgQXj22WcRERGBv/76C8uWLbP6NYuLi3Hq1CksWbKkm3vtOnol6Pvggw8gl8tx++2349VXX0VUVBQ8PT2hUCig0WgAgP2/VCrt8vkaGuQO3V9LwsL8UFPT7PTX7e/ouNsXHc/eQcfdOeg49w467s5Bx7l30HHvHbYc96NHD+Orr77CW2+9j6SkZLz66n/wxBNPYfDgVBQWFmDevCusft0nnngKwcHBmDJlTnd33ak6C4ydGvQ1NTVBrVYjJCQE/v7+mDdvHj799FMcOXIE4eHhKCoqQmNjI2JjYyGTyQAAkZGRztxFQgghhBBCSA99susc3tp2Gq1tGrs9p4+nGKsWjcJ9c4d2vI2PLwDg55+/x6xZc7Fq1WqUl5fhkUfuBwA88MA9WLToCqxd+zpSUgZBqVTi5ZffxDPPPIX8/Fz4+vphxYoHAQAZGScBAB4ennj44VV4+eXnceLEMcTFxeGpp57BoEGpOHz4AN5++3Wo1WpMmDAJ27Ztxo8//g+33HIdXnjhFcyaNRfvvfc2jh8/gh9++N1ux8JWTlvTt2vXLowbNw4rV64EwzBgGAZnz54FAISEhGDEiBEAgKNHjwIAjh07BgBIT0931i4SQgghhBBC7OCTv8/ZNeADgNY2DT75+1yn2wwbNhxPPLEGVVVVeOutV3H99Utw8uRxzJ07H6mpaXjjjXcB6JeW/etf1+HVV99GVVUlJk+eil9+2YCUlEHYuHEd5s1bgOHDR2LGjFl47LGn8P33XyMvLwfffPMTJkyYjJdffgE6nQ4vvfQcRo0ag88++wZ1dXUAgMjIKIwdOwG7du2ATqfDnj27sGiR9RlGR3Bapm/KlCkYOHAgMjIycOWVV0IoFOLixYsIDg7Gddddh/LycmzduhVr167Fzp07kZWVBYlEgptuuslZu0gIIYQQQgixg/tmD3VIpu++2R1n+QAgNzcHgYFB+OWX9aisrMQ333yO77//GuPHT4JQKIS3tze77cSJU+Dn54empkZkZp7B+fPnUF9fD0DfZ0QkEkEsFsPLywt5eTmoqqrEnXfeDK1WC4VCgerqKjQ2NmL69FmIiIjE1KnTcfToIQDAlVcuwX/+8ywOHdqPhoZ6LFhwud2OQ3c4LeiTSqX4+uuv8eabb+LQoUPQ6XSYN28ennzySYSHhyM8PBwffPAB3nnnHWRlZSE+Ph6PP/44UlJSnLWLhBBCCCGEEDu4b+7QTsswbWHLmr5Lly7i9ddfwosvvo6hQ4fBx8cHnp6eCAsLQ01NFRoa6tltPTw8AABff/0FVColnnjiP3jttRfR1NQEABCJRGhpaUVjowwJCYkoKSnGqlWrkZWVicbGRgQHhyAgIAAHDuzD4MGp2L9/L/vcU6fOgK+vL9566zVMmjQFwcEhdjkW3eXUNX2RkZF4++23O7x/7ty5mDt3rhP3iBBCCCGEEOIuFi5cjOLiIrz99mtobJQhJiYWzz//MlQqFf7+exdefPFZzJ07n/eYuXPnY+3a13D33cuRkjIINTXV0Gg0mDhxCr788hN88smHWLHiQVRUVGDNmifg4+ODe+65Hx4eHnj66Rfw1luv4cSJY0hL0we5QqEQYrEYCxcuxo8/fovLL3+yNw4Fj4BhGKa3d6KneqOLEnVv6h103O2LjmfvoOPuHHScewcdd+eg49w76Lj3Dlc+7m+99SoiIqJw2WUL8O23X+Kff/Zgy5ZdaGlpwfvvv42jRw9h3bqt7Dg6R3KZ7p2EEEIIIYQQ4i5SU9Pw9def46uvPkVYWDhWrVoNALj99pugUMixatVTTgn4utL7e0AIIYQQQoiD1bUo8czvx6DR6nDj5BTMHBINgUDQ27tF+rjFi6/C4sVXmd3++++bemFvOkZBHyGEEEIIcXu/HM7FhhMFAIDNGUVIiQzAA/OG4doJSRT8EbfntDl9hBBCCCGE9JbS+hbe9ZzKRjz8/UFsPlXUS3tEiPNQ0EcIIYQQQtxek0Jt8fYTBdVO3hNCnI+CPkIIIYQQ4vaaFSr28pL0RPZyiUkGkBB3REEfIYQQQghxe81KY6YvLTaYvVxa19obu0Mc5NSpE5g6dSz739y5U/HSS89Bo9HY5fkfeOAePPfcars8lyXbtm3G1Klj0dbWZtfnpUYuhBBCCCHE7XEzfWkxQezlkjrK9Lmjzz//FrGx8Th37ixWrXoIM2fOxtSpM3p7t3oNBX2EEEIIIcTtNXEyfQPD/OElEUGp1qJRoUKjXIUAb49e3Dv38+m5Q1h7Zi9aNaquN7aSj9gD/x45E/cOndzltt7ePvDz84O/vz8AQCr1xv/+9wu+++5rAMANN9yMZctuwbZtm/Huu29hwYJF2LlzOwYOTMbrr78DLy8vvPXWq9i3bw/EYjGWLbsVy5bdAgCorKzE3XffitLSUtx883LcdNNyPPDAPfD09EJtbTXq6+txyy23YceO7aiqqsCdd96HpUuvwZYtm/D55x+jsbERAwcm4ZVX3kZ5eSkeeug+pKePR2FhHm6//R4AQFubEg8/vAJarRbvvvsRfHx8e3TsqLyTEEIIIYS4PW6mz0/qgbgQ45doyvbZ32fnD9k14AOAVo0Kn50/ZNW2d9+9HPPnz8C9996OkSNHIyAgEO+99zYefvgxvPHGO/jii/8iO/siAEAub0Vy8iA8//wryMw8jWPHDuOPPzbg77934YMPPsH99z+ErKxMKBQKAEBNTTWefvo/mDVrDr755gv2NQsL8/Hii68jLi4en3/+CZ54Yg3S08fhxx+/BQA0NTVh5cpH8fnn3yE/Pw9HjhxgHztu3Hj8979fwcNDf/Lh2WdXo6WlBW+//UGPAz6AMn2EEEIIIcTNMQzDW9PnL5UgLtgXOZWNAPTNXIbFBXf0cNIN96RNdkim7560rrN8APDKK28iOjoGNTU1WLNmFZ5//v/AMAzeeONlCAQCqNVqZGWdgVTqDQCYN28BhEL9vMa2tjYUFOQjNjYWKSmDkZIyGIsWXcE+99Chw5GQkIhBgwbjjz82sLenpQ1DfHwCYmJioVKpMHhwKuLjE5GRcQoAIBaLsGHD7wgNDYNYLIZKZTw2EyZMQnR0DE6f1m977lwWvL2lEInsk6OjoI8QQgghhLg1hUoDrY4BAHhJRPAQiyjT52D3Dp1sVRmmNcLC/FBT02zTY3x8fODn5w+NRgORSIz4+EQUFhbg7rtXICIiErt27cCIEaOQk3MJACAU8oOrgQOT8OefW5CdfRFFRYX45pvP8eGHn7VvK7D4mtzbTZ+vpaUF77+/Fg8++ChSU9Nw4MA+MAzD3u/h4cnb/uuvf8Sjjz6Ar776DA8++G+b/u2WUNBHCCGEEELcGndGn5+XBAD4QR+NbXA7d9+9HAAgEokwePAQrFz5MEaNGo0ff/wOzc1NmDZtJhISBrBBn6krrliCixfP4+GH74NE4oGbbroVwcEh3d4fHx8fzJlzGT799GPExcUhIiIS5eVlSEkZbHH7sLBwPPDAw3j22dW4/PKrMHBgUrdfGwAEDDfE7KNsjfztoTtnHEjP0XG3LzqevYOOu3PQce4ddNydg46zbS5VyjDjxU0AgIHh/jj43FL8cbIQ9361DwAwf0Qcvrl3dpfPQ8e9d9Bxt05YmF+H91EjF0IIIYQQ4tZaLGb6fNjbSqm8k7g5CvoIIYQQQohba1IaG2b4S/XdEam8k/QnFPQRQgghhBC31szN9En1mb4QXy9IPfTtLZoUasjkbb2yb4Q4AwV9hBBCCCHErTVxZ/S1l3cKBALEBRtLPKmDJ3FnFPQRQgghhBC3xp3R59de3gmAxjaQfoOCPkIIIYQQ4ta45Z3+Xh0EfbSuj7gxCvoIIYQQQohb4zZyMazpA4C4YG6mr9Wp+0SIM1HQRwghhBBC3FqzhTV9AD/TR2MbiDujoI8QQgghhLg17po+/47W9FF5J3FjFPQRQgghhBC3ZmlkAwDEBvMbuTAM49T9IsRZKOgjhBBCCCFujTuygdvIJcTXk53V16xUQyZXmT2WEHdAQR8hhBBCCHFr3PJOX06mTyAQIJ7GNpB+gII+QgghhBDi1po7yPQBtK6P9A8U9BFCCCGEELfGb+Qi4d0XF+zDXi6qaXbaPhHiTBT0EUIIIYQQt6XSaKFUawEAIqGAXcNnMCgqkL2853yZM3eNEKehoI8QQgghhLitJm7nTi8JBAIB7/4FI+JhuOlgTiWqGuXO3D1CnIKCPkIIIYQQ4rZalJzB7FIPs/sjA70xKTkSAMAwwJaMIqftGyHOQkEfIYQQQghxW9xMn7+XxOI2V6Unspc3nSxw9C4R4nQU9BFCCCGEELfV3EWmDwAuH50AkVBf43k8v4ZGNxC3Q0EfIYQQQghxW6Zr+iwJ8fXC9NRo9vrmU4WO3i1CnIqCPkIIIaQfqGtR4qO/snAop7K3d4UQp+KOa+go0wcASzglnhupxJO4GQr6CCGEkH7gxQ0n8NLGk7jxw79Q26zo7d0hxGl4g9mlljN9ALBgZDw8xPqvxmdL6pFd3uDwfSPEWSjoI4QQQvqBE/k1AACVRodLlY29vDeEOE8TJ+jz8+o40+cv9cDsoTHs9Sve3o6P/spCW/uMP0L6Mgr6CCGEEDfHMAwqZMbZY0oVfYkl/Uczd01fJ5k+ALhr5hAI24f2NSvVeGnjSUx/cSO2nCoEwzAO3U9CHImCPkIIIcTNtSjVkKs07HWFWtPJ1oS4F+6avo5GNhhMGRSFH+6fg+SIAPa24roW3P3lPix950+czK922H4S4kgU9BFCCCFurqJRzruuUFHQR/oPa0Y2cM1Ki8Hfa67Ey9eOR5CPJ3v70bxqTHjqNzz83QFUyuSdPAMhroeCPkIIIcTNmX5BVdIaJdKP8IazWxH0AYBEJMQdM4fg0PNLcfesIRC3z/ADgN+O5mHyCxuwdvsZaHU6u+8vIY5AQR8hhBDi5iob+d06KdNH+hNu907fLso7TQV6e+I/14zH3qevwvzhceztCpUGb245jS/2XrDbfhLiSBT0EUIIIW7ONNOnoEYupB/hrenropFLR5IiAvDNfbOx45mrkBodyN5+vpTGOpC+gYI+QgghxM1VNZqWd1Kmj/QfzVaObLDGnOFxeGLxaPZ6Q2tbj56PEGehoI8QQghxcxVmmT4K+kj/0aS0fU1fZ7jNXSjoI30FBX2EEEKIm6PyTtJfaXU6tHCCPl8vcY+fkxf0ySnoI30DBX2EEEKIm6PyTtKXVTcqsOqnQ3j3z0ybB6S3thl/1308xRAJe/7VN8ibMn2k7+n56Q5CCCGEuCytToeqJtPunZTpI33HR7uy8OPBHABAemIYpqVGWf3YJs56PnuUdgJAoI/xeWStKuh0DISckQ6EuCLK9BFCCCFurK65DVodPztCa/pIX3Kx3NghM7tCZtNjmzkz+vxsHNfQEQ+xiB39oGMYXndQQlwVBX2EEIdiGAZP/nwYc175A0dyq3p7dwjpdypMSjsBGs5O+pbaZiV7udoka90VbqbPz06ZPgAI9DY+V0OrspMtCXENTg36ampqsHr1akydOhXp6em45ZZbcObMGfb+G264AYMHD+b9d+ONNzpzFwkhdna6qBbfHbiE82UNePfPzN7eHUL6nUpZq9ltfTHTp1Rr8e8fDuL+r/9BfQt9ye5PuIFejY1BH7eJi70yfQB18CR9j9PW9Ol0Otx///3IzMxEYmIiYmJicOzYMdx2223YtGkT4uLikJ2dDalUismTJ7OPS05OdtYuEkIcIL+6mb1cVm/+5ZMQ4liVjeZfkvti0Pf1vgv4+XAuAGBobDBWzhvWy3tEnEGj1aGupQeZPqX91/QBpkGfqpMtCXENTgv6zp8/j8zMTMTGxmLr1q0Qi8V45JFHsH37dmzevBmLFi2CXC7HuHHj8PHHHztrtwghDlbByTLU0dl5QpzOdFwD0DfLO3dllbGXi2ubO9mSuJO6FiW4DTurm20t7+SOa6BMH+m/nBb0hYeHY+3atfD09IRYrH/Z0NBQAEBDQwMuXLgAAFCr1Vi9ejUEAgGuuuoqTJgwwVm7SAhxAO5QaJm8DVqdzi4tswkh1jEd1wD0vUxfq1KN4/nV7PVGBWVW+ouaJqXJdduCvmZe904K+kj/5dSg7/LLL2ev19fXY9u2bQCAUaNG4fz58wCA06dP4/Tp0wCA9evXY+3atVi0aJGzdpMQYmflnEwfw+jLYEL9vHpxjwjpXyosZPoUfSzTdzi3Cmqtjr3eKKegr78wLeesbVbadPKQm+mzZyMXbtAnowHtpA/olTl9TU1NuOuuu1BXV4ekpCTMnz8fdXV1SE9Px9KlS7FgwQL8+uuvePPNN/HKK69g/vz5EIlEHT5fUJA3xOKO73eUsDA/p78moeNub44+nrUtJh+GHiL6GYJ+j52FjjNQa6GsWqnWOvTY2Pu5jxXW8K63Onj/+4r+cAyU4I8b0eoYCL0kCAvwturxBXXGUuCU2GC7HLOwMD/Ehvsb91Gnc9rP4r2tp3HgQjmevW48hseHOuU1XUV/+H13JKcHfTKZDHfccQfOnTuHgIAAvPfee5BIJFi+fDmWL1/ObnfnnXfi448/Rk1NDUpKSpCYmNjhczY0mJ/FdLSwMD/U1NCaAmej425fzjieRdVNvOs5xXUI9bRfiU1fRL/HzkHHWc9SAyWFSoOqqiaHDJR2xHHffqqId72+SdHvf7b95fc7r6zB7LYLBTUQxAR3+VidjsH+8+Xs9SHh/j0+ZobjLuHEouW1LU75WWSV1OOxbw8AAJpa2/DD/XMd/pquor/8vvdUZ4GxUxfWtLa24s4778S5c+cQGBiIb775BikpKQCAsrIyZGRkoK1NnxUQCASQSPRfDDWavrX2gBCip9JoUdPMzzLU09oHQpxGodKw643EQgE8xMaPfaWmb5R4lta3ILeqkXebjMo7+w1La/is7eB5saKBXf8Z5ueFJE52rqeCe2FN34HsCvbypcrGTrYkxJxTg741a9YgKysLfn5++Pbbb5GWlsbet2LFCtxwww3Yvn07AP3aPplMhsDAQMTHxztzNwkhdlJloVV8XTN18CTEWbhfjsMDvOHtYSzwUfaRZi7/XKwwu61R3gaGYSxsTdyN5aDPus+RwzlV7OWJyREQCOyX2Q7shaDvSJ7x31PVKKe/AWITp5V3ZmZmsgGdv78/3n//ffa+KVOm4I477sCTTz6JNWvWYP369cjKygIArFy5Eh4e9lt4SwhxnvIG87IyyvQR4jzcJi6RAVJUyBg2S9ZXmrnsu1BudptGx0Ch0sC7n5eK9weWAjxrO3geyTUGSZNSIu22T4Dzu3cyDINjecYOtiqNDnUtbdQYjVjNaUHfzp072ctlZWUoKzPO2wkKCsLLL78MhmHw1Vdf4fTp0wgPD8ejjz6KW265xVm7SAixM0tdA2lWHyHOw53RFxnozSuL7AtjG7Q6HfZzStqEAgF07dkNmVxFQV8/YKmU05ryToZheEHfxOQIu+6Xs7t35lQ1mgWXlTI5BX3Eak4L+latWoVVq1Z1us3SpUuxdOlSJ+0RIcTRLGb6TLt5EkIcprKRm+nzRiGnEUJfCPrOltSzX3TD/LwQ4O3Jru9rUqgQHeTTm7tHnKDWwjD2aguzJ03lVjWhtn05QZCPJwZHBdp1v/ylEggE+lFETQo1NFodxCLHrZriZvkMKhvlGBbXdUMbQgAnr+kjhPQv5ZTpI6RXmWb6pNw1fX2gvPNwTiV7ecaQaAT5GJd7UDMX99em1lr8OVuzpo/7uzM+KdzunWpFQiECvZ2X7TvKyVoaWKqmIaQjFPQRQhymQmYp00dBHyHOUmWS6ZNKjDNt+0Kmr4wzkiktJgj+nOHajTQQ2+3VWMjyAdaVd/LX89m3tNOAv67PsSchLGb6KOgjNqCgjxDiMBUWZmjWUXknIU7Db+TiDS9Opq8vBH3c0r4wfykCOJmVRoW6N3aJOBG3YUt0oLfF2y0xX89n3yYuBoHexpMQjmzmUiFrRXFdi9ntlVaUuRJiQEEfIcRhKNNHSO/irekL5Gf6+kJ5Zw2njC/MT4oAqbFxC2X63B93zuugqECI2ks0GxWqTn9/i+ta2BMevl4SDIsNcsj+8TN9jvts42b5xJwyVcr0EVtQ0EcIcQi1Voeq9rOxAgEgaV/grlRrIW+jM/SEOBrDMLxZmZEBUt6avr6Q6avhZfq8eJm+JlrT5/a4ZZyRAd4I43Sq7Czbx1vPNzAcIqFjvu7yOng6sLyTu55vxpBo9jJl+ogtKOgjhDiEfnCs/nKYn5TXVppKPAlxPJncmA3x8RTDT+oBL96aPtfP9NU2m2T6OOV0MgUFfe6OG/SF+nshzF/KXu8s6HPGej7AeQPauZm+K9MHsJepkQuxBQV9hBCH4H4YRQd5I5jz4UgdPAlxvCqT0k4AJt07XTvTp9bq2C/SQoEAwb6eCOA1cnGtoI9hGLQqqYrBnriBXbi/FBEBxnV9nTVzOZzjuPl8XNxMX72Dgr68qkacL28AoP87WDAiji1zbWht6xNl2sQ1UNBHCHEIbhOXqEAfhHAyfTSrjxDHM23iAsCkvNO1vyxym7gE+3pCJBTyMn2uVN6p1elw5dvbkfr4z/i/X4+gjb6I2wV3TWe4vxThnExfR0FfWYOx6YmXRIQR8SEO279gBw9o33iiAAve2MpWzQyPC4a/1AMRnONQ1cslnpUyOX44eAml9eaNZohroaCPEOIQ3MHs0YGU6SPE2UzHNQAwKe907UyfaRMXAE6di2aLsyX1OFFQA42Owdf/ZOPq93ZYbGRFbMMN7ML8pQjz73pN3xFOlm/cwHB4iEUWt7OHIAeWd76w/jhWfP0PWtqzxx5iIVZfOQaAMXMP9H6J5y2f7MbjPx3Gso92QadjenVfSOco6COEOEQ55wtPVJAPQnw5mT4HdjkjhOhVyDov71S4eDaqponfxAUAb05fkwuNbGg22ZeTBTW47LUtOMRpKEJsx/sd8JMi3K/rTB9/VIPjSjsB/kkIewZ9Z0vq8Mnu8+z1xFA/bH5sEdvEhRv09WYHzyaFClkl9QCAnMpGXGgvQyWuiYI+QohDcL9wRgV6I5gT9NU1u84ZekLcVWWX5Z0unulr5n/hB8Ar73SlkQ1ylXkAWtusxHXv78Snf58Dw1AGpDuqTdb08co7OxjcfjjXGGhPdGATF8C0e6f9fh9PF9Wxl8cNDMPOpxbzylQjA1wj6Cur52ez6SSHa6OgjxDiEPxGLj4I8eUueKdMHyGOxhvXENgHyzu5nTvbM3287p0utKaPuz5ySHQQ261Yq2Pw/LoTWPH1PzSqxkatSjXk7b+jnmIh/KUSk+6d5p8jNU0K5FU1AdCXQ45OCHXoPjqqvDOvqpG9PHtoLPw4GW7ApLyzF9f0lTVQ0NeXUNBHCHGICtM1fdxMH63pI8ThKnhr+vRflvndO/tQeWd7ps/XUwKhQN+5UK7SQK3V9cq+mZJzAuiR8SHY8eRijEk0BhybThbi5U2nemPX+iz+jEYpBAJBl41cuPPsRieE8n7fHcFR3TtzOUFfcri/2f3cTF9vNnIpM2neciSnitb1uTAK+gghdqfR6lDJyTJEBHjz1/RR905CHM7yyIa+k+njzugLbf+yLxQKTEo8XSPbJ28zHktvTzGig3yw/pEFuGXqIPb2P88U98au9VnVFhr5hJvM6TMtmz3MXc/n4NJOQD//UiLSf5VWqrV2+5viBX2RAWb3R7lII5dSk0yfTK7C+TLXW9d3oawBz687jukvbsR9X+2DxkVOFjkbBX2EELurblJA1/5hHOrnBU+JCMG+1L2TEGfRaHVm7e4BQCrpQ2v6eJk+40kjf6mEvdzkIgPaFZyZh4bskqdEhBevGc/eXtmocJnMZF9gup4PAHy8JPBuP75KtRbNJnMReUPZkyMdvo8CgYC/rs8O60yVai07ckIoECAxzEKmz0UauZiu6QOAgzkVvbAn5upalPhy7wVc9tpmzH7lD3z693nkVDZi08lCHM+v7voJ3BAFfYQQuzNt4gKAMn2EOJHpiRdD23pups/lyzubzTM9ABDA6ZjoKs1ceJk+Tkmhp0TEltbqGIZX9k46V2tS3mnQUYlnQ2sb2z1SJBRg7IAwJ+wlEMjJPNtjXV9hTRM7ly8uxIe3DtcgyqS8s7caBZmu6QOAw5f0gXddixI/HLxkcRtHUWt12Hm2BHd+vgej/+93PP37MZxt7y7KVdfcP088O7bYmRDSLxXVNrOXY4N9AQCBJmdDtTodREI670SII1ia0Qf03e6d3C/6AVLXa+bCPZbcwBrQvwcayt1L61sRH+rn1H3rqyxl+gB9AFjY/hlT3ahAcoS+/PFYXhUbLI2MD4GPlzEj7Ej8Dp49/33MreSUdkaYl3YC+oynn5cEzUo12jQ61Le28U6sOoulTN+R3Co0tLZh8ZvbUFjbjNhgHxx54V8O/by/UNaAX4/kYt3xfF5ZuIGnWAhfLw+2ykju4ie8HIWCPkKI3RVygr4BYfovOBKREIHeHpDJVWAYoKFVxXa4I4TYl6UZfUDfmdOn1urYrIlAAF55OHdNn6uUd3IbuXibNA+JDfbBiYIaAEBJHb/xBelYtYU5jQA/AOT+nh/mDGV39Hw+riBf+zZzyanqOugD9H/Xze0BYqVM7vSgT79233j8Q3y9UNeiRKNCheve38l+Dyitb0VlowIxQT52fX2VRosfDlzCL0dyLWbzACB9QBium5CEK9MT8cqmU/j+wCUAgKKfdtKloI8QYneFNcagL4FzVjvY14s9M1/XoqSgjxAH4Y1r4GT6uKViShfO9NU1K9msTbCPF8QiY5bAFcc28DJ9nvwMU2yIL3u5tJ6CPmtdqpCxl7mNS5IijGvcMgprcPX4gQBM1vOlOH49n0GQnQe0G0ZOAEBSJ0FfVKA3cjhB39DY4B6/ti2qmhTQtnfqDPPzwtTBUdhwogAAkFXKD8IqZXK7B31rfjuGHw5eMrs9MkCKayYk4boJyUjhNMHhnvCSu/B7nyNR0EcIsTtu0DeAswg9xNcThvXT9dTMhRCH4WX6AoyZkb6S6eO36+efHOKWd7pM905upk9iXt5pUGqhHI6Ya1GqkVFYy14fOzCcvTwxOQLv7zgLwBjoNStUbLZHIADGcbZ3NHs3cuF17owwb+JiEBHQu7P6uKWdMcE+mJQSyQZ9pioaWgE7r7Hcc76MvewpFmLhyHhcNzEZ01OjLJaScjPw3DW4/QkFfYQQuyusMZ6pTAzjZ/oM7DnTiBDCV2lhXAPQd9b01Vho12/AbeTiKuWd3OHsUk/z8k6Dkn6c6SuobsJb285gaEwQ7pmdxsvemjqaVwVNexZpaEwQr3Rx3MBwiIQCaHUMzpc3QCZvw6mCWrZx0dCYYF422NF4A9p72KSMYRhe0JdiYVyDATeDb00HT52Owepfj2Dn2RL831XpuHZCUo/2tazB+LscE+SLKYM6zq7aOyhtVarZBjEioQCnXr6W9/3CEm/PvnHCy5GoiwIhxK5alWq2655EJER0kPGDifvB3V+7ZxHiDB01cpGIhBAJ9cPNtTrGZUcIcDs3mpaB88s7XePkkZyzRsh0IDg/09d/g77/bDyB9cfz8eLGk7jny32ddo89dKmSvTxlcBTvPl8vCYbH6UsZGQY4lleNw7nG7Z0xn4+L+/uZX93UyZZdq2yUo7U9CxUg9eh0nZ6ts/q+P3gJ3x24hMpGBd7cerpH+wnws9YxwT4YEOaHYe0/lyAfT9w8xTijsqLBvkFfLuc4J4b6dRnwAaaZvv65po+CPkKIXXGbuMSH+PLKLILtvOCdEGJZR41cgL6R7eONa/A3yfRxyjubXLG80yToi+Nk+sob5NDpeqe9viP9c7Ecs17ehAe+2Y8KmXkJK8MwOJ5Xw17ffqYYN320C80dZGoPcIK+qRYySNwZfIdzKnE0t3eauAD8UtJDOZU9GvzNXc+XHBkAgUDQ4bbcv+s958vw/o6zOFdab3F8Q0ldC17ccIJ3vad/+7zyziAfCAQCfHPvbLx2/QTsWn0Fxg00lnNW2jnTx+tw2kk2lMub1vRR0EcIsS9u0Mct7QSAEB9Opo/W9BHiMFUdlHcCgJSz5sxlg74OBrMD/ExfoyuWd5oEfd6eEvaEl1qrQ1VT7w3TdpTX/sjAxXIZ1h3Px4wXN+H7A5d4wW1lo9zsPf9QTiX+9d4O3s8a0Gdvz5bUAdAPJ59gIYjjZvP2nC/H6aI69vqEJOcGfQPD/RHd3qSkWalGRlFtF4/omLXr+QD9SVWDCpkcr/5xCnNf3Yz0p/+Hx348hG2ni9CsUIFhGDz24yE2g2hQ3MNOstz5ezHtJzZignywfHoqooN8eO875Xae1ZdTJWMvd1YCyyWlNX0U9BFC7IvbxCXRZB5VMOfLGw1oJ8Qx5G1qNCn05UseYiGCOWuOAMCL8+XHVQe0czN94Z1k+lyle2dnmT6AX+JZUudezVwYhsFFTqfNZqUaT/x8GPd9tY/NOp0rbWDv95cau5tmldTjqrXbUcw5WXg4hz9vz19qvj5vfFI4DEmw7AoZW6Y8KDLA6V2hBQIBZqQaS1D/uVDe7efiZrA669wJAGkxQbh2QhJMk4EVMjl+OpSDOz/fi7QnfsFlr23B/uwKs8dz1953h2mmz1RUoPE2e2f6ciq56x4DrXoMd00fZfoIIcQOeEFfGP9MZQjnyydl+ghxDG5pZ0SAt1mJWF/I9PHX9Jk2cnG98k7+cHZLQZ/xC7C7reurkMkt/h5tzihiZ+dxW/hfMz4Ja2+aDGH772VBTTOuXLsdF8r0geFBToAyZbDl5iCB3p5Iiw4yu92Zoxq4pqdGs5f/sRBgWYu7Vq2zGX2APth8/9apyHz1Orx/61QsSU9EoEkDG42O4R177gmJAs5ndXdwG7lwf78NuGsOK2Vyi2Wn3cUN+gZ1o7yTm5nvTyjoI4TYVVEn5Z3cFtPcM5qEEPvhz+iTmt3vjDV9rUo1Xtl0Cp/sPtetL3u87p2mIxs43Ttdp7yTk+nzNA/64tx4bAO3ecnwuGDMGxbLXj+Uo1+bd44TeAyLDcaNk1Pwxd0z4SnWfw2talRg6Tt/4mhuFQ7mcNfz8Zu4cE20EOA5ez2fwVROcHqqoAYtyu41CuGtVesi6DMI9ZPi2glJ+O8dM3D2teux6d8L8dD84WxTFYOkCH88OH84e537WW2rJoWKrSbwkogsNpzx9ZLAz0uf1W3T6Oy2jl+t1aHAhuDYgL+mr382cqGRDYQQuyroYFwDAAyODoTUQwyFSoOyhlaUNbTafWArIf0df0aft9n93AHtjmpd/t6Os/hgp36WWkpEAOZwAgFrVPPW9HWc6WuU69csddbwwtF0OoZXJis1mdMHmJZ3ulemL4/zBXxIdBBmpkXjr6xSADBm+kqMQZ9hiPjCkfH46YF5uO2Tv9GsVKNRocINH/7FHkuJSIhxSR3P25uYHIEv914wu603hPpJMSw2GFml9dDoGBzKqcRlw+Nseg55G38MQUKobxePMCcWCTE+KRzjk8Kx+soxqJTJ8ff5MlQ2ynHz5EE4VWhsptOTTB93jZ6hiYslkYHeaOYMkO+sG6m1imqb2XEe0YHe8PWSdPEIPVrTR5k+Qogdtam1KG9vzSwQ8M9uA/oP8bGcAa3H8qpACLGvzpq4AM7J9O3ILGYvnymu62RLcxqtDvWtxkxfiMkaLYlIyJ611zFMt7Mq9mJa2mnpC7A7l3fmcZqPDAz353XWPFVYg9pmJdvgSywUYFBUIHv/5JRIrHtkPrsOjxs8j0kMtbg+0sA0wBsQ5mfx991ZpnPX9V20rcSzTa3Fe+0D5wH9engPsfnJA1tFBnpj2eQU/HvhSIQHSDGAcyK2qAdBn+lg9o7YOlbCGjnd6NwJ0Jo+gII+QogdldS3sANyY4J84GnhjPd4zpnbo7nVTts3QvqLig5m9BlIHby2paKhFZc4X8xszWzVt7SxjTyCfDwhsTDEO9DbdZq5KNSdN3EBTGf1uW95Z1JEACIDvdngQqnW4qdDOez9KZGBvEwzAAyPC8Ef/17I60YJAFMHd1zaCejn43HXc/XWej6Dabygz/pmLodzKjH31c14nxP0GbKh9hbPaa5WUt9icU4nwzCobVZ2WpZd2tB5ExcDW4K+DSfyMfG5dXj692OdjjXhNXGxsrQToDV9AAV9hBA7Kuqkc6cBN+g7lkdBHyH2VtnJjD6AX96pVNv/jPffZ0t510tszGzVNHc8rsHAn9vMpZfX9XFLxaQelrMzcSHcoK/Frk0tehsv6AvXN+/iBmDf/HORvTw01rz5CgAMCPfHH48tRFqM/n6hQIAFI+K7fO2ZaTHs5RmcZiq9YUJSBLtGMaeyscsxBQ2tbXjsx0P417s7eKMaRsSHYM1VYxyyj1IPMRuIaXUMSi2ckLnz870Y/tSvmPLCBqzdfsbiSZuuOncacDt4WprfaJBf3YRHvz+IotoWfLn3Au93xlROpYy9bO24BoDm9AG0po8QYkcFnXTuNEhPDINIKIBWx+BiRQNk8jYEenta3JYQYruqXs70/Z1Vwrtu6zwwXtDnb96IBuCPbWjs5UxfV+MaAP06RD8vCZqVaijVWtS1KM26kvZFKo2W/fkKBMZ13JNSItgMHzfD01kGKyLAGxsfXYDfj+ZhYIS/WSMSSx5ZMAJKlQbh/lIsHp3Qk39Kj0k9xBifFMGOR9h/sQLXT0o2245hGKw7no/n153gdbH28RTjqSvG4PYZgyESOi4nkxjmx/5MCmubMSDc+Fld3ajA9jP60uyCmma8ueU03txyGpNSInDdhCQsHp0IXy+JxRl9lkSadPC0hGEYrP71CNo0xqzjixtPYlpqtMWgrjvjGgDzsnadjoFQ2HtrgXsDBX2EELvpbDC7gY+XBMNig3GmuA4MA5zIr8FcG5s8EEI6VtFFps/Smj6lWgtPsbDHDVEYhsFuk0xfeUMrNFodxCIh1Fodfj+ah7yqRkjEQniIRJCIhZAIhfr/i4Q4y2n6YTqjz8CVBrR3Na7BIDbYFxfK9WMJSutb3SLoK6ptgVZnLOk3/Ps7KrUc3kUg5yf1wB0zh1j9+kE+nnj9xklWb+9o01Kj2KDvWH61WdCXX92Ep345YjY3b+HIeLx07Xh2yLsjJYb6sQ12Ck3W9RV20NHzcE4VDudUYfWvR7FoVALOFBsH0McEddxwJpo7oL2DoG/jyQKzNZBKtRYPfrsfm1ct4pV3MwzDy4rakukTCgXwkojYdaNKtQbentY1gXEXFPQRQuymsJPOnVwTkiPY5g5H86o6DPpK6lrwye5zuFDegFWLRmHyoN5ds0GIq2MYpuuRDbzyTi22nCrEg98dwJDoIKx7ZH6ngUtX8qubzErGtDoGFTI54kJ88dPBS3jq16NWP19Hg7Z5Yxvk9mkF313yLsY1GMQG+xiDvroWjEoIdfi+OVp+Nb+Ji0FMkA/iQ3zNsrxpMY5Zq+YqUjlNarjlnQzD4L+7zuGNLRm8jFZ0oDdevm4CFozsupTVXrhVOAUmA9qL64xB37DYYIT7S7H3Qjm7Vl+p1mL98XzeY3qS6WuUq/Dc/46z1+cPj8OeC2VQaXQ4U1yHd7dn4vHFo9j7K2RytLaXUwd6e3T4/tARqYeYDfrkqv4X9NGaPkKI3fAyfR2s6QO6buZiqO+f/Px6fLXvIg7nVOH59cfNtiOE8NW1tLHNGfylEotfakwzfZ/tOQ+lWouMolpsPV3Uo9c3zWAYGNb17bOxq+GwuBCLtwe4UiMXFXdcQ8dBH3ddn63rHF1VXpX5ej6DSSn87poxQT4I8nHvUv5wTjk1d+zIkdwqvLjxJBvwCQUC3DM7DfueWeLUgA8Av4OnSWaPG6TPGBKNH1fOxamXr8GzS9ORGh1o8fmiOumY2tWavlc2nURNs77ENTJAig+WT8VTV4xm7/9g51nUc0pg+aWdATZXJvT3Zi6U6SOE2IVWp0NxrfEDo9Ogb6Ax6DtTXAulWgsviQjZ5Q14b8dZbDpZyJ5ZNHC3jneEOEJlFzP6AH6zEYVKw/sitSOzBNeMT+r263ODPsPaXUCf2UIKkF0hY++/c0Yq/L09oNbooNLqoNZoodYyUGu1UGl0GBobjKVjB1h8He6avr/OluKq9ETeF0xn4jZy6SrTZ+Au72d5Jp07uSYlR+LXI3ns9WEO6kjpSriZ9UrO2lru731ShD8+um06RsZbPqHhaAmcz2bTWX3FnCDQcJIiIsAbK+YOw31zhiKrtB6/Hc3DhuMFqGtRYkl6YqeVASG+nvAQC6HS6NCkUKNVqYZP+1y9kwU1+P7gJXbbF68ZDz+pB+6ZnYZfj+Qhu0IGtVaH82UNbCfXnG4Mr+fijW1o638D2inoI4TYRXmDnM0whPl5sW/sloT5S5EU7o+86iaoNDr8cjgH+7MrsO10cYePaZSr+uXCa0Js0dWMPgDw4mSjSutbeZmyPefL0KbWWhy30hWtToeD2ZXs9blDY7HjrL6pS0ldC5RqLbuGSCAA/m9Jeqdz2DrDDaAO5VRi6gsb8e9FI7FizlCnv0corGjkApiObXCPTB+3c+fALjJ9jhpD4EpC/bwgFAigYxjUt7RBpdHCQyxi59cCwNL0Ab0W8AH8pRfFtc28z1Vups90hIZAIMDwuBAMjwvBs0vHoryh1WwWrymBQIDIAG/2eSsa5Uj2CoBGq8OTPx9mR7PMGRqDy9sb8YiEQoyMD2ED5byqRk7QJ2Of25b1fAbSft7Bk8o7CSF2kcdZ29HZej4Dbonn6l+PmgV8M4dEY+OjC+DXHjzqGAZNyt4t4yLE1XU1ow/gZ/rOlvAHp7e2aXDwUqXpQ6xytqSebaoSESDF7KHGdvrFdS3IrWxkM/gJIX7dDvgAYMnYgfjXuIHsdblKg5c2nsRX+zpu9e4ocisbuXDLO00baPRV3MHspuWdcSG+vMYk1nTj7OtEQiHC/I3rzAwlntzSxignNGvpjL/UAyG++n1s0+h47xncap2ETqp1JCIhEkL9rDrBYmld3xd7LuBcmX59q5dEhFevn8gr1eRmjXM5JxZyqrrXudOgv49toKCPEGIXp4uMXx6HRFuexcTFDfq45g+Pw/YnLsfPD8zDhOQIBHLWgDS09G7DBkJcSVWjHB/uPIuMwhrjbZzyzogOgz7jFx9L4xR2ZHaccbekVanGjwcv4bEfD7G3TR0UhfhQ/ho2bonb4A7WB1nLSyLCR7dNw/8evoy31mifDUOx7cXaTF9yRABE7V+Sc6oa0dDat9/PmhQqdj2Wp1ho1tBDIBDglqmDAOhPAkzrYti6u+D+3RmaKllTdu1M3BOzhgZsKo0W5e3BqUDQ+fw9W5h28Cytb8EbW0+ztz22aCTvhAigL4E1yG0v6WQYBhfLZeztg7qR6aM1fYQQYgenCoxfPNMHhHW5/fTUaLbWXyAAFo9KwMMLRpiVAAX5eLLDYWW93KWPEFfy5M9HsONsCQKkHjj24tXwl3rwztp31GDBq4vSzZ1nS/Dq9RM7PYvPMAzOFNfhx4M52HAin+2oZzAzLZpX+lVS14KLFQ3s9cGcLoc9MWVQFD67cyamv7gRAHC6qBYMw/R49IQtrM30+XpJMCIuBBlFtWAY4GhuldObeNgTt7QzMczf4my5h+cPx4IRcYgN9oVvJyX/7iQyQIrM9suGdX3cMSrRQS4Q9IX64WT7Z3ZhTTOmDIpCWX0rW24ZFeDdrRJvS0wzfU//fow9UTI4KhD3zhlq9hjuej3DutHyhlb2RImvl8QsULQGf01f/8v0UdBHCOkxhmFwkpNtGGNF0Bcd5IOfVs7FsbxqXD46AYM6KNUI5HTpq+/jZ8YJsaezpfp5do0KFc6XNWBicgQ/o9BB0NfVSIbKRgUyS+osjhRoUqiw/ng+fjyYg6zSerP7PcRC3Dw9FVeOSYSO04upQibH+VL7B32AvqzQ10uCFqUatc1KlDW08tbPOZq1jVwAYPKgSGQU6WecHcqp7NNBH7dzp+l6PgOBQIBUKyo/3Em4P6eDZ6MCDMPwZtT1VsMhLn6mT19qzFvP10lpp624/97fjubyfm/euHESbw4fu3+hfuzayNL6FihUGpzjnGQYEh3UrRM7/DV91MiFEEJsVlTbjPr20stAbw8MDLP8BcDUlEFRmDKo85KfYE55p6yV1vQRYsAtKyyobsLE5IguZ/QBHQd9w+OC2cHoOzJL2KCPYRicKKjBjwcvYdPJQnbOFVdyRABumpKCayckIXVAGGrav0hGBEhR1aiAVsfgcG4Vu709gz6hUIARcSE4lKNfi3imuM6pQZ9Czcn0dZEdmZQSgY/+ygIAdkB2X8XN9Jmu5+vPTDt4NinU7N+q1EMMf2nvZzx5QV97x07u+AbTJi49wa044AZ8yyandLjMw1MiQnyILwprm8Ew+sA0s8g4EH5obPdOJPDW9FGmjxBCbHeywPhmPDoxzK7d83hr+ijTRwiLG3wZWq9XWJHps1TeKRQIsGLuUNz/9X4AwOZThRgQ5ofKRgXWH8/nrcfjPs/i0Qm4ecogjE8Kt3jmPT7Elw1EDV98hQKBWXv/nhqVYAz6ThfV4vJRCXZ9/s7YkukbPzCcHWVxrqweMnkbAr375uw67mB27hqs/i4ikLumT85r4hId6O3U0uOODOAOaG8P3ks66dzZE5bKzEN8vfD0kvROH5cU4c8GpHlVjTjLCfqs6RtgCW9Nn4WTV+6Ogj5CSI+d4pR2pieal4T1BHeYL63pI0SPYRhepq+wpgkqjRZ17YOMhQIBwvysz/TFh/jismFx8BQL0abRIa+6CQ9/f9Di44dEB+HmKSn41/iBXQYsscG+OJ5fw7ttQJhfl+sKbcUtRT1TVNfJlvansHJNHwD4ST0wPC4Yp4vq2HV980f0vRLPc6X12H2ujL0+wMrqjv4gwt/4d1fVqOCNa+hskLkzcctxL1U2olWp5pV3xtmxvNPSyafn/jWW99luSVJEAPs7llvdhEzO33V3x3/Qmj5CCOmhkwW2reezBfdLJWX6CNEzLbEsqGnmlXaG+XtBbGGtDGA5MEmK8IePlwSzhsbgzzMlZvd7e4ixZOwA3DQ5BaMTQ63OVlhqttDTzp2W8IK+4lqnzvSUW9m902BySiTb7fhQTt8L+opqm3Hjh3+hWalfExUT5IPRdj7Z15eZdu90pXENBkE+nhgSHYQL5Q1Qa3U4klvFK+9MsGOmLyLAGwIB2CYxUwZF4prxAzt/EPglwxfKGpBdblwTnNrN8nBvWtNHCCHdp1BpcI7T0MHeH/5BVN5JiBmFyYypgpomtlMg0HlbeEtZNkO3vJeunYBAqSca5G3w85LA10uCYbHBuHJMIvykHmaP64rFoM+O6/kMYoN9EOTjiYbWNjQp1CioabJ7CWlHuK3fuyrvBPRB38e7zgEAW5LaV1Q3KnDDB3+xoxr8pRJ8t2I2PMT2zdz2ZREma/pcbVyDwfTUKFxoD6T2XSw3aeRiv6BPIhIiNUofYHqIhXjtholWnTTidvDcfa4U2vbOUImhfvDpZidYKa3pI4SQ7jtbUg9N+5txckSA3denUNBHiDnT9SitbRqcLTaWP3X25dJSpi+5feZVTJAP3rllip32EryxDQaOCPoEAgFGJYRiz3l9OdiZ4jqnBX3cjIFU0vXXqvFJ4WxnwnOl9WiUqxDgbXtA7WxNChWWffQXu87KSyLCt/fNQVqM+w9dt0Wonxf7821obWOPF+Aa4xoMpqVG4dO/zwMA/swsYT9fPcVCRPjbdz8/vG0qfjhwCZePTuAFc53hrhPljoRJ62YTF4CGs9NwdkJIj/Dn89m/xIfW9BFizjTTB4DXHbOjJi4A4GUhK2PtFzFbWWoI4YigD9A3czE4zWn64Gi2ZvoM6/oAfcnb0TzX7+KpVGux/JO/ca5MnxkSCQX49M4ZmJgc0ct75npEQiHC/b3Y62c4J2NcZU0fAExKjmDHJXCbuMSG+Nq9NDotJhivXD+xy27dXOH+UouzHdN6MAKE+/fZH4ezU9BHCOkR3ny+RPuu5wP4c/oo00eInqWg7wgn6IvoYFwDoB9xYFri6aigLzrIB9xKLrFQ0OFMt57irus77cRmLtYOZ+eanBLJXj50ybVLPDVaHVZ8vY/3+/X2ssm4bHhcL+6VawvnZNpzq4xdTiNdYEafgbenBGMHmn9mx4fYr4lLTwgEAoujQNK62cQFoEwfBX2EkB7hZ/rsH/QF0Zw+QsxYmpVX277OCug6o8ANToJ8PBHi65ixAZ4SEa/UdGC4v8PWf42MN2b6zpbUQaPVOeR1TClsbOQC6Ie0G7jyuj6GYfDkL0d4zX2eWZKO6ycl9+JeuT7urD5DAxNAP7LBlUxPjTa7zZ7jGnrKUol2Wkz3M338NX39r5ELBX2EkG4rb2hFefsidW8PsUPKtgK8PdhMQaNC5bQvcoS4MkuZPq6ILhpGcIeIJ0f4O3R2GHdQuqNKOwH9v9kQ7CrVWlyqlDnstbi4DSGszfQZ1vUBwLnSBjTKXfOE1qt/ZOCnQzns9RVzhuL+ecN6cY/6Bkt/fxKRECG+Xha27j3TB5uXWybYsYlLT5nOf/TxFFtcJ2wt3sgGyvQ5Vk1NDVavXo2pU6ciPT0dt9xyC86cOcPev3v3bixatAjDhg3D5Zdfjr179zpz9wghNjpVaFw3MyohtMMW8T0hEgoRwOka2KhwzS9HhDhTV0GfLZk+R5V2GnAzB44M+gBgJGddnzPm9TEMA4WaG/RZl8X0l3pgWPu6Ph3D4JgLruv79O9z+GDnWfb6dROSuhyoTfS4s/oMIgO9nTZGxFojE0LgL+Wvm4tzkfJOAEgO5783pcUE9egYct/3aE2fA+l0Otx///1Yv349fHx8kJycjGPHjuG2225DcXExLl68iIceegjFxcUYNmwYioqKsHLlSly6dMlZu0gIsdEp3nw+x81poll9hPB19YWls0YuAH9sg6ODvkWj9HPohAIBLh+d4NDXGhXPXdfn+GYuSrWWLd/zFAshElr/tWpyirEJiquVeG4+VYjn151gr88bFou3bprsckGLq4qw8PfnSuMaDERCoVlzFdcq7+Rn+ob0oIkLQGv6nBb0nT9/HpmZmYiNjcXWrVvx66+/YuHChZDL5di8eTO+//57aDQaPProo/jll1+wcuVKaDQa/PDDD87aRUKIjbhNXNId0MTFgL+uj4I+QjrL9HlJRLzsuCXcMifTL1b2tmhUAv7+vytx5IV/IbWHX9q6wmvmUuz4TB9vMLunbbPDuM1cDue4Vqbvza2n2cvjk8LxyZ0z2E6PpGuWAjxXGtfANSOVH/QlhLpOpm9AuD+vEVRPmrgApt07+1/Q57Q5feHh4Vi7di08PT0hFutfNjRU/+bc0NCAU6dOAQDGjx8PAJg4cSIAICMjw1m7SAixgVqrQybnS5UjOncaBNKsPkJ4OvvCEhng3eUavfkj4nE8vwbh/lKb2qh315AeNF+wBbe880JZA9rUWnhaGEZvL4pudO40GJ8UAYFA3+jjbEk9mhQq+HcRrNvD53vO490/M7FsUgrWWCjX1Gh1yK9uYq9/fc8sqxvUEL1wC+WdrjSugYvbzCXY19OlZkZ6e4gRG+zLjpToSRMXgBq5OO20TXh4OC6//HLMnTsXAFBfX49t27YBAEaNGoXKSn1pQ2BgIO//htsJIa7lfFkD20EwLsQX4Z20iO8p3oB2F214QIgzmQ5n5+psXIPBynnDsPv/rsCBZ5dYnIXVVwV6e2JAmD5TodbqcL6s3qGvxx/XYFtwGeDtgWGx3HV91XbdN0vqW5R4aeNJ1Le04cO/snjz2QyqmhTQ6vQ1q6F+Xgh2seYjfYGlTF9XJde9ZUC4P+6eNQRBPp54/PJRvb07Zu6YngqBAJg4KBJjEnu2jEQqEbGZwzaNDlpd/2oM1yunbpqamnDXXXehrq4OSUlJmD9/Ph5//HEAgESi//AxZAMVCkWXzxcU5A2xg1pAdyYszHVS4P0JHXf76u7xvHSygL08eXCUQ38u0Zw1Bmq4x++AO/wb+gJ3Pc5CTvZKKBBAx+kLnxgRYNW/e4YDj01vHvfxKZEoqGkGAOTVt+KycQMd9lrFzcbvKAHenjb/u+eMjMfZEn1gmlFajxtnDbHp8ba+3u8nC6DSGL/oHi+uwxiT8r7sumb2cmK4v9v+DfVEV8ckOMQHIqGADZ4BIDU+1GWP5X9XzMHH9812aBff7nrmxom4f/FIBPt62WX/vD0kaG3P8vn4S+HnhOy6q3B60CeTyXDHHXfg3LlzCAgIwHvvvQeJRAJPT08oFApoNPqzZob/S6Vdn7FsaJA7dJ8tCQvzQ01Nc9cbErui425fPTme+86WspeHRgc69OfixWkeUFrd1Od/B+j32Dnc+TjXyYyfewPD/XkDoIOkkl79d/f2cU+NNDamOXCuFNeMSXTYa5VVGo+7WCiw+d89mrNG6e/MYtTUjLD6sd05zl/uOse7vuloLv5l0lznXL5xrXaEn9Rt/4a6y9rjHubnhcpG40kBn278fhAjgZ99jp/UQ8QGfcVlModWKfWGzk4sOHVVbmtrK+68806cO3cOgYGB+Oabb5CSkgJAX/4JAI2N+jdQmUwGAIiMjLT4XISQ3nXKSU1cAFrTR4gp7lqyobH8dS5dzehzd7xmLg4e28DtotqddW8T2tf1AUBmcT2aHTiSJru8AWdMmtvsz65ky/QNSutb2cuxwT4O2x93Z/p3GBVEx9IV8Nb1qfrXuj6nBn1r1qxBVlYW/Pz88O233yItLY29b8QI/dmto0ePAgCOHTsGAEhPp5kwhLiauhYlWz7lIRZiaA87anWFO7JBJqegjxBu0GfaxtxVG0Y4y4i4YHbweU5lI1qVjvtiJ+9BIxdAv65vqJPW9f12NM/sNoVKgyO5/N4JpfXGdX6xPRiE3d9x1/UJBJabuxDn689jG5xW3pmZmYnt27cDAPz9/fH++++z902ZMgU333wztm7dirVr12Lnzp3IysqCRCLBTTfd5KxdJIRYKYMzlH14XIhDu+MBJo1cKNNHCC/oiw32ha+XBC3twU1/z/R5e0owKCoAF8tl0DEMMkvqMCnFMVVDvJEN3exwOTklElnt6/oO5VRizrBYu+wbl0arw/+O5bPXU6MDcbFcBgDYlVWGmUNi2PvKOJm+GMr0dRu3bDDcX0ojL1yEdz8e0O6038CdO3eyl8vKyrB79272v/Pnz2PUqFH44IMPkJCQgKysLMTHx+ODDz5gyz8JIa7jJHcoew+7aVkjyMe40JqCPkJMygo9xRg3UL9EwksiwqBIxw5b7wtGxhtHN5iWNNpTT0Y2GHCHtDtqXt++C+WobtKvLwv3l+KZJWPZ+/4+V8rblp/po6Cvu7iZvv6efbeXFnUbvss+jl9zM3C0qghV8mYwnCZW1uDO6pO3UabPIVatWoVVq1Z1us3cuXPZkQ6EENfFW883wLHr+QDK9BFiSqHmjwp4/YaJ+O5ANqYNjqIW+9Cv6/v1iL6c8UxRbRdbd5+ijTucvXtfqSYkG+f1ZZbUoVmhsntHwV+P5LKXrxk/EFMGRcLbQwy5SoOCmmbkVzdhYLg/GIZBWQMn00fr0LqNOzrFVcc19CVytQrX7/wWZ+rKebcn+AZhyYDhWDpwOJIDuv4+Qmv6CCHESlqdDqc45Z2OHMpuwG3kIrMwp+/3o3lY9tEu7L9Y4fB9IcQVcDN9XhIx4kJ8seaqdN6g5f7MWc1c5Oqel3cGentiaIx+XZ9Wx+BYvn3X9TW0tmHH2RL2+nUTkuApEWEaZ1TD7vZsn0yuQmt7IOvtIeadcCO2mTcsjp2B+a+xjhsb4i4YhkFxcwNUWvPsm47R4Y7tP5sFfABQ1NKA987+g5mbPsKCLZ/g03OHUCFv6vB1aE0fIYRYKbeykV07FO4vdUr5j7+XBzuLrEWphkqjhUf7bM5GuQqP/3QIbRod8qoacfQ/Vzt8fwjpbfxMH32UmxoSHQSJSAi1VofC2mY0tLY5JIDhZvp68nOYlBKBrFL9ur7DOVWYM9R+6/o2cWbzjUoIweD2xj9zhsZiR6Y+GNx9rgx3z0ozW8/ninPb+orwAClOvnQNZK1tiA91zfl8ruJcfQXWHN2GEzUliJD64cnRs3FN0kgIBfrc1Jun92BDTia7/czoZDS0yZHbWItWjfFEcFZ9JbLqK/HSyZ2YFJmIpQNGYFHCEAR4GLOu/XlNH31SEEJscpKb5RsQ6pQvBUKhAAHeHmxpZ6NchbD2TmiXKmVoa/9CU1zXgroWJUKovI24Of5aMsc2UuqLPCUipMUEsev5zhTX8pqVWGP7mWJcLG/APbPS4NOesTGlsEMjF0DfzOXzPRcAAIdzKrvY2jbc0s7rJyazl2cPNR6PwzmVkKs01LnTzvylHvDvR8O/bSVrU+DN03/j+0snoGtfm1elaMa/D23CVxePIjUwAkXN9TheY8xU3zlkAl4YtxAAoNSqsacsFxvyM7G79BLadPogjgFwqLIQhyoLseboVsyOTcGSAcMxN3YQrekjhBBrOXM+H1ewjycb9NW3trFBXw5nODIAZFfIMNlBnfoIcRXcM9RSCX2UWzIyPsQY9BXV2RT0ZRbX4a7P90LHMDiSW4VfHphn8QSX3E7BN3dd35niOrQo1WxpYE9klzew5a0eYiGuSh/A3hcT5IOUyADkVDZCpdHhdGEtzegjTqFjdPgt9zRezdiFOqXc4jaGrB3X7JgUPJs+n73uJZJgYfwQLIwfgiaVEtuLL2BDfiYOVhbA0N5FpdPiz+KL+LP4IvwknohHFCDRAmpxvyvvpDV9hBCbnCrgZvqcF/Tx1vVxmrnkmgR9lypkztolQnqNPbpGujveur5i25q5bDtTxGYe/rlYgQ0nCixux8v0dbORC6BvVpXWXnap1dlvXh93Nt9lw+PMSlzHJ4Wzl4/lV6OswZjpoyYuxBHO1pVjyfavsOrwH7yAb0ZUErZffg8eHjEdXiLzv6VZ8Sn4aNrVEAkthy7+Hl64Pnk0frlsOY5f8288N3Y+RoRE8bZpVrfhnLoQwpGlEMQ0QNamsO8/zsXRJwUhxGotSjUuVjQAAIQCAUZx2qI7WkcdPHOrzDN9hLg7flkhlXdawg36ztjYzGXfBX7DiOfXHcecobEI8OaX6vEyfT3MuE4aFIlzZfr318M5lbzyy+4wnc3HLe00GJ8UgR8P5gAAjuVVw4cTuFJ5J7GnhjY53szQl3JyhyzE+ATgubHzsTB+CAQCAYaHROOmlHT8VZINkVCIeN8gxPsFYeyAeNTWtnT4/FyR3v64O20S7k6bhNzGGmwsyMKGgkwUNev/vgQiBoJYGX5p3IsHlEMR7NU/TnBQpo8QYrXTRbUwjMRJiwmCt2fPy4+sFcj5siWTdxz0GQYOE+KuGIaBUs3v3knMpUQGsFnQCpkcVY2Wy8hM1bcozWb71TQr8drmU2bbyu0wssGAW5Z+OLfn8/q4s/nC/Lwwc4h5Z9fxA43VGicLqlFcx8n0UXknsZPDlYWYsfFDfMcJ+DyEIjw4fBr2XLkSixLSeOXT0T4BWJ46HjcPGovp0UlI9Avudv+A5IAwrBo1CweWPITv59yECIlxjmkTI8f7Z/f35J/Wp1DQRwixmrOHsnNZyvQp1VoUmZz5y66Q2TyslZC+hBvweYqFEAqpw6IlYpEQw+OC2eunrZzXdyC7kj255S81ntj6dn+22XMoOD+LnpbZTuCUWp4uqkWrsmczxPiz+ZIgFpl/5UsI9UN4+/roJoUaWSX17H20po/Yg47R4cED61DfxinljE7CritX4MnRc+AtcU6jG4FAgFkxKXhiwGLoiozvC99nH0d5a2Mnj3QfFPQRQqzm7KHsXIG8oE/formwpoldd2O8rw21zUqn7hshzkTr+azHK/Estq7Ec99FY2nnnTOHYFaavsySYYDHfz4MjVbH3s/L9PXwZxHs64W0GM66vh7M6zObzTcxyeJ2AoEA4wYag03D+6lIKEBkAA0UJz13rr4SlfJmAICfxBOfz7weP8y5GQP9nXvi2MDH0wNMpT+YFv13ijadFu9l/tMr++Js3Qr6Wltb0dJiXV0tIcQ9MAyDk73UxAXQd+80MGT6TJu4GNC6PuLO7JldcncjOeuOrRnSzjAMbz3fzCExeOW68fCS6NdNZpXU45t/stn77TWywWASt8Qzp/slnn9wZvONjA9BanuTGEu4zVwMIgO8LWYGCemKaaXNvnJjM6E5sYPYtXu9Rf93KoCuxPg38UvuKRQ02bbuty+y6S86OzsbV111FdLT0zFu3DgsXrwY586dc9S+EUJciGEGHqBfXzcwzN+prx/ozene2b6mL6fKctBH6/qIO6NMn/V4HTyLarss/c6rbkJZg35sgZ+XBKMTQ5EY5o+HF4xgt3l9SwYqZfpSNbmdfxaTUyLYyz2Z1/frEeMXbUsNXLgsBX1U2klspdFp8fzxPzHkl1fx4omd7O37K4zNhGZEW844OxO79rbJC74qPwCAlmGw9sze3tspJ7Ep6HvmmWdw33334cyZMzh+/DiuvPJKPPHEE47aN0KIC+Gu5xudGOb0dUSW1vRxZ/QlRRiDUMr0EXfGC/ok1LmzMwPC/BDQPhy7obUNJXWdVylxs3xTBkdC0p7tWjFnKPse06JU47l1xwHYb2SDAbds3rRJlbWyK2TIaF97qJ/Nl9jp9kNjg80C1hjq3ElsoNSqseKf/+GLC0fQolbh0/OHkC2rhlytwvHqYna7aVEDe3Ev9YwZeQFCGo3NjTYWnEVuY43lB7mJDoO+Z555BlVV/NICmUyGMWPGwNPTE76+vhg1ahTq6+s7eAZCiDs5VcAdyu78WnxLc/q4X4ouH5XAXqagj7gz3mB2yvR1SiAQYGSC9SWevNLOVOMXQk+JCK/fMJG9/sepQuw5X2b3TF+onxcMlW+NChVv/aC1fjeZzRfs69Xp9hKR0KwxF2X6iLVa1G1YvvsnbC++wLv9u+zjOFJdBJVO/341ODAckd7OrRCyhHdypsULs2NSAAAMgM2F7l292GHQl5SUhOuuuw6vv/46Ghv1X6zuueceLF68GNdffz2uvfZa3HvvvXjggQectrOEkN5zktPExdnr+QD9lyGD/JpmNClUyK1qYm9bPJob9DVQB0/itpRqY6DhRZm+Lo2M55d4dkSl0eLgJWNJ5fRU/oiDKYOicPU4Y6biyV+OQKvTv89IREI2K9gTIqGQLWVnGEAmV9n0eP1sPutLOw24zVwAGsxOrHO4shCLt32Og5UFZvetyz+DPzmB4HQXyPIB/JMz8jY1rhk4kr2+o+Rib+yS03R4Wuq2227DNddcgy+++AKLFy/GDTfcgNtvvx3Tp09HZmYmAGDo0KGIiorq6CkIIW5CodLwWnmP7oVMX3SgNwZHBSK7QgaFSoMPdp5lS6uCfDwxLDYYfl4SNCvVaFKoUdkoR1QgfXEh7ofW9NmGm+nrrIPnqcJaNnMXH+KLxDA/s22e+9dY7MoqRaNCxSsVlXrYL/gO8vFkS9jrW5W8E15d2XexHFWNnc/ms8R0XR8NZiedaVDK8dLJnfg17zTv9idGzca6/DPIa6pDi1qFn3OMsy2nu8B6PoDfcEmu0mBWTDIkQiHUOh2y6itR1iJDjG9g7+2gA3V6WsrX1xePPPIINmzYgNraWixYsADbt2/H9OnTMXfuXAr4COknskrroWk/o50cEcBrquIsAoEAt04dxF7//O/z7OXkiAAIBAIMjgpkb6MST+KuqLzTNtxmLpklddDpLFcBXCxvYC9PSI6w2GEwzF+K/7tqjNnt9ujcacDrVNzSZtNjf+M0cOloNp8l6QPCwP3nxobQCTNiWUObHEv+/JIX8PlKPPD25Kvw0IjpuGXwOPZ27iD2iREJcAXcv1WFSgs/Dy9MjhzA3rajJNvSw9xCp+8Gzc3NyMrKgkAgwHPPPYcffvgBmZmZWLBgAdatWwedzvZac0JI38NtmMIdduxs10xIYr/ktmmM7z8pkQEAgMHRgextFPQRd8XP9FF5Z1eiA70R1p4ta1GqkVttuUEKdwSM4T3FkpunDDJbA2fP4JvbtKq+1fqgTyZvw5+ZxqYZHc3ms8Rf6oE5Q2MBAHEhvhjg5O7MxDFa1W3IrCvHiepiqHXarh/QBZVWg3v3/YY8zniDRfFDsOeqB3B98mgAwLVJI+El4v89jA+Ph1TsnCHsXfEQCyFqb0Sn1uqg1uqwIC6VvX+nG5d4dvgutW3bNqxZswY+Pj5obm7Gww8/jDvuuANvv/02zp8/j7fffhtffPEFHn74YSxYsMCZ+0wIcbLy9hbmgP4LQW/xl3pgSXoifj6cy7s9ub2rHi/TR2MbiJui8k7bCAQCjEoIxV9ZpQD0zVwGRQaabZdbbVwjnBTecdAjFArw+g2TMP/1Lewwc7tm+nzNOxVbY9MJ62fzWfLh8mnYe6EME5Ii7LI+kTiHjtGhvLUJuY21yGuqRX5THXvZMBQdAK5PHo23J1/V7ddhGAb/d3QrDlUWsre9O2UJrkkaxdsuwEOKJQOG45fcDPa2aS5S2gno3w+kHmK0KNUAAHmbBvPiBmP10a0AgMNVhZC1KRDoKbX4+Cp5Mw5XFSLWJwBjw+Odtt/20OG71FtvvYW1a9di1qxZyM3NxdKlS7Fs2TJ4eXkhLS0NX375JQ4fPoy1a9dS0EeIm+MGfdG9vMD/1mmDzYK+lPYvcNygj2b1EXfFG84uoaDPGrygr7AG100w/xKaV8UdAdNxpg8AhsUF465ZQ/BZe5m5n9R+WQxepq99Nqo1bJnNZ0mAtweuSh/Q9YbEJVQrmvHC8R3YUXIRSq2my+1/y83Ag8OnIdGve9U6n50/zAvknhw92yzgM7h18DjetjOiXCfoA/QnadigT6VGVKA/RoXG4HRtGbQMg91ll3A1p8FLflMd/iy+gD+LL+JUrf59RCgQYMuiuzEixLp1s66gw08LuVyOkBD94uegoCBotVpoNPxfqkmTJuH333937B4SQnpdGSfo6+2ubiPjQzA8LhhnOY1lDJm+1Cjjme2MolrsOV+GWWkxTt9HQhyJMn224zafOppXbXa/XKVBab3+fU4kFCAx1LyJi6nHLx+FE/nVOFtSj5unDOpye2txRyzUW7mmjzubTyLqejYf6bsYhsHGgrN45th2yFSKTreVCIXwFInRolaBAfDNxWN4fpztiZqdJRfx0knjwPWrB47AA8Omdbj9iJBozIlJwe6yHIwIiUJacITNr+lIpuv6AGB+3GCcri0DAOwovojBAeHYXqIP9LJl5u8ZOoaxS8msM3X4aXHHHXfgtttuw6BBg1BUVITrrrsOvr7UzYmQ/siVgj6BQIBbpw3G4z8dBqCvzzeUnIYHSHHZ8FjsPKs/E/fgtwewa/UViAz07rX9JcTelJxMnxet6bPKuIHhEAkF0OoYXChvQENrGy+jVsAp7YwP8YWnFaMwfL0k2LJqEdRaHTzE9vs58Bq5WFneaetsPtI3aXU6PHJwAzYUnOXdHuLljST/UAz0D0FyQCiS/EORFBCKeN9A7K/Ixy27fwQA/JqbgVWjZsFXYn0ztnP1FXhg/zq2Kcu4sDi8MelKi42OuD6deR3O1lVgWHAkhALXKhfmzuqTt+lPos2PS8XrGX8DALYVX8A2k7mDBiKBABMjEnFb6nikh8U5fmftqMOg75577sHs2bORk5OD2NhYDB8+3Jn7RQhxEQzDoLxBzl7v7fJOAFiaPgDvbDuDcpkcM1KjIRIaP1Devmky5ryyGdVNCtS1KLHym/347aF5vG0I6ct4mT4q77SKr5cEI+NDcKqwFgwDHM2twoKRxvU4eZyZn12VdnIJBAK7BnyAaSOXrss7tTod1vFm87lWKR2xn1/zMngBX4xPAN6efBWmdjIDb0Z0EpL8Q5DXVIdmdRv+l3cGt6WOt+r1quTNuO3vnyHX6Esh430D8cWsG+Ap6vp9x0skwTgXXfMmNRnbAAApAWEY4BeMguZ6s+09RWLMjE7CgvghmBszCEFeffNEcqffgpKTk7Fw4UIK+Ajpx2RyFfsl08dTDH+ppJf3CPDxkuCPVYvw6R0z8PHt03n3hfpJ8fHt09j244dyKvHu9sxe2EtCHIO6d3bPpJRI9vKhnErefdyOnp01cXEGbpbOmkzfvgsVqOTO5qOSdrfUpFLi9Yzd7PWrEodh1xUrOg34AEAoEOL21Ans9a8uHoWO6br7vkKjwh17fkaFXH9CxE/iiW9mL0OIV++f+O0p/qw+fUArEAiwnBMMB3h44V8DR+CzGdfh7HVP4MtZN+LapFF9NuADOsn0EUIIYN7EpauSDmeJCfJBTLrlD58pg6Lw74Uj8fa2MwCAt7efwcSUCEwZRLNFSd9Ha/q6Z1JyBD76KwsAcDi3incfd1xDcifjGpyB38il66Dvt6PGxlZXjx9InTfd1HuZ+1Cn1FfdRHv7463JV1o9BuHapJF4PWM3mtVtyG+qw77yPMyKSelwex2jwyMHN+JMXTkAfUnjf6dfi0GB4T3/h7gAf07jpSqZcV3knakTMCQwHBAIMD48HhKhe51Uo3cGQkinXGk9ny0eXTgCk9vP7DMMsPKb/aht7nzROyF9AQ1n757xSeEQtp+0Oldaj0a5ir0vz8pxDc4Q4mv9nD61VocdmSXs9esm2N61k7i+vMZafHnhKHv96fTLbJp75yPxxA3tc/QA4OuLxzrd/u3Te7G16Dx7/T/jFmJmjPv8bg2NNTZ9O11cy14WCASYEjUQUyIHuF3AB1DQRwjpgiuNa7CFSCjER7dNY2deVTUq8NB3B6HTMV08khDXplBTeWd3+Ek9MDxO366eYYCjeVXtlxneuIZkG9b0OUKgtzHok8nboNV1XIpX0dDKNvYJ95diSIxts/mI61NoVHj22HZo2ksyJ4TH44rEoTY/D7d08WBlAVQdjHlYl38G7539h71+e+p43mPdAbeb76nC2k62dC8U9BFCOtVXM30AEBnojQ9uNbaV3nO+DP/dfa4X94iQnuOWd3pRIxebTEoxto4/3L6ur6pRgdb2Dn4BUg+E+vVu50uxSIiA9vIzhtGvq+5ISX0Lezk+hDqsuxO1Tovvs49j6ob3sa9C36hHAOCFcQu7tcwi0S8Ycb6BAIA2rQbnG6rMtpGrVVjTPqQcAGZGJ+O5sfO7tf+ubFSCMeg7X1rP64jszqz6tNDpdNi6dStOnz4NtVoNhuGfKX/xxRcdsnOEkN7H79zZ9xYwzx4ag5XzhrFreV794xTGJ4Vj3ED3WJtA+h/ecHYq77TJ5JRIfLJbX7Z2OEf/pTeXN5Td3yXWLQf7eqJRoQ/2GlrbENLBCIaSOmPQF0dBn8s6W1eO547/iXP1lYj09kO8XxDiffX/xfkGIsEvCHG+QfD38EKtogW/5Gbg+0snUNbayHueO4ZMwLCQ7q9NTw+LQ0mLDABwoqYEo0L5TX/2V+SjRa3/vYvzDcTH06+B2A3LHAO9PZEU7o+86iZodAzOldYjfUBYb++Ww1n1afHKK6/gxx9/xODBg+Hnxx9Y6gpvjoQQxynjnEnuS+WdXE9eMRpHcqtwsqAGWh2DFV/9g79WX8FrmEBIX0HdO7tvfFIEBAJ9Bu1sST2aFSpeaact4xocKcjHEwU1zQDam7l0MNvaMFAeAGKDKehzNVqdDv89dxBvnd7DlmfmNdUhr6nO4vaBHlLINSqoTIZ+R0j98OjIGViWMqZH+5MeFouN7SMfTtWUAEMm8u7fXXaJvXxV4jD4e7jvvMdRCaHsWt6MwloK+gz++usvPP3007jpppscvT+EEBdTLjNm+vpaeaeBRCTEf2+fjnmvbkajQoWyhlY8+sNBfH3PLDpxRfocXiMXKu+0SYC3B4bGBiOrpB46hsGxvGrkulATFwP+2IaOZ/VRps91tWk1uGX3DzhUWWj1Y2QqfrOxIE8pVgydgttTx9vUuKUj3GHiJ2tKefcxDIPdpTns9Tmxg3r8eq5sdGIo1h3PBwCcKqwBMKR3d8gJrPq0aGlpwdSpUx29L4QQF6PTMajkBH1RfTToA/RfiN65ZQru+GwPAGBHZgm+3HsRd81y/zd64l5oZEPPTE6JRFaJfgDzhhMFqGsxBlW9Pa7BwNqxDdw1fXEhfff9ua9TaNTQ6LTw42TGfrh0ghfwjQ6NweuTrgDDMChukaG4uQHFLfr/SlpkKGluQFt7hm9MaCxuHTwOixPT4CWy32zcIUER8BKJodRqUNbaiEp5EyK99Sc6ztVXokqhzy4HekgxJjTWbq/rikZz1vWdLuofzVys+rSYM2cO/vzzT9x7772O3h9CiAupaVZArdWXpAT5ePIGmvZFC0fG486ZQ/Dl3gsAgHf+PIM7Z6ZSto/0Kdygz5vKO202Ky0an/2tX9e37ng+RELj33+yq2T6OEFfZwPaeZk+Ku80U97aiG3FF7C3LBfhUl+8NH4RvCU9z5iZvsaCLZ+iSaXEV7NvxOyYFDAMg59yTrLb3JE6Ac+OvYxdHzc02Hxdno7RoVrRAgZAlLdjfg8lQhFGhsbgaFURAH227/KENAD80s5ZMckQCd271+PQ2GBIREKotToU1DSjobXN7Zd8WPUNLjIyEh999BH+/vtvJCYmwsOD/wdDjVwIcU9l9X23c2dHnlmSjh8PXoJSrUV9SxualWreoFZCXJlOx/A6zVH3TtvNSI3GVemJ2HSyEACgbR/jIhQIkBjmGkEfL9PXQdCn0epQwS2/p6APgD4I21p0HluKzpmVMAZ5euOZsZdZfMwD+9dBxzD4ZMa1bPbLGj/lnEJ9m/7n8MzRbZi25AGcqS1DtqwGAOAtluDxUbO6bIgiFAhtet3uSg+NZYO+UzUlbNC3q9QY9Ll7aScAeEpEGBobhNNF+vWVGYW1mD00potH9W1WfVpkZGRg5MiRAIDy8nLefXSGnBDbZJc34IHvDiAqwBuf3TUTXhLXPVNf3ofHNXTEUyJCiK8XO4qiobWNgj7SZyg1xoDPUyyEUEifwbYSCAR495apKG+Q43h+NXt7fIgvPF3k/Zi7pq++xfKavtK6FjZgjQiQuvRniaOVtciwtfg8thSex6na0g63+zb7GO4dOgnhUn5TwjVHt+JYdTEA4LVTu/Hu1KVWv/bfnAxZUUsDfss9jRM1xextVyUO55V99jZL6/rqlK04XVsGABAJBJgRndQr++ZsoxNC2aDvdBEFfQCAO++8E+PGjYOPj3t86SOkN3217yKySuqRVVKPnw/l4PYZqb29Sx0qk3EHs/e9cQ0dCfb1ZIO++hYlEkL9ungEIa5BSev57MJLIsLX987CFW9tY7tkusp6PkD/HmXQUaavsMbYgKa/du4sbZHh4YMb2MyVKZFAgMmRA1De2oi8pjootRp8lHUAL4xbyG7zT3ke/uJkuTYVnsXqMXMR4d3150KVvBmZdRW8297J3IuGNmNDlpsHpdv6z3Ko9DDjWr3MunK0aTXYU5YDwzC2sWFxCPJ0n8/7zoxODMPX/2QDADL6wbo+qwp2n3zySZSWdnzmhBBivapG44fBrizX/rviz+hzn5M+1jZJIL0ru0KGvRfKoNMxXW/cT9CMPvsJ8fXCD/fPRVK4P7wkItw503VOwFnzHlXUHqwCQFyw+7w/2+LDrP1mAZ9IIMCMqCS8MekKZFy7Cj/PuxXPcgaM/5B9AuXt8+80Oi1eOLGD93i1Todvs49Z9fp7ynLMbquUN6NNqz85Myw4EiNCom36NzlaqNQXCb5BAACVTous+gpeaefsflDaaTA60djM5VRhjdkccndj1SdGTEwMiouLMXjwYEfvDyFuTyY3foAfyqmEXKVx2QYp3DV97hT0cQcdd3QWnfSunMpGLHh9C5RqLZ5dmo4Vc4f19i65BOrcaV8Dw/2x9+mroNbqXOp4hljRyKWQM2oitp+Oa+B2x5waOQBLBgzH/LhUBHnxM1WzY1IwKjQGp2vL0KbT4qOsA3h5wuX4OecUsmX6El8BwGa7vss+gQeHT+tyTMJuTtA3KCAMlxprePfflJLuksugxoTFoqilAQDah8Ybs5Vz+1HQNzDMH/5SCZoUatS3tCG7QobU6KAOt69rUeJ0YS3OlzdgUGQA5o+Id+Le9pxV73DDhg3DI488guHDhyMuLg5eXvzaZGrkQoj1mhRq9rJSrcWhS5WYO8w1WyNz1/S5U9AXzGuS0PEMLNJ7fj6UwzYsOZxTRUFfO17Q14/XcNmTWCSEWORanQqDfLgnpiy/RxXXcjN9/S/oq1W0IL99yLmHUIRv5izrcLyBQCDAqpGzcPPuHwAAP146iTN15chrNJb0PTZqFn7LzUBxiwwylQL/yzuDWwaP6/D1VVoN9lfksdc/mPYv3Pb3z6iQ64NxqViCJQOG9/jf6Qhjw+KwoX1Iu2EtHwAM8AvGoAD3H1JuIBQKMCohFP9c1Ae9V7+3Ax/dNg0zh8RAqdbiXGk9ThXWIKOwFqcKa1BU28J7/ObHFmLswPDe2PVusSroKygowJgxYwAAlZWVDt0hQtxdo0LFu777XKnrBn0y92vkAlB5p6tjGAabMwrZ63JOoNPf8Qazu1BmithXEGdNn6xVBZ2OMWvaU8gt7+yHmT5D4xUAGBkS3eU8uxnRSRgbFocTNSXQMDpesBPrE4B70ybDV+yB59vLPb+4cAQ3DUqHUGD5hMCx6mK0qPWf5/G+gUgLisSjI2fgicObAQDXDBzpUg1cuLjNXAxGhkTj9YlXuGRm0pFWzhuGA9mV0DEM6lvasOyjXUiLDsKlykZ2ZJUlAkHf655s1d5+//33jt4PQvqNJpOgb1dWKV65jnG5N1qVRovqJv36Q4EAiAx0n4Xd3M54nc3AIr3jdFEtSjmlxa1t6k627l+ovLN/kIiE8POSoFmpho5h0KhQmc0QK+KUd/bHoO84J+gbH5HQ5fYCgQAvjFuAG//6Dk1q4/u+AMAL4xZCKpbg+uTRePvMXjSr25DXVIe5f/wXU6IGYErkAEyMSESgp5R93N+c0s5ZMSkQCAS4MXkM1FotqhTNeHD4dPv8Qx0gLTgCY0Jjcaq2FIMDw/D4qNmYH9c/Z9ZOT43G7w9fhvu//gdVjQowDHCurMHith5iIYbFBmN0YhiWpCdiWFywk/e2Z6z6xDh16lSn9xuygISQzmm0OrQo+V9gS+tbcamyEYOjAntnpzpQKZPDsKY5wl8KiYuVP/UErzMeZfpczuZT/MYM8jbK9Bko1cZj0Z9b9PcHwb6eaG7/vKhvUfKCPo1WxxvM7k6VGNbiZvrGh1u3tmpkaAxOXbcK5a1NaGiTo14pR4xvANKCIgEAfh5eWJYyBp+ePwwAuNRYg0uNNfj64jEIAAwLjsKcAYMwOiDG4lw7gUCA5anj7fQvdByhQIj1C25HcYsMCb5Bbj+IvSuTUyLx11NX4P6v/8GBS8aKxoHh/hidEIoxiaEYMyAMQ6KDXGasS3dYFfQtW7YMAoGA19VGIBBAIBBAKBQiKyvLYTtIiDsxzfIZ7M4qNQv6yhpaceBiBfZnV+BYfjXC/aX45t5ZCPWTWnwOeytz0/V8gOngY1rT50pMSzsBoJWCPhaVd/YfQT6e7Boi04qECpmcndEX7i/td78Lreo2ZLU3HxEAGBtuXq7YES+RBAP9QwCEWLz/weHTkdtYi38q8qDWGcv7GABn6ytwtp4/osFLJMakiEQb/wW9TywUtR8HAgBh/lL88uA87L1QDqFAv9bPNLve11n1LrF7927eda1Wi4KCArz33ntYtWqVQ3aMEHfUUdC361wpbpycgoOXKnEgWx/o5XNKdwCgpK4FG04U4O5Zac7YVVTI3HNcAwAE+1B5p6syLe0EaE0fF7+8s++ecSZdC/bpuMtwSb0xy9dbpZ2ZdeXYXXoJkyITMdHJQc+pmlJo2xMRqUERCPCw38nQQE8pvp1zE+RqFY7XFONQZSEOVhYgs64cOgst/adGDYRU3Pl6QtI3iIRCzBnqmj0W7MHqkQ2m4uPj4ePjgxdeeAGbN2+2+44R4o4aOZ07owK92cDqcE4Vhj75C7oaEcMt53E0w3o+QF/e6U6ovNN1/XGq0Ow2Oa3pY9Gavv6D+z7VYPI+Vcr5LHD2jL6jVUX44Ox+7C3PBQAIMwVYN/92jLOyxNIu+9CN0k5beUs8MCM6GTOikwEATSoljlUX4VRjGXbnX8K5hkpIhEI8MGyqQ16fEHvr0SdGSEgIioqKut6QEAIAaJIbM30Dw/0R7i/FmWJ9y2nTgM9LIsL4pHD4eXlg62n93xk3++Zodc3GssdQNwv6+N07lWAY12uk0x8xDGO2ng8A2jQ6qLU6t1pX2l284ex9rHMcsU1nZejcE4DOmNHHMAz2lefhg7P/8AIuANAxDB49uBE7F98Hb0nnc+3s5bgTgj5T/h5emBs7GDeOHouaoc1oUinhKRLDU0R/h6Rv6HYjl5aWFnz77bdISUmx+04R4q644xr8pR5YOnYAzvykXzAuap8XM3VwJKYNjkL6gHB4SUQ4lFPJBn2VTgz6apqNmb5QP9dsO91dUg8xpB5iKFQaaHQMWpRq+Emd82WFdCyjsJZdSxog9YBaq2NLO+VtGgR408+IMn39B7fLsGlFArcEOtaBM/p0jA47SrLxwdl/kFnHX8smgH4+XptOi8Lmerx86i+8POFyZNSW4s/ii0gPi8Vlcal23ye1TotTtaXsdWdmGLn8XXQcAyEd6XYjF0Bf9vnGG284ZMcIcUfcNX0BUg8sm5yCAWH+UKg0GJcUDn8LgUc0Z1SCMzN9NU3GM8thbhb0AfoB7WXtX6DrW9so6HMB3AYuC0fGY8+FMmPQp1JT0Ad+0OdFa/rcGj/T18maPgcEfVqdDpsKs/BR1n5ky2p494kFQlw9cARWDp+KE9Ul+PehTQCAb7OP43x9JY7XlLDbfjnzBsyPt2/gl1VfAYVGX/Id5xuIaJ8Auz4/Ie6qW41cAEAikSA8vO9MoSfEFTTKjR/c/t4eEAgEmDwostPHRAQYg76qRrnFIb2OwM30hTmpY6gzBft6slml+hYlEkL9enmP+jfT0s7FYxJwLL8agP73kDp46impvLPfCLGyvNMRjVxWH92Cn3L4VV6eQhFuSBmDFUOnINY3EAAwwC8E24sv4K/28QXcgA8A/n1oI/4KWWHXwOyvkmz2cm9l+Qjpi6xaIPHhhx8iICAAMTEx7H/h4eGQyWR48MEHHb2PhLiNRpNMnzWkHmL2jK9Gx6C22TkjBrhr+sLcbE0f0PlZdOJ83NLOQG8PTBscBW9PY1BDQZ8ede/sP4I6aOSi1elQ3sAt77RvIxeNTosNBWfZ6z5iD6wYOgWHr34EL0+4nA34AP34rtcnXYEgztByoUAAf4l+3xtVSjywfx00OuPJiu7SMTq8dmoX3j+7n71tohVD2Qkheh2eJszLy0N9fT0AYOPGjZgzZw4CAvhnarKzs7F//35LDyeEWMBt5GKplLMjkQHe7GiBikY5wgMcG4QxDIPaFmPQF+KG5Z0hnayXIc7H7dq5YEQ8PMQieHPWrFEHTz1a09d/dDSyobpJAU37jL4QXy+7/x5cktWw5ZMRUl/suvJ+BHl6d7h9uNQP386+CW+e/hsJfkG4J20y6pStuGbH19AyDI5VF+OdM/vw+OjZ3d4nhUaNhw6sx/biC+xtQ4IisHTAiG4/JyH9TYfvFKWlpbj33nsB6M/kPPDAAxa3u/nmmx2zZ4S4Ie7IBlvWJ0UFeuNCeQMAoFLWipHxjh2o2qhQQaXRD6X18RTzvny7i2Aa0O4y9APZjaWdV4xJBAD4eBpnX8kp0weAhrP3J9yRDXWck3Dchl5RgR0HY9bYV56LT88dwtKBI3Bt0igAQEZtGXv/mLC4TgM+43ax+Hnerez1gf4heGzkLLxx+m8AwPtn/8E1SSMxoJvDwD84+w8v4JsTk4IPp11N8/EIsUGHnxgzZszAvn37wDAMZs6ciQ0bNiA4OJi3jY+PD3x9baslb2pqwrx589Dc3Izz58+zt99www3IyMjgbTtmzBj8/PPPNj0/Ia6M18jFhqAvkvPB7owOnvwmLu5X2gnwyztpQHvntDr9CQCR0DEjE04V1rLlaoHeHpiWGgVAf8LBgMo79RRqKu/sL0J8vSAUCKBjGNS3tKFNrYWnRITKRs4M1faqjyaVEj5iD5v+Ri80VOGOv39Gm06LQ5WFmBGdhHCpHzI4nTFHh5rPabbWymFTsa88F0eri8EA2Fp0Hg8Mn2bz8zAMg00FWez121PH4/mxCxz2fkSIu+r0NGFERAQA4OLFi+xtGo0GYnH3zi42Nzdj5cqVkMlkEImMH1YMwyA7OxtSqRSTJ09mb09OTu7W6xDiqhq7Wd7JPZtb7oSgr5bbxMXf/Uo7gc7boROjvKpGLH3nT4hFQmz690KHNI3YzCntXDgynp3HxyvvVFF5J2BS3kmNXNyaWCRERICU7dpc2ShHQqgf78RfZKA3Hju0Cb/mZsBbLMGIkGiMCo3BqNAYjA6JQbRPgMUZpAqNGg/sX4e29rV2GkaHf8rzcE3SKJzmZPpG9SDoEwmFuGnQWHau3/biC90K+vKb6lDUoq908RF74Jn0yyjgI6QbrP7E2LhxIz755BOUlpZi+/bt+OKLLxAeHo6VK1da9fht27bhzTffRHl5udl9hYWFkMvlGDduHD7++GPr956QPobbvdPaRi6A8zN93GYx7rieD+CXTlHQ17Ev9l5ATfvvw4+HLuGpK8bY9fl1On5p5+LRiexlyvSZ45Z3elF5p9uLDvJhg76yhlYkhPrxRvdIfXX4OldfJSXXqHGkqghHqox/T2FePhgVGoORoTEYFRKDkaHRCPL0xiun/kK2rJr3WnvL87AwfgguNepHNAgFAowMie7R/s+JTYFYIISG0eFMXTnKWxtt7uS5u+wSe3la9EB40DB0QrrFqlMlGzduxCuvvIIlS5awGbrU1FR8/vnn+Pzzz616oU8//RQNDQ0Wu31euKCv01ar1Vi9ejX+7//+D0ePHrX230BIn8Et7/S3cU2fQWWjM8o73XtcA8BvkkDlnR07nmf8YnixXGb3588oslzaCfDX9FHQp0flnf0Lb05rgzHjZ1AlrO308TXKVvxVeglvnd6Dm3f/gOG/voEp69/D1xePmW27rzwXp2vLoGufyZwSEAYfiafZdrYI8JBiStQA9vqfxRc72dqyv0tz2MuzY1J6tD+E9GdWBX1fffUVnnnmGdx3330QtqfUb7zxRrz44ov47bffrHqhZcuWYceOHViyZInZfYa1fadPn8b69euxbt06LF++HNu2bbPyn0FI38Bt5BLYzfJOZwxor2nuX2v6qJGLZc0KFS5wAr1LFbIOt+2uPzoo7QTAG9lA5Z163Ky0ryc1sXB3UUHGcQzlMv3JkSpO0JfdZqyeejp9Hj6feT1WDpuKKZED4Cux/BljKJUEgHmxgxDmpX+NhjYFvr90gr2vJ6WdXAvjh7CXuc1YrNGibsPRamPmkoI+QrrPqhx5UVERRo0aZXb7qFGjUFVVZdULXX/99QD0XUFNhYWFIT09HUuXLsWCBQvw66+/4s0338Qrr7yC+fPn89b/WRIU5A2x2PlnPMPCaJhzb+irx12l0bLrcURCARJigyyutbBkmJfxT7WyUW7XY2DpuVo1xhKyAdGBffaYdyaFM+BeJlc5/N9Y16zAj/sv4Z/zZZgzPA4r5g936OvZQ8aZYvasPwAU1jbDx98L3nYKNnQ6BtvPFLPXb541hPdzCA82rh9khMJu/Yzc6Xe3tknBZqW9PcUYnhwBodC69xBnc6fj3psGxRob6MmUaoSF+RlPykk0yGvVZ+JFAiFWTpiOYKk3DD00dYwO2fU1OFFZjOMVxThRWYLMmnKo29fxxfoG4OsrbsJT+zbjh/P6YG9rkTEomz4gyS4/xxu907H6yFYwYHC0uggCHwFCva1bG3wopxDq9kZSI8OiMTzBPoFoT9Hvd++g494zVgV9UVFRuHjxIuLi4ni3Hz58GFFRUR08ynrLly/H8uXL2et33nknPv74Y9TU1KCkpASJiYmdPr6hwfGZD1NhYX6oqWl2+uv2d335uHPXyflLPVBb22L1YxmGgadYiDaNDs0KNQpK6uHr1fMv3h0dz+LqJvayF9Bnj3lndJyGGHXNSlRXN1kdhNuipK4FL208iT8zi9kxGBuP5SPES4JZaa7xBaYju04V8a4zDHA4qwwj7DQy5ER+NUrq9H8HQT6eGB4ZyPtdYzgnH2plcpt/D/vy+4UlxziltgPD/VFXZ/17iDO523HvTf4S4wntvHIZamqaUdr+cxcEG7/7TI5MhLZFi5oW/nEPhTcWhKdiQXgqMBJQatU4X1+F4pYGTI5MBFoZTAxJwA/QB30MjCd5kj1D7PJzFEGAsWGxOF5TAh3D4OfTJ3FDinVrgzecz2Qvz4hMconfK/r97h103K3TWWBsVXnnHXfcgeeffx4//fQTGIbBsWPH8N577+HVV1+1y5y+srIyZGRkoK1NfwZTIBBAItF/odVoaB0HcQ/dbeIC6P8mogKNZT6OLvHkBqih/u5Z3in1ELNzztRaHVqUjikfXPXTIfxxqpAN+Axe3niSHYXgCsobWnH9Bztxx2d70Ny+9vR4frXZdhftWOLJbeBiWtoJ8Bu50HB2ILeqkb2cEmFbMwzSN0WblHe2KtVobn+vEnGCvgVxqVY9n5dIgjFhsVgyYDjCpfovh9OjBsL0dJeXSIzBgeE923mOBZwSzz9LrFvXxzAM/i6j9XyE2ItVQd91112HlStX4tNPP4VSqcSaNWuwfv16PPnkk7jlllt6vBMrVqzADTfcgO3btwPQr+2TyWQIDAxEfHx8j5+fEFfQ3SYuBs7s4Mlv5OKe3TsB0wHtjmnmcqaojr08OiGUDTTPlTVg3fECh7xmd3x3IBv/XKzA9jPFeH/HWWi0OpwsqDHbzl7r+nQ6Blt4XTsTzLbhjmygRi5AbqUx6EumoK9f4I3raZCjwrCeT6wF42d8n54fb13QZ0mwlw9GmHTpHBESDbHQfstmFnD275/yPLSou36/Pd9QiSqFPrMT6CHF6NBYu+0PIf2RVUHfL7/8gvnz52Pfvn04dOgQTpw4gX379uGGG26wy07ccccdAIA1a9bg1ltvZa+vXLkSHh62fzkmxBU1coK+wG4EffxmLq122aeOcDN9YW6a6QP4Yxsc0cGzobWN/blLPcTY+vgi3Ds7jb3/9c0ZUKq1HT3cqYo55cY/HLyEkwU1kKvMA62L5Q1mt3XHqcIatmtnkI8npg42XypA3Tv5cqoo6OtvIgKkELWv26xrUaKoVh8ECQLlMKTn0sNiEent36PXmRnDn4vck6HsliT4BSMtSD/7WaXTYn1+ZhePAHZzunbOjEmm2XyE9JBVf0Fvv/02mpr0a3yCg4Ph62vf4bxLlizBa6+9hoEDB+L06dMIDg7G008/jVtvvbXrBxPSRzTJjeVptgxmN4gMcE4HT3mbmv2y7yEWws8OawddFbeDZ12L/Tt4Gr6gAUBCqC8EAgHunzuUDaTLG1rx1V7butk5CjfQl8lVWPObcWxOanQgeznbTpm+rko7AZPyTureycv0pURS0NcfiIRCRHBOvBkqB7jr+bjdMbtrVjQ/6LNX506uG5KN6/g+O3+4y/L24zXGJk8zTfaPEGI7q4K+IUOG4NChQ3Z5wdjYWGRnZ7NjGgyWLl2KzZs3IzMzE7t27bJL2SghroSb6etO0BcV5JxZfdxxDaF+Uoc0N3EVIb7G0lVHDGjnB3369TN+Ug88fc049vb3d5x1iTmBNc0K3vVzZcaM3vUTkyFuzzaU1rf2eP2jTsdgC2dUwxVjzEs7ASrv5FKqtSg2NPAQAAPCe5bZIX0Hd13fyYIaQKwFAjjr+ewQ9I0KjUGAh/H9cIwDSimvTx7FvkZhcz12lmZ3un1eo3EG4bDgSLvvDyH9jVVBX0hICF566SVMmzYNy5Ytwx133MH7jxDSNe6aPlsbuQBAlJMyff1lPR/AX9PniMCrkNNpLDHU2FHr7rlDMaC9w1ajQoUPdpy1+2vbqqap40zn5JRIDOQEGT1d15dRVIvy9t/hIB9PTBlkuQu0N5V3sgprmtjxGfEhvvCS0GD2/oJb2p9RVAtBRBME7d/eRoXGINEvuINHWk8sFOE/4xciwTcIDw+fjhjfwB4/pykfiSduHWw84fXJuYMdbqvQqFHSIgMACAUCDPC3T8dgQvozq4I+Ly8vLFmyBFOnTkVCQgIiIiJ4/xFCuibjdO/saSMXRwZ9/WU9HwAEczN9DhjQbinTBwAeYhFWX2ksdfpy3wV2dEFv0Gh1Hf77vT3ESIsJQmp0EHtbTzt4ZpUYm9vMTouxWNoJUPdOLmri0n9xM30NCgUEkcaROvelTbbb61w9cCQO/uthPD56tt2e09Rtg8fDo71BzMmaUpyoLra4XUFTHTs8It43CJ4iqyaMEUI6YdVf0auvvuro/SDE7TXJe9bIxVndO3nlnb7unenjrulzRHlnYQdBH6DvVjk6IRQZRbVQaXR4Y0sGPlg+rcPnYhgGZ4rrEBPkY/dgvL6lDYYZ7F4SEdo0WvZ6+oAwiEVCDI4KZLfv6bq+Ok5WNSbYp8PtuJk+S01l+pNLVbSer7/ilvYLwpohEOvXwkV5B9hlPZ8zRXj7YenAEfg1NwMA8Mn5Q/gi3LxLe06jsXNwSkCo0/aPEHdGrZAIcZKmHq7piwjwhmF5XU2zAmqtY2a8cdd2hfq7d9Dn6O6dRdzyTpOBqQKBAE8vTWevrzuej6yS+g6f65Pd57Dwja2Y/uJGuwf93J95fIgv5o+IY6+PT9LP6hrMaebS0w6e3ACb+zMw5SkWsp0LVRodVBrX6HTaGyjT13/FsDNaGQiijFm+u4ZO7pMdLe9Jm8Re3lF8EflNdWbb5HLW8yVR0EeIXfS9dwtC+qhGhbE8rTtr+iQiIcL89BkehgGqmxRdPKJ7anlr+ty8vNPHcY1clGotO1NLKBAg1kJGa3JKJOYN0zdMYBjgpU0nO3y+Xw7nAtB31txwIt+u+8oN+sL8pXhmyVgMDPfH4KhA3Dp1MADwMn09XdNXz+mUGtJJNlkgEJh08Oy/2b5cGtfQb0W1l3cKQloh8NT/DTBqIe5Pt19ppzMNDgxnB60zAL44f9hsG27QlxIQ5qxdI8StUdBHiJP0dDg7YLKur8Exs/r4a/rcO9PHK++085q+4rpmtkQyJtgHHmLLjTfWXDUGwvYU7r4L5dh3odxsm/oWJS5xMj07Mkvsuq/cJi5hfl4YGO6Pg88txZ41VyI8QB/4J4b6wVOs/8iobFTw1qjaijsegxt4W8Lt4Cnvp81cdDoGuVXGDE8ylXf2K9FB3oC/AoJYY4bdqz4YwT7enTzKtd071Biw/pp3GnVK/udZbpMx6EumTB8hdkFBHyFO0ijvWXknwO/g6ah1ffw1fW6e6XNgeWdRB507TQ2ODsINk4wzqF7adBI6HcPb5nh+tcn1GrvOFazllfQaf+bccR1ikZCXYcoul3X79awt7wRoQDsAVDTKoWjPcgb5eHaaHSV9H8MwKG2R4WhVEdbnZ+LxExsgGlIJgVd7lk8rQKwmupf3smcmRyRieLC+a2+bVoPvso+z92l1OuRzyzv9KegjxB6sDvo0Gg22bduGDz74ADKZDMeOHUN9fcfrTwghfI2czEh3GrkA/AX9FQ6a1ccv9XPvL5emjVwYhulka9t01sTF1KrLR7It+LNK6rHhRAHv/qO5/KBPxzDYnVVqpz01zfR1HOgP5nTw7EkzF2vLOwHA25M7q69/dfA0rGHMqZSxt1ETF/ek1elwpKoQzx7bjgnr3sHE9e/i6h1f46ED67G3PJfdjtEKwBSEIsa/b89pFAgEvGzfN9nHoNDo/75LW2Vo0+l/98O8fBDo6d4nHwlxFquCvurqalx55ZV4+umn8d///hfNzc34+uuvccUVVyAvL8/R+0iIW+hpIxcACPQ2BinNPRyQ3ZHaJv5wdncm9RCzAbhaq7PrKIzOmriYigr0wd2z0tjrr20+hTa1sWnJ0bwqs8fsOGu/Ek9eoN/JbEZ7dPBkGAb1nKxqiA2Zvv60pu+DnWeR9OiPuPa9Hdh73ljyS+v53IdKq8Heslw8cfgPjPnfW7hmxzf46uJRlMubzDdmAF21L3RnYsHU+fJm9/VVlyekIcZH//tcp5RjXf4ZANTEhRBHsSroe+2115CcnIwjR47A01P/Af3mm29i2LBheO211xy6g4S4A6VaizaNvtumh1jY7cHK3McpVfbvZKjSaNHYHpwKBQLe8HJ3xc2c5HDWzfWULZk+AHjgsmFs5rG0vhVf/3MRgH4+XWaxeXe7vefLoVTb53egxsrZjKmcDp7dDfrkbRp2v70kIt5YBkv645o+hmHwwY6z0OgYHLhUiU//Ps/el0JBX5/WptXgz+ILeOjAeoz67U3cvPsH/JRzCnVK/gknf4knRofGYHFCGlYMnYJpmnFgCsIAtf7vITKg7wd9EqEIdw+ZyF7/7Pxh6BgdNXEhxEGsmtN39OhRfPnll/DwMGYnfH198dhjj+Gmm25y2M4R4i6aTNbzcddK2cLLwxj0KdT2/wLMbeIS4usJobB7+9mXpEQG4ni+fiZUTmUjZgyxz1qZolrjsPWEUN8ut/eXeuDRhSPw7P/0a1ve+zMTN0xKxrnSemja1/gNigyAVscgr7oJcpUGB7MrMKe9+2dPcDu2hlqZ6bvYzTV93CxfsBVr03z6YXlndZOiw0w+NXHpu5pVSly381ucra+weH+Ylw8WxA/BovghmBiZCInQ+H7/QtFx7IUxGIoIcI8qjBtSxmDtmb1oUrchv6kOu0ov8Wb0UaaPEPuxKuhTKpWQSMzPxqpUKruugSHEXTVySju7M67BwEti/JN1RKbP2oyPO+FmTrhrp3pCp2NQUmddIxeu5dMG48u9F1BU2wKZXIUPd2bxMl0TkiPg6ynBf3efAwD8mVlil6DP2p97XLAvpB5iKFQa1LUoUdussLkEmNe5s4vSTsCkvLOfZPryqi2U97UbREFfn7Xm2DazgC/WRz9gfVFCGsaExnY4dy8q0Mfket/P9AGAr8QTNw8ai4/PHQQAfHruEHSc75U0mJ0Q+7GqvHPKlCn4/PPPeQFec3Mz1q5diwkTJjhs5whxF9wmLt1dzwcAUm55pyMyfVZmfNwJr7yzyj7lnRWNcracN9jXE35W/sw9xCI8dcUY9voXe85j6+ki9vqEpAje4PS/skrMOn3aSqdjeIFYaCfZN6FQwAs6ulPiWWdDExfAtJFL/wj68jlB32XDY3HdhCR4iIW4etxAxFt5AoG4lnX5Z7A+P5O9fueQCdh2+T04/K9H8Ny4BRgXHt/poPXoIH7QF+kmQR8A3D5kAiTt//aj1cU4XVfG3pdMnTsJsRurgr7/+7//w8mTJzFt2jS0tbXhgQcewMyZM1FcXIynnnrK0ftISJ/Hy/R1s3MnYJLps9N6Lq4yzuw/dx/MbuCINX3Wjmuw5MoxiRgRHwIAaNPocL7MOJtrQnI4xg4MYzNkVY0KZJaYr/ezRX1rG7TtgWOA1AOeXaw35TVz6UaJJ29cgxVrRvtj9858zky+kfGheO/Wqch5exk+vG1aL+4V6a7C5nqsObqVvX5d0ii8MG4hRoREW13qH20S5LlLpg8Aorz9sWTAcPa6Wqc/YeYtliDKp293KSXElVgV9EVGRuKPP/7Aww8/jBtuuAETJ07EU089ha1btyIuLq7rJyCkn2uyV9Dnwc302T/o4wYQQ2KCOtnSfcQG+7INcmqblXaZ12drExcuoVCAZ5emm90eE+SD2GBfiIRCTE6JZG/vaaDKn9HXdeaN28zlYjcyffWt3PJOa9b09b/undxM38Bw/ZdeD3H3mj+R3qVjdHho/3q0qPWfAQP8gvHi+IU2Pw830ycRCRHs416VGPekTTa7Lck/FEIBjZMmxF6sWtP33nvvYenSpbj22msdvT+EuIT6FiUCve3XyMS0kUt38bt32v8L8OlCY6OAUQkhdn9+VyQUCpAcEYCsUv3c0ZzKRoxPCu/RcxbaMK7BkimDojA7LQZ/nzeWOXH3KYbzBbCyh/MarZ3RZzCoh2Mb6pqtH9cA8Lt39pfyztxqYyCfFEGZjr5sT1kuTtXqZ2pKhEJ8OO1q+Ehs74ocESDFuIFhOJ5fg8tHxbtdk60hQRGYEZ2EfeXGMWDJtJ6PELuy6hTKzp07MX/+fNxwww347bff0Nzc3PWDCOmjvtufjeFP/Yb5b2yBRquzy3M2KoxlaXZr5GLnTJ9cpWEzNwIBMCKufwR9gGmJp6zHz1dU2/3yToM1S8aAW/k1ITmCvcxdz1PVw9mC1s7oM0jlDGi/VCGzuZmX7Zk+7sgG9y/v1Gh1vPLggWEU9PVl32YfZy/fnjoBI0NjuvU8AoEAvz80H9ufuNxty3zvM8n2UdBHiH1ZFfRt3boV69evx+jRo/Hxxx9j6tSpeOSRR7B3717odPb5UkyIq/jh4CXoGAZZJfU4WVDT9QOswBvM3qM1fY4r7zxXWs+u7UqOCLC6+Yg7SLbzur6elHcapMUE49apgwHof+7zOF06uTO6Knqa6eMGfVZ0bI0O9Iafl77kUiZXoapR0cUj+HiNXKxY09ffyjtL6lrYER2RAVL4eHU+x5BYp02rwbGqIhypKnRa1/Hi5gbsKcsBAAgA3Dp4XI+ez1MiwqiE0E4bvvRlU6MGIi3IeHIrNTCik60JIbayqrwTAIYMGYIhQ4bgiSeewPHjx7F9+3asWrUKXl5eOHDggCP3kRCn4n6J5ZbOFdc2470dZzE4KhB3zEiFWGT9B6+M072zR5k+B87py+CVdvavM6yDIuwb9FVxfm9ign062bJzL107HjOGRCM5IoC3poeb6avsYaavllPeaU3HVoFAgMFRgTjRfkIku0JmUydBXiMXK16vv3Xv5K/no/EM3aXSanCmrhyHKgtwuLIQJ2pKoNTqf3+uSBiKtVOWQCp2bED9w6UTMISXM6KTkegX7NDX6+sEAgHemHQlHj6wHkn+oZgdm9Lbu0SIW7E66DPIz8/H4cOHcfToUajVakyfPt0R+0VIr9DqdLxMBDcAfPWPU9h4shAAsPtcKT65YwaCrMhUAPoyOIOQHoxCkDpwTt/pIk7QF99/SjsB+45tYBiGF9hYM5agI2KREAtHxpvdHskZzFxpY6bNlK2ZPkC/rs8Q9F2saLBpoD3v2FiV6etf3TvzLDRxIV1T67TIrCvH4cpCHKoswPGaEig0ln9fNhedQ3FLA76adSMivB0zAkOpVeOX3Az2+vIeZvn6i1GhMdi35MHe3g1C3JJVQV9ZWRm2bt2KrVu34tKlSxg1ahRuu+02LFq0CL6+vo7eR0KcpoHTvh4Aajhz685xWuf/c7ECC9/Ygm/unc1b42RJfYsSJwv0AZVAoJ+11l2OLO88U2zs3NnfMn0Dwv0hEgqg1TEorW+BXKXhNRCxRZNCDXX7WlBvDzGk3XyezkRwyjurG+XQ6RgIhQIU1zbj6d+PITbYB2uuSreqNJDfyMW6AJXbwfNShW1BMn84u43dO/tBpi+vipq42OpIVSEe3L8eFfKOh9oDQKS3Hyrl+tLrM3XlWLztc/x62XIM9O/5SS6VVoOV+9fhSFUhZkYnI8EvGPVt+ix8jE8AZsdQ1ooQ0rus+jYyZ84cREdH46qrrsIHH3yA+HjzM8+EuAPuF2AAqOIEfaZldEW1Lbj8zW34YPlULBqV0OFz7jlfDl37GpL0xLAeDT33ctBwdpm8jS0rk4iESIvtX2VIHmIREkP9kFfdBIbRf/Ee3s1GNrw1aw4acC/1ECPIxxMNrW3QtA9XD/OX4r0dZ/FXlr5TYHZFI76/f06XwSu/kYt1mT7urL6L5Q0db2hCq9PxSp2tyZRL+1n3Tm55ZxJl+rr0ffZxPHNsOzSMeX+BBN8gTIxMxOTIREyKSES0TwC+uXgMzx3fDi3DoELehGePbccPc2/u8X6sy8/E9uILAIANBWd59908KN1t1+ERQvoOq4K+b7/9FhMmTHD0vhDS66qb+KVyhrVZrUo1mpX6UiGRUAAviQitbRrIVRrc+flePLZoJP69cKTFNtq7skrYy3M4zTi6w8vDMd07zxTx5/N5dTGg2x0lRwawpXWXKrof9NVzgz4rRhJ0V0SAlJ0pWCGTI8xfivNl9ez9h3Iqccdne/DNvbM7/XnWNXMyfVaWd6ZGGbPb2e0dPK0ZMi2Tq2DooRHo7WHVutj+1r3T0ow+Yk6r02HNsa344dJJ9rZADykuixvMBnkxvoFmj7stdTwS/YJxy+4fwADYW56LS7JqDArs/pgWrU6H/547aPE+iVCIG5LHdPu5CSHEXjr8xN28eTNUKn3HwerqamzevLnD/whxF6ZBn+E6t0NidJAPtqxahIRQY2nz29vO4M4v9qBFyf9SqtHqsOd8OXt9Xg+DPolICFF7YKnVMWwZYU/15/V8Bvx1fbJuPw8v09eD9Xxd4XbwrGqUg2EYFFTzx+nsu1COu7/YC5XG8gkChmFQ22JbIxcACPP3YrN0rW0alNa3WvU4W0s7gf7VvVPepkZ5e0WBSChAfDc7v/YH32Qf4wV8I0KisPOK+7B2yhJckzTKYsBnMDMmGZfFpbLXv7hwpEf78mfJReQ36U+c+Us8cWXiUAjbT4LcmDwGYVJaBkMI6X0dZvoef/xxTJ48Gf/f3n3Ht1GffwD/nLbkvfdOHCd2EmeQSchOICSEXUbYoS1QaCnQFij9tUBLCy0b2rJX2XtDEkiAkEW2kzjxiPde8tCW7veHrNOdhi3Jms7zfr14IZ2l0/ki2/foeb7Pk5SUhDvuuMPtDhiGwbp16wJycIQEW9eAY6bPep9f2pkep0JJZgK++N1a/PKFbfiushUA8OXBRqz95+d48edLUTD8Cf1PJzuhHh7XkBmvwpSskdf/ecKWZQSsA9qlfhitcKDh1O3caTMxPZ67PZYOnt1+auIymgxex8zWPg16h/Tce41vc0UTfvnCd/jvdYshdcisqbUGGEzWDw6iFVKP1x/aOnjurG4HYG1UlJM0+oWtsMGNZ1nQqFOoe+fJTuGoD8d/L2KlMRrwxOHvufvr88vwzwXrverG+fMp8/FVYyUAa2nm72csR5LC+067LMvi6Qp7B/OrSubg9zOW449DatQP9OK01Byv90kIIYHg9i98ZWWly9uEjGeOmb7eIT0MJjNaeUGf7WI7IUqO/924Avd9uBfPfHMUgLXU7awHP8N/rjsDSyZnYfPw+ioAWFaa7VEJ3GgUUok96DOa4eEyrBEd4I1rmJF/agZ9xX6a1ResTB+/mUubWoM6XsAwOTMBK6dm4/GvrGuLvjjYgFte/h5PXr1IsLbIlyYuNvygr7K1z6PSZX7pa2KUZ68nk4ghETEwDWe2DSYzZJLglR9/Vn8UXzQcw8+nzMe0JM+7lPqipn38l3b26jX4w85P0TrUj4yoWGSoYpE5/H/r7TikKqMhEdn/jU0WM8SMiPv9+eLx3ejSWbPLmapYPLzwXMjF3jVMmpOai+lJmTjY3QK92YRXT/yE30xb7PX382PbSRzstlZzyMUSXFtiXQqTGRWHzCgauUEICR8e/Za88sor8eSTTyI2VvhHqKenBxs3bsT7778fkIMjJNgcG7kA1kCQP6+PP5NMIhbhLxechtLsRPzu9R+hN1mg1hpw+VNbcM+5swRB38qpYyvttPF3B8+2Pg3X9l8lkwjKHE8lE3iz+k529PscXPDXyAWqkQsgfB+2q7WCLFFBagz+sG4G9EYz/jv8gcSHe+sglYjx6IaF3NpTfhOXZC8/PeB38DzOG0kyEn4WNNGL9Y5RcimXxRzSm4IW9LUMqfGr79+F0WLBt81V2HzOjchQBS4Yq+ngde4cp0HfY4e+w2f11vckulw/RsQwSFVGQyoSo1evwaDRgNzoePzf7DMxPz1fkFn79bTFXgd8gDVbvXHyPNz8g/X65aXK3fhl6QIoxN7N7nuKdyyXTJhBpZyEkLDl9jflvn370NDQAADYvXs3Pv74Y6fxDNXV1airqwvoARISTJ0DzjPPOtRaQXlnRpzzIOqL5xahOD0O1/z3G7SptbCwLP7ywU/c1+USEU4vTvfLMfp7QDt/Pd/UnMRTtstctEKKnKRoNHYPwmRhUdnSh2k+rG/sDlIjF8fyzrpOe5aoICUWDMPg/86fDYPJjBe/Ow4AeGdXDWQSER68ZD5EIkYwmD0l1rsAtdiHDp49PmZBo+QSLujTGEwez8ccqy8ajsFosZa/qg063L79I7y2YoNfMvaunApNXL5prhr1MRaW5UYr2DQM9uG6rW9iamIG1Abr+ygvOgEXTyj3+VjW5pfir/s2oU0zgC7dEM769L+YlpSJ01JzcVFR+ajB5P6uJnzXWgsAEDMMfjFlgc/HQgghgeb2N5pIJMIf//hHrivbAw88IPg6wzCIiorCjTfeGPCDJCRYHMs7AevYBkF5Z4Jz0AdY18J9+fu12PjsVm5wtc3C4gyo5N59guyOvwe08783/oX8qWh6bhIauwcBWOcW+hb0BWdNX5pDIxd+pi8/xdoAhGEY3H/RXOhNFrz+o/Vi+3/bqyCXiHH/RXN8Gtdgwx/bUNWm5mYFjkTYyMXzwE0ZogHtn9syUsO2tdbg1RM/4coADdoWjGsYhzP6mgb7uIYncrEED80/B22afrRq+tEy1I82TT9ahtTo1LlvDHS4p5W7fev0JZCKfM/6SkViXFsyF3/btxkAUKXuQpW6C+/VHkLTYB/+MHPFiM//5/5vudvr8suQGzP2NduEEBIoboO+8vJyVFRUAACWLVuGd999F4mJp9bsLnLqcVve6dDIxZ20OBXe/fVq3PX2Lu4iGwBWjLFrJ5+/yzv5F9ExHgzzHs/K85Lx6f56AMDBhi5cgWKv9+FLh0pf8DPOrX0aQROWghR710eRiMFDl86H0WzBO7tqAAAvbKvEvrpOwRoyb9f0JUUrkBKjQOeADjqjGQ3dA8hPGTlQ4Tdy8XRNHxCaAe0d2gHs7mhw2n7f3q9xekahXwZ687EsO+7X9H3XWsPdnpeWh/MLp7l8nMFsQptmAGbWggS5ChbWglu3f4gtvCzhhLhknFcwdczHdNWk07C1pRo/ttUJtm9rqRkx6NvVXo9tw9+PiGFwqw/rAQkhJJg8quP65ptv3AZ8bW1tfj0gQkLFZLagZ8hF0KcWrunjl9W5IpeK8c/L5uOBn81FvEqGspxEXDS3yG/H6e8B7fyOiKMN8h7vpvMye/zZhd4QrOkLYHlnUoycG9/RO6THCd66OsfgSyRi8MiGBTh3Vj637UB9Nzd7EgAKfcgsCYe097l9nE3PEC8L6kWQKZzVF5yg76uGSgyPFMSslGxMGp7jpjUZ8ZsfPoDJ4r85mYA1Q2wrYVXJJCN+uBSpvm+p5W6fkeH+d6JMLEFuTAIKYpMQL1ciURGFF5ddijtnroCYYSBmGPzf7NV+KUWPksrx9qqrceSS3+ONFVdw20/0dbj9N2ZZFg8d+Ia7f2HhdBTFnZoNsAghkcOjK7zGxkb84x//wIkTJ2A2W38JsiwLg8GAnp4eHD16dJQ9EBL+ugd13OBovta+IUHZZ5oHF2MMw+DqM0qwYWGxRwOoveHvAe382WdRfipBjVT8cs7Kll5oDSaPxxjYBKt7p1gkQlqskpvrZgvgFFKxy3WnYpEIj1+1CHqTBV8ctGewUmOVWDczH2um53l9DJMyE/DDCesHf8db+3Dm9NwRHy/IgnqxLo//YYRjeWe3bgjNQ2pMTczw61q7z3ilnevzp2JuWi7Wfv4sjBYL9nU14emK7bhl2hl+ez3Ber602ICtGwympsE+yMRipCpjYLZY8H0rL+jL9O6DMBEjwk1lp+PCwukwsxa/d8aMkymxKLMImapYtGj6obeYUdPfzQX7fNvbTmJnu7UiQMKIfOr6SQghwebR1cyf//xnNDc3Y926dfjvf/+L66+/HvX19fjiiy9w7733BvoYCQkKV+v5AOBIcy/MFms0mBgth1zq+RoSfwd8gEOmzw9r+vgX0fy1U6eiWKUMRamxqOnoh8nC4mhzL2YVpHj8fI3eyAXiMokI0QEul02PV3FBn01ecozbtXVSsQjPXLcYH/x0EiazBXMnpKEgJcbnAIOf6fOkg2ePj2v6+B9G8DPTHdoBLP/4afTqtfhd+bIxBWEsy2JQZ0SMUoZenQY72uu4r52VNxkZqljcNn0p/r5/CwDg4YNbsSxrIsqSMnx+Tb7aMO3cqTMbYbZYoJLIPH6f1Kl7cMu37+KrxuOIlcrx6ooNkDAi9Bmsv2NTldEocRFMeSJNFdiB9ZMT0tCisQbgx3rbnYI+lmXx4H57lu+SiTNoLR8hJCJ4dIW3f/9+PPPMM5g9eza+/fZbLF68GOXl5SgsLMSWLVtw0UUXBfo4CQk4ftAXrZBicDhzcqzZ3pnQVQYl2Pxd3skvl4s6xYM+AJiel4ya4azLwfour4I+xyYugc7WuMo656eMfFEsEYv8Vm7s7diGHh+b3AjKO3mZ6XdqDqJXb/25fbFyF24qO92nkj+LhcWlT23CD8fbcM+5sxCfp4d5OO0/KyWbG9Pwy9IF2NR0HHs7m2BiLbjlh/fx+dqfe93m35WaMOrc2abpx1cNlfi84Rh2ttfBzLJgAERL5YiSyqz/l1j/Hy21/d+6TW8x4fWqfdCarL8/+4163Lr9Q6zLL+X2vyijMGwzmVMS07m1g0d72nCuw7rBb5qrsK/LOopHJhLjlqn+y/YSQkggeXSFZzKZkJWVBQAoKChAZWUlysvLsW7dOrzxxhsBPUBCgoXfvr40KwG7ajoAAEazhduePsp6vmBQ8Lp3ag3+DfpO9TV9gHVd3/t7rGVoBxu8W9cXrNJOG1frSwtGCfr8qTg9nrtd3a6GyWxxm93WGkxcwCYVe5cFdVfe+UHtIe52p24IuzrqsSC9wOP92hxq7MZ3ldaukM9tPYYpS+3B6ZrcKdxtiUiMRxeeh1Wf/gdakxEn1J14aP83uGf2aq9f01E4jGs41tuOJw5/h0/qjsCx0p0FMGDUY8CoBzDg4tnu1fZ348nD33P3F42wni/UpiSkcbeP9rYLvsayLP55wN6xc0PxbBrATgiJGB59JJqXl4eDBw8CsAZ9tq6eWq0WGo1mpKcSEjE6eO3rS7NdNy4Ki6BPMKeP1vT5G7+ZC3+GoSf4TVy8KV/0lav342gdNP0pTiVD5vAxGEwWwdgIR4ImLtFyrzI9Khflncd621HZ1yF43Gf1vq0vP8QL7lsGBvA9r8vkWbmTBY8tiE3Cn2at4u4/c3QHdjh0fvQFv3NnoMo7NzUex/z3H8Uvt70NtcH++65hoBfXffsmVn7yb3zsIuDzZfh5aUI6fjFlPnffzFswvSij0Ov9BcuUBPs81WO9wkZ1XzZWciMjFGIJfjX19KAeGyGEjIVHv8kvu+wy/OEPf4DFYsHq1atx3nnnQalUYu/evZg+fXqgj5GQoOjklXdmJUQhXiVDn8YgeEz4lXf6d00flXdaB9SLGAYWlkVVuxpDOiOiPMxKBTvT56q8M5iZPsA629G2rvB4Sy8mprvOfPSMYZSFq+6dH5487PS4z+uP4t7TzvK6xPNwYw93m43VcgPZyxLTXa7X2lA8G181HsfWlmqwAG7d/gE2rbsBMTLf/s3NFgvqOvmZPv9nj2r7u3DT9+9CYzKicbAPVeouvLr8clT2deDm79/jBp7bzE/Lx9q8KViVW4IMVSxMFjMGjQYMGfUYNBkwaNRjyGj9v/U/A4ZM1m1zcvOwOLEIIobBkZ42/NB2kttvSXxqwNfljUV+TCIUYgl0ZhPatYPo1g0hSREFs8WCf/I6dl5dMgepyvD9PgghxJFHV3iXXnopEhMTkZiYiIkTJ+Kvf/0rXn31VSQnJ+Oee+4J9DESEhT8oC8lVonUWKVT0BcOmT6loHunn0c2UNAHlVyK4ow4VLb0gWWtpX/zJ6aP/kQ4BH1ezr3zhasPIQqCmOkDrOv6th5rAWBd17fWzeN87dwJOM7pM8LCWgRBny1IH63Es3GwF+/WHETjYB9uKF2IifHW9ZoVTfZMHxNvr15Znu16TiPDMPjngnOw/OOnoTbo0DSkxp/3fIl/LTzXq+/LpqVXA73JGmgmxygQp5L5tB939GYTbvzOGvDZHO/rwOpP/4M+vVaQ2VudU4JfTzsD05IyBfuQiMSIlysRL1eO+nopKTHoHM76PjR8nmyv7W3XzmATi0SYFJ+Kg93W9/Sx3nacnlGIT+qP4HhfJwAgSiLDjaULQ3mYhBDiNY+v8Favtq9ZWL9+PdavXx+QAyIkVDp4a/pSY5VIi1PhRJta8JiwCPr83L2Tyjudlecmc3PnDjZ4E/T51qjEV2nxwgtwqViEzITgvkcFs/pGaOYiaOLiYUCsN5vQb9BBLrNn7ob0JuzpaETzkPVnM16mxJq8yXi9ah8Aa4knP+jTmoz4suEY3qreL8g4nVB34tM118NotvCaNbGCoG+Fm6APANJVsXhg7lrc+P27AIC3ag5gVU4JVueWePS98dXwOncGYj3fP/ZvQUWPtVRRKhKBZQETa+Ga4ABAhioW/1l8EWal5Pj1tXOiE3D/nDW4Y8fHkIrEuHTCTL/uPxCmJKRzQd/R3jbMS8vDwwe3cl/fOHkeEhVRITo6Qgjxjdugz5sM3n333eeXgyEklDoH+Jk+BVJjnT/RHm0wezDwG7n4u7yTGrlYTc9Lwps7qwEI13uNRjiYPfiZvtzkaL8MrHbUMqSGiGGQrnIOSEoy7eWPI3Xw5P98ucv0aU1G7OtsxI72euxor8OBzibohwdki2aKAL0EB02ArrKFe87a/Ck4J7+MC/psJZ6He1rx8cEjePPoXvQb9U6vdaCrGVV9nTAOibksG6IMYKTDGTdFFKY7ZLscnVNQhq8aK/FRnXWd+59/+hKrciZ53ZmyNoDr+b5trsIzR3dw9++etQrFcSn4+ba3MGi0VjIsSM/H04suRLIy2q+vbXPxhBk4LTUXKoksrEs7baYk8pq59LTj/dpDqO23/h6IlcpxPW+tIiGERAq3V3h1dXVBPAxCQo9f3mnN9DkHfelht6aPRjYEQnleMnfbm2YuwjV9gW/kEqOUIUou4Up0A1HauaXpBK779k2wYHHr9CW4uWyRILCcmGZff1bb0Q+90exylmWHmvfzNfxzpDEasLezETva67CzvR77u5q49XSOGKkFkBpwAidxot6+/byCaZidkoMURRQ6dUPo1A1h0YePo2Gwz2kfIoZBvEyJHr01m/fByUPI09mH0vOzfEuzJkDEjB5A3z93Db5trkK/UY/GwT4c7+tACa8DpCcC1bmzQzuAW7d/yN1fnjUR15XMBcMw+PDM6/DssZ2YHJ+Kq0vmQCLyfP6oLwpik0Z/UJjgN3M51N2C3R32N9wvShd4VOJKCCHhxu0V3quvvhrM4yAkpPRGM7d+TyxikBAlR6pD0CeXiJDg5VqkQOB37xxrps9ssXD7YBhhFvFUNjkzAVKxCEaztSOlWmPwaJ1VsBu5ANYPImwz3kab0eetXp0Gt/34EUysNRD754FvsaOtDo+ffj6XsYlSSJGbFI2G7kGYLSxqO/oxOcu5+Uk7L+hLjJbi+q1vYVPjcW7f7sTJFOg36Jw6SgJAVlQcTkvNgYgRYU3eFLx8fA8AOAV8eTEJuGTCDFxQOB2HuluwcetbAIAPTh7GMqO9TE+wni/LfWknX4JchUWZRVzn0G0tNV4HfdW8oK8ozT9NXCysBbf+8CG6dEMArAPRH154LpeFLElIw78W0DINV0oS7APZT6g7udsJciWumzwvFIdECCFj5tEV3r59+0b8+syZ4V+jT8hIuhwu1sUiEdJihVm99HhVWAwUFpR3jnFN35DOnuVTSiUQiUL//YUDuVSMSZnxqBju6nikqQcLikdf1xfsRi6A9X1pC/oKkv0b9N2z5wsuaLDZ3nYSqz79Nx5deB6WZk0EYF3X19A9CMBa4ukq6OvgZdJrzK34ouGYy9ecGJeMeWn5mJ+Wj7lpeUhTxWBIb8TEP7wCxOjAJA1BmqiDibXgjvKlXDbunPwyLugDAKVEiosmlWN9dhnmpOZyP7tJiijEyRRQG3RoHOzDzr4G6xOkJjDRw42bWO/GCizmBX3ftdTgF6ULRnz85qbjeLFyN6YkpOO8gqkBWdP3zNEd2DY8eoIB8Pjp5yOJ1qF5JE6mRHZUHJqGhGu6byw9HdHS0H/wRwghvvB4ZAPDMGB5c3YYhgHDMBCJRNzcPkIilWNpJwCnTF84lHYCwvJO7RjLO2lcg3tTsxO5oO9QY7eHQV9wG7kAwKyCFGw/YW3SMXeCdxmmkXzZcEzQIXN9fhk+rqsAC6Bbp8EVW/6HG0oX4nczlmFSRjw2VTQBAHZUteHc2dZGKmaLBY8c2oZ+gw6t/fYsWqPBXjKbF52AJVkTuCAvxcW6sii5FBlRcWjploDtjsbHd61BVpJKEMTMTcvDnTNXYF9nE1ZkF2NdfikKMpO5LpI2crEE6/JL8dqJvQCAKlMTgCQw8fbfAeyAAmYjA3h4fb8kcwJ3e2dHPbQmI5QS102RLKwFv93+EXr0GmxrqcG/j2wHmykFI48GeqKQ74fA/UBXM/6+bwt3/4bShTg9jGfjhaMpCemCoC9FEYWrS04L4RERQsjYeHSVt2XLFsF9s9mMkydP4rHHHsPtt98ekAMjJJj4QV/ycIYmzaGRSzg0cQH8O6dvUMdr4kJBn8DUnCS8scPazIU/x80dvdHMnU+xiEGc0r9t9925edVUJMcoUJASi9LsRL/ss1evwZ07P+XuX1g4HY+efh4umzgTN//wPjq01qzev49sx872OlxTsJh77Nu7anD72eVIiVXig5OH8eihbQAAmSIRgLV0sXqwnXv8wwvPxdw0+7o6d/KTY9DSa806dqsNmJaV4vSYm8o8G5Z9fsE0Lugzxw8CTCLkyXrYfhrYXhUaugc9nieYGRWHiXHJqFJ3QW82YVd7PZZkTXD52Jahfm5NoQ2jMoJR9QI5vbho04s4t2Aq1uWXugyARzNo1OOm79/lymbLk7Nwx4xlXu/nVDc5MQ1fNx3n7v9q6iIoJcH5mSaEkEDwqM1bVlaW4L/c3FwsXrwYd911Fx544IFAHyMhAdfhKtPnFPSFR2mUcE7fGMs7BZk+GtfANzXHHkBVNI7ewbNnSDiHLlilstEKKa5fOgUryrL9ts9Xju9B53BZZ5oyGn8+7UwAwMKMQny99pdYzJu1tr+rGX88+h7yi61/TnRGM575xlrq+G1zFfc4fZQ1UBRLLagdsJ5PMcNgWlKGR8eUl2wPgOq7BkZ45Ohmp+YgJzoeAMBILBBNaYUpZpD7Otun9Po1+PPntrVUu31cFW+NWJxMARkj/LBlX1cT/rTnC8x691+4fNOr2Nle59Vx/HHX56gfsI6giJbK8OSiCyANcJOW8aiU18wlQxWLy4tnhfBoCCFk7MbU2zspKQn19fWjP5CQMOcq6ItWSAUBVjjM6AMcMn2GsZV3CjJ9NK5BYEpWAmxLOKvb+6HhBciudA94P4cuXO1qt/9ev718maBbYbIyGq8uvxx3z1wJyfB6un6jHo0JNWDyuwCweOn74+gd0mE7by4eE2UAJGbEJduXCUxJSPc4e5LLK3sca9AnYkQ4r2Cq/dii9WAZ63GxOgmgk6K+a9Dd011azCvx3NZS4/Zx1Wp7aevavFLclHI2LNUpYHuVYGD/oMDCstjWWoOrv3kdAwadq12h36DDm1X7sL21FiaLGe/VHsS7tQe5rz8wdy3yY/yT/T3VLM8uxuyUHMRI5fj7vLVQiOlDMUJIZPO5kcvg4CBefvllTJw40e8HRUiwdfHmqyXHWi/YGYZBWqwSdcMXmOOxvHOIyjvdUsmlmJAWh6o2NSwsi6PNvZhdmOr28aHo3BkIFtaCA13N3P0F6flOjxExItxQthBz0/Jw0/fvonG4W6YobQAWnRSDbXF4aMsepyYwTKwWsgT7xfPMFM+zk/y1bnVjDPoA4ILC6Xj80PfgxVlIkcSi7aQKAIOGbu9eY35aHuQiMfQWM06oO9EypEZmlHMnzhN99kzfxLhkHKnWgO2OBtsdjTsvKEdclgEfnjyMXR3WBjODRgO2t53EmbmTnfb1mx8+4EoQE+Uq6Mz2n+eLiqbjvMJpXn0PxE4uluCDM68FgLBo4EUIIWPlcyMXwFr2+dBDDwXkwAgJJleZPsDaSc92gVmU5v8ZaL7w53B2ftBH5Z3OpuYkoarN2syhoqnnlAj6atTd3DDzJIUKudHOnThtZqZk48u1v8DtP37MdeNkUgbAtsXiraOHAcfZ5rE6WJT27PSMZM+DPn55Z4OXWThXCmOToGjIhEbZD2hkeO/q86HpBzZs3+LTayglMsxJy8P3rbUArF08L5no3Nm6mlfeOSEuBR932Etgp2akYPGkTFwx6TQ8sG8znqr4AQCwtaXaKejTmY3Yyisj5a8TzI9JxH1z1nh1/MQZBXuEkPHEp0YuACCVSpGa6v4CiJBIwm/kkhJjD/p+t24GDCYzTitKxZSs8CiTEs7po/LOQJqanYj391gv4kdr5hLsweyBsr+ribs9Izl71AvfOJkSjy48F1tbqqE1GcGojIDSCJ1iEI7PZOK0GJDYt3qT6eOXd9Z1DoBlWZ8vylmWxcOfH8RQmxxACuJVMszLyUJ1u31eni8lpGdkFHFB3zYXQR/LsqjilXdOjEtGbcde7j5/XMPSrAn2oK+52un7rehuhcHi/KGPVCTCU4suoNEChBBCBDy6ysvKygr0cRASUmqtgbsdr7JfLE3PTcI7v14dikNyy6+ZPr09aKSRDc6m5toD/UOjNHMZL5m+/bzSzhnJnv3uj5LKsSp7Ej6qs47vYZIHgVj7+WAAsAAYhQm2n7R4mRIFXqw3S4ySI0YhxYDOCI3BhO5BHZJjlKM/0YHZYsEf39mNl76zd2ZcU54HhmGQk2TPJjb3DsFotkAq9nzp++KsIvx13yYAEKxntOnWDaHPYP2AKUoig4pRcO8bhVSMrAR7s6hZKTmIlsowaDSgaUiNmv4uTIizdyz9qbORu31h4XRsKJ6FvZ1NmJeWh+ke/rsRQgg5dXh0ldfY2IhHHnkEVVVVMBgMTl//6quvPH7B/v5+rFy5EgMDAzh69Ci3fcuWLfjXv/6FhoYG5OXl4Y477sCSJUs83i8hY8Efch7ua9vkEhEYBmBZwGCywGyxQCzyrScTjWwYWVl2Enf7eEsfDCYzZBLXnRDHSyOXfZ32TN9ML8ovzyucag/60vrBiK3LAdKUMYBWinYIM6UzU0bPIvIxDIO85BhUNFn3U9816FXQ19anwaaKJry3uwa7ajq47WeUZODeC6zz1xRSMdLjlGhTa2G2sGjpHUKeF3PzJsenQS6WQG82oUevwYBBhxiZ/b3Az/JNiEvGyQ57NrEgJVbQ8VUqEuP0jEJ82VAJwJrtcxf0nZaai9nD/xFCCCGueHSV9/vf/x7t7e0466yzoFD4fjEzMDCAm266CX19fRCL7RdOlZWVuOWWW8AwDMrKylBRUYGbbroJH3zwAYqLi31+PUI8xR9yrpSFd3tzhmEgl4i5LJ/eaIZK7lvQRyMbRhankiE3KRoN3YMwmi043tqHqTlJLh87HjJ9WpMBlX3WGXoM4FXG6IyMIsTLlOgzaLmADwAWphdgf2U/IHcO+rzFD/rqOgcwq8B5Vp8Ny7I4WNeFN7+rxNeHGnGwwTlTe97sAjx6xUJBIJ+bHIM2tTUbV9814FXQxzAMMlSxqBuwHmOLph+TeEGfcD1fMmo67OWk/NJOmyWZE7ig79uWamycMp/73vZ22IO+2ak5Hh8jIYSQU5NHQd/Ro0fxv//9D6WlpT6/0Oeff46HHnoILS0tTl979dVXYTKZ8Lvf/Q7XXXcd/v3vf+PRRx/Fa6+9hnvvvdfn14wkFov1IilYs72IkJY3+oBfPhmulDIJF/RpjWaofAzYaE3f6KbmJKGh29rU43Bjj8ugr0OtRQNvDVikBH0NA724c+eniJUp8I/563Cstx3m4YZdE+KSESvz/PuQiSVYmz+FG3puMzUuC/vUBsBhCfgsL7KINoJZfS66axrNFvx4og1fH27EV4ca0dw75PQYm18sm4I/nTfb6XduXnIMdg9nAr0d2wAAmVH2oK91qB+T4u3fuHA9Xwpq60YP+mx2ttdDazJCKZGifrCXm6MYK5VjYlyy18dJCCHk1OLRVV5eXh60Wu3oDxzBf//7X/T29uLmm2/GE088IfiabSTEnDlzAADz5s0DAOzfv39MrxkpugZ0OP/RLzGoM+KNX63EpIz4UB/SKYe/Nk4ZAcGPv8Y2CLt3hv/3HQpTcxLx2QHr3LrDjd0AJqJdrcGOqnb8WNWGH6vaUMNrAAJERiMXndmI67a+iWO91sxeglyJHF6nTm9KO23OK5jmFPSliRKh7joJNlEERmIB4H0W0UYwq69TGPTpjGasefAzHGvpdflciYjB/InpWDU1B6umZgv2xZeXxO8S6n0zlwyVPXhr0agFX6tyyPR90GEvMy1yEfRlR8djYlwyqtRd0JtN2Nleh6VZE/ETL8s3MyUHImZMI3cJIYScAjy6yrvnnntw33334ZprrkF2djZEDuuHZs50bkvt6LLLLsOSJUtgNBqdgr62tjYAQHx8vOD/tu3j3Wf767i28M99ewwPXTY/xEd0ajFbLDCYhi9GGeuauXDnrwHtwjl9VN7pSlmOvdnIp/vr8f3xVqcgjy85RoH8lPAY7zGSv+7dxAV8APBa1V4U89aMzfCh/PK01BxkqmLRorGeH1YnQW+vBd2DejD9CiDROlagOD7FqyyiTf4IA9q/r2xxCvjiVDIsm5KFVVNzsHRKFuJUow+C5weDtgyvN/iz+VqGhO8TftA3MS4FtR32kQuFbkbCLMmcwGUIt7ZUY2nWROztpNJOQggh3vEo6Dt58iRqamrwhz/8welrDMPg2LFjo+7jZz/7GQCgqanJ6Ws6nXUtjFRqveiUSKyH5Wl2MSFBBYmb5gqBlJLi+VqPkeh44w+rO/v9tt/xyt/nZ1Bnb06klEmQ6uIT93ATrbRfvCqjFT6fE355Z0ZKDL33XFhansfd7hrQoWtA5/QYmUSEecXpOGNKFq5dNgXZHqwDC+W5/rTmCF6s3C3YZmFZVPbZM0/LJhb7dIyXls7Cv/Z8CwBg+xU42NQDlgWgVoIZDvoW5U7wad8zzOnc7caeIcE+anvspZxnTMnEHy+cg0UlGZB6+bdh+oQ07nZDz6DXx1mclgoctt7us2i55/frdWjTWANVqUiMmfk5qO20N0GbMzkTybHOjWnWT5mGZ4/tBAB811aL5ORoHOi1d1hdPsG3f6dAC8djGo/oPIcGnffQoPM+Nh4FfY8//jguvPBCbNiwAUql9y2yRyOXy6HVamEyWTMWtv97+lq9vZrRH+RnKSkx6Oz0vvTHlXbep8kVDd3o6OinobBu+PO823QN2D9cUEjFft9/IEh474/Wjn5kRvlWTsgf2WDSGyPiew82EYCClBic5J0bmUSEWQUpWDAxHQsmpmNGfrK9LJjFqOcxEO9jADjc3YIbvnsXbZp+yMUSyERiyHj/l4vFkIkkOM4L7uam5WFvRyNMrIXbppRIkcpG+XSMV+TPwtuHD6Khrx9sazy29lo/6GM7oxGdZsbUgnhsnDDXp30rAYhFDNdZs6G5lzvvu463co87f2YBpqbFQSrx/uc5WS6BiGFgYVkcqOvClr11mJbrunmPKzEW+wcytd1d3Ovz5x8WxibiWG0XNMM/fwlRcrB6k8tjLVGkQCGWQGc2oaq3E3dv+RQVndbvVcQwKJAmht3PbaDe30SIznNo0HkPDTrvnhkpMPYo6BscHMTGjRuRne19uY8nUlNTUV9fD7VajezsbPT19QEA0tPTR37iODHAy7YM6oxo7h1CdmL0CM8g/qTljWuIhCYugHBAu3YM5Z38LKdKRuWd7jx9zRl4YVslcpOinYO8MPL3/Vu4JiI68+jviwxVLJ5b8jM8efgH/Pfoj9z2aUmZkIh8q55IVkbjmfmXY9XfPwHAoFU3/KEcK0K5qRRvrl7p034BQCoWISshiiu7bOwZRHF6PABwXT0BoDTb8/l/jhKjFVg3Mw8f7a0DADzx9WE8u3GJx8/PVNnLO1s19vLOasG4hhTUjtK500YhluKSCTPx0nFrZvZfB7dyX5uSkEZD2AkhhHjEo8VLq1evxubNmwN2ENOmTQMA7Nq1CwCwe7f1j9usWbMC9prhhH/hDVjngZHgiaRxDTb+GtCuoeHsHinPS8bjV56O288ux4Li9LAM+PoNOvzoYiC4O3KxBE8sOh8JchV+M+0MpCjsg8F9aeLCV5gSC2u7FqE0F+WL3spz0cxFrTGgcTgQlIpFKM6Ic/lcT928aip3+7MD9TjR1ufxczOieI1chvrBDndDrerzblwD3x9nr8QMF41vZqXQej5CCCGe8ejKJSsrC4888gi+/vpr5OXlcWvubO67774xHcSGDRvw2Wef4eGHH8bXX3+NiooKSKVSXH755WPab6TgZ/oAoLK1D8vLApNVJc74mb5wvJh3xV+NXAape+e4sbW5GkaLtUSzNCEdb668EnqLCQazGYbh/9vuGy1mFMYmcU1HYmQK3Dd3DW787l2IwODcgrIxHUuUQoqMeBVa+4Sl96lx/gn6vh8u5bSNVDjCy/JNyogXzN3zRWl2IlaWZWNTRRNYFnjq6wo8duXpHj03XqbkyjGHTAb0G3WIkymdmrjsr/E86FOIpXhuySVY89kzaNfay5tmU9BHCCHEQx5d5e3evZvLxrlqxDJW5eXleOKJJ/DII4+goqICubm5uOOOOzBx4kS/v1Y4cgr63LQcJ4HBD5qU0kjJ9PHKO8eQ6RPO6aPyzkj2VWMld/vM3BIkKFRePX9tXinKzs2ATCQWdKD0VVFqrFPQlxbr3TG5wp/VVzfcwfNwk33wetkYSjv5blk9FZsqrH/v3ttTi9vPLkdO0uhl9wzDIDMqDrX91mNqHeofDvr4M/qS8W77Ee6+q3ENjtJUMXhu6c9w4ZcvQm8xQ8QwmJOa6+23RQgh5BTlUdD36quv+u0Fs7Ozcfz4caftK1aswIoVK/z2OpFk0EWmjwSPsLwzMrJd/OMc05w+PWX6xgOD2YRvmqu4+6tzS3zaT36MfwImwJq9+uGEcOxOmh8yffyxDcearR+QHWmyf1DGH7ExFrMLU7GwOB3bT7TBbGFx2/9+xN9+NhcT0kYPiDNUsVzQ16LpR15MAhoGrcfIACiMTRas6StyM67B0YzkbLy07DI8fWQ71uRORlZ0vNffFyGEkFOTR1d5tuHp7ngyp4+455jpq2rtg9ligVgU/vPixgNBeWekNHIRDGf3rbzTYmEFa/oiJeAlzna012HAqAcA5ETHY3J82ijPCLwiF8FRqh/W9M0sSAHDACwL7KxuR4dai4pG/zRxcXTL6qnYPhy4fn+8FYvv+wjnzS7ArWdNc/n92WTy1vW1DvXjaG87LMNr+ybEJUMMkWAGoDdzHRdlFmFRZpG33wohhJBTnEdXeZdddhkYhuEWpAPWEhaGYSASiVBRURGwAzwVOGb69CYL6joHRryoIP7DD5oUEdPIhR/0+Zbp43f9VMokEIloTEik+rrRXj2xOqckLEa+uMpe+SPTl5kQhXkT0rCjyhpIvb2rWtBopTQrYcyvYbNoUgauOWMSXvzOen4tLIv39tTig59O4vzTCnDrWdNdrsfjd/Bs0ahhtNh/RssSM9DQPQizheW+HxV94EIIISTAPPpLs2XLFsF9s9mMkydP4rHHHsPtt98ekAM7VbAsiwGtwWn78dY+CvqCJDIzfbzyToNvQR9/Rh9ddEYulmUF6/lW5UwK4dHYuVqnlho39jV9AHDe7ELsqGoHADy9+QgXQOUnxyBGKRvpqV5hGAZ/+9k8XDCnCP/6/CC+PWodim5hWby7uxbv7zmJC+YU4tYzp6GA9/1mOGT6bEPZAWBqUoawtNOD9XyEEELIWHlUP5iVlSX4Lzc3F4sXL8Zdd92FBx54INDHOK7pjGaYLKzTdlrXFzz8jFfEZPpkYy/vpPV848Oh7hYuqIiXKcOmuUdOUjSkYvufmBiF1G8fLqydkcftu3dIz23313o+R7MKUvD6TSvwyW1nYcnkTG67hWXxzq4aLLrvQ/z6lR/QrrY2rslQ8YI+TT8Od7dw96cmZqKmXc3dH61zJyGEEOIPY1o0lpSUhPr6en8dyynJsbTThmb1BQ+/PDJyMn3uyzs71Fpc/Z9vcNlTm9EzqHO7D42BP6OPOndGqs/qj3K3V2QX+zxU3d/EIhHyU+xNV/wxrsEmIUqOZVOc59b5q3OnO7MLU/HGr1bi49vOwhklGdx2s4XF27tqcM1/vwUAQffTuoEenODN6CtNTBfM6PO0iQshhBAyFj43chkcHMTLL798yoxVCBTHJi42NLYheBzXtkUCd907TWYLfv78Vuyq6QAA/Ovzg/jrxXNd7kNQ3kmZvojUrhnAS8d3c/fP9LFrZ6AUpcWiqs2a1fLHuAa+808rxFeHGwXbAh302ZxWmIq3bl6F3TUd+NfnB/BdpXVu4KHGbrAsK8j0NQ72cbcLYhIRK1MIyjsp00cIISQYfG7kAljLPh966KGAHNipgh/0FabGchcDtR390BvNkEfI3LhIxg+aIqa8kz+njxe0/uPT/VzABwAf76vDXy44DRKxc1JfY6Dyzkj34IFvoDFZ/x0nxadgRXZxiI9IaEJqHABrYOaPJi58K6ZmI0ouEXx4EajyTnfmFFmDv8Jb/wetwQSzhcWQ3oQ4uQIqiZT7t7GZmmTNDtKaPkIIIcHmUyMXAJBKpUhNTfX7AZ1qBnX2Ji5pcUqYzBY0dA/CZGFR29GPyX7sREdcE2T6Iqa80znTt7miCU9+Leyk2zWgw/YTbVjMW4dkM0TjGiLa4e4WvF29n7v/f7PPDJvSTps5RanAJuvtablJft23SibBmvI8vLOrBgCQHKPwy0gIX8SrZNzvkT6NHtEKKTKj4lDNG8gOWDt3siyLjn4tty0rcfSB74QQQshY+dTIRS6XU8DnJwNa+yfBMQopSjLjufuVrVTiGQzC8s7wumh2R+mwpq+tT4NbXvmB2yaX2H+0P9p70uU++DP6aE1fZGFZFn/56SvYai+WZ03EGWE4u21FWTYevHQ+/njuLFy5yP9dRS+aY/+eTytMDdmoijiVvWNo35D1gzx+iafNtKRM6E0W2IpmZBKRoNkNIYQQEigj/rXZvXs31q1bhxMnTgi233PPPTjzzDOxf/9+N88knuKXd0YrZCjOiOfuV1Izl6AQlHdGSqbPoXvnWzuruS6GGfEqPHf9Uu7rnx2oh97FLD8Nr3snjWwIXxXdrWjmrQuzsBY8c3QHdrZbm2hJGBHumb0qREc3MoZhcMXpxbhpZVlA3mOLSjLwp/Nm4dxZ+fjjubP8vn9Pxavk3G211vpzmOki6CtNTI/IygJCCCGRz+1fnIqKClx//fWYO3cuoqKiBF+75ppr8N///hfXXHMN3nrrLUyaFB5zoSIRv3tnjEKKkgx7OSd18AwOTQRm+hzn9J1os7eA//WZ07C8NAu5SdFo6B5Ev9aIb48248zpwlb+Q4JMH118hqO/7d2Ep49sBwAszijCOQVleL1qL/Z2NnGPuWLSbEyISwnVIYbcDSvKQn0IwkyfxprpS48SBn250fFIkKvQohnitkXK7xtCCCGRz22m76mnnsKaNWvwzDPPICtL2Bp7zpw5eP7557Fo0SI8+eSTAT/I8WzAMeij8s6gE8zpi5BP3h1HNpzkNYaYmBYHhmGwflYBt81ViSeNbAhvO9rquIAPALa11uC2Hz8SBHzFcSn47fQlITg6whfPC/rUw0FfpipO8JiyRGsTl0jsFkwIISTyuQ36Dh06hKuuumrEJ1977bU4cOCAv4/plDLAa+QSrZCiKC0OYpF1XUp916CgBI8EhmBOX4R88i4M+kwuW8CfN9se9H11uMnpvcQfzk4jG8KLxmjA7T9+5PbrUpEIv556Bj47++dIkPt3FALxXhyvvLNvuMw60yHTZ+vcqaGgjxBCSAi4Dfo0Go1TWaej5ORkDA4O+v2gTiWO5Z0KqRgFKfaLBX7ZHgmMSPzkXcE7zja1Fmqt9cMDlUzCtcafnJWAScNrRLUGE74+3CTYh4bKO8PW3/dvQf2gNdMfJ1Pgo7Ouw6+nnoGi2CSsyC7GpnU34I4Zy6CUUIY2HMS7KO90bOQyNdHaQVdrsH/IRGtpCSGEBIvboC8/Px+HDh0a8cmHDh1CRkaG3w/qVMLv3hmttF44CEo8aUh7wAkyfREyF9HdnL6ClBhBB8P1s/K52x/+JCzxFAxnp4vPsLGzvQ4vVO7i7v/5tDMxKyUHd8xYhm3n3oyXll12Sq/hC0eCRi4aW6ZPWN5py/RF4odMhBBCIp/boG/t2rV47LHH0NXV5fLrnZ2dePTRR7F69eqAHdypwDHTBwAlvA6ex1v7gnxEp55IvAhzF5wWOAx6Ppe3ru+bo83oG74gBYAhA7+8kzJG4UBrMuA2XlnnsqyJuLBwegiPiHiC38jFlnWPlSkwPy0fAHBGRiGSFNbKmUgcEUMIISTyub3CvfLKK/Hll1/i7LPPxoUXXojp06cjJiYGarUaBw8exHvvvYfs7Gxcf/31wTzeccexkQsATMq0d/CksQ2Bxy+3ipSgz13DGX5pMGANAqfnJuFgQzeMZgu+ONCASxdMBEDlneHoH/u/Qf2ANbsfK5XjH/PXhWz2HPEcP+izjU4BgNdWbMCBrmZMT87ktmmNkfchEyGEkMjn9i+OVCrFq6++ikceeQTvvPMOnn/+ee5rSUlJuPjii3HjjTdCpaImAmPh2MgFEJZ3UqYv8HRGfvfOyPjkXSRiIJOIYDBZBNsLU2OcHnvu7AIcbOgGAHy496TLoI/KO0Nvd3s9nj+2k7v/f6ed6XLANwk/CYLyTvvvdLlYgrlpeYLHCj5kipBuwYQQQiLfiH9xFAoF7rzzTtx+++1obGxEf38/EhISkJubS58++4mr8s785BjIJSLoTRa09mnQp9EL1owQ/2FZVnARpoig4EchFTsFfY6ZPgA4Z2Y+7v3gJ7As8MPxNnT2a5ESq6SRDWHEVtbJDt9fmjUBFxeVh/KQiBfiXIxscIfKOwkhhISC2zV9fFKpFIWFhSgvL0deXh4FfH4kLO+0XjhIxCJMTI/nttOQ9sAxmi2wsNZLbalYBKnYox+JsOCqxLMozTnoy0yIwtyiNACAhWXxyb46ADSyIZw8uP8bnBzoAQDESOX4xzwq64wk/JENtjV97kTiGmJCCCGRL3KucMcpfqYvWmnPtkziNXOppBLPgBFk+SKktNPG8XhjFFIkRStcPvZc3sy+D/fWAaA1feFiT0cDnuOXdc5e7dT5kYS3OMHIBj0sFtbtY2lkAyGEkFCgoC+EDCYzNy5ALGIEHRkF6/pobEPARPKn7o5BX0FqrNvs0NnleRCLrF/bU9uBpp5BGtkQBrQmI367/UOurHNxZhF+NmFGSI+JeE8qFnFrsllWWMHhSMPrmhtpv3MIIYRELgr6QshxPR//gp0yfcERiU1cbBzXHxamODdxsUmOUeCMEnsHwQ9/OilY00flnaHxzwP2ss5oqQwPzT+HyjojVJySv65P7/ZxkdgtmBBCSOSjoC+EBKWdCmEjjRKHsQ0s675ciPguki/AXGX6RnIub1D7mzuqBfsRi+hXQbD91NGAZ47u4O7/ico6I1o8f2zDCM1cqJELIYSQUKArvRBy1cTFJishiltn1TukR2e/LqjHdqqI5Aswp6DPRedOvjOn50Iusf7I13T0c9spyxd8WqNR0K3zjIxCXDphZkiPiYyNoJnLiJm+yC0pJ4QQErko6AuhAUGmT/jHXyRiHEo8aV1fINjWVALuB56HK8cZX0WjZPpilTIsK8122k7jGoLv3h+/RE2/dXYilXWOD/FRno1t0Bojt7qAEEJI5KKgL4SE5Z0yp687lngS/4vkT90VMu/KOwHgPF4XTxtq4hJcezsb8ejebdz9P85ahazo+NAdEPEL/izVPk/LOyPsgyZCCCGRi4K+EBrQ2S8MYhTO2RZ+pu84NXMJCOGn7pFb3pkQJUdClHyER1stL8t2Gs9A4xqCR2e2lnXaZkMuyijE5RNnhfioiD/wG7n0eVzeGVm/cwghhEQuCvpCaEDrvpEL4DC2wYegz2JhBRcYxBn//ERaeSf/eAtG6NzJp5JJsHpartM2EhxPHP4e1eouAECURIYH59MQ9vGCP6tvxPJO/pw++sCFEEJIkFDQF0KOIxsclWTwyzt7vergqTOaseKBTzDld2/i75/sg9liGdvBjlOR/Kk7P9M3WhMXPscST1rTFzwf1B7ibt89ayVyohNGeDSJJPFR/PJO95k+wZy+CPugiRBCSOSioC+EBvUjB30psQquZG9Ib0JTz5DH+952rBnHWnqhM5rx2JeHcckTm9A1oB37QY8zkdzIJTVWyd3mZ4VHc0ZJhqC9PGUbgqNXp0HDYB8AQCYW4xIawj6uxPuQ6Yu0dcSEEEIiFwV9ISTo3ql0DvoYhvG5xLOtTyO4/8OJNqz6+6fYU9vh9XGOZ5Gc6bt4XhEWT87E0ilZuOL0SR4/TyYR4+wZedx9yvQFx6GeFu72tJRMyMR0wT+e8Ms7+4ZoZAMhhJDwQkFfCA1q3c/psynhj21o8XxsQ3u/c1avtU+D8x/5Es99e2zEUlGzxYI7Xt+BBX9+H1uONHn8mpFIa4zcC7DkGCXe/NVKvH7TCsEFpyeuWzwZCqkYDAOsmuo8xoH436Fue9A3My0nhEdCAkHQvVNLw9kJIYSEl8i6yh1nBkZZ0wcAk3wc29Cutgd958zMx/fHW9E7pIfJwuKed3djT20H/nX5ApcNZD7dX4/Xtp8AADz8+UEsdzHbbbzQ8UutpKfOBdjkrATs/Mv5UETLESc+db7vUDrIC/pmpY3fn6lTlSflnUazBSaL9QM3sYiBVEyfuxJCCAkO+osTQvyRDa6CL0CY6fOmvLODl+lbPysfX/1+LabnJnHbPt5Xh7Me/MxpnxYLi0e+sDebqO8a9Pg1w01D1wBM5pEb2JzKpVZpcSpMSI8P9WGcMg518YK+dMr0jTdxvEyferiRy5YjTdj47FZsO2b9t3f8fUOdWwkhhAQLBX0hNFr3TgCYxFvTV9XWN2oQY9Outq/pS4tTIScpGh/99ixctci+9qu6XY01D36GD36q5bZ9frBBEAh2D+qg5zU7iRR/eX8P5v7f+1j/8BcjnjN+IxfqpEcCpVM7iBZNPwBALpZgclJaiI+I+Fssb112v9YIjcGEm178Hp8dqMevX/0BLCscoUOjUgghhAQTBX0h5El5Z7xKjvQ4a5dGvcmCuq4Bj/bdycv02bo8yqVi/P2SeXj8ytO5dv8agwk3vvg97n57F/RGMx794qDTvjpcrA8MZxYLi9e2VwEA9tV1jdi8RjCnj9bXkADhr+crS0yHRETvtfFGLBIJBrTvrGqHenhtX7taC63RTOv5CCGEhAwFfSE0KOje6b4Rh7fr+swWCzoHdNz9FF5rfwC4aG4RPr/jbBSm2me7vbCtEovv/xBHmp2bxbT0ej4qIhw0dA8Izu2WI81uH6s1Uvt0Enj8oG9aUmYIj4QEEr+h0rfHhL93+jUGaE7hcnJCCCGhRUFfCHmS6QMc1vV50MGzZ1AP83CzgHiVTDDE22ZyVgK+/N3ZWFOey21zt36vTa1xuT1cVTT2CO6P1IFUx8/0nUKNXEhw8YO+6RT0jVuCoM/hwya11iCc0Ufl5IQQQoKIgr4QsVhYQTYqaoQB2d7O6uN37kx1yPLxxShleG7jEvzfebMhFtkbCiikYqzjzXFr7YuwoK9ZGPRVtvShqcd1QEuZPhIMlOk7NfDHNtR09Au+1q81nNKNowghhIQWBX0hMqQXBnxikft/ihJ+eacnQV+/sInLSBiGwS9XlOLdX69GRrz1sb85cxqm8jp9Og56D3dHmpyzoe5KPPmZPvrknQRCm6Yf7Vrrhw4qiRRFsckhPiISKPEjzMtUaxyDPqosIIQQEjx0lRsinpZ2AkBxehx3u7ajH3qjGfIRShE7PMz08c2bkIadfzkfHf1aZCVE4d3d9o6ekVbeeaSpx2nbloomQedSG36mjxq5kEA43N3K3S5LzBjxAx4S2fhjGxypNQbBXD7K9BFCCAkm+qsTIvygL1rh/tNhAFDJpchLjkZ91yDMFhY1HWpMyUp0+3h+t820OM+CPgCQScTITowGAC7rB0RWeWfXgI47XrGI4dY2fn+8FTqj2WndHpVbRS4La0GXbgipypiAv9bezkY8f2wnGDDIjo5HdlQcsob/nx0VD5XU/c/wQSrtPGWMlOnr1xoEYxpoZAMhhJBgor86IeLJjD6+kowErtFKZUufx0FfqhdBH1+kBn1Heev5puYkYkBnRE17P3RGM3480YZlpVmCxwvn9FGmL1IMGHTYsOU17O1swq/KTscfZq4I6Ovd9uNHqFZ3uf16glyJrKg4ZEfH48LC6TgzdzL3tb2djdxtCvrGt7iRyju1BvBnsdOHTIQQQoKJ6oxCZEBn4G7HKEcP+vhD2o+N0sHT00YuI+EHfe1qDViW9Wk/wcYv7SzLTsLy0mzu/jcuungK5/TRRVg42t/VhH9XbEfDgPV9b7ZYcOP372Jvp/Xf86XjuwP6/hww6EYM+ACgV69FRU8bvmyoxPVb38IPrdby6C1NJ/B9q71UemZKtrtdkHEgPmqk8k49rekjhBASMhT0hcigll/eOXrQV8SbqdfcM/LcvA5+I5fYkRu5uKOSSxE7HIwaTBZ0D+p92k+wVfCauJRlJ2AFL+jbfKRJEBxYLKwg06eQ0EVYuPnfib1Y/8Xz+Ou+TVj28VN49ugO3Lf3a3zbXM09ZtBoQKumf4S9jE3dgP2DhHRVDG6dthgXF5VjQXo+8qITIHVYo8cC+NX376GqrxO/3/kJt319fhnyY9xn6Enkix9h3mq/1igc2UAfMhFCCAki+qsTIt40cgGAKN5j+AN+XRFk+nws7wSA9DgV+rVqANYOnskxCp/3FSz8TF9pdiKm5SYhSi7BkN6E+q5B1HT0Y0KatTGOzsQL+KRiiHhjK0hosSyLRw9tw78ObuW26cwm/OWnr1w+vkrdicyoOJdfG6uT/fb31LTETNxWvlTwdQtrQYd2EHUDPbhh2zvo1A2hSzeEMz/7L/Rm689qkkKF++acFZDjI+HDsZGLiGFgGf6gSa0xIIGXCaSgjxBCSDBRpi9E1Fp7eWe0fPSgj7/oXztC0MeyrLCRi4/lnQCQzivxjIQOnlqDCdXt1iCVYYDJmQmQScQ4o8S+jmpzRZPg8TZ0ARY+zBYL7t71mSDgk4ucs7ASxv7rq6qvM2DHc3Kgm7tdEOucqRMxIqSrYjEvLR9PnnEhRMMLt2wBHwD8de7ZSFREBewYSXhwXNM3M98+nsOpvJNGxBBCCAkiCvpCpLHbPiw8I2H0i0F+0KfRuw/6BnRGrmRRKZN4VDrqDn9dX0vvyCWl4eB4ax/XrbMwJZbLji7nNW/5hjevj5q4hB+d2YhffvcOXjnxE7ftjIxC/HTRbfjt9CVcKWVpQjp+M30x95iqUdbcjQU/01cQmzTCI4GF6QW4bfoSwba1eVOwNq80EIdGwkyCw5q+JZPtHzipnYaz0+8cQgghwUMfNYZIbYd9DVJByugt51VyXtA3QqaPX9qZFqsEw/heshhpmT7H0k4bfjOXndXtGNQZEa2QUhOXMKM2aHHtt29iV3s9t+3cgql4eMF6yMQS/Hb6ElxYOB2HelqwPKsYO9vruMdVqYOT6fNkTd7NUxfhYFcLvm46jkxVLO6fsyZgx0bCi2Omb8mULPzz84MArCMb+L9z+L/TCSGEkECjvzohwg/6+E1a3InilYCOlOnjN3EZy3o+AMiIt2cg2yJgbIO7oC89XoWy7ERUNPXAaLbgu8oWrCnPcyi1ok/dQ6lN048Nm19DZV8Ht+36yfNwz+xVEPHKOHNjEpAbkwAAKI5L4baf6OsEy7Jj+pDDHUGmz4OgT8SI8OySn+GnzkYUx6UgQeFbMyUSeWKVMswtSsWumg6sKMtGPu8DPadGLlTeSQghJIjC6q9OXV0dVq9e7bT9/vvvx0UXXRSCIwoMg8mMpuEOnAwD5KWMHvQJyjs9zPT5Oq7BJtJm9fE7d5ZmJwi+trwsCxXDQeGWI81YU54nLO+kTF/IVKs7cfnm19A8pOa2/XHWSvyydOGIz8uMioNKIoXGZESfQYtu3RCSldF+PTa1QYsevfW9LxdLkBE1+s8qAIhFIsxNy/PrsZDI8NbNq3CwoRvTcpMg5jWHUmsMGNLbG3jR7xxCCCHBFFZ/dY4dOwYAKCwsREFBAbc9KyvL3VMiUn3XINfRLTM+CgoPskyelnd2qP3TxAWwdu+0iYTyzhOtfdztKVkOQV9pNh778jAAYMvw6AZBeSdl+kJiT0cDrv32DfTqre9bCSPCPxesx4VF00d9LsMwmBiXgoPdLQCs6/r8HfTxs3z5MQmCrCMhrsilYswpSuXuq2QSaAwmWFgWXYM6bjsFfYQQQoIprP7q2IK+jRs34oILLgjx0QRObYc9o1GU5lnmwLGRi7tSNn7nztS4sZWVCTJ9veEd9Kk1Bq4jqkIqFgSsgLWLXkKUHL1DerSrtaho6qHunSFispjxdeNxvHR8N35sq+O2KyVSPLP4YizNmujxvoRBXyfmp+d79LztrbV4/+Rh/KyoHHNGyMjxZ/Tlx4zcxIUQV+JUMu6DOn4lBjVyIYQQEkxhdaV79OhRAMDevXuxfft2ZGVl4aqrrkJycvIoz4wsJzsGuNsFHpR2AoBELIJMIoLBZIGFZaE3WVxmp9r9NK4BAJKiFZCKRTCaLVBrDdAYTILgM5w09di7oWYnRjsFxGKRCEsmZ+KDn04CsJZ48hvoUKYvOAxmE8778gUuULNJlKvw8vLLMCM5280zXZsQZ//d4Gkzl/dqD+LW7R/CwrLY1Hgcey78LeRi1+/rk/0jj2sgZDSxShlXHt87pOe20wdNhBBCgimsapVsmb733nsPn332GZ555hlccMEFUKvVozwzstR28jp3po7eudNGmO0zunxMh9p/jVxEIkawLjCcm7nwR2DkJLku8VtRZg8otlQ0UaYvBLa3nRQEfGKGwZrcyfh4zUavAz4AKI63N3PxZFbfW9X78ZsfPuDKq3v0GmxvO+n28ScH+E1cKNNHvOfY0dOGfucQQggJprD5q6PX6zFr1iwMDQ3h9ttvR0pKCm6++Wbs27cP//nPf/D73//e7XMTElSQSIKfqUnxYNSCK0284Kl8QprH+4lWytCnGS5hjJa7fF4375Pkkvxkn4/RJiclBs3DM/q0YMe8P39wdQy9vACuOCvB5WMuXFSMm1/+ARaWxd66Tpx9mn3daGKc0qPvzcJaAGBcre0K5r/p0RPt3O3VBSV4asWFyIlNGOEZI5sjyQe+td6uGege8Xt57tAO3PbjR07bt3XW4GflM10+p0nbx92ekZvt13MVDj9Lp4JQn+cUN2X2ORlxSIoZ2wdz4SzU5/1UQec5NOi8hwad97EJm6BPLpfj8ccfF2y76qqrsG/fPuzfv3/E5/aGYL1ZSkoMOjsHRn+gC8d5owWS5VKP9yOX2AONxlY1VHBe09fSYx+iLjWzPh+jTQpv2HBlXTdKU+PGtL+xcnfej9Xbh3Mnq2Ruv+9ZBcnYU9sJlgXe+7Ga286aLKOeqy8ajuG32z/EoFGPGKkcMTIFYmUKxA7fjpHKEcv7v+12qjIGeTEJSFfFhF2wOJb3sS+2nrSf83NzyqDQS8b0+tEWKeQiMfQWM1qH+lHd3IE4mfOF9IuVu3DP7i+4+xmqWLRqrBn3j08cxp+mrYJY5Pxvc6Lbnj1MsCj9dq6Cfd5PVeFwnhVi1z/zmgE9LDr3TbkiWTic91MBnefQoPMeGnTePTNSYBw2QZ9er0dTUxOMRiNKSkoAADKZtSzGZBo/fxg1BhNahjN9YhGD3GTfyju1Ljp46oxmrpmJRMQgkRew+SpdMLZhaIRHhlZjz+jlnQCwrDQbe2qtF/IVvOB7tFIrjdGAO3d+igGjNZPab9Sj36gXjBkYjUwkxhmZRXh60YVQSV2XfI1nRosZ+7uauPuzU3PHvE+JSIzCuGQc67VmEKvVXZiVkiN4zLNHd+AvP33F3Z+elInXlm/A0o+fQpduCJ26IezvanI6nl69Bn0G6xpZhViCND93BiWnBlflnQwj/BCPEEIICbSw+atTU1ODNWvW4KqrrkJfXx8AYOvWrQCA8vLykB2Xv9XzPqXISYyG1M2nwK44dvB01Mlr4pISq4RINPZB1fwOnuG8pq+p2x6Q5iS6vzhfUep63dhoQd/Lx/egSze2oNdgMWNz0wk8VfHDmPbDpzMboTUZ/La/QDrS0wad2fq+zY6KQ4bKsyZGo5nIb+bisK7vqYofBAHfrJRsvLHySiQoVFiZPYnb/kVDpdN+heMaEsMuS0sig6ugTymVuOy+TAghhARK2GT6pkyZgvnz52PHjh1Yt24dsrKysH//fsTGxuLaa68N9eH5Db+JS2Gqdxe9KrmUu+1qVl87v4nLGDt32ggyfWE8q8+TRi6AdWh7epwSbbzW6cDI3TsHjXo8fcQeqP11zhqcU1CGAYMeA0Yd1AYdd7uf+7/1dr9Rh+YhNeoHerhZdM8c24ErJ52GNNXYatOP93XgnM+fg0QkwsdnbURRXHh3uf2po4G77Y8sn83EOF4zF14Hz0cPbcM/D3zL3Z+bmouXl1+OaKk1A35mbgneqN4HAPiy8Rj+OGul4EL85AC/cyc1cSG+iVW6CPqoiQshhJAgC6u/PI899hgefvhhfPPNNzh27BjmzJmDO++8E5mZmaE+NL+p7eB37vQu6IuSj5LpG7AP/vVb0BcX/pk+xxl9yTEKt49lGAbLSrPx+o9Vgu0jXYS9WLmLC9hyouNx6cSZkIklSJB7PgfRwlpw5qf/xdHedmhNRjx8cCv+MX+dx8935ZXjezA0nOX74ORh3F6+dEz7C7Q9nY3c7dMcSjDHgh/07eloRN1AD96pPoDHDn/HbV+Qno+Xll4mKKtdmFGAKIkMQyYD6gd6cbyvAyUJadzX+Zm+ghga10B8E+cy6KMRMYQQQoIrrOqV4uLi8Je//AXff/89Dh48iFdffRVTpkwJ9WH51Ule0FfoZRciQXmnwXlkQx+vc2eCH9bzAUASL4CydQ4NN6PN6HO0vDTLaZu7TF+/QYf/HPmRu//rqWdA5mam20hEjAh3zVzJ3X+zeh+qPZwr586Brmbudpumf4RHhh7LsoJM32n+zPTxxjbs62rC6R88Lgj4FmcU4eVllzmto1SIpViaNYG7/1WjsMRTOKOPMn3EN7Guyjsp00cIISTIwiroOxXwM32Fad6Wd46c6bNluwDXFxq+8GQ2YKh5Wtppc0ZJpnUtZZwGosktYAo60WsZdHqc1mTAH3d/DrXBmkHNi0nABUXTfT7OxZlFOD3dOibCzLJ4YN8Wn/elMxtxtLeNu9+hdT7+cNI42If24WOMkcoxKT7Vb/suik1CXrTrsQ/Lsibi+WWXQClx/fNwZu5k7vaXDuv66vgz+mgwO/GR60wfBX2EEEKCi4K+IDvJa+RSmOJl0CfI9LkI+niZuHgXFxq+GO01w4Ggc2di1KiPj1ZIUVwihai4HUysHqLUQdxb9QGu+eZ1fFB7CAe7mrGrvR6rP/0v3q89xD3v1mmLIRX5XpbFMAzummXP9n3VWImHD27lZv9542hPO4wW+/M6tOHdxnhPpz3LNzM52+V4BF9JRGJ8dNZ1uHvmSizNmoCo4QBvXV4pnl3yMyjEUrfPXZY1EdLhYznc04qK7lYAgNqgxQleJpYGsxNfuWrkoqKgjxBCSJDRX54gGtAa0DHcYVMmESHLgwCFb/Sgz17eGafyT3mnoHmMi+xiOPA207etpRpV0SecphxuajqBTU0nXD5nfX4ZziuYNpbDBABMS8rEuQVT8eHJwwCAhw9uxf6uJjx++vlerRHkl3YC4Z/p+6nDvp5vdqr/1vPZJCujcUPZQtxQthAmixk9eg1SlaOXT8fKFFiTOwUf1VUAAJ47thOPnn4eXjuxF1qTNbM9KT4FqTSugfiIMn2EEELCAWX6goif5ctLjvE628Ev7xxyWd5pL7909emyL+QSEUTDa+RMFhYGk9kv+/UnT2f0AcCPbSdx7bdvwgxrlozVScD2ug+2oiQy/HP+OXhy0QV+y07dP2cN5qflc/e/ba7Gms+eQcNAr8f7ONAtDPq6dEMwW7zLGDYN9uFIV6tXz/HV7gCt53NFIhJ7FPDZbJwyj7v9Ud1hNA324YVjO7ltP5+ygNrrE5+5XtNHjVwIIYQEFwV9QXSSP67By9JOYPQ5fcJMn3+CPoZhhGsJw7DE09MZfXs6GnD1N69DPzwrTmyUwnIsHZYTaXj9jKtxU9npWJ0zCcVxKYiTKbAiuxib1t2ASybO9OtFf7xciTdWXoEbSxdy2xoH+3DpplfQrvGsTNMx02dhWa/mCB7tbcOiDx/HzJf/iU/rj3j8PF+oDVqc6OsAAIgZBjOSnRvphNKM5GzMSrHObzRaLLjqm9e59YdpymicWzA1lIdHIlyMwrm8WCmlTB8hhJDgor88QcQvQ8zzsnMnAChHmdPHX9PnqqTIVyqZBIM6axZRozch3k+lo/7iSXnnvs4mXLHlNWiGS/bSlDH4w7Sz8UxHFZZMycQZ+fk4Iz8/GIcLwJqNumvWSsxMycZN370LvcWM+sFeXL75Vby7+hrEy92P3OjTa1HL6yxp06Ed8Hj23+sn9nFrAl89/hPW5pX69o14YHPTCbDDt6ckpCNKGl7vHwC4fvJ87O18B4B1/qHNtZPnQe5Dt1ZCbMQiEWKVUvTzKjGovJMQQkiwUaYviPh/9H0ZqTDayAZ+9854P2X6nF83vDJ9nszoO9zdgg2bX8Wg0fq4FEUU3l51FS4qL8GmO9fh7vWzgnrMfGfmTsa/F18E8XAmsbKvA1d98z9ojO7HYxzqbnG53dN1fSzLYlPTce7+rvZ69Bt0IzxjbF6v2sfdPovXLTOcnJlbgkyVMPseJZFhQ3Ho3htk/HAc0E7lnYQQQoKNgr4gGtTZL+Sj5e47Crozenmn/0c2AKOPigil0Wb0He1tw6WbXkW/0Vr6mihX4c1VV6EoLjmoxzmSVTkleHjhudz9vZ1N2Lj1Ta4M1ZFjaadNu4cdPI/1taN5SM3dN7EWfNdS4/kBe6Fa3Yld7fUArKWdP5swIyCvM1YSkRjXlMwVbLu8eBbiZO4zroR4yrHygjJ9hBBCgo2CviAa5AVMrtZ5jIYffGmD1L0TCO9M30ilnSf6OnDpplfQZ7B2TI2TKfDmyiv9OiPOXy4onI57TzuLu/9day1u+eF9l81Z+EFfGq+rpKeZvk2Nx522bXbTtXSs+Fm+lTmTPC4/DYXLimdy4x4kjAgbJ88b5RmEeMbxQzga2UAIISTYKOgLogFepi/Kh6AvaoSMm85oht5kDRBkEhGUUv+VD4Vzps/djL7a/m5csukVdOs0AKwDwV9fcQWmJKYH/Rg9de3kubht+hLu/mf1R/GHnZ+CZVluG8uy2N/VxN1fmTOJu93hYRMYV2Mpvmmu8rr752h0ZiPeqTnA3b98YniXSsbJlHh2yc+wOmcS/rP4ImRGxYX6kMg44VzeSUEfIYSQ4KKgL4iGdPaAKVrh/R/9kTJu/CxfrFLm126TygjL9BnMJmz89k0u8xUlkeG1FRswPcy6Rrrym2mLcd1ke5nhG9X78Nd9m7jAr1XTj87hLp3RUhkWpBVwj/WkvLNDO8BlCsUMg2SlNVDu0WucxkCM1ZcNlejVW7OsWVFxOCOjyK/7D4QzMovw/NJLcWaYrj0kkclxjTUFfYQQQoKNgr4AMFss+GjvSXy8tw4Wiz1LY+uACQAxCu/X3I00OqGP37nTj+v5gDAv73Qxo++ZoztwQt0JAFCIJXhl+eWYleL/geCBwDAM/m/2alxYOJ3b9p8jP+Kpih/Asiw+rz/KbZ+WlIl0XrlkuwflnfwyzjmpeThnQpnLr/nD61V7uduXTpzptzmHhEQaauRCCCEk1OgqLAC+OtSIX77wHX7xwjZ8dbiR2z7AC/qi5b5k+ngjGxzKLPsFnTv92xI/itd0Rqt37hoaSo4z+hoGevHooW3ctj/MWI65aXmhODSfiRgR/rngHKzKtpdu/n3/Fqz85N/4809fcdumJ2UhlRf0eVLeubnRHtitzCnGmQX2jJY/g776gR782FYHABCFcQMXQoKBGrkQQggJNQr6AqCqzd4Zcd/JTu72EC9givZhjh4/0zekNwnWegk6d/pxRp/j64Zbpq+51x70ZSVE4Z7dn0M33PWyNCEdV5fMCdWhjYlEJMbTiy/EgvR8blslb35cjFSOCwqnCRq5dOoGBe8JR1qTEd+12rt0rsiehOV5xZCJrFmHY73taB7s88vx7+u0rztclF6IDIdxCIScShwbudBwdkIIIcFGQV8A8Msr+Rk4YabP+0YuUrEIUrH1n8zCslzjFgDo463p8+eMPmD0URGhojea0Ttk/b7FIgZ7++qwpbkKAMAAeGDeWkhEkVtGpRBL8cLSSzE9KZPbJhWJcPWkOdh27q9QkpAGpUSG2OFh50aLBb16jdv9bW+r5QLiCXHJKIxNQrRMjvm8wNJf2T7+gPOpSRl+2SchkcqxmzKVdxJCCAk2+rgxAPjr9WyBnsXCCjJ9UT6UdwLWAMw2jFyjN0Ix3KWzP5Br+sI009fRr+Vup8Qo8K9D33L3NxTPxsyU7FAcll9FS+V4bcUGPHpoGySMCFeXzEFOdILgMamqGPSrrcFvu3YQiYooV7vC17xRDSt5paPLs4qxbXhO366Oelzlh+zoiT57hrs4DEdkEBJMcUrhh3xU3kkIISTY6C9PAMTy/sDbyi41BhNslXdKmQQSsW9JVpWcF/QZTEgc3t6nDWB5Z5g2cunkBX2JCVIcHw40ZCIxfj9jeagOy+8S5Cr8hTfDz1GqMhrV6i4A1u6ckxPSnB5jYS3Ywsvircwu5m6X87qaHutt98chCzJ9k+JT/LJPQiKV4+9klY8f+hFCCCG+ovLOAOD/gbfN5hscYxMXG3cBGH9N36lS3tnOC/pkcfbzOzUpA/FyZSgOKSRSlbxmLm46eB7qbuW6eybIlYJuppPiU2Ab8FHT3w2deWzNerQmAxoGewFYm7gUxSWPaX+ERDrH6gta00cIISTYKOgLAH7QZwvGBnmlnTFjyMQp3QxK58/pc1w/MlaRUN5pUtpvz0yO/LJOb/CbubS76eC5qcle2rk8q1gwPiFKKkdejDVnbGFZVPFKM31Rpe6CrZ1MfkwiFGLv168SMp44r+mjoI8QQkhwUdAXAPxObbY1ffxMn6/r+YARMn3BKu8Mo0wfv7xzQGwPdiJlJp+/eJLp449qWJFT7PT1KbyS0KNjLPHkl3YWU2knIU4jG1TUyIUQQkiQUdAXALEKe2bD1r1zrIPZbfgBmFYfpPJOLzN9BrMJJ/u7Rxwf4A/talvQx6LD3MdtHw8NXLyRysv0dWidM33Ng3040tsGwLrecUnmBKfH8NcBjnVdn3A9HzVxISRKLkFClDXbF6eUQUHlnYQQQoKM/vIEQJRcCoYBWNY6T89ktgjHNSh8P+38Qenu1vT5q3tnl3YQ9YO92NPXACZ5AGxP1IhBn9ZkxP+q9uLpih/QoR1EeXIW/jFvLUoTA9Oyn8v0qQwwsNbjSlfFIDMqLiCvF64EA9pdZPr4Yxjmp+UjWupc/jtZkOlrG9Px8Dt3ToqjoI8QhmHwt4vn4oVtx3DVohKIRMzoTyKEEEL8iIK+ABCJGMQqZFzJ5YDO6FDe6fsaJ5XbNX28oG+M5Z0W1oKN376Fr3nrwERFAJs6gKFu54BKZzbi9RP78FTF91yzEAA40NWMsz57BteVzMUd5cugkvo3A9neb51Jx0Tb1zOeauv5AIc1fS4yffx/R1elnQAwJSGdu32stx0sy4JhhBemrZp+tGsGMD0p0+lrfIJMXwIFfYQAwLmzC3Du7IJQHwYhhJBTFAV9ARKjlHJBX7/WIJjRF6MYQ9DHK+/k75O/pm+sjVz2dzULAgUbJkaPdnMjd19nNuKNqn148vAPLoMNwNoY5NljO1E30IMXl102puNy1NGvs97gBX2n2no+QLimr10zIAjYBo167Gir477On8/Hlx0dh2ipDINGA3r1WrRrB5CuiuW+3jKkxqIPHofeYsayrIl4dOG5LucBDhr1aB5SAwAkjAgFMYlOjyGEEEIIIcFFa/oChJ9t69caHMo7/RP02UotTWYLl0lkmLEFlYBwTVeKIgqzku2BlDa+Fy9W7sLLlbtx+geP457dXwgCvjRlNO497Sx8ve6XWJhu/1T7u9Zav67xY1mWK+8UZPpOsfV8ABAjlUMhtr4vdGYTBoz287GtpQYGixmAtYQzOzre5T5EjAiT4903c9naUg398H6+aa7Cqk//g13t9U774Zd2FsYmQSamz5UIIYQQQkKNgr4A4Y9lGNAKyzvHFPS5aKrSz+/cqZCNeb0Ivzzv2slz8fryK2Hpsmd17tn9Be7e/TnaeOMBUpXR+PNpZ+KH836NayfPxZSEdLy58kouGNGbTRjkBSNj1Tukh9FsASRmMErruZWKRJiaFJj1g+GMYRikCTp42v9dNvMytqvcZPlsRmrm0jTYJ7jfphnAxV+/hCcOfwcLa+G2UxMXQgghhJDwQ0FfgMQq7YGdWmvwX9DnYnyCv5u4OF64q2QSoC4Z7JDzvlMUUfjz7NXYft6vsXHyPCgl9u+NYRhBZ8lOnetxAr7gZvRF2QPJ0sSMU3YmXBqvmYttXaXZYsGWpipuu7v1fDYjBn3DJZt8ZpbFP/Z/gw2bX0PX8GueoHENhBBCCCFhh4K+AIkVZPocgj5/NXIZzvQJ1/P5N+griU8DwzBQimWwVKWCNVjnS6UoovB/s1fjx/N/jY1T5guCPb4UftCnHRrzsdl0uCrtPAWbuNgIxjYMZ2D3dTWhR6/hvj49KXPEfUxJ5DdzEXbwbOZl+h5esB5zUnO5+9+11mLVp//B9raTgvLOYsr0EUIIIYSEBVpwEyD8oE+tNWAwAI1cXGb6xti5s0s7iG6dNVBQSaTIjrZ261TJJdAMSGE5nIVnb56P5flFUEpGfy1h0Oe/TF+7WgtE6cEk2gPJWafgej4bfjOXFk0/AGBTo720c3lWMUTMyJ/x8Msxq9Vd0JtNkA+X5zbygr7Zqbk4v3Aa/nVwK548/D1YWEdFXLrpFUh5r1FCQR8hhBBCSFigTF+AxI6wpi/Kz41chOWdY+vceVxQnpfKBQrc65rEKI3N8ijgA4BUBX9wuH+Cvr2djXiw9lOIy1rAqOzn9VRs4mJTEGvvkvl29X6YLRZs4q3nWzlKaScAREvlyItOAGAt3awaztoZLWa08dYJZkXFQSIS4/czluO1FRuQpFABsHZqtTV7kYnEyItJGPs3RgghhBBCxoyCvgDhr+nrdyjvHEumT+mivLNPYy9xHGt5Z6WbRhyuyko9kRKANX03f/8eWo29gm0XFk5HTvSpG2ScVzANscND12v6u/HY4e9Qpe4CAMjFEizKKPRoP5MTeev6+qzr+lqH+mEZ7ryapozmsn8AsDhzAr5a+0vMT8sX7KcoLhkSkdjn74cQQgghhPgPBX0BEuPFyIYBgw7XffsGLvzqRRztEa6lcuSqvJPfvXOs5Z3C9Xy8oM9FhtET/KDPH5m+Ds0AGoZLDVkWsHRG4ze5Z+HR088b874jWbxciesmz+PuP3xwK3d7UUahx5lZ/tgGWzOXpqE+bpurkQ/pqli8ufJK3DptMWx9Y0frFEoIIYQQQoKHgr4AEc7pM2KIX97p0Mjl6SPb8VXjcexsr8cFX70oGKbtiP9crcvyTv8FfZPcBX16L4I+hX/X9B3t4nWVHJKBrU3B7LRTt6yTb+OUeVy2j8/dQHZX+B08bR9A8Mc1ZEfFu3yeWCTCbeVL8c05N+GlZZfiN9MXe/yahBBCCCEksCjoC5AYx/JOfiMX3te0JgNeO/ETd3/AqMeGza/ii4ZjLvfLL7McGt5nHy/oix9D0MeyrPugzx/lnX4I+o50tXK3WY31e02LVY15v+NBnEyJn5cucNq+Inv09Xw2/A6eR3vbwbKsYFyDu+HuNhPjU7AiexKkVNpJCCGEEBI2KOgLkDjH7p06e6DEH9nwfu1h9Oq1gufqLWb8YtvbeL1qr9N+XZVZCoazjyHoaxlSY9Bo3Ve8TCkYA+Brpi/Vz+WdFV288let9XtNiVWOeb/jxXUlcxEnU3D3pydlCmb4jSY3Oh6q4fEbPXoNOnWDDpm+OL8dKyGEEEIICQ4K+gKEv6avQ63hGmEopGJIxNbTzrIsXqjcyT1u4+R5KIixdmG0sCx+t+MTPH7oO7DDzwUcMm7DwVevRgfA+pg4pe/dOwVNXBJSwTAMd1/FC1S9yfQlK6O42126QVhYi8/HBwBH+Zk+rRQSEYPEqLF1LB1PYmQK3FC6kLu/Nq/Uq+eLGBFK4vklnu2jrukjhBBCCCHhjYK+AIlV2IO+9n57Jo/fxOWH1locH26LHyWR4bfTl+CDM6/FtKQM7jEPHvgGf9rzBRcsOWb66vt7sE95EKKZDUCsdkzlne6auACAUvC6RnhKIZZymSczyzplNQHAYmFR3a6GxcI6fY2PZVkc6eZl+jQypMQqIRIx7p90CrqhdCHunLkCt05bjGsnz/X6+VMShc1cPFnTRwghhBBCwhcFfQHCL7PkJeoEpMYsLQAAIeNJREFUpZ3PHbNn+S6eUI5YmQLJymi8vepqnJ5ewH3txcrduPn792EwmyCTiCEZDnLMMj0u+OpF6GQaMFILREWdYKS+Z9LcrecDfC/vBEZf13fdc99i0b0f4oYXvxtxPy1DagwYrOMpWKMIMIqRSqWdTsQiEW4qOx23lS8VjFfwFL+DZ0VPK1qG+rn72dFU3kkIIYQQEmko6AsQhVQMmcT59EYPN3Gp7e/CluYqAAAD4JoSe0YmWirHy8svxzpead5HdRW45ps3MGTUW0s8VXqIprQKhmYzMjNeqNnu8zGPGPT52MgFGLmDp8ZgwpcHGwEAH++rQ8+gzu1++OWn1vV8DAV9AcBv5vJdaw1Mw1nmZEWUx6MfCCGEEEJI+KCgL4BiXczMs2X6vmo4zm1bnl2MwtgkwePkYgmeXHQBrpp0GrdtW2sNln38NDRTaiCe2mLP6vGSex/UH8L2tpNeH6vZYkHVcKkpABTHpwi+zs/0ab3M9AmauTgMaO8b0gvu76vrcrsfftDHaq3nMTWOgj5/4wf8/HLcLGriQgghhBASkSjoCyBXQV/M8Jq+E2p7ALM0c4LL54tFItw/Zw1um76E29Y8pAYrMXP3o8QymI9lgO2xjy34/Y5PoDV5vu6OZVn85+iP0Fus+01TxiBBLhyDMKZM3wjlnfzOowCw92Qn3OFnIjE8roEyff4XK1Mgx0XDFlfbCCGEEEJI+KOgL4BiFFKnbbZGLid4WbUJDlk1PoZhcOv0Jfj7vLUQ8bppsmYGrFqB2wrPAgYVsNQlgTFb/znrBnrwnyOelXkaLWb8bscneGDfZm7bkiznINTVqAhPjRT08WcMAqMEfb38TB8FfYE0hTek3SaLmrgQQgghhEQkCvoCKM5FJ80ouRQsy6Km317GWBznPuiz2VA8G5vW3YAXl16KKd3TYfkpD5bKDIj1wzPZjBKkqLO4x79VvV8w6sGVPr0WGza/hjeq93Hb5qTm4o8zVzo9dkyNXBT2sQ22WX16swmHulvQOyTs5rmvrhNmi3MzGpPFjGo1LyDUDJd3UtAXECUugj7K9BFCCCGERCbvW/sRj8UoXJd3tmr6uSHocTIFknlB0UgmxadiUnwqnpc2ALB2VGzt03Bfz7akQyftQL9Rj6YhNQ52t6A8OcvlvuoGenDVlv+hpr+b23Z+4TQ8NP8clx0f/VneybIsLt/8Kna212NadC4AMff1Ib0Jx1v7MCUrUbCP+oFervxUYpbCbLY+h4K+wJjsIuijzp2EEEIIIZGJMn0B5CrTF62QooqXsZoYlyIYgu6JKF4AVt2m5m4nqBRYnVvC3f+0/ojL5+9qr8e6z58VBHy3ly/FYwvPc9vifyyZPn4jl07dIGr6u7CzvR4AcGiwAWCEGcm9J52bufCbuIh09mHsaXEqp8eSsZuSkO60jWb0EUIIIYREJgr6Asjdmr4qtT2omehBaacjfgC2qaKJuz0tJwlreWMePq074lTi+W7NAVyy6WWuK6NcJMbTiy7Eb6YtHjH49DXT1zOow7F6+1iJDu0gF/BxZML97T3ZAUeVve3cbcOAPTOYHKPw+FiI5/KiE6CUCN+/2VTeSQghhBASkai8M4BcjmxQSHGIn+mLT/Z6v/ygzzIc1IlFDC5bOBFJMXLESuVOJZ4W1oJ/HvgWjx/+nntusiIKzy+9BLNScrx6TU+DPpPZgnMf+RJVbX0QzwHAWEcAfN9aK3yg3ATo7QHGTy6aufA7d1qGrI+NVkihlNFbOBDEIhEmxafiQFczACBepkS0VD7KswghhBBCSDiiTF8AuZvTx5+HN8GXTJ/cOdBZMz0XGfFRkIklTiWeWpMRN373riDgmxSfik/WbPQo4AMAlcwelHla3lnZ0oeqNjUABqzRnp37ZngovQ0jF+6vpr0fvQ7z+4Qz+qznNYWyfAHF7+BJ6/kIIYQQQiIXBX0BFKscvbzTk86djvgBmM01i+2BHr/E8+OTFbjo65fwaf1RbtuSzAn48MxrkROd4Plr+lDeeajRvmYQvKDPaYagzHl/++rsgXFFdytqh9cfihkRMDyYPTmGmrgE0mRB0BcfugMhhBBCCCFjQkFfALnK9JnFJvTorR03lRIpMqNivd6vY6ZvSlYC5k2wX6AvyihE7HApXoumnyvRA4CrJ83BS8suRYzMuyyZUsYL2gwmWCwjj4MAgIP1vIYsvKDPyXCmryzb3rGTP6/vmWM7uNunJRYCFuvbltbzBdbavFIkyJUQMwwuKiwP9eEQQgghhBAfUdAXQK6Cvh6TvanJhNhkiBjv/wlUDuvYrllcImjC4ljiCQAihsF9c87C/XPXQCIaIQBzQywSQSG1P09nHD3bd7DBnuljRwj6bOWdS6fYx0vYgr6WITU+PlnBbZ8bW8zdpvLOwEpRRmP3Bb/Fngt/6/R+IoQQQgghkSOsgj6j0Yi//e1vmDt3LsrLy3HTTTehs9O5qUekcBX0tRvsIxYmxntf2gkIg744pQznzy5wesz6/Knc7WipDC8tuwzXlMz16fW41/WixNNgMuNYS699w4iZPmu55/JSe9C3r64LZosFL1buhom1Dmufm5oLucE+0zCFZvQFnFIiRaoyJtSHQQghhBBCxiCsgr6HH34YL7/8MmQyGbKzs7F582bcfPPNTmMHIoWrNX3NWnsgNDHO+86dAFCeb3/edUsmQyV3fp3FmUW4e+ZKnF84DR+dtRHLsib69Fp83szqq2zpg8FksW9wCPoE4wBkZoBhUZadyA1bH9QZcaipE/878RP3sJ9PWYBOtX0YPWX6CCGEEEIIGV3Y9LvX6/V48803IZFI8P777yMxMRFnn3029u/fj4MHD6K8vDzUh+i1GBeZvvqhHu62L507AWBSRjw+vX0NWnqHsKY81+VjGIbBDWULfdq/O96MbeCXdgJwCvpOS8lBZV8HOrSDYBhALDdDJZdgVkEKvjjYAAB45vBu9ButXTzzYxKxMqcY7235gdtHEjVyIYQQQgghZFRhk+mrrKyERqNBQUEBUlJSIBaLMWfOHADA/v37Q3x0vnEczi6XiFDTP7bOnTazClKwbmY+xKLg/RMKyjtHyfQdbOgS3Hdc0zcvLR/pCnsTm6hYBgzDYHaB7Zyw+Kbb3nH0+snzIGJEaKdMHyGEEEIIIV4Jm6CvtbUVABAfH89ts922fS3SSMQiRPECpSiVGK2afgCAVCRCXoznIxPCgWBW3yiZvkO8TN+03CTA4Bj05SFJFs3dV0RbS3hn2oK+RA2GoAVgHQx+8YRyAEBHHy/oozV9hBBCCCGEjCpsyjt1Oh0AQCKxH5Lttu1r7iQkqCCReN+RcqxSUkZvcJEQrcCQfhAAoIxjYWvjMiEhBRlp8YE7uACIj5FztyUKqdvvX2cwobKlj7t//coy3PxSJ1gWYBjrer4VJSV4t/oI0G59jCzagpSUGKyIU0IiFsGSbm9488sZC5GbkQQA6OjXcttLCpIRp7IfE/GNJ+9j4n903oODznNo0HkPDjrPoUHnPTTovI9N2AR9crn14t1sNnPbTCZrNkmhGLmMr7dXM+LXAyElJQadnQOjPi6Ktw6OURq424XRSR49P5xIYB8L0dY54Pb4D9R3wWi2NnEpSInB1Ix4wCwC2xIPcdoA7p6zEv29WkgN9syhRWzk9leQL0VtjHUtn4QR4aKc6ejsHMCQzsiVlcolIugH9egcMoD4ztP3MfEvOu/BQec5NOi8Bwed59Cg8x4adN49M1JgHDblnampqQCAvr4+bpvtdkZGRgiOyD/4HTyHovq425MT0lw8Orx52siFP5R9em4SilJjoZCKwTYlwLg3F+uypwEAFKw9mDdJ7MGbOZXX4VSajTSV9Q3cOWDP8iXHKAWzCQkhhBBCCCGuhU3QN3nyZMhkMpw8eRIdHR0wm8346Sdru/5Zs2aF+Oh8x83qkxvRL7OWLDIAziuY6v5JYcrTRi6HGu0dSqflJkEiFqEkM57bdrTJGtTJzPbupjqRNbNXP9CDBksHt13Rk8jd7hqwl/mmxFITF0IIIYQQQjwRNkGfSqXChRdeCKPRiAsuuADr169HTU0NZsyYgWnTpoX68HxmC/qYtH5u27KsiciLSXT3lLDlW6bPOlOwNNv+/R5pGg4KeeWdGuhgspjx/LFdYGFt6sL2KXGiVgOLxXq/kxf0JdO4BkIIIYQQQjwSNkEfANx555246qqrYDAY0NjYiOXLl+OJJ54I9WGNSaxSBogsYFIGuW1Xl8wJ4RH5TsnP9BmMLh/z/p5aHOM1cZmaYw32ynhBX8Vw0DekNYEd7urJgsWJvk68Wb2Pe5ylLRb9WiOq2qz76+Q1caFxDYQQQgghhHgmbBq5AIBMJsNdd92Fu+66K9SH4jcxSimYpEEwEmtjk/yYRCzOLArxUflGkOlzKO80mMy49/2f8Py2Sm7baYWp3IB6Qaav2Rr0qTUGwCABZNbmPX/fvwUakzWYjLKo0K+2ZvP21nVhUmYCugYp00cIIYQQQoi3wirTNx5NzowHk2bvNnTVpNMgYiLztLsr72xXa3DhY18LAr6itFg8esVC7v7kTPtMwuo2NUxmC9RaA1i9fZ/fNFdxtxfHTwaGu4XuPdkJAOjiZ/poTR8hhBBCCCEeiczoI4KkZYvARFk7UyrFUlxUVB7aAxoDV41cdla3Y9XfP8WeWnvzlTXlufjijrNRmBrLbYtWSJEeZ83OmSwsmnoGrZk+vXOyOUURhQ2TZ3L3fxret3BNHwV9hBBCCCGEeCKsyjvHow9PHuZun1c4FfHyyC1LdMz0PfvtUdz7/k8wDTdaETEM7lo/EzeuKHU5TqEgNRZtamu2rrZjwBr0mZzfgleXzMHs/FSIRQzMFhYn2tRQawwOa/oi9zwSQgghhBASTBT0BZDRYsYXDce4+xdHcJYPEGb6tlQ04atDjdz9xGg5/nPNYiwqcT9TsSAlFjuq2gEAtR39UGv0YFnhW1AhluDK4tOgkksxJSsBh4fHP+yv7xSs6aNGLoQQQgghhHiGyjsD6PvWWvQZrNmpTFUsZqZkh/iIxkYls49YsGX3AKA8Lwlf/X7tiAEfABTxyj1Pdvajz0V558VF5UhQqAAAswtSuO17azvR1W8P+pIo00cIIYQQQohHKOgLoE/rjnC31+aXRmwDFxt+eafNhoXF+PDWs5CdGD3q8wt4Qd+J1j5rMxiDBOxw/MgA2DhlHveYmbygb0d1O9Ra69pIsYhBYpTcx++CEEIIIYSQUwuVdwaI3mzCl7zSznX5pSE8Gv/IToqCQiqGzmiGXCLCAz+bh0sXTPT4+YUpMdztgw3d1hsWEeSdSZBlDeD6yfNRGJvMPYaf6dtZ3c7dTopWQCRyXjNICCGEEEIIcUZBX4B831qDfqMeAJATHY/ypKwQH9HYxavkeG7jEmytbMEl8yYIZu95Ii8lFgwDsCwwoLMPd08byMKPl5zn1PwlLzkGSdEKdA/qYOaVk9J6PkIIIYQQQjxHQV+AfMwv7cxz3c0yEi0vy8byMt/WJiqkYmTGR6G5d0iwPU4lc3l+GIbB7IIUfHW4UbA9iYI+QgghhBBCPBbZi8zClM5sxNeN9kHl54yD0k5/KUqLddoWp5K5fTx/XZ8NjWsghBBCCCHEcxT0BcC25hoMGq1NR/JiElCWOHJXy1NJQYpz0Bevct+UZbaroC+WMn2EEEIIIYR4ioK+AOjVa7jb5+ZPHTelnf5QkBrjtC1W6T7TV56XBJHD+UumTB8hhBBCCCEeozV9AbA2vxR7OhoAAL+auijERxNeCl1m+twHfbYh7RVNPdw2auRCCCGEEEKI5yjoC4BoqRz/WnhuqA8jLBWmeremDwBmFaQIgj7K9BFCCCGEEOI5Ku8kQZWbHAOxw4y9uBHW9AHWoI+P1vQRQgghhBDiOQr6SFBJxSLkJEYLto1U3gk4N3NJpvJOQgghhBBCPEZBHwm6AocSz9HKO/NTYpCXbA0U0+NVNLKBEEIIIYQQL1DQR4LOcV3faOWdDMPg2Y1LsHHpZLx921mQiOltSwghhBBCiKeokQsJusIU4diG0co7AWBqThKm5iQhJSUGnZ0DgTo0QgghhBBCxh1KmZCgcyzvHGlOHyGEEEIIIWRsKOgjQedY3hmrlIboSAghhBBCCBn/KOgjQZedGIX8ZGuJZ3leEsQiehsSQgghhBASKLSmjwSdWCTC/25agc0VTTh7Rl6oD4cQQgghhJBxjYI+EhKFqbH4+bIpoT4MQgghhBBCxj2qqyOEEEIIIYSQcYyCPkIIIYQQQggZxyjoI4QQQgghhJBxjII+QgghhBBCCBnHKOgjhBBCCCGEkHGMgj5CCCGEEEIIGcco6COEEEIIIYSQcYyCPkIIIYQQQggZxyjoI4QQQgghhJBxjII+QgghhBBCCBnHKOgjhBBCCCGEkHGMgj5CCCGEEEIIGcco6COEEEIIIYSQcYyCPkIIIYQQQggZxyjoI4QQQgghhJBxjII+QgghhBBCCBnHKOgjhBBCCCGEkHGMYVmWDfVBEEIIIYQQQggJDMr0EUIIIYQQQsg4RkEfIYQQQgghhIxjFPQRQgghhBBCyDhGQR8hhBBCCCGEjGMU9BFCCCGEEELIOEZBHyGEEEIIIYSMY+Mu6Ovs7MSdd96J008/HbNmzcIVV1yBgwcPcl/fsmUL1qxZg7KyMpx99tnYunWr4PmHDx/Gtddei9mzZ2PhwoX47W9/i/b2dqfXMZlMWL16NSZNmoS2trZRj2vfvn04//zzUVZWhuXLl+O9995z+biGhgaUlZVh5cqV3n3jIRSp57yurg4333wz5s2bh7lz5+IXv/gFamtrfTsJfhap57SmpgbXX389ysvLccYZZ+C+++6DRqPx7SQEWaSec777778fkyZNwhNPPOH5Nx4CkXqut2/fjkmTJjn99+OPP/p2IoIsUs87y7J47rnnsHz5ckyfPh2XXHIJKioqfDsJQRCJ5/mJJ55w+d6OhN8nNpF43gHrtcgvf/lLzJ07F3PnzsWNN96IxsZG305CkEX6OZ8zZw7mzZuH+++/HzqdzreTEEHG1Zw+i8WCn/3sZzh06BDy8/MRHx+PAwcOQKVS4aOPPoJGo8EFF1wAhmFQVlaGiooKsCyLDz74AMXFxWhtbcX69euhVqsxY8YM9Pb2oq6uDpMmTcK7774LmUwGADAYDPj973+Pzz//HACwbds2pKenuz2ujo4OnHXWWdBoNJg2bRqOHz8OrVaLZ599FmeccQb3uPb2dlx33XWoqqpCbm4uNm3aFNgT5geRes4HBwexfv16NDU1YfLkyWBZFpWVlUhJScGnn36K+Pj4YJw+lyL1nGo0GqxatQqdnZ2YPn06Ojs70dLSgpUrV+LJJ58MyrnzVaSec76ffvoJV1xxBSwWC371q1/h5ptvDtwJG4NIPtfPPfccHnroIZSWlgr2dcstt6CkpCSAZ23sIvm8P/LII/jPf/6D+Ph4FBUVYe/evUhKSsKXX36J2NjYwJ88L0Tqef7ss8/w2WefCZ6zfft26HQ6PPHEE1i1alXgTpofROp5NxgMOPvss9HQ0ICioiIoFAocOXIEhYWF+OSTTyCRSIJy/nwRqee8r68PZ599Nrq6unDaaaehpqYGPT09WLFiBZ566qmgnLtQGVeZvqNHj+LQoUPIzs7GZ599hrfeeov7h//kk0/w6quvwmQy4dZbb8Wbb76Jm266CSaTCa+99hoA4IsvvoBarcY555yDN998E5988gnS09Nx/PhxHDp0CADw448/4vzzz+fefJ549913MTg4iEsvvRRvvfUW7r33XgDAyy+/zD3mf//7H8455xxUVVX58YwEXqSe8+3bt6OpqQmzZ8/Ghx9+iI8++ogLVBw/iQq2SD2nBw4cwMDAAFauXIm3334bb775JgBg8+bNGBoa8ucp8rtIPec2Op0Od999NywWi5/OSOBE8rk+duwYAOB3v/sdnn76ae6/cA/4gMg972q1Gs8//zxEIhHeeOMNvP7661i9ejWkUikOHz7s57M0dpF6ns8++2zBe/riiy+GTqfD+eefH/YBHxC5572mpgYNDQ3Izs7Gxx9/jPfffx+nnXYaamtrUV1d7eez5F+Res4//PBDdHV1YcOGDXjttdfw4YcfQqVSYfPmzThy5Iifz1J4Cd+PEHyQmpqKhx9+GHK5nPt0JDk5GQDQ29uLffv2AQDmzJkDAJg3bx4AYP/+/QCA008/HQkJCSgqKgIAyGQyxMXFoa2tDT09PQCA1157DSdPnsRvf/tbPPzwwx4d12ivC1g/yRSLxbj++uvx7LPP+ngGgi9Sz/mUKVPw0EMPISUlhXtOUlISd9yhFKnndMGCBdi/fz+0Wi0AoKurCwAQFRXFfWIXriL1nNs88sgjqKurw+TJk7nAJFxF8rk+evQoAOsHGW+99RYmTpyIK6+8EtHR0b6ciqCK1PO+Z88eGI1GFBQUoLCwEADw+OOP+3oaAi5SzzOfVqvFvffei+joaNx+++1enoHQiNTzHh8fD4ZhAID7P8uyYBgm7H+vROo5r6+vBwBMnDgRAJCWloZJkyZh//792LlzJ0pLS306H5Fg3AV9Z599Nne/p6eH+3SgvLycq+m1le7Z/m+rDy4uLkZxcTH3/D179uD48eMQiUSYNm0aAODMM8/EHXfcgYKCAo/fgLb9O77u0NAQBgYGEBMTg5tvvhnr16/H8ePHIy7oi8RznpOTg5ycHO7xJ0+exA8//MAddyhF6jmNiYmBSCRCVFQUHnjgAbz99tuQy+W47777IJVKvT8RQRTJ53zfvn145ZVXsHr1akycODEigr5IPNcSiQR1dXUAgFdffZV73tdff4133nmH3uMIzHm3rW2KiorCbbfdhi1btqCwsBB33303Zs2a5eVZCLxIPc8xMTHcY99//300Nzdj48aN3Ieh4S5Sz3tGRgbuuOMOPPLIIzjnnHO48s5f/OIXyM7O9v5EBFEkn3MA3LpgjUaDhoYGAEBLS4vH338kGlflnXz9/f3YuHEjuru7UVRUhNWrV3OLNG1/nG2fTNgyE3zHjh3Dr371KwDA+eefz9UPn3POOSgoKPDqWGyva3s9/sWB7bWvuuqqkK4j84dIO+c2LS0t2LhxIwwGA+bPn48ZM2Z49VqBFKnndMuWLdBoNIiPj4fZbPbqdUItks65Xq/HXXfdhZiYGPzpT3/yat/hIJLOdX9/P5YuXYoVK1bg66+/xubNm5Gfn49jx47h7bff9uq1Qi2Szrvt9SsqKrBr1y5MnjwZR44cwcaNGz1q6BBKkXSebViWxWuvvQaRSIQNGzZ49RrhItLOu8lkAgBUV1ejoqICCoWCy5hFikg65+vXr4dKpcI777yDSy65BGvXrkV3d7fguePVuMr02fT19eHaa6/FkSNHEBcXh8ceewxSqRRyuRxarZb7AbP9X6lUCp5/5MgRXHvttejr60NpaSnuuusuj1/7lVdewc6dO7n7V1xxBeRyOQBwF79Go5H7uuNrR6pIPedNTU248sor0dzcjKysLDz44INefueBE6nnFLB+UtzZ2YkNGzbgjjvuQH5+PqZOnerFdx8akXbOH330UZw8eRJ///vfI+4iIdLOdUxMDJ5++mnBfi6++GI8+OCD2LdvHy6//HIvvvvQibTzbvu6RCLBe++9h7S0NNx1111477338NFHH+EXv/iFD2ch8CLtPNscPHgQtbW1mDFjBpcRiSSRdt737duHhx9+GHl5eXjhhRfAsiyuu+463H///cjJycGSJUt8Og/BFGnnPCYmBi+++CL++te/oqqqCgsWLMDEiROxdevWcXNN7s64y/QNDQ3huuuuw5EjRxAfH4+XXnqJq9tNTU0FYF0YDljfqAAEXYCqq6sFb74XXngBUVFRHr/+0aNHsWXLFu6/1tZWt68bHR0tKKmIVJF6zjs6OnDVVVehubkZ2dnZeOWVV7jnhVqkntOenh6o1WrExsaiqKgICxYsAMuy2LVrl+8nI0gi8Zx/9dVXAIA//OEPmDRpEtcl9cknn8SyZct8PBOBF4nnemhoCCdOnBCMdbGtVbVdzIS7SDzvtsAjPj4eaWlpAMB9gBSumb5IPM8227dvBwCn7sCRIBLP+969ewEAK1asQHZ2NnJycrBixQoA9n+LcBaJ5xywlp++88472Lt3L5544gkYDAYAQG5uro9nIjKMu6Dv7rvvRkVFBWJiYvDyyy9jypQp3NdsNcK2C9Ddu3cDALcuYGhoCDfccAP6+vpQUlKCl156yeuSy7///e84fvw499/555/v9nVnzpzp+zcaRiLxnJvNZtxyyy1oampCRkYGXnvttbCqn4/Ec/ryyy9j/vz5XKcso9HIrS+LhCxUJJ7zhQsXYvny5dx/tjKYgoICLFy40JfTEBSReK5//PFHrFu3DjfddBMMBgNYlsW2bdsAhH4dsKci8bzPnj0bIpEI3d3dXHfrmpoaAOF7gRaJ59nG9vVIqMxwFInnPS4uDoB1Xp1tglplZSUACBrNhatIPOc7duzA8uXLccsttwCwzho8cOAAAGtzmfFsXM3pO3ToEC666CIAQFZWlqCN9sKFC1FaWopLL70UYrGYmxkCAB988AEmTpyIZ599Fv/85z8BAGVlZdynigBw9dVXc52AbCZNmgRg9JkhTU1NWLt2LfR6PaZPn47KykpotVo899xzWLRokeCxu3btwpVXXhkxc/oi9Zx//vnnuPXWWwEAEyZMQF5eHvfcdevW4ayzzhrLaRmTSD2nnZ2dWL9+Pbq7uzFt2jT09/ejrq4O+fn5+PDDD8O6bCJSz7mjJ554Ak8++WRYz+mL1HOt1+txwQUXcHNUo6KicOzYMWRmZuLTTz/16tPpUIjU8w4Af/rTn/DWW28hNjYWJSUl2LNnD+Lj4/H5558jMTHRD2fHfyL5PAPWjFNjYyO2bt0aUeWdkXre+TPjiouLIRKJUFlZiZiYGHz66acj7jvUIvmcr1q1Cmq1GjNnzkRjYyM6OztxwQUX4G9/+5t/Tk6YGldr+r7++mvudnNzM5qbm7n7CQkJuPzyy/HEE0/gkUceQUVFBXJzc3HHHXdwqWh+kFVRUcG9QQFg9erVPh9XdnY2nn/+efztb39DRUUFUlNTceONN7q8aIs0kXrO+a9bXV0tmIdTVlbm8+v6Q6Se05SUFLzyyit46KGHsG/fPsjlcpx//vm44447wjrgAyL3nEeiSD3Xcrkczz33HB588EHs2LEDXV1dWLp0Ke6+++6wD/iAyD3vAHDPPfcgNjYWH3zwAY4ePYqFCxfizjvvDLuAD4js8wyAa2iRkJDg82uFQqSe9/j4eLzxxht4+OGHsWvXLphMJixcuBB33HFHWAd8QGSf86effhoPPPAAjhw5gsTERNx000248cYbfX7NSDGuMn2EEEIIIYQQQoTG3Zo+QgghhBBCCCF2FPQRQgghhBBCyDhGQR8hhBBCCCGEjGMU9BFCCCGEEELIOEZBHyGEEEIIIYSMYxT0EUIIIYQQQsg4RkEfIYQQQgghhIxjFPQRQgghhBBCyDhGQR8hhBBCCCGEjGP/D/VrrztBLGBxAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4UAAAHnCAYAAAAPc/jYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADLGklEQVR4nOydd5gb5bn271GXdrWr7est7muve8MdgjE19N4JBEhPSIAkB1IOSYDkJCe9kELICclJCOQDQgonCSEBYtNdwAb3bq+9u7a376rOfH9oNXrf0UgaSTPSSHp+18XFSJqVxtqVZp73fp77FiRJkkAQBEEQBEEQBEGUJZZCHwBBEARBEARBEARROKgoJAiCIAiCIAiCKGOoKCQIgiAIgiAIgihjqCgkCIIgCIIgCIIoY6goJAiCIAiCIAiCKGOoKCQIgiAIgiAIgihjqCgkCIIgio61a9di5syZ8n9z587FmWeeia9//esYHh4GABw+fJjbZ+bMmejs7MTixYtxzTXXYP369arP/fOf/xwzZ87Eww8/zN3/1a9+FWvXrk3Y//rrr8fMmTOxceNG7v5HH30UixYtQigUwj333MMdx5w5c7Bq1SrceeedOHDgQMJzBoNB/M///A8uueQSLFiwAMuXL8ett96KF198Ud5nYGAAs2bNwlNPPcX97CuvvIKZM2fi1ltv5e6XJAnLly/HT3/6U/m9ueuuu1Tfg5kzZ+KZZ55RfYwgCIIoPagoJAiCIIqSD3zgA1i3bh3WrVuHZ599FnfffTf+8pe/4Pbbb0cwGJT3e+ihh+T9XnrpJfziF7+A0+nERz7yERw5ciThef/whz9g8uTJ+P3vfw82ynfFihU4cuQIuru75fuGh4fx1ltvobm5GevWreOeZ8OGDVi6dCnsdjsA4JRTTpGP4+9//zu+853v4OjRo7j22mtx6NAh+eeCwSBuu+02PPLII7jxxhvx5z//GY8++ihmz56Nj3zkI/jhD38IAKiursasWbMSitF169ahubkZb7zxBvx+v3z/rl270N/fj5UrV8r3/eUvf8E//vGPjN53giAIovSgopAgCIIoSjweDxoaGtDQ0ICJEyfi/PPPx49//GNs3rwZTz75pLxfdXW1vF9jYyMWLlyIr3/96wgEAnj++ee553z77bexa9cufOYzn8GBAwfw6quvyo8tW7YMVquVK8JeffVVVFdX48orr1QtCletWiXfttvt8nG0trZi+fLl+PnPfw6Hw4Fvf/vb8n4/+tGP8O677+Kxxx7DVVddhfb2dnR2duLTn/40vvzlL+OHP/wh3njjDQDA8uXLsWnTJu51169fj1tuuQWCIOD111+X73/zzTdRXV2NuXPnyve1t7fjS1/6EgYGBjJ67wmCIIjSgopCgiAIomSYM2cOlixZgmeffTblfg6HAwBgs9m4+59++mm0tbXhrLPOwqRJk/D444/Lj1VWVmLOnDlcEbZ+/XqsXLkSq1atwpYtW9Df3w8A2LdvH44fP84VhWpUVlbi8ssvx/PPP49AIABRFPHYY4/h8ssvR3t7e8L+V111FSZPnoz//d//BRBVL/fs2YPBwUEAwIkTJ7B9+3acccYZWLJkCVeobtiwAStWrIDFEj/1f+Yzn0EoFMLXvva1lMdJEARBlDZUFBIEQRAlxYwZM7Bz586kj584cQL3338/PB4PzjzzTPn+YDCIZ599Fueccw4A4L3vfS/+8Y9/4OTJk/I+K1asSCgKV69ejQULFsDj8eDll18GEFXlGhoaMGPGDE3HGwgEsH//fuzbtw8DAwNYtGhR0v2XLVsmH8PSpUths9nk2+vXr0dLSwsmT56M1atXJxSFbOsoANTV1eHee+/F008/jZdeeintsRIEQRClCRWFBEEQRElRVVUlm80AwG233YZFixZh0aJFmD9/PtasWYP+/n785je/QVNTk7zf888/j/7+frz3ve8FAJx//vkIhUKckcvKlSuxbds2+P1+HD58GAcOHMDq1aths9mwfPlyuQhTK8CSUV1dDSA6nxhr46ypqUm6f01NjVyoejwezJs3jysKV69eDQBYvXo19uzZg6NHj+Lw4cM4evSo/BjLpZdeijVr1uA///M/ufeNIAiCKB+oKCQIgiBKipGREXi9Xvn21772NfzhD3/AY489hvPOOw8+nw8f/ehHMXv2bO7nnn76abS2tmL+/PkAog6c06dP5wxnFi9eDEEQsGXLFqxbtw4dHR1yYbl69Wp5hu/NN99M2zoaI1aIVVVVwefzcfepMTg4iNraWvn2ihUr5DnHl19+WS78Ojs7UVdXh9deew1vvvkmWltbMXHiRNXn/MpXvoLh4WF84xvf0HTMBEEQRGlBRSFBEARRUrzzzjuYM2eOfLuxsRGTJk1CZ2cnvv71r2POnDn48Ic/jP3798v79Pb2Yt26dejq6sLs2bPl//bs2YP9+/fLhjMulwsLFy7E5s2b8fLLL3OF36pVq3Do0CFs2bIFhw4d0lwUvvPOO/B4PJg8eTImTZqEhoYGbNiwIen+b775JhYuXCjfXrFiBbZs2YLt27fj+PHjWLFiBQBAEASsXLkSb775JjZu3JjyeJqamvDZz34WTzzxBGeuQxAEQZQHVBQSBEEQJcP27duxadMmXHjhhaqPC4KABx54AHa7Hffcc4+sAD7zzDOIRCJ4+OGH8Yc//EH+77HHHoPdbscTTzwhP8fy5cuxdetWvPnmm1w75pQpU9DS0oLf/va3mDZtGteamozR0VE888wzOO+882C322G1WnHjjTfiiSeeUM0v/OMf/4hdu3bhhhtukO9btGgRRFHE73//e8ydO1dWG4Foobpt2zZs2rQpbZF69dVXY+XKlfjCF76Q9rgJgiCI0oKKQoIgCKIoGR0dRW9vL3p7e3Ho0CH84Q9/wAc+8AEsXboUF198cdKfq6+vx2c/+1ls2rQJv/3tbwFEswlXrlyJ0047DTNmzJD/W7RoEc4//3w899xz8hzfihUr8NJLL2FwcBBLly7lnnvVqlX461//qlqAhUIh+Xi7urrk6IhQKIRPfepT8n633347li1bhhtuuAFPPvkkDh06hN27d+MHP/gBPve5z+HjH/84li9fLu/vcDiwaNEiPPXUUwmvu3r1auzatQt79+6VFcRU3H///Thx4kTa/QiCIIjSwpZ+F4IgCIIwHw8//DAefvhhAEBFRQVaW1tx/fXX45ZbboHVak35s1dccQX+9Kc/4dvf/jZmzpyJXbt24ZOf/KTqvrfccgueeeYZPP3007jtttuwYMECANH5Qo/Hw+27evVq/L//9/9UTWbefPNNnHrqqQCihVxTUxNOPfVUfOc73+FURZvNhoceeghPPPEEfvvb3+KBBx6Aw+HA3Llz8dBDD+E973lPwnOvXLkSr7zyivz8MZqbm9Ha2gqXy8XNISajra0Nd999N+6///60+xIEQRClgyDFemcIgiAIgiAIgiCIsoPaRwmCIAiCIAiCIMoYKgoJgiAIgiAIgiDKGCoKCYIgCIIgCIIgyhgqCgmCIAiCIAiCIMoYKgoJgiAIgiAIgiDKmLKJpOjtHcr7a9bUeNDXN5r31y1n6D3XF3o/8w+95/mD3uv8Q+95fqD3Of/Qe14Y6H3PnIYGr+r9pBQaiM2WOieL0B96z/WF3s/8Q+95/qD3Ov/Qe54f6H3OP/SeFwZ63/WDikKCIAiCIAiCIIgyhopCgiAIgiAIgiCIMoaKQoIgCIIgCIIgiDKGikKCIAiCIAiCIIgyhopCgiAIgiAIgiCIMoaKQoIgCIIgCIIgiDKGikKCIAiCIAiCIIgyhopCgiAIgiAIgiCIMoaKQoIgCIIgCIIgiDKGikKCIAiCIAiCIIgyhopCgiAIgiAIgiCIMoaKQoIgCIIgCIIgiDKm6IrCUCiEr371q1i+fDkWLlyIj33sY+jt7S30YREEQRAEQRAEQRQlRVcUfvvb38ajjz4Kh8OBtrY2/OMf/8AnPvEJSJJU6EMjCIIgCIIgCIIoOoqqKAwEAvjd734Hm82Gp556Cs888wymTJmCTZs24a233ir04REEQRAEQRAEQRQdRVUUbt++HaOjo5gyZQoaGhpgtVqxbNkyAMCmTZsKfHQEQRAEQRAEQRDFh63QB5AJR48eBQD4fD75vth27LFiYWDHNmz52gOoO2UpZn38U8z92/H2g1/CaNeRxB8SLGg9972Y++l78negRALhsTFs/NxnIIZCWPzA1+Fg/h7TcfLtt7DjJz+EGAphydf+G676BgBAJBjExs9/Fic3bZD39U6djsVf/Ya8j5mRJAlb/usBHP3nc0CWrdyellYs+MKXUTVjps5HRxAEQRAEQaSiqIpCv98PALDZ4ocd2449Viy8+91v4sjfnsWRvz2L1nPeK18Iv/Odb6Drub8l/bn+rW9jwplno27RknwdKqFgz6O/wL7f/QYA4Js7D50f/njanxnctRNb//trOPSnP8j3eSdPwfzP3wcAOPD/Hsfe/32U+5n+d7bC09qGhffdr9/BG0TvKy9j2/e/ndNz9L+zFVaPB6t+8gudjoogCIIgCILQQlEVhU6nEwAQiUTk+8LhMADA5XKl/NmaGg9sNqtxB5eEhgav6v3S8KC8feSr98Hf3g4AGHhlfdrnPPxfX0Fkxgx9DrDE6MnDaxz6+9/l7eNP/BY9Rw4k3dc/NIR9mzbh2K5dCQpa1//7HZr9w9HnfPFF1Z8/+tQTaAkXbsFD6/t5aOtWXV5v4OV16PniZ3R5rmIlH3/DRBR6r/MPvef5gd7n/EPveWEw8/vefM01qDvjjEIfhmaKqihsbGwEAPT398v3xbYnTJiQ8mf7+kaNOqykNDR40ds7pPqYaHXI28ETJxAcL3jDjOK58iePwDutAwCw638exr7f/hoAMNLdjWAGLYuEfkiShIFjx+TbgcFBBHsSv5KCfj8O79qFYwcOQBJF1eca6u1FoLsbgiBgkHnORQ98HZu+8B8AgOETJ+R9zMwwc/wzP/xxTLriau0/u38fXv7AzQCAkN+v+n4SBEEQBEEUE4MnBiAmqQMKSTLBqqiKwlmzZsHhcGDfvn3o6elBXV0d3nzzTQDAkiXF1U5p9XjkbVb5FJntmrnz4Z02fXx7HvaN3x8cG8vLMRKJ+EdGEA4G5duRUIh7PBwM4siePejau5f7XQJA02mnY/7n7sO699+AsWNHIUYiGBsagtPjwejQ+JeGxYIp116Pbd//Nvw93dF9hofh8ap/gM2Cf2RE3q5ftgI1c+dp/llHdbW8rXw/CYIgCIIgCOMpKvdRj8eDK6+8EqFQCFdccQUuueQS7NmzB4sWLcL8+fMLfXgZYXPHi0IxSVFodbvlbU9Lq7wdoKKwYAz19XG3w0wRMzYygo3//CcO79rF/R5rFy3GGU/+CWue+ANqFy5CzYKF8mPD/f0YGRiQb1dN74C9ohI18+J/z+zjZoUtCr1Tp2b0s3ZvlbwdGW8HJwiCIAiCIPJHURWFAHDvvffi5ptvRjAYxKFDh3DmmWfiBz/4QaEPK2PYgo8tICJcURgvHD2t7fJ2oMhMdUqJVEXhia4uhBgVsXrGTJz2q8dw1l/+gcZVp8r3185fFH++/n4MMe3QteMGQjVz40XhsMmLQlEU4WcWKiomTs7o522VlfJ2JByGlKV7KUEQBEEQBJEdRdU+CgAOhwOf+9zn8LnPfa7Qh5ITNqYo5NpHGaXExrSYskohtY8WjlRFIVsQTn//7Vj8wNchWBLXXWoXxovC4YEB7jlqx1XEmnkL5PvMrhQGRkdlEx138wTub1sLFpsNVpcbEX/071qMRGC1Fd1XE0EQBEEQRNFSdEphqWBVaR8VRTGuklgssDjiZjSOmhpYXdGL7Ug4zBUSRH6IhMMYGRzk7mN/D+ysoW/2XNWCEABqF8SLwpGBAa7QrF24OPrzivZRM6tnY2zr6PgMbKbYmZlJaiElCIIgCILIL1QUFgibitEM20Zqc7k5x0lBEOBppbnCQjLc358QKyGJovx7YwtEZ01t0udx1tWhon2i/POB0agzrmC1wjdrDgCgon0i7OMGLOFQyNS/b3aesHJyZvOEMdgW0jAVhQSRd8LhMI7u24f+3t5CHwpBEARRAKgoLBBqM4XJTGZikNlMYVG2jsaIFYOsUuioqUn5XDWMWhijunM2rON5m4IgcHOFZm4hzcVkJoa9klEKSQUniLxzeOdO7N2yBe+88gqn/hMEQRDlARWFBUK1fTRNUeimucKCkq4oDDHFTLqisJZxIJXvW7SYu83OFZrZbGZMZ6WQ2kcJIv+w32+jijZ5giAIovQhN4cCYfMwRjPjF8Gs4YytoiLhZ0gpLBySJGHo5En5tr26GqHxQk1VKfSlKQoXLk68T6Ee+pisv2RKoSRJ6O/tRe/hwxBFEVPmzIEzQ6OXXPEPD8vbldkqhTRTSBAFhf3+EkWxgEdCEARBFAIqCguEWk4hN1PIPB7D09omb1NRmF8Co6Oyu6i9shK1Cxaj+6V/AYgWhZIkZVQUsipgDGVRWJvCgTQwNobugwfRc/Ag97fgdLsxZc4cjf+q3FHGUVRmGEcRg2sfpaKQIPIOOxMtUVFIEARRdlBRWCDU2kcjGcwUBimrMK8Msg6hS5bC4fPJt8OhEMRIRHYItbpcaWMZHNXV8E6bjqE9uwEAFrsD1Z2zuH0qp02H1e1BZGwUQb8fgbExDPf3o/vAAfT19Kg+b8y0Jl8kxFF4EhcztEDtowRROCRJ4iJ1SCkkCIIoP2imsEBYPYk5hbxSSEYzZiLAzM3VzJsPR7VPvh0JhbgLKvaxVNTMXyhv++bOhcVu5x63WK3wMarfxn/+E9vfeCOhIGSjS9jjyAec8+jUaVk/D7WPEkThECMRTh0kpZAgCKL8oKKwQNjSuY96VGYKFZEUZs6uKzXYlXObpxKOqmr5djgU4lqvHLV1mp6z/pSlzPZy1X1YB1L27wMAGk99D1b+9Bc448k/cceST7iMwixNZgBqHyWIQhJWLCaRUkgQBFF+UPtogVBtH2UuhtWUQnulF/aqKoQGByGJIkLBIBxOp/EHS3AXSVanAxZHXNULB4PcRZUzjfNojCnX3oie9esQGhpE50c/obpP/dLl2P3LR+TbroYGTL3hZky57kZUTpwEABg5dJA7lnzCK4XZF4U2pijMd2FLEOVOSPGZI6WQIAii/KCisECkC69XmykEoi2kA+N24cGxMSoK8wR7kWRxOOU8QSAa+pyJyUwMm8eD1Y/8KuU+7Rddir6tbyNw/DjaL7oEzWecBYuN/9iy8RdFqxRS+yhBFAxSCgmCIAgqCgtE+vB6dcMOT0srBrZvAxBtIa1kDE8I4xC5otABRzXTPhoMKjIKa3V7XYvdjoX/eX/KfWwVlRBsNkjhMMRIBJFIBFarVbdjSIVuSmEFGc0QRKFQziKTUkgQBFF+0ExhgbC6+KJQkiQ+pzCJUugms5mCIHHto07YWaMZpVJY40M+EQSBUyfzpRaKogg/43ZaOWlK1s9FSiFBFA5SCgmCIAgqCguExWqFhWn9FCMR3n00ibV/BZNVGKSiMG9wSqHdzhvNJMwU6qcUaoUrCvM0V8jFUTQ1Zx1HAVBRSBCFRPmdQUohQRBE+UFFYQFROpBqaR91tzAB9pRVmDfY343F4eRzCsNh3n1U40yhnrDmNvkqCjmVcEr2raMAtY8SRCFRGs2QUkgQBFF+UFFYQKwe3oE0XXg9oIilyHNQeTkjKdxH7QqlMJSF0YyeFMJsJhQIyNvuCRNyei5WKST3UYLIL6QUEgRBEFQUFhCbm3cgTRdeDygC7EkpzBuiwn3UXlUl306cKSxAUViA9lFW0bN7q1LsmR5bJSmFBFEoaKaQIAiCoKKwgCgdSPmZwsTwegDwTGiRt4N+PwXY5wlJ4T5qsdm4bD22lbLQRaGyFcwouJZZRjnNBrZ9NGa8RBBEfiD3UYIgCIKKwgLCFoWRSIRTSJK1j1pdLjjr6qM3JAlBUgvzgqhwHwXAxVKwrZSFMJopxEwhWxTaq3MrCi1WK80VEkSBSGgfpUUZgiCIsoOKwgJic8fVwESjGfWiEFC0kJIDaV7glEK7A0DyQsjBxFXki0LMFOrZPgpQCylBFIoEoxnmXEQQBEGUB1QUFpBU7qO2JO6jAOChWIq8owyvB9SLP6vLDavLla/DkinETCHXPpqjUggA9kqKpSCIfCOJIiKKopCUQoIgiPKDisICYvUo2kc15BQCCgdSKgrzgmr7qMocXSHmCQEUJLyevZC05zhTCJBSSBCFQO37gpRCgiCI8oOKwgLCZhFS+6i5URrNAICdySqMUYh5QqDwSiHrxpotXIA9xVIQRF5QmswApBQSBEGUI1QUFhCufTQcVuQUplAKqSjMO8pICiCJUlhbmKLQybxuMbqPAtQ+ShCFQG0RiZRCgiCI8oOKwgKSTU4hALiZopDcR/ODMrweABwqSmEhguujr+uTt/OWU6ij+yjAt4+GqSgkiLygtohESiFBEET5QUVhAWHVwEg4HC88BAGW8bk1NUgpzD9qSqFdxWhGrVDMB7ZKLwSrFUBiK7JRhHV2H+XaR6koJIi8oKoUUk4hQRBE2UFFYQFhjWbYE7PN7YEgCEl/zt08AYIl+qsLBQLU6mMwkiQpIinsAACHyhxdoWYKBUHIq9mMGInI74lgs6WcgdUKtY8SRP5RKwopvJ4gCKL8oKKwgLAtouywf7oLbIvNBldTs3ybWkiNhb1AEmx2uSBXbR8tkPto9LXjBanRLaTKecJUixhaIfdRgsg/qu6jVBQSBEGUHVQUFhArE14fCgSY+9OrLhRLkT+4OIpx51FAPYbBUSClMPraPnnbaLMZrnVUh3lCgNpHCaIQqLqPUlFIEARRdlBRWEBsHnWlMFVGYQxPSzzAnopCY1GLowDUlUJngYxmlK9ttFKod0YhANgqKJKCIPINzRQSBEEQABWFBYVVBLmZQk+F2u4cZDaTPziTGWc6pbCA7aN5nCnk2kcNUArJfZQg8kMypZAcSAmCIMoLW6EPoJxhIynYi2xN7aNsLAUVhYbCxVE44q6wDlX3UZMUhUWoFFL7KEHkn2TfFZIk6TIrTBDFwtF9+zB48iSaJk6Er6Gh0IdDEHmHisICkqz4S5VRGINTCsloxlDEJO2jVrcbFrsdIquamcVoJo9KoV3FhTUbyGiGIPJPsu8KSRQBCzUTEeWBf2QEe7dsAQAcP3IETRMnYvKcObCNu40TRDlA3/gFJNnsIJtfmAw3Gc3kDb59NK4UCoKQkFVYUKWQNZrJs/uoHlAkBUHkF0mSuO8KdtGL5gqJckJ5HdV98CA2/vOfGOrrK9AREUT+oaKwgCQr/rQZzVD7aL5I1j4K8PN0No+HcyfNN848zhSyRZtu7aOkFBJEXmHzRi0OB/dZJgdSopyIqOQ9hwIBHNi2rQBHQxCFgYrCApKsTVTLTKGrvkFe1Q2HQnQRbSDJ2kcBcEphIeMogPzOFBrSPkozhQSRV9jvCUdNDbeoRUohUU6ITFHobp4gbwdGRwtxOARREKgoLCDJij8t7aOCxQL3hBb5NrWQGgenFDoVSiGzsl7worBg4fU6FYWeCmDc2IJVMAiCMAY2z9RZW8ctetHnjygnRGYhsmb+Ank7yGRIE0SpQ0VhAUnaPqpBKQQoliJfpFIKHb54UegsoMkMwJvc5LV9VKdICkEQqIWUIPIIu3jkrKmFhWmPJ6WQKCfY9lF3UzMs4wYzYiSi2lpKEKUIFYUFxGK1csYlMbS0jwI0V5gvJOaEYLEr2kfNpBT6fPJ2Po1m7F59lEKAbyGlrEKCMJYQ1z5aC4sj7rRISiFRTrDto1ZPBZz18UiKMKmFRJlARWGBUVMFtYTXA6QU5otk4fUAn1XIFmWFwO6tgmC1Aoie4Ixc6Y8YEF4PAPYKmiskiHyhnCkkpZAoV1g10ObxwFlXJ98OGrzIShBmgYrCAqPWQqpZKWylrMJ8IKZwH62cOk3e9k6dnrdjUkMQBK5INXKuMGxAeD1AZjMEkU+U7aNWOymFRHnCKoU2txuuurhSGCKlkCgTKLy+wKgVgNnMFFL7qHFI3EwhXxROuvQKDLz7DsRQEFOvvzHfh5aAo6YWgZMnAEQLN4fLZcjrGOE+ClBWIUHkE9ZoxlFby40zkFJIlBPs+cbq9sBZXy/fpqKQKBeoKCwwapmEWtxHAcDT2iZvU/uocaRqH7W6XFj0la/m+5CSwgbYG6UUSqIYX1UVBK6QyxUymiGI/JFgNENKIVGmiMr2UWam0OgZfYIwC9Q+WmBUlUIN4fUA4Gnhi0JJknQ7LiJOqvB6s8FmFYYMciBlDWDsXi8Ei35fI1z7qMEOqgRR7tBMIUFE4Yxm3G64mJlCUgqJcoGKwgJjy2Gm0F5dLZvSiJGI4TEE5UqqSAqzkY8A+4hBzqMAtY8SRD4JJURSkFJIlCcJRjP1NFNIlB9UFBYY9ZlCbUqhIAhw01yh4RRtUWiUUsg5j/p0fW62fZQiKQjCWMKKSAorKYVEmcIrhR642JlCah8lygQqCguM+kyhNqUQoFiKfMC3j5q7KHQyWYlGKYVhA4LrY5D7KEHkD3aBJzpTGP9+I6WQKCciCvdRUgqJcoSMZgqMmqmM1plCQBFLQUWhIYgp3EfNBms0Y9TqJpdRqGMcBUBGMwSRLyRJiheFggC7z8e1j5JSSJQTIus+6vFw5zZSColygZTCAqMWP6HVfRRQxFJQVqEhSCncR82GjQl/Z9th9MSoOAoAsNFMIUHkBbaTwO6tgsVq5Ra9SCkkygk+p5APrw8FAmTkR5QFVBQWmFxyCgFqH80HqcLrzYY1D0YREYOC64Gom6n8OlQUEoRhsO7Eztpo2zkphUS5ojSasXkq5AV6SRTpfESUBVQUFpgEUxlB4AKE00FZhcYjMScLsxvNsDNBRl3U8UYz+haFrHENKd8EYRycycx4UWglpZAoU5RGMwB4sxmaKyTKACoKC4xVMT9odbkhCILmnyel0HiKyX2UbW816qKOzynUt33UO61D3h4bHqaWHYIwCGVwPQAuvJ6UQqJckCSJUwpjHVwUYE+UG1QUFhhlq2gmJjMAbzQTpAB7Qyim9tF8KIVc+6jOSqGrvh6O8QtUMRKhhQ6CMIiQIo4CANelQkohUS5IkgSMXzsJNpvsMk5KIVFuUFFYYJSmMpnEUQCAzVMBh88HIPrFRl9c+iMVk1LIWsobtEAQNtB9FACqOmbI22PDw7o/P0EQyZRC478/CMJscK2jLpe87ayjrEKivKCisMDkqhQC4ALsM1FWJEnC4IkTGOrvpwuAFHDtoxnMexYCSx6MZox0HwWAqhkz5e3RoSHdn58gCMXiTqwodBjfaUAQZoM1kWGvwZykFBJlBuUUFpiEmcIM4ihieFpaMfDuOwCiLaSoqdH0c0f37cO+rVsBADaHA76GBtQ0NsLX0AAHs1pW7hRTeH1e2kfZmUJDlMJ4UThGRSFBGALfPuoDwBeF1D5KlAvKOIoYrjoKsCfKCyoKC4zSfTQbpZAzm8nAsbG/t1feDgeDOH7kCI4fOQIAqKiuRk1jI2oaG+GtqYFgKV9RuZjC6/OtFOrtPgrw7aOj1D5KEIag1j5qJaWQKEM4k5lkSiG1jxJlABWFBUY5Q5hJRmEMLpZidFTzz4VTfMmNDAxgZGAAh3ftgtVuR2NbG6bMnZuRM2qpwM8U2lPsWXhYI5y8GM3o7D4KKGYKh4YgSVJZ/t0RhJGoGs2QUkiUIZxS6KmQt7mZQlIKiTKgfOUfk6AsCrNtH42RiVLIKj4rHnoY8+79IhqWr4RgtXL7RUIhHN23DyePHs342EqBonIfNfiiTpIkw2cKPa1tsFVUAoj+jdLJmCD0hyIpCCKKqBJHAQCuemofJcoLKgoLjLJ9NFP3UQDwtMSVwmAGRjPsxX3jytWYfcddWPuHZ3Hpu3uw6uFHMfX698HV2CTvM3DyZMbHVgoUVU6hwRd1EUXAL/t6eiEIArzT+bxCgiD0hTeaic6hWyi8nihDNBnNUPsoUQZQUVhglDOEWc0UtmbuPpqg+FT75G1HVTXaL7wYS7/1PSz91vfk+4fKtCiUmELI9O6jBlvKc62jVV7dnz8GN1dIZjMEoSuSJHEXuc5ach8lypdkSqGyfZRc2olSh4rCAqNH+6i7eYK8HfT7Na3wipGIvJ/F4Ug6y1i3eKm8PTIwwH15iqJYFhcOInMiMH/7qLFGM7zJjE/3549RzcRSpFIKg34/dm7ciM0vvICBEycMOx6CKCWU3/+x846VZgqJMiSSxH3U6nDAzpippfJhIIhSgIrCAmN15W40Y3U64WpolG8HNcwVchf3Pl/S/Zy1tfBOmw4guro83N8PIOpc+tqzz2LjP/9Z8m0VxRpeb0j7KKcu6+88GoONpUimFJ44ehSbXngBvYcPY2RwEId37jTseAiilAhzJjM1spFTPiJtjCIUDGLnhg3Y8/bb3OIlQaRDTOI+ClCAPVFeUFFYYCw2G1doZDNTCGQeYM9dFPhS5xrWLYmrhUN9fQCAgzt2QBRFBEZH0dfdnenhFhXsCcP0RaFipV/vdhduMcEA59EYnAOpQimMhMPYvXkztr/xBvd3rGUxhCAIIMR8jp21dfK2xVm8SuGR3bvRe+QIju3fjxPHjhX6cIgigs8p5K/BXORASpQRVBSaALYQVBrPaMWTaVHIKYWZFYWBsTFuvrCUvyi5CyOLBRabuVNcBIsFAnOMeheF7N+Wq6lZ1+dmqZg0WS5wg36//Pc61NeHzS++iO6DBxN+JkLqAEFoQs15FChupZA9J2USzUQQkSSRFADgZB1ISSkkShwqCk0A+yWkbF3QCpdVmHFR6Eu5b/0p8aJw8ORJHO/q4h4v5S9KPo7C3CphDM5sRucLu7GREXnbO2Wqrs/NYrHZ4J06Tb49OjiIgzt24O116+BnjqF5zZnyNusgRxBEctQyCoHoKEKMYlIKJUnCyOCgfJvaR4lMEJlzh7Jby1VPSiFRPlBRaAJ4pTC79lHWgTTzmcLUSmHVzFmwVUadJkOBAI7u25f0uUqNYoqjiGGk2YyfaeWsnDItxZ65w84VbnvjDRzasQMYVz5tHg+W/+AnWP3Ir+R9qCgkCG0oZwpjFGtOoX90lPv803cBkQmRJO6jgEIppKKQKHGoKDQBbCGYjfsokEX7KHtRkMZF0mK1om7R4vjzK1pzStmRizeZMbfzaAwjW8A4pXCqcUohwM8Vsn9jdUuW4rwXXsHkK6+B1e2GYIl+jUll4oZLELnCLuRx7aNFmlM4MjDA3aZWciITxFTtozRTSJQRVBSaAF2UQgNnCgF+rlAJtY+aC6OUQlEU4WcWBConG1wUMrEUACBYrZh37xex9pn/Q0X7xOh9ggBbZaW8DykEBJEern20li0Ki1MpVBaF1D5KZEJKoxkKsCfKCCoKTUDtwiUAoq071bPnZPUcbFEYzNh9NH20QN0pyYvCUm4f5ZRCkwfXx2CzFPW8sAuMjsrtm+7mCbBlOf+qlYaVq2XlvHLSZJz1l39g9h13wWK1cvtRUUgQmaHFaKaolUL6HiAyIJIqkoJpHw2SUkiUOOa2UiwT5n32XlRN74Bv7jy4G5uyeg5XUzMEqxVSJIJQMIhIJAKr4uKZJWOlcHGKorCEV8+KcqaQvbDT0X2Uax0dz640EndjE875+wsY3LEdzWecmbQItXmoKCSITEg6U+jgvzskSZIzDM3MMCmFRA6IScLrAchdKUDU8KxYPhMEkQ2kFJoAu7cK02++FfUpWjTTYbFa4WYiAtKphVxRmGamEACcNTXwTuuQbzee+p74c5VJUWgtlplCg1rAWNfPSgOdR1mqpneg7YKLUqqSdkYpFKkoJIi0hJLMFAqCwJnNFINaGPT7E2a9aHGIyIRICvfRivaJcvxSJBzmXG4JotSgorCEyCSWgi0K7WkiKWI0nRYvBKe/7/3yqrIoiiU72C+xwfXOIlQKdbyoY0Pk2biIQkPtowSRGeEkkRQAbzZTDHOFahfppXo+IoyBN5rhFyAFQUDD8pXy7cETJ/J2XASRb6goLCGctXXydrqLY26mREP7KADMufs/MPXGmzHvni+g7cJLuIuJYlMLJUnC0MmTGOrrS7lfUSqFBq30+7mMQvMUhfYKKgoJIhOSzRQCxkbaGIFynhCgjgEiM0QukiKxK6Vh+Qp5e/DkybwcE0EUApopLCFYI5R0K7ycUqihfRQAXPUNWPrf35VvO3w++LuPRZ8vGIQzS+fUQtDX04Ntr70GAJizciV8DQ2q+7EzeUUTSeEwJpJirADto1qwVcQtxEkhIIjUSJIU//4XhIROkaJTClWKQvoeIDIhkkIpBIB6hVJIc4VEqUJKYQlhZYvCFCdF7qIA0eIuG9gV5mKzau7r7pa3j3d1Jd1PLMb2UYf+7aNiJBLPpxQEVE6arMvz6gG1jxKEdliV0O6tSnDzLbaZQqXJDEDfA0RmiCnC6wGgunM27F4vgGhWIds1QxClBBWFJYRWpTDCFIS2igpYbNkJxlz7aJHFUgSYvL3h/v6k+3GRFPbiKwr1Wuln8wk9ra2wuly6PK8e2KkoJAjNcCYztbUJj1sz6DgpNJFwWL5AFyzxyxkxEtHVeZkoXSRJ4otCV2JRaLFaUb90uXybWkiJUoWKwhKCPZmnWuHNNI4iGayVebHNFLJFzujgYFJltSjD6w2IpODiKKYaH0eRCTaaKSQIzYSTBNfHKCalkDWZ8U7v4BdGqYWU0ADfDeRMUM5jcC2kVBQSJQoVhSWE1vbRkE5FoZMpCoupfVSSJK4olCQJI0NDqvuKRRhez17U6aYUmtR5FKCikCAyIZ3JWDHNFLLzhDXzFsDmofliIjM451EVlTAGOZAS5QAVhSWExRlv6UvZPpokuDhTirV9NOj3J6yAjyRpIZWKMbzegJlC3mTGZEUhtY8ShGZCKeIogOJyHx1lFvN8s+dwJiHkQEpogV08sKbIw61duFheGPaPjCDo9xt+bASRb6goLCGsGouBUIbB9clgVcZiah9lVcIYyeYKiz2SQjelkGsfNY/zKEAzhQSRCakyCgG+/dzsSiG7GOlqaua7BkgpJDSQKqOQxep0onbBIvk2tZASpQgVhSWEhTH/SNU+qtdMYbG6jwZUnMPUHOwAhVJYJO6jWmdLM4ELrjebUkiRFAShGfb7X5lRCPCLX2Y3a+EKXJ+PlEIiYyJpMgpZqIWUKHWoKCwhtLrGRbiisDrr1+OMZoqofVRNKUxmNiMWo/uoXd/20Ug4LLfKCBYrKiZOyvk59YRmCglCO1z7aK3aTCHTaWDyRZYw83l3VFXTAhGRMVqVQoAvCo/u24cju3ebfuGEIDKhqIrCJ554AjNnzkz478CBA4U+NFOg1SCAuyjIoX2UtTMv9vZRSZI4Jzv5/qJ0H9W3fZSLo2hr457fDNgrvfI2FYUEkRrOaEZ1prA4lUJ7VTV3UU/fBYQWWEXZlkYpbDz1PajqmCnf3v/uu9i1aRMtQBAlQ3YBdQVi27ZtAIAlS5bAxwSue9Ks7pQLWt1HdYukKNaZQqZ91NXYBH9PNMh+uL8fXoXxjtKuuhjQ22jGb+I4CkDRPkoXggSRkkyMZsyuFPJdLz7uu8Dsx06YA61GM0D0GuuMJ/+I9be9D8ffeA0A0Hv4MMaGh9G5dCmcKsH3BFFMFGVR+PWvfx3t7e0FPhrzwQaKp8wpVMxhZAt7QREKhSBJEgRByPr58gWrfLVdcBF2/8/PAajPFXLto2VqNMOeNB01vpyfT29Y91GaIyKI1JSKUihJErfAaa+qhtVDC0REZnDtoxqKOldDI9b8/hls/Nxnsfe3vwIQXVB+66WX0Ll0KapUsj8JolgomvZRURSxY8cOWCwWPP7447jzzjvx6KOPIlhECpXRsApRqmJAL6XQ6nDE57kkqShOwpFwGKFAAAAgWK1oe++F8mNqDqRF2T6qs1LInjStKXKcCgW5jxKEdrjvf5VIIm5RycRqmxiJyEWrxeGAze2mnEIiYzIxmpH3czpxyje/i8Vf/QaE8bD7UCCArS+/jO6DBw05ToLIB0WjFO7btw+j4wrPww8/DAB49tln8fLLL+OnP/1pIQ/NNFidmbuP2nOYKQSiSmN4JOpMGQ4GYTPZvJmSwNiYvO1paUXtwrjF9OjQECKRCKzjX/JAkYbX67zSzxXGJnwPrG4PIAiAJEEURUiiCMFSNOtdBJE3JEni2kedKqoG515sYqVQqRICIPdRImMyMZphEQQBHe//AKpnzsL6229GsO8kJFHE7s2bMTIwgMlz5sBC5yGiyDBNUfjUU0/h3nvvTfr4M888g9NPPx21tbW488470dfXh1tuuQUvvPACXnjhBaxZsybl89fUeGCzWVPuYwQNDd70O+lEqCm+6qtVKZwwrQ1VORxjRWMDRo8cjr5+MAgXM9NhRtj5uJoZHWiZ2grfzJno37EDkCSMDgzAy1wosQWRr746r7/PbOmujR+j3u2jlTVVpnwP7JWVCI0HWUciEdjoZEwQCYiRiPydZnU40DyxKaHlv6KqOOby2HlCT10tGhq8qG6InwNJKSS0wC4eeOsyP8c3XPJetC94HX+5/HKcePttAFFn0tGhIcw85RTYi6TDiDCGygqnKa+ZkmGaotDpdHLmMUqqq6vxs5/9TL7d1NSE888/H7/5zW+wadOmtEVhX1+i46TRNDR40ds7lLfXGxyLnwS1zhQORWwI5HCMFm880qIYYinYeULHhDb09g6hes78aFGI6FwhWxSyRdXIWCSvv89sGQnEj1mP9lGJubgKihZTvge2CqYoDIdNr1gTRCHg1LWaGhw/PpywTyASLxKLRSm0VFaht3cIAcQ/99RKTmiBXTwIwpbd+a2iDqc/9Re89dlPYs9TTwEABo4fx5633kLn0qV6HSpRhAyPBAATXjMlK1RNUxRecMEFuOCCC5I+Pjg4iO3bt6OyshJtbW0AAMf4CkyoCIqRfKDFfVQURfkxwWqF3VuV02sWmwMpWxRWjuft1cxfiANP/R5A4lxhMYbX6200wz4Ha2ZkJiirkCDSw7WO1tSp7qN1Nr3QcLOR1Srto6QUEhoQs5gpVMNeUYnzHn8c//rs5/Dud/4bAFRjrgjCzBRNj9VTTz2FSy65BJ///OejcxGhENavXw8AWLhwYWEPziRwM4VJTuZcrpO3Kme3UNaoIFQERWGAKQorJk0GANQuWCjfpywKi9F91Gqg0YzFrEUhmc0QRFrCaeYJAX5RSY/vD6PgZ+PHi0IKrycyJJKh+2gqBEHA9Pe9P/7cdC4iioyiKQovvvhiNDQ04NVXX8XFF1+Miy66CDt37sTcuXNx1llnFfrwTIGWFd50znOZwlqaF0X7KDNTWDlxMgDAN29+1KgE42YzzBe5WIzuo3Z9V/p591FzFoV2yiokiLSE02QUAoCVWfwqHqXQB4CMZojMETPIKdQCLVASxUzRFIW1tbV49NFHsWbNGhw7dgzHjx/HxRdfjIcffpgcnsbhcgqTrJLqFUchPwdbFJpcKZQkiWsfjSmF9opKVE2fId/PtnxIRek+qrNSyLmPmrMopBMxQfCMDA7i3VdfxYHt2+X7+OB69e9/NrxeEkVIkoSBEye4BTUzoOo+yraRk1JYNpw8dgyHduyQ46Yygc8p1KEo9PBGTWaeyyUIJaaZKdTCtGnTKH4iBWzRokkpzDGOAuALS7O3j4aCQfkEYK/0wsEYG9UsWIjBXeNmM/39cgAt3z5aJEohWxTqcEIqBqWQZgoJgufwrl3o6+lBX08Papua4K2p4b7/1YLrAb5NXhRFdO3di/3vvAOL1YpFZ5wBlw5qih5EuAVOHwBe6THb90AoGIQkSXAUyeJiseAfGcG2118HAAT9fkxbsCCjn2f/TjKJpEiGYLHAVulFeJiMz4jigyS2EkJL2w/fPuTL+TWdtcVjNBNgVrorJk3i5ilrF8TzCtm5Qi6jz14kRaGRRjNmVQqpfZQgOIJ+v7w9Nhx1GeWUwmQzhYpOg77ubgDRxaGTx44ZcahZoaYU2j3mjNMYHhjAm889hzefew69R44U+nBKCrazZzgLYxfeaCa3mcIYdupcIYoUKgpLCFYpjLX9KNFdKSyimULOeXTSFO6xmvnx1cXhgQF5uzjD640zmjGrUmivjNsr00mYIPjPbaxA5Ixmks4U8jPJgbEx+fZQX5/eh5k1aucysyqFfd3dckbkro0b0dfTU+hDKhnYv4NsFqb1ch9loc4VolihorCEEAQhbQup3jOFziKKpODnCSdxj9XMnQdhfDZ1jDGb4Zw3i6V9VG+jmWKIpKikWSKCYGEXhILjs1ZhLTOFdn5RiVUch01bFJp7ppA9j0iShO1vvGGqAruYYf8OIlksTHPuozq1RtOMO1GsUFFYYqSLI+AuCnRWCs0+U8he3Hha2rjHbJ4KeDsYs5lxtZBrHy2SSAq9LeWLQimklVmC4GAXc2LffSEtM4VMHmsoEOA+//7R0azMPIwgwkVS+ACY131U2coqRiJ497XXMDre1ktkD6cUhkIZz9GLOkZSxKD2UaJYoaKwxLCwWYUqK6V6R1LYq6vlOIdIOGzqXCv2YsbV0JDwuNpcId8+WhxKoVXRRpwrnFpq0hZamikkCB72uyuk0j6aLJKCVQrVHEeHFFmuhUJNKbQ4HBCsVgBRRc4skRqqXTvBIN599VVZxSWyg10ckCQp41nSiBHto1QUEkUKFYUlhjWD9tHYcH4uWKxW+YSsfH6zwReFjQmPq4XYc5EURagU6t0+anPps5KqN3QSJgiebGcK2TZ5te4Ps7Q9qs0UCoLALRCZRS1kv0On3nCzXHwERkex7bXX6DsrB5RjK5leg4g6u48C1LlCFC9UFJYYbHufWkHAXiiwLQ65UCwtpOyKrLOuPuHxmvkL5e3hgQFIksS1oliKxFbaSKMZsyqF7N+yWS4ECaKQKGcKJUniFwWr1RcF081Om2GuUJIkPkrAGzeaYnPizDJXyH6HNqxYiZU/+bk8wz7c34+dGzdSnl2WKIvATIpCkTXkU3gy5AItUhLFChWFJQZXEKicELkTKbOimgvF4kCaTin0zZ4rtx6NDQ9zK5AWu52LsDAzxhrNmFQppJVZguBgP7diJMIZbdmrqmCxqccUW9JE7wz19RW8gOGKW68XlvHvbcCcreSSwqyr9Zz3YtED/yXfd/LYMfQePlyIQyt6cioKFcH1ep3jaaaQKFaoKCwx2Bw5tYLAiKLQWWN+B1IxEpH/7YLVxgXXx7B5PKia2SnfZtukiqV1FAAsDsZoRvfwenO+D1QUEgSP8vt/lMlwSzZPCADWNLPTkXBYzj0sFKnGINi5MNMohVzWa/Q7tOP9H8DUG2+W7zdLW26xkVAUZnANYkRGIQDYKigiiShOqCgsMbiZQjWlkLNf1kkpZFxMzVoU8q2jdXLrjpJapoV08ORJebtY4igAfZVC5eC+WZVCWpkliDiSKAKKBaHRoSF525kkuB5IrhSy54tCt5BGUkQr2c04U8hFG8XP0Y2rTpW3zeLqWmzkMlMYMcB5FKD2UaJ4oaKwxEiXU8grhfrMFLIrs2Zxe1PCtY42NiXdr4YxmxliikKrSWfp1BBsNtkRFoq5yExhf1awWpO2nBWadCfhYwcOYOfGjdyFMUGUKmrfwyOMUpjMZAZIvgA24axz5O1CO5CqOY/G4ALsTawUAoCrPu6CbeZ5fLOinJMFMmwfZc4VVp06pwBapCSKFyoKS4xU7qOSJPFOWzp9CbIthUVRFKrEUcRQi6UAikspFARBN7MZTiV0mjOjEFDMESkuBP0jI9jz1lvoPXwY+995J9+HRhB5R+17WGv7aLLvuvYLL5a3C93qGFbJKIzBLnaaUilkzOCc9XHDM1IKM0eMRBIWPTNSCtnrIZ3iKABSConixZzL/kTWsDmFSqMZiXHaEmw23dSvdC2rZiCYxmQmhm/WHAg2G6RwmM8oLKKiEIi2gInj/2ZRFDkjhkzgcxrNq5ayrW2xC4WYaQCrDrJqCUGUKmoLQWNM5mDKmUKV+Wmr242m95wh3x4dHMS+d95BJBRCVV0dGtvbczzizEilFNpMqBRKWpRCKgozRq0AjGRQFLKzsRXtE3U5JoAiKYjihZTCEsPqSD5PxvXP69gqYUljbmMGtCqFVpcL1Z2zEu83cUGkBhufoZtS6DavUihYLEnNZgJjY/J20O837d8oQeiF6uIco6ikbh9NjN7xTGiFo7oa3ukzxp9KQteePeg+eBC7Nm3CwPHjuR90BqRWCs3nPpqs48JRUyu3+odDIfpuyhC1ojATpZBdJKyeNUeXYwJIKSSKFyoKSwxLipxCI5xHAb4Q1SMXzwi4orA+uVIIALXzFyXcV0zuowCvbOZyocHPwpi3KASSn4jZohAAgorbBFFqpPvMO2prkj6m9l3naW0FALQwc4Usx7u6Mji63OGMZqqSK4Vm6VxJNlNosdngrK2Tb5vVqM2s5FoUsl0kvlmzdTkmgIpConih9tESI1UrJztfYdfJZAZQFKImOQkrYYtCdo5DjZr5C4Df8vdZi6591Ail0JzOozGSKQTKItA/NgaXjosiBGE20n3mUymFgtUaVa8YZdHdEi0K59z9WbgaGhA4cRyRQAC7HvkZAKCvu5tr2TYarn3UpywKzXdBnqoN31lfj8CJqNIaCgTgcJl78c1MqBXRWgtrSZIUSqF+RaG9kiIpiOKEisISg13lVV4YGOE8CqQ2tzELWmcKAd5sJoaZ5+nU4H4nubiPFonRDJB8jiPg93P7BZkQb4IoRdIqhamKQkGA1elEhPnceCa0AIhe7HZ+9I7oa4RC2P/73yE0OIjA2BhGh4ZQUVWlw9GnJ1VOoRlnCvn2Uf5c4qpvwOCO7QBorjBTclEKQ4GAXEDaPB5dZwoLlZsrRiIYGRpCZXV13hZoiNKC2kdLjFQFmlEzhdYSmikEoiuGrNIGFKPRjD5KYYRtezL5Cnaylh01pZAgSpl038OplEIACd9/7vGiULlP85oz5dt93d0ZHGFu8Eqhj3uMjaQwi/uoxCmF/Pco27kSpPbRjMilKORUws7ZSbOLs8Huzb9SKEkS3l63Dm+/9BJ2v/VWXl6TKD2oKCwxuAJNsUrKKYWVOraPFoH7aCgDpdDqdKK6k28lUXPkMzNsAHUuRWExKYVqsRSSJCUohcoZQ4IoNZTO00ocNclnCoHEAPvYTKESdsbwZIGKwgSlMEU8TSFgXb8hCAkFNzmQZk8uRSEb0VI9Wz+TGSB6DRH7PUuSlJfrotGhIYwMDAAAThw9avjrEaUJFYUlhsWZwn2ULQo9eiqFyVtWzYAoivEThcUCBzPYnww2xB5Qd+QzM7oZzbBFocmVQrXA4FAgkPA3GaD2UaLESasU1qZRChUtjh4VpRAAJqw9W3bPHDp5Mm8B7JzRjNJ9VBFPU2iUJjPKtj5nHRWF2aI2PyiJoqbFAFYp1NNkJka+zWZY05xIKGTKazHC/FBRWGKwak7CTKFh7aPmVgo5k5maGk2ZfbXzF3K3i859VC+jGa591Nzvga0isWUnqFAJAVIKidInVVFocThgTRPUrVSzPC1tqvs56+pQt+QU+XZfT4+m4wuHQjiwbRuO7tuXED6u6eeZYiAhp9BkkRTpsl5dbIA9tY9mRDJVUItayBZR1Z36KoVA/ucK2X8PkJkLK0HEoKKwxNDqPqqn0YzZcwr51tEmTT9TozCbKbqZQkOUQpO7jzIrs7G/dbUCMDA2ltWFKEEUC6k+8w5fTVoTCnYRzOpyw64ovFhazjpX3tY6V3h41y4c3rULe7dsweCJE5p+JoYkSQizTtoJSqG5jGa4hTWVxUUntY9mTbKg+nQB9pIo8kWhAUqhWueKkbDtsAAtMBDZQUVhiWFJZTTDRVIYpBSavShsTD1PGKO6cxZXWBVdeL1O2ZHpVrnNhF1FIVArCiVRpIsvoqRJNVPo1NA+z7bLu1taUhaRLWczRWFPj6bvGzbsfkRxMZsOMRKRX8Nitye0tbNKoRmMZqQUzqOAQimk76WMYNUw1igmXSzF2MiI/DfkbmqCM82MbTYUsn0UoMzLTIjFk5ix0y3fUFFYYqR0HzUovN7sRjNcHEV9aufRGFaHA9Wz4i0lRacU6mQ0U6xKodw+mqRVlFpIiVKG/e5XdoWkmycEeEWrolW9dTRG9aw5cLdEZw4joRAG+/pS7i+JIqdqZFoIKVVCZcHKzhSaTSm0qMxlc0ohXchnBFsUxrI0lferwZvMzNX/wADYVcYZjEKMROAfGeHuC1H7qGZ2b96MzS+8gC3r15d9FxEVhSVGSvdRbqbQmJxCMw4388H12opCAKhlzGaKzn2UWenPJadQaZJgZtRmOJTOozGoKCRKGfZzWzFpEvdYqozCGOxMoVocBYsgCHwL6bFjKfcfGxnhji+YYVEYSTFPCJhwpjCNWRcphdnDqmGVkybH709TEHEmMzo7j8bIp1I4OjyccB8phdoYHhhAz6FD0e3+flUfgnKCisISI1XboFFKodlzCjPJKGSZdMXV0Q1BQNPpZ+h9WIbCKYU5rJYXlVKoYkXPKoVVMzrlbXIgJUoZ9ru/sl1ZFKZvlWO7P5I5j7KwLaQn05jNxGzzY2SsFHIZhYn/Fnam0AydK/zCWmJRaKv0yu+3GImYopAtBiRJ4v4WKjIoCnmTGf3nCYE8F4WK1lGAikKtHN61i7tthu+MQmIr9AEQ+sKuRCoLNDEPSqEZP1CZZBSyNCxbgfNf3gCIIrzTphtxaIbBGc3kohRyRaG5lUK1wX5WEaxfuhyDO7cn3E8QpQb7ufW0T+QeSxdcDyiUQqYtLxmNq06D1eVCxO/H2NAQ/CMjcCVZeNSzKLRXVSU8bnW5ozEZ4/lwkiSlNdYxknTdFoIgwFVXj9GuIwCi74fVRpdm6Yj9boHo+c7dGDeRM4NSmE+jmTGVopBakdMzNjyME11d3H1m7HbLJ6QUlhip5vvyMlNowg9UNjOFMbxTphZdQQgYFUlh7pxCWyUzwxEKQZIkrhWkfukyeZuKQqKUYT+3rvp6TuV3aJgprGhrl7e1ZLjZPB40nvoe+XaqIPthXZVCX8LjgsUCm9s8DqRsp0ayaCOaK8wc7u+guppzyE1VFIbDYblTRLBa4Z0+w5Djy2ckhZpZE0VSpOfw7t0J95nxGjaf0HJUicHOvuWvfbR4lEJnBkphMcP+HegWSaHS+mQm2Da3kcFBLnrC4auBd3qH/DgVhUQpo2xZdDc3Y3j/PgDalMJZn7gT4dFRVM2YifqlyzW9ZstZ5+LoP/4OIBpN0TJ1asI+MZc/lmAgkJGaxyuF6lEZVo8H4dGo8YYYDgMFVN60zGXTXGHmKNuIHUw0SarWSdZkxjttOqwGmcgVWimk9tHUBMbG0Ds+S8hixmvYfEJFYYlRGPfReLFgRuk925nCYoY1mikXpbByylRUtE/EyKGDiITDOH7kiPyYp7WVc1GkmUKilGE/8xanA+6meFGoZaawon0iVvzwpxm95oQzz5a3B06cQCQcTmiDDPr9CRerkigiEg7DZrcjEg7j2IEDCIyOQrBYYLFaYbFYov+Nb7O5hg5FRmEMW0UFAsd7ARTebIa9yLQkacGnrMLMSVUUpvqds0Whb44xzqNA/mYKI+Ew/CrnM1KcU3Nkzx5Vp1FSComSgrW8TuU+atczvN5ul2c4pPH/CjnDwSJJEvflmGn7aLHCGs2Ui1IoCAImnHk2dv/yEQBA94ED8mOe1ja4GptgcTggBoMIh0KqF60EUQooP7ftl1yG3tdegcPnQ+PK1Ya8ZkVbO6pnz8HAu+9AEkX09/aibsIEbp9kmYShQAA2ux1H9+3DgW3bNL+mmvsoYC6zmXRGM4BCKaSLeU2wiwsOn49rJU6lkrF/g0aZzACALU+RFKzzqGC1yu3KpBQmJxIOo+fgQfm2vaoKofG/i3IvCmmmsMRgWyESjGY4pVC/olAQBNO2kLKrro5qHzdrV8oYk1No7qIQ4NUKdvXUPaEFgsUCD2OaQS2kRKnCZeM5HOh4/wdw3guv4MLX34Ldm2jOohdcNIXKXKHSZCZGbO578OTJjF6vaman6v1miqXgC/QkSiEz1pBpREe5wrURV/s0zxSyTp1GmcwAivZRA6+Jxpgit2b+QnmbFheSc+LoUfl7oXLyFDSuPFV+LBe39lKAlslLDEuKeAij2kejr+tEZNzUQxRFWHV99uzh5wnLQyUEjGkfVQteNhuNq06DxemEqLiwihWDntY2uY0uMDoKj9eb8BwEUexIKnNs1UkKKD1pOescbPv+twFEzWaUXSNcUTjeXQLEv6fZtu4ZH/woHNU+RAJ+RPx+RAJ+iIHA+O0A6pcuw4S18UUgFjMF2POtvEmUwjqaKcwU3mjGx88UJikKJUnig+uNVArz1D7KFrkNK1bi5KYNAKLvgZm6tsxEDzNLOOXaGzCw/V35drkrhVQUlhhckDxzMhRFUe6fFmw2LrJAn9d1IYQB+bXMQrZxFMUO1z6qWySF+YtCm8eDxlWn4ti/nuful4tCxlWRlEKiVOEWc5KoU0ZQu/gUOGpqEew7iVAggJGBAVQybX1sUVgzfyH63toEIPo9LUkSp+7PvuMuOOvqsjoOtigUC60UcgW6+nmXZgozR+lCy7WPJikKg36//Ji90gsPM2euN/kymmGLwtqFi+VoGEkUIUYiNCKhIDA2hoHjx6M3BAGTr7wGW77xVflxM12/FgJqHy0xlPEQsUKQUwk9Ht1Xj5IVo4UmWK5FoVOn9lEN8zBmY8KZ5yTc52mJnvw5sxkqCokShVvMSRKDYAQWq5Vr4WajKcKhkFz0CVYrmk49TX4sFAggHArJx211uTVFZySDnSkstFKoZS7bRZEUGcPNFFb7YKuohGCN9iiJkYjqxT2nEs6eY6iKxo7oGBkPwRaF1TNnwcG4C9PfUiK9hw/L242rT4OntS2lQWO5QUVhiWGxWiEwK0OqRaHOraNA6rbVQsKZzJRT+6gRRjNFoBQCwIS1ZyXc52mJxlWwSqGaYxtBlAJcy2Iei0Ig2kIag50rZA0+qjpmcvO9wUCAW6TxtLXldMHOnuNOHD1a0MJQi2rrpEiKjFHOFAqCwEWUqBmtcCYzGvI3c8HuNd5opr+nR/7cCDYbvFOnce7CZDbDI0kS3zp6zfUAFA76JhI1CgEVhSUIuxoZu6hnW2jslfrPUbFtMaYqCtmZwrryLAr1Uwrze3GZLd4pU+GdNp27zz2eYci2C40ODalaUhNEscNHyeT3c9u85kxZsRnu70dwfNacbx1dwHVuhAIBbp6wcuKknI6hakZ8fvLksWPYun49AuPHkW+0dFs463j3UfpeSk+Eax+tHv+/T75PTZ3j4igMLgqNnikcOHEC2954Q77duGIVLHY7l0NKSiHPcH8/xsbdWq1uN9rOvzC6bdLr10JARWEJws4LxgoCdqVUT+dR+TVVClEzwJ4YnDm0IxUbVsZoRjel0O3O6ZjyCWtA4ayrkwta3+y5sgPt6OCgqkMiQRQ7YgGVQkd1NRqWr5Rv9/X0AACXL+ibMy9hjo4tCllFPxum33Ibpt54s3x7uL8fb7/0UkGUE77bQv13YXU44u6ZkmRou2GpoDSaYf+vfDzGCNtqOcs451GAv84SIxFdC/2hkyfx7quvyn9b7sYmLP32DwCAax8lpZCHjaFov/gyefbYatJOt0JARWEJwrb5xf7AjW4f5WYKTfSh4uYONIQ2lwqGRFIUiVII8NEUlZOmyNuu+npMe9/75dsHtm2jVXmi5ODcR3U2FdPCBEULqX9kBCeOHpXva3rP6QlKoZ9pH63IsSi02Gw45RvfweIHvy6rlkG/H91M61i+0OI+CijmCqmFNC1KoxmALwojiqJQFEWMsUVh5yxDj89itcLq1n+2VRRFbN+wQT43O+vqcMYfnkVF+8TobbZ9tMCLC8e7urD15ZdxvKuroMcBRK9lepnjmHL19fK2xaSRaoWAisISRC0z0Pii0JwrLfyJo4yKQiOMZlzFoxQ2nXY6Jl15DTytbZh956e5x2Z/8m55hXB0aIgbPCeIUoC9sClElAyXV9jTg8O7d8u32888E77O2VxRGFQohbEL3FwQBAEdt34Qcz/7Ofm+MSboO19obcF3UixFRiiNZgDA7kueVTg2PCwvAHpaWuFg5g+NwggH0rHhYQTHF1Bsngqc8eSf4Z0yVX7cLEYzkiRh91tvYeD4cezevLng14Unu7vlhQJPaxsaVsS7GVgzrkIfZ6GhorAEsaj8gRtvNMP0ZJtopYU7cZRTUaiD0YwkinKOGCwWzsDI7AgWC1b84Ce46M0t3AUqEHWhnfGhj8q3D+7YUfYnAqK0EAusFHqnd6ByclShFyMRdB84ID+26NPRRRp7VZU86iBGIlzBlmv7KEvN3PnydkGKQo1OsORAqh1J0WJr19A+yjuPzjX0+GIYMVcYZBT12kWLE/JHnSZpHw0Fg3IRFgmH4S/AZ49FmU0oWOLlj8Vlzk63QkBFYQmiZq9r9EyhWZXCEDtTWK7to1m2R0YUBgmlFII788Mfk1dUA6Oj3EUrQRQ7hXQfBaIqnVo0TPXMWWg/6yx5H9Z1ky3Ycm0fZfFOnab6GvmCm+9MYfpDDqTaYWf0LA4HbOPz7qmKwpE8mszEYK+19CoKWcMk1sE3BhvlUsjFBeXfMPv+55ug3y/PNgPA5Kuu5R7nlEITiRqFgIrCEoRb9VBxHzWmKDTnh4pXCn2FO5A8Y0ljNNNz+DAO7dyJcIoTlVSk84RacFRVY/Ydd8m3D+3caWjAMEHkk0K6j8ZoOfvchPs6P/5JbnHJVZ+YHWux2+FqbNLtODxt7bK5VCgQSPmdZwRacgoBXikMUlGYEt5kJt4Gaq9OHknB5vn5ZhtrMiMfjwFKIRfdolIUsoZ6BVUKTVQU9h4+LHc91S9djspJk7nHlfne5QwVhSWIWn80+4VkN6R91HzyuxiJyCdkwWqFzYAoDrOSymjm+JEj2LVxIw5u345DO3YkfQ7eebQ4MgozYfott8E9nl8YCgTQtXdvgY+IIPSBmyksgFIIAA0rVnELkO7GJky85HJuH7XsWE9LK9falSsWmw0VjNmUf2REt+fWgqRxppCNyymEollMJPMK0Nw+mi+l0OD2UbeaUsi2jxbQaEapUo4WqChMyCa89oaEfdjFGrNcvxYKKgpLkPTto8a6j5plpUVpWV1K7Y/pYJVC9ktOjESwf9s2+XaqSAYt+VrFjNXlwtxP3yvfPrJ7N83yEEUP+3kXrFZYCjQLbHU60bxmrXx7xkc+Lit2MVizmRgVOWYUquGdVrgWUj68Pvn3KFuoFOoCulhI5hWQLKcwHArJCpvFbod3Kp9jaxSGK4WtKkqhSYxmzKIUjgwOyiqxxelE+0WXJOxjNaknRiGgorAEUcsMzGckhVk+VFxRWEbzhEByN61jBw5wLn9jw8NyuLSSYs0ozITJV10L7/QZAKKfkcO7dhX4iAgiN/iMwvybzLDM+4/Po27pMky87Ep03HJ7wuNsy2QMPU1mYrBzhfk2vNAa61M9sxMYX7gcGx42zXnUjLCFfazbA1A4bzJFCVtkeztmJCxOGIWtIt6dlK/2UbPkFCqLwqDfX5AilVUJ2y64CHZvVcI+FpN6YhQCKgpLEKtKHAFXFHqMaB8134eqXJ1HAf5iMPY3EA6FcGjnzoR92VBpllJXCoFoa9m8//i8fPvovn3cSZcgig0zFYVVHTNw1h//hpUPPczl58ZwqimFhhSFcWVoLM/to1ojKWyeClQy0QLsDBzBw6pONXPmydtexfsXM6PhTWbyM08I6N8+KkkSt4jrmaBSFFZXy+3XkXC4YNdjagVgvhVwURRxnImcYrMJWczY6VYoqCgsQdQKNHbV0YjZOjOG14dUwm3LBXYlNPY3cGT3btWVw4FkRSG7wl2ArLN80XbBRahZsAhA9G831ZwlQZidYlrMUZ0pbMs9o1BJIR1IufnONIZdbMFSSGMOszMyMCBv+5ii0D2hRTabiYTD8vwdW4zky2QG0L99NBwKyX9PVrebM9aJIVgsckQHUDi1UM1BN99/0309PXJx6mpsROOp71Hdj8Lr41BRWIIUPLzeJB+qslYKFUYzQb8fXXv2yPdNuf4meXvg+HHV5yimi8tcEAQBCz5/n3y7++BBWqUnihbONbjASmE61NpHjVEKmaJwZCTrmJ5skDL4Hi3XuUJJkrB3yxZsWb8ew/39affllL858cxBQRDg64y/hyPj3+MjzPd5dWd+TGYA/ZXCINc62pbUJ4FzIC2Q2YwZisKegwfl7SlXXw+L1aq6nxlFjUJBRWEJUvDwepN8qJI5lJUDykiKvp4e+ffimzUHi+//mtxaNjY8rGqBXi5KIQA0nXY6mt6zRr59cPv2wh0MQeQAb2xi7igZp4pSWNGuf1HoamqWxyYioVBe1ZNM4kHKVSkcOH4cR/ftw+CJE3j31VdTtvD7R0bkc5Ozti4hvkRZWEuSVBDnUQCw65xTyJvMtCXdj/VQKJTZjFpRGPs9DA8MYN/WrWkXAHJ6/WCQM9KbfPV1Sfc1a852IaCisARhTzzyTKHh7qMmVArL2GhGGV7PrjA2n3kWbJ4K1C5cLN+nNlfItT0VKOssn8y794vy9omjRzFk4AmLIIyCL0LMvZiTkFNoscDdPEH31xEEAZUKtTAfSJKUUTwI29pYSkrhyWPHcGTPnqSqFftvDQWD2PHmm0mvIziVcN78BLWMVQJHBgcRGBuTCzJHdbUhf1/J0FspTOc8GsNpArOZZDOFoUAA77z8Mrr27sW21183TLU/fuSI/Ny1CxehqmNG0n3Z2WuzXL8WCioKSxC1Ak3kcgr1D683Y/hnWbePKoxmAsxwurs56tbWuOpU+T61FlL+4rI03UdZ6hYuRtuFcbvqg0x0B0EUC5IJMgq14qythcC0dHmaJxjmDFmIWAr2glew2dLGg1RMnCQrmqFgMKkzdDExMjiIba+/jv3vvIO3//1vzv06hl9x31BfH/a984768zHzhDVz5yU8rlQKOZVw9ty8RlPpPVPImcyoOI/GKLQDaSQSkf+9gtUGV1MzgOg1xa7Nm+XFgaDfr5srq5J02YQs7OKZWa5fCwUVhSUIt+qRJ/dRM4Z/hsvYaEawWCAwFyDsidgzvlLasHK1fF86pTCVa14pMe8/Pi9fpPb39qK/t7fAR0QQmcEt5ph8plCwWOCsq5dve9r1N5mJwTqQ5ivAnmvltaf/XQgWC6o6Z8m3S0EtHOrrk7fHhofx9rp1XGEHqP8+ju3fj25mJiwGpxTOnpvweDXz/o0ND2OYNaXJo8kMoH8kRbo4ihiOAmcVhpnWUWddHfe+K7OR1dpMc2V0cFBuTbXYbGi/+PKU+9NMYRwqCksQtf5oriis1F8pNGP4J7tC5iwzpRDgL0LYldhYrlP9KUvlVfnRoaGEuUJ+prD0lUIAqJregSnXxFcVj+zeXcCjIYjM0RqWbhZYB1IjTGZisHEFeVMKs1hYK7W5wqBiPjDo92PL+vVcYci287JjDXvefjth7iyZ82gMR1W1PG8nSRJOdHXJj+XTZAYA7F6mKNTB8IUtCt0TWpLu52TGZQphNBNkrr1cDY0pi3EjlExWJWw593zu/VCD8+EwyfVroci4KAwGg9i5cyd27NjB/eIJ88DOFIqRCERRlNtYBJvNkOwqU+YUlvFMIcCbzbBKYWymIt1codZ8rVKj4/YPytv5UhQIQi/4z625lUKAnys0tCicxmQV5qkozMRkJoZvNtP+WAIuyAGVFthIOCxn5kqSxJ2fTvvVY7LaJ4kitr/xhqx2hQIBuYXS4nByv1MWroWUdR7No8kMALia4iY4/tHRnOfnggYqhaPDw+jau1f195UprPrnqm9AdYpsSCOUzONHj8rbU65JbjATgxu3kaS8uhObjYyKwldffRVr167F+9//frzvfe/D6aefjn//+99GHRuRJRZFKyffOuoxpKdeLQaj0JTzTCGQaDYTvdMCFxMYnaqFtByVQoC3yTdq3oEgjIJtfzL7TCEAuBnDDDa8XW8qp8RnCv15iqXgW/C1qbbVJawUzvzwx+XtWFtnYGxM/l046+rhamjE6kd+LatsgbEx7NywITGKYtaspDOaviSKINtamg/cjU2yO6oYieS0GCFJElewpTSaqc1spjAcCmHrunXYt3Urtr/xRtbHGIMtCp319SmVQr2LQjESiS8yWCxoOn1t2p8RBIHmCsfJqCh88MEH8dBDD2H9+vV47bXXcO+99+K+++5L/4NEXrEqZgpFg+MoAHNa+obKOJIC4JXCGK76Bu5EmspsJptV7lLAVhlv+QlTUUgUGcU2C9xxy+2oaJ+IusWnoP2iS9L/QJY4a2rgrK0DEP1uy4eJC9fKq9EJlm0fHR0aKvoZJ7aQab/4UnnWPTA6inA4zHVjxBYFvFOnYfkPfyrf39/bi4PbtytaR+cnfc1qlSKkon2iISZ76WDNcJSzlJkQCgblvwW71ws7c55SkqnRzLH9++XibLivL+e/Ob4obEDV9Bmwjb/3gtWKCWedk9HxZQJnqtfUrHmumlMLTSJsFIKkReGtt96KrVu3cveFw2FYGacwm81GF00mROk+ysdRGPOlyOYUmuEkJkkS18Nvr64u4NEUBquKSqBcXaxfukw+SY8ODXFf5uWUU8hidbnk90QSRdMo3wShhWLKKQSAmnnzccFrm3HWX54zxASNpTLPDqR8K6+271CHzyfPfUuimLf4DKNglcLKSVNQNb1Dvj06OMgXhZOnyNut57wXs+/8jHz78K5dOHbggHzbNzfRZCaGWpuo2vxhPqiZt0DeHs6hKFQG16eCVQr9o6Mp25Aj4TCO7NnDv1aOhRqr/rnq62Gx27H0m99F/bIVWPbdH6Fu8VLVffWAnbvMpB3djMJGIUhaFF533XW45557cMcdd2Dv3r0AgHvuuQe33347Tj31VKxatQpf/vKX8cUvfjHZUxAFwqLIKeSD640pCs2WU8jOE9qrqmBhFjPKBTW3u1gcRYzoXOEi+TbbQlpshhV6IQgCbxBAC19EEcG3j5p/phBA3mICWAfSfBSFXDxIBvOdpWI2Ew6F5O9Pi9MJR01NQmQEa4LmVbQPz7n7PzBh7VnybbaATFXkVU3rSIg2yfc8YQy2KMxFKdSaUQjwIxBBvx+b/vUvbFm3Dj2HDnEiAQB0HziQoNblqqIrlUIAmHjpFTjzmf/D5Cuvybi9NROCrNN6W+rimUXNtb8cSVoUnn322fjjH/+I0047DbfffjvuvfdedHR04MUXX8TDDz+MX/ziF3jxxRdx9tln5/N4CQ2wCpGoKArtBjiPAoqZQhN8oMp9nhBQbx91T0gM7m1cybSQskVhmSqFAGD3Vsnb1A1BFBPZqFPlAudAmgcFLtvfBddCWsRFIZerN6EFgiAkFLxsoVcxaTL38xarFct/+DNUTJyU8Nyp5tQsdju8jCIJAL4CFYW+efE215GBgaxnWTnn0RQmM0DU8bPlnPO4+wZPnsSuTZvwxt//jr1btmBkcBBiJJKgEgL6FoWu+vqEx511dfF9DVQKYy60WuBmCk0gbBSKlDOFFosFV111Ff76179i2rRpuPrqq/HNb34TTU1N6OzshKvMLhSLBYvC9CWSh5lCs7mP8s6jtSn2LF3UlMJYRiFLsrnCbEwSSgVSColihfvcFolSmC9Yt0p/PtpHs5zvZGfiilkpVMvVY/9tqdpHYzhrarD6F7/mzM4qJk5KOVMHJMZPpHLANJKK9ony+Eo4FOLek0zg2kcnpC4KAeDU//kNTn/sSbRdcDGXWRwJhXB03z5sfuEFbPrXv1QLwJyLQjYOjFEt5ftq40Wh7jOFWRaFFsoqBJCmKNyzZw/+9re/YdeuXbj99tvx7LPPwul04qKLLsL3v/99DOfJ1pnIDGVvND9TaJDRjMtc7qPlnlEIIKF9BojHUbDULV0mB7aPDg3JX+jcKre7zIpC5oJDj3wpgsgXUpHNFOYT71RmptDMSuHs0lMKY7l6rDPoyOAg93uonJRYFAJAzZx5OOW/vyPfZltKk8EqgxaH01Bn21QIgsC3kCpyF7Wi1XlUfl2LBc1r1mL1zx/FRRu2Yv7n/jNBiWVbd1lXcl2VwrpEpdBRm3lkhla4mcJMlEKHubrdCkXSovDRRx/F1VdfjV/84he49dZb8eCDD6Kqqgp33303nnrqKRw/fhznnXceHnnkkXweL6EBdnYhwX3UY5DRjMNcqyyc82iNr3AHUkDU5onU2k7sFZWqeYXlrBTaGKWQ2keJYqJc80W1UDk5Xhj4R0cNv/jL1vTHO3W6vKgXGBsrSAC5HnCqzXhR6G5plZWzSDgsn2dsFRVcW6GSyVdeg9MfexIL/vMrmHdPei8LVpGsntlZUF+BmrnxFtLhLIt8NdVVK+7GJsz6xJ244OUNOP3xp9F+8WXcorHD58PMj8TjQkI5FIWSJPEzhSpFoRmVQjPGqhWCpEXhz372MzzyyCN4/PHH8ec//xmPPfaYrAw2NTXhK1/5Cn7961/j7bffztvBEtpgL+ClfLWP2u3AuFmAGcI/I2UeRwGoF4Vq7aMA0LBylbwdayHlIynKqyhkZwpJKSSKCa4QKYKcwnxi83jiF9SK0HQjkLKcy7bY7aiaMVO+XawtpJxSOK5uKecKY1ROmZrWcKh5zVp0fuQTcGhwE286bQ1q5i+Exe7AjA99NMMj15cadq4wS6VQa3B9KgSLBc3vWYNVP/0FLtr4DhZ88cuYct2NWPPEM/AyOZ65KIWRcFi+/rN5PLB5PAn7sNdkoWBQt+tFSZIURaF291GzjUAVCvXkT0TnCQfGnZKGhoYgSRIXRwEAU6ZMwfe+9z1jj5DIGKXpSz6KQkEQYHW6EPFHP5BiJAJrkmDZfMC2JDiqfQU7jkKiqhSqGM0AUbOZ7T+MfpZjSqFUxkohzRQSxUq2jpflgnfadIx2HQEQdSB1G2S+BigL9Mx+F9Wz5qD/nWgs2OjgIKpTqGhmJaiiFAJRJ9DeV1/m9mVVXD2wOhw4+6//RHh0pCD5hCy5xlJIkqTaipsLrvoGdH70Dvm2GImf53IpCtWcR5VYHQ7YvV6ExqMywqEQ7DrMP4dDobjy7PHAXlWV5ieYY3KS+yiQoii8++678alPfQqVlZUYHBzEJz/5Sbjd7mS7EybConQfZS4SjHIfBaJzhXJRKIooZAhEmJTCBKMZu9ebNAesftlyCFYrpEgEI4ODCAWD3N9N+SmFVBQSxQm5j6amcspUdP/7RQDGzxXm0oLvmz0HsVS+YlUKOcdMxhxFVSmcPFn31xcEoeAFIQBUTp0Gq9uDyNgoQoEAgn4/HBrPqaIoYu/bb8tqmsNXo6q+5Yq7sUne1qsodDWoF4UA4KitixeFwaAuRaFSJcwk6sai6LArV5IWhZdeeinWrFmDgwcPoqWlBfUqtrKEOVGavuRDKQQSi9FCwkVS1JRrUcgbzaRaXbRXelEzfyFObtoAIKoWSuXcPsoYzRTrPA9RnuSiTpUD+cwqzGW+sxRiKbhIihZGKVSJk0hmMlMKWKxW+ObOxYk3XgcQVQtrNZxTw6EQtr/xBucKPvGyKw05RldDY3QESJIQCgYhiiIslpRelKpoUQqB6FzhyIH90Z8JBqGH5BTIMqMQMF+sWqFI+Rv3+XyYP38+FYRFhtJ9lDeaMa4oZD9Ueq60+EdH8fa//413XnlFs2rDK4U+3Y6lmFBeEKazsW5ctVreHjhxorxzCpm2E1IKzUnQ78fRffvyEkJeTEhkNJMS77T47JTfaKUwh4U1Nmx9ZHCw4HP6mRIJh+XzsMVu58xFqmd2JuyvFkdRSmQaYu8fGcHb//43VxBOuuxKLLzvfkOOz2K3c6H3bHGXCUFmQd5Vl6oo1N+BNFuTGUAR5UZFIVFKCDabbPoCSeJsh1kDDb0xalC3+8ABDPX1ob+3Fz2HDmn6GQqvV1MK1ecJY7Ah9oPHj2ftnFcK2CqpKDQ7OzZswN4tW7D15ZdN4XhsFrLNxisX8qkU8vOdmf0uXI1NciElRiKGm+LoDTcD1zwBAqM62Su9CfEIJV8UMg6k6YrCoZMn8fa//839fc759D1Y/qOfGfqZdjU1y9uq+YWBAHoOH075t8grhckFpUwcSANjY+jauzftIk62cRQAuY/GoKKwBImZvsQY6uuLPYDaxUsMe12ubVXHizT2y0nLChtAM4VA4gWhWkYhS/2y5fKJe2RwkCuG2ODgcoBmCs1N0O+XDZGCfj+CWa5qlyLkPpqaivaJcph30O839POdy3ynIAhFHWLPzROquGWy7bEWu10X8xQzwxaFo+OzdGoc7+rC1pdfltUzi82GFT/6Gebe/R8Zzchlg7sp+VyhJEnYun49dm3ciA3PP489b7/N/Y5jpIujiOFgisJUSqEoinjnlVewb+tWvL1uXcpxjlyUQs61v4wXGakoLFHYAi1G3aLF3DCx3nAzhTqutLAn7VGNK7s0U5hoNJPupGv3VqFm/sLEBwQhQXUsddiikGYKzcfgyZPc7XJe2VUi0UxhSix2OyoZlcrIFtJc5zuLea6Qj1BIPPew7bEV7RMLmiOYD9zNcRVOrQiSJAmHd+3CjjfflP9uHFVVWPPknzDp8qvyc4xN8YVjZVEYCgZl5VKSJBzbvx8bnn8ee7dsQYDZl/23uVIphcx1WSql8HhXl/y6oUAAR/fuTbpvMMs4CoD/fFL7KFFyqK0Qt773QkNf06hBXdYFc2w8HiUVkiTx4fXlGkmhKOQ8adpHAX6uMIbV5TJ8hdJssEYzpBSaD3bOBijvk7iScs4X1UrllHj8gZEOpLnOZRe1UsiazKgsSLLKWVXHzITHSw22YymsyOYTRRG7N2/GgW3b5PsqJ07CWX/9FxqWrcjbMbKFq7L7Qi3QXhJFHN23Dxv/8Q/s27oVQb8/I6MZ+bmTFIWSJKFr927uviN79iRdqOWUwoyNZpjxpzJeZNQUJDc6Oopf/epX2Lx5M0KhUMJF+S9+8QtDDo7IHrW+89Zzzzf4NY2x9GUvysOhEEKBQEo750g4DIz/jVrdnrKdq1GuTLub07fnNKxcje0P/YC7rxzfP85ohpRC0zEw3joao5xP4krY94KUQnW8U6fjKP4OwNi5wlzcRwHA18mbzRQTwSRxFDFazj4XLWefi4EdO9D58U/m89AKgsVuh63Si/BwtHU0EgrBNv753LlxI050dcn7NixfgdX/81tOTcsHrhSxFGyR6J02HfZqH05ufBNA9O+8a+9eHDtwgPuZlEqhhpnCgd7ehL/7SDiMrj17MLGTNysSRTF+zIKQdlxGiVHjT8WGJqXwvvvuw0MPPQSr1YrGxkY0NTVx/xHmw6KYX6icMhVVHTMMfU3DlEKFUpPuJE7Oo1EyNZoBgPplKzhDAKD85gkBmik0M8FAAGOKmZxyPokr4QoRmilUxTs17kBqaFGYQ04hAFTNmCl/H/tHRorquyidUmix23Har36HC1/bhPpTluXz0AoGW+TF1DH/6ChXEE6+6lqc/sQzeS8IAYVSqCwKmdu1CxbhrD//Haf97+OoWbBIvl+MRLi/+VRKoYN1H00yE35kzx552zutQ97u2rs3QV1kj8/V0AhrhgtibHddOc8UalIK169fj2984xs477zzjD4eQiesTv4D0Xa+sa2jAGAxaKVFeSIcHRpCdYoVKHbVyVlTm3S/UodVCQSbjVuZS4ajqhq+eQvQ99Ym+b5yVAptbE5hEV2IlQODCpUQIKWQpZzzRbXinRZ3IDVyplDK0cHZ5vGgcso0DO3ZBSA6U+8tkoVOTilUmSksRxw1tRg5dBBAfPGafZ98c+dj2fceKti4RsqZQjaUvqkJgiCg5cxzMGHt2eh67q/Y+t9fQ//WLfI+gtWa8pqDUwpVunGGBwbQ39s7/mQCTvv17/Dv912Hod07ZbVw0qxZ8v6c82hbZvOEALmPxtCkFEYiEXQqpFrC3CiVQqNbRwF+VVrPD5WYi1JYpiYzAL/ypbQET0XjSn6u0OouP6XQ6nLJDoWSKJb1ScJsKOcJgfI+iSuh8Pr0cEphnoxmslEKAcA3uzjNZtIpheWIcq4Q4OfpPBMmFHR+nzPDSaEUuhvj+wmCgNZz3otz/v4iVj/ya9lAaOoN74PFllx3ctalnik8wswStl94MbxTpmLu3Z+V7zu6bx/3+eKD6zMvCo2KVCs2NF0lXnTRRfj1r39ddOGp5Qy76uGsrUPt4lMMf02jwj/VlMJUUBxFFLZ9NJOTstJsRrnAUA4IgsBlehZT21apo6oUlvFJXIkehUip426eAKvbAyB6ca5XeLYSbr7TmV2BXl2Ec4ViJCIXPYLVCmdDY4GPyBw4axPbR9m/PYeGbh4jcdY3yBnXoWCQ+y7h2jNVxsYEQUDb+Rfi3OfX4bLt+3HK17+d8rVSGe/4R0dxnGmp7fxodOa0/eLL5JiLSDjMHRMfR5E4w5oOtruunM8nmtpHx8bG8Mc//hHPPfccJk6cCIdi9ZGMZswHq9q1nndBXuyeszGakSQJwwMDsNlscFdWJj4uigkf0LRKIQXXA+BnATNp36lftjJ6Yhj/kraVaQua3etFsC8afRAOh2EvwzZasxEKBFQXhUgpjCOR0UxaBIsFlVOmYODddwAA/uFh2Gv1HzUoV6WQVQndTc0lHzehFQczzhJbvGavV1x1hS0KLTYbXA2N8Pd0A4iqhU5PdPGENZpxpYg2EwQBjupqTa9lr65GaDx7OhwMyufYrr175euPhpWrUbswOrcoWCyomDgJgRPRbpHg2Bhc48cXyCGOAqCcwhiaikJRFHHhhcbPpBH64WmPfyjaL7okL6+ZjXvTia4u7NiwAQCwcM0aVDCuj4C6QhP0+xEOhWBLkp3Ht4/6NB1HKTJh7Vlw1tYhODiAKVdfr/nnHNXVqJk7H31b3gJQnkYzAJnNmBGl62iMcl7ZZZEkiW8fpYWMpHinTpeLwrGREXgzKAqDfj92vPkmBIsFM5YsgSPJ+8wbzWT3u1DGUkiSZPqIILaVTy24vlxhPQ7k9lGNYe/5wt3ULBeFQaYoDHHto/oYTDpr6+SiMDReFIaDQXQzLqazPsY703paWnFyU/SakS0E2dnMigyD6wFFTmEZLzJqKgrvueceVGuo/AnzMOdTn4YUiaBqxkw0r1mbl9fkwus1XqQdP3pU3j557JimohCI5hUmO4lz7RhlmlEIRO2gL3xzCyKjo1z/vhYaVp0qF4WsgVA5wWUVUiyFKVBrHQXK+yTOwrZgCTYbKTQpyMWB9Oj+/Rg8Ge0iOLh9O6YvWKC6nx6mPxVt7XKUQTgYTBvJVGgkScKhnTvl214mE7LcYTuXzNg+CkTnCmPn/pg6KEkSrxTqlDrgrK3D8L5oGH2sSD524ID8fV7VMQPNa8/ij48ZhQkkbR/NvChkP5/lvMioaaZw1apVuOmmm/DLX/4SBw8eNPqYCB3wtLZh2bd/gM4Pfzxvr5mNe5OfORn7mdXFGJEkzzOa4iQepuB6GZvbnXFBCAAtZ50jb3unTEuxZ+nCZhWSA6k5YE1maubFL8TLud2HhVMJ7dQ6mgrWgTRTs5nhvj55u+fQoQSnxhh6qLaCxYJqxmXR7HOFR/ftkxdvBIsFHbd9qMBHZB5Y47vYdUrIRO2jAOBqTIyliITD8jWd1eni5u1zwcnGUgSDECORaOvoOJ0f/1SCKs7OC8bUQUmSuOtHTxbqtFGeGMWGpqLwsccew4oVK/DXv/4V5513Hs4//3x885vfxMaNG40+PqKIsGbo3iRJEncyVrMGT6YUpjKb4WcKfWmPg0ik6dT3YMl/fQsLP/UpdH6s9IOF1bCRUmgq2HlCwWpF02nvkR9LtnhUbkhcuyIVhalglUJ/BkqhJEkY7u+P3xZFHNu/X3XfXHMKYxRLiP3o8DAOvPuufLvzjjtRu2Bh4Q7IZBRF+6hKViE/T9ioW/uyQxFg33P4sPx+uBoaMfHSKxJ+hi34YupgrKAEAFtFBZeBqBXWh0OrJ0Ypoql9dP78+Zg/fz4+9rGPob+/H+vWrcNzzz2Hm266CT6fD+vXrzf6OIkigG0z1LJyH/T7uZNmJkVhqnYfch/Vh+k334qGBi96e1O7vZYqNFNoLmLtekA0PJk1bSjnkzgLzRNqxzuVVwq1zuoFRkcTctWO7t+P1unTYVVY8OsVD1JdBGYzkiRh96ZN8r+5emYn5tz52TQ/VV44VMLruVxlMxSFTYlFYYhzHm1O+JlsUSqFPYcOybdnfvhjqgH0rJN67PgCzLVj5eQpWRWtVlIKAWhUCoHoSuzmzZvxxBNP4Omnn8ZLL70Ep9OJuXPn6n5Qb7zxBmbOnIlbbrkl4bEf//jHOO200zBv3jzcfPPN2Ldvn+6vT2RHpjmFysJOWSQC/MV4xcRJ8Z9NoRSyqo69zNtHieyhotBcsK2jjatP4wyQyvkkzsK5XTqoKEyFs7ZW7iQRI5GkLaBKWJUwRkzlYJEkiZ8pzKFI980yf1F4ZPduDI231QpWK5b/6GeqF/XljJr7KNs+6jTAATdT0imFbj2LQub96Dl0SL4mtHkqMPXGm1V/Rk0pHGNaRysnTcnqWCw0UwhAY1F422234ZRTTsH73/9+rFu3DosXL8YjjzyCN954Az/96U91PaA9e/bgrrvuUn3sN7/5Db773e8iGAyio6MDr776Km6//XYEmD9YonBk2pOtpvYp5wrZi/Ga+QvlAHb/6GjSljFeKfSlPQ6CUIOdm1AqA0T+YZ1HG1auzmqGudSRSCnMiMqpmc8VDo+7JQK8NX/Xnj2c0Q/3u7Db5XNXNsQCwYHo6ITZLlpHBgdxcMcO+facu/8DNXPmFfCIzImyfZSd1bPY7dzIQqFQmylMl1GYLWz7KHs9OO3mW+GoUje3dDU1y5+lUCAAURS5LrPKyZOzOhYruY8C0FgU7t27F36/H4sXL8batWtx5plnYvHixbDq6GwWiUTwwx/+EFdccQV6enpU9/nlL38JAPj5z3+Op556CqtWrcLhw4fxj3/8Q7fjILKHmynUohSqnISVLaRsUeisrUXFpMnxn0/SQkpGM4QekFJoHkLBoKyQCBYL6pct593iyvgkziLq4HZZTmQzV8gqhfM/95+yIZV/ZAQnjx2TH9OzlddRVQ1PWzRmSpKkjN1SjUQURezatEkugmvmzMOsT9xZ4KMyJ/aqKrmgUYavO2vrTBE1olQKJUkyJI4CiP6blQhWG2Z84MNJf8Zis3EtrMGxMS4CpSJbpTBDT4xSRVNR+K9//Qt//etfcdZZZ2Hjxo24+eabsWLFCtxxxx347W9/q8uBjIyM4Ac/+AFqa2txww03JDx+/PhxHDx4EB6PB/PmRVegVqxYAQDYtGmTLsdA5IY1w5lCtZNwKqXQXlmJqhkz5dtqLaSSKMZ/RhC4C3uCyARbZVwppKIwOSe6urD15ZfRe+SIYa/BRlHULFgEe0UlWYirIHLB9aQUpoObK9RQaClNZhpXnYppN90i3+7as0fe1stkJoaPVQtN1EJ6eNcujIyrpxa7Hct/9DNYbJrsKsoOwWLhRlrYhXEzzBMCUYMXW0UlgOgCe9Dv1xxcnylq7bKTLr+SmxtUg2sh9ft5pZARDjKB7TwpZzdrzf0MkyZNwnXXXYfvf//7+MMf/oCLLroIL7zwAu6//35dDsRut+OLX/wi/vznP6vOKR4dz7PzMe2Ase2jTNYdUTgydR9VbR9NoRTaKipR1TFDvq0WS8GqhHZvVU4tO0R5Q0pheiRRxK633sLA8ePY89ZbhhVnbOto4+pTAYCUQhW4GTaa50qLdxqTVaihfdQ/MiJ/Fzh8NfC0taPjtg9BGC+CBk+elOfqRJ3mCWNUz+JD7M3A8MAADjOZhPPu+QKqZ3YW8IjMD1sIsddAznpzFIWCxYKaufHW35GBAU7RNFopnPnRT6T9OTarMDg2xokJlZOzVQr5cQS2Fbyc0LScMzIygtdffx3r16/HK6+8gr1796KjowO33HILzjjjDE0v9NRTT+Hee+9N+vjzzz+PG2+8MenjsblBG7MCFdv2axgQr6nxwGbLf5BvQ0P5KFWhRp+8ne4iTRRF1VzChKKQeR5fUx2ctR3YPn5bTSlki0J3XW1Zvf9GUa7vYaCtUd6mmUJ1xkZHZWOnSDiM4NgYXBUVur/OIGMy03He2Who8MLfGHfyI6UwCvs+uLwVpv3smua4lszHK+Obau7XSth5wuZlS9HYWAU0VmHGtddix//+LwDgyJ496DzlFO53Yfe4c/43T1xxCrZ9P7ptBqVQjESwa+NG+eK5aelSrP7CPbDoOFZUjKT7PVc01GNoz24AfFFY1dJsms9Fy/Kl6H0t+skY7u/nYjMmdE7V7TgrhUnc7YnnnouO05an/bm6aZMRs3UaGx6Wi1bBasXEBZ2w2u1ZHY/FZoM4vuij1Y04HZUVTtP8XrWgqShcvnw5bDYbli5diuuvvx5r167FhAkTMnohp9PJqXxK0s0nOsZXPdkiIRYo7dIwO9HXl1iAGE252fkPjcVPguku0rgTsMUCjO+fqn3UDztcE+JfImpZhezFu9VbXVbvvxGU298wy4gYP7GQUqiO8uLUb0BRGAoGZWVEsFhgnzkfvb1DGArEV3JJKYzCvg8RwWrKz66ZvlNCvrjq4R8ZgSSKKbtL2NbRylnz5H/HpFs+KBeFJ7q6os/F/k3aHTn/my2tU+VtMyiFh3bulM/BFocDS777Y5w4mf/rLDOh5W9bYMYSuG6pCvNcr7imz5K3hxVKod+h3+dXjNggWK3yZ2XaBz+u6bmFmviCLRtV5Glpxcl+PwBtTsJKLE4XxHD0dyKKIiw6dJoNjwQAk/xeWZIVqpqKwu9973tYvXq1puIrGRdccAEuuOCCrH++adzxqJ/5Uo5tZ1qgEsbA5hSmKwrZL8O6RUtwYsMbAMZPzMwKTcJM4fQO+bZ/ZCThg0vOo4RecO2jeVAKA6OjOLRrF4b7+tA2YwbqW1LPVZgB5cJMQEX9zxVunnDeAtjHHfookiIRzvGSZgrTYq+ohLt5AsaOHYUkSfCPjsJdWZl0f7YorFmwKL49Zx6a3nMGul/6FwCga+9eNLS1yY/rMVNYOXUaLE4nxEAAQb8foWAQ9gK1CA/19eHwrl3y7QVf/Apn2kMkh3Ug5dpHVVopC0XN/IXy9nBfX/y6ymLhHENzxWK1YvI112Pfb3+N1nPfi4aVqzX9nIc5Nw4xRWHllKlqu2s/HocDGNcrpEgEKMPZWE1l8Jlnnol///vfuOqqq7Bw4UKccsopuPbaa/H3v//d6OOTaWpqQnNzM0ZGRrB161YAwOuvvw4AWLx4cd6Og0gOe+JLFybNfhnWLFgoD1lLkiRnzwDKmcIK2Cu9cI9/IUiSlNDywwbBUnA9kQv5mikMBgLYu2ULNvzzn+g+cAAjg4PY/dZbRaFOKpVCI4pCbp7w1NPkbYqkSETvObZygC1mUs0VSpIkG6oAQO38BdzjMz/8MXm7++BBTl3R43dhsdlQ1RE3WitUC6kYiWAXY+7XsHwlOm79QEGOpRhhswrZtkxnnXmKQu/0DnnRjc1RdNXV694evPSb38PFm97F6l/8r+Z2TTdjNMN+52VrMhODzMs0FoX/93//hzvuuANtbW34zGc+g09+8pNoamrCnXfemdfC8KabbgIQzU28/PLLsW7dOrS1teHMM8/M2zEQyeFyXtIphczJt2radG44mC30RIXRDABUd8QH2ZVzhXwchXrODUFogc2MChtUoEmShC3r1uHovn2cyhMJhXCiq8uQ19QTpVKoNiecK6xS2LjyVHnb6ialUImeMQjlQqXGWIoxxmTGWVvHXZgCQPOatajujLbdiZEIju7bJz9m0UEpBADf7MKbzfT19sqLulaXG8u+/2MydMuAZIvVZnEfBaIKnk/F8NHdrH9XniAIcDdPyOhvKJk7aUWuRSEtNGorCh966CF86lOfwne+8x3ccMMNuOmmm/C9730Pn/zkJ/GTn/zE6GOUue222/CpT30KDocDu3btwvLly/Hwww/DSSc/U5BJzgt78vVOVRSFzIUl3z4avUj3pnAgpYxCQi+sLhcs4wPrkigacpLwj4xwiyCuhgZ5+9iBA7q/np6IkUiCssKq/HoQDgbj6sx4PmEMOoEnQu6jmeOdpi3Anm0drV20OEHVEAQBMz/8cfn2AGOOxMY15QLr7KnFGCdTJFHE7rfewruvvZb0s8x2A0y+6hpUTpykuh+hjrM2SVFoovZRgG8hjaFncH0uuJqaIagolpVZZhTGYFvuy3WhUVNReODAAZx33nkJ95977rnYw+Ty6MXll1+OHTt2yGH1MQRBwEc+8hH8+9//xpYtW/CrX/0KU6fm1kNM6Ad74kt3kca2j3pTKIVc++j4rAcbS5FKKbTTTCGRA4IgcGqhEe2cbItZ7aLFOPef6+VCdKivzxSGEjFGh4ZwcPt2uW1tbHgYUNh2690+OsDMi9TMnQ+7N27SwM0UUlEIQJFTqJM6Vepw7aMplEK2XbNm3gLVfSZeegUXrB1Dr/lOdp7LCEfkk93d6D5wAH3d3TjERE2wsC2PRihHpQ7bPspipvZRQP1vXM+MwlywWK1wq3zOcm4fdVJRqKkonDBhAnaqfEFs374dNTU0t0VE4WYKU3ygwqGQ3KducTjgaW3jPsxJi8JxV8NqJsCelELCSNi5QiNaSANMUVjRNhGu+gZMvfRS+b5j+/fr/prZIEkStr3+Og7t3Il3XnsNoihiRMX9NzA2puvJlI2iiOUTxqATeCIiKYUZ453CtI+mUN9Y5SyZoYXV6VSdr9NrvtPBLIoYsUjFdumwbdssbJC5s75BdR8iOc6kRaF52keBxJlZQN+MwlxxqxixVUzKTbW2OOPfmel8MUoVTUXhlVdeifvuuw+///3vsWfPHuzZswdPPPEEvvzlL+Oyyy4z+hiJIkGw2YDxlhpJkpIWhuxqbOWUqRAsFo3tozGlMF4Ujg0PcyGjvNGML8t/CUFEMdpshgsFHl91n/uB+EVl7+HDpjCcESMR+YI5ODaGwRMnkhpdBHVsIeVMZlbxRSE7MyeJYtmGDbPQTGHmVEyaLM8zBcbGuNgrFrYo9CjmCVmm3fR+2Dx8LIse7qMAYDP4+4hdVB0bHlZVI1ml0NXQmPA4kRrVmUJBgMNkAktVx8yE7xCztI8CgKeljbvt8PngqMrNR8KawQhUqaLJb/XWW29Fd3c3vvzlLyMSiUCSJNjtdrz//e/Hxz/+8fRPQJQFgiDA6nQh4o+ePEVRhFVleJgLbJ0WjZhQto9KkgRIUvyDabHA6vYAiLZZOGvrEDh5AmIkgsDYGFye6GOkFBJ6wrYrGhFLwReF0XaY1jPOQOXUaRjeuweRcBjHu7rQNHGi7q+dCcqLwxNdXZzKyaJXVmE4FFLME67gHhcEAVaXC5Hx4xAjEVjL0EKchV3dJvdRbVgdDlRMnITh/VFjGP/ICCqqqhL2Yxc7PK1tCY/HcNbUYMp1N2LXIz+V77PoNFNoZ47LiPZRdlEViMYR+Br5wo8vCkkpzBS14s9R7dPd1TNXLHY7fLPn4uSmDfJ97sbEls1CoVyYqZyc+ygZdZ9oVAqtViu+8IUv4NVXX8Xjjz+OZ555Bm+++SbuuuuutKHzRHlh1ZBVyLalxIb8nfUN8upqJBxGOBjkVmxtHg832F/FtpAybWzcTCEVhUSOGN0+yhaFsVkkQRAw7cab5fvN0EKqvFg8cfQopxRWz5otb+s1V8jlE86Zq7oKTBbiPCLlFGZFurlCSZK4RZBk7ocxZnzwI5ybol4Fut3gGWdloTnEmOvECJJSmBPO2sT2UWe9uVpHY9TMm8/ddjWa5/ftVnwGK6fkZjID8N+Z1D6qoKurK+G/wcFB1NfXw+v14sSJE/L9BBGDcyBV+VAd2b0b3QcPyrdrxwOABUHgPtT+0VHVecIYycxmKLye0BPOaMZwpTBu2jDl6uujQbqIuh4OM/lohUB5sRgKBuV2OsFqRfOatfJjehWFXOvo6veo7pPu+6bc4HMKaaZQK5VTGQdSlaIw6PfLpkrOujpuMUL1+SZOQtsFF8u37ZWJymM2sEqhEd9HysWfob4+7rYkSaQU5ojV7ZG/22O4TDZPGEPpQKpm7lIoEpTCiZNzfk4tokapk7TXZu3atZqDJLdt26bbARHFjVUx58NydN8+7H/3Xfl203vWoOW88+XblZOmoP+drQCiLTxsKxi7Qgrwc4Ws2QzNFBJ6ks+ZQg9TFDrr6tB2wUU4+PSTAIDu/ftRuUDd8TAfKC8WWbxTp8HLXFTrlVXIWvo3rlqtug8phTwSN1NI7qNaieULAur5fwGNraMs8+79Ik5u3ggpEsHESy/P/SBhvFIYUmkflSRJvhaMhELy35jN40mYnSTSIwgCHDW18Hcfk+9zmCyOIobSgdRMyrBHYTRTMVkHpZBmCpMXhb/5zW/k7XfeeQc/+clP8PGPfxwLFy6E3W7Hli1b8IMf/AAf/OAH83KgRHGQLOel59Ah7N2yRb5dv2wFTv2f33B99BVM3lFAMZdkUxaFTPtoTCkU2Sw5iyWhkCSITDGyKJQkSdE+yg/xT7vx/XJR2HvkCCbPmVOwmblU80vVs+agoj0+86iHUsjNEwoC6petVN3PSkohB7mPZodvTjyoe0RFleeLwnZNz+mdMhUXvv4WJFHULdzd6nZDsNkghcPR850owqJjcHyyjoDYzD7nPGqiAqHYcNbUcEWh2eIoYlR3zoKroRH+3h5UdcxIq5DnE0OUQuY7s1zPJ0mvMJYsWSJvf+lLX8IDDzyAtWvjLUIdHR1oaGjAAw88gOuuu87YoySKBrWswuNdXdi1aZN8f828BXjPb56AbfxEE4PtEQ+Mjak6j8aoUgTYS5LEtdM4vFW6nYiJ8oU1mtHb2CHMrrpXVCQsYjSsXAXv9BkY2r0TkXAYvUeOoDlHy+1sCaUqCmfO4opCvw7uo4NMPqFvzlw4qtVd5TilsExP4ixcTiHNFGqmeuYsCBYLJFGEf2QEkXCYW4DR6jyqhp7nIUEQYPd6ERxv64yEQrq6zKp1BAz39clFIdc6aqL5smJD6UBq1vZRq8OBUx/9LQ7/+RlMuuraQh8Oh7OhUV4gAYDKyZNzfk5SCjUazRw6dAiTVC5Gmpub0dPTo/tBEcWL0tL3ZHc3dm6Iu1dVz5iJ0x9/WlXFY9sBgn5/yplC94QWWT2MhEIIBQIUXE/ojpFKIT9PmGhckanhTM+hQ9j68svo6+7W7RhjsAsuyovc6s5ZXEtdUIesQq51NMk8IUBucUrY9lGrTo6X5YDN7ebmCkcVGZyc82ibtvZRo+AWqnT8TpJEUfU7jp0r5IrCeioKs0UZYG/W9lEAqFu0BAu++BX4Omen3zmPWKxWtJ1/EQCg6ZRTEoxnsoH9zkyVtV3KaCoK582bh4ceegh+5iJmaGgI3/rWtzhFkSDYi7T+nh7seOMNOT+sctJkrPl/f4QzSR4Pa7ShVAptFbxSKAgCrxYODSlMZsyV+UMUJzbGIMLQonDCBNV9Jl99nawEjAwMYFjFDRCIqo573noLA8ePY9emTbpn9rGzRs1nnMk9Vt05C1ank/v85ppVyDqPNq5clXQ/q9stb5NSCM6xWa9svHLBN2eOvK1sIc1FKdQboxaqknVCsA6kQTKZ0QVlgL1Z20fNzoqHHsZZz/4Dl7/4omYPlFRYHYmdbuWGpqLw85//PF5++WWcdtppuPrqq3HVVVfh9NNPx86dO3HfffcZfYxEEcG2LB3auVNevfdMaMEZT/055aAya/OtVAqV7aOAwoFUEbRLGYWEHuRNKUzi6uasqUH7hZfIt48dOKC63+jgoPxZCwWDqg6KucB+ttovuhTO8ZVtZ20dKiZNBgB42uOzVrmazbBKTd2SZUn3I6WQh5tRpfa+jPDNZuYKFWYz2RjNGIVR2alsi7idiX8Z6e+Pf7dQHIUuOGqLo33U7FisVtQtWqJb5IuFzifaisLOzk787W9/w5133om5c+di/vz5uPfee/GnP/0J7e3ahq6J8kDtw+mqr8cZT/057Qqrq7EJGF/tUbaDKpVCIDGrkJxHCb0xMixaLbhejWk33SJv9x4+rHocyotYdiZPD9jPlquhEav/538x9YabsfoXv5bNoiraGLOZHJRCiTWMEgTVXK8YVhcphTEkSTJV8VJscGYzqYpCEymFeraPsp9x77Rp8t+PKIryIg3FUeiDspPJSUWhKVCOP5Ujmqzsvva1r+HMM8/Etddeq6vTFVF6WBRzLI7qapzx5J9RqcEu2GK3w9XYJLtysWqHTYNS6GFOlsmMKQgiE+wG5hSmmymMUb9sBapmdGJw53aIkQh6jxzBBMVQ/ajiInbo5EldTWk4Fb6mBnWLlqBh2Qpun0rGPTgXpZC90LV7vSmNOtiV3XING44RCgTkORh7VTW5L2cIqxSODg7KUQyRSEQumASrNbp4WUCMyk5Vjl9UtE3E6JHDAKJzhZXV1Xz7KM0UZk1C+2iKhS8if1iYbNdyPZ9oqvD27duHD33oQ1i5ciU+/elP4//+7/8wrHN7ElEasIqeraICa37/R07RSwfbQsoWhXY1pbBDoRTSTCGhM+zJmr0g0gOtSqEgCJxa2L1/f8LM4IjCGENvpTCioTXbo1MsBWcYxbTKqcG6j0bKdGU3BqtmVVAHT8a4myfIBiCRcFj+G2bnY93NE7gYpULABdgbpBQ6fDWoXRz3ixgeN5sJcZEUpBRmi9JohpRCc0BKocai8Gc/+xlee+01fPOb30RNTQ2++93vYuXKlbj11lu5PEOCmHT5VbC63HDWN+D03z2FmnnzM/p51qwinVJYMXGSrBSEAgH4R0bkx6h9lNADd/MEWakKBQK6tihqmSmMMfnKa+QCaGRwkDOckSQpQSn0j4xwF3C5EtKw4KJXVqGWAjQGexIv15XdGFyLYxsVhZkiCIJqC6nZ3leufdQgpdBZW8sFl6u3j5JSmC3s9YnN4zFV/l85QzPqGotCAHA4HDjttNNwzz334L/+679w4YUX4tVXX8UDDzxg5PERRUbT6tNw8VvbcNGGrag/JblBRDLcTCxFqkgKIDpk7J0WtxFnrbPtZDRD6IDFboeLUfECTCGXK7xSqO4+GsPh86H94svk26zhjNKpN8Yg83nIBWUGqD1Ja7ZeWYVhDa8Vw+qmld0YbCFO84TZwZnNjDuQmmmeEFAYzRioFFbPnCXfHh0agiRJNFOoE676+HvnrKf30SxYyH1UW1G4adMm/PSnP8Vtt92GpUuX4tZbb0V3dzc+9alP4YknnjD6GIkiw1FVDavDkX5HFTxJsmbU3EeBxLlC+RioKCR0oqI1rg7kooCxSKKocIpMP6fEtpAeP3JELp6UKmGMIZ1aSPl2Tm/S9jlPS6tsFJVLViFXgFalaR91Unh9DK591ASKVjGSTimsMEGxzTki6+k+qigKXfX1shooRiIYYRyOrS6XqvkboQ3v9A40nXY6IAiYfstthT4cYhzKKdRoNHPdddfBYrFg7dq1eOihh7B48WI4srzoJ4hUJFNMbBXqpgnVMzpxSOV+ah8l9MLT1g688RqA3Fw1WYLsBVhNrSZL7bolS1E9azYGtr0bNZw5fBgTpkzhnBI9be0YPRz9RBhSFKZYbIllFY4d7QIQLQxdKgp/2tdj1A9HVRql0EVFYQxyHs0dtVgKbqaw1VxKYTr30XAohG2vv45wMIjOpUvhTrK4Gts3Ruz8Wd05C/7eHgBAf2+v/LizvkGXXLhyRRAEnP740wgNDNC1ionglMIyLQo1KYUPPPAAzj//fGzevBl33HEH7rzzTvz617/Gzp07jT4+osxI1p6jNlMI8EohCymFhF6w6oBuRWEGraMxlIYzx8YNZ9iicNqNN8vbQ0y+WC6wbWVK1zwlrEKVrQNpOFulsExP4jFYFZuUwuyo6pgBwRZdKw+MjiIcCplbKUxTFJ44ehSDJ05gdGgI+999N+W+XPtoTXRuuIppIR1gikLKwMwdQRCoIDQZ3ExhmS4yaioKr7zySnzzm9/EunXr8Jvf/AbLly/Hq6++iquuugqrV682+hiJMsKdrH00ieLgTVYU0pctoROsuYQRRaFngraiEAAmXXE1rG4PgOicz1BfH9c+2nT6GXKYvCSKGGEMabJFTUFIBmc2k+V7FUkSoq0GKYVxSCnMHavTyS00jg4Ocu+r2xQzhfHPRLr2UXZh5mR3N/e9o4Qzmhlf/PHNmi3fxzoauxsKG8tBEEZAi4wZGM0AQH9/P3bv3o2dO3di27ZtEEURnZ2dRh0bUYYkbR9NohR6p0yDoDLjlM6ggiC04mljlEKdZgrZljSXRqUQiLZTTrz0cvn20b1747O0goDqGZ2oX7pcflwPs5lMol44s5lslcJs20fL9CQORBWj2O/JYreTM2QOsC2kfT09CqWw8ApsJuH1nAOxJKHnkNqwxfhzKWYKgWj7aAx20YXiKIhShMspLNPziaai8Fvf+hYuv/xyrFq1Cg8++CAikQjuuecevPrqq3jkkUeMPkaijLC53XLrCnd/kqLQ6nSicvIU/k6LhYKbCd2oMEIpZC7W0sVRKOEMZ7q65O3KSZNh83g411895grZi8V0iy16ZBVmZDRDSiEA/u/SPaFFjlEhMqfptNPl7SO7d8t/V1a32xSLjZnkFCqVwZ5DhxIyTmOoxc5UzVRf9KdFB6IUIeMyjUXhunXrcPrpp+N3v/sd1q1bh6997Ws455xzUJGFiQBBpCNBLRQE2MZb5tSoms63kDqqqumiiNANj2KmMNlFVSZkklGopHbhYvjmzku43zcnel/9srhSOKSzUujMQCnMtigMZ9s+WqYru4AyuH5iij2JdEy68hrULooGt7OfdU9rmynMVdgFz3Tto8qs0rHhYdWFomSxM/aKSlRMnJSwP8VREKUI5RRqLAqffvppfPKTn8T8+XwQeTAYxIYNGww5MKJ8UcZS2NyelEVe1YyZ3G2aJyT0xF7plf+mJFHUJRSeczTMYKYQGDecufGWhPurx+d/qjrin4eg359zEcsVaRnMFGabVci1q6ZRZiy0sgtAkVFIJjM5YbFasfTb34fFbufuN0PrKADYFO2jqT7fajOE3QcPJtynNHdiY2eqmbnCGKQUEqWIhYpCbUXh1q1bcdlll2HOnDmYNWuW/N+CBQtw4403Gn2MRJnhnsAP89sqUyvSSgfSdHNPBJEpepvN8EphZkUhAEy6/ErYPPznwjdrDgDAYrNxCyNs+2c2cLNGaVx99cgq5BQLL7WPasFsDpnFjq9zNmbdcRd3n1nMe6wOR/zvXpKS/t0rw+ZjHO/qSphFDCsicljYEPsYLgpcJ0oQch/VWBQ++OCDcDqd+MpXvgK73Y4vfelLuP322+FwOPCd73zH6GMkygylcpJuPpBVRgCKoyD0R9lCmivcTGFzZu2jQLRYmnjZldx97Iq+o7ZO3g7lWhRmYDQTyyqMEczivWIvWNPNcJFbXBTOeZSUQl2Y9Yk7UTUjPlNX0W6e95VdLEk2VxgOBmUV0VZRIc8HipEIThw5wu+r4jwagzWbiUFKIVGKsJ0nZDSTgm3btuELX/gCrrjiCsyaNQtTpkzB3XffjU9/+tN47LHHjD5GosxIaB9NUxR6Ozq423Zf4c0AiNKCM5vJ0YFUjETklXnBaoUzy1V31nDG5vGgcjyKAgCctfELu5yVwgwiKYDcswpJKcwcrn3UJIpWsWN1OrHiRz+Dq6kZnpZWTLri6kIfkgzXQppkrpBdeHI1NWPqtfGuLmULqZrzaAy19lFyHyVKEbZlXJIkXfwDig1NRaEkSagdv8iYNGmSHFp/xhlnYPv27cYdHVGWKLMKbWkMjewVldyFECmFhN7oqRSyF2vO2jpuficTahcsxPRbPwC714u5n/08N3fr1FMpTHHBqEYuWYWSJGUWXk9GMwCofdQoaubOwyWbt+HCN942lYGPFqUwpHA4nnTlNRBsNgBRA6rRoaH4vlz7qI97Hu/U6fLPAYDF4Ui7WEMQxYggCGW/0KipKOzo6MCLL74IAJg+fTo2btwIADhx4kRZn4gJY0hsH1WPo2BhW0ipKCT0Rs9YClYJc9bVpdgzPUse/AYu23EAMz/0Ue5+XYvCDIxfgNyyCiPMSdjqcsPqcKTYm5RCINrmFGBnVE0QsF5qmM3Nms0qTFYUsnPLrsZGuOrr0XrOe+X7WLUwVYu41eFA1fR4N46rvsEULqwEYQSs2Uw5tpBq+qb7wAc+gPvvvx9PPPEELrjgAvzjH//ARz/6Udx5551Yvnx5+icgiAzwJBjNpC8KfXPmyNvulpYUexJE5nBKYY7to5lELmhB7QLNsPZRlQxRJblkFfIZhemzRilXalx5Hm9zctbVweZ2F/iICKNhlTot7aPuxujc8pTr4y2kvYcOyYv67HeEcqYQ4OcKXY1NWR41QZgfqyNeFEbK8JyiqSg899xz8fjjj2P+/PlobW3Fz372M9jtdpx++um4//77jT5GosywV1Vxzoq2ivRF4YzbP4z6pcvRtnYtJl16Zdr9CSIT9HQfzXRGLxv0MpoRIxG52BKsVk2fxVyyCnlV0pd2/3JtH41EIug9cgSjQ0Pce2ymFkfCOLQohSGFUggAzWvOlMczQsEg+rq7AaQ3k6rujM8VUkYhUcq4muKLHrkuABcjmorCm2++GS6XC52dUfeqFStW4Hvf+x7uu+8+1GhYOSaITBAEgWsh1XIh6m6egDP/+Fdc+ve/U04hoTuu+ga5rSQcCiVYumeC3kqhGmz7aC5KobJI09I2lktWoVqAdiqUrT7lYgxwcPt27NywAZv+9S8c2bNHvt9jkiw9wli4olCL0cy4umexWjH5qmvl+2MtpPzcsC/huZres0berluyNKtjJohigI04Gx0eLuCRFAZNReH27dvhYlZkCcJoWLMZLTOFBGEkgsUSzeAbJ5jDCmIkwxm9bGDbR1ml8Oi+fdj84ovoOXRI0/Nko2rmklUYzsB5FFAxBigTtbC/p0fePnnsmLxNzqPlAdc+qsVohmn5nHLtDfJ2X3c3An4/QmlaxOsWLcFpv/4dlvzXtzDjgx9NeJwgSoWq6XF/ijHGjKlc0FQU3nLLLfjP//xPvPzyyzh48CC6u7u5/whCb9isMy0zhQRhNFzUQg4tpPlWCmNFoRiJYN8772BkYAC7Nm3CwIkTaZ8nVah1MnLJKmQvcLUWzJYyDBxO1sJcQRmFZYEmpVClfRQAvFOmomHlavl276FDmj7nLWedi+k330ozq0RJU8VEnI2VoVJoS78L8OMf/xjBYBCvvPIK1z4kSRIEQcC2bdsMO0CiPGk582wc+H+PAwAaV51W4KMhCP1iKTj1LR/to+OKQWBsjHNT27lhAxauWQN7CofPTJ1HY1S0T8TY0S4AUQdSV5pYmRiZZBTGsLrcCA0MACgPpTAcCiWdIyOlsDzQEkmh1j4aY+p1N6L3lfUAxltImbZrp4bYGYIoVbxl3j6qqSj8+c9/bvRxEARH+yWXw9XUDLu3CjVz5xX6cAiCN5vJoX2UUwrzaDTDKgex27s3b0bn0qVJZwXTGVAko6J9Io6//iqAzArocIYzhUBUmYxRDkoh+366J7SgcuIk9L72CqxuN+qXrSjgkRH5glUK1dpHxUhEXmARrFZukQgA2i64GBs//1mEhobgHxnhHsvkc04QpYZ3yjQIFks06md0FJFwGFabplKpJND0L122bJnRx0EQHIIgoJFpcSGIQqOXUsiu7BulFDqqq+UTWyQchiiKqsd88tgxHN23Dy1Tp6o+T7YFbLZZhZEsVFSrK97OJpVZUVg1vQPv+c3vceyF51HVMROu+voCHhmRLzilUKV9lFUJnXX1CTmLNo8HEy+9Ant+/cvE5zZozpkgigGr04mKyVMwvDdq4DU2MoLKMvpMpJwpDIfDePzxx/G+970PK1aswNy5c7Fq1SrcfvvteOaZZ8rG6Y0gCEKvAPts1LBMESwWbjYoHAxySqGtMq407H/3XQyPt18q4fLLMlQKY2SiqrKqh71KY/sooxRGyqB9lH0/PW3tsNjtaDn7PFROnlLAoyLyiS1NJAUbR+FualZ9jinX35Rwn93rhaWMVBGCUIN1IC03s5mkReHIyAje97734Utf+hJEUcT555+P22+/Heeffz5GR0dxzz334JZbbkGAWZEiCIIoVTj1S9FylQmcqYNBSiGQaDbDFoWzPvEp+ObOBxCNctjx5puqF5d8AevT/NpZF4VZmPCw7qPlphTSDGF5wi6YqLWPcvOETeph87ULFnGh9IB2MymCKGXKOZYi6ZLQD3/4Qxw5cgRPPvkkZs+enfD49u3b8cEPfhCPPvooPvjBDxp6kARBEIXG09YOi8MBMRhEKBBAOBSCzW7P+Hk4h00DMzXZWIpwMMgVE5WTp2DVT3+Bv5+zBuGRYfhHRrB3yxZ0LFrEHyuXX5adUmh8+ygTSUFFIVEG2CtTu4+mMpmJIQgCplx3Ezbf9zn5PioKCQKo6ijfWIqkSuFzzz2He+65R7UgBIDOzk7cdddd+POf/2zYwREEQZgFi9UK79Rp8u1s7aojeYikABLNZlil0DOhBd6p07Dka/8t39dz6FBCfiFvNKP9WN1sVqHfr9kVlFcKtbqPlldOIRvxUUFFYVnCfjbSto8mKQoBYPIVV8PCLGyR8yhBKNpHszzP+0dHsXfrVvRs2qjXYeWFpEVhd3c35s6dm/KHlyxZgq6uLt0PiiAIwox4p+d2sogZvwAABIFzEdQbZfuo0rUSACZfdS0mX3WtfP+et9/m/l3Zuo9aHQ64J8SzCrXOYEa4mUKtOYVlrBRSLmFZYquIZ/dGwuEEfwdeKWxEMpx1dWg593z5tqPGp99BEkSRUjWdzyqUMlxslCQJ215/HUf37sWb3/w6IgrnbzOTtCgMhULweDwpf9jtdmMkh9kagiCIYqJq2nR5O5uikDNSqaxMcAXUE7Z9NOT3IxS7UBQEznxi8df+G5XjCqgYiWDHhg1yccXnFPoyev2KtsznCkkpTI0kiggoFF+i/LBYrZxZlFItDLFFYUNypRAAZtz+Ifl7qO6U5ToeJUEUJ3ZvlbxwKklSRiMQADB44gRGBwcBABaHA4LVqvsxGoVxVyQEQRAlhlexgpgp2Rq3ZAOrFI6Mn6AAwFVfz7WM2SsqsfLHj8AyHmI/MjCA/du2QYxE5IxDAHDUZNZalo3ZDF+E0kyhkqDfLweNO+vquX87UV6wXQbKucIg5z6auihsWL4SZzz9F6x+5NfoeP/t+h4kQRQpnNlMhnOFR/fvl7cnX3Utd741Oym9h3/1q1/B7XYnfXw0hwBngiCIYqNqem6uZJEclLdMcSQpCt0trQn71s5fgAVf+DI2/ee9AICje/ei5+BBPlMxU6WQNZvR0D4qRiJym45gtcHqTt2pEsPqLB+lkG0drWin1tFyxu6twtjR6PhOOByGk3lMi9EMS8OyFXofHkEUNVUdM9D90gsAMlsADvr9OHn0qHx7+s236n1ohpK0KGxpacGf/vSntE8wgZkbIQiCKGW80+Pto/7xWYNMWkCzUcKyxVkXbx/lsu0mJBaFANBx+4fQ/e8X0PXc3wDwLWlVM2ZyeYBayFQp5FRUrxfCuFFNOqzu8lEKeedRKgrLmWRKoSRJnNGMqyH5TCFBEOqwXUGZKIXdBw/KM751S5bCNzu1N4vZSFoU/vOf/8zncRAEQZgee6UX7uYJGDt2VJ41cFdWpv/BcbLJ4csWtn2Uxd2iPocmCAKWfedH+Ps5p2O06wgAoKKtHW0XXoKZH/5Yxq+faVHImcxkUDBby8hohkxmiBh2r7oDaTgUki9KbZWVsKXxhiAIIhEulkKjUihJEroPHJBvTy/CduyU7aMEQRAEj3d6B8aORdtDxoaHsy8KjVYKkxSFnubk3R3Oujqc/bd/4di/nkf17DnwzZ6rWbFTkmlWYTiLjEKgvIxm2OKa4ijKG1YpZA2sOJVQQ+soQRCJKGMpJElKey48eeyYvHDnqPah/cJLDD1GI6CikCAIIgOqpnegZ91LADI3m8nnTCHrPsriTuNY6apv4GIqskXOKpQkOavQkqLVNtuCuWyVQioKyxpOKWQ+O+w8IesyTBCEdlwNjXD4fAj29yMSDmPf1q2YMpdfJBVFEYMnT6K/pwd9PT2y4ygATL3xfRmPXJgBKgoJgiAywJuD2Uw+ZwptlV5Y7HaICmdCj4rRjBHEsgrHxrNsA2NjcFdUJN2fM7UhpVAVKgqJGLYkSmGQUwppnpAgskEQBEy59kbs+MkPAQBH9+0DAEyYMgX9vb3o6+nBwPHjqguRgtWKaTe9P6/HqxdUFBIEQWRALlmF+ZwpFAQBjppa+Hu6ufvTKYV6UtE2MV4Ujo6mLAqzySgEyiu8nopCIgZnNMO2j7LOo/VUFBJEtsz//H0Y7TqCQ398GkC0MIwVh2oINhsalq1Ax+0fRuWkyXk6Sn2hopAgCCIDcskqjOSxKASiLaQJRWGKmUK9qWifiOOvvwogvdlMtgWzrUzcR8OhkHzxb3W64KxTnxklyoNk7aNstqizrj6vx0QQpYTFZsOKH/0MEIBDzzytuk9FezsmnHkOms84E42rT4O9QrvHgBmhopAgCCIDPC2tsLo9iIyNIhwMIhQIwK5xdoBrH/XloyjkCwdHtQ+2FNmzepNJVmEky9ZaC/Pel3L7KBcr0tqatQEQURqwM8NsIcgXhbRwQBC5YLHZsOKHP4PV6cL+Jx6D1eVC46mnY8IZa9F8xlnwTpla6EPUFSoKCYIgMkCwWOCdNh39W98GEFULsyoK86AUOhRFoVpwvZFkEkvB5xRqbx+1uuJFbikrhXwcxcQUexLlgKu+Qd5mW0bDTFHoIqWQIHLGYrNh+fcewvx7vwhHTW1RGshoRXvqMkEQBAEAqGJC7MdGRjT/XDjLLL5sUTqQepJkFBpFJkVh9jmFjFJYNkUhzROWO84kRSG7TUohQeiHu3lCSReEABWFBEEQGcM6kI4NDWn+uUielUJl+6i7uXBFYbqsQl2UQgPbR/2jo5AK2J7KFoWUUUiwBV/y9lFSCgmC0A61jxIEQWRIFWM2k0ksBVf4+Hx6HpIqyqIw30phJlmF2c4UWl3GK4UHt2/HoZ07UVFVhQWnn16QeT5eKWzP++sT5oIt+EKBgByuzSuFVBQSBKEdUgoJgiAyxDstcwdSMRKRixbBaoXNkzyeQS8civbRfMZRANGsQg/zmoEUZjPZuo/mQynsPngQADAyOIgRJqA4n/BGM6QUljtWh4Nrsw4HgxBFUW7DFqxWOPKw8EQQROlARSFBEESGeKfGHccCo6OaihFuntBblRe1KUEpzHNRCGifK+TenwxyCo2eKQyHw1wgOLudT6h9lFDCmc0Eg1zrqKumBkISVZ4gCEIN+sYgCILIEJunAu7xVkxJktKaqADZt0fmQsJMYQGKQo/GojBi0plCv0IJLkRRKIoi97qF+D0S5kPZQhpmWkfdjRRcTxBEZlBRSBAEkQXeqZk5kPLzhDWGHJMSpfuoe0L+gutjaMkqZNveYLFkn1NogFKobA8uRFHIvqarobHkHfAIbXBFoUIpdDc0qP0IQRBEUqgoJAiCyALv1Gnytpa5wnAhlML6BllJc9bWZaTA6YWW9lE2W83py6ztzepyyduSKEKSpCyOMjlmKArJZIZQw1XPK4WsyQz7GEEQhBaoKCQIgsgCTinMsCjMxEglF2xuNxZ95auoXbgYi7/23wVxzdRSFLIKh9IcJx2CIPBqoc4tpEoVuCBFIfO+VVBRSIyjzCokpZAgiFygSAqCIIgs8E6LK4V+De2j+c4ojDHtplsw7aZb8vZ6SrRkFXJKYW3mgdtWlwviuEoiRSKA1ZrxcyTDdEohmcwQ4yiVQlYjd5NSSBBEhpBSSBAEkQU5KYXV+W/jLBSella5HTTo93MFYIxQjkUhG+/BupjmiiRJVBQSpkU5U8gZzZBSSBBEhlBRSBAEkQUV7RMh2KLNFkG/P26UkgR+ptBn5KGZCovdjpr5C+Xbx7u6EvbJpX0UiJqvyM+lY9EW9PsTzGtCgQAkg/IQkx4HG0dB7aPEONQ+ShCEnlBRSBAEkQUWux2VkybLt9M5kPJKYf7aR83ApCuvkbd7Dh1KeJxvH828KGRdVQM6FoXJfqdBFbXTSEgpJNTg2keV7qPUPkoQRIZQUUgQBJElrAOpMs9OSaFmCs3AxEsul1XVob6+hJbMXNtH3U3N8rae7Z3J2oLz2UIqSRI3i0lFIRHDWadQCln3UVIKCYLIECoKCYIgsqQyg6zCclYKXfX1aDnzHPl2z+HD3OOsUuioyUIpbI6HuZdaURgJheQWVqvLDUdNfjIuCfPjqKkBxh2Fw6EQgjRTSBBEDlBRSBAEkSWZZBWyBijlNFMYY/JV18rbvYcOcXmCObePNhujFLLqL1vI57MoVLaOFiJWhDAnFquVU9bZbgRXXeaKO0EQ5Q0VhQRBEFninZaBUsiqYWXWPgoAE846Bw6fD0C00Bk8cUJ+LOf20eb4TKFRSmHjitWGvEY62KKQjfcgCABwqswO2quqYbXbC3A0BEEUM1QUEgRBZIlSKWTVLyWRMm4fBQCr04mJl14h32YNZzilMKv2Uf2VQjESic/yCQIaVha+KKR5QkKJqz6xTdRFJjMEQWQBFYUEQRBZ4m6eAKvbAyBa9Kll8AFRsxC2fdRehkohwLeQHu/qkqMd+EiKbJRC/WcKOXOXllbOaVbP2It0BMhkhkiBmlLI5hcSBEFohYpCgiCILBEEAd5pjFqYpIU0HAzKBZDF4YDN7c7L8ZmN2kVL5Gw1MRJBwO+HKIrxjEeLBY4sVFSHzweL0wkAiITDugTYs62j3mnT4TJobjEdpBQSqVArAKkoJAgiG6goJAiCyAEv60DKFBKhQADHDhzAO6++ijf+/nf5/nJVCYFoEc3OxQXGxvhZy2ofBEvmpyVBEHSfK+SKwukdhsVepCNAwfVEClx1ie2j2czlEgRB2Ap9AARBEMUMO1c4dPIkxEgEx7u6OCMVlrolp+Tr0EyJp7UNJzdtABAteGyMIYYzB8dEd1MzRg7sBxAt2jyVlTkdJ6v6Vk2bDldDY9T+X5IQCgYhiiIsWRSwmcIphW2kFBI86u2jVBQSBJE5VBQSBEHkAFsUdh88mHS/mrnz0XbRJei47YP5OCzTwrZABsfG4HS55Nu5KBzuCYxSyBRS2SCJIob7+uTb3mkdsNhscDU0wt/TDSA6V+j0eHJ6nXSIohhXJRVqKEEA6kYz1D5KEEQ2UFFIEASRA2wsBYcgoP6UZWi74GK0nX8hxQmMU8EUhYGxMbgqKuTb2TiPxnA36dM+KkkS9m7ZgtGhIQCAYLHAN3vO+Gs0y0VhMA9FIVvcuhoaYXU4DH09ovhQUwVJKSQIIhuoKCQIgsgB35x58LS0YrTrCASrFY2rTkXbBRej9b0XwN3YVOjDMx2ellZ5O2GmMJf20Qn6FIVde/fi2IED8u1Zn7w72jqKaPRF35a3cn4NrdA8IZEOUgoJgtALKgoJgiBywOp04uy/vYD+rW+jZsEiOGtqCn1IpoZtHw2MjiqC63NRCnMzggkGAug+cAAHt2+X75t4yWWY+5l75dsu9jUCgSyPVDvcPGE7FYVEIk4qCgmC0AkqCgmCIHLEVV+P5jVrC30YRQFrlqJUCvPdPipJEvp7e9F94ABOHjsGSZLkx+oWLcGy7z4EQRDir6Gzw2k6OKWQ4igIFexVVbDY7RBDIfk+F7WPEgSRBVQUEgRBEHnDWVcPi9MJMRBAJBzmQuKzCa6PkUn7aGB0FN0HD6L70CFVU5rKyVNw6q9+BytjggPkrkZmCmUUEukQBAHOunqMHTsq30dKIUEQ2WDKovCNN97AjTfeiJUrV+KXv/ylfH8gEMCiRYsQiUS4/T/84Q/jzjvvzPNREgRBEJkiCAI8rW0Y3rsHADAyMCA/pmf7qCRJnMonSRJOHD2K7oMH0d/To/ocdUtOwdQbb8HEiy+DTcVExp3nAPsAUzBTUUgkw1kfLwptHk/CYgZBEIQWTFcU7tmzB3fddZfqYzt27EAkEkFLSwtmzZol3z99ehL3P4IgCMJ0VDBFIauG5dI+avN4YK+uRmhgANJ4lqDD6ZQf3/P22+hmDGRiOKp9mHztDZh63Y2ontmZ8jX0cjjVCq8U0kwhoQ4bYE8qIUEQ2WKaojASieDHP/4xfv7zn2MsScbUtm3bAACXXXYZ7rjjjnweHkEQBKETbsaBlCWXnEIgWrSFxpXHoN8vF4WSJOH4kSPxHQUBTaedjkUf/TAqV6yBlSkeU+FqirvJGl0USpJE7qOEJtgAe7Uwe4IgCC1YCn0AMUZGRvCDH/wAtbW1uOGGG1T3effddwFE1cS7774bDz74IA6mCIsmCIIgzEcy05RcZgqB5EYwoWAQkXAYQFRRvPC1zVjz+NOYfuWVmgtCIKrCCFYrACAcCkFUjDLoCfv8MRWUINRgHUhJKSQIIltMoxTa7XZ88YtfxOWXX46//vWvqvvElEL28aeffhpPPvkkJk2alJfjJAiCIHJDdT7OYoEjx8In2czf2PCwvO2d1oGK9olZPb/FaoWrsQljR7sAAP7RUXi83iyPNjXK1lF2PpIgWFi3USoKCYLIlrwVhU899RTuvffepI8///zzuPHGG1M+R0dHB5xOJz7xiU+gs7MTX/jCF/C3v/0N3/rWt/D9738/5c/W1Hhgs1mzOvZcaGgw5oKBSA695/pC72f+KfX3fGx2R8J9rpoaNDblVhTWTZ2E/ePbrKuonykK6+fM4t7fTN/rxgXzcWC8KDxx9KhxRSFjMuObOrmk/iZK6d9iBiLnn4O3v/oVAMDUs9fK7y+9z/mH3vPCQO+7PuStKHQ6nfD5fEkft1rTF2wPPvggd/sDH/gA/va3v2HTpk1pf7avbzTtPnrT0OBFb+9Q3l+3nKH3XF/o/cw/5fCehyoT20TtNbU5/7ulqrhRDRsuzyqFjtZJ8utk815PuOhyHBjvVuk5dAhtHR2GqHisUmhraC6Zv4ly+PvON9Zpc3DGk39CaHAQdWefi97eIXqfCwC954WB3vfMSVZE560ovOCCC3DBBRdk/fOhUAiHDx/G0NAQ5s+fDwBwOBwAgPD4rAhBEARhfjwqRjO5OI/GcDe3yNusUjg2MiJve6fl5lbdet4FsHu9CA0NwT8ygqG+PlTlEKWRDDKZITKhcdWphT4EgiCKHNMYzaRjeHgY559/Pq677jrZXObFF18EACxYsKCQh0YQBEFkgM3jgUNRBObqPAponCmcmltRaPN40H7RZfLtnkOHcnq+ZFBwPUEQBJFPiqYorKmpwWWXXYZwOIyrrroKN910E77zne/AbrfjYx/7WKEPjyAIgsgAZaHjqNOjKEx0H5VEEX5OKZyW8+tMvuY6efv4kSOIGOBCGqSikCAIgsgjRVMUAsB9992HD33oQ6ioqMDmzZsxe/ZsPPzww5g3b16hD40gCILIAGUshbOmJufndDU0QrBET2uhYBCiKMI/NgZJkuTH7ZW5GxLUL12OyilTAQCRcBgnjx3L+TmV+BmjGWofJQiCIIzGNJEULJdffjkuv/zyhPudTifuuusu3HXXXQU4KoIgCEIvPG2KolCH9lGLzQZXU7McGTE2NMS1kXqnJ7qeZoMgCJh81XXY+o2o+VnPwYNoaE2ck8wWMRJBKGaUY7FwCihBEARBGEFRKYUEQRBEaZDQPqpDUQgA9acsk7f7e3sVGYW5zROyTL7qGmDcdbS/txe7Nm1CKBjU5bnZQtbd2ASL3a7L8xIEQRBEMqgoJAiCIPKOsijUo30UAJrXrJW3+3p6dHUeZaloa0fruefLt3sOHcKmf/4TvUeOyO2q2cKZzFDrKEEQBJEHqCgkCIIg8k5CUaiTUsgWhYMnT2JkYEC+7Z2au8kMy7Lv/BATL42POoSCQezcsAHbXn+dC5/PFD6OgkxmCIIgCOOhopAgCILIO8qsQr2KQk9LK6pmdAKIOo8O9fXJj1VN02emMIbD58PKHz+C0371GNwt8YzEvu5ubPzXv9C1d29WqiFbUJLzKEEQBJEPqCgkCIIg8o5LMSun10whwKuFMQSrFRUTJ+n2GiwtZ5+H9774Kqbf+gF5zlCMRLBv61ZsWbcOo4ODGT0ftY8SBEEQ+YaKQoIgCCLvWKxWTLrqWgBA8+ln6DZTCKgXhRUTJxlq2GKv9GLJg9/Amc/8H6o6Zsr3D/X1YfOLL+Lw7t2an4trHyWlkCAIgsgDVBQSBEEQBWHpN7+H81/egPf89v/p+rwNK1bB6nJx91XpFEeRjvqly3HOcy9izqfvkYtQSZJw4N134WdMb1IRoOB6giAIIs9QUUgQBEEUBEEQ4J0yVQ6c1wub242G5au4+yqn6uc8mg6r04m5d/8HznnuJW7WMMBETSRDkiRFUUjtowRBEITxUFFIEARBlBzKFtIqHeMotFI9sxPVM2bJtyPhcNqfCQeDECMRAICtogL2qirDjo8gCIIgYlBRSBAEQZQczWfwRaGeGYWZYPd65W0tRSEfR9EOYdy4hiAIgiCMhIpCgiAIouSomtGJivaJAADBZpNjKvKNjS0KQ6G0+5PzKEEQBFEIbIU+AIIgCILQG0EQsOx7D2H7Q99H2wUXw1VfX5DjsFdUytuZKoVkMkMQBEHkCyoKCYIgiJKkceVqNK5cXdBjyKV9lIpCgiAIIl9Q+yhBEARBGIStMkOlcHRU3q6g9lGCIAgiT1BRSBAEQRAGYa+MK4VhDUVhkImtcE9oSbEnQRAEQegHFYUEQRAEYRCZto/G4igAvqAkCIIgCCOhopAgCIIgDCLT9lFRFOVtq9NpyDERBEEQhBIqCgmCIAjCIFi1T0skBasUWt1uQ46JIAiCIJRQUUgQBEEQBmGrzL591EJKIUH8//buPTiq8uDj+C+bDRtyI6DcSkAgJgEJIIiABJ0ql9RGYSZMrY5cHAIv5TojbVqBt05fpepAB2xDaWdACojIRW7lYoswgzMFQUpASAgp14ZwMxASNCGEwL5/MHvcDVCSmHPOnu73M5Nhd3Y358mvqdnfPs85DwCLUAoBADBJvc8p9F8+GhlpypgAAKiNUggAgEkivsdMYbiHUggAsAalEAAAk9S+0IzX673vc71e73ePh4XJ1aSJ2cMDAEASpRAAANOEezxGufN6vQHLQ2sLnCX0KCwszPTxAQAgUQoBADCVO7pu21IEbkfB0lEAgHUohQAAmCjgYjP/YVuKgCuPcpEZAICFKIUAAJgo4LxCv+JXm38pdFMKAQAWohQCAGCium5g7798lJlCAICVKIUAAJiornsVBlxoJrKpqWMCAMAfpRAAABPV3pbifgIvNOMxdUwAAPijFAIAYKKImDjjdg0zhQCAIEQpBADARHWeKQwohcwUAgCsQykEAMBEdT6n0H/5KDOFAAALUQoBADBRna8+6j9TyDmFAAALUQoBADBRw5aPsiUFAMA6lEIAAEzUkOWjLg+lEABgHUohAAAmioiu/0yhm5lCAICFKIUAAJjI3ZCZQkohAMBClEIAAExU5+WjnFMIALAJpRAAABP5X330P21e7/XfkoJzCgEAFqIUAgBgIncdt6S4xUwhAMAmlEIAAEwUUWtLCq/Xe8/nedmnEABgE0ohAAAmckVEBMz8+Z876M//QjPhTZuaPi4AAHwohQAAmCxgCel9ziu8zUwhAMAmlEIAAExWewnpvQTMFEYyUwgAsA6lEAAAk7nvcQXS6xUVAbOD/rddzBQCACzktnsAAAD8t6s9U1h8/Lj+XVCgyKgo9XruOblcrlr7FDJTCACwDjOFAACYLGAD+5s3damoSJJUVVmpb8vKJNVaPspMIQDAQpRCAABM5r989OaNG6qqqDDu+84xDJgp5OqjAAALUQoBADCZ//LRb65eDXjMKIXMFAIAbEIpBADAZP7LR6+VlgY8ds+ZQs4pBABYiFIIAIDJ3NHflUL/paMSM4UAAPtRCgEAMJn/TGFtt2pq5PV65fUrhWxJAQCwEqUQAACTuR9QCmvvURgWFmbFsAAAkEQpBADAdP4XmqntVk1N4NLRyEgrhgQAgIFSCACAySJi6j5TGO6hFAIArEUpBADAZO4HzRQGXHmUUggAsBalEAAAkz3oQjMsHwUA2IlSCACAydzR9ZkpZI9CAIC1KIUAAJgsIjbuvo/dNVPIdhQAAItRCgEAMNld5xS6vvvze9dMYVNmCgEA1qIUAgBgMld4uMKbRhn34x9LNW7fffVRZgoBANaiFAIAYAH/i8083OdJ4/bdF5phphAAYC1KIQAAFvBfQhqf2iOg/NVUVxu3XcwUAgAsRikEAMACTVu1Nm43794zoCTevHHDuM2WFAAAq1EKAQCwwGOvZysuuYuSsv5HLXr0VIR/KfSbKQz3UAoBANZy2z0AAABCQZtnfqjnP//CuH/fmcKmlEIAgLWYKQQAwAYR0cwUAgCCA6UQAAAbcE4hACBYUAoBALCBm3MKAQBBglIIAIANIqK/27fQf0sKZgoBAFajFAIAYAO332b2/lzMFAIALEYpBADABv5bUvhzc/VRAIDFKIUAANjAfZ9S6PJ4LB4JACDUUQoBALCB/5YU/sIjm1o8EgBAqKMUAgBgg/vNFIYzUwgAsBilEAAAG9zvnEJmCgEAVqMUAgBgA3f0va8+Gh7JTCEAwFqUQgAAbHDf5aPMFAIALEYpBADABvddPso5hQAAi1EKAQCwATOFAIBgQSkEAMAGETH3PqeQfQoBAFajFAIAYIPwpk0V5rr7z3B4ZKQNowEAhDJKIQAANggLC7trCamrSROFhYXZNCIAQKgKqlJ45MgRjR07Vn369FFaWpqmT5+uS5cuBTznT3/6k55++ml1795dY8aM0enTp20aLQAA30/tUsgsIQDADkFTCi9cuKCsrCzt3r1bjz76qGJiYrR161aNHz9e1dXVkqSPPvpI77//vqqrq5WUlKS9e/dq3LhxunHjhs2jBwCg/iJq7VUY7qEUAgCsFzSl8NNPP1V5ebmGDRumVatWafPmzWrTpo0KCwt1+PBhSdLSpUslSYsXL9b69es1YMAAFRcXa8eOHTaOHACAhmGmEAAQDNx2D8Bn4MCBat68uRITEyVJTZo0UbNmzXTx4kWVlpbq8uXLKioqUlRUlLp37y5J6t+/v/bs2aODBw8qIyPDzuEDAFBvtfcqpBQCAOwQNKUwOTlZycnJxv39+/ersLBQLpdLPXr00IULFyRJ8fHxxnN8t32PAQDgJO7o2qWQPQoBANazrBSuX79eM2bMuO/jO3fuVEJCgiSpoKBAU6ZMkSRlZmaqTZs2Ki4uliS53d8N2Xe7qqrqgcdv3jxKbnd4g8ffUC1b3nsfKpiHzBsXeVqPzK1jd9YxDzcPuO+JibJ9TGb7b//5ggU5W4/M7UHujcOyUujxeAJm+WoLD79T2PLz8zV27FiVlZWpW7dumjlzpqQ7y0kl6datW8ZrampqJEmRdVhuc/VqZUOH3mAtW8aqpOQby48bysi8cZGn9cjcOsGQ9S134Eb1XncT28dkpmDIPBSQs/XI3B7kXn/3K9GWlcKMjIwHnvd34sSJgEK4ZMkSRUdHS5Jat24tSSorKzOe77vdtm1bU8YMAICZImIC/zi7PJ77PBMAAPMEzdVHKyoqNHHiRJWVlalLly5aunRpwMxi69at1aZNG1VUVCgvL0+S9OWXX0qSevfubceQAQD4Xu6++ijnFAIArBc0F5pZuXKlioqKJN05V/CNN94wHnvttdfUt29fjRo1SnPnzlVWVpbatWun/Px8JSQkaNCgQXYNGwCABnPH1N6nkJlCAID1gqYUfvbZZ8btvLw8YzZQktLT0yVJWVlZunnzplauXKnjx4+rX79++s1vfiMPf0QBAA5095YUzBQCAKwXNKVwzZo1D3xOWFiYJk6cqIkTJ1owIgAAzHX3lhR8yAkAsF7QnFMIAECoYfN6AEAwoBQCAGCTuy4046EUAgCsRykEAMAmd199lFIIALAepRAAAJtE1Dqn0MVMIQDABpRCAABsEhEbF3CfmUIAgB0ohQAA2ITlowCAYEApBADAJi63O6AIUgoBAHagFAIAYCP/vQrDPexTCACwHqUQAAAb+S8hDY9sauNIAAChilIIAICN/DewZ6YQAGAHSiEAADZq0esJSXcKYVxyF5tHAwAIRW67BwAAQCjr+b//p/huqXro8SfkadHC7uEAAEIQpRAAABs1adZMSa+Ns3sYAIAQxvJRAAAAAAhhlEIAAAAACGGUQgAAAAAIYZRCAAAAAAhhlEIAAAAACGGUQgAAAAAIYZRCAAAAAAhhlEIAAAAACGGUQgAAAAAIYZRCAAAAAAhhlEIAAAAACGGUQgAAAAAIYZRCAAAAAAhhlEIAAAAACGGUQgAAAAAIYZRCAAAAAAhhlEIAAAAACGFhXq/Xa/cgAAAAAAD2YKYQAAAAAEIYpRAAAAAAQhilEAAAAABCGKUQAAAAAEIYpRAAAAAAQhilEAAAAABCWMiVwpKSEs2YMUMDBw7UE088oVGjRumrr74yHt+5c6d+/OMfKzU1VRkZGdq1a1fA648cOaKxY8eqT58+SktL0/Tp03Xp0qW7jlNTU6P09HSlpKTo4sWLDxxXbm6uMjMzlZqaqkGDBmndunX3fF5RUZFSU1M1ZMiQ+v3gNnNq7mfOnNHUqVPVv39/9evXTxMmTNCpU6caFkIjcmqeJ0+e1Pjx4/X444/rmWee0dtvv63KysqGhWAxp2bub/bs2UpJSVFOTk7df3CLOTXn3bt3KyUl5a6vPXv2NCwIizk1d6/Xq8WLF2vQoEHq2bOnXn75ZeXl5TUsBAs4MeecnJx7/m4H+39LfJyYuXTn/cfPfvYz9evXT/369dOkSZN09uzZhoVgMadn3rdvX/Xv31+zZ89WVVVVw0JwoJDap/D27dv66U9/qsOHD6tjx46Kj4/XoUOHFBUVpU2bNqmyslIjRoxQWFiYUlNTlZeXJ6/Xqw0bNig5OVkXLlzQ8OHDVV5erl69eunq1as6c+aMUlJS9Mknn6hJkyaSpOrqav3qV7/Stm3bJEmff/652rRpc99xff3113r++edVWVmpHj16qLCwUNevX9eiRYv0zDPPGM+7dOmSsrKydPz4cXXo0EGfffaZuYE1Eqfm/u2332r48OEqLi5W165d5fV6dezYMbVs2VJbtmxRfHy8FfHdxal5VlZWaujQoSopKVHPnj1VUlKi8+fPa8iQIVqwYIEl2TWUUzP3989//lOjRo3S7du3NWXKFE2dOtW8wBrIyTkvXrxYc+fOVbdu3QK+17Rp09SlSxcTU/v+nJz7/Pnz9ec//1nx8fFKTEzUgQMH9NBDD+lvf/ub4uLizA+vHpya89atW7V169aA1+zevVtVVVXKycnR0KFDzQvte3Jq5tXV1crIyFBRUZESExMVGRmp/Px8de7cWZs3b5bb7bYkv4ZwauZlZWXKyMjQ5cuX9eSTT+rkyZMqLS3V4MGD9cc//tGS7OwWUjOFR48e1eHDh5WQkKCtW7dq9erVxi/I5s2b9eGHH6qmpkavv/66Vq1apcmTJ6umpkYrVqyQJH366acqLy/XsGHDtGrVKm3evFlt2rRRYWGhDh8+LEnas2ePMjMzjV/Suvjkk0/07bff6pVXXtHq1av11ltvSZKWLVtmPOejjz7SsGHDdPz48UZMxBpOzX337t0qLi5Wnz59tHHjRm3atMkoM7U/1bKSU/M8dOiQvvnmGw0ZMkRr1qzRqlWrJEk7duxQRUVFY0bU6JyauU9VVZVmzZql27dvN1Ii5nByzgUFBZKkX/7yl1q4cKHxFeyFUHJu7uXl5frggw/kcrn08ccfa+XKlUpPT1dERISOHDnSyCl9f07NOSMjI+B3+qWXXlJVVZUyMzODuhBKzs385MmTKioqUkJCgv76179q/fr1evLJJ3Xq1CmdOHGikVNqXE7NfOPGjbp8+bJGjhypFStWaOPGjYqKitKOHTuUn5/fyCkFp+D9qMEErVq10rx58+TxeIxPWR5++GFJ0tWrV5WbmytJ6tu3rySpf//+kqSDBw9KkgYOHKjmzZsrMTFRktSkSRM1a9ZMFy9eVGlpqSRpxYoVOn36tKZPn6558+bVaVwPOq5059PQ8PBwjR8/XosWLWpgAvZwau6PPfaY5s6dq5YtWxqveeihh4xx28WpeQ4YMEAHDx7U9evXJUmXL1+WJEVHRxuf/AUrp2buM3/+fJ05c0Zdu3Y1ykswcnLOR48elXTnQ47Vq1crKSlJo0ePVkxMTEOisJRTc9+/f79u3rypTp06qXPnzpKkP/zhDw2NwXROzdnf9evX9dZbbykmJka/+MUv6pmA9ZyaeXx8vMLCwiTJ+Nfr9SosLCzo/5vi1Mz//e9/S5KSkpIkSa1bt1ZKSooOHjyovXv3qlu3bg3Kw0lCrhRmZGQY90tLS41PGR5//HFjbbFvWaDvX9865eTkZCUnJxuv379/vwoLC+VyudSjRw9J0o9+9CNlZ2erU6dOdf5F9X3/2setqKjQN998o9jYWE2dOlXDhw9XYWGhI0uhE3Nv37692rdvbzz/9OnT+sc//mGM2y5OzTM2NlYul0vR0dF69913tWbNGnk8Hr399tuKiIiofxAWcnLmubm5Wr58udLT05WUlBT0pdCJObvdbp05c0aS9OGHHxqv2759u9auXcvvt8zJ3Xd+VXR0tH7+859r586d6ty5s2bNmqUnnniinimYz6k5x8bGGs9dv369zp07p3HjxhkfkgYzp2betm1bZWdna/78+Ro2bJixfHTChAlKSEiofxAWcnLmkoxzkisrK1VUVCRJOn/+fJ1/ficLqeWj/q5du6Zx48bpypUrSkxMVHp6unEyqe8PuO8TDt/Mhr+CggJNmTJFkpSZmWmsYx42bJg6depUr7H4jus7nv8bCN+xx4wZY9s5bI3Jabn7nD9/XuPGjVN1dbWeeuop9erVq17HMotT89y5c6cqKysVHx+vW7du1es4dnNS5jdu3NDMmTMVGxurN998s17f225OyvnatWt69tlnNXjwYG3fvl07duxQx44dVVBQoDVr1tTrWHZzUu6+4+fl5Wnfvn3q2rWr8vPzNW7cuDpddMJOTsrZx+v1asWKFXK5XBo5cmS9jhEMnJZ5TU2NJOnEiRPKy8tTZGSkMePmFE7KfPjw4YqKitLatWv18ssv64UXXtCVK1cCXvvfLqRmCn3Kyso0duxY5efnq1mzZvr973+viIgIeTweXb9+3fg/ou/fpk2bBrw+Pz9fY8eOVVlZmbp166aZM2fW+djLly/X3r17jfujRo2Sx+ORJOPN8c2bN43Hax/byZyae3FxsUaPHq1z586pXbt2mjNnTj1/cnM4NU/pzqfNJSUlGjlypLKzs9WxY0d17969Hj+9PZyW+fvvv6/Tp0/rvffec9SbCaflHBsbq4ULFwZ8n5deeklz5sxRbm6uXn311Xr89PZxWu6+x91ut9atW6fWrVtr5syZWrdunTZt2qQJEyY0IAXzOS1nn6+++kqnTp1Sr169jFkVp3Ba5rm5uZo3b54eeeQRLVmyRF6vV1lZWZo9e7bat2+vH/7whw3KwUpOyzw2NlZ/+ctf9Nvf/lbHjx/XgAEDlJSUpF27dv1XvRf/T0JuprCiokJZWVnKz89XfHy8li5daqwfbtWqlaQ7J69Ld36hJQVczejEiRMBv6RLlixRdHR0nY9/9OhR7dy50/i6cOHCfY8bExMTsGzDyZya+9dff60xY8bo3LlzSkhI0PLly43X2cmpeZaWlqq8vFxxcXFKTEzUgAED5PV6tW/fvoaHYREnZv73v/9dkvTGG28oJSXFuMrrggUL9NxzzzUwCXM5MeeKigr961//CtiuxneerO8NT7BzYu6+YhIfH6/WrVtLkvHhUrDOFDoxZ5/du3dL0l1XNg52Tsz8wIEDkqTBgwcrISFB7du31+DBgyV9979DMHNi5tKd5a1r167VgQMHlJOTo+rqaklShw4dGpiEs4RcKZw1a5by8vIUGxurZcuW6bHHHjMe861V9r1B/fLLLyXJODehoqJCEydOVFlZmbp06aKlS5fWe0nne++9p8LCQuMrMzPzvsft3bt3w3/QIOPE3G/duqVp06apuLhYbdu21YoVK4JmLb8T81y2bJmeeuop44pfN2/eNM5vc8IslhMzT0tL06BBg4wv33KbTp06KS0trSExmM6JOe/Zs0cvvviiJk+erOrqanm9Xn3++eeS7D3/uD6cmHufPn3kcrl05coV48rcJ0+elBS8b+KcmLOP73EnrOrw58TMmzVrJunOfn2+neOOHTsmSQEXvwtWTsz8iy++0KBBgzRt2jRJd/ZaPHTokKQ7F78JBSG1T+Hhw4f1k5/8RJLUrl27gEuFp6WlqVu3bnrllVcUHh5u7J0iSRs2bFBSUpIWLVqk3/3ud5Kk1NRU45NJSXrttdeMKxr5pKSkSHrw3inFxcV64YUXdOPGDfXs2VPHjh3T9evXtXjxYj399NMBz923b59Gjx7tqH0KnZr7tm3b9Prrr0uSHn30UT3yyCPGa1988UU9//zz3yeWBnNqniUlJRo+fLiuXLmiHj166Nq1azpz5ow6duyojRs3BvXyDKdmXltOTo4WLFgQtPsUOjXnGzduaMSIEcYestHR0SooKNAPfvADbdmypV6fcNvBqblL0ptvvqnVq1crLi5OXbp00f79+xUfH69t27apRYsWjZBO43FyztKdWauzZ89q165djlk+6tTM/ffMS05Olsvl0rFjxxQbG6stW7b8x+9tNydnPnToUJWXl6t37946e/asSkpKNGLECL3zzjuNE06QC6lzCrdv327cPnfunM6dO2fcb968uV599VXl5ORo/vz5ysvLU4cOHZSdnW1MefuXsLy8POMXWZLS09MbPK6EhAR98MEHeuedd5SXl6dWrVpp0qRJ93xT50ROzd3/uCdOnAjYGyg1NbXBx/2+nJpny5YttXz5cs2dO1e5ubnyeDzKzMxUdnZ2UBdCybmZO41Tc/Z4PFq8eLHmzJmjL774QpcvX9azzz6rWbNmBX0hlJybuyT9+te/VlxcnDZs2KCjR48qLS1NM2bMCLpCKDk7Z0nGRTeaN2/e4GNZzamZx8fH6+OPP9a8efO0b98+1dTUKC0tTdnZ2UFdCCVnZ75w4UK9++67ys/PV4sWLTR58mRNmjSpwcd0mpCaKQQAAAAABAq5cwoBAAAAAN+hFAIAAABACKMUAgAAAEAIoxQCAAAAQAijFAIAAABACKMUAgAAAEAIoxQCAAAAQAijFAIAAABACKMUAgAAAEAI+38yUEzhZDXcngAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from quantreo.portfolio import *\n", - "data = res.dropna().loc[\"2020-01\":\"2021-01\"]\n", - "val = res.dropna().loc[\"2021-01\":]\n", - "\n", - "X = optimization_portfolio(MV_criterion, data)\n", - "\n", - "print(np.round(X,3))\n", - "\n", - "spread = 0.00035\n", - "low_portfolio = np.multiply(low_assets,np.transpose(X)).sum(axis=1)\n", - "high_portfolio = np.multiply(high_assets,np.transpose(X)).sum(axis=1)\n", - "\n", - "\n", - "# Compute the cumulative return of the portfolio (CM)\n", - "portfolio_return_test = np.multiply(data,np.transpose(X)).sum(axis=1)\n", - "portfolio_return_MV = np.multiply(val,np.transpose(X)).sum(axis=1)\n", - "\n", - "from Backtest import *\n", - "import yfinance as yf\n", - "backtest_dynamic_portfolio(portfolio_return_MV)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 14.3.1. Optimal take profit" - ] - }, - { - "cell_type": "code", - "execution_count": 71, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Sharpe
0.5000005.104012
0.8275865.454733
1.1551725.896520
1.4827596.471672
1.8103456.460114
2.1379317.026310
2.4655176.685002
2.7931035.754480
3.1206905.696021
3.4482766.066583
3.7758626.282718
4.1034486.077587
4.4310346.211205
4.7586216.336364
5.0862076.217365
5.4137936.324012
5.7413796.456680
6.0689666.288717
6.3965526.324227
6.7241386.437504
7.0517246.517112
7.3793106.556839
7.7068976.667520
8.0344836.819133
8.3620696.970746
8.6896556.830832
9.0172416.736185
9.3448286.517918
9.6724146.600616
10.0000006.583894
\n", - "
" - ], - "text/plain": [ - " Sharpe\n", - "0.500000 5.104012\n", - "0.827586 5.454733\n", - "1.155172 5.896520\n", - "1.482759 6.471672\n", - "1.810345 6.460114\n", - "2.137931 7.026310\n", - "2.465517 6.685002\n", - "2.793103 5.754480\n", - "3.120690 5.696021\n", - "3.448276 6.066583\n", - "3.775862 6.282718\n", - "4.103448 6.077587\n", - "4.431034 6.211205\n", - "4.758621 6.336364\n", - "5.086207 6.217365\n", - "5.413793 6.324012\n", - "5.741379 6.456680\n", - "6.068966 6.288717\n", - "6.396552 6.324227\n", - "6.724138 6.437504\n", - "7.051724 6.517112\n", - "7.379310 6.556839\n", - "7.706897 6.667520\n", - "8.034483 6.819133\n", - "8.362069 6.970746\n", - "8.689655 6.830832\n", - "9.017241 6.736185\n", - "9.344828 6.517918\n", - "9.672414 6.600616\n", - "10.000000 6.583894" - ] - }, - "execution_count": 71, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "def find_best_tp(tp):\n", - " tp = tp/100\n", - " \n", - " # Create the portfolio\n", - " pf = pd.concat((low_portfolio, portfolio_return_test,high_portfolio), axis=1).dropna()-spread\n", - " pf.columns = [\"low\", \"Return\", \"high\"]\n", - "\n", - " # Apply the tp\n", - " pf[\"Return\"] = np.where(pf[\"high\"].values>tp, tp, pf[\"Return\"].values)\n", - " pf[\"Return\"] = np.where(pf[\"Return\"].values>tp, tp, pf[\"Return\"].values)\n", - " down = pf[\"Return\"].values\n", - " down = down[down<0]\n", - " \n", - " # Return sharpe raatio\n", - " return np.sqrt(252)*pf[\"Return\"].mean()/down.std()\n", - "\n", - "pd.DataFrame([find_best_tp(tp) for tp in np.linspace(0.5,10,30)], index=np.linspace(0.5,10,30), columns=[\"Sharpe\"])" - ] - }, - { - "cell_type": "code", - "execution_count": 73, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[*********************100%***********************] 1 of 1 completed\n", - "\n", - " -----------------------------------------------------------------------------\n", - " Beta: -0.103 \t Alpha: 49.44 %\t Sharpe: 1.573 \t Sortino: 2.139\n", - " -----------------------------------------------------------------------------\n", - " VaR: 26.09 %\t cVaR: 38.18 % \t VaR/cVaR: 1.463 \t drawdown: 10.1 %\n", - " -----------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAAHnCAYAAAAM6DS1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAD6QUlEQVR4nOzdd3RU5dYG8GcmM+m9916AhN4RpEsRVOxi7yjWey34Wa9e671W1GtvWLEg0hEQRXqHACGFFNJ7zySZ8v0xyck5qZNMTfL81nI55cyZNycos2fvd2+ZTqfTgYiIiIiIiAYkubUXQERERERERObDoI+IiIiIiGgAY9BHREREREQ0gDHoIyIiIiIiGsAY9BEREREREQ1gDPqIiIiIiIgGMAZ9RESDWFNTEz799FNcdtllGD16NKZMmYJly5bh5MmTkuMSEhKwdu3aTs8hfm7//v1ISEhAUlISampqOhxbXFyMoUOHYtiwYcJjN954I5588slOz93+ua7WsWLFCiQkJHT5z6xZs4RjS0pKMGzYMCxcuLDDe3V3jhtvvFF4r1tuuUW4PW3aNGi12k7X/8QTT2Dx4sU9nn/06NGdvr6r1w0fPhyzZ8/Gm2++CY1GIxw7a9asLt9j0aJFvfo5Z82ahffff7/TNYmfy83N7XCOIUOGYMyYMbjmmmuwe/du4XWtfz5ef/31DudsPc+hQ4e6vBZERNQ3CmsvgIiIrKOhoQE33XQTKioq8MADD2DkyJGoq6vDV199heuvvx4fffQRJk2a1Ofzb9++HZdddpnksc2bN0On00Emkxm5eqknn3wS//znPwEABQUFuOqqq/D+++9jxIgRAAA7Ozvh2LVr1yIsLAwZGRk4dOgQxo0bBwBYuXIlmpubAQBHjx7F/fffjzVr1sDPzw8AoFQqO7zvFVdcgTVr1uDgwYOYOHGi5DmVSoUtW7bggQceEB5btGgRVqxY0eE8cnn338G2f11NTQ22bNmCt956Cy4uLrjrrruE5+68807cfPPNHc6hUCj6/HMaQny9dTod8vPz8cYbb+Cee+7Bpk2bEBISIhz76aefYt68eUhKSurTexERUe8w6CMiGqTeeustZGVlYf369QgICBAef+WVV1BWVoYXXngB69ev71OANmnSJGzZsqVD0Ldp0yaMHTsWR48eNXb5Em5ubnBzcwMANDY2AgA8PDyEQEbs119/xcKFC7Fz50788MMPQtDn6ekpHOPh4QEA8Pb27vQcrcaNG4fw8HBs2LChQ9C3bds2NDU14ZJLLhEec3R07PZ8XWn/Oj8/P9xzzz3Yt28fNm3aJAn6nJ2du32Pvvychmh/vf39/fHqq69ixowZ2L59O2666SbhueDgYDzxxBP45Zdf+hxkEhGR4VjeSUQ0CDU1NeGXX37BlVdeKQn4Wj3zzDN4/fXX+5yRmz9/Pnbv3o3a2lrhsaKiIiQnJ2Pu3Ll9XrexTpw4gbS0NEyZMgUXXXQRtmzZgqqqqj6fTyaTYcmSJdiyZYuQPWu1du1azJw5E97e3sYuu0v29vZCBs8W2dvbA0CHNT777LPIzMzEBx98YI1lERENOgz6iIgGofPnz6O6uhojR47s9PmwsDAMGTKkz+efNGkSnJyc8OeffwqPbdq0CVOmTIG7u3ufz2usNWvWwNfXF2PHjsWCBQvQ2NiIX3/91ahzLlmyBNXV1ZK9a2VlZdizZw+uuOIKI1fcuaamJqxduxa7d+8W9gzamtZssbOzM2bPni15Li4uDvfccw8+/PBDnD171korJCIaPGz360EiIjKb6upqADBbAKZQKDBnzhxs2bIFF198MQB90Hfdddd12fTE3JqamrBx40YsXLgQcrkckZGRSExMxOrVqzvdA2eooKAgTJ48GevXr8eMGTMAAOvWrYOXlxemTZsmOfbXX3/Fxo0bO5zjpptuwsMPP9zle7R/nUqlQkREBJ544gnccMMNkmPff/99fPzxxx3OsWLFClxzzTW9+dF65fbbbxf2Jmo0Guh0OowdOxbffPNNp9nku+++G7///jueeOIJ/Pjjj2ZbFxERMegjIhqUvLy8AACVlZUGHa9QKKDT6To83hrAdbYva/78+bj//vvR0NCAyspKnDlzBnPmzMHWrVs7nLurQFCr1ZqsfHH79u2orKzE/PnzhccWLFiA//73v5KGLn1x+eWX4+mnn0ZDQwOcnJzw22+/4bLLLpM0kAGAOXPm4B//+EeH1/cUfLe+TqvV4tChQ3j11VcxZ84codOm2PXXX4+lS5d2eLy3Zaa9/b28/PLLSExMRENDAz777DPs3bsX9957r6RTa/vzv/TSS7jqqqvw6aefduimSkREpsOgj4hoEAoPD4ePjw+OHz/e6Yft/fv34/PPP8fzzz8Pf39/uLu7S/bntWrdD9faEERs8uTJcHBwwJ9//omCggJMmzYNrq6uHY5zd3dHXV1dp+usrq6WNB4xxpo1awAAt956q/BYayC7evVqo4K+uXPn4l//+hf++OMPJCQk4NSpU52OJXB1dUVERESvzy9+XVRUFNzc3PDggw/C3d1d0sQF0P8u+vIe7XX3e6mqqurwe/H39xfe99VXX8U999yDZcuW4ZdffkFkZGSn5xk2bBjuuOMOvPvuu0aVExMRUfe4p4+IaBCSy+VYsmQJfv75ZxQVFUme0+l0+Oijj5CZmSl0Y0xMTMThw4c7nOfw4cOQy+WdZnMUCgVmz56NrVu3YsuWLV1mchITE3HixIkOjVDKy8uRmZmJ4cOH9/XHFJSUlODvv//G0qVL8euvvwr/rF27FlOnTsXmzZuNauji4OCAhQsXYvPmzVi/fj3GjBmDqKgoo9fdlfnz52PRokV45513zLYnLjExEUeOHOnweEpKCurr67v9vchkMvz73/+GUqnEihUrOs0St1q+fDnCwsLw/PPPm2TdRETUEYM+IqJB6t5770VoaCiWLl2K9evX4/z58zh69CgeeOABHDx4EC+++KLQvfO2227Dli1b8OabbyIjIwOZmZn47bff8Pzzz2Pp0qVCuWh78+fPxx9//IGzZ89i5syZnR5zxRVXoKGhAQ8//DBOnDiB3Nxc7N69G/fccw9iY2OFfXKtzp49i7/++kvyT0pKSrc/69q1a6HT6XDHHXcgPj5e8s8dd9yBxsbGLofPG+qKK67Arl27sGnTpi4buKhUKpSUlHT6j1qt7tX7Pfnkk3BxccHTTz8tKcOsr6/v8j26C77au/HGG3H69Gk888wzSElJQU5ODrZt24aHH34YM2fOxNChQ7t9va+vLx577DEcPXoU3377bZfH2dvb46WXXkJeXp7BayMiot5heScR0SDl4uKCr7/+Gh9//DHeffddFBQUwM3NDSNHjsQPP/wg+VA/ZcoUfPjhh/joo4/w7bfforGxEaGhobj55psl5ZLtTZ48Gfb29pg4cSKcnZ07PcbHxwc//PAD3nrrLSxbtgzV1dXw9fXFrFmz8NBDD3XYO/bpp5/i008/lTy2ePFi/Pe//+1yHb/++itmzJghGRAuXuOQIUOwevVqySy53hoxYgRCQkKQl5eHBQsWdHrM+vXrsX79+k6f++mnn3qV1fT29sYTTzyBxx9/HF9//bWw9o8//rjTRi4AsHfvXoP39sXGxuKbb77Bu+++i5tvvhn19fUIDAzEwoULsXz5coPOccUVV2DdunV44403OnTwFBs5ciRuueUWfPbZZwadl4iIekem683XfkRERERERNSvsLyTiIiIiIhoAGPQR0RERERENIAx6CMiIiIiIhrAGPQRERERERENYAz6iIiIiIiIBrABMbKhpKTG4u/p5eWMiop6i7/vYMfrblq8ntbB624ZvM7WwetuGbzO1sHrbh287obx83Pr8jlm+vpIobCz9hIGJV530+L1tA5ed8vgdbYOXnfL4HW2Dl536+B1Nx6DPiIiIiIiogGMQR8REREREdEAxqCPiIiIiIhoAGPQR0RERERENIAx6CMiIiIiIhrAGPQRERERERENYAz6iIiIiIiIBjAGfURERERENCDodDq8997buPLKxZgzZyruuusWpKScQVlZKdas+alX58rLy8XmzRvMtFLLYtBHREREREQDwoED+/Ddd6vwyCNP4LvvfoGrqytefvl5fPjhe9i0aX2vzvXKKy9g796/zbRSy1JYewFERERERDSwfLDtFP678RjqGtUmO6eLgwKPLByFZXMSuz7GxRUA8N13qzBz5hw88sgTyM/Pw0MP3QsAuO++u7Bw4WK88cariIuLh0qlwosv/gdPP70C586lw9XVDffccz8A4OjRwwAAe3sHPPjgI3jxxedw6NABhIWFYcWKpxEfPwR79/6N119/Fc3NzZg4cTI2blyHb775CTfeeDX+9a+XMHPmHLz99us4eHAfvv76R5Ndi95ipo+IiIiIiEzqgx2nTBrwAUBdoxof7DjV7TFJScPx2GNPoqioCP/978u45prLcPjwQcyZMw9DhgzDa6+9BQBQqVS4/PKr8fLLr6OoqBBTpkzF99+vQVxcPH799WfMnTsfw4ePxPTpM/HPf67AqlWfIyMjDV988S0mTpyCF1/8F7RaLf7972cxatQYfPTRFygrKwMABAYGYdy4idi2bQu0Wi3++GMbFi5cbNJr0VsM+oiIiIiIyKSWzUqEi4NpiwpdHBRYNqvrLB8ApKenwdPTC99//wt++mk9Lr74Eqxa9Tmqq6shl8vh7OwsHDtp0gUIDAyCi4sLTpw4jtdeewnl5eVoamqCUqmEnZ0dFAoFHB0dkZGRhqKiQtx++w346afvkZGRhuLiIlRVVeHCC2ciICAQU6deKJz7kksuw969e7Bnzy5UVJRj/vyLTXoteovlnUREREREZFLL5iR2W4bZG35+bigpqTHo2NTUFLz66r/xwguvIjExCS4uLnBwcICfnx9KSopQUVEuHGtvbw8A+PzzT9DUpMJjjz2PV155AdXV1QAAOzs71NbWoaqqEhERkTh/PgePPPIEkpNPoKqqCt7ePvDw8MDff/+JhIQh2LVrp3DuqVOnw9XVFf/97yuYPPkCeHv7mORa9BUzfURERERENCAsWLAI1113I15//RVcccUi7Nu3B8899yImTJiEwsJCvPDCMx1eM2fOPOTkZOPOO2+GXC5HSUkx1Go1Jk26AMePH8EHH7yLm2++HTExcXjyycfw229rkJAwBPb29njqqX/h8OGDuOee24Usolwuh0KhwIIFi1BaWoKLL77E0pehA5lOp9NZexHGMjTyN6XefONApsPrblq8ntbB624ZvM7WwetuGbzO1sHrbh22fN3/+9+XERAQhIsumo8vv/wUf/31B9av34ba2lq8887r2L9/D37+eQMUCvMXWPr5uXX5HMs7iYiIiIiI+mDIkGH4/POP8dlnH8LPzx+PPPIEAODWW69HQ0M9HnlkhUUCvp5YfwVERERERGZWVqvCk6v3Q63R4aqJ0ZiTFAo7OXc6kXEWLboUixZd2uHxH39ca4XVdI1BHxERERENeF/uOou1h7MAABuOZSPEywV3zhqKO2YMZfBHAx7/hBMRERHRgHfyfJnkfl5FHZ77+RB+PnDOSisishwGfUREREQ04KUVVgm3ne3bit32ZxRbYzlEFsWgj4iIiIgGtCa1Blmi7o/v3TJNuJ2SX2GNJRFZFIM+IiIiIrJZTWoN1h3JwuHMkj6fI7O4GhqtfkpZqLcLxkT6Cc+l5FdCq+33E8yoxZEjhzB16jjhnzlzpuLf/34WarXaJOe/77678OyzT5jkXJ3ZuHEdpk4dh8bGRpOel0EfEREREdmsT/44g7s+/ROLX9+Is33MyolLO+MCPeHn7ghvVwcAQH2TGrnltSZZK9mOjz/+Eps2/YF///s1bN68Afv27bb2kqyK3TuJiIiIyGZtP5UHANDpgL9TC5EQ7NXrc6QWtQV98YEekMlkGBLkhT1phQCAM/kVCPfterA19d6Hp/bgjeM7UaduMtk5XRT2+MfIGbg7cUqPxzo7u8DNzQ3u7u4AACcnZ/z00/f46qvPAQDXXnsDli69ERs3rsNbb/0X8+cvxNatmxAdHYtXX30Tjo6O+O9/X8aff/4BhUKBpUtvwtKlNwIACgsLceedNyE3Nxc33HAzrr/+Ztx3311wcHBEaWkxysvLceONt2DLlk0oKirA7bcvw5IlV2L9+rX4+OP3UVVVhejoGLz00uvIz8/FAw8sw9ixE5CVlYFbb70LANDYqMKDD94DjUaDt956Dy4urkZdO2b6iIiIiMhmpRVWCrdzyvqWkUuXZPo8AABDgz2Fx1LyK0Gm9dHpPSYN+ACgTt2Ej07vMejYO++8GfPmTcfdd9+KkSNHw8PDE2+//ToefPCfeO21N/HJJ//D2bMpAID6+jrExsbjuedewokTx3DgwF789tsa7NixDStXfoB7730Ayckn0NDQAAAoKSnGU089j5kzZ+OLLz4R3jMr6xxeeOFVhIWF4+OPP8Bjjz2JsWPH45tvvgQAVFdXY/nyh/Hxx1/h3LkM7Nv3t/Da8eMn4H//+wz29vYAgGeeeQK1tbV4/fWVRgd8ADN9RERERGSjKuoaUVKjEu5nl9Z0c3TXUgsqhdtxgZ4AIMkYspmL6d01bIpZMn13Des5ywcAL730HwQHh6CkpARPPvkInnvu/6DT6fDaay9CJpOhubkZycnH4eTkDACYO3c+5HIZAKCxsRGZmecQGhqKuLgExMUlYOHCxcK5ExOHIyIiEvHxCfjttzXC48OGJSE8PAIhIaFoampCQsIQhIdH4ujRIwAAhcIOa9b8CF9fPygUCjQ1tV2biRMnIzg4BMeO6Y89dSoZzs5OsLMzTY6OQR8RERER2STxXjwAON+HTJ9Gq0VGcbVwv9NMnygoJNO4O3GKQWWYhvDzc0NJSe8CfhcXF7i5uUOtVsPOToHw8EhkZWXizjvvQUBAILZt24IRI0YhLS0VACCXS4Or6OgYbN68HmfPpiA7OwtffPEx3n33o5ZjZZ2+p/jx9uerra3FO++8gfvvfxhDhgzD33//CZ2urYGQvb2D5PjPP/8GDz98Hz777CPcf/8/evWzd4ZBHxERERHZJHFpJ6DP9Ol0OshknX/o7kxueR1UzRoAgJ+bI7xc9B+uE4I8hWPSC6vQpNbAXmFn9JrJNtx5580AADs7OyQkDMXy5Q9i1KjR+Oabr1BTU41p02YgIiJKCPraW7z4MqSknMaDDy6DUmmP66+/Cd7ePn1ej4uLC2bPvggffvg+wsLCEBAQiPz8PMTFJXR6vJ+fP+6770E888wTuPjiSxEdHdPn9wYAmU4cYvZTvY38TaEv3ziQ8XjdTYvX0zp43S2D19k6eN0tY7Bc5+d+PogPd5yWPJb86jXwcXU0+BzbknNx4/+2AwCmxAXi54fmCc+Nf/on5JbXAQD+ePISDOmhScxgue62htfdMH5+XTcjYiMXIiIiIrJJ7cs7ASCnl/v6xNnC1tLOVkMk+/oqQTRQMegjIiIiIpuU2q68E+h9B8/Ugo6dO1sNEe3rO8NmLjSAMegjIiIiIptT39gslF6KZZf2LuhLK+om6Atqy/SdZaaPBjAGfURERERkc9KLqjt9PKfM8PJOnU4nKe+MbxnX0GpoSNt9ZvpoILNK0PfFF18gISEBK1asEB7bvn07Fi5ciKSkJFx88cXYuXOnNZZGRERERDZAvJ/P2b6t4XxOLzJ9xdUNqG5oBgC4OSoR4OEkeT7G3wN2LW32c8pqUadqNmbJRDbL4kFfdnY23nzzTcljKSkpeOCBB5CTk4OkpCRkZ2dj+fLlSE3tvIUqEREREQ1saUWVwu1pQ4KE273J9IkDx7hAjw6jHhyUdojxdxfun+W8PhqgLBr06XQ6/N///R9UKpXk8VWrVkGtVuPhhx/G999/j+XLl0OtVuPrr7+25PKIiIiIyEaIG7DMGhYi3M4rr4NaozXwHJXC7fb7+VqJO3iyxJMGKosGfatWrcKhQ4cwdOhQyeNHjhwBAEyYMAEAMGnSJADA0aNHLbk8IiIiIrIR4izdiHAf+LvrSzPVWh0KKusNOsfG4znCbfEwdrHEUG/h9q+HMvuwUiLbZ7Gg7/z583jzzTcxYsQIXH/99ZLnCgsLAQCenp6Sf7c+TkRERESDR7NGi6yStkYucQEeCPdxFe4bUuJ5IKMYu1P1nyXt5DIsGh3Z6XFLxkUJ+/r+Ti3EsexSI1ZOZJssEvS1lnU2NzfjxRdfhJ2dneT51nJPpVIJAFAo9Jt1GxoaLLE8IiIiIrIhmSXVUGt1AIBgLxe4OCoR7usmPG/I2Ia3N58Qbl85IRphoqBRLMzHFZeMiRTuv/97ch9XbX6lNSocySyBTqez9lKon1H0fIjxvv32Wxw4cAD3338/4uPjkZws/Y/JwcEBDQ0NUKvVACD828nJqcO5OuPl5QyFwq7nA03Mz8+t54PI5HjdTYvX0zp43S2D19k6Bvt1Ty+sxJFzJZg/KgLuzvZme5+BfJ3/Plcs3E4K94GfnxuGhHkDB88BAEobmrr9+Y+cK8aO03kAAJkMeObaSd0e/+TVE7CmpbRzw7EcVGk0iG033qGVta57ea0K8576CfkVdXji8nF44dpJVlmHtQzkP++WYJGgb/PmzQCAlStXYuXKlcLja9aswZo1axAREYHs7GxUVVUhNDQUlZWVAIDAwECDzl9RYVhdtyn5+bmhpMTw7lFkGrzupsXraR287pbB62wdg/26V9U3YeIzP6OqoQnBXi5484YpuHBIsMnfZ6Bf54NnC4TbEd4uKCmpgZ8ogE7JKev253/u+33C7UvGRMJbqej2+BAXR0wfGow/z+RDq9Ph5R8P4pVOgiprXvfP/0xBfoV+WP3q3al4YHaiVdZhDQP9z7updBcYW6S8c8yYMZg9e7bwz7BhwwAAQUFBmD17NkaMGAEA2L9/PwDgwIEDAICxY8daYnlEREREJnEosxhVDU0AgPyKOlyz8nes+H4f6hs5/603TpwvE27HtWTcwn3aPtDmlHVd3nk2vwIbj7U1cHlg3nCD3nP5nCTh9g/70iWNZGzBr4fbmszklNYa3MGUgOqGJuxNK0ShgQ2ABiKLZPoefvhhyf1ffvkFTzzxBCZNmoRXXnkFx44dw4YNG/DGG29g69atSE5OhlKp7NDwhYiIiMiWdRYofLnrLGpUzXjvlmlWWJFtOJpVgqd/OojYAHc8eelY+Ll3vYWnoq4RO07lCfcnxPgDgGRPXnZp11mfd7a2bSOaNzwMw0K8uzxWbGpCIIaHeePk+XKomjWY/u9fcVFSGO6cNRRT4gI7zPizpNzyWhzIaCt5bdZokVdRhwhfljx2pqS6AfvTi7Avoxj704twKq8cOh3g5qjEnueWwNfNsC1kA4lFgr6ejBo1CitXrsSbb76J5ORkhIeH49FHH0VcXJy1l0ZEREQ2RKfTWfXDd0/EQV+wpzPyWzILf57Jt9aSbMKr64/hcGYJDmeW4PfkXLx67WQsGh3R6bG/HspEk1qfxRoZ7iOMWgj2coZCLoNaq0NpjQr1jc1wdlBKXptZXC0Zu/DgfMOyfAAgk8nw+OLRuOl/O6DV6aDTAVtOnseWk+cxLMQLd84cijvnj+jlT24a645kdXgso6iaQR/0/084X1YrBHj704uQUVzd6bE1qmYcOleC+SPDLbxK67NK0Hf55Zfj8ssvlzw2Z84czJkzxxrLISIiIhtXWqPCde/9jsZmDb6+Z7akk6MtEQd9/1k6BXd8shMNTWqU1apQWqOCr5ujFVdnPadyy4Xb5bWNuPOTnbh8fDRevHoCPJ0dJMf+sC9duH3NpFjhtp1cjlBvV2S1ZPlyymolg9UB4N3fk6Ft6Wx54ZAgjI7069U6ZyeG4scHL8K7W5Pxx+m2bOPpvAo8/PUevPTbUdx4QTxunpYAfw/LZYvWdDI/MLOkGkBIx4MHgSa1Bj8dOIe/zxZgf3qR8OWKIapVg7PU2qLD2YmIiIj64ts9aUg+X460wip8uzfN2svplE6nQ1phpXA/IdgT8YEewv3UgsqOLxoEylsC3vZ+OXgOs178DTvPtAVXKfkVOJ6j389nr5DjsnFRkteE+7aVeGa1a+yRW16LH/dnCPcf6mNWbkpcIL5dPgd/PX0Zbp6WACf7thxJSXUD3th0HOOe/gn/+Ho3alr2b5pTRlEVTp4v7/B4ZhfZrMHgqR8P4J/f7MGaQ5mdBnz2CjkmxPjjgXnD8c29c3D1xBjhOUv8zmyRTZR3EhEREXUnJb9CuJ1vha7dhiitUaGyXv+B0sVBgWBPZyQEeQpBTEp+BabEG9aZfCARZz9jAzwwJtIXq1uCs4LKelz37jbcPC0BzywZi9X72oK2ecPD4OUizQLGBXrirxR9Z89dZwskZXr/23YKzS3NTSbG+GNynHHXOi7QA69cOwmPLx6Nb/ek4bOdZ4QAo1mjxXd70xHi5YJ/XjzKqPfpydrDWcJtN0claloyVV2VMA4G4j2fgP6/t3HR/pgUG4CJMf4YHekHR2XbOLd96UXC7WoGfURERES2SRw4FFc3WHElXROvMS7QAzKZTNiPBgBnB2mmL62o7boMD/PG2zdNxfyR4Xj0270oq9VnAL/cdRZ/nslHtartA7m4tLPVgpFh+HTnGQDA+qPZeP7K8bCTy1Fc1YBv97RlgB804d47LxcHLJ+bhLtmDcPuc8V4+ZdDONESyKeaucNnfZNaUtp5+4yheKtl6Ly+vNP6KuoaOwTn5lSnakZey+gKhVyGdY8sRFKoNxR2XRcwuju17f2saWB5JxEREZHN0Wi1SBcFDqU2G/RVCrdbxwwkBHsKj6UM1qBPnOlrKXddMDIcO5+6BAtEmbqs0hqU1zYCAAI8nDB9aMf5hpNiA4R9kcXVDUJHyw93nIKqWQNA3/xlRievNZbSTo6rpsThmSVtI8UKq8yTdc6vqMMLaw5h7JM/Cn/2newVuHPmULT2MTpfVocmtcYs72+ox77bi2GPfY/lX+yy2HumizKckX7uGBXh223ABwBuTm0zHsVfLAwmDPqIiIjIpuWW1wkf6AGgpJP9YbagfaYPgCTTl1pQCV1Lk5HBRHxd4luCYQDwdXPCp3fOwNs3TYWbo7QL55UTYjr9IG8nl2OhKFBcfzQb5bUqfPHXWeGxh+aPMGuH1wAPZ+F2kRmCvvJaFWa/9Bve33ZKKBcGgCXjouDt6ohgTxcAgFanQ3Zp1/MKza2+SY2vd6cC0O/PFH8xY07SL1c8uj5QhJk+Bn1ERERk49rPviurVUGrtb3gSVzqFxeg/zAa4uUC15aAprK+yWZLU41xNKsE16zciqd/OoCSTn6+7j6ky2QyXD0xBjuevATTEoIAAK6OStw0Nb7L91s8JlK4veFYNj764zTqm9QAgCHBnrhoeJgRP03PAiVBX4PJA/k9qYWSYC/cxxXPLhmHF6+eCACI9ncXnrNmiWdGURXEP/pvor2H5pRa0PHLlZ64O7Zl+qoG6Z4+Bn1ERERk08RBAwBotDqU1zVaZzHdEK8zviXD135fX0p+JQaaZ38+hL9SCvDJH2cw5V9r8M6Wk2hoCcLqG5uRW67ff2UnlyHKr/NRG6Hervj+vrnY9NjF+OvpS7sdyTEpNgA+rvoSz6KqBrwnGsb+4LwRkMvNO8fR1VEpBPKqZo3Jg4hUUcbs2kmx2PPcEiybkyg0JhEHfees2MxFHHwB+rESlshkpxVVCrcNDfrE5Z2DtXsngz4iIiKyae0/XALoNKNkTdUNTSis0q/JXiFHuE/baIGB3MxFq9UhWTSDr1bVjJd/O4Ir394CVbMGaUXi/VdusFfYdXYaAIBcLsOoCF8EtZQvdkVhJ8fFo9pKPNUtWd9of3csHtP5wHdTCxDN6CvqxYw4Q6SLMsbjov1gJ5d+XI/ybwuIrTm2QRx8AUB6URXOiLrsmu19uygX7o64vLOa5Z1EREREtietk71CJTW2FfSJP6hH+7tL9qPFB7VlIwZa0JdXUSdk9cSOZJViy4mcPu2/MoS4xLPV/RcldQiQzEVc4tka7JuKeJ5jXCdBTbSfbWT62pddA9LxEubQpNZI5jPGBrh3c3QbSaaPjVyIiIiIbEv7geetSqptq5lLqji4CZAGN0OCvITbAy3oE3/wHxvlJ9mL99uRrD5lZQwhLvEE9Hsnr5gQ080rTMtczVw0Wq1k/l5ngbKkvLPdgHpL6jzo05d4/rA3HZe/tRmr96Wb9D0zS2qgacnshnq7wNlB2cMr9Nwdmelj0EdEREQ2q7i6odMPabaW6ZN27vSUPDeQO3iKS/yGBHvi9plDhfs7TuXhWHapcN+UmT6FnRyXjo0U7t9/URKUPbTtN6VAUXmnKTN94k61fm6Onc6/C/d1g13LvsX8LjKt5tas0UpKS1v3OGaX1uLmD3bgoa93Y29aER7/fh/qVKYLstJ6yIJ2xcVBKYy6aGhSo1mjNdma+gsGfURERGSzOtvPBwClNja2QZLRCpIGNwEeTvB01peX1aiakW/iPWDW1D6TFx/oiaHB+symqlmDv1IKhOd78yHdEI8uGoXbpg/B44tH48apCSY9d0/Mlenr7suDVko7OcK82/aMZlkh25dZUi3spQz2cpHssfw9OVe4rWrWSDKXxhI3uenNlwhyuUzSwXMwNnNh0EdEREQ2S1zaaa9o+9hia41cOpvR10omkwndPAEgxQLNLiyls/b5XTVTiTNw/5WhPJ0d8OLVE/HQfPN37GxPvKevwIRBvKF7IKUlnpbf19f+z/slY6K6PNaU+w7TJV8y9C5z7Cae1WfC7GN/waCPiIiIbJa4icuYSD/hti3Nu2toUiO7TJ9tkctkiPbv+GG0fYnnQKDT6SQDuduCvsgOx/Zm/1V/IOneacJMn6Ez6KLEs/oMDKqq6puwK6UAjS3lo8ZoH/RNGxIkKXmNMdNYCUMyoV1xFzVzqWamj4iIiMh2iD/kTYkLFG7bUnnnueJqYUh1uI+rME9NbMgAHNtQVqtCRcu8RGd7BUK89KMWYgM8kBjiJTnW1KWd1hboaZ7uneIvObprfBMtmne4N60I2aU13e4VPZ5ThsnP/YKrV27Fo9/tNX6d4uArwANKOzk+v3sWbrkwAT/cPxfL5iQKz5uqvFOj1Xb6JYOh3ETNXGoGYTMXBn1ERERks8QfLi+Ibwv6bKmRS3elna0Sgj2F28nnyzs9pr9JFf3csYEekMnaSizbZ/tM2cTFFvi7t2W1iqvqodUa35ynfafabss7RaWyO07nYdKzv2DMkz9i2Wd/4ou/UnAmr0JY06Fzxbj6nS1CgL7uSBbURjYyEXerbS1dHhXhi5evmYQLhwRLyk8zOhm50hfiJje+XTS56c5gz/QprL0AIiIios5U1jcKZZwOCjlGRfoKz5XWqKDV6iy+l6sz0iYunp0ekxTqA4VcBrVWh1N5FcgprUG4r1unx/YX7bM9YovHROKVdUfbnh9gQZ+TvQKezvaorG+CWqtDeZ0Kvm5OPb+wG+JOtW6OSkkJaXtjI/3g4WSPKlHwUljVgLWHs4RZeZ7O9hgX7Y89qYWoF3X4VDVrkFFUhYRgr/anNYhWq5Psrevsd9u+vFOn00m+FOgLQ75c6Y54Vl819/QRERER2Qbxh7yYAA842yvg0fLBTaPVoaK+0VpLk0jrZkZfKw9ne0wfGizc/9XMQ6wtQdw+v32wG+3vjqQwb+F+Uqg3BhpxB8/CSuMzz+2Dmu6CJDcne2z7v8V44pIxmDksRBiZIFZZ34RtybmSgK/Vydy+Z5vzKtoybt6uDpJ5ia383Z2ENdWomk1Sji3+76wvMx/dxY1cBmGmj0EfERER2aS0Tjr1+bq3fcC0lQ6eqQZmIC4b19bh8NdDmWZdkyWk9bC/6rVrJ2F8tB/umZ2IkeE+llyaRZi6mUuqZAZdz5msUG9XPDBvOL5dPgcp/7kWW1cswvNXjsfFoyLg6yYNxAI8nHCZaK5hVyXGOp2ux0YvqQZ8ySGTyaQlnibY12dok5uuuIlGNlQNwqCP5Z1ERERkk6T7mzwBAH5uTsgo0n+ALKlWYUhwJy+0ILVGK+lOGNvNh9H5I8LhqLSDqlmDM/kVOJtf0ecSO1vQU7nd6Eg//PbPhZZckkWJxzYUmiDoM7SJS2fs5HIMD/PB8DAf3DlzGHQ6Hc4VV2NfehGKqhtw7aRYHMsuFTLMyV1k+h5ctRs/7s9AXKAH5iaFYk5SKMZH+0MhGnyfVtBzOTOgL/E8kVMGQF/iOSk2oMtjzxVX44u/UjBjaAhmJYZ0ekxPXzL0ZLBn+hj0ERERkU3q7Jt9P1EGwxaauWSX1qC5pSlGoIeTpFlEe66OSsxNCsW6o9kA9CWej/fToK+moUmYT6e0kyOyn+9P7AvpgHbTl3caQyaTISbAAzGiTJxG1Gwm+Xx5h312xVUN+HF/hrCWtMIqvL/tFDyc7DErMQRzkkIxc1iIwcFXtIFjG84VV+OS1zehrFaFT3aewcd3zMDFo6SzHnvT5KYrkj197N5JREREA5Fao8WOU3nIr6iz9lIM1tmHSz9R10RbCPoMaeIi1r7Es7s2+7ZM3Do/ys9NkgkaLMRz6UyS6TNh0NeZUG8XeDrrA5+qhiacL6uVPC8u2xSramjCmkOZWP7FLiQ9/gN+OXjOoHWKg770Ljp4Flc14Lp3f0dZrX7Pn04HLP/8L+xPL5IcV1hZL2lyI86yGmqwZ/oG33+hREREg9CTq/fj+ve3YeaLa1HbDzrX1TepkVuu/1Aql8kQ5af/ACneq1Rabf1ZfanddLDszKzEUGFeWFZpDY63lL/1N9IsrKf1FmJFAZ7iTJ9xQV/7TrVhPq5Gna8zMplM0lCnfTMX8Z7CyXEBuGlqPII9pcGVVqcTmrgA3f/ue8r01TQ04fr/bUNOu+CzUa3FLR/ukAShp0Vr7anJTVfc2b2TiIiIBrLM4mp8vTsNgL6s6eR52w80MoqqhIHnUX5ucGgZeO5vc5m+SuG2IdkZR6UdFowMF+6v6acNXST7z4IG1jgGQ0n39Bn3Z/GEKPiPCfCAndw8H9HFHVXbN3MR/05nJ4bi1esm49C/r8S2Jxbj8cWjMTbKD+JYK9jLpUNQKCYe25BVUgONtm02YGOzBrd/vFNYg51chpeunih8qVNZ34RbPtghlE6n5FUIr+1rFlQc9DHTR0RERAPOu78nQysqI6xr7NjC3daIM0ni5iji8s5iG8j0SUvyPA16jbjE87fDmZIPw/1BY7MGBzLayu8G2gw+Q5mye+dHO04Lt8dG+Rl1ru4khbZ1UW3fzKWz8lKZTIbEUG88NH8E1j+yECdevhpv33gB7pmdiK+WzepxrETrlzTNGi1yy/Wl5VqtDg+u+hu7zhYIx7523WTcOn0IVt0zG872+pYjmSU1OJpVCgBIyRUHfZ59+dHhLhprwT19RERENKDkltdi9b50yWM1Ktv/ljutqFK4LQ4qbKmRi765RO/3YU1LCIK3qwMAfYZof0axWdZnDpnF1Vj8+kYcPFciPDYsZODN4DOEJOtcrYJa07fg/eT5Mmw/lQcAkMmAO2cOM8n6OjM8XJzpk2b8OxuR0p6vmxOunhSLZy4fh0QDZi9KxjYU6Ye0P/vLQWGAPAA8vng0lk6JAwCMivDFotFtTVyOZuv/nJ3Jk5Z39oW4kUt/+H+gqTHoIyIiGsDe/z0Zaq20WUhNP/iWu6sMmq9b2wftUivP6curqBMGX3u5OHSYjdYVhZ0ci0dHCvf7y8y+tYczcdGr63FSVBa4dEocEgxoYDMQ2SvshMHkWp2uzwPI3958Uri9eHSkWTOnMf7ucGrJpBVWNQizLs21p7D9vr73t53CJ3+cER679cIEPDhvuOQ1oyN9hdvHWjN9ovLOrgLSnrizeycRERENRMVVDfh2T1qHx+sabf8DT1dZB3F5Z2mNClqt9bpfitcYG9C75hLiEs/1R7OFvUu2qKFJjUe/3Ytln/0lNAFS2snxwpUT8N+lk628OusK8jRuVt/ZgkpsOJYt3H+gXQBkanZyOYaFtI0JaQ3gxX+WTbmnULyv74tdKfj3r4eF+4tGR+CFqyZ0+O9mVERb0Hc0uxSV9Y0obBkPYkxA6uKggLzlvRqa1Db935w5MOgjIiIaoD7YfgqN6o4fbGpsvHNds0aLTPHAc1FXTEelndD9Uq3VobK+0eLra2VMi/0J0f5CE4yKukb8dSbfpGszldTCSiz8zwZ8vTtVeCzC1xW//XMB7pg5tE9dFAcSY/f1rdzSluW7aHioQSWTxhJ38Gzd12eucRExAdLyzlZT4gKx8uZpnQaXw0K8YK/QP55dWosDovJnYwJSmUwm/L8DGHzNXBj0ERERDUDltSp8ueuscH9yXIBw29ZHNmSWVAslqcFeLnAVfVAD2u+lsl6JpzEflOVyGS4dK5rZd9j2SjxX70vH/Fc3ICW/UnjskjGR2LpisSQbM5gFGNHBM6ukWtK99cF5I0y2ru4MD+u4r0/chTbehCM4ov07/neRGOKFz++eCceWjrzt2SvsJIFp68B4wPiA1E08q8/G/z9oagz6iIiIBqBPdp4R9psNDfbC5eOjhedsPejrKZjylTRzsV4Hz96Oa2hPXOK56XgOGppso6tqnaoZD3z1Nx5ctVtYk6PSDq9dNxkf3HahZG/UYCcZ21DZu0zfyq1tXXUvHBKEMWbs2imWFNbWwfNIVmmfGxIZIsLXVSipBIAwH1d8s3xOj3+GRou+VNh68nzb2gyYhdkd6b4+ZvqIiIioH6tuaMKnO9uaJTwwbzjcHcWd6/p30OdnI7P6UiX7Dj17/frhYd5Co4u6RjW2J+eaamlGefqnA5LsSmyABzY+ejFunBo/6Ms52wvyagv6ejP/Mq+iTnKNH5xvmSwfAAwN9oR7S8Yrr6IOhzJLJH+WTRn02SvsMDsxBADg7eqA75bPkWRHuzJK1MylSVSiHm9k0yA3ydgGBn1ERETUj33x11mhO120vzsWj4mAi6NCeL5fZfo6+WZfPLaht9kVUymtUaGiTr+f0MlegRAvl16fQyaT4TJRiecaC5R4bkvOxZVvb+kwxqOVVqvDr6J2+ldPjMGWxy/GUFHzD2ozLSFIuL3zTD5KDfwS4n+/JwuNRCbE+GNybEAPrzAde4UdFo+JFO6v+jsVueW1AAC5TIYoP/cuXtk3794yDZ/eOQN/P7MEMQZm6kZ3UT5sbEA6mDt4MugjIiIaQOobm/HhjlPC/QcuGg47uRxuokyfrQd9qeL9RZ18s+8ryvS9tPYIVny/z+LB3x+n84TbsQHukMv7lgETl3huT841a3OJ9KIq3PHxH9idWoiHv94jfNAXy6uoE0o6vVwc8PZNU+HsoOxwHOlF+LphfLQ/AECj1Un26HWlpLoB34i66j44b4TFM6hXTogRbv984BxaqkwR6ecGhy722vWVu5M9Fo6KgJeLg8GvifJzh0e7ElBTBKSSWX3M9BEREVF/tWp3Kspr9RmoUG8XXD5Bv5fPVZzps+GRDVqtDuk9lJpNSwgS9gmptTp8uesspvxrDQ6es8yQc61Wh3dEXRcXjAzv87niAj2EphWNai02nTjfwyv6RqvV4Z/f7BG6uWp1Ovywt2O2z1x7uwayqya2BVA/HTjX4/Ef7jgNVbMGADAi3AczhwWbbW1dmRDtj1BvfXa6dV8hYDu/c7lchpERPpLHTBGQejiJyztt9/+D5sCgj4iIaIBQNWvwwba2LN99c5OgtNP/VS/O9NnycPa8ijrhA7G3q4Mw/FpsfLQ/fv3HfEyI8Rcea2hSS4Y+m9PGY9lIL9IHR26OStw2fahR57t0bKRw21yD2lftTpW0vgeA7/amQ6OVjvRINbI5zWC0eEyEMGLgRE6Z5Bq2V1HXiC/+ShHuPzTf8lk+QB9UXTEhusPjtvQ7b98h1tgmLoA001etGlyZPkXPhxAREVF/8MO+dKFtfICHE66ZHCc8Jx57YK3h7Lnltbjrkz+RWVINFwclXB31/7g4KPS3HZSSJjPdfcgbH+2PXx+ej3VHsnH3Z38CAP48kw+1RguFnfm+09bpdHhblOW75cIh8HA2rpvlpWOj8OLaIwCAv1LyUVqjknQoNVZ+RZ1kKHarvIo6/HmmALNaGm0A0kyfKVv3D2Sezg6YmxQmDFn/af85/N+lYzo99tOdZ1DXqC+fTQjyxLzhYRZbZ3tXTojB25tPSh6Ls6Hfeft9fXFBxgd97izvJCIiov6sWaPFe78nC/eXzU6UzMESB301qmboRCVdpqbWaPH17lRsbPkQ3OrjP87gaHYpKuubkFdRh7MFlTicWYK/Ugqw8VgOVu/PwKbjOcLxPX0AlclkWDwmAkEtQ86rGppwOLPE5D+P2PZTecJAa0elHe6aNczoc4b5uGJ8tL5dv0arw4ajWUafs5VOp8MTP+wT9nHGBLjjlgsThOe/Fe0tA1je2VdXirJmvxw8B622439fNQ1Nkmz0g/OH93kvqCnEBnhgVLsSyngb+p2PjmwX9JkgIJV277TdigdzYNBHREQ0AKw5eA7ny/SNObxcHHDT1HjJ80o7uRAEarQ6NLSUUJrDO1tP4tFv9+L2j3diT1qh8PjplmDJUDMM2Oskk8kkmartp/K6Odo4Op0Ob20+Idy/aVqCyTJyl0kGtWeZ5JwA8NuRLGw92TYK4r9Lp+CWC4cI97ecyBE6Tup0OqFsFWDQ1xuzEkOERiV5FXXYl17U4Zgvdp1FVUt2KdrfHZeIOmhai7ihC6APBG1FgIczgj3bxjuYIiBlpo+IiIj6LY1WK2kscvesYZ12XHQRPVZnpg6eao0WX/51Vri/K6VAuJ0mCih+fnAetj2xGL8+PB9f3zsbH942Ha9fPwX/umI8Hl00Cp/eOQMLDWyQMjsxVLi945T5Zt3tTi0UMon2CjnumZ1osnMvHhMpNKfZn1GE/Io6o89ZXqvCk6sPCPdvnpaASbEBSAjyFDKLaq1OmBdXVts2hsK5j2MoBit7hZ1kb+b6dtna+iY1Ptx+Wrh/39wk2Mmt/zH80rFRwpdBQ4O9JBUBtuCB+SOgtJNj/ugIjAz36fkFPXATN3Kx8S7GpsY9fURERP3chqM5yCiuBgC4Oylx6/QhnR7n5qhEWa0KgL7EUzzk3FQ2Hc1GcXXbrLKUggoAQFV9E4pa9hs6KOSYGOtvsg+90xKCoLSTo1mjxam8ChRU1iHI0/QBizjLd+2kWAR69jxk2lB+7k6YmhCIv1IKoNMBvx3OwrI5xgWVz/1ySPh9B3s640nRPrOlU+Jw8Jw+gP1mTxqWzU5EakFbUB4b6MFB7L00a1gIvmj5wiO9qFry3De7U4XfRYiXS6dNVKzB180RXy6bhU3Hc3DDBfE9v8DCbp6WgGsmxSIs2BMlJTVGn4+ZPiIiIuq3Pv2zbZ/QbdOHSj7YiIm/xTfXrL7PdpyW3E/JqwQApIk6Gkb7e5g0y+HqqMREUSfPP07nm+zcrQ6eK8buVH2pqp1chuVzk0z+HuISz9+OZBl1rj9O5wkZPAB45dpJks6Fl4yJFP48ZBRVIzm3XPI7sqW9Xf1FpGiGXGZJW9DX2KzB+6L9tvddlAR7hWln4RnjwiHBePmaSUhsGR1iaxxNODfQnXv6iIiIqD/SanVIPt+2V+7maQldHmvuoK+oqh4b2wUr2WU1qG9sNnuDEHGJ53YzlHi+LcryXTE+GuG+biZ/j4tGtHVyTCmo7HOznTpVMx77bq9w/9KxkZjbrkuks4MSc5Partmm4zntfkeefXrvwSzcxxWtydG8ijo0tuyb3XkmT+iq6+/uhGtFXXXJsiTD2QfZyAYGfURERP1YfmUd6pv0LeC9XBy6LTkUd64zx4D2H/dnQNOua6FOB6QWVrUbBWD6oG9WUlszl79SCtCkNl2jmhM5ZUKDGJkMuH/ecJOdW8zbxQFO9vqdNw1N6j5nIl5dfxS55fo9gV4uDvj3VRM6PU68Z3LT8RzJnks2cek9B6WdsA9SpwNyWhornc6rEI65ZGykSTNX1DviKghm+oiIiKjfEO/D6umDumRsg4k/8Oh0Ony/N73T9zqTV9EuoPA06XsD+pl+od76D9y1qmYcOme60Q3iJjmLR0earcOhTCaTdCssqOx9M5cjmSX4ZGdbue9zV4yHr1vnezdnDguBQ8tQ8ZT8SmGPH8Cgr68iRRng7FL9HjTxFx4JQZ6WXhKJuDgohIZJDU1qNGu0Vl6R5TDoIyIi6sfSiiqF270J+mpNVNqk0+mQWliJt7ecFJrJuDoqcYuozPRMfgVSCwxfZ1/IZDKzlHieza8Qhm4D+tlq5hQoCfrqe/XaJrUG//x2D1qrQqcPDcZV3TQMcXFUYvrQtrEYDS0ZY6WdXBK8kOE629cn+cLDhkYiDEYymQzu4g6eg6iZC7t3EhER9WPSsknPbo91dRCXd6r79H46nQ6ZJTXYnVqIPakF2JNWJOnWCegbkogHKx/LLsP5cn2pm1wmQ7S/O8xhdmIIvtyl7564/VQenl4yzuhzvrO1rQHHvOFhGBZi3mYXgR5tQV9hL4O+d7cmIyW/EoB+5MJ/rpvcYwfOhSMjJHP8AP0MOYUd8wJ9EeXXFixnldRAq9UhnQPvbYqbkz0q6/XBXk1DE3xcTTNr09Yx6CMiIurHetMgxVX0DXdvmhicL6vF7tSClkCvEPndBCMOSjvcMWOIpDvhocxiIfsU4esKBzPtabogPhAOCjka1VqcLahEbnktQr1d+3y+rJJq/HooU7hv7iwfAAR59S3Td7agUjJSYsUloxHm0/PPPnd4KOzkMsleTAYmfRfRLujLLa+FqqWhi4+rI7wHSYBhywZrB08GfURERP2UTqfrXdAnzvSpus/0ldao8PrGY9h+Kg/nWxpSdMXT2R6T4gJwQVwQls4cAmfIoNFq4ai0g6pZA3ETyp6ykcZwdlBiUlwg/jyjH9mw41Qebuqmm2lPVm5NhrZl8RcOCcLoSD+TrLM7QR69D/q0Wh0e+WaPsD9pTKQvbutiVmN73q6OmBQbIIyjABj0GUOS6SutkWbig3hdbcFg7eDJoI+IiKifKqtVoaKuEYC+nK+1c2BX3Hqxp++VdUfwze60Tp9zdVRicmwApsQH4oL4QAwL8RLm7vn5uaGkpAZ2cjkSgjxxPKdM8lpzBxSzE0NMEvTlVdRJ5tw9OH+ESdbXE/GevsIqw4K+L/5KwaFMfRMWpZ0cr18/pVdzEBeMDGfQZyLivZA5pTU4k9/WuZP7+WyDl4uDcDuzpAYXxAdZcTWWw4JtIiKifiq1XZavp/1b4qCvpoc5fYcz2zo5OtsrMGNoMJ68dAw2ProQZ167Fl/dMxvLZidieJhPlwHGkGDPDo+ZP+hra+ay62yBMCutt/73e7KQOZsQ44/JsQEmWV9PgkWBuyF7+nLLa/HSb0eE+/dfNBxDgr169Z7zRaMbACAuwLNXr6c2zg5K+Lvru6WqtTrhCwiAsw9txYQYf+H2jpZRLIMBgz4iIqJ+qrcDz10MHM6u1mhxrqUTJwAcfvFKfHffXNx30XCMjvQzuMlHZ8GHuYO+aH93IdtS36TG/oyiXp+jpLoB3+xpy3I+NH9EjwG1qYgbueQbMLLhqdUHUNfSlCcu0AMP9GGGYIiXC+a0DGoP93FlGaKRIkUlnvvS2/78MYNqG8RfDP2Vkm/SmZ62jEEfERFRPyUN+jx7PN7NwKAvu7QGTWp9livQwwmezg5dHtudoZ0EfeaacSc2O7FtUPv2PnyT/93edKH5xohwH8wQjTUwNz93R9jJ9QFmeW1jt5nKmoYmbDl5HoB+aPwb10/pc5Oc92+Zhk/unIF1/1woacJDvSfe16dmgxybExvgjghffZOjukY1DmQUW3lFlsGgj4iIqJ9KK6wUbhvygdLVwKCvt8FkV9qXdwZ7OkuaKJjLLNE3+b0t39Jqdfhmd6pw/86ZQy2W5QMAO7lcKA8EgKJu9vW1H9cxLtq/y2N74uZkj4tHRcDfo/NB7mS4iE5mHLo6KhEk2q9J1mOumZ62jkEfERFRP9Xb8k6Dg74i08wV83d3kjRNiLVQpmNyXAAcWzJe6UVVyC6tMfi1f6bkI6elW6mnsz0WjY40xxK7FWTggPbe/v7JMqL8Os6hjAvoec8tWc4sUTXAtuTBsa+PQR8REVE/VNPQJAQESju5pGtgVyRBX6Nhmb54I4IJmUwmKfG0VCMLJ3sFLogPFO73Jtv3tSjLd9XEGCF4tKRAA4O+1F5meskyxHv6WvH3Y1umxAX2+Yuh/opBHxERUT+ULsrGRfu7G9RcRTynr0bVDJ14gJ6ItGzUs89rBIDRkb7C7RHhPkadqzf6Ur5VVFWPLSfOC/dvmBpv8nUZQjyrr7sOnu3LO8k2MOizfU72CkxNaBvVMBi6eDLoIyIi6of6UtqnsJPDyV4/olenA+obOw5o7+3A954smz0Ml42NxM3TErBkXJRR5+oNcfnW7tRCNDR1P4weAL7fmw5NS+ONiTH+VgukgkRjGwoM3NPHoMJ2eDo7SMqaAf5+bJG04dPA39fHoI+IiKgf6usHflcHhXC7sxLP/Mp6YQSAp7M9fN0cjVgl4OvmhP/dNh2vXDsJSgNHPZhChK8bYgL0e6tUzRrsTet+dINWq5OMabhxat+GupuCeGxDQUXnYxtUTWph76FMps/2ku1oX27NTKztmTVM+sVQXQ+zS/s7Bn1ERET9UF/3c4m7Z7YOaK+oa4RGqx/R0L4jaH9uPjFb0sWz+2/y92cU4XxLEOXl4oCLR0eYdW3dETdyKewi05daUAltS3luuI+rkMEl2yAu8XRQyBHeMiKAbEe4r5vw/05VswbzXlsvmatYq2rG2YJK7DiVh1V/p+KVdUdw/5e7cPU7W/HCmkPQajsvj7dV/D8EERFRP9TX/Vwu4kyfqhmr96XjH9/sQaSfGzY8crHJxjXYgtmJIfhox2kAwI7T3e/ZOZVbIdy+aHioVRq4tDKke+eZ3HLhdn//PQ1E4qAv2t8DdnLmWWzRrRcOwf+t3g8AyCiqxpI3NyM+0APF1Q2orG/q8nW7zhZgSnyg5IslW8c/gURERP2MqlmD7NK+lfa5ObZl+mpVzfjir7PQaHXIKKrGt3tSB9Q+sYkxAXBuyYBlltTgXHF1l8eKM6dDgjoOlbckcffOoqqGTjMKZ/LaglRjOqySeYj/22k/r5Jsxy0XJuCVayZKOhunFlZ1G/ABgI+rI4YEW/f/E73FTB8REVE/k1lc3efSPlfHtmOrG5okM/m+3HUW/u5tAUd/D/oclHaYlhCELSf1HTm3n8pFtP+wTo+VBLtB1v25newV8HS2R2V9E5o1WpTVquDnLh2aniLKTPb339NAtHBkBGYMzUBueR2Wz02y9nKoCzKZDDdfOARzh4fhiR/2YevJtjJwe4UcIV4uCPFyQbCXC0K89bdDvF0wNtJPUirfHzDoIyIi6mdSjRip4CrK9KUXVUuGtGeX1goZRGBgNJ+YlRgiBH07TuXhzpk9B3228HMHejoL2YaCyvqOQV8eyzttmYPSDt/dN9fayyADBXu54Iu7ZyGzpAZV9Y0I9XaFj6sj5PL+u6e5PZZ3EhER9TOSrFRA77I8bqIypqPZJV0e52SvQIhodEB/JR7dsDetEPWddCwtq1WhrFYFwHZ+7iDPtjW0b+ai1miRWlAp3Gemj8h4MpkM0f7uGB3pBz93pwEV8AEM+oiIiPodSVaql6WI4r0rR7NKuzwuNsB9QHzoCfV2RUKQJwCgUa3F7tTCDseIr2eMjfzc3TVzyS6tQZNa3201wMMJ7v2szIyILI9BHxERUT9jTIdNcdBXVNUg3Ja3G80wkEoGxUOYf0/uOLrBmMypuUhm9VVKZ/XZWikqEdk+Bn1ERET9iFqjxbnivnfYdHVQdvr40ilxkvsDqWRw7vAw4fam4zlQa7SS58WzCeNbsoLWFuQlmtXXLtMnbr4zkH5PRGQ+DPqIiIj6kZyyWjQaUdon3tMndu+cRASL9rINpDEA46P9EOChb4RSWqPC3rQiyfOpNjimIsij6/LOgTRWg4gsg0EfERFRPyLOSvWlFNGlk6DPUWmHCF83PLtkHBRyGYYEe2LmsJBOXt0/2cnlWDQ6Urj/25EsyfO2GEQFdrOnT/JnwEbWS0S2jUEfERFRPyJt4uLZ69d3lumLDfSAXC7DJWMjkfr6Umx7YnGvZv/1B5eMiRRubziWLZR41qmakV+h3zOnkMsQ5Wf4oHtzEmdd88rroGuZy6jT6drtQfS09NKIqB9i0EdERNSPGJuV6izoE2cMnewVsJMPvI8H46L8hI6YFXWNQhdP8f64SD93KO1s42f3cnGAl4sDAKC+SS1k+/Ir61HXqAYAeDrbw8/d0WprJKL+wzb+z0ZEREQGMTbo66y8czCUCMrlMiwaHSHcby3xTDVi/IW5xQa0ZR0ziqoBdCztlMmsP16CiGwfgz4iIqJ+QqfTSTs39qG0r9NM3yBp+y8u8dx0PAfNGq1N74+L8W9bT3rL792YcR1ENHgx6CMiIuonCirrUatqBtD30j7XToI+W8twmcvYKD+EtOyVq6hrxK6UApveHxcb2EPQZyMzBYnI9jHoIyIi6ifal3b2pbTPxUHaoMWWmpeYm0wmw+IxbSWe/7d6H45nlwr3bS/T1/Z7aQ36Ugsqhcdsbb1EZLsY9BEREfUTpijts5PL4SzqzGlLzUss4bopcVDI9cFydmktCqsahOfEe+hsgTTT17Knr8i47q1ENDgNnv/LExFRv1KnakZBZZ21l2FTjJ3R18rNqa3Ec7Bli+IDPfHpXTPhoJB+BArzcYWzQ+eD660lwtdNCFDzK+pwvqwW5bWNAABnB4VQqkpE1BOLBn1FRUV4+OGHMXbsWEyePBmPPPIIysvLhee3b9+OhQsXIikpCRdffDF27txpyeUREZGNyKuowwXPr8G4p37Gr4cyrb0cm5FqoiHi4n19gy3oA4CLhofh2/vmSpra2OL+OKWdHBF+bsL9LSfOC7cTgr0gl7NzJxEZxmJBn06nw913342NGzciJCQEHh4eWLduHe68805otVqkpKTggQceQE5ODpKSkpCdnY3ly5cjNTXVUkskIiIb8fbmEyiqaoBWp2PQJ2LsYPZWrqKMVvwg7QA5JS4QPz80DxG+rnBU2uG2GUOsvaROxYo6eG46niPcHhLiZY3lEFE/ZbGg79y5c8jJyUFiYiLWrl2LtWvXwtXVFcnJyTh37hxWrVoFtVqNhx9+GN9//z2WL18OtVqNr7/+2lJLJCIiG1BQWYcf9qUL9yvrG624GttRXqtCWa0KgH6AujGlfYmh3gD0TVzGR/uZZH390fAwH+x59nKceu1azE4MtfZyOiXe17cvvUi4zaCPiHpD0fMhphETE4PDhw+jrq4OMpkMVVVVaGpqgp2dHdzc3HDkyBEAwIQJEwAAkyZNAgAcPXrUUkskIiIb8L9tp9Ck1gr3qxuarbga2yHO8sUEuBtV2vd/l45BmI8rRob7INzXrecXDGByuUzS2MbWiJvLaHU64fawlsCdiMgQFv2/nEwmg6urKz755BN8/PHH0Gg0ePTRRxEQEIDCwkIAgKenp+TfrY8TEdHAV1rTgFV/S8v6q5jpA4B2Q9mN23/m4+qIh+aPMHZJZAExXfyumekjot6wyldbu3btQmVlJTw82mYMqVT6khWlUr/PQKHQL62hoaHzk4h4eTlDobAz02q75uc3uL8dtRZed9Pi9bQOXvfOvfV7MlTNGslj1armPl+vgXSdz1fWC7dHxfjb9M9my2vrbyY6dvyoprCTIzbQA0orfPYh/vm2Fl5341gl6Fu5ciXq6+tx66234uWXX0ZQUBAcHBzQ0NAAtVoNAMK/nZycejxfRUV9j8eYmp+fG0pKaiz+voMdr7tp8XpaB6975yrrG/He5hMdHq9VNaOgsAqKXs6SG2jX+URmiXA7xN3JZn+2gXbdbYG3q4MwqgEAIn3doFTY8TpbAf98Wwevu2G6C4wtOrKhuroaZWVlcHd3R2BgIObOnQsA2LdvH/z9/QEAVVX68pXKykoAQGBgoCWXSEREVvLZzhTUqvT79+ICPeAumiVX1dBkrWXZjDQTjWug/ie2XYknf/9E1FsWC/q2bduG8ePHY/ny5dDpdNDpdDh58iQAwMfHByNG6PcW7N+/HwBw4MABAMDYsWMttUQiIrKSWlUzPtl5Rrj/wLzh8HR2EO5X1w/uoK9O1Yy8Cv2geoVchig/9x5eQQNJ+6AvPohBHxH1jsXKOy+44AJER0fj6NGjuOSSSyCXy5GSkgJvb29cffXVyM/Px4YNG/DGG29g69atSE5OhlKpxPXXX2+pJRIRkZV8tessKur05WsRvq64bGwUPtxxGijTPz/YM33pxdXC7Ug/dyh7WepK/Zu4gycAxAV4WmchRNRvWexvDScnJ3z++edYtGgRSktLUVhYiLlz52L16tXw9/fHqFGjsHLlSkRERCA5ORnh4eFYuXIl4uLiLLVEIiKygoYmNT7Yfkq4f/9Fw6Gwk8PDyV54rMqCmb7X1h/F9Bd+xfqj2RZ7z56kFlQKt1naN/i07+DJPwNE1FsWbeQSGBiI119/vcvn58yZgzlz5lhwRUREZG3f7UlDSY2+g3OwpzOumhgDAPBwbgv6qi2U6cstr8Wbm/TNZO7/chdGhHnbxBw78X4+lvYNPu3LO9tn/oiIesL6ECIispomtQbv/Z4s3L93bhLsW9rQizN9lRbK9J3JqxBuq5o1WPHDfuhEA7GtJa2oUrjN0r7BJ8LXVQj8psYHwtlB2cMriIikrDKygYiICAB+OnAO+S3z53zdHLF0SltJv7uT5TN94owaAPxxOg+/Hs7EknHRFnn/rrBz5+BmJ5fjpwcvwt60IkwfGmzt5RBRP8RMHxERWYVao8XKLSeF+8tmJ8LJvu27SHF5p6X29LUP+gDgmZ8OCk1mrKFJrUGWaD4VS/sGpwAPZ1w2LgpeLg49H0xE1A6DPiIisoq1h7OQVaoPZjyd7XHztATJ89JGLpYJulILK4XbrR0yS2tUuPytzfhy11mLZRzFMourodHqS0xDvV1Y2kdERL3GoI+IiCxOq9XhnS0nhPt3zBgKV0dpMONu4UYuOp1Okul74crxwu2U/Eqs+H4fRj6xGg9+9Tf2pxdZbK+fpIlLoKdF3pOIiAYW7ukjIiKL23QiB6ktwYyroxK3zRja4RjxcPaqhmazr6moqgE1Kv37uDkqcdO0BJTXNeLtzSfQqNYC0Dd3Wb0/A6v3ZyAmwB3XT4nDVRNj4OvmZLZ1pRZxPx8RERmHmT4iIrIonU6Htza3ZflumZbQ6T4ldwuXd7ZvliKTyfDwgpE4+tLVePGqCRgW4iU5PqOoGs+vOYzR//cj7vh4JzKKOu4HNIV0NnEhIiIjMegjIiKL2pNWiOTz5QAAR6Ud7p49rNPjJI1cLFDeKd7PJy6j9HJxwG0zhmLbE4ux6bGLcePUeEkpqlqrw4Zj2bjtoz/Msy7JYHbPLo8jIiLqCss7iYjIog6eKxFuXz4+usvSSHEjl2oLdO/saSyCTCbDqAhfjIrwxXOXj8O6I9n4Zk8aDp4rBgCkFlahWaMVGsCYgkarRUZxdbfrIiIi6gkzfUREZFHi4GpEuE+Xx7m3y/SZu3FKb2bhOTsocc3kWPz2zwXwdXMUHi+taTDpmnLL66Bq1gAA/Nwc2a6fiIj6hEEfERFZVJqkjLLr4MpJaQd7hf6vqSa1Vgh+LLGu3mTU/N3bMpXF1SpTLqldIOpp0nMTEdHgwaCPiIgsRqvVIb1IXK7o2eWxMplM0szFnGMbKuoaUVKjD9gcFHKE+bga/Fo/UdBXUm3aTF9fA1EiIiIxBn1ERGQxeRV1aGhSA9A3SBGXRnZGvK+v0oz7+sQZtdgAD9jJDf/rUZrpM23Ql1rAzp1ERGQ8Bn1ERGQxqb3MXHlYaEC7MRk1cwZ9aUUczE5ERMbrU9BXV1eH2tpaU6+FiIgGuN40SwGks/rM2cHTmL1zfu5t2UpTlnfqdDqWdxIRkUn0Kug7e/YsLr30UowdOxbjx4/HokWLcOrUKXOtjYiIBhhxcGVI5kqc6bNUeWdvg6sAd2fhtikzfcXVDahuaAYAuDkqEeDR+WgLIiKinvQq6Hv66aexbNkyHD9+HAcPHsQll1yCxx57zFxrIyKiAaa3wZWHhRq5SMsobaO8s/21kslkJjs3ERENLl0GfU8//TSKiookj1VWVmLMmDFwcHCAq6srRo0ahfLycrMvkoiI+r++lCu6SzJ9jeZYFuobm3G+TL9lwU4uQ5S/e69eb67unakFlcJtlnYSEZExFF09ERMTg6uvvhoLFy7EsmXL4OHhgbvuuguLFi1CdHQ0tFot0tPT8cgjj1hyvURE/ZZOp0Otqhm+Zh4ybqtKa1RCiaazvQIhXi49vsbTuW0YubkyfeIREpG+brBX2PXq9WbL9LGJCxERmUiXQd8tt9yCK6+8Ep988gkWLVqEa6+9FrfeeisuvPBCnDhxAgCQmJiIoKAgiy2WiKi/ya+ow/+2n8KJnDKkFlSisr4JE+IC8M2y2XB1VFp7eQZpbNZAB8BR2btgqD3JWAQDyxWlc/qajXp/Q9fVW+5OSjgo5GhUa1HXqEadqhkuJvjdGrPPkIiISKzbPX2urq546KGHsGbNGpSWlmL+/PnYtGkTLrzwQsyZM4cBHxFRDx79di8++eMMDmQUC1muA2lFeOy7vdD1g4zf6bxyDF/xA8Y8+SMyRJmnvhCXdhq6b046p8885Z1pRZXC7b5k1GQymaTE01TZPgZ9RERkKt0GfTU1NUhOToZMJsOzzz6Lr7/+GidOnMD8+fPx888/Q6vVWmqdRET9jk6nw4FzxZ0+t+ZQJr7enWbhFfXeu1uTUaNqRkVdI776O9Woc/VlLIJkTp+ZuneaIrgydYlnZX2jcB4HhRxhPq5Gn5OIiAavLoO+jRs34sILL8SyZcswa9YsfPbZZwgPD8frr7+Od999Fxs3bsTFF1+MzZs3W3K9RET9RkFlPWpV+pJEDyd7HPr3lVg6JU54/ukf9yP5vO02w2poUmPryfPC/f3pRd0c3TPxHjVDgytx0Fdlpj19qQXGB32mbuYiDkRjAjxgJ+/TWF0iIiIA3QR9//3vf/HGG2/g77//xs8//4w333wTKpUKADBs2DB8+umneOaZZ/Dpp59abLFERP2JZCZdkAdCvFzw76smYHi4DwCgUa3FXZ/uRI0ZRxH0xrHsUqTkVwj3/zidh7pGtXA/Obccdaq+76vrS0ZNvKevygyZvmaNFlklbY1c4gJsI9MnnWfI0k4iIjJOl0FffX09fHz0H0y8vLyg0WigVqslx0yePBk//vijeVdIRNRPdVbO6GSvwPf/mA8XB30frcySGjxqA/v71h/JwoLXNmDOy+uw41QeAGDdkSzJMRqtDoezSvp0/uqGJhRU1gMAlHZyRPq6GfQ6SXmnGYLjzJJqqLX6ax/s5dLnBiySoK/GFEFfpXDb0FJYIiKirnQZ9N1222245ZZbcO2112LRokW4+uqr4erKPQVERIaSfHAXZZASgr3wn6WThftrD2fhq11nLbm0Djaf0JdxarQ6PLl6PyrrG7H1ZG6H4/and75HsSfpogA42t8dCjvDyhXbd+/Uak0bHJsqoyYt71QZtSaATVyIiMi0uhzZcNddd2HWrFlIS0tDaGgohg8fbsl1ERH1e93tYVsyLhp704qwqqU5yjM/H8SYKD8MD/Pp9FxZJdV4ae0RDA3xwkPzRxg07qA3UkUBalZpDW75YAfqm/TVHTIZ0JqI3J/Rt319fQ1ilHZyuDgoUNeohlanQ21jsyQQNJapgqsAE5Z3qjVanBTt9WTQR0RExur2q9bY2FgsWLCAAR8RUR/01CDkX1eMR2KIFwCgSa3FXZ/82WUJ45OrD2Dd0Wy8tv6YkJUzFa1WJxlQDgD7M9oyetdOihVuH84sQbOm952b+9LEpZWHGff1pRZUCreNKaM05Z6+NYcyhXN4uTggpo/7DImIiFqxHRgRmV11QxNO5ZZbfd+aJZXXqlBWqy/zc1TaIdS7Y3m8k70CH90xQ9jfl1Vag39+s6fDdSqtacCfKfnC/S/+SjHpWvMq6tDQpO7y+btnDRNGBqiaNTiZU9br95DuUetdEONuxn19xgSjYp1179TpdCit6V2pp1arwztbTgr375w5FEoDS2GJiIi6wr9JiMisalXNmPb8r5jz8jqs3Jps7eVYjLhsMDbQA3J55+WY0f7ueP36KcL99Uez8cVf0v19649mQyPay/ZXSoHRg9K7WquXi4PkufhADyQEe2FijL/wWF9KPMVZz94OQDdXpk+r1Un2GppuT18DtFodln+xC8NX/IBHvt1j8Hk2HstGesvv1s1RidumD+3zmoiIiFox6CMis/r7bIFQqrbuaJZ1F2NBkgxSD+V5l46Nws3TEoT7z/1yEMdF2bQ1hzI7vMbYQeliaUWVwu2Fo8Ixb0SYZG0AMDE2QHist81cVM0a5JTVAtDvD4z2d+/V6801qy+vog6qZg0AwMfVEd6ujn0+l6PSTghO1VodjmaXCr+37/akG1QSq9Pp8NbmE8L9W6cPkfzsREREfcWgj4jMShz85FfUWXElltXbBiHPXTEeSWHeAFr39+1EVX0TcstrcSCjY5C1el+60GjF1Gv979IpWDQ6AleMj8Y9cxIBABNj2oK+A+eKe9VF81xxFbQtJavhPq5wsu+yh1inJB08TZjpk+7nM37fnDjbt+rvtmytVqdDeW3PZZ7bknNxKk8/J9HJXoE7Zw4zek1ERERAN907xbRaLTZs2IBjx46hubm5w36TF154wSyLI6L+TxxQlNc2QtWsgaPSzmzvt+l4DtYcPIfrL4jH9KHBZnufnvS2QYij0g4f3TYdF726HrWqZuSU1eIf3+zG2Eg/4ZgLhwQhu7QG2aW1qKxvwm+HM3Ht5DgTrFWclfSEr5sjPr5jhuSY2AB3eLs6oLy2ERV1jUgrqkJCUM8/F9D5vMLe8HBuKzmtbGjs9eu7YuqxCP7uTkJp5trDWZLnSqpVCPBw7vK17bN8N06Nh69b3zOPREREYgZl+l566SU89thjOHz4MDIzM5GVlSX8k52dbe41ElE/Jg5+AKDAjNm+OlUz7v9yF9Ydzcb172/D2sMdyyItRTL/LciwgCLK3x1vivb3bTyWg9c3HhfuXz4uWlIG2n7vX1/odDohUOlurTKZDBPE+/rSDd/XJwmu+tCJ0kOS6Wvu9eu7YqomLq383duCtNay0VYlPQxs//tsIY5klQIA7BVy3DM70ej1EBERtTIo0/f777/jqaeewvXXX2/u9RDRANI+oACAgsp6RBmwp6u+SY0/z+Rjy4kc5JXX4eGFIzElLrDb16QVVaGuUV/yqNHqcO/nu6DR6nD5+Oi+/xB9UKdqRl5LcKuQyxDlZ/getkVjInFbehE++1PfobO1hNNBIceCUeFQa7R4dd1RNKq1OJ5ThuTz5UJZaF+U1apQUafPnjnbKxDi5dLlsRNjArD5uH5cxP6MYtwkCkC7Iw78DQ2AxdydlcJtU+7pE3cU7W1zmc6Iyzvb66mLpzjLd93kOAR6dp0VJCIi6i2Dgr7a2lpMnTrV3GshogEmv7JeCMJa5XWT6SutUeH3k+ex5cR5/JmSL8mWVDY04fcVi7t9v9RCaYCp1elw/5d/Q6cDrphgucAvvbht5l2kn3uvW+4/s2QcDmWW4ISomcusxFBhb9ucpDBsOKavsjieUyoEfTqdDsm55fB1c0SQZ9fBm1hquy6j3Q19nyRq5nKgFx08pRk1T4Nf18rTqa28s6reNOWdOp3OLOWdXSntJtN3IKMYe9IKAQB2chmWz00yei1ERERiBn0SmT17NjZv3mzutRDRACPOpLQqqKyX3M8srsb/tiXj0jc2YeQTq/GPb/Zgy8nzHcrjskpqevV+rbGLVqfDA1/9jR/3Z/R6/X1lzEw6AHBQ2uGj26fD3aktw7VkXJRwW7yXLlN0Xb7dk4aLXlmPCU//jA+2nzJoLmJvSi8TQ72FJiy55XXdBvCt1BotzomC4L5cD0+XtvJOYwefA0BBZR0e+XYvKluawrg6KhFkgsyafzd79kqqu870vS3K8l05IVqYiUhERGQqBmX6AgMD8d5772HHjh2IjIyEvb20hTQbuRBRZ9IKO86Sa+3gqdXqcPsnfwjlgp2JD/TAueJqqLU61KqaUatqhqujssvj00QNSf51xXh8tycdZ/IroNXp8OCqv6HT6XD1pFgjfiLDSBqj9DGDFOHrhs/umomnfjyAEWE+WDgqXHguyt9NuC0OqH47kgVAPzLgX78cwoGMYrx14wWS7pftpfWig6XSTo5xUX7YdbYAgH5fX0+lszlltWhS68cVBHg4dbuWrsSIgtGU/MquD+xCSXUDTudV4HReOZJzK7DxWLbkS4VR4T7dZjgNJd7T115pF907j+eUYcfpPAD6Lyruu2i40esgIiJqz6Cg7+jRoxg5ciQAID8/X/KcKf6iJKKBSRz8tCqo1Ad9x3NKOwR8MhkwPtofC0boZ8VF+btj4jM/CzPeiqrq4erYdWAiLiOcHBuIy8dH4+p3tuJ0XgV0OuChr3dDq9OZpONld8Rz74zZK3ZBfBD+ePLSDo9Hi/YIZpa0BX3tg+xNx3OQkl+Bj26f0eW+vzRJE5ee1zoxxr9XQZ8k69mHJi4AEOXnBid7BRqa1CiubkBJdUOn++c0Wi1S8iuFAC+9pAbHMku63U83fWgw/nPd5D6tq7325Z1Jod5Izi0HoA88O/POlrYs3yVjIhHbx2tERETUHYOCvttvvx3jx4+Hi4the0SIiIDOyzvzK/TlneKMTUyAO5bPScLc4aHwdZN+cA7wcBYFfQ2SrI9YY7NGKAGVyfTndLJX4McHLsI1K39Hcm45dDrgH9/sgVYHLJ1ivsDP1HvF2hM3wskqqYFWq0NdY3OH0llAX/65+PWNeOnqibiuk5+5t2sVD2k/cK7nIe2phb0LKjtjJ5djaLCn0N3yVF45ZriHSI5pUmuw+PVNkn2Q3UkK88bTl43FhUNMN9ajfdB3w9R4rPh+H4DOG7mcza/AxmM5wv0H5jHLR0RE5mHQnr7HH38cubm55l4LEQ0waUUdM32t+8DEwcaSsVG4bkpch4APAAI92h4rrOoY1LTKLKkWBoCHebcNAPd2dcTqBy4SNTsB/vnNHqz6O7UPP1HPmtQayf7D2ADDO3caysvFAV4u+uYmqmYNCqrqpWMXAj3wwW0XwsVBIRzzj2/24OFVuyUD3WsamoRAUWknR6SvG3oyJtIXCrm+wiMlv1Lo/NkVUwXAiaFtmcrTuRUdnv/7bGGXAZ+TvQJjIn1x/QVxeOnqiVj3zwXY8tgikwZ8AODt4ojoloB8aLAXZg1rC0w7a+Ty9paTwu15w8MwLKTvXViJiIi6Y1CmLyQkBDk5OUhIMKw9NxFRWa0K5bX6gMDJXoFmtQZqrQ4VdY1oaFIjVdLsxLPL84ibYxRXdd3Eo7vgwsvFAavvvwjXvvu7EBg89t1eOCjkJt/jl1lcDY1WH3yGervA2aHrPYjGiPJzEwKuzOJq5JW3NVWJC/TEpWOjMCzEG3d+shNnW/btfb8vHSfOl+HjO2Yg2t9dEihG+blBYUCXUWcHJYaH+eBotj7rdvBcMS4aHtbl8cY2tWklDvpaSybFUtu9z6LREZg0NBihbk6I8HWFnbx3HVT7Qi6X4fv75uL3k+cxb2Q4fFzb9viV1qig1eogbwmYM4urJQPcH5zPLB8REZmPQUFfUlISHnroIQwfPhxhYWFwdJRuVmcjFyJqTxyExQa4o7y2UcjyFVTWG5wBMjTTl9pDQxIvFwf8cP9cXPfu7ziWrQ/8/rXmEK6cECN8EDcF6c/labLzthft7y6UO54rrhZKYPXv6yH8e+OjC/H49/vw04FzAIDTeRWY9+p63DM7UQgGe7vWibH+QtC3P72oy6BPP6dR1LkzwPD3aC8xxEu4faqToE983W+cGo87Zw6Dn58bSgzo+mpKYT6uuG3GUOG+m6MSNapmqLU6VNY3wrslEHz392QhMz19aDBGR/pZdJ1ERDS4GPTVZ2ZmJsaMGQOlUonCwkJkZWVJ/iEiai+1XUARLBr6nVlcjfPl+iBFLpMJJXGdCRBl+oq6CfokDUm6CGA8nR3w/X0XCR1Ay2sbUdZFV8W+Sm1XZmku7ff1SQaNiwagOzso8c5NU/HadZNhr9D/L79W1Yz/bDgmdPts/5qeTIwRz+vrel9fQWU9alXNAAAPJ3v4ddPdsidDg72EMRwZxdVoaJLOfzRVRtHUxA1nWjt45pbXYvW+dOHxB7mXj4iIzMygTN+qVavMvQ4iGmCkA7k9oNFqhfu7zhagdYRcpJ8bHJR2XZ4nUBT0FfaxvFPMw9keod4uQiOZgsr6TjtB9lW6mZu4tBJ38DxXUt1u3p6n5FiZTIYbp8ZjZLgP7vxkpyQr2GpuUqjB7z0+xl+4fTynDA1NamEPpVhqu0DUmG7PLo5KRPm541xL+ezZgkqMivAF0Nmgdc8+v4+p+bg6CmM1SqtViA8E/rftFNQtJcATY/wxOS7QmkskIqJBwKCg78iRI90+P2bMGJMshogGDvGH8PhAD1S3DMIGgD9T2ka/9NTGP8CzLSDrajC3RqtFRpHhH/qDPNuCvsKqeoyAT7fH94algg9xpu9sfqUQyLV2Lu3MiHAfbFmxCN/uTkNueS28XBzh6WKPCTEBGBlu+DXwcXVEXKAH0gqr0KzR4mhWKabEdwxcTH0tEkO8hADqdF6FEPSV1qiEQesuDgoEm2DQuqmIs5slNQ3QanVYvT9DeOyhBSOssSwiIhpkDAr6li5dCplMBl3rV/PQf3Msk8kgl8uRnJxstgUSUf/U/gN/634+QDquoadsWIC7KNNXWQ+dTtchY3S+rBaNLQPA/d2d4OHc/QDwIFFQUCBal7E0Wq2kOYp5M31tnTazStv2rYk7l3bG09kB985NMvr9J8YECL/jfRlFPQd9Jpg/NyzUG+uOZgOQ7utrn+W1pfmxfqKOtKU1KuSW1wolr96uDphu4g6iREREnTEo6Nu+fbvkvkajQWZmJt5++2088sgjZlkYEfVftapm5LcEUwq5DJF+bggu7HzOZ0+BkbuTEo5KO6iaNahvUqNW1Qw3J2lQl9rLkkpJ0NfNPsHeyi2vg6pZAwDwdXMUxiqYg5uTPXzdHDvMf7PUfraJsf74erd+7EVX+/pMPa8wSdTBUxr0VYrex9Po9zElXzdppk98TRKCPG0qQCUiooHL4JEN7YWHh8PFxQX/+te/sG7dOpMvjIj6L8koAH93KO3kXZbc9TSwWyaTIdDDWchmFVY1dAj62peS9iRQkukzXdAnXYenyc7blSg/9w5BnyXeF5A2czl0rhhqjbbDyAdTB32JoaIOnnkVwgiE3gb9luQnDvqqVSbPfhIRERnCqMFFPj4+yM7ONtVaiGiASO0k+BF37xSLNeCDb4BobENnHTx7m+kJkjSHMWXQJ16H+T/QR/t3HKZuqaAn1NtFCOTrGtU4lScdmF5WqxI6ozoq7RDq7Wr0ewZ6OAvZ01pVs9ABtrdBvyX5ipoEldWo2jU48rTCioiIaDDqcyOX2tpafPnll4iLizP5ooiof+ss+PFzc4JCLhO6FgJAsKezMD6hO+LMXFEnHTx7m1EK8mo7X76ZMn2WCL6i/Do2bLFU0CeTyTAxNgBrDmUC0M/rEzeDkcxpDPQwySxEmUyGpFBv7DpbAEBf4hnh62bb5Z2u0vLO8rq2zKytZSWJiGjg6nMjF0Bf9vnaa6+ZZWFE1H91FvzI5TIEejojt7ytcUqsgR96/d27zvR1bNdvQHmnmTJ9li4z7Gy+oSWDnokx/kLQdyCjGHfNGiY8Z64yxmEhXqKgrwJTE4KEUR72CjnCfYzPKJqSeBxISY1K0sWWQR8REVlKnxq5AIBSqYS/v38nRxPRYNdVEBbs5SIJ+gwNULoL0gqr6lHT0g3R3UkpCRC74uXiIDSHqVU1o6ahqcM+wd7SB5+Vwn1rZPoCPHruXGpKE2Pb9vXtzyiSdFY117VIFDVz2Z1agNmJbXvOo/3dO+wrtDbxnr7c8lphPqWro1LSUIiIiMicDPrb8d1334WHhwdCQkKEf/z9/VFZWYn777/f3Gskon6ksVmDrBJ90xX9zDhR0NfuQ66h+68CPLou72zfPMWQboitzWFamaKDZ3F1A6ob9MGnm6NScn5zifKT7umzdGOQ+EBPeLYEmaU1KmGGHtDu99JDs57euCA+EHYtpaL7M4rx/b504TlbbIzi6qiEg0L/V624WCYuwLZGSxAR0cDWZaYvIyMD5eX6lti//vorZs+eDQ8P6V+oZ8+exa5du8y7QiLqVzJLqqFt+XQb5u0KZ9HMuPbNXAzNAAV6dl3e2dd9dEFeoo6glfVGd720xqw4F0clAjychEDY0uWCcrkM46P98XtyLgB9ENYa5Jur1DXYywVLxkXhpwPnAACr/k4VnjNlcGkqMpkMvm5OkjmVAEs7iYjIsroM+nJzc3H33XcD0P+ldd9993V63A033GCelRFRv9RdEBbk2T7o8zTonP7uhmX6evNBWpLpM0EzF0s3cWkV5ecuCvo8Lfa+rSbGBghB34GMIiydEoe6dnMaO2s4Y4z75iYJQZ+YrQZSfu6ODPqIiMiqugz6pk+fjj///BM6nQ4zZszAmjVr4O3tLTnGxcUFrq62tWmeiKyru+AnWNQ108vFQTK4ujuBopENhVX17faO9a0FvqkHtKdaqYPk7MQQ7EsvgkIuw4yhwRZ731YTY9r2du9P1w9pF48liPTTz2k0pYRgL8wbEYYtJ85LHrfVQMrXreM+U1vMShIR0cDVbSOXgAD9Jv2UlBThMbVaDYXCoP4vRDQIdRf8DAluG649JtLX4HO6OirhbK9AfZMaqmYNqhuahYYlqX1sGCLOOha0y8L0hbUyfXfPTkRsgAfCfFwR1Uk3T3MbEe4jNMXJKq1BUVW9Ra7FAxcNlwR9cpkM0f62GfT5dfLlhi3uPyQiooHL4K9ff/31V8yfPx+jRo3C+fPn8eyzz+K9994z59qIqB/q7gN/tL87Xrl2EpaMi8Kzl483+JwymUwyq6+1g2dFXSNKa8QDwDsfAN+Zzs7XVwWVdTh4rli4n2DBLI7STo75I8MlXS0tyV5hh9GiAH5/enG7Ji7mCW7GRPlhanygcD/C1xWOSjuzvJex2mf6HBRyhPuySoaIiCzHoKDv119/xUsvvYTLLrsMdnb6v1SHDBmCjz/+GB9//LFZF0hE/YdGq0VGUfdZnpunJeD9Wy/sdQYoQFTiWdyyh00yADzAA3Zyw8sIxZ1ECyqNC/r+t+0UmtRaAMDYKD+bmxVnbhNj2kY3fLjjFM4WVAj34wI8zfa+Dy0YIdweF227I4TalzFH+/fuzyoREZGxDPpb57PPPsPTTz+NZcuWQd7yF9V1112HF154AatXrzbrAomo/zhfVovGluDH390Jns4OJjt3gLt0Xx9g3Cy4QBMFfaU1DZIOkg/NHzHoWvFfNTEG9i1jCY5klQqNXQDzlrpeEB+E926ZhntmJ+LJS8eY7X2M5ecuDfpsde8hERENXAYFfdnZ2Rg1alSHx0eNGoWioiJTr4mI+ilz7uWSzuprDfpEmb5evp+/uxPkLcFZaY0KTWpNn9b10Y4zUDXrX5sU6i0ZFj5YRPu748F5bVk38Ty62ADz7jO8fHw0nrl8nOTPh63xa1feaeh8SiIiIlMxKOgLCgqSNHNptXfvXgQFBZl8UUTUP5lrNhsgHbFQ2FLeKX6/+F42xlDYyeEvysC0HwVhiMr6Rnz+V9v/Gx+cN3zQZflaLZ+bhNh2v4NQbxc4OyittCLb0b680xqjNYiIaHAzKOi77bbb8Nxzz+Hbb7+FTqfDgQMH8Pbbb+Pll1/mnD4iEkjKLU3cnTDAU7ynr5Pyzj40TzG2xPOzP1NQq2rWv3+gBxaOiuj1OQYKB6Ud/rN0suQxYwfeDxTtG7mwvJOIiCzNoNkLV199NdRqNT788EOoVCo8+eSTCAgIwOOPP45rr73W3Gskon5C2rXR06TnDmiX6atvbEZuuX7Ugp1chig/t16fM8jTBceyy/TnbBf0HcsuxTe703Dp2EhMTehY0VCrasYnf5wR7j8wbzjk8sGZ5Ws1KTYAN1wQj6936/c4JoVZp6OorfF2cYCLgwJ1jWo4Ku2sMlqDiIgGN4OCvu+//x7z5s3D0qVLUV5eDnt7ew5lJyIJnU5n1j194vLOlPwKHMkqFe5H+rnBXtH7dv3iAe35ldJZfcu/2IVzxdVYezgTR1+8Ci6O0jLFr3adRUVdIwD9uIDLxkb1+v0HoucuHwe1RosaVTPumDHU2suxCXK5DM9ePh4f/3Eat88YarOjJYiIaOAyKOh7/fXXMXHiRPj4+MDbm9/cElFHhVX1qGkpdXR3UsLf3amHV/ROpK8bovzckFlSgxpVM1Z8v094rq8BpjjoE2f6ympVOFdcDQCoUTVjX0YRZieGCs83NKnxwfZTwv37LhoOhR1b8AOAi6MSb954gbWXYXNunBqPG6fGW3sZREQ0SBn0KWXo0KHYs2ePuddCRP3Y3rS2Tr5xgZ4mb2gil8uwYnFbW/6MlqAM6PssuK729IkzlgCwK6VAcv+7PWkoaRkKH+TpjKsmxPTp/YmIiIgswaBMn4+PD/7973/jgw8+QFhYGBwdpZ3IPvvsM7Msjoj6B61Wh3e3Jgv3ZwwNNsv7LBodgZHhPjieUyZ5PD6ob5m+YE8X4bY46EstqJQct+tsW9DXpNbgvW1tWb575yTBgeV6REREZMMMCvocHR1x2WWXmXkpRNRf/Z58HmfyKwAAzvYK3Dp9iFneRy6X4anLxuKqd7ZKHu9rC3xppq9tT19akTTTdzqvAiXVDfBzd8JPB84hv0J/rK+bI5ZeENen9yYiIiKyFIOCvpdfftnc6yCifkqn0+GtzSeE+zdPS4CPq2M3rzDO1IQgzBgajJ1n8oXH4vo4AFwc9BVVNUCt0UJhJ+9Q3gnos32XjInEyi0nhcfunjUMzvYG/W+UiIiIyGrYeYCIjPJnSr4w9sBBIcfds4eZ/T2fumwsWrcMxgV69HkAuLO9AsEtgV+zRouU/EoAHff0Afp9fb8dyUJWaQ0AwNPZHjdPS+jT+xIRERFZEr+iJiKjvL25LfO1dEqcZJ6euSSGemPlTdOw6XiO0UHmmCg/5B/NBgAczipBpJ+bUL4p9ldKPo5klQj375gxFG5O9ka9NxEREZElMOgjoj7bm1aIfen6rp0KuQz3zk2y2HtfMSEaV0yINvo8Y6P8sL416MsswchwH+G5aH93FFc3oFbVjHxRoxcXBwVu4ww6IiIi6idY3klEffa2aH/bVRNjEOrtasXV9M3YKD/h9pHMEqSKSjuHBHvigrjADq+59cIh8HJxsMj6iIiIiIxlcNCnVquxceNGrFy5EpWVlThw4ADKy8vNuTYismHHskvxZ0szFblMhvsuGm7lFfXN8DAfKFsGq2cUV+NARtu8wfhAT0wbEiQ53lFph7tmmX/fIhEREZGpGFTeWVxcjFtuuQWFhYVQqVS47LLL8Pnnn+PEiRP46quvEBPDwcREg424Y+elYyMR7d+3DprW5qi0Q1KoN45mlwIAfjucJTwXF+iBpDBvyfHXXxAPP3cnSy6RiIiIyCgGZfpeeeUVxMbGYt++fXBw0Jc0/ec//0FSUhJeeeUVg9+spKQETzzxBKZOnYqxY8fixhtvxPHjx4Xnt2/fjoULFyIpKQkXX3wxdu7c2bufhogs4kxeBbacOC/cf2Be/8zytRob3VbiWaNqFm7HBXogLsADUX5uAPTdSe+dk2jx9REREREZw6Cgb//+/bj33nthb9/Wqc7V1RX//Oc/cezYMYPeSKvV4t5778Uvv/wCFxcXxMbG4sCBA7jllluQk5ODlJQUPPDAA8jJyUFSUhKys7OxfPlypKam9ukHIyLzeWdLW5ZvwchwDAn2suJqjDc20q/DYzIZEBPgAZlMhg9vn44bp8bjy2WzEezlYoUVEhEREfWdQUGfSqWCUtlxDlZTUxN0Op1Bb3T69GmcOHECoaGh2LBhA3744QcsWLAA9fX1WLduHVatWgW1Wo2HH34Y33//PZYvXw61Wo2vv/66dz8REZlVRlEV1h7JEu4/OH+E9RZjIuJmLq1CvV2FwevDw3zw2nWTMX1osKWXRkRERGQ0g4K+Cy64AB9//LEkwKupqcEbb7yBiRMnGvRG/v7+eOONN/DEE09AodB/kPL19QUAVFRU4MiRIwCACRMmAAAmTZoEADh69KiBPwoRWcK7W5PR+r+CmcNCJCMO+qtQbxf4t9unFx/oYaXVEBEREZmWQUHf//3f/+Hw4cOYNm0aGhsbcd9992HGjBnIycnBihUrDHojf39/XHzxxZgzZw4AoLy8HBs3bgQAjBo1CoWFhQAAT09Pyb9bHyci6ztfVoufDmQI9x8aAFk+AJDJZB2yfXEM+oiIiGiAMKh7Z2BgIH777TesX78eZ86cgVKpRGxsLC655BKhsUtvVFdX44477kBZWRliYmIwb948PProowAglJG2ZgMbGhp6PJ+XlzMUCrter8NYfi3NHciyeN1NqzfX819rD0Ot1af5pieG4OJJA6dz74VJodh0PEe4PyYu0Kx/1vjn2DJ4na2D190yeJ2tg9fdOnjdjWNQ0Pf2229jyZIluOqqq4x+w8rKStx22204deoUPDw88Pbbb0OpVMLBwQENDQ1Qq9UAIPzbyann1ugVFfVGr6u3/PzcUFJSY/H3Hex43U2rN9ezsLIen+84Ldy/d9awAfW7GNJu5ESgi4PZfj7+ObYMXmfr4HW3DF5n6+B1tw5ed8N0FxgbVN65detWzJs3D9deey1Wr16Nmpq+XfS6ujrcfvvtOHXqFDw9PfHFF18gLi4OgL78EwCqqqoA6INDQJ9lJCLr+2D7KTSqtQCAMZG+mJYQ1MMr+pcR4T5QyGXCfZZ3EhER0UBhUNC3YcMG/PLLLxg9ejTef/99TJ06FQ899BB27twJrVZr8Js9+eSTSE5OhpubG7788ksMGzZMeG7ECP3eoP379wMADhw4AAAYO3aswecnIvMoq1Xhq7/bxqc8NH8EZDJZN6/of5ztFXho/gg4KOS4a9YweDr3vnSdiIiIzEOn0yG1shgZVaWobW609nL6HZnO0JkLLXQ6HQ4ePIhNmzZh3bp1cHR0xN9//93j606cOCGUh4aEhGDIkCHCcxdccAESExNx3XXXwc7ODklJSUhOTgYArFmzRsgGdsUa6V6mma2D1920DL2ePx3IwP1f6v87HxbihW1PLB5wQV8rtUYLhZ1B34f1Gf8cWwavs3XwulsGr7N18Lpbh7OnPW5c+zU2ZLdtM3FWKDHMKxCTAyMxOSAS4/zC4Ky07+YsA1935Z0G7ekTO3fuHPbu3Yv9+/ejubkZF154oUGv27p1q3A7Ly8PeXl5wn0vLy9cf/31WLlyJd58800kJycjPDwcjz76aI8BHxGZX2pBlXB77vDQARvwATB7wEdERERtdDod9hRmYn9xDsJcPbEoYhicFG3BW0F9Ne7avBpHi3Mlr6tXN+NQyXkcKjmPlSd3QSmXY5RPSFsQ6B8mOc9gZ1CmLy8vDxs2bMCGDRuQmpqKUaNGYcmSJVi4cCFcXV0tsc5uMdM3ePC6m5ah1/PWj3Zg8/HzAIB3b56GKyZEm3tpAxr/HFsGr7N18LpbBq+zdfC6m05dcyN+PncCX6QcQGpVifC4u9IBl0UNh5+TK0pVddiccwZFDbXC88HO7ihrrEejRt3t+ZVyOUb7hmJyQCQmB0ZirF8YnBRKs/08tsDoTN/s2bMRHByMSy+9FCtXrkR4eLjJFkdEti+tsC3TxwYnRERE1Ffnqsvw1dmDWJ1+FNWd7M2rbm7EV6mHOjyukMnx74kLcUP8OOh0OpSp6nCgOAd7i7KwpzALZyuLJcc3a7U4UJyDA8U5ePvkX7CX22FyYCSuix2DuWEJcLDrdcFjv2bQT/vll19i4sSJ5l4L0aCh1eogl/ePEskmtQZZom81YwPcuzmaiIiISEqr02JnfgY+T9mPP/LSOzzvorDHgvChOFxyHpk15R2e93J0wgfTrsIFQfpKI5lMBl8nVyyMGIaFEfrGkGWqOuwrysaewkzsK8rC2coSyTmatBr8mZ+BP/Mz4OXghLuGTcbypKmQywbHto4ug75169Zh3rx5sLe3R3FxMdatW9flSRYvXmyWxRENRIczS3DzBzsQ6OGE1Q9cBG9XR2svqVuZxdXQtAxkD/V2gbPDwC6NICIiItP5Mz8dT+7fiKxOgrlodx/ckjABV8WMhJu9I3Q6HfYWZWF7bhqUcjl8nVwR4OSKJcNHQl2j6fZ9fBxdcHHEMFzcEgSWNtRiX1E29hZlYW9hlqSEtKKxAa8e3QGl3A7LEi8w7Q9so7oM+h599FFMmTIFPj4+ePTRR7s8gUwmY9BH1Auf/HEaZbUqlNWq8OnOFDy6aJS1l9QtcWlnfKCn9RZCRERE/UqjRo0H/v4FZap64TEZgNmh8bglYQIuDI6WZNpkMhmmBEZhSmCU5Dxejs4o6eWccF8nVyyKTMSiyEQAQG5tJVZnHMMP6UeRV6f/bPPKke2YGBCB0b6hffwJ+48ug76UlJRObxORcc6KOmF+vzcN/1g4AnZy2y0tSC3ifj4iIiLqWYO6WdIs5ffcs0LA56xQ4ob4cbgpYTwi3bwtvrZQV0/8Y+QM3D98Gi7f/BmOluZBrdNi+V8/YfOiZXC3t+3KK2MZ9EnzpptuQnV1dYfHy8vLcfnll5t8UUQDlUarxbnitiAqv7Ief5zOt+KKepbOJi5ERETUjbzaSty8/RvEffsi7t/1M1qHA/yQflQ45q5hU/DMuHlWCfjElHI7vDftSrgpHQAAObWVeHzvOvRydHm/02Wm78iRI8jJyQEAHDhwAL/99luH8Qzp6enIysoy6wKJBpKc0lo0qrWSx77enYo5SbZbVpBaUCncjmN5JxEREbXQ6rT4Nu0I/n14K2qbmwAAazJPYn74UIz2DcGf+RnCsVfHjLLSKjsKd/PCfyZfgmV//QgAWJd9Clfnj8LMkIE7H7zLoE8ul+Opp56CTqeDTCbDyy+/LHleJpPBxcUF9957r9kXSTRQpBZWdnhsW3IuiqrqEeDhbPkF9UCj1SKjuC3Lz0wfERERNWnU+C0rGR+f3odTFYUdnn/h0BZcET0S2pbs2dTAKIS7eVl6md1aFJmIa/LS8EPGMQDAJ6f3Dc6gb9SoUUhOTgYAzJo1Cz/99BO8va2bjiXq78RNUVpptDr8sC8DD8wbDgDQ6XQoqKxHRlE1zhVXIb24GtklNYgL9MATl4yBws5y+/9yy+ugatZ3y/Jzc4SXi4PF3puIiIhszw/pR/Ha0e2SgemAvhNnRWM9KhobkFtXhXdO/iU8d03saEsv0yAPjpiOH88dh1anw58FGThbWYwET39rL8ssDJrTt2PHji6fKywsRGBgoMkWRDSQiYO+cVF+OJSpbx/8+Z9ncCavHOnF1ThXVI36JnWH1/6enIuEIE9cPSnWKutlaScREVH/0KBuRmF9NQrqq6HWajEpIAL2Rg4jV2s1eOHwVnx6Zr/kcUc7BW4fOgkPjZiOnzKO4Yn9GwAArTvk3JUOmB8+1Kj3NpdwNy/MCxuCTTlnAACfndmPVycPzKkEBv32z58/j1dffRWpqanQaPTf+ut0OjQ1NaG8vBynT5826yKJBgpxEPXQ/BFY/sUuVDU0obCqAb8ezurx9ceySy0c9FUKt1naSUREZDuya8qxtzALBfXVKKyvQUFLkFdQV43KpgbJsQvCh+Kj6VdDJpP16b1qmlS4d9dPksHqAU6uuHXIRFwfNxZejvotKkvjxuKr1EM4U1EkHLckeoSko6etuWPoJCHo++nccawYPVv4eVo1qJtxsiwfh0tycaqiEHEevnhg+IV9vp7WYFDQ99xzzyEvLw+LFy/Ghx9+iDvvvBPZ2dnYtGkTnn/+eXOvkWhA0Ol0SBONP0gK88bSKXH43/ZTHY71dLZHTIAHYvzdodXp8NOBcwAg2V9nCakF7NxJRERkS06XF+Ld5F1Yn31a2DPXk005Z7D5fAoW9CHjllNTgVv/+BZnK9uGmy8MH4q3py6Bk8JecqydXI7nxy/AVVu/EB6z1dLOVhP8wzHcOwgnywvQqFHjm7TDuDx6BA6XnMfhklwcKjmPU+UFaNZKG/GN8g3B9GDLfRFvLIOCvqNHj+Kjjz7CuHHj8Mcff2D69OkYNWoUoqOjsX37dlx11VXmXidRv1dQWY9aVTMAwMPJHv7uTnh88Wh4uTqgqr4JMf7u+kAvwB3eLg7Ct0ephZVC0JdZ0rvBpMYSB6kczE5ERGQ9zVoN/rlnLX45d6LHYxUyOQKd3WAnkyO7tgIA8OyBTZgeFANnpX0Pr25zsDgHt//xPcob24arPzB8Gh4ZNVMyVF1scmAklidNxXvJf+OamFEY7h1k8PtZg0wm05en7l4DAHj16Ha8cnR7t6/xsHdEhJVHT/SWQUGfWq1GSEgIACAqKgopKSkYNWoUFi9ejO+++86sCyQaKNLazbuTyWRwUNrh/ouGd/u6CB83yGUyaHU65JbXQtWsgaPSztzL1WcmWd5JRERkE549sKlDwDc1MAojfIIR5OKOIOeWf1zc4evoArlMjsrGBkxfuxJlqnrk11fjrRN/4v/GzjXo/X7KOI7H9v6GJq1+a5e93A7/mXIJroge2eNrnxgzB4+OmgmF3PyfV0xhcWQiXjryO4obatFV7jTG3Qfj/MIwxi8Mc0LjEeDsZtE1GsugoC8iIgLHjx9HUFAQoqKihK6eDQ0NqK+v7+HVRAR0DPoM5aC0Q5iPC7JLa6HTAdkl1UgINn/b4+LqBlQ36DOTbo5KBHg4mf09iYiIqKOvUw/hq9RDwv15YQl4aMR0DPcJ7vZ1ng5OeGrsRXh4968AgI9O78WVMSMR302HSq1Oi9eO7sC7yX8Lj/k4OuOTGddivH+4wWvuLwEfADjYKfCPkTOwYt96AICzQolRviEY5xeGsX5hGOMb2mGfX39jUNC3dOlSrFixAlqtFvPmzcOSJUvg5OSEw4cPY+TInqN9IjKuKUq0vweyS/WtkTOKLRP0dZaZJCIiIsvaX5SNp/ZvFO5fEpmI96ZdafDfy1dGj8T3aUewvzgHap0WLxzeilWzb+j02PrmJjy4e43Q2AQAEjz98MWspQhzta05e6Z2Q/w4jPMLg0anRYKnf78KWg1hUNB33XXXwdvbG97e3oiLi8OLL76IVatWwdfXF08//bS510g0IKQW9n1/XLS/O/44nQcAOGehZi6pBZXCbZZ2EhERGUen0xkcqGm0WvxdeA6r049hc84ZqHX6JiJJ3oF4fcqlvfoiViaT4cWJF2Puuv9BB+DP/AyUqerg4+jSYX23/vEddhdmCo/NDInF+9OuhJu9o8Hv158N8Qqw9hLMxuCBHfPmzRNuX3rppbj00kvNsiCigaqv5Z0AEOPvLty2VNDHJi5ERETGUWs1WJN5Eh+c2o30qlJ4OzjDz8kVfo6u+n87ucLPyQV+jq7wd3JFRWMDtuel4o+8dJSq6iTn8nF0xqczru3QMdMQQ7wCMM4vDAdLzkOr02FbbmqHrpp7CjMlAd/tQyfi6bEXDbiM12DVZdDXmwzeCy+8YJLFEA1U5bUqlNWqAACOSjuEerv26vVR/m2bhS0W9BkRpBIREQ1267NO4eUj24TumQBQoqpDiaoOQFHXL+zEcO8gvDZ5MUJcPfu8nvnhQ3Gw5DwAYHPOmQ5B35dnDwq3r4sdg3+NX9Dn9yLb02XQl5WVZcFlEA1s4gAqNsADcnnv9sfF+LcFXQz6iIiIDKfVabscL2AKBfXVqGtuRKyHn/DY1vMpWPbXj0ad19fRBZdFDcfVMaMwzDvQ2GViXvgQvHB4KwDgr/wM1DU3wkXpAADIr6vClvMpwrF3DJtk9PuRbeky6Fu1apUl10E0oKUaGUAFeznDQSFHo1qLkhoVqhua4O7U+/IOQ1XWN6K4ugEA4KCQI8ynd5lJIiIia6lorMfhkvM4UJSDg8U5OF6WD38nV3w95wZJYCa2Kz8DOgAXBsf06r1OVxTisk2fokHdjOcnLMCtQyaiSaPG84e2Csd42jvhrmGTcUP8WKg0apSq6lDSUIvihlqUNNSiRNXy75ZxAZMDIzEnNB4jfYJNGqxGunljiKc/UiqL0ajVYGd+Bi6OGAYA+DbtCDQtg94nB0QioZvuntQ/GbSn78iRI90+P2bMGJMshmigMnbenZ1cjkg/d5xtaa5yrrgaoyJ8TbS6jsRZvpgAD9jJzfcNKRERUV/pdDrk1VXhQLE+wDtQnIOzlcUdjsutq8K9f/2E3xbeAUc7peS5d0/uEoZxvzhhIW4eMsHg938/eTfq1frxRs8f2oIxvqE4WJyDrJpyAPoh3jsvXQ5fp7YvT4NdrFc9My98CFJars/mnDO4OGIYmrUafJt2WDjm5oTx1loemZHBIxtkMhl0urZxhTKZDDKZDHK5XJjbR0Sdk5ZKevbpHNH+1gn64lnaSURENuhsZTHu2vkDMqrLDDr+dEURXjmyHc+Nny88tj03Fa+2BHwA8NKRbZgblmBQYFbaUIuN2aeF+81aLe796ydUNjUIjz044kJJwGdtC8KG4u0TfwHQ/+zNWg0255xBcYN+LJS/kyvmhQ+x5hLJTAwK+rZv3y65r9FokJmZibfffhuPPPKIWRZGNJCYYn+cJTt4SjOTnmZ9LyIior544/jOTgM+hUyOJJ8gTPAPx3j/cJyrLsPLR7YBAD45sw/Tg2MwMyQO56rLcP+un6ETvbZO3YRnDm7CJzOu7fH9v08/iiatRvKYuGlLhJsXbk4wPGtoCYnegQh18UBuXRWqmxvxfvLf+C2rLXmzNG4slOzWOSAZFPSFhIR0eCw8PBwuLi7417/+hXXr1pl8YUQDRZ2qGXkV+rbLdnIZovzcenhF56IsGvSxiQsREdmu+uYmbM9NFe5PC4rGxIAIjPcPx2ifEDgr2/a963Q6HCzOwbaW4+/560ckePojt1Yf+AD6cQhlqnoAwOacFGzJSek246XRavGNqCRyfvgQbM5JkRzz1NiL4GBn8HQ0i5DJZJgXPgSfntkPAPjPsT+E5+xkMlwfP9ZaSyMzM2qjjo+PD7Kzs021FqIBSTzvLsrPHfaKvn2DFm3BoM/YxjNERETmtD0vFSqNGgCQ4OmH7+behIdGTMcFgVGSgA/QBzqvT7kU/i1llrXNTThckouihhoAgIOdAqtm34BrRSMMnjqwEavTj+JkWT5UmuYO778zPx3naysB6Bu1vDvtClwTM0p4fmJABOaH2WaZ5PywoZ0+fuewyQhydu/0Oer/+tzIpba2Fl9++SXi4uJMviiigcRUWbP25Z06nQ4yWe9GPxiivkmN3HJ9bb9cJkOUH/8CICIi27Iu65Rw++KIxB6P93F0wcqpl+PmHd8KwSIAyAD8Z/IlGOETjCfHzsXvuWdRpqpHQX01/rFnLQB9BizG3RdDvQIwPjQc4Q5e+PTMPuEc18SOhqOdEi9MWAg7uRxF9TV4aeLFZvk72hQm+IdjpE8wjpflw8/RBUuiR+DKmJEY5mX8WAiyXX1u5ALoyz7/85//mGVhRAOFqYI+XzdHuDkqUaNqRo2qGaU1Kvi5O5liiRIZRVVo/U89ys8NDkrW9hMRUUeNGjXs5XYWD27qm5uwIy9NuL+oZexATy4IisbRqx5Bbl0VapsbUdPciFAXD8S3jCfwcnDGC+MX4t5dP0lep9HpkFpVgtSqEqzN6ti88IaWkkhnpT1em3xJX38si7GTy7Fm/m04V12GWA9fKLiHb1DoUyMXAFAqlfD35wwPGnjUGi0OnCtGfKAHfN2MD6rSiiqF28YEfTKZDNH+7jieo9+0nlFcbZagTzJInqWdREQkUlBfjQ1Zp/Bb1ikcKc3FBP9wfDrzWng5OFtsDe1LO+N7MVPOzd4RQ+0du3z+kqgkBDi7YU9hJk5XFOFMRZEwfqEz04NjEOXuY/jibYS9nQJDvAKsvQyyoD43ciEaqF5ZdxTv/Z4Mb1cH7HvucrgZOQRdOv7A06hzSYK+oipMijX9/7DZxIWIiMRKGmqxIfs01mUl40BxjqTb5YHiHNyw7Wt8N/cmuHcTTJlSb0s7e2tiQAQmBkQI9+uaG5FSWYwzFUXIbCjHkfzzSKkshru9I54ae5HJ35/IHAwK+s6fP48333wTaWlpaGpq6vD8li1bTL4wImtZfzQLAFBe24hDmSWYOazvX3o0qTXIKqkR7scGGLc/LtS7bdZPUXVDN0f2XSrHNRARDXoVqnpszDmDdVnJ2FOUBW27LT5ix8vycfP2b3DHsMlYn3UKuwszMdYvFG9NXQIPe9NWpPS1tNMYLkoHjPULw1i/MPj5uaGkpMZs++qJzMWgoO/xxx9HUVERFixYAEdHy3yLQ2QNDU1q5JTVCvezS2u6ObpnmcXV0Gj1f1GGervA2UFp1PncnNpeX6fq2E3MFDiYnYhocPvq7EE8e3ATmrXaDs/JZTJMCYjE4sgkNKib8Nwh/Rf/B0vO4+Cf54Xjfs9NxXW/f4VvZt8IL0fTlH7qdDp8l36kz6WdpsSAj/obg4K+06dP45tvvkFioulT6ES2JKOoGuIvM8VB39mCSrz82xFE+7njvouS4O3a8xcg0lJJT6PX5yoKGusa1d0c2TfNGi0yReMgYgMY9BERDSbNWg1ePbpdEvDJAEwIiMAlEYlYGDEMfk6ukte0Bn7tnSgrwFVbv8D3c2+Cb7vX9FZmdRmePbhZkuUzR2kn0UBlUNAXERGBhgbzlJIR2RJx0xUAyBIFfS+tPYytJ3MBAN/vS8f/XToGSyfHQS7v+tu+1CLTZs1cHNuCvlozZPqySmqgbslMBnu5wNXRuMwkERHZrqyacvxy7gTmhMZjhE8wAOBgcQ6qmlQAAC8HJzw4/EJcHJnY5fy2O4ZNBgC8fHQ7gpzdcWlkElyU9nj5yDboAKRUFuOa37/E+oV3wknRtz3yewuzcMO2VWjUaoTHgpzdcWP8uD6dj2gwMijoe/rpp/HCCy/g1ltvRWhoKORy6Uz3MWPGmGVxRJYmzswBQHZJW6nniZYGKgBQUdeIR7/di293p+GlayZiVIRv5+crqBRum6IpiotD23+ytY2mD/rSJPv5mOUjIrJ1Fap67CnKgqeDE6LdfRDo5GZQ6eGJsnxc9/tXqGpS4dMz+7B7yYPwdHDCttxU4ZhLIpOEoK47dwybjNuHTpK8b4CzGx7e/Su0Oh3OVpZgdfox3DxkQq9/Pp1Oh+cPbRECPhmA6+PH4vFRs01WNko0GBgU9GVmZiIjIwMrVqzo8JxMJsOZM2dMvjAia+gQ9JXqN2vXqJpRWNUx2300uxQL/7MBN14QjxWXjIGXi0OX5zN1eWe9Gco7U9m5k4io31BrNbj69y9xpqJIeMxZoUS0uw+i3X0Q5e6DGHdf4X5rd83jpXlYum2VkNGralJhTeYJ3DpkIn4/f1Y415zQeIPX0j7QvCJ6JIrra/Hikd8BAB+f2YcbE8ZBLpN39vIuHSvLw8nyAgCAg50CP8+7FaN82VWeqLcMCvreeecdXHnllbjhhhvg5GT6uWBEtiJVlJkDgPomNUprVJLmLjEB7rh0TBTe+/0kGtVa6HTAV3+nYt3RbDx56Rhc11LyqdFqkSHaH2eKIMrVzOWdkiCV+/mIiGzahuzTkoAPAOrVzUguL0RyeWGH430dXRDj7oMzFUWobm6UPPdN6mFcGBSDzJaZdM4KJSYHRhq1vpsSxuHd5F2oalIhq6Ycv59PxbzwIb06x6qzh4Tbl0QmMuAj6iODvm6pra3FHXfcgdjYWISEhHT4h2ggUGu0yCzp2K0zu7RGUvY4LNgLjy4ahZ1PXYrZiW1//ivqGvHIt3ux+PWNOJ5ThtzyOqia9eUovm6OHbKAfWHJ8s74IE+Tn5+IiExDp9Pho9N7hfthrp7w6GFOXqmqDvuLc4SAz9PeCY52+r9XUiqL8Z9jO4RjpwXFwNHOuH3dLkoHXB83Vrj/0ek9vXp9RWM91mYlC/dvjB9v1HqIBjODMn3z5s3Dtm3bcMstt5h5OUTWk1Vag2ZNx/bUWaU10jEGLcFQpJ87Vt0zG1tOnMfTPx1AbnkdAOBIVikWvLZeMjjd2KHsrVzM2L1Tq9Uhvci0mUkiIjKPv/PO4XhZPgDAQW6HdQvugI+jC8ob63Guukz4J6O6FJnVZciqLpc0QvFycMIPc2/Gx2f24seM4wCA9dmnhefn9qK0szu3DJmAj07vhVqnxf7iHBwrzTM4W/dTxnE0toxnSPIOxGhm+Yj6zKCgLyQkBG+++Sa2bt2KiIgIKBTSl73wwgtmWRyRJbXfz9cqp7S23d68tmBIJpNh/shwXDg0GCu3nMT725LR1FLyuTetqNPXGENc3mnqOX15FXVoaNL/5ert6gAfA0ZSEBGRdbx5cKdw+4qYkcJIBB9HF/g4umC8f7jkeI1Wi/z6KmRUlaG4oQZTg6IR7OKBpXFjhaCvlQzAbBMFfcEuHrgkKgm/nDsBAPj49F68d+GVPb5Op9NhVWpbaeeN8eM5G4/ICAYFfQcOHMCIESMAALm5uWZdEJG1iAM7V0elsGcuq7QGqT10tXS2V+DxxaNx1cQYPPXjAfxxOk/yvKmCvvblnTqdzmR/CUp+Ru7nIyKyWRlVpdhwri0rd5cBHTbt5HKEuXohzNVL8vg4vzDEefgirapUeGyUb0iHWXzGuHvYZCHoW599Cv+snoFo9867XrfaXZiJc9X6rtluSgcsiRpusvUQDUYGBX2rVq0y9zqIrE7cxGXG0GCsP5oNQD+UvbWRi1z2/+3dd3xUZfb48c9MJr1NSA9JID303kFQmgqCgmsX++qK+l1d2V11y29XV3d1V1fRXXtBXCtWUEFQkd4RAqRBQirpvU/5/THJzUwaSZjJZJLzfr18OffOvTNPHiLOmfM856iIDuo8IIoO8uG9e+fz7bFs/vjxfnLLalCpYE5iqFXG6KJxwkWjplFnQG8w0qAz4ObsZJXX7mgJqxBCiP7ntVOte/kWhMcT6xvY69dSqVTcGDfJosF6T6p2dseoIaHMDoli57kM9EYjv93zFR8tuqXLSp4fnz6qPF4ZPQ4P5971+BNCmHQr6Dt8+HCXz0ufPjEQpJk1Ul8wKlwJ+sz78w0L8DpvkKVSqbhsXCRzR4Sx+VgWEUO8rLanD0z7+hp1pk341fVNNgn6ZD+fEEL0T+kVpp53LbqT5TufldHjePLwVhqb9/wtDE+44Nds64+TF3H5plfRG43sLTjLB+lHuMGsyEtbBwqzlMdXRUuWT4gL1a2g74YbbkClUmE0GpVzKpUKlUqFWq0mKSmpi7uF6HtGo5HThZWEDzl/kAbNRUzMgp65I8LQqFXoDEaL63oSDHm4aLhqcnT3B91Nnq4aympMQV9NQxMB3tbZeydBnxBC9G8Go4E1u79UgrOJAeHMCB5+wa/r5+bBb8ZfzL+O/sCy4aMZ4Rd8/pt6aNSQUO4eOZP/nNgFwN8Ofcf8ofEEe3i3u7aorpqs6nLA1JtvzBDrrJYRYjDrVtC3bds2i2O9Xk9GRgbPP/88Dz/8sE0GJsSF+OMnB3jjx1OMjfTnq99choum68Avr7yG2uYiJn6ergT7uhM+xIvMYssWDtZosH6hbNGrz2g0WrRr6A8/pxBCCEvrUg5yoCgbAI1azd9nLLXavu7Vo2dz98gZaNTWWT3SkQfHzWNT1knOVpVR0VjPnw58wytzr2l33aHmnxFg7JBQXJy69XFVCNGFbvXpa9uXLzIykrlz5/Loo4/y1FNP2XqMQvSI0Wjko73pgGlp5uZj2ee5o32WS6VSMSyw/beP/aHAiZcN2jYUV9VTXtsImDKJYVoPq7yuEEII68ipLuepw1uV4zVTL2GkX4hV38OWAR+Au8aZp2csU443nT3J5qzkdtcdKmotGjgxMMKmYxJisOhW0NcZf39/zp49a62xCGEV5ypqqTLLgL27M/W893RUnXOYf/vKZf1h2aOHeQVPK2X6Ogp6hRBC2F+drpGP0o9wy/fvUaMzfTkX6xvAI9MW2nlkvTMrJIprYycox4/u20RlY73FNYfNMn2TAsP7bGxCDGS9LuRSXV3NO++8Q1xcnNUHJcSFaNtvb0dKPmcKK4kO8unWPS2B3fCOMn39IOiz6NXXYK2gr1x5LEs7hRCi7+kMek6VFXCwKJtTZQWU1NdQUl9LSnkhVU0NynUq4J8zluGqcdwlj3+YtJDvc1Ipqq+hoK6Kvx/eypPTlwLQZNBztLnpPMAkyfQJYRW9LuQCpmWfzzzzjE0GJkRvddRkff3OVP60YnK37okL1gIwLMAy6AvVeuDtbv+S0ZbLO22T6RNCCGFbFY11HCrK4VBhNgeLsjlSnEOtruu/0zUqNX+YtJDJbRqvOxo/Vw/+OvUyfvXTJwCsSz3IVdFjmRIUyYnSczToTVsXwj19Oyz0IoTouV4VcgFwdnYmKCjI6gMS4kJ1FPR9sDed314xocNKnqYiJuY96pqXd7YJ+vpLMGTRoL3eOnv6Ui2C3v7xcwohxEBztDiX99MOc7Aoi9TyIoznvwWAaB9/ro+dyNUx46zaNN2elg4bxafhx/gux7QFY82eL9m89B6LIi6S5RPCeroV9A0dOtTiuLi4mICAAJsMSIgLZb4/T6UCoxHKahr4+uhZVkxp30KhpLpeaYHg4aJhqJ8n0EHQ10+CIU/z6p02Wd7ZP35OIYQYSDZmnmD1jk/QGzsP9cI8fJgcFMHEgHBCPH3wd/Uk2MOLKG//AbfXWqVS8bdpS9hTkEl1UyPpFcWsPb6DjMrW3rgTZT+fEFbTZdC3f/9+Hn/8cf71r38RHx+vnP/jH/9IRkYGTz31FBMmTOjiFYToe+ZZu+umx/L+HlMlz3U7UjoM+syzXLFmRUy83JwJ8HajuMq0wTwuVGvDUXeftZd3VtY1cq6iDgAXjbpdsCuEEOLCfJmRxP07N1gEfE4qFaOGhDApMIIpgZFMDoogzHNwfekW5unL7ycs4A/7vwbgpaQdeGpclecnS6ZPCKvptHpnUlISd911F6GhoXh6elo8d9tttzF06FBuu+02UlJSbD5IIbqrrKZBCdLcnJ1Ys3Q8GrUpiNt3upCUvLJ296R1sbQx1ux4RJifLYbcY57mQV8H1Tsrahu59eXvufGlrRRX1Z339cyb0kcH+aBxuqCivkIIIcx8duYY95kFfLG+AXy4cBWnrnuEr5fczeNTL2dZ1OhBF/C1WJUwWanQ2WQwUN5o+v+Wm5OGkUOs25JCiMGs0093L730Epdffjmvvvpqu+WdU6dO5Y033mDOnDm8+OKLNh+kEN1lHsDFBPkQqvVk8djWDe/v7krr8p62Sxt/c/k4ooN8uGZaDFOiA20w4p7zcjPb09dBn773d6ex+Xg235/M5a+fHTrv63UV9AohhOi91PJCHtz1OYbmgC/eN5CPFt3CrNBoPJztXxisP1Cr1DwzYxnOasuPpOP8w3C2cd9AIQaTToO+Y8eOccstt3R58+23387Ro0etPSYheq2jvWmr5rQuTf54Xzq1jbrz3tNidkIou/58Fc+vmt1v9lOcb3lnUk6p8vjTA2fIKq7q8vVSpV2DEEJYndFo5M8HvkVnNACQoDUFfEHusoS+rXhtEPeNnmNxTpqyC2FdnQZ9tbW17ZZ1thUQEEB1dbXVByVEb1lUoWwOYGbHhzK8eZ9aZV0TXx3KtLjHsnKn1tZDvGAeZkFfR83Z0wpafx69wchL3yV1+XrSrkEIMdDoDHrSyov4KjOJp49s47bv/8eMT//N/C//w3uphzA0B2K2tDk7mR35ZwBQq1SsnbOSgAFSedMW7hszhzjf1iKBM0KG228wQgxAnRZyGT58OMeOHSMiovNvWo4dO0ZoaKhNBiZEb3QUwKjVKm6eHc/jn5uWOq7bmcK1M2IBqKprJL+8FgBnJ7USHPZnls3ZLbOWBoPRYo8emNpVPHjZOEK0Hh2+XkftKoQQwpEcL8ljb8FZTpUVcKqsgNTyQhoM+g6v/d3er/hf2iGemHY5EwKsVx2yqK6aM5UljB4SgpNazV8Pblaeuzl+MiP9ZH9aV1ydNLx58fU8fnALsb4BXBwWa+8hCTGgdBr0LV26lOeff55p06Z12J6hqKiIf//73yxdutSmAxSiJ8yXasabZa2umR7LPzYeoVFn4HBmMUnZpYyOGEK6WVYsKtDbIYqYmO/pa7u8M6+8pt3y1UadgZe3neD/rZzS7rXqG3VklZiy9WqViuggCfqEEI4ju7qMJw59x6azJ3t0388leSz7+nVemL2Cq6LHXvA4cqrLWfr1axTX1+CqdiLGN4Cs6nIAfF3ceHjcxRf8HoNBlI8/b15yvb2HIcSA1GnQt2rVKr799luWLFnC1Vdfzbhx4/D29qaiooKff/6ZDRs2EB4ezl133dWX4xWiU7UNTeSU1gDgpFYRFeSjPBfg7caS8cP47GAGAO/uTOEf189okxnU9ul4e8uzi+WdqfkVZtdplEzgup2pPLB4DEO83NpcX64UGIj09+qweb0QQvQ3eoOBfx/bzn+Sdnaa0Qvx8GaEXzAjtMGM8AsmQRvEN1mnlHuMwB/2f82s0KgL2mdnNBr57Z4vKa43/f+nwaDnZFmB8vya8Zfg59bxSgshhOgrnQZ9zs7OvPvuuzz33HN8/PHHvPHGG8pz/v7+XHPNNdx77714eMhfZKJ/SC+oVB4PD/DGRWMZwNw0O14J+jYcOMMfr5rskPvZLFo2tFnemVZQrjxePimKI5nFnMoro65Rx+s/nuK3Sy37ap4yK/riKD+/EEI8+/OPPH/8J4tzl0WOYEbwcEb4BZPoF4Sfa/vPJyOHhHB1zDhu2PouZ6vKqGis5y8HNvPSRVf3eiwfph/hp+a9e20laoO4KX5Sr19bCCGspcvm7G5ubjzyyCM8/PDDZGdnU1lZiZ+fH5GRkf2mkqEQLcyrUMZ2EMDMiA0mNtiX9IIKahp0fHYwo03lSscIeiz39Flm+syD2IRQLXMSQvnVW6YPRm/+mMyv5o/C2721TPip3Na+hY7y8wvRl44W57I9L52ro8cx1Etr7+E4vEa9jpdP7CavtoIhrh4McfM0/dvVgyFuHspjd40zKpUKg9FAra4JD40zapVp+f3ucxm8YBbwjfMP469TL2NSN6s9DvMewt+nLeX6re8C8EVmElfHjOPioXE9/nnyayst9u7dNWI6NydM4dusU5TU13DXyBlopO2AEKIf6DLoa+Hs7Ex0dLStxyLEBTlf1k6lMhV0+fOGA4CpoIt5c/N4B1ne6apR46RWoTcYadQZaNTplaxm2zm4KDGUZzb5cKawkoq6Rt7ekcL9i8Yo1yTntAZ9jvLzC9FXCuuquHbLO9ToGnkreT+fLL6VWN/+0a/TUT1//CeeP/bTea9zddKgUamp0TUCpn1xd4+cydUx43hg56cYm6+bHRLFewtuxknds/3Yc8JiWBE9lk/PHAPgsX2beGXuNUR4+aF1de/WaxiNRn6/5ysqmxoAGO49hN9OuAR3jQv3jp7do/EIIYSt9f+qFUJ0k0UVyk4CmF9Mi1H2rSVll5JRZOphp1JBTLBPh/f0NyqVyqJXn/m+vrZBn5NazX0LRyvnXtl20qLQS3KuLO8UojNvntqnBB3F9TVcu+UdMipL7Dwqx6Uz6Hk/7XC3rm3Q65S5B6horOfpo98z49N/c67W9Pf2EFcP/j37qh4HfC3+NGkRWhdTgJdVXc5lm15l9If/YPqG5zhUlH3e+99LO8S23DTl+J8zl+GukYbrQoj+SYI+MWB0Z3+en6crV0wc3u58xBAv3F26lfjuFzw7aNtQXFVPWY3pG2cPFw1D/Ux9NldOjSas+XFJdT3/22X6kKLTG0jNL1dep6MlsUIMVtVNDbybetDiXEFdNddueYfs6rJO7hJd+TEvncI6U7XgADdPHho3j1sTprJ8+GjmhEYz0i+YEA9vXNoshzQ/1huNyuPnZl1JiEfvv6wLcPfiD5MWtjufU1PBv47+0OW9KeWF/PnAt8rxbYlTmR48vNdjEUIIW3OcT7lCdKFRpyezqLWQS1xw5wHMqtnxfLzvtMU5R8tyebq2b9vQdk9jy75bF40TqxeM4rGP9wPw361JrJoTT3ZJNY06U4PiEF93fNzlG2ohWnyQdpiKxnoAgt29qGisp16vI6+2kmu2vMOGxbcR5ulYf2/Y2wfpR5THv4gZz0Pj5nV4ndFopEbXiMFoxFPjghEjH50+yr+O/khBnSnLd8eIacwPj7/gMV0bO4E6fRM/5qaTVV1GWkUxAPsKs2jQ63B1av8xqV7fxOqfPqFBb/rCLUEbxKMT2wePQgjRn0jQJwaEjKIqdAbTN8Bhfp4WmbC2JkUFMiLMj1N5jlvEpKPlnZbLWy1/nutnxvHct8corqonr7yWT/afYYina+v1oVrbDlgIG6jXN3H/jk85XpLHv2ZdyayQKKu8bpNBz6sn9yjHvx47l2HeQ7jt+//RYNCTXV2uBH7BHr0v9e8ISutraDDocXPS4K5xxlWtOW8ht5yqcp4/8iNfZCQR6O7FS3NW4qZxZmt2qnLNtbHjO71fpVLh5exqce6GuElcFTWGLzNPAPCLmHG9/6HavNdtidO4LXEaALM/e4HMqlIa9DoOF+UwI2R4u3ueOPgdyeWFgGnv4UtzVuKu6fz/OUII0R9I0CcGhK4CnrZUKhWr5sTzyIf7zO7R2mpoNuHVwfLOrnoOurtouPuSkfztC9N+mhe3HOea6bGt13eRGRWiv3o35SDfZJ0C4De7PmfHVQ/gbIVKiV9lniCv1rRywN/Ng6tjxuOucebVeddy548f0GQwkFlVynXfvcPHi24lwN3rgt+zvzhXW8mW7BT2F2ZxqCib7OYG4y1UmAIdd40zbk7OuDlpcNM44+7kjJvG9JFiX0EWeqNpFcHZ6jKu3/oul0WOQNd8bnJgRK8K4rhrXLg2dsL5L7wAs0KiyKwy7XXefS6jXdD3XXYKb6fsV47/PHkxiX7BNh2TEEJYg+zpEwNCWg9bL6yYEm2xh8/RMn2ebq1jr25oyfSVK+c6+nlumZOAb/MSzoyiKt748VSX1wvRn9XpGvlP0k7lOKemgi8zky74dY1GIy+f2KUc35Y4TcnizA+P578X/QJNc+uAtIpirvtuHWX1tRf8vn0hr6aCfxzZxmdnjmFoDsAA6nRNvJd6iGu2vM2UT57l0X2b+DzjeLuAD8AI1Ot1lDXUkV9bSUZVKafKCjhcnMPuc5nsPpepBHwtzlSW8JLZn5WtA7cLYZ4t3n0uw+K5/NpKHtr9uXK8OCKRm+Mn99XQhBDigkjQJwaErrJcHfFxd+Ghy8YCMHF4ABOGB9hqaDbh6WKW6Wte3pl+nkI23u4u3DFvhHJcXFVvdr3WBqMUwnbWpx6iqL7G4tx/knZaBDO9sbfgLCfLCgBw1zhzS/wUi+cvjRzBi3NWom5e4phcXsj1W9dR0Vh3Qe9ra6crirni69dZe3wH9+/8lBXfvsWpsgI+Of0zcz9fy+/2fsXuc5kY29zn5qQh2N0LXxe3dgVWujI9eBgPjp2rzFMLd40zVwwfZYWfyDbMM3uHi3OobTJVENUbDPzfzk8pazD9OYd4ePPPGcukZ7EQwmHI8k4xIHSncmdb9y0aw42z4vF1d0Gtdqz/cbdd3llV10heuSnb4OykZnhAx/uM7piXyMvbTli0bQDJ9AnH0jbL1yKlvIhtOWksjEiwOF/RWMeu/Ax25J/hp/zTlDfU8bdpS7gyaky711iXckB5fHX0OPzcPNpds3T4KBoMOn698zOMQFLpOW7cup73F9yMt4vbhf+AVpZaXsh1361TKmcCHCzKZuFX/213rQpT4LMoPIEpQZGMHBJisWRWbzDQoNdRp2+iXtdEvV5Hna6Jer3pcb2+iQmREfgbTPM21NOXh/d8qdy/dNjIdvv1+pNAdy8StEGklBfSZDBwoCiLuWGx/PfELnafywRMc7R29soOfzeEEKK/kqBPODyDwUh6Qc+DPjC1cHBE5kFfdUOTxc8fHeSDxqnjJP4QLzdumZPAf7edUM75eboS4N3/PqiK/iOrqgyVCiK8/Gz2HkajkfzaSlLKC0kuKyS5vIDkskLKGmrxdnFD6+JGoLsXk4MiKaitUrJ8IR7eXBY5greSTfusXkzawbyhsRwuyuFQag7fpp/iaEkuBqNlDuuRvRuZFxZr0Yi7oLZK2SMIsCrBMstnbmX0OJr0eiWgOVqcywM7P+WtS26w2pxYw6myAq777h1Kmpegujlp0BsNNBksM6IBbp78atQsrowa02VxGie1Gg+1Cx7OnVf7DfT3pqi5B+p1cROpamrg8UNbcHXScPfImVb4qWxrVkgUKc2FWnblZ+Dl7MozR79Xnn9gzEUdFngRQoj+TII+4fBySqupb9ID4O/lhr/XwA9gPMxaNlTXN/Uo03n3/JG8uf0UDc3tGmKDfWWJkujU+tSDPLZvE3qjkUsjE1kz/hIStEEX/Lpnq0r5Ke80yeWFJJcVkFxeqLRIaKe2tR3LxrMnLZ66f/QcFkcm8l7qIRoNeg4V5TDqg79Tq2vq8v2rmhp47eQe1ky4RDn3fvphpdjItKBIRpynQMd1cRNpNOh5dN8mAL7LSSW9oqhXRUps4URpvmnPYfOSRE+NC+vm34ifqzu/2/MVB4qymwOxGfxq1CybZSnvGjmDSyMT8dC44O/maZP3sKZZIVG8mWwq9LUtN42NZ08o/QEnBYbz4Li59hyeEEL0igR9wuH1ZmmnozNv2VDToOvRHAT7enDdjDje2ZECQGKY1iZjFI7v84zjPLJ3o7LP69usZDZnJbMieiwPjZvHMO8hvXrdlPJCLt34crtsU0+FeHhzXdxEXJ00rIwex/vppuq0bQM+FTDWP4yLwmJwVjvx7M8/AvD6qb3cOWI6fm4e6Ax61ps1Y+8qy2duVcIUfso/zbdZyQC8n3aEP05e1OU9mVWlfJmRxDBvP6YHD7dJ24efi3O5Yeu7SiDt7ezK+gU3MSkwAoANl97GydICwjx9GNIHgZgts8TWNj1kGGqVCoPRqGT8AHycXXlxzko0VqgQK4QQfU2CPuHwBmXQ52ZZyCWnpHWvTnfm4OEl4zh6tpiqhiZun5tokzEKx7Y1J0XZs2bOCGw4c4wvMpK4IW4iD4y9iBAPnw5fo8mg5y8HNlPeWMfjUy5T9kB9mH6kw4DP29mVRG0QiX7Byr9DPXyobmqgvLGO9Ipi9pzLZE9BJk0GPU/PWKY0z7539Cy+zEyiRmcqvBHu6cui6ESm+kUyKyRKeW+9wcDGzBOkVhRRo2vklZO7+f3EBXyXk8q5WtOSxAA3Ty6LHNFufJ25IW6SEvR9cuYov5twCS4dNPUG0zLWW7a9x+nKEuVcjI8/M0KGMyN4uFWCwENF2dy0dT1VTQ0A+Lq48d6CmxkfMFS5Rq1SM9o/9ILeZ6DydXFnzJBQfi7Jszj/9+lXOFTwKoQQ5iToEw4vtYftGgYCT1fLlg0WcxCsPe/9Ad7ufPu7pQQGtu69EaLFidJ87t7+sbLUMd43kMenXsYrJ/fwfW4aADqjgXWpB/nw9FFuS5zK6lGz2xW2eDfloNLTzNvZlaemL8VoNLI5O1m55o4R07goNIZEbRBhnl0vNZ4ZEtVpBi7Kx5+Nl9/FibJzjPUPI8p7CEFBPu1+v53Uah4aN497fvoYgDeT9xGnDeQ1s2bsN8RN7DRo68jc0BhCPXzIr62kpL6W73JSWTJsZIfXZlWXWQR8AKcrSzhdWcL61EMARPv4MyN4uFJQpav9c23tLzjLqu/fo7q56qTWxZ0PFq6SAK+HZoZEWQR918ZOYFnUaDuOSAghLoy0bBAOb1Bm+syWd5ZWN3C22JTpU6kgJrjjrIsQ3fX6qb006E0VXiO9tPxv4c3MCo1m3fwb+XTxbUwLilSubdDrePnEbmZ89m/WHv/JomXCx6ePKo+/zEyiXt9EakURZ6vKANMes0cnLmR+eDxDvbQXvLc0ThvIlVFjiPbx7/K1Lh82gsTmfYm1uib+b+dnJJWeA0CtUnFj3KQeva+TWs01seOV4/fTDnd67cGibOWxj7Nrh20QzlSW8F7aIe7bsYErvnkdnUHf4WtVNtbzyemf+TbrFCX1New+l8FN29YrAZ+/mwcfLb5FAr5euHhorPI42sefx6dcZsfRCCHEhZNMn3BoRqPRIuiLHyT95jzNlncm5ZQolQkj/b0sms4L0VN6g4GtOanK8QuzV1gs35waPIxPFt/G9rzTPH10G8dK8gGobmrkH0e+R61Ss3r0bFLLCzlemq/cV9FYz9acVM5UtGa5Lh4aqyzP7EtqlSnb98vtH7V77qqoMQz10vb4Na+LncALx37CCGzPSyevpoIwz/ZfQh0qbA36fjlqJnePnMmR4hz2nMtkb8FZDhdl02AW5KWUF7ItJ43Fke2XYT+463OLrKmTSqUUHAl08+TDRbcQb4WiO4PRzJAo/jBpIafKCnh4/MU9yrYKIUR/1Of/t62srGThwoVUVVVx8mRrFbZt27bxr3/9i6ysLIYNG8aaNWuYN29eXw9POJiiynoq6kzfanu5OROqHRx9k8yXd1bWtRatkCbr4kIdKspWqj0Gu3sxMTC83TUqlYp5Q2OZGxbDN1mneObo96RVFAOmBumr4iez4cyxdvdtOP2zRa+4RRH22096aWQityVOZWtOKsO9hzDOP4xJgREWGZ6eiPDyY3ZoNDvyz2DEtG/xwXHz2l1nnumbHBiBu8aZmSFRzAyJAqBe38SRolzeSN6r7BN8L+1Qu6CvsK6KLWYBH6AEfMHu3ny06BZifAN69bMIk3tGzbL3EIQQwmr6NOirqqpi9erVlJeX4+TUuqQlOTmZBx54AJVKxejRo0lKSmL16tV89tlnxMfH9+UQhYNJKyhXHscG+wya1gPmyzvNxQUPjuWtwna25KQojxeEJ6BWdb4LQKVScfmwkSyMSODiL14is6qUisZ63kjex2cdBH3f56YpgYmTSsUlQ+Os/wN0k1ql5vGpl/P41Mut9prXx05kR/4ZwLS0tW3QV9VYT3JzNUi1SmVRWKWFm5MzM0KGE+bpowR9P+SmkVtdbpGB3JKdohTZ8XZ2pUGvo9GgJ8JLy/8W3EyUj7/Vfi4hhBCOr8/29H399dcsW7aM/fv3t3vu3XffRafT8eCDD/LBBx+wevVqdDod69ev76vhCQeVmm++n09rv4H0MfPqneYGy55GYTvfZbcGfYsiErp1j7PaiQfGzFGO//3zdvKae+v5uborwY3erEH6jODhFo3RB4LFkYnKctWs6nLKGmotnj9a3NokfoQ2GC9n105fa5j3EOaERgOmiqkfpB+xeP6bs61N5B8efzEnr/89W664h++X3SsBnxBCiHb6LOh75ZVXKCsr4/7772/33OHDpk3vU6dOBWD69OkAHDlypN21QphLG4SVO8Fyeae5+FBt3w5EOLSc6nLu2f4Ra3Z/SXVTA6cripXKki3LDrtrRfRYhjWXs9eZFXNZNnw018VOaHe9PZd22oqrk4Zos4DrTJsqnRZLO4Mizvt65gVlPkg/ohR0KW+oY9e5DOW5yyJH4ObkzEi/ENw1svdMCCFEe30W9N1www1s3ryZK6+8st1z586ZqqZptVqLf7ecF6IzlkVcBk/Q5+6iQd3BUtbBFPiKC5NRWcKKb99k49mTvJ9+mPt3bOBbsz1iF4XG4K7pOKPcEY3aiQfGXtTu/MrocSwdNqpdlcruZhEdTaxP6z66tPIii+fMg76WJuldWRSRgH9zG4z82kp+zEsHYGtOqhJYj/MP67BgjBBCCGGuz4K+a6+9luDg4A6fq6+vB8DZ2fQBQ6MxZTHq6ur6ZnCinbVbjnPNC1s4nFF0/ovtKK1gcC7vVKlU7bJ9wb7u+LjLt/yDncFooFGvw2hs21a9VXpFEVdvfltZggnwXU4qz/78o3Lcm6BsRfRYIs32nUV5D2FCwFC0ru4sNHu9UX4hhPeiQqYjiDUrnpJeWaw8NhgNHC7KUY4ndyPoc3HS8IuY8crxe819/L7Jal3a2ZMm8kIIIQavflHb3dXVlbq6OnQ6U1+oln+7u3dvv4efnwcaTfteR7YWGOjd5+/ZF5Jzy3jyC9OSW4MKtv91pZ1HZKll3strGiioMH0x4KJRMykxFI3T4Gk96e3uQlV9a+XOkRH+vfqdHKi/x/2dLeZ9Z84Zrv3ybYrragBwUqlxdlLjrHYy+0dNWUMdNc293My19OZToeKacRMI9Oj5GP8y53Ju++Z/AKyePIegIFO7h/+bNpdNZ00Vm28fP73Pfu/6+vd7YkQENNewya4rV97/RHE+VU0NAIR4ejMxKqJbhadWT72Il0/sBkyB+XOntrM9P115/sbxUwgc0v/+G5a/V/qGzLN9yLzbh8z7hekXQV9QUBBnz56loqKC8PBwysvLAQgJCenW/WVltee/yMoCA70pKqrq8/ftCz8dy1IeH80oorCwst9UxTSf94NnCpXz0UE+lJXW2GtYduHuYvlFR5S/V49/Jwfy73F/Zot5NxqNPLBlgxLwAeiNBvQ6A/XoOrzHQ+PMWxdfz6sn97AtN005PykwHFUNFNX0fIwLA+N5Y9511OgauSp8jPJzjnQLZsPi2yipr2Hx0MQ++b2zx+93kMpTeXyi6Jzy/ltSW5fOTvAPp7i4ut29HfHDjcURiUo/vn8d+EF5LkEbiJ/erd/9Nyx/r/QNmWf7kHm3D5n37ukqMO4XaZGxY8cCsG/fPgClwuekSZM6vUfYjnlFzJoGHUWV9XYcTefM9/MNxlYFbds2yH6+wW1vwVlOlHV/H7TWxZ31829iVmg0L85ZSbxvoPLc4gsssrI4MpEV0WPbfVk0LXgYlw8biZO6X/yvxyaiffxp+amzqsuU7Okhi/187XsfduX52VcxL6x9/8BLZWmnEEKIbuoXmb6bbrqJTZs28eyzz7JlyxaSkpJwdnbmxhtvtPfQBiXzYArgdGEFQb79r7S6RRGXQVi10lOCPmHm9VN7lcc3xU/iqWlL0RkN6Ax6mgxt/m00EOzupVR69HZxY938G/nzgW/wdHblthFT7fVjODx3jQvhXlqyq8sxGI1kVpWSoA3iYKFlU/ae8HJ25e1LruexfV/zXtoh5fzlEvQJIYTopn4R9I0fP561a9fy3HPPkZSURGRkJGvWrCEuzn6Newcz8zYIAGcKK5kR172ltn3JsojL4At4vNws//ONC9baZyDC7s5WlbLFrPLm7YnTUKlUOKtM+/i685VNuJeWNy6+3naDHERifQPIri4HIK2iCG9nVzKqSgFwVTsx2j+0x6+pUTvx9+lLifMN4M3kfVwWOZJRQ3r+OkIIIQanPg/6wsPDSUlJaXd+wYIFLFiwoK+HI9rQ6Q1ktFkz3fa4v0jNL1ceD8agzzzT5+vuQqCPmx1HI+zpreT9tNTqnBsWQ7w2yK7jGexifQL4IddUbOV0RTFVjQ3Kc1ODh+Hm1P1WGOZUKhV3jpzBnSNnWGWcQgghBo+Bu7FC9EpmcRVNeoPFudOFFZ1cbaX3LKrkle9PkFXc/eCyrlFHdqmpEIJapSI6aHAHffGhvv2m2I7oW1WN9XyQflg5vnPEdDuORgDEmLdtqChme15rtc25YTH2GJIQQohBrl8s7xT9h3n2rMWZgsr2F1qJwWDkhpe2klFUxfqdaWz/w3LU6vMHL6cLKmlpQxbp74Wbc9+37LA38+Wdg6lHobD0TsoBqpvbL8T5BnRY8EP0rTizojgp5YXk1rR+cTZX/nyEEELYgWT6hIW2RVwAzhZXoTcYOrj6wuWW1SjLR9MLKjh6tvg8d5ikFZQrj+NDB1+WDyAx1E95PC1GlvMNRgcKs/jXz60l/Fv28gn7Mm/QfrKsgIpGUwXkYHdvEmXprRBCCDuQTJ+w0FHQ16AzkFdWS4S/l9Xfr21m8dtj2UyMCuz4YjMW7RoGaZbryslRlFTXo1apWDk12t7DEX0sv7aSX/74IU3NX8iMHhLCNbET7DwqATDE1QOtizvljXUW5+eFxUhQLoQQwi4k0ycsmFfENF8yaat9fW2DzM1mjeG7Yt5LcDD26ANwdXbi3oWjuWfBqAHd90y0V6dr4pc/fkhRvakR+xBXD16fdx2uTvI9Xn+gUqmIM8v2tZClnUIIIexFPiEMUE16Azf9Zysp+eXcPCueXy0cjYdL13/cBoPRIgi7KDGULcdzAMgorGKeDVpCmQeZAKnnKsgorCQqyKfr+8zaSgzGyp1icPgp7zR/ObgZXxc35oXFMiNkODvyz/BuygEl4HNSqfjv3F8Q7qW172CFhRjfAA6YNWRXAXNCJSMvhBDCPiToG6B+OJnLT8n5APzz65/53+40HrtyEldNjup0eVFuWQ11jToA/DxdmRwdpAR9pwttU8ylbU9AgM3HsrlnwahO72nbVkKCPjEQ7T6XwW0/vE+D3vTf5P7CjrPgf5y0iFkhUX05NNENsW0yfeMChuLn5mGn0QghhBjsZE3YAJWcV25xnFdey+q3d7DsX990WizFcp+cL9Fm2bYzNgj6jEZjh3sIvz3PEk/zthKhWg+83V2sPjYh7OlocS63fd8a8HUkxMObv029nDukRUO/ZF7BE6RVgxBCCPuSTN8AZZ5BU6tUGJr7GxzMKOKypzfxi2kxPLJsAqFaz9Z7zCtihmiJsQj6rL+nr6iynvJaU6l5N2cnGnR6jEY4cKaIkup6/L06bjbeNjgVYiBJLS/kpq3rqdGZ/tsIdvfioXEXs6cgkyNFOYR4+nBL/BQuGzYCZ/Xga1XiKGLaZPqklYYQQgh7kqBvgEo1C4zeuvti9p8u5LUfTtKoM2XIPt53mo1HznL/otHcM38U7i6adsHUsABv5Ti7pIZGnR4XjfU+ZJoHmQmhWlw0Thw4U4jBaGTr8RyundHxhyTzip+DtYiLGJiyqsq4/rt3laqPWhd3/rdwFQnaIG6Mn2Tn0YmeiPDUEuzuRUFdNcHuXkwIGGrvIQkhhBjEZHnnAGQwGEk3C+AmDg/gD1dOYvsflnPpuAjlfF2jjqc3HuWixz/ny0OZlsFUiC/uLhqG+pkygQajkbPF1VYdp3mQGR+q5dKxrWP79njnSzwl0ycGooLaKq7/bh0Fdab9qp4aF9YvuIkE6evmkJzUal6ddy23Jkzl9YuvQyNZWSGEEHYkQd8AlFdeQ61ZQZaWZZLDA31465eX8PEDixgR1trYO6e0hrvf3M6BM0XKuZZgKibYdks82wZvl46LVI63n8pXisq0u8+s4mdcqNaqYxLCHsrqa7lh6zrOVpcB4Kp24s1Lrme8ZIcc2qTACJ6YdjkTAsLtPRQhhBCDnAR9A1DbYKpttc7ZCaFs+f1S/nHddIZ4uba738MswxcV2Br0ZRRWtbvWauMMNhWOaQk26xp17EjJb3dP2yxmvGT6hIOrbmrg5u/fI6Xc9KWLk0rFy3OvkYqcQgghhLAaCfoGoO4sf9Q4qVk1J4Hdf17B3ZeMRKNuDQxHDvVTAkXzCp7WbtuQ2kGvvcVmSzw3H8tuews5pdUdZjGFcET1+ibu+OEDjhbnAqZebv+edRULIxLsOzAhhBBCDCgS9A1AHQVTnfH1cOH/rZzCj39YzrKJwxkR5sfvrpigPB9jo7YNlXWNFFSYilW4aNRK0ZhLx7Yu8dx8LBu9wWBx38mcUuVxbHD7LKYQjqLJoGf1T5+w61yGcu5v05ZwVfRYO45KCCGEEAORVO8cgCyXTWq7dU9MsC+v3DG33flwfy/l8bmK2gseWwvzMUYH+aBxMn3/MGFYAEE+7hRW1lFSXc+hjGKmxrQWskjOKVMeSxEX4agMRgO/2f0Fm7NTlHO/nzCfVQlT7DgqIYQQQgxUkukbgKxZ3dLXrPF5ZV3jBb2WOfM+guZtF9RqFQvHtBY92NymUXtybmumLz5Ugj7heIxGIw9+/zmfnjmmnPvVqFmsHj3bjqMSQgghxEAmQd8AU1xVT1lNA2BZkKW3fDxag74qqwZ95oGp1uK5tks8zZ3KNcv0dTOLKUR/8s+jP/Dy0V3K8Y1xk3h04gJZqiyEEEIIm5Ggb4Axz6DFhviiVl/YB0l3ZyelyEuDzkB9k/6CXq9FahfZyNkJoXi4mFYeny6sVAJEo9HIKbM9fbK8Uzia91IP8fzxn5Tj5cNH8+S0JRLwCSGEEMKmJOgbYFLbtEG4UCqVyibZPvPgtO0yTTdnJ+aNDFOOW5Z4llTXU1ptymK6WyGLKURfMhqNvGAW8F0yNI5/z74KJ7X8NSyEEEII25JPGwOMNffztfBxaw36KqwQ9NU16sgqqQZArVIRHdR+nIs7WOJpHtDGBvtccBZTiL6UVlFEbo3pd9jHxY1X5v4CZ7WTnUclhBBCiMFAgr4BJq0H7Rq6y9qZvjOFlRiNpseR/l64Obf/4Ltg1FCcmoO6Q5lFFFXWWQS08W32AQrR332fm6Y8nj8sHneNSxdXCyGEEEJYjwR9A0y6eWAUqrXKa/q4OSuPK+uaLvj1utNHcIiXm9KqwWiELcezbZLFFKKv/JCbrjxeHJVox5EIIYQQYrCRoG8AqaprJK/c1EvP2UnN8OaG5xfKPNNnjbYN3Q3e2lbxtEUWU4i+UN3UwP7Cs8rxouES9AkhhBCi70jQN4CkF7QGU1GB3krD8wtlvqfP2kFfV8s0Lx0boTz+KTmPExaN2Tu/T4j+Zld+Bk0GAwAj/IIZ6i1fWgghhBCi70jQN4B01fvuQni7my/v7LtMX2SANyPC/ABTu4iS6noANGoVwwOtk8UUoi/8kNe6n++SoXF2HIkQQgghBiMJ+gYQW+1583U3z/T1bE/fF4cyuPWV79mddg4And7AmcJK5fnY84xzsVm2r0V0kA/OVspiCmFrRqPRYj/fxUNj7TgaIYQQQgxG8sl5ALFYNhlqvaDP2713yzsr6xr59bu72Hwsm/vf3oHRaCSzuIomvWmZW4ivOz7uXVcw7Cjok6WdwpGYt2rwdnZlUmD732khhBBCCFvS2HsAwnrSCswbs2ut9rq+vQz6UvLLqW/SA5BXXktqfjlniqpax9iN4G1cpD+hWg/ymwvUmO6T/VAC8moqOFSUzdywWHxc3Gz6Xj/lnealpJ0YjEYC3Dzxd/MkwN2z9XHzvwPdPPFuMxbzVg1zQqOlN58QQggh+pwEfQNEfZOezOaASqWCmGAfq722+Z6+qh4s7zTPPALsTD1HTYNOOY7vRvCmUqlYNCaCd3akKOck6BtcapoaOFNZwgi/YDTNAdPWnBTu/ekTanVNLAyP561LbrDZ+xuNRh7a/TnnaqvOfzFwaWQiz828Em8XNyoa6/gg/Yjy3MWyn08IIYQQdiBB3wCRUViJobnjecQQL9xdrPdH62vWsqGiB5k+8xYLADtT8/FybQ0guxu8LR4rQd9gZDQa+TzjOP/v4LeU1NcS6aXllyNn0mjQ8cSh75Tf9225adQ0NeDp7GqTceTUlHc74AP4NiuZvJp3eHXutdy3YwPpFcUAuKqdmB8uQZ8QQggh+p4EfQNEmg2asrfwNmvZUNWjoM8y07c3rYBwfy/luLt782bFh6D1cKG8thFPV2digiXoG+hyqst5ZN9GiwIoWdXl/GH/1+2uNRiNHCnOZXZotE3G8nNJnvJ4rH8od42YQUl9DcXN/5g/zq4uB+BYST5zPn9BadMA8I8ZVxDkLlVnhRBCCNH3JOgbICwal1s5KPIxW97Zk0xfapugr7y2kfLaUuW4uxk7F40TL946hzd/TOaXi8fgYcUspuhf9AYDb6Xs5+kj26jVdb2U2FmtVoKqA4VZNgv6jhW3Bn2zQ6K5Knpsp9e+l3qI3+/9CiNYBHx/mXIpV8eMt8n4hBBCCCHORz49DxCpNmrXAFhU2Ozunr7aRh05pdWdPq/1cCHAu/vFN+aPCmf+qHACA70pKur+UjvhOE6VFbBmz5ccLc5VzqmAWxOn8sCYi/gq8wSvntxNTk0FK6PHMi14GL/d8xUAB4uybTauY+aZvoCwLq+9MX4SPi6uPLDzUyXoe2jcPO4YMd1m4xNCCCGEOB8J+gYIW/XogzYtG+obMRiMqNWqLu85XVBB85arDsWFaFGpun4NMTjU65tYe2wHLyXtRGdszY7F+wbyzMxlSouD20dM49bEKVQ01uPn6kFWVZly7eGiHPQGA05q63ahMRqNFkHfOP+ugz6AK4aPJtDdi7eT9zM7NJob4yZZdUxCCCGEED0lQd8AoDcYOFNoHvRprfr6zk5qPFw01DbqMBqhpqHJIhDsiHkQOiLMj1N5ZRbPSzEWUa9vYnvuaZ48/B2nK0uU8y5qJ+4fM4fVo2fj4mT5V5RapcbP1QOACC8twe5eFNRVU9XUQEpFISP9Qqw6xsyqUiqbGgDwc3Un3FPbrfumBw9nevBwq45FCCGEEKK3JOgbALKKq2nQmTIkwb7uFtU2rcXH3ZnaRlO7hcr6ngV980cNpaq+kZzSGuWcBH2D1/a8dNalHOCn/DPUtdm3NyUwgqdnLCNOG3je11GpVEwKjODrrFMAHCrM7lbQV9VYz98Of8fmrGRuHzGN+8dc1Om1Fks7/cMkOy2EEEIIh2TdtVDCLiybstsmmDLf11dZe/5iLqnmhWVCfJkdH2rxvAR9g1NmVSm3bPsfm7NTLAI+L2cXnpy2hA2X3tatgK/FlKBI5fGBbuzr21uQyaKNL7M+9RBF9TU8feR7MqtKO73ePOgb7z+02+MSQgghhOhPJNM3AKTmlyuPbRVMWQR93ajg2XaPoVqt4oO9reX34628BLUv6Ax6tuWkUaNrxEPjjIfGBQ+NM+4aZ9ybH3toXHDXOOPc3ERcWPoqM8li3160jz8LwxO4Y8Q0wjx7/rvbst8PTJm+zjTodTx95HtePbkb862mRuCNU3t5fOrlHd73c5tMnxBCCCGEI5KgbwCwDLC0NnkP7x4EfU16AxmFlRZjCtF6tL6WmzND/TytP0gbMhqNPLjrcz7LON6t653Vajw0Lrg5OePn6k6QuxeB7l7MDInimpjxg3aZ4KazJ5XH/5h+BTfGX1iRk9FDQnB10tCg13G2uozCuqp2vfBOlp3jgR2fklxeqJxz1zgrmcYP04/w8PiL8XVxt7jPYDRwvCRfOT5f5U4hhBBCiP5KlncOALas3NnC16xXX+V52jZkFlWhM5jyKWFaD7zcnAnVevLgZWMJ8nHnseUTz1v9s7/55MzP3Q74wNSjraKxnoK6KpLLC/kp/wwbzhzjN7u/4K3k/VYbV3JZAalmwUx/draqlKTSc4CpWMsVw0dd8Gu6OGkYH9C67PKAWbZPbzDwUtJOlmx61SLgmxsaw/bl95GgDQKgVtfE+2mH2732mcoSanSmLziC3L0IkcbqQgghhHBQkulzcEaj0WJPn62WTfYk02feKD7WLAj97dIJ/HbpBKuPzdYyKkv4w76vleNx/mEEuXtRp2uiVtdEra6x+XEjdXrTOUMX/SoeP7SZ8QFDmRgYfkHj2p6Xzo1b1wPwyeJb+321yG+aC64AzAmNxsel+30auzI5MIJ9BWcBU5P2JcNGklVVxq93fcb+wizlOjcnDX+YtIhbEqagUqm4a8R0Ht7zJQBvntrHnSOmozFbltt2aedgzc4KIYQQwvFJ0NcP6PQG/vHVESrrGvnDlZPOWxnT3LmKWqrrTZk3X3cXAn2s80G6Ld8eBH2pfbDctK80GfTct2ODkvGJ9vHno0W34Ons2uk9RqORBoOOuiZTIFjaUEthXTX/PPoDx0vzaTIYuGf7R2xeeg9+bh6dvs75vJt6UHm8JTul3wd9X59tDfouHzbSaq87Jah1X9/rp/byVWYSVU0N1JoVihnnH8YLs1cQ4xugnLsyegx/P7KN4voa8mor+frsKZZFjVaeb1u5UwghhBDCUcnyzn7gi0OZvPhdEut2pvLid0k9ujc133Jpp62yEeaBaFV918s7+2K56YXSGww8f2w7Yz78B5dtfIUXj+/gjFmvOKPRyO5zGVy35R0l4+OsVvPinJVdBnxgaiXg5uSMn5sHQ720jPEPY354PK/MvQbf5uxWXm0l9+3YQHVzD7ieatDr+CnvtHJ8tosKlP1BXk0Fh4tzAHBSqVgUnmC1154UGIGLWYauoK5aCficVCoeGjePzy+7wyLgA3Bzcubm+MnK8Ssnd2M0y9AeK+5ZU3YhhBBCiP5KMn39wJGzxcrj7afyeGTZxG7f21cBlvmevorztGwwX94Z3w+DvryaCu7f+amyJLCsoY7jpfn8/cg2tC7uBHt4o1apOFVWYHHf7ybMv6CMT6S3H/+edRW3/fA+ANvzTzPrs+d5aOw8boif1KOKn3vOZVpksrpqO9AfmC/tnBUSdUEZzrb8XD14btaVvHpyD8nlhTToTf0ko338eWH2Cos9f22tSpjCf5J20mDQ83NJHh+dPsq1sRM4VJTNQbMWEGP8Qzt9DSGEEEKI/k6Cvn7APEhKyimlur4JLzfnzm/o5F5btkGwzPR1HvQZDEbSCywrd/Ynm7OS+c3uLyhvrOvw+fLGunbPOalU3JY4jV+OnHHB778wIoH7x8xh7fEdAJTU1/LY/q95K2U/L81Zyagh3QsutuakWhyfrSrDYDSgVnU/eb/7XAaUq5jhO8zm+9W+zrLN0s4Wy6PGsDxqDHqDgcyqUmp1jST6BZ83kA509+KOEdP5z4ldADxxaAtzw2JYs/tLpbXD/KFx7SqCCiGEEEI4Elne2Q+YZ+v0BiMHM7pfjdGiMbtNM32tQV9Xmb6fUvKoazRlWoZ4uRLgbZs9hj1Vr2/iD/u+5o4fP1CCOrVKxW/GzeOF2StYHJGIq5PldyAalZob4iby05X38/+mXNqjgKorvx1/Cc/PvoowDx/lXHpFMcu+eYMPOqgi2ZbRaGRbrmXQV6/XUVBX3e0x/JCbxrVb3uGaL9/m9VN7uz/4XsivrWR/c1ZVBSyOSLTZezmp1cT4BjDGP6zbmdNfj51LeHOPwLKGOpZseo3UiiIAPDTO/G3aEpuNVwghhBCiL0imz86q6hrJL6+1OLcvvZB5Izpfkmaur5Z3dndP37+/OaY8Xj5xuM3G0xNp5UXcu+MTi+WaYR4+vDhnJVODhwGwInoseoOBkoYaCmqrKG2oJVEbTLCH9TM8KpWKldHjWDJsJG+e2sfzx36iRtdIg17Hw3u+ZH9hFn+bdjnumo4L+qRWFJFdXd7u/NmqUkLNAsmuvJi0U8lkvXxiF7cmTrVZQ/l/Hf1Bea9pwcMIdPeyyfv0loezC09Mu5xbvzctuy2oq1Ke+/2EBYR7ae00MiGEEEII65BMn52lm2XqWuw7XdDBle2VVtdTXFUPgJuzE+FDbPdh2qcbe/r2pJ1j32lTllKjVnHvwtEdXtdXjEYj76cd5vKvX7UI+C6NTGTzFfcoAV8LJ7WaIHdvxviHMTcs1iYBnzk3J2fuHT2br5f8kgRtoHL+o9NHueLr1zldUdzhfW2XdrY4W1XWrfc9WXZO2c8IpsInm7OSezDy7jtZeo4P048oxw+Mucgm73OhFoQncFnkCItzkwLDuSVhip1GJIQQQghhPRL02Zl5pq7F4YwiGpr0Pbo3NtjXpg3Pfbqxp+/5za3Ny38xLcamQej5VDbWs3rHJ6zZ8yV1zQVPXNVOPDltCa/NvRY/V+sVErlQMb4BfHXZXVwdPU45l1xeyOWbXuWrzPbVXLdmpyiPI8yyUN0t5vLWqfbN4d9OsV7D+BZGo5G/HtysZPkuHhrLRWExVn8fa/nLlEvxbM6uuqideGbGMpzU8lekEEIIIRyffKKxs9QOgr4GnYGfs0o6uNpSX+3nA8ugr7Ku/fLOo2eL2X7KVOJerVJx36IxNh1PV2qbGrn+u3V8mXlCORfnG8DGJb9kVXNj7v7Gw9mF52ZdydMzrsC1eZllja6RX/30CX/Y97VSkbK0voZDza0PVMCq+NZMVHfaNpQ11PJZxrF25/cWnCW5rHsZ5u76PjeNnecyAFMxnD9OWmTV17e2ME9f1i+4iRXRY3nrkuuJ1wbZe0hCCCGEEFYhe/rszLz6ptbDhfLmpZN70wuYGtP1h86+7Ifn6apBrVJhMBqpa9TRpDfg7NT6ncG/vzXbyzdpONFB3dtbZm16g4H7dmxQeusB3BA3kb9MubTTPXL9hUql4oa4SYzzD+OX2z9Slmu+nbKfI8U5XBs7gY9PH8XQ3EtuUmAEEwPDlfu7s7zzg7Qj1DcHkKOHhBAfEMSnqaY/u3UpB3hy+lKr/Cw6g54nDm1Rjm+Im+QQQdSUoEimBEXaexhCCCGEEFYlmT47Mw/cfjGtdenbvvTzZ11S88uVx7ZujaBSqSz29VXWtS7xPJlbyuZjrT3NHlhsvyzfXw5uZktO6/LHJ6ZeztMzlvX7gM/cqCGhfLPkbi6NbK1y+XNJHo/u28SR4lzl3MKIBIZ5+ynH51veqTcYWJd6QDm+LXEa94yfpRxvOHOMqsZ6a/wI7DmXSVrznkQvZxd+M26eVV5XCCGEEEL0nAR9dlTfpOdssanMvkoFN86MU547cKYQvcHQ5f19memDNks8zYq5vGC2l++ycZEkhvlhD+8k7+fN5H3K8a9GzeLWxKl2GcuF8nFx47W51/LnyYvRtGkV4aRSsWTYSFbFTybY3Ru35lYTFY31lDXUdvRygKkATEvVTz9Xd5YNH81F4TFKEZkaXSMbzrRf+tkbe80KxayMHkdAP6vYKYQQQggxmEjQZ0cZhZXKUr1Ify/iQ7WE+LoDprYIJ3M7X65XU99EblkNAE5qFVGBtm8ebRH0NbdtSC+o4MvDmcr5/7t0rM3H0RGdQc8zR39QjpcOG8kjE+fbZSzWolKpuGvkDD5ZfCvj/MMY5x/GnyYv4sDVD/HK3GvwdnFDpVIxzHuIck9XSzzfMguIb4ibhLvGGZVKxc1m+wK/M8uSXoh9ha1B3/Q2VVKFEEIIIUTfkqDPjlLN9vPFhWhRqVRMiw1Wzu1L77xJe3phpfI4KtAHF41teqyZ8zZf3tmc6Xtxy3Ga41YuHjmUcZH+Nh9HR/YVZilN10M8vHlu1lVWa6Zub5ODItm05JdsWvJLfjlyJkHulgH+8G4s8UwpL1SKqqhVKlbFT1aeWxAerzzeX5hFY/Oev95q0OsslqFODZKgTwghhBDCngbGp2IHZbE8M9i0PHNaTGvQt7eLfX1pFgGj7Zd2QttMXyPZJdVs2H9GOfdrO2X5AIs+c5dGjMBd49zF1QPLcItMX8dB39vJrS0ZFkckMtSs1UO4l5bI5uM6XZNFEZzeOF6Sp1QbHebtZ/N+h0IIIYQQomsS9NmRedAXH2oK3KabZ/pOF2BsSaO1kZrft/v5oE2vvrpGXvouCZ3BNL6ZcSFKtdHs6jL2nMuk0kpFQc7HaDSyJbs16FsckdAn79tfnG95Z0VjHZ+c+Vk5vj1xWrtrZoREKY93N2cEe2tfYZbyeJpk+YQQQggh7E5aNtiRZSEWLQAJoVqldUNxVT2nCyuJDW4f1KUVlJvda/2g73BRDhvPnqCgtoqi+mr0BgM+Lq0Badq5Ct7fk6Yc3z4/jnUpB/jszDEOFJkqeXpqXLgmdjx3jJhukY2ytpNl58ipMc2lj7Mr00OG2+y9+qPzVfD8KP2o0qA+URvU4R67WSFRfJh+BIBd5zL4v7Fz211jNBq71eNwn1kRl2myn08IIYQQwu4k6LMTnd7AmcL22Tq1WsWU6CC+SzI14N6XXtBx0NdBwGgtBbVVXLPlbaWfWwsV2agC/TEWefPWTyk0GnSohtSijWxk9dH16IyW1UZrdI28lbyft5P38+jEhfxq9Cxs4VuzpZ3zw+NxVtt+f2N/0tXyToPRwNsprUs7b0uc1mHgNtMsUD5UmE29vgk3p9YlsnW6Rq7dso6s6jJujJvE3aNm4uPi1u519AYDB80yfVOl550QQgghhN3J8k47ySqppkFnCpKCfd0tlk6aL/HsaF9fo05PZlGVchwXbN1G6DvyT7cL+ACMGFFHF6OKLKE+PB/1xCzUcUVUulZYBHxOKhXhnr5m98GLSTs6Xap6oTZbLO1M7OLKgWmop6/S1qGgrpraptZ2Gj/kpitLPn1d3FgR3XEPxRAPH6J9TEV4Ggx6DhflWDz/TVYyh4tzKK6v4fnjPzHz0+f5b9IuJYPYIqW8kMqmBgCC3L1smuEVQgghhBDdI0GfnVgUYmmTybOo4Hm6fQXPjKIq9M176cKHeOLhat2iJZY91sbyziU3MHpIiHJOHVqJOrAalZNlEDcxIJzHp17Goat/w54Vv+Z/C27G1ayHXEt1TWvKri7jZJkpMHZROzFvaKzV36O/06idCDcrzHK2unVfn3nfwutiJ3bZpH6W2b6+XW329Z0sO2dxXN5Yx98Of8fsz15gfepBmgx6wLJVw9SgyG4tBxVCCCGEELYlQZ+NnMgp5VQXffYsi7hoLZ4bEzEEdxdTsJRdUq3041PuzS9XHlt7aSdY7sm6MW4S88Pj+XjRrYzwCmt3bZCLDw+Pv5idVz3Al5ffyW2J0whw90KlUnFRWIxFpqelMbg1bc5u7Ss3OzQaL2dXq7+HIzDf19eyxPN0RTHb804DoAJuSZjS0a0K8yWee85lWjyXUt765YOXc2vgWFBXxe/3buTiL17ii4zjFr870qpBCCGEEKJ/kKDPBnannmPBU19xyZNfdtp2wXJPnmWmz0XjxKThAcrxvjavkVpgu8qdBbVVZDQHDa5qJ8YFDAXA28WNRxIvw5Dvg7HGBUO+D6F5cez/xf/x67FzO13GF2mWgcrqonF4TzTqdXx25hirf/qEfx79Xjk/GJd2tjCf/0PNSzPN9/Itikgg0iww7MiM4OHK4yPFORbLRFPKWoO+TxffzpPTlhDk7qWcy6wqZfWODWw8e1I5Ny1Y9vMJIYQQQvQHEvTZwKHMIuXxtqScDq9pG/QZjUYMZvviLJu0WwZ96eZZQisHfeaZmgmB4cryTIAhnu4Ys/wxJA3FmOXPmouno3HqumiKeaBhvuzwQty9/SPu3/kpX2QmUd0cmDipVCyMiD/PnQPXhIBw5fFrJ/ewM/8MH6UfVc7d1kGbhrYC3L1I0JrabjQZDBwoMhVkqWisI6+2EjAtoY3TBrIqYQq7rnqARyYuwLeDgi7ezq4kaoPbnRdCCCGEEH1Pgj4b0Hq0LjEsqW7fq85oNJJmlq3z9FYx74sXmfjxv1ifehCD0dBlMRdbVu4035PVttx++BBPnNSmPVqR/l5cNTmK84n0ag36sq0Q9JXW1bI1J9XiXJiHD3+ffgVB7oO3CfiVUaOZFGgK/HRGAzdvW0+NzhQQx/sGWuzX64r5Es/dzUs8U8tbv8SI9Q1QqqO6a1xYPXo2u1f8H/ePmYO7xtnsdaJwUstfL0IIIYQQ/YG0bLCBAO/WzEdxVfugL7+8lup6U9VDH3dn/nliK6crSwD4/d6NfJ5xnL9OXoJGrUJnMJJ6roLS6nqGeLmhNxhIt+HyTvMiLtPb7MkK8Hbn2Ztm8cOJHO5fPAZnp/N/qDcP+qyxvHNX7hlaysfE+Qbw0kVXM0IbPOgLhmjUTrwwewWLN75MdVMjTYbWrPGtiVO7PT+zQqJ4K9m0LLSlSXtyWeuXDi2ZQHO+Lu78bsJ8bkucyqsn95BbXcFvJ1xyIT+OEEIIIYSwIgn6bMDfqzXo6yjTZ56pCxpm4Me8dIvn9xac5YpvXyVkRCg5J5wAFftPF3LpuEhySmuobzJVSgzwdsPP03qFS8rqa5WCHRqVmkmBEe2uuWZaDNdMi+n2a1p7eefOnDPK4/nh8Yz0C+ni6sFlmPcQnpi6hF/v+kw55+Psysrosd1+jenBw1FharNxrCSPqsZ6ks2KuHQU9LUIcvfmD5MW9WboQgghhBDChmT9lQ2cL9OnBH1OBs75ZivnRw8Jwak5I9Og15HvlY16dB54NChLPNvuBdQbDHx25hgvn9hFVWP79+qJ/WZNtcf4h+Lh3Hl5/+4yL+SSW12B3mDo/OJu2JnbGvRND5bqkG2tjB7L8uGjleNrYyfg2YOKplpXd0Y1t+fQG43sL8yyCPpG+Mk+PSGEEEIIRyOZPhs4f6avHADV0DLqMDWyDnTz5MNFt5BdVc7De74gqdTUF03l2Yh6dB5fFBj4nW68RX+/kGBnrt78FgeKTIHj12dP8cHCVb0O1rraz9db7hoXgty9KKyrRmc0kF9badFTrieqmxo4UpALmFoQTA6U6pBtqVQqnp5xBf5unjQZ9L1aZjkrJEr5/dt1LsOicmdXmT4hhBBCCNE/SabPBnzcnZX9bjUNOmobdRbPp56rAPdGVCGVyrk/T7kUXxd3RvuHsvHyu3hk4gJc1aaYXKWCIq9zLPzqv3yfn4IqoApVRCnf6HYrAR/A4eIcfvXTx+iaG2X3lHnlTmtm0SI6aRzeUwcLs9E3Vzgd4ReM1tX9Qoc2IHk6u/LXqZfx1PSlXTZj78xMs6IvX2WeoLyxDjD15xvqad09pEIIIYQQwvYk6LMBlUqFv5dZBc82SzzTzlWg8q+mpbbG7JAoiyV5GrUTq0fP5rtl9+Beb9kLbY/xOOqYYtRhFTQZTcGd2qxIx7bcNH63dyNGo5Ge2Jl/huOl+abxY90smrWKudgiEynamxoUqSwzzq9t/WIiQRs06AvmCCGEEEI4Ign6bCTAuzULZb7Es7S6npLqelTeDcq5m+Ind/hhOtongJU+szBk+GPUd/xhO1EbxKbL7+L+MXOUcx+mH+H1U3u7Nc782kru/eljrvtuHYbmQHGkX4hVs2jmxVwupG3D3uYWAmAqOCJsw9vFjbH+Ye3Oy9JOIYQQQgjHJEGfjQzpJNOXdq4CVEbwbA36JgaG05kZcSEYC30wHAvHq2oIxipXDCWeaAr9eH7WVWxa8kvG+Ifx2/GXcE3MeOW+tcd3UNfcp60jTQY9L5/YxdzP1/Jl5gnlvJezi9XL7Ztn+s42Z/q+zEjixq3vsq1Nz73O1OmaOFqSqxxPC5L9fLY0s4O+ftJsXQghhBDCMUnQZyOdZfrSCpr38zmZsmpDPX0J62Kf1LSY5g/ajRoqTvpiOBmGMT2IUcZYVsaMw9WpZd+fin/MuILw5tcqbajl/bQjHb7mrnMZLP7qZZ449B21uibl/JVRY/hx+X3MD4/v3Q/dCYvlndVllNbX8Otdn7E97zQP7f4cg/H8FT2PFOcovedifQMIcPc6zx3iQpg3aW+R4CeZPiGEEEIIRyRBn42Y7+kzb9uQml+Oyrv1eHIHvfDMhWg9GB7g3e58R03ZndVO3D1qpnL8ysndNJkVdTlXW8nqnz7h2i3vkFpRpJyP9w3ko0W38OKclYR4+JznJ+u5YRbLO8vZdPYkjc3jKqmvJbemorNbFeZFZqYFyX4+W5sSGImz2vKvh0RZ3imEEEII4ZAk6LORTjN95yrAbD/f5KCugz6AabHtP2zHhWg7vPa62An4u3kAkFtTwRcZx2ky6Hn15G7mfv4iX2QmKdd6alz446RFbL7ing6X81lLsLs3LmonAIrra3g//bDF88lmLQE6s7dAirj0JQ9nFyYEtC47DnTzxN/N044jEkIIIYQQvSVBn4101qA97VwFKq/uZ/rAbImnmY4yfWDqi3dH4nTl+Llj27l04yv89eAWasz2+C0fPpofr7yPu0fNxLk5ILMVJ7XaotT/sZJ8i+eTywu6vP9EaT57CzKVY2nK3jdmmC3xlCIuQgghhBCOq18FfU1NTTz55JNMmzaN8ePHs3r1aoqKis5/Yz/U0fLOmvomcmsqULmaljZ6aJwZ4Xf+4hjTY9tfE99J0AewKmEKns392c5WlZFS3ppJi/MN4MOFq3jpoqsJtcFSzs6YV/Bsq6tMn95g4Ld7vkLfXFn04si4LvdACutZPny0ssRzcWSinUcjhBBCCCF6S2PvAZh79tlneeeddwgKCiIwMJCtW7dSUlLC+++/73D9wTpa3pleWGmR5ZsQEI6mG1m24YHeBPm4U1hpapLtqlET4d95IROtqzs3J0zm5RO7lXMeGmceHDuPO0ZMw8Wp7//Yh3l1EfR1kel7O2U/P5fkAeCqduKF+Suhd73nRQ/Fa4PYvPQeiuqqLbJ+QgghhBDCsfSbTF9DQwMffPABGo2GTz/9lC+++IKoqCiOHDnCzz//bO/h9VhHmb7U/HLL/XzdWNoJpsqc5tm+mGBfnNRd/9HdPXKmksm7Ytgoflx+H78aPcsuAR9ARJugz7xIyOmKEhr1unb35FaX848j25Tj+8deRPyQQNsNUrQTrw1iVmg0alW/+atCCCGEEEL0UL/5JJecnExtbS1RUVEEBgbi5OTE1KlTAThypOPWA/1Z20yf0Whst59vUjeKuLQwD/oSQrXnvT7Q3YsdV93Poat/w3/n/sLuSyLbLu+cFxZLhJcWAJ3RwOnKEovnjUYjj+3/WmkpEe8byL2jZvXJWIUQQgghhBhI+k3Ql59vKu6h1WqVcy2PW55zJJ6uGlw1pumtb9JT26AjuaAEPFuLqUzqoil7W7+YFsPE4QGEaT345SUju3WPm5MzwR7t2z3YQ9vlncujxlgUB0kus1ziuSnrJFvNGrf/Y8YVdstSCiGEEEII4cj6zafo+npTBkyjaR1Sy+OW5zrj5+eBRmPbCpQdCQzsOqAK8vUgu6QaAKOrhpTKAlTNcU60dwCxQ7tfETEQ2P/0dRiNRofb3wgwyccZjVqNzmDAQ+PCDRMmkdVQrgR2WY3lynyW19fxl4OblXvvHDuDy0eNUo7PN++iZ2Q+7UPmvW/IPNuHzHvfkHm2D5l3+5B5vzD9JuhzdTXtgdPrW6t06HSmfV5ubm4d3tOirKzWdgPrRGCgN0VFVV1eo/VwIbt51WLS6UJy1eeU5yYHhp/3/oHmsYkLeT/tMKvHzKa2vJFIV63y3JG8HGU+Htm7kfyaSgCC3L14cORFynPdmXfRfTKf9iHz3jdknu1D5r1vyDzbh8y7fci8d09XgXG/CfqCgkxZr/LycuVcy+PQ0FA7jOjCme/r+zz5JARUK8dXx46zx5Ds6q6RM7hr5AzlOLGD5Z37C87ybupB5fxfp16Gr0vrPAohhBBCCCF6pt/s6RsxYgQuLi5kZGRQWFiIXq/n4EHTh/9JkybZeXS901rB08jnRa2BTECTPzNDouwzqH4k2scfTXNVyJyaCkrra/j93o3K8wvD41kS2b39i0IIIYQQQoiO9Zugz8PDg6uvvpqmpiZWrlzJ8uXLOX36NBMmTGDs2LH2Hl6vBHiblqWqgqqodqoBwKhXscBn8GX5OuLipCHGN0A5fnDX56RWFAGmvoJPTL3cIfcvCiGEEEII0Z/0m6AP4JFHHuGWW26hsbGR7Oxs5s+fz9q1a+09rF7z93IDjR5VRJlyzpjny4SwEDuOqn8xX+K5LTdNefzbCfMZ2tzSQQghhBBCCNF7/WZPH4CLiwuPPvoojz76qL2HYhUB3m6oQitQaQwAGOs1GPN9iQvR2ndg/cgIv2C+yEyyODfOP4zbEqbaaURCCCGEEEIMLP0q0zfQuLqpUAVXKseGrCFgVBMXYt9G6f1Jop9l2wonlYqnZ1yBk1p+NYUQQgghhLAG+WRtQ3sqU1A5GQEw1jpDmQeB3m74ebqe587Bw7xBO5gqfI4a4pjVWoUQQgghhOiPJOizkeqmBr7KO64cG/O0gEqWdrYR7qklrrmYS5T3EB4aO8++AxJCCCGEEGKA6Vd7+gaS91IPUdVUDzTv5SvxBJClnW2oVCo+XHQLP+amc8nQODycXew9JCGEEEIIIQYUCfpsoF7fxKsndyvHxjxfwNR6QIK+9oLcvbkmdoK9hyGEEEIIIcSAJMs7bWBrdioFddUAqHUajMXeynPxsrxTCCGEEEII0Yck6LMB84biwTVhYGw9lkyfEEIIIYQQoi/J8k4buDxyBC/MXoEK+OTbAnLIA8DbzZlgX3f7Dk4IIYQQQggxqEjQZwMqlYoV0WMB2O69UzkfF+JrkQUUQgghhBBCCFuT5Z025u/lpjyWpZ1CCCGEEEKIviZBn41NigpUHl+UGGbHkQghhBBCCCEGI1neaWOXjo3k5dsvwmA0snxilL2HI4QQQgghhBhkJOizMbVaxfJJEuwJIYQQQggh7EOWdwohhBBCCCHEACZBnxBCCCGEEEIMYBL0CSGEEEIIIcQAJkGfEEIIIYQQQgxgEvQJIYQQQgghxAAmQZ8QQgghhBBCDGAS9AkhhBBCCCHEACZBnxBCCCGEEEIMYBL0CSGEEEIIIcQAJkGfEEIIIYQQQgxgEvQJIYQQQgghxAAmQZ8QQgghhBBCDGAS9AkhhBBCCCHEACZBnxBCCCGEEEIMYBL0CSGEEEIIIcQAJkGfEEIIIYQQQgxgEvQJIYQQQgghxACmMhqNRnsPQgghhBBCCCGEbUimTwghhBBCCCEGMAn6hBBCCCGEEGIAk6BPCCGEEEIIIQYwCfqEEEIIIYQQYgCToE8IIYQQQgghBjAJ+oQQQgghhBBiABtwQV9RURGPPPIIs2fPZtKkSdx88838/PPPyvPbtm3j8ssvZ/To0SxZsoQff/zR4v7jx49z++23M3nyZGbNmsVDDz1EQUFBu/fR6XQsXryYhIQEzp07d95xHT58mBUrVjB69Gjmz5/Phg0bOrwuKyuL0aNHs3Dhwp794HbkqHOemZnJ/fffz/Tp05k2bRp33303Z86c6d0kWJmjzunp06e56667GD9+PBdddBGPP/44tbW1vZuEPuaoc27uiSeeICEhgbVr13b/B7cDR53rXbt2kZCQ0O6f3bt3924i+pijzrvRaOT1119n/vz5jBs3juuuu46kpKTeTUIfcMR5Xrt2bYe/247w90kLR5x3MH0Wueeee5g2bRrTpk3j3nvvJTs7u3eT0Mccfc6nTp3K9OnTeeKJJ6ivr+/dJDiQAdWnz2AwcO2113Ls2DGGDx+OVqvl6NGjeHh48MUXX1BbW8vKlStRqVSMHj2apKQkjEYjn332GfHx8eTn57N8+XIqKiqYMGECZWVlZGZmkpCQwCeffIKLiwsAjY2N/O53v+Prr78GYPv27YSEhHQ6rsLCQi677DJqa2sZO3YsKSkp1NXV8dprr3HRRRcp1xUUFHDHHXeQlpZGZGQk3333nW0nzAocdc6rq6tZvnw5OTk5jBgxAqPRSHJyMoGBgWzcuBGtVtsX09chR53T2tpaFi1aRFFREePGjaOoqIi8vDwWLlzIiy++2Cdz11uOOufmDh48yM0334zBYOC+++7j/vvvt92EXQBHnuvXX3+dZ555hlGjRlm81gMPPEBiYqINZ+3COfK8P/fcc7z88stotVpiYmI4dOgQ/v7+fPvtt/j4+Nh+8nrAUed506ZNbNq0yeKeXbt2UV9fz9q1a1m0aJHtJs0KHHXeGxsbWbJkCVlZWcTExODm5saJEyeIjo7mq6++QqPR9Mn89Yajznl5eTlLliyhuLiYKVOmcPr0aUpLS1mwYAEvvfRSn8ydvQyoTN/Jkyc5duwY4eHhbNq0iQ8//FD5g//qq69499130el0PPjgg3zwwQesXr0anU7H+vXrAfjmm2+oqKhg2bJlfPDBB3z11VeEhISQkpLCsWPHANi9ezcrVqxQfvm645NPPqG6uprrr7+eDz/8kL/+9a8AvPPOO8o17733HsuWLSMtLc2KM2J7jjrnu3btIicnh8mTJ/P555/zxRdfKIFK22+i+pqjzunRo0epqqpi4cKFfPTRR3zwwQcAbN26lZqaGmtOkdU56py3qK+v57HHHsNgMFhpRmzHkef61KlTAPz2t7/lP//5j/JPfw/4wHHnvaKigjfeeAO1Ws3777/P//73PxYvXoyzszPHjx+38ixdOEed5yVLllj8Tl9zzTXU19ezYsWKfh/wgePO++nTp8nKyiI8PJwvv/ySTz/9lClTpnDmzBnS09OtPEvW5ahz/vnnn1NcXMxNN93E+vXr+fzzz/Hw8GDr1q2cOHHCyrPUv/TfrxB6ISgoiGeffRZXV1fl25GAgAAAysrKOHz4MABTp04FYPr06QAcOXIEgNmzZ+Pn50dMTAwALi4u+Pr6cu7cOUpLSwFYv349GRkZPPTQQzz77LPdGtf53hdM32Q6OTlx11138dprr/VyBvqeo875yJEjeeaZZwgMDFTu8ff3V8ZtT446pzNnzuTIkSPU1dUBUFxcDICnp6fyjV1/5ahz3uK5554jMzOTESNGKIFJf+XIc33y5EnA9EXGhx9+SFxcHKtWrcLLy6s3U9GnHHXeDxw4QFNTE1FRUURHRwPwwgsv9HYabM5R59lcXV0df/3rX/Hy8uLhhx/u4QzYh6POu1arRaVSASj/NhqNqFSqfv/3iqPO+dmzZwGIi4sDIDg4mISEBI4cOcLevXsZNWpUr+bDEQy4oG/JkiXKcWlpqfLtwPjx45U1vS1L91r+3bI+OD4+nvj4eOX+AwcOkJKSglqtZuzYsQBceumlrFmzhqioqG7/Ara8ftv3rampoaqqCm9vb+6//36WL19OSkqKwwV9jjjnERERREREKNdnZGSwc+dOZdz25Khz6u3tjVqtxtPTk6eeeoqPPvoIV1dXHn/8cZydnXs+EX3Ikef88OHDrFu3jsWLFxMXF+cQQZ8jzrVGoyEzMxOAd999V7lvy5YtfPzxx/I7jm3mvWVvk6enJ7/5zW/Ytm0b0dHRPPbYY0yaNKmHs2B7jjrP3t7eyrWffvopubm53HnnncqXof2do857aGgoa9as4bnnnmPZsmXK8s67776b8PDwnk9EH3LkOQeUfcG1tbVkZWUBkJeX1+2f3xENqOWd5iorK7nzzjspKSkhJiaGxYsXK5s0W/7n3PLNREtmwtypU6e47777AFixYoWyfnjZsmVERUX1aCwt79vyfuYfDlre+5ZbbrHrPjJrcLQ5b5GXl8edd95JY2MjM2bMYMKECT16L1ty1Dndtm0btbW1aLVa9Hp9j97H3hxpzhsaGnj00Ufx9vbmT3/6U49euz9wpLmurKzk4osvZsGCBWzZsoWtW7cyfPhwTp06xUcffdSj97I3R5r3lvdPSkpi3759jBgxghMnTnDnnXd2q6CDPTnSPLcwGo2sX78etVrNTTfd1KP36C8cbd51Oh0A6enpJCUl4ebmpmTMHIUjzfny5cvx8PDg448/5rrrrmPp0qWUlJRY3DtQDahMX4vy8nJuv/12Tpw4ga+vL88//zzOzs64urpSV1en/AfW8m93d3eL+0+cOMHtt99OeXk5o0aN4tFHH+32e69bt469e/cqxzfffDOurq4AyoffpqYm5fm27+2oHHXOc3JyWLVqFbm5uQwdOpSnn366hz+57TjqnILpm+KioiJuuukm1qxZw/DhwxkzZkwPfnr7cLQ5//e//01GRgZ///vfHe5DgqPNtbe3N//5z38sXueaa67h6aef5vDhw9x44409+Ontx9HmveV5jUbDhg0bCA4O5tFHH2XDhg188cUX3H333b2YBdtztHlu8fPPP3PmzBkmTJigZEQciaPN++HDh3n22WcZNmwYb775JkajkTvuuIMnnniCiIgI5s2b16t56EuONufe3t689dZb/O1vfyMtLY2ZM2cSFxfHjz/+OGA+k3dmwGX6ampquOOOOzhx4gRarZa3335bWbcbFBQEmDaGg+kXFbCoApSenm7xy/fmm2/i6enZ7fc/efIk27ZtU/7Jz8/v9H29vLwsllQ4Kked88LCQm655RZyc3MJDw9n3bp1yn325qhzWlpaSkVFBT4+PsTExDBz5kyMRiP79u3r/WT0EUec882bNwPw+9//noSEBKVK6osvvsgll1zSy5mwPUec65qaGlJTUy3aurTsVW35MNPfOeK8twQeWq2W4OBgAOULpP6a6XPEeW6xa9cugHbVgR2BI877oUOHAFiwYAHh4eFERESwYMECoPXPoj9zxDkH0/LTjz/+mEOHDrF27VoaGxsBiIyM7OVMOIYBF/Q99thjJCUl4e3tzTvvvMPIkSOV51rWCLd8AN2/fz+Asi+gpqaGX/3qV5SXl5OYmMjbb7/d4yWXf//730lJSVH+WbFiRafvO3HixN7/oP2II865Xq/ngQceICcnh9DQUNavX9+v1s874py+8847zJgxQ6mU1dTUpOwvc4QslCPO+axZs5g/f77yT8symKioKGbNmtWbaegTjjjXu3fv5oorrmD16tU0NjZiNBrZvn07YP99wN3liPM+efJk1Go1JSUlSnXr06dPA/33A5ojznOLlucdYWVGW444776+voCpX11LB7Xk5GQAi0Jz/ZUjzvmePXuYP38+DzzwAGDqNXj06FHAVFxmIBtQffqOHTvGL37xCwCGDh1qUUZ71qxZjBo1iuuvvx4nJyelZwjAZ599RlxcHK+99hr//Oc/ARg9erTyrSLArbfeqlQCapGQkACcv2dITk4OS5cupaGhgXHjxpGcnExdXR2vv/46c+bMsbh23759rFq1ymH69DnqnH/99dc8+OCDAMTGxjJs2DDl3iuuuILLLrvsQqblgjjqnBYVFbF8+XJKSkoYO3YslZWVZGZmMnz4cD7//PN+vWzCUee8rbVr1/Liiy/26z59jjrXDQ0NrFy5Uumj6unpyalTpwgLC2Pjxo09+nbaHhx13gH+9Kc/8eGHH+Lj40NiYiIHDhxAq9Xy9ddfM2TIECvMjvU48jyDKeOUnZ3Njz/+6FDLOx113s17xsXHx6NWq0lOTsbb25uNGzd2+dr25shzvmjRIioqKpg4cSLZ2dkUFRWxcuVKnnzySetMTj81oPb0bdmyRXmcm5tLbm6ucuzn58eNN97I2rVree6550hKSiIyMpI1a9YoqWjzICspKUn5BQVYvHhxr8cVHh7OG2+8wZNPPklSUhJBQUHce++9HX5oczSOOufm75uenm7RD2f06NG9fl9rcNQ5DQwMZN26dTzzzDMcPnwYV1dXVqxYwZo1a/p1wAeOO+eOyFHn2tXVlddff52nn36aPXv2UFxczMUXX8xjjz3W7wM+cNx5B/jjH/+Ij48Pn332GSdPnmTWrFk88sgj/S7gA8eeZ0ApaOHn59fr97IHR513rVbL+++/z7PPPsu+ffvQ6XTMmjWLNWvW9OuADxx7zv/zn//w1FNPceLECYYMGcLq1au59957e/2ejmJAZfqEEEIIIYQQQlgacHv6hBBCCCGEEEK0kqBPCCGEEEIIIQYwCfqEEEIIIYQQYgCToE8IIYQQQgghBjAJ+oQQQgghhBBiAJOgTwghhBBCCCEGMAn6hBBCCCGEEGIAk6BPCCGEEEIIIQYwCfqEEEIIIYQQYgD7/wpIzSYor1LHAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4UAAAHnCAYAAAAPc/jYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOy9d7wcV3n//5nZfnu/6sVFkmXZsizLkiwMBgdsbFoInRAcmxIICabGppoWAqEGYvKlJYaE+sOmg7GBQNwwtmWQbclFsmXJ6uVKt2+b3x97d/ac2TMzZ2bOmbJ73q/Xfb12926ZnZ05c57zfJ7PoxmGYUChUCgUCoVCoVAoFG2JHvUGKBQKhUKhUCgUCoUiOlRQqFAoFAqFQqFQKBRtjAoKFQqFQqFQKBQKhaKNUUGhQqFQKBQKhUKhULQxKihUKBQKhUKhUCgUijZGBYUKhUKhUCgUCoVC0caooFChUCgUieNZz3oWVq5caf6tWbMGF198MT7xiU9gYmICALB3717qOStXrsSqVatw7rnn4uUvfzluv/125nt/9atfxcqVK/GVr3yFevyf//mf8axnPavp+a961auwcuVK3HfffdTjN9xwA9atW4dSqYRrrrmG2o4zzzwTF1xwAd72trdh9+7dTe9ZLBbxn//5n3jhC1+ItWvXYuPGjbjyyivxu9/9znzOiRMncMYZZ+DGG2+kXnvnnXdi5cqVuPLKK6nHDcPAxo0b8f/+3/8z983b3/525j5YuXIlfvSjHzH/p1AoFIrWQwWFCoVCoUgkr3/963Hbbbfhtttuw89//nO84x3vwM9+9jO87nWvQ7FYNJ93/fXXm8/7/e9/j69//evI5XJ405vehKeeeqrpfX/4wx9i2bJl+P73vw+yle+mTZvw1FNP4eDBg+ZjExMT+NOf/oR58+bhtttuo97n3nvvxYYNG5DJZAAA5513nrkdv/rVr/DZz34W+/fvxyte8Qrs2bPHfF2xWMRVV12Fr33ta/jrv/5r/PSnP8UNN9yA1atX401vehO++MUvAgB6e3txxhlnNAWjt912G+bNm4c//vGPmJmZMR9/9NFHMTY2hs2bN5uP/exnP8Ott97qab8rFAqFovVQQaFCoVAoEklHRweGh4cxPDyMJUuW4LLLLsOXvvQl3H///fjBD35gPq+3t9d83sjICM455xx84hOfwOzsLH79619T7/nnP/8Zjz76KN71rndh9+7duOuuu8z/nX/++UilUlQQdtddd6G3txcveclLmEHhBRdcYN7PZDLmdixcuBAbN27EV7/6VWSzWXzmM58xn/fv//7veOihh/Dtb38bL33pS7F48WKsWrUK73znO/GhD30IX/ziF/HHP/4RALBx40Zs3bqV+tzbb78dV1xxBTRNw913320+fs8996C3txdr1qwxH1u8eDGuu+46nDhxwtO+VygUCkVroYJChUKhULQMZ555JtavX4+f//znjs/LZrMAgHQ6TT1+0003YdGiRfiLv/gLLF26FN/97nfN/3V1deHMM8+kgrDbb78dmzdvxgUXXIBt27ZhbGwMAPD444/jyJEjVFDIoqurCy9+8Yvx61//GrOzs6hWq/j2t7+NF7/4xVi8eHHT81/60pdi2bJl+O///m8Atezlzp07cfLkSQDA0aNHsWPHDjzzmc/E+vXrqUD13nvvxaZNm6DrjUv/u971LpRKJXz84x933E6FQqFQtDYqKFQoFApFS7FixQo88sgjtv8/evQoPvKRj6CjowMXX3yx+XixWMTPf/5zPOc5zwEAPPe5z8Wtt96KY8eOmc/ZtGlTU1C4ZcsWrF27Fh0dHbjjjjsA1LJyw8PDWLFiBdf2zs7O4oknnsDjjz+OEydOYN26dbbPP//8881t2LBhA9LptHn/9ttvx4IFC7Bs2TJs2bKlKSgkpaMAMDg4iGuvvRY33XQTfv/737tuq0KhUChaExUUKhQKhaKl6OnpMc1mAOCqq67CunXrsG7dOpx99tm46KKLMDY2hv/5n//B6Oio+bxf//rXGBsbw3Of+1wAwGWXXYZSqUQZuWzevBnbt2/HzMwM9u7di927d2PLli1Ip9PYuHGjGYSxAjA7ent7AdTqE+syzv7+ftvn9/f3m4FqR0cHzjrrLCoo3LJlCwBgy5Yt2LlzJ/bv34+9e/di//795v9IXvSiF+Giiy7CBz7wAWq/KRQKhaJ9UEGhQqFQKFqKyclJdHd3m/c//vGP44c//CG+/e1v49JLL0VfXx/e/OY3Y/Xq1dTrbrrpJixcuBBnn302gJoD52mnnUYZzpx77rnQNA3btm3DbbfdhtNPP90MLLds2WLW8N1zzz2u0tE69UCsp6cHfX191GMsTp48iYGBAfP+pk2bzDrHO+64wwz8Vq1ahcHBQfzhD3/APffcg4ULF2LJkiXM9/zwhz+MiYkJfPKTn+TaZoVCoVC0FiooVCgUCkVL8eCDD+LMM88074+MjGDp0qVYtWoVPvGJT+DMM8/E3/3d3+GJJ54wn3P48GHcdttt2LdvH1avXm3+7dy5E0888YRpOJPP53HOOefg/vvvxx133EEFfhdccAH27NmDbdu2Yc+ePdxB4YMPPoiOjg4sW7YMS5cuxfDwMO69917b599zzz0455xzzPubNm3Ctm3bsGPHDhw5cgSbNm0CAGiahs2bN+Oee+7Bfffd57g9o6OjePe7343vfe97lLmOQqFQKNoDFRQqFAqFomXYsWMHtm7diuc973nM/2uaho9+9KPIZDK45pprzAzgj370I1QqFXzlK1/BD3/4Q/Pv29/+NjKZDL73ve+Z77Fx40Y88MADuOeeeyg55vLly7FgwQJ861vfwqmnnkpJU+2YmprCj370I1x66aXIZDJIpVL467/+a3zve99j9i/88Y9/jEcffRSvfvWrzcfWrVuHarWK73//+1izZo2ZbQRqger27duxdetW1yD1ZS97GTZv3oz3ve99rtutUCgUitZCBYUKhUKhSCRTU1M4fPgwDh8+jD179uCHP/whXv/612PDhg14wQteYPu6oaEhvPvd78bWrVvxrW99C0CtN+HmzZtx4YUXYsWKFebfunXrcNlll+GWW24x6/g2bdqE3//+9zh58iQ2bNhAvfcFF1yAX/7yl8wArFQqmdu7b98+s3VEqVTC1VdfbT7vda97Hc4//3y8+tWvxg9+8APs2bMHjz32GL7whS/gPe95D97ylrdg48aN5vOz2SzWrVuHG2+8selzt2zZgkcffRS7du0yM4hOfOQjH8HRo0ddn6dQKBSK1iLt/hSFQqFQKOLHV77yFXzlK18BAHR2dmLhwoV41atehSuuuAKpVMrxtX/1V3+Fn/zkJ/jMZz6DlStX4tFHH8Vb3/pW5nOvuOIK/OhHP8JNN92Eq666CmvXrgVQqy/s6Oignrtlyxb8f//f/8c0mbnnnnvwtKc9DUAtkBsdHcXTnvY0fPazn6Wyiul0Gtdffz2+973v4Vvf+hY++tGPIpvNYs2aNbj++uvx9Kc/vem9N2/ejDvvvNN8/zrz5s3DwoULkc/nqTpEOxYtWoR3vOMd+MhHPuL6XIVCoVC0DppR184oFAqFQqFQKBQKhaLtUPJRhUKhUCgUCoVCoWhjVFCoUCgUCoVCoVAoFG2MCgoVCoVCoVAoFAqFoo1RQaFCoVAoFAqFQqFQtDEqKFQoFAqFQqFQKBSKNqZtWlIcPjwe+mf293fg+PGp0D+3nVH7XCxqf4aP2ufhofZ1+Kh9Hg5qP4eP2ufRoPa7d4aHu5mPq0yhRNJp5z5ZCvGofS4WtT/DR+3z8FD7OnzUPg8HtZ/DR+3zaFD7XRwqKFQoFAqFQqFQKBSKNkYFhQqFQqFQKBQKhULRxqigUKFQKBQKhUKhUCjaGBUUKhQKhUKhUCgUCkUbo4JChUKhUCgUCoVCoWhjVFCoUCgUCoVCoVAoFG2MCgoVCoVCoVAoFAqFoo1RQaFCoVAoFAqFQqFQtDEqKFQoFAqFQqFQKBSKNkYFhQqFQqFQKBQKhULRxqigUKFQKBQKhUKhUCjaGBUUKhQKhUKhUCgUCkUbk7igsFQq4Z//+Z+xceNGnHPOOfj7v/97HD58OOrNUigUCoVCoVAoFIpEkrig8DOf+QxuuOEGZLNZLFq0CLfeeiv+4R/+AYZhRL1pCoVCoVAoFAqFQpE4EhUUzs7O4jvf+Q7S6TRuvPFG/OhHP8Ly5cuxdetW/OlPf4p68xQKhUKhUCgUCoUicSQqKNyxYwempqawfPlyDA8PI5VK4fzzzwcAbN26NeKtUygUCoVCoVAoFIrkkY56A7ywf/9+AEBfX5/5WP12/X9J4cTD27Ht4x/F4HkbcMZbrmY+5+QjD+NPH7sOU0/trT2g6Vh46WVY845/8v2544/vwn3vfTdmDh2ce08NQ+dvwlnvfi+yvb3c7zO17yncf937UJi/AGs/8GHoqZTvbQqL4skTuPead+DkIw+bj/WftRbnfuwTSHd0cr9PeXoa97333aiWSlj34Y8j19/P/9qpKWx9/7UoTYzj3I/+C/LDIwCASrGIre+/Bkfv/aP53J7TV2DdR/4F+aFh7vePCsMw8MAn/xn7br0Z8Cnl7li4CGvfex16VqwUvHXx5vHvfguP3fB1VIuzAICOwQGs+Id3YPRpT494y6LjwO9+i4c+9ymUxk86Pk/P5XH6FVdh2UtfEdKWJYeTjz6C+z/8fkzv38f/Ik3DgmdfijXvuhaapknbtqn9+2rXj9F5WPvBj5jXj6mn9uK+9/4TquUSBs89D4PrN2Dw3PXIdPcw3+f4tj/jwU9/ApN7nzQfGzp/E8657mNIZbPStj8IpYlx3Pe+a2CUSlj/iU8j09Ud9SYlnoc+9ykcu38rzrr2/ehducr3+zz42U/hyN134ez3fhD9a84SuIUKRTJIVFA4MzMDAEinG5tdv13/X1J48LP/iqdu/jmeuvnnWHjJZeg5fUXzcz73r9j3q19Sj4098GcsePalGDh7ra/P/eM7/hGH77zd8p7bsP/WX+GCL/8XBtaew/U+D//Hv2PPT34IAJj3jGdi/rP+wtf2hMnD//HvePKmH1CPjT34APrXnoPTr3gd9/vs+tY38fi3/xsA0L/mbKx845u5X/vgZz+JXd/6BoBa0LfmndcAAPb+9EfY+Y3/bNq2rmWn4Kx/ei/3+0fF0fvuwUOf+1Sg9xh78AGkO7uw+fqvCNqq+FM8eQL3/NPbUZ2dNR8bA3By71O4/PZ7ItuuqLn3mndg4onHuZ57z/aHsOjy53ta2GkH/vzxj2D/rb/y/LqxB7ZhwXMuxeA550rYqho7rv8C9vz4JgDAvIueZV4/Hv7Kf+Cpm38OANj/61tqT9Y09K5chcH152PwvA0YWr8BnUuWYvu/fQYP/dtnYJTL9PY/+ABGNm/B4ue/SNr2B+HJH96IJ777LQBAYf58rH3fhyLeomQztv1BbPvExwAAqUIem7/0NV/vM77zMTzwydr7jO96DM/9/R+QyuWEbadCkQQSFRTm5k7QSqViPlaeuyDk83nH1/b3dyCdDj+bNTzMXgWsnjhu3t738esws3Bh03NO3HEb87X7P/kRlJcv97wtJw4ebAoI60w+uRu3XnYxTt+0CQvOOMN1lfjIzTebtw9+6fNI/fZmh2eHxyGH/+354Q/Zr/nv/0LvzoeZ/2Ox73//17x99AffwaG9fJPX4vQ0Hvnud837R374/+HQiaMAgP333st8zeEf/QCHJsa4t000TvuT5ODOnUI+78Sdt+HQ+98l5L2SwOTYGBUQ1pnYtRNPvfsfkWnDSYlRrXIHhABQmZ7C/ve9C7lO70Eh7/GdRI78/re+X3vg0x9HZdkycRtDcAjA0V82FjvJ68fYbxnbbBg4sWM7TuzYjl3/cwMAQNN1GNWq/Wd8/f8hdzf7Whc1h+9pLPY8fsPXMW9mUkpWtpWPbZIju3ebt0/cebvv68exp54yb08+uRv3v+JFWLxmjaf3aJd9HjfivN/nvfzlGHzmM6PeDG4SFRSOjNSkdmNjY+Zj9dvz5893fO3x41OyNsuW4eFuHD48zvxfxWiUc5aOH0cxk2l6TpnIfnYtPwUTj+8CAMwcPYqijwnQE39sSBMXPe+FWP3Wd+DE9gdx33vfjdL4OIxqFY/ccQeO7d6NU9eupTKyVorjje9VHBtD8VCcT0ugVCxi/MgRALUJxeq3vQsPfvoTAIDp48c9bf8E0QKlND7O/drHH3gAVWJVe+bECfO1M8eOmY/Pu+hiHPjfXwMAZk+ejP2+BYDi8cYix4JLnos177yW+7VjDz2Iu9/6JgBAZXY2Ed9XFDPEfutZsQowDJx8tLZAcWLXLvQMDka1aZFRJILkTHc3nnnjz5jP+/2rXoKZw7VjpXjkCLTJyVC2LwmUy2XMzu0PLZXCX/zsVmguEv/7P/Q+HLrt9wCAkuQxffZkQxY8S4y/ZeI3HL3wGZg9fgxjDz0IWAJAMiAcXL8Ba9//Iez6n2/gie9/p7b9xNgaN0rkd5+YwLGHH0b3wECEW5RsZolrZ5Drx+zc/KDOE/fdh8H+fqQZczOFgpeTR0+gahMHRIldwipRQeEZZ5yBbDaLxx9/HIcOHcLg4CDumVt1W79+fcRb5w0t09j1diueVSIj2rlosRkUVixyGR6mxsdx7MAB8/6ad16D3pWr0L/mLAyedz7ueMMVGHtgGwDgyFNPYWJsDKs2bEBnD7uWo1QsMrczrpwgArmBc87F0PmbzPslRqbGDsMwMD0xYd6vOqxWk8zOzODAE09Qj5GT3yKxADC0YaMZFHrZtighj8mO+Qs81WOQx7/T6n8rUimVzNv5kREURkbNoHBqfLwtg8IyMbbkh0dsj6UUoQ5pt+PGjWli0a5r2XKusoBsH1EbLbnFEzn2kdcPchxZ9eZ/xLyLnoXS5ASO3b8VR++5G0fv/SOO3nsPZo8dRSqXw9nvvQ6nX/UGaLrekJsCsW5RVbFcL4/s26eCwgCQx0+QuYh1XlUuFrH30UexbPVq3++pUCSNRAWFHR0deMlLXoJvfetb+Ku/+iv09vZi586dWLduHc4+++yoN88Terqx+sQTFNYNSQB/QeHeRx81by94zqVUMXb38lNw8Y9vxtYPXItd/12T58xMTuLP//d/OOWsszC6ZEnT+5HBCm9gFCVjRFA476JnIT/S2J9eAq+ZqSnqdzE4L0JPPfpo034qEYEguQ19hGSlmJCgkNwn6Y4OT6/Vs41zIQnHkkjKxLmc6e5B76ozzPtT4/FbXQwD8lzIDQ7ZPk8jlAxxDgKigFy46l15hsMzG2iphnpF5v40DIO+fthM6lOFAgAg09mF0S0XYnTLhebrp/buQbqrmzL50jPu19Q4YA1cjuzbh2VnninV2KeVIedDQa4frHnV/l27MH/5cuTmjkWFotVJVEsKALj22mvx2te+FsViEXv27MHFF1+ML3zhC1FvlmfICU3V5gJMrijmR0YbjxPZBR5mpqZwhNDLn/GPb296TrpQwIZ//Rw2fuE/kCrUJvXVSgWP3X8/Ht26lR54KxVhq3NhYBgGFRSOPv0i5IcaQaGXwGvaMlHnuQjNTk/jAFH3UKdcKpn7jswU9q48w5R6VUqlRARK5LGa8mj4kco26ubiPJmTQYUKCrvRQyzWTJ50dt5sVUgVQm7APlOqpVRQaAe5oMAyMWOh6Q15qcz9Sf6+AD120EEhe3FJ0zR0Ll7S5PpMBYUxPh6swUdxZgbjhIxc4Q1qLiI4KKxWq9SCukLR6iQuKMxms3jPe96DP/zhD/jTn/6E66+/HsPD8bfst6J7lI+Sma2yx0zhgSeeMC+Sw5suwND6DbbPXfaSl+PZv/h1rb5pjkN79mDbbbehPBeMWi/qcQ9aZiYnMTs9DaA20Rg89zzkBgbowIszsLVmb3i++55HHjF/44Fz1iE/Os/8X2l2tmnlPD8ySmVIkiAhJWslPWcKM+2bKSQXeGqZwoZUyboA0S5QQaFTpjCkzFYSITOF3bxBIVlzKDMotDiFU/LRAIoDLSHjCOtac2Sfh7YhCoqKD+WO2/sMEM67KmBXtBOJCwpbBUo+yrgAG4ZBB4VErzqv8tEpIuNw2muvdH1+78pVePYvbsXSv3qZ+djkyZM4PlfAbQ1S4p4pJLOEI1suhJ7JQNN15Ih9yht4NQWFLt99ZnISh55s9NA665r3o0BkfYuzsyiXSuYxkOnuRrpQQH7Y+7ZFSYUh++JFz7VvprBsyRR2LlqMzJyJVKlYTIR8uFwq4ej+/eaiUeD3ozKF9rVWupKP2kJnCvn6fpJBocy9aT2m7VQnaa/jiMs1NS5YawoB4Oi+fbHe5jhTlSAf7VvdKOGI+/xGoRCJCgojQnORupCDm57NIkM0lvcaFJIXIaeVd5J0Ryc2fuE/sPQlLzcfK85l25oyhTEfNKl6wmc0rIHJOk3eybc1KHQLYvY88oj5+w5tOL8mXR2hP5dcOa/LhP3KW6OCrin0Jh/VM40m03Fe4ZcBnSnshqbrGCCMDaYSICHdfvfd2PHHP+LBu+4SMrHlrilU8lEm1UoFM1Nzbtuahp7TTud6nR7S/rQucllLE+rYyUft4FHfxIEq4/pdnJnBOOGiqeCnIkE+Si7K+vFwUCiSigoKI4Ja5WYMZNaC+0xXwwXUa00hq3ifB22uaXCdet1bkuSjRrWKE4TV9LynX2Te9pqNMwzDU03h9MQEDu3da94/65oPQNM0qj60NDNDBX31/+WSlikMIB9N5RpBYZwnczKoWIxmAGCAMBqKu9lMtVLByaO1XpsTx48LWSCi5aMONYVky5w2O26cmJ6cNOWfHQsWcp+PYclxeTOFnhUHxOJSnBcJyCBm5IKnmbePE4uXCn7IINuoVn3/9uRYnCMWjOO+6K1QiEQFhRHhVhRvldFkuhs9RbyuXAW50OZHGvVv9Yt5OUHy0fGxMXN/5UdGqfqavEXG6cbM1FRTEOj03fc88og5ORvZ8jSMXLCl9rmWDCVpMlMYncsUJiwopI9Xryv87ZsptMpHAdCZwpgHhSXLApWIVfUyt9GMqilkQdYTksZFbkRdU2gYBnX+ky1HeNAS6D7aT7QK8brYq6hhleP6/e3J4DI/1FAoxHl+o1CIRgWFEaG5tKSwymjSXV3mfa9GM0Em7IV5RFBolymM8aBZz2IAwLxnXkzZfheGvbWlYE3Q7YKYqfFxHCazhP/0vsbnjtKZQspkZrguH20EhUmTj6a8GkSk00D9dzGMtprgW41mAGDwzDPNx+IuH7UuEIkICnnlo2HJHZOGn3pCwFJTGGKmsD6pty5eem3RQKpv4ry4RGWkiOObVWuocMc6//D721O/C3H9rQbIPioUSUMFhRFB1T8wBhyrcUeQTCH1Xh5XX8kAxi4ojPOqLDkB6bWsmpMSkaJl9ZoFyw3SLiB+8uGHzdvznvFMDG3YaN63Zihp+Whtm3JD/vooRkUlwMKDpmnQs+2ZLaRkt/VMoUU+GucJSVN7ARFBoQ/5aJz3UdhQPQpXeAgKw2pJYaM0oa9T3vvCJaUlBXnNIIPCOC+uxhnrmON3P1JS/q5u6hhUv42iXVBBYUSQTmmsSbA1u5fpIoJCrzWFpCTHa6ZwdL552wwKbVZ644hTU/WCxwb2rKwN67ebPHkSRwmL8TXXvI/6f96SoWQazSRMPhqkphAAUtn2rCuk5KM9tUxh5/z5yPb1AajtV54Fi6iwOo56VTFYMQyDPygMKYhJGtM+ehQC4WUK7YJCp7GaB6qmMKZjCJl10tJpZHsaBnIq8PCHsEwhefx1dlKlNuq3UbQLKiiMCC81halCAXouZ77G2q7CjSA235neXrNlQLVSQblcpmp+gHhndpzc7HJe5aPECjzr/es8uWOHeXvBsy/BINHzCLBkCq1GM3PbZA0c404Q+SjQvnWFlHx0buGnZvB0hvl4nCWkTQtEAeuiqpWKOaHXcznHRSw9rYJCK4Zh0DWFnuSjxHQgAqOZ4EFh/N1HqX6uhYIKPAQgqqaQzhR2UXOlOC98KxQiUUFhRFCrsq6Zwlp9RZrMFnKuyBuG0Xh/TaN6wnFtp6ahQDZbn5lplo/GeMB0CogLHlpSsJxHgebfbmJsDMcOHDDvr3n3e5teY21J4WY0k4SaQrrptLeWFED79ipkuY8CtEHIZIzNZqwLREHlo1Q94cCgY12Zko82Q5ph5QaHzIwzD2FkXqvVavMxw5KPelS0AJY6/ZgeDxXL4llaBYWBacoUCpCPpru6kCKuY+q3UbQLKiiMCLdMIau+gqwr5JVpURmcfN5z8T4A5C11hU11RDEeMK3fn8RLpnBmcrIx2RoaNo1RDIsxCllLuOi5z0P/mrOa3ivT2YV0Z804yKhWGz3FQLSkGBwyP6NcLMY+UAq+yu8sp25FDMNomojU6V3VyBSyFiPiguiaQlo66txTlexTqFpS1CCPFfIY4iEM+ShrnK1WKk3qF6+KFgCJqEu2Lp6RwW+cr6Nxpqmm0Mdv33T8dXSqgF3RlqigMCK8uY82B4W8k6+gxfsAUCDaUsxOTzet9MY5YHFafc729ZnBSKVcdtynU9RkazVSuUaAWf+txsfGcPzgwdqDmoYz332t7fuR2cL6/tNSKWT7BwDUnPRyc7eB5sl3nDCq1UDZaADQs+2XKaTrMDuhE5Py3pWNthSTcZaPSgwK865BIRHEBPrU1mGKko7y1xMC4bSksFt8q1argRrXA+69f+MAJR/t7KQWKlXg4Q8RNYXkuJUqdEDTdUraqwJ2RbuggsKIcHMfZQaFPsxmnDJlvJBtKZhtGWI8YDr1aNQ0jbtJPOXot3Il9FzzqvQJovnwosueh75VjYm9FbJmsE5uYJAKDHIJkZBanUf9ZKP1bPtlCmnpaDf1P9Ipd3piIrZyONHy0TLVjsLeZAaw1BS2yTHjhl+TGSAc+ajdOFatVCwT89Z0H7WOlaSqIs7X0bjCahfhp5yFriesyUZJF2312yjaBRUURoTuIVNYH5zSPjKFQWV9AG2MYufAGdeLsFtQXO8LCDgHXnRvqWE6Uzj3+5EX/N4zGr3mWJD7tE5h3nz6OQkxm7HWyfgh1YaZQtK5s+48Wic3OGgeI9VKBTOTk6FuGy/WTKHVjTTI+2UdGtcDtHw0ruNP2MxOT5u3u5af6um1pNGMNPmojZNutVIJLB91U9/EAatEURnNBKPKmAf5yhRSzqM1GT/12whotaNQJAEVFEaE5qWmkCEf9VVT6EOSA9DBip2ULREXYcb35239QO/HPFKkMQqr+bJLVpbs/2huywidPUxKW4pqwHYUQHvWFFKr04Q1fR0yW8jK0McB4UYzlHzULShU7qNWyOuGdaHBjTDko3YLbxVLUOhLPppNQKaQzIZ2dCiJYkBY+yyofLRu6Kd+G0U7ooLCiCDrH9z6FNYDDD/y0YolmPFDYaS5gb2VuK5ysoJrEmsjeTusq9g6I1PoZaWbJR+1Zg/zQ/zuqFFCfe9O786jQLjuo8cPHsQTDz1EZVWigNWOgqSHbEsR06BQZk2ha6ZQuY82YW154IUw9qdtTWG5bDFh8VNTGP+FJatyx9ogXR3H3pARFGbmDL+UfFTRjqTdn6KQgZc+hfXByY/RjFumjIc8UVNo+zlxvQgT28Uy2skP8WXjrIY9qXwjiGH12XIz9WHJR62BYlIyhUGt5IHwMoXF2Vlsv/tuGIaBqfFxrN64UdpnuUFm+9PdzUEh6R4Zx6DQmt0BBNQUejCa0VWmsAkvY5AVqqZQ2BbRONUUOtV/85C4msKODuipFPRcDtW5/WJUq3TGVuEIS9bpp6awynCBVtJeRTuiMoUR4aWmsD44pbsaciA/QaGfCy1Au4/yfE6ccMvekcGZXb2L9X1ShYJrTaHbvrZKRa3bAsy1vqhvW4yDQhHy0bBqCmcmJ80J44nDhyNdzKg41BQClqAwBg6khmFgdnra3H9W6Sggtk9hdmDA4Zl0Zktms/UkQS2Cec0UhuE+SoyxZBBnXWDw1ZIiYe6j9QU01STdP1Lko3NqF/Japn4XRbuggsKI0NLOq9xuNYW+gkKf7qPZ/n6qBxTzc2J4EeZplVAY4ZNokt8vXShQNYVs+ahzcEQa3JjbYqkzTGKm0HdNYUg9xsjfqFqtYnJsTNpnuUFLlhiZwhUrzdvTExORn2OPbt2Ke265BY9u3QqAHRSKNJpxbUkRgltm0rC6W3ohDKMZcoztWLzEvF2tVAIrDsgxJK5BIWustEpIFfyw9ldg+WhnvaZQyUcV7YcKCiPCj/soZTTjoyWFX/mopmlMuaPd58SFCiUdzTNbJfBm46yyLF2G0YxVPjqUPPdREUGh1wldtVLh3j/W4/TksWOePkskZcpopjlTmOnuQcfCRQBqk/QZoi1K2BjVKg7v3QsAOLx3LyrlMrN3ZmQ1hTENAsImyCJgGEE2eZ52LVlm3hYhHyXdR6sxXSRguYErmaJ/WOONn31YYchHVQZX0Y6ooDAi3NxHXY1m/DSv9ykfBYDCqLOENI4XM576GtJEh999tEDJHVmZQrd9nRscAixBapPRjIc+hZVKJTIzGkoS1eHTaMZnprA4O4v7f/c73H3zzdj/+OOuz49TUOhmNAPEp66wYvlNZqamhAeF1Wq1sU80Ddn+fsfn6y5qi3bDMAxXZYQTst1cK+WyeXzomQzV/7ZSqQQyyam9Z/wXCSqMsVK5XPpHRqawLh9VwbqiHVFBYUT4qimMSD4KsINCMrsRtbSNBU+NirVBvN1kyBpc6wGNZvR0uhYYEljrDKksZrHI3DbDMPDUzp24+5e/xD2/+hWOHzrk+LkyCFoLBPjLFBqGgUfvuw/Tcxm0w0895foa66Rr/NixyAKKikumEKCDwskIg0LrpGhmaoopH61WKr4n5OT7Zfv6KSMZFko+SmMdf1jKCCdk1xSSi265oWGqp6kQ+WiGGENiejywMoXK5dI/rCDaz/jDch9V8lFFO6KCwoigVjVdagqjdh8FgDxD7tixYCHzc+ICNUmykTVmunvMYNk6MbF7r3Te3WiGJzgig8BUoYDMXNNc87FcDpneuf51htE0CZ+amMC2227DEw8+aNqZH9m3z/VzRROkjqkOOaHjXWB46rHHMHb4cON1HMeg9TmlYjGyxvBU83qG+ygA9JJtKSI0m7Hut9nJSWamEPCf7SDfL+fSoxBQLSmseB1/rMgOskklQ2F0lNrGpub1flpSZOiF1jgeE8yaQpWR8g2zeb0f+SijeX26Q/0uivZDBYURoblY8LMyhaTEzE9NoWj5aL3eCYh/ptAuc6dpGp2R4+jDmLIazdQzhR6d/0hXVzt5LqtXoWEY2PvYY/jT//4vxo8fp7czYE2XH+jg2598NJXzlik8eewYdu/YQT3G8zrWxT0qCamb0QwA9K5abd6OUj7KmykE+HuoWvFiMgNY3CZjGACETVBViGyjGTJTmB8ZpTIxzc3r/QS1OjSdmNLE8JhgOTVbg2MFPzLdR5WsV9GOqKAwIij5qFufwg7/mUJrfz2/5C1BSypfQLavUfMTx4sZ78p5nqOusNloxrl5Pc+khswU2hn5WB1Ip8bH8ef/+z/sfugh9mJCBMF5RUBLCi+ZwlKxiEfuvbdp0sczkWUdp+NxCApt5KPdp51uTnRnJicjm5ywgkK7TGHZ58JE2YPJDBBOC4UkwaOMcEJ230cyU5gfGqHGiqbm9X5N0TLxNpupMBbQrMGxgh/WeB5cPlqbZylZr6IdUUFhRLgVxbNWfX3VFAboW0VizWTlBgdpCWUMB006SLOfZPAYulhrCsnm9YbUoLDxnKceewz3/+53mCDaKPSdsRpnv+86834Uv4MY91G+PoWGYeCx++/H7PQ0AFpCyBMQsyZdUWUKyxxGM+lCAZ3Llpv3pyNyILXut5nJSftMoc+gkKo545GPqub1FEFLBaTXFBIqjPzISJNsUoSqhaorjLl6RclHgyPTfdRa86pQtAMqKIwIt0whyzU03dFpOlbyGjqIMAEBmlso5AaHkCo0Z8viBD3JsJdTkYEXK1NIufqhFqRbA2LDMDwZzQBA56LFzNskpBHO2OHD5nZoqTTW/NN78eyb/xeD686jtiVshEzmss5y6joHnngCxw4cMO+v+9DHzNt+5aPTExO2WS+Z8GQKAf66wj2PPIJ7brkFB598UswGEjTVFE5N0Y3m+/rM276DQrKmkCdTqFpSUFQYC4leCLOmMD8yQgWuTc3rfSsO4n1MsFQV5G+lgg9vyHQfVS0pFO2ICgojwmlCYxdgaJrmWULqNVCxozA6n7pfyxQ219XFCd6AmAwKWZlCa9ZW07SmFgrkhUjPZFydEwFgyV++BEMbNqJ31Wqc9tor2ds2NNL0WP+as/CcW3+HM69+J/RMJvLgnJ7M+awp5MgUToyN4fEHHzTvn3bl67H4BX/p+joSu+M0CgkpNRGxMZoB+NpSlMtl7Hn4YcxOT2P3Qw+J28g5rPutWq1SWctOouec35rCMmU0w1FTmFI1hSS8ygg7NMktPsgFjc7FS5oyZCLaJ7kttkYNa6y0BscKfmTUFNYN35T7qKIdUUFhRDiZJBjWAIN4bl3aAPDV7ogymskODFDubrnBISrIjOOgyWtxTso4WZlCVmBtdR/1s5+zPb24+Me/xKW/vR1dhESQpOf0FeZtPZPBWe/5IP7iF79BH2FAEnVwLqSm0CVTWC6X8fC995rnRt+q1TjnAx/x7FpK7h8y8AhbQkodM7ruGEz3rlxl3rbLFJZmZsxxpFQsBm4ib8VtRb5r6TLztt+aQko+OjDg+nzZxihJI6gqRKZ8tFqpULL3wXXnObqP+r1WaXHPFDKuSUo+6h+WsVrQmkJW8/ooDNwUiihIuz9FIQMtY9+n0MlFLtPVg2nU2g7wTPyC2pTX0TQN+eERTO2r9YKrBYUJko86yKnIbJxrUDiXlUtZ+hSKyshaWXjJc7Hqzf+A2ePHserv3oKeFSubnhN1cB7U4AJwrik0DAM7//Qns3VEKl/ABV/7BlK5HAzis3kCA/J8GH36M/DkTT8AEH6m0NoXy6mnHE+m0Cp/Lc3OIpUWN7w7HVdaOk0ZUQmRj3JkCjWVKaSgz8N4taSYOHHCfM/e006rKU2c5KMiWtvE8JhQ7qNiYWYKfexD6tgzM4VKPqpoP1RQGBFOMhenDBclH+WQaQWVFJHk581vBIUDA7QDZwwHTW75KJEpLDJaUrBc8cjvblgyhUGCbyt6JoO17/+w43OiDs7pTKE/+aju0KLl0J49OEI0pt/w6c+j+5RTa6/L+s8Ujj79mWZQODE2hmq1Cl0PRzxR4TCZqdO1/FTomQyqpRJmp6dRLpWQJvYX0BwUFmdnke/091swt9fh/M4NDPhyRrYSqKYwhgFA2AR1mpZp3EMuuszfsgUAPekmpcN6Lke3lvAAdV2N2UKlYRiNMUrTzO+vZIr+EVFTaBgGuyWFZbHVMAzHxTuFohVQ8tGIIAvirYOYU4BBTiC91xR6Nx8gKRAOmYnLFDoExAWXlhSUg2vdHCDnkCn0mS3zS9QusCICYjK4IydzU+Pj2LVtm3l/+ctfhaUvfql53yp5c5vMUpLHJcvQOSd7rFarmCTkbbIhJZaZ3l7H56ayWXSfepp5f5qRLSxbjlu7fpt+cTqucgNDnherWJQ9Nq8nZfWqJUXwUgGZQSEpz56/eTMAWmpOLgikAygt4mw0Yw3a6wGGykj5h+k+6vF3t86R6uOKnk7bXpcUilZFBYURoTlkCp0CDK9tKUQ4utVZdNnzANQm8POfeXHsXdN43fhylpYUTb8HsZ/r72OtKRTVD9IPURvNVAQExKTRTP07GIaBh++5xzy2uk85Fef+8yep11lNf9wu3FYp8NCGjeb9MOsKeRrXk5AS0klGUMjKFIrEMSgcHPS8WMWCbNFBupnaQWaTVKZQQE2hLqem0DAMjB8/bt6fVw8KiYU6ckHAj/S1jtN1NWpY0lFAyUeDwOxT6HEf0lnCLup/KmBXtBsqKIwInbem0EE+ymPoIMLRrc6yl74Cl/zmNjz/nm3oWLAw9kEhb6Yw09llyh6NarVpUksGWvWJDJUplCgf5cEq4w17MiTCfZR1PkwcP27W0OnZLC742jeY7+/FbMZ6PkQWFJLyUYd2FHV6VjjXFUYaFA4Meh6XrDQ5LnNI3ZV8lCZoXbMs4x6yfUmmqwsDZ9SOZfJ6RH6e33pCwLucPEzsMrlKPuofEe6jLOmoeZ+43qjfRtEOqKAwIjRLywLyokjVsDUZzUQnHwWAvjPONFs4WAOjuOElULNmC0lYGUfdEhCL3s9e0FMpx0UGmTTVY/g1mmEcSyUicBq54ELKcZV6bZY/O2A1sxg6vxEUjh87FlpwQclHHdpR1KHMZhgOpNZG8sLlow7HVLa/37OCwUqT4zJHSxdd9SmkECofFbJFNcjFlsHzzjczvHbbGER+7+TqHTXUdZ0IPuK+uBpnRNQUOqk2lDOsot1QQWFEaJpmO5F3urh7qd3x01DdC1G7XrrhJVBzakvBymCkLJJFkYY+foiqvpM8brV0hjqmvcA6F3gnuWSm0JN8NJ9H74pVZk1fqVg0HU5lQ2UKu90zhW4OpNZjVnSm0NloZtDs7QX4Cwr9KBpkN1tPGkGdpmW1pCClo2Rm3i4jGETREtXiGA9VG0Mu1STdH9b5TR2vcxHqvOmi5aPqt1G0GyoojBC7+gfK2KTgv6bQqd+hCMJa4SzOzGDHPffg0fvv9/Q5TvvRCtWWwpJlYQUnVsmmqH6QfokqQKcnov4zpKxMIW+m18m51Ir1d9J0HUPrN5iPhdWaouIxU9i5ZKn5G5dmZ5uCwCb5aKhGM4P0uOTDaMbP+SO72XrSCCwflRRkj1syhXX0TIaSANdJF/y75lILRDE7JqixksiGKvmoP8h9pQVwnXWSj1KZQtWrUNEGqKAwQnRyUkNmCslBysF91K12R7ak0Wq2IouDu3fj6L59OPTkkziybx/36yoO+9EK1ZbCKVNoGs3QQQyvqY0s9Iga2ItyXXXPFNq/txejGVZ7EaqukMhqyIQ0VUl3uWcK9VSK6lFpzRay+hSKhPwtrD0EswMDVLbTT6bQT486TbmPUtCLYPFwHy2Xy5isy511HYPrzqX+zxqXg9RkO7l6R41dUKiMZvzRtLA25+ZqGIanwNBJPppWAbuizVBBYYTYZQqdpFRe+oGJNJlhQbleShwwZ4msx8zUFPfrvGQf6nWSQPOEmhVIWOWaLDOaMKEyhSFOhkT0KATY7qO8ixq88tFqtWoGD1oqbQaiQ+dvNp9z8uhRj1vuD2oiwmE0AwC9K1eZt5uCQmvmkOGiGwTytyC3A5iTjwZ0H/WTKdRV83qKoM3fSaMZUUH2BLHI0rtiVZNUOsUYM4S5j8YsKKRcrKlMoQoK/WB1Vve7SE1dw7qU+6iivVFBYYRQsjdSPuogA6ImXy4yLdl1bmFlCsmLqdVQw/F15Mq5i5yKDAo9ZwojNpqpfWb0mUKr9MYLrGwfb40UaTRTdZjM0r9RY38NnLPOzDpNT0w0Zd1kQNcUustHAXuzGevxB9SCJC/nihvkb9FjDQr7B6jJVLlc9hykVXyMVTL76iURcnLrZxFQRpBNSkdJU6c6rPM6yLWKUhzE7JigM4WE0QzxfVXgwY/VuIe6BvoNCjsc5KPqt1G0ASoojBA79zw660RfNL3UFMpukxBWTSE5+Jc91Ct5+f5OmUK3msLYGc1EVlMo1kqeWz7Kmym0eb90Rwf6z1pr3g+jrpB2H+XNFLLNZuyCWJFmM3Sm8Azqf7nBQaSy2cYxaGMAwfv+vGOVpjKFFEEXpmQE2ZPE4sXguec1/Z8VvAaTj8Y4U2gnH+1QgYcfrMY9OkNtwgMtH7UazSj5qKK9UEFhhGhB3Ue91BRKCFT0sDKFZFDoIfvhRT5L1RQ6GM3Y9SkM6vwXlKjko6KOMVZgZ200b/vaNF8dkdNvFHa/Qq9GM0CzA2l94m4XFIpsS0EFhavooDA7MACAbvzsVUIa2GgmZgFAFHgx1mIhw310dnravN21dFnT/1nb2aruo3SNOyEftZiEqQUOPqw1muQ12UsDe0f5aIfK4iraCxUURojOVVNoaV7vwWhGdqASVnaKnOz4zRS6TTQKI6PmbcdMYb1PoZN8NIALp1+sctawENGjEABSObdMoZN81E+m0D4oDCNT6LUlBQAUFiw0A8hyqWRmAss2GUFZmcLC/AXoX7sOANC3eo0pufKyYOX0/txGM0o+ShFUGSJjf5JBYcfCRU3/ZxvN+B9HSPMhJyl5FNCmXA2ZoqbrTPdlhTPUPKmjw3emsOrgPqpMgBTthgoKI4R0SrPNFFqb15Muf15qCmW4j+ZpCaWsiRn5PbzUe3kJCnNDjeb1VpMOVsZRT6WoCQj5W0QjH40+UxgkKGRlCnmlqUHlowBd7zQxNiZ9H/rJFGqaRtXz1esKbeWjkjKF6UIBT//md7Dx376EZ3znB9DmXP/SAcxm/Lj3KqMZmqAOyPWm8oCY/VmtVhsLbJqGwrz5Tc9hjcuiXYzjgp37KKCCDz9Y5aNCago76bFYtQtRtBsqKIwQ2z6FDq0USHlDxcXQIaicyA1N00JZ4fRTU2htbOtmNJMuFMzJuWEY1OfYZTFIox2qxUAk8tGIagptHPW8QmX7DKP2+1FGQQ7yUR9GM9bfqDAyis45eVu1WsXk2Bjvpvui7CMoBIDelavN2/W6Qlv5qMBMoXVhJD88gmUvfQVVi0t+DzcVgxV/8lHVkoIkqJRbdKawSGQJ80PDVMBWh+VYHKymML59CqsOqgoVfHjHGmRTdf5e5KPEc5trCpX7qKK9UEFhhNitajoFc3o6zX0BqQZ0o+MhjGDEWlPIc7En96GeyUAn62VsyNmYzdhlXEnJJjkxj8R9NBdNUEhnCv27j2q6Tk3ym817nJrX82UK3WpMw6orNAzDl3wUaK4rBOhjr3PJUvO2KPko7wJLJkADez8BjWpeT0Ofi8HkoyKCbLKVUMeiZukoYJMpDFSbzFbfxAGr3JFEuVx6x9ojN8UwK+OBu3m9+l0UbYAKCiOEnNRUbeSKrFVT3hX5MBqqh9GWwjoY80jT/GQeCjZtKewmrDohV4lcPloIx/THisi6VapXoSUQcZSPZvkkY26BTVhBYZWQWmvpNJVtd4PVloKsKew9o5FJFJUpJPepls5Qxj4kQXoV+qmH0/XogsK4BaFelREsNMH7k6onXMAOCoU3r49zn0KHBTSVkfKOtZ5dTp9ClcFVtBcqKIwQuwuY26o574p8GA3Vw84UAnwOpH6CQipTSKxy05lbMlPIlo9G06cw+kxhEPkoYAnuPPR+JDOFTpMBt8CDrCscP3ZM2sTfmiWs1+TxwHIgJTOFfasaQaGomkK7/o5WvLTLseJnAYvKLIcYpB1+6incffPNeHTr1tgEh5QyIpul6gN5kSkfZZnMAHaZwgBBIZktislvU8fJlEtlpLxDj+ed0EmzMp/uo0o+qmh3VFAYIXaNdt2cLHkNHfwERl5J+dTx82IYRtNgXOKQpvlZNSfbUpBZFjvZISkfpYLCKGoKI5KPOjX+9YpuyRTyNjQXYTQDAL0rViHT2wugJsmcmZzk23CPWJsueyE/NIzcwCCA2veZnZqigkIyUyhKPlrhXFzKWOqdveBPPhpNUPjUY4+hXCzi0J49VL/IKAmaJQQALSXWaIbOFC5kPod1PAVRWlgl6HHCyZRL9cPzDi3HLYjJFHZaM4UqWFe0FyoojBDdZlLjFszxWr+LmCi4Qa7qVyRchA3DaKpv8Zop5HXFzA+5y0fJizdZ2E4iKyvrBJUpTKD7KGBZJLFkCp0kZVSGkdNohpWN0nQdQ+s3mPdltaYIus+s2UIyKOw+9XQz41MplYRMZHhrk0OXj6ai6VNIjj/TExOhfa4TQdtRAJaaQgHQ7SjYQWE7Na+nTLkK9plClZHiw3pdJmX4Xn57p6CQXOhUQaGiHVBBYYTYNa93s+KnJl8OWbMwGqrLli2y3pMnKOTNMpHYZQp5jGZIopGPRrOi6WSz7hXKybapRiq4fJTnfKDqCo8fd95gnwR1ieyxBIVkTWF+eJhyBBWRLaTl0/bjSJowzPHSTxRwNwFiEVWfQvL3i2NQ6FepILqmsMiRKWQ2rw/iYmzj6B0HnBaDohq/k0xTTWHWe69ewzAc5aMqWFe0GyoojBC7C5iXTKGT0Uwo8tG8XPkoMyj0KB/lDYjzw41ehfZGM2z5KEkURjNRNT8W6XDrlCl0lo/yScZ43m/o/M3mbVlmM9Sx6WMBoXdlIyicPHmSklNn+weQHxk175cE1BXyGv6Ial7Pq2qIqiUFOTmUJTH2StCFBkC8HJdyH7WTjzICwCBKC17TqShwWkBTMkXvWI17dB99Cq21uNa2KVT/SI9jmkKRRFRQGCE8zeuZ7myctTthB4Uy5KOs1TnPRjOcE2+7ybTdhNXONbJ9M4XBagqt7qO82SM/RjMpG8v+gXPWmZPjaYs0UxR+stgkpHz05LFjZkCU6e5GKpulMt4iMoW8v0PY8lEtgub1VpfPuGQKRWTsRbakqJTL5jitpVKUiRcJ67cOcq0ie//GzWjGyZRLNa/3jrVHbsrHwqhbTbxyH1W0GyoojBDNxn204rJqzjv5ElFn4obfhrG8sAZiz0YzvPLRoeZMIdU+IJWiVhJTNjWFUQSF6UIruI/S7nHkOcErH+VvSWFTD9rRgf6z1pr3ZdQVBl2sITOFpEQvO2dAQy5uCJGPci6wCMsU8hrNCDZG4cF6fMUyU+hz/NE0DSCccIPsU9L5tjBvvm2f2HapKbTKFK0BiJIpescqxyUXFXnnIk7tKADlPqpoP1RQGCHkBay+qlmtVs1VWi2dbpIzAB5aUoScKYxrTSG/fJSoKSwWGb2/8lT7AJZ8NFUoeGoxIIqo5KNCawqJoLBiafHhtE95jWbcanXryO5XGHSxJtvbi8L8BU2P54eGAND9NsOUj/IqGFhYnQR5sDPqkol1PCoVi57rJ2UgaqwXVac5y9GOArCpKQxgihbFMcEDGaDqmeZen8p91DtWlYruw32UlISS86o6KlOoaDdUUBghOsM+myub4ad5vaw+hZKb14uoKeRdOU/lcsj29dXuGAbKxaJjrZPOeF+77KFsopKPVkW2pCAyfnTfR+dJoi/5qMPEmQwKxyWYzYhwBSazhXXqrSryoxFlCgkFg9dAqcqZFSaJQj7KyhZMxyBbyBu4uyEnKGTXEwLNiyJaOsNcCOWFXFiKU6aQXvRgteFQ8lGvVK1GMzm+6wAJqToix6866ndRtBsqKIwQVmE/z8Xdj3xUlqRRdqZQSE2hh0lSztKWwimQYGYKObMcoomqeb0f10g7yIs6bd/ufOzymkvwBh49p68wb5cE9fojEbHPyLrCOrnBWqYwP0zUxooOCkMwmuENaqLoScc6t2ZiUFco6jwkHUiD1BXyOI8CzcdT2uVcd4M0bwtTMeGGNYCxojJS3rEG2rqPXr3kcVpY0Ky+0DMZc6HEMIxYHVMKhQxUUBghLPdRnou7nz6F0lpSFOKfKfTy3QuWthRO78PKCqYl9YN0Q3bG1g6xfQqJTCER+LsFCX5qCp3eM+Wz3xUvIs7LnpWrmh7LDQwAoFurFAXIR3kDjnSQoNCHi62m05evMLKFrPEobpnCIAuAwjKFHM6jAGNMDaho0TLxlI+6GXKp2jXvWN1H/Yzbsy6LF5qmUdc1FbArWh0VFEYIy32UR+KWIfqB8buPhiAfjWlNoZdJUo5sSzEz4yjBZWcKw29HAUSTKWyquQx4jOk5G/moyz6lDGo4+xQ6u5nKzTaIqP9yyhQWRueZj4mWjzq10Eh3dJpGJVajIDf81ABrmibUMZOHuGYKRZ2Hosx76Mm2Q02h1YVT4MJSXOWjTJfLiJQeSaXZuKcDetZ7XT3PcaqyuIp2QgWFEaIxMoU82Yy0j+b1SZWP2rmPuk1Y6Ibb/BMNq/TOKatDXoQanxVRpjCC2gfyc/RcztZhkBcqU0hmjlyOXcpx0OG44M1Gya5LEhIUrljZ9Fg9KMwNDpqP8SyguMEbcGia5ktCapVleamzFN1bz41k1BTGSz5acMwUWhbaggaFNo7eUaPko2Ihf9t6HWrKR59CHpmzcoZVtBMqKIwQln02X6bQj3w0mUYzzEHYskrIwu/E29rA3mmySl6E6kQnHw3ffZTXzZMXO/dRYfJR4n9Ov5OfFWcviAgK0x2d6Fy6jHqsLh+1mg4FDZZ4+jua20U4kDqZYJEYhtFwXE6xHZftIIOYKOWjUUsVRS0ASjGacawppI+noOOIngD5KCvwVX0KvUFfe2rHO9XnlnMf8hyn6rdRtBMqKIwQln02j4wqw+k+2qotKQD3DAiVFfIQqFEN7GdnHbNLOqOmMLJMYQTuo9S+EWCwQwaFlHzUZZ+SE0ER7qO8mUe/iAqmrRLSeqZQT6eFZtC81Ktluvik7bbv79FoRE9HHxRWSiUhGdkg+FVGWBERFJZLJfO313M5KnNtRc9mqdrQoOOnJln67Rdr/ZsVlY3yBqs/ru6nppCsfbVxyaWyuB5rpRWKpKGCwghhXcB47Op53EcNouk6NI2acIvET28gL9gGhS5mM1RWyEPAQmYKS7OzqFCTLXrCatenMAqiqElxm+h4hVzp9duSwmkywNuihbdG0S+iTEF6V9BmM/WWFIDYWl8vQawf+aifesI6cZCPAtFLSIXJR4maQr/yUUqSN2+BY49RTdOoczGoIZrsBR2/WOvfrCj5qDcqjFZIXlVL5XLZVKTo2ay5qGZFmQAp2gkVFEYIy32UJ5uh53Lmxc+oVtmr1xbZo6yG6qSFeJwyhX4t2smawuaWFBxGMxHJR/Vs1jT5MAwj9AmyiKCQnNBVvGQKOYM43mBMT6cb2QsJ+5LO6vg/XpozhURQKHCRwEsPQd52OdT7BzBJoXoVhpAZstuXM1EHhT7cW1noAno/UtmXRfYmM3XI7Q1sVhXXmkIlHxUKtQjSWbv2kEZlPPuQqnudv6DJzbiO6lWoaCdUUBghft1HNU2jzWYYky+qsD1g7ycnSMlGWH0KAbrpLAu/DcKpTOHMjHNLCsYEWVbrDzc0TZPuBGuFDgoF1BTm2JlCt33Kkx0wDIOaJLqa10jMFoqq9SWDQi2dpsYEkTWmXmToVFsKzgb2QWTulNzR0yv9YXdeRZ0prPgc76yIkI/y1hPWSVNBocBMYYyCQiqzxTjnlXzUGyz1Ann94/ntyeO0c6GDQ67K4iraCBUURojGWJXllWq51RX6dfPzClXLJllqRwUNbjWFPuVU+SEiKCwW6SbqlkBCj1GmELD0jAzh4uXmqOcVckLnST7K4RZqXSRwy5zLdCAVZQrSfdoKdCxaDAAYOm8D9Z1Erm57CWJ56539vr8VyvE25ExhYd588/Z0xG0pKLl8IPlo8CDba1BIZs6Ct6SIp3zUrZ9rWgUenqCMyObMrVIeF/JmeR1yid9LBeytiWEYmBofj1UdclSk3Z+ikIVf91HAvXYnjB6FQLhGMx3zF2DiiccBcNQU+sw+6JkMcgODmD12FAB94WiSj8aoJQUQfgN70ccYa3/W3jt4TaFXOTH5njIzhUH2WyqbxUXfvQkHfv9bLLrs+dT/dFmZQpcgNt3ZcB/1U1PoOVMYYU1h3+ozMX1gP4AYyEdF9SnUgwfZvO0o6qQl1RTGaYLnJhkPe0Ev6ZD9V/PDIwAA3eNchKcdBaDko+3Arm3bcOCJJ9Dd34+znvY0aeVWSUBlCiPErU+hU4Yk49KrULS0zw7ZgQi1Mj9/gXnbS02h1+wD2cCenOw19SlkZAqjko8C4ZvNiHa31bPsVgRe5KN2x6BXcxeZmUJRpiAA0H3KqTj9itehQLjmAmLdaHkNegB/RjNB9oeoFgq8VKmgcI15e3piItLMVBAHVxIRzeupTKGNoyOJyJpC1jU1DrgF7aLbyLQ6JTIoHKoZxHiVzPNmtFUWt7WpVCo4+OSTAIDx48epY6sdSVRQuG3bNlx55ZU477zzsGXLFrz97W/HwYMHo94s37jVFDpNkNJeMoWSGtdb31t2TSE5cHvKFHr8/uQEe3ZqyvZ9WO8bqXw05KAwiGskC90uUyhYPsqzSBJWUCjr3Ew51Pp6PTY8taQIWlPo8fxhSfBlQk42OxYvMes4q5UKNckMG1ELNFHIR9uiptDlHNJ0nR6/Y7TtcYScuOfqmUKP/WV5Fy9UvWdrM3H8ODVWxGnciILEBIX79+/HVVddhdtvvx2nnXYaurq68LOf/Qyvf/3rUYy4R5RfWPUPvFIq15rCKOSj0jOFjRqekoeaQq/fP0fUFTrKR2PUkgKQ3x7ESpDJPAu7tinu8lEiU2gTGHg9HmTKR71k3vxid14+9qc/4c6f/QxPPPQQ93t5yeQFdx/1dhyF3qeQMgwpoP/MRrZwz8MPS/98O0T1viTlo372p2EYKJLuowt43EdFykfj2bye5xxSMkV+yOt/frA5U2hw7D86KLQ/TpUzbGtz8uhR6n6cxo0oSExQ+Itf/AInTpzAC17wAnznO9/BT37yE8ybNw8PP/ww/vznP0e9eb4g7bOZfQqdjGZc5KMiJWpOhF1TWEdWTSFAN7AnB4imTCGreb3ErKwb6YTLR1N+g0KOrJ7XrCYpZZWaKZR0brLko5VKBQd37wYAPPXYY64LK9bXA97ko7xGM0mtKUwVOnDGW99h3j+0Zw/Gjx2Tvg0sRGWfyUyhnz6F5VLJ3JZ0RwcyPT2uryGPmXSX+/Od4O1ZGjY855AKCvkpsWoKLfJRp/HAy+KFch9tbU6ooJAiMUHh0572NPzLv/wLXvOa1wAAstksent7AQDHIroQB0VjrGrSMjdRRjMS5aOS2yDQmUJCPuowoaUuCLpOZZJ4INtSkFhX4Nk1hfKysm7IdoK1IsrxsA45oSNJC2he7zUQS3mUIvHitTWGX1L55u2vWsaJ45zSe09GM4FrCj32KQyY2fKKdbFt/jMvxsJLLjMf27ltWySTCinyUR/fg5aOLuIybFj20lci3dGJwvwFWPicSz1/Jol1kSAuEzyeRVry2G9HmeKBJ57Arm3buGq6KPnonLJHT6W4F4m8LF4o+WjrUq1WMX78OPVYXMaMqEiM++iKFSuwYsUK8/4f//hHPPzww9B1HWeffXaEW+YfVqNd3gkYuaLKmnyFIVED5MtHK3aZQqegkLwA5/OenaTIBvYk1skWs6YwSvlo3r6OTAaijzGy+TCJu3y0MYxxGc1wuY/KyRRaz29ZLmd2mUKSYwcOYGTxYsf3MQzDf/N6XzWF3oJkchIYdkuK+jF/zof/Gfv/99eozs5i8sQJHNy9G/OWLZO+LXbbFUw+GsxopsgpySMZuWALXvDnHUjl8tDTwaYkmqZBS6dhzF0TDcOIhZMgTxuads4UTp44gZ1ziq9SsYiV69c7Pp92H20s4qZyeZTLtfYw1WoVuk1Dei+LF0o+2rpMnjjR9JuqoDAm3Hjjjbj22mtt///rX/8aixbVLjLbt2/HW97yFgDAi1/8YsybN8/1/fv7O5Am6k/CYni42/Z/s0ONwI5VUzg4b9D29f3zh8zbbpnCroFex+0IgmE0LOiNuQydyIsw+T0WndVYFCiXSrafRb4m09Hh+btPnbaE+fjgvAHqvYq55sHD+pww6extfG7Y8tG+4b7A33t6qJf5+OB8+/MAACo93jKFnX09rtua65STdeU9NoPuy66+xutZC04AMHb4MKqVCt3rz4I1YBsZZf9GdbTFjQUVP5nCniFvx1EuT/z2IRvNDC2oHZfDw2uw/t3vxh8/8hEAwO4dOzC4YAEyNnJoGdtU/+5aOo3RBQO+3ytL7E8/8lFysj1w6jL+41vgmJnKZk3pslGtAjaBQZiQx/jQgiHmfsl3dzGf3w5MEy7fx/bvR7lcRtpmgcCoVqlF4YUrlyE1t4iXzudQnqwFhUalAti8B7l40bt8qeOYM07Mtdrtd2l1rNJRQPx1pKszF9mc0A+xCQpzuRz6+vps/5+am7g8+OCDuPLKKzE2NoYzzzwT73nPe7je//jxKfcnCWZ4uBuHD4/b/v/kRGNgY03cJoqwff2s1rh4s+rryPcpGbrjdgQllc+jMqfPr1YqSAVc7SUhv8d4OY1UoQOV6SkYhoFKpcK8cJCv0XJ5z999Nsc+gcdn6d+jMtucrRx3+M1kU0Jjch+KfJSY9E+Vgx9j49PsC+74rOH43pRz2JxkzLpYQB4TZS3tuq0VTY4skVz00fLsY9Nt3OChaDS2v/6Z1glNpVzGiaNH0T8yYvs+1qDQbbsmysTn+qgpnK2mPH33MnGYh11TeHKmCn1uW5f87Zvw0H/dgMk9T6JcLOLJHTtwakgKFuo3yuUCHTtB9ycZFGoDI9KObycoCWFM6gqp69iMAY3x/Y10lvn8doD8vtVqtaZiWMTONJO10Nm+fhwbmwFQm39onLJ/8jhND89zPB4nics875imSAZWkxkAvhbDnJiYnAUimhM6YReoxiYovPzyy3H55Zc7Puexxx6jAsKvf/3r6OzsDGkLxcNyH+VuXu/i8heW+yhgCQqrVYjKxxrW2sBsFtn+PkxP1wL8crHoGhT6kVLVC9etpC2yH5ZbZpRGM6H3KSRrCh3qX3mxcx91q1fUdN1VMua5eX1WzgSNljZLNIBiOPGxvsexAwf4g0KO/Ra2+2jYRjN2Y0u6UMA5H/pn3H7lXwOo1UeNLl2Krl7nzKrobQoqXw/a4oO3IbhMKAO3mEjBeH6jdq5ds45NR/ftsw8KqR6FdP2/UyseEi9tU9pZ1tvKGIbBDArbXT4ava6Ck8nJSbzpTW/C2NgYVq1ahf/6r/9yzCwmAc21ptChT2FXQ2riXlMot85Nl2Q2UyGDjrn6q2xfv/mYnQMp9d05etJZyQ0OUbU15ntZ9qOmaU1BYGyMZkKvKRThPmrTp9BjCwlWdsCrGy/1fgIvEtWAxyYvrFpf1kTz+MGDjt+vQtUTuu83clwql8tc+y5QS4qw+xQSY611WxdeehnmXXSxeX/Xn/8caaDqB7J5vS/5KOnoyFlTKBothr0KecbKdg4+rGPT8UOHbK/vVDsKy4IWb69C3nYUAJAhxzTOOmlF/Jk6eZI5d1ZBYUL41re+hSeffBIAkE6ncc011+DNb34z3vzmN+Puu++OeOv8weqpxGud78V9VGZLCkBehoo1AcuRQaGN2UxQe3Y9lUJ2YLDpcVZwYnUgjdJoJpWT45hph/g+hWyXWJ7f0K2FhNfMOdkeQ1ZNocxjRSf2mZ18FKhNjqZOnrR9H9oNmW+/mb+XYXCNB0HGKi3kPoVO47OmaVj3kY+bCpDx48dxeO/eULcpeKZQpPtoRJlChgInanjO+3Qbtz5oMvuoVnFs/37mc4sM59E6lELCYdz2ktEuzGsY3JFtLBTJhlVPCMRnzIiKxASFt9xyi3n7gQcewK9//Wvzb7/N4BF3RPUpdKspFDFhdyIlqWk66ztkeYJCqlWCv5Vz6wokwG7tYe1VGK18NNyVZtELD7pNptBrZo91DHpdKODpfegHKqiQKR8lvqOTfBQAjjm0pnDKjNmR9ighDSQfJYMYyQshzU6szdvac9rpWPGGN5n3n3joIenZBZGlAkGCQsMw4iEfjVmm0LAsjthdj9s5U8j6vkf27WM+t2TjPArQDtaO8lGqR6HzcZrt7zcXfyvlMnf/VUW8YdYTQgWFsakpdON73/te1JsgnCA1hW79wMLKSAASM4WMLEW2v+GsV7KZbPmZyFopDI/iBB6kHmNdzFOWTGGk8tFCyDWFgo8xu36SPIsaVKaQMah7bZ9BbksSM4WsnpWU82lPD0pzGcJjBw5gMdHuh8QtCGKR6erC7JHDAPiCwiCtTcgaONEGAVYMwzA/Q0ulbY/X1Ve/E7t/8H1MH9iP0uws9jzyCJafeaa07RK5OBOk72NpdtZ8Tba3jyuzLANWq6coIbdBz2Zt3X7J367dDE1Y16uxw4dRKhabXHypHoWD1kyh+wK118ULTdPQMX8BJp54HEAty0jOvxTJ5CTR3zw3NGxes8JobRRnEpMpbEWsLmmUtXgq5dh03U0+Ssuc5BvN1BE5gWZNFrP9feZjdplCEXKqnHUFMpNhXszJekotbT9RDIOw5aOijzFrgA3w71MvmUKuzGOWT4bkldCCQobhAvl7zb/4OWZWaGJszFYWxStnJwmUKfSYaddDNJqhfzv77cx0dWPtBz5s3t+/axemxuW5z4k1miHGOI/7k67TiiZLCAAa2bc0Bqv+PD0KAXpBpN0yhax6Z8MwmBJSp0whzzXQz+JFYd5887aSkCaf0uyseRylcjn0rW4s2kU/YkSLCgojxJoppK3FnRtbpzs6gbn/VyuVpglR0Lo6L0jLFFIyUIZ81C5TSGY3/GYKLfJRW3MAomE8K6gJkyjloyKOMTKw8/q+rkYzHhqwA3TmUVamUOZijVumsGP+fAxvusC8bych9SNNJBeseKRWgWoKU8GarXvBS4C85EV/Ze5fwzCwa9s2adtHBx1Bg0L/+9OLeYdM3MaCsOEN2pX7aI2+M9eYt1kSUif3UWoxz2Yf+lm8KMwngkLi9YpkMkks0vWsPCN2kvMoUUFhhFhlLl5WfDVdp1yxrCvyrSYf9VRTKEBOlRvmCwrJi5Ds1h9uyMrY2iG67QmrJQVv4ESZNgkwmpE1sfQanPqFlSm07oMFz77UvH/swAHm+/gJ/CkVA0c9XZDjKGgLBS/QsnTn7dQ0Ded+7BNm5u3EkSM4Kqn2PS7yUXKyXIionhBwHwvChnchiOfa1qqQ+2jZS15h3h47coQKAgHafdSq6CEXae2ugX4WLzrmN8xmZlWmMPGQ5mq9Z6wOvbVRnFFBYYRoFvdRrxf3tMPkK9Q+hbKMZtzcR+0yhQICYmuvQjtTEHLyHaXJDGD5HZJYUxig7yMlH2XVFBLHEs+5xeti55WKgHpXHlhZY2uAt/CS55r3Txw+LKw22WuvQj8S1TphXszpvpzuY2rf6jU47YqrzPuPP/iglMUaWUYzgeSjUQaF6Xi5j/KeQznC8brUxkFh92mnYWjDxtodw2haTClyZgpFBoXKgbS1IIPCvlWrAy2GtRoqKIwQ3VpT6LGHWaarx7xtlWlRExjJwYrO2TDWK6zaQNJohqum0KecyhoU2v0eZCAWlbFCnTCb13upf+VFT6eb+kPy9vLz1pKCx8006fLR5smRtUa3a9ly9KxYZT7nxJEjTe/jx8XYzQRLxGfUCbNPoZ/ga8273oNsf20hqzg9jWkJtYUiZdyU+6jH13pxdJSJLOdgv/AaKeUGG0Fhu2UKrfto8QtfbN4nJaSGYfDXFNpcA/045Bbmq6CwlSBrvHvPWE3NxWUblsUdFRRGiGZZ0fTqwudkNhNq83oyIBDZ6JvRWoI0mrF1HxUgp7K2pLC1Ec/FSD5KWppLngx5qX/1gjVbyC8f9VJT6LF5vbQ2KxLlo4wFAtZ5seA5l5iPsSSkfrJ4TrJ2FsFaUhA1cJKPeV7DEJJsby+6lp9q3pexWMOqvfZLkJYU9GQ7wprCdLyMZnivR/nBIfO2VTLZ6ljHxcXPe4HpmXDiyBEzEKuUy+Z5nsoXat4KBKTxm914MOtD5kzWFM6qmsJEYxgGJq3y0RBr0+OOCgojxMlohie75yTTClM+Kiv1zposeq0p9C0fHbLIR+1qComMjOyMrBuyMrYsZNWsWoNCX/JREe6jOUnN6ykTJImZQoaUmGXAtPA5DQnpsYMHnQ2rJMhHDSLjDF1nSoidIOWjsvG72JQis84SJhxBWnpYITP1wYxmonQfjZdpBO85lFXyUQC1c6swOo8ywqpLSJ2yhACQ4hi3/WS0O5T7aMswOzVlHm/Z/n7kh0dCrU2POyoojBBN06iV2YoHIwPAS02h3GBFS4cRFNa+g9V9lPV5QeRodXIDA9RvY+s+Sky+I88UhikfFdy4vo7VgZQ3EHGTj3rNnMvKFIaVwWeZDrGkqwPnnmfWMpVmZzExNka9jz/5KCFrdzGaqVhk7l4zztTFPMzsuIdzXXaQQtVedwQ7pvzKqIxqlZoskxb+YRPrmkKHcyjb22tecyrlcihmYXGBdW4teeFfmo8deeopAJYehcyg0P0aWPRRU5gfGTUXTEqzs23127QapPNo76ozm+bhcRgzokQFhRFDZgvJCRTPhNHO+r2pvUVAm3I3ZPUKY/XBSxcK5oTXWofJfp2/767pOnJEETuXfDTiTGGa0YZAFlRwI7CWkszQAQLlo16DwqykTKGkYNqKzpgcUYtOc8eqnkph/rPtJaR+ttethyr1/gGNd8K8mPvNjsu2O5dWU+hhf5IBYW5wKNL2PG4LRGHDez3SdL1tzWZY+2jR5S8wA7GTx45hdnrakimk1TyARS1jU0ZgHquaxr14oWcylCO5yhYmF8pkZvVqAOEalsUdFRRGDFlX6NUh0U6mRQ6GejbLbLoukjDlo4C7hFSUtJG86Ni2pKAyhXKDbzcik48KXHRoyhTyykezzhI9r8dEijSrkHVMS1ysIdUBrEwhuQ8Wkq0pLP0KZctHg+4PXZJKgYXfxSZZCwys9wxqXuR3LKeko4uiqycE6ExhHDI6Xs6h7ABhpNZGdYWscSA/NIyRpz3dfPzovn208+ggI1Po4j5KBnP5oSFqnHeDbEuhehUmF8pkZtVcUBhANt9qqKAwYsieSvRKvrdMISkftZqAyCYc+SgRFPY3gkKW2YyoiTfZwN5uEkjWMMh0k+SB1bBcFrIyXuRFHeCX6TllCv1kzqkaRVm9N2XKRy2ZQsMwbOsZRy96phm4TJ08iZmpKfN/fpx8PWUKA7qxhtqn0Oe4IlvOKFKS7DdTSNdpRRsUapkYy0ddjnHKbKaNMoV24+Li57/IvH1k3z5qn7BqCskaf1aWmF68WOxpGwuqrrAlsPYoBPzL5lsRFRRGDDlh8CoftbN+D7NxPRCst5UTdpOwsDKFpFzEXj5KZgoj7lNYiKamUGQtJZnxq703b02hfTbGT+ackqBJk0RLlI+m002SGLtAPtPZhZEtF5r3jxPZQj/BPzkueakp9CNDliVdZ+FbPipZzihWPkpMCfxmCiNsRwE0t3qKGi8Gcrk2DAqdzKYWXfZ8cxwbP34cE8ePm//LDblkChnXwCAOuZQDqQoKE0m1WsX0xIR5v3dlrSWTqilsoILCiCEb2JPZPq/y0bJNUBhG9kqXZPZgN4G2ms1YEfX9CxzyUbJvIlkPEgWs7JAsZBmmWOWjvI6uThNBP5lzsgmyvJYUchdsrA3snVoqkI3sybpClmOpG5lO/pYUQTPOUdUUepKPpsMLCqOSjxZj4jwKWFQDMZjgeRkrKflomwSFtNlUgTKbyg0MYPTCZ5j3jx86ZN5mZgpdagqDLF4o+WjymR4fN8eEzkWLzTm0ch9toILCiCEDqrJH91E7mVaUmcKw5aOsC6eogGXhZc+r3dA0zL/42cznLHnRX2HwvA3oP+tsLHvZK31/lghY2SFZyOq319SSwo98VEBbBbcWF34J89y0NnJ2yu4uIOoKTxw5Yi62+Kop9Ckf9RMky1IpsPDb+oE6liRso8hjyrd8NE6Zwkycawo9yEfbpKawyjDAIllCNLInYWYKXfoUBjlOlXw0+VDOo6vPNG+H2e827oTX5EnBhKx/IDOFPNbilKED8VpZzpB2yFplsVsBz/X1mbfdMoVBApbBdevxvLv/BKNaRdfSZczn5IeG8Bc/+ZXvzxBNKl9AeaI28FUrFei6nHUfWdnopqCQ02KfMppxyBRyu5lKkvxR2yL53LS2paA/m96vHQsWom/N2Rh74M8wDANjhw9jaMECXwssdrJ2FoHdR0OUCsZVPuqn7tMOv0F2rILCuMlHKSMgt0xh+7mPup1XCy+5DHomg6rlWp9nBoXOteBkMOc1o002ulfy0WRC1RPOmcwAdHKm3VGZwojRbdxHeYIZnppCmXVLdUIxmiH2BynZZF04RQYsnYuX2AaEccSaHZKFrIyX1Q3OT/N660TQT2Cju7jY+UVWhpWFtW+lW1aOJSGl66E4g8KOTmBOAlatVBwn5hUf8lSSyFpSeAi+tFDlowGDQhHy0YiDwtgZzXi4rucH2zAoJINmxkJZtq8P8y56VtPjrKCQasXDyhQSJloFr/JRlSlMPKTzaN8ZjaCQuo7EYCEpSlRQGDGk+2iZakkhSD4aQu88WRMzO7mWl5rCqNtEhA2rabkMZBmmNNUUcmf27IPCqo/MuazsTljN6wH6WCDPEz2bpSy465AS0uMHDzb1AeXdXk3TuCWkQRdw9IjcR62ZVidSDllsEYiVj3q3Zq9WKo0ARteRH50XaBuC4tazNGy8yI5zbSgf5dk/i1/wl9R9LZWiykjqZFxMrmiXXI+ZQsJopjg9HYsFB4U3WM6jgOpTSKKCwoih+hR6bV7PYTQj0hnSDir1Lk0+yuc+2mS9H3FD+bCxmovIQlbgreesLSl4awB55aN875eSUFPopzVGEMhVc/I8sdun/WevNetmyqUSTh4/7vt3thubrNDv7/1claVSYOE3oNckt6QQOd77kY+SE+3CyCht7x4B5EJrHIJCL+NPOxrN8CxiL7zkudS1ITcwwFzYIs3erPuvUi6bj2mpFPIjo562M93RiUxvL4DaeRzHTO7M1BQO7dnj6vrcjpRLJVPmrqXT6D7lNPN/snptJxEVFEaMfaaQp09hj3nbrqYwFPlolEYzlsGPfI2eyzEvHK1MKi9H9mhFWlCYsbSk4G5ez5kp9NHiQtTEknwfPZORPnlO22QK7cYETdOw4NmXmPcf27rVc+9U8zM4G9gHPY6i6lPoJasp41gicXKV9YqfsZx2Ho22RyFgaV4fgwmeFwffduxTyHNeZbp7MP+Zf2Hezw+zA7rcgH1pCSn5LMybz9WayEqczWaq1SoeuOMOPLp1Kx65776oNyd2kFnCnlNPp+YaYS4uxp32mjHHEN02U+g+6Uh30dbv9YM5dPloKDWFZKawz7xtXQ30UwPVSrRappBbPsrrPsp5TDj1PfRL2Ocl+RklKlNov08XEHWFZBP7bH9/U8DuBK98tOIz0KoTWU2hF6MZiW6YhmFQgWbwoJAIsjlfMxu3oFCysY9XvBw3VqOZdpig8u6fJS9quJB2LGIfZ+mubvN8s7bhEXGcdsxvSE7j1pZidmrKrJkcJ/o5KmrYOY8Cqk8hiQoKI8ZuosVzcdfTaWYQELZ8VNZqvZ1cK0fIR62rgWFPvOOG1VxEFkEn83Y0ZQoFyEf9ZM5l1CX5bWngF0o+yilNH93y9KZ+m11Ll+H8z36R6h/mRiakTCGVbQ3VaIZ/bNElGp9YFzy8/EYsfMlHY2QyA8iX63rFi+w4lc02FlQMoy1kgLz7Z9HlL8DSF78UPStW4oy3XM18jqZpVGBNLhrPCuilGecG9uRcSOa1P6mQmULSZAaQVwKVRJQPa8RoNhIyLz3BKjO1wa5cLiOVTofvPiphlcVpBZx0Hy2XSjAMw5wMUW6GIbTjiBspl+a9opAVfKeylppCH5k9IfLRnNxMYRjnJWU0Q0wYnIL4VD6Pp33j29h94/fRtWQZFvzFc9B96mm2z7eDckZ2mNgGPY7CdI3zuxAi0/hE9Hnox2gmTs6jgCUIj1mmkOe4yQ0OoTSX1SgXi8hYHJlbDd79o6fT2PTvX3Z9v9zAAGYO1tyTS8UicnNjrYjjNM4N7K1BITkvUtDOo72WoFBlChuooDBi7DKFvJOOdHc3cPgQgLnJVz7vqYZBBDJW651WwFOFAvRcDtXZWdMhMTW3DbL65yWF0OSjko4xUvoFeMjsEcegk9EMd5ApYSIftiuunfuo22cPrd+AofUbAn025QLInSlsVfmoPOMT0W62fgwXgjg6yiB2fQo9Bu65wSFMPPE4gJoDaYEoE2lFgppNWcn1s816RGS041xTWLa41RrVKp35b2MMw7DtUQiomkISJR+NGM2maSZ3ppAh0xLZzJgH0sxFzgSavlBommbbliJoM+ykE5Z8VF7zep/uo1m+mkJ++SgtQRNxoQhb1m2fKZR/XvDKR4OaYukhWon7DwqJrLNE+Sirx5tX/ATZ5GS74FOWJxKqHjgGEzyvx42TWUorInqxzFqXWYcOCv3VFFLy0RhnCgG5SqGkUZyZMeeJ6c6upppS5T7aQAWFERM0U8gydAg7IyGjx4tbYGtnNhN2ljRu6BH0KRQpH7X2KRSR2fOTTdE0TbhrZNiuwKmcjdFMCAtFlAkWr3y0Vd1HJcoZRS80+KkpJGV0nXEwmknHRz5qGIZn2XGuBR1Iy8UiZVxFIro+PWfT1oPKaPs8TruWLjdvnzx6FDOTk77eRwbWvpaqrrABLR09o0lWq/oUNlBBYcTY2dLzTrRZK/Jh1y7JWK13WwGnzGYibMcRN0LLFFIZWXFZr1TOEhRyZwrtJ4J+J86iMzxhL1j4lY+KwE/zej/Baliyn2q1ar6/lkp5cmINLygUUFPoccW8Ui6bx5aeyVABTVRomfhM8AzDMINrLZ3mOm7sgpqkUpqdxb2/+Q3uvfVWHHzyyab/i17EztlkCkXUFHafdjqGNmwEUPttn9yxw+dWisfJdK/dmaRMZs5s+r+fxbBWRQWFEaOxLhKa1mTNbwfL0CH0TKGE1LvbRD5rUzcQZnPwOJIOKygkJrcig+/mTCFnn0KHZvNVG8Mi1/cUbG0f9rFJmg7xNK8XiR/3UT/HUVg1hUEMXZyOzaCIlnF7NZqhpKPzF8SiL2ycMoXUccN5TacyhZbsTxI5cfSoOf48uWOH86KdANUJq4F9uVQyxyE9l0OWCLy9oGkazn7fdeb9w089hckTJ/xvrECa2nMp+agJVU9oMZkBQPWsjHohKWqiH8HbHPICVseLtTjL0EG0+YAbMlbr3SaLdg3sww6I4wbZhiCRzesJyWYqn+c+D5yyMWRW00vgQdY3itiXYde7koFnhdoH8usZwzKaCctKPMjxLjNzJXqs9zo5ilvjesC5vjhs/BzfrSYfJce94swMjh44QP9fsAQ6y6jJpOoJ5y8M5Mo5fP4mLHjOpeb93du3+34vkahMoT2UfHRVc1Co3EcbqKAwYkhnujpeJq7u8tEw+hSKT727TXZsawrbPCiMok+hyKwXHRR6CeDspZ5++wOKlv1VJGVX7bCTE4bRvzPtq3m9H/loOFLBIGNqslpSeBvL4+Y8Cjg7EYeNn+O71YxmKpbr0IEnnrD9v4hxkZKPzmVaqaDQpvG9F8669v3AXGB5/NAhnDhyJPB7BkXVFLIxqlX3oFDVFJqooDBiNFam0ENtiKvRTAgTQBlmD27BnZ37qKym6kmBNBcJy31UWqaww5/Do3NNoRf5qNjJfNjyUTJrTBK6fLQF+hT6XVgALAsWooNCaqFBgHzUYylA3BrXA3RJRqzko5zusGSmsBVqCq3XoRNHjlCTdOE1hYzSEtG9NPtWrcayl77CvP/EQw9FHkwo91E205OT5jiQHxlFjlCZ1aHGvTbfbyoojBhWptDLpCMONYXSjWbcgkLbmkL5AXHcSIXgPmoYBjVwim1e35hApz1lCh3koz4nzinBk/mwz8u0ze8SxmIJ5T7aAn0Kg/x2MttmiD6mvO5PKiiMQTsKwLJAFCf5KOd41mo1hazFyf2PP878v4jFstwgkSmcmxPJWLxY885rzAWfibExHNu/X8j7+qFSLjftZ5UprEEuQPStbjaZAewNH9sRFRRGDKum0MukjVyRL8dAPhqW0Qy52lNS8lET0qBI1oqXdR8Hqc+wQmcKPQRwTkYzAvrLic4UhuIKHGWmsLvHvM0rH/WzXWH1KQzy24nOOJOQ+1aIfDTtTT4qOgMjAnKhNepVfz/HTavLRwHg8N69NvMVEX0KmzOFsxJqXzsXL8FpV7zOvL+bYaITFqzjRGUKa0y6mMwAFoOtNt9vKiiMGI2xQuFlcsSSj8rqIWeHjKDQ7TtQ7qM2RjPtKB8Nowkr9dvYBB5+IQMxL+eBk2TMb+AhWvYnqw7TDrtzP4wxgcd9VETGOaw+hcEyheG0pIhaPlqIS1BI7O+oJ8Z+xp50V7c59lQrFcdFlSTAylhVymUc3rOn6f8ijGbSHZ3m4mh9/xUl1b6u/se3m3Ow6YkJHJz7TmHDkhmrTGENynl0FTtTGGa/27ijgsKICZwpZKzIix5k3ZCdKfQiHw07II4bXi3l/UDXyYgNbrqWNZoDdy8/lft1lCmM5XtTx5JP8xrhNYUhN68nCVs+Wi6XmceiVTbmJ+Mclnw0SK0yKW0W0e+SRHTvSy/70zAMiywvJu6jDmNB2PgJ2jVNa6m6QnIf9KxcZd4eO3wYgHijGU3TmtpSyJI55wYHserN/2je3/Pww8zMqGyYmUIVFAKwyEdtM4XKfbSOCgojhllT6CGYSTMMHULvU5gWbwvv2qeQdB9VLSlMwui3IzMb233Kqdjw6X/Dqa+5AmveeQ336xz7FAqQj4qvKZQfmNm6j4YRkGazjXHMMJgTFBH1v17ljn4JlCkMy31USJ9C/vGjUiqZn5/KF6gxOUpEuwYHwe8x3koSUnIfDJ230bxdr5eU4QNg3X8yDZFWvOFNyI+MAqi13Ni/a5fQ9+eBVXsadZY8DlTKZcxMTtbu6Dp6Tl/BfJ5yH22ggsKIYTWv95J9scpHq9Vq46DWdeoCKQuyV5ioi7Cr+yhHn8K2lI9KaA9iRXZwc8qrXoPzPvlZdC5ewv0aR6MZ3/JRec3r04IzrCzsmmWHtViSdpGQiuixp0chH/Uo/ZUZpIhWRpDyUbfxwzrRFllbHITYuo96GCtbqVcheYyS9Xz17yXjekJmCqfGx83jIN3VRamrRJDu6MSZb3+XeX/vY4+Fnt1VmUI2ZJawe9ly2zFS04lQSAWFiihhNq/3JB+ljWZoqRx/8+8gyJAsuklK0h2d5mSrWqmYz29399HQawo9tHiQiVM2xm8tX0p08/qQj0277xpWUMiqdyYRsYBDrfCG1pLCf1AovCWFaOmdh7Gc6lEooPebKKgazogneH6PGyrTlXAHUvIY7SSOkzIzKBQzNpGeA6TRiCyJ8ymv+ht0LT8FQC2Dvvexx6R8jh3MTKEKCun+hKvX2D4vLMOyJKCCwogR3bw+Cvmk9D6FjMmtpmm02YzEVcckEYY2Po7ZWDtTmGq1aq78aamUp8y56ExhkF53frALPMNwPgWAdCddV2jFTw83K1G0pPC6/zSJQYpU+ajLc+PYoxCgr6lRS+isi7S8tFKmkNwHhfkLzKbv5VIJ1WqVrouVIB+dPHHCvC2rbYqeyeCsf3qveX//rl3U+SEb5T7KhjSZsasnBFRNIYkKCiOG3bzeg8QtlzMnuka1Skkpw3A4BMJoScH+HqwG9tTEOwSJXtwgV/rDkY/GYx/rqRQlAakfh9bsnJfMedJbUtgZzYS1WOIlU+g34xxGDS0QLPgSvbhAIjr77EV+Hsd2FECM+xR6kY8OtI7RDKX66eykrtvkMSSyvREpH6WDQnkZ7cXPfxGGzz0XQC0g2/PII9I+y4pyH2VDtaNY5RQUqkxhHRUURgwrc+ElmNM0jardIWUEaZ+r717RZRjNcDQcp8xmWJlCJR+V8hlhBze8sLKFgQxCki4ftQm0wvrNqKCQWKwyHxMtH41pplCm0Yxw50YP40cc21EAMa4p9LBImRtsTaOZVKFABWzkMSSyvVGWdB8lxh6ZDrmarmPzxz5m3j/45JOYmpiQ9nkkSj7KhpKPcmYKVU2hIlJ0Rp9Crxd3cvJVJAaHsDICUvoUkk2Z7TKFDLMZnmCylQlDBhF2vz1eWIYeQbaVyvAI2JdhS5ujbF4PuPcqFJFxjqIlhdesJlVTmCT5qJv7KPGbkhP9qNFTKVOiCES78u83aKfko0mvKbRck0lpJxUUClT2kJ9BIks+WmfJs5+N0QufUbtjGNgbUrZQyUebKc3OmudOKpdD55Klts8lXaxVplARKUGb1wN0UEheQMLKlEmXj9p8D1avwipHMNnKUCtekoijfBRgZ2Rox0+Psj/BLSlEZ3Xc0G1qKMMK5NOejGb8BoXiVQosggRfGhmkGIbQSYdMoxm3/Un+pmGpUniJS1sKv661rSQftV6T7TKFIhdx7RYpwpA5r7664UQ6MTYm/fMA5T7KgpSO9qw8gyo1sKKHoLBKCioojJig7qMAvSJfJBzhwsqUyZBw8UzCcv3NEpuwJ95xI3yjmfjsY43h8hhkMp+S2rw+JGm3JVuopTNMdYIMPNUU+gxU9ZBWeAMZzWiatCBF9AKNF/loXBeHAMuCToSTPL/7qJXko9ZrcnbQRj7aIkFhYf5883YYCxLVapUpz2/3oJBqWr/6TMfnqj6FDVRQGDFM91GPGb50V8Plj8oUhuU+KmGVhSe4szawNyxNsuMkbQwLltmKaOLq8EpNvBlGM17PKztHU79EUe9q/Zx0iC1EMqT7qEtNoX/5aAR9Cn1sq6wgRXRg5sWaPY4uxHXI62pcMoW+5aMJDgpZ12Rb+ajAsYksLSEpzF8g7DPskCkXZ2GXSW53+egUp8kMoNxHSVRQGDFB3UcBB/loSBNAGT1eKJtqTvdR8rO1VNpT+4FWIYyCadENs0WhMzJ7gVwjBWZ3jGq1cXzqOrWtMrE2sA8zo5MmmkTLk48SF/PQ+hR6D4BkOZCKCKxJvIwfcR0HAEsbkAgnx36Pm2xff6N1Q7GY2Ikque+1dAZ6JkMFvMUQ5aPZ/v5wZPuCFSZu2NWctnumcJLTZAZQQSGJCgojhlnz43FwJN1HozGaIbJTggZBnowfZTRTLAqxuE86YctH45oprLKMZry6RubEuY9WSLOFvDjrdTes506Y2XNvLSmS4z7qJwDSJQQpMpQRXsaPWMtHBZtE+cXvcaOn05QSJqnZQvr718ZTMmCbmZpq/F/gMZTu6Gg6HzoXLRb2/k6kCNfqUIJC4tgge8O2c1BoGIYlU3iG4/OV+2gDFRRGjHD3UaqmMPzm9aKgDUL4MoVxdcUMlZDlo3GqKXQ1momwlQBlthBiVsW6OBKmIYgn91Gf+4SUSwPxPeZl1BSS76NnMo5GCrx4kZ/HWj6abl4gioIggXMrmM2w2s6Q8lGZ1xKrA6nMdhQk5IJEGMceGRSSfRjbWT46OzVlHlvZ/n7kh0ccn0+p3dp4vwEqKIwcTUCmMNPVkGmRA0RoNYWCTyjeFXCr+2hcg5UwIes726l5PcAhH/XakoKRefQL1WIlxMDM2vsrzMyuW6YwqCQTqJm4JCE7zjJBErtNYs7DlskUxtB91GvgTAY1SW1LwTpG7ExgRC/kZi2fU5DcjqKOzL6kLMgFA9JIp50zhaTzaN8ZZ7oqcyhfDGlblQxUUBgxTPdRj6vm5OSLDATCypaJnpSRkyY9l2vKBtTJEfLRklU+GjOL9LCgpLxt1qcwxSjwD9S8PidOBkQaKoThgFen2WgmzJrCxrjEMpqh+5f5364wJKRBXY2piaIEMy5R2WdeGZVhGHTdd+xqCuPhJhhEvt4KZjOslkC2QaHwTCH9OWGNu9ZjT/bxRy4YUJnCNg4K6ab1zs6jgPjERpJRQWHEMN1HPQ6O5OQryPv4RbSEi3aMtP8O1ub17e48CrR3SwpWpjDIZF5kppAKCheGI2MCGEYzIU7eSfdRWc3rAUAPoVdh0EyhDKMZGbW9vE7SVumv3cJdVISdrbEjyDWp1YLC+jGatWksL1w+OmiVj4YUFGpaqGYzSj7aDFVP6GIyA4SzmJ4U4jWStyGi+xTS7xNSUChYwsVba5Tu7DJXeKqVCpWNiFOwEiZhNGGNq2yMFcQF2VaRfQrpoDDMTKHFaCZG8lFRizhaCL0KRRrNiLKpZ2VhgsI7jsd9AS428tEA2XBSPlpOqHyUtSiX6e6hMjN1RI9N2f5ogkIg3D6ZdKZQyUcB2nm0jysolL+wmBRUUBgx7MHRv9EM9T4hXqyp7xHwpOKtNdI0jaorLFI9j+I3UQmDMFy04us+6taSwmOmUGCfwmJEmUI90pYULjWFxGOB5KOS21KIaCeSmEwh54o5LdWP31hLGkdE1bzeqFYbv7WmNZ2LbrRcpnBuMUXTNKaEVLSKISr5KCCvBQ0L8tgozJtvtjIJQ7oaV8jrbdfyU12fr1pSNFBBYcQwW1IEqSkkCDNbpgtsIu1lBZwMCmcJ59U4rl6HATW4SfoMavU3RrVE7n0Ko3MfJTOFnWHKRy3fOdSawo5Oc4JSrVSa9iFPL1IeZDewp9uJ5H21E5HRkkLGeahxOphWOCX+URGHTGHFUnPp9bjJDTaCmpYIComFC6szqPX/IqA+Q9drAVNIhClfJo+N3OAgZS7WrtlC8ntnurocnllDRq/tpKKCwoixZgr9XDyilo8CYjXZXlahSbMZuhFu/CYqYRBKplDQZF40GiM7wLJE54Uymgm4L+NTUxjimKBpjhJSUZku2Rd0qp2Iz+NdRo2RjPPQV01hDE29ZBj7eIVuQ+P99yEzXa3kPgrQWdA64ltSNPZfYXiEuQAvC5EqEzdIaXF+cIhqQ9SOQWGVUHZo6TTX7x5Wa6MkoILCiLEesH4uHnZGM1HJR8XWFDp/B9JshsoUxkjWGCZe+oz5JbbyUdeWFN6yKVSNYoCLq2EYFvfREIPCvLUlRbhBPLlgVXYICoNkumQf8yKOd53hjBsUOfJRH0FhjBaG6miZ6N0Eg7rrkoFTa/QpJIJClnxU8HGUHx41b3csXiL0vd0Iy2jGMAyUCC+F7MAgNWdqR7MZv9f8uDgWR40KCiPGajTjpz7DtqYwzEyhLq6ux4tjpG1NYYxkjWESuvtojOqJWJKxINkU6sIeYF+Szrjpjg5kent9v5dXrH0Kw86gpx0a2Aex6yeRfTHndUN2QoZ8lM5EhduSIkgGPgxk7G+vBM2mtrJ8lOVAKvo4Gjp/IwbP24BUPo+Vb3iT0Pd2Q6RztRMzU1PmeZru6kIqm6XUIW2ZKfQ5NoWhskoCzS4nilDRLC0p/AyMZu2O5UAO82JNTcwCvpeXFXC7mkIlH4WUgc0wjNg6D7IkO0GaR6cESYBo6ehiXzVpfmnOFIY7gafko5ZehaIyXSJNrlhUBEglZWQOgvZOZKHpOnUtMQyDebzGPVNIjQURTfCC9nOl5KPFou1vEWfs2heFYTSjp9O4+Mc3ozIzE/p8IKyawj0PP2ze7l9zNgB6P7ZjUOh3sVFPpVFFTYqrMoWKyGjKFPqYHGm6ziymDTNbppPBSMBB0MuEgwwKyUlnnGSNYcJbE+QXMjjSs9lY9SdjXYiDNPgWdWGPynkUYLSkCDmDTspHK5YJiqiMs0iTKxZBZYCApd5VSk2huPGOR20Q116ldfQYNKMOuo/SHR3m72pUq03nTxKwm6CHIR8FanXNURyfYchHJ8bGcHjvXvP+mne/BwCUfNRnqx7Vq7BGfGZ0bUpTTWHB36SNVVcYrtFM+H0KASDb38d8PI426WEgWz4a5wxBipSPzn132iTEo9GMlExh2EGhtSVFuIslaZtMociMM3UxlzAJElJTKEiKTCIrMPMaFMZxAU5jjAVhI2IfJb1Xod05Hob7aJSkJNQQkxiGgccffNC8v/CS52Jk85baZ7d5ptDveadqCmuooDBiNF2nsi1+JZ+Zrp6mxyKTjwrsU+j2HXL9zRcXoJ1rCkM03YiRdBSwkY8GyPKIWu2NNii0tKQIebGElI+SRjMiM84ipesshLiPSmiREMREyQlSbWAnxxVVDyqLuNUU+g3ak96r0NZ9lJEpjGPG2S+yM4XHDhzAyaNHAdQWcda+/8Pm/+LWkoLVo1bq5/k872SrrJKCqimMAVo6DWNuwPd7gWWZzfjNOvpB5AnlVz5KEkfzgzDg7TPmFxl1TKJgGs0I6lMoLlMYXgNlgNGSIkL3UXJyIHJxgepTKGECFkSCXEeG8URFUrbOs3w0hgtweq5x7hYjyrDRv4+/fZR0sxm7wDgbQk1hlMg0mjEMA7u3bzfvn/raK9F96mnm/ThlCndt24b9jz+OBaecguVr1oTymX6v+aqBfQ2VKYwB5Kqm34k2q1dhuC0p5ASFXtxHSeK4eh0G0msKY9yfjJUpDGL2oGfFZBvilCkMO7trZzQjUvoYpmTa72KTjL55sqTcPGqDuMtHB9auM28f3L07ktoqMfLRZPcqtFu4yA+yagrjdxz5RabRTHFmBtMTEwBqAeCat/8T9X+qT2GENYVGtYoDTzwBANj3+OOhbYt/+ahyHwVUUBgLSAdSv5M2a02hnsuFagIir6aQv08hSSutOnohCRNkWbAuxEEmzqksYe0tKCjsDDko1C2ZwvBbUjQMsGwzhQEXF3TZx7yAJvG6hL55sqTcrSAfXfKCv0R+eARAbRJ95KmnQt8GEUF7K8lHqUwho+wjTu2NgkKOu6KDQnIc7Vi4iMomAxajmQgzhRWiiTwMI7Rem6Tc37d8tA0NeuqooDAGkJlCUfJRa38y2ZAOgEFXWbxMOLJ9fczH4xawhIXslhSy6phEQDWsNozaHzmh97i9mkWO6ifgMKpVyn20MH+B5/cIQpya15OTmaB2/SSyW1KIyGrKyBzI6hfaCu6jqXwep1/5evP+vp07Q5eEiakpbEz4k9jA3i5rQzqrmv+PWY16EGTKR90yYWRAGmWmsGqpJQxrUcN3SwplNANABYWxgBxARMlHw75Q+zWaKc7O4pH77sOuBx7wld3JdPcw6+jiuHodBtbssOjBLc4ZAmsNoDWA9drjS0+lAgfZZD1TbmioqcZPNtagMOzFElujGZ+24SxkX8xF1O5Rx2bs5aPJdx8FgFP/5kpz2yZPnsSJI0dC/XxyEpzpbjaC46G15KP0WEQ6kMatvVFQZBrNuNX1xyVTaP3ssIJC3/JRVVMIQAWFsYAMqPxeYJsyhSHXe/m1hT/w+OM4vHcv9u/ahaMHDgDwJlHUNI1ZV9hKq45ekTm4xdp91JKNEZGN0gNKSGenpszbnYsW+9qGIDRlCkPO7lItKezko0FrCmXX0VLuo36NZsTLR724NHuBHMt55KNxzBQCtaBj+Stfbd5/aufOUD9fRC1xK8lHrec5GfDGbYExKFFmCtMxMZqxfnZYLVX8Zug1gWq3JJPYoPBNb3oTVq5ciRtvvDHqTQkMOYD4HRytNYVhD7JUA2kPryMvnDOTkwC8TxhZQWFcJyphIFNCKjLDI5qUxRhGROAR1GyGnhhGERRajGbCzhSS8lFZRjMCTa5YCDmOJMtHZbWk4MsUxnesXfn6N5kZqLFDhzB58mRony0mKEy4fJRqCUSPPWRQ2GrXaxnGUnXcxk49Fw+jmUpEmUK/aibVvL5GIoPCH//4x/jNb34T9WYIg6op9JnRyHR2UffDlolR2SkPAxF5AtczCV4nO6wG9nGeqMhGZuYkzpNBJ/mo3wA2aFsKamK4INx2FEAMWlLYZApl1RRKaV7vMLHlRZOQOZB1LvLIcZMgHwWArmXLseCSy8z7Jw4fDu2zRagEki4fderxmSXko3E+hvxALiZKzRQyaolJNYM1MAuTOMhHvYzXVGsjFRQmhyNHjuBjH/tY1JshFNIgw3dNYcSZQr9mD+QJXJ7LJHiVRSn5KI1M+WiFcvaK14WcyuoZhhCpaypgbUiU7SgA+ntrqRSlSgiDNE+fwpjLR0XU0VI9NCXUFIqVjxL7k+Oz42Y4ZaV/zVnm7RKRrZZJtVptBHGahsK8+b7eJ+nyUSeZcWvLR8OpKWQF0+T5aMQpKIxAPqr6FHoncUHhddddh5MnT2LFihVRb4owSOmlKPlo6EYzPk8oVlAoQj7aahcZL/DUBPklKZnCJvmoT3dGVu9DL0QdFKa7uswFo8K8+Z7NdoJCykftjGaCHkeyjWaEuI9KMJ6oSArMqJYUNtsa59Y0VjK9febtsCSYlOPwyKjvxZhsb695ba2Uy5HKAb3itjBHBrxxP4a8ItNoxm1BhjKaUfJR7tcp99EanoPCYrGIRx55BA8//DCKIa9c/exnP8Mtt9yCK664AmeeeWaony0TjXIf9Wk0Y3EfDTtTJiIorDCCQh7ZX47R8yjuq9cyCctoJm51INYAToQRR9DakCIVFEYgH81msf5fPo3Rp1+E9f/yqdA/39qnsL4PRQYVspsOi8g4kxMOOfJROUYzdsd8nF2IrZBti8ohZQpFLQZpuk719EtStpAMhrR0pikwzlHy0XgfQ15JBVxMdMLtGkyWDMRJPhpan0K/8lFd1RQCQNr9KQ3uuusuvPOd74RhGCiXy9B1HZ/85Cdx4YUXBt6QG2+8Eddee63t/7///e/jIx/5CJYsWYK3vvWtuO666zy9f39/B9Lp5tYFshke7nZ9Tq7QOIkH5g1wvcaKtmQedb+zv8fX+/gl30FIFjycUOSgVWbUFI4sHEKHy/foXzhK3U8XChgZ8WcB3gqkJK54kb9X73B/qMeYG+XhXvO2taawo7fb17ZmO4OtupKTw8Vnr0In5zaI3K/Db7wS573xSmHv55VUPo/KzAwwlzlIpdPUcdQ9EGysKhC/kWz56OD8QV/bOjbUODZlyEfnLRmhJqJByOSIhRCOzx5ZNIxuj/skzHFjcklDuhnWxJQ87/tPXR7o+3aOjmD2SK0Wsjw7i1xCFjzpyXm+aR+cOKVRZ9nZ3xura0kQhoe7sbe/8V1kykd7Bvua9tv4aCPYjrIJexzko17m01liHi5ycbGrM5eoY9tTUPixj30M119/Pc4++2wANcOXD37wg0JMX3K5HPpsGpEDwL/+679ibGwMn//855H3MSgePz7l/iTBDA934/DhcdfndZ1xFnD77bW6vAXLuV5jZbJMB7wlLe3rffxSKjdOoqCZQnLQG5uqYNLle5Sy9GqQnsuH+t3jhqERK16C35v8vWaqqVjt5+l0p3m7ODNDS5N1f+dDVfNnoATUMmP1zISeyWBSK2CKYxt4x42kkO7qrgWFqO2TVDpN/TazRrDjaLbU+F1ky0fHZw2kfWzrxFRDOitiolatVhvfVddxdGwGmiZm0lUhNo/HaObEVBUzHvZJ2Mf3tNaY7EWRKUwNjQb6vqmePvN2kjKFVjMp6z7oWLcJhfkLMHPoIOY97y9bYsyrH9vTxcZJJDNTyBo7J2YN5nPDJir5KPmdJ4vgPq7KHOOeHyYmZ4EYHtt2gaptUHjllVfi7W9/O9asWWM+Vi6XkSKkael0mqoTCcLll1+Oyy+/3Pb/K1euBAD8zd/8DfX4tddei5tuugnf/OY3hWxHFJz17mvRfeqp6D/zLBRGRt1fwCAdtXzUZ3bKWlPoxyDEWlPYalIUr4TVkiJu+7ljwUJA0wDDQHF6mpoA+peP+neRIyeGhfkLWqo5sxcy3d1mpoPlMBxUPkq1w5HhPipChhywtYnjNuULQmtFecaPZMlHG9eHaOSjwVrRJNVsxu1akenqxuV3bUXpxBjywyNhbpp0wmpJwdqvqbj2KSwWYRiG9Lp2NyMeO3TlPgrAISh85StfiWuuuQannHIKrr76apxyyim45ppr8LrXvQ6pVMqs2fnoRz8ayoZefPHF1P2HHnoI+/fvx+rVq3HuueeGsg2yyHT34PQrXhfsPbqsLSmSUVNYsQaFxIRJz2SoWhw7rEFh3PrnhY1MbbyshtkiSOVyKMyfj+l9+wAA0xMTjf/5PB/I+gyvk3lyYhhF4/q4kCba5bAk4oHdRxPWp1BE5kDm4ozbWG4YBnUuxL1+O+qaws6ABlNJ7VXI4w2QymaRarGAEAjRaMbFfTRONYWGYaBSLiMt2QHbf/N6VVMIOASFz372s3HxxRfjBz/4AV73utdh48aN+Id/+Af87ne/w86dO6FpGpYtW+ZLyumH66+/nrp/zTXX4KabbsJrXvMavPjFLw5lG+KMnskglS+gMlO7GIXekoJcXfYwCJIncLVSoWzreScbVqOZuK9cyyYso5k47ueuxUvNoHBqvCHZ8DtxdcsUOq18Ru08GheoXoUMiXjQoEK2lbiInoqiW1JIDQpdFpWsnx22o61Xshb30TCyFUWB535SexUmpZelDIIoTNxwavMBWFpSxKimEKgdv7KDQt/N65X7KAAX91Fd1/HSl74Uv/zlL3HqqafiZS97GT71qU9hdHQUq1atCi0gVPBBTr7Clo9Sdr6crzGq1aZBq0hc9HhP6Gy/ko+StKt8FAA6lyw1b5NBoRD3Ucux+tif/oS7b74Zh/fuZb5WBYU1WA3shbqPSpb9CGlJkZEoH5WYKWSNH9QYkIv/HEDPZKhsdUVQyYsdhmFghmhc37EgmOtwUuWjbsFLKxNeppAVFBaYzw0bVpYyjOPX72IETyuedsAxKNy5cyduvvlmPProo3jd616Hn//858jlcnj+85+Pf/u3f8MEIc8Km3/5l3/Bww8/rLKEBGSvwtDlo7p3Q44K43nFOUMKgP+EbpKPttmqpBWZzbzj3p+sc/ES83bJxwKDFZ2Qj5IrvjNTUzi4ezfKxSL2Pvoo87VUtiDgxDDJZBgN7GX1KRS9CEJJJTWNOh68oAnOHPitm+HBLfNKfbbP/p9hE6aEtFIum8d3KpdHdqC5ZZIX8oR8NElBoVs/vVZGZqbQ7Roc15YUQPhBYdrD+KT5SGy0IrZB4Q033ICXvexl+PrXv44rr7wSH/vYx9DT04N3vOMduPHGG3HkyBFceuml+NrXvhbm9iocICdfoctHfdT1VBkrtiUiKOStDcx0d1OSp3a7AFmRKaeLu8EEmSkk8TtxtsvwkBPLoo2kS2UKa6RdMoVxrim0ml75lR0Kl48Sx6LMTKGbfDSOC0MsqKBQ8sR0lswSLlwYWKqaVfLRxKFn/deiu+F2DSYzhXGTj5YlH79+jArrUDWFKlPYzJe//GV87Wtfw3e/+1389Kc/xbe//W0zMzg6OooPf/jD+OY3v4k///nPoW2swpko5aN+9NisFTRaPsp3IdF0HRmibiSOwUqYkIObTPloHCVBnYttgkK/NYU2MiByQaMy55prRQWFNVjyUZGLCzIz46IkcCkHGbIf/E58ePAkH03IZJ+qK5ScKaTO+0VLHJ7JRysYzbTbNVmX2bye9F1IkPsoID9TSH6mnst5cvxW7qM1bPeYrus4ceIEAGB8fByGYVDtKABg+fLl+PznPy93CxXc9Kxc1bh9+umhfjalx+YNChmDBikfTXuYyJN1hUlZvZaFTPfRuE8IOxezXT5914LZXNzJ/WBdnaw/RgeFSj4KNCbkIjNdVD2zzPqdAAoETXRNocvEMAhe5KNxXBhiEWZbCjooDL4YRBnNJCgoTOJxIgrRNcQkrvJRMigk+5mGTBQ1hdZWPV6QbViWFGzdR9/xjnfg6quvRldXF06ePIm3vvWtKLTZiZ00zrz6nUgXCuhZsQq9K88I9bN1H5lC1qBB1xTyH2+5/gFMYGftde0uHw0pcxLH1d/CgoXQ0mkYFmmyf/koO8NjPXbLpRJSxDlQKhbN52e6e6jAqN1Iu9YUCjSaCfROzVDbGaDVDVVjJOCcJOuxww4K474wxCITpnxUYDsKoDkoDMM9VQRJPE5EQSlMRC/Mupz7mq5Dz2ZRnTvOq9VqU0InDOzcR8P6TK/joiaxNj1J2AaFL3rRi3DRRRfhySefxIIFCzA0NGT3VEVMyA+PYO37PhTJZ/vp8cLMFPqQjwJ0zUgcg5UwkeU+moT+ZHoqhY6FizC5+wnqcb/bmsqyDQOsx26lVAKI4050tiDJMN1HiaA9aBaBqikMeVWeF7nuo4KNZlwWleIuIWeRC9Fohjz3CwIMplK5HDLd3SiNjwOGgXKphAwRdMSVJB4nogivJYVN/8d83gwKjUoFiElQKHtBhto3HhfxZC6mJwlHwW1fXx/OPvtsFRAqXPFjC89cSSLlox4uJKQ8qO3lo5JkEEnpT9bFMJvxLx9lGwZYj13rRFNkn7Kkw3IfFVpTmABjJafWJn6gz0WxizNui0pJdB/NhFhTWBScKQRos5mk1BXGXVUiE9E1xCQ82TCyzpjl8h4GUctHvWanZRqWJQn+KkyFwgE/8lGW+yglH/VUU9iw/Q4i82oFqJpCge8rool3GHQsbjZ3ECEfJWV/TfJRy7GsTGYaWDOFhmHQEqiAxxJpECDXWClAptAm4+wXqc3rXVQfMk1uZEHVFIYoHxV17lO9ChPiQJrE40QUsvoUUr2d52SiLOJgNhO10YzXBStVU1hDBYUKIfg5oVgrSbRenn8StuRFL641Ke7owMJLLuN+XSsSRqYwznKgLkZQ6D9TyJb9NWUKLRc70pZeVLYgqZAtKcp1p9a541JLp+k+gz7w43zMi6jgS0+LbUnBIyHzC0tGVQ/mgWS6SobVp9CoVjFLLGwW5i8Q8r5J7FWYxONEFLLko1QtcS5vq9ZJ5RpBoRGnoFDygkaQcVG5j9YIdjVWKObwU8fmtoLlZSI/tH4DXrB1O4bn9eFkKXz9fJyQVVMoynRDNqxehb6b12fZzeubagodMoUi6oqSjFU+KnpxwU89My8VQTJNq/toULMQmY3BrePHsYMH8fA99yBXKGDt05+emMUhkrDcR4uzs+aYmxscFLZ/sgl0IE3icSIKPSenTyFvLTY5JkQhHzUMgxo7tVQKRqWCaqWCSqUCo1LByWPH0Ds0RBm0BSWQ0YzKFAJQmUKFIKgTinMQcgsKvZ7UucFBylCgXZE1uMnMToikkykfFZspZLmPkpDZgnbPFGa6uszblXJZeK2Rn3pmXkQ5KOqpFN0zK+B2ypWPEuMHgENPPolqpYLpiQkcP3TI8vvFdxwgofoUSgyqaIMpdnscP+QT2KswiceJKKiyA5FBIed5H7V8lFKDpFLIDQ2b/ysXi3jo7rux/e678eCddwr93CALEWRNoXIfdWFqagrf+MY3cP/996PEaNT89a9/XcrGKZKDHwkXSz5K0m51CKKQ5aIlszeaSIRmCm0u7m5GM6R8tN1rCtOWmkLqOBJwjvupZ+ZFZLZDz2ZRmVssqFarSHlorOy0XaIn3NZFJfLYLs7MJDIDFJZ8lG5HIS4oTHpNYVKOE1FQbsOySjgc1DpRB4XWetLc4CBmDh4AAJw4ehTjx44BAMaPH0e1UoEuyB01yEKEch+twRUUfvCDH8TNN9+MCy+8EP1Ek3CFoo6fE0p0plBRg5TTyZKPxjlTmB8ZRSqfNyfggP/gI2VjGOAUFFar1cbETddRmDff12e3CumOTkDTAMOoyYdICZQAGbIWVvP6oEFhJmMek0EnHVTWXrR8VKfluOQ+sAaFSRmjw5KPkotBImXjSZePtl2mMCsnU8gb9Fgb2IeNdYwge20e3rOHfm61KiwoDDI2yVxcTBJcQeHtt9+OT37yk7j00ktlb48ioeg+7HxF1hQqGoQhH43zZFDTNHQsWoLxxx4BUJuM+73o2F3crVnuCplNIesJh0eoVeN2RNM05EdGzZXi6YkJ838iJovWIEYkIiXTWlpcr8Kw5KNgBIVkLWRSJvuZ7m5zYaJSLtcmogEytXaIblxfJ4lGM6LqcZOIlkqZxxsMI3ANcR3e7Cu5CBpFprBi2c4ccfyOHT5MPbdaqQCCrpGB5KOqphAAZ01hpVLBqlWrZG+LIsH4qetxlY8mZMIRN8isrbRMYYyNZgCgc3FDuiWjv5xTplBWXVGS6T7lVPP25IkT5m0RCz+Ue6nMmsKAGTlqgUFoTaHYc9G6Yl6xBIXWCV8S0HSdkpBWJGUL6XNfXFCYxD6FScwoi0LTNCltKXjP+1jJRzs6KPmz03ODEkg+KsmgL2lwBYXPf/7z8c1vfrOto2eFM1G7jyoaWI0iRJEkORBZVxgoKMwFDQrbu56wTvepp5m3J0+eNG+LcM5MQksKwBJsBZwkknVlpDRSBNZSAHIflGZnpTqfyiQbQgP7oqT+pPkk1hQSx3icyw1kIcNshletQ7qfRi0fTRc6KPmo03PFfm6ATGEE+ywucMlHp6en8eMf/xi33HILlixZgqylYaYymlH4mZipmkI5tLt8FAC6iKAwHcDMhNdopmIXFLZ5O4o6ZFA4QWQKxchH5cl+RC6EiMocGIaBGbIPpuBstHX8sMpHM8SEM+6LQyS14PlxAPKCQhmN6wFQ8rukyEeTYkwmCz0jTi5eJ4ny0ZRFPtr03AjcWVnIXFxMElxBYbVaxfOe9zzZ26JIMMpoJj7I6tuWJDc5KlMYQOpqd2F3aklBTwyVfBQAeoigkJS/CWlJ4aOemReRUkk7KbLnbSJ6PabyBWQFm79ZjarI875cKlG/X9zHARLZbSkq5bI5DuiZDPKEDX9Q0l3d0DMZVEsl06xJZH83GSRRZiwSkXJx8304F6nSMZKPpgsFKtPt9Fyhn9vR6em1yn20Bteocs0116C3t1f2tigSjB+jGfeawva7kIggjJrCuGcIeletNm8HWbFP2chwWPLRuplAUZLZRJLpPuU05uNCagpD61MYNChsbGeQSaK13YkIAwsSanJUrTbJz8gsZdzHAZJMX2MOIyNTSC4GFeYvoPtSBkTTNOQGhzB9YD+AWlAb56DQmmFux/ZSlHO1oMCHu08h8b+o5aOpQgdVE+v03KAEUTP5mcO2Ilyj1gUXXIDXvOY1+K//+i88+eSTsrdJkUCCykczPT1N/2/HOgQRhNO8Pt4X+Z7TTsc5130MCy55Ls665n2+34fXaAZo7B9qcqjkowBqmVuNMYkVMVkMrSVFwG0VlSmkHC4lGBmR4wdr4Y5qKRLzcYBEdlsK2QZTSZKQkse3ls60pQOzjEwh7zWYqimMIlNokQ47yUdjWVOogkJnvv3tb2PTpk345S9/iUsvvRSXXXYZPvWpT+G+++6TvX2KhOAnO0WewIXR5l5uSTIxiBOyBrekucmtfOObceF/fQv9Z57l+z14W1IAjbpCWbb0SUbPZNC1dFnT40LkoxIv5iIl01pGTPAqq26tDhUUEpM7FkkYB+rIlo/KPu9zCepVSC+m5Bye2brIril0dh+NT01h2tKnEKD3jayg0Lv7qDwX6yTBFRSeffbZ+Pu//3t85zvfwR133IE3v/nN2LNnD17zmtdgy5YtsrdRkQD8NP4kB4786GjT/5M04YgTSj4qjkxXl3mbnCCzLmTlUgnlUsl8XiqXR3ZgQP5GJgTSbKaOiEyTTCtxkcd8SpAbofSgUPcSFCZnHCBrL0uyM4UygkIyUxhzB1KR/T2TiihlAAm/0UycmtfX3EfJQHBky9MbzxW4fUHkoypTWINblF6pVLBt2zbcfffd+MMf/oD77rsPuVwOa9askbl9ioRAmZtwnuRUpnCkOShs14tJUEIxmuloj4A93dVt3q5PkI1qlXmMWyVphQULhdd7JRlWXaGIoMLPghQv0oxmgtQUSm55Qo4fbkFhouSjRKZQRp9CWe0o6pC93uLeqzBpqhIZ2KlMgsAb9KSilo9axk09ncbKv3sLHv5//47T//b1KE9PMZ8b+HMDSNv99NpuRbiCwquuusqUip511lnYuHEj/v7v/x5r165FilylVbQtfk6oqkOmUEun27IOQQSqJYU40pZMoWEYthbaZJYQADoXK+dRElamUEifwpDko0GPeat8dGZyEk/t3ImewUEML+SvPY2NfFTTqNqluEPWFMqQX0rPFCZUPpoO4P6cZJR8dG5b5sbNs9/zAax593ugp9PY+sH3Stm+YPJROYvpSYMrKNy1axdmZmZwwQUX4MILL8SmTZuwatUq2dumSBB+jGbIgcNaU5hK0GQjboQhH22XLK6eSiFV6EBlbmWzWqlQq5EklVKJOqZlTAyTjKxMocwVXplGM0889BCO7t+PA7t3o2dwEDnOAFl27RpvUJjK5xOVCZedKSRdYaXUFCbIaKYdSw2siOpLSkJfg+3Hi1QhXvLROnVVR0pSy4wgyg6ZipMkwRUU/va3v8Xu3btxxx134M4778SXvvQlaJqG888/H5s2bcKrXvUq2dupiDleV+ur1aoZsGjpNHKW2qt2vZCIQBnNiCXT3W0GheVy2dZevFwqUbU+Kiik6T711KbHRMiQZfYpFNuSgjBXMAxMnjxZu2MYmJ2a4goKjWqVkikW5i8ItE0seGsKk9ZmICuxJYVhGJidmTHvFzxkfnmhMoWJqilM1nEiCuv5LgLulhQ+MoXVOfVCoasr8GKPW+1jWlLLjGCZQnm16UmCu6Zw6dKlWLp0KV75yldi//79+PrXv47vfve7uOWWW1RQqIDu8YSiV+DzyFj6YLbrhUQEsmQQ7SgfBeYkpIcOApibJDvIRykJmWpHQZEfGUW6qxvliXHzMRHHkawVXsMwqAlLUKmrVU5G1oXxZhKKROCRHxqWoqggVR9OQWHS6oplykdLs7Pmb5jp6UWms8vlFd5JbE1hm7qI69nGuSmqT2GFVz5q01/XDsMw8OCdd+Lk0aMYWbwYp69bJ247Gb8/GbS69av2QpBFPFVTWIMrKJycnMTdd9+N22+/HXfeeSd27dqF008/HVdccQWe+cxnyt5GRQLwnCm0SBEz3XSfwlSb1iGIQJNU59uO8lEAyJBmMw4Zhoo1KFSZQgpN09B9yqk4/uf7zcdEHEfWZuuisEpHg66eU8YTlQqVreLdbur4klSzyms0kzQ1R7avz7wtWj5K946Uc94nST46Q0hp093dDs9sXfSs3Eyhs/uot0zh9Pg4Th49CgA4sm9f4KDQLWNHyVsFBYXVatWce2qplGdPClVTWIMrKNy4cSPS6TQ2bNiAV73qVXjWs56F+fOb+8op2hevNYXWrFO2KVOYrAlHnKAmySLlo5aGtO2CtS2FXXBgzRSqHoXNdJ96GhUUCjGaScvpLyVaLk1mNK2Tet5JI73oICko5JSPJm2MThU6oGezqBaLqFarqFQqwozyZDeuB5JlNHN0/37z9sjm9mxbJrslhbN81FvQdWIuIKw/3zCMQItgbsGrDCMca3ba6/brKlMIgDMo/PznP48tW7Yg36YyAIU7XlPvVneyTA8dFLar5EQEYbiPtpO81+pAquvs9q7lUkl6vVfSsTqQxlk+6iaB8gqZKSRloIDPTKGkRQdepUHSFoY0TUO2tw8zhw8BqJ2vUoJCSb9Ltr9Rd18uFgNP3GVRnJ01s07QNCx87vOi3aCIkN2SwmlRhhyvKqUSqpUKXeJjgQwKgdr8LJXmri5rwjVTKKGPYtBFPGreFIE5T1zgal5/8cUX4//+7//w0pe+FOeccw7OO+88vOIVr8CvfvUr2dunSAheU+/WQSPTY5GPJmzCESdkBIWGYQh1YkwSGUuvQvLCnCGkUVPj4+b+zvb3t60VuxM9lqBQjHw0jL6cArYz3ZAzNQWFPjKFsjLRvEFh0jKFAF1XKLIuL4ygUE+nke2X21ZDBMeILOHQho3MHsTtgPyWFPbX4NzAgHmNLhWL2HHPPbYZOcMwcPLIEeoxt/6kblALaozaYxnuo0HLW7QAQXArwRUU/uIXv8A//uM/YtGiRXjXu96Ft771rRgdHcXb3vY2FRgqAHhfrbdmnTJd3QCx6pnECUdckNGSgryotVsPSWumkO6v2ZDRz0xOmrc7JUnIkk7XKeIzhX7a4fAg2lY/RZwzVvdI7kwhUaslS6ZIjR8OJFHNkZHkQFoMyWCKlJDG1WyGlI4uft4LI9ySaIlSPpru6MQZ//A28/7xgwdtA8PpiYmmBYag5i9RyEd5TXjskFWbnjS4QuPrr78eV199Nd74xjeaj73mNa/Bl7/8ZfzHf/wHnvOc50jbQEUy8BqIWAc3TdeR6e5Gac6mXWUK/SOjYLpdpaMAnQ201hQW5s3D+GOPNL2mY4GqJ2RhbUshIuMsyzWO19SBF0o+agkKeSVU4chH2WvFZL9OgJ0BiDu5BGcKgVpQOL7zMQBzCwsxM3EpF4s4QWSdFl3WntJRAEiRRjMhy0cBYPXb3onK9BS2f/FzABqB4arzzqOkpCcsWUIAtr14efEkH5WRKfSh7JDZ2ihJcGUKd+/ejUsvvbTp8UsuuQQ7d+4UvlGK5EGt1nMMgKxBg6wrbCd5omhkyEfbtUchAKQ77eWjhdF5zNd0SHIgTDqZzi4Mb7oAQK2+0Cob90MoNYUiZK4JkY/a1R51LV1K3U+a+ygAZIgG9iIzhWEZTJFtKeIoHz124IB5LA+sXdfWDsxUplDAuGTt7eym1tE0DWe95wM44y1Xm4+xMobWekIguHw0cqOZoDWFKih0Zv78+XjkkebV8B07dqCf0Lgr2hfPLSmIQac+aJATxHYLPEQiowkrvQrXKeQ9k4I1U1ilgkJ2vUw7T4bcuOArN+D8z38Jz/zBT4QYZVCZcWmNkEUYzdjXGPFsd7lUMidrqVwe2YEBl1f4w66msGvpcup+EhUDWQlBYbVSMeXAWiqFvM1CkQji7kB6hJCOLnp++0pHAbpPoYhMoZ/ej26BIaueEAguH3XraSzDaCaomkm5j9bgko++5CUvwQc/+EGMjY3h3HPPBQDce++9+NznPoeXv/zlUjdQkQx0j0Eha9DIEpnCJE444oKMlhSisyZJwlpTSLqypbt6kO7sQnlygnqNCgrtyQ8NYfnLXiHs/Uj5qKyWFELko2n7lX2eoJCWKC6U5jxpV1PYuYwOCpO4cEcatYgKCsnfpTA6j8pci4bsVVi2SJCjplwuY+zwYfP+4stfEOHWRI/TIpAf/Bqp1ANDAE1S0qWrVjEXF4JkCnlM6cixQ06m0Id8VMJiehLhGr2uvPJKHDx4EB/60IdQmVtdyGQy+Nu//Vu85S1vkb2NigTg1eyBNWhkiF6F7RZ4iES2fLTdXDVJ99FyqUQZhqQLBWR6e5qDQolmEwqapBjNkJPEps/i2G66F96SwNtjh22mcNky6n4SzcCoTKGgTFsYPQrrkNnhkkD5qwiOHzxoBj+9q1ajy7KI0G6Q8lER2TC37JsTdoHhxNgY8/lBAjUyANYzGeYiieyaQl/yUVVTCIAzKEylUnjf+96Hq6++Grt27UIul8OyZcuQy+XcX6xoC7yusrBW4TPdpHw0ec52cUHTiQyCqikMjLV5vXVfZHv7ML1vH/UalSkMjzD6cgrpp0hMEq1wZQop51F5x5ed0UzXkmXU/SSOA9m+PvO2jExhx0K5i0HkZNoQNJkWxVFiDFz8/BdFtyExQWqm0I+RCiMwJF2Q9UwG1blzIkimkGfcpPooSnAf9aPskKGwSiK2QeE+yySnztBQrdD5KFGcumCBatLc7nh1AGQNHN2EXb11AqLghxrcBL1nO7uPph1qClOFDkr2DMzVFbVpb64oIPsUAhDW1Fu4fNTBGMKrfFSmmQklxyXI9PYiNzCI2WO1a78KCmuE5TwKACmyTi1GE9dKuYzjhw6Z9xdd/vwItyYeiG5JIUK5wAoM6wxv3oKDv/9fAMGCQp4FZMpoRkq7Du/7R5ZhWdKwDQqf9axncV9Yt2/fLmyDFMkkaPN6ADjtiqswfWAfsr19WPCcZrdbBR/y3UeTJxsLglOmMN1RoGTPAFCYN9/WwVEhHk3ToKXTMOYmMjKCQhFuyI5BoVf5qNSgkH3spgsF5EdHG0FhAh2iZTSvL4YYFFIN0WOUKRw7dMg8X7pPORW9K1dFvEXRQ7agES0fDbJIxQoMs/39GFy/oREUBji2eGof9UwGWipVO4YNA9VqFbrO5XvJ+bnKfdQvtkHh//zP/5i3H3zwQfzHf/wH3vKWt+Ccc85BJpPBtm3b8IUvfAFveMMbQtlQRbzxusrCOoFz/f047xOfEb9xbYZs99EkZgiCQNYUWltSpAoFqpUKIL+uSNGMnk6bq9txbcPiFBTyTBrDCj7sgsJUoQOFkXk4sf0hAMlUDMhwHw0rgwsAei6emULSdXTxC/4ywi2JD1QAL6IlhQ/3UTvqgWF+3nzs/dmPserN/4CTjz3a+CxR8lEbmaumaUjlC2YtfrVSERoUBm1JoYxmGKxfv968fd111+GjH/0onvWsZ5mPnX766RgeHsZHP/pRvPKVr5S7lYrYI0I+qhCDdKOZNvu90l328tF0oQNZS6ZQ9sRQ0Yxsx10x8lGHmsI4ZQpt3EfThQIWXHIpDvzuN9CzWQxv3iJtG2SRdPmoaEmiCKqVCo4fPGjeX9TmrqN14igfJdE0DSuuegNWXFVL7Ew99ZT5P9mZQqAW2JJBIVz6LroR1CFdZQprcBnN7NmzB0stjWsBYN68eThE6MgV7YvnPoU+7ZUV7pA1VsImyMTKYbsF8enORl/GSrnctC+aMoXKeTR0SOc4xKRGxUqQmkKjWsUs0fC+Y768On47o5lURwdOu+J16D/7HHQsWIhCAutmrc3rg0qNDcOwBIVyVQIpUpIYE/no2JEj5pjYuWgx+s5cE/EWxYNUTqx8tCr5Gmy9zvmFN2MnuldhYPmoqikEwNm8/qyzzsL111+PGeKiND4+jk9/+tNURlHRvlhT724nVTvLEWUjP1PYXkG8nk5TQQFZi5QqFJqMZmQ6QyrYeFUq8CA6O64FCAqLs7OmpCk3OBRYPuaEfU1hBzRNw9D6DVKDUpmkslmkO+Ymv4YRaPIL1ALL+nGS7uxEpqfH5RXBIOvU4jJxpVxHX/Aiaf0zk4boTKFss7d0Z6N2PsiCA6/MlTKbEbDAETRoVu6jNbgyhe9973vxt3/7t7jwwguxfPlyGIaBnTt3oq+vDzfccIPsbVQkAE3ToOl6Y/AzDMDh4qCCQnmomkLxZLq6UJmutQQoEjbe6UJHk9GMakcRPjKc4yg5kmSjGbeVcrIdRediudkoVlCopdOO258ksn19KE9NAqgFdekA34vKEi5YJD0g0mOWKaxWqzh24IB5X0lHG4g2mpFt9iYqU1jhlY8WxPYq5P1cO5T7aA2uoHDVqlW4+eab8dOf/hSPPfYYNE3Dy172Mlx22WXoJA4kRXujpdMw5rIohmHA6fIY9ARW2CO7vqrd3EeBubYUh2tSeXLVt96nkETJR8Mnjs2QrQRxHw1TosiqKZSZmQybTF8fsK9WPxW0rpBuXC9/MYg0monDxPXk0aPmPiyMzsPAOedGvEXxgTKaiYE80g2y96GomkJu+aiITGFgoxmi7CYm9bpRwBUUfvzjH8fFF1+MV7ziFYEdghStS03C1QgKnWj3zJNMlNGMeDKEtIYkXWhuSSF70q5ohnS5CyoJrCM+KPTfvD5MMxNWprCVFu5yAttShNmOAqADjThkCknp6KLnvbCpZ2g7Q57voltSyK4pDOI+yh8UCpaPinQfbWO4gsLHH38cb3zjG5HNZnHhhRfi4osvxoUXXoiuLvZESdGeeAlG6F5vrTPhiAOUUYSSjwohQzSwJ0nl6ZrCMOqKFM2Q9TBBVrlJRNfR6llRmULZQWHzxL6Vznmr2UwQKFlvCEEh2bw+6kyhYRg4SrSiUA3racjzPY7uo1aoMTQM+SiRKawIr7n04z5KyEfbOFPItazz5S9/GX/4wx/wqU99Cv39/fjc5z6HzZs348orr6T6GSraGz3NHxSqlhTykJEpbHe5b5qxAKalM9AzGXQuXmKuevafvVYZLUQAubAUZJXbfI9KhQrERCxc6Wn/RjNh9sJjyUdbaeGOaksRMFMYZrAOiK9TC8LJY8dQmtt/uf4BDJ2/KdLtiRuU0YyIPoXE7y1HPkrUFIYiH41vpjDqBZco4coUAjCzhBdccAEuu+wyfO9738OPfvQj3HnnnXj1q18tcxsVCYGaTCj5aGTY9RkLQrv/XmQD+zrpuUL5bF8fLvjy17H/N7fi9CvfEPamKWAxSRAwwTj81FONWqmRUXQuXRb4PckJvRUvRjMdi8I3mmmlOmKRvQrDrPUELO6jEQeFtHT0BdCV/I5CuNGM7JYUHAtrh/fuxaE9ezBv2TIMzp/PfA5vqYnMmkI/i1jWcS9ou5qkwhUUbt26FXfffTfuvvtubN26FYZhYN26dbj66quxefNm2duoSAi8fV4Mw7DYFrdfkCET2TWF7RgUsjKF5ER5wbMvxYJnXxrmJikI0gJrCg3DwL6dO837p7/hTZQznV+c3iNO8lHWdrZSHXFWpHyU+l3kG0yJrlPzS5N09HkvjGxb4opooxnZap1UoVBzjDcMVKtVGNUq3fO4WsVjf/oTqpUKxo4cwZrNm9E7NNT0PrwyV9FBYVD1mVcH/VaF60r3yle+Erqu41nPehauv/56nHvuucg6rHoq2hONUz5KDpB6JqNWGAWj+hSKh1VT2EoT5aSTLhAmCQEnGCcOH8bU+DiA2sTl1Fe/NtD71XHKFDpNGsulkhno6rkccoODQrbHDnamsHWO9SxpNBMgKKxWqyjWezdrGgrz2JkTkZAN0aPMFE6MjZnfPdPTg5HNWyLblriiE/Wf4ltSiD8fNU1DurML5Yna2FepVJAmgsJKudzYBsPAjnvuwdqnPx15S1aONzij5KMx2T9eHPRbFa6g8KMf/Sjuuusu3HXXXbj77ruxYcMGbNq0CRs3bsSKFStkb6MiIfC2QlD1hHKhHOCktKRov98s3dkcFKZaqM4q6YiUjz61a5d5e/mr/oaSGwbByX3UaVJE98JbKF3SxHKQbFn5aICaQjMgBJAfGkaKaBchi7hkCknp6MLnPq9leliKRK7RjJxrcLqjgw4Kid/VOq6Wi0XsuPtunPW0pyFFqAt45aNpgZlCUeoz1cCeMyh8yUtegpe85CUAgEcffRR33nkn7rrrLnzqU59CV1cXbr/9dqkbqUgGVPNPh0Gw3aWIslEtKcSTcZGPKqJFlHx0anwcY4dq/SihaVj5+r8LumkmWsaffJQymVm8RNj22MFuSdE657yoTCHdozCcNjTWmsIo6p6s0tHFz1MN61lQRjMJkI8Czm0pWIHb5MmTeOz++7Fi/XrzOOSWjxL/cwsKx48fx8Enn8TwwoVsySqpPstmfavPeEugWhlPTWXGxsbw2GOP4ZFHHsH27dtRrVaxatUqWdumSBhUMOLwvHaXIspGtvtoinApaxfSSj4aa6jJjM9V50q5jCcefNC8v/A5l6Jr2fLA21bHb5/CsB0uW14+KqimkArWQwoKNV2PfOI6dfIkZuaMj9KdnRi98KLQtyEJCDeaCSNTSCouLEEhOQcgM8NH9u3DU489xnydo9FMgS9TaBgGHr73XhzcvRs7/vhH5nNFeVRQDezbNCjkyhR++tOfxu23344dO3ZgYGAAF154Ia655hps2bIFnZ3tN0FUsCH7vMBhEKQDDBUUikZlCsXDzhS2336IK+RChZ9M4dT4OHbccw+m52oJAWDl371FyLbVcZLYOQWFYTdIZ7kXt1JWPNsvpnl92L9LnVQ2h/LcMV6tVqGH3DB+8uRJ8/bo058Zimw2ieipFGVcEjSrG0ZvZ6e2FOTn9599DvrWnIWdN3wdALB7+3Z09PRgYHTUQ0sKIih0GP9mJidN9+VyqYTJEyfQPTBgu21B5id6SmUKuYLC2267DRdddBGuu+46nH322bK3SZFQeI1mVKZQLl5ag/BgzDmR1d5cg96GkwB2Swp17MYFyk7dY6bw0J492PnnP1OvO+21V2Joo1hnbU3TakYGcxP6dGcnypOTAFzko2Q7iogyha20ECQjUxhmUKhnM8DcIRGF2QwZLOQG5JoeJR09m0Vlrva0Wq0iFcBUj86G5R2e6R8yKHSSj6YKBaz78Mdxcsd2HP7DnQCAR+69F2uf/nQP7qN8fQrHjx+n74+NNQWFFc7PdIMa+1RQaM9NN93EfLxYLGLbtm1Yv3690I1SJBPeIl1VUygX0RKICjHxSOXz7dm7R2UKY42T7MmOSqWCXdu24dCTT5qP6dks1n/iMzjlFXJ67+qZrLl9+dF5mNhVa33BazQju3E9QI8fdVrpWM/09JjW+5Vyucl6nxerAVBYiHa19EoYGatWQc9kzKDQqFaBAEFhGGZvToZdFUs2LpXN4oKv3oBbLnkmpvY9hUq5jO13380vH+U0mmkKCi33ra8PckxGLc2OA1xB4QMPPID3v//9eOSRR5iD0Pbt24VvmCJ56JwnlHVwUYiFt7aTlyrnIN/KsFpStNJEOelQRjMcmcKpiQk8/Mc/mq0nAKBr6TJs+c//Rt8ZZ0rZRgDQM2lU5mKJwsioGRTyGs1Elylsncm/puvI9vaiODYGoJYtzPhQP4Sdwa0juv+dlXqPupRNX021qMuPKLfYsHo7Oy2usTKA+aFhbPnP/8FvXvhcVGamMT0xQb1GREsKaxA4wQoKiW1NdQSoKdRVTSHX8tjHPvYx5HI5fPjDH0Ymk8F1112H173udchms/jsZz8rexsVCYG3lo1XXqDwhy5YPqp+LyDd2ZwpbKWJctJJdzR+H6vsycrhvXvxp9/9jgoIl/zlX+E5v/4/qQEhQE8S8yOj5m27yb1hGJglWh8U5i+Qt3FzsGsKW2vynxEgIY1MPpqTlyksFYu499ZbcffNN2PsyBHmc9q9vtwL5G8VJIBv6u1sE7AHhTcoJBfhBs5eiw2f+Tf2+wVsXl8pl6kaVgCYmZpCaXbWftuCyEc5HfRbGa4ja/v27fjv//5vrFmzBt/73vewfPlyvPzlL8fIyAi+/e1v49JLL5W9nYoE4C8oVBcV0Yg2mlE1oECmu6fpMXXsxgeeTGGlUsHjDzyAg7t3m4/pmQzO/ed/xSmv/ptQZNFklocnKCzOzJgLO7nBwVAm4a3uPgrU2lJM7n4CgL+gsFwqmZNmPZdDbjC82rpUVl4D++MHD5r9Fw/t3o0+hv2/qPqtdkBUVjesPsFOtdlO87alf/kSjD3wZ+y4/gvU46TDqBUyKLQbsydOnGAubI+PjWFgtDF+ito/olVWSYQrU2gYBgbmCjuXLl2KRx55BADwzGc+Ezt27JC3dYpEwVukq1Ya5cITFJZLJdNW3A3lFkuvoJqPqWM3NvDUFO68/34qIOxcvAQvu+sunPrXrw2tTpacJBaISU3V5jyNohdeq8tHgeBmM9Z6wjDrrGU2sCfPnaIlG2N+plrU5UbUbxWGdBSgFRdNLSlcykjOes8HMe+ii6nHnLaVPHbsMoXjx44xH7dKSEUdkzqng34rwxUUnn766fjd734HADjttNNw3333AQCOHj0aSaGzIp5w1xSS+m91URGOW3BenJnBPbfcgntvvRVH9u1zfT8VxNeObeuquFoljw887qMnjh41by9+/gtxya//D0Nr10rfNhKyd1luaLhmeAIAhsEcM2mTmfB64VlptXE6299n3vbTloJsR9G5eImITeJGz8nLFFJBISFbtntOu14PeNGzYjKF5G+RHx4OtE1OOBnNuJWR6KkUNn/pq+g+bQUAYHjjZkcDJx75KFlPOLLlwsbjc/XArNcHko+qPoV88tHXv/71eNvb3oZUKoXLL78cX/ziF/HmN78ZO3bswMaNG2VvoyIhaJw9XpQcUS5uxdJjhw+bF/bDe/diaIFznZKqKayR6epCZbqRXW21iXKS4elTSE5yzvvk55iSYNmQNSu5gQHomQyqc0GJUa02ZemiMjMhW2cArTf5F50pDBOZmUJyrLfWbbGe087XAx6o3ypAkBGWYoC3eb3dtS/b14dn//LXOHLXnRjefIHzZ7kYzRiGQQWFp1/1Rhy6/f8A1DKFZN9HYfJR5T7Klym85JJL8N3vfhdnn302Fi5ciC9/+cvIZDJ4xjOegY985COyt1GREHhXWcLot9POuMlHyQGUvNjYEVY9Q9xJWxxIW22inGTIyUy1UmEe99UYKBRSucZ4lxsYhJ5uZBJYk8aozEyswWmrTf6poNBHpjDKoDCVFWNewoK8NpdLJWYGRylH+BGVKQxrcYhSXDgZzTj87pnOLsy/+NlUz0MWbpnC2elpc2Ei3dGJBc+5FNn+WhlbuVTCzFyPVy/b5gZvW7VWhisofO1rX4t8Po9Vq1YBADZt2oTPf/7z+OAHP4j+/n6pG6hIDrzOTapQXS5u8lFysOcJCtUkoEbG4kCqjt34kMpmzfHHMIym8adarTYu8rpOyTjDZMkL/xIA0LVsOQbWrnOdNEYWFFocSFvtvM8S8xY/mUJSzleYN1/INvFCHjPCawotk3NWtrCqasy5ITOFgYJCUq4cVqbQo3zUK27N68ks4cC566GnUhhcdy7z/6K2TWUKOYPCHTt2IK8yOgoXNM5WCCViZTbT0ytzk9oSt9UuajW4WHRt9q3kQjWsDexbbaKcdHgnNOl8IVRjEJJVb/5HXH7XVlz6u7ugZzLQ0h6CwkVRZgpb61gPKh8lTVjyhGFQGOghZQoBttlMRZV/cCNK6hvW4hDZeslJPiri2ueWKSSDvqHzzgcADJx7nvnYBFFXKM59lAiJVFBozxVXXIEPfOADuOOOO/Dkk0/i4MGD1F9YFItFfOpTn8KFF16IdevW4aqrrsKTTz4Z2ucrnOE1mimGtOrVrniRjwL2hgKs57fa5NAL1gb27bwv4ggpV3KSPkX9u3UtXWa2FaAyhW5GMyGOldTkCK23GJTtC5YpLJGZwpF5QraJlzAzhaxrQ5zOpbiTEmQKFEWm0LElhYAMsZ7LmUZbBsNoi3QYHVxfCwYHz3HPFAYJWHVOX4xWhsto5ktf+hKKxSLuvPNOaoW1Xui5fft2aRtIcu211+KnP/0pRkZGcMopp+C2227DG9/4Rvz0pz9FimGjrQgXLc2nxyZbIYS5+t0uuNV2Wgf72elpFCxZMLvnt3N2zNrAvtUmykmHDAodM4UxkrzpDpnCcqmEylzAomezyA0294yTRZN8tKO1zvtsX59525f7KOkG2cKZQjf5aJzOpTgiLFMYQU2hY/N6Adc+TdOQyhdM87ZqpYLUXGKhWqnUehTOMbiuFhQOrFtvPjZ58iSq1Sp0XRcnHxXc4zmJcAWFX/3qV2VvhyuPPvoofvrTn6K7uxs/+tGPMDAwgJe+9KU4evQodu3ahdNPPz3qTWx7eIp0q5VK40KjaeiY7+x8qfAOq88YiXXC7FZXqOSjNayZwnYOkOOIUwP7uPbaJPsWWieNRcrMZFGoktcm+ajE3mhRQAWFHjOFRrXaKIHQNOSH5LUIYOF0zATFq3xUZQqdEWE0UymXzWNUz2SQHx4Rsm0seBfWRP3uqXyeGRROnjxp7q+upcuQGxwEUHNszvb3o3j8OIxqFZVSCXouJ0zayuug38pwBYXnn3++7O1w5Y477gAArF27FgMDNQei73//+1FuksICT5HuLCW7GaUucAoxeKkpBNyDQtG1BEkl02XNFLbvvogj/M558QwKrecqJRlbHK7MngwK9VzOsd9YEglSU0gGSrn+/tCvYalciJlCJR8NhAijGXIcKCxYKPVcJNUw1jFURn/pVCEPzKlAyeOKbFo/eB4df6Q7u1Cck45WymVkcjlhx6TqU+gSFJbLZfzgBz/Az372MzzyyCOYmJhAT08PVq9ejec///l4wQteENrq5Z49ewAAuq7jqquuwn333Yc1a9bguuuuw6mnnhrKNiic4Um9h9Vvp61x6VPoNShUk4Aa6S66r12cgguFs9FMXLMbTkYzUTmPAvTkKN1iWULA4j7qUT5Km8yE6zwKyO1T2FRTaMkUGoZhaSnVeseGSET0KQyzrtipT6GMhTXy+KkQx/I4o56wDrk4W99GUWomXl+MVsY2KJycnMTrX/96bN26FevXr8dll12Gnp4eTExM4KGHHsI111yDG2+8EV/+8peRI1au/HLjjTfi2muvtf3/5s2bAQC///3vsWjRIixfvhx33303/vZv/xa/+MUv0Nnp3BNFIR+dJygktPFhr363C64tKawXfiUf5UJlCuONUwP7uNbFkq0xYhUUEmqDVIvVEwK1cUzPZFAtlVCtVlGpVLh9CSiTmdFwTWYA52MmKNbskLWmkDyP9FyOuuYrmhEhH6XqCSUHhXo2Cy2VgjHX67VeswfIWVizcyClg0JLppAo42AFhaL6FLar+6htUPjFL34RTz31FH7wgx9g9erVTf/fsWMH3vCGN+CGG27AG97whsAbksvl0Efo/K0sWFCrPRsYGMBPfvITdHR04IorrsCdd96J3/72t3je857n+P79/R1Ip8MfwIaHu92f1CJ0dBMBA0emcOi0U6Tsn3ba5yysAXndEKqOdcLsKh8lnj8wb6Bt9+/hBXTt0LzFw9KkPO26j4PQNdhn3nZyzuvo66H2b5T7OldoLKhaMwnkeTm66rRQtzNNTGZzXV3CPzsOx3euvx/Thw4BqElIeYNC0mSmb+mi0L9Ld3/j88LOFJLnUaajIxa/Y9wg90lnD+HmKUA+Ony6nDkTSaarC8U5k5dquWwuQpC//ejiEeT7g29HvqsTdTuZ+vsXZ2bM75zK53Ha0zciRUi0O/v7cHTudn1uQh63QwuGfO+jfGcjSBWVKezqzCXqPLENCm+55RZcc801zIAQAFatWoW3v/3t+PrXvy4kKLz88stx+eWX2/7/y1/+MgBg8eLF6JirHVmzZg3uvPNOHDhwwPX9jx+fcn2OaIaHu3H48HjonxsVM7ONE5NHPorBUeH7p932uR2arpsrk9agkCUftT6HhHz+VElr2/07YzSGy1Q+jyNHJ6V8jjqG/VHWGxOHpkwhcb+sZ8z9G/W+rhBdoZwyhZWeoVC3swpiLMjlhX521Pu8TrqnD5gLCivFIsDZi5kMlLSegdC/y0ypcW2V3qdwZoa6NlCZwrzY46IVsB7bxJRISE0hBsTPmaykOjqBuaCwUqmYQQL5249NVpAqB98OI03Ia+fen8wS9p99Do6NzQBoLMRUs4TklJEpHJ8xAJ/7qFgmzi1BQeHE5Kzv7ZGJXaBqu8x98OBBrFmzxvFN169fj3379gXbMk42btwIoOZCeuTIEQDAY489BgBYsmRJKNugcIYymrEZACn5aMiSqHbCSULKchVzMltQ8tEama7GIKpqaeIHZTTjUFMYJxt9yojCyWgm5LGS7NfVqjLpbF+veduL2QzdjiIK+SiRXZYcFBrVKrXAohrXe0PEbxVWO4o6aYYMv1qtNsYnXackzEFgyUfppvUbml7jXlMYxGiGKIESfG4lBdtMYalUMjNydhQKBUxOylktt7J27Vo87WlPw2233YYXvehFWLRoEbZu3YpTTjkFF110USjboHBG53BuUkYz4aClUsDcRMf6W1gv/EDtd8nYDPS0nX9rThB5SBMXo1adKCeZdEfzZKFOXBc29EzjEkxOGg3DoGp9CwsWhrpdlNFMjPaXSMgG9iUPQSFZZ1cIuUchIKZOjQU18ScozswgPSffE93AvNUR7T4q22gGYPcqtNbsiTKYJBdX6+MfVU94bnNQSDqksuSjovoUtmtNYaJ8pj//+c/j5S9/OYrFIh5//HFccskl+M///E9kBa1aKILh1uPFOtEJ2zyhnXBqS2EXFNoRV5OOsCEnkZmeHodnKqLAqU9hXI9hu0ljXbYH1Hpzhb3N5OSoVRdAyLYUFQ8OpFSmcCSKoFBOppB1XQDoIFg5UXsjaABvVKtUG6+OEBaHSAfS+u8ta1HNmik0qlVMjI2Zj1mdRwH3TGGQsVK5j7q0pPjGN76BgsMOnpoKt06vq6sLH/7wh/HhD3841M9V8EHKR1mrLKVi0byIZbq7ke3pbXqOQgzkSr+bfBRwdiCNa5YlbLpPPQ3z/+I5OPC73+K0K66KenMUFqjJjLXHVkwns1qGPQmJWlFBLirFKYgWid9MYZHKFEYgHxWQfWJhFxSS31fJR70RtCVFcXbWvH7nBoeoIEoWrLYUsnoVU5nCSgWT4+PmcdgxfwEK85pbvqQtQaFRrTbOA02DHqAbgluP53bANihcsGABfvKTn7i+wfz54ffpUcQTtz6FYWvj2xm738IwDOZEYtZhgSeuWZaw0TQNT//md1GemopVXZqiRoo7Uxif385ugk+3o4ggKKQyhfHZXyLJEm7nvDWFhmFQLSmiyBSmcnL6FLIWCwG6BYfKFHojaKYwihZelDyTlSkUeO1LFehMIdW0fsNG9vZZgkKyv2EqH0zaqqVVUGgbFP7mN78JczsULYBbn0JKG79YmQPJxG7Fy241mJSoWIlrliUqVEAYTzKMWhPzfkyPYT3DnjRG2aMQaD/5KG8D+3KxaI6nme7uSBbJYpMpVOOgK1Sm0E9QGMHikHtNoST5aLWKqRMnzPuD5zZLR4HmcZ5UhQQ9H90SG+1AomoKFfHGNVOo6glDg/otiMetk+U6dplCwzDoVULluqmIKSkH99G4ZjjIGhZy0liM0HkUANV/s1XVAX4yhWSAlB8JXzoKALqkTKH3mkIVFLoRNICPQkbOkuHLWlQjj6FKpWJpWs8OCtOEC3ilUhE6tpO+GO1qNONYU6hQeEFzKdKNuk6mnbBz0aIu/LoOzF2o7IxmyAuZnslQk1iFIk6wVrjrxFY+mmW3pKDHyqgzhfHZXyLxFRQSiorCvIiCQg+BRrVaxRMPPYRysYjlZ56JjEO9lZ18tGgjH23VxQKRpETKR0NaHKJaUjDko2JrChuZwuL0NGbmuhlo6TT615zNfI3VaKYqMHutMoUqU6gQiFuRrupRGB7kSr+dfJSU8BZnZpgXrYrKEioSAss1j3U/TrI3LW0jH424/pqcHLXq5J80muENCqOuJwSAVJY/U3j84EHs37ULh/fuxVNzfZ3tIM+R3NCwebuo3Ed9I1Q+GkGmkN0HUKR8tHEMnTh61Lzdf9bZtqY6TTWFArdNVzWFKihUiMPNfVRlCsPDbsWLHECzff3ID4+Y94uMukI1CVAkBVbTZfN+TI/jFFlTaJMpDKM3mRVVU8gmaudRwJJddgk0yMWFccLqnwU51nctW2beJgNh5T7qDVLqG1g+GkGm0GxJQdbtiTSaIQI/8lgdXH++7WuaagoFZjGV+6gKChUCoVZZWA6XqqYwNHjko+lCgWqKzZKQxjXDolBYoVa4rZlCYlITJzmkRgSF9UxCuVw2M1d6Novc4FD426W3gXy033umkOpRGEHjesBbn0LyPJgaH3ec6JILKZ2LlwBzLo6lYtG8ntPnUWsuFogkSKbQMAzMkOqqCDOF0moKbbKBQzb1hEBzplBkFtOtBKodUEGhQhjUKovlf5Vy2VyN1dLpyFZZ2wWeTGG6o4OS8bKCQpHSDIVCJuSihVOfwjjJIXWGfJQ0memYv5CSgocF2ec0TvtLJBkyU1gqcU0CqUxhRPJRO8daFuSEuVwsUqYxTs/NdPcgNzBo3i/NXbuVcsQbVP2nxyCjUiqZ+zuVL1CLGDJhLa7Jko+mbUpSBtdvsH+No3xUuY8GRQWFCmFQqyyWixWVJZy/IJKJTjtBBuh2mcJUoYPK2KpMoSLJpPIFM7tRrVZta2njNJml+pjNbS81VobUm8xKYd6Cxja0qKojlc02JriGYevMTELVFEa0sJnK+csUArVsoR3Wa0N+hCgtmAsmlXzUG0H6FFrNpoL03/OCm/uoLKOZOrnBQcfyorRE+ahuo7BqJ5SVoEIYTqss9ERH9SiUDbnS7zQ57vAgH43TZFqhsKLpOtKFDpSnag52lUoF6bmFqti6j6ab5aNRm8wAwBlveSuKY8fRc/oKx1X7pJPt78P0dG1/l0slpIksHAvKfZSoxw4TLzWFVsOlqZMn0Tc8zHyudeKfHx7Fie0PAZgLhnt71SKhR4LIR2eouuLw5kys2mxZ8wDWew1t2OQYAOupFFKFDlTmzlsy+51S7qOBUUGhQhiOQaFyHg0Vnj6F6Y4Oyu7eTT7aqjIyReuQ6mgEhdVyGWAEhXFa3GBlEmYj7lEIAF3LlmPLV2+I5LPDJNvbh+l9+wC41xUahkH3KYyB0YxboGGVUU9yZwoLzExhXM+juBIkU1iMyIPBvSWFHKOZOnb9CUkyXV3MoDDotqmaQiUfVQhEdzihlPNouNi5aDnJR4uumUK1MqyINyyTBMMwqMlznCazVEsKlnxULaBJhWpL4eJASkrV9FwOmZ4eqdtmh5dMoV/5aLqjE4WRZmdqVWPujQzRaJ3XzKgObTITYlAYsdHM4LnuygSyrpBcqAlcU6jcR1VQqBCHneMloCY6YcPrPqrko4pWgmpgzzRJKIRWm8MDyzSEGiuJ81MhnqzFbMYJq8lMVMeRF0kiSz5qN9m1Tvzzww0jnRIjU6iUI+6Q/R5Ls7OeAo2o5kysfq/S5KNWoxldx8A557i+jqwrpDOFAYNCl7Zq7YAKChXC0FJ8mUIlH5UPj/to7cI/Yk5My6VSk9mCmgQokoSbSULTJCRiWEEheQ5m+wdC36Z2wktbijiYzADNmUKnQMMaFFYrFebin/W5aSUfFUK6UEB6LltoGIanbGExInWVW00h+f+gWDOFfatWc71/posdFAZuSUF6MfjoK9kKqKBQIQw7cxPAYp6g5KPSId1d7eSj6Y5OaLru2KvQWoOoUMQZ93qYeE1kyaCwOneeKjOP8PDSwJ4ymYkyKEyluA0xrPJRoJYtZGEtFSBbUtT3jXIf9U5+mM4W8hJFj0IAyPT0mMdXXTItawy1LtINnsdnaiVLPqqTiY1A75RcVFCoEIZukyk0DAOzxAVVSaLkYycfZdUGOElIVU2hIkmQE9UqyzkvZkEW1cesnilU2ZjQyPb1mbe9yEejalxfh2xg75TRsGYKAfu6QmoBsFCgstRl1afQN7mhIfM2b1BYrVQaz9V1FObNl7FpTDRdR26Q2OZikTo2ZNYUDq4/n+t1VKaQWMwJLB8lF1tUplChCIadHrs4M2Pezw0MqNXvELBbSWat+Dn1KlQTVEWSYDVejnN2Q880L6RVqcl5vLa31fASFJIT+vxQNO0o6pCulk51hf4zhQXkBhpBIat5vbqO80EeK7xBIbmIXhgZpRQFYWANZGUtDluDwiEO51EASHc2DHzIuWZg+ahyH1VBoUIcdoGIko6GD09QWB9AyUyh1YE0ztI7hcIKmQmU3WNLBJT76NzkPs7b22p4kY9SY2GnuLoqP6QkZAqb5KODtHzUMAw6YxSz+ty4QslHXY6xOlG7tZOBbHF2VlprKk3XMbihlh3sXXUGuk45let1pHyUejyw+6h9CVS7oPoUKoRhl3qfjagJaztDWitT8lFGjaBTplDJRxVJgnSlYznniTRJEIG151xT+wyGZbtCHFRLCpdMYZx6tlK1qF6DwokJGNUqNQEGLN+vowOpQgdS+TwqMzOoVqvU/tHSmdCzV0klTziQFnkzhWQ94eIogkKnTKHYY//p3/weDvz2VoxsuZDb0TdjExQGnaPoyn1UZQoV4rDNFKp2FKFjZ/rDGtw7OeWjUU+EFAo30oxMoax6GBFQvV2r1eb2Gbq6RMsk40E+GqfaVD3nnik0DIPa5npdmlGtYnpysun5VlWIpmlUXSF5bUgX1GIFLzkfRjNRz5lyw7TkVVbzegDI9vZiyYv+Cvlhfkm2XaYw1SGwplAFhQpFMOya10cthWhH+GoKa4N7YSGv0Uy8JtQKhRVWTWGcJdBUewHDiHX7jFYk5yFTKHNi7BWeXoXU2J3Po/eM1eZ9loSUpQoh6wrJ0gKlGuHHV00hpa6KIFNoCWTjNg/IdEqSjzq0VfOKYRiYPHkSFQ9tSOKACgoVwrA7oSgphMoUhoKtfNQlU1icnnatQVQo4gqZKWQ3Xo7XMaxbagrjHMC2IhmfNYVRT4ytvQpZVC0LDL2rzjDvs8xmWNcGsi0FnSlUxyYvVikmD5QPQwRzJqvkNW6SdttMocg+hQGDwt3bt+P+//1f3HbtuxKVdVRBoUIYdm0QVKYwfKhMIfE4yz0u092DTE9P7f/VKjU5UpNURZJgNV6Os4OuRriPVi1yv6gliu1ApqcHmKtjqpTLzj3/LC0bosRai8rCWiPYu5IICi2ZQsMwqOCyPvG3k4+qY5Of/HCwTGE0RjONoJAMUOMiaberKQycKRRYU3h0/34AwMTevZjc82Sg9wqT6H9dRcugpZsli4ZhRK6Pb0e8uI8C9r0KKzHOsigUVkj5KNNoJmZBYcrSp5CeyMfLFKcV0VMpc0EMcJaQ0gF71O6jHjOFLkFhUy3rXKBMykdnlXzUFzmPRjOGYVBS3SjUVeQ2z5BBYUwk7VRLCoKgi36kwipodo+qZSfO17ijgkKFMHTGCVUpl82TI5XLUzbXCnnYySDsjGPsHEjjPKFWKKyQtV7slhTxmsxqGYt8NEbZqHaBty1FnEy3yOb1XJnCQgd6Vqwws6LTk5PUeWFXy2orH1WZQm4yPT1mZrdaqVDBAotSsWj+ppnuHmS6exyfLwNrTWGdqI/7Orby0YBBq50vhh/ifN1xQgWFCmGwGn/S2viF3JbDimCwagopiZCmUQ52PEFh3KR3CoUV9+b18TqGSVt/q1tkkiYSSYa3LUWcxkKyeb1tptDSfijd0YmupcvmXmRgemKi8VybpvT27qPxOo/ijKZplBzTTUJK93WORllFZgpJ4iIbZslH9UyGbinhA5Huo3EaL7yggkKFMJhBISmDWLw09G1qV1hNWK2TYzJAV/JRRStAyvqqrExhTCY1dXRLpjDO9Y+tSpazLUWc3EdTHJlC1gIDKSGdJCSk1gCyjnIfFUPOS1AYsfMoUJM7Znp7mx6P+rivw8oUihgvRQWF9Z6zQG1erOSjiraEFYioesJoYA1uVYd+bUo+qmgFMqyWFDGWZFpbC6jzLXyoTCGnfDTqxQWeTCFrgcHOgdRu8Y+Uj5KoBQtvkHJMt7rCqE1m6pCtNOrE5XdnZQpjFRRa2sEkCRUUKoRhbcQMWKUQynk0LFjyUSdpWscCui0FUPsN7eSmCkUcSbGa18c4261naHVFnAKPdiFLZETsMoV27pxRwVNTyJKEUkEhmSm0WYzI2gSFasHCG5QDqUvrk7gspJOtNOrEJVOYKnQ0uaCK2DZR7qPWet4koYJChTBYLSlmYjLAtRssoxmrRTkJWbtQvyhVqElQQdWDKmIP6diZBPdRzbFPYbImE0mFp6bQzp0zKvSMu/soK1PYwxEUUpnC/sa+IYlLxigp5Dz0KqT6Oke4kJ4bjm+mUNM0qn4cELOIRrmP2pxXPDipsuKOCgoVwmA1ry/GQB/fjjDlow5294V5801nuuLMTE3KFmPZnULBIm3JFMbdvKXJaCbBk4mkQtUU2mRx7Nw5o0LPufcpZC0wdJ9ympkNmZ2aQtmll6edW7hasPAGKcX0UlMYaaZwuNlsJk6us+kuui2FkEyhoOb11LnXmazWQiooVAiDFYjMxMBJqx1hZW2d3LBS2SzyI6Pm/eLMTGLdsxTti57JNDX2piWZ8TqONU2jJEtltRATOhmyJYVdpjBmvwtPppBlHpPKZtF96mnm49Nz2UK7bHqq0MGUyqrrgTf81hRGuZCeZziQxmlRLd1J1xWKOCZFtaSIc8mCGyooVAjD2ry+Wqk0VsU0DR3zF0S0Ze0HqwmrmzW/1WzGzqZcoYgzVAP7cjnW8lGAnuBXiKAk6gbp7ULOo3w0Div/qax7ptAu+8cym7Fz6NU0jWpLUUddD7zB6z5aKZfNbLWWTlMLtWHDaksRp8UAq9mMiLFdVPP6uF9znFBBoUIYeoou0p2dmTHvFkZGKamUQi5u8lHW6lWnJShM8mqXon3J9DSMQ0rFoqNsOg6QZjNkUJK0yURSyXiVj8ZgLCSz4baZQptt7l252rxdb0vhZIxBtqVgvZ/CHbtm8FYo6ej8hU1mKmHCyhTGaUyytqUQcUyKMppJsspKBYUKYVgDEWqAW7wkik1qW0htfB27XlR1CkSvwqLKFCoSirXnZtx7/+mE2QwZFMZxW1sRnj6FcVv5t0qkWdiN366ZQsv3Y7WliMM+SBK8zevpOVO0HgysmsI4LQZkJMhHRbWkqMR8IdIJFRQqhNEUFFIuWqqeMEzc5KOsAdQ5U6gmAYpk4CSDjuNxTE7wK1TtWnwmYK1MlqOmMImZQi75qEtNIQBkmZnC+J1HcSY7MGhm/cqlkm0gT9UTRuzWnme4j8ZpMcCaKRSxbbqMPoUx2mc8qKBQIQxN100HS8DSo1C1owgVP/JRx5rCGEyEFAoerIsbdCPh+F2gKaMZqqZQnXNhkO33WFMYg9+Fp6bQbvzuXLLUPA9Ks7Mozc46Br05Rk1hHALjJKGnUlTPR7tehXHq65xj9CmMU4DTLB+NT6YwbsoCL6igUCEU0r1pJkYDXLvBGtxcjWZI2d3UVKJXuxTtC7m4MTMxYd7Ws1lqJTguUJlCVVMYOumOTjMwr1Yq1LhXJ25jodfm9eQ266kUelasNO9PjY8r+WgI5Dl6FcalHQVQc/e0LqLFaTGg2WhGbE1hIPloglsLqaBQIRSyVyEZFEYthWg3SPkoqyUFa7WbamA/M6Pko4pEQi5uTBNBYVyPYaqmkJpMxGcC1spomubawD5uYyGXfNShhtwqIXVquZFlBIXq2PQOKcfkCQqj7uusaVpTtjAOWfI6GUufQiGZQsa8yQ9xNzdzQgWFCqGQGaqZyUnztsoUhgurCaubfDQ3OAQ9V1uBrpRKKBHusUo+qkgK5OLGNDEGxTW7QbqPkhP8uG5vK+JWVxg3Kb1X+ah1vLeazTgZY+QIea35HHVseoanLUWcMoVAc11hnH53a/N6Me6j4o1m4rCI5AUVFCqEQp5U5MAXhwGunXCTj7IGKk3T6CwLMaFO2sCmaF/IYzgJK7Zkn0ISdc6FR9alLYWbc3PY8DSvdyoX6F1pyRR6lI+qelfvkA6krAb2hmGgGLugkHYgjVOGWIbRjKopVEGhQjBU+n2OTFc3skTvMIV8yMGNKR+1GajICxEpvUvawKZoXzLdPcj09DQ9HteJrEZkCkniGsS2Im5tKeK28q/nvPUpbJKPrlxl3p4aH3f8fiz5aByypUnDrVdhcWbGDERyAwOxuOZaG9inOqLfpjrWmkIR5yXZa1uY+2jCxnEVFCqEQhrN1OlQ7ShCh9WSgidrYl+PpSYBiuTAWmWPw2SeRUplCiOHko+yMoVxa0mRCSYfLSxYiEx3TX5XLpWoUg++5vXq2PSKm3yUko7GpNzG2sA+DoFqnXSnBKMZGX0KY7TPeFBBoUIoGiMo7FSN60OHKR/lcMQiJ9Nxc9xTKHhhBYVxzW5ohNEMSSqfD3lL2heyLUXJtaYw+rEwSJ9CoFYq0EPUFZJBSrN81BIU6jr1+Qo+3DKFdF/neMyZrDWFcVgQqSMjU2hVWPkNDJM8d/r/27vz6CjKdH/g36ruTmch0NkISNgNARNkXwTFcdh0ojATzjj6k8UrOMyIeke9jINcPV511KNzwJmgzjmgA4gLLoADOo4D9+g9oiAaFMI2rGJYw5KACSFb//6IXanqrk66O52u963+fs7x2JCErjzVXf0+9T7v8zIppKjybdCqJ0JtfLzRN5rxCeVCFexciTAQIgqVfsbbR9QPZ9WkfNSRmGh6LaX2kaDbi89sptCQYAlQhqy20mjG6/U2J4uKYnqDQb+uUM+/1NSRlGz4eWdiEhTdfsQUmsTMlruPitZkBjBuowGINQ5ol30K/fbajpRojanCwU8diiqzmUJRSiHiSavlo0EuVGaDaUCsO4RErTGfKRRnQKNn1miG77fYcme0vLG4aIM8h26fQrOZQkMSGySJ69T/KvN/22RWMUE3WyjqzRXRuTo191XQV+34iFg+6g6YKRTn3PtvSRGt96V+CVSwWfjWiHYTKRxMCimqFJPNoblHYey1unl9kAtVsHMl6oCayIz5mkIxP5xVV2D5KN9vsZWY0fLG4qKVg6kJza8Zs5nClvYd9NFvS6Fn9tngTmNS2Fb62Vb9Z7GPYY9CQcZM/jOFIl1D/dcURut1GY11haG8/0TFpJCiSt+9yUeUu17xpLXuo8EuoEndOFNI8jMbVImwlYAZs6RQtrvLsnPrk8JWykdFGOSprcwUNoYwUxGsfNSRGPj76belcKbI1U1RFPq4miXy+jWFooyZ9CWvakICVJOb/lZpjy0pAECJQgdS0RpThYNJIUWVfp9CH1Hq4+NJ6/sUml+oXCkdDO3Zte8XqBU1UWtk6j6qmM4UyjWQkJ2hfNRsplDfpEuAFvP6GwlmCUYoVSGJmZkBWw6obrfpWlZ9+Shfm5FxuJsT+cZWZgpFGTMlpKcja9Q1AICuP51o8dEYORISDGtro5V8GfoxRJgUinYTKRxMCimq/MtHFacTSdldLDqa+KX/YDdfUxj8QiXTeiwiM0ldugY0DBB1MKuadB8VNYG1K/1MYWuNZkS4FuoTjFZnClt43fuXkDpNZgkBlo9Gg7581NvYaJiFqq+r09YZOtyJhpsUVlIUBdevXovx6/+JMUuXW304ATJHjgYAdOrb1/RmdiSiPlMoWdUHk0KKKsWvfDS56xXsomeBgNbKjY3NgwdVhaobVPiTaT0WkRnV5WpKDHVEHczq14f5cOP62EpIS9duItTX1QXMvgm3prCVfQpb2rhez7+ENFhFiKF8VIDfX0aK3+eu/rwZSke7dROqu6vD7Ubm8JGme1Bb7ZqXX8GIRcX4+caNURtnRmVNoWCNqcLB0TpFlf9MYTL3KLSE/4WtQfcB5ExMbPFDx6wDKQcCJBv/17EIg3kznCm0nupwGGbD/GcLRRvktbZPYagzmwEzhUF+twRdUsgbhJHTzxbqX1PGzqMcM4UqMTMTfW6fjtTu0VuDqS/NjqT7aKNuFlhxOk3XjIuMSSFFlf9CZFG6aMUb/y0pGkPYuN5HpvVYRMH4v45FGMybMZ0p5Pst5lpqNiNai3n/GSf/GY1Iy0eD/W4dr8zVHqf0YNISKYe79aQwRZAmM/HKldpRe1xfVxf2zxveeyb7g4pOvPlgklrATCEvcJbwPw/hdMMy3/jb+oEQUTiSu8k8U8j3W6y5MzKA/U2P9c1mDBvBQ4yBnupwQFHV5uPyeg1raA0t8VssH+1v+HOwGyfZ436C/Ad/j6pjZcj79T1tOPL4Zpgp1JePCthkJl6509K0x5EkhaE0eRIZk0KKKv/N63mBs4a+g5bX6/W7ULW8Xsn/nInWipooFMlX+M8UCpoUJgRuXi/jYEJ2wWYK/dcTirLeS01wo6GmKZlobGyEQ7emqiHENZCu1I5I7paD6mNlP36v+etOURQUzF8QjcOOa4ZtKYKWj/JGupUSPLqk0KTpVGuMexTKdx1n+ShFlf8+hSyFsIb/msJQGw8AgUmhqDMsRC0JeB0L2rzF/0YawPecFYJtS2FIsIJ057SCvuzYf+1TOJUh+hJSUW+c2EXQNYW6RjMpObyRbqUE3UxhXVvLRyW8ucekkKLKsMcLOFNoFf2aQvjNFLY24Ezq0tXQyYsDBZJR4JpCMV/HZo0IRD1WOwtlplCkGVz9Bvb+HUjD2UJDnxRyP9r25QjWfZQzhcJo60xhKPtBi4xJIUVVQPmoyfo0an8tzhS2MkhQnU4kdmneW1LGCxuRNN1HXYHlo3zPxZ5hr0LdTGGo6/NiLdSZwtaOOWPoCO1xCjtftiv9Nch3jhobG1FbU9P0l4oSsJUOxVZCG9cUinoTKVRcU0hRpZ+hcqenS/mmsIOWksJQyuiSu+Xg0vHjAOS8sBG5MzLgSExEw48DLlHXd6gulo+KIDHTfKZQ1Dv/jhZmCsMpH+12489w1X8+hEunT6Hf3b+J7kGSgVn5qJYQAkjM6gyHyRpjip1ozhTKWPHBpJCiSj9TyDII6xg2cvXbkiKUC1XyFd1w9sfHHKCSjBRFQebI0Tj1f58gweMR9g682Uwhb8TEXkjlowJdC/WvG/+ZwnCWCyiqioF/+O/oHhyZMjSa+fGcNeg+m/WzVGQNffdR/61pQhHODRkRMSmkqFKdzTNULEWxjj4p9O8+GkqSp99fUtQZFqLWjFxUjO/WvIPs638qxFYCZhSTLSn4nou9YI1mRG0cobqbk8KAmUJBS17jnWFNoa981HCuxGyGFU8MM4VtbTQj0E2kUDEppKjSl4+yyYx1WiwfDWHAqT93Ml7YiICm1/GA+x6w+jBaxPJRMQSbKTSWg4mTYIU6UyjSMcc7s/JR2csN7SYhLV17HNGWFJKvKWSjGYoqlo+KwT8pDHdD1bSBg7THqX2ujO7BEZHGvNEMB4ex5vYbDHq9XgDi3vnXrz1reU2hOMcc78zKR3muxJLg8WiPI9q8PsylOqJhUkhR1XnMtQCakpKuN4y3+Gjil/+WFOGui8kcMQpDn3keg3/3O/Sfd397HCIRwXymkGVksae6XIYBoW+2MNzS+1hRQ0wKZZytsCuz8lHjDVu+761m6D7KNYVEbdPr1tvRoWcvuDMy0TG3n9WHE7faWj4KALl3zkFWVirKyy9G/fiIqIlpoxmBko944s7IRG1FBYCmbSkS3G6/BEucQbs+KWy50Yx8A1O7Mt2SQtCbDvHKmZwC1eVCY10dGhsb0dDQAIduPNUaUW8ihYozhRRViqIga/QYJoQWUxy6RjOQ/0JFZFdmm9fzPWoNd7qu2cyPswThdm6OlZY2rxe1Y2q8M6wpZPmokBRFadO6Qtln6ZkUEtlQi+WjEl6oiOxKvw7bh7M71nBnZmmPxS8fDW3zepE6psY700Yz7BQrnLZ0IJW9fFSqpHDnzp2YMWMGhg0bhrFjx+Lhhx/GuXPnrD4sIuG0VD7KbnRE4lBNNqt2JouTfMQTs20pRB3ktbR5vbHZhTjHHO9Ud2BSyM9m8RiazYQ5Uyh7N1lp1hSeO3cOc+bMQUVFBfLz81FTU4N169bh1KlTWL58udWHRySUgO6jukGCSHe7ieKdarJPob5LIcVOon5bCpOkUKSZnJa2pGBJophaLR8V6PUVz9rSbEb29540SWFJSQkqKiowYsQIrFq1CvX19bjxxhvxxRdf4OLFi0hNTbX6EImEoU8K/ctHZbxQEdmVvgwQaBo4KqpURTy2YbZXobDlo0E2r29sbNS201AcDtOZaLKGMzGw0YzsM0t2pN+epq4N5aMiNaYKlTSfPGm6zB1oWgzq9XqRmJiIBF70iAz0g8qA8lEJL1REduU/U8hZQusYykd9jWYELe8LNlNouAGYmAhFUWJ6XBSc2ZpCUcuT45lhTWG45aOSV2VJM1M4bNgwzJw5E6+99hqmTZuGmpoanDx5EgsXLoRbt/cLEbWyeb2EFyoiu/LvPurgekLLuFspHxVpkBds83pRj5cA1aR8tEHQ8uR41pYN7GXv/CtMUrhmzRosWLAg6Nc3btyovYlKS0sBAB6PBx7dyWtJWloynM7Q9xqJlqwslrXGGmMOVDV0av6D30xh55wsdAgjRoxn7DHmsWN1rBNrjFUwiamplh9TexP297uyh/aw3qR8NPOKTGGOvYOng/ZYP1OoP153hw7CHG+8aCneDV2ayxLNZgrTs9N5viIUzbhldO+qPW7LmsKsblnwSHY+hUkK3W53iwneV199hVWrVmHIkCF48cUXUV5ejlmzZuGhhx5Cnz590L9//xb//fPnq6N8xK3jxt+xx5g3qTl/SXvsXz5aUd2ISyHGiPGMPcY8dkSI9aULl41/kZBo+TG1JxFiHky12nxn32ym8OJlCHPsNc1VasaZQl35muJOEuZ440Frr+0LNYEzuvrXV1WdwvMVgWhfU2pdzTO24c4U6m/KXKjxok7Q8xksiRYmKSwsLERhYWHQrz/++OMAgFtuuQUZGRnIyMjA6NGj8dFHH2HLli2tJoVE8SRgSwrdoIElKkTi0K8NA1jyZyXD5vV1dQGdm0UqB9M3kAm6ppDXeqEYGs2YlI/yfIlBv6awLs66j0rTaKZTp6ZyuJ07dwIA6uvrsX//fgBA586dLTsuIhEpDmOjGW3QoKrsRkckENVlvDcrUjOTeONwu+Hq2LHpD14v6uvqhB3kqUH2KeQaNXGpuv4X2kyhoDcd4lmkjWYC+zfI9/4TZqawNb/4xS+wYsUKrF27FgcPHsSFCxdw5MgRdOvWDddff73Vh0ckFP1MoWHhM7vREQkloPsoB4aWcmdkou7CBQBNJaSidm7WJxD6YxQ1iSVjZ2HTfQolTCLsKNJGM16vF/BtB+N0BjQRk4E0M4W9evXC66+/jnHjxuG7775DZWUlJk2ahBUrViAlRZwLNZEIFNW8qRIHCURiUfwGDpzdsZb/thSiJlmOIEmh7DMVduZICtySgjO74klIb24IFE5SKHvnUUCimUIAyM/Px9KlS60+DCLhGTav1xHpTjcRAarDAUVVtRJvzhZYy39bCn1ppn6fOavpE74GzhRKweE2JoX+TeB4vsTgTE6B6nKh8cfy8YaGBjiCjKn0ZN+jEJBoppCIQhcsKeSAk0g8+nW+sg4m7EKfFF6ubu5a7khKEqr03mwjdP/HnHkSi+p0QnE2z8V4Gxs5sysgRVGM6wpDnC1stMG5ZFJIZEOKav7W5iCBSDyKbl2hrGVHdpGU3UV7/ENFhfZYtEFe0PJRG8xW2Jl+XWFDfb1uDZpLyjVodhVJsxnDrK+ky9qYFBLZkKIopokhBwlE4tEPBnnjxlpZI0drj8+fPq09Fu3aqa/6CDpTKFgiS8YZXv12B84kcUqTCUhICz8ptMOsL5NCIpsyKyHlgJNIPPqkkCXe1socdY22dYBhj0LBrp36GeWgawoFO2YyJoX6ZIPnSiyGpDCC8lHRbiKFikkhkU2ZJYUccBKJR9WtM5J1MGEXzqQkZI4YFfD3ol07Q+s+yteSaPTNZowzhWK9vuJdJOWjdnjvMSkksimzbSlkvVAR2Zm+0Qzfo9brMu4nAX8n2nkx7HkXtPsoEw3R6Lel0M9AcaZQLPqksC6SNYWSnk8mhUQ2pTi4ppBIBoZGM9w2xnLZ424I+DvRBnnO5MCN0AHueye6oGsKea6E4o6kfFRfbi7pDRkmhUQ2Zb6mkANOItGoCfo1hbxxYzVPwUDDmiJAvEGe/0yh98culnZY12Rn+vNWz/JRYUWyJUWDDd57TAqJbMqsfFTWCxWRnalOJoUiUR0OZF97veHvRDsviqqa7lXI7qNic/zYxAgwzhSK9vqKd5F0H23kmkIiEpXpTKGkFyoiO/PkFwBoWlvYMTfP4qMhAMi+TuykEDBvNtNgg3VNdhZ0ppDnSihtX1MoZ1WWs/VvISIZmXYflfRCRWRng/77f9CxXx4yBg9FYmam1YdDALKvN64rFLH0vinBOA+geV2hcV2TeIlsvDNsSaFvNMNZXaG409K1x5GUj8r63mNSSGRTZpvXy3qhIrIzd3o6+v/mXqsPg3Q69OiJlJ69UPXdEQBiXjsdJnsVsvuo2PQzhSwfFVeCx6M9jqR8VNbzyfJRIpsy36dQzgsVEVGs6bemcOkGiaJwtlI+ypJE8TgSm9cUsnxUXG3fvF7O88mkkMimzNcUynmhIiKKtf7z/hPJOd3RoXcf9Ljl51YfTgDDmsIfy0btMFthZ4byUXYfFZYzpQMUZ1MxZWNDg+F9FYwdbsiwfJTIpszXFMp5oSIiirUOPXvh5i+/Bbxe03J8q5ltS9HA7qNC058z3zYiABN40SiKAndaOmrKTwMAaqqrkZya2uLP2GE9r3hXOSKKDoVrComI2kJRFCETQsB4PW9obGxKMn5MNFSXC6rLFexHySL6mUI9WWeW7Cxt0GDtcfmxY61+fwPLR4lIVIoj8O0t64WKiIiM9Ndz/xI33gAUk8NtnhTys1k8fW6brj0+ffSoYWbXjB1Kt5kUEtkU9ykkIrIv/30KG2xQvmZ3QWcKeb6E03XiZLgzmrYIqq2pQcXp06bf521sxOmyMlyqqtL+TtaZXyaFRDalqFxTSERkV/7dRw0zhSni7atIwZNCfjaLx5GQgF6/vE3786mjRw1fb6ivx4nDh/H1//4v9peUoEHXpTQxq3PMjjOa2GiGyKbYfZSIyL70TUsa/JJCF5NCIQUrK+Rns5j63D4d+/66BABw7uRJ1F2+DEVVceLwYZw4dMiw1yTQlPQX/P4RJGZmWXG4bcakkMimuE8hEZF9BZSP2qAlvt053G7zv+f5ElLHfnnIGD4CZ7/aBq/Xi71ffYWqykpDqTYAJHTshH5z5+HK/5gDt26PQ9kwKSSyqYBGM6oKNSHBmoMhIqKoaql81MUkQ0j62V09rikUV5/bZ+DsV9sAABfOnjV8LSm7C/rf+zv0+X/T4UyWf3aeawqJbEr1W1PoTEqCoigWHQ0REUWTf/fRBq4pFF7QNYUsHxVW9yk/D0j4UvteiZF/fhk3b9uBfnPm2iIhBJgUEtmWf/koS0eJiOxDf01vaGgwbJ7NmUIxBZ0p5PkSlqtDKq5e+BgcScnIGDYc1/7tddz0f1vR+9bbbLcXKMtHiWzKPynkQnYiIvvQzzoFdB9lkiGkoGsKedNWaLl3/RpX/sfdtq+24kwhkU35b0nBhexERPbhZPmodIIlf8FmEEkcdk8IASaFRLbl32jGLjXvREQU2H3U0GiGM09CMltTqLrdUE26hRPFGpNCIpsKLB/lIIGIyC6cfmsKuSWF+MySQidnCUkQTAqJbCqgfJRJIRGRbehLDgPWFLJ8VEiqOzApdCTzs5nEwKSQyKYCu4/yzjERkV20WD7KmUIhqS4XFJVLO0hMTAqJbCqgfJSDBCIi29Bf0xsbGtCg25KC13sxKYoS0FSGN2xJFEwKiWzKv9EMy0eJiOwjYJ9C/Uwhy0eF5b+ukOv9SRRMColsyn9NIfcpJCKyj5bKR5loiEtNNO5VyPJREgWTQiKbClxTyEECEZFd+DeaYfdROQSWj/KzmcTApJDIprimkIjIvlSHA2pCgvbn+tpa7THLR8XlXz7KpJBEwaSQyKYCt6RgUkhEZCf6hKJOlxTyJqC4/GcKWT5KomBSSGRT/o1muMaEiMhe9GvF65kUSsHhNq4p5EwhiYJJIZFNcU0hEZG96a/rXq9Xe8ykUFwB3Ud5rkgQTAqJbIprComI7M0/wfDhmkJxBZSP8oYtCYJJIZFNcU0hEZG9BbuuM9EQV2CjGX42kxiYFBLZVMBMIQcJRES2YnZdV10uqE6nBUdDoWD5KImKSSGRTfk3muHdSCIiezFbK85rvdi4JQWJikkhkU35l4/ybiQRkb34r08DWBUiuoCZQibxJAgmhUQ2xe6jRET2ZpYAOngDUGj+iTzPF4mCSSGRTQWuKeQHDxGRnZjd7ONm6GLz36eQM7skCiaFRDYV2H2UHzxERHZitn7QkcxrvcgCZgp5w5YEwaSQyKb0jWYUhwNqQoKFR0NERNFmNsvEqhCxsfsoiYpJIZFN6ctHHYmJUBTFwqMhIqJoM9u8nkmh2PyrdljFQ6JgUkhkU4ra/PZmeQoRkf2wfFQ+gWsK+flMYmBSSGRT+jWFXMhORGQ/pt1HmWQILWCfQpaPkiCYFBLZlL581JnCbnRERHZj2n2USaHQDI1mFMW0BJjICkwKiWxK32iGd46JiOzHLAFkZYjY9EmgIzGJ6/1JGEwKiWzKMFPIQQIRke2YzTLxJqDYHO7mc8bPZhIJk0Iim9KvKWR3MyIi+zFLALnFgdgcSbqZQn42k0CYFBLZlGGmMJlrComI7Mas0ygTDbGldO+JhLQ0AED64KEWHw1RM6fVB0BE7cOdmak9TszuYuGREBFRe2D3Ufk4k5Nxw3vrUf7FZvSYOs3qwyHSMCkksqmuN0xAr1/ehuoTJ9Bv9q+tPhwiIooyQyfLH7F8VHyeAfnwDMi3+jCIDJgUEtmU6nJh1F9etvowiIionZhvScHyUSIKH9cUEhEREUmI5aNEFC1MComIiIgkZFY+atZ8hoioNUwKiYiIiCSkulxQXS7D35ltaE9E1BomhURERESS8t/Ano1miCgSTAqJiIiIJOW/hpD7FBJRJJgUEhEREUnKPwnkTCERRYJJIREREZGk/DuQmjWfISJqDZNCIiIiIknpy0dVtxuKyqEdEYVPyCvHtm3bkJeXhzvvvDPgay+//DKuu+46DBw4ELNmzcLhw4djf4BEREREAtA3mmHnUSKKlHBJ4cGDB/Hggw+afu3111/HCy+8gNraWuTm5mLLli2YM2cOLl++HOOjJCIiIrKevnyUTWaIKFLCJIUNDQ1YsmQJpk2bhtOnT5t+z/LlywEAy5Ytw5o1azBmzBiUlZVh48aNMTxSIiIiIjHoy0fZZIaIIiVMUlhVVYXi4mKkp6fjjjvuCPj6mTNncPToUSQnJ2PgwIEAgNGjRwMAtm/fHtNjJSIiIhKBfnbQmZxi4ZEQkcyESQpdLhceffRRbNiwAQUFBQFfP3HiBADA4/Fof+d77PsaERERUTzRrylk+SgRRcoZqydas2YNFixYEPTrmzZtwvTp04N+3bdu0OlsPmTf45qamlafPy0tGU6nI9TDjZqsrNSYP2e8Y8yji/GMPcY8dhjr2GPMoys1vZP2OKlTqhZfxjn2GHNrMO7REbOk0O12G2b5/DkcLSdsCQkJAJrWHvrU19cDABJ1d8mCOX++OoSjjK6srFSUl1+M+fPGM8Y8uhjP2GPMY4exjj3GPPpqdUO5Rqcb5eUXGWcLMObWYNzDFyyJjllSWFhYiMLCwoh/Pjs7GwBQUVGh/Z3vcdeuXdtyaERERERS0ncf9d/InogoVMKsKWxNdnY2unTpgqqqKpSWlgIAvvzySwDA0KFDrTw0IiIiIkvou486uE8hEUVImqQQAGbMmAEAmD17NoqKivDZZ58hJycH48ePt/jIiIiIiGIvffAQ08dEROGIWfloNMyePRt1dXV44403sH//fowaNQqPP/443G631YdGREREFHOZI0fjupVvorayEj2mFll9OEQkKcXr9XqtPohYsGIRKhe/xh5jHl2MZ+wx5rHDWMceYx4bjHPsMebWYNzDF6zRjFTlo0RERERERBRdTAqJiIiIiIjiGJNCIiIiIiKiOMakkIiIiIiIKI4xKSQiIiIiIopjTAqJiIiIiIjiGJNCIiIiIiKiOMakkIiIiIiIKI4xKSQiIiIiIopjTAqJiIiIiIjiGJNCIiIiIiKiOMakkIiIiIiIKI4xKSQiIiIiIopjTAqJiIiIiIjiGJNCIiIiIiKiOMakkIiIiIiIKI4xKSQiIiIiIopjitfr9Vp9EERERERERGQNzhQSERERERHFMSaFREREREREcYxJIRERERERURxjUkhERERERBTHmBQSERERERHFMSaFREREREREcSzuksLy8nIsWLAA1157LYYNG4YZM2bg22+/1b6+adMm/OxnP0NBQQEKCwvxySefGH5+586duOuuuzB8+HCMHTsWDz74IE6dOhXwPPX19Zg8eTLy8vJw8uTJVo+rpKQERUVFKCgowPjx4/Hee++Zft/Ro0dRUFCAiRMnhveLW0zWuB85cgT33XcfRo8ejVGjRmHu3Lk4dOhQZEGIIlnjefDgQdx9990YPHgwxo0bhyeffBLV1dWRBSHGZI253lNPPYW8vDwUFxeH/ovHmKxx3rx5M/Ly8gL++/zzzyMLRIzJGnev14tly5Zh/PjxGDRoEG677TaUlpZGFoQYkDHOxcXFpq9t0a8lPjLGHGgaf/zmN7/BqFGjMGrUKNxzzz34/vvvIwtCjMke85EjR2L06NF46qmnUFNTE1kQJBRX+xQ2NjbiV7/6FXbs2IFevXrB4/Hgm2++QXJyMt5//31UV1dj2rRpUBQFBQUFKC0thdfrxdq1a9GvXz+cOHECU6dORWVlJYYMGYLz58/jyJEjyMvLw7vvvouEhAQAQG1tLR5++GF8+OGHAIBPP/0UXbp0CXpcp0+fxk033YTq6mpcffXV2LdvHy5duoSlS5di3Lhx2vedOnUKs2fPxv79+9GjRw/861//at+ARYmscf/hhx8wdepUlJWVYcCAAfB6vdi7dy+ysrKwYcMGeDyeWIQvgKzxrK6uxqRJk1BeXo5BgwahvLwcx48fx8SJE7FkyZKYxC5SssZc76uvvsKMGTPQ2NiIe++9F/fdd1/7BSxCMsd52bJleP7555Gfn2/4t+6//37079+/HaPWdjLHffHixfjrX/8Kj8eDvn374uuvv0ZGRgY++ugjdOzYsf2DFwZZ4/zBBx/ggw8+MPzM5s2bUVNTg+LiYkyaNKn9gtZGssa8trYWhYWFOHr0KPr27YvExETs2rULffr0wfr16+F0OmMSv0jIGvOKigoUFhbizJkzGDFiBA4ePIhz585hwoQJePHFF2MSO6vF1Uzh7t27sWPHDuTk5OCDDz7A6tWrtRfI+vXr8dprr6G+vh4PPPAA3nrrLcybNw/19fVYtWoVAOAf//gHKisrMWXKFLz11ltYv349unTpgn379mHHjh0AgM8//xxFRUXaizQU7777Ln744QfcfvvtWL16NZ544gkAwIoVK7Tvef311zFlyhTs378/ihGJDVnjvnnzZpSVlWH48OFYt24d3n//fS2Z8b+rFUuyxvObb77BxYsXMXHiRLz99tt46623AAAbN25EVVVVNEMUdbLG3KempgYLFy5EY2NjlCLSPmSO8549ewAAv//97/HSSy9p/4meEALyxr2yshKvvPIKVFXFm2++iTfeeAOTJ0+Gy+XCzp07oxyltpM1zoWFhYbX9K233oqamhoUFRUJnRAC8sb84MGDOHr0KHJycvD3v/8da9aswYgRI3Do0CEcOHAgylGKLlljvm7dOpw5cwbTp0/HqlWrsG7dOiQnJ2Pjxo3YtWtXlKMkJnFvNbSDzp07Y9GiRXC73dpdlszMTADA+fPnUVJSAgAYOXIkAGD06NEAgO3btwMArr32WqSlpaFv374AgISEBHTq1AknT57EuXPnAACrVq3C4cOH8eCDD2LRokUhHVdrzws03Q11OBy4++67sXTp0ggjYA1Z437VVVfh+eefR1ZWlvYzGRkZ2nFbRdZ4jhkzBtu3b8elS5cAAGfOnAEApKSkaHf+RCVrzH0WL16MI0eOYMCAAVryIiKZ47x7924ATTc5Vq9ejdzcXMycORMdOnSIJBQxJWvct23bhrq6OvTu3Rt9+vQBAPzlL3+JNAztTtY46126dAlPPPEEOnTogP/6r/8KMwKxJ2vMPR4PFEUBAO3/Xq8XiqIIf02RNebfffcdACA3NxcAkJ2djby8PGzfvh1btmxBfn5+RPGQSdwlhYWFhdqfz507p91lGDx4sFZb7CsL9P3fV6fcr18/9OvXT/v5bdu2Yd++fVBVFVdffTUA4MYbb8T8+fPRu3fvkF+ovn/f/3mrqqpw8eJFpKam4r777sPUqVOxb98+KZNCGePevXt3dO/eXfv+w4cP47PPPtOO2yqyxjM1NRWqqiIlJQXPPPMM3n77bbjdbjz55JNwuVzhByKGZI55SUkJVq5cicmTJyM3N1f4pFDGODudThw5cgQA8Nprr2k/9/HHH+Odd97h6xvtE3ff+qqUlBQ89NBD2LRpE/r06YOFCxdi2LBhYUah/cka59TUVO1716xZg2PHjmHOnDnaTVKRyRrzrl27Yv78+Vi8eDGmTJmilY/OnTsXOTk54QcihmSOOQBtTXJ1dTWOHj0KADh+/HjIv7/M4qp8VO/ChQuYM2cOzp49i759+2Ly5MnaYlLfB7jvDodvZkNvz549uPfeewEARUVFWh3zlClT0Lt377COxfe8vufTDyB8zz1r1izL1rBFk2xx9zl+/DjmzJmD2tpaXHPNNRgyZEhYz9VeZI3npk2bUF1dDY/Hg4aGhrCex2oyxfzy5ct45JFHkJqaisceeyysf9tqMsX5woULuOGGGzBhwgR8/PHH2LhxI3r16oU9e/bg7bffDuu5rCZT3H3PX1paiq1bt2LAgAHYtWsX5syZE1LTCSvJFGcfr9eLVatWQVVVTJ8+PaznEIFsMa+vrwcAHDhwAKWlpUhMTNRm3GQhU8ynTp2K5ORkvPPOO7jttttw88034+zZs4aftbu4min0qaiowF133YVdu3ahU6dO+POf/wyXywW3241Lly5pb0Tf/5OSkgw/v2vXLtx1112oqKhAfn4+HnnkkZCfe+XKldiyZYv25xkzZsDtdgOANjiuq6vTvu7/3DKTNe5lZWWYOXMmjh07hm7duuG5554L8zdvH7LGE2i621xeXo7p06dj/vz56NWrFwYOHBjGb28N2WL+wgsv4PDhw3j22WelGkzIFufU1FS89NJLhn/n1ltvxXPPPYeSkhLccccdYfz21pEt7r6vO51OvPfee8jOzsYjjzyC9957D++//z7mzp0bQRTan2xx9vn2229x6NAhDBkyRJtVkYVsMS8pKcGiRYvQs2dPvPrqq/B6vZg9ezaeeuopdO/eHT/5yU8iikMsyRbz1NRU/O1vf8Mf//hH7N+/H2PGjEFubi4++eQTW43FWxJ3M4VVVVWYPXs2du3aBY/Hg+XLl2v1w507dwbQtHgdaHpBAzB0Mzpw4IDhRfrqq68iJSUl5OffvXs3Nm3apP134sSJoM/boUMHQ9mGzGSN++nTpzFr1iwcO3YMOTk5WLlypfZzVpI1nufOnUNlZSU6duyIvn37YsyYMfB6vdi6dWvkwYgRGWP+z3/+EwDwhz/8AXl5eVqX1yVLluCnP/1phJFoXzLGuaqqCv/+978N29X41sn6BjyikzHuvsTE4/EgOzsbALSbS6LOFMoYZ5/NmzcDQEBnY9HJGPOvv/4aADBhwgTk5OSge/fumDBhAoDm8yAyGWMONJW3vvPOO/j6669RXFyM2tpaAECPHj0ijIRc4i4pXLhwIUpLS5GamooVK1bgqquu0r7mq1X2DVC//PJLANDWJlRVVeG3v/0tKioq0L9/fyxfvjzsks5nn30W+/bt0/4rKioK+rxDhw6N/BcVjIxxb2howP3334+ysjJ07doVq1atEqaWX8Z4rlixAtdcc43W8auurk5b3ybDLJaMMR87dizGjx+v/ecrt+nduzfGjh0bSRjanYxx/vzzz3HLLbdg3rx5qK2thdfrxaeffgrA2vXH4ZAx7sOHD4eqqjh79qzWmfvgwYMAxB3EyRhnH9/XZajq0JMx5p06dQLQtF+fb+e4vXv3AoCh+Z2oZIz5F198gfHjx+P+++8H0LTX4jfffAOgqflNPIirfQp37NiBX/7ylwCAbt26GVqFjx07Fvn5+bj99tvhcDi0vVMAYO3atcjNzcXSpUvxpz/9CQBQUFCg3ZkEgDvvvFPraOSTl5cHoPW9U8rKynDzzTfj8uXLGDRoEPbu3YtLly5h2bJluO666wzfu3XrVsycOVOqfQpljfuHH36IBx54AABw5ZVXomfPntrP3nLLLbjpppvaEpaIyRrP8vJyTJ06FWfPnsXVV1+NCxcu4MiRI+jVqxfWrVsndHmGrDH3V1xcjCVLlgi7T6Gscb58+TKmTZum7SGbkpKCPXv24IorrsCGDRvCusNtBVnjDgCPPfYYVq9ejY4dO6J///7Ytm0bPB4PPvzwQ6Snp0chOtEjc5yBplmr77//Hp988ok05aOyxly/Z16/fv2gqir27t2L1NRUbNiwocV/22oyx3zSpEmorKzE0KFD8f3336O8vBzTpk3D008/HZ3gCC6u1hR+/PHH2uNjx47h2LFj2p/T0tJwxx13oLi4GIsXL0ZpaSl69OiB+fPna1Pe+iSstLRUeyEDwOTJkyM+rpycHLzyyit4+umnUVpais6dO+Oee+4xHdTJSNa465/3wIEDhr2BCgoKIn7eOYfaawAAARhJREFUtpI1nllZWVi5ciWef/55lJSUwO12o6ioCPPnzxc6IQTkjblsZI2z2+3GsmXL8Nxzz+GLL77AmTNncMMNN2DhwoXCJ4SAvHEHgEcffRQdO3bE2rVrsXv3bowdOxYLFiwQLiEE5I4zAK3pRlpaWsTPFWuyxtzj8eDNN9/EokWLsHXrVtTX12Ps2LGYP3++0AkhIHfMX3rpJTzzzDPYtWsX0tPTMW/ePNxzzz0RP6ds4mqmkIiIiIiIiIzibk0hERERERERNWNSSEREREREFMeYFBIREREREcUxJoVERERERERxjEkhERERERFRHGNSSEREREREFMeYFBIREREREcUxJoVERERERERxjEkhERERERFRHPv/stcXkQajLW4AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "tp = 2.1/100\n", - "pf = pd.concat((low_portfolio, portfolio_return_MV,high_portfolio), axis=1).dropna()-spread\n", - "pf.columns = [\"low\", \"Return\", \"high\"]\n", - "\n", - "pf[\"Return\"] = np.where(pf[\"high\"].values>tp, tp, pf[\"Return\"].values)\n", - "pf[\"Return\"] = np.where(pf[\"Return\"].values>tp, tp, pf[\"Return\"].values)\n", - "\n", - "backtest_dynamic_portfolio(pf[\"Return\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 16.3.2. Optimal stop loss" - ] - }, - { - "cell_type": "code", - "execution_count": 61, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Sharpe
1.000000-1.375686
1.310345-0.930839
1.620690-0.465171
1.931034-0.290011
2.2413790.615358
2.5517241.055019
2.8620691.367951
3.1724141.349833
3.4827591.653049
3.7931032.049993
4.1034482.301406
4.4137932.468525
4.7241382.327854
5.0344832.891617
5.3448282.980758
5.6551722.874903
5.9655172.937626
6.2758622.865577
6.5862072.793819
6.8965522.722424
7.2068972.651456
7.5172412.651950
7.8275862.705142
8.1379313.138970
8.4482763.348709
8.7586213.326903
9.0689663.304941
9.3793103.282833
9.6896553.444431
10.0000003.432601
\n", - "
" - ], - "text/plain": [ - " Sharpe\n", - "1.000000 -1.375686\n", - "1.310345 -0.930839\n", - "1.620690 -0.465171\n", - "1.931034 -0.290011\n", - "2.241379 0.615358\n", - "2.551724 1.055019\n", - "2.862069 1.367951\n", - "3.172414 1.349833\n", - "3.482759 1.653049\n", - "3.793103 2.049993\n", - "4.103448 2.301406\n", - "4.413793 2.468525\n", - "4.724138 2.327854\n", - "5.034483 2.891617\n", - "5.344828 2.980758\n", - "5.655172 2.874903\n", - "5.965517 2.937626\n", - "6.275862 2.865577\n", - "6.586207 2.793819\n", - "6.896552 2.722424\n", - "7.206897 2.651456\n", - "7.517241 2.651950\n", - "7.827586 2.705142\n", - "8.137931 3.138970\n", - "8.448276 3.348709\n", - "8.758621 3.326903\n", - "9.068966 3.304941\n", - "9.379310 3.282833\n", - "9.689655 3.444431\n", - "10.000000 3.432601" - ] - }, - "execution_count": 61, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "def find_best_sl(sl):\n", - " sl = sl/100\n", - " \n", - " # Create the portfolio\n", - " pf = pd.concat((low_portfolio, portfolio_return_test,high_portfolio), axis=1).dropna()-spread\n", - " pf.columns = [\"low\", \"Return\", \"high\"]\n", - "\n", - " # Apply the tp\n", - " pf[\"Return\"] = np.where(pf[\"low\"].values<-sl, -sl, pf[\"Return\"].values)\n", - " pf[\"Return\"] = np.where(pf[\"Return\"].values<-sl, -sl, pf[\"Return\"].values)\n", - " \n", - " # Return sharpe raatio\n", - " return np.sqrt(252)*pf[\"Return\"].mean()/pf[\"Return\"].std()\n", - "\n", - "pd.DataFrame([find_best_sl(sl) for sl in np.linspace(1,10,30)], index=np.linspace(1,10,30), columns=[\"Sharpe\"])" - ] - }, - { - "cell_type": "code", - "execution_count": 82, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[*********************100%***********************] 1 of 1 completed\n", - "\n", - " -----------------------------------------------------------------------------\n", - " Beta: -0.141 \t Alpha: 12.1 %\t Sharpe: 0.211 \t Sortino: 0.308\n", - " -----------------------------------------------------------------------------\n", - " VaR: 85.45 %\t cVaR: 99.35 % \t VaR/cVaR: 1.163 \t drawdown: 22.16 %\n", - " -----------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAAHnCAYAAAAM6DS1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydd3gbVdbGX3XJttx7j+PEjtN7IQlpQCoEQg0t9BJgYZdl4cvCLn3ZpS0lu/Sl1xACKSSkkl6d4hQnce/dlou65vtD9uiOJNuyLcmyfX7Pkyczo5nR1Vhl3nvOeY+I4zgOBEEQBEEQBEEQRL9E3NsDIAiCIAiCIAiCIDwHiT6CIAiCIAiCIIh+DIk+giAIgiAIgiCIfgyJPoIgCIIgCIIgiH4MiT6CIAiCIAiCIIh+DIk+giAIgiAIgiCIfgyJPoIgiAGOwWDARx99hKVLl2Ls2LGYNm0a7r//fpw6dUqwX1paGtatW+f0HOxjBw8eRFpaGkaMGIHGxkaHfSsrKzFs2DBkZGTw22699VasWrXK6bntH2tvHE8++STS0tLa/Tdnzhx+36qqKmRkZGDhwoUOz9XROW699Vb+uVasWMEvz5gxAxaLxen4n3rqKSxZsqTT848dO9bp8e0dN3LkSMydOxdvvPEGzGYzv++cOXPafY7Fixd36XXOmTMHq1evdjom9rHi4mKHc6Snp2PcuHG44YYbsHfvXv64tvfHa6+95nDOtvMcOXKk3WtBEARBdB1pbw+AIAiC6D20Wi1uu+021NXV4ZFHHsHo0aPR3NyMzz77DDfffDPef/99TJkypdvn37ZtG5YuXSrY9uuvv4LjOIhEoh6OXsiqVavwpz/9CQBQVlaG6667DqtXr8aoUaMAABKJhN933bp1SEhIQE5ODo4cOYIJEyYAAN5++20YjUYAQGZmJh5++GGsXbsWERERAACZTObwvMuWLcPatWtx+PBhTJ48WfCYTqfD5s2b8cgjj/DbFi9ejCeffNLhPGJxx/Ow9sc1NjZi8+bNePPNN+Hv7497772Xf+yee+7B7bff7nAOqVTa7dfpCuz15jgOpaWleP311/HAAw9g06ZNiIuL4/f96KOPcMUVV2DEiBHdei6CIAjCdUj0EQRBDGDefPNN5OfnY/369YiKiuK3/+Mf/0BNTQ2ef/55rF+/vlsCbcqUKdi8ebOD6Nu0aRPGjx+PzMzMng5fgFqthlqtBgDo9XoAQFBQEC9kWH766ScsXLgQO3fuxLfffsuLvuDgYH6foKAgAEBoaKjTc7QxYcIEJCYmYsOGDQ6ib+vWrTAYDLjyyiv5bUqlssPztYf9cREREXjggQdw4MABbNq0SSD6/Pz8OnyO7rxOV7C/3pGRkXjllVcwa9YsbNu2Dbfddhv/WGxsLJ566in8+OOP3RaZBEEQhGtQeidBEMQAxWAw4Mcff8S1114rEHxtPPPMM3jttde6HZGbP38+9u7di6amJn5bRUUFsrKycNlll3V73D3l5MmTuHDhAqZNm4bLL78cmzdvRkNDQ7fPJxKJcPXVV2Pz5s189KyNdevWYfbs2QgNDe3psNtFLpfzETxfRC6XA4DDGP/2t78hLy8P//3vf3tjWARBEAMKEn0EQRADlKKiImg0GowePdrp4wkJCUhPT+/2+adMmQKVSoVdu3bx2zZt2oRp06YhMDCw2+ftKWvXrkV4eDjGjx+PBQsWQK/X46effurROa+++mpoNBpB7VpNTQ327duHZcuW9XDEzjEYDFi3bh327t3L1wz6Gm3RYj8/P8ydO1fw2JAhQ/DAAw/gvffeQ3Z2di+NkCAIYmDgu1ODBEEQhEfRaDQA4DEBJpVKMW/ePGzevBmLFi0CYBV9N910U7umJ57GYDBg48aNWLhwIcRiMZKTkzF8+HB89913TmvgXCUmJgZTp07F+vXrMWvWLADAL7/8gpCQEMyYMUOw708//YSNGzc6nOO2227DY4891u5z2B+n0+mQlJSEp556Crfccotg39WrV+ODDz5wOMeTTz6JG264oSsvrUvcddddfG2i2WwGx3EYP348vvzyS6fR5Pvuuw+//fYbnnrqKXz//fceGxdBEMRAh0QfQRDEACUkJAQAUF9f79L+UqkUHMc5bG8TcM7qsubPn4+HH34YWq0W9fX1OHv2LObNm4ctW7Y4nLs9IWixWNyWvrht2zbU19dj/vz5/LYFCxbg1VdfFRi6dIdrrrkGTz/9NLRaLVQqFX7++WcsXbpUYCADAPPmzcMf//hHh+M7E99tx1ksFhw5cgSvvPIK5s2bxzttstx8881Yvny5w/auppl29e/y8ssvY/jw4dBqtfj444+xf/9+PPjggwKnVvvzv/TSS7juuuvw0UcfObipEgRBEO6BRB9BEMQAJTExEWFhYThx4oTTm+2DBw/ik08+wXPPPYfIyEgEBgYK6vPaaKuHazMEYZk6dSoUCgV27dqFsrIyzJgxAwEBAQ77BQYGorm52ek4NRqNwHikJ6xduxYAcMcdd/Db2oTsd9991yPRd9lll+HZZ5/Fjh07kJaWhtOnTzttSxAQEICkpKQun589btCgQVCr1fjDH/6AwMBAgYkLYP1bdOc57Ono79LQ0ODwd4mMjOSf95VXXsEDDzyA+++/Hz/++COSk5OdnicjIwN333033nnnnR6lExMEQRDtQzV9BEEQAxSxWIyrr74aa9asQUVFheAxjuPw/vvvIy8vj3djHD58OI4ePepwnqNHj0IsFjuN5kilUsydOxdbtmzB5s2b243kDB8+HCdPnnQwQqmtrUVeXh5GjhzZ3ZfJU1VVhT179mD58uX46aef+H/r1q3D9OnT8euvv/bI0EWhUGDhwoX49ddfsX79eowbNw6DBg3q8bjbY/78+Vi8eDHeeustj9XEDR8+HMeOHXPYfu7cObS0tHT4dxGJRHjhhRcgk8nw5JNPOo0St7Fy5UokJCTgueeec8u4CYIgCCEk+giCIAYwDz74IOLj47F8+XKsX78eRUVFyMzMxCOPPILDhw/jxRdf5N0777zzTmzevBlvvPEGcnJykJeXh59//hnPPfccli9fzqeL2jN//nzs2LED2dnZmD17ttN9li1bBq1Wi8ceewwnT55EcXEx9u7diwceeACpqal8nVwb2dnZ+P333wX/zp071+FrXbduHTiOw913342hQ4cK/t19993Q6/XtNp93lWXLlmH37t3YtGlTuwYuOp0OVVVVTv+ZTKYuPd+qVavg7++Pp59+WpCG2dLS0u5zdCS+7Ln11ltx5swZPPPMMzh37hwKCwuxdetWPPbYY5g9ezaGDRvW4fHh4eF44oknkJmZia+++qrd/eRyOV566SWUlJS4PDaCIAjCdSi9kyAIYgDj7++PL774Ah988AHeeecdlJWVQa1WY/To0fj2228FN/XTpk3De++9h/fffx9fffUV9Ho94uPjcfvttwvSJe2ZOnUq5HI5Jk+eDD8/P6f7hIWF4dtvv8Wbb76J+++/HxqNBuHh4ZgzZw4effRRh9qxjz76CB999JFg25IlS/Dqq6+2O46ffvoJs2bNEjQIZ8eYnp6O7777TtBLrquMGjUKcXFxKCkpwYIFC5zus379eqxfv97pYz/88EOXopqhoaF46qmn8Je//AVffPEFP/YPPvjAqZELAOzfv9/l2r7U1FR8+eWXeOedd3D77bejpaUF0dHRWLhwIVauXOnSOZYtW4ZffvkFr7/+uoODJ8vo0aOxYsUKfPzxxy6dlyAIgnAdEdeVKT+CIAiCIAiCIAiiT0HpnQRBEARBEARBEP0YEn0EQRAEQRAEQRD9GBJ9BEEQBEEQBEEQ/RgSfQRBEARBEARBEP0YEn0EQRAEQRAEQRD9mH7RsqGqqtHrzxkS4oe6uhavP+9Ah667e6Hr2TvQdfcedK29D11z70HX2vvQNe8d6Lq7RkSEut3HKNLXTaRSSW8PYUBC19290PXsHei6ew+61t6Hrrn3oGvtfeia9w503XsOiT6CIAiCIAiCIIh+DIk+giAIgiAIgiCIfgyJPoIgCIIgCIIgiH4MiT6CIAiCIAiCIIh+DIk+giAIgiAIgiCIfgyJPoIgCIIgCIIgiH4MiT6CIAiCIAiCIIh+DIk+D8JxHN5999+49tolmDdvOu69dwXOnTuLmppqrF37Q5fOVVJSjF9/3eChkRIEQRAEQRAE0V8h0edBDh06gK+//hyPP/4Uvv76RwQEBODll5/De++9i02b1nfpXP/4x/PYv3+Ph0ZKEARBEARBEER/RerNJ6uqqsLrr7+O3bt3Q6vVIiMjA48//jhGjx4NANi2bRtee+01FBYWIikpCX/+858xa9asHj/vf7eexqsbj6NZb+rxudoIUMrwpwWjcf+84e3u4+8fAAD4+uvPMXv2PDz++FMoLS3Bo48+CAB46KF7sXDhErz++isYMmQodDodXnzxX3j66SeRm3sRAQFqPPDAwwCAzMyjAAC5XIE//OFxvPji33HkyCEkJCTgySefxtCh6di/fw9ee+0VGI1GTJ48FRs3/oIvv/wBt956PZ599iXMnj0P//73azh8+AC++OJ7t10LgiAIgiAIgiB8F69F+iwWCx588EH8+OOP8Pf3R2pqKg4dOoQVK1agsLAQ586dwyOPPILCwkKMGDECBQUFWLlyJc6fP9/j5/7v9tNuFXwA0KQz4r/bT3e4z4gRI/HEE6tQUVGBV199GTfcsBRHjx7GvHlXID09A//855sAAJ1Oh2uuuR4vv/waKirKMW3adHzzzVoMGTIUP/20BpddNh8jR47GpZfOxp/+9CQ+//wT5ORcwP/+9xUmT56GF198FhaLBS+88DeMGTMO77//P9TU1AAAoqNjMGHCZGzduhkWiwU7dmzFwoVL3HotCIIgCIIgCILwXbwm+s6cOYOTJ08iPj4eGzZswLfffosFCxagpaUFv/zyCz7//HOYTCY89thj+Oabb7By5UqYTCZ88cUXPX7u++cMh7/CvUHNAKUM989pP8oHABcvXkBwcAi++eZH/PDDeixadCU+//wTaDQaiMVi+Pn58ftOmXIJoqNj4O/vj5MnT+Cf/3wJtbW1MBgMkMlkkEgkkEqlUCqVyMm5gIqKctx11y344YdvkJNzAZWVFWhoaMDMmbMRFRWN6dNn8ue+8sql2L9/H/bt2426ulrMn7/IrdeCIAiCIAiCIAjfxWvpnZGRkXj99dehUCgglVqfNjw8HABQV1eHY8eOAQAmTZoEAJgyZQoAIDMzs8fPff+84R2mYXaHiAg1qqoaO9zn/PlzeOWVF/D8869g+PAR8Pf3h0KhQEREBKqqKlBXV8vvK5fLAQCffPIhDAYdnnjiOfzjH89Do9EAACQSCZqamtHQUI+kpGQUFRXi8cefQlbWSTQ0NCA0NAxBQUHYs2cX0tLSsXv3Tv7c06dfioCAALz66j8wdeolCA0Nc+u1IAiCIAiCIAjCd/FapC8yMhKLFi3CvHnzAAC1tbXYuHEjAGDMmDEoLy8HAAQHBwv+b9veF1mwYDFuuulWvPbaP7Bs2WIcOLAPf//7i5g0aQrKy8vx/PPPOBwzb94VKCwswD333A6xWIyqqkqYTCZMmXIJTpw4hv/+9x3cfvtdGDx4CFategI//7wWaWnpkMvl+Otfn8XRo4fxwAN38VFEsVgMqVSKBQsWo7q6CosWXenty0AQBEEQBEEQRC8i4jiO8/aTajQarFixAqdPn8bgwYOxbt06jBo1ChaLBbt27UJ0dDSKioowb948yGQyZGVldXg+k8kMqVTipdH7Ln/7298QFxeHJUuW4D//+Q+2bNmCAwcOoLGxES+99BJ2796NnTt38pFWgiAIgiAIgiD6P16/+6+vr8edd96J06dPIygoCP/+978hk8mgUCig1WphMlkNV9r+V6lUnZ6zrq7Fo2N2hivpnd4mOXkIPvnkA7z11luIiIjEn/70JKqqGnHddVdBq23B448/ibo6bW8Ps0f44nXvy9D17B3ounsPutbeh66596Br7X3omvcOdN1dIyJC3e5jXhV9zc3NuOuuu3D69GkEBwfjk08+wZAhQwBY0z8LCgrQ0NCA+Ph41NfXAwCio6O9OcQ+zeLFV2Hx4qsctn///bpeGA1BEARBEIRv8fHOs9h6ugQ3TU3FknHJvT0cgvAaXm3OvmrVKmRlZUGtVuPTTz9FRkYG/9ioUaMAAAcPHgQAHDp0CAAwfvx4bw6RIAiCIAiC6IdUNmjx9A+HseNMCe79aBfu+2gXapp0vT0sgvAKXov0nTx5Eps2bQIABAYG4q233uIfu+SSS3DLLbdgw4YNeP3117FlyxZkZWVBJpPh5ptv9tYQCYIgCIIgiH5KWUMLLIyVxc/H8rH/Qjk+uHsWJqdG9eLICMLzeC3St2XLFn65pKQE27Zt4/+dOXMGY8aMwdtvv42kpCRkZWUhMTERb7/9Np/+SRAEQRAEQRDdpVlndNhW1ajDX78/1AujIQjv4rVI3+OPP47HH3+8w33mzZvHt3QgCIIgCIIgCHfRpLeJvoSwABTVNAEAcis14DgOIpGot4ZGuEiTUQ+NQYdoPzXEIq9WqfV5yLvfgxw7dgSPPHI/v65UKjFr1lw8+eTTbmmb8NBD9yIsLAzPPvtyj8/ljI0bf8FLLz2Lbdv2QqFQeOQ5CIIgCIIgvEETE+kblxyOKo0WOqMZLQYTGnVGBKrkvTg6ojOOV5dg+W+fQWPUQymRIjUoHCNDY3F96hhMiEgg0d4JJPq8wAcffIr4+EScPn0Kjz/+CGbNmoPp0y/t7WERhNcwmS04lFuJkfGhUNOPKkEQBNELsKLPXyFDTLAf8lrbAJTVt5Do82Ea9Fo8+Pv30Bj1AACd2YSs2nJk1Zbj64vHkB4cidvSJuKalFEIkFGgwhkDQvS9d3ofXj+xE80mg9vOGSBT4LFRl+K+4dM63dfPzx9qtRqBgYEAAJXKDz/88A0+++wTAMCNN96C5ctvxcaNv+DNN1/F/PkLsWXLJqSkpOKVV96AUqnEq6++jF27dkAqlWL58tuwfPmtAIDy8nLcc89tKC4uxi233I6bb74dDz10LxQKJaqrK1FbW4tbb12BzZs3oaKiDHfddT+uvvparF+/Dh98sBoNDQ1ISRmMl156DaWlxXjkkfsxfvwk5Ofn4I477gUA6PU6/OEPD8BsNuPNN9+Fv3+A264jMTB46tuD+GLveSSHq7H7maWQSiglgyAIgvAuLXoTv+yvkCKaEX3l9S1IiwnupZERBrMJa/NOwcJxuCZlFBQSm0ThOA4Pb12Dwqb6do8/V1+J/zu4AS8e/Q3LUkbh1rSJGBZC5jwsA0L0vX9mn1sFH2DNKX7/zD6XRN8999wOkQhoaWnB6NFjERQUjH//+zX8/e8vIi4uHg8+eDfGj58IAGhpaUZq6lBMmzYDjz/+CA4d2o/6+nps374Vq1d/gAsXzmPPnt+h1VqbrFdVVeKNN97Ft99+if/970PcfPPtAID8/Fy88ca7+Mc/nscHH/wX77zzPr766lN8+eWnuPrqa6HRaLBy5WMYNCgF99xzGw4c2IPExGQAwMSJk/CXv6zC8ePHAADPPPMUmpqasHr1hyT4iG6x+WQhACC/uhE5lRr6YSUIgiC8DlvTF6CUITrIj18vq2/ujSERAC7UV+GRPT/iVG0ZAOCDM/vx6rSrMC4iHgDwQ+4JfHsuk99/9YxrMT1mEM7WV+Kn3FP4Kf8UtCbr37bZZMBn54/gs/NHMDEiAbemTcSipAyBiByoDIgrcG/GNI9E+u7N6FzwAcBLL/0LsbFxqKqqwqpVj+Pvf/8/cByHf/7zRYhEIhiNRmRlnYBKZf3yueyy+RCLrXnJer0eeXm5iI+Px5AhaRgyJA0LFy7hzz18+EgkJSVj6NA0/PzzWn57RsYIJCYmIS4uHgaDAWlp6UhMTEZmplXISaUSrF37PcLDIyCVSmEw2K7N5MlTERsbx4u+06ez4OengoSiM0Q3MJktqGb6IDW0uHcChiAIgiBcgU3vDGhN72yjrL6lN4Y0oLFwFnxy7hBeOrYVerMtCnu+oQpXbfoQl8amokrbhPMNlfxjN6aOxZWDRgAALokehEuiB+GvEy7DmpyT+Pz8YVxoqOb3PVxVhMNVRfj74V9xQ+pY3DJ0PJLUod57gT7GgBB99w2f5lJEritERKhR1ZoS0Bn+/v5QqwNhMpkgkUiRmJiM/Pw83HPPA4iKisbWrZsxatQYXLhwHgAgFgvFVUrKYPz663pkZ59DQUE+/ve/D/DOO++37uu8aJXdbn++pqYmvPXW63j44ceQnp6BPXt2gWP61sjlwlzoTz75Eo899hA+/vh9PPzwH116zQTRRnWjDszbC/Ut+t4bDEEQBDFgYSN9/koZ5FIJv15Oos+rlDY34E/71mF3WS6/TSGWQCIWo8VkBAdgZ+lFwTGpQeF4buICh3MFyVW4c9hk3JE+Cfsr8vF59hFsKjwLE2cBANTqW/Cf03vx39N7MTtuCP5v3DykD8DUzwEh+nqbe+6xplxKJBKkpQ3DypV/wJgxY/Hll5+hsVGDGTNmISlpEC/67FmyZCnOnTuDP/zhfshkctx8820IDQ3r9nj8/f0xd+7leO+91UhISEBUVDRKS0swZEia0/0jIiLx0EN/wDPPPIVFi65CSsrgbj83MfCo1GgF6/UU6SMIgiB6gWa7SJ8igBF9DST6vMVPeaew6uAGNBhsWUAZIVF4a/o18JfJ8cT+XwRiEAAGBYXhvzOvg5+sfbMdkUiEadGDMC16ECq1jfj6wjF8ef4oSls0AAAOwPaSC/i9NAcPjrgEj4yaCaVE5pHX6IuIODbE00dxNeLmTroS6SPcB1139+KN67k1qxi3/mcbv/7ctRNxz+wMjz6nr0PvY+9B19r70DX3HnStu8at/9mGrVnFAID/3Tcb4WoVFr+6EQAwMiEUW55c0tHhAOia94R6vRarDm7AuvwsfpsIwIMjpuNPo2dB3lp3x3EcDlQUoKS5HsnqUKQEhiEtIbpb191kMWN7yQV8ln0Eu0ovghU9KYFh+Hzuzf0q5TMiQt3uYxTpIwjCo1TYzZ7WN1OkjyAIgvA+zXphy4ZoqunzGr+X5uCP+35CeYtNuCUGBOPNS67GpKgkwb4ikQhTo5Pd8rxSsQSXJ6Tj8oR0ZNdX4sn9v+BwVREAIFdTg7/s/wXfXH67W57L1yFnDoIgPIp9emcD1fQRBEEQvYDAyEUpQ2SgCm39vKsbdTCYzL00sv7NwYoC3Lz1c4HguzF1LLYsecBB8HmStOBIrJl/B16avAji1j/8nvI8nG51De3vkOgjCMKj2Iu+OqrpIwiCIHqBZkGfPhlkEjEiA1X8tooGrbPDiB7yWfZhPq0yTOmHj2bdiFenXdUrTdTFIjFuS5uIRYm2MpP3z+z3+jh6AxJ9BEF4FPsfUYr0EUTvYLFw+Of6TDz5zQHUMm1UCGKgIIz0WSuc2F59ZObifjiOw8HKAn79f3OW44rE9F4ckZV7h0/ll9flZaGs1eylP0OijyAIj0LunQThG2w5VYQ3Np3Ep7uz8b/fs3t7OAThdez79AEQ1PVR2wb3U9LcwKd1+kvlGBka08sjsjI2PB6TIhMBACbOgk/OHuzlEXkeEn0EQXgUR9FHkT6C6A2yy+r55cIach8kBhYWC4cWgy29009hjfSxDdpL65u9Pq7+RHZ9JW7Y8ike2PU9tCarwD5UWcg/Pj4iHlKxpL3Dvc69GbZo35cXjqLZ2L/vT0j0EQThMTiOQyW5dxKET1DVaEvp1BnJsIIYWLCCTyWXQiK23gIL0jsp0tdt8jQ1uOm3z7C3PA+/FJzGJ+eskbPDjOib2BpZ8xUui09Dcmu7hgaDDt9czOzlEXkWEn0EQXiMBq0BepNFuK1Fj37QHpQg+hzVjbaoO4k+YqAhTO20dSyLofTOHlPWosHyrZ+jUtvEb1ubdwqAMNI3ycdEn0Qsxj3DpvDr6/KyOti770OijyAIj+HMCc1k4QQOagRBeIcqjS3SpyfRRwwwmvTCdg1txAT788vUq6/rVGmbcPNvn6OoqV6w/WxdBQ5WFCC7vhIAIBGJMDY8vhdG2DFLkoejtWsHTtSUQGPovyZXJPoIgvAYVRrn9tdU10cQ3qeKifTpqR8ZMcBgI33+jOgTGLmQe2eX2FV6EZf/8h+cb6gCAEhFYqQFR/KPP3NoE788IjQGfjK518fYGaFKf4xoNZcxcxz2l+f37oA8CIk+giA8Rns9j6iujyC8TzVb02cg0UcMLJr1js6dgGN6J5UfdI7RYsbzR7bg5q1foEpnNb8RAXhz+tX4y9g5/H6n68r5ZV9L7WSZEZPCL+8uy+3FkXgWEn0EQXiMSo3zWdMGLUX6CMKbGM0W1DXbPncU6SMGGsLG7LaavgCljE/31JssqG2m36fOeObQJrx3Zh+/HqH0xxfzbsHSQSMxKzYVQXKlwzG+ZuLCIhR9Ob04Es9Coo8gCI9h366hDerVRxDehTVxAaimjxh4CBuzywSP9XcHT53Z2PlOLrKh4Aw+P3+EX58TNwS/LXkAl8amAgDkEikWJw13OM6XRd/EqEQoJNaJgBxNDUqbG3p5RJ5B2vkuBEEQ3YNN75RLxTC0OnnW00wqQXiVSo3QnEBLoo8YYAhq+hRC0Rcb4oeLFdYb/fL6FgyPD/Xq2NyF3mzCxYYqnK2r4P+dq69EpbYJkyIT8eW8W6GSyjo/UTuUNNXjif0/8+uLkzLwn5nXQSQSCfa7OmUkvrxwlF8fpA5FhCqg28/raZQSGSZFJvKpnbvLcnFD6th297dwFoggcnjdvg6JPoIgPAYb6UuJDMS50noAQANF+gjCq1RrKNJHDGya23HvBISRvrI+ZOZSp2vBtzmZOFVThrN1FcjRVMPcTk3iocpCrC84jesGj+nWc5ksZjy0ew0aWt0t4/2D8MrUJU6Fz6TIRMT6BaK0RcOv+zozYlI6FH0cx+F0bTl+yD2Bn/JOoU7fgn9PvwZLB43sjeF2CxJ9BEF4DDbSNzQ6mBd9deTeSRBepco+vZNq+ogBRpPOVtMXYBfpYx08y+r6hug7WlWE+3Z9h/KWRpeP+T7neLdF35snf8fhqiIA1vYL78xYhiC5yum+YpEYN6SOxRsndwEAZscN6dZzehO2rm9PWS4snAVikRjlLRqszT2FH3JP8O0n2thceI5EH0EQBCBs2ZAWE8wvU6SPILxLVaMwvZMifcRAg+3Txxq5AHYOnj4e6eM4Dp9mH8azR36F0WJxeDxJHYJhIVFID47CsJAoRKkCcM3mT2DhOOwrz0dxUz3iA4K79Jz7y/Px1qnf+fU/jZ6NCZ1E7x4aOQNyiQT+UgUWJWV06fl6g+Gh0QhRqFCn16Ja14zVWXuxvzwfu8tzYXESPY3xC8T9w6f1wki7D4k+giA8gtZgQoPWKu6kYhGSI9T8Y1TTRxDexb5nptFsgdligURMfm7EwIBN7/TvKL3Tx41cXjuxE2+2RtAAIEiuxJ9Gz8aY8DikBUfAX6ZwOGZGTAp2lVpdKX/IPYFHR13q8vPV6VrwyJ4feeEzNSoZK0dM7/Q4hUSKh0fOdPl5ehuxSIzp0Sn4peA0AOAfmdsc9lFJZViQOAzXpozGJdGD+tz3J4k+giA8AnuTGRmoQoi/7YeoTQwSBOEdqu0ifYA12uen6Fs3LQTRXZp1zvv0AXbpnfXNXhtTVylpqse7Wbv59ZGhMXjv0uuRqA7p8LjrBo+xib6cE/jDyJkumZBwHIfH9/+MstbavBCFCm/NuKbPiR1XmRFrE31tiABMix6EawePxoLEYQhwIqr7CiT6CILwCBWM6IsIVCHYT86v11GkjyC8in2kDwB0RjP8FN138iOIvkQT06cvQCm8/U0Kt2WiXCxvQKPWALVKDl/j3aw9fErnmPA4fH/5CpfcOK9ISIdapkCjUY/8xlocqSpyqYXCZ9mHsbnoHL/++rSliPEL7P4L8HEWJA7Da8d3oELbhMGBYbh28GhcM2gU4rqYDuurkOgjCMIjsM6dUUEqBPsxkT6q6SMIr2Jf0wdYRR9BDBQ66tMX4q/AyIRQnCqqhcnCYXd2GRaOSfL2EDuktLkBX188xq8/MWaOy+0XVFIZliQPx1cXrMd/n3O8U9F3tq4Czx3ZzK/fkT4JlyWkdWPkfYcQhR92LX0YNbpmJAaE9LmWDJ3RP+OzBEH0OpUNbHqnH4KYSF89uXcShFexd+8EyMyFGFgIjVwcxdLsjDh+eceZUq+MqSu8c2o3H+WbEJEgcJt0Bda185f809Ca2m/YrjUZsPL3H6C3WL8jhoVEYdX4y7o+6D5IgEyBJHVovxN8AIk+giA8RIXGVgwfGagSiD6N1gizE9cxgiDcj8lscZpSTW0biIFEcwfN2QF70VcCrp1+d71BaXMDvrmYya8/NvrSLouSCREJSFZbm843GvU4VFnQ7r7PHtmM8w1VAAClRIrVM66FUkKp4H0dEn0EQXgEQaQvSAWJWIxAle1Hg1I8CcI71DTp4Oz+ldI7iYFEcwc1fQAwflAE1K1pnyV1zbhQ0eC1sXVElbYJT+z/BYbWqNv4iHjMjBnc5fOIRCJBdPBUTZnT/bYUncMX54/y689NWoAhwRFdfj7C9yDRRxCERxDU9AVaG7hSXR9BeJ8qjWM9H0CijxhYNHXg3gkAMokYM9Jj+PUdZ0rc+vwcx6FS2wiD2dT5zgAsnAVfnD+CWevewc7Si/z2P46e1e3Uw+Gh0fzy6dpyp/t8fPYgv7w4KQM3pY7r1nMRvgcZuRAE4REq7Fo2ALCmeNZYt1HbBoLwDs7q+QCq6SMGDhYLhxaDTWw5S+8EgDkZcdh4vBCAta7vvjnD3fL8DQYt/rBnLbYWn4dEJEJCQAhSAsMwODAMg4PCW5fDEakKgJmz4Ke8LLybtRsXGqoF57k9bWK3onxtjAy1idqsWsdIn95swuGqIn79mQlX9MvatoEKiT6CIDxCOdPgNjLIKvrYXn3UtoEgvIMz506AavqIgQPbmN1PLoVY7FzIzGLq+g5cKEeLwQQ/ec9ulc/XV+KuHd8gr7EWAGDmOOQ31iK/sRbbSy4I9g2QyaGSyFClE/YKTFKH4KXJi3BpbGqPxpIWEgmJSAQzxyGvsRaNBh3UciX/+LGqYuhbI5GD1KGI9Q/q0fMRvgWldxIE4Xa0BhPfDFoiFiE6yNr4Nojpe0TpnQThHaqd9OgDAJ2h74m+L/eex3X/3oxdZ33PXZHwXVjnTvt2DSxxIf5IiwkGAOhNFuw/7zwF0lV+L83BlZs+5AVfp+M0GgSCL0Amx2OjLsXWJQ/2WPABgFIiw5AgW33emboKweP7yvP45WnRg3r8fIRvQZE+giDcTkmd7UcrJtgPUol1fimYifRR2waC8A7tpXfq+likr7JBiye/OQCThUOFRovfn17a20Mi+gisiYu/ouNb39kZscguqwcAbD9Tgrkj4rv1nHqzCQ/tXoMmo3WCUyWV4Y1pSzE3fgjyGmuR21CDHE01cjQ1yGmoRq6mBo1G6+9isFyFuzOmYEXaJAQrVN16/vYYERqDc/WVAKwpnpOjbP0I91Xk88vTopPd+rxE70OijyAIt1Nc28Qvx4cG8MvCXn0U6SMIb8AaucilYhhM1nYpfa2mb//FcpgsVhvS4trmTvYmCBtFmnrATw+0yOHfQaQPsLZu+O+2MwCAz3ZnIybYDw/OG9FuSigAHKjIx4+5J3FD6liMj0gAAOwqvYhavbXMIVzpj6/m3YqMViOVjJBoZIREC87BcRyqdc2o0jZhUGAoVFI5PMGIsBj8kHsCgNDMRWsyIrOqmF+fSqKv30GijyAIt8PekMWH+vPLIYx7Zz3V9BGEV2AjfbHB/sivbgQA6IyuuQj6Cvsv2FLRtAYTTGYLn0VAEPYYzCZsLT6Pby5mYkfJRUhGcrCUBSJAHu10/2ajHkVN9ZgwKAIpkYHIrdTAZOHw4rpj2Hm2FG/dNh2xIf4Ox+nNJty941vUG7TYWHAWB5c9Cn+ZAuvysvh9bkwdywu+9hCJRIhQBSBCFdDhfj1lBDOOU4yZy9GqIr4txJCgcESq1B4dB+F96NuSIAi340qkj2r6CMI7VDNGLglhts9jn4v0XRDWV7F1WgTRRnZ9JZ47shkT17yOe3d9h+0lF8DBGiEWRWsgVVkcjtGajLjm108w75f/4PnMzfhq5TyMH2Srfdt7vhxzX/oZG447NjQ/Xl2CeoN1YqXeoMW3F4+jxWjAluJsfp8rB41w98vsNsOZCOOF+ireuIXq+fo/JPoIgnA7RTW2SB97k8nW9NVRTR9BeIUqxsiFjbz3JdFX3ajD+XJhs+xGLYk+worGoMMX549g8cYPMPfn1Xj/zH7U6Foc9hOJgCqloznLVxeO4nSddfsX549AprJg7WPz8diCURC3tiyobzHg7g924r7/bkcLM+HAiiUA+OjsAWwpzobWZN1nSFA4hgVHue219hS1XIkkdQgAwMRZkN1a37evPJ/fh1I7+yck+giCcDvCSJ/tJjOYIn0E4VXMFgtqmmwTLHFMelpfMnI5cLHCYRvbbJsYmHAchxeP/oZx37+KJw+sx/FqYUP1GL9A/GHkTCwJG89vKxSXosVo+/3RmY1YnbXXdk4AP+ScgEwixhOLx2LNo1cIPjcfbT+Dy/+xHscLrD309jPmJwBQ0FSH545s5tevTB7hc73uRtj162s26gXXblpUci+MivA0JPoIgnA7wpo+JtLnR+6dBOFN6pr1sHDW1LZgPzkCVDYTC10fivQ5E32NJPoGPCdqSvGf03uhM9vqU+ViCZYkDccXc2/BgWsexZ/HzsEIeTI4ndXGwgAT1rQamQDAdxePo0LbKDjvtzmZ4Fo/N1NSo7Dt/67E0vHJ/OM5lRoseXUj3tx8HEcri2BPpdY28Xllsu+kdrYhaNJeU4ZDlYUwcda01/TgSIQqHWsXib4PGbkQBOFWjGaLoDE7W/hONX0E4V1Y585wtQpKqYRf70vpnQcuOKbkNWrpO2Sgc6TKJrgSAoJx97ApuGbQKIQo/QT7tejN4MoDIUq29sv78OwB3Dx0PEwWC945tdvhvAWNdThYWYAprRGvID85Vt8xE7OHx2PVdwfRpDPCZOHwyo4DkGRYP0dRKjVq9c0wWmw1gyNCozE4KNzdL7vHDGfMXI5UFaGsRcOvUz1f/4UifQRBuJWyumY+shAVpIJSZrvJZN0768i9kyA8DuvcGRGohFJmm+vtK6KvvkWPM6V1Dtsp0kecrCnll+8ZNhV3DZviIPgAq+kPV6UGZ7KmWeZoavD+mf14+9RulLYKnnClP65NGc0f8+3FTME5RCIRrp88GEf/eSNv8iIKtE2qXJYw1CGq54tRPkCY3nmmrgK/FZ/n12fEpPTGkAgvQKKPIAi30l5qJwD4KaSQtvY60hnNfeamkyD6KmykL0KtgoKZhOkr6Z0HL1agdR5JAIm+gcXuc2X4YMcZaJgILyv6RofHtntsk84IWMTgqmxtCF44+hveOLmLX78vYxpWpE/i19cXnEGjQQd7BkcHYe1j8yGXigWib2pUMu7NmCrY11dFX4QqAFFOWkNclTwC8+KH9sKICG9Aoo8gCLfSnokLYJ0pZR08KcWTIDyLINKnVgpEX1+ZdHFWzwcATTr6/hgoFNU04aZ3f8MzPxzGvzYcBwA0GnTIabCaqUhEIodm5yzNrW6bXHkgJCLHW98QhQq3pU3A6LBYpAVHArC2cVibd8rp+WQSMdR+UiDAlrEyNToZw0NjcHvaRIhFIqxIm4T4gODuvFyvMCkyiV+O9lPjvUuvxzszlvmc6QzhPqimjyAIt9JRpA8AQv0VfN+w0vpmRAapvDY2ghhosO0awgOF6dZ9xb2Tbco+OjEMJwprAFCkbyBxorAGZos13JuZbxV6WbXlaAsApwVHQiWVtXM04/RqkOGxlMtRKq5EpbYJVa2GK4+PmQ1/mXVC8sbUsXi21X3z/w5uwKfZhzA3bijmxQ/FuIh4/pyKYBNEYusIEv1D+WbmL05ehGcmXAGFxLdvsZ8aNw8qqQxJ6hDcPWwK//qJ/otvvyMJguhzdBTpA4D02BC+39apolqMSfK9IneC6C9UNbLpncJIn85gcnaIT9GsM+JUkdV8QyQC5o2IJ9E3AKlpsr2Pa1uX2dTOUWHtp3YCQLPe9l6fGJGES4ZOaXffa1JG4ZXMbbwjaHZ9FbLrq7D69F4Ey1VYODgD08MHwRxo+60bHih8fl8XfACQqA7B65cs7e1hEF6E0jsJgnArRTW2H8IEJ5G+kQmh/PKpohqvjIkgBipspC8i0M69sw9E+krrW3hjqKQwtaBfGrl3DhxY0VfjRPSN7kT0NTHN1P0V7UcEASBM6Y9P5yzHnLghUIglgsfqDVp8dfYoHtz9A6r9bRHoFGVk5y+CIHoZ35+KIAiiTyFM73SM9I1MCOOXSfQRhGeptov0yQUtGyzODvEp2Jv9cLUSaqXthp0ifb1Pra4ZeosZMX6Bnn2eJlvtnEZrhNFswYmuRPqY90qAsmPRBwCXxKTgkpgUtBgN2FOei63F57Gt+DwqmP57LPEyylghfB8SfQRBuA2LhUNpfcc1fWyk72xJHYxmC2QSSjogCE/AGrmEq1UwMNG9vhDpq2VEX2iAQtBcvolEX69R0dKIV4/vwLc5mZCJxPjvpdfjsoQ0jz0f+z4AgILaBuQ3WtN+ZWIx0kOiOjyefa8EdBLpY/GTyXF5QjouT0gHx3HIqi3D/roCrMs+xYtOrl4Fi1HSyZkIovehOy2CINxGpUYLg8kaPQjxV8DfyYxqaICSjwDqTRacL6v35hAJYsBgsXDCSF+gqs/V9NUy/TzDApRQK+X8eqOWRJ+3aTEa8PqJnZjx01v4+uIxWDgOeosZTx5Yj2aj53qv1tiJvoPlhfzysJCoTmvompiaPn9F9+IdIpEII8NisWrq5diw6F7c6j8P5jPRsJyPErSRIAhfhUQfQRBuo4gxcYlzktrZBqV4EoTnqWvR846HaqUMSpmkz7l3sml9oQFKQWoepXd6D7PFgm8uHMOMn97C6yd2osUkvPYV2ka8dWq3x56/plEo+o5Xl/DLnaV2mi0WaA2s6HM90tcR0f6BQKMK4ETQUPshog9Aoo8gCLfBOnc6M3FpY1SiTfSdLCTRRxCeoJoxcYkMtLZGUcpsUY6+0KePjfCE+ivsavroRtsb/F6ag/kb3sPj+38W1LQNC4kSNCP/4Mx+5GpqcL6+En/c+xNW/v4DKloa3TIGNuILAOcabCYqnYm+FibK5yeXQix2Tx+6ID9b1LmBIn1EH4Bq+giCcBudmbi0IXTwrPXomAhioMK2awhXKwFAmN7ZB0SffU1foIrSO71Fdn0lXji6BTtKLgq2R6kC8Ocxc3Dd4DEQiYAjlUU4Vl0Mg8WMm7d+jtLmBphbHVcrtI34/vIVPWr4zXGcQ3pnXnMVv9wV505XTFxchX0vUnon0RegSB9BEG6juIbt0ddBpI9J78wqroXZ0r6LoNFsweHcSkFtEkEQncOauES0RvqkYhHErTfgZgsHk9m3HTzt0zv95FK06YcWg6nD7w6i+xyuLMT89f8VCD6VVIY/jp6F3UsfwY1DxkEiFkMsEuP5SQvQJumKmup5wQcAByoK8O3FzB6NpUln5GvFAQAyE+rNLQAAhViCocEdt0to7KJzp6sEMaKvgdI7iT4AiT6CINyGq5G+iEAVYoL9AFijDRdbm7WzmMwWfLP/AqY/uxZXvrYJM5//SWC7TRBEx1RphO0aAKsZBRvt8/UUz9pmYXqnWCwSuC826XzfjKYvsi4vC8ZWQS0CcGPqWOxe+jD+OHoW/GRywb6jw+NwY+o4wTa2hcPzR7egqp1WB64giPJJzRCn2VI7h4fGQCbu2DnzAvP7EhWk6vY47Alk0jupvpToC1B6J0EQboM1cuko0gdYUzzL6q2ztSeLapEWGwLAWnS/9kgeXt94AnlVtnqQumY9MguqMT0txgMjJ4j+h6BdQ6DtZlcpk/DGFjqTGf5wX/TD3bCRvrAAq3BVK2X8TXajziCorSLcw9l6m7B6a/o1uDplVIf7Pz3hcrSYDKjXa7EifRKmxwzC3J9Xo7CpHg0GHf5++Fe8O/Pabo2Ffw/ITBCnl0PkZ/3biwCsHDG90+OP51fzy2OT3NdPL5AifUQfgyJ9BEG4BYPJjIJqm0hLCld3uL+9g6fZYsFPR/Jw6Qvr8PCnewSCrw2qmyAI16kWRPqEoq8NX6/rExi5tIo+NkWPevX1nIqWRmgMtuvMcRzO1pbz65Ojkjo9R6BciXdnXosvL7sVlyWkQSWV4+Upi/nH1+VnYVfpxQ7O0D41TTpAxAkEHzjgjUuuxhWJ6Z0ef8xDoi+IavqIPgZF+giCcAsXyhv4uov4UP9OZ99ZM5ffThXj93NlyLbr2RekkiPEX4H8VjFJP6wE4TqCmr7W9E4AUEj7RnqnzmhGc6vzokQsQmBrY3a14GabRF9P2Fqcjft2fQ8RgE2L7sOQ4AiUNDdA09pzL0iuFKRqdoVLY1NxTcoo/Jh7EgDwWfYRXBqb2uXz1DTpgJAWXvBxHBBbm4xrB4/u9FizxYIThYzoGxTR5edvDza9k36biL5Ar0T6NBoNJk+ejIyMDMH2G2+8EWlpaYJ/N910U28MkSCILpLFuHCOYARde7BtG/KrGwWCT62U4fGFo3HwuWWYOyKe30622AThOlV2jdnbUMr7huirs6vna3OA9NW2DdWNWry//Uyv9B7Nb6xFdn0lLJzrxjYagw5P7P8FerMJOrMJX104CgA4U2eL8mWERPfIefPhETP45X3leTBZuv5+q2nSQxRom8DgyoJgqvJz6diL5Q38xEFkoAqxwa4d5woqmQQyifU2Wmc0+3zUnCC8HulrbGzEypUrUV9fD4nE9sPDcRyys7OhUqkwbdo0fntqatdnhQiC8D6nihnRF9e56IsO8kO4Wilw5fRXSHHP7AzcNzcDwX4KAMIUGrJoJwjXYfv0tRfp0xl91wjF3rmzDbWPpnf+9ftDWHc0HxKxCB/ePQvzRyd65XnX5Z3Cyt1rAADBchUmRyViSlQyJkclYXhINCRi5/P7/8zcjkrGYOVgZQEA4EydrZ4vIzSqR2NLDQpHjF8gylo0aDTqcby6BBMiu3Zdapt0EKmZ9NMGFWpb9OA4rlNBKkjtTA7vkYC1RyQSIVAl51OQG7UGKGXuM4ohCHfjVdG3ceNG/Otf/0JpaanDY/n5+WhpacHEiROxevVqbw6LIAg3cLq4a5E+kUiE6yYNxn+2nYafXIo7Z6XjgbnDBTd3ABDoZ7vBo0gfQbgGx3GoZurhWCOXvtKrz5mJCyBM7/Ql18QTBdYIn9nC4f6Pd+GrlZdh2tBojz/vh2cP8Mv1Bi02F2Vjc1E2AEAtU2BCZAKmRCVjSlQSRoXFQiaW4ER1CT47f1hwnqzacjQadDhTK4z09QSRSISZsYP5tg27SnO6LPpKGjW21E4LgCYFDBYLmnRGwXvBGZkFnqnnayPIzyb6GrQGQUSdIHwNr4q+9957D3V1dXj44Yfx9ttvCx47e/YsAMBoNOKpp56CSCTCVVddhcmTJ3tziARBdAOLhbMTfWEd7G3j6avHY9mkFMSHBrRbAygolieHNIJwiQatga+x9VdI4Se3/dyzRi56k++Kvhq7xuxtCIxcfCj6r2WipnqTBbe/tx0//OEKjE507fuwO9RqW3CixnEivY1Gox47Si7y/fZUUhkmRCSgtLkBFqafHgBYOA5HqoqEkb6QnkX6AGAWI/p+L8vBn8bM7tLxebpKoE3zNykAizVyWdus71z0MZG+ccnuq+dro63OFPDe79P6zAL8fc1hzB+VgBeup3tkwnW8WtO3fPlybN68GUuXLnV47MyZMwCA48eP48cff8SaNWtw++23Y+PGjd4cIkEQ3aCwppGfcQ/xV7hcNyESiTA8PrRD0xf2R50ifQThGlXtOHcCdu6dBt8VfbVNwpq+NoQ1fb4j+uyvZZPOiOXv/oaLFY59SN3FjsILvHgbHRaLnVetxD+mLMZVySMQpXJ0UNaajNhdloscjTUqqRBLMDduiO18JRdR0GidwJOIRBgS3HOhND06hW/enlldggaDtsP97Sm3MDWSjbb3cg1TGuCMFoMJZ0vrAAAiETA6yf3iO7AXfp+eX3sEJXXN+GjXOYFjNkF0hlcjfTfccAMAoLi42OGxiIgIjB8/HldffTXmz5+Pb7/9Fv/617/w0ksv4YorrhDU/9kTEuIHqbTj5pyeICKiY0t6wjPQdXcv7riev+fYZobHpUQiMrJ7bm/OSIwJ5pd1Zku/+fv3l9fRFxiI1/pMlYZfjgnzF1yDQH+mvs9P7pHr445z6phIVHxkIH/O6HBbD1CTyHf+vjomahqokkOjNaC2SY+bV2/DrueuQUInbWy6w9bMbH550ZDhmJqagqmpKXgM1hTf3IYa7C7KwZ6SXPxelIsCTa3g+Ccmz8Xw8BhsK7kAAFiTdwJtVz0tNAoJ0Z2n6ndGBNQYH52AI+VFsHAcTjWX4+q4jvv+sWiktvdylCQUZa0jNEnFHf7t95wrhdli3Tc9NgSD3RhxbXveyGB/20aZxOPvxYr6FhTW2OowmznOZ97/3mAgvVZP4DMtG26//Xbcfvvt/Ppdd92F1atXo6qqCkVFRUhOTm732Lq6Fi+MUEhEhBpVTvqIEZ6Frrt7cdf13HemhF8eGhno1r8Rp7elTNU0aPvF35/ex95joF7ri4W2m/tgpVx4DSw2h8eqmia3Xx93XfPiStvNvlIs4s8pNtvEYGVts0/8fS0WTuCE+uWDc3H9279BazChsLoRlz37E37643xBbWJP4TgOv+XbRN+EoHiHaxEIBRZFZ2BRdAYwHihpqseBygIcqypGnH8Q7h48BXV62z1Ug94WPRuiDnfbtZ0WkYwj5UUAgF/OZWF6yCCXjqvSNsEot9Z2chZgmDoaZSgDAOQV16Gqg1KCHccL+eWR8aFuey3s+1shsRnDFJU3ePy9uO1UkWD9YmEtMiLcN8nqywzU7/Ku0pEw9pnm7CUlJcjMzIReb/1wi0QiyGTWFA6TyXfdxQiC6Hq7hq7Apn5SeidBuEZ7PfoAQCmzzff6tJFLcztGLj6Y3slG+ZQyCSakROKje2bxlv4XKxpwx3vbwdnV0fWEHE01ihrrAVgNW8ZGxHd8AIC4gGAsSxmNFycvwoMjpkMiFiNcFYDBgY7iKSPUfSY0M2MH88u7Si+6fB12l+byy6ImJQZHBPPrtc0dp3cK6/ncb+ICAIFK7/bqY41pAOHnnCA6w2dE3wMPPIAbb7wRmzZtAmCt7auvr0dwcDASE71je0wQRPfI6qJzZ1cIJCMXgugyAtFn5yjYV9w72Zqt9oxcfKVPn85gm5xuq5mcnRGHt2+fjrYuAYdzq3CqqNbZ4d1iZ2kOv3xJzCDIxN0vc5kcleSwzR0mLm2Mj0iAv9T6XV7c3IC8Rteuw85i22tU6gME4r+GcXd1BiuQxnjAxAUQNmj3xqQkK2QBEn1E1/AZ0XfnnXcCAFatWoXbbruNX1+5ciXk8o7dmQiC6D2qNFpUNFh/eJQyCQa7sZ4PcJzVt1jcN1NOEP0VoZGLfaSvb7h3spG+UH/f7tOnNQojfW1cNX4QZg+L49eLa5vgLn5nRN+lMYM72LNznIs+90X6ZGIJLom2pXTuKr3o0nGHq2wpmmFcMMKY9zJr9GNPdaMWRa21bwqpGBlxIV0dskt4s48sx3E4bh/p03Qc7SQIFp8RfUuXLsU//vEPpKSk4Pjx4wgNDcVf//pX3Hbbbb09NIIgOoCN8mXEhbTbCLi7SCVi+Cus6WgWjkOz3jdu8gjCl6lmIgDh9pE+xvhM78ORvtp2Wjawok/jIy0b2EifSi60S4gJsbkZt02Q9RS92YT9Ffn8+qWxqT0635RIoegLU/ohUhXQzt7dg03x3FBwptP9K7WNKGqxum9yFiBOFipwca3pQPSxEbGRCWF8mq27EWSieDjSl1/ViHq7bJfOHEwJgqVXjFzi4+ORnZ3tsP3qq6/G1Vdf3QsjIgiiuwhSO+Pdm9rZRpBKjuZWQ5cGraHT3kwEMdDpsGWD3PfTOzmOE0b6mLS+AObz3+Qr6Z2CSJ+d6Auyib6yevcYzx2pLITWZBW8yepQJKp7FsmKCwhGnH8QSpqt7SUyQqIhEok6OaprLEgchr8d3gQzx+FARQFyNdVICWy/1u54tc0gDE0KRAT4C94HtR2kdx5jRN9YD9XzAXY15x4uP7Cv5wMovZPoGj4T6SMIom8iNHHxTBNitm7CG8XyBNHXqdS0b+TCRvp8VfQ16018c3mlTCJoLu+TRi7tpHcCQFQwG+lzj+jbwaRHXhrbs9TONtgUT3fW87UR5afGvPih/Po3FzI73D+fqfvjtHKEBSjsavo6iPQVeEf0eTPS51z0UaSPcB0SfQRB9Ag20jfSzSYubagFDmm+cZNHEL4Kx3GC9M6OjFx8Nb2TvaG3b3MQoLCJvma9CWamBUVvoTMyRi5yoehjI33lbhB9JosZa3NP8euz43qW2tnG8iHjAFibsi8dNNIt57TnptbnAIDvc47DaGn//VfQWGdb0ckQGqAUpPm2F+mzWDgcFzh3esbEBQCCVLb3oqeNXOxNXABrTb07HWGJ/o3P9OkjCKLv0aQzIq+1CbRELEIa00jdnQRRpI8gXKZRZ4SeiZK11cS2oeoDRi7t1fMBgFgsQoBSxpu4NOtNgohLb6AztJ/eGcWKPjekd24vuYAKrbVfWZSfusf1fG1MiUrGoWWPQSISI8rPM02wZ8WmIkqlRoW2EVW6ZmwtPo8FicOc7iuI9OmlCAtQIthPDrFIBAvHoUFrgNFscajXy6vS8AIsNECBxDD31iayeCsLxWAyI6uohl+XiEUwWzjojGY0600CR1uCaA+K9BEE0W3OlNShbZIxNSrIwcDAXbA3dJ6umyCIvk6VRhjls6/NErRsMHiuDy7HcWjppvESG8UJddLQ3NdSPLVOWja0ER3s3kjfVxeO8cu3Dp/Qo1YN9sT6B3lM8AGAVCzBDalj+PWvmddij32kLyxACYlYjGB/2+9BnZNonyC1Mync7bWJLEFe+m06W1rPT+QkhgUghnlPsZ93gugIEn0EQXQbdubRUyYugDCFhiJ9BNExbJ2PfT0fYOfe6aFIn8FkxpLXNmHYE9/gu4M5nR9gR42gXYPC4XFBrz4f+E5or2UDYB1/WzRKozV2WwgDQGlzA7aXXODX7xg5pdvn6i1uSB3LL+8svYjSVvMYFrPFguKmetsGvRRhauv7gE33ddagnU2DHJvkuXo+wOrUKhVbRaXOaPZYuvTx/Cp+eWxyuMCcqbqD2kaCYCHRRxBEt/FkU3YWtReL5Qmir1MtMHFROTzujebsO8+W4mheFQwmCz7ZdbbLxwvTO30/0sdeR/uMB7FYhKgg29+hJ20bvr2YCUtresUl0YOQGuJZUeMJktShmN7as8/Ccfgu57jDPqUtDTBx1sgWZ5AAFjHfq7Gztg0C0efBej4AEIlEghTPRg+5ybJupGOSwhHOTOZQpI9wFRJ9BEF0G2+YuADCFBoSfQTRMWykLzzQUTApvSD6Dl6s4JdL67qe0ig0cuks0ucLoo/p0ydzTLeMZts2dDPF02yx4JuLNsfL5YwpSl+DNXT55sIxWDihGY8gtVNvFdFtEb6O2jbojWacLrH9Lo1J8oyjNIsnUzz1RjNe+Okovj9ki5aPTQoXmDORgyfhKiT6CILoFkazBdll9fx6RpznRJ+wWL73b/AIwpdhe3c5i/QpveDeeSinUjAeo7lrDpud1fQFCnr19f53gqBlg5Pa5mg3tG3YVnKe76MXolBhfjsGKH2BKxLTESy3vjeLmxuwpyxP8LjAxEVnFfghAY7pnfaRvjMltXyrj0ERaqfvHXfjqbYNORUNWPivDXj3tyy+dj4tJhhjk4WRvmqK9BEuQqKPIIhucb6snv9xjQ/1R4iTuht34a1ieYLoDwgbszup6fOwe6fWYMKJQlu9L8cJ+wa6AlurFebku0WY3tn73wlC907HSF9PHDwNZhNeP7ET9+36jt923eAxUEj6rgG7UiLDssGj+HV7Qxf7SF+wn5yvi+yobYN9GqQ3EDRod6Poe/jTPThTYrsOM9Nj8NXKeZBLJYLJHIr0Ea7Sd78xCILoVYRN2T0X5QMANRm5EITLVHXQow8QthRoEyubTxairL4FN04d4lS0dIVDFyscIntldc2IC/F3+RydRfoCfK6mr333TgACt8XyTmr6tCYDfi/NxUVNNQob67C/Ih+5GpuIVssUWJE2yQ2j7l1uTB2Hj84eBAD8WnQWtbpmhCqt75ECJtLX5tzZRkeRvkwv9edjEUT6WtzzXjRbLII01eevnYQ7L02HuNU0JoJJ22Y/7wTREST6CILoFlnMD9LIeM/WTVBNH0G4TjVb0+dCpC8zvwor3tsBAKhp1OFPi8b06Pn3nitz2NbV6FZNB336AECtZMwzfCDlW9iywfHWijVycXYtOI7D4cpCfJ9zAr8UZKHJ6Px7bmx4HF6ddhUS1SFuGHXvMiwkCmPD45BZXQKjxYI1uSdxT8ZUAMJIH6eXIjTS9h4QRvrsRB/briHZO5E+QUshN/0+ldW38Jk0YQFK3D1bmMorcO+kSB/hIiT6CILoFt6M9HmqZoIg+iP2ffrsYVs26IxmHGBMVzYcL+yx6NtzttRhW1fNSwSRPv/O3Dt7/ztB6N7ZWaTPdi2Km+qxJvcEvs85Iahjs8dPKsNfxs7FirRJkIj7T2XOTUPGIbO6BIA1xfPuYdYWFAVNwkgfa4TDvh8qmPd6XbMeuZUaAIBMIsZwD7YRYglUub99SEF1I7+cHOHYNzGMrenzAdF3saIBQSq50+8bwncg0UcQRJexWDicZpw7Pf3j6qmaCYLoj7A1PpFO0zuFRi55VbYbzLOldahu1DmNELqC2WLB/vPtR/o4jsOfvtyHdUfz4a+QIkytRFhA2z+F9X+1EvUtNtEX4sy9k7nR9jkjF6eRPptoKW1owg85x/F9zgnsLc9z2BcABqlDMSsuFcnqUCSpQzA+PAEhSj+n+/YlSuuaUduk5ycKr0wegb8f/hUtJiPON1ThWHUxktWhfKSTM4sAkxjjBtlSNYdEB/HLZ4rrwHEcRCIRjjNRvoy4kB6nKbuKJyJ9+cxnMincUfRF+FDLhvWZBbjnw51QSMXYvuoqpEQG9up4iPYh0UcQRJcprGnk62hC/BWIDfbszQibyqVpMfA/8gQx0GnRGwGRCH6tjpHNOiOfaqiQigURsTbsWzawUQUAOHChHIvHJXdrPGdK6pymW5a1ir6s4lp8vf+idewGU6cmFEEqm4EHSyCb3ukDok/L1vQ5ifTxkargFpQlF+DRvacd9lHLFLgyeQSuGzwa4yMS+tR3nMlswb82HEeTzohHrhgpELltFFQ34tLnf4LeZMHKy0bgr0vHI6D1Nbe1ovjqwjHcPGS87SCdDIAIk1Ii+U1txmF1zXo0aA0oqG5EckSgILVznJdSOwHPlB/ks5E+J6Iv2E8BqVgEk4VDo84IndHsNZFrz4bMfACA3mTBuqN5eGzB6F4ZB9E5/SdHgCAIr5FVbKu3GJkQ6vGbE4VMwv+gmSwctB6ymSeIvsTFigaMW/UDRv7lW5wrtX4mWVOHcLXK6WdTKhFD0moIYeE4XCxvEDy+90J5t8fEtmpgDTfaRN/5sgaHYzqCjeqw+JyRSyfunQFKGfwDRBAPrgIkNpMbEYBLYwfjnRnLcOy6x/HK1CWYEJnYpwQfYI32vLX5FD7edQ5XvrYJea1pliybjhdC31qn9u5vWXhvu1X4sj37fs7Pwpk65v2nl0IpkwhKCEQiEUYn2urI25xiWROXMV4ycQGELYXc5S5dwEb6nKR3isUin2nQzhoTnSio6WBPorehSB9BEF0mq9j2xT7Ca3UTcuiM1h8XTYuBj2wQxEBlQ2YBn0727YGL+Ns1EwWRswgnjdnbUEglaGmNCJbaGYvsPd990cc2ZV88Ngmf7s4GYEvvzGXEwO0z0nDLJUNR06RDTZMO1Y06frmmSQelVIIH5o1w+jxqD9RR9QRBTZ+T9E4AkCTVQiS1ip5QuR/uHT4V16SMQqy/c2HblzhVZPtNKKxpwpWvb8JXK+dhZIJNnJ0vrxcc8/c1RxAd5IcrxyUjLTgS2fWV0JqM+E/WXn4fTifD6MQwyKVCIT06KQw7W2tHjxdU48pxyQLRN9ZL7RqA3on0AUB4oIoXXNWNWiSEBbjlubsK23fyWH4VZeL4MHTXRBBEl2FNXLxXLC/ne301aA2CZscEMRBp1ttSCotqmgHYmbg4aczehlJuE332XChvQGWDFpFBXTNl4DgOh3Jtkb6rxifbRF9DCziOQ26lLdI3OjGs2yZQah+L9AndOx0jfbtKL6I5oJ5fvztpFh4a2ffbLrRRUN0kWK9u1GHZm5ux/s8LMTQ6GACQXVbvcNwjn+1BuFqJm4aMw98P/2o9V5OwR9/EYZEOx41OtIm6E4U1KKpp4h1fA1UyDPZiXZm7jcY4jhMaubQn+gJ638yF4zg+ig9Y64lL61u61J6F8B6U3kkQRJfJKvaec2cbrJkLOXgShLA3XEmd9aZbGOnrQPRJO67/2deFFE+T2YINxwtw/VtbUNEaeVArZZg0OBL+CmnrWM2oa9Yjh4n0DY7qfoSLTe+saGhBaV1zt8/lDoTuncL5dK3JiP87uIFft1T7I4Lr+y0XWApqbCJF2po63Kgz4r1tZwBYxcF5Jo04sTUqZTBZcMd7OzBClQC52PE9yelkgnq+Ntj0zpOFNTiaX8Wvj0kK5/vZeYMgN6d31jXroWmti/WTS9uN2LOf795q0K7RGgXvfQACQx3CtyDRRxBEl6jSaPkbO5Vc6rUZVXZmn0QfQVidN9sorrWKnmoNW9PXQXqnk2gUm5HlSopnRUMLXt90ApOeWYO7P9iJPcwxl6RFQyIWCyLyZfUtgvTOnrj8hQUoIZdab2E0WiMW/WuDIMXQ23TUnH111h6+7xxnEoMrCBO0begPFDGRvn8tn8ovt6VcltQ18y6rIf4K/PCHKxDdGklu1BnxwPt7cWn0EMcT66WY4ET0xQT78Q6WzXoT1hzK5R/zVn++Ntwd6WOjfEnh6nZTJX3BwbO83nGy5Xg+iT5fhUQfQRBdgo3yZcSFeK1nFEX6CEIIO8Ne3aiD1s4Ns6P0Tmeib2Z6LL/cXqSP4zjsv1CO+z/ehQl//QH/Wn9ckN4lFolw9aQUvHDdZABAbLAtzetEYQ2fkhqkkiPMSSsGV1HJpfjX8ml8VKm8QYurXv8Vv59z7BHoDQQtGxj3TqPFjM/OH+bXuaIQwCTpcrN6X6a+Rc/XliplEiwak8RPIGSX1aNFbxQY+AyNDkJCWAC+XDmPn8wrb9AiK1OYpstZgNSQMIT4O75PRCIRRjN1e9vPlPDL3qznA4Q1ffWt7tI9ga3nS4pov06P/Xz3VqSPNXFpgyJ9vguJPoIguoQgtdNL9XyA3WyqXQrN8YJqzH3pZzz0v92wWHr2g0sQfQW9SZhWVVLXLHDv7MjIxVnd2TUTU6BojZ7lVmpQxsziN+mM+HR3Nua+9AuueXMz1h3Nh4n5rEWolXh0/igcen4Zvn98IV/Tw0b69mTb+velRAb22Ozh+smD8eXKeXxzbK3BhD9/tb/HN93dQejeaUvv3F2WixqdVeAFSf3AVVrrsyqc3Cz3Vdh6vqRwNdQqOVJbU3ctHIes4jqcZ+r5hsYEAwAy4kLx8b2z+ZYcxflmyM2MwDNIMSklqt3nZVM82T/52CTvOXcCgJ9CitDWCQyd0SxIYe4ObI++9ur5ACA8kK3p6533U4WTiPWJwhr6HfZRSPQRBNElesPEBRDOpjbY9QF789eTOFNShzWHc/F7du/M9BOEt2GFBgAU1zahSuNipM9JTd/Q6CBMZFLpXvzpGD7fcx6rvjuIsau+x5PfHMDZ0jrBMZMGR2L1HTNw5IVr8ZclYx0MHKKZfm1s9NBdDZxnpsfi5z8t5OvoCmuaeMMnb9Jeeufa3JP88uyoobA2aQDK+lF6Z6EgHdEamRrDRNuOF1QLTFzSWkUfAExPi8Fbt01vXRNBV8oYdLVTz9cGK/raiAvx77IBUU8RiUQYz7SIOJpb1cHeneOKiQtgF+nT9E6kr8xJxLpRZ+yx8CU8A4k+giC6xGkm0jfSSyYuAKBmRJ+9RfsFxiDAmUMcQfRHdPaRvtpmwYx/eEctG5xE+pIj1Jg2NJpfX3M4F098vR8f7zrH12MB1tTKWy4Ziq1PLcG6Py7A1RNSHCz124hhIn1sdGtwlPtqgdNigpERZzNGsRemdboW/Jh7Eit//wHzfl6N98/sc2s00Gyx8P3nAJvoazEasLnoHL/96pSR/LKzCElfhRUpia0ixb6PXnuiDwCWThiEvy+bAADgKtXgdFJwFsBSqcbEwe2LvlFORJ83m7KzjB9kE31H8nom+vI76dHXBluz60uRPgDILKjG2ZI6zHnxZ1z52ibUNvWOKLWnulErmKQYaFDLBoIgXKZZZ0RulXUGTyIWIT3Wew50QUxfrgZG9JnMFsGXOPuDSRD9GZ1dy4Xi2maXa/rse8mF+CsQ7KfAleOS8camkzCaLQ7HDI4KxIoZ6bh+ymBBunVHxLTTWmVwpHt706XHBuNo68322eI6REZJsK3kPLYVX8Cx6mJYGJH33JEtqNY246lx89zST4w11FHKJPw5NxedQ4vJKpaHBIVjRkIygD0ArJEZk9kCqaTvz70X1tjSO9tcOe0jfaw4aGvhwHLfnOEoq2vBe9vPwHIiHpBYEKbyx6AORE9UkB9igv0E0SZvm7i0MSGFifT1UPR1K9LnYk0fx3E4mFOJ5HC1W9oesRHr9NhgnCutB2BN5X5j4wm+PvGXzALcPiOtx8/XHYxmC347VYSv9l3AjjOlsHAc3l0xA9dMTOmV8fQmJPoIgnCZ0yV1fO3EkOggp3VBniKwHSOX0rpmQW1RHok+YoBgb5V+saKBj8jJJGIE+7UvzOwjfW1peYOjgrBj1ZXYk12GsoYWlNW1QCoRY+n4QZieFt1lkdTejaW70jvbGBITCAQ3QxSsxetlv+DF9foO9199ei8MFjP+NuGKHgs/LfN3UPhzMJhNkEukWJt3it9+TcooyKUShKuVqG7UwcJxqGrUIia47/czs3ebBKwmX1KxCCYLJ3BsDfFXtFtr+szVE1Cp0WLtkTzALMElQzt/v41KDLMTfd6t52tjTGI4xCIRLByHc2V1aNQaBNkprqI1mHhzFIlYhLjQ9o1cQgMUEIms9Yx1zXoYzRa+PrI9nv7hMD7aeRaBKhkOPLvMqUlOV6iot0UY549K5EXf9wdzBPuV1Hq/pUpepQZf7buAbw9cdBDFv54oJNFHEATREVmMJfrwOO+ldgJCIxe2F5K9yMujWgJigGBv5JLJWKWHq5Ud3jDbiz42ojA4KqhHPfRY2ov0dRTB6SoVLY34rGYHJGnW7yf7RDcRgHER8ZgbNxSZ1cX4rfg8AODDswcgFYvx1/GX9+j528S3KL4WTXENmLTmDdyTMRW7Si/y+ywdZE3tjA724xtpF9U09wvRV8gaubRG+lRyKdJjQwTGX4C1brS996VYLMIbt1yCuBB/5FRqsOqqcZ0+9+jEMGw+WQTAKpJGebHkgMVfKUNGnPX1cpw1vZF1w3UVNmslPtS/QxEnlYgR6q/km9L/4+djuG1GGi+87dl3oRwf7TwLwNrm5HBuJS4fmdDlMbKwEdwrRiXgzV9POt3PW+mnOqMZG48X4Mu9FzrsNdpilyUxUCDRRxCEy5wusdXKeKspexvt9ULKt8vPL65thsFkbrfGiCD6C/ZGLiVMg/KOevQBjkYuHdUO9YRwtRISsQhmJhofE+wHf6bvZk8oaqrDjb99hoIWYR1foFyJ2bGpmBM/BLNjUxGqtIorg9mEh3avwcZC683ve6f34Y60SYgLCO72GHQGEyAxQxRjnXCq1jXj5WNb+ccnRiQgIcCaCp8WHcybYZ0srMGkDmrW+gJmiwXFtTbRl8AIjlGJYQ6iz76ezx6FTIJVS8e7/PxsOmd6TDD8FO55X3WH8YMi+Nd7JK+qW6Iv30nUtCMSwvx50bd662ms3noaM9JisHzaEMwfnchn4+iMZjzx9X7BsT2NvpktFlQwpknpsSFICg8QuLm24emWEmdL6vDl3vNYczgX9S2OLZ2iglQYlxyBTScKAThmSQwU+n4yOUEQXoNtfuxNExfAXvTZTCXyq4SRPQvHCWpMCKK/Yh/pY+mong8Q9pIDOq4d6gkSsRhRQcJo32A3pXZebKjC1b9+zDc+BwdYygJhPhODHy+9D+/OvBbLUkbzgg8A5BIpVs+8FpMiE9sOwfe5J3o0Dp3RDFFEE0Ri5+YwV6eM4pdZkZLZD/qZlda18On1EWol/OS2WMIYJ/3yhnYi+rrK9KExmJkegwClDI8uGO3Wc3cV1syluw6e+S7W87Xx5JJxiAwUftZ3Z5fhgU9+x7hV3+OZHw7hXGkd3tp8EjkVwt9KdpKoO9Q06vnJnBB/BZQyiaBHYiBTh++J5vEcx2Hd0Tws/OcGzHnpZ3y065xA8IlFIlw+Mh6f3j8HR56/Fg/MG84/NlBFH0X6CIJwCaPZInBg82a7BkDYsqGjSB9gNXNJdVN6GkH4Kh3duHTUow8AlPaRPg+JPsAa2StlbjDdUc+nMxtxy9YvUN5i/fwrxBKkNA1BVqG1lu9iWQPSY5wbTUnFEqxIm4RDldZZ/+8uZuKRkTMgFnVvHlxrMEEUafseWpA4DIcqC1Cja0Gowg9Lkm03m6y7ZGZ+zww/fIHCmvYjU85aKnQW6esqUokY3z58OcwWCyTi3o1jTGBE37H8KlgsHMTirtWLFrA9+lyIvl86LBZHXrgWW7OK8dW+C9h+uoQ3Lapr1uODHWfxwY6zcJZRW1Lbs8lR1sSlrTXLfXOHY8upYoSrlXjx+sm49T/bAHhG9O06V4r7P/7dYXtiWABumjYEN0wZLEifZj0ItJTeSRAE0T7ny+phaLUlTwgLQLBfzwrAu0p7Ri7O3Dpzqa6PGAB0KPo6ifTZ1/QNinCvsQpLtF2kL8UN7Rp+yj2F4mZrqxY/qQwfz74J2/bXIAtnAABnS+uxuIOSsMsT0xAkV6LBoENhUz32VxTgkuhB3RrLsZoiiFTW7AMxJ8GblywFB2BvWR5GhEYjRGF7/RlxoZBJxDCaLcirakRds77HZhq9CZvKl2gn+tJjg6GQigXtLNwt+trobcEHWEVaaIACtU161LcYkFOpwZDork0+5ts1uncFmUSMBaMTsWB0IkrqmvHtgYv4et8FFDPpm20GbCH+CtQ1WydGehrpY+v5olp7I45JCkf2qzfBbOFgZhxzq5t04DjOLW65bRzOsU2ayKXWa7B82hBMHxrjVGwrGcfigRrp6/1PCUEQfQK2P9/weO+1amhDJZNA2vpFrjOaoTeawXGcU9Fnn/JJED3FnX3d3AHHcYKG4PZ01KMPEM56K2US/qbNE8SE2Im+iEBUtDTCYO7ebDvHcfjgrK0+6bFRszA9JgXDYtvv1WePUiLD1YNsaZffXszs1lgAYEv5GX452hgBf5kCATIFrkhMd6gVVMgkgu/P4308xbPASWP2NuRSCTIYw68Qf0WntaZ9GZFIJIj2Hc2rdPlYjuPwxd7zOHCxgt/mSqTPnrgQf/xxwWgcfHYZvnnoMlw5Lpk3g1HJpXjjlmn8vj2t6StnXFNZwyapRAyFTAI/uRQBrbW7BpNF0GrJHeQxv/MvXj8Z/73zUsxMj203uqpiUtrt290MFCjSRxCES5xim7LHO6bteBqRSIRAPzlqm6yzlI06A0xmzumMXS61bSDcxO+lOXho9xoMD43GB7NuQIDMN6IyRrMFHenQrkT6ksLVbp2BtyeGjfSJOLyWtwlZmaUQAYj2C0RiQDASAkKQEBCMRHUI4v2DkRgQjHBVABoMWtToWmAwmzAyLAZikRi7y3KRXW+d5feTyrB8qDWkx/YNPdeJ6AOAG1PH4n/ZhwAAGwrO4PlJCxAk75r4rdE143B9Hr+ehLhOjxmbFI7jBdb66MyCaszO6PwYX6WohnXudBQpY5LC+NrFjpw7+wvjB0Viy6liAFYzlxunDun0mJK6Zjz+5T7sPFvKbwtSyZHSg16WYrEIlw6LxaXDYlHdqMOBC+VIjwtBYlgA3+ahvEHrUpuH9igXRPqcu/RGqJV8G5lKjdatGULshK8rKeNspE87QCN9JPoIgnCJNsc5wPvOnW0EqWyir6HFgEqmTkCtlKGx9ceFIn2Eu3jx6G+o1bdgd1ku3jy5q8f2/u6is/SkTkUfU9PnKROXNthefZIgHbLqrVbqHICyFg3KWjQ42Fpf1xGXRA/C+7Oux/tnbFG+G1LH8kJtSHQQ3ystv7oRLXpjh26OI8JiMDwkGqfryqE3m/BzXhZuTZvYpdf23cXjMHPW9EWuSYFIv+BOjxmbHIFPfs8GIGyz0RdhI30J4Y495aakRvOvdVwv9dDzJsJIX8c1mxzH4ev9F/H3NYf53y7AanT0zooZbuuDG65WYvG4ZH49KlCF8gYtLByH8voWJIS13wuwIyoabL+/7fXjDFer+LZK1RodhkZ366mcwtbzu9ICRsVcT0rvJAiC6ICzTLsGb5u4tGHfq4+94bgkzfZrUlRjbdtAED2hoqURp+tsvZ4+PHMAFxt8w3xD35no6yS9k20VMHu4ZyNNbOpXUGT302T3ludh8YYPsLO1/50IwF3DpvCPq+RSDIq03vxxHATGU+1x45Cx/PLLx7birh3f4J1Tu1Gp7TxbwGyx4IvzR/h1rkLt0o26wMEzv9rnUoe7QkEnNWiLxybh4ctH4qapqXjwshHeHFqvMCYpjDdNyS6rh9FscbpfaV0zbl69DX/6ch8v+EQi4L45GfjtqSVOnU/dBdvwvbgHZi5l9ayRi/NJJtZZtMqNvfrqmvV8baJSJkFUoHPRycI6FmsNpj79uesuFOkjCKJTmnVGPh9fIRUjtp1ZPU/D1h1lFlQLIn1pMcE4WViL0rpmWDgORTVNbmswTQxMfi/LEaybOAuePrQJX827tdfT1DqbqQ7vJNKXHhuCTU8sQpVG6/H0wvGDIjA4MhA5lRqERHFoaC3teeOSpZgQkYCipnoUNtWhqKkeRU11KGz9v1bXgmCFCqEKP+RorOmQeY22jIMrEtORrBZOQGXEhvDW9GdL6zG2k+jS0kEj8fyRLTBYzNAY9dhcdA6bi87h6wvH8PvShzs0CPmtOBsFTdbJMM4kBlfrL4gmtEdKRCACVTJotEbUNOlQXNvc7WhLb9KkM/I94uRSsdMbf7FYhP9zocl6f8FPIUOIv9XMheOAuiY9IpnrwnEcvj1wEX9bc1jQemhQhBpv3jrdK30b40L8+ShkT8xcKlxJ72Qmnyrd6ODJTvgmR6hdckmViMWQS8W8IZ3eZHFbNLWvQKKPIIhOYRuwRgX59doN79zh8Xy9xC/H8gUpJYPCAzEoQs1bw+dXNZLoI3rEzpKLDtt2l+ViU+FZLEzK6IUR2WBFX1iAkr/5BgCJWIRQFxwhPRlNYJFLJdi+6koU1zZi/tZ3+e2XRA9CrH8QBgU6rxFm3f7W5J7A4/vWwWixRU7uGTbV4Zj0uBD8klkAoHMzFwAIUfjhbxOuwMuZW9FktBlNFDTVoaCpFimB7V+jD5g0U65SDVjEUMo7v60Si0UYkxSO38+VAbBG+/qi6GPbNSSEBviEg6YvEB6g5MsQqpu0vOiraGjBn77ch22nS/h9RSLg7lnD8OSV4wQ9Dj1JXIitjUFPzFzYmr6YdiaC2TTzKo37GrSzJi5dMbxRyiS86NMZTQNO9NEnlCCITil3Ys3cGywYnQhx603godxKHGEa4CZFqAW287lU10f0ALPFIoj0TYtO5pefPbIZWpN7nei6CuvcGRWkgr/CdsMYFqDscn8wTyOXStAobkaLyRrdiPMPQqx/x5My7OTSspTR+HzuLVC3GulMjUrmG6yzsA6e50o6F30AcHv6JJy+4UlsXfIARofF8tsvNrRfb3eyppSvQxRDBK7c+t3j6k0km+J5rI/26ytkUjv7omj1FGyUvbrRJnTueG+HQPAlh6vx46Pz8dy1k7wm+AAgLpQRfU4ifRYLh21ZxR06y+qNZl7YikWidl1ZIwLZa+G+SF8eY+IyKNz1FjCCtg2GgVcCQqKPIIhOcSWNwxtEBKowJTUKgLVmh/3BGhShFhRzO2vlQBCucrK2FHV6601KpCoA7116PUJb+62VNDfgnaw9vTk8QU2fUiZBPFOnE+GjtviHGbOWiU4EW2dMj0nBjqtWYvWMa/Hh7BucZhwMiw3ml8+W1rt8bolYjPSQKIyLiOe3XehA9LFRvhRpLGC03kyqXLx5H8tEWTP7YNsGo9mCD3ee5ddd7Sk3EGAFUJvoM5otOF5o+zvfNWsYtv3fEv73zJt0Ful7a8sp3PKfbVjwzw24+o1fsetsqUP9G5uqGRmobDfKy34XuTO9M7+LTezbGOgN2kn0EQTRKaxLV1Rg70X6AGDJuCSHbSq5FJGBKsGXPzVoHxgUN9XjjRM7kVld7Nbzsqmdl8YORojCD0+Nm8dv+2/WXuQz9WXeRicQfVLEM7P34b38GW1jZ8lFvJu1B/Wt4vkQK/oiErp1zmi/QFw5aES7rRUSw9R81KSmSYeqLt5opjLpnDntiL6yFg1+yT/Nr6eJbALW5Uhfkq3W8GRhDUztGH74Kk9/fwh7z9tMjq4an9x7g/ExwgJsqdVtadfVjVq+xUq4WokXrpvUobOsJ+ks0vf7OVvriAMXK3DjO79h8asb8dupIl78CUxcOqjxjxAYuXSe3llW34yy+s5TTlmHbjbDpzPYSZmB6OBJoo8giE4RRPp6ycSljYWjk2A/wZ/c2meM7dVDkb6Bwf2/f4/XTuzEzb99jgaD+2aSd5XaUjsvjU0FANyQOoZP/9NbzHj28K9ue76uwt6wKDwY6dOajChsrEOtrhlGi2s3SfU6LR7evQa3bPsCLx/bivt3fQeO43CkqojfZ2JU1yN9riAWi5AWE8yvu1LXx5IaZBN97aV3/u/cIZha2zRMjkqCv9l27V0VfZFBKj7iojOaca4LUcne5tPfz+HT3dn8+hOLx2DqEDd68fdxnKV3VjL1bL09ccpG+oprmxyieKVOhOCx/Grc9t/tuPwf67E+s0AgzDrK/mHdO6s7mYDZk12GaX9fi6l/+1EgPJ2R54ZIH5siP1AgIxeCIDpFEOnrxfROwHqzNHlwFA5crOC3JUVYb7oSmRSjotqmHjWeJXyfPE0Njldba2Q0Rj12l+ZicfLwHp+3Xq/FsdbIoQjAzJgUAIBYJMaLkxdhycYPwAH4rfg8thWfx9z4oT1+zq6is0vvZCc8Ep00ye4KFs6CfeX5+D7nODYWnoXWZHMZVEqkCJIroZYroZYpEChTIlCuhFqugFqmhL9Mju9zj6OosZ4/Zk95Hj44ux+VWmsNWKBMgbQgz7kUDosL4VMmz5bWYWZ6bCdH2BgsEH1VAjMZAGgxGgRtGu4ZNgU/l9pq8tiaoc4YmxzOR1oyC6p7rf9pV9h7vgyrvj/Ery8dn4xH54/qxRH5HmFO0jvZiHNEL4u+EH8FVHIptAYTmvUmaLRGBPlZ2yFZLJwginfzJUPw/cEc3vwkq7gW93y4U1CD2J6JCyBMda1q1Dl8ntowmS146tuD/Pfaqu8OYceqKyF18vvdqDXw11UhFQtEbGcI0jsp0kcQBOGIL6V3AtbeTyxthdx+cinfTsJssbZtIPovW4vPC9a3l1xwy3n3lOXC0jr7PTo8DqFK203FmPA43Jhqs6B/5vAm6MxGh3N4GnaWWimT4MapqZiZHoNJgyNxy/Qh3Tonx3HYWHAGM396Bzf+9hnW5J4UCD4A0JlNqNA24WJDNTKrS7CrLAe/FJzGVxeO4b0z+/D6iZ0CwdfGC0d/45fHRyZ41OkxnanrO1fiOJaOiFKpebMYjVGPKp3wO+T7nONoMFhvOJMCQnBZfBq07N9C7robIFvX15Fphq+QX6XBPR/ugtli/WyMSgzDa7dc0uvtS3wNVujU8JE+tgaud39DRSKRsK6vzvYer2nS8QIvSCXHq8un4eCzy3DvnAyBYGoxsEZS7Ys+lVyKAKU1jdVotqC+xbkB1pf7LuBiRQO/frGiAV/vd3RPBoRN2RPDXWvX0AbrrktGLgRBEE5g0zvba8LqTRaNEYq+JCa9I5nJ7991tuMUEaJvs6UoW7C+o+QCLFzPa6N2lNpuNma1pnayPDVuLoLk1hu7gsY6vH96v8M+nsbeyCVQJce3D1+OdX9cgJhg5zPfZosF75zajWcP/4panTCF61RNKa7d8j/cu+s7h1rFCKU/guRK3jnXFYLlKrw69Ur+OlmYFDJnrpvuhHXw7Gp6p0gksov22cSYhbPgw7MH+PW7hk2BRCyG1iD8W7jKGLsm7b5Mo9aA2/+7nW+IHRmowv/um+1V18m+QlgAE+lrreljf0N7W/QBdnV9jJkLW+PXtk90sB+eXTYRh59fhocuHyFwCgYgqCd2RoQg2ueY4tmkM+LVDccdtr+64Tha9I4TamzpxqAupHYC9pE+Su8kCIJwgO3TF9nL6Z2A9Udo8uBIHMypBACkMzU8szJise+C1WDglV8ysWRcUqeNqom+R52+BYcqCwTbqnTNOF1bjpFhrqfzOWNvWS6/fGnsYIfHQ5X+eGLMHKw6tBEA8Nap37EsZRTiAoJ79Lxdwb6mzxXezdqDfx7fDsCacvndZbcjROmH73OO4/F962BmhFmQXIlrUkbh+sFjMCI0BiKRCBzHocVkQINBh0ajHo0GHTRGPTQGnWA5JjgQ86PTEe0XiCaTAX+3q33sjnNnV0hnRF92WT3MFkuXIoupgeF82nBOQzWmRQ8CAGwrvsA3hw+UKXBD6hgAgI6Jerjq3gkAoxPCIBaJYOE4ZJfVo1lnhL+yd8w9OsJssWDl/3bjfLk1EqOQivHJvbPbnVwY6DiL9FUJfkN7//eIFWrF7Yi+WLu0yXC1CquuGo8H543ARzvP4pv9FxEb4ocFozr+PEcEqvgavCqNFkOjgwWPr96axadrxgb7wcJxKG/QolKjxXvbz+CxBaMF+wvr+Vw3cQEgmKQYiJE+En0EQXRIs86IJp11tk0hFSO4Nfe/t3nphslY9d0hjEgIxaTBtvqgu2cNw5d7z6OgugkNWgOe/fEI3r59Ri+OlPAE20suCEQKu70z0We0mCEViZ2mpRU21qG42Xpz6yeVYUx4nNNz3DJ0Ar66cAyn68qhM5vw3NEteO/S67vxSrqHfaSvM/I0Nfj3yV38+tm6Cizf+jkuT0jDayd28tulIjFWpE/CH0bNRIhCOMEjEongL1PAX9Zx4/eICDWqWm/Mbk+biM+yDyNXUwMAkInFGB3m/Jq6i3C1EhFqJaoaddAZzSiobhLUPHYGa+bCtm344KwtonvTkPH8dWAFuKoLkT5/pQxpMcE4W1oHC8fhRFENpvmgIco/fs7Eb1k2d9xXb56GcYMiOjhiYCNo2dDkaOTiE5G+EOcOnqyJS2w7tXoh/go8vmgMHl80xqXn6qhBe1l9M/6z1eaE+5clY2E0W/D4V9bP2uqtp3Hr9DTBNRU6d3Y/0jcQjVwovZMgiA5ho3xRQX4+U7+REReKtY/Nx/PXThKMSSWX4qXrp/DrPxzKxd7zZb0xRMKD/MakdmaE2HpdtVfXx3Ec9pbn4Y7tX2Hwly9g+dbPYXLiRrm/Ip9fnhSZBJnY+U28RCzGC5MX8usbCs5gN+P46Wm6EunjOA7/d3AD9Hav91RtmUDwZYREYftVD+LvE+c7CL7uIhNL8MyEy/n18REJUEk9H80aFtf9FE9W9LW1bThdW4Z95fkAAIlIhDvTJ/H72LfP6Apsk/bjPpji+cOhHLzzWxa/vvKyEbh2kmP0m7ARpJJD2lpn1qQzQmswCWr6etvIBQDiGLffktomZrnZ6T49ISKw/fTOf60/zn9+hseFYNmkFNwwJRVDooMAWK/fN/uF3+ndde4E7EXfwIv0kegjCKJDygWN2Xv/x8oV5gyPw5Xjkvn1v3xzQBAZIfoGWpMBx6tLcLGhCk1GPb9dbzZhJ1N399ykBWiT/ZnVJajT2d6zBrMJP+Qcx/z17+GGLZ/it+LzsHAcdpflYjeTxtnGvvI8fnlqdHKH45sYmYhlKTbnwqcPb4LB7J3Z464IjbV5p/jXKhaJcF/GNId9pkQl4Ycr7kAK06fOXcyNG4rnJi7AkqTheGHSws4PcANsXd+5kh60bdBYhdgHZ2y1fIuSMgSpvPamOl1hDGPmcszHRN+xvCo8/uU+fv2yEfF46sqxvTiivoFIJBI4eNY06VCp8a2avnhXIn0h7pn4YUUuK37PltThmwO27/FnrpkAiVgMqUSMOy9N57e3pRW30d0efYDwu3IgNmen9E6C6CXasy72NQQ9+nygns9Vnl02EdvPlKBJZ0ROhQart2Y51AYQrqEzG1HarMEgdajH37N5mhpsL7mAHSUXsb88TxCdUssUmBGTghGhMWgyWl3gkgJCMDkyCWPD43GsuhgWjsOushxcGjMYn58/gs8vHEFZs8bpc20pysbsOJvTJcdxfDQHAKZ1IvoA4P/GXYbNRefQZDTgYkM1tpdcwPzEYd178V3AVaFRp2/Bs0dsNXV3pk/G0xMuR5I6BP93cAMAYEHiMLw94xooJZ6JwIlEItw5bDLuHDbZI+d3htDMpb5LxyapQyEViWHiLChpbkCepgbr8k/xj989bKpgf4EA74J7JwCMY81cvOjgWVrXDLlUIkibY6nSaHHH+zugb3VyTIsJxrsrZnjUdbU/ER6g5F2vqxt1PtWnD2jfyKWUaddgX9PXXdj0zmrmOjz/01G+Yf3sjDhBaxVWzBUybp0teiPKW6+rVCzqUrsGgJqzk+gjCC9jtlhwy+ptOFFYg7dvm465I+J7e0gd4mvtGlwlOtgPTy4Zi7+29pT6968nsXT8IAzqQm0PYe1LduWmD3GuvhLz4ofinRnLENBJTVdX0JmNOFBe0Cr0bEYZzmg06rGx8Cw2Fp7lt12WkAaRSITZcal8b71XMrfh8X3roLOLuiklUsyMGYwtxdbU0C1F2Xhx8kKIRdYb2fzGWpS1WAVigEyOkaExnY4/yk+Nm4dMwHtnrBGRAxUFXhF9rtb0vXR0K2paI58xfoF4fMxsAMBtaRMxOSoJ1bpmTI1K4q9BfyGdSe8818X0TplYgiR1CHJa6xD/dvhXGC1W8TM+Ih7jIoTf2WzEoKvpnWkxwVDKJNAZzSita0ZFQ4vHJ9d2nCnB8ne3Qi4VY8tfFiONEchtfHcwh4/KhPgr8On9c6BW+UY9d1+AjfQVVjfx7xGlTMK3MOhNooP8IBIBHAeUN2j5nrZspC/ebaLPMb3z93Ol2HHGapYkFonw9NLxgmMSw2yppWzrpYJq23JiuNppH7+OYCdlBqLo61/f8gTRBziaV42dZ0tR16zHK+sze3s4nSKI9HXQhNUXWTEzDaMSwwAAepMFT313EJwT8w+ifVaf3otz9VaX1K3F53H1rx+jtLmhk6M651hVMVZs/wojvnkFt2z7Ah+fO+hU8CWrQ5EUEAJFO7V1lyWkAQDmMBG7oqZ6geCLUgXgybFzcXjZH/H+rOsRorBOXlRoG3GixtbWg43yTYpMgrSd57SHjQjaO4p6Cvvm7M44WFGAry8e49dfmLRQINjTgiNxSfSgfif4AGBodBDfYiK3SiPoK+YKqUE2oxK2TvSejKkO+7ryt2gPqUTMf0cB3unX999tVuMMg8mC7w46r0PNrbRFxx9bMApJ4V2rnRrosI7Rp0ts32uRgSqfyPBRyCR8mqmF41Be3wKj2cKXc4hE1olTd8Cms1Y16mCxcHh+7VF+2w1TBgtqcAFrJLLtMpU1tPCTXHlMamdyN96Tgpq+AZje2f++6QnCx6lpsqU3nC6uQ6PWebNSX0EQ6etD6Z2A1WzjlRun8D8eu86W4pdj3rkp7w+UNNXjP6f3CradravAko0f4GRN93sgmi0W3LXja2wtPu8QjVNJZbgsfihenrwIB655FHuufgR7r/kDLt78V2xd8gBWpE3im2cPCQrne76NDItBhFI4Mz0iNBqfLFiO/dc8iodGzkCI0g9SsQTz4ofy+7C9/lgTF1dSO9uYEJnA1xRm1ZYL6g+dwXEcDlUU4FhVcbcnIfSmjo1c9GYT/nLgF359fmI6rkhMd9ivv6KSS3lnP44DzpfVd+l4tq6vjXj/IMxPEF5Ds8XCN7MGui76AGGKp6fr+mqbdNh7vpxfb2t7Y085k+bHRl0I12DTZs8yNaW+VBfPpkYW1TShvL6FT7eMUKsgl3b9vewMtqavSqPFD4dzkVVsFcJKmQR/XjzG4Ri5VMK3BOE4W90hOxnRVedO6/MxNX0U6SMIwtM06mzNRi0ch8O5Vb04ms7pq+mdbYxJCscdM203as+sOeTzQttXeOnYVuhbRVmsXyCkrRGhCm0Tlm3+BJsLz7l0HnsRlNdYgyqmOfjgwDDcM2wKvpp3K07d8AQ+mbMct6ZNRDxjliESiZAeEoUXJi/E0Wv/hB+uWIH1C+/h3TXFIjGem7QASeoQXJGQju8vX4FNi+7D8ozxkEuEKXeXMzfuW4qsr4HjOOxnTFzaerO5QpBchfRWB1ELx+FoVVGH+3+fcxzXbP4EV276ELN/fhcfnj2Aer1j0+KO0Bk6NnL57+m9fGNxf6kcz01c0KXz9wfYfn1dTfF0JvruHDbZIfprn2bbnSjO2CRbVNHTkb4tp4pgttgmGk4UVDuNgpb30VpuX4Ft0H6GEX2+4NzZRmpUEL98srBGkNrZ1Vq5jmAFcJVGi1d+sWU43T93eLv9HhOYusPCGmtd3wXG1CU1OsjhmM5QMemdA9HIhUQfQXiZJjvBceBiRS+NxDXY9M5oH5ql7Ap/WTKWTzGpaNDilfXHe3dAfYAjlYVYl2+zan97xjJ8edmtCJJbf8C1JiPu3vkNPjizv8No1aN71iL965fx/JEt/LasWlukYVZsKnYtfRh/mzgfM2MHu2Qm4ieTY0pUskO/uCXJI7D36j/go9k3Ymp0crs34JfGDIaiVQhm11chv7EWuZoaVGit9SKBMgWGh3StX9okpuH4oYrCDvdl0wUvNlTj74d/xYQfXsOf9v6EzGrXon9axshFYTcjn6upwVsnf+fXnxg7B7H+Xb9B6usMiw3ml7tq5jLYzsU0QCbHjanjHPZjowVdaczOImjbUFANi8VzKejrM4WZDiYLh8x8x4nHMibSF9PH0vp9AVbosO6YvuDc2Qbba/FIXhVK69tvzN4TVHIp1K11jCYLx4vLcLUSKy8b0e5xiUz6ZmFrLR8r+oZ0Q/SxE2RU00cQhMfRMJE+ADiY4+Oij7FYjuyjM76BKjmeu3Yiv/7JrnM4UVjTiyPybTiOw98O2xwfFydlYHJUEi6JHoR1C+5CUoA1gsIBePbIZqw6uMFpz7vS5gb8kHsCAPDh2f3QmqwTHqcZ0TcyrHOzFHfjJ5NjZkwKv76l6JygVcPkqKQuuxROjkzilw92UteX76R2UWc24duc41iy8UMs2PAevjx/FM0dpInq23GM5DgO/3dgPe96OiosBivSJjkcPxDoiZmLfaTvxtRxCJQ7Ol32pJ6vjfhQfz4ypNEakVPp3G22pzS0GPD7OceepQcuCH+D9EYz6pqt7z2JWNSuwyfRPu1dM1+K9E1gRN/RvEqBi6e72jW04ex1P75wdIemNvZmLhzH4UIFI/qigrs8DhX16SMIwps02Ym+4wXVPptm0KQz8uNVSMUI9uu77m1XjkvGpcOsltAWjsNfvt4Ps8XSyVEDk3P1lbzBiUIswarxl/GPpQZF4OeFd2NCRAK/7bPzR7Bi+9doNOgE52HTHM0cx5/zDCP6uhpRcxdsiufbp3bj70c28+tdSe1sY1KULdKXWV3Cp8Xaw3EcChptAmTVuMscrkFWbTn+cuAXTPjhdTx/ZIvTcwnEBhPp+zHvJPa0ClixSIRXpiwZsDb7grYNXezVFyhXYpA6FEBbM3bn7SaEzp3dE30ikcgrrRu2nCqC0Wz9zpOIbVFw+7o+gXlXoGrAvn96QniAc9HnSyUS6bHB8FdYI1/lDVocYUpN2JYO7sBeBA+OCsTyS4a2s7cVVvQV1jShtK6Zvx8JUskFTd9dReje6Zv3XZ6kW5/k5uZmNDU1db4jQRAO2NeTGUwWr/Zn6grsj39kkJ9PuI51F5FIhJevnwyF1Pq1d6KwBp/tPt/Lo/JNTtfaogGz4lKRECB0VgtT+uOby2/DVcm21JydpRcdnD2PVRULjjtSWQSO45BVZzt/RmjviL558UN585U6vVYgrGbFpnb5fNF+gXwEVG824VQ7Rje1+hY0tkbw/KVy3D98Gn5dfB9+XnA3rh88hk87BawtKt47sw8/5JxwOA9v5OKnR05LBcwWC+p0LXj2sE283pU+GSPDYh2OHSgkhQfwQqyqUYfqRl0nRwh5KHUOEkVReDBlDhLVjm0NgM5rK11lDJvi6STd0h1sYFI7b5tuu+E+klfFi0FAmNrpLgfHgUZYO5E+X0rvlIjFGJtke9/tOFvCL8e1U2fXXexf91+vGg9ZJ+0WEgSirxFni20TN0Oig7p1PzLQm7N3SfRlZ2fjqquuwvjx4zFx4kQsXrwYp0+f9tTYCKJf0mgX6QOAgz5a18emdvbVej6WQZGBeOSKUfz6yz8f6/KN4ECATb/MaCcSp5TI8PaMa/CHkTP5befqK/HQ7jX8+lE70XesqhgV2ka+b5y/VI7kdm6mPU2EKgBTopIF24aFROHNS5ZiSHCE84M6gY32Hax0XtfHpnYmqUMgEomskZ6IeLx+yVIcufaP+PuEK/goEwD8XuZoq68zmIFALSQjS/HY0R8w5cc3cdv2L1Grt17bWKYn30BFIhYjLSaYX+9KiifHcXhn7UXkHfDD6u/yBb3CWNhogaqLjdlZ2JtvT0wCNumM2Mnc1N8zOwPxrdEcrcGErCJbujtr4kKir3u0F+nzpfROABifYvuuY11o3VnTBwgjnJMHR+KKUQkd7G1FUNNX04Szxbbvzu7U8wHCzyild3bC008/jfvvvx8nTpzA4cOHceWVV+KJJ57w1NgIol9in94J+K6ZS0U/dHBbedkIDG5t0N5odyNEWDlTZ3s/Du8gEicWifHnsXPwxiVLIWmddT1UWYjCxjrozSZk1Qrrh45UFdkJyqhe7RH3z6lLcPOQ8fjT6FnYedVK/LbkAVw7eEy3zzeJqes7VOG8ro8VfcmMsGsjROGHuzOm4r1Z1/PbDlYUOJi76E1miEJtNThlLRpkVtveyy9MXuhgdDMQEaR4dkH0Fdc242Jr/ZDBZMEbmxyjrYB9TV8PIn2M6DtdXOf2G9KtWcXQt97UD48LwaDIQEweHMU/zv4GCSJ9/eR739v4KaRO0319qWUDAEwYFOl0u7vTO5dOGASVXIpgPzleumGyS1G66CAVHw2sbdLjCJOGPDQ6uFvjEBi5GEj08Tz99NOoqBDeiNbX12PcuHFQKBQICAjAmDFjUFvrWJBOEET7OIv0HcmtgsnsWF9WXt+CtUdy8cTX+3HXBzuQVeTdz1tfb9fgDIVMglkZcfw62zeRsEY4WGHWkehr47rBY3ApkxL5W3E2smrLYLAzd6nVt2BDwRnm3N43cWEZFBiGV6YuwWOjZwmacXeXyUyk70hVESyc42earedLciL62kgPjuSdUqt1zcjVCI2HdEYzRH7OW4/MT0wX1CwOZIYJzFzqXT5u/4Vywfp3B3OQw5hItOEOIxcACPFXIKV1MspotuBMsXu/61nXzkVjrZMTk1Ntou/gRdsNdTmld/YYkci5AQ7btN0XYJ1j25BJxIhw8zgnpEQi88XrcPTF65AR1/73HotELOaj0QCw5YQte6K7kT5Bc/YBWNPX7rTU4MGDcf3112PhwoW4//77ERQUhHvvvReLFy9GSkoKLBYLLl68iMcff9yb4yWIPg8b6ROJrI1HWwwmZBXXIjJQhf0XKrDvQjkOXKwQNCIFrLNdax+b77WxCiJ9/ejHP0hlM6RpaKGefSxlLRrUG6xiP1CmQLx/sEvHXZ6Qxrci+K0oG2YnggeAoA2EK4KyLzFIHYZwpT+qdc1oMOhwrr7SIT22oJNIXxtikRiTI5OwpdjaPP5ARQEGM46SWqMJYETf69Ouwq7SHCgkUjw94XJ3vaQ+T3fNXPbbOVqaLRxe23gCq++YKdiuY41cepDeCVijfW3f+ZkF1QJL/Z7Qojdi22lbqvXisckAgMmptijPodxKWCwcxGKRML2TIn3dJixAiWLGETM0QNFpHZu3CQtQIiUyUHCvER3sB7HY/fX7Qd0wgksIC0BelbVHXxVTbuIe0TfwIn3tir4VK1bg2muvxYcffojFixfjxhtvxB133IGZM2fi5MmTAIDhw4cjJqZ3Z2oJoq/RqLPdqI1LjsDRPGvR/g1vb4FG6xgFZMmr8oyVd3v0x0gfIPzx0ZDoE8BG+YaFRrtcLD833mYMcaCiAGLmuDj/IJS0Grywhin9TfSJRCKMj0jA5taG72dqKxxEnzC9s+N6xslRNtF3sLIANw8dD8AajdVLtRBLrCmfMX6BuD51LK5PHeu219JfGBYXzC9nl9XzwqYznKXc/3Q0D49cMVLQ9F3rpvROwFrX9+PhXADAsfxq3NWjs9nYfrqEv8FNiwnmb5iHRAUhNECB2iY96pr1uFBej7TYEOrR5ybsI32+ZOLCMn5QhED0ubMxe09JDFMDEJYJKGUSxIcGOD+gE9hemmTkYkdAQAAeffRRrF27FtXV1Zg/fz42bdqEmTNnYt68ed0WfBqNBpMnT0ZGRoZg+7Zt27Bw4UKMGDECixYtws6dO7t1foLwZdj0zrnDbWmGzgSfQirGtCG2m8bqRp1HG/faIxB9/WjGl209UU+iT8CZuu61U4jxC8So1p57Js6C38ty+cfuGuZody8ViTG0m4YpvkxCQDC/XKV1NP9g0zs7ivQBVtHXxkGmRtBotgB+th5+I3s5TdaXCVer+JvvFoMJhTWNnR5TVt+M/GrrfkqZhG/1wnHAvzYcF+zrjpYNbYyza9LuLtYfZ1I7x9jeUyKRSFjX11ozVUFGLm6hL4k+FnebuPSExHBHcZcaFdTtSCT7GdWbLF69n/IFOhR9jY2NyMrKgkgkwt/+9jd88cUXOHnyJObPn481a9bA0o0eV42NjVi5ciXq6+sF28+dO4dHHnkEhYWFGDFiBAoKCrBy5UqcP0+W6kT/gk3vXDp+kKA5qVImwYy0GPx58RisfWw+sl9djjWPXoFAlXUfs4VDbXP7DZvdjeDH38cK0HsCG+lr0JLoY7E3WukKl8WnOWzzk8pwQ+pYQeQPsDa/Vkrab8zbV4lU2W5SKrVCgdFk1KNaZ033kosliPYL7PBcI0Kj4Se1XqOS5gYUN9UDaE1LYlI7R/RCg/u+hNDMpb7T/dnUzgmDIrDqqnH8+sbjhThZaKuvZFPEVD0UfRnxoXz6X26lhm+Q3hO0BhO2ZrGpnUmCxycy7o0nC2vAcZywpq8fTfZ5G/v6PV8VfRMcRJ/v/M3ZXn1tdDe1E7BOdAhSPE0DK8WzXdG3ceNGzJw5E/fffz/mzJmDjz/+GImJiXjttdfwzjvvYOPGjVi0aBF+/fVXl59s48aNuPLKK3Ho0CGHxz7//HOYTCY89thj+Oabb7By5UqYTCZ88cUX3XtlBOGD6I1m3hZZJhEjOUKNHx+9Aq/cOAXr/rgA2a/ehO8euRx/XDAaU1KjoGj9cmKLqqsbtU7P7QnYlg2R/ejHP1BQ0+c9Ee2L/JBzHI/vW4eiJmsE6nRd10xcWC5PcBR9Y8LjECRXIT1Y6BI3op9Gp4SiTxjpY+v5EgKCO216LRVLMDHCZg5zoDXapzeaIfK3iT6K9HVMemwwv+yKgyeb2jl1SDRGJoQJImRstE8g+uQ9S+9UyiTIYIxnThT2PNq362wpmvXWaOTgyEDBtQCAEfFh/HJWcS3qmvW8y2eAUiaYlCS6RliA0D3XV0VfWkww/Jj3brwvRfqciL7UHog+wK6ub4CleLb7i/Pqq6/i9ddfx549e7BmzRq88cYb0OmsLncZGRn46KOP8Mwzz+Cjjz5y+cnee+891NXV4eGHH3Z47NixYwCASZMmAQCmTJkCAMjMzHT91RCEj8OmdgYoZRCJRBiZEIbbZqRh0uBIyKXOZ4rZ3j5VGu+4TWoNJj4qKRWLBCmRfZ1gP9uP8UBO79xanI1H9/6Eby5mYsX2r6Ex6Pj0Q6lI3OV+dRkh0Yi1i16Nj0gQ/N9Gf6vnayNSZestZS/68lw0cWFxluLZYjAB/rbJCor0dQwb6TvngpkLG+mb0upw+edFo9EWrN6aVYwjudZUSNYBsKfpnYDQTfFYfs9Fn71rp32N7ogE2/vwXGkdihjjEYry9Ywwu0ifr/Xoa0MqEWMCE/FNilB3sLd3SQhzHMvQqJ6JPkFd3wAzc2lX9LW0tCAszDoDFBISArPZDJNJqIinTp2K77//3uUnW758OTZv3oylS5c6PFZebp1dDg4OFvzftp0g+gONTCqhugszqBFMbUCVlyJ9bGpRaIDSZUOPvoDAyGWApnc2G/VYdXAjv55dX4l/Hd/Orw/uRvqlSCTCZXbRvvER8a3/C0VfRr8Vfe2nd7raroGFFX0HKvIBABcbqiFqNXERm6WIVvnOTZovwrZt6Cy9s0qj5fvzyaViXoSlxYbg6gkp/H7/XH8cgLDXl7KHkT4AGJtsu/k+3kPRpzeaseVUEb9un9oJWFtFtNniG0wW/H6ulH+MTFx6hn2Ddl/r0cfy50VjkBIZiAWjEzEjzXcmkcICFIIoJNCz9E5gYEf62v2GuvPOO7FixQoMHToUBQUFuP766xEQ0D23nDZuuOEGAEBxcbHDY21RRJnMepMhlVqHptV2foMbEuIHaTsREk8S4cbZEI7jUFzThIRw+vHuDHded29TxAi2kACly68lMcoWPdFaOLdeg/bOVdJsiyhGBqn69HW3x48R0Q0thl55bb19Pf+1cwfvqNnGJ+dsqffjYxK6NcZrR4zBp9mH+fXL0tIR7heAy6TpwF7bfpcOSUWI0js3ld681iJ/2+RIla5Z8NwVRpsIHBET49K4LgtJh2KrFHqzCXmNtTCpOBQabOLRz+SPyMiOawN7g95+f7NcEqjk2+PkVmoQEKRqNxVzF5PaOTE1ComMYHzxlmlYdzQPZguH3dllyKpogEhqmzsPD/Hr8eueOzYJ+GwPAOBEUQ3CwwM6nXBr7zk3HMvns0tSogIx20mkDwAmpEah+JDVeGnnOZtTYnJUoE/9HX0JV67LkEThxM6QhDCfvZ4LItRYMHlwbw/DKSlRgXyPYolYhEnD49rNinKFAKa8Q9WF+7D+QLui795778WcOXNw4cIFxMfHY+TIkR4diEKhgFar5aOJbf+rVJ3PjNTVtXS6j7uJiFCjqqpzFzBXWfHedmw+WYTbpg/FKzdNddt5+xvuvu7epqjMdpOtkklcfi3+zBdcflm9265BR9czt8h2YxmolPfp624Px3GQScQwmi3QGc0oKq13S2qWq3jyfWy0mJGrqYFMLIZCLIVCIoVSKoNCIoVUJIZIJMKpmlK8fex3/hixSAQLJ3QxG+wX1q0xZiijEO8fhOLmBkyOTATXzKGquRGBnBwTIhJwpKoIl8YOhqnRjKpGz7+nvP2dwXEcZGIxjBYLNAYdCstqoJJabzLOVdkERZjIz+VxjQ2P4+v5fso6gaOltibFfkbXz+MtfPF7OjlcjbyqRlg4DvtOFWNUYpjT/bYcy+eXJySHC15HsFSCG6ak4qt91n6U//fFPgxmBLdJb+rx6w6RSqBWytCoM6KyQYvM7HIkOKlraqOja/31znP88vyRCaiudnSTBYAhzGs4cN6WXRXcz7733YWr72+JSWh2KOc4up7dIDbYjxd9yeFqNPTwnl/KTHyUVWoQ66/oYO++R0citsNchNTUVKSmprp9QM6IjIxEQUEBGhoaEB8fz7t7Rkf3zxQgFo3WgM0nrSkYX+27gBevnwypjzXwJNwD26OvS+mdTC1ApcY76Z21TKQvNKB/fSmKRCIEquSoabK+xoYWPZT9oH5FY9Bh/vr/orDV5dEesUgEhUQKi8XCi7xLogdhQkQC/n3qd8G+XXXubEMhkeL7K1Zgb1meINVTJBLh68tuxYmaUowNj+/WufsCIpEIEcoAlLZY+15Vapv4VM58ja2mb1Cga+mdgPVv1Cb6Xj62Ff5iW6Q6iBs4s9Q9IT02hG/yfK60rl3RJzBxSXW8/3h0/ih8fzAHRrMFh3MrUcS0gOhpnz4AEIutdd77LljF1/my+g5FX3sYzRb8etI2OeAstbONUQm2a8FO/vQnx+beIMw+vTOw7//G9AZsXd+QmJ6ldgKAUs42aB9Y6Z0+oyxGjRoFADh48CAA8A6f48eP77UxeQvW3MNk4VBU43w2juj72Bu5uIqwps87Ri61TUxNXz+bCQOEvfr6S9uGjQVn2hV8gPWGTmsyQm+x1iEpxBK8PGUR7smYikCZ8G/ck5q7hIAQ3DhkHMKUQhc4lVSOKVHJUEh6fnPsy0Q4cfDUm00oaxWCYpEI8f7BLp/vtrSJCG+9lhXaJuQ222q9gkW+l9rpiwjbNjg3czGaLcguq+fX7fuXAUBCWABuvmQIv17O9DJVyd2TLRARaPu+767R1N7zZfyxsSH+GJMU3u6+IxOcT0BQj76eoZBJMHmw1bV4VGIY33qJ6Boj423vz7FJPe/tqpKxDdrJyKVXuOWWWyAWi/H666/jxhtvxNtvvw2ZTIabb765t4fmcZr1wqbcuZWaXhoJ4WnYHn1dM3Jh3Du9ZORS28RG+pQd7Nk3EfTq6ycOnruZhujhSn/E+AUiVOEHf6kcUpHw614sEuGZCVcgJTAcwQoV7s6wpZVH+6kdBBvhOlFOHDyLmurQFkOJ8w+CvAvCN0zpj9emXeWwnTOJESylG3NXGCZo21DvdJ/SumaYW5s1RwWp2p2Y+8MVo5ymg7sj0gcAQW5oKcO6di5up5avjaggP8HEYhtk5NJz/nf/HLx/16X4euW8fmWG5k2unjgID84bjgevGIk7L03v8fkEkT4ycukdxowZg7fffhtvvPEGsrKykJiYiD//+c8YMmRI5wf3cVr0wjddbpUGc3tpLIRnYSN9apXrLRDY9M5qr6V3su6d/S/SF8S0begPos/CWbCn3Cb6vpx3C4bb9W8zWczQm03Qm01QSKTwZ6J7dw+bgh9zTyK/sRbXpoz22rj7I5F+jg6e+Uy7hqSAEIdjOmNu/FDcNnQCPjt/xLaxWQ5VgM/8jPs0rIPnuXYifflMvVVSB6Zq0cF+uH1GGt7bfkawXemmSJ/gu6kbWQgmswWbTriW2tnGyIQwbD9TIthGkb6eE+ynwJJxyb09jD6NXCrB01dPcFutMDs5M9BaNvTKr0V8fDyys7Mdts+bNw/z5s3rhRH1Lmz0B6BIX3+mUdvN9E5W9DXqYLFwEIs9O2vIRvpC+nl6Z30/aNB+tq4CNTprgXuY0g/DnNTkScUSSMUSgdhrI1CuxK+L70NJcwOGBvU8hWYgE6F0TO/MZ9o1JHehno/l6QmXY295HnI0NQAArlkBZYj3nav7IskRaihlEuiMZlQ0aFGl0Tr0TSuodk30AcBDl4/A53vOW3smtqJykxlUT7MQDuZU8On50UEqjE/u/PM8IiFUIPrEIpEgw4Qg+guClg0k+hyxWCzYsGEDjh8/DqPRCM7O5e3555/3yOAGCpTeOXBo6qaRi1Jmc3QzWTjUt+g9nnIpiPT597/0zkBV/0rvZFM7p0enQCzqevZ+gEyBtOBIdw5rQBLl55jeyZq4JAV0T/SppHL8Z+Z1uOHXz1HbpAdXEQjlIBJ9riARizEyIRSHc6sAACcKazBvhNBQiBV9yZ2IvnC1CnfPHoa3Np/it7ktvbOHoo9N7Vw4JsmlCcKRCUJjm8hAJRnKEf0SQXP2AZbe6dIn+qWXXsITTzyBo0ePIi8vD/n5+fy/goKCzk9AdEizfXonib5+S2M3a/oAYbTPG2YuAiOXfpne2b+MXHaXMqIvJqWDPfsOBdWNeGvzKYG5Rl/AWYP2Cw1V/LaUQOfOka6QERqN+8Pnw3IiATBIofBiq5G+zmjGzOR4gWPj8/wuRPoA4IF5wwXmHO76ngxWdf+7yWyxYONxW2rnIhdSOwFHM5eofuBmTBDOUFGkr2N+++03/PWvfx0Qpiq9gb3oK6lrhs5o9mrfMMI7dNe9EwDC1Up+QqC6UYu0mGB3Ds0BNtJnbz3dHwjuR0YuOrMRByptE3Az+4Ho4zgOK97bjnOl9fh0dzYOPXcNJOK+EXkQuHe2WCN95+sr+W1pIT2LpuqZ/l/uii4NBMYkdiz6Cpk+dknhnbdJCPZT4N+3TsfLPx/DFaMS3SaUAnvw3XQ4t4pv6xOuVvLukZ2RGBaAQJUMmtYSBKrnI/orwvTOgRXpc+nXoqmpCdOnT/f0WAYs9umdHAcUVGmQFtv1Yn/CtxG6d7pu5AIIHTy90atP4N7ZD2v6hEYufbum72hlEfRm64/XIHUo4gKCe3dAbuBsaR3OtbosltY1o6HF0GdcZFn3zipdE2p1zajSNQMAlBIpEnv492FnpynS5zqjk2wR1uMFNeA4jndU5DhOEOlL7qDBMcv80YmYPzrRrePsyXeTILVzdKLLEyUikbU/4N7W5uzk3En0V5RMeqeOWjY4MnfuXPz666+eHsuAxd69EwByKMWzXyJ07+xqeifTq0/j2fTOFoOJv7FUSMXwU/S/aEKQwMilb0f6fmfq+WbGDu7FkbiPrVlCJ8G+5LIWzrS7qNY142ydreH30OCIbtVbsrCz05QR4jopEYF8Wn1Nkw4ldc38Y7XNen5Szk8u7dXshu72ELVYOGw6bhN9rqZ2tsH28ksKc030EkRfQ0WRvo6Jjo7Gu+++i+3btyM5ORlyuTBCQUYuPcM+0gcAeW6wpSV8j0bmB7yr6Z3Cmj7PRvrse/T1x/5CbC8sTR+v6dtT1v/q+badLhas96WCe7lEilCFH2r1LbBwHPaV5/OPDQ3quVEOG+kj0ec6YrEIoxPDsKc1mnW8oAbxodY0zoIqYZSvN7/zumvkkllQjdJ6q4NviL8CU4dEd+l575k9DPsvlEMqEeO6Kf1j8ogg7FHKB25zdpdEX2ZmJkaPtvZtKi0tFTzWH28GvY19TR9AZi79lR4ZuajZXn2ejfQJTFz6YWon0H+as9fpWnCyxvq9LBaJMC06uXcH5AbqmvU4klsl2NaXRB9greur1VtvwFlnVXe4o+pJ9HWb0UnhvOg7UVDN97DrqomLJ2F/Gxp1RpgtFpfSNNdn5vPLC0YnQtZF982oID9s+POiLh1DEH0NqunrhLvuugsTJ06Ev79/5zsTXca+Tx9Aoq+/0tQj0cekd3o60tfcv3v0AVYThjb6cnrn2rxTaGuiMzosFkHyvt9ba+fZEljsWgP1tRnZKFUAslvNW47X2FJVhwb3vAci1fR1nzGJtrq+E4U1/LKwR1/nJi6eRCIWC0xVNFpjp9/DHMcJ6vkWjelaaidBDBRY0deXygbcgUvTQH/5y19QXFzc+Y5Et2g2kOgbCBhMZv5mTSIWCXrFuII3WzYI2zX0DfOMriKM9PVNIxe92YTVp/fw61cPGtWLo3Ef9vV8QN+L9EUyZi6sgE13e6Sv/9XbehK2bcOJwmpYLNa/TVd69HmDrpq5nCisQXGttUYxSCXH9LSupXYSxECB/c4caC0bXBJ9cXFxKCws7HxHols4M3Kp1GidRgCJvot9lK+rqdFspK/aw+6d/b1HHwAEKGRo+xM0600wmi0dH+CDfHcxE+Ut1pvVCKU/bhoyrpdH1HPMFgt2nOn7oo9t29BGgEyOWP+gHp9by6QkKaQU6esK8aH+/HeaRmtEXpV1gjWfqelLctG505OwNceuZCJsYAxcLh+VADm9LwjCKSo5E+nrY78rPcWlKcIRI0bg0UcfxciRI5GQkAClUjjzT0YuPcNZTR9gjfaNSux+E1/Ct2jqQY8+AAi3i/SxduPupq6Zrenrn5E+sViEIJWcv6HSaA19qh+hwWzCO1m2KN/9wy+BStr195WvcSy/WvD+a0Pbx2ovopyIvqFBkW75zAoifXK6ue8KIpEIYxLDsb11YuFEYQ0GRwWhsIbp0ecDzpVsJkJnRlMcx2EDk9q5uIuunQQxkGCzrCjS54S8vDyMGzcOMpkM5eXlyM/PF/wjegbr3hkfaqubbJuBJPoHjT3o0QdYbcT9W1snGM0Wj9ahsTV9/TXSB/RtM5c1uSdR0twAAAhV+OHWoRN6eUTuYWuW81KCvlbTx6Z3tuGOej5AeKOiopq+LsO2JjheUA2twYSyVtdLiViE+LDerekDuvbddKakjnf8DlDKMDM91qNjI4i+jMDIhSJ9jnz++eeeHseAho30jUwI4/PyqVdf/6Kxh5E+AIgMVPE/7lWNWo+ZrAyE9E6grW7GOsPfl+r6WowGvJO1m1+/N2Mq/GRdn0jwRbYxoi8m2I+/Ge9raTjO0jvd4dwJAHoTGbn0BPsm7UW1tihfXIh/l10vPUFX0jvZ1M7LRsSToytBdIDQvbNvTSb2FJdE37Fjxzp8fNy4vl9H0puwkb6RCaHYdMJaP5lHoq9f0RPnzjbC1TbRV63RYaiHavUFffr6aXonIGyC7IsOnnX6Fty78zsUNdXhqkEjcfewKShv0eCh3WtQ0FgHAAiSK7EifVIvj9Q9lNU343SJ9XXJJGJcPjIBn+7OBtD3RF+Un+dEn85ARi49YUyiLdJ3qqgGBy5U8Ou93a6hja6kd54pruOX542I99iYCKI/MJDTO136tVi+fDlEIhE4xoFMJBJBJBJBLBYjKyvLYwMcCDQzYmBUgm0Gkhw8+xeNOtsPt1rVPdEXEeidtg21zQMj0hfo4w3aX8nchv0V+QCAd7P24MOzB2DhLDBabKYzj42ehQBZ//gbbTttM3CZkholMC+i9E4bFOnrGZH/3959h7dVX/8Df19tWZYt75k4duI4w1kkJGSSkIQAIQmEUfampaxvaaEUKG0pFFpoGWX8WkZp2KvslUAgjCQkIYPE2XEcxzPeS9bW/f0h6+pzZUnWuJIl+7yehwdtXd/I8j33nM85qVqMz0/D/vp2mG0O/OndH4X74ifoY0fKBK5CqO8wCpfjofMoIfGMPVGWaCcTIxVU0Ld+/XrRdYfDgaqqKjzxxBO4/fbbo7Jhw4XN4YTF7jqAk3EcxhekCfdVMd3ESOLrNkVe3skOaG+O4oB2UaYvgZqbhCo1jjN9+9ob8dphcZWFxeH5A5WkUOL+mWfhwtFTY7xl0cOu51tcXgCHw3OiMdH+OOsUKmgVSpjsrt/7VJUGOT4CwXCYaTh7xB64cCbOe3wtAPFna7Bn9Lmx5Z0Drelzl0ADQF5aUtS2iZChgMo7B1BQUNDvtpEjR0Kn0+G+++7DRx99JPmGDRfsuAadWoHc1CRoVQqYrHa0Gy1o6zEP6YPu4USK8s5YDGjneV6U6Ruqw9kB8YD2eGrkwvM87tu2VpjvNiXD1Zjhp9Z64fpT889DccrQ6e5rsTnw3YEG4fqSiYX4lrmeaN07OY5DtjZZKMMtM0jTuRPwCvqoNX9Y5pTm4ppTx+E/3xwQ3R4vmbJgyzstNgda+ua2ymUcspkuz4SQ/lQKGTgO4HlX4sXhdEIuG/x1vLEQ0WKAjIwMVFdXD/xA4he7nk+nVkAm41Ccpce+vnUtVc3dFPQNEZF27wTEYxtaojSg3Wixw9qXfdYo5UgKcYh8IonVgHae53GosRMb9tdh06FGpKdo8YdV0/0G1OtqDmJjYxUAQM5xeHTuORibmoUfm2vQajZiceFYKGWxO9j/dFc11u+tw88XjUdZftrATwjD5iON6O3LuBRn6TE6JxXbjjYJ9ydapg8AcrR6UdAnBZ7nYWbn9FGmL2x3rzwJX1bUisc1xMGMPiD4KoT6dk9pZ06KdtgcvBISLo7joFUqhL83ZqsDOs3w+L0Ju5FLT08P1qxZg9LSUsk3ajgxijJ9ruxPSXaKEPRVNnVherE060DI4OpmztaGX97pOQHQFKUB7aIZfUP8hEOoA5DD0dRpwiVPfyE0KHGz2xx48sr5/R5vcdjx5+1rheuXjZ0hBAwnZ4+MyjYGcqKzF7988VtY7U4cbuzEh785Myrv82WFZz3faRNdzSjYBfeJtqYPALKZDp5SreezOZxwL69XyDgo4qDTZKLSaZT4x6VzcME/1wFwLbGImzV92uBOSNUyAWtems7v4wghHhqVXAj6TDY7dGEekyWasBu5AK6yz4cffjgqGzZcsJm+pL4ZbMVZKcJtR5s6Y75NJDq6JSjvZEt3mqMU9LX2DI8ZfUBoHfLC9e62o/0CPgB4/8cq/G7lSSjwOlB78cAWUWfO26csisp2BWvb0WYh87v7eAucTh4ymTRlim48z4tGNSwpdy0pEAd9iZfpO3/0FHx2fD/0Sg3OLpooyWuKSjuHcBY+VuaV5eGeVSfhmS/34sr5ZaLmToOJbeTSxawH91bHBn0GWs9HSDBczVxcJ1MS8YRiuMJq5AIASqUS2dnSlKsMZ+yaPnf2Z3S2J+iraqJmLkOFFEEfWw4YrTVoohl9Q3g9HxCb4ezHWjy/wzOKs2C02LG/vh12J4/nvtqHP513snB/i6kHT+z+Vrh+25SFSNMM7oHcT8dbhMsWuxN17UaMkHh4dWVTl7CfklQKzB7jmkWiTfAua0sKy/Dj+b9BslINrUKaM8nsuAY1reeTxM2nT8LNp08a7M0QEY+TCZDpa6Ogj5BQaYdpM5eg6kKeeuoppKamoqCgQPgvOzsbHR0duOWWW6K9jUNaj2hNn+ugoDibzfTR2Iahgm3kkhzmyAZ2/Y7VHp0vqjajJ9OXMcTLOw0htEUPF3tQ9sslE3HXymnC9Vc2HhIFmw/v+grdNtd2jE7JwJVlnoBwsPxU3Sq6XtUs/XcS27Vz/rg84XOuVXk+76YE/cOcpU2WLOADxOMaqHPn0JXi1b3Tu9LKjc305RuovJOQYIg7eCbeCcVw+c30VVZWoq2tDQDw/vvvY/HixUhNTRU95uDBg/juu++iu4VDnHcjF8C1ps/taFMXeJ6XrOsbGTyiOX1hNnJhv6jcoz6kNqwyfSG0RQ9XbZun0UJBejImFaZjQmE69tW2wWix46XvD+KW0ydhb1sDXmdGNPxhxrKYNmvxhed5UaYPAKqaurBgXL6k7/MVM5+PHS6d6OWd0cB2MdWoKOgbqtRKOTRKOcw2BxxOHr0W3+uOxGv6KNNHSDASfb14uPwGfbW1tfjFL34BwNXp5uabb/b5uMsuuyw6WzZM+GrkkpGsRopWiS6TDb1WO050mpBLZRsJT1TeGW6mT8EGfdHP9A35Ri5RXtPH87wo01eYroNMxuE3K6fh2mdcZfPPf70f1y0cjz9tWwv3ufyF+WOwuHCs5NszkJ+Ot2JbZRPOm1mCNJ0aVc3d/dYTHZV4fmiP2YYfjpwQri+e6BkRREFffxYa1zBsGJJUaOx0rd3uMFl9B33MSaU8yvQREhTK9Hk59dRT8c0334DneSxcuBDvvfce0tPTRY/R6XRITo6PQaaJylcjF47jUJKdgl19ZVVHm7so6BsCpJjTp2KDviiVu7GZvqE8ow/wKqEyWSVvUtJpsgondrQqhZA5vXjeWNzz6iY0dprQ1GXCn7/+BptPHAPgGtHwhxmnS7YNQW9rrxXnPvY5TFY7vj/YgP/ecFq/LB8gfcn5NwfqYXO4stblhemiA1dReScFfQCokctwkpqkFoK+zl5Lv6ZPADVyISQc7Hcnrenrk5OTg9zcXBw4cADjx49HTk4OMjIykJOTg5ycHAr4JGD0Gs7uJu7gSev6Ym3T4UZ8sqsadod0JZTdpsjn9KkUnl9Zm8MJp9P3Oo9IiMo7h3j3ToVcJjRQ4nlxNlYKta2es/CF6TqhTFulkOPnp01w3cHxeL12i/C4K8pOxliJZrqF4lBjhxBYrauoQUOHUTjxxKqS+PuI7dq5uLxAdN9wLcEJhD3ZQ41chjbvdX3ebA4nGjpc3zEcB+Sk0mB2QoIhyvQNo78tQQ/4ef/993HGGWdg6tSpqKmpwR//+Ec8/fTT0dy2YaHXR3kn4N3Bk4K+WNp5rBnnPb4W1z23AW/+cESS13Q4ncJMGI5D2APPOY7zWtcn/ZeVqLxTN7TLO4Hg52GFgy3t9D5Lf9ncsdBrlOByO2FXug7oUlUa/HrKQkm3IVhtzKgOngc++PEYfqrun+mrbumW7GSI08ljPbueb2Kh6H5R985hVIITiCjTR41chjTDAN2Fm7pMwszGLL1WVAlCCPFPK8r0DZ+/LUEFfe+//z4efPBBnHPOOZDLXV8q48aNw3PPPYfnnnsuqhs41IkauTAfQraDZyUFfTHFri/afPhEgEcGr8fMjOZQKyMqIWSzfdEI+sTD2Yd2pg/wbo0u7bq+unY20yeujNBrVTh/7ihwBR3Cbb+Zsghp6sEp0WrtEQe8b2+txJ6aNuG6+4+k3SlepxiJPbVtaOqbN5mmU2PaqEzR/SqFDLK+7KjV7pQ0856o2KBPTUHfkDbQSJmGdnY9H5V2EhIs9oTZcFo6EFTQ95///Af33nsvbrjhBshkrqdcfPHFuP/++/HWW29FdQOHOqOPOX2AuIMnZfpiiz34ZQeVR0LcuTOy9u3qKK/rG07lnQCQEsVmLt5NXLx1pTeCk7tO1fMmJcYpRkr6/qFo8/qs76trF7LTualaTBmZIdx3VKL5oWxp56IJBZDLxH+SOI4TresbTmsv/GHPSlOmb2hL9Vpz7K2+vVe4TJ07CQmeKOgbRn9Xggr6qqurMXXq1H63T506FSdOSJMJGa7Y5h5Jat9B37GWbjicdIY7VtiDX++g7+0tlXhy3Z6Q2/uLZvRFGvQpoxf0OZxO0c+fNhzKO6OY6ROPaxAHfRWtDfjg+G7hurM6Hc9+td/vazmdPO57dxuuefZr1LRKk2ljtfX4L22dUpQpPhEl0aw+dj7fEq/1fG7UwVPMQuWdw0YqM0fU19+c+g7P9wvN6CMkeBolNXLxKy8vDwcOHOh3++bNm5GXlyf5Rg0nvub0Aa4F3Jl61wG31e4UndEj0dUqCvo8B8JbK5tw60vf48EPduD8J9aGlAVk297rteE1cXFTR3FWX1VzN+x9zWFyUrXD4qAyjTmwkiqz6ybO9HnKO3mexx9//FwY0cC3a4HOJKzdXYPDjZ0+X+uLihr8a/0+fPbTcfz1o52SbicgXsvpbcrIDBRn6YXrUlQftHSbsKuvO6iM47BwPAV9waA1fcOHuLyz/0mZhg4m00flnYQETVxBMnz+rgQV9F1zzTX405/+hNdeew08z2Pr1q144okn8NBDD9Gcvgj5a+QCiLN9lU2+DwSJ9NhAr63HDL5vpfwupqlFRW0bLnhiHVq6gwsSqls85XDsGrJwRLO8c2+tZw3XhIL0AI8cOtgGK7USZ9Dq2sTdO93eP7wHW05UAwAUnAyzNROE+/61fq/P19pypEm4/O2BeuFzKZVAmb6pRZmidcZSzOr7al+90IRiRkmW3/Eg2mG69sIfC63pGzYGKu9k1/TRWCdCgidqEkbdO8UuvPBC3HTTTfj3v/8Ns9mMe+65B++++y7uvPNOXH755dHexiHN38gGAChhxzacoHV9scKWN5ptDuHfqLnbJHrc/vp2nP/EWjR3iW/35fuDDcLlk0sia8cfzQHte2vbhcsTC9Ikfe14VcRksI61SDd43GxzoLnvpIBcxiE31XVQZnbYcOc3HwmPu3Lcybhj8Uzh+jtbK3Gis39mf8exZuFyS7cZh/xkBMPVxjTwKc1NFd03eWSG+PtIgpNQ60WlnYV+HyfK9A2jMhx/2MCXLVEiQ8+AjVyYTB+VdxISPA2b6RtGJxODCvreeOMNLFu2DN988w02bdqEH3/8Ed988w0uuuiiaG/fkOevvBMASnKkPbNOguNd4ue+7iu4O9jQgdWPr/V5kO7G8zy+Y4K+BeMiK4mO5po+NtM3sXB4ZPqKMj1BX7WEQV8dU9qZm5oEhdz1dfv8vh9Q3eXazwaVFrdNXoiZo7MxozgLgKuc+/kN4rV9docTu5lOmgCw6VCjZNsKiE92XLtwvHC5KDMZGckaUXBc02qENYITDjzP45v99cJ171ENLDbo6x1Gf5z9qWcO9LP0Q3/N7XA20HrjeirvJCQsojl9w+hkYlBB3z/+8Q90dbkyTenp6TSUXULGAOWdNKA99qx2h2j9HQC0druDPs9B8fkzS4RW8kdOdOK8x9cKQ3K9HTnRJZyRTdEqMZnpghgOdRTn9O2rY8o7C4dHpm+UV9AnVdmkeFyD6yx8k6kbT+75Trj99qmLYFBrwXEcblxaLtz+0ncH0c2Uc7GD0902Sh70eTJ9Z08rwiVzSpGTqsXdK6cDcM2WzO87sHTyPI5HUArbY7YJ5WoapRzj8g1+H0tr+sSOMScARzF/I8jQkxqgs7DD6RSdbKTyTkKCp1EOz78rQQV948ePx6ZNm6K9LcNSoEwfDWiPPXZGnZs709fElHdeu3A8/t/VCyDvm7dX2dSF1Y+tFR3ou313wJPRmDM2t19b+lCp2Tl9Ep6hauk2o7HT9TNqlHJROd9QlqnXIKkvsOgy2STr4Fnb1n9G34dVFTDaXa8/NjULl42dLjxm2aQRwu98l8mGVzceFu7beaz/kPRNhxvhdEoToNocTiEIk3EcDEkq/OPSOdj14IVYOX2U8DipRsmw+zhdpwbH+Z9bKZ6nNHzOyPpzjOmcOorJvpKhR9y9U/y3qbnLDEff73+aTi06OUIICSwj2VMl4eu4bagK6ugzIyMDDzzwAObPn49LLrkE11xzjeg/Eh67wymklTkO/b602XKq4609EZVTkeD46t7oq7wzU6/Byumj8K9rToWiL/A71tKN1Y993q+d/rdsaWdZfsTbGK01fWyWb1y+QShHHOo4jotKiSfbudM9rmFfu2fEzSVjp0Mh8/xbymQcblgyUbj+7Nf7hN/5HT6CvnajBQcbOiTZ1g7mZIdBp/J7YkLczCWSoI99v8CzICnT52Gy2oWSPrmM8zn7kQwdBq3/8s4G0bgGyvIREorxBQbh8oH6DslOoMa7oI7qNBoNzjnnHMybNw9FRUXIyckR/UfCw65P0amV/c52J6kUyO/rLBhpORUJjq8Ohi3dZjidvKhTZ5ZeC8BVBvfcdQuh7AuQjrf2YPXjn+N4X+BgdzhFa6/mR7ieD4jemr59TBOX4dK5021kpqdkXaqgr85Hpu9AhyfoG5/W/7vz/JmjhXVaDR29eH/7MQDizrG5qVrhslQlnux6vvQAsxnZ7G9VBAPaO4yeA1hD0kBBH3XvdGP/BhSk6aBSUPfOoSxJrRCqScw2h+j7XrSeL42Cf0JCkanXCmPReq12HG8dHn0zgqoHeOihh6K9HcNSoNJOt5IsPer7Us9Hm7owJifV5+OINPxl+tqMFqGUxpCkEgVeZ0wZiReuX4jrnt8Aq92J2jYjzn18Lf73f6ejtceC7r7B7PmGJFHJbriiNaevgmniUj5Mmri4sev6jknUNKnWa1yDw+nEoQ5PB87xhv5dXDVKOa5bNAEPfbgDAPDMFxVYPmUkDtR3AHBVBFy7cDz+8oHr/o2HG3DdovH9XidU7JiS9GT/QVhxNjOrT6JMX+oAI0zE3TuHd9DHnpCg0s6hj+M4pCaphJORXSYrspSukz4N7dTEhZBIjM9PE5rs7a/vGBZrpIdH/VacCtTExY1dQ0PNXKKv1cfcvdYei1dpp7bfY5ZOGoEXf36asN6uvt2I1Y+vxcvfHxQeM39cXsC1S8GK1py+fXVspm94NHFxY8s7pcqoe5d3Vve0w+xw/c7n6vRI1/g+O3/F/LHCGsODDR14fO1uOPuay4zNNeD0ySOEx/5w+IQkZSmiTF/AoI+ZHRrBGBl27ay/+Xxuw3Weki9soM2eqCBDF5sJZ2f1seWdFPQRErrxzHHOfub4ZyijoG8QsUFfkp9MXzEFfTHV5quRS7dZNKMvO6V/0AcAp00swJobFguNJxo6evHmD5XC/fMlWM8HRGdNn8XmwOHGDuH6cA76pMj0OZxOIUMPAIVpOhxg1vNNyMj1+1xDkhqXzRsrXH/mC8+w9mlFmSjNSRVKQDt6raJgPVytzOeeXeDurShDL3Stre8wht3qmj14NQyY6aPyTrdq5rNZPAzOShNXx2c3dlZfA41rICQi45mu0fvrKegjUSYq7/TTeYs6eMaWv/LOpi426PN/UHzq+Hy8/MvFPjupzS+LfD0fEJ01fYcaO2DvyxgVZSZDrw18ID7UFEm8pq+pyyTsz/RkNZLUShzoaBLuL88K/Fm4ftF4oUGQkxkhMXVUJjiOw5yxnqBx4+GGfs8PVbBr+tRKudCUhueB6jBLPMWNY6iRS7CqmKCviMo7hwW2gyf7e8P+TcpJpaCPkFCNy6dMH4mhXirvjDu+yzvN4vJOP5k+t3lleXjlxsVCiR7g6oaZnRr4ecGKxpy+4dzEBQBGZCTDXXlb32GMOJj2Na7hIBv0ZQYO+grTk3HOjOJ+t580KhMAMKfUE/RtP9rc73GhYjPcgco7Aa/vpDCzomwnwtQBTjCIg77hXd7JnpAopqBvWMhkMu9sM7HmroGrTwgh/o3NMwiVK1XN3cPipGLQQZ/dbsenn36KJ598Eh0dHdi6dSva2toGfiLxq8c8cCOXkZl6oXtXfUevqOMnkZ6v8s6WbrNoMHswf2DnlObitZuWCKVrVy8YJ9k2RmNO315mXMPEYVbaCQAqhRz5Bk8Gi12PFw7Rer6+znpseedAQR8A3LikXHTdNcTc9W/DNnQ6wRz8hatN1MjFf6YPcDWXcgu3+iCkNX2U6QPg6gTMjoMZSWv6hgX27w07K7bZRzdpQkjwklQK4eSZk+dxqLFzkLco+oIK+pqamrBy5Ur8/ve/x//7f/8P3d3dePHFF7FixQpUVlYO/ALEJ3H3Tt+ZPqVchpEZntKzYxF0zCMD81XeabY5cIw5w54d5B/YWWNysO3+87H5T+fiivllkm1jNNb07WUyfROHWedON7Yb4rEISzzrmc56Bek6mOw2VHW7AmsOwPiMgUfdjC9Iw6IJBcL1SSPShdEgmSm+z/6Hiy3vzBggCJNiVh+7NmmgkQ1J7HD2Ydy9s67dKJQM56ZqRZUEZOgSBX19J3isdodw4kTGccjQB/4dIoT4Jm7mMvQTWUEFfX/9618xZswY/PDDD1CrXV8ujzzyCMrLy/HXv/41qhs4lIm6d2p8B32AeMH+0QhmY5GBsRkPJTOcnB2CnRlgTZ+3ZI1S8jbAUq/p43leNJh9uAZ9og6eLZFl+tggKjtFi8rOFmFtXpE+HUnK4NZM3nbmZCHTf8bkkcLt4pIvCTJ9oZR3SjCrTzycnco7g8F27iyiLN+wkcUGfZ2u33X2RE9migZyGa3UISQc49l1fX2jkYayoL4ptmzZghtvvBEqleePc3JyMn7zm99g165d0dq2IS+YOX0AUJJD6/piged50cE6u2aGPeAa7PUTUs/pM9kcwhorpVyGwvThOehX1MEzwkxfh1cmix3KPi6t/3w+f04uycaHvz4TL1y/ED8/bYLoNd2NXrpMtrC7aLqJRzYEPqnBZvrCndUnauQy4HB2Ku8EqHPncJWT2j/Tx5Z25lLnTkLCNo7t4DkMmrkEFfSZzWYolf0zUVarFTwf+Yyo4SqYRi6A+Mz60aahX3M8WDpNVqF8KlmjFP0xZT/mgx70STynjz2Q1qkVkswSTERSdvBsM3oOytKSVNjf7mniUuZjKHsgJxVn4aypRVAwmWeZjEOGXrpsn2hN3wDlnSMykoXsY0NHL3qZk1fBau+lkQ2hos6dwxOb6XM3b2lhm7hQ505CwsaOpxoOYxuCCvrmzp2L5557ThTgdXd349FHH8WsWbOitnFDXdCZvmwq74wF9sA3I1ntcwg7xwWeYxYLUnfvZA+kh/M6ITbTF2nQ12FkghqdONM33jDwer5gsM0bIlnXZ7LahQZRSrkMyQFKzd2PYdcZV4XYwdNicwifObmMG/D9KNPncow6dw5Lvtb0seMaKNNHSPhGZuiF4x5X077Il0vEs6CCvrvvvhvbt2/H/PnzYbFYcPPNN2PhwoU4fvw4fve730V7G4cs0Zq+oIM+Ku+MllavWWUZPtY2pes0oozLYJA+0+d5DV/zBYcLcdDXE1EVA7tmLU2nFo1rCKW8M5BMvTTNXNq91vMFk+ktiWB+qHcTl4HeTxT0SdStNhEdYzN9tKZv2DAkqYT15d1mG3qtdlF5J2X6CAmfTMaJSzyHeLYvqCO83NxcfPjhh/j444+xf/9+KJVKjBkzBitXrhQau5DQGYMs78xPS4JaIYPF7kRrjxmdvVakDlASRULHzujL0Gt8ZvQGu7QTiG6mbzgHfWk6NVK1KnSarDBZ7WjuMotmK57o7UaPzYLCZAPU8sD7iV2zJlPyaOx1HbCrZXKM0kvTKIcN+iI5O+l9siMYxdkpwN46AKHP6msPoYkLAGiVwzPT19Rpwo3//RZqhRwP/myWKPs8ijJ9wwbHcchK0aK+3TX7s7nLRJk+QiQ0Lj8NO461AHAFfQvG5Q/yFkVPUEd4TzzxBM4991xccMEF0d6eYaWHKe9MCpDpk8tkKMrUCzNEqpq7MLUoM+rbN9ywHQwzktWiNVNuWSF07owWqef0iYM+eYBHxpdOqwn/PbAVZYZsnDFyvCSvOTIzGXtqXJ1Mq1u7haBvY8NRXPrlK7DzTnAA8nWpGKVPF/4r0qdhVEo6RiWnQ6tQirJnTdYO4fKY1CwoZNLsY1F5Z1/g5nTyuP6FDaioacNfLpyFJeWFA76OeEZfcCfxxB08I8v0DWS4rul78dsD2HioEQCw8h+fCc160nTqoPYbGTqyUzRC0NfUZRKt4c2hTB8hEWE7eK7dXYNrTh0v6t4+lAQV9K1btw7/+te/MGXKFKxevRpnnnkm9Ho60xip3iDm9LmV5KQIQd/RJgr6oqF/eaePoC8OhuBKnumzJV6mz+504OqvXsfWpuMAgG9W3YzRqZH/TozK1AtBX1VzN04ucZVifly9D3be1SmVB1Bn7ESdsRMbG6v6vUaZIRsWuQqwK6FSyLC99bhwn1SlnYDvTN93Bxvw6S7X+13//AZ8fPtZA47gYJvODNTExa042/P9H+qsPtG4hiAqFjReIxt4nh8WzYYONXYIl9nMzigq7Rx2clKSALQCcH0W2M9DDmX6CInI7FLPOvvNh0/g1jXf4amr5otGobR0m7Cnpg0VtW2o6Pu/jOPw14tmYe7YvMHY7LAEdYT3ySefYP/+/fjwww/xzDPP4C9/+QsWLVqEc845BwsWLICMZsSEhS3vTB4o6MuidX3RJhpQrdeIDqrd4qK8M5pr+pTxF/TV9LTjP/u3YFxaDi4YPQUyToYn93wnBHwAsLOlVpKgjx2Pcpg56K7p6ej/YD8OdjRBVqKGc38eUlNk+Pe+zcJ98/JKIt5Gt8yU/o1c2BEKZpsD1zz7NT777fKAYxjEmb7gMtmRZPpCGdcAuBrHKOUy2BxOOHkeVrtTdOJjqDre6ntWJJV2Dj/eHTybuzx/q3IMg/83iZBENrEwHTefXo6n1lUAAN7ffgwcx6EoU98X5LWisdP3Eor/fHNg6AV9ADB+/HiMHz8ev/3tb7Ft2zZ89tlnuP3226HRaPD9999HcxuHrGC7dwLUzCUWWr3a1vvM9MVDeafUc/riuLzzWHcbzvv8Pzhhch0Af1K9D5ePnYHHdn8jelxVd5uvp4esLM8gXD7U0CFcrjV6Ln901nVIUWpwrLtN/F+X6/88AC7FAi6nG7ZMHka7q5yxzJCFc4snSbKdAJDlo5FLjVegcLy1B7988Vu8dtMSvwOcwynvLEjXQaWQwWp3ornbjG6TFXptcOuMxWv6gns/rUoOm8n1WTfZ7MMi6Ktp8fxbKmScME6GZvQNP+zJxhOdPso7rcO3wREhUrh75Ukwmm148duDAID3fuxfxeNNr1HiZ6eMifamSSrk0/pHjx7F5s2bsWXLFthsNixYsCAa2zUsBNvIBRAPRKagLzqCaeSSNSQzffFZ3llv7MRF69YIAR8AfFV3GF/VHe732GNd0gR94/I8tf0H6jsAADzPizJ9JSkZSFVpfWYWH9n5FZ7Y8y0AgBvRhm6ZpwPoH2ecIdl6PsCrvLPvINA76AOAbw804KEPd+L350z3+TpseWew40jkMhlGZuhx5ERfyXlzN6aMzAjquZ0hzOhz06oU6DK5TpKZrPYhv6ats9eKTpNrP2mUcjx33ULc9spGAMBFsxPrIINELps52Vjb1oOOvt8hed+8zrZW42BtGiFDAsdxeOCCWTBa7HhrS2W/+zVKOSYUpKG8MB3lIzIwaUQ6yvIMcXXMFIygtraurg6ffPIJPvnkExw6dAhTp07FVVddhbPOOgvJyckDvwDxKdiRDQAw2ivoGy7rWmLJe21TilYplJW5xUV5p+TdO+NvZEOTqRs/W7cGtUZXUKGUyWBzirOaHFzr6wBXRlAKo3NShKzK8dYeGM029PIWWByu39VUlQapKv+fgVsnL8Bbh3ajwdIBTu4J+JYUjsWC/NGSbKObrzl9NW2eoO/U8fn4Zn89AODpLyoweUQGVk4f1e91wsn0Aa7vJHfQV9XUFXTQF2p5J+DdwXPoZzWOt3o6dY7ISMaS8kL8eP/5kMu4QR8ZQ2KPPdm4v87TUj4jWeM3g08ICY1MxuEfl85BfpoOe2paUZqbivLCDJSPSMfo7JQh8d0b1BHe4sWLkZ+fj1WrVuHJJ5/EyJEjo71dQ57D6Qwpw5KdooWM4+DkeXSbbbA7eSjlFPRJqVU0nF0DjuOQnqzGCaaWOy4auUid6YuzRi7t5l5c/MXLQsmmUibDC4suhsPpxK82vodOqyvA+ePJZ+BP2z4HAFR3SzNbR6WQoyTb0zTpUGMHkOz5XBToUgM+Xy1X4NzMmXi6dh3c52QUnAz3Tj9dku1jsd1l23oscDidqG3znPH/+yWz8bs3fsD6vtEKv3plI0pzUzG+IE30Om1hjGwAwm/m0sFm+oIY2QAMvwHt7Hq+kRmuE6vDoaSV+MaebHR/N3nfTgiJnEIuw50rpg32ZkRNUGHrmjVr8NVXX+H//u//KOCTSC+T5UtSKSCTBQ7gOI4TBXls9olIw7u8EwAyvcrd4qG8U8WMbLA5nHA6wx8iDniVdw7ygWWX1YxL178sDDOXcxyenn8+TisoxdIRZVh79g24ceJcPDP/fFw7bhY0ffPyOqwmtFt6JdmGcfniEs9aprRzRLJhwOenOPTgGz2Z+avGzZSkyYw3pVyGtL41cU6eR317r5DxU8plyDMk4emrFgjrgU1WO65+9ivROAlAPKoklExfcZjNXNj3Tws20zfMxjYcZ2byuYM+MnyxYxnYv/2+mo0RQog/fk/rf/TRR1i2bBlUKhWamprw0Ucf+X2RFStWRGXjhjK2E1CwB1oKuUxo3GGnoE9SJqsdvX0Hk0q5DHqNa40lm02Ry7igW9pHE8dxUCs8nwWL3RFRhi5e1vT12qy4cv2r2N3aAMBVvvno3HNwVtEE4TGFyQbcPX2pcH2UPh0H+gLE6u52pKkjb19elm8AdrguH2joQE6KJ0gpDCLoazdawNekw2mTY8H4PNx90pKIt8mfTL1GCKJ29g2XBYD8tCTIZTKkJqnwn58vwvJHPoHRYkd1Sw9ufPFbvHLjYqEsTJTpC3JNHyBuLlUVwoB2dk1faghr+tyGR3knm+mjbp3Dnb/gjjJ9hJBQ+D3Cu+OOOzBnzhxkZGTgjjvu8PsCHMdR0BcGds1GsH/UVQq5sA6QMn3S8s52uNdLso0tMvWaATOysaJWyiUM+gZ/TZ/ZYcO1G97AtuYa4baHTjkb55VMCfi8USmeoO9YdxumZhZEvC3jmA6eB+rbYSvwBCkjdIb+T/DS0WsFeA58gwFnnToFKnn09mmmXoPDfeVeO441C7ePSPdkh8ryDHjiinm47rkNAIAN++vx14924p5V08HzvOiznxbCSY1wm0t1hNW9kwn6bMMh08cEfZmU6RvutCoFUrRKoZmRWzxUnhBCEoffo5EDBw74vBxtx44dw7Jly/rd/sADD+CCCy6I2XZEW62PNRsDUTABB2X6pOVvXROb+YinP7CudX2uA4BI1/X1DvLIBpvTgRu+eRvfNRwVbvvTjGW4bOyMAZ87Su8ZPC5VMxe2vPNgQwdURk/QF2ymzy3amWF2jenOak+mb4TXd8ryqUX4vzMm4YnP9wAAnlrnauyycHw+rH0nD7QqBZJCCPrzUpOgUcphtjnQbrSg3WgJKmgUrekLupHLMCvvpEwf8ZKVovUR9FF5JyEkeEGt6bviiivQ1dX/TG5bWxtWr14t6Qbt378fAFBSUoLFixcL/xUURH4GP56wf9RHBHkmV8l0DrJKMJ+NeLSyg9mZclv2cnYcNHFxUzHNXCL9LAxmeafD6cSt372LL2sPCbfdMXURrpswO6jni4I+icY2FGUmQ9MXZJzoNKG6y9MkJpg1feFkssLFln3tqfH8/IU+TiTdsXwqTpvg+R79v5c3YtWjnwvXQw1QZTJONCg8mHV9Ticv3j9hlXcO7aCP53nUtlGmj4j5KuWMh8ZihJDE4fcIb8eOHTh+/DgAYOvWrfjwww/7jWc4cuQIjh07JukGuYO+6667Duedd56krx1PfHVnG4iSaeBBmT5ptXYznTuZA+l8g85zOU2HeKFhMh/mCDN9gxH08TyPr+oO47Hd32BXS51w+03l83DrpOBnf4ab6eN5HptOHEOGOgnj0nJE98llMozJTUVFTRsAHnVGT7e8giDKO9vDGEkQLjboY/8dC9P7f6fIZTI8c/UCnPnwx6hq7obJasf+ek9Am2sIfT1kSXaKMM/waHMXTirOCvj4brMNfF/foWSNMugW2MNpTV9Tl0n4nTYkqZAS5NB7MrT5CvpoTR8hJBR+j/BkMhl+//vfC/PgHnroIdH9HMdBp9PhxhtvlHSD9u3bBwDYvn07Nm7ciIKCAlx55ZXIzJS++91gCqd8hz1A8p5ZRiLDZh/YErXl04rw3+8OoKXbjKsWlA3GpvkkmtUXcdDHrOlTRj/o29fWiNs3fyA0bHG7etxM/G7a4pDmT7JBX3WQQR/P8/jdDx/j1cPboZTJ8OnyX2C8V+A3Ls/gCvoUTlicrmBKr1QjVTVwOZVoDl2QIwnC5a/keES67xMUqUkqvPjzRVj56GeiUrE0nRo3Ly0P+f1LRB08B27mEk6WDxhe3TurmfV83mW6ZPjynemj8k5CSPD8HuFNnToVFRUVAIDTTjsN77zzDtLT0/09XDLuTN///vc/4bYPP/wQH374IVJTA8/ISiQ1bHlnRnAZJLa800blnZJiDyTZdU3JGiU+++3ZwsmPeCGa1RfhgHZTjNf0/faHj0QBn0omx88nzMZvp50W8j7OS0qBSiaH1elAs9mIHpsFycrA2bV/7vkWrx7eDsB18uS9o7sxnukICjDr+tRM9izZENT2sWvWor2mz3ukiFugYKEsPw1f37MKe2pakaXXIj9Nh6yU8IY8F4s6eA5c3inKgoawb4ZTeWc4Tb7I0Ocz6KNMHyEkBEGd1v/qq6/83tfY2Ijc3FxJNsZisWD69OkwGo24/fbbkZWVhVtuuQU7duzAv/71L9x5550+n5eWlgSFIvYNKLKywvuD3NVrFQ5+1Eo5ykfnBNUVUqtWCpeTUzRhv3+ii8bPLWcOKtNSk+J+3+qYLIk2WR3R9rJZ4/yc1Kj+7CabDXuYgO+mafPxm5MXoUAf/gmdYkMGDra5Onh2KSwozvJfFfBSxVY8sutr0W2bm6v7/cwzx+W5LjBB3+j0zAH3jclqF0rzVAoZRhak+Q0UpdjPpSMz+t2mkMswaUxOwNLJrCw9poyN/Ht7WqknQ1rTbhz4Z2rwlJNmG4L/PctkS6sV8pD3Xbz/PrNamQzsuJHpCbXtrETd7ng1uiBNdF0hl6G0yPVdR/s69mifDw7a75EJKuirqanB3/72Nxw6dAgOh+uAhud5WK1WtLW1CSWZkVKr1fjnP/8puu3KK6/Ejh07sHPnTr/Pa2+XZihzKLKy9GgOYTYVa18d03AhTYdWJusXCMd7hnA3t/SgOSXymWSJJpL9Hkhbp+cz5LQ5/L6HzelAY28XUlQa6JVqyLjQsyNSkDGfhRPN3WHvk6wsPbpNnsyUxWiJyv5129FcCwfvCjJLUjJw16TFgBloNof/niOSDELQt+N4DfK5FJ+P+6b+CH65/u1+t+9sqsWBmkZkaDyBRV5fFopTew7As5XJA+6b+najcNmQpEZLi+/fbak+xwofa3vzDElobzP6eLT00pmTJYfq29HU1BUwG1rdt/4PAHQKedD7wMmUILd19oa076L1nREtB463CpeztKqE2na3RNvniUDj9XuVpdegtbWH9vUgoH0+OGi/BydQYBxU0PenP/0JdXV1WLFiBf7973/j+uuvR3V1NT777DP8+c9/lmxDLRYLamtrYbPZMG7cOACASuXKaNjtQ6ek53iYazZEa/qokYuk2GYoaqXvQK7e2IkVnz6HEybXv5+M45Ci1MCg1iJV5fq/QaUV/p+q1sCg0iJDo0NJSgZGJBugkEmTkdZEa01flBu57GmtFy5PSs+T5DWD6eC5t60BP9/wFux9Aef4tBwoOBn2tLmyjt83HMWq4knC4wvSdEjWKGFUseWdA2cjw12zFi5fa3pG+GjiEi3ZKVro1AoYLXZ0mWxo7bH4HSQNiNc7pobQ5GY4rekTdXam8k7Sx7u8M9DvGSGE+BLUEd7OnTvx7LPPYsaMGfj6669x6qmnYurUqSgpKcH69eslm59XWVmJc889FwaDAWvXroXBYMCGDRsAuNYYDhXhdO4EvNb0UdAnKTZw0vgpFX6mYqMQ8AGAk+fRYTWhw2oK6j1UMjnGp+XgoVPOxuSM/Ii2N3pr+qIb9O1u85R2TsqQJugr0nvKnnx18Kzt6cAV61+F0e7KaOYlpeClxZfi9cM7hKDvW6+gj+M4jMszYIfSMyy+MJjB7MxMv1AGnYcrSa1EkkohmrUY7BphKXAch+KsFFTUuvb70aaugAej7eyMvhCa3AzbNX00roH0yUkVB300roEQEqqgatPsdrswJ6+4uFgY1r5ixQrs2bNHso2ZMGECZs+ejY6ODqxYsQIXXXQR3nzzTaSkpOCaa66R7H0Gmyjoywz+TC4FfdEjCvp8dLDstJrwVqWnxDhJoez3mIFYnQ781FqP2zd9AJ4pzwyHShT0STmnL7prY0WZvggDX7dAYxs6LCZcvv4VIVhPUarx8uJLkZeUglPzRwuP+7a+st+/SVm+QbSmL5gZfe0xnNHn5h1kxTLTB7jGNrgNNKuvk+2SG1Kmb3iMbLA5nKhnliv4Gr1Bhqc0nRpyZu0/jWsghIQqqNP6RUVF+Omnn5CXl4fi4mKhq6fJZEJvr7Tr6Z544gk8+uij+Oqrr7B//37MnDkTd911F/LzpTlAjAc1zJncUA7Q2KCP5vRJS1ze2T/wef3wDvTaXeu7xhmy8cWKX8LOO9FlNaPD4sr2uf/faTEL1zutJtQbu3C0q0UIPPa1n8CG+iNYVFAa9va6t5HL7sK/jn+J4mIlTs4eGfLr2OwO2J2uYEcu40SfMamZHTYc6mgWrkejvLO629MoxOyw4doNb+BwZwsAV6b1+UUXCXP5pmTkI0WpRpfNgobeLlR2tWBMqmfOXGlOKmARd+8cCNudMpSgJhJZKVrRiaRYBwrF2Z4TV0cH6ODJZkJD697JlHfahm6mr66tB86+kw+5qVpRGTcZ3uQyGTL1GpzodFWWZKZQeSchJDRBBX2XXHIJfve738HpdGLZsmU499xzodVqsX37dkyZMkXSDUpNTcV9992H++67T9LXjSfiTF+Ya/poZIOkLAGCPrvTgRcPbBWuXzf+FHAcByUnR4ZGJ2oAEsgftn6G/xzYAgB4uuL7iII+jVIOqOzgRrXikAn407bP8cnyn4f8Or1epZ3RHEuxv/2EsKZulD4dKUHMvAtGYbIBco6Dg+fR0NsFk90GtVyO275/H1tOVAuPe3TuOZiTWyxcV8jkmJ1bjLU1rsqFb+orRUFfXqYGXJ3rAFzmlMGgGvjMeixn9Ll5j22I9Ww38ay+wEEfmwlNDWVOn3J4lHfSej4SSFaKVgj6KNNHCAlVUKf1L774Yvztb39DVlYWSktL8Ze//AU7d+5EZmYm7r///mhv45DC87zXjL4w1/TRcHZJme1seac46Pv8+AHUGTsBAOnqJJxTMgnh+PmE2VD0dfv84UQ1tjfXDPAM/9QKOaCzwB2jVXW1Bn6CH71MJksb5awCO6phskTr+QBAKZOLsnC/3/IJbt/0IT6q3ivcds9JS3FOcf9/N7bE87uGo6L7ktgmoJbg1jqyM/rSdLE5E+99xj/WQZ94Vl/gzmodYWZCh0t5Jxv0FdF6PuIlhwn0KOgjhIQq6K4Ny5YtEy6vWrUKq1atisoGDXVtRguMfQfaOrUipOHN4jV9ka0JI2JmJnvgnel7bv9m4fLlZTOgkYe+ng9wZaTOKZ6Ed47+BMDVGOaFRReF9VoqpQxckifA6LJZYHHYoZaH1ohFFPRFu4mLqHOntOXao1MyhdLONyt3ie67qmwmbpg4x+fz5ueVCJc3Nx6D1WGHqm8fWjizcJ/DLEdLt3nAYcii4eMx6N4JiBs6yGUc8gyxHeVSzGT6jjZ1ged5vxnjTlN8N3JxOJ1hDamXCtvZmQazE28XnTIGG/bXIztFi9MmFAz25hBCEozfo7x777036BehbF/walrFf9RDKacTBX0RdmwkQE1PO2797l102yzoVmoBcAA4UffOlw5uw/bmWgCAUibDlWUnR/SevyyfKwR9a2sO4HBHM0oNWQM8qz+1Qi4K+gCgzdKLvCTfM+r86bV65tBFf1xDdDJ9AHDDxDnY2VKLdou4k+qyEeNw38ln+P09G6VPx4hkA2p6OmC0W7G9uRazc0cBAGr7srsAwFuUONTYEVLQF4vunYC4kUtualLAoezRkJGsRopWiS6TDb1WO5q6TMhJ9R14ispf42xkw8c7q/GbVzdiRnE2Xv7lYshk0St19odd7x1KZ2cyPJx90ijsKs1FilYpauZFCCHB8HuUd+zYsRhuxvAhPpMb2h91BTVykUy31YyrvnoNB92NRVIB2WQl+DoD2h09MDsM+OPWz/Hq4e3Cc1aNmoRsbWRn38sM2VhaOBZf1B4CANy++QOsOe1SGNShlepolHLAK+hrNRlDD/ossencaXHYcbCjSbheLnHQNye3GNvP/w22Ndfgq9rD2NJUjbLULDwwa3nAzA3HcTg1fzReOeT6d/7oWIUQ9O1qqWN+AAUONXRi7tjA2y2e0xejRi5Mpi/WpZ2AZ2zDT31DxY82dfkP+tiRDaGs6WMzfRHOpfTnn2t3o8tkw1f76vBjVTNmjs6OyvsEIlrTR+WdxAeaz0cICZffoO/ll1+O5XYMG+wMpsIQD9BUCirvlILD6cSN373jCfj6cFobuDHNuHLTGsg3uxqDuE1My8Xvpy+V5P1vnjRfCPq2N9fivLX/wcuLL0O+buDh3wKZE5xGnPFotRhD3pZYlXceYJq4FOnTkBpEU5RQqeQKzM0txlymWUswzimeJAR9HxyrwB9OXoZem1Vo8AIAfKcWhxs7BnytWM/pA4C5ZbnCgPSzpobewVUKJdnioG92aW6/x/Ra7UKXXJVCFtLnLdrlnXaHE4caOoTrNa09gxL0VUdwUpAQQggJJKi/ujt27Ah4/0knnSTJxgwH4Q5mByjTJ5X7t6/D13VHhOsXjJ6Cdw7tAS/37FM24Fs1qhx/n7MSWoU0a7SmZ43AH2csw30/rgUAHOxoxqrPXsBrSy4PutSzje/fMKPFHEbQx3bv9DGfUCp72KHsEo1qkMqs7CIUJaehuqcdnVYz1h4/gBOmblidrgCF71EDJhUONXYO8Epemb4Yde/MSNbgh/tWo7bNiCkjM2Lynt5Kgmjm0trtWSOZmawJqbSdLbk22xxwOnlJyy+PtXSL5l02dIT+uxQpo9mG1h7XPlLKZTFfm0kIIWRoC3pkA8dxouHFHMeB4zjIZDJhbh8ZWE0EQR+7ps9KQV9YXjn0I57f/4Nw/ZZJ83HntMX4/JNedOqbwenNSM/k0G41QcHJ8LuTFuMXE+ZIPsrg+gmzkaHR4Teb3ofN6URDbxeu/OpVfHLWz5GmGfhgr9nevzV+mzm0mZmvHd6Of+/ZAi6dB9+WHNVM3+4oDGWXCsdxuGDMVPx919cAgLeO7EJdL7Oer8lV0ns4iKBvMOb0AUCmXotM/eB18/Nu5uKLO6ABgIwQS9RkMg4apVzIFJptdiSpw2uo5MuB+g7R9fr22Ad9NW3srEXdoDaUIYQQMvQEdZS3fv160XWHw4Gqqio88cQTuP3226OyYUNVTZgz+gBAIfcEHpTpC93Gxir8fsunwvUzR47HHVMXAQCsJoDvTAMPYPM/LoEFVsjABRWAhWt1yWRkanS4bsMb6LXbcLynAzd99w5eWnwpFLLA6+uabB39bgsl09dhMeGeLZ/A5nSCK+bAt+uiuqaPXR83Oc4yfQBwQckU/GPX1+ABfNNQKdyuU6hg7tTDCqCpy4R2o8Vv2abJq3wxSR3dxjjxpIQd0O4n6GthMn0ZyaGvS9JrlML+bTNaJA36Dta3i67Xt4d2AkUKx8Mc5UMIIYQEI6hTiQUFBaL/Ro4ciVNPPRV33303HnrooWhv45DhdPKis7kj0kNc0yf3HJTbKOgLydGuVvx8w5vCurLy9Fw8MfdcyPrm5lns4uHsGRpdVAM+twX5o/HPeauF6982HMVDO9YHeIZLvaW9322hBH2bTxwTZj1yCh7QWaKW6avubsO+9hMAAAUnw+TM+Mr0AUBBsgHzmPENbquKy1GalSZcD5Tt827iEs1B9/FmdE4qZH0/78GGDlS3+Cg/7vZ0Vg2nGUVemk643NAhbVB2gFnPBwD1g1DeSeMaCCGERFNE9SMZGRmorq6WaluGvNYeM6x960YMSSrotaGt+VGI5vRR0BesDosJV331GjqtrkxDjjYZ/1l0MZKUrv1vdzjhcLpKl+UyTlRGGwtnjByP/5u8QLj+732b8H7VHr+Pd/JO1Jr6B31tIQR9GxuqRNe5FFPUgr6PjnmGpJ+aPzoqTVykcOHoqf1uu6R0OsbmGYTrgZq5sE1cYjWjL16kaFVYNMETzL+x+Ui/x7T2eILicIK+/DTPSRipyy/3x0WmjxnXQJ07CSGESCzsRi49PT1Ys2YNSktLJd+ooarH7JmJlhJiwAcASqa8k4K+4NicDtzwzVs42uXqLKiWK/DCootFnTLNTAt49SDNPvrNlIXY29aIL92jHDZ9gNLUTEz0UQpZ09MBs9PW7/ZQMn0bG4+KrnMp5qiVd354zLPmd2VxeVTeQwpnjBwHvVKNbpsrOJmQloMpGfkYk9siPCZQMxfRYPYYde6MJxfPKcX6va4y3rd+OILbl08RrUsTZ/pCD/wLDJ5Mn5RBn9nmQFWTODPZ2mOG2eZwjUaJkUiafBFCCCEDCbuRC+Aq+3zkkUeismFDEdspURfGehQlU95Ja/oGxvM8/rj1M3zf6MlqPT73HEzNLBA9ThT0xfAgjyXjZPjnvNVY8elzqOxqhdlhx3Ub3sQnZ12PdI1O9Fh3qSQA8BY5OHXfOqcgG7k09nbhcGeL+Ea9BUqF9OWIRzqbhe1Vy+Q4vbBM8veQilahwrnFk/DSoR8BAJeNnQGO4zA21yA8JlB5Z3tv7Aezx5Ol5YXISNagtceM+o5ebNhfj8UTC4X7W7y6d4YqnynvrGuTLug70tgJJ99/BE5jhxGjskKbexmJSGa4EkIIIQMJq5ELACiVSmRnx36OUSIzWtigL/RSOsr0hea/B7cKB/CAK5u2YlT/TBO7nk87SEEfAKSoNHhh0UU4+9Pn0GOzoqanA7/89h28uuQyUWOX/WzQ16kFl+06WAw207exsarfbZyMRysG7k4Zqg+Z0s7TCsdCr4rvwcK/nbYYVqcDGRodLi2dDgAozfVkhQ95rf1yczp5VDENTGLZuTNeqBRynD+zBP/+ah8A4PVNR/wHfWGVdzJBn4Rr7g409C+VBlwlnrEK+nieF5V3jqA1fYQQQiQWVORRUFAw8IPIgIwWT0leOJ39RGv67BT0BbL1RDX+uO1z4fqqUeX41eRTfT7WzGRgByvT5zYmNQv/nLca13z9BgBXgPbgji/xhxnLhMfsa2/0PKFbA2QZAY6H0W6FyW6DVhE4i7yJWc8ngwxOuD5LtfYWf08JC8/zotLOVT4C7nhjUGvx9zmrRLcVZ+mhkHGwO3nUtRthNNsgk3HYWd2CbZVN2FrZhB+rmtBl8vx+x2pGX7y5eE6pEPSt21ODlm6zEOC1RDCyARAHfVKuuTvoNa5BeI8YNnNpM1qEk4I6tQIZycPvpAEhhJDoCiryqKmpwWOPPYbDhw/DarX2u3/t2rWSb9hQxJZ3hhP0KRXUvTMYPM/jvh/XCiVbUzML8Pc5q/x2U/Tu3DnYTh8xDr+eshCP/rQBAPDsvs0oT8/D6pLJALwyfb0qyOxyOJWuz1ab2YiCZIPf1+Z5XlTuOpobgcO8qxlTlfmEv6eFZX/7CRzpKyNNUiixuDAx1/+qFHIUZ6cIpZ1n/+NTVJ7oCvg7OHmQhqQPtrI8A6YXZ2F7VTNsDife2VqJGxZPBCAezh7OyIZoNXJhm7jkG5JQ39cZNJbNXMTzW/XDqvMrIYSQ2Agq8rjzzjtx4sQJnHnmmdBo4rs8K170WmzYU9OGGSVZQjMDUXmnKpw1fcycPicFff58dnw/fuobBq6WyfHvBRcEzH5ZmDV9sWzcEMivJi/A3rYGrK05CAC4Y/OHGJOaiUMdzajudh2k8jwAkxKcXQ70BX0tAwR9x7rbUGd0BS86hQojLYU4LHcFfdWmFvTarEJX00ixWb6lhWXQKhI3+1WamyoEfd6DvN2yU7SYOTobZ0weiVUnFcdw6+LLxbPHYHtVMwDg7S2uoI/n+YiGswNAbmoSZBwHJ8+jpdsMi80hyUka9t9z4YQCvLbpMIDYDmin9XyEEEKiLaigb9++fXj11VcxceLEaG/PkMDzPE7/68eobOrCFfPG4m8XzwbgCgTdwsr0MZ3wrFTe6ZPd6cDDu74Srl81bmbAIAgATHHQvdObjJPh8bnnYsVnz+NIZwssDjtWffa8MFsPANCrAngZeLtnm1stgbMT7Hq+U3KK4DwiB88rwSXZ4ASPrU3HsbBgjCQ/w9qaA8LlVXHctTMYM4qz8Omu46LbSnNTcXJJNmaNzsbM0dkoyqQMDQCsPGkUbn9tMwBXQGVzOGGy2oXvLJ1agaQwxoMo5DLkpmqFTFyDBI1Wuk1W1PUFd0q5DPPL8oSgryGG5Z2i9Xw0roEQQkgUBPWXt6ioCCaTaeAHEgBAY2cvKvuaOnxRUYu/9d3eG2EjF3ZNH3Xv9O1/R3cLJYV6pRo3l88f8DmWOOje6YtepcELC12NXbptFlHAl6PVo36v6+CQt3o+F619zVx6zDbsPt6KaaMyRfP32Pl88/JK8PnebvBmLbgk1wmJTY1VkgR9VoddGJMBAPNy+w8+TyRXLRgHi90Jo9mGGSVZmFGSHVaJ4nCg16qQk6rFiU4TnDyPhnYj7E5Pd8xwmri45afpROWXkQZ9B5nGPGNyUlHEBFyxLO+spkwfIYSQKAsq8rj33ntx//334+qrr0ZhYSFkMvHw6pNOOikqG5eo2INsdjafuHtnGOWdChrOHojZYcM/dn0tXL9h4hykaZICPMOFDfq0yugMKA/X6NRMPDl/Na7+6nXwABScDNeOPwW/mrwAYze8CQBwWGVwfzJaTEa0dJtw5sOfoLbNiHOmj8L/u8bVwMbJO0WZvrl5xXjPugN8lwbIdZ2k2HTimCTbXdPTAUffmsq8pBTJSkYHi1alwK/OmDzYm5EwRmYk40Sn60Th8dYeqJgMejgz+tzy03RAX+lonQTllweYoG9cvgF5zCxAKV4/WKLB7BT0EUIIiYKgjnCrqqpQWVmJ3/3ud/3u4zgO+/fvl3zDElkyE9AZLXbwPA+O48TdO8Mob1JSpi+gdyp/Qn2vK3jJ1Ohw3fhTgnpePMzpC2RJYRneOP1KbGqswspR5SgzuEalqBUyWOxOwObZ5hazEbe+tBG1fXPMPthxDPdfMAuZeg0OtDehra/8M12dhHGGbFfJcZcGPA9wHLCntR4Whx1qeWTBb1W3J8tXkjI8m5oMZ4Xpydh21BWc1bT2IDXJE/SHM6PPTepmLgfqPE1cyvIMyErRCJ1a240WmKx20Um8aPFu5EIIIYRILai/Zv/85z9x/vnn47LLLoNWG/5Z2uFCIZdBo5TDbHPAyfMwWe1IUiu9hrNHVt5ppaCvnx9OVAuXr58wGzplcG3P47W8kzU3txhzc8XNQdRKuSvoY9b0ba6qw859ns8JzwNf76vDBbNGi7N8ucWQcTJXybFDDlgUgMYOB8+jursNYw2RzeCs6moTLhenpEf0WiTxjGTKJI+39iDP4QnWwmni4iYe2xBZ0Levrg0f7jgmXB+Xb4BcJkOuIUk4adLQ0YuS7OjO6nM4ncL7AZTpI4QQEh1BRR49PT247rrrUFhYOPCDCQBX+aY7g9RjdgV9bHlnUhjlnSrK9AW0t61BuHxKTlHQzzPb4697ZzBcJXM28Eymb3dDM4Ac0ePW763FBbNG4/uGo8Jtc/NcAaRwIsKsBDSuy0c6WyIO+tj1fJTpG35GpHsCl5rWHlFpeiRrIUVBX0f4a+6+P9iAa579Gt195fcpWiVmjnb93uQZdEzQZ4x60NfYaRLK9TOSNdBpQv/bQAghhAxENvBDgGXLluHLL7+M9rYMKckaZl1fX1mnpMPZKegTMdmtqOwLNDgA4w05gZ/AMNviZzh7KIROozYms6dw/SxstmDDvnqYbDZRJtSdNXQ3F+JNngPNyq7Ih7RXMUFfsZ6CvuGGLVE83tqDNmZGXySNXAoiyPT1Wmz4/Kfj+M2rm3DJ018KAZ9eo8QL1y9Cmk7d9x6erGRdDJq5HG+h9XyEEEKiL6jIo6CgAI899hjWrVuHoqIiKBTip91///1R2bhEptd41rC4m7mYIizvVFLQ59f+9iZhGHtJSkZIjUMsNs++1MTJyIZgCFlJprwTSgeSVAq8cfNSnP/EWtR39KLTZMWbe/bCaLcCAAp0qRilT4fTyXs+k2ZP0OfufhqJqm4q7xzO2PLOmtZu0Vq8iLp3GkIL+mpae/D29iq890MlNh1qcJVDM3JTtXj1piWYUOD5jEpZQhoM0Xo+GtdACCEkSoKKPLZu3YrJk12d62pra6O6QUMFG9S5gz5ReWcYw9kp0+cfW9pZnp4X0nPjcTh7MISOiEx5JxROTB2VgeLsFCwuL8TL3x8CAHxw2NNsaV5uMTiOg4nJcCptarj3QqRBn8luEwbAyzgOI5PTIno9knjy03TCIPXGTpMoeIok6MvUa6CUy2BzONHRa0WvxSYqled5HturmrFuTy2+rKjF/vp2v69VXpiOF3+xCIXp4kCL7eDZEIOgjx3XMIIyfYQQQqIkqKDv5ZdfjvZ2DDnJzLoMX+Wd4WT6EmlNn7tjaaxUtDUKlyem54b03IQt71T2fR6cHGSQwQknODmP/HRXs6UlTNBX0VkH9B1rz81zzcxj50ZqnUlwH3pWdrVE9O9XzWT5RugMUEXYCZQkHqVchjxDkjD2YE+N5zMRSdAnk3HIT0sSAqW69l6U5qYK9//lgx14+osKv88fn5+GJeWFWDqpECeNyoRc1n+Fg6hDaATrBoMlHtdAnTsJIYRER1BHYzt27Ah4P83p608U9PVl+qQczm5z8AEeKS0n70SbuRdp6iSfB0msXpsVT1V8h5cO/ogxqZl4ePaKiJuCBGNvuyfoiyTTl1BBn1CKykHuUMApd5VvZqS5Pnvzxua6xjo47ehV9cAdws3JHQVAXG6cxKkgU6rRZbOgx2bFCVM3cpPCa2DBNnEppiYuw9aIjGQh6GPHokQ61D4/TScEffXtRiHo43ker206LHqsSiHDovJCnDo2D0vKC4PKpMW6vPM4U95ZROWdhBBCoiSoyOOSSy4Bx3HgeU+gwXEcOI6DTCZDRYX/M6vDFTt8XaryTtGaPqbjZDRUdbXiid3foqKtAVXdbbA47ChPz8Xbp18Fvar/QRvP8/jgWAUe2L4Ojb2uM9c/NtfgzE+exZ9mLMNlY2dELfNndzqwv/2EcD3kTJ+oe2fiZKXYANVu4YC+BIVe77o9Sa3EnLF5+Lr2CLi+j05paqYQzLHlnUkqJQpSM7GzpQ4AUNnVGnbQR+v5COBqSvLDkRP9bk+PNOjzs66vucuMdqMFgGsO6tNXzcf8sjyMGpGO5ubufq8TzOs3xCDTJ57RR0EfIYSQ6AjqCHf9+vWi6w6HA1VVVXjiiSdw++23R2XDEh2b6TNKVN7Jtj23O6Ob6fv9lk/xTUOl6LaKtkb86ce1+MecVeLbWxvwh22fYWvT8X6vY3HYcdeWT7CxsQpPzj8PSpn0mbTKrlZYHK4AJjdJjwyNboBniJmtiZ7pA5xWGbi+oE+T5Amul0wswIbuPcL1ubklwmUT83NrVQqMYYO+zpZ+cwE/O74fz+//AWeOGIdrx5/iN4inzp0E8L0+LU2nFp28Coe/TNyBBs/6vXH5BpwxZWRYr8+uG2w3WtBrtSMpSgPaLTYHGjtdgaWM41CQTkEfIYSQ6Ai6e6e3kSNHQqfT4b777sNHH30k+YYlumRRps8Oh9MpKnHShnEQEavunTzPY1drnc/73jyyE2eMGIelI8rQajbi4Z1f4bXD28GGoJkaHW4sn4u3juzCgY4mAMDH1ftw+dgZwnoyKVVE0MQFACxspi+BuneyASpvkwvlmwq157OxpLwQ9+4zCddPzvLML2TLO7UqOUanGITr3s1ceJ7H3T98jGazEVtOVGNPWwMenr0Sah/r9apoRh+B76xVpKWdgPdIBU/Qd7ChQ7hclmcI+/VlMg55hiSh7LKh3YjROakDPCs8tW09cBfQ5BmSIg6ICSGEEH8i+guTkZGB6urqgR84DOm9Grl4Z1VkstBLHRUxKu9ss/Si0+qaq6VTqLDnZ7/FylEThfvv2Pwhnqn4HgvefxKvMgGfgpPhFxNm49tzbsHPJ8zBx8uvxyxmSHp9b1dUtndfBE1cAK/unaoECvrYAJXp4GmFJ6OcmqIAp3Ot9eN5gO9UC/eJgz5Xps+t0ivo67KZ0Wz2HGD/7+huXPrly+iwmOCNyjsJABT6CPoiaeLixmb6/AZ9+YaI3oPt6Lm1simi1wrkOI1rIIQQEiNhN3Lp6enBmjVrUFpaKvlGDQU6r0YukZZ2AuLundFs5HLUK1OTpk7CX2Yux5YT1Thh6kGL2YgHd3wpes7C/DG47+QzMJoJHDRyJcrTc7Glbyh4mzk662NEnTvTQg/62AysOkEzfbB7PhvtVs9+/qGxGkIK0KjC5gPNOGfaGACBg74jXgPa3es0WT+cqMaqz57HS4svRZHeFdz12CxoMrkOZJUyGQp00cmQkPjnK9MnddBXzwxPPyRRpg8AlpYXYtNh1/fK65uP4OI50fk7R4PZCSGExErYjVwAV9nnI488EpUNS3TJGvGcvkg7dwKAnMkOOnkeDqczYDfNj3Ycw6Of/YTTJ43Ab8+eOmDnTTfvoA8A0jRJeGTOKlyx/lXRY0fp0/Gnk5dhccFYn2u8MtSeA7RWs/Sd8Hiej7i805ygc/rUzBpPNtPXwuzn7xuPCpf5Li2+rK8TxjGw2ecklQJF+nQoOBnsvBN1xk702qzCkPsGoydLm9LX5RNwradc+dnzeHHRJTgpq1BU2lmkT4ciCms4SWLIMyRBIeNE64+lD/qMwt8lqco7AeD8WSX4ywfbYXfy2Ha0CYcbO0WjIaQiyvTRuAZCCCFRFFYjFwBQKpXIzo5+K/5Elaz2zvRF1rkTcHVMdTcYAFzZvkBLQP783o+obTPiQH0HjjZ14akr5wfVqMRfy/3TCkpxw8Q5+NfeTdApVPi/yQtw7fhTfK7rckvXeNbftFqkz/TVGTuFUtQUpRojkg0hvwa7pi+hGrl4relzY4PrjQ1Vnsd0aVDf6fo8jC9IE3Xv1KoUUMrkKNKnobLv3/9oVyvKM1xBdCNTmru4cCyWFpbhto3vweJ0oNXciwvW/Rf/nLcaDqdnPWGxnko7hzO5TIaCdJ1o+LgUa/oMSSokqRTotdrRa7WjpdsMu9OJLpOrmiJFq0RuatIArxJYpl6LpZNG4LOfXM2p3vzhCH5/zvSIt90blXcSQgiJlaBSPwUFBaL/1Go1BXwD0Hmt6eu1Rp7pA8Tr+gINaHc4naL1Lh/vrMZV//4KvUyZqT++Mn1uv59+Or4952Zsv+A3uLF8XsCADwDS1Z6Dr/YolHf+1FovXJ6QnhvWWAgz82+TUJk+UXln/6DvRG83DnU2AwBkPAd0uw64v9xbC8CrvLPvtfyVeDaaPGVouUkpWFlcjjdOvxJpatcgeIvDjhu+eQtPV3wvPI6auBDv7JUUmT6O4zCxME24/t3BBhyo7xCul+UZJBkPcwlT0vnWD0ei0jyLMn2EEEJiJWDQt3XrVqxYsQKHDh0S3X7vvffijDPOwM6dO6O6cYmMzfQZvdb0JUUQ9KmC7ODZbrTAqxoXG/bX46KnvkRnrzXgewQK+ly3ZSJZqe53uy/s+IRWi3TlnfXGTtyz5RPc+t3/hNvCKe0EvLp3JlLQx64/tHouH+5sQZvZiE2NnixfcVI24HR9dr6scAd9/bvJjk5hgj6mmQub6ctNch2cnpw9Eh+eeZ2Q0eMB7G33rK+kwezEe2xDpgSZPgA4bWKhcHn93jpRaefYCEs73RaOz0dOquukRnO3Gev7fm+kRDP6CCGExIrfoK+iogLXX3898vLyoNOJ555dffXVKCgowNVXX42DBw9GfSMTkXf3TlF5ZwwyfS3dZuEy2wZ829EmnP/EWrR09++6CABO3oljTNBXoDWEva2AONMnVSOXbU3HMf/9J7Hm4DZYnJ7A5bSC8JotiBq5JGrQZ5ODN7rW31kcdrx2eAe+Z4K+ZaPGwp38+PFoM9qNln6NXAD47eDJNnJhh7YXp2TgwzOvw8zs/jPRqLyTeAd9GRJk+gBg8UTPGKGv99Vhf51nRl+k6/ncFHIZLpw1Rrj++ubDkryuW5fJKgyTVytkyE7RSvr6hBBCCMtv0Pf000/jrLPOwrPPPttvTt/MmTPxwgsvYP78+XjqqaeivpGJiB3O3m32Ku/0s6bPyQ9cPqSUe8qWrAGCvtYeT9A3vTgLfz7/ZOF6RW0bznn0c1H5p1u9sUsIpHibDBc89mXA4HIgGcyavjaJ1vS9U/mTMIwdAKZmFuCVxZdhQf7osF7PMhS6d4ID3+gJxv57cCu+b/A0cVlaVIppRa6Azsnz2LC/rt+cPgCi7qui8k4fmT63NE0SXlt6OVaNKhfdzr4WGZ5GeA0bz9RLE9iUF6YLWbh2owWf9q29A4BxeWn+nhayi2d7gr71e+vw328PwOmUpnPycWatY2FGclhjfAghhJBg+Q36du/ejSuvvDLgk6+55hrs2rVL6m0aEtg1fUazTbSWzteavnu2fILS1x7En39cGzD4UzJBSbCZvoxkDa5fNAGPXzYXsr50T2VTF1b94zNUnugUPY8t7YRJiYMNHaiobUO4UlVa4T07rWbYnJHPF6xkgpG/zDwLH515HRYWjAnwjMBE3TtV4WdhY807K6ntSUVWXzltY2836oyuf1udQoWpmQVYXO4pifuywjvo61/eebSrVWjMwmb68phMn5tGrsST81fjt1NPQ15SCm4unyfKCJLhybs5iRRr+gDXur7FTIlnj9nz/SpVpg8AirNTMHesawyMw8njrje34JzHPsehxo6IX/t4KzuugdbzEUIIiS6/QV9vb2+/sk5vmZmZ6OnpCfiY4UqrlAvBjsXuRAezjs67vHNfW6OrVNFhx7P7NuNP29b2G4/hpgxyTR8b9LkPtH42ewyeve5U4TXq2o0457HPsZcJ6tigjze7AtfmLt+loMGQy2QwqDxn99slyPaxYwFOLRgTUdMGnue95vQFN9YiHnhnJUemp+DyspP7PW5WThGUMjmWMAfJX++rQ4+FbeTi+kwa1FohcLQ47KgzdsLisAtjIGQch2yt77VHMk6GWycvwLbzf43fnbQksh+ODAlspk8u45CqVUn22qdNLOh3W5pOjawUaQJLt79fMhujczwnMLYdbcLShz7CPz7ZJaoSCBXbxKWIOncSQgiJMr9HuKNGjcLu3bsDPnn37t3IywuvecZQx3GcaFYfGzjp1OLyzrcrd4mu/+fAFvx919c+X1fBlADZ7KEFfQCwfGoRXvrlaUJmp6XbjPMeX4ttR5sAAAfbmz0v4g76mNcKB1vi2Rrhur5uqxknmOHfI3SGiF7PyuxDpVwW9CzDeNAv6MtIxuVjZ0DlNRtvbm4xAGDSCHFJ3ObDnqYrWibDyZZlVna1oInp3Jml0dHsPRK0nFQtTi7JAgAsnVQoaQnjgrI80fchAIzNTZWkcydrVFYKvrxrJX51xmTh/ax2J/7+6U84/a8f4ce+785QURMXQgghseT3CPfss8/GE088gZaWFp/3Nzc34/HHH8eyZcuitnGJju3geaKTDfo8B9g2pwPvVvUPrp/Y8y2eYdrfuwWb6WPX9HmXVC0cX4A3b1mKFK1r+zpNVvzsyS/wzf56bDpeIzxOikwfAKQzHTzbIhzQfqTd83kcpU+POEhL1M6dAKBWin/2ERl6ZGmTsapYvLZuXp4r6PMuiWvo8ATg7jV9QP9mLv6auBAyEI7j8OYtp+P9287As9culPS19VoVZo3JEd0mZWknS6OU484V07Dudytw0ijP78ehxk6sfPQz3P3mD+g2Be6K7I3N9I2g8k5CCCFR5veI+YorrkBqaiqWL1+ORx55BOvWrcPmzZvx+eef429/+xuWL18OvV6P66+/Ppbbm1DYZi5NXZ4D7CQmq/JV7WEh+5WbpBd1oHxwx5d4+eA20WsqFaF37/Q1EPnkkmz87//OEAJCk9WOK/61HlXdzJo+iTJ9og6eEZZ3HmYykVLMgTNbE7NzJ9B/e93ZgmvHnSLclqFJwvg0z4HxEmZdH0uU6UsRN3MJ1MSFkIFoVQrMGpMjOmElFbZkGYhe0Oc2viANH/7mTNx//kzhe5zngRe/PYiFD3yA9XuDH+twvIVd00eZPkIIIdHl96+wUqnEyy+/jHPOOQdvv/02br31Vlx99dX41a9+hQ8//BAXXnghXnnlFSQlJfl7iWGPDfrYTF8SkwF8iyntPL9kCv596oU4JadIuO3uLZ/gf0d/Eq77yvR1W8346FgFmk2eM8eioM9P84TyEel4/7YzkJ/mysRZHQ44lK6GCDwPwOwuAY0s0ydleScb9EkxB47N9CVS506g//a62+OXZ+ThzmmnYUJaDh6cdTZknOczs6AsDyof6xb9lXceoUwfiWOnlYvX9ZXlG6L+nnKZDNctGo9v7l0lGh1R39GLK/7fVzhQ3x7g2S48z4sHs9OaPkIIIVEWsFWhRqPBXXfdhdtvvx01NTXo6upCWloaRo4cKfm6iaFInOnrX97ZYurB+lrP4PsLx0yFVqHEf0+7BBd98RJ2tdSBB/Drje9Dp1DhjJHjRXP6bA4nmk09OOfzF1Dd3Y4ifRq+OPuXSFKq0BagvJM1OicVH/z6DFz05Beo7GoRZrmpnWqYeNd7NXdJl+lrjbC8U/JMn6hzZ2IHfWy24JZJC3DLpAX9nqPTKHHKmBx8e6BBdLuovDPFq7wzgzJ9JD6V5qRidE4KKk90QaOUY0JB7GZDFqYn4+VfLsb726twz1tb0W60wMnz2FvbjnH5gcdGNHeZhe+eFK0ShiR1LDaZEELIMBZUvY1SqURJSQmmTp2KoqIiCviCxDZsYYMLd/fO96v2wN43nmFG1giU9B1sJyvVeHnxpSgzZAMAHDyPG799B9/WV4oyfV1WMy5f/wqqu11nlqu72/Hc/s0ABi7vZBWmJ+O9287AyALPgce49CzhcnOEmT7Rmr4IyzsPtUkd9Hk6WGoSLdOn9J3pG4ivEk93904AKNClQi13XW82G3Gww7PPfY1rIGSwcByHZ65agAtmjcbTV81Hmi62wRPHcTh3RgmWT/VUZ/SYB17bR+MaCCGExFritCpMQGymj+UOBtnSzgtGTxU9Jk2dhNeXXo5ivevMtdXpwDVfvw6jsu9ggePx6OF1qGhrFD3vmYqNqOvuRGdfUwEZxyEtiLPIWSlaXLakWLg+Pj1buBxpI5cMdk1fBOWdPM8Hnelr6TbjgifW4sJ/rkO70eL3caLB7Am8ps+QpEJKkO3wvddBAeLyTrlMJtq3W5qqhctU3knizeSRGfjnFfNwFhN4xZq7KRYAdDEzA/2h0k5CCCGxRkFfFCX7GMIOuMo7m0092Nd+AgCgliuwYtTEfo/L1urxxtIrkN93oG122LFHuw+yskbIph3HgR5PiZ67hNJot+LhnZ5xDxnJ6qDbpB/v8axFGZ+RLcwZ7Oi1wmoPfx5VukaaRi4tZiO6rK4MZrJShSyN/4Oll747iO8PNeK7gw147ut9fh8n7t6ZOIPZAaAoU488g2vf+mvQ4ktxdgpGZ4uDN63XUHq2xNNk9xzEUnknIf2xJ/i6gujieZzGNRBCCIkxCvqiSOcn05ekUogGjJcZspCi8l2CWZBswBunXykMzHZwDnAGEzilp3PnndNOw2NzzxGuv1f9E6BxHXj4a+LirddmxY/Nx4XrY1IzkZ7syRC2RNDBM0PtKe+MZE0fOzi+JCUjYJlxBTNwfuOhRr+PS+TunUq5DGvvPBsv/nwR/nbRKQM/gbHYK0jUeq1nZJu5sCjTR0h/bJa92zRwpq++3fM9WJhOQR8hhJDoo6AvivQa3+V2OrUS1UxWrSg5cPOBkpQMvLr0cqR6BYYamRJ3nbQEN5fPx2kFpcIQbifPQzbC9fqZA6znAwCjzYIrvnoVhztdM/CUMhkmpOcgS68VHhPJ2AapMn1s0FesD7ye71BDh3B557EW9FrtPh9nZrt3KhPv1yErRYszpowUdYQNBlviqZBxUHmtZxzjI+hLVqqQrKSGE4R407NBXxDlnb0Wz/eRPsiybEIIISQSiXeUm0D8lXcmqRQ41uXJRI1KGbjj3IS0XHx81vWYiNFwHsmC46dC/LnkAtxUPg8cx4HjOPx++lLh8Vx6L6CyB+zcCQA9NgsuX/8qfjjhWbd157TFyNbqkZXieW5LBOv6REGfuRc8z4f1OmzQ5y8TBbjW6VU1exol2BxO7Khq9vtYN22ClXdGYtaYbBT0jeqYWNj/88eWd7pRlo8Q31KYqo5ghrSLugYnWAMpQgghiYmCvijy18hFq1LgWDcT9OmDazNenJKBcvlo8K3JgFkJu0McPE3KyMe8XE8zFi7VhAwmW+et22rGpV++jK1NnrLO309fihsmzgUAZIoyfeEHfRq5EjqF62y2nXeiy2aG0WbBv/ZuxCfV/tfbefMu7/SnsqkTTq/AcvPhEz4fyx58JdqcvkioFHK8cctSPHLFXLzw80X97ve1f6lzJyG+6bWhrekTrSVOsFExhBBCEtPwSW0MAl9r+pJUCshknCjoK9IHnunEYgdr2x3OfvcvLhyL7xurAACcoRcZyb7L8TqtJlz25SvY2VIn3PanGctw3YTZwvVsJtMXSXkn4Mr2GXtcB0Ot5l68cXgHntm7EQDw2fKfY1JG/oCvURVk0HeQKe1023TY97q+RO7eGakxOamYXV6IZiYr6pakVKFAl4o6Y6dwGzVxIcQ3tpS/J4jyTjNTbq4ZZt87hBBCBgdl+qIo2cc6K/eMvnAyfQDEw9md/YO+RQVjPFdSTTAk918v0mEx4ZIvXhYFfPfPPFMU8AEQr+mLcGwDO6C93dKLr+oOC9d3Mdvhj8PpFO2z4gD77FBDZ7/bdh5rFmX13Nigjw6+xLxLPKm8kxDfQh3ZICrvHEZl5YQQQgYPBX1R5Ku8U6dWoN3Si86+0QMauQI52uAzKEoZE/TZ+wd9o1MyoXG6MnScnEeHrEt0f7u5Fxd9sQY/tdYLtz04azmuHjer32tlpniCvki6dwLidX01PR041OlZY9fQ2+XrKSJ1xk5Yna4DpWxtMvR+up0CvjN9FrsTO471X9dnYoazD7dM30C8103mhvA5JWQ4ETVyCXFNH33vEEIIiQUK+qLId9CnRHU307lTnx5w9IA3JVPeafNR3slxHHRmT0am0uyZ5ddmNuJnX6wRDXT/2ykrcEXZyT7fK4tpAhP5gHbP2IZv6o+I1tw19vYvL/Qm6twZoLQTEHfunDLS89jNPkY3WOx08OWPdwdPyvQR4puebeRitg3YrIo92UQVBoQQQmKBgr4o8hX0JYXZxMVNKWfX9Pk5sOjwZOh+6qwBALSYenDhujXCQHgOwN9nr8SlY6f7fS+pRjYAQAaT6WNLO4HgMn2iJi4BxjWwnTs5Drh83ljhvs1H+jdzEXfvpIMvVr9MH63pI8QnlUIuBG8OJw+TnxExbvS9QwghJNYo6Isif2v6qkVBX/BNXACvNX0+Mn0A0N2kAO90ZQ+relqxq6UOF65bgwMdTQBcAd9jc8/BRaUnBXyvLFEjl8gyfWnMmr5Ws3hWX2MQQd+uVs+6v2A7d47MSMZpEwuE+7ZXNYsOtoDh270zGLSmj5Dgsdm+rgEGtNOaPkIIIbFGQV8U6XzM6dOplZJl+myO/o1Jeq12mCxOoMsTsJ239kVhDZ2M4/DEvNU4f/TUAd8rI1kDd+Vpu9His1tosDI0Or/3DVTe2W0147Pj+4Xrs3NH+X0s28RlbK4BeQYdirNcGSqzzYGd1S2ixw/n7p0DydYmC51l85NSkBng35CQ4Y5d19dlDryuTxT00cgGQgghMUBBXxQp5LJ+6zWSVArRmr7Igr7+5Z2tfWWYPFPiaXG4So3kHIen5p2H1SWTg3ovhVyGNJ1r5APPA6094Zd4suWd3rptFvTYLH7v/+BYBUx215nz8sw8TAkwrIMMaQAAL1dJREFU3oFt4lKWZwAAzC7NFW7b7DW6gc64+8dxHJ499UL8YsIcPLfwZ5DL6OuCEH/YTF/PQJk+pvyTKgwIIYTEAh3FRZn3uj6dWuE1oy+SNX39M2/uwIzvEAdZCk6Gpxecj5XF5SG9n3hsQ/hBHzuywZdAJZ5vHNkpXL5q0syAjW/YoG+sEPTlCLf94LWuj7roBTYxPQ/3zjgdUzILBn4wIcNYSpCZPrvDCbvTdcKO48SzVwkhhJBoibu/NjabDQ8++CBmzZqFqVOn4qabbkJzc/9W+4lC7xX0qVQcmkw9AFzjF/J1oa2TGmhNnzvTB4sSyQ5XOZ6Ck+H/nXoBzi6aGNJ7AV4dPCNY15c+QGlgg9F30Heg/YQwx08lk+OS8f4bzwDAocYO4fJYH5m+rZVNsDIdO2lOHyFECnpmVl93gEyfxau6IJTuzYQQQki44q6e7dFHH8WaNWuQnZ2NrKwsfPnll2htbcXrr7+ekH8cdV5Bn1XhKWMckZwGhSy0QEM1QNDHztObzU3BlKlqnFZQiskBSiIDyUqRpoOnr0yfVqEUyjYbTb7X9bFZvtNHlCFDq0Nzj+/HWmwOHGM6d5bmpgIACtJ0GJmRjOOtPTDbHPjpeCtOLsl2PcdOQR8hJHLiRi7+M30mOtFECCFkEMRVps9iseCNN96AQqHAu+++iw8++ADFxcXYuXMnfvrpp8HevLB4d/A0yzyBU1GInTsBcabPV3lnS4/49X81+dSwAz4AyGQyfS0RzOpLVWmg4MQft9MKSoXLvjJ9Focd/zvq+Xe/aEzgbqOVTZ1wOD2dO5NUnnMac0Tr+jwlnlTeSQiRgmhAu9l/ps9MM/oIIYQMgrgK+g4cOIDe3l4UFxcjKysLcrkcM2fOBADs3LlzgGfHJ+81fT3wjCsItYkLIF7TZ7UHKO+EOGALF5vpa4og6OM4DulMM5d0dRJOzh4pXPe1pu+L2oNot7jeMz8pBfPzSgK+h3fnTha7ro9t5mKhkQ2EEAmkaJigL0B5p5kyfYQQQgZBXAV9DQ0NAACDwSDc5r7svi/RJHuNbehyeoK+UJu4AIBSEXymLyNZgqBPtKYvsgHt7Ky+qZkFyGPmvvka2/DGYU+gf+GYaQN2jzzcyAR9fev53LzX9blLY6l1OiFECuyavkCNXLzX9BFCCCGxEFd/ccxmV1ChUHg2y33ZfZ8vaWlJUAxCliarb/5bIJkG8Vq2bibTN6WwIKjXYGWkexqicApZv+d3WTxnmEsK00J+fW+jCz2BaafZFtHr5elTcLBvQPy8ohKMz/cEYs1Wo+i1a7ra8U19JQCAA4dfzpyHrFTX/f62odXkWS9ZXpwpelxWlh4jM/U43tKNXqsdNd0mzCrNhc3pCZzzc1Ij3l+JaDj+zPGA9nvsxGJf5zPvYef9v6em3ShcTk5SDdnPwVD9ueIR7evYo30+OGi/Ryaugj612jUTzsEMHbfbXesfNBr/Wav29l6/90VLVpYezc2Bh4oDgNxrlF6jyZONSndqg3oNVi+Tyes1Wfs9v761R7iscvIhv743FbP99a09Eb1eiS4DG3AEADAtpQAaqydQr+1qF732v3ZvBA/Xm8/LK4bOqkRzc3fA/V7FZPr0cnm/x80anY3jLa7bPttWhRKDDr3M2htjlwnNCdgsKBLBfo6JtGi/x06s9jXHlNs3dRj9vmdjs6eUXcFhSH4O6PMdO7SvY4/2+eCg/R6cQIFxXJV3Zme7Oip2dHQIt7kv5+XlDcIWRU40soFzotXqCso4AIXJhpBfb8A1fT2ebJf05Z3hr+kDgFsnzccvJszB305ZgZOzRyJLmwxZX5DVbDbC2jdE3sk78SbTtfOiMdOCev16JvjPT+s/ImL2GM+6vk2HXOv6xN074+ocCCEkgQQ7ssFspXXEhBBCYi+ujnLHjx8PlUqFqqoqNDU1ISMjAz/++CMAYPr0wPPZ4pVoZIPBBHfibJQ+HWp56LtfKfccJPha09du9AR96RIEfWwzmLYeCxxO54Br6/y+ljYZ9844XbiulMmRpdHhRN/cwiZTDwqTDdjUeAw1PR0AXF0/l40cN+Br8zyPeqZsKi+t/4gItpnL1qNNsDuc1L2TECIJtpFL0CMbaB0xIYSQGImrTF9SUhLOP/982Gw2nHfeeVi1ahUqKysxbdo0TJ48ebA3Lyxs905Zpqf08uxRoQ9KBwCl3FN+6D2nz+ZwwmR1Zcs4DtCpI4/pVQo50nSuslsnz6ONySRKIZdp5tLQ18Hz9cM7hNvOLZ4MjVzZ73neus029Pb97FqVAqlM+3S3okw98vvWWPaYbdhT0yrKlqoVcfXrQAhJIMlMpq8nwMgGtpGLlqoLCCGExEjcHeXedddduPLKK2G1WlFTU4PFixfjySefHOzNCpswp0/uAAye8sPVxeEFsYoAw9nZAw29RinZMPtMCUs8veWKOnh2ocNiwufH9wu3XVwabGmnJ8uXb0jy+bNzHIdTmC6eX++vFy5rlHLJ9hchZPgJNtNHc/oIIYQMhrg7zahSqXD33Xfj7rvvHuxNkYQ708elG+GeTT45Iw+lhqywXk8VIOjrZg409Jr+ma5wpTBZM6PFHuCRoctN8iw4beztxvtVe2Bxus6ET0rPw8T04NZysuv58gz9SzvdZpfm4N1tRwEAG/Z5gj5aW0MIiUQKu6Yv4HB2mtNHCCEk9uIu6Btq3CWWHFPaubpkStivx2b6vNf0sQcaKT7KG8PFHpi4y0elkudV3rmpsUq4HmwDFwBo6GDX8/Vv4uI2h8n07TjWLFym9XyEkEhoVQrIZRwcTh5mmwNWuwMqHyeTaB0xIYSQwRB35Z1DjV6jAlQ2cCmutXByjsOqUeVhv54yQKaPLSli1xJGSqvynBtgD1ikwJZ3flV3GBVtrq6aarkC55RMCvp1GjqCy/QVZ+mRk6oFADicnnkUdMadEBIJjuNE3Zr9ZfvMVra8k867EkIIiQ0K+qIsWaMAl+nJQi3IH40sbXLYrxfsmj621ChSbEDEthuXQp7OE/Qd6WwRLp81cjxSVdqgX4cN+vIDBH0cx4lGN7jRGXdCSKT0TIVFt591fWY7lXcSQgiJPQr6oqwwXQdVjicgOS+C0k4AUCkCZfrEjVykwmb6pC/v9D1E8qLSk0J6HfG4Bv/lnQAwmynxdKODL0JIpFKY790uP7P6zDSygRBCyCCgoC/KjnS1wK5ylXbqFCosG1EW0esFWtPXY2YauURpTR/beU4KudqUfrcVJadhdk5RSK8TbHknQEEfISQ62LJ6f2Mb2GoJDTWQIoQQEiMU9EXZ+rrDwuXTCkqhVUQWjCmZwejsjDkA6DJHJ9MnbuQibXlnklKFVJV4iPyFY6ZCxoX20RQ1cjEEzvSNyUlBll78ntS9kxASKbaBlr+xDeKRDbSmjxBCSGxQ0BdlX9UeEi6fVlga8espFQG6d7LlnRJm+kTlnRJn+gDx2AYZx+GC0VNDen6P2SaUUqkVMmQkqwM+nuM4nOK1rk+jooMvQkhk2O/dLrMNJzp7ceOL3+L+936Es69xlIXKOwkhhAwCCvqiqMNiwo/NNQAADsCi/DERvybbvdPu5MHzng6U3Wx5Z4Jk+gBxieep+aORr0sN6fn1Xlm+YIaszxkrLvGkTB8hJFJsA60ekxWPfbYb7/1YhWe+3IsN+11zQWlOHyGEkMFAQV8UfVtfCUdfUDYlswCZEXTtdOM4DnKZJ6ixM2MHYpHpk3pNHwBMyvAMYL9i7MkhP7+BHcyeFng9n5t3B0/q3kkIiRS7pq/LbMO2o03C9ZrWbgDeQR9VGBBCCIkN+osTRevrPKWdiwsiL+10U8plcDhdBw42u0PI/kUr06cVNXKRPtN3Y/k8qOQKFOhSsTSMRjehrOdzG5tnQHqyGm09riY7dMadEBIpdk1fS7cZhxo6hOs9FtcJM/bEGZ1sIoQQEisU9EWJw+nE13VHhOunSRz0uYMvm4Mt74zOnL5ojmwAgBSVBr+esjDs59cHOaOP5ZrXl4tPdlUDoKCPEBI5dmTDj0ebxJUYfSflTFTeSQghZBBQeWeU7GqtQ5vFFYxkaXSiEsZI+RvQzpZ3JmukHNnAlndKn+mLlKi8M8igDwBOm1ggXB6REXnpLSFkeGPL6vfUtInu6+n7fmYbuWgp6COEEBIjlOmLkq+8RjWEOoIgEKUo6PMcQLDlnSmSDmdnG7lIn+mLlKi8c4DB7KyfnTIatW096LXYcekc6TKxhJDhiS2rdzJNtgBPJYZ4ODv9CSaEEBIb9BcnSr6qZYK+wrGSvraogydT3tklauQiZffOOM/0hTCYnSWXyfDbs6dFY5MIIcNQoAZaQtBnZef0UaaPEEJIbFB5ZxSY7DbsaWsAACg4GebnlUj6+kof5Z08z6NHNJxdwvLOuM/0sWv6gs/0EUKIlAKtpe7xkemjRi6EEEJihYK+KNDIFSjWpwMAzh89BSkqjaSv72tNn9nmEC6rFDJJDya0cZzp67Xa0W50deBUyDhk6qXd14QQEqxAJ9t8BX00soEQQkis0F+cKOA4Dh+edR0OdzRjcma+5K+vUjBBn90V6EUrywfEd6avod2zni/XkASZbODB7IQQEg2Byuq7zTY4nE7h5BzHAWoFnXclhBASGxT0RUmaOgkzc4qi8tpsps/udB1AdJmiM6MP8B7OHl+ZPlFpZwhNXAghRGqBvnt7zFZR5061Qg6Oo5NUhBBCYoNOMyYgX2v62Bl9UjZxAcTNBuIt6AtnRh8hhESDXCaDTu37XGq32UYz+gghhAwaCvoSkIIpYXSXd7Iz+qQu74z2cPZIsOWdedTEhRAyyPxl+4wWO3ot1LmTEELI4KCgLwGpFJ6DBU+mjynvlDrTpxBn+pxOPsCjY+tEpyfTl2PQDuKWEEKIeGxDskaJJOakWWuPWbhMTVwIIYTEEgV9CUi0ps/RP9OXEmBWVDhkMk7UcMBsj58Sz9Yei3A5M5mCPkLI4GK/fycUpInGOLR2M0GfijJ9hBBCYoeCvgSklHvKO619QV+XOXqNXACvZi5xVOLJnjmncQ2EkMHGfv9OKkxHMlNu39xtEi5TeSchhJBYoqAvASnlnoMFewwauQDiAxRTHDVzaWHOnGckU9BHCBlc7PfQ5JEZoiCwmfm+Uiso6COEEBI7FPQlIDbTJ6zpE41skLa8E0iMTF+GXj2IW0IIIcBVC8qQk6rFySVZWHHSKNFJuOYuJtOnojV9hBBCYof+6iQgn2v6RMPZo5Hpi79ZfU4njzZmTR9l+gghg21GSTZ2/uUCYQZfMvN9zFYmUHknIYSQWKJMXwJiu3dafTRyiUZ5p5ZpOhAvYxvaey1w8q5OoilapWi/EELIYGGHriermUYuTGWCloI+QgghMURBXwJi5/T5yvSlRKG8Mx4zfaLSTsryEULikGhNXxeNbCCEEDI4KOhLQEqmvNPXmr7kqHTvjL9MH9v+nDp3EkLiUTK7po/p3qmmTB8hhJAYoqAvAbFr+mx2H5k+ief0AXGa6WOCvnTK9BFC4hDbWItdg0xr+gghhMQSBX0JSKmIfaZPNLIhXjJ9NKOPEBLn2O9j9xpkgIazE0IIiS0K+hKQcoDundHI9LEjG+JlTl8rde4khMQ5f92UaU0fIYSQWKKgLwGJyjudTjidPHosnqAvWSP9wQR7Vtpsi49MXwuzPoaCPkJIPPIb9FG3YUIIITFEQV8CUnmt6TNabHBXDenUCshl0v+zapmz0iZr/GX6qLyTEBKPdP6CPirvJIQQEkMU9CUghVf3zq4oD2YH4jPTRyMbCCHxzn95JwV9hBBCYoeCvgTkvaavh2nioo/Cej4ASIrDTF9LNwV9hJD4Rmv6CCGExAMK+hIQm+mzDkamj7p3EkJIUJI1vk/EUaaPEEJILFHQl4BUXpm+bhMT9EUp0yda0xcH3TudTl408yo9WT2IW0MIIb75OxFHw9kJIYTEEgV9CUi8po9Ht5kp7xwmmb72Xosw8ypVq4KKOuERQuKQWimHStH/Ty1l+gghhMQSBX0JyHtNX7Rn9AFew9njINMnauJCpZ2EkDiW7ONkHDv7lBBCCIk2CvoSkFLBrulzoJtp5OLr4EIK7AFKPGT6xE1cqLSTEBK/fFVgUKaPEEJILFHQl4DEmT5enOmLVnkns6bPHAeZvrZuyvQRQhJDsrr/97KaStIJIYTEEAV9CUgh85rTF4tGLsyaPlMcZPpoRh8hJFH4qsCg4eyEEEJiiYK+BMQ2BbDZneiJRSOXOMv0seWdNK6BEBLPfJ2Mozl9hBBCYomCvgQk7t5JmT7K9BFC4hmt6SOEEDLYKOhLQP26d5pim+mLRvdOu8MZ0uNbmRl9FPQRQuKZz/JOCvoIIYTEEAV9Ccg70yce2RCdoC8pipm+rZVNmHL3W1jy4IfoYX6WQKi8kxCSKLxPxqkVMnAcN0hbQwghZDiioC8BqQIEfcmaaM3pE6/p4/sGo0vhlY2H0NZjwd66dry/vSqo51B5JyEkUXhn+mg9HyGEkFijoC8BKQKUd0Yr0yeTcaIGMhZ7aOWYgbQyWbuKmrbgnkNBHyEkQfQL+qhzJyGEkBijoC8BKeWesqCmLhNa+gIgjgNSotTIBQC07Lo+CUs8u5nuo3trBw76nE4ebcyavnQazk4IiWPe5Z20no8QQkisUdCXgJTMUN9usw3uSst5Y/OgVUWvbIg9O222SRn0ecpT99a1w+EMnEVs77XA2fdDp2pVUNGQY0JIHPMuu6fyTkIIIbFGQV8CUsp8/7NdPGdMVN9XnOmTroMnO3LCZLWjqrk74OPZ0k5q4kIIiXf9GrlQpo8QQkiMUdCXgBTy/l3fDEkqnDmlKKrvG7VMH7MmERi4xJPt3JlO6/kIIXGOyjsJIYQMNgr6EhA7p8/tvJNLon4gEY1Mn9PJo8ciHtMwUDOXNiboy9DTej5CSHxL1lLQRwghZHBR0JeAlD7WsF0ytzTq7xtOpo/neeyqbkFzl8nn/UaLZ02iW8UAmT5ReWeyNqjtIISQweKd6dPSmj5CCCExRkFfAlJ6lXdOGZmBCQXpUX9f0ay+IDN9z2/YjzMf/gRz7nvPZ+DX5WMYeyjlnZTpI4TEu2Q1rekjhBAyuCjoS0BymQwcE/ddPCf6WT4A0DKZvmBHNrz/o2vYeo/Zhq/31/e7v8drPR8ANHebcaKz1+9r0ow+Qkgi0ampvJMQQsjgoqAvQY3MSAbgGvp77ozimLwnm+kz2QbO9DmdPPbXdwjXjzR29nuMr0wfELjEs93omdFHQR8hJN7JZJxoQDsFfYQQQmKNgr4E9fRVC3Dp3FK8dMNpUR3Izgo101fd0i163JETPoI+H5k+ANhb2+73dduYoC9NR+WdhJD4x67r00RxniohhBDiC/3lSVDTi7MwvTgrpu8pWtMXRKZvX704cPMV9PUwmT6Og9DUpaKm1e/rtvV4gj4a2UAISQSU6SOEEDKYKNNHghZqpm9/nTjoq2rqgs3hFN3GDmafyDSj2VsXINPHrOlLp0wfISQBsJk+auRCCCEk1uIq6HvrrbdQVlbW77/q6urB3jQCcZvxoDJ9XoGb3cmjuqVbdBs7mH1GSRbkMleHmqrmLlEW0I3neVF5Z0YyBX2EkPjHZvq0FPQRQgiJsbgq79y/fz8AYPr06TAYDMLtSUlJg7RFhKUNcU6fd6YPcDVzGZOTKlzvZgK7LL0WY3JScbChAzzvChpnjs4WPb/XYhcCTo1SDi2tjSGEJAC9xrP2WkNz+gghhMRYXP3lcQd9f/vb3zBixIhB3hriTdS9c4A5fUazDce8snpA/3V9bKZPr1WivDAdBxs6ALjm9XkHfS3dnll/6To1OE48s5AQQuJRVopn/TE1oCKEEBJrcVPe6XQ6cfDgQchkMrz55pu47bbbsGbNGlitvrs7kthjmw8MlOk70Be4efMO+tiRDXqNK+hz8zW2oZUZzE4HToSQRHHl/DKU5qZi7thcnD6ZTmoSQgiJrbjJ9FVVVaG31zWQ+7nnngMAfPrpp9i0aRP+/e9/D+amkT5sKeVAmT52PV9OqhYnOl0ZuiMnukSP6zazmT4VCtKSheu+gr4WJuijzp2EkEQxLj8N3957zmBvBiGEkGEqZkHfu+++i7vuusvv/R988AFOPfVUpKen47bbbkN7ezuuuuoqbNiwARs2bMDChQv9PjctLQkKRewXxmdl6WP+noMpJ9MTkDm5wD//sbYe4fIFs0vx1Oe7AbgyfZmZyUJZptnu6eY5IjcVU0dlCtcPNnTAkJYEJfNv23qwXricl5E87P4NooH24eCg/R47tK9jj/Z57NC+jj3a54OD9ntkYhb0qdVqUXMWb6mpqXj22WeF6zk5OTjrrLPw6quvYufOnQGDvvb2Xgm3NDhZWXo0N/dfszaUWZnxCp09loA///YjJ4TLs4qz8F+NEj1mGzp7rdhX2YzsVC0AoLXLs0bPabHDabYjP02H+nYjLDYHfthbh3H5acJjWro8mT6dQjbs/g2kNhw/x/GA9nvs0L6OPdrnsUP7OvZonw8O2u/BCRQYxyzoW758OZYvX+73/q6uLhw4cADJyckoLCwEAKhUrm5nNlv/1v0k9oJd08fzPPYzg9knFKRhTE4KdlW7Bq4fOdEpBH3dJvGaPgCYVJiO+nYjAGBPTZs46KPyTkIIIYQQQkISN41c3n33XaxatQr33HMPeJ6HzWbDxo0bAQBTp04d3I0jAIJf01fXbhSGrqdqVcgzJInGNBxmmrmwIxtStK4gfyLTzGWv17q+Vq/unYQQQgghhJDA4iboW7lyJbKysvDDDz9g5cqVWLFiBQ4dOoTy8nIsWbJksDePANAwc/pMATJ97Hy+8QVp4DhOFPQdEQV9nkYu7uHFEws9mT3vZi6i7p00mJ0QQgghhJABxU3Ql56ejjVr1mDhwoVobGxES0sLVq5cieeeew4yWdxs5rCmZeb0mQNk+tjOnRMKXAFcaS4T9DW6gj6zzQFrXyMXpVwmlI9OGpEhPHZvbRt4nheui8o7dVTeSQghhBBCyEDiZmQDAIwePZrGM8QxbRCZvprWHry9tVK4Pr4v6BvDBH2H+4K+HrN4MLu7o2dhug4pWiW6TDZ09FpR125EYbqrc6iovJMyfYQQQgghhAyIUmgkaJoBMn27qluw/JFPUNk3i08h4zBvbC4AYFSmHnKZK6irazei12IT1v0BniYuAMBxnGhdX0WNp8ST7d5JjVwIIYQQQggZGAV9JGhs906TzS4qu/x4ZzXOfexzNPeVXyrlMjx62VyMykoBAKgUcozK9LSRrWzqQpdJPJidVe6jmQvP82hhMn1p1MiFEEIIIYSQAVHQR4KmkMuglLs+MjwPWO1O8DyPp9btwfXPb4DZ5sr+penUePOWpbhg1mjR80fnpAiXjzZ1oYft3KnxH/RV1LmCPqPFLqwB1KoUSFLFVXUyIYQQQgghcYmOmklItCo5bCZX4NVttuKhD3fitU2HhftLslPw8i8XoyQ7pd9zRzKZvto2oxBAAuLyTgA+yzvbepjOnZTlI4QQQgghJCgU9JGQaJQKYS3epc+sx+7jrcJ9p4zJwQvXL/S71q4wXSdcrmntQSbzOL1WHPSV5qZCpZDBaneits2Ijl4L2owW4X5q4kIIIYQQQkhwqLyThITt4MkGfBfOGo03bl4asLmKuwMnANS29fgczO6mUsgxNs8gXN9X2462Hiboo0wfIYQQQgghQaGgj4SE7eDpdueKaXj88rlQM41efBkhCvqM6PIxmJ1VXuAp8dxT24o2o6e8M4M6dxJCCCGEEBIUCvpISHRqT9CnVsjwr2sW4FdnTBZm7AXiXd7ZzXTv9M70AUD5CLaDJ2X6CCGEEEIICQcFfSQk58woBgBkp2jxzv8tw6rpxUE/N02nFoLGXqsdx1t7hPu8G7kA4mYue2vbRJk+mtFHCCGEEEJIcKiRCwnJ9Ysm4IzJI5FrSBJ13wwGx3EoTE/GwYYOAMD+unbhPl+ZvokFacLlQw0dmMRk/qh7JyGEEEIIIcGhTB8J2YiM5JADPje2xPNYS7dw2VemT69VCQPd7U4ePxw5IdxH3TsJIYQQQggJDgV9JKZGZHiaufC853a9j0wfIC7xrG7xlIOm66i8kxBCCCGEkGBQ0Ediih3bwErR9s/0AeJmLizK9BFCCCGEEBIcCvpITI3wE/T5GtkAAOWFFPQRQgghhBASCQr6SEyxa/pYvhq5AMDEwjSft6dReSchhBBCCCFBoaCPxJS/8s5kte9MX25qUr9B7EkqBTQDDIInhBBCCCGEuFDQR2IqK0XTL2BL1ighk/ke7s5xXL9sH5V2EkIIIYQQEjwK+khMcRyHgjRxiWeKn/V8bt7r+mgwOyGEEEIIIcGjoI/EXGGGuMTT37gGN+8Onuk0mJ0QQgghhJCgUdBHYs67mYuvweysiZTpI4QQQgghJGwU9JGY827mMlCmb3R2imgdIK3pI4QQQgghJHgU9JGY857V528wu5tcJsOEAk8zlzQq7ySEEEIIISRoFPSRmPMu7/Q3mJ01rSiTeb7vsQ+EEEIIIYSQ/hSDvQFk+Bnh1cglRRO4vBMAbjq9HIcaO5FlSMKKaUXR2jRCCCGEEEKGHAr6SMzlpGqhkHGwO3kAgH6A8k4AyDPo8NatpyMrS4/m5u5obyIhhBBCCCFDBpV3kpiTy2TIZ2b16YPI9BFCCCGEEELCQ0EfGRRsiedAjVwIIYQQQggh4aOgjwyKOaW5wuUpTJMWQgghhBBCiLRoTR8ZFL9cMhE5qVqMyEhGWZ5hsDeHEEIIIYSQIYuCPjIotCoFLp07drA3gxBCCCGEkCGPyjsJIYQQQgghZAijoI8QQgghhBBChjAK+gghhBBCCCFkCKOgjxBCCCGEEEKGMAr6CCGEEEIIIWQIo6CPEEIIIYQQQoYwCvoIIYQQQgghZAijoI8QQgghhBBChjAK+gghhBBCCCFkCKOgjxBCCCGEEEKGMAr6CCGEEEIIIWQIo6CPEEIIIYQQQoYwCvoIIYQQQgghZAijoI8QQgghhBBChjAK+gghhBBCCCFkCKOgjxBCCCGEEEKGMAr6CCGEEEIIIWQI43ie5wd7IwghhBBCCCGERAdl+gghhBBCCCFkCKOgjxBCCCGEEEKGMAr6CCGEEEIIIWQIo6CPEEIIIYQQQoYwCvoIIYQQQgghZAijoI8QQgghhBBChrAhF/Q1Nzfjrrvuwrx58zB9+nRcfvnl+Omnn4T7169fj7POOgvl5eVYvnw5NmzYIHr+nj17cM0112DGjBmYO3cufv3rX+PEiRP93sdut2PZsmUoKytDY2PjgNu1Y8cOrF69GuXl5Vi8eDH+97//+Xzc8ePHUV5ejqVLl4b2gw+yRN3vx44dwy233IJTTjkFs2bNwi9+8QscPXo0vJ0goUTdn5WVlbj++usxdepULFiwAPfffz96e3vD2wmDIFH3O+uBBx5AWVkZnnzyyeB/8BhL1P28ceNGlJWV9ftv06ZN4e2IGEvU/c7zPJ5//nksXrwYU6ZMwUUXXYSKiorwdkKMJOK+fvLJJ31+vuP9+8QtEfc54DoOueGGGzBr1izMmjULN954I2pqasLbCYMg0ff7zJkzccopp+CBBx6A2WwObyckiCE1p8/pdOJnP/sZdu/ejVGjRsFgMGDXrl1ISkrCBx98gN7eXpx33nngOA7l5eWoqKgAz/N47733MHbsWDQ0NGDVqlXo7OzEtGnT0N7ejmPHjqGsrAzvvPMOVCoVAMBqteLOO+/Ep59+CgD45ptvkJub63e7mpqacOaZZ6K3txeTJ0/GwYMHYTKZ8Nxzz2HBggXC406cOIFrr70Whw8fxsiRI/HFF19Ed4dJJFH3e09PD1atWoXa2lqMHz8ePM/jwIEDyMrKwscffwyDwRCL3ddPou7P3t5enH766WhubsaUKVPQ3NyM+vp6LF26FE899VRM9l0kEnW/s3788UdcfvnlcDqduPnmm3HLLbdEb4eFKZH38/PPP49HHnkEEydOFL3WrbfeinHjxkVxr0Uukff7Y489hn/9618wGAwYPXo0tm/fjoyMDHz++edISUmJ/s4LUaLu608++QSffPKJ6DkbN26E2WzGk08+idNPPz16Oy1CibrPrVYrli9fjuPHj2P06NHQaDTYu3cvSkpK8NFHH0GhUMRk/4UrUfd7R0cHli9fjpaWFpx88smorKxEW1sblixZgqeffjom+24wDKlM3759+7B7924UFhbik08+wZtvvin8o3/00Ud4+eWXYbfbcdttt+GNN97ATTfdBLvdjldeeQUA8Nlnn6GzsxMrV67EG2+8gY8++gi5ubk4ePAgdu/eDQDYtGkTVq9eLXzwgvHOO++gp6cHF198Md588038+c9/BgCsWbNGeMyrr76KlStX4vDhwxLukdhI1P2+ceNG1NbWYsaMGXj//ffxwQcfCMGK95moWErU/blr1y50d3dj6dKleOutt/DGG28AAL788ksYjUYpd1FUJOp+dzObzbjnnnvgdDol2iPRkcj7ef/+/QCA3/72t3jmmWeE/+I94AMSd793dnbihRdegEwmw+uvv47XXnsNy5Ytg1KpxJ49eyTeS9JI1H29fPly0ef6wgsvhNlsxurVq+M64AMSd59XVlbi+PHjKCwsxIcffoh3330XJ598Mo4ePYojR45IvJekl6j7/f3330dLSwsuu+wyvPLKK3j//feRlJSEL7/8Env37pV4L8WP+D6FEKLs7Gw8+uijUKvVwtmRzMxMAEB7ezt27NgBAJg5cyYA4JRTTgEA7Ny5EwAwb948pKWlYfTo0QAAlUqF1NRUNDY2oq2tDQDwyiuvoKqqCr/+9a/x6KOPBrVdA70v4DqTKZfLcf311+O5554Lcw8MjkTd7xMmTMAjjzyCrKws4TkZGRnCdg+WRN2fc+bMwc6dO2EymQAALS0tAACdTiecrYtnibrf3R577DEcO3YM48ePF4KTeJTI+3nfvn0AXCcy3nzzTZSWluKKK65AcnJyOLsiphJ1v2/btg02mw3FxcUoKSkBAPzzn/8MdzfERKLua5bJZMKf//xnJCcn4/bbbw9xD8Reou5zg8EAjuMAQPg/z/PgOI6+V6K436urqwEApaWlAICcnByUlZVh586d+OGHHzBx4sSw9ke8G3JB3/Lly4XrbW1twpmBqVOnCvW87rI99//dtcFjx47F2LFjhedv27YNBw8ehEwmw+TJkwEAZ5xxBu644w4UFxcH/eFzv773+xqNRnR3d0Ov1+OWW27BqlWrcPDgwYQM+hJxv48YMQIjRowQHl9VVYXvv/9e2O7Bkqj7U6/XQyaTQafT4aGHHsJbb70FtVqN+++/H0qlMvQdEWOJvN937NiBl156CcuWLUNpaWncB32JuJ8VCgWOHTsGAHj55ZeF561btw5vv/123H/GE3W/u9c26XQ6/OY3v8H69etRUlKCe+65B9OnTw9xL8RGou5rvV4vPPbdd99FXV0drrvuOuFkaDxL1H2el5eHO+64A4899hhWrlwplHf+4he/QGFhYeg7IsYSeb8DENYG9/b24vjx4wCA+vr6oH/+RDOkyjtZXV1duO6669Da2orRo0dj2bJlwgJN9x9n91kJd2aCtX//ftx8880AgNWrVwu1wytXrkRxcXFI2+J+X/f7sQcH7ve+8sorB20NmZQSbb+71dfX47rrroPVasXs2bMxbdq0kN4rWhJ1f65fvx69vb0wGAxwOBwhvU88SKT9brFYcPfdd0Ov1+MPf/hDSK892BJpP3d1dWHRokVYsmQJ1q1bhy+//BKjRo3C/v378dZbb4X0XoMtkfa7+/0rKiqwZcsWjB8/Hnv37sV1110XVDOHwZZI+9qN53m88sorkMlkuOyyy0J6j3iQaPvcbrcDAI4cOYKKigpoNBohW5ZIEmm/r1q1CklJSXj77bdx0UUX4eyzz0Zra6vouUPRkMr0uXV0dOCaa67B3r17kZqaiieeeAJKpRJqtRomk0n4BXP/X6vVip6/d+9eXHPNNejo6MDEiRNx9913B/3eL730En744Qfh+uWXXw61Wg0AwsGvzWYT7vd+70SWqPu9trYWV1xxBerq6lBQUICHH344xJ88OhJ1fwKus8TNzc247LLLcMcdd2DUqFGYNGlSCD/94Em0/f7444+jqqoKf/3rXxPqQCHR9rNer8czzzwjep0LL7wQDz/8MHbs2IFLL700hJ9+8CTafnffr1Ao8L///Q85OTm4++678b///Q8ffPABfvGLX4SxF2Ij0fa1208//YSjR49i2rRpQkYkUSTaPt+xYwceffRRFBUV4T//+Q94nse1116LBx54ACNGjMDChQvD2g+xlmj7Xa/X48UXX8Rf/vIXHD58GHPmzEFpaSk2bNgwpI7LvQ25TJ/RaMS1116LvXv3wmAw4L///a9Qs5udnQ3AtTAccH1IAYg6AB05ckT0wfvPf/4DnU4X9Pvv27cP69evF/5raGjw+77JycmicopElqj7vampCVdeeSXq6upQWFiIl156SXjeYErU/dnW1obOzk6kpKRg9OjRmDNnDniex5YtW8LfGTGUiPt97dq1AIDf/e53KCsrEzqlPvXUUzjttNPC3BPRlYj72Wg04tChQ6KRLu61qu4DmXiXiPvdHXQYDAbk5OQAgHACKZ4zfYm4r902btwIAP26A8e7RNzn27dvBwAsWbIEhYWFGDFiBJYsWQLA8+8Q7xJxvwOu8tO3334b27dvx5NPPgmr1QoAGDlyZJh7Iv4NuaDvnnvuQUVFBfR6PdasWYMJEyYI97nrg90HoFu3bgUAYV2A0WjEL3/5S3R0dGDcuHH473//G3LJ5V//+lccPHhQ+G/16tV+3/ekk04K/weNM4m43x0OB2699VbU1tYiLy8Pr7zyStzU0Cfi/lyzZg1mz54tdMmy2WzC2rJEyUAl4n6fO3cuFi9eLPznLoMpLi7G3Llzw9kNUZeI+3nTpk1YsWIFbrrpJlitVvA8j2+++QbA4K4BDkUi7vcZM2ZAJpOhtbVV6G5dWVkJIL4PzhJxX7u570+U6gy3RNznqampAFyz6twT1A4cOAAAoiZz8SwR9/vmzZuxePFi3HrrrQBcswZ37doFwNVcZqgaUnP6du/ejQsuuAAAUFBQIGqjPXfuXEycOBEXX3wx5HK5MC8EAN577z2Ulpbiueeew9///ncAQHl5uXBWEQCuuuoqoQuQW1lZGYCB54XU1tbi7LPPhsViwZQpU3DgwAGYTCY8//zzmD9/vuixW7ZswRVXXJFQc/oSdb9/+umnuO222wAAY8aMQVFRkfDcFStW4Mwzz4xkt4QtUfdnc3MzVq1ahdbWVkyePBldXV04duwYRo0ahffffz/uSyYSdb97e/LJJ/HUU0/F7Zy+RN3PFosF5513njBHVafTYf/+/cjPz8fHH38c0pnpwZCo+x0A/vCHP+DNN99ESkoKxo0bh23btsFgMODTTz9Fenq6BHtHWom8rwFX1qmmpgYbNmxImPLORN3n7Ly4sWPHQiaT4cCBA9Dr9fj4448DvnY8SOT9fvrpp6OzsxMnnXQSampq0NzcjPPOOw8PPvigNDsnDg2pNX3r1q0TLtfV1aGurk64npaWhksvvRRPPvkkHnvsMVRUVGDkyJG44447hDQ0G2RVVFQIH04AWLZsWdjbVVhYiBdeeAEPPvggKioqkJ2djRtvvNHnAVsiStT9zr7vkSNHRDNxysvLw37fSCXq/szKysJLL72ERx55BDt27IBarcbq1atxxx13xH3AByTufk80ibqf1Wo1nn/+eTz88MPYvHkzWlpasGjRItxzzz1xH/ABibvfAeDee+9FSkoK3nvvPezbtw9z587FXXfdFZcBH5DY+xqA0NAiLS0t7PeKtUTd5waDAa+//joeffRRbNmyBXa7HXPnzsUdd9wR9wEfkNj7/ZlnnsFDDz2EvXv3Ij09HTfddBNuvPHGsN8zEQypTB8hhBBCCCGEELEht6aPEEIIIYQQQogHBX2EEEIIIYQQMoRR0EcIIYQQQgghQxgFfYQQQgghhBAyhFHQRwghhBBCCCFDGAV9hBBCCCGEEDKEUdBHCCGEEEIIIUMYBX2EEEIIIYQQMoRR0EcIIYQQQgghQ9j/B8xrCGx0k6LBAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4UAAAHnCAYAAAAPc/jYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADIEUlEQVR4nOydd5wkZbn9T3Wenp6cdmdmcw5sZNkEEiUsQSWJioqA16wEAyhG8Hr151WvAa+iXsMVr3gFuWYRBd2FBZZdYIFddlk2x5ndyTOd6/dHT9e8b3V1ru6u7j7fz4cP1T3dPbU93VV13vM851FUVVVBCCGEEEIIIaQqsZV6BwghhBBCCCGElA6KQkIIIYQQQgipYigKCSGEEEIIIaSKoSgkhBBCCCGEkCqGopAQQgghhBBCqhiKQkIIIYQQQgipYigKCSGElB3nnXce5s2bp/23ePFinH/++fjyl7+M4eFhAMChQ4ekx8ybNw/z58/HihUr8OY3vxmbNm0yfO0f/OAHmDdvHu677z7p/n/913/Feeedl/D4t771rZg3bx62bt0q3f+Tn/wEy5cvRygUwh133CHtx6JFi7Bu3Trceuut2L9/f8JrBoNB/Nd//Rfe8IY3YOnSpVi9ejVuvPFGPP7449pjBgYGsGDBAjz44IPSc5988knMmzcPN954o3S/qqpYvXo1vve972nvzW233Wb4HsybNw8PP/yw4c8IIYRUHhSFhBBCypJ3v/vd2LhxIzZu3Ig//OEPuP322/H73/8eN998M4LBoPa4e++9V3vcP/7xD/zoRz+C2+3G+973Phw+fDjhdX/zm99g+vTp+NWvfgVxlO+aNWtw+PBhHD9+XLtveHgYzz//PCZNmoSNGzdKr/Pss89i1apVcDqdAIDTTz9d24+//OUv+PrXv46jR4/iuuuuw8GDB7XnBYNB3HTTTfjhD3+I66+/Hr/73e/wk5/8BAsXLsT73vc+fPvb3wYANDQ0YMGCBQlidOPGjZg0aRKeeeYZ+P1+7f7du3ejv78fa9eu1e77/e9/j7/+9a9Zve+EEEIqD4pCQgghZYnX60VbWxva2towdepUbNiwAd/97nfx3HPP4de//rX2uIaGBu1x7e3tWLZsGb785S8jEAjg0UcflV7zhRdewO7du/Gxj30M+/fvx+bNm7WfnXHGGbDb7ZII27x5MxoaGnD11VcbisJ169Zpt51Op7YfXV1dWL16NX7wgx/A5XLha1/7mva473znO3j55Zfxi1/8Atdccw2mTJmC+fPn46Mf/Sg+//nP49vf/jaeeeYZAMDq1auxbds26fdu2rQJN9xwAxRFwdNPP63dv2XLFjQ0NGDx4sXafVOmTMHnPvc5DAwMZPXeE0IIqSwoCgkhhFQMixYtwsqVK/GHP/wh5eNcLhcAwOFwSPc/9NBD6O7uxgUXXIBp06bhl7/8pfYzn8+HRYsWSSJs06ZNWLt2LdatW4ft27ejv78fALB371709vZKotAIn8+HK6+8Eo8++igCgQCi0Sh+8Ytf4Morr8SUKVMSHn/NNddg+vTp+O///m8AMfdyz549GBwcBACcPHkSO3fuxLnnnouVK1dKQvXZZ5/FmjVrYLNNnPo/9rGPIRQK4Utf+lLK/SSEEFLZUBQSQgipKObOnYtdu3Yl/fnJkydx9913w+v14vzzz9fuDwaD+MMf/oALL7wQAHDJJZfgr3/9K06dOqU9Zs2aNQmicP369Vi6dCm8Xi+eeOIJADFXrq2tDXPnzs1ofwOBAPbt24e9e/diYGAAy5cvT/r4M844Q9uHVatWweFwaLc3bdqEzs5OTJ8+HevXr08QhWLpKAC0tLTgzjvvxEMPPYR//OMfafeVEEJIZUJRSAghpKKor6/XwmYA4KabbsLy5cuxfPlyLFmyBOeccw76+/vx85//HB0dHdrjHn30UfT39+OSSy4BAGzYsAGhUEgKclm7di127NgBv9+PQ4cOYf/+/Vi/fj0cDgdWr16tiTAjAZaMhoYGALH+xHgZZ1NTU9LHNzU1aULV6/XitNNOk0Th+vXrAQDr16/Hnj17cPToURw6dAhHjx7Vfibyxje+Eeeccw4+85nPSO8bIYSQ6oGikBBCSEUxMjKCuro67faXvvQl/OY3v8EvfvELXHzxxWhsbMT73/9+LFy4UHreQw89hK6uLixZsgRALIFz9uzZUuDMihUroCgKtm/fjo0bN2LOnDmasFy/fr3Ww7dly5a0paNx4kKsvr4ejY2N0n1GDA4Oorm5Wbu9Zs0arc/xiSee0ITf/Pnz0dLSgqeeegpbtmxBV1cXpk6daviaX/jCFzA8PIyvfOUrGe0zIYSQyoKikBBCSEXx0ksvYdGiRdrt9vZ2TJs2DfPnz8eXv/xlLFq0CO9973uxb98+7TE9PT3YuHEjjhw5goULF2r/7dmzB/v27dMCZzweD5YtW4bnnnsOTzzxhCT81q1bh4MHD2L79u04ePBgxqLwpZdegtfrxfTp0zFt2jS0tbXh2WefTfr4LVu2YNmyZdrtNWvWYPv27di5cyd6e3uxZs0aAICiKFi7di22bNmCrVu3ptyfjo4OfPzjH8cDDzwghesQQgipDigKCSGEVAw7d+7Etm3bcNlllxn+XFEU3HPPPXA6nbjjjjs0B/Dhhx9GJBLBfffdh9/85jfaf7/4xS/gdDrxwAMPaK+xevVqvPjii9iyZYtUjjljxgx0dnbi/vvvx6xZs6TS1GSMjo7i4YcfxsUXXwyn0wm73Y7rr78eDzzwgOH8wv/7v//D7t278ba3vU27b/ny5YhGo/jVr36FxYsXa24jEBOqO3bswLZt29KK1GuvvRZr167FXXfdlXa/CSGEVBYUhYQQQsqS0dFR9PT0oKenBwcPHsRvfvMbvPvd78aqVatwxRVXJH1ea2srPv7xj2Pbtm24//77AcRmE65duxZnnXUW5s6dq/23fPlybNiwAY888ojWx7dmzRr84x//wODgIFatWiW99rp16/CnP/3JUICFQiFtf48cOaKNjgiFQrjlllu0x918880444wz8La3vQ2//vWvcfDgQbz66qv41re+hU9+8pP44Ac/iNWrV2uPd7lcWL58OR588MGE37t+/Xrs3r0br732muYgpuLuu+/GyZMn0z6OEEJIZeFI/xBCCCHEetx333247777AAC1tbXo6urCW9/6Vtxwww2w2+0pn3vVVVfht7/9Lb72ta9h3rx52L17Nz7ykY8YPvaGG27Aww8/jIceegg33XQTli5dCiDWX+j1eqXHrl+/Hv/7v/9rGDKzZcsWnHnmmQBiQq6jowNnnnkmvv71r0uuosPhwL333osHHngA999/P+655x64XC4sXrwY9957L173utclvPbatWvx5JNPaq8fZ9KkSejq6oLH45H6EJPR3d2N22+/HXfffXfaxxJCCKkcFDVeO0MIIYQQQgghpOpg+SghhBBCCCGEVDEUhYQQQgghhBBSxVAUEkIIIYQQQkgVQ1FICCGEEEIIIVUMRSEhhBBCCCGEVDFVM5Kip2eo6L+zqcmLvr7Rov/eaobvubnw/Sw+fM+LB9/r4sP3vDjwfS4+fM9LA9/37GlrqzO8n05hAXE4Us/JIubD99xc+H4WH77nxYPvdfHhe14c+D4XH77npYHvu3lQFBJCCCGEEEJIFUNRSAghhBBCCCFVDEUhIYQQQgghhFQxFIWEEEIIIYQQUsVQFBJCCCGEEEJIFUNRSAghhBBCCCFVDEUhIYQQQgghhFQxFIWEEEIIIYQQUsVQFBJCCCGEEEJIFUNRSAghhBBCCCFVDEUhIYQQQgghhFQxFIWEEEIIIYQQUsWUnSgMhUL413/9V6xevRrLli3DBz7wAfT09JR6twghhBBCCCGkLCk7Ufi1r30NP/nJT+ByudDd3Y2//vWv+NCHPgRVVUu9a4QQQgghhBBSdpSVKAwEAvif//kfOBwOPPjgg3j44YcxY8YMbNu2Dc8//3ypd48QQgghhBBCyo6yEoU7d+7E6OgoZsyYgba2NtjtdpxxxhkAgG3btpV47wghhBBCCCGk/HCUegey4ejRowCAxsZG7b74dvxn5cLAKzuw/Uv3oGXl6VjwoVuF+3fihS9+DqNHDic+SbGh66JLsPijdxRxT0mxiQSD2PbpOxAc6MeKe74CT2trqXcpLaqqYvu/3YOjf3sEyLGU29vZhaV3fR71c+eZvHeEEEIIISQVZSUK/X4/AMDhmNjt+Hb8Z+XCy9/4Kg7/+Q84/Oc/oOuiDdqF8Etf/wqOPPLnpM/rf/EFTD7vArSsOL1Yu0qKzOE//BZ7fvpfAADv5C4s++zdJd6j9PRsfgI7vvm1vF6j/6UX4aitxdrv/tCkvSKEEEIIIZlQVqLQ7XYDACKRiHZfOBwGAHg8npTPbWrywuGwF27nktDWVmd4vzo8qG0f/tLn4O/uBgAMPLkp7Wse+rcvIDKPbooRJ0q9AyZwTCiFPvrgA+gMl27BI9P38/DLL5vy+/o3/RMnPv0xU16rXKmEz3C5wPe6+PA9Lw58n4sP3/PSYOX3fdKb34yWc88t9W5kTFmJwvb2dgBAf3+/dl98e/LkySmf29c3WqjdSkpbWx16eoYMfxZ1uLXtYG8vgi4XACA8Nqbdv/Z7P0LdzNkAgFd//EO89vOfAABGjh9HsKmpULtNSkygr0/bHj55EoHjx6EoSgn3KD2jwliYWe+8EbOuvyHj547s34dNN78DABAaG0PwhJUP8YQQQggh6Rk8OYBoEh1QSpIZVmUlChcsWACXy4W9e/fixIkTaGlpwZYtWwAAK1euLPHeZYfD69W2ReczKmw3LV6CupmzYttLlgI/j90fEIQjqTzCoZC2HY1EMDY0BG99fQn3KD2B0YlFl+aly9G0+LSMn+sWFjgi484/IYQQQggpHmWVPur1enH11VcjFArhqquuwhve8Abs2bMHy5cvx5IlS0q9e1lhrzEWheK2KBxru6do2xSFlU0oGJRuDw8MlGhPMicg9PR6O7uyeq6jbmLFShTEhBBCCCGkOJSVKASAO++8E+985zsRDAZx8OBBnH/++fjWt75V6t3KGlHwRZM4hfZkonC0+KWwpHiEy1EUCgsV3q7urJ7r9E2IwmgkAjXH9FJCCCGEEJIbZVU+CgAulwuf/OQn8clPfrLUu5IXkigcL5lTVVUqn3MIbqK3e+JCOzA2BlVVLd9nRnJD75aNCD20VkRVVQRFUZilU6jYbHD46hAejtXdR8JhOJxOU/eREEIIIYQkp+ycwkrBbtBTqEaj2n2KwwmbcGHs8NbC1dQce5yqIhgIFGlPSbExKh+1snsWDAS0/XM1NkkLHpniFEpIIywhJYQQQggpKhSFJUJ0AeMlo3I/YU3Cc8SyvCBLSCsSVVUTykejkQj8IyMl2qP0SC5hV3YuYRyxhDTMsBlCCCGEkKJCUVgijJzCaJKQmThiX6GfYTMVSbL0TSv3FUr9hMJnNBucQroqE0gJIYQQQooLRWGJMOopFC+GxXTSOF6GzVQ8epcwzrCF+woDefQTxhGdQpaPEkIIIYQUF4rCEmE0p1ByCmtrE55T2yWHzZDKQ99PGGckjVMY9PtL9pnIJ3k0jjSWgk4hIYQQQkhRKbv00UrBnq6nMJ1TSFFYkYjJo74ZMzG89zUAE2Ez8cRZVVUx3N+PU8ePo+/YMYwMDgIA5p9xBlomTSrqPueTPBpHCpqhKCSEEEIIKSoUhSUirVPoTXQKpbEULB+tSMTy0abTliLYdwrB/n5EQiGMDg3BPzqKvmPHcOr4cYQMEmhPHjlSdFFohlPorBN6Clk+SgghhBBSVCgKS0T6nsLE9NFaOoUVj1g+6mpqQtNpS3H8n48DAJ577LG0z0/Wk1hITOkpZPkoIYQQQkjJYE9hiRDLRzNNH3W3tMLu8cSeEw4nDDkn5Y/4N3U3NaNpydKkj3U1NGDaNddh0e2f0O4LFfkzEY1EJhxLmw01kybn9DpS0AxFISGEEEJIUaEoLBGGTqEgCu0GolBRFKk8j25h5RGWnMJmTDrnfOnndbPnYP4HP4LzHv4j3vDSHqz55ncx9Y1XGT6/GAT8fm27pr0DNkduxQcODq8nhBBCCCkZLB8tEYY9hYJDYtRTCADerikY2vMqgFhfYa0w342UP1L5aGMT2tefhbN+9j8YO3oUHWedDd/0GQnPcTc1a9vFFoVBE2YUAoCLcwoJIYQQQkoGRWGJ0KePqqqqSx9N7CkE2FdY6Ujlo81NUBQFnRdclPI5zsZGQFEAVUU4FJJSSguNHDKTWz8hADiE8lGWRRNCCCGEFBeWj5YIm8MBm8ul3Y5Go1JPoVH5KACWj1Y4YZ1TmAk2ux2uhgbD1yg04mewNsfkUYAjKQghhBBCSglFYQnR9xWmG0kB6GYVcixFxSEKOrEsNB0u4bHFDJsRRWFNJ0UhIYQQQkg5QlFYQkQ3MBqJSBfDRumjAFDbTaewkhEFnStHUVhMpzBomlPInkJCCCGEkFJBUVhCHDUTbmAkEpHLR5P0FHrZU1ixqNHoRPKmosAplISmw900UWpaqvLRmhxnFAK6OYXsKSSEEEIIKSoUhSVEFH6RSEQOmknWUzi5MxYqAiDo9yMajRZ2J0nREMWQs64eNrs94+dK5aNl2FPoqPVp2/HgJUIIIYQQUhwoCktILj2FNqdTGhAepFtYMcilo5mFzMQpxViKcCiklXra3G64mjMvd9Wj2GxSAilLSAkhhBBCigdFYQkRhZ++pzBZ+SgAeIW+Qj9FYcUghcxkKbBK4RRK4yg6u/Ieg+Gs5wB7QgghhJBSQFFYQvQD7KMZlI8CcpkeE0grh1zGUcRxNws9hUUSVFLITB6D6+M4fRNhM2E6hYQQQgghRYOisISIbmA0HNb1FBqXjwIMm6lUch1HAZQmfVR0JN2trXm/njSWgk4hIYQQQkjRoCgsIQlOoVg+msoppCisSHIdRwHIIrJY5aOiI+lqaMz79ZzsKSSEEEIIKQkUhSXEru8pFJ3CVD2FLB+tSKTy0SyDZkrhFJouCutZPkoIIYQQUgooCkuIQzeSQppTyPLRqkMUWe6s00cnHl8Kp9DZ2Jj36zlYPkoIIYQQUhIoCkuIWD4qujs2lyvljDopaGZsjDPdKoRQHkEzklMYChXlMxFh+SghhBBCSEVAUVhCRDcwFAho246a5P2EQGywubOhAQCgRqPSc0n5IpePZtdT6PB6Yfd4AMQ+E6LrXChMLx8VnEKWjxJCCCGEFA+KwhIiOoWiS2T3Ju8njMOwmcpDLh/NfhB8sWcVyiM0GvN+PWfdRE8hnUJCCCGEkOJBUVhCxJ5CySlM0U8Yx6srISXlTz5BM/rnFCNsRuopHHeu84EjKQghhBBCSgNFYQmxJ3EKMxKFolPIBNKKIJSnKHQXOYFUKh+tN1kU0ikkhBBCCCkaFIUlRBR/sihM3VMIsHy00ogKfYCK3S6VUmaKVD5aBKdNEoVmpI8KQTNhOoWEEEIIIUWDorCESOJPSIu0pwmaAVg+WmlIpaMNjVAUJevXcBexfFQvYkVBlyvinEI6hYQQQgghxYOisITYkwyoz9opZPlo2ZNvP2HsecULmpH6CevqcxKxejiSghBCCCGkNFAUlpBkvYP2DEQhncLyRVXVhJERYrmnqzn75FGguD2FZpeOArqRFCwfJaTocOYtIYRUL45S70A1k8wRzMQp9LS1w+ZyIRoMIhwKIRwOw+Hgn9PqBMbG8MI//4loJIJFa9fCNy6oRBGXyzgKQBaThRaFEWkcRW7Oph4GzRBSOgZOnsSuZ59Fjc+HRWvWQLFxzZgQQqoJHvVLSLLy0Ux6ChWbTXILgywhLQuO7t2LoN+PcCiEo3v3aveHTRBZYk9hoYNmzB5cDwCOWh8wXoYajUToWhBSRI7s2YOg34+B3l4MnDxZ6t0hhBBSZCgKS0gy8ZeJUwiwhLQc6Tt+XNse6u/XtkeHhrRt7+TOnF7bVaLyUWdj/uMogNhCh9Pn025zViEhxSPo92vbLN8mhJDqg6KwhNjsdtg9noT7MxWFYtiMn6LQ8vhHRyXxNzY0pF18DfX1afc3r1iZ0+uXrKfQhBmFcRxiXyFLSAkpGmI4VTQaLeGeEEIIKQUUhSXGyC3MySlk+ajlEV3COMMDA4hGIhgeGNDua1mxKqfXL1X6qFnlowDg9HEsBSGlIBQIaNsqRSEhhFQdTCYpMY6aGgT75Psy6SkEAC8H2JcVhqKwrw82m027CPNNmw5Pa2tOr+9saIj15KkqIuEw1Gi0YGERohPpNCl9FACc9ULYDEvYCCkK0UhESkTWpyMTQgipfOgUlhi7wViKXMpHKQqtTSQcRn9vb8L9Q319GDp1Srvdsmp1zr/DZrdL4yEKGTYjlnYWyilk+SghxUFfWUCnkBBCqg+KwhJjJAAZNFN5DPT2ahdaDmFI+3B/v9RP2Hr6GXn9nmKFzchpqY2mvS7HUhBSfPSikD2FhBBSfVAUlhgjAZhx+Whnl7YdHBvjidzCnBJKR2dd/044xh3ioN+P/p4e7Wctp+fWTxinWGEzheopFINmWD5KSHEIC/2EAEUhIYRUIxSFJcZoVmGmTqHd7YanY5J2W4wUJ9ZBVVWpn7DzwovRtHSZdjvuiDlqvGiYvzCv3+USZxUWUBSKgs1pZvloHYNmCCk2LB8lhBBCUVhiHAY9hfYMRSHAEtJyYHRwUBPsTl8dWletRsvyFQmPa16xEja7Pa/fJTmFhewpFJ3CApWPsqeQkOLA8lFCCCEUhSXGuKcwUSgmQwqb4VgKSyKWjk46//WwORxoXp44izDffkKgeGMpCjWn0Olj+SghxYZOISGEEIrCEmPkCjoMSkqT4e2a6CukU2hNpNLRCy4EADQvS3QK8+0nBAC3UD5aqJ5CNRqdKO1UFDjr61M/IQsYNENI8WFPISGEEIrCEuMwCJXJpnyUYymsTSgQmEgXVRRMPvcCALGyX097h/TYXIfWixQjfVR0CZ11dabOQhQFJkUhIcUhoXyUcwoJIaTqoCgsMYbloxmmjwK6AfYsH7UcfSdOaNstK06Hu6UFAKAoCpqFvsK6mbPgbm5OeH62iJ+nQl3YFSp5FJDLRwtZ/koImYDlo4QQQigKS4zeFbR7PFk5LwyasTaiKOx8/UXSz1qEvsJ8htaL2NxubTuqqqa8ph45ZKYpxSOzR/w8+0dGTH1tQogxDJohhBBCUVhi9P2Ddk/m/YQAUNs9VdsOjI1BLZAQINmjRqOSKJw83k8YZ+bb3gHfzFnwtLVj3ns/YMrvtDld0u8vBIVKHgUA34yZsDmdAGIjVgqZoEoIiaHvKaRTSAgh1Yej1DtQ7dh1SaOZziiM46yvh8NXh/DwEKKRCMLBIJyCW0RKx2Bfn5agWdMxCY0LF0s/97S2YcPGZ6BGo3mPoohjd02IwkKt9ocLNKMQAGwOB+pmzcbAzh0AgNGhIdSbUFZLCDFGVVWEdIsvdAoJIaT6oFNYYvQi0FGb+TgKINabVtvNElIroh9YryhKwmMURTFNEAKAzVVkp9BkUQgA9XPna9tjQ0Omvz4hZIJwKAToKkzoFBJCSPVBUVhi9KJQ7xxmAsNmrIk4n1BfOloobEVwCiNS+ah5MwrjNMybEIWjFIWEFBSjQCc6hYQQUn1QFJYYuy5pNJsZhXEYNmM9/KOjmstlc7nQcebZRfm9RXEKhYtIp4mD6+PUz52nbY8OD5v++oSQCfT9hABFISGEVCMUhSUmoXw0y55CQJ5V6KcotARi6Wj7+tfl9HfNhWI4hQUvH50jiEI6hYQUFCOnkOWjhBBSfVAUlhgzykdrWT5qOcTS0c7XF6d0FADsZZ4+CsRmNiqOWAZWcGyMCaSEFBCWjxJCCAEoCkuOI8/0UYDlo1YjEg5joLdXu915wUUpHm0u0pzCMnUKbU4n6mbO1m6PsYSUkIIRNhKFkUgJ9oQQQkgpoSgsMXb9nMJcegpFp5CisOQM9PZqLl39nLmonTI1zTPMIz7jDyiOU+gsgFMI6PoKWUJKSMEIGfQUsnyUEEKqD4rCEmNGT6GnvUMrtwsHg4iEw6bsGzEmFAzixSeewPaNGxH0+xN+fko3iqKY2Fzl7xQCTCAlpFiwfJQQQghAUVhy7B7ZGdSXk2aCzW6Ht7NLu023sLD0HDyIgd5eDJ46heMHDkg/U1VVnk9YxNJRALC5iusUFkoUik5hqlmFo4ODePmpp/Dso4+iv6enIPtCSCXDoBlCCCEARWHJUWw2aSxFrimVtSwhLRoBwR0M6t7r0cFBzT101tWj5fQzirpv9gI7haqqSnMKnfX1pv8OIP1YinAohL0vvohtjz+OvuPH4R8ZwaHduwuyL4RUMkY9haqqQtUNtCeEEFLZOEq9AyQ2mzAyFksNzaWnEGDYTDERL6JCumRMsXR00nkXwOYo7ldMP6dQVVUoimLa64uC0FFbW7B/X93M2VDsdqiRCAKjo4iEw7A7HFBVFT2HDmHfyy8n9EIZ9UYRQlKT7HujRqNQ7PYi7w0hhJBSQVFoAexeL3DqJIDcykcBXdgMx1IUFLF8Ur/KLpWOvr64paNAzHlWHA6o432lZovCYpSOAoDd5YJvxiwMvboLQMwttCkKXtu+HYOnThk+h720hGSPWD6q2Gxa6Wg0GoWNopAQQqoGlo9aAFEI5lo+SqeweIhCUBRJoUAAQ319sRs2Gyafe0Gxdy32qws4q1CeUdhk6mvraRBKSPdu347n/vEPSRB6Wtuw4l+/ot2mKCQkOyKRiDZ+QnE4pO80w2YIIaS6oCi0AGLJaK7lo+wpLB6SUyhs9wlBJy3LV8Ld3FzU/Ypjd0+IQrMv7Ao9uF5E7Csc6usDxnucFLsd8973IWx48lnMfOs7JvYtHGYfFCFZIC5wuZtbpDmnDJshhJDqguWjFqCmowPj/hI8bR05vUYty0eLhlhuJV5U+YVAlPZ1ZxZ1n0TEsRRmX9gFhf4jV1NhRa84liJO+7ozsfJLX5UEo83lQjQYBFQV0WgUdpa8EZIRYj+hu6UV4dER7TYH2BNCSHVBUWgBFnzoVoweOYKW5SvQtGRpTq9RI46k8PtN7yUjMVRVldyySDgc672x2SSx6GnPTdybgTjA3myncEwQvnUzZpr62nra1p0Ju6cGEf8YatrbsfyeL6P7sjckfK6dvjoExntyI+EwRSEhGSIds1pbMXZsogSbTiEhhFQXFIUWoPX0M3DRI4/n9RqOmhq4W9sQ6O0BVBVBvx/uHEtRSXKikUjCxVIkFILN7ZYusNwtLcXeNY1CloCJMwPr5sxL8cj8qWnvwIV/eQwDO1/GpPMugLPWZ/g4h883IQpDIUD49xNCkqM/ZgX6Jnp22VNICCHVBUVhBeHt6o6JQsRKSCkKzSesG0EBxMZSON1uuRSruYSisEhOYf2cOaa+thH1c+aifs7clI9x+CbEYoQlb4RkTFgsB29ugc11QLtNUUgIIdUFg2YqiJr2dm1bPz+PmIORKIz3FUqhDS2tRdsnPfYC9RSq0agsCmcXXhRmgtNXp20zgZSQzJHKR1taYXcVLrmYEEKItaEorCAUx4RDBJ7QC4J+LiEwIRSlUqwSJY8C8gB7M1f7/aOjWrpnTcckOOvqTXvtfHCKTiEXQwjJGPGY5WpulkKq6BQSQkh1QVFYQdgcE9XAUUbzF4RkTqGqqrr+nNI5hbYCrfaPiiEzBe4nzAYHnUJCciKsdwoLOM6GEEKItaEorCAUQRRyXlthSOYURkIhbY6eo7YW9hKGnYjD6828sBNDZurnpu7zKyYsHyUkN0L6nkIny0cJIaRaoSisIESnkCf0wmDUqxkOBnWlo6ULmQHk4fVmfg7kkBnriEIpaIaikJCM0aeP2kSnkKFNhBBSVVAUVhCKkDpJp7AwJHMKpYur1tKVjgKFcwpHRadwtnVEoZOikJCc0C9m2QoUUkUIIcT6UBRWEDZhaDdP6IUhWU+hVcZRAJBW+836HKiqal2nsI7lo4Rki6qqcmJyU7OUPsqeQkIIqS4oCisIOoWFJ5lTaJVxFEBhnMJgIKAJLqevDp72DlNe1wzEofZhikJCMkI8ZjnrG2BzOukUEkJIFUNRWEHY7AyaKTTJhtdbqaewEOmjYshM3Zy5UBTFlNc1AyedQkKyRt9PCIDpo4QQUsWUlSh84IEHMG/evIT/9u/fX+pdswQ2J4NmCk1G5aMt1hGFZl3YSaWjc60zjgJg0AwhuWDUB805hYQQUr040j/EOuzYsQMAsHLlSjQ2Nmr3e73eEu2RtVDoFBacjIJmSlw+ai9ACZgUMmOhfkIAcNRSFBKSLWGDPmiWjxJCSPVSlqLwy1/+MqZMmVLivbEeNvYUFpykTqFUPtpczF1KQPwcFMQpnD3HlNc0C2ddvbZNUUhIZhgtZLF8lBBCqpeyEYXRaBSvvPIKbDYbfvnLX+Lw4cNYtmwZ3vKWt8AllMtVM5JTyBO66USj0QnRYbPBUeNFeCQmlvwjI9rjSu0U2tzmr/bLyaPWKh/lSApCssdoIYtOISGEVC9lIwr37t2L0dFRAMB9990HAPjDH/6AJ554At/73vdKuWuWQeoppFNoOqJL6KpvgLOubkIUjn82AQsEzZjsFIZDIQT9fu21a6dOy/s1zYQ9hYRkj5FTWIh+ZEIIIeWBZUThgw8+iDvvvDPpzx9++GGcffbZaG5uxq233oq+vj7ccMMNeOyxx/DYY4/hnHPOSfn6TU1eOBz2lI8pBG1tdekfZBIHG2q1ba7ymo/YT1jT2gJXXR1GDh6I3SGI8K550+FuLN7fXU9980Q5pRmfA9ElbJg9Gx2Tm/J+TTMJ102IYIpCQjJD7ClsndaFtrY69LY2aPdFI5FS7BYhhFQMvlp3UXVAvlhGFLrdbik8Rk9DQwO+//3va7c7OjqwYcMG/PznP8e2bdvSisK+vtGUPy8EbW116OkZSv9AkxgLTAgAOoXmIzqF9roG2ASHKo5id2AgaINSxL+7nrHgxOfAjNX+wNiYtu2dOqOon+lMUFUVisMBNRyGGo0iGonAZi/+AhAh5YToFAZdtejpGcKIf0IIcmGREELyY3gkAFjsmglIblhZRhReeumluPTSS5P+fHBwEDt37oTP50N3dzcAaL2EIYPwj2pEEZxQikLzEZ1CV2MjnL7EL5W7uankM/zM7guKCu6bw0AIlxpFUeD0+RDs7wcQcwspCglJjdFsVY6kIISQ6qVs5hQ++OCDeMMb3oBPfepTUFUVoVAImzZtAgAsW7astDtnEWwOpo8WEqmnsLEJLgNn293SVsQ9MsbsvqCI8Bp2T03er1cIHD4OsCckG9Klj9IpJISQ6sIyTmE6rrjiCvzgBz/A5s2bccUVVyAUCmHv3r1YvHgxLrjgglLvniVQHEwfLSSSU9jUBGdtomtW6sH1AGB3mXthJ/YW2WusKQqZQEpIdoQlUUinkBBCqp2ycQqbm5vxk5/8BOeccw6OHTuG3t5eXHHFFbjvvvtgs5XNP6Og2BxMHy0kolPobmyCqykxcKXU4ygAwOY01ykURaHD48n79QqBo45OISGZEgmHte+1zeWCw1urbcehKCTVhKqq2L1tG7Y88giOvPYar6FIVVI2TiEAzJo1i+MnUkCnsLDoy0eN+utKPbgeAGwml4CJF4eWdQprKQoJyRR9P2G8D9pegBmnhJQDo4ODOHHwIABg74svYqivD7OXLoXdUVaXyYTkBS22CkKcT8dVLvMJ6YJmXI3V5xTareoUCgI9TFFISEqM+gkBlo+S6kX8TgBA7+HDeGHjRgRGi59cT0ipoCisIBQ7y0cLieQUNiUJmrGCU1jInkKLikIny0cJyZhwElFodj8yIeWC0XljdHAQe7ZvL8HeEFIaKAorCJuT5aOFRB5JYeGeQpP7gmRRaM3yUUctg2YIyZSQMLje3TKxkGVz0ykk1UlEOM952tq17bHh4VLsDiElgaKwgqBTWFgSRlI0NCY8xgqi0G72nMJycAqZPkpIxsg9hWL5qLCgJHzvCal0xHm8ratWa9viAgohlQ5FYQXBnsLCkuAUGvUUWqJ8dOJzYIpTWAZzClk+SkjmhA0G1wPmLygRUi6ITmHN5E7teioSDvOcQqoGisIKQrHbtW2e0M1FVVWdU9gIR01NgnNmBafQVoVOIctHCckcuXx0QhSKycUsHyXVhOgUOn0+uNvatNt0C0m1QFFYQdApLBwRQRA6fD5tJqTeLXQ1WcApdJrsFJZDTyHLRwnJmKTpo87yDZqJRiI4tHs3ju3bx/MfyRrRKbR7vfC0TvQVUhSSaoEDWCoIcU4hV3nNRd9POLHdiLFjRwHEShjF9L5SYfasMelkWWNNp5Dlo4Rkjn5OYRwpuVhVoaqqNsPQ6hx57TXs37EDAOD2etHU3p7mGYRMIJ43HLU+eITPT5CikFQJdAorCJtjwiECV0pNJZRUFArbwsVVKTF9TmE5DK/3URQSkinySIqJ45aiKKanFxeLvhMntO3RwcES7gkpR8SKGIfXKyWQ0ikk1QJFYQWhOCZ6CqMUhaYiXUQ1GYtCT2vp+wmBws4pdFi1fFTsKRQEPCEkkWQ9hYD5PcnFQFVVDPf3a7e5MESyRXYKayVRSKeQVAsUhRWE6BSWy8m8XEhaPioIRCuEzACFnlPI8lFCyhk1Gp04nilKQl+0vQzHUowODUn7ymMAyZYInUJCKAorCZuDcwoLhTyOotFw222V8lGHA4pt4qud7wIBg2YIqRykUvj6Bum8AcgD7MtlcXGor0+6HSkTMUusg5g+6vDqegr9/lLsEiFFh6KwglAoCguG5BQKQ+tr2idNbE/uLOYupcRMt7AsnMI0PYVDfX04unevFLBBSDUilcIblLyXY0/hsF4UcmGIZEmCU8j0UVKFMH20gpCcwjI5mZcLkjCq8Wrb065+M/Y/9L+IBgOY+ZbrS7FrhthcLkTGVzfz+SzEEwgBAIoiuQhWwl5TA8VmgxqNIjr+n23cLQ0FAnjxiScQjUQw1NeHuStWlHhvCSkdUj+hQXVDOQ6wT3AKKQpJluh7Ch21tdptikJSLVAUVhCKg3MKC4WUwOmZuGjytLbiwj//3XLR7WYlkEpi2O221L9RRFEUOHw+hMZTByPhsOZ4DA8MaP+OwVOnSraPhFiBZDMK45TbAPtIOIzRoSHpvnLphSTWQZ8+6hCqTxg0Q6oFlo9WEHQKC4f4ftrciSWUVhNL4oVdPp+FcigdjZOshDQwOjqxPTbG7wapatKKQsEpLAdRKKaOxqFTSLJFP6fQWV+vLSxGIxF+pkhVQFFYQShO9hQWCkkcWWBAfToK4hRaNGQmjiOJKPQLohCqigBDA0gVE5bKR5sTfm43eaRNodGXjgIUhSQ7VFWVegrtXi8UReFYClJ1UBRWEDY7RWGhiKZxCq2GWX1BEals1tr/7mQJpIGxMelx+tuEVBN0CgmRUaNRYPyaSXE4tIURaSwFFxNJFUBRWEEoTs4pLBTJegqtis018VmI5rFAIAfsWNspzKR81Og2IdWEJAqNnMIy6yk0dArZU0iyQJ88GkccS8GwGVINUBRWEOJsOoBuoZnI5aPlIAoFpzCPC6RkqatWxJmhU+inKCRVTDidU+gsn/LRwNiYNkPOLiQjR8Nhnv9IxkR1yaNxxLEULB8l1QBFYQWhKApsTiaQFgI5aKYMRKHTfKfQUYblo9FoNGHwMMtHSTWTbiSFlD5qccdNnE/YvHyldtxTVdXygpZYB9kpFEQhnUJSZVAUVhiKnQmkhUAqHy2HnkK3SU5hGfUUOusSy0eNBCDLR0k1I/cUGojCMppTOCT0E7asPD1pXzEhqdAnj8bxtLVp23QKSTVAUVhh2JhAWhDEFXNxJd2qFMIptHz6aG3iBaGRAKQoJNWKqqppRaGYPmr1nkKxCqBu9lzJ5WFfIcmU5D2FHdo2nUJSDVAUVhgKZxUWhHJzCgvSU1hOTmEoBCCJUzg2xgUTUpVEIxHtvGD3eCQRFaec0kfD499zAHA3NRkuDBGSjuQ9hXQKSXVBUVhh2BzsKSwEqiQKy6CnUFztrxan0KB0zMgVVFU1oc+QkGogXT8hIKePWn1hUQzNcTU2SRf0UYpCkiHJewrpFJLqgqKwwpCcQopC0ygnxwyQRaF56aPW/nc7jcpHk4TKsISUVCPpZhQC5ewUNidNICYkFUmdQqGnMOT385qKVDwUhRWGjeWjBUEaXu8qg55Cs5zCsgqaqde2w+MneXH8hLOhQdv2M4GUVAHhUEi6kM1WFFr9HCI5hU1N7CkkOSF+VuxCT6HDV6dVyESjUS40kIqHorDCoFNYGMqtp1AMi8jnwi5S7uWjgvhrW71W26ZTSCqdnsOH8fSf/4znHntMc/zDUvlo4uB6oHyG16uqipDgFDobGiWXhxfwJFPEz4pTWFhQFEV2C1lCSiocisIKgz2FhUGV0kfLoKfQac6FXTmVzXraJmZKjQ4NxWYUiqJwzTptm6KQVDonDhyAGo1idGgI/b29ACrLKYyEw8D4Oc7h9cLuclEUkpyQznO68CWxr5BhM6TSoSisMBQny0fNRlVVnVNYBqLQpLCIcgqaqZ87D56OSQBiZWWnjh7VFkbcLS2onz1HeywH2JNKR3T544sjkihM4hTadCMpVFVF34kTGB0eLtCe5oY+ZAYwrhYgJB2RJD2FgJxASqeQVDoUhRWGzc7yUbMR30fF4YRis/7XxjSnUBTDNdYWhYqiYPJ5F2i3j+7bp23XTp0G75Sp2m0/nUJS4YgLOoHxtN1MnEJx0SsaieDwnj14efNmPP/YY/CPjBRob7NHDJlxNcUErjSSgj2FJEOSzSkEADfLR0kVYf2rW5IVijC0nE6hOUhuWRkMrgfM6yksp/JRAJh83uu17cGTJ7Xt2u6pqO2eot3mrEJS6Yjf+/gIlrDkFBqPpLDpziF9x48DiC0QnTx2rBC7mhP6kBkAHElBciJZ+igA1LB8lFQRFIUVhs1u17Z50WsOcvKo9UtHgcQSsFwRRaHD4uWjANDxurOlsKU43u5uOH112sWjGo1y1ZdUNFGj8lExaKYliSjUjaQQS62H+vrM3s2cEUNm4uWjRmNpCElHxk4h59uSCoeisMIQV3nzGUVAJlAlt6xcRKE5YRHl5hS66hvQdsaahPtrx0tHa7tZQkqqg6iBUxjKwCmU0kcjESmsaejUKbN3M2fknsJGALLLw/JRkilyT6FP+llNG51CUj1QFFYYkkvC8lFTKLdxFICJTmEZ9RTGmXz+6xPui5eO1gp9hUwgJZWMkSgMZ5k+6h8dlSpOgn6/ZUKapMH1jYnlo3QKSaZEUziFnvaJVOugRT77hBQKisIKQxxeT6fQHMppgHscW5X2FALGotA7Lgq9ur5CQioV8bsbDoW0/wAANhuc4+6aHvHYYbRwYpUSUskpbDYImqEoJBmSKn20fu58QFEAACODg9JiBCGVBkVhhcHh9eYjXlyVS0+hvQA9heUiCuvnzpfEH2DsFLJ8lFQy+u/96OCgtu1qaJT6z0XE9FGjc4hVSkjDBj2FHElBckHuKZRFoauhAU2Ll2i3By3y+SekEFAUVhjS8HqWj5qCWmYzCoFCOYXlUT6qKIrkFjrrG+CsqwcA1E4RnEKKQlKhqNGoNtg9zoggCj1JSkeB9AtfVnEKQwZzCp3CBX2UPYUkQ6T0UZ0oBIC2teu17cHe3qLsEyGlgKKwwqBTaD7lXj6aj1MYKUOnEAA6BVHomzZN266bNTHAvr+3F2MWG8hNiBkYfedFUZgseRSQqwyMGB4YsITgkp3CRgDsKSS5IZ3ndD2FANC+bkIUDgijjgipNCgKKwyxp5BOoTnI5aPlMadQHF6fl1MoCeLycAoBYNI556PjdefCXlODee/9oHZ/3azZaF93ZuyGqmL/jh0l2kNCCoeRaBsZGNC2k4XMAIAtTTWEGo1iWHitUmE4p9BXp91HUUgyIRqNTpwjbTbDxc+21eu0vsLhgQH2FZKKhaKwwqBTaD7lmD4qlrlWW08hEBvNcs4vH8SVr+zHtCuv0e5XFAVLPv157fbJo0fZI0IqDqPvvNRTOB7MYkSyha/Gxadp21YoITVMHxVcnkg4zHMgSYuUPFpTA2Vc/Im4GhvRuGhx7IaqWqavlhCzoSisMKSeQp4QTUEaXl8uPYXO/HtLVVWV+ynLSBTGEd+HOC3LVmDKFW/Sbu9/+WV+V0hFYeQUisexVD2F9iQ9hVPfcKW2XeqLYlVVJafQ2dAIIPZ9t5m0IGY2I4ODkltLrEGq5FGRtjUsISWVD0VhhaE4JhLlWD5qDmoZumViWITRhVE4GNRmlyVDKpt1u6HYKudwseTOT2uCcfDUKZw6frzEe0SIeaQTQ64kg+sBwOZOdAqddfWYdM752u1SO4XRSERbyLF7PHAIM1TFoJCoRUpIB06exHOPPYbnHn8cR/fuLfXuEIFUyaMiWtsBKApJ5VI5V3kEgM4hovthCpJTWC49ha7kTuHI4CC2/v3veOYvf8HJo0eTvkY5Buxkim/6DMx6x7u02/tffpmLKKRiSCcKUwXNiP3IcWqnTkXD/AXaRXPQ78fLmzdjzwsvoK8ECypSP+G4SxjHacGxFANCYuVrL76IfiZYWgYpeVT47OhpWyP0Ffb3W+azRYiZUBRWGIqdPYVmU5Y9hUmcQjUaxavPPYdQIAAAOLJnT9LXKMdxFNmw8JaPacEUY8PDOH7wYIn3iBBzUNOkg6YeSWEgCrunwuZwoHn5Cu2+vhMncGzfPrz81FNFdw5DYvKozvW0YgKpVM6rqnhlyxb4R0ZKt0NEQ3IKaxKTR+O4m5rQsGBh7IaqshedVCQUhRWGzZl5+uhAby+e+tOf8Mwjj2DPCy+gv6eHbokBkjgql57CJHMKj7z2Gob7+7XbQ319SS+cpAb8CnMKAcDT2ooFH/iwdvvAzp2WuYgkJB/yKR9VFCVBGHq7Y/M95733A4YLRD2HD+ewl7kjOoXu8eTROI5awSm0wOgMIPHvEQ4GsePppxHm8abkSE5hbXKnEADa1wolpHR7SQVCUVhhZOMUHt23L9ZbNjaGY/v24aUnn8TTf/4zdm/bhpPHjlnmhFpqyjJoxmBO4djwMA7s3Ck9Tk2x4imJ4ZrKcwoBYO6/vA+ejkkAgFAggCOvvVbiPSIkf9KJQk+K8lEgcYB97ZSpAIDOCy7CFc/vwAV/fBRL7vqc9vNTR48WtTJFnlGYQhRaRHQZBf+MDg1h99atrOgpMXJPYXKnEADahSH2R/fuRc+hQwXbL0JKAUVhhZFN6mTIIGgkHArhxMGD2Pn003j6T3/CzmeeQc+hQ1W9oiklcJaLKNTNKVRVFa8+/7zhxWKyFc9KLx8FYsECiz96h3b78KuvaqW1hJQr6YbLp3IKgcQB9rXjTiEAuOob0LJsBeb9y/vhbGgAAATGxjAijLwoNFJPYYIotF75qHgO6XjdOdr2qWPHcOCVV0qwRyROpumjANBx9jmomdwJIPYd27V1K/YxvZpUEBSFFUY2TmFIOLFOufyN2sEuTjQSwcmjR7Fr61ZsffTRtGmVlYpcPloeZZRigmA0GsVAby8GxxPTFJsNi27/hPbz/p4ew9eIVHDQjMiM696G+jnzAMQuEA7u2lXiPSIkP1I5hfYar5TWaYS+IsIriELtMU4nOi+4SLt9KkVoldlITmFTo/Qz8cLeKumjohs18y3XY+57PqDdPrRrF3qPHCnFbhHozu9pnEKnrw7n/PIh1M2ao913+NVX8fLmzdL1FCHlCkVhhSH1FKYRheJq6/K7v4TLt2zHBX/4KxZ88BbUzZotPTYUCFTtiass00d1TqG4ij/t6jdj7rvfp42YGBkYkD4LcarBKQQAm8OBJZ/6jHb72L59GBseLuEeEZIfqYJm3CkG18fRH+fi5aN6ui6+VNs+eexYhnuXP6FMnUKLtEDoj6VL7/qcNOJj97ZtPOaUCNEpdKZxCgGgfs5cXPCHR9D5+okFkf6eHrzwj38U1S0npBBQFFYYiiOzoBlVVeUEt6ZmKDYbWpavxJJPfRaX/PNpXPzYk5h+zXXaYwardDZPtBznFOpGkwRGR7Xb9XPnwdXQgKaly7X7jOYuleO/O1c6L7wErWesARB7v/brei8JKSekhSzhWAAA7ta2tM8X04vtNTVw6cJc4kw69zzNVRwdHCxaomaqnkIrjqRQdX3pNocDa7/7A/hmzgIQO9aeYPpxSYhITmF6UQjESqjP/PH9WHjrx7T7/KOjeOGf/8TJKl08J5UBRWGFYXNkNqcwEgoB4z931NYm9JAoioKGefMx9z3v1+4bPHWqKmvny7GnUJ8gKF6s1XZ1AwA61p+l3WfUVygHzVS2KFQUBUs/8wXt9skjR0o+oJuQXBG/u16dy5eRUyiUn9d2T4UyPp9Nj7PWh0lCj1yx3MKUPYVe64lCowU2V2MjFnzwFu3+wNhYsXeLQJ8+mpkoBGJtGKd9/JNY/4OfavM7o5EIdm7Zgv07d1bltRIpfygKKwzFYde2Ux2UxPIbd4rQgYb5C+Gsr489JxCoytlKcvpo+YgjMUFwTPi71XR2AQDazzpbu8+or1Caz5hiflOl0LpyFbovvUK7zQABUq6I313ftOnSz9wpZhTGEY8dtVONS0fjiCWkpzIUhaqqou/ECYwMDGT0eD1yT2EZlI9Kx9KJUnxPe7u2zYCr3Onv6cHhV181bINIR6ZzCpPRfenlOP/3f0Gt8D07tGtXbOSI8DklpBygKKwwJKcwRfmoJApTDTK229G6arV2Oz6+IDA2hpefeippomUlIa3ylklPISCXjYnlo3GnsPX0MzQ3cWx4OCFIqJrKR+MsufPTUOyxhZXBkyfRd+JEifeIkOyRROH0GdLPMhGF4nHOKGRGpPPCi4FxJ3Hw5MmMxM2xffvw8ubNeO7xxzE6NJT28Xpkp7BR+pnDguWjyWbdeto6tO0gRWFO+EdH8dLmzdj38ss5Jblmkz6ajMb5C/H6P/4NU17/eu2+vuPHseeFF3J6PUJKBUVhhSH1FKZwOaSTapJ+kTjxXitgQhS+tn07+o4fx/H9+yv+wllyCstIHIkXH9pnwWbT5vI5vF60nn6G9hh9CWmlD683om7WbMx6+w3a7SN79pRuZwjJEal8tLNLWiDKLGhGcArTiEJPa5u0cHjq+PG0ry+GluUyBFx0YNxN8r/HacGRFMlCuzxtE/2dRiOiSHpGBga0Vpih/v6sny+d5zLsKTTC3dSEy3/3OylZdjiH/SGklFAUVhi2DINmMi0fBYC21Wu17cGTJxEYG5PKhAIVXlJajj2FQGLABADUdEySPiPt61+nbfenEIWVnD6qZ/YNN2vbfsFhJaRcUHWl3/GFICAzp1Ac4p0seVSk6xIhhTTNaAo1GpUulnNxyDKdU2iVkRTRJOcQjxD6EwoGWa6eA+JnIafyUROcwjg2ux3z3/+hiddm+SgpMygKKwxbDk5hOlHYvHS5VmboHxnBId0ct0qfzyOKI3EF3eoY7at3vHQ0TvuZycNmolUyp1CPu2Xi+8CTOilH9OWKNZMna7fTHe8BYNpV18LmdMLb1Y3JF1yY9vFdF23Qtvt7elI6dKNDQ9L+ZeuQRSIR7dhkc7mkHj0AcNT6pMdagWQLbDanEy7B6WRfYfaI1x+59PDJTmH+vfNOX522bRWnmpBMoSisMJQM00dlpzB1OZHd40HzshXa7WP79yd9rUok2Sqv1bG5Ep3C2m5ZFLYsX6mVzARGR6UgoWp1Cp119dp2OBzm6j0pO/THrPiQeXtNjVT5kYwpl12BK57biUs3b4NTEFnJqJsxEw3zFwCIOYH9KVoK9CV+2TqF+n5CfTKqJAotclEuL7DJ5xCGzeSHKATDObitZjqFQOw7Fu9Lj0ajFZ+5QCoLisIKQ3QKUx2M5J7C9D0mqS4kKv1EVq6OmaFTOJ48qj3G6UTbmom/rVhCWo1BM0DsIjo+ew2qKr0PhJQD+u/ugg/egnN//Tts2LQlo55CILZYKJ5P0pHpIHt9n1W254905y6HxXoKVd0xRL/A5mmbEIUMm8ke/aJ0ttUdEZN6CuMoigJnHd1CUp5kLQqDwSB27dqFV155BcEKd4jKEcUpnMQzdQpb0pcTta5ek/RnudTxlxPJkuOsjpFTqC8fBeTRFGIJaaRKRSGQ6BYSUk5EdcPSFZsN7evWwzu5s2C/s+uSy7TtvuPHky5K6ud/6lOP0yGFzDQmhqRZThSKfwunE4pNvuwSRSHDZrJHf/0RylIU5jqnMBXi+YMtCKScyHwZEMDmzZvx0Y9+FKqqIhwOw2az4Stf+QrOOuus9E8mRcFmz94pzKTHpPX01bHYcQOhWenlo9JJvYx6Cu2GTmGiKOwQwmYGenqgqioURdENr6+e8lEAcNbXI9Abm90YCYWAKhPFpLyRF7KK89ltOm0JvJ1dGD1yGOFQCIMnT6JRSNcEYiJtdHBQui8UCGjHnExIFTIDAE5hJIUVXH69QNdDpzA/9KIwHAwCWYg7afHThJ5CAHAITiEXFUk5kZVT+MUvfhH33nsvNm3ahKeeegp33nknPvvZzxZq30gOKM7sewpdGZQTuRoa0LBgoXa7eelyw9eqRFL1g1gZmzNxpqKRU9i4aLE2liQUDGpzw8q1bNYMuNJLyplSJCYriiKlkBoNsh82GFavqmpW1SahFIPrAcDulZ3CUvcEp+vNZk9hfuidwWzCZvSlvbkMrzeCYTOkXEkqCm+88Ua8+OKL0n3hcBj28QZaAHA4HFwFsRg24e+TcfpoBj2FgJwwt/gTn5Jeq9Qn3kKhP2mUk1NocxuIQl1PIYDx0rLEFNJqDZoBAFc9y0dJ+VKq2apSX+HRownnhWFd6WicuEPmHx3Fi088ga1/+xu2b9qEnVu24LXt23Fw1y4cP3AAp44fl5xGI6fQZrdLx6tSu4XycdTIKeQA+3wwdAozRF8Noy/tzRWpp5CLiqSMSFo++pa3vAV33HEHZs6ciVtuuQUzZ87EHXfcgZtvvhl2ux3RaBSRSAT33HNPMfeXpCETp1BVVdkpzFAULvjQrfC0tcViys89H86GBoTGV37DwSCcZdRvlynie6jY7VkFL5QavVNod3uSusIdZ70Oh37/fwBiorBz5szqLh8VnUKKQlJmlKoPum31WrgaGxHs70fQ78fIwAB8jY3az5MNFw/5/UB9PQ6/+qq2KDU2PJz297mE1xZx1NYi4h8DEPv+2kt43JYrLgycQnGAPUVhVhi5zNk4hVLyqAkhM3EYNEPKlaRHyte//vU4//zz8etf/xo333wzVq9ejQ996EN4/PHHsWfPHiiKgunTp8NTZWVlVkfsKUw2vF5cuXL4fLC7Eh0lIxw1NZjzrndrt90trZooDFWqKCzTfkIACX/Xms7OpH074hD7gd5eqNFo1aaPArGewji5zL4ipJTIIymK9921OZ2YfMFF2P+/vwQQSyEVRaHoFNbNnouhV2Mzb+MOWbx0PVM8HZMM73f4fAicjInLUs8qTHccZflo7kQikYTF72zaWSImzyjUXsvHnkJSnqRcPrPZbLjmmmvwhje8AT/96U9x7bXXYsOGDXjve9+L5gxjrUlxEdNHkzmFoRxKR41wNzdj+LU9Ca9ZSZRr8igQG+wsUjtlatLH1s2ajZrJnRg7egSRcBjDAwPShaWjyspH2VNIyplSHre6L75UE4Wnjh7FtPnzAcRSRgNjY9o+dbzu7ARRKM5JXf3N7wI2GwI9PfD3HMfYiRMI9PRgrOc4Ar09qJ8zD91CuaqImCIZLfFFeVpRyKCZnDEqFc2qfFR0Cn3p53Fmith+wPMHKSdSisI9e/bg1VdfRXd3N26++WZce+21uO+++3D55ZfjzW9+M2688Ub4TPwikfwRyxuTOYXyOIrWnH+X+NxwhZ7M0iXHWRm9KDTqJ4yjKAra15+lXcwN9PbSKRyHK72k3JCPW8X97k469zzYPR5E/H6MDg1hbHgYNT6fNJ+waclS6XgU8vsRjUQmxlPYbJjyhiszrmLRY6WxFOnKR90trVBsNqjRKMLBIKLRKGwm9bZVOoaiMAsRJjqzZopCh4/tB6Q8SXrk+clPfoJrr70WP/rRj3DjjTfii1/8Iurr63H77bfjwQcfRG9vLy6++GL88Ic/LOb+kjTYHOl7CuVxFPk4hROjLCrWKSxBip9Z6HsKjZJHRTrOnCgh7e/pqeqgGTqFpJxJF25SSBzeWnS87hztdjyFVJxP2LxiVULAin90VLvt7ezKWRACgLNW6OmyUvmowTnEZrfDJZ5LK3SBtRAYXXdk4xQOC6FFDXMXmLJPAHsKSfmSVBR+//vfxw9/+EP88pe/xO9+9zv84he/wPB443dHRwe+8IUv4Gc/+xleeOGFou0sSY/iyK581JXBjMJkiEPvK1UUqmXsltndmTuFANC+fiKBdOjUKXl+U015/dvzRXQKeVIn5Uape6GlFNJjxxAOhXBs/37tvtbTV6FG10snlo76ps/M6/eXk1MIsK8wV/J1Ckd07rVZiKKQPemknEgqCm02GwbGQ0SGhoagqqo0jgIAZsyYgf/4j/8o7B6SrMikfDSXcRRGVJ9TWF7CKMEpTCMKa7unwDcjdjEWjUblWWdV7BTypE7KCVVVJxYEFQU2IZG6WHS+/mIt3n/o1Cnsfekl7bzj6+5G5+svloRQ0O+XnELftOl5/X5LicIM+js9rewrzAWjY3M21yLi3ExTRSHnFJIyJWlP4e23345bbrkFPp8Pg4OD+MhHPoKaKoulL0eydQrzKh8t455CVVVx8uhRKIqC5kmTkqZySjMKDeb+WRm9Q5CufBSIlZAO731Nfh2n07T5TeUCnUJSruhFSLJjWyHxtLaiddVq9Dz1JADgxIED2s/W/du/we52w9M+kRwaTHAKp+f1+8X5hQdfeQX1zc2oKVH+QSZl+HQKc8OwfDTDRbxwKKR95hS7HY3zF5q2Xzx/kHIl6ZXeG9/4Rvz973/Hd77zHTz66KP4l3/5l2LuF8mRbHsK8yofFQRluTmFvUeO4JUtW7DzmWdw6ujRpI8ra6fQJTsE3q7UTiEAtAt9hXHKrWzWDDiSgpQrVgnH6rrksoT7GhcswpxrrwUQO38o49VHkVBIGkfhmz4jr989481v0YK2AmNj2L5pE0aE/rFiIv09kvR3clZhbiRLH0127SMyIriE9XPnm3qec7B8lJQpKZf/GxsbsWTJErS25p5QSYqLkm36aF49hROfi3IThf09Pdr2yfEgBCPKOmhGcApdDY0ZDedtX3dWwn3VVjoKAC4GzZAyxSoLWV0Xb0i4b+ln79aqDhSbTRrHIAbR1E6dntfvbly4GGf++H7t2BUKBPDipk0T6aZFRHQKHUmEh6ddCN0pwT6WK8muOzJx58TS0ealy8zaJQAsHyXlS3XVhFUBtgzmFDJ9FPCPhyYB8sWIHjFoptyG14tOYSYuIRAr+2pYuEi6r+qdQp7USRmhWmS2qm/adOlY0nHm6zDp7HOlx4iiUBRP+ZaPAsDkc8/H6+7/lTZIPBwK4cShQ3m/brZkFDTTSqcwF5IljWZyPSI6hU2nLTFtnwCmj5LyhaKwwlDs2TmFrrx6CidEYTYx0FZgTBCF/pGRpCdi+YReXqLQLohYb/eUjJ/XcebZ8ut4vabtU7ngEFd6Q6GMypEIsQLyMau0Czrz3/tBALGL5GWf/2LCzz0dHQn3uRob4apvMOX3t69dj9M+8Snt9phQolos5L70JOWj7fJ4DpIZUmmm0DubyfWIPDdzmYl7RVFIyheKwgpDTJrLzCnMvXzUUevT+jaikUjZHPzCwWDCSmIyt7CUQ6DzpXnFSm1bL/RS0XGmXEJajeWjdo9H+y6pqip9DgixMrIIKe0xa/o11+GSxzfj4sc3o3Hh4oSfi2IoTr7jKPQ0zJ+YPzcqLAYWC46kKBzieVxM107XxxcJhycWhm02NOqqY/LFXuPV+mWjkQjPH6RsoCisMBSbTVox0wtDVVXlnsI8RlIoilKWfYVjQspdnKSiUCzFymOYcilonL8Q5z38R6z7/n9h9g03Zfy8tjXrtBMakLwPppJRFIUD7ElZYrXqhvq58+Cd3Gn4sxqhfDSOGaWj0u+fPUfbHhsfr1VMOJKicIgL3HUzZxneb4QYOlQ/a3ZG/fbZEDt/0C0k5UfSkRQio6Oj+OlPf4rnnnsOIYNSqh/96Eem7tQzzzyD66+/HmvXrsWPf/xj6Wff/e53cf/996O/vx8rVqzA5z73OcyYkV9SWaVhczoRHT8oqtGodIEvrqA5fL68Z1i5W1owdvQIgJgo9JRBqeGYwWrx4KlTho9Vy9gpBIC2M9Zk/RxnXT2al63AyWefAVCdTiEQ6ysMnDoJINZXWF5LAqRakUWItY9ZRuWjvmnmns89HZPgrKtDaGgIkXAYoUAAriIudEl/jyRjveJJrGokgkgohGgkAptuLjSRiUajE2JLUVA7bTrwz8cBpHcKpdLRpcsLsn8OXx2C478nEgrBWWaLyqQ6ycgp/OxnP4t7770Xdrsd7e3t6OjokP4zkz179uC2224z/NnPf/5zfOMb30AwGMScOXOwefNm3HzzzQhwZU1C6ivUCXizSkeNXqNc+gqNROFwf79hD6bVVt2LRfv6iRLSUvcllQo6haQcKafEZE9b4vVDbZ7jKPQoioK6OfO026NF7ivM5O+h2GxwM2wmK6TRWvUN8GRRtSSHzJg3tF6kFE7hiYMH8fLmzRjo7S3K7yOVR0ZO4aZNm/CVr3wFF198ccF2JBKJ4Lvf/S5+8IMfYGxszPAxcdfwBz/4AU477TS8613vwhNPPIG//vWvuPTSSwu2b+WGzelAZPwt1ItCqXS0xQRRKLxGuZzIjERhNBLByNAQfA0NCffHsfqqu5lMuewN2Pntb0CNRk1vwi8XpAHEFIWkTFAt1FOYDrGXLo4vz3EURtTPnoNTW7cAiB3/G4W5gIVGHl6f/O/haWuH/3hsPFIwEIC7DKpuSonoBrqam+FqbDL8mRHDBUwejSOOpShGgnUoEMCrzz8PNRqFf2wMK849N/2TCNGRkVMYiUQwf/78gu7IyMgIvvWtb6G5uRlve9vbEn7e29uLAwcOwOv14rTTTgMArFkTK43btm1bQfet3EiVQFpIp7BsegoFUVg7dZq2PWRQQioFzVRR+UfTaUtwzq/+D+f/8IeY/4EPl3p3SoLoFHIsBSkXyqm6ocYwaGa66b+nfs5cbdtoUbCQyKIweSk+B9hnh37esqtJEIUprkUikYjkFhdMFBbZKRweGNCu9/zDw0zMJjmRkSi8/PLL8bOf/aygHzKn04lPf/rT+N3vfofFixNTyo4ePQoAaGxs1O6Lb8d/RmKkSiCVxlHkETITx908UbJRDuWjqqpKQTPTr7lO2zYKm7HKIOhS0L5uPRa8852WL0ErFJJTSFFoOXoPH8bWv/8dh3bvLvWuWIpyOmbpnUKby4WaSZNN/z2iKLRi+SjAsRTZIpWPNjXBJVwbpnIKRwcHgfHrIt+MmZKjZyaOOnmsUaERS2JVVeU5i+RERuWjY2Nj+L//+z888sgjmDp1Klw6xySToJkHH3wQd955Z9KfP/roo7j++uuT/jzeN+hwTOxyfNvv96f9/U1NXjgcxW/cbmsrzAEnFQ5haHkqp7Cxa1Le+9cybSJVrhycwsDYmPae1LS2YsGVV+Clf/8yAGOnUCzFamhtKMnfs9RU478ZAOo7hAUPlo9aClVVseeFFxAOhXBg505Mmj4djjxDsyoF0Zmqbayz5Pd3Yp/qtBAYAGiYMQPtHebMKBRxnLEcG8e3S+kUtkxuSfr3aJ7ahX3j23QK0yNey9RP7kD79C7Dn+kRS0cnn7HK9O9H/PXq24XzR5GcQpFQMMhjogXw1boteQxORkaiMBqN4rLLLsvrF7ndbsnl02NPk7QVF6IR4QAb/6J5MgjC6OsbzWAvzaWtrQ49PcUflqvaJt7LVE5htCb//Qu5fRPbZXAik0pHZ80BumfD5nYjGgjAPzqKYCAAl7CaK67yjgbVkvw9S0mpPsNWIOyYOK6wp9BaDPf3a0JdVVWEQyFeAI0jHrOCUZvlvr/6Y4q7rV0ThZ4p0wqyv9G6tlgqdyiEoN9f1M+L+PcYHIvAluzf1zghIootXMsR8VpGranDmOIx/JmeESF51DtvkamfN/GzHXZMXEcUxSkU/l0AEA4EgFpzR22Q7BkeCQAWOwYDyRf7MxKFd9xxBxoa8lu9u/TSS/MKg4mnnPYLH/z49uTJ5peblDOK4KZGC14+Wl7po+LJtn7WHNhdLjQtWYqTzzwNIOYWtgifp3JK8iPmIpaPsqfQWvT39Ei3RTem2slkLp6VqGlrx/BrewCYP44ijs3hgG/GLAzu2gkgdh6oE3rQCon493Ck6ClsXDjRNjOic31IImL1hrupSe4pTCHChouQPAoATl/x2g/CoRD8o7LxUQ6VW8R6ZNRTuG7dOrz97W/Hj3/8Yxw4cKDQ+2RIR0cHJk2ahJGREbz44osAgKefjl3Ir1ixoiT7ZFVsDmEFNGXQjAmisKW8gmZEUVg3ezYAoHXlGdp9+r7Cak0fJRxJYWX6T5yQblMUTiAHzVj/mOXpmKRt+0weRyFSqrCZqJQGm1ykNy6aEIWjw8P8TKdBv8DtbGjUboeDQcMMjGg0GuspHKdpcWFCZoDiBs0YLSKUw/UYsR4ZicJf/OIXWLNmDf70pz/h4osvxoYNG/DVr34VW7duLfT+Sbz97W8HANx000248sorsXHjRnR3d+P8888v6n5YHUXondQ7heLBSbzozZVySx+VROHMWQCAlpWrtPv0olAaXm/xJD9iLi4GzViScDiccvGm2lEzFCFWofvSywHEQma6LrqkYL+nVGEzskhP7hQ66+rhmzEzdkNVMVLkQJxyQ7/AbXe54KidaGcxOmaPDg5qYrF2ylQpnMZsHKUWhWXQzkOsR0blo0uWLMGSJUvwgQ98AP39/di4cSMeeeQRvP3tb0djYyM2bdpU6P0EEBODoVAI999/P3bv3o3Vq1fjc5/7HNxlcOIrJqJTqF8tk0Vh/s2vYglqfHVOUZS8X7dQiMmjdbPmAABaT58QhcP9/YhGo7DZYusl0gndxc9ZNSGNpKBTaBkGe3sTjmtRXUVENVNO6aMAMPWKN6Fx4WK4GpvgaW1N/4QcqZs9R9suplOoZlHO27R4CYb3vgYgdqFfV0DRUu5IcwrHr0NcjY0Ij8T+tmGDoBWpdHTp8oLun6uI5w99yAxQHu08xHpkJAqBWMDL9u3b8fTTT+Opp57C1q1b4Xa7DcdH5MuVV16JK6+8MuF+RVHwvve9D+973/tM/52VhNhTqE8flUShCVHMNocDrsZGBMf7O8PBIJwWFemRcBjBsTEAgGK3wzdtOgCgZtJkeLu6MXr4EKKRCEYHB+EbPxlnWvpDKg+OpLAm+n5CgE6hSDn2QdcLgq1gv2POPG27WKJQVdWsynkbF5+Gg7/9DYDx4JBp01I+vprRj6SI/b8Zo4cPAQBCoRD07/ZIEYbWxym5U0hRSHIgI1F40003aaWip512GlavXo0PfOADWLp0adrUUFJ8bKIoTOEUOnw+mIG7pVUThSELi0LRJaydOk2a59hy+irtZDLU1zchCsts1Z2YB51Ca0JRmBp5IYvHrDj14z3kAOAfGZEqQgqFeP6wuVxQ0vw+MfhkWOh9I4lIw+vHnUJ3mgH2oqPWvGRZ4XYOxespjEQiGDVY5KAoJLmQ0RHxtddeg9/vx4oVK3Deeefh/PPPx4oVKygILYothVMoXtyaUT4KAC4hsMbKdexS8qjQXwLIYTODwrxC6aTuludzkspGcgopCi1BYGzM0OWhKJxAXsjiMSuOw1sLb1c3gNhiqV9YJCwU2ZSOArJ7Jfa/ERlVVXVOYbx8NLkoVKNRjAqisLGAITOAXIlVyEXF0cFBwOBzQlFIciEjUfj3v/8df/rTn3DBBRdg69ateOc734k1a9bgwx/+MO6///5C7yPJEiVJT6GqqnI8dq05TqGneaIPxMoHIr8UMjNb+lnL6cZhMyrTR6sWySlk+aglMHIJASDCnkINJiYnRyohLUKQSyTDkJk4ntY21EyKjUSKRiKcV5iESCSiXdvYPR44amLvrRgcoxdio8PD2oJJzaTJBe1fBYrnFI4kEbphCy/QE+uSce3EtGnT8Ja3vAXf/OY38Zvf/AaXX345HnvsMdx9992F3D+SAzaH8fB6qXTUW5u2lCVTnMKB2MqOSsDv17Zrp0yRfta46DSt3yMwOorg+GPLsT+HmIO9pkbrz1WjUbpRFkAUhTbXhAvGv80EUmIyj1kSYtiMUcmd2WTrFAKxvsI4RgEiRNdPKLiDqZxCcbh787LCjzErVk+h+BmZdM652raVF+iJdclIFYyMjODvf/877rnnHlx66aU477zz8NRTT+GGG26gU2hBFKFXTrxAkERhnTkuISA3z1s5BTAoiMKaSZ3Sz+wul9TPEXcL5Z4QXmBVE4qiFM0tVFUVwwMDOPDKK9jz/PPSLC0SQ1VVSRR2nPk6bZuicAL2QSen2LMKJde2Jr1TCMiz80QhQyaQx1FMjMWSWll0C9TFGlofR1x4j0YiBbs2Ep3C9nVnQRlv64qEwzwuZoiqqhgdGuL7hQyDZlavXg2Hw4FVq1bhrW99K8477zxMnjy50PtGcsRmNw6aMXtGYRyxLMbKXypJFBp8fltOX4XeZ54CEBOFLZMnyyd1zimsOpz19Qj2xXpMI6EQUADn5dj+/Tj4yivS57PvxAmsPP9809z8SmBkYEC7GHQ3N6N5xek4+re/ArD2YlSx4TErOcWeVSj3pGcm0EXBMsLFIUPEqh93iyAKUziFkihcUth+QiC2qOioq0No/PdGwmGpusEMhvv7pc9I85JlcDU1I9AbWzwLBYNwZ7gYUc3s3rYNPYcOwdfUhCVnnmnpsWqFJiNR+B//8R9Yv349PGnilIk1UJwZiEITxlHEEctirHxxJonCjkkJP29deQZeGd8eGg+bUbnqXtUU2ikMBYN47YUXEgIlAmNjOHXsGFo6O5M80zqcPHoUR/fuxaTp09FawP2VXMKzz9P6iAAgyp5PjSjLR5OidwoLPVdXdgozFYUTgmV4YMDys39LwbDgoNbPW6Btu0VRKDiFqqrK4ygKnDwax+mTRaHTJFGoqiqO7duHvS+9pF2j+GbMhLulBe6WForCLOg7fhw9h2LJ88N9fQj6/VX9nmW0DH3++efjn//8J6655hosW7YMp59+Oq677jr85S9/KfT+kRyQnEKxfLQAyaNAeTiF0Wh0IhlVUeBpa094jBg2MzwwgKjQzA6bTZr/SKoDV4ETSP0jIxOBCW43GhYu0n52dN8+03+f2ajRKHY/9xwGenvx6nPPFXRRSBSFk845r2zK1osNg2aS425p1WbaRSMRaaGwEEjBbhkEzQCAt3uKFpgSCYUQGJ+tW84ERkcxePJk0jRVVVVxYOdO7HzmmYwc3GEhDK5lxUpt29PRoW37R0e17bHhYe1v4WlrQ037xOMKiRQ2Y+L5Y88LL+C17du16ztHjRervvofAORyWg6wT000GsVrL74o32fRa9hikZEo/OMf/4gPf/jD6O7uxsc+9jF85CMfQUdHB2699VYKQwsi9RQKB+GwNKPQTFEoOIUW/UKJozLcLS3SjMI4NR2T4O2OBdBEIxEMCauRdpeLq7VViOgUFkIUBoULvvazzsbrfvo/Wk/IQG9vUUrc8mFseFh7XyLhcMEuYCPhsDQqpuOss8tiMaoUqAzHSoqiKKifLbiFBf5+5eLaKoqCxkUTYTPl3lcYGBvD1r/9Dds3bcKurVsTxmQBsTFQB3ftwsmjR/HSk0+mFOuqqkpOYcvyCVHYMG8+MH6eHhsaQmT8uCCVji5dnu8/KWMKETYTGBvD8f37tdsN8xbgwkf/ifZ1ZwKILXzEsfKIMCtw9LXXEkbTVPsCY0ai8N5778Utt9yCr3/963jb296Gt7/97fiP//gPfOQjH8F//ud/FnofSZYkdQql8tHqCpqRQ2aS98O2Cm7hQG+vts0yrOpEnFVYiPJRsTfG29kFb1c3ZlxxhXbf0b17Tf+dZqJPRwwUaPbb4KlT2rGsbvYceCd3yscdikINuaeQTqGeOrGvsMBhM/LfIvOStEoaYt/f06NdF/QePoxd27YlCENR5AX9fux85pmk32n/yIhWGupsaEDttOnazxzeWtTNnKXdji+qScmjRSodBQBXAdoPRBFTP2cuLvjjo6ibMVO7T+yxZAJpcoJ+Pw7u2pVwf7WfSzIShfv378fFF1+ccP9FF12EPXv2mL5TJD8y6Sl0VFn5aKaisEUYYi+KQpZhVSeOApX/xBGdNe/kWD/ekve/X7vvxMGDBR18nC8jOlEolmyZiVg6OvncCwDojjsWXYwqBewpTI3UV1hEpzAb11YcS6H/jpUbAd0xwUgY6pNgh/r6sGf7dsNyU7GCp2XF6QkVPI0LF2vb8feu2MmjcQpx/hDfz4aFi6TeakAuH6UoTM7+nTsN3dtqP5dkJAonT56MXQaKeufOnWhqajJ4BiklNgeDZvTIITMpRGGSIfZ2k1PDSHlQiJVeEelz2dkNAOg65xzUz50PILbIEm+CtyL6dMSCicITJ7TtjrPPAQA6hUngSIrU1BdxVmHOTqE4lqLcRaFBSXnv4cM4LBgKRuNBThw4YFgpIfcTnp7w88ZFsihMCJkRgnwKjdMntB+Y5RQKx9jaKVMTfi6Wj3KAvTEBvx89Bw9qt12Cjqn2c0lGovDqq6/GZz/7WfzqV7/Cnj17sGfPHjzwwAP4/Oc/jze96U2F3keSJYoj/ZxCc8tHy80pTEwejdO4cLF2sSkNgWYZVlXiLHDQjOQUjid3KoqC2e+6Sbv/6N69SQMaiomqqlIwjv5iC0BCf4YZBP1+rQxMcTjQvnY9gPI47hQbVVXl4xYXsxKonzNP2y70rEJJoGcxHqRu9hzt8x30+wseiFNIRBEjDo0/deyYti3+HTped462vfell6QqAUAuNW1enjiEXnRZRwcH4R8Z0a59XI1NqOnsyv4fkSNi0IxZi4riOaN2yrSEn3tYPpqW4/v2aeex1tPPQOuq1drPqv1ckpEovPHGG7FhwwZ8/vOfx2WXXYZLL70Ud999N66++mp88IMfLPQ+kiyxOezatuQUChe15paPWn/FPt04ijh2l8swrpq9OdVJoUdSBCVROHGxMv3qN2thUGPDw1Ipc6nYtXUrnn30UbyyZQuA2MWJvrS1EE6heFHYevoZcHhrAcgR/xGLHneKjb50lOFYiXi7p2jH81AgUNCExlz7O212u5REXM7zCkURs/TTX9C2RwYHoaoqwqGQFohic7lx5n/9HM3x8BhVxStbtmiiMRqNSqWgzUsNRKFYPjo4KD9+2fKifiecBQiaSecUuixUPtpz6BC2b9yInsOHS7ofItFoFMeEoJ45736vVFFh1Wq3YpGRKLTb7bjrrruwefNm/PKXv8TDDz+MLVu24LbbboPdbk//AqSo2Bzp00dNLR8tt6AZg8H1ImLYTByWYVUnhXQKVVXVfS4nZvw5fXWYfu112u1SB85Eo1H0jp/YTx49irHhYcOytkKLwknnnKdtl8Nxp9io0jgK9hMaYbPb4RPDSAroFuZaPgrIZY7lWkKqqqq08NW8fAU84+MgopEIxkZGJJewbuZMOLxenPmjn8EzvngbDoWw45lnEA6FYkJy/Lvu7Z4CT2sr9NRMmqz11UXCYZw8ckT7WTH7CQE55b0QPYW+qYlOoVWCZlRVxZ4XXsDgqVMFH1eUDSePHtUWITytrei+5LKyMDaKRVJReOTIkYT/BgcH0drairq6Opw8eVK7n1gLcZ5e8vLRanYKU4tCMWwmDsuwqhNpJIXJTmEoENAWbVyNTQmBAXNuuFnbPnXsWEJgQzHRuyknjx41vFCNhEKmOi+qquqG1p+rbbN8NBH2E2aGfoh9ocg1aAaQ+wr1Kb/lQtDv145x7pYWOGpqEnr+xLCfeGlvzaTJOPO//lsLShobGsKurVulfkKjxVsgPtJj4neIZapNS4orCqVFRRPOH9FoVG456OpOeIzHIj2FoUBA+zdHIxHLjFcSF1hnv+vdsDmdUiCXVcRrqUg6jfu8887L2GbfsWOHaTtE8ieToBkzy0elL5RFL84y7SkE5LCZOLzAqk6kkRQmO4XyyT2xz6V+zlx0nHU2jv/zcQDAsf37MW3BAlP3IVP0K869R47AXWPsfPhHR+EzaRFldGhIW9V11tVLK/2iiLbqcafYiO8Dk0eTI/UVFvBiNS+nsALCZqRSx3FXq2nxEhz7+6MAEv9ddbNma9sty1di1f/7Bp768PsAAH3Hj0uzSpuXrUQyGhedph03xWsgo9aQQiIuvptx/hBdV097h2FJslQ+GgpBVdWSlJEHdYJ0ZGAAvoaGou+HyPDAAIbGP0OK3YGZ178TgHx9p1b5uSSpKPz5z3+ubb/00kv4z//8T3zwgx/EsmXL4HQ6sX37dnzrW9/Cv/zLvxRlR0nmFNspdFg8Gj4aiWgHZMVul9K5jKhp70DtlKkYOXhAu4+lWNWJq3Eilczs3qNAkn5Ckdnverd2cXN8/35MmTsXtiQl+5FwOHbibWqCzZZRZ0DG6P/tIwMDUqiM+H3xj47C19hoyu+VXMJzzpX+7XQKE5GDTbiQlYxiJZDmMx6kYf4CKHY71EhEm83ncDrTP9FCiNUNtd2x/jf9uA3xO10n/F0AYPo116F/x0t45bvfBiCXYBqFzMQRncI4zro6wx68QmJ2T6GRyNZjd7ngrKtDaGgIGO/ZdJag0kkfjmSFhQ3RJZxy2RWoGS9lFvvTrXgNW0ySXjmsXLlS++9Xv/oV7rnnHrz1rW/FwoULMWfOHFx55ZX4whe+gB//+MdF3F2SCcl6CosyvN6CF2fiwcnT1g4lgwtmvVvIVffqJJ4ICsREnJkpoPI4CmNR2Pn6izTBGAoG0ZukXF9VVWzftAnbN23SgmDMxEgQx48nNqcLk89/vXa/mQmkUj/h686VfsaewkQoCjOjWLMK83EK7R4P6ufN126XY9iMtPDVHSt1bFokiMLBQal8t372xN8lzpJPfQ6Tzj1fuk+x2SQnVY+RKGxasqzojpnZojBdP2EcceG7VH2FIYuJwlAwiF5hvNOcmyYMLSloxoLXsMUko+XkgwcPYtq0xA/gpEmTcEKYH0WsgZKsfLRA6aM2iyc3ZRMyE0ffV0insDpxeGu1E6w+GCZfjAbX67E5HJj1zhu120f37TN8nBj8curYMdNdzVCK0qeG+QtQN2tihd+ssJloJILBkye125POlkWhze0Gxi/y1GjUEmM7So0kQljynhTfjFnaZ8c/OlqwC0FZFGZ/Din3EtKAQVJm7fQZWoJwKBCQg2ZmzYIem92Otd/9oVRa2rBgIRxeb9LfWz97bkIOQPPSZTn9G/JBrDQxmteYLX5pHEVy19MKswr15aPD4zMjS8WJAwe069PGhYvQcvrENZ7VjY1ikpEoPO2003DvvffCL1wQDQ0N4d///d+xcmXyum5SGmzOIgfN1Fj7CyUenNKFzMRpXUmnkMQQT75mhr0kG0ehZ+Zb36Fd4Az39WFImNMVR3/BOCgEMphBKpHZdNpS+IRFQ7OcwsFTp7TjiW/a9ISLIEVRuMKrI59gk2rCUVMjld+NFWC+JpC/c1v2olAUMd1TAMTHbSxMeGxNx6Sk1yWuhgac+eP7tYTm2e96d8rfa3M6UT93vnRfsZNHAaB22nRJAAfyXFQMiCX7qZzC5mZtu1ROoX4BNTpeBl0KVFWVFlTn3PxeyTXmSIoJMhKFn/rUp/DEE0/grLPOwrXXXotrrrkGZ599Nnbt2oXPfvazhd5HkiWKfUIURsdXZqLR6MSH3WaDPUlIRC7oL8ystmIvXnynC5mJ07hosVTuwwus6kUUI2aOXBAvmFINVPa0tmLKFW/Sbh8zGE8xrBOKQ0IggxmkurBoXLwYtVOna7fNEs5S6aiufCyO1Rekio3KoJmMKUYCaT7lo4Dcf1eOCaTi8dIrHEcbhRLSOHVzEktHRepnz8GGjU/j8q0vYdbb3pH2dzctln9HKUShzW6XRosM57lYl4tTWLLyUQOHslSf4b7jx7XzkrO+HlPfeJX0czqFE2QkCufPn48///nPuPXWW7F48WIsWbIEd955J377299iypQphd5HkiU2sRl9XKDp+wnNrK23ORxJS1atgJw8mplTaHM6pXITisLqJd4LA5hTAhRH/FymcgoBYM6NEyvjPYcPJ5xw9SfbQZNFoegU6i+umhYvkYXz2JhUoZArUsiMrp8wDsNmZCRnysVjVirE/rVCxeXL5by5lI9OCJvRoaGy+oyrqmroFAJyX2Gcel3IjBEOb23SUns9ovB0eGvhmzEzo+eZTdOyiUCcfEVRIIOgGUA3q7BU5aMGrmip3G4xYGbW229IGP9k9RaoYpI0fVTkS1/6Es4//3xcd911pqfaEfNRhDSv+AdcGkdRa17ITBy7pwbh4diJNRqJWOpzkosoBIDWVavR89STAABnfWmjlEnpKET5qKqqUilRus9ly/KVaFq6HH3Pb4MajeL4gQPonjNHey39yXa4rw/RaNS076EYpz7jrdej75MvAKoKxWZDw8JFcHi98HRMgv/4MWD8YtBTW5vz7wsFAtq/SbHZ0L7+TMPHiSu8kSo/mQO6kRQ59LBVE/k4haqqYqivD4qioK6pKenj5PLR7J1CZ109fDNmYnjva4CqYmRoCHUmJfsWmlAgoC0OOesbpNLQxtMSQ2LEvmQzENNJW1aenlHAXCEQF5fzcQqjkcjEtYzNlnIh0d1c+gH2+p5CoDSicGx4eGKBUVEw+503JTxG7Pctp4WXQpDRt2Tv3r14z3veg7Vr1+KjH/0o/vjHP2K4gDHOJD9Ep1A1cgqF2WtmYbfwrEK5pzCz8lEAmPPu96Jh/gLUz5mHaVdeU4hdI2VAIcpHg36/5uK7mhIH1xshuoXH9u3Tvtv+kZGEZLtoNIoRg97DXBGdwoa587H4o3fA2dCAhbd+DM7xRSYxDS/f96m/t1fbbl6+Eq4kizIs+5Hh8PrMySeB9NTx49i+cSNe+Oc/cfLo0aSPyzdoBijfvkLZ1ZJLHRvmLUgQaZk4hdnQsuJ0LPjQrWhbdyaW3PV5U187G5p1TmGulVRSMNmkyXJFmA4paKYEolBV1YT0UWDi3z8yOIh9L71UlHJSsZew84ILDctumWQ9QUai8Pvf/z6eeuopfPWrX0VTUxO+8Y1vYO3atbjxxhuleYbEGog9hfGVOjF51Gli8mgcK3+ppJEUGfYUArF5hRf//Qlc/PiTRZ9vRKyD5BSaVD4ql452p3jkBFOveBNcTc3afvQdPw4geUmSmSWk4mqzq6kJi277ON60Yy8Wf/QO7f7aadO17bxFodhPeM55SR/H8lGZfMsVq4k6oXx0bGQkq4v1k4cPa9sHdu5M+tx8nUIgca5fuSD1v3XL509HTY30/gOJMwrzRVEULPnkZ3Der3+L5iXF7yeM45s+Q1uIDweDOVebZDKjME4u5aPH9+/H9k2bcOrYsZz2TyQSDmuffbunBo5xlzgcDGK4vx/bN23C4T17sOOppwrabhQJh3HiwMS86Tk3vcfwcQwsmyBjP93lcuGss87CHXfcgX/7t3/DZZddhs2bN+Oee+4p5P6RHJDSR42cwtoCi0KLfamk8tEM00dFij3biFgLr9ALY9asQmnVtyt1P2Ecu8eDmW97u3Y73ichXih6xofxAuaKQnG12T0uTPXfC58oCvNMmRsQnMKO152T9HFWPu6UAnlYOp3CVLibmuBubQMQ++xkc7EupvuODg0lvZA2Q6RXglMoHkPjiLME7W532r7qckVRFDQvXa7dztUdy7SfEMi+fHSovx+vPv88Bk+exJ4XXshp/0SkhfiODjQJf+sdTz+tmRRBv19qTTCbE4cOade+vukz0HHW2YaP43lkgoxE4bZt2/C9730PN910E1atWoUbb7wRx48fxy233IIHHnig0PtIssQo9EXqKawipzAcDk8M2Xa54CqTfgxiHZy1Ps2hU6NRw16JbJEScTMMTgCA2e+4UZuv1t/Tg7HhYSl5dLYw03Do1ClTBKyqqtKJO/5e6BETSPNxClVVld6fVKmBVj3ulApVcqboFKZDLFnMtK8w6PcnCMhDu3cbftfyTR8FIKVXjgwOWi7ILRmBNEmZYohO3aw5Jev5KwaSKMyxr9BvMPMxGWL56MjAAF745z9x4tAhw2Okqqp4bft27XbQ709oR8gWfctOo3AM1zuXhep5VFVVSuqec/N7k37GOJJigoyCZt7ylrfAZrPhvPPOw7333osVK1bApRsMSqyDzSH0FI5/wMOiU1gQUWjNMq6Q5BJOoutHcqJ2ylQE+2LOW2B0FO4cZo6JBDKcUWi0H50XXowjf/4jgJhbKLoH0668Brvu+y6C/f0IBYPwj4ygxpdfsFQkHNYuRO013qSOhzirMJ9AHnGsjc3tTtlvadXjTqng8PrsqJ8zFz2bnwAAjA4Po6mjI80zjB344f5+DPT2orGtTbpfdm5zE+metnbUTJqMsWNHEY1EMDY8DG8BzuFmIzlbBk5h+7qztO3WM1YXZZ9KRVORnUJvZxc8be3w95wAAAz19WGorw/7XnoJHdOmYdK0aXCPH1dPHDyYIFSDfn9e5w39dVeTQbCQ9thAAMjzHGXE4MmTWqqwvaYGM669LuljbQya0choaeaee+7Bhg0b8Nxzz+HDH/4wbr31VvzsZz/Drl27Cr1/JAfSOoWFSB+1aNBMNgmPhCTD7ARS8XOZacR6nDnC4OZj+/drLp6zvh6106ajddXEBZYZJaRy6WjypEWfST2FkivZkDr1l2U/Mhxenx31c+Zp25k6heIMUHFR4tDu3dLjVFXVObe5i/RynFeYzilsXrYcq7/1n1jw4duw+KN3FnPXik7zMkEU9vfn5Pam6tHUY3M6cd5Dv8e0q66FTTBwQoEADu3ahS1//St2btmCvhMnsP/llxOen2/vvFQ+2t6RMDNSJFygkRniGIrp174VzrrkAYsOcXGxyp3CjETh1Vdfja9+9avYuHEjfv7zn2P16tXYvHkzrrnmGqxfv77Q+0iyxJZGFFZT0IzUT5jlxTchccSeGDMSSINST2FmQTNxOs46G3WzZgOQywWbliyDoiimi0IpZEboVdHjae/QjgPhYDDnXhFRhLoak4tQAHDUeLVtikL2FGaLGG6SaQKp2E+45K7PaSOgBnp7JcEojQdxu/OqUim3vkJVVeXB9QZOIQBMv/rNWHLnp6VglErE29WtlXRGwmGM5dBzHRCeo09zNaJu1mys+fb3cPmW7TjtE5+Sr39UFSePHMHLmzcblm8azRjMBrF81NPejvo587TWHcVulxJZgwUoHw2MjeGk0Oc75103p3y8zaKmRinIqoi7v78fr776Knbt2oUdO3YgGo1i/vz5hdo3kiOSU1ik9FGbRdObgroyBkJywewE0kAeixWKzYbZNySe5OIJe61nrNHuGzLDKRSOHe5m437C+H55hRXsXMWzWOruamhM+Vh7jTUXo0oF00ezQxxLMZqBUxiJRKRRL9PedDWmvulq7fahV1/Vts10bctNFIZDIe2z6PB6q76XX1EU2S3Msq9woLdXE2+K3Z7VOcPT1o6Ft3wUlz39PNbd9xO0rzOe+RpfaATyF4X68lGb04nV3/4eui7agDN//HMp8KUQTuGxffu0kU/t685Ew7zUOsVOp1AjI1H47//+77jyyiuxbt06fPGLX0QkEsEdd9yBzZs344c//GGh95FkidRTWKzyUYuWcYWkMob2Eu4JKWdqpwgJpHk6haqqyiMpcnCwp197HRxeeTh805Jl0v+BWApovsEU+nEUqZD6CnNMIJWdwsaUj7XqcadUmFWuWC14O7u071E4GEwb3y+W/tXNnA13czMWfPAW7eenjh3DyOAgAHNCZuI0CSMV8pl1VywCulAU9vIjpwTSaDSK/Tt24MUnntDuq5sxC7ZxdzobbA4Hplx2Bc799W9x0d82Ytbbb4B9vNKi8/UXYdY7JkLK8i4flZzCWJ9u5/kX4swf/xydF1wkBeEUImim59AhbTvZGAoRcdFGrfLzSEaicOPGjTj77LPxP//zP9i4cSO+9KUv4cILL0RtbW36J5OiozgmDhiaU1jo8tEaa660iAecePw4Idli5gD7YCAgDa7P5eLdVd+AaVdfK90XT+l01EzMhVJVVaoSyAWjcRTJMGNWoehMOtM5hQyakaBTmB2KzSY5JOncQtF5b10dc+Qb5s1H1yWXaffHewvNdAq93VO0BZJIKGTavNRCcWz/fm07XShKtaDvK0zH2PAwtm/cKPWquurrseLfvpr3vjQuWITTv/J1XPHcy7jwkX9g/X/9XAo8M7N8tMYgvMndKohCk53CSDisfT8Uux2dr78o7XP07U9WX3QpJBmJwoceeggf+chHsGSJnCAUDAbx7LPPFmTHSO6kcwoLIgotWpMtXdCmKH0jJBW1Js4qFD+TnjwWKmYLfRLO+nr4ps/QbkvDi/Ncic2mx89nwlgKOWimMeVj6RTKsKcwe8QS0nR9hWKPrti7u+DDt2rbvYcPwz8yIgv0FAm6maAoChoXlccQ+xMHD+K4IAq7L3tj6XbGQtTPW6Btp6o2UVUVJw4cwHOPPy6Jx/Z1Z+LixzejY/1ZSZ+bLa76BjQtPg02ux3ezomKlXwXHUK6oBk94nnPbKfQr0u9tTmdKR4dQ7HZpEAe1ULGRrHJSBS++OKLeNOb3oRFixZhwYIF2n9Lly7F9ddfX+h9JFliFDQTrtbyUUkUVnYzOykczrp6baVejUbzWt3MRmSlonH+Qiz++Kfgmz4Ty7/wJWkGk1Sek+dKbCYzCuOYMcA+u/RRa1YolAo6hdlTN1sQhSmcQlVVMST0grWefoa23bJsBTped652+9Crr5o+HqRR6Cu0agLpyMCANPx8yhVvxPRr3lzCPbIO4kJdOBg0XFgMh0LYtXUrdj/3nPb5Uex2LLnrczjnVw8XNEFdfO1gHqIwGolox3DFbje87jLz/KRHFIW+6TMzfp5VjY1ik5Eo/OIXvwi3240vfOELcDqd+NznPoebb74ZLpcLX//61wu9jyRLFGc6pzB5NG+uWPXiTBKFwoGIkGwRQ1Ty6SuURE+eAQyLbv0oLn3yWcx481ul+z0mOoWhDEdSAECt0FOYq1MYyap8dOJiO1LFJ/I44t+qEBUhlUimYTNjIyPago6zvkFKLgWAhR+5Tds+cfCg9Pk3o79TjPW3olMYDoWwc8sW7YK6bsZMrPrat9hPOI7DW6ulXEaj0QThMXjyJJ577DH0Hj6s3Vc7dRou+P1fseADH0k6eN0sPO0d2u8IBYM5CyOpn7C1zXC/PQUsH5VSWqdlXrps1WvYYpPRp2zHjh246667cNVVV2HBggWYMWMGbr/9dnz0ox/FL37xi0LvI8kSsQm5aD2FFl1lEQ84dApJPoglpP48VlJlUZi7U5gKMxv5JWczTQm22D8UGB3NqcyWQTO5k82AaxJDKh9NIQqlfsIz1iSInba169Fy+ioAsfOu2AuWb/koMNEzDFhPFKqqit3btmnVAXaPB2f++H44C1CVVK4oiiJdg4jH5cOvvortmzZJZZszrnsbLvrbRjQvXVaU/bM5HPAICe3BHMWaVDo6yTjx3aV7H8zs4ZOcQqFyJR0cSxEjI1Goqiqaxy8Gpk2bpg2tP/fcc7Fz587C7R3JCUOnULgQLUz5qPVWWaKRiFCC4YCz3nyHlFQPZg2wF0VPOicsV6SewjxXYkNZBM04a31aoJOqqjmVIeVcPlrFJ3Ig9r7F3zuby23Yy0MS8c2Yqc0aDIyOSguoIvFUUQBoXXl6ws8VRcHCD0+4haPC480o5a2bPUf7vAf9/pwv2gvBkT17cEqYC3fGN76D+rnzSrhH1sSo1zvo92OfMEDe6fNh3X0/xhlf/3bRRbU46iLXElIpZCbJMcjucsEpHNvDJvYVSj2FQo97Oqx4DVsKMhKFc+bMweOPPw4AmD17NrZu3QoAOHnyZFW/eVbFZpfnFKqqWoTh9dZbZZH7CZtYxkLywqwEUmnuX5pyzFwx1SnMoqcQ0PUV5vA+ZRU0U0OnMI58McQxAJlid7mkkKZkg8XFhSDfDONepckXXISGhYsSf0eeIymAWAWQ+NpWcQsHenuxb8cO7facm/4FU99wZQn3yLqITmFcCImfq5rJnbj4sScx5bI3FH3fAHk8UsAggTQUDKL3yJGU6aRBKWQm+WzoQo2lEHvZs3EKrXgNWwoyEoXvfve7cffdd+OBBx7ApZdeir/+9a94//vfj1tvvRWrV69O/wKkqChOOWhGFSJ2bU5nQQIIrLhiL4tC9hOS/DBrgH02IxdyRTzh5jscOJuRFIBctpivKHSmLR/l6m6cQI4XQwSon50+gdSfQWmuoihY+KFbE+63mXTOtVpfYdDvxyvPPquN2GletgJLP3N3iffKuogJ6PEKDtFZa1y4CN6u7qLvV5xUTqGqqnhx0ya8smULnv3rX7H3pZcMq1DSjaOI4ylA2IyqqnIJfVY9hVxgBDIUhRdddBF++ctfYsmSJejq6sL3v/99OJ1OnH322bj7bh4ArIY+fbTQyaNA4pwXKyBdzLawn5Dkh1cYYJ9rsiaQXc9criQbSaGqKsaGhzPu4YhGoxNVBjZbRiXY+SaQciRFbkiihaIwK6SwGQNRmHCxOSX5xWb35W9McBLNCJoBgPq587XtfErYzSAajeKVLVu0C3pXYyPW//CnsAvR/kRG30sHyILI09Ze9H0S8U6eSCDVO4WhYFD7bkSjURzZswfPPvooDuzcKR2z042jiOMuwFiKYCCgXX+6Ghrhqk/dfiAiJgRb5Rq2FDjSPwR45zvfibvuugtz5sTSttasWYM1a9YUdMdI7ijinELxog6FS6STvlAWuThj8igxkzrhQs8/OopoNApbDolwZqaPJiNZac6Op55C34kTaOrowIIzzkhbYigJ2IbGjBLw8h1gT1GYG1LAQgrRQhJpFBw4o3EP4VBIO4/aa2pSLjLa7HbM/8BHsOWjH9HuM2MkBSAfL8JJeh+Lxf4dOybmNioK1n3/x9IAdJKI6I6FjURhHnNrzSCVU2jUYxgJh3Fw1y4c3bsXXbNnY/KMGXL6aCpRmEXfe3xRxlVTk/KcKyWPTp+e8jX1WDUssdhkdEWzc+dOeExa6SKFR+8UShHvBRhHAVjz4kw80KRLTSQkHQ5v7URpj6rCnyKpMBXFSB81Ks0JBQLoO3ECANB3/DgOjgeGpUJy2zP8DuUzwD4SiWiJyTanM21qo8OCZeulgk5h7jQJMwCNyjJllzB9v+b0q98sXWCLva/54BKcevG8XmxOHjmCI3v2aLcXf+JT6Djr7JLtT7kgXodoQTNiQnrJnUJBFOqcQtE5rJs1R3Ktw6EQ9u/YgWcffRTDwizPlOWjolOYQhSqqopdW7fi2UcfxY6nnkpZ5SInj85I+jgj2IoQIyNReMMNN+Azn/kMnnjiCRw4cADHjx+X/iPWQrHZpBV98SLU4StM+ajYM6Fa5AslX9CyfJTkT/2ciUS9VDPNUqF33wqBvnxUVdWEPsiDr7yC/t7elK8TEgVspqJQ6OMIZFk+qu+3THfxLYrGaj6RA/pxFFNTPJLo8c2YqbVWhAKBhAvibGPu7W43FnzoFu12w7wFpuynUyiHCxdAFEYiEby8eTOee+wxwzJaICYWdj/3nHZ78nmvN+yjJIlIIymExbo4nrYSO4WC06s/X4hOYduadbjobxux+pvflRagQoGAVJmS2inMLGhmoKdHm93Y39ODk0eOJH2sFDKT5UgejqSIkVH56He/+10Eg0E8+eST0klaVVUoioIdQvIUsQaKwwF1/IsmXWgVqnxUuDizyhBplo8Ss6mfMxfHHnsUQPJAinQUwyl0eGth99Qg4h+LlZBHIobhOLuefRbLzj4briSVINLCSob76pk0GTaXC9FgEKFgEOFwGA5HRqcaRLLst7RiwFUpUFVVFi6cUZgVis2GxoWL0PvMUwBiJaTNwncik5AZPbNvuBmOWh/USART33iVKfsp9vQWonz01LFjWjXBwV27MG/lyoTH9J84oZXSeid3Ys13vl/wweqVgjtd+WiJx8jU6OYUqtGo9rcVF0q8nZ2w2e2Yfs11mPrGq/DaL/4bL3/jqxg7Kgu2VD2SmQywV1UV+3Vj7w688gpaOjsNFwzzqZbgAmOMjM7UP/jBDwq9H8RkbA4nonFRKFxoFcoptGLQTCiH0jdCUiEFUuTgFKqqmtUcvnxwt7Rg9PAhALEEUiNRGAoEsGvrVixau9bwJCt+hzIZRwHEeqpqp0zF0J5XAcTcQkeG/85s+y2tWLZeCoJ+v1ah4WpsLFibQCXTeNoSTRSODAygWSh9yzRkRkRRFMy49i2m7qMYnFGI8lHRDRqK9wvqEMsIp77pqoL1RVci7jTlo6XuKbS73XC3tiHQ2wOoKoKBANzjYkk8f4il0TanE7Pf8S5Mv+Y67Pnpf2HHN7+GwKmTmHzeBSmT7jNxCk8dO4bh/n7pvrHhYfQePoy27sSU1lwH1wPsKYyTkSg844wzCr0fxGQUh13blpxCX4F6CoVGetUiXyiWjxKzEUVhLk5hREoCroXN6Uzx6Pxwt7RqojAUDEon9Y7XnYvj/3wMUFUM9Pbi0O7dmDJ3bsJrhHMQhUDMTYmLQv/oKGpzEYUZlNbqF6Pi1SvVRj69NCRG02lLtW19X6G+p7BUSE5hAUSheHEeGBtDwO+HW1dFIDtbyefQkUSM5hRaKX0UiLm/gd4eALHFprgolJxCQRTGcdTUYN573o9Zb38nBna9IvXpGuFO4xSqqooDgkvo6ZgE//FjAGJuYWtnZ4JDLZaPZu0UcoERQJqewnA4jF/+8pd4xzvegTVr1mDx4sVYt24dbr75Zjz88MMZx5qT4mMTEkjFA33BykeFL5RlykfFBm6WjxITEHsKx0ZGsj4GFqOfMI4+3U28sJ1+7XVY+OHbtNsHdu7EgEF/oXjh6W7KvNQ11wH22YpCxWaTe0EsUqVQbPJJ3SMxxItYfQJpLuWjhcBR69MuhKORiOmfd71jY+QWiuKgZhJFYTaIC2uhYBCRcFhbKFTsDku4rjXiWAphITGZU6jH4a1Fy7IVUuChEZ40Iyl6Dh3S+lrtNTU478HfaYsi/pER9Bw6JD0+Eg5r13yK3Z51Ei5HUsRIKgpHRkbwjne8A5/73OcQjUaxYcMG3HzzzdiwYQNGR0dxxx134IYbbkDApKGTxFwU4QtZjKAZySm0yBeK5aPEbNwtLdpqbzQSyXpWmCR6snDeckFfniOe1Gu7urHoo3egbc067b5Xnn1WKmWKPy9OVk5hjrMKsxlcH4crvBxHYQb1c+dpzn1gdFRbwEmYUVjCEB9FNys0YnJfYVgvCoUkyTiSKOygKMwGu8sl/f3GhBYEd0uLJXozawwSSFVVlf/ugnDMFfF8Eg4GpevGaDSKg6+8ot2e954PoG7mLMx7zwe1+w7u3i0tyornN29nV1pRqoflozGSfgK//e1v4/Dhw/j1r3+N//7v/8ZnPvMZ3HLLLbjrrrtw//3346GHHsLevXvxk5/8pJj7SzJE/EKIB3qnr/BOoRW+UKqq5lz6Rkgq8ukrLMbg+jhu3VgK6aTZ1Q2bw4E1996nidxQIIDdW7dKJ9pcRlIA8liKbISz9P5kOHiYYTMcR2EGdpcL9UJK6PDgIIDY9yLuHDjrG7IaiF0IxH5Rs0tI9WV86ZxCD0Vh1oglpGLCa6lDZuJ4DWYVRkIh7djq8HpN6Vm2ORwJzmmcEwcOaMc0Z10d5r0vJgbnvvs9cHhrAcQWG8XPq5Q8Oj37EnqOpIiRVBQ+8sgjuOOOO7Bw4ULDn8+fPx+33XYbfve73xVs50juJHMKi1E+Gu/tKSWRcFjbB3uNF440884IyZS6PPoKi5E8GscjlI8G/f6JE6jNpq0Geyd3YvW3/lN7XH9PDw6/+urE/ubsFE64VYUsHwWstyBVCgIWKW8sd5qWJPYV+i3iEsZxNhQubEZfxjc8MCB9pxIcoxRz6IgxrmSisMTjKOLUTBbGUoz/rQOSS9hlWt+2UdhMJBKRZugu+PBt2kKMs64evpkzJ/ZP+G7K39PpWe+LzSOMVavS8wiQQhQeP34cixcvTvnklStX4kiKmSGkdIgBFmKiWKHKRxWbDTaXS7td6hJSuZ+QITPEPPKZVRjKQfTkinjCFYMzajomSZUEk8+7AAs+eIt2e/+OHRg4eRKAvL9Z9RROlUVhpotEeZePVukKbz6pe2SCpsWnadvx70xAGvUxvdi7lEAhnUJ9+agajUr9leHxmaex/ajTXBuSOWLFhSwKSx8yA8TGTcSJXzsGpSqT7Hr1UmE0luLYvn3awoO7uQVzbny39Jzarinatl/YL/kYmP3CGJ3CGElFYSgUgtfrTfnkmpoajGQ5nJgUB8U+cdEnflnMGqJrhJVW7KWyN4bMEBNpmCuEzWTpFEYkp7CwZWjiYoh4YVfbPSXhsYs/8Sm0rlqt3d717LM4dewYQsIKcTZOobOuXiuTUqPRhGHgycjNKazu8tFoJDLx/tpsWQcskAnEsBljp7D0LmyhxlKo0aihyBT7CoNMHs0b8XpELh+1iCgUykeNncLkITPZoncKw+EwDu3erd236PaPJyw8eIXzl+QU5pE8CrCnME7pu1pJQbA5E5tsGxcuRsO8+QX7nVZKb2LIDCkU0liK4eGsSqWl4JYCl4+KJ1zxJOc1mO9kcziw9j9/qAm/oN+PHU8/rUsfze57VJtDAmkkB1HosNBiVLEIBQI4tHs3+k6ckN5bb2dXQcecVDoNCxcB46Vxo0NDiITDlgmZiSOWj5o5wD6Z6yj2FZodNlKNiNcj4mfL02oNUVgzuVP7DgTGxhAJh2Wn0ExRqHMKj+7Zoy3oeydPxsy3vTPhOeKippSOmqejT6cwRsp4np/+9KeoSdGLNZpl8h4pHqJTGGf6m99a0N9pJacwRKeQFIiazi44an0IjwwjHAohFAjApZvllQypPLKI5aMi3q5EUQjEBMXqb30X/7z+zQk/a5i/QPp+Z4Jv2jSc2vYsgNgqbkMGZdzhHJzUanQK9+/YgeMHDgAAmoWxACwdzQ9nrQ91M2djaE/MrRgdGpKdwhLOKIxTqPJR8ZxpczoRHX/tob4+bf4nk0fzJ9nMZKv0FDq8XtTNmoOhV3cBqoqRwcGCOYXiWIqx4WFpzMTiT9wluXdxvAaiUFXVvMO26BTGSCoKOzs78dvf/jbtC0zmapEl0a8WKzYbpr3pqoL+TitdnMlOIXsKiXkoioK62XPQ9/w2ALGTWcaiUPxcZtGjlwvJemmNykfjdJ5/IVb+21ex52c/gbOhAbXdU+CbPhMzrst+Qal2SvZhMwyayYxBwb05deyYts3k0fxpWrJEE4X9PT26wfUWKB8tUNCMeM5sWrIMAzt3IDwyjKDfj+DYGNxeL0NmTCC5KLSGUwgALctXxEQhgOH+fp1TaN41v3iOOr5/v1Z145s+A9OuutbwObUG5aOBsTHt2O9qbMzp3FqN5xEjkorCv/3tb8XcD2Iyit0u3Z507vkFP+gUcoh0JByGzWbLeI5PrlH6hGRC/Zy5migcHRpCQ2tmbnQxnUJnXb204h8nmVMYZ/Y7b8Lsd96U9+8XBUqmYylyCprxTixGRaqg7Ec/N0/EZwEnq9xpX3cWDjz0awDAod27pdA0yzmFZpaPiv2CrW1wrPDi+D8fBwAM9vWhTScKPR00BHIh2WKd2yJOIQA0L1uOfb/6HwAxpzioSx81C9EpFNswlnzyM0nnDBo5heK8x7rZcxOekwkMLIvBnsIKRe8UTr/2LQX/nfaawqy0DPX14Zm//AXP/OUvUg15KuT0UZaPEnPR9xVmSjFHUiiKYvjZTycKzcKX5QD7aCSiHTcUuyPjZEMrVSgUA3Funh46hfkz481vRcP8WCBbNBLRLlbdLS1wpAnfKwaFGkkh9Tu3tKBl5SrtdryvUDyv0inMjaROoUV6CgGgeflKbXu4v1+ecVugoJk4DfMXovvSK1I8p0U75kfCYYRDIekcLJ6bs8HG8lEAFIUVi9hT6Kj1oevCSwr+Ox0FatTtOXwYkXAYoWAQJw4ezOg5LB8lhUQaS5FFAqksChvN3CVDjFalSyIKM3AK5dLRhoxnYVVb2Y8UvT59BnwzYnO7FJsNLcLFHMkNm9OJ07/y9YT7c5l9VgiK0VPobm5Gy4qJz1I8iZU9hfljdD2i2O2WqmhqXLhYMxb8IyOIjDvSNpcLLhP300gULrnrsykrwhRFSUgglZzCWbNz2pdCXb+WGxSFFYqYPjr1TVdlHRKR0+8s0EqLWAo6MjiY9XOsdLAllUHOTqGUPtpo5i4Zoj/pOnw+KdK+kNRM7oQyXgIUCgS0C4tk5CqYq1kUNi46Dec//Ecs+ugdWP9f/w3f9Bkl3LPKoXXVasx6+w3SfbnMPisEYk9hOlGoRqPYv3Mn9rzwQtrHhnULqY0LJ+ZUjwwOJg6un8Ty0VxwGYhCd3Nzxq0xxcDudqNhwaKE+2smd5o2uB6Qy0cBoGXFSkw+7/Vpnyf2FfrHxmSncNacnPaFTmEM63wKiak0LFgIILZ6PMsg1rcQFKqMS7yYHM1QFDJ9lBQS37TpmuAJ+v1pBQ8QW33Uvhc2G5y+ukLuIoBEpzBVyIzZ2BwOw1CAZMj9hJmX1lZblHhAl4bpaWvH4ts/UZRqkGpiySc/K/Xh13aXvp8QAJzinMI0x51Tx4/j0K5dOLZvH/a9/HLKx+qra2o6u7TFmfhoDqmnsJ3lo7ngamhIyHyw4szH5uUrEu4zewaqq6kJNpdLu73kU5/PSHSKY5USnMLZuYnCajuPJIOisEJZdNsnsPLfvoqz/+dBNC9bXpTfaS9Q0Ix4sTg2PIxIBoKT5aOkkNicTvimTbgymbiFkhNW31CUlWF3s7wg4i2iKATkkrt0JaT68tFMqWan0Apz8yoVV2MjVn75a1Dsdih2B7ouubTUuwQAcNZnXj4qVtb0HDqU8vH66hpFUSS3aODkSa2/0llXZ4n+ynJEsdm0ebBxrJQ8Gqd5mYEoNLGfEIi9F/Pe+0Eodjtmvf1daF+3PqPniYuNY0ND2mKFYrfnPJbH7qFTCKSZU0jKF0dNjSkJgtlQDKcQiB0EfCnKy6LR6EQDvqJknGJISDbUzZ6YZzY2PJzyMwkUv3QUSHTJi9VPGMc3bRqOj29nJQqzKh+trqAZeZi6NUoaK5XuSy7Fhk1boNhslkgeBSCVf6cLmhGdvWgkgp5DhzB5hnGJsRQ0M76Q2rhwMXqe3AQA6DtxQvt5DZNH88Ld3IJAb4922yozCkVaDJzCmgKMoFty56ex+OOfhE3nnqZCXNzs75l4H2unTksIWcwUu1teXIzP5qw26BQS0yhUpK/+xJeur1C++G7K6mBDSKbUCw3tWTuFTcXpc00oHy2yKKzNIoFU/J47s+h7rLYocSloxgJz8yod37TplhGEQKJTKEb56xFFIQAc3bcv6eNFUegZX0xqXDTRVyhefHsmWa/csZzQ5xxYURTWzZ6bkABt5jgKkWyv0aSeQuF4WD93ntHDM9sHp1Mq6031vapkKAqJaeRqv/tHRhAUoq716J3CdH2Fcj8hS0dJYRDnIWUtCgs8ozCOp+RO4XRtO61TKC7mZPH+VJNTqEaj8iDpIpcDk9Jjczphr5ko3UzVThHUjXAaGxrC4Ph4CT3iuIl4wqQYNiMu2jB5ND/0FRxuC5aP2ux2NC1dJt1ndvloriTrja/PMXk0juQWVsECoxEUhcQ0crk4O3XsGJ599FFseeSRpBfW+gG92TiF7CckhaIuW6dQFD1NjYXYpQT0iyJl01OYRfmoo0DzUa1IwO8X5ua1sq+rSnFlOKtQ7xQCwLF9+xLu088IjY+9aJg3PyEUBeCMwnxJcApbrecUAkjIo6jptIYo9EyabPi5rMsxeTROtfWnG0FRSEwjl6CZE4cOAYitgJ88ejTh59FIBKrutbJzCpk8SgqDGH09NjKSttykFE6h/vNf7PJR0SkMpHmPcn1/qulELvYT5hqoQMqfTGYVRiMR6VwY5+SRIwmVOXIwW5PWS2X3eAwvtD3sKcwL/WK1FYNmACTMPbWKU2iz21FjsC+5zijUXleodlMr/FySDIpCYhq5OIXi4G8jt0XvEgKxE5jRCqj2c+GER6eQFAp3S4vWGxiNRFJ+JgG9E5b5yIV8cAsr0IrdDk+Ry75cDQ2a6xeNRqXvpp7cRWH1RIlLyaMWmZtHio+zYUIUJnMKReHnae9Ay+mrAMR6pU4cOCA9Vq6ukReSGhcuTHjtGvYU5oV+sc6KPYWAnECq2O3S+aTUGJWQ1gstHbkgnksiFX4uSQZFITGNbAMfopEI/IIQHDMIokh2whPFpB4OrifFom62UEKa4jMJ5N4zlw/upiZ0vO5cAMCUy98Im6P4gdNSCWmKsBl5TmFjxq9frU5hLUNmqhbJKUwyq1DqPe3sxOx33KjdPrZ/v+Tap+rDF/sK49RwRmFeuPTloxZ9P73dUzD5ggsBANOvutZSoX36VghXQ0PeGRJitRudQkLyxObO7uJMX3LnN3AKkw3nTdVXyBmFpFiIK5NGixoicvpocZxCAHjd/b/CxY89gTXf+X7RfqdIpmEzDJpJj183uJ5UJ2JPYbLyUbFyoWZSJ6Zc/katsiEwOiqNmDAaRxHHUBROYvloPkjXJQZzC62Coig46ye/wKVPPYdV3/hOqXdHQu8U1uXpEgIMmgEoComJZBv4oO8NDAWD0oUhkHwVNFVfYaoTHCFmkk3YTCl6CoFY/0XDvAVQbKU53ItljilFYa7D62uEkp8KF4WcUUgA2SlMVk0TEEXh5MmwezyYcd1btfvEwJlU1TXiWIo4VnW2ygVRFLqbmy3lwOlRbDb4pk6z3Mw+vVNYP8cEUVhFVSfJoCgkpmHLMmjGqARU77bIs8smToSpnMKwrmmekEIhhs2kKmkGSjO83gr4cigfzW54ffWcyKUZhRSFVYsza6cw5uzNuv4G7b6+48e1z5PUh6/vd+uYJIkYZ10dU2/zpG72bK1apHXVmhLvTXmS4BTmGTID0CkEKAqJiWRbxmUk7PRui1g+2rpqtbY9OjSUkEoapxRDwkl1UjdbTiBNRa49c+WOOMA+kMQpjITD2jHD5nTC4avL+PWLETQTCYdx8uhRBHRz34qJFGZks6GmszCDpIn1cdWnH0mhLx8FgLqZs7QeYwA4vn8/gNQtF4qiSG5hDZNH88ZZ68O5//t/WPHFL+P0r3y91LtTliSKwvzGUQDVtcCYDIpCYhrZfqEycgoFUVg7ZaoWQ6xGo0kvwtlTSIqFb9p0KOPhLcGxsaQ9sIAsCt1FSh+1Apn0FOrHyGRTqmQvwpzC17Zvx85nnsHz//hHyUpURUFa0zEJdperJPtBSo9YNZNR0MzkCSE3+50TgTPH9+9HNBpNG87WsGCRtu1h8qgpNC5cjDk3/gs8rRyblQte3Xil+tn5i0JxJAVFISF5ko31HgmHDV0DvVMouSu+OjQumIjHTlZCKp3g6BSSAmJzOiXRk2yhQlVV+bNcxJ7CUuPt7NIGDQf9fsPRHZIozDL2XF+hkG5eZLaoqoqTx44BiJXZpZuTWij8nFFIxnHW51Y+CgCdF16sLa6GgkGcOno07UKqOMTcN31G7jtOiEnYPR40j89RrJ082ZTPZTWNN0oGRSExjWycQtElVIQma30Cqei8OOrq0LBwYsXS6OIsGo1qz1HsdmlFlZBCIJWQGoTNBP1+9Bw+rJU729xuOIRwlErH5nSi9fQztNs9hw8nPEbsafK0ZLdybrPbYXM6tdvJyspzJRgISCV66eZRFgqGzJA44nnNqHxUVdWEoJk4NocDM9/2Du320X375H5nA1E45bI3YNqV16B19VrMf+8H895/Qsxg3fd+hKWf/jze8Oc/S+eAXBFHUtAptBDPPPMM5s2bhxtuuEG6PxAIYOHChZg3b57039e/zppsK5DNnEJRFLavO1Pb1o+p0AfNNMxP7RTqY+1LlbhIqod6XQKpf3QUJw4exO7nnsOzjz6KZ/7yF+zeulV7TDWFzMSZds112nbPwYMJPw+LQRc5lFNlOyM1G8Z0x5lSiUI/RSEZR+wpNCofDYdC2uKIo7YWTl2P7sy3vl1bjB08eVJazDIqH7U5nVjzne/j/N/8wZRAD0LMoHbKVMx//4fRvHBh+gdnAINmgOJPMk7Dnj17cNtttxn+7JVXXkEkEkFnZycWLFig3T97Ng9SViArp1C40Gpbsx59L76AYF+fFqbgHndSxBOe01eHxjROoTyOgqWjpPCIDe6Hdu3CwVdeSfn4KZe9scB7ZD2mXP4GbP3UxxENBDAyOIiRgQHUCgmK+p7CbLF7axEaX2iKhMNwmLBqHGdU5/6WKmwmwBmFZBxnmqAZsZ8wHjIj4p3cic4LL8HhP/4OgHwBzD58Uq0waMZCojASieC73/0ufvCDH2AsyUl3x44dAIA3velN+PCHP1zM3SMZkE36qOjyNcxfgLqZs3Hy2WcAxNyWuCgUy0ed9fWomzUHNqcT0VAIgbExhEMh6QIwzJAZUmTE8lGjfjaby4WWlavQvnY92te/Dm1r1xVz9yyBq74BXRdvwMGHHwIAnDh0CDNEUShF4mf/vfW0tcN/PNb3Jy4qmYE+EMsSTiFFYVUjBc0YiULhM+rtTBSFQCxwJi4K49g9Ho6bIFVLIStOygXL1NaNjIzgW9/6Fpqbm/G2t73N8DEvv/wygJibePvtt+OLX/wiDhw4UMzdJCmwZzGnULzQionCWdptMaxDKh/11cPucqFOGFKqdwtDDJkhRaZp8WlSSai9pgYdZ5+L0+64C+f95g+4ctcBnPfg77D4Y3eifd16yw0BLhYzrnmLtt1z6JDU+yd+bz1ZBs0A8oVv0GQnT3+MsUJPIWcUVjeuhtROYSBJyIxIx1lnwzdjpnQfF1JJNUOn0EJOodPpxKc//WlceeWV+NOf/mT4mLhTKP78oYcewq9//WtMm8aTZKmxud2AogCqCjUahaqqhhfAoUBAcwbsbjdqp02X+hTEsBmpfLQu1hfROH8hBl5+CUDMcawXnAWppzAHx4GQbHF4a3HB7/+KnqeeRMOChWhavAQ2h2UOrZah4+xz4WnvgP/EcYQCAfT39KCpowOAvnw0++9tPE0RkC+I80VV1QSnsBTlo5FwWHuPFIcDniQX+qQ6sNd4odjtUCMRRKNRRCMR2ITAtmTJoyKKzYZZ73gXnv/8p7X7cindJqRSsLkpCot25fLggw/izjvvTPrzRx99FNdff33K15gzZw7cbjc+9KEPYf78+bjrrrvw5z//Gf/+7/+Ob37zmymf29TkhcNhT/mYQtDWlvkQ5krA4fEgPH7RFI1EYDe4OBYvspoXLkTHpEYMLT8N28fvk5xCQRR2TJ+MhrY6dK1agf0P/ir2WimcwqbOjqp7/wsB38P0tLUtw8zVy0x8vcp8z+e/7a14bjwY7MShQxOiUCgf7Zg1Net/f9vsGdgzvm2mUxgMBBJmTwb9/qQLXoVCdAnrpkxBx6TGov3uQlCpn+9i4m5shP/kSQCxxVNXElHYNmdG0vfb9/5/wYv/dg8i498/36R2/m3yhO9faTDjfT/R1qhtm1U+6qt1l9Vnomii0O12ozFF6p7dnl6wffGLX5Ruv/vd78af//xnbNu2Le1z+/qMhyYXkra2OvT0JA5or2RsbjcQF4XRKIz+qmI/Ye2c+ejpGYLaOrHSLyahiaUxQ0Ebgj1DcEydcBVHdKv4olMY9viq7v03m2r8DJeaSn7POy67EhgXhaeOHkU0GoXNZpMWc/yO2qz//dH6CYfDTKdQnzwKxBa7IqEQHEUcHi/2E9ZMmVbWn49K/nwXE7uvDhgXhZFQCBDaN8SFkYivOcX77UL35W/E/v/9JQBA8TXwb5MH/GyXBrPe99HgRCaAWU7h8EgAsOBnIplQLZoovPTSS3HppZfm/PxQKIRDhw5haGgIS5YsAQC4xk/KRpHMpDTEwmb6ARh/qQZOnsQBIZ2xYX4sRdY3faK3wT86img0CkVRpL+tY7x8tEEYYD86OCit2qcbwksIKR2NCxejZnInxo4eQTQaRWBsDDW1tXkHzXiFOWxmOoX60tE4Ab+/ZKKwdgpbJUgsvCleU6MPmwkmmVFoxPwPfBiHfv9bRMZG0XXhxWbvJiFlg9hTaPa823KhbBpfhoeHsWHDBthsNvzxj3/E1KlT8fjjjwMAli5dWuK9I3FsKYZ/9h4+jF3btk3MT6rxYuobr4pte73wdnZh9MhhQFXhHx2F2+MBxtMcbW437OMXYTWTJsPV1IRgXx8i4TACY2PwjCemiSdHBs0QYj1qu6dg7OgRALGySJfbrR0rbE4nHL7sS23EnkIzg2D04yjE31ErJEAWGnlwPZNHCeBMETYjuuXeNP2njfMXYsM/n0JoeAgN8xakfCwhlQyDZiyUPpqOpqYmvOlNb0I4HMY111yDt7/97fj6178Op9OJD3zgA6XePTKOUaSvqqo4vGcPXnn2WU0QuptbcO5v/gCvcDEnRvv7h4flcRTChaKiKGhcMDGvUCxHlYJmmprM+CcRQkzE2z1F2w6MjSXMKMylV090QwLjPX9mIPYse9o7tG2zE07TwXEURI+zThhLIZwro5GIdh5U7Ha429rTvpa3q5uCkFQ9HF5fRqIQAD772c/iPe95D2pra/Hcc89h4cKFuO+++3DaaaeVetfIOPpZhaqqYu9LL2HfSy9p9/umz8Dr//Q3NC+RHV4xHntsZEROHtWtyjcsMB5iz/JRQqxNrSgKR0fl72wO4ygAwFnr05wTNRqVFodyRZ88Ounsc7VtM/sWM0F2Clk+SuSxFGKFjOiUe1rbpFRSQkhy6BRatHz0yiuvxJVXXplwv9vtxm233YbbbrutBHtFMkGcVRgOhfDKli04efSodl/LytNx1s8egNvAxRNXwANjY/KMwjq9KJzoK0zuFLJ8lBCrof+ei/2Enjwi8b2TOzEwMBB7Xb8fTuFYlAtBv1+rVnD66tC8bDn2/ep/tJ8VEz9nFBId4jkxkkQU1iQZXE8ISYQjKcrMKSTWR3QKd2/bJgnC7g2X4dz//a2hIASA2q5ubTs4NiaXj9bJfUaNCxOdQjUanVgxVRRpoDghxBqI5aP+0VGExZCZ1txFYc0kcwfYjwkuYf28+aiZ3GXq62dKOBjUjoV2jydnN5VUFmJPoVhVIw+upygkJFNEU4Plo4SYgN0z8aUSHYC5734f1t33E8me1+MVRGFgbEwqiUlwCufNB8Z7j8aGh2N9FLrHc4A4IdajNk1PYa6IrogZA+bF0tGGeQukvsViOoV+4d9SO2VqUecjEuviqhdEofAdCkmicFJR94mQcsZeI7c/VSMUhcRURKcQAKAoWPq5e7D8C/8KxZb64yaJwtHRlE6hw1sL3/QZ2u3RoSFdPyFLRwmxIl5dRYAosHIZR6G9rskJpKM6p1B8/WL2FAZGRrRt9hOSOOJ3RTz3BcVy7LYOEEIyg04hRSExGTEl1OZ0Yt33foT578ksHdbTMQnKuLsXCgYlp9FRlxhTr08gDZvkOBBCCofD69W+n6qqSj3BnjxKI80cSxH0+9Hf26vdbpg3H+7WNijjoR3hYLBoK8l+hswQA8Q0XNEdlHp021hqTEim6IMSqxGKQmIq0695M5x1daiZNBnnPPAbTLn8jRk/12a3S6vxYqqoqy5xJliDrq8wxHEUhJQFYtjMcH+/tm2WU5hP+ejY8DBe2LhRS/y0u91oOm0pbHY7PB3CWIoiuYUUhcQIUfCJ7iBFISG5QafQoumjpHxpW7MOVzy3E3aPJ225qBHerm6MHDwAQC7fMnQK58sJpF5hbAXHURBiXbzdU3Dqua0AIJWJm9VTmItgCwWD6Dt+HPteeklbYFJsNpz+79/UytG9k7swduQIgFgJqae2Nuf9zRRxHIVvCkUhieFpnZg/KApBuXw0/YxCQkgMmyAK1WgUqqpWXQ83RSExHYfXm/NzxX6j0eFhbVsfNAMYOIXCyZDjKAixLmLYjEg+5aPeSbJTmMkJfWx4GKeOH8epY8cweOoUIAy9t7lcWP/Dn6Lzgou0+2omCWEzRUogFYNmvBxcT8ZxNTVBcTighsOIhMOIRiKw2e06p5CikJBMURQFdo8HkfFFxWgkAnuVBRZW17+WWB5RFKqCfa8PmgEA37TpsNd4ERmLDcAeE0RksrEXhJDS400iCvMpH3U2NGjHg2gkgkg4DIfTKT1GVVUM9/Xh5LFjOHX8uDR2Qnotnw9n/fxXaDtjjXS/mX2LmaCqquwUsnyUjKPYbPC0tmHsWGzsUzAQgLumRhKFHF9CSHbY3O4JURiNwl7i/Sk2FIXEUiRzEIxEoWKzoWHBQpzaugUAMCAEQ7B8lBDrUtvdnXCfzemEw5f4Pc8URVHg7ezE0J5XAcScPFEUnjp2DK8+/7x00ax7ATQvW4HuSy7F9Guuk1zBOF5hLEUxEkhDgYAWeOD01XH2KpFwC6IwFAjA7nBAHXe7nXV1cNTUpHo6IUSHo8aL0MAAACASCsHpcpV4j4oLRSGxFKJTKGJUPgrE+grjolAMl2D5KCHWpdagDNLd3JJ3/0bN5AlRGPD7pT7jvS++mCAI7S4XOs4+F50XbUDn6y9CTXvqCP9il4+KLmHtNLqERKamvR3949vBcVEYx9vBcRSEZEvt1GnaQsvYyEhR+satBEUhsRTJRaGxgyD2FYpwTiEh1sWofNRtQv+TNKtQEG3hUGgixdNmw/RrrkP3xZdi0VWXo38k8+jxYpePyoPrKQqJjPidCVEUEpI3DfMXoPfpzQBiWRVN7dXVl0tRSCyF16CsDEjhFC4wFoUuikJCLIurvgHO+nqExBmFJswWFZ08sbxT7Deunz0Hq7/xHQCA0+sFRoz7Co0o9gD7AMdRkBSIIycoCgnJn4b5C7Tt0SQ955UM5xQSS+Gs9RnOGEwmChsWLDS8383yUUIsjd4tzCdkJo40lkJw2cSTe8O8BcgVUXSG/H6tf6tQcEYhSYWnTRhgHwhI5dEUhYRkT8M8edRZtUFRSCyHUQmpw+czfKy7qUkq6YrDnkJCrI2+r9CMpMRkTp4oCuvnzsv59e0ej3ZsUVU1eWiNSfhHRrRt31SOoyAy0gB7v1/6PNZUWdkbIWbQMG++tj02PFzwhT+rQVFILIdeFNprvLClmBXTqHMLHbW1sFdZYhQh5YY+adgUp3Byl7YtOoVjklM4H/ngmz5D2+7v6cnrtdIR4IxCkgKPrqdQ7HP1TppUil0ipKxxt7TAMx44Fo1EpIW5aoCikFgOvSh01hm7hHH0JaR0CQmxPonlo/n3FHo7jYNgzHIKAaD70su17RMHD+b1WqnQzyg0Smwl1Y0oCoMsHyXEFKq5r5CikFgOvYOQrJ8wToMubMaMi0tCSGHRf889rfl/b93NLbCNzyYMh0KIhMOIhMOa46bY7fDNmJXX75h+1bVQbLFT50Bvr9T3ZyZBoWfR3dwMZ23qxTFSfSQ4haIoZPkoITkh9p1TFBJSYhKcwvqGlI9v1I2lYMgMIdanEE6hYrOhdtpEeedQXx9GheRR34yZeZeW10yajEnnnKfdLpRbKIXMTJtekN9ByhtXYyOU8dYKcfEDoFNISK5ITmGVhc1QFBLLkVg+ajyjME7drDmaOwBwRiEh5UBtty5oxiSHv+N1Z2vbfSdOYEw4qeeTPCoy/c1v1bZPHDxYkDACuXSUyaMkEcVmg0cIaAoHg9p2DUUhITnB8lFCLEStXhT6UotCu8uFutlztNvsKSTE+rhbWuCsj5WGK3Y7PCaVu00+93xtu//ECckpzLefME7XhZfA2RCrYAiMjmLw5ElTXldEHkfBfkJijFhCGsfh9cZmcBJCskY8T4wNDyMajZZwb4oLRSGxHJ72Dsn5i184pkIcYk+nkBDroygKlnzys6iZNBkLb/2YaT1z7evOhG28RHR0aAj9J05oP8s3eTSO3ePB1Ddepd0uRAkpnUKSCeJYijhuA6FICMkMp69Oa29QVRVjwsJipvQeOYJnHnkEL/7oB2U11oKikFgOxWZDTedEtLwjjVMIAN2XXqFtd5x1dopHEkKswux33ogrtr2Mxbd/wrTXdHhr0bZmnXZbHEBsllMIADOEEtLeI0dw4tAhU0/+olPo4+B6kgQjAVjTztJRQvIhnxLSUDCI3du2ITg2hv1/+RMiY4UJIysEFIXEkoglpK4MnMKuSy7F+f/3J1z79NNoXbW6kLtGCLE4k8+9IOE+xWZH3czZpv2O5mUrtAuHaCSC3Vu3YsfTT0thH/kgl49SFBJjagxEoVFJKSEkc/IJmzmyZw+ikQgAoH72HNhryqeUm6KQWBIxbMaRJmgGiJWita5ajfYVKwq5W4SQMmCS0FcYxzd9Ouxut2m/Q1EUrP7296RjVd/x49j297/j2P79ebmG0WgUwbi4VJSE8C1C4hg5hW6DklJCSObkOpYiFAzi6N692u1FH70DiqKYum+FhKKQWJKuiy/VtiedfW4J94QQUm7Uz50Hr1CCDgD1JiWPijQtOg0XP/YEZr/rZu2+SDiMPc8/j5eefBL+kZGcXld0G2vaO0wVs6SyMOoppFNISH40zF+obWfjFB597TVEwmEAQN3MWei+7A2m71shoSgklqTrkktx4V8ex4ZNW6QQGUIISYeiKJikKyFtMLGfUMTpq8PKf/1/OPfB38E3c5Z2/0BvL7Y99hiOvPZa1q5hgDMKSYZ4DPoHxTEVhJDsqZ89B4otJpH8o6NSb3oywqEQjrz2mnZ70e2fgM1uL9g+FgKKQmJJFEVB02lLUCdcZBFCSKZMPk8WhfUmJY8mo33telz0139i/vs/pF1MRCMR7H3xRWzfuFEajZEO9hOSTDESgHQKCckPu8eD5uUrtdtGlR/xZNLew4ex7+WX8dKTT2ouoW/6DEx5w5VF3WczcJR6BwghhBCzaT/zLCgOB9Txk7SZyaPJcNTUYOmnv4Duy9+IZ279IAZ27gAADPX1Yfs//4mVF1wAhzBuJxnyOArOKCTJMRKAZs38JKSaWfHFr+DvV1+B8PAQQoEAXnrySXTPnYuRwUGMDAxgZGBAE4F6ytElBOgUEkIIqUBc9Q2YdtW1AID6WXOk4IBC07JsBV7/58ew6PZPQHHE1l7DoRDGMgwsoFNIMsXV2CjN9QXoFBJiBs1Ll+Gsn9wP23hPt390FK8+9xyOvvYaBk+eTCoI29efJc2xLSfoFBJCCKlIVv2/b2D2O29Ew7wFsDmKe7qzu1xY/NE70PvMUzj+j8cAAOEkFxF6ApxRSDJEsdngbm3D2NEj2n1G4TOEkOxpX3cm1n3/v7DpxrdDHR8zIeJqbELT0mVoPm0pmpYsRePiJfBNn1FWiaMiFIWEEEIqEpvTiRahL6QUOH0TI3WSrSzr8bN8lGSBRxCF9poaOLy1Jd4jQiqHrgsvwfof/hQvf/Pr8LS2oum0pWg6bQmaTluKmsmdZSsAjaAoJIQQQgqEs75e246EQmkfH4lEEAoEAACK3Y6ayZ0F2zdSGYg9hCwdJcR8ui7agK6LNpR6NwoOewoJIYSQAuEQnMJMykfF0lFvZ1fRy15J+SEKQYpCQkiuUBQSQgghBcKVpVPo54xCkiXiWAqKQkJIrlAUEkIIIQXCUZe7U8jkUZIJNZ2dhtuEEJINFIWEEEJIgXDWCU5hBqJQcgq7GTJD0jP1jVejfu581EzuxKzr31nq3SGElClsViCEEEIKhFNwCjMpH5WdQopCkh53UxMufuwJQFWh2LjWTwjJDYpCQgghpEBkO5Ii6Pdr27Vd3QXZJ1J5KIoCVFA0PiGk+HBJiRBCCCkQ4kiKcIYjKeKIyaWEEEJIIaEoJIQQQgqEVD6agVMYFUSh3eMpyD4RQggheigKCSGEkAIhBs1k4hRSFBJCCCkFFIWEEEJIgcjHKXTUeAuyT4QQQogeikJCCPn/7d17cFTlwcfxX5INC+TCgg2BEpCLScAEkIuABJ1aLqmNwkyYWh25OASGcp2RNq3AW6evUmWgA7ahtDMgBUTkIrdysUWYwZmCICUgJEDKtSGAEC4JkAshsO8fvHvcDQaSNXvOHvf7mcmwYXdzTn7dyv72ec7zAAHiiIo2FgC5d/eu3G73Qx9/794943ZEE0YKAQDmoBQCABAgYeHhioyONr5/2LYUbre7xvTRJgE9NwAAPCiFAAAEkM91hQ+ZQuo9ShgeGcmecwAA0/AvDgAAAeSo4wb2LDIDALAKpRAAgADy3qvwYYvN+JRCFpkBAJiIUggAQABFem1C/9Dpo4wUAgAsQikEACCAfEYKHzZ91GflURaZAQCYh1IIAEAARUbXcaEZVh4FAFiEUggAQABF+rHQjIPpowAAE1EKAQAIIO8tKVhoBgAQjCiFAAAEkM9IIQvNAACCEKUQAIAA8l5opvoh00fv+owUUgoBAOahFAIAEEDeW1I8dKTQe/VRFpoBAJiIUggAQAD5tXk900cBACaiFAIAEEAOr2sKHzZ91Gf1UfYpBACYiFIIAEAANfJn9VGmjwIATEQpBAAggBx+7FPI9FEAgJkohQAABJD3PoXVLDQDAAhClEIAAAIoonFjhTkckiT3vXs+I4Le7jJSCACwCKUQAIAACgsL8xktrO26Qp/poyw0AwAwEaUQAIAAi6zDCqQsNAMAsAqlEACAAPMuhXUbKWT6KADAPJRCAAACrOb00arKShUWFKjk8mXj71loBgBgFUohAAABVnP66Om8PJ0rKNDRfftUVVkpiS0pAADWoRQCABBgNUcKS4qLJUlut1sVt25J8i2FDhaaAQCYiFIIAECAeW9gX1Za6rOJvecaQxaaAQBYhVIIAECANfIaKSy9etXnPs+G9uxTCACwCqUQAIAAqzlS6M0zashCMwAAq1AKAQAIsMjY2Frv+9bpo1xTCAAwEaUQAIAAi4yOqfW+u9XVcrvdcvuMFDJ9FABgHkohAAAB9qiRQu9RwnCnU2FhYWacFgAAkiiFAAAEXGR07aWw+s4d9igEAFiKUggAQIA9cqSQRWYAABaiFAIAEGCRMQ+/ppCN6wEAVqIUAgAQYJExdb+mkJVHAQBmC6pSeOTIEY0ZM0a9e/dWWlqapk2bpkuXLvk85i9/+YueffZZde3aVaNHj9aZM2csOlsAAOrGER1d6313q6trbFxPKQQAmCtoSuHFixeVlZWl3bt364knnlB0dLS2bt2qcePGqaqqSpL00Ucf6f3331dVVZUSExO1d+9ejR07Vrdv37b47AEAqF1Eo0Y+C8g0iW9l3GahGQCA1YKmFH766acqLS3V0KFDtWrVKm3evFmtWrVSQUGBDh8+LElaunSpJGnx4sVav369+vfvr6KiIu3YscPCMwcA4NG8p5DG9R9g3H5woRlKIQDAXEFTCgcMGKDZs2dr5MiRkqRGjRqpWbNmkqRr167pypUrKiwsVNOmTdW1a1dJUr9+/SRJBw8etOakAQCoI4fXYjNxfZ+R/n8vwnt37+pudfU3j2vS1PRzAwCENofVJ+CRlJSkpKQk4/v9+/eroKBA4eHh6tatmy5evChJcrlcxmM8tz33AQAQrJr+sI1unT4lSXqs19OKjI7WnZs3JUl3vC6DYKQQAGA200rh+vXrNX369Frv37lzpxISEiRJx44d0+TJkyVJmZmZatWqlYqKiiRJDsc3p+y5XVlZGajTBgCgQaRmT9dXtysVn/acmqd2lSMmppZSyEIzAABzmVYKnU6nzyhfTREREZKk/Px8jRkzRiUlJUpJSdGMGTMk3Z9OKslnhbbq/59u07gOn6o2b95UDkeEv6fvt7i42vemQmCQecMiT/ORuXnMzDouY7CezBhsfN/E5VLFhQuSpCqvUhjdIvZ7/Rr4Pv9uwYSczUfm1iD3hmFaKczIyFBGRsZDH3Py5EmfQrhkyRJFRUVJkuLj4yVJJSUlxuM9t1u3bv3I41+/Xu7fiX8HcXExKi6+afpxQxmZNyzyNB+Zm8fqrMOaRBm3vUcKq9zh39vXgNWZhwpyNh+ZW4Pc66+2Eh00C82UlZVpwoQJKikpUefOnbV06VKfkcX4+Hi1atVKZWVlysvLkyR9+eWXkqSePXtaccoAAPgtMvqbf5h9po+y0AwAwGRBs9DMypUrVVhYKOn+tYJvvvmmcd/rr7+uPn36aOTIkZo7d66ysrLUpk0b5efnKyEhQQMHDrTqtAEA8Iv3aqQsNAMAsFLQlMLPPvvMuJ2Xl2eMBkpSenq6JCkrK0t37tzRypUrdeLECfXt21e/+93v5HQ6TT9fAAC+i0ivUljFQjMAAAsFTSlcs2bNIx8TFhamCRMmaMKECSacEQAAgeM9fdTN5vUAAAsFzTWFAACEEu+RQm+UQgCA2SiFAABYwFFLKXSw0AwAwGSUQgAALOA9fdQbI4UAALNRCgEAsEDt00dZaAYAYC5KIQAAFqh1pLAJI4UAAHNRCgEAsEBt1xQyfRQAYDZKIQAAFqht+igLzQAAzEYpBADAAiw0AwAIFpRCAAAsEBkT+61/z0IzAACzUQoBALCAIzr6W/+ekUIAgNkohQAAWCDc4VBEzesHw8IU7nRac0IAgJBFKQQAwCI1F5uJaNxYYWFhFp0NACBUUQoBALDIA6XQydRRAID5KIUAAFjEUWMFUjauBwBYgVIIAIBFHpw+ysqjAADzUQoBALBIZJTvCqQRTSiFAADzUQoBALCIo8ZIoaPmaqQAAJiAUggAgEW+bfVRAADMRikEAMAikTUXmqEUAgAsQCkEAMAiLDQDAAgGlEIAACxS85pCRgoBAFagFAIAYJEHpo+y+igAwAKUQgAALML0UQBAMKAUAgBgkciYWJ/vHUwfBQBYgFIIAIBFHEwfBQAEAUohAAAWYZ9CAEAwoBQCAGCRB0ohI4UAAAtQCgEAsMiDm9dTCgEA5qMUAgBgkXCnU+GRkcb3TB8FAFiBUggAgEXCwsJ8FpthpBAAYAVKIQAAFvK+rtDBNYUAAAtQCgEAsJB3KWT6KADACpRCAAAs1KJHL0lShNOp2KTOFp8NACAUOaw+AQAAQln3//lfuVJS1eKpnnK2aGH16QAAQhClEAAACzVq1kyJr4+1+jQAACGM6aMAAAAAEMIohQAAAAAQwiiFAAAAABDCKIUAAAAAEMIohQAAAAAQwiiFAAAAABDCKIUAAAAAEMIohQAAAAAQwiiFAAAAABDCKIUAAAAAEMIohQAAAAAQwiiFAAAAABDCKIUAAAAAEMIohQAAAAAQwiiFAAAAABDCKIUAAAAAEMIohQAAAAAQwsLcbrfb6pMAAAAAAFiDkUIAAAAACGGUQgAAAAAIYZRCAAAAAAhhlEIAAAAACGGUQgAAAAAIYZRCAAAAAAhhIVcKi4uLNX36dA0YMEC9evXSyJEj9dVXXxn379y5Uz/96U+VmpqqjIwM7dq1y+f5R44c0ZgxY9S7d2+lpaVp2rRpunTp0gPHqa6uVnp6upKTk/X1118/8rxyc3OVmZmp1NRUDRw4UOvWrfvWxxUWFio1NVWDBw+u3y9uMbvmfvbsWU2ZMkX9+vVT3759NX78eJ0+fdq/EBqQXfM8deqUxo0bp6eeekrPPfec3nnnHZWXl/sXgsnsmrm3WbNmKTk5WTk5OXX/xU1m15x3796t5OTkB7727NnjXxAms2vubrdbixcv1sCBA9W9e3e98sorysvL8y8EE9gx55ycnG99bQf7f0s87Ji5dP/9xy9+8Qv17dtXffv21cSJE3Xu3Dn/QjCZ3TPv06eP+vXrp1mzZqmystK/EGwopPYpvHfvnn7+85/r8OHDat++vVwulw4dOqSmTZtq06ZNKi8v1/DhwxUWFqbU1FTl5eXJ7XZrw4YNSkpK0sWLFzVs2DCVlpaqR48eun79us6ePavk5GR98sknatSokSSpqqpKv/nNb7Rt2zZJ0ueff65WrVrVel6XL1/WCy+8oPLycnXr1k0FBQWqqKjQokWL9NxzzxmPu3TpkrKysnTixAm1a9dOn332WWADayB2zf3WrVsaNmyYioqK1KVLF7ndbh0/flxxcXHasmWLXC6XGfE9wK55lpeXa8iQISouLlb37t1VXFysCxcuaPDgwVqwYIEp2fnLrpl7+/e//62RI0fq3r17mjx5sqZMmRK4wPxk55wXL16suXPnKiUlxednTZ06VZ07dw5gat+dnXOfP3++/vrXv8rlcqlTp046cOCAHnvsMf3jH/9QbGxs4MOrB7vmvHXrVm3dutXnObt371ZlZaVycnI0ZMiQwIX2Hdk186qqKmVkZKiwsFCdOnVS48aNlZ+fr44dO2rz5s1yOBym5OcPu2ZeUlKijIwMXblyRU8//bROnTqla9euadCgQfrzn/9sSnZWC6mRwqNHj+rw4cNKSEjQ1q1btXr1auMFsnnzZn344Yeqrq7WG2+8oVWrVmnSpEmqrq7WihUrJEmffvqpSktLNXToUK1atUqbN29Wq1atVFBQoMOHD0uS9uzZo8zMTONFWheffPKJbt26pVdffVWrV6/W22+/LUlatmyZ8ZiPPvpIQ4cO1YkTJxowEXPYNffdu3erqKhIvXv31saNG7Vp0yajzNT8VMtMds3z0KFDunnzpgYPHqw1a9Zo1apVkqQdO3aorKysISNqcHbN3KOyslIzZ87UvXv3GiiRwLBzzseOHZMk/frXv9bChQuNr2AvhJJ9cy8tLdUHH3yg8PBwffzxx1q5cqXS09MVGRmpI0eONHBK351dc87IyPB5Tb/88suqrKxUZmZmUBdCyb6Znzp1SoWFhUpISNDf//53rV+/Xk8//bROnz6tkydPNnBKDcuumW/cuFFXrlzRiBEjtGLFCm3cuFFNmzbVjh07lJ+f38ApBafg/aghAFq2bKl58+bJ6XQan7L84Ac/kCRdv35dubm5kqQ+ffpIkvr16ydJOnjwoCRpwIABat68uTp16iRJatSokZo1a6avv/5a165dkyStWLFCZ86c0bRp0zRv3rw6ndejjivd/zQ0IiJC48aN06JFi/xMwBp2zf3JJ5/U3LlzFRcXZzznscceM87bKnbNs3///jp48KAqKiokSVeuXJEkRUVFGZ/8BSu7Zu4xf/58nT17Vl26dDHKSzCyc85Hjx6VdP9DjtWrVysxMVGjRo1SdHS0P1GYyq6579+/X3fu3FGHDh3UsWNHSdKf/vQnf2MIOLvm7K2iokJvv/22oqOj9atf/aqeCZjPrpm7XC6FhYVJkvGn2+1WWFhY0P83xa6Z//e//5UkJSYmSpLi4+OVnJysgwcPau/evUpJSfErDzsJuVKYkZFhfH/t2jXjU4annnrKmFvsmRbo+dMzTzkpKUlJSUnG8/fv36+CggKFh4erW7dukqSf/OQnys7OVocOHer8QvX8/JrHLSsr082bNxUTE6MpU6Zo2LBhKigosGUptGPubdu2Vdu2bY3HnzlzRv/617+M87aKXfOMiYlReHi4oqKi9N5772nNmjVyOp165513FBkZWf8gTGTnzHNzc7V8+XKlp6crMTEx6EuhHXN2OBw6e/asJOnDDz80nrd9+3atXbuW17cCk7vn+qqoqCj98pe/1M6dO9WxY0fNnDlTvXr1qmcKgWfXnGNiYozHrl+/XufPn9fYsWOND0mDmV0zb926tbKzszV//nwNHTrUmD46fvx4JSQk1D8IE9k5c0nGNcnl5eUqLCyUJF24cKHOv7+dhdT0UW83btzQ2LFjdfXqVXXq1Enp6enGxaSef8A9n3B4Rja8HTt2TJMnT5YkZWZmGvOYhw4dqg4dOtTrXDzH9RzP+w2E59ijR4+27Bq2hmS33D0uXLigsWPHqqqqSs8884x69OhRr2MFil3z3Llzp8rLy+VyuXT37t16Hcdqdsr89u3bmjFjhmJiYvTWW2/V62dbzU4537hxQ88//7wGDRqk7du3a8eOHWrfvr2OHTumNWvW1OtYVrNT7p7j5+Xlad++ferSpYvy8/M1duzYOi06YSU75ezhdru1YsUKhYeHa8SIEfU6RjCwW+bV1dWSpJMnTyovL0+NGzc2Rtzswk6ZDxs2TE2bNtXatWv1yiuv6MUXX9TVq1d9nvt9F1IjhR4lJSUaM2aM8vPz1axZM/3xj39UZGSknE6nKioqjP8jev5s0qSJz/Pz8/M1ZswYlZSUKCUlRTNmzKjzsZcvX669e/ca348cOVJOp1OSjDfHd+7cMe6veWw7s2vuRUVFGjVqlM6fP682bdpozpw59fzNA8OueUr3P20uLi7WiBEjlJ2drfbt26tr1671+O2tYbfM33//fZ05c0azZ8+21ZsJu+UcExOjhQsX+vycl19+WXPmzFFubq5ee+21evz21rFb7p77HQ6H1q1bp/j4eM2YMUPr1q3Tpk2bNH78eD9SCDy75ezx1Vdf6fTp0+rRo4cxqmIXdss8NzdX8+bN0+OPP64lS5bI7XYrKytLs2bNUtu2bfWjH/3IrxzMZLfMY2Ji9Le//U2///3vdeLECfXv31+JiYnatWvX9+q9+MOE3EhhWVmZsrKylJ+fL5fLpaVLlxrzh1u2bCnp/sXr0v0XtCSf1YxOnjzp8yJdsmSJoqKi6nz8o0ePaufOncbXxYsXaz1udHS0z7QNO7Nr7pcvX9bo0aN1/vx5JSQkaPny5cbzrGTXPK9du6bS0lLFxsaqU6dO6t+/v9xut/bt2+d/GCaxY+b//Oc/JUlvvvmmkpOTjVVeFyxYoB//+Md+JhFYdsy5rKxM//nPf3y2q/FcJ+t5wxPs7Ji7p5i4XC7Fx8dLkvHhUrCOFNoxZ4/du3dL0gMrGwc7O2Z+4MABSdKgQYOUkJCgtm3batCgQZK++d8hmNkxc+n+9Na1a9fqwIEDysnJUVVVlSSpXbt2fiZhLyFXCmfOnKm8vDzFxMRo2bJlevLJJ437PHOVPW9Qv/zyS0kyrk0oKyvThAkTVFJSos6dO2vp0qX1ntI5e/ZsFRQUGF+ZmZm1Hrdnz57+/6JBxo653717V1OnTlVRUZFat26tFStWBM1cfjvmuWzZMj3zzDPGil937twxrm+zwyiWHTNPS0vTwIEDjS/PdJsOHTooLS3NnxgCzo4579mzRy+99JImTZqkqqoqud1uff7555Ksvf64PuyYe+/evRUeHq6rV68aK3OfOnVKUvC+ibNjzh6e++0wq8ObHTNv1qyZpPv79Xl2jjt+/Lgk+Sx+F6zsmPkXX3yhgQMHaurUqZLu77V46NAhSfcXvwkFIbVP4eHDh/Wzn/1MktSmTRufpcLT0tKUkpKiV199VREREcbeKZK0YcMGJSYmatGiRfrDH/4gSUpNTTU+mZSk119/3VjRyCM5OVnSo/dOKSoq0osvvqjbt2+re/fuOn78uCoqKrR48WI9++yzPo/dt2+fRo0aZat9Cu2a+7Zt2/TGG29Ikp544gk9/vjjxnNfeuklvfDCC98lFr/ZNc/i4mINGzZMV69eVbdu3XTjxg2dPXtW7du318aNG4N6eoZdM68pJydHCxYsCNp9Cu2a8+3btzV8+HBjD9moqCgdO3ZMP/zhD7Vly5Z6fcJtBbvmLklvvfWWVq9erdjYWHXu3Fn79++Xy+XStm3b1KJFiwZIp+HYOWfp/qjVuXPntGvXLttMH7Vr5t575iUlJSk8PFzHjx9XTEyMtmzZ8tCfbTU7Zz5kyBCVlpaqZ8+eOnfunIqLizV8+HC9++67DRNOkAupawq3b99u3D5//rzOnz9vfN+8eXO99tprysnJ0fz585WXl6d27dopOzvbGPL2LmF5eXnGC1mS0tPT/T6vhIQEffDBB3r33XeVl5enli1bauLEid/6ps6O7Jq793FPnjzpszdQamqq38f9ruyaZ1xcnJYvX665c+cqNzdXTqdTmZmZys7ODupCKNk3c7uxa85Op1OLFy/WnDlz9MUXX+jKlSt6/vnnNXPmzKAvhJJ9c5ek3/72t4qNjdWGDRt09OhRpaWlafr06UFXCCV75yzJWHSjefPmfh/LbHbN3OVy6eOPP9a8efO0b98+VVdXKy0tTdnZ2UFdCCV7Z75w4UK99957ys/PV4sWLTRp0iRNnDjR72PaTUiNFAIAAAAAfIXcNYUAAAAAgG9QCgEAAAAghFEKAQAAACCEUQoBAAAAIIRRCgEAAAAghFEKAQAAACCEUQoBAAAAIIRRCgEAAAAghFEKAQAAACCE/R/RIawbAzr92AAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "sl = 10/100\n", - "pf = pd.concat((low_portfolio, portfolio_return_MV,high_portfolio), axis=1).dropna()-spread\n", - "\n", - "pf.columns = [\"low\", \"Return\", \"high\"]\n", - "pf[\"Return\"] = np.where(pf[\"low\"].values<-sl, -sl, pf[\"Return\"].values)\n", - "pf[\"Return\"] = np.where(pf[\"Return\"].values<-sl, -sl, pf[\"Return\"].values)\n", - "\n", - "\n", - "backtest_dynamic_portfolio(pf[\"Return\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 14.3.3. Optimal leverage" - ] - }, - { - "cell_type": "code", - "execution_count": 85, - "metadata": { - "scrolled": true - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[*********************100%***********************] 1 of 1 completed\n", - "\n", - " -----------------------------------------------------------------------------\n", - " Beta: -0.174 \t Alpha: 93.37 %\t Sharpe: 2.178 \t Sortino: 2.529\n", - " -----------------------------------------------------------------------------\n", - " VaR: 5.95 %\t cVaR: 20.88 % \t VaR/cVaR: 3.508 \t drawdown: 13.32 %\n", - " -----------------------------------------------------------------------------\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAAHnCAYAAAAM6DS1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAADmbklEQVR4nOzdd3hU1dYG8HcmM+m994SSAgQIBOm9SBfsChaqqAjKvajwKXrtelVQUS+oqIgVFZDee2+hBEgB0kjvfZJM+f6Y5GSGtEkyJeX9PQ9P5pw5c86aEyBZs/deS6RSqVQgIiIiIiKidkls6gCIiIiIiIjIcJj0ERERERERtWNM+oiIiIiIiNoxJn1ERERERETtGJM+IiIiIiKidoxJHxERERERUTvGpI+IqAOrqKjAunXrMH36dPTp0weDBw/Gs88+i6tXr2odFxISgn/++afOc2g+d+bMGYSEhCAsLAxFRUW1js3MzES3bt3QvXt3Yd+TTz6J1157rc5z3/1cfXEsW7YMISEh9f4ZPXq0cGxWVha6d++OSZMm1bpWQ+d48sknhWvNmjVLeDxs2DAolco641++fDmmTp3a6Pn79OlT5+vre13Pnj0xZswYrFq1CgqFQjh29OjR9V5jypQpTXqfo0ePxtdff11nTJrP3blzp9Y5QkND0bdvXzz66KM4ceKE8Lrqvx+ffvpprXNWn+f8+fP13gsiImoeiakDICIi0ygrK8NTTz2FvLw8LF68GL1790ZJSQl++uknzJw5E9988w0GDhzY7PMfOHAA06dP19q3e/duqFQqiESiFkav7bXXXsO///1vAEBaWhoefvhhfP311+jVqxcAwMzMTDj2n3/+gZ+fH27duoXz58+jX79+AIDVq1ejsrISABAZGYlFixZh8+bNcHNzAwBIpdJa133wwQexefNmnDt3DgMGDNB6TiaTYc+ePVi8eLGwb8qUKVi2bFmt84jFDX8Ge/frioqKsGfPHnz22WewsbHBM888Izw3f/58PP3007XOIZFImv0+daF5v1UqFVJTU7Fy5Uo899xz2LVrF3x8fIRj161bh/HjxyMsLKxZ1yIioqZh0kdE1EF99tlnSEhIwPbt2+Hh4SHs//DDD5GTk4N33nkH27dvb1aCNnDgQOzZs6dW0rdr1y5EREQgMjKypeFrsbOzg52dHQCgvLwcAODg4CAkMpq2bNmCSZMm4fDhw/jjjz+EpM/R0VE4xsHBAQDg7Oxc5zmq9evXD/7+/tixY0etpG///v2oqKjAfffdJ+yztLRs8Hz1uft1bm5ueO6553D69Gns2rVLK+mztrZu8BrNeZ+6uPt+u7u746OPPsLIkSNx4MABPPXUU8Jz3t7eWL58OTZt2tTsJJOIiHTH6Z1ERB1QRUUFNm3ahIceekgr4av2xhtv4NNPP232iNyECRNw4sQJFBcXC/syMjIQFRWFcePGNTvulrpy5Qri4uIwePBg3HvvvdizZw8KCgqafT6RSIT7778fe/bsEUbPqv3zzz8YNWoUnJ2dWxp2vczNzYURvNbI3NwcAGrF+OabbyI+Ph5r1qwxRVhERB0Okz4iog4oOTkZhYWF6N27d53P+/n5ITQ0tNnnHzhwIKysrHDkyBFh365duzB48GDY29s3+7wttXnzZri6uiIiIgITJ05EeXk5tmzZ0qJz3n///SgsLNRau5aTk4OTJ0/iwQcfbGHEdauoqMA///yDEydOCGsGW5vq0WJra2uMGTNG67mgoCA899xzWLt2LWJiYkwUIRFRx9F6Px4kIiKDKSwsBACDJWASiQRjx47Fnj17MHnyZADqpO/xxx+vt+iJoVVUVGDnzp2YNGkSxGIxAgMD0aNHD2zcuLHONXC68vLywqBBg7B9+3aMHDkSALBt2zY4OTlh2LBhWsdu2bIFO3furHWOp556CkuWLKn3Gne/TiaTISAgAMuXL8cTTzyhdezXX3+Nb7/9ttY5li1bhkcffbQpb61J5s6dK6xNVCgUUKlUiIiIwC+//FLnaPKCBQuwb98+LF++HH/++afB4iIiIiZ9REQdkpOTEwAgPz9fp+MlEglUKlWt/dUJXF3rsiZMmIBFixahrKwM+fn5uHHjBsaOHYu9e/fWOnd9iaBSqdTb9MUDBw4gPz8fEyZMEPZNnDgRn3zyiVZBl+Z44IEHsGLFCpSVlcHKygpbt27F9OnTtQrIAMDYsWPxr3/9q9brG0u+q1+nVCpx/vx5fPTRRxg7dqxQaVPTzJkzMWPGjFr7mzrNtKnflw8++AA9evRAWVkZvv/+e5w6dQrPP/+8VqXWu8///vvv4+GHH8a6detqVVMlIiL9YdJHRNQB+fv7w8XFBZcvX67zl+0zZ87ghx9+wNtvvw13d3fY29trrc+rVr0errogiKZBgwbBwsICR44cQVpaGoYNGwZbW9tax9nb26OkpKTOOAsLC7UKj7TE5s2bAQCzZ88W9lUnshs3bmxR0jdu3Di89dZbOHToEEJCQnDt2rU62xLY2toiICCgyefXfF2nTp1gZ2eHF198Efb29lpFXAD196I517hbQ9+XgoKCWt8Xd3d34bofffQRnnvuOTz77LPYtGkTAgMD6zxP9+7dMW/ePHz55Zctmk5MREQN45o+IqIOSCwW4/7778fff/+NjIwMredUKhW++eYbxMfHC9UYe/TogQsXLtQ6z4ULFyAWi+sczZFIJBgzZgz27t2LPXv21DuS06NHD1y5cqVWIZTc3FzEx8ejZ8+ezX2bgqysLBw/fhwzZszAli1bhD///PMPhg4dit27d7eooIuFhQUmTZqE3bt3Y/v27ejbty86derU4rjrM2HCBEyZMgVffPGFwdbE9ejRAxcvXqy1Pzo6GqWlpQ1+X0QiEd59911IpVIsW7aszlHiagsXLoSfnx/efvttvcRNRES1MekjIuqgnn/+efj6+mLGjBnYvn07kpOTERkZicWLF+PcuXN47733hOqdc+bMwZ49e7Bq1SrcunUL8fHx2Lp1K95++23MmDFDmC56twkTJuDQoUOIiYnBqFGj6jzmwQcfRFlZGZYsWYIrV67gzp07OHHiBJ577jl07dpVWCdXLSYmBkePHtX6Ex0d3eB7/eeff6BSqTBv3jwEBwdr/Zk3bx7Ky8vrbT6vqwcffBDHjh3Drl276i3gIpPJkJWVVecfuVzepOu99tprsLGxwYoVK7SmYZaWltZ7jYaSr7s9+eSTuH79Ot544w1ER0cjKSkJ+/fvx5IlSzBq1Ch069atwde7urrilVdeQWRkJH799dd6jzM3N8f777+PlJQUnWMjIqKm4fROIqIOysbGBj///DO+/fZbfPnll0hLS4OdnR169+6NP/74Q+uX+sGDB2Pt2rX45ptv8Ouvv6K8vBy+vr54+umntaZL3m3QoEEwNzfHgAEDYG1tXecxLi4u+OOPP/DZZ5/h2WefRWFhIVxdXTF69Gi89NJLtdaOrVu3DuvWrdPaN3XqVHzyySf1xrFlyxaMHDlSq0G4ZoyhoaHYuHGjVi+5purVqxd8fHyQkpKCiRMn1nnM9u3bsX379jqf++uvv5o0quns7Izly5fj1Vdfxc8//yzE/u2339ZZyAUATp06pfPavq5du+KXX37Bl19+iaeffhqlpaXw9PTEpEmTsHDhQp3O8eCDD2Lbtm1YuXJlrQqemnr37o1Zs2bh+++/1+m8RETUNCJVUz72IyIiIiIiojaF0zuJiIiIiIjaMSZ9RERERERE7RiTPiIiIiIionaMSR8REREREVE7xqSPiIiIiIioHWsXLRuysoqMfk0nJ2vk5ZUa/bodHe+7fvF+mgbvu3HwPpsG77tx8D6bBu+7afC+68bNza7e5zjS10wSiZmpQ+iQeN/1i/fTNHjfjYP32TR4342D99k0eN9Ng/e95Zj0ERERERERtWNM+oiIiIiIiNoxJn1ERERERETtGJM+IiIiIiKidoxJHxERERERUTvGpI+IiIiIiKgdY9JHRERERETUjjHpMxCVSoWvvvocDz00FWPHDsUzz8xCdPQN5ORkY/Pmv5p0rpSUO9i9e4eBIiUiIiIiovaMSZ+BnD17Gr/9tgFLly7Hb79tgq2tLT744G2sXfsVdu3a3qRzffjhOzh16riBIiUiIiIiovZMYuoAjGHN/mv4ZOcllJTL9XZOW0sp/j2xN54d26PO521sbAEAv/22AaNGjcXSpcuRmpqCl156HgDwwgvPYNKkqVi58iMEBQVDJpPhvfc+xooVy3D79k3Y2trhuecWAQAiIy8AAMzNLfDii0vx3nv/wfnzZ+Hn54dly1YgODgUp04dx6effoTKykoMGDAIO3duwy+//IUnn3wEb731PkaNGovPP/8U586dxs8//6m3+0BERERERK1bhxjpW3Pwml4TPgAollVizcFr9T4fFtYTr7zyGjIyMvDJJx/g0Uen48KFcxg7djxCQ7vjv//9DAAgk8nwwAOP4IMPPkVGRjoGDx6K33/fjKCgYGzZ8jfGjZuAnj17Y8SIUfj3v5dhw4YfcOtWHH788VcMGDAY7733FpRKJd59902Eh/fFN9/8iJycHACAp6cX+vUbgP3790CpVOLQof2YNGmqXu8DERERERG1bh0i6Xt2dA/YWOh3UNPWUopnR9c9ygcAN2/GwdHRCb//vgl//bUdkyffhw0bfkBhYSHEYjGsra2FYwcOHAJPTy/Y2NjgypXL+O9/30dubi4qKioglUphZmYGiUQCS0tL3LoVh4yMdMyd+wT++ut33LoVh8zMDBQUFGD48FHw8PDE0KHDhXPfd990nDp1EidPHkNeXi4mTJis1/tAREREREStW4eY3vns2B71TsNsLjc3O2RlFdX7fGxsND766F28885H6NEjDDY2NrCwsICbmxuysjKQl5crHGtubg4A+OGH71BRIcMrr7yNDz98B4WFhQAAMzMzFBeXoKAgHwEBgUhOTsLSpcsRFXUFBQUFcHZ2gYODA44fP4KQkFAcO3ZYOPfQoSNga2uLTz75EIMGDYGzs4te7wMREREREbVuHWKkzxQmTpyCxx9/Ep9++iEefHAKTp8+if/85z307z8Q6enpeOedN2q9ZuzY8UhKSsT8+U9DLBYjKysTcrkcAwcOweXLF7FmzZd4+um56NIlCK+99gq2bt2MkJBQmJub4/XX38KFC+fw3HNzhVFEsVgMiUSCiROnIDs7C5Mn32fs20BERERERCYmUqlUKlMH0VINjbgZSmMjfcb2yScfwMPDC/feOwHr16/D0aOHsH37fhQXF+OLLz7FmTMn8fffOyCRtO3B3dZ239s63k/T4H03Dt5n0+B9Nw7eZ9PgfTcN3nfduLnZ1ftc284ASBAa2h0//PAtvv9+Ldzc3LF06XIAwOzZM1FWVoqlS5e1+YSPiIiIiIiajllAOzFlyjRMmTKt1v4///zHBNEQERERkb6t3nsVp+MysOy+Pujp1zrqNMgVSkjMuGKsteN3iIiIiIiolbuUmI33/7mIg9dT8M7mC6YOBwDw3j8X0HnJL1jx11lTh0KNMFrSt2nTJoSEhNT5Z9myZQCAAwcOYNKkSQgLC8PkyZNx+PBhY4VHRERERNRqHYi6Izy+kpQDU5flyC2W4at9UahUKPHdoRu4mVFg0nioYUZL+ry8vDBmzBitP46OjgCA0NBQREdHY/HixUhKSkJYWBgSExOxcOFCxMbGGitEIiIiIqJW6Uh0qvC4oKwCmYVlJowGOB6TDs288/dTN00XDDXKaEnfoEGD8PXXXwt/Fi9ejOLiYgwYMABPP/00NmzYALlcjiVLluD333/HwoULIZfL8fPPPxsrRCIiIiKiVqegtAIXE7K19sWk5ZsmmCqaSSgAbDx9E5UKpYmiqZtCqcSNlDz8ciIWK/46i7/O3jJ1SCZjkkIuKpUKK1asgEqlwuuvvw6RSISLFy8CAPr37w8AGDhwIAAgMjLSFCHqxcWL57F48bPCtqWlJUaOHINly1bopZLmCy88AxcXF7z11gctPldddu7chvfffwsHDpyAhYWFQa5BRERERA07EZsGhVJ7OmdsWgGGh3qbJB6VSoUjN7STvqwiGQ5E3cGE3v4miyk1vxSR8VmITMzGxYRsXEnKQWmFXOu4Hj7O6ObjZJIYTckkSd/Ro0dx5coVTJw4EcHBwQCA9PR0ABCmfFZ/rd7fln377Xr4+vrj2rWrWLp0MUaOHI2hQ0eYOiwiIiIiagPuTrAAIDY93/iBVLmVWYiUvJJa+389GYcJvf2Rll+CA9dSMCLUG34utgaJobCsApcSsxGZUPUnMVunKa83MwqY9BnLTz/9BAB46qmnhH0ymQwAIJVKAUAYCSsra/yb5+RkDYnErN7nV50/jHdP7kVxZXmzY76brdQCrw++F0v6jaz3GEdHawCAj48bOnf2RnGxelje09MFu3dvwZo1awAAc+bMwdy5c7Fp0ya8++67mD59OrZu3Yrg4GCsWbMGlpaW+M9//oN9+/ZBIpFg3rx5mDt3LszNJcjJycJzz81GUlIS5s+fj/nz5+PJJ5+EhYUFMjIykJOTg2eeeQZbt25FamoqFi9ejBkzZuCvv/7CZ599hvz8fAQFBeGrr75CcnIynnrqKQwaNAg3b97ECy+8oH6vthI8++x8KBQK/PDDD7C1Ncw/Xl011HiSmo730zR4342D99k0eN+Ng/fZNExx30/EZdTaF59TbLK/A3+cvy08Dg90xaWqqacHrqVg44V4rPjtNArLKtDFwwHXPpupl5YOmu91w5FoLFh7EBXyxqeTejlZQwQRUquSVIWZqEP+2zF60peZmYkTJ07Aw8MDffv2FfZbWFigrKwMcrl6CLb6q5WVVaPnzMsrbfD5VWcP6TXhA4DiynKsOnsITwRE1HtMfr46roceehgiEVBaWorevfsAsMB7772H//znPfj4+OL55+chJKQXiopkKCkpgY9PIN588z0sXboYO3fuQ35+Pnbu3IWvv/4WcXGxOH78KMaNm4qKCjlSU9OwatVX+OOPX/DVV19h+vTHUFEhR2JiElat+goffvgOPvvsc3z55Tf49df1WLv2G4wbNxUpKZl47rkX0alTZ8yf/xR27NgDf/9AAEDv3hFYsmQZLl1ST7lduHAR8vIK8PXX36GsTIWysiK93sumcHOzQ1aW6a7f3vB+mgbvu3HwPpsG77tx8D6bhinue0JWIW5VVcY0E4uEaZ7XknKQmVkIkUhk1HgAYMe5eOHxYwO6wEpqhlNxGVCqVHjx+6PCc7cyCnDuRiq6eji06Hp33/f//HG6zoTPxkKC8ABX9Al0RZ+qr16ONnh703n878A1AMCdjMJ2+2+noWTW6EnfyZMnoVKpMGzYMK397u7uSExMREFBAXx9fZGfnw8A8PT0bPE1n+k+GCsvH0aJvKLF56pmK7XAM90H63Ts++9/DG9vH2RlZeG115biP//5P6hUKvz3v+9BJBKhsrISUVGXYWWlHhkcN24CxGL1P+Dy8nLEx9+Gr68vgoJCEBQUgkmTpgrn7tGjJwICAhEcHIKtWzcL+7t3D4O/fwB8fHxRUVGBkJBQ+PsHIjJSnchJJGbYvPlPuLq6QSKRoKKi5t4MGDAI3t4+QtJ37VoUrK2tYMbGm0RERERGdSQ6TXg8qrsPTsWlo6RcjryScmQXyeBm3/gAia6yi2S4nJgNP1dbBHk41JlQVsgVOBlXs/xqRDdvWFtIcaqO0UgAiE7Nb3HSpykhqxCJ2cUAAEupGR4Z0EWd5AW6oauHPczEtX9fdbA2Fx4XlOovH2hLjJ70nTlzBgDQs2dPrf29evVCYmIizpw5gx49euDsWXWTx4iI+kfSdLWgx2As6KFbgqarpnzSY2NjAzs7e8jlcpiZSeDvH4iEhHjMn/8cPDw8sX//HvTqFY64OHV7CvFdf1k7d+6C3bu3IyYmGomJCfjxx2/x5ZffVB1b96c7mvvvPl9xcTG++GIlFi1agtDQ7jh+/IhWrxdzc+2iLT/88AuWLHkB33//DRYt+pdO75mIiIiIWk5zPd+IUG9kF5XhUmIOAPW6Pn0lfXKFEo+t3otrKXkAAE8HKwwN8cKwEC8MDfGCt5MNAOBCfBZKytUz8gJcbRHoZg93B2u88ddZ5FclVM62FsgtVs+yi03LB/oE6CVGQPt+DAvxwkePD2r0NY4aSV9eqX5n/7UVRk/6UlPV36iuXbtq7X/iiSewY8cOrFy5Env37kVUVBSkUilmzpxp7BD1bv78pwEAZmZmCAnphoULX0R4eB/88stPKCoqxLBhIxEQ0ElI+u42dep0REdfx4svPgup1BwzZz4FZ2eXZsdjY2ODMWPuxdq1X8PPzw8eHp5ITU1BUFBInce7ubnjhRdexBtvLMfkydPQuXOXZl+biIiIyNTS80vx1JoDMBOLsOG5MXC1099omT7JFUocj6kZ6RvRzRtXk3Nqkr60AgwJ9tLLtSITs4WEDwDSC8rw19nb+Ousev1eF3d7DA3xQlZRTb2N6uqh1uYSfDd/JDYcj8W4MD9UyBX41y8nAei/tcRhjVYRI7rpVr3UwbpmQKOjjvSJVJpDPEYwZcoUxMXFYefOnejSRTt52L9/P1atWoXExET4+/vj5ZdfxqhRoxo9pynm5XIuvWnwvusX76dp8L4bB++zafC+Gwfvc8u8+fc5fHPwOgDg35N6Y+nkcJ1eZ+z7fu52Ju77dBcAwNvJBuffeRBf77+Gd7dcAADMGh6CDx4dqJdrfbLjEj7deblJr/lu/khMDq89incxPguTP9kJAAjxcsTh16e1KLbq+16pUKLHK7+jSFYJADj2xnSdpo4eup6CGV/tB6AeHdy4+N4WxdNatao1fdu3b6/3ubFjx2Ls2LFGjIaIiIiIOprD11OEx5cSsxs40rQ0pzKO7OYNkUiEEC9HYV9sWoFBrvXVrGHo7G6PYzFpOB6ThrO3MiGrVGgdbyYWYWg9o4zBGjHezixEpUIJaQO1IeIzC/HjsRiMCPXG6B4+9R4XmZAtJHw+Tjbo4m6vy1vTmt6Zz+mdRERERETtW2peCWLTa5Klq8m5JoymYXev5wOAYM+akS19TZ0sKK3Axaq2CyKRetqki60lwgNcsejenpBVKnD+diaOxaThWHQa0gtKsWBMd60CKZpsLaXwcbJBSl4JKhVK3M4s1EpWNaXll+D+z3Yjo6AM3xy8jk9mDMLMIcF1Hqt1P6qSYF1weieTPiIiIiJq5VLySmBvKYWdVd1JRlMcjdZudJ5ZWIaMglJ4OFi3+Nz6dHciNjREXdHe19kWllIzyCoVyCmWIbtIBlc7yxZd63hsGpRVK756+bnAxVb7fJZSMwytKuiy/D7dzhni5Sg0cI9Jza8z6SurkGPON4eQUVCzTnDpr6egAvBEHYnfkWjtkU9dsXonwBr8RERERNRq/XMhHv1e/wv9VvyFTI3koLk0R4uqXUnKafF59U0zEevt7wLnqkRMLBYhSGO0Ly49v8XXunsETR9CvR2Fx3WNSKpUKrz86ymhKI2ml389hV9OaBc4zC8tR6RGEjwkWPe2bg4aHxYUyiqgVBq1pEmrwKSPiIiIiFqtdYdvAAAKyyqx60pSi86lVKpwVKMaZrXWOMXzaAOJmNa6vnTd1vWpVCrkFsvqvlYzKmI2RjPGupK+/+2/hr/P3Ra2X53aB738a6rTv7bxDLIKa5L8E7HpdSbBupCYiWFrKQUAqFTqxK+jYdJHRERERK2S5hRHQF3woyWi7uQK/eM0XUlufSN9mlMZq9fzVdMslHI6Lh059SRz1ZJzijH+o+3o8eofWHlXhU7NZufW5hL06+TWwshrx3h30ncg6g7e/eeCsD1zSBBeHN8Tfywahy4e6uIs5XKlVhP4lo5Gao72dcQpnkz6iIiIiKhVOhGbBoXGVLzbLUz6NBOpMF9n4XFrG+nTTMRsLCSIuCsR0yzmsuVCAsJe/QOD3tyE5384im8OXse525koq1A3UL8Qn4VJH+8Q3uOaA9e0pjdqJlNDgj1hLjHTy3vQjDE+qxDlVdU/Y9Pz8dwPR1HdNK5/F3e8/8gAiEQiOFpbYGqfQOF1Z25mAFCPUh6uo6hNU2hX8Ox4SR8LuRARERFRq3T3+rsWJ30a55szIhT/t/EMZJUKpOaV6KUgir5oxjk4qHYiFtHJXSjmUi0huwgJ2UXYfD4eACARixDq44Sb6QVaxxXJKhGXUSBMv2xOs3NdWFtI4e9ii6ScYiiUKtzOLISXkzVmrz0ktF3wdrLBuvkjtd7fgK7uwuMztzIBALcyCpCcU38SrAvtCp4dr20DR/qIiIiIqFU6clelzcTsIsgVymadq7S8EmerkggAGN3DB919nITtqzpO8cwrKcfin47j6TUH9FJYpi6NJWKudpbY8q+JmDsiFH0DXWEuqf0rvVypQlRybq3+eoC6eToAVCqUOBFTM4VSn0kfoL2u71pKLhasOyIk7lbmEqxfMBqudlZar+nXyR3iqlYMN1LzUFBagX2Xk4Xnmzsa2dEreHKkj4iIiIhaHc0pjtXkShWSc4rRScem3JpOxWWgsiph7ObtBA8Ha/T0cxHWDF5NzsWo7vU3BgcAuUKJBeuO4FhVMZggz+t4fXpEk2NpiK6JWG9/F/SuKnxSXqnAjdQ8RCZkIzIxG5EJ2biZUVPgpYu7PQYGeeCXE3EAgIsJ2Xh8cFCzm53rKsTLEfui7gAA3tp0HtlFNWsPP39yCML8nGu9xtZSijA/Z1xJyoFKBZy7nYl9l2sK+DRnaifA6Z1M+oiIiIio1TkSXbvKJqCe4tmcpE979MwLALSqReoy0vfyT8eFhA/QT7uEuzUnEbOQmiE8wBXhAa6YXbWvsKwClxNzkFlYhvG9/HA5KVsj6VOP9DW32bmuNIu5aCZ8Syb2wtS+gfW+bkAXd6GNxonYNBy6dkd4bngzRyO1R/o4vZOIiIiIyOQ0ExJLac10vlvNXNdXV/XHnhojTY316vv1ZBxW77qitS8lt6RZsTREX4mYvZU5hoV64cH+nWFrKUVvf1dh2mR0aj5KZJUNVgjVh7oask/o7Yelk8IbfN2Arh7C419PxqGorOWjkdpr+jreSB+TPiIiIiJqVeQKJY5rjKg9cE9n4XFzirmk5JUgrqqfnYVEjAFd1ElFiJcjpGbqX4eTcoqRX88I0NlbmVj2++la+1PzS5scS2M0E7GRelxjZ2spFZIwpUrdr1Cz2fnQEN2bnesqyNMBmjlrN28nfPnUMIjFDSeyA7rUFHMprEr4gJYlwZrTO/M40kdEREREZFqRidlaFR7v7ekrPNecpE+z0fmArh6wMlevcDKXmCHU21F4LqqO1g13cosx99tDwnrA7j5OQqKYV1KO0vLKWq9prvzS8rsSMS+9nRsA+nZyFR5/sedKs5ud68rKXILRVesknW0t8OOCUbCpapLeEFc7K6Ffn6aWJMEdvZALkz4iIiIialU0pziO7OaNLh41Pd+ak/Q1NI1Rc13f8VjtdYSlFXLM/uaQsB7Nzd4KPy4YDS9Ha+GYlDz9jfadiE0XErFwf1c42Vg08oqm6RtY0+rgUmLNdFZ9V+3U9OWsYVg7ZwSOrpgOf1c7nV9XPRpbraVJsIMVp3cSEREREbUaR+5qxO3vYguzqimBKXklQuNxXSiVKhzVKApzd4IzTCOR+P5wNPJK1FP/VCoVlmw4IYz+ScQibPz3RPi52MLbyUZ4TUqedoXRlqhr3aE+RQS61rnfEOv5qjlaW+C+iEC4NHEkUXNdH9DyJNjJRrN6J6d3EhERERGZTEFphdBGoXqtmbnEDH7OtsIxCVlFOp/v6p1cIZFzs7NEN28nrecnhwega9VIYpGsEl/viwIAfL7nKrZeTBCOe//RgRhWlYj5aCR9qXoa6VOpVDiskfQND9Xv1E4ACPJ0hN1d0yub2+zc0AZqrOsDWp4Es5ALEREREVErcTw2TZji2MuvZq1ZZ42qjU2p4HlEK5HyrlVERGImxitTwoXt7w7fwE/HYvDRtkhh3+zhIXhyaLCw7a2V9OmngmdCVhGSc9SjhoZKxMRiEcIDtEf7mtvs3ND8XGzhrTGNtqVJMNf0ERERERG1EvVNceysUdijKev6dJkyOTk8QGgULqtU4FWNSp1Dgj3x1kP9tY73cdaY3qmntg2a6w4NmYhpFnMBDDu1syVEIhFenhIOa3MJpvfvXGuNX1M5WNUkfYWyCiiVqpaG2KYw6SMiIiIig8ouKsPH2y/hr7O3oFAqGzz2aHTdSZpmf7bbmQU6XbdEVolztzOF7fpGi8RiEZZN6VNrv7+LLdbOHSFU66ymNb0zXz9J3+Ebhu2ZVy0iUHsE0ZBFXFrqsUFBiP30cfy1dFKjbR4aIzETw7ZqaqtKpU78OhImfURERERkUG/8dQ4rd13GovXHMfnjnbiUmF3ncQlZhUjMVk9xtDaXoJ/GFMfOWkmfbmv6Tt3MEFotdPN2goeDdb3Hju7hg3s616wjszaX4McFo+ssQKKZ9OljpK9SocSJ2HRh25CJWEQnN1hI1ClAZ3d7rfvaGpmJ9ZeuaI72dbQpnkz6iIiIiMhgKhVK7L2aLGxfTsrBpI934JXfTgkFVqppTsW8e4qjdtLX+PTOYlkl3vvngrA9olvDa8JEIhHeebg/bC2lsDaX4OvZw9DNx6nOY7Wrd5ZApWrZVMENx2JQXNWX0NfZxqCJmLOtJb6cNRz39+uEr2YNa3az87ZIs0F7fgdL+iSmDoCIiIiI2q8L8VkoKddusaBSARuOx2LHpUS8Pi0Cjw7sCrFYhMP1TO0EAG9HG1hKzSCrVCCnWIb80nI4Wtddwl+pVGHRT8cQnZoPADCXiPHYwK6Nxtrb3wUX330IcqWqwfYA9lZS2FpKUSyrhKxSgdyS8ia3JKh2PCYNb/x9TtieFtHJ4InYlD4BmNInwKDXaI20K3h2rLYNHOkjIiIiIoPRHL0b39MPY8N8he3c4nL865eTmL5qFy4lZuNETP1THMViEQLdapp7xzcw2vfpzsvYfblmdPHjxwchxLvuUbu72VmZN9oPTiQSaVWWTK0a7Vtz4Bre/PtcrRHM+iRmF+GZdUegqCoq0tvfBf+e1Fun11LTdeQKnkz6iIiIiMhgNJO+hwZ0wU/PjsYPz4zSWhd37nYWJv53B4qqpjh6O9loFW6ppjnt8XJSTp3X23YxASt3XRa2nxndHY/oMMrXVD4afQNTckuw50oy3tp0Ht8cvC70+mtIsawSs9YeFBJEd3sr/LBgFKzMORHPUDry9E4mfURERERGUFhWgbO3MoXCIh1BXkk5LiWpi7aIRSIMDfGESCTChN7+OLpiGhbd27NWZUwAGNnNu84pjoODPIXHf529Xev5qORcvLjhhLA9ops3VkyP0MdbqcXbSXukb8+VmpHFCwlZDb5WqVThhfXa00+/f2YUvBxtGnwdtYz2SB+ndxIRERGRHpVWyDH2g22YtnIXlv9xuvEXtBPHY9JQXeOkT6Cr1ho8awsp/m9aXxz4v/swLES7yMqoeqpXTu/XSUgSL8RnITY9X3guu6gMs9YeRFmFev1gZ3d7rJkzHJI6kkp98LmrmItmn72b6Q23lPh4xyWtJPHjxwcZpBk7adNe08eRPiIiIiLSoxMxaUjOUbci+P3UTWQUlJo4IuPQ7D1XX4+8IE8H/LFoHNbMGY5+ndzw+KCumBjuX+exLraWGNezZk3gn6dvAQAq5ArM/fYwUvLU7RPsLKX4ccHoegu96INm0nf4RirS8mu+p1lF6kIzddl6IQGf7b4ibC8w0PRTqo3TO4mIiIjIYDTXtSmUKvxRlay0ZyqVSut9N9RwXCQSYVpEJ2xbOgkrnxjSYG82zSqcf529BblCif/beAZnb2VWnQv43+zhCPJ00MO7qJ+Pc03Sdz0lr9bzdY32XU3OwYsbjgvbI7t543UDTT+l2hy0kj5O7yQiIiIiPdJsRQAAv52Mg1LZst5urd3tzEJh5M3WUoq+epq+OLK7D9zs1O0R0gvK8PwPR/HLiTjh+demRWCMRoVQQ/FuZP3dzQztpC+rsAyz1h6CrFIBAOjibo81c0YYbPop1eZgxemdRERERGQAyTnFuJWh3V4gIbsIp26m1/OK9uHuRut1FWxpDqmZGA/27yxsb4tMFB4/cE9nPD+2h16u0xgvp4aTvjiNkb7q6aepmtNPnx2tNfJEhufIkT4iIiIiMoSjd43yVdMcnWqPNAubjKynMEtzPVrHGrjwABd8MmOQwRubV7OUmsHVrv6G7NUjfSqVCsv/OINztzWmn84Zjq4ehp1+SrWxTx8RERERGYRWnzqNEaodlxKRWywzRUgGVyFX4ESsRqP1BtbzNUeotxN6+7sI2x4OVvj+GeP3uPO5a7Svfxd34fHNqtHdM7cy8evJmgR/xfQIjOlh+OmnVBurdxIRERGR3imUShzXSH6eHxsmJCsVciX+Ple711x7cCE+CyXl6tYJ/i62CHSz0/s1Xp4cDpEIcLKxwPfzTdPjzvuupG/28FBUDzQmZBWhvFKBPVeShOcnhwfg2THGmX5KtWmO9BXKKtr9ulpNTPqIiIiIDORqci7yStRrh9ztrRDq7YiZQ4KF5389GQeVqv394qk5tXNEPY3WW2pMmC+ufvgoTr/1gN6KxDSVZgVPM7EIY3r4wNfZFgCgVKmQkFWIIzfShGMeH9TVaNNPqTapmRg2FurRYJVKnfh1FEz6iIiIiAxEs09ddfIzPSJQmIYYnZqPyIRsU4VnMEfuet+G4mJrCXsr0xVD8dEYXYzo5AY7K3MEaazVOxGbjhup6nYOUjMxBgV5GD1G0tZRp3gy6SMiIiIykLr61NlZmWNa30Bh/y8n21dBl9xiGS4n5QAAxCIRhgbX3ZS9PRjVw0eYzjljUBAAoKtGf8Dvj0YLj/t3cYe1hdSo8VFtTi1o0K5SqXDwWgouJba9D2qY9BEREREZQLGsEuerKjYCwPDQmuRn5pAg4fGW8/EollUaNTZDOh6TjuoZq30CXdt1W4IQL0cceX06tv57Ih4Z2AUAtKpyarbqGK7nYjbUPJojffklTWvb8H8bz2Dm1/sx8b87EJWcq+/QDIpJHxEREZEBnIxLh7yqUESYrzPc7K2E5yI6uSG4akSotEKOLRfiTRKjIWit5+sAiU6QpwPu6ewurNUL8qy7FYMhp7mS7rwcrYXHFxKydH7d+mMx+PFojLBdLlfoNS5DY9JHREREZACaUzs1R/kAQCQSaRd0aSc9+1QqldHW87VWdfXfc7KxQE9fZxNEQ3cbG1bTLmNHZKJOrzkZl47XN54RtqdFBKJvoKveYzMkJn1EREREBtBY8vNg/84wl6h/FYtMzMb1lLY1XazazkuJ6PN/G/Hw53vwy8k4pOSVAADsLKXo08Z+MdYHF1sLONlYaO0bEeoFsZhVO1uDsWG+sKj6d3c9JQ+3MwsbPD4puwjzvj1cM2rv54yVTwxpc1VYmfQRERER6VlyTjFuVf0yaSk1Q/8utas2uthaYmJvf2G7rY72vffPRaQXlOF4bDpe/vWUsH9IiCekZh3vV02RSFRrtK8jjni2VraWUozs7iNs77hU/2hfiawSs9YeEtquuNpZ4scFo2FdVX23LTH6v8RNmzZh0qRJ6NWrF6ZNm4YTJ04Izx04cACTJk1CWFgYJk+ejMOHDxs7PCIiIqIWO6qxrm1gVw9YSs3qPG7m4Jopnn+dvY2yCrnBY9OnxOyiekdKRnaA9Xz1uXtdH4u4tC5T+gQIj7fXM8VTqVRh0U/HtVpurJs/Cj5ONnUe39oZNenbuHEjli9fjrS0NPTu3RuxsbF4/vnnkZiYiOjoaCxevBhJSUkICwtDYmIiFi5ciNjYWGOGSERERNRiuq5rGxLsCX8XdTPvgrIK7LqcZPDY9EnzfbrZWQojexYSMcb29DNVWCbX1cNeeBzk6QDvNpootFf39vQT/q5eScpBUnZRrWNW7rqs9e/xo8cGon8Xd6PFqG9GS/oUCgW++OILAMCXX36JDRs24KmnnoKdnR0uXLiADRs2QC6XY8mSJfj999+xcOFCyOVy/Pzzz8YKkYiIiKjFFEoljsWkCdsjG0j6xGIRHh9c077hlzY2xVOzUucL9/bEqbcewNsP3YO/XhzfZkdE9EFzZO/+fp1MGAnVxd7KXOvDmLuneG6PTMSnOy8L2/NGddP6d9oWGS3pi4uLQ1ZWFiwtLTF48GAAwPLly3H8+HE88MADuHjxIgCgf//+AICBAwcCACIjI40VIhEREVGLXUnKEZo+ezhYIcTLscHjHxvYFeKqohAn49IbLSzRWsgVSpyISRe2R3Tzho+TDeaP6o5+ndvuiIg+9PB1xt8vjsfqp4fihXt7mjocqsOU8LqneF67k4vFPx0XtoeHeuHN+/sZNTZDMFrSl5SkHh61t7fH+++/jz59+mDy5MnYv38/ACA9Xf2fhqOjo9bX6v1EREREbcHhG9p96hqr8ufpaI2xYTWFJX472TZG+y4n5aCgTJ3cejlaC30HSW1wsCce6t+lQxazaQvu7eUHSVVF1YsJ2fjtZByyCsswa+1BYW1toKsd1swZAUk7+B4arfRMWVkZACAzMxNbtmxBWFgYzp8/j0WLFuHPP/+ETCYDAEilUnVgEonW6xri5GQNiaTuBdKG5OZmZ/RrEu+7vvF+mgbvu3HwPptGR7/vJ29lCo+nDuis0/14bmJv7L16BwDw59nb+Hj2MEgb+d3G1Pf53JEbwuPx4QFwd7dv4Oj2w9T3vaPS9313c7PDmF5+2HNJPTD1r19OwtpCgtJydcJnZyXF1v+biuB20l/RaEmfhUVNv5J169ahV69e+Oqrr/DFF19g48aNsLCwQFlZGeRy9Y2u/mplZdXoufPySg0TdAPc3OyQlVV70ScZFu+7fvF+mgbvu3HwPptGR7/vxbJKnNZYzxfu7aTT/ejn6wwPBytkFJQho6AUvx2O1mrncLfWcJ93nk8QHg/o5GbyeIyhNdz3jshQ933FfX1xOT4L6QXqQabqhE8kAr56ehjcLKRt6vvdUGJstLFKLy8v4XFISAgAoGdP9Rzn9PR0uLur534XFBQAAPLz8wEAnp6exgqRiIiIqEVOxqXXNHH2dYarXeMfXgOAxEyMRwd2FbZ/beVTPAvLKnAxIQuA+hfkYaFejbyCqPXp4uGA42/cjyUTe2m1VVl+X1+Ma2fVZ42W9HXr1g12durs8/Tp0wCAW7duAQD8/f3Rq1cvAMCZM2cAAGfPngUAREREGCtEIiIiohbRtVVDXR7TSPrO3MzQW0yGcCI2HQqN5NbF1tLEERE1j42lFK9M6YPjb96PV6aEq4vvjAszdVh6Z7Tpnebm5pg/fz5WrlyJxYsXIzw8HBcuXIC5uTlmzJiBwsJC7NixAytXrsTevXsRFRUFqVSKmTNnGitEIiIiohY5clcRl6YIdLODpdQMskoFimSVKCitgIO1ub5D1IvD11OEx01NbolaIx8nGyyZ2NvUYRiMUUvRLFiwAK+88gqcnZ1x5coVhIWFYf369ejcuTPCw8OxevVqBAQEICoqCv7+/li9ejWCgtp2TwwiIiLqGJJzinGrqt2CpdQM9zSxkbNIJIKPc01vuzu5xXqNT1/O3srEb6duCttNTW6JyPiMNtJXbe7cuZg7d26dz40dOxZjx441ckRERERELafZqHxQkKfWGiFd+Trb4laGOnG8k1uMHq2scmBKXgnmfnsIlQolAPXUzkFBHiaOioga0/abThARERG1Atrr+ZpX2MRXY6QvJbekxTHpU2mFHLPXHkR2kbrNlrOtBb5/ZhTMxPx1kqi1479SIiIiohZSKJU4Fl3TqmFkM6c8+jrbCo/vtKKkT6VS4V8/n8DV5FwAgEQswrfzRsLPxbaRVxJRa8Ckj4iIiKiFLifmoKCsAgDg6WCFYC/HZp3Hx6l1run7Ys9V/HMhQdh+75EBGBzEtlpEbQWTPiIiIqIW0lzPNzzUGyKRqFnn8dUq5GKYkT5lVasFXe25koSPtkcK208PC8FTw0L0HRYRGRCTPiIiIqIWakl/Pk3a0zv1O9InVyjx+sYz6PKvX/DKb6d0ek1Mah4W/ngMqqo8cXCQJ955uL9e4yIiw2PSR0RERNQCRWUVuBCfJWwPD21eERcA8HK0hplYPUqYVSSDrFLR4vgAoKxCjnnfHsa6I9GQVSqw4Xgszt/ObPA1ucUyPL32IErK5QAAPxdbfDNvBKRm/PWRqK3hv1oiIiKiFjgZlw551ZTJMD9nuNpZNftcEjMxPB2she0UPYz2FZZVYMZX+7HnarLW/m8OXq/3NZUKJRasO4LEbPX1rc0lWL9gNFxsLVscDxEZH5M+IiIiohbQnNrZ3KqdmrTaNuS1bF1fZkEZHli1G6dvZtR6bselJCTn1J1UvvX3ORyPTRe2Vz89FN18nFoUCxGZDpM+IiIiohY4otGqoSXr+arpq21DQlYh7lu5E9dS8oR9K6ZHCNNPlSoV1h2+Uet1f5y6iXVHooXtl6eEY1J4QLPjICLTY9JHRERE1ExJ2UW4nVkIALCUmuGezu4tPqevS8vbNkQl5+K+T3cJ0zPNxCJ89sQQPD8uDM+M6i4c9+vJOBTLKoVtlUqlValzSp8ALJnQq1kxEFHrwaSPiIiIqJk0R/kGB3nCQmrW4nP6OLVspO9kXDoe+Gw3sopkANTJ6Lr5I/HooK4AgFHdfdDFwx4AUCSrxG+n4oTXxqTlIy2/FADgaG2Oz58c0uz2E0TUejDpIyIiImqmo5r9+bo1v2qnJu1efU0b6dt9OQkzvtyHoqrRO3srKX57YRzG9/IXjhGLRZivMdr33aEbQu++wxrrE4eFeMHaQtqs90BErQuTPiIiIqJmUCiVOKYx0qePIi5A89f0/XYyDnO/PYxyuRIA4G5vhU0vTcDArh61jn14QBc42VgAAJJyioVCL/rqN0hErQuTPiIiIqJmuJyYg4KyCgCAp4MVgr0c9XJeH42RvrS8EiiUykZf89W+KPzrl5NQVnVRD3S1w9Z/T0QPX+c6j7c2l+D+fp2E7b/P3YasUqFV5XO4npJYIjI9Jn1EREREzXA4WntUTF9r36zNJUI/PLlShYyCsnqPVSpVeHvTeby75YKwL8zXGf/8ayICXO0avM4D93QWHm+7mIBj0alCM/guHvbwc7Gt76VE1MYw6SMiIiJqBkNOhdRe11f/FM+3Np/H/w5cE7YHBXng75fGw92h8QbxfQNdEViVGBbJKvH25prEUV9TVYmodWDSR0RERNREucUyXIjPEraHheg76dNc11d3MZfsIhm+PXRd2J7Q2w+/LhwHeytzna4hEonwYP+a0b6bGQXC4+Fcz0fUrjDpIyIiImoChVKJhT8eg6Kq4mVPP2e42lnq9Ro+Ooz0HY9JQ9USPvTyd8G3c0fCsoktIzSneFaTiEUYHOTZpPMQUevGpI+IiIioCd7dckGrtcGSib31fg1d2jZoTi8d39MPErOm/1rX2d0efQJctfb16+wOW0u2aiBqT5j0EREREelo4+mbWHOgZkrlSxN6YWJv/wZe0TyNtW1QqVQ4Eq2fNYWaUzxbei4iap2Y9BERERHp4EJ8Fl7+7ZSwPb6XH16eHG6Qa2mO9KXUMdJ3IyUPafmlANQN2Hv7uzT7WtMiAmEmrqk8OpJJH1G7w6SPiIiIqBFp+SWY880hVFQ1Pg/1dsSXTw+DWKyfNg1302yXkJRTXKtX377LScLjoSFezZraWc3VzgpPDwsBAAzo4o5efs1PIImodZKYOgAiIiKi1qysQo7Zaw8hs1DdL8/JxgI/Lhht0HVvjtYW8HCwQkZBGWSVCiRkFaGLh4Pw/L4rycLjEXpor/Duw/3x7Jge8HGyMVgiS0Smw5E+IiIionqoVCr8+5eTuJyUAwAwE4vw7bwRjTY+14cQL0fh8Y3UfOFxeaUCR66lCNv6mI4pEong52LLhI+onWLSR0RERFSPr/dfw+bz8cL2uw/3x5BgL6Ncu5u3k/A4JjVPeHzudibKKuQAgE5udvA3QgJKRG0bkz4iIiKiOuyPuoP3/rkgbD8xJFhY+2YMmkmf5kifvqp2ElHHwaSPiIiI6C6x6fl47oejQvPzAV3c8d4j/SESGW/6Y4i3o/A4WmOkT7M/nz7W8xFR+8dCLkREREQaqgu3FMsqAajbJ3w3fxTMJWZGjSPYyxEiEaBSAfFZRSirkKOkXI6rybkA1OsLhwR7GjUmImqbONJHREREpGHX5STcziwEAFiZS/DjgtFwtbM0ehzW5hJ0crMHAChVKsSlF+BYTM0oX0QnN9hZmRs9LiJqe5j0EREREWnQnD75/Nge6OHrbLJYQu+a4qk1tZPr+YhIR0z6iIiIiKqoVCqtQimju/uYMBog1EuzmEse1/MRUbMw6SMiIiKqEpOWj4wCdRN2Bytz9A5wMWk83TRG+rZHJiK9KjZHGwv09jdtbETUdjDpIyIiIqqiOco3LNQLZmLT/qoU6lMz0ncnt0R4PDrMFxIz/hpHRLrh/xZEREREVY7cSBMet4Y1c4GudrCQ1P51bVxvPxNEQ0RtFZM+IiIiIgCySgVOxaUL261hzZzETIwgL8da+8f28jd+METUZjHpIyIiIgJw7lYmZJUKAEAXd3v4udiaOCK1bt5OWtud3e3Ryd3eRNEQUVvEpI+IiIgI2uv5hod6mTASbaF3jfSNaEWxEVHbwKSPiIiICGi1PfBC7xrpa02xEVHbwKSPiIiI2r30/FLEpufX+3xWYRmi7uQCACRiEQYHeRopssZ183EUHre22IiobWDSR0RERO3aydh0DH5rM0a88w/+PHOrzmOORtdU7Yzo5AY7K3NjhdcoL0cbPHBPZwDAM6O7t6rYiKhtkJg6ACIiIiJDScwuwrzvDqOsQg4A+Hz3FTzUvzNEIpHWcUejW+fUzmpfzRqGjx4bCFtLqalDIaI2yKgjfQkJCQgJCan1588//wQAHDhwAJMmTUJYWBgmT56Mw4cPGzM8IiIiakeKZZWYtfYg8krKhX23Mgtx7naW1nEqlUqriMvIVpj0AWDCR0TNZtSRvhs3bgAAOnfujE6dOgn7fXx8EB0djcWLF0MkEiEsLAxRUVFYuHAhNm/ejODgYGOGSURERG2cUqnCop+OITo1v9Zzf5y+if5d3IXtmLR8ZBSUAQAcrc3Ry9/FWGESERmFUUf6qpO+efPm4euvvxb+DB48GBs2bIBcLseSJUvw+++/Y+HChZDL5fj555+NGSIRERG1A5/svITdl5OF7dnDQ4TH/1yIR2l5pbB9WKNq57AQL5iJWfKAiNoXo/6vdv36dQDAhQsX8K9//QuffvopsrOzAQAXL14EAPTv3x8AMHDgQABAZGSkMUMkIiKiNm7bxQSs2nVF2H5mdHe898gAdPVwAACUlMuxPTJReL61tmogItIXk4z0/f3339ixYwe++eYbPPjggygoKEB6ejoAwNHRUetr9X4iIiKixlxNzsHin44L2yO6eWPF9AiIRCI8NqirsP/30zcBALJKBU7fzBD2Dw9l0kdE7Y/R1vSVl5cjIiICJSUlWLp0Kdzc3LBo0SJcvHgRa9asgUwmAwBIpepFyhKJOrSysrJGz+3kZA2JxMxwwdfDzc3O6Nck3nd94/00Dd534+B9Ng1T3feM/FLM/fYwZJUKAECQlwP+enkSnGwtAQALJvbCB1svQqFU4VRcBgoVSsRnFwnHh3g7om+ol0libw7+/TYN3nfT4H1vGaMlfRYWFvjiiy+09j399NO4ePEiIiMjYWFhgbKyMsjl6pLK1V+trKwaPXdeXqn+A26Em5sdsrKKjH7djo73Xb94P02D9904eJ9Nw1T3vUKuwEOf70VyTjEAwM5SinXzRkFeVomsMvX6PQmA0d19sC/qDgDguTUH4ediK5xjSJBnm/k7w7/fpsH7bhq877ppKDE22vTO8vJy3Lp1C9HR0cI+c3N1c1G5XA53d3UVrYKCAgBAfn4+AMDT09NYIRIREVEboFSqsGb/NXy8/RISs4ugUqmw/I8zOHc7EwAgEgH/mz0cQZ4OtV77xNCaiuAHr6dg/bEYYZvr+YiovTLaSN+tW7dw//33w9HREXv27IGjo6PQhy88PBz5+flITEzEmTNn0KNHD5w9exYAEBERYawQiYiIqA34+9xtvLX5PADgs91XcE9nN5y5lSk8//q0CIwJ863ztePCfLFwXBi+2heltV8iFmFwED9oJqL2yWhJX/fu3TFo0CCcOnUKU6dOhY+PDyIjI2Fvb485c+YgMzMTO3bswMqVK7F3715ERUVBKpVi5syZxgqRiIiI2oDdV5KEx0qVSivhe/CeznhubI96XysSifD69AgEeznilV9PolyuBAD06+zO5udE1G4ZtXrn559/jsceewyAupJn//79sX79enh7eyM8PByrV69GQEAAoqKi4O/vj9WrVyMoKMiYIRIREVErJlcocTwmrc7nwgNc8PGMQRCJRI2e55EBXbDppQkIcLWFlbkEi+7tqe9QiYhaDZFKpVKZOoiWMsXCTi4oNQ3ed/3i/TQN3nfj4H02DUPf9/O3MzH1010AAC9Ha/y4YDR+Oh4DpVKF5ff1hZt94wXgNCmVKlQolLCUGr8KeEvw77dp8L6bBu+7bhoq5GK06Z1ERERELaXVSD3UG738XfDJjMHNPp9YLIKluG0lfERETWXU6Z1ERERELXEkWiPpY7VNIiKdMOkjIiKiNqGwrAIXE7IBqNsyDGtDjdSJiEyJSR8RERG1CSdi06FQqksR9PRzgYutpYkjIiJqG5j0ERERUZtw93o+IiLSDZM+IiIiahO0kr5unNpJRKQrJn1ERETU6iVkFSIhW12y3cpcgn6d3E0cERFR28Gkj4iIiFq9I9E1DdkHB3nAoo311SMiMiUmfURERNTqaU/t5Ho+IqKmYNJHRERErZpcocTxmJqRPiZ9RERNw6SPiIiIWrVLidkoklUCALwdrRHk4WDiiIiI2hYmfURERNSq3T21UyQSmTAaIqK2h0kfERERtWpHormej4ioJZqV9JWUlKC4uFjfsRARERFpKSitwMWEbACASAQMDWF/PiKipmpS0hcTE4Np06YhIiIC99xzD6ZMmYJr164ZKjYiIiLq4E7EpkGhVAEAevm5wMXW0sQRERG1PU1K+lasWIFnn30Wly9fxrlz53DffffhlVdeMVRsRERE1MFprucbHsqpnUREzVFv0rdixQpkZGRo7cvPz0ffvn1hYWEBW1tbhIeHIzc31+BBEhERUcekuZ5vJNfzERE1i6S+J7p06YJHHnkEkyZNwrPPPgsHBwc888wzmDJlCjp37gylUombN29i6dKlxoyXiIiIOoiErEIkZqtrCFibSxDRyc3EERERtU31Jn2zZs3CQw89hO+++w5TpkzBY489htmzZ2P48OG4cuUKAKBHjx7w8uKCaiIiItK/I9E1DdkHB3vCQmpmwmiIiNquBtf02dra4qWXXsLmzZuRnZ2NCRMmYNeuXRg+fDjGjh3LhI+IiIgMRqs/H9fzERE1W4NJX1FREaKioiASifDmm2/i559/xpUrVzBhwgT8/fffUCqVxoqTiIiIOhC5QonjMTUjfezPR0TUfPUmfTt37sTw4cPx7LPPYvTo0fj+++/h7++PTz/9FF9++SV27tyJyZMnY/fu3caMl4iIiDqAyMRsFMkqAQDeTjbo6mFv4oiIiNquepO+Tz75BCtXrsTx48fx999/Y9WqVZDJZACA7t27Y926dXjjjTewbt06owVLREREzReXXoCisgpTh6ETzamdI7t5QyQSmTAaIqK2rd5CLqWlpXBxcQEAODk5QaFQQC6Xax0zaNAg/Pnnn4aNkIiIiFpEpVLh9T/P4vsj0fB2ssHxN6bDyrzeXwFaBa7nIyLSn3r/x58zZw5mzZqF4OBgJCYm4pFHHoGtra0xYyMiIiI9+OFINL4/Eg0ASM0rwZWkHAzo6mHiqOpXUFqBiwnZAACRCBga4mniiIiI2rZ6k75nnnkGo0ePRlxcHHx9fdGzZ09jxkVERER6cCw6DW/8fU5rX2Ern+J5IjYNSpUKANDLzwXOtpYmjoiIqG1rcG5H165d0bVrV2PFQkRERHqUkFWIBd8fgUKp0tpf0MqTPq2pnazaSUTUYg22bCAiIqK2qaisAk+vOYi8kvI6nqs0QUS6OxLNpI+ISJ+Y9BEREbUzSqUKL6w/htj0AgCAhUSM4aFewvOteXpnQlYhErOLAQDW5hL06+Rm4oiIiNo+Jn1ERETtzH93RGLv1TvC9sczBmNoSNtI+n49eVN4PCTYE+YSMxNGQ0TUPjDpIyIiakf+uRCPz3dfFbafG9MDDw/oAntLqbCvsJVO79x5KRGr99bEPr6XnwmjISJqP3Rq0qNUKrFjxw5cunQJlZWVUKm0F4S/8847BgmOiIiIdHclKQcvbTghbI/q7oPXpvcFANhZmQv7i2Stb6TvekouFq0/LmwPC/HCowNZTI6ISB90Svref/99/PLLLwgJCYGdnZ3WcyKRyCCBERERke6yCsswe+1ByCoVAIAuHvb43+zhMBOrJ/U4aCR9BaWtK+nLKZZh1tpDKK2QAwACXe2wZs5wSMw4IYmISB90Svr27duH119/HTNnzjR0PERERNRE5ZUKzP32EFLzSwEA9lZS/LhgNBysaxI97ZG+1jO9s1KhxPzvDiM5R128xdZSih8XjGJvPiIiPdLpI7Ti4mIMHTrU0LEQERFRM3y47SLO3c4CAIhFIqyZMwJdPRy0jrG3qlnT15pG+lb8eRan4jIAACIR8NWsYQjxdjJxVERE7YtOSd+YMWOwe/duQ8dCRERETaRQKvGbRsXLFdMjMKq7T63j7I24pq9EVokPtl7ENwev16oDoGn9sRisPxYjbC+b2hf39mTxFiIifdNpeqenpye++uorHDx4EIGBgTA3N9d6noVciIiITONyYg4KqloweDpYYcGY7nUep5n0Gbp652d7ruDLvVEAgABXW4zv5V/rmJNx6Xh94xlhe3pEIBbdG2bQuIiIOiqdkr7IyEj07t0bAJCamqr1HAu5EBERmc7h6JqfyyO6edf7c9nGQgKxSASlSoWyCjkqFUpIDVQoZfflZOHxybiMWklfUnYR5n17GHKlehSwp58zPn1iCH+nICIyEJ2Svrlz5+Kee+6BjY2NoeMhIiKiJjhyQzvpq49IJIK9lRT5Vev5Cssq4GKAYilJ2UW4mVEgbF9JytF6vkRWiVlrDyGvpBwA4GZniR8WjIa1uU6/khARUTPo9BHfq6++ijt37hg6FiIiImqCorIKXIjPEraHhdSf9AF3VfAsM8y6vv1XkrW2o+7kQlk1oqdUqrDop+O4kZoHADCXiPH9M6Pg48QPlYmIDEmnpM/HxwdJSUl6u+iPP/6IkJAQLFu2TNh34MABTJo0CWFhYZg8eTIOHz6st+sRERG1Rydi06HQmCLpatfwyJ1Wrz4Drevbd1n794ViWSUSsosAAL+fvoldGs9/9NhA9OvsbpA4iIiohk5zKcLCwvDSSy+hZ8+e8PPzg6Wl9g+VphRySUxMxKpVq7T2RUdHY/HixRCJRAgLC0NUVBQWLlyIzZs3Izg4WOdzExERdSRHonWb2lnNTqNtgyFG+hRKJQ5cTa61/0pSDjq72+OfC/HCvrkjQvHYoCC9x0BERLXpNNIXHx+Pvn37QiqVIj09HQkJCVp/dKVSqfB///d/kMlkWvs3bNgAuVyOJUuW4Pfff8fChQshl8vx888/N+nNEBERdSSa6/lG6pD02VtqVvDUf9J3NTkXucXldezPQVmFHGduZgj7nh3bQ+/XJyKiuuk00rdhwwa9XGzDhg04f/48unXrhhs3bgj7L168CADo378/AGDgwIEA1FVDiYiIqLak7CLEZ6mnTVqZS9CvU+PTJO2tDZv0aSahzrYWQgJ4NTkXZ25loFyuBAB09XCAr7Ot3q9PRER10ynpq07K6tO3b99Gz5GcnIxVq1ahV69eeOSRR/D6668Lz6WnpwMAHB0dtb5W7yciIiJtR6LThMeDunrAQmrW6GvsLWumdxqiV5/mdNN5I7vhv9svAVCP9B2+3rSpqEREpD86JX0zZsyASCSCSqUS9olEIohEIojFYkRFRTX4+uppnZWVlXjvvfdqHV893VMqVf8wkkjUYZWVlen0JpycrCGRNP7DTt/c3OyMfk3ifdc33k/T4H03jvZ8n0/fzhQeT76nk07v1cOlZnRNIRbp9f4UlVXg/O2aSqKL7+uDbw/dQF5JOfJLK7DpfM16vvsGdmnX3xtj4T00Dd530+B9bxmdkr4DBw5obSsUCsTHx+Pzzz/H0qVLG339r7/+irNnz2LRokUIDg6ulfRZWFigrKwMcrkcAISvVlZWOr2JvLxSnY7TJzc3O2RVTash4+F91y/eT9PgfTeO9nyf5QolDmi0Rojwc9HpvUprPrtFWnaRXu/PvqvJqFSop2/28HGCWaUSYb7OOBajHpHMKlR/kCs1E6OHm327/d4YS3v++92a8b6bBu+7bhpKjHVK+nx8fGrt8/f3h42NDd566y1s27atwdfv3r0bALB69WqsXr1a2L9582Zs3rwZAQEBSExMREFBAXx9fZGfnw8A8PT01CU8IiKiDuVyUg4KqtbkeTlaI9jTQafXaVfv1N/0zoyCUny4rWYdfvX0zV7+LkLSV+2ezu6w0ZhmSkREhqdT0lcfFxcXJCYmNnpc3759YWdXk3mmpaXh+vXr8PLyQvfu3WFtbY3ExEScOXMGPXr0wNmzZwEAERERLQmPiIioXdIsmDIi1BsikUin19lr9OkrlOmnkEtCViEe+3IfErOLAQAiETAtohMAde/Au3E9HxGR8TW7kEtxcTHWr1+PoKDGe+wsWbJEa3vTpk1Yvnw5Bg4ciA8//BCXLl3Cjh07sHLlSuzduxdRUVGQSqWYOXOmjm+DiIio4zh8o3lFUbSSvtKWJ31RybmY8dU+ZBWp1+abiUX49tnR6OXvAgDo5edS6zVM+oiIjK/ZhVwA9bTP//73vy0OIjw8HKtXr8aqVasQFRUFf39/vPzyyzollERERB1JYVkFLiaoC6aIRMCwUC+dX2uvMb2zUNay6Z0n49Ixa81BFFWdx1Jqhm/mjsCMkd2EtTcBrnaws5QKxzjZWKCnb+3RPyIiMqxmFXIB1JU23d0b7wlUlwceeAAPPPCA1r6xY8di7NixzTofERFRR3EiNh0KpfpD2DBfZ7jYWur8Wjs9jfTtvpyEZ78/IvTdc7Ayx/pnR2NAVw+t48RiEXr6ueBknLoF04hQL4jFuk1FJSIi/RHrctCXX34JBwcH+Pj4CH/c3d2Rn5+PRYsWGTpGIiIiqnKkmVM7AXVyVq25a/p+OxmHud8eFhI+DwcrbFoyvlbCV21wUM3+8b38m3VNIiJqmXpH+m7duoXc3FwAwJYtWzBmzBg4OGhXB4uJicGxY8cMGyEREREJjmo0QB/ZxKRPc6SvqKwSKpVK5yIwKpUKX++/hne3XBD2dXKzw+8vjIO/a/1lwheM6QGZXAEnawtMiwhsUrxERKQf9SZ9d+7cwYIFCwCoG7G/8MILdR73xBNPGCYyIiIi0pKYXYT4qvVyVuYS9OvUtGUWllIzmEvEqJArUalQoqxSAWvzxld6KJUqvLPlPNYcuC7sC/Nzxq/Pj4WbfcM9dW0tpXhtGqtxExGZUr3/048YMQJHjhyBSqXCyJEjsXnzZjg7ay++trGxga2trcGDJCIiIu2pnYODPGAhNWvyOeytzJFdVW2zqKyi0aSvUqHE0l9OYuOZWxrX9sSPC0ZpjRwSEVHr1eD/9B4e6nn40dHRwj65XA6JpEXt/YiIiKgZjkQ3fz1fNc2kr7CsEh4N9HUvrZDj2XVHsC/qjrBvYm9/fD17OCybkXASEZFp6FTIBVCv65swYQLCw8ORnJyMN998E1999ZUhYyMiIqIqcoUSx2PShO3mJ30abRvK6i/mUlhWgce/3KeV8M0cEoRv541gwkdE1MbolPRt2bIF77//PqZPnw4zM/V/9KGhofj222/x7bffGjRAIiIiAi4lZqOwTN3vztvRGkENDdE1QKtBewNJ30fbInH2VqawvXh8T3z8+CCYiXX+vJiIiFoJnf7n/v7777FixQo8++yzEFf9Z//444/jnXfewcaNGw0aIBEREWmv5xse6q1z1c272VlqV/Csi0qlwvbIRGH7jfsjsPy+vs2+JhERmZZOSV9iYiLCw8Nr7Q8PD0dGRoa+YyIiIqK76GM9HwA4WNckfQX1jPRFp+Yjs7AMAOBkY4FnRndv9vWIiMj0dEr6vLy8tIq5VDt16hS8vLz0HhQRERHVKCitwMWEbACASAQMC23+z147y5o1fUX1JH2ao4rDQrw4pZOIqI3TqQznnDlz8J///AdZWVlQqVQ4e/YsNm3ahB9//BH/+te/DB0jERFRh3YiNg0KpQoA0NPPBS62ls0+l9aaPlkFzt7KxLLfT6OXvzM+mTEYEjMxDutpVJGIiFoHnZK+Rx55BHK5HGvXroVMJsNrr70GDw8PvPrqq3jssccMHSMREVGHdjRao2pnaMuSMK2kr7QC7265gBupebiRmoeBXT0wLaITztysWboxvAWjikRE1DrolPT9/vvvGD9+PGbMmIHc3FyYm5uzKTsREZGRaE63HNnCkTfNlg0peSW4mJAlbH+5LwoeDtaQVSoAAF09HODrzJ/3RERtnU6T9D/99FMUFhYCAJydnZnwERERGUlCViESsosAANbmEkR0cmvR+ew0RvqORtdMGwWAWxmFeHvzeWGbUzuJiNoHnZK+bt264eTJk4aOhYiIiO5yRGNq5+BgT1i0sDG6g0bSVz2ipyk6NV943NJRRSIiah10mt7p4uKCd999F2vWrIGfnx8sLbUXkH///fcGCY6IiKij05za2dL1fABgpzG9syFSMzEGdfVo8fWIiMj0dEr6LC0tMX36dAOHQkRERJrkCiWOx9SM9A3v1vKiKpqFXKpZm0swLSIQv526Kezr19kNNpa6JYhERNS66ZT0ffDBB4aOg4iIiO4SmZiNIlklAMDb0RpBHg4tPmddSd+QYE8sHt8Tf5y+BaVKvcZPH6OKRETUOrDbKhERkQF8ufcqwv9vI9YevNbsc2hN7ezmDZFI1OK47OoYvRvRzRuBbvZ4sH9nAICZWISJ4f4tvhYREbUOOo30ERERke5yi2X4YGsklCoVPtwaiXkju8FM3PTPWe9O+vRBYiaGjYUEJeXyWuf+8LGBCPd3QYi3I4I9HfVyPSIiMj0mfURERHp2PCZdmCYpq1Qgp6gc7g5WTTpHQWkFLiZkAwBEImBoiP6apNtbmQtJn4+TDbq42wNQr+2bM7Kb3q5DREStA6d3EhER6dmR6FSt7YzC0iaf40RsmpA49vJzgYutZSOv0J3mFE99TRslIqLWS+ekTy6XY+fOnVi9ejXy8/Nx9uxZ5ObmGjI2IiKiNkelUuHwjbuSvoKyJp/HEFM7qznZWAiP2YuPiKj902l6Z2ZmJmbNmoX09HTIZDJMnz4dP/zwA65cuYKffvoJXbp0MXScREREbcLNjEKk5pVo7UsvaPpIn+Zoob6TvplDgnExIRsh3o4YG+ar13MTEVHro9NI34cffoiuXbvi9OnTsLBQfzr48ccfIywsDB9++KFBAyQiImpLjtw1ygcAmU0c6UvIKkRidjEA9Tq7fp3c9BJbtYcHdMG1jx7F3lenwMqcy/uJiNo7nZK+M2fO4Pnnn4e5eU1vH1tbW/z73//GpUuXDBUbERFRm3M0unbS19SRPs3EcXCwJ8wlZi2O6252VuZcy0dE1EHolPTJZDJIpbX7+lRUVEBVtciciIioo6uQK3AiNr3W/owmJn2HrmtM7WSTdCIiaiGdkr4hQ4bg22+/1UrwioqKsHLlSgwYMMBgwREREbUl5+OzUFqhboUg1hhFa0ohlx2XErHnarKwPbyb/lo1EBFRx6RT0vd///d/uHDhAoYNG4by8nK88MILGDlyJJKSkrBs2TJDx0hERNQmaE7L1KyKqetI3/WUXCxef1zYHtXdB0EeDvoLkIiIOiSdVm97enpi69at2L59O27cuAGpVIquXbvivvvuEwq7EBERdXSaSd/DA7rg4PUUAEBmoQwKpRJm4vo/a80plmHW2kPCSGGAqy2+fHoo190REVGL6ZT0ff7557j//vvx8MMPGzoeIiKiNimnWIYryTkAADOxCKO6+8DJxgJ5JeVQqlTIKSqHu4NVna+tVCgx/7vDSM5RV+y0sZBg/YLRcNZjQ3YiIuq4dJreuXfvXowfPx6PPfYYNm7ciKKiIkPHRURE1KYcj0lD9dL3PgGucLA2h6eDtfB8QxU8V/x5FqfiMgAAIhHw9ezhCPF2Mmi8RETUceiU9O3YsQObNm1Cnz598PXXX2Po0KF46aWXcPjwYSiVSkPHSERE1OppTu2sbqbuoTGyV9+6vvXHYrD+WIyw/eqUPri3p5+BoiQioo5I546s3bp1Q7du3fDKK6/g3Llz2LVrF5YuXQpLS0scP3688RMQERG1UyqVqvGkr7B2Bc+Tcel4feMZYXtaRCAWj+9pwEiJiKgj0mmkT9Pt27dx6tQpnDlzBpWVlejfv78h4iIiImozbmYUIjVfPZJnZylFnwBXAICHxvTOjHztkb7knGLM/+4w5Er1nNCefs5Y+cQQFm4hIiK902mkLyUlBTt27MCOHTsQGxuL8PBwzJo1C5MmTYKtra2hYyQiImrVNEf5hoZ4QWKm/kzVw75mpC9do1dfiawSs9YeRG5xOQDAzc4SPywYDWtznSfgEBER6Uynny5jxoyBt7c3pk2bhtWrV8Pf39/QcREREbUZR6JrT+0EAA/HmpG+zEL1SJ9SqcKin47jekoeAEBqJsa6Z0bBx8nGSNESEVFHo1PSt379egwYMMDQsRAREbUqy34/jS3n49G/izumRXTChF5+sLGUah1TXqnAidh0YVuzKbt29U71SN8Xe69i1+UkYf9Hjw3EPZ3dDfUWiIiI6k/6tm3bhvHjx8Pc3ByZmZnYtm1bvSeZOnWqQYIjIiIylZi0fKGq5r6oO9gXdQeWUjOMC/PF9H6dMLqHLyylZrgQn4Wyqobqga52CHC1E87hbq9dvbOsQo7Pd18R9s0b1Q2PDw4y0jsiIqKOqt6k7+WXX8bgwYPh4uKCl19+ud4TiEQiJn1ERNTuaK7TqyarVGBbZCK2RSbCzlKKib39UVIuF57XnNoJaCd9WYUynIrLgKxSAQDo5GaHN+/vZ6DoiYiIatSb9EVHR9f5mIiIqCPQTPrGhfniTm4JbqTmCfuKZJXYeOaW1muGh3ppbVtIzeBkY4G8knIoVSr8fe628NzoHr5CwRciIiJD0umnzVNPPYXCwsJa+3Nzc/HAAw/ofLGMjAwsWbIEERERGDRoEJYuXYrc3Fzh+QMHDmDSpEkICwvD5MmTcfjwYZ3PTUREpC/llQqcjKtZp/fuw/1x8LX7cPi1+/DShF4I1JjCWc1MLMKQYK9a+zXX9e28lCg8HnnXqCAREZGh1DvSd/HiRSQlqReanz17Flu3bq3VnuHmzZtISEjQ6UIqlQoLFizAjRs3EBISgoqKCmzbtg3x8fH4888/ERsbi8WLF0MkEiEsLAxRUVFYuHAhNm/ejODg4Oa/QyIioiY6H5+pNQ3TvyrJC/F2wqveTnhlSjguJ+Vgy/l4bL2YgLT8UswaFgIHa/Na5/JwsBJGCKvPKTUTY1BXDyO9GyIi6ujqTfrEYjFef/11qFQqiEQifPDBB1rPi0Qi2NjY4Pnnn9fpQrdv30ZSUhJ69OiBv//+GxUVFRg8eDCioqJw+/ZtbNiwAXK5HK+88grmzp2L//3vf/jss8/w888/4+23327ZuyQiImqCwzfqbsFQTSQSITzAFeEBrnjj/n4oKKuAk41FnefycLCqta9fZ7daVUCJiIgMpd6kLzw8HFFRUQCA0aNH46+//oKzs3OzL9SlSxdcuHABJSUlEIlEKCgoQEVFBczMzGBnZ4eLFy8CAPr37w8AGDhwIAAgMjKy2dckIiJqDs31fCNCG56GKRaL6k34AMBDY3qnruckIiLSJ53W9B08eLDehC89Pb3O/XURiUSwtbXFd999h6lTp0KhUODll1+Gh4eHcB5HR0etr005PxERUUtlF8lwNVm93txMLMLgYM8Wnc/DvvZIX12jh0RERIaiU3P25ORkfPTRR4iNjYVCoV6PoFKpUFFRgdzcXFy/fr1JFz127Bjy8/Ph4OAAkUgEAJDJZAAAqVQ93UUiUYdWVlbW6PmcnKwhkZg1KQZ9cHOrvZCfDI/3Xb94P02D9904mnOfD8SkCY8HBHmii79Li2IIvuv1LnaWGN03AGbi9lu5k3+/jYP32TR4302D971ldEr6/vOf/yAlJQVTp07F2rVrMX/+fCQmJmLXrl3NWm+3evVqlJaWYvbs2fjggw/g5eUFCwsLlJWVQS5X9zuq/mplVfsT0rvl5ZU2OYaWcnOzQ1ZWkdGv29HxvusX76dp8L4bR3Pv87azNW0YhnT1aPH3yqrqw81qQ4M9kZtT0qJztmb8+20cvM+mwftuGrzvumkoMdbpY8bIyEi8++67WLRoEYKDgzFixAisXLkSCxcuxIEDB3QOpLCwEDk5ObC3t4enpyfGjRsHADh9+jTc3d0BAAUFBQCA/Px8AICnZ8um1RARUduUmF2Es7cyoVKpjHZNlUqlvZ5PD9Mw3e+a3jmc6/mIiMjIdEr65HI5fHx8AACdOnUSmrVPnToVV69e1elC+/fvxz333IOFCxdCpVJBpVIJr3VxcUGvXr0AAGfOnAGgbhMBABEREU14O0RE1B6cjE3HyHf/wbSVu/Dd4RtGu25sWj7SC9TLChyszNG7hVM7AXXSpznYd3cDdyIiIkPTaXpnQEAALl++DC8vL3Tq1Emo6llWVobSUt2mVg4ZMgSdO3dGZGQk7rvvPojFYkRHR8PZ2RmPPPIIUlNTsWPHDqxcuRJ79+5FVFQUpFIpZs6c2fx3R0REbU5SdhHmfXdY6Gl3NDoN80d1N8q1D0fXjPINDfGCxKzl6+4spGZ4fFAQfj0Zh/v7dYKvs23jLyIiItIjnZK+GTNmYNmyZVAqlRg/fjzuv/9+WFlZ4cKFC+jdu7dOF7KyssIPP/yAjz/+GCdPnoRSqcS4cePw6quvwt3dHe7u7li9ejVWrVqFqKgo+Pv74+WXX0ZQUFCL3iAREbUdJbJKzFp7CHkl5cI+zceGdvRGTREXfVbY/HTmYCyb2geudpZ6OycREZGudEr6Hn/8cTg7O8PZ2RlBQUF47733sGHDBri6umLFihU6X8zT0xOffvppvc+PHTsWY8eO1fl8RETUfiiVKiz66ThupOZp7c83UtJXXqnAybiaNkEj9DwN062O1g1ERETGoFPSBwDjx48XHk+bNg3Tpk0zSEBERNQxfbrzMnZdTqq1P9dISd+525nClNLO7vbwd2V5cCIiah/qTfqaMoL3zjvv6CUYIiLqmLZdTMDKXZeF7dnDQ/DD0RgAQEFpBZRKFcRiUX0v1wutqp0stkJERO1IvUlfQkKCEcMgIqKOKio5Fy9uOCFsDw/1wtsP9cdfZ2+jSFYJpUqFQlkFHK0tDBqHZhEXtlUgIqL2pN6kb8OGDcaMg4iIOqDsojLMWnsQZRVyAEAnNzusnTsCEjMxHG0sUCSrBKBe12fIpC+7qAxRybkAADOxCEOC2SOWiIjaD53W9F28eLHB5/v27auXYIiIqOOokCsw99vDSMkrAQDYWkrx47OjheTOycYCyTnFANQVPAPdDBfL0eiaqp0RndxgZ2VuuIsREREZmc4tG0QiEVQqlbBPJBJBJBJBLBYLffuIiIh0oVKp8H8bz+DsrUwAgEgE/G/2cAR7OgrHOFrXJF55JRUGjUdrPZ8eWzUQERG1BjolfQcOHNDaVigUiI+Px+eff46lS5caJDAiImq/fjwag19OxAnbr02LwNgwX61jnG1qpnMaslefSqXCEY31fCO5no+IiNoZnZI+Hx+fWvv8/f1hY2ODt956C9u2bdN7YERE1D7FpOZhxV9nhe0H7umM58f2qHWco0bSl19quKQvNi0fGQVlAAAHK3P0DnAx2LWIiIhMQdySF7u4uCAxMVFfsRARUQew+UI8FEr1coFe/i74ZMYgiES12zE4GWmkT7Nq57BQL5iJW/SjkYiIqNVpdiGX4uJirF+/HkFBQXoPioiI2i/N9XOLx/eElXndP4o0q3XmGzDpO3KjpogL1/MREVF71OxCLoB62ufHH39skMCIiKj9yS2W4XJSDgBALBJhaHD9TdA1p3fmGijpk1UqcCouXdgewfV8RETUDjWrkAsASKVSuLu76z0gIiJqv47HpKP688O+ga5wsK6/NYKz1po+w1TvPHcrE7JKBQCgs7s9/FxsDXIdIiIiU2p2IRciIqKm0qySObyRUTXtlg0yg8czIrT+UUciIqK2TKekLzk5GatWrUJcXBwqKmp/2rpnzx69B0ZERO2LSqVqUj88zUIu+Qbq08f+fERE1BHolPS9+uqryMjIwMSJE2FpaWnomIiIqB26lVmIlLwSAICdpRR9Al0bPN7RwNU7swrLEHUnFwAgEYswOMhT79cgIiJqDXRK+q5fv45ffvkFPXrU7qNERESkC81RtSEhnpCaNdwaQXN6Z0FZBRRKpV7bKRyLqanaGdHJDXZW9a8vJCIiast0+ukZEBCAsrIyQ8dCRETtmGbSN1KHKplmYjEcNBIxfRdz4dROIiLqKHQa6VuxYgXeeecdzJ49G76+vhDf9Ulr3759DRIcERGZVrGsEsv/OA2JWIz3Hh0A63p66jWmQq7AiViN1gg6JllONhYoKFMne3kl5XCx1c8Sg+ScYhy6niJsj2TSR0RE7ZhOP73j4+Nx69YtLFu2rNZzIpEIN27c0HtgREQAUFhWgavJOejXyR0WUjNTh9PhrDlwDX+dvQ0A6OrpgIXjwpp1nvPxWSitkAMAAlxtEehmr9PrHG3MgWz1Y300aE/MLsKqXZfx99nbkCvVvSMcrc3Ry9+lxecmIiJqrXRK+r744gs89NBDeOKJJ2BlZWXomIiIAAAJWYWY+ukuZBfJ8NTQYHz0+CBTh9Th7I+6Izw+eC2l2Umf1lTKJjRAd7KpGdlraTGXmNQ83LdyFwrLKrX2Pz08RK9rBYmIiFobnZK+4uJizJs3D76+voaOh4gIAFBUVoGn1xxEdpG6P9vOy0lM+owsp1iGK8k5wva525koLa+EtYW0yefSTPqGN2EqpVavvhas6csrKcestYe0Er5BQR54cXwvDGd/PiIiaud0+mhz/Pjx2L9/v6FjISICACiVKryw/hhi0wuEfdlFMpRXKkwYVcdzPCYNKlXNdqVCiVM3M5p8nlyN5FEsEmFosO5JlrNW24bmNWiXK5RYsO4IErKLAADW5hL8ufhebHppAkZ084ZIJGrWeYmIiNoKnUb6fHx8sGrVKuzduxcBAQGQSLRf9s477xgkOCLqmD7aHom9V+/U2p+WX6LzWjBqOc3RuWpHo9MwpkfTZn0cj0kXkse+ga5wsNa9NYKjHhq0/2fTea32DF88PRRDQzi6R0REHYdOSd/Zs2fRq1cvAMCdO7V/ESMi0pct5+PxxZ6rwrZYJIKyKmNIzStl0mckKpUKR6LTau0/Vse+xhyJbn5rBKcWNmj/9WQc1h2uKTa2dFJvTA4PaPJ5iIiI2jKdkr4NGzYYOg4iIlxOysGSn08I26O7+8DaQoLtkYkAgJS8ElOF1uHczChEatX9trWUorxSgUqFEjdS85BZUAZ3B92KeqlUKhxuQT88R2uNkb7SpiV9J6LTsOz308L25PAALJnYu0nnICIiag90SvouXrzY4PPs00dELZVZUIY5aw9CVrVur4uHPb6ePRyf774iHJPKpM9oNKd2DgvxQn5pOU7FqdfzHY1JxUP9u+h0Hs3k0c5Sij4Brk2Ko7kjfXdyi/HwpztRqVACAHr4OOGLp4ZALOb6PSIi6nh0SvpmzJgBkUgElcaKfpFIBJFIBLFYjKioKIMFSETtX3mlAvO+O4TU/FIAgL2VFOsXjIaDtTm8nWyE4zjSZzx3T8nMLZYJSd+x6DSdkz7N5HFoiBckZk1rjeBko1G9U8ekr7RCjtnfHEJmQRkAwNnWAj8sGN2sqqNERETtgU5J34EDB7S2FQoF4uPj8fnnn2Pp0qUGCYyIOgaVSoVlv5/GudtZANRr+NbMGYEuHg4AAG8na+FYXUf6VCoVKzK2QHmlAidi04Xtkd28kVMkw3+3XwIAHI1O1fket2Q9H9D0kT6VSoUlG04gKjkXACARi/DdvJHwc7Ft8rWJiIjaC52rd97N398fNjY2eOutt7Bt2za9B0ZEHcN3h2/g99M3he0V90dgVPea/3M0R/pS80obPd9bm87h15NxmDE4CK9Ni2jyyBIBF+KzUFYhBwAEutohwNUOvs42cLAyR0FZBdILyhCbXoAQL8cGz1MhV+DkXcljU2lV79ShT9/ne65i68UEYfv9RwdiUJBnk69LRETUnrTotyEXFxckJibqKxYi6mCO3EjFf/4+L2w/MqALFozurnWMj1bS1/BIX1J2EdYcuI7CskqsOXAdc745hNLyygZfQ7XVVXjFTCzGkJCa5OlodO12Dnc7H5+F0qrkMcDVFgGudk2Oxd7SHOKqEcViWSUq5PX3atx9OQkfbYsUtp+7tyeeHBrc5GsSERG1N80u5FJcXIz169cjKChI70ERUftXVFaB5344KrRj6Bvoio8eH1RryqCLrSXMJWJUyJUoKKtAiawSNpZ1r806fFdfuX1Rd/DAZ3uw4bkxcLPXrdok1T8lc3iIF3ZeSgKgXtc3f1T3Wq/VOo9m8hja9FE+ABCLRXCwNhemdhaUVtT5vcwukmHRT8eF7cFBnlg5ayjydRgdJiIiau+aXcgFUE/7/Pjjjw0SGBG1b4eupwq/yHs4WOH7Z0bBUmpW6zixWARvRxskZBcBAFLySxDs6VjnOY/W0UPuclIOJn+yE788PxZBng76ewPtVE6xDFeTcwAAZmIRhgTXjO4N10jcTsalo1KhhLSB6bNHWtCqQZOzjYXwdyW3pLzOpG/f1WQUy9Sjun4utvhm3ghIJbX/PhEREXVEzSrkAgBSqRTu7u56D4iIOgbN0aQnhgTDw8G63mO9nTSSvty6kz65QonjMTVJ33NjemDtwetQqlRIzinGfZ/uxI8LRmNAVw/9vYl26HhMGqo/3+sb6Ap7q5rqmYFudvBzsUVyTjFKyuW4EJ+FgfXcz5xiGa5oJY9ezY5Ja11fPcVcNP8+zR4eAhdby2Zfj4iIqL3RaU2fj4+P1h8LCwsmfETUbE1t2K1LBc/LSTkoKFMX+vBytMaK+yOw/tnRsDJXf7aVX1qBR1fvxdYLCS2Mvn1raEqmSCTCsJCa5K2hdX13J48O1ub1HtuYxip4KpRKrVHelowqEhERtUcNJn1nz57F1KlTERsbq7V/xYoVmDBhAiIjI+t5JRFR/ZrasFuXCp6aycrwUC+IRCKMDfPFppfGw81OPepTLldiwfdH8L/9UbWmq5M6GW9sSqZmInisjum01fSxnq+ao0bCmF9aO+m7mpwrJINudpbo5u3UousRERG1N/UmfVFRUZg/fz68vLxgY2Oj9dzs2bPh4+OD2bNnIyYmxuBBElH70tSG3d46VPCsb+QwPMAV25dOQlePmvV8b2++gNf/PAuFUtnk2NuzuIwCpOark2p7KynC60jGh4Z4orrWTmRiNgrLardR0CV5bIrGRvruvhZ7NBIREWmr9zetr776CpMmTcI333xTq09f//79sW7dOgwbNgxffvmlwYMkovalqQ27tdo25NdO+grLKnAxIUvYHhaifU5/Vzts/fdEDOhSMy39+yPRePOvc02Ku73TJRl3trVETz8XAIBCqdJq4l5Nl+SxKRy1kr7aSWZLG8ATERG1d/UmfVeuXMHTTz/d4IvnzJmDS5cu6TsmImrHyisVWomCLg27Ndf0peTWTvpOxKZDoVRP1+zp5wxXu9pFPJxsLPD7onsxLSJQ2PfjsRiUV9bf962j0XVK5nCNdX3H6ljXd/RGzbTPIcGNj+Q2xrmBkb5iWSXO365J+IeHMOkjIiK6W73VO0tLS2tN67ybq6sriouL9R4UEbVfF+KzUFbVsDvQ1U6nht0+TrbC45S8EqhUKq0pfLpOJbSUmuHrWcNx+mYGMgrKoFCqkJZfgkA3++a8FZ2oVCpcTMjGtTu5uJ2pXss4+Z7OmNbb32DXbI7ySgVOxmUI2w0l48NDvfHlvigAdbfJ0PfIm6N1TdKXWyLTeu5UVesIAOjh4wR3B/ZjJCIiulu9SV9gYCCuXLkCPz+/el985coVeHk1vww3EXU8TanaWc3eSgobCwlKyuWQVSqQV1IOZ42S/JpVJBsbORSLRfB3sUNGQRkA4E6uYZO+tzadx9qD17X2bYtMRP6jA/D08FCDXbepzsdnaiXj/g0k4/d0cYel1AyySgVuZRbiTm4xfJ3ViXlzRnIb4+dSk/THpOZrPafPtYNERETtVb1zbqZMmYLPP/8c2dnZdT6flZWFzz77DOPHjzdYcETU/jRnFEgkEtVbwTMxuwjxWeoeflbmEvTr1Hg7GV/nmnPdyTXcbIVKhRK/noyr87nX/jyLQ9dTDHbtpmpKMm4pNdPqd6g52teckdzG9PB1hkSsHtm9lVmIgtKadX1HNK49vIVVQomIiNqrepO+p556Cg4ODpg8eTI+/vhj7N27F6dOncLu3bvx0UcfYfLkybCzs8P8+fN1vlhWVhaWL1+OoUOHIiIiAk8++SQuX74sPH/gwAFMmjQJYWFhmDx5Mg4fPtyiN0dErUtOsQxXtRp2e+r8Wu96irlojvQMDvKAhdSs0XNVj0oB6pE+Q4lMyEaRrBIA4GxrgVemhKOXf00RlAXrjiA6NU+ncxWUVuDLvVex72qyQWJt6ohZfev6mjOS2xhLqRm6+dS0YbicpP4w8k5uMW5mFAjH9O/SeMJPRETUEdWb9EmlUmzYsAHTp0/Hn3/+icWLF2P27Nl46aWXsHXrVjzyyCP4+eefYW1tXd8ptCiVSjz//PPYtGkTbGxs0LVrV5w9exazZs1CUlISoqOjsXjxYiQlJSEsLAyJiYlYuHBhrR6BRNR23d2w295K94bdPvW0bWjOyKGxRvo0E6kJvfyxZGJv/PTsaGG6YpGsEk/+7wCyCssaPdc7W87jvX8u4qk1B3HmZkajxzdFdpEMUXdyAeiejGuOqh2NSYOyqpCOoSppavZyjExQJ32aI4wDunrAyrzeFQtEREQdWoMl1SwtLbF8+XKcOHECO3fuxO+//449e/bg+PHjWLp0qc4JHwBcv34dV65cga+vL3bs2IE//vgDEydORGlpKbZt24YNGzZALpdjyZIl+P3337Fw4ULI5XL8/PPPLX6TRNQ6tKRht7dj7QqecoUSx2NqfvHXPekzzkifVgJU9X49HKyx5dUpsLGQCNeftfagMCWyLkqlCjsvJQnbX+y5qtc4tZNxN52S8e4+TnCpWleZW1yOaym5yC5q/khuY/oEaiR9ieqkT/Pv00hO7SQiIqqXTnW0pVIpOnfujPDwcAQEBDSr8a27uztWrlyJ5cuXQyJR/7Lj6qr+IZ6Xl4eLFy8CUPcABICBAwcCACIjI5t8LSJqfVrasFtzemdK1UjfpcRsFJapp096O1ojSKMBe0N8XQw/0pdfWi6MSIlE6qbm1XoHumLNnBEQV/1fejEhGy/+dFwYLbvb1Tu5Wq0KDl5PwfWUXL3FqpU86fh9EYtFGKbxno5FpzUredSV5kjf5cRsKJRKHGtGwk9ERNQRtax5UhO4u7tj8uTJGDt2LAAgNzcXO3fuBACEh4cjPV1d7c3R0VHra/V+ImrbWtqw28e59vTOu5NIXT+Q8r2rKEx9yVZLnIhNh7IqA+rt76JVbRQAxob54u2H7hG2t0Um4r876v6QS/N9Vvtyb5Re4lSpVM2ekqk5xfNIdKpWFdURofqt7NzV0wHWVdM30wvKsPfqHSERdre3Qqi3o16vR0RE1J6YZAFEYWEh5s2bh5ycHHTp0gXjx4/Hyy+/DEA9qghAGA0sK2t8rYuTkzUkksaLN+ibm1vLq9JR0/G+65ex7udv524Lj8f09IOXp26jctV6VtYU6Yi6k4dKMxFO3soU9k3p37lJ78XVzhLZRTJUKpSQS8Xw0ZjyqQ9n42sahk+M6FQrNjc3Oyx7uD/Sisrw1W71dM3Pd19F787ueGpkN61jT96qvYZv68UE/HfWMHRyb1m7iet3cpFWlYw72lhgbESgzs3U7x8ShH/9chIAcPZWJpxsa/rpTRvcVe9/t/p1dcfR6+rE8qv9NUnv+HB/uNdzH/j/hWnwvhsH77Np8L6bBu97yxg96cvPz8ecOXNw7do1ODg44PPPP4dUKoWFhQXKysogl6vXtVR/tbJqvNFunkb5dmNxc7NDVlWZeDIe3nf9Mub93KGR9A3s7N7k6zqYmSHY0wGx6QUoKa/EnC/340yceiaASAT09nZq0jm9nWyQXaRu9H0pNgPmXfQ32qdSqbArMlHYvsffRSs2zfu+bFI4biTl4mBV+4YFaw/B0VyCQUHqqZMlskqc1ChYEubnjKjkXCiUKry/8Qzef3Rgi2LdfKKmpcSQIE/kNWGNoyWALh72uJVRCFmlAml5NSO5gfbWev+7FebtJCR9F27XJNX9O7nVeS3+f2EavO/GwftsGrzvpuHsYoPvz5/GP/FXUalUwt7cAnZSS/jYOKCzvQs627sg0M4Z1lL9LStoixpKjI2a9JWUlGDu3Lm4du0aHB0d8cMPPyAoKAiAevpnYmIiCgoK4Ovri/z8fACAp6f+CgEQkWmUVypwMq5mtKo5DbvFYhHef3QAHvp8LwBgf9Qd4bmefi5CURFd+Trb4EqSuujIndxivZb7T8gqQnKOeq2gjYUEEZ3c6j1WYibGmjnDcd/KXYhOzUelQom53x7G9qWT0NndHqdvZqBSoQQAdPN2worpEXh09T4AwG+nbuJfk8Lhate0965Jc+ro8GZMyRwe4oVbGYVa+4aGeOk8WtgUfeqZEjw8hOv5iIjaolxZCU5nJOJURgKu56bDy8YB/d390c/ND5YSCYoqyhFbkIU1208iJjez0fN5WdsLSWAne2fhsZ+tE6Ri488KbE2MmvS99tpriIqKgp2dHdavX4/Q0FDhuV69eiExMRFnzpxBjx49cPbsWQBARESEMUMkIgM4H58pVKfs5GYH/2Y27B4S7IUH7umMTRqjhkDTK4EChq3gqblGbkiwJ8wbmX5uZ2WOn54dg8kf70BWkQx5JeV48n8HsH3pJBzWWm/nhWEhXsJon6xSgWMxqbi/X+dmxalOxmvWTTcnGR8e6o0fjsZo7WvO90MX4YG1k74ePk5wd2h8RggREZmeZpJ3Kj0B0fm1E7kt8c2vUJ1WWoi00kKcSI/X2m8mEsHf1gndnT3Rz80P/dz90NPZC5IOlAgaLem7cuUKdu3aBQCwt7fHF198ITw3ZMgQPPHEE9ixYwdWrlyJvXv3IioqClKpFDNnzjRWiERkIPps2P3m/f2w72qy0PQcaF6yYshefYeb0ZrCz8UW658djQc+2wNZpQK3Mwsx99tDyCyoWddcXaxmRKg3opLV1Tvj0guaHee525mQVSoAND8ZHxzsCTOxCAqNYjjN+X7owsfJRliLWY1VO4mIWrfssmJ8GXUcJ9LjcSOv+X1m7aQWmBM6AH3dfFFYIUN+RRmSi/NxuzAHtwtzkFSUB7lKWedrFSoV4otyEV+Uix2J1wEAAXZO+N/wh9HLpWP8HDFa0rd3717hcUpKClJSUoRtJycnzJw5E6tXr8aqVasQFRUFf39/vPzyy8L0TyJquzSbaA9v4SiQu4MVlk3tg9f+VM8GsDJvePpkfQw10lepUOJEbM3oWVOSkj6Bblj91FDMX3cEAHBKY0qshUSMAV08AADBGkVwYtOan/S1pIVGNXsrc/QNdMW5qjV2LRnJbYxIJEKfAFfs05jay6SPiKj1Kqksx7Rd65BYnFfn8xKRGL1dvTHIIxB93XyRVJSHs5lJuJqbBrFIBDupeu3euC4heMQvHI4W9c/sqFQqkFycj/iqJFDzT1ppYa3jE4vycP/u7/HfQVPxYOfeenvPrZXRkr6lS5di6dKlDR4zduxYoaUDEbUPhmjY/fTwEJy9nYmdl5LwypRwWEibPj3DUCN9F+OzUFw1CunrbIPOTayuOaVvIJZnFeGDrRe19g/o6gGrqpYFwV6Owv7Y9Pxmx1pX8/jmGB7qLSR9hk7CwgNrkj5LqRn6VyXCRERkGnKlAkdSb+G3mxdxMesO7u/UC69FjIVYJMaHkQe0Ej7NJG+QZyD6ufnBRmqhdb553QfVuoYuBXSkYjNhDd+Yu54rk1fgZkE2IrNTcC4zCfvvxKKoshzlCjlePL4Z13PT8VrEOIhFRutmZ3QmadlARB2HIRp2m4nF+N/s4VCqVDATN+8/6LtH+lQqlc59/hpy96hmc8656N4w3M4swB+nbwn7NKdMdtVoQh+fWYhKhRLSJhZOUSfj6imiLU3G54wIxdHoVJRVKvDCvT2bfR5dDNRI8oYEe8KyGQk/ERG1TF55KU6mJ+BE2m3svROD9NKahGzt9ZMoqpThoc698WP0WWH/m/3GY0ZQ31pJnjFYSczR08UbPV288VTIPbhdmIO5h35DXEF2Vcyn4G5lhwU9Bhs9NmNh0kdEBqU5hVCfa71EIhHMWpCkOVqbw8ZCgpJyOcoq5MgtKW9yBdC6aI6eNff9ikQi/PfxQUjOKcHJuHRYSs0wsbe/8LytpRQ+TjZIySuBXKlCfFYhgj0dm3SNYzE1cUZ0coNdC5JxZ1tLbP33pGa/vikGBXlg0b09cSM1D28+0M8o1yQiamtUKhVK5RUoqFCvgfa2aVpv3Ppczk7B51eOYt+dGDTU6OjXuIvYdPuKcMwon66Y122gXj5c1YfO9i7YOnEeXjqxGXuS1cXIPri4H/e4+6Ovm6+JozMMJn1EZDAqlUp7CmErWn8lEong62yLmLR8AOrRvpYmffml5YhMyK46v7p1QXOZS8zw68Kx+OdiAoI9HRDopj1NNMjTASl56rWIsWkFCPZ0RE6xDKt2XYGngxXmjuwmTAetiz7W85mCSCTC/03ra+owiIhMKrEoF4dTbuJGfgYKymUoqChDQYUMhRUy4atmUZNHu/bBRwOnNLtaZWT2Hay6fAQHU+LqfN7V0gYPdu6N9NJC/JMQBQCQKdRVu20k5vho4NRWk/BVszO3xP+GP4wH9/yAyOwUyFVKPH/0T+ye8iwcLaygVCmRWVaMpKI8JBXnIbHqa2pJIcKcPfF6xL3Nnm1kCkz6iMhgYtMLkJavbtjtYGWO3v4uJo5Im5+LZtJX3OL4jsekQ1k1lzXc3xVONi2bwmIhNcMjA7rU+Vywl6NQJVS9ri8AH22LxIbjsQCA30/dxOdPDa2zyI1KpdJO+gzUYoGIiPSnUqnA2msn8cfNSMQX5TbptX/cjERpZQW+GPZAk/rVXchKxqrLR3A49abWfhGAPq6+GOrVCUO8OqO/uz+kYjMolEqIRCKttguvRYzT20ijvpmbSfD18IcwftsaFFaW405JAe7b9R3EIhGSi/NRXpW43u1URgKGeXfBaJ+2U3CSSR8RGYxmYmGoht0toe9iLsYcPdOs4BmXlg+VSoW9V5OFfbcyC3Hfp7vw/LgeWDpJu9hNbFo+0qtaQbTGZJyIiLQlFuXihWN/IzI7pfGDq1iYSWAtkSKvXP3//bbEa6hQyvH18IdhYdZwCnA+MwmrLh/BkbRbWvtFAKYG9sCLvUYgxNG91uvMxGJ8NmQ6rMyk+O3mRUwN6IEnglt3z20/Wyd8MnganjmyEQBwuzCn0de4W9kitI7335ox6SMig2ntUwj12bZBpVLh8I2aH8YGT/o0KnjGpRcgJi0fGRo9/QBAqVLhy71R2B91B58/ORS9qpI7zYbvrTEZJyIidVXMG3kZOJmegFVXDqO4skJ4zkoixWCPQAz27AQPazvYm1vCoeqPfdUfSzMpVCoV3ji3Cz9UFVTZkxyDV09tw2dD76/zmjfyMvD2+T04lnZba78IwH2BYXix13AEN5LsSMRm+HjwfXhnwERYmklbdhOMZFJAd8wJHYDvo89o7XeysIK/rZP6j536a4CdE8JdfWBrgoI0LcGkj4gMorxSgZNxGv3qQpu/vs1Q9DnSF59VJCSONhbN6x3YFEEaI303Mwpw8FpNwjk4yBMiEYR+gdGp+Zj88Q68NKEXFk/ohSM3aiqMtsZknIiovUgsysWBO3E4lBqH1JIC2EgsYCe1gK25BWylVY81vsoUlYjNz0J0fgau52WgTF6pdT6JSIyX+4zG3G4DdEqoRCIR3r5nIszFEqy9fhIA8Nfty5gV2h/hrj5axyYX5+HB3d+jsLJc2CcWiTCtKtnr6tC0n2ttJeGr9tY9EzDCuwtkCjkC7ZzgZ+sEe/OWF3hrLZj0EZFBnLudCVmlAgDQ2d3eYA27W0KfI31aU1mDvZrcQqGpHK0t4OFghYyCMpTLlfjlZM3i+vvv6YQZg4Lw49FovLPlAmSVCsiVKnyy8zL2XE1GXHpNQ/fWmIwTEelTcWU5pGKzRqc0NleOrASl8gr42ToJ+zLLivDckT9xJjNJb9cJsHPCV8MeqpWsNUYkEuH1iHFILM7F7qRoAMCHF/fj93ufFo5RKJV46fhmIeETi0S4v1NPvNhrODrbu+rtPbRmIpEIY3yDTR2GwTDpIyKD0KzaObyVJhaaI30pdSR9JbJK2Fg2/kmlSqXCHo31dMYaPQv2dBSmdN7OLKy5fqg3xGIR5ozshpHdffDShuNC8/Tq3nxA603GiYiaQqVSIUdWgoSiXCQU5SGhKBeJRblVX/OQW14KJwsrfD70gToLb2SVFeOrqONQQYWXeo2Ak4W1zteOzL6Dx/b+hBJ5BRZ0H4z/6zsWhRUyPL7vJ8TkZ7X4vXlb2yPCzQ8DPALwUJfezZ5SKBKJsLzPWOxLjoFCpcLx9HgcTb2F4d7qYmH/u3ZCSFDNRCL8ee8s9PcIaHH81How6SNqA2JS82BpLkFAG/oFvS1Uh3Szs4Kl1AyySgXySsqRll8CL0d1Ivj2pvP434FruL9fJ3w1a1iDpaZ/OBJtkvWLQZ4OOBaTprWvi7s9/FxqRjA7u9tj85IJ+ObgdXy0LRLl8poS3hzlI6K2LLEoF/8++Q+u5qShRF7R4LF55WWYdfBXvNZ3HJ7pPkj4P/1o6i28eHwTsmTqD/6Op8Xj17FPwsO68Z+3JZXlWHRsk3DttddPIjovA3kVpULCZyYSYaR3V4zxDUYfVx+UK+QoqixHcWV5zdcK9dfqUbZgBzeEOLoj1Mkdntb29V6/qbo4uOLRrn3wa9xFAMCHkfsx1KsTruSk4ZNLh4TjXuw1gglfO8Skj6iV++bgdfxn0zmIIMLuVyejp1/rr7SYXSQTRpTMxCIMCfY0cUR1E4tFiOjkJqx9OxWXgQfu6YzCsgp8c+g6AGDz+Xi8NLFXvc3Pj8ek4Y2/zwnbjwzogs7u+vsh3RDNCp7V6ko4zcRiPDc2DKN7+OLFn47jcpK6Mtn0fp0NHiMRkSGoVCr8++Q/OJ2RqPNrlCoV3rmwF8fSbiPQzhlFlTKtBuIAEJOfiQf2fI/fxz2lNV2zLu9c2IuEu1onaFa7FAFYNeR+PNC5l84xGtqS3iPx9+0rKFfIcSUnDYM2fY6Ukpop/31cfbC45zATRkiGwqSPqBU7eC0Fb206D5UKUEGFrRcT2kTSdyymZtQropMb7KzMTRhNwwYHeQpJ38m4dDxwT2eciE2HQlnza8C+q3fqTPoSsgrxzLojwrHhAS748LGBRokbAII0KnhWa2iUMcTLEduXTsK+qDtwsrFA/y5tq9w0EVG1PcnRWgmfndQCAXZOCLRzRoCdc9VX9baZSIwFRzbifJZ6Gv7dPecAwNnCGgUVZVCoVEgsysOE7WvR3ckTXjb28LSyg5eNPbys7dFN4QnLcgku56Tg59gLwuvH+gZj/51YrXN+OHBqq0r4AMDL2h5zQgfgf9dOAIBWwmctkeKLoQ80u4E7tW5M+ohaqZsZBXjuhyNCs29A3V+tLWjtrRo0DQryEB6fissAABzVWI8IAHuvJmPhuDCtfcWySsxaewh5JerpOB4OVvj+mVGwMjfef6t3J6ISsQiDgxoeVZWYiTGxt78BoyKi9q5CIUd0fiaSi/PR09kL/nYNj4gZ4vrvXtgnbM8K6Y93+k9scBr+H/c+jf87vR1/3LpU67kRXl3w2dD7cTHrDp47+icqlAoUVMhwKiNBp3gm+XfD2hGPYFfSDSw9+Q9kCjlej7gXM1tpf7qFYUOx6fZlZJSpq1ZLxWL0cvHG6xH3opN96/9gmZqHSR+RCSiUSpiJ66/uWFBagVlrDqKwTLtUc0wbSPpUKpVW0jeyla7nq9Yn0E1Y13c7sxBp+SVa8QPA+dtZyC2WwdlWXbpZqVThhR+PCd8PC4kY388fJawHNBZXO0s421ogt1idePbr7A5bHQrPEBHpqkIhR0x+Jq7kpOFKTiqu5qYiOi8TFUp1dWYzkQjzug3Cv3qPgI3UAkqVEjmyUrhYWkMsMkwV4/Ux54RplQ7mlvh375ENJnyAulH5J4OnYUZwBKLzMiFTVEKmkCPYwQ1jfIMgFokx3j8UP42ZiUXH/hbW+DXGw8oWHw2cCpFIhEkB3THGNxglleVwtjTuz4OmcLSwwtaJ83A6MxGBds7o4ezZ5torUNMx6SMysnO3M/H0moPwdLDGxsX3wtVOuweMQqnEcz8cxa2qaoyWUjNUyJVQqlRIyilGaYUc1kYcTWqq2LR8pFdVlHSwMkfvgNb9qaGl1ExrXd/vp24iPqtI6xilSoWD11PwUH91lbP/7ojUqtb53xmD0dfAffnqE+zpiNM31SOUrX1UlYjahsSiXHxz/RQuZafgRl6GkODVRaFSYe31k9iaEIVAO2dczU1FcWUFPKzssKzvGDzYuZdek7+Eolx8duWIsP1SrxFwstSt2qZIJEKEmx8i3PzqPWaoV2ecfnAJEopykVZSiPTSQqSXFQmPsytKkFyYj9zyUthJLbB62INa17cwkxisNYQ++dg64kFbR1OHQUbU+v9WErUzq/dcRV5JOfJKyrHmwDW8Pl17+sd7Wy7i0PWaRtufPTkEH2+/hFuZhVCpgJvpBejl33oTqcMaUyOHhXo1OKLZWgzq6iEkfWsOXBP2i0RA9ezafVfv4KH+XfDPhXh8vvuqcMxzY3rgkQFdjBqvpgm9/XD6ZgYspWaYHhFosjiIqG0qriyHjcRcGCmTKxWYdfBXxBVkN/g6f1tH2EgtcCNP/aFTWmkh0kprWsdklBVhyYkt+CH6DN7pP6nBRKsxSpUSG29ewsZbl3BWo+9doJ0zng65p9nnrY+FmQQhju4Icay97tnNzQ5ZWUWQKSohFZm1iZ9xRACTPiKjqpArhOQCADYcj8FLE3oJU/I2nrmF/2kkHS9O6IlpEZ2w5UK8MPIXk5bfqpO+IzdqWgi0lZGnQcGewM7LAKA1pfbxQUH4tarp+aHrKbgYn4WXNpwQnh/V3QevTe9r3GDvMn9kd/T0c4GXgzUC3YxTNZSIWo/UkgIcuBMLK4kUrpa2cLW0gauVDVwsbSBtoCDHtdw0vHFuN85kJGKsbzC+HfkopGIzbImPqpXw+dk6opeLN3o6e6G3izfCXLzgZGENlUqFv29fxjsX9iJHViocLxGJIVep28NcyUnDQ3t+wF/jZzc78Xvj7G78GHNWa58IwJv9xsPcRKNqnA5JbQ2TPiIjOh+fhdIKubBdWFaJ30/dxLxR3XAxPguv/HpSeG58Lz+8MrkPAHXVxd2X1dMJW3MxF9n/t3ff4VGV2QPHvzOT3nsjPaRB6L2FLioKir2vbS1YVl1cy7bfruu6uqu74uq6omvvCqig0nsntAAJSUjvCel9yu+PSW5mSCEJaRPO53l4yL1z7507b0KYM+95z2nSsTelNagdrP35zjc+1BtbK7VZDzuAX84bwY6kPHLO1VBV38QNr2+gvsmY5hTh48Jbd8cP+Ke86i4UbxFCDE1FdVVcvX4VhXVV7T7uZmOPd3MA6G3nhJe9I152juTWVPB56hGlUNimnDP8O3EXj8TN5LXj25Tz74udyuOj4jtMn1SpVFwfMZYFgdHszE/DSq1hjGcArjZ2vHlyN/85uYcGnZYmvZ6Htn/Fz1c92OVUzBabc86YBXwalYpZ/hHcFzuVOcOGd+taQlzKJOgToh+dXyAE4J2tp7h8TBD3vLNVCTqi/d14465ZqNUqZbvFmYLy/rjVHjl0tkgJisLPaxI+mBnX9fmwxyRgDXBzIMrPlctGBfHe9iQAJWB3sbfm/Qfn4eoweFtRCCGGNp1ezyM7v+kw4AMob6yjvLHugqmaAP86vp2Khjoyq8oAY4GUJ8fMwcXG7gJnGguDXB1qXuF4xdh5XBc+hqvXv0NFYz15tZU8tvtbPph3a5fX+J2rr+HXe9Yq2wsCo/j7tCV42VvG/y1CDCaSiCxEP2ov6MsqrebKl9dR2Fz8xN3RlvcfmGtWhdE06BvMFTzNWjXE+A/gnXTfdJPWDWBMTVWpVCwcFWi2X61S8dbdsxnu27YxuhBC9Jc/7fmZPQUZgDHVcXHICGb6hRHj5oOXnSPqC1SzBJgdEMEYT2NGRpNezzun9ymPPThyepcCvs6Eu3jyr5nXKttbc1P5d+KuLp1rMBh4et/3ShVNbztHXp2+VAI+IXpIZvqEaIfBYLhg+efuOlddz/HsUgA0ahV3zIzi/R3JABRX1Sv7/3vv7DZrs8J9XFGrVIO+gqdpERdLWc/XwnRdH7Te/7ThfjjbWVNVb1zr97trJjBv5LABuUchhABjyuNL+zcp20+MmcOTY+aYHaPT6ylrqKW4vobS+hqK66qNf9fXUKdtYs6w4cwNGM7ZylIu++E/NOhalx6429pzd8yUXrnXBYHRPDxyBm82NwN/+cgWXG3sufMCBVjWpJ/gp6wkZfvv05cO6jYIQgx2g+9doxAD7Icjmaz4dA9Thvvy3v1zlRTLi7UruUCpBDk+1IvHF43mk90pNOla15H9+frJzIxuO0NmZ60hzNtZqeCZUlDBmEFWzCW/vIbEbGPfpK40CR9sxpv061OrVMr3wdZaw8u3TOOfPx1nyYRQHpg/YoDvVAhxKduRl8ZDO75StuP9w3l8VHyb4zRqNV72ThecGYtw9eLpsfP48+ENyr6HRs7Aydq21+756XHzOFySw/7CTAzAc/vXUdZQy2Oj4jv8gPWtk61Fs+6Imsj8wKheux8hLkWS3inEeV76LoHy2kZ+Pp7NofTiXrvudpNZsPiYAPzcHLh2Ypiy77YZkfwiPrrD86MGcYpno1bHw//bqWxPCPPG2d6y1rvZWWv48w2TifBx4XfXTsDTqTWt6ZqJYWz77VKevGJMr88ACyFEV61NP8FdWz6hVmvMPPBzcGblrOsuuqDUfbFTmeFn/P8o1NmDX0RPvuh7NWWl1rBq9k2M9WrNknjl6Fb+79DP6A36NscnluZzqrkVhK3GimfGz+/V+xHiUiQzfWJIOpZVyn+3nOLy0UFcPT60y+dll1YrrREAUgrKmRzRtk9PdxkMBradbpv6+OcbJuNoa4WXsz2PXBbXaUAR7e/Gj8eM/YlSBlnQ97uvDigNwlUqeGzR6AG+o565fUYUt8+QT5OFEIODTq+nsK6KQ0XZ7C5I59OUwzQnjBDo5MpH827HsxdSHjVqNR8vuJ19BRmM9PDDwbr3P7Rzt3Pg84V3cv+2L9iZfxaAVaf3UdZQy9+nLzVrL/FF2hHl6yuDY3G1se/1+xHiUiNBnxiSHv1gJykFFaw5lE7sMPcuF90wnY0DSCus7ODI7kktrCSvzLgY3dnOmnEhXgC42Nvw4k1Tu3SNwVrM5YMdSXy464yy/czV42XNmxBCXIBOryevtoKsqjIyqsrIqi4js+ocWdVl5NVUUt3UQL3JOjtTka5e/Hjjg9g19N7bOGu1hlkBEb12vfY4Wdvy/rxbeWzXt6zLPAXAN2ePU9lYz5vxN2BvZU2DTsvqsyeUc26MGNun9yTEpUKCPjHkZBRXklJQAYDeYODtzad45dZpXTr3/OqaqYUVvXJPptedGe2Plab7qThR/q2B62AJ+vacKeC3X7X2T7pmQiiPXhbXyRlCCHFpatLr+CwlgQ3ZyWRUnSO3ppwmfdvUxguZ4B3I+3NvJcjFneLijts1DFa2GivenHU9z9r8wKcpCQBszDnD7Zs+4n/zbmVHfhrljcZq1sMcXZnhH9bZ5YQQXSRBnxhyzg/cvtqfytNXjcXbpfP0EJ1ez86kfLN9pqmeF3VPvVDVMsLHFY1ahU7fXMGzoQkHW+sLn9hHskqquG/VNrR6Y7LRqCAP/nH7DFnzJoQQ59mRl8YfD/7EmYrurxN3sbYlztOfSd7BTPYNZqZf+EWv4RtoGrWav029Gg9bB95obuGwvyiL63/+H84mBWSujxjT5Z5+QojOSdAnhpzt5wVuDVo9721P4jdXj+v0vGOZpVTUNZrtyyypolGrw8ZK08FZF9bQpGP3mdam33N6GPTZWmsI9XZWUk7PFFQwtjlNtL/V1Dfxi7e3UlbTAIC3sx3/e2DeoGwjIYQQA6VBp+WpPWtZk36i3ce97RwJdnYnxNmDYCd3Qp3dCXZyJ9DJDVcbO+ytrIds0KNSqXhm/ALcbR2UyqEtxVtaSGqnEL1H3qGJIUWr07MrOb/N/vd3JPHIwjgc7TqeGduW1LZxuk5vILOkmki/njfiPpxeTF2jcV1GqJczIV7OPb5WtL9ba9CXXz4gQZ9eb+DRD3dxOq8MABsrNe/9ci7D3KV/khBicKnTNlFYV0VBbSUFtVXYqDXM8g/H+SKbjndFo07LQ9u/YkNOsrLP0cqGR0fNYn5gFMFObjj2YlsES/XAyOm429qzYu936Fr6GgFTfUMIcfYYwDsTYmiRoE8MKUcyS5Qm2gFuDlhbqcksqaa8tpHP9qZy39zYDs81TQu1UquUtMW0wgoi/VzR6fXsSy0k0MOpW4GbadXO+Ji2Pfi6I9yntWl7TnNhmP726o/HlCqiAH+7eSoTwy++wqkQQvREbVMjW/JSOF1WSEFta4BXUFtJRWN9m+NtNVYsCIzi+vAxLAiM6rWU9FNlBRwtySXCxYsoV29W7PvOLOC7NmwUv51wGb4OPf/gb6i6cfg4XG3seXjHVzTodQDcNLzz7BwhRPdI0CeGFNPAbc6IYcQFevDcl/sB+O/WU/wiPrrdIipVdY0cNunJd+XYEL5LyABa1/X97fujrNxwApUKbpgcwa8XjyXIs/Omt9A76/lauJr0vquua7qoa/XED0cy+cf6Y8r2/XNjuXlaZL/fhxBCbMlN4cvUI2zKOdNhlcv2NOi0rMs8xbrMU1wXPpp/TF+KlbrnKfwA35w9xlO716Jtp+ccwMMjZ/Ds+AWy5rkTi4Jj+HThnbyUsIkIVy+uDRs10LckxJAiQZ8YUrafN6u2cFQQr6w7SllNA9ml1fxwJJNrJratBLb7TAE6k4IkkyN8WoO+wgoMBgNf7k8FwGCAL/enseZwOnfOiubxRaPxcm4/Vai0up4T2aUAaNQqZkRd3EyfacPzlhnN/nIy5xyPfbhL2Y6P8ef3107s13sQor9p9TryaysZ5ug6ZNdW9bf0ylKK6qpxtLLBwdoGRysbHK1tcOji+rVGnZbfHfiRT1IOX/BYK5UaXwdn/Byc8bV3JqPqnNm6sW/OHqe6qZE346/HVtP9t0QGg4G3Tu7mxYRNHR7zwIhpEvB10RTfEFZfce9A34YQQ5IEfWLIqKhtJCGjBDA2CJ8Z7Y+DjRV3x8fw6o/G2ak3NyWydEJom/98d5jOxsUEmPX1Sy2sJDm/nMKKOrNzGrV6Vm09zWd7Unho/kgemD8Sp/PWDO5KzqdlicL4UC9cHS6u4a2zyfWr6hs7ObJ3VdU18ou3tyhrE8O8nXn73tk9aj0hhKWobKzn5o0fcLw0n9Ge/vxlymLGeQUO9G1ZtLXpJ3hk5zcYOnjc3sraGAxaWaNSqWjQaWnQafGyc2R+YBSz/SN49dg2DhZnm50X5erN/MAogpzc8HNwxs/BBT8HZ7zsHNsEksnlRfw7cRffnj0OwM/ZSdy+6WOuChmBh50DYc6ejPTwu2CQptXr+L9DP/O/pNa2NSHO7jhY2ZBSXozWoJcZPiHEoCFBnxgydp3JR98cYY0O8sTTyTj7dvfsGN7clEh9k44T2efYfaaAmdHmM26mFT9nxwYQ6t265iKtqMJsXd6EMG9UwKHmdNCaBi1/X3+M93Yk8avLR3PnzGhsrY2pQqYzj7NjLi61E84L+voxvfO7hAxyzhnXEDrZWfP+g/Nwc5ACBGLoMhgMPLF7DcdLjb8bjpfms2T9Km6LmsBvxs3H3dZhgO/Q8hTVVfHc/nUdBnxgLLxSp237u62soY6UihL+c3KP2f4loSN5fPRsot26vq442s2Hf824Fm87J94+Zbze3sIM9hZmKMf8YeIi7h/RcX/X8oY6Ht7xFTvyzyr7pvqG8O7cm3G1sadBp6VW2yg/J0KIQUM+phdDhlmAZbJ2zsvZjhunRCjbb246aXZeVkkVZ5vX7dlZa5gU7kOAmyN2zYHbueoG1hxKV46/ZdpwvnvqCt5/YC7R/m7K/nPVDfz+64PM+L/VfLkvFZ1e3+E99dRApXeavo4nLh9NlJ9bvz23EJ3ZnX+Wd0/vo6apoVev++bJ3fycnWS2zwB8fOYws9e8wRepR9B3sH5rKNEb9N1+nVq9joTiHP57ag9r0k8o5/92/3qlsIqbjT0j3H0JcXbHx94JR6vuZUGoVSp+O2Eh/551fbcCvhaq5vOfHjuv3cdXnthJva7937Fnyou4av07ZgHfVSEj+HjB7bjaGPvB2mqsJOATQgwqMtMnhgSDwWA2G3d+gPXA/JF8tPsMBgNsPZXL6dwyYoe5A+azfNMj/ZRZuggfF07mGtsSHMsqVY6JjwlApVKxaHQwC+IC+eZgOq/8cESZCcstq+Hxj3bz2o/HySuvBcDF3rpX2isMRHqnTq9np0kbjHkjh/XL8wpxId+lJ/Lwzq8BWJd5is8X3olND9ZlnW93/ln+dmSzsn1TxFhK6mvYnJsCwLmGWp7as5bPUhJ4cepiRrj7XfRz9peKxjocrWzaFC7R6nWcqSjmeEkeJ87lk1F5jozqc+RWV6A16NGoVFirNSZ/1FirNVipNdioNVg1b6tVKlIqSqg2CcL/l7SfRUExrM86rez7z+wbmOkfbnYPeoOeeq2WGm0j1U0NGAA7jRXWag3HS/NYn3WazTlnsFKreWXaEuYOu7giUiqVisdGxzPFN4StuSmUNdTxU/ZpSutrOddQy5qzJ7g5crzZORuyk3h057fUaFt///5q9GyeHDNb1nwKIQY1CfrEkJBRXEV2aTUADjZWTAzzNns83MeFK8YEs/6osdXAW5tP8vqdM4GOZwgjfF2VoE/Z5+NiVrFTo1Zz45QIlo4P5aNdZ/jnT8cprTZ+kp1RUqUcNyPKv1fWvw1EeufxrFLKa41vcHxd7c1mN4UYKIeLs3li92pl+0BRFn86tIEXplzZ6Xnn6muo1TYR6OTW7uPFddUs3/mNkio+2SeYl6ZdjZVKzYbsZH5/8EdyayoAOFSczRU/vM3dMVN4asycfun91lO51eX8JWEj32WcxN3WnqWho7g2fBR5NRWsyzzFltwUattJq2yhMxjQ6bTdqpLZ4nBxDoeLc5Ttm4ePaxPwAahVahysjcVdvO3NKyPPD4xifmAUYPyQrzfXyE3xDWGKbwgAoc4e/CVhIwCrTu/jpuHjUKlUGAwGVp7YyStHtyjpqfZW1vxzxrUsDhnRa/cihBB9RYI+MSSYFmKZEeWHjVXb8tsPL4hTgr7VB8/yzNXj8HGxN2vmbhr0mRZzae9xU7bWGu6bG8vN04bz3y2neGvzSapN0i9nX2R/vham6Z3V/ZTeue28dYlSkODSU9lYjwGDkrrWV6qbGihs6bNWV0VBbRU1TQ3Yaayxt7LGxcaOUGcPHK1suHfr50o/rxbvJx9gtKc/10eMIa+mkoTqXA5nZZFSUUxqRQkpFcWUNRgLMt0bO4U/Trzc7OfZYDDw6z1rKak3ztp72znyZvz1WDfPii0KjmGWfzivn9jB26f20KTXozMYWHV6H99nJPLajGuJD4hgMKltauTNk7t56+RuGpoDtrKGOt5PPsD7yQcucHbPBTi4MMrTny25KTTpW9NDfe2d+N3Eyy7q2n35O+iWyPG8enwbddomksqL2FOQzjivQJ7cs4YfMk8pxwU5ufHu3JstapZXCHFpk6BPDAnbutALb0KYN5MjfDiQVoRWb2DV1tMsHhdCRZ1xFsvfzYEov9ZAL8LXpc01LrQuz8nOmievHMOds6JZueEEH+86Q6i3M8smtf1UuyeczNI7m3r9E+/29Pa6RGE5GnRa3jixkzcTd9Fk0DPRO4jLgqK5LCiGcBfPHl/XYDDwReoR9hRmKEFeYV0V1U3dT1l2t7VnjOcwtuUZW6o8vfd7nj+wvt1iIKbePb2fAAdXHhg5Xdn3ScphJYUT4F8zl+HnYP57wMHahmfGL+D6iDE8v389uwuM630L66q5f9sXbF7ycIeziKYqG+ux01j1SjpqewwGA6vTT/BiwkYKaqsufALg7+DCGK8AxngGEOXqQ4izO8FO7thbWdOk16HV62ky6GjS6Wgy6GnS6dAadDTqzB+LDfTHqdFYffNMeRG/2fs9B4uzsVKpeWnq1X3+4cHFcLO158aIsXyQfBCAV49vp6qx3qzNwzTfUN6efQMedo4DdZtCCNFtEvQJi9ek07M7uUDZ7iwwWb4wjgNpWwD4aPcZJYUL2s5iRZw302elVjE9smuf6no52/F/103i99dOQK1S9VpgZq1RY2etob5Jh95goLZBi+N5bSJ6U3V9k1nT+vhemrEUg9/eggye2fc9aZWt61kPFGVxoCiLFw5vJNLVi8uCYrgsKJpxXsPaXc+k0+t5+9QeKhrreXxUPA7WxpnqNekn+PXe7y76Hq3ValbNuZk4Dz+W/LiK5OYy+Vptx4VHrFRqpYH2C4c3EOzszhXBsaRVlPDHgz8px90bO6XTWbvhrt58vvBOvstI5I8Hf6K4voYabSNP7/2OTxbc0em/+ef3r+OD5INoVCoCndwId/Ek3MWTMGdP5esAR5cerxE7WpLLHw7+aJZSCTDKw58/TFqETq/nq7Rj7Mw/i4edA1cGx7I4ZARRnRREsdFYYdPF/uXebs4UFxsDzSg3H765/G4SinNwtLYl1t23R6+pP90TM0UJ+vYXZpo99ovoyfxh0iJl9lcIISxFvwd9lZWVLFy4kKqqKk6dak2V2Lx5M//4xz/IysoiJCSEFStWMGfOnP6+PWGBjmSUKJUsA9wdifBpO0PXYsHIQIb7upJaWEF1fRPvbG0tLBAfax7QnH+dCWHebfrwXYhG3fsL+13sbahvMqaoVdU39WnQtyelAG1z0/q4QA+8nAfvJ/Si92zOOcMvtnzaaWn9lIoSUip28e/EXXjbObIgMJprw0cx3S9MOeaNxJ28cnQrADnV5fw7/noadVpeObql3WvaqjVKfzXf5l5rzta2NOi01OmaKKmrIb2qlLPNgegr05Yoa7FWzbmZa396T0nNdLe1Z4SXHyEO7kS6ejPc1YtIV2887Ry5bdNHHCjKwgA8svMbQp09yKouU9arRbt588y4BRccJ5VKxdKwUQQ6uXHNj+9iAHbkn+Wz1ARujZzQ7jkZVeeUgEJnMJBZVUZmVRlbc1PbjEWoiyd3RU/izuhJ7V6rSa/jUFE2NhoNIU7uaA16/nZkM1+lHTM7zsvOkWfGzeeGiLHK76QZ7ayp6ytqlZqJPsH99nwXK8LVi3nDItliMutrrVbzlymLO/y+CiHEYNevQV9VVRXLly+nvLwcjab1U7KkpCQee+wxVCoVcXFxJCYmsnz5clavXk1UVFR/3qIYACVV9ew5U8CMaD+lt153mKYfzontfM2ZWq3ioQUjeeoTY28m05m+WdHmM4ROdtb4uzmQ31yBc7CkNjrbWVNUaQz6Kusb8aPvyoJLauelp6XhdMu/DCdrG34zbj6LQ0awJSeFDdnJ7MhPMyvoUVxfw2epCXyWmsDz4xfyUNwM0itLef34DuWYtRmJ3Dh8LJlVZWRVlwPGsv2vz1qGf3Og52Zj36VZcUPzv1vTY8NcPNm6dDkZVecIdnLH084Rb+/WGSdTq+bcxJIf3yWj6hwNOi3J5UXKY9ZqNStnXoe9Vdc/TJngHcT9I6bx31N7AfjzoQ3MCRhOgGPbdcFfph7p0jUb9DqSy4t4bv86wpw9mNXOrOOTu9ewOv1Eh9ewVqu5L3Yaj42aNaiLzAxGD4yYpgR9XnaOvDPnJiZZUOAqhBDn67egb/369bzyyivk5eW1eeyjjz5Cq9Xy9NNPc++99/LWW2/xz3/+k48//pg//elP/XWLYgDo9QZufH0Dp/PKGBPsyY9PL+52KuT2pO41QL9uUjh/+/6IEjgBjArywMu57ZuicaFe5DcXf1kYF9St++orprON1X1cwbO3m8uLwe+bs8eVmTQXa1s2Xv0Qw5rXqN0cOZ6bI8dTp21kR95ZNmQnsSn3DKX1tcr5LyZsJNTFg4+TD7UptPLc/nXUm6y1Wx43k3k9KLvf0e8Id1uHLvVG87Bz5MP5t3HNj+9yrqH13l1t7Pj9xEWM8Oh+cY4VY+eyITuZjKpzVDU18LsD63l37i1mx+j0er5MO6psvzHrOqLdfEivNM5epleWkl51jrOVpcqMJcCv937HpqsfMgvc9hdmdhrwLQqK5rcTLiPsItZeXspm+Ifz+sxlJJcXcVf0pHYDeCGEsCT9FvS9/fbblJWV8eijj7Jy5UqzxxISEgCYPHkyAFOnTgXgyJGufSIqLNep3DJO57X2wjuSUcL489otdKa8toEjGSUAqFQwM/rCb9ZsrTXcOyeWv36XoOzraBbr99dOxN3Rlolh3sQFeXT5vvqSSz81aM8urSbNtGl9RPcbIIvBrbyhjq/SjuJkbcsNEWPQGwy8dmyb8vgDI6crAZ8peysbFgXHsCg4Bp1eT0JJDi8e3sjB4mwMwEPbv1LWzalVKhysrKluaiSzqrUFiq+9M7+ImdzHr7Bj4S6ebF7yMMdL8/C2dyLI0Q03267NNLbH3sqGf0xfyvU//w8DsCE7mbL6WtztWoPQ7flpSlEVLztHFoeMwFqtaXedW251OYt+eJvyxjpyayr48+ENvDxtCWCc6fzL4Y3Ksd52jtTpmqhuamSkux+/nbCw3ZlB0T3LwkcP9C0IIUSv6beg79Zbb2XOnDk0NTW1CfoKCoxFONzc3Mz+btkvhi7TWTqAbw+ldyvo25VcoKRojgn2xKOL6aF3zoriXz8dp7bRmKLW0SxWiJczf791eruPDRSzCp51fdeg3fR7My3SDztrKVwwVGj1Oj5LSeDlo1uUFgafpyYwzTeUnOYedO629twbO/WC19Ko1UzyCea9ubdw1Y/vkFlVpgR8AHdFTyLazYdn9v1gdt6vRsd3K4WyL3jbOym933rDFN8QxnkFklCSgwHYXZDOVaEjlce/MEntvC58dKfFQIY5ufGXKVeyfOc3AHyaksCVwSOYM2w467NOk1BiLNJio9bw/ZX3M8zRlXpdE/ZWNh1eUwghxKWr34K+m266CYCcnJw2j9XXG5tZW1sb3wBYWRlvq66urs2x7XF3d8Cqnb5sfc3b27nfn3Oo2ZNWaLa97mgmbz44t9MCKKbjfiCjtbLkFRPCuvw98caZl26fzpMf7GJu3DCWTB/eJ0VX+oK3m0n6mrXmon8OOzp/39nWdU6LJ3Z9bEXX9MV4HsjP5L6fPqeotgqNSm38o1ahRoVGrUbdvF3T2Eh+TaXZuec30H56ynzCAry6/NzeOPPddfcT/9nrVDQYf6f7OTrztwVLcLaxZW1WInvzMgAIc/Xk0Wmzsdb0/e/t/v65XTQ8RgnIDpZnc7e3MXAuqa1mQ3ayctxDk2fi7dn5vd3rNY3NhSl8e+Y4AL/c/iXLx89kdcpx5ZiHx81kXNjgSD03Jb8v+oeM88CQcR8YMu4XZ1C0bLC1taWurg6t1jjr0vK3vX3XKgWWldVe+KBe1lGBANF1tY1adp02n+krKK9l7e5UZnXQGsB03A0GAz8daS2nPSnYs1vfkxsmhLF0TDA2VhrOldZc+IRBwtok/SyvuOqifg47+jnW6fVsOpatbE8M8pCf917UF78/SutruP779yisq+7Web72zpTW15jNzvnaO3F94Ohu36MnDrwdfyP3bfucBp2Wv06+isZKLaVoeXHiYm7e+AHlDXW8MOkKys/1/e/tgfg9PcE1UPl609lk5flXndpLU/Max/FegXjpHbt0b38Yu4jtWamU1tdSq23klQOtlU9dbey4d/iUQfdvU/5/7B8yzgNDxn1gyLh3TWeB8aAI+nx8fMjMzKSiooLAwEDKy8sB8PPr/mJ6YTn2pRTS2E4/rdWHznYY9JnKKK4iu9T4BtfR1ooJ3UgLbWEzADPEF8u5H9I7j2WWKk3r/VztifJ365PnEb1Db9Dz+K7V3Qr4HKyseSRuFvePmEZSeSGP7vyWjKpzADw+enaP0wRn+oez99pfoTXo8bZ3UvZHunmz69rH0BkMOFnb9ujalmC8VyAOVtbUapvIrC4js7ma6GcmqZ03DR/X5et52jny0fzbeWrPWk6XmWdGLI+b2aXCNUIIIcSgCPpGjx5NZmYm+/fvZ+TIkRw4cACACROkH85QZrpmbFK4NwfPGlM11x3N5K83TcX2AmvITM+fEeVnkQFcT5gFfX1UyMV0bONjOm+DIQbef07uYVtea5+3VXNuYqJ3EHoM6AwG9Ho9OoMBnUGPvvnvICc3JbAb5xXIz1c9wEdnDuFsbcetkeMv6n5Mi5eYuhTWm9lorJjqG6qU+9+Zf5Zhjq5KWwh7K2uWmKzz64rRngH8fNUDrMs8xT+ObSO1ooSxXsO4O2ZKr9+/EEKIoWlQBH23334769at49VXX2XDhg0kJiZibW3NbbfdNtC3JvrQDpPA4vHLR/PcF/vJKq2msq6JradyuXxM5z2Rtp02D0wuFc79UL1T+vNZjq25Kbx8pDXl76GRM7g8OLbb13G0tuXBkTN689YuWbP8w82CPtP2C7cMH9+jnnlqlZqrQ+O4MngE+bWVeNk7YqcZ2EI4QgghLMegqFwxduxYVq5cSUhICImJiQQHB7Ny5UoiI7vfv0lYhoLyWpLyygGwsVIzLdKPayaGKY+vPpTe6flNOj27z7RWd72UApO+Tu+sqmvkcHprgZz4LqTaiv7XpNfxtyObuXPzJ8p6vPFegTw9bt4A35mY6R+ufL0xO5n9hca1x1YqNQ+MmHZR19ao1QQ6uUnAJ4QQolv6faYvMDCQ5OTkNvsXLFjAggUL+vt2xAAxneWbHO6Dg40V104M4/Wfjc2GN5zIprq+yaw9gamE9GKqm2e5hrk7EuHj0vc3PUj0dXrnnpQCtHpjG4y4IA+8nLtWUEn0vkadloNFWTTqdUS7+eDv4EJBXRW789P5MPmgUiUSjMVX3oy/vtM2AKJ/xLj54G3nSHF9DY0mDeqvDR/Vbt9DIYQQoq8NivROcenZ1k76YEyAOzEBbiTllVPfpOOn41lcP7n9BsOma85mx15aa85M0zur+yDoM03tnHMJpc0ONgcKM/nNvu9JqShR9tlbWVOnbfs9j/cP558zr8XHXspZDwYqlYqZ/uGsTj9htv8hSZ8VQggxQAZFeqcYujafzOGJj3ZzNLP1jateb2BHUr6ybZqaee3E1rSoNZ2keJoFJpdQaieYz/RV9kF65/YOvjeif5Q31PGbvd+z7Of/mQV8QJuAT6NS8cy4+Xy84HYJ+AaZ+ADzD6wWBcUQ5eYzQHcjhBDiUiczfaLPlNc2cP+q7dQ1atmTUsC+/1uGSqXiZO45SquNzZs9newYOcxDOeeaCaH89bsEwBjYlVbX4+lkXvSgrKaBo5mlAKhUMDP60lpzZpry2tszfVklVZwtMjbttrPWMClc3qT2F4PBwPcZJ/nDwR8pNin84WhlQ6y7LykVxVQ01mOr1jDRJ5gZfmFcERxLpFv3W5WIvme6rg+M7RWEEEKIgSJBn+gzu5ILqGvUApBVWs3JnDLigjzMZuniY/xRq1tTM4O9nJkY5s2h9GK0egM/HMnkrlnRZtfdnZyP3mBcczY22At3x6Hb86s9Ln1YvdN0lm96pN8F22aI3pFdXcZz+9exNTfVbP9lgdG8MOVKAhxdMRgMnGuoxdHaRop4WAB/BxdujBjLl2lHuTFiLOO9Ay98khBCCNFHJOgTfcY0uANjquf5QV97qZnXTAzjUHP1yDWH0tsEfZd6+qGTXes/2+qGJvR6g1ngfDGkVUP/0up1rDq9j38c22aWuulr78yfJ1/BFcGxynpVlUqFp53jQN2q6IFXZ1zDHyYtwtVGiiEJIYQYWLKmT/QJg8FgVmwFYPPJXGobmjhwtkjZN6uddgBLxoeibn6juy+1kNyy1lQ3g8HAttO5yvalGJho1GocbIyBn8EANQ29M9un0+vZlWwSUEurhj51tCSXxeve4YXDG5WATwXcFT2JrUuXc2XIiEuqQNFQJQGfEEKIwUCCPtEnMoqryC6tNtt3OL2Y9ceyaNQae4pF+7vh79Z25sLbxZ6Z0X7K9neHWwu6pBZUkHPOGAQ62loxIezSXM/kYt/7bRuOZZZS0VwYxs/Vnih/t165rjBX3dTAU1vXsOTHVZwsa+01GePmw5or7uUvUxbj0oPm3UIIIYQQHZGgT/SJ82f5APQGA3/7/oiy3dks3bUdNGrfeCxL+XpGlB/WmkvzR9jJzmRd33kVPA0GA5tP5rDhRDaG5rWPXbHtEm6D0V+Ol+Yxd+2/eSNhp7Iu1VZjxbPjF/DjVQ8wwTtogO9QCCGEEEPRpfmOWfQ50z58w9xbZ/NaZukAZnfSA+7KsSHYWhl/PE9knyO1sAKAjcezu3T+UNdZg/YNJ7K5/c3N3PWfLby/I7nL15T1fH1Lq9fx0I6vyK+tVPbF+4ezecnDLI+bKU3VhRBCCNFnJOgTva5Jp2f3mda0td9eM6HNMTZWaqZG+nZ4DRd7G+aNbK12t+ZQOk06PVsTc5R9l3Jg4txJeqdpf8NX1h2lovbCvfyq6ho53Fw8B2BW9KU7tn3lu4yTZFaVAeBsY8vrM5fxyYI7CHX2uMCZQgghhBAXR4I+0esS0ouV/nGBHo4sGR+Kj4t5MYMpEb5KMZKOLDsvxfPQ2SKz64b7uPTynVsOZ7P0ztagT683mFU3Latp4I2NJy54vd1nCtDpjemGo4I88HKWNWW9SW/Qs/LEDmX7iYlzWBY+WlJohRBCCNEvJOgTvW77eWvD1GoV80YMMzumK7N08+MClUbkZ4sqeWNDotn5l/IbZvP0ztaZvBM55yiraTA7dtXW0+SX19CZ879nonf9mJVESkUJAE7WNjw8Thp1CyGEEKL/SNAnet0Ok5mmOc3r7ubHmTcmju9COwB7GyuuGBOsbG851dqqYc4lvJ4POk7vPL83IkB9k46/rzvW6fUu1DtR9JzBYOD1462zfL+Inoy7ncMA3pEQQgghLjXSnF30ql3J+SRkGNeGqVQwI9oY3MXH+ONgY0Vto5YAd0dGDuvaOqZrJoTx1f40s31qlUq57qWqo/RO0+DthikRyth9vjeVX84bQXQ7bRiySqpIL64CjIH2xDCfPrrr3mMwGNhbmMGxkjyWhsUR4Ojap8+3rzCD/5zcQ5Neh5O1LU5WNjha2+Jk3fy3lQ2O1ja42NgxyTvYLKjbnHtGac1gp7Hi/hHT+vRehRBCCCHOJ0Gf6DWZJVX88t3ttHQJmBM7DHdHW8BYmGXV/XNYezidO2ZGo1Z3LTVzVow/nk52lFbXK/vGhngq171UtZfeWdvQxEGTxvfPLx1PUWUd20/noTcYeHHtYT54cH6ba5muAZw23Bdb68FRRVJv0LO/MIuv0o5ytrKUEe6+xAdEYKexZuWJHewvMrbv+CHzJD9ceX+fpfs26XU8vONriuqqL3ww4Ghlw0NxM7gnZgqfnDnMP45tVR67I2oinnZte1MKIYQQQvQlCfpEr6iub+Ku/2xR1pP5utrzj9vMZzTmjhjG3PPW9l2ItUbN1eNDzFoPxF/iqZ1gnt7ZUtxmb0ohTTpj4/vYAHd8XR347dIJ7EjKw2CADSdy2JdayNTh5lVTB1urhuzqMr5OO8ZXaUfJqi5X9h8qzubDM4faHH+sNI8jJbmM9w5s81hv2J2f3uWAD6BG28jfj27ln8e2ozXolf0u1rY8MHJ6X9yiEEIIIUSnJOgT7dpwIpu9KQXcMzuWIE+nTo/V6w088v5OkvPLAbC1UvPe/XPxd+udGY1rJoSZBX2DITAZaKbpnZXN6Z3mzdWN6a9xQR4smxjONwfPAvDCmsN8/9QVyqyYVqdnV3K+yXkDM7Z12kbWZ53my9Sj7C5Iv/AJ5/k8NaHPgr7vMloLCC0NjePy4BiqmxqpaWqgWttIdVMDNU3GvxPP5SsFW0wDvlh3X16dvhQ/h0u34qwQQgghBo4EfaKNzJIq7v3vVrR6A2mFlXz4UNuUQFMvrzvCzydam6a/fOt0xod599r9TAr3IdrfjeT8coI8nZjQi9e2VE7tpHd2NGP3m6vH8f2RDBq1eg6nF7PuaBZXjQsB4FBaERV1xvP93RyI8uvbtXEt9AY9OdUVnC4rZFPOGb7PTKS6qW0/QVcbO5aGxhEfEMHRkly256VxrqGW2QERTPcL45Gd3wCwNj2RP0xchKN119J+DQYDlU31uFjbdZoW2qDT8mPWaWX7/hHTGOvV8Wy1Tq/ny7Sj/P3oFgrrqrHVWPHkmDn8csQ0ab4uhBBCiAEjQZ9oY1NiDtrmnm0H0oowGAwdvjFeezidf/3U2gfuwfkjuHFKRK/ej1qt4qOH5vPjsSxumBWFtUaKzrqcl96ZW1ZDSkEFYJxpnRLRmsIZ5OnE3fExvL3lFAB//S6BRaODsNao2Xg8Szludkzft8HQG/T8dv96vk0/3m6QB6AC4gMiuCliHJcFR2OnMb7Wy4NjeWb8AuU4g8HAa8e2kVZZSo22kR8yT3HT8HGdPn9ZfS1fph3l4zOHSK86xzVho3h95rWoVe3/TG3NTaGqyZiyHOLkzhjPzmdCNWo1t0SOZ2loHHsLMxjh4Ye/zO4JIYQQYoBJ0CfaMJ0xqqhrpLCiDj+3tiXmj2eV8quPdivbc0cM47fXTOiTewrydOKX80bg7e1McXOlyf6WX1vJp2cOU1pfg63Gqt0/dudt26jN94c4u2PVCzM+poVcKuua2GHyPZsy3Bf78xrfP7ZoFJ/tTaGyromzRZV8uvsMd8XHsPFY6wxtf6R2fnP2eLvr8gDCXTy5MWIsy8JHd6kap0ql4pbI8bxweCMAn6cktBv0GQwGEkpy+Cj5EN9nJNKg1ymPrUk/QbSbN4+Oim/3OUxTO5eExXU5KHawtmF+YFSXjhVCCCGE6GsS9AkzjVodu88UmO07U1DeJugrrqzj7re3UN9kfAMd4ePCW3fHo1EPzVm4Q0VZ3L/tC4rrO29yfiG+9k78Y/o1zBk2/KKu42TfvKbPuZ5zKr1Zc/X2+ux5ONnx6GWj+MvaBAD+sf4Yi0YHsz/F+L1WqYyVUvtSnbaRvx3ZrGy72dgzwsOXke5+LA4ZwQTvoG7PNF4fPoaXEjajNeg5WJxNSnkxkW7G9N/qpgZWnz3OR2cOcaqssMNrvHJ0K5N8gpnqG2q2v7apkY05Z5TtpaFx3bo3IYQQQojBQoK+Iey/W06RlFfGjVOHt6nY2JFD6cXUNmrN9iXnl5tVzGxo0nHvO1vJK68FjKmG7z84D1cHG4aiL1OP8My+H2g0mSHqqcK6au7Y/DFPjJnDr0bHd5hWeCEudtaoPKtRDy+mAticoQOMs38dVTe9d04s721PIr+8luKqeu5btQ1dcxpvXKAHnk52PbqXrlp1eh8FtcZZWm87R3Ze+xhOXVyD1xEveycWBkUr6+6e2LOGKT7BVDc1sib9BDXatimkoz39uT1qIl+nHeNAURZ6g4HlO77m56sexMu+tWjRxpxk6rTGIjnRbt7EuHft35AQQgghxGAjQd8QtTelgD98cxCAz/amEh/jz4rFY5kY3nnjbdPUzhYtVTnBmCr37Bf7OHjW2IBdrVLx5t3xDPftnwIgvaEl3e+90/vZkpuCo7UNcR7+xHn4E+DogouNHTZqDQeKstiSk8KZimLlXA9bB5bHzUSlMhb5qNdpaWjnT6NOZ3xc37ovr6aCisZ6DMCrx7axO/8st0SOZ2FQNK429t16DdZWalRB55TtGsdywBtvZztiA9zbPcfexooVi8fy5Cd7ADic3vq6+jq1s6Sumn8n7lK2nxo796IDvhY3Dx+nBH1HS3I5WpLb5hg7jRVLw0ZxZ9RExjQXYpkTMJzLf3ibcw21FNZV8+COr/hw3m04WNugN+j5PPWIcv4SmeUTQgghhAWToG+I2ngix2x7R1I+O5LymTtiGCsWj2FcaPsVMNsL+s6YBH3vbkvis72pyvZvrxnP/JF9Uyq/tzXotPyQeZL3Tu/nWGnr66xqaqCgtopNJql87Yl19+W9uTcT5NR+UHUhxXXVLN/5NXsKMgDYX5TF/qIsrFRq5g4bzr2xU5nhF9alFMevzh5BZds686hyNgaT8TEBnTa+v3FqBG9vOUVyfhl41KLS6DAUO7ebEtqbXju+XSncEunqxc0XKLjSHXMChjPGM8Dse9oi0tWL26Mmcn3EmDaBdYCjK/+aeS13bP4EgH2Fmdy++WNWzbmJ3x34kZ35Z5Vjr5agTwghhBAWTIK+Icp0jZeprady2XoqlwVxgfx68VjGBHsqj5VW13M8u7TNOWfyKzAYDJRU1fPnNa1FOK6fHM6D80f2/s33sqK6Kj4+c5iPkg/2aE2ercaKa8JG8adJl3e5JUB7vO2d+HTBHfz96Fb+nbgLQ/N+rUHPxpwzbMw5w0h3P+4fMY0loSOx0bT/z7NBp+X1EzvN9qnstGCtveCMnUat5vml47lr9WrUocaZQrVLExPDOp8BvhjbclP55MxhZfv5CQt7pZhNC41azerL7+FQcTZ5NZUU1FZSp21ipn84U31DOg2i5w6L5NnxC/hrwiYADhRlMeXbfyppnQC3Ro4n3MWzo0sIIYQQQgx6EvQNQUUVdZzKLQPAWqNm3Yor+e+WU3x7MB29wRhqbErMYVNiDotGB/HrK8cSF+TBruR8mh9mQpg3Z/LLqapvUip47kjOp1FrbDgdE+DGK7dO7/MS/xfjaEku7yXt5/uMRJr0erPHbNUargkbxV0xk7HVWHGiNJ/TZYWUNdRS2VRPbVMjoc4ezA+MYrpfKPZWvbNe0Uqt4ZnxC7g5cjzrMk+xPvOU2QzVybICfrV7NS8d2cQ9MVO4LWpCmxmqz1MSyK+tbHtxpwbiu1CMxT/ACk1ImRJ06r0q2ZafwqLgmIt5ae3aV5jBfds+VxqVT/cLZf6w3q9qaaOxYrpfWI/OXR43Exu1hv879DOAWcB3V/Qk/jTpil65RyGEEEKIgSJB3xC0I7k1iJgY7s2oIE9W3jWLxxaN5rUfj7HmcLoS3P18PJufj2dz5dhg6htb0wVb0v1a1n0l55ebpX5eOzEcO+vB2Wy6pK6aZ/evM2uq3cLX3pm7oidxW9QEPO0clf3Rbn0309WeUGcPlsfNZHncTM5WlvLu6X18kXqEep2xiE5BbRUvJmziX8d3cHPkOO6NmUqQkxvpVedYmdg6y2do1KCyMX7fvPzB17Vtaw1TtU2NLN/5NQaVwWz/r/euZazXMHwdnHvtNR4tyeUXWz5VXlOgoyv/nHHtoPyg4P4R07C3subZfT8owfBTY+bwq9GzB+X9CiGEEEJ0hwR9Q5BpcDbbpJJjpJ8rb94dz+OLRvHqj8f5LiFDeWz90SzTSzA7NoD88lol6EvKL2OHScpof/R064kfs07zzL7vKa2vNds/0TuIe2KmcEVILNa9mFrYG8JdPPnLlMX8esxcPjpziP8l7VfSUGu0jbx7ej//SzqAi7Ud5Y11ynnWemvqM93RRBYBYOXacMHn+sPBn0irNKbw2muscbGxo7CuirKGOp7cvYaPFtzW44qipkrra7hj88fKOj4feyc+W3hnl/rvDZTboyYS4OjKV6lHWRwygqtCB3/qshBCCCFEV0jQN8QYDAbzoK+d4Cw6wJ23753N45eP4h/rj7UJ+JztrBkX4kVCRmt1xzWH0impqgfA3dGWUYEeffQKeu4fR7fy2vHtZvuWhsbxyxHTlIqNg5m7nQOPjY7ngZHTWX32OO+c3ktyufF7oDcYzAI+gEh9CCcqGjEYjH32SvWV1DQ1dLju8IfMk3yWmqBs/2XKlYwcFsDlX72FAdien8ZnKUe4LWrCRb+WT1MOU9ZgvF93W3s+W3gnYRawLm7esEjmDYsc6NsQQgghhOhVQ7OT9iXsdF4ZxabBWVDHwdmIYR68e/9cNjxzFYtGBSn7l04Iw0qjJsrPTdl3NLO1wMvsGP9OK0QOhLSKEv51Yoey7efgzMfzb+ff8ddbRMBnylZjxc2R49l09cN8NP82ZvmHK4+52tgxd9hw/m/S5cTZhIFOA3XG/nx6DBxpp10BQG51Ob/Z+72yvTQ0jhsixjIneDgPjpyh7H/r5G70Bn17l+gynV7PpymtweUfJl7e7+mzQgghhBCilcz0DTGms3zxMf5o1BeO60cFefL+g/M4lXuOs0VVLIgztmCI9nczHtCy/stgDPQ6S+2s0zaSeK6A/JpKRnr4Ee7i2S9rol45ukUpUjPRO4gP5t/a7d53g41KpWLusEjmDoskv7aSem0Toc4eynj+8ZSxD6Ohyg6Vg7H4yIGiLGaaBIkAWr2OR3d9S0Wj8cOAICc3/jr1KuU6T4yezacph6lorCej6hxbc1OZH9jzYivb89PIri4HwM3GnqtCR/T4WkIIIYQQ4uJJ0DfEbDML+rq37m7EMA9GDPPAYDDwx4M/sSb9BJpJtaA2YNCD4Zwjhhx35bpavY4zFcVKQ+yjJbkklxehM7QWCfFzcGamXziPjJrJcNf2ewNerOOlefyQeUrZ/uOkyy0+4Dufv4NLm32Rfs3r46rswLcKgINFWW2Oe/3ETg4079eoVLwx6zpcbOyUxx2sbbh5+HjePmVs2v7u6X3tBn1fph7hbGUpM/3DmeIb0uHayI+TW9t63Dh8LHYa6y6+SiGEEEII0Rck6BsEahu1PP7hLirrGnn9zpkXrMDYkbpGLftTC5XtrpTvb8/2vDRWnd5n3GieKFSpQeVVA541/On4Oorrqjl+Lt+svH17Cmqr+PrsMRLP5bNpycM9up8L+VvCZuXrK4NjGWth6Zw9dd3kCIoq66gx1POfkh8BOFycjVavU/rgHSjM5J8m6xyfHDOHCd5Bba51d8xk3jm9F73BwI78s5wpLyLKJCVzT0E6T+5ZC8AbibtwtbFjfmAUi4JimBMQoawjzKupYFNua5P72yIvfn2gEEIIIYS4OBL09ZHdZ/JRoWJapO8F0xs/2pXMD0cyAfjnT8f5601Te/Sc+9MKaWjuozfc15VAD6ceXeejMwfNtg16Y9AHgAqzWbXzqYDhrl4EOLiSUJJDVZOxomRSeRFFdVX42PdeS4AGnZaNOclsz08DQK1SsWLsvF67/mBnZ63hiSvGAPDd17vJq62kVtvEqbJCRnsGUN5Qx6O7vlXSXqf6hvBI3Kx2rxXo5MaioBilzcV7Sft5aerVyuPrzvueVzTW8+3Z43x79ji2ag0z/cNZFBzDmfJi5flm+IUR4erV669bCCGEEEJ0jwR9fWDLyVxue3MTAJ89soA5sZ3PPG09lQfN3cG2nmq/EEdX7Didr3zd05YKeTUVbMxpnan5pc9lvPX9GXBqQB1Uhsql3ux4fwcXxngFMNZzGOO8hjHKM0BJHdTqdVz38/84XJwDwOHiHK4Iju3RfZn6Kes0rxzdSmpFsVkq6Q3hY4h065sU0sFukk8wazMSAXgpYRP/mX0jv9n3Pbk1FYCxAMzrM5d1usbz3tgpStD3ddoxfjNuPu62DhgMBjab/Ex42DpwrqG1JUaDXsfm3BQ256aYXe+OqIm99vqEEEIIIUTPSdDXB07nlSlf7zid32nQV9eoZW9eJuqxBWClI6vMgW+SErk2ekS3+6VtN+mjN6eHQd8nZw6bzdTMCgzhLVKg2g5NSgAf/no6Z6qKCHHyYIxXAH7trDVrYaXWMNknxCToy77ooK+qsZ5f7V6t9H9rYavW8MSYORd1bUt2RUisEvTtyD/L7DUrlV5/AH+fvvSCPfKm+IQwwt2XU2WF1Ou0fJaSwMNxMzlTUUxOc/DobG3LoeufJLm8iJ+yk9iQnczpssI21/Kyc+SyoOhefIVCCCGEEKKnJOjrA15OrUUyCivrOjkSPjp6HG1kLiqNMdBSedXw+IGv+fspN26IGMuNEWMJdHK74HPml9dwKtcYbFpr1Ewb7tvt+27S68z6uN0ZPYnx3t642FtTWdfEFaNDmBM0nDkM7/I1J3gHKl8fLsru9j2d77PTCUrApwKCnd2JcfPlruhJXRqnoWpx8AgeGzWL10/sBDAL+G6PmtClYFulUnFv7FSeal67937SAX45YprZLF98QAQ2GitGeQYwyjOAFWPnkVl1jg3ZyfyUncTBoiz0BgO/GTcfG438ehFCCCGEGAzkXVkf8HFtrRxZ3EnQtzMvjReT1ikBn6ns6nJePbaN145tY6Z/ODdGjOXy4FjsrVorIebVVPBF6hG+TDtKcW0NKn8nDPmuTAr3wdGu+xUTf85KoqiuGgBfeycuC4rGWq3huyev4HBGCYvHhnT7mqZFQ46X5tGo0/Y4GDAYDPz32B5l+w+TLue+2J6tfxxqVCoVT4+bT6SrN7/es5YGvQ6AKFdv/jBxUZevszQsjhcTNlJaX0tebSU/ZSeZBX0L2qnqGeLswf0jpnH/iGmUNdTSpNf16tpNIYQQQghxcSTo6wM+Lq1BX1EHQd+psgJ+seVTtBjfnBsaNegzPFG51KH2qgErY0EWA7Az/yw788/iYm3LNL8w6rSNnGuo5VRZoZKKCaAOLsPgUcOI4K7PxLWoaqzn3ZaKncAtkROUkvzRAe5EB7h3+5oA3vZOBDu5kVVdToNex8myAsZ5BV74xHYcKs7mRLFx3aK9lTU3RIzp0XWGsmvDRxPq4sGv96xFbzDwn9k3YG9l0+Xz7TTW3B45UWl0/8aJnUr6pgqYG9D5z5a7bc8qzwohhBBCiL4jQV8f6ErQ986pvcpsjKFBgyrZH28rZ4oz69FlefCbO6M5WJnGjrw0WsK6yqYGfs5O6vS5VU6NfFS2hUnpbiwJi+v02Aadlq25KaxOP8Gm7GTlfjQqFbdGju/iq72wCd5BZDU36z5cnMM4r0B0ej2FdVX4OTh3ee3iB8mtVUWvCR015Hrx9ZZxXoFsXrK8x+ffET2RfyfuQmvQk3iuQNk/xmsYXvY9qwgrhBBCCCEGTvcqhYgu8XCyRaM2tmkoq2mgoUln9nhVY71Z2wN9ig+TAwOZP7J5BsygRl/qyCcL7mD/dU/w9Nh5hDi3P9M2wy+MZ0dejj7bHYNxchCtQc8Te9ZwojSvzfF6g549Bek8vfc7xn/1d+7b9gXrMk8pAR/AVSEjL1j0oztMUzwTirPR6fX8YuunTP7mNVbs/b5L1yipq2a9yZjdGS2VIfuKn4MLV4WObLO/vdROIYQQQggx+A2qmb6mpiZeeeUV1q5dS0NDAzNmzOCPf/wj3t6WVYZfo1bj5WxHYYVxlq+kup5h7o7K42szEpWm5oZaa6ixJT4mgBAvJz7flwrA9tN5PHnFGAIcXXlsdDyPjprF4eJssqvLcbO1x83WnmGOrvjYO/PmxkQMeW4YzjngMrqMGlUtDTot9237gh8X/xJ3WwdOlxXybfpx1qYnkl9b2e59j3T3Y1n46F4vtW9WzKU4h09TDrM11/g6v0g9wtNj5+Hr0PkasM9Tj9DYHJiO9wpklGfPqpOKrrknZgpr0k+Y7Zs/LHKA7kYIIYQQQlyMQRX0vfrqq3zwwQf4+Pjg7e3Npk2bKC0t5bPPPrtgg/PBxtvFXgn6iipqzYK+z1OPKF8bipwBFXNiAwj0aD0mIb2YqrpGnO2N67FUKhUTfYKZ6BPc5rmUVg31NiwPmc9b+Ruoamogt6aCWzd9RJNeR3J5cbv3GeTkxjVho7g2bBRRbj4X+7LbFevui72VNXXaJnJrKngxYZPZ41tyU7ilk3TSoyW5vHVyt7Its3x9b7x3IOO8hnGkxNg30tfeiTgP/wG+KyGEEEII0RODJr2zoaGBzz//HCsrK7799lvWrl1LWFgYR44c4dixYwN9e93m28G6vqSyQo42v5E26MFQ6oS7oy2jgjzwcrYnLsgDAK3ewJ6UAi6krlHL/tTWPmnXjYlh5axlynbiuYI2AZ+7rT13RU9i9eX3sOfax/nNuPl9FvCBsV/fGJOZuaqmBrPHN5lUhzzf7oJ0btrwARWNxqbw/o7tpx6K3vfLEdOUry8PjrW4D16EEEIIIYTRoJnpS0pKora2lsjISCWdc/LkyaSnp3PkyBHGjh07sDfYTebFXOqVr81m+cocQath1mh/NGpj/D07JoDE7HMA7EjKZ9HotjN7pvanFdKgNS7mi/RzZZi7I8Pco3lqzBz+cWybcpydxopFQTEsCx9NfECEUpmzv0zwDmJfYWa7j+3MT6Ne14SdxrzNxIbsJB7a/pWy3tDd1p5vrrmnzXGib1wVMpKSyTXkVJfz6Kj4gb4dIYQQQgjRQ4Mm6MvPN5bid3NzU/a1fN3ymCXxNg36KmoBY7XMb862zloaio2VEGfHts6CzY4J4N8bEwGTtM1ObD/deozpdR4fHY+dxpqk8kLiAyK4PCgGR2vbHr6aizfRpJgLQLx/ONnV5aRXnaNW28S+gkzmDGttB/DN2WM8uXsNuuaWFL72zny28A4m+AVRXFzVr/d+qVKpVNwdM2Wgb0MIIYQQQlykQRP01dcbZ8OsrFpvqeXrlsc64u7ugJVV/85cAXh7d1x8JGJYa7XNqiYd3t7OvLRvE2UNzamejVZQYQwMr50RibeX8VpXutpj9x8N9U060gorqVNBsFfHz7M7pTW1c8mUCLN7+r3P5T16XX3hMscY1NtU6A0GrNRqXl90Pe+d2Mfrh4394HaXpnPD2HEAvHlkF0/sWq2cG+7myfrrHyDM1RPofNxF98l4DgwZ9/4h4zwwZNz7h4zzwJBxHxgy7hdn0AR9trbGWSidrrV1gFarBcDOzq7Tc8vKavvuxjrg7e3c6YyTg8n6p8yiCv5v649mBUz0RU6AiuG+rtgbMLvWlOG+ygze6t0p3Dq9/aqJhRW1nMgqBcBao2akj8ugngV7Ztx8PktJ4KG4GXjpHZjhEcrrGIO+H1JP8tyoBbx+YgevHN2qnBPj5sMnC+7AqdGG4uKqC4676B4Zz4Eh494/ZJwHhox7/5BxHhgy7gNDxr1rOguMB03Q5+NjLCRSXl6u7Gv52t/f8qoGmqZ3JjadZWNCjrLtr/YgJ9/4TTFNyWwxJyZACfq2n87rMOjbntSa9jo5wgcH28G91u3huJk8HDdT2Z7kE4yztS1VTQ1kV5fz0I6vzPoXjvcK5IP5t+Ju6zAQtyuEEEIIIcSQMGiqd8bGxmJjY0N6ejpFRUXodDoOHToEwIQJEwb47rrP19UY9Km8K8l3bg34pvmG4pQdBHrj0M9pJ+iLj20Ncncm56PT69t9DtP1fPExlte3zkZjxeyACGXbNOCb5R/OZwvvkIBPCCGEEEKIizRogj4HBweuv/56mpqauO6661i6dClpaWmMGzeO0aNHD/TtdZu3sz041aMKLVX2TfcL5ZWJ15CUY2yObq1RM224b5tzYwPc8XY2prSW1TRwormapym93sDOpPaLuFiSBYFRbfZdERzL+/NuHdDCM0IIIYQQQgwVgyboA3j22We56667aGxsJDs7m/nz57Ny5cqBvq0eqdDVookqQtU8wjFuvrw/91YOprYGgZPCfXC0a5uSqVKpzGbudiS1rV56Oq+M4ipjgRt3R1tGBXr08ivoH3OHRaI2Wf94Y8RY3oq/HlvNoMk8FkIIIYQQwqINqqDPxsaG5557jv3793Ps2DHefPNNpWefJanXNXH/ti/A2liUxtCk5vejFuNgbdNhi4XzxceaBn1tWzeYXSfGH7XaMhtne9o58tsJCwl2cuOpMXP4+/QlWPVzD0EhhBBCCCGGMplO6QM/ZyVxrNQYlBn0oE/xQTPLGr3eYBbAxcd0XKBmtsljB9KKqG1oMivUsn0IpHa2+OWI6fxyxPSBvg0hhBBCCCGGpEE10zdU+Ng3l0s1gCHTE6rsKayoa5uSGdRxSqavqwMxAW4ANOn07E1t7cdX26hlv8m2JRZxEUIIIYQQQvQPCfr6wDS/UDZe/RBL7GZiKHIBoKiy7rxqm/5o1J0P/2yTYM703P2phTRojRU9o/xcCXB37M3bF0IIIYQQQgwhEvT1kVh3X2LcWitzFlfWmadkdmF2rqNiLl1dFyiEEEIIIYQQEvT1IR8XO+XrzJJq85TMLgRrUyN9sbEyfouS88vJL68B6HbwKIQQQgghhLh0SdDXh3xcWhuLbzmVq6RkRvq5MqwLKZkONlZMDvdRtncm5VNYUUtSXjnQ3Ocvsm2fPyGEEEIIIYRoIdU7+5CPi73ydV2jVvm6OymZ8bEB7DpTAMD2pHww6Wk3OcLHrKKnEEIIIYQQQpxPZvr6kGnQZ2pON1IyZ8eY9+vbdiq39TFZzyeEEEIIIYS4AAn6+pCnsy1qlXnT9O6mZMYFeuDhZAtASVU9645mKo/Jej4hhBBCCCHEhUjQ14c0ajVeznZm+7qbkqlWq5gV3dqovbF5XaCHky1xgR33+RNCCCGEEEIIkKCvz52f4tmTlMz2ZvRmxwSgVqvaOVoIIYQQQgghWknQ18fOD/rie5CS2V57B0ntFEIIIYQQQnSFBH19zDToc3e0ZVQPUjKHuTsy3NfVbF98rH8HRwshhBBCCCFEKwn6+pi3SdA3O8a/xymZs2Nag7woP1f83S7c508IIYQQQgghJOjrY4tGBykVPG+fGdXj61w1PlT5eonJ10IIIYQQQgjRGWnO3scmhHmz+w/XYDBAmI9Lj68zdbgvHz44j/zyWm6aOrwX71AIIYQQQggxlEnQ1w9CvXse7JlaOCqoV64jhBBCCCGEuHRIeqcQQgghhBBCDGES9AkhhBBCCCHEECZBnxBCCCGEEEIMYRL0CSGEEEIIIcQQJkGfEEIIIYQQQgxhEvQJIYQQQgghxBAmQZ8QQgghhBBCDGES9AkhhBBCCCHEECZBnxBCCCGEEEIMYRL0CSGEEEIIIcQQJkGfEEIIIYQQQgxhEvQJIYQQQgghxBAmQZ8QQgghhBBCDGES9AkhhBBCCCHEECZBnxBCCCGEEEIMYRL0CSGEEEIIIcQQJkGfEEIIIYQQQgxhKoPBYBjomxBCCCGEEEII0Tdkpk8IIYQQQgghhjAJ+oQQQgghhBBiCJOgTwghhBBCCCGGMAn6hBBCCCGEEGIIk6BPCCGEEEIIIYYwCfqEEEIIIYQQYggbckFfcXExzz77LDNnzmTChAnccccdHDt2THl88+bNXHnllcTFxbF48WK2bdtmdv6JEye45557mDhxIjNmzODJJ5+ksLCwzfNotVoWLVpEdHQ0BQUFF7yvhIQEli1bRlxcHPPnz+ebb75p97isrCzi4uJYuHBh9174ALLUMc/IyODRRx9l6tSpTJkyhQceeICzZ8/2bBB6maWOaVpaGvfffz9jx44lPj6eP//5z9TW1vZsEPqZpY65qRdeeIHo6GhWrlzZ9Rc+ACx1rHfv3k10dHSbP3v27OnZQPQzSx13g8HAqlWrmD9/PmPGjOHmm28mMTGxZ4PQDyxxnFeuXNnuz7Yl/D5pYYnjDsb3Ig8++CBTpkxhypQpPPzww2RnZ/dsEPqZpY/55MmTmTp1Ki+88AL19fU9GwQLMqT69On1em666SaOHz9OaGgobm5uHD16FAcHB9auXUttbS3XXXcdKpWKuLg4EhMTMRgMrF69mqioKPLz81m6dCkVFRWMGzeOsrIyMjIyiI6O5uuvv8bGxgaAxsZGfvOb37B+/XoAtm/fjp+fX4f3VVRUxBVXXEFtbS2jR48mOTmZuro63nnnHeLj45XjCgsLuffee0lJSSE4OJiNGzf27YD1Aksd8+rqapYuXUpOTg6xsbEYDAaSkpLw9vbmhx9+wM3NrT+Gr12WOqa1tbVcdtllFBcXM2bMGIqLi8nLy2PhwoW88cYb/TJ2PWWpY27q0KFD3HHHHej1eh555BEeffTRvhuwi2DJY71q1SpeeeUVRo4caXatxx57jJiYmD4ctYtnyeP+2muv8Z///Ac3NzciIiI4fPgwnp6e/PTTT7i4uPT94HWDpY7zunXrWLdundk5u3fvpr6+npUrV3LZZZf13aD1Aksd98bGRhYvXkxWVhYRERHY2dlx8uRJwsPD+f7777GysuqX8esJSx3z8vJyFi9eTElJCZMmTSItLY1z586xYMEC/v3vf/fL2A2UITXTd+rUKY4fP05gYCDr1q3jiy++UL7x33//PR999BFarZYnnniCzz//nOXLl6PVavn4448B+PHHH6moqGDJkiV8/vnnfP/99/j5+ZGcnMzx48cB2LNnD8uWLVN++Lri66+/prq6mltuuYUvvviCP/3pTwB88MEHyjGffPIJS5YsISUlpRdHpO9Z6pjv3r2bnJwcJk6cyJo1a1i7dq0SqJz/SVR/s9QxPXr0KFVVVSxcuJAvv/ySzz//HIBNmzZRU1PTm0PU6yx1zFvU19fz/PPPo9fre2lE+o4lj/Xp06cBePrpp3nzzTeVP4M94APLHfeKigreffdd1Go1n332GZ9++imLFi3C2tqaEydO9PIoXTxLHefFixeb/UzfeOON1NfXs2zZskEf8IHljntaWhpZWVkEBgby3Xff8e233zJp0iTOnj1LampqL49S77LUMV+zZg0lJSXcfvvtfPzxx6xZswYHBwc2bdrEyZMne3mUBpfB+xFCD/j4+PDqq69ia2urfDri5eUFQFlZGQkJCQBMnjwZgKlTpwJw5MgRAGbOnIm7uzsREREA2NjY4OrqSkFBAefOnQPg448/Jj09nSeffJJXX321S/d1oecF4yeZGo2G+++/n3feeaeHI9D/LHXMR4wYwSuvvIK3t7dyjqenp3LfA8lSx3T69OkcOXKEuro6AEpKSgBwdHRUPrEbrCx1zFu89tprZGRkEBsbqwQmg5Ulj/WpU6cA4wcZX3zxBZGRkdx55504OTn1ZCj6laWO+8GDB2lqaiIsLIzw8HAAXn/99Z4OQ5+z1HE2VVdXx5/+9CecnJz49a9/3c0RGBiWOu5ubm6oVCoA5W+DwYBKpRr0v1csdcwzMzMBiIyMBMDX15fo6GiOHDnCvn37GDlyZI/GwxIMuaBv8eLFyva5c+eUTwfGjh2r5PS2pO61/N2SHxwVFUVUVJRy/sGDB0lOTkatVjN69GgALr/8clasWEFYWFiXfwBbrn/+89bU1FBVVYWzszOPPvooS5cuJTk52eKCPksc86CgIIKCgpTj09PT2bVrl3LfA8lSx9TZ2Rm1Wo2joyN//etf+fLLL7G1teXPf/4z1tbW3R+IfmTJY56QkMCHH37IokWLiIyMtIigzxLH2srKioyMDAA++ugj5bwNGzbw1Vdfyc84fTPuLWubHB0deeqpp9i8eTPh4eE8//zzTJgwoZuj0PcsdZydnZ2VY7/99ltyc3O57777lA9DBztLHXd/f39WrFjBa6+9xpIlS5T0zgceeIDAwMDuD0Q/suQxB5R1wbW1tWRlZQGQl5fX5ddviYZUeqepyspK7rvvPkpLS4mIiGDRokXKIs2W/5xbPplomZkwdfr0aR555BEAli1bpuQPL1myhLCwsG7dS8vztjyf6ZuDlue+6667BnQdWW+wtDFvkZeXx3333UdjYyPTpk1j3Lhx3XquvmSpY7p582Zqa2txc3NDp9N163kGmiWNeUNDA8899xzOzs78/ve/79a1BwNLGuvKykrmzp3LggUL2LBhA5s2bSI0NJTTp0/z5Zdfduu5BpoljXvL8ycmJrJ//35iY2M5efIk9913X5cKOgwkSxrnFgaDgY8//hi1Ws3tt9/erecYLCxt3LVaLQCpqakkJiZiZ2enzJhZCksa86VLl+Lg4MBXX33FzTffzFVXXUVpaanZuUPVkJrpa1FeXs4999zDyZMncXV15V//+hfW1tbY2tpSV1en/ANr+dve3t7s/JMnT3LPPfdQXl7OyJEjee6557r83B9++CH79u1Ttu+44w5sbW0BlDe/TU1NyuPnP7elstQxz8nJ4c477yQ3N5dhw4bx8ssvd/OV9x1LHVMwflJcXFzM7bffzooVKwgNDWXUqFHdePUDw9LG/J///Cfp6em89NJLFvcmwdLG2tnZmTfffNPsOjfeeCMvv/wyCQkJ3Hbbbd149QPH0sa95XErKyu++eYbfH19ee655/jmm29Yu3YtDzzwQA9Goe9Z2ji3OHbsGGfPnmXcuHHKjIglsbRxT0hI4NVXXyUkJIT33nsPg8HAvffeywsvvEBQUBBz5szp0Tj0J0sbc2dnZ/73v//xl7/8hZSUFKZPn05kZCTbtm0bMu/JOzLkZvpqamq49957OXnyJG5ubrz//vtK3q6Pjw9gXBgOxh9UwKwKUGpqqtkP33vvvYejo2OXn//UqVNs3rxZ+ZOfn9/h8zo5OZmlVFgqSx3zoqIi7rrrLnJzcwkMDOTDDz9Uzhtoljqm586do6KiAhcXFyIiIpg+fToGg4H9+/f3fDD6iSWO+c8//wzAM888Q3R0tFIl9Y033mDevHk9HIm+Z4ljXVNTw5kzZ8zaurSsVW15MzPYWeK4twQebm5u+Pr6AigfIA3WmT5LHOcWu3fvBmhTHdgSWOK4Hz58GIAFCxYQGBhIUFAQCxYsAFq/F4OZJY45GNNPv/rqKw4fPszKlStpbGwEIDg4uIcjYRmGXND3/PPPk5iYiLOzMx988AEjRoxQHmvJEW55A3rgwAEAZV1ATU0NDz30EOXl5cTExPD+++93O+XypZdeIjk5WfmzbNmyDp93/PjxPX+hg4gljrlOp+Oxxx4jJycHf39/Pv7440GVP2+JY/rBBx8wbdo0pVJWU1OTsr7MEmahLHHMZ8yYwfz585U/LWkwYWFhzJgxoyfD0C8scaz37NnD1VdfzfLly2lsbMRgMLB9+3Zg4NcBd5UljvvEiRNRq9WUlpYq1a3T0tKAwfsGzRLHuUXL45aQmXE+Sxx3V1dXwNivrqWDWlJSEoBZobnByhLHfO/evcyfP5/HHnsMMPYaPHr0KGAsLjOUDak+fcePH+eGG24AYNiwYWZltGfMmMHIkSO55ZZb0Gg0Ss8QgNWrVxMZGck777zD3//+dwDi4uKUTxUBfvGLXyiVgFpER0cDF+4ZkpOTw1VXXUVDQwNjxowhKSmJuro6Vq1axaxZs8yO3b9/P3feeafF9Omz1DFfv349TzzxBADDhw8nJCREOffqq6/miiuuuJhhuSiWOqbFxcUsXbqU0tJSRo8eTWVlJRkZGYSGhrJmzZpBnTZhqWN+vpUrV/LGG28M6j59ljrWDQ0NXHfddUofVUdHR06fPk1AQAA//PBDtz6dHgiWOu4Av//97/niiy9wcXEhJiaGgwcP4ubmxvr16/Hw8OiF0ek9ljzOYJxxys7OZtu2bRaV3mmp427aMy4qKgq1Wk1SUhLOzs788MMPnV57oFnymF922WVUVFQwfvx4srOzKS4u5rrrruPFF1/sncEZpIbUmr4NGzYoX+fm5pKbm6tsu7u7c9ttt7Fy5Upee+01EhMTCQ4OZsWKFcpUtGmQlZiYqPyAAixatKjH9xUYGMi7777Liy++SGJiIj4+Pjz88MPtvmmzNJY65qbPm5qaatYPJy4ursfP2xssdUy9vb358MMPeeWVV0hISMDW1pZly5axYsWKQR3wgeWOuSWy1LG2tbVl1apVvPzyy+zdu5eSkhLmzp3L888/P+gDPrDccQf43e9+h4uLC6tXr+bUqVPMmDGDZ599dtAFfGDZ4wwoBS3c3d17/FwDwVLH3c3Njc8++4xXX32V/fv3o9VqmTFjBitWrBjUAR9Y9pi/+eab/PWvf+XkyZN4eHiwfPlyHn744R4/p6UYUjN9QgghhBBCCCHMDbk1fUIIIYQQQgghWknQJ4QQQgghhBBDmAR9QgghhBBCCDGESdAnhBBCCCGEEEOYBH1CCCGEEEIIMYRJ0CeEEEIIIYQQQ5gEfUIIIYQQQggxhEnQJ4QQQgghhBBDmAR9QgghhBBCCDGE/T+nMTQ4lt5DjgAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4UAAAHnCAYAAAAPc/jYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAD1wElEQVR4nOydd5gjV5X236pSanXunp6c83hmbM84zNhj4wgYGwMLBmyiMQaWsEtaWJtlwdgmLMuS1+xn8pLN4gAm42UBJ5xxTuMcJ/bMdFSo+v5Qq3TvVVWpwq0knd/zzPOoNWrptqS695573vMexTAMAwRBEARBEARBEERHosY9AIIgCIIgCIIgCCI+KCgkCIIgCIIgCILoYCgoJAiCIAiCIAiC6GAoKCQIgiAIgiAIguhgKCgkCIIgCIIgCILoYCgoJAiCIAiCIAiC6GAoKCQIgiBSx4knnog1a9aY/zZs2ICTTjoJ//Zv/4axsTEAwFNPPcU9Zs2aNVi7di02b96M1772tbjuuussn/sb3/gG1qxZg69//evc/Z/61Kdw4oknNj3+da97HdasWYPbbruNu/+73/0uNm3ahHK5jPPOO48bx/r163H00Ufj/e9/Px5//PGm5yyVSvj2t7+Nl7/85TjkkEOwZcsWnHPOOfjTn/5kPmbfvn1Yt24dLr/8cu53b7jhBqxZswbnnHMOd79hGNiyZQv+3//7f+Z784EPfMDyPVizZg2uuuoqy/8jCIIg2g8KCgmCIIhU8ra3vQ3XXnstrr32WvzqV7/CBz/4Qfzyl7/Eueeei1KpZD7ukksuMR/35z//Gd/61reQz+fxzne+E08//XTT81555ZVYunQpfvrTn4Jt5bt161Y8/fTTeP755837xsbG8Le//Q1z587Ftddeyz3PrbfeiiOOOALZbBYAcPjhh5vj+N3vfocvfOELePbZZ3HmmWfiySefNH+vVCrhrW99K775zW/iDW94A66++mp897vfxUEHHYR3vvOd+OpXvwoA6O/vx7p165qC0WuvvRZz587FzTffjKmpKfP+hx56CKOjozjqqKPM+375y1/iD3/4g6f3nSAIgmg/KCgkCIIgUkmxWMTIyAhGRkawePFinHrqqfja176GO+64Az/72c/Mx/X395uPmz17Ng499FD827/9G6anp3HNNddwz3nnnXfioYcewoc+9CE8/vjjuPHGG83/O/LII6FpGheE3Xjjjejv78cZZ5xhGRQeffTR5s/ZbNYcx4IFC7BlyxZ84xvfQC6Xw+c//3nzcf/5n/+Je++9Fz/60Y/w6le/GosWLcLatWvxT//0T/jEJz6Br371q7j55psBAFu2bMHtt9/Ove51112Hs88+G4qi4KabbjLvv+WWW9Df348NGzaY9y1atAgXXHAB9u3b5+m9JwiCINoLCgoJgiCItmH9+vU47LDD8Ktf/crxcblcDgCQyWS4+6+44gosXLgQJ598MpYsWYKf/OQn5v/19PRg/fr1XBB23XXX4aijjsLRRx+Nu+66C6OjowCARx99FLt27eKCQit6enrwyle+Etdccw2mp6eh6zp+9KMf4ZWvfCUWLVrU9PhXv/rVWLp0Kb7//e8DqGUvt2/fjv379wMAdu/ejfvvvx8nnHACDjvsMC5QvfXWW7F161aoamPp/9CHPoRyuYxPf/rTjuMkCIIg2hsKCgmCIIi2YvXq1XjwwQdt/3/37t246KKLUCwWcdJJJ5n3l0ol/OpXv8KLXvQiAMBLXvIS/OEPf8CePXvMx2zdurUpKNy2bRsOOeQQFItFXH/99QBqWbmRkRGsXr3a1Xinp6fx2GOP4dFHH8W+ffuwadMm28cfeeSR5hiOOOIIZDIZ8+frrrsO8+fPx9KlS7Ft27amoJCVjgLA8PAwzj//fFxxxRX485//3HKsBEEQRHtCQSFBEATRVvT19ZlmMwDw1re+FZs2bcKmTZtw8MEH4/jjj8fo6Ch+8IMfYM6cOebjrrnmGoyOjuIlL3kJAODUU09FuVzmjFyOOuoo3HfffZiamsJTTz2Fxx9/HNu2bUMmk8GWLVvMIMwqALOjv78fQK0+sS7jHBwctH384OCgGagWi0Vs3LiRCwq3bdsGANi2bRu2b9+OZ599Fk899RSeffZZ8/9YXvGKV+D444/Hxz72Me59IwiCIDoHCgoJgiCItmJ8fBy9vb3mz5/+9Kdx5ZVX4kc/+hFOOeUUDAwM4F3vehcOOugg7veuuOIKLFiwAAcffDCAmgPnypUrOcOZzZs3Q1EU3HXXXbj22muxatUqM7Dctm2bWcN3yy23tJSO1qkHYn19fRgYGODus2L//v0YGhoyf966datZ53j99debgd/atWsxPDyMv/71r7jllluwYMECLF682PI5L7zwQoyNjeGzn/2sqzETBEEQ7QUFhQRBEERbcc8992D9+vXmz7Nnz8aSJUuwdu1a/Nu//RvWr1+Pv//7v8djjz1mPmbnzp249tpr8cwzz+Cggw4y/23fvh2PPfaYaThTKBRw6KGH4o477sD111/PBX5HH300nnzySdx111148sknXQeF99xzD4rFIpYuXYolS5ZgZGQEt956q+3jb7nlFhx66KHmz1u3bsVdd92F+++/H7t27cLWrVsBAIqi4KijjsItt9yC2267zXE8c+bMwYc//GFcdtllnLkOQRAE0RlQUEgQBEG0Dffffz9uv/12vPSlL7X8f0VRcPHFFyObzeK8884zM4BXXXUVqtUqvv71r+PKK680//3oRz9CNpvFZZddZj7Hli1bcPfdd+OWW27h5JjLli3D/Pnz8cMf/hArVqzgpKl2TExM4KqrrsIpp5yCbDYLTdPwhje8AZdddpll/8Kf//zneOihh/D617/evG/Tpk3QdR0//elPsWHDBjPbCNQC1fvuuw+33357yyD1Na95DY466ih89KMfbTlugiAIor2goJAgCIJIJRMTE9i5cyd27tyJJ598EldeeSXe9ra34YgjjsDLXvYy29+bNWsWPvzhD+P222/HD3/4QwC13oRHHXUUjj32WKxevdr8t2nTJpx66qn4/e9/b9bxbd26FX/+85+xf/9+HHHEEdxzH3300fjNb35jGYCVy2VzvM8884zZOqJcLuN973uf+bhzzz0XRx55JF7/+tfjZz/7GZ588kk8/PDD+MpXvoKPfOQjeM973oMtW7aYj8/lcti0aRMuv/zyptfdtm0bHnroITzyyCNmBtGJiy66CLt37275OIIgCKK9yLR+CEEQBEEkj69//ev4+te/DgDo7u7GggUL8LrXvQ5nn302NE1z/N1XvepV+MUvfoHPf/7zWLNmDR566CG8973vtXzs2WefjauuugpXXHEF3vrWt+KQQw4BUKsvLBaL3GO3bduG//mf/7E0mbnllltwzDHHAKgFcnPmzMExxxyDL3zhC1xWMZPJ4JJLLsFll12GH/7wh7j44ouRy+WwYcMGXHLJJXjBC17Q9NxHHXUUbrjhBvP568ydOxcLFixAoVDg6hDtWLhwIT74wQ/ioosuavlYgiAIon1QjLp2hiAIgiAIgiAIgug4SD5KEARBEARBEATRwVBQSBAEQRAEQRAE0cFQUEgQBEEQBEEQBNHBUFBIEARBEARBEATRwVBQSBAEQRAEQRAE0cF0TEuKnTsPRP6ag4NF7N07EfnrdjL0nsuF3s/oofc8Oui9jh56z6OB3ufoofc8Huh9987ISK/l/ZQpDJFMxrlPFiEfes/lQu9n9NB7Hh30XkcPvefRQO9z9NB7Hg/0vsuDgkKCIAiCIAiCIIgOhoJCgiAIgiAIgiCIDoaCQoIgCIIgCIIgiA6GgkKCIAiCIAiCIIgOhoJCgiAIgiAIgiCIDoaCQoIgCIIgCIIgiA6GgkKCIAiCIAiCIIgOhoJCgiAIgiAIgiCIDoaCQoIgCIIgCIIgiA6GgkKCIAiCIAiCIIgOhoJCgiAIgiAIgiCIDoaCQoIgCIIgCIIgiA4mdUFhuVzGpz71KWzZsgWHHnoo3v3ud2Pnzp1xD4sgCIIgCIIgCCKVpC4o/PznP4/vfve7yOVyWLhwIf7whz/gH/7hH2AYRtxDIwiCIAiCIAiCSB2pCgqnp6fx4x//GJlMBpdffjmuuuoqLFu2DLfffjv+9re/xT08giAIgiAIgiCI1JGqoPD+++/HxMQEli1bhpGREWiahiOPPBIAcPvtt8c8OoIgCIIgCIIgiPSRiXsAXnj22WcBAAMDA+Z99dv1/0sL+x64D3d9+mIMH34E1r3nfS0fv/+hB3Hnpy7EwIaN2PDBf5YyhrEnHsft/3oeuhctwcbzP4psd4/r35145mnc8Yl/RdfceTjkYxdC1TTXvzu543nc9pEPY+yxR8z7Zh25FZs+8Smo2SwAYGrXLtz+sfOx/8H7zccMH3YENl34aWj5vOvXYint34fb/uWfse++e8z7Bg8+FJsv/gwyxW7Xz1OZmMDt/3o+9EoZmy78NHL9/a5/t1oq4baPfBiViTFsuvAzKMyaZd5/+7+eh9233mw+tm/Vamy66DMozBpxfE69WsUdH/8IpnbswKEXXIzi/AWux5MU7vn8Z/HUr38JGLqv3++aOw8Hf+RjGDhog+SREXHw3P/9L+790n+gfGC/4+PUfAGrzn4rlr76zIhGxrPrlptw979/BnOPOx5r3vkPUBTF8fF7/nYH7vzUhZjeXauDV7QMlvzdGVjz9+/2PYZ9D9yPOz95ASaeedr3c5goCua/8BRs+ND5Lf+WuJjauQO3/cs/48AjD7d87ODBh+KwT/07tELB8XHjTz6Bu/7tk9DyBWy6+DPIdHU1Paa0fx9u/9hHMHr3nb7H7ob+tQdh00WfQX5wMNTXaSfu+fy/Y8/fbsPBH/kY+tesk/KcD/zXf2LH9X/Bhg//CwY3bJTynGHz6E9+iCeuvBxr3/2PmHPMC+IeTqJ5/i9/wj1f+HeU9+8DUFtLVr75HCx7zVkxjyxeUhUUTk1NAQAymcaw67fr/5cW7vnCv+Pp3/4KT//2V1jw4lPRt2q14+Pv/eLn8PRvfomnf/NLLHjRSzC48eDAY7jjgo/imd/9BgCw86/X49j//jGK8+a7+t0H/us/8eTPrwAAzD3uBMw78WTXr3vfl7+Ap375c+6+0XvuxuyjtmHR6a8AAGz/72/hiSv+p+kxI1uOwpJXvtr1a7Fs/9538Pj//KTpOYcOORQr3/xW18/z+OU/xSM//G8AwMD6jVjz9ne6/t3HfvpjPPKD7wIA+lauxvoPfBgA8NTVV2H7f3+7aWw9S5dj4z//i+NzPnHlz/DQNy8FAHQvWYJD/uUC1+NJAnvuuB13//unAz3H6D13Q83mcMy3vy9pVESc3Pyh92HiqSddPfaW++7FwtNO93SwI4tbPvx+7LvvXjz/5z9icOMhmHPscY6Pv+MTH8XOG67j7tt75x1YeNrp6F602NcY7v7cZ/DM73/r63etGL37Lsx/0SkYPnSztOeUyf2XfAVP/uJKV48dvedu9K5YiXXvfq/tY3bfcRv+8sYzMb2rFqgPH34Elp/1hqbHPfrjH+Kxn/zQ15i9MHrP3ehfu87VYTEB7LjhOtz9758CAGhdXTj6v74V+DnHHnsUd3ziowAAQ9fxgu9fFvg5w2Zyx/O4+Z/eC6NSweRzz+CUP14f95ASzc3/9F6MP/E4d9+t996Dhaed7ilB0m6kKijMz2SIqtWqeV+lUgEAFFqcBA4OFpHJuM9myWJkpNfyfn3fXvP2s5/5BKbmOwdje6/9k3n7mc9ehPLSpYHGVSmX8ezvfm3+PHr3XfjdMUfg4Be/GD3Dwy1/f/fvfmfefv5rX4L2R/ebkmevvMLy/ue/8TXkb6ptmHb96U/Wj/nW/0PX7TfZPvcOh9fdYfec3/8O+h6+3/L/LJ/n5kY2b/f//Ag7nnzE4dE8T//lL+btnVf8FDv21jYiz916q+Xjd/38cuwYG3V8zseZv2vvb36JHVPjrsfTCqf3UxbPPviglOfZf+tN2PGvH5LyXHESxXueZCqlkuuAEACqkxN49qMfQr7be1AY5L2eGhvDvvvuNX++7T1vx+bTT7fNsBmGgT03/9Xy/5656KPonzPH1zhGb7jW1+858dznP4PqkiXSnxcI/v1+7uqrPT3+4a98AUPPPmn5uex6/HHc88c/Qp/ZRwDAju9+Az33NnsU7LrhBu+D9cnO//kxhp8PlvntlHnkEWbt3H/j9VLWgN1PPdV4zttucf2ccb7nOx55BMbM93j8ke1tsRa6xev7XpqYaAoIAaA6NYlnP/ohFHrkBYVzX/taDJ9wgrTnC5tUBYWzZ88GAIyOjpr31W/PmzfP8Xf37p0Ia1i2jIz0YufOA5b/V9EbC1Rpzx6UMs4fRWVy0rw9vXs3SsVioLHteuYZ6ExwDQDTExO49ec/x9ojjsDgzHttR+lA4+8q79uH0g53l2W1UsHYnj21HxQFS19zlnn6Oj06aj5PeWzM/J3+teuw7/77mh7jlcm9jUB83kkvxLPX/N7Xc5b27TNvV8bGPP3uAeax08z7NsWMbeSobWY2YXr//pbPP/rMM43xjI/7fn/iYoIZ77IzX49Vb32H6989sP0h3PD3tSyvPj2dur+daGacub6KCxfhmG//wPJxfzrrVWZ2p7RrF5RxeYchbtj5OL+p2L9jB3bcfTcGbYK7qfFxVGc2bbnBQRQXLDKliKU9e1DyKddk14Zjvv0DFBcu8vU8d1zwL9hxXe3QqrJ3L0oWEsq4MQwD47t3mz8f9+PLkR+e1fy4SgV/fPXLURk7gIl9+7D7gQfQNzTEPebZRx/FI3fd1fS70zbrWWl/Q8q8/gMfxoKXvDTIn9LE83/+I/520cfN16K5zB17n3jCvF2VtAZMMc9RLZVS8VnsfqRxOK1Xq6kYc1zsZd6bgQ0bMbVzJ6aefw5AbS1RJ+TFC/t374NuEwfEiV3CKlVB4bp165DL5fDoo49ix44dGB4exi233AIAOOyww2IenTdUJmvppp0Gmx2tMqeaftnN1GDOO/lF2PXXG1A+cAB6tYp7//pXrNi4EXMdspGVctm8LQaXTozt2wfM/L29K1aif21D/8/+XeztnqXLzaCQfV2vTDObp5GjtplBYXl62tPzcH+77r4GzjAMTDAbi3KpZHl76JBNZlBYYe63ojQ1hSlmM+xlPEmB/VwGNx7sqX5DYa4jndrStAVTzPehb8Uq2+8DW1scR0uivRb9cZ944AEMzJ5tmZWaYA7SBtatB5jHGAGu2wozVw5tPgxds/1lHHMDjRq2pF5Jpakpc/7NdPdgzguOt83MLn75K02p/vNPPGEGhYZh4LF77sEzzCZa0TQYM+uY3RrDrkl9q9dIrzOb3tMIdoOsc52EXq3iAHOgGuQ6YmHXYy/7mzjZzxyW6NUqDMNIbF1w3LAHj8OHHYHn/niN+XOnt7dLlftosVjEGWecgXK5jFe96lV4+ctfju3bt2PTpk04+ODgNXZRoswYqgDuJjIuYAo4SenVKvY+/7z588bzPooTf/6bhkGJYWD7nXfisXvusb1A2GDFSyAyxkzgw4cdwWm37YLC4oKGcUrV52JpGAZKbPCxofF9KbcIvETYsXlZMKYmJrjHs8Eoe5utL201tv31rOsMshbFKGE/l+L8hZ5+V814u46I5DPNnNJ2L7avs1MYdUXUC7lhGNjHBIXKjNHW2Ogo9jz3nOXvsEFh39p1/HfX5/gNw+DmxGxvn6/nAQBFbWwHkroxYt/D/nUHOW56l531evP2rqefRrVSQbVaxQO33MIFhIMbD8ER//Fl82e7gzh23s/2WJ+yByHXP9ByDATPgb17uXlf1qFoJWVBYblU4q4NILnXcBIYY4LCwQ0Hm/M3ADNp0amkKigEgPPPPx9vfvObUSqV8OSTT+Kkk07CV77ylbiH5RlV87ahsQuY/LBv1y7zOboXLsLAQRswsPYgnPyrP2Dw4EPNxz29fTseuOWWpiDUMAzf2TL2VG9402HI9jYWV/ugsBEo+D1BrZRK5jizPb3oWbqM+z8vsJswL4EImyUEahN5/bNng7++1WssH2MFezoIpD9T2OXROVXNBt9YE8liig0KHcxX2IU86s9+bHTUnIsKs0Y4yfMTDzxgOR72+u9fs47Lcvs90NB13XwtJZNp6bLphKIx24GEXkvce7jW2WVyePPh6FtVm0v1ahXPPvYY7rn+ek4lM/9FL8GJV/4KvStWmve5yRRmJNYc1ckxbqOUKXTHPmH9CyVTmII1VdwHAHRI6gSbKRzYsBGKGt9akjRSFxTmcjl85CMfwV//+lf87W9/wyWXXIKREWfL/iTi5ZRb13X+NCxgUMguigtPf7l52to1Zy5OvOJqzH/xS7jH3n399SgxmaxqpcKN2fBwknaAqQcd3nw4t7jqdkEhEyj4DYjZwKO4YCHyTH2J10yh34BYDAoNXTcD7grz/nYvWmxu7gxddzypFDOFaTjVFGE/m+4FXjOFzHVEi2BbwGcK7c1O2IU86iCGrUmZe+LJWPcP74PWVavznti/n5tj63BZrjVrpWQKxSxhELlYGjZG3Hu49iDHxyqKgmVnvs78+fF77+UOJVe99R3Y9q3vIVMsctLZ2IJCptWW1zWpUwnrUFSUjyb1eqhjFRSmIZiNg2qlYpbcKKpaO6CL8YAxaaQuKGwXvGxmxSAwiHzUMAzsZuRNC4Vi+UyxG9u++T2sOvfvzfvG9u7FXddeawYc4qLpdvIpTU2ZUkEtn0f/uoOQcSMfZYJCvyeofFC4AJmeXqi5XG381aqnYJN9rJdAZPxAc7FxZXoahmFwi1B+aBj5oYYDrN0GoVIucydeQPoWgkq5bL6faj6PnGAG0QqvMmwi+Uy7zhTGJ3ccZYPC40+cyRa+zbxPzBYauo4J1jxrzTop8le2njDX5186CiAVEqpx5mBtYJ1zUAgAS854Lf93AYCi4NALP4XNF3/G7K/LBmRugsIw5KPZ3j5zrHq1mrq5PGp0XeeC/Pp9MhDVQ0lfW8SMKZDOA+IoYOeQ3pWrkOnqSoVKIiooKIwJLxsCMWAJIh/dv3u3OeHlh2dh+LAjmh6jaho2X/RpbLroM2adydT4OPbM1CGKE6bbiZidwAcPORRqJsMtrvW/yzAM7m/sYnonyggKu+YvgKIonGudl5NZWZlCoFZLyL6f2b4+qNksci6CQnFBBJK/eIlwwfq8BZ4zHWo2Z97u9BO+dsAwDF4+6pApVGOqKayUyw3Fg6Jg7gtqduNr3/mPyMzMZ5MHDmDX042WApMTE+a12TVnDnIDA1CzwbPcXKawr9/Xc5iwNYXBnikUDMPAJBNY961e2/J3umbPwbyTX2T+rOZy2PbN72HN2/jeslw9X7ls+X3iMoUh9DFTFIX7DElC6szY6GhT4CNr/Wva4yQ4wLI6HAaSsRfYt3s3Hrr9dsugNS7Y92pw4yEA4i1FSBoUFMZEXEEha4Kw8KUv48wFRFaf+w4sf8ObzZ/rG3hxsXI7+XD1hJtrwSgrw6mfehtCnUxhVkMeXLVZsFthZWaSH24deImIAavbv12vVjFpYZlfLpW4167/rWym0K7mUZSO1l8nTXCfy0Jv0lEA3MaaTtbTT5XJHGuFgmW7gTpxyR337dxpniYPrt9oziP5oSGsfltDYfHEAw+Y88MkcyDUNyN7VDzWlVvBB4XyMoVJ3BhNjY+b81t+eBYKs+y/Gywb//lfUJgzFz1Ll+PEK36JhS85rekxajaLTHGmz6Uwx9fhM4XhNLfm6gpJQupImJJJcT9QTfDaYnU4DMS/HhqGgQdvvRU7nnwSD952W2LmFNFkBkiHdD4qKCiMCVVzbzIgykWDBIVsYDLnmONaPr7IZOnqDpnihOk2EBnj6glrLUTYxbX+d3GLb3cPtEKhUWNnGL4Cn+mpKfN23c3UTeAlIr73bifeibExS1lCuVTinEfrm+D8MFPzaNMyox3qCMRaT6/IqMsikoNoMuOUOY5L7si2oph74snc/615x7uR7a9le6bGx7Fjpgn2uEUtnAyTJFY+GsR5FEi++yjX0uOg9a5/b2Dderzs9ntx6nU3Y3jz4baPyw7YZ+nYujIlk4HKtEORiZvaRqKGVfaJPVAOQpoyhVb7ACD+vYBeraI0s+8qTU4m5j0UTWaAdEjno4KCwphQPGwImgKRABcX+1zsqaQdeSZLVw9O/MhHDcPgTrSGNtWCQquaQquCfk5W4yMo5oKPmRpFLlPosleh76DQQjpaf12unrAeFLaQj+q6zrX38DqepMAF6x6dRwGqKUwC4/v24bF77+VOYP3i1mQG4HtURhnEHGAy9HOPO5H7v1x/P9a84z3mz08++CB0XW8ymQGETKEU+ai8oDCJGyPeebR1PSGLoiiOqhjAOSATDyrD6v+Wd1HbSNSuF7tgKOhcUK1UmtZRL2Z6UbNv1y7L++MOwsS9UhIy3+JcPLC+HhQm+0AsSigojAkvLSlkykfFxa0VhRGLoNCH0czEgQMN6c+sETMrpHV1mYu1oevQdZ0f40zLCvYU3E+vwpJFRio/5L2mUHxtt5s5triZDYTL09PWmcIWWczx0VHzfWfltWkLjNggwE9QqGoa3wS8wyf0OHjg1lvx9MMP44Gbbw78/rutJwTik/yw81/3okVN/7/6be8wD9ymJyaw44knBNfMWisFrqYwCZnChMtHxy3eQ5k49QkM23m0TpZ6FbpifP9+cz/RNWeu6fwLBF8Drd73pMpHq9Uqp8Cqt2AB4t8LNAWFCTjkmBwbM9+X4rz5yM/M09xaEsvIkgMFhTHhpUdVWEGhm8WNyxTOTJZ+pBVi0/r6SauiKMgIvQq5MdaDwn7/BfiGYfAZqRlJLJeNc5kpFLOUfjKFI1uParxuU01hLSjMtWiZwdYTznnB8Y3xpMA+m6XEyXq9y0cBQYaX0MW7XdF13TT/mJqYCHw6zbUnaRUUxhTEsHL+jIULZbanF2vf9Y/mz08++CCmOIOU2sYteZnCZEuouEyhC+dRr4hmMyxWB5VhQL0K3cGuGwPrN0DLNwzHgqplLJU5Cc0UlqemzLmva+48zpQvbtWQuE8tJ+D7zElHmZ7cST8QixIKCmPCSy1UaEFhd3fLxxdGZpu3SzaZQjcbmgMW9YR1soKElDv97q4twDlGPuo1U1iamjI3OfmhIbM+kZWPuq4ptKg1cQObKZh9zAvM23Y1hQXGYMNqbGxQOHLUNin29nFgJev1Cnst6Sn629sBmXMTIGQKF9q3owDiqQMRjabs5tBV57zNPFArMRu34oKF5nwnvaZQptFMoGeSj2jUVQ+sZeLUliKqTGF+gIxm3CAeHLMu1EGDIav3PalBIXdY0d8PrdCodY17zE1eGAn4PvMmMxvN21RT2ICCwpgI5D4aIBvk1UGNdXgrW/TUA9xNwrzzKF/sn+lxyBTWawr7GxseryeodmYmflpSiJlCNwFxuVQyTzbVXB6zmDYgzTWFtUDVqSWFYRh8ULjlKGj5gvlz3CeEbjEMo6l/pB/UHGUK40J2UOilptCLBF8Wuq6bmwY1m4WWy1k+LlPsxrr3vK/pftYgRUZLDbF5fRCSbDQzyRh1dS9c5Kr0wStO0s2qxUFlGJDRjDvEz0NlrsOga0CaMoVi70w1xwSFlClsYtzCeRQg91EWCgpjwsuGoGmjZRi+Jj7RuVMrts4UZordpl7fmKn381pTWK1UGtIfRcHQIYfyryE4kFoFrrkA/Zus2lEA/uSjTZlCN/WUrOxp9RoUZs9pvK6d+6iDfHRybMzctOQGBtG7chW/KCZ0ARMpl0rm9zjb2+e7IbSSoaAwLqwOrPzS1KPQoXE9EI85gJdedSve9BZ0zZ3H3de3ptFbjz0Y9LuBY+fC4M3rk2s0w9UTrt8Qyms4mbxYlTSEAdUUukPM1rNusIEzhRb7i7gDLDs4KXt3NzTmfYh7LUxaTaFhGJy3wwCXKUzugVjUUFAYE1ym0GNLCsDfiTwXEHZ1cW0xnBDNZsTFqlUQwhdCr2460RbbUlhtvFhplNe/nWtcz2Sj/PQp9COd5UwmDlrPy1aF9zM/y8JoRghYWde1ka1HQ1EUUxILJHcBEylJyBICcmR4hD+a3HgDZAorpZI5R2V6ejg5nxVx1IF4kRFmurqw7h/fz93Xv6ZhkCLje8vXusmrKUzadcQdrK2RbzIDAFmXQWFYPQoBID9oPwaiAV/X28Nl7IMeilodEKchU5jp7uGD47jlowlzH52enDQP9bN9fZxqjOSjDSgojIlAmUKb+1rh5ZSbRWxL4bUlxQHBZEZEbEthtQBnA2QKWZOZbhv5qN8+hYZhtPz8xgWDhMxM70Wg9t6x2ZF6LWFukM8Usq/BSkdnbdkKAFymMO7FwC1BexTWUT0csBBykZkp9NKjEIjHGEXngrDWGaPlr3sTVys7uPEQ87bioVetHRWpRjPJzRRaubfKxslopuJz7fQ8BkY+mgS5XVIR9whcTWHA765lpjCha6r4PmgSM6ZBSVqmkJOObjyEW1/IaKYBBYUxoQRoSQH423z5Pe0U6wq9yke5pvWbDmv6f8dMYV0+GsB91K7tQW5w0GxnUCmXXU2iVq/dakPHnnIPrD0IiqJwmUB2wanXEmq5HLfpZF9XrCcEwNUUpiUwkhUUsr0KyWgmWmTWFLLXac/ipS0fH4e5klejLi2fx1GXfhuzjz4GGz78L2aPQiCBmcIEb4zCdh4F3LekCDNT6DQGokGzfFRiptCmL3ASEfdKbE1h3PuAJAeFA0w9IZBslUTUZFo/hAgDL/JRK0lWlJnCwqyGA+nkxETTRdPqFI1rWr+5OSh0qim0al7vy310hi4mKFQ1DbmBQZT21oKsSqmEHCPDtMLqfdd13VaKK+rY6xua/PAsTDzzNPfYbF8fJ4PJD89CeeaEvFIqIZvLYXpy0tw8a4WCWSzNZQoTuoCJyHAeBQQn35T87e2CODcFCQq99CgE4pePujUcmXXYETjhZ79out/LwaDteGRmChPqPlopl825QtE09C5fGcrrOLWDiMp9lFpSuEPcy2gSDVZS6z7a3QMw2f649wHi2hD3IYed8yhA8lEWyhTGRNzyUS+nnXkmUzjJ9Nuq47QRn56cNIMyrVCwrAfJOriP1v8viNGMU/Dh1YHUaxH6NNO7LTcwYJrMsK9rNRbA2oGUzRIOH3aEmW3grKhTEhiVZAWFOaopjIsm23FJmcJWJjNAAoxmAgYHXPN6v/JRqTWFyZSPTjLS0d4VK20dX4PCZunEg8eo+hSKRjM0n1nT5LrJyEeDvmdpdR8VjWbi3gckOVM4uFHIFJLRjAkFhTERpCUF4M/Qwav0qU6BqSlkF+g6TnV1bNP6oUM2ccGwORZH99GZ5vXMKbjYFsIJvVptFI6rapMbYMGj2YzVZ+G0oeNc89ZtMHXsbKBdR7zPyoGUM5mZkY4CvHw0qQuYiLyaQsoUxkWT0YysmsLFboJCZi5JYVAYNFOoV6vm913RMtC6ugKNBwltScHOoWxLD9m4bV4fZk2hlss11dgTzTjJR4Ouf6kNCnt6k2U0I7x+nEFheXqaaQuWQ++KVdz/k3y0AQWFMeHFHENaTSHn2OX+tJN1H52wyBQC9hMQ17T+sMMtH+OmptCvfJSTjo7MbgpKcw4un1ZYvbbT5MvVEx7UqIWxyhQWhsSgsHlsvMlMIyhMvXw0UE0hGc3EhcyaQi/tKICY5KPMtR60tixoTaFoMtPKmKcVSa0pjMJ5FKg1/65TKZe598DqoDIsgtTPdwq64D4qs5bOUj6a0HVF3CtpSa4pjFE+yrWiWHdQ0z6Q5KMNKCiMiaCZwsA1hZ7ko42g0C4gs5uAuHrCTdZBoZvm9X4XSi7wWNgceHhtS2GVpXSafLkNzdpGUMhmKM2xMO8zIPRRLJVQKZfN51NUlQuy02Y0Y+g6H7ALGVwvsJlCMpqJFplBIft9KC5Y1PLxcdcUZlz0eXXCS115q7EErScEkrsx4p1HwzGZAWoHtdxaxKwzUdUUAkJdIZnNWCLW0rEHLEECuGq1annIG3fWzY4mF9YEy0erlUpsexPeZOaQpv9Paj11HFBQGBOeagol9Sn0u6GxkjqKWE1AhmHwzqMWJjPATIE0M8am4mn4zxTy2ajmjWbBY02hZabQtXyUyRQKASDAB6hAs3yUzRIObNjIvW8y5TNRUGKysvnhWVwthFe4jEsKAuJ2QlZLCsMwuO+tm7otJQa5o9SawoDuqXzj+n6HR7pDUZj3M/CzOWMYBg7s3cvVkdrBH6yFlykEwPXGrMQVFA6Q2UwrnGrpgqwBdkF4UtfUJsOdJMlHLfaocX2fOZOZjRub/j+pKok4oKAwJrh6EodJzNB1y4s72pYUs1s+xiowmti/3xx7YfZsWzMRN+6jWleXufnXbd4TK1o5XHJmLi3ko4ZhWGYK7YJCvVrljHnYDY0YANbum2X7c6VUEuoJj+Yey9UUpiAwYj+X7kWts0JOBN1cE/6RlSlk5zOtq8ibntjASYDicB8NWlPYwZnCnU89hTv/8hfces01nGxYpDQ9bR7WaYWCK1faILgJCrMh1hTWxkCZwlY01dJJKp+wOxhO6prKlQR1dyeqjCRJQaFTOwogngPGpEJBYUxwznMOX0K74C9K+WhucLDlJs0qSOPrCY+0/V1no5na/ymKwrnruZ1c2EWVrY2swwZnrRZgvVq13CzZbegmx8bMx3cvWsxtJqzdR8VMIS8fPWDRn7BOkhYDN7DvtVXW1AsKZQpjo8loxm9QyF3z7lQMsctHA9aWcQZJQWsKAzqPAtE68O3dscN8nX27dtk+TqwndHNYEAQ7s5mo3EedxkDUMAyj2WhGUkuKNGcKa83rk1NGkpSgsFqpNA7nFQUDFn1OkyqdjwMKCmNCcXnKbRf8Be9T6F4+qmqaZRDDYjUBsfWEdtJRgD9xr5TLfBE5E0hxRgAu//5Wmzgv8lG717RbhLji5oM22L6ueZ8QHOUY+WhpcpILsmdt2co9NkmLgRtkZlxk2pET3pCVKdS5ucnd9yEOxziZGSMlE2z80jOFEZ6Ws2N3NOqykd+HhZugMPyaQusxEDXY74uaz0PNZKDl5BwMsnsAds+T1KBQFzOmCSojsUpoxPF9ZueQ3uUrLEunSD7agILCmFAZ+ajTyZbdJsvPibweYEPTqq7Q6m8Y44JCa5MZgHdzYyWcmWI3t1HxU1fYKvjwIh+1e027z89pQ2PZkkKUjzJjG9+/31zsepYtbwogtQQtBm7gDygCZlyy7q4lQj6yagr9ZOBizxR6OFizImgrFemZQjW603LXQaGNUVdYWEk3xXrXoAZDXsbgps6907A6mAkjU9g1b76U5wwT8b1IShmJmM2tE4cc2qk/YR1qSdGAgsKYcOs+apspjLAlBdCcxQIAMBbo4sJeqVQaQZGqYvCQQ22fW3QfbdzPL75+HEhbnfB66VPo1XmV29AIQWGmm3cKA5zloywjR21ruk9NyGLgliRtrgn/yGpe7ydzzGbaUtmnMGAtbFVoSRGUKINsX5nCkE1mACA30LzGiAZtoUtYyWjGEatrUFZLCnYPUFzQ8CBI4kFrk4y2p4crI4lzLdR13XJOjuP7PNainhAg+SgLBYUx4dYkgb3o2cUoSvkoYF33VRhpGNCIgQjrOtq/ao1jZtJuLGI/KF+ZQhspah3RzMVpMxRIPiqcciuK0jIIzPb3W25ARo7c2nSfLPe1qJBq2BGw3xvhH2lGMz7mprjlo8HdRwNmCsM0mgkZLii0+dsNw+Dm0CiCwqyFfNTpoDIMOLMbyhQ2wR9u14NCOS0p2Pe7yGYKkxgU6ro57ylaBmoul5hMoZ2SLZZMITOHDNoEhWqE9dRJh4LCmGBPiZ16q7ELEtcvMGBQ6HUjbpUpLMyeY95uCgpZ6ehhRzg+t5rJQCt0Nd0vZjNZ23U/mUKrwFQrFMxg0U7yYD6Xh0xhpVQy+66puRx6lq9oekxhuPGeZnt7m9oyqJrGnRrXEU1mAPD9iRK4gImEZu2fgoC4nQglKHSbKYy7eX3cNYWS5aNQ4qkptFO9TE9OmnNZbmCAW2/CwqqmMMrG9QBlClthtabLatpetpGP+pXFh4l4kKYoCl9TGONaaLcORP19NgyDU2wNrG9uRwGQfJSFgsKYcGtHzl5c7KIYPFMYvKawa+5c87b4N3AmM4fZ1xOa47HYCIqBK3saLks+Cgj9AB3qCm0zhRYLBtufsG/laj4zXH9dJktpZ+TTVGc4axa6lyxtepyWoKa1bmiVwfWCSpnCWNB1vem616vV4KYpLmtM468pjPd7y/cpTJf7qBv5KC+/Xw+FKVcIC6ssHfeZywi+W46BWlI4YS0flRMMcZlCpoVVEtdUq0N+znAuxkA2KUHh5NhYoy3anDko2HhjkHy0AQWFMcFKhxzlo8yF3TWHycwF7FPoVT7KSkUBQCt0cafT7HjqjYnrDDk4j9axylyKQRwnH/XhPmqXHc27dCD1kinkNjQHrbd53YZc1M7Ihw1YgVo9odXmSFahfVTIrClUqKYwFmxNsCKam9SIF3KrGp4gBJWP8m0SggcrakRBtmjcYhsURlxPCFhn6WRK3d2NYaBpDEQDq4MZWbV0ZbugMOmZwpk2KVpCWlPZrQ1RGyfxJjOH2D6O3EcbUFAYE26lQ1ymcM5cy/vdEkQGI56w5AYGoBWs9eulqSkz45bpKqJv1ZqWz2+1wRJP4nP9IWUKXZrNeKkp5CQLNlbqbjKFOaHOcOTIZukoINQUJnABE5G50dKycupJCG9IbZdjUSfUiqgXctY8Qc1muQ2YH4LKRyuSjWbA1i+H+H429bZ0UZMdhfMo0Fo+GnY7CoCCwlZYrR1hZApZ+Shbv5cULIPjhNQUsvM5W9ri1gtCFqzJjF09ISCsJaGOKPlQUBgTflpSdAnyUS+TlFXDVy+IRjO5wSHb0zkuS7hpM3+ib4NVfU6zfNRbTaFbK3HW4KXiIB9lJzQ2YLX6/Ma5U27rDQ0baNvKR8Wg0KKeEEihfFRiE3AymomHsHqounYfjTgolCkdBYI3r5edKYyqrqYpKExUpnDAvG2ZKZTwubci091jlpfo1Wois1RxYtXTVJbRGt+ncJiv1U/YusrVN5vy0WS0pmKvmeKChebtcsRBIZsptKsnBHgTR5KPErHA1pM4fQm53oL9/Xx2zsNFz05oai7Hv74LRKOZ/OAg73TFjOWAy/6ELHX5A0tWuI9tSeHmxMmtlbhr+Shn+tP4HXEREoub7Zouzz3xZPP2/JNeZD02Rj6aKRZtpahJXrysoJYU6Udquxw/zeu1YC0dvKJLzhi5rSu3I8yWFGHiJijUdR2TY2Pmz/1rogkKOfdRq5rCCDKFiqKQ2YwDVmuHKkEtwgbgipZBtrfP934rClplCuNcC9mxdTNBYZQ1sqJ7sV2PQoDkoyzN7hdEJLj9EoqBTabYjeqMq2W1WoVmYWDS8nl8nHaKmazcwKCtfn2Mqyd0FxRa1hQKhhPsabibhZL/m4u2j3MtH2VeszBrBOOPPwageRGanpw0Xzvb14euufMsn29w/Uaceu3NKI+NYcimjyObKZx15FbbrCvrvpa0xcsKmafvbPP6Tp/Qo8S2pjCidjlRmwPIzhipAfsUVmRnCiMymnETFE6Nj5ub2q5587gDwTBhg+u6GifqmkKgtr5O79oJoLaRzjHBSadjLR8Nnilks1i5wQEoigKt0IXyTLYpaeuq5fsgqGYMw4jEoMlpbGymMMoDjtLUlBmEZrp70L14ie1jKShsQJnCmOBaUriUj2Z7eriTSi8yraCZmUyxyAWTucEhqBY1hYauczruYRcmM7UxNWcKm4xm2Ob1Lv52txJFNvBych91mynk6gkP2uA4KfeuWGkbEALAnOOON28vedVrbB+nprhPYeAm4FnKFMaBXfAXNFPott45SrdMQDR2kJsp9Jrd0KtV87uuaBloXc0tfTyPJ0E1haLzaFSomsavM+WyMFeF7z4KALkB7+2XOgWr+mMZ5RNs6Uj9EDw1mcKZ96HWliL+A2Jxr1QvNTJ03fz8wv5ecyYzGzY67sOoJUUDyhTGhOvm9cIEyAZ0Xk7kORmqhVTTDYWREYyN1yQ9ucEBLlNYNzcZP3DAnIi65s5DF2OO44SblhQ5j83r3W402Uyhk7yBncTYzKm4CHG1MDbSUbcMrFuPU/7vBpT378Pw4UfaPs7O9CepyDx9D1qbRfgjrJpC10YzES/kftpmOOG2hMAKzmSmt1dKNiBJNYVsTfZARPWEdXL9A2Z2qFIqxZYprBN1HVbSCct9lD1orhsOJaUZvBV2B/1aPg99JsCN65BUVFXkBgYxteN5ALVr6rGHHsJzjz2GOUuWYOUh9q6gQWCTEwMOzqMAtaRgoUxhTCguN7LiBMhe/L4zhT4XNjY7lhsYtHS64uoJHYIYEVctKfq9nZ66/Zv9tKQosEGhsKmR7ZrXv2YtZh2xxXHjx7mvJexEU0Q0ANJsDIDcIqOehPCOXUYweA9Vl/LRgPJLr8iuLWNrInWP4+c2XTKcRxGdhMpNUDgRg/NoHdGBNOqaQqAzexVWKxWUZkpjWj2uTl3GrWaDu49a9v1LSaaQlbMnoT2VqNJir6mp8XE899hjAIDnn3gitMBVzBQ6EbXqJMlQpjAmVMaO3LV8tLuHO6H2ItPinqfob2ErDDfMZnIDgzDYBsQzfwN7IQ5v2uz6uS0zhULdTqa7B4qqwtD1WlG4rkO1MY8B3Gej3AaF7Eki68bqKB8NmCl0S5JPNEW4gLDQ5cqd1gmV5KOxIDNTyH4n3NbrRV5T6KNthhNcLazH7y3fjkJOvZ2dEZdsxHXLMih04d4cFqIDaSyZQovWGO1MpVzG7X/8I0pTU1h16KGYvXix7WMtm9fn5QaFpqtpSoJCtjwmCU7kujBXstfU7ueeazzQMKDrOrQQ5h72cH6gZVBI8tE6lCmMCfaU2FE+KkyAvjOFEjY0plumqmLOtmMt69jYBYxt/toKq42gOE5FUXgjgBaLpetMoYuaQsMwuNdjJafsxNvkmheR9EmWJXcUSM+4kHw0FkJrXp8C+WhQx1wgmHsqO5Zc2jOFwnxVrVQwNT5e+0FV0btyVWhjsUJ0/pTdisTVGAY7y310365dZpbw6e3bHR9rdR2yRmt++/RazUFaoVGrm7TDVrs5M2k1hdnubi4o3PPss9xjwxhjpVzG9MQEgNqhcate2exa0unyUcoUxoToEmVHk9FMjPLRFW94M/pWrkJh9hz0LF2G3bffav5f/cL2+zqWzeutsod9/SiNjgKoXfhZZgIU4QJhh8U829cHNZuFXi5Dr1Zrrq5C9optXqtkMtxGjA3CJsfGzMcVFyyU4grohjS1pBAXjKAEybgQ/uHMBIaGMb1nd9P9fp7LffP6+IxmpLiPBuivydcUSgoK1WS4j04wh2q9S5chI8FExwtcmYJQU0jy0XBg3+OJAwcwNT6Ogs3aYJkpZEsIfH53LTOFXenIFLIZ7CQcEIvvJft9np6c5B4bxn6FVaz1rV7L+V9YQZnCBpQpjAnxS2j3RRRPxTijGZ/yUb+n3IqqYvbRx6Bv5uRWs9Cu+z1VtTK/sdrscA3sW2w+3Y5FURTkhpzNZsRNmJ1un5OOrt/gOD6ZpKklhczG9UCwzTXhH/ZzLMyZY3m/G0Tb/4zLGtOgLR28Ir+mkD+d9vI3hF1TGKX7qGEY3OY1LufROqxyhG0vBPg3afOKKGFtd8TvxN4dO+wfayE151RLEjKFaaspZOfM5NUU8kGhSBhjZE1mBg9ubWRDQWEDCgpjQlHVlhbgoiFHpltOSwoZp9wAoBacg0K31vKAddBmNU4vDey91IKwTeKtJKSiXMvO7Uy2yYxb0tSSQnaNDus+mvQsaTvBfo5ds+da3u8Gvsa0wDszOxBrn0IZQaGi+DbLqUhuXA8AiClTCABVNijk6gmjdR4F+CbXY6Ojvte0IHBBYYdlCgFgD1t35vBYM6MnIRCylKUmWT5qUxKUhJpC8b1kv88ifoN4J9hM4cB653pCgNxHWSgojBGlRYaDvei1riIUVUWmGDwolCWBscpO+c1IWi22dvLROq1OUL38za3MZkRjB7uJl93QRGUyAzQvBEk+7ZKecaHm9bFgmyn0uMj7VRfEWlMoKTjgsp0eNnDVMOSjMdUUAvzBAO88Gn1QOLz5cPP2gb17ubk/sprCgc6qKRS/E/t277b8njSpCszm9cHVItY1henIFNrKR+OqKWSzuT29jkFh2PLRVs6jgDD3SR9NuqCgMEbUFkYDVgGWlJpCWZlCi+yU7nPD32Qqk8lwk1sdv0YzrbKjrHGMVVAoyrXcyEeD9ij0gqKqqXHhdFvr6RbWjjzJf3e7wWcKG0Ghl/6p4vN4OUhSMjEGhQHbqNTxa5LESufZGrhAY4nIbMHq+8EFhTE6jwI1g7SuefPNccVRU5jv4JpCoDaPj+7c2fQ4Q9fN76aazZq1YqqE8gndYr/AZQoTFhTqNodUSfAXEPebWcZNVySMMbJ1i32r17Z8PMlHG1BQGCPcpsbiwrA6CeKCQr8tKcLIFFrKRz3UFIo9CW2ChVxYmUK2ptBCPirWFGoW8tFKuWxORkomg97lKx1fUzZWfSOTiOxNFte8PsF/d7vBZwr9y0fFU2W3RL2QhzGHqj4D21Ayhax8VMozWuOUKSyXSqYLpZrLoWfpshBHYg+bLazDBiFh0+mZQgDY+/zzjo/j6ugyGf7762Md4OWYtXlIS4CTpx12h94ypLRBEQ/68k41hZLfVzGb7EZeT+6jDSgojBG1xSmx1UlQVkJNoQw7daC5ptDQ9cYkpKrQuoqun0vMGNkFC5wzXIu/X/ewiWslH23KFFqcxrFZwr6Vq7nMXRSwG5a0BIVyXBxJPhoH7CaqS5Z81EOwFfVCHkbGSPF5oBFOSwrnGndZWAaF9TmUyRL2rVztur5UNsOHNQeFsiTDbuDWuXK57ec1q+/Enuefb/q7na5BNeD6Z200k8yawiYZLbOni7slRX0vCNQO7rRCgWuxYvV4qa/vow8yZQobUFAYI61MBqys+zn30Zjlo2JvIP4UrwhFUdw/V1cXd9Jn5/LGZgo99Snsdl7QW8lH+UxhL78AzUxCXD3hQdG75rFBepIzZtL7vWXJaCYOuEzhbP/uo34zcJFnCiU3rwf8O+eG05Ii/ppCTn4fwxxaxypTGFXjeqCW+WLXwFZrXdqx+k6Up6e52jDxceIewc78zc8YTKMZpiWF18OuMOFaZGkZLhCMuyWF1T4w5yAflT3GNLQ3SjIUFMaIF/lo/cvt12hG5yRakoJCIVvG14p52+wrisJdwK4yhRLlowU2U9jCfbQmH22eeEvM73UvWuz4emGQlrYUocpHO3xCjxKupjCIfNTngVWcLSlkOThzga2HzVG9MTPAm/xIG0tcQSFbT7imdS1QWAwefCh3aAsAmYjaUdRhJaTlDgoK2bVzjyAhdZorgrZisHQ1TajRjBjAsgfwQTOmQbFa38WWFKz0V/b76ueQkdxHG1BQGCOejGbqQSErH424T6GIWMMW1Lqb/Z1sj/XpN3sq7iUobNUkvVWfQvGzUPPNEy/3mIg3EEAyCszdIL0lBTWvjxxWIgRV5TLtgYJCT/LR+JrXSzPr8pEp1KtVTNWDQkVBz9LlUsbSqkWSLKzWrfrGkJ17i/MXhDaGVmS6upqs7GUdBLilkxrYs9fW4le8yrwt1hU6mZRZ1fn7HYOVfDRJa4vTGqrF7C2gW+wDs/39XOA1ctTRjceHmil0tw+L2sk6yVBQGCMtW1JwQc3MxSXDfVRSbYSW5yWUQV+D/R27zaHfPoWtW1J4cB/t6eFOJQ2LoDBKqVGdJBSYu0H25prcR6NHPHDRhJNfv43YPbWkiPB0184KPyhKi4NBK6aYLGFx/gJkurocHu1lLOHbshu6bpkZsDxYi2EOZRHrCqMeTyc1sGeDvYWnvcz8Lo6NjprGQ4Dz4bbMmsL6XiRTSKZ81GmvpeabS1uixGo+VzMZrDrn7YCiYOWbzzHdfcMYY9BMIQWFKeKuu+7COeecg8MPPxzbtm3DBz7wATxv4VCVFuJqSSGteT1zImU0ZQq9vwa76Nr9vqc+hR5qgAoejGYy3T1NJ/yGYfDGQJIs673A1RQmaAETkR8Uknw0apquB03jjKW8LPReMvosUS7kuo0VflD8ZLknx8bM270rV0kZBxBN5tVuY232uZXcriYIYl1hVI3r63SSAyk7BxQXLMDIlqPMn/fu2GH5OHGPEEQ+amfcktSWFE6HJ5qwL4sau33Xpgs/hVc9/CQO+8x/hDpGfzWFFBTWSU1Q+Oyzz+Ktb30rrrvuOqxcuRI9PT345S9/ibe97W0opVRa4aumUEqfQknyUWEzzjX59REUspO83YYg59J9lDuRVpSWQZoo1XFyPcv29EJRlKbCditL6yhJS6ZQdn0rW/vj5u+enpjA7mefTdTJb9qwkor7nZv89jb1k2Xziy75IKOOn7+BDQr7QgoKw8q82n0vzKAwhMNLv8w67Aju5+hrCgfM250kH81092DeC19s/rznueesH+fgPuo10GDXJDWfN+uVE1tT6LCGhllT+Ph99+HGX/0KTz7wgP3YHK7h+j5MK4S3V/GVKYxIOp8GUhMU/vrXv8a+ffvwspe9DD/+8Y/xi1/8AnPnzsUDDzyAO++8M+7h+aKVQYbVhe9HpqWzTlUZ3qkqCIqicJMmu3D5yZSxmy03mUIn+SgXoLlwQlWzWcdF2CqoFk8mY5ePprCmUIrRjIdMYbVSwe1/+hPuv/lmPHbPPYFfu1MJ7cAqoe6jYRyqAf6y3JPj4+bt3uUrpI0livfTNihMoHy0e8lSrn9trDWFbZwpFOuTtUIB8096kfn/ozt3Wh4ayJSP2gUyfuv0y6US9u3aFcl11FRbGVJNoV6t4umHH0a1UsETDzzQZAJkPTbruZIbY4jy0Vau83UoU9ggNUHhMcccg8985jN44xvfCADI5XLon8ka7dmzJ86h+cZLSwozEPEh0xIbvnppFdEKdiJmZZd+giIuU2jz+5zRTqViewH7kSg69Sq02qyIfQHj3tBwct4EnWqKSO9T6KHX2/j+/eZhwq5nnun4BcAvVtk9Lij0LR/1EhRGd7ob1ETLjlZqESs4+egKiZnCCGo0PWUKYw4KFUXB8OGNbGGsNYVtnCkU5eOKoqB35Sr0LF0GoPbd2L97t8VjhWAoQKbQbu3WurzLR6vVKv72pz/h7uuvx6N33+1pHG5xlNGGVFMo9st8+I47Wpfa2FwzYWYzA8tHpY4mfaQmKFy9ejX+7u/+DgcffDAA4Oabb8YDDzwAVVXN+9KGJ/koMwF6PZEP65Qb4E982AnCzwLKWlHbtXRQNc1V/yanfkZ25IaGzNtiWwqrxUgV+gHFLX3SLBxRk4j8PoXuJXjsa1dKJc7an3CP1Xed/c576qHqs44sSsc43llY3rXtp53KFBsUyswUquFvjLwEhXFnCgFg3oknm7cH1h0U6Wt3SqbQap+jKArmncxISGeyUo4GKwHKJ3hVVuN5/chHx0ZHMT05CaCW5QyDOGoKxWu3PD2N7Xfe6Vhq4ypTmAT5KLWkMMm0fkg0XH755Tj//PNt//+aa67BwoULAQD33Xcf3vOe9wAAXvnKV2Lu3Lm2v1dncLCIDBOERcXIiH1Akmcao7bKFA4vmG0+V76vF9O7djY9xg72MYWBfscxeSXbVUDdG6zCBFL9s4c9v86WD74X008+ivzgIA5901m2Zg6FwUGUZ/pZVcplZCwex/3N/X2uxtI3by52z9x2yhTOWTIXPSO9yHYVMDlzn+i+Wn9MlBT7G6+XlqBw7tJ5yA8Ee5+qfe5PiMXrZWzfPhQkH5R0Auz72DNrECMjvSgOMtJun5nCWQtGXM8bmb2N14syKCwODkibQ/Nd3hpNV0olc27S8nksOXQdXw8TgCmtEXhELh+dKYVgN97zlsyV9rf5Zfh970FXVoGayWDDm87iemOGzf4lDYfGTgkK2f3JQWe8Ag99478A1FpTGBs2cN+Pwbn8HqPQ4799BDuGroHGfiG3v6Eecrumspn8KK6jvpn5t86eWY15UeY+wGpO3/3MM9g1dy5GZvbm4tjs9oHPMWOUrWpiX39gjrt9qDHceIzsz6ynOy91zx02iQkK8/k8Bhi5hIg2E8nfc889OOecczA6Oor169fjIx/5iKvn37s3+ozAyEgvdu48YPv/VaMh42wVFE5UVPO5VEY+6mbzxT6P0tXtOCbPZK3loyUl5/111CIO+/KlAIA9+6YBNDeRBwCVOcmzM5vh/uZC0dVYlJ4B87ZTULhvGpjceQDQeNki95ipmcdESFlvfJ+SVBTPIrq8jU4aUMvB3id2A1B3grWTSDcFhXv3Ytb8+ZaPJexh551KJo+dOw9AzzL27T5rCsermut5Y2xfw6o+9KCQ+XuNXJe0ObTCrAG6i7+BrSfsWbYcu3aPOzzaG6X9zBoZQ00h+39aV1Hq3xaEBa87BwCwe+9ki0fKZUppHBh0inyU3Z9k121CprsHlfExTE1MYHJsjHvslJHhrsMqGof+QWoKjXzj+p6caFz3btdULigM6XCWHW9Z5fda49ONa1fmPsDu2n3krrvQNzyM/IzUlp0r7faBE8wZR5iZQvE7Ysfo/vDWkrHxaSDivaAb7ALVxASFp512Gk477TTHxzz88MNcQPitb30L3Sk+5eec51y6jwK8iYvXTKEXy3c32NUUypapsuRcmM34kSHlGfkom/UUT7DN3jt5h5rCGL6XYouQJGLn8hYERVWhaJp54ugpKNy3L/DrdyJWc0rUzshRSn5CM5ppUVcuwrejWC1tHED0RjNKJgNj5ueqoLSIu54wCXRKn0K7z13L5TD3uBPw1K9+AaCWLXTyChDXY/9jYOWj3msK2Ws0LMWOk4yWLSMJSz4664gtmHzuWYw/+QQq5TIe/tvfcNCWLVAUxdVcGVVNIclHvZOamsLx8XG8853vxOjoKNauXYvvfOc7jpnFNMDVFLZsXs/WFHqr3QnLTh3gteGVgEYzbsmybSncBIUBjWbYxUArFKDOTCBsDQM7Dq1QiFRmZL5uCmoKw6q75FwcHf72pqBwdJTMZnxg5fAmJyj0YjQTU02hxLlN8WCSBAhBocR6QgBQlGhbUrDzrSi/T0I9YdywNYVWhh7tgtP1z7WmaAoKRfdRb1Js2zGwgWnBe+1b1PLRptYcIdXrcRLbufNw5BcvAWYOX0d37MDzjz/e9Di7fWBk7qMu5xE1wvr0pJOaoPCHP/whnnjiCQBAJpPBeeedh3e9611417vehZtuuinm0fmjZUsKu0yhR5e/MBdbtg1CUKMZt2R7+8zbboJCtwFqfrhhP87+LXaLlmabJY1nQxPmRCuLSDbXDpO6GKxUKxVuESfcYfU5ckYzft1HPTh7xhUUSj3MCJIplOg8CkSUKWS+F4VZ9kFh1I3ik4hoNNOum1WnNWH+SS80b+/fs8c0cLF6LHswGCRTmLFpSWEwrb3s0HWdMy+LQj4q7m9EV/QwXjPT04PZR2/D6re/y7zv0XvuweTYmKu+s2yfwjCb17udR6glRYPUBIW///3vzdt33303rrnmGvPfs88+G+PI/OOpJYVNuwZX8lFO+ihZPsr28fHpIugVtoG9VPkomylk5KN2EzCXKYwoS+pEmJIMWdi5vAVFzTpLsc3Xt7hexkZHpY2jU7C6JvxkCsUaU7/y0fRmCt19b+twPQpXSM4URiwfzQ+PmLeT0NInaWhdXeacbuh6Yg/6guIU4BRGZmNo02G1HwwDpakp5rGibFJOppAtsRF7Mbf6DKYnJrhrJ5JModATWvXhmOr5NWf2dwef91H0rV5rvtZDd9zBHdRnii4yhWG2pHC5D6WgsEFiagpbcdlll8U9BOmoDi0p7OrYarcD1BSGmClkCfOkl21gb5sp9BF8sI2KK3aZQrbeIJ/gTGFSg8LQarP8ZQqBWlA4e9EiaWPpBKw28Oz33m1QyNWY5nLcaX8r2BYK0fYpjCdTaBgGprjG9SuljQMQ6mpCgg8KG/Ntc6aQgkJFUZAbGMTUjlo7hkq5DC2GsoSwaXUYMP/kF2PP7bc23R9W8/qmFg+FAqozwaherTp+BqLqJLRMIbs3dMgUhlVTWL8+tUIBW778NfzhpS+EUanggNAz3FWfwhDlo1RT6J3UZArbESfJW5WrY+sy69gAIBvAaMbu5MYvbLaMJSqjGTfuo+JJmh1u5KNcppBxXq1EJJ11Qg1RkiGL0DIuTKbQaUNAmUI5WAX3fjKFfnsUAq1rsmXit+6xFUrWfZ/C0uSkuYHKDQ4iPzjo+HjPYxHMmcJ4T6mm0Bud0KuwlTR73skvsvy9JqOZrP9gyEnyyJnNtHjepqBwxg1bNk6BT5B+jW5fk32Phg45FOvf/yHL37EzNowsU+g2KGRa33R6ppCCwhhxOiV2+mKzP7s5ZYmqppAl1JrCKOSjpZL5mdg9l2qTKYzrlFvLWUt5k0RYdUNuNwRWwcr4vn2JDaKTitVGzmutc9PzeLxuYpOPhlVT6GHD2SfZebRO2O8p15NOrClkDwgkH16mFc6BtE3NZpycNAFgcOPB6Jo7j7tP0TRO1gnwe5FA7qPdYlDoXo7JyrvrhHEd6Q7vWZD3wQmnuXrdP7wfg4dsavod20xhIZwxAs5ZVDtIPtqAgsIYcWpJ4XQBepVphSnLUW3loyEGhSEZzWSKRfNUkO07aFuEblNTaLWwRYEa0mIgk9jloxaLuq7rmDiQvD5CScZqI8cdVrnNFAY4sFIidIwLaw5tVVfOwtcTypWOmuMJWUbFZQpnUU1hKzqhLUWrz11RFMw7ic8WZorFpsw2K0n02hCdDySEIMtLUGhhWhbGgaNTEMuZ44RcU2i+ZjaLrV/+WlOgbms0w7bPkjhGruxKUVyrxEg+2oCCwhjhzDEcM4X8JBWkplC2rNMyU6iq0LqKUl+HJee1JYWHDQYrIa0HerZ21Xbuo3FlCgMU2kdFaBkXH0Yz7Mb6AElIPcHX7M5kCj3K2gFn2VYrYutTKLWm0L18lHceDSkoDFlGpTtlCqmmsImOk4/afO7zXygEhRaPY9UiusfvrtMeKYh8FJB/HbUy5wpLmtlK5dO3eg02nv8x82dF05Cx2QdG4pBqcXBgR5QHjEmHgsIY4TKFDkFhc6YwQFAoO1NoUVPo5WL0Q9ZF83q/vRmtehXancrZuo/GZjST/EyhHlrGxbvRzOyjjzFvU12hN6xrCr0pGMTHZbu9Zdi9tnMIgh9JkhuczMZE+B6FYQWFzHhCeH7bTCHVFFrCBYWdIB+1WTvnHHsclwGzCkrYcg7PmUKnFg8uM4WVcplzLTd/R/JazLbGUDStSa0Vlgu5m+tz9bnvwMKXvhwAsOy1r+MOmbgxRhC4JrXnbdKhoDBGnOzInS7AbBD5qPTm9RZBYYgmM4CQKXRhNOOldo11IK1P8LaZQlv30XD/fjvUlNUUSt1c+2heP/uYF5i3KSj0htXimw1YU+j1uhE3HGEu5mHNoW4PM4Co5KPhNrDnawrt5aNxHawljY7IFLpomZUpdnOHeFYbfi2AwYpTMMFlCh3mNat6QiDcPnyZ7p6mA3hRMSRrXnSzdiuqiqMv/TZecc92HP65L9k+F9unMKy2GdleLz1vyWimDgWFMaI6uOe5zhR6NpqRW+9mVVMYduNhN5lCGfJRM1NoIZUD7IOwJMhHk5opDK+mkHEftZnURdkNu8mY2L8/sYF00tB1vbHRUVVoXbVNky/30YCHBFGd8MZtNKNXq42m2KqKnqXLpI2BJUqjGaeWFJQprJEbaKx15Q7IFDqpR+a/8MWNx1ls+N0eDHodg2bTi1nESjoKyL+OWr1fiqoGei9cva7DHKgoCvJDQ45qMXbvFFbbDC973Sja8aQFCgpjxKmehN+EiDWFjQvSjaGDXVAjA8tMYdhBIbMgVMply0nXb/DRSj5qZzTDjS+ulhRpqCnkToUluo+66M2k67qZ/VCzWRRmjaBn2fLa7xgGxvfvlzaedkZs9Fxf/IO2pPBz3URRV9hUwxOD7JnNQnQvWGjr+hx8QOFlCg1dbxxWqSoy3T3cdVtJgNoiaXREptDlRn7xy19lupDWJYosQYzWHDOFXQ2pY9XheafsgsIYmrOHIc+UOQeq2Swws24YhhFO4OphjFRT2KD9OqGmCLfyUfFULEk1hWxRc52wgyI1m0Wm2I3KRG2jVK1UkBGaXvudHDijGSv5KPPes/JRlvia16dLPiq3CXjrzbXVYjp06CaMPfoIgJqEtFdy77d2xG5TojFGM3q1CsMwWtYWB83A1eqya8FEWIu5IRwmsCYJQXFSi7CwG87elaukvb5ImJlCKxMIrVCAPhMMsvVYYatN0kKn1RQ6ZaDyQ0N4ybU3YXrnTstMuV/5aKtDH9fy0TiCwl7r90vL5VB/VBhBYdC1W1EUaPkCqlOTAGpj1GzqD73gd69LNYUNKFMYI26NZpz6FHp3H5UbsKgWG6QopD9OvQrFE2kvTqhcTaGV0QyzWbHPFMazoQmzIawswpKPKi7cR62uqaFDNpv3UV2hO+xMnFRN4641zz1UfXwfoljM+WBGbgZLcSnz4usJ2yEorL2P7Iabr8sm+SgA5AbbO1NoGIYnB+Jsd4+tdNqNWsQKdp5S83lO0g24N5qxqyn06oTaCl5dYb3XYPsAymj5wLV6gJzrUwuhV6HfumRqSdGAgsIYcduSQvxye6kpZOt/rBq+BsXq+WRvnKzI9tn3KvRrSwy4kI9yNYV2mcK4jGbCcR2TSSTW/i6Cwnr2feiQQ837KCh0R1gqBn/y0fANAkJ1b3Y4GGTh21GskDoGFju3QBlwm9mZ7w27fvCZQgoKASDXP2DebsugkHXSzGQCyaL9rn+tAgk3mULDMLhrtHvR4sb/xSAfDWK60+o1ta6ilHlClTxGIECmMELTsqRDQWGM+HUfzQin8W4t+DNM/Y8srAKjKBb0HGM2IzqQcpsPjydalkYztu6j1gtYbEYzhXAawsokNPkok3GxO5m1+hwHDz7EXBAmDhxwXQvXyTjOTYGk7d4z7GxQFdYJr18nYze4yXADfFDYF2amMMQ+hVafNbvhZiGjmRrtLh+V6TjrN1PYKpDgMoU2z1uamjIDxmxfPwpz5vgaixvcrKFB6itbv6acQ2/OJVXSfiXI/oIkpDUoKIwRp1Nipy+3MlOkbz7W4YIKUzoKWNcURiIfZTKFonw0yEaTlY9a1RRyfQqFOkarx0RJGCdvsgnr++h0wGL12vWeeJliN/pWrzHvH9u3T9qY2hVZKgbxufwoDCKXj9rU8PjFdaaQlY8uDzFTGJF8tL6m2SlXKCiske3rMw05qpVKYg3E/CIzC+83O9aqB6kb+Sh3aLNyFdQsE6CGebhio0oKM1Moy0gwdDMcj/sLkpDWoKAwRhQH+Wgrnb3bE3luIWYCKVmoFmYrUdTUsW0pnOSjXnrVAF7lownLFKauJUU4mUJXRjPMZzR4yCbzNklIW+O2h6orZ+TA8tEIgkJOeSA7U9j6e1sulcwskVYooGvefKlj4Majhuc+avW9sQ0KPdSBtzOqpvF9edtMQiozC6/m/LVh8CQftXleXt69kleuhCkftc0UMkGphCxcGGoJL70Kn3/8cdx6zTV4evt2x8cFCgrJgRQABYWx4jZTaPXlZoNCp80Xm0ULI1izzBRGkClzWiiDnD7m+vvNjWa1Umnun+XGfTSulhSCfCZpE5vo8iZXPtpaOmT32kOHUlDoBadm024VDJbP5ScoDFHuWCcscySgtumvY/e95Tacy1eEWvcXWaawux4UNstHM8XuUP/GtJFt47pCmVl4v0oZT/JRu0whZwS1ku8/GsF1JCLbdC6Mumq3n5dhGHj0nnswNT6Ox++91/EaCDJOko/WoJk3Rly3pLAI5lxnCiU7RolYuo9GYLTi1MA+yCZOUVXkBofMn8ulkq3rlm2mMCb5qKKqvusqooCd+NVczlZ+6wcn06Y6dgctQ5Qp9IRTYB91uxx2Do2iplC60YyLWlguKFy5Wurri7Cn5ZFkCrusyg+oRyFLO/cqtJL0+0Xz2ae31V7LTVDItYxZscrVIaVf3Eg5ZZvOhXGY61bZND05ab5+q37CwWoKw1NJpAkKCmPEb0sKgD8hcltTGIYBTBx9CgEhUygazQQsXmfNZqYnJszbWlcXd7JvFRBrhQL3mKhJcl1hqNb+mdZyHbtrYeCgDebmfGp8vC0NHWTCB9cS3Ud99SmMuKZQ8tzmJqidiqieEAjXzdXqsM5KPko9CnnybWw2I70h+gyRZwoFd2C3rWb84OY9Y/dlsuWjsuZAt2MU+z9OuAwKKVPoDwoKY8R1SwpJNYVhyBqtagojMZrpddmSwsdYCkxd4RQTFIoZQCv30bj7ayW5gX24GRd/fQqB2nvWv269+TNlC50JzX3UT1AYQR2ITIdEEdXFYYZYrxQqrBxX8lNbZWQs5aMUFHJkBxoHoOU2zhQGDgpzwTOFVoeVrdxH9Wq1sU9QFPQsXc6tR9L7FHLzkfXhKrsvky4flTQHus0UikGh60wh1RT6goLCGFHdtqSwrCnssXysSNhBYVw1hU7N64NmR/M2QaH4XFby0bj7a/mV0EQBW/vq1QCoFVyfQo9GM4DQr5AcSB1xur44o5kWhxJijakv+WjqM4Wt5ZpRBoWRyUfNmsJ4lCZpop3bUshUMvkNhFqNoVWfQnaP0LNwITJdXdHJR2OoKZSVyXfbNqMpKHRYn4O4pHJriaffbC8oKIwRO/mooeuNi0RVoXVZnKa6NZoJ8ZQbADTLPoXhn/TmXLqPivI2V8891KgpZOWj4iRj9bfHfcotuz+RTKKqzXLXkkIICg/dbN4+sHev1LG1G041u14yhbqum4GHms1aXk+tYIOqaIxmos0UGoYhtKMIOSiMyGim4T5qlSmkoJAl3yE1hUGvLb+BWCun91byUTZoGVy7tjYWF4eUfnFjziW9pjCgIZgVblVNTfLRAwfsD35Zp+gA8lGqKSRiwU4+KsoDrBrOJyVTqFpmCiMwmgnJfRQQ5KPMhkyUaqgW8tG4T7mT3JaiHKITruI5U8i//iBlCl3jLB91Ny81PY/PDWGYma06YdZlt2pJMT05aW5w80PDXC11GETVkqL+PmYsMoVRrB9polOMZoJ+7mJbIrfBWKv9Qqs5jQsK19R63iouyhn8oruYj8KsKZSVXHCdKWT2YMCMXFe4r06gmsIInKzTAAWFMcJlCpmLws1myW2T6NCNZgoWdXVRGM2w7qNORjO+5KMNoxmuprBJPhqP86oTnNFMwmoKWYe2niVLpT4326PKq9EMAPSvWWdmLUqTkyhNTUkdXzvhunm9l6DQ55wRuXxUdqawxfg56eiqcJ1HgQiNZhz6FMZdl500sgMD5m2Sj9qjKIovpQxfU9g8hsLIiHm7ND3d9P/sNTqwahUA/1lLN7iRSGph1hSGkCl0UveUJieb7rerK5TVvJ6CQiIWFJteNm702/6MZuRLG+Oqq8v2uTSa8RGk5YcaQSEbHIiToWbxt8ctH01ypnBSsO2WSdCaQjWTwcDGjebPZDZjj9Oc4vawSnwevzWmYfYDqxNnpjBSkxkIZguSn9ttn0JyH+XpGPmohM9d89GSqZXkMD88C5hRa1VKpaZ1lc1kDayuHdxEZTRj5+KthlpTGJ18VMwS1rGqK9R13fzMFU2zPHByguSjNSgojBG7jSzf0NV6omQvTLdBYRg1hWo2a06YtTtUaF1F6a8jwrqPVstl+/cvoNEM95pCfSKbnQryejJRE2w0E+YG16v7qNW1MHQw9St0g9Mmym2tMyApUxhF8/oQ6mnqqDZqkTqsTKoviqAwqprCelBo2aeQMoUsuXbOFLJziYT9CZuh85UptPjuqZkMtycoC9lCLlNYDwoz4bSkEM25bOWjkvsVh9K83kXgyr63bBLFKlMoBstWZVdOkPtoDQoKY4QzSbCRj9pd9EmpKVQUhTvxyRSLni9GP2iFgnkSZBgGd9Iks08hS7N81CJLSi0pbGEn+L6VcjOF3msKLYLCQykodIOz0Yy/mkK/jaujON2VWfck0qr2iDtICdlkBgi5ptAiuLbMFJJ8lCM32CmZQglBoY9DUTf7ra45c8zbrIS0XCqZgbqWz6N30aLaOCQHZexz1dc3RctY+hoAgOqit6IXQm9JYTNGtuRkzrHHmbetehWmwck6DVBQGCN20ievNYVOF33YQSHAT8RR1tRlbRxI+c2H980mKx/lXs9NTWHcmcKENq+vlMsozyyeai6H4oKFUp/fq/uodVDYcCAdGx3t6IXBCaf5yXdQ6FM+GnVNoWxpYyv5a+Ty0YgyhVmnmkLKFHLk+gfM222XKZQdFPpw3XSz3yqMNILCMlNSwtXJL19hHqqEJWsXD6jsDuA12e6jIbeksFuz2flvwYtfYn6+05OTTddC0DGy9dQkHyViwa4lhZuJktWSu5aPhrTYsrV1UdaDZG3MZoL+zTmboFD8LBRFaQoMY3cfLSQzKGQn955ly/mMhATYRdjO2p89PLFa/HuXrzCDk3KpZFng3umwdRtW7XKyPmsK/RvNRFtTGGZLCnH81WoV0zPfQUXV0C3ZnMmKJPQpjNusK2lk2aBQKJVIO7L3J34MXtwoAQqzZ5u32UyhXZ08Wysscx12+36FWVMYSksKu6CQlc+vXou+1WvMn8cPHLAfYy9lCv1CQWGM2NVBuem1wl6YruWjIclyuExhhEFhzqYtRdAJTMvlOCMb87ksirpFCWncGxrOijqhQWHfSvkuipxcx2JCZ68prdDFuT7WUVQVgwcfav58gCSkTbRql+PbfdRvS4oQ3TLrzxlu83r7oJatJ+xetMhXH0fP41Ebn6fMd5MzgWAOE6yNZihTyJLp6jLfJ/FwK+3I3p/4cd10k2Fig0K2pnDSpuaXC07DyhQ6XCdcTaHslhTSgkJniathGE0lJwMHbTB/Fs1mAmcKqaYQAAWFsRIoU+jDfTSsLB574hPlgs6azdgGhT4XGiuzGcvGtsJGLW47dU4+k6DNQ9gyuFaF/fw1ZR+4D7H9CikobEJvcW35DQr9zhth1xQaum4+r5rNSg/MOJmZ6GrIXjOSa3DtCOu0XPys64cJ1plCch8V4eoK20hCKnt/wh7SujkUdXvo0zV7rnmbdSS3W9fcGJ/5wa1bq5/WHK5fN6I+heXpafN1sz29yM8a4YNCoa4w6BjJfbQGBYUx4qam0K7onr3fTqYV9il3HT5TGGFQ2M87kAIW8jaPtsR1rOoKrTauYqF33HbqmmTZiCzCbEcBCIYdVplCl5sPsa6Q4Gk1n2hFvtbZKbBIQ59CN/bvQXDKFIZ9zViOJyT5qN0BgFWmkGoKm2FVMeU2MZsJY3+iepRtsgenaj7P7clYbDOFdkFhSO6jblRkgNzWVK1KBvzSqk+heCimKAoG1jeCQtFsJughY9iqk7RAQWGM2PWocnMa5Mb63e2EFxS2pjCMjZMdOQujmVbyNrdYOZBafRZiTWHcGxo1H17T3CDwMpC4M4Xug8JOXhysaBVcq5rGtaRxa4LlN1OohlxTGPahmtP3lnceXSH9ta2IJFPImApZHdqRfLSZ3ED7ZQrD2J9wgYYLpYxbp3LWaKaeKTQMg5OPsu7ArfqP+sVtNowznAuoGJK1pxJp5T5qFXAPrFtv3jexf7/UVmRh9mhNExQUxghb12TXksJePtq6pjDsHoV1YpOPWtQUtpK3ucVKPmr1HooN7OMOClvp9OOgafEMIeuhtliE3QYgxYWLkBscMn9nyqZ5bqcSlrTdf01hdJnCMFQAbmsKo5KPIqSWFOy8nGODQousQ9xzaBLJtWEDezHYkIFX91G37WasWlJMT06a+7b84BDXT9JrxtItbtcxv94CVgcOYflStDLDsVJK5IeHTb8HXdcdyoa8f5/IaKYGBYUxYrchcNWctKvLbBrPpfcZeDem8GSN7MUd5YKes3AflbWJyw8NNd1n2dg2L7iPJqmmMCGZwumJicbiOTTMSaFkobRwH3V7iqgoCvUrdMDNQVOU9c5h24gHdbRrhWojexZNFqLLFIYjoaraBYXkPuqKduxVyG/iJbU58FhTyLWvctgjifLRputzFW+e5qZFkh/cBj6qR8MdwzBw/y234K+/+Q0eu/de29eUeTDWSuJqpy5iA1OZ/ampprAGBYUxYmdHzk76dicziqLw2UKLrFAUJjMA7/gVbUuKZqMZWZs4S6MZi0k4ye6jSQkKuSzhKvnOo0DrRdiLVHHokEZQSA6kPNwmyua7nnHZlkJKTWHIjnHc31uUHxRyZmPM97ZSKplzmtbVha6586S/tuV4Qno/XctHFSXSEoS00I69CvnvhCTzkpy3DB1bH8geMotkenrN+le9WkW1UnE0gnJqNRME1+6jHvcB0xMT2P3MMwCA5x57zP41JR6Mqa3ko5y6iAkKi43yBLtWZH5c8Ml9tAYFhTGi2DjPuS0mbnUiH0WPQkDIFEaYKbNqXi8tU2glH3XjPpqkmsKEyEe5E7+QDDNaWYB7OZVmM4XjFBRyuNmUsKe0dvXO4nP5zhSG1CS6TthzqCh7rv8NYj2NrDqeVsjuH1rHPlPIy0czxWJkf2uaYKWJbZkplHSYzJZzuAmGJoXm83YoioKCICF1yuSzwWlYmUKnbBjXksLF67OHn9VKxUG5Fk6mUByjruuYmpio/aAo6FnWeH/tatYD1xSS0QwACgpjRclYn0y4/XKzm5RWQWGYwQp7cUeZKePko1aZwiA1hVbyUYvnazKaiVk+6nVRjAL+RFW+yQzQ2gLcy7XQs3SZebvcJqfysnATJLmpdxb/LxXuoyHMoYqqmmUALFz/s6jqCRGi0Qx70MkEhWo2ywWicR+qJZV2rymUtW/wKh/lDyyd1yZOQjo1xdX8ioedbKYwrJpCx5YUBW/eAgf27uV+tvW4kLi/cfI/mBofNyWcxfkLkGFqj7lMoZ181FdQSPJRgILCWLFzznN7MsPKbFrJR8NcbOcedwKA2kU15wXHh/Y6IlZGM7IWGjFTqHUVLU/R2aDQril6lISdOfFD2D0KgdZyHS8LBpd1TEhgnRTcZFz9yEd99ykMqYVCnUha+lhIn/ksRDjXjBVRuI/mmPdRURQuWxh3S5+k0o59CsPIQHmVj3pZm7pG3GcKI3EfddmSojw9jQlmrFaMCUGhzAycHU7+B07SXHbfyypRZPYpTMreKQ4oKIwRxaYOyu2Xu1VbCl5qEN5iu+SM1+LkX1+D0264DT2Ll4T2OiKWRjNsDVCACUwMCrM2Dc+5dhwJOOXmpFcJmdiikI/aXUt1vCxsrZxMO5nQ3Ef9BoU2agtZROHgbHWgEcVBihWR9CkUDD3YukJZMsJ2g6spbJdMoaS1miVIprCVKzYrH52emMD05CSA2jXTzahLgGiMZpwcWwuz55hyWF3Xcd+NN3L1kyy6rmNs3z7+dSRm4Oxgr3unoFBUSthmCl2WXdlBNYU1KCiMETHzVK8pcbtZyiREPqooCoYP3YzuRYtDew0rWhnNBJnARPmo3WaFreGTZasdBO60K8Zx1KlWKmZfJ0XT0B3SoQHb40pvlSlssblPooNrUnCTiXcTFBqGwZ1G+zUXiVQ+GtL1zQW29UyhTf+zsFHUxqFSaEYzwrzMbg6TMIcmkXbsUxiGLFHzMHeLa1PPkqWOj2d7Fe7fvdu83b1oUZO3QFgHi27fM0VRsPU/LzWz8FMTE7jvppsslRvj+/Y11/RFkCl06lPodCimuTKaIfmoXygojBFFUZrkfrqum19INZttmmxYkmI0ExetjGaC2Fxnuns4dyy7CVjlMoXxn3InTQLBFfIvWcotljLx4j7aMlPo0FC803Ezp2RtLMPtnidTtJZmuyF099EQzDBEuPqjmYNBrkfhimjaUQDCxkgidkYzAN+rMAlqiyTS7i0pZO1PVA8GK17XJramcP+ePeZtqx6iYa0hXrKrw4duxlFf+4ZZs3xg7148dNttTfOkVdsl20xhSH0KxffIKYPLKeRsM5o+3EfJaAYABYWxI04eXk7PvLSkaMfFVuvqMidyQ9dNq+g6QRYaRVGQHx5u+Vxs0J6EwFsJqfm0X5x6OclEabEI6x6+F5xzXALewyQhSz4qa24K+3Q3ioM18WCQ6+s5awTZ3j67X5U/lghqCh3lozEbdSUVVj7aLuZXYexPvKg8vK5NXUxQyI7dSnbK1TZKvI68rGMAsOCUU7HpE58yf9797LN4/L77uMeIJjOAU6ZQ3sGYnfMyICol+EMxVy0p/NQUknwUAAWFsSNuCLxMlJzRTCv5aBsutoqiNGULZS40+aFGXaHdc6lJqylM2MTmxd0tCK0COS8ZZNZohuSjPO6a1zvL2pueJ8BGQ42wpjCsOVQVWhNxzqMhHqRYokTQvL5JPsoazcQ/hyaRbG+veeCnV6ttMS+FceCieagp9Lo2FWbPtbxfDFqAEDOFPgK01W/7e6x66zvMn59++GGuF6G3oFDe9VkzmWp2IC2XSqZEWsvnUZy/gPs9zmhm5ne87p0tx0PyUQAUFMaOuKnxslliJ9KWRjNtuthyDqSVitS/OT/kIlPI1BQmIShESH3G/MI3oA3PWr/VIuxlwWhlWtPJ8PIlF+6jbjKFATJhUcpHo8oUxuU8CoS3MXJvNJOAOTSBKKqKbJuZzYRx4OLFfdSLyQzAy0dZrOSjYa0hvOzeff3toZ/4JOa/+CXmz9vvugt7n38e5VKJk6qbrxOB0QwgNLC3cl5esbKptMDKaMZL2ZUdSfNjiItk7SA7EFH2xm+WWslHPWQK23SxZaVVVTFTGHChYeWjdtklNlMYpsOrW5Kmi4/KRZGVorQ0mmklH9U0biFKwvuYFDwbzbioKQwk8w7baIYNgkMyQRHrYaPo62k7lpDmD8eaQtZoJgF12Uml3dpShNOSwn2fXq9rU2HWiGVPUassYxhGM81JA/fzpqppOOqSr2Pw4EPrT4b7b7kFzz/+uOXjZbZ6cEKzqCvk579mpQRrNFMfpwxDsKT5McQFBYUxozrIR1sFGa02X2FMukkj1+8gHw24iWPbUriSjybAOS9JE1tT1iPETCGbbYFQnwB4PyAhB1Jr3DWvd26VIz5PWmoKwzpYUzSnTGF0JjOA0JJCIs6ZQsZopg3LHGTRbm0pwqkpdCcfNQzDs4pFzWY59RBQy1oV5jTLSsNoSWHourmuKVqGy7K5IVPsxrHf+zGKCxYCqEkvxfrCOrrEVg9OcOvszOu0Ctat+nPLqHukg+AaFBTGjLiJ91RT2KJ2p91rCoFmB1KZC03v8uXm7e6FiywfM7Jla+P2UdsCvZ4MFCU5RjOlqSlzos/29XGZV9k0OfkKC7HXE9ZWxjWdips5xXNNYYC5SQyoZBPFwZqa5f8GNgvUNXd+KK9pP5iQMoUOG0tyH3VHbmDAvN1umUJZnztbzuF0mMevTf2u1yZRQtq7fCXfG3gGzlFY0vohHnhbvW4rumbPwQt+cFnTwQzAZ6Lt5KOyr082U2gnHxWxMpqRoTyhmsIaFBTGjLiR9fLlznoICtu1ppBrYF8uC5uPYJu4pa85C8vOfD2WvvpMLH3NmZaPGTlqG0688lc4/rIrseCUUwO9ngySlCnkG9Cu9rWIecGqCTgw40xbX5hVFVpXUfzV5ueiusImdF1vvBeqym3mWbwGhcEyheGe7kZxsMYFth7XAPljCd99VJSPLjzlNAC1+qJ5J5wk7TXbDa5XYZtlCmW1OmBNwpzmbW5tWuV+bWJ7FQL28u4wHKxlzQv9a9Zh2ze/x6trAIxsbRxqy2z14IRWsKgpZI22LDK4VkYzrCIlYxHwuiFJe6c4SW1Q+M53vhNr1qzB5ZdfHvdQAiFuZL21pKCawmw/38Be5iYu292DI7/wVWz58te44JNFURSMbDkKc449LvSgxw1h9RnzA18bEJ50tA63EDMbgqaeeC4+J07W0sELBAtnh+5wUp1tk5pCwzD4zUZIc6hYfxTnvB3G+8keJiiaxtUQAsDC007Hqdffipfddm+T0yDRoN16FYYiH3WZKfS7NnXNEYJCG9lpGEoTme/XnGOPw+H//kXz58LsORhYd5D5s637qOSDMa5XYbXqqkerldGMl7IrO5Lm3B4XmdYPSR4///nP8b//+79xD0MKiqP7qPug0KpJtJdGp2kl28tkCiW7j6aRJOniozKZqSM2Aa/j50RabBNAuHe+8+w+GsCgSdX4WlKZcDU8mYwvRzs3OJUQRJ4pDEF+Ln5vrA4Tepctb7qP4OFqCttMPhp1Swq/rZKa5KM2v2vVgy/oobHsfoHLz3w91EwGT/78Cqx++7uw9847Gq8lsdWDE5pQuz/F9GgtjMy27NGqFZtr1mWMkeSjNVIXFO7atQuf/OQn4x6GNJyMZlrWFDL/L26+6s3cAQCK4sm+OE3kmExhaXqaOZH2XojdDiQ1KLSSgcjGzgbcz2LKZgopKKxRdSnRiat5vezvexjyNis451y2B51LqbNMwpDjdoJiJQraST5qGAZ3kK1J2p+w3y+n98ivAVqTfNSmZYyiKFA0DQYTXAUOCkMwfFl6xmux9IzXAgD2P/SAeb8usdWDE2JNoZsMbqtMoV/Dv7Ccl9NG6uSjF1xwAfbv34/VqyNu6hsSji0pAhjN+JHMpRHWaKY0OWne9luInXrU5BjNcO5uEVjriwcsdZycD22fy2VtSifhtrZEE2o+rBZYefLR8BbyqIIZtqaQ3cjGMW+HcVru5/ojmuGCwpRnCtnvhFbogiqp7MFt4OxXxdIsH7V3B5a9hoRd38weQOkSgy0nVLamsFp19bmwQaHVOH0bzZB8FEDKgsJf/vKX+P3vf4+zzz4b69evj3s4UnBuSdEiKLSw5jV/7oB2FADfkmJaCAo7kaQUS1erVUxPTNR+UFX0LA1fHmZnDuNnc886QlJNYQ2376OqaZYbDLvnChIoRJYpDDGYYb9r7GY/Dvl7GA2cZcveOpX84IB5O+2ZQv47IW+tdhM4VyuVxl5BVdGzdJnr5y/MbgSFhZHZjnsr0VU4KGEHaBnGOExmqwcnNKGv5JQLdRG377XsU0jy0SAkRj56+eWX4/zzz7f9/5/+9Ke46KKLsHjxYrz3ve/FBRdc4On5BweLyGSiN+EYGXG+kHIF5jRJCAqHF8x2/P1KT+Pjc8oU5gf6W44jrZQXzzNvl6amzNuFNv6bndCHG39znEEhWyzet3gx5i6c5fBoOWQL1vUk7LXQPTTg6nuR62puqtvpsAdPrd7HXG8PJidrhwLVSgWa4HTHzXPzR3xfqzsGmA1AiEFhV4jzSaHY+K6xm/3CgLvvqkye6m1sDMOQjxYHanL/Tpybg1JZ0mhPUk57UMjMJYV+edeWPsS3K7CSbXJr09Klntam3hdsxbW9vSgfOIClLznFctz1+7RcDvVPSXamsG9kSPo1NDZnyLxtlYELY09V7G/M30a1yqmLFm7eaPl61f7GOl+dUaKw4xyYM+xrnN0hzH0A0NOdT9V8l5igMJ/PY4DpwyPy7//+7xgdHcWXvvQlFAT3Mjfs3TsRYHT+GBnpxc6dBxwfU2WStaJ8dKKqOf6+YRimbr1uu6/OyAfZ51G7uluOI62M69aBsdLGf7MTo/umWj8oAlgZSPfylZF8FjpjkmFnNKNnC67GoitMxiTCoPDA3r0Y3bkTIwsXolCMtp6sFdz7mMk7vo9qV3MvKbvnGm8xzzkxNtHYHEvPFDIbVyPXFdp3uKw3Nq1sUBjHHDYxyXxWIQSFRq628erEuTkoE2hshttJPir7e57t70d53z4AtespK9TBBVubMjjxql9jz+23YeFLX9b0u9yez8b4zC/se1bWctKvofEKs35aBIVKV1H6a5aNxjor1hTqIwttX0/NZqGXy4BhNO2bp5Wsr3FOTjPzvefftmdsfBpI4HxnF6gmJig87bTTcNppp9n+/5o1awAAb3rTm7j7zz//fFxxxRX43ve+F+r4wkJsvuxF6qYoCjLd3Sjv3w+g5sRUN8jolOJ+u1YRneg8CiRHPuq3kD8IdjUcflx4OfOPCIJCwzDw9MMP4/H77gMAjO7YgY3HHBP663rBW72zc1uKNLSkiMoFlHWgjl8+SkYzSaWdWlKEeW3lBgYbQWGp5BgU+lmbBtatx8C61uVLsh2swza+0lrIR/22enB8TUbdUy6VTLWXksmge9Fi+98rFqHPfMbValWKm7WSID+GOElMUNiKk07im9ree++9ePbZZ3HQQQdh8+bNMY0qOKpTSwoXF36mu8cMCqvVqvmBRuWcFzfZfuugMKxG00mH3dTFObFF3Y4CaLYBr+NnA8IFmCG/j9VKBQ/dcQd2P/OMed/+vXuhV6vSDBhk4OV9zLZoYC+rViVMt92oghm2lQpnNBPHHBbCxqjT2wTJIiu0pJDhaBkXYV5buYFBjD/+GADr4NlvOwqv2NW4+yXs+j62plBmqwcnWJfv8Zl9LAD0LF3GBdUimWK3Gfjr1aoUZ9akHKjHTWqCwksuuYT7+bzzzsMVV1yBN77xjXjlK18Z06iCI9roe70IrYpuxdvtfDqb6e6BoqpNk26nbj6S0pKCdx6NKFNoczLr5xRRzclvPmyFYRi458YbcWDPHvE/MDUxgWKC3Bq9vI9sQKO3CAqDHFrZOc7KILKgMGsTFMaRKWQd+CQ9Z6esRWGj5XLIFLtRmajNrdVKBRnmu5MmQs0UssGzRVA4EZGKRfbBYthGM63cR8PYU7EtKSaYoLBvpXN3Aa4thdCfWkafwk4OClPlPtqOqAHko+JjuKCwAxrXAzUJrVW2sJ3/ZieSYKtsGEZkp7EsSkiZwjDlo6WpKS4gZBf7yQPJqkOQJR+V2RA5TMc47nsTYp9XriVF7PJR+fNHp6hWoiDH+C6kua5QhtzPjhzr0iq8R+LaFGarJIV1sJYtHw1hbmjpPhqGZJXpJe3lcxEDWGpJIY/UBoWf+cxn8MADD6Q6SwjUtNN1uIbzcHcRZm0aRXeSZCfb29d0X8e2pFDjv6TLpRKqMye0mWIRhTlzI3ldVoanB2xJwS7oYWYK2ZPs3uUrsOysN5o/syfaScDLSbVTA3tD181FV8lkuI2BV8JcyKPLFNr0KYw5KAxDPkotKYLRLnWFYctH64jvUWl62txjZbp7UBiZLfW1WdRMiPLRGPoUhrGPVG1MI1tlcB0zhX5bUrByVQoKibhgF2F2AnPb0NXuRD7Mk7ikkbUwm+nUE+kkSCDEQv6o6l5Um0AuyTWF3Nj6B9C3qiGbmUxwUNjqfXQKCmVmjqIymgkzmLFrXh/HHBaG/FzvENVKFLhtzp50IpOPCplCTsGyanWoaxNXgiBDPhryddSqKXwYr6kJJkB1epevcPw9sUe3lExhCCZbaYSCwpixrSdxmeliL1S9QzOFOUv5aHsHwnYkoQErLwOJpp4QAJRMa/mo21NEtgA+TPmoeJ2ytRRJDgo9yUcdgsJMwJpJ1rkzVPloRDWFfAAV/RwWRlDIHwJ0poJDFk4BT5oINVPIZFPFfo5Rrk2yM4V62Fm7bNbMlhmGAd2Hx4Xn18xbZwrtGtebY2HmEVE+6nfeJPloDQoKY4ZNWXOnxC4vwEzRpqawg4r7rTKF7f4328KcfCYhU9gXYVBoZw7j51qQbSduhxiw9q1qvF+TY2OJWpw4h7cWwTX7/7pQU8gHWwGDwqjkoyFm7bjAlqEt5aMdquCQBZspTHMD+zDrTLlsqlOmMORa91DdR0O6jjgHUjEDF3JNYZ1cfz/yw8OOv+csH/V38JSEA/UkQEFhzKg28tGMRZ2cFXYn8p2eKWz3v9mO5MlHozGZAYST2ZS0pODG1tuL/KwR5GfMJKqVitm3KQl42ZRkHFpS8JnClMhHQ8xwsd9blliMZthMoaTn7KQDyrBhTVSqbRIUSs8UOriPTkWZKWQVANLdR8O5jti6wqb+fyEoFzSLmsLeFs6jQK1PYZ3y9DT3fE6tLJxIwt4pCVBQGDOsY6If5zl3NYXtvRBbZgrb/G+2Q0lAX7s4GtcD9iezfhY2NusYlXw009MDRVEwsGaNeV+SJKSy5KMViQ2RlTBbUkjofeUGxWYTE8ccFnamsFMP62TBBjzlFMtHw5RCcg6tQlA4EeGBpdhuLAhNPaxDuo40oVdh6EYzFjWFboL1jE1QGOTwjoLCGhQUxoxqYzLg9vSMvVA7Vz7anFXt1M1H3H0KdV3H9MSE+XPv8uWRvTa7ubZzH3UrgZFdD2KH1dgG164170tqUOjJaMZBPhp0blJCaLZehz2kC7d5vXVQmI2hR2UYclxyH5WHWEuVVsI8tOYcWplrWK9WG2uToqBnabhrk51yxQ+iY7MawLHZCdFsJnSjGYuaQjeyXtZopsQGhQHml7j3TkmBgsKYYetJqn5qCkk+ihzVFJqwm7o4dPFTExPmhNo1bz43eYeN6qJPoeuaQuYEM7KawpkgYDANmcKW8lGX7qNBg8KQTncnDhzA1HitSbiSyaC4YKG05xaxzRTGLR+lPoWJw85MK22EGRTmbRxaJ2euZwAoLljI1c+FgZ0bth9EKXtYrqmO/f8iqil0oy5ig1e2xCJIjTrVFNagoDBm2NOkMuc+6u7LzW667dxH2/101rJ5fYduPuI+7YrLZAawzu7p1aqvnnh2AaZsrAKkoXXrzPsmEtLAXtf1xsZGVTmZkRXs9ac7BIVBr9OwgsLnH3/cvL3gRS+xPHiShW1NYSzyUfmZ105SrYRNVIdVYRPmoXVWqCmszwtiO4qw4erSA35WrFTYqi+zLMQG9uG7j1oFha0zhXY1hUG+SyQfrUFBYcxw7qM+5EqcoQMjJ6l00Oms1Yat3f9mO+LutROXyQxg3RfK70knZxIQZqaQk4zXDm+SWFMothVodVLt1mgm6IaQld9L66un69jx1FPmz8tf90Ypz2uHfaYw/fJR7lBGy1jWEBHuiWpeCpswg41MV5dpYGLouimzjbrWXZFoNMONfVl4slfNwX00HPmoEBSqKnqWLmv5e6zrfklWTSG1pABAQWHssPUkug9jg4xFTaFYlNzup7PUkqJB3EYzcZnMANaZQr/XgcxTXies2jz0LVtmbv5KU1PcAU9ceFUeZN3WFAbtUxiC5Gfvc8+ZB3Rds+dgzvEnSnleO2xrCmNuSSGl4XZEsrdOQXabg7gIuxF7zkJCyqtYwj+wlNnWKKr+ipkuvtUD1zc1FPkoX1PYvXCRKzUP15LC4mDVD3HvnZICBYUxY/dFdJ8pbK7d0XXd3CB5kcylFdFophP+ZluUeDOFUzFmCq1OZv32xLPreSgbqwBJy2Y5E4QkZAvF1hmtiK6mUP73/fknnjBvL3vdG7m2QWFglSlUczkuAIgMVe6WoJNq26MgqlY5YcJm76AoodSdsyUl9QMetqYwigNLmZ9VVGUZbKaQlaxqha5Q5kFRPur2b2ODQu7+QPJRMpoBKCiMHbuF363Uzcrlr9MWYrFPYadKR4H4i6XjrSlsPpn12xOPNXSQ0WPKjoqNuRR7GjyZgLpCr5lCt0Fh0moKpycnsXfHDvPnZWe+PvBztsJqDYirJjrUTGEMbqrtRlStcsKEyxIWi6Fkj0WzGcMwuHk0igNLmVLfqBQ4tq0eesIxjBMP793+bXZBYZC9H9UU1qCgMGYULZjzXNbC0KGTTGaAZvlop0pHgXgntkqpZJ4uqrl8qI6NVlhJq3h5podMYVTyUZsAiQ2ovWQKw/rMvWZctSJvnW/nBhvELQ7g508Zf/uOJ580b88++hj0LFka+DlbYaUWieswT3aLD5mfNRFdq5wwiaKHMicfLZVQnp42XzdTLKJr7rxQXpdFlnzUMIxYMoUlzsAlnGtXzBS6DdY1m+xyoExhzM7tSYGCwpixMxlw35Kiuaaw0xbibG8vwJw2xtHfKykogvwrysCQO81cvrxpLGFjZdfut6ZQi0E+yn5ve1c23PHcBoWP338/bv7tb/Hso4/KG+AMXtUHqqY12ZtbPVfgPoWSM+O7nn7avL389W8K/HxusMwUxjSHyXYvroZck9RpRHVYFSZepeh+yAoN7EXpaBS1rZxTbIBrqVIqmYoSrasLXfPmBx6bHWxNYVlS/z8nxJpCt/WStplCch8NDAWFMWNnMuC6JYWFTMuvZC6tKKrKLS6dvPlQFIULkKOEL4YP3/JbxKovlN8AhJOPRpUpZMbXt9pbUFipVPDUQw+hXCrhiQcekDtI+Hsf3fRQlRkUBl3IdV3n3uv5L3xxoOdzi1VLirgk8Nz7KeH5Oq2UIWw4+WhKN65RKJnYTGG5XI7MqIVFkZTVnRDq9MM8bOVqCiW1enBCdCN207gecKgpJPloYCgojJmgjYvVXM58DsMwoOu6YB/fGVkztndPJweFQHy9CtnTWLeTu0zYU3RroxkP7qMW7S1kYxiGrbsb+/5Njo+33FRUSyUzU1YplZocP4Pi53TfTVAYNPiR+V2fnpgwn6NrztxQ+4GxKJlm+WhcEnjZmVfRfZQIRttlCkP6nufZTGGpFEutu6zm9VH2V2TVHVyrh5A+J0VRMOuILQCAgXUHoTBnrqvfs9vjBZOPyu/RmkYoKIyZoHbkiqJwj61WKh3VjqIO6zbW6SfScZnNxNmjELCpKfRZvxLF5osdm+julu3tM+teDF3H1MSE6+cCgAqzoMuAs/0OYIIFyM0UcnU7Ab/r3In8qjUOj5SLZaYwJtm/7F5dnbgWhYmsQCNOovhONMlHY1ibrA4p/cAHtOEGhXZGM2HuqY797x9j6yVfx3E/ucK1rJfko+FBQWHMBM0UAuAsncWgsFMCJLaBfadvPuJqwhqHRIdFsQgQ/GcKmQU9gqAwayHz7vVgNiP2MiwxduIy8PM+usoUJqimkHUn7FsV3ffXag1IQk2hdKOZDldwyIALNNogKAzrOyG6j8bRPzeMTGHYAW2GkY+yY3ZbzuSH3MAAlvzdGSiMzHb9O2o2a12LLalPIQWFRGzIaFycERxIo3D3ShpsppCCQkZSF9FrGoYhFPMnMFPoJSiUmIGyo1VtDStzmmgRFIqZwrLsTKGP1gKsdL3ujOwkmfWDzAOQqPuY1UlWTaFkoxnKFEpFlnlJnETxneBqCqemOKVF7/LlVr8iHSvjs6nxcex46qmm+dqJKA9b2ZpCliReu5pFtpBaUgTHOiIhIsOyJYWqctruVogyrU7PFHb6iTS7sYtKPjo9MWEGYvnhWdznERVqK/dRLy0pctHKR63kgl4cSMMOCis+Tvdb9VDNFIuBTROsssN+4TKFEWa6k1pTKD8o7Iz69jCR1eYgTqLYn7BB4di+feY62DVvPqesChNxDalWq7jzL39BuVTC6MKFWL15c8vn0KtVTLGHVctWhDLWOnb7ziTuIzPFbpT37ePvo5YUgaFMYcxYZQq9NnTNUE0h16uwU/5mO+I48eJMZkIuhrejlfuoJ/loxDWFVuYtfR4a2EeaKXS5uW/pjCzh8EZmZisOMwrAuiVFbH0KFblbgk48oAyTKA6rwiaaPoUD5m1WmRDl2sTu7XRdx9TYmNnH98CePa6eg81wFhcstK2lk0UmRZlCq/ciWE1hPAZ9SYOCwphRss1BoddMl7j56sSgcN5JL2zcPuHkGEeSAJToM4UVpoatMHtOJK8pYtVGwrd8NMsv6GHQamxiA3unhSrKoDCI+6jsuUnW6W55errRC6xQCLUXmIiVWiQu2b/sA6VpZlPrpWaIsKbdagqjaF7PEmWtO1fOYBjc3+32s+PrnMMPaG0zhQlUX1mNNVCmUHI7nrRC8tGYUa02BB5NBhyNZhJ4MYfBvBNOwin/dz1mzR1CuT+eoCQpxJEpbCWFjAKrehspmcIoagotrtOu+QuQKXajMjGOSrmMSqmEbD7f8rkAmCfSoYw1gNGM7MbVsr7rYt1OmL3ARFSLg8F2kY9GaaffCbCHyGnNZkTiPtrXV+vXK7xHUbZKEtUmFT9BYcR1zrb9/xKYXMhatLgJIg1WST4KgDKFsWPlPOd1U+1UU9hJdRz9a9ZhYGX0BidJIw6jmSRkp63qbfy3pJDTeNiJVgGSoijcybaT2UykmUKX7yP7ON2iplDG4YGsmsKJGIMXq4PB2OSjEt1cy6WSeTih5vIoLlgY6PkI6lPoFkVVketvrmuP1EBKKGdg/263n91ExI7ItkYzCewxKhrNBK1RJ6OZGhQUxoxlTaHHiZLdXInuo1TH0XnE0acwCd859rqpSwH9ZwqbpaiycTM2t3WFyZSP8rXO4vPIkY/yS5jfxTwOy/o6imRr9UAwtexyazRXRpp9bVdESWIaN69RHSBaSUijdMUW3Uc5+ShT5+hE1PNSxtZoJnnJBTErGPS7REFhDZqlY8YyU0g1hUQAuExhDEFhXD3WivMWmLenJyebFmIvG+3o5aPWY3PrQCoGhaVQjWbkyEelGM0oipTeenGZzADWB4PxtaSQ2OKD3dCSdFQKiqJEomIIk6jKW8SgUMsXUJy/wObR8hEPFrlMoYuA3jCMyOcl+0xh8vaRotQ1aOAax2F6EqGgMGYsGxd7DOScgsJOqSkkGshuQO0GPy0LZJMbHIRWqC1qerWKarksBCHuJTBqLlr5qN01z0qGvASFlVJJWjDb1FvQZd1Gq5YUsjLKMgKZKHuBichYA2Qhc2PEb2gpKJSFVf+7pGMYhk3v2BCbovcPcD/3RpytFoN3cY5uta6Up6fN38l0d6MwZ678QQqouZzle5RExVmTfDRwz1tyHwUoKIwdq8bF3oNCRqbVVFOYvIuZCJfYjWZiyhQqioLigsZJMLsp1QoFy4yM7XNZOJnKxs175rem0DAMU0IbFDGwdruxisJoBuDdO/183/VqtWH9riih9wITscwUxhUUSqxH5qVvVOstC/bAKg0OpNVKBXf83//hxl/9Cnt37DAPiIBwv+e5wQHu56gPe5zcR4HWn12T+ZWHNmV+URRFuqtnWIiZQpKPyoGCwpixalzsdaIk+SjBEoe1clK+c6w8iA2ivBbKR9EPjA3a7K753mUrzI369MQEt6FiETccgLy6Qr+fLXtYpVvKR2UFhcEW86mJCTMrVpy/IPReYCKK1cFgXAcrEh34OJMMyhRKI21mM6M7d2LiwAHouo7H7rkntprCvqhrhTPOmcJWdYVxZdqt5r8k7iNFxUrQAwaSj9agoDBmLFtSeNwsZQVDB07qRfLRziOGPoVR9J5yQxcbFDKbUq8yJVXTQpeTuHnPtHwe3UuWmj9P2WQLowoKvdRtRGE0A/BNh/1836PuBSaiigeDihLIWj0Isk7LdV3nehT2rog2+9rOiBmopMP2sJ04cID7Ocy1QgwKo85WcyUIPjKFEzGZXzXVFcY4HzkhHvQGzhSqlCkEfASFpVIJDz74IB544AGUJPfC6kSsW1L4zxSWpqbM21pXEarWnIkk2ht2kxyPfLQvkte0gs0Uspt9P0XoSsgOpJyMyiEzJDaxt3wuq6BQ0vzs97PNRlZTGEw+ym2+YshoiZnCTLEYiVTMciyS5o6p8XHz94vz5ydyU5lWonBGlonV3ATUDiC0QiG0122qKYw4U6hm7I1mgNZZ3imuTU58QWGc85ETTfLRoDWFJB8F4LF5/Y033oh/+qd/qtWrVCpQVRWf/exnceyxx4Y1vrZHRksK9vFsdiDbQwtxJxKH0UwSWlIAgnyUCwq9j0nN5qDPXE+GrgOSD1jcZs16V64Cfv9bAPZ1haFmChmZqzf5aAv30YQYzYitE6JGFVpSxCnVkmXEwTuPrpHynESNtMlH7YLCTHd3qMFGblDMFEZcK9yqprCFfHQiJvMrsS1FEqWjAKB1ifLRoO6jZDQDeAwKP/nJT+KSSy7BwQcfDAD4+c9/jo9//OP43//931AG1wlIyRQyp7CsFX0nNa4nGsRtNBPn944NCqcnJ83bfha2sK3fq1xNoVOm0LkthdWGAwhJPurhNLal0Ywk6ZjMoDCWTKFw2BBnTzBZEqo4W3y0O2JT9KRjHxSGG2zkBgbM24XZcyK/rlq5jzplefVqtSG/VhT0Ll0eyhitEDOFSexRCIRrNNPJ2B4LnnPOObj77ru5+yqVCjTmjctkMpwVPeEdy0xhgD6FbGYoqRczES5xaOOrLkxTooB1H2UJGhTqYdcUOlyrvS0a2NudOMvqVei3B6XGHFbp1apF38j4awrj6AUmoigKdzgY56GKrAOlOFt8tDtspjCMeUk2dnvEsF2qe5hAaujQzaG+lhVBgsLJ8XHzdvfCRaHKbEWag61k7iOb+hQGbklB8lHAIVN41lln4bzzzsPy5cvxvve9D8uXL8d5552Hc889F5qm1TTS1SouvvjiKMfbdlg6zwVoSRHkeYj2IMpeTEBjww/U6rvUfD7S12exa06c9eF0GWamUAyQnAJpLlM4U6vFyq7sNl2yMoUVn9JgVdOgdRVRnaydeOshtctRA9QU8r3AelCYPUfKmLyiZjLmOGLtCSZJek49CsMjCmdkmdhmCkMONvrXrMUh//oJ7L79Nmz88EdCfS0ruLZGhgEILYKcPjvu+onY/EpsSZHEHoUAtaQIC9ug8IUvfCFOOukk/OxnP8O5556LLVu24B/+4R/wpz/9Cdu3b4eiKFi6dCkKEZ5gtCNNznMIZjQT5HmI9iDqyU0MbuIsSs/29iHb24uykFHzlSkMcfPFZvfUXK6prowlPzSE/NAwpvfsrsmKJidRYBZEu01XGEYz3g+sus2gUGyXI8uQKMj3XcwSxmbwkskCqJmEJammUDyAcINhGFw9FMlH5RK2rF027DWvZrPQZ4KjrMc2QX5Y+65/DP017ODcR3Udop7DqaYwTkl7RjSaSeg+UqOWFKHgmFJQVRWvfvWr8Zvf/AYrVqzAa17zGnzuc5/DnDlzsHbtWgoIJaBYtaTweIKm5XLcBrbxPMm8mIlwidpoJik9Cut0WWQLfRnNZMLbfHlt4cGeFot1hexzaYXGgh53SwrAuYdqEmoKOTOHGNpR1GEPB2W9L35QFCXw/FGenjbl5JnubhTmzJU1PALpDgoXnf4K83a7fy9E91ExCHSUj3I9PqM9VGmqKUxoWzPxUCF4S4rmA7FOxDEo3L59O37729/ioYcewrnnnotf/epXyOfzOP300/HlL38ZYzZOeIR7rDIEfi5Cq2wh9SjsTMLuryfCbfT74mtHUcdKQuovUxheTSGfMWsdaPU6mM2wz9WzdKl5O5zm9QGCwpDko0EarsddT1iHlZrFfbAi1bhnRXzZ13Yl7Fpn2bDX/Mq3nItlZ70Bw4cdgbXvfE+Mowofbm9n8Tm5rSmMupWGKB+Nez6yQ5PckgIgCSngEBR+97vfxWte8xp861vfwjnnnINPfvKT6Ovrwwc/+EFcfvnl2LVrF0455RR885vfjHK8bYeV45Gfi9DqgiCjmc4k6omtkrBMYXHBwqb7/CwYYVq/e82+sQHLhCCNZU1+igsXmZ9/tVJpaXvuhiDtRtigsFIqNWpPMxlokmpPlYwc+WjUmy8W1nAsdtk/e6jk49fjrIfqBNLckiLXP4AjP/8VnHz17zBw0IYYRxU+iqo6OlrafXaGYXBzfJQ9CoFm+Wjs85ENYu9TGftdkpA6BIWXXnopvvnNb+InP/kJrr76avzoRz8yM4Nz5szBhRdeiO9973u48847IxtsO6KoKpfZ8btZsswUJvRiJkImYqMZXhIY/0FEcX5zUOivT2FE8lEXY+tlNgZOmcJsby/yw7PMn2XUFQaRj7Lfh9LUFHO/vLlJWk1hxJsvFs59NOZrKEjmFUhO9rVdUVIsH+20PYlTrbita/TUlPl/2Z5e5GeNhDI2O5qbwse/plsh22gGIAdSwCEoVFUV+/btAwAcOHAAhmFw7SgAYNmyZfjSl74U7gg7AHZD4HezZJkpJPloRxL1xOZVChk2Vm0pktaSwut75tSrUAza8rOYoFCChDSo0UwdNiiUuTn0+32vsr3AVJWzsI8aLlMY8zWU9r6P7Q43L6UsKIz7ux01Vu7ydew+u0mhzjlq+XVa5KNqNstdCzIymiQfdXAf/eAHP4j3ve996Onpwf79+/He974XXUJamZCDmslCnznR93sBWjl5JfViJsKF7dsWdVCYhO+cVU2hH2lJVPJRN+9ZceEiqPk89OlplKenUSmVkJkxlxKfqzBrNvbhHgAJCwqZsciUtvuV/Ewxm6/uhYukyVn9kKiaQpXZhPqYPzjznpUrZQyJYOBckRO+cTUMg8uIiZK/dkfN2m6xbdeUuOXXzc3r41/T7ehbsw6jd9+JrpER5AYGAz9fkJ637YLtN/YVr3gFjj/+eDzxxBOYP38+ZjGnz4Rc2JoYvydp1jWFyb2YifCI0300CXWslkYzfmoKc+HJtCoeJbeqpqF3+Qrsu+9eALWNQ+/QEIBaxst8rp5eFELMFAZxH+Uyhb0SM4U+awq5zdfqNdLG4wfOfTTuoDDAabmYfe2NMfvarqQpU8gdKBW7I++hGzfswaKInXyUr3OO/lAlLS0pAGDLV76Gxy77ETa+/kxHqa5bKFPoEBQCwMDAAAYGBiIaSufCtqXwewFSTSFRJ/I+hYzRSRK+c13z5jfd52ejrUTVksLlQVDfytVmUDjBBoXs+9/dw9WglKQHhf4zhWWuplDe4YHqUz46kaAG61ymMGbZfxD5+RTjmti9cBE0alslnTS1pODnufjXhqhhZeEibuSjccxLTc3rE1yGNLD2IBz6sYswMtKLnTsPtP6FFlBNYYuWFEQ0cLpon5slaklB1FGUGI1mEhAUZrq6kB8a5u9LcksKl2Oz61Uo1uxwmULJRjNeW1KwGwo+UxiOfNRvprA3ZkMUrasRPGX7+2McifB+evzdJGVf25U0uY8mTUUSNYqT0YyroDD6eSkMA5e0EGTuaxcoKEwArPxJZqawEydhIoZMYYCgISzEBvb+jGaSU1MI8IGLXVCY6elBfmS2+XNQ+ahhGAFrCpmgkKsplCkfZU7j/cpHY5BpsSw/8w1QMhkMbtiIoUM3xzqWIPJzvuk2mcyEASdrT3g2I4lrQ5Q4yUcNC/lotVLB9OQkgFrWqnvpstDGZodYU9ipQSHVFBKxoUqQj1oFgJ10MRMN4gwKk5ApBGoOpKN3z7TLURRfBgdh1u7wbTxcZgqZTTbbx0p8LvakN2hQyNYraoUuqA59t6xgD6s4wwmZLSl8SH4Mw0iUS+by170RC089Hdn+/tibvbNBodf5YyLmeqhOQM2ks6aw05xHAWejGavPjm1a3714MbScfVAZFhlRPtpBwXyQua9doKAwASgSbHWtNr1J2aATERPQPdArSVz4WbOZTLHoa6MdVZ9Ct+9Z74oV5u2piQnoug5VVZsyeSrjohlUPso/t/fA2krBAEjOFPpw22V7geX6+5EfHm7xG+GTS0j9fpDT8rilb51AquSjTL1zkmvTwkL12JIibudRwCJT2EGfGxnNuAwKJyYm8N///d+44447UC6Xm96sb33rW6EMTqRUKuHLX/4yrrrqKoyNjWHz5s34+Mc/jsWLF0fy+mHBZQp99ymkmkKiRpx9CpPS6JYLCn0GINzmK8SaQrfjyxS7UVywEBNPPwUYBqbGx1Hs7W16rlxfoyYtcKaQ3dT19Hn+fbugUGqfQh8LuZgljDs7lyh8npYnLfvaroTpiiybpLUrihrVIdNn9dkloc5ZdB/tpOQCyUdd1hR+/OMfxyWXXAJN0zB79mzMmTOH+xcV559/Pr7+9a8DAJYvX45rr70W73jHOziJUxpRJNiRi5svRdOaTnyIziDqiS2JCz8bFPqVv4QqHxUcQ91i1cSezzr2ITfjSgoAFeZ1/BA0C2z3t8kNChuHan6CwrhO5JOKX7OFJGZf2xFOPprwjSu7N0vK2hAlju6jFvvWuJ1HAd59VMlkOOVJu0Puoy4zhddddx0++9nP4pRTTgl7PLY89NBDuPrqq9Hb24urrroKQ0NDePWrX43du3fjkUcewapV6ZWqSGlJIfxeprubTr87FE4XH8HrVRIoH+1evMS8nRv019Q2Ovmo+wxc78pVeO5P/wvAJijs7oGWbzhZ2vXC8jNOP3OTXVAoU0rm5xAkCSfySYXdGPk17uldtYbWn5BIa6YwKWtDlHh1H427RyFQk7H3LFuOsUcfwfChmzrqOib5qMugsFqtYu3atWGPxZHrr78eAHDIIYdgaOYk/Kc//WmcQ5IGu/n0K78TN18kHe1cyGgGGN58OOYedyJ23nQDVr3lbb6eg5X+SA8KuYbzHjKFq3izGSt3UDWTgaJpprudoeu+m0YH3dRlbeWjMltSeJc7skY9fSsoKGTx834CVE8YFWmqKax0ek2hh6BQlF/HlSlUVBXH/fB/8Mw1v8fCU18ayxjigp37SD7qwOmnn47vfe97sUbOTz75JABAVVW89a1vxaZNm/DGN74R27dvj21MsghDPtqJp3JEDa5PYYe2pFBUFcf9+Gf4u/sfw5JXvtrXc7DSnyTUFALNvQoNXTfHpmQy0GakPly2MMDGka8X9ZMpjMBoxofkhzKF9vhtSUHvaTSwh1Vpch9NytoQJU5BoRjQJ0l+3bN0GVa/9e0ozpsf2xjigDKFLjOFk5OT+PnPf47f//73WLx4MXJC8awMo5nLL78c559/vu3/H3XUUQCAP//5z1i4cCGWLVuGm266CW95y1vw61//Gt02m486g4NFZDLe7NRlMDLSeiLsYlz9RhbPdfU7IplFfG1n10C/r+dpBzr1767T1dMICMKe2HRdNxc3RdMwd9FI28hNegcb36MwawrnLZ3XVNxv9x0ubtlk3p4cG+M2Xfm+PvP3Ml0FVCZq9uZ6tQrNobbFcZzM8/eODHm+tkp56+/fyKI50q7Trp7Ge+fm+16tVFCamgJQC6SXHr4RmsPmrdPI5v0ZLLHZ10WHHeL4+Xb6HB2EPUON9y7pG1d2/hiaP9IRnzv7Nxa67X0dRGk/2+Nz6KCDOuK9komM98vv3OdET3c+VZ+lq52Crut46UvDTSPn83kMOFhyz59fO7EYGhrCL37xCxSLRZx99tm44YYb8Mc//rHl+PbunZA5XFeMjPRi584DLR8372WvwtN/+hO6Fy9FZvXBrn5HZEI0GSwUfT1P2nH7nrcz06XojJe4k+BiN3btGnN4dLqYLDUWBZkyLb1abWT3NA17DpShjDXeR6fvsKEWke3rQ3n/flQrFS47oxa7zd9Tcg1zAFmZwmom7/na0qvWrz1WVqFKuk5LZeY1XCzk7HvWv3w59oxOAZiSMpZ2oMq9nf4yhcbIQtvvCs3RwRifaszvSZePsvPHpJ5p+89d/G5XDPsDUnFeZnsUdi1d0fbvlUxkzSncciUpKBwbnwYS+FnaBaqugsLzzjsP/f39rR8YgNNOOw2nnXaa7f9feumlAIBFixahONOcecOGDbjhhhvw3HPPhTq2sFl+5usx/+QXITc45Lk5dB2qKSRMImzAyrUsaDPJssI0Hpa5+RIlmV4yq4qioHflauy57RYAwIHRUfP/2Pefk5gFMJsJ2m5E1TRoXUVUJ/lDOanuox7lo2zwMhhzrXwS8VN/KmZfWaMnQi5sTWGa5KNJqTePEsVDn0I20x6XyUyn47eeup1wNfsfffTReOMb34jvfOc7eOKJJ8IekyVbtmwBUHMh3bVrFwDg4YcfBoDU9ykEgMKsEd8BIWBRU9iBEzBRI0pb5XauGeE2XxLfx6AbJdbEY4wJCtlAK5SaQkn1zoDkmsKMt+/7BBsUrlkjbRztQtC+jz1LljrWUhHB4A6rEr5x5eaPNjs0dINjTaEoHyWjptjh9k4xjiNOXAWFP/rRj7B161b85je/wSmnnIJTTz0Vn/vc53DbbbeFPT6TQw45BMcccwwmJibwile8AmeeeSb++Mc/Yvny5Tj++OMjG0dSUTMZaIXGRrATewIRNaLsU8gFOH3tteiH5fLntx1FHS4o3Lu38VxMUK7l5ctH/WaCrYJCmUoGr0EMZQqdUXwoDfi+jxRoh0ma3Ec7PVMoBoWqg6yfb0dBQWEckNGMy6Dw4IMPxrvf/W78+Mc/xvXXX493vetdePLJJ/HGN74R27ZtC3uMJl/60pfw2te+FqVSCY8++ihe/OIX49vf/naT8U2nkik2Nl+daP9M1FDUhhwxykxh1mc7laSihdQPjD8995EpZDbdUxMNWSYbFKqFxuZDPJH2goxNnRgUal1F3y0yrPDaV4/dfA2spsb1In7cRycoyxEZYfZPlU1Q9+K0IwaFrKMoGxRy8mtNQ8+SpZGMj+CJ8kA9qbi2pKtWq7jrrrtw00034a9//Stuu+025PN5bNiwIczxcfT09ODCCy/EhRdeGNlrpolMdzem9+yu3e7AUzmihhJAhuwVGfLCpMLWg8gMroMG0nZ2/6HLR31u6pql7c5O0V7xcrprGAamBPnogeh8mVJBUPlo7yoKtMOEDTRkytrDIKgqIu2INYX5oWFMPvsMAJjthBRF4eXXS5eR/Domoiy9SSqugsK3vvWtplR048aN2LJlC9797nfjkEMOgRbhBpRwht18tVt9F+Eetk9h2BNbRYK8MKmoTKZQpqFDJWCdTc+SpVAyGRjM8wB80CZLPirj8xUDX9lzk+qhpnB6ctJ8P/JDwygMDeFAAp3h4sTPaTlrp0+ZwnBJi3zUMAzhUEnuYVAaULP8Fjvb2ws1l4NeKgGofX6KpiWiaT1BRjOAS/noI488gqmpKWzevBknnngiTjrpJGzevJkCwoTBZgo6Ub9P1IhSF9/O8qBIagp9XKdqNouepcub7s/aZQpluY9Kko/Kzhh4Od2ljFZrvJotGIaBKcZOn+qhwkUNSdYuG3be0QoFqD57paYZdg0B6kFh84EdPy/R9RMXJB91mSn84x//iMcffxzXX389brjhBnzta1+Doig48sgjsXXrVrzuda8Le5yECzLFxqat3TbohHtiM5ppt0xhNnz5qN/rtG/lKhx4+EHuPq4lRV6ObT0fwMoxmpF9YOXl+85ntCgotMRjTfL0xEQj+zo8C7mQ21d1OmlpSdHOB4ZuUQX5aKanB1o+j8pYbR6qf34TZDKTCMhoxmWmEACWLFmCs846C1/+8pdx5ZVX4vTTT8f//d//4aKLLgpzfIQHRrYeDaDWJ2r4sMNjHg0RF5x7YMiv1c41hVztToIyhYC1RI+XjzYyhYGMZpg+lH5ln2JQKPt74mUhJ0OU1ng9VOKkb6vJeTRswjqskk07Hxi6RZSPZrp7uAO7+txM7SiSAdUUuswUjo+P46abbsJ1112HG264AY888ghWrVqFs88+GyeccELYYyRcsvbd/4j+NWvRu2IFivPmxz0cIib8uAf6pZ0tx9kG8OG5j/rbLFlJH9lgS5VQUyjWBMlyH5WdNVA0933bSKbVGq+n5RRoR0ta3EfbuYetW6zko6IJmGh+RZnC+CD5qMugcMuWLchkMjjiiCPwute9DieeeCLmzZsX9tgIj2i5HBae+tK4h0HETGw1hW228LPSnyTVFALWm2/bmkKfY2drgtRczrcjntgeR7581L05AHciT5svS1ijKq+Zwl6S5IYOe1iVZPlopY0PDN2iCHNmtqe36fMrTU0x5ldDyA8ORjpGogEZzbgMCr/0pS9h27ZtKDDN0QmCSCg+mk/7pb0zheFYv8uotbFqS8EauHDuoz7lo7I+W/FvDFM+6hTEVMpllKenAdSyLcVFi6WOo13gDpVcPJ4PtFeGMCKCJazDKtmQfBRN5jqZ7p6mA7vKjBMpABTmzI1sbEQzJB91WVN40kkn4S9/+Qte/epX49BDD8Xhhx+OM888E7/73e/CHh9BEB6Jz2imvfpQReI+6nOzlOvrb9pAcDWFheCZQllZ4GajGbkbRLeZca4X2PIVUMk92xKvSgNydI0Wzn00wRvXdq43dwubFQRq74NYU1ih9ykxkNGMy6Dw17/+Nf7xH/8RCxcuxIc+9CG8973vxZw5c/D+97+fAkOCSBhcn8KQX4szImkzh7mwandkBVuihDRrU1Po12hGhvMokJyaQuoF5g4vEqpKqdTIvubyKC5YGOrYiBS5j7bx2uAWMVNoVVMoa54lgkM1hS7lo5dccgne97734R3veId53xvf+EZceuml+K//+i+86EUvCm2ABEF4I7ZMYZudckbiPhpgs9S7chV2XPcX82f2lFmz6IXlFVnyr6S4j5LDnzu81BRyWcIVlH2NAoUNNAwDhmFAURT7X4gJko+iqQ47290DTagppKAwOVCm0GWm8PHHH8cpp5zSdP+LX/xibN++XfqgCILwT5TF0jKcNJMKJx+VWVPInKAH2SyJ2S7Z7qOy5F9s/1RA/gaR/b47BTG8IQoFhXZ42RhxgfYqakcRBYqipMKBtMooFDo12BHdR2vyUb5dUDuvoWlDidCPIam4CgrnzZuHBx98sOn++++/H4PklEQQiSLKia2dM4UK02MqPPmo//eMy3YpCjLFRkaOqymUIR8NkikU/sYg2VErVFY+6vA4Cgrd4UVpwDfdJpOZqOAkpAndvFLzen4NAerN64VMIXtI2KHvU1JQJCsdkizvtsOVfPSMM87Axz/+cYyOjmLz5s0AgFtvvRVf/OIX8drXvjbUARIE4Q3WQStM+aiu641JT1WhdRVDe604CM1ohgnSAgWFjKlHtrePk5BpEjKFnAFCt/+gMBulfNThb63XvgFAcf4CqWNoK1T3NckkyY0HNZcFJmq3E5splKSISDOsUyxQm6dVQdpPhjzJQaZ89PknnsAjd92FObv34AXHnRR0aJHhKig855xz8Pzzz+MTn/gEqtUqDMNANpvFW97yFrznPe8Je4wEQXggKl08XxvXnci6liCE0Q/M0PVG5k7I7nmluGAhFr705Xjq6quw4g1v4v6PNTPwu2mUJh9NSE1hhWp3XOFFaUA9CuNBSUFbCgp2mt1Hs909Te2CqPYyOchsSfH09u3Qq1U8e8P1mHj2GRTnzQ86vEhwFRRqmoaPfvSjeN/73odHHnkE+XweS5cuRZ75chMEkRBUV6rwwLS7PEjVNEBRzGyrDEMH/j0LHkhv+/p3ML1nD/JDQ9z9quw+hRKNZqS3pFBb1xTqum5unhVNg9bVJXUM7YRb+aiu65gaHzd/7l2xIsxhEQxcW4oUBIWdKots6lPY08NlCg0xU9ih71NSkHmgzvafVCLak8nANih85plnLO+fNWsWAGD37t3mffPnpyMCJohOIKoGrO3co7COmstBn5EdGroeuOYgjI2SGBACaLI994OssWrFkFtSZFq3pBA3Xu2W1ZaJ243R9MSE+f9d8+Z37MY/DtLQloIMVACFMQRSs1lo+Ty0Ai8frVCmMDGoLk3L3JDWTLltUHjiiSe6Xjjvu+8+aQMiCCIYitq4bqMKCjO96Zn0vKBmG0GhruuBLfej2iixDZJlZAqDLGqqpqFr/nxMPvMMMt3dyPbJPUBwE8Rw9U0pWqDjwG1LigmqJ4wNtlYtqS6J7WxC5hb2c6ofhok1hTq9T4lB1oG6zDKRqLENCn/wgx+Yt++55x7813/9F97znvfg0EMPRTabxV133YWvfOUrePvb3x7JQAmCcEdUfQr5Rb9NM4WSrd+jOhWWnikMONbDPv05PPSN/4dlZ72B69MlAzcLOfe3SA5K2w3XfR8PHDBv966iesIoSZt8NNOhNbzs51Q/WBNrCiv0PiUGWfJR2WUiUWIbFB522GHm7QsuuAAXX3wxTjzxRPO+VatWYWRkBBdffDHOOuuscEdJEIRrYjGaadMTTi4olPBeRtWomN14+DaaYbJrQeUvC170Eix40UsCPYcdbiS9JGVzj9s+p5NMPSFlCqMlbfLRTpUWdy9chEx3DyrjYxjceAgAvt5brCkkA6x4YUsRghyop9nUzJXRzJNPPoklS5Y03T937lzs2LFD+qAIgvBPVEXNnbDRZoNCGZuvqEwFpPcpTPCmTs20bknBLdIB2mt0Am7nD2rxER9cpjCB8lHDMFJbUyWTbG8fXvCDy7Djumux7KzXA2huF0Tuo8lBlnw0zZ+pq9l/48aNuOSSSzA1NWXed+DAAfzHf/wHl1EkCCJ+IjOa6YA6LdZSXIZMK6qNkiqhT2Fagn7P8tEE/y1JwO380QlGU0lFTXhLCkPXze9O3WClUxnZchTWf+BDZksC6lOYXNyqJFrBr53pmhtdZQr/5V/+BW95y1tw7LHHYtmyZTAMA9u3b8fAwAC++93vhj1GgiA8IGtia0UnWGnLNnSIKjjhagplZAoTLIFxZTSTkgA3CbiVn1PNWHyE0UNVJp2wNvilqU8hd7hK11GcyPJjSHNpjaugcO3atfjtb3+Lq6++Gg8//DAURcFrXvManHrqqejuTo+rDkF0Am76tsmgE7IvrExLtnw0TEmmKFHyQ1o2dq5qCtmNV4L/liTgdmPUCUqBpCLbAEs21GbBHnZurlYq5sGLkslwCg8iesIwmklboO8qKPz0pz+Nk046CWeeeSbUFDVhJIhOJCr5aKUDZC+soUOq5KOC7NUwDE8OaGJNUJI3dorG9Cm0+YzS8rckAfZQyWn2oPc0PpLekoIy8/awgV+ZaXCepf6pscPtnQI8T5olwa6CwkcffRTveMc7kMvlcOyxx+Kkk07Csccei56U/bEE0RHEYDSTttMwtyjZ1gGHF6LaSCuqCjWXgz6z6TB03VVGrQ5bE6RkMomuCXIjl07zIh01bpUGackktyNpko9SZp5HY2oKK4xZE81L8SNNPsqqKFJ2KOJq93jppZfir3/9Kz73uc9hcHAQX/ziF3HUUUfhnHPO4foZEgQRP/G0pEjXxOcWjbV+l1xTGHYdVhAJaZo2ddz33eYxabYIjxo384eu6+Z3StE0aF1dkYyNqJF0+Shlke2xzRRS/9TYCcNoJm3rjatMIQAzS3j00Ufj1FNPxWWXXYarrroKN9xwA17/+teHOUaCIDwQR1DYrqecYcpHww621HwBmGkwrlerALORbEUlRfIvtrcUyUcloHrMvKasOXM7oEjunyobtl1Jtn8gvoEkELGmsE67rqFpQlbpTZpLa1wFhbfffjtuuukm3HTTTbj99tthGAY2bdqE973vfTjqqKPCHiNBEB5QlBiMZlJ2GuaWMOWjYQdb0jKFCf9s2YXc7vtOmy/3uJFQpen70Y7I7p8qm4mZwygA6F2xMsaRJA87Mxm6juInFKOZlB1CugoKzzrrLKiqihNPPBGXXHIJNm/ejByjaScIIjnE0pKiTTfaoWYKQ37PuAb2AYLCTG+yP1tXNYVk++4ar30fk55Jbkdk90+VzeTYmHm7b9XqGEeSPNiaQhaal+InjJYUaau3dhUUXnzxxbjxxhtx44034qabbsIRRxyBrVu3YsuWLVi9mi54gkgSbmqsZJDm0zC3cC0pZNcUhi0fZTeOM70Kn3/8cTz3xBNYsGIFZs2fb/u7acoEufm+UxDjHld9H1NspNAOyD6sks0kkynsW7kqxpEkD/awjoXmpfihTKHLoPCMM87AGWecAQB46KGHcMMNN+DGG2/E5z73OfT09OC6664LdZAEQbgnjj6FbZspzMg1dIg0U5jnM4V6tYpH7r4berWKh++4A0Nz5kC1cSRNU1Coem1JkfC/J24UtXV9YHXmkAEAst30fkaNysraE1ZTqFermJqYqP2gquhdTvJRFtVGZZd0Q69OQHFRT+2GKA3lZOPJu350dBQPP/wwHnzwQdx3333QdR1r164Na2wEQfggij6FxkyQUXtBBZlidyivEzeyZVoVJsMSdU1hpVw2P7NqpYL9e/bY/m6aAn6qgZOLK/lohN9johk2U5i0mkJWOtq9cJFtZqxTYQ/rWNKWUWpHwpCPpm29cZUp/I//+A9cd911uP/++zE0NIRjjz0W5513HrZt24bu7vbcDBJEaokgU8hmCtrZfVCmoYNhGI1AGhHIR9lMYbXKLVQAsHfHDgyMjFj+bppq8FrJRw3DSFWQGzeu5KMRZryJZpIsH2WDwv41lDQQscsU0rwUP9Lko9z6ma7P1VVQeO211+L444/HBRdcgIMPPjjsMREEEYAojGa4Sa+NZS+qROt3NpDWCl220k1ZaAU+UygGhaM7dgDr11v+bpqCqFaSH13XzfvVbJbLoBLNuJGfV1Isj2oHVMmuyDKZYILCXqonbILcR5OLLJVVmmvYXQWFV1xxheX9pVIJd911Fw477DCpgyIIwj9RGM3whdTt23RX5ok8b84RfqDFypQMi0zhxIEDmJ6cRN6i8XiaMkGt+hRyUkfaeLWEMoXJh5OPJqymkDOZWbUmxpEkE1XToGQyMIT5OOmHb52AIumgNs3zo6ug8O6778a//uu/4sEHH7SUUN13333SB0YQhD+i6FNYSVHLgiDIlI9GXXyu5p0zhUBNQjp3yZKm+9NUKN+qDiTNTnBx4CZTSO9pvLCuyEnOFFI7Cmu0XJ5bQwG6jpKADJWVruuNvYKqQusqyhhaZLgymvnkJz+JfD6PCy+8ENlsFhdccAHOPfdc5HI5fOELXwh7jARBeECWLt6JNBdSe0Gm0UzU7xnbD0uvVps2IcCMhNSCNJ10cpIfi//vlO+qLDy3+Ghj+XhSke2KLAvDMDDFBoUrKSi0wkpCStdR/MjYO3HrTQr9FlxlCu+77z58//vfx4YNG3DZZZdh2bJleO1rX4vZs2fjRz/6EU455ZSwx0kQhEtkOWg5kaZMUhDUjDzr96izK6pQUyjKlQBgdOdO6LoOVeXPB9NUU9jqM6Ksljfc2LLTexov7GFVktxHpycmzPHkh2chNzAQ74ASilVdMx1YxQ97wOh375T2vZGrTKFhGBgaGgIALFmyBA8++CAA4IQTTsD9998f3ugIgvAMt6kL6TXSlEkKgszNV9SBltiSgq2tY8c0tnev5f11sj3JrhnlJD9WNYUpCnCTgKsWH9S8PlZkGmDJhJOOribnUTusMoV0HcWP9ExhCj9TV0HhqlWr8Kc//QkAsHLlStx2220AgN27dyfqlIogCHkNWJ1Is7uWF6QazUQsuXM0mmEkLXstJKRpCqRamQNUUr5IR42rPoXcd5ne06iR3T9VFpzJzGqSjtrBSvvrJH2e7QTkB4XJPlC1wpV89G1vexve//73Q9M0nHbaafjqV7+Kd73rXbj//vuxZcuWsMdIEIQH3BhFBIXXzbfvYqZkQ5KPxpEpZF5/5Mit2PnXGwDUgsIl69Zxv5umTHCrICbtcp7IUZvPikvT08hks6bMOO2n4WmHrSlM0sE8bzJDzqN2WGYKaW6KHRl7p7TXW7vKFL74xS/GT37yExx88MFYsGABLr30UmSzWRx33HG46KKLwh4jQRAeiNpopp1PODnrd5lGM5HUFNo3r19wymlmK4fxfftQmp7mfjdN2TUvLSlo49Ua0YFv1zPP4Obf/Q63/uEPqMy8l51y/ScVTj6aoKCQyxRSj0JbxJpCJZOx7V9IRAfJR10GhW9+85tRKBSwdm1NI75161Z86Utfwsc//nEMDg6GOkCCILwRtdFMGic+t4QnH43AfdQhU9g1fz5mHX6k+bPoQpqm005RPiou5p3yXZWFuDHa+dRTgGGgNDVlSo3TdGjQjnDy0YTUFBqGgUlqR+EKMSjMdvekzqWyHZESFHJ9cZO9dlrhKii8//77UWBOnQmCSDBKBEYz7MTXxjVFakjy0SgWCzVnHxRme3ox94STzJ/ZukJd1xsBsKpCs2hunyQUReFqJEVIPuoN0YGvwlzr5ZmMcpoODdqRVtnxOCiXSuZ3JdPdja5582MeUXJRhZrCNAYP7YiMoLAirLNpw1VQePbZZ+NjH/sYrr/+ejzxxBN4/vnnuX8EQSSHSOSj1ap5u50zBWFlCqN4z9jTaEPoU5jt7cW8E042fx7dudP8roj1hGk4wXb6zqepPjIJiEZV7PtXnp6GXq2a14KiZaDRgXHkJLElBS8dXZ2KeSMumjKFfekzJGlHZLekSON648po5mtf+xpKpRJuuOEG7kI3DAOKouC+++4LbYAEQXiDrQkKSz5a4eq00jfxuUXNyTN0iNxohq0pFDKFmZ4e9K9Zh8LIbEzt3IFKqYSx0VH0Dg6mMgukZjLmuA1d58xSSD7qDTHAZlUBpelp4XuUvubM7YDMwypZsCYzvSQddUSsH6RMYTIQ66n9kHZndldB4Te+8Y2wx0EQhCQib0nRxgsa6/KXvpYU9n0Ksz29UFQVc48/EY/99McAanWFYlCYliCKcyAV/o/ko94QT8vFTKEoQyaiR6asXRZcppCCQkeaMoV0HSUC7kDM53N0RKbwyCOPbP2gCLjrrrvw2c9+Fvfeey8KhQKOOeYY/PM//zOGhobiHhpBJAYZEohWdMrGUKahQ+Q1hXl799F6cDT3hJPMoHDvjh1YtGaN0Jg8HbImp+x4JeWLdNQoKqMGApyDwpQcGrQbMl2RZTFJ7ShcI9YUtvMamiZUyfLRNB5COgaFlUoFP/vZz/DLX/4SDz74IMbGxtDX14eDDjoIp59+Ol72spdFJh3Zs2cPzj33XIyOjmL9+vWYmprClVdeieeffx7f+c53IhkDQaQBLlMY0mt0TKYwK08+GrVjI5cpFILCenA09wUn1ExaDAMH9u5FpVTi6kXTIh91rClkTZEoiGkJ+17q1Sr3vReDQno/4yGJzeu5HoXUjsIRrSDIR+k6SgTSW1KkcG9kGxSOj4/jbW97G26//XYcdthhOPXUU9HX14exsTHce++9OO+883D55Zfj0ksvRT6C/iq33XYbRkdHccQRR+D73/8+KpUKTjnlFNxwww04cOAAeumiIggA0fcpbOdsgcx+YFFnVzUmU8jWgGqFgvl35YeHMbTpMOy57RYAwOiuXdxzpGVRUzR7N8ZOyWrLgp0/2IAaqNUUcocbbew8nGS4eSkB8tFqpYLS5CSA2venZ+mymEeUbNigHqi1pCDiR3ZLirQobVhsg8KvfvWrePrpp/Gzn/0MBx10UNP/33///Xj729+O7373u3j7298e6iABNPVDVBQFhmGgUCggJ1xgBNHJhN2n0DAM6Gw2qdgt/TWSQnh9CqOQjzbGXi6VbF973gknmUHh3h070MfMtWk5wXbaJFNQ6BFGaVARgkJD183NP9DeB0JJRqaCQQZslrBn2XJufEQz7IEdQNdRUpCxd0qjURuLbUuK3//+9zjvvPMsA0IAWLt2LT7wgQ/g6quvDm1wLIcddhje9KY34ZZbbsGrXvUqvOxlL8Nzzz2Hf/7nf44kU0kQqUGQdMs+SeYmvWKRk6u2G7LcR0UXxygkt1ymkAkKxQ0I269wdMeOVNbgsb0UWfmr2FKhnaXOsmBrksWgEAAmx8fN2/R+xkPS3EdZk5n+1WtjHEk6oD6FyUSGSV/aVVS2mcLnn38eGzZscPzlww47DBdffLGUgVx++eU4//zzbf//D3/4g7kpu/vuuwEAAwMDGBgYcPX8g4NFZDJa6wdKZmQkfV+KtEPveW1yMzcLhuHY3Nsr7KSX6+tr6/c7Pz7bvM1mR73C/q6Wz2PugmHHx8t4TwtT1q/RNTjAPf/wC4/DtYODmN67F6WpKRzYu9f8v76RoVR8voW+XtRzFex7zb3vhQLmzBuESBr+vihRZjm/H1NMUOj3+0HveTDK3YzMLQlBIZMpnHPw+o7+fN387X3DvKxwcN5IR79nMpDx/o2V+83bMoLCOUvmojtln6ttUFgul1EsFh1/uaurC+PMAhGEfD7vGODdcsst+P73v49NmzbhP//zP7Fz5068+c1vxgc/+EEsX74ca9c6n07t3TshZZxeGBnpxc6dB1o/kJAGvec1FE0zNwuGYUCmHRQ76WndPW39fk9PN9459u/2CveeFbsd3zNZ3+GpMZvxFopNzz/7BcfjyauuAADsff558/6ylk/F52uwbozMe10RsoTi30LzRTOj+6cc/58NCv18P+g9D47OZHD1BNQUTjCZwsyCpR37+br9bk8KCfgpI9Ox75kMpK2Zow1pvF/5KLvm7J9WMJHQz9UuiHbVkiIKTjvtNJx22mm2/3/BBRcAAE4//XQMDw9jeHgYW7duxW9+8xvceOONLYNCgugoQnQg5eUR6Suk9kKmu1EvGSQoLE01Ntr5IecsoSxEh7s6VpKWeSecbAaFXL1oSmRNma7GASYrH+XrCdv7uyoLRXGWg7NBYRrlUe2AkmG2boZRO/iLyAneCmpH4Y2mPoV0HSUCrt+tj6BQ13XzMF7RNK6sIS04BoX//d//jS6HP2piIrrsW39/La171113AahF4w899BAAYPbs2ba/RxCdSJi9CqOujYsTNZeDksnAqFRqBju6DtVHDSVn1x5RY2fRzKCOVfH73ONPtHxsWlzxNEbVwga1vBMcbbzcwJktWMDW1qbRSKEdUBQFai4HfaZW2ND1lp9bWOi6zh0U9K5cGcs40kRTTSFdR4kgqPsobzLTHetBjV9sg8L58+fjF7/4RcsnmDdvntQB2fF3f/d3+O53v4srrrgC27dvx/79+/HYY49hwYIFOO644yIZA0GkBRkF03Zw2Zc2X8wURUG2pwel0VEAtb+9biduGAbK09PIFayDLxbWiCGqoFDJZPja0hmsgqOuOXMxsH4DRu+5W3hsOrJrGebwUrfLFFJQ6AovwQW9p/GhZhtBoW4Ylq6Buq5j+513olIqYcXBB7uaq7wyNT5urjFd8+a3/ZogAy0vtKRIyTzb7ihasH1TOzhd2waF//u//xvlOFqydOlS/OAHP8AXv/hF/O1vf4OqqnjRi16ED3/4w+jubl9LfILwAzu5yc4UcnVaHbApzBS7zaBQr1SAXA6GYeCu667DgT17sGTdOixc5dysma256Vsdjbyqlk3Iozo1yd1vt5Gfe8JJTUFhWjLBmgv5aCd8V2XgxU2YgsL4ULP2vTnr7Hn2Wex44gkAQKFYxLIW5oF+4KSjEc1taaepJUVK5tl2J2i2nVNRpXRuTExNoRvWr1+Pr3/963EPgyAST5gN7KspbFkQBFbaU//bJ8fGcGDPHgDA80880TIojKvmRis0B4UZm4bj8044Gfd/9Uv8Y1Py+Wbs5KMdlNWWhZegkGRv8eGmLcU001NyfP9+V89bKZdRKZdRaGE0WIc78KJ6QleIzeszKc0qtRtBawrbQZmSqqCQIAh3sGYRoRrNdMBixpnNzAQc7ImgVS83FrHmpq9FACkT1aKu0G6xGj78SGS6e1AZbwSwafl8NRfy0bSe3EaNN/koyd7igm0QbxcUsqoO9mDKjumpKdx2zTXQq1WsPeIIDLsoD5qMoV467WgFyhQmEZk1hVmbw9ek075dpwmig+E2dmE2r++AxYz9G+t/O7vZqpbLjgsIW3NTnD8fmWJ0cnfR5Q6w/8y0XA5zjnkBd19aNiuu3EcpKHSFp6AwJd+PdkRhgkLdJihkv/+lqamWB1ijzz9vHqrseuYZV+PggsKVFBS6gc0UKpkMVIt5moieoPumdjiEpKCQINqRiIxmOkH2YtWWgn0P6q6kdnAmM6ujbZ1j5UDqlP2be8JJ3M9pCfo591G2TyHrPkpSR1d4ko92wPWfVDj5qM0cXxWCwMkWfaXZw67y9HTLMRiGIdRLU1DoBnZeznb3pNKlsh0R5z6ve6dKG5TWUFBIEG1ImEYznZZ9YTN7VkEh0Lz5YpmIsYeX1Qm002c278STzduKpkWa1QwC6z5qbzRDUkc3cO1sWpDWjU87oOa8ZQoB/oDK8vHMPOYmKCxNTZmZxVx/P/LDs1r+DsErONJy8NYpBJGQtsOBOQWFBNGGBC2YdqLTzDssawqFzVZF+JllIoZ2FHWsGtg7bUK6Fy3G4r87AwCw7LWv85Q1ihPWfdTWaIY2X66wk4+KBwwke4sXNdO6prApKGyRKax6zBSKKgjKeLmjZ8VKdC9eAgCYd/KLYh4NwRJEQtoO6w0ZzRBEG8L1KZT83O2gm/cCK7esSxPFzKBTpjBOy3YtZ5EpbHGCufU/L8WmCz+Nwqz0nPq7ch9N6clt5KjWG/ueJcuw/8H7zZ9J9hYvbKbQjdEM4CJTyAaFpRIMw3D8jFkVRC+ZzLhG1TS8+A9/xug9d2P4iC1xD4dgCHKg3g4qqnQcAxME4YmojGbSehrmBauaQnGzZRcUGoYRWzsKwEY+2uIzUxQlVQEhwLuPUp/CYNhlCnuWLeN+pvczXtiaQt2uplAMCls4kIrzWqVUcnz8ZIwqiLST7e3DyNajoQbsjUfIRZp8NKUqKgoKCaINiUo+mtaJzwutjGYAe/no9OSkmbnKDw4hPzQU0iitsTKaacfNfIbko9KwqynsXbaC+zmtJ+Htgps+hVZGM07rgTivlVsEhRPUjoJoM4L4MVCmkCCIRMLVgkkOCjlHx5ROfF7gjGZsagrFn+twJ+lronUeBWxqCtswkGfdR9nPgvuuknzUFVaZQiWTQXHBQu4+ej/jRc02qn/c1hQauo7piQnb5xSDyFZ1hXGqIAgiDAJlCpnrJ60GQhQUEkQbwp52hduSIp0Tnxes+hQ2ZQpt5KNxmswAzc3rta5iW8qVMtS8XhpW5kLZnl4URka4+zrh2k8yrTKFhmFYHlY5mc00ZQodgsJKqWT+v5rLNx0aEEQakVZT2JNOt2sKCgmiHQnJaMYwDG7T3Y5ZJxHWYbX+t7s1momzHQXQ3Lw+29uenxe5j8rDKlOY7e1FYWS2cF86Nz3tAtsA3aqmkK2tZXEym/EiH+XmtpUr2/Kwieg8uEyhx99thwNzCgoJog3h6oIkZgrZSa9ds04iQWoKecv2OIJCPlPYrpI/1n20vhnuxAMMGSiKAgiOk5neXhRmUaYwSagZZ/mo3UGVk9mMl0xh3HMbQYSBVmismbrNum5Hiblecv390sYUJRQUEkQbEkQX7wSfeUlHY/OguAkKrWRazc6jcchHc9zP7drAXbOQj/KGSN2p6bmYBMT3KtvTi7yYKWzTA4a0wGYKLYNCmw3thE1QaBhG0+GWU1AYtwqCIMIg29cI5pz6D4tUyuWGnDqbTa2cmlZJgmhDwjKa4d212jPAEGEzTF5aUpSnp81aw0x3N7rmzQ9xlNY0ZQrbtK5OK/BBoVhPRVlCb4gS0mxvL3IDA1Czjd54JMeNF/az0FsEhbmBAfO2XaZQ1/WmtcJJPso+T+/KVS3HSxBpgM3wOfUfFmEz5z3LV3CZ/DRBQSFBtCFhGc3wmvn2DDBEuEyhjfuoldEMlyVcuTqWRt9NNYVtGhypmsbLfqpVbkHvlAMMWYhtKTI9tUb1eUZCSsY98aIwQaHVHM9+//vXrTczi+xhld3j67iWj1I7CqJN4DKFHoJCNnPevzp6p3FZUFBIEG0I56Al8XnboQ+PV8RMoV6tNsm1rKRaEwmouRHdR9t5Iy9KSLnval/7/t1h0JQpnHHSY+sKST4aL63cR7lMYf8AepYuN3+2yhZazWElm6CwWq1iqt7aQlXRu3yl63ETRJJhs+qegsIErPcyoKCQINqQKOSjnWI0wWYK9UrFcvPUMlMY00l6U6awjT8zMSiscPWvFMB4QVH5rHb9AIhtS9HO36U0oLWQj1aEA7w+RuLpNiis2MhHp5jf71m0uGmeIYi04jdTmIT1XgYUFBJEGxKN0UxnbLS1XM6UXhmGYVlnk9RMISupBNr7M8t08TLfTpQ6y0LMFNYPgBa+9OUAas7Ds485LvJxEQ04oxkr+ajQo7N3RSOb5zooLJctA07OZCbFWRGCEMn1+aspTMJ6L4N0VkISBOEImykMLShsYymiSKa7G6WZYLA0NdX0/5ZNohPgziee4HesfJSyWp4QawrrhwnLz3oDhjcfhsLIHOSHhuIYGjGDkmFqClvIR7M9vehd4ZwptHNaLJdKyAuHS1RPSLQr2X7vmcJqpYLpNpFTU6aQINoQcVMnC3aSbOesk0im2MhCWQWFerXKnahXymXzcWo2i+7FS8IfpAVqrnPkoxkmKGzKFLZxMBwKYksK5v3rX7OOAsIEoOZauI9yc3UP+la2yBTabICtzGbYTGEvtaMg2oicj6BwcnzcvJ12OTUFhQTRhkTiPtpBG23WbMYqKAT4TRW76YrTnropU9jTvi6cWlejgX2T+2gHHWDIwE4+SiSHVkYzlSb5KJMpHB9vWhfs+hpaBYW8szK1oyDaBz8tKbjM+dp10scUJRQUEkQ7Ekmfws7ZaLObYrugkN2EsfUFcdpTq001he27uc8UmaBQMARq5787DNhDJYCC6iSi5RtBYas+hdmeXuT6+1EYmQ2gFkSacjeLx7OINdSGYSRCGk8QYeDHaGaiTUxmAAoKCaItCc1opkOzL9luZ/kowG+qklJz0+Q+2saBvCbIR8VMCeGepppCev8SB9tuRp/pn8pidYDnZDbjNlM4NTFhZibzs0a4zApBpB0/NYX8ep/eHoUABYUE0ZZwfQolBoW8zXn7ShFFWtUUAnzAnJSTQ62D+hRmRPloBzrlykIRagpJPpo8MowKoGWmcGau7mWknhMOQWF+eJZ5WwwK2WCyf026N8AEIZLzkynknEcpU0gQRMIQN3Wy6NyaQiYotGnozC4gkwmxp27KFHa37+ZeY+SjotEMBYXeaG5eT+9f0tAKvNuuCHtIVW/J0ufgQMrOXz3Llpm3RfkoGyQWFyz0OmyCSDRs83o3NYW6rmOKMZpJe40tBYUE0YZQn0K5uKkprL83erWKqYTYUzfVFLZxIJ9xaEnRSQcYMmiWj3aOKiAtqMyBj2v56Cr7oJB9fM8SJigUDsG4EgL6XhBthtZVhDJjDKfruuW1xTLFmDZ1zZuf+n0RBYUE0YYoqmLeDq2msIM22mymkHX6Yzdm9ZN2drPVvXBRUwP5KNGYBtdAewdH5D4qD5KPJh+thXy0YhEUOmUKuaBwqX1QaPW8BNEuKIriSUKaFFWQLCgoJIg2hDvpJ/fRwGRsZJfFefPN2/X3ZiJBNTesGQUUhauNbDcyjvJRCmq8wLqPaoVCbC1VCHu0rhbyUTZTPjN/FRcthjpzUFSenuY2vLZBoSAf7dQ1gOgcOLMZGwOmOtx6H6PTuCwoKCSINiQs+Sjn6NhB2Rc2U8jSxQaF9UxhQpxHgVowlB8aBgD0LF4CRVFa/EZ6ETfJJB/1Dzt/dNJ1niacMoV6tWoqGhQtYz5W1TT0LFtuPo7NFnJBIfOYJvloh64BROeQ6x8wb1eFQxGRiQSt9zKgoJAg2pEQjGbsNhqdgJ1BC5sprFhkCntj7uGlZrPY8pX/wpJXvhpHfumSWMcSNlxNYVOfQtq8eoFVGlCWNZloDi0pxCw5exjUt7KxcbULCovz5psZRfGAhTKFRLvD9SpskSlM0iGwDEgTQhBtSBiZQqeNRrtjlykszl9g3rbKFPYnoMZg3oknY96JJ8c9jNBhpbGVSqWRPVFVLotIuIA5VCIzkWTCZQqFoNCpR6ddr8KKUC+enzULk888A6AmIdVmJMR8rS4dGBDtR85lr0LDMDDJOo+SfJQgiCTCGkWEERR2mhzPVj66oBEUVioVGLrOLRK9KbenThNs4Mc6xGa7O+sAQwbsoRJlg5IJ15JCkI9a9Sis02thNmMYBhdYZrp7kB+y7lVI8lGi3cm6NJqZnpgwr5v84BDyQ0Ohjy1sKCgkiDaEcw+UFBR2auN6wKXRTLmMqYkJU2JbmD2HczEjwoUNCtlNLDlneoc1mqH3L5loDi0pnCSefRZtKbhAr9gNRVVRmDVi3seazXTyOkB0BrmBxrrt1KuQLRXpW7su1DFFBQWFBNGGhC4f7bDsgd3GuGseIx+tVPii8zaQkqQJVj7KBoXZPtq4ekVRGPkoZYMSCSsfNXSdm+edWgdx8tGZHmu8CqQ21+Vntc4Udto6QHQGbjOF7VZPCFBQSBBtSRiZwk7tUQgAWYtWDlqhgPzgoPlzpVzmanT6VrfHIpEWWKMZdoPcad9VGXDuo/T+JRJFVfkG9oyE1Clwy/X1ozB7DoBaMDk9MWEpN+UyhWxQSP0/iTbHbU0hlymM2VROFhQUEkQbwroHympI0cknxFY1hZnuHu5EsSlT2CYnh2nBzkwm291Z31UZcDWFJB9NLHYS0latg9hs4cTYmHDgVwsKrTKFTVlF+m4QbYivTGECTOVkQEEhQbQhYchHO7VHIWD992Z7e7lNUXNQ2B6LRFrIWGRzAcp0+YFvSUHvX1KxM5tplc3rW8nXFYrO0gCQH2aCwpmaQlamqmazXFBKEO0C16fQJig0DKMtD4EpKCSINkRRGbdFko8GJlMsNt2X7e2DqmlcwDixf795OwntKDoJ20xhh31XZcDKzzNkJpJY7NpStFJ1iA6kVgd+ojQe6OyDQaJzyLqQj5amp83rLNPdg6658yIZW9hQUEgQbQgnHw2lT2FnbRTVbJar3wEamy1201V/r7N9fcgzNTlE+LAbZBY751jCHtZ9lOSjycWugX2rthG9K/lehVZBZG6ACQpnMoWdfDBIdA45F/JRUTraLm2PKCgkiDaElY9KyxR2cE0h0CxPrEtHrWzZ+1avbZtFIi0oqgqtyyqj23nf1aCwwQYrpSKSBZcpdGk0AwB9KxtSN1dB4czG2Kn/IUG0C2ym0E4+ypvKtY8qiIJCgmhH2Ob1wn8ZhoHnHnsMj993n3kC7IZObl4PNGdM6rU62T6LTVcbLRJpImMhIaWg0DtLzngt1Hwe3YuXYM4Ljo97OIQNfuWjxYWLTOVDeXoa05OT5v/VM+u5QYtMYYcfDBKdgZgptFJbsfWE7VQqkol7AARByMfJaObA3r3Yfued5s9L1rlrulrpcCty0YE0Y8pHLTKFbVJ0njas6gpJPuqdhS85DS//2wPI9PRAZVUHRKKwCwpbzdWqpqF32XLsu/8+AMDY6Gjj8fVMIZMhLs9sjCsUFBIdgFYoQCsUUJ2agmEY0KtVaBk+XGpHkxmAMoUE0ZawzadF+Sg7mbGbgVZYOdR1EmJwYdYUWjRHb6dFIk1YOZDS5tUfuf5+CggTjhv5qJ2qgzWbsQoKtXy+IceeaUXBSunIaIZoZ1q1peBrCtdGMqYooKCQINoQ1ihCzBSyC3tpasr1c3a6fFTMFGZngkQr053+Nlok0oRVppCCQqJd4VpS2MlHbYI3ti0F+7tssJcbHDBvV8rljj8YJDoHrgexEBSWSyWzTYuay6O4cFGkYwsTCgoJog1xMpphF3a2lqQVbjYa7YyYKaxb9Ys1hVqhgOKChZGNi2hgVVNI8lGiXVFtmte7Cd7YBvYs7ONFsxmqKSQ6hdyAfaaQyxKuXNlWigoKCgmiDVEcjGbYupBqpcIt9E5UOtyOvClTaNYU9nP3965cxb3/RHRoNv0kCaIdsZOPsnO1rXyUyRSysNdLXmhLwbe6oOuKaF+c2lJMsM6ja9pLFUQ7F4JoQ5z6FIpBoFsJaaefEjcFhT3WNYV9q9rHiSxtZKxaUpDMjWhTrOSjdWOMOnaZcrtMIScfpUwh0aE4NbDnM4Xttd4nMii8+eabsWbNGpx99tlN//e1r30Nxx57LDZu3Ig3v/nNePTRR6MfIEEkHEf5qDDBTbsICt1uNNqZrOg+atOnkILC+LB0H+1AqTPRGWiFZvkol80rFm2lbbm+fhRmz2m6nw32xAb2na4WIToHrqZQOEifEBrXtxOJCwq3b9+OD3zgA5b/94Mf/ABf/OIXUSqVsGrVKtx4440499xzMT09HfEoCSLhqA5GM2Km0EVdIbfR6O7uSHlkppvfBDXko/z95DwaHxlL+ShtXon2hMsUzshHeYmn83e/z0JCytUUOhrN0HVFtC9sS5amTCErH22z9T4xO7tqtYqvfvWreNWrXoUdO3ZYPuY73/kOAOAb3/gGLr/8chx99NF46qmn8Ic//CHCkRJE8mHdR8VMYcWHfJQ2A17ko+21SKQJTZCPKpkMNMaMgyDaCas+hbzE07nuz0pCaicfLYs1hXTYQrQxORv5aLVSMQ36FE1Dz7LlkY8tTBITFI6Pj+MrX/kKhoaG8PrXv77p/3ft2oUnnngCxWIRGzduBABs3boVAHD77bdHOlaCSDpsn0LRaEaUj7oKCjnZUGcaDNgbzTTej3ZcJNKE6D7aqQcYRGdgVVPIzdV9zt//3pX8AZaiZbhA07GmkGp1iTbGrk8hazLTs3QZtFwu0nGFTWKCwmw2i3/913/F1VdfjQ0bNjT9/7PPPgsAGBgYMO+r367/H0EQNdiawlbyUTdtKdjsYqbFRqNdEYPCek1hcf4CKJkMAGBg3fq2WyTShFhTSNJRop1hs+B1+WjFQ6awT8gUZnq6oSiK+bNjTSEduBBtDJspZA9a2rVpfZ1MVC90+eWX4/zzz7f9/2uuuQZveMMbbP+/XjeYyTSGXL895aEBN0F0Am77FAJ+5KOdmSnkTsYVBZliLUgszJqFw//t83jmd7/Bun/8/+3de3BU9f3/8dduNllyJQFDuATkUghKCuINNNavCkg1Ct8JrcpPUEdwUBS+oy1thZ+O4320P2gL2s5XtIJ4QUXxWkulgzOgIgUVw62AUgQUw1VIQq77+yPu4Zy9kGTd7J5z9vmYYdjsJXt4s9ns+3zen/f7ziQdHSQZ/yfG1ySFcLFWy0dbSdxCx1KE3j+jIPpKIT9bcLOoK4WmpLCzy5rMSAlMCv1+v2WVL1RaK8MfM344+95k6oAYPCPWyfTGGE1BQZZ8vsQPmCws5I0z0Yi5dKDzyb1V5pXCQCDwo5PCnNMKUjLGdT0LjcvpOTnqVnTyl0bh/0yX/md63J4rFeMbD991K7B8nVWQ32osiXXiEfP4OFrUxbgcKSls7b26a5czleb3q+mHk+6ZIT8vnn69jMuhcwp79OupDBLDMLy2kyPecW/u29O4bE4KzU1mep0zzHX/3wlLCsvLy1VeXh7z44uKWlonHzlyxLgueLlHjx6tPv7w4ZqYnztWhYW5qqo61vodETfEvMXx6vqTX5iSwkiD6uvr6hQIBCxlQ6HM5RPNGZkpGePqhpPV9r7snA6LAa/h2NU0hryGO2WdMpbEOvGIefxU150cWB8Idh81N8VI79RqrHP69dfRrVskSZ7MbMv9q5vTjcsN9fUnxxJ5PDpS0yzPCf4fzXhtJ0dHxN382o+2Uujpfrpj/7+jJbO22VPYmqKiInXv3l3V1dWqrKyUJH3yySeSpLPPPjuZhwbYjmVPoen6SEmhAgHVtzLWpbEdbc7dKrNHD2MUR1Zx7yQfDSIJKx+lGQZczNxoJlhF1djOTtHmZjOhPy/m8tEG0++IVB1LhNSRkRe+p7C5qUknqqtbrvR4InbvdTpH/VRPnjxZkjRlyhRVVFRo9erVKi4u1qhRo5J8ZIC9eKLMKQztPBrU2qxCa5vzFE0Ki7pr2L0PqNtFF2vY/70v2YeDCMK7j6bm/lekBsuewkhzCtvwXm1uNhPamMaXlS1venroQ+g8Ctczj5pqbGhQIBBQbTAhlJTVq1fEubhOl7Dy0XiYMmWKGhoa9MILL2j79u0aMWKE7rvvPvmZQwVYRGs0EzqjMKi1fYXWkRSpmRRKUsm06SqZFr+9g4iv0O6jrBTCzdL8J5PCQAyNZiSpy9nnGJdzQ8bpeDweZeQX6ESVdXZ0qo4lQurwpqfLl52jxuqWPYRNjY2WzqOdS85I1qF1KFsmhRUVFaqoqAi73uPx6LbbbtNtt92WhKMCHMQTZaUw1qSQ4fVwgNDy0VQ+gQH3M68UNkUcXt/667/nmJ+r9DdzVLv/Gw2cemvY7ZGSQh9JIVJARkGBkRTWHj9umVGYN9B9nUclmyaFAH4cT5RuvtGSwtZmFTZSPgoHCJtTyAkMuFjE8tF2VnV4PB4NufPXUW/PiNA1np8rpIJuF16kXS+/KEk6sHev5eR5ngvHUUgO21MIoG08aa3vKTQnju1ZKWQ+FewqdE8h5aNwM3NSGKl8NB5NwczNZoI4MYhU0Oe/JxiXD+zbZ+k8mjdwUKSHOB5JIeBCls5wUfYU5vQ9uX+kXXsKOUsMm0qjfBQpJFL5aHu7j7YmI5+kEKmp6KKL5e/SVVLLZyRrUshKIQCH8HhNIymi7Ck0lz+0a08hHwhgU+HdR3mtwr3MIykidR+Nx3t1pKQwVccSIbV409NVfPX4sOs7FXZTRufOER7hfCSFgAtZ5hRGKR81lz/U1dZa7hfK+kGDJgOwJ6/fL3lODrCnfBRu5vH5TlaFBAIKNDdb3uPjUj4aaaWQnyukiNNNJaRBeSWDk3AkiUFSCLhQtMHC5uQuu7i3UX7U3NQUtQmNxPB6OIPH47F0IGVVG27m8XisA+ybm+O/UliQH3YdP1dIFaedP1KZPXtarnNrkxmJpBBwpWgrhZb9Jnl5yuzew/g6WglpIBAI2VPIWWLYly/blBRyAgMuZ9lXWF9vvN9709OVFocZzhmd88Ou48QgUoXH61WfcdYReW5tMiORFALuZCqhi1Y+mp6Tq8weJ8+A1UcZS9H8QwMDqWVYsjc9PZ5HCsRV76v/W5LUZdhwZRX3Tu7BAB3M2+lk4ldfX29czojTah6NZpDq+oSUkLq1yYzEnELAlSxzCqM0mvHl5lpWCuuirBRaW5yzSgh7G/7AI/rJjTcrp19/eUwnRwA3MpePNtTVGZcz8uKz95uRFEh1BUOHKa9ksL7ftlVev1/5Z5Ym+5A6DEkh4EJRG82E7DfJ6tF6+SiD6+EkHo/H1eU9gJm5fNSSFMapO6I/YqMZfg8gdXg8HpX977P69zP/q55jxsof4USJW5AUAi4UrdFM6AyrzO6tl49aSk7jdPYZAPDjpfmjJIUdWD7q4+QgUkzeoBKd++j/S/ZhdDj2FAIuFHVOoTnBy81TZo/2lY8yjgIA7MO8UlhvSgrjdQIvPS/PskddYqUQcCuSQsCFIpWPBgKBsP2Bbek+2hSyuggAsIeo5aNxSgo9Xq8y8vMt1/F7AHAnkkLAhTxe05ndH5JCSxfRTpny+nzKMncfjZYUmochUzYEALbR0Y1mpPASUhqOAe5EUgi4UKSVQmvDmJZf6p26FRmlQQ11dWpubg77XjSaAQB7SjONpOiIPYWSNSn0ZmTEZf4hAPshKQRcyOM5+aMdTAqt+wlbOtN509PVqbCbcX1DhNVCykcBwJ4Ss1KYb1zmdwDgXiSFgAtZ5hT+wJLcmT4wtDarMHSMBQDAHix7Cs3D6zuofJTfAYB7kRQCLhSpfNS6UnjyF3tmK7MK2VMIAPZkHklh1lErhT5WCgHXIikE3Mg8pzDCnkLzL3ZLB9IIswotewqzaTAAAHZhXik0Y6UQQHuRFAIuZB5eb6wURikDNXcgbb18lDmFAGAX0ZLC9Dh2CCUpBFIDSSHgQu1JCjNbGUthmW3IBwIAsI1ElI9mFhUZl/2nFcbt+wKwF5JCwIUiNpox7ymMVj5K91EAcIy0zI5PCntefoUKR16o7N699ZMbp8Tt+wKwF1+yDwBA/LU2p9C84pfVyp7CaA1qAADJZR5JYZaRl6fwd/PY+DIzddnr7ygQCMjzw1xbAO7DSiHgQuY5hYpUPpoTufto3YkTRhIZxEgKALCnaIPk47lSGERCCLgbSSHgQhFHUkRJ7tJz8+T7oatooLlZjaaVQSl611IAQHJFXCn0eJSenZ34gwHgaCSFgAt50iI0mjGXgYacRbY0mzGVkDY3NSnQ3PzD90yL2ukOAJB4kd6TfdnZlmZjANAWvGsAbhThA8GpGsZkRRlgH/oYyocAwD68EcpHaQgGIBYkhYALebwRGs2YVgpDR0uYO5DWRUkKGUcBAPaSlhlePkpSCCAWJIWAC1lKhyLuKQwpH40ylqKRwfUAYFsRy0c7oMkMAPcjKQRcqNVGMyFnks0dSM17Cuk8CgD2FWl4PSuFAGJBUgi4UOjw+kAgENJFNMdye2Z3U6MZc/koMwoBwLYirRTyXg0gFiSFgAuFNoRpamoyyki9fr/SMjIst2eZuo9G21PIBw0AsJdIIyl4rwYQC5JCwKXMq4WWFb+QVUIppHw0yp5CZhQCgL1EGl7PezWAWJAUAi5lTgob6+uNy5H2m/hPKzTu31hfr+amJkmUjwKAnVE+CiBeSAoBlzJ3ILV0Ec3rHHZfb1qaOhUVGV8HVwutzWnoaAcAduLxesNmFZIUAogFSSHgUuZZhZaVwigfGMzNZuoiJYV80AAA2wldLaT7KIBYkBQCbmVeKbSUgUZe8cvqHj6WguH1AGBvoWMpQrtLA0BbkBQCLuVJi5wURkvuMnuEj6WwJJOcfQYA2wlbKeQEHoAYkBQCLmUpH21DwxhzB1LKRwHAGULHUnACD0AsSAoBlzI3mmlqw4pfZvfwsRQkhQBgb6FjKSj1BxALkkLApSwjKdqwUmgeYB9pTyFnnwHAfsLLR+kUDaD9SAoBl4qWFEbdUxhhpbAtjwMAJE9aJuWjAH48kkLApTwej3G5LQ1jQpPCQCBA+SgA2FxY+SjdRwHEgKQQcKn2lo/6srKUkZ8vSQoEAqqvq1NzU9MP38wjX1Z2hx0rACA25kYzXr9faRkZSTwaAE5FUgi4lXlOoWV4ffT9JubVwtpjx4zLvuxsS+MaAIA9mPcUpmezSgggNnzKA1zKvFJoGUJ/iv0mmd1PNpupPX7cuMweFQCwJ6+pfJQyfwCxIikEXMo8p9AoA5WUkXeKlULTrMIa00ph+ikeAwBIHnP5qI/OowBiRFIIuFS0cs9TrxSaykfNK4V80AAAW/KZy0dZKQQQI1smhevWrVNJSYluuukmy/XHjx/XQw89pEsuuUTDhw/XL37xC33wwQfJOUjA5jxpkX+8T/WhwZwUWlYKKR8FAFvykhQCiAPbJYU7d+7UXXfdFfG22bNna/HixZKk0tJSVVZW6tZbb9X69esTeYiAI5j3FAZ509PD2pebZfU8uaewoa7OuMyMQgCwJ0ujGU7gAYiRbZLCpqYmLViwQBMmTNB3330XdvuhQ4e0YsUKZWVl6c0339Rzzz2nKVOmqLm5WcuWLUvCEQP25vGE/3i3Nr/K3GjGjLPPAGBP5vL+jIKCJB4JACezTVJYXV2t+fPnq0uXLrr++uvDbvf5fJo3b57uu+8+5f3Q9KKwsFBSS8IIwCrSSmFrewPN5aOWx3H2GQBsqfjKq5Tdu48yCgrU95r/k+zDAeBQvmQfQFB6erruueceVVRU6L333gu7PS8vT1dccYXx9YkTJ/Tqq69KkoYPH56w4wQcI0KjmdaSQn/XrvJmZKjZNNew5XEkhQBgR51OK9SVH21QoKmJwfUAYpawpPC1117T3XffHfX2lStXatKkSW36XvX19ZoxY4a2b9+url276tprr231MQUFWfL5wldOOlphIR+mE42Yt8jwp4ddl9Ulv9X4ZPfsqWO7dlmu61zUlbgmELFOHGKdeMQ8MYhz4hHz5CDu8ZGwpNDv9ys/Pz/q7WkRSt0iqaur0/Tp07V69WplZGRo7ty5p/y+QYcP17TxSOOnsDBXVVXHWr8j4oaYn9TUHOHKTlmtxsdfWBSWFNZ7MohrgvAaThxinXjEPDGIc+IR8+Qg7u0XLYlOWFJYXl6u8vLyH/U9mpqaNHPmTK1evVp+v19PPPGERo4cGacjBFwmQvnoqWYUBmX2DG82Q/koAACAe9lmT2FbzJ07V6tWrVJ6err+/Oc/q6ysLNmHBNhW5EYzbUgKI3QgZSQFAACAezkmKdy/f78WLVokqaXpzPPPP6/nn39ekjR48GDNnDkzmYcH2I7HGyEpzDt1oxlJyorQgZTuowAAAO7lmKTwn//8pxoaGiRJBw8e1MqVK43bamoSv18QsDtPpO6jbSkf7REhKWSlEAAAwLVsmRRWVFSooqLCct3EiRM1ceLEJB0R4DyetEgjKdpSPhopKWx9hREAAADOZJvh9QDiK9JKoS+n9eQus0eEPYWUjwIAALgWSSHgUhH3FLZlpbCoe/jjcnLickwAAACwH5JCwKVi7T6a5vfL3/W0k1936iRvenpcjw0AAAD2QVIIuFWMjWYka7MZSkcBAADcjaQQcKlYG81I1mYzdB4FAABwN5JCwKUi7Sls6xB6a1JI51EAAAA3IykEXCrWOYWSlGXqQMpKIQAAgLuRFAIuFdpoxpPmU1pmZpseax5L4aPzKAAAgKuRFAIuFbpSmJ6TI4/H06bHdr/4EnkzMlou/9elcT82AAAA2Icv2QcAoGOE7ils635CScrqVawrV69TRs1h+QYNjfehAQAAwEZICgGXCu0+2t6GMdm9+6iwcIiqqo7F87AAAABgM5SPAm4VWj5KwxgAAABEQFIIuFRooxmSQgAAAERCUgi4VOieQpJCAAAAREJSCLhUaPdRXxtnFAIAACC1kBQCLhXeaIakEAAAAOFICgGXCp9T2L7uowAAAEgNJIWAS7GnEAAAAG1BUgi4VFj30TxWCgEAABCOpBBwqfDyUVYKAQAAEI6kEHCp0JVCH+WjAAAAiICkEHCpsJVCkkIAAABEQFIIuBXlowAAAGgDkkLApcIazbBSCAAAgAhICgGXCi0fZU8hAAAAIiEpBFzKMqfQ45EvKzt5BwMAAADbIikEXMpcPpqekyOPx5PEowEAAIBdkRQCLuXxnkwCfTSZAQAAQBQkhYBLmVcKMzp3TuKRAAAAwM5ICgGXMu8ppMkMAAAAoiEpBNzK1H2UGYUAAACIhqQQcClLo5ncvCQeCQAAAOyMpBBwqYKfDjUudx1+ThKPBAAAAHbmS/YBAOgYBUN+qv96cZlq93+rPuMrkn04AAAAsCmSQsDFul9yWbIPAQAAADZH+SgAAAAApDCSQgAAAABIYSSFAAAAAJDCSAoBAAAAIIWRFAIAAABACiMpBAAAAIAURlIIAAAAACmMpBAAAAAAUhhJIQAAAACkMJJCAAAAAEhhJIUAAAAAkMJICgEAAAAghZEUAgAAAEAKIykEAAAAgBRGUggAAAAAKYykEAAAAABSGEkhAAAAAKQwTyAQCCT7IAAAAAAAycFKIQAAAACkMJJCAAAAAEhhJIUAAAAAkMJICgEAAAAghZEUAgAAAEAKIykEAAAAgBSWcklhVVWV7r77bl100UU655xzNHnyZH3++efG7StXrtSVV16p0tJSlZeXa9WqVZbHf/HFF7r55pt17rnnqqysTHfddZf2798f9jyNjY0aO3asSkpK9O2337Z6XBs2bFBFRYVKS0s1atQoLVu2LOL9du/erdLSUo0ZM6Z9//Akc2rcd+3apRkzZmjkyJEaMWKEpk2bpi+//DK2IMSRU+O5c+dO3XLLLTrrrLN08cUX64EHHlBNTU1sQUgwp8bc7MEHH1RJSYnmz5/f9n94gjk1zmvWrFFJSUnYnw8//DC2QCSYU+MeCAS0cOFCjRo1SsOGDdN1112nysrK2IKQAE6M8/z58yO+tu3+XhLkxJhLLZ8/br31Vo0YMUIjRozQ9OnT9fXXX8cWhARzeszPP/98jRw5Ug8++KBOnDgRWxAcKKXmFDY3N+vaa6/Vxo0b1bdvX+Xn5+uzzz5TVlaW3njjDdXU1GjChAnyeDwqLS1VZWWlAoGAXn/9dQ0aNEjffPONxo8fr6NHj2r48OE6fPiwdu3apZKSEr366qvKyMiQJNXX1+u3v/2t3n33XUnSBx98oO7du0c9ru+++05XXHGFampqNHToUG3btk21tbV66qmndPHFFxv3279/v6ZMmaLt27erT58++sc//tGxAYsTp8b9+PHjGj9+vPbs2aMzzjhDgUBAW7duVWFhod5++23l5+cnInxhnBrPmpoaXX755aqqqtKwYcNUVVWlffv2acyYMVqwYEFCYhcrp8bc7F//+pcmT56s5uZm3XHHHZoxY0bHBSxGTo7zwoUL9fjjj2vIkCGW7zVz5kwNHjy4A6P24zk57vPmzdNf/vIX5efna8CAAVq/fr26du2q9957T3l5eR0fvHZwapzfeecdvfPOO5bHrFmzRidOnND8+fN1+eWXd1zQfiSnxry+vl7l5eXavXu3BgwYoE6dOmnTpk3q37+/3nrrLfl8voTELxZOjfmRI0dUXl6uAwcO6LzzztPOnTt16NAhjR49Wk888URCYpdsKbVSuHnzZm3cuFHFxcV65513tHTpUuMF8tZbb+m5555TY2Oj7rzzTr300ku6/fbb1djYqCVLlkiS/va3v+no0aMaN26cXnrpJb311lvq3r27tm3bpo0bN0qSPvzwQ1VUVBgv0rZ49dVXdfz4cU2cOFFLly7V/fffL0latGiRcZ/nn39e48aN0/bt2+MYkcRwatzXrFmjPXv26Nxzz9Xy5cv1xhtvGMlM6FmtRHJqPD/77DMdO3ZMY8aM0csvv6yXXnpJkvT++++ruro6niGKO6fGPOjEiROaM2eOmpub4xSRjuHkOG/ZskWS9Jvf/EZPPvmk8cfuCaHk3LgfPXpUTz/9tLxer1588UW98MILGjt2rNLT0/XFF1/EOUo/nlPjXF5ebnlNX3PNNTpx4oQqKipsnRBKzo35zp07tXv3bhUXF+vNN9/Ua6+9pvPOO09ffvmlduzYEecoxZdTY758+XIdOHBAkyZN0pIlS7R8+XJlZWXp/fff16ZNm+IcJXuy76mGDtCtWzfNnTtXfr/fOMty2mmnSZIOHz6sDRs2SJLOP/98SdLIkSMlSZ9++qkk6aKLLlJBQYEGDBggScrIyFDnzp317bff6tChQ5KkJUuW6KuvvtJdd92luXPntum4WnteqeVsaFpamm655RY99dRTMUYgOZwa9zPPPFOPP/64CgsLjcd07drVOO5kcWo8L7zwQn366aeqra2VJB04cECSlJ2dbZz5syunxjxo3rx52rVrl8444wwjebEjJ8d58+bNklpOcixdulQDBw7UDTfcoJycnFhCkVBOjfu6devU0NCgfv36qX///pKkP/3pT7GGocM5Nc5mtbW1uv/++5WTk6Nf//rX7YxA4jk15vn5+fJ4PJJk/B0IBOTxeGz/nuLUmP/nP/+RJA0cOFCSVFRUpJKSEn366af6+OOPNWTIkJji4SQplxSWl5cbXx86dMg4y3DWWWcZtcXBssDg38E65UGDBmnQoEHG49etW6dt27bJ6/Vq6NChkqSf//znmjVrlvr169fmF2rw+4c+b3V1tY4dO6bc3FzNmDFD48eP17Zt2xyZFDox7r1791bv3r2N+3/11VdavXq1cdzJ4tR45ubmyuv1Kjs7W4888ohefvll+f1+PfDAA0pPT29/IBLIyTHfsGGDFi9erLFjx2rgwIG2TwqdGGefz6ddu3ZJkp577jnjcStWrNArr7zC61sdE/fg/qrs7Gz96le/0sqVK9W/f3/NmTNH55xzTjuj0PGcGufc3Fzjvq+99pr27t2rqVOnGidJ7cypMe/Ro4dmzZqlefPmady4cUb56LRp01RcXNz+QCSQk2MuydiTXFNTo927d0uS9u3b1+Z/v5OlVPmo2ffff6+pU6fq4MGDGjBggMaOHWtsJg3+Ag+e4QiubJht2bJFd9xxhySpoqLCqGMeN26c+vXr165jCT5v8PnMHyCCz33jjTcmbQ9bPDkt7kH79u3T1KlTVV9frwsuuEDDhw9v13N1FKfGc+XKlaqpqVF+fr6ampra9TzJ5qSY19XVafbs2crNzdW9997bru+dbE6K8/fff69LL71Uo0eP1ooVK/T++++rb9++2rJli15++eV2PVeyOSnuweevrKzU2rVrdcYZZ2jTpk2aOnVqm5pOJJOT4hwUCAS0ZMkSeb1eTZo0qV3PYQdOi3ljY6MkaceOHaqsrFSnTp2MFTencFLMx48fr6ysLL3yyiu67rrrdNVVV+ngwYOWx7pdSq0UBh05ckQ333yzNm3apM6dO+uPf/yj0tPT5ff7VVtba/wgBv/OzMy0PH7Tpk26+eabdeTIEQ0ZMkSzZ89u83MvXrxYH3/8sfH15MmT5ff7Jcn4cNzQ0GDcHvrcTubUuO/Zs0c33HCD9u7dq169eumxxx5r57+8Yzg1nlLL2eaqqipNmjRJs2bNUt++ffXTn/60Hf/65HBazP/whz/oq6++0qOPPuqoDxNOi3Nubq6efPJJy/e55ppr9Nhjj2nDhg26/vrr2/GvTx6nxT14u8/n07Jly1RUVKTZs2dr2bJleuONNzRt2rQYotDxnBbnoM8//1xffvmlhg8fbqyqOIXTYr5hwwbNnTtXp59+up555hkFAgFNmTJFDz74oHr37q1LLrkkpjgkktNinpubq7/+9a966KGHtH37dl144YUaOHCgVq1a5arP4qeSciuF1dXVmjJlijZt2qT8/Hw9++yzRv1wt27dJLVsXpdaXtCSLN2MduzYYXmRPvPMM8rOzm7z82/evFkrV640/nzzzTdRnzcnJ8dStuFkTo37d999pxtvvFF79+5VcXGxFi9ebDwumZwaz0OHDuno0aPKy8vTgAEDdOGFFyoQCGjt2rWxByNBnBjzv//975Kk3/3udyopKTG6vC5YsECXXXZZjJHoWE6Mc3V1tf79739bxtUE98kGP/DYnRPjHkxM8vPzVVRUJEnGySW7rhQ6Mc5Ba9askaSwzsZ258SYr1+/XpI0evRoFRcXq3fv3ho9erSkk/8PdubEmEst5a2vvPKK1q9fr/nz56u+vl6S1KdPnxgj4SwplxTOmTNHlZWVys3N1aJFi3TmmWcatwVrlYMfUD/55BNJMvYmVFdX67bbbtORI0c0ePBgPfvss+0u6Xz00Ue1bds2409FRUXU5z377LNj/4fajBPj3tTUpJkzZ2rPnj3q0aOHlixZYptafifGc9GiRbrggguMjl8NDQ3G/jYnrGI5MeZlZWUaNWqU8SdYbtOvXz+VlZXFEoYO58Q4f/jhh7r66qt1++23q76+XoFAQB988IGk5O4/bg8nxv3cc8+V1+vVwYMHjc7cO3fulGTfD3FOjHNQ8HYnVHWYOTHmnTt3ltQyry84OW7r1q2SZGl+Z1dOjPlHH32kUaNGaebMmZJaZi1+9tlnklqa36SClJpTuHHjRv3yl7+UJPXq1cvSKrysrExDhgzRxIkTlZaWZsxOkaTXX39dAwcO1FNPPaXf//73kqTS0lLjzKQk3XTTTUZHo6CSkhJJrc9O2bNnj6666irV1dVp2LBh2rp1q2pra7Vw4UL97Gc/s9x37dq1uuGGGxw1p9CpcX/33Xd15513SpJ+8pOf6PTTTzcee/XVV+uKK674MWGJmVPjWVVVpfHjx+vgwYMaOnSovv/+e+3atUt9+/bV8uXLbV2e4dSYh5o/f74WLFhg2zmFTo1zXV2dJkyYYMyQzc7O1pYtW9SzZ0+9/fbb7TrDnQxOjbsk3XvvvVq6dKny8vI0ePBgrVu3Tvn5+Xr33XfVpUuXOEQnfpwcZ6ll1errr7/WqlWrHFM+6tSYm2fmDRo0SF6vV1u3blVubq7efvvtU37vZHNyzC+//HIdPXpUZ599tr7++mtVVVVpwoQJevjhh+MTHJtLqT2FK1asMC7v3btXe/fuNb4uKCjQ9ddfr/nz52vevHmqrKxUnz59NGvWLGPJ25yEVVZWGi9kSRo7dmzMx1VcXKynn35aDz/8sCorK9WtWzdNnz494oc6J3Jq3M3Pu2PHDstsoNLS0pif98dyajwLCwu1ePFiPf7449qwYYP8fr8qKio0a9YsWyeEknNj7jROjbPf79fChQv12GOP6aOPPtKBAwd06aWXas6cObZPCCXnxl2S7rnnHuXl5en111/X5s2bVVZWprvvvtt2CaHk7DhLMppuFBQUxPxciebUmOfn5+vFF1/U3LlztXbtWjU2NqqsrEyzZs2ydUIoOTvmTz75pB555BFt2rRJXbp00e23367p06fH/JxOk1IrhQAAAAAAq5TbUwgAAAAAOImkEAAAAABSGEkhAAAAAKQwkkIAAAAASGEkhQAAAACQwkgKAQAAACCFkRQCAAAAQAojKQQAAACAFEZSCAAAAAAp7P8DfFr5s0cdCb8AAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "leverage = 1.5\n", - "tp = 2.1/100\n", - "sl = 7.3\n", - "pf = (pd.concat((low_portfolio, portfolio_return_MV,high_portfolio), axis=1).dropna()-spread)*leverage\n", - "pf.columns = [\"low\", \"Return\", \"high\"]\n", - "\n", - "pf[\"Return\"] = np.where(pf[\"high\"].values>tp, tp, pf[\"Return\"].values)\n", - "pf[\"Return\"] = np.where(pf[\"Return\"].values>tp, tp, pf[\"Return\"].values)\n", - "pf[\"Return\"] = np.where(pf[\"low\"].values<-sl, -sl, pf[\"Return\"].values)\n", - "pf[\"Return\"] = np.where(pf[\"Return\"].values<-sl, -sl, pf[\"Return\"].values)\n", - "\n", - "# Plot the CM\n", - "backtest_dynamic_portfolio(pf[\"Return\"])" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Why has the performance does not grown since 06-2021? There are some explanations. The period's volatility is less than the other, and the strategy does not work on it, or the weight of the algorithm needs to be adjusted because the market situation has evolved." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Congratulations!\n", - "\n", - "You have read the whole book. It is normal if you do not have to understand all the notions. To a better understanding, I advise you to use your news skills in your projects.\n" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/packages/itbot/notebooks/model_experiments.ipynb b/packages/itbot/notebooks/model_experiments.ipynb new file mode 100644 index 0000000..4298eeb --- /dev/null +++ b/packages/itbot/notebooks/model_experiments.ipynb @@ -0,0 +1,6495 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Python for finance and algorithmic trading (2nd edition)\n", + "\n", + "# Chapter 16: Real life full project\n", + "\n", + "### 16.1. Preparation of the data\n", + "> ###### 16.1.1. Importation of the data\n", + "> ###### 16.1.2. Features engineering\n", + "> ###### 16.1.3. Tain, test and validation sets\t\n", + "\n", + "### 16.2. Modelling the strategy\n", + "> ###### 16.2.1. Find the best assets\n", + "> ###### 16.2.2. Combine the algorithms\t\n", + "> ###### 16.2.3. Apply portfolio management technics\n", + "\n", + "### 16.3. Find optimal take profit, stop loss and leverage\n", + "> ###### 16.3.1. Optimal take profit\t\n", + "> ###### 16.3.2. Optimal stop loss\n", + "> ###### 16.3.3. Optimal leverage\n", + "\n", + "\n", + "https://github.com/Quantreo/2nd-edition-BOOK-AMAZON-Python-for-Finance-and-Algorithmic-Trading/\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# !pip install --user ta" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "# import MetaTrader5 as mt5\n", + "from packages.itbot.itbot.MetaTrader5 import MetaTrader5\n", + "import time\n", + "from datetime import datetime, timedelta\n", + "import matplotlib.pyplot as plt\n", + "import warnings\n", + "warnings.filterwarnings(\"ignore\")\n", + "\n", + "import ta" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "['Solarize_Light2',\n", + " '_classic_test_patch',\n", + " '_mpl-gallery',\n", + " '_mpl-gallery-nogrid',\n", + " 'bmh',\n", + " 'classic',\n", + " 'dark_background',\n", + " 'fast',\n", + " 'fivethirtyeight',\n", + " 'ggplot',\n", + " 'grayscale',\n", + " 'seaborn-v0_8',\n", + " 'seaborn-v0_8-bright',\n", + " 'seaborn-v0_8-colorblind',\n", + " 'seaborn-v0_8-dark',\n", + " 'seaborn-v0_8-dark-palette',\n", + " 'seaborn-v0_8-darkgrid',\n", + " 'seaborn-v0_8-deep',\n", + " 'seaborn-v0_8-muted',\n", + " 'seaborn-v0_8-notebook',\n", + " 'seaborn-v0_8-paper',\n", + " 'seaborn-v0_8-pastel',\n", + " 'seaborn-v0_8-poster',\n", + " 'seaborn-v0_8-talk',\n", + " 'seaborn-v0_8-ticks',\n", + " 'seaborn-v0_8-white',\n", + " 'seaborn-v0_8-whitegrid',\n", + " 'tableau-colorblind10']" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plt.style.available" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "True" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "plt.style.use('seaborn-v0_8-whitegrid')\n", + "mt5 = MetaTrader5()\n", + "mt5.initialize()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 16.1.1. Importation of the data" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.7264643705549462, trade_tick_value_profit=0.7264643705549462, trade_tick_value_loss=0.7265910527577765, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=-0.85, swap_short=-1.67, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='AUD', currency_profit='CAD', currency_margin='AUD', bank='', description='Australian Dollar vs Canadian Dollar', exchange='', formula='', isin='', name='AUDCAD', page='', path='Forex Minor\\\\AUDCAD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1.1663303747419496, trade_tick_value_profit=1.1663303747419496, trade_tick_value_loss=1.1666025035289727, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=4.66, swap_short=-6.22, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='AUD', currency_profit='CHF', currency_margin='AUD', bank='', description='Australian Dollar vs Swiss Franc', exchange='', formula='', isin='', name='AUDCHF', page='http://www.google.com/finance?q=AUDCHF', path='Forex Minor\\\\AUDCHF'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.6107300000000001, trade_tick_value_profit=0.6107300000000001, trade_tick_value_loss=0.6109700000000001, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=-3.1, swap_short=-0.48, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='AUD', currency_profit='NZD', currency_margin='AUD', bank='', description='Australian Dollar vs New Zealand Dollar', exchange='', formula='', isin='', name='AUDNZD', page='http://www.google.com/finance?q=AUDNZD', path='Forex Minor\\\\AUDNZD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=3, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.6704165297899586, trade_tick_value_profit=0.6704165297899586, trade_tick_value_loss=0.6705828706311526, trade_tick_size=0.001, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=10.06, swap_short=-13.29, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='AUD', currency_profit='JPY', currency_margin='AUD', bank='', description='Australian Dollar vs Japanese Yen', exchange='', formula='', isin='', name='AUDJPY', page='http://www.google.com/finance?q=AUDJPY', path='Forex Major\\\\AUDJPY'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680094, digits=5, spread=23, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.67495, bidhigh=0.67583, bidlow=0.67239, ask=0.67518, askhigh=0.676, asklow=0.67256, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1.0, trade_tick_value_profit=1.0, trade_tick_value_loss=1.0, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=-1.86, swap_short=0.34, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.67406, session_close=0.67406, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.1439, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='AUD', currency_profit='USD', currency_margin='AUD', bank='', description='Australian Dollar vs US Dollar', exchange='', formula='', isin='', name='AUDUSD', page='http://www.google.com/finance?q=AUDUSD', path='Forex Major\\\\AUDUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.6749500000000002, trade_tick_value_profit=0.6749500000000002, trade_tick_value_loss=0.67518, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=-5.51, swap_short=1.49, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='AUD', currency_margin='EUR', bank='', description='Euro vs Australian Dollar', exchange='', formula='', isin='', name='EURAUD', page='http://www.google.com/finance?q=EURAUD', path='Forex Major\\\\EURAUD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.7264643705549462, trade_tick_value_profit=0.7264643705549462, trade_tick_value_loss=0.7265910527577765, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=-4.37, swap_short=0.78, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='CAD', currency_margin='EUR', bank='', description='Euro vs Canadian Dollar', exchange='', formula='', isin='', name='EURCAD', page='http://www.google.com/finance?q=EURCAD', path='Forex Major\\\\EURCAD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1.1663303747419496, trade_tick_value_profit=1.1663303747419496, trade_tick_value_loss=1.1666025035289727, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=5.7, swap_short=-7.92, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='CHF', currency_margin='EUR', bank='', description='Euro vs Swiss Franc', exchange='', formula='', isin='', name='EURCHF', page='http://www.google.com/finance?q=EURCHF', path='Forex Major\\\\EURCHF'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1.30646, trade_tick_value_profit=1.30646, trade_tick_value_loss=1.30668, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=-4.21, swap_short=2.5, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='GBP', currency_margin='EUR', bank='', description='Euro vs Great British Pound ', exchange='', formula='', isin='', name='EURGBP', page='http://www.google.com/finance?q=EURGBP', path='Forex Major\\\\EURGBP'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=3, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.6704165297899586, trade_tick_value_profit=0.6704165297899586, trade_tick_value_loss=0.6705828706311526, trade_tick_size=0.001, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=5.0, swap_short=-17.79, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='JPY', currency_margin='EUR', bank='', description='Euro vs Japanese Yen', exchange='', formula='', isin='', name='EURJPY', page='http://www.google.com/finance?q=EURJPY', path='Forex Major\\\\EURJPY'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1.1663303747419496, trade_tick_value_profit=1.1663303747419496, trade_tick_value_loss=1.1666025035289727, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.01, volume_limit=15.0, swap_long=4.78, swap_short=-6.42, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='CAD', currency_profit='CHF', currency_margin='CAD', bank='', description='Canadian Dollar vs Swiss Franc', exchange='', formula='', isin='', name='CADCHF', page='http://www.google.com/finance?q=CADCHF', path='Forex Minor\\\\CADCHF'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=3, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.6704165297899586, trade_tick_value_profit=0.6704165297899586, trade_tick_value_loss=0.6705828706311526, trade_tick_size=0.001, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.01, volume_limit=15.0, swap_long=10.43, swap_short=-13.83, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='CAD', currency_profit='JPY', currency_margin='CAD', bank='', description='Canadian Dollar vs Japanese Yen', exchange='', formula='', isin='', name='CADJPY', page='http://www.google.com/finance?q=CADJPY', path='Forex Minor\\\\CADJPY'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=3, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.6704165297899586, trade_tick_value_profit=0.6704165297899586, trade_tick_value_loss=0.6705828706311526, trade_tick_size=0.001, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.01, volume_limit=15.0, swap_long=1.18, swap_short=-6.6, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='CHF', currency_profit='JPY', currency_margin='CHF', bank='', description='Swiss Franc vs Japanese Yen', exchange='', formula='', isin='', name='CHFJPY', page='', path='Forex Minor\\\\CHFJPY'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=300, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.09340146658982841, trade_tick_value_profit=0.09340146658982841, trade_tick_value_loss=0.09349709037054768, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=15.0, swap_long=-57.99, swap_short=12.55, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='NOK', currency_margin='EUR', bank='', description='Euro vs Norwegian Krone', exchange='', formula='', isin='', name='EURNOK', page='http://www.google.com/finance?q=EURNOK', path='Forex Minor\\\\EURNOK'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=40, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.6107300000000001, trade_tick_value_profit=0.6107300000000001, trade_tick_value_loss=0.6109700000000001, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=-8.59, swap_short=3.38, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='NZD', currency_margin='EUR', bank='', description='Euro vs New Zealand Dollar', exchange='', formula='', isin='', name='EURNZD', page='http://www.google.com/finance?q=EURNZD', path='Forex Minor\\\\EURNZD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=300, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.25471282402655127, trade_tick_value_profit=0.25471282402655127, trade_tick_value_loss=0.25490630918605867, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=15.0, swap_long=-30.96, swap_short=21.21, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='PLN', currency_margin='EUR', bank='', description='Euro vs Polish Zloty', exchange='', formula='', isin='', name='EURPLN', page='http://www.google.com/finance?q=EURPLN', path='Forex Minor\\\\EURPLN'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=300, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.0963348445059275, trade_tick_value_profit=0.0963348445059275, trade_tick_value_loss=0.09646224708804592, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=15.0, swap_long=-5.46, swap_short=-33.66, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='SEK', currency_margin='EUR', bank='', description='Euro vs Swedish Krona', exchange='', formula='', isin='', name='EURSEK', page='http://www.google.com/finance?q=EURSEK', path='Forex Minor\\\\EURSEK'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.7264643705549462, trade_tick_value_profit=0.7264643705549462, trade_tick_value_loss=0.7265910527577765, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=2.05, swap_short=-6.18, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='GBP', currency_profit='CAD', currency_margin='GBP', bank='', description='Great British Pound vs Canadian Dollar', exchange='', formula='', isin='', name='GBPCAD', page='http://www.google.com/finance?q=GBPCAD', path='Forex Minor\\\\GBPCAD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680097, digits=5, spread=21, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=1.09342, bidhigh=1.0953, bidlow=1.09253, ask=1.09363, askhigh=1.09546, asklow=1.09269, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1.0, trade_tick_value_profit=1.0, trade_tick_value_loss=1.0, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=-5.19, swap_short=3.09, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=1.09334, session_close=1.09334, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0137, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='USD', currency_margin='EUR', bank='', description='Euro vs US Dollar', exchange='', formula='', isin='', name='EURUSD', page='http://www.google.com/finance?q=EURUSD', path='Forex Major\\\\EURUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.6749500000000002, trade_tick_value_profit=0.6749500000000002, trade_tick_value_loss=0.67518, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=1.28, swap_short=-5.9, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='GBP', currency_profit='AUD', currency_margin='GBP', bank='', description='Great British Pound vs Australian Dollar', exchange='', formula='', isin='', name='GBPAUD', page='http://www.google.com/finance?q=GBPAUD', path='Forex Major\\\\GBPAUD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1.1663303747419496, trade_tick_value_profit=1.1663303747419496, trade_tick_value_loss=1.1666025035289727, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=11.34, swap_short=-13.89, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='GBP', currency_profit='CHF', currency_margin='GBP', bank='', description='Great British Pound vs Swiss Franc', exchange='', formula='', isin='', name='GBPCHF', page='http://www.google.com/finance?q=GBPCHF', path='Forex Minor\\\\GBPCHF'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=3, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.6704165297899586, trade_tick_value_profit=0.6704165297899586, trade_tick_value_loss=0.6705828706311526, trade_tick_size=0.001, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=5.0, swap_short=-28.94, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='GBP', currency_profit='JPY', currency_margin='GBP', bank='', description='Great British Pound vs Japanese Yen', exchange='', formula='', isin='', name='GBPJPY', page='http://www.google.com/finance?q=GBPJPY', path='Forex Major\\\\GBPJPY'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680099, digits=5, spread=22, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=1.30646, bidhigh=1.30826, bidlow=1.30409, ask=1.30668, askhigh=1.30841, asklow=1.30426, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1.0, trade_tick_value_profit=1.0, trade_tick_value_loss=1.0, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=-0.9, swap_short=-1.48, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=1.3061099999999999, session_close=1.3061099999999999, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0314, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='GBP', currency_profit='USD', currency_margin='GBP', bank='', description='Great British Pound vs US Dollar', exchange='', formula='', isin='', name='GBPUSD', page='http://www.google.com/finance?q=GBPUSD', path='Forex Major\\\\GBPUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=600, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.09340146658982841, trade_tick_value_profit=0.09340146658982841, trade_tick_value_loss=0.09349709037054768, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=15.0, swap_long=-12.35, swap_short=-40.6, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='GBP', currency_profit='NOK', currency_margin='GBP', bank='', description='Great British Pound vs Norwegian Krone', exchange='', formula='', isin='', name='GBPNOK', page='http://www.google.com/finance?q=GBPNOK', path='Forex Minor\\\\GBPNOK'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.6107300000000001, trade_tick_value_profit=0.6107300000000001, trade_tick_value_loss=0.6109700000000001, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=-1.57, swap_short=-4.45, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='GBP', currency_profit='NZD', currency_margin='GBP', bank='', description='Great British Pound vs New Zealand Dollar', exchange='', formula='', isin='', name='GBPNZD', page='http://www.google.com/finance?q=GBPNZD', path='Forex Minor\\\\GBPNZD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=700, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.0963348445059275, trade_tick_value_profit=0.0963348445059275, trade_tick_value_loss=0.09646224708804592, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=15.0, swap_long=48.51, swap_short=-93.96, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='GBP', currency_profit='SEK', currency_margin='GBP', bank='', description='Great British Pound vs Swedish Krona', exchange='', formula='', isin='', name='GBPSEK', page='http://www.google.com/finance?q=GBPSEK', path='Forex Minor\\\\GBPSEK'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.7264643705549462, trade_tick_value_profit=0.7264643705549462, trade_tick_value_loss=0.7265910527577765, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.01, volume_limit=15.0, swap_long=0.04, swap_short=-2.68, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='NZD', currency_profit='CAD', currency_margin='NZD', bank='', description='New Zealand Dollar vs Canadian Dollar', exchange='', formula='', isin='', name='NZDCAD', page='http://www.google.com/finance?q=NZDCAD', path='Forex Minor\\\\NZDCAD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=3, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.6704165297899586, trade_tick_value_profit=0.6704165297899586, trade_tick_value_loss=0.6705828706311526, trade_tick_size=0.001, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.01, volume_limit=15.0, swap_long=9.97, swap_short=-13.28, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='NZD', currency_profit='JPY', currency_margin='NZD', bank='', description='New Zealand Dollar vs Japanese Yen', exchange='', formula='', isin='', name='NZDJPY', page='http://www.google.com/finance?q=NZDJPY', path='Forex Minor\\\\NZDJPY'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680095, digits=5, spread=24, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.61073, bidhigh=0.61187, bidlow=0.60828, ask=0.61097, askhigh=0.61208, asklow=0.60849, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1.0, trade_tick_value_profit=1.0, trade_tick_value_loss=1.0, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=-1.09, swap_short=-0.54, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.60952, session_close=0.60952, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.21, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='NZD', currency_profit='USD', currency_margin='NZD', bank='', description='New Zealand Dollar vs US Dollar', exchange='', formula='', isin='', name='NZDUSD', page='', path='Forex Minor\\\\NZDUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680099, digits=5, spread=24, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=4, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=1.37629, bidhigh=1.37827, bidlow=1.3724, ask=1.37653, askhigh=1.3785, asklow=1.37262, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.7264643705549462, trade_tick_value_profit=0.7264643705549462, trade_tick_value_loss=0.7265910527577765, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=1.36, swap_short=-4.34, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=1.37461, session_close=1.37461, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.1288, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='CAD', currency_margin='USD', bank='', description='US Dollar vs Canadian Dollar', exchange='', formula='', isin='', name='USDCAD', page='http://www.google.com/finance?q=USDCAD', path='Forex Major\\\\USDCAD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680094, digits=5, spread=20, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.85719, bidhigh=0.85838, bidlow=0.85581, ask=0.85739, askhigh=0.85852, asklow=0.85596, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1.1663303747419496, trade_tick_value_profit=1.1663303747419496, trade_tick_value_loss=1.1666025035289727, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=8.55, swap_short=-10.39, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.85662, session_close=0.85662, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0735, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='CHF', currency_margin='USD', bank='', description='US Dollar vs Swiss Franc', exchange='', formula='', isin='', name='USDCHF', page='http://www.google.com/finance?q=USDCHF', path='Forex Major\\\\USDCHF'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680092, digits=3, spread=37, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=149.124, bidhigh=149.273, bidlow=148.39, ask=149.161, askhigh=149.295, asklow=148.413, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.6704165297899586, trade_tick_value_profit=0.6704165297899586, trade_tick_value_loss=0.6705828706311526, trade_tick_size=0.001, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=5.0, swap_short=-21.74, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=148.708, session_close=148.707, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.2871, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='JPY', currency_margin='USD', bank='', description='US Dollar vs Japanese Yen', exchange='', formula='', isin='', name='USDJPY', page='http://www.google.com/finance?q=USDJPY', path='Forex Major\\\\USDJPY'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=3, spread=183, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=720, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=6624.426, bidhigh=6634.538, bidlow=6617.735, ask=6624.609, askhigh=6634.721, asklow=6617.918, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.5, volume_max=100.0, volume_step=0.01, volume_limit=800.0, swap_long=-1.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=6620.202, session_close=6620.096, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0654, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Constant Volatility of 10% with a tick every 2 seconds', exchange='', formula='', isin='', name='Volatility 10 Index', page='', path='Volatility Indices\\\\Volatility 10 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=3, spread=146, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=423, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=2194.477, bidhigh=2210.235, bidlow=2188.759, ask=2194.623, askhigh=2210.381, asklow=2188.905, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.5, volume_max=150.0, volume_step=0.01, volume_limit=1200.0, swap_long=-2.5, swap_short=-2.5, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=2200.21, session_close=2200.353, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.267, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Constant Volatility of 25% with a tick every 2 seconds', exchange='', formula='', isin='', name='Volatility 25 Index', page='', path='Volatility Indices\\\\Volatility 25 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=4, spread=400, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=1350, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=298.0861, bidhigh=301.0509, bidlow=294.1469, ask=298.1261, askhigh=301.0909, asklow=294.1869, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.0001, trade_tick_value=0.0001, trade_tick_value_profit=0.0001, trade_tick_value_loss=0.0001, trade_tick_size=0.0001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=4.0, volume_max=1000.0, volume_step=0.01, volume_limit=5000.0, swap_long=-5.0, swap_short=-5.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=294.3024, session_close=294.3155, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.2811, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Constant Volatility of 50% with a tick every 2 seconds', exchange='', formula='', isin='', name='Volatility 50 Index', page='', path='Volatility Indices\\\\Volatility 50 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=2771, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=10770, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=112901.66, bidhigh=113785.17, bidlow=111593.26, ask=112929.37, askhigh=113812.88, asklow=111620.97, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.0001, trade_tick_value_profit=0.0001, trade_tick_value_loss=0.0001, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.001, volume_max=1.0, volume_step=0.001, volume_limit=3.0, swap_long=-7.5, swap_short=-7.5, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=112927.65, session_close=112937.33, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.0316, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Constant Volatility of 75% with a tick every 2 seconds', exchange='', formula='', isin='', name='Volatility 75 Index', page='', path='Volatility Indices\\\\Volatility 75 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=40, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=138, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=1407.29, bidhigh=1408.34, bidlow=1340.92, ask=1407.69, askhigh=1408.74, asklow=1341.32, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.5, volume_max=100.0, volume_step=0.01, volume_limit=400.0, swap_long=-10.0, swap_short=-10.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=1384.64, session_close=1385.02, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.6078999999999999, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Constant Volatility of 100% with a tick every 2 seconds', exchange='', formula='', isin='', name='Volatility 100 Index', page='', path='Volatility Indices\\\\Volatility 100 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=25, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=106, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=8992.32, bidhigh=9018.91, bidlow=8989.26, ask=8992.57, askhigh=9019.16, asklow=8989.51, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.5, volume_max=100.0, volume_step=0.01, volume_limit=700.0, swap_long=-1.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=9006.52, session_close=9006.62, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.1588, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Constant Volatility of 10% with a tick every 1 seconds', exchange='', formula='', isin='', name='Volatility 10 (1s) Index', page='', path='Volatility Indices\\\\Volatility 10 (1s) Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728679496, digits=3, spread=27, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=31.538, bidhigh=31.626, bidlow=31.053, ask=31.565, askhigh=31.643, asklow=31.072, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=5.0, trade_tick_value_profit=5.0, trade_tick_value_loss=5.0, trade_tick_size=0.001, trade_contract_size=5000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=-4.76, swap_short=3.8, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=31.149, session_close=31.149, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.2713, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='XAG', currency_profit='USD', currency_margin='XAG', bank='', description='Silver vs US Dollar', exchange='', formula='', isin='', name='XAGUSD', page='', path='Metals\\\\XAGUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728679498, digits=2, spread=15, spread_float=False, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=2656.65, bidhigh=2661.28, bidlow=2631.9, ask=2657.04, askhigh=2661.67, asklow=2632.29, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=1.0, trade_tick_value_profit=1.0, trade_tick_value_loss=1.0, trade_tick_size=0.01, trade_contract_size=100.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=-38.29, swap_short=15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=2633.19, session_close=2633.18, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.8959, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='XAU', currency_profit='USD', currency_margin='XAU', bank='', description='Gold vs US Dollar', exchange='', formula='', isin='', name='XAUUSD', page='', path='Metals\\\\XAUUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728679457, digits=2, spread=390, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=1500, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=1066.45, bidhigh=1087.81, bidlow=1061.5, ask=1070.35, askhigh=1092.37, asklow=1064.55, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=1.0, trade_tick_value_profit=1.0, trade_tick_value_loss=1.0, trade_tick_size=0.01, trade_contract_size=100.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=10.0, swap_long=-20.44, swap_short=8.66, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=1078.9, session_close=1078.9, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-1.0937000000000001, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='XPD', currency_profit='USD', currency_margin='XPD', bank='', description='Palladium vs US Dollar', exchange='', formula='', isin='', name='XPDUSD', page='', path='Metals\\\\XPDUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728679486, digits=2, spread=199, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=400, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=986.48, bidhigh=987.68, bidlow=971.78, ask=988.47, askhigh=988.72, asklow=972.52, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=1.0, trade_tick_value_profit=1.0, trade_tick_value_loss=1.0, trade_tick_size=0.01, trade_contract_size=100.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=10.0, swap_long=-14.91, swap_short=9.8, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=974.29, session_close=974.29, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.2584, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='XPT', currency_profit='USD', currency_margin='XPT', bank='', description='Platinum vs US Dollar', exchange='', formula='', isin='', name='XPTUSD', page='', path='Metals\\\\XPTUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=5, spread=48, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.35287, bidhigh=0.35335, bidlow=0.35048, ask=0.35335, askhigh=0.35384, asklow=0.35095, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1e-05, trade_tick_value_profit=1e-05, trade_tick_value_loss=1e-05, trade_tick_size=1e-05, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=100.0, volume_max=20000.0, volume_step=1.0, volume_limit=60000.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.35149, session_close=0.35149, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.4324, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Cardano vs US Dollar', exchange='', formula='', isin='', name='ADAUSD', page='', path='Crypto\\\\ADAUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712020, digits=4, spread=5, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=100, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.121, bidhigh=0.1218, bidlow=0.1202, ask=0.1215, askhigh=0.1223, asklow=0.1207, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.0001, trade_tick_value=0.0001, trade_tick_value_profit=0.0001, trade_tick_value_loss=0.0001, trade_tick_size=0.0001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=500.0, volume_max=50000.0, volume_step=1.0, volume_limit=200000.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.1212, session_close=0.1212, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.0825, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Algorand vs US Dollar', exchange='', formula='', isin='', name='ALGUSD', page='', path='Crypto\\\\ALGUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712040, digits=2, spread=5, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=10, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=28.4, bidhigh=28.98, bidlow=27.36, ask=28.45, askhigh=29.02, asklow=27.41, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.5, volume_max=1000.0, volume_step=0.1, volume_limit=1000.0, swap_long=-25.0, swap_short=-25.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=27.44, session_close=27.44, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=3.535, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Avalanche vs US Dollar', exchange='', formula='', isin='', name='AVAUSD', page='', path='Crypto\\\\AVAUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712037, digits=5, spread=26, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=100, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.17542, bidhigh=0.17552, bidlow=0.17292, ask=0.17568, askhigh=0.17578, asklow=0.17318, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1e-05, trade_tick_value_profit=1e-05, trade_tick_value_loss=1e-05, trade_tick_size=1e-05, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=500.0, volume_max=100000.0, volume_step=100.0, volume_limit=100000.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.17319, session_close=0.17319, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.328, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Basic Attention Token vs US Dollar', exchange='', formula='', isin='', name='BATUSD', page='', path='Crypto\\\\BATUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712047, digits=3, spread=961, spread_float=True, ticks_bookdepth=0, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=700, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=325.908, bidhigh=327.662, bidlow=324.142, ask=326.869, askhigh=328.645, asklow=325.082, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=200.0, swap_long=-17.0, swap_short=-17.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=326.394, session_close=326.394, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.1091, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Bitcoin Cash vs US Dollar', exchange='', formula='', isin='', name='BCHUSD', page='', path='Crypto\\\\BCHUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=3, spread=530, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=300, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=577.24, bidhigh=578.785, bidlow=573.241, ask=577.77, askhigh=579.328, asklow=573.81, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=200.0, volume_step=0.1, volume_limit=200.0, swap_long=-20.0, swap_short=-20.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=573.752, session_close=573.752, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.6478, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Binance Coin vs US Dollar', exchange='', formula='', isin='', name='BNBUSD', page='', path='Crypto\\\\BNBUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712047, digits=5, spread=5423, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=4000, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=25.6118, bidhigh=25.73615, bidlow=25.55328, ask=25.66603, askhigh=25.79038, asklow=25.60784, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1e-05, trade_tick_value_profit=1e-05, trade_tick_value_loss=1e-05, trade_tick_size=1e-05, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=5.0, swap_long=-20.0, swap_short=-20.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=25.61784, session_close=25.61784, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0166, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='ETH', currency_profit='ETH', currency_margin='ETH', bank='', description='Bitcoin vs Ethereum', exchange='', formula='', isin='', name='BTCETH', page='', path='Crypto\\\\BTCETH'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=5, spread=164574, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50000, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=956.23483, bidhigh=959.77262, bidlow=952.20091, ask=957.88057, askhigh=961.45147, asklow=953.89104, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1e-05, trade_tick_value_profit=1e-05, trade_tick_value_loss=1e-05, trade_tick_size=1e-05, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=5.0, swap_long=-20.0, swap_short=-20.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=953.17359, session_close=953.17017, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.3618, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='LTC', currency_profit='LTC', currency_margin='LTC', bank='', description='Bitcoin vs Litecoin', exchange='', formula='', isin='', name='BTCLTC', page='', path='Crypto\\\\BTCLTC'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712041, digits=3, spread=49043, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20000, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=62629.428, bidhigh=63031.328, bidlow=62433.211, ask=62678.471, askhigh=63080.371, asklow=62482.571, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=10.0, swap_long=-20.0, swap_short=-20.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=62507.738, session_close=62507.738, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.232, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Bitcoin vs US Dollar', exchange='', formula='', isin='', name='BTCUSD', page='', path='Crypto\\\\BTCUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712046, digits=5, spread=16, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.11003, bidhigh=0.11147, bidlow=0.10922, ask=0.11019, askhigh=0.11163, asklow=0.10937, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1e-05, trade_tick_value_profit=1e-05, trade_tick_value_loss=1e-05, trade_tick_size=1e-05, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1500.0, volume_max=100000.0, volume_step=100.0, volume_limit=300000.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.11072, session_close=0.11072, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.578, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Dogecoin vs US Dollar', exchange='', formula='', isin='', name='DOGUSD', page='', path='Crypto\\\\DOGUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712045, digits=3, spread=7, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=10, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=4.181, bidhigh=4.198, bidlow=4.147, ask=4.188, askhigh=4.204, asklow=4.154, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=2500.0, volume_step=1.0, volume_limit=5000.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=4.17, session_close=4.17, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.3118, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Polkadot vs US Dollar', exchange='', formula='', isin='', name='DOTUSD', page='', path='Crypto\\\\DOTUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712038, digits=3, spread=37, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=23.789, bidhigh=23.824, bidlow=23.539, ask=23.826, askhigh=23.87, asklow=23.58, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=1000.0, volume_step=0.1, volume_limit=2000.0, swap_long=-21.0, swap_short=-21.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=23.592, session_close=23.591, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.8817, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Dash vs US Dollar', exchange='', formula='', isin='', name='DSHUSD', page='', path='Crypto\\\\DSHUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712039, digits=5, spread=158, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=200, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.47471, bidhigh=0.47671, bidlow=0.47181, ask=0.47629, askhigh=0.47829, asklow=0.47429, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1e-05, trade_tick_value_profit=1e-05, trade_tick_value_loss=1e-05, trade_tick_size=1e-05, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=100.0, volume_max=20000.0, volume_step=1.0, volume_limit=60000.0, swap_long=-24.0, swap_short=-24.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.4749, session_close=0.4749, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='EOS vs US Dollar', exchange='', formula='', isin='', name='EOSUSD', page='', path='Crypto\\\\EOSUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712036, digits=3, spread=23, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=25, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=18.579, bidhigh=18.672, bidlow=18.463, ask=18.602, askhigh=18.697, asklow=18.487, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=1000.0, volume_step=1.0, volume_limit=1500.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=18.573, session_close=18.573, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0754, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Ethereum Classic vs US Dollar', exchange='', formula='', isin='', name='ETCUSD', page='', path='Crypto\\\\ETCUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712047, digits=5, spread=223073, spread_float=True, ticks_bookdepth=0, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=100000, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=2442.58963, bidhigh=2449.49963, bidlow=2432.06563, ask=2444.82036, askhigh=2451.86536, asklow=2434.32036, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1e-05, trade_tick_value_profit=1e-05, trade_tick_value_loss=1e-05, trade_tick_size=1e-05, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=10.0, volume_step=0.01, volume_limit=10.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=2438.165, session_close=2438.165, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.2153, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Ethereum vs US Dollar', exchange='', formula='', isin='', name='ETHUSD', page='', path='Crypto\\\\ETHUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712047, digits=2, spread=5, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=10, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=3.57, bidhigh=3.6, bidlow=3.55, ask=3.62, askhigh=3.64, asklow=3.59, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=3000.0, volume_step=1.0, volume_limit=6000.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=3.58, session_close=3.58, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Filecoin vs US Dollar', exchange='', formula='', isin='', name='FILUSD', page='', path='Crypto\\\\FILUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712021, digits=4, spread=5, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.1237, bidhigh=0.1238, bidlow=0.1214, ask=0.1242, askhigh=0.1243, asklow=0.1219, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.0001, trade_tick_value=0.0001, trade_tick_value_profit=0.0001, trade_tick_value_loss=0.0001, trade_tick_size=0.0001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=500.0, volume_max=50000.0, volume_step=100.0, volume_limit=100000.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.1218, session_close=0.1218, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.642, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='IOTA vs US Dollar', exchange='', formula='', isin='', name='IOTUSD', page='', path='Crypto\\\\IOTUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712039, digits=3, spread=11, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=10, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=10.906, bidhigh=11.007, bidlow=10.824, ask=10.917, askhigh=11.019, asklow=10.836, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=1000.0, volume_step=1.0, volume_limit=3000.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=10.9, session_close=10.9, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.1009, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Chainlink vs US Dollar', exchange='', formula='', isin='', name='LNKUSD', page='', path='Crypto\\\\LNKUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712047, digits=5, spread=5932, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20000, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=65.49284, bidhigh=65.77984, bidlow=64.95897, ask=65.55216, askhigh=65.83916, asklow=65.14716, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1e-05, trade_tick_value_profit=1e-05, trade_tick_value_loss=1e-05, trade_tick_size=1e-05, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=500.0, volume_step=0.01, volume_limit=1000.0, swap_long=-20.0, swap_short=-20.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=65.598, session_close=65.598, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.1204, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Litecoin vs US Dollar', exchange='', formula='', isin='', name='LTCUSD', page='', path='Crypto\\\\LTCUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728679956, digits=5, spread=260, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=150, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=7.06835, bidhigh=7.08814, bidlow=7.06507, ask=7.07095, askhigh=7.08953, asklow=7.06707, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.1414237125138772, trade_tick_value_profit=0.1414237125138772, trade_tick_value_loss=0.1414757333748329, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=15.0, swap_long=29.15, swap_short=-66.86, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=7.08325, session_close=7.08322, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.2016, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='CNH', currency_margin='USD', bank='', description='US Dollar vs Chinese Renminbi', exchange='', formula='', isin='', name='USDCNH', page='http://www.google.com/finance?q=USDCNH', path='Forex Minor\\\\USDCNH'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680082, digits=5, spread=1795, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=500, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=19.28052, bidhigh=19.48682, bidlow=19.25342, ask=19.298470000000002, askhigh=19.49753, asklow=19.26368, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.05181757932105499, trade_tick_value_profit=0.05181757932105499, trade_tick_value_loss=0.05186582104632033, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=15.0, swap_long=-353.77, swap_short=50.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=19.4506, session_close=19.4512, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.8555, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='MXN', currency_margin='USD', bank='', description='US Dollar vs Mexican Peso', exchange='', formula='', isin='', name='USDMXN', page='', path='Forex Minor\\\\USDMXN'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680098, digits=5, spread=1095, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=500, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=10.69552, bidhigh=10.76322, bidlow=10.67941, ask=10.70647, askhigh=10.76686, asklow=10.68435, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.09340146658982841, trade_tick_value_profit=0.09340146658982841, trade_tick_value_loss=0.09349709037054768, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=15.0, swap_long=-11.13, swap_short=-28.04, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=10.7347, session_close=10.7345, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.3531, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='NOK', currency_margin='USD', bank='', description='US Dollar vs Norwegian Krone', exchange='', formula='', isin='', name='USDNOK', page='http://www.google.com/finance?q=USDNOK', path='Forex Minor\\\\USDNOK'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680099, digits=5, spread=298, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=300, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=3.92301, bidhigh=3.93579, bidlow=3.91488, ask=3.92599, askhigh=3.93733, asklow=3.9165799999999997, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.25471282402655127, trade_tick_value_profit=0.25471282402655127, trade_tick_value_loss=0.25490630918605867, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=15.0, swap_long=-12.98, swap_short=4.94, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=3.93499, session_close=3.93479, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.2892, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='PLN', currency_margin='USD', bank='', description='US Dollar vs Polish Zloty', exchange='', formula='', isin='', name='USDPLN', page='http://www.google.com/finance?q=USDPLN', path='Forex Minor\\\\USDPLN'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680095, digits=5, spread=1371, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=500, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=10.36675, bidhigh=10.41534, bidlow=10.35153, ask=10.38046, askhigh=10.41876, asklow=10.3569, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.0963348445059275, trade_tick_value_profit=0.0963348445059275, trade_tick_value_loss=0.09646224708804592, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=15.0, swap_long=35.52, swap_short=-68.99, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=10.38976, session_close=10.38966, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.2055, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='SEK', currency_margin='USD', bank='', description='US Dollar vs Swedish Krona', exchange='', formula='', isin='', name='USDSEK', page='http://www.google.com/finance?q=USDSEK', path='Forex Minor\\\\USDSEK'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680099, digits=5, spread=4085, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=700, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=17.36627, bidhigh=17.51917, bidlow=17.36157, ask=17.40712, askhigh=17.53232, asklow=17.37352, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.05744775700977532, trade_tick_value_profit=0.05744775700977532, trade_tick_value_loss=0.05758288912932944, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.01, volume_limit=15.0, swap_long=-168.63, swap_short=94.21, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=17.5226, session_close=17.5226, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.8652, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='ZAR', currency_margin='USD', bank='', description='US Dollar vs South African Rand', exchange='', formula='', isin='', name='USDZAR', page='http://www.google.com/finance?q=USDZAR', path='Forex Minor\\\\USDZAR'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.7661954564609431, trade_tick_value_profit=0.7661954564609431, trade_tick_value_loss=0.766377486894945, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=5.0, swap_long=-0.41, swap_short=-4.62, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='AUD', currency_profit='SGD', currency_margin='AUD', bank='', description='Australian Dollar vs Singapore Dollar', exchange='', formula='', isin='', name='AUDSGD', page='http://www.google.com/finance?q=AUDSGD', path='Forex Exotic\\\\AUDSGD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=200, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.1286817455936153, trade_tick_value_profit=0.1286817455936153, trade_tick_value_loss=0.1287122213541298, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=5.0, swap_long=-57.03, swap_short=11.68, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='HKD', currency_margin='EUR', bank='', description='Euro vs Hong Kong Dollar', exchange='', formula='', isin='', name='EURHKD', page='http://www.google.com/finance?q=EURHKD', path='Forex Exotic\\\\EURHKD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=600, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.05181757932105499, trade_tick_value_profit=0.05181757932105499, trade_tick_value_loss=0.05186582104632033, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=5.0, swap_long=-469.64, swap_short=361.87, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='MXN', currency_margin='EUR', bank='', description='Euro vs Mexican Peso', exchange='', formula='', isin='', name='EURMXN', page='http://www.google.com/finance?q=EURMXN', path='Forex Exotic\\\\EURMXN'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=30, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.7661954564609431, trade_tick_value_profit=0.7661954564609431, trade_tick_value_loss=0.766377486894945, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=5.0, swap_long=-3.51, swap_short=-4.19, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='SGD', currency_margin='EUR', bank='', description='Euro vs Singapore Dollar', exchange='', formula='', isin='', name='EURSGD', page='http://www.google.com/finance?q=EURSGD', path='Forex Exotic\\\\EURSGD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=1000, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.05744775700977532, trade_tick_value_profit=0.05744775700977532, trade_tick_value_loss=0.05758288912932944, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=5.0, swap_long=-259.02, swap_short=173.4, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='ZAR', currency_margin='EUR', bank='', description='Euro vs South African Rand', exchange='', formula='', isin='', name='EURZAR', page='http://www.google.com/finance?q=EURZAR', path='Forex Exotic\\\\EURZAR'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.7661954564609431, trade_tick_value_profit=0.7661954564609431, trade_tick_value_loss=0.766377486894945, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=5.0, swap_long=2.72, swap_short=-11.75, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='GBP', currency_profit='SGD', currency_margin='GBP', bank='', description='Great British Pound vs Singapore Dollar', exchange='', formula='', isin='', name='GBPSGD', page='http://www.google.com/finance?q=GBPSGD', path='Forex Exotic\\\\GBPSGD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=3, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=200, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.6704165297899586, trade_tick_value_profit=0.6704165297899586, trade_tick_value_loss=0.6705828706311526, trade_tick_size=0.001, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=5.0, swap_long=2.01, swap_short=-3.17, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='HKD', currency_profit='JPY', currency_margin='HKD', bank='', description='Hong Kong Dollar Vs Japanese Yen', exchange='', formula='', isin='', name='HKDJPY', page='', path='Forex Exotic\\\\HKDJPY'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1.1663303747419496, trade_tick_value_profit=1.1663303747419496, trade_tick_value_loss=1.1666025035289727, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=5.0, swap_long=4.72, swap_short=-6.35, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='NZD', currency_profit='CHF', currency_margin='NZD', bank='', description='New Zealand Dollar vs Swiss Franc', exchange='', formula='', isin='', name='NZDCHF', page='', path='Forex Exotic\\\\NZDCHF'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.7661954564609431, trade_tick_value_profit=0.7661954564609431, trade_tick_value_loss=0.766377486894945, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=5.0, swap_long=0.4, swap_short=-5.29, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='NZD', currency_profit='SGD', currency_margin='NZD', bank='', description='New Zealand Dollar vs Singapore Dollar', exchange='', formula='', isin='', name='NZDSGD', page='', path='Forex Exotic\\\\NZDSGD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=3, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=30, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.6704165297899586, trade_tick_value_profit=0.6704165297899586, trade_tick_value_loss=0.6705828706311526, trade_tick_size=0.001, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=5.0, swap_long=7.05, swap_short=-14.04, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='SGD', currency_profit='JPY', currency_margin='SGD', bank='', description='Singapore Dollar vs Japanese Yen', exchange='', formula='', isin='', name='SGDJPY', page='http://www.google.com/finance?q=SGDJPY', path='Forex Exotic\\\\SGDJPY'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680058, digits=5, spread=184, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=100, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=7.76927, bidhigh=7.77143, bidlow=7.76797, ask=7.77111, askhigh=7.77282, asklow=7.76948, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.1286817455936153, trade_tick_value_profit=0.1286817455936153, trade_tick_value_loss=0.1287122213541298, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=5.0, swap_long=-21.88, swap_short=-17.88, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=7.76921, session_close=7.76916, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.007, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='HKD', currency_margin='USD', bank='', description='US Dollar vs Hong Kong Dollar', exchange='', formula='', isin='', name='USDHKD', page='', path='Forex Exotic\\\\USDHKD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680094, digits=5, spread=31, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=1.30484, bidhigh=1.30685, bidlow=1.30383, ask=1.30515, askhigh=1.30705, asklow=1.30399, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.7661954564609431, trade_tick_value_profit=0.7661954564609431, trade_tick_value_loss=0.766377486894945, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=5.0, swap_long=1.88, swap_short=-8.63, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=1.30595, session_close=1.30595, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.0789, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='SGD', currency_margin='USD', bank='', description='US Dollar vs Singapore Dollar', exchange='', formula='', isin='', name='USDSGD', page='http://www.google.com/finance?q=USDSGD', path='Forex Exotic\\\\USDSGD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680090, digits=5, spread=2600, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=1000, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=33.128, bidhigh=33.439, bidlow=33.12, ask=33.154, askhigh=33.453, asklow=33.138, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.030162273028895455, trade_tick_value_profit=0.030162273028895455, trade_tick_value_loss=0.030185945423810673, trade_tick_size=1e-05, trade_contract_size=100000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=5.0, swap_long=-1397.8, swap_short=-1023.97, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=33.434, session_close=33.434, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.9093, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='THB', currency_margin='USD', bank='', description='US Dollar vs Thai Baht', exchange='', formula='', isin='', name='USDTHB', page='http://www.google.com/finance?q=USDTHB', path='Forex Exotic\\\\USDTHB'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=4, spread=8350, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=26160, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=18551.25, bidhigh=18683.711, bidlow=18467.067, ask=18552.085, askhigh=18684.547, asklow=18467.901, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.0001, trade_tick_value=9.999999999999999e-05, trade_tick_value_profit=9.999999999999999e-05, trade_tick_value_loss=9.999999999999999e-05, trade_tick_size=0.0001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.2, volume_max=50.0, volume_step=0.01, volume_limit=120.0, swap_long=-20.0, swap_short=-7.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=18684.036, session_close=18684.064, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.7091, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='On average 1 spike occurs in the price series every 1000 ticks', exchange='', formula='', isin='', name='Boom 1000 Index', page='', path='Crash Boom Indices\\\\Boom 1000 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=3, spread=475, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=1173, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=7329.334, bidhigh=7352.22, bidlow=7251.628, ask=7329.809, askhigh=7352.695, asklow=7252.102, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.2, volume_max=50.0, volume_step=0.01, volume_limit=150.0, swap_long=-25.0, swap_short=-10.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=7268.496, session_close=7268.497, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.8396, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='On average 1 spike occurs in the price series every 500 ticks', exchange='', formula='', isin='', name='Boom 500 Index', page='', path='Crash Boom Indices\\\\Boom 500 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=4, spread=2560, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=7620, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=6154.498, bidhigh=6157.588, bidlow=6108.332, ask=6154.754, askhigh=6157.844, asklow=6108.587, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.0001, trade_tick_value=9.999999999999999e-05, trade_tick_value_profit=9.999999999999999e-05, trade_tick_value_loss=9.999999999999999e-05, trade_tick_size=0.0001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.2, volume_max=80.0, volume_step=0.01, volume_limit=250.0, swap_long=-7.0, swap_short=-20.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=6108.429, session_close=6108.421, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.7559, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='On average 1 drop occurs in the price series every 1000 ticks', exchange='', formula='', isin='', name='Crash 1000 Index', page='', path='Crash Boom Indices\\\\Crash 1000 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=3, spread=315, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=927, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=4412.683, bidhigh=4414.944, bidlow=4366.252, ask=4412.998, askhigh=4415.26, asklow=4366.567, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.2, volume_max=80.0, volume_step=0.01, volume_limit=250.0, swap_long=-10.0, swap_short=-25.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=4377.064, session_close=4377.06, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.8168, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='On average 1 drop occurs in the price series every 500 ticks', exchange='', formula='', isin='', name='Crash 500 Index', page='', path='Crash Boom Indices\\\\Crash 500 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=1, spread=2, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=8, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=8223.1, bidhigh=8227.0, bidlow=8184.1, ask=8223.3, askhigh=8227.2, asklow=8184.3, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.1, trade_tick_value=1.0000000000000002, trade_tick_value_profit=1.0000000000000002, trade_tick_value_loss=1.0000000000000002, trade_tick_size=0.1, trade_contract_size=10.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=20.0, volume_step=0.01, volume_limit=150.0, swap_long=-0.55, swap_short=-0.55, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=8184.3, session_close=8184.2, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.4753, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Equal probability of up/down with fixed step size of 0.1', exchange='', formula='', isin='', name='Step Index', page='', path='Step Indices\\\\Step Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.007264907590375452, trade_tick_value_profit=0.007264907590375452, trade_tick_value_loss=0.0072655937806517246, trade_tick_size=1e-05, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=-0.85, swap_short=-1.67, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='AUD', currency_profit='CAD', currency_margin='AUD', bank='', description='Austalian Dollar vs Canadian Dollar micro (1 lot=1000 units)', exchange='', formula='', isin='', name='AUDCADmicro', page='', path='Forex Micro\\\\AUDCADmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.011663847903423343, trade_tick_value_profit=0.011663847903423343, trade_tick_value_loss=0.011665480676131261, trade_tick_size=1e-05, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=4.66, swap_short=-6.22, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='AUD', currency_profit='CHF', currency_margin='AUD', bank='', description='Austalian Dollar vs Swiss Franc micro (1 lot=1000 units)', exchange='', formula='', isin='', name='AUDCHFmicro', page='', path='Forex Micro\\\\AUDCHFmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=3, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.006704479933491559, trade_tick_value_profit=0.006704479933491559, trade_tick_value_loss=0.006705468980500496, trade_tick_size=0.001, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=10.06, swap_short=-13.29, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='AUD', currency_profit='JPY', currency_margin='AUD', bank='', description='Australian Dollar vs Japanese Yen micro (1 lot=1000 units)', exchange='', formula='', isin='', name='AUDJPYmicro', page='', path='Forex Micro\\\\AUDJPYmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.006107700000000001, trade_tick_value_profit=0.006107700000000001, trade_tick_value_loss=0.0061093, trade_tick_size=1e-05, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=-3.1, swap_short=-0.48, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='AUD', currency_profit='NZD', currency_margin='AUD', bank='', description='Austalian Dollar vs New Zealand Dollar micro (1 lot=1000 units)', exchange='', formula='', isin='', name='AUDNZDmicro', page='', path='Forex Micro\\\\AUDNZDmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680094, digits=5, spread=11, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.67501, bidhigh=0.67589, bidlow=0.67245, ask=0.67512, askhigh=0.67594, asklow=0.6725, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=1e-05, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=-1.86, swap_short=0.34, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.67406, session_close=0.67406, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.1439, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='AUD', currency_profit='USD', currency_margin='AUD', bank='', description='Austalian Dollar vs US Dollar micro (1 lot=1000 units)', exchange='', formula='', isin='', name='AUDUSDmicro', page='', path='Forex Micro\\\\AUDUSDmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.006750100000000001, trade_tick_value_profit=0.006750100000000001, trade_tick_value_loss=0.006751200000000001, trade_tick_size=1e-05, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=-5.51, swap_short=1.49, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='AUD', currency_margin='EUR', bank='', description='Euro vs Australian Dollar micro (1 lot=1000 units)', exchange='', formula='', isin='', name='EURAUDmicro', page='', path='Forex Micro\\\\EURAUDmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.007264907590375452, trade_tick_value_profit=0.007264907590375452, trade_tick_value_loss=0.0072655937806517246, trade_tick_size=1e-05, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=-4.37, swap_short=0.78, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='CAD', currency_margin='EUR', bank='', description='Euro vs Canadian Dollar micro (1 lot=1000 units)', exchange='', formula='', isin='', name='EURCADmicro', page='', path='Forex Micro\\\\EURCADmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.011663847903423343, trade_tick_value_profit=0.011663847903423343, trade_tick_value_loss=0.011665480676131261, trade_tick_size=1e-05, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=5.7, swap_short=-7.92, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='CHF', currency_margin='EUR', bank='', description='Euro vs Swiss Franc micro (1 lot=1000 units)', exchange='', formula='', isin='', name='EURCHFmicro', page='', path='Forex Micro\\\\EURCHFmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.013065000000000002, trade_tick_value_profit=0.013065000000000002, trade_tick_value_loss=0.0130664, trade_tick_size=1e-05, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=-4.21, swap_short=2.5, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='GBP', currency_margin='EUR', bank='', description='Euro vs Great British Pound micro (1 lot=1000 units)', exchange='', formula='', isin='', name='EURGBPmicro', page='', path='Forex Micro\\\\EURGBPmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=3, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.006704479933491559, trade_tick_value_profit=0.006704479933491559, trade_tick_value_loss=0.006705468980500496, trade_tick_size=0.001, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=5.0, swap_short=-17.79, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='JPY', currency_margin='EUR', bank='', description='Euro vs Japanese Yen micro (1 lot=1000 units)', exchange='', formula='', isin='', name='EURJPYmicro', page='', path='Forex Micro\\\\EURJPYmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.006107700000000001, trade_tick_value_profit=0.006107700000000001, trade_tick_value_loss=0.0061093, trade_tick_size=1e-05, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=-8.59, swap_short=3.38, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='NZD', currency_margin='EUR', bank='', description='Euro vs New Zealand Dollar micro (1 lot=1000 units)', exchange='', formula='', isin='', name='EURNZDmicro', page='', path='Forex Micro\\\\EURNZDmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=1e-05, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=-5.19, swap_short=3.09, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='USD', currency_margin='EUR', bank='', description='Euro vs US Dollar micro (1 lot=1000 units)', exchange='', formula='', isin='', name='EURUSDmicro', page='', path='Forex Micro\\\\EURUSDmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=5, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.011663847903423343, trade_tick_value_profit=0.011663847903423343, trade_tick_value_loss=0.011665480676131261, trade_tick_size=1e-05, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=11.34, swap_short=-13.89, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='GBP', currency_profit='CHF', currency_margin='GBP', bank='', description='Great British Pound vs Swiss Franc micro (1 lot=1000 units)', exchange='', formula='', isin='', name='GBPCHFmicro', page='', path='Forex Micro\\\\GBPCHFmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=False, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=0, digits=3, spread=0, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.0, bidhigh=0.0, bidlow=0.0, ask=0.0, askhigh=0.0, asklow=0.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.006704479933491559, trade_tick_value_profit=0.006704479933491559, trade_tick_value_loss=0.006705468980500496, trade_tick_size=0.001, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=5.0, swap_short=-28.94, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.0, session_close=0.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='GBP', currency_profit='JPY', currency_margin='GBP', bank='', description='Great British Pound vs Japanese Yen micro (1 lot=1000 units)', exchange='', formula='', isin='', name='GBPJPYmicro', page='', path='Forex Micro\\\\GBPJPYmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680099, digits=5, spread=14, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=1.3065, bidhigh=1.3083, bidlow=1.30413, ask=1.30664, askhigh=1.30837, asklow=1.30422, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=1e-05, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=-0.9, swap_short=-1.48, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=1.3061099999999999, session_close=1.3061099999999999, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0314, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='GBP', currency_profit='USD', currency_margin='GBP', bank='', description='Great British Pound vs US Dollar micro (1 lot=1000 units)', exchange='', formula='', isin='', name='GBPUSDmicro', page='', path='Forex Micro\\\\GBPUSDmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680095, digits=5, spread=16, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.61077, bidhigh=0.61191, bidlow=0.60832, ask=0.61093, askhigh=0.61204, asklow=0.60845, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=1e-05, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=-1.09, swap_short=-0.54, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.60952, session_close=0.60952, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.21, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='NZD', currency_profit='USD', currency_margin='NZD', bank='', description='New Zealand Dollar vs US Dollar micro (1 lot=1000 units)', exchange='', formula='', isin='', name='NZDUSDmicro', page='', path='Forex Micro\\\\NZDUSDmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680099, digits=5, spread=13, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=1.37635, bidhigh=1.37833, bidlow=1.37246, ask=1.37648, askhigh=1.37845, asklow=1.37257, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.007264907590375452, trade_tick_value_profit=0.007264907590375452, trade_tick_value_loss=0.0072655937806517246, trade_tick_size=1e-05, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=1.36, swap_short=-4.34, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=1.37461, session_close=1.37461, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.1288, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='CAD', currency_margin='USD', bank='', description='US Dollar vs Canadian Dollar micro (1 lot=1000 units)', exchange='', formula='', isin='', name='USDCADmicro', page='', path='Forex Micro\\\\USDCADmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680094, digits=5, spread=12, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.85723, bidhigh=0.85842, bidlow=0.85585, ask=0.85735, askhigh=0.85848, asklow=0.85592, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=0.011663847903423343, trade_tick_value_profit=0.011663847903423343, trade_tick_value_loss=0.011665480676131261, trade_tick_size=1e-05, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=8.55, swap_short=-10.39, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.85662, session_close=0.85662, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0735, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='CHF', currency_margin='USD', bank='', description='US Dollar vs Swiss Franc micro (1 lot=1000 units)', exchange='', formula='', isin='', name='USDCHFmicro', page='', path='Forex Micro\\\\USDCHFmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=False, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680092, digits=3, spread=22, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=149.132, bidhigh=149.281, bidlow=148.398, ask=149.154, askhigh=149.288, asklow=148.406, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.006704479933491559, trade_tick_value_profit=0.006704479933491559, trade_tick_value_loss=0.006705468980500496, trade_tick_size=0.001, trade_contract_size=1000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.01, volume_limit=100.0, swap_long=5.0, swap_short=-21.74, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=148.708, session_close=148.707, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.2871, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='JPY', currency_margin='USD', bank='', description='US Dollar vs Japanese Yen micro (1 lot=1000 units)', exchange='', formula='', isin='', name='USDJPYmicro', page='', path='Forex Micro\\\\USDJPYmicro'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=1, spread=10, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=66, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=75245.4, bidhigh=75416.4, bidlow=74657.4, ask=75247.6, askhigh=75418.6, asklow=74659.6, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.1, trade_tick_value=0.1, trade_tick_value_profit=0.1, trade_tick_value_loss=0.1, trade_tick_size=0.1, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=-30.0, swap_short=-30.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=74675.0, session_close=74676.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.7633, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Index that breaks the range once every 100 attempts on average', exchange='', formula='', isin='', name='Range Break 100 Index', page='', path='Range Break\\\\Range Break 100 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=1, spread=10, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=66, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=102884.4, bidhigh=103166.4, bidlow=102849.4, ask=102886.6, askhigh=103168.6, asklow=102851.6, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.1, trade_tick_value=0.1, trade_tick_value_profit=0.1, trade_tick_value_loss=0.1, trade_tick_size=0.1, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=-30.0, swap_short=-30.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=103151.0, session_close=103150.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.2569, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Index that breaks the range once every 200 attempts on average', exchange='', formula='', isin='', name='Range Break 200 Index', page='', path='Range Break\\\\Range Break 200 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=3361, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=10215, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=479791.04, bidhigh=480782.23, bidlow=477618.97, ask=479824.65, askhigh=480815.84, asklow=477652.58, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.005, volume_max=1.0, volume_step=0.001, volume_limit=4.0, swap_long=-2.5, swap_short=-2.5, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=478386.28, session_close=478345.27, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.3022, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Constant Volatility of 25% with a tick every 1 seconds', exchange='', formula='', isin='', name='Volatility 25 (1s) Index', page='', path='Volatility Indices\\\\Volatility 25 (1s) Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=2402, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=6996, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=193038.75, bidhigh=193145.88, bidlow=190132.09, ask=193062.77, askhigh=193169.9, asklow=190156.11, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.005, volume_max=1.0, volume_step=0.001, volume_limit=6.0, swap_long=-5.0, swap_short=-5.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=191913.94, session_close=191891.32, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.598, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Constant Volatility of 50% with a tick every 1 seconds', exchange='', formula='', isin='', name='Volatility 50 (1s) Index', page='', path='Volatility Indices\\\\Volatility 50 (1s) Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=211, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=432, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=9244.14, bidhigh=9302.24, bidlow=9144.13, ask=9246.25, askhigh=9304.35, asklow=9146.24, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.05, volume_max=10.0, volume_step=0.001, volume_limit=100.0, swap_long=-7.5, swap_short=-7.5, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=9225.79, session_close=9225.94, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.1973, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Constant Volatility of 75% with a tick every 1 seconds', exchange='', formula='', isin='', name='Volatility 75 (1s) Index', page='', path='Volatility Indices\\\\Volatility 75 (1s) Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=16, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=72, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=571.66, bidhigh=575.21, bidlow=562.37, ask=571.82, askhigh=575.37, asklow=562.53, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.2, volume_max=50.0, volume_step=0.01, volume_limit=340.0, swap_long=-10.0, swap_short=-10.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=571.57, session_close=571.73, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.0122, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Constant Volatility of 100% with a tick every 1 seconds', exchange='', formula='', isin='', name='Volatility 100 (1s) Index', page='', path='Volatility Indices\\\\Volatility 100 (1s) Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676782, digits=2, spread=11, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=11.74, bidhigh=11.76, bidlow=11.48, ask=11.85, askhigh=11.87, asklow=11.59, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-0.06, swap_short=-0.06, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=11.68, session_close=11.76, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.2551, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='American Airlines Group Inc', exchange='', formula='', isin='US02376R1023', name='AAL', page='', path='Equities\\\\US\\\\AAL'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676798, digits=2, spread=59, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=227.23, bidhigh=229.1, bidlow=227.12, ask=227.82, askhigh=229.78, asklow=227.72, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-1.31, swap_short=-1.44, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=229.3, session_close=229.1, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.6897, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Apple', exchange='', formula='', isin='US0378331005', name='AAPL', page='', path='Equities\\\\US\\\\AAPL'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728660589, digits=2, spread=129, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=232.4, bidhigh=232.9, bidlow=230.7, ask=233.69, askhigh=234.29, asklow=232.19, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=100.0, swap_long=-2.7, swap_short=-9.1, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=232.2, session_close=232.2, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.3445, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='EUR', currency_margin='EUR', bank='', description='Adidas Salomon', exchange='', formula='', isin='DE000A1EWWW0', name='ADS', page='', path='Equities\\\\Europe\\\\ADS'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=43, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=134.21, bidhigh=135.13, bidlow=131.8, ask=134.64, askhigh=135.59, asklow=132.7, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-25.0, swap_short=-8.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=132.0, session_close=132.81, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.2046999999999999, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Airbnb Inc', exchange='', formula='', isin='US0090661010', name='ABNB', page='', path='Equities\\\\US\\\\ABNB'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676798, digits=2, spread=24, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=77.05, bidhigh=77.77, bidlow=75.81, ask=77.29, askhigh=78.0, asklow=76.8, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-0.42, swap_short=-0.46, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=75.92, session_close=76.51, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.8496, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='American International Group', exchange='', formula='', isin='US0268747849', name='AIG', page='', path='Equities\\\\US\\\\AIG'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676798, digits=2, spread=47, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=167.64, bidhigh=169.09, bidlow=162.79, ask=168.11, askhigh=169.57, asklow=163.28, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=100.0, swap_long=-1.0, swap_short=-3.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=164.03, session_close=164.2, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=2.2351, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Advanced Micro Devices Inc ', exchange='', formula='', isin='US0079031078', name='AMD', page='', path='Equities\\\\US\\\\AMD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=64, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=188.48, bidhigh=189.61, bidlow=186.0, ask=189.12, askhigh=190.22, asklow=186.64, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-1.06, swap_short=-1.16, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=186.56, session_close=186.67, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.1303, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Amazon.com Inc', exchange='', formula='', isin='US0231351067', name='AMZN', page='', path='Equities\\\\US\\\\AMZN'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=83, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=150.61, bidhigh=150.66, bidlow=145.6, ask=151.44, askhigh=151.49, asklow=146.85, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-0.87, swap_short=-0.96, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=146.0, session_close=146.65, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=2.9731, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Boeing', exchange='', formula='', isin='US0970231058', name='BA', page='', path='Equities\\\\US\\\\BA'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=59, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=109.81, bidhigh=110.75, bidlow=106.93, ask=110.4, askhigh=111.32, asklow=107.55, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-0.65, swap_short=-0.72, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=107.6, session_close=109.23, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.7873, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Alibaba Group Holding Ltd', exchange='', formula='', isin='US01609W1027', name='BABA', page='', path='Equities\\\\US\\\\BABA'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=17, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=41.87, bidhigh=42.08, bidlow=40.36, ask=42.04, askhigh=42.25, asklow=40.58, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-0.22, swap_short=-0.25, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=40.48, session_close=39.96, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=4.98, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Bank of America', exchange='', formula='', isin='US0605051046', name='BAC', page='', path='Equities\\\\US\\\\BAC'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728660597, digits=2, spread=50, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=133.07, bidhigh=133.23, bidlow=125.99, ask=133.57, askhigh=133.71, asklow=126.49, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=100.0, swap_long=-1.0, swap_short=-3.2, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=127.66, session_close=128.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=4.1406, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='EUR', currency_margin='EUR', bank='', description='Airbus SE', exchange='', formula='', isin='NL0000235190', name='AIR', page='', path='Equities\\\\Europe\\\\AIR'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728660595, digits=2, spread=7, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=8.38, bidhigh=8.56, bidlow=8.23, ask=8.45, askhigh=8.64, asklow=8.3, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=100.0, swap_long=-0.036, swap_short=0.002, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=8.51, session_close=8.54, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-1.5222, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='EUR', currency_margin='EUR', bank='', description='Air France KLM SA', exchange='', formula='', isin='FR001400J770', name='AIRF', page='', path='Equities\\\\Europe\\\\AIRF'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728660562, digits=2, spread=34, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=26.21, bidhigh=26.47, bidlow=25.96, ask=26.55, askhigh=26.83, asklow=26.3, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=200.0, swap_long=-1.062, swap_short=0.062, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=26.57, session_close=26.79, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-1.5304, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='EUR', currency_margin='EUR', bank='', description='Bayer AG', exchange='', formula='', isin='DE000BAY0017', name='BAY', page='', path='Equities\\\\Europe\\\\BAY'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728660595, digits=2, spread=69, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=75.79, bidhigh=76.27, bidlow=75.23, ask=76.48, askhigh=76.98, asklow=75.94, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=200.0, swap_long=-0.8, swap_short=-2.5, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=76.28, session_close=76.66, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.7044, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='EUR', currency_margin='EUR', bank='', description='BMW', exchange='', formula='', isin='DE0005190003', name='BMW', page='', path='Equities\\\\Europe\\\\BMW'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=82, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=187.95, bidhigh=188.9, bidlow=186.32, ask=188.77, askhigh=189.9, asklow=187.53, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-3.0, swap_short=-9.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=188.2, session_close=188.63, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.159, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Biogen Inc.', exchange='', formula='', isin='US09062X1037', name='BIIB', page='', path='Equities\\\\US\\\\BIIB'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=24, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=65.64, bidhigh=65.97, bidlow=63.68, ask=65.88, askhigh=66.21, asklow=64.11, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-0.35, swap_short=-0.39, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=63.8, session_close=63.48, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=3.5917, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Citigroup', exchange='', formula='', isin='US1729674242', name='C', page='', path='Equities\\\\US\\\\C'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=77, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=287.63, bidhigh=289.52, bidlow=285.92, ask=288.4, askhigh=290.59, asklow=286.79, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-2.0, swap_short=-7.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=289.1, session_close=290.14, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.7479, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Salesforce.com Inc', exchange='', formula='', isin='US79466L3024', name='CRM', page='', path='Equities\\\\US\\\\CRM'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676792, digits=2, spread=23, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=54.13, bidhigh=54.2, bidlow=53.39, ask=54.36, askhigh=54.43, asklow=53.77, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-0.3, swap_short=-0.33, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=53.63, session_close=53.53, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.3264, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Cisco Systems', exchange='', formula='', isin='US17275R1023', name='CSCO', page='', path='Equities\\\\US\\\\CSCO'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=17, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=51.25, bidhigh=51.43, bidlow=49.36, ask=51.42, askhigh=51.6, asklow=49.55, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-1.0, swap_short=-2.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=50.0, session_close=50.29, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=2.068, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Delta Air Lines', exchange='', formula='', isin='US2473617023', name='DAL', page='', path='Equities\\\\US\\\\DAL'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728660565, digits=2, spread=46, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=59.74, bidhigh=59.8, bidlow=58.58, ask=60.2, askhigh=60.28, asklow=59.12, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=100.0, swap_long=-1.455, swap_short=0.084, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=58.86, session_close=59.18, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.318, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='EUR', currency_margin='EUR', bank='', description='Continental AG', exchange='', formula='', isin='DE0005439004', name='CONG', page='', path='Equities\\\\Europe\\\\CONG'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728660592, digits=2, spread=7, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=16.14, bidhigh=16.21, bidlow=16.01, ask=16.21, askhigh=16.28, asklow=16.08, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=200.0, swap_long=-0.11, swap_short=-0.35000000000000003, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=16.1, session_close=16.02, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.9988, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='EUR', currency_margin='EUR', bank='', description='Deutsche Bank AG', exchange='', formula='', isin='DE0005140008', name='DBK', page='', path='Equities\\\\Europe\\\\DBK'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676796, digits=2, spread=63, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=93.82, bidhigh=94.29, bidlow=92.42, ask=94.45, askhigh=94.93, asklow=93.17, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-0.54, swap_short=-0.59, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=92.83, session_close=93.01, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.2042, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Walt Disney Company', exchange='', formula='', isin='US2546871060', name='DIS', page='', path='Equities\\\\US\\\\DIS'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=24, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=66.19, bidhigh=66.82, bidlow=66.08, ask=66.43, askhigh=67.07, asklow=66.34, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-1.0, swap_short=-2.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=66.2, session_close=66.03, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.424, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='eBay Inc', exchange='', formula='', isin='US2786421030', name='EBAY', page='', path='Equities\\\\US\\\\EBAY'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=101, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=263.84, bidhigh=266.39, bidlow=263.44, ask=264.85, askhigh=267.9, asklow=264.65, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-1.55, swap_short=-1.7, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=263.85, session_close=264.16, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0341, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Fedex', exchange='', formula='', isin='US31428X1063', name='FDX', page='', path='Equities\\\\US\\\\FDX'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=14, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=37.92, bidhigh=38.37, bidlow=37.92, ask=38.06, askhigh=38.51, asklow=38.06, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=100.0, swap_long=-1.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=38.05, session_close=38.06, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.1839, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Fox Corporation B', exchange='', formula='', isin='US35137L2043', name='FOX', page='', path='Equities\\\\US\\\\FOX'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676798, digits=2, spread=20, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=47.76, bidhigh=48.14, bidlow=47.15, ask=47.96, askhigh=48.34, asklow=47.44, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-0.26, swap_short=-0.28, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=47.25, session_close=47.69, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.3565, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='General Motors Company', exchange='', formula='', isin='US37045V1008', name='GM', page='', path='Equities\\\\US\\\\GM'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676798, digits=2, spread=49, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=164.28, bidhigh=165.02, bidlow=162.25, ask=164.77, askhigh=165.51, asklow=162.75, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-21.0, swap_short=-70.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=163.2, session_close=163.16, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.8335, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Alphabet Inc Class C', exchange='', formula='', isin='US02079K1079', name='GOOG', page='', path='Equities\\\\US\\\\GOOG'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=153, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=515.57, bidhigh=517.07, bidlow=504.31, ask=517.1, askhigh=518.66, asklow=507.84, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-2.83, swap_short=-3.1, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=505.0, session_close=503.65, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=2.5037000000000003, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Goldman Sachs Group', exchange='', formula='', isin='US38141G1040', name='GS', page='', path='Equities\\\\US\\\\GS'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676796, digits=2, spread=75, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=411.52, bidhigh=412.62, bidlow=408.71, ask=412.27, askhigh=413.89, asklow=409.71, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=100.0, swap_long=-2.4, swap_short=-2.62, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=409.79, session_close=409.91, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.4611, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Home Depot Inc', exchange='', formula='', isin='US4370761029', name='HD', page='', path='Equities\\\\US\\\\HD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676797, digits=2, spread=13, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=36.95, bidhigh=37.42, bidlow=36.77, ask=37.08, askhigh=37.55, asklow=36.97, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-0.2, swap_short=-0.22, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=36.83, session_close=36.76, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.6801, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='HP Inc', exchange='', formula='', isin='US40434L1052', name='HPQ', page='', path='Equities\\\\US\\\\HPQ'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=57, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=233.07, bidhigh=233.16, bidlow=230.17, ask=233.64, askhigh=233.77, asklow=230.75, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-1.29, swap_short=-1.42, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=232.85, session_close=232.99, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.1502, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='IBM', exchange='', formula='', isin='US4592001014', name='IBM', page='', path='Equities\\\\US\\\\IBM'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676797, digits=2, spread=22, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=23.45, bidhigh=23.7, bidlow=22.89, ask=23.67, askhigh=23.92, asklow=23.11, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-0.12, swap_short=-0.14, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=23.06, session_close=23.22, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.4643, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Intel', exchange='', formula='', isin='US4581401001', name='INTC', page='', path='Equities\\\\US\\\\INTC'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=64, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=161.16, bidhigh=162.25, bidlow=160.88, ask=161.8, askhigh=162.99, asklow=161.53, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-0.93, swap_short=-1.02, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=162.19, session_close=160.52, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.5981, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Jonhson & Johnson', exchange='', formula='', isin='US4781601046', name='JNJ', page='', path='Equities\\\\US\\\\JNJ'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676796, digits=2, spread=65, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=221.94, bidhigh=224.24, bidlow=213.81, ask=222.59, askhigh=224.93, asklow=215.76, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-1.22, swap_short=-1.34, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=214.11, session_close=212.8, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=4.4361, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='JP Morgan Chase', exchange='', formula='', isin='US46625H1005', name='JPM', page='', path='Equities\\\\US\\\\JPM'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=21, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=69.46, bidhigh=69.49, bidlow=68.9, ask=69.67, askhigh=69.7, asklow=69.11, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-0.41, swap_short=-0.45, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=69.3, session_close=69.24, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.4622, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Coca-Cola', exchange='', formula='', isin='US1912161007', name='KO', page='', path='Equities\\\\US\\\\KO'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676797, digits=2, spread=135, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=501.51, bidhigh=502.16, bidlow=494.98, ask=502.86, askhigh=503.5, asklow=497.83, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-2.86, swap_short=-3.13, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=496.65, session_close=497.86, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.8516, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Mastercard Inc', exchange='', formula='', isin='US57636Q1040', name='MA', page='', path='Equities\\\\US\\\\MA'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=91, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=304.58, bidhigh=305.04, bidlow=302.54, ask=305.49, askhigh=305.94, asklow=303.93, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-1.77, swap_short=-1.93, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=303.5, session_close=304.08, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.3058, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='McDonalds', exchange='', formula='', isin='US5801351017', name='MCD', page='', path='Equities\\\\US\\\\MCD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=143, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=589.2, bidhigh=590.51, bidlow=581.95, ask=590.63, askhigh=591.89, asklow=583.43, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-3.39, swap_short=-3.72, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=584.02, session_close=583.73, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.0484, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Meta Platforms Inc', exchange='', formula='', isin='US30303M1027', name='META', page='', path='Equities\\\\US\\\\META'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=73, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=57.93, bidhigh=59.35, bidlow=55.31, ask=58.66, askhigh=60.11, asklow=56.16, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-1.0, swap_short=-4.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=56.54, session_close=56.81, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=2.6052, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Moderna Inc.', exchange='', formula='', isin='US60770K1079', name='MRNA', page='', path='Equities\\\\US\\\\MRNA'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=118, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=415.76, bidhigh=416.55, bidlow=412.74, ask=416.94, askhigh=417.71, asklow=413.86, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-2.43, swap_short=-2.66, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=415.77, session_close=415.88, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.1034, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Microsoft Corporation', exchange='', formula='', isin='US5949181045', name='MSFT', page='', path='Equities\\\\US\\\\MSFT'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=202, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=721.82, bidhigh=734.27, bidlow=720.13, ask=723.84, askhigh=736.87, asklow=722.42, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-4.12, swap_short=-4.51, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=733.72, session_close=730.27, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-1.0366, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Netflix Inc', exchange='', formula='', isin='US64110L1061', name='NFLX', page='', path='Equities\\\\US\\\\NFLX'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=55, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=81.87, bidhigh=81.97, bidlow=80.89, ask=82.42, askhigh=82.55, asklow=81.46, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-0.47, swap_short=-0.52, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=81.9, session_close=82.12, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0244, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Nike', exchange='', formula='', isin='US6541061031', name='NKE', page='', path='Equities\\\\US\\\\NKE'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=134, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=134.12, bidhigh=135.1, bidlow=132.99, ask=135.46, askhigh=136.44, asklow=134.34, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=1000.0, volume_step=1.0, volume_limit=5000.0, swap_long=-0.71, swap_short=-0.78, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=134.01, session_close=134.83, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.0297, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='NVIDIA Corp', exchange='', formula='', isin='US67066G1040', name='NVDA', page='', path='Equities\\\\US\\\\NVDA'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676798, digits=2, spread=61, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=174.49, bidhigh=174.89, bidlow=172.55, ask=175.1, askhigh=175.46, asklow=173.17, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=100.0, swap_long=-0.98, swap_short=-1.07, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=173.81, session_close=172.97, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.0406, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='PepsiCo Inc', exchange='', formula='', isin='US7134481081', name='PEP', page='', path='Equities\\\\US\\\\PEP'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676775, digits=2, spread=19, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=29.06, bidhigh=29.34, bidlow=28.86, ask=29.25, askhigh=29.53, asklow=29.05, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-1.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=29.35, session_close=29.34, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.6476, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Pfizer', exchange='', formula='', isin='US7170811035', name='PFE', page='', path='Equities\\\\US\\\\PFE'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=57, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=170.81, bidhigh=171.12, bidlow=168.62, ask=171.38, askhigh=171.69, asklow=169.27, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-0.99, swap_short=-1.08, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=169.22, session_close=168.98, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.2487, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Procter & Gamble', exchange='', formula='', isin='US7427181091', name='PG', page='', path='Equities\\\\US\\\\PG'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=72, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=80.14, bidhigh=80.35, bidlow=78.8, ask=80.86, askhigh=81.08, asklow=79.59, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-2.0, swap_short=-8.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=79.33, session_close=78.98, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.9245, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Paypal', exchange='', formula='', isin='US70450Y1038', name='PYPL', page='', path='Equities\\\\US\\\\PYPL'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676792, digits=2, spread=52, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=18.72, bidhigh=18.78, bidlow=18.5, ask=19.24, askhigh=19.3, asklow=19.04, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=100.0, swap_long=-2.0, swap_short=-5.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=18.85, session_close=18.85, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.6897, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Sony Corporation', exchange='', formula='', isin='US8356993076', name='SONY', page='', path='Equities\\\\US\\\\SONY'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=10, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=17.2, bidhigh=17.37, bidlow=17.18, ask=17.3, askhigh=17.49, asklow=17.28, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-1.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=17.34, session_close=17.4, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.8621, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Teva Pharmaceutical Inds', exchange='', formula='', isin='US8816242098', name='TEVA', page='', path='Equities\\\\US\\\\TEVA'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=114, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=217.19, bidhigh=222.74, bidlow=213.95, ask=218.33, askhigh=223.9, asklow=215.06, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-1.4, swap_short=-1.53, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=220.06, session_close=238.6, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-8.7427, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Tesla Inc', exchange='', formula='', isin='US88160R1014', name='TSLA', page='', path='Equities\\\\US\\\\TSLA'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=16, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=86.23, bidhigh=86.91, bidlow=81.81, ask=86.39, askhigh=87.06, asklow=82.01, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-1.0, swap_short=-2.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=81.88, session_close=77.91, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=10.7688, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Uber Technologies Inc', exchange='', formula='', isin='US90353T1007', name='UBER', page='', path='Equities\\\\US\\\\UBER'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676797, digits=2, spread=82, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=277.42, bidhigh=278.41, bidlow=275.21, ask=278.24, askhigh=279.19, asklow=276.07, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-1.61, swap_short=-1.76, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=275.6, session_close=277.45, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.1225, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Visa', exchange='', formula='', isin='US92826C8394', name='V', page='', path='Equities\\\\US\\\\V'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676792, digits=2, spread=53, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=79.84, bidhigh=79.86, bidlow=79.11, ask=80.37, askhigh=80.39, asklow=79.65, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-0.46, swap_short=-0.51, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=79.61, session_close=79.6, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.6281, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Wal-Mart Stores Inc', exchange='', formula='', isin='US9311421039', name='WMT', page='', path='Equities\\\\US\\\\WMT'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712047, digits=3, spread=701, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=0, start_time=0, expiration_time=0, trade_stops_level=5, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=False, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=326.038, bidhigh=327.792, bidlow=324.272, ask=326.739, askhigh=328.515, asklow=324.952, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=10.0, swap_long=-20.0, swap_short=-20.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=326.394, session_close=326.394, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.1091, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='BCH', currency_profit='USD', currency_margin='USD', bank='', description='Bitcoin Cash vs USD, used for conversion, not for trading', exchange='', formula='', isin='', name='BCHUSD.conv', page='', path='Conversions\\\\BCHUSD.conv'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712047, digits=2, spread=58, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=0, start_time=0, expiration_time=0, trade_stops_level=5, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=False, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=2443.42, bidhigh=2450.33, bidlow=2432.89, ask=2444.0, askhigh=2451.04, asklow=2433.5, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=10.0, swap_long=-20.0, swap_short=-20.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=2438.17, session_close=2438.17, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.2153, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='ETH', currency_profit='USD', currency_margin='USD', bank='', description='Ethereum vs USD, used for conversion, not for trading', exchange='', formula='', isin='', name='ETHUSD.conv', page='', path='Conversions\\\\ETHUSD.conv'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712041, digits=3, spread=2424, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=0, start_time=0, expiration_time=0, trade_stops_level=5, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=False, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=62652.738, bidhigh=63054.638, bidlow=62456.521, ask=62655.162, askhigh=63057.062, asklow=62459.262, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=10.0, swap_long=-20.0, swap_short=-20.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=62507.738, session_close=62507.738, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.232, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='BTC', currency_profit='USD', currency_margin='USD', bank='', description='Bitcoin vs USD, used for conversion, not for trading', exchange='', formula='', isin='', name='BTCUSD.conv', page='', path='Conversions\\\\BTCUSD.conv'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676792, digits=2, spread=58, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=70.38, bidhigh=71.11, bidlow=70.25, ask=70.96, askhigh=71.72, asklow=70.83, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=500.0, swap_long=-3.0, swap_short=-11.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=70.74, session_close=70.84, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.24, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Zoom Video Communications Inc', exchange='', formula='', isin='US98980L1017', name='ZM', page='', path='Equities\\\\US\\\\ZM'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712046, digits=2, spread=151, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=10, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=1366.39, bidhigh=1373.32, bidlow=1349.88, ask=1367.9, askhigh=1374.88, asklow=1351.68, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=20.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=1366.32, session_close=1366.32, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0468, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Maker vs US Dollar', exchange='', formula='', isin='', name='MKRUSD', page='', path='Crypto\\\\MKRUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712027, digits=2, spread=5, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=10, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=10.77, bidhigh=10.98, bidlow=10.66, ask=10.82, askhigh=11.03, asklow=10.71, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=2000.0, volume_step=1.0, volume_limit=2000.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=10.67, session_close=10.67, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.0309, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Neo vs US Dollar', exchange='', formula='', isin='', name='NEOUSD', page='', path='Crypto\\\\NEOUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712035, digits=3, spread=4, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=10, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.27, bidhigh=0.272, bidlow=0.269, ask=0.274, askhigh=0.276, asklow=0.273, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=10.0, volume_max=20000.0, volume_step=1.0, volume_limit=50000.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.272, session_close=0.272, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.3676, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='OmiseGo vs US Dollar', exchange='', formula='', isin='', name='OMGUSD', page='', path='Crypto\\\\OMGUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=3, spread=130, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=100, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=145.552, bidhigh=146.467, bidlow=144.567, ask=145.682, askhigh=146.609, asklow=144.703, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.5, volume_max=600.0, volume_step=0.01, volume_limit=600.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=145.467, session_close=145.467, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0983, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Solana vs US Dollar', exchange='', formula='', isin='', name='SOLUSD', page='', path='Crypto\\\\SOLUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712041, digits=5, spread=33, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.16032, bidhigh=0.16036, bidlow=0.15876, ask=0.16065, askhigh=0.16068, asklow=0.15907, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1e-05, trade_tick_value_profit=1e-05, trade_tick_value_loss=1e-05, trade_tick_size=1e-05, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1500.0, volume_max=100000.0, volume_step=1000.0, volume_limit=200000.0, swap_long=-22.0, swap_short=-22.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.15968, session_close=0.15968, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.4446, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='TRON vs US Dollar', exchange='', formula='', isin='', name='TRXUSD', page='', path='Crypto\\\\TRXUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712045, digits=4, spread=76, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=100, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=7.7553, bidhigh=7.8974, bidlow=7.746, ask=7.7629, askhigh=7.9061, asklow=7.7536000000000005, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.0001, trade_tick_value=0.0001, trade_tick_value_profit=0.0001, trade_tick_value_loss=0.0001, trade_tick_size=0.0001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=4000.0, volume_step=1.0, volume_limit=4000.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=7.8894, session_close=7.8894, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-1.663, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Uniswap vs US Dollar', exchange='', formula='', isin='', name='UNIUSD', page='', path='Crypto\\\\UNIUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=5, spread=13, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.09233, bidhigh=0.09234, bidlow=0.09148, ask=0.09246, askhigh=0.09247, asklow=0.0916, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1e-05, trade_tick_value_profit=1e-05, trade_tick_value_loss=1e-05, trade_tick_size=1e-05, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1000.0, volume_max=100000.0, volume_step=100.0, volume_limit=300000.0, swap_long=-10.0, swap_short=-10.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.09179, session_close=0.09179, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.6319, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Stellar Lumens vs US Dollar', exchange='', formula='', isin='', name='XLMUSD', page='', path='Crypto\\\\XLMUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=3, spread=350, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=250, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=152.206, bidhigh=154.13, bidlow=151.203, ask=152.556, askhigh=154.483, asklow=151.465, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.0001, trade_tick_value_profit=0.0001, trade_tick_value_loss=0.0001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=300.0, volume_step=0.01, volume_limit=300.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=151.873, session_close=151.897, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.2423, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Monero vs US Dollar', exchange='', formula='', isin='', name='XMRUSD', page='', path='Crypto\\\\XMRUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712045, digits=4, spread=5, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=10, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.5372, bidhigh=0.539, bidlow=0.5348, ask=0.5377, askhigh=0.5397, asklow=0.5354, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.0001, trade_tick_value=0.0001, trade_tick_value_profit=0.0001, trade_tick_value_loss=0.0001, trade_tick_size=0.0001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=500.0, volume_max=20000.0, volume_step=100.0, volume_limit=50000.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.5386, session_close=0.5386, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.2228, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Ripple vs US Dollar', exchange='', formula='', isin='', name='XRPUSD', page='', path='Crypto\\\\XRPUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712032, digits=5, spread=353, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=500, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.69073, bidhigh=0.69073, bidlow=0.68073, ask=0.69426, askhigh=0.69526, asklow=0.68426, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1e-05, trade_tick_value_profit=1e-05, trade_tick_value_loss=1e-05, trade_tick_size=1e-05, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=10.0, volume_max=10000.0, volume_step=1.0, volume_limit=30000.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.681, session_close=0.681, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.4684, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='XTZ vs US Dollar', exchange='', formula='', isin='', name='XTZUSD', page='', path='Crypto\\\\XTZUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712046, digits=3, spread=58, spread_float=True, ticks_bookdepth=10, trade_calc_mode=2, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=100, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=35.72, bidhigh=36.499, bidlow=35.627, ask=35.778, askhigh=36.551, asklow=35.672, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.0001, trade_tick_value_profit=0.0001, trade_tick_value_loss=0.0001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=500.0, volume_step=0.1, volume_limit=1000.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=36.27, session_close=36.27, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-1.4833, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Zcash vs US Dollar', exchange='', formula='', isin='', name='ZECUSD', page='', path='Crypto\\\\ZECUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=259, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=870, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=93690.08, bidhigh=93992.26, bidlow=93552.24, ask=93692.67, askhigh=93994.86, asklow=93554.82, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=20.0, swap_long=-1.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=93968.56, session_close=93968.4, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.296, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='An index with 10% volatility and 3 jumps per hour on average', exchange='', formula='', isin='', name='Jump 10 Index', page='', path='Jump Indices\\\\Jump 10 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=530, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=1452, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=81981.48, bidhigh=82080.92, bidlow=81068.73, ask=81986.78, askhigh=82086.22, asklow=81073.98, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=10.0, swap_long=-2.5, swap_short=-2.5, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=81187.03, session_close=81191.14, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.9737, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='An index with 25% volatility and 3 jumps per hour on average', exchange='', formula='', isin='', name='Jump 25 Index', page='', path='Jump Indices\\\\Jump 25 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=419, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=1308, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=30293.02, bidhigh=30321.43, bidlow=29617.22, ask=30297.21, askhigh=30325.63, asklow=29621.33, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.01, volume_limit=14.0, swap_long=-5.0, swap_short=-5.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=30054.5, session_close=30051.61, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.8043, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='An index with 50% volatility and 3 jumps per hour on average', exchange='', formula='', isin='', name='Jump 50 Index', page='', path='Jump Indices\\\\Jump 50 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=196, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=726, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=9911.82, bidhigh=10377.15, bidlow=9911.82, ask=9913.78, askhigh=10379.2, asklow=9913.78, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.01, volume_limit=10.0, swap_long=-7.5, swap_short=-7.5, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=10172.23, session_close=10171.91, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-2.5559, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='An index with 75% volatility and 3 jumps per hour on average', exchange='', formula='', isin='', name='Jump 75 Index', page='', path='Jump Indices\\\\Jump 75 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=95, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=243, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=2264.63, bidhigh=2334.24, bidlow=2227.43, ask=2265.58, askhigh=2335.21, asklow=2228.37, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=1.0, volume_step=0.01, volume_limit=50.0, swap_long=-10.0, swap_short=-10.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=2246.28, session_close=2246.15, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.8321, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='An index with 100% volatility and 3 jumps per hour on average', exchange='', formula='', isin='', name='Jump 100 Index', page='', path='Jump Indices\\\\Jump 100 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712047, digits=5, spread=700, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=0, start_time=0, expiration_time=0, trade_stops_level=5, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=1, margin_hedged_use_leg=False, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=65.519, bidhigh=65.806, bidlow=64.98513, ask=65.526, askhigh=65.813, asklow=65.121, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=1e-05, trade_tick_value=1e-05, trade_tick_value_profit=1e-05, trade_tick_value_loss=1e-05, trade_tick_size=1e-05, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=10.0, swap_long=-20.0, swap_short=-20.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=65.598, session_close=65.598, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.1204, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='LTC', currency_profit='USD', currency_margin='USD', bank='', description='Litecoin vs USD, used for conversion, not for trading', exchange='', formula='', isin='', name='LTCUSD.conv', page='', path='Conversions\\\\LTCUSD.conv'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676790, digits=2, spread=13, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=99.43, bidhigh=99.56, bidlow=99.29, ask=99.56, askhigh=99.69, asklow=99.43, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=-1.0, swap_short=-4.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=99.4, session_close=99.45, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0402, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='iShares Core US Aggregate Bond ETF CFD', exchange='', formula='', isin='US4642872265', name='AGG.US', page='', path='ETFs\\\\AGG.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676787, digits=2, spread=10, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=46.58, bidhigh=46.74, bidlow=45.46, ask=46.68, askhigh=46.84, asklow=45.56, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=-2.0, swap_short=-5.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=45.54, session_close=46.16, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.0182, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='ARK Innovation ETF CFD', exchange='', formula='', isin='US00214Q1040', name='ARKK.US', page='', path='ETFs\\\\ARKK.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=23, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=428.6, bidhigh=428.93, bidlow=424.9, ask=428.83, askhigh=429.16, asklow=425.14, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=25.0, swap_long=-3.0, swap_short=-11.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=425.16, session_close=424.62, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.9632, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='SPDR Dow Jones Industrial Average ETF Trust CFD', exchange='', formula='', isin='US78467X1090', name='DIA.US', page='', path='ETFs\\\\DIA.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676798, digits=2, spread=11, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=46.31, bidhigh=46.32, bidlow=45.65, ask=46.42, askhigh=46.43, asklow=45.76, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=-1.0, swap_short=-2.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=45.74, session_close=46.02, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.7388, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='iShares MSCI Emerging Index Fund ETF CFD', exchange='', formula='', isin='US4642872349', name='EEM.US', page='', path='ETFs\\\\EEM.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676798, digits=2, spread=12, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=82.25, bidhigh=82.31, bidlow=81.75, ask=82.37, askhigh=82.43, asklow=81.9, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=-1.0, swap_short=-3.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=81.81, session_close=81.88, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.5252, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='iShares MSCI EAFE ETF CFD', exchange='', formula='', isin='US4642874659', name='EFA.US', page='', path='ETFs\\\\EFA.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=13, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=65.89, bidhigh=66.38, bidlow=64.85, ask=66.02, askhigh=66.5, asklow=65.08, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=0.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=64.97, session_close=65.27, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.0265, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Direxion Daily Energy Bull 2x Shares CFD', exchange='', formula='', isin='US25460G6098', name='ERX.US', page='', path='ETFs\\\\ERX.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676792, digits=2, spread=10, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=39.99, bidhigh=40.4, bidlow=39.94, ask=40.09, askhigh=40.5, asklow=40.04, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=0.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=40.08, session_close=39.87, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.4264, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Market Vectors Gold Miners ETF CFD', exchange='', formula='', isin='US92189F1066', name='GDX.US', page='', path='ETFs\\\\GDX.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=17, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=245.33, bidhigh=245.82, bidlow=244.38, ask=245.5, askhigh=245.98, asklow=244.55, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=50.0, swap_long=-2.0, swap_short=-8.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=244.53, session_close=242.82, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.0666, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='SPDR Gold Trust CFD', exchange='', formula='', isin='US78463V1070', name='GLD.US', page='', path='ETFs\\\\GLD.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676798, digits=2, spread=12, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=79.5, bidhigh=79.52, bidlow=79.25, ask=79.62, askhigh=79.64, asklow=79.42, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=-1.0, swap_short=-4.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=79.31, session_close=79.37, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.2394, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='iShares iBoxx $ High Yield Corporate Bond ETF CFD', exchange='', formula='', isin='US4642885135', name='HYG.US', page='', path='ETFs\\\\HYG.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676798, digits=2, spread=11, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=57.77, bidhigh=57.8, bidlow=56.99, ask=57.88, askhigh=57.91, asklow=57.11, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=-1.0, swap_short=-2.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=57.1, session_close=57.41, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.7142, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='iShares Core MSCI Emerging Markets ETF CFD', exchange='', formula='', isin='US46434G1031', name='IEMG.US', page='', path='ETFs\\\\IEMG.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=13, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=116.16, bidhigh=116.26, bidlow=113.78, ask=116.29, askhigh=116.39, asklow=114.36, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=-1.0, swap_short=-4.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=113.84, session_close=114.1, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.858, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='iShares core S&P Small-Cap ETF CFD', exchange='', formula='', isin='US4642878049', name='IJR.US', page='', path='ETFs\\\\IJR.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=25, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=582.23, bidhigh=582.97, bidlow=578.57, ask=582.48, askhigh=583.21, asklow=578.83, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=25.0, swap_long=-4.0, swap_short=-14.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=578.77, session_close=578.88, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.5994, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='iShares Core S&P 500 ETF CFD', exchange='', formula='', isin='US4642872000', name='IVV.US', page='', path='ETFs\\\\IVV.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=12, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=96.86, bidhigh=97.04, bidlow=96.28, ask=96.98, askhigh=97.15, asklow=96.39, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=-1.0, swap_short=-2.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=96.39, session_close=96.71, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.2068, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='iShares S&P 500 Growth ETF CFD', exchange='', formula='', isin='US4642873099', name='IVW.US', page='', path='ETFs\\\\IVW.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=16, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=221.29, bidhigh=221.52, bidlow=216.65, ask=221.45, askhigh=221.68, asklow=216.83, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=50.0, swap_long=-2.0, swap_short=-8.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=216.76, session_close=216.79, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=2.1126, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='iShares Russell 2000 ETF CFD', exchange='', formula='', isin='US4642876555', name='IWM.US', page='', path='ETFs\\\\IWM.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676795, digits=2, spread=13, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=110.72, bidhigh=110.95, bidlow=110.51, ask=110.85, askhigh=111.08, asklow=110.64, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=75.0, swap_long=-2.0, swap_short=-6.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=110.67, session_close=110.82, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.0361, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='iShares iBoxx $ Inv Grade Corporate Bond ETF CFD', exchange='', formula='', isin='US4642872422', name='LQD.US', page='', path='ETFs\\\\LQD.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676797, digits=2, spread=10, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=35.44, bidhigh=35.9, bidlow=35.29, ask=35.54, askhigh=36.0, asklow=35.39, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=0.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=35.86, session_close=35.54, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.1407, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='ProShares UltraShort QQQ ETF CFD', exchange='', formula='', isin='US74347G7390', name='QID.US', page='', path='ETFs\\\\QID.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676793, digits=2, spread=11, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=20.27, bidhigh=20.53, bidlow=20.22, ask=20.38, askhigh=20.64, asklow=20.33, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=-7.0, swap_short=-2.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=20.57, session_close=20.53, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-1.0229, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='ProShares UltraShort S&P500 CFD', exchange='', formula='', isin='US74347B3832', name='SDS.US', page='', path='ETFs\\\\SDS.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676791, digits=2, spread=10, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=28.74, bidhigh=28.81, bidlow=28.54, ask=28.84, askhigh=28.91, asklow=28.64, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=0.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=28.6, session_close=28.37, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.4804, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='iShares Silver Trust CFD', exchange='', formula='', isin='US46428Q1094', name='SLV.US', page='', path='ETFs\\\\SLV.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676743, digits=2, spread=10, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=6.42, bidhigh=6.55, bidlow=6.4, ask=6.52, askhigh=6.65, asklow=6.5, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=-1.0, swap_short=-3.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=6.6, session_close=6.58, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-1.6717, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Direxion Daily S&P 500 Bear 3X Shares ETF CFD', exchange='', formula='', isin='US25460E2651', name='SPXS.US', page='', path='ETFs\\\\SPXS.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=25, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=579.44, bidhigh=580.19, bidlow=575.79, ask=579.69, askhigh=580.43, asklow=576.05, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=25.0, swap_long=-4.0, swap_short=-14.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=576.01, session_close=576.15, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.5919, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Spdr S&P 500 ETF CFD', exchange='', formula='', isin='US78462F1030', name='SPY.US', page='', path='ETFs\\\\SPY.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676796, digits=2, spread=10, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=32.49, bidhigh=32.69, bidlow=32.27, ask=32.59, askhigh=32.79, asklow=32.37, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=0.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=32.63, session_close=32.3, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.743, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='ProShares UltraShort 20+ Year Treasury CFD', exchange='', formula='', isin='US74347B2016', name='TBT.US', page='', path='ETFs\\\\TBT.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676797, digits=2, spread=10, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=74.27, bidhigh=74.74, bidlow=72.85, ask=74.37, askhigh=74.84, asklow=72.95, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=-4.0, swap_short=-6.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=73.17, session_close=74.12, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.2698, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='ProShares UltraPro QQQ CFD', exchange='', formula='', isin='US74347X8314', name='TQQQ.US', page='', path='ETFs\\\\TQQQ.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676793, digits=2, spread=37, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=14.61, bidhigh=14.84, bidlow=14.54, ask=14.98, askhigh=15.21, asklow=14.91, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=-1.0, swap_short=0.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=14.95, session_close=15.12, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-2.1825, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='United States Natural Gas ETF CFD', exchange='', formula='', isin='US9123183009', name='UNG.US', page='', path='ETFs\\\\UNG.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=11, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=51.94, bidhigh=51.99, bidlow=51.63, ask=52.05, askhigh=52.1, asklow=51.77, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=-1.0, swap_short=-2.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=51.68, session_close=51.73, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.5026, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Vanguard Developed Markets Index Fund ETF CFD', exchange='', formula='', isin='US9219438580', name='VEA.US', page='', path='ETFs\\\\VEA.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676794, digits=2, spread=12, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=94.69, bidhigh=94.69, bidlow=93.94, ask=94.81, askhigh=94.81, asklow=94.07, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=-1.0, swap_short=-4.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=94.2, session_close=93.74, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.0774, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Vanguard Real Estate Index Fund ETF CFD', exchange='', formula='', isin='US9229085538', name='VNQ.US', page='', path='ETFs\\\\VNQ.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=25, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=532.62, bidhigh=533.3, bidlow=529.28, ask=532.87, askhigh=533.54, asklow=529.53, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=25.0, swap_long=-5.0, swap_short=-16.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=529.46, session_close=529.59, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.5929, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Vanguard 500 Index Fund ETF CFD', exchange='', formula='', isin='US9229083632', name='VOO.US', page='', path='ETFs\\\\VOO.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=19, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=286.01, bidhigh=286.3, bidlow=283.68, ask=286.2, askhigh=286.48, asklow=283.98, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=50.0, swap_long=-4.0, swap_short=-13.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=283.76, session_close=283.95, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.7537, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Vanguard Total Stock Market Index Fund ETF CFD', exchange='', formula='', isin='US9229087690', name='VTI.US', page='', path='ETFs\\\\VTI.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676797, digits=2, spread=11, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=48.1, bidhigh=48.17, bidlow=47.5, ask=48.21, askhigh=48.28, asklow=47.67, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=-1.0, swap_short=-2.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=47.55, session_close=47.78, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.7744, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Vanguard Emerging Markets Stock Index Fund ETF CFD', exchange='', formula='', isin='US9220428588', name='VWO.US', page='', path='ETFs\\\\VWO.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676798, digits=2, spread=12, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=92.72, bidhigh=93.07, bidlow=91.97, ask=92.84, askhigh=93.19, asklow=92.11, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=0.0, swap_short=-2.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=92.21, session_close=92.29, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.5309, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Energy Select Sector SPDR Fund ETF CFD', exchange='', formula='', isin='US81369Y5069', name='XLE.US', page='', path='ETFs\\\\XLE.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676795, digits=2, spread=10, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=46.44, bidhigh=46.54, bidlow=45.84, ask=46.54, askhigh=46.64, asklow=45.94, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=100.0, swap_long=0.0, swap_short=-2.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=45.9, session_close=45.61, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.9294, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Financial Select Sector SPDR ETF CFD', exchange='', formula='', isin='US81369Y6059', name='XLF.US', page='', path='ETFs\\\\XLF.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676799, digits=2, spread=16, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=230.69, bidhigh=231.24, bidlow=229.45, ask=230.85, askhigh=231.42, asklow=229.59, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=10.0, volume_step=1.0, volume_limit=75.0, swap_long=-2.0, swap_short=-6.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=229.65, session_close=230.4, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.1563, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Technology Select Sector SPDR ETF CFD', exchange='', formula='', isin='US81369Y8030', name='XLK.US', page='', path='ETFs\\\\XLK.US'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728679499, digits=2, spread=52, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=2429.31, bidhigh=2431.23, bidlow=2406.9, ask=2429.83, askhigh=2431.64, asklow=2407.37, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=1.09342, trade_tick_value_profit=1.09342, trade_tick_value_loss=1.09363, trade_tick_size=0.01, trade_contract_size=100.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=10.0, swap_long=-26.18, swap_short=20.36, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=2408.23, session_close=2408.23, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.8795, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='XAU', currency_profit='EUR', currency_margin='XAU', bank='', description='Gold vs Euro', exchange='', formula='', isin='', name='XAUEUR', page='', path='Metals\\\\XAUEUR'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728679499, digits=3, spread=22, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=28.841, bidhigh=28.906, bidlow=28.394, ask=28.863, askhigh=28.928, asklow=28.413, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=5.4671, trade_tick_value_profit=5.4671, trade_tick_value_loss=5.4681500000000005, trade_tick_size=0.001, trade_contract_size=5000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=10.0, swap_long=-3.31, swap_short=2.37, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=28.488, session_close=28.488, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.2567, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='XAG', currency_profit='EUR', currency_margin='XAG', bank='', description='Silver vs Euro', exchange='', formula='', isin='', name='XAGEUR', page='', path='Metals\\\\XAGEUR'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728669583, digits=2, spread=4535, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=400, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=2614.92, bidhigh=2660.82, bidlow=2584.92, ask=2660.27, askhigh=2665.17, asklow=2593.27, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=1.0, trade_tick_value_profit=1.0, trade_tick_value_loss=1.0, trade_tick_size=0.01, trade_contract_size=100.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=10.0, swap_long=-41.45, swap_short=34.45, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=2590.5, session_close=2568.65, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.8044, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='XAL', currency_profit='USD', currency_margin='XAL', bank='', description='Aluminium vs US Dollar', exchange='', formula='', isin='', name='XALUSD', page='', path='Metals\\\\XALUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728669591, digits=2, spread=6880, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=600, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=9775.1, bidhigh=9817.65, bidlow=9692.55, ask=9843.9, askhigh=9844.45, asklow=9705.15, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=1.0, trade_tick_value_profit=1.0, trade_tick_value_loss=1.0, trade_tick_size=0.01, trade_contract_size=100.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=10.0, swap_long=-189.55, swap_short=170.63, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=9749.0, session_close=9704.1, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.7353, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='XCU', currency_profit='USD', currency_margin='XCU', bank='', description='Copper vs US Dollar', exchange='', formula='', isin='', name='XCUUSD', page='', path='Metals\\\\XCUUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728669595, digits=2, spread=18829, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=2000, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=17804.48, bidhigh=17952.23, bidlow=17602.98, ask=17992.77, askhigh=17998.52, asklow=17623.52, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=1.0, trade_tick_value_profit=1.0, trade_tick_value_loss=1.0, trade_tick_size=0.01, trade_contract_size=100.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=10.0, swap_long=-418.49, swap_short=377.25, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=17644.78, session_close=17456.78, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.9949, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='XNI', currency_profit='USD', currency_margin='XNI', bank='', description='Nickel vs US Dollar', exchange='', formula='', isin='', name='XNIUSD', page='', path='Metals\\\\XNIUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728668883, digits=2, spread=709, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=300, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=2097.58, bidhigh=2098.28, bidlow=2068.48, ask=2104.67, askhigh=2104.67, asklow=2077.02, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=1.0, trade_tick_value_profit=1.0, trade_tick_value_loss=1.0, trade_tick_size=0.01, trade_contract_size=100.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=10.0, swap_long=-73.41, swap_short=67.26, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=2069.2, session_close=2069.65, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.3529, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='XPB', currency_profit='USD', currency_margin='XPB', bank='', description='Lead vs US Dollar', exchange='', formula='', isin='', name='XPBUSD', page='', path='Metals\\\\XPBUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728669594, digits=2, spread=4917, spread_float=True, ticks_bookdepth=0, trade_calc_mode=0, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=400, trade_freeze_level=3, trade_exemode=2, swap_mode=1, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=3130.79, bidhigh=3156.34, bidlow=3080.24, ask=3179.96, askhigh=3179.96, asklow=3085.66, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=1.0, trade_tick_value_profit=1.0, trade_tick_value_loss=1.0, trade_tick_size=0.01, trade_contract_size=100.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=10.0, swap_long=-23.53, swap_short=15.67, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=3104.49, session_close=3075.44, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.803, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='XZN', currency_profit='USD', currency_margin='XZN', bank='', description='Zinc vs US Dollar', exchange='', formula='', isin='', name='XZNUSD', page='', path='Metals\\\\XZNUSD'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680093, digits=3, spread=21, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=5, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=2.504, bidhigh=2.599, bidlow=2.487, ask=2.525, askhigh=2.624, asklow=2.512, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=10000.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=5.0, volume_step=0.1, volume_limit=5.0, swap_long=-19.51, swap_short=17.4, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=2.576, session_close=2.576, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-2.6009, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Natural Gas', exchange='', formula='', isin='', name='NGAS', page='', path='Energies\\\\NGAS'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=47, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=149, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=1108.69, bidhigh=1155.35, bidlow=1097.55, ask=1109.16, askhigh=1155.82, asklow=1098.02, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.001, volume_limit=50.0, swap_long=-15.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=1127.2, session_close=1127.46, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-1.6648, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Constant Volatility of 150% with a tick every 1 seconds', exchange='', formula='', isin='', name='Volatility 150 (1s) Index', page='', path='Volatility Indices\\\\Volatility 150 (1s) Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=406, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=7302, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=6495.83, bidhigh=7288.5, bidlow=6407.84, ask=6499.89, askhigh=7292.56, asklow=6411.9, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.005, volume_max=1.0, volume_step=0.001, volume_limit=2.0, swap_long=-25.0, swap_short=-25.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=7142.76, session_close=7148.92, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-9.1355, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Constant Volatility of 250% with a tick every 1 seconds', exchange='', formula='', isin='', name='Volatility 250 (1s) Index', page='', path='Volatility Indices\\\\Volatility 250 (1s) Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712047, digits=2, spread=1, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=3, start_time=0, expiration_time=0, trade_stops_level=40, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=9.08, bidhigh=9.22, bidlow=8.43, ask=9.09, askhigh=9.23, asklow=8.44, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.02, volume_max=5.0, volume_step=0.01, volume_limit=10.0, swap_long=-20.0, swap_short=-20.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=8.57, session_close=8.57, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=5.951, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Constant Volatility of 200% with a tick every 1 seconds', exchange='', formula='', isin='', name='Volatility 200 (1s) Index', page='', path='Volatility Indices\\\\Volatility 200 (1s) Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712020, digits=2, spread=1, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=3, start_time=0, expiration_time=0, trade_stops_level=3, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=0.02, bidhigh=0.03, bidlow=0.02, ask=0.03, askhigh=0.04, asklow=0.03, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=30.0, volume_step=0.01, volume_limit=60.0, swap_long=-30.0, swap_short=-30.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=0.03, session_close=0.03, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-33.3333, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Constant Volatility of 300% with a tick every 1 seconds', exchange='', formula='', isin='', name='Volatility 300 (1s) Index', page='', path='Volatility Indices\\\\Volatility 300 (1s) Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=3, spread=245, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=1668, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=858.53, bidhigh=904.74, bidlow=858.53, ask=858.775, askhigh=904.987, asklow=858.775, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=0.01, volume_limit=250.0, swap_long=-40.0, swap_short=-30.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=892.901, session_close=892.915, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-3.8396, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='On average 1 spike occurs in the price series every 300 ticks', exchange='', formula='', isin='', name='Boom 300 Index', page='', path='Crash Boom Indices\\\\Boom 300 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=3, spread=1337, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=2205, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=5184.748, bidhigh=5495.315, bidlow=5153.388, ask=5186.085, askhigh=5496.666, asklow=5154.723, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.5, volume_max=15.0, volume_step=0.01, volume_limit=50.0, swap_long=-30.0, swap_short=-40.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=5336.568, session_close=5336.497, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-2.8335, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='On average 1 drop occurs in the price series every 300 ticks', exchange='', formula='', isin='', name='Crash 300 Index', page='', path='Crash Boom Indices\\\\Crash 300 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728660575, digits=2, spread=8, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=6.39, bidhigh=6.46, bidlow=6.34, ask=6.47, askhigh=6.54, asklow=6.41, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=100.0, swap_long=-0.19, swap_short=0.011, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=6.48, session_close=6.48, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.7716, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='EUR', currency_margin='EUR', bank='', description='Lufthansa AG', exchange='', formula='', isin='DE0008232125', name='LHAG', page='', path='Equities\\\\Europe\\\\LHAG'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728660595, digits=2, spread=35, spread_float=True, ticks_bookdepth=0, trade_calc_mode=3, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=3, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=39.64, bidhigh=39.75, bidlow=39.35, ask=39.99, askhigh=40.11, asklow=39.72, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=100.0, volume_step=1.0, volume_limit=100.0, swap_long=-1.165, swap_short=0.067, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=39.81, session_close=39.84, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.0753, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='EUR', currency_margin='EUR', bank='', description='Porsche Automobil Holding SE', exchange='', formula='', isin='DE000PAH0038', name='PSHG', page='', path='Equities\\\\Europe\\\\PSHG'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676499, digits=3, spread=178, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=440, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=903.057, bidhigh=903.321, bidlow=899.343, ask=903.235, askhigh=903.483, asklow=899.457, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.1, trade_tick_value_profit=0.1, trade_tick_value_loss=0.1, trade_tick_size=0.001, trade_contract_size=100.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=10.0, swap_long=-3.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=900.627, session_close=900.574, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.2779, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='AUD vs equally weighted basket of (USD,EUR,GBP,JPY,CAD)', exchange='', formula='', isin='US05070N1037', name='AUD Basket', page='', path='Basket Indices\\\\AUD Basket'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676499, digits=3, spread=143, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=519, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=1017.287, bidhigh=1018.844, bidlow=1016.54, ask=1017.43, askhigh=1018.937, asklow=1016.675, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.1, trade_tick_value_profit=0.1, trade_tick_value_loss=0.1, trade_tick_size=0.001, trade_contract_size=100.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=10.0, swap_long=-3.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=1016.881, session_close=1016.854, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.044, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='EUR vs equally weighted basket of (USD,AUD,GBP,JPY,CAD)', exchange='', formula='', isin='', name='EUR Basket', page='', path='Basket Indices\\\\EUR Basket'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676499, digits=3, spread=164, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=441, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=983.269, bidhigh=984.325, bidlow=981.325, ask=983.433, askhigh=984.473, asklow=981.479, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.1, trade_tick_value_profit=0.1, trade_tick_value_loss=0.1, trade_tick_size=0.001, trade_contract_size=100.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=10.0, swap_long=-3.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=982.42, session_close=982.385, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0914, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='GBP vs equally weighted basket of (USD,EUR,AUD,JPY,CAD)', exchange='', formula='', isin='', name='GBP Basket', page='', path='Basket Indices\\\\GBP Basket'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676499, digits=3, spread=139, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=482, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=1235.138, bidhigh=1236.938, bidlow=1233.689, ask=1235.277, askhigh=1237.025, asklow=1233.808, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.1, trade_tick_value_profit=0.1, trade_tick_value_loss=0.1, trade_tick_size=0.001, trade_contract_size=100.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=10.0, swap_long=-3.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=1234.858, session_close=1234.833, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0257, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='USD vs equally weighted basket of (EUR,GBP,JPY,CAD,AUD)', exchange='', formula='', isin='US74347R6696', name='USD Basket', page='', path='Basket Indices\\\\USD Basket'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676499, digits=3, spread=133658, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=388500, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=617493.196, bidhigh=618308.96, bidlow=611713.421, ask=617626.854, askhigh=618441.746, asklow=611838.743, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=1.0, volume_step=0.01, volume_limit=1.0, swap_long=-5.0, swap_short=-0.1, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=612105.753, session_close=612109.363, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.8859, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='XAU vs equally weighted basket of (USD,EUR,AUD,GBP,JPY)', exchange='', formula='', isin='', name='Gold Basket', page='', path='Basket Indices\\\\Gold Basket'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680099, digits=2, spread=1271, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=4886, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=81238.62, bidhigh=81505.48, bidlow=80603.83, ask=81251.33, askhigh=81518.96, asklow=80629.4, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.01, volume_limit=2.0, swap_long=-1.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=81258.99, session_close=81254.64, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.0132, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Derived from AUDUSD, constant volatility of 10%', exchange='', formula='', isin='', name='AUDUSD DFX 10 Index', page='', path='Derived Indices\\\\AUDUSD DFX 10 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680099, digits=2, spread=1266, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=4890, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=63532.64, bidhigh=63852.67, bidlow=63143.84, ask=63545.3, askhigh=63868.27, asklow=63155.35, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.01, volume_limit=2.0, swap_long=-1.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=63249.03, session_close=63248.22, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.4576, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Derived from EURUSD, constant volatility of 10%', exchange='', formula='', isin='', name='EURUSD DFX 10 Index', page='', path='Derived Indices\\\\EURUSD DFX 10 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680098, digits=2, spread=1114, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=4088, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=62312.39, bidhigh=62712.57, bidlow=62204.36, ask=62323.53, askhigh=62723.99, asklow=62216.62, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.01, volume_limit=2.0, swap_long=-1.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=62437.07, session_close=62437.67, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.1939, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Derived from GBPUSD, constant volatility of 10%', exchange='', formula='', isin='', name='GBPUSD DFX 10 Index', page='', path='Derived Indices\\\\GBPUSD DFX 10 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680098, digits=2, spread=1561, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=6873, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=89817.02, bidhigh=90062.09, bidlow=89403.03, ask=89832.63, askhigh=90081.61, asklow=89419.57, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.01, volume_limit=2.0, swap_long=-1.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=89624.06, session_close=89624.86, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.2223, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Derived from USDCHF, constant volatility of 10%', exchange='', formula='', isin='', name='USDCHF DFX 10 Index', page='', path='Derived Indices\\\\USDCHF DFX 10 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680098, digits=2, spread=1985, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=8024, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=164086.7, bidhigh=164352.82, bidlow=163655.56, ask=164106.55, askhigh=164377.46, asklow=163682.3, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.01, volume_limit=2.0, swap_long=-1.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=163947.33, session_close=163948.07, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0904, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Derived from USDJPY, constant volatility of 10%', exchange='', formula='', isin='', name='USDJPY DFX 10 Index', page='', path='Derived Indices\\\\USDJPY DFX 10 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680099, digits=2, spread=2281, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=6687, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=74732.39, bidhigh=76457.11, bidlow=74643.06, ask=74755.2, askhigh=76481.62, asklow=74670.45, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.01, volume_limit=2.0, swap_long=-2.0, swap_short=-2.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=76366.97, session_close=76357.82, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-2.1164, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Derived from AUDUSD, constant volatility of 20%', exchange='', formula='', isin='', name='AUDUSD DFX 20 Index', page='', path='Derived Indices\\\\AUDUSD DFX 20 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680099, digits=2, spread=4052, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=12609, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=101195.1, bidhigh=102797.7, bidlow=101150.68, ask=101235.62, askhigh=102838.02, asklow=101188.24, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.01, volume_limit=2.0, swap_long=-2.0, swap_short=-2.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=102305.32, session_close=102302.59, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-1.0664, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Derived from EURUSD, constant volatility of 20%', exchange='', formula='', isin='', name='EURUSD DFX 20 Index', page='', path='Derived Indices\\\\EURUSD DFX 20 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680099, digits=2, spread=3953, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=11007, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=132390.26, bidhigh=134310.84, bidlow=132364.82, ask=132429.79, askhigh=134348.96, asklow=132400.3, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.01, volume_limit=2.0, swap_long=-2.0, swap_short=-2.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=133031.98, session_close=133034.64, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.4736, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Derived from GBPUSD, constant volatility of 20%', exchange='', formula='', isin='', name='GBPUSD DFX 20 Index', page='', path='Derived Indices\\\\GBPUSD DFX 20 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680098, digits=2, spread=2759, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=9180, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=82831.64, bidhigh=82974.67, bidlow=82268.29, ask=82859.23, askhigh=83001.91, asklow=82296.38, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.01, volume_limit=2.0, swap_long=-2.0, swap_short=-2.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=82370.09, session_close=82371.6, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.5732, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Derived from USDCHF, constant volatility of 20%', exchange='', formula='', isin='', name='USDCHF DFX 20 Index', page='', path='Derived Indices\\\\USDCHF DFX 20 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680098, digits=2, spread=2559, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=7734, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=93748.22, bidhigh=93928.65, bidlow=92910.96, ask=93773.81, askhigh=93956.14, asklow=92941.4, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=2.0, volume_step=0.01, volume_limit=2.0, swap_long=-2.0, swap_short=-2.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=93117.03, session_close=93117.89, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.6902, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Derived from USDJPY, constant volatility of 20%', exchange='', formula='', isin='', name='USDJPY DFX 20 Index', page='', path='Derived Indices\\\\USDJPY DFX 20 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=194, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=588, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=5148.15, bidhigh=5168.59, bidlow=5024.97, ask=5150.09, askhigh=5170.52, asklow=5026.9, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=30.0, swap_long=-30.0, swap_short=-20.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=5040.79, session_close=5040.62, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=2.1503, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Small drops and major spikes every 10 minutes on average.', exchange='', formula='', isin='', name='DEX 600 UP Index', page='', path='DEX Indices\\\\DEX 600 UP Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=62, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=192, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=3556.35, bidhigh=3587.71, bidlow=3500.15, ask=3556.97, askhigh=3588.34, asklow=3500.77, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=100.0, swap_long=-20.0, swap_short=-30.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=3501.72, session_close=3501.84, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.5635, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Small spikes and major drops every 10 minutes on average.', exchange='', formula='', isin='', name='DEX 600 DOWN Index', page='', path='DEX Indices\\\\DEX 600 DOWN Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=307, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=1005, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=21073.99, bidhigh=21218.35, bidlow=20771.6, ask=21077.06, askhigh=21221.42, asklow=20774.65, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=25.0, swap_long=-25.0, swap_short=-35.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=20912.89, session_close=20913.41, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.773, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Small spikes and major drops every 15 minutes on average.', exchange='', formula='', isin='', name='DEX 900 DOWN Index', page='', path='DEX Indices\\\\DEX 900 DOWN Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=39, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=193, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=1527.48, bidhigh=1572.71, bidlow=1527.09, ask=1527.87, askhigh=1573.11, asklow=1527.49, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=5.0, volume_step=0.01, volume_limit=150.0, swap_long=-35.0, swap_short=-25.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=1571.34, session_close=1571.55, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-2.7934, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Small drops and major spikes every 15 minutes on average.', exchange='', formula='', isin='', name='DEX 900 UP Index', page='', path='DEX Indices\\\\DEX 900 UP Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=79, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=219, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=8546.62, bidhigh=8606.84, bidlow=8408.57, ask=8547.41, askhigh=8607.64, asklow=8409.36, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=90.0, swap_long=-25.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=8428.69, session_close=8428.71, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.4015, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Small drops and major spikes every 25 minutes on average.', exchange='', formula='', isin='', name='DEX 1500 UP Index', page='', path='DEX Indices\\\\DEX 1500 UP Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=138, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=411, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=9212.5, bidhigh=9352.7, bidlow=9146.53, ask=9213.88, askhigh=9354.09, asklow=9147.9, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=40.0, swap_long=-15.0, swap_short=-25.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=9345.4, session_close=9345.32, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-1.416, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Small spikes and major drops every 25 minutes on average.', exchange='', formula='', isin='', name='DEX 1500 DOWN Index', page='', path='DEX Indices\\\\DEX 1500 DOWN Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=181, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=1000, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=False, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=8476.39, bidhigh=8485.93, bidlow=8383.34, ask=8478.2, askhigh=8495.46, asklow=8387.01, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=60.0, swap_long=-7.5, swap_short=-7.5, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=8383.34, session_close=8383.89, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.1033, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Switches between regimes every 30 minutes on average', exchange='', formula='', isin='', name='Drift Switch Index 30', page='', path='Drift Switching Indices\\\\Drift Switch Index 30'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=186, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=500, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=False, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=3614.86, bidhigh=3623.06, bidlow=3596.2, ask=3616.72, askhigh=3626.23, asklow=3601.55, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=100.0, swap_long=-7.5, swap_short=-7.5, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=3621.78, session_close=3621.75, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.1902, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Switches between regimes every 20 minutes on average', exchange='', formula='', isin='', name='Drift Switch Index 20', page='', path='Drift Switching Indices\\\\Drift Switch Index 20'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=208, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=500, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=False, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=4835.98, bidhigh=4884.49, bidlow=4815.87, ask=4838.06, askhigh=4890.49, asklow=4822.02, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.01, volume_max=10.0, volume_step=0.01, volume_limit=40.0, swap_long=-7.5, swap_short=-7.5, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=4855.66, session_close=4855.75, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.4071, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Switches between regimes every 10 minutes on average', exchange='', formula='', isin='', name='Drift Switch Index 10', page='', path='Drift Switching Indices\\\\Drift Switch Index 10'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680399, digits=3, spread=25, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=False, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=78.649, bidhigh=79.23, bidlow=77.784, ask=78.674, askhigh=79.255, asklow=77.809, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=1000.0, volume_step=1.0, volume_limit=1000.0, swap_long=-0.13, swap_short=-0.35, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=78.853, session_close=78.81, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.2005, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='UK Brent Oil', exchange='', formula='', isin='GB00H1TWG873', name='UK Brent Oil', page='', path='Energies\\\\UK Brent Oil'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680399, digits=3, spread=23, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=1, swap_rollover3days=5, margin_hedged_use_leg=False, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=74.908, bidhigh=75.435, bidlow=74.028, ask=74.931, askhigh=75.458, asklow=74.051, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=1.0, volume_max=1000.0, volume_step=1.0, volume_limit=1000.0, swap_long=-0.05, swap_short=-0.27, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=75.083, session_close=75.093, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.2424, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='US Oil', exchange='', formula='', isin='BBG000HV1554', name='US Oil', page='', path='Energies\\\\US Oil'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680378, digits=2, spread=975, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=500, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=8256.42, bidhigh=8268.52, bidlow=8187.52, ask=8266.17, askhigh=8270.07, asklow=8189.07, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.1, volume_limit=100.0, swap_long=-6.05, swap_short=2.55, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=8207.7, session_close=8207.7, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.5958, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='AUD', currency_profit='AUD', currency_margin='AUD', bank='', description='Australia 200', exchange='', formula='', isin='XC0006013624', name='Australia 200', page='', path='Stock Indices\\\\Australia 200'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680394, digits=2, spread=650, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=5000, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=13835.25, bidhigh=13972.25, bidlow=13350.75, ask=13841.75, askhigh=13978.75, asklow=13357.25, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.1, volume_limit=100.0, swap_long=-6.86, swap_short=3.36, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=13932.0, session_close=13931.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.6855, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='China 50', exchange='', formula='', isin='SGXDB0796415', name='China 50', page='', path='Stock Indices\\\\China 50'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728586802, digits=2, spread=1625, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=3000, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=7607.87, bidhigh=7769.37, bidlow=7476.87, ask=7624.12, askhigh=7776.62, asklow=7493.12, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.1, volume_limit=100.0, swap_long=-6.17, swap_short=2.67, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=7496.0, session_close=7495.0, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.5077, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='HKD', currency_profit='HKD', currency_margin='HKD', bank='', description='China H Shares', exchange='', formula='', isin='BBG000PQF2F7', name='China H Shares', page='', path='Stock Indices\\\\China H Shares'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680346, digits=2, spread=738, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=200, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=4996.11, bidhigh=5010.11, bidlow=4953.11, ask=5003.49, askhigh=5012.49, asklow=4954.49, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.1, volume_limit=100.0, swap_long=-5.27, swap_short=1.77, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=4985.2, session_close=4984.2, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.2408, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='EUR', currency_margin='EUR', bank='', description='Europe 50', exchange='', formula='', isin='EU0009658145', name='Europe 50', page='', path='Stock Indices\\\\Europe 50'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680399, digits=2, spread=838, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=100, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=7567.41, bidhigh=7593.06, bidlow=7502.56, ask=7575.79, askhigh=7594.14, asklow=7503.64, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.1, volume_limit=100.0, swap_long=-5.27, swap_short=1.77, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=7571.05, session_close=7569.55, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.0264, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='EUR', currency_margin='EUR', bank='', description='France 40', exchange='', formula='', isin='FR0003500008', name='France 40', page='', path='Stock Indices\\\\France 40'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680397, digits=2, spread=880, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=150, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=19360.94, bidhigh=19400.4, bidlow=19176.4, ask=19369.74, askhigh=19401.6, asklow=19177.6, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.1, volume_limit=100.0, swap_long=-5.27, swap_short=1.77, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=19250.95, session_close=19244.95, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.6045, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='EUR', currency_margin='EUR', bank='', description='Germany 40', exchange='', formula='', isin='DE0008469008', name='Germany 40', page='', path='Stock Indices\\\\Germany 40'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728586802, digits=2, spread=2270, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=2000, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=5, margin_hedged_use_leg=False, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=21236.65, bidhigh=21620.4, bidlow=20967.4, ask=21259.35, askhigh=21625.6, asklow=20972.6, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.1, volume_limit=100.0, swap_long=-6.17, swap_short=2.67, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=21010.32, session_close=21011.32, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.0741, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='HKD', currency_profit='HKD', currency_margin='HKD', bank='', description='Hong Kong 50', exchange='', formula='', isin='HK0000004322', name='Hong Kong 50', page='', path='Stock Indices\\\\Hong Kong 50'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680363, digits=2, spread=650, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=1000, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=39740.75, bidhigh=39930.75, bidlow=39390.75, ask=39747.25, askhigh=39937.25, asklow=39397.25, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=10.0, volume_max=500.0, volume_step=10.0, volume_limit=500.0, swap_long=-1.94, swap_short=-1.56, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=39456.5, session_close=39456.5, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.7223, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='JPY', currency_profit='JPY', currency_margin='JPY', bank='', description='Japan 225', exchange='', formula='', isin='JP9010C00002', name='Japan 225', page='', path='Stock Indices\\\\Japan 225'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680399, digits=2, spread=74, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=914.38, bidhigh=917.03, bidlow=909.68, ask=915.12, askhigh=917.57, asklow=910.02, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.1, volume_limit=100.0, swap_long=-5.27, swap_short=1.77, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=913.55, session_close=913.3, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.1204, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='EUR', currency_profit='EUR', currency_margin='EUR', bank='', description='Netherlands 25', exchange='', formula='', isin='NL0000000107', name='Netherlands 25', page='', path='Stock Indices\\\\Netherlands 25'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680393, digits=2, spread=21, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=100, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=343.64, bidhigh=344.09, bidlow=340.79, ask=343.85, askhigh=344.3, asklow=341.0, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.1, volume_limit=100.0, swap_long=-5.1, swap_short=1.6, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=340.98, session_close=340.93, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.7978, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='SGD', currency_profit='SGD', currency_margin='SGD', bank='', description='Singapore 20', exchange='', formula='', isin='SGXDB0594729', name='Singapore 20', page='', path='Stock Indices\\\\Singapore 20'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680397, digits=2, spread=1220, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=1000, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=12179.1, bidhigh=12192.1, bidlow=12045.6, ask=12191.3, askhigh=12204.3, asklow=12053.3, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.1, volume_limit=100.0, swap_long=-2.83, swap_short=-0.67, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=12085.7, session_close=12083.7, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.7945, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='CHF', currency_profit='CHF', currency_margin='CHF', bank='', description='Swiss 20', exchange='', formula='', isin='CH0009980894', name='Swiss 20', page='', path='Stock Indices\\\\Swiss 20'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680345, digits=2, spread=108, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=500, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=1915.38, bidhigh=1918.88, bidlow=1896.63, ask=1916.46, askhigh=1919.96, asklow=1897.71, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.1, volume_limit=100.0, swap_long=-6.86, swap_short=3.36, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=1899.2, session_close=1898.7, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.8806, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Taiwan Index', exchange='', formula='', isin='SGXDB1035987', name='Taiwan Index', page='', path='Stock Indices\\\\Taiwan Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680397, digits=2, spread=646, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=100, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=8254.7, bidhigh=8267.02, bidlow=8211.02, ask=8261.16, askhigh=8276.33, asklow=8211.98, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.1, volume_limit=100.0, swap_long=-6.74, swap_short=3.24, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=8260.35, session_close=8256.45, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.019, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='GBP', currency_profit='GBP', currency_margin='GBP', bank='', description='UK 100', exchange='', formula='', isin='GB0001383545', name='UK 100', page='', path='Stock Indices\\\\UK 100'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680398, digits=2, spread=312, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=150, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=3152.04, bidhigh=3156.24, bidlow=3094.64, ask=3155.16, askhigh=3157.06, asklow=3096.96, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.1, volume_limit=100.0, swap_long=-6.86, swap_short=3.36, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=3109.8, session_close=3109.8, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.3602, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='US Mid Cap 400', exchange='', formula='', isin='IE00B4YBJ215', name='US Mid Cap 400', page='', path='Stock Indices\\\\US Mid Cap 400'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680398, digits=2, spread=71, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=50, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=5811.57, bidhigh=5826.67, bidlow=5774.67, ask=5812.28, askhigh=5827.18, asklow=5775.18, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.1, volume_limit=100.0, swap_long=-6.86, swap_short=3.36, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=5793.89, session_close=5793.89, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.3069, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='US 500', exchange='', formula='', isin='US78378X1072', name='US SP 500', page='', path='Stock Indices\\\\US SP 500'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680399, digits=2, spread=66, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=150, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=2230.22, bidhigh=2235.6, bidlow=2177.2, ask=2230.88, askhigh=2235.9, asklow=2177.5, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.1, volume_limit=100.0, swap_long=-6.86, swap_short=3.36, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=2190.72, session_close=2190.72, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=1.8053, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='US Small Cap 2000', exchange='', formula='', isin='US7827001089', name='US Small Cap 2000', page='', path='Stock Indices\\\\US Small Cap 2000'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680399, digits=2, spread=280, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=150, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=20249.15, bidhigh=20330.3, bidlow=20151.8, ask=20251.95, askhigh=20332.8, asklow=20154.3, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.1, volume_limit=100.0, swap_long=-6.86, swap_short=3.36, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=20287.5, session_close=20287.75, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-0.1858, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='US Tech 100', exchange='', formula='', isin='US6311011026', name='US Tech 100', page='', path='Stock Indices\\\\US Tech 100'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728680399, digits=2, spread=860, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=300, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=5, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=63, order_gtc_mode=0, option_mode=0, option_right=0, bid=42864.2, bidhigh=42942.75, bidlow=42431.6, ask=42872.8, askhigh=42945.25, asklow=42434.4, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=100.0, volume_step=0.1, volume_limit=100.0, swap_long=-6.86, swap_short=3.36, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=42555.35, session_close=42555.35, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.7275, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Wall Street 30', exchange='', formula='', isin='US2605661048', name='Wall Street 30', page='', path='Stock Indices\\\\Wall Street 30'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=1, spread=2, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=11, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=11092.5, bidhigh=11099.3, bidlow=11062.9, ask=11092.7, askhigh=11099.5, asklow=11063.1, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.1, trade_tick_value=1.0000000000000002, trade_tick_value_profit=1.0000000000000002, trade_tick_value_loss=1.0000000000000002, trade_tick_size=0.1, trade_contract_size=10.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=10.0, volume_step=0.01, volume_limit=40.0, swap_long=-1.1, swap_short=-1.1, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=11078.9, session_close=11078.7, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.1246, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Equal probability of up/down with fixed step size of 0.2', exchange='', formula='', isin='', name='Step Index 200', page='', path='Step Indices\\\\Step Index 200'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=1, spread=5, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=20, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=6971.3, bidhigh=6971.3, bidlow=6785.3, ask=6971.8, askhigh=6971.8, asklow=6785.8, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.1, trade_tick_value=1.0000000000000002, trade_tick_value_profit=1.0000000000000002, trade_tick_value_loss=1.0000000000000002, trade_tick_size=0.1, trade_contract_size=10.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=5.0, volume_step=0.01, volume_limit=15.0, swap_long=-2.75, swap_short=-2.75, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=6789.3, session_close=6789.8, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=2.6731, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Equal probability of up/down with fixed step size of 0.5', exchange='', formula='', isin='', name='Step Index 500', page='', path='Step Indices\\\\Step Index 500'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=20, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=96, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=10041.5, bidhigh=10053.8, bidlow=10030.4, ask=10041.7, askhigh=10054.0, asklow=10030.6, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=10.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=10.0, volume_step=0.01, volume_limit=30.0, swap_long=-1.0, swap_short=-1.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=10035.5, session_close=10035.6, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.0588, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Equal probability of up/down move with 2 different step sizes', exchange='', formula='', isin='', name='Multi Step 2 Index', page='', path='Multi Step Indices\\\\Multi Step 2 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=20, spread_float=False, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=109, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=9678.7, bidhigh=9681.4, bidlow=9653.2, ask=9678.9, askhigh=9681.6, asklow=9653.4, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=10.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=10.0, volume_step=0.01, volume_limit=30.0, swap_long=-0.8, swap_short=-0.8, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=9664.6, session_close=9664.5, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=0.1469, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Equal probability of up/down move with 4 different step sizes', exchange='', formula='', isin='', name='Multi Step 4 Index', page='', path='Multi Step Indices\\\\Multi Step 4 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=200, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=360, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=8268.04, bidhigh=8677.9, bidlow=8252.18, ask=8270.04, askhigh=8679.9, asklow=8254.17, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=10.0, volume_step=0.01, volume_limit=20.0, swap_long=-25.0, swap_short=-30.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=8655.86, session_close=8656.03, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=100000.0, price_change=-4.4708, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Volatility of 20% with on average 1 drop every 400 ticks', exchange='', formula='', isin='', name='Vol over Crash 400', page='', path='Hybrid Indices\\\\Vol over Crash 400'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=160, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=250, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=12177.41, bidhigh=12267.88, bidlow=12110.73, ask=12179.01, askhigh=12269.49, asklow=12112.33, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=10.0, volume_step=0.01, volume_limit=30.0, swap_long=-15.0, swap_short=-20.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=12117.99, session_close=12118.55, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=100000.0, price_change=0.4923, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Volatility of 20% with on average 1 drop every 750 ticks', exchange='', formula='', isin='', name='Vol over Crash 750', page='', path='Hybrid Indices\\\\Vol over Crash 750'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=200, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=360, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=8111.23, bidhigh=8396.27, bidlow=8071.87, ask=8113.23, askhigh=8398.27, asklow=8073.87, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=10.0, volume_step=0.01, volume_limit=20.0, swap_long=-25.0, swap_short=-30.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=8324.85, session_close=8324.79, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=100000.0, price_change=-2.5533, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Volatility of 20% with on average 1 spike every 400 ticks', exchange='', formula='', isin='', name='Vol over Boom 400', page='', path='Hybrid Indices\\\\Vol over Boom 400'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=160, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=250, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=7495.33, bidhigh=7525.92, bidlow=7347.85, ask=7496.93, askhigh=7527.51, asklow=7349.45, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=10.0, volume_step=0.01, volume_limit=30.0, swap_long=-15.0, swap_short=-20.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=7370.87, session_close=7370.78, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=100000.0, price_change=1.7006000000000001, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Volatility of 20% with on average 1 spike every 750 ticks', exchange='', formula='', isin='', name='Vol over Boom 750', page='', path='Hybrid Indices\\\\Vol over Boom 750'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=3, spread=439, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=1287, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=10026.684, bidhigh=10044.419, bidlow=9971.736, ask=10027.123, askhigh=10044.859, asklow=9972.174, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.2, volume_max=20.0, volume_step=0.01, volume_limit=85.0, swap_long=-18.0, swap_short=-12.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=10017.029, session_close=10017.053, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=100000.0, price_change=0.0978, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='On average 1 spike occurs in the price series every 900 ticks', exchange='', formula='', isin='', name='Boom 900 Index', page='', path='Crash Boom Indices\\\\Boom 900 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=3, spread=517, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=1530, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=9732.598, bidhigh=9733.326, bidlow=9665.429, ask=9733.115, askhigh=9733.843, asklow=9665.946, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.2, volume_max=20.0, volume_step=0.01, volume_limit=80.0, swap_long=-20.0, swap_short=-15.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=9725.181, session_close=9725.196, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=100000.0, price_change=0.0781, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='On average 1 spike occurs in the price series every 600 ticks', exchange='', formula='', isin='', name='Boom 600 Index', page='', path='Crash Boom Indices\\\\Boom 600 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=3, spread=591, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=1740, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=13592.521, bidhigh=13621.516, bidlow=13499.45, ask=13593.112, askhigh=13622.108, asklow=13500.041, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.2, volume_max=20.0, volume_step=0.01, volume_limit=65.0, swap_long=-12.0, swap_short=-18.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=13512.719, session_close=13512.71, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=100000.0, price_change=0.5923, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='On average 1 drop occurs in the price series every 900 ticks', exchange='', formula='', isin='', name='Crash 900 Index', page='', path='Crash Boom Indices\\\\Crash 900 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=3, spread=796, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=2349, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=16696.154, bidhigh=16696.154, bidlow=16486.903, ask=16696.95, askhigh=16696.95, asklow=16487.697, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.001, trade_tick_value=0.001, trade_tick_value_profit=0.001, trade_tick_value_loss=0.001, trade_tick_size=0.001, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.2, volume_max=20.0, volume_step=0.01, volume_limit=50.0, swap_long=-15.0, swap_short=-20.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=16607.078, session_close=16607.078, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=100000.0, price_change=0.5381, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='On average 1 drop occurs in the price series every 600 ticks', exchange='', formula='', isin='', name='Crash 600 Index', page='', path='Crash Boom Indices\\\\Crash 600 Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=1, spread=50, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=200, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=9790.3, bidhigh=9790.3, bidlow=9678.1, ask=9795.3, askhigh=9795.3, asklow=9683.1, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.1, trade_tick_value=0.1, trade_tick_value_profit=0.1, trade_tick_value_loss=0.1, trade_tick_size=0.1, trade_contract_size=10.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=10.0, volume_step=0.01, volume_limit=10.0, swap_long=-1.9, swap_short=-1.9, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=9696.9, session_close=9696.8, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=100000.0, price_change=0.99, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Offers 90% chance of gradual gains; 10% chance of sharp drop', exchange='', formula='', isin='', name='Skew Step Index 5 Up', page='', path='Skewed Step\\\\Skew Step Index 5 Up'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=1, spread=50, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=200, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=10291.2, bidhigh=10338.7, bidlow=10267.1, ask=10296.2, askhigh=10343.7, asklow=10272.1, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.1, trade_tick_value=0.1, trade_tick_value_profit=0.1, trade_tick_value_loss=0.1, trade_tick_size=0.1, trade_contract_size=10.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=10.0, volume_step=0.01, volume_limit=10.0, swap_long=-2.0, swap_short=-2.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=10338.0, session_close=10338.1, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=100000.0, price_change=-0.4295, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Offers 90% chance of gradual declines; 10% chance of sharp rise', exchange='', formula='', isin='', name='Skew Step Index 5 Down', page='', path='Skewed Step\\\\Skew Step Index 5 Down'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=1, spread=40, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=200, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=9746.9, bidhigh=9804.5, bidlow=9740.5, ask=9750.9, askhigh=9808.5, asklow=9744.5, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.1, trade_tick_value=0.1, trade_tick_value_profit=0.1, trade_tick_value_loss=0.1, trade_tick_size=0.1, trade_contract_size=10.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=-1.7, swap_short=-1.7, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=9760.7, session_close=9760.6, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=100000.0, price_change=-0.1199, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Offers 80% chance of gradual gains; 20% chance of sharp drop', exchange='', formula='', isin='', name='Skew Step Index 4 Up', page='', path='Skewed Step\\\\Skew Step Index 4 Up'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=1, spread=40, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=200, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=9947.2, bidhigh=9970.8, bidlow=9907.3, ask=9951.2, askhigh=9974.8, asklow=9911.3, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.1, trade_tick_value=0.1, trade_tick_value_profit=0.1, trade_tick_value_loss=0.1, trade_tick_size=0.1, trade_contract_size=10.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=10.0, volume_step=0.01, volume_limit=15.0, swap_long=-1.7, swap_short=-1.7, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=9936.1, session_close=9935.6, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=100000.0, price_change=0.1369, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Offers 80% chance of gradual declines; 20% chance of sharp rise', exchange='', formula='', isin='', name='Skew Step Index 4 Down', page='', path='Skewed Step\\\\Skew Step Index 4 Down'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=170, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=320, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=8763.9, bidhigh=8915.53, bidlow=8736.06, ask=8765.6, askhigh=8917.23, asklow=8737.76, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=10.0, volume_step=0.01, volume_limit=20.0, swap_long=-20.0, swap_short=-25.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=8856.25, session_close=8857.14, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-1.0431, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Volatility of 20% with on average 1 splike every 550 ticks', exchange='', formula='', isin='', name='Vol over Boom 550', page='', path='Hybrid Indices\\\\Vol over Boom 550'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728712048, digits=2, spread=171, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=320, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=7, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=15571.15, bidhigh=15776.46, bidlow=15425.25, ask=15572.86, askhigh=15778.16, asklow=15426.95, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=10.0, volume_step=0.01, volume_limit=20.0, swap_long=-20.0, swap_short=-25.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=15747.92, session_close=15747.87, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=0.0, price_change=-1.1168, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Volatility of 20% with on average 1 drop every 550 ticks', exchange='', formula='', isin='', name='Vol over Crash 550', page='', path='Hybrid Indices\\\\Vol over Crash 550'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676498, digits=2, spread=9106, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=100, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=12864.08, bidhigh=13056.81, bidlow=12767.86, ask=12955.14, askhigh=13149.19, asklow=12858.26, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=20.0, volume_step=0.01, volume_limit=70.0, swap_long=-10.0, swap_short=-5.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=12849.56, session_close=12849.56, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=100000.0, price_change=0.1227, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Index trading silver via RSI signals to profit from rebounds', exchange='', formula='', isin='', name='Silver RSI Rebound Index', page='', path='Tactical Indices\\\\Silver RSI Rebound Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676498, digits=2, spread=4040, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=100, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=7794.12, bidhigh=7809.8, bidlow=7487.29, ask=7834.52, askhigh=7850.28, asklow=7526.21, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=20.0, volume_step=0.01, volume_limit=100.0, swap_long=-10.0, swap_short=-5.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=7591.99, session_close=7591.99, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=100000.0, price_change=2.6789, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Index trading silver via RSI signals to profit from corrections', exchange='', formula='', isin='', name='Silver RSI Pullback Index', page='', path='Tactical Indices\\\\Silver RSI Pullback Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676498, digits=2, spread=2510, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=100, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=12662.57, bidhigh=12841.77, bidlow=12637.15, ask=12687.67, askhigh=12867.21, asklow=12662.21, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=20.0, volume_step=0.01, volume_limit=90.0, swap_long=-10.0, swap_short=-5.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=12756.65, session_close=12756.65, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=100000.0, price_change=-0.7297, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Index trading silver via RSI signals to capture upward momentum', exchange='', formula='', isin='', name='Silver RSI Trend Up Index', page='', path='Tactical Indices\\\\Silver RSI Trend Up Index'),\n", + " SymbolInfo(custom=False, chart_mode=0, select=True, visible=True, session_deals=0, session_buy_orders=0, session_sell_orders=0, volume=0, volumehigh=0, volumelow=0, time=1728676498, digits=2, spread=2614, spread_float=True, ticks_bookdepth=0, trade_calc_mode=4, trade_mode=4, start_time=0, expiration_time=0, trade_stops_level=100, trade_freeze_level=0, trade_exemode=2, swap_mode=5, swap_rollover3days=3, margin_hedged_use_leg=True, expiration_mode=15, filling_mode=1, order_mode=127, order_gtc_mode=0, option_mode=0, option_right=0, bid=9152.94, bidhigh=9171.35, bidlow=9004.49, ask=9179.08, askhigh=9197.55, asklow=9030.25, last=0.0, lasthigh=0.0, lastlow=0.0, volume_real=0.0, volumehigh_real=0.0, volumelow_real=0.0, option_strike=0.0, point=0.01, trade_tick_value=0.01, trade_tick_value_profit=0.01, trade_tick_value_loss=0.01, trade_tick_size=0.01, trade_contract_size=1.0, trade_accrued_interest=0.0, trade_face_value=0.0, trade_liquidity_rate=0.0, volume_min=0.1, volume_max=20.0, volume_step=0.01, volume_limit=90.0, swap_long=-10.0, swap_short=-5.0, margin_initial=0.0, margin_maintenance=0.0, session_volume=0.0, session_turnover=0.0, session_interest=0.0, session_buy_orders_volume=0.0, session_sell_orders_volume=0.0, session_open=9032.16, session_close=9032.16, session_aw=0.0, session_price_settlement=0.0, session_price_limit_min=0.0, session_price_limit_max=0.0, margin_hedged=100000.0, price_change=1.3483, price_volatility=0.0, price_theoretical=0.0, price_greeks_delta=0.0, price_greeks_theta=0.0, price_greeks_gamma=0.0, price_greeks_vega=0.0, price_greeks_rho=0.0, price_greeks_omega=0.0, price_sensitivity=0.0, basis='', category='', currency_base='USD', currency_profit='USD', currency_margin='USD', bank='', description='Index trading silver via RSI signals to profit from downtrends', exchange='', formula='', isin='', name='Silver RSI Trend Down Index', page='', path='Tactical Indices\\\\Silver RSI Trend Down Index'))" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# INITIALIZE THE DEVICE\n", + "mt5.initialize()\n", + "\n", + "# Create empty lists\n", + "symbols = []\n", + "sectors = []\n", + "descriptions = []\n", + "\n", + "# Get the information for all symbol\n", + "symbols_information = mt5.symbols_get()\n", + "\n", + "symbols_information" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SymbolSectorDescription
0AUDCADForex MinorAustralian Dollar vs Canadian Dollar
1AUDCHFForex MinorAustralian Dollar vs Swiss Franc
2AUDNZDForex MinorAustralian Dollar vs New Zealand Dollar
3AUDJPYForex MajorAustralian Dollar vs Japanese Yen
4AUDUSDForex MajorAustralian Dollar vs US Dollar
............
292Vol over Crash 550Hybrid IndicesVolatility of 20% with on average 1 drop every...
293Silver RSI Rebound IndexTactical IndicesIndex trading silver via RSI signals to profit...
294Silver RSI Pullback IndexTactical IndicesIndex trading silver via RSI signals to profit...
295Silver RSI Trend Up IndexTactical IndicesIndex trading silver via RSI signals to captur...
296Silver RSI Trend Down IndexTactical IndicesIndex trading silver via RSI signals to profit...
\n", + "

297 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " Symbol Sector \\\n", + "0 AUDCAD Forex Minor \n", + "1 AUDCHF Forex Minor \n", + "2 AUDNZD Forex Minor \n", + "3 AUDJPY Forex Major \n", + "4 AUDUSD Forex Major \n", + ".. ... ... \n", + "292 Vol over Crash 550 Hybrid Indices \n", + "293 Silver RSI Rebound Index Tactical Indices \n", + "294 Silver RSI Pullback Index Tactical Indices \n", + "295 Silver RSI Trend Up Index Tactical Indices \n", + "296 Silver RSI Trend Down Index Tactical Indices \n", + "\n", + " Description \n", + "0 Australian Dollar vs Canadian Dollar \n", + "1 Australian Dollar vs Swiss Franc \n", + "2 Australian Dollar vs New Zealand Dollar \n", + "3 Australian Dollar vs Japanese Yen \n", + "4 Australian Dollar vs US Dollar \n", + ".. ... \n", + "292 Volatility of 20% with on average 1 drop every... \n", + "293 Index trading silver via RSI signals to profit... \n", + "294 Index trading silver via RSI signals to profit... \n", + "295 Index trading silver via RSI signals to captur... \n", + "296 Index trading silver via RSI signals to profit... \n", + "\n", + "[297 rows x 3 columns]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Tuple to list\n", + "symbols_information_list = list(symbols_information)\n", + "\n", + "# Extract the name of the symbol\n", + "for element in symbols_information_list:\n", + " symbols.append(list(element)[-3])\n", + " sectors.append(list(element)[-1].split(\"\\\\\")[0])\n", + " descriptions.append(list(element)[-7])\n", + " \n", + "# Create a dataframe\n", + "informations = pd.DataFrame([symbols, sectors, descriptions], index=[\"Symbol\", \"Sector\", \"Description\"]).transpose()\n", + "\n", + "informations" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SymbolSectorDescription
32Volatility 10 IndexVolatility IndicesConstant Volatility of 10% with a tick every 2...
33Volatility 25 IndexVolatility IndicesConstant Volatility of 25% with a tick every 2...
34Volatility 50 IndexVolatility IndicesConstant Volatility of 50% with a tick every 2...
35Volatility 75 IndexVolatility IndicesConstant Volatility of 75% with a tick every 2...
36Volatility 100 IndexVolatility IndicesConstant Volatility of 100% with a tick every ...
............
292Vol over Crash 550Hybrid IndicesVolatility of 20% with on average 1 drop every...
293Silver RSI Rebound IndexTactical IndicesIndex trading silver via RSI signals to profit...
294Silver RSI Pullback IndexTactical IndicesIndex trading silver via RSI signals to profit...
295Silver RSI Trend Up IndexTactical IndicesIndex trading silver via RSI signals to captur...
296Silver RSI Trend Down IndexTactical IndicesIndex trading silver via RSI signals to profit...
\n", + "

227 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " Symbol Sector \\\n", + "32 Volatility 10 Index Volatility Indices \n", + "33 Volatility 25 Index Volatility Indices \n", + "34 Volatility 50 Index Volatility Indices \n", + "35 Volatility 75 Index Volatility Indices \n", + "36 Volatility 100 Index Volatility Indices \n", + ".. ... ... \n", + "292 Vol over Crash 550 Hybrid Indices \n", + "293 Silver RSI Rebound Index Tactical Indices \n", + "294 Silver RSI Pullback Index Tactical Indices \n", + "295 Silver RSI Trend Up Index Tactical Indices \n", + "296 Silver RSI Trend Down Index Tactical Indices \n", + "\n", + " Description \n", + "32 Constant Volatility of 10% with a tick every 2... \n", + "33 Constant Volatility of 25% with a tick every 2... \n", + "34 Constant Volatility of 50% with a tick every 2... \n", + "35 Constant Volatility of 75% with a tick every 2... \n", + "36 Constant Volatility of 100% with a tick every ... \n", + ".. ... \n", + "292 Volatility of 20% with on average 1 drop every... \n", + "293 Index trading silver via RSI signals to profit... \n", + "294 Index trading silver via RSI signals to profit... \n", + "295 Index trading silver via RSI signals to captur... \n", + "296 Index trading silver via RSI signals to profit... \n", + "\n", + "[227 rows x 3 columns]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Filter out rows where 'Sector' contains 'Forex'\n", + "filtered_Informations = informations[~informations['Sector'].str.contains(\"Forex\")]\n", + "\n", + "filtered_Informations" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SymbolSectorDescription
32Volatility 10 IndexVolatility IndicesConstant Volatility of 10% with a tick every 2...
33Volatility 25 IndexVolatility IndicesConstant Volatility of 25% with a tick every 2...
34Volatility 50 IndexVolatility IndicesConstant Volatility of 50% with a tick every 2...
35Volatility 75 IndexVolatility IndicesConstant Volatility of 75% with a tick every 2...
36Volatility 100 IndexVolatility IndicesConstant Volatility of 100% with a tick every ...
............
292Vol over Crash 550Hybrid IndicesVolatility of 20% with on average 1 drop every...
293Silver RSI Rebound IndexTactical IndicesIndex trading silver via RSI signals to profit...
294Silver RSI Pullback IndexTactical IndicesIndex trading silver via RSI signals to profit...
295Silver RSI Trend Up IndexTactical IndicesIndex trading silver via RSI signals to captur...
296Silver RSI Trend Down IndexTactical IndicesIndex trading silver via RSI signals to profit...
\n", + "

227 rows × 3 columns

\n", + "
" + ], + "text/plain": [ + " Symbol Sector \\\n", + "32 Volatility 10 Index Volatility Indices \n", + "33 Volatility 25 Index Volatility Indices \n", + "34 Volatility 50 Index Volatility Indices \n", + "35 Volatility 75 Index Volatility Indices \n", + "36 Volatility 100 Index Volatility Indices \n", + ".. ... ... \n", + "292 Vol over Crash 550 Hybrid Indices \n", + "293 Silver RSI Rebound Index Tactical Indices \n", + "294 Silver RSI Pullback Index Tactical Indices \n", + "295 Silver RSI Trend Up Index Tactical Indices \n", + "296 Silver RSI Trend Down Index Tactical Indices \n", + "\n", + " Description \n", + "32 Constant Volatility of 10% with a tick every 2... \n", + "33 Constant Volatility of 25% with a tick every 2... \n", + "34 Constant Volatility of 50% with a tick every 2... \n", + "35 Constant Volatility of 75% with a tick every 2... \n", + "36 Constant Volatility of 100% with a tick every ... \n", + ".. ... \n", + "292 Volatility of 20% with on average 1 drop every... \n", + "293 Index trading silver via RSI signals to profit... \n", + "294 Index trading silver via RSI signals to profit... \n", + "295 Index trading silver via RSI signals to captur... \n", + "296 Index trading silver via RSI signals to profit... \n", + "\n", + "[227 rows x 3 columns]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "selected_df = filtered_Informations\n", + "\n", + "selected_df" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Symbol enabled: Volatility 10 Index\n", + "Symbol enabled: Volatility 25 Index\n", + "Symbol enabled: Volatility 50 Index\n", + "Symbol enabled: Volatility 75 Index\n", + "Symbol enabled: Volatility 100 Index\n", + "Symbol enabled: Volatility 10 (1s) Index\n", + "Symbol enabled: XAGUSD\n", + "Symbol enabled: XAUUSD\n", + "Symbol enabled: XPDUSD\n", + "Symbol enabled: XPTUSD\n", + "Symbol enabled: ADAUSD\n", + "Symbol enabled: ALGUSD\n", + "Symbol enabled: AVAUSD\n", + "Symbol enabled: BATUSD\n", + "Symbol enabled: BCHUSD\n", + "Symbol enabled: BNBUSD\n", + "Symbol enabled: BTCETH\n", + "Symbol enabled: BTCLTC\n", + "Symbol enabled: BTCUSD\n", + "Symbol enabled: DOGUSD\n", + "Symbol enabled: DOTUSD\n", + "Symbol enabled: DSHUSD\n", + "Symbol enabled: EOSUSD\n", + "Symbol enabled: ETCUSD\n", + "Symbol enabled: ETHUSD\n", + "Symbol enabled: FILUSD\n", + "Symbol enabled: IOTUSD\n", + "Symbol enabled: LNKUSD\n", + "Symbol enabled: LTCUSD\n", + "Symbol enabled: Boom 1000 Index\n", + "Symbol enabled: Boom 500 Index\n", + "Symbol enabled: Crash 1000 Index\n", + "Symbol enabled: Crash 500 Index\n", + "Symbol enabled: Step Index\n", + "Symbol enabled: Range Break 100 Index\n", + "Symbol enabled: Range Break 200 Index\n", + "Symbol enabled: Volatility 25 (1s) Index\n", + "Symbol enabled: Volatility 50 (1s) Index\n", + "Symbol enabled: Volatility 75 (1s) Index\n", + "Symbol enabled: Volatility 100 (1s) Index\n", + "Symbol enabled: AAL\n", + "Symbol enabled: AAPL\n", + "Symbol enabled: ADS\n", + "Symbol enabled: ABNB\n", + "Symbol enabled: AIG\n", + "Symbol enabled: AMD\n", + "Symbol enabled: AMZN\n", + "Symbol enabled: BA\n", + "Symbol enabled: BABA\n", + "Symbol enabled: BAC\n", + "Symbol enabled: AIR\n", + "Symbol enabled: AIRF\n", + "Symbol enabled: BAY\n", + "Symbol enabled: BMW\n", + "Symbol enabled: BIIB\n", + "Symbol enabled: C\n", + "Symbol enabled: CRM\n", + "Symbol enabled: CSCO\n", + "Symbol enabled: DAL\n", + "Symbol enabled: CONG\n", + "Symbol enabled: DBK\n", + "Symbol enabled: DIS\n", + "Symbol enabled: EBAY\n", + "Symbol enabled: FDX\n", + "Symbol enabled: FOX\n", + "Symbol enabled: GM\n", + "Symbol enabled: GOOG\n", + "Symbol enabled: GS\n", + "Symbol enabled: HD\n", + "Symbol enabled: HPQ\n", + "Symbol enabled: IBM\n", + "Symbol enabled: INTC\n", + "Symbol enabled: JNJ\n", + "Symbol enabled: JPM\n", + "Symbol enabled: KO\n", + "Symbol enabled: MA\n", + "Symbol enabled: MCD\n", + "Symbol enabled: META\n", + "Symbol enabled: MRNA\n", + "Symbol enabled: MSFT\n", + "Symbol enabled: NFLX\n", + "Symbol enabled: NKE\n", + "Symbol enabled: NVDA\n", + "Symbol enabled: PEP\n", + "Symbol enabled: PFE\n", + "Symbol enabled: PG\n", + "Symbol enabled: PYPL\n", + "Symbol enabled: SONY\n", + "Symbol enabled: TEVA\n", + "Symbol enabled: TSLA\n", + "Symbol enabled: UBER\n", + "Symbol enabled: V\n", + "Symbol enabled: WMT\n", + "Symbol enabled: BCHUSD.conv\n", + "Symbol enabled: ETHUSD.conv\n", + "Symbol enabled: BTCUSD.conv\n", + "Symbol enabled: ZM\n", + "Symbol enabled: MKRUSD\n", + "Symbol enabled: NEOUSD\n", + "Symbol enabled: OMGUSD\n", + "Symbol enabled: SOLUSD\n", + "Symbol enabled: TRXUSD\n", + "Symbol enabled: UNIUSD\n", + "Symbol enabled: XLMUSD\n", + "Symbol enabled: XMRUSD\n", + "Symbol enabled: XRPUSD\n", + "Symbol enabled: XTZUSD\n", + "Symbol enabled: ZECUSD\n", + "Symbol enabled: Jump 10 Index\n", + "Symbol enabled: Jump 25 Index\n", + "Symbol enabled: Jump 50 Index\n", + "Symbol enabled: Jump 75 Index\n", + "Symbol enabled: Jump 100 Index\n", + "Symbol enabled: LTCUSD.conv\n", + "Symbol enabled: AGG.US\n", + "Symbol enabled: ARKK.US\n", + "Symbol enabled: DIA.US\n", + "Symbol enabled: EEM.US\n", + "Symbol enabled: EFA.US\n", + "Symbol enabled: ERX.US\n", + "Symbol enabled: GDX.US\n", + "Symbol enabled: GLD.US\n", + "Symbol enabled: HYG.US\n", + "Symbol enabled: IEMG.US\n", + "Symbol enabled: IJR.US\n", + "Symbol enabled: IVV.US\n", + "Symbol enabled: IVW.US\n", + "Symbol enabled: IWM.US\n", + "Symbol enabled: LQD.US\n", + "Symbol enabled: QID.US\n", + "Symbol enabled: SDS.US\n", + "Symbol enabled: SLV.US\n", + "Symbol enabled: SPXS.US\n", + "Symbol enabled: SPY.US\n", + "Symbol enabled: TBT.US\n", + "Symbol enabled: TQQQ.US\n", + "Symbol enabled: UNG.US\n", + "Symbol enabled: VEA.US\n", + "Symbol enabled: VNQ.US\n", + "Symbol enabled: VOO.US\n", + "Symbol enabled: VTI.US\n", + "Symbol enabled: VWO.US\n", + "Symbol enabled: XLE.US\n", + "Symbol enabled: XLF.US\n", + "Symbol enabled: XLK.US\n", + "Symbol enabled: XAUEUR\n", + "Symbol enabled: XAGEUR\n", + "Symbol enabled: XALUSD\n", + "Symbol enabled: XCUUSD\n", + "Symbol enabled: XNIUSD\n", + "Symbol enabled: XPBUSD\n", + "Symbol enabled: XZNUSD\n", + "Symbol enabled: NGAS\n", + "Symbol enabled: Volatility 150 (1s) Index\n", + "Symbol enabled: Volatility 250 (1s) Index\n", + "Symbol enabled: Volatility 200 (1s) Index\n", + "Symbol enabled: Volatility 300 (1s) Index\n", + "Symbol enabled: Boom 300 Index\n", + "Symbol enabled: Crash 300 Index\n", + "Symbol enabled: LHAG\n", + "Symbol enabled: PSHG\n", + "Symbol enabled: AUD Basket\n", + "Symbol enabled: EUR Basket\n", + "Symbol enabled: GBP Basket\n", + "Symbol enabled: USD Basket\n", + "Symbol enabled: Gold Basket\n", + "Symbol enabled: AUDUSD DFX 10 Index\n", + "Symbol enabled: EURUSD DFX 10 Index\n", + "Symbol enabled: GBPUSD DFX 10 Index\n", + "Symbol enabled: USDCHF DFX 10 Index\n", + "Symbol enabled: USDJPY DFX 10 Index\n", + "Symbol enabled: AUDUSD DFX 20 Index\n", + "Symbol enabled: EURUSD DFX 20 Index\n", + "Symbol enabled: GBPUSD DFX 20 Index\n", + "Symbol enabled: USDCHF DFX 20 Index\n", + "Symbol enabled: USDJPY DFX 20 Index\n", + "Symbol enabled: DEX 600 UP Index\n", + "Symbol enabled: DEX 600 DOWN Index\n", + "Symbol enabled: DEX 900 DOWN Index\n", + "Symbol enabled: DEX 900 UP Index\n", + "Symbol enabled: DEX 1500 UP Index\n", + "Symbol enabled: DEX 1500 DOWN Index\n", + "Symbol enabled: Drift Switch Index 30\n", + "Symbol enabled: Drift Switch Index 20\n", + "Symbol enabled: Drift Switch Index 10\n", + "Symbol enabled: UK Brent Oil\n", + "Symbol enabled: US Oil\n", + "Symbol enabled: Australia 200\n", + "Symbol enabled: China 50\n", + "Symbol enabled: China H Shares\n", + "Symbol enabled: Europe 50\n", + "Symbol enabled: France 40\n", + "Symbol enabled: Germany 40\n", + "Symbol enabled: Hong Kong 50\n", + "Symbol enabled: Japan 225\n", + "Symbol enabled: Netherlands 25\n", + "Symbol enabled: Singapore 20\n", + "Symbol enabled: Swiss 20\n", + "Symbol enabled: Taiwan Index\n", + "Symbol enabled: UK 100\n", + "Symbol enabled: US Mid Cap 400\n", + "Symbol enabled: US SP 500\n", + "Symbol enabled: US Small Cap 2000\n", + "Symbol enabled: US Tech 100\n", + "Symbol enabled: Wall Street 30\n", + "Symbol enabled: Step Index 200\n", + "Symbol enabled: Step Index 500\n", + "Symbol enabled: Multi Step 2 Index\n", + "Symbol enabled: Multi Step 4 Index\n", + "Symbol enabled: Vol over Crash 400\n", + "Symbol enabled: Vol over Crash 750\n", + "Symbol enabled: Vol over Boom 400\n", + "Symbol enabled: Vol over Boom 750\n", + "Symbol enabled: Boom 900 Index\n", + "Symbol enabled: Boom 600 Index\n", + "Symbol enabled: Crash 900 Index\n", + "Symbol enabled: Crash 600 Index\n", + "Symbol enabled: Skew Step Index 5 Up\n", + "Symbol enabled: Skew Step Index 5 Down\n", + "Symbol enabled: Skew Step Index 4 Up\n", + "Symbol enabled: Skew Step Index 4 Down\n", + "Symbol enabled: Vol over Boom 550\n", + "Symbol enabled: Vol over Crash 550\n", + "Symbol enabled: Silver RSI Rebound Index\n", + "Symbol enabled: Silver RSI Pullback Index\n", + "Symbol enabled: Silver RSI Trend Up Index\n", + "Symbol enabled: Silver RSI Trend Down Index\n" + ] + } + ], + "source": [ + "# Loop through the selected symbols and select them in MetaTrader5\n", + "for symbol in selected_df['Symbol']:\n", + " # Try to select the symbol, raise an error if it fails\n", + " if not mt5.symbol_select(symbol, True):\n", + " raise ValueError(f\"Failed to enable symbol: {symbol}\")\n", + " else:\n", + " print(f\"Symbol enabled: {symbol}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Find the Best Spread Threshold" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[2.7621799305137068e-05,\n", + " 6.653842069699703e-05,\n", + " 0.000134176228400021,\n", + " 0.00024520101527902166,\n", + " 0.0002838550352334094,\n", + " 2.7798441285800223e-05,\n", + " 0.0008561100894159752,\n", + " 0.00014680142284451193,\n", + " 0.003656992826667789,\n", + " 0.0020172735382369728,\n", + " 0.0013599660008500806,\n", + " 0.004128819157720895,\n", + " 0.0014084507042254472,\n", + " 0.0014813126709205928,\n", + " 0.002748778235566485,\n", + " 0.0009302615646064658,\n", + " 0.00211699490562725,\n", + " 0.0017209742455156162,\n", + " 0.0007828426457389826,\n", + " 0.0013633884748227355,\n", + " 0.0014343772412144938,\n", + " 0.001891392064559438,\n", + " 0.0033283478334140216,\n", + " 0.0011840051665681082,\n", + " 0.0009131708740128068,\n", + " 0.011173184357541908,\n", + " 0.004854368932038861,\n", + " 0.0010078797874290828,\n", + " 0.0009054989983337047,\n", + " 4.506705503415008e-05,\n", + " 6.481795842254845e-05,\n", + " 4.143051274404345e-05,\n", + " 7.16021386380103e-05,\n", + " 2.4317292026227243e-05,\n", + " 2.9233394103513346e-05,\n", + " 2.138509303498836e-05,\n", + " 7.005818456249461e-05,\n", + " 0.0001244457062864698,\n", + " 0.00022830630266064295,\n", + " 0.00027978875948653193,\n", + " 0.009369676320272524,\n", + " 0.002596488139770292,\n", + " 0.005550774526678107,\n", + " 0.0032039341330748704,\n", + " 0.0031148604802077756,\n", + " 0.002803626819375014,\n", + " 0.0033955857385399766,\n", + " 0.005510922249518518,\n", + " 0.005372916856388338,\n", + " 0.004060186290900447,\n", + " 0.003757420906289923,\n", + " 0.008353221957040394,\n", + " 0.0129721480351011,\n", + " 0.009104103443726055,\n", + " 0.0043628624634212375,\n", + " 0.003656307129798825,\n", + " 0.0026770503772206716,\n", + " 0.00424903011269161,\n", + " 0.0033170731707317406,\n", + " 0.007700033478406442,\n", + " 0.00433705080545231,\n", + " 0.006714986143679489,\n", + " 0.0036259253663696797,\n", + " 0.003828077622801879,\n", + " 0.003691983122362884,\n", + " 0.004187604690117312,\n", + " 0.002982712442171957,\n", + " 0.0029675892701281543,\n", + " 0.00182251166407465,\n", + " 0.003518267929634518,\n", + " 0.0024456171965503634,\n", + " 0.0093816631130065,\n", + " 0.003971208736659312,\n", + " 0.0029287194737316648,\n", + " 0.0030233227756983586,\n", + " 0.002691870550936218,\n", + " 0.002987720795850105,\n", + " 0.002427019687712067,\n", + " 0.012601415501467234,\n", + " 0.002838175870694648,\n", + " 0.0027984816159153,\n", + " 0.0067179675094661915,\n", + " 0.009991052788547594,\n", + " 0.0034959023439737817,\n", + " 0.006538196834136314,\n", + " 0.0033370411568408942,\n", + " 0.008984277514349874,\n", + " 0.027777777777777755,\n", + " 0.005813953488372176,\n", + " 0.005248860444771927,\n", + " 0.001855502725269588,\n", + " 0.002955807079518395,\n", + " 0.006638276553106226,\n", + " 0.0019503638532564857,\n", + " 0.00023734792341025066,\n", + " 3.867839992308788e-05,\n", + " 0.008240977550440442,\n", + " 0.0010974298193630518,\n", + " 0.004642525533890503,\n", + " 0.018518518518518535,\n", + " 0.000851853124033904,\n", + " 0.0021211554058269823,\n", + " 0.0010562382461293286,\n", + " 0.001516136019060009,\n", + " 0.002286239858095357,\n", + " 0.0011171104077451757,\n", + " 0.006558278922299645,\n", + " 0.001680578118872956,\n", + " 2.7538873307858947e-05,\n", + " 6.46270610086572e-05,\n", + " 0.00013851775424036865,\n", + " 0.00019874859009559554,\n", + " 0.00042402264987636277,\n", + " 0.00010680989364772251,\n", + " 0.0013074524791310011,\n", + " 0.002146844139115531,\n", + " 0.0005366308912738249,\n", + " 0.0023752969121140018,\n", + " 0.0014589665653495993,\n", + " 0.0019729852784943916,\n", + " 0.0025006251562891078,\n", + " 0.0006929441976113296,\n", + " 0.0015094339622642081,\n", + " 0.001904102475333208,\n", + " 0.0011191460055097252,\n", + " 0.0004293835769369493,\n", + " 0.0012389015073302142,\n", + " 0.0007230331239549758,\n", + " 0.0011741329479768375,\n", + " 0.0028216704288939456,\n", + " 0.005426739023186948,\n", + " 0.0034794711203897503,\n", + " 0.015576323987538885,\n", + " 0.0004314510561921855,\n", + " 0.0030778701138812377,\n", + " 0.0013464386697187092,\n", + " 0.025325119780972006,\n", + " 0.0021178282633808132,\n", + " 0.001267293272784925,\n", + " 0.00046937779279786717,\n", + " 0.000664312436628082,\n", + " 0.002286902286902275,\n", + " 0.0012942191544435349,\n", + " 0.0021533161068045094,\n", + " 0.0006935714595344254,\n", + " 0.0002140525499009932,\n", + " 0.0007628029541277509,\n", + " 0.017342786777415718,\n", + " 0.007038291168376719,\n", + " 0.010575428206833385,\n", + " 0.0033800856224793074,\n", + " 0.015705301217903492,\n", + " 0.008386581469648526,\n", + " 0.00042471286699240023,\n", + " 0.000624553890078437,\n", + " 0.0011001100110010766,\n", + " 0.4999999999999999,\n", + " 0.00028552981513984497,\n", + " 0.00025752985688592435,\n", + " 0.012519561815336476,\n", + " 0.008829465186680157,\n", + " 0.00019710826669855531,\n", + " 0.0001405699669807197,\n", + " 0.00016679057307815792,\n", + " 0.00011253803218759661,\n", + " 0.00021645258743879992,\n", + " 0.00015645268223421821,\n", + " 0.00019926765202899632,\n", + " 0.00017877664458062703,\n", + " 0.0001737977946718849,\n", + " 0.00012097263215103183,\n", + " 0.00030522240757986825,\n", + " 0.00040041464458248985,\n", + " 0.0002985869202160252,\n", + " 0.0003330852799726832,\n", + " 0.00027296518269889823,\n", + " 0.00037486646596101604,\n", + " 0.0001743384978769763,\n", + " 0.00014567769071930362,\n", + " 0.00026203562374310744,\n", + " 9.350950524112272e-05,\n", + " 0.00014979598438205353,\n", + " 0.00041658454955180636,\n", + " 0.00124708621485836,\n", + " 0.0006574771485340721,\n", + " 0.00031786799577878527,\n", + " 0.00030704330645586763,\n", + " 0.0011808992275102283,\n", + " 0.0004698144233027954,\n", + " 0.002135946066376003,\n", + " 0.0014771492220948116,\n", + " 0.001107380200094895,\n", + " 0.00045452338574485075,\n", + " 0.0010689068191073964,\n", + " 0.00016356007372784863,\n", + " 0.0008092915418097609,\n", + " 0.0006111046443954033,\n", + " 0.0010017160545523814,\n", + " 0.000563856780377746,\n", + " 0.0007825844670307977,\n", + " 0.0009898351543761788,\n", + " 0.00012217008484799054,\n", + " 0.0002959349301863983,\n", + " 0.000138277409175164,\n", + " 0.00020063362899589451,\n", + " 1.8027600255893546e-05,\n", + " 7.171234743198084e-05,\n", + " 1.9914169927503322e-05,\n", + " 2.0663505150453834e-05,\n", + " 0.0002423578510614062,\n", + " 0.00013223059043823048,\n", + " 0.00024670829457957205,\n", + " 0.00021357909167486907,\n", + " 4.378627391080203e-05,\n", + " 5.309199240279522e-05,\n", + " 4.355018456220507e-05,\n", + " 4.772954392286793e-05,\n", + " 0.0005109235454006662,\n", + " 0.00048599838648535687,\n", + " 0.0004103658411473829,\n", + " 0.0004021110831867303,\n", + " 0.00019408431022444454,\n", + " 0.00010913575396428619,\n", + " 0.007078625132928239,\n", + " 0.005183394661616776,\n", + " 0.00198222003906003,\n", + " 0.002855912963484893]" + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Create empty list\n", + "spread = []\n", + "\n", + "# Computze the spread\n", + "for symbol in selected_df[\"Symbol\"]:\n", + " try:\n", + " ask = mt5.symbol_info_tick(symbol).ask\n", + " bid = mt5.symbol_info_tick(symbol).bid\n", + " spread.append((ask - bid) / bid )\n", + " \n", + " except:\n", + " spread.append(None)\n", + "\n", + "spread" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "1.8027600255893546e-05" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "min_spread = min([x for x in spread if x is not None])\n", + "\n", + "min_spread" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.4999999999999999" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "max_spread = max([x for x in spread if x is not None])\n", + "\n", + "max_spread" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.2500090138001279" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean_spread = np.mean([min_spread, max_spread])\n", + "\n", + "mean_spread" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.002500090138001279" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "mean_spread/100" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "0.0025" + ] + }, + "execution_count": 15, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# if mean_spread < 0.01:\n", + "# spread_threshold = np.round(mean_spread * 100, 4) # 0.0035\n", + "# else:\n", + "# spread_threshold = mean_spread\n", + "\n", + "spread_threshold = np.round(mean_spread / 100, 4) # 0.0035\n", + "spread_threshold" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SymbolSectorDescriptionSpread
32Volatility 10 IndexVolatility IndicesConstant Volatility of 10% with a tick every 2...0.000028
33Volatility 25 IndexVolatility IndicesConstant Volatility of 25% with a tick every 2...0.000067
34Volatility 50 IndexVolatility IndicesConstant Volatility of 50% with a tick every 2...0.000134
35Volatility 75 IndexVolatility IndicesConstant Volatility of 75% with a tick every 2...0.000245
36Volatility 100 IndexVolatility IndicesConstant Volatility of 100% with a tick every ...0.000284
...............
289Skew Step Index 4 UpSkewed StepOffers 80% chance of gradual gains; 20% chance...0.000410
290Skew Step Index 4 DownSkewed StepOffers 80% chance of gradual declines; 20% cha...0.000402
291Vol over Boom 550Hybrid IndicesVolatility of 20% with on average 1 splike eve...0.000194
292Vol over Crash 550Hybrid IndicesVolatility of 20% with on average 1 drop every...0.000109
295Silver RSI Trend Up IndexTactical IndicesIndex trading silver via RSI signals to captur...0.001982
\n", + "

149 rows × 4 columns

\n", + "
" + ], + "text/plain": [ + " Symbol Sector \\\n", + "32 Volatility 10 Index Volatility Indices \n", + "33 Volatility 25 Index Volatility Indices \n", + "34 Volatility 50 Index Volatility Indices \n", + "35 Volatility 75 Index Volatility Indices \n", + "36 Volatility 100 Index Volatility Indices \n", + ".. ... ... \n", + "289 Skew Step Index 4 Up Skewed Step \n", + "290 Skew Step Index 4 Down Skewed Step \n", + "291 Vol over Boom 550 Hybrid Indices \n", + "292 Vol over Crash 550 Hybrid Indices \n", + "295 Silver RSI Trend Up Index Tactical Indices \n", + "\n", + " Description Spread \n", + "32 Constant Volatility of 10% with a tick every 2... 0.000028 \n", + "33 Constant Volatility of 25% with a tick every 2... 0.000067 \n", + "34 Constant Volatility of 50% with a tick every 2... 0.000134 \n", + "35 Constant Volatility of 75% with a tick every 2... 0.000245 \n", + "36 Constant Volatility of 100% with a tick every ... 0.000284 \n", + ".. ... ... \n", + "289 Offers 80% chance of gradual gains; 20% chance... 0.000410 \n", + "290 Offers 80% chance of gradual declines; 20% cha... 0.000402 \n", + "291 Volatility of 20% with on average 1 splike eve... 0.000194 \n", + "292 Volatility of 20% with on average 1 drop every... 0.000109 \n", + "295 Index trading silver via RSI signals to captur... 0.001982 \n", + "\n", + "[149 rows x 4 columns]" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "selected_df[\"Spread\"] = spread\n", + "\n", + "# Take the assets with the spread < spread_threshold%\n", + "lowest_spread_asset = selected_df.dropna().loc[selected_df[\"Spread\"]\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SymbolSectorDescriptionSpread
32Volatility 10 IndexVolatility IndicesConstant Volatility of 10% with a tick every 2...0.000028
33Volatility 25 IndexVolatility IndicesConstant Volatility of 25% with a tick every 2...0.000067
34Volatility 50 IndexVolatility IndicesConstant Volatility of 50% with a tick every 2...0.000134
35Volatility 75 IndexVolatility IndicesConstant Volatility of 75% with a tick every 2...0.000245
36Volatility 100 IndexVolatility IndicesConstant Volatility of 100% with a tick every ...0.000284
...............
289Skew Step Index 4 UpSkewed StepOffers 80% chance of gradual gains; 20% chance...0.000410
290Skew Step Index 4 DownSkewed StepOffers 80% chance of gradual declines; 20% cha...0.000402
291Vol over Boom 550Hybrid IndicesVolatility of 20% with on average 1 splike eve...0.000194
292Vol over Crash 550Hybrid IndicesVolatility of 20% with on average 1 drop every...0.000109
295Silver RSI Trend Up IndexTactical IndicesIndex trading silver via RSI signals to captur...0.001982
\n", + "

149 rows × 4 columns

\n", + "" + ], + "text/plain": [ + " Symbol Sector \\\n", + "32 Volatility 10 Index Volatility Indices \n", + "33 Volatility 25 Index Volatility Indices \n", + "34 Volatility 50 Index Volatility Indices \n", + "35 Volatility 75 Index Volatility Indices \n", + "36 Volatility 100 Index Volatility Indices \n", + ".. ... ... \n", + "289 Skew Step Index 4 Up Skewed Step \n", + "290 Skew Step Index 4 Down Skewed Step \n", + "291 Vol over Boom 550 Hybrid Indices \n", + "292 Vol over Crash 550 Hybrid Indices \n", + "295 Silver RSI Trend Up Index Tactical Indices \n", + "\n", + " Description Spread \n", + "32 Constant Volatility of 10% with a tick every 2... 0.000028 \n", + "33 Constant Volatility of 25% with a tick every 2... 0.000067 \n", + "34 Constant Volatility of 50% with a tick every 2... 0.000134 \n", + "35 Constant Volatility of 75% with a tick every 2... 0.000245 \n", + "36 Constant Volatility of 100% with a tick every ... 0.000284 \n", + ".. ... ... \n", + "289 Offers 80% chance of gradual gains; 20% chance... 0.000410 \n", + "290 Offers 80% chance of gradual declines; 20% cha... 0.000402 \n", + "291 Volatility of 20% with on average 1 splike eve... 0.000194 \n", + "292 Volatility of 20% with on average 1 drop every... 0.000109 \n", + "295 Index trading silver via RSI signals to captur... 0.001982 \n", + "\n", + "[149 rows x 4 columns]" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# final_assets = pd.concat([lowest_spread_asset, filter_volatility_pairs])\n", + "final_assets = lowest_spread_asset\n", + "\n", + "final_assets" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "# Fill Assets with no spread with max spread value\n", + "# final_assets['Spread'] = final_assets['Spread'].fillna(max_spread) \n", + "\n", + "# final_assets" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [], + "source": [ + "def get_data(symbol, n, timeframe=mt5.TIMEFRAME_D1):\n", + " \"\"\" Function which returns the data of the symbol\"\"\"\n", + "\n", + " # Initialize MetaTrader device\n", + " mt5.initialize()\n", + "\n", + " # Get symbol information and ensure visibility\n", + " if not mt5.symbol_select(symbol, True):\n", + " raise ValueError(f\"Failed to enable symbol: {symbol}\")\n", + " \n", + " # Put the data in a dataframe\n", + " utc_from = datetime.now()+timedelta(hours=2)\n", + " rates = mt5.copy_rates_from(symbol, timeframe, utc_from,n) \n", + " rates_frame = pd.DataFrame(rates)\n", + " \n", + " # Convert time in seconds into the datetime format \n", + " rates_frame['time']=pd.to_datetime(rates_frame['time'], unit='s')\n", + " rates_frame['time'] = pd.to_datetime(rates_frame['time'], format='%Y-%m-%d')\n", + " rates_frame = rates_frame.set_index('time')\n", + " \n", + " return rates_frame" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 16.1.2. Features engineering " + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.preprocessing import StandardScaler\n", + "from sklearn.decomposition import PCA\n", + "\n", + "def features_engineering(df):\n", + " \"\"\" \n", + " This function creates the necessary datasets for algorithms \n", + " by performing feature engineering, scaling, and PCA.\n", + "\n", + " Args:\n", + " df (DataFrame): The input dataframe containing price data (including 'close', 'high', 'low').\n", + "\n", + " Returns:\n", + " dict: A dictionary containing the train, test, validation sets, \n", + " along with their scaled and PCA-transformed versions.\n", + " \"\"\"\n", + " \n", + " # Create new columns for returns and other features\n", + " df[\"returns\"] = ((df[\"close\"] - df[\"close\"].shift(1)) / df[\"close\"])\n", + " df[\"sLow\"] = ((df[\"low\"] - df[\"close\"].shift(1)) / df[\"close\"].shift(1))\n", + " df[\"sHigh\"] = ((df[\"high\"] - df[\"close\"].shift(1)) / df[\"close\"].shift(1))\n", + "\n", + " # Feature engineering\n", + " df[\"returns t-1\"] = df[\"returns\"].shift(1)\n", + " df[\"mean returns 15\"] = df[\"returns\"].rolling(15).mean().shift(1)\n", + " df[\"mean returns 60\"] = df[\"returns\"].rolling(60).mean().shift(1)\n", + " df[\"volatility returns 15\"] = df[\"returns\"].rolling(15).std().shift(1)\n", + " df[\"volatility returns 60\"] = df[\"returns\"].rolling(60).std().shift(1)\n", + "\n", + " # Drop missing values\n", + " df = df.dropna()\n", + "\n", + " # Define the feature columns\n", + " feature_columns = [\n", + " \"returns t-1\", \n", + " \"mean returns 15\", \n", + " \"mean returns 60\",\n", + " \"volatility returns 15\", \n", + " \"volatility returns 60\"\n", + " ]\n", + " \n", + " # Splitting data into train, test, and validation sets\n", + " split_train_test = int(0.70 * len(df))\n", + " split_test_valid = int(0.90 * len(df))\n", + "\n", + " # Train set creation\n", + " X_train = df[feature_columns].iloc[:split_train_test]\n", + " y_train_reg = df[\"returns\"].iloc[:split_train_test]\n", + " y_train_cla = np.round(df[\"returns\"].iloc[:split_train_test] + 0.5)\n", + "\n", + " # Test set creation\n", + " X_test = df[feature_columns].iloc[split_train_test:split_test_valid]\n", + " y_test_reg = df[\"returns\"].iloc[split_train_test:split_test_valid]\n", + "\n", + " # Validation set creation\n", + " X_val = df[feature_columns].iloc[split_test_valid:]\n", + " y_val_reg = df[\"returns\"].iloc[split_test_valid:]\n", + "\n", + " # Standardize the data\n", + " scaler = StandardScaler()\n", + " X_train_scaled = scaler.fit_transform(X_train)\n", + " X_test_scaled = scaler.transform(X_test)\n", + " X_val_scaled = scaler.transform(X_val)\n", + "\n", + " # Apply PCA (keeping 3 components)\n", + " pca = PCA(n_components=3)\n", + " X_train_pca = pca.fit_transform(X_train_scaled)\n", + " X_test_pca = pca.transform(X_test_scaled)\n", + " X_val_pca = pca.transform(X_val_scaled)\n", + "\n", + " # Return all relevant datasets as a dictionary for clarity and organization\n", + " return {\n", + " \"X_train\": X_train, \n", + " \"X_test\": X_test, \n", + " \"y_train_reg\": y_train_reg, \n", + " \"y_train_cla\": y_train_cla,\n", + " \"X_train_scaled\": X_train_scaled,\n", + " \"split_train_test\": split_train_test,\n", + " \"split_test_valid\": split_test_valid,\n", + " \"X_train_pca\": X_train_pca,\n", + " \"X_test_pca\": X_test_pca,\n", + " \"X_val_pca\": X_val_pca,\n", + "\n", + " # Additions\n", + " \"X_test_scaled\": X_test_scaled,\n", + " \"y_test_reg\": y_test_reg,\n", + " \"X_val\": X_val,\n", + " \"X_val_scaled\": X_val_scaled,\n", + " \"y_val_reg\": y_val_reg,\n", + "\n", + " }\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 16.2.1. Find the best assets" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "def predictor(data, model, reg=True, spread=0.035):\n", + " \"\"\"\n", + " Fits the model to the training data, makes predictions on the entire dataset, \n", + " and computes the strategy's Sharpe ratio based on the predictions.\n", + " \n", + " Args:\n", + " data (dict): The output of the features_engineering function, containing the PCA-transformed datasets.\n", + " model (object): The machine learning model to be used for prediction (e.g., classifier or regressor).\n", + " reg (bool): If True, performs regression; otherwise, classification.\n", + " spread (float): The transaction cost or spread to be considered in strategy returns.\n", + "\n", + " Returns:\n", + " float: The Sharpe ratio of the strategy based on predictions.\n", + " \"\"\"\n", + " \n", + " # Extract the data from the dictionary\n", + " X_train_pca = data[\"X_train_pca\"]\n", + " X_test_pca = data[\"X_test_pca\"]\n", + " X_val_pca = data[\"X_val_pca\"]\n", + " y_train_reg = data[\"y_train_reg\"]\n", + " y_train_cla = data[\"y_train_cla\"]\n", + " df = data[\"df\"]\n", + " split_train_test = data[\"split_train_test\"]\n", + " split_test_valid = data[\"split_test_valid\"]\n", + "\n", + " \n", + " # Fit the model on the training data\n", + " print(\"model: \", model)\n", + " model.fit(X_train_pca, y_train_cla)\n", + " \n", + " # Clean the dataframe\n", + " df = df.dropna()\n", + "\n", + " # Create predictions for the concatenated dataset (train, test, validation)\n", + " predictions = model.predict(np.concatenate((X_train_pca, X_test_pca, X_val_pca), axis=0))\n", + "\n", + " if not reg:\n", + " # Convert classification predictions to -1 (sell) and 1 (buy)\n", + " predictions = np.where(predictions == 0, -1, 1)\n", + "\n", + " # Add predictions to the dataframe\n", + " df[\"prediction\"] = predictions\n", + "\n", + " # Compute the strategy returns (prediction * actual returns)\n", + " df[\"strategy\"] = df[\"prediction\"] * df[\"returns\"]\n", + "\n", + " # Select strategy returns only for the test set period\n", + " returns = df[\"strategy\"].iloc[split_train_test:split_test_valid]\n", + "\n", + " # Compute the Sharpe ratio of the strategy\n", + " sharpe_ratio = np.sqrt(252) * (returns.mean() - (spread / 100)) / returns.std()\n", + "\n", + " return sharpe_ratio\n" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 0/149 [00:00\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SymbolModelSharpeLength
0Volatility 10 IndexTree-1.2856082112
1Volatility 10 IndexSVR-0.1066852112
2Volatility 10 IndexLinReg-0.5911392112
3Volatility 25 IndexTree0.3487722112
4Volatility 25 IndexSVR-1.2200132112
...............
352Multi Step 2 IndexSVR-1.857256132
353Multi Step 2 IndexLinReg-1.600849132
354Multi Step 4 IndexTree3.972930132
355Multi Step 4 IndexSVR-1.159411132
356Multi Step 4 IndexLinReg-2.718758132
\n", + "

357 rows × 4 columns

\n", + "" + ], + "text/plain": [ + " Symbol Model Sharpe Length\n", + "0 Volatility 10 Index Tree -1.285608 2112\n", + "1 Volatility 10 Index SVR -0.106685 2112\n", + "2 Volatility 10 Index LinReg -0.591139 2112\n", + "3 Volatility 25 Index Tree 0.348772 2112\n", + "4 Volatility 25 Index SVR -1.220013 2112\n", + ".. ... ... ... ...\n", + "352 Multi Step 2 Index SVR -1.857256 132\n", + "353 Multi Step 2 Index LinReg -1.600849 132\n", + "354 Multi Step 4 Index Tree 3.972930 132\n", + "355 Multi Step 4 Index SVR -1.159411 132\n", + "356 Multi Step 4 Index LinReg -2.718758 132\n", + "\n", + "[357 rows x 4 columns]" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "results = pd.DataFrame(results_list, columns=[\"Symbol\", \"Model\", \"Sharpe\", \"Length\"])\n", + "\n", + "results" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
SymbolModelSharpeLength
202Volatility 150 (1s) IndexSVR1.981922662
203Volatility 150 (1s) IndexLinReg1.968615662
205Volatility 250 (1s) IndexSVR1.756451662
209Volatility 200 (1s) IndexLinReg1.5469991171
107IBMLinReg1.5285431228
59ETCUSDLinReg1.4845891092
106IBMSVR1.2877061228
115BCHUSD.convSVR1.2516071374
226Gold BasketSVR1.162829978
44BTCLTCLinReg1.0816481747
43BTCLTCSVR1.0620841747
123SOLUSDTree1.0337271097
69Boom 1000 IndexTree1.0161532006
11Volatility 75 IndexLinReg1.0018962112
128UNIUSDLinReg0.9279611097
53DOTUSDLinReg0.9067851097
36BNBUSDTree0.7719461747
38BNBUSDLinReg0.7507891747
29ADAUSDLinReg0.7212271097
105IBMTree0.7178421228
58ETCUSDSVR0.6999961092
116BCHUSD.convLinReg0.6725401374
90Volatility 25 (1s) IndexTree0.6535381593
127UNIUSDSVR0.6518991097
63LNKUSDTree0.6278091097
28ADAUSDSVR0.6258171097
57ETCUSDTree0.5518551092
10Volatility 75 IndexSVR0.5348372112
62ETHUSDLinReg0.4985323278
218EUR BasketLinReg0.489913987
65LNKUSDLinReg0.4806561097
101Volatility 100 (1s) IndexLinReg0.3558291846
13Volatility 100 IndexSVR0.3511182112
3Volatility 25 IndexTree0.3487722112
49DOGUSDSVR0.3262831097
\n", + "
" + ], + "text/plain": [ + " Symbol Model Sharpe Length\n", + "202 Volatility 150 (1s) Index SVR 1.981922 662\n", + "203 Volatility 150 (1s) Index LinReg 1.968615 662\n", + "205 Volatility 250 (1s) Index SVR 1.756451 662\n", + "209 Volatility 200 (1s) Index LinReg 1.546999 1171\n", + "107 IBM LinReg 1.528543 1228\n", + "59 ETCUSD LinReg 1.484589 1092\n", + "106 IBM SVR 1.287706 1228\n", + "115 BCHUSD.conv SVR 1.251607 1374\n", + "226 Gold Basket SVR 1.162829 978\n", + "44 BTCLTC LinReg 1.081648 1747\n", + "43 BTCLTC SVR 1.062084 1747\n", + "123 SOLUSD Tree 1.033727 1097\n", + "69 Boom 1000 Index Tree 1.016153 2006\n", + "11 Volatility 75 Index LinReg 1.001896 2112\n", + "128 UNIUSD LinReg 0.927961 1097\n", + "53 DOTUSD LinReg 0.906785 1097\n", + "36 BNBUSD Tree 0.771946 1747\n", + "38 BNBUSD LinReg 0.750789 1747\n", + "29 ADAUSD LinReg 0.721227 1097\n", + "105 IBM Tree 0.717842 1228\n", + "58 ETCUSD SVR 0.699996 1092\n", + "116 BCHUSD.conv LinReg 0.672540 1374\n", + "90 Volatility 25 (1s) Index Tree 0.653538 1593\n", + "127 UNIUSD SVR 0.651899 1097\n", + "63 LNKUSD Tree 0.627809 1097\n", + "28 ADAUSD SVR 0.625817 1097\n", + "57 ETCUSD Tree 0.551855 1092\n", + "10 Volatility 75 Index SVR 0.534837 2112\n", + "62 ETHUSD LinReg 0.498532 3278\n", + "218 EUR Basket LinReg 0.489913 987\n", + "65 LNKUSD LinReg 0.480656 1097\n", + "101 Volatility 100 (1s) Index LinReg 0.355829 1846\n", + "13 Volatility 100 Index SVR 0.351118 2112\n", + "3 Volatility 25 Index Tree 0.348772 2112\n", + "49 DOGUSD SVR 0.326283 1097" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Top 35 Symbols/Pairs\n", + "results.sort_values(by=\"Sharpe\", ascending=False).loc[results[\"Length\"]>600].head(35)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 16.2.2. Combine the algorithms" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "#### List of symbols to process" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "{'ETCUSD',\n", + " 'IBM',\n", + " 'Volatility 150 (1s) Index',\n", + " 'Volatility 200 (1s) Index',\n", + " 'Volatility 250 (1s) Index'}" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Top 5 Symbols/Pairs | [\"US2000\", \"Bitcoin\", \"AUDUSD\", \"NAS100\", \"US500\"]\n", + "top_symbols = set(results.sort_values(by=\"Sharpe\", ascending=False).loc[results[\"Length\"]>600]['Symbol'].to_list()[:7])\n", + "\n", + "top_symbols" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [], + "source": [ + "from sklearn.ensemble import VotingRegressor, VotingClassifier\n", + "from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier\n", + "from sklearn.svm import SVR, SVC\n", + "from sklearn.linear_model import LinearRegression, LogisticRegression\n", + "\n", + "def voting(df, reg=True):\n", + " \"\"\"Create a strategy using a voting method.\"\"\"\n", + "\n", + " processed_data = features_engineering(df)\n", + "\n", + " # Extract the data from the dictionary\n", + " X_train_pca = processed_data[\"X_train_pca\"]\n", + " X_test_pca = processed_data[\"X_test_pca\"]\n", + " X_val_pca = processed_data[\"X_val_pca\"]\n", + " y_train_reg = processed_data[\"y_train_reg\"]\n", + " y_train_cla = processed_data[\"y_train_cla\"]\n", + " \n", + " # Initialize the models\n", + " if reg:\n", + " tree = DecisionTreeRegressor(max_depth=6)\n", + " svr = SVR(epsilon=1.5)\n", + " lin = LinearRegression()\n", + " vot = VotingRegressor(estimators=[\n", + " ('lr', lin), (\"tree\", tree), (\"svr\", svr)])\n", + " else:\n", + " tree = DecisionTreeClassifier(max_depth=6)\n", + " svr = SVC()\n", + " lin = LogisticRegression()\n", + "\n", + " vot = VotingClassifier(estimators=[\n", + " ('lr', lin), (\"tree\", tree), (\"svr\", svr)])\n", + "\n", + " # Train the model based on regression or classification task\n", + " if reg:\n", + " vot.fit(X_train_pca, y_train_reg)\n", + " else:\n", + " vot.fit(X_train_pca, y_train_cla)\n", + "\n", + " # Remove missing values\n", + " df = df.dropna()\n", + "\n", + " # Create predictions for the entire dataset\n", + " df[\"prediction\"] = vot.predict(np.concatenate((X_train_pca, X_test_pca, X_val_pca), axis=0))\n", + "\n", + " # In case of classification, map the predictions to -1 and 1\n", + " if not reg:\n", + " df[\"prediction\"] = np.where(df[\"prediction\"] == 0, -1, 1)\n", + "\n", + " # Compute strategy based on predictions\n", + " df[\"strategy\"] = np.sign(df[\"prediction\"]) * df[\"returns\"]\n", + " df[\"low_strategy\"] = np.where(df[\"prediction\"] > 0, df[\"sLow\"], -df[\"sHigh\"])\n", + " df[\"high_strategy\"] = np.where(df[\"prediction\"] > 0, df[\"sHigh\"], -df[\"sLow\"])\n", + "\n", + " return vot, df[\"strategy\"], df[\"low_strategy\"], df[\"high_strategy\"]\n" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Processing Volatility 250 (1s) Index...\n", + "Model saved to /home/fortesenselabs/Tech/labs/Financial_Eng/Financial_Markets/lab/trade_flow/packages/itbot/models/Volatility 250 (1s) Index_voting.joblib\n", + "Processing IBM...\n", + "Model saved to /home/fortesenselabs/Tech/labs/Financial_Eng/Financial_Markets/lab/trade_flow/packages/itbot/models/IBM_voting.joblib\n", + "Processing Volatility 200 (1s) Index...\n", + "Model saved to /home/fortesenselabs/Tech/labs/Financial_Eng/Financial_Markets/lab/trade_flow/packages/itbot/models/Volatility 200 (1s) Index_voting.joblib\n", + "Processing ETCUSD...\n", + "Model saved to /home/fortesenselabs/Tech/labs/Financial_Eng/Financial_Markets/lab/trade_flow/packages/itbot/models/ETCUSD_voting.joblib\n", + "Processing Volatility 150 (1s) Index...\n", + "Model saved to /home/fortesenselabs/Tech/labs/Financial_Eng/Financial_Markets/lab/trade_flow/packages/itbot/models/Volatility 150 (1s) Index_voting.joblib\n" + ] + } + ], + "source": [ + "import os\n", + "import pickle\n", + "from pathlib import Path\n", + "from joblib import dump\n", + "from sklearn.ensemble import VotingRegressor, VotingClassifier\n", + "from sklearn.svm import SVR, SVC\n", + "from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier\n", + "from sklearn.linear_model import LinearRegression, LogisticRegression\n", + "\n", + "# Initialize MT5\n", + "mt5.initialize()\n", + "\n", + "# Function to compute returns and other metrics\n", + "def compute_metrics(df):\n", + " \"\"\" Create custom metrics for strategy returns. \"\"\"\n", + " df[\"returns\"] = ((df[\"close\"] - df[\"close\"].shift(1)) / df[\"close\"])\n", + " df[\"sLow\"] = ((df[\"low\"] - df[\"close\"].shift(1)) / df[\"close\"].shift(1))\n", + " df[\"sHigh\"] = ((df[\"high\"] - df[\"close\"].shift(1)) / df[\"close\"].shift(1))\n", + " return df.dropna() # Remove missing values\n", + "\n", + "# Function to load and process data\n", + "def get_and_process_data(symbol):\n", + " \"\"\" Load data and apply feature engineering. \"\"\"\n", + " df = get_data(symbol, 3500).dropna()\n", + " df = compute_metrics(df) # Compute metrics\n", + " return df\n", + "\n", + "# Create a directory for models if it doesn't exist\n", + "model_dir = Path(os.getcwd()).parent / 'models'\n", + "# model_dir = os.path.join(os.getcwd(), 'models')\n", + "# os.makedirs(model_dir, exist_ok=True) # Create directory if it doesn't exist\n", + "\n", + "# Initialize lists to store results\n", + "results = pd.DataFrame()\n", + "low_assets = pd.DataFrame()\n", + "high_assets = pd.DataFrame()\n", + "\n", + "\n", + "for symbol in top_symbols:\n", + " print(f\"Processing {symbol}...\")\n", + " \n", + " # Load and process the data\n", + " df = get_and_process_data(symbol)\n", + " \n", + " # Compute the strategy using the voting function\n", + " vot, results[symbol], low_assets[symbol], high_assets[symbol] = voting(df, reg=False)\n", + "\n", + " # Save the model using joblib\n", + " model_filename = os.path.join(model_dir, f\"{symbol}_voting.joblib\")\n", + " dump(vot, model_filename)\n", + " print(f\"Model saved to {model_filename}\")\n", + "\n", + "# Shutdown MT5\n", + "# mt5.shutdown()\n" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABKsAAAJzCAYAAADAw5DwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3yV5f3/8dd9n50dSCBMQVCouFG0xQooYgF3RXEUFVd/1lntsLa2tZZi6x6ttVYRt1br4qugpYBIRUFUFERkCISEhJB99rmv3x8HjkaG2Sch7+fjkUeSe1z355zcRHlzXZ/bMsYYREREREREREREOgA73QWIiIiIiIiIiIjsoLBKREREREREREQ6DIVVIiIiIiIiIiLSYSisEhERERERERGRDkNhlYiIiIiIiIiIdBgKq0REREREREREpMNQWCUiIiIiIiIiIh2GwioREREREREREekwFFaJiIiIiIiIiEiHobBKREREREREREQ6DHdbX6CyspJ4PN7Wl9lrFBYWUl5enu4yRNqc7nXpSnS/S1ek+166Et3v0lXoXpeWcLvd5OfnN+7YNq6FeDxOLBZr68vsFSzLApLvmTEmzdWItB3d69KV6H6Xrkj3vXQlut+lq9C9Lu1JywBFRERERERERKTDUFglIiIiIiIiIiIdhsIqERERERERERHpMBRWiYiIiIiIiIhIh6GwSkREREREREREOgyFVSIiIiIiIiIi0mEorBIRERERERERkQ5DYZWIiIiIiIiIiHQYCqtERERERERERKTDUFjVjiZPnswrr7zS5PNKS0sZN24cGzduBGDMmDG89957AEyZMoVZs2a1ap3t5eabb+aRRx5p9vnV1dWcffbZfPLJJ61Y1c5uueUWpk+f3qbXEBEREREREZEkhVWNdN1113H77bfvct/cuXMZP348wWCw1a73wQcfsGrVKgCKioqYM2cO/fr12+m4mTNnMnHiRAA2b97M/Pnzm3W96upqpk2bxumnn84pp5zCr3/9a8rKygBwHIfjjjuOcePGNfh49tlnU+fPnTuXKVOmMG7cOC666CKWLFmyx+u9+uqrFBcXc8EFF6S2vffee5xxxhnccsstjao5NzeXq6++mltvvZVwOLzb46ZPn97oMUVEREREREQkvRRWNdKECROYN28ekUhkp31vvPEGY8aMISMjo9Wu9/zzz6fCqsZ6++23mx1W3XbbbdTU1DBjxgyeeuopjDHcdtttANTX12OM4amnnmLOnDmpj7PPPhuAVatWMX36dC666CJeffVVJk2axG9+85tU2PVN0WiUmTNnct555+FyuQB4+umnuf/+++nTp0+T6h45ciTZ2dnNmrEmIiIiIiIiIh2PwqpGGjVqFLZts2DBggbbt27dytKlS1Ozm1555RUuuOACJkyYwGWXXZZarvdN0WiU22+/ndNPP50JEyZwzTXXsH79egB+9atf8e6773Lvvffy05/+lNLSUsaMGcOGDRt2GmfH0sJnn32Whx56iPnz5zNu3Dgee+wxLrvssgbHfvTRR4wbN466uroG240xFBYWcvnll5Obm0tWVhYnnXQSy5cvxxhDbW0tADk5Obt8La+//jojRoxgzJgx+Hw+JkyYwL777sucOXN2efyiRYuIRCKMGjUqtc3r9fLXv/51l2FVKBRi2rRpnHbaaUyYMIErr7yS1atXp/ZPnDix0WFVPB5nzJgxLFiwgCuvvJLx48dzySWXsHbt2tQxr732GpMnT+akk07innvuwXGcBmO89NJLnHPOOYwfP57LL788NYts3bp1/OAHP2DNmjWpY6+55hruu+++RtUmIiIiIiIiIgqrGs3r9TJ27Fhmz57dYPuO5XnDhg3jnXfe4aGHHuK6667j5ZdfZtKkSdx4442sW7dup/GefvppPv74Yx555BFeeuklioqK+Mtf/gLAtGnT6NmzJ1dffTV33nlno+o7++yzOeGEExg1ahRz5szhxBNP5IsvvmgQcL399tscffTRZGVlNTjXsiyuu+46Bg4cmNq2ZcsWCgsLsSyL2tpabNtm+vTpnHrqqUyePJm///3vxGIxAFavXs3+++/fYMzBgwfz+eef77LWpUuXcvDBB6dmVQH88Ic/3KmuHV544QXWrl3LzJkzefXVVzn22GO54447UvsPO+wwiouLKS0t/db3ye12A/Dcc89x44038vLLL5OdnZ3qnbVhwwbuvPNOrrzySl588UUGDx7M4sWLU+cvWbKEmTNn8rvf/Y7XXnuNc845h5tuuomysjIGDhzIWWedlQqn3nrrLbZs2cIll1zyrXWJiIiIiIiISFKHCauMMZhIuH0/jGlSjRMnTmTZsmUNlrfNnj07Navq9ddf57jjjuPQQw/F4/FwwgknMGjQoF0uzTvvvPN48MEHyc/Px+v1cuyxx+423GmOoqIiDjroIN56663UtoULFzJ27NhvPbe0tJRHH300tcwPYL/99mPEiBE888wz/O53v+M///kPM2fOBJL9rrKzsxuMkZOTQ3V19S7H//LLLxsEY98mGAxi2zZerxeXy8WkSZP429/+ltrfv39/bNtOzUxrjLFjx9KnTx+8Xi8jR45MNa9/5513GDhwIMcccwxer5eJEyfSs2fP1HmvvPIKEyZMYMiQIbhcLkaPHs2wYcOYO3cuAOeffz7btm1j1qxZ/P3vf+e6664jEAg0ui4RERERERGRrs6d7gIgGVQ5t/0C1nzWvhce/B3sn0/HsqxGHT5o0CD2228/5syZw/nnn8+KFSsoKSlh3LhxAJSUlHDwwQc3OKd3796UlJTsNFZZWRkPPPAAK1eupK6uDmMM8Xi85a/pa8aNG8dTTz3F1KlT+eyzz6ivr+foo4/e4zkbNmzgZz/7GePHj+eUU04BYMiQITz44IOpY4YOHcq5557Lk08+ycUXX9zkumpqana7pHBXTj31VBYuXMikSZM46qijGDlyJKNGjUr93CzL2mM4titFRUWpr71eb6oXWXl5eYN9QIOlicXFxSxatIjnnnsutc0Yw4ABA1JjXX/99Vx33XWMGTOGo446qtE1iYiIiIiIiEgHCasAaGRglG4TJkzg+eef5/zzz+eNN95g5MiR5Obm7vZ4Y8wuw7DbbrsNt9vNww8/TLdu3Xj33Xe58cYbW7XW0aNHc9999/Hpp5+yaNEiRo0ahdfr3e3xK1eu5MYbb+Tcc8/lrLPO2uPYvXr1orKyEmMMeXl51NTUNNhfXV1Nfn7+bs9vbEAI0LNnTx599FGWLl3K4sWLufPOO5k3bx6///3vmzUegG3velJhNBrdaaxEItHgvEsvvbTBrLNvKikpwe/3s3nzZhKJRIPljiIiIiIiIiKyZx0irLIsC/vn0yG685P22pTX1+SQY+zYsfztb3/j008/Zf78+fzmN79J7evTp09qOdkOxcXFHHvssTuN8/nnn/Pzn/+cbt26ATRoyt1aMjMzGTlyJAsWLGDRokVcf/31uz1206ZN/OpXv+KKK65IzRTbYdmyZXzyySf86Ec/Sm3bsGEDRUVFWJbF0KFDd1rC+Nlnn3Hcccft8lo5OTk7hVt7EgqFsG2bESNGMGLECEaPHs3VV19NbW0t2dnZGGOorq7eY2jYWAUFBTu9luLiYvLy8oDkTLmvN2OHZH+vHj16YFkWVVVVPPjgg0ybNo0HHniAF1544VuDPxERERERERH5SofpWWVZFpbP374fzZjNlZGRwejRo7n//vvJyMhg+PDhqX0TJkzgv//9L8uXLycajfL666+zYcOGXYY2hYWFrFixgkQiweLFi1NPDdyyZQsAPp+PDRs2NCnU8fl8bNmyhcrKytRsoHHjxjFr1ixisRiHHHLIbs+95557OPHEE3cKqgCysrJ4/PHHefPNN0kkEqxatYrnnnuO0047DUj28lqyZAlz584lEonw4osvsnnz5l2OBTBgwIAm9Ze6+eabueeeewgGg6nr5+TkkJmZCSSDM8dxUkvxWuLII49k9erV/O9//yMajfLyyy9TUVGR2n/yySczb948Fi9eTCKRYNmyZUydOpVVq1YB8MADD/Dd736XQw89lGuvvZYZM2Y0qvG7iIiIiIiIiCR1iJlVnc3EiRO56qqruOiiixoEXkcffTRTpkzhD3/4A7W1tQwYMIA///nP9O3bd6cxrr76au644w5mzZrFUUcdxS233MLPfvYzTj31VGbMmMHEiRN59NFH+fTTT/ntb3/bqLqOP/545s2bx9SpU3nwwQfp2bMnRxxxBD6fj+OPP3634VxZWRlLlizho48+4sUXX2yw7y9/+QuHHHIIv/nNb5gxYwZ33nkn3bt358wzz+SMM84AYODAgdx000384x//YPr06eyzzz5MmzYtNWvsm4YPH85dd92F4zip5Xg7gq2vh2yQfNriDTfcwN13381ZZ52V6g916623ps5dtmwZvXv33qnXVHMMGzaMn/zkJ9x1113U19czduxYxowZk+ppdcQRR/DjH/+Yu+++m4qKCoqKirj22msZOnQo77//PosXL041nh82bBijR4/mjjvuSD3pUURERERERET2zDJNfSReE5WXlxOLxdryEnsNy7Lo1asXJSUlTX5S4e7U1dUxefJk/va3v9GvX79WGbOlYrEY5557LldeeSWjRo1q8XiXXnopJ5xwgpbbdSJtca+LdFS636Ur0n0vXYnud+kquvy9bhw84S+xE3VYThRwiGYMxXFnp7uyTsPj8VBYWNioYzWzai8WiUS45557OPzwwztMUAXJG/TCCy/kiSee4JhjjmlRA/KFCxdSU1PDySef3IoVioiIiIiIiCS5IyVkl/0bT6Rhj+qEK5uqPpeS8DYugJHG6zA9q6R1LV++nFNOOYXy8nJ++tOfprucnUycOJFevXrx2GOPNXuM6upq7r33Xn79618TCARasToRERERERHp6iwnQtbWWeRvvB9PZCOO5SXqH0AkYz8S7m64ErXkFf8DV7Qs3aXudbQMsAPp8tMqpcvQvS5die536Yp030tXovtduoq97V63nAju8AZigX3B+sZqH2Pw1q8ge+uruOLVAIQzD6Su8CQcd/Ip9Faijrzif+KJlpJwZVFXcBKOOwfHlUnCUwCW5gZ9k5YBioiIiIiIiIjsijHkbp6BN7yeSOYBVPecDLYHADtWSXb5K/iCnwGQcOdTW3gK0cyhDYdwZVHV55LtgVUJuVueSe2L+fpQ1fsijCuzSWVZiSDe4OdYJoZl4jiubCKZw2A3D0vbmymsEhEREREREZEuwxv8HG94PQC++hXkbX6E6qLzCNQuIXPbXCwTw+AimH8s9fmjwfbuchzjyqSqz8VkVczGFS3DTtThilfjiRSTX/wwlX0uxriyGlWTHa8hf+MDuBI1DbZv6/sT4v6+LXi1nZPCKhERERERERHpGowhc9scACIZQ/GE1+MNr6dg/XQsEgBE/QOp7XEaCW+Pbx/OlUltjzNS37ui5eQV/wN3tDQZWPW+BOP+lsDKxMktfRJXooaEK4e4rxfG8pDw5BP39mz+a+3EFFaJiIiIiIiISJfgq/8UT2QzjuWlpucPseO15G1+FFeiFseVSV33CYSzD2v20ruEt5CqPpeSV/ww7ugWCtZPJ+EtIO7tQcLTg7g3+ZHwFoDlBmPILn8ZT3gDju3f/nTBglZ+1Z2PwioRERERERER2fsZh8xtbwEQyhuJcWWRcGVR2e8neOtXEck6EOPKaPFldgRWuSUzcMcqcEe34I5uaVgKNglPNxx3Dt7QWgwWNT3PUVC1ncIqEREREREREdnr+eo+wh3dgmP7CeZ9P7XdcecSzh3RqtdKeAvY1v+n2PEa3NEtuKJluGNluKNlyf5WThh3bCvEtgJQ13080cz9W7WGzkxhlYiIiIiIiIjs1axEHVlb3wAgmHcsxhVoh4vaOJ48op48yBzy1XZjsBO1yQArugVj+wlnH9729XQiCqua4Nprr+WAAw7gsssuY8yYMbjdbizLwrIscnJyGDFiBP/v//0/srKyUsd/9NFHPPHEE/Tp06fBWAsWLOC3v/0tF1xwARdeeGEaXo2IiIiIiIhIF2AMOVv+hStRQ9xTSDBvZHrrsSwcdw6OO4dYxuD01tJB2ekuoDP74x//yJw5c5g9ezZ33303K1as4B//+EeDY/Lz83nrrbd2Ovett94iPz+/vUoVERERERER6ZICVQvxBVdhLDfVReeA7U13SfItFFa1kj59+jBixAiKi4sbbD/yyCOZM2dOg211dXUsW7aMgw8+uD1LFBEREREREelS3OENZFXMBqC24CQSvl5prkgao8MsAzTGEEmYdr2mz5VcwtdSjuPw5ZdfsnDhQs4777wG+w4++GDef/99PvnkEw488EAA5s2bx+GHH47f72/xtUVERERERETka0wCb3AVger38QZXYWEIZx5IOKd1m6hL2+kQYZUxhl/O2cBnW0Ptet3vFAb40wn9mx1Y3XTTTViWhTGGeDzO8ccfz5gxYxoc43K5OP7445kzZ04qrHrzzTc588wzeeedd1r8GkREREREREQE7Ng2AjXv469ZiitRm9oeCexHbY8zoBUmq0j76DDLADvjPbOjZ9Wbb77JCy+8QFZWFldddRWxWKzBcePGjWPevHnEYjG2bNnC+vXrOeqoo9JUtYiIiIiIiMhewsTx1X5MXvE/KfjyL2RWzsOVqMWxM6nP+z4V/a+jus/U9nn6n7SaJs2sWrFiBX/84x932h6LxXjggQcoLCxsVhGWZfGnE/p32mWAAN26deOqq65i/PjxfPDBBw3CqP3224+CggL+97//sWnTJr7//e/j9aqhm4iIiIiIiEhzuKJl22dRLcN26gEwWEQDgwnnHkkk8ztgdYjFZNIMTfrJHXDAATz55JMNts2ePZuFCxdSUFDQokIsy8Lv7oTTqxrphBNOYMGCBWzYsIErrrgi3eWIiIiIiIiIdDq+uk8IVC3EG/4ytS3hyiGcM5xQzhE4nm5prE5aS4tixurqap599ll++9vfttoMpc6qrq6OmTNnkpuby7Bhw3baP3bsWJ555hn8fj+HHHJIGioUERERERER6bz8NUvIKXsBAINNNHMIoZwjiWbsD5YrzdVJa2pRWPXss89y9NFHs88+++zxuL0tyNrxenY0WAfIzMzkgAMO4Pbbbyc7O3un43v06MF+++3H/vvvj23buxzvm59F9la616Ur0f0uXZHue+lKdL9LV5Hue90dWk922UsAhHKPItjteBx3TrKmtFQkbckyxjSrUVRZWRnXX38999xzD926aZqdiIiIiIiIiLQ+Ey4nsez3EKvFKjgS+ztXYFkd5nlx0gaaPbPqjTfeYPjw4d8aVJWXlxOPx5t7mS7FsiyKioooLS2lmRmiSKege126Et3v0hXpvpeuRPe7dBVpu9edKPkb/4o7VkvM15uq3JOhdEv7XV9ajdvtbvSD+ZodVv3vf/9j6tSpjTpWv7Sbxhij90y6BN3r0pXofpeuSPe9dCW636WraO97PaNyAe5oKQlXFtW9pmAsD+jP2l6vWfPmNm3axLZt2zjwwANbux4REREREREREex4NZmV8wGoKzgZx52b5oqkvTQrrFq3bh3du3cnEAi0dj0iIiIiIiIiImRWzMYyMaL+fYhkHZTucqQdNSusqqys3OmJdyIiIiIiIiIircEd3kigdhkAdQUngZ642aU0q2fVKaecwimnnNLatYiIiIiIiIhIV2QMnvB67EQdmAQZVe8AEMo+nLi/b5qLk/bW7AbrIiIiIiIiIiKtwV+7hJyyFxtscywv9d1PTFNFkk4Kq0REREREREQkbax4HVlbXwcg5u2FcQUwlptwzhE47pw0VyfpoLBKRERERERERNImq+J1bCdEzNuLyn4/AcuV7pIkzZrVYF2aZ/LkybzyyitNPq+0tJRx48axceNGAMaMGcN7770HwJQpU5g1a1ar1tlebr75Zh555JFmn19dXc3ZZ5/NJ5980opV7eyWW25h+vTpbXoNERERERGRrsgTWkeg9gMMFrU9TlNQJYDCqka77rrruP3223e5b+7cuYwfP55gMNhq1/vggw9YtWoVAEVFRcyZM4d+/frtdNzMmTOZOHEiAJs3b2b+/PnNul51dTXTpk3j9NNP55RTTuHXv/41ZWVlqf1ffPEFV155JSeeeCKTJk3iueeea3D+3LlzmTJlCuPGjeOiiy5iyZIle7zeq6++SnFxMRdccEFq23vvvccZZ5zBLbfc0qiac3Nzufrqq7n11lsJh8O7PW769OmNHlNERERERESaxx0uJmPbf3BFy7/1WMsJ44qUkl3+EgDhnCOJ+/u3cYXSWSisaqQJEyYwb948IpHITvveeOMNxowZQ0ZGRqtd7/nnn0+FVY319ttvNzusuu2226ipqWHGjBk89dRTGGO47bbbAAiHw/zyl7/kwAMP5KWXXuL3v/89TzzxROpaq1atYvr06Vx00UW8+uqrTJo0id/85jcNwq6vi0ajzJw5k/POOw+XK5maP/3009x///306dOnSXWPHDmS7OzsZs1YExERERER6fKMIVC1kMyK2fhrPsAd3oCVCDV5GF/dJ+QXP0jWtrfotuEucktm4q1fia9uOYHKBWSVv0Lu5pnkb7iXgrW/p3Dt7+m+8R7c0TIcVyZ1aqQuX6OwqpFGjRqFbdssWLCgwfatW7eydOnS1OymV155hQsuuIAJEyZw2WWXpZbrfVM0GuX222/n9NNPZ8KECVxzzTWsX78egF/96le8++673Hvvvfz0pz+ltLSUMWPGsGHDhp3G2bG08Nlnn+Whhx5i/vz5jBs3jscee4zLLruswbEfffQR48aNo66ursF2YwyFhYVcfvnl5ObmkpWVxUknncTy5csxxvDuu+8Si8W49NJLCQQCHHDAAZx88sm89tprALz++uuMGDGCMWPG4PP5mDBhAvvuuy9z5szZ5WtftGgRkUiEUaNGpbZ5vV7++te/7jKsCoVCTJs2jdNOO40JEyZw5ZVXsnr16tT+iRMnNjqsisfjjBkzhgULFnDllVcyfvx4LrnkEtauXZs65rXXXmPy5MmcdNJJ3HPPPTiO02CMl156iXPOOYfx48dz+eWXp2aRrVu3jh/84AesWbMmdew111zDfffd16jaRERERERE2pu/5j2yt84is3IeOWXP023T3yhcdwsF624lb9PfyS57gYzKBXjrVmCCJWASO40RqHqHnNKnsEycuKc7FgZf/UrySmaSW/oU2RWvk1H9P3zBlXiiJdhOcmWMYweI+fpS3fNcjKv1Jn9I59dhGqwbY0jsfM+3KZcLLMtq1LFer5exY8cye/ZsTjjhhNT2Hcvzhg0bxjvvvMNDDz3ErbfeyrBhw5g3bx433ngjDz/8MAMHDmww3tNPP83HH3/MI488QmZmJnfccQd/+ctfePHFF5k2bRpnn3025557LqeccgqlpaXfWt/ZZ5/NunXriEaj3HzzzZSWlvLYY4+xYcMG+vdPTqV8++23Ofroo8nKympwrmVZXHfddQ22bdmyhcLCQizLYvXq1QwaNCg1Cwpg8ODBqbBq9erVHHXUUQ3OHzx4MJ9//vkua126dCkHH3xwg/F++MMf7va1vfDCC6xdu5aZM2eSmZnJCy+8wB133MGDDz4IwGGHHcY999xDaWkpRUVFe3yf3O7kLf/cc89x4403UlhYyC9+8QseeeQRbr31VjZs2MCdd97JLbfcwogRI3jzzTe5//77U8HakiVLmDlzJn/6058YPHgwb7/9NjfddBOPP/44AwcO5KyzzuK+++7j7rvv5q233mLLli3qdyUiIiIiIh2SHdtG1tb/AyCSMQTLxHBFt+JK1GAn6vEm6iG8PnV8ogQKsEl4uuG4srFMDMuJ4I4ll/0Fc46irvBkXLFtZFQtxBNag+PKwnHnkXDnkfDkp752PHkY25eOly2dQIcIq4wxvPOfOior2jetyi9wMfK4rEYHVhMnTuSyyy6jrKyMHj16ADB79mxOOukkIDnD6LjjjuPQQw8F4IQTTuD5559n/vz5O4VV5513HpMmTUotHTz22GP5/e9/30qvLNnn6qCDDuKtt95i6tSpACxcuJArrrjiW88tLS3l0Ucf5eKLLwaS/axycho+LjQnJ4eamhocx6G6uprs7Oyd9u+YKfZNX375JYccckijX0swGMS2bbxeLy6Xi0mTJjFp0qTU/v79+2PbNuvXr//WsGqHsWPHpmZxjRw5kldffRWAd955h4EDB3LMMccAyZ/5888/nzrvlVdeYcKECQwZMgSA0aNH88orrzB37lwmT57M+eefzyWXXMKsWbOYMWMGN9xwA4FAoNGvVUREREREpF0Yh5yyF7BNlKh/ANW9poCVXHxlOZFkaBUrx739syu2FU+sYns4tRViWxsMV9f9RIJ5o8CySHgLqe1xejpelewlOkRYBUDj8qK0GjRoEPvttx9z5szh/PPPZ8WKFZSUlDBu3DgASkpKOPjggxuc07t3b0pKSnYaq6ysjAceeICVK1dSV1eHMYZ4PN6q9Y4bN46nnnqKqVOn8tlnn1FfX8/RRx+9x3M2bNjAz372M8aPH88pp5zSqvXsUFNTs1P4tSennnoqCxcuZNKkSRx11FGMHDmSUaNGpUJGy7LIycmhurq60WN+PdTyer2pXmTl5eU7BV5fX5pYXFzMokWLGjSYN8YwYMCA1FjXX3891113HWPGjNlpxpmIiIiIiEhHEKhejDe0FmN5qO15ZiqoAjC2j7i/D3F/H3Z0bbYsi6KiIso2rsKOlmEnghjbg7G8yRlTnm7peSGyV+oQYZVlWYw8LqtDLwPcYcKECTz//POcf/75vPHGG4wcOZLc3NzdHm+M2eU1brvtNtxuNw8//DDdunXj3Xff5cYbb2zya9iT0aNHc9999/Hpp5+yaNEiRo0ahdfr3e3xK1eu5MYbb+Tcc8/lrLPOSm3Py8tj8+bNDY6trq4mNzcX27bJy8ujpqZmp/35+fm7vVZT3veePXvy6KOPsnTpUhYvXsydd97JvHnzGsxEa+rP0bZ33a4tGo3uNFbiazembdtceumlnH322bsdu6SkBL/fz+bNm0kkEg2WO4qIiIiIiKSbHasis+INAOq6/4CEp3ujzrMsC8eTS8Ld+MkHIs3RYRqsW5aF292+H00NOCC5fGzr1q18+umnzJ8/P9VYHZIzcDZu3Njg+OLiYnr37r3TOJ9//jknnXQS3bol0+evN+VuLZmZmYwcOZIFCxawYMECxo4du9tjN23axK9+9SuuuOKKBkEVwNChQ1mzZk2D0GblypUMHTo0tf+b/ak+++yz1P5v2rGEsLFCoRDxeJwRI0Zw1VVXMW3aNBYsWEBtbS2QDAR3hGctVVBQsNNTDIuLi1Nf9+7du0Ezdkj29zLGAFBVVcWDDz7ItGnTiMfjvPDCCy2uSUREREREpDVlVC3YvvxvH0K5e159I5IOHSas6iwyMjIYPXo0999/PxkZGQwfPjy1b8KECfz3v/9l+fLlRKNRXn/9dTZs2MBxxx230ziFhYWsWLGCRCLB4sWLU08N3LJlCwA+n48NGzY0KdTx+Xxs2bKFysrKVLA0btw4Zs2aRSwW22OfqHvuuYcTTzwxtaTx60aMGEEgEOChhx4iFArx4YcfMmvWLE477TQg2ddpyZIlzJ07l0gkwosvvsjmzZt3ORbAgAEDdtvPalduvvlm7rnnHoLBIIlEglWrVpGTk0NmZiaQXLroOE5qKV5LHHnkkaxevZr//e9/RKNRXn75ZSoqKlL7Tz75ZObNm8fixYtJJBIsW7aMqVOnsmrVKgAeeOABvvvd73LooYdy7bXXMmPGjEY1yBcREREREWkPdryWQM37ANR3O6HB8j+RjkJ3ZTNMnDiRzz77jPHjxzeYnXX00UczZcoU/vCHP3Dqqafyyiuv8Oc//5m+ffvuNMbVV1/NwoULOfnkk3njjTe45ZZb2G+//Tj11FOprq5m4sSJzJo1i1/84heNruv4449n06ZNTJ06la1bk83ujjjiCHw+H8cff/xuZ5KVlZWxZMkSXnzxRcaNG9fg46OPPsLr9fKnP/2JFStWcNpppzF9+nR+/OMfp/pfDRw4kJtuuolHH32Uk08+mddff51p06alZo190/Dhw/n4449xHCe1bcf13nzzTebPn5/6HuCGG26gsrKSs846i1NOOYX//ve/3HrrramlfMuWLaN3796Nbq6+J8OGDeMnP/kJd911F6effjpr165lzJgxqX5iRxxxBD/+8Y+5++67GT9+PHfddRfXXnstQ4cO5f3332fx4sVcfvnlqbFGjx7NHXfc0eK6REREREREWkOgaiGWiRPz9ycW2Dfd5YjskmV2rF9qI+Xl5cRisba8xF7Dsix69epFSUkJrfVjqaurY/Lkyfztb3+jX79+rTJmS8ViMc4991yuvPJKRo0a1eLxLr30Uk444YSdli9Kx9UW97pIR6X7Xboi3ffSleh+l/bkCa4hULuESOYwIpnfAatp/XGtRD3d1/8Z20Sp6nUB0cxdt27Z5bm616WFPB4PhYWFjTq2QzRYl7YRiUS45557OPzwwztMUAXJG/TCCy/kiSee4JhjjmlRA/KFCxdSU1PDySef3IoVioiIiIiIdCzeuk/JLX0aiwT+2g9JuHMJ5R5NKOdIjCuzUWNkVC3CNlFi3l5EM4a0ccUizadlgHup5cuXc8opp1BeXs5Pf/rTdJezk4kTJ9KrVy8ee+yxZo9RXV3Nvffey69//WsCgUArViciIiIiItJx+Go/Jrf0KSwSRP374NiZuOLVZFXMpmD9dLK3vIA7snmPY1iJIIHqRQAEux0HzXjgmEh70cyqvdRBBx3E7Nmz013GHt1yyy0tOj83N5fnnnuulaoRERERERHpGOzYNnz1K3DFa7DjVfjqPsHCEMo+jNoePwTj4K/7mED1IjyRzQRqlxCoXULUP4BQ3veIZB7QYImg5UTIK3kM2wkT9/ZI7hfpwBRWiYiIiIiIiHQExuCv/YDs8pexTMPez6GcI6ktPC359D7LRThnOOHsw3GHN5BRvQhf3Sd4w+vxlq4n4cpJLhHMPRJj+cgtmYknvAHHDlDdc7KeACgdnsIqERERERERkTSwY1W4YhUY24OxPGRWLcBf+yEAMV8/Yv7+JNy5JLw9iGbst3PIZFnEA/tQE9gHO15DoHoxgZr3cCVqyNo2h8zKuSTc+bhj5TiWj6reF5Hw9Wr/FyrSRAqrRERERERERNqLieOrX0mg+j08oTVYNHyynsGmvttYgvmjmjQDynHnUN/9BOq7jcFf+zGB6v/hiWzCHSvHWB6qe19A3N9xHrwlsicKq0RERERERETamCtajr/mfQK1H2An6lPb454CLBPHcmI47mxqC08lFhjQ/AtZbsI5hxPOSS4R9NctJ5x5IPHAPi1/ESLtRGGViIiIiIiISFtwYvjrluOveR9veH1qc8KVTTjnCEI5R+B4urXZ5eP+/tT5+7fZ+CJtRWGViIiIiIiISGsyDpnb/kOgehG2E05uwiKaMZRQ7hFEM4Y0eFqfiDSksEpERERERESkFXnrV5JZOReAhDufUM4RhHOG47hz01yZSOegsKoJJk+ezNatW7HtnZvcnX/++TzxxBMAGGOIx+N4PJ7U/htuuIFx48YB8N577/HMM8/w+eef4zgOvXr14sQTT2TSpEkAlJSUcM455/DYY4/Rv3/DKZsPPfQQK1as4O677wagrq6OGTNm8M4771BZWYnP52Po0KFceumlDB48GIBrr72W5cuX43Ilk/usrCwOPPBAJk+ezAEHHNC6b5KIiIiIiEhXZgyZlfMBCOaOpK5gQpMapYuIwqomu/rqqznllFN2uW/KlCkAfPjhh1x33XW89tpreL3eBsfMmjWL+++/n6uuuoo//vGPuN1uli1bxh133MHatWu59957m1TPn//8Z+rr67njjjvo1asX1dXV/POf/+T666/nmWeeIRAIAHD22Wdz2WWXAVBRUcGcOXO4/vrr+dnPfsZxxx3X1LdBREREREREdsETXo8nshFjualv4hP9RCRJYVU7qqur44EHHuCyyy5jwoQJqe0jRozglltuYfbs2USj0SaNuXTpUq6//np69+4NQF5eHldddRUHHXQQ8Xh8l+d0796dc845B8uyuPPOOxkxYgRZWVnNf2EiIiIiIiICQMb2WVXh7MMx7uw0VyPSOXWYsGrH0rn25Ha7sSyr3a73/vvvk0gkOOmkk3baN2TIEIYOHbrTTKxv06dPH1588UWGDBlCnz59APB6vaklh3ty5pln8sgjj7BkyRJGjx7dpOuKiIiIiIhIQ65IKb7gKgwWwbzvp7sckU6rQ4RVxhj+9a9/UVJS0q7X7dWrF2eeeWaTAqt7772X+++/v8G2QCDAyy+//K3nlpSUUFRU1KCXVUvdeOON/PGPf+T888+nT58+HHrooXz3u9/l6KOPTvWo2h23202vXr3a/X0XERERERHZG2VULQAgkjmMhLcgzdWIdF4dIqzqTPbUs+rbuN1uEolEq9YzcOBAHn74YVatWsWyZcv48MMP+d3vfsegQYO46667Uj2rdseyrFYNz0RERERERLoiO1aJv/YjAIL5x6a5GpHOrUOEVZZlceaZZ+71ywB79+7Nli1bCIVCewyRdiwFjEQiO+0LBoP4/f6dtg8ZMoQhQ4YwefJkNmzYwOWXX86bb765x2AtGAyyefNm+vXr14xXIyIiIiIiIjtkbZ2FhUM0MIi4X3/HEmmJDvNYgh0zfNrzoz2DKoDhw4fj8/l44YUXdtq3fv16pkyZQlVVFfn5+eTk5PD55583OMYYw4oVKxg8eDAA69at45577tlptlb//v3p3bs3VVVVe6zn5ZdfJisri8MPP7xlL0xERERERKQL8wY/x1//KQab2oKdexSLSNN0iJlVXUUgEODaa6/lL3/5CxkZGfzgBz/A6/XywQcfcPvtt3PssceSl5dHKBTi3HPPZcaMGRQVFXHwwQdTW1vLk08+SVlZGaeddhoA+fn5zJ07l0gkwgUXXECPHj2or6/n9ddfZ+PGjYwcOXKXdVRXV/Pqq6/yxBNP8Nvf/lbLAEVERERERJrLxMkqfw2AUO7RJHxFaS5IpPNTWNVEu2qwDnD88cfzi1/84lvPHzt2LN27d+epp57iscceIx6P07dvXy644IIGTwk8++yzCQQC/PWvf6W4uBifz8dhhx3GAw88QEFBslFfXl4e9913H4899hhXXnklNTU1ZGVlMXToUO68804GDRqUGu/ZZ5/lX//6F5AMzYYNG8add97JAQcc0NK3REREREREpMvKqFqEO1aO48qivtsJ6S5HZK9gGWNMW16gvLycWCzWlpfYa1iWlXo6Xxv/WETSSve6dCW636Ur0n0vXYnu967NjlfT7cs7sU2Umh5nEs4Znu6S2ozudWkpj8dDYWFho47tMD2rRERERERERDqT7PJXsE2UmL8/4ezD0l2OyF5DywBFREREREREdsNyIniDn+MJrSecfThxfx8AfHWf4KtfgcGmpvB0sDQXRKS1KKwSERERERER+RorUY+vfiW+uhV4Q6uxTByAQM171PQ8i2hgMFnlrwAQzB+lpuoirUxhlYiIiIiIiHR5dqwKX/0KfPWf4gmtx8JJ7Yt7umHsTDyRjeSWPkXM2wtXopa4p4D6/DFprFpk76SwSkRERERERLosb/0qMre9hSeyqcH2mLcXkawDiGQOI+EtAgxZW2eRUb0IT7QEgNoep4PtSUPVIns3hVUiIiIiIiLS9RhDRuU8Mre9iYXBYBHz9yeSOYxI1jAcT7dvnGBRV3gyCU8BmRVvEMo9mlhg37SULrK3U1glIiIiIiIiXYsTJafsBfx1HwMQyhlBfbexOO7sbz01lPddQrkjwHK1dZUiXZbCKhEREREREelSsstfwV/3MQab2sJTCOce1bQBFFSJtCmFVSIiIiIiItJ1GAdf/acAVBedRzTrgDQXJCLfZKe7gK5k8uTJvPLKK00+r7S0lHHjxrFx40YAxowZw3vvvQfAlClTmDVrVqvW2V5uvvlmHnnkkWafX11dzdlnn80nn3zSilXt7JZbbmH69Olteg0REREREWkf7kgJthPGsXxEM4ekuxwR2QWFVY103XXXcfvtt+9y39y5cxk/fjzBYLDVrvfBBx+watUqAIqKipgzZw79+vXb6biZM2cyceJEADZv3sz8+fObfc1Vq1Zx3nnnccUVVzTY7jgOxx13HOPGjWvw8eyzz6aOmTt3LlOmTGHcuHFcdNFFLFmyZI/XevXVVykuLuaCCy5IbXvvvfc444wzuOWWWxpVb25uLldffTW33nor4XB4t8dNnz690WOKiIiIiMjezRNaC0AsMEDL+UQ6KIVVjTRhwgTmzZtHJBLZad8bb7zBmDFjyMjIaLXrPf/886mwqrHefvvtZodVb775JjfffDN9+/bdaV99fT3GGJ566inmzJmT+jj77LOBZMg1ffp0LrroIl599VUmTZrEb37zG8rKynZ5rWg0ysyZMznvvPNwuZL/cXj66ae5//776dOnT5PqHjlyJNnZ2c2asSYiIiIiIl2PN7QGgGhgUJorEZHdUVjVSKNGjcK2bRYsWNBg+9atW1m6dGlqdtMrr7zCBRdcwIQJE7jssstSy/W+KRqNcvvtt3P66aczYcIErrnmGtavXw/Ar371K959913uvfdefvrTn1JaWsqYMWPYsGHDTuPsWFr47LPP8tBDDzF//nzGjRvHY489xmWXXdbg2I8++ohx48ZRV1e3y3oeeOABvvOd7+y0r7a2FoCcnJxdvpbXX3+dESNGMGbMGHw+HxMmTGDfffdlzpw5uzx+0aJFRCIRRo0aldrm9Xr561//usuwKhQKMW3aNE477TQmTJjAlVdeyerVq1P7J06c2OiwKh6PM2bMGBYsWMCVV17J+PHjueSSS1i7dm3qmNdee43Jkydz0kkncc899+A4ToMxXnrpJc455xzGjx/P5ZdfnppFtm7dOn7wgx+wZs2a1LHXXHMN9913X6NqExERERGRNmYSeELrAYhlKKwS6ag6TlhlDDjR9v0wptHleb1exo4dy+zZsxts37E8b9iwYbzzzjs89NBDXHfddbz88stMmjSJG2+8kXXr1u003tNPP83HH3/MI488wksvvURRURF/+ctfAJg2bRo9e/bk6quv5s4772xUfWeffTYnnHACo0aNYs6cOZx44ol88cUXDQKut99+m6OPPpqsrKydzp84cSIFBQW7HLu2thbbtpk+fTqnnnoqkydP5u9//zuxWAyA1atXs//++zc4Z/DgwXz++ee7HG/p0qUcfPDBqVlVAD/84Q93WRfACy+8wNq1a5k5cyavvvoqxx57LHfccUdq/2GHHUZxcTGlpaW7eXe+4nYnnynw3HPPceONN/Lyyy+TnZ2d6p21YcMG7rzzTq688kpefPFFBg8ezOLFi1PnL1myhJkzZ/K73/2O1157jXPOOYebbrqJsrIyBg4cyFlnnZUKp9566y22bNnCJZdc8q11iYiIiIhI23NHirFNBMcOEPcWpbscEdmNjvE0QGPIK/473vCX7XrZqH8fqvpcDpbVqOMnTpzIZZddRllZGT169ABg9uzZnHTSSUByhtFxxx3HoYceCsAJJ5zA888/z/z58xk4cGCDsc477zwmTZqUWjp47LHH8vvf/76VXlmyz9VBBx3EW2+9xdSpUwFYuHDhTv2oGmu//fZjxIgR/OxnP+PLL7/k5ptvxu12c/HFF1NdXU12dnaD43NyclIzxb7pyy+/5JBDDmn0tYPBILZt4/V6cblcTJo0iUmTJqX29+/fH9u2Wb9+PUVFjfsPztixY1OzuEaOHMmrr74KwDvvvMPAgQM55phjgOTP/Pnnn0+d98orrzBhwgSGDEk2Yhw9ejSvvPIKc+fOZfLkyZx//vlccsklzJo1ixkzZnDDDTcQCAQa/VpFRERERKTteFP9qgaC1XHmbohIQx0jrOokBg0axH777cecOXM4//zzWbFiBSUlJYwbNw6AkpISDj744Abn9O7dm5KSkp3GKisr44EHHmDlypXU1dVhjCEej7dqvePGjeOpp55i6tSpfPbZZ9TX13P00Uc3eZwhQ4bw4IMPpr4fOnQo5557Lk8++SQXX3xxk8erqanZ7ZLCXTn11FNZuHAhkyZN4qijjmLkyJGMGjUKa3vIaFkWOTk5VFdXN3rMr4daXq831YusvLx8p8Dr60sTi4uLWbRoEc8991xqmzGGAQMGpMa6/vrrue666xgzZgxHHXVUo2sSEREREZG25Qkmw6poYN80VyIie9IxwirLSs5wMrF2vq6n0bOqdpgwYQLPP/88559/Pm+88QYjR44kNzd3t8cbY1KhytfddtttuN1uHn74Ybp168a7777LjTfe2OSXsCejR4/mvvvu49NPP2XRokWMGjUKr9fbKmP36tWLyspKjDHk5eVRU1PTYH91dTX5+fm7PX9X78nu9OzZk0cffZSlS5eyePFi7rzzTubNm9dgJlpTxgOw7V3/K0o0Gt1prEQi0eC8Sy+9NNVcfldKSkrw+/1s3ryZRCLRYLmjiIiIiIikiYnjDa8H1FxdpKPrOPMeLQtsb/t+NDHggOTysa1bt/Lpp58yf/78VGN1SM7A2bhxY4Pji4uL6d27907jfP7555x00kl069YNoEFT7taSmZnJyJEjWbBgAQsWLGDs2LHNGmfZsmU8/vjjDbZt2LCBoqIiLMti6NChO/Wn+uyzzxg6dOgux8vJydkp3NqTUChEPB5nxIgRXHXVVUybNo0FCxakGr8bY6iurt5jaNhYBQUFOz3FsLi4OPV17969GzRjB9iyZQtme/+zqqoqHnzwQaZNm0Y8HueFF15ocU0iIiIiItJynvAmLBPDcWWS8PZIdzkisgcdJ6zqJDIyMhg9ejT3338/GRkZDB8+PLVvwoQJ/Pe//2X58uVEo1Fef/11NmzYwHHHHbfTOIWFhaxYsYJEIsHixYtTTw3csmULAD6fjw0bNjQp1PH5fGzZsoXKysrUbKBx48Yxa9YsYrFYk/pEfV1WVhaPP/44b775JolEglWrVvHcc89x2mmnAcm+TkuWLGHu3LlEIhFefPFFNm/enFoe+U0DBgzYbT+rXbn55pu55557CAaDqevn5OSQmZkJJIMzx3FSS/Fa4sgjj2T16tX873//IxqN8vLLL1NRUZHaf/LJJzNv3jwWL15MIpFg2bJlTJ06lVWrVgHwwAMP8N3vfpdDDz2Ua6+9lhkzZjSq8buIiIiIiLQtTyg5QSAa2Ff9qkQ6uI6xDLCTmThxIldddRUXXXRRgyVjRx99NFOmTOEPf/gDtbW1DBgwgD//+c/07dt3pzGuvvpq7rjjDmbNmsVRRx3FLbfcws9+9jNOPfVUZsyYwcSJE3n00Uf59NNP+e1vf9uouo4//njmzZvH1KlTefDBB+nZsydHHHEEPp+P448/fo9L5aZMmUJpaSmJRAJjTCpomjlzJvvttx+/+c1vmDFjBnfeeSfdu3fnzDPP5IwzzgBg4MCB3HTTTfzjH/9g+vTp7LPPPkybNi01a+ybhg8fzl133YXjOKnleDuu9/WQDZJPW7zhhhu4++67Oeuss1L9oW699dbUucuWLaN3796Nbq6+J8OGDeMnP/kJd911F/X19YwdO5YxY8akelodccQR/PjHP+buu++moqKCoqIirr32WoYOHcr777/P4sWLmTlzZmqs0aNHc8cdd6Se9CgiIiIiIu3MJPDXfkigOvmU75j6VYl0eJbZsX6pCV544QVmz55NKBRi//335/LLL089He+bysvLicXauRdVJ2VZFr169aKkpIRm/Fh2qa6ujsmTJ/O3v/2Nfv36tcqYLRWLxTj33HO58sorGTVqVIvHu/TSSznhhBM466yzWqE6aQ9tca+LdFS636Ur0n0vXYnu947NE/yC7PKXcce2ApBw57Gt308wrqw0V9b56F6XlvJ4PBQWFjbq2CbPfZw9ezYffPAB06ZN429/+xvdu3fntddea3KR0vYikQj33HMPhx9+eIcJqiB5g1544YU88cQTDZqXN8fChQupqanh5JNPbqXqRERERERkb2AlwuSWPoE7thXHzqCu+3gq+l+noEqkE2hyWPXqq69y0UUXUVBQQFZWFldccQVTp05ti9qkBZYvX84pp5xCeXk5P/3pT9Ndzk4mTpxIr169eOyxx5o9RnV1Nffeey+//vWvCQQCrVidiIiIiIh0doGad7GdCHFvDyoG/Jxg/rHJB22JSIfXpJ5VFRUVVFRUUFpayr333ktdXR0HHXQQl1xyCdnZ2bs9b0+9kuQrO96n1ni/Dj74YObMmdPicdrSH/7whxadn5eXx/PPP99K1Uh7as17XaSj0/0uXZHue+lKdL93UE6MjKp3AAjmjwaXH/2EWkb3urSnJvWsWr16NTfffDNHHnkkl156KZFIhDvvvJNu3bpxww03tGWdIiIiIiIiIo3ibP4vzhczwNcd15F/xrL1bDGRzqRJf2ITiQSJRILzzjuP7OxssrOzOeuss/jTn/5ENBrF6915SmV5eTnxeLzVCt6bWZZFUVERpaWlalgnezXd69KV6H6Xrkj3vXQlut87IOPQ7ctXcQF1Od8jtKU83RXtFXSvS0u53e5GN1hvUliVlZVsRJeRkZHa1qNHD4wx1NTUUFBQsMvzdCM3jTFG75l0CbrXpSvR/S5dke576Up0v3ccvtrluGIVOHYGwewjQD+XVqV7XdpDkxqsFxUVEQgEWLt2bWpbWVkZLpeL/Pz8Vi9OREREREREpNGMIaNqPgDBvO+qobpIJ9WkmVVut5vjjz+eJ598kr59++JyufjXv/7Fsccei8vlaqsaRURERERERL6VJ7QOT2QzxvIQyv1uussRkWZqcpe5c889l8cee4wbbrgB27YZPnw4F154YRuUJiIiIiIiItJ4GdULAQhlH45xZaa5GhFpriaHVW63m4svvpiLL764LeoRERERERERaTJXdCve+s8ACOWNTHM1ItISTepZJSIiIiIiItIRBaoXYWGIZAwh4W3cE8dEpGNSWCUiIiIiIiKdmpUI4a9ZCkAw75g0VyMiLaWwSkRERERERDq1QM372CZK3FtELDAo3eWISAsprBIREREREZHOyyQIVC8CIJg3EiwrzQWJSEsprBIREREREZFOy1f3Ka54NY4rk3DWIekuR0RagcIqERERERER6bQyqhYCEMo5CmxPmqsRkdagsEpERERERCTN3OFifHXLwZh0l9KpuMMb8EQ2YnARzD063eWISCtxp7sAERERERGRLs0Ycktm4krUEMoZQW3hqWBpXkFj7JhVFc4+FOPOTnM1ItJa9BtQREREREQkjex4Fa5EDQCBmvfIKX0aTDzNVXV8dqwKX92nAITyRqa5GhFpTQqrRERERERE0sgT3giA48rC4MJf/wl5m2cosPoWgepFWDhEA4OI+3qluxwRaUUKq0RERERERNLIE9kEQDhzGFW9L8SxvHhDa/DVfZLmyjouy4kQqHkfgKBmVYnsdRRWiYiIiIiIpJE7nAyr4v5+xDIGE8o7BgB/7UfpLKtD89csxXbCxD0FRDOGpLscEWllCqtERERERETSxSRSM6tivr4AhLMPAcAb/BwrUZ+20jos4xCoXgRAKO97akYvshfSn2oREREREZE0cUXLsUwMx/KS8BYCkPD2IObthYWTaiAuX/EGP8Mdq8Cx/YSzD093OSLSBhRWiYiIiIiIpMmOWVVxf98GM4Qi22dX+eu0FPCbMqreASCUMwJj+9JcjYi0BYVVIiIiIiIiabLjSYA7lgDuEM46OLk/tA47Xt3udXVU7shmvKG1GGxCud9Ndzki0kYUVomIiIiIyF7BciL4aj/EV/shmHi6y2kU99dnVn2N48kn6t8HC4Ovbnk6SuuQAlULAYhkHYjjyUtvMSLSZtzpLkBERERERKTZjIM3+AX+2mX46j/FMjEAEhVvEMwfTSjnCLA66F97nBjuSCkAMV+/nXZHsg7BG/4Sf+1HqScEdmV2vBp/7ccABPV+iOzVOuhvbRERERERkd1zRUrw1y7DX/shrkRtanvc0x3LieKKV5Nd/jIZlQuo6n0hCW+Pdq3PSoTAJDDurN0e445sxsLBcWXhuHN32h/OOoisra/hiWzCFd1KwlvQliV3eBnb/otFgqh/AHH/zuGeiOw9FFaJiIiIiEiHZSXqseN1YFmAwVv/Of7aZXiiJaljHDtAOPsQwtmHEff1AxMnUPM+GZXzccUryd/0EFW9LyLu79P2BRtDoPodsra+joVD3NuTaGAQ0YxBxPz7Ylz+1KE7mqvHfH23v75vDOXOIhYYgDe0Fk9obZcOq1yxCgI17wNQ331cmqsRkbamsEpERERERDokX90n5Gx5FmsX/acMLiKZQwlnH0Y0c0jDpX6Wh1De9whnH0Le5kfxRIrJK/4H1b0vIBYY2HYFO1Fyyl5s8AQ/d3QL7ugWMqoXYbCI+/oQzRhMNDAIT2g9ALFv9Kv6upivD97QWtzR0raruxPIrHgLC4dIxv5t+zMUkQ5BYZWIiIiIiHQ4nuBackqfwSKBY/sBC4xDwteTcPZhhLMOwrgy9ziGcWVS1ecScjfPxBteR97mR6gtPJ1wzuGtX7ATJb/473gimzHY1BVMIJx9aHJWVHAN3tAXuGMVeCKb8EQ2kVk5L3Vq3Lf7sCrhLQJI9bbqilyRUnzbA8D6bppVJdIVKKwSEREREZEOxR3ZTG7pTCwShDOHUVN0LljNe5C5sf1U9b6I3C1P46tfSU7Z87jDG6grPKlVG6/76lfiiWzGsQNUF51PLGNfACJZBxHJOggAO1aFN7QGT2gN3uAaXIkaHNtPzN9/t+PGfb0AcEdLwJhdLhfcK5k4diKE5YTJqngDC0M466D2WcopImmnsEpERERERDoMO15N7uZHsZ0IUf9Aanqe3eyg6qtBPVQXnU/mtrlkVM4lo2YxnshGwtnDiWYMJuEpbHEI5A5vACCcfWgqqPomx5NH2DOccM5wMAZXrAJjezGuwG7HjXsLMdjYThg7Xo3jyWtRnZ2BJ7SO3JInsZ361DaDRX23sWmsSkTak8IqERERERHpMDK3zcWVqCPuLaK61xSwPa0zsGVT330sMX8/crY8iyeyGU9kMwAJdz41Pc8iFhjQ7OE9oWRYtadZUg3rsRrXMN1yk/D2wB0txR0tIbqXh1V2rIrc0mRQZbAwtg9j+wnljGj3JzqKSPoorBIRERERkQ7BjlXhr1kKQG3hKQ2enNdaoplD2Nb/Gvw1y/CGvsAT/hJXvJLczY9S3fuiZgVWxoni3h58NTqsaoK4rygZVkVKiWZ+p9XH7zCcKLmlj2Mn6ol5e1HZ98dge9NdlYikQQvn04qIiIiIiLSOjKoFWCSI+ge26RPfHHcuwW6jqepzCVsH/ppoYBC2iZK7+dHUE/qapPZLLBIkXFk47vxWrzfu/Vrfqr2VMeSUvbi971cm1b1+pKBKpAtTWCUiIiIiImlnx2sI1LwPQH2349rtusb2UdVrSosCK1P7BQBxf/82aYAe7wJPBPTXfoC/7iMMNtW9zsXxtH7oJyKdh8IqERERERFJu4yqt7FMnKh/H2KBQe17cdu7PbAa3KzAytQkw6q2WAIIXz0R0BXbCk60Ta6RVk6UzIo5ANR3P4FYYNcN6kWk61BYJSIiIiIi6WEMdqwKX90nBKoXAxDMH9Mms5O+le2lqtePvhFYrWvUqaZmDQAxf782Kc1xZeG4MrEwuKNlbXKNdMqoegdXooaEO59g3jHpLkdEOgA1WBcRERERkXblipYTqHkPX+1HuBK1qe0xXx+iGfunr7DtM6zySmbiDX1B7uYZVPe+cI/9s+xYFUQrMdjEfH3bpi7LIu4twhtagztaQtzfRtdJAytRR0blfADquo8DS39FFRGFVSIiIiIi0h5MAl/9CgLVi/GG1ny1GZu4tydxf1/qux2fnllVX2d7mhRYecIbgO1L9dqwIXjc1ysZVu1lfasyt83FNhFivt5Esg5Odzki0kEorBIRERERkTZjx6oI1LyHv2ZJahaVwSKaMYRQ7giigcFge9Jc5Tc0IbBy7wir2mgJ4A6pJuvRFoRVxqQ/DPwaT3BtavlnXfcJYKlLjYgkKawSEREREZEWc4eL8QZX4rhzSbi7YZkoger38QY/w8IAkHBlEc45klDOkR3/aW+7CKyq+lycfOLf1+yYWRXz79Om5exosu6OlDQrdHJHSsgr/ieh3BHUdx/XFiU2vpbwRjK3vYkvuBqASMb+xDLauam+iHRoCqtERERERKRF7Hg1eZv/ie2Edrk/GhhEKPcoIpkHgOVq5+paYHtglVvyOL7QarLLX6Oy7//7KigycdyRYqDtngS4Q9zbA4ON7YSwEzU47twmnZ+19f+wnXoC1Yup7zY2LbOY3JHNZFa8iS/4GZBcAhrOGU5d9xPbvRYR6dgUVomIiIiISPOZBDmlz2A7IeKe7iQ83XHFtmGZGJHMAwnlHkXCW5juKpvP9lDTcxIFX/4ZT2QjnvD61HJAT3gTlkmAJxvH061t67DcJLyFuKNbyC15griviIS7GwnPVx/GztjljCtPcA3e0BfJl+MEcUdKiPv7tG29X+OKlJK57S389Z8CyWWg4ezDCHY7joSne7vVISKdh8IqERERERFptsxt/8EbXo9j+ajufdFeGT4Ydzbh7MMJ1LxHRuUCqgMDwRgyt70JgJV3QDIkMqZN64gGBuGObsET2YQnsmmn/Y7l2x5cdSeYdwzxwD5gDFnb5iRfBxYWBm/oixaFVVYihOWEv3Uppytalgyp6panrh/JOpj6bsd37gBTRNqcwioREREREWkWT/ALMirnAVDb4/S9MqjaIZh3DP6a9/EFP8MV3YInvAlvaC3G8uAaMAmq4m1eQ13BRMJZB+OKb8MV+8ZHogbbRLCjJXiiJfjqV1JbeAqOOxtPeAPG8hDMG0lm5Ty8wS8I5o9qXhEmQf6mB3HFtlLT80wi2Yd9Y7/BE/6SQNU7+Oo/TfUrC2cdtD2k6tnCd0FEugKFVSIiIiIi0mRWIkTOluewMIRyjiSSfUi6S2pTCW8hkcwD8Nd/SlbFHDyhdQDUdxtLXqAQqkravgjLJh7Yhzi7aObuxHDFK3HFtuGvWYq//hNyyv+NY/sACOZ+l3D2YWRWzsMTXg9OrFlPYfTXfog7VgZAzpbnqTUJwjlHgInjq1tORtU7eLb38QIIZw5LhlTbG8SLiDSGwioREREREWmyrK2v4krUEvcUUFtwUrrLaRfB/GPx13+Kr34FADFvEaH8Y8hLb1lJtoeEtwcJbw+iGUOIV84jc9ub2E4Ex/YRzD8WY2eQcOXgStTgCX9JLGNw065hEmRUzgUg7umBO1ZGTtkLeELr8QY/x5WoTR5muZM9qXK/R8JX1NqvVES6AIVVIiIiIiLSJN66FQRql2GwqOk5CWxvuktqF3F/f6L+AXjD6zFY1PY4o2M+3dCyCHYbQ9xXROa2/xDMG4lxZQIQzRhMoPYDvMHVTQ6rkrOqtuHYmVT2u4LMijlkVC8iULsUgIQrm1DudwnlHolxZbX6yxKRrkNhlYiIiIiINJqVqCe7/N8ABPOOJe7vn+aK2ld9txPwbH6EYP6xxP392PnZex1HNPM7RDO/03DbjrAq9AX1TRnsa7OqkrO0fNQVnITjysIbWkMoZziRrIPA0l8xRaTl9JtEREREREQaxxiyy1/Glagj7u1Bfbfj011Ru4tl7Ev5oFvAstNdSrPEAsnZVO5ICVaiPjXj6tt8fVZVMPfo5MbtM7iCjGmrckWki+qcv2FFRERERKTdZVTOx1+3HINNTY9JzWrQvVfopEEVgOPOJu7tiYXBG1zz7SeYBP7qxWRt/T8gOauqqyz7FJH00cwqERERERH5Vt66T8naNhuAusKTifv7prkiaa5oYDDu6Ba8oS+IZB+864OMwVf/KZkVs3HHtgIQ9xZ9NatKRKQNKawSEREREZE9ckc2k7vlWQCCud8lpMCiU4tm7E9G9Tv4a5cRzj6MWGBgg/2e0Fqytr6OJ7IJAMeVSX3+cYRyR6gnlYi0C/2mERERERGR3bLjteSWzMQyMSKB/agrmJjukqSFohmDiWQegK9+BbklM6ns82MSvp64IqVkVbyBL7gKAMfyEso7JtVQXUSkvSisEhERERGRXXNi5JY8jiteTdxTSE3ROWC50l2VtJRlU91zMnmb/4k3/CV5JY8SDeyLv/ZDLAwGm1DuCIL5x+G4s9NdrYh0QQqrRERERERkZ8aQU/YCnshGHDtAda8pGFcg3VVJa7E9VPeaQv6mv+OOlRGoXQZAOOsg6ruNI+EtSHOBItKVKawSEREREZGdZFT+F3/dRxhsqovOU3ixFzKuDKp6X0Ru6RM4dgb13U8g7u+X7rJERBRWiYiIiIhIQ7665WRtexOA2sJTiWUMSnNF0lYcTx6V/a5MdxkiIg3Y6S5AREREREQ6Dne4mJwtzwMQzB1JOHdEmisSEZGuRmGViIiIiEgXYsXryC77N966T3faZ8drvnryX8b+1BWMT0OFIiLS1SmsEhERERHpIqxEkLzN/yRQ8x65pU/jimz5aqcTJbdkJq5EDXFvD2p66sl/IiKSHgqrRERERES6AMsJk7f5UTzR0uT3JMgp+xeYBBiHnLJ/4YkU49gZVPW6AOPyp7liERHpqprcYP2KK66gsrIS2/4q5zr++OOZOnVqqxYmIiIiIiItYAzuyGZc8W3Y8Vr8dR/hiWzCsTOoKTqbnNKn8UQ2kVG1EMuJ4a9bjsFFda/zcTzd0l29iIh0YU0Oq+rr6/nd737HkCFD2qIeERERERFpBf7aZeSUPd9gm2P7qOo9lbi/D3UFJ5FT9i8yK+Zg4QBQ2+M0YoGB6ShXREQkpUlhleM4hMNhsrKy2qoeERERERFpKWMIVL0NQNzbk7inEMedQyjnSBK+IgDC2Yfjq/sYX/BzAOrzvk8454i0lSwiIrJDk8Kq+vp6jDE899xzrFy5EoDDDz+cKVOmkJGR0SYFioiIiIhI03jC6/FESzGWh8o+l2Fcu/h/dcuitscZ2CVPEPf1or77D9q/UBERkV1oUlgVi8XYd999GTRoEJdffjlVVVXceeedPPzww1x99dW7Pc+yrBYX2hXseJ/0fsneTve6dCW636Ur0n2ffoHqdwEIZx8K7kx295Mwnjyq+l8JsNtjZM90v0tXoXtd2pNljDEtGeCDDz7gtttu44knnsDj8bRWXSIiIiIi0gwmso3EezeASeA6/BasrH3SXZKIiEiTNLnB+jf16NEDYwzV1dUUFBTstL+8vJx4PN7Sy3QJlmVRVFREaWkpLcwQRTo03evSleh+l65I9316ZVS8SaZJEPMPoLzWC7Ul6S5pr6b7XboK3evSUm63m8LCwsYd25SB169fz4IFC5gyZUpq2+bNm/F4PHTrtvvH2+pGbhpjjN4z6RJ0r0tXovtduiLd92lg4virFwMQzP2u3v92pPtdugrd69Ie7KYcnJOTw1tvvcVLL71EPB6npKSEZ599lhNOOAHbbtJQIiIiIiLSmowho/JtXIk6Eq5sIlnD0l2RiIhIszRpZlW3bt345S9/yZNPPsmLL75IdnY23/ve9zjrrLPaqj4REREREfk2Jk52+SsEat4HIJj3fbBcaS5KRESkeZrcs+qAAw7gj3/8Y1vUIiIiIiIiTWTFa8ktfRJv+EsMFvXdf0Ao75h0lyUiItJsLW6wLiIiIiIi6eEOF5Nb+jiueDWO7aem52SimUPSXZaIiEiLKKwSEREREemEfLUfk1P2LywTI+4poLrXFBLexj1lSUREpCNTWCUiIiIi0pkYh8xtb5JZOQ+ASMb+1PScjHEF0luXiIhIK1FYJSIiIiLSSVhOmJzS5/AFVwJQn3cs9d1PBEtP5hYRkb2HwioRERERkU7Ajm0jr+Qx3NEyjOWmpscZRLIPS3dZIiIirU5hlYiIiIhIB2clQuRt/ifu2DYSrhyqe51P3N8v3WWJiIi0CYVVIiIiIiIdmXHI2fJsMqhy51HZ9//huHPSXZWIiEib0eJ2EREREZEOLKNyLr7gKozlprrofAVVIiKy11NYJSIiIiLSQXnrPyNr238AqC08jbi/T5orEhERaXsKq0RERERE0syK1+KKVTTc5kTILnsRgGDu0YRzhqejNBERkXansEpEREREJJ2MQ7dND9LtyzvxhNalNmdUzsOVqCXu6U5dwcQ0FigiItK+FFaJiIiIiKSRJ7QWV3wbFg45pc9gxeuwY9vIqHwbIBlUWXoukoiIdB36r56IiIiISBr5az9Mfe1K1JCz5TmwPVgkiAYGE80Ymr7iRERE0kAzq0RERERE0sWJ4av/BIDawlMxlgdfaDW++hUYbGoLTgLLSnORIiIi7UthlYiIiIhImviCq7CdCAl3LqGcEdQWnpraF8o9ioSvZxqrExERSQ8tAxQRERERSRNf7UcAhLMOAcsmnDMcV2wrnvAm6ruNTXN1IiIi6aGwSkREREQkDaxEGF/wMwAi2Yemttd3PzFNFYmIiHQMWgYoIiIiIpIGvvpPsEycuLcHcW9RussRERHpMDSzSkRERESkrTgxbCeIlQhiJ4LYTij1tb/uQwDCWYeqibqIiMjXKKwSEREREWlFlhMmr/gR3NFSLBPb47EGi3D2Ie1UmYiISOegsEpEREREpBV56z/DE9mY+t5gY1wBHDsDx5WBcWXg2MnPUf8AHE+3NFYrIiLS8SisEhERERFpRd7QGgCCuUdT320cxvZrmZ+IiEgTKKwSEREREWlF3mAyrIpmDMW4AmmuRkREpPPR0wBFRERERFqJHduGK16JwSYWGJDuckRERDolhVUiIiIiIq1kxxLAmL8fxvaluRoREZHOSWGViIiIiEgr2bEEMBYYlOZKREREOi+FVSIiIiIircEYPKG1AEQVVomIiDSbwioRERERkVbgipXjStRiLDcxf790lyMiItJpKawSEREREWkFqSWA/n3A9qS5GhERkc5LYZWIiIiISCvwbG+uriWAIiIiLaOwSkRERESkpYyDd0e/qgyFVSIiIi2hsEpEREREpIXckWJsJ4Rj+Yj7+qS7HBERkU5NYZWIiIiISEsYQ1bFHACimUPAcqW5IBERkc5NYZWIiIiISAt4g5/hDX2BwUV993HpLkdERKTTU1glIiIiItJcJk7W1lkABPOOIeHpnuaCREREOj+FVSIiIiIizZRR9Q7uWAUJVzbBbmPSXY6IiMheQWGViIiIiEgz2PFaMrbNBaC++4kY25fmikREJJ2M4+C8/BRm2bvpLqXTc6e7ABERERGRzihz21vYJkrM15dw9mHpLkdERNLts48wrz2Dyc3HddjR6a6mU9PMKhERERGRJnJFy/DXvA9AXcFEsPS/1SIiXZ1ZvTL5RXUlJhxMbzGdnP6rKiIiIiLSRFlb38DCEMk8gFhgQLrLERGRDsCsWfnVN2Wl6StkL6CwSkRERESkCTyhtfiCKzHY1HU/Md3liIhIB2ASCVj7+VcbyhVWtYTCKhERERGRxjIOWVtfByCUcyQJb480FyQiIh1C8XqIhFLfmvKS9NWyF1BYJSIiIiLSSN76lXgim3AsL/Xdjk93OSIiexVjDMaYdJfRLGbNZw03aGZViyisEhERERFpJF99sh9JOOdIjDs7zdWIiOw9zMZ1OFdPxvz78XSX0jxfbO9XVVgEgFFY1SIKq0REREREGsMYvKEvAIhm7p/mYkREWsYE65N9ljoIM/c1CIcwc/6NqShr22vFYjhvvozzz7swNVXffrwxOG/PIfHbK3HeW7DrY7aHVdbRY5IbyrQMsCUUVomIiIiINIIrthVXvBqDi6h/QLrLERFpNlOyCeeXF+M8OD3dpQBgYlHM0kXJbxIJzOv/apvrGINZshDntz/BPPdPzLv/xbz81J7Pqa3B+dufMDPvh80bkufFYw2P2bYVtpWDZWMdNSq5cdvWnY6TxlNYJSIiIiLSCN7QGgBigX3A9qa5GhGR5jNvvgShIKxanu5SkpYvgVA9+PwAmIVvYbaVt/plzOMP4Pz9z8l+UlnJpdxm0VvJsGlXx3+6DOf3V8Oyd8HlhkAGVFd+FaztOG5Hv6p+A6BHL/D6wDhQ0fqvoatQWCUiIiIiez1v/UoyKucl//LQTJ5gMqyKBga1UlUiIu3P1FRh/vff5DehICZYl96CAGfxfACs0eNhyEGQiGPeeLFVr2G+WIF5ew5YFtbJk7H/9DDsfyDE45g5/254bCyK88w/cO7+LVRvg6K+2Df+BWvsqcn9/53VcPA125cADvoOlmWl+lahJwI2m8IqEREREdmrucMbyC15gqyK2fjqVzRvEOOkZlYprBKRzszMfwO+vjwtzbN/TLAOPn4fAOuo0dgTz0puf3sOpmpb61zDcXCeeTh5jWNOwD7lXCx/4KtrLZiNqalMfr1pHc6tP8X859Xk8aMnYP/6Lqx9BmGN+kFyhtWazzBffvHV+Duaqw/+TvKzmqy3mMIqEREREdlrWYkQuaXPYJGcUeWveb9Z47gjJdhOCMfyEff3bc0SRUTajYlFv5oVZG+PA9q4mfm3MUsXQTwOvftD3wEw9OBk6BOPYV59pnWu8e48+PIL8AewTjvvqx3fOQQG7g+xKGb2SzhzXsL54/WweQNk52JffTP2eT/G8vkAsHLzsYaPTI75n9eSnyNh2Lg2uX97WGXtmFlVprCquRRWiYiIiMjeyRiyy17EFa8k4coBwBtcjR2ravJQO54CGAvsC5arNasUEWk35r0FUFsN+QVw0BHJbemeWbVjCeBRo7AsC8uysE8+J7lvwRs4r7/QsvHDIcyLM5PXmHgWVk5+ap9lWdgnnZ08bs6/Mc8/kgzODhmB/bv7sLa/R19nHTcxefz7b+O8vxDn9pvAcSC/AKtbYfKgwl7JY7QMsNkUVomIiIjIXilQsxh//ScYXFT3+hFR/0AsDP7apU0eK9WvKkNLAEWkczLGYN58GUgGLtb2QIVt6ZtZZSor4PNPkjXteIoeYB1wKNYZU5LHvPgYzluvNG/8UBDz3D+TfacKi7COP2Xngw46AvoNTH7t9WKdfwX2T27Cysnb9aD7DoF9Bidnfj30Z1i/Gnx+rEkXfVV/qmeVZlY1lzvdBYiIiIiItDqTILNiNgB1BT8g7u9LKPdIvOF1BGqWEMwfA1Yj/93WxPGG1wPqVyUindjaVVD8ZTJY+f6JmP/NBcCkaRmgMQbz0hNgDAw+AKt7jwb77fFn4sSimFefwTz7MI7Xh33siY0bu6YS89armHmvJ58yCNhnXojl8ex0rGVZ2Jf9DPP2HKzvj8Mq2vNSb8uysMadhvnH7eD2YI2egDX+hw3DrR7bw6qtpRhjkk3XpUkUVomIiIjIXscT3ojthHHsDEK53wMgknkgjv0KrngVntAaYhn7YSWCeMIbwCSwMNufFugABsskP7tilVgmRsKVRcLbM50vS0Sk2Uzxl8kv9huGlZkF3XtgIG0N1s2C2ZhF/wHLxj713F0eY518DkSjmNkvYp7+O2bwd7B699/9mGWbMbNfSo67o4l8UR+siWdjHf693Z5nFfXFmjS10bXbI47F5BdAYU+svO47H9CtR7InWDSanNW1q2NkjxRWiYiIiMhexxP62rK9HTOobA/h7EPJqH6XjKpFxEPrCFQtwjaRRo0ZCwwC/eu4iHRW22dQWQXbQ/fuhQ22tyezdhXm6YeS9Zz+I6yhB+/yOMuy4IcXYDZvgOVLcGbci/3L27Dshr0DzZdfYF5/AfPB/7b/owOw7xDsH/wQDhmBZbd+ByRrvwN2v8/thu49kssAy0oVVjWDwioRERER2et4d/SY+sayvXDOkWRUv4sv+Bm+4GcAxD3dcFzZgJX8sGzAwmz/DDbG9lLf7bj2fAkiIq1rRyi1I6TaseyuthoTjWB5fe1ShqmpwvnbdEjE4fDvYv3gjD0eb1kW9vlX4PzuSlj3OeatV5PL8IyBlR/ivPEirPzoqxMOOgL7B2ckZ5Cl8x8YCougvBRTXoK1/7D01dFJNTusmjFjBv/3f//Hc88915r1iIiIiIi0jBNNLu0DYhmDG+yK+3oT9e+DN/wlcW8R9d2OJ5J5QOP7V4mIdFKp3lTdt8+sysgCXwAiIdhWDt/Sq6lVakgkcB76C1RVQFFf7AuvaVSgZHUrwDrzIszjD2BefgLH48UsfBM2JP9hAtvGGnEs1olnYPUd0LYvopGswqLkMssyNVlvjmaFVevXr2f+/PmtXYuIiIiISIt5Q+uwSJBw55Fwd9tpf3WvH+GKVRD39VVIJSJdx9YdywCTM6osy0rOstq8Idm3qj3Cqhdnwqrl4AtgX3EjViCj0eda3x+HWbIQVn6EeerB5EavL9kU/YRTd2rQnnY7nrZYXpLeOjqpJv/X2XEc/vGPf3DyySe3RT0iIiIiIi2S6lcVGLzLHlPGlUnc319BlYh0GSYeSzb6hq+W/33t6/Z4IqBZshAz598A2BddjdWrX5POtywL+0c/gexcyMrGOvkc7Nv+iT350o4XVJGcWQVgyjWzqjmaPLPqrbfewuv1cswxx/DMM8806hw9prFxdrxPer9kb6d7XboS3e/SFaX7vvduD6timYP1Z0/aXLrvd5FGqawAY8DrxcrJ++q+7V6YXKq2rfxb7+GW3Otm8wacGfcmzz/xDOwjjmnyGABWj15Y0x8GlzvZxLwj69k7+bn4S1i7CmvQ0PTW08k06adbVVXF888/z+9///tGn1NYWNjkorq6oqKidJcg0i50r0tXovtduqLWvu9NIgKWC8ve/f/CmlgtidWbAcgf8D0sb26r1iCyO/o9Lx1ZeMtGygF3j9706t07tb1mwCCqgUCwlu69ejVqrKbe606wji2/vQ0iYXwHH0HhT36O5ergQVMrMD17Un7QcCLLl+Lc/VsKfnsX/oOGp7usTqNJd8jMmTMZO3YsvXv3pqyscdMEy8vLicfjzSquq7Esi6KiIkpLS5NPNhDZS+lel65E97t0RW1x37vDG8gt/ieWMcQCA4gG9iUW2Je4vw9YXz3C3Fv7MblA3NuT8oogEGyV64vsjn7PS2fgfL4SgEReN0pKvuqh5HgDAAQ3bSBasufeSs25140xOH/9E6Z4A+QXEL/wGkrLypv5Kjof8+NfYt1/K2blR5T/5irsn9yEfeDh6S4rbdxud6MnNDU6rFq+fDlr1qzhxz/+cZML0i/tpjHG6D2TLkH3unQlut+lK2qt+96O15Cz+QlsJwKAN/g53uDnADiWl1hgALHAvkQDA1Pbo4HB+jMn7Uq/56Uj++pJgD0a3qfdtgcHFWVNCqAae6zz+r8wy/4Hbjf2j38B2bld68+J14d11W8wf5sOy5fg3P8HuPznWIcene7KOrxGh1Vvv/02FRUV/L//9/+AZKN1gIsvvpipU6cycuTItqlQRERERLouEye35AlciRri3p7U9PghnvBGPKG1eENrsZ0QvuDn+LaHVDtEMwalqWARkQ5o61dhVQPdt4dVVRWYRALL5aKpjOMke2Jhkg+1CIcwm9bD+tWYt14FwJp8Gda+Q5pffydmebzYV9yI8/AdsHQRzt+mY11yPfaR3093aR1ao8OqKVOmcPbZZ6e+r6io4Ne//jV//vOfycrKapPiRERERKQLM4bs8pfxRDbi2H6qi84n4S0g7u9HKO97YBxc0S14twdXntA6bCeEYweIBfZNd/UiIh2GqdiS/OKbYVVOPrjdEI9DVcXO+xvB+ftt8MH/drvfGnk81rEnNnncvYnl9mBf+jOM5x7Mu/Mw/7gDJxrFHnl8ukvrsBodVmVlZTUIpRKJBADdu3dv/apEREREpMvzhNYQqFmCwaKm5zkkvAUND7BsEr5ehHy9COWN3B5elWFcAYztS0/RIiId0fZlgNY3wijLtiG/AMpLk8c0MawyKz78KqjyeME44PJAn/5YfQfCoCFYI0bpaZmQnLV20bXg8WLenoOZcQ9ONII9ZkK6S+uQmt2Cv0ePHjz33HOtWYuIiIiISIq/7mMAwjlHEM3c/9tPsGwSPj2RTUTk60w8DpXbkt8U9Nz5gO49oLwUU1FOUyIl4yRwnn8UAOv4k7EnX9ryYvdylm3Dj34CXh/mP69innowGVideHq6S+tw7HQXICIiIiKyE+Pgq08+vSqcdVCaixER6cQqtyZnPLk9kJ27026r+1dN1pvCvDsPNq2DQCbWxLO/9XhJsiwL6+xLsCZMAsD861Gc155Jc1Udj8IqEREREelwPOEN2Ik6HNuv/lMiIi3xtScBWvYuIoBu25f+bStv9JAmGsG89CQA1oQzsbJzWlpll2JZFvbpP8I67XwAzMtPYTZvSHNVHUuzlwGKiIiIiLQVX/2nAEQzh4LV9KdTiYhIkqnYzZMAd9i+3XxtZpWJxyAUhGB98iNUhwnWU+dx45Rsxln3eXLGVrdCrONPbuuXsNeyJ55FYtVyWPkRZuVHWL37p7ukDkNhlYiIiIh0LMbgq0uGVZHMYWkuRkSkk9vRXL1g12GV1b0QA/D5JyR+dmEynIpGdnls5TfPPf18LI+31UrtiqyhB2NWfoRZtRwU/KUorBIRERGRDsUdLcUVr8RYbiIZjWisLiIiu7d1+4ypboW73t+7f7KfVTwGVdsa7vMHICMTMrIgIxN/fncitju5rVc/rKNGt2npXYE15KDtYeGnGMfZ9VLNLkhhlYiIiIh0KDtmVUUz9gdb/2IvItISqeV9u3oSIGDl5GH/9t7ksr6vBVP4M7BcXy3DtiyLwl69KCkpwRjTHqV3DfsMBp8f6mth03rorz6NoLBKRERERDoYb/2OJYAHpLkSEZG9wI5lgLvrWQVYRX2gqE97VSRfY7ndsN8B8MkHmM+XYymsAvQ0QBERERHpQOzYNjzRUgw2kczvpLscEZFOzSQSyRlTALvpWSXpZw05CADz2fI0V9JxKKwSERERkQ7DX/sRALHAQIwrI83ViIh0clUV4DjgdkNOfrqrkd3YEVax+lOMk0hvMR2EwioRERER6RiMg792CQDh7MPSXIyIyF7ga83V1bi7A+s/KNnMPlgPG9enu5oOQXeriIiIiHQIntA63LFtOLaPcNZB6S5HRKRTM6s+wXns3uQ3PXqntxjZI8vlgv2GAWBWaSkgKKwSERERkQ4iUPM+AJGsQ/QUQBGRZjLhEM5TD+Lc/isoL4X8AuzTzk93WfItUn2rFFYBehqgiIiIiHQAViKEb/tTAEM5R6a5GhGRzsms/Ajnsfu+egLg98dhnXkRVkZmmiuTb2MNORADsPpTnLfnQG01+ANYo8dj2a40V9f+FFaJiIiISNr5a5dhmTgxbxFxnx6fLiLSFCYUxPzrUcyC2ckN3XtgT7kS64BD01qXNEH/fSGQAaEgZub9qc3WwP1h4P5pLCw9FFaJiIiISHoZg79me2P1nCPBstJckIhI52E+WYoz8wGo3AqANWYC1hlTsPx6ompnYtkurDOmYBbNhawcrOxc6LMP9Ns33aWlhcIqEREREUkbO1aJv+5jPNESjOUmnH1ouksSEekUTH0d5rl/Yhb9J7mhsAj7gquxhhyY3sKk2ezRE2D0hHSX0SEorBIRERGR9mMc3OGN+IKf4av/DHe0NLUrnHUwxqWZACIi38Z89B7O43+F6m1gWVjHn4x12vlYPn+6SxNpFQqrRERERKRNWYkw3uDneIOf4atfhe0EU/sMFjH/PkQzhxLM/V4aqxQR6fhMsB7z1IOYxfOTG4r6JGdTDf5OegsTaWUKq0RERESk1ZlQKYHKt/HWr8QTWo+Fk9rn2H6iGUOIZA4lmrEfxqWnVImINIZ54bFkUGXZWONOwzrlHCyvL91libQ6hVUiIiIi0iqsRAh/7Yf4a5eQWL2ZrK/ti3sKk+FU5lBi/n3A6nqP4RYRaSmzYhkA1qXXYx/5/TRXI9J2FFaJiIiISIsFqhaSVTEby8STGywXUf/A7bOnhpDwFqS3QBGRTs5UV8LWLckeVQcOT3c5Im1KYZWIiIiItIg7spmsrf+HhSHu7Uk4dwS5g39A9dZajDHpLk9EZO+w5rPk5979sQJ6GIXs3RRWiYiIiEjzGYfsspewMISzDqKm5zlYtk2eJwuoTXd1IiJ7DbM2GVZZg4amuRKRtmenuwARERER6bz8NUvwRDbiWD7qCk4Cy0p3SSIieyWzZlXyi30VVsneT2GViIiIiDSLlagjq+INAOq7j8Vx56S5IhGRvZOJx+DLLwCwBg1JczUibU9hlYiIiIg0nUmQXf4KthMi5i0ilPvddFckIrL32rgeYlHIzIaefdJdjUibU88qEREREWkSy4mQU/oUvuDnGCxqC08Dy5XuskRE9lo7+lWx7xAsLbeWLkBhlYiIiIg0mh2vJnfzDDzRUozloabnWcQD+6S7LBGRvdsaNVeXrkXLAEVEREQ6qEDVO+QV/xMrEUp3KUnGIa/4n3iipSRcWVT2uZRI1oHprkpEZK9ndoRV+6pflXQNCqtEREREOiKTIHPbm3hDX+Cr+yTd1QDgCa3HHSvHsf1U9r2CuL9fuksSEdnrmaoK2FYOlg0D9093OSLtQmGViIiISAfkDm/CdiIAeENfpLmaJH/dMgAiWQfiePLTXI2ISBexZlXyc599sPyB9NYi0k4UVomIiIh0QF8PqLzBNWCcNFYDOLHUDK9w1mHprUVkL2SWL8F54wVMIpHuUqSD2dFc3RqsflXSdajBuoiIiEgH5A1+FVbZTj3uaClxX++01eMLrsJ2wiTcucQCA9JWh8jeyBiD88hdUFcLJZvgwqv1xDdJMatXJL/YV2GVdB2aWSUiIiLSwVhOBE94AwBxbxEA3uDqdJaEvza5BDCcdUiyb4qItJ6qbcmgCjCL/oN5YUZ665EOw4SD8GXyHy+s/fVAC+k69H8aIiIiIh2MJ7QWC4eEuxuhnCOAhjOt2puVCOKtT/ZMCWdrCaBIqyten/zs8wNgZv8bZ/aL6atHOo7VK8BxoLAIq3thuqsRaTcKq0REREQ6mB3BVDRjMNGMwQB4wuvBiaWlHl/dJ1gkiHmLSPiK0lKDyN7MFCdnUloHHYF15oXJbf+agdmwNo1VSUdgPlsOgDXkoDRXItK+FFaJiIiItDJXtBx3ZDPW9qf5NdWO5urRjMEkPD1IuHKwTBxP+MvWLHOPrEQYd3gD/pqlZFQvAiCSfWi7XV+kS9kxs6rPPtgnngEHHwmA+XBx+mqSDsGsSoZVKKySLkYN1kVERERaixMjq+L/yKh+N7Up4coi4em+/aPga193x7j8Ow1hx6txR8swWEQDg8CyiGYMIlC7DG/wC2LbZ1q1FisRwh0pxh0twxUrxx0txxUtw5WobXCcwUr2qxKRVpeaWdVnn+TnQ4/CfPw+5pOlcMo56SxN0sgE62H77DprqMIq6VoUVomIiIi0Ale0jJzSp/FESwFw7AxsJ4grUYcrUQe7mBUV8/airvCUBk/X8wbXABD39ca4MpLHBQYnw6rQF9Q3ozY7VkVG1QLCWYcQD+yT2u4OF5O3+WFsJ7zL8xKubBLeHsS9hUQzhuB48ppxdRHZE+MkoGRj8psdYdWwwzEA61dj6mqwsnLSVp80n6mthkAmlruZf+1e/SkYB3r2wcrr3rrFiXRwCqtEREREWsgV2UL+pr9imyiOK4uanpOIZuyPlQjhim3DFav4xsdWXIk6PNES8ov/TihnBMG872Mn6vDVfghANGO/1Pg7+la5I5uxEvUYV2aja7Nj28gvfhhXvBJ/7TK29bsax5MPJk5O2XPYTpiEK4e4vw9xT2EqnEp4CjGuQKu+TyKyC2WlEIuC1wsFPQGwuhUkg6viLzGfLsM6alSai5TGMmtXYZYsxHzyQTKEzMnDvvAarIOGN32sVL8qPQVQuh6FVSIiIiItlFk5F9tEifn7U110Po47GwDjChB39SHu77PTOVaijqyK2QRqlhCoeY9AzXsN9kcDXy33c9w5xL09cUe30G3jA9R3G0s4+1Cw9tx+1BUtJ2/zP3HFqwGwnTC5pU9R2fdyMivewh0tw3Flsa3/1U0KwESkFRVvn3XZqz+W/dWfaevA4ZjiL+HTD0BhVafgvL8Q89CfG26sqcK59/dYoydgnXkRls/X6PHMqo+TX6hflXRBarAuIiIi0gKu6FZ8dcl//a4pPD0VVH0b48qitscPqexzKXFvTww2CXc+0cAg6vOPIxYY2OD42oKTSbiyccUrySl7nm4b7sFX9wkYs5u6ysgr/geueDVxTw+29f1/OHYAT2QTuaVPkVG1IFWzgiqR9DHbwyqr7z4NtlsHHp7c/8kHGMdp97qkaczmDZjH7k1+c8gIrMt+jv2XGVjHn5zcP+//cP5wLWbd6t2O4cz+N86Dt2HKSzH1tbBpPaAnAUrXpJlVIiIiIi2QUfU2FoZIxhASvqImnx8L7Mu2/tcm+5LsYaZULGMQFfvcQEb1/8ionI87VkZu6ZPEfH2o7zYuuWzQsoDtM6qKH8aVqCXmLaKq98UYdxY1Pc4kr/RxfPUrAQhnH0o064BmvW4RaR07wip6NwyrGPwd8AWgtho2roV9WvfhCtJ6TCiI89c/QSQM3zkE+//diOVyAWBNvhRz8BE4j94DW4pxbvs51klnY42flDoGwFk8H/OvR5PjrfgQa8T3k/8Y0asfVm5+Wl6XSDppZpWIiIhIM9nxGvw1SwEI5o9u2WDfsqQveUEvwfxRVOzzc+rzj8OxvHgixeSVPEpe8T/whNbjilWkgqq4t4iqPpdg3FkARLMOIJj7PSDZPL224OSW1SwiLbd5NzOr3B74zsFAcnbVtzHhUHJ2z/KlyeAj2JzHMUhTGWNwHr0bthRDfgH2pTc0CKEArAMOw/7dfVjDR0IigXn5KZy/3IgpK0mOUboJ8/hfkwfn5EGoHjP/jeS5mlUlXZRmVomIiIg0U6DqHSwSRP37NHiiX1szLj/13U8gmPddMivnE6h+F294Hd7iv+NYXmwTJe7tQWXvi3da4ldXMIG4twcx/z6ppw2KSHqYaAS2JAOLnWZWsb1v1YeLMZ8shYlnYaoqYM0qTMUW2LYVU1EG28qhohzqaxue/P1xWFOubIdX0cUtfQeWvQtuN/b/+yVWdu4uD7Mys+Hyn8PieZin/g5rPsO55RqsMy/CzH8dIiHY/0Dsa36LeflJzJyXkucNPbgdX4xIx6GwSkRERKQZrESIQPViAIL56Wl+bFxZ1BVMJJh3DJnb5uKvWZIMqjwFVPX+akZVA5aLcO5R7V+siOysdFNyCXBmNuxiqZd14OEYgDWrSPz+6lQPo93KyEzOzCktxix5B3PO5VgeTxsULjs4O0KlE8/AGrj/Ho+1LAvr6DGY/YbhPHI3fP4J5sm/JXdm5yZnZXl9WJOmYg44DLN+NRyq39fSNSmsEhEREWmGQPUibBMh7u1JNGNIWmtx3LnU9jidYN738QY/I5x1CKaRjd5FJH3Mpu39qvrsg7W959zXWd17QK9+ULIxGVRZFvTbF6tnb+jeA7oVYnUv/OrrQAbGcXB+MRWqtiWfJKiwo82YNZ/Bus/B7cY6bmKjz7O698C+/g+YN1/G/PsJcJxkUJXX7atjhh2GNeywtihbpFNQWCUiIiLSRFYiSEbV2wDU5x/XuH5T7SDhLSDkPSbdZYhIY+3oV9Wn/24PsX/0E8z7b8OgoVgHHIaVnbPHIS3bxho+EvOfVzHvL8RSWNVmnDdfAsA6ajRWTtOaoFu2C+vEMzDDR0Ikssd7QKQrUlglIiIi0kQZVW9jOxFi3iIiWQemuxwR6aRM8YbkF30G7PYYa78DsPZr2lM7rSO/nwyrPnoPE41geX0tqHLvZzaswSx5B+u4iVh53Rt3TnkpfPAuANbYU5p9baugZ7PPFdmbKawSERERaQIrXkdG1TsA1Hc/ocPMqhKRjs/UVMKGdZiN62DjWvj8E2DPM6uaZd8hyaWBFWWwfCkM/17rjr8XMcUbcO74NQTrMe8twL7291hFfb79vLmzkv3GDjgUq++Ati9UpItRWCUiIiLSBJmV87BMjJivL9GM76S7HBHpoExlBeaLlbBx7fZwah1Ub9v5wKwc6DuwVa9tWRbWESMxs/+Nef9tLIVVu2QqK3Du+R0E65P/8FBRhvPnX2Jf81usfQbv/rxgPWbhHADsE05tp2pFuhaFVSIiIiKNZMerCdQknwCYnFW1c0NkEQFTugnz3gLwBSAzCyszGzKzkk+92/7Z8njTXWabMUsW4vzzTojHG+6wLOjZG6vfvtBvIFa/gbDvECx/oNVrsI78fjKsWv4+Jhxqk2t0ZiZYnwyqKrdCUR/sK25K/sy+/ALnLzdhX3Ej1gGH7vrcBW9AOJRsfj/s8HatW6SrUFglIiIi0kj+mvexTJyofwDRwH7pLkekQzLG4Pz9z8mn1+3YtqsDvV7I6459zuVYB+49f+F3FszGPPFXMCb5lL9BQ5NP8Os3EPoOwPL526eQ/oOgsAjKSzEfv4814tj2uW4nYWbeD8VfQm4+9jW/wyroiX3DrTh//ROs/Ajn3luwLv4p9pENH1phImHMnJcAsE48Y5dPcRSRllOTBREREZFG8gVXAxDOOVyzqkR25+MlyaDKF8A6egwcdESyh1LPPsklbzv6vEWjUFaC8887MLXVaS25tThvvIB5/AEwBmvUD7Bvvhv7Rz/BHj0ea9DQ9guq2L4U8MjvA2AWvtlu121LxnFw3l+IM+91zJrPMOFg88ZZuwqz9B2wbOwrf51qcm75M7CvuhnriGMgEcf84y84/53V8Nz5b0BtNRQWYR09uqUvSUR2QzOrRERERBrBSoRwhzcCaFaVyG4YY3D+7zkArNHjsc+8cOdjHCe5hKq+NjmLZdM6zLMPY11yffsW28qcj97DvPAYANb4M7FO/1HaZ91Y3x+Hmf1vWPkRZtVyrCEHpbWeljDB+uQyvY/fT36/Y0dhUXJJZd+ByUbnfQdAQc/Ue29M8sivf++8ODO57btjsAY0/H1ueTxw6fWQnYP57/9hnvo7Tk011innQDSKmf1i8rgJk7BcrjZ9zSJdWZPDqvXr1/P444+zZs0aXC4Xw4YN46KLLiI/P78t6hMRERHpELyhNVgY4p5CHE9eussR6ZhWLYe1q8DtwdpN42nLtiEjEzIysS+4EmfazzCL52OOGo110PB2Lrh1mEQc54UZAFjHn4x9xpT0FrSdVdAT69hxmP/+H86/H8f+xW1pD9Caw2zegPPANCjbDG4P7H8gbP4SqrZBeWlyqeMH//sqwApkQHYehOqTzdPzu2Nf/FOswd+BlR8m71O3OxlA7YJlu+CcyyE7D/PKU5jXnoGaKujZO/m5e4/krEERaTNNCqui0Sh//OMfOfHEE/nlL39JfX09d911F//4xz/4+c9/3lY1ioiIiKSdJ/gFANGM3T8hSuT/s3fX8ZGl14H3f88tJjFLzcw83QM9zOABM8dJHDvJbsDJJpv15t3k9WYDb5J1YnbimMZjimFmPB7wQA91TzODuqWW1GKGYrrP+8cVdLvV3YJSl+B8Px99VKq69dynQFV1T51znrnO/OWPAVA770HlXvvLbLVwGeruR9C/ehrzyS9h/PUXUW7vVE8z48KvPActjeD1ox4ZPQCSLerB96Hffhlqz8DxA7B+W7anNC66rxvz7/4MohEoKLYanw+u1KeDA1ZmXlM9NNahm+qgtdHaNnpRiWBXO+Y//U/UJ/5wpN/UbQ+gCkuuuF+lFOqRD2AGctFPfdVqqj4Y6FMPvgdllyIlIabSuINVH/jAB7j99tux2Wzk5eWxY8cOnn/++amanxBCCCHEtDDUryrhlRJAIUajz1fD6aNgs6Hue2LM11OPfhh9aA90d6Cf+zHq3R+fwllmno7HGHjyawCoh96L8vmzPKNLqbwC1J2PoF/4CebPnsRYu8XKbpsh9JF9VuCpfB7Gf/s/qEDu8GUqkAOrNqBWbRjZPpWCtiYro8rrA5cb80ffgCN70f/2j9ZGLg/qwfeOaf/G7Q+gAzmY//5P1uqOBUWom+7K6G0UQlxuXK9Sfr+fu+66C5vNhtaalpYWXn/9dW666aapmp8QQgghRNbZkt3YUj1obCQ9i7M9HSGmJfMXPwRAbb/9qhkrv0653Bjv+y0A9NsvW8GGGUS/8izp7g4oKEbd8VC2pzMqdf8TVmlcU53VWHwmOXcSALX1lksCVVei7HZU1ULU8jXW7+IyjN/976i73zWyzT2PonLyxjwFteVmjD/8K1i1AePjf4CyO8Z7K4QQ4zSh3MXOzk7+4A/+ANM0ufvuu3nf+9531e1nYl10NgzdT3J/idlOnutiLpHn++zgHCwBTHrmg82NPJpXJ8/7ucc8ccgqMbPZMB587/gf+w03QCDXWmXt9BHUNClV01pbPYp6u9ChIGrpykvKFHVbM+bzPwHA9vhHUU5XlmZ6dcqfA/c9gfnzJ9HP/yds2zkj/j+11uizJwBQK9ZOeM7KZocPfBJzwRL0hfMYD7x73GOpVRswLsrgmovktV1cT0oPLY8wTlpr2tra+PrXv05eXh5/+Id/mOm5CSGEEEJMC+mT/4ruPoix8N0Y89917SsIMYfoVIq2//JBUo11+B/7EPmf/MyExun9+j8Revr7eG69h6I//9sMz/LKdCpF/MQhUu0tpDvbSXW2kR78SXW2QzIxvK0RyCXw+Ifx3fcYoed+zMCPvw3JBI5Fyyn91yendXmdGRyg+aP3QzJB6ee/g3PZ6mxP6ZpSrU20/vZjYHdQ+aPXMFzubE9JCHGdTLgrnFKK8vJyPvKRj/AXf/EXfOITnyAnJ+ey7To7O0nNsFTebFFKUVZWRltbGxOMIQoxI8hzXcwl8nyfBXSawt4TGEB3uoxUa2u2ZzTtyfN+bjFffgazsQ78OUTvfITYBP9H9Lob4OnvE93zOi21NSivL8MzHWWfwX7S//LXUH/uyhspBbn5oBRmbzf93/ky/d/58sjFazZR9Kefo72jY9o/39Xmm9B7d9Hxs6ewffT3sz2dazLfetU6sWgZ7T292Z2MkNd2MWl2u53i4uKxbTuegU+cOMHXvvY1Pv/5z2Oz2QAwTRMA4yrfIsgTeXy01nKfiTlBnutiLpHn+8xljzZimHFMw0PSWQHyOI6ZPO9nPx0cwHzmKQDU4x8Bj2/Cj7mevxjK50FrI+bBtzFuuSeTU718f90dmJ//X9DWDB4fLFmBKiiGwR/rdBHkF6LsDrSZRu9/C/2LH1jXySvE+MBvo7bcjL2kDN3aOu2f7+qWu9F7d6H3vo753t9ETfNMJV19HAC1bM20v2/nEnltF9fDuIJVixcvJhaL8b3vfY/3v//9xONxfvzjH7Nq1Sr8/um16oUQQgghxKSZSXy9rwGQ8C4FNX1LfITIBv3MU9aqa1WLUJMMLimlUDtuR//su+h3dsEUBqt0ayPmP/8/0NcNBcUYf/TXqPKqq8/PsKG234bedgvUnYPKBSi3Z2b171m+ForLoLMNfeBt1M1jW9VOaw0NNeBwoSrnT/EkL9rv2cHm6svXXrd9CiGmh3F94vJ6vXz2s5+loaGBT33qU/zxH/8xbrdb+lUJIYQQYtZR6Sh5Lf+BK1KNxkY098ZsT0mIaUUHB9BvvQRgZRgZtkmPqbbfbp2oPo7u7pz0eFdiPvkVK1BVPg/jz//+moGqiynDhlqyEuX2TNn8pooyjOGg4tBjdzW6rRnz6acwP/spzL/5E8y/+Qy6r3uqp2ntu7sTujvAMGDJiuuyTyHE9DHunlULFy7kL//yL6diLkIIIYQQ04KR6iev5ZvYE+2Yhpv+8o+S9CzK9rSEmFb07pchlYIFS1Er1mVkTFVYDCvWWcGqvbtQD743I+NeTMdjUHsaAOO/fBZVUJTxfUxn6qY70U9/D2pOo1sbUeXzLrlcD/Ra5Y7v7Lq8l1cygT55GHXz3VM+z6FVAFmw9JIVGIUQc8OEG6wLIYQQQsxGtkQ7eS3fxJbqJ23Loa/iE6RdZdmelhDTijZN9OsvAKBuuz+jY6sdt6Orj6P3vg5TEKyi9gyk01Y/quLyzI8/zam8Qli3FY7uw/zRf2DcfBdULkA31KL37oJTR2CwLzGGAas3oXbcDg016F89DScPw3UIVnFuqARwzdTvSwgx7UiwSgghhBBikCNaT27rdzDMKClHMX0Vn8B05Gd7WkJMP6eOQGcbeHyoG27N6NBq843o730FWi6gmxtQlQsyOr4+N9IHaUb1m8ogY+d9mEf3wYmDmCcOXr7BouWo7bejtt2CyskDQOcXoX/1NPr0UbRpoq6ywFYm6Gors0otk35VQsxFEqwSQgghhACc4VPktn0fpVMkXfPoq/g42ubL9rSEmJbM158HrJKyTK8op7x+WLsFjuxF73sT9XiGg1VD5WVzuWn3+q2oT/wR1JxCN9ZBSwPkFaG232oFqUorLr/O4hXg8kBoABrrYMGSKZue7uuBjhZQCpatmrL9CCGmLwlWCSGEEGLOc/fvI9D5cxSauHcl/WUfBMOZ7WkJMS3p7k44uh/IfAngELVtJ/rIXvT+N9CPfThjGVA6mYDzZ619LJu75WVKKdRNd8JNdwLWan/Xuo+V3Q4r18HRfehTh1FTGawaDIYyb5EVvBRCzDmy/rIQQggh5i6t8fa8Qk7nz1Boojlb6S//iASqhLgK/eaLoE1Yse6y5tyZojbcAE6XVWpYX5O5gc+fhVQScvNhtOyhOWqswUC1ZhMA+uThKZuLvlCLfv4/ATAeeM+U7UcIMb1JsEoIIYQQc5PW+Lt+gb/nZQDC+XcQLH4ClC3LExNietPv7AJA3fbAlO1DudxWwArQ+9/I2Lj63GAfpDncr2oy1GorWEXNaWtVxaswX/oZ6T/5GOauX6K1HtP4OpXE/Oa/WA3wt9yE2nrLZKcshJihJFglhBBCiLlHa3zdz+Pt341GESx+F+HCe63+KEKIK9LxOHR3AKBWb5zSfakbdlr73P8Wemh1uknSZ63m6szhEsBJKSmHwhJIp2Co99codFM9+qffgYE+9Pe+iv6Pz1vPnWvQv/wxNNWDP4DxoU9ncOJCiJlGglVCCCGEmHN8PS/j63sTgGDxY0Rzb8zyjISYIbrard9eH8o3xb2E1mwBjw/6uqHm1KSH06kk1J4GrMwqMX5KqWuWAmrTxPzul6zsqPJ5oAz0O69h/u2fottbrji2bqqzglWA+tCnh1chFELMTRKsEkIIIcTcMdijytf7KgDBokeI5d6Q5UkJMYN0tVm/i8qmfFfK4UBt3gGA3v3K5AdsqIVEAvwBKK+a/Hhz1FApoD51ZNTL9ZsvwflqcHkw/uivMf7kcxDIheYGzL/5DPrIO5dfxzQxn/yKFeDatEPK/4QQEqwSQgghxOQ5w6fxdb0AOp3tqVyZThPo/Plwj6pQ4f1E827K8qSEmFn0UGZVcel12Z/acYe137dfwXzmqTH3PhqNHipbW7YGZchh0IStXA/KgNZGdEfrJRfp/l70T78NgHr8I6iCItSKdRj/z+dh6SqIRjC/9H8wf/JtdHrk/UK//TLUnrECXB/8lPQTE0Jgz/YEhBBCCDGzKTNOTtsPMXSctLOYWM6WbE/pMtYcn8IVOYtGESp6iGjezdmelhAzT6eVWaWKrlOwauV61KMfRj/9PfSzP4BwCN7/29bv3k7o6UL3dkFv18jpni4on4fxe/8DZR853BkKVkkJ4OQonx9WbYBTh9HP/yfq4/91+DL9o29AJAwLlqLueHDkOnmFGH/yN+iffAv98jPoF36CrjuL8Tt/CsqG/slggOvRD6HyC6/7bRJCTD8SrBJCCCHEpLiCRzG01TjXPXBgegWrdBp38Cje3lewJ3vQykF/6ftJ+KW5shATMZxZdR3KAIcYD78f0+dHP/U19Ku/QL/xAqRSV79SV7vVAHywCbyOx6B6MFi1ct0Uz3j2M971QcxTh9G7X0E/8G5USQX65GH0vjdAGRgf/T2UcenKqspuR73/tzEXr0B/+wtQfRzzc38MlQsgHISqRag7H87SLRJCTDcSrBJCCCHExGmNp3+k/4gzVo8t0UnaWZzFSQ3OJXwaf9dz2JPdAKRtAfrLP0rKPS/LMxNiBhvKrCq+fsEqAOOOhzC9fvQ3/2UkUJWTB/lFkF+EKiiCAuu0Pvg2HNqDPrxnZMXCE4cgmYDiMqhceF3nPhupJSth3VY4fsDKePvo72N+7yvWZXc+hFqw9IrXNbbtRFcuwPzK30FbE/T1WOd/5HdRNtsVryeEmFskWCWEEEKICbPHLuBItKKVnaSrEmesAffAQcJF92d1XrZEO7mtT6IwMQ0vkfxbiebuQBuurM5LiJlMaz2yGuB1KgO8mLH9NvTazVaZWV4hyuEYdTvt9WEe2oM+vBf9wU+hDAN9aA8AatON0g8pQ4xHP4R5/AB67+tWY/TONsgrQD364WteV1XMx/jsP6K/9QX0wbdRdzxkBcCEEGKQBKuEEEIIMWGegb0AxPzrSfhW4WxrwB08RLjwHlBZ+oZcawIdT6MwiXuXM1D2IQlSCZEJwT5IxEEpKMxO9qTyBcAXuPpGK9eDxwv9PVB3Fj1/Cfr4fuv6m2+8DrOcG9SCpbD5RiuLbf+bABgf/B2Uxzu267u98Kk/Q/V2WRlyQghxEVkGQwghhBATotJh3KHjAERztxP3rcQ0fNjSQZyRs1mblyt0BGesDq0cBIsfk0CVEJnSOZhVlV+Eso+e1TQdKLsDtW4bgJVRdeYYRCOQWwCLlmd5drOL8a4PWcFLgPXbYNP4goFKKVRBsWS7CSEuI8EqIYQQQkyIZ+AgSqdIuipIueaBshMLbATAPXAwK3NS6SiBrl8CEM6/E9ORn5V5CDEb6cF+VVznflUTMZRBpQ/vQR/abZ23aQfKkMOfTFKVC1D3PwFVizA+9GkJOgkhMkbKAIUQQggxfjo13Fg9mrNj+Jv1aM5WvP1v4wqfxt/xc7TNT9oewLT5rZ/B0xjOKZmWr/tFjHSIlKOYSP4tU7IPIeaswX5VqqgkyxMZg7WbweGEzjb0YANvtWlHlic1OxlPfBye+Hi2pyGEmGUkWCWEEEKIcfP2vY0t1UvaFiAW2DB8ftpVRsK9AGesAe9gP6vRmMqF6cgjVHAvCf/qyU9Im/i7nx/eZ7D4UVDyMUeIjOoazKwqmgGZVS43rNkER/ZaqwB6/bB8bbanJYQQYozkU5wQQgghxsVIBfH2vApAuPD+y7KkBso+hCt8CiMVxEiHrJ/h00GUTmHoOEaindy2JwkVPUI0b+JNj5UZI6ftB7gi1QCECu4l6V0y8RsohBiVHupZNQPKAMFa+U8fsQLYasMNKLsc+gghxEwhr9hCCCGEGBdf94sYOkHSVTXco+pipj2HaO4Vym20Rum4FfDqewvPwD4CXc9gpPoIF94Hanz9ZIxkL3mt38aeaEcrOwMl7yUeWD+BWyXE3KIbaiG/AJUzjr5uw2WApVM0q8xSG7ahDQNMU1YBFEKIGUaCVUIIIYQYM3usCXfwEADB4kfGHVxCKbRyk3a6CRY/Rtqeh7/nJXx9b4AyrIDVGDmi9eS2PYmRDpO2Begv/ygp97zxzUeIOch8+2X0t/4VnC7UA+9G3fM4ynX1VTN1Kgm9XdYfxTMkWOULoN77m9DaCGu3ZHs6QgghxkGCVUIIIYQYM3/Xcyg0scBGUu75kxtMKSIFd2Da/eR0/BRv7xvE/etIuSqueVX3wCECHT9FkSbpqqC//GOY9tzJzUeIOUC3NqKf+pr1RyKOfvop9Jsvod79G6htO6+8mlt3J2gNThcE8q7bfCfLuPtd2Z6CEEKICZC1W4UQQggxJvZ4C85YPRobocL7MzZuLGcbMf86FCaBjp+ATl95Y23i636RnI4fo0gT862ht/JTEqgSYgx0Io75tX+ARBxWbUB98k+hoBh6utD/9o+Y//yX6NbG0a/cOdhcvbjsygEtIYQQIkMkWCWEEEKIMXEPHAAg7l+T8eBQqOgRTMONI96Cp2/36BuZCXLansLXuwuAcP7tDJR96LIG70KI0ekf/wc0N0AgF+O3PoNxw60Yn/sy6l0fAocTzhzD/Os/xPzJt9Hx2KXXHexXxQzpVyWEEGJmkzJAIYQQQlybmcQdPAJALCfzvV9Me4BQ0UPkdPwEf8+vMO0BtOEEDbZUL7ZkF85ILfZkJxobwZIniOVszvg8hJit9NF96F3PA2D81mdQuVZjdeV0oR75AHrH7Zg/+Dc4th/9wk/Q+17HeP9vw6YbrUyqLiuzaqY0VxdiNOm0Jhw0cboUTpfCMCRLUIjpSoJVQgghxFygU4ANJli+4wqfxjCjpO15JDxLMzu3QbHAFtzBwzij58lt/+Go25g2H/1lHyHpWTglcxBiNtKRMOaTXwZA3fsYas2my7ZRxWXY/utfoo/uw/z+16G7A/MrfwdrN2N84HfQnYOZVcVl13PqQmTUoT0R2pqT1h8KfH6DHbf58Pps2Z2YEOIyEqwSQgghZjFboh1f98u4wycIFdxDpODOCY0zVAIYC2we/wqAY6UUAyXvIdD5cwwzZjVzRmPac0g5ikk7i4h7V6Lt/qnZvxCzlP7pt6GvB0rKUY9++Krbqg03YKzcgH7+x+gXfwonDmH+1X8Bh7VaoCqSYJWYuXq6UiN/aAgHTZrqkyxfI8EqIaYbCVYJIYQQs5Ay4/g7n8YdPIJCA+Dte5NI3i3j7vFkJPtwRmsAiE5BCeDFTEc+/RWfmNJ9CDGX6LMn0a+/AIDx0d9HOV3XvI5yuVCPfQR9452YT30NTh2G1OBBvpQBihkqmdAk4tb74f2P59JYn+Dk4SgdbUmWr3FneXZCiF8nDdaFEEKIWcjX8zKe4GEUmphvDWl7HoYZwx06Pu6x3MGDKDQJzxJMR8EUzFYIMRV0MoH5nS8CoHbei1q5flzXV6UVGH/0Vxif/u/WqoEl5VBaPhVTFWLKhUPWSrNOl8LhVJRVOgDo606TTJjZnJoQYhSSWSWEEELMNjqFe+AwAP2l7yce2Ii3dxf+7hfx9O+9vEG61igzgi01gJHqx0gNYBv8baT7ccQuAFOfVSWEyCz96i+gvRly81Hv+Y0JjaGUgi03YWy+EdJplF0OH8TMFAlZASmf38rX8PoM/AGDUNCksz1FxTxZWVaI6UTebYQQQogZwEgFscebSXiXgrr627crfAbDDJO2BYj71wEQDWzB1/0rHPFGbPFW0q5yjGQPue0/xB5vQenUVcdM2wLEfWsydnuEEFemtQZtooyJ99HRyQT6pZ8DoB7/GMo7uV5vSimQQJWYwcK/FqwCKC53EArG6WyTYJUQ04284wghhBDTndbktn4LR7yFtL2AUOE9xP3rr9jo3D1wEBhqhm4d7Gp7gLh/De7QcTwD+wjn30Vey39gT3YPX8+0+UjbczFtOdZvew6m3TqdclWMu9eVEGL8dCqF+aX/DbVnUA+9D3XXu1B2O7qrHf2z76Lrz6E23IC682HUVfpH6bdfhoE+KChGbb/t+t0AIaap4WBVYCQIXFJmp+5snI62JFprKygrhJgWJFglhBBCTHOOaA2OeAsAtpSVDZXse5NQ4f0kvcsu2dZIDeCMVANcVu4XzbkBd+g47uBhHLFG7Mlu0vZ8+so/TtpZeM2MLSHE1NP/+U04cWjw9LfQb7+CWr3RapKeSlrn/+pp9MvPwuYdGHc/CktWXnKQrVMp9As/BUDd97iU7gkBRAZ7Vnl9I1/0FBbbMWwQi2hCAyaBXFkVUIjpQt65hBBCiCxwhk7hiDcBBloZoAw0BigbKVcFSc+i4W29fW8CEM3ZRtqeh7f3DRzxFvJb/oOEZwmhwvtJuasAcA82VU+4F5B2Fl+yz6RnMSlHAfZkD0a8GdPw0lfxicu2E0Jkh7n3dfQrzwKg7nkUvec1aG1EtzZaG6xYh7r5bvSeV+H0UTi4G/Pgbli0HHXXI6gtN1tZWPvfhO4OCOSibrkni7dIiOljJLNqJFhlsysKi+10tqXoaEtKsEqIaUSCVUIIIcR1NtTs/Gr6S99HPLAJW7wNV+QcGkU4/3ZMRwHR3Bvw9ezC0/8OzmgtBU1fIuZfR7jg3pESwNGaoSuDWM4N+LtfQCsHfRUfl0CVENOEbqpDf+cLAKgH34fx+EfQD70P/fRT6IYajPvfDRu3WxlUN96BbqpHv/Is+p1dUHcW/e//hP7Jt1F3PGQFs7ACXsrpyuKtEmJ6SKc0sagGwOu/tIS+uMwKVnW2pViyIhuzE0KMRoJVQgghxHXk6XtrOFAV86/HtHlR2gSdBkxsqQGc0VpyOn5Kr6MET/8eAOK+NZiOAgC0zU+o+GEieTfj6/kV7uAR3KHjuEInUGi0clg9rUYRyb0JlY6S8K0k5Z5/XW6zEBOl+3sxv/p3qK07Me56ONvTmVLmN/4vJBKwZhPq0Q8CoHwB1Ic+Ner2qmoh6uP/Ff34R9Gvv4De9Uvo7UL/9NvWBh4f6rYHrtf0hZjWImErq8ruAKfz0r5UJWUOThGjuzNFOqWx2aVvlRDTgQSrhBBCiOvE07eHQNdzAIQK7iJScPflG2mT3Nbv4IpUk9v2XYxUCIBI/s7LNjUd+QRL30ckbyf+7hdxDfWq8q9FG1fIpjAchIvuz8wNEmKK6TdfgprT6JYL6NvuQ9kd2Z7SlNC93dBUD8rA+K3PjGsVQJWTh3rkA+j7343e/wb6V89AUx3qgfegvL6pm7QQM8jISoC2y5qo+3MM3B5FLKo5fzbO0lUuabQuxDQgwSohhBDiOnD37yXQ9QwA4fzbieTfNfqGymCg9P3kN31peKW+hHvBVbOg0q5y+it+A0f0PM7wWSJ5t2R6+kJkhT7wlnUiEobTx2DdKOWts8H5M9bvygWoQO6EhlAOB+qmu9A33gnBPgjkZWx6Qsx04cHm6j7/5avoKqWoWuik5nScM8djtLckWb/VS06e9K8SIptGX/NaCCGEEBljtr2Jv+PnAETydhIuuBeu8q2ttnnoL/sopnIOX2cskp7FhIvuR9v9k56zENmm25qguWHk74NvZ3E2U0vXWsEqlYGGOUopVE6+ZIYIcZFw0Mqs+vV+VUNWrnWzZpMHmx16u9O88VKQ08eipFL6ek5TCHERyawSQgghppBr4Ahm+w9RaCK5NxIqfOCqgaohaVcpfZW/gz3RTsK3+jrMVIjpRR8YDE7lFkB/D/rIXnQqhbLPvo+v+rxVwsvildmdiBCz1FDPqtEyqwCUoVi83EV5lYMTh6K0NSepOR2n5UKSdVs8lJTPzhJkIaYzyawSQgghpogrdJxA+48ATTRnO6GiR8YUqBqSclcSy9k8rusIMVsMlQCqRz8EgVwIB6H6eJZnlXk6mYSGGgDUEglWCTEVhjKrfP6rl/Z5vAbbbvGx9WYvbo8iEjbZ+0aYQ3vCxKLm9ZiqEGKQBKuEEEKIKeAMnSSn7QcoTFTpTkIlj0rQSYgx0q2DJYA2O2rzTahNN1rnz8ZSwAu1kEqBPwdKyrM9GyFmHdPURCNXLwP8deVVTu54IIdFy12goPlCkl3PB2mojaO1lAYKcT1IsEoIIYTIMGf4DLlt30dhEgtsxFj+m6DkLVeIsdIHBxurr9qA8vlRW2+2zj+8B51OZ3FmoDvbML/1r+j6c5kZb7gEcIX0mRJiCkTDJlqDYQO3Z+z/Y3aHYu0mDzvv9pObbyOZ1Bw7EKXmdHwKZyuEGCKfnIUQQogMsseayW37Hoo0Mf86gqXvRUmgSohxGepXNRSkYvlaK/MolN1SQB2NYH7hc+i3X8b85Y8zM+hQc/XFk2+uLoS4XDg0WALoMyYUEM4rsHPL3X6WrXYB0NSQyOj8hBCjk0/PQgghRKaYSXI6foTSKeLeFQyUvh+ULH0txHgMrwJos6M27gBA2WyoTdZpvefVrJThaNPE/MY/Q2ujdUZbc2bGHcyskn5VQkyNoWCVNzDxQ1/DUCxeYZUEhgbM4bJCIcTUkWCVEEKIzDIT2GMXsCU6UekI6Ct/oFPpMN7eXeQ2/wfentes7WcwX88r2BMdmDY/A6XvlUCVmFP0gbcwv/0FdMuFyY3z1svWidUbUT7/8Plq207r8nd2Yf7Df0dfqJ3UfsY9r6efgqP7wBj8+NzROumSRN3TBb1dVpnwwmUZmKUQ4tdFhjOrJvee7HQa5OVbY3S2JSc9LyHE1c2+tX+FEEJkVW7rk7iiI71cNAba5sW0eTENH6bN+jF0HFfoBEqnAHBFz+Ht3UUsZyvhgrvRNk+2bsKE2GMX8Pa9AcBA8WNomy/LMxLi+tENNZj//k+QTqN3v4K+82HMT/7x+MdJxNFv/QoA49b7LrlMrdqAes8n0M88BTWnMf/3n6Buuw/16IdR/pyM3I4rMd94Ef3LH1nz+PgfoJ/8MiQT0N0OJRUTH/i8VQJI1QKUe2a95gkxU4RDVlDZN4nMqiHFZXb6etJ0tqeYv9gqC4zHTI7si5BfaGfZapf0nhMiQySzSgghRMbYEl24oufQKEzDDYDCxEiHsCc6cMbqcIdP4B3Yizt4BKVTJF0VhAruJeksx9AJvP27CXQ+neVbMj4qHSGn/ccoNLHARhL+NdmekhDXjY7HMP/NClSRVwCmiX75GVp/+zHS3/86uv7cmMv29N7XIRyEwhJYv/Wyy437Hsf43JetLCttonc9j/k/fxdz1/NoM/ON17XWmL/4Ifq7XwJA3fc4xk13QulggGqSpYC6VkoAhZhKWmtCA4OZVWNcCfBqisscAHS2pYZf12rOxOloTVF9Isb+t8OkkrJaoBCZIJlVQgghMsYdPARAwruM/opPgE5hpCOodBjj137QKeK+1aTc80EpIvm34wqfJLfte1bGVTo8/bOTtIl7YD/+7hcxzChpWw7Bondle1ZCXFf6h/8O7c2QX4Txv/4FGmowf/DvmK2N8Mqz6FeehbIq1I7brZ/CktHH0Rr96nMAqDseQhmjl+yogmLU7/w39G33Y37/69DcgP7eV9Bvvojxwd9BLV2dmdtlptHf/zp61/PWfh98L+qxj1inSyvRTfXotmbU+m0T38dQZtViCVYJMRV6OtOEQyaGDXLzJ1+an19ow26HZELT35vGH7Bx4fzg6oAK2ptTvP1qiBt2+vB4JS9EiMmQYJUQQojM0OZwsCoW2GKdp+yY9hyw53DNnAeliPvXknSW40i04g4eI5p345ROeTKM1AC5Ld/CkWgFIOUsZaDkvTOufFGIydCHdqPffAmUwvjNP0L5ArB6E7a/+gL5LfV0//In6CN7oa0J/fMn0T9/EpavtYJWW25GeS8KSJ87BU114HSibrn7mvtWK9Zh/OXn0bueRz/9PbhwHvPv/ztqxx2od38clVcw8duVTFhljYf2gFKoD3wS486HRzYoq7R+t1+aWaV7OsGXg3K5rr2PrnZosPpuqSWyEqAQU6G2OgbAvIVOnK7JB48MQ1FYaqe9OUVnW4qerjSppFViuPEGL/vfCjPQl2bfGyFuvS8gJYFCTIIEq4QQQmSEI3oeW6of03AT962a8DixnC04un6BO3hwWgervL27cCRaMQ0P4YJ7iObeIA3VxZyi4zHM730VAHXfE6iV64cvUzYbnhtuwTZvCWY4hD68B73nNTh7As6eQJ89gX7qa6gNN6BuvAPWbEa/+gvruttvt4JeY6BsNtRdD6O33YL+2XfRb7+Mfuc19OkjGH/1hQn1stKREOaX/gbOngS7HeO3PoPaesulGw0Gq/RFZYD6Qi3m//lT1KYbUZ/6s6vvQ2srKyydghXroLh83PMUQlxdcCBNe4vVF3PximsHkMeqpNRBe3OKjrYksYhV8rd4uYuCIjs77/HzxoshBvpNWhuTVMx3Zmy/Qsw1EqwSQgiREZ6BAwDE/BvAcEx4nFhgI/6u53HEm7HF20i7yjI1xczRKdzBIwAMlL6fhE+yIsTco199Dgb6oLgM9eiHrrid8vpQN98NN9+N7ulE733dCly1NqIPvo0++Db4cyASsra/86Fxz0Xl5KE+/l/Rt96P+e//aK3U9+wPUB/8nfHdpp4uzH/9a2huAI8X4/c/i1qx7vL9lVahAdqaRq57ZK/VYP7YfnQ6jbJdJXh9ZC8c2w82O8aHPy3ZF0KMQziUxkyDP2CgjCv/75yvtsrzyiod+AOZ+zKpuMw6hO7ptHLGHU5F1UIrKOX12Vi8wkX1iRjVJ2OUz3OM6/9ba43WVgaXEHOdFNIKIYSYNJWO4QqfBKzMqMnQNh9xn9W/xTNYVjjduMKnrR5V9lwSXlluXsw9OhJGv/ATANQjH0TZxxagVgXFGA+8B+Ovv4jxl/8XdfejkJMHoQEwTVi+BlW1aMLzUouWYXzk96w57volurVxzNfVrY2Yf/9nVqAqtwDjz/521EAVMFIGONCHjoSt65+1XgNJxKG5/sr7iUUxf/B1a773PoYqnzfmOYrpIxRMY5rSSPt6CwfT7Ho+yK4Xgjz/s352vxrk1NEoLY0JImFzuOl5LGrSVJ8AYMnKzGVVAXj9Bl7fyGH0giVO7PaR4NKiZU4cDkVowMquGo/9b4X51TMDDPRlfsEIIWYayawSQggxaa7QMZROkXKWkHJVTXq8WM4W3OGTuIOHCRXeN2Xldd6e13AHDzNQ9gFSrrEvP+8eyiILbAYl3/uIuUe//IyVCVVWhdp+67ivr5SC+UtQ85eg3/MbcPoo+uxx1C33THpuatUG2LgdjuzF/PE3sf3B/3PN6+ia05hf+NzgbarE+KO/vmIjeADl8UJuPvT3QnszumoRnK8eGa+2GjV/yej7+sUPoKcLCktQD71//DdQTNipI1E62pLceLsfl3vir92N9QmO7I1QXuVgy01eyYy7jhrrE5jW4n6kU9Ddmaa7cySw43Qp8gttmKYV/84vtFFQlNlDXqUUxWV2GmoTKAULl14aDHM4jQllV/V2pYbLFg+8HWbnPQEcTnluiblLPmELIYSYFHvsAr7eXcBgY/UMfGhPeJdj2vwY6RC+7l/h636ZQPt/4u/8BZ7+d3BEajCSfaDNie9Eazz9e7AnO8lt+RZGsmdMVzNS/Tgj54DBYJUQc4wODaBffhoA49EPXXHVvrFSNhtq7WaMJz6OKhl70PhqjPd8Amx2OH4AfeLgFbfTWmO+8xrmP/+lFahavALjz//+qoGqYaUX9a1qOAfJxMhlFwWuLtlfc4MV6AOMD31qTI3YRWakkprz5+IE+00aahPXvsIVpFOaM8eiALQ2JWlqGF/mjJg4rfVwttSm7V5uuy/Ahm0eFixxkptvQylIxDXtLVbzc8h8VtWQysFeVAuWOEdd9W8i2VXnz8aHT4dDJof3hYczxS4WjZhcOB8nmZDMPjG7jTvM3NHRwbe+9S1Onz6NzWZj48aN/MZv/AZ+v38q5ieEEGK6MhP4u1/C078bhSZtyyGak6HgjbIRC2zC2/cmvr7Xr7iZVg7SjkJSjiLSziLSjqLh09rwXjVwZqQHsKWDANjSQfJavklv1afRNt8VrwPgHjiEQpNwLyLtLJrY7RNiBtMv/QyiEahaBJtvyvZ0RqVKK1B3PoT+1dOYP/oPjNUbLwuq6eYLmN//GlQft85YtxXjU3+GcrnHto+yKvTZE9DWjO7tss7050BoAH3+zGXba9PEfPIrkE7Dph2o9dsmdRvF+HS2J4e/32isS7BstWtCGVH1NXFiUY1SoDWcOBShuHTifRrF2HV3polGNHYHlFc5sNkVOXk25i+2Lk+nNQO9afp60vT2pHC7DcoqpuaxKSyxc99jOTgcoz+HLs6uOnYgSn9vmgVLXZeUD14sEk7T0mQFtTZs83D8YJT25hQ1p+MsWz3ymtTZluTgngjJhKb6RIy1mz2UV0kTdzE7jTtY9Q//8A8sXryYr3zlK8RiMf7hH/6BJ598kk9/+tNTMT8hhBDTkTbJb/43HHGruXA0sIlQ0UPXDPSMRyTvZuzxZsAg7cgnbc/HMKPYEl3Ykl3Ykt0oncSeaMOeaIPwpdc3DTcJ70oGSt87aqmePWbNPW0vAEzsyS7yWr5Nb+Vvg3GFD35a4w5aWRqT7c0lxEykB3rRr1ir9hmPfRhlTN8kffXw+9FvvwytjVBzGpavHb7MfOMF9FNfswJHDifqwfegHnjv1Zui/7qhFQHbmyAes/Z5x0PoZ79vNXgPDqACI6sR6j2vQs0pcLkxPvDJzNxIMWZD5VUAkbBJd2eKopLxBTKSCc2501b2y7otHi6cT9DXk+bIvjCLFkuWy1QbyqqqqHJis18eJLLZFPlFdvKL7Cxi6rMWna6rv/4tWuaitTHBQL9JzZk4NdVxyiodLFrmorDYdkmwtO5sAjQUldqZv9iF1nDsQJQzx2N0tiWpWugkEdecPh4DDYYBsajmwNsRyquSrN3swe2Zvq/HQkzEuIJVkUiExYsX8+EPfxi3243b7ebWW2/l+eefn6r5CSGEmIZc4VM44k2YhouB0g9OyWp4pj2XvsqrHNDpNLZU30XBqy7sg6eNVD+GGcMdOkIk7yZS7ssbGDtiVuPlhHcJkbxbyG/6Ko54I7ltP6C//MOj9slyxOqxJ7sxlZO4f+1llwsx2+nnf2I1EF+0HKZ5ZpDy+lFrt6L3vY4+cQg1GKzS6TT6p9+1AlUbbsD4wCdRRaXjH7+s0loRsKXR6kEFqI3b0fvftFYJPF8NG6z7SIcG0P/5TWubRz6IKijOyG0UY6O1pqPVylrx5xiEBkwazyfGHayqrY6RTGj8OQbzFjkpKLbzxktBOttSnD7eR748rFMmldK0NlrBqqGV96Y7h1Nx670B2lqS1J9L0NWRoq0pSVtTkkCuwaJlLioXONEaLpy3gqCLV1hBtgVLXISCJuer44N9uaLD485b5GTNRjc1Z+LUnonT2pSksz3J6g0e5i92Sg81MWuMK1jl9Xr5vd/7vUvO6+rqoqjo6mUQ8g8zNkP3k9xfYraT5/oMpzXewR5V0bybSfpXkpVHUtkxnUWYziIu6wZhJslp+x6u8BlckbOkPfMvu7oj3gxAyl2F6Sqlv+Lj5DX/O67IaQKdzxAqefyyMkJv31sAxAPrweYe0+2W57uYLXRPF3qX9QWl8dhHMK6SVTVdnvdq3WYrWHXyEOrdH7fOrD0N4SD4Ath+73+ML5vqYmWDi0kMrTjo8aHmLUQtXoFua0KfP4Ox8QYAzJ9+B0JBqFyAcfe7sn6/zGaxqMnJI1HQmk3bfRg2RX9vmnhMY7PDhq1e3n41RGtTknVJxtzAOhY1h3sKrVrvwWYzyMk1WLXew8nDUQ7v7+LOB/3y2E5ScCBNZ1uS7o4U/b1pCkvsrNnoobMtRSoFXp9BYYl9xtzPyqaomOeiYp6Lgb40dediNNUnCPabHDsQ5fSxGLl5NlIpCOQYlJaPNGNfu8nLkuVumhriXKhLEA2brNnkYeFSq4R19QYvlfOdHN0foa8nzbEDUZobkmzY5sWfMzUL00yX13YxN0xqaYTa2lpeeOEF/uRP/uSK2xQXy1cM41VWVpbtKQhxXcyW57rWJphJlG1uNMo1e45jxpvBcJKz4glyHYFsT2lUpnEj5rkz+JJ15JaXX3KZ1ibp8y0A5FVtQvnLgXLMHAfmqS/iGdiHL78SY8FjI9cJ1pEOnwIU/uXvIeC9dMxrmS3PdzF39fz0W4RTSVxrN1N81wNjOljJ9vM+fcf9tHzj/8KF85S4HNgKiuj9xfcJAd7tOymsmvjqpbqkhCa7A1JWuNy9dhPFlVWENm+nd/crOJvrKSkvJ37qKB1vvgRAyR/9Ja55l2d6isxoOB/kjZdaiEWt1eHmLXCyYWsRzfUdQJD5CwOsWV/FqSPn6e2JE+r3sHp9/jXHbW+NsOe1ZtIpKClzs2nr/OHnf3GxybmTZwkNJNHpHCqqMlcOP9ccPdDFO2/2XnJepC5Bd7uJ22MFX1auLaCiYgwLIExD5eWwYhXEY2nOnOzj5JEeggNJujqsEtVNN5RSUXH583Hx0sHFINIam924bMzlKzUnjvSw/+0OujtTvP5ikM07itiwpQibbWqCStl+bRdzw4SDVWfOnOHv//7v+chHPsKmTZuuuF1nZyepVOqKl4sRSinKyspoa2sbdeUHIWaLmfxcN1IDOCLncEbO4YjWY6QjKG2lpYcL7iJSOPll16e73Kaf4AQiOdsId4WAULanNCojVUYhoIPnaWuquaSfli3RSUE6glZ22gZsEGwdvKQSd/GjBDp/jtnwM/qjiliulRmR0/x9XEAssIlgP9Df+uu7HNVMfr4LMUR3tpF+0VoBMPXge2lra7vq9tPqeb9gKTTU0Pbai6gb7yD99qsAxFZsoLV1bP/HV1RSZpUBAokFy2htbUUXWYHs+JkTtFy4QPpfPgeAuuUeevJLYbL7FJdJpzQnj0apP2dlPrncinhMc2BPBzmFcWrPWu9TuQVp2traqJhv0NsDxw93kF8cu+K4WmtqzsQ5cyyK1lZWz+pNzsue/+XzHDTUxjl6sBWVwd6Nc8n56hgnDlulbkUldorL7PgCNs4cjxIaSBGJWMeTeUWJyf/fTgMlFVBc5qO9NUl9TRzDUATyo7S2Xvn5eDXF5XDb/QGOHYjQ2ZZi/9udnDnRw8YbvOQXTio/5RLT6rVdzEh2u33MCU0TeuYePHiQL3zhC3zyk5/k5ptvvub28kQeH6213GdiTphpz3VX8Cg57T9EMfqcPX1vE867DYzZuyqQI1qPM1qHxkYkb+e0fvzSthySzjIciTYc4bPEAxuHL7MN9qtKuSrQGNaSToOiudsxUn34enfh7/g5aZsf0/DiilSjMQjn3zGh2z3Tnu9CgLWCHa1NmD9/EtIpWL0Rlq0Z83N5Ojzv1ZrN6IYa9ImDMH8xdLaB3QGrN05+bqWVw8Eqlq22bm95Fbg9EItifueL0FQPvgDqiY9n/b6YjQb60hzaEyY4YC31t2i5i1Xr3Ox+LURfT5qj+8L09ViZVsVldrTWVC5wcOpo1Fo1rjtJXsHlh0SxqMnhvRG62q0gScU8B+u3enE41WWPY9UCK1jVciHBmk0e7KM0/56LOlqTNNQmsNnA6VI4nAZOl7J+nGr4vPaW5HCgatlqFyvXeYbHKCm3U30iRm11nNJyOz6/MXv+jxSUVjgovWjFwsncNq/PYPutPpobrPsz2J/mzZeDLFrmYuVaN/ZRVi5svpDAH7CRmz++ssHp8NouZr9xB6uqq6v54he/yGc+8xnWr18/FXMSQohpydP/DgpNyllK3LeahGcpaUceWjkpaPoitlQ/rvBpq5/RLGRLdOLrfhGAWM5mTHtulmd0bQnvChyJNlyR6kuCVY7BlQCTrtFLgMIF92KkgniCB8lt+z4pRyFg3e608+p9GoWYyXQyCQ016JpT6JrT1ip64eDw5cajH87i7CZGrd2M/uWP0KcOQ/ng//yqDSi35+pXHMvYQ03WnS6Yv8Q6z7BZDehPH7VWAATUuz9+ycqAc0F3R4rGugQLlzlHDQZNltaaunMJTh+NYppWNtXGG7yUlFsH/ms2eXj7ldDwKoB5Bbbh1dJcboOKeQ6aLyQ5vDfCrfcELlldrqPVOj8R1xg2WLfZw7xFV25cXVBsJ5DjIDiQpL05SeWCmdEAfCo1NSQ4sjfCeOIZS1a6WLHWfcl5Npti9QYPy1a7mcaLj04bSimqFjopLrNz8ojVw6rubJy2pgRbb/Zd8r/Y05Xi0J4Idgfcdl8OXp/cwWJ6Gdc7Rzqd5qtf/Sof+MAHJFAlhJhTjNQAjlgDAH0Vn7gsUBMLbMbX+xru4KFZF6xyBY/h7X8bR+wCABqDSN6tWZ7V2CR8y/H1vY4zfA60Ccr6IOaIDwar3FfoV6MUwZLHMdJBXJGzOBJtaGyE8++8XlMX4rrR506hTxxE15yCunOQTFy6gdMFi1egbr4btTjzK39OucUrwOODUBD98rOAtWpfJqgFS61g1cr1KPvIx2q1aAX69FHrj6WrUDffnZH9zRSmqTm8N0w0omlsSLB4mRWEGC2zYyLiMZMj+yJ0tFqBqNIKOxu2eXG5Rw62C4rsVC5w0Nxg9RQbCmINWbPJQ1dHitCA1ZB9/VYvZlpz5kSM2jNWOWFOrsHmm3wErtGsWinF8tW5HHyni8b6xJwPVjXUxjl2wMqUqpjnIK/QRiKurZ+EJhk3SSRG/gZYstzFyvXuKwYEHRl67swVLrfB5h0+qhYkOXYgQjSiOXE4yi13jfQZ7Wyz/n9SSTiyN8yNt/tRhtzPYvoYV7Dq7NmzNDc3853vfIfvfOc7l1z2+c9/XpqpCyFmLVfoBApN0j1/1IyiWGATvt7XcEbOYqQGMO0T+wZdpcPYEl1omw/THkAb2W3a7ul9k0D3LwErSJXwLiOSd+uMyS5KuhdgGi4MM4w93kzKPQ90Gnvcaq6eukJmFQDKxkDZh8hr/jcc8WaiOVsxHdduxCvETKJrz2D+w3+/9MxArhVgWboatWw1zFt8SSBmplE2G6zaAId2W1liSqE23JCZwTffhPqdP7Pup4v3uWSFFcQyDIwP/y5qjqWEtDUniUY0yrC+Jzh/Nk5rU4J1W7yXlDxNRHtrkiMXZT2t3uBh4dLRs55Wb/DQ1pwknYKyykufwy63wcbtXva+HqahNkEgx0ZTQ2K4ZHDhUierN3rG3KB62ao8Dr7TRWd7iljUHM7immvOn41zcrCkb8ESJ+u2eK66GIPWGm2CMUWNwOe6knIHN93h55XngvR1p0km9XDgr7tzpK90d2ea2uo4S1e5rzSUENfduD55rFq1ih/96EdTNRchhJi2XKHjAMT860a9PO0sJumejyN2AVfwCNH8CWQe6TQFjV/ClhpZCSflKKa//KOkndf/ywBP/57hQFUk92Yi+bdOOAiXNcpGwrMMd/gEzkg1Kfc87Il2lE5hGm7Sg+V9V6INF30Vv40rfOqKj70QM5ne9bx1YtFy1M57raBLaeWsW5Zcrd2MPrTb+mPRclRuZgLPSinUtlsuv2DNZtRdj8CCpaiqhRnZ10xyvtrKTFq60kV+kZ3jg5kd+94MUzHPwZpNngkFc/p7U+x7MwwaArkGW270Eci9ctaT22Nw0+1+olGT3PzLD3tKyhwsWeGitjo+3DPJ4VRs2OahvGp82VG5eU4Kimz0dKVpbkiwZOXsPug/9E6Y3q40azZ5KKu0ApDnTsc4c8xqEL54hYvVG66cKTVEKYUaX7skMU5evw2f3yAcMunpTFFa4SCd1vR2W8GqxStcnK+Oc+ZEjKJS+5SU7QoxEXMz5C+EEONwcQlg3Lf2ittFA1sA8AQPMa4mDYMc0fPYUr1oDExlfUi2JzvJa/kGRrJv/BOfBPfAAQKdzwAQzr+dUNFDMy9QNSjhWw6AK3wWAPtgv6qUq3K4LPBqtM1NLGfzrG6cL+YmHQ6hD74NgPH+38bYeS+qrGrWBapgsMk6irThyFgJ4FX3Z7NhfOCTGDfeMeX7mm56u1P0dqdRBixc6qK03MHtD+SweIULFLQ0Jtn1fJCG2vi4GzSfOxUHbTXd3nlP4KqBqiF5hfarBp5WrnMPN5fOL7Jx672BcQeqhlQttLKhz52O09cze1dD7+lM0dyQJBI22f9WmGMHIpw+Fh0OVC1fM7ZAlbh+ikqtAFRnm1UW29eTxkxbje9Xb3BTVulAm3BoT4R4zMzmVIUYJmFTIcScFWj/Ea7QSRK+FcT8G62ghrr8ZXG4BNA1D9ORd8Xx4v516K5nsSfascdbSLkrxzUfd9DqbxLN2Uao5DGM1AB5zf8+GLD6D3qrfgdt849rzIlwBY8Q6PgpYGVUhQvuhRn8gTPhtYJVjngjec3/hjKtb/yv1FxdiLlC73vd6k9VucDq6zSb5Rey/+a/ot9ews2r7ASufQ0xRscOROhoTbJmk5WNVHfWeo2tnO8Yzp6y2xVrNnqonO/g2IEo/b1pjh2I0tSQYP1W7zV7QgEEB9K0NlkH2qs3jL0871oMm+KmO/z0dqcoLLFjTKJnT9VCJxfOx+nrSbPntRA37PRTWDI9D7e6O1I0nI/jdhssWOrE5x97elPNGSsoNZSt01A70udu1Xq3lJJNQ0WldhpqE8OrWw6VABYW21HKyibs700RDpm883qIG+/w43RKXovILnkGCiHmJGf4FJ7gYQydwB06Tl7bdymq+xsCHT/FEam1mmwMcoVOAFcuARyibR7iPqtvib/rWVzBI6h0ZGwTMpPD+4kHNlhn2XPoq/hN0vbcwYDVN7FHGyaUtTVWztBJctp/jEITzbmBUNFDMzpQBWDac4n5rab3zuh5HPFmAJLuedmclhBZpbVGv/ESgFX+N8P/z6+lpytNl2cRSYePUxd82Z7OrDHQl6ahNkE0ojnwdoSj+yK0NFoBpcXLL++5mFdg55a7/aze6MZmg57ONG+8GOTC+fg191V72tqmtNI+poyq8bA7FMVljkkFqsAKyt14uxWgSqXgnTdCtLckMzTLzOjuTLH7tRC7XwvR3JCktjrOq88F2ftGyOrvlb76Z4zgQHp4hcUbdvrYcZsPl9u639Zu8kigapoqGgyaBgdMYlGT7o7BYNXg+U6XwY7b/bjcioE+k72vh0klp+7zphBjMT1D/UIIMZXMBIFOa0WoaGAr2ubBFTyKLT2AZ2A/noH9pG0B4v71JLzLcMTqAStz6lqiuTtwhU7gjDXgjDWgUSTd80l4VxL3rSDtLBs1+OOKVGPoOGl7Lkn3gpGpOvLoq/hN8pu+jiPeQkHzV0m6Konm3kQssH7UTLCJcobPkNv2fRQm0cAmgsWPzvhA1ZCBsg8STt6LM3wGZ7galCLhXZbtaQmRPfU10FQHdgdqx+3Zns2Uq62ODZ/uaE3R0Zq8bHU4MX5DWVRuryIW0VyoszJsCotto/aIAjAMxZIVbsqrHBw/GKWjNcXR/VGUUsxbNHr5XSRs0tRgjb1smgdD7A7F9lt9HNwdpr0lxcE9YW67N4AvkP3GTB1tSfa+HgasKvh5C51EIyadbanB/4sUdgeUVjiomOekuMx+WQbb0EqJZZUO/Dk2/Dk27nwwh0TcxDuO7CxxfTldBrn5Nvp703S0JuntGsmsGuIP2Nhxm5/dr4Xo60mz760w22/1ZSyLUYjxkmCVEGLW83c+gy3ZRbjgXlLuKny9u7Cl+kjb8wgWPwKGk1Dh/Tii9bhDR3CFTmBLB/H2v4233+rncq0SwCFJzyJ6q34PV+g4rsgZ7In24cCVv+dF0vZcEt4VxH0rSXiWDvdBcgWPABDzb7isj1LaWUJv1afx9u7CHTqKI96Mo+PH+LufJ5pzA9Hc7ZPuJ+WI1JDb9j0UaWL+dQRL3j2mfk4zSdpRSDTvZqJ5N2d7KkJknX7zRQDU5ptQvtldFBcKpmlvtg7MSivttDenOHk4SlHp5Eq+5rp4bCSAtOVGH8mE5vDeCMmEHlNzca/Pxg07fZw4FKW+JsGRfRGUskrpft356hhaW6VM+YXT//DFZlNsvdnHO7tCdHemObw3wk13+rP6fNNac/qoFbQtrbSzdpMXr896nw8NpKmvTdByIUE8pmluSNLckLwscJWI6+HHfOnKkcw5u0Nhd0igarorLrXT32ut+pdOW4sJBHIv/ayXk2dj+60+9uwK0d2R4uDuMFtv9slrpciK6f9qL4QQk2CPNuDt3wOAM1JDLLAFd/AwAMGih8EY/FCsDJLexSS9iwkWvwtn5Czu4FFc4dMonSSas3XM+0y5K0m5KwlzP0ayF1ek2sroiZ7HlurHM7APz8A+0vY8+ss/RtqehytSDUA8sHHUMdPOIoKl7yFUdD+e/gN4+vdgSw/g630Vb+8u4v61RHJvIuWeP+5sKEe0nrzW76B0irhvNQOl70eW5hFi9tKxKHrfmwCoW+/N8mym3tDKdCXldjbd4OXVXwYJBU3qaxKjlqqJsamvSWCakFdgI7/QhlKKOx8MEI2MvvLeaJRSrN3sQWtoqE1weF+E+po4WjP8A5rggFWav3TVzHm8DEOxcbuP118coLc7Tc3pOMvXZC8rrLUpyUBfGrsdNm7z4nSNBCn8OTbWbvKwZqObnq40rY0JWpuSxKIXBa7s4PEZaBMKim3kF8lh5ExTVGqn5kyc0OD/01C/ql+XX2jnhp1+9r4Ror0lxeF3Imze4UVJwEpcZ/IqI4SY1bx9bwGQtudagaLgAQDi3uUkBvtLXUbZSfhWk/CtRplxbMkeUs6yCe3fdOQTzd1BNHcHmEmc0fM4I2dwhU5iS/WR1/RV4v61KJ0i5Sy55n60zU+k4HYi+TtxhU/h6duNM1aPO3QMd+jYuEsE7bFGclu+hdJJ4t5l9Jd9UAJVQsxiWmv0U1+FeBRKKmD5lVc4Ha+BvjR9PSnmLXJOmx5YibhJY72VCbJkpQuH02DlOjfHDkQ5eyJG1QLHJQftYmzSaU19jRUEXLzCNfx4O13GuO9PpRTrtnjQJlyoS9DbnR51u/wi23DfnZnC6zNYt9nL4b0Rzp6MUVyWncwwbWqqT1hZVYtXuK74GCmlKCy2U1hsZ80mTW9XmpaLAlfB/sGg4Rgy58T0U1BkxzDAHGzLWlh85c97RSV2tt7sY/9bYVoak9jtUdZv80yb13YxN8ysV3whhBgHI9mDK3wSgL7yT2CkgwQ6f45hxgkVv2tMGUjacJFylWdoQg4SvhUkfCsIF9xLbtv3cEZr8QQPARDzbxx7VpSyEfevI+5fhz3egqdv96glgpG8nWjbKB8qdRr3wCH83b/E0HESnsX0l30koz2whBDTj37uR+g9r4FhYHzwdzJ24BGPmex+LUQyoXE4FRXzsp8Bo01NbXUcMw25+bbh3izzFzmpOxcn2G+tYrZstRx4j1dzQ4JEXOP2KsqrJt/7SynF+m0eqhY5SSb08FuhUoACQ0FuwehZINNd5QIH7S0OWhqTHH4nwq33BbDbr+/taG5MEhowcTjUmLMJlVIUFNspGApcdVurMTocipJy+awwE9ns1mM6tCLgtVaqLC13sHmHl4N7IlyoS2BzKNZu8lyPqQoBSLBKCDGLefveQqGJe5eTdpWSppSe+X8CpLMelNE2D30VnyDQ+TSegf0AxAZXARyvlKviohLB/Xj63xkuEXSFjtNX8RuYjoLBHWuckWr83S9gT7QDkHAvoL/8YyMlkUKIWcnc+zr66e8BoD74KdTazRkZV2vNsQNRkglr5aiWC8msBKu01gz0mXS0JunuTNHbnSI1uBDbxdk/arDB95F9ERpq4yxd6ZLylnGqO2dlqy1a5spYL5uhrJ7ZRinFuq0eerpShEMmp45EWb/VO64xerutRQGWrXJjjLPZtWlqzg5mVQ1lF46XUoqCIjsFUvo34xWVWsEquwNyxrCqZsU8J+mU5si+KHVn4zgcioqK6zBRIZBglRBillLpKO6BgwBE8nZedIFi2rz0KRvB4sdJeBYBxkhAaYKsEsE7iOTfiit0En/Xc9iTnRQ0fpn+8g9jpEN4e1/HEW8GwDQ8hAvutEoUJaNKiFlNN9Whv/UvAKh7H8O4/YGMjd18IUlbc3L47/aWJKnU9VnyPJXUdLYnh1f4i0Uv3a/dDpULnFTMuzT7p2Keg5NHFNGIpr01RVmlrAw4VsmkZqDPKtWbN0ozdHE5p9Ng43Yv7+wK01CboLTCQWnF2J9zxw9G6e9N4/YYLFgy9kDwUFP1cMjE6VIsWpb9jEeRXZXzHdSfi1O1wDnmIP28RS5SSThxOMrZkzEKCrooqZziiQrBtDliE0KIzPIM7MXQCZLOMpKeJdmezpUpRTywKcNj2ogH1pP0LCS39ds44i3kN399+GKtHERybySSfzvaJuncQswF+qWnIZWCtVtQ7/54xsaNRU1OHIoCsGKtm8a6BJGwSUdLknnzMrabYVprQkEre6qjJUV3Vwptjlxu2KwVr4pLHRQU28jJtY16QGazK+YvdlJ7Jk59TVyCVeMQHAxUuT0Kl1v6fY1VcamDxctdnD8b58i+CLffHxjT/ZdOawb6rfu8vTU55mDVUKDq/Fmrt9jqjR7sDskgnOu8Phv3vCt33NdbtNxFKqU5czzGO292sH6rlwVLRoLV4VCa9pYUibhJMqGx2RTL17qve8mrmF0kWCWEmH3MBJ4+awXAaN4t414db7Yw7Tn0Vn6K3PYf4gqfwjQ8RHNvJJJ3I9rmz/b0hBDXiY6E0AetxSaMh9+PMjKziII2NUf2RUgmNLn5NpaucpFOaWrOxGm+kGDL9ozsZlgiYbL71dBwk+chXr9BabmdknIHhSV2bGMsk1q4xApWdbalCAXT+ANXvl+SCZNoRBPIMeZ8yWD/YLAqJ08W4xivlevddLYnCfabHN0fYdstvmv24Qr2pYcDsl3tKdJpfc3n+FCgqnZwJcx1WzySBScmbekqK2BVczrOsQMRbDarJ1tTfYLjB6Okf21tBF9gfJmAQvw6CVYJIWYdb98b2NIDpO15E+4DNWsYTvrLPow93kTaWYo25EODEHON3vsGJBJQMR8Wr8jYuCePxuhsS2EYsPEGL4ahqJjvoOZMnPbWJMmEee1BxqGjNUWw30QZ1pLrpeV2SiocVw0yXY3Xb6Ok3E5Ha4r6msRw4+BE3KS/N01fb5r+wZ9IyLotK9a6Wb5mbjdkH5Bg1YTZbIpN23289XKQ9pYUF84nrnkw39c7EgFIp6C7M0VJ2ZUzAVMpzfEDEZoarNLcdVs8LFwq7/1i8pRSrFrvwen0cupoL0f2RWhqsNPZZjVszyuwkZtvIzSQprszTV93mgXTuLhBTH8SrBJCzCpGshdf7+sAhIoelF5MAMog5Z6f7VkIISbAfPFn6CN7MX73z1E5+eO+vtYa/caLAKid92ZsNbX6c3HqBsuLNm33DgcucvJs+PwG4ZBJw/kgvvFXm1xRT6d1QLRoqYs1GVqRauFSFx2tKRrr4kTDJv29KaKRK/fbqjsXZ8lK15izt2ajoWBVbr4EqyYiN9/GinVuTh+NcfJIlKISO76rBFz7ewaDVQrQ0NGSvGKwKjSQ5sDbYYIDJkrB2s0SqBKZpZTiljvKGOgP01SfoLMthVJWIH9osYrWpgTdnRH6elLZnq6Y4aTQXAgxq/i7n0fpFAnPYuK+tdmejhBCTJjWGv3iT6HmFPrFn09skPoaaKoDuwN14x0ZmVd7a5Ljh60+VSvXuamYP1JepJSifLCZee3ZgYzsb0j3YLCqoDhzQZKScjten0EqCW3NyeFAlc9vUDHPwar1bnbc7uPeR3NwexSJuKa1MXmNUWcv0xzpnySZVRO3ZLmLwhI76RQc3hvBNK8cIB3KrKqab/1ftbem0Pry7VsuJHjjV0GCAyYut+LG2/0SqBJTQinFxhu8zF/sJCfP4MY7/Cxb7R4ukc4rsL4oDg6Y122xDTE7ScqBEGLWcERqcYeOo1EEix6es72qhBCzRH8vBPsB0K+/gH7wvSjf+PrN6TcHs6q23ITyBSY9pXRKc/idCGhrJbilqy4/GK6c76TmdJzG+hCrNuZiz8CnzXjcJDRgleIVFGfu46tSik3bvTTWJ/AHDHILbOTm2XA4L/8+d8ESF9UnYtTXxKm6Qv+fjtYkOXk23J7Z+X1wOGRipsFmB59vdt7G60EZ1sH+6y8O0NudpuZ0fNTy0nRaExwMDi5d5aa5MUkkZBIOmcPlr2Zac+polLpzCQAKS+xs3uGdtc9BMT0YhmLDNu+ol1mLLyjiMc1Abzqjr9libpFXMSHEzKU1RrIXV+gEvq4XyOn4TwCiudtJu8qzPDkhxEToZBLz5afR3R3Znkr2NZ4fOR2Ponf9clxX17EIet+bAKid92VkSi2NCZIJjcdnsH6rZ9SywkCugT9gkE5r9r4eIhqZfO+qoRJAf46By5XZj68FxXY2bPOyZKWbohLHqIEqgPmLnSgFvd1WH6tf19mWZO8bYd78VTAjtznTIuE0rzw3wPnq2ITHGBi83VdaZVGMnddnsG6zdbB/9mSMro7LS6YG+tJoDU6Xwp9jUDh40N/eYmX3RcImb78aGg5ULV3lYsdtPglUiaxSSpFXYAVT+0Z5rRRirCTMKYSYGbTGSPVjjzfjiDdhjzXjiDdjmJFLNkvb/IQL7snSJIUQAOYrv0C/9DNwe8DnB1/AygjyBcA7+NsXQOXmw9KVl6xOp1/6GfrnT6KP7MP2p3+TxVuRffrCYLDKnwOhAfQrz6LveRTlvHZpj9Ya/fT3IR6F0kpYviYjc6qvsQ6KFy5xYlyhb5NSinVbvBzYHaGnK8UbLwXZtMN71abQo81/aCyAnk7rgKcwi9/Quz0G5VUOWhqTNNTGWb/10qyCtmYrgBCLava9GeLmOwPYHdMnoNPekiISMjlzIsa8Rc4rBuWuRpqrZ1blAgcdbQ6aG5Ic3B3m1nsDeLwjj8tQv6rcfBtKKUrK7XS1p+hoTRHISXLoHWs1TofTyhAsrRj7/5gQUymvwE57S2qwb5WUo4qJkWCVEGLasyW7yW35NvZk52WXaWykXKWkXFUkXZUkfKvQttHTkoUQU09rjX7hJ9DXfen5o20LqMc+gnrofSPX3f2KdWH1cXRXO6qodOz77ulC73oO8gox7nx4grdgGmmsA0Dd+xj69ReguwP99iuoOx686tW01ugf/wf65aet6z/8vow0Vu/rSdHXk8YwYN6i0cvghhSXOXj3hxfzy5/VMdCXZu/rYZavcbH8or4mV9LTlWLPayEWr3Cxar1n+DyAgqLsfnRdsNRJS2OSpoYEqzZ4cFwUjBpaEUspGOgzObgnzLZbfBjTJANpaEXDdAou1CVYsmL8qxr2S7Aqo5RSrN/qJdgfZKDP5MDbYW660z/cwH8oK2UoS6W0wsGpI1YWVle79XzLzbex9WYvXp88JmL6yB3KrOqRzCoxcRKsEkJMe/7O57AnO9EYpJylpNxWYCrlqiTlKpMV/4SYTrrarUCVzYbxX/4SYhF0OAThIAz+1uEQ9HZBQw365WdGsoVqT0NH6/BQ+p3XUA9/4Jq71H3d6Od/gn7jBUhZB3B63VZUcdmU3czrQQ8FqxYshXsfQ3//6+gXf4rOKwDDBraLfgyb1UjIZkO/9RL6NatkUH3o0xg7MtNYfSirqnyeA5f72lk5uXlOdt4T4MShCA21Cc6ejNPTmWbTNfrpnD0ZwzSh9kyc+YuduFzGcNldtnufFBbb8ecYhAZMmuoTLFpmZQyEQ2nCIWsFtu23+dj3ZpiO1hSH90ZYt8WDcwJZTJkWCY+UJtafS7B4mWvcpXzDKwFKsCpj7HbF1pt9vPlSiL6eNCcORYd7AfX3jASkAPyBkdU2ARYscbJmk2dOr04ppqe8wedsOGgOZ/8JMV5yhCeEmNYc0fO4IqfRGPTM/0PSzpJsT0kIcRX63CnrxIKlqLWbAWvF9cu2S6cxP/spK1vonV2oW+9D737VujA3H/p70XteQz/0/itmBen+XvQLP7GyjpJWIAW7A1JJ9NF9qLvfleFbd/3oWAQ6Wqw/5i1CLVmFfvYH0N2B+eX/c+0BlEJ99Pcxdt6bkfkkEibNFwZLAMexwpjNZmWOFBTZOXYwQleHVRa4+UYvRSWXlywFB9LDGUpaw7mTcSoXONAaPF6FN8tNvZVSLFzi4sThKPU1cRYudaKUGp5zfpGN4lIHm3d4OfB2hJYLSbo7UqzZ5KFiniMjGW4TdXGwKhI2aW9NUVY59rKxeMwkHrNyJAMSrMoon9/Gphu97HsjzIXzCQqK7FTMcxAcXFRgaHU1gMUrXNScibNyrfuKjf6FyDaX28DjVUQjmv7eFEWlUqIqxi/7X/MIIcSVaBN/l5UdEM3ZJoEqIWaCGitYpZatvupmymZD3fUIgJVdFY+h91vNwI2P/Rdwua0sq9rTl11XD/Ri/ugbmP/jk+iXn7ECVUtXYXzmc6gnPmZtc3RfJm/V9ddUb/3OK0QFclEuF8ZHfx9WrIMlK2HhMpi/GCoXQFklFJdBQTHkFUBxGeo3/zhjgSqAxroEZhpy8gzyC8cfqKhaaGVZBXIM4jHNnl1hzp2KDfemGnK+Og5YTdoBGhsSXKizgmTZzqoaUrXQic0GoQGT7sFeWh1tVr+q4sG+XOVVTm66048/YN3eQ3si7HszTCSUvZKY6GCwqrTCuh/Pn42P6/pDJYC+gIHdLlkSmVZa7mDFWqs08/jBCM0XEsPN1d2ekft74VIXdz+cI4EqMe0NBVmlFFBM1PR41xdCiFG4QsdwxJsxlZNwwV3Zno4QYgz02ZMAqGVrr7mtuuUe9DNPQWsj+rtfglgUikph7RbU5pvQe15F734VtdQKfOlgv1UG99ovITF4oL14Bca7PgSrN1pZK4Ul6B99A86dREfCKK9vym7rVBoqAWT+4uHz1OYbsW2+ccr3bZqacNAk2J8mOJAm2G8O98dZuNQ14eygQI6NW+4JcOJglMb6BGeOx+juTLFphxeXyyAeN2lqsAJT6zZ7qa2O0d6SouWCFQjKZnP1izmcisoFTi6cT9BQE6egyEb34P1TUjYyx8JiO7feF6D2TJxzp2J0tKZ47YUgK9a6WbzcdV17WSUTJsmkFRhctcFDR2uQ7o4UA33pMfefGloJUEoAp86yVS66O61+VMcORAGrX1U2M/KEmKi8AhutTUkJVokJmx7v+kII8et0Cn/3SwBE8m9D2wNZnpAQ2WXueh69dxfGg+9DrduS7emMSg/0Qnuz1WF66aprbq88XtQt96Jffhq993XrvBvvRBkG3HSnFaw68Bb6Pb+Bfv0F9HM/tla3A1i4zApSrd18yYGcKimH8nlWAOzkIdS2nVNyW6fcUL+qeYumdDdaazrbrMbpwX7rJxQy0ebl27rcisr5k8vmsNsVG7d7KSi2cfxQlM62FG+8GGTLjT66OlOYaas/T0GxDbvDTXtLaPi60yWzCmDhUitY1dqUpLwpSSplZcAM9RYaYrMplq9xUzHPwbEDEbo705w+GqO5IcGGrV7yCq/PbRoqAXS6FIEcG2VVDlobkxw7EGHVBg8FRdcOiMhKgFNPGYrNO7y8/mJwuOTy159TQswUecNN1lNZnomYqabPu74QQlzEHTyKLdVL2pZDJO+WbE9HiKzSWqN/8UPo78H817+GLTdhvP+TqPzCbE/tUkP9qioXoHz+MV1F3fUw+pVnGYqOqJvutC5YvtYqa+vpxPyL34HIYNBi/hKMRz8E67Ze8eBard+Gbm2EI/tghgar9IXzAKh5i6+x5QTH15rWpiRnT8YI9l8embLZrUyonFwb/lyDQK6N/AIbdkdmMjzmL3aRV2DnwO4w4aDJ7tdC2AY/lS5ebmVv5ebbKaty0NaUxOlS+APTp3tFbr6d/EIbvd1pjh+yAqjFpfYrPif9OTZuvMNPY12CU0djDPSZvPlyiEXLnJRVOuhoTdHWksThUNx4uz9j9/OQoWDVUM+vpStdtDcn6e1Os/vVEDl5xvBKi5fcBKWGe851dVgHnBKsmlout8HmG33s2RUCfWm/KiFmktzB5240oonHzDEtzCHExeTVTwgxLTkj1QDEcraCIX0ZxBzX1gz9PWAMftA7uBvzxGHUYx9C3fEwynb5waPWGtpboKQMZVyfg8uh5urX6ld1MVVUitp8I/rg27BiHaqo1DrfMFA77kD/8kdWoCo3H/XEx1E7brcyr6425sYbrHLBEwfQqRTKPrM+7uhUCpobrD+mILMqHjPZ+0Z4eIU9uwPKKhwE8mwEcmwEcm14vGrKS49y8mzcek+AYwciNF9Ikkpa2VsV80Ya8a5a56a/N828hdltTj6aBUtd9HZHSMStDJihflVXopRi/mIXpRUOTh6J0tyQpO5cgrpziUu2a2tJUrUgs+97vx6syiuws/OeAHXn4jQ1JBjoMxnoS1xtiGGS6TP1ikrsbN7hpaczRUn5zHr9EmKIw6HwBQzCQZOG2gSLV7ik350YF3n1E0JMP9rEGakFIOFdluXJCJF9+sxR68TytRjv+y3MJ78M56vRP/wGeverGB/5PdTiFSPbm2n0d76IfvsV1OMfRT343uszz7MnrBNj6Fd1MfXeT4DDgbr38UvPv/sRdEsDqmI+6oF3o9zesQ24eAX4cyA0YDVoX7FuXPPJuvZmSCXB7bF6eGXYuVMx+nvT2O2waLmLxStcOJ3Z+cbb7lBs2uGloDjB+eo4K9a5MWwjBzP+HBt3P5yTlbldS8U8BycPK5KJoWDV2D5Wu9wGm3f4mLcwycnDUWIxTUm5nXQK2pqTtDZOQbAqdGmwCqxg4YZtXlatd9N8IUk8NpJhd0nfew1Df+bl23B7JDvieqic75x02a0Q2VZYbCccTFB9IkbtmRgV85zMW+wkv3BsvdiSCY3WGodz6r9AEdOPBKuEENOOPd6KYUYwlYuke162pyNE1ukzxwBQK9ej5i3C+PO/R7/1Evon34HGOsy/+zPUrfehHv8YeDzob30BvedV67o1l6+mNyVzjISHV7AbT2YVgCosQf3WZy4/P5CL7fc/O+65KMOGWrfV6nl1dB9qhgWrhkoAmbfomllk4xWPmTSctzJottzso+Qa2UDXg1KKhUtdLFzqyvZUxsVmU8xf7KT2TJycPGPcQZziMge3PzBy//f3pmhrTtLRliSV1BktBYxGrECUx3f5HJ0ug0XLZtZ9L4SYGVZv8ODxGjTWJ4iETC7UWSu8+gIG8xc5qVroHPW1M53WnD0Zo/ZMHK3BsIHHY7BgiZMlK91ZuCUiGyRYJYSYdpzRcwAkvYtBSbmBmNu0acKZ44AVrILBErlb70dv3IH+z2+i97xmNSA/tAcWLIETh0YGaG+58th93Zj/9k+oknLU4x9B5eRPfKK1Z6x0jJJyVF7BxMfJELXhBitYdWQv+l0fHHtW1nTQOHX9qs5XxzHTVuPb4lL5GDhZS1e6SMQ1VQsmH/TLybPh9RtEQiYdrUkqMphVM5xZ5ZesKCHE9eNwWotMLFvtoqczzYW6OK2NScJBk9PHYpw+HqOkzM68RU58fgPDUMSiJscPRQkHR7I9zTSEQyanjsZwOK2SajH7yacUIcS044xYwaqEZ2mWZyLENNBUZ/Vscntg4aVlsSonD/Wbf4y++W7MJ78CbU1WoMowUO/5BPpH34DudnQ6PXpfqx/9B5w9gT57An1ot1UyeOt9E+pxpc9ZJYDjzaqaMms2gtMJnW2Yf/7bqDsfRt31MMo/PUvKLqYHVwLMdL+qRNykriYOwLLVbimpyACny2DjDZkJhCqlqKhyUHMmTktT5oJVWuvLelYJIcT1pJSisMROYYmddZs1LY1WhlVvV5qO1hQdrZevGOhyK9Zt8VBS7iAWNblwPkHN6TjHD0YJ5NjIL5qdoYxQME04aFJakf3M52yTdywhxPRiJnBErcbC0q9KCNCnrRJAlq0ZNeAEoFasw/hf/4J67CNQtQjjU3+OuusRcDghnYbu9svHrT6O3v8mKAMqF0AkjP7eVzH/z39D150b3xxTKfSxA4PzHF+/qqmi3F6M3/0LKKuESAj9ix9gfvbT6OBAtqd2bUPllBkOVtWdi5NOQU6eQWnF7PyQP9OVDzaX72hJkkrpa2w9Nom4Jm310sfjlY/+QojssjuszKhb7gpwxwMBlq5y4Q8YuNwKh9P6mb/Iye0PBCivcmKzKXx+GyvXuSmrdGCasP/tMLHo5SvZznRaa/a9EWbfm2FaGse26MVsJp9UhBDTijNahyJN2p5H2lGU7ekIkXXD/apWbbjqdsruQD30PnjofSNnlpRbq8q1t0JJxciYqRTm979uXe+2+1Ef/KRVRviz70JDDebf/ql1/mMfRfn8157jT79t7cfjRa3bPIFbOTXU2i0YqzfC4b2YT30VBvqshusbt2d7alekw0GrMTxAaWXGxk0mNXVnrQ++klU1feXmWysxRiOazrYk5VWTz64ayqpyexQ2mzzuQojpw59jY9V6D6vWe665rVKKTdu9vPVykOCAyVuvhFi41Mm8hU5c7tkRiO/rSRMeLNs+cyxGWaUDw5i7r9uz41EVQswazmgNAAnvUpCDKTHH6VQKzp0ERvpVjUtJuTVOx6V9q/Su56zgkj+AeuzDKMOGccdDGJ/7CmrH7aA1etfzmH/5u5i7X0XrK2d46INvo3/1NADGJ/5ocn2vpoAybKgtN6HWbAIual4+XQ31GMsrRLmv/eF9rJrrEySTGn/AoLxKSgumK6UU5fOsAFVrYzIjY0oJoBBitrA7FNtu8eFyK6Jhk9NHY/zqmQH2vxWmvSWJNjOTkZpJkXB6zFlgLRdGXvfDIZMLtXM7u0retYQQ04ozMhis8kgJoBDUn4V4DPw5VqneOKmhbKqLmqzrgT70M9+3Ln/8YyhfYGT73HyM3/oMxp/8byirgmA/+pufx/z//gLdcuGy8XVbM+a3/tW67n2PozbtGPccr5v5VrNy3Ti9g1W6rdk6UVpx9Q3HqbXJ+gA8f7FTsqqmuYrBUsC2liTp9OQPvKLhK68EKIQQM40vYOPOB3NYv9VDXoENraGtOcm+N8O8/IsBzhyPEgmlsz1NwFqJddcLQV75xQBnT8Uwr/KarrUeLv0rKbcK4KpPxkglp18A7nqRdy0hxLRhpAawJ9rQKBLeJdmejhBZN1wCuGIdypjAW/ZgwOPizCp9cDdEIzBvEeqWu0e9mlq53uqB9cTHrCbl505h/t2fo/t7R8ZJpzG/9g8Qi8LyNajHPzb++V1Hat7ga8oMyaxSGSwBjMdNujut5rVlklU17eUV2HB7FOkU9HRe3nR4vCSzSggx29gdigVLXOy8J8Bt9wVYtMyJw6mIRTXnTsV55bkge3aFaL6QyEjQf6JaLiRIp8A0ofp4jDd+FaS3e/TX9Z6uNLGoxu6ALTf68PkNEnFNbXX8Os96+pB3LSHEtDGUVZVyVaBtvizPRojsG26uPpESQC7KrOpoHTmz9rR12cbtV131T9kdGA+8B+P//TJULYJo2OppNTS3156zVir0BTA++d+u2Px92hhqVt7TiQ5N4ybr7ZnPrGpvTqI15OTZ8Pmn+eMkrFWziq1v1Xu7J58dIMEqIcRslpNnY+1mL/e8K4fNN3opKrVeP7vaUxzaE+FXzwxw4lCE4MDVX0+TCZPG+gRN9QlaGhO0tyTpak/S05WirydFcCBNJJQmHht7Y/fmwbK+8nkOHE5FsN/krZdDnDgcvSxjquWClVVVVuHA7lCsXO8GoLY6Rjw++5rJj4U0WBdCTBvu4EEAEt4VWZ6JENmnw6GRwNLqjRMbpNTqWUVXBzqVRNkd6PPV1phLVo1pCFVYgvGR38X8uz9D734FffsDkF+EfuYp6/InPorKK5jY/K4j5fVBcRl0tkFjHVyjYX226KHMqrLMZVYNlQBKr6qZI6/QTvOF5BW/gR8PCVYJIeYCm01ROd9J5XwnkVCaC3UJGusSxKKaunMJGs4n2Hl3gJy8y7+00aZm31thejrH9gXBirVulq9xX3WbcDBNf28aFKzbbPWgPHkkSnNDkrqzcdqaEqzf6qWk3IE29fB7dcV8q29heZWD/EIbvd1pYhGNyzWee2N2kGCVEGJasCU6cEbPo1FEc7ZlezpCZJ0+fgDSaahcgBpslD5uuQXgclt9r7ra0V6fFaxRChYtH/MwaslK1I7b0e/swvzBv6GKy61SwgVLUbfcM7G5ZcO8xdDZhr5w/pqrK2aDNk0YKtnMUBlgMqnparcCHhKsmjkKCq2Dqd7uNFrrCfcZ01oP96zy+iVYJYSYG7x+GyvXeVixxk1He4rq4zH6e9Ocr46zcbv3su3PnY7T05nGZof8QjtmWpNOY/02Gf47ndaYaTh/Ns6Sla6rrrDaMrhIRlGJfXi1ws07fFQtSHLsQIRoRLP3jTCVCxyUVTqIxzQOp6J4MDNMKcX22/xEQmly8+dmVrQEq4QQ04Knfy8ACd8qTEdedicjxDSgj7wDWOV6E6WUguJyq1yvvRXMwW8MK+ZbmUbjGeuJj6MPvwO1Z9C1ZwAwPvSpq5YSTjdq3iL0od3Tt29VXzck4mCzQWFJRobsaElimuALGPhzJFgxU+Tk2TAMSCY04ZCJPzCx/7NYVGOaVnza7ZHHXwgxtyhDUVruwOlUvPWy1cNq5Xr3Ja+HvV0pzp6MAbBui5d5C51XHE+bmpd/MUAsqmlvSVIx78rbDpX1DS2aMaSk3MHt9+dQfSLG+XNxmhuSNDdYga2ySgfGRQEwh0ORmz93QzbyriWEyD4zgTt4CIBozsQPzIWYLXQyASes/4nJBKuA4VJA3dEyHGRSi8dfaqvyC1EPvGfk71vumdA42aSm+4qAQ6s2FpWh7Jn5cHpxCaCsAjhzGDY1/E16b9fE+1YNZVW5vQaGIY+/EGJuyi+0k19owzShoXakYXkyqTn0TgStoXK+g6oFV89AVoaiajCY1ViXuOJ2wYE0A/0mSo2e1Wx3KNZs8rDzLj85uSMhmYr5kgF9MQlWCSGyzh06imHGSDkKSHiXZns6QmTf6aNW6V5eISyY3P/E8KpyFwWrWLJyYmPd+xhULYSCImulwJlmMFhFWzM6Pv1W19EZbq6eTmk6WqVf1UyVXzTUZH38fau01vR2pTh/1nqeS78qIcRct3iF1fSpvsZaITCd1hzaEyYSNvF4Feu2eMf0pc78RVawqqMtRTQyeuPzoayq4jI7TteVX3/zCu3svDfA2k0eVq53D5cACovcG0KI7NIaT79V7hTN2Q5KPlALoY9YZbFq0/bJZ8MMrgioWxqhwVpxU000WOVwYnz2nwGNss/A4EduAQRyIdhvlUZO8H6YMhlurt7ZniKdBo9Xzdl+FzNZ/kV9q8ZKm5rG+gQ1p+OEQyMHUQVF8vgLIaanUCjEhQsXWLBgAT7f1K0GXlbpwONVRCOahpo4bS0pujtSGIbVS8rhHNvnLV/ARkGxjZ7ONE31CZatvrTRutaalsFVAK9WJjjEMBSLls/B7uljIMEqIURW2eNNOOItaGUnlrMl29MRIuu0mR4JVm3cMenxVGk5GuDcKdAm+AKTat6dqfK0bFBKWdlVJw+jG+smHLSbKrots5lV3R2pweGkBHAmyi+0/tcG+tOkUhq7/cqPodaajtYUp49GCQ5YQSqbDcqqHFQucFJSNnP/b4UQs08qlaKuro5Tp05x4cIFtNb4/X4ee+wxCgqmZoVhw1AsWubi1NEYJ49YParsdti2009B8fheI+cvctHTGeFCXYKlq1yXvMe2XEgSCpoYhhUgExMn71xCiDEL9lvf7gZyM/cNrbfvbQBi/nVo29R9myLEjHG+2sr88fhg+drJjzeYWYUezLJYvGJOBy7U/MXok4dhOvatGiwDVBlaCbCv1wpW5RVIVs1M5PEauD2KWFTT15OiqGT0g57ebitI1T245LrDqVi22sWCxS7sjrn7vy6EmH46Ozs5deoU1dXVxGKx4fOdTiehUIj//M//5NFHH6W0tHRK9j9/sZPqkzHSKXC6FNtv9ZFXMP6QSPk8B8cPQSRk0t2ZpqjEGqOrI8mRfREAFi13jTlbS4xOglVCiDFJJTVvvRwklYKlq1ysWOuedLNWI9GNK3QMgGjeLZmYphAznj48mFW1fmtmspgCueDxQtT68DTdsomuu3lLANDTbEVAnUpCV4f1RwYyq7TWDPRawYu5vJLQTJdfaKe1KUlvd/qyYFU4lObMsdjw8uiGAYuXu1i6yoXDKSX1QojpIRqNUl1dzalTp+jq6ho+3+fzsWrVKlatWoXL5eKZZ56ho6ODn/70pzz66KNUVGQmy/hiDqfBmo0eWhqTrNvswZ8zsS9z7HZF5XwnF84nOLo/wuLlLnLzbex/K4xpWn0iV61zX3sgcVXy6UUIMSZdHSlSgz1ea07H6WpPsflGLz7/xL+x9/a+jkIT964g5cr8G5IQM4HWGhrr0CcPo08egppTAKhNky8BhMHSt5KKkX5VM2wFv0xT8xdbZZHNDeh0GmWbJllHne1W9pvLY/XWmqRwyCSVAsMG/hwJXMxU+UW2wWDVSJP1eMzk3KkY9bWJ4YTJqoUOVqz1SCN1IcS0kE6nqa+v58yZM9TV1WGa1ouVYRgsWbKEVatWMX/+fAxj5DXriSee4Be/+AVNTU3s3r2b97znPVcaflIWLHGxYMnke0QtXuGitSlJJGRy4lB0+Pz8IhubtntRsgLrpEmwSog5zDT1mLOjutqtb27zCmyEgmn6etK8+VKInff6LwlYKTOOkewl7SwGdeWDQB3vxR08CEAk//YJ3wYhZipdcxr9xovoU4ehv/fSCxcshbVbM7YvVVKObqixFjBYtDxj485IxWXg9kAsCq2N1uqG08FFKwFmokyzv2cwqyrPNuksWJE9Q32rervS9PWkaG5IcuF8fPjLo+IyO6s3eMjJmyZBVyHEnBYOhzly5AgnT568pMyvuLiY1atXs3z5cjwez6jXdTqd3HnnnXznO9+hra2NVCqFfRr3yQzk2LjroRya6hPU18YJDZj4AgY33OLDdpUeg2Lspu+jL4SYUgN9ad58OUhxmZ3N233X7GvR2WZ9Ml66ykVuvp0Db4fp701zaE+Em+/yWwdD2iSv+Rs44o1o5SDpnk/SvZCEZyEp9zy0MfIthtn8AkqnSbgXkvQsnMqbKsS0ozvbMP/xs5AePOJ0umDletSaTai1m1ElGc40HCorq1qAco/+IXGuUIZhBQOrj6NrTqGmSbBKD/erysxj3zdcAihBjJksN9+GMiAR17z5q9Al56/a4Ka4VJr3CiGyLxwOs2/fPk6dOkU6bb3/+Hw+VqxYwcqVKykqKhrTOLm5uXi9XiKRCB0dHVNSCphJDqe1kt/CZU6C/SZen5HRXoHxeJyBgQGKi4szNuZMIsEqIaapnq4U4aBJeZVjShqk1tfEMdPQ3pxi92shtt/qw+UevXwgGjEJBU1QUFhix+k02HqzjzdeDNLXk6b6RIxV6z24QsdwxBsBUDqJM1qLM1qLrxc0BilXOUn3QlKeeeiO1wDJqhJzk971SytQtWApxrs/DktXoxxTd9CpNu1Av/Is6pZ7pmwfM4lauQ5dfRx95hjc/mC2p2Npb7F+Z6i5er8Eq2YFm01RWGSnqyOFYYOyCmt1v9IK+5xeKEEIMX1orXn22Wfp6LD6LpaVlbF161YWLlx4SZnfWCilqKiooKamhpaWlmkfrBqilJpUhmsikUBrjcs18sV+d3c3Tz/9NKFQiA984AOUlJRkYqozigSrhLjOYlGTlsYkPr9BacXoB6dN9QmO7IugNZw8rJi/xMmiZS483rG94KdSmramJGVVjlGXuk6n9UhDVpt1UPPWyyG23+bDH7j8hXa4BDDfhnOwaavXZ7B+m4eDuyPUnI5TXAIrYr8CIFRwN3HfGhyxBpzRehyxemypPhzxZhzxZui3xk26Kkh453hJkphzdCyKftP6XzHe9UHUqg1Tvk81fwm2f/3BlO9nplAr16OffsrKrjJNK9sqy/RFZYCTHktr+gdXApTm6jPfph1e+nvTFBTbccjqfkKIaaahoYGOjg4cDgePPPIIlZWVkwqmXxysmu5SqRShUGj4JxAIUFpaOqbyxVQqRX19PdXV1dTV1aG1ZtWqVWzfvp3+/n6ee+454vE4+fn55OfnX4dbM/3IJxghrgMzrWlrSdJYl6CzLYXW1vmbtnupWui8ZNu6c/HhJn0OpyKZ0NSeiVN3Ns7yNW6WrHRds//IycNRLpxPUNpoZ9stvsveMDpakyQTGrdHseN2P/veCBMJm1bAaqeP/KJLXxqGSgCLyy49v2Kek87FKS6cTxA6twdbeQ9pm59I3k4wnKRdZcRytwNgJPtwxOpxROtxxhqwp/sJFz0A8s2wmGP0O69BNAwl5bB2S7anMzctXAYuN4SC0NwA8xZldTpaa2htAkBlILMqHDJJJa3V4QK52Q/EiclxewzcHnkchRDT04EDBwBYu3YtVVVVkx5vKJuqpaUFrfW0yiLt6+vj5MmTdHd309PTQzAYtN7DL2IYBsXFxSxfvpz169dju2ghF601zc3NVFdXU1NTQzwev+S6p06d4syZMwCYpkl5eTmPPPIIjinMvp/OJFglxBTq703RWJegqcEKDg3x+gwiYZMj+yLYHYqySgfxuEnt6Ti11daL1qJlTlZv9NDRmqK2OkZPZ5ozx2O0NSfZuN1L4ApLrUYjJo31CQDaW1LU1yRYtOzSFS+aGqxMqcoFTgI5Nm6528/eN6weVLt3hdhyo4+ySutFUWtNZ7sVrCoapTfGmk0eetvDrC3aDUCk4E4wnJdtZzryiDs2Eg9sRClFeXk5ydZW+LUXeCFmM22a6Fd+AYC68+FpkdEzFym7A5athhOH0GeOobIcrOL0UQj2WysBVsyf9HBDJYA50lxdCCHEFGptbaWlpQXDMNi0aVNGxiwqKsLhcJBIJOju7h5zv6up1Nvby/79+6murr4sOGWz2QgEAni9Xvr7+wmHw7S3t9Pe3s7x48fZuXMngUCA6upqqqurCYVG+g8O9fVasWIFqVSKPXv20NRkfXm1ZMkS7rvvvmndZH6qzd1bLsQUScRNmhqsLKqBvvTw+W6Pomqhk3kLnfgCBkf2RWiqT3Jwd5jyKgetzUnMwc2Xr3GzfI0LpaxAVmmFnab6JCcOR+jrSfPGi0FWrHOzZLnrsmVRa6vjaHMkK+vUkSiFxfbhOupEwqSjxQpWVS2wgkout8FNd/o5uDtMR2uK/W+HWbfZw8KlLgb6TBJxjc0GBYWXB8jsdsWWBYfwOsJEzXyiOdum4m4VYnY4dQTamsDtQd10V7ZnM6eplevRg8Eq7nk0q3MxX3vOmtNNd6Jck19OW/pVCSGEuB6GsqpWrlyJ3+/PyJiGYVBWVkZjYyMtLS1ZDVZ1d3ezf/9+zp49O3zeggULWLx48XB5ntfrHc7+0lozMDBAfX09+/fvp6+vj2efffaSMZ1OJ0uXLmXFihVUVlZe0tfriSeeoKmpiWAwyIoVK8bd82u2kWCVEBlgmprONiuLqq0liTat8w0DSisdzFvkpLjUfsk33Bu2eUmlIrQ1JWm+YAWPcvNtLF3lomLepZlJSinmLXJSVGrn2IEIHa0pTh+N0daUZOMNXvyDWVbxuMmFWisza/MOL3Xn4nS0pji4J8zOewLY7YrWxiSmaZWGXNwI0G5XbLvFx/GDVgnh8YNRohETp9Oac2GJHcN2+Tf0RqqfhR4rq+po504WL5eXFTG76Lpz6Bd/inrsI6iyyZVoma8OZlXdfDfK483E9MQEqZUb0ABnT6DTaZQtO4Ed3dUOR/dbc7rjoYyM2d9jBavyCiRYJYQQYmp0d3dTV1cHwJYtmW1rUFFRQWNjI62traxfvz6jY49FV1cX+/fv59y5c8PnLVq0iBtuuIHS0tIrXk8pRW5uLhs2bGDlypUcOHCAw4cPD19/xYoVLFy48KrZUpkopZwt5KhSiEkK9qd55/UQsehISmhOno35i51UznfgdI0eETcMxeYdXk4ejpJKaRYucZGnelCNJ9GdGtBQXH5JeYrHa3DDTh+NdQlOHonS253m9ZeCrFznZvEyF3Vn46TTVtCruMxObr6N118MEhoweevlICvXeWgaLBH89V5ZQ3Nav9WDx2tQfSJGzek4xuCxTlHp6C8X/q5fYiNBR6iCk00rqYqbV7zNQlzJdGly/et0Xw/mFz8HA30AqE//+cTHamuG4wdAKdSdmQlKiEmYtxC8foiEoKEGFq/I2NA6lUK/9hw4XagN21B5hVfe9vUXQJuwagOqfPIfUK3m6pJZJYQQIjO01kSjUfr7+wkGg5w5c4bm5maam62FQZYsWZLxBuBDfauG9nG9dHZ2sm/fPmpra4fPW7JkCdu2bRv3anwul4ubb76Zbdu2XbbSnxibcQerjhw5wpe+9CXWrFnDH/3RH03BlISYWZoaEsSiGodTUbXAwbxFrjEfINhsivVbrewKHY9h/sWfoIP9F2+A8f9+GVVSPnyWUor5i10Ulzk4uj9CZ1uKU0ditDYlCQ1YKV1LV1klhC63YvONPg68FSbYb7L/rfDwOJXzLw9WDY2/fI0bt0dx7EB0uDSxeJR+VY5ILe7QMTSKIz33AYruzhTlVaOPLbIjmdScr45RtdCJzz/9Dl710f2Y//b/oW66C/Xe30RNkyaSOp3G/Ld/HA5U6SN70cEBVCBnQuMNZVWxbiuqZGYsxTybKcMGK9bC4XesvlWZDFY9+wP0L39knX4SWLgMteEG1MYboHLhSLlAIo5+6yUAjAwFMCNhk2RSW83Vr9DbUAghMqm+vp6Ghgby8vIoKCigoKDgktIoMT3FYjGam5tJpVI4HA4cDgfxeJyBgYHhwNTQ71QqNeoYSim2bct8C5CysjKUUoRCIYLBIIFAIOP7uFgymeSNN97g5MmTw+ctXbqUG264YdJliE6nHBdN1LiCVU8//TSvvvoqZWVlUzUfIWac3sZ+wM3K8B4WbLx3wtkheu/rVoNdrw/K50FHKwT70Uf3oUbpp+LxGmy/1ceF84NZVl1WVMkXMCivHDnYLyqxc+fDAWrPxDl/No6ZtrKkPN6rz3P+Yhduj8HB3WE8XuPyFaV0mkDnMwBEc7dj5FRBZ4LuDglWTTdnT8Y4Xx1noN9k282+bE/nMnrfGxCPoV97Dn2+GuNTf4Yqzv77jH7mKTh7wmp6nZsHHa3ova+h7h5/fyMzHEK//QoAxl0PZ3imYqLUyvXowWAVD743I2Pq6hPo539s/VG1CJrqoP4cuv4c+unvQWEJauN21IYb0J1t1oqEBcWwPjMf9vsGSwADubZRS7eFECKTzp8/z3PPPXdZ02mXy0V+fj6FhYWUlpZSXl5OQUHBuAJYWmsikQjBYJBwOEx+fj4FBQWZvgnTSiKRmNIsHNM0OXToEDU1NXR0dIzrun6/n5ycHMrKyrDb7eTk5FBSUjIlPaUcDgclJSW0t7fT0tLCihWZ+0Lp13V2dvLCCy/Q29sLwPLly9m2bRuFhVfOihbXx7iCVQ6Hg7/927/lm9/8JslkcqrmJMSMYZqavqANFOQd+DnaqIcPfmrc3yRprdGv/RIA9dD7MO59HPPlp9E//Ab6+IErNv9VSrFgyUiWVVdHipXr3Jc1XXc6DVat97BomYu2piSllWPLXCkpd3D3I7kYNi67TZ6+t7EnOzBtPsIF91IUs9FQawWrxPRhmnq49LO7IzXtlgAG0HXV1gmbHRpqMD/3x6hHPmBlWvky06zzSkxTk06Dw3HpfaKPH0D/0go4qI//FwgF0U99Ff3Wy+i73jXu+zD88rMQj1qB6FUbMzV9MUlq5Xqrb1XNaXQyOe6svlRSc/5cnPIqB4EcGzocwvzGP4PWqJvvxviNP0D396KP7Ucf3Wc12O/uQL/yLPqVkYar6vYHrUyvSQiH0tSeidNYZ/2/S78qIcRUa2pq4vnnn0drTVVVFQ6Hg56eHgYGBojH47S1tdHW1jacreJyuSgrK6O8vJzy8nJKS0uHs07S6TQXLlygtrZ2OJsnFAphmuYl+ywrK2P16tVUVlbidDpxOp3Y7fZp99kGrM/3p0+fpre3F8MwsNls2Gy2UU/39/fT0NBAW1sbWms2bNjA9u3bMx60Onz4MLt37x7+Oz8/H5/PRzKZJJlM4nQ6ycnJuewnEAhgs9mGV/RubW29LECZaeXl5VMerDp79iwvvfQSpmni8/m49957mTdv3pTsS4zfuIJVDz744FTNQ4gZqb81SFo5sCfD+MOt6NdarFW+nvj4+AaqPW19++5wom6+GwC1div6h9+AsyfRsSjK7bni1b0+gxtv95NKaez2K79Zuz0GC5eN703P4bx8PFuiE3/PywCECh9A2zwUFlsfJgb6TRLSt2raaG9JkohbHyaSCU1owCSQO30OYnVwADrbADD+5z9jPvllqD2D/tE30D//Lmr77ajHPozKyVwvBPOVZ9HnTqI+/l85eAjampJUzHOwfI2bQK4N3d2J+Y3/C4C640GMbTvR4RD6R9+A5gaor4FFy8Z+G800oWd/aI1358PT8gP1nFU+D3LyYKAP/ZNvweMfG9dqfKeORmmoTdDRkuTmu/yY3/0i9HZBSQXqA58EQOXmo3beCzvvRcfjcPoI+ug+K3gV7AePF3XLPRO+CcH+NOdOx2i5kGTouCG/0MbyNe4JjymEENfS3t7Os88+SzqdZtGiRTz44IPYBheqSKVS9PX10dPTQ1dXF62trbS3txOPx2lo+P/Ze+vwOLL03v9zqppBzCxLJpkZZsZDHqblnd0NLAZuaJObm9xfmHNzb2jDuMludrNMwzwez3jMTLIl2QKLoSU1d8H5/VHqtjWSbJFteVyf5+mnq7urTp2qrq6u8633/b5ttLW1AdaN0Pz8fHJzc+no6CCRSExYjxACv9+P1+tlYGAgI4C9dx6n05kRr9KPYDBIdXU1lZWV8yr6pCO+RkdHycvLm7RtKSVvvvkmp06dmtU6jh07xrlz59i2bRsNDQ3zUhUuHo9z8KBV0GPz5s2sXLly3ir4XQ/Ky8s5duwYra2tmKY575XxRkZGeP311zFNk9raWnbu3InXO/V4y+bGc0MM1u0L8+mR3k/2/lpYSC2FcE6e1hY60QLUkpvsRP3x/4H5X3+PfPF7SK8fZQYpJWY6qmrL3SiBMT+cknIoLIX+bmg8gVi39ZrtvDc6ZD4QRgwpVFDG/ohNnazebyKkRspbRzJrPUIIPF6VYLZCeMRksN+grHJqQcQ+1m8cl1rHR8EODRhk5Syc2hqydazKSkk5SmUt4n/9KXLPq5hvvACdrci3X4HQIMoXf29+1qdpyO9/FVJJ+ivvoCeyCoCuDo2uDo3SCgd1e/+DrGgYaupRPvZ5hBCIQBC5YTty/1vIPa+iLFoy/XWePILefQl8fpTt99nH/QJCCAH3PY75w69Z0U4nDqH8xM+hLF9zzWVHhw3aLlhRTKFBg+jrb+A9/C6oKupP/eqk1R6FxwPrtsK6rUjTgLYW8AcRWdkz7ntoUKfpTIKezsu/8cISB0saPOQV3vwoA/s8b3M7cbsd76lUiueeew5N06ioqODRRx8dV93M6XRSWFhIYWFhJiLGMIyM2NTV1UV3dzfhcJiBgQEGBgYA8Pl8LFmyhOLiYoLBIMFgEL/fnxHBotEojY2NNDY2Mjo6SiplnYOllKRSqczrKzl9+jSKopCXl5cRO9IRNB7PzET9jo4ODhw4QH9/P8mkVX3b5XLR0NDA2rVryc7OzvRn165dGaFq5cqVqKqKYRiZh2ma46bdbjdVVVVUV1czPDzM7t27GRoa4o033uDw4cNs3LiR5cuXZ/bFbDhw4ACpVIrCwkK2bNkyK/HnRh7rNTU1eDwewuEwra2t1NXVzVvbUkreeOMNNE2jvLycJ5544rb5/d5KXPcRS2Fh4fVexfsO2xNsYWCEBhn62z8mcXAPWZ/6Alkf/9yEk9jh3iR4oaTcT/nTH2DU5WTk3/8a8/tfJauwiOCTT09rPV1HrHDcoo/+JK7Sy2bqoa07iDz7LbwtZ8h79IPzu4HTwOzbi9nyZVCcKPU/DgVbkK3fQia7wBHAu/rn8bkvewdU1cDp4yESUTelpdc+ju1j/foSi+r0dln593VLs2g5N0os7KD0imPsZjPyehejgG/FWvLT/Xr6s8iPf4bE4b0M/O4vIs8eozgYQAnM3VwzceIQ/akkplA4M1AMHli8LBtdN7nYHKb7kk535U9R4tvEtk/dRVFV1eVln3qa/v1vwcG3Kf7F30KZ5kVu39+9hAEEH/4QOTW115zf5gbzhS8SX7WO0D/8GUZ/N+Zf/Bae+x8n5/NfRM3KmXQRKSWH322HKzIgLh1qZzGQ/elfIGvbjumtu3xm1f+klHRdinH0wACd7ZcLZtTWB1m3uYDC4oV3R9g+z9vcTtwux/sLL7xANBolPz+fL3zhC9OOWqqoGH/OGx0dpa2tjb6+PiorK6mrq7umGFNfX8/jj1vej1JKNE0jkUiQTCYzj/Trrq4uzp07R39/f0YQS3Ps2DE++MHpXVsnEgleeOEFDhw4kHlPCIHP5yMajXLs2DGOHz9OSUkJBQUF6LrO2bNnEULw0Y9+lPXr109rPVeyadMm3n33XXbt2pWJADp8+DCf/vSnZ3Wc9ff3c/LkSQCeeuopysvLZ9zGldyoY33Lli289dZbNDY2cuedd85buwcOHKCjowOn08knPvGJ6+K7ZTN3rrtY1d/fP2X1AJvxCCEoKSnJ5Crb3DzMo3sxv/r3VooGMPpf/0S47SLKp34WMfYnKvt7GMQ6sfnrS+ju7oZt9yP6epHPfoPhf/5zRpMayp07r76u574Fug6LljLoz4bu7suf1TUAEN3/NokPd904xV8a+AdexDf8zlhHUpiN/0Sy4y9xV1rRAiOFHyQ1lAQu99cbsO5otV0cYdGyqY/hm3msy+4OZGgQpWHtDV3vzaC5MYGUVkpQcZlJyzm41B6mq+sGHkvXwDhxGIBESaX1G7qS8looq4SuDrpfex5ly91zX9/blsl5R/m9RDxFuFSD+gZwuhxUJls4f2iQnuLN9OSv4wcvRSg51cTSFR6ycx3IgjIoKEYO9NL9wvdQtt03rm2pa6COj2iRXe0Yxw6AohDfcg/x926jzcKgegn83t8ivv9V5K4XiL3+HLEDb6M8/XnE5rsn/F56OlN0tkdRFKivNTnfotBZvI3FeQNEtt5H9Dp9zycOxWhttu7mCwEVNS7ql3sIZqno5jDd3cPXZb2zwb6msbmduJ2O98HBQd55x7o+vOOOOxgaGppTewUFBRmhYKaG3+9FVVV8Ph8+n3WtWlpayoYNGxgeHmZ4eBiAcDjMG2+8wf79+1m0aBFFRUVXbfPChQu8+eabRCIRAFatWsWqVavIzc1FVVXa2to4evQo7e3tdHd3j7uWeeCBBzL+TrOhvr6e6upqTp06xeHDhxkeHubLX/4yTz/99IzT1Z577jlM06Smpga/3z/rPt3oY33RokXs3r2b5uZmTp06NS+m5+FwmOeesyo0b926FU3TZr0/bGaOw+GYdkDTDckFeb+ftOcbKeUts89kWzPy9edAVRGf+lmEY+GkF80GmYghv/lvyD2WHxMVNYh1W5HPfRu5+2WM0CDKF6z0jti7e0l47wFpkludl/nOxBNPQzyGfO1HmF/5W3C7ERsnvxMgDQPzrZes5e59dOL3vmQFuFwQGkBeumhVlrrOCCNKds83cMVbAIjs7UfqksD2woxQFXOuIulvgPf0N6/AEvLCIwbxmIHHe/Xw4ht9rEspMf/mDyyPpJ/7TcTaLTds3eP6MTyI3LsLUVqOWHvt9M5ZrUNK2i9Yg9rKWhfZeSpCgURcEo0Y+AOzCyOX0TCYEhHMmpc+yovnrRe1SyY9FsSaLciuDuSx/YTqt+NyK/j8s/cskGeOoTl8NNV9GIDFQ7twOD+M2dNJ4Bv/l/WJOJHSn6S5/GG6OjR6LlmPknInazf7ULfdi3z2m5hH9yO23nu53fYLmH/yq4h7HkEZ8yoCMF+zTLS929MsBwAApQxJREFUW+5Gyy+6Zc7ttyUeL8onfxq55W7Mr/4ddLVj/utfwN5dKD/2s4h8a0BjGpLTx+IA1NY7qXnpj2ip/iIxXwkjO36OPK7PdU9Pp5YRqmrqXdQt82R+Cwv5uLqVrmlsbObK+/14T6e3pT1+ampqbontzc7OzqTogWUMf/78ed58800++tGPTnoDLx6Ps3v3bs6dO5dpY+fOnRMikqqrq6murmZ0dJTBwUGGh4cJh8OZ9+e6fxwOB2vXrmXp0qV861vfYnR0lBdffJGnnnpqQhqflJJ4PE4oFCIUCjE0NJSZHh0dRQjBnXfeOS/f2Y061oPBILW1tVy4cIHjx49z7733Xnuhq5COkkulUpSUlLBmzZpb4hi+Xbm1lQWbm4ZsacT8/letsu5jiLVbYc38lN6WySTyrRcQa7ciim5MypJsOoP55b+CgV4QAvHQhxBPfhLhdCKrFmH+y5/DyUOYv/0/EB/5NEPnOqEKslwJHFd4RQkh4GOfhWQc+fYrmP/2FyhuD2LVxonrPLzHMuMNZiM2TBS0hNMFy9bAiYPIk4cR11msciS7yO7+GqoewtRMRp7vJNEUQdz5AMmRCrK0dzCjccIFVYjqicu7PQrZuSojIYO9uyJsvTuA17eAjNYHejNm3uY3/xWlYS3CdX1KA0+GbGtGvvoj5KF3wDCQDgfKX/83wj3/RsjDQwaRURNFhbIqFw6HICdXJTRoMNSvz0qskvEY5u/9Iugayh/+AyIwR8GqtwtiEXC6oLxm0lnEms3IF79Lcyifc69adzWzclRKK5yUlDsJZivTjhKT0TC0NdNS9zFSzgCBaCeVh/4L+ch6zC//NSTiUN9A1gefYoPDwZIRg/NnLOPqnk6N5sYEyxrWIp/9JjSdHldZUR7YDYaOfON55N2PIEorLFP2fW8AEHjqaUJz21s2NwhRtwzlt/8K+dL3kM9/G04dxvydn0N84McQ9z9O+0WdaNjE5RbUtT+P48JpigPH6CraQmcX5F2Hv6xU0uTEoRgAdcvcNKxZeOl+NjY2709M00TTNFKpFK2trVy6dAlVVdmxY5rpzguQO++8k4sXL9LT00NjYyPLly/PfCalpKmpibfeeot4PI4QgnXr1rF169ZxvlzvJV0173rh9Xp5/PHH+c53vkNHRwdvvfUWNTU1E0SpyUzq02zZsoW8vLwpP1+orFmzhgsXLtDY2Mj27duJRCKcOnWKVCpFIBCY8PB4PJNeG4bDYX70ox8xNDSEy+Vi586d827abjO/zEis+tSnPgWQSetLVxP4+te/Ps/dslnIyHgM869+1yrDrqqQVwj9Pcgj7yLmS6x6+yXkd/4D+coPUX79zxCF1y8vWuoa8pn/Rr70fStSKL8I5bO/jFiyIjOPWLsV5X/+kSVm9XUj//0vCS3+JAC55ROraAgh4Md+FpIJ5IHdmP/4f1B+6XcRS1ddXq+UyFd+aM1/72NTlkwXqzZYZc9PHoJHPjKPWz4ed/gYWX3fR0gNPZQi9P12dJGL8uu/jVi0FBMY+vJF5N43EE9eQkyRfr92s4/9uyNERk3eeS3M1rsDC6b6nGw+e/nFYB/ype8hnvzk9V2nacCx/ZivPgPNZy5/IBQr/bOtxYqgm2zZdLTeDFP2tJTk+EFrYFtW4cwY7+cXOQgNGgz2G1TOQveUu16E4cHMtHj84zNv5Mr20lFVVYumjsqsXUJb/ROcq/lQ5q3RYYPRYYNzpxL4/Aol5ZZwlVegIhSB7O9B7n3TEpD8AZRf+SOrwlvjCWKeAlqrHgJgmX4ERZqYf/FbEA1DMBvlp/5Xpi/BbJUN2/zkFSQ5dSTO8KAByxdb4lp4BHo6odTy35CNJ8Y2ykQ++w3ET/0v5DuvQCoFFTW4V66H91Qvslm4CIcT8fjTyA13WhX+ms5YFSr7u2nNs84Z9VUajn/7NgAVq4vp6oHOdo0VayW6Luls0zClxOdX8PqsiECnS8wqBffUkTjJhCQQVFi60q7yZ2NjM3eklHR1dTEwMEAkEiEcDme8ntJm5alUCk3TJiy7cePGcZFKtxqBQIDNmzezZ88e9uzZg8vloqKiAk3T2LVrFxcuXAAgPz+fnTt3UlxcfJN7bFFQUMADDzzACy+8wMmTJzMeVO8lKyuL3NxccnNzycvLy0yn0yNvNSoqKsjLy2NoaIhvfetbmZTOqVBVlUAggN/vJxgMEggE8Pl8HD16lEgkgt/v5wMf+MAtKdzdbsxIrLJFKRsAeeKgJVQVlqD86p9Afw/mn/8G8th+pK7PSyqgbBoTFUZCmH/9eyi//n8QUxjdzmk9nW2Y//aXcOkiAOKO+xEf/8LkVZzqlqH83t8hX/0h8vlvM5xTD0Be8eQDB6Go8JkvIpMJOH4A82//COVX/gCxyKqKwvnT0NYMThfinkem7KNYucHy8G1pRIZHEMF5vjiQBoHBl/ENvw1A4kKY4Wcuwab7UT7+eYTnijv4FWPhVJ1tUzaXlaNyx/3BjGC15/UIm+7yk1+4AAI502JReTV0tlmVG7feO2X0nkzEYHgINM1KCZ3BIFPGosh3XkW+8RwMjnkwqCpi012InU9iPv9tOLoPefH8OGEUQIZHkLtftsQh00D53b+Z9vFvGpJD70YJj5i4PYKlqy5/f3mFDjibZLB/5j6CMplEvvrDy6/feA750AenrJQ5LS5aofWidumUs1xq1zldY1XWrDdPs+hD2+jr0uju1Ojv0YlFTS6cT3LhfBKXolE0eobi5tcpGDqNaloX2PK1HyEe+xjyzDEa6z+GqTgoKHZQvHIl8uB3LKFKCJTP/09E7kQvhHR660jIAIcDFi2FcyeR509lIqhov3B53xx6B/nwh5FvPA+AsvPJSY+dRNwEuGa6rM3NQ5RWoPzqnyDfegn53/9E6Mh5wpusiMXyA18BLQVLV1Fw52rcz4VJJiQH90QZ7NMxjIntqQ4ywpXXp+D1KxQWOcjJn/r82H0pRWe7BgLWbvGhqgvDb87GxubWJR6P8+abb9Lc3DztZVRVxeVyUVRUxIYNG65j724Ma9eu5cyZM4RCIZ5//nkURUFVVTRNQ1EUNm3axMaNG+dUfe96UF9fzx133MGhQ4cIBoMTRKmcnBycU9wAv1URQrBmzRrefPNNhoeHEUJk/MYikci4RzwexzAMRkZGGBkZmdBWbm4uTz311HWNgrOZPxbA6NHmVkMe2QtgDbrzCpA5uRDMtiINzp+EhnVzX0k64sLthb4uzL/5A5Rf/SOEZ/7uCJi7X0J+419B1yCQhfLjP4dYv+2qywinE/HoR9E33cPIG9afV27B1H9iwuFA+elfw/zbP4SzxzG/9Pso/+uPERW1mGMDf7HtvqsKUKKgGCproeOitR9++fcRvonRXLNBGFGyer6B+wp/qvCROMpnfw2xfvvE+cuqkVgi39Xw+RXuuC/AgbejhAYN9u2KsH6bj9KKOQgb80A6skp58pOYu16wvpOv/h1izWZLlBoeQo4MZaZJxjPLiqe/gLj/ianbNk0r6q6tGZrPIPfuurx8IIjY8Qji3kcQOZYYImqXIo/uQ44JNmnMl7+P/OHXreMy3fapw4jt9197+6Tk+KEYA706qgM23+Uf5++Ul+8AAbGISTxmzihFU77zivUbzy+yIhCH+pF730TseGjabUxo88LY73zRkkk/Dw3qHD9gRYjVtL/M4oGXUZ/eTmWtm8paN1pKp/9wCz3No/SJMlJOP5cCa7i0dg2qqVEoeik78V2KX/oe4q4HGWwbpmfxFkCyYq0Xkb0WWVoJ3R2Ix59GTGG6H8xSURTQNEksauJdsgJ57qQlON/9sJUOLU0oqYDyKjj8Lubf/zEM9Vvf/eaJqRLtF5KcPBLHNKG4zEFNvZvCYseCMb63uYxQFMS9j2IOD9LemgNAmbMP5+G3QFFQnv4CQlUor3Jx4XySvm5LDM7KUQkEFWJR6/eWTEgMHSKjJpFRM9P+eRUefCo7EwF5JaPDBsfGfgP1y9zkXkXUsrGxsZkOra2tvP7660SjUYQQ1NTUkJ2dTSAQwOv14na7cblcEx5XS4G7FVFVlQ984AMcOXKEtrY2hoeHMU2T4uJi7r///gVdHW7Dhg3vC8FwJixfvpz+/n6cTierV6+eMrJP13Wi0eg4ASsajRIOh/F6vWzbtm3G5vQ2N4/311nH5rojk0k4ZVXvSosZQlEtE/LdLyMP70XMUaySoUHLx0koKL/2J1bKYVsz5q9/DrFmC2LDHdCwdsq0uelg7noR+fV/tF6s2ojyk7+AyM6d9vKj5CKJ4PaIa5o9C6cL5ed+E/OvfgdaGjH/8ndQfvIX4PgByxvrgSevuT7ls7+M+Re/Ca1NVqTZF38f4fNPu7+T4Ui0k93136jmCGbKZOSFThLqIpTf/aWMoDKBdGRVXxdSS101qsblVth6T4Aje6P0dukcejfGqvWSmvob5xF1JTIahq5268XiBpTSCszf/0UrQubc5GHUgGVwn0ohn/828s4HrXQyxsSpo/uQzWeR7S3QcQHisfHLllYidj6J2HJPZrk0YtESK2LuYtPlPoZHkd/7iiUGVdeDPwBnjlliyDTEqnOnElxq1RACNm73k5M3/hTvdAmycyxPsaF+nfLq6YmHUtOQL//A6vfDHwYtZaVEvfpD5J0PIGaR7y+1FFxqtaarl9DXo1FQ6EC5ImrkwvkkUkJJmcLy3d9DpBLQcQHpdCHffQNl3y6KhwcpBkyhEFp0J71LH6RXqSSecNJDBT1rvkhZ97us+Mo/cbboYQCqqlWyciyRWfmF34b2Flg3tVCtqIJgtrXfRoYMfEtWIgG96Rwd5xIUN7bgBcSy1Yh7HsU8stcSqgCx4+Fxvmi6Ljl1OE5HayrzXm+nTm+njj+gUF3vorLGhcttR1stNLSHP0H3Dy3nscq3/wkAcc+jiIoaAGoXu+jt1vD5FeqWuSkoGi8+GoYkHjOJR82MgNXWkiKVlIQGdIpKx/+nxaIm+3dH0DXIK1RZssJO/7OxsZk9UkoOHTrE3r3WTefc3FwefPDBBZPidjMIBoPcfbdVaXhkZIRoNEpJSYntY7QAcTgc3HfffdOa772G+ja3LrZYZTMzTh+GVNKKrqhalHlbrN9uiVVH9yI/9dNWCtxsSUealFchqupQful3Mf/x/4xFcryB3PsGeH2INZsRG7bDivUzSkUy97yWEarEwx9GfOgnZhzNEBq07pzn5k8vEkK4PSi/+DuWN077Bcy/+yPrg9WbECUV116+osbyzPqL34KL5zH/+ndnJFhJw0Ckw5ilgS+0C//Q6wik5U/1TCfG3Z9Aue+JqwsP2XngD1ppU90dUFV31fU6HIKNd/g5eThO+4UUJw/HSSZMlq68CXc0Whqt5+JyK5ItmI345M8gD+y2Uuxy8qxHdp4l1uXkQXYuOJyYv/UzlsfV2y8hdj4FYHmqvfaj8etwuqCyFlFVZ1UabFg79fFRXWfVnh/qR46EENm5yNOHLaGqogblN/8CTh/BPHMMef70NTevrSVJ0xmrUtjqjd4JA980eYUORkIGfT3a9MWqvW9YAnJOHuKO+y0j8We/aXk2nTgIs6mq2H4BDB2C2TT1ZtF0Jkp1nYvVG63oyWTSpOeSFV22eIUPsWItHN2H+de/Z0V4pfEHEZvvwrHtPgprFlMkBCulZHTY4FKbxsVzCbpKt9OfWo3mCqCaSZatvVwuVxSWwDQ88XLyLLFqOGRQumwpqA7astbTeCxBi7GDrd5dBJetRpRXITbtQB6wom7E3ZdTfCOjBgf3RAiPmCBg2UoPJeVO2lqSdLSmiEZMzhxL0HgyQVWti5XrvXak1QKiq8PAVJwEYl3kjDRDIGuc550voHLfo1OnFaiqIBBUCQQv/z/GYyaXWjUG+8eLVamkyf63IiTikmCWwqY7/Xb6n42NzawxTZNdu3Zx6pRVGGn16tXceeed77toqblgCxw2NgsP+wxlMyPk4bEUwPXbxg+ilq4CX8AaRDadhaUrZ7+OsdSgtLeTqFmM8qf/As2NyCPvWhX0hoeQ+3Yh9+0CtxexZpMlXK3ccNXqbubBt5Ff+Vur3fufmJVQBRAJWykcWTnTv/MifAGUL/4+5v/7DUvoAZQHPzD95StqUX7lCsHqS2MRVpP4a6WRhoH80deQr/4I8fRP4dqykuDAszgTVoRR/MwII0dNxE//Kco0Kg0KIaw0p/OnkZ3tiGuIVQCKIli90YvHKzh/Osn500mScUnJEze2TKwc86sS9Zcrvig7HoJppLGJRz+K/K+/R770feSOh63tHxOqxI6HYNEyRHWdFUk1TW8D4fFBWZXl/3XxHKzdCicOWZ+t2ogQAlm/HBTFKmAw1I/IK5y0rd5ujZOHrZTDxQ1uqhZN/RsoKXNw8XySS60aJeWpa6Zmyu5LyBe+Y/XrwTGPKqcLcffDyJe+h/nd/4Q9r8NAD/iDKD//W+N9zqZqd0w81BetoLXZijJqv5Cibpkbf0DlUmsK07RSqXLyHJhrtyCP7rPOMaoKKzegbL8PVm2aEGUphCA710F2roPSCidHXukk7rIuQOvdbbg9M7+LnJ172bdKuL1Qu5jebCuKNOkMsn/D/2Z7ZQF+QHzgU8jW84h12xB5VhpB87kR3nplFEMHt0ewfquPgmKr3yvX+1i2yktne4rWpiSjIyatzSkqa1xX9TKyuXFIKWlrscTg6iU+REctyhOfQPjnlpKdX+jgUqvG0MB4H7mj+2NEwiYer2DL3QFcLvsuv42NzezQNI0XX3yR1tZWAO6++27WrFlzcztlY2NjMw3sq2CbaSM1DXnSqgD5Xj8j4XBYJeb3vmFVBZyLWJWOrKq97GMjFBWWrEAsWYH82Ofgwjnk4XeRR/bA0ADywG6r8ld1Pcpv/sWkApTUNOTX/gGkROx4CPHxz886aiEascQqn39mEWQimI3yy3+A+Y9/akV0LJ68CtyUy1fWovzKH2L+5W/DhXOXI6wmEazk8CDmv/45nD+No9BNkDfxXHoLAFNxM3LEJPHyJcTHPoeYhlCV6UN5tRXp09k6/WWEYOlKL26PwskjcdoupHjl2Q5WbnBwoyKtM5UArxCrpovYfp9Vwn6oH/nid5Fvv2K9f++jKJ/8mVn3SdQuQXa2WQLtqk3I00es91dvtJ49Pit6rbXJMvPeeu+ENoaHdA6/Gx0LyHJes1JYQbGT2iVuLp5PcnR/DH/gckrclUhds8S5579lVS3MyR/nTyXufxz56o+gt9N6pDlzFCbxOxvXdjRiLQt0Vt2LFreESymh6UySNZu8tF+wBKzqOktME5vvhoFe8AUQm3dM23A+r8DBjjsFZ7/zOprDx6JHZ1EGkfFilZQSrX4tIW0xAN5YH3FfEfsOCLbfZ+ItLEH9438GrNSvM8fjtDZZ6WP5hSrrt/knmKo7nILqOjdVi1zseyvKQK/OcMiwxaqbjK5JRkcMBvt1wqOWsXrlpirUO740L+3njRWeGB40MAyJqgriMTPje7VlR2BG3nI2NjY2V6LrOs899xwdHR2oqsrDDz9MXd21bzTa2NjYLATsq2Cb6dN43PLkycmzqmG9B7Fhe0asMmusQRxSAhLLnEdar6W0xJV12yZEoUjDgFarMslUFcKEokD9ckT9cuRHP2MN5A+/i3z9Gau63kDv5Gk9Z49BLGqlMn3qZ+aUXhOLWGWe/IGZDyJEbj7qb/z5rNctqhah/MofYP7FmGD1pd9D+eLvjTOflxfOWamG4RE8qwvIebjIitRBkAiuJZJzH/pf/7zV3pIZCovlNdY6rmGyPhk19W7cHsGRvTHaLkQIZHtZtOT6e1hJTct4Q4n6hhkvLxxOxCMfQX79H5HPfct6s7QS8ZHPzK1jtUvgnVeRrU2IC+es49MfHPf7EktWIlubLDPv94hVsajBgbejGDoUFDtYs9E3reO6YY2H8LDBQJ/OwT1R7toZGOeRJC+cw/zq312u+rhyA8qP/Q+E+7IQJnLyUX7615BNp6GgGHn6KJw4iGxpnNSc/0rkN/8FhgeRReW0KssASUW1k0ttGpdaU+QXOoiMmqgqlFeNiVUOx7iUq5ngqqpi1V2tEBpA1E9defBqZGWPmaynLJP1oeL10KkQDLez6dhfsO+uPyYWDbD7lTBrNvkoKXcSixoc2hOzqggCixs8LFnhRlGm/o6EEOTkqQz06pnlbGZP48k4ibhk9UbvVfe7aUgiYZPREYPw2GN02CAeGx8BWl7pwjmPUU7+gILLLUglJcNDBvmFDrrH0l/zCiYXkm1sbGymg67rPP/883R0dOB0OnnqqacoKyu72d2ysbGxmTa2WGUzbeThdwEQ67ZO7mvUsNaq3jc8hPzyX129LUB89DOIBz84/oOudssTy+uD0ml4OSkKLFqKWLQU48I5qwrb2eNW1NJU/V+/fU6eWpZJrjWA8c1CrJoPRFXd5QirlsYx03VLsJIdFzG/9HsQi6IurSX7kWwEGonzo0TKP4BZ/4BVsS4eA68fKmtmtu7yKkt77GyfVd9LK1wsXSU5ezzOYJ9+Q8Qq2pqt6nrBbCie3YWauGOnlQ4XGgDVgfL5/3nVlNNptVk7ZrLe2oQ8fsB6b8X6ccenWLoS+coPJpjAW542UZIJSVa2wsY7/OPMya+GogjWb/fx9qsRYhGTI/tibNnhh2QC+cOvId94zhKWA1lWFcTNOyYVwcS6rYh1WwEwvX7kmFgVixgMDRpk56gEspRxy8rDe6z0XaEw8KFfI9oscToFqzb4SKWi9HXrHD9oGdWXVbpwuubHp0eZpCLfjJa/0mQ9ZNBHKWBSNHAMTzLE1rp+Dg5kER4xOfhOlJIKJ4O9OpomcboEOx+twOmJIOW101+vjOKymT1aysz4uJVXOSksmdzHraUxwdmTCaQ56cd4vNZ3n5WjUrd0fs9XQoiMQDXUr49NW1GFpRXvr9LjNjY284NhGGiahmEY6LqOYRiTTp8+fZq2tjYcDgdPPvmkLVTZ2Njccthilc20kKFB5LH9AIgpqmYJpwvxYz+D3Ptm+h0QWCbSiLFnIBaBlkbkG88jdz45bmAuL4ylANYsnnGFMbFsteVL1Hhigg+R1DXksX3WfBuuHvVxLeJRa0SjOizvmZuFqK6zIqzSgtWXfh/l6Z/KCFXULyf743UoyYukwm5CP+xA3HMBZQ3Ic5bBJvXLZy7clY1VBAwNIKORWXm25I+lvoQGdaSU191EWraMpQDWLZ/1uoTTifjwTyL/46+tFNIrCgzMmrIqcLkhHsukFrLqPaWI6xtAKNDXjRweROTkYxiSg3uiGU+bzTsCk5a9vxput8KmO/y883qY/h6dpl0XqHv5T2Gwz9rebfciPvo5RHBqw+grEXXLkMDoQIIDr4ZJjRW7czghJ89BTp5KjidB9re+hhsQj3yEC6OFgE5VnQuHU7B0hYe+7ghpPaeqbvqFE24E2bmWWBUaNOjvszpZNHAMFAXfiqXc5fJy7lSClsZkxhw+J09l4x0BqmqDdHdHpr0egPCIgWnKq0YE2UzNlWJfV4c2qVg1Omxw5kQCpHWsBrNVsrLVK56V616ZMS8tVg3oJBMmQ/1Wv0uu4SdnY2Nz+3DkyBEOHTpEKpXCNKdQ1idBVVWeeOIJysvLr2PvbGxsbK4Ptlhlc01kZzvm3/yeVQGusASukjambL13QqrShPZSScxf+6w1KD5xaHwlsTG/qqlSAK+GWL4a+dw3kY0nJgogjScsASc7d1aeRVeS9qvy+5WbXqlLVNdbHlh/9TvQfBbzj37Z+qBqEf7PPop75CWkcDIq7gB5BHn2OADyvCVWzcZbTPj8kFcIQ/1WmtiSmflugTUYVxRIJiTxqIkvcH1TXWTTmLn64rl998qWu5Gb7pqxkDoVQlWhpt5K8YtFQCiIlevHz+PzQ2UttLdYIuPmHRzbH2Oo38DhnJunTXauyqoGwfGTknO9uWSb+RTkY6X8vacf16SwhNGi5RxY9nOkUpaQq2sSXYOBXp2BXh0QsOFP8WjDZOfnM9itIwTULraiVXLyHRSXOejt0glmKeTmL6wUqJw8lfYL0HExZUVMkSRnpAVqFyO8PlSgYY2X4jInjSfj5OY7WLbSg+qY2ffj8ys4nFYwYHjEzIhXC522liSD/Tor13mvKfAYhqS7wxJoFjd4rosv0/AVYlVPp8aqDeOFPyklJ4/EQFpRTBu2Ty+Ndr7JK7C+36EBPZMCmJ2r4vPbXlU2NjaQSqXYv38/mqZN+MzhcKCqauY5/XA4HLhcLjZu3EhFxbUzFWxsbGwWIrZYZXNV5LmTmP/wJ5bQU1KO8ku/N+1qZ1MhXG7EnQ8gX/4+5psvoF4hVl2uBLhkqsWnpnYpuFxWtbCudiivvtxuJoVx25xSAOEKc/XrLLBMF1GzGOWLY4JVPArF5Th/7pcIhv4DgEj+Qxgla0D8PfRcQg72Q9Npa9klq2a30vJqy2y8qw0xC7FKVQUFRR76ehKEBo3rui+lacBYZJWom5tYBcybUJVpr3aJZVgPsGgJIjAxkkksXYlsb4Hzpzjr3kxXh4ZQYNMd/jl52sihAcr/7ZcZrPwol8p2cGzDL7PjwSy8uVNXmJyK0WGTAyu/SErxkq2Osu2RClSHIDxiMjykM3SmneG+JBF/GQlnDoluS0goq3SOEypWrPMiZZxFS9w3XQx+L2nRSEuNRVUVq4hFS1Ae+ci4+fILHdxxX3DW60lXMxzs0xkJ6beEWNXXrXHikFWRUktJNt/ln/T7i8dM2lqStLWkSCWt/WgYknVb/PPep5Ghy2JVKikZ7NPHRVd1dWgM9RsoKjSs9d604y07R8XhsMTJ5rMJAEor7RRAGxsbi/Pnz6NpGjk5OXzwgx/E5XLhcDhQlJt/09TGxsbmemKLVTbjkNEwNJ5AnjlmReH091gf1C2zStJPMpCeDeKeR5Cv/ADOHEX2XEKUVCBjEejusGaonblYJZxOqF9htXn2OGJMrJK6bpW8Z+4pgDA3c/XrhahdjPJrf4I88Dbq3XeTE/4OQmqkvIuIZ29DCMWK4Ll4Hvnajyzx0eOFWaayifJq5MlDlw24Z0FRiW9MrNIpr76O6S5NZyASBl8Aquvn1JQ0JYZhVW6bLzK+VYBYtXHyeZasRL76Iy4OBGk5Z3nwrN3ko6B4bgNaufcNCI+wYvAVRuq2E457OHLUYNs9008903VJ81kr9c1UvGSPtLDZeBOn61cBS+DJ0vupePm3IBnH+PDnGF33KKEhg3jUZHHD+OqF/oDKlh0zTy29EQSzVYRCxtuoZFEW6j3/77qsKztXHROrFr5vVTJhcnR/LPO6r1un6WySJWPfrZSSwX6d1qYUPZ1aJs3T6RJoKUlvl35d0h3T+84fUIhGzHGpgLouOXPMEtcWL/fc1CgmoQhyCxz09+gZP0Tbr8rGxibNqVNWNPzKlSsJBmd/I8TGxsbmVsMWq25zpKZBy1lLnDpzDNpb4EoDYFVFbLoL8eM/N2cz6SsRBcWwehMcP4Dc9SLi6S9kqrVRUDztsvQT2l22GnnmKLLxBOx80nrz/CkrhTGYDYtnHgX0Xi5HVi0csQpAVNSilBaR2/mvOLRBDEcuo8Ufs/yOALF8DfLieeSuF60F6pfPPkouLQRemr1YVVzm5dQxGBq4voNxeXgPAGLdFoRj+qc8TZMMD+qEBg2GQzrRsEksYmKaVjTQyg1e3PPhZXOFMCtWb5rYj5TJcO5yBhd9gKbSxwFYtspDRc3cBb60D53jwSfYuC6Xt18JM9RvcO5kguVrvNdcfqBX49iBWGaAXZiVYO2u/4fT58qk4krTxPzPL0EyDvUNOB98nAJFnbPQdjNQVUHWmMm6EFBYcv3+Qm8Vk3UpJUf3x0glJcFshZp6NycPxzl3KkFWtkoibtLalCQ8etljJb9QpWaxm+IyJ68+M4qWkoQGDPKL5m9/aikzc65etsrD4b2xcamA508nSMQlXr8y76bpsyGv0BKrAILZCoHgwo+ms7Gxuf709fXR19eHoigsXz736HAbGxubWwlbrLpNkeFRzK/8DZw9RsYJOU1pJaJhLWL5Wli6AuGZeUrQdFDufQzz+AHku69jaink/rcAK9Jktojlq60olfOnkIaBUNXxVQznmMIIV3hWLTCxStFCZPd8HUeqF0MNMlz+OUxHduZzsWy1Vc1OtzwPxFW8x66FKK+29nNX26wN0otLLDFkdNjA0CWqY36jKqSUICXyyF4AxIY7rjpvJGwSGrDEqdCgTnhkagPTrg6NwX6d1Rt9lJTPUXTJLUA89CHre6moGffRsQMxOi6O/T4XfQiAyq5dLHJHkXUfQbhnP8iWw4PQ2gRCINZsJhBUWbPZx+F3YzQ3JskrdFBcNvW2mYbk0J4Ymibx+gQr1nkpLvIif5SC0RgM9EJhCfK1ZyxPLrcH5bNfnHMa7s0mbbKeV+jA6bp+54C0WDU6bCBNiVigJusXm1L09+goKmzY5ieYrTI8ZNBxMcXBd6KZ+VQVKmpc1NS7x6WuFpc6uNSm0dOpzatYlRb5vH6FkgonLrfIpAKOjhi0NFoRiivWeub93DMb8gsub7sdVWVjY5Pm5EmrEvDixYvxeq99E8nGxsbm/YQtVt2myMPvwPED1ovsXMTyNbB8LaJhDSIn/8Z0YvkaKCqDvi7k7pet90orEQ99cPZtVi0Cn99Kc2tvQTpdyENvA/OTAihNmakGeFPFKilRtUGciVac8Qu44q2oeggAU/EzXP45DOd7vsf65eB0gWaJH3MRqyipsEafsaiVCvgekWU6BLKcuD2CZEIyHDIyFQLBEkJ6uzUGenVy8hyUVztnlCJkGJI9r0dIRZMsCqylUjuEsnzNhPn6ezVaGpMMDxpompzwuc9vmXzn5DsIZCkEAgrJpOTYgRiRUZOD70RZu9lHZe3so5yEEIiPfHrC++FRIyNUef0K2T6NvPO7qDr7X3DGxNz7BsrHPgvrt89KLJTHD1oTtUsQ2bkAlFW6GFqsc7EpxdH9MXY8GMDnn1xcGhrQ0TSJ2yO455EsHGMDfqO6Di6csyowplLIH/yXtZ0f+xyisGTG/VxoVNe5CA3qLF5+faNxAgEF1QGGDpGISTBr4Yl8hiE5d8pKpVuxxksw2+rjqvVeRkIGo8MG/oBCzWI3lTXOScW9kgpnRqxqWOuZN/+VtLl6Tq6KoghKyp20X0hx8nA8c8NhcYOb0gVScS8nX8183wulTzY2NjeXZDLJ+fOWl+vKlXO4ZrOxsbG5RbHFqtuVS60AiPufQHz88zfFoFEoCsqHfhzza/+IWLYacc8jsGTlnPoiFBWWrIJj+5Cv/NBKbYxFoarOen+OxOMS07Qy6zzXoXrVlEiJqvXhjLfiil/AGW9FNUbHz4KC7qkgXPgUhqt4QhPC6YLFDXDmGLg9c/JvEk4nrNkMR/Yi33we8eM/N/M2hOXT0nNJY3hQJ7/QgZaSnD+d4FLbZfNlSNF0VmHJCg/llc5pRZi0NifHIiscnF7+GS6aH2Z5t6Ss8vI84VGDA29HMceyrBTVqvaWl+8gJ18lN9+BxzvxO/YFYMeDQY4fjNHZptHdmZqTWDXlNjRZkR/F5Q4232l5OMl7PwRHSjG//e8w1I/5T38Gy1ajPP1TiPKqGbWfTgEUazaPe79hjddKfRwyOLQnxh33B1DVifu8byxlqbDEkRGqAMSiZcgL5+DcKcxXf2RFjK3aiLjrwRn1b6GSk+fgnofnx7vvaghFkJWjEhowGBkyFqRY1d+jo2vg8Qqq6y//BlSH4I77AkTCBtm56lXP6YXFThQFYlGT8Ig5p4IBV5I2V09HqJVVWmLVlULV0pWeKZe/0aiqYPOdflIpOW/74EbR0dHB4OAgK1euxDGDVGsbm/crIyMjpFIp3G43brcbl8s142tbKSVnz55F0zRyc3MpKyu7Tr21sbGxWbjYVxW3KbKz3ZqoWXxTK4mIDXegXiU9a1ZtLluNPLYPeegd6426ZSi/8Dsz8iuairS5us+nzLsZ8NXI6v0Wnsjxce9JVDRPBZq3Fs1Ti+atRipXj/YQDessAa9++Zz3h3L/E5hH9iL3von84I/Pynw/N98Sq4YGDRZJyeG90Yxvi9sjKCp10tOpEQ2bHN0X49xJhep6F1W1LlxT+EVpKUnTGUvoKR08zGCgnpg7m8PvxkisNVm01INhSI7sjWEaUFDkYPkaD1k56rS/U1UVlFW66GzTSMQmRmTNFU2TdLRaUVW19Ze/UyEEbNiOsnID8qXvIV/6HjSewPyDX0Tc+xjiyU8gfNc2J5eJODRax5O4ohongKIKNmz3s/uVMCMhgzPH4qzaMDEVuL/bSictKhmfsiTqlyFf+xFyz2uW/50/iPITPz+r80w0GqW5uRmv10tFRQU+3/VJSV6o5OSOiVUhYzbBi9edrnbrGC2rnDgQczgFOXnXPsc4nILCEge9XTo9ndr8iVVjkVXZeVZ7+UWOTCRn/XJLqFpoVbRuRR+3S5cu8aMf/QjTNDl58iQPPPAAJSW3fgSljc21SCQSnDx5kry8PKqrq3E6nYRCIV588cVMNFQaj8dDSUlJ5lFcXIx7kjR+0zRpbm6mubmZ7u5uolErlXrlyrndyLWxsbG5VbHFqtsQKWWmipuoqL7JvZl/Mr5VAA3rUP7H/4dwz88d9Jthrq6mBjJCVcq7iFRanPJUgTKzwY2491HQkoiNd829Y4tXQGUtdFxEvv0K4pGPzLiJvHxrIBka0Gk6k8x436zf6qO4zEr90zXJxaYkLeeSxKImZ48nOHcyQVmVk9p6Nzn51mlMmib0ddHSGUBLQcCjs+bY32J6s2j6iX/gYrPO6WMJhCKIR01Ghw2cLsG6rb5JI6iuhddnXTjGY1N7W82WSxdTGDoEggoFxRNP08LtRjz1SeT2+zC/+x9WhNvrzyIP7EZ88McRd+xEKFfZptNHQdehsARKKyd87PMrrNvi48DbUVqbU+QVOiivuhw5k4ibjI55ehW812S8bpn1PFaoQfmxn0Xk5M1o+0dHRzl8+DBnzpzBMC4bjOfm5lJQUEBOTg7Z2dmZZ5/P9768kM+YrA8vPJN1Q5f0dFmCZVnl3ESW4jJnRqxasmLu52otJTPn6pyxfagogq13B4hFTYrLHNfleEkmkwwPD+N0OvH7/ZMORt9PDA8P8/zzz2OaJoqiEAqF+M53vsPatWupqamhqKjoZnfR5n2IYRicOnUKl8vFokWLbsrvbHh4mGeeeYbh4WEA3G43FRUVtLW1oevWDTev10symcQ0TRKJBK2trbS2tmbayMvLGydeDQwMcPDgwUybAIqiUFFRQUNDww3cOhsbG5uFgy1W3Y6EBiAetTyHSipudm/mn9JKxIMfAMNAfPjTVsraPBG7CebqnlHLWyzpW8JI2Wfm1JZwuRGPPz0f3bK8lnY+ifyPLyHffAH5wAdmHK2VnedACEgmJOdOJQBYvcE3zrPF4RQsbvBQu8RNV3uK1uYUIyGDS60al1o1skWI6sF9lJ59Dt0QXNj+5+DwsGTgdRRpoq5cw4r1flRnguazSU4diWfaXrt5dkIVXE4DTSUlhiEnTZWbDVJKLjZbkWE1i91XHVSLwhLUn/3/kGeOYn7z36C7A/nVv0O+9RLKJ34KkRaO3ruOdArg2i1Ttl9c5qR+uZvms0mOH4yRnaMSGEtF6xuLqsrJUydURBQ5+ZBfBIN9iM13IzbeOaNtP3z4MPv27cM0rd9acXExhmEwMDBAKBQiFApNWM7pdJKdnT1OwEpPBwKBW1bIys61fk8jIX3WhQyuF309GoZuibY5+XOLhiopd3LiUJyRkEE8ZuKdIsVaSklvl47DYVXPmyoSciQ0Nlj0iXERmFk56pwjt6SUDAwM0NnZSSQSIRqNEg6HGR4eJhaLjZvX6XTidDoz35sQIvNIvwYoKyvjnnvuwTmP/1XXm0QiwTPPPEMymaS4uJjHHnuMd955h/Pnz3P06FGOHj0KQCBwOdLzvdv+3v0ghEBRFPx+/4TfcjAYZHh4mK6uLnp7e3E6nRQUFFBQUEB+fj4u19Sp2Lquo+s6Hs/CSfu0mZqrnesGBwd5+eWXGRgYACwxp7q6msWLF1NbW3tDhKuuri6ee+45EokEfr8fsKKAW1paACgvL2fHjh0UFhYCoGkaAwMD9Pb20tPTQ09PD6OjowwNDTE0NMSZM2fGte/xeFi1ahVVVVUUFxfbqbU2Nja3NfYZ8HYknQJYVIZw3DoXx9NFCIH46GevS9s3vBKgqeEdPQxAPHvLNWa+8YhNO5Df/U8IDSCP7kVsmlnElsNh+fKkU3aqFrmm9H9SLzVTce44ZRfPM9yXoj1nI93FWxhRcjmR9whnN92JL9GP4fCQPdJC8cGvW33ceAdCCJat8iAlmSpg1XWuOVXyc7kEigqmYUUa+QPzk77U36sTDZs4HFBZMz0vLNGwDuV3voR883nks9+AtmbM//NriG33IZ7+/LjUQGkYyJOHrOXWXv2YWrrSQ2jQYLBP59C7Ue56IIiqikyqZlGpA13XiUajRKNR4vE4uq6T2vEkZmcb6sY7cDQ2oqoqDocDVVXHTTudTgKBAKqqkkgkeOWVVzJ3nisrK9m0aRPl5eUIIUgkEnR3dxMKhRgZGWF4eJiRkRHC4XBmMJAewFxJQUEBH/zgB2/JKkqBLAVFsWy/YhETf3DheBl1dViCZekkKYAzxe2xChmEBg0OvxslmK3i9SlU1rrGCVetzamM2OxyC0rKnJRWOikocqBcIRZfTgG8fImj6zqnT59mYGCA3Nxc8vLyyMrKQlEU1LEqsalUKvPQNG3C60gkQkdHxwRR6kp8Pp/1GxhbRtO0a27/yMgI0WiUxx9//JYYmJqmyQsvvMDw8DDBYJDHH38cv9/Pww8/zOLFi2lsbKS/v5/R0VEikciM25/sd3wtsrOzM+JVWsAaHR2lsbGR5uZmdF2noKCA6upqysvLycnJIRgMZr77hYhhGBkBbzbLRqNRgsHgghK5p0JKyaVLlzhx4gQXL17E5/NlIo7SImMkEuHQoUMYhoHH48Hn8zE0NMTFixe5ePEiqqpSU1OTEa5mKv7GYjFaW1tJJBKkUimSySTJZHLCdCQSwTRNiouLefzxx/F6vXR2dnLp0iWWLVtGbm7uuHadTielpaWUlpaOW1dauEqLWE6nk3Xr1rFq1aqriq82NjY2txML/6rIZt6Rna0AiIVogrLAMAzJSMggN98yCb6cBnhjLnDd0VMoZgzDkU3KN3mUzM1EOJ2Iex5BPvtN5OvPwgzFKoC8AkusyspRWbluckHB3Pcm8t//ylonkAvkdh1jWeQdLtU+RLu7gbgryIgrCMAyV5MV5ZWdByvWWcsJwfLVHjweQSRs0rB2buKFEAKvVyEaMYnHJP5rW0VNi7SxemWtC4dz+oMM4XAgHngKuXkH8vtfRb77OnLvG8h4DPXnfuPyjI0nIBoGfxDqll+1TUURrN/q462Xw4RHTBpPJFi+xkN/r45hJjhx5g1efuPS1A28/c61+y0EWVlZGdFLVVXuvvtuVqxYMW6Q5fF4qK2tpba2dtzyhmEwOjo6TsBKP4+OjjIwMMBLL73EU089NatB381EGTNZHx6yfKsWilil65LeeUoBTFNe5SI0GCc0aBAatMSmtgtJ7rw/iNenEB4xOHPcEqpUhxXR2H4xRfvFFA4nY8KVi8Jix7hKgFJKmpqaePfddxkdHZ1y/TPB4XBQUVFBbm4ufr8fv99PTk4OOTk5mciOtLhlGAZSSiv9HjLT6dfhcJjXXnuN9vZ2XnzxRR599NEFLaAA7Nmzh0uXLuF0OnniiScy0SUAdXV11NXVAZb453Q66e/vn7D9U02bpkk4HB73Ox4ZGUHTtMygv6SkJBNtOTAwQDQazcyXjm6ZjPT8hw9bN4CEEOTl5bF161YWLVp0VVFHSkksFiMajeJyufD5fDgcDgYHB+nq6mJwcJDS0lKWLl06p/OMYRh0dHTQ1NTEhQsX0HWdTZs2sWHDhqseF7qu09fXx6VLl+js7KS7uxtd1ykuLua+++7LRPlMxuDgII2NjTQ1NaGqamYfFxcXk5+fP6/nTSkliURiwvm6t7d3XPpbJBLJeDe9l+rqanbu3Inf72dwcJCmpibOnz/P8PAwLS0ttLS04HA4qKmpoa6ujvLy8nERfpPR1NTEm2++SSKRmNZ21NfX88ADD2QEscrKSqqqqigtLaW7uztzXE+Fz+dj0aJFLFq0KLNfgFtCWLSxsbG5kdhi1e1IOrKqbGbVw243dE2yd1eE4SGDumVulq/2EItag6DrElklJVm930TVhxkt+giGqxDviJWuFc/aZJUgXICIux9BvvBdaGlEHt6DmKFh/uIGDy6PQlWtC9Ux8UJNDvYj//ufrRcNaxEN6xC1S6C6Dp/bwxJgsSnp7dbpuJgikKVQtPpp5NNPAgLhGm9Qvmjp/KWCeHyWWJWYJ98qXZP0dVtRS9X1s0tnENm5iM/8EnL7/Zh/9dtWZczjBxBrNiOTScxv/Is136Y7EdMYFHu8Cms3W/5VF84ncbkFsdgIvSOvo+lhAFRVJRAI4PV6cTqdOBwOFEXBNE10XccwjMwj/TodfWIYBiMjIwBkZWXx6KOPzsjrRlVVcnNzJ9zNBmsQ9u1vf5uOjg727t3LHXfMbzGHG0F27mWxaqGcsvu6r0gBzJuZsJJKpejp6aGrq4vu7m4GBgZQFMU6ZoSTYLCAnKxyUtFCEjEX+3dH2HZPgCP7rIIIhSUONt/lZ7Bfp7tDo/tSimgsQtP5Uc6cHUU3R9H0MLoRo2+vwRtvWxERAH6/n6VLlxIOhxkaGspESJimiZQSl8uVeTidznGvXS4Xbrc7EyFxrQgop9M56TH5XkpLS/F6vTzzzDNcvHiRl156iZ07dy5Yv6t0mh/AAw88QEFBwZTzpveXoijXHLxfDSklyWQSl8s1qXASi8UYHBzMiFEDAwMMDg7idDpZsmQJy5YtIzs7m46ODtra2ujr62N0dBRd1xkcHOT555+nqqqKbdu2YZomo6OjmUc4HM48X+mfB9b/yZXbderUKQ4ePMiWLVsyhtuqqmKaZiYyJ5lMkkgkxr1OJpOMjo4yODjI8PBwJgU6zb59+zh//jx33303BQUFeDweDMOgt7c3E9HT09OT8Uq6kt7eXr75zW+ybt06Fi9ejNfrxe1209fXl9kf/f3945YJhUKZ1DSn00lRUdE4c/ArxcnJ0DSNUCiUibiNRCIMDw9nxKn07/G9OJ1Oli1bxooVKzLnib6+vsx2CSGora0ddyMjPz+f/Px8tmzZwsDAQEa4Gh0dHSd2ZWVlkZ2dTSwWy0RGlpSUUFpayuDgIOfOnQMsX8SioqLM7z1dye/KZ6/XS05OzlX3wUyxRSobGxubybHFqtuQy5FV7x9z9dFhg0PvRkFCSYWT0nInOflXL5l+NQxdcuBtS6gCK3UsJ1dFH8vo8PnnXzhyJLvwRE4AkHvp74nl3osr0YZEIZG1ad7XN1+I7FzEgx9AvvhdzK/8LUpVHaJw+tWg3B6FJQ2TC0jSNDH/80sQj8GipSi/+LuTCixCEZSUO8el9QnP9a8clzFZj8+PWDU0qCMleP0Kway5RVeIpSstT7GXf4D5jX9BWbYa+cOvQW8n5OQhPvDj026ruMxJ1SIX7RdSHDvcQe/wG5gySTAY5IknniA/P39WvzUpJdFolOHhYRKJBJWVlfM6SM/Pz+f+++/npZde4vDhw5lqgn19faiqyj333LPg067SJuvpaKGFQPdYCmBZ1bVTAKPRaEaY6urqGhdlMxmh4QHaaQRAUVyoA16a23wI4cXl9FLsyWHv3kRm8Ds8PDxBREiTGhu7O51O1q9fz/r16xekL1RlZSWPPfYYzz33HC0tLfT09LBjxw7q6+sX1CB2YGCA1157DYANGzZQX19/Q9YrhLiq35TP58Pn81FZeblYhGma43yxAJYuXcrSpUuBy+eekydPcvjwYdrb22lvb79mP3w+H8lkEl23fOScTiclJSXk5uZmontefvnlzDJp0X4meL1e6uvrWbx4MZFIhLfffpuhoSF+8IMfZPohhJjQrtfrpby8nPLycioqKnC73ezevZvm5maOHDnCkSNHJl2foijU1NSwbNkyFEUZ562kaRqdnZ10dnZm5k9HEubm5o7zBIzFYhkB+lrbHAgExvmS5eTkUFVVNS79raJi+p6qQggKCwspLCxk27Zt9Pf309TURHt7OwMDAxnx8UrS6YPp5Tdu3MjmzZsXfGSjjY2Nze3Ewr5Kt5l3pGFA91jaTnnNTe3LfDHQq3FwTzQjJLU0JmlpTJJf5GDb3X7EFCa8U2EakkPvRhnsN3A4Ia/AQV+3ztED1t04j1dMGgE0Vzxh60JSoqKYSQKDLwGQ9DdgOrLmfX3ziXjyk8im09B8FvOf/y/Kr//ZvBjbyzeft9LWXG6Uz/7ytCKBbiRpc/b5iqwa7LNG1/mF87Od4olPIA++A4N9mP/8f2HMq0r5iV9AzDBvsWGNh8Zzx+kNHQZMsrML+MhHnrrmXfar9k8IAoHANVM05sKSJUvo6+vjyJEjvP322+M+Kysrm5cqS6ZpcuzYMY4ePcq6detYv379nNtMk6kIGDIWhMl6b88QZxpPkNRG0Jrh3AUTTdOIx+MZzzKPx4Pb7c6kaL6XYDBIWVkZpaWlFBcXI4RA13Xi8XgmUsQa8KYwSaEZVuRdNAH79k/sk6IomQGvz5ONNINk5wSpqPLjcrkIBoML3gOmpqaGD33oQ7z22msMDw/z4osvUldXx8MPPzyvg+d4PE5vby+9vb0MDAxkBBeXy4Vpmlf17EqLgpWVlWzbtm3e+nQ9uFbqWvrcs23bNpYvX87bb79Ne3s7fr+fYDBIVlZW5pF+7ff7x/mbJZNJ/H5/Zl3btm3jxIkTHD16NJNOdqVo43Q6M9E6brc78ztxu90EAgHy8vLIz8+fUBSiurqad999l+bmZpLJZCZl0ufzjROncnNzJ5wfHn30US5evMihQ4cIh8PEYjFM08Tv91NZWUllZSXV1dUZIR/IpKaZpkkoFMoIVz09PQwNDWUipq4UsN6Lx+MhGAzi9/sJBAITKrhez5sEQgiKioooKirijjvuIJlM0tPTQywWywibuq7T3d2dSZfcvHnzOE8pGxsbG5uFgS1W3W70dVtuvW6PVbHrFqejNcXxgzGkCXmFKjX1bno7Nbo7NQb7dLo7Ncoqpz9IMU3JkX0x+rp1FBU23xUgO0dl9yvhiebqpgbCAfMxeJQGnvBxAEZKPokr3oJv5F1gYRqrvxfhcKB84Vcx/+CL0NaM/N5/Ip7+wpzalH1dyO99xWr/o59BFJfNQ0/nl7T5c3y+xKr+tFg1P6dm4fagfOILmH//JxmhStz1IGLVhhm1E4vFePXVV+kdagPA567iQx98GL//1qiutX37dkZHR+np6aGwsBApJa2trZw5c2bOYtXg4CCvvfYavb29ABw6dIg1a9bMm8AQzFYRArSUJB6T+PwzP9+YppkZYBYUFExroJg2aE5Xu4tEIly4cIGurq7MPLEpxqpXptqAZXJfVlaWEaiCweCU6037HSWTSSKRCN2dozSeHsYfTOLPShGLxXC73eTm5mZ8otJG6bc6ZWVlfPKTn+TQoUMcOnSIlpYWTp06xZo1a+al/RMnTrB79+4ZR/pcSWFhIQ8//PD7Yn+nycnJ4YknnpiRGJxODb0St9vNpk2b2LRpE4ZhZAz2VVXF7XbP+pzg9Xq5//77uf/++zEMg3g8jmma0zZPv9LrT0qZ8f+61rKKomTS7FasWAFYIt3Q0BChUGhcBcx0Gm06tW4hVWF1u91UV0/MJLDFKRsbG5uFjy1W3W6MpQBSVoW4hS82pZQ0nU1y7qR197KsysnazT5UVVBe5eLcqTjnT1sRVqUV174oS7d54mCc7ksaigKb7vRnRIN1W33seT2ClJa5ujt8lKze72A4C0gGVpIMrER3lc5auHLFzqOYUUw1QMq/lFSggZRvKcKMofluTKrFXBF5hSif/SLm3/4h8vVnMXMLUB764Kzbk3t3gZaCpasQdz8yfx2dRy6LVbP3Y0lj6DKTdppfNH+nZrF2K6zZDMcPQH7RjCplaprGiRMnOHz4MIlEAlVVWbf2DuoWNRDMWtiRKleiKAqPPvpo5nU0GuXLX/4yXV1dhEKhaXkLTUZbWxvPPvsspmlmBq6JRIJLly5NOjiaDaoqCGYrjA6bjIR0fP7x+900TSKRyDifnUgkQiwWI5FIEIvFMt5MYIlBjz76aOacaJomjY2N9Pb2Zvxl0stPjsDrKqVhZS05uZ5MVUev14vX60VV1YwvD0BRUdGsUjvTESf5+fmsWHXzI8puFA6Hg61bt+L3+3nzzTc5ePAgDQ0Nc0pflFKyf/9+Dhw4AFjiTElJCYWFhTgcjkwUlaIok/p1Xfna7Xa/b7+L+dyudOXTq6UvzrbduUSiCiHmFGWYFqRKSqaf6m9jY2NjYzNbbLHqfYCUEo7sRZ47gXj0Y4icvKnnHTNXFzN06pVScuZ4AocDlq68uSXgTVNy8nCc9gspgIz5+ZUXmjX1bprPJhkeMggNGORdI1JFSsnpo3E6WlMIAeu3+SgquTw4yM13sHy1h7MnEpSVJAj2P4NA4tD6cYTexB96E8ORS9K/nKS/Ac1bA2L6d1E9o1YKYCKwJrNcyr9k2ssvFMTqTVbq2bPfQH73PzCTCcQTT8/Oz6jR8u8SW+5esIOjtFiVmAfPqtCgjjStNNP59kRTfuLnkS98B3HnToT32l5ehmFw+vRpDh48SDQaBazomIceeoj8/Px57dvNwO/3U11dnYmumo3xeiKR4LXXXsM0Taqrq7n//vs5cOAAp06dorm5ed7EKoDsXAejwykudfTRdulSxvQ5LUxNx7w6bXLd0tJCU1MTS5ZY55d9+/Zx6NChKZdJp2kGAgES0Sxkspryymw233n9Ujffy0L9/V9PGhoaOHz4MKOjoxw7doxNmy77Fuq6jqpOz5NR13XefvttTp48CcCWLVvYvHnzbblPbWxsbGxsbjXimsloUqc4cOvcJJ5PbLHqFkd2tVvVvcYG9rL7Esov/8GUUVNpc3VmaK4+EjK4cM6q4FJR48IfuDneQbomObw3alVME7BynZfaxRPv2rs9ChU1liF0y7nkNcWqc6cSXGyyxK81m32UVkw8IdQt81Cz2E1u/7dQUgk0dxmxnDtxR07jjp1D1UP4Rt7FN/IupuIh5VtK0r+clG8JUp1a4BNGHHf0LACJrPnzurlZKE9+AlNVkT/8GvLZb0AqAR/+9IwGRzKZgItWdR6xbPX16uqc8XitbUolJYYu5+RldmUK4HwPJEVWzrTSMk3T5Ny5c+zfvz/jNZSVlcWWLVvmXJJ9obFixQpaW1s5e/Ys27Ztm/G2vf3220SjUXJycnjsscdwOBwsXryYU6dO0dLSwj333DNvqYBev8bA6D4uHjw/6eeKoozz1gkGg/h8vky0U9o75sCBAxw4cIC33nqLiooKuru7M0LV6tWryc/Pz3jMpKs7po/F0KDOO69FQIVlq27uDYvbAVVV2bp1K6+88gqHDx9m1apV6LrOa6+9Rnt7O06nE7/fn3kEAoFxr4UQnDt3jvPnz2eqr91zzz2sXr1wz6c2NjY2NjY2FjHN4LlzIX50doiYZvKlR2upylmYlYKvJ7ZYdYsiY1Hks99EvvkcGAY4nFYKWuMJ5K4XEPc9PvmC6ciqGZqr9/dcLonc161Tu/jGi1WJuMmBt6OMhAwUFTZs84+r/vZeFi11034hRU+nRiRsEAiqk3pSNJ9N0HTGuphftcFLZc3UyrU32YQnchyJIFz4IXRPOcngOjBTuGLNuKNncMcaUYwonsjxsXkVNG8tSX8DSf9yTOf4lCN35AQCA91VYqUSvg9QHvsYptuN/Na/I1/+ASST8Imfmn7qadNp67jOL4KC4uvb2TngdAlU1epqIm7iD1q/i3jMxOkUOJzTF50G+60UwGsJq9eDdMTN3r17CYVCgFVha/PmzaxYseJ9WR2ppqYGr9dLLBajtbU1Yyo8HdIiF8DOnTszHlDl5eV4PB4SiQSdnZ1UVc0sgnUyzp49y1tv7yaVss5RtbW1lJSUjDN/TosT12LTpk20tLQwODjIyy+/TE9PDwBr165lx44dky4jpZWeevJwHIDKGhdZOe+/42EhsnTpUg4fPszg4CCvvPIK3d3dGeFJ07RMNcRrEQgEMtUFbWxsbGxsbG4Mw3Gdt9tG2dMeZihuVZE1JEhpXV+ZgDk2LSWoiiDLrZLlVukYSRJOWZkb1Tlucr23p2xze271LYD5w69BTyfi6c8jci6n3UjTRO7bhfzef8LosPXm2i0oH/sc8tRh5H//M/J7/4lcsX6CIbVMJqG/23pRPrNBVF+3Nm56smim60l4xGD/7gjxmMTlFmy+y09u/tUP32CWSlGpVcnv1JE4Lpegv1dHSqipd1G72E33JY2zJyxvleWrPdTUX2W7TI1g348AiGdvQ/eUX/5McVk+U4EGwtLEkejAHT2LO3oWh9aHK96CK95CcOBZNFcJKf9yDGcuihHDM3rYajO4bn7M2hcIys6nMF1u5Nf+EbnrBUgl4Sd/HqFce6CbSQFctmpBp6sIIfD4FKJhk3jMEquGh6wIFIdDULPYOs7cnquLdIYhCQ2ORVbNo1/VtZBS0tbWxr59++jr6wMsr6CNGzeyevXqOfnkLHRUVWXZsmUcPXqUM2fOsGjRIkzTzJiDRyKRjMF4NBolkUjg8Xjw+/2cPn0asESesrLL51lFUaivr+fUqVM0NTXNSazSdZ3du3dz6tQpAJyOHPKDm3lg55JMFcrZbPMDDzzAt771LTo6OgDL1HuyNMhE3ORSa4qOiykiYetiSVFhycpbw1T//YAQgm3btvHcc8/R2toKWB5gaYH0vcdo2nMsGo2STCapqqqioaGBioqK91VUpI2NjY2NzUImqZv8zb5u3m0PY87Q1nY0aWSmy7NcfHxlPndWZ6HOsLr9+wVbrFqAyPOnkM9/25q+cA7lF34bUVmLbGvB/MY/Q0ujNWNxOcrTn0esHKvsdfcjyKP74OxxzP/4a5THPoYc7IfwCGTngmlaUm4wG5E1fUNhLWUSGrz8wxno09F1iWMOKU8zIRox2PN6BE2T+IMKW3b4p52GWLfMTV+3Pi4yDKDpTJKWc0nMsc1a3OCmfvnVB2G+kXdR9SEMNYto/oNTzygUdG81ureaaMHDqKkBXGPClTPRijPVgzPVM24RiUIyuHZa23Qroex42BKs/uNLyHdftwSrz/0K4hoiiGy0/FVYNj9VsK4n3oxYZf0b9XRqSAmaJjPHWVWti7plnim9qIaHDEwDXG5BIDj5POlIirRxr8PhGPc8magnpWRoaChTxS0rK4vS0lLy8/Mzfk0jIyOAVVZ93bp1rFu3blaG2LciDQ0NHD16lIsXL/Lv//7vxGKxafk/gWVSvW3btgnvp8WqlpYW7r333hmJBIZhZKrg7dq1KxP5tHXrViIDS4iGrZTs2YpVYIkd69ev5/Dhw/j9fh555JFM5JxhSHo7NTpaU/T16DC2KxQVyiqcLFrqnnc/NZurU1tbS2VlJR0dHWzcuJEtW7Zkvq+cnJyb2zkbGxsbGxubCTx7LsQ7bWEAFud7uLsmi8X5XlQFBAJFgCKsm1JibFpBkDJMRpMG4aSB26GwrtR/24pUaWyxaoEhpcT43letF6oDQgOYf/a/EWs2IQ++bYlNbg/i8Y8jdj6JcFwe9AtFQfnJX8T8/V+AlkbMv/mDyVcyQ3P1dDRSIKhgGFb59ME+neKyGxN10XExhaZJsnJUtt3jx+We/mApv9BB1SIXo8MGBcUOikqcJJMmzWeTjIQspap2sYul04gWcIePAxDN24lUpj+YN1wFxF13Ec+9C2FEcUfP4YqdQ5hJTNWHVHykfPWYjqxpt3kroWy9F+lyY/7LnyMPvYPUUoif+fUp55fRCLS3AFZk1ULH6x1vsp72nqqstY67kZBBa3OKtpYU5VVO6pd7CGaPF1uv9KuKx+MMDQ3h8Xjwer2MjIxw5swZmpqa0DSNqVAUZYKApes6kUhk3Hxpo+U0TqeTlStXsmHDBny+a5uvv5/Iz8+nvLyczs7OjJG8EAKfzzfOC8jn82XS+2KxGKlUig0bNkwaeVZRUZGZ99KlS1RWVpJKpejt7aWtrY1wODyu6l48Hicej5NIJEilUuPacrvdPPTQQ9TU1HBkX5RoWGMkZMz53Lt161aysrKoqKjA7/czEtJpv5Cis11DS10W6/IKVCprXZRWunDOIKXVZv4QQvDkk0+iadq8V5azsbGxsbGxmV8iSYPvnxkE4Be2lrCzLufmdugWxxar5hk5OmxFLs0ydSlx8B1oOQsuF8pv/mXGPF0e2A2A2Hw34iOfRuROXpFL5Bei/OQvYH77y+APQF4hIpiNHAlBfw9ERhDb759Rn/q6rYF0UakTw5C0taTo7dJumFjV02kN0OuWumckVIF1ob9m08QBeGmFk8E+nURcUl7tvOb3pWhDOFPdVgRUoGFGfbgSqfpJZK1/XxipzwSxfjvKz/0m5j/+KRw/gPk3f4j5R3+LTMQw9+6CcycRj3wEUbUIzp20RNmSinEpsAsVj886duIxE0OXDI9FIS5e7sYXUBjo02k+m2SgV+dSm8alNo3iMgf1yz3k5qsYOgz0Wnns0WQz//mfe9B1fdJ1pcvG67o+YR7TNCeIHWClflVWVlJVVUU4HKa7u5uBgQEKCwtZsWIFixcvfl+n+12Lxx57jN7eXrxeL36/H6/XO6eUKUVRqKur4/Tp07z44osYhjHl9zkVHo+HgoIC7rvvvkz0THauSmeblhHZ54KqqqxaZQnBA306+3ZFSAeUebyCyloXFTUuAkHbm2ohkI6mtLGxsbGxsVnYfO/MINGUSXWOm3trs292d255bLFqHjFf+SHyu/+B2HgnfOFXZyxYSdNk5Ct/D4C47wlEWRXKL/0u8ntfQV5qRXniacSSlddsR2y4A3XDzEuxT9onKenvscSiwlIH0oS2lhR93dqkZuXzTSxqEB4xEQKKSufvcBVCUFA8/QG6O2J51GjeWqTqn7d+3E6IVRtQful3Mf/2D5Fnj9H7Sz+G0d8HScu4WTadQfmtv7jsV7X8+lWtMgyD0dFRhoeHSSQSuFwu3G73uIfL5ZrW8e31WcJGPGYSGjIwTXB7BL6AghCCwmInhcVO+rqjnD01RE/3ME3NUc6ei1rRUGoOTjWLkegpWvvaAMsQWdd1EokETqeTxYsXs3z5csrKyjJ9klJimmZGDDEMY9y0rlsCWFFRES7X7Vnudjp4PB6qq2dWHfVaLFu2jNOnT2fMsAG8Xm8mYitdbS8dteX1evF4PHg8Htxu96RiWXaudf4bCU0UvkxTEo+ZRMMmsYhJKiWpqXeNE/dNU3KpNUVRqTOTRiil5MyxOFJCQZGD+uVuCoociNs85NzGxsbGxsbGZqYMxjSeO2cVKvqJtYW3fQrffGCLVfOEufsl5He+DGCl663bith014zakAd2o7U2g9ePePjDAAiHE/Hxz897f6fL6LBJIi5RVStFSUpQFIjHJJFRc0I600xJJky6OjQKix0Esia21dtpDczyCtQZR1XNJ+6oJVYl/bOPqrIBsXQVyi//AeaXfh/9kiXMUFJu+an1dWP+w59CbCwda9n8i1WpVIrXXnuNlpaWaXkTpUUsl8uFoigoioKqqpSXl1NXV0dhYSEoCSKJi4TbBukZUBgOQ7bqYvduSxALh8OMjo5OGvX0XhRFYdu2baxfvx4hBKZpZt5/L0KITMSFLUYtLMrLy/nYxz6GpmkEg0ECgQBVVVV0d3dP2xPrvWTnpCtNSpobE8SjJtGIJU7FoibvbTYeM8dFlV44l+TsiQT+YJK7dgZxugSd7VaklsMB67f5rlkIwMbGxsbGxsbm/Ug4afD14/282xHGoQj8TgWfU8XnVPC5FPzpaaeC36VS4HNQHHBSHHDhHvNx/ubJAVKGpKHQy4YyO7hhPrDFqnnA3P8W8mv/aL2oqIFLrchv/Aty2RpEcHo+RNI0MX/03wAoD38I4Q9cp97OjHRUVX6RA1UVmen+Hp3ebm1OYlU8ZrL3zQjRiDUgLyh2UFPvoqT8clpeT5e1/huVcjgZih7GmWgHIBlYcdP68X5B1C1D/d9/hu/YPqKLlsHSVdDfg/nH/xMunh+bSVjvzyORSIRnnnmGgYEBwPJqys7Oxuv1kkqlSKVSJJNJkskkhmGlWqXffy9dXV0cPHgQt9s9LnpmwLqZwkgM2rsm9sHj8RAMBsnKysLnDZBMaYyMDBEKDZGVlcX9999PcXFxZn67gtetS0lJSWZ6PiJQnS6BP6AQjZicPZ6Y8Lmigt+v4PYqDPTqdLanaFjrxekUSClpbbGO42jY5Oj+KBu2+Wk8YUU11i/32EKVjY2NjY2NzfsGU0o0Q5LUTZKGJGmYCAT5Pgcex+UI85hm8nbbKF87PkD4ikp8g3NY90+sLVzQ1cxvJWyxao7Ilkbkl/8KpETc+yjio5/D/ONfgc425Lf+FfH5/zm9htqaob8b4fUjdj55fTs9A/q6LbGoqPSyWFRc6qS/R6evS6N+2ewMX68UqpxOgaZJBnp1Bnp1ahe7WLnWgXP4GIlQCZBFcfnNE6tc0TMIJJq7AtNh5x5PhpSSeDxOKpVC06wUUbfbjcfjmTSdTpRXk7NxK/F0pElRKcpP/y/Mv/59kCZULkL4g5m2+/v76ejowOVyUVhYSH5+/lV9lkzT5Pz584yMjODxeHA6nezdu5doNIrX6+Wxxx6jtLR0yj8SXdfHiVepVArTNDPb2draSltbW0aocjly8TiLUVQHpqFTXK6Qle3NCFPBYJBgMGhHQNnMicUNHlqbk3h9Cv6Agi+g4A8q+AMqHq9ACEuYevPFMNGwSWdbipp6N/09OvGoicMBpoTeLp13Xg8Tj0k8XkHtktuj+qONjY2NjY3NrU/7cJLnzoXojqRI6pKUYZLULUEqNSZOpYypI9kDLitCajhhjJuvOtvNT6wrJNujEtNMYimTqGYQ10yimkksZRDVTKIpg76oTm8kRSRljmt7R00Wy4tur4JF1xNbrJoj8t03rBSmtVsRT//UWEW+X8D8019D7n8LuXkHYvWma7dz/AAAnvVb0dyeWaeKzCeppMnQgKUwX+kXVVTmgKMwNGCQTJgzviMfj5m8+2aEWMTE61fYfq8VJtnanKKlMUlrU4JNuT8gaDTzxDI/uzo/SSCYM6N1RKPRTFWvuZJJAbxFo6o6Ojp45ZVXCAaDlJWVUVpaSnV1NQ7H3H/+aVHowIEDDA8PTzqPECIjXF35yMnJYWRkBF3XMU2TyspK6j78GTzf+zLm5rvo6uigpaWFCxcuTKhoB5Cbm0tBQQEFBQUUFhZSUFCA3++nra2Nd955h6GhoUmXefLJJ8nOvrro6HA4cDgcUx4/DQ0N6LrOwMAAWVlZ7HoxhTFmJeR0CR56JMu+o2Iz71TWuqisvbrgKYSgus7FmWMJ2lpSVNe5aBuLqqqsdZGd5+DY/hijw9bF1dKVHhwO+1i1sbGxsbGxWZhIKRlJGrQNJ3n+XIj9lyaOC66GQxG4HQLDlCR0SSRljhOZcj0qH16Rz6NLcmfsMxXTDPQxwUsIQcBlR6rPJ7ZYNUdk43EAlDsfQIyl7IjaJYgHnkS+8kPMr/0jyu+vQHgnH/R6Rg4iFTex4wcB8G7dwdTF6W8s588kkRKycqw792n8AZWcPJXhIYP2CykWN0w/uso0JAffiV4hVAXw+a391rDGi2mYlCSeJ2g0A+BzRtlZ9d+Ek1/AcBdfrWkAYrEYBw4c4NSpUwCsWrWKTZs24fF4uHjxIqdPn0bTNFatWkV9ff2UaVZSShKJBInIEAWxFgCS/snFKtM06e3tRVVVgsEgHo9nwQgVuq7z+uuvE41GiUaj9PT0AFBYWMgTTzxBIDC7dFMpJU1NTezfv59QKJR53+l04nRaaZzJZDJj8p1IJEgkJqYuXUlLSwu7FYWSBz7FYGs/yXM/GNduZWVlRiCKxWKEQiFCoRBNTU2Z+VwuVyZtz+PxsGjRIpLJJPF4nJycHO688855K//ucDgyqV5en05k1PrTyy90LJjv3+b2pLLGReOJBKPDBr1dOr1j6dTV9W6CWSojQzoXm1JkZStU1tjRfjY2NjY2NjMlkrLEE1NKXKqCUxGUBJ34nLdW9dZ0gMT1vHZN6iahuM5wwmA4oY89DIbH3htJ6IRTBrkeB6VBFyUBJ+GUQXdYoyeSojuskdAvi0sC2FoZZGtlAI9DwaUK3A4Ft6rgdohxr12qyAhQ6bS/wZhOTDPJ8ajkeh24HbMXmHxOFW7fotrXHVusmgNysA/6ui3H8SXjhQzx5KeQR/dBfw/y+19BfOpnJyzvjDWR1f99JJCMdWIIBc/GOxiNxm/QFkxNZNSgtclKcVq+xjvh85p6N8cOxGhtTlK3zI0yTRW68WSCkZCB0yXYfq8/I1Sl2VBzlOyho0gJ77Q9TEPREfJ9feR2/Suhss9juEsmtKlpGt3d3bS3t3Py5Ek07bLcd/z4cU6fPo3b7SYajWbe7+zsJDc3l+XLl6NpGtFolFgsRiwWIxqNEo/HkabB1poYSxtMBmIujp7toqEhJ5N+lkqlOHv2LEePHmV0dDTTtsPhyJgqX/mcfgQCgaumsM0n6b75/X62bdtGT08Pzc3N9Pf3861vfYsnnniCoqKiabcnpeTChQvs378/4/3kdrtZv349a9asmZDmlq5ol0wmM4JV+rXL5cpUu9M0jaamJvr7++nqtgQ1r9fLokWLWLRoEZWVleMiwWKxGP39/QwMDGSeQ6EQqVQKRVFYu3YtmzZtwu2+MelNXp+SEavyCm+tixSb9x8ut0JphZPOdo2j+6NIaR2XwbEiFivWeskrcJBbYFf+s7GxsbGxAUgZlogRTZnENMNKA9NM4tr416NJg4uhBN3hieEFioDaXDfLCn1kuVSShklSNzHl5c8RAoEluAiRfhZ4nQolASclARclQSfZbnVKASkU17kwlCBlSDRTohnm2LP1Ws+8Lyd53yRlSEaTBkNxneG4jhCW6OJ3KWS5LQEn1+Mgz+uwpq945HimJx8MJ3T2tIV5q3WUcwPTG9t2jKQ40Rub9DMB5PscrC3188HleVRkz/waXwiB36Xid9nX6rcKtlg1B+RZK6qK2iUTIqeE243yEz+P+Re/hdz1InLjXYilK69Y2CQw+JI1LxDYWshIUzZqVg4sALHqzHGrnHlRqYOikonCSlmVkzPHBYm4pKdTo6zy2nfn+7o1Ws5ZAtjazT58/itOFKaGb/gd/EOvAnCw8x7OD66hM7aUD6/9Ds5UF7md/8Zw+eeIiXy6urro7Oyks7OTvr6+TNU0gOLiYrZv346Ukr1792JGL6GKOIYnSENDAw6Hg+PHjxMKhXj33Xcn9LMooLF9cZw1ZQlyvFYa5MlOF281vcW7776bEWTSkUNgRfSoqko8HkfX9UzUz1R4PB7KysrYuHHjOCPm+SQSiXDo0CEA7rjjDpYtW0ZDQwMbNmzg2WefZWhoiO9+97usWLEiI6KlH36/H1W9/P3ous758+c5duxYRqRyuVysW7eOtWvXTikKORyOTJtXIoSgtLR0XHW0jRs3MjQ0xKVLlygoKKCkpGTKyDefz0d1dTXV1dXj+jg0NITf78fvv7EVODzey/3ML7RPqzY3n6o6N53tGvrYtXT1osu/UaEIyqrsiCobGxsbm9uDmGbQG9HoGElxaTTJQFS3zLcNy3+oO6IxFNOZqQlLkd+BS1XQTElCMxlJGrQMJWkZSl574WvgcSiUBp0U+p1kuVWCLhXNlJzsidE2Mvf2xyFhNGkwmjQmFeGuRBGQ67tAtkuQ63WQ5VZxjUUw6aakL6rRE9HoDqcyIh2ASxXkeFSyPZbgleNRrWev9RxwqQzFdbpGU/RGNYJuldKAMxNpVRRw4lLtFLvbDXtUNRfGxCqxfM2kH4tlqxE7HkLufhnzq3+L8rt/g3BZAwZ35ATOZBdSOBBSx7sim1jW5O3caPp6NHq7LJW9Ye3EqCoAVbV8UZrOJLnYlLymWJWImxzdbynl6Yp/SIkwk7jiTQQGXkTVLXEnnrUZrXgH9CYpLM8iVPY5/G3/hN/sx3vx7/nGvjy6R8cfuoFAgPLycurr61m0aBFCCIQRYcU9DrzhASQwmreFZN6dAKxbt46TJ0/S39+P1+slPyCoDvRS6mjHf0X9B1NxE/etQpbXkt13kpGRkXGRWzk5Oaxdu5bly5fjdDrRdZ1IJEI4HM48v3da0zQSiQQXLlzgwoULVFZWsnnzZsrLy2f8XV2NPXv2oGkaJSUlLF26NPN+dnY2H/3oR3nxxRdpb2/n+PHjky7v9/sJBAL4fD66u7szaXxOp5M1a9awfv36eUupS5OXl0deXt6slnU4HDOKEptPvD4x1gfIzrHv1tjcfPILVfxBhWjYxOkSlFbaMeo2NjY2Nrc2UkouhJIcvBQhlNDRr4gi0ic8IJoyGIzpxHXz2o0DHocVeeNzKvic6WcFr1PBn37PpVCV7WZRnocs9/hrvsGYxtn+OI0DcXRD4h5LUVMESEDKscfY/ObYDVspIZwy6Ilo9IRTDMZ0ErrJxVCSi6HJhanKbBd+p4pTFTgVgVMVOMaeneOerRRFx3vez3Kr5PmsaCkprX0V1UxGE1bEVSiuE0qMPY89RpIGpoTBaIrBKDBF39IszvewoyaLO6qC5HltmwybmWOLVbNESpmJrJpKrAIQH/408sRB6OtGPvMNxEc+DVInMPgKANHgnTiOP4+n1o+/Tr8RXb8qpik5c9SK7Kqpd2XSRiajus5N89kkQ/0Go8MGWVMM0qWUnDnYS5G7i7LSPhaXDuBo60PRR1FkKjOfoWYRKXiYZGANi4sUikpcJLUQ3/3hLob6FH5ys5PKHI3PbB7gO6ercOTUUV5eTnl5OVlZ4w2tPaOHCQw8h2JaAosAsoeeJ2aOEsl/GLfLxea1S3DFwBM+ijN+ETH21yFRSfmXkgiuJelbBoqTlSXQsHItQ0NDmSguVVXJy8sbt16Hw0FOTg45OTlT7otUKsXw8DAnT56ksbGRjo4OOjo6qK2t5Y477pi1WKNpGkNDQwwODtLf38+5c+cAuOeeeyb8Objdbp588knOnTvH0NDQOIEtEolgmmbG5ypNVlYWq1atoqGhAa93chHzdiWYbR37BcVOO63KZkEghKBuqZsTh+LULnajqvZxaWNjY2Nza2GYkkujKVqGEjQPxjnYGaEvOrvxUsClUJHlpiLbRXHAicdhiTg+p0JJ0EVpwEnwKql30yHf5+TOaid3VmfNug2wUhL7IlaEUn9UI5wyCI8JRQ2FXlYV+8iaZjredCn0X/umlmFKwikT1Z/D+Y4ehmJW37Sx6nsCKAo4KQk4KctyUeCzb5TZzA1brJotnW0QHgGXGxYtnXI24fOj/Nj/wPy7P0K+8kPkxjvw5fSj6iEMNUj0khd1Ty+e2kV49HPI5MQKZjeS9gspwqPWnfglK64eNeP1KZRUOOnu0LjYlGTNJh9IiaIP40h24Ux24kh2IaKdPFx2RdWG96Qim4qfePYWorl3g2JFaOm6zqkz+zl69CimaeJwuNg3sp3s7DNkufr58Q29DJc9hu6pnNAvR7KLrL7vAqC5SokUPokz0Upg8GV8w2/jip5DMSIo5viOpDw1lkAVWIVUJxriK4pCQUHBdHbjlKQr4xUXF1NcXMzmzZs5dOgQp0+f5uLFi7S2trJ8+XKWLVtGeXn5pH+Y6TTDtDCVflzpm5Vm5cqVU0YbKYrC8uXLJ7wvpSQej48TsLKysqiurp4yLe92p7TCyfqtPvKL7FOqzcKhus5NQbFjgjegjY2NjY3NTNEMk2jKxAR8TgW3KkgZks7RFO0jSQZjVlaGIkBgRRMJYUUNJQ1JUrf8m5KGJKGbJHVJyjBJ6JaHkseh4HcpeBwKw3Gd3qgl1Lw3KMqtCtaX+anJ8WSihRyKQFWsqm8O5fJ7HqdCvtdBns9xSxmfu1SFimz3rHyZrieqYqX+lRYHyTIjC6J6vc37G3tkNUsyflVLViAcV1eNxZrNiM07kAd2I773d/g/aAke0bz7kW/uReuMkwx7cQfjmBe/jdOxDKSJ4czHcBVe703JoKVMGk9akUhLV3pwua89wKld7Ka7Q+NSW4plq9wUjHwPb/jo+JnG/qgSogARqEBzl6G7SzEdORiOrIxAlWZkZIQXXniB/v5+ABYtWsTdd99NMBgkad5Dqus/cSXayOn6MsNln0H3VI1b3jf0BgAJ/wpGSz4JQkHz1mA4ssnq/R4OrQ8AiUB3lZAMrCYRXIPpzJ3VfpsLWVlZ3Hfffaxdu5Y9e/Zw8eJFzpw5w5kzZ/D7/VRUVGS8o5LJJENDQwwPD0/55+D1esnPzyc/P5+ioqJx6X/TRQiBz+fD5/PdtLS6Ww0hBOXVtgeQzcLjykquNjY2Nja3N4YpaR5KEE0ZGCboUhJNWV5F4aRBJGUQTZlENcvLKXbFc8oYf+2ZDiQ3r7Ne4XUoLMpzsyjXw8piH+tK/XOq3mZjY3PrYItVsySTArhsej5T4ukvoPafIm+nC8WMobuKiY8WWimCQMy3DTdvIPv2ksNeax3CwWD1r2I6sq/PRryH86eTaClJIEuhum56A++8ApXsXJWRkMFwy1kq3UczIlDKWcbZlny6h4tw55WxZlvONUNrL1y4wKuvvkoymcTj8bBz504WLVqU+VwqHkbKPkN213/iSrRaglXpZ9C9ltG2I9mFJ3oaiSCa/yCIy39myeA6htzlOJKdGM4idFcRKAsjPDUvL48nnniCrq4uzpw5Q3NzM9FoNJPK917cbjd5eXkZYSo/P5+8vDx8vokRYTY2NjY2NjY2NrcnmiE51BVhX0eYw50Rwqnp+TdNhcDyXEqLVEGXQmW2m6KA0/pMgokVqZ+ex+2wIrE8DgW3Q4y9VvCMTTtVQVK3hLO4ZpLtUSkKOCn2uyjwO1BsryMbm9sSW6yaBVLX4fxp4Op+VVfiVnvJ+mgFijDQ+hKE2gTmrl8B04T8IlKL7iE2ksSndaDpBqo2hGLGcUfPEM/edj03B4BI2OBis2WSt2KtF2WavjtCCBY3uDm0J0qZaVXyi2dvJ1zwGEf2xejq1PD6FdZvDF5TqDp8+DB79uwBoKSkhEceeYRgMDhhPqm4GSn7NNldX8GVuEhO138wUvZpNG9NJqoqGViF4ZoYFWS4iiZ9f6FQVlZGWVkZ99xzD21tbYRCoUwUlcPhyAhUfr/fNim0sbGxsbGxsVmgpAyTvqhGNGWSMi6nvaXG/H3SKXEpwyQ19lnSkDgVQWW2m8psFzU57nHeRFJakVGN/XGcY+JP+uF2CLwOBffY66Ru8vqFEV5pHmY4YWTaCLpVisYEIFUI/C6FoFu1Hi4Vv8syEve7FPzO9GsFv0vF61BQBCR0SUwzUIUg2zM3nycbGxubqbDFqtnQeh6ScQhkQUXNNWd3h4+S1ftdhDBJDiiEvn4RmWqxPly/HeXjn0M4nUQLnyCrtJT+7m68Q7sIDL6EK9LInhY37e3tqKqK0+nE4XDgcDgy0+lnj8dDbW0tTufMo4XOHI8jTSgqdVBUOvny7vAxpHCRCjSMe7+k3MmK8kbyvX3o0k007146LqboatcQAjZs9eF0Tf0nJqVk3759HDxoRZmtXr2au+66K5P+Nukyipvhsk+T0/0VXPELZHf9B9H8hy9HVeXdN+N9sJBwOBzU1dXd7G7Y2NjY2NjY2Nhcg2jKYO/FQd5p7KOxP07naIrB+PwUTqrOcbO6xEeWW+Wti6NcGk1de6H3kOt1sKM6yJaKIMsKvahzLAbjdQq8TjsVz8bG5vpii1UzRMZjmD/8OgBi6SrE1QynpcQ3vJvA4EsAJAJrGMm9Fxn4DXB7UD7+ecSKdZMumvQvJzD4Eo5oEwf2jpAypveH4PF4WLduHatXr8btnp4pX3+vRm+nZYrYsHbyKm+e0SNk9X0HiSBU/tOZtDsAgcG6kt0AnOjZgj/PzakjlqH60lUecgumPsyklOzevZvjx620yu3bt7Nx48Zp9RvFxXDpT5LT/V+44s0EB54B0lFVxdNrw8bGxsbGxsZmDiR1c8zg2Y4uuZWIJA0uhBJUZLvJ805/SDQY0zjYGeF4T4zucIqBqDZlap3HIchyq7hUK/LJpSq4VDHutVsVuFQrHc6lCmKayaXRFO3DSXoiGm3DSdqGk5k2XapgTYkPRQgSuklCTxuWm5nXSd1EAquLfTy8JIctFUEc9vFpY2Nzi2GLVTNADg9h/s3vQ8dFS2x68BFc0UbUVB/JwKrxBt3SJDDwPL6RdwGI5dxFJP9hhFBQ/vRfrypyaZpGT28SJe4k16uxpEgnq/YePB4Puq6jaRq6ro+b1jSN/v5+RkdH2bt3L0eOHOGhhx6ipqbm6ttkSk4fjQNQU+8imDUxmklN9hDs/yEAAklW3/cYqvyFjN+Td2Q/boaJ6wFO9mzA7IlgmlBQ7KB+2dUFs71792aEqnvuuYfVq1dfdf4JKC6GS3+C7O7/wh1vel9EVdnY2NjYzA9SSiTM2u9EM0yGEwZDcZ1w0rCqSzkUfC6FiiyX7aMyBQndpHM0xblIP4NDo5nvAWl53aRrhKR9mTOfj32Wnva7FLLcKllu63JVG0uh0gxJypSkxqqIaaaVQpUun54yTHI8DjZVBKYsnW5KiWGCU539d9g0GOc7pwbZfylCntfBjpos7q3NojrHbadFLXD6oxq/9Vo7PRENgByPmvlNW8eoHHesmmPHZVwzaB+ZPLKpIsfLkjwXywu9VOe4KQk4yXLPLUVuJKFzsjfGiZ4YoYTO5vIA26uC+F1XL54hpcSQ2AKVjY3NLY2Q17nmZH9/P5qmXc9V3BDkYB/m//sNRHQQ/9ZSvFsqcBDOfG6oAUbKPovuLgVTI6vvO3giJwEIFzxGPOfOq7YfiUQ4dOgQXV1dDAwMAPDI8lHuqI0ScjagVf/4lMuqqT78g6/gTLRxMnknrx9sJxQK4XQ6+chHPkJh4dQVBdtakpw4FMfpEtz3aHBCBUBhJMi99Hc4tEFS3jrUVB+qESaaey/R/Adxh0+Q1fddhNRoV5/g1QNWiqDLLbj7oSAe79SiXEdHBz/4wQ8A2LlzJw0NDVPOe01MjcDQKxjOvBvi8WUzN4QQlJaW0t3dbZe9tXnfYx/vcyOumQwndCIpg0jKzEQQXOn58t7XIwmdnohV9tyUkgKfk+KAk1yvA3cmskHgGotkABhJGITiuvVIWM+RqxgRV+e4+dTqAjZXBG55YWIkoTOcMDKRGamx0vLp8vLWfr0csZE0TOJaumKY5ccjsMrVxzSD/tj8pD/NB3V5Hhbne9AMSdIwCScN+qMa/VEdQ0qqc9wsyfdSk+vG5xzv/+MZM4FOTwsBF0NJmgbjHOmKcrwnNuk6HYog6FbJcqm4HQKHIjKRVw6FK6atR3nQxYOLcwhcQ4C4lUjqJu+0jXKqL45DAecVEUTpaedYhJHHISgLuijPcs9JPJwuVwpVHocgZcgZVbQTwJICLxvL/SzK9VDod1IUcFJXVWGf523e99jXNDZzxel0XlWfuBI7smq67H+VrHUK3tVLUZwCxoQq3VkIGDi0IXI6/4XR4o/hG34HV/wCEpXR4o+SDE5twp5MJjl8+DDHjh1D1y9f3Pl8PqKuQuAE2WYbA9IcV9kOQNGG8Q+9jid8GDF2H3KF/wTFn/gZnnn2OTo6OnjmmWf4+Mc/TiAQQE0NEBh4DsNVSCKwirgop/FkAoBlK1Q8yihKIoJiRFCMKIoRwRU9h0MbxHBkM1LyCVzxi2T3fB1f6C0UI4J31PKZSvqW4S7eTNa5GKOjJmu3+K4qVMXjcV555RWrzytWzE2oAlCcRAoem1sbNjY2NjY3FSklkZRJVzjFse4oh7uiNA3G51wavSeiZSIoZopDgRyPgyy3imFC0jAZiuu0DSf5k92dLM73sLE8QIHPQYHPiddpGRA7M1FYKn6nctNTxDTDpHkwQUwzMaQVgdTYH+dYT5SOKSJF5kKWW6Uyz4+ha2NCloUQY9NjAl/mM3HltAApiWqWuDSaNBCQETpcGaHjPcKHYlUVc6qCtuEkjf1xWoYStAwlpuznxVCSi6HklJ9fDUXAjposPrA8j96Ixq6LoxzsjKCbMiN8TpfvnB7ksSW5PFCfjVu1jiGPU8Gl3jq+QFJKOkdTvH5hhFdbRggnjWsvdAWqgNKgVY06rlliaXWOm80VATZXBCnPml6l6qn6FtVMusMp/vydLnoiGiUBJ3+0s4ost0rbWMpdGoH1/V4+LgVCgCoEiws85HjGD6FudcHaxsbGZiFiR1ZNE1/3cwSiVqU6zV1GLOcuUr5lSNWDMOJkd38VV6I1M78p3IyU/hiar37S9nRd5+TJkxw8eJBEwrqIKi0t5cEHH8TpdOLz+UAaFFz8IxQzwVD5z2R8ooQRxR96C+/IXoS0LoSS/uU4YxdQZJKRkk8y6lzCt7/9bUKhEAUFBXzkwx+mqP8/x/UxaQZJpBx4nTFc6tQXahKVUMVPo3sqAcjq/jqe6KnM59GcHUTzHwKhkEqZpJKSQPAq5uhS8vzzz3PhwgVyc3N5+umnZ2UKb3PrYt+VsbmduN2O96RuRUKFk6aVtmWOpW2NpWlZKVvWe3HdZDBmRbn0RzUGYhoJfeI+8jgEfpdKYKwaVcbrxSEykS9uVcE19hx0qxQHnBT7naiKoC+i0RvVGE7oVpqYfkVFLsNESsuAOMejkut1WA+P9RxwKRMGouGkwQ/PDvFs4xBJY3rfqcch8DtVfFdU2PI7VVwOMTYwFgRcCrW5Hmrz3JQErIG5lFZanRUNpBFOGeO23YoEEpkKYOlInqGYTn9Mo3M0NRYFFJ1034I1GM9yq5OWlB9fcn4syki1pv0uhYBLzUSnScClCMqzXGR7nTf9uB+O6xzqitAX1TLeQH6XSqHfQZHfiSIEzYMJzg/GuTSausL3ZyyCLD1tmBnBNN/roD7fw5J8L3dWBykJjhdQUobJSMLIiGxJw8QwJboJuinHpi8/NEPyTluYtpGJ12GqgPp8DyuKfKwo8lGX5yF3Bt5KmiGJagaRlBU1OBSzIuhcqhX5FXCpZI1VgUt/j4qYvvBimJLeiEb7SJIzfTEOdEboDl++5i/0ObinNhuXKkgaMpPGmU7VTE/HNINLIymi2tSRjAABl2L9rgMustzq5Qg4NV0Bb/zvYCimc24gTuNAgksjyXG/1bRQVeifn+vP2+08b3P7Yh/rNnNlJpFVtlg1TRRtCN/IXpK+pWjeuswdwQxmiuye/8YdO4eu+OkIfJgo+RiGkfGXSj8SiQTHjx9ndHQUgNzcXLZv305dXR1lZWXjfvxZPd/AEzlBNPceorn34hveg2/4LRTTuqhJeWqJ5D+E7q3GP/ga/tDr6M5Chqp+iZHRCN/+9reJx+M8sjGLO4rOoRlO2kfqqcpuwamOv5MqUTFVP6YjgKkGrGk1QDKwEt1TdXlf6GHyOr6EMBI0mdvZ3aijKAoPPfTQNUWnZDLJ/v37OXbsGIqi8LGPfYyioqI5fjs2txr2H53N/9/enQfHVZ15H//e23urtS/Wbi3esWWDMQYCNhBswBBwQiDzZnBSQ0KFEJZkMkCGTDKZmjJMMpWaMOwmA2EqZGCCbUhS8BrC+hpsMMbGq+RNXiRbi7W21JJ6u+8fLbUtvMm2bLXVv0+VSurbre5zW4/Ovffpc56TTEZ7vFuWxeamHl7d2sqmxgA94eNfcA5FutvGpBwPFxb5uKAw5Zh1h0Zae0+Yt3d1xIosB8K0BEL0Rax4UmKg2HGiyHDbyPYeWrJ+bIaL6QVeqsakkOoa3ilooynuLas/sRS18DqGf6pe1LL4uK6LpZtb2Nnae9yRhJluG0VpTqIW8TYNJL2+eDs4xETqFxnETnNNI5a8Mo3YyCLTBJPY39Y0oDsYJfSFxtrNWPHva8ZlcGGRb8gjCi3L4mAgTH1nEJsJXocNmwGbm3r4pM7PxsYAp7g7g6Q6TSqy3NxzccGwJapgdMW7yPEo1uV0aRrgGRB1ZB1/mpnp5JPOi6jb2MKeFpOu4FsnfM6UlBRmz57NlClTMM0jP7mF2Igpd9cG3J1rcXd+ii0SW2Uv5CygO/sagt4J8cRZIPMyPB0fYQ814/avh/SZXH/99bz+pz8yI307AOsOfImNjbOxGWHyfPWkZzmYdEEuUZsPy3QfmYQ72nthT+Wdtqv4fP162rp2xLd/+umnXHLJ0etFRaNRNm/ezOrVq+npiRV0/9KXvqRElYgMq6hlxWrpBKN0hyKkuWxkJ2ii40Qsy6K2rY/d7X39F4uxkSt9/Ss/9fSP/BiYLjOwIlTEsqjMdDN1jJcpeZ5hu7juC0fZ2xFblaq9NxIbGRKx+OxA9xHTrBz9NXtc9tjULHt8ypaB0zw0lctpM8jxOshJsZOb4iDX6yDba8dlPzemPmV47Nx8XvZxHxOOWgRCUbqDkfj37oHvwdhosyixmjltPWF2tfayu73viERDustGboqDdLftUH2usEVv5FAdr77woULlA+9tXoqdKXleLizyUZ7pUlH4U2AYRv/0wjPz/KZhcElJKpeUpMa3WZZFU3eIzU09bGoMUHOwh/rOIG29Edp6e07q+b0Okwy3nSxvbPRgKGLRFYyN/vIHY1Mtw4clnQYKi0cHXYge/aLUaTMoTnNSnunmwqIUZhSknFKfYxhGrA/4QgKpLNPN9RMz6QtH+6fzBmnqCtEVjAyqoTbw8+Gr4XkcJpNyPEzM8VCR5SbnHOpbREREyaphs337dt58620sy4HNZsPlsmO3D/6y2WzxnwsKCqiqqjrhSKSgdyIWJrZIrEZWxJ5FV/Y8+nxVR9Swskw33ZlXkNryBimtf6XXV0VhYSF/c6mTFFeURr+Dnd3TuWZhGsGgRV9vOmkZNiKOkztwNzU18d7KTwFITU2lsLCQmpoa1q5dy+TJk8nIyDjUJstiz549rFy5ktbWVgAyMjK47LLLqKioOKnXFZHRZeBirLatj/2dQZz906RcdoP6ziC1bX3s6+jD57SRn+qIT4sauNjv6r/YP/ziPxCKHjEqYeoYL1eWp3FpaeoZGRUBsYu6Pe19hKNW/zS1WI0iEzBMA08gSGdfGMPqr9nTP1IhHD1UyDr+FbLY1tLDyj2d7Pef2sjkDQ0Blm9txTRiBaanjfEyKcdDR1+EPe191HUGcZiQ6orVYrIs69DF3hEXfrHbHb3hY474cNoMvlyRzvxxGeSnOvDYj/4BTDKym0b/inZDj71INFZfZ6CGk6N/WfsTsfprUYWiFikO/Q3OZYZhMMbnZIzPyVUV6UBsOuie9j4au0LY+gu1O/qLtDtsxqHbttj3FIcNzxDqpQ38/4ejFlHLwrIg0r8aXjQKVn8yNWrFHhvtT2S57Sa5/VNtzzSX3WRshouxGcdfZVpEREYPJauGQW1tLStWrMCyLIoKJnDFFV8mO3d4Psm3bB560i/BGdhGT8Yl9KTNAuPYf7ae9Evwtq/EFm4nd9c/E7WnkevtAOBPm9KwZXxOW/sM1q1bx44dO/D5fFRUVFBeXk5hYSE224lPpteuXQvA+PHjufbaa2Ov29PD3r17ef/997nxxhsxDIPm5mZWrlzJvn37AHC73cyePZupU6cO6XVGWtSKXUSGIrFh/wMr1FhWrM5KdzAan04hIrEL7IOBEAf8sdpD3cEogVAkvmJYIBQh0D/iqTsYq+sy1CljW5pPbiSB3TRIcZp09EbY1BhgU2OAJWsauaI8nQUTMijLdJ/0/nUFY3VVGrqCeB0m6W47DtNg1T4/7+/upPG4Bby3n/TrQSwJNCnHg2kaRC0LA+KrlbntJh7HoZXKBr6ilsXW5thojIauENtbetnecuwC0ycjzWVjbIaL3BRH/KI4x2vn6op00tw6pRgutv4E18kyDCNWd+oMtElGnttuMrF/pNBwMgwDj0PnMiIiklhO+syyqamJZ599lurqalwuF1dccQXf/OY3Mc3kGlZrWRYNDQ3U1NSwefNmotEoRQWVOCIX8dE73Yyf4mLCeW7M43zaFI1arFsdIBy2qJjgIjf/6Amurtwbht4w00FXzg2kNi3FtILYwrFE1dam8exp64a2GnbV1sQf3tnZyfr161m/fj0ul4uysjLKy8sZO3YsLteRp7sdHR3s2BGb+jdr1qz4p7Zz587lxRdfZM+ePWzevJmGhga2bNkSa5JpMmPGDGbNmnXU5xwJjV1BPqnrYnd7H4FQlEAoSk8octjPsa/DBxG47SZeh0lXMBKfnpHmslGV72V6fgopDpNQvHgqh4qnfqGg6sBtt90kyxMblj82w0VRqlOfgkvCGfgUPdL/PRy12Nfex/qG2LLtDV2h+CfxgVB00FSSobCbUJLuoiTNRcSy6A7GElhjfE7KM12UprsIhKI0+IM0doewGUa8MHWK0ySlf6W1WPHt/tvOQytoNXeHeL+2k3dqO6jvDLJiRzsrdrQzMcfNRcWpXFiYwtgMV3+h7zCtPeH499ZAKH67OXDilb0GioAPFGUeeF9O9I7EVo07VMDa4zDJ8dq5tDSNWUU+PCc5+hXg6sqM+P5vagywqSnA9pZeMt2xZFNphouoBZ19salAA0kw1+HtsA9OhA0UIFc/JSIiIiJn2kkVWLcsiwcffJDi4mJuv/12Ojs7Wbx4Mddeey1f+cpXjvo7o6XA+oC2tjZqamqoqamho6Mjvr2yspK89Dk01B9apjcz28b5F3tJ8R3909E9O/vY8Omh0QIZWTa+dEURNqf/9AvWWRa9fj+7Nx2gp6OLllAZjvQtfP75OkzTZPz48VRVVREIBKitraW2tjZeSwpiCaaioiIqKioYP358bHVC4L333mPDhg2MHTuWm266adBLfvTRR3z66aeDto0fP55LL72U9PT009ufYwhHLWrbeqlu7mFbSy9d/cskW8RW5BmYIgSQ5raT7rLR0r/k+OkyDU57OfXDFaY6mF2cSlW+l7wUBzkpDtx2k0g0thJROBpbGchmGtgOK3x6Ll44nunijO09Yd7f3UlnX4SiNCeFqU4sy2JHay87WnuJRC0uKk7lomIf7iStX9HRG+btnR281/8+RS2LaNQiYsVGSB2eoDoZdtMg3+cgL8WBzxlb+czrOJRc8joOSzC5bBT4nPFRi2fSQBHw17e1sXqff1ChXrtpDDnJlu2xU5DmjK141xOmKxhlcq6HK8rTuLgk9ahTtQzDID8/n/r9B+LJP/qn1dhN46xMoRE521SEV5KJ4l2ShWJdTtcZK7C+c+dO9uzZw89//nN8Ph8+n4+FCxfyl7/85ZjJqtGipaWFv/71rzQ2Nsa32e12KisrmThxIqWlpfz1z7G6UhUTXOyt7aOtJcIHK/xMm+mluGzw0saRiMW2zbFpGdm5NtpaI7S3Rnh9+V7mXpNGavqpX0BblsWenUG2fB4lEh6DaRvDhZemkJv/JcaOLSEnJwefzxd/fGVlJdFolIaGBmpra9m1axdtbW3s27ePffv2sWrVKq688kpKSkrio6XOv+ACIlFr0EXWrFmzqKmpwe/3k5+fz+WXX05BQcGQ2+3vi/BxnZ+m7hAtgTAdvRHGZ7uZU5ZGQf/S0G09YaoP9lDT3EPNwR52tPYOebWb5sChURGmAVPyvEwb4yXVacPriF1Ee/q/vI5D2+ymQXcoVoC0JxQl1RWb/mM3DWoO9rD+QDfVzT1ELAt7f+2Io37115AYSDj1hKK09MRWj9rZ2sd+f4jlW1tZvrU13k67CSeaJTXwfKZhYDPB1p/EctpMxmW7mZrn5bw8Dx6HGR8Z03bY6JGoFfs7Ht7WgeccuD1QnDXDY8dtN+L1Kpy22PtzOgZqrByvHktfOEp9/7LiEcsiEo29fiQaS6gMbAtFoqyp7+aTOv8JVw36f3v8uGwGk3Jj0ykGVk4KRSyC0diS2uH+beGoFa8P4rKZzCxKYf64DMZluc9asjAUsWjsChL64qpPkWOvBhW1LHJTHBSlOslJcXDAH2RHSy+bmgKs3td10qOgBqS6bFSN8TKjIIWKTDd2M5Y8ddljBZ0TMfliGAZTx3iZOsZLa0+Yj/f5Wbu/i88bAvE+JMURGz2U7bWT5bGT7XXERz9me+wUpTlJcZ7aFGbDiCWlLAtiz5B475GIiIiISKI4qWRVbW0teXl5gxId5eXlHDhwgJ6eHjyeo8+hPxdHfnxRbW0tjY2NGIZBaWkpkyZNoqKiAqczlkTp8kfo67UwTZg83UPFRBefreqm9WCEdR8HaGoIU3WhF0d/TYA9O/vo7bFwewwuviKVcMjis9XdNDeE2bqhh9lzfMdrzjGFQrGphQ31sdFsWTk2ZsxOwZcauzwqLy8/6u/ZbDaKioooKirisssuo62tjV27dlFdXc3BgwdZsWIFHl8a4XCYsCeDBz4KELW2MTHXw3l5XtJdNmrb+tiTewnBFD8t2WNo2Wcwpq2VfJ+DfJ+DMalOfEe50DvgD/Kn6lb+uqOdvi9kGNbUd/GHDQcpz3TRHYzS1H3kKL1Up42JOW4m5nrJ8R4KaafNjE8LsoDO3jAdfRGcNoPzC3wntUx3ui2WoPqiqWNSmDomZcjPcyyBYITPDnTz8T4/u9v7aOoO0ROKnjBRBcRGwkQsjpxsFKGpO8RHe/2n3b5jsZuxpc8rs9xkeuy098SmSgVC0VjizDSw91+kDyTSBhJgDncbOxs72NfRR1cwytgMFxcW+ZiRn0JnX4Q97b3xlcca/KETTqX6ogk5bioy3ez3B6nvDAJQmelmXLabUNTi/+3upKErxOcNgSE9XygKYNFFlDd3dPDmjg5K0p2kOGz4gxECwQi5PgcVmbHXHUgORg4fsXRYoi1qWXT2RWgJxBKHGW4b147PpCrfG+8zI1GLzU0BPtjdyYd7O+kODq2+01CNy3Jz3YRMKrPchxKdZizZaTP6R/CZRvxnW/99dtM4p/v1bK+DBROzWDAxi75wlLaecH8i9syMsht4r87l90zkZCnuJZko3iVZKNblbDqpZJXf7x+UqALitzs7O4+arBrqEK9Ed91111FRWUnZ2LFHvAcA1S1tQCd5+R6KiwsBKK+wWPfJQdaubqZ+T5DONourrisiO8fNWzWxYrsXfSmf4uJMADIy+vjfF3bSuD+EFU6jsOTkkiBtrX18sGIf7W0hTJvB7MvymDojK16Yd0N9Byt3tVDf3kOjv5eDXUEi0ViCzTSMwy5UBy5S87Dl5mIGNzGmczs9XZ0AbLWV0hOOpQ42NATYcMTFfio0BGJfX5DmtlOU7iE7xUlLd5BGfy+tgUMJqHE5KVQVpZOX6sLrtPPRrhbW7Gmjti02bc8AKnNSmFaYzrSidKYVpjE20zsqOszKsXDLxYdud/WF6eoL4+5fzcdumv2jiWKjZiIDX0fbFrXo7AvxeV0Ha/e1saXBH/tb908fzEpxkudzketzYbcZhCMW4Wj0UF2tSLR/m0U4EsXfF6Y1EKSzd3DNnnDUYmdr7xHL1p+KPe2xxNTSzS1HvT/d4yDdbe+fBjmQADP6R4CZ8emR5Tkp3DStkHG5x0/43m9ZbG30s6O5C6fNxGk3499d/d8dtljtHrtpELEgHInS6O/jL5sO8M62ZvZ1BAc9Z1tvhG0HT/29+HCvn/LsFKYXpbOzuYvtB7voDR1KUHkdNjxOG06b2b+Mutn/FfvZaTOx24z++2OJl/3tPexpC9DZGybd42DymFSm5Kcyd3wuU/LTTrmto0nZWXqd/Pz8s/RKIolDcS/JRPEuyUKxLmfDSdWsWrZsGWvWrOGRRx6Jb2toaODee+/l8ccfJy8v74jfaW5uJhw+flHac8F7tR08+tF+3A6TMSkO8nxOPA4Tp2ngtBlkNDtwdZqEc6NY+RaxRcljy5PTDeZeAyNkABakAN0GLq/B1dengWFQ19nHjtY+wnU2+vaH8KabXD7Ph8t+4tE/kYjF3l19bP28h3AYHG4DyiyCrthKdm09YVbt83MwcOp/h/RQO+f1bMXh8lB5ydVMy0/FYRpsbgqwuSlAIBSlLMNFRZabdJeNpu4QDV2hWFHkrhANXUHaeyPHfP4LClNYODmb6flHJp7ae8N8fqCbdLedCdluvKc4DUdOXygSmx43UC+rrSfMrrZYssrfFyHTYyfTY8fntA1OoPXXQQpHD03ZS01NxUcfxelOMtx2NjR082l9F1uaA2R5HPEi0GPTY98TrbBzV1+E9Q3d2E0Dn9OGx26w3x9iV1svu9t6CUet/qmZh41UOjwxbECK0xafcra1uYd3d3UcsTpeitPkS6VpzClL47w87ylNsRtYwdJj11L2I2GgZlVDQ4PqO0jSUNxLMlG8S7JQrMvpstvtZ6ZmVVpaGn7/4ClFnZ2d8fuOZTQEssOMJZ66g1F2BfvY1Ta4QPetthxchslbDe3UHwge+fsYfMlMY5zpge7Ytv/rb+N3SxuJRC16+0cqeTC5xZYDHfDAy3tpd4XI8znJ9tpx2mKJMYetP0lmGHg6bNhaDIxw7AK0zRbi9a42ejYdOV3I6zC5qNhHRaabnBQ7OV4H9v5RV1Ertjrh4UWVB7anuWwUp4/H67j4iOcsSXdy7fiMIb2HPaHYNL4Gf5COvggZbhs5Xge5KY5BU/K+GC/pLhtzytKOeb+cPQNT+AaM8TkY43NwSUnqST3P0YozzilLG/R3PppE+tvHkkiD97siy81lY0/uvRgwpyyN26bn8P7uTloCYcZmuKjIdFGQ6hyUoDrV98DTP8Utkd7DZGNZlt5/STqKe0kmindJFop1ORtOKlk1btw4mpub8fv9pKbGLsh27NhBcXExbrf7jDQwUVxamsYFhT4au0I0dgU5GAjTF46NXAr1WqTtsmNhMaXMw0TDAxy2ZHn/9ygWB7p7yWt34Tcj7I32EQrG/snddpNxWW6y0rzs299HZdDDLNPHn3tbqentGdQWNwbnmSlMMbzYjdgFqN+KsDHazdZwAMOAaXleMj2xBJfLblI1xssFhSnx5dxHgsdhMjbDxdgM14i1QSSRpThtLJiQOdLNEBERERERGVEnlawqKytj3LhxPPfcc3z3u9+lpaWF1157jZtvvvlMtS+huO0mJWlOwo0WPbvhgqlu8osc1O8J8tmuABmZdm689MSr31lRCwv4P2RT19GHaRoUpTqx20wKCgrYt3c/b7/eQVqPnW+n5OGdYNBlixLsiUKzga3NwLBiIy2C9iitqSFaXCEyTRt3FeRzcbGPtKMUAxcRERERERERSXQnndH4+7//e5YsWcL3vvc9PB4P8+fPZ/78+WeibQmnvTXM52t66GyP1V76bHU3l89LpaU5VgsqO3dob6dhxupZmUBZ5pEj0uwOg0uu8LFmZTfd/ihdmy3yCp2xwuv9s/vSM22Mn+Iiv8ihGjQiIiIiIiIiMmqcdLIqOzubf/zHfzwTbUloDfUh1nzYDRY4nAYer0Fne5S1H3YT7U8gZeUOX+Hv1DQbl89LZd3qbhr3h2moi62Yl51nZ/xkFzlj7EpSiYiIiIiIiMioo7liQxQKxgpPFZU6OO98D5YFH7zpx995qJB51hBHVg2Vw2Ew67IUdtX00dEeoXyci8wc/clEREREREREZPRS5mOISsqdFJY6sNkOjWaaeUkKq97rwrIgNc3E5Rr+4uWGYVA5aXQXrxcRERERERERGTByS8Odgw5PVEFsSt7kqlgiKb/YMRJNEhEREREREREZVTSy6jRVTnJTWOrE7Vb9KBERERERERGR06Vk1TDweDVATURERERERERkOCjLIiIiIiIiIiIiCUPJKhERERERERERSRhKVomIiIiIiIiISMJQskpERERERERERBKGklUiIiIiIiIiIpIwlKwSEREREREREZGEoWSViIiIiIiIiIgkDCWrREREREREREQkYShZJSIiIiIiIiIiCUPJKhERERERERERSRhKVomIiIiIiIiISMJQskpERERERERERBKGklUiIiIiIiIiIpIwlKwSEREREREREZGEoWSViIiIiIiIiIgkDCWrREREREREREQkYShZJSIiIiIiIiIiCUPJKhERERERERERSRhKVomIiIiIiIiISMJQskpERERERERERBKGklUiIiIiIiIiIpIw7Gf8Bexn/CVGHb1nkiwU65JMFO+SjBT3kkwU75IsFOtyqk4mdgzLsqwz2BYREREREREREZEh0zRAERERERERERFJGEpWiYiIiIiIiIhIwlCySkREREREREREEoaSVSIiIiIiIiIikjCUrBIRERERERERkYShZJWInDFabFSSRUNDw0g3QURERERk1FCy6izZu3cv27dvp729faSbInJGbdmyhbvvvpvdu3djGMZIN0fkjNqyZQsPPfQQv//97wkGgyPdHJGzorGxkd7eXqLRKKAPJmT06uzspLq6GiAe7yKjnfp0SRT2kW7AaOf3+3niiSfYsWMHubm5dHR08POf/5z8/PyRbprIsGpvb+fpp5+mpqaGG2+8kbKyspFuksgZMxDv27dvZ/z48TQ3N+N0Oke6WSJnlN/v5/HHH2fv3r0UFhaSk5PD97//fX0wIaOS3+/nwQcfpLW1ld///vc4HA4sy1K8y6hiWRahUIjHH3+c7Oxsvv3tbyvOJWFoZNUZFAwGWbJkCZmZmTz55JP89Kc/xel0smLFCkBZaxk9Vq5cyfe+9z0yMzN59tln+epXvzrofsW6jCb//d//zT333ENGRgZLlizh9ttvp6CggGAwqFiXUSsQCPDUU0+RlZXFv//7vzN//nw2btzI008/TSAQGOnmiQy7DRs2UFpaSk5ODi+88AKg8xkZfQzDoK6ujtraWl5//XUaGhowTVMjCSUhKFl1BjU0NLB//36uvvpqnE4nPp+PyZMn4/F4AJSxllHBsiz279/Peeedx+23347dbueDDz7ghRde4K233qKrq0uxLqNGNBqlu7ubX/7yl9x5553YbDZqamrYs2cPTqdTsS6jVktLCwcOHODLX/4yPp+P2bNnc/fdd/PBBx/wySefEA6HR7qJIqelp6dnUDKqrq6OWbNmsWjRIt566y3279+vi3gZdcLhMC+//DIXXnghVVVVPPPMM4CuUyUxKFk1jOrq6tixYwdtbW1A7J//0ksvpaCgAIDq6mo2bdqEx+Ph7bff1omdnLMGYr21tRXDMJg5cyZer5dly5bxq1/9iqVLl9LX18crr7zCL3/5S7Zu3TrSTRY5ZQPxfvDgQUzT5Pvf/z6FhYVEIhGi0Si5ubmMGTOGzs7OkW6qyLD54jlNR0cHgUBg0AVMb28vXq+Xd999l4MHD45UU0VOWTQaxbIsXnzxRRYvXkxzc3P8vunTpzNnzhyqqqqYMmUKv/3tbwFdxMu57Yt9O8Cll17KwoULueWWW9i6dStr167FMAwlZmXEqWbVMAgGgzz99NOsXbuWiooK6urquOuuu5g+fTqFhYW43W62bdvGo48+yqxZs+jr62Pp0qXs2bOHhQsXkpWVNdK7IDIkR4v1H/zgB8yYMYPS0lI+++wzCgoKePTRR4HYtJHFixfz4YcfUlRURFpa2gjvgcjQfTHe6+vrufPOO6mqqsJut2MYBqZp0tvbS319veJbRoXj9fNZWVksW7aMefPmMWHCBNatW8e3vvUtnn32WWpqasjPz1etEzmnDPThtbW1bN++nTVr1nDNNddgt9uZMGECpmnidDq55ZZb+Nd//VfWrl3LzJkzCYfD2O26jJJzx/GuV2fOnInP58Pr9XLVVVfx/PPPM3PmTExT41pkZKmXHQbvvfceHR0dPPbYY3g8Hl544QVee+01Dh48yLx58wAYP348jz76aLwAb2lpKS+//DJz585VskrOGUeL9WXLltHV1cW1117L7t27mTFjBhA7KHq9XubNm8fSpUv5+te/PrKNFzlJR4v3P//5z7S0tMT7doBx48Zht9tZv349M2bM0MW6nNOOFvdLly4lGAzyox/9iKeeeorf/e53dHd3M23aNObMmcOWLVt45513mDt3rmJfzjmvvvoqhYWFTJkyhVdeeYWqqipKSkowTTPen48fP54rr7wyfhE/kKiKRCLYbLYR3gORExvK9arD4eD666/n448/5tVXX2XhwoWKcRlRSpcOg1WrVlFQUEBaWhoOh4NvfvObjB07lvfff5/9+/cDsSHDTqczPvVv2rRpHDhwYNAQTJFEd7RYLy8v54033iAYDPLAAw8wd+5cgPiJ3NSpU2ltbaWjo2Mkmy5y0o4W76WlpfG+feATx76+PgoLC+PTR3SxLueyo8V9RUUFr732GoZh8M///M/cd999LF68mHvvvReAvLw8bDabCq3LOWWgPtWsWbOYOXMmX/va13C73bzxxhv09fUNeqzD4eDaa6+lt7eXt99+m46ODn7zm9+wffv2kWi6yEkbyvUqQEFBAV/5yldYunQpADabjV27dtHe3j5CLZdkpmTVaYpGoxQWFg7a5vV6ueSSS/B4PLzxxhtArDBpdXU1oVAIgJqaGiZOnEhZWdnZbrLIKTlerHu9Xl599VUAurq6aG5ujs9z37RpE9OnT6e4uPhsN1nklA21bwfIzs7G4XBQU1OjWoRyTjtRP//aa68BUFJSgs/no6urC4DOzk5KS0vxer1nvc0ip2rgg4WysjKmTZsGwO233867777Ljh074o+JRCJAbFbEggULWLJkCXfffTeZmZlMmjRpZBovchJO5pwGYP78+RQXF/PII4/wT//0TzzxxBM6v5ERoWmAp8k0TVJSUqitraW2tpby8nIAJk6cyOTJk9m8eTPNzc189tlnLFu2jLFjx5KWlsaaNWv4xje+QU5OzgjvgcjQDCXWDxw4QHNzM//7v/9Lbm4uDoeDtWvXctttt2kIsZxThhLve/fupbS0FIDrrruOn//85yxYsICKioqRbLrIKRtK3NfV1ZGWlsZLL71Ec3Mz6enprFu3jnvuuWeEWy9ydNu2bSM7O5vs7Oyj3j9wfhKNRpk1axYTJkxg2bJlFBcXk56eHr//jTfe4JVXXmHu3Ll861vfwufznbV9EDkdJ3NOY5omDocDm83Gpk2buPHGG/nGN74xwnsgyUojq4Zg27ZttLS0HLF9YOTIVVddRUNDAxs3bowPGzYMg2nTptHZ2UlXVxfXXHMNP/jBD5gyZQrZ2dk89thjLFiw4Kzuh8iJnG6s9/T0UFVVxdVXX01ubi4pKSn8x3/8B1deeeVZ3Q+RoTidePf7/fFt0WiUiRMnsmjRoiM+uRRJNKfbz/f19ZGWlsbFF19MRUVFvJ8fqFcokig2btzIj370I5588kl+8Ytf8PzzzwOHpv9ZlhWP+8N/vuOOO9i0aRM1NTUA7Ny5k2XLlrFz505+9rOfcddddylRJQln5cqVHDhw4IjtJ3tOs2XLFu655x58Ph/PPPOMElUyojSy6jg2btzIc889h2VZRCIRLrjgAv7u7/4uXmzRMAxCoRD5+flcdNFFrFq1ipKSEs4//3wsy6KyspLm5maam5spLy+nqqqKqqqqkd4tkSMMZ6xXVFRwxRVXjPQuiRzTcMR7U1NTvH7DwFSSG264YQT3SuT4hqufb2lpobKyUuc0ktCqq6t57rnn+OpXv8qsWbNYs2YNTz75JNdddx35+fnxotGGYdDW1kZmZiZ2u51gMEhxcTE33HADzz//PMuXL6e1tZV7772Xr33tayO9WyJH1dDQwGOPPcYNN9zA17/+dTweT/y+oZ7TDNRRzsjI4KGHHoqPHBcZSRpZdQyHH+QeeeQRbrnlFlasWEFDQ0N8/rphGDgcDgKBAH/7t39Leno6b7/9Nps3b8YwDHbs2MHYsWOprKwc6d0ROabhjPVx48aN9O6IHNdwxvvAdD8VVJdEp3MaSTYbNmygpKSEOXPm4PF4mDRpEiUlJfH6UwNT+/7rv/6LO++8k+rqaoD4qt19fX20trYybdo0nnnmGc4777yR2RGRIejs7ARicb979+749lM5pyksLFSiShKGRlYdw+EHOeC4B7k333yTX//613z961/n3Xff5Ve/+hWTJ09m48aNfPWrXz3mHHmRRKBYl2SieJdkpLiX0W7Tpk14vV4KCwtxu904nU4uuuii+P3vvvsuKSkp7N27l1AoREFBAUuWLKGpqYnHH3+c3NxcAFpbW/n1r38NwFNPPUVWVtaI7I/IybDZbMyfP5/W1lZef/31+CIYA337c889x4oVK47bt6uOsiQiJav6nc5B7rHHHiMvLw+AcePGcdlll9HQ0MB3v/td/eNLwlGsSzJRvEsyUtxLsqitreWJJ54gGAzicDjw+Xzcd999fOUrXyEYDAKxJOzq1auZN28ef/3rX6mrq+OOO+7gtttuIzMzEyA+LdDr9XLffffF/wdEEskX+/YBjY2N7N+/n/vvv58f//jHrF+/nosvvphoNMoTTzxBa2ur+nY5JxnWQJXBJHWsg1x6ejrBYBCPxzPoIFdTUxM/yFVWVg46yBmGgWlqZqUkJsW6JBPFuyQjxb0kk0AgwOOPP86ECRNYuHAhdXV1LF68mHnz5g2qL9Xe3k5GRkb89r/8y7+Qnp7OD3/4w3jxacW6JLIv9u1paWl873vfIz8/H4gVRX/zzTf54Q9/yEsvvURNTQ0//elPaW1txW63x0cIqm+Xc01SR2ogEOCPf/wjl112Gf/5n//Jj370I5qamnjvvfew2Wzx4nQ333wzzz77LLfeeis/+9nPKCwsZOXKlWRmZhKNRolGo9hsNv3jS8JSrEsyUbxLMlLcS7JpaGhg69atzJ49G4Di4mLmzp3LZ599NuhxA4mqQCAAwIUXXkh1dTXhcBjTNBXrktCO1rc3NDTw0UcfxR/T3NzMwYMHAfibv/kbOjo6ePDBB3niiScIh8Px1S7Vt8u5JqmjVQc5SRaKdUkmindJRop7Ge02btzIli1b4sWknU4nV155ZbwuD0A0Go1PaRoYNVVdXU13dzderxeAuro65syZg92uaiiS+IbSt7vd7vjqrH/6059oa2ujtbWVm266iby8PI2mknNWUvXSGzduxGazUVxcTFpa2pAOcqZpUl1dTUlJCSkpKYAOcpL4FOuSTBTvkowU95Ismpqa+M1vfkNbWxtZWVkEg0FuueUWLrroIm666SbS09MJh8PY7XZ27NjBlClTgENT+5YsWYJpmsyYMYOamhq6urq49957R3KXRI7pZPt2AL/fz1/+8hdWr16N1+vlpz/9KS+88AIff/wxU6dOja9yKXKuSYozEx3kJFko1iWZKN4lGSnuJdm8+eab5Ofn8/DDD9PV1cUrr7zCq6++imEYzJo1i0gkgt1up7Ozk/b29viqlwMeeOABNm7cSG1tLRdffDHXX3/9CO2JyLGdat8OkJeXR3l5OZdffjlXXHEFdrudO+64g0AgoESVnNOSIlmlg5wkC8W6JBPFuyQjxb0kg4aGBvLz8wmHw3z44YfcfPPNAPh8Pq6//npCoRAvv/wyM2fOjI84+fTTT3G73YNW8lu1ahWTJ09m3rx5WJaFYRgjsj8iJ3I6ffvUqVOZNGlSPDFlWRalpaUjtSsiw2bUJqt0kJNkoViXZKJ4l2SkuJdksXbtWv7whz9gt9vJzc1lzpw5nH/++dTV1cUfk5uby+WXX051dTXLly+P/z9s27aNWbNmAbB69Wqee+45SkpK4iNQFO+SaIarb//kk0+YPHlyPFmlWJfRYtQlq3SQk2ShWJdkoniXZKS4l2SyevVqfv/737No0SLS09N56623ePHFF5k8eTLt7e3U1dVRXFwMQFlZGbNnz2bdunVcffXVpKen09vbS0NDA//2b//Gzp07ue2225g7d+4I75XIkc5E3z558uQR2ReRM2lUJat0kJNkoViXZKJ4l2SkuJdks27dOmbPnh1f9cw0Tbq7u/H5fNTX17N+/fp4zLvdbiorK9m8eTOdnZ14vV66u7v59NNPufbaa/nJT34ykrsickzq20WGblQlq3SQk2ShWJdkoniXZKS4l2Tj9/uprKyM387IyGDr1q18+9vfpqenhw0bNlBaWkpVVRUABQUFbN++HQCHw8H111/Pfffdh8/nG5H2iwyF+naRoRtVySod5CRZKNYlmSjeJRkp7iXZLFq0CJfLFb/d2tpKTk4O+fn5XHfddbz88sssX76c7OxsioqK2LFjB9OmTSMzMxOAGTNmjFDLRYZOfbvI0Jkj3YDhtGjRIi688ML47S8e5FwuF8uXL6e+vh7gqAc5/ePLuUCxLslE8S7JSHEvyaagoICsrCwsywJitXnGjx+PYRgUFxdz880343K5eOSRR/jJT37C888/z9y5cxXnck5R3y4ydIY1cEQYRQZWuPnTn/7E/v37ufPOOwHYvXs3L730EnV1dfh8PhobG7njjju49NJLR7jFIqdGsS7JRPEuyUhxL8koGo3ywAMPsGDBAq666qr49s7OznhdH8W6nMvUt4uc2KiaBjjAMAyi0SgffPABCxYsiG8vKyvjrrvu0kFORg3FuiQTxbskI8W9JKP9+/fj9/vjiap33nmHZ555httvv51rrrmG0tLSEW6hyOlR3y5yYqNqGuDhjnaQ+8Y3vsGqVasoLS3VP76MGop1SSaKd0lGintJNl1dXUyZMoX169dz//33s3z5ch544AGuueaakW6ayLBR3y5yfKNyZBUMPsi9+OKL9Pb28sADDzBz5syRbprIsFKsSzJRvEsyUtxLsvH7/Xz00Ud8/vnn3HTTTdx0000j3SSRYae+XeT4Rm2ySgc5SRaKdUkmindJRop7STbl5eUsWrSI+fPn43Q6R7o5ImeE+naR4xuVBdYBDh48yOrVq3WQk1FPsS7JRPEuyUhxLyIy+qhvFzm+UZusEhERERERERGRc8+oLbAuIiIiIiIiIiLnHiWrREREREREREQkYShZJSIiIiIiIiIiCUPJKhERERERERERSRhKVomIiIiIiIiISMJQskpERERERERERBKGklUiIiIiIiIiIpIwlKwSEREROUmbN2/m1ltvZf369SPdFBEREZFRx7AsyxrpRoiIiIgkupUrV/LGG2+wePFiwuEwXV1d+Hw+7Hb7SDdNREREZFTR2ZWIiIjIEGzbti3+s91uJyMjY+QaIyIiIjKKaWSViIiIyAn84he/YMuWLfHbd911F08++SQPPfQQM2bM4H/+53945513ePDBB1myZAn19fXk5OTwne98h4yMDJYsWcLu3bvJzc3lO9/5DlOnTo0/14YNG/jjH/9IbW0tNpuNSZMmsWjRIoqLi0diV0VERERGnGpWiYiIiJzAP/zDPzBhwgTKy8tZsmQJ6enpg+632WwEg0Feeuklvvvd77J48WLsdjtPPfUUv/vd7/jmN7/Jww8/jN1u5+mnn47/XnV1NQ8//DDZ2dk8/PDD/OxnPyMYDPKLX/yCzs7Os72bIiIiIglBySoRERGRExioTTUw/c/pdB7xmJ6eHr72ta8xYcIEysrKmDt3Li0tLVx11VVMmTKF0tJSLr/8cpqamggEAgAsX76crKws7r77bkpLSxk3bhz33XcfgUCAd95552zvpoiIiEhCULJKREREZJhUVlbGf05NTQWgrKzsiG3d3d0AbN++nUmTJg0q0p6RkUFJSQk1NTVnocUiIiIiiUcF1kVERESGicvliv9sGAbAoFFYA9sGSoYGAgFWrVrFmjVrBj1PKBTCNPWZooiIiCQnJatERERERkhKSgrTp0/n1ltvPeK+w0dbiYiIiCQTnQWJiIiIDNFwL6I8fvx46uvryc/PH7S9vr6e3NzcYX0tERERkXOFxpeLiIiIDEFKSgqNjY1s376dgwcPDstzLly4kD179vDb3/6WvXv30tDQwGuvvcaPf/xjPv/882F5DREREZFzjZJVIiIiIkOwYMEC7HY7ixcvjhdIP12TJk3ioYceYs+ePTz00EPcf//9fPzxx/zwhz/kggsuGJbXEBERETnXGNZwj2cXERERERERERE5RRpZJSIiIiIiIiIiCUPJKhERERERERERSRhKVomIiIiIiIiISMJQskpERERERERERBKGklUiIiIiIiIiIpIwlKwSEREREREREZGEoWSViIiIiIiIiIgkDCWrREREREREREQkYShZJSIiIiIiIiIiCUPJKhERERERERERSRhKVomIiIiIiIiISMJQskpERERERERERBLG/we0jasgGAjj9QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Display cumulative returns of the strategies on the test set\n", + "data = results.dropna().loc[\"2021-01\":\"2024-01\"]\n", + "data.cumsum().plot(figsize=(15,8))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 16.2.3. Apply portfolio management technics" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimization terminated successfully (Exit mode 0)\n", + " Current function value: -0.2695198775517891\n", + " Iterations: 11\n", + " Function evaluations: 66\n", + " Gradient evaluations: 11\n", + "[0.057 0. 0. 0. 0.943]\n" + ] + } + ], + "source": [ + "from packages.itbot.itbot.portfolio import Portfolio\n", + "\n", + "data = results.dropna().loc[\"2021-01\":\"2024-01\"]\n", + "val = results.dropna().loc[\"2021-01\":]\n", + "\n", + "portfolio = Portfolio(data)\n", + "X = portfolio.optimize_portfolio(Portfolio.mv_criterion)\n", + "\n", + "print(np.round(X,3))\n", + "\n", + "spread = spread_threshold # 0.00035\n", + "low_portfolio = np.multiply(low_assets,np.transpose(X)).sum(axis=1)\n", + "high_portfolio = np.multiply(high_assets,np.transpose(X)).sum(axis=1)\n", + "\n", + "\n", + "# Compute the cumulative return of the portfolio (CM)\n", + "portfolio_return_test = np.multiply(data,np.transpose(X)).sum(axis=1)\n", + "portfolio_return_MV = np.multiply(val,np.transpose(X)).sum(axis=1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[*********************100%***********************] 1 of 1 completed\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -----------------------------------------------------------------------------\n", + " Beta: -0.545 \t Alpha: 601.05 %\t Sharpe: 4.675 \t Sortino: 0.513\n", + " -----------------------------------------------------------------------------\n", + " VaR: -18.49 %\t cVaR: -15.78 % \t VaR/cVaR: 0.854 \t drawdown: 56.43 %\n", + " -----------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAD7QAAAYjCAYAAADNhuE1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zV9d338U8YYYiKe4K2OKjUhdrWOtqrdaMyakWrrbuu21FvL1utexS12l7OurVVq6LiYhhAhqACgqiAIEOQIcgMGELIvP/oVW5ta6skv/PNOXk+H4/zQIM55xUFchLP+/ctqqurqwsAAAAAAAAAAAAAAAAAAABoYM1SBwAAAAAAAAAAAAAAAAAAAFCYDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATLVIHAAAAAADAV1VRURHLli2L5cuXx/Lly2PFihWxatWq+Oyzz6KsrCw+++yzdX+9du3aqKioWPdjRUVFVFZWRk1NTdTU1ERtbe0XfmzWrFk0b948mjVr9oVb8+bNo7i4OFq1arXuVlxcHMXFxdG2bdvYYIMN1t3atWu37ta+ffvYZJNNYpNNNon27dvHxhtvHM2auc4sAAAAAAAAAAAATUtRXV1dXeoIAAAAAABYvXp1zJs3L+bPnx+LFi2KRYsWxcKFC+PTTz+NRYsWxbJly6K8vDx15npr1qxZbLzxxrHlllvGlltuGVtttVVstdVWseWWW8bWW28d22+/fWy//fbRunXr1KkAAAAAAAAAAADQYAzaAQAAAADImerq6vj4449jxowZMXPmzJg7d27MnTs35s2bF0uXLk2dl1xRUVFsvvnmsf3220eHDh1ihx12iJ122il22mmn2GGHHaJly5apEwEAAAAAAAAAAOBrMWgHAAAAACATy5YtiylTpsSUKVPiww8/jJkzZ8acOXOiqqoqdVpeatmyZXTs2DF22mmn6NKlS+y2227RpUuX2HTTTVOnAQAAAAAAAAAAwJcyaAcAAAAAoN7WrFkT7733XrzzzjsxadKkmDJlSnz66aeps5qEbbbZJrp06RJdu3aNffbZJ7p06eIkdwAAAAAAAAAAABoNg3YAAAAAAL62VatWxdixY+Ptt9+Od955J6ZOnRrV1dWps4iI1q1bxx577BH77rtvHHDAAbHXXntFixYtUmcBAAAAAAAAAADQRBm0AwAAAADwH1VXV8d7770Xb7zxRrzxxhsxadKkqKmpSZ3FV7DBBhvEd7/73TjwwAPj4IMPjg4dOqROAgAAAAAAAAAAoAkxaAcAAAAA4F9as2ZNjB49OoYMGRIjRoyIlStXpk6iAXTu3DkOPfTQOOyww2KXXXZJnQMAAAAAAAAAAECBM2gHAAAAAGCdioqKGDp0aLz66qsxevToWLNmTeokMrTjjjvG0UcfHd27d4+OHTumzgEAAAAAAAAAAKAAGbQDAAAAADRxtbW1MW7cuHjppZeipKQkVq9enTqJBLp27Ro9evSIbt26Rbt27VLnAAAAAAAAAAAAUCAM2gEAAAAAmqglS5ZE375949lnn42FCxemzqGRaNu2bRx77LFx8sknx84775w6BwAAAAAAAAAAgDxn0A4AAAAA0MSMHz8+nnzyyRgyZEhUVVWlzqER+853vhOnnnpq/OhHP4qioqLUOQAAAAAAAAAAAOQhg3YAAAAAgCagtrY2SkpK4oEHHogPPvggdQ55Zpdddomzzz47jjzyyGjevHnqHAAAAAAAAAAAAPKIQTsAAAAAQAGrrKyMl156KR566KGYM2dO6hzyXMeOHeP888+P7t27O7EdAAAAAAAAAACAr8SgHQAAAACgANXU1MQLL7wQd999dyxcuDB1DgXmW9/6Vlx66aVx4IEHpk4BAAAAAAAAAACgkTNoBwAAAAAoMIMHD44//vGP8dFHH6VOocAdcMAB8dvf/jY6deqUOgUAAAAAAAAAAIBGyqAdAAAAAKBATJ48OW644YZ49913U6fQhLRs2TLOOOOMOPfcc6N169apcwAAAAAAAAAAAGhkDNoBAAAAAPJcaWlp/M///E8888wzUVtbmzqHJqpDhw5x3XXXxQEHHJA6BQAAAAAAAAAAgEbEoB0AAAAAII/169cvbr311lixYkXqFIiioqI4+eST49JLL3Vae54YP358vPXWW6kz1jnkkEPiW9/6VuoMAOBrevzxx6O0tDR1xjoXXHBB6gQAAAAAAADgcwzaAQAAAADy0OLFi+Oqq66KESNGpE6Bf9KpU6f4/e9/H126dEmdwn9wyimnxJgxY1JnrNOnT5/o1atX6gwA4Gv45JNP4kc/+lE0ppeffPjhh6kTAAAAAAAAgM9pljoAAAAAAICv55VXXomjjz7amJ1Ga9asWXHCCSfEM888kzqFf2PJkiUxbty41BkAQJ4bMGBAoxqzAwAAAAAAAI2PQTsAAAAAQJ5Ys2ZN/Pd//3dceumlsXLlytQ58G9VVlbG1VdfHZdffnmsXbs2dQ7/wsCBA6O2tjZ1BgCQ5wYMGJA6AQAAAAAAAGjkDNoBAAAAAPLARx99FMcff3y8/PLLqVPga+nXr1+ceOKJsXjx4tQp/APjMwCgvmbNmhVTp05NnQEAAAAAAAA0cgbtAAAAAACN3KuvvhrHHXdcTJ8+PXUKrJcpU6bECSecEDNnzkydwv+aN29evPfee6kzAIA85wI5AAAAAAAAwFdh0A4AAAAA0Ijdf//9cfHFF8fq1atTp0C9LFiwIE488cQYN25c6hTC+AwAaBieUwAAAAAAAABfhUE7AAAAAEAjVF1dHVdddVX84Q9/iLq6utQ50CBWrVoVZ555ZowaNSp1SpNnfAYA1NfkyZNjzpw5qTMAAAAAAACAPGDQDgAAAADQyKxZsybOPvvs6Nu3b+oUaHBr166N8847L0aOHJk6pcmaPn16TJ8+PXUGAJDnXCAHAAAAAAAA+KoM2gEAAAAAGpHy8vL45S9/GaNHj06dApmprKyM888/P0aMGJE6pUkyPgMA6quuri4GDhyYOgMAAAAAAADIEwbtAAAAAACNxOrVq+Oss86KcePGpU6BzFVVVcVFF10UEydOTJ3S5Bi0AwD1NX78+Fi0aFHqDAAAAAAAACBPGLQDAAAAADQC5eXlccYZZ8T48eNTp0DOVFRUxDnnnBOzZs1KndJkvPfeezFv3rzUGQBAnuvfv3/qBAAAAAAAACCPGLQDAAAAACRWXV3tpGqarNLS0jjzzDNj6dKlqVOaBOMzAKC+qquro6SkJHUGAAAAAAAAkEcM2gEAAAAAErvqqqvi9ddfT50ByXzyySdx4YUXRlVVVeqUglZbWxuDBg1KnQEA5Lk33ngjVqxYkToDAAAAAAAAyCMG7QAAAAAACf3xj3+Mfv36pc6A5CZMmBC/+93vUmcUtLFjx8aSJUtSZwAAeW7AgAGpEwAAAAAAAIA8Y9AOAAAAAJDIwIED47777kudAY3GX//613jxxRdTZxQs4zMAoL7Wrl0bQ4cOTZ0BAAAAAAAA5BmDdgAAAACABKZPnx6//e1vU2dAo3P99dfHvHnzUmcUnKqqqhg8eHDqDAAgzw0fPjxWr16dOgMAAAAAAADIMwbtAAAAAAA59tlnn8UFF1wQ5eXlqVOg0Vm9enX893//d9TU1KROKSijRo2KlStXps4AAPLcgAEDUicAAAAAAAAAecigHQAAAAAgx6666qqYM2dO6gxotCZOnBh/+tOfUmcUFOMzAKC+ysrKYuTIkakzAAAAAAAAgDxk0A4AAAAAkEMvv/xyDBo0KHUGNHr33XdfzJo1K3VGQVizZk0MGzYsdQYAkOeGDBkSa9euTZ0BAAAAAAAA5CGDdgAAAACAHFm0aFHccMMNqTMgL1RVVcW1116bOqMgDBs2LMrLy1NnAAB5rn///qkTAAAAAAAAgDxl0A4AAAAAkCOXX355rFq1KnUG5I1x48ZFv379UmfkPeMzAKC+li9fHmPGjEmdAQAAAAAAAOQpg3YAAAAAgBx4+eWX480330ydAXnn9ttvj9WrV6fOyFurVq2KUaNGpc4AAPLcoEGDorq6OnUGAAAAAAAAkKcM2gEAAAAAMlZWVha33npr6gzIS0uXLo2HH344dUbeKikpiaqqqtQZAECeGzBgQOoEAAAAAAAAII+1SB0AAAAAAFDo7rjjjliyZEnqjILUunXr2GabbWK77baLLbbYIjbbbLPYfPPNY5NNNol27drFRhttFBtttFG0bt06WrduHa1atYpWrVpF8+bNo1mzZtG8efMoKiqKysrKqKqqWvfj3/965cqVUVpa+oXbsmXLYv78+TF37txYtGhR1NTUpP7XUPAeeeSR6N27d2y11VapU/KO8RkAUF8LFy6Md955J3UGAAAAAAAAkMcM2gEAAAAAMjRr1qz461//mjoj72244YbxrW99K3bbbbf45je/ue622WabNcj9/33o/nVVV1fHJ598EvPnz4/p06fH5MmTY/LkyfHxxx9HbW1tg7QRsWbNmrjnnnvi+uuvT52SV5YsWRLjxo1LnQEA5LkBAwZEXV1d6gwAAAAAAAAgjxm0AwAAAABk6M4774zq6urUGXlnu+22i+9+97uxzz77xL777hs77rhj6qR/qUWLFtGxY8fo2LFjfP/731/39rKyspg6dWqMHz8+Ro0aFe+9955fB/XUr1+/OOecc2LbbbdNnZI3Bg0aFDU1NakzAIA8N2DAgNQJAAAAAAAAQJ4zaAcAAAAAyMi0adOipKQkdUZeaN68eXTt2jUOOeSQOOigg6JTp06pk+qlXbt2sd9++8V+++0X5557bpSVlcVbb70Vo0aNipKSkigtLU2dmHeqqqrigQceiGuvvTZ1St4wPgMA6uujjz6KDz74IHUGAAAAAAAAkOcM2gEAAAAAMvI///M/UVdXlzqjUdtrr72ie/fuccQRR8Smm26aOicz7dq1i0MPPTQOPfTQuOqqq2LkyJHx4osvxogRI6Kqqip1Xt547rnn4pxzzomtt946dUqjN3/+/Hj33XdTZwAAec4FcgAAAAAAAICGYNAOAAAAAJCBadOmxfDhw1NnNEobbrhh9OjRI0488cS8P4l9fbRs2TIOOeSQOOSQQ6K0tDSeffbZ+POf/xxLlixJndboVVVVxZ///Of49a9/nTql0TM+AwAagucUAAAAAAAAQENoljoAAAAAAKAQPf7446kTGp0tttgi/vu//ztGjBgRV155ZZMcs/+j9u3bx1lnnRWvvfZaXH311bHddtulTmr0nnvuuSgvL0+d0ej1798/dQIAkOemTJkSs2fPTp0BAAAAAAAAFACDdgAAAACABlZaWmpM+jkbbrhhXHLJJTF06NA488wzo127dqmTGp1WrVrFSSedFIMHD46rr746Ntpoo9RJjdaqVauiX79+qTMatZkzZ8b06dNTZwAAec7XNAAAAAAAAEBDMWgHAAAAAGhgzz77bFRUVKTOaBS6d+8eJSUlcfbZZ0fr1q1T5zR6LVq0iJNOOileffXV6NGjRxQVFaVOapQef/zxqKurS53RaL3yyiupEwCAPFdXVxeDBg1KnQEAAAAAAAAUCIN2AAAAAIAG9vTTT6dOSG6LLbaIBx98MG699dbYbLPNUufknc022yxuueWWePzxx2ObbbZJndPozJkzJ8aOHZs6o9EaOHBg6gQAIM9NmDAhFi5cmDoDAAAAAAAAKBAG7QAAAAAADWjixIkxf/781BlJ7bvvvvHyyy/HwQcfnDol7+23337x4osvxg9/+MPUKY3Os88+mzqhUXr//fdj7ty5qTMAgDzXv3//1AkAAAAAAABAATFoBwAAAABoQAMGDEidkFTPnj3j0UcfjU033TR1SsFo37593HfffXHppZdG8+bNU+c0GkOGDImVK1emzmh0jM8AgPqqrq6OkpKS1BkAAAAAAABAATFoBwAAAABoILW1tfHqq6+mzkjmoosuiptvvjmKi4tTpxScoqKiOOuss+LOO+/07/d/rV271nj7H9TW1sagQYNSZwAAee7NN9+M5cuXp84AAAAAAAAACohBOwAAAABAA5kwYUIsWbIkdUYS5557bpx33nmpMwreIYccEg899FBssMEGqVMaBYP2L3r77bdj8eLFqTMAgDw3cODA1AkAAAAAAABAgTFoBwAAAABoIK+//nrqhCR+9rOfxcUXX5w6o8n47ne/G48//nhsvPHGqVOSmzhxYixcuDB1RqMxYMCA1AkAQJ5bu3ZtDBkyJHUGAAAAAAAAUGAM2gEAAAAAGsgbb7yROiHnDjrooLj66qtTZzQ5Xbp0iXvvvTdatWqVOiWpuro6J4j+r6qqqigpKUmdAQDkuZEjR0ZZWVnqDAAAAAAAAKDAGLQDAAAAADSAFStWxNSpU1Nn5NSmm24aN998cxQVFaVOaZL23XffuO2226JZs6b9rf5BgwalTmgU3njjjSgtLU2dAQDkuf79+6dOAAAAAAAAAApQ036VGwAAAABAA3nrrbeitrY2dUZO3XTTTbH55punzmjSDjvssLj88stTZyQ1efLkWLx4ceqM5IzPAID6Kisri5EjR6bOAAAAAAAAAAqQQTsAAAAAQAOYMGFC6oScOuSQQ+JHP/pR6gwi4he/+EUcfvjhqTOSqaura/LDq4qKinjttddSZwAAeW7o0KFRUVGROgMAAAAAAAAoQAbtAAAAAAANYPLkyakTcqaoqCguvPDC1Bl8zo033hjbbbdd6oxkhg0bljohqWHDhkV5eXnqDAAgzw0YMCB1AgAAAAAAAFCgDNoBAAAAAOqppqYmpk2bljojZ4466qjYddddU2fwORtttFHcdttt0aJFi9QpSbz11ltRWVmZOiMZ4zMAoL6WL18eb775ZuoMAAAAAAAAoEAZtAMAAAAA1NOMGTOioqIidUbOnHrqqakT+Be6du0aJ510UuqMJNasWRPvvPNO6owkPvvss3j99ddTZwAAea6kpCSqq6tTZwAAAAAAAAAFyqAdAAAAAKCePvjgg9QJOfPNb34z9thjj9QZfIkLLrggNttss9QZSYwZMyZ1QhKDBw9u0qfTAwANY8CAAakTAAAAAAAAgAJm0A4AAAAAUE8fffRR6oSc6dGjR+oE/o0NN9wwLrnkktQZSTTVQbvxGQBQX4sWLYrx48enzgCA9VZdXR3V1dWpMwAAAAAA+DdapA4AAAAAAMh3c+fOTZ2QM4cffnjqBP6Dn/zkJ/HUU0/F5MmTU6fk1KRJk6KsrCzatWuXOiVnli1b1mSH/NAYffbZZzFnzpxYsGBBzJ8/PxYsWBALFiyIZcuWRUVFRaxZs2bdj2vXro0WLVpE27Ztv3Dbeuuto0OHDrHDDjtEhw4domPHjrHttttGUVFR6g+P9VBZWRmLFy+OTz/9NJYsWRKlpaWxcuXKKC0tXffX5eXlUVFR8YUfq6qqorq6Ompra6O6ujpqamqipqYmWrRoEc2bN4/mzZtHixYtokWLFtGmTZvYYIMNYoMNNoi2bdtGu3bton379rHpppuuu2222Wax7bbbxjbbbBPFxcWp/7XQCA0cODDq6upSZ0DeqKuri8WLF8eiRYti6dKl627Lli2L0tLSKCsr+8KtoqJi3dj277e6urpo0aJFtGzZ8gu34uLiaNeuXWy88cb/dNtqq61i2223jW233Ta22GKLaNbMOSYUnoqKinXPpz/55JNYuHBhrFixIlauXLnux5UrV0ZFRUVUVVWtu/3981izZs2iuLh43a1Vq1ZfeG602WabxSabbBLbb799dOzYMXbYYYfYcMMNE3/UAAAAAABNg0E7AAAAAEA9NZVB+9Zbbx077rhj6gz+g6Kiojj33HPj/PPPT52SU9XV1fH+++/H97///dQpOTNo0KCoqalJnQFN1ieffBITJkxYd5s5c2bU1tZ+5fevqamJtWvXxooVK9a97b333vunf26jjTaKLl26xF577RXf/e53Y++9947WrVs3yMdA/S1cuDDmzJkTc+fOjY8//jjmzp0b8+bNi08//fQL/20bQn1PHi0qKorNN988tt122+jYsWN06tQpvvnNb0anTp2iY8eOxu5NWP/+/VMnQKO0ePHimDFjRsyYMSPmzJkT8+fPX3fRmsrKynrff2Vl5XrfT8uWLWPrrbeObbfdNjp16hS77LLLuptxLvmgsrIyZs6cGR9++GFMmzYtPvzww5gxY0YsXbq0XvdbW1sbFRUVUVFRse5tCxYs+Lfvs+mmm8YOO+wQu+yyS+y+++7x7W9/O3beeedo0cJLKwEAAAAAGlJRnctsAwAAAADUS9euXWP16tWpMzLXvXv3uPXWW1Nn8BXU1dXF0UcfHTNnzkydklMXXXRRnHfeeakzcuaEE06IiRMnps5oUH369IlevXqlzoAvtXDhwnjllVfi5ZdfjhkzZiRpaNOmTRx00EFx7LHHxn/9138Z2uRIZWVlfPDBB/HBBx/Ehx9+GNOnT4/p06dHWVlZ6rQG0bJly9h5552jS5cu8e1vfzu6dOkSnTt3jpYtW6ZOI2Nz5syJww8/PHVGg/vwww9TJ5BH6urqYs6cOTFp0qR4//33Y+rUqTFjxoxYuXJl6rT1ss0220Tnzp2ja9eu0bVr19hjjz1ctITkysrKYuLEiTF+/Ph4++234/3334+qqqrUWV+qVatW8a1vfSv23XffOPDAA2Offfbx+wgAAAAAoJ68ugEAAAAAoB6WL1/eJMbsERH77LNP6gS+oqKiojjrrLPi17/+deqUnHr33Xdz/phr167N+WNG/G1Um+LjzVp1dXWyf6dfR3FxcRQVFaXOIEdqampi4MCB8eyzz8a4ceMi9fXC16xZE4MHD47BgwfHb37zmzjttNOS9hSqJUuWxNixY+Pdd9+N9957L6ZOndqoR1f1VVVVtW6w/+yzz0ZERNu2bWOvvfaK/fbbL/bbb7/Yc889DbkyUlNTE9XV1Uke++WXX07yuFnLh+cTRUVFfk8lUllZGe+//36MHTs2JkyYEJMmTYpVq1alzmowCxcujIULF8bw4cMj4m/PXXffffd1w9yuXbu6IA45MWfOnHjttdfitddei3fffTdqampSJ31la9eujXfffTfefffdeOihh6J169ax7777xgEHHBCHHnpodOjQIXUiCZWXl8cjjzyS/GvDXDrqqKOiU6dOqTP4D5588slYvnx56oycKC4ujrPPPjt1BgAAAPA1OaEdAAAAAKAeZsyYEUcffXTqjJx44oknYr/99kudwVdUXV0dP/7xj2PRokWpU3Kmffv2MWbMmJwOjXfdddecPRaNx2uvvRbbb7996oyIiLj88ssL8sXK++67b5x11llJG2pra6N///5xzz33xJw5c5K2fJnLLrsszjjjjNQZBaGsrCzGjBkTb731VowZMyZmzpyZOqnRadu2bey///7xwx/+MH7wgx/EVlttlTqpYPTr1y8uv/zy1Bnk2He+8514/PHHU2c0CXV1dfHBBx/EyJEj112spKKiInVWMhtttFEcfPDB8cMf/jAOPvjg2HjjjVMnUUA++uijeOmll2LIkCExa9as1DmZ2WOPPeLII4+MI488MrbZZpvUOf/WXXfdFaNGjUqd0eC6desWp5xySrLHP+6442LSpEnJHj/XTj31VM9XG7kVK1bEAQcckFcXD6mPww8/PO68887UGQAAAMDX5HK7AAAAAAD1UIgjwi/zjW98I3UCX0OLFi2ie/fucf/996dOyURxcXFst9120bFjx+jYsWNsv/320bFjx6ipqXHaIE3K7NmzY+LEiakzGtzKlSuTDtqHDBkSf/jDH+Kjjz5K1kD2Fi1aFK+99loMGzYsxo4dW9AnsDeE8vLydaesRkR06dIlunXrFkceeWRsu+22iesAvmj16tXx5ptvxogRI2LkyJGxZMmS1EmNxqpVq6J///7Rv3//aNGiRey///7Rs2fPOOSQQ6JVq1ap88hDZWVlMWjQoHj++ecL8muTf+X999+P999/P2699dbYZ5994sQTT4zDDjssiouLU6f9k1dffbUgL9Z0wAEHJH383r17N6lB+5AhQwzaG7mRI0c2mTF7RESvXr1SJwAAAADrwSu6AAAAAADqYcWKFakTcmKDDTaIzTffPHUGX1OPHj3yetC+0UYbRYcOHaJjx47/9OPWW28dzZo1S50IyW2xxRapEzLxySefJHncJUuWxPXXXx+DBw9O8vhkb+nSpTFo0KDo379/vPvuu6lz8tqUKVNiypQp8fvf/z722muv6N69exxzzDHRrl271GlAE7V27doYOXJkDBgwIEaMGNGkT2H/qqqrq2PUqFExatSo2HDDDePII4+Mnj17RteuXVOnkQfmzZsXjz32WPTr1y/Ky8tT5yRRV1cX48ePj/Hjx8dmm20WP/3pT6N3796N5mI/lZWVMXv27NQZmdhggw2SPn63bt3i5ptvjrKysqQdubJgwYKYPHlyfPvb306dwpcYMWJE6oSc2WKLLeKggw5KnQEAAACsB4N2AAAAAIB6aCqD9vbt26dOYD1885vfjD333DPee++91Cn/UlFRUWy11Vbrhur/OFr36w7+s8022yx1QiaWLl0atbW1Ob1wRb9+/eLmm2+OlStX5uwxyY3KysooKSmJfv36xdixY5vUqXW5UFdXFxMnToyJEyfGLbfcEkceeWT07t079tprr9RpQBMxbty4eP7552PIkCGxevXq1Dl567PPPou+fftG3759o3PnznHaaadFt27domXLlqnTaGQmT54cDz/8cJSUlHhe9TnLli2L++67Lx588ME48sgj49xzz42ddtopadPHH39csP+N2rZtm/zxjznmmHjqqaeSduTS4MGDDdobqerq6hg9enTqjJw59thjo3nz5qkzAAAAgPVg0A4AAAAAUA+lpaWpE3Ii9alHrL/u3bsnHbQXFxfH9ttv/0+j9Y4dO8b2228frVq1StYGhWDjjTdOnZCJmpqaWLFiRU4G+5WVlXHVVVfFiy++mPljkVuzZs2KZ555Jl566aUm85wttTVr1kS/fv2iX79+sccee8Tpp58ehx12mLEB0OBWrVoVL774Yjz99NMxa9as1DkFZ9q0afHrX/86br/99vj5z38evXv3LtjnnXx1M2fOjNtvvz2GDRuWOqVRq6mpif79+8fAgQPjsMMOi/POOy923XXXJC0ff/xxksfNhcbwvcoTTjihyQ3aL7nkktQZ/Avjx4+Pzz77LHVGzvTq1St1AgAAALCeDNoBAAAAAOqhoqIidUJOpD71iPX3ox/9KK6//vpMH2PjjTf+p6H63/966623jqKiokwfH5qydu3apU7IzNKlSzMftC9ZsiTOP//8pBf+oOGNHj06Hn300SZ1Ql1j9P7778fFF18cHTp0iNNPPz2OO+64KC4uTp0F5LmPP/44HnrooXj55ZebzNfjKS1evDhuv/32+NOf/hSnnXZanH766QX9/JN/bdGiRXHnnXfGiy++WLCnfWehtrY2Xn311SgpKYkjjjgiLrvssth2221z2jB//vycPl4uNYbvVXbu3Dl23333mDRpUuqUnJg9e3bMmDEjdt5559Qp/IMRI0akTsiZ3XffPXbaaafUGQAAAMB6MmgHAAAAAKiHysrK1Ak50aKFbyfnq2222SZ23nnnmDFjxnrfR7NmzWKrrbZaN1r/xx+d1AfpNIZT6bKyYsWKTO9/6tSpcfbZZ8enn36a6eOQG38/CfOhhx6K6dOnp87hc+bNmxfXXXddPPTQQ3H++edHjx49nNgOfG1Tp06NBx54IF599dWora1NndPklJeXxz333BNPPvlknH322XHSSSdFq1atUmeRscrKynj44YfjvvvucwGJeqirq4tBgwbFiBEj4pe//GWceeaZObvITyEP2tu0aZM6ISIievfu3WQG7RF/O6XdoL3xGT58eOqEnOnZs2fqBAAAAKAevAIRAAAAAKAeqqqqUifkxNq1a1MnUA8HHXTQfxy0t2rVat3J6h06dPjCaL1Dhw5OVIVGqjGcSpeVlStXZnbf06ZNi1NPPTVKS0szewxyo7a2NgYOHBh33313zJ49O3UO/8aCBQviiiuuiAcffDAuu+yy+NGPfpQ6CcgD06ZNiz/84Q8xcuTI1ClERGlpadxyyy3x5z//OS6++OLo0aNHFBUVpc4iA2+//XZcc801MWvWrNQpBWPNmjVxxx13xAsvvBC//e1v44c//GHmj7lo0aLMHyOVxjJo79atW9x8881RVlaWOiUnBg8eHOeff37qDD5nzpw5MWfOnNQZOVFcXBxHH3106gwAAACgHgzaAQAAAADqoamc0G7Qnt8OPvjgeOSRR6J9+/b/NFTv2LFjdOzYMbbaaitDBMhDjeVF/FnIamw+c+bMOO2004zZC8DIkSPj1ltvjZkzZ6ZO4WuYPXt2nHvuufGDH/wgrrjiithxxx1TJwGN0IIFC+KOO+6IV155xYnsjdCiRYviN7/5TTz77LNxzTXXxK677po6iQZSVlYWffr0ieeeey51SsGaO3dunH322XH88cfHFVdckenXdAsXLszsvlNrLF8Lt23bNo455ph46qmnUqfkxLRp02Lu3LnRsWPH1Cn8r6Z0OvuPf/zj2HjjjVNnAAAAAPVg0A4AAAAAUA/V1dWpE3JixYoVqROoh+985zvx9ttvx0YbbZQ6BWhgrVu3Tp2QmSxOaJ8zZ06ceuqpsXz58ga/b3Jn5syZ0adPnxg9enTqFOph5MiR8eabb8ZZZ50V5557bhQXF6dOAhqBsrKyuOeee+KJJ55oMheQy2cTJkyIXr16xcknnxwXXHBBtGvXLnUS9fDuu+/GpZdeGvPmzUud0iT07ds3xo8fH7fffnvstttumTzG4sWLM7nfxqAxfS18wgknNJlBe8TfTmk/88wzU2fwv5rSoL1nz56pEwAAAIB6apY6AAAAAAAgn9XV1aVOyIlly5ZFTU1N6gzWU/PmzY3ZoUA1phfxN7RVq1Y16P2VlZXFOeecE0uWLGnQ+yV31qxZE7fccksce+yxxuwFoqqqKu699974yU9+ElOmTEmdAyQ2aNCgOOKII+KRRx4xZs8j1dXV8dhjj8XRRx8db731Vuoc1kNNTU3cfffdcdJJJxmz59hHH30Uxx9/fDz22GMNft+1tbWxbNmyBr/fxqKxnNAeEdG5c+fYY489UmfkzODBg1Mn8L8+++yzeOedd1Jn5MQWW2wRBx54YOoMAAAAoJ4M2gEAAAAA6qFFixapE3KitrY2Fi1alDoDgH9g0P7V1NXVxaWXXhqzZ89usPskt0aPHh1HH310PPLIIy6yU4CmT58exx9/fNx9991RW1ubOgfIsXnz5sWZZ54ZF198sQvP5LGFCxfGaaedFjfddFOsXbs2dQ5fUWlpaZx55plx1113RXV1deqcJqmqqir69OkTV155ZYP+N1i+fHlBP29ubF8LH3/88akTcub999/3feJGYtSoUVFVVZU6Iye6d+8ezZs3T50BAAAA1JNBOwAAAABAPTSlF1HNnDkzdQIA/6BVq1apEzKzcuXKBruvO++8M4YPH95g90fulJeXx1VXXRVnnHFGzJ8/P3UOGaquro677rorTjvtNINWaCLq6uri8ccfj6OPPjpGjRqVOocGUFdXF3/5y1+iZ8+eMXny5NQ5/AcffvhhHHfccfHmm2+mTiEinn322TjrrLPis88+a5D7K+TT2SMa1wntERHdunWLdu3apc7Iibq6uhgyZEjqDCKa1Pc5evXqlToBAAAAaAAG7QAAAAAA9dBUTmiP+NsLnQFoXBrbi/gbUkMNOV5//fX405/+1CD3RW5NmTIlevbsGX379k2dQg6NGTMmevbsGWPHjk2dAmTo008/jTPPPDNuvPHGqKioSJ1DA5s1a1accMIJ8cwzz6RO4UsMGTIkTjjhhJg3b17qFD7nzTffjBNPPDEWLFhQ7/tavnx5AxQ1Xo3t4m5t27aNY445JnVGzgwePDh1QpNXW1vbZC4ItOeee0anTp1SZwAAAAANwKAdAAAAAKAe2rZtmzohZ8aPH586AYB/0Lp169QJmVm1alWD3MeVV14ZdXV1DVBELj3xxBPRu3fvmDNnTuoUEliyZEmcfvrpLmYABerVV1+NY489NkaPHp06hQxVVVXF1VdfHVdccUWsXbs2dQ6f89RTT8WFF14Y5eXlqVP4F2bMmBEnn3xyzJ8/v173U8iD9latWkVRUVHqjH9ywgknpE7ImQkTJhT0r7F8MHHixFixYkXqjJzo2bNn6gQAAACggRi0AwAAAADUwwYbbJA6IWfGjx8f1dXVqTMA+JxCHrQ3xAntN9xwQ3z66acNUEOurF27Nn7zm9/EDTfcEFVVValzSKi6ujquuuqquOWWW6K2tjZ1DtAAqqqq4sYbb4yLLrooSktLU+eQI88//3yDnThN/d17771x7bXX+tzayH3yySdxyimnxCeffLLe91HIQ9fGdjr733Xu3Dn22GOP1Bk5UVNTE6+99lrqjCZtxIgRqRNyolWrVtGtW7fUGQAAAEADMWgHAAAAAKiHpjRoX716dbz11lupMwD4nDZt2qROyEx9B+1Dhw6Nl19+uYFqyIXFixfHiSeeGC+88ELqFBqRRx55JC6++OKorKxMnQLUw+LFi+MXv/hFPP7446lTSGDKlClx/PHHxwcffJA6pUm78cYb44477kidwVc0f/78OOWUU2LRokXr9f6FfOGQxjpoj4g4/vjjUyfkTElJSeqEJq2pDNoPOeSQ2GijjVJnAAAAAA3EoB0AAAAAoB7atWuXOiGnBg0alDoBgM8pLi6O5s2bp87IxKpVq9b7fcvKyuLaa69tuBgyN3PmzOjdu3dMmTIldQqNUElJSZx//vlRUVGROgVYD+PHj49evXrFO++8kzqFhJYuXRonn3xyvPHGG6lTmqQ+ffq4oEQemjt3bpxyyimxfPnyr/2+Bu1pdOvWrcl8v3jMmDH1vhAd62fBggUxffr01Bk50bNnz9QJAAAAQAMyaAcAAAAAqIdNN900dUJODRo0qF4DQwAaXuvWrVMnZKKqqirWrl27Xu973333xZIlSxq4iKy8/fbb8bOf/Sw++eST1Ck0Yq+//nqcddZZUV5enjoF+BpefvnlOPXUU31eJiIiVq9eHWeffXa89NJLqVOalD/+8Y/x2GOPpc5gPc2ZMycuvPDCqKqq+lrvZ9CeRtu2beOYY45JnZETVVVVMWzYsNQZTVJTOZ19q622igMOOCB1BgAAANCADNoBAAAAAOphs802S52QU+Xl5dG3b9/UGQB8Tps2bVInZGZ9TnubN29e/PnPf86ghiy88cYbceaZZ8bKlStTp5AHxo0bF+edd15UVlamTgG+ggceeCAuu+yyrz3CpLBVVVXFr3/963jiiSdSpzQJ9957b9x3332pM6int99+O66//vqv9T6F/Py6sV/U7YQTTkidkDODBw9OndAkNZULCXTv3j2aNfMydwAAACgkvtIHAAAAAKiHzTffPHVCzj388MNRVlaWOgOA/9XYX8xfH+szaL/55puNXfPEyJEj45xzzomKiorUKeSRt956K371q19FTU1N6hTgS9TU1MQ111wTt99+e9TV1aXOoRGqq6uLG264IZ588snUKQWtX79+cccdd6TOoIH07dv3a124a9WqVRnWpFVcXJw64d/q3Llz7LHHHqkzcmL06NFRXl6eOqNJKS8vj3HjxqXOyImePXumTgAAAAAamEE7AAAAAEA9bLbZZtG8efPUGTm1fPnyeOCBB1JnAPC/2rZtmzohM1930D5+/PgYOnRoRjU0pFGjRsX555/v4gOsl6FDh8aVV16ZOgP4F6qrq+NXv/pVPP3006lTyAM33HCDXysZGTduXFx99dWpM2hgt9xyS4wZM+Yr/bOFfEJ7Yx+0R0T07t07dUJOVFRUxOuvv546o0l58803m8TX0XvvvXd885vfTJ0BAAAANDCDdgAAAACAemjRokVsvfXWqTNy7pFHHompU6emzgAgCvuE9tWrV3+tf/7uu+/OqISG9O6778aFF14YVVVVqVPIY/369XORJWhkqqqq4uKLL46SkpLUKeSJurq6uPbaa+PZZ59NnVJQZs+eHRdccIHnWgWopqYmfv3rX3+lsfrXvThYPsmHQXu3bt2iXbt2qTNyYsiQIakTmpThw4enTsgJp7MDAABAYTJoBwAAAACop+222y51Qs5VVVXFZZddFmvWrEmdAtDktWrVKnVCZr7OoH3ixInx1ltvZVhDQ5g5c2acffbZUV5enjqFAvDHP/4xXnvttdQZQERUVlbGRRddZNTG11ZXVxfXXHNNkxnoZW316tVx7rnnRmlpaeoUMrJo0aK4+uqr/+M/V8iD9pYtW6ZO+I/atGkTxx57bOqMnBg+fHiTODG8Mairq4uRI0emzshc69at46ijjkqdAQAAAGTAoB0AAAAAoJ46dOiQOiGJ6dOnx5VXXpk6A6DJM2j/m3vvvTfDEhrC8uXL4+yzzzawosHU1tbGpZdeGrNmzUqdAk1adXV1XHTRRS4wwXqrqamJSy65JCZNmpQ6Je9dffXVMXv27NQZZOzVV1+NF1544Ut/vrKyMtauXZvDotzKhxPaIyJ69+6dOiEnVq9eHW+88UbqjCZh8uTJsWTJktQZmTvkkENiww03TJ0BAAAAZMCgHQAAAACgnjp16pQ6IZn+/fvH3XffnToDoElr3bp16oTMfNVTvCdPnhyvv/56xjXUR1VVVVx44YUxf/781CkUmPLy8rj44osLerQFjd3VV18dw4YNS51BnisvL49zzjnHc4V6eOqpp6J///6pM8iRG2644Ut/vxTy6ewR+TNo79y5c+y5556pM3Ji8ODBqROahOHDh6dOyIlevXqlTgAAAAAyYtAOAAAAAFBPO+20U+qEpO6666548sknU2cANFmFPGj/qie0P/TQQxmXUF833nhjvP3226kzKFDTp0+P3/3ud6kzoEm644474vnnn0+dQYFYunRp/PKXv4yysrLUKXln6tSpPhc2MatXr44bb7zxX/5cof8eypdBe0TE8ccfnzohJ4YNGxbV1dWpMwreiBEjUidkbuutt479998/dQYAAACQEYN2AAAAAIB62mWXXVInJHfDDTfEX/7yl9QZAE1Sq1atUidk5qsM2hctWhRDhgzJQQ3ra+DAgfH000+nzqDAPf300zF06NDUGdCkPPPMM3HvvfemzqDAzJo1K6644orUGXmlsrIyLrvssqisrEydQo4NHz78X57YXF5enqAmd1q2bJk64Svr1q1btGvXLnVG5kpLS13ALGOLFy+ODz74IHVG5nr06BHNmnlpOwAAABQqX/UDAAAAANTTNttsE5tuumnqjKTq6uripptuijvvvDN1CkCTU8gntH+VIcaTTz7pJLhGbO7cuXHVVVelzqCJuPbaa2PlypWpM6BJeOONN+K6665LnUGBKikpiUcffTR1Rt645557Yvr06akzSOSmm26KtWvXfuFtX+XCYPmsRYsWqRO+sjZt2sSxxx6bOiMnSkpKUicUtBEjRkRdXV3qjMz17NkzdQIAAACQIYN2AAAAAIAGsMcee6ROaBTuueeeuOSSS6KioiJ1CkCT0ZRPaK+oqIi+ffvmqIavq7a2Ni677LIoKytLnUITsWTJkrj55ptTZ0DBW7BgQVxyySVRU1OTOoUCdtttt8X48eNTZzR6kyZNioceeih1BgnNmzcvHnjggS+87R8H7oUmnwbtERG9e/dOnZATQ4cOjdra2tQZBWv48OGpEzK39957x4477pg6AwAAAMiQQTsAAAAAQAMwaP//BgwYED/96U/jo48+Sp0C0CQ0b948dUJm/tOg/aWXXorS0tLcxPC1PfbYYzFx4sTUGTQx/fr1i7feeit1BhSstWvXxgUXXODzL5mrrq6OX/3qV7FixYrUKY1WVVVVXH755VFdXZ06hcQefPDBWLhw4bq/L/QLTebboL1z586x5557ps7I3JIlS3z9l5G1a9fGmDFjUmdk7ic/+UnqBAAAACBjBu0AAAAAAA1g3333TZ3QqEyfPj1+8pOfxJNPPhl1dXWpcwAKWr69mP/rKC8v/7c//9e//jVHJXxdc+bMiTvuuCN1Bk3UTTfd5ORoyMi1114bU6ZMSZ1BE7F48eK47rrrUmc0Wn/+859jxowZqTNoBNauXRt/+tOfvvD3hSwfL+p2/PHHp07IicGDB6dOKEhjxoz5j98fyXetW7eOI488MnUGAAAAkLHCfXULAAAAAEAO7b333tG6deuCPwHp6ygvL4/rr78+Xn311bj22mujU6dOqZMAClIhD9r/3QntEydOjGnTpuWwhq/jhhtu8LyIZGbMmBFPP/10nHTSSalToKA899xz0a9fv9QZjdo3vvGN2GWXXaJDhw7rbltssUW0adMm2rZtG23bto3i4uJYs2ZNlJeXr/tx6dKl8fHHH8ecOXNi7ty5MWvWrJg/f37qD6dRGDRoUBx66KHRrVu31CmNyqeffhr33HNP6gwakX79+sVZZ50VHTp0iKqqqtQ5mcrHr4G7desWN998c3z22WepUzI1ZMiQuPzyy1NnFJzhw4enTsjcoYceGu3atUudAQAAAGQs/76zBwAAAADQCBUXF8c+++wTb7zxRuqURmfcuHHRvXv3+MUvfhHnnntubLjhhqmTAApKy5YtUydk5t8N2p966qkclvB1DB06NEaPHp06o9Fq06ZNdO7cOXbYYYfYYYcdokOHDrHZZpvFpptuGptsskm0atUqiouLo7i4OCIiKioqYu3atVFRURHLli2LRYsWxcKFC2P+/PkxZcqUmDp1asGf1rc+7rzzzjjmmGNio402Sp0CBWHevHnxu9/9LnVGo/Otb30rDjzwwNh7772ja9eusckmm3yl92vXrt0/jbYOOuigL/z9woULY+zYsTF27NgYM2ZMfPLJJw3WnW+uv/762G+//WLLLbdMndJo3HLLLT7/8wVVVVVx7733Rp8+faKmpiZ1TqbycdDepk2bOOaYY+Kvf/1r6pRMLViwICZPnhzf/va3U6cUlJEjR6ZOyFyvXr1SJwAAAAA5kH/f2QMAAAAAaKQOPvhgg/YvUVVVFQ8//HA8//zzcdZZZ8VJJ50Ubdq0SZ0FUBDy8cX8X9WXDdpLS0vj1VdfzXENX0VlZWXcfPPNqTMaleLi4th///3jhz/8Yey9996xyy67RPPmzb/y+39+9LjddtvFHnvs8YWfr62tjVmzZsWoUaNi+PDh8c4770R1dXWDfgz5qLS0NB555JG4+OKLU6dA3qutrY1f//rX//ZCM01Jly5d4vDDD48jjjgidthhh8weZ5tttokePXpEjx49oq6uLsaPHx/9+vWLkpKSJvfforS0NK666qq4//77U6c0CuPHj48BAwakzqAReumll+Kcc84p+EH713ku3Zj07t274AftEX87pd2gveFMmzat4C9qs+2228b3vve91BkAAABADhTuq1sAAAAAAHLs0EMPjT59+qTOaNRKS0vj97//fTz00ENx0kknxUknnRSbbrpp6iyAvFbIg/YvO3WyX79+sXbt2hzX8FU89dRTMW/evNQZjcLuu+8eP//5z+OQQw6JDTbYILPHadasWey8886x8847x+mnnx6lpaXxwgsvxBNPPBHz58/P7HHzweOPPx6nnXZabLzxxqlTIK89+OCDMWHChNQZSTVv3jwOPfTQOPPMM2P33XfP+eMXFRXFfvvtF/vtt19cffXV0b9///jTn/4UCxYsyHlLKiNGjIiSkpI4/PDDU6ckd9ttt6VOyGutWrWKnXbaKTp37hwdO3aMDh06xFZbbRWbbLJJtG/fPlq1ahXFxcXRokWLKC8vj7Kysli9enWUlZXF/PnzY/bs2etu06dPj6qqqtQf0jo1NTXxf//v/y34i0jm66C9c+fOseeee8Z7772XOiVTJSUl8atf/Sp1RsEYMWJE6oTMde/ePZo1a5Y6AwAAAMiBwn11CwAAAABAjm233Xax2267xQcffJA6pdFbsWJF3H333fHQQw9Fz54947TTTsv0ZDuAQlbIg/YvO320b9++OS7hqygvL48HHnggdUZye++9d1x66aWx7777Jnn89u3bx2mnnRannHJKDBkyJG677baYO3dukpbUysrK4tFHH3VKO9TDhx9+GHfddVfqjGSaN28exx13XJx55pnRsWPH1DkREdGmTZv46U9/Gj169Ihnn3027rvvvvj0009TZ+XE7373uzjooIOibdu2qVOSGTp0aEycODF1Rl5p2bJlfPe73439998/vvOd78Ruu+32lb+GateuXbRr127d3++5555f+PmKiop45513YuzYsTFmzJiYPHlyVFdXN2j/1zVp0qSkj58L+Tpoj/jbKe2FPmifPXt2zJw5M3baaafUKQWhKQzae/bsmToBAAAAyBGXtAMAAAAAaEDHHHNM6oS8UlFREU899VQcccQRccYZZ8SgQYOisrIydRZAXsnnF/P/JxUVFf/0tgkTJsTs2bMT1PCfPP7447F06dLUGclssskm0adPn3jqqaeSjdk/r1mzZnH44YdH//7949xzz42WLVumTkri8ccfj7KystQZkJfq6urimmuuaVSnD+fS7rvvHs8991xcf/31jWbM/nktW7aMn/3sZzFkyJA477zzCvoiR3+3aNGiuPvuu1NnJFNbWxt33HFH6oy8UFRUFPvvv3/ceuut8dZbb8XDDz8cZ555Zuyxxx4N+nuldevW8f3vfz9+9atfxTPPPBOjRo2Kq666Kvbaa68Gewz+WVFRUeqE9XbUUUfFhhtumDojcyUlJakTCsLy5csL/gII++yzjwvdAgAAQBNi0A4AAAAA0IB69OjRZMdC9VFbWxujR4+Oiy++OA466KC46aabYtq0aamzAPJCIQ/aa2trY+3atV9423PPPZeohn+noqIiHn300dQZyey1117x4osvRq9evRrdwKZVq1Zx8cUXxzPPPBNbbbVV6pycKysri+effz51BuSl5557rkmeBL3BBhvE1VdfHX379o3ddtstdc5/1KpVq7jooovimWeeiZ133jl1Tub+8pe/xIwZM1JnJPHyyy/H9OnTU2c0am3bto1TTjklhgwZEo899lh07949p+PhTTfdNE4++eR45pln1l1sYpNNNsnZ4zcV+fw1cJs2bZrEBVEHDx6cOqEgjBw5Mmpra1NnZKpXr16pEwAAAIAcKqqrq6tLHQEAAAAAUEguuOACL9prILvuumscdthhcdhhh8Uuu+ySOgeSmj9/fvz4xz9OnZGpPn36eCHrenj++efjiiuuSJ2RmbFjx0b79u0jImL16tVx4IEHRnl5edqoRuKyyy6LM844I3VGREQ88cQTccMNN6TOSKJXr15x/fXX58VFjRYvXhznnXdeTJo0KXVKTnXs2DFKSkqiWTPX/I+IuOuuuwr+hOMPP/wwdULeW758eRx55JFRWlqaOiWndthhh7j33ntjp512Sp2yXiorK+O2226LP//5z6lTMnXQQQfFQw89lDojp+rq6uKoo46Kjz76KHVKo9S6des45ZRT4owzzoiNN944dc4XVFRUxPPPPx/33ntvLF26NHVOQbjmmmviZz/7WeqM9TZt2rTo3r176ozMDRkyJDp27Jg6I69deOGFBX3afZs2bWL06NHRrl271CkAAABAjvi/tQAAAAAADey4445LnVAwPvzww7jrrrvimGOOicMPPzz+8Ic/xKRJk8K1WgH+v3w+ne6r+PwJ7QMHDjRmb4RqamrikUceSZ2RxE9/+tP43e9+lxdj9oiILbfcMv7yl7/EHnvskTolp+bOnRsjRoxInQF55fe//32TG7MfdNBB8dxzz+XtmD0iori4OK644oq4/vrro0WLFqlzMjNq1KgYM2ZM6oycGjp0qDH7lzjiiCOipKQkLrnkkkY3Zo/429j+pJNOiiFDhsT5558fxcXFqZPyXr5fpKhz586x5557ps7InAu+1k9VVVW88cYbqTMyddhhhxmzAwAAQBOT39/ZAwAAAABohA466KDYeuutU2cUnDlz5sT9998fxx13XBx44IFx6aWXxgsvvBCffvpp6jSApIqKilInZOrzg/Z+/folLOHLDB06NBYsWJA6I+e6desWN9xwQ979Hmzbtm088MAD8c1vfjN1Sk717ds3dQLkjcmTJ8cLL7yQOiOnfvazn8UDDzwQG220UeqUBtG7d+944IEHYsMNN0ydkpnbb789dUJOPfjgg6kTGp0tttgi7rnnnrjjjjvy4vtwbdu2jQsvvDBefPHF6Nq1a+qcvFYIF3Xr3bt36oTMDRkyJHVCXhs/fnyUlZWlzshUz549UycAAAAAOWbQDgAAAADQwJo1axY//elPU2cUtKVLl8Yrr7wSv/nNb+Lggw+Obt26xU033RRDhw5tcqcIAhTCi/n/nb8P2ufOnRvvvPNO4hr+lb/+9a+pE3Jul112iZtuuinvxux/t8kmm8TDDz8c7du3T52SM6NGjYply5alzoC8cNttt0VdXV3qjJzp3bt3XH311Xl/4u8/OuCAA+KJJ55olCdWN4T3338/SkpKUmfkxNixY+O9995LndGo7L///vHiiy/GIYcckjrla+vUqVM88cQTcf755xfcnzu5kq/PwT/vqKOOKuiLjkREvPfeey5EWg/Dhw9PnZCp7bbbLr73ve+lzgAAAAByzHdEAQAAAAAycNJJJ0Xbtm1TZzQZM2fOjL/85S9x/vnnx/e+97045phj4rrrrouBAwfG4sWLU+cBZKrQRxBVVVUREfHSSy8lLuFf+eijj2LMmDGpM3Kqbdu2cffdd0ebNm1Sp9TLtttuG9ddd13qjJyprq6OV155JXUGNHqvv/56vPXWW6kzcqZXr15x3XXXFcQ48l/p3Llz3H///QX7/Yk//vGPUVtbmzojc48++mjqhEbltNNOi0ceeSQ233zz1CnrrXnz5nHhhRfGQw89VPCj5iwUwp/Zbdq0iWOPPTZ1Rqbq6uqc0l4PI0aMSJ2QqR49ehTE72UAAADg62mROgAAAAAAoBBtsskm8bOf/Sweeuih1ClNTl1dXUyfPj2mT5++7sTYHXbYIfbZZ5/o2rVrdO3aNTp16pS4EqDhFPoJ7X8ftL/88suJS/6/1q1bx6677hqdO3eOjh07RseOHWOLLbaITTbZJNq3bx/FxcVRXFwczZs3j6qqqqipqYmamppYs2ZNrF69OlavXh2fffZZLFu2LJYsWRJLliyJefPmxbx58+Ljjz+O1atXp/4Qv7Jnn302dULOnX/++bHDDjukzmgQRxxxRHTv3r3JXDDipZdeilNPPTV1BjRatbW1cfvtt6fOyJlDDz00brrppoIfU+29995x9913x9lnn73ueVWhmD17drz66qtx1FFHpU7JzCeffBKvv/566oxGoVmzZnHllVfGSSedlDqlwRxwwAHxzDPPxFlnnRULFixInZM3CuXP7d69e8eTTz6ZOiNTJSUlcfLJJ6fOyDuzZs2Kjz/+OHVGZoqKiqJnz56pMwAAAIAEDNoBAAAAADJy+umnx5NPPhlr1qxJndLkffzxx/Hxxx9Hv379IuJvFxzYe++9143cv/3tb0dxcXHiSoD1Uygv5v8y1dXV8c4778TcuXOTNbRo0SK+853vxPe///3Yf//941vf+tZXvpDA5z+/tGvXLrbYYov/+D7z589fd3GWv98++uijqKmpWe+PIQu1tbXRv3//1Bk5tcsuuxTcIPrKK6+MkSNHRmlpaeqUzH3wwQcxf/782H777VOnQKP0yiuvxLRp01Jn5MSOO+4YN998czRr1ix1Sk4ccMAB0adPn7j00ktTpzS4Bx54oKAH7c8880yjew6YQrNmzaJPnz7Ro0eP1CkNrlOnTvHXv/41TjnllJgzZ07qnLxQKF8D77rrrrHXXnvFu+++mzolMxMmTIjly5fHpptumjolrxT66ez77rtvdOjQIXUGAAAAkIBBOwAAAABARjbbbLPo3bt3PPbYY6lT+AcrVqyIYcOGxbBhwyIiomXLltGlS5fYa6+9Yu+994699947ttpqq8SVAF9NobyY/8vU1dUlO5197733jp/85Cdx6KGHRvv27XP2uNtvv31sv/328aMf/Wjd29asWRMffPBBTJo0KSZNmhSTJ09OPsJ78803Y/HixUkbcu3SSy+NFi0K63+zb7TRRvHLX/4ybr311tQpOfHaa6/FKaeckjoDGp3a2tr405/+lDojJ9q0aRN33XVXtGvXLnVKTh1zzDHx9ttvxzPPPJM6pUFNnTo1Ro4cGT/4wQ9SpzS4qqqqeO6551JnJFdUVFSwY/a/23rrrePJJ5+Mk08+OWbPnp06p9ErpK+Bjz/++IIetNfU1MRrr70WP/3pT1On5JVCH7Q7nR0AAACarsL6P+0AAAAAAI3MGWecEU8//XRUVFSkTuHfqKqqinfffTfefffddRcg2HbbbWOvvfaKPffcM/bcc8/YbbfdolWrVmlDAf6FQnox/7/y5JNPxujRo3P2eC1atIhjjjkmTj/99Nhll11y9rj/SZs2bWKfffaJffbZZ93b6urqEhZFkzudvUuXLgU5louI+PnPfx5PPPFEfPLJJ6lTMmfQDv9aSUlJkxlRXnvttY3qc3wu/fa3v4333nsvpk2bljqlQd1///0F+Tl6yJAhsXTp0tQZyV122WUFPWb/u8033zweffTROPHEE2PhwoWpc8iRo446Kvr06ROfffZZ6pTMlJSUGLR/DatWrYp33nkndUZm2rZtG0cccUTqDAAAACCRtJfsBwAAAAAocFtuuWWcddZZqTNYD5988kkMHDgw+vTpEyeccELss88+cdxxx8UNN9wQL730Unz88cepEwGahIEDB8aqVasyf5yioqLo0aNHDB48OG6++ea8GLqlvJhBdXV1DB8+PNnjp3DOOeekTshMcXFxk3nOOmHChJz8mQL55v7770+dkBM//OEPm8Qw9su0atUq/ud//ifatm2bOqVBTZgwoSBPOH7xxRdTJyR30kknxemnn546I2e22WabePjhh2PDDTdMnUKOtGnTJo499tjUGZkaM2ZMQQ/2G9qoUaOiuro6dUZmDj/88Nhggw1SZwAAAACJGLQDAAAAAGTsrLPOio4dO6bOoJ6qqqpi0qRJ8cQTT8Rll10Whx12WHz3u9+NX/7yl3HPPffEG2+84cWZQBKFfkJ7Luyxxx7x/PPPxy233BLbbbdd6py8MG7cuCgtLU2dkTNbbrll/PjHP06dkanu3bs3iWFBdXV1vP3226kzoFEZOXJkTJ06NXVG5lq3bh1XXnll6ozkvvGNb8T/+T//J3VGg3vyySdTJzSo5cuXxxtvvJE6I6muXbvG5Zdfnjoj5zp16hS33357NGvmpZ1fptC+Bu7du3fqhExVVVXFsGHDUmfkjUK/cFzPnj1TJwAAAAAJ+a4nAAAAAEDGWrVq5UXzBaq0tDRGjhwZd955Z5x++umx3377Rbdu3eKKK66Ivn37xocffhi1tbWpM4ECV2gv5s+lVq1axW9+85t4+umno0uXLqlz8srQoUNTJ+TUMcccE82bN0+dkakNNtig4E+H/LuxY8emToBGpamczn7eeedFhw4dUmc0Cr/4xS+iU6dOqTMa1KuvvhrLly9PndFg+vfvX9An9P4nm2yySdxxxx3RsmXL1ClJ/OAHP4iLLroodQY5suuuu8Zee+2VOiNTQ4YMSZ2QF2pqamLUqFGpMzKz/fbbx3e+853UGQAAAEBCBu0AAAAAADnwgx/8oOBP9SSirq4uZs6cGc8//3xcddVVceyxx8Y+++wTv/jFL+IPf/hDvPbaa7Fs2bLUmUCBMWhfPzvuuGP07ds3TjvttIIfKmfh9ddfT52QUz169EidkBMnnHBC6oScGDduXOoEaDSmTJkSEyZMSJ2RuW984xtx2mmnpc5oNFq2bBlXXXVV6owGVVlZGc8991zqjAbz8ssvp05I6sYbb4wtt9wydUZSv/zlL2P//fdPnUGOHH/88akTMjVq1KgoLy9PndHoTZw4MUpLS1NnZKZnz56+hwUAAABNnEE7AAAAAECO/Pa3v422bdumziDHysvLY+zYsXH//ffHeeedF9///vfj8MMPj8svvzyeffbZmDVrVupEgCbnv/7rv6Jfv37RuXPn1Cl5ad68eTFv3rzUGTnzjW98I3bZZZfUGTnRuXPn+MY3vpE6I3PTpk2LVatWpc6ARuGJJ55InZAT5513XhQXF6fOaFT233//OPzww1NnNKhnnnkmamtrU2fU27x582LSpEmpM5Lp1atXHHLIIakzkmvWrFn8/ve/j/bt26dOIQeOOuqo2HDDDVNnZKaioqLJXRRtfQwfPjx1QmaKioqazIXiAAAAgC9n0A4AAAAAkCPbbbddXHPNNakzaATmzJkT/fr1iyuvvDKOOuqo+N73vhfnnntuPPjgg/HOO+9EZWVl6kSAgvXzn/887r333thggw1Sp+St0aNHp07IqQMPPDB1Qk79+Mc/Tp2Qubq6upgyZUrqDEiutLQ0Bg4cmDojczvssEN069YtdUajdOGFFxbUSanz58+PN998M3VGvQ0ZMiR1QjLt27ePyy67LHVGo7HFFlvEb37zm9QZ5ECbNm3i2GOPTZ2Rqab8Z9tXNWLEiNQJmdlvv/1i++23T50BAAAAJGbQDgAAAACQQz169IiePXumzqCRWbFiRQwbNixuu+22OPHEE2OfffaJE088MW677bYYNmxYrFixInUi8P/Yu+/wKOv8ffvXpBMglR56aNIDSJEmSAcJASWgUmysiruua1fUXb6Krq6rothRkUXE7oIoQUhAukjoVTpBeg0J6c8f+5NnWQUpM/d7yvk6jhwihJlTZMIkzHV/4BfuuOMOjRkzRkFB/DXp5Vi2bJl1gqMYtPuntWvXWicA5j777DOdPn3aOsPj/vCHPyg4ONg6wyvVqVNHXbp0sc5wq6+++so64bJ999131glmHnzwQcXGxlpneJWUlBS1b9/eOgMOSE1NtU7wqPT0dC7ieR67d+/WTz/9ZJ3hMQMHDrROAAAAAAAAXoBXagAAAAAAAACAw5544gnVrl3bOgNeLD8/XytWrNDbb7+tO++8U+3atdO1116rp556SrNnz9axY8esEwHA59x999269957rTP8wooVK6wTHBMSEqLWrVtbZziqefPmATEkY9COQFdcXKypU6daZ3hcQkKC3594e7n+8Ic/WCe41XfffaecnBzrjEt25MgRZWZmWmeYaNiwIYPHcxgzZoxCQkKsM+Bh9evXV/Pmza0zPObUqVNatGiRdYbX8ufT2SMjI9WzZ0/rDAAAAAAA4AUYtAMAAAAAAACAwyIjI/Xiiy8qPDzcOgU+oqSkRJs3b9bkyZN19913q23btkpOTta4ceOUnp7u0y/WBwAnDBs2TH/84x+tM/zC3r17tW/fPusMx9StW1eRkZHWGY4KCgry6yHNL9avX2+dAJhaunSpdu/ebZ3hcTfeeKNCQ0OtM7xa8+bN/eriLTk5OZo9e7Z1xiWbM2eOiouLrTNM3H///XK5XNYZXql27doaOnSodQYc4O+ntM+aNcs6wWulp6dbJ3hMr169Au7zagAAAAAA8NsYtAMAAAAAAACAgQYNGuipp57ihbq4JCUlJdq4caMmTZqkO+64Q61bt9aIESP0zjvvaOPGjdZ5AOBVevbsqccee8w6w28E2omhjRo1sk4wEQiD9j179igvL886AzDz73//2zrB40JCQpScnGyd4RNGjBhhneBWvvz7e968edYJJtq0aaP27dtbZ3i1P/7xjypbtqx1BjysT58+fv3/ee7cuSosLLTO8DqnTp3SsmXLrDM8ZuDAgdYJAAAAAADASzBoBwAAAAAAAAAj/fv311/+8hfrDPiBgoICLVmyRM8//7ySk5PVoUMHPfLII/ruu++Um5trnQcAZurXr69nn32WC8i40bp166wTHBWog/ZmzZpZJ3hccXGxdu7caZ0BmMjLy/PpE6wv1NVXX61y5cpZZ/iEzp07KyYmxjrDbRYvXqzDhw9bZ1y0oqIiLV261DrDxJ133mmd4PWio6P97uIT+LWIiAi/vhjLsWPH9MMPP1hneJ2FCxeqoKDAOsMjqlWrplatWllnAAAAAAAAL8GgHQAAAAAAAAAMjRo1SjfeeKN1BvzMwYMH9fnnn2v06NFq27at7rzzTn366ac++YJ+ALhUZcqU0YQJExQZGWmd4lc2bNhgneCoQB20N2nSREFB/v9ygh07dlgnACbmzp2rkydPWmd43HXXXWed4DNCQ0PVp08f6wy3KSoq0ty5c60zLtqaNWt04sQJ6wzHNW3aVO3atbPO8AkjR45UdHS0dQY8bPDgwdYJHjVr1izrBK+Tnp5uneAxAwYM4CKDAAAAAADgDP//G2gAAAAAAAAA8HJjxoxR9+7drTPgp06fPq25c+fqscceU4cOHTR06FBNmjRJ+/fvt04DAI8aO3asqlWrZp3hdzZu3Gid4KiaNWtaJ5goU6aMKleubJ3hcQzaEaimT59uneBx5cuXV6dOnawzfMqAAQOsE9xqzpw51gkXbeHChdYJJm6++WbrBJ9RtmxZDR061DoDHla/fn01b97cOsNjvvvuO5WUlFhneI2SkhLNnz/fOsMjXC6XUlJSrDMAAAAAAIAXCbEOAAAAAAAAAIBAFxQUpH/84x8aPXq0FixYYJ0DP1ZcXKwVK1ZoxYoVevbZZ9WiRQv16dNHPXv2VLly5azzAMBt+vfvr759+1pn+KVp06YpJydHp06dUk5Oznm/fb4fy83NVVFRkfV/znnFxMQE9AmYNWrUUFZWlnWGR+3Zs8c6AXDcyZMn/XY09d969uyp4OBg6wyf0qxZM9WqVUvbt2+3TnGLRYsWKScnR5GRkdYpF2zx4sXWCY4rX748F3m8SDfddJPeffdd5efnW6fAg1JTU7Vy5UrrDI84ePCgVqxYoZYtW1qneIU1a9bo0KFD1hke0aZNGyUkJFhnAAAAAAAAL8KgHQAAAAAAAAC8QEREhF5//XXde++9+u6776xzEACKi4u1fPlyLV++XE8//bSuvPJKDRgwQD179vSpF/wDwP+Kj4/XY489Zp3ht6pXr+6228rNzf3dIfz/fv/5fiw3N1eFhYVu66tWrZrbbssXVa9eXYsWLbLO8KgDBw5YJwCO+/7771VQUGCd4XHdunWzTvBJ3bt311tvvWWd4RZ5eXlauHChz4yl8/Ly/Ha8ej7XX3+9QkNDrTN8Svny5dWvXz99/vnn1inwoD59+uiZZ57RiRMnrFM8Yvbs2Qza/5+5c+daJ3gMp7MDAAAAAID/xaAdAAAAAAAAALxEWFiYXn75ZT388MOaPn26dQ4CSFFRkZYsWaIlS5Zo7Nix6t27twYNGsQLSwH4pMcee0wxMTHWGbgApUqVUqlSpRQfH++22zx9+vR5h/C/9f3n+rEGDRq4rcsX1ahRwzrB4xi0IxDNmzfPOsHjoqKidOWVV1pn+KSOHTv6zaBdkubMmeMzg/Y1a9YExMUm/pvL5dLAgQOtM3zSDTfcwKDdz0VERKh///7617/+ZZ3iEWlpaXr44YetM7xCRkaGdYJHlC5dWj179rTOAAAAAAAAXoZBOwAAAAAAAAB4kZCQED333HOKjIzUtGnTrHMQgHJycvTZZ5/ps88+U82aNTVo0CBdd911iouLs04DgN/VsmVL9e3b1zoDhiIiIhQREcGfW25QvXp16wSP279/v3UC4Kji4mLNnz/fOsPjWrdurZAQXhJ1KZKSklS6dGmdOnXKOsUtFixYYJ1wwVasWGGd4LiWLVuqWrVq1hk+qUmTJmrYsKHWr19vnQIPSk1N9dtBe1ZWltatW6dGjRpZp5jav3+/NmzYYJ3hEb169VKpUqWsMwAAAAAAgJcJsg4AAAAAAAAAAJwtKChIY8eO1V/+8hcFBfFlXNjZsWOHXnjhBXXu3FmPPPKINm7caJ0EAOfkcrn06KOPWmcAfiM+Pt46weOOHDmi4uJi6wzAMWvWrNGRI0esMzzuqquusk7wWaGhoWrbtq11htscPHhQW7Zssc64IIE4aE9OTrZO8GmDBw+2ToCH1atXT0lJSdYZHpOWlmadYC49Pd06wWMGDhxonQAAAAAAALwQr4QEAAAAAAAAAC/1hz/8QW+88YaioqKsUxDg8vPz9fnnnys5OVnDhg3T7NmzVVRUZJ0FAGfp1auXGjdubJ0B+I2YmBjrBI8rLi7WyZMnrTMAx2RkZFgnOKJ169bWCT6tQ4cO1glutWjRIuuEC7Jy5UrrBEcFBwerW7du1hk+rW/fvgoLC7POgIf584ULZs2aZZ1gzl+fm9WoUUOtWrWyzgAAAAAAAF6IQTsAAAAAAAAAeLHOnTvr008/Vd26da1TAEnSsmXLdPfdd6tnz5765JNPVFBQYJ0EAAoKCtLo0aOtMwC/Ehsba53gCAbtCCQLFiywTvC4MmXKKDEx0TrDp/nTCe2StHjxYuuE37Vz504dPXrUOsNRLVu2VFxcnHWGT4uKilKnTp2sM+Bhffr08duLnW7fvl0//fSTdYaZ06dPa8mSJdYZHjFgwADrBAAAAAAA4KUYtAMAAAAAAACAl6tRo4amTZumfv36WacAZ+zevVtjxoxRz549NXXqVOXn51snAQhgPXr04OIvgJtFRUUpKMj/X1LAoB2BIicnR+vXr7fO8LimTZsGxMcuT6pVq5bKlCljneE2y5YtU2FhoXXGea1bt846wXHdu3e3TvAL1157rXUCPCwiIkL9+/e3zvCYQD6lffHixcrNzbXOcLugoCAG7QAAAAAA4Jz4GxwAAAAAAAAA8AGlS5fWCy+8oJdffpkTrOBVsrKy9Ne//lXdu3fXv/71L4btAEzcfPPN1gmA3wkKCvLb0yD/G4N2BIpVq1Z5/ajXHRo3bmyd4PNcLpcaNWpkneE2p06d0tq1a60zzmvDhg3WCY7r3LmzdYJfuPrqq1WqVCnrDHhYamqqdYLHzJ492zrBTHp6unWCR7Rt21ZVqlSxzgAAAAAAAF4qxDoAuBxFxcU6kp1nnQEAAAAAjokrE65gThgCgIDWq1cvtW7dWn/9618D+gQbeJ99+/bp//7v//Tee+/pvvvuU58+fayTAASIpKQkNW/e3DoD8EulS5fWsWPHrDM8yh9PRQR+y/Lly60THFGvXj3rBL/QpEkTLV261DrDbTIzM736+eL69eutExxVrVo11ahRwzrDL0RERKhDhw4BPQoOBPXq1VNSUpIyMzOtU9xuw4YN2r17t6pVq2ad4rh58+ZZJ3hESkqKdQIAAAAAAPBiDNrhsz5d/JP+9O48HTjOCwwAAAAABI4K0aU0/pbOuq5dHesUAIChuLg4jR8/XjNnztTTTz+tQ4cOWScBZ+zZs0f33nuv3n//fT300ENq2bKldRIAPzd06FDrBMBvhYaGWid4XCCcWA1I0o8//mid4Ij69etbJ/gFfzvpPjMzUzfffLN1xjkF2qC9Q4cO1gl+pVu3bgzaA8DgwYP9ctAuSWlpabr11lutMxy1YcMG7du3zzrD7cqUKaMePXpYZwAAAAAAAC/GkW7wWX94cy5jdgAAAAAB58DxXP3hzbnWGQAAL9GnTx/NmjVLt9xyS0CMjeBbVq1apRtuuEF//OMftXv3buscAH4qKipKvXr1ss4A/FYgPMdk0I5AUFhYqFWrVllneFxQUJBq1qxpneEXmjRpYp3gVitXrrROOKf9+/fryJEj1hmOatOmjXWCX7n66qsVFMTLQP1dnz59FBUVZZ3hEWlpadYJjktPT7dO8IjevXsrIiLCOgMAAAAAAHgxvpIJAAAAAAAAAD6sTJkyeuihhzR9+nR17tzZOgf4lbS0NPXr10/vvPOOioqKrHMA+Jlrr71W4eHh1hmA3wqEQXtBQYF1AuBxmzZtUk5OjnWGx1WuXFlhYWHWGX4hISFBpUqVss5wm/3792vv3r3WGb9py5Yt1gmOa9WqlXWCX4mJiVHDhg2tM+BhERER6t+/v3WGR6xatUr79++3znBURkaGdYJHDBw40DoBAAAAAAB4OQbt8Flv/qGrKkT7z1+eAQAAAMCFqBBdSm/+oat1BgDAC9WqVUtvvfWW3nrrLdWrV886BzjL6dOn9fzzz+v666/X+vXrrXMA+JF+/fpZJwB+LRAG7ZzQjkAQKM/Bq1evbp3gN1wul6pVq2ad4Vbeekr7tm3brBMcVbNmTZUvX946w++0b9/eOgEOSE1NtU7wiJKSEs2ePds6wzGHDx/WmjVrrDPcrmbNmmrRooV1BgAAAAAA8HIh1gHApbquXR2ltKmtI9l51ikAAAAA4Ji4MuEKDuL6dACAc+vcubM6deqkmTNnavz48dqxY4d1EnDGunXrdP3112vkyJH64x//qIiICOskAD6sUqVKSkpKss4A/FognHRcXFxsnQB43KZNm6wTHOFvA2xrNWrU0ObNm60z3Gb16tXq06ePdcavbN261TrBUTx/94yrrrpKb775pnUGPKxevXpKSkpSZmamdYrbzZo1SzfddJN1hiMyMjL88nOQlJQU6wQAAAAAAOADGLTDpwUHBal8FKe0AwAAAAAAAP/N5XKpb9++6tWrl7744gu99tprysrKss4CJP3nFNR33nlH8+fP1/jx41WrVi3rJAA+qlevXnK5XNYZgF/jMQb4h40bN1onOKJixYrWCX7F3068X79+vXXCbwq0E9obN25sneCXmjdvrtDQUBUUFFinwMNSU1P9ctD+448/6siRI4qLi7NO8biMjAzrBLcLCgrSgAEDrDMAAAAAAIAP4Eg3AAAAAAAAAPBTwcHBuu666/Ttt9/qqaeeUu3ata2TgDM2b96sQYMGaebMmdYpAHxUly5drBMAAPAJgXJCO4N296pRo4Z1glt564UdGLTDHSIiIlSvXj3rDDigd+/eioqKss5wu6KiIs2ZM8c6w+Py8/O1cOFC6wy3a9eunSpVqmSdAQAAAAAAfACDdgAAAAAAAADwc2FhYbr++us1c+ZMTZgwQUlJSdZJgCTp1KlTuvfeezV27Fjl5+db5wDwIWXKlFHLli2tMwAA8HpZWVk6ceKEdYYjypcvb53gV/xt0H78+HFlZWVZZ5wlOztbhw4dss5wTEhIiK644grrDL/VvHlz6wQ4ICIiQsnJydYZHpGWlmad4HE//PCDTp06ZZ3hdgMHDrROAAAAAAAAPoJBOwAAAAAAAAAECJfLpW7duumjjz7SlClT1KNHD4WEhFhnAZoyZYqGDh2q/fv3W6cA8BHt27dXaGiodQYAAF4vUE5nl6SYmBjrBL/ijyfeb9iwwTrhLHv27LFOcFSNGjUUHh5uneG3GLQHjtTUVOsEj1i8eLFOnjxpneFR6enp1gluV7ZsWXXv3t06AwAAAAAA+AgG7QAAAAAAAAAQgFq1aqVXXnlFc+fO1R//+EdVqlTJOgkBbu3atRo6dKi2bdtmnQLAB7Rt29Y6AQAAn7B161brBMdER0dbJ/iV+Ph46wS3Y9Buq06dOtYJfu2KK66wToBD6tatq6SkJOsMtysoKNDcuXOtMzxq3rx51glu16dPHy5WAgAAAAAALhiDdgAAAAAAAAAIYBUrVtTdd9+tuXPnasKECerYsaOCg4OtsxCgsrKyNHToUK1atco6BYCXa9OmjXUCAAA+Yffu3dYJjuGEdveKiopSWFiYdYZbbdmyxTrhLFlZWdYJjqpbt651gl+rVauWQkNDrTPgEH89pX327NnWCR7z008/adeuXdYZbpeSkmKdAAAAAAAAfAiDdgAAAAAAAACAgoOD1a1bN73zzjvKyMjQgw8+qPr161tnIQAdO3ZMI0aM8MsTiwC4R7ly5ZSYmGidAQCAT/DH4dS5lC5d2jrB78TFxVknuNW2bdusE84SaIN2nsN7VkhIiGrXrm2dAYf07t1bUVFR1hlu9/333ys3N9c6wyPS09OtE9yuVq1aSkpKss4AAAAAAAA+hEE7AAAAAAAAAOAsFSpU0K233qp///vf+uqrr3TzzTerQoUK1lkIILm5ubrrrrv09ddfW6cA8ELNmze3TgAAwGcEyqA9JCTE704T9wbx8fHWCW61Y8cOFRUVWWecEWiD9urVq1sn+L169epZJ8AhERERSk5Ots5wu9OnT2v+/PnWGR6RkZFhneB2AwcOtE4AAAAAAAA+hkE7AAAAAAAAAOCcGjRooIcffljz58/XlClTNHz4cFWqVMk6CwGgsLBQDz74oF+eXgTg8jRr1sw6AQAAn1BQUKB9+/ZZZziiVKlS1gl+yd8G7QUFBdqzZ491xhmB8vj8RbVq1awT/F7NmjWtE+Cg1NRU6wSPSEtLs05wu+PHjyszM9M6w62CgoL88qIKAAAAAADAs0KsAwAAAAAAAAAA3s/lcqlVq1Zq1aqVHn30Ua1cuVKzZs3SnDlzAubEPzivsLBQ99xzj95++221adPGOgeAl2jatKl1AgAAPiErK8urTqP2pLy8PN11113WGX5n06ZN1glut23bNtWoUcM6Q5J06NAh6wTHREdHKzo62jrD73HRgMBSt25dJSUl+d1QOiMjQ/n5+QoLC7NOcZv58+f73XOyq666ShUrVrTOAAAAAAAAPoZBOwAAAAAAAADgorhcLiUlJSkpKUkPP/ywtm7dqvT0dKWnpyszM9PvXpwHW3l5ebrjjjs0adIkRqwAJEkNGza0TgAAwCfs3r3bOsEx+fn5mjNnjnUGfMDWrVvVpUsX6wyVlJTo8OHD1hmOqVq1qnVCQKhevbp1AhyWmprqd4P27OxsLVq0SFdffbV1ittkZGRYJ7jdoEGDrBMAAAAAAIAPYtAOAAAAAAAAALgsiYmJSkxM1G233abjx4/r+++/14IFC7R48WLt27fPOg9+ICcnR7fffrs+/PBDJSYmWucAMFS5cmVFRUVZZyBAZGdn68iRI+d9y87OVn5+vgoKCpSfn/+bb8XFxdb/KQACFJ+PAb+2a9cu6wRJ0tGjR1VQUGCd4RhO8XUGg/bA07t3bz3zzDM6fvy4dYpbzZo1y28G7UVFRfr++++tM9wqKipK11xzjXUGAAAAAADwQQzaAQAAAAAAAABuEx0drX79+qlfv36S/nPy2ZIlS7Ro0SItW7ZMJ06cMC6Erzp27JjuuusuffbZZypTpox1DgAj9erVs06Anzlx4oR27tx55m3Xrl1nvn3kyBHrPAC4LIF0+jNwobKysqwTJEkHDx60TnAUg3ZnxMfHKzw8XHl5edYpcEhERIT69++vyZMnW6e41dy5c1VYWKiQEN9/ifOPP/7odxcc6NOnj8LDw60zAAAAAACAD/L9r/YAAAAAAAAAALzWL6e333jjjSoqKtKGDRu0fPlyLV++XD/++CNDMVyUHTt26OGHH9arr75qnQLASN26da0T4MOysrK0Zs0arV27VmvWrNGmTZt09OhR6ywA8JhDhw5ZJwBeZ8+ePdYJkgLv8cmg3Tnly5f3mt/ncEZqaqrfDdqPHTumH374Qe3atbNOuWzp6enWCW43cOBA6wQAAAAAAOCjGLQDAAAAAAAAABwRHBysxo0bq3Hjxho5cqSk/5zg/sMPP5wZuO/du9c2El5v9uzZeuuttzRq1CjrFAAGatasaZ0AH3H06FFlZmaeNWBnvA4g0ATaCdDAhfj5559VUlIil8tl2nHs2DHT+3dahQoVrBMCBoP2wFO3bl0lJSUpMzPTOsWt0tLS/GLQnpGRYZ3gVomJiWrWrJl1BgAAAAAA8FEM2gEAAAAAAAAAZn45wX3IkCGS/nNy6i8D9+XLl2v79u3GhfBGL730kpo0aeIXL2oFcHEYtONcTp8+raVLl2rJkiVasmSJNmzYoJKSEussADB1+PBh6wTA6+Tl5engwYPmA+vjx4+b3r/T4uLirBMChvXvbdgYMmSI3w3aZ8+erSeeeML8AiSXY/fu3dq2bZt1hlulpKRYJwAAAAAAAB/GoB0AAAAAAAAA4DUSEhKUkJCgAQMGSPrPAGP58uVnRu6bNm1ScXGxbSTMFRUV6b777tPXX3+t2NhY6xwADmLQjv92+PBhpaena+7cuVq0aJFyc3OtkwDAq3BCO/DbsrKyzEe/J06cML1/p/G5u3Osf2/DRq9evTRu3Di/uljGwYMHlZmZqRYtWlinXLK5c+daJ7hVcHCwkpOTrTMAAAAAAIAPY9AOAAAAAAAAAPBa8fHx6tmzp3r27ClJys7O1o8//nhm5L527VoVFBQYV8LC4cOH9eyzz+rvf/+7dQoAh4SHh6t8+fLWGTCWnZ2ttLQ0zZgxQ0uWLFFRUZF1EgB4LU5oB37bzz//rKSkJNMGfxqdXghOaHdOdHS0dQIMREREqH///po8ebJ1ilulpaX59KA9PT3dOsGt2rdvz0UzAAAAAADAZWHQDgAAAAAAAADwGWXKlFHnzp3VuXNnSVJeXp5WrlypH374QT/++KNWrlypnJwc40o45csvv1T//v3Vvn176xQADqhUqZJ1AgwtW7ZM06ZN0+zZs5WXl2edAwBer7i4WCdPnrTOALzSwYMHrRM4oR0eExUVZZ0AI6mpqX45aH/44YetMy5Jdna2li9fbp3hVikpKdYJAAAAAADAxzFoBwAAAAAAAAD4rPDwcLVp00Zt2rSR9J/RxtatW7V27dozbxs3btTp06eNS+EpTz75pGbMmKGIiAjrFAAeVrlyZesEOOzUqVP6/PPPNXXqVG3dutU6BwB8SnZ2tnUC4LUOHTpknRBQF5xwuVwqU6aMdUbA4IT2wFW3bl0lJSUpMzPTOsVtsrKytG7dOjVq1Mg65aItWLBABQUF1hluEx0drW7dullnAAAAAAAAH8egHQAAAAAAAADgN4KCglS3bl3VrVv3zIkxRUVF2rJli9atW6fVq1drzZo12rx5s1+9oDCQ7d69W+PHj9eDDz5onQLAwzihPXAcPnxYH3zwgaZOnarjx49b5wCAT2LQDpybNwzaT506ZZ3gmMjISLlcLuuMgMGgPbANGTLErwbt0n9OaffFQXtGRoZ1glv17dtXYWFh1hkAAAAAAMDHMWgHAAAAAAAAAPi14OBgNWjQQA0aNNCgQYMkSXl5edqwYYNWr159ZuS+c+dOlZSUGNfiUkyaNEmDBg1SYmKidQoAD4qPj7dOgIcdPnxYb7zxhqZNm6a8vDzrHADwaYE0lgUu1sGDB60TdPr0aesEx3A6u7PKli1rnQBDvXv31rhx4/zqwmBpaWm69957rTMuSnFxsebPn2+d4Va/XDwWAAAAAADgcjBoBwAAAAAAAAAEnPDwcDVv3lzNmzc/833Hjx/XqlWrtGrVKq1cuVJr1qzxqxd/+rPCwkKNHz9eL7/8snUKAA9i0O6/Tp48qYkTJ2rSpEnKycmxzgEAv8AJ7cC5ecOgPTc31zrBMQzanRUeHm6dAEPh4eHq37+/Jk+ebJ3iNtu2bdNPP/2kOnXqWKdcsNWrV+vw4cPWGW5Tp04dNW3a1DoDAAAAAAD4AQbtAAAAAAAAAABIio6OVqdOndSpUydJUklJibZt23Zm4J6ZmamffvpJxcXFxqX4LbNmzdLGjRvVoEED6xQAHsKg3f+UlJTo008/1T//+U8dOXLEOgcA/AqDduDcvGFkGEgntJcqVco6IaDw643U1FS/GrRL/zml3ZcG7enp6dYJbsXp7AAAAAAAwF0YtAMAAAAAAAAA8BtcLpcSExOVmJiogQMHSvrPKOSXcXtmZqZWrVrFUMRLlJSU6JVXXtGECROsUwB4SGxsrHUC3Gj16tUaO3as1qxZY50CAH6Jz1OAczt27Jh1QkAN2jkx3FkRERHWCTBWt25dtWjRQitWrLBOcZu0tDTddddd1hkXzJ8G7cHBwUpOTrbOAAAAAAAAfoJBOwAAAAAAAAAAF6hMmTLq0KGDOnToIEkqLi7W5s2btWzZMi1dulTLly/3ihfGB6rvvvtOa9euVePGja1TAHhAVFSUdQLc4PTp03r55Zf1/vvvq7i42DoHAPxWbm6udQLgtQoKCpSbm2t6knUgDdrDwsKsEwJKZGSkdQK8QGpqql8N2jds2KDdu3erWrVq1im/6+eff9amTZusM9ymY8eOKl++vHUGAAAAAADwE0HWAQAAAAAAAAAA+KqgoCA1aNBAw4cP14QJE7RkyRJ9+eWXeuSRR9SlSxeVLVvWOjHgjB8/3joBgIfwMdX3rVixQsnJyXr33XcZswOAhxUWFlonAF7txIkTpvdfUFBgev9O4oR2Z4WGhlonwAv07t1b0dHR1hlulZaWZp1wQfzpdHZJSklJsU4AAAAAAAB+hEE7AAAAAAAAAABu4nK5dMUVV2jkyJF64403tGTJEk2aNEk333yzatasaZ0XEObPn6/t27dbZwDwAAbtvqu4uFivv/66brrpJu3YscM6BwACAoN24PyOHz9uev9FRUWm9+8kBu3OCgriJaH4z+Ouf//+1hlu5SuD9oyMDOsEt4mJiVHXrl2tMwAAAAAAgB/hq5cAAAAAAAAAAHhISEiI2rZtq4cfflizZs3SN998owcffFBXXnklLzD2kJKSEk2bNs06A4AHlC5d2joBl+Dw4cO67bbb9NJLLwXUcAsArPExFzg/6xPai4uLTe/fSXz9w1nBwcHWCfASQ4YMsU5wq1WrVmn//v3WGeeVm5urpUuXWme4Tb9+/RQWFmadAQAAAAAA/AhfLQYAAAAAAAAAwCG1a9fWrbfeqn/961/KyMjQww8/rEaNGlln+Z0vvvhCeXl51hkA3KxUqVLWCbhIGzdu1KBBg7Rw4ULrFAAIOAzagfPjhHbnMLB2Fr/e+EWdOnXUokUL6wy3KSkp0ezZs60zzmvRokU6ffq0dYbbpKSkWCcAAAAAAAA/w6AdAAAAAAAAAAADFStW1M0336zPP/9c33zzje666y5Vr17dOssvHDt2TN988411BgA3CgkJYZjhY9LT0zV06FD9/PPP1ikAEJAKCgqsEwCvlp2dbXr/gXRCu8vlsk4IKHzehP+WmppqneBWaWlp1gnnlZGRYZ3gNvXq1VPjxo2tMwAAAAAAgJ9h0A4AAAAAAAAAgLHatWvrnnvu0ezZs/X++++rR48eCgkJsc7yaR999JF1AgA3Cg8Pt07ARZg2bZruuusu5eTkWKcAQMAKpNOfgUthfYJuID1GGVg7iwsI4L/17t1b0dHR1hlus3z5ch05csQ645zmzZtnneA2nM4OAAAAAAA8gUE7AAAAAAAAAABepF27dnrllVc0d+5c3XXXXSpfvrx1kk/KzMzUpk2brDMAuAmDdt8xadIkPfHEEwF16igAeKPCwkLrBMCr5ebmWicEDAbWzuLjP/5beHi4+vfvb53hNkVFRZozZ451xm9at26d9u/fb53hFiEhIX71+wYAAAAAAHgPBu0AAAAAAAAAAHihihUr6p577lF6erpeeOEF1a9f3zrJ58ycOdM6AYCbcKqjb3jrrbc0btw46wwAAIDfZX1CeyA9v+VCR87i1xv/a8iQIdYJbpWWlmad8JvS09OtE9ymY8eOKleunHUGAAAAAADwQwzaAQAAAAAAAADwYqGhoerXr5+++uorvf7662rUqJF1ks/49ttvrRMAuAmnOnq/KVOm6IUXXrDOAAD8P4E0lgUuhfUJ7UFBgfOyvaKiIuuEgMIJ7fhfderUUYsWLawz3Gbx4sU6efKkdcavZGRkWCe4zcCBA60TAAAAAACAnwqcr4wDAAAAAAAAAODDXC6Xunbtqs8++0z//Oc/Vb16deskr7djxw5t2rTJOgOAGzDK824zZ87UU089ZZ0BAPgv/NkJnB8ntDunpKTEOiGgcEI7fktqaqp1gtsUFBR43WnoBw8e1Nq1a60z3CImJkZXX321dQYAAAAAAPBTDNoBAAAAAAAAAPAhLpdLffv21ddff617771XpUqVsk7yavPmzbNOAOAGgXSCpa9ZunSpHnzwQYYzAOBlQkJCrBMAr2Y9aA+k57ec0O6sgoIC6wR4od69eys6Oto6w23S0tKsE86SkZHhNxfvuPbaaxUWFmadAQAAAAAA/FTgfGUcAAAAAAAAAAA/EhYWpjvuuEMzZ85Uhw4drHO81sKFC60TAMBvZWVl6Z577mE0AwBeKJBOfwYuRWFhoen9B9JjNC8vzzohoFhfrAHeKTw8XMnJydYZbrNgwQLl5uZaZ5yRkZFhneA2AwcOtE4AAAAAAAB+jEE7AAAAAAAAAAA+rEqVKpo4caL+7//+T6VLl7bO8TorVqzwqhe4AoC/yM3N1ejRo3X06FHrFADAb+CEduD8iouLTe8/NDTU9P6dlJ+fb50QUPgaCM4lNTXVOsFtcnNzNX/+fOsMSf/5GLdo0SLrDLeoX7++GjZsaJ0BAAAAAAD8GIN2AAAAAAAAAAD8wODBg/XZZ5+pfv361ileJT8/XytXrrTOAAC/M3bsWG3YsME6AwBwDoF0+jNwKYqKikzvPyIiwvT+ncQJ7c7ihHacS506ddSyZUvrDLdJS0uzTpAkLV26VDk5OdYZbsHp7AAAAAAAwNMYtAMAAAAAAAAA4Cdq1aqljz/+WP3797dO8SqZmZnWCQDgV7755ht9/vnn1hkAgPMIDw+3TgC8GoN25zBodxaDdpzP4MGDrRPcJiMjQ/n5+dYZysjIsE5wi5CQEF177bXWGQAAAAAAwM8xaAcAAAAAAAAAwI9ERETo+eef15/+9Ce5XC7rHK+watUq6wQA8Bv79u3Tk08+aZ0BAPgdpUqVsk4AvBqDduf4y8nFvoJfb5xP7969FR0dbZ3hFtnZ2Vq0aJF1ht8M2jt37qz4+HjrDAAAAAAA4OdCrAMAAAAAAAAAAID7jR49WpUrV9Zjjz2m4uJi6xxTDNoBwH0ee+wxHT9+3DrDJ8XFxalKlSqqUqWKypUrp7i4uDNvMTExioyMPOstJCREwcHBCgkJUUhIiIKCnL9e/bBhw7Rs2TLH7xfA5StdurR1AuDVrD9PDqRB+6lTp6wTAsqJEyesE+DFwsPDlZycrA8++MA6xS3S0tJ09dVXm93/5s2btWfPHrP7d6eBAwdaJwAAAAAAgADAoB0AAAAAAAAAAD81cOBARURE6IEHHlBhYaF1jpmjR4/qwIEDqlChgnUKAPi0GTNmaMGCBdYZXq9ChQpq2LChGjRooPr166t+/fpKSEgIqOEaAHuRkZHWCYBXsz6hvVSpUqb376Ts7GzrhIDCxafwe1JTU/1m0D5nzhwVFRUpODjY5P795XT2uLg4de7c2ToDAAAAAAAEAAbtAAAAAAAAAAD4sT59+qigoEAPPfSQSkpKrHPMbNmyhUE7AFyGEydO6JlnnrHO8Erh4eG68sor1bFjR7Vv315169a1TgIATmgHfof158eB9BjNyclRSUmJXC6XdUpA4IR2/J46deqoZcuW+vHHH61TLtuxY8e0bNkytWvXzuT+09PTTe7X3fr166fQ0FDrDAAAAAAAEAAYtAMAAAAAAAAA4OeSk5N17NgxjRs3zjrFzObNm9W+fXvrDADwWePHj9ehQ4esM7xKo0aNNGjQIF177bWKioqyzgGAswTSWFaShg8frltvvdU6Az4kPDzc9P4D6blDcXGxTp48GVD/zZY4oR0XYvDgwX4xaJektLQ0k0H7sWPHtGrVKsfv1xMGDhxonQAAAAAAAAIEg3YAAAAAAAAAAALAiBEjtHHjRn3++efWKSa2b99unQAAPmvXrl366KOPrDO8gsvlUvfu3XXnnXeqYcOG1jkAcE6RkZHWCY6KiIhQpUqVrDOAC1a2bFnrBEcdOXKEQbtDjh49ap0AH9C7d28988wzOnbsmHXKZZs9e7aeeOIJuVwuR+933rx5KioqcvQ+PeGKK67QFVdcYZ0BAAAAAAACRJB1AAAAAAAAAAAAcMZf//rXgH2B4p49e6wTAMBn/fOf/1RBQYF1hrkuXbroiy++0CuvvMKYHYDXC7SxLH9OwddER0dbJziKkbVzDh48aJ0AHxAeHq7+/ftbZ7jFwYMHlZmZ6fj9ZmRkOH6fnpCSkmKdAAAAAAAAAgiDdgAAAAAAAAAAAkR4eLjGjRunkJAQ6xTHMWgHgEuzbt06ffvtt9YZpuLj4zVhwgS98cYbAXthGAC+JywsLKBG7Qza4WsC6fEpMWh30oEDB6wT4COGDBlineA2aWlpjt5fYWGhFixY4Oh9ekJoaKiuvfZa6wwAAAAAABBAGLQDAAAAAAAAABBAGjZsqBEjRlhnOG7v3r0qLi62zgAAn/Pmm2+qpKTEOsNMz549NWPGDHXr1s06BQAuWlxcnHWCYxi0w9cE2gnthw4dsk4IGAzacaESExPVsmVL6wy3cHrQvnz5cp04ccLR+/SEzp07B9TzRQAAAAAAYI9BOwAAAAAAAAAAAeaOO+4IuNPgCgoKdOzYMesMAPApO3fu1OzZs60zzNxxxx0aP348L/AH4LMC6eMXg3b4mkB6fEqMrJ2Sn5+v48ePW2fAh6SmplonuEVWVpbWrVvn2P1lZGQ4dl+eNHDgQOsEAAAAAAAQYBi0AwAAAAAAAAAQYKKiojRy5EjrDMdxIhwAXJyJEyequLjYOsNxLpdLY8aM0b333mudAgCXJTY21jrBMQza4WvKlStnneCo/fv3WycEhD179qikpMQ6Az6kV69eiomJsc5wCydPaU9PT3fsvjwlPj5enTt3ts4AAAAAAAABhkE7AAAAAAAAAAAB6IYbblBoaKh1hqMOHz5snQAAPiM7O1v//ve/rTNM/O1vf9OwYcOsMwDgssXHx1snOObUqVPWCcBFYdAOT9i9e7d1AnxMeHi4+vfvb53hFk4N2nfu3KkdO3Y4cl+edO211yokJMQ6AwAAAAAABBgG7QAAAAAAAAAABKC4uDhdc8011hmOYtAOABdu5syZys3Ntc5w3IgRI5Sammqd4TWKioqsEwBchkAatB8/ftw6AbgosbGxATUkzMrKsk4ICHv27LFOgA8aMmSIdYJbbNu2TT/99JPH78cfTmeXpJSUFOsEAAAAAAAQgBi0AwAAAAAAAAAQoJKTk60THJWdnW2dAAA+4/PPP7dOcFyHDh300EMPWWd4lUC8qAHgTypWrGid4BgG7fA1LpdLcXFx1hmOYWjtDE5ox6VITExUy5YtrTPcwolT2ufOnevx+/C0Ro0aqUGDBtYZAAAAAAAgADFoBwAAAAAAAAAgQLVr105hYWHWGY45deqUdQIA+IQdO3YoMzPTOsNRsbGx+sc//qHg4GDrFK+Sk5NjnQDgMiQkJFgnOIZBO3xR+fLlrRMcc/r0aR04cMA6w+9t3brVOgE+KjU11TrBLTw9aM/OztaKFSs8eh9O4HR2AAAAAABghUE7AAAAAAAAAAABqlSpUrryyiutMxzDoB0ALowTp9p5m4ceekixsbHWGV6HE9oB31alShXrBMcwaIcvCqTHqCTt2rXLOsHvbdmyxToBPqpXr16KiYmxzrhsGzZs0O7duz12+/Pnz1dBQYHHbt8JoaGh6tevn3UGAAAAAAAIUAzaAQAAAAAAAAAIYE2bNrVOcAynzALAhZk7d651gqPatGnDCXXnwKAd8G2BNJbNz8/nYxZ8TiA9RiVp27Zt1gl+7eTJk/r555+tM+CjwsPDlZycbJ3hFp68QFtGRobHbtspXbp04WJuAAAAAADADIN2AAAAAAAAAAACWKNGjawTHFNYWGidAABe78iRI1q1apV1hmNcLpcef/xx6wyvVFxczMVgAB9XunRpvzht9UIdPXrUOgG4KIE2aN+6dat1gl/jdHZcrtTUVOsEt5g9e7ZHbre4uFjz58/3yG07aeDAgdYJAAAAAAAggDFoBwAAAAAAAIAAkZ+fz4tb8Sv16tWzTnBMQUGBdQIAeL358+eruLjYOsMxPXr0UN26da0zvNK+ffu4GAzgBwJpMMvJxPA1CQkJ1gmO+umnn6wT/Nq6deusE+DjEhMT1apVK+uMy7Zy5Urt37/fI7fr6xfPKVeunDp27GidAQAAAAAAAliIdQAAAAAAAAAAwL3y8vK0fft2/fTTT2e97d69W4WFhZoxYwbDLZxRqVIl6wTHFBUVWScAgNf74YcfrBMcNXz4cOsEr7Vnzx7rBABuUK1aNa1fv946wxF79+5Vy5YtrTOACxZIF5yQpE2bNlkn+LVVq1ZZJ8APDB48WMuXL7fOuCwlJSWaPXu2brrpJrfebnp6ultvz0L//v0VEsLLxgEAAAAAgB2+MgEAAAAAAAAAPio3N1fbtm3TTz/9pK1bt541XD/fyarz5s1j0I4zwsPDFRsb6/MnDF0IBu0A8Pt8fbxwMWrWrOkXJxB6SlZWlnUCADeoXbu2dYJj9u7da50AXJTq1atbJzjq4MGDOnjwoMqXL2+d4pdWr15tnQA/0KtXL40bN07Hjh2zTrksaWlpbh+0Z2RkuPX2LKSkpFgnAAAAAACAAMegHQAAAAAAAAC83KlTp7R169Yzo/Vf/rlnzx6VlJRc9O3NmzdPt912mwdK4avi4uICYtAeGhpqnQAAXu3w4cPasWOHdYZjevfubZ3g1Ri0A/4hMTHROsExfNyCrylbtqzi4+N1+PBh6xTHrF+/Xp07d7bO8DtHjx7Vzp07rTPgB8LDw5WcnKxJkyZZp1yW5cuX68iRI4qLi3PL7e3du1ebN292y21ZadSokerVq2edAQAAAAAAAhyDdgAAAAAAAADwEtnZ2dq6dau2bNly1nh97969lzRcP5fMzExlZ2erTJkybrtN+LaIiAjrBEcwaAeA88vMzLROcFTXrl2tE7waoyjAPwTSoJ0T2uGLatWqFVCD9rVr1zJo94AffvjBOgF+JDU11ecH7UVFRZozZ46uv/56t9xeenq6W27H0qBBg6wTAAAAAAAAGLQDAAAAAAAAgNNOnDhx1knrv7zt27fPkfsvKCjQ/Pnz1adPH0fuD94vPDzcOsERDNoB4Pw2btxoneCYqKgoNWnSxDrDq61Zs8Y6AYAb1KpVSy6Xy60XSfNWDNrhi2rWrKnly5dbZzgm0C6g5JRFixZZJ8CPJCYmqlWrVj7/sSktLY1B+/8TGhqqvn37WmcAAAAAAAAwaAcAAAAAAAAATzl69OhZo/VfTl8/ePCgdZr+/e9/M2jHGUVFRdYJjmDQDgDnt3nzZusExzRv3lwul8s6w2udPHlSO3bssM4A4AalSpVSlSpVlJWVZZ3icbt27VJBQQHP++FTatWqZZ3gqFWrVqmkpITnYW62ePFi6wT4mcGDB/v8oH3x4sU6efKkypYte1m3k5ubq2XLlrmpykbXrl0VExNjnQEAAAAAAMCgHQAAAAAAAAAu15EjR7Rly5azTl3funWrDh06ZJ12Tt9//72OHDmiuLg46xR4gezsbOsERwTKSfQAcKk2bdpkneCYpk2bWid4tdWrVwfEac5AoKhbt25ADNoLCgq0fft21atXzzoFuGCJiYnWCY46ceKEtmzZwuPUjbKysrgQEdyuV69eGjdunI4dO2adcskKCgqUnp6u/v37X9btLFy4UHl5eW6qsjFw4EDrBAAAAAAAAEkM2gEAAAAAAADggh08ePDMaev/PV4/evSoddpFKyws1PTp0zVixAjrFHiBQBm0R0dHWycAgNfKy8vTrl27rDMcU7duXesEr7Zq1SrrBABu1LBhQ2VkZFhnOGLz5s0MZeFT6tevb53guCVLlvA4daO5c+daJ8APhYeHKzk5WZMmTbJOuSxpaWmXPWhPT093U42N8uXLq2PHjtYZAAAAAAAAkhi0AwAAAAAAAMCv7N+//6zh+i/j9ePHj1unudVXX33FoB2SpFOnTlknOIJBOwCcW1ZWloqLi60zHFOnTh3rBK+WmZlpnQDAjZo0aWKd4JjNmzdbJwAXpUqVKoqOjva7rzmdz6JFizR8+HDrDL8xZ84c6wT4qdTUVJ8ftC9YsEC5ubkqVarUJf38kpISzZs3z81Vzurfv7+Cg4OtMwAAAAAAACQxaAcAAAAAAAAASf95cdrw4cO1YcMGnTx50jrHEevWrdOqVavUrFkz6xQYKi4uVk5OjnWGIxi0A8C5/fzzz9YJjkpISLBO8Fq5ublatmyZdQYAN2LQDni3+vXrB9SfvUuXLlVBQYFCQ0OtU3zeiRMn9MMPP1hnwE8lJiaqVatWWr58uXXKJcvNzdX8+fPVs2fPS/r5a9eu1cGDB91c5ayBAwdaJwAAAAAAAJwRZB0AAAAAAAAAAN7A5XKpuLg4YMbsv3jvvfesE2Bs586dAXMib0xMjHUCAHitvXv3Wic4JiYm5pJP6AsEixYt0unTp60zALhR+fLlVaFCBesMRzBohy+qX7++dYKjcnJyGGG7yaxZs1RYWGidAT+WmppqnXDZ0tLSLvnnZmRkuC/EQJMmTVSnTh3rDAAAAAAAgDMYtAMAAAAAAADA/9OqVSvrBMelpaVpz5491hkwtGXLFusEx5QvX946AQC8VlZWlnWCY/jz4PzS09OtEwB4QOPGja0THJGVlaUDBw5YZwAX5YorrrBOcNycOXOsE/zCjBkzrBPg53r16uXzF4jMyMhQfn7+Jf1cX//cKCUlxToBAAAAAADgLAzaAQAAAAAAAOD/ad26tXWC44qKivTBBx9YZ8BQoJxgGBISoooVK1pnAIDXOnTokHWCY8qWLWud4LVKSkp8/hRCAL+tWbNm1gmOWb58uXUCcFEC5YIT/41B++U7cOCAli1bZp0BPxcWFqYBAwZYZ1yW7OxsLV68+KJ/3oEDB7R+/XoPFDkjLCxM/fr1s84AAAAAAAA4C4N2AAAAAAAAAPh/kpKSFBISYp3huE8++USHDx+2zoCRQDmhvWLFigoODrbOAACvdezYMesEx0RFRVkneK1Vq1bp4MGD1hkAPODKK6+0TnAMA0/4mrp166p06dLWGY76+eeflZmZaZ3h0/7973+ruLjYOgMBYPDgwdYJl23WrFkX/XMyMjJUUlLigRpnXHPNNYqOjrbOAAAAAAAAOAuDdgAAAAAAAAD4fyIjI9W8eXPrDMfl5ORowoQJ1hkwsnLlSusER1SpUsU6AQC82vHjx60THBMREWGd4LU+++wz6wQAHtK0aVOVKlXKOsMRP/zwg3UCcFGCgoLUpEkT6wzHTZ8+3TrBZ5WUlOiTTz6xzkCASExMVKtWrawzLsucOXNUVFR0UT8nPT3dQzXOSElJsU4AAAAAAAD4FQbtAAAAAAAAAPBfOnXqZJ1g4uOPP9bOnTutM+CwtWvXat++fdYZjkhISLBOAACvFkiD9pCQEOsEr3Tq1Cl9/fXX1hkAPCQ0NFRJSUnWGY746aefdOTIEesM4KI0a9bMOsFx33zzjQoKCqwzfNKSJUu0Y8cO6wwEkNTUVOuEy3Ls2DEtW7bsgt8/Pz9fS5Ys8WCRZ1WoUEEdOnSwzgAAAAAAAPgVBu0AAAAAAAAA8F86d+5snWCioKBAL774onUGHDZnzhzrBMckJiZaJwCAVztx4oR1gmMYtP+2mTNn6tSpU9YZADyoTZs21gmOWbp0qXUCcFGaN29uneC4I0eOBNTXJdxp6tSp1gkIML169VJMTIx1xmVJS0u74PddvHixcnJyPFjjWcnJyQoODrbOAAAAAAAA+BUG7QAAAAAAAADwXxo0aKCKFStaZ5j49ttvL+qkGvi+QHrheL169awTcAFKSkqsE4CAlZeXZ53gmMLCQusEr/Txxx9bJwBuw3OK39a6dWvrBMdczGgN8AYtWrSQy+WyznDcRx99ZJ3gc3bv3q3Zs2dbZyDAhIWFacCAAdYZl+W777674OeIGRkZno3xsJSUFOsEAAAAAACA38SgHQAAAAAAAAD+x9VXX22dYKKkpESPPvqoT58+gwu3ceNGbdq0yTrDMQzafUNBQYF1AhCwAunxF0j/rRdq7dq1Wr16tXUG4DY8zn9b06ZNVbZsWesMR2RkZOj06dPWGcAFi4mJUYMGDawzHLdkyRJt27bNOsOnvP/++youLrbOQAAaPHiwdcJlOXDggDIzMy/ofefNm+fhGs9p1qyZEhMTrTMAAAAAAAB+E4N2AAAAAAAAAPgfPXr0sE4ws3v3bv3jH/+wzoAD3n77besEx5QpU0ZVqlSxzsAFYHwG2AmkU8vz8/OtE7zOhAkTrBPMcJK3f+Jx/ttCQkLUsWNH6wxH5OTk+Pzpqgg8bdq0sU5wXElJid577z3rDJ9x8OBBffbZZ9YZCFCJiYm68sorrTMuy+zZs3/3fTZu3KisrCwHajyD09kBAAAAAIA3Y9AOAAAAAAAAAP+jbdu2io2Ntc4w8+GHH2rp0qXWGfCg3bt365tvvrHOcEzDhg2tE3CBGLQDdgLp8ceJvWfbsGGD5s6da51hhhNO/VMgfUy7WF26dLFOcEwgfc4D/xCIg3ZJ+vLLL3Xo0CHrDJ/w5ptvKjc31zoDAczXT2mfNWvW776PL18QJzw8XH379rXOAAAAAAAAOCcG7QAAAAAAAADwP0JCQtS9e3frDDMlJSV64IEHtH//fusUeMi7776roqIi6wzHtGjRwjoBFygnJ8c6AQhYgXRC++HDh60TvEogn84uKaCeEwUSnlOcW+fOnRUSEmKd4Yh58+bxewE+5corr1RwcLB1huPy8/M1ceJE6wyvt3//fn388cfWGQhwvXr1UkxMjHXGJcvKytK6devO+z6+PGjv1q2boqKirDMAAAAAAADOiUE7AAAAAAAAAPyG3r17WyeY2r9/v+68805OffJDGzdu1CeffGKd4SgG7b7j6NGj1glAwAqUcaMkTgD9Lxs3btR3331nnWGKQbt/4jnFuUVHRwfM8+Pc3FxNnz7dOgO4YGXLllWzZs2sM0xMmTKFCyv+jn/84x/Ky8uzzkCACwsL04ABA6wzLktaWto5f+zIkSNatWqVgzXulZKSYp0AAAAAAABwXgzaAQAAAAAAAOA3tGnTRhUrVrTOMLVu3Trdf//9KikpsU6BmxQWFurRRx9VQUGBdYpjXC6Xmjdvbp2BC8T4DLATSKeBHj16NKBOpD+fcePGBfxzPYZh/onnFOfXtWtX6wTHfPDBBwH/ce5S7Nu3T9u3b9fJkyetUwJOly5drBNM5OXlacKECdYZXmvVqlVcoANeY/DgwdYJl+V8g/b58+eruLjYwRr3qVixotq3b2+dAQAAAAAAcF4M2gEAAAAAAADgNwQHB3OiiaTvvvtOf//7360z4CbvvPOO1q1bZ53hqLp16yo6Oto6AxeI8RlgJ5BOaC8pKdHPP/9snWHu3//+t5YuXWqdYS43N9c6AR7Ac4rz6927t4KCAuMlQz/99JMWLFhgneFzHn74YfXq1UutWrVSkyZN1LlzZw0cOFC33XabHn74YT333HOaOHGivvzyS82fP1/r1q3T/v37lZ+fb53u8wJ10C5Jn3zyiTZs2GCd4XWKior0t7/9jYtzwGskJibqyiuvtM64ZNu2bdPWrVt/88fS09MdrnGf5OTkgHl+BwAAAAAAfFfgvCoBAAAAAAAAAC7SoEGD9Oabbwb8C0bfe+89FRcX69FHH7VOwWVYvXp1QJ521qFDB+sEXISsrCzrBCBghYWF6dSpU9YZjvnpp59UrVo16wwz2dnZeu6556wzvMLp06etE+ABPKc4v0qVKqlVq1ZatmyZdYoj3n//fXXs2NE6w2ccPnz4rN8b+fn52rdvn/bt23dBPz8qKkpxcXGKj48/6+23vo+Lj/1a3bp1VbVqVe3Zs8c6xXHFxcUaO3asPvzwQ7lcLuscrzFx4sSAuzghvN/gwYP1ww8/WGdcslmzZumuu+466/sKCgp8+iI4XJwXAAAAAAD4AgbtAAAAAAAAAHAO1atX15VXXhkwL/I/n0mTJun06dP661//ykkvPmjXrl264447AvK0vE6dOlkn4CJkZWWpsLAwoE6KBrxF6dKlA+pE4y1btgT0CagvvfSSDh48aJ3hFXJycqwT4AG7du2yTvB61157bcB8rrtw4UL99NNPqlOnjnWKT5g1a5aKioou+eefOHFCJ06c0I4dO373fUNDQxUbG3tB4/f4+HiFhYVdcpcv6dKliyZPnmydYWLFihWaOnWqbrjhBusUr7B161a9+uqr1hnAr/Tq1UtPP/20jh07Zp1ySdLS0n41aF++fLmys7ONii5PUlKSateubZ0BAAAAAADwu3g1EAAAAAAAAACcx+DBgwPmRf6/Z9q0acrJydGzzz7L2NSHHD58WLfeeqsOHz5sneK4yMhItWrVyjoDF6GwsFBZWVmqUaOGdQoQcMqWLWud4KhNmzZZJ5j54Ycf9OGHH1pneI3jx49bJ8ADLmRIG+h69uypsWPHqqCgwDrF40pKSvTyyy/rlVdesU7xCZ9//rlj91VQUKADBw7owIEDF/T+ZcqUOTN4L1eu3FnD91++75dvx8TE+Owp37169QrYQbskPf/88+rUqZOqVq1qnWIqLy9Pf/nLX5SXl2edAvxKWFiYBgwYoPfff9865ZJs2LBBu3fvVrVq1c58X3p6umHR5eF0dgAAAAAA4Ct4xSEAAAAAAAAAnEevXr303HPPXfCLq/3d9OnTtX//fr344osqV66cdQ5+x9GjRzVq1KiAPaGyffv2Cg0Ntc7ARdqyZQuDdsBAoA3aA/WCRUeOHNF99913WSfv+puTJ09aJ8ADtm7dqpKSEp8dszohOjpanTt31nfffWed4oi0tDT98MMPuvLKK61TvNrq1au1Zs0a64xzys7OVnZ2tnbu3Pm77xsSEqLY2Nizxu+33XabGjRo4EDp5WnZsqUqVaqkffv2WaeYyMnJ0QMPPKDJkycH9AUVn376aW3cuNE6AzinwYMH++ygXfrPc4Nbb731zL/PmzfPsObSRUREqE+fPtYZAAAAAAAAFyTIOgAAAAAAAAAAvFloaKhuuOEG6wyvsmzZMqWkpOjHH3+0TsF5bN++XampqVq7dq11iplevXpZJ+ASrFq1yjoBCEjR0dHWCY46cOCAtm3bZp3hqJKSEj388MPav3+/dYpX4YR2/3T8+HFt377dOsPrDRo0yDrBUc8884xKSkqsM7zalClTrBPcprCwUAcPHtSmTZu0cOFCZWRkqHr16tZZF8Tlcql3797WGaZWrFihF154wTrDzMcff6xp06ZZZwDnlZiY6NMXipk9e/aZb2/btk07duywi7kM3bp1C7gL1AEAAAAAAN/FoB0AAAAAAAAAfseQIUMUERFhneFVDhw4oBEjRmjSpEnWKfgNS5cuVWpq6gWdWuevSpUqpa5du1pn4BIwaAdslC9f3jrBcYsWLbJOcNTEiRN99tRBTzpw4IB1Ajxk9erV1gle7+qrr1aVKlWsMxyzbt06ffnll9YZXmvv3r36+uuvrTM8ZtCgQYqMjLTOuGB9+/a1TjD33nvvaebMmdYZjluyZInGjh1rnQFckNTUVOuES7Zy5cozF/vKyMiwjbkMAwcOtE4AAAAAAAC4YAzaAQAAAAAAAOB3xMbGKjk52TrD6xQUFGjcuHG67bbb9PPPP1vnQFJRUZEmTpyoW2+9NeBPG+3atatPjRXw/1u9erXy8/OtM4CAE4iDdn8e7f2vefPm6cUXX7TO8EoHDx60ToCHLFu2zDrB6wUFBWnw4MHWGY765z//GfCfK53LhAkTVFBQYJ3hES6XSzfeeKN1xkVp0qSJatasaZ1hqqSkRA8//LBWrFhhneKY9evX6+677/bbxyL8T8+ePRUTE2OdcUlKSkr03XffSZLS09ONay5N5cqV1a5dO+sMAAAAAACAC8agHQAAAAAAAAAuwKhRoxQSEmKd4ZW+//579evXT5MnT1ZRUZF1TsDatGmTUlNT9dxzz/HCZ0n9+vWzTnA7l8tlneCI3NxcLV682DoDCDgVKlSwTnBcZmamdu/ebZ3hcatWrdKf//xnFRYWWqd4pfz8fB07dsw6w1GB8pxi3rx5Kikpsc7wetddd51CQ0OtMxxz4MABPf7449YZXmfnzp1+fXp9586dVb16deuMi3b99ddbJ5jLy8vTnXfeqY0bN1qneNzWrVt166236uTJk9YpwAULCwtTSkqKdcYlmzVrlk6cOOGzF85ITk5WUBAvAwcAAAAAAL6Dr2QAAAAAAAAAwAWoWrUqp7SfR3Z2tp566ikNGDBAixYtss4JKHl5eXrllVc0aNAgrVmzxjrHK5QvX16dOnWyznC7QLqoxty5c60TgICTkJBgneC4kpISff7559YZHrV9+3b94Q9/UE5OjnWKV9u1a5d1gqMC5TnFoUOHtHr1ausMr1e+fHldc8011hmOmjVrlj755BPrDK/y9NNP+/WFT0aOHGmdcElSUlIC6oIT53Ls2DGNHDlSmzdvtk7xmA0bNmjYsGE6cuSIdQpw0QYPHmydcMmWL1+uf//73z77Z6AvX0wAAAAAAAAEJgbtAAAAAAAAAHCB7rzzzoAZf1yqzZs36+abb9bw4cOVmZlpnePX8vPzNXnyZF1zzTV69dVXOZX9vwwePNgvH6vh4eHWCY5JS0tTfn6+dQYQUGrUqGGdYGLKlCnKzs62zvCIffv26dZbb9XRo0etU7ze9u3brRMcFUjPKWbMmGGd4BNGjBhhneC4p59+Wtu2bbPO8ArffPON5s2bZ53hMUlJSWrXrp11xiWJj49X165drTO8wtGjR3XTTTfpxx9/tE5xux9++EHDhw/X4cOHrVOAS1K7dm21bt3aOuOSFBUV6eWXX7bOuCQtWrRQzZo1rTMAAAAAAAAuCoN2AAAAAAAAALhA1apV45T2C7R06VINGTJEw4YN8+sXxlvIz8/Xhx9+qO7du+upp57SwYMHrZO8SnBwsFJTU60zPCKQxmdHjhxRWlqadQYQUCpXrhxQH2d+cfz4cX344YfWGW73008/aciQIcrKyrJO8QmBNmoNCwuzTnDMl19+qdzcXOsMr9eiRQu1atXKOsNRubm5uvfee3Xq1CnrFFNHjx7V008/bZ3hUXfddZd1wmXx189vL8Xx48d18803a+bMmdYpbvPJJ5/o5ptv1okTJ6xTgMviy6e0++rjb+DAgdYJAAAAAAAAF41BOwAAAAAAAABchHvuuUcRERHWGT5j2bJlGjVqlPr06aMPPvjAZ18g6A127Nih5557Tp07d9bf/vY37du3zzrJK3Xt2lUVK1a0zvCIQBua/utf/7JOAAKKy+VS9erVrTNMvPXWWzpw4IB1htusWLFCN954o37++WfrFJ+xZs0a6wRHBdJzihMnTmj69OnWGT5h1KhR1gmO27hxo0aPHq38/HzrFBMlJSV68MEH/foiaY0bN1anTp2sMy7LVVddpcTEROsMr5GXl6d7771XzzzzjAoLC61zLllubq7GjBmjMWPGqKCgwDoHuGw9e/ZUTEyMdUbAiIiIUO/eva0zAAAAAAAALhqDdgAAAAAAAAC4CBUrVtTIkSOtM3zO1q1b9fTTT6tTp0667777NG/ePBUVFVlneb3c3FzNmDFDw4YNU8+ePTVx4kQdOXLEOsur3XrrrdYJHhMUFKTQ0FDrDMdkZmZq3rx51hlAQKlfv751gomTJ0/qqaeess5wizlz5ujmm2/WsWPHrFN8yurVq1VSUmKd4ZhAGrRL0uuvvx6wg+WL0blz54D8c2Dx4sW6//77A/Lz07feekvz58+3zvAoXz+dXfrPRYf4OtSvvf/++xo8eLC2bNlinXLRVq5cqYEDB+qTTz6xTgHcJiwsTCkpKdYZAaN79+4qU6aMdQYAAAAAAMBFY9AOAAAAAAAAABdp1KhRKleunHWGT/ploD1q1Ch17NhRjz/+uObNm8fA5L8cOnRIn3zyie644w61bdtW9913n5YtW2ad5RPatWunpKQk6wyPCgsLs05w1AsvvKDi4mLrDCBgNGjQwDrBzKxZs/TVV19ZZ1yywsJCvfjii7r77rt1+vRp6xyfc/LkSW3YsME6wzGBNmjfu3ev/vWvf1ln+IRAPKVd+s+fAU8++aR1hqNmzpypl156yTrDo5o0aaKuXbtaZ7hFcnKy4uLirDO8zrp16zRw4ECNHz9eubm51jm/6+jRo/rrX/+qoUOHatu2bdY5gNsNHjzYOiFgDBo0yDoBAAAAAADgkjBoBwAAAAAAAICLVLp0af35z3+2zvB5hw8f1scff6xRo0apTZs2uuOOOzR58mRt3brVOs1R2dnZWrhwoV555RUNGTJEHTt21JgxY5Sens4g7SLdeeed1gkeFxkZaZ3gqE2bNundd9+1zgACRsOGDa0TTD3++ONatWqVdcZFy8rK0k033aQ33niDi4Bchrlz51onOKZUqVLWCY579dVXtXv3busMr9enTx/Vq1fPOsPEJ598okcffVQFBQXWKR63aNEiPfjgg37/Z8aDDz4ol8tlneEW4eHhuuGGG6wzvFJ+fr4mTJigXr166bPPPlNhYaF10q+cPHlSEyZMULdu3TR16lS/f+whcNWuXVutW7e2zvB7VapUUdu2ba0zAAAAAAAALgmDdgAAAAAAAAC4BNddd53fnwTtpJycHKWnp+upp55Snz59dNVVV+nuu+/Wu+++q2XLlunkyZPWiW5RUFCgLVu2aPr06Ro7dqwGDBig1q1b65ZbbtGrr76qzMxMXth8iVq2bKk2bdpYZ3hcuXLlrBMc99JLLwXUqbmApcaNG/vN8OtS5OXlafTo0T51cZ1vvvlGAwYMUGZmpnWKzwukQXv58uWtExx36tQpPfDAAyoqKrJO8WpBQUG69957rTPMfPbZZ7rlllt0/Phx6xSPycjI0F133eX3w/0uXbr43ajyxhtvDLgLnF2Mffv26dFHH1XPnj314YcfKjs72zpJmzdv1lNPPaVOnTpp/PjxXtEEeBqntHtecnJyQH/eDgAAAAAAfJurpKSkxDoCAAAAAAAAAHzR5s2blZKS4pWnP/mjatWqqW7duqpdu7Zq166tmjVrqmrVqipfvryCgrzn+q3FxcU6dOiQ9u3bpz179mjr1q3asmWLtm7dqh07dvD7xUOmTp2qFi1aWGd43KhRozRv3jzrDMclJCRo6tSpqlixonWKV0pPT9cdd9xhneFRCQkJATU2tXTttddq8+bN1hmm4uPj9e6776pBgwbWKee0fft2jRs3TvPnz7dO8StffvmlrrjiCusMjzty5IjatWtnnWFi8ODB+r//+z/rDK93ww036Mcff7TOMFOzZk29+eabqlmzpnWKW3322Wd64okn/P5z0uDgYH311VeqW7eudYrb/fOf/9Sbb75pneETIiMjde2116pv37668sorHfu60a5du/T1119r5syZAf+c2pOee+45JScnW2fgN+Tn56tjx446duyYdYrfmj17tqpXr26dAQAAAAAAcElCrAMAAAAAAAAAwFfVq1dPN998s95++23rlICwe/du7d69+1eDxtDQUFWuXFmVKlVSfHy8ypUrp/j4eMXExCgqKkply5ZVVFSUIiMjFRERceYtNDRUwcHBCgoKUlBQkFwulwoLC1VUVKTCwkIVFBSosLDwzNupU6d04sQJnThxQidPnjzrnwcPHtS+ffu0b98+HThwwO8HAt6mb9++ATFml6QKFSpYJ5jIysrSbbfdpg8++ECxsbHWOYBfa9myZcCPbw4fPqxhw4bpueeeU5cuXaxzzpKdna0JEyZo8uTJfn+6roWpU6dq7Nix1hkeFxsbq9DQ0ID8PfTxxx8rJiZG9913n3WKV7v//vs1dOhQ6wwzO3bsUGpqqp588kn16dPHOuey5efn65lnntGHH35oneKIlJQUvxyzS9Itt9yiKVOmcNL3BcjJydG0adM0bdo0xcfHq1OnTmrbtq3atm2rSpUque1+jhw5ouXLl2vZsmVatmyZNm3a5LbbBnxRWFiYUlJS9N5771mn+KVWrVoxZgcAAAAAAD6NE9oBAAAAAAAA4DKcPn1aycnJ2rFjh3UKEJAiIiL0zTffqEqVKtYpjhg/frwmTJhgnWGmevXqeuONN5SYmGid4lU4oR3uNHPmTN17773WGV7B5XLp9ttv1x//+EeFhYWZtuTl5enTTz/V66+/roMHD5q2+LOwsDB9++23SkhIsE7xuC5dumjv3r3WGWYGDhyov/3tb+aPbW82evRofffdd9YZ5rp166Ynn3zSZy8stXnzZj344IPasGGDdYojypQpo2+++cZn/39diJdfflmvvfaadYZPi4+PV6NGjZSYmKhq1aqpatWqiouLU2xsrKKiohQWFqbQ0FAVFRUpJydHOTk5OnXqlI4dO6YdO3acedu6dat27Nghb3v55d13361XX33VOsOjOKHdu23btk29e/e2zvBLTz/9tK677jrrDAAAAAAAgEvGoB0AAAAAAAAALtPq1as1dOhQTuUGDIwePVp/+tOfrDMc89FHH+nJJ5+0zjBVtmxZjRkzRgMGDLBO8RoM2uFOx48fV7t27VRUVGSd4jVq1qypJ598UldddZXj933o0CF9+umnmjx5sg4dOuT4/f+W4OBgjRgxQgsXLvTLU0j79eunF154wTrD41JTU7Vy5UrrDFNJSUkaN26cateubZ3ilfbs2aN+/fopNzfXOsVcVFSUHn74YQ0aNMg65YKdOnVKr776qj744IOA+lrFI488opEjR1pneNTJkyfVvXt3HT161DoFXqhy5cr65ptv1Lx5c+sUj2LQ7v2GDRumZcuWWWf4lVKlSmnBggUqU6aMdQoAAAAAAMAlC7IOAAAAAAAAAABf17RpU78fEgLeKDExMeAeexUrVrROMHfy5Ek99NBDuuWWW0yHlNnZ2crKyjK7f8BToqOj1axZM+sMr7Jjxw7dfPPNGjFihBYsWODx+zt9+rTS0tL0pz/9SVdffbVefPFFrxmzS9INN9yghx56SF26dLFO8YgZM2Zo5syZ1hkex3MKKTMzU8nJyXrllVeUnZ1t1rFnzx6dOnXK7P7PpWrVqgH3XPtcTpw4oUcffVRDhgzRkiVLrHPOKzc3V++//7569uypd999N6DG7PXq1dNNN91kneFxZcuW1R//+EfrDHipO++8U8HBwdYZgFJTU60T/E6PHj0YswMAAAAAAJ8XYh0AAAAAAAAAAP7gzjvv1Pz587V69WrrFCAgBAUF6ZlnnlFYWJh1iqMSExOtE7zGwoULlZycrKuvvlrDhw9XmzZtPPbC/ZKSEm3btk2rV6/WypUrtXLlSm3ZskU33nijHnvsMY/cJ2CpS5cuWrFihXWG11myZImWLFmiWrVqqW/fvurdu7fq1Klz2bdbUlKirVu3asmSJVq0aJEWL16snJwcNxS7X1xcnP70pz9J+s/Y1V+NGTNGiYmJql+/vnWKx3Aq+X/k5+fr1Vdf1aRJkzR06FBdf/31ql69usfuLycnR+vXr9eqVau0atUqrVixQgcPHtSXX36pK664wmP3e6luueUWffnll9q+fbt1ilfIzMzUiBEj1Lp1aw0fPlxdu3b1muHovn379Nlnn2nKlCk6fPiwdY6JJ598UiEhgfFSuCFDhmjq1KnasmWLdQq8SPXq1TVo0CAVFRVZpwDq0aOHYmNjdfToUesUv5GSkmKdAAAAAAAAcNkC46v4AAAAAAAAAOBhISEhevHFFzVo0CAdO3bMOgfweyNHjgzIE4SrVaumyMhIrx06Oq2kpETp6elKT09XfHy8evTooTZt2qh58+aqXLnyJd1mfn6+du7cqU2bNmndunVn3ixPbgWc1qtXL73wwgvWGV5r+/btevXVV/Xqq6+qfPnySkpKUpMmTVS9enVVrVpV5cuXV2RkpCIiIhQcHKz8/Hzl5+fr+PHjOnr0qA4dOqRdu3Zp165d2rJli9atW+eVpzP/lr/85S+KioqS5N+D9lOnTmn48OF6//33vXJk7A7+PNa/FCdPntRbb72lt956S40bN1a3bt3UokULNWnSRJGRkZd0m8ePH9dPP/2kDRs2aN26dVq7dq22bt3qU0PDsLAwPfnkkxo5cqR1ildZtmyZli1bpipVqqhfv37q27evGjRo4HjH0aNHNX/+fM2YMUMLFixQcXGx4w3eIjk5Wa1atbLOcExwcLAeeeQR3XLLLdYp8CKjR49WSEiI8vPzrVMAhYWFacCAAXrvvfesU/xCQkKC2rZta50BAAAAAABw2Ri0AwAAAAAAAICbVK1aVf/4xz80atSogH4hOeBp9erV0z333GOdYcLlcqlevXpauXKldYrXOXz4sKZOnaqpU6dKksqVK6dq1aqpSpUqqlChgkqVKqVSpUopLCxMRUVFKiwsVE5Ojk6ePKnjx49r//792rdvn37++WcVFhYa/9cAtqpXr64mTZpozZo11ile7+DBg0pLS1NaWpp1isc1btxYgwYNOvPvCQkJhjWed+zYMd1www169NFHdf3111vnuB2D9nNbu3at1q5dK+k/o9Ffnk8kJCQoJiZGERERioiIUEhIiAoKClRQUKDs7GydPHlSR44cOfN8wl9OyW7Xrp0GDx6sjz/+2DrF6+zdu/fMhRCqV6+u9u3b66qrrlLz5s1VoUIFt9/fyZMntWrVKq1cuVKLFy9WZmamT10gwVNiYmL04IMPWmc4rn379urRo0dAPAfB77viiivUv39/SeJrkvAagwcPZtDuJgMGDJDL5bLOAAAAAAAAuGwM2gEAAAAAAADAjTp27KjRo0frlVdesU4B/FJkZKRefvllRUREWKeYqV+/PoP2C3Do0CEdOnRImZmZ1imAT+rXrx+DdpwRFBSkJ554QkFBQWe+r3LlygoJCfHri4Dk5ORozJgxmj59uu6++261bt3aOsltatasqVKlSik3N9c6xasVFRVpx44d2rFjh3WKqYcffliLFy/W7t27rVO81q5du7Rr164zF1eqUKGCGjVqpBo1aqh69epKSEhQXFycYmNjFRUVpbCwMIWGhio4OFgFBQXKz89Xfn6+Tp48qcOHD+vIkSM6ePCgdu7cqe3bt2vHjh3auXOnSkpKjP9Lvc+jjz6qcuXKWWeYePzxx7VkyRKdOHHCOgWGXC6XnnzyyTPP0zihHd6idu3aat26tZYtW2ad4tNcLpdSUlKsMwAAAAAAANyCQTsAAAAAAAAAuNno0aO1ceNGzZ492zoF8Dtjx45V7dq1rTNMcaIqACckJyfrxRdf1OnTp61T4AVGjBihZs2anfV9oaGhSkxM1KZNm4yqnLN06VItXbpU9erVU9euXdWxY0fVrVtX0dHRv/tzS0pKdPjwYe3du1dZWVnauXOnNm/erM2bN+uf//yn6tWr58B/wa8FBQWpTp06XLgCF6R06dJ69tlnNWzYME7+vUAHDhzQgQMHrDP8XpcuXZScnGydYaZChQp64IEH9Pjjj1unwNCgQYOUlJR05t8LCgoMa4CzpaamMmi/TK1atVK1atWsMwAAAAAAANyCQTsAAAAAAAAAuJnL5dI//vEPDRs2TKtXr7bOAfzGkCFDdO2111pnmGvYsKF1AoAAEBsbq/79++vjjz+2ToGxmjVr6s9//vNv/ljDhg0DYtD+i1+G6G+88YYkqXz58oqLi1Pp0qVVqlQpFRUVqaCgQAUFBTp58qSOHTumEydOqKio6Ddv71zf75SGDRsyaMcFa9WqlW655Ra988471imAJKlcuXJ66qmnrDPMXX/99Zo+fTqD0QAVExOj+++//6zv44R2eJMePXooNjZWR48etU7xWQMHDrROAAAAAAAAcJsg6wAAAAAAAAAA8EcRERF64403VLVqVesUwC+0a9dOY8aMsc7wCo0bN1bp0qWtMwAEgGHDhlknwFhQUJCeeeYZRURE/OaPX3HFFQ4XeZeDBw9q06ZNWrFihRYuXKglS5boxx9/1OrVq7V9+3YdPXrUfLR+Pm3btrVOgI+555571Lx5c+sMQC6XS88++6zKlStnnWLO5XLpmWeeUdmyZa1TYOD+++9XbGzsWd/HoB3eJCwsTCkpKdYZPisyMlI9e/a0zgAAAAAAAHAbBu0AAAAAAAAA4CHx8fF6++23f/XCUgAXp06dOnrllVcUGhpqneIVQkND1aZNG+sMAAGgXr16ateunXUGDI0YMUItWrQ45483bNjQwRq4W7t27RQUxMtGcOHCwsL08ssvKz4+3joFAe7WW29Vx44drTO8RtWqVfW3v/3NOgMO69Chg6677rpffT+DdnibwYMHWyf4rJ49e3JRSwAAAAAA4Ff4m0kAAAAAAAAA8KDatWvrvffeU3R0tHUK4JPKlSunt956i9Pm/keHDh2sEwAEiOHDh1snwEi9evX05z//+bzv07BhQ4WEhDgTBLeLjY1Vo0aNrDPgYypVqqR//vOfCg4Otk5BgLrqqqv0l7/8xTrD6/Tt25dTkANIXFycnn32Wblcrl/9GIN2eJtatWqpdevW1hk+iY/rAAAAAADA3zBoBwAAAAAAAAAPu+KKK/TOO++oTJky1imAT4mOjtbbb7+thIQE6xSvw6AdgFOuvvpq1ahRwzoDDouMjNRLL72kiIiI875f6dKl1bRpU4eq4Ant27e3ToAPatu2re69917rDASghIQELqhwHo8//rhq1aplnQEHPPPMMypfvvxv/lheXp7DNcDvS01NtU7wOVWrVuVCAAAAAAAAwO8waAcAAAAAAAAABzRt2lRvvfWWIiMjrVMAn1C2bFlNnDhRDRs2tE7xSjVq1FC1atWsMwAEgKCgIN1zzz3WGXDY2LFjlZiYeEHv265dOw/XwJM6duxonQAfdfvtt3NqKBxVtmxZvfnmm4qNjbVO8VqlS5fWa6+9prJly1qnwIOGDRumq6+++pw/zqAd3qhHjx58/L5IKSkpcrlc1hkAAAAAAABuxaAdAAAAAAAAABzSsmVLTZo0STExMdYpgFcrXbq03nnnHTVp0sQ6xav17NnTOgFAgOjbt6+SkpKsM+CQ1NRUXXvttRf8/ldddZUHa+BpSUlJ5zzhFfg9//d//6cOHTpYZyAAhIaG6pVXXlHdunWtU7xe7dq19cILLygoiJcF+qMmTZrogQceOO/75OfnO1QDXLiwsDAuhHMRXC6XBgwYYJ0BAAAAAADgdnzlGgAAAAAAAAAc1LRpU02ZMkUVK1a0TgG8UnR0tCZOnKjmzZtbp3i9QYMGWScACCCPPPIIp8MFgIYNG+qxxx67qJ/TrFkzlSlTxkNF8LTg4GDGRbhkoaGhevnll9WgQQPrFPgxl8ulp59+Wu3atbNO8RmdO3fWX/7yF+sMuFmlSpX02muvKTw8/Lzvxwnt8FaDBw+2TvAZV155papWrWqdAQAAAAAA4HYM2gEAAAAAAADAYXXq1NHUqVNVs2ZN6xTAq1SqVElTpkzhFOALVLt2bX6tADimWbNm6tu3r3UGPKh8+fJ6/fXXf3ck9b9CQ0N1zTXXeKgKTuAiObgcZcqU0VtvvaWEhATrFPipJ554QsnJydYZPuf222/XDTfcYJ0BN4mMjNQbb7yhChUq/O77FhYWOlAEXLxatWqpdevW1hk+YeDAgdYJAAAAAAAAHsGgHQAAAAAAAAAMJCQkaNq0aWrTpo11CuAVEhMT9dFHH6lu3brWKT7luuuus04AEEDuv/9+RUREWGfAAyIjI/Xmm2+qUqVKl/Tz+/Xr5+YiOKlmzZpq1aqVdQZ8WMWKFfXBBx+oSpUq1inwM/fffz+j7Mvw+OOPq3fv3tYZuExBQUF64YUXdMUVV1zQ+xcXF3u4CLh0qamp1gleLzIyUj179rTOAAAAAAAA8AgG7QAAAAAAAABgJCYmRu+++y4v5EPAa926tT788ENVrlzZOsXn9O7dW5GRkdYZAAJE5cqVNXr0aOsMuFlQUJCef/55NWrU6JJv46qrrlJsbKwbq+A0TmnH5apatao++OADntPDbe6//37dfvvt1hk+LSgoSM8995yuuuoq6xRchjFjxqhr164X/P5FRUUerAEuT48ePfi84Xf06tWLr/UBAAAAAAC/xaAdAAAAAAAAAAyFhIRo7NixGjNmjEJDQ61zAMfddNNNeu+99xQTE2Od4pNKly6tIUOGWGcACCC33Xab2rRpY50BN3rooYfUrVu3y7qNkJAQ9enTx01FsNC3b19VrFjROgM+rlq1apo8eTKjdly2Rx55hDG7m4SFhWnChAlq27atdQouwRNPPKEbb7zxon4OJ7TDm4WFhSklJcU6w6sNHDjQOgEAAAAAAMBjGLQDAAAAAAAAgBcYNmyY/vWvf6lKlSrWKYAjwsLCNG7cOD3++OMKCQmxzvFpt99+Oyc3AXDML6d5cyES/3DnnXdq5MiRbrmtG2+8US6Xyy23BeeFh4frzjvvtM6AH/hl1F6zZk3rFPig4OBgPfXUU277swn/ERkZqTfffFMdO3a0TsFFuJQxuySVlJR4oAZwn8GDB1sneK1q1aqpVatW1hkAAAAAAAAew6AdAAAAAAAAALxE8+bN9cUXX6hLly7WKYBHVa9eXVOmTNGgQYOsU/xCXFychg8fbp0BIIBUrFhRTz/9tHUGLtMtt9yiP//5z267vcTERIZyPu66665T1apVrTPgB6pVq6apU6eqWbNm1inwIREREXr11Vd1/fXXW6f4pYiICL322mu65pprrFNwAS51zC5xQju8X61atdS6dWvrDK+UkpLCRcIAAAAAAIBfY9AOAAAAAAAAAF4kJiZGr7/+uh599FFFRERY5wBul5KSoi+//FJNmza1TvErt956q6KioqwzAASQbt26aejQodYZuETDhg3TQw895Pbbvfnmm91+m3BOaGioRo8ebZ0BPxEXF6dJkybp6quvtk6BD4iLi9P777+vrl27Wqf4tbCwMI0fP16pqanWKTiH8PBwvfjii5c8Zpc4oR2+YciQIdYJXsflcmnAgAHWGQAAAAAAAB7FoB0AAAAAAAAAvIzL5dKIESP05Zdfqnnz5tY5gFtERUXpxRdf1LPPPqvSpUtb5/idqKgo3X777dYZAALMI488wnMVH5SamqrHHnvMI7d91VVXqVGjRh65bTgjOTlZ9erVs86AnyhVqpRee+013XDDDdYp8GL16tXTJ598oqSkJOuUgBASEqKxY8fqgQce4BRgL1OuXDlNnjxZffr0sU4BPK579+6KjY21zvAqbdq0UUJCgnUGAAAAAACARzFoBwAAAAAAAAAvVatWLX344Ye67777FBYWZp0DXLIePXpoxowZvCjbw2655RY1btzYOgNAAAkPD9ebb76pOnXqWKfgAo0aNUpjx4716IDNEye/wznBwcEaN26cQkJCrFPgJ4KDg/Xkk09q3LhxCg8Pt86Bl+nataumTp2qqlWrWqcEnNtuu00vv/yySpUqZZ0CSfXr19cnn3yiZs2aWacAjggLC1NKSop1hlfh1wMAAAAAAAQCBu0AAAAAAAAA4MWCg4M1atQozZgxQx06dLDOAS5K5cqV9dprr+mVV15RxYoVrXP8XkhIiP7+979zAQwAjoqJidG7777LSXJezuVy6bHHHtN9993n8ftq06aNrrnmGo/fDzynSZMmuv32260z4GcGDRqkKVOmqHLlytYp8ALBwcG677779Nprr6lMmTLWOQGrZ8+e+vTTT5WYmGidEtBSUlI0depUValSxToFcFRqaqp1gtcoXbq0evbsaZ0BAAAAAADgcQzaAQAAAAAAAMAH1KhRQxMnTtT48eMZAMDrhYaGauTIkfr6668ZtDmsTp06+tOf/mSdASDAVKxYURMnTlRcXJx1Cn5DaGioXnjhBQ0fPtyx+3zggQcUGhrq2P3B/UaPHq0GDRpYZ8DPNGnSRJ9//rk6depknQJDFSpU0KRJkzRq1Ci5XC7rnIBXp04dffrpp0pOTrZOCTgxMTEaP368nn32WZUuXdo6B3BczZo11bp1a+sMr9C7d2+VKlXKOgMAAAAAAMDjGLQDAAAAAAAAgA/p2bOnZs6cqbvuukuRkZHWOcCvdOvWTTNmzNAjjzzCC7KN3HrrrWrVqpV1BoAAU6tWLb399tucsuplYmNj9c4776hv376O3m+tWrV09913O3qfcK/Q0FD9/e9/V0REhHUK/ExcXJzefvttPfHEEwy3AlCfPn00ffp0XXnlldYp+C+RkZF67rnn9Oyzz6ps2bLWOQGhQ4cOmj59OicyI+ANGTLEOsErpKSkWCcAAAAAAAA4gkE7AAAAAAAAAPiYyMhI3XPPPUpLS1NqaqpCQkKskwA1adJEU6ZM0YQJE1SzZk3rnIAWFBSkV155RTVq1LBOARBgGjdurMmTJys+Pt46BZIaNWqkzz77TG3btjW5/1GjRqlFixYm9w33aNCggZ5//nkFBfHSErjfjTfeqM8//1yNGze2ToEDYmJi9MILL+jFF19UTEyMdQ7OISUlRTNmzFCnTp2sU/xW+fLl9eyzz+qdd95RhQoVrHMAc927d1dsbKx1hqkaNWpwYUoAAAAAABAw+FtHAAAAAAAAAPBR5cuX19ixYzVjxgz16dOHoQlMNGrUSK+++qo++eQTXnzpRX45+TLQXxQMwHkNGzbU1KlTVa1aNeuUgJaSkqKpU6cqISHBrCEoKEjPPfecSpcubdaAy9ejRw899NBD1hnwU7Vr19ZHH32kv/zlL4qIiLDOgYf0799fM2fOVL9+/axTcAEqVaqkt99+W+PGjePiA24UFham22+/XbNmzVJKSopcLpd1EuAVwsLCAv508gEDBlgnAAAAAAAAOIZXNwIAAAAAAACAj6tVq5ZefPFFzZw5UykpKZzYDkc0b95cb775pj7//HN1796dF2N7oRo1auiNN95gHATAcTVq1NDHH3+s1q1bW6cEnPDwcD3xxBN69tlnFR4ebp2jatWq6YUXXlBwcLB1Ci7DyJEjNXz4cOsM+KnQ0FD94Q9/0Ndff62rr77aOgduVLNmTb3//vt6/vnnFR8fb52DizRo0CDNmjVLN954I3+OXwaXy6WePXvq66+/1v3338+FfoDfkJqaGrBfVwwKCmLQDgAAAAAAAgqDdgAAAAAAAADwE7Vq1dKzzz6rtLQ03XDDDSpVqpR1EvyMy+VSp06d9N5772natGkMTnxA8+bNNX78eD4eAHBcXFyc3nvvPd10003WKQGjUaNG+uKLL3TjjTdap5ylS5cueuyxx6wzcJkeeeQRDRo0yDoDfqxq1ap68803NX78eFWpUsU6B5chJiZGjzzyiGbMmKF27dpZ5+AyxMTE6IknntCXX36pq666yjrHp4SEhKh///6aMWOGxo8fr+rVq1snAV6rZs2aAXsxtLZt2/K8BwAAAAAABBQG7QAAAAAAAADgZxISEvTkk09q/vz5evDBB1W1alXrJPi40qVLa9iwYfr222/19ttv80J2H9O5c2e9//77iomJsU4BEGBCQkL0+OOP6+WXX1ZUVJR1jt8KDg7WnXfeqWnTpikxMdE65zfdeOONuu2226wzcBmCgoI0btw43XHHHdYp8HM9e/bUrFmz9NBDD/H81ceEhYVp5MiRSktL08iRIxUaGmqdBDepV6+e3nvvPU2ePFlt2rSxzvFq4eHhSk1N1bfffqvnn39ederUsU4CfEJqaqp1gomUlBTrBAAAAAAAAEcxaAcAAAAAAAAAPxUVFaVbb71Vs2fP1oQJE9ShQwcFBfFlYVy4Bg0aaMyYMZo/f77GjBmjmjVrWifhEjVv3lxTp05VQkKCdQqAANSrVy999dVXDKA8oF69epo6dar+/Oc/e/1w8IEHHtDo0aOtM3CZ7r33Xj3xxBN8XgGPCgsL0y233KLvvvtOo0aNUkREhHUSziM0NFRDhw7Vd999p0ceeUTR0dHWSfCQ1q1b64MPPtCUKVPUoUMH6xyvUq9ePY0ZM0YLFizQ2LFjVa1aNbOWkpISs/sGLlX37t0VFxdnneGoMmXKqEePHtYZAAAAAAAAjuJvGAEAAAAAAADAzwUFBalbt26aOHGi0tPT9ec//1k1atSwzoKXio2N1bBhw/Tll1/qq6++0rBhw1SmTBnrLLhB7dq19dFHHykpKck6BUAAqlKliiZNmqSnnnqK09rdICoqSo8++qi++OILNWvWzDrngv3pT3/Sk08+yRjax91444165ZVXVLZsWesU+LmyZcvqvvvu05w5czRq1Ch+z3mZiIgI3XDDDUpLS9Nf//pXVaxY0ToJDmnVqpUmTpyob775RiNGjAjYixiULVtWgwYN0rRp0zR9+nQNGzbMK57nFhcXWyd4HM8l/U9YWJgGDBhgneGoPn36cNEeAAAAAAAQcPjKHgAAAAAAAAAEkEqVKunOO+9UWlqapkyZotTU1IA7/Qa/FhkZqd69e+vVV1/V999/rzFjxuiKK66wzoIHVKhQQVOmTNHdd9+tkJAQ6xwAAcblcun666/XzJkzlZKSIpfLZZ3kc4KCgnT99ddr1qxZGjFihE9+LL/hhhv0xhtvKD4+3joFl6Fbt27697//rdatW1unIACUK1dO9913nzIyMnT//ferfPny1kkBLTY2VnfffbfS09P15JNPqkqVKtZJMFK7dm09+uijmj9/vv7+97+rY8eOCg0Ntc7yqPj4eF1//fV66623tGjRIo0bN07Nmze3zjpLYWGhdYLH+eJzYPy+1NTUgPocMSUlxToBAAAAAADAca6SkpIS6wgAAAAAAAAAgJ2ioiItW7ZM33zzjWbPnq0jR45YJ8EBpUuXVpcuXdSzZ0916tSJE4EC0MqVK/XAAw9o165d1ik+a/jw4XrsscesM5Senq477rjDOsOjEhISNHfuXOsMuNnatWv197//XcuWLbNO8Xoul0vXXHON7r77br+56Mzhw4c1ZsyYgH5sf/nllz7//7O4uFjvvPOOxo8fr4KCAuscn+UPvxeclJ+fr2+++UYff/yxli9fbp0TMBo1aqShQ4fq2muv5fNHnNPx48f13Xff6dtvv9XSpUuVl5dnnXRZQkJC1KRJE7Vu3VodO3ZUy5Ytvf508HfffVd///vfrTM8asKECerWrZt1Bjxg+PDhWrp0qXWGx9WsWVOzZs2yzgAAAAAAAHAcl6oEAAAAAAAAgAAXHBysdu3aqV27dnryySeVmZmpefPmKSMjQ5s3b7bOgxtVq1ZNnTp1UufOndWuXTuFhYVZJ8FQ8+bN9eWXX2rChAmaPHmy8vPzrZMABJjGjRtr8uTJWrx4sV599VVGib8hODhYvXr10h133KF69epZ57hVfHy8Xn/9dX3xxRd66aWXtG/fPuskXIKgoCCNGjVKnTp10rhx4wJigAR7YWFhSk5OVnJysrZu3app06bpq6++0rFjx6zT/E6pUqXUq1cvDR06VM2aNbPOgQ+Ijo7WoEGDNGjQIOXl5WnFihVasmSJFi9erHXr1nn96eFly5ZVgwYN1Lx5c7Vp00YtW7ZUZGSkddZF8fZfY3fghHb/lZqaGhDPJzmdHQAAAAAABCpOaAcAAAAAAAAAnNPPP/+sefPmaeHChVq2bBkDAR8TGRmpFi1aqFOnTurUqZNq1aplnQQvtXfvXr344ouaPn26+Kuj8wsLC1Pr1q3VtWtXde/eXRUqVLBO4oR2+I0ffvhB77//vubOnavi4mLrHFORkZG69tprdcstt6hmzZrWOR6Xl5enKVOm6M033/Tr55tlypRRy5Yt1apVK7Vs2VLNmjXzu0FWRkaGXnjhBS6MdQHKly+vq6++Wl27dlXHjh0VGhpqneTT8vPztWDBAs2cOVNz587VqVOnrJN8lsvlUqtWrTRgwAD16tVLZcqUsU6Cn8jNzdXGjRu1fv16rVu3Ths2bND27duVm5vreEupUqWUkJCg6tWrq379+rriiivUsGFDVa1aVS6Xy/Eed3rppZf0+uuvW2d41DvvvKOOHTtaZ8ADFi5cqFtuucU6w6OCgoKUnp6uSpUqWacAAAAAAAA4jkE7AAAAAAAAAOCClJSUaNOmTVq6dKmWLVum5cuX+/XgyBeVLVtWLVq0UKtWrXTllVeqcePGDGNwUTZs2KCXX35Z8+bNC/gx6X+rWLGi2rdvry5duqh9+/YqXbq0ddJZGLTD3+zevVtTp07VV199pUOHDlnnOCopKUmDBg1Snz59vO5jjROys7P16aef6rPPPvOLQXR0dLRatmyp1q1bq3Xr1mrQoIGCg4OtszyuqKhIX3zxhd566y3t3LnTOsdrBAUFqWHDhurYsaO6du2qJk2a+Pxo0lvl5eVp3rx5+vbbb7VgwQIdP37cOsnruVwuNW3aVN27d1fv3r1VtWpV6yQEkAMHDmj37t3avXu39uzZo0OHDuno0aNn3o4fP67Tp0+roKDgzNsvgoKCFBISotDQUIWGhiosLExlypRRTEzMmbfY2FjFxsaqUqVKqlq1qqpVq6Zy5coZ/hd71rPPPqv33nvPOsOj3n//fbVr1846Ax5w3333acaMGdYZHtWhQwdNnDjROgMAAAAAAMAEg3YAAAAAAAAAwCUpKSnRjh07tGrVKq1evVqrVq3Spk2bznphMTwnJCREderUUePGjdWoUSM1b95cDRo0UFBQkHUa/MDu3bs1bdo0ffbZZzpy5Ih1juPKlSun1q1bq23btmrTpo3Xn47MoB3+qrCwUPPnz9dXX32l+fPnKycnxzrJI2rWrKlrrrlGAwcOVJ06daxzvMbKlSv16aefas6cOT7zZ1HlypWVlJSkpKQktWrVKuCfm5WUlGjhwoWaOnWq0tPTVVRUZJ3kKJfLpfr166tNmzZq06aNWrdurbJly1pnBZyioiKtWrVK8+bN0/fff6/169eLl0r9R6lSpdSqVSt17txZPXr0UMWKFa2TgAtSUlKigoKCM2N2nO2JJ57QtGnTrDM86qOPPlJSUpJ1BtwsOztb7du31+nTp61TPOqFF15Qv379rDMAAAAAAABMMGgHAAAAAAAAALhNfn6+Nm3adNbb5s2bdfToUes0nxYTE6PExETVqVNH9evXV5MmTdSgQQOFhYVZp8HP5efn69tvv9X06dO1dOlS5eXlWSe5XVhYmBo0aKAmTZqoadOmatq0qWrXrm2ddVG2b9/u9yeYlS1bViNHjrTOgKHTp0/r+++/1+zZs7Vw4UKfPrk9KChIzZs3V9euXdW1a1clJiZaJ3m1kpISrV27VgsWLNCCBQu0evVq5efnmzYFBwerevXqql+/vurVq3fm+Rlj0HPbt2+fPvnkE6WlpWnz5s3WOR4RFxd35vlEkyZN1KxZM8XExFhn4X8cOXJEP/7445m3DRs2BMxF2cLDw9WwYUO1adNGV111lZKSkvicEvBD999/v6ZPn26d4VEzZsxQ3bp1rTPgZh9//LEef/xx6wyPKlu2rBYuXKjw8HDrFAAAAAAAABMM2gEAAAAAAAAAHnfgwAFt27ZNO3bs0M6dO7V9+3bt3LlTu3fvDpjxwO+JiIhQQkKCqlatqmrVqql27dpnRuzlypWzzgOUm5urhQsXKj09XfPmzdPBgwetky5ahQoVVLduXSUmJqpu3bq64oorVL9+fYY8gI8pKSnRpk2btGjRIv3www9atWqVDh8+bJ11TmFhYWrUqJGSkpLUokULtWrVSrGxsdZZPquwsFDbtm3Txo0btXHjRm3ZskX79u3TgQMHdOzYMbfcR9myZVW+fHlVqFBBFStWVMWKFVWlShVVr15d1apVU5UqVTgR9jJkZWUpPT1d6enpWrZsmfkFCi5WaGioatSooTp16qhOnTqqW7euGjVqpGrVqlmn4RLk5uZqzZo1WrdunTZu3KgNGzZo27ZtPv95amhoqGrVqqWGDRueuWhTgwYNFBoaap0GwMNuu+02ff/999YZHjVv3jxVqlTJOgNuNmTIEGVmZlpneFRqaqrGjh1rnQEAAAAAAGCGQTsAAAAAAAAAwExxcbEOHDign3/++VdvBw4c0OHDh3XkyBHl5uZap16WyMhIlS9f/sxbuXLlVKFCBVWpUkVVq1ZV1apVGa3Dp5SUlGjbtm1au3at1q1bp/Xr12v9+vU6deqUaVdoaKgqVqyohISEM29Vq1ZV9erVVadOHUVFRZn2AfCc3bt3a82aNdq0aZM2bdqkLVu2aO/evSouLna0o3z58qpdu/aZC9M0btxYjRo14sIZDsnPz9f+/ft19OhR5ebmKi8vT/n5+crLy1NBQYFKSkrkcrkUEhKi0NBQhYWFKSIiQpGRkSpdurTKli2r2NhY/n85KDc3V+vWrTvrbfv27SoqKjLtKlOmjKpUqXLmucQv/6xZs6Zq1qzJKNjP5efna+vWrdq6dat27typXbt2nfmnN11AJTg4+MwFNxISElSjRo0zF2+qUaMGF94AAtT111+v1atXW2d41I8//qgyZcpYZ8CNduzYoZ49e1pneNy0adPUvHlz6wwAAAAAAAAzDNoBAAAAAAAAAF7v1KlTOnLkiA4fPqyjR4/q+PHjys7O1smTJ896y83N1enTp5WXl6fTp0+f9e2ioiIVFRWpuLj4V/90uVwKDg5WUFCQgoODz7z98u/h4eGKiIhQRESESpUqdebbERERKl26tKKios56i46OVlRUlGJiYhQfH6/IyEjrX0LA40pKSrR7925lZWVp3759+vnnn7Vv3z7t27dPhw4dOvNY/O/HZ2Fh4ZnHWUhIyJnHXkhIiMLCwhQZGXlmZPjLP0uXLq3o6GjFx8crPj5ecXFxiouLO/PtoKAg618KAF4iPz9fWVlZ2r17t/bu3atDhw7p4MGDOnz4sI4fP66TJ08qOztbp06dUl5engoLC888XwgODlZYWNhZb+Hh4Spbtqzi4+NVrly5Mx+H4uPjlZCQoNq1azOsAdwgNzdX27dvP+u5xC9vJ06c0OnTp5Wfn3/W8/3i4uKznsf/8rwiJCTkrIsW/PdzijJlyig2NvbM4/iXb5crV47HMs4pNzdXBw8e1IEDB87889ChQzp27NiZP1d++Vz11KlTys/PV1FRkQoKClRYWHjmz5r//b36y+edpUqVOvN79Ze3mJiYs57vxsfHq0KFCqpcuTKjdQC/0qNHD+3cudM6w2OCgoK0fv16uVwu6xS40Ysvvqg3/j/27jy86vrO+/87JGEN+yL7rqAiCIhLBWVpcRdXRmtdOnXGdlzmrp22V+/xnlprx9HWOq1VKaKtWiuoVaFoLSJg1VopS0WRioph3yFAWJKQ5PfHjPy0ahXlm89J8nhc17kO6JWcZ9As53Be5zNhQuqMTPXq1Suefvrp1BkAAAAASRm0AwAAAAAAAAAAANRygwcPjl27dqXOyEzz5s1j3rx5qTM4gKqqqmL06NGxdu3a1CmZ+sY3vhH//M//nDoDAAAAIClHVAAAAAAAAAAAAADUYqWlpXV6zB4R0bZt29QJHGAvvfRSnR+zN2jQIMaNG5c6AwAAACA5g3YAAAAAAAAAAACAWmz9+vWpEzLXvn371AkcYI8//njqhMwdf/zxcdBBB6XOAAAAAEjOoB0AAAAAAAAAAACgFqvrp1xHGLTXNVu2bInf//73qTMyd84556ROAAAAAMgJBu0AAAAAAAAAAAAAtdjy5ctTJ2SuQ4cOqRM4gB5++OEoLy9PnZGpFi1axJgxY1JnAAAAAOQEg3YAAAAAAAAAAACAWmzFihWpEzLnhPa6o7KyMiZPnpw6I3OnnnpqNGrUKHUGAAAAQE4waAcAAAAAAAAAAACoxerDCe0dO3ZMncAB8swzz8TatWtTZ2TunHPOSZ0AAAAAkDMM2gEAAAAAAAAAAABqsaVLl6ZOyFz37t1TJ3CAPPjgg6kTMnfIIYfEoEGDUmcAAAAA5AyDdgAAAAAAAAAAAIBaqrS0NNasWZM6I3M9evRIncABsGjRopg7d27qjMxddNFFqRMAAAAAcopBOwAAAAAAAAAAAEAt9cYbb0R1dXXqjEy1atUqWrZsmTqDA+DnP/956oTMNW/ePM4888zUGQAAAAA5xaAdAAAAAAAAAAAAoJZatGhR6oTMOZ29bnj77bfj2WefTZ2RubPPPjuaNm2aOgMAAAAgpxi0AwAAAAAAAAAAANRSCxcuTJ2QOYP2umHixIlRXV2dOiNTeXl5cdFFF6XOAAAAAMg5Bu0AAAAAAAAAAAAAtVR9GLT3798/dQKf0cqVK2P69OmpMzI3fPjw6NmzZ+oMAAAAgJxj0A4AAAAAAAAAAABQCy1btiw2bNiQOiNzhx56aOoEPqOf/vSnsXfv3tQZmbv00ktTJwAAAADkJIN2AAAAAAAAAAAAgFroxRdfTJ1QIwzaa7c33nijXpzO3qdPnxg+fHjqDAAAAICcZNAOAAAAAAAAAAAAUAu98MILqRMy16lTp2jdunXqDD6D2267LaqqqlJnZO6SSy6JvLy81BkAAAAAOcmgHQAAAAAAAAAAAKCW2blzZ7z00kupMzLndPbabd68eTF79uzUGZlr1apVjBs3LnUGAAAAQM4yaAcAAAAAAAAAAABqRGVlZaxZsya2bt2aOqXWmzNnTpSVlaXOyNzgwYNTJ/ApVVZWxg9+8IPUGTXiwgsvjCZNmqTOAAAAAMhZBakDAAAAAAAAAAAAgLph27ZtsXbt2lizZs2+63Xr1u37/YYNG6KysjIuv/zy+OY3v5k6t1Z7+umnUyfUiGHDhqVO4FOaPHlyvP7666kzMteoUaO4+OKLU2cAAAAA5DSDdgAAAAAAAAAAAOBjVVRUxLp16943WP/b8fquXbs+0fv64x//mHFt3VZSUhKzZ89OnZG5Jk2axIABA1Jn8Cls2bIlfvKTn6TOqBFnnXVWtG3bNnUGAAAAQE4zaAcAAAAAAAAAAABiy5YtHzpSf/eE9U2bNkVVVdUBua0lS5bEli1bok2bNgfk/dU306dPj4qKitQZmRs0aFAUFhamzuBTuPnmm2Pbtm2pMzLXoEGD+PKXv5w6AwAAACDnGbQDAAAAAAAAAABAHVdeXv6Bofp7x+vr1q2L3bt311hPdXV1zJw5M8aPH19jt1mXTJkyJXVCjRg2bFjqBD6FWbNmxRNPPJE6o0Z8/vOfj169eqXOAAAAAMh5Bu0AAAAAAAAAAABQi1VXV8fmzZs/MFJ/71h98+bNUV1dnTr1faZNm2bQ/in86U9/iqVLl6bOqBEnnHBC6gT205YtW+L//b//lzqjxlxxxRWpEwAAAABqBYN2AAAAAAAAAAAAyGG7d+/+wFD9b39dXl6eOnO/zZs3L9asWROdO3dOnVKr3HfffakTakS7du3iiCOOSJ3Bfrr++utj06ZNqTNqxPDhw2PAgAGpMwAAAABqBYN2AAAAAAAAAAAAyCGTJk2KBQsW7Butl5SUpE7KRHV1dUyZMiW+/vWvp06pNf7617/G7NmzU2fUiBNOOCHy8vJSZ7AfHnzwwfj973+fOqPGfPWrX02dAAAAAFBrNEgdAAAAAAAAAAAAAPz/li1bFs8++2y8/vrrdXbM/q6HHnoodu7cmTqj1rjzzjujuro6dUaNGDVqVOoE9sPChQvjpptuSp1RY4YOHRrDhg1LnQEAAABQaxi0AwAAAAAAAAAAQA4ZPHhw6oQas23btnj00UdTZ9QKixYtihkzZqTOqBGNGzeO448/PnUGn9DGjRvjmmuuiYqKitQpNeaqq65KnQAAAABQqxi0AwAAAAAAAAAAQA4ZMmRI6oQaNXHixCgtLU2dkfNuuummenM6++jRo6NZs2apM/gEdu7cGV/72tdiw4YNqVNqzNChQ+Nzn/tc6gwAAACAWsWgHQAAAAAAAAAAAHJInz59okOHDqkzasymTZvirrvuSp2R0x577LFYsGBB6owac8YZZ6RO4BMoLy+PK6+8Ml599dXUKTXq6quvTp0AAAAAUOsYtAMAAAAAAAAAAECOOf7441Mn1Kj7778/iouLU2fkpC1btsTNN9+cOqPGtGrVKkaMGJE6g4+xd+/e+MY3vhEvvfRS6pQaNXTo0DjuuONSZwAAAADUOgbtAAAAAAAAAAAAkGOGDx+eOqFGlZeXx7e+9a2orKxMnZJz/v3f/z1KSkpSZ9SYU045JQoLC1Nn8Hfs3r07rrzyypgxY0bqlBr39a9/PXUCAAAAQK1k0A4AAAAAAAAAAAA5ZsSIEfVu1PvKK6/EXXfdlTojpzzwwAMxa9as1Bk1avz48akT+DtKSkriy1/+csyZMyd1So0bMWJEDBs2LHUGAAAAQK1k0A4AAAAAAAAAAAA5pmXLlnHMMcekzqhxd911V7z44oupM3LCn//857j55ptTZ9SowYMHx2GHHZY6g4/w6quvxvnnnx8LFy5MnVLj8vLy4tprr02dAQAAAFBrGbQDAAAAAAAAAABADho7dmzqhBq3d+/e+Nd//dd46623UqcktXz58rj66qujoqIidUqN+tKXvpQ6gQ9RXV0dkyZNigsvvDBWrFiROieJU045xYstAAAAAHwGedXV1dWpIwAAAAAAAAAAAID327p1a4wYMaLejZojIrp06RIPPvhgdOrUKXVKjSsuLo5LLrkk1q9fnzqlRrVr1y7mzJkThYWFqVN4j8WLF8f3v//9enkq+7sKCwvjqaeeiu7du6dOAQAAAKi1nNAOAAAAAAAAAAAAOah169YxatSo1BlJrF69Or70pS/F6tWrU6fUqOLi4rj44ovr3Zg9IuKLX/yiMXsOWb9+fVx33XVx3nnn1esxe8T//L9pzA4AAADw2TihHQAAAAAAAAAAAHLU7Nmz46tf/WrqjGS6dOkSkyZNit69e6dOydzbb78dl112WWzYsCF1So1r3rx5zJo1K1q0aJE6pd5744034he/+EVMnz49KioqUuck17Jly5gxY0a0atUqdQoAAABAreaEdgAAAAAAAAAAAMhRJ5xwQnTu3Dl1RjKrV6+O8ePHx3PPPZc6JVNPPfVUnH/++fVyzB4R8aUvfcmYPaH169fH/fffHxdeeGGceeaZ8fjjjxuz/6+vfe1rxuwAAAAAB4AT2gEAAAAAAAAAACCHTZw4MW699dbUGUk1aNAgrrnmmvjnf/7nyM/PT51zwJSXl8ctt9wSDzzwQOqUZJo2bRqzZs2K1q1bp06pUT/72c+iqKgounfvHt27d4+uXbtG48aNa+S2t27dGgsWLIj58+fHvHnz4tVXX42qqqoaue3apGfPnjF9+vQoLCxMnQIAAABQ6xm0AwAAAAAAAAAAQA7bunVrjBw5Mvbs2ZM6JblBgwbFf/3Xf0Xv3r1Tp3xmixcvju9+97vx6quvpk5J6oorrohrr702dUaNGz16dKxevXrf7/Py8qJdu3bRoUOH913at28fLVq0iJYtW0bz5s2jZcuW0bRp0ygsLIzCwsIoKCiIwsLCqKioiPLy8n3XJSUlsXnz5ti8eXNs2rQpli9fHsuWLYtly5bFxo0bE37ktcfEiRPjxBNPTJ0BAAAAUCcYtAMAAAAAAAAAAECO+973vhe//vWvU2fkhEaNGsXll18e//iP/xhFRUWpc/bbxo0b48c//nE88cQT9f5U7LZt28aMGTNq5X/Hz+pvB+3kllGjRsWECRNSZwAAAADUGQ1SBwAAAAAAAAAAAAB/3z/90z9FYWFh6oycUFZWFnfccUeMHTs2fvWrX0VZWVnqpE9k06ZN8bOf/SzGjh0bjz32WL0fs0dEXH311fVyzE5ua9SoUXznO99JnQEAAABQpxi0AwAAAAAAAAAAQI7r3LlznHXWWakzcsrmzZvj+9//fpx44olx2223xbp161InfaiXX345vv71r8fIkSPj9ttvj127dqVOygl9+/aN8ePHp86AD7jiiiuiR48eqTMAAAAA6pS86urq6tQRAAAAAAAAAAAAwN+3Zs2aOOmkk6K8vDx1Sk4qKCiIY489Nk466aT4/Oc/H23atEnSUV5eHvPnz48//OEPMWvWrCguLk7SkevuvffeOP7441NnJDN69OhYvXp16gz+Rq9evWLatGnRsGHD1CkAAAAAdYpBOwAAAAAAAAAAANQSN998c9x7772pM3Jefn5+DBw4MI466qgYNmxYDBkyJJo3b57JbW3ZsiWWLFkSixcvjgULFsTLL7/sFPaPMW7cuLjllltSZyRl0J6b7rvvvjj22GNTZwAAAADUOQbtAAAAAAAAAAAAUEts3749vvCFL0RJSUnqlFqnU6dO0adPn+jTp09069Yt2rVrF+3bt4927dpFs2bNomHDhtGoUaNo2LBhVFZWRllZWezZs2ffZfPmzbF27dpYv359rF27NtauXRtvvPFGrF27NvWHVqu0adMmnnrqqWjdunXqlKQM2nPP+eefHzfeeGPqDAAAAIA6yaAdAAAAAAAAAAAAapHJkyfHd7/73dQZ8Knceuutcfrpp6fOSM6gPbd07Ngxpk+fHs2bN0+dAgAAAFAnNUgdAAAAAAAAAAAAAHxy48ePj0GDBqXOgP02duxYY3Zy0g033GDMDgAAAJAhg3YAAAAAAAAAAACoRRo0aBDXX399FBQUpE6BT6xz585x4403ps6ADzj33HPjxBNPTJ0BAAAAUKcZtAMAAAAAAAAAAEAtc9hhh8UVV1yROgM+kfz8/PjRj34ULVu2TJ0C79OtW7f4v//3/6bOAAAAAKjzDNoBAAAAAAAAAACgFvra174Whx12WOoM+FhXX311DB06NHUGvE9+fn7cfPPNUVRUlDoFAAAAoM4zaAcAAAAAAAAAAIBaqLCwMH74wx9G06ZNU6fARxo7dmx89atfTZ0BH/C1r33NCy0AAAAA1BCDdgAAAAAAAAAAAKil+vbtG9dff33qDPhQhx56aNx8882Rl5eXOgXe5+ijj44rr7wydQYAAABAvWHQDgAAAAAAAAAAALXYuHHj4oILLkidAe/Trl27uOuuu6Jp06apU+B92rZtG7feems0aOBp1AAAAAA1xSMxAAAAAAAAAAAAUMtdd911cfTRR6fOgIiIaNasWdx1113RqVOn1CnwPvn5+XHrrbdGhw4dUqcAAAAA1CsG7QAAAAAAAAAAAFDLFRYWxu233x49e/ZMnUI916hRo7jrrrti4MCBqVPgA771rW/FcccdlzoDAAAAoN4xaAcAAAAAAAAAAIA6oFWrVjFx4sRo165d6hTqqYKCgvjJT34SxxxzTOoU+IAzzjgjLrvsstQZAAAAAPWSQTsAAAAAAAAAAADUET169Ih77703WrZsmTqFeqagoCB++MMfxqhRo1KnwAcMHjw4fvCDH6TOAAAAAKi3DNoBAAAAAAAAAACgDunXr19MmjQpioqKUqdQTzRq1Ch+9rOfxamnnpo6BT6ge/fuceedd0ajRo1SpwAAAADUWwbtAAAAAAAAAAAAUMcMHDgwfvGLX0SrVq1Sp1DHNWvWLO6++24ns5OT2rRpExMnTow2bdqkTgEAAACo1wzaAQAAAAAAAAAAoA4aOHBg3H///dG2bdvUKdRR7dq1i1/+8pdxzDHHpE6BDygqKopJkyZFr169UqcAAAAA1HsG7QAAAAAAAAAAAFBH9evXLyZPnhw9e/ZMnUIdc+ihh8ajjz4aAwcOTJ0CH9CkSZOYMGFCHH744alTAAAAAAiDdgAAAAAAAAAAAKjTunfvHlOmTIlhw4alTqGO+MIXvhC//vWvo1OnTqlT4AOaNm0aP//5z33NAwAAAMghBu0AAAAAAAAAAABQx7Vq1SruvffeGD9+fOoUarH8/Py4+uqr4/bbb4+mTZumzoEPaNq0adx9991xzDHHpE4BAAAA4D0M2gEAAAAAAAAAAKAeaNiwYXz/+9+P//zP/4xGjRqlzqGWOeigg+K+++6Lq666KvLy8lLnwAe0bds2HnjggTjqqKNSpwAAAADwNwzaAQAAAAAAAAAAoB4599xzY/LkydGrV6/UKdQSo0aNiqlTp8awYcNSp8CH6tmzZ0yZMiUGDBiQOgUAAACAD2HQDgAAAAAAAAAAAPXMYYcdFo8//nhccMEFqVPIYS1atIgbb7wxJkyYEK1bt06dAx/q2GOPjcmTJ0e3bt1SpwAAAADwEQzaAQAAAAAAAAAAoB5q0qRJfO9734uJEydGx44dU+eQY8aMGRPTp0+P888/P3UKfKRLL7007r33Xi+4AAAAAJDj8qqrq6tTRwAAAAAAAAAAAADplJaWxo9//ON46KGHoqqqKnUOCXXs2DG+/e1vx6mnnpo6pU4bPXp0rF69OnVGrdWiRYv43ve+5/9TAAAAgFrCoB0AAAAAAAAAAACIiIhXXnklbrzxxli0aFHqFGpY48aN4ytf+Ur80z/9UzRp0iR1Tp1n0P7pDR06NH70ox9F586dU6cAAAAA8AkZtAMAAAAAAAAAAAD7VFdXx9SpU+PHP/5xrF+/PnUOGcvLy4vTTjst/u3f/i06deqUOqfeMGjff02aNIlrrrkmLr300sjPz0+dAwAAAMB+MGgHAAAAAAAAAAAAPmD37t3xq1/9KiZNmhQlJSWpczjA8vLy4gtf+EJcddVV0a9fv9Q59Y5B+/457rjj4vvf/35069YtdQoAAAAAn4JBOwAAAAAAAAAAAPCRSktL47777ov77rsvtm3bljqHzygvLy/GjBkTV199dfTv3z91Tr1l0P7JdOvWLb75zW/GSSedlDoFAAAAgM/AoB0AAAAAAAAAAAD4WLt27YpHHnkk7rvvPkPcWqhJkyYxbty4uPTSS6N3796pc+o9g/a/r3Xr1nH55ZfHJZdcEg0bNkydAwAAAMBnZNAOAAAAAAAAAAAAfGJ79+6N3//+9/Hggw/G/PnzU+fwMTp16hRf/OIXY/z48dGqVavUOfwvg/YP16pVq7jsssvikksuiWbNmqXOAQAAAOAAMWgHAAAAAAAAAAAAPpWlS5fGQw89FL/97W9jx44dqXP4Xw0bNozRo0fHueeeG8OHD48GDRqkTuJvGLS/X48ePeLiiy+Oc889N5o2bZo6BwAAAIADzKAdAAAAAAAAAAAA+EzKysri2WefjalTp8YLL7wQe/fuTZ1U7+Tl5cWRRx4Zp512WpxxxhlOY89xBu0RBQUFccIJJ8T5558fI0eO9MILAAAAAHWYQTsAAAAAAAAAAABwwGzZsiVmzJgRM2bMiJdfftm4PUMNGjSIIUOGxEknnRQnnXRSHHTQQamT+ITq86B9wIABceqpp8a4ceOiXbt2qXMAAAAAqAEG7QAAAAAAAAAAAEAmSkpKYvbs2TF79ux46aWXYvv27amTar3WrVvH8ccfHyNGjIjhw4cbBNdS9WnQXlhYGIMHD45Ro0bF2LFjo2vXrqmTAAAAAKhhBu0AAAAAAAAAAABA5iorK2PhwoXx/PPPx8svvxyvvfZaVFRUpM7KeUVFRXHkkUfGUUcdFccff3wMGDAgGjRokDqLz2jq1Knx2muvxbJly2LZsmWxdu3aqCtP6S0sLIz+/fvHkCFD4phjjoljjz02mjVrljoLAAAAgIQM2gEAAAAAAAAAAIAat3v37vjLX/4Sc+fOjb/85S+xePHi2LZtW+qspPLy8qJ79+4xYMCAGDx4cAwdOjT69+9vwF4PlJWVxapVq2LVqlWxcuXKWL16daxfv37fZcOGDVFWVpY68wOaNWsWvXv3jn79+kX//v3j0EMPjQEDBkTjxo1TpwEAAACQQwzaAQAAAAAAAAAAgJywfPnyeO211+L111+PN998M956661Ys2ZNnTm5+r2aN28ePXv2jIMPPjgOPfTQOOyww6J///5RVFSUOo0cVVpaGps3b44tW7bEli1boqSkJHbs2BHbtm2LHTt2xI4dO2LXrl2xa9eu2L17975LeXl5VFRU7LuurKyMysrKqK6ujqqqqqiqqoq8vLwoKCiIgoKCyM/PjyZNmkSzZs2iqKgomjdvHm3atIn27dtHu3bt4qCDDoquXbtGjx49om3btqn/WAAAAACoBQzaAQAAAAAAAAAAgJy1a9euePvtt6O4uDhWrlz5vhOsN2zYEBUVFakTP1R+fn60a9cuOnfuHB07doxOnTpFz549o1evXtGrV69o37596kQAAAAAgBph0A4AAAAAAAAAAADUStXV1bF169bYsGFDbNy4MTZt2hQlJSVRUlIS27dvj23btsX27dvfd2L1nj17Ys+ePVFRURFVVVWxd+/eqKqqisrKyoj4nyF6gwYN9p1UnZ+fH4WFhdG0adMPXJo3bx6tWrWKNm3aROvWraN169b7TrLu0KFDFBQUJP4TAgAAAABIz6AdAAAAAAAAAAAAAAAAAACATDRIHQAAAAAAAAAAAAAAAAAAAEDdZNAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBM/Q/LRQABAABJREFUGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMFKQOAAAAAAAAAAAAyEX9+vVLnZC5Z599Nrp27Zo6AwAAAGqE+/oAAGk4oR0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkoSB0AAAAAAFAXrFq1KsaMGZM6gxyRl5cX+fn50aBBg33X7/66cePG0ahRo2jUqNG+Xzdu3DiKioqiefPm+67fvbRp0+Z9l8aNG6f+8AAAAAAAAAAAAOATM2gHAAAAAIADrLq6Ovbu3ZvJ+27atGm0a9cuOnbsGB07doxOnTrtu+7atWt07949GjVqlMltAwAAAAAAAAAAwP4yaAcAAAAAgFpk165dsWLFilixYsWH/vu8vLw46KCDonv37tG9e/fo1atXHHzwwXHIIYdEp06dargWAAAAAAAAAACA+s6gHQAAAAAA6pDq6upYt25drFu3LubOnfu+f1dUVLRv3D5gwIA44ogj4uCDD46CAn9dAAAAAAAAAAAAQDY8Qw0AAAAAAOqJ0tLSWLhwYSxcuDCmTJkSERGNGjWK/v37x8CBA2Po0KFx1FFHRfv27ROXAgAAAAAAAAAAUFcYtAMAAAAAQD1WVlYWr7zySrzyyivxwAMPREREz549Y+jQoXHMMcfE8OHDo23btokrAQAAAAAAAAAAqK0M2gEAAAAAgPcpLi6O4uLi+M1vfhN5eXlx2GGHxYgRI2LEiBExePDgyM/PT50IAAAAAAAAAABALWHQDgAAAAAAfKTq6upYvHhxLF68OCZMmBCtW7eOz3/+8zF27Ng47rjjorCwMHUiAAAAAAAAAAAAOcygHQAAAAAA+MS2bt0ajzzySDzyyCPRokWLGDNmTJx11llxzDHHRF5eXuo8AAAAAAAAAAAAcoxBOwAAAAAA8Kls3749Hn/88Xj88cejS5cuceaZZ8bZZ58dPXr0SJ0GAAAAAAAAAABAjmiQOgAAAAAAAKj9Vq9eHXfddVecdNJJ8ZWvfCXmzJkTVVVVqbMAAAAAAAAAAABIzAntAAAAAADAAVNdXR0vvPBCvPDCC9G9e/e46KKL4vzzz49mzZqlTgMAAAAAAAAAACABJ7QDAAAAAACZWLFiRdx0000xevTouOOOO2LHjh2pkwAAAAAAAAAAAKhhBu0AAAAAAECmSkpK4qc//WmMGjUqbrvtNsN2AAAAAAAAAACAesSgHQAAAAAAqBE7duyICRMmxBe+8IW4//77o6KiInUSAAAAAAAAAAAAGTNoBwAAAAAAatTWrVvjBz/4QZx66qnxzDPPpM4BAAAAAAAAAAAgQwbtAAAAAABAEitWrIirrroqrrjiili1alXqHAAAAAAAAAAAADJg0A4AAAAAACQ1Z86cOP3002PixIlRWVmZOgcAAAAAAAAAAIADyKAdAAAAAABIbvfu3XHrrbfGF7/4xVixYkXqHAAAAAAAAAAAAA4Qg3YAAAAAACBn/OUvf4lx48bFI488kjoFAAAAAAAAAACAA8CgHQAAAAAAyCm7du2K6667Lq699trYvXt36hwAAAAAAAAAAAA+A4N2AAAAAAAgJz355JMxfvz4WLFiReoUAAAAAAAAAAAAPiWDdgAAAAAAIGctXbo0zjvvvHjxxRdTpwAAAAAAAAAAAPApGLQDAAAAAAA5bdu2bXHFFVfEtGnTUqcAAAAAAAAAAACwnwzaAQAAAACAnFdRURHf+ta34t57702dAgAAAAAAAAAAwH4waAcAAAAAAGqF6urquPnmm+OnP/1p6hQAAAAAAAAAAAA+IYN2AAAAAACgVrnjjjvizjvvTJ0BAAAAAAAAAADAJ2DQDgAAAAAA1Do/+clPYuLEiakzAAAAAAAAAAAA+BgG7QAAAAAAQK106623xhNPPJE6AwAAAAAAAAAAgL/DoB0AAAAAAKi1rrvuupg7d27qDAAAAAAAAAAAAD6CQTsAAAAAAFBrVVRUxNVXXx3FxcWpUwAAAAAAAAAAAPgQBu0AAAAAAECtVlJSEldffXXs2bMndQoAAAAAAAAAAAB/w6AdAAAAAACo9ZYuXRo33nhj6gwAAAAAAAAAAAD+hkE7AAAAAABQJzzyyCPx29/+NnUGAAAAAAAAAAAA72HQDgAAAAAA1Bk33HBDbNiwIXUGAAAAAAAAAAAA/8ugHQAAAAAAqDO2b98eN9xwQ+oMAAAAAAAAAAAA/pdBOwAAAAAAUKc888wz8bvf/S51BgAAAAAAAAAAAGHQDgAAAAAA1EE33XRT7N69O3UGAAAAAAAAAABAvWfQDgAAAAAA1Dnr16+Pe+65J3UGAAAAAAAAAABAvWfQDgAAAAAA1En33HNPbNiwIXUGAAAAAAAAAABAvWbQDgAAAAAA1Em7du2KO+64I3UGAAAAAAAAAABAvWbQDgAAAAAA1FmPPfaYU9oBAAAAAAAAAAASMmgHAAAAAADqrPLy8vjlL3+ZOgMAAAAAAAAAAKDeMmgHAAAAAADqtMmTJ8f27dtTZwAAAAAAAAAAANRLBu0AAAAAAECdtnPnzpg6dWrqDAAAAAAAAAAAgHqpIHUAAAAAAAC1T5cuXWLWrFmpM3JKdXV1VFRURHl5eezduzcqKiqioqIi9uzZEyUlJbFt27b3XdauXRurVq2KNWvWxPr166OioiL1h1CnPfzww3HxxRenzgAAAAAAAAAAAKh3DNoBAAAAAOAAyMvLi4YNG0bDhg33+20rKytj/fr18eabb8Zf//rXWLJkSSxZsiRWrFgRVVVVGdTWP0uXLo1XXnklBg0alDoFAAAAAAAAAACgXjFoBwAAAACAxPLz86Nz587RuXPnOPHEE/f989LS0pg3b1689NJL8dJLL8XSpUujuro6YWnt9pvf/MagHQAAAAAAAAAAoIYZtAMAAAAAQI4qKiqKkSNHxsiRIyMiYsuWLTFz5syYPn16/PnPf3Z6+36aOXNmXH/99dGgQYPUKQAAAAAAAAAAAPWGZ2wBAAAAAEAt0aZNmxg/fnzcf//98dxzz8V3vvOd6NWrV+qsWmPz5s0xf/781BkAAAAAAAAAAAD1ikE7AAAAAADUQh06dIjLLrssfve738Wdd94ZQ4cOTZ1UK8yYMSN1AgAAAAAAAAAAQL1i0A4AAAAAALVYXl5ejBkzJn7961/HQw89FAMHDkydlNOee+651AkAAAAAAAAAAAD1ikE7AAAAAADUEUOGDImHH344brrppmjfvn3qnJy0fPnyWLduXeoMAAAAAAAAAACAesOgHQAAAAAA6pC8vLw455xz4umnn46TTz45dU5Oevnll1MnAAAAAAAAAAAA1BsG7QAAAAAAUAcVFRXFT37yk/jOd74ThYWFqXNyikE7AAAAAAAAAABAzTFoBwAAAACAOuyyyy6LX/7yl1FUVJQ6JWf85S9/SZ0AAAAAAAAAAABQbxi0AwAAAABAHXfUUUfFxIkTo2nTpqlTckJxcXHs2bMndQYAAAAAAAAAAEC9YNAOAAAAAAD1wNChQ2PixInRpEmT1CnJVVZWxtKlS1NnAAAAAAAAAAAA1AsG7QAAAAAAUE8MGzYs/uM//iN1Rk5YsmRJ6gQAAAAAAAAAAIB6waAdAAAAAADqkXPOOSdOP/301BnJvfXWW6kTAAAAAAAAAAAA6gWDdgAAAAAAqGe+973vRdeuXVNnJLVq1arUCQAAAAAAAAAAAPWCQTsAAAAAANQzRUVF8c1vfjN1RlIG7QAAAAAAAAAAADXDoB0AAAAAAOqhk08+OY444ojUGckYtAMAAAAAAAAAANSMgtQBAAAAAABAGt/4xjfisssuS52RxK5du6KkpCRatWqVOoUcV1ZWFmvWrImNGzfGpk2b3nfZsWNHlJaWRmlpaezcuTNKS0ujvLw8KisrY+/evVFRURGVlZWRl5cXhYWF+y4FBQVRWFgYjRs3jhYtWkSrVq2iZcuW0aJFi2jZsmW0bt06OnXqFJ07d44uXbpE8+bNU/8xAPuprKws3nnnnVi5cuX7vn68++udO3dGWVlZlJWVRUVFRZSVlUV5eXnk5eXt+xrx7nVRUVG0bNkymjdvHi1atIjWrVvHQQcdFJ06dYqOHTvuu87Pz0/9YUONqK6ujs2bN8eGDRti/fr1sX79+ti4cWNs27YtduzYEdu3b4/S0tJ91+Xl5bF37959l4qKiti7d280aNAg8vPzo6CgIAoKCiI/Pz8aN24cRUVF0axZs32Xli1bRtu2baNt27bRrl27aNu2bRx00EHRuXPnaNiwYeo/DuATqK6ujlWrVkVxcXFs2LDhfd+TN23aFNu2bdv3ffm9358rKyv3fY1o2LBhFBQUROPGjff97P7upUOHDvu+H3fs2DG6dOkSTZs2Tf1hQ72yZs2aePPNN2P9+vWxYcOGfT8nbNy4MXbu3Bnl5eWxZ8+efZ/j1dXV0ahRow9cmjVrFh06dIgOHTpE+/bto3379tGhQ4fo1q1bdOvWLRo0cIZUrqmqqoq1a9dGcXFxrFy5MjZv3hxbtmyJzZs3x+bNm6OkpCR2794d5eXl++53vfdr/LuP1TRs2DCaN28eLVu2jFatWkWrVq2iQ4cO0aVLl/ddCgsLU3/I8KlUVlbGpk2b9n2N3LJlS2zbtm3fpaSkJHbu3Bm7du2KPXv27Lves2dPVFZWfuDy3vtT+fn5kZ+fH02aNImmTZtGs2bN9l23bNky2rRpE23atIm2bdtGmzZtolOnTtGpU6coKipK/ccC9dbu3bujuLg4Vq9eHatWrYpVq1bF6tWrY9OmTbFnz57YvXv3vktZWVk0aNAgmjZt+r5L+/bto3v37tGtW7fo0aNHdO/ePbp27ernJQAA/i6DdgAAAAAAqKeOO+64OPzww2Px4sWpU5IwaOdde/fujeLi4njzzTfjrbfeihUrVux7EtfGjRujurr6M99GZWVl7Nmz51O9bfPmzaNz587RrVu36Nu3b/Tr1y8OPvjg6NWrVxQU+Os+SG3lypWxYMGCWLp0abz99tvx9ttvx6pVq6KqqupTvb+9e/e+7+vFhg0bPvZtGjZsGL17946+fftGnz59on///nHkkUdGmzZtPlUDpFZdXR2rV6+Od955J4qLi/dd3nnnndiwYUNUVFR85tt4d4hRXl7+qd6+QYMG0aFDh+jatWt06dIlevXqFQcffHAccsgh0a1bt8jLy/vMjcD+27ZtWyxcuDBef/31ePvtt2PZsmWxbNmyT/2zeHl5eZSXl8euXbv2/bNVq1b93bfJy8uLzp07R58+faJv375x8MEHx6BBg6J3796+NsAB8Pbbb8e8efNiyZIlsXTp0li6dGns2LFjv9/Prl273ve5/XGaNGkSffr0iUMOOSQOOeSQ6NevXxx55JFewKIG7dixIxYtWhSvvPJKLFmyJIqLi2P58uVRVlb2qd7fu1/j3/Vx970KCwv33d/q169fDBo0KI444ggvckTO2Lp1a7zzzjuxYsWKWLFiRSxfvjxWrlwZ69ati02bNkVlZeUBu60Puz9VUlKyX++jZcuW0alTp+jWrVv07t07evfuHX369InevXtHs2bNDlgrELFp06aYP39+LFiwIObPnx9LliyJvXv37tf7KC8v/9jP86ZNm8Zhhx0WAwcOjGOOOSaOOuooL14BAMD75FUfiGfgAAAAAADUc6tWrYoxY8akzqgxXbp0iVmzZqXO4AB44IEH4sYbb0ydkcTkyZNj8ODBqTOoYXv27InXX389Xn311Xj11VfjjTfeiHfeeeeADONqWmFhYfTu3TsGDBgQQ4cOjaFDh0bPnj1TZ0GdVl1dHUuWLIl58+bF/PnzY/78+bFx48bUWR+pR48eMXjw4DjqqKNixIgR0bFjx9RJ8AFVVVXxzjvvxOLFi+P111/fd11aWpo67VNr0qRJ9O3bNwYOHBgDBw6MQYMGRc+ePQ1Za6l+/fqlTsjcs88+G127dk2d8amsXbs25s6du2+c8dZbbx2QF6TKQosWLWLQoEFx5JFHxvDhw2PgwIFOL4RPYN26dfHiiy/Gn/70p/jTn/70iV7wqaYUFhbGwIED49hjj41jjz02jjzySOPmA2jbtm3x/PPPx4svvhivvPJKLFu2LOe+xjdu3DgGDRoURx99dIwaNSoOP/zw1EnUA1VVVbFs2bJ47bXX4o033oilS5fGG2+8kdOPT+yPvLy86N69ewwYMCAOP/zwOPzww2PAgAFGsbCftmzZEk899VRMnTo1Fi1alKShsLAwjj322Dj99NPj5JNPjsaNGyfp+DDu6wMApGHQDgAAAABwABi0U1tt3bo1RowYUSvHvJ/VhAkTYtSoUakzyNjmzZtj7ty5MXfu3Fi4cGG8+eab+33ySG3Srl27GDJkSAwbNixGjhwZ3bt3T50EtV5FRUXMnTs3Zs6cGTNnzsypAc3+OuSQQ+KEE06I0aNHx5AhQ4xrSaKysjIWL1687/vz/Pnza/V4/ZNq2bJlDBkyJI499tj43Oc+F4ccckjqJD4hT3LPPW+88UY888wz8eyzz8brr7+eOudTa9WqVQwfPjxOOOGEGDNmjJEWvMeWLVvid7/7XTz55JOxYMGCnBsxf5QmTZrEiSeeGGeccUaccMIJxu2fQnFxccyaNStmz54dCxYsqHWP4XTp0iVGjx4dp5xySgwdOjR1DnXEzp07Y968ebFw4cJ45ZVXYtGiRfXiPtR75efnx2GHHRbDhg2Lo446KoYNGxYtWrRInQU5afbs2TFlypR44YUXcurv/i6++OK47rrrUmfs474+AEAaBu0AAAAAAAeAQTu12ZVXXhkzZ85MnVHj/uu//ivOPvvs1BkcYLt27YqXXnopXnjhhZg7d2689dZbqZOS6tOnT4waNSpGjRoVgwcPjvz8/NRJ/B3XXHNN7Ny5M3XGATdy5Mi4+OKLU2fsl+rq6vjjH/8YTzzxRMyZMye2b9+eOumA69KlS5xxxhlxxhlnRN++fVPnUMetWbMmZs+eHc8991y9GbB/nHbt2sXnPve5GDNmTIwYMSKaNWuWOomPUB+e5D5r1qzo0qVL6oy/a9myZfHoo4/GjBkzYuXKlalzDrjGjRvHyJEjjWATq6qqiiuuuCKqqqpSpxxwp5xySpx33nmpM/6uysrKeOaZZ+KRRx6Jl156KSorK1MnfSYtW7aMsWPHxplnnhlHH3106pyctmfPnnj66afj4Ycfjvnz56fOOWB69+4d5513Xpx11lnRtm3b1DnUInv37o2FCxfGH//4x/jTn/4UixYtqnUv7pC1/Pz8GDx4cJx44olxwgknRP/+/VMn8QnceuutsXTp0tQZB1zv3r3j29/+duqMmDNnTvz0pz+NxYsXp075UBdddFH8x3/8R+qMferDfX2D9v1XXl4eX/nKV2Lu3LmpU2rUmWeeGbfccosXwAWgRhi0AwAAAAAcAAbt1GYPPvhg3HDDDakzatz1118fF154YeoMDoCVK1fGnDlzYs6cOTF37twoLy9PnZSTWrVqFaeddlqcffbZccQRR6TO4UOcdtppdfJFGIYPHx733HNP6oxPZNOmTfHYY4/Fww8/XCfHch9l8ODBcckll8TYsWOjoKAgdQ51xKuvvrrvdM0lS5akzslpjRo1is997nPx+c9/Pk466aRo3rx56iTeoz48yf25556Ljh07ps74gPLy8vj9738fU6ZMiT//+c+pc2pM27Zt4x/+4R/iwgsvjA4dOqTOqXdGjBgRGzZsSJ1xwJ166qlx2223pc74UKWlpfHoo4/G/fffH6tXr06dk4n+/fvHV77ylTj11FP9vP0e77zzTjz44IMxderUOvkiYu9q2LBhnH322XH55ZdH9+7dU+eQo0pLS+MPf/hDzJo1K/7whz/Etm3bUifVKl26dImTTz45Tj311BgwYEDqHD7CN77xjZg+fXrqjAOuffv28cILLyS7/blz58Ytt9wSr776arKGT8KgveYZtO+/b33rWzF16tTUGTVq+PDhMWHChCgsLEydAkA94ZExAAAAAACo5+rrKVEVFRWpE/gM1q1bF0899VQ8+eST8dprr6XOqRVKSkriwQcfjAcffDD69u0bZ511Vpx55plx0EEHpU7jf3Xo0KFODtrXrFmTOuFjLV68OCZOnBjPPvtsvfz+sHDhwli4cGF07NgxLrroorjoooucFs2nsnz58pg2bVpMmzYtVqxYkTqn1igrK4vZs2fH7Nmz44YbbohRo0bFuHHjYsSIEZ5MSo3Iz89PnfA+mzZtinvvvTd+85vfRElJSeqcGrd58+a488474+67746TTjoprrjiijjkkENSZ9UbHTp0qJOD9lz8mbykpCQmTpwYU6ZMidLS0tQ5mfrrX/8a3/zmN+O///u/49JLL43zzz8/mjZtmjormeLi4rjzzjtj+vTpUVlZmTonc+Xl5TFlypR49NFH4+STT45rrrkmevbsmTqLHLB79+6YPXt2/Pa3v43nn3++Xj4ecaCsXr067rnnnrjnnnuiR48ecfrpp8e5554bXbp0SZ3Ge7Rv3z51QiY2bdoUFRUVNX7/vbS0NG655ZZ4+OGHwxmX8Nndfvvt9W7MfsQRR8Ttt9/u8UcAapRBOwAAAAAA1HN9+/aN1q1bx9atW1On1CineNc+O3fujCeffDKeeOKJWLBggSdpfQZvvfVW/OhHP4r//u//jpNPPjm+/OUvO70oB7Rt2zZ1QibWrVuXOuEjLVq0KO68886YPXt26pScsG7durj11lvj3nvvjcsvvzwuuuiiaNKkSeosctyOHTvit7/9bUybNi0WLlyYOqfWKysri6effjqefvrpaNOmTZxzzjlxwQUXRLdu3VKnUYflyqB9/fr1MWnSpHj44Ydjz549qXOSq6ioiOnTp8eTTz4Zp5xySlx11VXRp0+f1Fl1Xrt27VInZGLt2rWpE/YpKyuLBx54IH7+85/X6VO5P8zq1avjP//zP+Puu++Of/u3f4tx48ZFXl5e6qwas2LFirjzzjtj2rRp9WLI/rcqKyvjySefjBkzZsQFF1wQV155ZbRu3Tp1FjWsuro65s6dG48++mjMnDkzdu3alTqpzlm+fHnccccdcdddd8Xxxx8f48ePj9GjR0dBgdlEanX1sc/q6urYsGFDjb6Awpw5c+K73/1uTj/uCrXJE088ET/72c9SZ9Sonj17xsSJE+v1C20BkIZ7ZgAAAAAAUM/l5eXFkCFD4tlnn02dUqOceFN7/PWvf43JkyfHtGnTYufOnalz6pS9e/fG9OnTY/r06XH00UfHP/7jP8bIkSPr1RPqc0nLli1TJ2Ri165dUVpaGkVFRalT9lm0aFHcfvvt8Yc//CF1Sk7aunVr/PCHP4xf/OIX8X/+z/+Jc889Nxo0aJA6ixzz1ltvxa9+9auYOnWqEUZGtmzZEpMmTYp77rknjj/++PjiF78Yo0aN8vnIAZd63LNhw4aYMGFCPPLII1547ENUV1fHU089FU8//XScddZZce2119bZ0y1zQYsWLVInZGLz5s1RXV2d/L7etGnT4rbbbsvJE+Nr0saNG+Pb3/52/PrXv47rrrsuBg4cmDopU2VlZTFhwoS4++67PR4X//OY5AMPPBBTp06Na6+9Ni644ILkn5tkb8uWLfHYY4/FI488EsXFxalz6oWqqqp4/vnn4/nnn4/OnTvHJZdcEueff35OPT5V39TVxz4j/udnrZoYtFdVVcVtt90WEydOzPy2oL6YO3duXHfddakzalT79u1j0qRJ0aZNm9QpANRD/oYLAAAAAACI3r17p06ocU73zm3V1dUxc+bMuPDCC2PcuHHx0EMPGbNnbO7cufHVr341zjzzzJg5c2bqnHqpefPmqRMys3nz5tQJEfE/TyD/93//9xg/frwx+yewadOmuO666+K8886LefPmpc4hB7z7/fnSSy+N0047LR566CFj9hpQXV0dL7zwQvzLv/zL/8fefYc3Wb5tHD/TPSkto+y9ZIMMERBQpmwU2XvKEAUEZW+RjSCzgGwoW9kyRPaQVZANhbaU0r1H0ub9wxd+VlroSJ4ryXN+joNDm6bJt03bpMlz3TdatGiB7du3c+iXDEpqh3atVou1a9eiefPm2Lx5M7+v3yElJQW7d+9Gs2bNsHr1an69jMRSB610Oh3Cw8PFrj8wMBD9+vXDt99+q/ph9n+7ceMGvvjiC4wfPx4xMTHSOUZx5swZtGrVCsuWLeMw+39ERUVhypQp6NatGx49eiSdQ0by8OFDjB8/Hg0aNMDcuXM5zC7k+fPnmD17Nho2bIh58+YhLCxMOkmVLHkxgZCQEKNfR0xMDIYMGcJhdiIDevz4MYYNG6aqx6nOzs5YtWoVChcuLJ1CREQqxYF2IiIiIiIiIiIiIiJS5YvWDg4O0gmUBp1Oh3379qF169YYOnQorl69Kp2kOvfv38fQoUPRqVMnXLx4UTpHVZydnaUTjEZ6oD05ORmbN29G8+bNsXPnTi5qkkm3b99Gt27dMG7cOERHR0vnkICUlBTs378frVq1wtChQ3HhwgXpJNXy9fXFpEmT0KhRI6xatYoLCpBBSOzQfv78ebRr1w4//vgjF67KpNjYWMybNw9t27bFtWvXpHMsjpOTk3SC0UgN723fvh0tW7bEmTNnRK7f1On1euzcuRPt27fHzZs3pXMMJioqCqNGjUK/fv3w7Nkz6RyT9tdff6Fdu3ZYv369dAoZ0JUrVzBgwAC0atUKO3fu5EI0JiI6OhqrV69G48aNsXjxYj7HoTBLfu7T2AsHBQQEoFOnTjh58qRRr4dITcLCwjBw4EBERkZKpyjG1tYWP//8M8qXLy+dQkREKsaBdiIiIiIiIiIiIiIiUuVAu729vXQC/UtKSgp27dqFpk2bYsyYMXjw4IF0kupdv34dPXv2RL9+/fDw4UPpHFWw5OEZyd0g7969i88++wzTpk1T1cFpxrBr1y60bNkSp06dkk4hheh0OuzduxctWrTAqFGjeH9gQkJCQjB//nx88sknWLt2LRISEqSTyIwpuUN7REQERo4cid69e/N3SjY9fvwYXbt2xezZs/k7wID4mNxwQkND0bdvX0yaNIkLV2TAs2fP0KVLF6xatQopKSnSOdly8+ZNtGvXDvv375dOMRtJSUmYNWsWBg0axJ2jzdy1a9fQp08fdOvWDX/++ScX1DNRsbGxWLZs2eu/p9S0M68kS36cZcznHF+8eIGePXvy7yciA0pMTMSQIUPg5+cnnaIYjUaDOXPmoE6dOtIpRESkchxoJyIiIiIiIiIiIiIiVQ60c4d20/HHH3+gbdu2GDduHAICAqRz6D/OnDmDdu3aYe7cudwF1si4S5Fh6fV6rF+/Hh07dsSdO3cUv35LFRQUhIEDB2Ly5MncYc7CHTt2DC1btsTYsWPh6+srnUPpCAsLw48//ojGjRtj+/btZj8ARzKU2qH9woULaNu2LQ4cOKDI9alBSkoK1q1bh/bt2+P+/fvSORbBkgetlHxMfvPmTXTo0AFnz55V7DotgU6nw/z589G/f3+z3TV4/fr16Nq1K5/fyaI//vgD7dq1g4+Pj3QKZdKjR48wcOBAdO7cGefOnZPOoQyKjIzEjz/+iLZt2/J2U4Cjo6N0gtFEREQY5XJfvnyJXr16wd/f3yiXT6RGer0eY8aMwbVr16RTFPX999/j008/lc4gIiLiQDsREREREREREREREQEeHh7SCYqz5IOnzMWtW7fQo0cPDBo0iMMXJk6r1cLLywstWrTAkSNHpHMslr29vXSC0RjroM70hISEYODAgZg1axaHro1k27Zt+OKLL/D06VPpFDKw27dvo0ePHhg6dCgH2c1IcHAwJk2ahPbt2+PixYvSOWRGlNidXavVYv78+ejTpw9evHhh9OtTo8ePH6Njx47YsWOHdIrZs+TF75R6TL5r1y5069aNP+/ZcPbsWXTt2tWsvoZxcXEYNmwYZs2axZ2OsykoKAjdu3fnAjBmIjw8HNOmTUObNm1w6tQp6RzKokePHqFPnz746quvEBISIp1jsSz5NRlj7NAeFhaGXr168bkZIgObN28eDh8+LJ2hqAEDBqBXr17SGURERAA40E5ERERERERERERERLDsA4nSY8mDo6YuJiYGM2bMQMeOHXHp0iXpHMqEFy9e4KuvvsKQIUMQFhYmnWNxLPl3sZID7efPn0ebNm3w559/KnadanXnzh20b98ef/zxh3QKGUBoaCjGjh2Lzz77jPfPZuzu3bvo2bMnhg8fjqCgIOkcMgPGHmgPDAxE586dsWrVKqSkpBj1utQuISEBEyZMwLhx4zhMmg0caM+6lJQUTJ8+HePGjeOiUgZw//59dOrUySwWAHw1cPf7779Lp1iMhIQEjBw5EsuXL5dOoXTo9Xrs2LEDzZo1w+bNm6HT6aSTyACOHDmCli1bckEJI7Hk12SioqIMenlarRbDhw/H48ePDXq5RGrn7e0NLy8v6QxFtW/fHqNHj5bOICIieo0D7UREREREREREREREBCsrK4s+mCgtrq6u0gmqdPjwYbRo0QIbN27kQIsZO378OFq1aoXjx49Lp1gUSx6eMcYuRWnZsWMH+vfvj9DQUEWuj4DY2FgMGTIEGzZskE6hbNi9ezc+/fRT7N27F3q9XjqHDODo0aP49NNPsXnzZj7morcy5kC7j48POnbsiFu3bhntOuhNu3btQr9+/RR7/GVpnJycpBOMxpgD7TqdDt9++y02bdpktOtQoxcvXqBr1664cuWKdEq6/P390aVLF9y8eVM6xSItWrQIP/74o3QG/Yevry969uyJCRMm8P7WAkVERGDkyJH46quvePsamCU/92nogfZZs2aZ9P0/kTk6c+YMpk6dKp2hqI8++ggzZsyQziAiIkqFA+1ERERERERERERERATAsncGTku+fPmkE1QlLCwMQ4YMwYgRI/Dy5UvpHDKA0NBQDBkyBOPHj0dsbKx0jkWw5N/Dxj4AWK/XY968eZgwYQJ3RROQnJyMmTNnYsaMGRyGNjPPnj1D79698f333xt911ZSXkxMDKZNm4auXbtyVzdKl7EG2o8ePYoePXogODjYKJdPb3fx4kV06tQJ/v7+0ilmx5IHrYz1mDwpKQlfffUV9u/fb5TLV7vo6GgMGjTIJBcHuXv3Ljp37gxfX1/pFIu2du1aTJo0iX9rmYiNGzeiTZs2uHTpknQKGdmRI0fQvn17LthhQHyclTG7du3Cli1bDHZ5RATcu3cPI0aMUNVrB5UrV8bixYthY2MjnUJERJQKB9qJiIiIiIiIiIiIiAiAZR9MlBYOtCvnjz/+QOvWrbmbt4XauXMnPv/8czx69Eg6xexZ8kC7MQdlExISMGLECKxevdpo10EZs3HjRowbN467QZuJzZs3o3Xr1jh//rx0ChnZtWvX0KFDB2zdulU6hUyQMQ5s9vLywldffYX4+HiDXzZl3JMnT9C9e3cOmmaSJT83YoyB9ri4OAwaNIh/7xtZTEwM+vfvb1J/d9+7dw89e/bkwiUK2b59O2bNmiWdoWqhoaEYOHAgZsyYgcTEROkcUkhAQAC6du2KDRs2SKdYBEt+7jM6Otogl3P37l1MmTLFIJdFRP94+fIlBg0ahJiYGOkUxRQrVgwrV66Ek5OTdAoREdEbONBOREREREREREREREQA/tlRSy3c3d1hZ2cnnWHx4uPjMXnyZAwaNAghISHSOWREjx8/RseOHXH06FHpFLNmyQd1RkVFGeVy4+PjMWDAABw5csQol0+Zt3v3bowePVpVu92Ym7CwMHz55ZeYNm0aEhISpHNIIfHx8ZgyZQoGDx6MsLAw6RwyIfb29ga9vPnz52Pu3LncRdZEBAYGonv37nj48KF0itmw5AP+DT3QrtVqMWzYMJw7d86gl0tpCw8PR58+feDv7y+dgqdPn6Jfv35GWSSB0rdhwwYsXrxYOkOVLl++jDZt2uDUqVPSKSRAq9Vi5syZGD9+PLRarXSOWbO2toatra10hlEY4rlPrVaL7777TlWv1REZW1xcHAYPHozAwEDpFMXkyZMHa9asgYeHh3QKERFRmjjQTkREREREREREREREAKCqgab8+fNLJ1g8X19ffPHFF9i2bZt0CikkNjYWw4cPx7x585CcnCydY5Y40J458fHxGDhwIC5dumTwy6bsOXDgAL777jsOM5qg8+fPo23btjhx4oR0Cgk5efIk2rVrh+vXr0unkIkw5G7UCxYswKpVqwx2eWQYwcHB6NWrF549eyadYhYseYd2Qz4m1+v1+P7773H27FmDXSa9W1BQEPr37y+6u+SLFy/Qp08f7swuZNmyZfD29pbOUJWNGzeid+/eXKyTsHPnTvTv35+LeWSToRfUMhWG2KH9559/xp07dwxQQ0QAkJKSglGjRuH27dvSKYpxcXGBl5cXChUqJJ1CRESULg60ExERERERERERERER9Ho94uPjpTMU4+npKZ1g0Y4fP47PP/8c9+/fl04hAatXr8bw4cNVtUiGoVjy8IyhD/aNj4/HoEGDOMxuwn777TfMmjVLOoP+Zfny5ejbty9evnwpnULCgoKC0L17d2zevFk6hUyAoQZKFixYgJUrVxrkssjwQkJC0LdvXw6gZoAl79BuyIH2H3/8Eb/99pvBLo8y7smTJxg3bpzIdYeFhaFPnz4ICAgQuX76x7Rp0/i3sAJe7ZQ8Y8YM6HQ66RwyERcuXEDnzp0RFBQknWK2LHVBT61Wm63nw318fLB69WoDFhHRrFmzVLWop52dHX7++WeUK1dOOoWIiOitONBORERERERERERERERISEhQ1S6qJUqUkE6wSCkpKVi8eDGGDh1qkB1JyHwdP34cvXv3RkREhHSKWbHk4ZnY2FgkJycb5LISEhIwePBgXLx40SCXR8azYcMGDjeagPj4eIwYMQKLFi1CSkqKdA6ZCK1Wi2nTpuH777+HVquVziFBhlhQh8Ps5sHPzw/9+vUT3dnZHFjqkBVguEWm1q1bh3Xr1hnksihrjhw5grVr1yp6nVqtFsOHD8fjx48VvV5606vbws/PTzrFYsXExGDAgAHYs2ePdAqZoMePH6Nr1678GcwiS17QM6uLByUnJ2P8+PFcPIPIgDZs2ICNGzdKZyjGysoKc+bMwQcffCCdQkRE9E4caCciIiIiIiIiIiIiItXt0la+fHnpBIuTmJiIr7/+GsuWLVPV4giUvmvXrqFLly7cuS0TrKysDLZLqqnR6/UGWegiJSUFo0aNwoULFwxQRUpYuHAhjh07Jp2hWs+fP0eXLl1w+PBh6RQyUbt370b//v0NumsvmZfsDpSsX7+ew+xm5N69e/j222/5N9tbWPJAuyEWmTp9+jTmzJljoCLKjvnz5+PKlSuKXd+sWbMUvT56u4iICIwaNYoLExlBUFAQunbtivPnz0unkAnz9/dHt27duMhHFljyY62sPvfp7e2Ne/fuGbiGSL1OnDiBH374QTpDUePHj0eLFi2kM4iIiDKEA+1ERERERERERERERIRnz55JJyiKA+2GFR4ejt69e+PIkSPSKWRiHj9+jM6dO8PX11c6xWzwoM63mzt3LoejzYxer8eYMWPw8OFD6RTV8fHxweeff447d+5Ip5CJu3DhAjp37gx/f3/pFBKQnYH2kydPYvbs2QasISWcOHECixcvls4wWXZ2drCxsZHOMJrsPCZ//vw5Ro8ejZSUFAMWUVbpdDqMHDkSMTExRr+unTt3YsuWLUa/HsqcGzduYOHChdIZFiUgIADdunXjYCllSFBQEPr06cPFPDPJkp/7zMp9clRUFB+bExnQ7du3MWrUKFX9zTJ48GB0795dOoOIiCjDONBORERERERERERERETw8/OTTlCMk5MTihUrJp1hMfz8/NC5c2dcvXpVOoVM1MuXL9GzZ088ffpUOsUsODs7SycYTXZ3/92+fTvWrl1roBpSUmxsLIYOHarIsA394/z58+jVqxdCQ0OlU8hMPHr0CF27dsWjR4+kU0hhWR1ov3PnDkaOHKmqg8QtyYoVK7hI0FtY8qBVVgfak5KSMGLECERERBg2iLIlKCgI8+bNM+p13Lx5E1OnTjXqdVDWrV27ljuJG4ifnx969OihqufJKftevHiBPn36ICQkRDrFbGRnQS1Tl5XHWUuXLkV4eLgRaojUJzAwEIMGDUJcXJx0imI6dOiAb775RjqDiIgoUzjQTkREREREREREREREqjpQr2zZsrCy4kskhvDo0SN06dKFu2/TOwUFBaFnz5549uyZdIrJs7e3l04wmtjY2Cx/7NmzZzFt2jQD1pDSfH19MX36dOkMVThy5AgGDhyYrZ85UqegoCB069YNt2/flk4hBWVlMZ2goCDVHSRuafR6PcaPH4+goCDpFJNkyYNWWX18MHPmTNy8edPANWQI27Ztw19//WWUy46IiMDw4cORlJRklMun7NPr9ZgwYQLi4+OlU8za8+fP0aNHD+60TVny9OlT9O3bl4v4ZZCTk5N0gtFkdqDdz88PW7ZsMVINkbrExMRg4MCBCA4Olk5RTKNGjfh8OxERmSUerUVERERERERERERERKoaWqlYsaJ0gkV4+PAhevbsqaqDQyh7Xrx4gZ49e8Lf3186xaRZ8vBMVg/sffbsGUaMGAGdTmfgIlLa3r17ceDAAekMi7Zjxw58/fXXHDqiLAsPD0evXr04tKgimR0oSUpKwpAhQzgIbQEiIiIwduxY6PV66RSTw8fkqR06dAjbtm0zQg0Zgl6vx8SJE43y+G/ChAl48eKFwS+XDMvf3x8LFy6UzjBbYWFh6Nu3LwIDA6VTyIzdu3cPI0eOREpKinSKybPkx1mZXThoxYoV0Gq1RqohUg+dTocRI0bg/v370imKqVq1KhYuXAgbGxvpFCIiokzjQDsRERERERERERERkcpptVrcuHFDOkMx9erVk04we/fv30fPnj0REhIinUJmJjAwEAMGDEBkZKR0ismy5IM6szI8k5SUhK+//jrTOxyR6Zo8eTKHII1k9+7dmDhxIg+gp2yLjo5Gv3798Pfff0unkAIyO9A+d+5c3Lp1y0g1pLTz589j/fr10hkmh4/J/yc0NBRTp041Ug0ZyqNHj+Dl5WXQy/T29sbvv/9u0Msk49m4cSPvn7MgNjYWAwYMwJMnT6RTyAKcOnUKc+fOlc4wefb29tIJRpOZgfbnz59j3759RqwhUo+pU6fizJkz0hmKKVGiBFasWAFHR0fpFCIioizhQDsRERERERERERERkcrdvn0b8fHx0hmKsLW1Ra1ataQzzNrDhw/Rq1cvhIaGSqeQmXr8+DGGDh3K3YPTweGZ1ObNm4fbt28boYakREdHY9q0adIZFmf//v0YP348d9klg4mKikLfvn3x4MED6RQysswMtB8/fhwbNmwwYg1JWLx4Mfz9/aUzTAofk//PlClTEB4ebqQaMqQ1a9YgIiLCIJf1/PlzzJ492yCXRcpISUnBzJkzpTPMSkpKCkaPHs2FAMig1q5di71790pnmDQOtP9j1apV3J2dyABWrVoFb29v6QzF5M2bF2vWrIG7u7t0ChERUZZxoJ2IiIiIiIiIiIiISOUuXboknaCYGjVqZHoHQvqfoKAg9O/fH2FhYdIpZOYuX76M7777joOXaeDwzP+cOHGCO4ZaqGPHjuHIkSPSGRbj6NGjGDt2LHdmJ4MLDw9Hnz598Pz5c+kUMqKM/n0UGBiIcePGGbmGJMTFxWHy5MnSGSaFj8n/sX//fhw9etSINWRIMTExWLVqlUEua8KECZkayiPTcPXqVezfv186w2wsWLAAJ06ckM4gCzR16lQ8efJEOsNkWfLjrLi4uAydLygoCLt27TJyDZHlO3ToEBYsWCCdoRhXV1d4eXmhQIEC0ilERETZwoF2IiIiIiIiIiIiIiKVO3jwoHSCYurVqyedYLaio6PRv39/BAYGSqeQhThw4AAWLVoknWFyLPmgzswMRLx48QLff/+9EWtI2vTp0zkkYwDnz5/HyJEjodPppFPIQgUHB2PAgAGIioqSTiEjcXZ2fud5dDodRo4cabCdf8n0nDlzhkOQ/2LJj8kzOtAeEhKC6dOnG7mGDG3z5s14+fJlti5j165dOHv2rIGKSGnz5s1DUlKSdIbJO3jwIFavXi2dQRYqLi4OX3/9NX8W02HJj7My+jzXhg0b+P1BlE3Xrl3D2LFjVbNosp2dHZYvX46yZctKpxAREWUbB9qJiIiIiIiIiIiIiFTs/v37uHPnjnSGYj766CPpBLOUlJSEoUOH4v79+9IpZGFWrlzJ3bD+gwd1/uP777/n0JyFCw4ONtgOkmr16NEjfPXVV9BqtdIpZOEePnyIoUOH8oB7C5WRgXYvLy9cvXpVgRqSNG/ePCQkJEhnmAQ+Jgd++OEHPh43QwkJCVi+fHmWPz48PBxz5swxYBEpLTAwENu2bZPOMGlPnz7FhAkTpDPIwt29exdz586VzjBJ9vb20glGk5HHWfHx8di5c6cCNUSWy8/PD0OGDEFiYqJ0iiKsrKwwf/581KxZUzqFiIjIIDjQTkRERERERERERESkYvv27ZNOUEyZMmVQpkwZ6QyzNGHCBFy8eFE6gyyQXq/H2LFj4efnJ51iMmxtbaUTjCaju0Hu2rUL586dM3INmYJ169bh+fPn0hlmKTQ0FAMHDuSu2aSYS5cuYdq0adIZZATvGmh//Pgxfv75Z4VqSFJgYCDWrl0rnWESbGxspBOMJiOPyf/66y/s379fgRoyhh07diA0NDRLHzt37lwuZGABVq1ahfj4eOkMk5SUlIRvvvkmUwvuEWXVpk2buChUGix54aC4uLh3nmffvn28ryXKhsjISAwYMABhYWHSKYqZOHEimjZtKp1BRERkMBxoJyIiIiIiIiIiIiJSqbi4OOzevVs6QzGfffaZdIJZ2rhxo6oWPiDlRUVFYfjw4arZTeNd1D48ExISgh9//FGBGjIFiYmJWLBggXSG2UlISMCXX34Jf39/6RRSmR07dnDHTwv0toF2vV6PiRMnIikpScEikrR69WqEhIRIZ4hT82PylJQUzJw5U6EaMgatVovt27dn+uNu3rypqucJLVlwcDC2bt0qnWGSFi9ejNu3b0tnkEqkpKRg/PjxfCz9H2rfoX3jxo0KlBBZpqSkJAwbNgxPnjyRTlHMkCFD0LVrV+kMIiIig+JAOxERERERERERERGRSm3atEk1K9jb2tqiTZs20hlm56+//uJgKSnizp07HJr4f2oengGA6dOnIzIyUoEaMhUHDhzAo0ePpDPMyuTJk3Hjxg3pDFKpGTNm4Nq1a9IZZEBvG2jfunUrrly5omANSYuLi4OXl5d0hjhbW1vpBKN516DVzp07OexpAbZv3w6dTpfh8+v1esyaNQt6vd6IVaSk9evXQ6vVSmeYlJs3b2LdunXSGaQyjx8/xrJly6QzTIq1tbV0gtG863HWmTNn8PDhQ4VqiCzPhAkTcOnSJekMxXTs2BEjRoyQziAiIjI4DrQTEREREREREREREalQTEwM1qxZI52hmAYNGsDDw0M6w6y8fPkSI0aM4MGvpJjt27fj1KlT0hniLHmg/V0HdR4/fhyHDx9WqIZMRUpKCg/uzoTt27dj79690hmkYlqtFiNHjkRUVJR0ChmIk5NTmqcHBQVh/vz5CteQKdi2bRtCQ0OlM0RZ8kD72xaZio6OxsKFCxWsIWN58eIFjh07luHz79+/nwvWWJgXL17gwIED0hkmIykpCd9//z2Sk5OlU0iF1q5dC39/f+kMk2HJz33GxcW99f2bN29WqITI8ixZsgT79u2TzlBMo0aNMHXqVOkMIiIio7DcvwiIiIiIiIiIiIiIiChdK1euREREhHSGYjp06CCdYFZSUlIwatQoBAcHS6eYLHt7e1SoUAHFihVD4cKFUbhwYRQqVAg5cuSAs7MzHB0d4ejoCI1Gg7i4uNf/YmNjERAQgKdPn77+d+/evQztXK0G48ePx/79+5EzZ07pFDFqHZ6Jj4/HtGnTFKwhU3Lw4EEMGTIEJUuWlE4xaX///TdmzpwpnUGE58+fY+LEiVi8eLF0ChlAegPtM2fO5GNUlYqPj4eXlxfGjh0rnSLGkget3rbI1PLlyxEWFqZgDRnT5s2b0bx583eeLykpiQsZWKh169ahXbt20hkmYe3atdwVmcQkJiZizpw5+Omnn6RTTIIlP/f5tsdZL1684GKuRFm0d+9eLF26VDpDMdWqVcOiRYtgbW0tnUJERGQUlvvMKxERERERERERERERpenGjRuq2p29RIkSaNSokXSGWVm7di0uXboknWFS7O3tUbduXdSqVQvVq1dH+fLlM3zwnZubG9zc3F6/Xbly5VTvT05Oxu3bt3Hx4kVcunQJly9fRnx8vEH7zUVwcDCmTZuGBQsWSKeIUetBnWvWrMGLFy8UrCFTkpKSgl9++QXTp0+XTjFZUVFR+Oqrr5CYmCidQgQAOHz4MHbs2IGOHTtKp1A2OTs7v3HalStXcOTIEYEaMhXbt2/H0KFD4eLiIp0iQo0D7cHBwdiyZYvCNWRMly5dwrNnz1CkSJG3nm/Lli0ICAhQqIqUdPfuXVy9ehXVq1eXThEVFBSElStXSmeYLGtra5QqVQrFixdHsWLFUKRIEeTOnRseHh7w8PCAk5MTbG1tYWdnBxsbGyQkJCAhIQGJiYmIjIzEixcvEBgYiMDAQNy5cwe3b99GaGio9Kdlco4cOYIrV66gRo0a0ini1Pg4C/jn8XVycrKCNUSW4dKlS5gwYYJ0hmJKlSqFFStWwMHBQTqFiIjIaCz3LwIiIiIiIiIiIiIiInpDQkICxowZo6oDZwYNGgQrKyvpDLNx79497rb5/+zt7fHRRx+hefPmaNSoUZrDPoZgbW2NypUro3LlyhgwYABiY2Nx6NAh7NmzB3/99Rf0er1RrtdUHThwAE2bNs3QTnKWyJIP6kxvoYaXL1+qaqEVStuvv/6KkSNHwt3dXTrFJE2ZMgV+fn7SGUSpzJo1C3Xr1kWBAgWkUyiLNBoNHB0dU52m1+sxe/ZsoSIyFbGxsdi1axd69eolnSLCkheZiouLS/P0lStXqnZhNUt26NAhDBo0KN33x8TEYMWKFQoWkdK8vb1VP9A+d+7cdH/3qZFGo0GlSpXwySef4P3330fFihXfeDz4Nk5OTnBycgIA5M+fH+XKlXvjPIGBgbhw4QJOnDiBM2fO8Ov//xYsWMDFY2DZz32mN9Cu0+mwY8cOhWuIzN/jx48xbNgwaLVa6RRF5MuXD15eXsiZM6d0ChERkVFZ7l8ERERERERERERERET0hsmTJ8PX11c6QzGFChVCq1atpDPMRlJSEr799lskJSVJp4jy8PBAt27d0K1bN5HBSmdnZ3z++ef4/PPP4efnh/Xr12P79u2qul1mzpyJevXqqXJHSGtra+kEo0lvQGbRokU8uJmQkJCAHTt2YODAgdIpJufQoUM4cOCAdIZZKFiwIMqXL48iRYqgWLFi8PT0hIeHB9zd3eHo6Ph6V8GkpKTXOwsmJCQgNDT09a6CgYGBePToEe7cuYOEhATpT8mkxcXFYdKkSfDy8pJOoSxydHSERqNJddqvv/4KHx8foSIyJZs2bUKPHj1UuUCc2h6TBwUFwdvbW6CGjO1dA+0bNmxAeHi4gkWktEOHDmH8+PFwdXWVThFx584d7N+/XzrDJOTLlw/dunVDu3btkDdvXqNeV/78+dG+fXu0b98eSUlJOH78ONavX49r164Z9XpN3V9//YXz58+jTp060imiLHmgXafTISkpCXZ2dqlOP378OIKDg4WqiMxTWFgYBg4ciMjISOkURbi5ucHLywv58+eXTiEiIjI6y/2LgIiIiIiIiIiIiIiIUlm4cCH27t0rnaGogQMHWvQBUoa2ZMkS3Lt3TzpDjKenJwYNGoTPPvsMDg4O0jkAgMKFC2PChAno168fli1bht27d0On00lnGd3Lly/x008/Ydy4cdIpirPk4RmtVgudTpfq9/Ldu3exZ88ewSoyJVu2bEH//v1VOTiXnpCQEEyZMkU6w2QVK1YM9erVQ7169VC1atUML0Tj6OgINze3t55Hp9Ph4cOH8PHxwZkzZ3D69Ol0d1tTs9OnT2PPnj1o3769dAplwX9340xISMDChQuFasjUPHv2DKdPn0aDBg2kUxRnyY9F0hpoX758ORITEwVqyNju3LkDX19fFCtW7I33xcTE4JdfflG8iZSVkJCAgwcPolOnTtIpIhYtWgS9Xi+dISp//vwYOXIkPv30U5Hnye3s7NCiRQu0aNECN2/exPz583HhwgXFO0zFkiVLVD/QbmtrK51gVLGxsW8MtHPhIKLMSUxMxJAhQ+Dn5yedogh7e3ssW7YMpUuXlk4hIiJShOU+80pERERERERERERERK9t2bIFK1askM5QVIECBThYkwn379/H2rVrpTNEWFtbo0ePHjh48CC6detmMsPs/5Y/f35Mnz4dBw8eRM2aNaVzFLFp0ybcvXtXOkNxljw8A+CN3Y5nz56NlJQUoRoyNYGBgTh//rx0hkmZOHEiIiIipDNMSp48eTBgwADs27cPR44cwcSJE9GoUaMMD7NnlI2NDcqVK4eOHTti8eLFuHDhAry8vNCxY8c3hoDVbvbs2fw+NVNOTk6p3l63bh0CAwOFasgU7dq1SzpBhCUvMvXfwfXnz59j586dQjWkhEOHDqV5+vr161Wz46XaqXWH8mvXruGPP/6QzhBjY2ODwYMH49ChQ2jTpo1JLPpauXJlrF+/HnPnzkXu3Lmlc0T89ddfuHTpknSGKEt/7vO/iwcFBgbi3LlzQjVE5kev12PMmDG4du2adIoirK2tsWDBAtSoUUM6hYiISDGW/RcBERERERERERERERFhxYoVmDZtmnSG4r7//vs3dsKgtOn1ekyZMkUVO3//V4UKFbBjxw5MmDABLi4u0jnvVLRoUWzcuBHff/+9SQ7eG1JycjKmTp2qup20LP2gzn8P0Jw/f57Dy/SG3bt3SyeYjP379+PEiRPSGSajQoUKmDdvHk6ePInRo0ejXLlyil6/nZ0d6tevjxkzZuDUqVMYO3YsChUqpGiDqYqIiMDixYulMygL/r04Q1RUFNasWSNYQ6boxIkTqlywQqPRSCcYTUpKCpKSkl6/vWbNGmi1WsEiMrajR4++cVpcXBw2bNggUEMSrly5gqCgIOkMxS1fvlw6QUyePHmwfv16fPPNNya5GFebNm3w22+/qXZ4b/369dIJoix54SDgzYH2Xbt2cTFPokyYN28eDh8+LJ2hmMmTJ6Nx48bSGURERIqSX26NiIiIiIiIiIiIiIiMQqfTYerUqfD29pZOUVy9evXQtGlT6QyzsWvXLvz111/SGYrr0KEDpk6danYLH2g0GvTu3RsNGjTA119/bdG7mF+9ehWHDh3Cp59+Kp2iGEs/qPPfA+3Lli0TLElNo9GgaNGiqFixIooXL46iRYsiX7588PDwgIeHB+zt7WFvbw+9Xg+tVovExERERkYiPDwcwcHBePbsGZ4+fYq7d+/i7t27b+x8SRl37NgxREdHw9XVVTpFVExMDGbPni2dYRJKlSqFESNGmNRjOzc3N/Tt2xe9evXC9u3bsWTJEoSFhUlnidq+fTs6deqk+EIDlD3Ozs6v/3/Dhg2Ijo4WrEnN3d0dlSpVQqlSpVCsWDEUKlQIuXLlgoeHB5ycnGBnZwcbGxtotVokJSUhJiYG4eHhCAsLg7+/P549e4aHDx/i9u3bCAkJkf50zJZWq8X+/fvRvXt36RRFWfpj8qSkJNjZ2SEqKkpsMaF8+fKhRo0aKFu2LEqVKoV8+fIhb968cHR0hIODA5KTk1//bAcHB+PFixd49OgR7t+/j6tXryIwMFCk2xzduXMH4eHhcHd3f32at7e3+GIVOXPmRPXq1VG+fHmUKlUKBQsWRN68eeHi4gJ7e3tYWVkhISEBcXFxCAkJwcuXL/HkyRM8ePAAV69exZMnT1S3AF5WpaSk4PDhw+jVq5d0imLu3buHU6dOSWeIqFChAlatWmXyO6B7eHhg3bp1mDx5suoWtjtx4gT8/PxQuHBh6RQRlr6YZ0JCwuv/1+v12LNnj2ANkXnx9vaGl5eXdIZihg8fjk6dOklnEBERKY4D7UREREREREREREREFsjPzw/ff/89Ll++LJ2iODs7O0ycOFE6w2xERERg3rx50hmKsrGxwXfffYcePXpIp2RL8eLFsWXLFnzzzTcWfZDuokWL0KRJE9ja2kqnKMLSD+rU6XQA/tkh7tKlS6ItBQoUQIMGDVCvXj3UqlULOXLkyNDH2djYwNHRETlz5kTRokXfeL9Op8OtW7dw9uxZnDp1Cjdu3DB0ukVLSEjA8ePH0a5dO+kUUT/99BOCg4OlM0Q5OTlh6NCh6N27N2xsTPPwFmtra3Tt2hVt2rTBsmXL8MsvvyA5OVk6S0RycjJmzpyJjRs3SqdQJri4uAD4ZxEN6Z16HR0dUa9ePdSrVw8ffvghihQpkqGPe7XojKurK/Lnz5/meQICAnDu3LnX981xcXGGTLd4hw4d4kC7hXm1I/u2bdsU/XmoUKECWrRogaZNm6b5OPrfrK2tYWdnBxcXF+TLlw+VKlVCkyZNXr//2bNn+P3333HgwAHcvn3b2OlmTa/X4+LFi2jevDmAfxY0WLt2rUhL4cKF0bJlSzRp0gQVKlSARqN56/mdnZ3h7OyMPHny4L333kODBg1evy80NBQnTpzA4cOHce7cOe5++w7Hjh1T1UC7mobh/q1ixYpYu3Yt3NzcpFMyxM7ODj/88AOcnJywadMm6RzFpKSkYPPmzfjuu++kU0RY+uOsfw+0X7hwAf7+/oI1RObjzJkzmDp1qnSGYjp16oRhw4ZJZxAREYkwzVf8iIiIiIiIiIiIiIgoS/R6PbZs2YJ58+ap9iD9fv36oVixYtIZZmPp0qUIDw+XzlCMo6Mjli9fjjp16kinGISzszOWL1+OWbNmWeyBn0+fPoW3tze6desmnaIISz+o89XwzM8//yxy/U5OTmjTpg1at26N999//50DFFlhY2ODqlWromrVqhg6dCj8/Pzw66+/Yvv27QgKCjL49Vmio0ePqnqg/d69e9i8ebN0hqgqVapg/vz5ZrNjnYuLC8aMGYPGjRtj9OjRCAgIkE4ScenSJZw+fRr169eXTqEMejXQvmnTJkRGRip+/RqNBnXr1kW7du3wySefwMnJySjXU7BgQXTs2BEdO3ZEfHw8Tpw4gW3btokvrmMurl69ipCQEJPf6dWQLH2RKa1WC61Wq8jfkDY2NmjdujV69OiBChUqGOxyixQpgn79+qFfv364desW1q5di0OHDnGoOR3nz59/PdB+4MABxf8uqVevHvr27YsPP/zQYH+D5cqV6/Xvdn9/f2zatAlbt25NNUhI/3P16lVER0fD1dVVOsXogoODcejQIekMxRUvXhzr1q3L8GJ9pmT8+PEIDQ1V1e22Z88ejBw5EnZ2dtIpijPGc3GmJCkp6fX/79q1S7CEyHzcu3cPI0aMeL0YrqVr3LgxJk+eLJ1BREQkxrKfeSUiIiIiIiIiIiIiUpHLly+ja9eumDZtmmqH2cuUKYPBgwdLZ5gNPz8/bNu2TTpDMQ4ODhY1zP6KtbU1Jk6ciOHDh0unGM2yZctU83vN0g/qTE5OxvXr13Hu3DlFrzd//vwYP348Tp8+jalTp6JGjRqKfa0LFy6MoUOH4sSJE5g7dy4XXcmAs2fPquZnPi3Tpk1TzQGcaenbty+2bNliNsPs/1a9enXs3bsXzZo1k04Rs3DhQuj1eukMyqAcOXIgLi4Ov/zyi6LXa2dnh65du+LQoUNYs2YNWrdubbRh9v9ydHREy5YtsXHjRuzbtw/NmjWz+Mdf2ZWSkoLff/9dOkNRlj7QnpKSgoMHDxp9qLl169Y4fPgwZs+ebdBh9v+qWLEiFixYgN9++83i/t43lAsXLrz+fyV/59eqVQs7duzAmjVrULduXaP9vi1UqBC+++47HD9+HJ999hl/r6dBp9Ph9OnT0hmK8Pb2fr2Ynlo4OTnh559/NsthduCf+905c+agWrVq0imKiYiIwKlTp6QzRFj6Yp6JiYkAgJiYGBw7dky4hsj0vXz5EoMGDUJMTIx0iiLef/99LFiwwOJ/FxIREb2NZT/zSkRERERERERERESkAlevXkXv3r3RvXt3XL16VTpHjIODAxYsWAAHBwfpFLOxYMEC1RzgaWdnh6VLl1r0we3Dhg1Dnz59pDOMIiQkBOvXr5fOUISlH3ifkpKi6O7s7u7umDRpEo4ePYqePXu+3olWgo2NDdq0aYMDBw5g0qRJcHZ2FmsxdQkJCaoZtviv48eP48qVK9IZImxtbTF79myMHTsWNjY20jlZliNHDixevBi9evWSThFx+/ZtHD58WDqDMsjZ2RmbNm1CeHi4ItdnZWWFTp064dixY5g8eTKKFy+uyPWmp1y5cvjpp5+wc+dOow7bWgK1DeOo4TG5Mf++KlGiBLZs2YJ58+YpukBNqVKl8Msvv2D27NlwdHRU7HrNga+vLwIDA3H+/HncvXvX6NeXM2dOLFy4EBs3bkTlypWNfn2v5M6dG7NmzcKmTZuQL18+xa7XXPz555/SCUaXnJwMb29v6QzFzZgxAyVLlpTOyBY7OzvMnTtXVc+V7NmzRzpBhKUPcb56vWXMmDGIj48XrjFtM2bMQNmyZVGpUiWEhYWlet/u3btRtmzZDP/bvXs3AODixYsoW7YsvvrqKwBAcHAwKlasiFq1ar1ebEBNPvnkkwx/Db/77jsAb34N0/PqNvrxxx9fn+bv75/u5ZcrVw41atRA586dsXnzZiQnJyMuLg6DBw9GYGCgUb8OpqJ06dJYvnw57O3tpVOIiIhEme8rgEREREREREREREREKhYTE4ODBw9i165duH79unSOSRg3bhxKly4tnWE2bt26hUOHDklnKEKj0WD+/PmoX7++dIrRjR07FlFRUdi1a5d0isGtX78evXv3tvjBBEsfnunVqxciIiKMfj0ajQbt27fHmDFj4O7ubvTrywwbGxt069YNjRo1wsSJE3HmzBnpJJN0+vRp1e1ynZKSgoULF0pniHBwcMCyZctQt25d6RSD0Gg0GDduHDw8PFR5my5btgzNmze3+Ps0S7B27VrFrqtChQqYMmWKooONGVWxYkV4e3tjzZo1WLp0KZKSkqSTTM7ly5eRmJiomgPvLf33V9u2bREVFWWUy+7QoQMmTpwIJycno1x+RrRv3x4VK1bE8OHD8eTJE7EOU9OqVSvodDqjX0/dunXxww8/wNPT0+jXlZ4aNWpgz549GD16NM6ePSvWYWouXLggnWB0p0+fxosXL6QzFNWgQQO0bNlSOsMgChcujHHjxmH8+PHSKYr4888/ER4ebnLPWxmblZVl78f4aqD93r17wiX/Y2tri9KlS+O9995D0aJFUbhwYeTNmxceHh6Ij49Hhw4dUL58eezevRtarRbJyclo0aIFAgMDsXfvXgBAdHQ0QkNDERISgpCQEPj7+8PHxwfBwcGIi4vLdFNcXBz27t2L3LlzIyQkBLt370b//v1fv7927dpYvHhxqo85ffo0du7ciebNm6NFixap3lepUqU0rydPnjxo0qQJDh48iEOHDqFdu3aZbjVnkyZNQq5cuV6//eLFC/zwww8oVaoUhg8fnuq8BQsWNNj1Fi5cGKNHj051mk6nQ2BgIH799VdMmzYNx48fh52dHW7fvm2w6zVl+fPnh5eXF9zc3KRTiIiIxHGgnYiIiIiIiIiIiIjITMTFxeHChQs4cuQIjhw5wt0d/qV58+bo1KmTdIZZmTdvHvR6vXSGIvr374+mTZtKZyhCo9Fg+vTpCA4Otridt8LDw7F9+3b07t1bOsWoLH14Rolh9pIlS2Lq1KmoWbOm0a8rOwoUKIA1a9Zg9+7dmD59epYO/rRkahw82bt3Lx48eCCdoThHR0esWrUKtWrVkk4xuMGDB8PKygrz58+XTlHU/fv3cfLkSXz88cfSKWQCnJ2d8dVXX6FHjx4mvRujjY0NBg0ahMaNG+Pbb79VzUH1GZWYmIjLly+jXr160ilkAMYYZnd2dsbUqVPRunVrg192VpQuXRq7du3C2LFj8fvvv0vnmISYmBijXr6trS1GjRqF3r17m8TftR4eHvDy8sLixYuxYsUK6RyTEBgYiGfPnqFIkSLSKUbzavBSLRwcHDBx4kTpDIP6/PPP8dtvv6liAQatVouTJ0+iQ4cO0imKMoX7CGPS6XR48eIFAgICxBo0Gg2qVq2Ka9euwcXFBefPn4ednV2a5/X393/9MRqN5vX5Xi08UKRIETg7O7/1+oKCgnD//n3cunULixYtgq2tLYD/Dfen5ddff0V0dDTGjh2LBQsWYNu2bejXr9/r74+CBQu+MWAdEhICAChVqhSaN2/+ri/Da926dcPBgwexbds21Q20N2jQAIUKFXr99v379wH88zgpM1/DzMqRI0e6l9+3b1/06dNHVc/95syZE15eXsiXL590ChERkUmw7CWuiIiIiIiIiIiIiIjMmE6nw507d7BmzRr07t0btWrVwpdffom9e/dymP1fihUrhhkzZkhnmJWrV6/i/Pnz0hmKqF27Nr755hvpDEVZW1vjxx9/FN0NzVjWrVtn8TtmWvpBncbWpUsX7N271+SH2f+tQ4cO2LRpE/LmzSudYlKeP3+Ox48fS2coJikpCUuWLJHOUJyNjQ0WL15skcPsrwwcOBBdu3aVzlAcB8cI+GdX9t9++w29e/c26WH2fytZsiQ2b96smgWxMuPMmTPSCYrhY/LMyZs3L7y9vU1mmP0VZ2dnLFq0yKjDOvQPJycnLF++HH369DGpnx8rKyt88803qnte6G0uXrwonWA0MTExOHHihHSGorp3747ChQtLZxjc6NGjTep3iTEdP35cOkFxln7bpqSk4NdffxVZTDhHjhwYP348Tp06hW3btgH453mX9IbZDcXT0xP169dHz549Afzz2PDq1avYuXMnJk+ejA4dOqBMmTKp/ibcsmULHBwc0KJFC7Rs2RJ+fn44ffq0Ufpq1KiBsmXL4tq1a68HukmOtbW1qga7HRwcsHz5cpQqVUo6hYiIyGRwoJ2IiIiIiIiIiIiIyARERETAx8cHu3btwrRp0/DFF1+gevXqaNeuHebMmYPz58+/dTcDtcqTJw+8vLzg6uoqnWJW1DJglCdPHixYsMBshmcMycPDwyI/9xcvXmDfvn3SGUZl6Qd1GoudnR1mzpyJKVOmGP0gTWOoUKECduzYgbJly0qnmBS1LL4CAN7e3nj+/Ll0huKmTJmCBg0aSGcY3cSJE1W3W/mNGzdw+fJl6QwS1LZtW2zduvWNXfXMgaOjI3766Sf069dPOsWkqGGn1Ff4mDzjChcujC1btpjsgIaNjQ3mz5/PoXYjcnd3x/r161G/fn3plHQNHjwYX3/9tXSGSbh69ap0gtEcPXoUiYmJ0hmKcXBwQN++faUzjKJSpUpo1qyZdIYizp49i4SEBOkMRVn646z9+/e/HiZXSp06dQAAn3zyCXr27GkSC93a2dmhUqVK6Nq1K3744Qf89ttvGDduHADgypUruHfvHpo3bw4XFxd8/vnnAP4ZcjeWVwsNbt++3WjXQRlz/Phx/Prrr9IZirC2tsbChQtRvXp16RQiIiKTYiMdQERERERERERERERkKXQ6HbRa7ev/arVaJCUlITY2FhEREa//RUZGIjw8HAEBAfDz84O/vz+io6Ol882Os7MzVq1aZZG70BjTnTt3cOrUKekMRUyYMAG5c+eWzhBTo0YNfPXVV1i4cKF0ikGtXbsWHTt2lM4gE5IvXz4sWbIElStXlk7Jlnz58mHLli0YNGgQrly5Ip1jEm7evIlu3bpJZxidTqfD2rVrpTMU16VLF9X8PreyssKcOXPQvn17+Pn5SecoZuPGjahZs6Z0BinMxsYGY8eOfb07n7nSaDQYM2YM8uXLh5kzZ0rnmIQHDx4gPj4ejo6O0ilGZ+mDVoZSqlQprF271iSGpt7m1VB7bGys0Xb+VKt8+fLhl19+QfHixaVT3unLL79EXFwcVq1aJZ0i6tatW9IJRnP06FHpBEV17NgRuXLlks4wmq+++gqHDx+WzjC6+Ph4nD9/Ho0aNZJOUYylP85S8rGGlZUVmjVrhtGjR+OTTz5R7Hqz6tVtv3nzZgB4/ZxQuXLlULlyZZw6dQrPnz9HgQIFDH7dbdq0wbx587Bv3z6MHj1aFX/TmKJbt25h9OjR0Ov10imKmDp1quoWuCQiIsoIDrQTERERERERERERUaYFBARwB1ESZWtriyVLlqB8+fLSKWZHLbuzf/TRR9yBDcCAAQNw6NAh3L17VzrFYB4/fozz58+/3nnG0lj6QZ2GVrx4cWzYsAF58+aVTjEIFxcXLF++HN26dcP9+/elc8TduHFDOkER+/fvR0BAgHSGoipVqvR6Zy61cHV1xYIFC9C1a1dotVrpHEUcO3YMgYGByJ8/v3QKKcTOzg5Lly5FgwYNpFMMpmfPnggPD8eyZcukU8TpdDrcvn0bNWrUkE4xOj4mf7eCBQtiw4YNZjNMaWNjg3nz5qFDhw6qe9xlLK6urli9erVZDLO/8s0338DHxwfnz5+XThHz6NEjJCQkwMHBQTrFoGJjY3Hu3DnpDEV16dJFOsGoSpYsiVq1auHSpUvSKUZ34cIFVQ20U/YVL14c9evXx4YNG9C3b1/pnEwJDg7G77//jpIlS6b6u+KLL77AzZs3sX37dnzzzTcGv14nJye0a9cOGzduxMGDB/HZZ58Z/Drof1JSUhAVFZXqtOfPn6N///6Ii4sTqlLWiBEjVLOQJxERUWZZSQcQERERERERERERERFlho2NDWbPno26detKp5gdX19fVexWZG9vj0mTJklnmARra2tMnDhROsPgtmzZIp1AJsDShtlfyZEjB7y8vIyyG5G58fX1RWRkpHSGUen1enh5eUlnKMrBwQFz5syBnZ2ddIriKleubJQDs01VcnIytm7dKp1BCrGzs8PPP/9sUcPsr/BA9P9Ry2Iz9HYuLi5YuXKl2Qyzv5IzZ04sWrQItra20ilmz9bWFkuXLkWZMmWkUzLFysoKCxYsgKenp3SKmOTkZIta9PCV06dPIzExUTpDMZUqVULJkiWlM4zO0of2X7l48aJ0gqK4cFDWWVlZYcCAAdi3bx+uXbuG0qVLo3LlytJZmbJ9+3ZotVp88cUXqU5v2bIlnJ2dsXPnTqMtAvjqd8r27duNcvn0P3fu3EHNmjVT/Wvbti3Cw8Ol0xTRpUsXDBkyRDqDiIjIZHGgnYiIiIiIiIiIiIiIzIaDgwOWLl2KVq1aSaeYpU2bNiElJUU6w+gGDhyIwoULS2eYjBo1aqBNmzbSGQZ14sQJBAUFSWeQIEsdZn/F09MTXl5ecHFxkU4Rpdfr4ePjI51hVMePH8eDBw+kMxQ1cuRIlChRQjpDTO/evVG+fHnpDMXs3r0bOp1OOoOM7NUw+0cffSSdYjRTp0616M8vozjQTtbW1li0aBFKly4tnZIllStXxpgxY6QzzJpGo8Hs2bPxwQcfSKdkiYeHBxYsWKDqgcrbt29LJxjcn3/+KZ2gqHbt2kknKKJJkybInTu3dIbR3bt3DxEREdIZilHz79/satKkCUaPHo2nT5/Cx8fHILuM6/V6AP88xjM2nU4Hb29vAIC/vz+WLFny+t+aNWuQN29ehISE4PfffzfK9ZcsWRJ16tTBjRs3LHJxF0PJ6M/oq+8dK6s3R9KKFSuGDRs2YMOGDVi3bh0qVqxo0EZT1qxZMy64TURE9A4caCciIiIiIiIiIiIiIrOQI0cOrFmzBo0aNZJOMUuxsbHYs2ePdIbRubm5oXfv3tIZJmfMmDFwdnaWzjAYnU7HnVRUrEiRIhY9zP5KyZIlMX78eOkMcZY+OLd+/XrpBEWVL18e3bt3l84QZW1tjSlTpqjmIP7g4GCcPn1aOoOMyMbGBkuXLrX4YW9ra2vMnj3b7HakNrSbN29KJ5Cw7777DvXr15fOyJbu3bujQoUK0hlmq3fv3ma/0GSNGjUMMgRorixxoP3cuXPSCYpq2rSpdIIibG1t8cknn0hnGF1KSgquXLkinUEmrEqVKqhUqRIuXboErVaLXbt2wdbWFm3btn3rx7m7uyMyMhIJCQnpnufVjtlKLB5x/Pjx14vUbty4EUuXLk3178mTJwCALVu2GK2hW7duAIBt27YZ7TrMnbu7OwC8c0HhV987efLkeeN9zs7OqF27NmrXro1Dhw7h1q1bhg81QTVr1sS8efPSHPInIiKi/+E9JRERERERERERERERmbw8efJg06ZNqFGjhnSK2dq3bx9iYmKkM4yuZ8+eqt/ROC158uRBly5dpDMMaufOnUhJSZHOIIU5OTlh2bJlFj/M/kqHDh1Uc6B6eix5cO7Ro0e4dOmSdIZiNBoNJk6cqMiuX6auSpUq6Nixo3SGYnbt2iWdQEb03XffoUGDBtIZisiVKxdmzJghnSEqMDAQL1++lM4gIfXr10fPnj2lM7LNysoKEydOVM3iMob03nvvYeTIkdIZBjFq1Ci4ublJZ4iwtIH2R48eITAwUDpDMWXKlFHNcyIAVDHQDkA1w56Uec2aNcOGDRvQpUsXhIeH4/z58zhw4AAaNmwIDw+Pt35shQoVoNfr37pY5KsFQapWrWrI7DRt3rwZALBp0ybcu3cvzX/vvfceLl++jAcPHhil4eOPP0b+/Plx8OBBo1y+JShSpAhcXFzw4MGDt76m+Op7p0qVKumeZ9WqVfD29jZ4oykqU6YMli9fDjs7O+kUIiIik8eBdiIiIiIiIiIiIiIiMmlVqlSBt7c3ypYtK51i1rZu3SqdYHQuLi4WcXC9sfTu3duiDqYJCgrCxYsXpTNIQRqNBj/++CNKly4tnaKoadOmpbnTjVpY8g7tarhv/rfmzZujevXq0hkmY9iwYRZ1v/w2f/zxByIiIqQzyAg6dOiAHj16SGco6uOPP0anTp2kM0RZ8mIzlD43NzfMnDlTOsNgqlWrhnbt2klnmBVHR0fMnz/fYh6/eHh44KuvvpLOEPHw4UMkJSVJZxiMmhYJA4B69epJJyiqTp06cHJyks4wOktbaIIMo3r16li0aBEcHBzQokULODs7Y9myZQgODsZnn332zo9/9VrJ7NmzERUV9cb77969Cy8vL7i5ueHzzz83eP+/PXr0CBcvXkSpUqVQs2bNdM/XuXNnAMZ7zsza2hqdOnVCZGSkUS7fEtjb26Nz586IjY3F7NmzkZyc/MZ59uzZg7Nnz6J69eqoVq1ampdz6NAhLFiwwNi5JqFAgQLw8vKCq6urdAoREZFZ4EA7ERERERERERERERGZrD59+mDz5s0oUKCAdIpZu3TpEu7fvy+dYXTdu3dHjhw5pDNMVp48edC+fXvpDIPat2+fdAIpaPDgwarcrdzd3R3jx4+XzhATHh5ukbvtxcXFYe/evdIZirG2tlbtwFB6PD098cUXX0hnKEKr1eLYsWPSGWRglSpVwtSpU6UzRIwdOxa5c+eWzhDz999/SyeQgIkTJ8LT01M6w6C++eYb2NraSmeYje+++w4lS5aUzjCoLl26oEiRItIZitPpdHj8+LF0hsFcvXpVOkFRdevWlU5QlJ2dnSqG+DnQTmn5/PPPYWX1z7iPk5MTWrZsiWvXriFPnjz46KOP3vnxDRo0wNdff407d+6gRYsWWLBgAXbv3o1du3ZhwoQJ6NSpE6ytrbFkyRLkypUrzcs4duwYDh8+nOa/oKCgDH8ur3Zn79Kly1vP17p1a7i4uGDfvn2Ii4vL8OVnxhdffMHHgO/w9ddfo2HDhtixYwc+//xzLFu2DL/++is2b96MwYMH47vvvkPp0qWxePHiND8+Li4OY8eOhV6vV7hceTlz5oSXl5fF/a1ERERkTBxoJyIiIiIiIiIiIiIik5MzZ04sX74c3333HQ8sMYCdO3dKJxidjY0NunXrJp1h8vr37w9ra2vpDIM5evQoEhISpDNIAfXr11f1MGyLFi1QpUoV6Qwxvr6+0gkGt3//fkRHR0tnKKZt27YoUaKEdIbJGThwIOzt7aUzFHH48GHpBDIgd3d3LF261GJ26c0sZ2dnDB06VDpDjCXeL9PbNW7cGK1bt5bOMDhPT0+L/LyMoUqVKujUqZN0hsFZW1ujd+/e0hki/Pz8pBMMRm0D7ZUrV5ZOUFz16tWlE4wuNDQUL168kM4gE1GhQgUAgEajSXV6x44dAQDt2rXL8HP8X375JbZu3Yq6deti//79mDJlCn744Qf4+Pigd+/eOHDgAGrXrp3ux48ZMwYjRoxI85+Pj0+GGmJjY7F37144Ojqibdu2bz2vs7Mz2rRpg5iYGPz6668ZuvzMypUrF5o1a2aUy7YUtra2WLlyJebPn4/cuXNjy5YtGDduHJYuXYqYmBhMnDgRu3fvRt68edP8+GfPniExMVHhauU5Ojpi5cqVFrfoExERkbHZSAcQERERERERERERERH9W+3atTF79mzuym4g8fHx+P3336UzjK5+/frpHjxD/1OkSBE0bNgQx48fl04xiNjYWBw7dgytWrWSTiEjcnV1xcyZM1/vSKRW3377Lbp37y6dIeLJkyeoU6eOdIZBqWGxmVc0Gg369+8vnWGSPD090aJFC+zdu1c6xeguXLiAiIgI5MyZUzqFDGDChAnIly+fdIaoL774AuvXr1flcLcaP2c1s7W1xXfffSedYTT9+/fHnj17VLF7ZFZpNBpMmDDhjaE6S/HZZ59h6dKlCAsLk05R1LNnz6QTDCI4OBj+/v7SGYopUqQIcuTIIZ2hOLUs8Pfo0SPVP8YmoFq1atiwYUOai4dVrlwZ9+7de+P0QoUKpXn6vy+zWrVqmeo4ceJEps4P/DOMnlaHs7NzphYfmTx5MiZPnvzG6d27d3/nc6O1a9d+69filfnz52P//v0ZbrIUZcqUydDX55VWrVpl6rUXV1dXFC9eHE+ePMlKnlmxsbHBokWLULVqVekUIiIis6PuV/yJiIiIiIiIiIiIiMhk5M6dG3PmzMGGDRs4zG5Ax48fR1xcnHSG0X3++efSCWajXbt20gkGpcYDz9Rm7Nix8PT0lM4QV7NmTTRq1Eg6Q4SlDc49ffoUN27ckM5QTOPGjblT0Vt07txZOkERWq0Wp06dks4gA2jUqBEXE8I/B6+PGjVKOkOEpd0v09t169YNhQsXls4wmpIlS6Jhw4bSGSatffv2Fr0jtIODA7p16yadoThLGWj/+++/pRMU9WrXZrWpUKECbG1tpTOMTg0DoPR2np6eWLJkSZrD7ESmLikpCcOGDVPN77Jp06bx7wgiIqIs4kA7ERERERERERERERGJsrKyQteuXXH48GG0bdtWOsfi/Prrr9IJRpc7d24eOJIJDRs2tKjdUc+dO6eKRRvU6oMPPkDHjh2lM0zG8OHDpRNEWNrgnBrum/+tV69e0gkmrVq1aihXrpx0hiL+/PNP6QTKJldXV0ydOlU6w2Q0bdoUZcuWlc5QXGxsLIKDg6UzSAFubm4YMmSIdIbR9ejRQzrBZDk7O2PkyJHSGUbXpUsX2NjYSGcoylJ2NVfbQHv58uWlE0TY29ur4m8mS3vugzLHxsYGP/30E/LkySOdQpQlEyZMwKVLl6QzFDFy5Eh89tln0hlERERmiwPtREREREREREREREQkpmbNmvD29sbkyZPh6uoqnWNxwsLCcPbsWekMo2vbtq3qDjzODjs7OzRv3lw6w2ASExNx+vRp6QwyAkdHR8yYMUM6w6RUqFAB1apVk85QnKUd1P3bb79JJyimTJkyqFmzpnSGyfv888+lExRx5swZJCcnS2dQNowdOxaenp7SGSZFjbv6ApZ330xp+/LLL+Hm5iadYXQffPABh8fS0aNHD1V8bXLlyoUPP/xQOkNRlrJD+507d6QTFFW8eHHpBDGlS5eWTjA6texqTGkbMWIEqlatKp1BlCVLlizBvn37pDMU0b17dwwaNEg6g4iIyKzxyB4iIiIiIiIiIiIiIlJczZo1MXToUNSpU0c6xaIdPnwYOp1OOsPoPv30U+kEs9O+fXts27ZNOsNgjh8/jmbNmklnkIH169cPhQsXls4wOd26dcO1a9ekMxQVEBAArVYLW1tb6ZRsu3HjBp4+fSqdoZjOnTtLJ5iFpk2bYubMmdDr9dIpRhUREYEbN26gevXq0imUBRUqVFDN4guZ0aZNG8ybNw9RUVHSKYry9fXlgiUWzsPDA127dpXOUIS1tTVatmyJX375RTrFpNjb26Nnz57SGYpp3bo1/vzzT+kMxTx//hw6nc7sF4icMGEChg0bhri4uNf/YmJiUr396l9sbCxiY2PTfF9cXBy0Wq30p/NORYoUkU4Qo4bPPSAgQDqBhNSsWRP9+/eXziDKkr1792Lp0qXSGYpo3rw5xo8fL51BRERk9sz7mQgiIiIiIiIiIiIiIjIrtWrVwrBhw1C7dm3pFFU4efKkdILR5c+fHxUrVpTOMDtVq1ZF3rx58fLlS+kUgzh16pRFHIhN/5MzZ0706dNHOsMkNWvWDLNnz0ZISIh0imJ0Oh38/f0tYje6AwcOSCcoxtbWFq1atZLOMAuenp6oUqUKrl+/Lp1idBcvXuRAu5kaOXIkNBqNdIbJcXR0RIcOHVQ3CMsdRC1f165dYW9vL52hmNatW6vu5/hdOnTogFy5cklnKKZx48ZwcnJCXFycdIoidDodAgMDzX4Rubx58yJv3rwGuaykpKQ0B97TG4R/dVp6Q/KxsbEGH5I399srO4oWLSqdYHRBQUHSCSTA3t4eM2bMgJWVlXQKUaZdunQJEyZMkM5QRO3atTF37lz+rBIRERkAj+ggIiIiIiIiIiIiIiKjsrOzQ9OmTdG1a1e8//770jmqkZCQgIsXL0pnGN3HH38snWC26tWrh927d0tnGERERAT++usvLpZhQQYOHAgXFxfpDJNkZ2eHzz//HCtWrJBOUdSzZ88sYqD9+PHj0gmKadSoEdzc3KQzzEaTJk1UMdB++fJlfPnll9IZlEm1atVCvXr1pDNMVteuXVU3COvv7y+dQEZkb2+vmt3ZX6lYsSKKFSsGX19f6RSTYG1tja5du6pmuPuVjz76CIcPH5bOUMyTJ09UtWhBRtjb28Pe3h7u7u4GuTytVptqyD0+Pj7N4fd/nx4fH/96SP7fpzs6OgKA6n4uXzHUwgWmLC4uDsHBwXB2dpZOMaqEhATpBJMycOBA5M2bV7U/22RcCQkJRvve8vX1xdChQw2+eIspKlOmDObNmwedTgedTiedQ0RElC0pKSlITEyEm5ub2GYBHGgnIiIiIiIiIiIiIiKjKF68ODp16oR27doZ7CBAyrjz588jMTFROsPoPvzwQ+kEs2VJA+0AcPr0aQ60WwhPT090795dOsOktWjRQnUD7aGhodIJ2Xbv3j1VDQC2adNGOsGsNGjQAHPnzpXOMLpr165Bq9XC1tZWOoUyYeTIkdIJJq1o0aJ47733cOfOHekUxVjC/TKlr02bNqoccq1fvz4H2v9fzZo1ER0drarfawBQrFgx6QRF+fj4WPzgrKmxtraGq6srXF1ds/TxavuZ/De1DPueP38eBQsWlM4wKj8/P+kEk+Hp6YkaNWqo+mebjOvhw4eIjIw0+OVGRUVh0qRJiIqKMvhlm5o8efJgxIgR/N1FREQWp1ixYmLP/3GgnYiIiIiIiIiIiIiIDMbNzQ2NGjVChw4dOFgq7I8//pBOMDpra2t+n2VD3bp1YWVlhZSUFOkUgzh//rx0AhnIkCFDYG9vL51h0sqVK4dChQqpajjaEgbnTpw4IZ2gGCcnJ9SvX186w6yUKlUK7u7uCA8Pl04xqri4OPz999+oUqWKdAplUKNGjVCtWjXpDJPXuHFjVQ2iWML9MqWvd+/e0gkiPvzwQ2zcuFE6wyT06tUL7733nnSGQSUnJ+P+/fsoU6YMrK2t0zxPrly5VLVwmLOzs8nezhm5vch0KHV72draWvxOwDlz5lTs51Lq54yLm/3PmDFjULly5Xeej78TKatKlSqFAgUKGPQyExMTMXDgQLx8+dKgl2uKcubMidWrV6No0aLSKarH34PmhbeX+eFtZl6ye3vFx8fD19dX9LV4DrQTEREREREREREREVG25M2bF5988gmaNGmC2rVrw8aGLz+Ygj///FM6wejee++9LO9oRP8cjFOxYkXcvHlTOsUg/v77b0RGRsLNzU06hbLB3d0dHTp0kM4wC02aNMG6deukMxQTFhYmnZBtx48fl05QTP369eHg4CCdYVY0Gg1q1KiB33//XTrF6Hx8fDjQbkb69esnnWAWmjRpgiVLlkhnKMYS7pcpbdWqVUOpUqWkM0TUrl1bFcOS7+Lp6YmGDRvCyspKOsWgkpOTAfyz8FJ6B3wXK1YMpUqVwsOHD5VMExMTEwMnJyfpjDRl5PYi06HU7ZUzZ04EBwcb7fJNQWJiomI/l1I/Z3yu4B+VK1dGq1atMnRe/k6krHJwcDDo7xS9Xo/vv//eYl5TehsnJyesXr3aZBf/URv+HjQvvL3MD28z82Ko20vyeR/LesaJiIiIiIiIiIiIiIiMzsbGBpUrV8aAAQOwbds2/Pnnn5gyZQrq1q3LYXYT8ejRIzx//lw6w+iqVq0qnWD2PvjgA+kEg0lJScGFCxekMyibOnbsCDs7O+kMs9C4cWPpBEWZ+06wL1++xK1bt6QzFKO2709DqVmzpnSCInx8fKQTKIPKlCmjmu/L7Cpbtqyqdm2LiopS/dCvpWrdurV0ghhnZ2cuuAKgbdu2FjfMnhkffvihdIJiIiIipBOIMsXd3V06weiio6OlE0ghw4cPl04gyrR58+bh8OHD0hlGZ2Njg0WLFqFy5crSKURERBZJvc86ERERERERERERERFRhtja2qJatWoYNGgQvLy8cOnSJezYsQOjR49GtWrVoNFopBPpPy5fviydoAgeaJ59FStWlE4wqPPnz0snUDZYW1ujc+fO0hlmo3r16siZM6d0hmLMfaD93Llz0Ov10hmK0Gg0qFevnnSGWapUqZJ0giI40G4+unXrJp1gVho0aCCdoBi9Xs9d2i2QjY0NWrRoIZ0hqlatWtIJ4tq3by+dIKp27drSCYoJDw+XTiDKFDU8BxIVFSWdQAqoVKkSPvroI+kMokzx9vaGl5eXdIYiZsyYoaq/74mIiJTGbVKIiIiIiIiIiIiIiChdGo0GVapUQenSpeHm5oa4uDj4+fmhePHisLe3l86jdPz111/SCYqwtGFsCZY2OMcd2s1bw4YNUbBgQekMs2FlZYVq1arh5MmT0imKMPehuYsXL0onKKZChQrw8PCQzjBLZcqUgUajMYvFD2xtbeHs7PzGPycnpzT//99vu7q6SudTBri6uqJNmzbSGWbl/fffx4YNG6QzFBMWFgZPT0/pDDKgevXqqf4+vEKFCtIJoipVqoQSJUpIZ4gqX768dIJiONBO5kYNO7THxMRIJ5AC+vTpI51AlClnzpzB1KlTpTMUMWrUKNUv8ERERGRsHGgns5ackoKwhDjpDCIiIiIiIsV4ODjB2spKOoOIiIhURK/X48qVK7hy5Uqq062srFC4cGGUKFECpUuXxnvvvYcKFSqgSJEi3LHdBKhhoN3BwQFFixaVzjB7BQoUQK5cucx+5+NXnjx5gvDwcFUc4GqJuAts5nGg3XyoaaCdu7NnnYuLCwoUKICAgACDX7a9vX26A+aZHUx3dnaGra2twRvJtLRv3x5OTk7SGWalevXq0gmKspS/Ieh/WrduLZ0gTk3DzGn5+OOPpRPEFShQADlz5kRERIR0itFxoJ3MjRoem8bHx0snkJHlz58fzZo1k84gyrB79+5hxIgR0Ol00ilG17NnTwwcOFA6g4iIyOJxoJ3M1q57N/D1id14GcfV6IiIiIiISD3yOrlg0ccd8FnZKtIpREREpHIpKSl4+vQpnj59mmqQzsXFBeXLl0e1atVQrVo1VK1alYOlCgsKCjLKEJSpKVmyJKytraUzLELFihVx6tQp6QyDuXHjBho2bCidQZmUP39+fPjhh9IZZkdNg3PmPNDu5+enivvmV2rVqiWdYNbKlCmDgIAAODg4ZHrncxcXl3TfZ2PDQ4Qoczp06CCdYHby5s2LQoUKwd/fXzpFEeZ830xvsrW15d9R+GeY2cPDQ7Xf3w0aNJBOMAnly5fHuXPnpDOMTg1D+2RZ1LColhoGRtXuiy++4N/nZDZevnyJQYMGISbG8ud1Pv30U4wbN046g4iISBX4aJjM1pe/eyMyMUE6g4iIiIiISFEv42Lw5e/eHGgnIiIikxUTE4NLly7h0qVLAACNRoNSpUrhgw8+wIcffohatWrBxcVFuNKyXblyRTpBESVLlpROsBiVKlWyqIH2a9eucRDDDDVp0gQajUY6w+xUqlQJtra20Gq10ilGl5SUBK1Wa5YHsF+4cEE6QTE2NjaoVq2adIZZ++mnn2BjYwMrKyvpFFKxokWL4r333pPOMEvVq1dXzUA7dxC1LNWqVePzNf+vfPnyOHPmjHSG4vLkyaP6HepfUctAO3+Pk7kxx+cDMosD7ZbN2toan332mXQGUYbExcVh8ODBCAwMlE4xujp16uDHH3/k6xNEREQK4atfRERERERERERERERkNHq9Hg8ePMDGjRvx5Zdfonbt2ujRowfWrl2LJ0+eSOdZpGvXrkknKKJIkSLSCRbD0hYHUMvPgKVp1qyZdIJZcnBwQLly5aQzFJOUlCSdkCWvFvpRg/Lly8PJyUk6w6zZ2dlxmJ3E8X4566pWrSqdoBhzvV+mtNWvX186wWSo6fH1v3300Ucc4vl/alnUhb/HydyoYaBdDQsWqln9+vXh6ekpnUH0TikpKRg5ciRu374tnWJ07733HpYuXQo7OzvpFCIiItXgK2BktpY3+QJ5nbgqLBERERERqUteJxcsb/KFdAYRERFRlul0Oly6dAk//vgjmjdvjubNm2Px4sV49OiRdJrF+Pvvv6UTFMGBdsMpWrSodIJB+fj4IDk5WTqDMiFPnjyoXr26dIbZKl26tHSCYhITE6UTsuTmzZvSCYpR0yAnkSXjQHvWlSpVSjpBMRyEtCwcaP8fS/sbOaMaNGggnWAy1PKcEwdnydxwoJ3MXatWraQTiDJk1qxZOHnypHSG0eXNmxcrV66EiwtnkoiIiJRkIx1AlFWfla2CdqUrISwhTjqFiIiIiIhIMR4OTrDmDk1ERERkQZ48eYJly5Zh2bJlKFu2LNq2bYt27dohV65c0mlm6969e9IJiihcuLB0gsWwtIP14+Li8PDhQ5QtW1Y6hTKoadOm3I04G0qWLCmdoBhzPLA7MjIST58+lc5QTKVKlaQTiCibChYsiIoVK0pnmC0OtJM5yp07t2p3JU+LWoaZ/6tWrVrSCSbD0p4nSY85/n1F6qaG3XP1er10AhmJvb09GjVqJJ1B9E7r16/Hxo0bpTOMzsPDA2PHjkXu3LmlU4iIiFSHA+1k1qytrJCHu7QTERERERERERERWYR79+5hzpw5WLhwIRo1aoSOHTuifv360Gg00mlmw8/PDzExMdIZivD09JROsBguLi7w8PBAWFiYdIrB3LlzhwPtZqRp06bSCWZNTQPt5jg45+Pjo6oD0jnQTmT+uDt79uTKlQvu7u4IDw+XTjE6c7xfprTVrVuXz738ixoH2osVKwZ3d3fpDJPh5uYGNzc3REZGSqcYlV6vh1arVcWu12QZeF9F5uyjjz7iLtBk8o4fP47Zs2dLZxidk5MTVqxYAZ1OJ51CRESkSlzmnoiIiIiIiIiIiIiITIpWq8XRo0cxYMAAfPrpp9iyZQvi4+Ols8yCWnZn12g0yJMnj3SGRbG03cfu3LkjnUAZ5ODggOrVq0tnmDXuBGvabt68KZ2gGGdnZxQrVkw6g4iyqU6dOtIJZk8ti82Y4/0ypa1q1arSCSYlf/78qtgF+N+qVasmnWBy1LKwAX+XExEpg7uzk6m7desWRo8ejZSUFOkUo7K1tcVPP/2EihUrSqcQERGpFgfaiYiIiIiIiIiIiIjIZD1+/BhTp05Fw4YNsXTpUkRHR0snmbS7d+9KJygiZ86cqju43NgsbaD977//lk6gDKpatSp/nrOpYMGCcHBwkM5QhDkOW/j4+EgnKKZMmTLcMY/IzFlbW3OhGQPgQDuZm0qVKkknmBSNRoPChQtLZyiKixq8ydKeJ0mPVquVTiAisngajQYfffSRdAZRugIDAzF48GDExcVJpxiVRqPBzJkzUb9+fekUIiIiVeNAOxERERERERERERERmbyIiAgsWbIEjRo1wqJFizjYng617NCeM2dO6QSL4+npKZ1gUGpZ3MES1KxZUzrB7FlZWaFgwYLSGYowx8E5NS2wUaZMGekEIsqm8uXLw8XFRTrD7KllEDYxMVE6gQzAzs4OZcuWlc4wOZb2N/K7cKD9TXnz5pVOUIQ5/o1FRGRuKlSogDx58khnEKUpJiYGAwcORHBwsHSK0X377bdo27atdAYREZHqcaCdiIiIiIiIiIiIiIjMRnR0NJYvX47GjRtj/fr1POjyPx49eiSdoAgOtBueh4eHdIJBRUVFwd/fXzqDMqBWrVrSCRYhX7580gmKMLf7/ejoaLx48UI6QzEcaCcyf1xoxjDy588vnaAI7uprGcqVKwc7OzvpDJOjpqEzJycnlC5dWjrD5KhloJ2/y4mIjO+DDz6QTiBKk06nw4gRI3D//n3pFKPr06cP+vXrJ51BRERE4EA7ERERERERERERERGZoYiICMyaNQuffvopTp48KZ1jEvR6vWoGeDnQbni5c+eWTjC4Bw8eSCfQO9jZ2aFKlSrSGRZBLQPtKSkp0gmZ8vDhQ+kERRUvXlw6gYiyiQvNGIZa7pf1er10AhlApUqVpBNMkiX+jZyekiVLwtraWjrD5Kjle4C/y4mIjI9/Z5Gpmjp1Ks6cOSOdYXStWrXC2LFjpTOIiIjo/3GgnYiIiIiIiIiIiIiIzJafnx8GDx6MIUOG4Pnz59I5ooKCgpCYmCidoQhnZ2fpBIuTK1cu6QSDe/z4sXQCvUPlypVhb28vnWER1DI4Z27UNtBerFgx6QQiygaNRoP3339fOsMi8H6ZzEnFihWlE0ySmnZoL1mypHSCSVLLQDsRERmXtbU1/84ik7Rq1Sp4e3tLZxhd3bp1MXv2bGg0GukUIiIi+n8caCciIiIiIiIiIiIiIrN3/PhxtGzZElu2bJFOEfPs2TPpBMU4OjpKJ1gcDw8P6QSD40C76XvvvfekEywGB+dMk5oG2u3t7VGgQAHpDCLKhgIFCiBHjhzSGRbB09OTB8uT2ShevLh0gklS0zAzB9rTpqZFDYiIyHjKlCkDFxcX6QyiVA4dOoQFCxZIZxhdhQoVsGTJEtja2kqnEBER0b9woJ2IiIiIiIiIiIiIiCxCXFwcpk6dir59+yIwMFA6R3EcaKfssMSD9TnQbvpKlSolnWAxONBumtQ00F6kSBEObxKZudKlS0snWAxbW1uLfHxNlqlo0aLSCSZJTT/DJUqUkE4wSWr6HiAiIuOpXLmydAJRKteuXcPYsWOh1+ulU4yqSJEiWL16NZydnaVTiIiI6D9spAOIiIiIiIiIiIiIiIgM6ezZs2jXrh1+/PFHNGzYUDpHMX5+ftIJivnzzz8REBAgnWFRUlJSpBMMjgPtpo8D7YaTM2dO6QRKw5MnT6QTFMPd2YnMH++XDcvNzQ3BwcHSGURv5erqCg8PD+kMk+Tq6iqdoBgOtKdNTd8DRERkPFWqVJFOIHrNz88PQ4YMQWJionSKUbm4uGDNmjXIlSuXdAoRERGlgQPtRERERERERERERERkcSIiIjB48GD069cPI0eOhLW1tXSS0alpoN3X1xe+vr7SGWTiIiIiEBYWxgENE8bBOcPJkSOHdAL9h06nw4sXL6QzFMOBdiLzx/tlw+IgJJmDIkWKSCeYLBcXF+kERdja2vL7IB3W1tZwdHREfHy8dAoREZmxChUqSCcQAQAiIyMxYMAAhIWFSacYXWxsLMLCwvg4l4iIyERxoJ2IiIiIiIiIiIiIiCySXq+Hl5cX7ty5g0WLFln8sJ+ahuaIMurp06ccaDdRefLk4a7iBmTp93HmKDAwEMnJydIZiuFAO5H540C7Ybm5uUknEL1T0aJFpRNMlloG2vPmzQsbGx5GnB4XFxcOtJPJSEpKQkhICMLCwl7/Cw8Pf/3/oaGhiIqKQlJS0hv/tFrt6//X6XTSnwqRatjY2KBEiRLSGURISkrCsGHD8OTJE+kURej1ekyaNAm7d+/mY10iIiITxHtnIiIiIiIiIiIiIiKyaGfPnkWnTp2wYsUKiz5YOzQ0VDqByOQEBASgWrVq0hmUhpIlS0onWBTuAmt6AgICpBMU5enpKZ1ARNmg0Wh432xgvG8mc8AdC9OnpoF2Sp+zszOCg4OlM0hFEhMT8ezZMzx9+jTVv2fPniEwMBB6vV46kYgyoVixYrCzs5POIMKECRNw6dIl6QxF3bt3D+vXr0e/fv2kU4iIiOg/ONBOREREREREREREREQW7/Hjx+jcuTPWrFmD8uXLS+cYBQ+wJXqT2gZKzUnhwoWlEyyKra0tHB0duXugCVHb7588efJIJxBRNnh4eMDJyUk6w6LkyJFDOoHonfLlyyedYLIcHBxgY2Nj8TsZc1Git1PLwgYkIzw8HLdu3cKtW7fg4+ODO3fucGidyMKULl1aOoEIS5Yswb59+6QzRCxduhQtWrRAgQIFpFOIiIjoXzjQTkREREREREREREREqhAWFoYePXpgxYoVqFmzpnSOQSUkJCA2NlY6g8jkqG2g1Jxw+NXwXF1dOdBuQvz9/aUTFMWfaSLzxp9hw+MO7WQO3N3dpRNMmpWVlXSC0XGg/e2cnZ2lE8hCJCYm4vr16/Dx8Xk9wK62vxmJ1KhYsWLSCaRy+/btw9KlS6UzxMTFxWHatGlYsWKFdAoRUSq3noVi5PrTuOkbAm1yCqoVz4PlAxuhdP6c0mlEiuBAOxERERERERERERERqUZMTAz69++PlStX4oMPPpDOMRjuzk6UNg60my4Ozhmevb29dAL9S2BgoHSConLnzi2dQETZwPtlw7Ozs5NOIHonDw8P6QSTptFopBOMjgPtb2drayudQGYqJSUFPj4+OHfuHC5cuICrV68iKSlJOouIFMaBdpL2008/SSeIO3nyJI4dO4bGjRtLpxARAQB0ySnoOP8gHgRGvj7tj9sB6LboCC7O/kIVz0UQcaCdiIiIiIiIiIiIiIhUJSEhAV9++SW8vLzw/vvvS+cYREhIiHQCkUniblemi4Nzhmdjw5f/TYmaFpuxtrZGzpw5pTOIKBt4v2x4HIIkc8CB9rdzcXFBYmKidIZRcaD97fg3FmVGfHw8zp49ixMnTuCPP/5AaGiodBIRCeNAO5FpmD59OurUqQNnZ2fpFCIiHLzqm2qY/ZWrT4Jx6WEQapfOJ1BFpCw+20JEREREREREREREmVawYEGcOHFCOsOsJCcnQ6vVQqfTISkpCTqdDjqdDnFxcYiMjERUVNTrf5GRkXj58iUCAwPx4sULBAYGIjo6WvpTsChxcXEYOHAgNm7ciPLly0vnZBsPkCRK24sXL6QTKB0cnDM8Ds6ZlrCwMOkExbi6unLXECIzx/tlw+P9MpkDDrS/nYODg3SC0bm5uSE5OVk6QxGvPs/MfL7W1tbGyjEZKSkpJvk9kJXbS4JOp8O5c+ewf/9+HD9+HPHx8dJJZOb0er1i3/dSP2cpKSmKXp+kfPnyGeTray6/E4lM1YsXL7B48WKMHTv29Wn8uTIvvL3MC2+vt/v58M103/fTgesY8WkVVC2eG9ZWVoo18TYzL9m9vUzhduZAOxERERERERERERGRAqytrbN1EGRMTAz8/f3x6NEjPHz48PW/Z8+eQafTGbBUPWJiYjBw4EB4e3ujQIEC0jnZEhERIZ1AZJISEhIQHR0NV1dX6RT6Dw7OGR4H50yLmhab4e7sROaP98uGx119ydRZWVnBzc1NOsOkqeHn+Pnz57h+/bp0hqJ8fHwyfF41LDD6999/Izg4WDojXZm5vZQUGBiI48eP48yZM4iKipLOIQsSFham+O9lpX/O/Pz8FL0+KTY2NvD390dAQIDBLtNUfycSmYONGzeibNmyKFasWKrT+XNlXnh7mRfeXm96FhaP4z7+6b5/+7mH2H7uIYrncsS6npXgaPf244v0ej2CopPgYm8NF/s3n8OISdTBxkoDB9uMHafE28y8mPPtZfnPuBERERERERERERERWQAXFxeUK1cO5cqVS3V6UlISfHx8cPXqVfz111+4du0ah5szITg4GAMHDsS2bdvg4uIinZNlMTEx0glEJis4OJgD7SYod+7c0gkWRw0DN+ZETTu0c6CdyPzlypVLOsHicKEZMnU5cuRQxe7T2aGGx9fVqlVDyZIlpTMUkZycDB8fH1SqVCnD3/tqWPClfPnyKFiwoHTGG7JyexlbSkoKjh8/jq1bt+LixYvQ6/XSSWSBPDw8ULVqVUWuS+rnzNnZWbHrkpQ/f35Uq1bNIJdlir8TicxNSkoKtm7diq1bt8LKyoo/V2aGt5d54e2Vvk0bzmbofE9C43EuyAqjWldNdXqiNhlLDt2Eb3AUutUvi/m/XcNvV3yR09kOKwc2QrtaJXA/MAK7zj/CzgsPccsvDLlcHLDxqyb4pFKhdK+Pt5l5ye7tFRcXh/v37xuhLOMs/xk3IiIiIiIiIiIiIiILZmdnh/fffx/vv/8+BgwYAL1ej0ePHuHkyZM4duwYbty4wYPr3uHBgwcYO3Ysli5dCo1GI52TJRxoJ0pfSEgISpQoIZ1B/2JlZQV7e3vpDIvDwTnTERkZCa1WK52hGC4aQmT+HBwcpBMsjhoGYcm82dnZSSeYPDX8HLu5uanuYHVra+sMf85q+BvLysrKpL8HMnN7GUtSUhL27NmDNWvW4OnTp6ItZPk0Go3i3/NK/5xZWVkpdl2S8uXLZ/Cvqyn8TiQyZz4+PvD29ka3bt1en8afK/PC28u88PZKLTZBiw2n7qY6bVSbarj5NAS/3/B74/yHrz/DmHY1Up02fsNZLDl0EwCw+tjfr0+PiE1Ct59+R/lC7rj5NDTVx4TGJGDspnO4Nq/LOxt5m5mXrN5epnAbq+MvAiIiIiIiIiIiIiIildBoNChVqhQGDBiA7du349SpU5g0aRJq164tnWbSjh07hlWrVklnZFlsbKx0ApHJCgkJkU6g/+DwjHGo5YBgc6Cm3dkBwMnJSTqBiLKJC80YHu+XydSpYVA3u8x10cPMUMsuuVmlhu8BSl9SUhLWr1+Pjz/+GJMmTeIwOxFlSq5cuaQTiCgNCxcuRHBwsHQGEanQtrP3ERmX9PptjQYY1KQihjSrnOb5z94NRGRc4uu3o+OTsOrY7XQvX5ec8sYw+ys+z0IRFpOQxXIiw+Mz50REREREREREREREFszT0xPdunXDhg0bcPDgQfTo0QMuLi7SWSZp8eLFuHLlinRGlnCgnSh9L1++lE6g/+DQHFm6qKgo6QRFcRCKyPzxvplIfbjIFGk0Gj6OI0pDcnIydu3ahWbNmmHWrFkceiOiLOFAO5Fpio6OxqxZs6QziEhl9Ho9lh/xSXVa86pFUcLTDa1rFMf8XvVQobBHqvcnp+hx/Ob/dm4/eNUXidrkLDdcecTXy8l0cKCdiIiIiIiIiIiIiEglSpYsiQkTJuD06dOYMmUKChUqJJ1kUpKTkzFmzBjExMRIp2SaOTYTKSU0NO3V6EkOh2fI0qltoRkOQhGZP943E6kPd2h/t+TkrB8obg4cHR25AznRf1y6dAnt2rXDuHHj8Pz5c+kcIjJjHh4e7z4TEYk4ePAgzp49K51BRBbuxC1/VBm1BZW+2YxpOy7hum9Iqvd/2azS6/8f0bIqbszviiZVCqc6z6FrT1///87zDzN83Z5uTsiTwzHVaRxoJ1PCgXYiIiIiIiIiIiIiIpVxcnJCly5dcOjQIUyYMAG5c+eWTjIZAQEBmDlzpnRGpnGgnSh9kZGR0gn0HxyaI0untoF2R0fHd5+JiEwa75uJ1Ic/9+8WEBAgnWBU1tbW0glEJiMoKAijRo1Cjx49cP/+fekcIrIAHGgnMm3Tpk1DUlKSdAYRmbCQqHhM2HoeQ1adxB3/sEx97KMXkWj/4wHc9gvDnYBwTN95OdX7i+fNgWZVi7zxcS2qFUv19sY/76H6t1vxxfxDqYbbX8nl6oANw5tgXs96aFKlMAY3rYhjk9vh2cre6Fy3dKrzXn4YlKnPgciYbKQDiIiIiIiIiIiIiIhIhp2dHXr06IHPPvsMv/zyC1avXo24uDjpLHG7d+9GmzZtUKdOHemUDIuPj5dOIDJZHGg3Pfb29tIJREaltoF2/kwTmT/+HBOpD3doJyL6x86dOzF79mxER0dLpxCRBcmRI4d0AhG9hZ+fH/bu3YtatWpJpxCRieq//Dj2/+ULADju44+bC7rC3vbdC8MlJOnQZvZviE3UpnueQU0rwtrqzT2qm1ctgpH/eluXnIKbT0Nx82loqvNZW2nwfHVf5HL932LDX7eqmuo875fMm+rtK4840E6mgzu0ExERERERERERERGpnJOTE4YMGYK9e/eiWrVq0jkmYcqUKWa1Mr9Wm/4LokRqFxUVJZ1A/8HdIMnSqW2gnT/TROaPg61E6sOf+3crUuTN3dKIyHK8ePEC/fv3x/jx4znMTkQG5+rqKp1ARO+wf/9+PHr0SDqDiEzQ0+Co18PsAPAoKBJn7j5/68ck6ZLx1ZpTcOm+AveeR6R7Pntba/Ru+F6a7yudPycqFcn1zr6PKxVKNcyelholPVO9HRgeh4CwmHdetiGExyTgb/8w3PEPQ5IuWZHrJPPCgXYiIiIiIiIiIiIiIgIAFC1aFFu2bMHo0aNVP5jk6+uL1atXS2dkWHIyXwgkSg93aCcipXGgnYiIiIiIyHSdPHkSbdu2xenTp6VTiMhCcaCdyPTpdDpMmzZNOoOITNCBfw2zv/LXo5dv/ZgVR29h2RGfd152pw9LI3eOtIfRNRoNVg3+GOUKur/1Mvo2Kv/O6ymTPydyOKZ+7ebKw7d/DoYwcdsF5Ou/BpVHbkGlkVtQcuh6XHzwwujXS+aFA+1ERERERERERERERPSalZUVBgwYgB07diBfvnzSOaK8vLwQEhIinZEhHGgnSh93aCcipcXFxUknKIo7vBIRERERkTnQarX48ccf8eWXXyIiIkI6h4gsmLOzs3QCEWXA5cuXsXv3bukMIjIxv/315I3TfJ6FvvVjdl14mKHLHtys0lvfX7OUJ3wWdIXfyj44PqU9VgxshJGtq6F1jeKo914B/NDtQ3xep9Q7r8fKSoPqJfKkOu3yo6AMNWbVpYdB+GH3FSSn6F+fFhgeh5azfsPNp+Zx3A0pgwPtRERERERERERERET0hnLlysHb2xtlypSRThETFxeHJUuWSGdkiE6nk04gMlkcaCcipWm1WukERVlbW0snEBERERERvVVERAT69u2LtWvXQq/Xv/sDiIiywdEx7Z1Xicj0zJkzB+Hh4dIZRKQAv5BoaHVv3yggKi4Jf9wKeOP0a0+C0/2YmIQkXHzw5rD4sOaVU71dq7QnapXyfGenRqNBfndnNChfEP0bV8CcHnWxZ0xL/DG1A75tWx0ajeadlwH8Mxz/b4euPs3Qx2XVyqNp71AfEZuIFjN+xYPACKNef1b5vozCvee8H1ASB9qJiIiIiIiIiIiIiChNnp6e2LJlCz744APpFDE7d+6Ev7+/dMY7caCdKH0xMTHSCUSkMsnJbz8gytJYWfHQEyIiIiIiMl2+vr7o1KkTLl26JJ1CRCphb28vnUBEGRQeHo45c+ZIZxCREen1enRacAjFh6yHZ781uJLGTuUpKXpcffwSE7edhzY55Y3333sejtiEtBczPnM3ELr/fEzEhoFY1PcjzO1ZF/lyOqFmKU9sGN7EMJ9QBjWtUiTV2zeehsDnmXF2Sg+PScD2sw/SfX9QZByaTd8Hv5Boo1x/VgSExeCzuQdRatgGVPh6M0atPy2dpBp8VZGIiIiIiIiIiIiIiNLl6uqK1atXo06dOtIpInQ6Hby8vKQz3kltg3NEmZGcnIykpCTpDCJSEbUtNMOBdiIiIiIiMlU3b95Ep06d4OvrK51CRCrCgXYi87Jnzx5cuXJFOoOIjOTw9WfYdeERACAqPglfrvoDwD8Dzev/uIPui4+gwIA1qPWdN34+nPYu43r9PwPhaTnhk3qDhA/L5oeLgx0A4JtW1eC/qi/Oz+qIUvlyGuYTyqAG5QuioIdzqtO2nL5vlOva+Oc9JGhTH7NSJn/OVG8/C4lG8xn78DIyzigNGZWSosfqY7dQ6Zst2Hf58evTFx+4YbSBf0qNryoSEREREREREREREdFb2dnZYcmSJShTpox0iohdu3bh5cuX0hlvpbbBOaLMSkhIkE4gIhVR20IzHGgnIiIiIiJTdOXKFfTu3RsRERHSKUSkMhxoJzIver0ekydPhlab9u7LRGTedp1/mOrta0+C4dnPC0UH/4J+y45j29kHCIl+92vJ154Ep3n6yVupB9obVSyU9VgDsrLSoHO91Mf4bDtzHykpeoNf15rjt1O9/cWHpXH+h46oXjxPqtPvPY/ApzN/RURsosEb0nP6znN8NHEXPpm6BzN2XkbjaXvw5ao/EBX/5oL4607cUaxLzfiqIhERERERERERERERvZOrqytWrVqFvHnzSqcoLikpCVu3bpXOIKJsiI+Pl04gIhVR20C7Xm/4g5+IiIiIiIiy4/z58+jfvz9iY2OlU4hIhaytraUTiCiTHj58iDVr1khnEJER3AkIe+O00AwMsP/X9TQG2oOj4nHdN/XpH1cyjYF2AOhar2yqt/1CY3D67nODXsfjoEjc9kv9NR7QuALcnOxxYHwblCvonup9131D0HXREUVeW4pP0qHrosM4dy8Qp24HYIr3Rfz5d/qf/6Y/7yIhiZtJGBsH2omIiIiIiIiIiIiIKEPy58+PFStWwNbWVjpFcTt27DDpVfl5cBTR23GHdiJSkk6nroNdUlJSpBOIiIiIiIheu3nzJoYMGcIFDolIjEajkU4goixYvnw5/Pz8pDOIyICSdMm47huS4fOXyueGL5tWwu5vP8Xs7h+met/Zu4HQJf/v9ZDQ6Hi0mb0f/57LdrSzwQel82W721AqF82FioU9Up124C9fg17H0RvPUr2dJ4cjGpQv+Pr/j0xsi2J5XN/4mO1nHxi0Iy0nbvkjMDwuw+cPi0nE3kuPAQDXngSjyqgtKDJoHTaeumusRFXiQDsREREREREREREREWVYhQoVMGTIEOkMxQUHB+Po0aPSGeniQDvR2/EAZiJSktp2LFfb50tERERERKbr0aNHGDBgAOLiMj60QERkaHzNhsg8JSQkYOrUqdIZRGRA131DkKhNTvf9Lg626FC7JJYPbIgHS3vi7k89sKR/A7SpWQI1S3mmOu/9wAhM2n4BAOAfGoOGk3bj8sOgVOdpWqUI7G1N53GARqNB21olU5225OANDFl1El/MP4Rv1v2Jeb9ew+HbwTj1dwAeBEYgLjFzGz0cvZ56oL1J5cKwsvrf4j4FPVxwZGI7eLo5pTrf6A1nEBmXmMnPCNh46i5a/fAbpu+8hJiEpLee98CVJ+m+r2geVxwY1xqNKhZKdfqqY7cQl6hFm9m/4bZfGJ6Hx2LI6j8QFsMF9A3FRjqAiIiIiIiIiIiIiIjMy8CBA3Hs2DHcvn1bOkVRe/bsQcuWLaUz0mRjw5d8iN4mMTHzL4YTEWWV2g5aTk5O/2AwIiIiIiIipYSEhKBfv36IiIiQTiEilbOy4r6TRObq9OnTOHjwID799FPpFCIygAv3X7z1/d6jWqBplSJpvq9u2fwo4ZkDj4OiXp82Z+9VuDs7YPkRHzwLiU51/lyuDvihW53sRxtY0ypFMHPX5ddva5NTsOpYGsf67H/4+n/L5M+JpQMa4uP/DHv/l1aXjJO3/VNfX9U3v54l87lhaf8G6Dj/0OvTXkTE4Yfdf2F29w8z+qng1N8B6PPzMQDA4WtPsefiI2wa0QzvFXSHRqNJdV69Xo8DV33fuAyNBhjWvDKmd/kALg52iIhNxMlb//sc/vz7OfovP5FqZ/f4JB1s+PjOYPiVJCIiIiIiIiIiIiKiTLGxscEPP/wAW1tb6RRFnTt3DqGhodIZaVLb4BxRZmm1mVtJnogoO9R2v5ySkiKdQEREREREKqfVajF8+HAEBgZKpxAREZGZmzVrFmJiYqQziCiTUlL0uOMfhnP3AvHn3wE4ccsfB9MYaH6lQ+2S6Q6zA4CNtRXWD28CG+vU47ffbz73xjB7oVwu+GNqB5Qp4J6tz8EYapXKixyOdpn6mPuBEeg47yBeRMS+8b6ouCTsvfQIg1eegGPX5YiOT/06fJPKaX9N29UqgRbViqY6zfvcA+j1+nQ7IuMScTcgHCkp/5xnzX8G8W8+DUXlkVtQdPAv6LroCJYdvombT0OQkqLHdd8QBISl7l83tDH8V/bFwj4fwcXB7v+7SiJfztS7x3ufe5D6c6pSGDmcMvc1pPRxuw4iIiIiIiIiIiIiIsq0smXLolevXvDy8pJOUUxycjIOHjyIHj16SKe8QW2Dc0SZxWFLIlKSjY26DsXgoiFERERERCRt+vTpuHr1qnQGERERWYDg4GAsWLAAkyZNkk4hogyKS9Si+Yxfce5exha4er9EHizt3+Cd56tTJj/m9qiLb345ne55yhbIiUMT2qJIbtcM9yrJ1sYajSoWwr7LjzP1cZFxSRi78RzWD2+Cx0GR2H3xEQ5fe4ozdwOhS077tfeqxXLD8z/D4a9oNBrM6FIHh649fX3as5Bo3HsegXIF31wIYOOpu/hq7SlEx2tRp2w+7Bz1KQ7+62P/7Xl4LLzPPXg9iF7S0w01SuZNdZ6Snm7o/lHZN3Zyt7e1xtDmlTFx24V0vxYzutRJ932UedyhnYiIiIiIiIiIiIiIsmTAgAFwdTXNF+WM5ffff5dOSJPaBueIMis5OVk6gYhURG0LzSQlJUknEBERERGRiu3Zswfbt2+XziAiIiILsnXrVty8eVM6g4gy6MBfvhkaZr8+rwteru2PCz98gbxuaQ9e/9ewFpXRs0G5NN9Xo2Re/DHtM5MdZn8lrZ3oNRqgW/2y+LhiIRTL5QhXR9s3zrP59D0M9zqF90ZswnebzuGP2wHpDrMDQJO37HgPAJWL5kJBD+dUpx298SzV27rkFIz85TT6/Hzs9e7v5++9QMGBaxERm/jWy3/lUVAktv9nl/WW7xd7Y5j9lUFNK8LJPu1jbjrULon3S+RN832UNRxoJyIiIiIiIiIiIiKiLMmZMye6desmnaGoq1evIjo6WjrjDXZ2dtIJRCaNO7QTkZLUttBMYmLGDiAiIiIiIiIyND8/P0yfPl06g4iIiCxMSkoKJk+ezAWTiczEnYDwd56nQmEPlC/kAQ8Xh3QHm9Oi0WiwfGAj1HuvQKrTG1UshN8ntUOeHI6Z7lVakyqF3zjts9qlsH54Exwa3xrb+1dFyNr+eLKsF9ycUh97svyoD5JT9O+8DiuNBt3ql33reTQaDZpUTj30PvKX0xj5y2ncehaK0Oh4tJj5K346eCMDnxUy9bVvU7N4uu/zcHFA74bvvXG6o50Npnf5IMPXQRnDgXYiIiIiIiIiIiIiIsqyrl27wtb2zZWaLZVWq8Xp06elM97g5JSx1cOJ1Eqn00knEJGKqOmxEcAd2omIiIiISIZOp8Po0aMRGxsrnUJEREQW6O+//8bGjRulM4goA56HxaR628HWGnndHFHA3RmFc7mgdY3i2DC8KaysMj7I/m/2ttbY8+2n6Fy3NIrlccXXrapi//et4epoHhsPlPB0Q42S/9tl3NbaCtM6137jfIVzu2JGlzrvvDxbayt8XKkQRrWphoGNK6Bz3dLY910rVCyS650f27Tqm7u4/3TwBqqO3grPfmtw8pb/Oy8DACZ/UQvPV/fF7UXdsHJQI/RsUA753dM+buaTSoXRoHzBt17ehM9romgeVwCAjbUVOn1YGhd+6IiyBdwz1EMZp65lwYmIiIiIiIiIiIiIyKA8PT3x8ccf48iRI9Ipijl//jw+/fRT6YxUnJ2dpROITBp3aCciJaltoZmEhATpBCIiIiIiUqG1a9fi+vXr0hlmycXFBQUKFED+/Pnh6ekJDw8PuLu7I1euXMiZMyecnJzg7Oz8+p+NjQ2sra1hY2Pz+v9fSU5OxvXr11G1atVUpxvakiVLsHTpUqNdPhERUVoWL16MFi1awNPTUzqFiN4iICz1Ilffd6iB8Z/VNOh1uLs4YNOIZga9TCWtGfIJvl53GlFxiZjweS2USWdQe2CTClj/xx1cefTyjffVKZsPY9q+j0YVC8LFIWvD/J9UKgSNBtC/e9P3t2pTowQ0Gg3KFnBH2QLu6PdJBTwLiUbNsdsRGv2/162K5nHF5hFNodG8fTGDvG5OuL2wG/56HIzS+d2Q101dr/UpiQPtRERERERERERERESULS1btlTVQPulS5ekE96gtsE5osxKTk6WTiAiFVHbQjPcDZGIiIiIiJTm5+eHn3/+WTrD5Lm4uKB8+fIoW7YsypUrh3LlyqFIkSLIkSOHdBoREZFZiIuLw4wZM7BkyRLpFCKLEpOQhMPXnuHgVV9ExiVhSPNK+KRS4Sxf3vP/DLQX9FDX6zQZUaFwLvw+qd07z2dtZYWl/RugzrgdqYbOba2tsG5oY5TKlzNbHblcHfF+ibxpDsz/WwF3Z+wY3QLO9rboOP8gHgRGvn5f6fxuqFz0zd3gi+R2xeYRzfD5vIOISdAiTw5H7BjVArlzOGaozcHOBnXL5c/cJ0SZxoF2IiIiIiIiIiIiIiLKloYNG8LJyQlxcXHSKYrw9fXFy5cvkTdvXumU1zjQTkREZDo40E5ERERERGRcU6ZMQUJCwrvPqDIajQaVKlVC3bp1Ua9ePVStWhU2NhwXICIiw9JoNGjfvj327t2LlJQU6RyjO3r0KE6ePIlGjRpJpxCZhPCYBLyMioedjTWK5XF9587Xr4TFJGD/lSfYc+kxjt54hkTt/xYkP3L9Ke4v6YECHi5ZagoIi0n1dlYvh/5Ro6QnvmxaCcuO+Lw+bWiLytkeZn+lc90ybx1o/6BMPuwY1QL53f95ve3S7E74dsMZbD59Hx4u9lj95Sfpft81rlwYN+Z3gc+zUNQunQ95MjjMTsrhX6hERERERERERERERJQt9vb2qFGjBv7880/pFMXcuHEDTZo0kc54TW2Dc1u3bkWBAgWkM8iMuLu7SycQkYqo7X6ZA+1ERERERKSk33//HWfOnJHOMCn58+dHu3bt8Nlnn6Fw4azvbElERPQuBQsWxOzZs1GrVi3Y29tj69at0kmKmD59Oj744AM4OnIwktRt1PrT+PmwD3TJ/yxmUdLTDQv71Men1Yu9Pk9YrBa/XnmCikVyo3T+nNAlp2Dy9otY8Ns1aJPTXgQjQZuMI9efoc/H5TPdlKhNRkh06sWuuEN79v3Yoy4iYhPx+00/NK1SBDM6f2Cwyx7WojIeB0XiuM8/lx2fpMOaE38DAAY2rogFvevD3tb69fldHe2wYtDHWNjnI9jbWMPK6u2LKBTNkwNF8+QwWC8ZFgfaiYiIiIiIiIiIiIgo2+rWrauqgfZbt26Z1EC72nZoz5kzJ/LlyyedQURElCa13S/HxMS8+0xEREREREQGoNPpMG/ePOkMk1GhQgUMGzYMDRs2hJWVlXQOERFZuHbt2mHixIlwcfln5+Ovv/4ahw4dQkREhGyYAgICArBkyRKMGTNGOoVIzLl7gVh84Eaq0x4FRaLN7P3o2aAc5veqh5CoePRafxMvo5NgZ2OFGV3q4LcrT3D6zvN3Xv4N35AsdT0Pf3PR3YLcoT3bHO1ssOGrpka5bBtrK/zUr0Gq0yZ2rAXg7bedox1HoS0Bb0UiIiIiIiIiIiIiIsq2qlWrSico6u+//5ZOSMXNzU06QVFarVY6gYiIKF2vDuhUi8jISOkEIiIiIiJSCW9vb/j6+kpniCtbtiy++uorNG7cWDqFiIhUwN3dHdOmTUPTpqkHG3PmzImvv/4aU6ZMkQlT2Pr169G2bVuULVtWOoVIxK+Xn6T7vg2n7uL3m8/g6eaEl9FJAIAkXQrGbDyb4cu/5hucpS7/0NSL7jrZ28DNyS5Ll0VyuAiBenApNiIiIiIiIiIiIiIiyrZy5crB2tpaOkMxd+/elU5IxcPDQzpBURxoJyIiU+bu7i6doCg17MBERERERETyEhIS8PPPP0tniLK1tcXXX3+NPXv2cJidiIgU0bBhQ/z2229vDLO/0qlTJ5QvX17hKhk6nQ6TJ0+GXq+XTiESceT607e+PzA8Dtffscu6rbUV2tYsgV+GNcb6YU1Sve/m0xCkpGT+5+t5WOqB9oIeztBoNJm+HCJSBgfaiYiIiIiIiIiIiIgo2xwcHFC0aFHpDMW8fPkSsbGx0hmvqW1wjgPtRERkynLlyiWdoKioqCjpBCIiIiIiUoFdu3YhJOTtAzKWrGzZsti5cye+/PJLVS0uS0REMpycnDB16lSsXLkSefLkSfd8VlZWmDBhgoJlsq5duwZvb2/pDCLFBYTFwOdZaKrTejd8DzkcM74TeuFcLvhjWgfs+vZTdP+oHBpWLJjq/dHxWjx5mfnXGwLCUh+3UYA7fROZNA60ExERERERERERERGRQRQpUkQ6QVG+vr7SCa+pbYd2nU4nnUBERJQuFxcX2NvbS2coRqfTITo6WjqDiIiIiIgsWHJyMtauXSudIaZevXrYtm0bypUrJ51CREQqUK1aNezduxedO3fO0Pnff/99tGnTxshVpmP+/PkIDQ199xmJLMiR689SvZ3T2R4rBjXCzQVd0azqu48TaVKlMC7/2Am1S+d7fVoBd2fkdnVIdb4bvsGZbgv47w7t7s6ZvgwiUg4H2omIiIiIiIiIiIiIyCAKFy4snaCop0+fSie8praBdu7QTkREpk5t981q3iWRiIiIiIiM7/Dhw/D395fOENGqVSusWLECTk5O0ilERGThbG1tMWLECGzevBlFixbN1Md+++23cHZWxxBpZGQkZs+eLZ1BpBi9Xo+5+/5KdVrjSoVhY22FQrlcsP/71lgz5BO4Of1vt/YudUvj27bV0bBCQSzqUx/7v2+N3DkcU12GRqNB1eJ5Up123TfzrzU85w7tRGbFRjqAiIiIiIiIiIiIiIgsQ548ed59Jgvy4sUL6YTX3NzcYGtrq5pB79jY2HefiYiISJCHhwcCAwOlMxQTHByM4sWLS2cQEREREZGF2rx5s3SCiDZt2mDOnDnQaDTSKUREZOFKliyJuXPnokKFCln6+Lx582Lo0KGYM2eOgctM06+//ooOHTqgTp060ilERvU8LAZdFx/Fg8DIVKf/e1d2jUaDXg3fQ7OqReB99gFiwl5gdOePYWdr+87Lr1IsN47d9Hv99vUs7dCe+tiBgh7qWFyDyFxxh3YiIiIiIiIiIiIiIjIId3d36QRFBQUFSSekoqavf0REhHQCERHRW+XOnVs6QVHBwZk/yIyIiIiIiCgjfH198ddff737jBamSpUqmDlzJofZ/19ycrJ0AhGRRdJoNOjRowf27NmT5WH2V3r27KmqRS+nTJmCpKQk6Qwio/p63WmcufM81WkaTeqB9lfy5XTG0OaV0Kx8HlhbZWxktWqx1K+lHLz6FLf9QjPV+DwsJtXbHGgnMm0caCciIiIiIiIiIiIiIoPImTOndIKiXr58KZ2QSr58+aQTFBMZGfnuMxEREQnKnz+/dIKiONBORERERETGsnv3bukExeXLlw8///wz7OzspFNMRnx8vHQCEZHFyZcvH9atW4cJEybA3t4+25dna2uLCRMmGKDMPPj6+mLlypXSGURGE5ugxYGrvm+cPrxFFRTwcDHIdVQplueN02qM2Y6d5x++82Oj45Mwe88V+AZHpzq9YC7DtBGRcXCgnYiIiIiIiIiIiIiIDEJtB9eFhYVJJ6RSoEAB6QTFcKCdiIhMXcGCBaUTFBUYGCidQET0f+zdZ3hU1f638e9kMklIAqSS0AKB0Hsv0kFAQBBEkCKiIiogHttBpAkcEFTsFcSKUpSmUi2IKIIgIL0TCD10QgJp87w4z8nfMQk1M2smc3+uK5fOmj173xE1IcxvLwAAkA/Z7XYtXLjQdIbLvfTSS4qMzD7c480YaAeAvNWpUyd9++23atSoUZ6et0mTJmrTpk2entOdTZ06VQcOHDCdATjFT1sP60pahsPax4PbaMr9TfLsGhWKhah0ZEGHtbSMTN335nIt23Qw19cdPp2kZqPmauTMNdmeK55Hw/YAnIOBdgAAAAAAAAAAkCdsNpvpBJe6ePHitQ9yIQbaAQBwH970dVmSjh49ajoBAAAAQD60efNmHT9+3HSGS3Xr1k0NGjQwneF2kpOTTScAQL4QEhKi1157TVOmTFGhQoWcco3nnnsuT3Z89wSpqakaO3as6QzAKRb/Y3f2ZpWL6b7mFWWxWPLsGlYfH80f1lEVioU4rKdlZOqeKUu06+jZbK85eiZJTUZ+rS2HTudwPouiQwLzrA9A3mOgHQAAAAAAAAAA5AkfH+/6Ywd3G2j3pp1gGWgHALg7b/q6LElHjhwxnQAAAAAgH/rpp59MJ7hUaGio/v3vf5vOcEvs0A4At65Jkyb65ptv1KFDB6dep2TJkhowYIBTr+FOfv/9dy1cuNB0BpCn7HZ7toH2jrVLO+Va1WIi9OdL92pA68oO68lX0vXygg3Zjh85c40On07K8Vx31ColX6t3vW8F8DT8FwoAAAAAAAAAAPJEWlqa6QSXSkrK+Q9JTfGmnWDPns1+J3YAANyJN31dlhhoBwAAAOAc3jbQPnToUIWGhprOcEvudoNZAPAkBQoU0KhRozR9+nRFRUW55JoDBw70qpt+Tp48mRtyI1/5c/9JHTlzyWGtg5MG2iUpwM9X7z7cUj0bl3NY//bPA0rPyMx6nJqeoQV/7M/2+nY1Y/R8t7r67PG2TmsEkDcYaAcAAAAAAAAAAHnC2wbaU1NTTSc48KbBuePHj5tOAADgqooUKaKAgADTGS5z7tw53rAJAAAAIE8dPXpUu3fvNp3hMkWKFFH37t1NZ7gtbqQGADenWrVqmj9/vvr27evS6wYEBGjYsGEuvaZJp0+f1pQpU0xnALcsPSNTby7+S23HLXRYLxNVSBWLO/fGSz4+Fk3s08hh7fTFy1q142jW45+3HdGFFMf3aRx4934ter6zxt3bUIUC/ZzaCODWMdAOAAAAAAAAAADyxOXLl00nuFR6errpBAclSpQwneAyR48eld1uN50BAECuLBaLSpcubTrDpeLj400nAAAAAMhH1q9fbzrBpXr16iU/PwZwcpKRkcFNTgHgBvn6+mrIkCGaNWuWYmNjjTS0a9dOjRo1uvaB+cScOXO0YcMG0xnATftt5zHVf262nvpkVbah8Y61S8tisTi9oVRkIdWOjXRYW/DHvqy//2ad4+7sDcpFqWREQad3Acg7vqYDAAAAAAAAAABA/nDu3DnTCS7lbjvSBwcHKzo62ive2JeWlqbExEQVKVLEdAoAALkqW7asdu7caTrDZQ4cOKAaNWqYzgAAAACQT/z555+mE1zGx8dH3bp1M53hto4fP+52N5gFAHc3depU3XbbbaYzNHLkSHXp0sUr/j9ut9s1ZswYzZ8/X76+jOvB/V1Jy9DHK7Zr5bYj2nX0rDYfPJ3jcUUKF9DjHVz3s/8u9ctow4HErMezftujzEypcJCf5q3d53Bs53plXNYFIG+wQzsAAAAAAAAAAMgT58+fN53gUu64Q3jZsmVNJ7jM0aNHTScAAHBVZcp41xupDhw4YDoBAAAAQD7iTQPttWrVUnR0tOkMt3XkyBHTCQDgcUqVKmU6QZIUFxenvn37ms5wmd27d+uTTz4xnQFc0w+bE1TzmS815MOV+ur3vbkOs/drXlGbXumlMlGFXdbWtYHjex5OX7ys95Zv0aT5f+rk+RSH57ow0A54HAbaAQAAAAAAAABAnjh16pTpBJey2WymE7LxpsE5BtoBAO4uLi7OdIJL7dq1y3QCAAAAgHwiKSnJq26a1apVK9MJbu3gwYOmEwAAt+Dxxx9XRESE6QyXefvtt7kZC9xW4oUU9X59mdr/Z6H2HMt9w4LqpcL187hu+mhwGxUpHOjCQqlS8VCVLxpyzeMqFAtRxeKhzg8CkKcYaAcAAAAAAAAAAHnC2/5g3s/Pz3RCNt60Q7u3/fsGAPA83vR1WWKgHQAAAEDeSUhIkN1uN53hMo0bNzad4Na2bNliOgEAcAuCg4P1zDPPmM5wmZSUFI0fP950BpBNanqGOk/6TnNW78n1mIIFbHq1f1P9MamnmlQs5sK6/2OxWPRCzwbXPG7g7VVdUAMgr/maDgAAAAAAAAAAAPmDt+2YzUC7Wfv37zedAADAVZUuXVp+fn5KTU01neISR48e1YULF1SoUCHTKQAAAAA83KFDh0wnuExgYKAqVKhgOsOtbd682XQCAOAW3XXXXZo1a5Y2bdpkOsUlVqxYoeXLl6tt27amU4As89bs07q9J7KtVykZpk51YlUmqpDurBvr8h3Zc9KjcTnFRRfWD5sTdPbSFZ2/dEXnklN19tJlpWfY1apqCT1+Rw3TmQBuAgPtAAAAAAAAAADglqWnpys+Pt50hkvZbDbTCdnExcWZTnAZdoEFALg7m82mChUqeNVOctu3b1fDhg1NZwAAAADwcAkJCaYTXKZq1aqyWq2mM9zW5cuXtWdP7ruIAgA8g8Vi0ahRo3TPPfcoMzPTdI5LTJgwQY0bN1ZwcLDpFECS9P73Wx0ehwb5a2KfRnqoVRX5+FgMVeWudpkiql2miOkMAHnMx3QAAAAAAAAAAADwfAcOHPCa3Uf/x9/f33RCNmFhYSpatKjpDJfYt2+f17zhBQDguapWrWo6waXYNQ8AAABAXjh8+LDpBJcpV66c6QS3tnXrVqWnp5vOAADkgapVq6p79+6mM1zm+PHjevPNN01nAJKkrYdO69cdRx3W3n24hR5uU9Uth9kB5F/s0A4AAAAAAAAAAG7Z9u3bTSe4XEhIiOmEHFWrVk3Hjh0zneF0ly9f1sGDBxUbG2s6BQCAXFWpUsV0gksx0J53+vTpo5MnT6pAgQIKDAxUUFCQAgMDsx7/7yMoKMhh7Z+P/7fmjjdjAgAAAHJz8uRJ0wkuU7ZsWdMJbm3jxo2mEwAAeejJJ5/UsmXLdP78edMpLjFjxgzdddddqly5sukUeDG73a7XvnP8niqqcKC61C9jqAiAN2OgHQAAAAAAAAAA3LL169ebTnC50NBQ0wk5qlq1qpYvX246wyV2797NQDsAwK1Vq1bNdIJL/fXXX6YT8oX09HT99ddfSktLy7NzWq3Waw6+38yHzWbLs0YAAABAklJTU71myE2SSpQoYTrBra1cudJ0AgAgD4WFhWno0KEaP3686RSXyMjI0OjRozVnzhz5+PiYzoEXysy066lPVunTn3c6rD/QqpL8fK2GqgB4MwbaAQAAAAAAAADALVu3bp3pBJdz54F2b7F79261a9fOdAYAALmKi4tTgQIFlJKSYjrFJU6ePKlDhw4pJibGdIpHO3jwYJ4Os0v/ffNsUlKSkpKS8vS8Npst25B7gQIFsnaUv9pamTJlVL58+TztAQAAgOc7duyY7Ha76QyXiY6ONp3gts6fP68NGzaYzgAA5LFevXppzpw52rVrl+kUl9iyZYtmzpypPn36mE5BPnfo1EX95+t1Sk3P0Mju9RQTUVAPvP2DZq/e43Ccn6+PHm5TxVAlAG/HQDsAAAAAAAAAALglCQkJOnDggOkMl2Og3bxNmzaZTgAA4Kp8fX1VvXp1rV271nSKy6xdu5aB9lu0f/9+0wnXLS0tTefPn7+pHTSfeOIJBtoBAACQzdGjR00nuFRkZKTpBLe1cuVKZWRkmM4AAOQxq9WqUaNGqW/fvqZTXObVV1/V7bffriJFiphOQT5lt9vV+/VlWrP7uCTpq9/3qkyRQtpx5KzDcRaL9OaDzVUqspCJTACQj+kAAAAAAAAAAADg2b7//nvTCUaEhYWZTshR4cKFVbp0adMZLrFhwwalp6ebzgAA4Krq169vOsGl/vjjD9MJHm/fvn2mE1yiTJkyphMAAADghk6dOmU6waUKFWKYKDcrVqwwnQAAcJJ69eqpY8eOpjNcJikpSRMnTjSdgXzsxPnkrGF2SbqSlpFtmN1m9dGMoW01gN3ZARjEQDsAAAAAAAAAALglS5YsMZ1gRPHixU0n5KpevXqmE1wiOTlZ27dvN50BAMBV1a1b13SCS/3++++y2+2mMzyat3x/ExsbazoBAAAAbujcuXOmE1wmMDBQvr6+pjPcUmpqqlatWmU6AwDgRMOGDVNgYKDpDJdZsmQJX9vgNDsOn73q80H+Nn0zvJN63lbeRUUAkDMG2gEAAAAAAAAAwE3buXOnNm/ebDrDiJiYGNMJufKmnWDZBRYA4O5q1qwpm81mOsNlEhMTvWYg21k2bNhgOsHpfH19GWgHAABAji5cuGA6wWUCAgJMJ7itZcuW6eLFi6YzAABOFBUVpUcffdR0hkuNHTtWly9fNp2BfGjH4TO5PhdRMEA/vnCXbq/uvu9vAOA9GGgHAAAAAAAAAAA3bebMmaYTjHHngfYGDRqYTnCZdevWmU4AAOCqAgICVL16ddMZLrVy5UrTCR4rISFBiYmJpjOcrmzZsvLz8zOdAQAAADd0/vx50wkuw+7suZszZ47pBACACzzwwAMqXbq06QyXSUhI0HvvvWc6A/lQbju0l4osqF/G3626ZaNcXAQAOWOgHQAAAAAAAAAA3JTExETNnz/fdIYRISEhKlSokOmMXEVFRXnNmz/Wr1+v9PR00xkAAFxVo0aNTCe41IoVK0wneKyNGzeaTnCJKlWqmE4AAACAm/KmHdoZaM9ZfHw8NzIFAC/h5+en559/3nSGS02fPl179+41nYF8ZseR7Du0D2pXTb9N6K7yxUINFAFAzhhoBwAAAAAAAAAAN+XDDz/UlStXTGcYUapUKdMJ11S/fn3TCS6RlJSk1atXm84AAOCqmjdvbjrBpTZv3qyjR4+azvBIGzZsMJ3gElWrVjWdAAAAADflTT9z5kadOfvqq69kt9tNZwAAXKR58+Zq2bKl6QyXSUtL05gxY/hahzz1zx3av37mDr35UHNFhwQZKgKAnDHQDgAAAAAAAAAAbtiePXv0xRdfmM4wpmLFiqYTrqlx48amE1xmyZIlphMAALiqatWqKTw83HSGSy1btsx0gkf65ZdfTCe4RPXq1U0nAAAAwE2lpaWZTnCZ1NRU0wlu5/Lly5o/f77pDACAiz3//PPy8/MzneEy69ev17x580xnIJ84k3RZJ84nO6xVKhFmqAYAro6BdgAAAAAAAAAAcMPGjRvnVW8s/Kdq1aqZTrimpk2bymazmc5wiR9//NGr/30EALg/i8WiJk2amM5wqUWLFplO8Dg7duzQkSNHTGc4XVBQkCpXrmw6AwAAAG7Km3YtZ6A9u1mzZun06dOmM4xgp14A3iwmJkYPPvig6QyXeumll3TmzBnTGcgH/rk7u83qo7JRhQ3VAMDVMdAOAAAAAAAAAABuyMKFC/XHH3+YzjCqSpUqphOuKTg4WPXq1TOd4RLnz5/X6tWrTWcAAHBVzZs3N53gUlu2bNGePXtMZ3iUH3/80XSCS9SpU0dWq9V0BgAAANyUN924koF2R1euXNGHH35oOsOYjIwM0wkAYNQjjzyi6Oho0xkuc+7cOb388sumM5AP7DjseGOE8sVC5GtlZBSAe+L/TgAAAAAAAAAA4LolJibqpZdeMp1hlJ+fn8qVK2c647q0atXKdILLLF682HQCAABX1bRpU9lsNtMZLjVv3jzTCR5lxYoVphNcwltuugQAAICb401Dvenp6Tp37pzpDLcxe/ZsJSYmms4wJjMz03QCABgVGBioYcOGmc5wqXnz5mndunWmM+Chki6nquerS/ToVMefK1csHmqoCACujYF2AAAAAAAAAABwXdLS0jR06FCdOnXKdIpRlStX9phhtJYtW5pOcJnly5fr/PnzpjMAAMhVoUKFdNttt5nOcKkFCxaw4+B12r9/v7Zu3Wo6wyWaNGliOgEAAABuzGq1mk5wKW//efv/pKamatq0aaYzjEpPTzedAADGdejQQfXr1zed4VJjxozhZ6i4KdN/3K65a/ZlW69YPMxADQBcHwbaAQAAAAAAAADAdZkwYYI2bNhgOsO4Ro0amU64biVKlFD58uVNZ7hEcnKy5syZYzrDI+3atUvHjh3jzTIA4AJ33HGH6QSXOnPmjL777jvTGR7BW76PiYyMVKVKlUxnAAAAwI1520C7N+9I/ndTp07VyZMnTWcYxc9nAeC/Ro4c6VXfD+zbt0/Tp0936jV+23lMlZ+YoRIDP9L0H7c59VpwnV+2H81xvWbpCBeXAMD18zUdAAAAAAAAAAAA3N/XX3+tmTNnms5wC40bNzadcEM6duyo3bt3m85wiRkzZuiBBx6Qry9/BHa9jh07pi5dushut0uSgoODFR4errCwMEVERCgsLEzh4eEOa//7+5CQEFksFsOfAQB4ljZt2sjPz8+r3qT+2WefqVu3bqYz3FpqaqoWLFhgOsMlmjdvzvcPAAAAuCqbzWY6waWOHs15EMmbHDp0SFOnTjWdYVxKSorpBABwCxUqVFDv3r31+eefm05xmffee08dO3ZUTExMnp87IzNT97+1XPGJFyVJj3ywQj4Wix5oVTnPrwXX2nLoVLa1OmUi1bFOadfHAMB14t08AAAAAAAAAADgqhYsWKDRo0ebznALgYGBqlmzpumMG9KpUye99tprpjNc4vjx41q2bJk6duxoOsVjLFmyJGuYXZKSkpKUlJSkgwcPXvO1vr6+Cg0Nverw+9/XAgICnPmpAIBHCA4OVtOmTfXjjz+aTnGZHTt26Ndff1WTJk1Mp7itH374QWfPnjWd4RItW7Y0nQAAAAA3520D7Xv37jWdYNz48eN15coV0xnGXb582XQCALiNoUOHatGiRTpz5ozpFJe4cuWKxo4d65Sd2ldsPZI1zP4/j05doaiQQHWoXTrPrwfXuJiSqv0nLjisvfFgMw1oXUV+vlZDVQBwbQy0AwAAAAAAAACAXM2ZM0djxoxRZmam6RS3UK9ePfn5+ZnOuCElSpRQrVq1tHHjRtMpLvHpp58y0H4DlixZctOvTU9PV2JiohITE7Vr165rHh8YGKjw8HCHQff//fWfw+8hISHy8fG56TYAcGedOnXyqoF2SXr33XcZaL8KZ7xR1R0FBQWpadOmpjMAAADg5oKCgkwnuNSePXtMJxi1fPly/fLLL6Yz3EJycrLpBABwG4UKFdJTTz2lkSNHmk5xmV9//VWLFy9Whw4dbvi1R84kafmmQ/pl+xH5Wn3077vqqFzREEnSF7/szHZ8RqZd9762VD+O6ap6cVG3mg4Dtiacdnhs9bHooVaV5W9jmB2Ae2OgHQAAAAAAAAAA5Oizzz7TxIkTHXZv9natW7c2nXBT7rzzTq8ZaP/rr7/0008/qVWrVqZT3N7evXu1efNml10vOTlZycnJSkhIuOaxVqtVISEhWQPufx9+z2ktMDDQBZ8BAOSNNm3aKCQkROfOnTOd4jJ//vmnfv/9dzVq1Mh0itv56aeftHXrVtMZLtG6dWv5+/ubzgAAAICbK1iwoOkEl9q5M/uQmbc4c+aMxo0bZzrDbZw/f950AgC4le7du2v27NnasmWL6RSXmThxopo2bXrN74dS0zP0285jWrrpoJZvOqQthxyHm3/deVSbp/RWanqm5q3dn+M5kq+kq/Ok77TqP3crLjokrz4FuMiWg46/5hWKhSrAjzFRAO6P/1MBAAAAAAAAAAAHly5d0gsvvKBvvvnGdIpb8fX1Vdu2bU1n3JQ77rhDL774otLS0kynuMTkyZPVtGlT2Ww20ylubcaMGaYTcpWRkaHTp0/r9OnT1z5YUoECBRyG3EuUKKERI0bIYrE4uRQAbpyfn5+6dOmiTz/91HSKS7388suaO3cu/2/+h3feecd0gsvczO5SAAAA8D7BwcGmE1wqMTFR8fHxKl26tOkUl7Lb7fr3v/+txMRE0ylu4+LFi6YTAMCtWCwWjRo1Sj179vSaG7AnJibq1Vdf1ZgxY3J8fsfhMxoze62W/3VISZdz/3PfPcfOa9GGeL2+6C9dupL7cYkXUtRxwrda9Z+7VaQwN4/2JFv/cRODqjHhhkoA4Mb4mA4AAAAAAAAAAADuY+fOnerWrRvD7Dlo1KiRQkNDTWfclLCwMLVs2dJ0hsvEx8dr5syZpjPcWlJSkhYuXGg6I8+kpKTo8OHD+uuvv7RixQpdvnyZgUkAbq1Hjx6mE1xu27Zt+eprT1744YcfvGZ39tDQUDVp0sR0BgAAADxA4cKFTSe43Jo1a0wnuNy0adO0atUq0xluJTk5WampqaYzAMCt1KhRQ127djWd4VKzZs3S5s2bs61fTEnVHRO+0by1+646zP4/3V9Zol93HHVYa1m1hFpXK+mwtu/EeXWe9J2WbTqoZqPm6vZxC7QpnhvOuNqeY+c0f+0+nbqQcl3Hb/7HQHs1BtoBeAgG2gEAAAAAAAAAgFJTUzV16lTdc889io+PN53jljp27Gg64Zb06tXLdIJLvfPOOzp//rzpDLf15ZdfKjk52XSG0/Tt29d0AgBcVVxcnGrVqmU6w+VeeeUVdpz7/1JSUjRx4kTTGS5z1113yWazmc4AAACAB4iMjDSd4HKrV682neBSGzdu1BtvvGE6wy2xYz0AZPfMM8+oYMGCpjNcJjMzU2PGjFFGRobD+ssLN+jw6aRcX+dzHTd6HtC6sr56+g7VLB3hsL5+30l1nPitVu86phVbD6vHlCVKS8/I5SzIS2eSLuvRD35SpSdm6J4pS1Tn37N04OSFrOcvpqSq35vLVfqxT1T337PU67WlGj1rjf76x00HqpVioB2AZ2CgHQAAAAAAAAAAL7ds2TLdcccdmjJlCrt/5CIwMFC333676Yxb0qhRI5UuXdp0hsucO3dOr732mukMt5SUlKTp06ebznCaevXqqWLFiqYzAOCa7r33XtMJLpeYmKhXXnnFdIZbePPNN3XkyBHTGS5zzz33mE4AAACAh/DGgfaVK1cqKSn3AbX85MiRIxo6dKjS09NNp7glBtoBILvw8HANGTLEdIZLbd++XZ9//nnW44RTF/Xad5scjrFYpLpli2jE3fX0y/i79eMLV9/J/v4WFXVPo3IqFOinb4ffqVKRud8kYP+JC1q0If5WPoV86/TFFA3/YrUGvPujFm+Il91uv+ZrrqRlaN3eEzqffCVrzW636/OVO1X5iRn68MftWetHzlzSgPd+VGbmf8/75uK/9OWvu3X4dJI2xZ/SV7/v1cR563UxJc3hGtVLOd6kAADcFQPtAAAAAAAAAAB4qXXr1qlv374aOnSoDh8+bDrHrXXu3FnBwcGmM26JxWJRz549TWe41MyZM7VixQrTGW7nk08+0blz50xnOA27swPwFB07dlRUVJTpDJebPXu21q5dazrDqJ07d+qzzz4zneEytWrVUtmyZU1nAAAAwEMUKVLEdILLXb58WcuXLzed4XRnz57VQw89pJMnT5pOcVv8swGAnPXt21flypUzneFSb7zxho4fPy5JmjB3nVJS/+9mMFYfi9ZPvldrXuyhsT0bqHGFompcIVphwf45nmvZqC6aPqiNfHz+u4t70dAgLRjWUTZr7mOFH3y/NQ8/m/zj6U9/1csLN+iTn3eo86Tv1OnFb3Xs7KVcjz95PlmVnpihRs9/papPfqG/4k9px+Ezaj12vh545wedung522tWbjuiqT/895//4uu4sUDhQD+VDPfs9zIA8B4MtAMAAAAAAAAA4EVSU1O1YMECde3aVX379tW6detMJ3mE/DIg261bN/n75/xGhvxq+PDhvAnwb44cOaIPP/zQdIbTlChRQm3atDGdAQDXxWaz5ZvvMW6E3W7XsGHDdP78edMpRiQnJ+vpp5/2qt0I77vvPtMJAAAA8CDR0dHy8fG+t7jPnTvXdIJTpaSk6JFHHtGBAwdMp7i1gwcPmk4AALfk6+urESNGmM5wqeTkZI0fP16Ssu2W/nCbKqpR2nFHbquPj26vHpPtPIPbV1PraiWzrVeLidDTnWvlev3v/0rQ3uPnbjw8H7uSlqE5q/c4rC3bdEi3j1ugpMupOb5m8oI/dejURUnSsbPJqvPvWar21Jf6ZfvRq17ruRmrdfRMkjYeSLxmV7PKxWWxWK7zswAAs7zvd/sAAAAAAAAAAHihnTt36vXXX1erVq00bNgwbd++3XSSx2jYsGG+ueN/SEiIunTpYjrDpc6ePathw4bJbrebTnEL48aNU0pKiukMp3nkkUfk6+trOgMArtu9996rwMBA0xkud+zYMY0YMcIrvz6PHDlSe/fuNZ3hMtHR0WrXrp3pDAAAAHgQm82m8PBw0xkut379eq1fv950hlOkpqbqiSee0F9//WU6xe3Fx8ebTgAAt9WoUSOv+znTDz/8oCXLvtexs8kO64+0rZrj8R3rlHZ47Gv10dOda+d6/ue71VVskUK5Pj/th23XH+sFNh88pdT0zGzrO4+c1eMfrsz28+7MTLvmrtl3XeduXqW4w+Oky2l64qNfHK5nsUhDO9RQx9qlVa5oYRXw81WdMpGa1LfxTXw2AGAGA+0AAAAAAAAAAORT27Zt06uvvqp27dqpS5cueu+995SYeO07eMNRv379TCfkqQEDBnjdDkerV6/We++9ZzrDuG+//VY///yz6QynKVq0qO666y7TGQBwQwoVKqTu3bubzjDi+++/97qvz5999pkWLVpkOsOl+vTpw81mAAAAcMOio6NNJxiRH3+PlJSUpAEDBmjlypWmUzzC/v37TScAgFt77rnnVKBAAdMZLvWf/4yXJSPNYa1sVOEcj72rfhmH5566s6ZiIgrmeu5Af5uWjOysRhWiVTaqsIoUdvxnu2AtX5f+bv2+k7k+9/kvu1TlX19o1Kw1+iv+lOx2u9bsOa7Dp5Oues5SkQW1YFhH/Timq3o0drzJ/vw/HP/5Vy0Zrlf7N9XC5zppxxv36eKMR7V2Uk9VKBZ6858UALgYf2IEAAAAAAAAAEA+kJqaqq1bt2rDhg36888/tXHjRp09e9Z0lserUqWKWrVqZTojT5UqVUpt27bV0qVLTae41BtvvKHIyEjdc889plOMiI+P15gxY0xnONXDDz8sPz8/0xkAcMMeeughzZo1S6mpqaZTXO7NN99UXFyc2rZtazrF6ZYvX67JkyebznCpoKAg9ezZ03QGAAAAPFB0dLS2bNliOsPlfv31V61cuVLNmzc3nZInEhMT9fDDD2vHjh2mUzzGjh07lJ6ezo3BACAXxYoV08MPP6w333zTdIrLnDp5QmH2tTpdrIkkKTokUIH+thyPDfS3aeX4bpr5626VCAvW3Q3jrnn+uOgQrRr/35uubopPVN1/z856bt+J89p3/LzKRuc8QO9t1u09cdXndx87pxfnrdeL89arXNHCKhzon+uxVh+LnrqzlkZ1r5f16zm4fXXNWb0n19c0LO+dN30CkL/wOx0AAAAAAAAAADxIamqqEhIStG/fPu3bt0979+7N+ntvHIJytqFDh8pisZjOyHMDBw70uoF2SRozZowKFy7sFUNzf3f58mU98cQTunTpkukUp4mMjPTaHY4BeL7o6Gj17NlTn3/+uekUl7Pb7Xr66ac1bdo0NWzY0HSO06xcuVJPPfWU0tPTTae4VJ8+fVS4MG92BQAAwI2LiYkxnWDM2LFj9d133ykwMNB0yi05cOCABgwYoMOHD5tO8SgpKSnatWuXqlSpYjoFANzWgAEDNH/+fCUkJJhOcZnCiX/pYmhFpRaIUGxUoaseGx0SpCc71bqp61SPiVBU4UCdOJ+ctfbD5gQG2v+/fw60N65QVKt3Hcvx2D3Hzud6ntqxkfrg0VaqFRv5j/NFq3qpcG0+eDrH1zVioB1APsBAOwAAAAAAAAAALmS325WWlqb09PSsj7S0NKWkpOjChQs6f/68Ll68qPPnz+vChQs6ceKEjh8/nvVx5swZ2e1205+GV6hZs6ZatGhhOsMpqlSpoiZNmujXX381neJSGRkZevrppzV16lQ1atTIdI5LZGRk6Mknn9TOnTtNpzjVY489Jn//3Hc5AAB398gjj+jrr79WSkqK6RSXS01N1aBBgzR16lTVrVvXdE6e++233/T4448rLS3NdIpLBQYG6oEHHjCdAQAAAA9VqlQp0wnGHDlyRBMmTNCECRNMp9y0xYsXa/To0bp48aLpFI+0bt06BtoB4Cr8/f01fPhwDRo0yHSKy1iUqcjDK3QkrrvKFHHecLmPj0VtqpfUF6t2Za19v/mQHmlb1WnX9BQXklO18+hZh7WX+92mg4kXNezz35RwOuma5/h94j0KLxig2CKFcrypvsVi0SO3V9PgD3/O8fXs0A4gP2CgHQAAAAAAAABww44cOaIKFSqYzgCc6sknnzSd4FRDhw71uoF26f+G5l555RW1bt3adI7TjRw5Uj/99JPpDKcqXbq0evbsaToDAG5JZGSkevfurenTp5tOMeLSpUsaMGCA3nnnHd12222mc/LM3LlzNWbMGK8bZpeke++9V2FhYaYzAAAA4KFiYmJktVqVkZFhOsWIr7/+WuXLl9f9999vOuWGpKSkaOLEiZozZ47pFI/2008/qX///qYzAMCttW7dWk2bNtWqVatMp7hMQPJxFTqzTbFR9Z16nX8OtP+05bDSMzLla/Vx6nXdWWamXQvX7dff9x2wWX1Uo1SEGpSL1j2N4vTH3hP6+ve9mrd2nw4mZr+pT9WSYaoXF3XNa/VuWl4T563TkTOXHNbDCwaoXNGQW/1UAMA47/1qAgAAAAAAAAAAkIv27durYcOGpjOcqkaNGmrbtq3pDCOSk5M1ZMgQffTRR6ZTnCY9PV3Dhw/XvHnzTKc43VNPPSVfX+7jDcDzDRgwQMHBwaYzjElJSdEjjzyir776ynTKLbPb7ZoyZYqef/55rxxmL1iwoAYOHGg6AwAAAB7Mz89P5cqVM51h1OTJk7Vs2TLTGddt586duvvuuxlmzwN//vmnzp07ZzoDANzeiBEjZLPZTGe4VNix1YoKyHTqNdpUL+nw+EJKqtbsOe7Ua+altXuO683Ff2nPsXM39fqky6lauumgpnyzQQ+9+4MaDp+j0Pun6oF3fnA4rnqpcAX4/ffPJy0WixqUi9bL/Zpo79v99PvEe/R051oqHVlQkhQa5K/XH2x2XdcvWMBPC4Z1Uslwxz8raFcjJsdd3QHA0zDQDgAAAAAAAAAA8DeBgYEaPny46QyXePLJJ2W1Wk1nGJGZmanJkydr1KhRSk9PN52Tp1JSUjRkyBCvGGavWbOm2rVrZzoDAPJEWFiYBg8ebDrDqLS0NI0cOVL/+c9/lJqaajrnpiQmJurhhx/W1KlTTacYM3DgQIWGhprOAAAAgIerU6eO6QSjMjIy9OSTT+qbb74xnXJVFy5c0KeffqoePXpo3759pnPyhfT0dC1YsMB0BgC4vdjYWN1///2mM1zKmnFFv383w6nXKBoapGox4Q5rA979UYdOZd913N0s/GO/mo2aq6c+WaXaz87SrqNnb+j16/aeUKlHP1Gnid9q2IzV+vTnnVq/76QuXcl+09Lcdlu3WCyqFxelyX1v0563+ynhgwd04L371aJKievuqBUbqXWTe6pn43Lyt1lVp0ykJvRudEOfCwC4KwbaAQAAAAAAAAAA/uaxxx5TdHS06QyXKFOmjO6++27TGUbNmTNH/fv3V0JCgumUPLFv3z716NFDK1asMJ3iEs8++6zpBADIU/fdd59iY2NNZxj3+eefe+QwxPLly9WpUyetWrXKdIoxRYsW9bo3EgMAAMA5ateubTrBuIyMDA0bNkzvvvuu7Ha76RwHmZmZmjNnjjp06KBly5blu5uGmjZ79my3+zUHAHc0aNAgFSlSxHSGS61d+YNWr17t1Gt0quv4M+q9x8+rxeh52nv8nFOveyvOJ1/R4A9/Vkbmf79+pqSm6/XvNl336+12uwZN+1nnk6/vRqt31S97zWMsFouKhgYpOMDvujv+J6JQAX3xr3Y6++lArZ3UUyUjCt7wOQDAHTHQDgAAAAAAAAAA8P+VL19eDzzwgOkMlxoyZIgCAwNNZxi1bt063Xnnnfrkk0+UmZlpOuem2O12zZkzR3fffbd2795tOscl2rdvr7p165rOAIA8ZbPZ9Pzzz5vOcAs7duxQ165d9fbbb7v9bu0JCQl64okn9Pjjj+vcuXOmc4x6+umn5e/vbzoDAAAA+UC9evVksVhMZxiXmZmpN954Q4888ohOnTplOkeS9NNPP+nuu+/WqFGjdObMGdM5+dL+/fu1ZMkS0xkA4PaCgoK88ubHY8eOderPTJ++s5biogs7rB06dVEtRs/TtoTTTrvurRg75w8dP5fssDbjl11KS8+4rtcv2XhQGw8kXvUYP18flS8aolf6NVGb6iVvuvVG+PlaXXIdAHAVBtoBAAAAAAAAAAD03wGyl19+WTabzXSKS0VFRWnQoEGmM4xLSUnRiy++qF69enncbrA7d+5Ur169NGrUKKWkpJjOcYnAwEANHz7cdAYAOEWzZs3UsmVL0xlu4cqVK3rrrbfUsWNHffvtt25345kLFy7opZdeUocOHbR06VLTOcY1aNBAd955p+kMAAAA5BMRERGqVKmS6Qy3sXLlSt1xxx364osvjPze6PLly5o3b546d+6sxx57TNu3b3d5Q046deqUb38PPWXKFLe/wRsAuIPOnTurTp06pjNcKj4+Xu+//77Tzh8S5K8VY7upcokwh/Xj55LV6oX52rD/pNOufTP+ij+ld5ZuzraekpquFduOXPW1+46f12vfbVTnSd85rBcpXEAPtqqsKfc30ZKRnXXo/f669MVj2v5GX/2rU828zAcAr8JAOwAAAAAAAAAAgP67U3nFihVNZxjRv39/lStXznSGW9i0aZO6dOmisWPH6uRJ93ozxj/Fx8frueeeU7du3bRx40bTOS41aNAgRUdHm84AAKcZNWqUAgMDTWe4jUOHDumZZ55R586dNW/ePONv6D906JAmTJigFi1aaPr06cZ73IHNZtOYMWNMZwAAACCfadasmekEt3LhwgWNGzdOd9xxh7766iun/17Ebrdr/fr1GjdunJo1a6bhw4dr165dTr3mjahcubJefvll3XfffaZTnOLw4cOaOHGi6QwA8AijRo2S1epdO1lPmzZN+/fvd9r5i4YG6acXuqpWbKTD+umLl3X7uAXacuiU0659I9IzMjXw/R+VkWnP8fmvVu/Jcf34uUvq+8YyVXpihp797Ldsz7/Yp7GmPtpKT3Ssqdurx6hYWLAsFkuetgOAN2KgHQAAAAAAAAAAeL2aNWvq4YcfNp1hjM1m0+jRo01nuI20tDR9+eWXuv322/XCCy+43Y7tf/zxh5566il16NBB8+fPV0ZGhukklypbtqz69+9vOgMAnKp48eJ65plnTGe4nT179mj48OFq0aKFJk+erG3btrns2klJSVq0aJEeffRRtWvXTp999pkuXbrksuu7uwEDBqhs2bKmMwAAAJDP5Nedt29VfHy8Ro4cqebNm+uFF17QunXr8uxnhCdOnNA333yj4cOHq2nTpurTp4+++OILnT9/Pk/On5dGjhwpHx8flShRwnSK08ycOVPz5s0znQEAbq9SpUrq0aOH6QyXSk1N1QsvvODUa0QUKqDvR9+lhuUdbzJ9PjlVw7/43anXlqSth06r28uL9a85O7R2z/Ecj5ny7Ub9uT8x13PM/2O/kq+kOazZ7XZ1mfSdZv22R5n27IPwpSILqneT8rcWDwDIka/pAAAAAAAAAAAAAJNCQkI0ZcoUr7tr/z/Vr19fXbp00cKFC02nuI3Lly9r5syZmjlzpurXr68777xTbdu2VUhIiMtbdu/erR9//FELFixQfHy8y6/vTkaNGiWbzWY6AwCcrnfv3lqyZInWrVtnOsXtnD59Wh999JE++ugjxcTEqFmzZrrttttUq1YthYaG5sk1MjIytHv3bm3cuFG//PKLfvvtN3Ziz0X58uU1aNAg0xkAAADIh2rUqKFixYrp6NGjplPc0pkzZ7J+fhkYGKiaNWuqZs2aKl26tEqUKKGiRYsqMDBQBQoUkJ+fn9LS0pSamqpLly7pzJkzOn36tA4fPqyDBw/qwIED2rp1qxITcx8Icyd33nmn6tSpI0kqWrSofHx8lJmZabjKOUaMGCGLxaKuXbuaTgEAt/avf/1LS5Ys0blz50ynuMzatWu1YMEC3XXXXU67RkiQv5aO7Ky7Ji/Sz9uOZK3/vPWw0jMy5Wt1zl67drtdD7zzgzYe+O/3JvdMWaodb9ynQoF+kqTkK2l69rPf9MH3Wx1eFxxgU9Ll/xtgP3fpih75YIU+e/z2rB3WNx5IvOoQ/Ph7G8rm693vHQAAZ2GgHQAAAAAAAAAAeC0fHx+9/PLL+XoHlxsxfPhwrV692mPetOhKf/zxh/744w+NHTtWNWvW1G233aYGDRqoSpUqCggIyPPrJSQkaOPGjdqwYYN++eUXHTly5Nov8gJ33nmnGjVqZDoDAFzCYrFowoQJ6ty5sy5fvmw6x20dOnRIM2bM0IwZMyRJJUuWVOXKlVW6dGnFxMQoOjpaYWFhCg0Nlb+/v/z8/GS1WnX58mWlpKQoJSVFSUlJOnLkiI4cOaLDhw9r//792rp1q5KTkw1/du7PZrPppZdekp+fn+kUAAAA5EMWi0V33HGHpk+fbjrF7SUnJ2v16tVavXq16RSnCwwM1LPPPpv12M/PT0WKFNHx4znv3OrpMjMzNXz4cG3btk3PPvus/P39TScBgFsKCQnRv/71L6fvWu5uJk+erJYtW6pw4cJOu0ZwgJ9mPtleRQf83/dkl9MytPPIWVWNCXfKNQ8mXswaZpekE+dTNHv1bj3cpqo2xSfqvjeWa8eRsw6vsVikxSM6a8zstVqx9XDW+sxfdyvAZtWE3o1UpHCg5q3dl+16HWqXUnRIkDrULqW76pd1yucEAGCgHQAAAAAAAAAAeLHBgwerWbNmpjPcRmhoqCZMmKCBAweaTnFb6enpWr9+vdavXy9JslqtKlu2rCpUqKCYmBjFxMQoKipKoaGhCg0NVVBQkGw2m2w2m+x2u1JTU5WamqorV67o7NmzWTshHT9+XAcOHFB8fLz27duns2fPXqPE+4SHh2vEiBGmMwDApUqVKqVhw4Zp7NixplM8RkJCghISEkxneI3BgwerUqVKpjMAAACQj3Xq1ImBdjgYMmSIoqKiHNZiYmLy7UC79N9daj///HOtWrVKjz32mDp16iRfX0ZBAOCfevbsqTlz5mj79u2mU1zmzJkzeuWVVzR+/HinXieyUAGVDA9WwumkrLVN8YlOG2j/+zD7/8z6bY+SLqdpxJe/KzU9M9vzw+6qo8YViurNB5up8YivdDHl/3Zq/3jFDn29Zq+e7VJH89Y4DrQPbFNF7w5smfefBAAgG34XAwAAAAAAAAAAvFKrVq00ePBg0xlup3nz5urZs6dmz55tOsUjZGRkaPfu3dq9e7fplHxvzJgxCg0NNZ0BAC7Xu3dvrVmzRsuWLTOdAjioX78+N0ICAACA01WuXFnVq1fX5s2bTafADVSrVk39+/fPtl6hQgX98ccfrg9ysfj4eA0bNkxTpkxRq1at1KJFC1WuXDnbgH9uLly4oKNHjyohIUFr167V3LlztWfPHnXv3l09e/Z0cj0AOJ+Pj49GjRql3r17y263m85xma+++kp33XWX6tSp49Tr1IyNdBho33ggUX2bVXTKtTbkMNC+ctsRrdx2JNt6oL+vXn+gmR5o+d8bb1YqEabPh7ZV15cW6e//GlxMSdPoWWuyvb5fC27YCQCuwkA7AAAAAAAAAADwOtWrV9err74qi8ViOsUtPffcc/r999916NAh0ymAJKlr165q166d6QwAMGbChAnaunWrjhzJ/mY9wISIiAhNmTJFVqvVdAoAAAC8QL9+/fTMM8+YzoBhfn5+mjRpUo6/D6lcubKBInNOnjypWbNmadasWZKkggULKjo6WkFBQQoMDJTdbldaWprS09OVnJyss2fP6ty5c0pLS8vxfB07dnRlPgA4Ve3atdW5c2ctXLjQdIrL2O12vfDCC5o3b55sNpvTrlOjdIS+XX8g6/Ff8aecdq2cdmjPSZ0ykfp8aFuVL+Z4U+xOdWL1wSOtNHT6Sl1Oy8j19cXDglQ/7vpuDAMAuHU+pgMAAAAAAAAAAABcKSYmRh988IEKFChgOsVtBQYG6tVXX5Wfn5/pFEClS5fWqFGjTGcAgFEFCxbUa6+95tQ3IwLXy8fHR6+88oqKFCliOgUAAABeon379oqMjDSdAcMef/xxxcXF5fictw20/9PFixe1Z88ebdq0SatXr9bvv/+u9evXa9OmTdq9e7cSExNzHWYHgPzomWeeUVBQkOkMl9q9e7c+/vhjp16jVmnH78c2xZ+S/e9boOcRu92uDftPXvUYi0V6pnNtrfpP92zD7P/zYKvK2vFGX/VrXlG53ee+a/2y8vHhJvgA4CoMtAMAAAAAAAAAAK8RHh6uDz/8UGFhYaZT3F61atU0cuRI0xnwcv7+/nrttde87k1HAJCTGjVqaPjw4aYzAD399NNq1KiR6QwAAAB4EZvNpt69e5vOgEHVqlXTQw89lOvzZcuW5SZwAIAsRYoU0eDBg01nuNy7776rw4cPO+38NWMjHB6fu3RF3V9ZonV7T+TpdY6dvaST51Nyfb5EeLCWjbpLk/o2lp+v9arnKhlRUB8NbqN1k3uqTfWS2Z7v3azCLfcCAK4fA+0AAAAAAAAAAMArhIeH69NPP1WpUqVMp3iMnj17qlu3bqYz4MXGjh3r9bsrAcDf9enTR/fee6/pDHixrl27asCAAaYzAAAA4IXuvfde+fn5mc6AAYGBgZo8ebKs1twH1mw2m6pUqeLCKgCAu+vXr5/KlCljOsOlUlJSNH78eKedPyaioEKD/B3WFq7br5Zj5unPa+yonpPkK2k6dSH74PqGA4nZ1iwWKTjApue71dXW13qrVdUSN3StmqUjtXRkFy0e0VmtqpVQmahCeq1/U9WPi7rhbgDAzWOgHQAAAAAAAAAA5Hv/G2YvV66c6RSP88ILL/BGQBhx3333qWvXrqYzAMDtjBo1Sg0aNDCdAS9Uu3ZtjRs3znQGAAAAvFRYWJjuvPNO0xkw4IUXXlDZsmWveVzDhg1dUAMA8BQ2m00jRowwneFyP//8s5YtW+aUc1ssFtWMjcy2fjktQw++84OupGVc97k+/XmHSj36iaIHTFfD4XO0aEO87Ha7JGnjPwbaa5UsqKNTH9Cpjx/WuHsbKjjg5m9y1LZGjJaPuku73+qnxzvUuOnzAABuDgPtAAAAAAAAAAAgX2OY/db4+/vr3XffVVQUd6eH6zRt2lTPPfec6QwAcEu+vr568803VapUKdMp8CKxsbF655132BETAAAARg0aNEj+/v7XPhD5Ro8ePdSlS5frOrZRo0ZOrgEAeJomTZqoTZs2pjNcbsKECUpKSnLKueuUKZLj+raEMxr71dprvt5ut+u5Gav10Ls/6uylK5Kk9ftOqsuk79To+a/07foDWrzhoMNrKkQFKyw4QL5WxiABwNPxf3IAAAAAAAAAAJBvlS5dWrNmzWKY/RZFR0dr2rRpCg4ONp0CL1CpUiW9/vrr8vX1NZ0CAG4rJCREH374oSIjs++GA+S16OhoffTRRwoLCzOdAgAAAC9XokQJ3X///aYz4CIVKlTQyJEjr/v42rVrq0CBAk4sAgB4oueee87rbohz4sQJvfHGG04592PtqirI35bjc68s3Kg1u49f9fWfrNihV77ZkONz6/edVNeXFmnd3hMO65WLBt1cLADA7TDQDgAAAAAAAAAA8qUaNWpo5syZiomJMZ2SL1SoUEFvv/22bLac36AA5IXixYvrgw8+4OYJAHAdYmJiNH36dBUuXNh0CvKxkJAQTZ8+XcWKFTOdAgAAAEiSHnnkEUVERJjOgJMFBwfrjTfeuKEBRD8/P9WtW9eJVQAAT1SyZEkNGDDAdIbLffHFF9q2bVuen7dUZCHtefs+zRjaVjP/1U62v+2anmm366F3f1BKanqur/92/YEbul7J8GA1L8eNNgEgv2CgHQAAAAAAAAAA5DutW7fWp59+yi6SeaxRo0aaOHGiLBaL6RTkQ5GRkfrkk08UFRVlOgUAPEaFChX0wQcfKDAw0HQK8qHChQvro48+UlxcnOkUAAAAIEtwcLCeeOIJ0xlwIl9fX73++uuKjY294de2b9/eCUUAAE83cOBAFS9e3HSGS2VkZGj06NHKzMzM83MXKRyoe5uU1z2Ny2lMj/oOz+06ek7DZ6zO9bVbDp12eFw2qrDKFc35pq02q4++/FdbBdistx4NAHALDLQDAAAAAAAAAIB8w8fHR48//rjeeecdFShQwHROvtS5c2eNHz+eoXbkqdDQUH388ceKiYkxnQIAHqdWrVp65513FBAQYDoF+UhISIg+/vhjValSxXQKAAAAkE337t1VsWJF0xlwkpEjR6pp06Y39dp27drJz88vj4sAAJ4uICBAw4YNM53hclu3btUXX3zh1Gs807m26sU53qz67aWbNevX3dmOvZiSqgMnLziszXqqvba82kefDrld5YuGODz3xoPNVD+OG2EDQH7CQDsAAAAAAAAAAMgXChcurPfff19Dhgxh2NrJ7rnnHo0bN45/zsgT4eHh+uyzz1SuXDnTKQDgsRo3bqxp06YpKCjIdAryAYbZAQAA4O58fHw0evRoWa3s1pnfPPjgg+rVq9dNv75gwYJq1qxZHhYBAPKLdu3aqXHjxqYzXO7111/XiRMnnHZ+X6uPPhrUWv7/2EV94Ac/acuhUw5r2xLOODy2+lhUqXiofK0+6tOsgra81luznmyvoR1qaP6/O2rg7VWd1g0AMIOBdgAAAAAAAAAA4PFq1KihuXPnqnnz5qZTvEaPHj00duxYhtpxSyIjI/X555+rfPnyplMAwOPVr19fn3zyiQoXLmw6BR6saNGi+vLLL1W5cmXTKQAAAMBV1alTR48++qjpDOShNm3a6Nlnn73l89x55515UAMAyI9GjhwpX19f0xkulZSUpIkTJzr1GpVKhOmthxz/nD75Srq6v7xE5y5dyVrbeui0wzHlioYowO//fj2sPj7q3ihOr/Zvqjvrxjq1GQBgBgPtAAAAAAAAAADAY/n6+urxxx/XzJkzVbJkSdM5Xqdnz5568cUXve6NH8gbMTEx+vLLL1W2bFnTKQCQb1SvXl2fffaZwsPDTafAA8XFxWnWrFl8bQYAAIDHGDx4sGrXrm06A3mgcePGevXVV+Xjc+vjDW3atFF0dHQeVAEA8puyZcuqT58+pjNcbunSpVq5cqVTr/Fgq8p6uE0Vh7V9J87r/re+V2amXZKy7dheLYafYwOAt2GgHQAAAAAAAAAAeKQyZcpo9uzZGjJkiKxWq+kcr9W1a1e99957CgwMNJ0CD1KlShXNnDlTMTExplMAIN+pWLGiZs+erbi4ONMp8CB16tTRF198wdAHAAAAPIrVatUrr7yiQoUKmU7BLahXr57effdd+fv758n5fH191bdv3zw5FwAg/xk8eLAKFy5sOsPlxo0bp8uXLzv1Gq8/0Ez14qIc1hZtiFe3lxfpsakr9M7SLQ7PVWWgHQC8DgPtAAAAAAAAAADAo/j5+Wnw4MFasGCBqlatajoHkpo1a8ZusLhu//v3JSIiwnQKAORbJUuW1OzZs9WkSRPTKfAA3bt31yeffKKQkBDTKQAAAMANK168uMaOHWs6AzepVq1a+uCDD1SgQIE8PW/Pnj25CSsAIEfBwcHq1auX6QyXO3z4sN59912nXsPfZtWcp9orspDj1/Xv/ozXtB+2ZTueHdoBwPsw0A4AAAAAAAAAADxGo0aN9M0332jo0KF5tlsL8ka1atU0a9YsdoPFVfXr10/vv/++goODTacAQL4XHBysqVOnqk+fPqZT4KasVquGDx+uCRMmyM/Pz3QOAAAAcNM6dOigfv36mc7ADapevbqmTZumoKCgPD93oUKFdO+99+b5eQEA+UPTpk1Vo0YN0xku99FHH2nPnj1OvUbJiIL68l/t5GOxXPPYaqW4+TUAeBsG2gEAAAAAAAAAgNsrXry4Xn31VX3yySeKjY01nYNcxMTEaM6cOWrXrp3pFLgZm82m//znPxoxYoSsVqvpHADwGlarVaNHj9aECRMUEBBgOgduJDIyUtOnT1f//v1NpwAAAAB54vnnn1enTp1MZ+A63Xbbbfrkk09UsGBBp13jkUceUeHChZ12fgCA57JYLBo5cqR8fLxrrC4tLU1jxoyR3W536nVaVi2hSX0bX/WYQH9flYpw3vcBAAD35F1feQEAAAAAAAAAgEcpVKiQnn32WS1dulQdO3Y0nYPrEBQUpDfffFNPP/20170JBDkrXry4Zs6cqXvuucd0CgB4re7du+urr75S2bJlTafADdx2221auHChGjVqZDoFAAAAyDMWi0WTJk1S06ZNTafgGjp16qQPPvjAKTuz/11ISIgGDRrk1GsAADxXlSpV1L17d9MZLvfnn3/q66+/dvp1nuxUU72blM/1+ZqlI+Xjc+1d3AEA+QvvIgIAAAAAAAAAAG4nICBADzzwgL7//nsNGDBAfn5+ppNwgwYOHKjp06crMjLSdAoMatmypebPn69q1aqZTgEAr1e+fHl9/fXX6tq1q+kUGGKz2fTUU0/pww8/VHh4uOkcAAAAIM/ZbDa99dZbqlWrlukU5KJfv3565ZVXZLPZXHK9Pn36qHTp0i65FgDA8zz55JMqXLiw6QyXe+WVV3TmzBmnXsNiseiTIbfriyfa6o0Hm2npyC6KKBiQ9fzg9vzZIQB4IwbaAQAAAAAAAACA2wgMDNSDDz6oH3/8Uc8995xCQkJMJ+EWNG7cWN9++63atm1rOgUuFhgYqLFjx+r999/3yjcCAYC7CgwM1KRJk/Taa68pLCzMdA5cqGLFivr666/1yCOPyMeHtwsBAAAg/ypQoIDef/99lS+f+46gcD2r1arhw4drxIgRslhctxurzWbThAkT+H0QACBHYWFhGjp0qOkMlzt37pxeeuklp1/Hx8einreV1+D21dWmekltea2PPnyslX79T3f1vI3v1QDAG/E7MwAAAAAAAAAAYFzhwoX1yCOP6Mcff9SwYcMUERFhOgl5JDQ0VG+99ZYmTpyooKAg0zlwgTp16uibb77RvffeazoFAJCLDh06aNGiRbrjjjtMp8DJfH19NWjQIH399deqWLGi6RwAAADAJUJCQvT555+rZs2aplOg/w4LfvTRR+rfv7+R69etW1cDBgwwcm0AgPvr1auXKlSoYDrD5ebPn6+1a9e69JqRhQqof8vKalg+2qXXBQC4DwbaAQAAAAAAAACAMWXKlNGYMWO0cuVKPfXUU+wUmo/dfffd+vbbb9WiRQvTKXCSQoUK6YUXXtAXX3yhkiVLms4BAFxDWFiYXn/9db355pvcTCifqlevnhYsWKAnnnhCNpvNdA4AAADgUiEhIfr444/VtGlT0ylerWrVqpo3b54aNmxotGPo0KGqXLmy0QYAgHuyWq0aNWqU6QwjXnjhBaWmpprOAAB4EQbaAQAAAAAAAACAS/n6+qpVq1aaNm2aFi9erN69e6tAgQKms+ACxYsX1wcffKC33npL0dHceT8/6dSpk5YsWaJevXrJYrGYzgEA3IB27dpp2bJlevDBBxl6ziciIyP10ksvacaMGSpXrpzpHAAAAMCYwMBAffDBB+rXr5/pFK/Uo0cPzZw5U0WLFjWdIpvNprfeeosbugEAclSvXj116tTJdIbL7d+/Xx9++KHpDACAF2GgHQAAAAAAAAAAuESZMmX0zDPPaOXKlXrvvffUrFkzBl+9VNu2bbV48WI98MADDM55uBo1amjmzJmaMmUKbwYFAA8WHBysYcOG6ZtvvlGzZs1M5+AmBQQEaODAgVq6dKm6dOliOgcAAABwC1arVSNGjNCLL74of39/0zleISIiQu+9957Gjx8vPz8/0zlZSpQooffee48b7AIAcvTvf/9bgYGBpjNc7v3339fBgwdNZwAAvAQD7QAAAAAAAAAAwGmioqJ03333afbs2VqyZIkefvhhhl4hSQoKCtJzzz2nJUuWqGPHjtzcwMOULFlSU6ZM0Zw5c1S7dm3TOQCAPFKmTBlNmzZNU6dOVcWKFU3n4DpZrVbdfffdWr58uZ5++mkFBwebTgIAAADcTrdu3fTVV18pLi7OdEq+dvvtt+vbb79Vq1atTKfkqHr16poyZYp8fX1NpwAA3ExUVJQee+wx0xkud+XKFY0dO9Z0BgDASzDQDgAAAAAAAAAA8lR0dLT69u2rL774QitXrtTIkSNVs2ZN01lwUyVLltSrr76quXPn6rbbbjOdg2soXry4xo8fr6VLl6pTp06mcwAATtK8eXMtWLBAb7zxhsqVK2c6B7mwWq3q1KmTvv32W02cOFFRUVGmkwAAAAC3VqFCBc2dO1d9+vThBpt5LDQ0VJMmTdLbb7+tsLAw0zlX1bp1a73zzjvs1A4AyKZ///4qXbq06QyX++233/Tdd9+ZzgAAeAEG2gEAAAAAAAAAwC2xWq2qU6eOnnrqKS1cuFArV67UqFGjVLduXd4UiOtWpUoVffTRR/riiy/UokUL/t1xMzExMRo7dqyWLl2qHj16sIMRAHgBi8Wi9u3b65tvvtErr7yismXLmk7C/+fr66uuXbtq0aJFmjJlCr82AAAAwA0ICAjQ6NGjNWPGDMXGxprO8XhWq1W33367Fi9erK5du5rOuW4tWrTQxx9/rJCQENMpAAA34ufnp+eff950hhGTJk3SxYsXTWcAAPI53mkCAAAAAAAAAABuiMViUfny5VW/fn3Vr19fDRs2VKFChUxnIZ+oW7eu6tatq927d2vatGlavHix0tPTTWd5rerVq+uhhx5S27Zt5ePDvbIBwBv5+PjozjvvVKdOnbRy5Up9/PHHWrNmjeksr1SwYEF1795d9913n4oXL246BwAAAPBodevW1TfffKOPPvpIH3zwgZKTk00neZz69evr+eefV3JysgoXLmw654bVqlVLs2bN0tNPP61t27aZzgEAuInmzZurZcuWWrFihekUl0pMTNSUKVP0wgsvmE4BAORjDLQDAAAAAAAAAICrCgwMVNWqVVWtWjXVrl1bdevWZdcSOF358uX18ssv66mnntKcOXM0d+5cnThxwnSWV7DZbGrXrp169eqlunXrms4BALgJi8WiFi1aqEWLFtq5c6c++eQTLVq0SKmpqabT8r3SpUvrvvvuU9euXRUUFGQ6BwAAAMg3/Pz89Oijj6pbt2567bXXtHDhQmVkZJjOcntVqlTRoEGD1KZNG2VkZGjTpk2mk25abGysZs+erbffflvTpk3j1x8AIEl6/vnn9dtvv3ndzz5nz56trl27qkaNGqZTAAD5FAPtAAAAAAAAAAAgS8GCBVW+fHlVrFhRlSpVUvXq1VWuXDl2ZoYxRYsW1RNPPKEhQ4ZoxYoVmjNnjlatWqXMzEzTaflOyZIldc8996h79+4KDw83nQMAcGMVK1bUpEmT9Nxzz+m7777T3LlztX37dtNZ+Yq/v79uv/12de/eXQ0bNpTFYjGdBAAAAORbRYoU0YsvvqiBAwfq3Xff1aJFixhszkGtWrX02GOPqXnz5qZT8pTNZtOTTz6pFi1aaOLEidq8ebPpJACAYTExMXrwwQf1/vvvm05xqczMTI0ePVrz5s2T1Wo1nQMAyIcYaAcAAAAAAAAAwAuFhISodOnSio2NVWxsrOLi4lShQgWVKFHCdBqQI6vVqjZt2qhNmzY6efKkli5dqsWLF2vTpk2y2+2m8zxWUFCQ2rdvr65du6pu3boMywEAbkhISIj69u2rvn37aufOnZo7d64WL16sU6dOmU7zWNWrV1eXLl105513qnDhwqZzAAAAAK8SGxurl19+WUOGDNGnn36q+fPnKzk52XSWUVarVU2bNtUDDzyghg0bms5xqlq1aumrr77S8uXL9frrr2vfvn2mk5zG19dXZcqUUbNmzVS/fn3VrVvXdBIAuJ1HHnlECxYs0PHjx02nuNTOnTv12Wef6YEHHjCdAgDIhxhoBwAAAAAAAAAgHypcuLCKFCmiokWLqlixYipevHjWX0uVKqWwsDDTicBNK1KkiJ/m7akAAMQWSURBVPr166d+/frp2LFjWrJkib7//nv99ddf7Jx0HQIDA9WsWTO1a9dOLVu2VIECBUwnAQDygYoVK2rEiBEaPny4Nm7cqB9++EHff/+9EhISTKe5vapVq+qOO+7QHXfcoeLFi5vOAQAAALxeqVKlNHr0aD355JOaO3euvv76a+3Zs8d0lkuVLFlS3bp10913362oqCjTOS7Vtm1btW7dWsuXL9ecOXP0+++/e/xNVf38/FSzZk3Vq1dP9erVU/Xq1bVz507VrFmTHXgBIBeBgYEaNmyYnnzySdMpLvfmm2+qffv2Klq0qOkUAEA+w0A7AAAAAAAAAABuwGq1ysfHJ+uvvr6+stlsCggIUIECBbL+GhgYqIIFC6pQoUIOH2FhYYqMjFRERIQiIiLk5+dn+lMCXKJo0aJ68MEH9eCDD+rChQv69ddftWrVKq1atUqJiYmm89xG0aJF1bhxY7Vu3VpNmjSRv7+/6SQAQD7l4+OjOnXqqE6dOho2bJh27typFStW6Pfff9emTZt05coV04nGBQUFqUGDBmratKmaN2/OEDsAAADgpgoWLKj+/furf//+2rx5sxYsWKDly5fn2587hoWFqUWLFurcubMaNmwoi8ViOskYq9WadeOxw4cP6+uvv9aSJUsUHx9vOu26FC5cWDVq1FDNmjVVt25d1axZ0+FnwtwYFgCu7YfNCXr9z1RZwkrLfibedI5LJScna/z48Xr33XdNpwAA8hmL3dNvFwYAAAAAAAAAAAD8g91u1969e7V+/Xr9+eef2rBhg44cOWI6y2UiIiJUu3ZtNWzYUI0bN1ZsbKzpJFynnTt36vvvvzed4VQRERHq1auX6Yx8Z968efn+/3Ndu3ZViRIlTGfgFly5ckUbNmzQmjVrtHbtWm3fvt0rBtwDAwNVvXp11a5dWw0aNFCdOnVks9lMZwEAgHwuOTlZO3bsUKVKlRQYGGg6x6iMjAxt2rSJnYg9hLv/emVmZmrDhg36/vvvtXLlSh04cMB00i2JjY1Vq1at1KpVK9WuXVs+Pj439Hp3//XKawkJCfrll1/066+/av369bpw4YLpJEVHR6t8+fKqUKGCypcvrypVqqhMmTJXvSGBqV+306dP68svv3TZ9Ux5/PHH8+xc3vbfmKfj18szXM+v047DZ1Tn37OUmp6Z63kiCxXQuHsb6KFWVeTj4703gXE2/rvyLPx6eR5+zTzLrf56ucPPitihHQAAAAAAAAAAAPmOxWJRuXLlVK5cuazB2RMnTmjTpk3avn27du3apR07duj48eOGS29dSEiIypUrp6pVq6p69eqqUaMGO716sIoVK6pixYqmM+CBunXrZjoBuCZ/f381atRIjRo1kiSlp6dr9+7d2rp1a9bH7t27lZaWZrj05tlsNsXFxalChQqqUqWKateurUqVKvFGMAAAACCf8PHxUd26dVW3bl0NHz5cx44d02+//aY//vhDmzZt0sGDB00n5srHx0dxcXGqVauWatWqpbp166pkyZKmszxKyZIl1adPH/Xp00eSdPjwYe3cuVM7d+7U7t27dfjwYZ08eVJnzpzJk13QAwICFBERoaioKBUpUkRRUVEqWrSoSpYsmfVRoECBW76Oq4SHh+fpsDcAOIPdbtfj01fmOsxus/poaMcaer5bXRUO9HdxHQAAno2BdgAAAAAAAAAAAHiFqKgotWvXTu3atctaO3v2rHbv3q34+HgdPHhQhw4d0sGDB5WQkKCUlBSDtY4CAwNVtGhRFS9eXCVKlFCZMmUUFxenuLg4RUZGms4DAOCm+Pr6qnLlyqpcubJ69Ogh6b9D7ocPH9aBAwccPg4dOqRTp07lyUBAXggNDVVMTEzWR2xsrMqXL6+yZcvK15e34wAAAADeomjRourevbu6d+8uSTpz5ow2b96snTt3as+ePVk/e0xNTXVpV6FChRQbG6syZcqoTJkyqlSpkmrWrKmCBQu6tCO/K1GihEqUKKE2bdo4rGdkZOjUqVM6deqUkpOTdeXKlayP1NRU2e12WSwWWa1W+fr6ys/PTwEBASpQoIACAwNVqFAhhYSEGNs1EQC82ZerduvnbUdyfK5LvTKafF9jxUWHuDYKAIB8gj9BAwAAAAAAAAAAgNcKDQ1VgwYN1KBBg2zPnTlzRomJiQ4fp06d0sWLF7M+kpKSlJSUpOTkZKWnp2d9pKWlKSMjQ3a7XVarNevD19dXvr6+WW9MDAoKyvprwYIFFRISovDwcIWHhyssLEzh4eEqVqyYwsLCDPzTAQDA9Xx9fVW6dGmVLl1aLVu2dHjufwMBJ06c0MmTJ3XixImsr80XLlzQhQsXlJSUlPXXtLS0bF+f09PTs67zvw+r1SqbzaagoCAFBwcrODhYBQsWzPraHBkZqYiICEVGRioyMlLR0dEKDg428Y8HAAAAgJsLCwtTixYt1KJFi6y1zMxMnThxQgkJCTp8+HDWzxpPnz6tM2fO6OLFi7p06ZKSkpJ0+fJlpaenKyMjQ+np6fLx8ZGfn1+2j8DAQIWHhysiIsLhr9HR0YqNjVVERIS5fwiQ1WpVVFSUoqKiTKcAAG7AV6v36OH3f8y2/kq/JmpZtYRqlObrKwAAt4KBdgAAAAAAAAAAACAHYWFhCgsLU4UKFUynAAAAMRAAAAAAwDP5+PioaNGiKlq0qOrXr286BwAA5OCHzQnq/cYy2e2O63Of6aAu9cuYiQIAIJ/xMR0AAAAAAAAAAAAAAAAAAAAAAAAAAIAJY79am22Y/b5mFdS5XqyZIAAA8iF2aAcAAAAAAAAAAAAAAAAAAAAAAAAAeJ1zl65o7e4TDmuP3F5Vbz7UTBaLxVAVAAD5Dzu0AwAAAAAAAAAAAAAAAAAAAAAAAAC8zs/bDivzb9uz+9useuX+JrL6MHYHAEBe4isrAAAAAAAAAAAAAAAAAAAAAAAAAMDrfP9XgsPjppWKqYCfr6EaAADyLwbaAQAAAAAAAAAAAAAAAAAAAAAAAABe5/vNhxwet6le0lAJAAD5GwPtAAAAAAAAAAAAAAAAAAAAAAAAAACvsu/4ee0/ccFh7fbqMYZqAADI3xhoBwAAAAAAAAAAAAAAAAAAAAAAAAB4vPX7Tujb9Qd0OTX9msdO/WGrw+OowoGqFhPurDQAALyar+kAAAAAAAAAAAAAAAAAAAAAAAAAAABuxevfbdIzn/0qSWpQLkorxnaTn681x2MX/rFfU77Z6LDWpnpJ+fhYnN4JAIA3Yod2AAAAAAAAAAAAAAAAAAAAAAAAAIDHij95Qc9/uTrr8do9JzR3zd4cj9119Kz6v/O9w5qv1UdPdKzh1EYAALwZA+0AAAAAAAAAAAAAAAAAAAAAAAAAAI81etYapaZnOqxN/X5btuOSUzPU89VlupiS5rA+5f4mql2miFMbAQDwZgy0AwAAAAAAAAAAAAAAAAAAAAAAAAA80p/7T+rLX3dnW1+146h2Hjmb9dhut+s/i/dpx9/WJKlP0woa1K6a0zsBAPBmDLQDAAAAAAAAAAAAAAAAAAAAAAAAADyO3W7XsM9/y/X5aT9szfr71xb9pR93nXZ4vkapCL03sIUsFovTGgEAgORrOgAAAAAAAAAAAAAAAAAAAAAAAAAAgBu1dNMh/bztSK7PT/1+m1pUKaEfNyfo7aWbHZ4LCfLXnKfvUKC/zdmZAAB4PQbaAQAAAAAAAAAAAAAAAAAAAAAAAAAeJSMzU8Nn5L47uySlpKar60uLsq1bLNLnQ9uqbHRhZ+UBAIC/8TEdAAAAAAAAAAAAAAAAAAAAAAAAAADAjfh85U5tTTjjsPbRoNZ6rG21a7529D31dUetUs5KAwAA/8BAOwAAAAAAAAAAAAAAAAAAAAAAAADAYyRfSdPoWWsd1qqXClefZhX0yv1NVC8uKtfXDm5fTSO61XN2IgAA+BsG2gEAAAAAAAAAAAAAAAAAAAAAAAAAHuONRX/p6NlLDmsv9mksq4+P/G1WffX0HSoTVSjrubBgfz3atqrmDKipV+9vIh8fi6uTAQDwar6mAwAAAAAAAAAAAAAAAAAAAAAAAAAAuB4HEy/opYV/Oqy1qV5S7WqWynpcIjxYG16+V9//laDQYH/dVqGofCzSpk2bXFwLAAAkBtoBAAAAAAAAAAAAAAAAAAAAAAAAAB4gM9OuB975QRdT0rLWLBZpUt/G2Y4NDvBT1wZlsx5nZGS4pBEAAGTnYzoAAAAAAAAAAAAAAAAAAAAAAAAAAIBreWPxJv2y/ajDWv8WlVSzdKShIgAAcD0YaAcAAAAAAAAAAAAAAAAAAAAAAAAAuLWzSZc17qs/HNZiIgrqlfubGCoCAADXi4F2AAAAAAAAAAAAAAAAAAAAAAAAAIBbe3fZFl1MSct6bLFIHw1urcKB/garAADA9WCgHQAAAAAAAAAAAAAAAAAAAAAAAADgtpIup+rNxX85rHVvGKcWVUoYKgIAADeCgXYAAAAAAAAAAAAAAAAAAAAAAAAAgNv66KcdOn3xssPac13rGqoBAAA3ioF2AAAAAAAAAAAAAAAAAAAAAAAAAMBN+2FzggZP+1mfrNiuzEx7np//m3X7HR53qF1KNUpH5Pl1AACAc/iaDgAAAAAAAAAAAAAAAAAAAAAAAAAAeKbXv9ukZz77VZL0wffST1sOa/qg1rL5WvPsGjuPnHV43L9FpTw7NwAAcD4G2gEAAAAAAAAAAAAAAAAAAAAAAAAgHzlyJkk7j5xVdEigykYVVoCfc8bIJi/4UyO+/N1h7ctfdyslNV1znr5DFovllq9x7tIVHT+X7LBWuWT4LZ8XAAC4DgPtAAAAAAAAAAAAAAAAAAAAAAAAAJBPfPzTdg2ZvlJX0jIkSQX8fPVCj/p6unPtPL3O5yt3Zhtm/5/5f+zX3DX71L1R3C1fZ9dRx93ZrT4WlYkqdMvnBQAAruNjOgAAAAAAAAAAAAAAAAAAAAAAAAAAcGPsdrvsdrvD44nz1uvh93/KGmaXpJTUdA2bsVpzVu/RiXPJysjMvOXrzl2zVwPf/+mqx81ZveeGzpt4IcXh8/mfXUccB9rLRhWWn6/1hs4NAADMYod2AAAAAAAAAAAAAAAAAAAAAAAAAPAge4+fU+/Xlmn/yQt6rF01vdCjvp78eJXeXbYl19f0fn2ZJKlkeLC+H3OX4qJDbvi6a/cc17AZq/XrjqPZnqtUPFQ7/jZ8vmzTIV1OTVeA39VH2H7ffUyPfbBCWxPOqErJML37cEvdVrFo1vM7/7FDe4XioTfcDQAAzGKHdgAAAAAAAAAAAAAAAAAAAAAAAADwIIOm/awNBxJ17tIVvThvvfzvffeqw+x/l3A6SQ++82OOu6H/nd1uV/zJC9py6JS2HDqle19dqttGfJ3jMPvQDjX0w5iuslj+b+3SlTT9vP3IVa/x7tLNajF6nrYmnJEkbUs4o5Zj5mnsnLVKz/jvTvK7j55zeE2FYgy0AwDgadihHQAAAAAAAAAAAAAAAAAAAAAAAAA8xP4T5/XTlsNXPcZikV69v6nW7D6u2av3ZHt+9a5jWv7XIbWrWcphfe2e41q26ZASz6folx1HtO3/D5pfTfeGcXq5322y+vioQblordl9POu5Revj1f4f1/ifTfGJ+tfHq5T5j8H6TLtd479epx+2JOizx9tq15F/7NBeLOSaTQAAwL0w0A4AAAAAAAAAAAAAAAAAAAAAAAAAHuLzlTuv+rzN6qNPH79dPRqX04OtKutA4gX9sedEtuNGzlyjYmFBqloyXBaLRfPX7lPPV5dmGzDPTanIgvpPr4bq2bi8fHz+uzX7nXVjHQbaZ6zaKR8fqX2t0mpRpbgK+P3fONtnP++86rV+33VctZ+dqeQr6Q7rFYqzQzsAAJ6GgXYAAAAAAAAAAAAAAAAAAAAAAAAA8ACZmXbN+GVXrs8XLGDT3Gc7qlXVEpKkoACbfh7bTUs3HtTHK3bo2/UHso7deCBRtZ6ZpVKRBdWhVml9sWrXdQ2zhwb56/m762pQu+ryt1kdnruzbqxGfPl71uOLKWl6Z+kWvbN0iwr4+apl1eJ6omNNtaxSQl//vvea17qYkpZtjR3aAQDwPAy0AwAAAAAAAAAAAAAAAAAAAAAAAIAHWLXzqA6cvJDjc1GFA/Xd83eqVmykw7qfr1Wd65XRHbVKqeqTX2rfifMOzx9MvKj3lm+55rUDbFYNal9dw7vWUWhwQI7HVCoeqqolw7Q14Uy251JS07V4w0Et3nBQk/o21tGzlxye3/xqb11MSdV9by7X/hM5f46RhQoovGCBa7YCAAD3wkA7AAAAAAAAAAAAAAAAAAAAAAAAAHiAtxb/5fC4eFiQHmpdRekZmRrUvpqiQ4Jyfa3N16op/ZvorsmLrutaz3aprfa1SqlOmUidOJeimIhg2XytV32NxWLRtMda6/63vtfuY+dyPe65GasdHlctGabKJcIkSX++dK+e+OgXfbZyZ7bXVSgeel3tAADAvTDQDgAAAAAAAAAAAAAAAAAAAAAAAABublN8ohb8sd9hbWiHGnq6c+3rPkenOrFa8+I9+nzlTn33Z7wOJl7Mdky5ooX1x6SeKljAL2stONov23G5qRcXpW2v99FfB09pyYaDWrLxoNbsPq5Muz3X13RvVC7r7wsW8NNHg9uofa1SemzqCp1PTs16rkG5qOvuAAAA7oOBdgAAAAAAAAAAAAAAAAAAAAAAAABwY3a7XWPn/OGwFhbsr4fbVL3hc9UtG6W6ZaP0+gPNtOXQaX33Z7y+XX9A2xJOq1LxUM14op3DMPvNsFgsqlk6UjVLR2p4t7r6edthtRm7INfj72kcl22tR+NyalAuSo9PX6mlGw+pQfkoPdmp5i11AQAAMxhoBwAAAAAAAAAAAAAAAAAAAAAAAAA3tX7fCT31ya9aveuYw/q/OtVSocCbHzy3WCyqXipC1UtF6PludW8186oalouWzeqjtIzMbM9VLhGmCsVCc3xdqchC+ua5O5WekSlfq49TGwEAgPMw0A4AAAAAAAAAAAAAAAAAAAAAAAAAbub4uUsa+eUafbpyh+x2x+dCg/w1pH11M2E3IcDPV7XLRGrtnhPZnruzbuw1X88wOwAAno2BdgAAAAAAAAAAAAAAAAAAAAAAAABwE1fSMvTGok2aOG+9ki6n5XjMK/c3uaXd2U1oVKHoTQ+0AwAAz8ZAOwAAAAAAAAAAAAAAAAAAAAAAAAC4gR+3JGjQ1J+178T5HJ8vE1VIU+5v6pFD4I3LR+v1f6xFFAxQ/bgoEzkAAMCFGGgHAAAAAAAAAAAAAAAAAAAAAAAAAMN+3XlUHSd+q/SMzGzPBQfY9Hy3unqiY03526wG6m5dw/LR2dZqxkbKx8dioAYAALgSA+0AAAAAAAAAAAAAAAAAAAAAAAAAYFDylTQ9/N6P2YbZLRbp/uaV9J/eDRUdEmSoLm8UCwtWXHRh7T3+f7vPD25f3WARAABwFR/TAQAAAAAAAAAAAAAAAAAAAAAAAADgzcbMXqs9x847rDWqEK3fJ96jDwe19vhh9v+Z2LuRrP9/R/Z2NWPUsXZps0EAAMAl2KEdAAAAAAAAAAAAAAAAAAAAAAAAAAzZf+K83lj0l8Nag3JR+nlsN1l98td+pt0axung+0V1+HSSascWkc//H24HAAD5GwPtAAAAAAAAAAAAAAAAAAAAAAAAAGDIu8u2KNNuz3rs5+ujDx9rne+G2f8nOiQo3+w4DwAArk/+/K4GAAAAAAAAAAAAAAAAAAAAAAAAANzcoVMXNfX7rQ5rj7atpkolwgwVAQAA5D12aAcAAAAAAAAAAAAAAAAAAAAAAAAAFzp8Okm3j5uvPcfOO6xbLNLg9tUNVQEAADgHO7QDAAAAAAAAAAAAAAAAAAAAAAAAgAs9OnVFtmF2SepYu7TKRhc2UAQAAOA8DLQDAAAAAAAAAAAAAAAAAAAAAAAAgIvsP3FeyzYdzPG5xzvUcHENAACA8zHQDgAAAAAAAAAAAAAAAAAAAAAAAAAu8uGP22S3Z18f0LqyWlUt4fogAAAAJ/M1HQAAAAAAAAAAAAAAAAAAAAAAAAAA+Un8yQtaveuYGpSLVtnowpKkiymp+nnbEX380w6HYxuWj9bnQ9uqdGRBWSwWE7kAAABOxUA7AAAAAAAAAAAAAAAAAAAAAAAAAFxDZqZdv+8+rstp6apRKkIRhQrkeNwv24+o86TvlHQ5TZJUMjxYUSGB2hR/SukZmdmOn/poK8UWKeTUdgAAAJMYaAcAAAAAAAAAAAAAAAAAAAAAAACAq0jPyFTPV5dq4br9WWulIwuqTtkiqlU6QoXtF1Qq7oriT13UXZMXZQ2zS1LC6SQlnE7K8bxNKxVT5RJhTu8HAAAwiYF2AAAAAAAAAAAAAAAAAAAAeLQ//vhD8+bN0+7du3Xp0iWFh4erTJky6tWrl6pUqWI6DwAAAPnAf+aucxhml6T4xIuKT7youWv2SZIen73jhs5ps/pofK+GedYIAADgrnxMBwAAAAAAAAAAAAAAAAAAAAA36+uvv1a/fv20adMmFS1aVNWrV1ehQoW0YsUKde/eXfPmzTOdCAAAAA+3YuthTZi7Lk/OZbP6qHmV4hp/b0Nte72PmlQslifnBQAAcGfs0A4AAAAAAAAAAAAAAAAAAACP9dFHH+npp5/Www8/7LCekZGhp556Sm+//ba6detmqA4AAACezm6366lPVsluv/HXBvnb1KF2KR07l6zasZG6vUaMmlUqpqAAW96HAgAAuDEG2gEAAAAAAAAAAAAAAAAAAOARJk+erCeffFJ+fn5Za2fOnFHDhg2zHWu1WnXbbbdpxYoVrkwEAABAPrMt4Yy2HDrtsDb+3obqWKe0/tx3Uhv2J2r9vhPaFJ+otIz/Tr0H2Ky6u2GcJt/XWNEhQSayAQAA3AoD7QAAAAAAAAAAAAAAAAAAAPAI33zzjX7++WdNmjRJNWrUkCRVrFhRL7/8sp5++mmVLVtWgYGBSkpK0ubNmzV9+nRVqVLFcDUAAAA82ddr9jo8LhkerGF31ZGPj0XVS0XogVZSRkaG1v25QQUiS8nX16oKxULla/UxVAwAAOB+GGgHAAAAAAAAAAAAAAAAAACAR/juu+/0wgsvqHfv3urfv7+eeOIJjRw5UgMHDtS9997rcKzdblexYsU0btw4Q7UAAADID+b+7jjQ3q1hWfn4WLIdZ7P6qGpMuKxWq6vSAAAAPAYD7QAAAAAAAAAAAAAAAAAAAPAIoaGheuONN7R48WKNHz9eK1as0KRJk7Rs2TKtXbtW+/bt06VLlxQYGKi4uDg1aNBANpvNdDYAAADc1Dfr9mvRn/GqU7aI+jWvqAA/x1GrbQmntePIWYe17o3iXJkIAACQLzDQDgAAAAAAAAAAAAAAAAAAAI/SoUMHNWzYUKNHj1avXr30wAMPaOjQoWrSpInpNAAAAHiIBX/sU/dXlkiSpv+0XS/OW6/R99TXfc0rytfqI0mas9pxd/YS4cFqEBft8lYAAABP52M6AAAAAAAAAAAAAAAAAAAAALhRYWFhevvtt/Xiiy/qq6++Urdu3bR582bTWQAAAPAAly6n6V8fr3JYSzidpIff/0k1n5mpeWv26tLlNH2wfIvDMd0alJWPj8WVqQAAAPkCA+0AAAAAAAAAAAAAAAAAAADwWJ07d9Z3332nEiVKqHfv3nr11VeVmppqOgsAAABuym63a/CHP+vw6aQcn9955Kx6vLpUFZ/4XKcuXnZ4rl+Liq5IBAAAyHd8TQcAAAAAAAAAAAAAAAAAAAAAN2L79u06ePCgfH19FR0drapVq+r999/X/Pnz9eKLL2rFihWaOHGiqlWrZjoVAAAAbmTtnuN6bOoKbT54+prHHjub7PC4fa1Sqlk60llpAAAA+RoD7QAAAAAAAAAAAAAAAAAAAPAIBw8e1JAhQ7R3717Z7XZJksViUYkSJTRu3Dh17dpVjRs31qhRo9SrVy899NBDGjJkiGw2m+FyAAAAmHTqQormrtmnpz5dpStpGQ7P+Vp99PZDzTX1+63acCAx13M817WOszMBAADyLQbaAQAAAAAAAAAAAAAAAAAA4BHGjBmjixcv6pVXXlG5cuXk6+urgwcP6oMPPtC//vUvrVq1SlFRUZo6daq++uorTZ48WT/99JO+/fZb0+kAAABwsbT0DM36bY+mfLNBWxPO5Hrc6Hvqa0CbKnqwVWXNW7tPo2et0e5j5xyOaVKpmJpULObkYgAAgPyLgXYAAAAAAAAAAAAAAAAAAAB4hI0bN2rEiBHq2LFj1lqZMmUUGxur9u3ba+fOnapevbok6Z577lGTJk00cuRIU7kAAAAw4HJquj79eadeXvin4hMv5npc+aIhGtOjvnreVl6S5ONjUfdGcbqrfhl9+vMOjfvqDx05c0lhwf56Z0BzV+UDAADkSwy0AwAAAAAAAAAAAAAAAAAAwCMEBAQoMTEx2/rp06dlsVgUEBDgsF60aFFNnz7dVXkAAAAwKCMzU+8s3aKXF/6pY2eTr3ps7ybl9eGg1vLztWZ7ztfqo4daV9H9LSpp97FzKlOkkAL8GMECAAC4FXw3BQAAAAAAAAAAAAAAAAAAAI/QqlUrffDBB0pMTFS5cuXk6+urw4cPa/78+SpbtqzKly9vOhEAAACGPPPpr3pryearHlOwgE2D2lXX+HsbysfHctVjfa0+qlwiLC8TAQAAvBYD7QAAAAAAAAAAAAAAAAAAAPAIo0aNkq+vr7799ltdunRJ0n93bW/btq2eeuopw3UAAAAwJelyqqb9sC3H5+qXi9K/u9RW2xoxKuDnK4vl6oPsAAAAyHsMtAMAAAAAAAAAAAAAAAAAAMAjBAYGavz48Ro3bpxOnz4tq9Wq0NBQ01kAAAAwbNGf8bqcluGw1rJqCT3XtY5aVS3BEDsAAIBhDLQDAAAAAAAAAAAAAAAAAADAo1gsFkVERJjOAAAAgJv46ve9Do/b1ojR4hGdDdUAAADgn3xMBwAAAAAAAAAAAAAAAAAAAAAAAADAzbiYkqolGw86rPVoHGeoBgAAADlhoB0AAAAAAAAAAAAAAAAAAAAAAACAR1r0Z7yupGVkPbZZfdSlXhmDRQAAAPgnBtoBAAAAAAAAAAAAAAAAAAAAAAAAeKTPVu50eNymekmFBgcYqgEAAEBOGGgHAAAAAAAAAAAAAAAAAAAAAAAA4HF2Hz2r5X8dcljr0bicoRoAAADkhoF2AAAAAAAAAAAAAAAAAAAAAAAAAB7nvWVbHB6HBfure6M4QzUAAADIDQPtAAAAAAAAAAAAAAAAAAAAAAAAADzKxZRUffrzToe1B1tVUQE/X0NFAAAAyA3foQEAAAAAAAAAAAAAAAAAAMDjpKam6q233tKSJUt0/PhxZWRk5HicxWLR9u3bXVwHAAAAZ/ti1S5dSEnNemyxSI+2rWqwCAAAALlhoB0AAAAAAAAAAAAAAAAAAAAe57333tO0adMkSeHh4fL39zdcBAAAAGey2+1at++kvl1/QJdT0zX1+20Oz3eqE6vSRQoZqgMAAMDVMNAOAAAAAAAAAAAAAAAAAAAAj7No0SJVq1ZNb7/9tqKiokznAAAAwEn2HT+vL3/dpS9X7dKeY+dzPW5Q+2ourAIAAMCNYKAdAAAAAAAAAAAAAAAAAAAAHuf48eMaOHAgw+wAAAD51Opdx/TsZ79q7Z4T1zy2QrEQta5a0gVVAAAAuBkMtAMAAAAAAAAAAAAAAAAAAMDjREZGKiMjw3QGAAAAnOCX7UfUbvxCpWVkXtfxj7WrJh8fi5OrAAAAcLN8TAcAAAAAAAAAAAAAAAAAAAAAN6pLly5asmSJ6QwAAADksQMnL6jHlCW5DrMHB9iyPe7XvJIr0gAAAHCTGGgHAAAAAAAAAAAAAAAAAACAxxkyZIiKFy+uAQMG6JdfflF8fLyOHj2a4wcAAAA8x8D3f9Kpi5cd1iIKBmhw+2r69T/ddXTag7qrfpms594Z0EKFAv1cnQkAAIAb4Gs6AAAAAAAAAAAAAAAAAAAAALhRVapUkSTZ7Xb99ttvuR5nsVi0fft2V2UBAADgFpw4l6wVWw87rHWoXUpfP9NBfr7WrLWvn+mgnUfOKrxggCILFXB1JgAAAG4QA+0AAAAAAAAAAAAAAAAAAADwONWrV5efHztxAgAA5Cd/HTzl8LiAn69mDG3nMMz+PxWLh7oqCwAAALeIgXYAAAAAAAAAAAAAAAAAAAB4nNmzZ5tOAAAAQB7b8o+B9qox4SoUyE2MAAAAPJ2P6QAAAAAAAAAAAAAAAAAAAADgRqSmpuqzzz7T7t27TacAAAAgD205dNrhcY1S4YZKAAAAkJcYaAcAAAAAAAAAAAAAAAAAAIBH8fPz05QpU7R9+3bTKQAAAMhDWw46DrRXKxVhqAQAAAB5iYF2AAAAAAAAAAAAAAAAAAAAeJxatWpp5cqVpjMAAACQR1LTM7T98BmHtWox7NAOAACQH/iaDgAAAAAAAAAAAAAAAAAAAABu1IQJEzR58mQNGDBAnTt3VsmSJVWwYMEcj42Li3NxHQAAAG7UrqNnlZaR6bBWnR3aAQAA8gUG2gEAAAAAAAAAAAAAAAAAAOBxWrduLYvFIrvdrt9++y3X4ywWi7Zv3+7CMgAAANyMLQdPOzyOiSiokCB/QzUAAADISwy0AwAAAAAAAAAAAAAAAAAAwOPUq1fPdAIAAADy0Hd/xjs8rhYTbiYEAAAAeY6BdgAAAAAAAAAAAAAAAAAAAHiczz//3HQCAAAA8oDdbtfkBX9qzuo9DuvVSjHQDgAAkF/4mA4AAAAAAAAAAAAAAAAAAAAAAAAA4J1m/LJLI2euybZep0wRAzUAAABwBnZoBwAAAAAAAAAAAAAAAAAAgMdZsGDBNY+x2+1KS0tTjx49nB8EAACAm/LJzzuyrdUoFaE7apUyUAMAAABnYKAdAAAAAAAAAAAAAAAAAAAAHue5556TxWK56jF2u10Wi4WBdgAAADd14lyyVm0/6rDWtkaM5jzdXgF+jD0BAADkF3xnBwAAAAAAAAAAAAAAAAAAAI8zePDgHAfa09LSlJCQoBUrVui2225T69atDdQBAADgeixct1+ZdnvW40B/X819toMKMMwOAACQr/DdHQAAAAAAAAAAAAAAAAAAADzO448/ftXnT58+rfvuu0933323i4oAAABwo+au2efwuFOdWIbZAQAA8iEf0wEAAAAAAAAAAAAAAAAAAABAXgsPD9fgwYP13nvvmU4BAABADk5dSNHP2/4fe/cdZWdV9g34PmdKeu8J6Z0AgRQChBJahNASBMQXFZSiYHvFgr7KByJSBDuoiChFUekIgSABQjVAElJIJb333qec7w919JBJmCST88xMrmst12Lfe5/n+Z0s12LCyi97cdbs48d0TSgNAAAHkkI7AAAAAAAAAAAAADVS+/bt44MPPkg6BgAA5fjbuHlRUpopW9etlR9nHtUxwUQAABwoCu0AAAAAAAAAAAAA1EgTJkyIOnXqJB0DAIByPD52dtb6zKM6Rt1aBQmlAQDgQMpPOgAAAAAAAAAAAAAA7K277rprt3tFRUUxb968ePnll+P444/PYSoAACpi3ebt8dKUxVmzjx/TLaE0AAAcaArtAAAAAAAAAAAAAFQ7d911V6RSqchkMrs906JFi/jmN7+Zw1QAAFTEM+PmRXFJadm6dkFenHlUxwQTAQBwICm0AwAAAAAAAAAAAFDt3HLLLZFKpcrdy8/Pj1atWsWRRx4ZhYWFOU4GAMBHeXzsnKz1x47sGA3q+LkNAKCmUmgHAAAAAAAAAAAAoNo5//zzP/LMzp07Y9u2bVGnTp0cJAIAyL1MJhPPv7cgSkozcVa/TpFOl/8X/lQlG7buiBcnL8yaffyYrgmlAQAgF9JJBwAAAAAAAAAAAACAvXXqqafG66+/vscz999/f1xwwQU5SgQAkHufv+eVOPe2Z2PEj0bGiB+NjJLS0qQjfaSR4+fHzuL/5CzMT8dZ/TslFwgAgANOoR0AAAAAAAAAAACAamfJkiWxffv2PZ5ZtWpVLF26NEeJAABya/2WHfHAmOll65ET5scPHns3wUQV8/jYOVnr04/oEI3q1kooDQAAuZCfdAAAAAAAAAAAAAAAqIgHHnggHnzwwbL1jTfeGLfddlu5Z3fs2BFr1qyJtm3b5ioeAEBOzVq2PkpKM1mzmx97N4b0aRdD+hySUKo927RtZ4yauCBr9vFjuiaUBgCAXFFoBwAAAAAAAAAAAKBaOOqoo2LOnDkxefLkSKVSsWbNmt2ezcvLiw4dOsT3vve9HCYEAMidOcvXlzu//i9j4/UfXJDbMBX0/HsLYkdRSdk6Py8d5wzonGAiAAByQaEdAAAAAAAAAAAAgGrhiCOOiCOOOCIiInr16hW/+MUvYujQoQmnAgBIxgfLNpQ7f3vWiti4dWc0rFuY40Qf7fGxs7PWpx5+SDSpXzuhNAAA5Eo66QAAAAAAAAAAAAAAsLcefPDBGDhwYNIxAAASM3vZ+nLnpZlMjP1geW7DVMCW7UXx/HsLsmYfP6ZbQmkAAMglhXYAAAAAAAAAAAAAqp2jjz46mjRpEuvXr4/nn38+7rvvvli2bFnZ/vbt2xNMBwBw4M1eUf4N7RERb0xfmsMkFTNq4oLYuqO4bJ2XTsW5AzonmAgAgFzJTzoAAAAAAAAAAAAAAOyL+++/P372s5/Fjh07IiLiiCOOiDZt2kRpaWkMGzYsPvWpT8XnPve5hFMCABwYu7uhPSLizZnLdruXlMfHzslaD+lzSDRvWCehNAAA5JIb2gEAAAAAAAAAAACodkaPHh233XZbtGnTJi6//PKsvU2bNkXz5s3jjjvuiNGjRyeUEADgwFm7eXus3bxjt/tvz1oeO4tLcphoz7btLI6R4+dnzT5+TNdkwgAAkHMK7QAAAAAAAAAAAABUOw899FD06NEjnn766bjqqqsik8mU7TVq1Cj++Mc/Ru/eveOPf/xjgikBgIPV5AWr4w8vT4v5KzcekOfPXr5hj/vbi0pi/NyVB+Td++LvExfGlh1FZet0KhXnDeySYCIAAHIpP+kAAAAAAAAAAAAAALC3pk+fHtdcc00UFhbGjh273k5aWFgYI0aMiF//+tcJpAMADlYT5q6M7z/yToycMD8iIvLz0nHf1afGJSf23OdnvjVzWfy/v4yNiIiPHdkxLjy2W8xetj7rTLfWjaJWQV5MXbS2bPbmjGVxbI82+/zeyvTXtz7IWp9waNto1bhuQmkAAMg1hXYAAAAAAAAAAAAAqp2tW7dG06ZN93imcePGsXnz5hwlAgAOZpMXrI7vP/JOPP3u3Kx5cUlpXHb3i1FcWhqXDum9188dO2t5DL35b7GjqCQiIsZMXRLf+dNb0bxB7axzXVs3ik4tGmYV2ifMXbUP36Tyrd+yY5dfl48P6ppQGgAAkqDQDgAAAAAAAAAAAEC107Jly5gzZ84ez4wdOzZatGiRo0QAwMFk07ad8ZX7Xo1Xpi6JzduLYv2WHbs9m8lEXP6rl6KouDSuOK1Phd+xdP32uOrXz5eV2f/b6k3bs9bdWzeOHm0bZ83mrthQ4XcdSI+89UHWdyjIS8cnBndPMBEAALmWTjoAAAAAAAAAAAAAAOytE088MR5++OGYMWNG2SyVSkVExObNm+NXv/pVPPnkkzFkyJCEEgIANVVpaSY+9fO/x0OvzYzFazbvscz+377w21fizr9NiEwmU6HzvxyzIFZt3P7RB+OfN7R3btUoazZv5cYKffZA++mz72Wtz+7fKZo1qJNQGgAAkuCGdgAAAAAAAAAAAACqnWuuuSZGjx4dF154YXTr1i1SqVTceeedUVRUFHPnzo3t27dH8+bN4wtf+ELSUQGAGubmx9+NkRPm73a/af1a8fVz+8Xazdvjx3/LLnN/+49vxaj3FsQ1Hzs8zjiqY9StVVDuM0pLM/HmnPVZs0MPaRrL12+JtZt3LdAP6tE6GtUtzJqt2bQ9NmzdEY3q1qrYF6tks5evjwvvfD4+WJZ9U/xnhvROJA8AAMlRaAcAAAAAAAAAAACg2mnZsmU89thjceutt8ZLL70UmUwmJk6cGBERBQUFccYZZ8R1110XLVq0SDYoAFCjTJi7Mn7w2Dvl7jWqWxhfO/uo+MqwvtGwbmFkMpmoXZAfP3z83axzY6YuiTFTl0T3No3isW8Miz7tm+3yrIVrNsWO4tKs2XPfPTdaNaoTL72/OB5584N4+t25sXHbzvjymX3j6G6tYvvO4kilIv77Avh5KzfGkZ1y//PQqo3b4sTrH4+VG7ZlzVs2qhNnHNkh53kAAEiWQjsAAAAAAAAAAAAA1VLr1q3j5z//eezYsSPmzZsXW7Zsifr160fnzp2jsLDwox8AALCXfv3ClKzCeETEVaf1iTP7dYoTereNxvX+cxt6KpWK739iUNQuyIvr/zJ2l2d9sGxDXHjn8/HO7RdF/drZP7vMXLI+a92obmG0a1ovUqlUnHFkxzjjyI6RyWSipDQT+XnpiIioXZgf7ZrWj8VrNpd9bt6KZArtNz/2zi5l9oiILww9PAry83KeBwCAZKWTDgAAAAAAAAAAAAAAe2PHjh1x6623lt3IXqtWrejVq1f0798/evbsqcwOABwQm7btjEfemp01+7/zB8Svrjo5zhnQOavM/t++c/6Af92uXneXvVnL1seXfvfqLvMZS9dlrXu2axKpVCprlkqlysrs/9a5ZcOs9dwVG3b/hQ6QWUvXxT0vTt1lfvMnj4nvjOif8zwAACRPoR0AAAAAAAAAAACAaqVWrVrxyCOPxNy5c5OOAgAcRP78xqzYsqOobJ2XTsUXhh5Woc8O7dsh3v/p/8Qdnxm8y94fX5sZD46ZnjWbuXR91rpX2yYVek/XVo2y1vNWbqzQ5yrT//vL21FcUlq2TqdSMeMXn4pvjxjgdnYAgIOUQjsAAAAAAAAAAAAA1c6JJ54YI0eOjJKSkqSjAAA1WCaTiWfHz4sTr388rrl3TNbesH6dom3T+hV+VpP6teNrZx8Vs3756WhYpzBr70v3vRoz/+tW9plLsm9o79WuYoX2zq0+fEN7bgvtS9dujifenpM1+/q5R0W31o1zmgMAgKolP+kAAAAAAAAAAAAAALC3rrzyyvjtb38bw4cPj2HDhkX79u2jQYMG5Z496aSTcpwOAKgJxs9dGd966M14deqScvc/d8qh+/TcLq0axT2fPzk++bMXymZbdxTHJ386Kt764YVRuzA/q9weUfFCe5cPFdrnrdywTxn31UOvzYzSTKZsXa9WQVw3vH9OMwAAUPUotAMAAAAAAAAAAABQ7VxwwQWRSqUik8nEL37xiz2enT59eo5SAQA1wYJVG+P6P4+Nh9+Ytdsz7ZvVjzOP6rjP77jwuO7x8vuL497RU8tmkxesiW8++Gbc+ImjY9XG7VnnK3xDe8tGWev5KzdFSWlp5KXTu5yduXRdLF+/NU7o1TbS6dQ+fItsmUwmHngl++eui47rFo3r1drvZwMAUL0ptAMAAAAAAAAAAABQ7QwfPjxSqf0vXgEARES8NXNZXP3bV2L64nVZN4yXp0ebxnHv1adGft6uJfG98ZPLToh/zFwW7y9aWzb79d+nRK3CvKxzBXnp6NKq0Yc/Xq4P39BeVFIai9dsjo4tsuf3jn4/rv7tmIiIOPOojvG3b5+93z9bvTptScxatj5rdunJvffrmQAA1AwK7QAAAAAAAAAAAABUO7fddlvSEQCAGmLz9p3x8Tuei1Ubt+32TPtm9eN7FwyMcwZ0jhYN61TKX6xTpzA/Hv7aGTHo24/Etp3FZfOfPTsx61z3No0rXJ5v0bBO1KtVEFt2FJXNDvvaw3HoIU2iT/tm0ad90ziuV5v4xgNvlu0//96CeHfOyji6W6t9+h5FxSXxk2cnxg8efedDuRvF4J5t9umZAADULArtAAAAAAAAAAAAAAAAHLTuHjVlt2X2hnUK49sj+seXh/WNOoWVX8M59JCm8YvPnRhX/ubl3Z7p2bZxhZ+XSqWiS6uGMWXhmrLZtp3FMX7uqhg/d9VuP/f2rOX7VGh/+4Pl8YV7Xsl637995qTelVL8BwCg+lNoBwAAAAAAAAAAAAAA4KC0advO+Mkz7+0yL8hLx+dPPyy+e8HAaNGwzgHNcNnJveMnz7wX05esK3e/1yFN9+p5ZxzVsdyC+Z68v4fzs5auiz+9Pis6t2wQnzmpd6TTqdi8fWd87+GxcfcLkyOT2fUzR3VuEV8Z1nevMgAAUHMptAMAAAAAAAAAAAAAAHBQ+tULU2LNpu1Zs99dfUpceGz3qFe7ICcZUqlUnH9Mt/jh4++Wuz+sX8e9et51w/vHlu1F8chbH8TqD3233Zk4v/zb21es3xpDbngiVm745w32781bFZcO6R2X/PyF+GDZhl3Op1IRXz6zb3z/E4Ny9usHAEDVp9AOAAAAAAAAAAAAAADAQWdHUUn8YuSkrNk5AzrHZScfmvMsFxzbtdxC+9HdWsYx3Vvv1bMa16sVv7j8pPjF5SfFyg1b4/1Fa2PqwjXx9LtzY8zUJeV+5v1Fa6OouCQK8vOy5r/5+5SyMntExN2jpsRvX5waRSWluzzjiI7N4jefPyWO7tZqr/ICAFDzpZMOAAAAAAAAAAAAAAAAALn2lzdnxYoNW7Nm37tgYCJZDmvfLJo1qL3L/H/POjJSqdQ+P7dlo7pxymGHxJeH9Y2nrjsrerZtXO65HUUlMXPp+qxZUXFJ/O6lqbuc/XCZvXZBXtx6yXHx9q0XKbMDAFAuhXYAAAAAAAAAAAAAAAAOKplMJn4+cmLW7KQ+7aJ/l5aJ5EmlUnHV6Ydlzdo0qhXnDexcae+oX7swHv/mWdGlVcNy9yfNX521fmbcvFi2bmu5Z//t6O6tYuKPPxnfPK/fLre7AwDAvym0AwAAAAAAAAAAAFBtlZSUxOTJk2PUqFGxdu3apOMAANXEy+8vjskL1mTN/vesI5MJ8y9fPOPwaP6vW9pTqYivntwx8vMqt/rTq12TmPHzT8ey310e5wzILstPnL+q7J/Xbd4eP3p6wh6f9c3z+sWr3z8/urVuXKkZAQCoefKTDgAAAAAAAAAAAAAA+2LUqFFxyy23xKpV/yxfPfjgg9G0adOIiLjgggvic5/7XAwbNizJiABAFfXh29m7t2kUZ/XrlEiWf2vduF5MuOPieG7CgjiiQ9PI27T0gLwnnU5Fi4Z1om+n5vHMuHll80kL/nlD+4S5K+MTPxkV81ZuLPfzhzSrH7/9wikxtG+HA5IPAICaR6EdAAAAAAAAAAAAgGpn3Lhxce2110ajRo1i2LBh8dxzz5XtrVu3LtatWxff/OY3o0WLFjFw4MAEkwIAVc2MJeviuQkLsmZfGXZkpNOphBL9R9um9eOK0/pESUlJTJx4YArt/3Zkp+ZZ63dnr4ifPPNeXP+XsbGjqCRrr13TejH1Z5fEsnVbo3PLhpV+czwAADWbnx4BAAAAAAAAAAAAqHZ+97vfRdu2bWPkyJFxww03RCaTKdtr0qRJPPnkk9GuXbv4/e9/n2BKAKAq+uVzk7LWTerVis+c1CuhNMkZ0LVV1nrTtqL41kNv7lJmb96gdjzy9TOjfu3C6N6msTI7AAB7zU+QAAAAAAAAAAAAAFQ7kyZNiosuuiiaNm0aqdSut6k2bNgwLrroopgyZUoC6QCAqmrF+q3x4KszsmZXnX5Y1KtdkFCi5BzSrH5ccEy3PZ45tmfrGPeji2NQ99Y5SgUAQE2k0A4AAAAAAAAAAABAtbNp06Zo06bNHs+0bt06NmzYkKNEAEB18PUHXo9tO4vL1vl56bjmjMMTTJSsn33uhGhcr1a5e189q2+8fMOIOKRZ/RynAgCgplFoBwAAAAAAAAAAAKDaadKkSSxatGiPZ95///1o2rRpjhIBAFXdqIkL4i9vfpA1u+SEHtGu6cFb2G7duF7c+ZnBWbMGdQrir9eeET++9IQoyM9LKBkAADWJQjsAAAAAAAAAAAAA1c4xxxwTDz/8cKxcuXKXvUwmE08//XQ8/PDDceyxxyaQDgCoarZsL4ov3Tsma9akXq245X+OSyZQFXLpkN5xy/8cG91aN4pzBnSOt2+9KD5+TLekYwEAUIPkJx0AAAAAAAAAAAAAAPbWF7/4xXjllVfinHPOif79+0cqlYoHHnggHnrooZgyZUosX7486tevH1dffXXSUQGABPzxtRnxu5emRe92TeKOzwyOmx59N+av2pR15vZPD45WjesmlLDqSKVS8a3h/eNbw/snHQUAgBpKoR0AAAAAAAAAAACAaqdTp07xwAMPxA033BAvv/xyRESMHj26bP+II46IG2+8MTp27JhURAAgIc+MmxeX3fXPnwvemL40xs5aHlMXrc06c+KhbeOzJ/dOIh4AABx0FNoBAAAAAAAAAAAAqJb69OkTjz32WCxcuDBmzZoVW7dujfr160ePHj3ikEMOSToeAJCADVt3xBfvHZM1m7JwTda6MD8dv77q5EilUjlMBgAABy+FdgAAAAAAAAAAAACqnZ/+9KcxYsSI6NSpU3To0CE6dOiQdCQAIEGbt++Mnz07KW585O2PPPud8wdEz7ZNcpAKAACIiEgnHQAAAAAAAAAAAAAA9tY999wTZ555Zlx88cXx17/+NTZt2pR0JAAgQV/+3asVKrP3btckvnVe/xwkAgAA/k2hHQAAAAAAAAAAAIBq56abboqBAwfG5MmT48Ybb4zjjz8+vv71r8frr78emUwm6XgAQA5t3Loz/vzmBxU6++vPnxy1CvIOcCIAAOC/5ScdAAAAAAAAAAAAAAD21kUXXRQXXXRRrFq1KkaOHBnPPvtsjBw5Mp577rlo0aJFnHfeeTF8+PDo2rVr0lEBgANs9OSFUVxSmjWrWys/GtYpjOXrt5bNrjqtTxzfq22u4wEAwEHPDe0AAAAAAAAAAAAAVFstWrSIyy67LB577LF48cUX48tf/nI0bNgw7r333jj77LPjoosuSjoiAHCAPTdhQda6fu2CWP2HK2Pazz4Vpx7ePvLz0nHOgM7xo88MTighAAAc3NzQDgAAAAAAAAAAAECN0L59+7jmmmvi6quvjqeeeip+/OMfx5QpU5KOBQAcQKWlmXj+vexC+00XHxOF+XlRmJ8XL1x/XpSUlkZe2p2QAACQFIV2AAAAAAAAAAAAAKq9TCYTY8eOjeeffz5Gjx4d69ati4iIQYMGJZwMADiQJsxbGSs2bM2aDevXMWutzA4AAMlSaAcAAAAAAAAAAACg2nr33Xfjueeei7///e+xdu3ayGQy0a1bt7jsssvi3HPPjdatWycdEQA4QDKZTNz74tSsWY82jaNb68bJBAIAAMql0A4AAAAAAAAAAABAtfPDH/4wRo0aFatXr45MJhPNmzePSy+9NM4777zo3bt30vEAgBy49cnxcd/L07JmZ37odnYAACB5Cu0AAAAAAAAAAAAAVDsPPfRQ1KlTJ84+++w499xzY/DgwZFOp5OOBQDkyG/+PiX+31/GZs3y89Jx5WmHJZQIAADYHYV2AAAAAAAAAAAAAKqd2267LYYOHRp169ZNOgoAkGN/fXNWfPm+V3eZ//6aU6NXuyYJJAIAAPZEoR0AAAAAAAAAAACAamf48OFJRwAAEjBq4oK49K7Rkclkz3/+uRPjf07omUwoAABgjxTaAQAAAAAAAAAAAKjyevfuHT//+c9j6NChZeuKSKVSMW3atAMZDQDIkX/MWhYX3vl8FJeUZs3/34VHxxfPOCKhVAAAwEdRaAcAAAAAAAAAAACgymvTpk3UqVMnaw0AHDy27SyOT/3877FtZ3HW/EtnHBHXXzAwoVQAAEBFKLQDAAAAAAAAAAAAUOW9/PLLe1wDADXbz0dOjAWrNmXNLjmhZ/zkshMilUollAoAAKiIdNIBAAAAAAAAAAAAAGBvPfXUU7Fs2bI9nnn99dfj/vvvz00gAOCAWbF+a9z25Pis2XE928Tvrj4l0mlldgAAqOoU2gEAAAAAAAAAAACodr7zne/ElClT9nhm9uzZcd999+UoEQBQmd5fuCa++vtX40dPjY+bHn0nNm8vKttLpSJ+9tkToiA/L8GEAABAReUnHQAAAAAAAAAAAAAAKmLGjBkxY8aMiIjIZDLxzjvvxNatW8s9u3379njsscdiy5YtuYwIAFSCdZu3x6nffzLWbNpe7v6nT+wV/bq0zHEqAABgXym0AwAAAAAAAAAAAFAtvP766/HjH/84UqlUpFKp+NOf/rTH85lMJs4444wcpQMAKssz4+bttsyel07FjZ8YlONEAADA/lBoBwAAAAAAAAAAAKBauPLKK2PEiBExceLE+NKXvhRnnHFGdOvWrdyzeXl50b59+/jYxz6W45QAwP56Y8ay3e6NOLprdGjeIIdpAACA/aXQDgAAAAAAAAAAAEC10bx58zjttNNi4MCB8alPfSoGDBiQdCQAoJK9NXP3hfYvD+ubwyQAAEBlSCcdAAAAAAAAAAAAAAD21kMPPfSRZfbRo0fHpZdemqNEAEBlWLVxW8xYsq7cvX6dW8RxPVvnOBEAALC/3NAOAAAAAAAAAAAAQLW1YsWKWLJkSZSUlGTNt2/fHo888khMnDgxmWAAwD55a0b5t7OnUhE/+OQxkUqlcpwIAADYXwrtAAAAAAAAAAAAAFQ7O3fujOuuuy5GjRq12zOZTCb69u2bw1QAwP56Y8bSrHXLRnXiG+f2i8G92sSg7m5nBwCA6kihHQAAAAAAAAAAAIBq55577onnn38+OnbsGJ07d44xY8bEwIEDo3bt2jF58uSIiLj88stjxIgRCScFAPYkk8nEzKXr443pS+PNGUvjmfHzs/Y/f/phce05RyUTDgAAqBQK7QAAAAAAAAAAAABUOyNHjowhQ4bEr3/969i0aVMcffTR8ZWvfCUGDhwYO3bsiNtuuy3eeuutuOyyy5KOCgDsxm/+PiVuevSdWLlh227PDO7VNoeJAACAAyGddAAAAAAAAAAAAAAA2FtLly6N008/PVKpVKRSqay9WrVqxQ033BClpaVx1113JZQQANiTSfNXx5d+9+oey+xN6tWKY3u0zmEqAADgQFBoBwAAAAAAAAAAAKDaKSgoiLy8vLJ/jojYsmVL1plhw4bFc889l/NsAMBHGzVxwR73WzeuG7+7+tSoV7sgR4kAAIADJT/pAAAAAAAAAAAAAACwt1q1ahUTJ06M4cOHR+3ataNOnTrx/vvvx5AhQ8rO5OXlxerVq5MLCQDs1vg5K7PWLRrWiVMOOyQG92oTg3u1jcM6NI28tHscAQCgJlBoBwAAAAAAAAAAAKDaOfnkk+P3v/99NGzYMK699tro27dv3H///dGzZ88YOHBgLFmyJO6///5o3bp10lEBgHKMn5tdaL/tU8fFpUN6J5QGAAA4kBTaAQAAAAAAAAAAAKh2rrzyyhgzZkzMnj07IiKuuuqquOKKK+IrX/lK2ZlMJhPf/va3k4oIAOzGqo3bYsGqTVmz/l1aJpQGAAA40BTaAQAAAAAAAAAAAKh2GjduHE8//XQsWLAgIiKOO+64uPfee+P3v/99LFmyJFq1ahXnnHNOXHDBBQknBQA+7MO3s9etlR+92jVJKA0AAHCgKbQDAAAAAAAAAAAAUC3l5+dH165dy9aDBw+OwYMHJ5gIAKiI8XOyC+1HdmoR+XnphNIAAAAHmp/2AQAAAAAAAAAAAAAAyJkPF9oHdG2ZUBIAACAX3NAOAAAAAAAAAAAAQJV36qmn7tPnUqlUjB49upLTAAD7Y/zc7EJ7/y4K7QAAUJMptAMAAAAAAAAAAABQ5S1ZsiTpCABAJZizfEMsWbsla9bfDe0AAFCjKbQDAAAAAAAAAAAAUOXNmDEj6QgAQCX442vZ/05v1qB29GjTOJkwAABATqSTDgAAAAAAAAAAAAAAAEDNV1qaiT++NjNrdvHg7pFOpxJKBAAA5IIb2gEAAAAAAAAAAACodpYuXfqRZzKZTBQVFUWnTp0OfCAA4CO9MWNpzFu5MWv26ZN6JZQGAADIFYV2AAAAAAAAAAAAAKqdU045JVKpit3mOn369AOcBgCoiIdenZG17t2uSfTv0jKhNAAAQK4otAMAAAAAAAAAAABQ7QwcOLDceVFRUSxZsiRWrVoVAwcOjEMOOSTHyQCA8ixeszn+9PrMrNmnT+pV4b+gBgAAqL4U2gEAAAAAAAAAAACodh566KE97o8ZMyZuvvnmuPHGG3MTCADYo1ufGBc7i0vL1gV56bjkxJ4JJgIAAHIlnXQAAAAAAAAAAAAAAKhsQ4YMiUsvvTTuuOOOpKMAwEFv/sqN8fuXp2XNrji1T7RrWj+hRAAAQC4ptAMAAAAAAAAAAABQIx1++OExYcKEpGMAwEHv7lGTo6jkP7ez1y7Ii++c3z/BRAAAQC4ptAMAAAAAAAAAAABQIy1btixKSkqSjgEAB723Zi7LWl95Wp9o63Z2AAA4aOQnHQAAAAAAAAAAAAAA9ta77767272ioqKYO3du3HPPPdGlS5ccpgIAPqyktDSmLFyTNTvjqI4JpQEAAJKg0A4AAAAAAAAAAABAtfPpT386UqnUbvczmUyk0+m4+eabc5gKAPiw2cs3xNYdxVmzIzu1SCgNAACQBIV2AAAAAAAAAAAAAKqd4cOH77bQnp+fH61atYrTTjstevXqleNkAHDwWLZuSzz8+sxo1bhufOK47lGQn7fLmYnzVmWt2zSpG60a181VRAAAoApQaAcAAAAAAAAAAACg2rntttuSjgAAB7VVG7fFcf/3aCxaszkiIqYsXBO3f2rwLucmzl+dte7rdnYAADjopJMOAAAAAAAAAAAAAAAAQPVy7f2vl5XZIyJ+/cKU2LazeJdzkz5caO/Y/IBnAwAAqhY3tAMAAAAAAAAAAABQLU2bNi1eeumlWLVqVRQVFZV7JpVKxS233JLjZABQs42cMD/+/MasrNnWHcUxevKiOGdA57JZJpOJifNXZZ07spNCOwAAHGwU2gEAAAAAAAAAAACodkaNGhXXXnttZDKZyGQyuz2n0A4AlSuTycR1D71Z7t7T78yNbq0bxbL1W2Pl+q2xcPWmWLlhW9aZIzu3yEVMAACgClFoBwAAAAAAAAAAAKDa+dWvfhV169aNK6+8Mnr06BH16tVLOhIAHBQWrt4UM5asK3fv/jHT4/4x03f72Xq1CqJrq0YHKhoAAFBFKbQDAAAAAAAAAAAAUO0sXLgwrrnmmrjqqquSjgIAB5X35q3a588e0alZpNOpSkwDAABUB+mkAwAAAAAAAAAAAADA3mrUqFE0b9486RgAcNAZP3ffC+1fPrNvJSYBAACqCze0AwAAAAAAAAAAAFDtDBs2LMaMGRPnn39+0lEA4KAyYe7KjzzTuF6taN24brRsVCdaNqwbrRvXjfOO7hJD+rTLQUIAAKCqUWgHAAAAAAAAAAAAoNr52te+Ftdee2387//+b1x00UXRrl27KCgoKPds27Ztc5wOAGqmTCYTEz50Q/vdVwyJ258aHwtXb4paBXnxo08Pjms+dnikUqmEUgIAAFWNQjsAAAAAAAAAAAAA1c769etj27Zt8dZbb8ULL7yw23OpVCqmTZuWw2QAUDO8Om1JfO0Pr0UmE3Fmv45x+Sl9olZBXqzauC3r3KlHHBKXDukVYz9YHkd1bhGN6tZKKDEAAFBVKbQDAAAAAAAAAAAAUO1cf/318eabb0bnzp2je/fuUa9evaQjAUCNMX3x2jjrh3+L7UUlERExZeGa+NFTE6JXuyZZ5xrVLYyurRpFKpWKIX0OSSIqAABQDSi0AwAAAAAAAAAAAFDtjB8/PkaMGBG33npr0lEAoEbZWVwSl/7yxbIy+3+bsWRd1vrIzi0ilUrlKhoAAFBNpZMOAAAAAAAAAAAAAAB7K5PJxKBBg5KOAQA1zo//9l5MmLeqQmf7dW5xgNMAAAA1gUI7AAAAAAAAAAAAANXOgAEDYubMmUnHAIAa597RU7PW7ZrWi6b1a5V79tgerXMRCQAAqOYU2gEAAAAAAAAAAACodm644YZ4/fXX409/+lPs3Lkz6TgAUCMsWbs5Fq7elDX70/9+LBb+5rPxp68OjZMPO6RsfmzP1nHuwC65jggAAFRD+UkHAAAAAAAAAAAAAIC99c1vfjNq164dN998c9xyyy3RrFmzKCgo2OVcKpWK0aNHJ5AQAKqfdz5YkbVuWKcwjuvRJtLpVHxicI/4xOAesXTt5li+fmsc2alFpNOphJICAADViUI7AAAAAAAAAAAAANXO+PHjy/65pKQkVq5cmWAaAKgZxn6wPGt9dPdWu5TW2zatH22b1s9lLAAAoJpTaAcAAAAAAAAAAACg2pk8eXIUFhYmHQMAapS3P3RD+6DurRNKAgAA1CTppAMAAAAAAAAAAAAAwN5SZgeAylVUXBLj56zMmg3q3iqhNAAAQE2i0A4AAAAAAAAAAABAjVVUVJR0BACoFqYsXBPbdhZnzRTaAQCAypCfdAAAAAAAAAAAAAAA2Fu9e/eu0LlUKhXTpk07wGkAoPp7+4MVWevubRpFswZ1EkoDAADUJArtAAAAAAAAAAAAAFQ7bdq0KXdeVFQUq1evjkwmE7169YoGDRrkOBkAVE9vzVyWtR7UvXVCSQAAgJpGoR0AAAAAAAAAAACAaufll1/e7d7OnTvj0UcfjYcffjjuvPPOHKYCgOqptDQTL01ZlDU7rmf5f3kMAADA3konHQAAAAAAAAAAAAAAKlNhYWFccsklcfbZZ8ePfvSjpOMAQJU3ZeGaWLlhW9bstCPaJ5QGAACoaRTaAQAAAAAAAAAAAKiRBg0aFG+99VbSMQCgyhs9eWHWukurhtGlVaOE0gAAADWNQjsAAAAAAAAAAAAANdKGDRti+/btSccAgCpv9JRFWevTDnc7OwAAUHnykw4AAAAAAAAAAAAAAHtr6dKlu90rKiqKuXPnxp133hnt2yvkAcCeLFy9KV6flv3v1dOO8O9PAACg8ii0AwAAAAAAAAAAAFDtnHLKKZFKpfZ4JpPJxK233pqjRABQfWzbWRzPjp8T94+ZHi9NWRSZzH/20qlUnHzYIcmFAwAAahyFdgAAAAAAAAAAAACqnYEDB+52r6CgIFq1ahVDhw6Nk08+OYepAKDqymQy8fYHy+OnL8yNl385PjZs3VnuuQHdWkaT+rVznA4AAKjJFNoBAAAAAAAAAAAAqHYeeuihpCMAQLVQWpqJJ9+ZE7c+MS4mzl+9x7PpVCquO69/jpIBAAAHC4V2AAAAAAAAAAAAAGqU0tLSSKfTSccAgMRlMpm44M7n4m/j5u3xXMM6hfGJwd3j80MPiyM7tchROgAA4GCh0A4AAAAAAAAAAABAtVFUVBR33XVXtGvXLi666KJyz1x66aVx6qmnxmWXXZbbcABQxYyauHC3ZfZUKuLUw9vHZUN6x3lHd4k6hSomAADAgeF3GwAAAAAAAAAAAABUG9///vfj8ccfj+OPP77cQvvatWtj8eLFcfvtt0dJSUlcfvnlCaQEgKrh7lGTd5kd0rhWXDm0b3xmSO9o37xBAqkAAICDTTrpAAAAAAAAAAAAAABQEW+//XY89thjMWDAgPjhD39Y7pmmTZvGs88+G/3794+f/vSnMWfOnBynBICqYfby9THqvQVZs08O7h6PXHlUfHtEf2V2AAAgZxTaAQAAAAAAAAAAAKgWnnrqqWjcuHHcfffd0bJly92eq1evXtx9991Rt27deOyxx3KYEACqjl+NmpK1blyvVtx9xUmRl04llAgAADhYKbQDAAAAAAAAAAAAUC1MnDgxzj333GjYsOFHnm3UqFEMHz483nzzzRwkA4CqZcLclfGbv2cX2j97cu+oV7sgoUQAAMDBTKEdAAAAAAAAAAAAgGph1apV0b179wqf79GjRyxbtuwAJgKAqmfD1h3xyZ++EDuLS8tm6VQqrv7Y4QmmAgAADmYK7QAAAAAAAAAAAABUC8XFxVFYWFjh8/n5+VFaWvrRBwEgQW/MWBrPTZgfJZX076ybH3s35qzYkDX76ll9o0urRpXyfAAAgL2Vn3QAAAAAAAAAAAAAAKiIZs2axfz58yt8fubMmdGyZcsDFwgA9tONj7wdNz/2bkREnHFUx3j2O+fs1/MymUw8PnZO1mxQ91Zxy/8cu1/PBQAA2B9uaAcAAAAAAAAAAACgWjjyyCNj5MiRUVJS8pFnt27dGs8880wcddRROUgGAHuvuKQ0fvrMxLL1qPcWxJSFq/frmfNWboyFqzdlze6+ckgU5Oft13MBAAD2h0I7AAAAAAAAAAAAANXCiBEjYuHChXHzzTfv8dzOnTvjG9/4RqxZsybOP//8HKUDgL0za9n62LKjKGv20uTF+/XMV6cuyVq3aFgn+nZsvl/PBAAA2F8K7QAAAAAAAAAAAABUC8cff3wMHTo0/vKXv8Qll1wSr7zySmzZsqVsf926dfH000/HiBEj4pVXXokLLrggBgwYkGBiANi9KQt2vY19waqN+/XMV6dlF9pPOrRdpFKp/XomAADA/spPOgAAAAAAAAAAAAAAVNTtt98emUwmXnzxxZgwYUJERNStWzdKS0tj+/btERGRyWTioosuiu9973tJRgWAPZq8YM0us4nzdy25V1Qmk4kxH7qh/aQ+7fb5eQAAAJVFoR0AAAAAAAAAAACAaqNOnTrxy1/+Ml5//fV44oknYtKkSbFmzZrIz8+Pzp07R//+/WPEiBHRr1+/pKMCwB5NLueG9knzV0cmk9nrW9XXb9kRf5+0MBav2Zw1H6LQDgAAVAEK7QAAAAAAAAAAAABUOyeccEKccMIJSccAgH02ZeGuN7Rv3LYz5q3cGF1aNdrjZzOZTLw0ZXH87d258caMpTFl4ZrIZLLPtGpUN3q1a1KZkQEAAPaJQjsAAAAAAAAAAAAAAEAOrd28fZfb1P9t0vzV5RbaZy5dF4+89UH0btc0Fq3ZFN988M09vuOkPu32+qZ3AACAA0GhHQAAAAAAAAAAAAAAoBI9+facGD15UbRuUjcGdW8dR3drFY3r1Srbn7xg9W4/O3H+6hgxqGvWbObSdXHc/z0aG7burND789Kp+OpZffctPAAAQCVTaAcAAAAAAAAAAAAAAKgktz81Pr778D92mfdu1yQGdW8dQ4/sEAtXb9rt58fNWZG1Liktjct/9dJHltlrFeTFwG6tYnDPNvHpk3pFr3ZN9u0LAAAAVDKFdgAAAAAAAAAAAAAAgErw0Kszyi2zR0RMX7Iupi9ZF/ePmb7HZ7wwcWFcdteL8YvPnRQN6xbGL56bFGNnLd/t+RN6t40ffPKYGNClZdQuVBMBAACqHr9TAQAAAAAAAAAAAAAA2E/zV26Mz9/zcqU864+vzYy3Zi6LGy8aFNf/eewez9508TFxfK+2lfJeAACAAyGddAAAAAAAAAAAAAAAAIDq7sFXZ8TO4tKs2eEdmkVh/p6rG/VqFcSIo7vsMp+7YmN85pcvxvaikt1+dkDXlnF8rzb7FhgAACBH3NAOAAAAAAAAAAAAAACwnx4fOztr/ekTe8YfvnR67CgqiYnzV8XbH6yIX78wOT5YtqHsTKcWDeLhr50RR3drFX99c1Zc/dsxsXHbzt2+o2Gdwqz96y88OlKpVOV/GQAAgEqk0A4AAAAAAAAAAAAAALAfpi9eG1MXrc2aXX5an4iIqFWQF4O6t45B3VvHFaceGj95ZmL8fdLCOK5nm/jO+f2jUd1aERHxicE9YlD31vGZX74Yb81ctss7urZqFBPuuDieHT8vXp6yOIb16xRn9et0wL8bAADA/lJoBwAAAAAAAAAAAAAA2A+Pj52TtW7bpF4c16PNLufq1iqI710wML53wcByn9OpZcN4+cYRceuT4+Lmx96NktJM2d69V58S9WoXxCcG94hPDO5RuV8AAADgAFJoBwAAAAAAAAAAAAAA2A+Pj52dtT5/UNdIp1P79Kz8vHRcf8HRcerh7eOGv74dqzZsjW8N7x8nHtquMqICAADknEI7AAAAAAAAAAAAAADAPpq2eG1MWbgma/bxY7vt93OP69kmXvx/w/f7OQAAAElLJx0AAAAAAAAAAAAAAACgunr49ZlZ6zZN6sbgnm0SSgMAAFD1KLQDAAAAAAAAAAAAAADsg9LSTPz5jVlZs4sH94h0OpVQIgAAgKpHoR0AAAAAAAAAAAAAAGAfvDlzWSxYtSlrdsmJPRNKAwAAUDUptAMAAAAAAAAAAAAAAOyDP78+M2t96CFNo2/H5gmlAQAAqJoU2gEAAAAAAAAAAAAAAPbBs+PnZ63/54QekUqlkgkDAABQRSm0AwAAAAAAAAAAAAAA7KWlazfH0nVbsmbnDuySUBoAAICqS6EdAAAAAAAAAAAAAABgL42fuypr3aBOQfRq2yShNAAAAFWXQjsAAAAAAAAAAAAAAMBeGj93Zda6X5eWkU6nEkoDAABQdSm0AwAAAAAAAAAAAAAA7KXxc7IL7f27tEwoCQAAQNWm0A4AAAAAAAAAAAAAALAXMplMjPtQoX1AV4V2AACA8ii0AwAAAAAAAAAAAAAA7IVFazbHqo3bsmZuaAcAACifQjsAAAAAAAAAAAAAAMBeGP+h29kb16sVXVo1TCgNAABA1abQDgAAAAAAAAAAAAAAsBeefndu1rp/l5aRSqUSSgMAAFC1KbQDAAAAAAAAAAAAAABU0F3PT4o/vjYzazaga8uE0gAAAFR9Cu0AAAAAAAAAAAAAAAAVMHLC/Lj2/jeyZrUK8uJzpxyaUCIAAICqT6EdAAAAAAAAAAAAAADgI0xesDou+dkLUZrJZM3vu/rU6Nq6UUKpAAAAqj6FdgAAAAAAAAAAAAAAgD1Ytm5LnHfbs7F5e1HW/P9deHRcfHyPhFIBAABUDwrtAAAAAAAAAAAAAAAAu7F1R1GM+NHIWLRmc9b8k8f3iOsvGJhQKgAAgOpDoR0AAAAAAAAAAAAAAKAcJaWl8elfvBjj5qzMmh/bs3Xc+4VTIpVKJZQMAACg+lBoBwAAAAAAAAAAAAAAqp2lazfH71+eFpMXrD4gz89kMvGl370aT787N2veuWXDeOKbZ0XtwvwD8l4AAICaxu+eAAAAAAAAAAAAAACAamXZui1x5Df+HGs374iIiFHfOy9OO6J9pT1/49ad8fl7Xo5H/zE7a96wTmE8/e2zo0XDOpX2LgAAgJrODe0AAAAAAAAAAAAAAEC1cveoyWVl9oiImx59p9KePWbq4hh43V93KbPXKsiLJ741LA49pGmlvQsAAOBg4IZ2AAAAAAAAAAAAAACgWrntyfFZ67dmLosV67dGq8Z19+u5P3z83bjhr2/vMk+nUvHHrwyNIX0O2a/nAwAAHIzc0A4AAAAAAAAAAAAAAFQbS9ZuLnf+7Ph5+/Xc16YtKbfM3qRerXjiW8NixKCu+/V8AACAg5VCOwAAAAAAAAAAAAAAUG08P2FBufO/vbvvhfZMJlNumf3Ynq3j3ds/EWf377zPzwYAADjY5ScdAAAAAAAAAAAAAAAAoKKemzC/3PnoKYviuj++GZ1bNozOLRtGl1aNomurRpFOpz7yma9MXRKvT1+aNbvi1EPj7iuHRF7aXYIAAAD7Q6EdAAAAAAAAAAAAAACoFnYUlcRLUxbvdu/Hf3sva9axRYN46rqz4vAOzXf7zG07i+PbD72ZNTukWf34+edOUmYHAACoBH5nBQAAAAAAAAAAAAAAVAsjx8+LLTuKKnx+wapNccEdz8embTvL3c9kMnHFr16KCfNWZc3/7/wBUasgb7+yAgAA8E8K7QAAAAAAAAAAAAAAQLVw70tTs9b5eekoyNtzNWLOig3xv394rdy9Hzz2bvz1rQ+yZt3bNIrLTu69f0EBAAAok590AAAAAAAAAAAAAAAAgI8yb+XGeHHSoqzZvV84JU49/JAYOWF+zF2xMeat2BjzV22MmUvXxaZt/7nJ/YExM2L40V3jnAGdy2Z/eWNW3PToO1nPa1inMB77xrAozHc7OwAAQGVRaAcAAAAAAAAAAAAAAKq8+z50O3vjerXigmO7RZ3C/LjytMOy9uat3Bj9vvnnrFL79X/+Rwzr1zHy0ukYO2t5XP7rl7I+k06l4uGvfSz6tG924L4EAADAQSiddAAAAAAAAAAAAAAAAIA9KS3NxINjZmTNPnVCz6hTWP49f51bNoyfXnZC1uz9RWvjoVdnxPTFa2P47c/GjqKSrP2ffvaEOOPIjpUbHAAAADe0AwAAAAAAAAAAAAAAVdt781fF0nVbsmaXn3boHj/zmZN6x89HToopC9eUza749cvlnr166OHxxTOO2P+gAAAA7MIN7QAAAAAAAAAAAAAAQJX23IT5WevubRrF4R2a7/Ez6XQqvv+JQR/57NP7to+ffvaEjzwHAADAvnFDOwAAAAAAAAAAAAAAkHMzlqyL3774fkxdtDY2bN0RQ/t2iBsuOjry0rve3ffchAVZ6zOP6lShd5wzoHMM6t4q3v5gRbn7vdo1iT//7xmRn+e+QAAAgANFoR0AAAAAAAAAAAAAAMip5eu3xODvPhobtu4sm42bszI6t2wYnz3l0KyzKzdsjXFzsgvpw/p1qtB7UqlU/PGrH4srfv1SvDZtSWQy/5zn56XjvIGd46eXnRCN69Xar+8CAADAnim0AwAAAAAAAAAAAAAAB0RpaSbeX7QmurdpHHUK/1Nh+NNrM7PK7P9238vTolXjujFl4ZpYsX5rLFu3JT5Ytr6siB4RUb92QZx4aNsKZ+jcsmG8dMOI2LB1R0yYuypSqYgBXVtG/dqF+/XdAAAAqBiFdgAAAAAAAAAAAAAAoNJt31kcJ17/eEyYtyoa1CmIn1x6Qtnt66OnLCr3M2NnLY9zb3t2j8897Yj2UZift9d5GtWtFScfdshefw4AAID9k046AAAAAAAAAAAAAAAAUPPcO3pqTJi3KiIiNm0riit/83Jc/dtXYsPWHfH6tKX7/Nyz+3eqpIQAAADkghvaAQAAAAAAAAAAAACASvfM+Hm7zO4dPTVemLgwtheV7NMzB/dqE5ec0HN/owEAAJBDCu0AAAAAAAAAAAAAAMA+KS3NxE2PvR2PvDUrtmwvLpvXq50fHyzbUO5nFq7eVKFnjzi6S3Rv2zhaN64XbRrXjc6tGkb/Li0jlUpVSnYAAAByQ6EdAAAAAAAAAAAAAADYJz9/blL88PF39+sZ155zVNzz9/djy46istlJfdrFI18/U3kdAACgBkgnHQAAAAAAAAAAAAAAAKh+lm7YHjc9VrEy+1GdW0TXVo3K3Tt3YOe4/NRDy9Z1a+XHLz53ojI7AABADeGGdgAAAAAAAAAAAAAAYK9kMpm44+/zYuuO4gqdv+zk3nHJCT3j0l++GCMnzC+bt25cNwZ1axX9u7SMVo3rxvyVG+Ozpxwafdo3O0DJAQAAyDWFdgAAAAAAAAAAAAAAYK888fbceGvu+qzZ/xzfIz51Uq+47qE3Y8rCNVl7w/p1isb1asWT3zor7vzbhPjl85OiVn5e3H3lkCjIz4uCiLhueP/cfQEAAAByRqEdAAAAAAAAAAAAAACosPVbdsS1D7yRNWvduG784vKTonG9WtGuab04+tuPxI6ikoiIOL532+jcsmFERKTTqfjW8P7x9XOPinQqFalUKuf5AQAAyC2FdgAAAAAAAAAAAAAAoMK+9+d/xPL1W7NmP/vsidG4Xq2IiOjTvlm8cP15ccvj46JR3cK45ZLjdnlGXjqdk6wAAAAkT6EdAAAAAAAAAAAAAACokH/MWhb3vPh+1uzMozrGx4/pmjU7vlfbeO675+YyGgAAAFWUv9IMAAAAAAAAAAAAAAD4SEXFJXH1Pa9EJvOfWd1a+fHLy0+KVCqVXDAAAACqNIV2AAAAAAAAAAAAAACoZhav2Rzvzl4RpaWZjz5cSX42clK8v2ht1uz6CwZGp5YNc5YBAACA6ic/6QAAAAAAAAAAAAAAAEDF/WrU5Pj6A29EUUlpHNa+afz+i6dFvy4tD+g712zaFrc+MS5r1r1l3fjKmUcc0PcCAABQ/Sm0AwAAAAAAAAAAAABAFVNcUhrPv7cgxs5aHiWlmSgpLY2S0kys3rgtHn5jVtm59xetjeO++1j85qohcdnJhx6wPLc+OT42btuZNfvOx7pEfl76gL0TAACAmkGhHQAAAAAAAAAAAAAAqpibHn0nbvnQjei7U1xSGl/9/etx4bHdo17tgkrPMnfFhvjVqMlZs4sHd48+bRtU+rsAAACoefxVaAAAAAAAAAAAAAAAUIVs3VEUP3124l59ZsuOonh12pJKz7J28/Y477ZnY2dxadmsIC8dN1x4dKW/CwAAgJpJoR0AAAAAAAAAAAAAAKqQl6Ysjm07i/f6c6MnL6rUHKWlmbjgzudi+pJ1WfPPn35YdGnVsFLfBQAAQM2Vn3QAAAAAAAAAAAAAAADgP54ZNy9r3alFgzjx0HaRl05FXjoVtQvy4+wBnePtD5bHDX99u+zci5MWVmqOkRPmx2vTlmbNerdrEt+/eFClvgcAAICaTaEdAAAAAAAAAAAAAACqiNLSTDw7PrvQ/qUz+8b/nn3kLmcb1i3MKrRPX7IuFq/ZHIc0q1+hd63csDV+8/f3o0GdgrjmY0dErYK8rP2n3pmTtW7bpF6M/O650ahurSgpKangNwIAAOBgp9AOAAAAAAAAAAAAAABVxNuzl8fKDduyZucM6Fzu2f5dWkSTerVi3ZYd/zl76zPxg08eE4e1bxYdmjeIdDpV7mdLSzNx2vefimmL10ZExMjx8+OF68+LvHQ6IiJKSktj5Pj5WZ/5xnn9okPzBvv61QAAADhIKbQDAAAAAAAAAAAAAEAVsHHrzvjuw//ImvVp3zS6tm5U7vm8dDpOPbx9PDZ2dtlsysI1Mfz2kRERUb92QfQ+pGkc1r5p9GnfLPp0aBon9GobtQvzY/zclWVl9oiIMVOXxB1PT4hvjxgQERFvzVweqzdtz3rfubsp1gMAAMCeKLQDAAAAAAAAAAAAAEDCdhSVxNAfPBXj5qzMmp/df88l8tOOyC60/7fN24vi3dkr4t3ZK8pm7ZrWi9E3jIgZS9btcv7GR96J0/t2iP5dWsbf3p2btXdEx2bRqWXDin4dAAAAKJNOOgAAAAAAAAAAAAAAABzs7nnx/V3K7I3qFsaXzjxij5+78Lhu0bZJvQq/Z8naLXHbk+PKLbQXl5TGZ37x99i6oyieGTcva++cAV0q/A4AAAD4b25oBwAAAAAAAAAAAADgoJTJZGLz9qJIpSLq1y5MNMsDr0zPWrdsVCee+c450eYjyuqN6taK137w8fjDK9Nj9rL1sXjt5pi2aG2s27Jjt595c8ayOKxDs3L3Zi5dH+fe9mzMXr4ha37OgE4V+yIAAADwIQrtAAAAAAAAAAAAAAAcVMbNWRE/empCvDh5YWzaVhQREZ86sWf84YunRSqVynmeSfNXx6QFq7Nm93/p9OjfpWWFPt+pZcP4/icGla0zmUwsW7cl3l+0NqYuWhPvzl4Zj7z1Qdn+7OUbYvP2ot0+b8zUJdnPb9GgwlkAAADgwxTaAQAAAAAAAAAAAAA4KGQymfjivWPit6On7rL3x9dmxkXHdY9h/TrlPNeDr2bfzt6+Wf049fBD9vl5qVQq2jatH22b1o+hfTvEzuKSeOqdObGzuLTszPL1Wyv8vCtO65NI0R8AAICaIZ10AAAAAAAAAAAAAAAAyIXXpi8tt8z+b89NmJ+7MP8yZuri+PnISVmzS07sGXnpyvvj/oX5eXFEx+Z7PHPzJ48pd56fl47PnnxopWUBAADg4KPQDgAAAAAAAAAAAADAQWHUewv2uP/ipEW73SsuKY0XJi6Ix8fOjjdmLI1tO4v3O889f38/Tr/pqV3mnz6p134/+8MGdG25272WjerEdcP7x7B+HXfZG3F0l2jVuG6l5wEAAODgkZ90AAAAAAAAAAAAAAAAyIUxU5fscX/Oig0xZ/mG6Nq6UdY8k8nEebc/Gy9MXFg2a1KvVrxw/XnRr8vui+J7MnH+qvjqH16LTCZ7Pqxfx+jZtsk+PXNP+u8hZ8+2TSKVSsW9Xzg1jvzGn2PVxm1le58felilZwEAAODg4oZ2AAAAAAAAAAAAAABqlInzV8X/PfxW3PfS1NiyvSgiIjZu3RkT5q7MOvf8986Nlo3qZM1GT971lvbxc1dmldkjItZt2RGX/+qlKCkt3et8O4pK4rN3jY7ikuzPntC7bfz+mtP2+nkV0X8PN7T3bvfPAn2rxnXjiW8Ni7ZN6kVBXjq+NbxfDOlzyAHJAwAAwMHDDe0AAAAAAAAAAAAAANQYs5auiyH/74nY/K8i+3f+9FZ86cy+0aVVwygp/c916AV56Rjcs02cdnj7ePiNWWXzZ8fPiytOOzTy0v+5P+61aUvLfdeUhWviwTEz4rOnHLpXGW969J2YsnBN1uzLZx4RP770hEinU3v1rIo69JCmUbsgL7YXleyy17Pdf26EP7ZHm1jwm8tiR1FJ1C5UOQAAAGD/uaEdAAAAAAAAAAAAAIAa44ePjysrs0dErN28I2569J247K7RWecG9WgddWsVxOl9O2TNn39vQXS55oH49h/fivf/VTp/Y3r5hfaIiBv++nbMW7mxwvnGzloedzw9IWt2RMdmcfunBx+wMntERH5eOo7s3KLcvf8utEdEpFIpZXYAAAAqjd9hAgAAAAAAAAAAAABQra3auC1ue3JcvDdv1W5vU/+wIX3aRUTEaUe032VvydotceffJsSdf5sQfTs2j0kLVu/2OUvXbYm+X384brxoUHxlWN/Iz9v9vXNbdxTF5+4eHaWZ7Jvi//DF06MwP69CuffHFaceGmNnLc+a1a9dEMf2aH3A3w0AAMDBS6EdAAAAAAAAAAAAAIBq7erfvhJPvTN3rz7z70J7myb14oJjusVjY2eXe668MnvPto1j5tL1ZeutO4rjWw+9GX95Y1b85vMnR78uLct91vf+PDZmLVufNbv+wqOjb6fme5V9X33mpN5RuyA/nnxnTixdtyXq1SqI64b3j0Z1a+Xk/QAAABycFNoBAAAAAAAAAAAAAKi2lq/fEk+/W36Z/RPHdY+8dCr++tYHUVL6n1vRmzWoHcd0/8+t5A9+5fQY3KtNPDBmekycv/vb2CMi2jerH89/77w4+YYnYsGqTVl7E+atimP/79H46llHxg0XHh31aheU7Y2Zujh+8dykrPMDuraMb53Xr8LfdX+l06m4+PgecfHxPXL2TgAAAEgnHQAAAAAAAAAAAAAAAPbVcxMWRCaz67wgLx23f3pwPPiVoTH955+Kq4ceHs0a1I5WjerGPZ8/OWoX/ud+uML8vPjysL4x7kcXx3t3XhxfP/eoaNukXrnvO6F32+jQvEFMuOPi+MLQw3bZLynNxE+eeS/6fv3heHHywoiIWLJ2c3zu7peyztUuyIv7v3R65Of5Y/0AAADUbH7nCwAAAAAAAAAAAABAtfXsuHnlzr//iUFxSLP6ERHRpVWj+OUVJ8WK+66IRfd8NoYf3XW3zzu8Q/O4/VODY96vL42T+rTbZf/43m0jIqJR3Vpx1xVD4tWbPh692zXZ5dz8VZvirB8+E7998f0YetNTsXB19m3uN3/y2OhVzucAAACgplFoBwAAAAAAAAAAAACgWtq2szhenLwoa/bVs/rGtJ9dEt8a3r/cz6TTqQo9Oy+d/udN7gV5ZbNUKuLkww7JOje4V5sY96OL44aLjo7C/Ow/ol+aycQ1946JmUvXZ82P7902vjKsb4VyAAAAQHWn0A4AAAAAAAAAAAAAQLX00pRFsW1ncdk6nUrF/50/IHq0rZybz7u1bhwPfPn0qFWQF+lUKr49YkB0b9N4l3O1CvLi+guOjgl3fLLsBvfd6dGmcfzlax+rcLEeAAAAqrv8pAMAAAAAAAAAAAAAAMC+eOrtuVnr43q1iWYN6lTqOz5+TLc4q1+n2Ly9KJo33POze7VrEi/fMCIuvevF+PMbs3bZ79qqUbx4w/Bo3bhepWYEAACAqswN7QAAAAAAAAAAAAAAVDurN26Lv7yZXRo/p3+nA/Ku2oX5H1lm/7d0OhW/uerkOPSQplnzIX3axWs/+Hi0a1r/QEQEAACAKssN7QAAAAAAAAAAAAAAVDu/e2lqbC8qKVsX5KXjf07omWCi/6hXuyBG/t85cfW9Y2LO8vVx6ZDe8Y1z+0V+njvpAAAAOPgotAMAAAAAAAAAAAAAUG1s2rYzXpqyKO4eNTlrftFx3aNNk3oJpdpV++YN4tnvnJN0DAAAAEicQjsAAAAAAAAAAAAAAFXa4jWb4/Gxs+O5CQvitWlLoqikdJczXx52RALJAAAAgI+i0A4AAAAAAAAAAAAAQJU1evKiGH77s7G9qGS3Z47r2SYGdG2Vw1QAAABARaWTDgAAAAAAAAAAAAAAAOXJZDJx3UNv7rHMXrsgL27/9HE5TAUAAADsDTe0AwAAAAAAAAAAAABQJU2YtyomLVi9y7wgLx0nHNo2hh3VKS48rlu0a1o/gXQAAABARSi0AwAAAAAAAAAAAABQJd3/8vSsddsm9eLnnzsxTj28fTSsW5hQKgAAAGBvKLQDAAAAAAAAAAAAAFDlbNtZHA+/MTNrdvmph8aIQV0TSgQAAADsi3TSAQAAAAAAAAAAAAAA4MOefmdubNi6s2ydSkVcdnLvBBMBAAAA+0KhHQAAAAAAAAAAAACAKmfM1MVZ61MOax8dWzRMKA0AAACwrxTaAQAAAAAAAAAAAACocibOX521Htq3fUJJAAAAgP2h0A4AAAAAAAAAAAAAQJVSXFIa7y9ckzXr26lFQmkAAACA/aHQDgAAAAAAAAAAAABAlfLBsvWxvagka9a3U/OE0gAAAAD7Q6EdAAAAAAAAAAAAAIAqZfKC1Vnrtk3qRYuGdRJKAwAAAOwPhXYAAAAAAAAAAAAAAKqUifOzC+1HuJ0dAAAAqi2FdgAAAAAAAAAAAAAAqpRJHyq09+2o0A4AAADVlUI7AAAAAAAAAAAAAABVyuQF2YX2I93QDgAAANWWQjsAAAAAAAAAAAAAAFXGivVbY/n6rVmzIxTaAQAAoNpSaAcAAAAAAAAAAAAAoMoYN3dl1rpurfzo1rpRQmkAAACA/aXQDgAAAAAAAAAAAABAlTFywoKsdb8uLSMv7Y++AwAAQHXld/UAAAAAAAAAAAAAAFQJpZlMjBw/P2t2dv9OiWQBAAAAKodCOwAAAAAAAAAAAAAAVcLUpZtj+fqtWbPzBnZJKA0AAABQGRTaAQAAAAAAAAAAAACoEl6bvTZr3btdk+jepnEyYQAAAIBKodAOAAAAAAAAAAAAAECV8NqsdVnrcwZ2TigJAAAAUFkU2gEAAAAAAAAAAAAASNzURWti/tptWbPzBnZJKA0AAABQWfKTDgAAAAAAAAAAAAAAwMFjy/aieHzs7MjPS8ewfp2icb1aERHx6D/mZJ1r17ReDOzaKomIAAAAQCVSaAcAAAAAAAAAAAAAICdKSzNx7u3PxqtTl0RERJ3C/LjouG5xxWl94pF/zM46e+Fx3SOdTiUREwAAAKhECu0AAAAAAAAAAAAAAOTEi5MXlpXZIyK27SyOB8bMiAfGzNjl7CeO657LaAAAAMABkk46AAAAAAAAAAAAAAAAB4ffvji1Que6tGoYA7q2PMBpAAAAgFxQaAcAAAAAAAAAAAAA4IBbvGZzPDNuXoXOXnRc90ilUgc4EQAAAJALCu0AAAAAAAAAAAAAABxw9700NUozmbJ1/doFcdPFx0Tnlg2zzhXmp+PSIb1zHQ8AAAA4QPKTDgAAAAAAAAAAAAAAQM22bWdx/PbFqVmzS07oGf93/oD49vD+MXrKovjTazPig0Ur4roLjovubRonExQAAACodArtAAAAAAAAAAAAAAAcUL9/eVqs2LA1a3bV6YdFREQ6nYqhfTvEqYe1i4kTJ8aRR3ZKICEAAABwoKSTDgAAAAAAAAAAAAAAQM21s7gk7nx6Qtbs9L7to2+n5gklAgAAAHLJDe0AAAAAAAAAAAAAAFSqNZu2xR9emR5N6tWKbTuLY9GazVn73xkxIKFkAAAAQK4ptAMAAAAAAAAAAAAAUGkWr9kcx3/vsVj8oRL7vx3Xs02c0LttjlMBAAAASUknHQAAAAAAAAAAAAAAgJph49adce5tz+y2zB4R8b0LBkYqlcphKgAAACBJCu0AAAAAAAAAAAAAAOy3ouKSuPino2LygjW7PXPZkN4xtG+HHKYCAAAAkqbQDgAAAAAAAAAAAADAfslkMvGl370af5+0cLdnurRqGD/97Ak5TAUAAABUBQrtAAAAAAAAAAAAAADslx89PSHue3naLvMWDetERETbJvXir9eeGQ3qFOY6GgAAAJCw/KQDAAAAAAAAAAAAAABQff31zVnx3Yf/kTWrXZAXL904Io7u1irmr9oUbRrXjdqF/vg6AAAAHIz8FwEAAAAAAAAAAAAAAPbJ2x8sj8/ePTprlkpFPPSVoTGoe+uIiOjcsmES0QAAAIAqIp10AAAAAAAAAAAAAAAAqp/VG7fFxT8ZFTuLS7Pmd3z6+BgxqGtCqQAAAICqxg3tAAAAAAAAAAAAAABUWFFxSfz+5elx/V/+EWs378jau+Zjh8dXz+qbUDIAAACgKlJoBwAAAAAAAAAAAACgwv7nZy/Ek+/M3WV+Up928ZPLTohUKpVAKgAAAKCqSicdAAAAAAAAAAAAAACA6uGtmcvKLbO3aVI3/vTVoZGf54+oAwAAANnc0A4AAAAAAAAAAAAAQIXc+sS4XWbd2zSKv3ztzGjduF4CiQAAAICqTqEdAAAAAAAAAAAAAICP9N68VfH8ewuyZhcP7h4PfPn0yEu7mR0AAAAon/9qAAAAAAAAAAAAAADAHmUymfjen/+RNWveoHbc8/lTlNkBAACAPfJfDgAAAAAAAAAAAAAA2KM/vT4zXpi4MGv2lbOOjHq1CxJKBAAAAFQX+UkHAAAAAAAAAAAAAACgaslkMjFr2fp4deqSeHXqknh2/Pys/daN68YXzzg8mXAAAABAtaLQDgAAAAAAAAAAAABARESs2bQtbvzrO/HkO3Ni+fqtuz139xVDolHdWjlMBgAAAFRXCu0AAAAAAAAAAAAAAERExJd+92o8+o/Zezxz0XHd47yju+QoEQAAAFDdpZMOAAAAAAAAAAAAAABA8tZs2hZPvD1nj2eO69km7rripBwlAgAAAGoCN7QDAAAAAAAAAAAAABzESkszMX3J2nhx0qIoKc1k7bVrWi9OOrRdnNTnn//r2qpRpFKphJICAAAA1ZFCOwAAAAAAAAAAAADAQWpHUUmcfOMT8c4HK3bZO29gl3jsG2cqsAMAAAD7JZ10AAAAAAAAAAAAAAAAkvGn12eWW2aPiLjg2K7K7AAAAMB+U2gHAAAAAAAAAAAAADhIjZ68qNx5YX46zurXOcdpAAAAgJooP+kAAAAAAAAAAAAAAABUjuKS0rjliXExddGa6NSyYRzfq22ccWSHKMjP2+VsJpOJMVMXl/uc04/oEA3rFh7ouAAAAMBBQKEdAAAAAAAAAAAAAKCG+PoDr8fdo6aUrX/8t/eiU4sG8d2PD4xPndgzq9g+bfHaWLlhW7nP+ewpvQ94VgAAAODgkE46AAAAAAAAAAAAAAAA+2/R6k1xz4tTd5nPX7UprvzNy9Hna3+KB8ZMj+KS0oiIGDN1yS5nB/dqE3d8ZnCcN7DLAc8LAAAAHBzc0A4AAAAAAAAAAAAAUAP8bOTEsrJ6eeau2BiX/+qluPWJcfHdjw+MZ8fPy9r/zEm94vdfPO1AxwQAAAAOMgrtAAAAAAAAAAAAAADV3NrN2+N3o6dV6Ozs5Rvis3eP3mU+pE+7yo4FAAAAEOmkAwAAAAAAAAAAAAAAsH8eGDM9tuwoKlvnpVPxwV2fiZH/d04c3b1VhZ4x5LBDDlQ8AAAA4CDmhnYAAAAAAAAAAAAAgGrupSmLs9YXHNMtOrdsGJ1bNoyhfTvE8+8tiJsefSfGzVlZ7ucHdmsVHZo3yEVUAAAA4CDjhnYAAAAAAAAAAAAAgGqspLQ0/jFzWdbsvKO7lP1zKpWKYf06xT9uuTCeuu6s6Ne5RdleOpWKUw9vHw986bSc5QUAAAAOLm5oBwAAAAAAAAAAAACoxt5fuDY2bN2ZNRvcq80u51KpVJzdv3Oc1a9TvDlzWazbvCOO69k6mjWok6uoAAAAwEFIoR0AAAAAAAAAAAAAIIdKSkvjl89NjmmL18anTuwZJx7abr+e98aMpVnrzi0bRrum9Xd7PpVKxfG92u7XOwEAAAAqSqEdAAAAAAAAAAAAACCH/t9f3o7bnxofEREPvjojRt8wfL8K5m/OWJa1Pr6c29kBAACAXW0p2hGz162Owrz8KM2UxvurlkXdgsI4vVPPqJ1fkHS8GkOhHQAAAAAAAAAAAAAgR5as3Rw/GzmxbF1cUhqfvWt0TLjj4mhQp3Cvn5fJZOKN6dk3tA92+zoAAABVVCaTiTeWzI2pq5dHvYLCyE+nY3txcWwrLortxUWxvbg4tpcU/Wtd/K9ZUWwv+eeZHf8++68zO4qLo6i0JLo1bhGnd+oZbes3/Fc5PROTVi6Jd5cvjLxUOtrUbxht6jWM1vUbRpNadWLO+jUxesHMmLRyaZRkSnfJeXKH7vH8BZ+PVCqVwK9SzaPQDgAAAAAAAAAAAACQIz96anzsKCrJms1buTG+8cAbcc8XTtmrZ63dvD1ufuzdWLpuS9b8+N4K7QAAQNWXyWRi4solMW75oqhfWBgDW3eM9Tu2xuJN6/9TZC4pjh0lxbF++7aYtHJJbC8pjoGtO8RVfY+Ldg0aJf0VKl0mk4l127fFsi0bYunmjbF225aoV1grSjOZWLBxbdTLL4y+LdvFpJVLYtyKRRERUTuvIOrk50ft/IKonZcfO0tLYltxUXRo2CQObdY60qlUTFixOF5bNCdKMqXRq2nL6NW0ZaQ3bYjuRTujYV6d/cq8tWhnjF+xKN5ftSxmr18d24uLozRTGiWlpVGSyURJpjRKM5kozWQiL5WKd5YvjLnr11TGL1eW5Vs2xRtL5lba815Z+EEs27Ix2tavef8/S4JCOwAAAAAAAAAAAABQo9z06Dtx30tT4/AOzeLaE1smHafMlIWr497RU8vdu+/lafGxIzvE+cd0y5rPWrou7np+ctSplR9fP+eoaNmobmzfWRx3jZoctz05PtZv2ZF1vnmD2tGzbeMD9RUAAIBqqjRTGqlIHbDbprcUF8XYpfNj2tqVMXvdqli1bXOs3Lo5Vm/dEluLd0ZxaWmUlJWcS6O49P+3d+dhclV1/sc/dWvfek93Or1kXwkhC4R9XxwQEQER1EEHZRFB0Rkdf4iO+wqjggMOKjiyu6CiBBABgSSQEMhGEsie9J5eq7v2qnvv749OijTppLuTdLo7/X49Tz11q+6555xb367ikOd+79dSLJNWLJMe8FjP79ioHy9/QfPKKnRKxUSdMm6ibNmq6epQ7e5HXVdEGctU2OPV6ZWTdfP801XoC/Sr/85UUs9u26Cw16dzq6fJ7XQOeI790ZaI677VS7W4bqs6kgk1J6JqiHYqZWYHZbw9/rbl3f8vdbzxrMbnF2pmcZkm5Zeo2B9QkS+g0kBYp1dNUmkgvM/xkVRC2yNt+mfNZv154xq93lijjGXu026kqwzlq8QfHOppHDVIaAcAAAAAAAAAAAAAAAAAAABw1Pjrim361u+XS5Lq2mKy03GdefIJR3we6aypZZua9PzaGr2yoV7bmjq1s6XrgMdc/78v6vgpZaou6U4Y+MeaGn34zkXqSmQkSfc995auP3+2frdkk2pao732ceUpUwctQQUAAADA8GFallbuqtWG1ia1JuJKm1kZDoe60ik1J6JqTcTUEo+pJRFTSyKqtmRclm3L73Ir4HLL73LL7/a8+3qvbcPhUG1Xh5riUSWyacUzGSWyGRV4/arOK5TDIaWyWaVMU0kzo0Qmo6b4gf9/57Cfv21pRWONVjTW6K43Xj5g25dqtuj/3lquL55wthySXty5WfXRSK5q+J4K4i7DkMfp1NrmBiWy3f8fNi6Up5vmnqbPzj9dAbfnkOe9rqVBD65bofWtjXqlZqvi2YEn9B9Otmxtj7Rpe6Rtn31ep0vnjZ+mCfnFqu3q0I7ONu3obFN7MjEEMz1yKkP5Orlior568vnyOEnDPlz4JAEAAAAAAAAAAAAAAAAAAAAcNX7yt5U9Xj+7vkW7InGVF+1bVe5wa48m9duX3tY/1tTo5fX1iqUyB2wf8LoUT71bea8jltK/3vV3Pf9fH9Jza2r0oR89paxp5fZ3JTK688mVvXUlt9PQZy+co+9effLhORkAAADgKGbbthpjXUqZWeV5fMrappLZbC6x2bRsWburiLen4oqm0yryBTQulKfKcIEkqSHWqWQ2K1v27j6V25akscGwwh5fv+ZjWpZe2LlJT21Zp/ZkXG6nU27DKcNhKJnN5CqZJ7Ldz/FMRg2xiCKp5IDPPZHN5JK1B6op3nXEE9cPl5quDn3hhT8N+Lj6aKduX7xI/7t6qf5j4Tm6ZMpsjQvl99rWtCz9ffs7WtG4U1s7WpU0e37OtV0der2hpsffyXCWMrN6auv6Qes/4PJoSmGJbHXfaMHvcsvrdMvncsnvcsvndMnncu9+uHbv737P3+M9t+KZtF6u3aK3mhuUNDNKmVmlslmV+IM6tXKSiv1B7Yp1qSHW2f2Idirg8ujs6il638SZOqG8Sm7DqYxlKuj2Dto5j2YktAMAAAAAAAAAAAAAAAAAAAA4Kuxs6dLL6+v3ef+hVzbqSx9cMKhjt0WTOv7Lj/dZhX2PhVPL9OztH9SN//uiHl+6Kff+krcb9I3fLdODL73dI5n9QD5yylR9++qTNKms96QKAAAADA+mZWl9a6N2dLarOR6Vx+lU0O1R0O1VaPdz0ONRyO1V0O1RJJXUSzWbtS3SqkQ2I9u25TKcchlG98NhyGkYchlOFfsDOn5stcqDebJsWwU+v6TuxO2MZeYqUe9djdqybQVcHvnd7iH+ZA4P27bVnIiqIdqprnRKGcuUJDnk6H52SJFUUutaGvT7d1ZpXUvjQY1T6PPLsu0+k8kdcmhGcakWlFUp6PborZYGNcQ6lTFNZSxTGdNU2ureTmazB+zraBd0e2TalpLZ7irz1XmFCnu83cnLTre8Lpd8TpfKQ/naFe/Sc9vfOeik/INV09Whzz//hD7//BM6sXy8LpkyW2dXT9WWjhZt7WhV2szq/95artpo5LCNWRoIqdgfVDyTlmlZKg2GVdvVoV27fz/Orp6qifnFSptZJbNZJc3umxW4DaecDkMbWptU09Uu25byvT6dUTVZYwIhbeto1YbWJm2LtB621Hqnw9AxJWM1q7hMBb6AnA5DTsPR/exwyGkYcsihtmRcWcvSaZUT9ZEZ8+QynIdpBtLl04875D6oyD54+GQBAAAAAAAAAAAAAAAAAAAAHBX+758ben3//z38qpZtatLNF87RWcdUDsrYP396Tb+T2T9+xnT94vqz5fO4dM/1Z2n55iZt29WZ2/+DP73Rr37OPKZCP/jYKTphStlBzRkAAGC0sG1bWzpatKK9UZGazXK7XHI6upPCPYZT04pKFXB7JEkbWhu1uHabDIdDc0srVBII7k7I7E7OjGcy+seOd7SkdpskqcgfULEvqLJgWHPGjFN5KE+RVELtyYTak3F1pBKq6ezQmuZ6vVyzWa3J+BE554pQvsYEQmqMdaoxtv91qkMOHTumXH6XWw3RTo3PL9QnZ5+o90+epUJfYNDnadu2UmZWiWxGDjlyifh7S2YzerOpVjWd7aqNRlTXFVFdtEP10Yii6XR3crhlqjOVVNsR+Hzbk4l+tbNla0Nrkza0Ng3yjIYPp8PQtKIxOqZ4rCrCBSoNhDQmEFLI7ZXL6L4Bw57v3p4k57HBPE0rHCPTttQY61KxL9jnTRZimZSWN+zU0rptWlK3TW81N8jvdqsqXKDKvR6Wbes3a5dpdfO+Nz47FMsadmhZw47D0pdDDn1w6mydO36aSgMhlQfzVR7K09hguNfkasu21JKIKez2HdLNKEzT1GtvrJCvqlzvtDdrQ2uTmmKdak3G1RDt1JtNtX1Wkq8M5evc8dP0oWnH6bTKiQp7fAc9Hxz9SGgHAAAAAAAAAAAAAAAAAAAAMOJ1xtN64IXeE9ol6c/Lt+rZVTu1+efXqKzg0BNz/rRsi17d2KhLTpioEyaX6Rd/X9tru7kTSnT27ErNqChUxrQ0o6JQZ86qkMPRXSUyP+DVQ5+/QGd+/Yn9VmSfVl6gSWPz9czKHfJ7XLpo/nj92zmz9L7jqnP9AAAADCd7kpQNh0OGo7tC7/7WLfFMWh6ns19Vend0tukXK5dodXO9TNuS23Aq4PIo6O6uMh5weeRwSNF0SpJDfpdbOzrb9GZTjeqju28gtPqFffr1uVyaXliqSDqp7ZG2Qzn1YaMuGlFdPypF27K1Zq9k351d7XqldqskKc/jU1Ved2JwVbhQ1XttdycM5++3mrFt23qjqUZPbn5LzfGYJGlMIKi0aWpx7VZt7mhWIpvZpzL5MSVj9bn5Z+j0ikl6o71JD/7zL3p0w5vqSPUviXw0mlo4RpXhAvldbpm2pZDbq2J/UGP8we7n3VW+S/xBuQxD8Ux3Fe94Nq1kNtPjdWL3dtrMamwoTxWhfIU8XgVcHnmdLu2KR1UfjcjpcMjncsvrdMnjdMrtMNRRW69LTjpdAa/3oM7D5XCqMlzQr7ZBt1dnV0/V2dVT+2x7w3Gn6P61y/SHd1ZpQ2uTMpapk8ZN0Lnjpynf68v9ThlyKJpJa1N7s/K9Pl08+RilzKy++vJT+mfN5oM6p/0Je7z6+KzjNa+sUqdVTtLkgpJ+H2s4DJUGwodlHj6nS3NLK7SgvHqffZvbW3TPysVa39qo0kBI4/OKND6/UBPyijQ+v0jV4UJ5XaQoo//4awEAAAAAAAAAAAAAAAAAAAAwoqUypi6/Y1GfFdIT6ayeWbVDnzhr5iGNd/8L63X9L7oToe5etFrXnDlDuyI9E2z+94azdckJkzQmb98Kk+914tSx+uZHTtRXH3m11/1fvfwEfeyM6WruTCjP75HX3XeyFwAAwOGSNrNa2VSnRDYjn8sl/+4kVr/braxlqTHaqaV127RyV53i2bTaEnGta2lUNJPq0Y9DDgXcbi0sH6+J+UVqjke1sqlWtdGI3IZTE/OLVOwPKuj2KOTxKuT25rYDLre2Rlr1xMY1SmQzh/0ck9nsYa/gfDToTCe1rqVR61oae93vkENV4QKdVjlJ40J5ak3E1Bjv0q5Yd9JzQ6xzwGOua2nUDX//3aFO/bDK8/gU8njUmogrZWb7PuAQzC2t0KkVk+Q2DKUtU6Zlye9yK+j2KLD7EXR7FHC5FfL4NGfMOFWE8wd1Tv1hmqZWdSSGZYKz0zB03XEn67rjTj6o45/58I16ZtvbenTDG3p66wZ1ppN9HjPGH9Ll049TiT+4z75xoXx9cMpslQRCBzWfI2VKYYn++5xLh3oaOIoMv18HAAAAAAAAAAAAAAAAAAAAAOgn07J0zd1/14tv1far/bKNjYeU0B6Jp/T/Hl6ae50xLf36hfU92px1TIU+de4xA+r3S5fM1wtra/X82poe7xeHfbr8pMmS1K/keAAAANu2ZdqWoum0muJd6konlchmtK2jVVsjrbLt7natyZha4jG1JmJqTkTVnoxLkgJuj86pnqYzKidpcd02/eGdVWrbve+Q5iVbsUxaL+7cpBffsy9jmdrY3iy1Nx/yOCPBuFCexgbzZFqWYtm0Yum0opmUoum0bNk92uZ5fDq5YoIKvX4ZDkNZy5Rp28palrKWqaxtKW2aeru16aASyA+FLVs7u9r1yIY3jui4fTEcDoU9Xnmdrtzf+57P1eN0alJ+iY4pGavLph2neWUV6kqn5HE65XO65TQcMmR0P++p3O0wuvuwbW1qb9HKpho5DUPzy6o0LpSXG9chR/ezQ0qbpta1NOr1xp16o7FG7am4ZpeUa0FZlXwut9yGIY/TJbdhyO10ymO4VOQP9LtCOY4ch8OhCyfN1IWTZiptZvXPms16cvNb+uvmt9QY65LbcKo6r1CdqaQ600ldM/sE/eCMDyjkObhK9cDRioR2AAAAAAAAAAAAAAAAAAAAACPG8s1NevCfb6u0wK8vXjxP//nQEv3xtS092ozJ8+vlb1+u51bv0Ofuf2Wf4/foiKV099Or9U5du6499xidM7tyv+Patq22aFLf/eMKtXYduCLf598/d8DnZRgO/ebm8zT/S4+pufPdau//dvYs+Txc9g0AwKGyd2e1OhyO/baxbEuprKmkmVEym1Uim1Fq93Yym5HhMDQmEFKhz6+Q2yu303nQ8zEtS4bD0Z3I3das1mRMbsMpt+GUyzDefXY6c+/vSYANe7xyOByq7erQI+vf0B/eWaWarg6lTVMZy1TaNPdJih6orR2v6ldrXj2kPoajsMstn9sjc3fSf9ayFMuk92m3J8Y1XR299uN1unT+hOmamF+szlRCLYmYNne0aGNbc+6zz/P4VOjzK9/rV7E/qJnFZTpuzDidPX6qxucV9dqvbdtKZrPdye2ZlLKWpYn5RXIZff+t2batxliXMpap7ZE2/XHjam3paNGpFRN1wYQZKvD5ZTgccjqMXKK2Zdta39qoJbXbZNm2spapZQ07tLRu+yH/DQ2GaYVjVBEuUGU4X+NC+aoIFajA6+tODHc65XO6NLGgWBPyiuQ0jH73m+/t342jHA6HphWN0bSiMX229ThdOnHceJ04bny/54Hhz+N06YIJM3TBhBm669zL1JKIKej2KOgmeR3oC/+yAQAAAAAAAAAAAAAAAAAAAGDYa+1K6CsPLdUDL27IvffN3y3fp13I59bfbvuAppYXaFJpWJ5km258ZF1u/5odrYolM9rU2KEr73xaW5u6q1g+uWKbVvzwI5o2rlBvbN2lJ17bokg8pfZoSluaItrcGFFHLNXnPGdWFOr98ycc1DmWFwb10Ocv0GU/WqRYKqPqkrD+45J5B9UXAACjQVsirpdrN6s+2qlIqvuGMFnLUjSdUjSTViyTUlc6peZ4VG+1NMhwOHRsSbnGhvJU1xVRcyKqWDqtRDajpJlR2jQHNL7bcO5OZPTIadoqXv+SxoXydWrlJM0vq1RZIKyUmVVDrFOb2ptzj81tzaqNRuQyDNm2ZNrWgMYNe7wKuDxqincN6LijyfkTpuu88dNl2ZYS2YzimbTi2YwSmbSytqXQ7uTSWCatkt3J5MeXVSm+o07z5s2Tc6+bEbQmYnpm2wbVdHaoMlyg2SVjNad0nAyHoVQ2q7SVlWl1J8CbtiXTslXsD8jj3Dc1L5ZJKZnNKt/r61cS+ns5HA753W753W6NUWjAx5bvrhZenVeoM6om9+u4ynCBLpgwo8d7yWxGtV0R1XS1q7arQzWdHarp6lBNV/vu7fZebwTQmwn5RTqneqo8Tpd2drYrkkpodkm5Lpo8S2P8IflcLvlcbnmdLr1Wv12/WLVEyxp25L6Px40Zp4snH6N/nX2CJuYXD+ATAQaX4TBUGggP9TSAEYOEdgAAAAAAAAAAAAAAAAAAAADD2rOrdujT9z6vhvb4Adt5XIae+PL7tWBSae69mWODchoOmVZ3hUnLtvX/Hl6q+19Yr2Tm3aS1eCqrX/5jna46bZrO+NoflcoMLKFN6k6mf/DzF8gw9l/5tS/nHlulDT/7mDbUtevkaWMV8LoPui8AAEYy27bVkogpkkruTlZOK5bpfjTGOvV6w0797p2VSmazA+p3af32wzbHjGWqI5VQx+5k+p2JTq3cVaentq7v1/FZa2CJ7Ht0pbsT9Y+0Yl9AKdNUIpvpkYTvcTo1uaBEZ1ROVnVeobwul6YVlmpSQXfysWXbsmxLadPUa/U79Nt1y9UQ7dRplZN0wYQZOqZkrJLZjLZ3tqkrnVI0nVIsk+5xY4J4JiOv06mSQEhXTDtOp1ZOGvD8TdPUqp31+56XP6iPzTq+12O8Lpe8A0jBC7q9R0WlZp/LrSmFJZpSWNLrftu21ZFKaEekTUvqtunV+u0ybUulgbDGBsMqDYRVFgyrOlyo2WPGynD0r1r6FdPn6orpc2XZlnZFu/TO+vU67fiFPW5AAAAYmUhoBwAAAAAAAAAAAAAAAAAAADBsPbtqhy7+/l9l2wdu53BID37uAp0zu7LH+z63U8dWF2vV9pbce/c8u7bXPh5dvFHra9sOKpndcDj0yK3v09wJYwZ87HuNKwppXNHAKnICo0EkldDrDTu1s7Nd7amEinwBLSirUoHPr6xlKbFXsmssk+5OgN1r2zAMTcgr0q54l16t367OdFJZy1LWsmTZ3c9uw6kxgZBml5TrX485QRXh/KE+beCIMS1L8Wxa0fS735toJrXPdiyTVmx3wnHGsuQyDDkdDjkNQ05Hz23D4VBrIqZtkTatbanXzs52Bd0e5Xv9Ktj96N72Kd/nV57Hp5ZETK/Vb9fGtmbFs/2rAI0D87lc8jpdKg2ENaOoVH6XW5Ztq9Af0Bh/SMX+oEr8QRX5A8qYlp7b/rZ+89ZyJbIZTSks0cdmHq+rZ83vUR07a3UnthsOhwIujxyO/t3Q57jSCt0w95Re951cMfGwnC8Gn8PhUKEvoEJfQHPLKvXZ+acf1v4Nh6ExgZDqXJ7D2i8AYOiQ0A4AAAAAAAAAAAAAAAAAAABg2PrlP9b1mcwuSXd/6kxdftKUXvctnFLWI6F9fxo74mpctfOAbVxOQxNLw7pw3gT956ULdPujr6q+PaYvfXC+zjqm8oDHAkcD27YVzaSUzGTUnk6qMdYlORwybUsep1M+pzuXONmf5EbLtvRO2y69UrtVL+7cpJrODnmcTtm2rXg2k0tKj2czak8mZKsfPwiHwe/fWaVvLX1Wx44p17hQvqYWjtEYf1BN8aiaYp1qinepMdalrnRS5cF8TSoo1oKxVZpeVCq34ZTT4ZDD4VBnKqlIKqFIOqlIMqFoJq3xeYW6dOoclYfyBmXu9dGIfrX6Vb1av101XR1KZjMKur3KWKai6ZRs01Teqr/L5+qOld/lltfZ/TypoEQLy6s1qaBYeR6/Etm0Iqmk2pJxtSfjueeMaWpaUakqwvmKJBNaUrdNOzrbNSG/SJdOPVbVeYWybcmWvbsys62wx6siX0A+l3tQzhv905qI6acrXtLLNZvVmU4ptjtJPZpJDbjS+cFKmwm1JxNHZKzDZc/vW9rKDtrnVOjzy7RsZSxTGcvsd/X2fK9PH5o6RxdPPkalgbDcTkMewyW30ymfy6VSf1h+98C+d++fPEvfO+NitSRiqgoX9Pp77jKcCnuomg0AAPqHhHYAAAAAAAAAAAAAAAAAAAAAw9aUsQU9Xl9wXLUuO3Gybv71S8qa3YleX//wQt14wbH77WPhlFLd9491ve4L+93qSmT2e+yNF8zWMVXFmjw2X1PG5qu6JCyX08jt/+Vnzh3A2QCHV8Y01ZaM669b3tI/d26WZduqDBcoz+OV3+2R3+VWwOWW3+WW3+1RwOVWdV6RqvMK1BTvkkOO/SYqSlJHMqHWZEy2LdV2deiFnRv1yPo3VNPV8W6jpU/0emzQ7dFJ4yZoflmlSgNhORxS2jSVNrNKm91Vfd9qadDrDTvVkRqeia2mbWnVrjqt2lV3wHb10U690VSj37+zqt99f/HFP+uk8vE6rXKyTq2cqLmlFXI5DEUz6VzieFsiprZkQlnLlNvp1IqGnXq5dqsm5hfprOop8rncqunsUEcqrvZkQh3JhFoSMb3TtqvPxP9dqXi/5zpQ96xcfMD9x40Zp4smz9InZ5+oCflFgzaP/jItSzu72tWZSmpSQbHCHt8+bVLZrOpjEXWlUpKkqrwCFfoCR3Selm0pnsn0SHbOWKaS2aw6U0l1pBKKplMaGwyryB/Ur9a8qlVNdbJly3A4ZDgMpc2sljXs6Hei9EjhMozcb43TYchpOBRyexV0exTyeBVyexX2eFUeytP6lkb9adNaWbatCyZM10njJijP6+v+nXTtuSFH9/PeN+hwGt3/7bdtW13plDrTyd3V6rtvCNCVTGrdpo0qGjdWK5vr9Fr99t3fz4TchlOFPr8mF5RoauEYTS0coymFJZqUXyyHw6GsZWlyQYkKfP4e52XbtkzbUsa0cnHPWKbimYw2tu/SrliXphaO0Qnl1XIZhz+xPOD2qNpNdWwAAHB4kNAOAAAAAAAAAAAAAAAAAAAADGOpVEq//OUvtWjRItXU1Mjtdmv27Nm67rrrdPrppw/19Abd1z98gmzZWl/TpitOnqJrzpwhh8OhE6aU6a8rtun4KaX6l7njD9jHwqll+7zn97j0vzecrdaupL7wm1d6Pe4rH1qg71x98mE5D2Ag9lRBj2cyak/G1RjrUmOsUw2xTjVGO7Wlo0UrGmvUEOs85LFKAyEdU1Ku8O6kz6DHI7fh1Jpd9VpSt+2gK6LHMmk9v2Ojnt+x8ZDneDSybFtL67draf12afnAjt0WadULOzcNyryOhNXN9VrdXK87lr+oD0w5RjOLymTJ3p0cnFYik1Esk1ZZMKyrZ87XKRUTZdu26qOdaop3qtAXUF4vSec+l0tBt3ef97dFWrW8fodak3F1JBPqSCXUkYyrNRnX1o5WbeloUcp8t+L2+LwizS4ZK8PhUF00orquiJriXT36NBwOvX/SLH3y2BN1VtUUhTz7jns4ZCxTD65boSe3vKUXd25WPJselHFGAoccCro9CrjdCrg9KvQGNLmgWPPKKvWxWcerPJTXr34um3acbj/lfQc/D4dDeV6f8rw9/wZN01RZJKm5s+fqU853k8uzlimnw9jvjUP6GsvlcMplOOVXzwrrkwqKD+4EAAAAhggJ7QAAAAAAAAAAAAAAAAAAAMAwZdu2PvOZz2jJkiWSJLfbrVgspmXLlmn58uW64447dPHFFw/xLAdXwOvWDz9+6j7vHzehRMdNKOlXH9PKC/T++RP01JvbJUlTxubr9/9xoY6tLtGuSFxfenBJrtr7Hh6Xoc/+y5xDnj8gSU2xLt27arH+unmdOlNJuZyG3IYz98hYptqTcflcbhX5AtoeaVNzInpE5rYrHtWuEZQc7XE6Nat4rAq8fm2LtGlHZ1uP/QGXZ3fSa/fz3gmwHcmE1jY3yOt06uzqqTp2zDh5nN3Joi7DkMswlMhmtGZXvf64cbUS2cwQneXokLFMPbFxzQHb3Ld6qcIer1yGofZkos8+55VWamZxmSKphGKZtFqTMa1tbhjQvHZ07vt39V6WbeuvW9bpr1vWyW04de74abpyxlxVhQvlMvZ8vw1FM2m93rhTlm3r1IqJOmnchH7NIWOaWrRlnb604mntiB/6jSsOluFw5L5Hwd0Vz9/72uN0yrQtmVZ3NfGsZe1+bcncXWE87PaqKq9Q04tKNaOoVBnLUkcqoUiq+wYDkWRCHamkIqmEIqmkbNlaUFalk8ZN0KSCYpUGQvI6XQeVFD7UBqNyOgAAwEhEQjsAAAAAAAAAAAAAAAAAAAAwTP3tb3/LJbNfe+21+sIXvqD29nZ94hOf0LZt2/Ttb39b5513nny+fSvV4l0Oh0MPff4C/eHVzfK6nbrkhIkK+TySpNL8gL75kRP11Ude7XHMf1wyX+WFwaGY7pAyLUtOw+jxnmVbSpum0qaplJnNPYc8HpUGwgMeoy0R16v129WRikvqrrrrcEi2ZaultV6TUjNUGBj8z74rndRz29/RM1s3aFukTV6XS15n9yX2tv1uVXK/y63TKifpiulzNSYQkmVb+ufOzbp/7TKtaKyRaVm99m8YDk3IK1LazGpFU43SptmveW059FMbkSpD+Tq9arKOH1stj9Mp21Yucdbvdivg8ijf69OMojJ5Xe+mQsQyKZmWLZdhyO9yH7aE1zvO/qCW1G3TrliXaro6tKG1SdFMSmWBsMqC3Y/yYJ5CHq9qOju0urlOKxp2qi0ZzyX3WratkMerfK9PBV6/8rw+JbNZLa3bpmgmdVjmuT9ep0sfnTlfZ1VPVb7Xr2g6KbfTqYDTrU2bN6t8fLUylqlENqOkmVUim1FHMqE3m2q1rqVBjbEumbYlhxwKe7wq8gdU5AuowOtXkS+grG1pfUujutIp+d1uVecVKuT2al1Lo7ZFWg/ruXSl+/9ZrdxVq5W7ag/r+H3JWKae2bZBz2zb0GfbE8vH69pjT9SHps1Rvtcv07JUF410J9FH2rUt0qqVTbVaWr+tXwn8h+LCSTP1oalzVOwPKuj2KLQnYd3jUdDVnbDuc43MJHIAAAAMPyS0AwAAAAAAAAAAAAAAAAAAAMPUX/7yF0mSYRj6zGc+I4/Ho7KyMl199dX63ve+p46ODr300kt63/veN8QzHf7Cfo/+7ZxZve77z0sX6PKTJuu1jY3a2RLV9HEFuuzEyUd4hn2zbEt/3/6OltRuU1c6qWQ2o3g2o3gmrUQ2o7JgWMeUlKsqXCCv06Xarg5FMylZti3b7j7eVndlYVt27v08j1ddmZSe3fa21jTXy204FXC7c4nr2f0kbEtSaSCkEn+ol6q83Qm9UwvH6PrjTtYV0+dqcd1W/dfip/Va/Q7Zsvfb59fWL9FFk2fp9MrJOmnceCUyGf1w+fN6vWGnspaVm/+enPPyUJ6K/QHVd0XUmU4p7PEq5PEq7PHKtGwlzYyS2axSu5/DHp/CHq+2dLT0uwL3Hzau1hdf/LOq8wrVmUqqLRnv13HbIweu8ny4uAxD546fpikFY9SRiiueySieTSuRySiR3b2dzSiSTKi1n3N/r4DLo8mFxTqraqqumH6cKoJ5env9es05do68LrcMh0NpM6ukmVU8k9H61gYtrduu2q4OtSSicjgc8jpd8hjO7menS6WBkE4cN14Ly8erMlxwUPMKur0HdVxfCn0BXTz5mEHpO55J6+XaLVpSu01L6rbq9cadPW544HQYKvIFcknkLsNQczymEn9QhT6/muJd2trRqjGBkOaWVmhMIKRCb0AFPr8KfX4V+YI6YWy1ivyBfcY2TVPF7XHNnTJbTuf+K0eblqWUmT2omwTEdifrGzLkcHRX+Za6E9PXtTTqjxtX64G1y5QyswPqdzgwHA5Z9v5/v/qyrGGHljXs0A1//53G+ENqT8UP+BvbXz6XSwVev1wOQ7XRiKTum3FcNWOejiutyP32W7Ytp8OhUysmam5Z5SGPCwAAAPQXCe0AAAAAAAAAAAAAAAAAAADAMLV27VpJUnl5ufLy8nLvz5gxI7e9evXqUZXQbtu2IqmkQh6PXMb+kzHfa3ukTY9teFM7u9pl25JtdydGW7IV9vh08eRj9LHTpw9qJVrTsmQ4HAMaI5pO6akt6/RGU62e3rpeG9ubB21+e6TMbL8TTXfFo9oVj+53f1O8S4vrtuqaRQ/3e/ykmdUTG9foiY1r+tV+S0eLtnS8+7oznTxg+/4mo7+XZdtHLEH9vfK9Po0N5qk8mKexwbDKQ/k6dky5jhtToZDHq9JASAG3p199teyOWWkgpEg6qWX1O9SciCqWTiuaSSmaTimWScvjdOn8CdN07vhpchvOfRKbTdPULo9fJf5gr4nR04rG6NKpcw7bZ3A0Cbg9+peJM/UvE2dKktJmVu3JhGzZCrg8Cnu8Q14V22kYChj9+5t6r/3dZKDY79IZVZN1RtVkfWnhOXp0/Rva0tGi9lRCLoehgNujgNujoNujznRST29Zn0vO3sMhxwFviLE/+V6fZpeUq9AXUKHPrwJv93NFKF9TC8doatEY5Xl8eru1SW+1NOqdtl1yGg5VhgtUESpQVbhAFeF8FXj9imZSemjdCv3hndV6rWH7QSekNyf2/9v5XvPLKvW5BWdoYfl4+ZxuuZ2GXA6n3E4jd4OIPVriUW1sb9as4rEq8PkPam4AAADA4UZCOwAAAAAAAAAAAAAAAAAAADAMRaNRdXR0SJKKiop67CsuLs5t19bW9nq8aZoy96r4O1JFUgl97vkn9FrDDnmcTrUl4mpPJeRzunR29VSNzyvMVRJPZDNKmhmF3F5VhwtVGcpXY329ft74tn63cdUBkw7vWblYRb6ASgMhHVM8Vp9fcKaOH1vVrzlG0ykt2rpeTsPQudXTVODzK2Oa2pWIqinWpS0dLXr8nZX6x46NGhvI0ydnL9TC8mrVRyNa39qolnhMWdtSxjS7ny1Tti1lTFPLG3f2maCNkcHjdOrK6fN0/vhp8rncylqm0qapjGXK6TBU6POrK51SU6xL5aE8Hbs7+Tbk8crvcvfZf3+/74Vevwq9/tz2hOmF/TrOes/3Z894R8PvzFBzyqES37vV1N/7WR9OwyVu5YGwvnj8WQdsc8cZl2jlrjpFUgk5DUMT8oo0Ib9Q0XRasWxaDr2b9J+1TL1Wv11/3LRGzfGoZpeUa1JBsUzL0rSiUp0/flqPpO/9ObakXMeWlO93v2VZCjjdun7Oybp+zsnqSif1xKa1emT9G3qnfZeylqWs1f07nrUs2bI1Npin5nj0oCrSHxMu1k0Lz9I1x5wgp2Hst93e8Sz0+nXi2Op93sfgGi7fLRwYcRpZiNfIQrxGHmI2shxqvIZDnB22bQ/81lQAAAAAAAAAAAAAAAAAAAAABlVTU5POOOMMSdLxxx+vhx9+t8J1TU2NzjvvPEnSaaedpl//+te5ffF4XBs2bDiykx1Ed2x8XU/UbxqSsd9XNkEfq5qpicF8GXq3svqOeKce3Lleb3e1ypBD2+OdytrvJqCGnG5FzcyQzHmk8BpOVfvDksMh2d31ljO2pdp4l8yDqL58sJxyaEFhmeYWlMrtMJSxrVySrEOSadvaGuvQktY6Ja2eCQATA/m6cOxETQzkq7di2nEzq83RDqWsrI7JK9FJReUKuQ6u4jWAkS1rWVrcWqdFjVv1alu9zPek8vgMp8p9IY31BVUdCGtGuEjH5ZdqrC84RDMGAADA0WjmzJkKBAJ9NxwEVGgHAAAAAAAAAAAAAAAAAAAARpj+VO+dNm3akF2kfDiZtWuGbOxnm7br2abtudeu3dVxD1TpXdKgJ7NPLyzVSePGK+zxyu/yyO9yy20Y2hpp1cb2ZrUmYkpkMyoP5qnIH5AhQ4bDIcPhkMMhGdqz3Z2F3RyPqjkR1dTCMbps6hxV5xUqlc3K43TK43TJ63TJ43TufnbJYzjlcTpVH41oXWuT0mZWTochp2HI6XDIZRhyOrrn85u3lmt1c31u7nken/7rlPfp32YvlO89VcdN09Qrb7yuzV5byxp3alnDDm3uaMkdd9O8U3VO1VR5nE5J3eeStSzt6GxTayKuinC+xvhDiqZTimZSimbScjkM+Vzd5+BzueUxnNrZ1a7NHS0aF8zXB6fMVlkw3Odnnsxm9GZTrVY318vvcuvMqsmamF98+II6ApmmqbVr1+rYY4+V0+kc6umgn4jb0Dle83Wrun9PtnS0qrarQ8X+oMbnFarEH8z9Ju9BrEYW4jUyEKeRhXiNLMRr5CFmI8uhxisej2vjxo2DMLP+I6EdAAAAAAAAAAAAAAAAAAAAGIZCoVBuO5VK9di39+tgsPfqrU6n86i4KP0/Fp6j53dsUjST6rtxH7xOl/5l4kxV5RV0J3TLoVgmree2v60dne19Ht9XIvtgOnf8NJ1UPl5nVE3RmVWT90l8HArTfX5NLxl7wDY3zT9dOzrbtK2jTZJ0/NgqhTze/bYv8Pj06ePm6ob5p0nqTrbf2tGqWSVlCnt8vR5zmiYf5Bn0X9Dp1OnVU3R69ZRBH2ukOVp+a0Yb4jZ0gk6n5pRVaE5ZRb/aE6uRhXiNDMRpZCFeIwvxGnmI2chysPEaDjEmoR0AAAAAAAAAAAAAAAAAAAAYhoLBoIqLi9Xa2qq2trYe+1paWnLbEyZMOMIzO7IWlo/Xzs/8l16r36GudFIep0tjg2Gt2VWvZQ07Jdnyudzy7a7A7XO51JqIa2dnu3Z0tqkp0qE55VU6o2qyrpo5X+NC+fuMkbVMvVK7VTs727WyqVYPrV+hrvShJ9BL3VXdywJhTS4oUXVeobZ0tGjVrjo5HYbGhsKaWVSmSQUl8jpdchmGXIYht9F9oXksk1bY49UHpszW9KLSwzKfoTA+r0jj84oO6tgxgZDGBEJ9NwQAAAAAAMMWCe0AAAAAAAAAAAAAAAAAAADAMDV//nw999xzamhoUCQSUX5+dzL2+vXrc20WLFgwVNM7YoJur84dP63He/PLqvTJY0884HGmaWrVqlWaO3fuAauRuQynzq6eKkn6xOyF+urJF+jelYv1i1VL1JqM93pMwOXR6VWTNDYQliVbH525QPPLqrS8cUd3snowrLJAWEX+gAyH0eNY27aHRYV1AAAAAACAI4GEdgAAAAAAAAAAAAAAAAAAAGCYuuKKK/Tcc8/Jsizde++9+uIXv6iWlhY9+uijkqSKigqdeuqpQzzLo8+YQEhfP/Vf9NWTL9DOrnalslmZtqWs1f2QpJnFZQq4Pfsce8GEGX32TzI7AAAAAAAYTUhoBwAAAAAAAAAAAAAAAAAAAIaps846SxdeeKGefvppPfDAA3rooYeUyWQkSW63W9/5znfkcnFJ8GBxGoYm5hcP9TQAAAAAAABGNP71CgAAAAAAAAAAAAAAAAAAABjGfvzjH2vWrFn6y1/+op07dyovL0/z5s3TTTfdpLlz5w719AAAAAAAAIADIqEdAAAAAAAAAAAAAAAAAAAAGMbcbreuv/56XX/99UM9FQAAAAAAAGDAjKGeAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg6ERCOwAAAAAAAAAAAAAAAAAAAAAAAAAAAABgUJDQDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFCS0AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBQntAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBBQUI7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBQkNAOAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgUJLQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFCe0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEFBQjsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFCQ0A4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBQktAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgUJ7QAAAAAAAAAAAAAAAAAAAAAAAAAAAACAQUFCOwAAAAAAAAAAAAAAAAAAAAAAAAAAAABgUJDQDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFCS0AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBQntAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBBQUI7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBQkNAOAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgUJLQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFCe0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEHhGuoJAAAAAAAAAAAAAAAAAAAAADh8LMuSJCUSiSGeydAzTVOSFI/H5XQ6h3g26AvxGlmI18hE3EYOYjWyEK+RgTiNLMRrZCFeIw8xG1kONV57/o1oz78ZDQWHbdv2kI0OAAAAAAAAAAAAAAAAAAAA4LBqbW3V9u3bh3oaAAAAAAAAGEYmTJig4uLiIRmbhHYAAAAAAAAAAAAAAAAAAADgKJLNZhWJROT1emUYxlBPBwAAAAAAAEPIsiylUinl5+fL5XINyRxIaAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAADApuuQgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBQktAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgUJ7QAAAAAAAAAAAAAAAAAAAAAAAAAAAACAQUFCOwAAAAAAAAAAAAAAAAAAAAAAAAAAAABgULiGegIAAAAAAAAAAAAAAAAAAAAAji47duzQvffeq1dffVWtra3yeDyaMmWKPvjBD+qqq66S0+nMtd2yZYv+53/+R8uWLVMkElFRUZHOOOMM3XLLLSorK+vRbzQa1X333afnnntOdXV1kqTKykqdffbZuuGGG5SXl9ej/caNG3X//ffrzTffVENDg7xer2bMmKHLLrtMH/rQh+RwOPp9TqtWrdIvfvELrVy5UrFYTGVlZTr//PN100037TNua2urfvvb3+qFF15QbW2tbNtWdXW1LrjgAl177bUKBAID/UgH1WiO14svvqgbb7zxgH195zvf0Yc//OF+jz2YRnOspk+f3mdfCxcu1IMPPtjvsY+U0Rw3SWpqatJ9992nV155RQ0NDXK73Zo+fbquvvpqXXLJJQP9OAfd0Rgvy7L06KOP6s4771QsFpMkPf/886qsrOy1fUtLi7773e9q0aJFkobvd0saPvHaW2Njo97//vcrGo1Kkm6++Wbdcsst/T6ngXy/pJERr9Eep5G0NhzNsRpp60JpdMeLteHIjJvE2nCPoYzXUK0NHbZt2wM+CgAAAAAAAAAAAAAAAAAAAAB68fbbb+ujH/1o7qJor9erdDqtPZctX3TRRfrJT34iSdq0aZOuvvpqdXV1SZLcbrcymYwkqby8XE888YSKiookdV/sffXVV2vjxo2SJJfLJYfDkWs/YcIE/eEPf1A4HJYkPfPMM/r3f/93ZbNZSZLP51MymczN86qrrtI3v/nNfp3Tq6++quuuuy431t7znDlzph5//HF5vV5J0rZt2/Sxj31Mra2tkiSPx6NMJpM7/1mzZumxxx7LtR9qoz1ef/nLX/TlL39ZkhQMBuV2u/fp77bbbtMHP/jBfo09mEZ7rE488cT99tPZ2SnLsnTiiSfqt7/9bb/GPlJGe9y2bdumq6++Wu3t7fu0laQbb7xRX/jCF/r5aQ6+ozFemzdv1u23366VK1f2eH9/SUt//OMf9cMf/lCRSCT33nBNCBwu8XqvT33qU1q8eHHu9UCSzAby/ZJGRrxGe5xG0tpwtMdqJK0LJeLF2nBkxo214dDHayjXhsaAjwAAAAAAAAAAAAAAAAAAAACA/fjhD3+Yu9j7+9//vlavXq2lS5dq9uzZkqRFixbpzTffzO3v6uqSx+PRo48+qjVr1ujuu++WJDU0NOiuu+7K9fvggw/mLva+8sortXLlSr355pu68sorJUnbt2/Xww8/LEmKxWL62te+pmw2q3A4rMcff1yrV6/Wk08+qYKCAknSY489pq1bt/Z5PrZt6xvf+IYymYyKioq0aNEirVq1SrfddpskacOGDT2SJL71rW/lEpa++c1v5s5/3rx5kqT169frz3/+88A/2EEy2uO1p6KdJP3kJz/RsmXL9nkMl6Sl0R6r3mKzbNky3X333bmEkssuu+zgPtxBNNrj9r3vfS+XsPSFL3xBq1at0gsvvKApU6ZIku677z6tX7/+ID7ZwXG0xaupqUmXXnqpVq5cqWnTpqmqquqA7X/1q1/ptttuU2dnp84999z+fmxDZjjE670ef/xxLV68WIWFhQM+n4F+v0ZKvEZ7nEbS2nC0x2okrQsl4sXacGTGjbVht6GK11CvDUloBwAAAAAAAAAAAAAAAAAAAHBYpNNpNTU1qbq6Wqeeeqouu+wyORwOFRUV6dJLL821W7lypXbt2qWlS5dKks4880zNnz9fhmHoggsu0MyZMyVJTz31lEzTlNRdRay6ulrjx4/XrbfeKo/HI4/Ho49//OM9+pW6L5ovLi7WxIkT9clPflJz586VJE2fPl0f+MAHcu3ffvvtPs9pzZo12r59uyTpkksu0eTJk+VyufSv//qvucTCJ598UpKUTCa1a9cuTZw4UWeddZauuuoqGYahoqIiXXvttbk+h8sF+qM9XlJ39cY9QqFQPz+5I49Y9S6RSOi2226Tbds6/vjje3wWw8Foj1sqlcqdU2lpqW644Qa5XC5VVFTkKm9alqUnnnhiIB/roDka45VMJuV2u/WlL31Jf/rTn1ReXn7A9l1dXZo2bZoeeeSRXCLacDVc4rW3uro6/fCHP5TL5dJnP/vZAZ/TQH8XR0K8RnucRtLacLTHSho560KJeO0Pa8PhHTfWhkMfr6FeG7oOuQcAAAAAAAAAAAAAAAAAAAAAkOTxeLRo0aJe9+2pTClJhmHorbfeylXOmzFjRo+2M2bM0IYNG9TZ2alt27ZpypQpuvPOO3vtt62tLbftcDgkSccff7yeeeaZXtvvqa4mdV9E35c1a9b0mNfe5zBt2jQtX75cmzZtUiwWUzAY1FNPPdVrP/F4PLddVlbW57hHAvEK9khcCofDffY/VIhVsNc+7rzzTtXU1MjpdOrrX/96n2MeaaM9btFoVNlsVpJUXl6em4+kXGKPpFxVy6F2NMarqKhITz31lMaNG9dnW6k7Ee2WW26Ry+VSbW1tv44ZKsMlXnvYtq2vfvWrisViuvHGGzVt2rQBn9NAfxdHQryI08hZGxKrkbMulIgXa8ORGTfWhkMfr6FeG1KhHQAAAAAAAAAAAAAAAAAAAMCg2rp1qx5++OHc6+OPP151dXW514WFhT3aFxUV5bZramr2228ikdCPf/zj3OuFCxcecB4vvfRSLklw7ty5WrBgQZ9z33uee89r79e2bfdo915bt27VL3/5S0lSXl6errjiij7HHUqjKV7RaDS3/5VXXtG1116rc845R+973/t0++2356oNDlejKVbvtWnTJj3yyCOSpEsvvVTTp0/vc8zhYrTELT8/X06nU5JUW1ubS2CSpIaGhtz2cE3E3WMkxyscDvc7YUlSrqrqSDZU8XrkkUf06quvavLkyQdVMVUa+O/iSI7XaIpTb0bS2nA0xWqkrwul0RWv92JtuK/hFjfWhkMfr6FeG5LQDgAAAAAAAAAAAAAAAAAAAGDQ7Ny5U9ddd12u4uGll16qY489tkeVWa/X2+OYvV/v3W5v8Xhct9xyi9atWydJmjhxoj760Y/22va8887TnDlzdP311ysYDOraa6/V/fffv0/Fs97sPb7H4xnQPL/85S9r/vz5uvDCC1VfX6+LL75Yf/zjH/tVVXeojLZ47V2J80c/+pGWLFmiuro6bd++Xb///e/1oQ99aNhUCHyv0Rar9/rRj34k0zTldrsPOqFjKIymuPl8Pp188smSuqtY/uhHP1IkEtGmTZv0ve99r89zGg5GerxGm6GKV01Nje644w4ZhqHvfve7+3w3+utQfxdHitEcp5G2NhxtsRrJ60Jp9MXrvVgb9jQc48bacOjjNdRIaAcAAAAAAAAAAAAAAAAAAAAwKNasWaOPfOQjuQprs2fP1u23397ncZZl5bZ7S9hra2vTNddco1deeUVSdwW0n/70p/L5fL3219HRoVQqJan7AvKNGzfq7bffHvD5DHSe0Wg0d8F6KpXSjh07tHz58kMed7CM1ngVFBSooKBAn/70p7V8+XItXrxYl19+uaTuxIKvf/3rhzz24TZaY7XHa6+9ppdfflmSdNlll6miouKQxzwSRmPcvvKVr+Tm8X//939auHChLr74YtXW1ioYDErSsK0wfbTH62gzVPGybVu33Xab4vG4rrnmGs2bN+9wnM6A5zlSjPY4jaS14WiN1UhcF0qjN157sDbsaTjHjbXh8I3XkTA8IwsAAAAAAAAAAAAAAAAAAABgRHv55Zf1+c9/XvF4XJJ02mmn6a677spdpB4KhXJt9yTq7ZFOp3Pbe9rvUVNTo0996lPasWOHJKmqqkr33XefJk2atN+5rFixQolEQitXrtTXv/51LV68WEuXLtVDDz2kBQsW6Nvf/rb+9re/9Tjm4osv1te+9rUe89x7Xn3NU5LuueceZTIZbdmyRXfccYdeeeUVrV27Vq2trbrhhhv2O9+hMFrj9bOf/azXOXzjG9/QCy+8oPb2dm3atEk1NTWqqqra75yPpNEaq739+te/zm1fccUV+53fcDJa4zZ16lQ9/vjjuueee7R27Vo5HA4dd9xxuvnmm3X11VdLkvLz8/c716FytMRrtBjKeD388MNavny5qqqqdOutt/Y518H6XRwJiNPIWRuO1liNxHWhNHrjtTfWhu8a7nFjbTi08RpqJLQDAAAAAAAAAAAAAAAAAAAAOKyWLVumz372s7kLtz/96U/r3//932UYRq7N3kkgbW1tPY5vbm7ObY8fPz63vWvXLn3iE59QXV2dpO6LyP/7v/+7Xxe8+/1+nXLKKfrP//xP3XzzzbIsS4899pgWLFigWCymjo6OHu33VM/ce56tra29ztPpdO43qcXtdmvGjBm68847tXDhQknSI488MqySlojXvjwej6qqqtTe3i5Jam9vHxaJS8RKampq0uLFiyVJFRUVmjNnTp9zHGqjPW4zZszQXXfd1aNte3u7IpGIJGnKlCl9zvdIOpriNRoMdbyeffZZSd0JaXPnzu11jj//+c/185//XN///vePyH/DhiPi9K7hvjYkVvsarutCiXhJrA1HYtxYG3YbingNNRLaAQAAAAAAAAAAAAAAAAAAABw2O3fu1E033aR0Oi2n06lvfvOb+vCHP7xPuzlz5sjlcimbzertt9/usW/Dhg2SpJKSktwF35lMRtdff33uYu/LL79c3/rWt+Ry7XtJ9OOPP64HHnhAbW1t+tznPqePf/zjuX0OhyO3veeC+R/84Af6wQ9+0Ov5zJ8/P7e99zyz2aw2bdokSZo1a5Z8Pp/Wrl2r2267Ta2trVq4cKF++tOfHnDc4WA0xysej+vBBx9UW1ubgsGgPve5z+XaZzIZ1dbW5l6PHTu21/GOpNEcq729+OKLsixLknTBBRf02vdwMtrjtnnzZm3atEmtra09xn3ppZdy26eddlqvYw2Foy1eR7vhEK+BGozfxeFuNMdppK0NR3OsRtq6UBrd8doba8ORFTfWhkMbr6Fm9N0EAAAAAAAAAAAAAAAAAAAAAPrnW9/6lqLRqCTp1ltv7fVib0kqLCzUueeeK6n74vU33nhDlmXpr3/9qzZv3ixJuuKKK3JVzx544IHcheBnnnmmvvvd7+73Yu+pU6dq27ZtikQiuu+++3IXlDc3N+tXv/pVrt28efP6PJ8ZM2Zo9uzZkqQnn3xSW7ZsUTab1f3336+uri5J0kc+8pHcuA0NDWptbdXf//53Pf3007IsS6lUSj/5yU8GNO6RMprjFQgE9MQTT+g3v/mN7rnnHv3+97+XZVlKJBL6wQ9+kKust3DhQpWWlvY59mAbzbHa26pVq3LbI6EC52iP2wMPPKBbb71V3/72t/XnP/9ZUnci057fxLy8PF166aV9jnukHG3xSqfTam5uzj0ymUxuX1tbW+79PVU7u7q6cu/tXV00k8n06Mc0zT7HPhKGQ7zuvvtuLV68eJ/H3XffnWtz7bXXavHixbrooosOeD4D/X6NlHiN5jiNtLXhaI7VSFsXSqM7XntjbTiy4sbacGjjNdRrQ4dt23a/WgIAAAAAAAAAAAAAAAAAAADAAaxZs6bHBd75+fk9qk/uMX/+fN17772qra3VlVdeqdbWVkmS2+3OXVA9bdo0Pf744woEApKkuXPnKpFISOpOOPF4PL3OYdmyZZKk73znO3rwwQdz7/v9/tzxUneC0WOPPaZQKNTnea1du1bXXHON4vH4PvM85ZRT9Otf/zp3YfqiRYv0pS99SdlsVpLk8XhkmmbuAu9QKKSHHnpIM2fO7HPcwUa8pCVLlujGG29UOp3OtTVNM1flsaysTA899JCqq6v7HHcwEat3XXnllVq9erUk6U9/+pNmzZrV5zhDhbhJNTU1uuqqq9TS0rLPuC6XSz/72c903nnn9TnmkXA0xmvZsmW65ppr+jz3m2++Wbfccou+8pWv6E9/+lOf7Z9//nlVVlb22W4wDad47W/fns9+z+fbHwP5fo2EeBGnkbM2JFYjZ10oEa+9sTYcWXFjbTi08RrqteGh158HAAAAAAAAAAAAAAAAAAAAAKlHsp0kRSKRXtvtqXBWWVmpxx9/XHfddZeWLl2qSCSiiooKnX/++brppptyF3u/t+94PJ67WH5/br/9dp100kl67LHHtG7dOkUiEQUCAU2YMEHnn3++PvGJTygYDPbrvI499lg9+uijuvvuu7VixQrFYjFNmDBBH/jAB3Tdddf1SKq46KKLNHHiRD3wwAN6/fXX1dzcLKfTqcrKSp188sm67rrrhjwJcA/iJZ166qn685//rF/96ldatmyZdu3aJY/Ho+rqap1zzjn65Cc/qcLCwn6NO5iIVe/nHg6H+zXOUCFuUlVVlR577DHde++9eu2117Rr1y4VFhbqhBNO0A033JCr6DkcHK3xOloNp3gdTgfzuzicEaeRszYkViNnXSgRr72xNty37+EcN9aG+/Z9pOM1lKjQDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYFCPrtjwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgBGDhHYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKAgoR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAMChIaAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAoS2gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg4KEdgAAAAAAAAAAAAAAAAAAAAAAAAAAAADAoCChHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKEhoBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMChLaAQAAAAAAAAAAAAAAAAAAAAAAAAAAAACDgoR2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCgIKEdAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAoSGgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyK/w9Z9+CMgUvLagAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPUAAAKrCAYAAACZc7hJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5xkVZ3+/9wKnbunw8z05MRkZogzhGEIAysoKLAIKirBAKuAaQ3ImjGusO4qptU1/NaA7iqoKLpfRXLOOQ15SJOnw3Sqqvv7o6eKqnPOzencquf9es0LqrrC7a5b557znOf5fAzTNE0QQgghhBBCCCGEEEJSQybpAyCEEEIIIYQQQgghhHiDoh4hhBBCCCGEEEIIISmDoh4hhBBCCCGEEEIIISmDoh4hhBBCCCGEEEIIISmDoh4hhBBCCCGEEEIIISmDoh4hhBBCCCGEEEIIISmDoh4hhBBCCCGEEEIIISmDoh4hhBBCCCGEEEIIISmDoh4hhBBCCCGEEEIIISmDoh4hhBBCCCGEEEIIISmDoh4hhBBCiA9uv/12LFu2rObfihUrcNBBB+Gkk07CF77wBTz44IOunlf9/IMPPhhnnnkmrrrqKsdjeOSRRyrP/fnPfy79/Jvf/CaWLVuGyy67TPn88fFx7L///li2bBmeeOIJ5WP+/Oc/Y9myZTjvvPMAAFdccYV03CtXrsQhhxyC0047Df/6r/+Kp556yva4TdPE3//+d3z4wx/G0UcfjX333RcHHHAAXv/61+Nf/uVfcMcdd0jPecc73oFly5bh9ttvV77mPffcg2XLluHQQw9FqVRSPuYLX/gCli1bhp/+9KcAgE9+8pNYtmwZXve612F0dNTyeM844wwsW7bM9ncihBBCCImbXNIHQAghhBCSZvbbbz+8613vAgCUSiXs2rULjz76KK6++mr88pe/xMknn4zPf/7zaG1ttXxemfHxcbzwwgv47W9/i4997GO47bbb8OUvf9nyvX/xi18gk8lgypQpuPzyy/HOd76z5udHH300vvvd7+K6667DBz7wAen5d911F3bv3g0AuP7667F06VLpMTfccAMAYMOGDTX3b9iwASeffDIAoFgsYseOHXjggQfwq1/9Cj/5yU/w7ne/Gx/72MeQydTuIe/cuRMf+chHcMstt2CvvfbCSSedhPnz58M0TTzzzDO4+uqr8dvf/hYnnngiPv/5z6O9vb3yu9x111247rrrcPDBB0vHef311wMAtm/fjoceegj77LOP9Jgbb7yx8lrVPP/887jsssvw8Y9/XHoOIYQQQoiuUNQjhBBCCAlAf38/Xv/610v3X3jhhfjsZz+L3/3udxgcHMR3v/tdV88DgHe961049dRT8Zvf/Ab/+I//iDVr1kiP2bVrF/74xz9izZo1WLlyJX7605/ijjvuwEEHHVR5zKpVqzBt2jQ8/PDD2LZtG/r6+mpe44YbbkA+n8fcuXNxww034JxzzpHe56abboJhGDjqqKNq7l+4cKHy+Ldv346PfvSj+NGPfoTx8XF8+tOfrvysUCjg/PPPx1133YUPfOADOO+88yTR7wMf+AC+8pWv4Je//CXGx8fxzW9+E8CkiPj1r38dN9xwAy688ELpfW+88UYsXboUTz75JG644QZJ1Hv66afxwgsvYK+99sK8efNqfnbYYYfhpz/9Kd74xjdixYoV0msTQgghhOgI47eEEEIIIRHQ3t6Or3/961i7di2uueYa/L//9/9cP7etrQ0nnngiAFjGTa+44gqMjo7ixBNPxEknnQQAuPzyy2seYxgGNmzYANM0K467aq6//nqsXLkS69atw7333ouhoaGanz/66KPYvHkzVq9ejWnTprk69t7eXnznO9/BggUL8POf/xwPPfRQ5WdXXnkl7rrrLrzxjW/EBRdcIAl6AJDP5/HZz34WBx10EP7yl7/guuuuAwAsWrQICxYswMaNG/Hiiy/WPGfLli145JFHcOSRR2LJkiUV1141Vo5DYDKWm8/n8alPfQrFYtHV70kIIYQQkjQU9QghhBBCIiKbzeL8888HAPz2t7/19Nx8Pg8AyOXkYIVpmrj88svR1taGN7zhDVi5ciVWrlyJv/71r9i6dWvNY8silih0bdq0CU8//TQOOuggrFmzBhMTE7jllltqHlOOq6qEMDva2trw3ve+F6Zp4oorrqjcX/4bqByB1RiGgfe9730AUPN8q9/lhhtugGmald/loYcewvbt213/LnPnzsUFF1yAhx9+uFJvjxBCCCFEdyjqEUIIIYREyIEHHoh8Po/77rvP9XPKjSQAWNaGe+6553D88cejo6MDAHDaaadhYmIC//u//1vz2HXr1qGlpQU333wzCoVC5f6yMHbYYYfh0EMPRSaTkcQyqxp0bjjkkEMAoPJ7FwoFPPjgg+ju7sby5csdn79mzRrkcrmav5udqNfU1IS1a9fisMMOQ6lUqhw7AIyOjuLOO+9Ed3c39t9/f+X7vetd78LKlStx2WWX4YUXXvDyqxJCCCGEJAJFPUIIIYSQCGlqakJ3dzd27txZI6pNTExgYGCg5t+2bdtw77334kMf+hDuuusuHHnkkTj00EOl1/zlL38JAHjrW99aue/EE09Ea2sr/ud//qcmQtrS0oJDDz0UAwMDuPfeeyv333jjjWhtbcWBBx6I7u5urF69uiaiOzQ0hHvvvRezZs1yJcKJ9Pf3A0DFOVj+/adPn+7q+c3Nzeju7sbWrVsrv8+BBx6IKVOm4Pbbb8fY2BiAySYdt9xyCw444AC0trbikEMOQT6fr/ldyo8/8sgjkc1mle+XzWbxpS99CePj4/jc5z7n+fclhBBCCIkbinqEEEIIIREzOjqKpqamGkHp73//O9auXVvzb926dXjb296Gu+++G+9973vx7W9/W3qtTZs24frrr8eyZctqXHwdHR14wxvegJdeeqlSh66M6HAbHx/H7bffjrVr16KpqQkAsH79emzevBmPPfYYAODWW2/FxMSE5+ht9e8MoNL1txwnLpVKrl+jVCohk8lUau/lcjkcfvjhGBkZqdQavO+++zAwMID169cDmPw77Lfffrjpppsq7+XWcbj33nvjrLPOws0334wrr7zS9XESQgghhCQBRT1CCCGEkAgZHBzE4OAgpk+fDsMwKvevXbsW//3f/13z75hjjgEAfPzjH8fHP/7xiuBWza9+9SuUSiV0dnbisssuq/lXFtLEhhkbNmyAYRgVUe+uu+7C7t27cfjhh1ceUxbFyg43v/X0yrz00ksAXnPsTZkyBa2trXjllVdcCXsjIyPYtWsXpk2bVvN3Kwtz5eMs/1f8XXbu3IkHHnig8rvk8/nK72jHBz/4QcyZMwdf+9rXpLp8hBBCCCE6IVdeJoQQQgghoVGujbdu3bqa+3t7e3HwwQfX3LfXXnvh7rvvxpe//GUccsghmDFjRs3Px8fH8Zvf/AbApDB31113Kd/zpptuwvPPP4958+YBAKZPn469994bDz30ELZt24abbroJAGpErn333RddXV249dZbce655+LGG29EW1ubdIxBfu81a9bgxhtvxH333YcDDjjA9vl33nknisWi9P6HH344crkcbr31VgDAzTffjGnTptVEhNevX49///d/x6233oq+vj48++yzOOywwyr1B+1obW3FF77wBbznPe/Bl7/8Zfzbv/2b69+ZEEIIISRO6NQjhBBCCImIsbExfP/73wcAnHrqqY6Pnzp1Ki666CIMDAzgU5/6lPTzq6++Gjt27MApp5yCxx9/XPnvoosugmma+NWvflXz3LLj7s4778Qdd9yB2bNnY9GiRZWfZ7NZHHroobjnnnuwceNGvPTSS1i/fr3SLejEtm3b8LOf/Qz5fB4nnXRS5f43v/nNAIDvfOc7ts83TRM//OEPAch/t66uLhx44IHYuHEjnn/+eTzyyCM1Lj1gMkbb29uL2267DbfddlvN7++G9evX48QTT8Qf//hHqSkHIYQQQoguUNQjhBBCCImAgYEBXHDBBXj66adx5plnYt9993X1vJNPPhmHH344brrppkpDjDK/+MUvAACnn3665fNPOeUUtLS04Le//S3Gx8cr95djq9dffz0effRRSQgDJsWs0dFR/Pd//zcAf9HbV155Beeeey62b9+Oj33sY5g5c2blZ294wxtw9NFH46abbsKXvvSlmsYhZSYmJnDxxRfjjjvuwNvf/nasWbNGekz5d/nhD3+IYrEo/S6GYWDdunW4//77K7X3jjrqKE+/x0UXXYSenh58/vOfx/DwsKfnEkIIIYTEAeO3hBBCCCEBePXVV/GXv/ylcnvXrl14/PHHcdVVV2FgYABnnnkmPvGJT3h6zYsvvhgnnHACLrnkEqxfvx7z5s3DQw89hAceeAB77713TYMMka6uLhx//PG44oorcPXVV+Pkk08GAKxcuRIzZszAVVddhUKhYCnqAcAVV1yBTCZjK4Q988wzNb/3tm3b8NBDD+HPf/4zJiYm8NGPfhRnn3229LxLLrkEn/rUp/Czn/0MN9xwA44//ngsWLCg8pp/+tOf8MILL+CMM86w/Ltt2LABX/3qV3HllVcik8lI0WZgMqb7xz/+EX/5y1+wdOlSzJ071/J3UdHb24tPfvKTuPDCCyv1AQkhhBBCdIKiHiGEEEJIAO677z586EMfqtxua2tDf38/jj32WJx22mnYb7/9PL/mrFmz8LGPfQwXX3wxLrzwQvziF79w5dIrc/rpp+OKK67A5ZdfXhH1gEm32q9+9Svk83kccsghyvddtGgRnn76aey///7o7e21fI9rr70W1157beV2R0cHZs6cidNOOw1vectbsGTJEuXzOjo68M1vfhM33ngjfv/73+PPf/4zNm/ejEwmg/7+fqxbtw6nnnqqrXA5f/78ynHut99+6O7ulh5z2GGHwTCMQB18Tz75ZFx11VWVGoSEEEIIITphmKZpJn0QhBBCCCGEEEIIIYQQ97CmHiGEEEIIIYQQQgghKYOiHiGEEEIIIYQQQgghKYOiHiGEEEIIIYQQQgghKYOiHiGEEEIIIYQQQgghKYOiHiGEEEIIIYQQQgghKYOiHiGEEEIIIYQQQgghKSOX9AGkhUKhgF27dqG5uRmZDLVQQgghhBBCCCGEkEalVCphbGwMU6ZMQS6XjLxGUc8lu3btwrPPPpv0YRBCCCGEEEIIIYQQTViwYAH6+voSeW+Kei5pbm4GMPlhtba2Jnw0yVIsFvHEE09g6dKlyGazSR8OcYCfV3rgZ5VO+LmlC35e6YKfVzrg55Qe+FmlC35e6YSfW7oI8nmNjIzg2WefrehFSUBRzyXlyG1rayva2toSPppkKRaLAIC2tjYOUimAn1d64GeVTvi5pQt+XumCn1c64OeUHvhZpQt+XumEn1u6COPzSrJEG4vDEUIIIYQQQgghhBCSMijqEUIIIYQQQgghhBCSMijqEUIIIYQQQgghhBCSMijqEUIIIYQQQgghhBCSMijqEUIIIYQQQgghhBCSMijqEUIIIYQQQgghhBCSMijqEUIIIYQQQgghhBCSMijqEUIIIYQQQgghhBCSMijqEUIIIYQQQgghhBCSMijqEUIIIYQQQgghhBCSMijqEUIIIYQQQgghhBCSMijqEUIIIYQQQgghhBCSMijqEUIIIYQQQgghhBCSMijqEUIIIYQQQgghhBCSMijqEUIIIYQQQgghhBCSMijqEUIIIYQQQgghhBCSMijqEUIIIYQQQgghhBCSMijqEUIIIYQQQgghhBCSMijqEUIIIYQQQgghhBCSMnJJH0ASjI2N4Yc//CGuvvpqvPDCC8jn81i1ahXOOeccHH744UkfHiGEEEIIIYQQQgghtjScqGeaJt7//vfj5ptvBgDk83kMDw/j9ttvxx133IFLL70Ub3zjGxM+SkIIIYQQQgghhBBCrGm4+O0f//jHiqD37ne/G/fccw9uuOEGLFy4EKZp4otf/CJGR0cTPkpCCCGEEEIIIYQQQqxpOFHv97//PQAgk8ng/e9/P5qamtDf34/TTz8dALBz505cf/31SR4iIYQQQgghhBBCCCG2NFz89sEHHwQAzJw5E11dXZX7ly9fXvn/+++/H8cdd1zsxxYnd3zxi3jkxz/G2M6dlfvapk/Hmn/5F6w466zKfQPPPINrzjkHW+65B6ZpomvhQhx2ySVAd3f8B22DaZq46ytfwWM//zmm7rMPjvrOd9A6dWrg13388stxx8UXY/crryDb1IR5xx2HDd/7HvLt7bbPe/GGG3DTRz8KGAYO+9rXsPG3v8VTV16JwshI4GNqnToVB3ziE5gYGsIDl12G0R07Kj9r7u7GPuedhwM+/vHKfaPbtuGxj30Mdz/4IMxi0fP75VpasOjkk7H4zW/GLRddBNM0sf6SSzBnw4bKY1696y5cd/752PnEE5X7Mrkc5mzYgGP+67/QVPVdi5vn/vIX3HzhhRh8/nlXj882NWHescfiqO99D00dHREfnTUbr7gCt3360xh++eXKfbnWViw+7TQsetObcPMnPwkjm8UR3/gGZh52WOUxL996K2740Iew88knYRgGpu6zD47+r/9C9+LFyvcZHxzEte97H57/619Rmpio3N+9ZAmO+OY3MfPQQyP5/SaGh3Hd+efjuT//GcXxcdfPMwwDMw45BEd885voXrJE+ZjxwUHc8OEP45Vbb8XCN74Rh3z5y8jm86Ec99jOnbj2fe/DC9dcg1KhULm/VCzirmzW9es0dXVh7/e+F2s//WkYhjH52rt24e/nnINN116LUqGAthkzcNCnP41l73iH5evc/+1v477/+A+Mbtvm6fdonzkTB33uc9jx2GN45Mc/xvjAgKfnd86fj/Vf/zrmHXts5b4t996La9//fux4/HHp8ZlsFm0zZ6KlpwfF8fHJf2Njk/9GR1EcG6v5exqGgWkHHIBjfvQjdM2fD2DynLn3G9/AM1ddhebubhz5rW+hp+raHSYj27bh+vPPx9YHHsDyd74TB150UeVzSgOv3nknrrvggpox2Q35tjYsfstbMO91r8Mt//IvGHzuuUDH0bt8OTZ8//uYuu++yp+XCgVc/8EP4unf/Q6FkRG0zZiB/T/yEaw691zL13zi17/GnV/8IlqnTsVR3/0ueleurPzs2auvxu2f+xx2btyITDaLWYcfjoO/8AXcfOGFePX222Gaputjz+TzmHvMMTj6Bz9AU2dn5f67v/51PPLjH2PqvvvimB/9KLLrxI7HH8ffzzkHW/fMW7uXLMGRl12GGQcfHMn7jQ8N4brzzsPz//d/lmNytrkZi048EUdedhmyzc22r7fxN7/BbZ/9bM01rExLby8O+NjHsPr97wcAjO7YgScuvxyP//zn2PHYY5afU1NXF/Z+z3uw9jOfqXwfxwcG8Pdzz8ULf/977TVs8eLJv9chh1Tue/H663HzhRcqxyg7mjo7sfzMM3HIF7/42vtWXWcWnHACDv3KV0K7zhB9GN2xA9dfcAE233MPlr71rTjos5+FkZn0xLj5zvihZ9kybPj+9zFtv/08P7c4NoZbP/1pPPPHP2LmunU44pvfDDRGbbruOtz00Y9i19NPWz6mc+5cHPrlL2Phm95k+1rjQ0O44UMfwss334yFb3wjDv3qV0P7zowPDuLaf/onPP+3v6E0MYG26dNx4EUXYeXZZ4fy+oTojmF6meGknKGhIRx44IEAgNWrV+M3v/lN5WcbN27ECSecAAA47rjj8K1vfavmubt378ajjz6KpUuXoq2tLb6DjoBNf/87rnrDG9Q/NAyc9dxzaOvvBwD8+c1vxrN//GPNQ1qnT8e+v/899tl3X2Q9LGKj5KWbbsLvjzmmcnv/j30Mh3z5y4Fec3TbNvx07lxJCNvvox/FoV/5iuXzzFIJP1uyBMObNgV6/yCcetttmLb//gCAGz70ITz8/e+H+vrts2bhHU88UbkY/2q//bDj0UeVj93/4x/HIV/6Uqjv75bixAR+Ons2xnft8vzcg77wBRz4yU9GcFTWFItFPPjgg1g2fz5+vnChKxG4a9EivP3hh2FkMjBNE79csQIDzzxT85g5xxyDN119tfL5d37xi7jL4vPpWrgQb3/00UjEjHsvvRS3fepTvp8/66ijcNL//Z/yZ/d94xu49aKLKreP+5//waKTTvL9XtXc9pnP4N6vfz2U1wKAk665BrPWr5987U99CvdeemnNz41MBmdv2oSWvj7puTsefRS/8jHpD4vmnh6cvWkTMrnJ/cH/WbMG2/YIEGExdd99ccpNN+GJX/4Sd3z+89hdJRDMf8MbcPzvfuf5Ncvfs9WrV1tew8TP4uRrr8XMdes8v1dSXL56tWdBLyqmHXAATr31VuXPVOOAkcng1Ntvx9R99gFQ+3lN7NyJ/164EMWxMQC148Do9u34xYoVGK/arAyDA//lX3DQ5z4HAHjl9ttx5RFHVH629J3vxDE/+lGo71fm98cei5eE5MiUxYtx+kMPRTIm3/P1r+P2z3zG1WPXf+MbWH3++TX3VX9OxeFh/GT2bJQchI4DL7oIA88+i6evvBJFD6VvTvrb3zBrT2O72z/3Odzzta8pH1f995oYGsLPly3D6Natrt9H5IQ//AHz9mz63/8f/4FbLryw8rPjfv1rLDr5ZN+vHSduxkAyyR0XX4y7q9YTb/rLXyqb2l6+M16Zut9+OO322wG4/7xM08R173sfHvvpTyv3rfv617Hvhz7k6xjMUgn/34IFGHn1VcfH5trb8e6XX7YV++/9t3/Dbf/yL5Xbx15+OfY65RRfxyZiNZc985ln0D5rVijv4RV+z9JFkM9r9+7deOKJJ7BixYrEdKKGcuoNDw9X/r9ZGHSqb1c/TuQJTSbJQdh2773WPzRN3Pm+96F7zhwAwKa//lV6yMjmzSh85zt4SCNx84Err6y5fe+ll6LVo/NEZNfLLyudbY/+4AdoGxy0fN7Izp2JCnoAcPc//zNmrloFAHh+T+Q8TIZfegm3n3UW2vv6UCqVLAU9AHj2179Gqw9RLQxGBwZ8CXoAsPEnP0HuxRdDPiJnDAB3vvSSa1fnwNNP465zzkFTWxuKExOSoAcAr95yC+7/wAeUz3/aQhgDJp26977//ZG4D574f/8v0PNfuu463PXe9yLf2ir97NYf/KDm9vXnnIPBv/0t0PuVeeKKK0J5nTL3fvKT2LJHgH9GIbyapRLu/Kd/QtfMmdLPtj71VKjH4pWxHTtw53vfi5bOTpSKxdAFPQDYev/9+El/PyZ275Z+9sLf/mZ5XjthAHjI5uf3CufQX087DfuGtPiImlKxqI2gBwBb7rkH955/PjKZ2oovpmni/v/5H+nxZqmEW889F/PWrq3cV/68XnnkkYqgB0yOA/ddcAEMw8CWjRtDF/QA4Omf/xzNe4Sg5++6q+ZnT/z85+gC0BTBfOjVW26R7tu1cWN0Y7LNtUB67A9+gNJjj0n3lz+nwVdfdRT0AODur37VwxG+xn2f+hS27HF/PvOXv1g+btfGjbj73HORb2nBq48/HkjQA4CHvvxl7Niz0X2LMEZcc+aZGKxKuuiO0xhIJrlbvBa85S044G1vAwA8YXPuBWXrfffhvvPPr7gC3XxeLz/0EJ4Rxo0n/vM/gY0bfR3D+MiIK0EPAArDw7jjPe9BW0+P5WNuE/6WN3/wgxi69lpfxybylMVncdf551fWtEnA75k15pveBEyfnvRhSDwYwVw2DhpK1LOjVCq5elw9OPWKK1Zg4Kqr8IrFznlpyxYYuRwmxsdRqJo81/DKKzA0+juMKYQb45VXAr2muWWL+r0GBzH29NNosfr9h4YCvW8YjL7yCow98eNSCJFfFRMvvghjYgJmVdxFhTkyEviz8ItpI746MTEwkNhxj3kUhYsvvgijsxOmxSLKLBYtf5eizSYGgMnvegQLyDAW3wOPPoqpLnZgJ4aHQ/ksi4UCdnuMuTox+uqrlWMrKoQrADC3blU6c8zt20M9Fj+Yr74KY3gYhQgbTKkEPQCTUbuXX44lFjsxNJTYeOAVsyrGrAuFZ59Fs3DNHN61CyMWmy47n3kG8+fOlV9HIcoUX3gB+aamyITM0u7dlc9+RBEl3XzXXZi7dGmo72maJooW19bipk3IKTYzgjLhYQPMdPg+FDdvDuOQLJnYsqXy/iWL8aHM2DPPoKmnB5vDWKjZzAsKY2OpGSOIf8ar5hNjVeVvoqDw/PNoamlx9didW7bgmdtuk+4PMgc3vF7XN2+GYbVuVDAxOBjad6ZgMd83t22DkaPcoRtGLof5fX3oSjBtIhKGUy9JGuos76iqKTAmDDrVt9tt6qVls9nUW2izbW148w03YMdjj2Fs505c85731EyGi3sWBKM2i/2SZqltt6Ksp9e0qT+3a+tWtMybp/6hw99m5XvfW1O30C03fPjD2HL33a4eW/3ZFYUF3qFf+UoltmLHpmuuwe2f/7zlz8f2iIV2fycAnmoYhY14bJlcDv9osSv44nXX4baqGMWEh4lJ2Nh991QU9oh5psX3wOp+ILnPb0wQm9dfein6HWpF3XrRRXjpppsqt3dt3epK1Ms71H5yy/CuXTV/DyOTwcl/+xuQzeLJJ5/EkiVLJDeSyJP/8z944LLLKrdHqzYBxO9qGavPQPxce1euxIb//E/b9//zqadit8XO+5wNG3DwxRfbPv+3RxxRM8aVj0HaADIMvPn664E9gltxdBTDL72E8cFBZJubX/vX1DT535aWyRivYWDXU0/hby7r4BQnJpBranL12CDYfYd0Q3WsJ/zud8oId5mH/+u/8Nj/9/8pf9Y0ZQreJJThcOJ3//APNY66sdFRSdTbauOEHtq5ExPj48i7+GwnxsaQy+ex02Ijrpq9zzkHy8880/Yxz/zhD7jnkksqt6vHSNV39NXnnsOcJUtCFZetxgJg8pxHBKKeOCYfdskllXp04vnhdF0Qj79zwQIc+7OfAZDHwDKZfB4LTzwRy9/5TrQINZEf+sEP8Pie5wPAeNW55XQNG9u9G9lcDoPCJsj6f/s39B90kO1zb/3Up/DSDTdUbqdpHCDRUD7fTNPEqCAoH/ntb1vWD3V+4RJ+e+SRNXdNjI+7EvVGh4fx+F13qdcfAeZwqu/5iVdfjfyeGqNXHn10TR1Lu3FB9T1tcahP7oUJq01tfme1JZPJaKmp+NF6dPg9GkrUa29vR19fH7Zt24btwsV9a9Xu74IFC2I+svgxDAO9K1YAAFqnTVOKeiM2woJug2QUwoOdUDiwbRv6LUQ9J4Gxd/lyX80HOufOtRT1MrlcTZH5GlFPuJBOP+AAV+9fcnDglRcA4uuLJCrqCZ9FtrXV8ncX6/kUQix67BW7756KCSdRz+YzsFs82r1mEErFoiSazjn66EoNLSsWnHCCJOqJqH5XN8KAGwaFXfm+1asx+4gjUCwW8UpLC2bst5/jhX1k8+aaBW31Z13yKOqJ53dLb6/jdzvf1QVYiHrts2c7Pj/b3FzzXSkfgzihbunt9V2Dbuahh+K5v/wFT/7qVzX396xYIUX9C4VCLKKebhtZdqiuQTPXrUNLb6/lc16u+l6JuDmvRNpnz8ZAVWH1cWF8NU0TW196yfY1dm7ZgmmzZ9fcpxqXx0dHUSqVXG3EHPDxj2PKokW2j9klxNqrF6Oi8FW+b+fmzejZU4s4DOzG5UIETkxT8febc9RRldq8LwjlC5yuCwVh/tA2fXrlHJpx8MEojo7i4R/+EMDkZsSKd70Ly9/5TrROm6Z8vc133lkr6inGICtGd+/GoOAMb50+HavPO88xxtwmfKZpGgdItBQmJiShav5xx6Fr4ULfr9nS11fT9MrNmFYoFPDoHXdI37kyYc/BZxxySKX5XbapqVbUs/kuigIoEK6oZ/n7a7ZeJSQq7C0FdcgBBxwAAHj55Zexqypq8Mgjj1T+v9xMo1HIC12R3Dj1dBsknXZqw37NXVu3unbPiOSruuh5odmm4/C0Ped1mdHduyvHJy4OxM/bik5F9KmasT0XaJ2deuJnYVfAV1xMFCYmInGAukH87nU4fBblyYzV8erm1BMX+IDz7wgAs6s6LgPAyNAQxoTXUi2Gw3LqiQtDJ5eHiil77VVze2JsrHLMlk49l59rxoW4lbPZ9c+6cASI36Fy3VFR1LNanLvliH//94rjoX3WLGz4z//E6ffeW6kvVMYqohg2ul3z7FAdq9O5Ydeh3E/38g7BQSt+54d27apcQ8q0zZhRc3unIsI5rljkToyNSY+dstde6Fu9uua+uf/wD46CHgCpu32xypmjEvUAYCDkGJ7VAhWI5pxX/V3bqwTVjCB+OV0bxbGs+hwyMhls+N738I6HH8Y7H3sMp99/P/b/yEdsx4w2oaZojagnXMOapkypuT0yNIQtL7xQc9/yM85wVZcwI8b2KOqRPYjjl5HJoD1g7TbxO+Ak6pmmiSfvuQe7A5SacXp9iaprsDgu2M0XRxSliby6m0rFIp579FE8cvvtNZtCpmlabsQnNY8nJG4aTtQ79dRTAUx+yb/3ve9hfHwcL730Ei6//HIAwOzZs3HYYYcleYixI4l6eyZIoza14Rpht9JO7BgbGZEu6G6eB/hbIDk9b7ogRJulEsZGRmCapnQ8OZc7Y07doirxWyenl05OPQ+iHpCMW880TUnU69vT9MQKx/itaVp+Dkk49cSFcb693Va0LjNt//2lBZvo1lMtTsNycolOPae4sApR1ANeE3GtXK9unXp253cZO1HPTZ2urPC3LB+D+F2xi3q6oXXaNLz1rrtw1jPP4Oxnn8Xe73kPMrmcNA5G4VpSkeQ45hXVd9bp3MjbiXo+NqLaBYfduPCdHxEaWXUtXIgDP/GJmvt2btki/d1Vi9zxsTHsEES9eccdhzVVHbBhGNLrWyF+D8rXUJUzp4zTOOqVuJ16ouiayefRWhWBFb/3TtcFUXgUx20A6Fm2DN2LF7uKLbcrRL3yuSGOg+UUSpmtL70kbTqsfNe7HN8TgFSLK03iPokW0XnWMXdu4AY2kqjnMAd95bnnsN2hJl2ga5fiuZkqIU4S+z2Kel6P7cWnnsKmJ5/EjldfxeN33YXhPdcRu/EyTdduQoLQcKLeUUcdhTe84Q0AgJ/85Cc44IADsGHDBmzatAn5fB5f+tKXkGuwgprihL2UwvhtFDjt7uyyKJjv9Lwml045ETvRo3vJEkmcHR0eVi5A3L5/trlZip5U4zp+m+C5IgmaNoKGSoRwmlBFQWFiQpqgiI4T1XMAB7HdStRLwKkninodc+e6WthlslnMPuKImvtEUW9C4QJ0qnPnhrHRUUmYmOHDqZdrbUWHsJs/MjysFODLWLqChfvFhbcKOzdezoUoKDn1yvFbQWxpFWpi+cEwDHTOnVvjzhNFvdiceilaGKiuQZLjSKDZTtRTCDJOiJtCkqNWOMb2mTMx79hja+4bHx3FiOBAUYl6I0NDUr20ecceiyVveQuOu/xyrPqnf8Ibf/97zDn6aFfHnhNq/5W/l1YbeYDz5pZX7M7rSJx6wtjWPmtWzfdOdHo6fR9E4dHvZmbleARRr1QsVq6T4rjZI4h64s9nHnYYepYvd/W+4vcmTeMAiRZxPOicPz/wa7YKnUCdnHqbn3++5nZzby/2Pvfc2geFXFPPsHPq2cz3VWtKr9+n54WO2+XbdnP1RlivEgI0oKgHAJdccgk++tGPYvGeHcKuri4ceeSR+PnPf451PmsApZl6iN+qCGq5dnLcqXadgGTit809PZIDaHR4WB1F9CAq2kUixy2cgBIpid9mcjk09/TU3JdEswzxe5fJ5RwXIE5OPUAt+Ln5/OKI34oilx2zjzqq5rYbp14Yv8OQ4NJr6upyvTAUmbJ4cc1tq+9qGavPVRzjXMVvbdx4fuK3ljX1AsZvrRAFpricemmK3ali2U6ieejxW9GpJ9bUU4zN3cuWSdecHULzC9X3e9vLL9d8xzNNTZVxYslpp+Go73wHC44/3vWxi6JeeePDKnpb/ZiwsDuv7aK5fhFFV1GUDezU8znvKSPGb4HXzgXxGiY69URWvvvdrt/XStSjuEfE8aArhHrsXp164jEc8e//jm5hfhH6ueozfuu1AZwbyuswu1QNv6ukUWhIUS+fz+Pcc8/Fn/70Jzz44IO488478YMf/AD7adRWOU5U9WMmxsdtJ446iXqW0bSAk2wnUVDc2Xb7PN/xWztRr7tbLeop/gaeRD0bscU0TYyPjWldU89rPNHrhCoKxIlP54IFjguiCYeaeoD6c3DzHYkjfuumnl6ZOUJdvbHdu2tiMCohNoxzUNyVn7rvvlJ9N7d0L1lSc3vE4rtaxm39zsBOPTfxWwunnjipbg0Yv7UiKademvBzXoQt6knxW0E0EseebEsLDMOQ3HrVtfJKpZJy8SbeN2v9et+OeADIC6KeWSrZ1tMDwq/ra+vUiyF+K4qygWvq+XB7VpNva5M2NsvHLB6L3WZLvrMTi/eU4XGDlagXtohL0ocYvw3Fqeehpp5pmtI6rXvpUhhCnbog859QnXohxG/lg5ncrLJbr7KmHmkUGlLUI7WonHpOOyo61dSzmkwHFvUcni/ubLt9nt8dazunXtOUKZKoNzI8LEWCjEzGlRunjJODamz37nR1v3US9YTIYBI19cSIwpRFixzFFjdOPdXP3CxMYonfenDq9a1ahRbhc6p26yknwSH8DuK55EUcF1EJ8HbxPbeiXhyNMsT3sHLqBW2UYYUoDkQhcKQdPw5OO9ElrEYZ1eex1dgsinoD27ZVxim3zul5xx3n+XirEZ16wOR13S5+G/Z5GLdTTxT1Ajv1Qo7fArJbb2LPOSUeS+e8ecrPEACWnn66tJFth5VoYdnUSKO5MYkWcTyI26lXLBalc7916lRJ1AsbW1HP4vwvTExEMjcrO9BtnXoU9UiDQFGPKEU9u3p6gF6DpNUEN6ioJ/6OYs01q137yOK3NouuZoWoN7p7t7LzrZvaZWUcRb2REa2del7it4D3zmNRIArqU/bay3KBUqb8HfAq6imFJOH8iCR+K3x3nDotV2NkMph95JE191WLeqrOumH8DuJrONUos0Ny6g0NhRK/deXUsxGIgzTKkOK3IdTUUyGOg1EIHGlHR6deqViscZ9Zjc1zjj66ZtFYKpUwsKd+rdvxeH5AUU8l+hSLRX2cenGIeqJTz2tNPeEY7eYvblE1y1C5cHJtbZYCi9sGGWWsXE9WmzBhnwdET0zTjMSp1+ahpl5B8bOWvr6aRhZAyE49w6hZQ0hOVou5ipVRJOjczHDh1KPQThoFinpEEplKxaJt51tAL1HPaoIbNB4hPl+sgyU6D8o4xm+jcOq5jN96dRc5xSLHdu/WWtSTIl4Oop5YByyR+K0wUXQl6u05Tq/xW9V3RDw/Y4nfenDqAXIEd9fWrZXfLyqnniTqBehyJ35XJ8bGlLXCrN67cn8CTj3XjTLiit9G4NRL+yJAdNK76Ypst9nkS9RTdE+vdrer4rcA0NLTg+lr19b8rBzBtfuOVN539mz07r235+OtxtKpF2NNvbi730pjsiDqWYn5VkTh1FOKeoq/e7alBV0LF0r39+2zD6avWePpPS3jtxafAZ3DjYGqE3YYTj1xM8xuDjohrH0y+TzynZ1yWZAQu9+Kr+02fmtZgzwkUc/u78T4LWkUKOoRqfZM2uK3kTn1hOeL7hqzVFIKCHYXkExTk6sFlgrHmnqC6FgqFqXP0auo1+nCqScJh4LLIdHut6IbxEG0EOO3OtTUm7LXXlKNJ5GKU8/me6kUoIUFSK6tzbMjwyvFQkH6znqpqQcAc4RmGeOjo5W/m7JRhrdDVBKmU08U9QBgeNcu6/cO06lnM/7YCX5Wzy/tqTcmxl8ia5QhiANROPXSLur5EXuz+bzl5oGfemjZpibJ+VztBrMrjSDV1dvTLMONU2/+ccd5cqOrUDlWnUS9sLvf2p3XsTj1BFHWrSOnjHj8fhMKNcckinpjY2qnXmurUtRb+a53eT43KOoRFWL01shmPW9OqhCdesWJCcs1hXTN7euDYRjh1tQTbkuinvD9sFobDlnNbzwcm7K+H+O3hFSgqEfkRhmM304+X/gdu+bPly6Wyqifzd8mSAc4y/iKYaCpsxMds2dLC+7hgYGa26E79RTx27yw6E5VTb2E47fFQkF6TzdOvWKhgFKpZO/Uc1FTL9/R4anwsR9U3xmvol73smVSfaWdeyK4UTXKkHasA4h6udZWaQEgfldr39rCqSc6sgJ2v/XbKKNYKEjHIgrkYRFHTT2rcz4tYp8fsRewdlP5dVnZNcuwK40ginq7BwcxNjLiajwOWk8PUNeeLYyP275/rE69kEU9letIapQR0KkXRvxWHPOtnHq5lhbJNZVtbsayd7zD83uK43ylpp7F580GGo2B6DzrmDMn0EZfGVUtWqtxx6rkRZiinmennpWot3Onxct7EPUUYw5FPUJeg6Ie8dUoQ6dBMjJRTyF4iLvXqp17u/cNslvd1NUl1TsDJifLRiYDI5NB16JFNT8T3T9Oji8RcRItohL1xAVgojX1PMZvxQlV3I0yVN+7roULHUU9YPJYbWvqqeK3Ys3F9nZLZ0JYiN+Z5u5uz50qDcOwjOBGFr8V3U8BJ/Cis9bWqRdi/NbOrerGRaxa3KscrVE1yhDFgShcS26dkbrip6YeYCPq+bxuidfL6lqa4t8yV3Xu9a9dK4m3O7dscYzfGtks5h5zjK9jFRHH3N0OJUlCr6lnI+qFLWSrNlocG2U4uMKd5gV+kM6n0VHpGg9MjnHzX//6mvnSsne+Ey29vZ7fk049omL34GDN7TDq6QFAc2+vJJyVr6+maWLnli3YtW2b0h1fLnkhPj/MmnqiYOhmE9g0zVBEPaVgzpp6hFSgqEckoclNPE6nQdJqMA+6Y6qKboruGtVk2G7hF2Ria2QyyudXx3LFWJ848fDq1Ms61A1TxW+lmmw6OfW8xm9jduqJol777NnItba6E/UmJrw3yhA+u5xC1As7ai82yfDq0isjRnAHtm6dFDYVx6tbowxAFvXsNlLCjN/aufH81tQTFxfZlhZX56wfRLEnivit1RieliL4Uvdbl/UfLUU9ny4r0e015jJ+m8nlJHFu55YtmLDoOF+m/6CDbGvPekHcABsRrqUiKrdqEOzO67DPeXEe09zbK40TUlkGm2uNSmj3ew5V0z5jRs3t8dFRFBXnkWEY6Fm+HK/76U8xc9067H3OOTj83//d13tS1CMqxLl1GPX0ACCTzcp19fbMQ5+89148fOuteOjmm/HsI4/ITr2yqBdm99sQnHq7BwdDuXaqXqNSU89mTEzLZhwhQaGoRxyFnkwuh26xXptGg2RcTj1VZE7p1LMT9TyKaiKqBUu1c2WK4NRTuQ29suStb7X8WXFiQlpoxdFowS2B47cTE7GKkmLsvSzSuolFFsbHAzfKyLe3ywJAyJ+fOBFt6+/39TqiU29ifLwSwY0Cacc6oKgnjqle3rtyf8hOPT/x21KxKH2mrVOnBq5rZkWSjTLCrpsWFV67fpcJPX6rcFaVcTpGVV091SZaNUG73lYjitJi3E7VITfMa51t99uQBUTx7yqKsYD7gviAupFHFE69UrEodQCtHsOWveMdePMNN2DD977nOaVQxur3thoLKOo1BlE59QDFPHR8HGOjo9iyaVPlvpeeekraII0ifutYU8/FuGDl0gO8HZudqGcbv9XIhEJIlFDUI45CT6ci/qdT/NZq8hu2qKdy6qlEPbu/TdBi0SpRr3oHXHT/SO/vQ9Q79CtfwdzXvQ5TlizB+ksvlX4uLnakyXuS8VuPTiYpMmiakTiBrFB1vgUmd2+dBJsJH069JOK3VnVgvNK1cKE0kd764ovKx6bBqeflvcv4cuqF3f1WEXmOKnoLKBplRLCIthLH01IvK/T4rU9BRhSHauK3Ft1vy8x93etqbhfGxzGwfbvt+4VRT6+MKNqJ8dueFSuk54R5fjid12GKR27q33npfivNyQzD19xDRFUORLxmuhnDvECnHlEhOuvDcuoB6trOo4r4v3gMVvHbKLvfimke1VxlcMcO169vh934ypp6hFDUI3AWerr32ivy4vlBiCt+q3LqiTtlgL2YGKRRBqCOsDTbxG9F/Eysu+bPx0l//jPOePRR7PfhD0vOKnFSLR6jTvFbp+6eXooUR4Gq820Zxw64Ppx6kpNT4dQLO35rFRnxg+jW2/7KK8rH6SjqeXLqWTVu8OHIsm2U4bP7raoLX1SoauqFPcZYxp1TIupJ8Vu3op5FRNJvkwM7p56Ti7pr/nx0L1vm+r1apk7F9AMP9HGUasTvidjtUiXqhenkdBKHoqglWUYV31MJw1bfO/HYm7q6QnHu5tvapHNUvGa6cRt7QWqUURb1LMaCtLh5iTvcXluidOoVxseV9bTHBIdt+bqbidCpB0HUs2okU01oTj3Fd6tUKk3WF7SrqafRepWQKKGoRxzFgilLlsi7tBrZmeOK32abm6X6X+JFFYiuph5gEb/1IuopIkNecaqBpmqUkZSwp/oM7cg2N0tuSlUTgKiwE/WcapQ51dRTfWclp15HhxwrDXlCZFXc2Q+iqGdJBI0ygtatEZva2L63S6deLPFbUfRVxG/9ui/doBKewnbQWX2PUuPU89EVGVBfnzJNTa7juyJi99uJ8fHKmOxGkBYjuHYsfOMbZYdKAJzG297ly6X7wjo/SsWi40I0TIeqUzF8QD22WB2jeGxhRG/LtAtuPTr1SJS4nbuG6tSbPr3mtlWDIDEpFEf3W1EwdKqpVywWMTwwYPPyweK3ZqnkmKZh/JY0ChT1CIxMxtbB1b14cSqdeoFFPZVTTxEnEi8YtvHbKGrqVd3XOX++rdgQRgTGaUcyqBsxTPw4maRd0piceqViUZqkeRL1LJpElNGlUYbk6gogAM0WmmVYoaNTL9/WJjl/3b535X4fMUu774DfRhlSTb0o47cqUS9k15LVOV/3Tj3F2B1EkFHVZisvUJ3itwAwT4jgVpPv6MCik08GAEzdbz8c/PnP+z5OFU7jbdfChdJ3ISxRz03JhzDPeVeinqLZimVMXTi2MJpklJFEvYidehT1Ghs3cwcjm3V9LXeDqmGb8tojHFu5u3OY8VtpbHCoqSeOCcO7dtm+f9Dut6qkgOoxhDQCFPUIAHuxZ8pee3nqfBY3cdXUy7W0KLsAi/FMW6deBPHb6vuy+bztjmEoop5Hpx6Q3E6Z1+63gGJCFZNTb1QR5fbq1PPcKEN06rW1xV9TL4BTr2P2bFeNNnQU9QBnZ63Ve1seUwLdb1WT6iDuSydU40vYop6lUy8lC3bfNfVU5R0CCDLNPT3SOVUuWeGmidHsI4+0PKcXnHACjv/Nb/D+kRG89c47Q11UA87jbcfcucgJzvewopeq80x074RaS9Jh4Q5YxG9dfk/C3OgT6+pJTj2frlIrrOKFFPUaAzdzh465c0OZD5RpE7/rVQ5nO8pzV/H7G2j2I/7+Hmvq2UVvveLbqafRepWQKKGoRwDYiz3dqvitRoNkXDX1sq2taOvvly7eorvK7uKbDxq/dbHosov1hSLqzZtn+3OlqJfQ+eK1+y0gL+biOtdFx0FLX1/NZ+vkQJgYH/feKEPRHTlqV27YAlCrz+65XpHit2GIekuW+HrvMtL5rXDTiNjVzfNTU88slWJtlJHJZqUyAmE3y6i3mnpBut8GceoZhiG72/eUrHDjos63t2PWYYcpX7sczc3m85F0WnYqS9I5f750Hobm1BPO50xTkyzqxe3U81BTTzy2IMKwiOjUkzZfI3bqwcmpl5IxgrjExfynK8R6eoAs4Fs69QSs4reBnHrCba/db22bZCAepx7jt6RRoKhHAFiLPZlcDp3z5zvWTUiSKOK3pmlKF6dcSwsy2axt8W/AXgQJumOt7H4r3GdXgD+MmnpO8VuVcJmWmnqAddwmauzq6QERNcqIufutaZqh119rcyEgReHUcyOgOeG2WYbb+K2rmnoWi95MLufKbSC+R0kRv42yph4gO8rCdsfUW/db1/FbxdgdtGO7WFevXIfWrfBoVVdP7I4bNqILr5pMPo/2GTOk62lYoq/oPG2eMgXNwmcTZfxWrJsFeIzfRllTT5h/iYReU8+icZTVZ02nXn3hZu7QGWI9PUCdFnFz7SmnHqKsqeco6jk49aavWWP7+naovnOq+YcInXqkUaCoRwBYiz2dCxdOLvY0ralnmqblJCrIBFv13PIOsBjzkZx6djX1gsZvHWrqAfaRvjgaZYiLDyA5UU9yg7iY8Osq6lmJMWWcGmW4cerlFN1vw/yuqxaiQTulirvaSiIQ9UJx6rkV9dx2v3UTv7X4DjidX5XHKZx6cXa/BWRRL0zXEmDj1EvJgt1v/FY1dgd1WVk59YKIerm2NnQ4iDtBsXN8dcydCyOTkVzdYQk6KlFMvPaHKh5FHL8NmlCoRnTqiUReU4/x24bCTU3hqJ16xULB8RqXyeUq4rkUvw3TqSc2yrDpfjsxPi7Na/sPPtj3sfmN3+qULCMkSijqEQDWDrKyk0Sc0Oki6tntVgcS9RS/X1kQEkW9cQ+iXlMUjTKERZetqJdU/FaXmnounHqSWBOXqCfUBvLs1HMS9VROPVX8NkJRU7WjGljUS8ipF0YNnaBOPT/nt5Ww7SZ6q3qPYrEoTaqjjN8C8hgTW029lDj1pEYZLl2lYcdvAdlZVRH1XLqo+1avlu5bfuaZgY7JDXbjbbmurPiYsJx64vepacoU6TofavxWuO22UYZl91vRaRinqBdx91vH+C1FvfrCxVondKee4vo5JswPRVqmTq2UIZCctlE2yrCZL4ouvWxzM6bus4/t69vB+C0h9lDUIwCsxZ6yk8QqgpA0dhPbIAswT049L/HboDX1VE4KL069EES9lr4+2yLiWot6LhwrdjuPUeLk1HPT/dbue+mqUYbKqRehqJdra3MUK51w49QLRdQThZIQRD27+pc17x1i/NbKyeI2tiaKL2L5AUCOD4WNJHCEHb9NefdbKSru0qmnclQFvWaoOsYD8rlrJcYYmQz2//jHK7czuRxWnXtuoGNyg91427FnY0uM6Ebq1BMj5zHX1DMMw/U8MMr4rdgoQ8St49gtVlFGq/klRb36ws3cIWynXnN3t2PtbpHqzVHpnA1yMF7jt1Xj+pBQT2/a/vvL47wXp57iu6Vy6omJKF1MKIRETXjtekiqsZq46+7UsxP1wo7fVpx6QvzUi1MvaPxWtVsuTva7Fi60fv8QRD3DMNA5bx52PPaY+j1Uv2NC54up6GDsRBLxW9M0ZaeeIPg4iXrFQsE2HuiqUUbE3W+jiGmKneKUaBq/zbe1oWPOHAxt2mT/3m4bZbipqWfl1PMZvxWbZAAxxG8TcuqlRdQTj9NtTT1V1FYl8HhBrKk3Pjo6WbNWFB5tXKZrPv1pbN68GdlXX8XKd79bcntEgd1427VH1Iuzpp54zkfa/dbiM8/k8yhVHZvr7rcRNsoQidqpZ9Kp11AkUVPPyGTQMnUqdr/ySuU+R6detagXYvw2SE29QcGp13/QQYHq/Slr6hWL0mZx24wZ2DU4+NpjNFmvEhI1dOoRAN6detqIeja269Djt3sWHY419WzeN2ijDFVNPfE1c62t0jGWCUPUA+wjuFo79XzEb+M49rGREek7JdZbcyO6jCsEljKuGmV0dMi/f4jfdXHyFYajK674rTi5DcOpB9g7a197a/n4Vfe5qqkX1Knn8B7NPT2h/W2sYKMMe7wIZtUoHVUBvzti/HZsdFS9aWZzjLmWFsw77zyc8PvfY/EppwQ6Hrf4cupF1P0239UlCa6ROvUUNfUA95u7Unw4RKdevr3d9vUiF/VKJZRKJdeCJkk3TnMHI5uV3MhhICYQgjj1Qu1+K9bUE927e74XpmnKTTLWrg3kIrQaX8WNxfb+/tr30CRZRkjUUNQjAJydeqqOhzowEZNTL9vSUqlXIdXU2+M8KBNl/LZv1Sp0L11auT19zRqlqGElFIQl6nXYiXoK4VIXUS+jafdbMXqba2+XJnVuYqoq11QZ340yNHfquWqUEQJi1Cw0UW/JEsfHKAVZxefpqvutxXcg51L4cXqPqDvfAvI4ykYZtfhtlBHUSa5CXPCapZJy8yHsrqVBsWsq1Wnl1Asrfqvqfits6IV6zrt16rmcB0bp1APsO+CGfR6pNvnsPudioUARoY5w2tTsmDs3kk0sccPTSSyufrwO3W/HR0ak+Wj/2rXyhkFApx4gz3vbZsyofQtN1quERA1FPQJALfZkcjl07qkVIe3QajJpsXPqBaqpJ9b7qXK3iKKeaZo1F5Uo47eGYeBNV12FZe98J1acfTaO/81vlI+zFPVC6H4LvFYoXCTb0qIuqJ3A+WKapuu6TdUkUVNPVU+vLCKXcYrfAvZOPVGUMhVug3x7e6S/v+jUiyt+G0VNvTDitwDQ7capp/gMVPe5EW8Mw1AKe36734pEXU8PkGOiYbtj6q5RhktRTyqwDgDCOOSVtpkzpdcYE8Y7wL2bMC7snNEVUU/sfhuRU6+pq0sa/8PcWJWaAFmIem7ngaIoGTShICIu2qsJvfutQrRwGm902fQmwXGaO4RdT6+M181Ku/htpI0yLFJcYvS2uadncl4bcvwWkOv6UtQjjQpr6hEAalGva9GiygJf2/htjE69Mm39/VJtmbGRETTteYzd+4Yx4Zyy11543U9/6vgYkWxLS2g7ip0WE5l8ezuMTAZGJlNzjiRxvihFD03jt2I9PVUDBTeint3kTfx7qBagUTfKkJx6YcRvYxL1Iovf+nTqqc5vt+JNrrUVRUEA9tv9ViQOUU90/oTt1Et9owyfTj0VdjVa3ZDN59E2fTp2v/pq5b4RRX0o7UQ9u+63FvHbsM6PCWGR2jp1aqTXJSliZxG/dTsPVImSYRKnU0/l3HcSb4uFArIBa1ESPXD6noVdT6+Mq1rBVUTVKMNpbLCaL4pNMqavWTPZbCdANNjqeyde/9uE+K0ujR0JiRo69QgAtahXLQxpG7+NqaZetRhnZDJy8W+Ljn4iovsqKsR6bEB4Lj3A2qlXXgglIYyJ2NVFtEOH+K1KlA0qCIu/h8ptkO/oiPT3l5x6vb2BXzPf3u4seEbQKCPpmnp+z29AvfD12/1WJJb4LZ16tvh16gHAine9q/L/2ZYWrHz3uwMfj3i9FMe78nvphFW5g9Zp0ypjsXhNDes8HBNEvY65c5GNcmM1xPhtqViUji30+G2cTj2Fc93pc2ZdvfrB6XsWmVPP43W0+vGicBZr/NbCqde/dq3y+WE49UTo1CONCkU9AgBoUoh63VUOkijdO0Gwi9+apulbfBQvHqKLRawTVJ6E6yJ2ip1TgfDq6QHWjTLK4koSwpiI0qmnafdbSdTz69SzQfw9VBOkqOO34vc1LFeXk1svjE8wiu63gEtRL8T4LaD+HrjufuvwHrE49ZLqfpuSxXoQp97h3/gG9vvwh7H4tNPwj3/7m7IjrlekZhmiU88wIm+u4hWr8ba6nmwU3W9N06xsElbec/bsaJ16LkU9N40yVIJWmp16qr87Rb3GISmnXpD4LUKM3zoJ/qr5sqpJRkXUCyA4ut1UE516FPVIo6DXLIokhtKpV+X2ctv1LG6cYlelYhEZiyiJHaYYvxUWvB2CU63cmcpO1Ju2//6ej8MvSqdXiE699jlzJuskCRfkvEainl8nU6hFhl1gmiZGBFHPd/zW7n0c4rdGNotMU1O8Tr2QBKC2adMw+Oyzlj+PoqZeWCJEvq0N7bNnY/jFF63fO8RGGYBawEuTU69ZbJQRU/fbtMRv/XT9LtPU2Yn1l14a6vGIm2DiJka2uTk2F7tbrMbb6g2tKLrfToyNSd/39jlzauLLQDKinji+qI5B9V0MQxiupm3mTMufRe3UA5xFu7SI/8SZxGrqKRrg2VEt6qlqYpqm6WuMleK3wmuonHojg4PStXJ6nE49Rfdbv78/IWmCTj0CwDl+q62oZ+PUA/wvwopi/FZYFImLlHEHUS/f0YFDvvhFX8fih6auLrl7aohOvWw+r9wtL0+otYjfKj57X/HbiM/1ibEx6VjjiN+KC498R8dkzZM4a+qFEL8FXOxqaxy/BV7rMu72vQFF445MxrLAvYiqfp5rp55TTT2PixE/SPHbiYlwRY6Ux2+lc1XRvChOxGuFWEPUbT3HOLEU9ao29KKI34rR20wuV6njW02U1yXLmnrCmKea74h/g0wuF7p7rt1O1Iu4ph7gvJlMp179kJhTz+N11K77LQDfcyDp93dRU0+M3nbOm1eJzFttGLjBjViea2tTNiTUJV1GSJRQ1CMA1IJPTfxWnMxpMkC6cer5QXTqiQteK6ee+DwAeOudd+LMJ5/E/Ne/3tex+EWMcIZZUw9QR3C1j99qWFNPXOAaudykE1LAqsaTW5yceuXzQxJkQ1o8mqaJCeH7Glv8VnNRT1UDs+a9VbWrxOPxELFU1tRzW4/PSdQLoaOxE6KoF6TUggrLrp4pWayH2SgjDMSaeuLfUbcmGYD19bK6SZQ4Jo8OD+PBm27C0K5dvt9XjN62z5qFTDYb6XXJqcNlGVfxW2GMz3d1he6QsRP1om6UAThvJqdlnCDO2H3PjGxW2uAPC89OPQdRz/d44bGmXqlUkptk7HHpqY4t7PhtS1+fVH8U0MeIQkiUUNQjACZFqurBtrm7u0a0kWIXmgyQdo0yAP/OCim+JNbUE0SXcZuaen377BOLe0VEFArCdOoB3kQ9JHC+qIrFu1lcxC7qCVG05tmzlY6rsGvqiQuPcpRMKsge0u9fnJiQJohhRTUdv1+ai3p9e+9dc7tZcDC6cep5EW6UTj2Xi2En8TCW+K0izhdmXT27+G0advyDNMqIgg6bGmiAnqKelXPVLn4LAAPbt+OJu+/2fZ6MiaLeHtEg0rrG4tgWoKaeGL8NO3oLOMRvwxb1FAKBuBEnQlGvfrBb63TOmxdZLVAvNfUyuVxN3UqVKO93tHDqfquaLw4Kol7/mjWvHavP7remaboyabT09iqvd2m4bhMSFIp6BMCku2L/j3wEwOROysEXX1xzsdIxfmuaZmTxW6lRhujUE0S9sdFRpVskk8u5jsSFTd/q1TW3rTrW+kX1emV3gw5OPamDscvJvtQAIeJjFxdxLRYLYJWo52UxLH5nxXO83Cwnqui0SoBvCcnV1ZaAUy+sRhkAsOyd76wsVHOtrVj9vvfV/FwlMkk1/gI69VIVv1UU3g+zrp7d9U2Ha58Tujv1RHTrfAvsuXYr/m4dNvHbMiNDQ76FnXEhflu+zkZZFsJvTT1VYkMU18NukgFMXqusXlesfxwU1Tiv6t5cTVpi+sQZu7lDZ0T19IDJ743ba3pLX1/NhnWY8VuvjTKKExMYHhioua//4INfe77Pmnpux7uW3l6lEJ+G6zYhQaGoRyqs+9rXcOaTT+Ksp57CPuedV/MzlcU6adxMmn2Leg5OPUnQMk2Mj43Ji6kEHQgrzj67Upst39uLleecE+rrqyY0ZeEp7mYTKvwWi49bkJSO02KhqBL1vIhi4u8hNuewjE6H9F2fGBuruZ1vbw8cKa68loMLNZTutxE1ygAmJ6LvfPhhvPH3v8fbH3gAczZsEN7cuVGGl7EmykYZcXS/zTY3S8cRh1MPSMeCXTunnpOop6FTD1CXPKgujG9X0sLvHCkJp57b+K2bun7ivCwKUQ+wduvFUVNPvHaK0KlXP9h9z7oiqqcHTDakcLtBJs4DrRpl+MFpbBDHBLEkUiaXw/Qqp57ftYHb626zhainS8koQqKEoh6poWvhQsmFBrjrehY3Kpdec09PzW3f8VsHp17rtGnShWN8ZER6XibBxUprXx9Ov/9+vPmWW7Dfr3+N3pUrQ319sa4gUCXqaeDUkzoY+xX1Ihaw3Z4zKiFGjGnaUf17jO3ejZeeeqrm5+W4dlSLx3FB1GsVOpQFwWoRWkHz+C0wufhdcMIJ6Fq40FUN0yBuLGVNPbfx22zW2smTzyuLVEeBqllGWNh953XvgGuaplabS8DkZ2VXPiDp47NCPOZca2tNvNyuo7yqvq4bxJp65flYVLVOJ1/MnVPPVU29mEQ9q7p6cXS/HRPit9JYRFGvbrCN30bo1AOcEwhlpM1dVfw2pHmck6gn0rfvvjWbI34bZbi97rb09SnnQnTqkUaAoh5xhWqHNmlhT4zzZZqapJ2tqJx6RiYjR3BHRnxHPqMi19KC6QceiFwEE2ulU2/PhFrH+K1b0SJuQVIS9SzEGaVTTxCxbd+n6vd4+qGHat/XMCqRz7icem0hinp9q1bZ/lz3+K2IG0dMEDdWkO63gLUI0zptWuhF8a0QF9Khxm9tzhftF+yKY086fmsYhm0ENy2iXse8eTXndyROPSF+W948i9Wp5zZ+q6qpJ8ZvI6ipB1iLemFHud2M8+L1R/sxgrgmKace4L4+rfg4ZcmfqJx6Dt+PGVXRWyB6p15LTw/jt6RhoahHXKFcFCQs6omTx5beXmmSHVpNPcVEUYwUjY+MaOeQiBJVo4x8xBFOL6Q1fuvFqdfiwalX/r5uf/VVbH/llZofrTr3XPTv6VAWl1MvTFFv+tq1NRGPaQceWPuAMES9COO3Im7qOgZy6inOJS8bEFbvFUeTjDJiAf4wF9J2gozuTj3VsSct6gH2zTJ0vU6K8wmx7EbYop5pmlJNvfI8QzXehDU2+47fqmrqNYBTT4SiXv1iK+otXBjpe/t16iXZ/VZkxiGH1D7ep6jn9rprFb+lqEcagehWJaSuUC0KSqUSsk6xtwgR47ctfX3ShC4sUU+1+yvGT8dGRtAkvL+ui5UwaJ4yBU1dXRivKoprWZctzfHbmJ16hsUCXLX76iV+WyqVUCwW8fSDD9bc3zptGg750pdee/+oGmWIot6MGaG8LjDpBPrHa67BYz/7GZo6O9G9bBn+t2oyGfR3UD0/SlFP7CjnJn7ryamn+C54cbhYOvViFPVEsUDc5HFLsVBAYWICzVVjt22jDA1KT9ihPFd1EPUUZT3K6HqdFOcT4kaW3d/Vz9xjQlGX18qpB0yep37jbHYE6n4rOvUiiuNb1dQL26nnNM639PVJ1zKKevWD1Xg/ZckSzDj00Ejf2+0mWaso6kXZ/VZslOFR1JOiwW5FPZffqXLTkEwuV/Mc1tQjjQBFPeIK5YRSN6deT49cPD2k+K1q91fVAbfdhRhYT3TOn49tVSJR2bmQ5kYZkdYuUiCJMx4WuNmmJuQ7OjAxNOT8PqaJTU8+KdUDWvev/1oT4xUFpcjity53od2Sb2+vRIi33n9/zc+iEPWijN+qnHqmadZE/8RJqvi52aEazzw59TQU9fzU1Bvcvh2P3HEHCuPj6J0xA8vXroVhGKkW9VRikg5OvXY7p56m10nJqSeIenZRcz/jpujSM7LZiqM5VqdegPit5NSLKn5r1SU+7Pitg2jauWCBJFxS1KsjFN+xw77+daw4+2xL8TssXDv1hOtupN1vPTj1WqdPl9yMVk08nMp2uK6pt2ejO9PUVCPq0alHGgHGb4krVDvSSQ+SYk29lr4+qQZOpPFbQdRTxm81WExFidils7xzqYNTLzXx2wDNVZo6O11HcHcPDuLFjRtr7pu1fj2Wn3FGzX1ROfWijN+KhO1eidup52YBHyTqH6RRBmB9jsYZvw2jpt6mjRsrju/tr7yCnZs3A7Df1ddd1NPVqZfGmnoz16+vuT3v2GNdP9dP/FbqfDtrVmURHOnGqttGGRp1v21XOL0zTU3OTZM8Unb9WNE1f77UHIiiXv0gnuNzjzkG+//zP3srfeKTVg3it16731Yz/YADJLHOr+DouqZeWdSLaHOaEJ2hqEdcoWOLcDF+29zbG5mop6pBpYrf+hWS0sqaT30Ky888E/1r1+Ko734XfatXA6Co5wW3NfUAYNHJJ792wzCwzwUXuI7giqJzJpfDkd/+tjTpiqqm3oTgQgkzfisSak0Zi+c6xU6C4GYBH6RRhkrAS5tTT6qp58OpNyI4XAd37ACQ7vitsqaeBtchsQZtNTocn4r9P/pR7PvBD2LW+vXY8P3vo/+gg6THLD/zTOVz/Yh6Uj29qo1DpdAf0kI11Jp6wvdQ/J6GhcqpF3Y9vTJ2ruwulVNP87qbxD3iOifK676I2+upm/htWDXQvYh6zYpGbn7nZl6deqKhIun1KiFxwPgtcYWOLcKlmnq9vRgTBAq/O6ZuuthKjTLGxqTJnK6xorBo7evDP/z4x9L9bgr9R414froVLXTtfgsA6772NYxu24ahF1/EAR//ODrmzPHUAbeafT/0IWXX2CianJimKcVv3e5C+0FZU8ZFxMMSxd8gdqdeqQRUTYiDuIJVi1/VxoUVOjTKkOK3PsZ68Tm7BwcBOJzzmu/4q449zoWoFXbx26S7xFuRb2vD4d/4hu1jjvjWt9DS14f7/v3fa+73s6EoOvVqRL0InXpu47fSQllVUy8mp56qpl5U51Eml4PVp9m5YIEU06ZTr46Iseu9iF+nnlXE1Q9OY4PdtUU0WQDWczMnXDv19vwt6NQjjQhFPeIKneK3pmli28svY8uLL9bc39Lbi6Ig9PmuqSfGb1049WCaUr0yXR0IUcPut+7xEr/tXrwYp1x7bc194oTODR1z5mDtZz6j/FkUv3+xUJA+D1V8KixCrSmDBOK3ETv1VK8fRvfb1mnTXL9GUKT4rQ+nnpWoZ+ey0t2pJ461RjYbee0nN6TRqeeGpo4OrL/kErxwzTXY9sADlfvDiN9W/82idOqJuK2pp4zfCt9DMZoaFk0dHch3dmJiz3cW8LYx4QXGbxuXOLvei7i9nrqpqef7qhUgfqtaN/ktjeK6++2eTe6oEieE6Azjt8QVcU4onXj1uefw+F13Sfe39PUhH1b81oUg1Dp1qjTJHR0ednxeI6BF/NZnrbq4Bckg4gzgrQNumf0+/GE0dXQofxbFZye69ACgNcKaemHuVFs9N8ode1819TycNyrHopfommX81ofA7JegTj3TNKXnjAwNoVgs1lX8Vpe6rm0zZljGOnU5xiCIHaXDaJRRvXEYq1PP5eck/o6q71RU8VsAaBfcelE59ezGeqtGGbqPE8Qd4ucYq6jn0qknxnTD3NSUut+Kop7N30M1p/A7N3Ozlst3dFTGKDcbEITUGxT1iCsMw5AmlUnVKHj1+eeV9zf39oYWg3Dj1DMyGalZhijq6Roripq4I6wq/MZvpUmKRk49FX7it3buvihiC2KTjHxHhyTAh4oq4hHg5ZSRxrideuICOogYrBD1vJQKsBL14ozfimKBV6ee1SJhZGiorpx6OjTJACa/L1ZCfj2UqRC/E342FMdt4rcqYSm0OZgoXFg59RzcL6ViUbovqvgtoBD1EnDqdSqcejBNigh1giR4xyjq5dvbHcdGI5uVXOuqTTvf1y3xeRE49dwcm+hiVlE9r3XT1IeQeoOiHnGN0y5tHBQLBQzv2qX8WUtPD3KCqBeaU8/iwiqJeozfApAXBWlqlCFOOnSK36rw49RT1TqpvH8MTr0om2QAFovSFMVvVQsHaQEt3A7qdvLU/VaH+G1Ap57V43cPDNie87qLero69QDrCG49XCfF74/X+K1pmhgTnXoO8duw6ju6raknfu/F31H1nRIFhzAR6+pFdR5ZjfXZ5ubJGLDC9c4Ibn2QpFPPMAy0Obj1Wvr6lCKe9B1OoPut25p6bo6t3MTKjuqOxE5jFSH1CEU94hodCo8O7dxpuaiastdeslMvwpp6gCzqidTDYsUPklMviZp6YtMSl4tbnbvfqvBTU8/OtSh+dmFMhiRRL8ImGUA83W9jj986OPWCjjVhxG/9nIt+EcUCr91vxYL+ZXYPDqY6fisen07XIKtmGTodo1/E38HrNW9ifFx6TnX81jCMyDac/DbKEI9XKerVg1PPQrgoC7li/BagqFcvJFlTDwBaHDbKrK65UY0VnhplhOTUK9iYOaqpEfU0SAsREjcU9YhrdNj5sNqtWX3eeeicN0926vmYWJUUNZWsnE0U9dTocEGVRA+f8dvIa+oJ4qPh0VnTErZTT5ykhfDZifHbqJ16fneDrVA69SJsPuCrUYaXDqeK38fLWKV6bFNXV6yuMDF+WyqVPF2T7Jx6tq+j+eIgaI3OKLF06tVD/FZ06nncUBSjt0Y2K42TcZVAsaqpJ9WpEt5fjMBnW1oiHRO6Fy+uua3qiBsGVhs45c2xXFub9DejqFcfSE69mDuJtzmIenM2bFDeL56PoXW/9VJTT+XU89HEY2j7dodHTFKdWtEhWUZI3FDUI67RoZvQgDC47/XmN+PMjRtx5Le+BQCSU89P/FZVu8FqMUJRT40Oop7v+G2Mx26apjxpjKGmnp2jQfzswlg4TgixsrYIm2QAETj1xI6imYzlwjcMVK8dZqOMOcccI7+nIsJjhbJxUIzRWwDIKxxAXtx6Vovu4bQ79TSO39azU090P3vd9BTnHe0zZ0obB9ICOu74rSgqOjj1onTpAcCSt74VnfPnA5gUEFadc04k72MZv93zmRuGIUVwKerVB0nGbwF1s4xcWxtmHHoolp95Jg763OeUzwtt09FB1DMMw/Jv4rZRhtNGmbjus6LatajDepWQuIl3dCKpJumdD9M0MSiKev/4j+hasKByWyy+7yd+K9a1aerqspycdlbFY1TUw2LFDzo0yvAr6sUpSKpE58Rr6imceqZpehJ9RCSnXtpEvZiLZZcbE5WqRConp54X8aZr/nysfv/78eD3vodMLocjv/MdT8en+i7FGb0F1F01C4UC8i6/P1YCoOiYEtF9caBrowwAaK/nmnpiowyP8yOp861iwzAqp15o8VvhOxW1qNfc3Y3T778fr9xyC7qXLq2ZC4aJXU29MvmODowPDFRu+y39QvQiyUYZgNzZFgD2fu97cfg3vmH7vLDit07db4HJcUmVinLt1AtL1Kva4NYhWUZI3FDUI65JepAcGR6W4h0zDj205rYYv/WzWyp1oJs3z/Kxjk69OogV+UEHp15o8dsoRT1VV9U4aup5cOoBCCzqiTX1rLpghkXY0dgkduszuVytqBdm91sAR152Gfb5wAeQa2113JwQUQmIcTv1cm1tMLJZmFWL5zCcek7oLupp3SjDwqlXD13ixeuL6VHUEZ16SlEvqmuTy+63TqKeWKcyyiYZlffo6MC8Y4+N9D2cnHoApA64dOrVB9J1NsKyGyqUTj0XtSPDit86OfWAPZsNis0w1bjuJoVQ87NSSSq7NPuoo/DidddJj7V16lHUIw0A47fENUnbmUWXXvusWegUBDfRqVcqFj0fpzi57rQR7hi/VRN3XToVUqMMDeO3Sqee15p6FvFbK7cF4NGph+B/A6lRRsSiHjxOHJ1IQtRzOg/DiFn2LF3qWdCzeq8WhaMgSgzDkEQDq+YXKupV1JMWoTHXgLKjrp16ATc9xc1E1d8qqoWqU90sq/cXnYJS/FbRQCKNWF1Lc1Xnrfi7UtSrDxKP3yo2y1yJelF1v1V8FyxrTrp06tkd2/DgoDRPtqojWFNTj6IeaUAo6hHXJB2/FUW9GYceKrmHRKceELy2TYfNordl6lTbBUk9LFb8UFfx2wjP8zDit9nmZqmWJCDXl6zGs1Mv4N9AdNj6ae7hBdVueqiiXgxCidMmSpINEZQ19WKO3wJyBDcOp17aGmXodA2yqk2rU0TYL1KjDK/zDiF+qxLbo3Lq+a2p5xS/VUXk04grpx5r6tUlicdvVaKezaZsmdC637oQ/EUBrUwY3W+lDeEZMyzXZLbxW82v24SEAUU94pqk3VcDggV7phC9BdRChtcOuFL81saNZxiG7c8bNn4b0i5hEKQOxj7jt0B0oqS08DMMGD4EI1VdPZXAXflZzE498fd0s9McBK+7wU5I7qeY4rd2xyB+JnGKNzo0ygDkeB/jt3o3ymjq6pLED6A+4rdSo4yA3W/d1NQLbQ4WUk090SmramaTRqw2ccSaetVQ1KsPtHTq+RD1fDv1xNe1it8qUDr1VC5gh/htNXYdtRm/JY0ORT3imqDxkiAUxscxMjhYc59YTw9Qi3peCxZ7ceoB9qKfTi6JONGhpl5Y3W8BRCZKigu/XEuLr9p1qrp6lk49w7D9W4Tt1DNN03d9Q794rdviRBK79U5OvSTFG5WbNO74LSBH3mKJ32q+OJAWoRqJeoA6VloP10nxd/BynpimKTn1VH+nqBzw0sLd4hrkVFc57u63ceHGqcf4bX2SdDkDq+63Tkg19fwegNuaegqUTj3DAITxxbamniIlYXW9qE6AJJ0sIyQJKOoR14gTujiFGrFQaralBdP23196nDJ+G1DUs6upB1DUU6FF/FasqedycZukU8+v2KWqq2cl6uVaW22Fw7CdeirxP2pnTuhOvYQaZdgdQ6LxW1WjjAREvWbhvBdj3nbUq1NP50YZgLpZRj1cJ4PEbwvj49KiM874rW+nnlhTT4zf1omoZ1kzjI0y6h4tnXoukg5iWias7reiIAd4c+oBimOze3/F39+XU0/z6zYhYUBRj7gmSTuz2NK8f80a5cCeyWalBYKXyVWhUJAeH8Sp15ZAJE0HknbqmaaJwvh4zX2iAGBFrKKe6NTzGUtVxm8tXstpl1e1gAnkclOI6tmo47eq3eAAr5dI/NZhvE3SqacSYZJw6olColh/x456FfWCdkWOGqVTrw7it+J3wstmoriRaGQyaJsxQ3pcbI0yPNTUq36u1P22TkQ9S6dedaMMxm/rkqRr6uXb2qQN2jgbZbjpjO3Fqef12FROSatrWrNdTT069UgDQFGPuCbJ+K3o1FNFb8uIbj0vk2uxrg3g3OHWSvQzMhlMVbgJGwGpSG/MF9RioSCdn247roYtatkRVlF7VeMJO6eeHWHHb5Nw6gHh7VSrnhtL/FZnp56qpl4Cop4oJE4IQr4d9Srq6dwoA5jsWi+i2zH6IYhTT4rezpqlHIfjapShWrgD6jGm+rmiU0+seZlW2CijcUliQ0+kd9WqmtvdS5c6PkeK34bV/TZg/Bbw1sRD6dRTXC+apkyp+WySNhYQkgQU9YhrkorfmqWSJOrNXLfO8vGimOGlpp64Y946bZqjCGLV0a9n5Upp97ZRSPqCqnLsqGqTqIii+6sVUkTYp4NNJepZNcpwcuqFHr9VOfXicOaIk8+UxW+lCLuTUy/GWj+6NMoQ31N059ohLrpdf6aaLw50bpQBqDfJ6kLUC1BTT9xMVLkZgRjjt6pi9lCfS9W/Z73W1LPaxMkyflv3JB2/BYBDv/jFygbW6gsuQI8bUS8ip540r4L6b5JparL8W0Uh6olzYNbUI41I/KMTSS1JxW+HBwYkYWDGIYdYPl4U9bx0v/XaJMPuMf1r1rh+33pDN1Ev395u3ThCIM74rRhN9etgU8Vv/Tr1wm4yoXKsxLGIz2SzqH7nMJ16cUzsRZHOyakXpzAibvAY2WwirhxR1AsSv526337YfNddjs/Tfcc/SQenG1SbYPUg6gXpfivNOyzSAU4dsf0iNcpwGb8Far8PjRa/zVXHb0VRz2MtZ6IpGoh6c44+Gmds3Ij777kHBx52mKvnSMKZz/d21f1W8Texm2dKr+Elfmsh6olzYHGs2rJpE4qFAvbaZx801UG5B0JU0KlHXJNU/FZ06U1ZssTWFSI6lII49Zyit3aP6V+71vX71htJN8oQF/etLqO3QLyiXlEUZsJ06lk48hxFPcMItciwuLjN5POW8a4wCW2nGgCEzymO+K3TbnaSXU5FAaN16lRfXZuDItXU8+DUEwUIu42ianQX9ZJ0cLpBGb+tg0WWVFPPi1NPiN9ainoRFX93W1NP5dSr/j2l+G29iHoW36Hqz1x06nnZTCb6knRNvTK51lZkXW5MA+HFb/3W1LNLhHgRHJXdbxXjkJNTDwC2v/IKnn/8cZt3IyTdUNQjrkmqm5DYJGOmTT09YLKwbDVBauq5cepVd1yqZjqdehXitr6PC6Jem8voLRBvTT3JqadBTT0g3M9PXNz6bQbildAmtYrnxiFK6twoY8ahh9aIiHOPPTa2965GcuqNj7v+nEWnnl2d1mrSJurp5tTrWbasZsHXMWeOdM1OI0FEPbebiU6RfN+4bZRhE781TbNu47euauqJm8kU9eoClaiUBsLa1JSe5bKmnt08z0u9Y7dOPXEObPU5vfrcc5bvRUjaoahHXJNUjYJBQdRzWnwFmVyJk+tOF049K4dK3+rVrt+33tAtfuu2nh4Qc029kJx6qs6+lk49FwvoKJ16cblywoqfAMnEb3VulNHS04OT/vxnLDjhBOx9zjlYf+mlsb13NZJj2zRRENxCKkzTlFxFPUuXuuqQrbuoJ40pmol6TV1dOOzrX0e2uRn59nas/8Y3LGu4pQlxXAtSUy9xp56PmnqqREQjNcqQ4rcU9eoCHRpl+CG0RmE+G2V4cerZxm8VTkmlqCeYK9IivhISJukYnYgWiINkHPHbsZERSWhzcuoF6X7rp6aeFbotpuJEmvgkLOq57XwLxBu/Fc9NvzX1VG5Rq51SN065MB0hklMvIVEv1EYZMUwY7UQ90zQTb4gw+8gjMfvII2N9TxFVGYaJ8XHkHf4WqmtCU1cX+vbeGy/ddJP9m2ou6onnqo716la/731Y+e53I5PL1YWgByicei7nHaZpSt1vXdfUi6pRhoeaeqU9zxVFcqB+nHpWkcucQ6MM0zQTKUtAwkOHRhm+SLj7rd08z0uKQjX3Um1gtggbcro51AmJg/qYTZFYSKJRhlhPr6mrC70rV9o+x2/3W9M0pdo2nS5FvRVnn11ze/Gpp7p6Xr2SeE09obaWp/htJgMIE/G4RL0wa+plm5s976BWnlsPTr0w47cJ7Nbbjbeq36URJ7G51lZpvC+4aJahctE0dXWhd9Uqx+emzamn63mRbWqqG0EPkBexpmm6OlcK4+PS+OLaqRdWowyX5QWMbFa+NpadehbfqXrA0qln0yhDtfFC0ocuNfW8kolobI3CqRdK/FbY2NatliwhcVA/MyoSOVL8NobFjRS9PeQQx4WAeDFxW7C4MD4uCRBunXrLzzyzcqHK5HJY+5nPuHpevZJ0/FasqeclfgvEd/ySi82nq0YVG8w2NXmudVImTFFWigMmFb8N0akXS6MMO6eeqqOwpuJN1LQo6uo5oRIg8p2d6Nt7b8fn6i7qJe3gbFRU45qbNIPo0jMyGbTPnKl8bFTXJbfxW8MwLMuwiE69fHt7LLVH48BVTb2ODunnjOCmn7TGb8Oa/7hpoqMS0Gy733pIUZQUTj1X3W953SMNSDpGJ6IF4iAZxy6k2CTDTTFzsei2W6eecnKt6NSnYvYRR+C0W27By7fcgnmvex16li939bx6JWlRL0j8Fpg8/lLVIiU2p55PwSvX0oJcWxsKu3dX7ssEEPXCdIRIzUBiEvXCXFAmEcGxc0sqRT0NY5Zx0Dp1KgaffbZyW/zuqxAX2+Xd/143op7m7huKesmg+v6ZxSJgMQ4VJibw3KOP4pWqcxcA2mbOtBxf4mpWZhW/BSavK8Wq71hZuBS7SefrxKUHWP897OK3wOQ4k2/QcbleSKJJVhiEtqkZQU09T/X+FHMvN91vWVOPNCIU9YhrxEFy55YtmBgbi2zSYpZKGN61q+Y+p3p6gP+aemI9PbvJtYrpBx6I6Qce6Prx9UxkXfpcEqRRBqCYxMfUKCNIZ9iWvj4MVYl62aYm5fnrq/stnXo1t+MQ9ey+Q9teeUV6fMOKeiE49fJdXTAMw52op7lTLy3x23rDq1PvxY0bJUEPADpmz7Z8ThRd5VXns62oZyEsit+p5jppkgFYCwTVY26+vX0ymlz196RTL/2ktvutKL5FWFNPlVywnWd6ODbJKZnPw8hkkGlqQqnqWi+KetzMIo0I47fENeIgWSwUcM+112L34GAk71csFqULSvfSpY7P89v91m0HOuJMkk69YrEofeZeauoBMcZvQ6w3JwqX+Y4O3zX1oux+G1ujjAhr6sURv7X6DEZ378YzDz1U87Oe5cuVdRUbgTBEvXI9rNa+PrRZRB/L6C7q0amXDCpR3U7U2/Lii8r77eYdUTj1vIp6VvFbseu0WGMuzbipqWcYhhTBdZsSIfqS1kYZYW5q1rxuFE49m/eT4rd7/v6zDz+8cl9zby+m7ref4zEBQDYlnx8hfqCoR1yjGiQL4+N49fnnI3k/1YTYjeghinp+nXpum2QQmagmFG5Qxe9aPcZv42r0EaZTb/Epp7z2Om1tmHPMMf7jtxF2v03KqRdq99s4RD3FOWiaJjbed58kSq376lcjPx5daZ06tea2n/htdUF/x7p6mot60vetQR2ccaParLAS9UqlEsaqXNXV2Ip6UTjgVaKeTd1iUdQr/47Sd6qenHouauoBcl09OvXSTxIbemEgxYQjdOoFrannJX5b/vsf86MfYclb34p5xx2HN/7+99L4mxZHJSFhko7RiWiB1Y7/9pdfxkIXsSWviLW4AHcuHzF+67qmHp16oeGpZkbIiIv6TD6P5u5uT6+RmFOvuRl+l2kHfPzjaO3vx84nnsDyM85Aa1+fOn7rxqkXZvw2KadeyuO3qgX8y888g11bt9bcv/yss7DwTW+K/Hh0RXTqFVw49aT6X1WL8b5Vq/DC3/5m+dy0OfUYv42HTC4HI5Op7VJtMfcYHR62fB0dnHp2dcOsaiuLjTLqpfMtYD3ei9eyps5O7H755cptinrpJ61OPTHiGtZVS+Xi9bp57KlRhiJ+C0yOk8f94heWz7MS9XS/fhMShJSMTkQHrBYHUdXUUzr1XLxXWPHbznnzXD2PyCQZv1XV0zMMw9NrJCXq5Vpb4SxJqDEyGaw8++ya+1QTG7GRjIpIa+oFcCN6IayaMpNPjb/7rfjZ7R4clGpwdcydi8O/8Y3Ij0VnpO63fpx6VVHBJW95C+77j/+o3O5atAgDTz9dua37okCMK6lcFCQasi0tNc2KrJx6diVL7ES9KBzwqlfwU1NPFMrryalnNd6L81GxWQZFvfSTVlEvrI11N049r7WbvRyb30YlVtc93RtdERKEdIxORAusdj6aI1qkqybEblwHomjhN37bwfitb7w0ytg9NISJsTF09vQgYxP7cUvQzrdAfI0+oo6mqr6zbkS1MH9/OvX8Ib7Hzi1bpMcc81//VVcF6f0gxW/91NSrchX1H3QQ3vj73+OpK6/EjEMOwcjWrbjt05+u/Fx3UY9OveQIRdSza5QRYlfy114kYPx2z/huJ5SnHbfx2ybGb+uOJDb0wiC08iMRdL+VXIQeG2W4weq6Vy5j4nWjn5A0kI7RiWhBcXRUeX9UixzV4sTNQOwmfju8axdGR0bQPXUqsrkcTNPEuPD7MX7rH2kSbHGObNm0CU/eey9M00Rnby/2PuSQwIVsx0VRz2OTDCBZp16YqBYjeTc19cJslJFQjS8vxZidkMaiBJx6IqvPPx9zjzkm8uPQHVWjDKdJu9T9VhAgFpxwAhaccAIA4J5LL619cspEPTbKiA9xbLPaUByxEPVap0/HtAMOsHx9cdwRXZl+8NwoQxCySg0cv2VNvfoniWt/GITVKEx6nltRz86p56X7rc8NVdbUI40IG2UQ11g5nmITPFw6fKRGGcLEavOmTbjv+uvx2B134IEbb0SpVML42Jj0e9Cp5x+3othLTz9d+dng9u146v77A7+3Kn7rldhEvYgFL79OvVAbZYTY4dcLaY/f2i2spyxejHVf+Urkx5AGRFHPLJUcF9NehK8km/74QapBRFEvNsQ5itW4qXLqzdmwAa+//HL7xbA4nodxLnoU9azcaHXdKMNCIBA/b8Zv6wtlvcmUiEVhNgqrRhV/9Vq7Wbqm2ryfJOq5/PvbXdMZwSX1Sjq2HIgWzDzsMOTa2mriJYB+goco6pmmiVKpVNkdeubBBys/2z04iO0vv4xm4QKUyed9ObzIJG67x+4eGKi5veXFFzF97lx0B/jbi/E7P59jbN1vk3DquampF6JTT5xAMX7rDqvJq5HJ4B9+8hNpnGtURFEPmBwDcnaTf1GktashlmB9UD9IgiW738aG5NRTLB5LpRJGhoZq7jvl2msx6/DDHV9fcuqFsDj16tQT3WjlTdNCHTv13NbUEyPHFPXSjVLUS4tTL6KaemE49bwcm1+npN3Gq+7XcEL8QqcecU1Lby9OufZa+QcxxW/dLk7E+C1QK56Ik8+tL72k7HxrV1eG2ON2IaxalDzz8MOB3ltyDHjsfAuE61SzI/KaeoqJjS+nXpjdb9PYKCOJ+K3Fe8w79ljMPPTQyN8/LeQ7OqTvjdj0SEQ8E+pF1CvXC6qG8dv4kKKpivjt6PCw9Bn1rFzp6vWjcOopG2XYzH2kiKlFTb16qvXJ+G1jopr3pUbUC6n7ratGGR4bsnmZm/l16onmk5rXpFOP1ClULYgnph94IA792tdq7ovNqeczfguo6+pVwyYZ4eJWFMsrFpy7BwddFbu3QqqXJUy03VAvNfVUi0pfTr0g8duIhUsrUu/Us3iP9lmzIn/vNGEYBnqWLau5b2jnTtvnuFmoVH4mnkcaLwiUi1CKerHhxqm3ZdOmmttt/f1o7etz9fpROPVUC2q7DpNWEVOnOpVpxlLUE7vfii5Gl03aiJ4oXaxpEfUiit+6FfXs5nmenHo+S5/0rlxpaQTReWOOkCBQ1COe0b3emKqWQzkiohT3DEMS9Top6gXCbXzV0sEXYDIsPtePqBdHHS3TNGU3asiCV0lwpQL+nHpBCrLrUlMvdaKexY50i9DtlUx2rK1mcMcO+yeIn6cXp563Q4sV1feUTr34EOco4vj+6vPPY9OTT9bc1+vSpQeEWxbB7jVs47diI7IGjd+qGrcxfltfpDl+KzUKi7n7rd3msZdj85uSaOrsxEGf/az6NSnqkTqFoh7xTFyFw01RDHAp6mWbm6ULT1nMKygcYAbkuBY73wZDdeFVnSdRiHpS/FZTp57KZRF2vTmxSQzgz6kXZJdX/D2TqqkXiAQaZVhNXlnrU0YS9bw69WzOFTr1iFvEsa36Oja2ezc23nef9JyZ69a5fv0orktBa+oVC4XJusXCNbve47eq6xgbZdQXaRb1oqqppxobvDZk8+Ii9Bu/BYADL7wQZz71lPyaGl/DCQkCRT3imahs3SJ+nXqGYUh19ayKOQOTzgvGb8NFJ1HPT0MB6fijcOopfsc4nHpuIr6iaBUk5pWUUy+0nWrFc5N06vnp5lzviKLe+MgIxkdHLR/vRdSLYywIC9X3lE69+LCL3w4LTaEAYPZRR2H/j3/c9etH4dRTdr/1UlOvUEBRcZ2pJ6eesjat4jpGp159ker4bYg1hW1fF5Acq4BDTb0A8Vuvcy/VJiideqReoahHPKN7/BZQRERsnHrFQkHZKIP4R7VIVop6FmJREBEpkpp6EezsFVVOvbBr6ikWFW6cO6E2ykjKqRdm/DaBRhlWi4dWxm8lepYvl1wydhFcaaHgxamn8YJANU6x+218SI0yqj4PlcBz0l/+4slJLpW1SKD7rShclYpFFBS/W1MjOvUsoskkpaiczx6cYkkiXbd8vo6b+rOqeaatU89DE0Jp7uXx76+aRwUpJ0OIzlDUI56Ja5ETpqhXdgupnHoTY2OYGBuruY819YLhxqmn6tRYxq9TzzRNqW6ir5p6MQjXSTn1VLuqIqE2ykiqpl6IjmK/xZqDYCUc0qknk8lm0b9mTc19tnX1Ajj10ibqMX4bH1JNvaqxT7wu9R98sOfNgdQ49QzDl0NeV1SfU0YxH2X8tr6op/it3/mPK1FPMc/UxamnfDzjt6ROoahHPBNbTb0Aop4Yv60Uc1Y49XYPDkr3MX4bDKXo4eFC6tepZ5ZK0uRF1+63KuEyDlHPDXXh1KvX+O20aZG/dxrpP/jgmtt2HXAD1dTTWNRTjZtpWYTWA16ceqHUeo3CqWcYths/Kjea9Lt1dXly4+iOaj6juo4xfltfpFrUCzGpYPe6gPeGbJ5EvaBOPcOQ3o9OPVKv1M9Vl8RGbPFbQfTwIgaIu0Tl15pQ1dQTLhr59nY09/S4fi8i48qpZ7Mg8evUU02itRX1FKK1Gxedp/fQQNSTGt6ksFFGIqKelVOPop6SGRGJemmqqSctgBQdOkl0SI0yqj4PMaKmy3VJfAW7KDqgcKMp4rf1VE8PsKip58Kpp2ogQtKDao4aagOuCAltM8pn/NaulIw0xkTo1FM9R+eNOUKCQFGPeCapRhmquIMVXmrqiXTMncuFUEDcxm+t8C3qKZ4nTrTdEEXtIpE4YqmqyZYbwnKEmKYpi5d1UFMvlvitYke6ububjQ8s6F62rOZ2sVCwdvx6qakXkeMhCiR3O8+VWBH/3tVjfCS1XiOI3zqJFm7it36uuTrjuqae4jNVzUlIOlBt/qRlbeBFOLNDfJZbp15Y19Qg3W8tn8P4LalTKOoRz4TZVdKOMOO3dt1vRdgkIziBRT2fF12lU8+mtocVcezsSZGlCBZCvp16IdVuUomBYTcDsSL18VvFe7TQpWeJckFtIWp7it+maJdf2gijqBcrtvHbEGq9xhG/dRL1xNiwWSpJ86rmOmqSAag3cVTzUdU1nBHc9JLEdT80BPHR9xzOhVPP60ZtkJp6fpyS4ufG+C2pVyjqEc/EtcgJUosrqFOPBEM1CRYXIFHEb6WIU3u7r9o+cYh6cUSWSi7OdxVh/f4qcTaumnph7VRPPjX4brFXVO/RRlHPElWNMqtxxM1CpUyaojtBNsJIcKRGGTY19XyJejE0ynC6XqqOe3x0tPYxDeDUUwkZquYgFPXSS5pFPacYvWvEMUYxPiw/88wasW3uP/yD7Ut6SXtJJSX8xG99jJsjQ0MY3rVL6+s9ISIU9Yhn4oojSfFED64Dyaln0/1WhE694OgSv/WzcALiEa7FyFIkop7f+G1I3W/jaAZiRZTx26SceqynZ4045gPuF9R10yhDODbGb+NFcuqFHL+N4rrk1QmjEuxGhoZqbtdbTWLVBovqOmZkMsp4MkknQZs0JElY1y03G2CtfX045r/+C12LFqH/4IOx/t/+zduxeXh/P5+B13I6Lz31FO75+99x3/XX46kHHvD8foQkRXq2HYg2xFU4PIjrQIxcenHqddKpFxhd4rd+Rb26cer5jN+GtXhUfY5JNcpIW/xWtbhunT498vdNK5lsFtmWFhSrXENW9ayCNMrQWdRTNcog8WHbKCOEDadsSJstNa8h3HYU9RTi+fCuXTW3pyxaFPSwtMJtowxg8nOdqBI5KeqlF+k6kSKnXlTmCysH4PIzzsDyM87w9Rqeaur5+AykcdPh/Z55+OHK7Vefew5zlyxBc9WacnDHDhTGxzFl2jRk6qjLN0k/PBuJZ+JyLgQpsC9OPFlTL16MTMaxpkckTr2oRL0ICutKNfUiqEN02CWX1Nxe8ra3uXpeWDEv1ecYV/w2yu63STXKoFPPHqtxX0RaKHhx6mlcZFu6ZlLUi5Wo47exOPUcFqmZXE6ai43u3l1zu2uvvQIfl06ohAQrx5DUHZiiXmpJc/w2tIaGLuK3nhFfw0v8Ngynnse1x8D27ZX/f/Gpp/DAjTfikdtvx8O33qr1Jh9pPCjqEc/E1ShDWqAEaJRRdmxMuHHqzZvn+n2INU4Olyhq6kkLJ4WrwA31Er9dcdZZmLrvvgAmxeqDPv1pV88LS9SUCvfncrFNjEON33oQgcKC8VvvuI6+BXDq6Qy73yaLKHZVn39pqannZmxzOvbuxYsDHZJuqDZxrMYFsVkGRb30Uk+iXpTxW6/E7dTzMp9VfV/LR2CaJjY9+WTl/oFt27B7cNDz8RASFekZoYg2xNUoI8z4balYRKlUciUWsVFGOGRyuZr4Zyzx25Bq6sUhXEtOvQhEvZbeXpx2yy0YePZZtM+a5brDblROvbiit0D647dKpx7jt7ZIol4I8ds0O/XSVAOqHhBLd4wMDaFULCKTzUrnoqqxixM6dL8FJoWr0a1bLX/eEE49i2sAa+rVD+L3K03x27DmsFI8PwRRL1CjDB/XNC/zWeX3dc/jx0ZGpBJObko6ERIXdOoRz8QWvw0gCEhOvULB1eDb3NPj291FapEu3GL32wjit1L325Dit1HUjRSj4M0RxG+BSTG8Z9ky14IeEJ1TL0lRL1D32wQm90qn3tSpkb9vmpE2c1zGb+u1ph6738bLtP33ryk7YZomhgcGAKg7s3tFtaB1ez6ODA9jfGxM/oEPUc/uupptb687R7FqLLb6O4l/G79zGZI8qXbqhVXrzcf44ESQRhl+5l5e5rNirWvgtXmsWDtUdXyEJAlFPeIZKZ6hYfxWqq1ULLqqpzelznaYk8Qxfqtxowyv3bL8EIdTzy9hCRmmsKCJq54eELLbUpPJPZ169rh16nmJHKoWMbpO5Bm/TZamri70LFtWc9/Qzp0AwnGRKxtQubg2PXnffbjnmmtw11//iq0vvlj7fOGxbsQAO0GyZc4cGEI93bSjEhKsxA3Gb+uHVIt6GsdvxfHB6thU94tNL9wQ1KlXLpVDUY/oTnpGKKINqYjfKmrquXHqleuPkeA4nSeR1NQLK34bR/dbsaZeRE49P+QEx9PI0BAKExPIeZxQJerU81CM2YlSApP7McUEst4cMGHjNvoWxKm35wWkRkA6IMVvKerFzvQ1a7Djsccqt4d27oRpmqF0v/Xj1Ns9NITNzz8/+dhSCc8//jimzp5t+XxXTj0b13dLHZYvUf3drTYC2CijfpBEvRSVMwgzqVDzujHGb1VrBD9OPSeBs1Qs4pmHHsL2V19VrhPLc/Wy61p4Mc/HQ0hU0KlHPJOKRhmKGNaEC6fetP32c/0exJ5ATr2EG2XEIerp7NSbceihNZO3YqGAl595xvPriJ9jrrU18LG5xUvEw4kk4rcdVQvvMi19fZG/b5oRyy5YjSNBRT1dd+fF46JTL36mH3hgze2hnTuVwk5oTj2Hc1F05o0MDdU+J+T4bV2Kel6ceqypVzdI9dzS5NQLqVFYko0yVPf7+QxEd5/4uW575RW88txzGB8dVaaEyt/hITr1iOZQ1COeicupJw6uOTr1UkUS8VtxEe+ljlw1sYh6MXS/9UvX/PnY681vrrnvpaef9rxACSLMByXM7rdJxG/7Vq3C9DVrKreXn3mmr+hJI+G3SL2XRhmAvhN5OvWSp/o7CwC7BwcxoahlZ+d2s0Lp1HO6VirO1eq5kJ/O3hT12CijEfDjYtWF0GqfRxG/DSLq+ZgDOa1Zn37wQdvnFyYmMDE+jvGREVfHSEhSpGfbgWiDyjptmmbodVTEelyenHqqmnpOop5hoG+ffVy/B7HHqS5dJPHbqGrqRRG/1dipBwAHfuIT2Pi//1u5XRgfx6vPP49Zixa5fg3JqZfS+G1SMZyT//pXPPrTnyLf3o7lZ54Zy3umGdVmjgovQkaqnHqsqZc4U/fdF0Y2WzN/Gdi2TXqcHxe5yiHsdC6qfjoxPo58eT7lY9Fu17m3tdFFPcZv64Z6qqnnF6nmZhiNMlzOzVRrBD+fgdMmvdPasFgoKOvpqV6LkCShU494JhNWVyUHwmyUAQBjo6O2z+leutR2skq8oUX8NqyaeiE3yigVi9Jr6lRTD5js5DjvuONq7nvxqac8uSh16n4bJH6S1OS+qbMT+37gA1j57nenakGRFJKo57amns01Lc1OPXa/jZ98Wxv6Vq2quW+XIOplmpp8Ca4qp67TuahasFY7B33V1LNz6s2Z4/j8tMFGGY3HS08/jafuv7/mvjRdg0NLKtSBU09qlCE62h3GvMLEBEU9kgoo6hHP+Nkt9kMQQUAl6qms09VMY/Q2VBLpfpuSRhmqiX6zZqIeAKz55Cdrbo+PjGDLpk2un69TTb0wCxqnaXLfSIjfd8vNgXqtqcf4rRaIdfV2bd1aczssBzngvOGkiv6ORyTqNXV1IdfT4/j8tKESMqz+Tozfpp/xsTE889BD0v1x1NINC0mo8nHNUl3nEhf1InDqZR1es2gj6rFRBtEJinrEM6pdjbCdTKZpBup+K8ZvgcnIiR2M3oZLEt1vSyE1yog6fit2vgX0i98CwKzDD8fMdetq7ntx40bXf48knXpSMWafrxNWBzYSPb6denVSU4/xWz0QRb1xISXgNxHgp/utStSruc+HE8dK1OtZuTL0Miw6oPqdLOO3Lpv1EH0ZGRxU/0DTcV9FaDX1xNeNoFGGFcr4bRhOPVHUc3LqFQoYUnW+VbwWIUlCUY94RrnICfk9VIO5p/it0P0WUAsp1UzZay/Xr0+ccYqwRuLUiyp+G7FTL5PPxyp4eeHACy+suT0yNITtL7/s6rnigibW+G1E3d8AOvV0xa1LJmhNPV0Xd1KjDDZWSQSxWYZIWNclwHlDdVwl6lU3yhB+FkTUa6RGY1YbO6Ib3aquJ9EXL84xXQlj/qN8TsJOPT8bqkGdehNjY5ZCb5rOCVL/UNQjnlEOqiEPbCpRx4sgYGQy0uTKqRjq7COPdP36xJlEauqlJH6rapKhq8Nh/vHHSy7WF5580tXfRFxwxtooI6T4LUW99BBF/Fa5iRWyMz0spMUKnXqJ0Ld6tW302beD3DA8O3CcnHp+4rdWXeWn7b+/43PrhekHHKC8PydsKBcLBWx68klsvP9+DO7YEcehkYBYfac6U9QEJpRGGaq5TxobZTjV1HN4Tbv1CEU9ohMU9YhnYonfBnTqAXIEV3TqVU+sD/jEJ9A2fbqn1yf2OIkqTvFbrxfLUqkkvWZo3W9DPr+LwrmoW5OMagzDkNx6w7t2YdeWLY7PTdSpF2KjDOm1KeppiejQDiN+m6aaetL3jY0yEiHb1ISpNuU8/F6XAPl8LDlsjqm+A3bxWzeLditRcup++zk+N61UXwOnHXggZh91lPJxoqhXKhbx3KOP4tXnnsODN92kdE4SvbDayFv2zncmcDT+CGP+o3pGkjX1jGzW1+a3Uzkdp/itLZrOBUhjQlGPeCaORhlKp57HBYpTbZODL74Y73jkEbz9wQex7itf8X6QxBapppkHp56bn4uoFi+hxZwijt/qWE+vmsVvfrMUT9+0caPj88TvcaxOvbDityHtFpPokeK3FjvsXuK3cTWGCgPp96JTLzHsIriBRD0xUm2z4WRVR9jWqeczfpvJ5dC7cqXjc9PKIV/6Ek648koc86Mf4ZRrr7UUF1SlX8qYpomXnnoqqkMkYaEY399yxx2Y97rXJXAw/ghlU1Oz+K3feZdTKaAg6DoXII0JVybEM0qnXggDm2maGBkaQq6pSWl39ioIiDumItnmZvQsXerpNYl7HBtlOJwzpWIRGQ8TCLFJBqBx/FZ06mku6mVyOez/sY/huve/v3Lfrq1bUZiYQM6mbpdOTj3Gb+sfKX4bRqMM1Rik6USejTL0ITJRz4NTz8oVporklnHV/VYRv+1dtaqunaGGYWDhm97k+DineeduqyYMRBvE68OUxYttnbc64jbiakdc3W8t3z+kGrFOjTKCzO8p6hGdoFOPeEY5IAcc2EzTxCO33YZ7r70Wd//tb9j+6qvSY7y6Dpzq1tTzBFQHgtTUA7zX1VO5cnTtfis69Zo1jt+WWfb2t0v32S0OAfkzEetcRom0G+zzdRi/TQ9iyQXTNF013bEV9XzUMUsKqVEGRb3EEDvgVhOmU8/uXLQan8cD1tRTHX89u/S84CTq6Vo7l7yGn++EbjglZfwSiqjnMkURmVNPeF2/jflUr0VIklDUI56JIo60c8sW7NxTo6tULOLZhx+u+XmmqcnzZMjRqadpt9F6wdHy7iTqebzQikJZtqVFS7s+oKipp7lTD5j8PomTW6fOfuLvGad4GcZONcD4bZpQiQ2qWL7XyGFaRD069fShd8UKyzlIEFHPS71XK1GvutZeWKKeWJ6hUXEU9UIQRUi0eCnPoCuh1NRTbWiG8LdwKziKLmTfTj2HMTPQ/F7TuQBpTHh1IZ6JIn77yrPP2v7cj6uOTr1kEV0i4uLaSbTz7NQT69RZdOhzQ1S7nGWk7rcpcOoZhiHXqbSIN5ZJ8vcM6zNk/DY9NCnEBtU44lXIiDqOHxZ06ulDJpfDNIvGEUFEvWwITj2gqt6ej5p6qu/Z1H33dXxeI+BUJoZOPf2Rrg8pvN6HIh7HFb+1GsOE65nfz8ExNUSnHqkTKOoRz6gWQFEPbH4K7DuKelzwRErXggU1t3cPDdXcdozfenXqCYv3UN0QUTfKCCBAxonbRgSVnyfoSIy0+20Kd+4bATF+C1h0wPUo6qXWqceNq0SxqqsXl1PPrtNqWfDz49Rr6upC76pVldttM2Zg/nHHOT6vETAyGdsUiJc6wSQh6sGpF0KjsLhq6rl16okbGm5xKlnA+C2pF3h1IZ6JoqaeE34WJ6oFXtDXJO7pq5r0A8DugYHaB4RcU090jYVZjDx0UU8Uu1Lg1APk75RSMKlCbAjS3N0d9iFZElWjjEwuR7eFpmSyWWlBLQrPSudlnTr1uHGVLFainsrp5pYwaupV/8xv1PDYn/0MczZswMx163DcL34Ra71U3bGN4PLaoT31UFMvrPmP9LoJdr/169Rz2ghhowxSL6TPU0wSxzCMybbmVQNj1AMb47fpo3fvvWtujwwPT3a03XNBd7K8B43f+m2SAcTQ/VZ06qWgph4gL0btPiOzVJJ+Hqd4GcZONSD/jmmc4DcS+fZ2FEdHK7dFsd+P8zI1Tr2QahCRcLBqlhHXhlNU8VsAmLp6NU7+619dPbbRyLe1YWz7duXPMhT1tKcuRL2onHoh/C3c1jsOrfttiPHbbHMzitXjqqZzAdKY0KlHfBHWgtktfppa5J0aZVDUi5Q+QdSDaWKkKoIrWutFkozfxt4oIyVOPVEotXPqicIlEHOjjJAm4oPC4qxjzpxQXpdEgxQRF89DHwsVqYaiphN5NsrQi+4lS5QbNnFdm1zFb4X70yhg6AadeumGjTJsXjdBp57vxnchxm/F2qG6bvCRxoSiHvFF2BcMp+czfps+mrq60Dl/fs19w4ODr90IOX4rOfVSVFOvOSVOPS/xW1G4BGJ26oU0Ru3YvLnm9pxjjvF9TCR6nOo++onfpsWpx0YZemFkMph2wAHS/YFc5CHFb8cD1NQj9tiJerqOHaSKOmiUIV3TNKqpJzUxs3p/8XoWVqMMn91vm6ZMwZTFi2ufy+8z0QiKesQfMS9y/DgOGL9NHru6emHHb9NUU0+sNZeW+K34N7X7jESnnpHJBPpMvBKGm7hYKGBAcOrNe93rAh0XiRbRoR1G/DYtNfXo1NOPfkVdvUAbTh5cLoVyxFZBRfCjqBc6dvUFw3b9k/CpS6eenxdJuPttWOUkwnLqTd1339TMBUhjQlGP+CKqIqxW+IrfOoh6fjrqEm+IdfV2Vzn1dO5+G+WF2zRNufttWkS9AE69pq6uWBtMhLFTPbB9e80izMhmMWfDhqCHRiLEsUNzGKKepgtzqVEGN64SR9UsI8i1SewAaXUuOp2jlt1v2Z01MHalX4J02iTxEFaDhiRxW7fOjsi637rccA3LRexYU8/l32bafvtR1CNaw6s38UXsNfUiiN9muOCJnL7Vq2tu1zj1oo7fBog4SZM40wztHFcttmxr8GiEo2BShdQMJMbOt0A4kcmdQvS2/6CDYu3gS7zjVFMvjEYZOtbUM01TjivRqZc4KlEvyCaO29IQTuIRnXrRYRu/painPdI4msLvRGQ19cJolOHWqSduUoXl1BOaPLr9Tk7db79UzAVI40JRj/gidFEvgpp6jN8mj9gsY2xkpBI9jbz7bYhOPQChXbyVNb1Ssvh2ijZWIzr14mySAYQTP9m5ZUvNbUZv9UfczBHHET819VKxO684JsZvk6dz/nzMOOSQyu3uZcvQMXeu79ezW6C6ub9MufttPUQNdcNO1KNTL32kUegOQ9TTzqnn0zFpuxHi4e8yTSHqaTkXIA1L+jzFRA9CXuQ4TXR8OfXY/TZxepYvRyaXqxF/dg8Ooqu3N/z4bcSinmmaCCM8qvq9/NYKiRtPTr2E6wYGjZ+MjYzUxMUBYC5FPe1xdOopnuPVqafjRF41rlDUSx7DMPD6X/0Kd//rv6JUKGDNRRcFKkPgVmB26i4/MTY26VIRj5fx28Cwpl66CatBQ5KE8j1WjSEhlFCRGmVEXVPPpnyG23VGpqkJPStWpGIuQBqX9I1URAvCduo5inp+aupR1EucbFMTupcuxfZHHqnct3tgwJ2o57VRRog19VQ7glHGb9Oy+PbU/VaM3ybt1PP4+YkuvebubvSvXRv4uEi0iON+JDX1NJzIp9kBXO90zJmDIy+7LJTXctv91o14VBgfZ/w2AujUSzf10BE6FKee9KJGOHWRXQqOoXW/tRkz3f5dlr7tbcjm864FSUKSgKIe8UUYRVircRJwQq+pZxip3H1LI32rVtWKenvcT1E79Zo6Oz09vxorp14YqF4nLaKep+63CcdvgzbKEEW9OUcfzTEjBcRRU0/HiTydeo2B26YtbkS9sluvmjQKGLpBp166EUf3NF73QxGfImqik7hTr+p17dYZzb29WH7GGWjt68M+H/wggHTU1yWNS/pGKqIFYS9yohD17GrqZZubY+3E2ciIHXCH9zTLCL2mnujUC9AoQynqhTQZV71OauO3Gjv1xJiIlzHKNE1J1GP0Nh04Cs8+auqlQdRTOoDpRq873Dr1VIvV5p4ejO3YUbk9TlEvEujUSzfiWJrK70QY3W+F22H9HdxeTyVRLyynXnWjDJvv474f+AAO+sxnal8rBXMB0riweAbxR8yiXi4CUY/Eg9QBd3BwspZP1N1vNY3fKmvqpcRRI36ndK6pJ02+PDx3eNeuyWhaFWySkQ6kczQEp15Q12ccpHlcIe5xGwVXdUJu6++vuW9CGOMA1tQLA7vSL3TqpYA6ELpVG1We57AROfX8dr/1LerZrFetvo/N3d1Yfd550v1uu48TkgS8ehNfpMGpZxe/zfmo0Uf8IXbALYyPq2M/woTB64622Ik1ikYZYSBNIgwjNR0HRcHEU/fb7u4oDsmSIDEJ0aXXvXQpuhYsCOGoSNREEr9NwUQ+zQ5g4h7xM7WaO4nnQ7apCa3TptXc5+Y6TLxDp166CcshliTKa5rH61ZUY0Ps8Vsbd7OqodBhX/863nbvvWjt65Nfi049ojHpG6mIFoRdU8/O8QNEE78l8dC1cCFybW0o7N5duW/3wIB0Mcx3dmJ8167KbS9OPbNUkibL2op6wuukqe6VJ6de0o0yAjTz2bF5c81tRm/Tg5/4rdNiJRWNMhSRsbRsFhD3dMyZU3N7qOqaWY24WM00NaF1+vSa+ybGxqTvA8+Z4NiJenTq6U89RNJV1zTTNOGp6FBUgr/LuZn0Ofh16tnUIVVtsu/3kY9YlmdiTT2iM9ySI74I06lnmmYk3W+zTU2WO2wZinqxYWQy6F25sua+4cFB6WIqNrbwIuqpxKXQRb2QJuPiuZ4mN41KMLH67ktOvZR0vy0WChjcvr3mvnn/8A+hHReJFqn7rYNTz8hkHOurpqGmnjiupGmzgLhnxsEH19we2rlTOX9SOfWk+C1r6kUCnXrppl6del6vWlJNvYicepbvH9Jc2c5prxon7eYDaZgLkMaFoh7xR8iintNuh19nnVUEl069eJHq6lk49arxMvlVNWzQtaaeNGFM0eJb5X61El+Trqnnd0d119atNZ9RJp/H7A0bwjw0EiFS/FY4P/0U/3bbcTRJVDXUSP3Rf8ghNbfNUgnDCreeSuSV4rfj44zfRgBr6qWbehC6w4jfRlVbMPFGGTaintN1Mw2ufdK48OpNfBEk2ibixpHlV4SziuBS1IsXsa5euVlGNU1OsTkblE69AN1vVQubsar4cBCkncEUO/UA6w64SXe/9Vv7RKynN+PQQ6Vzk+iL5CZ1cuq5WKikYVEniTi8xtUlLT096Fm+vOa+waqOtmWUjTJcxG/TcK7rTq611fJndOqlgDr4ToTRKCMqp55vUc9vTT0bIU4sU+DkcGf8lugMRT3ii7SIepZOPboYYqVv1aqa27sV8VvJqedB1BMX7pmmpkCfsWEY6BQaIzz1wANSR1Q/pNlRo/o+qQTVUqkkfX5xx2/d1m0REUU9dr1NF+I5KpV38OFMSoVTL8W1Ook3ZghuPbFcAGDRKEOI344zfhsJdqKejmMHqUUSk9L4nVBd1zRplOG2Jrs0V/b5OUhOPZuaek7CIeO3RGco6hFfSPHEiEU9v1FKOvX0oFcQ9UrFIkaGhmrua585s+b2+NiY69cXXWFBordlVr/vfTW3x0ZG8PRDDwV+3TTX1Mu1tgJCvRFVB1yVe68p5u63fiaAo7t3S+flvGOPDeuQSAw4uUnDcOrpOJGXxhWKenWLJOopnHqq86GN3W9jwbZRhmlqOX6Q16gHoTsMp15UjTKU9f4UxxZa/Fbh1Cu/ttdatIzfEp3h1Zv4I2annthEwS1WtU1yPhpvEP+09fejZerUmvvEmmud8+bV3C5OTFhGO0WkqGcIot5+H/kIZh95ZM19W158EeOjo4FeN82OGsMwHGuWAfJnC6SjUcYuwaXX0teHafvvH+pxkWhxqvvox4WRhom8yplF6hNR1BsbGcGYcF2SrjP5vNT9tlQsStfOVLqSNMNO1APo1tOdum2UoUlNPeUY40bU8xu/VT1vz2t7Tc6kYYOPNC4U9YgvwozfFl1McPzW42KjDD0wDEOqqyfSIYh6gHu3nigsheHUy2SzeN1//3ftBN00sXnTpkCvG1ZHr6QQRROV8Cp2vjWyWceFTti4jXhUMyrUTZy1fj2dKylDJerVnKN16tRLc6yfeKN35Uqp8dCQEMFVOfVEUQ/YU1evijS6knTD6VrHunp6Uw9OvTDmLXHV1AMsnHrC90TVwM4NKlG2/H5eN9klQVLDuQBpXLhaIb4Ic5Hjxqnn1+XD+K0+iB1wRVp6eiQxzq0rLor4LQB0zJ6NxaeeWnPf5uefD3a+p3zxLTUiUDn1FE0yDCG2GzV+xiipDmBPT6jHRKInk8shKzixg8Zv0+DU8xojIunFyGTQf9BBNfcNCBFclXOzqatLmvuI19g0Chi6QadeyqkHUS9t8Vvl28tuY1/vZyPqeZ2Pp2GDjzQuFPWIL8LsAOQqfuvXqWcxucpQ1IudXgennpHLoX3WrJr73Ip6Yl23sEQ9AFhx1lk1t0eGhjC0c6fv1wtropIUfpx6sTfJgL9JrSSMMKafSsRz1C5+60fU03F3nvHbxsKprp7KuWkYhuTWE0sl0JkcHKuyL2Xo1NMbxm8tHh9Vo4zJN3N8f99OPcUcuzw+SuOkw3uIx0BRj+gEr97EHzE79cSoiVvo1NMHsQOuSCaXk5tluHXqRRC/LTPriCPQtWhRzX2vPv+879eru/it4vsrinp+Rfkg+KkNJYl6HCdSiVT30SZ+6+Y8ScPufNodwMQbMw4+uOb20M6dNeeAlXNTFcGtJo2uJN1w2gyiU09v6jZ+61XUc/OaPvAbv/VdU88ufuu1UUYK5gKkcaGoR3wRZk09J1EvSD0uq+dxsR4/TjX1MgGcelHFb4HJeoArzjyz5r6tL76oFLPckHZHjVinUtX9VozfJuHUU+0qOzr1hM+UDXXSiV0zl3qN36Z9XCHe6BecemaphOFdu2puV1MWedso6kWOU6kJOvU0x8fGj25E0v02pL9D7N1vFWJgifFbUodQ1CO+iLOmXpB6XJZOPS54Yqepqwud8+db/jyQUy9CUQ8Alp95JlB1DhYLBWx/+WVfryVNItLm1PPR/VYbp57DOCUJIxT1UokYfysFrKmXhom8tADiNa6uaenpQc/y5TX3VUdwrQrAOzr1GL+NHIp6ehNW7DNJ3NatsyWimnquu99G6NRDOX7rtVFGCkpxkMaFV2/ii1Br6jlMcIK4fBi/1Qu7unpGLof22bNr7nNdU0+M31p87n7pnDcPc485puY+uwju+OgohgcG3O0+pmzxbRttLN+ngajnq6YenXp1ga3wXKeiHhtlNB5SXb2qDrhWDpS2adNsXzONrqS0wfit3khztBR+J7SO37pMUUTp1LOK39KpR9IMRT3iDzF+G2CS4hRj9FtPD5CjgpX7uVhPBLu6errGb8usOPvsmtu7tm7F6O7d0uO2v/oq7r7mGtx33XV45LbbpIt+vdXUc9P9NpFGGX7it3Tq1QV2wrN4BrhZsEmP0XAi73VxQtKPXbMMqzg2a+olD516elMXTj0f8x+nxyfd/dZ3owzF8yzjtw7zcYp6RGco6hFfxFlTL4ioR6eeXkzZay/Ln2XyeWX81s25FYeot+ikkyTH2eYXXpAe9+LGjZVzeueWLTXuCcC73V83/HS/DfId9ovbxWmxUMALTzyB5x97TBKRKeqlE6nuY8CaelLHOw0X5Wzy0niIot7YyAjG9oxhlk69/n7b16SoFz06jh/kNerBqQeEkKiKUdRzE7/N+twAV76fRfdbNsogaYaiHvGFtMgJ8Fpuaur5haKeXtiJbSqnXqlYVIpGIqLbsykCUS/X2oqlb3tbzX2bX3hBuqiLwtDoyEjN7dTX1HMj6gn36Ry/feyuu/D8Y4/hhSeewMjQUM3P6OhNJ7ZOPT+NMsSJfIBjiwo2ymg8eleulDZMhvZsIlktiFsd4resqRc9dOppTh10vwWCu8qk+G3CjTL8OvUMw5DceqWQ4rc6uvZJ48KrN/GF5NQLMElxEvWCRPfY/VYvxAL21agaZQDuIrhxOPUAYMVZZ9XcHtu9GwPbttXcJ05ExO6waY/JiX9bZfxWcOrpGr8tTExg5+bNlq9Bp146EccZu5p6blwYaXTqpW1cId4xMhn0H3RQzX0DeyK4VtcZxm+TR8fxg7xGPcRvAcU6zesLROXU81tTL8AGuHQNL8dvPSZnGL8lOkNRj/gjzEYZCcRvMxT1EsGugYWRyyHX2ormnp6a+92IeqJwFpWoN33tWvSuXFlzn9gwQ7zIi4JjWJGCpPDj1Gvu7o7ykJS4iXg4uUDp1EsnoTv1LBYEOpH2cYX4w6quntVilfHb5KFTT2/qJX4btBZsVDX1fHe/DSCuioKgyfgtqUMo6hFfWO0AmaaJ5x57DHdfcw0ev/tuybGjgjX1GgerxiXAaxddP80yJKdeyN1vyxiGITXM2Pbyy7WNIUThSDi/xcVW6uK3Ppx6SdTUU00cJRelw9jDcSKdSOeonajnYqGSht35tDuAiT9mHHxwze2hnTtRKpUsF6stU6favl5aBYw0Qaee3tSNUy/k65ZhGIGeX3kdn/HbQKKexcac18Z1Vo4/QnSAoh7xhXSx2DMw7tyyBZueeAKjw8PY+uKLePnppx1fy2nXMkg9LisRiYv1ZLAT28oXXVWzDCdE4Szf2enj6Nyx7B3vqDn/S8Uitr34YuW21/ht2mpfid8pV40yNKmp5yS4ijB+m04kN6lN/NaPU0/HOjpeY0SkPugXnHpmqYThXbssRd5sPo/m3l7L12NNveihU09v6sWpJ32Xgzr1Iqypp3TqhSnqiU49n91vg7ofCYkSXr2JL6x2gMT6YoM7dzq+ltPCOkg9LkunHhc8ieBK1Js9u+Z+J1HPNE3JcRVV/BaYjC8tOP74mvtereqCK8VvhWPzujOoG7nW1prb4qSoVCpJ9+laU08UXEUo/qcTL/FbVzX1UujU47nbGLT09KBn+fKa+wZ37JC7IVfNedps6uoxfhsOy4X6u9XQqac5bJRRfkLt64VVU88wAMH1p3TqhThXlpx65fgta+qROoKiHvGHGL/dM7CNj43V3u9i8uIUgctHEL9lraxksIvfGj6deipROEpRD4AUwR3cvv21zqlONfVEUSFlArMk6gl/f9GlB+jj1BOnX04bChwn0ombiHiZeqmpx0YZjYtUV2/7dts4tl2zjLQKGLqx5pOftIw606mnN2E6xJIk9O63Ibp43TTxSCR+S1GPpBiKesQXVm29JwRRz83kxbH7bQBRj91v9cLq8wBeK+zutaaeym0Vtag3//jj0TptWs195YYZTo0yvNr9dcNJ1FPV0dRF1PPaKIPx23Qidb8N2CgjDRP5tMf6iX9EUW94YMA2jm3r1Aupblaj071kCd5+//048eqrMX3Nmpqf0amnN1E1iIibwMctXufCFPVcxFjFuXKQ2oZWjTLsHM3K10nBBh9pXNI5UpHEsVrkiAJMGE69QDX1BAGiDEW9ZBAX29VUnHoeRT2VMNMUsaiXzeex9O1vr7lv6566ek7NGNK++FbFb6t/Z/HzyOTzlt/DKHEVv2VNvbpEit9Wfc5+FmxpmMinfVwh/mmbMaPmtqpRBp168dPW3495xx6Ljrlza+6nU09v6NRTPz5McdNVF9kQm8pZNbjw3CiDNfWIxlDUI76QrNMROvWCiHpGJqN0h1HUSwYjk7EUeOwaZdhNRsQIZSaXiyV6tvRtb6u5PTYyIglcgIv4bcqceiqhq/p7LnW+nTIlEfeHcgLq0anH+G068dT91odTT8eJPOO3jYuqXpSdyMuaevEizjfp1NMb8fNJ63fClXAW4PWC4EZwFN3GUTTK8FoOJw2ufdK4UNQjvlANbKZpSqKeK6eew2OCFtlX1dWjqJccVnX1MhZOPdM0URgft3w9UZjJd3TEIiK19PVJ95mm6dhhNe2OGpUoa1b9jmJNvSSaZACTMTKrzYcy7H5bn4hjjGmar11nQuh+q+NEno0yGhfVfMxO5LVz6qW106fOiNd4OvU0p04aZUhx2YBOvVDjtw7HpppLR9EoI2j8FtBzPkAaE4p6xB8K50JhYkIa3NwMdk4L66YANfUAtYjEBU9yWDUvKdvj22bMkDpj2UVwxZp6UdfTK2N1cXfqsFpvNfUAoFjt1BN+3yTq6ZWRFrvCz52639Kpl05UY0BZ/K/X7rdeFyekflCJzpLIW3WdsY3fprR+mM7QqZcuxNE9rfHbwE69COO3TnMz1bHq2Cij+rUISRpevYkvVA4Y0aUHhBO/zXd2ejs48fkKESlDUS8xrES98kU3m89L8SCxq3I1oigcl6in3L1VnO9S/DblMTmVqFeyceoFFeWDENSpl7bPhkyiGmPK56if+K3VLr9OpH1cIf6RFrsOTj3Gb+NF/C7Sqac39RK/DVo2Isqaek4bZUpRL0ynnoWo5+jUo6hHNIaiHvGFakBWiXpOix/VjrJI0DiIqjkDnXrJoapxaGSzNZFZL80yVPHbOFDtGqom61L8th5r6lX9jqJTL6n4LeA8qbWrqZdtaWEnyJSiEvUqn3UYop7/Q4sMqdtpysYV4h9VEXjxOpNlo4zEEIUCHTcFyGvUbaOMoK8XYaMMaW4mbA4D6rWD6/ezit/ajJMqlOMjRT2iCRT1iD8Uop7KTeW0I+nk0gsDVfyWsbrkUF2YxQtum6JZhhWSqGfhBAwb1cVddb6XisWaSWLaY3KGYUjCnq1Tr7s7jsNS4rQbbDf+cIxIL5lcTjpHQ43fargop1OvcXEVv63ayKRTL15YUy9l1ElNPaekghN+XO1ucZqbqepoq+pYu8WyUYbHcjisqUd0hqIe8YWqyKkfp14coh4bZeiFMg4tXCglp97IiOXr6eTUszrfq8/ztDv1AFnwsut+m6hTz6EYs5NTj6QXcZwJM36r48582hvwEP+oXCh28dt8Z6flHIg19cKHNfXSRZRiVpyE3bU91Pitw9xsQhD1mru7A7nPVW5mwLuox5p6RGd49Sa+UO2yqNxUTpOXHZs3h3pcKsTFnZHJpNZOXw8oRT3hQtouOvVsauqJwnDQGoxucevUA2rFI6+TCB3JCnX1apx6YqOMJGvqOTXKsNlUoKiXbkRxP0j8NqjjIQ4kBzA3rhoGZfzWRuQ1DANt/f3q10qpgKEz4neRTj29qZf4bdBGGVHW1HP6ToiiXsvUqYHeT3Lq+ex+S1GP6AxFPeKLMBplmKaJTU8+GfqxiYjxWy52kkUVhxYXJWmtqWclYtuJeml01IjNMmpq6onx2wSdek6TWjunHuO36UYS9QI49ax2+XWC8dvGxU2EXDwfrOrqBa1hTGTEvz2devqiGttTK3Q7uOEciVDUEzffxbmYGL8NEr0FbBpliAKuU6MMlcCr4XyANCYU9Yg/XDbKKP9MxfaXX8bI0FDohyYiOsMo6iWLq/htHdXUA2pFLykWlUKnniTqVf1O4uehdfyWTr26RWyQVCrX1BMe50oQCeh4iBqnxgikvhFFZxXi+dA6bZr6tRi/DR069VKEqutqWp16ovnC4/PFx4c5NjRZOen3IDr1WsN26vnsfkunHtEZXr2JL1S1GqwikqoJjGmaeEFw6fWtXo2Zhx1Wc1/v3nsHO1DIjRko6iWLqhuxY0290VHLC6cozIiThahQXtzdOPXqYPGdFqeeY6MMu5p6HCdSjZVTz1f8VnOnnmrcoVOvcXAjOojnA+O38cHut+mhnpx6TvMfRyKsLejk1JNEPYtNCLdYdr9lTT1SR1DUI75wG78F1BOYnVu2YHjXrpr7DvzkJ7Huq1997bUNA0d+61uBj5VOPb1Qdr8VLqQds2dLj7E6v0RhJq74rWrX0rKmXnWjjDpw6knOA5vut0k69azqqJSxc+oxfpturGrq+WqUEXLB8bApKY4njZsFxB9uRD3XTr2UChg6Q6deelAJNGmNpIfe/TZMp55T/FaY70cRv1XVHnWM31LUIxqTTk8xSRzVDpCl6KKYwGx64oma21OWLMHiU09FJpvFKddei03XXYfZRx6JWevXBz5WyanHxXqiuKmp1zptGoxsFmaV6DI+OoomxWeXVE09wzCkY3Ry6qlicml01NjFbwtio4wERb2WqVMx+NxzldviGGXb/Zbif6oRx5kg3W/p1CM64yt+a1FTj6Je+LD7bXpQOvVSGr8V1z7ihqtnwqypJzRQSyR+62MzTHkuaDYfII1LOkcqkjzCxG9ibMxyoSNOYHZt24aB7dtr7jvwE5+o7IDMPOwwKYYbBDr19MJNTT0jk0H7zJkY2rSpcp9VXT3RbRWXqAdMHnfRpl5e5X4LlxCQTqeeVfy2VCxK3/ckRT0xYlZdIsA0TXa/rWPcOvVc1dTTXNRTjTu8zjUOvuK3VqIea+qFjvi3p1NPX+opfiuVsbEwXlgRqVPPY029oN1vxU2+gW3b1NdNOvVIiuHVm/hCHNzFOlrViIt80aXXMXculr3jHeEdnEDn/Pm17zdnTmTvRZxxI+oBcrOMMStRLyGnHqBwrDrEb1U/T2NMzkrUU40DScZv22fMqLld7dSzE/QAxm/Tjli707KmnouFSuDaRBFTL+MK8YcrUU/YPGL32/hgTb0UUUfxWy8N55T42ABzi9fut0GderOPOKLm9tDOndi1dav0OCeHu2q+oNt8gDQuFPWIL7zsXFXvhgzu3ImdW7bU/Hz/j3400gXI3GOOqcR48x0d2O/DH47svYgzqvityq2mapahIqnut4C8mLKsqVd2Calicil06mUtRD1VnFUrp17VOWQXvQXo1Es7YdbUc+qinDSM3zY2Tuewkc1KC3JLp15KBQydEee3dOrpSz3Fb93Ooa2Q/hIR1tQTN4Qlp17AmnqLTjoJnQsW1NwnNmsE3M3HdXfuk8YlnSMVSRwvE7/qLkNP3H13zc9ap0/H3u95T6jHJpLJ5XDyNddg+0MPoW3GDMuubyQelN1vFeeT2wmJ6LhK0qnn1CjDj91fR6xq6okTs0xTU6KOtzbBqTfuwalHUS/diOOAVQTej6in2yReNa64cW+R+sDps1ZdYyxr6jF+GzqsqZce6qlRRrvQcC6oUy/MsUFy6lU3WysWpflZ0PhtJpfDfh/6EG78yEcq9w3t2CE9zs183MhmgepNYc3mA6Rx4dWb+MPD4F4yTWx7+WXc8Ze/YHR4uOZn+334w5JAEAWZbBZT992Xgp4GqJx0qp1QMTowoZiQmKaZaPxW2rHzU1MvhaKeVfdb8bNIMnoLyKLehAenHuO36UYcZ6zit24WbLq7l1Qd/AzDSOhoSNw4iXqqawy738YHu9+mh7py6init142pJLqfitGbwHr8coLK971LjT39Ng+xs18XPdyHKRxoahHfOFl4lecmMAT99wjL/i7u7H6fe8L+9CI5ogduQCLmnoudhlVbiudnXr1Er9169Rr6u6O65CU2DXKEBusiLDRQLqxjN8Kj/MVv4VeE3lxXEmj+5f4x0l0UJ0PmVxOGWmjqBc+bJSRHurKqSekXcxSybb+uURCop4YvTWy2VA2iJs6OhzXnK6delXoNBcgjQ1FPeILL4P78MCAUnw58MIL0SS0NSf1j7LmneKi6KbIr7KGmzBZiBLXjTL2HGdJ8XumcQFu1SijKEwYdXPqlYrF1z4L1tSra6T4rVWjDJ+ink6RG1EkoCDdWDjNx6zcJ6oILkW98JG+j6ZJIUBX6qj7rTj/AbxFcP1sgLnFrlFGQejS29LXF5qguM8FF1hfHw3D1e/ImnpEVyjqEV94saOLC30AOOZHP8L+H/1omIdEUoKqUUZRYbcXdxknxselxavKbaVl/NbGqZfGCaNl91tBKEtatLeb1Do59Ri/TTdS91urmno+ut8CiiLiCaKK35LGwTAM2wiu1caRKtLGmnrho/r7062nJ0qnXkrjt9l8XhLuPdXVE6+VIZZ0UDn1yn970akXtPNtNW39/Vh2xhnKn2XyeVe/I516RFd49Sb+8DDxE91UrdOmYcVZZ3Hy2KConHpuRD1AnpCIbisjk4nVYeU6fmvR/Tatta+s4reigJ9k51tgMm4hnm8Te3aB2f22vpHit2VhvR6desKxpNH9S4Jht9FqJfKqagynNWqoMypnEJtl6Imypl6K1ypBOuBKTr0IG2XANCvzyLA734rsX9Usoxq3101pjNRoLkAam/SOVCRRvAzuonuHi+XGRinqCXZ7AGju6ZEmw+KERNUkI06RTNzB9SrqZVNYTw+Qv8NWTr2k47eAdQdcp+63dOqlG9ERXNkA8NMoI2U19ejUazzszmNLpx7jt7GgEvXo1NMTcVxPq0uvjJsyNpbEWFMPeG1TWGyUEbTzrUjPsmVY+KY3Sfe7vW6KGyg6zQVIY0NRj/jCa6OMaijqNTaqC2dJ4dQzDMNxl1GMUMYZvQU81NTbc5yioyati2+3NfWSjt8CshuFTr3GQBwLzD1OAF9OPc3jt1JNvZSOK8Q/vpx6qvgtRb3QUf396dTTEz/XB51x03DOiki73yrmhuU5WZTx2zKq8k9+nXoU9YguUNQjvvAk6gmLZ1EQII2Fykmnit8CzruMKqdenLh16pWs4rcpdepZ1tQTG2Uk3P0WUDj1XNbUo6iXblRjQXXdnjL1EL9l91tiW1PP4jrTqojfpjlqqCuq7yNFPU2pN1EvTKdeiH+LbEuL9HrlOVkcot7Mww5D/8EH1x6TW6ceRT2iKbx6E394id8KC/0cO/MRAVX8FnCuByLW1NPdqVcvi28pfluuqSc2ytAhfitOasvxWwenHuO36UYV8y8Vi6GJejpN5MXNhLQ6gIl/7EQ9S6ce47exoNq8E137RA/qLn6raU09wzCUzTKA6OO35fc/4GMfq7mve8kSd89lTT2iKRT1iC+COPXogCEifkU9KX6rWMhHideaelL8ts6dejqIeu1W8Vsnpx43H1KNsnZnoRBaTT2dJvL1sllA/GMXv2X322RRxvfp1NOSuovfalpTD5CbZVTit8J6IAqnHgAsOvlkrD7vPACTiY41n/qUq+eJ836dNvhIY5PuLQiSGIzfkjBR1dQDXIh6STv1hEmO1UTdLJUm63nViaPGbfdbLRtllOO3rKlX12RyOWRbWlCsGjN8x281r6lHUY/4cer1rFhR8x3pWb48ld3YdccwDGRyuRp3OIUAPal7p97YGEzTdPU9l87RkEU9K6de1N1vyxiGgSO/9S2s+9rXAAD5tjZ3z2P8lmgKt+SILzx1v2WjDOKAa6ee8LikG2W4deoBe6J/dbL4VnW/NU1T6n6rc6MMp+63dOqlH9GtVyoW5UhRHTj1GL8ltjX1LM6Hlp4erL/0UuRaW9E6bRrW/9u/RXV4DY/oyqdTT1OEzyX1Tj1hDg3TlJxwbgndqSfM14sTE5PzyBjitzXH0dbmWtADKOoRfUn3FgRJDg8XOnHxTKceEbGa4ErRgZGRmtuJO/Vc1tQD9riE6rRRBjD5u0vdbzV06k3s2al2cuqxpl76yXd0YHTbtsptVfy2HmrqiceS1s0C4h+789jufFj9vvdh1T/9Ex16EZPJ54Gq+YtO4wd5DT+bPjrTOm0ajEymZu45PjaGJhfzG8m1GPLfQtz0LRYKSjd9VPFbv0gbKPwuE02gU4/4IsiFjk494hZxl7F80a++XU3Sop6dU69YLNZtTT0AmNizy1qNjt1vyzvB7H5b/0hOAEWjDFc19TRf2NGpR/zEb8tQ0IseOvXSQb3FbzPZLJqEeZi4+er+xaKvqSe69IDonXpekcruUNQjmkBRj/giyCKHDhgi0rVwofJ+KTqA2rp6YgfTpoTjt3YT9ZLCqZetJ1FPUYBZh5p6rYoOj+NjY+x+2wCIkZqS35p6ujv1xHGF0fGGw0+jDBIfLK6fDsSxVPcNHTe09PTU3BZLIlkhXStjqKkn1tPLtrTE3gDPCcZvia5Q1CO+sBvcndxHdMCQo3/4w5rbR3zzm8rHNXV2Sm6b6rp6SdfU8+TUU8VvU7rYUop6ijotOsRvs/m8tNM7MTpKp14DoHLqhRW/1SlyI447FHEajyBOPRI9klNPo/GDVFFnTj0AklPPragXe/fbYlES9VqnTtXOSSy6+/ldJrqQ/tGKJIPN4N4xdy4Gnn7a8ud0wJDlZ5yB3a+8gpduugkLjj8e89/wBsvHts+ejZ2PP165PS50s6wm6UYZtjX16ih+q3ICiU1Msi0t2ogLbTNmYHTr1srt8bExdr9tAHLCDr+qXo/f+K1OE/l62Swg/rE7j3UZhxsZxm/TgR8nt+6IiQnfTr2wa+qJm26FAgrCPFK36C2gcEVrNBcgjQ1FPeILu6hHx5w5tqIeF8skk8thzUUXuXps+8yZ2op6Xpx6yvhtShdbRiaDbHNzTddi0amnQ/S2THt/P7Y/9FDlthtRj5sP6UccD0qKmnq+nXoaUS/jCvGP3ZwsrZtH9QRFvXRQl6JeSDX1InfqKeK3rX19ob5nGNCpR3RF75kq0Ra7wb1z7lzb57L7LfGCWFevpqZewvFbr069eul+C8jf43Ghpp4O0dsyYrOM8dFR6dwRYV2y9CPFb+u0+63UKCPF4wrxh11MkCJv8ojfSdG1T/Sg3hplALKop01NPbH77cSEJOpp6dSjqEc0haIe8YXd4N4+e7btc+nUI15onzmz5ratUy/mgrqea+qJE8YUL7ayoqinsVOvrb+/5vbo8LDjc3R3ZxFnxEYZqu63rj5nVU0fjSby4u9EEafxsBOn03ydqRfYKCMd1KNTT9xg1UbUc9H9VkdRj99loitctRB/WFzoWvr6HIUVxtqIF+yceknHbz059QqFunLUiE49MX6rs1PPjahH0o/Kqeerpp5hSAsanabxouuULtPGg049vWH8NiX4uD7ojhS/dSg9YgXjt5NIQi9FPaIJFPWIL1SLHGBy8ey0oGD8lnjBStQzTVOanIh2/qjxVFNPEb9N82JLFOfTFL8d3b07oSMhcSLV1FOIem6dGNL1TqOJfD05gIk/2P1Wb+juSQf16NRr7umpue27+20cjTJEUW/atFDfMwwYvyW6QlGP+EZVmLlt+nRHoYLxW+IFVfzWNE3lxKSltzeuwwKguLh7jN+mWdQT47c6N8oQ47dOLome5cujPBwSE6JrvFgs+l+oiE49jSby9bRZQPxh1yiD50Py0KmXDvw4uXVH15p6klOvWGRNPUICQFGP+EZ1sWvt73fcFWb8lnhBdOqVikXljh4ANMcs6nkpolwsFusrfit8j5N2TdohOvVEmnt6sOyd7wQwKQSt+9rX4jgsEjHK+K3wGLeintTxLsiBhYw0rlDEaTjo1NMbOvXSgSRk1UOjDJ819USibpRRKhalxIeO8Vt+l4mupH+0IomhWgy19ffTqUdCRRT1gEm3nigiZVtapML4UeMljlAsFJARJkWpFvUcYvQ6x29Fmjo78Q8/+QkO/sIX0NTZGbvjk0SDFL/12yhD9TiNJvJ06hHW1NMbOvXSQSM49Yo+nXqiWz0oYqMMQN4cToNTT6e5AGls6NQjvlHGb+nUIyGTa2mRHHjjo6PSbmMSQowXp56qnlc9i3o6xW9benps/9b5jg4YhoGu+fMp6NURUvfbQsF/IXSN47d06hE7RxHPh+SRRD2Nxg9SRR3W1GtSNMpwIypH3v3WxRxRR1FPcu3zu0w0gaIe8Y1qMdTW3+/YKEOsxUWIE6pmGWL8Nu7oLeDRqVdvjTKcnHrCRDJJjExGqqtXTdxdk0k8SPFblVOvHhpliOMKu982HHbidJqvM/UCnXrpoC7jt4q5WMFHB9ywXYv5jg5HoVDH+K14TlDUI7pAUY/4xm/8lk494hVVswzJqSd0+IoDL5OcYqFQVzX1nGL0Ojn1APsILkW9+iQnNMooKZx6rkW9FNXUo4jTeLBRht6Irv4ShQAtaYT4LeAuglsqFmvvCNmpZxiGbe3lfGenlhtUdOoRXaGoR3yjih629fc7ChWsqUe8onLqSV2yNHfqlRROvTTHohydeho1ygDkDrjVqGq7kPQjirWmaUoCWF049eoo1k/8Ydsog+dD4kifgUbjB3mNenTq5drapPPPrlnG+NgYHrjxRowMDdXcH3b8FrCP4LZOmxb6+4UBa+oRXaGoR3yjdOrNmOHs1GP8lnjEjVMvifitp+63ipp62RQvtpzEeZ0aZQB06jUibj5Xt04McUGj0+58PcX6iT/YKENvRFFF3FwgelCPTj3DMCS3np2o9+qzz2Jwxw75deIW9TSM3gIK175GcwHS2FDUI76RBnjDQOu0aY7uIzr1iFfc1NRLIn7rtfttPTn17JyRRiaDKXvtFePROGNbU49OvbokL8RvVfiN3+oEG2UQNsrQGzbKSAl12CgDkGsc24l6wwMDyvuj+Fs02yQ6dGySAcgbKPwuE12gqEd8Iw5sLX19yORyrKlHQqdj9uya26l06hWLdVVTb9bhh1v+rP+gg9JVU8+F+EPSR6iiHp16RGPYKENv2CgjHUhOvTqI3wJyjWO7mnpiaZsyUbgW7Rqq6Srq6TwXII0NRT3iG3ExVF40O3a/pahHPNIi2PALExOyU0/zmnowTRSFjmNpjqLPXLcOzRbuyHnHHhvz0TgjRrirYU29+iSTyzleb+qhpp7UKEPD4uIkWuzOYzr1kofunnTgtzu67niJ31qJetPXrAnzkADYN1RLS/xWp7kAaWwo6hHfiHGPtunTAdhPILPNzTAMI9LjIvWH2HShWCikrlEGIE+W0rz4zuRymP/61yt/pqOoZxu/ZU29usXJree6pp6m3W9N06yrWD/xB2vq6Y0k6tGppyV169QTRT1hg7nmZ2Nj0n2v/9WvpMRMGNjV1NPVqUeBnugKRT3iG3ExVHHq2Uwg0+xMIsmh6qQ6NjJSc9vKNRYlXid8orswzaIeACx44xul+7LNzZi+dm0CR2OPbfyWTr26xUnUS71TT3EcFHEaD9vutzwfEoc19VJCnTr1xJirVfzWNE1p8/mtd92FxaeeGs1x2dTUa9VU1GOjDKIrFPWIb6T4rRunHqO3xAeqC7+4050Gp55I2utLqhx5fatXa9kxjk69xiSq+K0uE3lVF02Keo2HXaMMng/Jw5p66aBe47ctolPPImKrur912rQoDgmAffxWW6ceRT2iKRT1iG/EneHyotluAklRj/jBjZNK90YZKtL+fWjp6cGco4+uuW/1eecldDT25NvbLc+jJop6dYuTSyntTj3VgoLOrMaDTj29YWQvHdRr/FbqfmsRv1XV04vSMWcXv02LU0+XuQAhFPWIb9pnzaq53b10KQD7SCHjt8QP2Xze8dxJo1Mv7aIeABz+jW9U6rXM2bABy97+9mQPyAarCC6devWLk0sp7TX1lE69lMf6iXdYU09vGL9NBtM0sXtgwLL5g+rx1UibOSnFbaMM8e/U1NUV6fUkjaIeBXqiK/WxBUESYfUFF2DTtddiYnAQ/WvXYv7xxwOw3xVOe9yQJEdTVxcKQh29MplcLhFhJugubj18H/pWrcK7X3oJQy+8gCl77ZX04djS3t+PXU8+Kd3Pmnr1i7iYFkm9U4/xWwL7+C2desnD+G38mKUSHrr1Vgxs24ZsLocVBx+MKU4dVevUqSeKelY19SaEJhlRRm8BoNmmpp6u8VvW1CO6Uh+jFUmE2UceiTMeewxDL76IqfvuW3E82MZv6SAgPsl3dQGvvqr8WXNvbyJdlenUmyTb1KS9oAfQqdeIOAlc9VhTjyJO42HnOKXImzyiqKf63pJw2bF5Mwa2bQMAFAsFvLhxo6OoV6819cTadW6dei1OImhAxFhwBcNIpPmdGyjqEV2hqEcC0dbfLxWgt3NGMH5L/GLXJSuJ6C1Ap17asBL1mujUq1vqPX6rcvw4uRNJ/WHr1OP5kDiM38bP8MBAze2x3bsdn1Ovop4Yc7US9QpxO/Us4rctvb1aNlwDFPN+fpeJJtRHsQCiFYZhWE4i68WZROLHTnhJakePTr10YdUBl069+qXuG2UIop6RzWq7GCLRYbXBlMnnE3Gxk1pYhyt+xoRyLcVi0fE59dooQ0xJWZ1/olMvalHPqqaertFbgE49oi8U9UgkWMVsKWIQv9g69SKOCFhBUS9dWMZv29tjPhISF40Wv2XUsjGxEh94PugBa+rFj+jMK1p0fK1GtUlSD4ibW2appLyGSaJexOKalajXmtCc3g0U9YiuUNQjkWDljmD8lvjFzqnH+C1xg8qpl29vr5sOd0QmMqeeJoiLUNatbUys4resr6gHjN/Gj+jUK7kQ9UTqxqmnGgdUop4Qv22J2KmXb29XXoOjdggGQXTC87tMdEHPWSpJPVa7wxQxiF/snHppjN8amUzdTBjTgsqpx8639U1oNfVS4tSjiNOY0KmnN3TqxYtpmrKoVyo5/t3rtaaeqiSSqllLIeb4rWEYyrm91vFbRumJplDUI5FgNZFk3JD4xU580dWpZ7fA5nchfpSiHuvp1TWOIpfLemPa1tQTjoMiTmNiWVOP54MWsKZevEyMj6OkqKHnVFevXuO3quuCDvFbQB3BTaqkjhukc4LfZaIJFPVIJFjGbylkEJ9oWVPPIZJn1dkLoKiXBK3TpkkiDjvf1jd2IpeRybhuIkCnHtEZK/GBIq8e0KkXL1adbp3q6tVrowzVdUE8B03TlOK3ccRgVfPkOMREvzB+S3SFoh6JBDr1SNjYiXrtM2fGeCSv4TThsyoCDFDgToJsPi9NFtkko76xE7m8uDB0dWxINfUo4jQkdOrpDZ168SJGb8t4FfV0Hfe9orouiBtCxUJB+v3jEPWUTj2NRT3Gb4muBN6CuOOOO3DFFVfgiSeewPDwMPr6+rBo0SKcfvrp2HvvvcM4RpJCrIp1s1EG8YudqKdqgBAHThM+O1GPAncytM2YgZEtWyq3WVOvvskqagmV8STq6erUE+JkHFcaE9bU0xvRqaeqZ0bCw9Kp5xC/FaOUjeTUE116QIJOPY3jt3TqEV0J5NT7zW9+gzPPPBP33XcfZs6ciX322QddXV249tprceqpp+KKK64I6zhJylAVZQW44CD+sRX1dHXq2QhGdOolgygAs6ZefROaU0/TmnqiOEARpzGxOpet5mIkXqS5gibjR70yaiHqOXXArVennrJRhvC7ivX0si0tyLW1RXpcQAqdeqypRzQl0BbEj3/8Y3z0ox/FOeecU3N/sVjEP//zP+Pb3/42TjnllEAHSNIJu9+SsLETyNoVDRDiwGnCx5p6+iE2y2BNvfrGTuRy2/kWkL/rukzjpfgtx5WGhE49vZGcehQCIiWs+K2Xa4TOqMYHyamn6HzrtuZsEFTHFodD0C/SXIDfZaIJrp16//qv/4px4Qu/fft2HHLIIdJjs9ksDjvsMGzdujX4EZJUYuWOyDJ+S3xi5dRr7umxjHtHjdOEr6m72/JnSR1zo9N/0EE1t6fut18yB0Jioe6demL8luNKQ8KaenrDRhnx4jd+Kzn16iR+axiGNBaI52Ahgc63AFCamJDuY6MMQrzjWtT7wx/+gJNOOgn3339/5b7ly5fjkksuwf3334+hoSGUSiUMDAzgpptuwo9+9CPW1GtgrCJtdOoRv1iJekk1yQCcJ3x2Tj1+F5Jh+ZlnYvFpp6G5txeLTz0Vy884I+lDIhFi2/3WiwtD15p6wsKM40pjYnUtolNPDyRRT5Pxox4xTdO3U0+qqVcnTj1AHgtEUU/cIIojeguoRT2dax3TqUd0xfUWxB//+Ed8/vOfx9vf/nacffbZ+NCHPoRPf/rTOPfcc/G2t72t5rGmaWLWrFm4+OKLQz9gkg7mHHUUnvnDH6T7GQ0ifrES9ZJqkgG4aJRhUweQ34VkaOrowOsvvzzpwyAxEZlTTxOkmnp06jUkVuIDnXp6QKeeMxNjYxgeGED7lCnIBzhvixMTluJdo9bUA+SxQIyAi797XNeSouAQBBBL7NcvrKlHdMW1qNfT04NvfvObuPrqq/HFL34R1157Lb72ta/h//7v/3D77bfjqaeewvDwMNra2rB48WIcfPDByLNAb8Oy4l3vwh0XX4yxnTtr7qeLgPjFaucuqSYZgItGGRT1CEmUsGrq6Rq5YU09AtCppzvKmmamqbV4EScjQ0N48KabMDE+jlxTE/Y5/HC0trf7eq1RC5ceUOvUK5VK2LVlC5paW9G+Z64m1dSrk/gtIHeCd3LqxTV27HXKKXj6d7977X01v4aJ54QucwFCPG89H3/88fjTn/6ERYsW4fTTT8c3v/lNHHTQQTjrrLNw3nnn4eyzz8b69esp6DU4TZ2dWPW+90n300VA/JJrbVXumibVJANw4dSza5TB7wIhkROWU0/b+C1r6hGwpp7uqLqP0q33GptfeKHSqKEwPo7nH33U92tZ1dMDXqupZ5omHrzpJjxy++2477rrsPmFFyr3V1PPTj3x/JMEzZjGjsVvfjOmLF5cuX3Ud78by/v6hfFboiu+8iS9vb349re/ja9+9av43//9X5xyyil44IEHwj42knL2ueAC6b722bMTOBJSDxiGoXS+id1M48RpF5c19QhJFtuaeh4itdo2yqBTj4Ddb3VHKeppMobowKYnn6y5vfWll3y/llU9PeA1p97g9u0YqkoSPf3ggyhMTMg19erJqSfGb0WnXkKlHLLNzXjrnXfi9b/6FU679VasOPPMWN7XL7q69gkJVCTmxBNPxB//+EfMmTMHb3/72/GNb3xD6pBLGpf2GTNw+H/8R+X2/OOPR8/SpckdEEk9SlEvyUYZDru4+fZ2S+GAi29CoiesRhnSRN73EYWLFL+liNOQWMVv6dTTAzr14sPWqbdH1BsfG5Puf/npp2Wnnqa1VP0gOfXEmnoJXkuaOjux+NRT0b92bWzv6RfW1CO64nkL4pFHHsFzzz2HXC6HGTNmYNWqVfj+97+PK6+8El/96ldx7bXX4itf+QpWr14dxfGSlLHvBRdg9pFHYnTLFsw+6qikD4ekHJWol2T81mkX18jlkO/owPjAgPQzxuQIiZ6o4re6TOTZ/ZYAdOrpjlVNPTJJU0sLxkdHa+7zW3Nw1EbUK1XFb0Veevpp6b66it8KwrKTU48bAmpYU4/oimtR77nnnsMFF1yAjRs3Vk5gwzAwZ84cXHzxxfjHf/xHrFu3Dp/5zGdw+umn4z3veQ8uuOAC1tYjmEqBl4SEarc7yfit04Qvk80i196uFPW4+CYkesTi4NV4aZQhOjZ0mcizph4BbGrqcQ6uBarPQew+2sg0tbZKol5hYsJXF1w38VuVS7IwMSHdV8/xW6mmHjupu4I19YiuuPYVf+5zn8Pg4CAuvfRS/OEPf8DVV1+N7373u+jr68OHP/xhjI+Po7+/Hz/4wQ/wuc99Dr/4xS9wyimnRHnshJAGo6CYrLVr3P3WyGaR7+hQ/ozxW0Kix85t4MWJoKtjgwsxAlifn3Tq6QHjt/Y0KcYtuxitHa5EPZdCjK7jvh/Ec1DqfstSDq6gqEd0xbWod++99+K8887DCSecgKVLl2LRokXYsGEDvva1r2HXrl147LHHKo897bTTcNVVV2H69OmRHDQhpDEpDA9L99l1mI0apwmfkc2iyULUo1OPkOixcyrlWltdv462Tj02yiBg/FZ3VI5hinr2+BH1ioUCCja13Svdb13+7evaqedQU48uXzXSOWGa2swHSGPjWtRraWnBli1bpPu3bdsGwzDQIkwkZ86ciR/96EfBj5AQQvYwoRD1/NRcCQun+J6RzSLf3q78GRffhESPnaiRDSDqaVNTj/FbAjbK0B3V50Mh4DVUf4tRG8edFU5CYKmRnXoO3W/p+naHUujld5logOstiKOPPhr/+Z//iS1btmDJkiXI5XLYtGkTrrzySuy1115Yyq6mhJCIKfiMY0SF1UKqTIbxW0ISxU7U8OKWlZx6vo8oXOjUIwCderqTyWYBw6hZ/FPUew2Vc86PU89JCLSrqaeirkQ9xm9DQTWnKJVKyNZRp2SSTlyLep/5zGeQy+Vw1VVXYXiPW6alpQXHHnss/vmf/zmyAySEkDLLzzoLD33/+5XbnfPmJXg0Lpx6uRxyFk49xm8JiR67hYmn+K34XddkQU53BQFsGmVwYa4NmXwepapoKOO3r6F06rkQ9SbGx2FkMsjtOf9FITCTy1XceUBV/Nbl+F3X8VsHpx7HDjWqayy/y0QHXI9WbW1t+OIXv4iLL74Y27ZtQzabRU9PT5THRgghNez7wQ/i0Z/+FMU9XdKOvOyyRI+HTj1C9MbWqVeHNfW4WdCYWF2L6LbRh6wo6mkyhuiAH6fes488ghc3bkQmm8XSAw5A38yZUpOM7mXLsP3hhyu3S8UiTEUNtLaZM7H75Zel96gnp544FojdlyWnHjeIlKj+LuLfjpAk8LwFYRgGpk6dGsWxEEKILT1Ll+Ktd96J5//v/zB9zRrMWr8+0eNxVVPPStTjhImQyLGtqRcgfquLU0+qqUcRpyGhU09/nOKPjYxK4BwbGYFpmsq6yWOjo3hx40YAk2PgMw89NCnqCUJg78qVNaIeMBnBFUWYGYccgtFt2/DSDTfU3F9PTj1xLHBy6vFaokb1d6GoR3SgfkYrQkhD0LtiBXpXrEj6MAA4O/VsG2VQ1CMkckJz6gkCvh6SnmIhRqdeQ2LlKOLCXB/E+QKdeq+h+lsUCwUUJiaQV5zD2wVXXVkAFGvq9a5cKb/uHrdeNZlcDms/9Sn8XhD1rOZvaUQUlUUhSnTucUNADeO3RFdY1ZEQQnwiuXfEn2ezaLJw6jEmR0j0hFZTT3SLaLIgZ2SKANaucS7M9YFOPWus/hZWEVzV+V4qFqXH961aJT+uUJDrx+XzmHP00Vj4pjdV7pu2//7oWrjQ8djTgmNNPXZSd4VVowxCkoZOPUII8YlhGDCyWWkyVIY19QhJFltRr63N9eukpaYex5XGxMhkYGQyjNBpTFZ0SmkyhuiA1Xg6tns3Orq7pftVG6rjY2OYGBuruW/K4sWTDUomJir3FQsF2amXz8MwDBx3+eV4+Ac/wPjgIPY5/3wfv4m+SPFbsaaecJtjhxrDMJBpamLTG6IdFPUIISQAdqIeu98Skix2TiVPNfU0LJhumia735IKRi4Hs2qhCcjuMJIcdOpZYyXqFarEuGoyClFv98CAdF/X/PnId3RgbMeOyn3FYlHp1AMm52X7fvCDro87TYiiMrvf+icriHp06hEdYPyWEEICYNcsg049QpLFTtRIe/dblSjAzYLGRVXUn24bfWBNPWusBM5CoaB+vOJvt3twsOZ2c08Pmrq6pDmY0qlXRw0xrBBFOqmmHl2+rhE3zyjQEx2gqEcIIQGwa5Zh2yiDi29CIieTzVq67NIu6qncAXTqNS4qYYJuG32QnHoajCG6YPW3KFo49VQiyrDg1OucPx8A1KKehVOvnnFyijK67x7xOkunHtEBX1sT4+PjuOyyy/DnP/8Zr7zyCopW0TPDwCOPPBLoAAkhRGfsnHqGjVOPjhpC4iHb1ISC0BURALIBRD0dKCnmXhT1GhfVBhMX5vrgFH9sZKxEkaKFU0/1eDF+2zlvHgBIzcpKDerUkxplCH8Dxm/d4+R6DJtioYAXnngCg9u3Y3xsDE3NzVi4apWy3iRpXHyNYt/73vfwwx/+EADQ19eHZk4iCSENiqNTj/FbQhIl09QEKEQ9T049QbzXwWWjEgU4rjQuqg0mLsz1QRSOdBhDtMGqpp5V/FYx9o0MDdXc7lqwAIDCqWdTU6+e8Ry/5drekrjjt08/+CA2v/BC5fbo8DAev/tuHHD00TAMI9L3JunBl6j3pz/9CatXr8a3v/1t9Pf3h31MhBCSGhxr6rFRBiGJYuVW8vIdlJx6GizIGb8l1dCppzdslGGNVSdgS6eeRUKsmrJTTxW/lTq9NoCoJzn1GL/1Tdzx211bt0r3jQ4PozA+jjyv+WQPvvIkr7zyCt761rdS0COENDy2Tr1cztKpRwcFIfFg9V2ru5p6htEQjhOiho0y9IaNMqyxEjitauq5EVG81NSzm8fVC3ainmma0vnIDSJrnATSsLESt626Q5PGxJeoN23aNMs6eoQQ0kj46X6bbW6mZZ6QmLASNjzV1LP5nieF6FbhuNLYsFGG3rCmnjWWjTI8xG9FyqJeTkhLlIpFuaZeA2yGiL9jtTCq+nty7LBGnFNE7dSzev3C+Hik70vShS9R76STTsKf//znsI+FEEJSh5/ut6x7RUh81KtTT1yIMdLf2DB+qzeSqKLBGKILXkU9L049cVwslUqNKerZNMpQlnLg2GFJnDX1TNO0jJtP0KlHqvAl6l1wwQWYPXs23vve9+KGG27As88+i5deekn5jxBC6hk7B4+RzSLb1CRNprj4JiQ+GqWmHuNSjQ2denojCUcajCE6YJqm50YZTqJevr0dLb29ABT1zxSNMhq9pp6y6RKvJ5aozqmosNtApFOPVOOriMDee+8NYPJEu/nmmy0fZxgGHnnkEX9HRgghKUC1kCpTFgLyHR0Y2769cj+deoTEh5Ww4SV+C9GpF+SAQkIS9TiuNDSqDSa6bfRBdFJGHdlLC3aihVVNPSdnVOeCBZVSBG6ceo1QU8+u+63qXOSGgDV2rsewsRMMWVOPVONrFNtnn33QxC87IYRYOvWMTKYyqcy3t1PUIyQhrFwYXuK3Uu1MDVw2qpp6pHGhU09vpJp6GowhOmAr6hUKME1TqhXqJIiWO98C8nzLLJUkUbAh4rdioxYnpx7HDkvi7H5LUY+4xZeo9+tf/zrs4yCEkFRi1SijWuwTm2UwfktIfDRKTT1uFjQ27H6rN6JwxEYZkzj9HUrFIrI2gpSKcj09QB4XG7VRhl1zB1V9R24SWSPV1IswfmsnGDJ+S6rxVVPvvPPOw69//Wu8/PLLYR8PIYSkCqvYRvUCS2yWwckSIfFh2f3Wiwgm1tTTACl+SwGnoZFc44ahZdfmRoWinhqnDRJVXT0vTj1l/LYBa+rZRUYlUYpjhy2xOvXsRD069UgVvpx6f//733HttdcCAPbaay8cccQROOKII7BmzRrkGqAuASGElMlYLPbtnHp01BASHyqnntHcLEW6bF9DWODo4NQTYzl0ADc2olMv29Tk6Rwn0SJuAOowhuiAk7hZnJgAFBFaO2qceqpGGXTq1fwNRacexw577P6WYWMbv6VTj1ThS4G77bbbcPvtt+PWW2/Fbbfdhh//+Mf4yU9+gra2Nhx66KEVkW/GjBlhHy8hhGiFlVOP8VtC9EDlYMt4dMuy+y3RHVHUYz09vWBNPTVOf4eiyqnnEHfsnDu38v9S/LZUksbORmyUYVdTj9cSe+yajoSNXbSXTj1Sja9RrLu7G8cddxyOO+44AMCrr75aEfhuv/12/O1vf4NhGFiyZAn+8Ic/hHrA5P9v777D5Krr/v+/pm4v2ZRN74QQekiTKiBIkRB6uRGRIvkhoF5+ufWLiIgtcsuNgl/xQopIC4o078RyCwqEkqASihAIJaQQ0sv2NvP7Y7PDzOecqXtm5pyZ5+O6uMicPTlzdj87k3Pe8y4A3CSjnnpm+S1BPaBgnAjqWabfuuCGnJ56iGeXqQf3oPzWXk5BvcEOyjAz08ohU8/4HlNNv+UDgdQKWX7bl+LYPWTqIY4jH000NzdrwYIFWrBggVavXq3HHntMv/3tb7V69WonDg8ArpW0px6ZeoAr2N2gZBvUSxa8Lyam3yKe2QOLG3N3sUwfdcEHA26QUfltFn/HFwioetSo2ONgJuW3ZZipJyk2WdjyARHvHSkVsvyWTD1katDvYmvWrNHy5cv10ksvacWKFdq+fbt8Pp/23ntvzZ4924lzBADXyiRTL1xXl/C1QBZTNwEMTqlm6lF+i3jmB0zcmLsLmXr2nB6UUTt2bMJ1mV35rakce+pJ/b+DvkCA8tssuWZQRnd3LDAL5BTUe+SRR7R8+XItX75cmzdvViAQ0PTp0zV//nzNmTNHs2bNUp1xEwsApSiT6bfjPvMZrfzpTz95fMwx+T4tAHs4kaln9tRzQ1CP8lvEo6eeu5nrYw4nKFe5lN+mCojG99OTbKbf9vVZ3s/Lsaee1B8w8gcClN9myQzqFWtQhtT/+giWQVAa6eX0LnbdddeptrZWCxYs0JFHHqmZM2eq1igvA4ByYJY82W0f/9nP6pg77tCaP/5RY444QtPOO69QpweUvbwMynABMvUQj5567kamnr205bfZZurF9dOT7DP1zHfzsuiplyRTL/7/qfbFJ9ySqSf1Z+sR1IOUY1Bv8uTJev/99/Xggw/q5Zdf1pw5czR37lzNnj1bDQ0NTp8jALhWJuW3Pp9PMy6+WDMuvrhQpwVgD7vSqqyDeubr3AVZNgT1EI+gnrtZgnoueA9xg7SZejZ9w1IFOsxMPdtBGcbfKYfyW7vvcSBblH9LspNqkrDT0mXq0VcPA3IK6i1dulRbtmzRCy+8oJdeekn/+7//q/vuu09+v19777235s6dq3nz5mnWrFlk8AEoacnKNpJl8AEorHxk6rnhhpxBGYhn/ltUDoEKLyGoZy9dQMSup17K8lsjU89uMJml3LQMXiu2gzKSZOqVw89jMAqaqZcuqMcEXOyRcxOB4cOH69RTT9Wpp54qSXr//ff14osv6qWXXtJjjz2me++9V4FAQG+88YZjJwsAbpMsU8+N0zKBcpSXnnqDOiNnmDdiTNUub2TquZtl+i3lt5Jy66mXsvzWzNTL4L2+HIJYqcpvLZl6vHekVNCeemmO3UOmHvZwrDPo5MmTFQgEFA6HVVNTo7/85S/q6Ohw6vAA4Epk6gHu5kimHuW3cDnzd5Rm9+5Cpp49xwdlpOmpZ8cMuJYiu8Bl0p56/FuSknlNQaYe3GBQ72Jr1qzRyy+/rOXLl+vll1/W5s2bFY1GNXz4cH32s5/VEUcc4dR5AoArJc3UK4OLRMALSnX6raX8lky9skamnrsxKMNeTj31UgQ6cgrqlUGmns/nkz8YVCQuSJqspx4fCKRmvrcWM1OPnnoYkNNd59e//nW9/PLL2rJli6LRqEKhkGbOnKkLLrhARxxxhKZPn+70eQKAK5GpB7hbXqbfuiCoR3YF4plBPW7M3YVMPXvZTr9Nt3+4vj7hcSZtCcohqCf1vyfEB/WYfpsbeurBjXIK6i1ZskTjx4/Xeeedp8MPP1zz5s1TdXW10+cGAK6XdPqtGQQAUBSl2lPPUn5Lpl5ZMz9g4sbcXcjUs5cuuGkOysg2gOIPBuULBBRNERwpl6BeIBxWb3t77HHSnnp8QJSSm3rqkamHATkF9f785z9rwoQJTp8LAHgOmXqAu9kFN7K9aXFjph7TbxHP/ICJTD13sQzKcMF7iBtkm6mXKsgx6rDDbLcHKyvV09aW9O+VS7sU8z0hkiRTj/eO1JL9HPMhbaYeQT3skdO72EBAb8mSJXrqqaf0wQcfqL29XTU1NZo6dapOOukkffrTn3byPAHAlZh+C7hbyfbUY/ot4tRNnJjwuN54jOIys8HyGQjwkkx66kWjUfl8vv79k/zcgjU1+tQPfmD7tUC6oF4ZZerFG/jZm2vAB0SpFbP8tmrECHVs3hx7TPktBuQU1Ovu7tbll1+ul156yfJG8Oabb+oPf/iDTjrpJP3kJz+JvQkDQClKlpFHph7gDnnpqecC9EFCvGnnnKNV996rLa+8osZp0zTjkkuKfUqIQ6aePfN9LNzQoO5duz75ejSqSCSiwJ5rKrsAyueeeELDDjxQtWPH2j5HutYE5RLUSxZYtpTf8m9JSpagZzSaEHh2kvn6qB0zJjGoR6Ye9sgpqHfXXXfpxRdf1AknnKBzzjlHU6dOVVVVldra2vTOO+/ogQce0NKlSzVz5kz9x3/8h9PnDACuQVAPcDfboF6WWW3m69kNN+T0QUK8quHDdebzz6v9449VNWIEmZsuQ089e+Z7aWVTU0JQT+rP1ksV1Bt3/PEKpAjMpXstlE1QL8nUVkv5bZn8PHJld00RH3h2kvn7Xj1qlPTKK7HHPWTqYY+cgnp//OMfdfjhh+unP/1pwvba2lo1NzfriCOO0CWXXKLHHnuMoB6Akpa0/LZMerQAbmd3g1IK028tPfUI4pS9QDisuvHji30asBGqrU14bPaKK1cR4720avhwta5fr0hcBlLb7t0K73l/swy88PnSXm+l+8CjXK7XLOW3DMrIid3PJxqJSPkI6hm/7zWjRyc87jXK01G+cqonWbdunY4++uiU+5xwwgl67733cjopAPAKBmUA7paP8tvih/Rsym+5EQNcq2r48ITHfb29aZvglwUjqBesqtKIQw5J2NayfXvsz3aloukCGqk+8PD5/a5sr5APmWbqUX6bmt2/tfl6LZvHrTWCetFIhPcRSMoxqBeNRlVTU5Nyn3A4TBNYACUvWaYeQT3AHRwZlGG+noucqTfQZyoemXqAe1UOG2bZRumcNUjnD4UsU2x3xwX1cvkwI9U+5VRqapYoD2RJWtaAoF5Ktpl6ebomMNfGzNST6KuHfjkF9caOHatnn3025T7PPvusxiZpWAoApSJZph7TbwF3yEumnguCeiYy9QD3qhwyxPLhAEE963uZPxi0BPVaduxIPtQhg/e9VD31yimol6yvI1nf2bELehYqU6+6uVkyMlOZgAspx6De8ccfrz/+8Y/6/ve/rzVr1sS29/X16e2339b111+vpUuX6qSTTnLqPAHAlcjUA9zNkUw9lwX17CohGIwAuJfP71fl0KEJ23q7uop0Nu5hN6Rh1Kc+lbAt0tentj3DM3LK1COoJymLnnpk6qVk9/PJ1+Abc22C1dWqGDIkYRuZepByHJRx2WWX6dlnn9X999+vBx54QOFwWBUVFWptbVV0z1jnQw45RJdeeqnT5wsArkJPPcDd7Pot+bK8aXFbz6U+m4t4sisAd6saPlwdmzfHHpOpZ/2AxBcMqmr4cA2ZPl07Vq2KbW/Zvl11Q4bklKmXMqhXJkMyJOsHXJFk028J6qXk8/vlD4UShrmYA1+cYmbqBSsrVdnUpK64knQy9SDlmKlXVVWlBx98UN/4xjd04IEHKhwOq62tTbW1tZo5c6a+/e1v695771UFF5gAShzTbwF3syuLyTbo7raeeu0tLQmPg9XVtj27ALiHmalHUM8a1Bvo+5asrx7lt7mzZOol6anHB0TpWX6W+Sq/NdemqkqVRqZeD5l6UI6ZelL/IIwvfvGL+uIXv+jk+QCAp5CpB7ibXVlM1kE9l5XfDpSiDRi6//708QRczpyAS1DP+v48cE016rDD9OZdd8W2796+vb8ajPLbnJnfa7JMPcpv0/NXVEhtbbHH+RgOavf7HqysVEVTU8I2MvUg5ZipBwDoR089wN2G7b+/wg0NscdVI0aoork5q2NYgnqOnFnuzKDe8IMOKs6JAMiYJahHTz3roIyBTL1DD03Y3tPVpc62tpwmtZKp18/8WSXrqUf5bXpmMDkfPfXsqgwCe8pv49FTD1KGmXoXXnhh1geORqPq6enR4sWLs/67AOAVyYJ3ZM0A7hCoqNDhN9+sZ668Uv5AQIf95Cdqy7I83m3lt227dyc8HkZQD3C9KqNEngwb++m3ktQwZYqqm5vVvmlT7Gst27fnlKmXKkhVTkG9ZIMyLCXQBPXSMn/v8pGpZzsQq6rKmqlHUA/KMKi3YsWKrA7q8/kUjUZtm1MDQClJ1juPTD3APWZcdJGmX3CBJCnq82nlypVZ/X27QRnFus7p6+1VR2trwrbhBx5Y8PMAkB2z7yXltzZDGvZcU/l8Po067DC99+ijsa/t3r5dVbW1CfsPuqdeGfU/tmTqDfTUMzLCCOqlZ/6M8hLUS5apZ06/5X0EyjCo99RTTyU87u3t1Y033qje3l6dc845mjp1qqqqqtTa2qq3335bixcv1rBhw7Ro0aK8nDQAuEWy4B1BPcBdBm7e+nJoaO2m6bdmlp4vENDQ/fcv0tkAyBTlt1bJym8l2Qb1KqqrE/bPJABFT71+yQJRljUgqJdWQcpvk2TqUX4LOxkF9caMGZPw+LbbblNHR4fuv/9++Y0L3X322Ufz58/XF77wBd111136yle+4tzZAoDLVCfpzVVOn/4Cpc4uSF+sTD2zn96Q6dMVrKoq+HkAyI5ZfkumnjWgFP9ea/bV62htVXdnZ8I2MvUyZ36vsZ56ZqYe02/TKkT5rd1E3UBFBYMyYCunj56feOIJnXjiiZaAXuygfr/mz5+vJ598clAnBwBuN+644+wDe7QfAEqGbaZekfrqmUG9YZTeAp5g11Ov2JO0i83SIy8uc27YQQcpaGTm7dq6NXF/pt9mLNmgDHrqZc/8vclHpl6fTf9In8+nisbGhO1k6kHKMai3adMmBdN8stHX16fNmzfndFIA4BXBykp99qGHLNvDRt8XAN6VrKdeMZjlt0y+Bbyh0ii/lciysWTqxd1fBkIhjZw7N+HrZj/RQQf1yihTz1J+G40qGo1a+xoS1EurGJl6Axn5ZvktGb+QcgzqDRs2TH/4wx/UkyQy3NfXpz/84Q8aYjRyBIBSNObII3XkrbfGHvv8fk383OeKeEYAHOWinnpmH67GvfYq0pkAyIaZqSdxQ24JKBkZUKMOOyzl3x90+W0ZZeqZQb3ujg77YQyU36ZVkJ56Zln0nt9jM6gX6evLS1AR3pLTxxMnn3yy7rzzTp111lk64YQTNGHCBFVWVqqrq0tr167Vn/70J7311lv6/Oc/7/T5AoArHXDFFWqcOlUfPfecxh13nEZ96lPFPiUADvEn6alXDH29vQmPw/X1RTkPANkJhMMKNzSoO66EvuyDeuaQBiNzzuyrZ6L8NnMBo/dqy44devOll6z7kamXVkGm3xrHHMjUM3vqSf0Zv+EUv+cofTkF9a6++mpt3LhRS5Ys0apVqxIaRQ+8OR999NH62te+5sxZAoAHjD/+eI0//vhinwYAp7mop545vTdEqT/gGVXDhiUG9cp8Am6q6beSNHLePPn8/qSZUJkEoMjU6zfmyCP7+z3H/cx3b99u2Y/y2/QKUX5rHnMgOF1hUwnZ29NDUK/M5RTUC4fDuvnmm3XFFVfo+eef19q1a9XR0aHKykqNHTtW8+bN0z777OP0uQIAABScbU+9IpxHJBKx3NwS1AO8o3LYMO16773Y47LvqWeW3xqZeuH6eg078EBteeUV27+fSaZeqiBVOQX1RhxyiD5z9916+vLLFUnxe0f5bXrFKL8dCE4HQiGF6urU09IS+1q5v48gx6Der3/9ax111FGaMmWKpkyZ4vQ5AQAAuIZd+W0xMvUiRumtJIVqagp+HgByU2UMy6D8NnWmntTfV28wQb2UmXplNChDkqZ//vNq3GsvLT3rLLVv3Gi7D+W36RUkUy9JTz2pv69eQlCPCbhlL6fOz4sWLdJJJ52kz3zmM/re976nZ555Rp2dnU6fGwAAQPG5ZPqtWXorkakHeIklqEf5bcJjuyBbqmEZfnrqZW3kvHk6e/lyNRuThQcQ1EvPzP7MS6ae2VPPCOrFI1MPOQX1br31Vp133nmqqKjQAw88oIULF2ru3Lm65JJLdN9992nNmjUOnyYAAEBxuKX81hySIUlBMvUAz6gaOjThcdln6qWZfiulHpbB9Nvc1I4erdOfflr7fPGLCduHTJ9O+W0GCjIow8zUixt0YvbV6yFTr+zllHN8/PHH6/g9zeC3bNmiF198US+++KKWL1+u559/Xj6fT2PHjtVRRx2l6667ztETBgAAKCS3lN+amXqBigoFyvSmFPCiSiNTr9wzbMxMPZ9Npl7tmDGqmzhRLTZJI5lklZGpZy9QUaFj7rhDI+fO1b/+678UqKrS0bffXuzT8oSC9NTLJlOPoF7ZG3QjgeHDh2v+/PmaP3++JGnt2rVavHixfvvb3+qBBx4gqAcAALzNJdNvzZ56lN4C3kL5bSIzGJLsQ4rRhx2mt+2CeoMtvy2znnomn8+nfS+9VPteemmxT8VTipKpF/d7XEH5LQyOvJN98MEHeumll7R8+XKtWLFC27dvl9/v19577+3E4QEAAIrGtvy2GJl6ZlCP0lvAU6qGDUt4XPbltxlk6kn9ffXefuABy3YGZaAYipKpF1d+W2mU35Kph5zeydatWxcL4i1fvlxbt26Vz+fT9OnTdeqpp2r27NmaNWuW6uvrnT5fAACAgnJNTz3jk3sy9QBvsQvqRaNR+Xy+Ip1RcWUy/VZK3ldv0Jl6ZVx+i9yZA1rI1EOx5dxTr7KyUvvuu6/mz5+vOXPm6JBDDlEtF5cAAKDE+FzSU89SfkumHuApZvltNBJRX1+fgmWaMWYZlJHk59A0Y4YqGhvVtXNnwvZMeuoxKANOK0imnhHUC8Y9Jz31YMpp+m00GlV3d7fa29vV3d2t7u5u9dpMZAMAAPA6MvUAOMEclCFJvWXcV8+SqZckqOfz+zXSJlsvk0w9f4rAH0E95MLSU8/4t9kJZvZfINWgDDL1yl5OHwu98MILevHFF/XCCy/oqaee0n333Se/369p06Zp7ty5mjt3rubMmUPmHgAA8Dy7oF5Rpt8yKAPwtFBNjQIVFeqLC+T1dHerskyzbjMN6kn9wzI+XLo0YVsmQT2fz2f5mWfyfEAyZqA4Hz12LUNk4n7XK4yeej1k6pW9nN7JmpqadPLJJ+vkk0+WJH344YexIN8TTzyh3/zmN/L7/ZoxY4Z+97vfOXrCAAAAheTz+SSfLyGQ54ZBGcEyDQQAXuXz+VQ1fLha16+PbSvnCbiW8tsUmXN2ffUyCepJ/VlOtkE9MvWQAzNTLx/lt5agXtxzmpl6fT09Zd2bEw5Nv50wYYImTJigc889Vx988IEeeughPfLII3rjjTecODwAAEBR+fx+ReNLbIrRU4/yW8DzLEG9Mi6dyyZTb8Ts2ZaMu0pj8EgywcpKde/aZdlOUA+5sJTfFmD6bUKmnhHUk/r76oUy6DGJ0jTooN6HH36oFStWaPny5Xr55Ze1efNmRaNRjRkzRqeccooT5wgAAFBUZlCvKD31GJQBeJ4ZiCrnoJ4ZuEgVZAtWVuqgr35V//zxjyVJ4449Vg2TJ2f0PMkm4BLUQy7M35tClN/Gl/xWGuW3Un9fPbcE9QZ+HmQOFk5OQb3f/va3sSDeli1bFI1GVVlZqdmzZ+uSSy7REUccoUmTJjl9rgAAAEVh6atXjPJbI1MvTKYe4DlVRlCvnAdlmO+jvjQ97uZ9//sad+yx6m5p0YQTT8z4aYJVVbbb6amHXFiCevnI1DNeG/HZgcGqKgWrqtTb0RHb5pYJuF0dHXprxQq17dqloaNHa9rBB8sfCBT7tEpeTu9k119/vSRp6tSpOumkk3TEEUdo9uzZCrskOgwAAOAkn3FRWoyeehEGZQCeV2VMwC3rTD0zcJEmc87n82nsMcdk/TxVw4drx6pVlu1k6iEXhSi/jRof4pn9IyuGDHFlUG/Du++qbU+p+7aPPtKO0aM1dPToIp9V6cspqPe9731PRxxxhEaOHJl0n1WrVum1117T2WefnfPJAQAAuIErMvUYlAF4npmpV65BvWg0mnWmXq5qxoyx3U5QD7koRPmtGfA2J+5WNDWp7aOPYo97XfI+0rJjR8Lj9tZWDS3SuZQTf/pdrM4666yUAT1JevbZZ7Vo0aKcTgoAAMBNzKBeUXrqMSgD8LxKMvUk2QdC8hVkq02SKURQD7kwA2x5mX5rZuoZz2n21XNLpl5nW1vC43xkMcIq549DnnnmGd17773asGGDeo1Pjru6urRt2zYNHUpcFgAAeJ9ZfuuGTD2CeoD30FOvn21Qr8CZeunKfQE7BZl+m6KnniRVGhNw3fDhQG9PjyW4GDGCk8iPnN45n3nmGS1cuDBpqmkwGNTEiRN19dVXD+rkAAAA3MANmXrmxTHTbwHvofy2n112U76CerVJgnr5KvdFaSvEoIxU02+l/vLbeG7I1Otsb7dsI6hXGDmV3951110aOXKkHnjgAT399NOSpF/96ld6/vnndfPNN2vSpEn60pe+pBOzmEoEAADgVpagngsy9Zh+C3iPOSijr7e3LG98C1l+W5Os/JagHnJgZs1Jzl8TmNl/actvXfDhgFl6K1F+Wyg5vZO9+eab+vKXv6xDDjlELS0tkqTKykoNHTpUJ598subOnaszzjhD9fX1OvbYYx09YQAAgEIrdvltNBplUAZQAsyeelJ/tl5FVVURzqZ4CpmplzSoR/ktcmBmzUn9wauAeZ0wCObrwzL91o2ZejZBPbM3IPIjp0y9rq4ujRgxQlL/aHFJ6on7RRo2bJjOOuss/epXv3LgFAEAAIqr2NNv7W6A6akHeE/lkCGW95NyLMF1Q6YePfWQC7vfU6dLcNOV35o99VyRqWdXfkumXkHkFNQbOnSoPtozQrm6ulp+vz/2eMC4ceP0zjvvDP4MAQAAiqzYPfXMLD2JoB7gRT6/X5XGMMFyHJZhF9TLV4+7QDhsKXvO5/OhtNmW3zoYvIpGo5bXR7pBGW7I1Ouip17R5BTU23///XXffffp5Zdflt/v18SJE/XQQw+pK+4fpBdeeEHV1dWOnSgAAECxFLunXp/NhTFBPcCbzABTWWbq2QRB8pk5ZzcBl/Jb5MK2/NbBawLb14ZZfktPPcTJKah30UUXafv27frlL38pSZo/f77+/e9/69hjj9XChQs1f/58Pfnkk5o7d66jJwsAAFAMxe6pZ5upx4engCeZmXplGdQrYKaeZF+CS1APuch3+a1dICxd+W1PT09RBngNiEYi6urosGwnU68wcnrnPOSQQ3TPPfdo9erVkqRLLrlE77//vp588kn9/e9/j+3zf//v/3XsRAEAAIql2Jl6EXNIRnW1tc8fAE8gU8/mPdTnk9/BQQOmWptMPXrqIRd5L7/NJFPPCOppzzCtYJF+p7s6Omyvi8jUK4ycPw6ZPXu2Zs+eLUkKhUK66aabdM0112jDhg1qbm7WqFGjHDtJAACAoipyAM0sv6X0FvAuS1CPnnp5m3w7oHrkSMs2MvWQi2Jk6qXrqSf199UrVlDPbkiGRFCvULK+Qu3q6tKPfvQjrVy50vK14cOH66CDDiKgBwAASoqZQVLwnnpGph5BPcC7qoYNS3jshn5YhWaZ7pnnYER1c7NlG4MykAufz2cJQue7p55ZfhuqrbWcQzGHZSQL6kUpvy2IrIN6FRUV+u1vf6v3338/H+cDAADgOsUudSVTDygdlUZQj/Lb/GfqVY0YYdlG+S1yZQbZ8p6pZ5Tf+nw+SwluMT8csBuSIdkP+YLzcrpCPfLII7VkyRIWCQAAlAeX9dQL1dQU9PkBOIfy2yJk6tkE9YBcmeWw+eyp5/P7bftNmiW4RQ3qJcvUo/y2IHL6SOSyyy7THXfcoQULFuikk07SuHHjVFdXZ7vvUUcdNagTBAAAKDbLBXWxy28J6gGeZZbfkqmX/0y9IdOnW7ZZhg0AGTKD0E6W35qZemZW4ICwEX/pNa4TCilZph499Qojp3fPM888Uz6fT9FoVLfeemvKfd96662cTgwAAMAtij39lvJboHSYmXq93d2KRqPy+XxFOqPCswT18pypVzVsmGZceqnevPNOSdI+F12kioaGvD4nSlc+y2/NY5mltwNCRlDP/PCvkLqSDcro6yu797ZiyCmot2DBAhYGAACUD7OnXrHLbwnqAZ5l9tST+gN7oSQ376XIUmJYgKEVR99+u6aefrokadxxx+X9+VC68ll+a2b9mc81wMzUK1ZQr7e7O+WQDoJ6+ZfTu+eiRYucPg8AAADXMi9ICxvSI1MPKCVm+a3UX4LrxqBeNBpVV0eHgqGQgg5m0xU6U0/qfx8ff/zxeX8elD7z9zWfmXrJym/dkqmXrJ/egEhfn/xFHjZW6gb9kUgkEmGRAABASfO5radedXVBnx+AcwIVFQrX16t79+7YNjf21YtGo3r7H//Qto0bFQgGNX32bDUapcO5ihgfVOS7px7gJDPQls+eesnKb92SqZdJUE9Mms6rnN49//rXv+qRRx7RypUrtWvXLoXDYY0YMUKHHnqozjjjDB1wwAFOnycAAEDRFLunnnmRH6yqKujzA3BW1fDhCUG9XhdOwN29fbu2bdwoqT9gsO7ttx0J6vV2d2vt228nbEsWuADcqJDTb5OV35oZ+0UL6iUZkjGAYRn5l1WKXWdnp6688kpdddVV+vvf/67W1lYNHTpU4XBY69at08MPP6xzzjlHixYtspSJAAAAeJUlqFfg5zezWgIE9QBPqxw6NOGxGzP1Nr7/fsLj3du3D/qY0WhU7/zrX5ZAwJgjjxz0sYFCMTNLHe2pl+P0W9dm6hHUy7usMvVuuOEG/fWvf9Xs2bN1xRVXaNasWQrtSaVsbW3VU089pV/+8pe69957JUnf/OY3nT9jAACAAit2+a0Z1AtWVhb0+QE4y5yA68agXj5uxndu2aIdmzcnbBt24IGae+ONjj8XkC9m9pyTr5WMM/XcEtRLk6kXJdkr7zLO1HvjjTf0+OOP65RTTtG9996rT33qU7GAniTV1tbq1FNP1RNPPKHDDz9c9957r1577bW8nDQAAEAhmZl6hWYJ6pGpB3iaJajnwvJbJ7OPpP4svXVG2W1Vc7NOfvxxhRn+Aw+xDMrIZ089twf1yNQruoyvUB999FE1NjbqxhtvTDkYIxwO6+abb1ZdXZ0eeeQRR04SAACgmNzWU4/yW8DbvFB+6/TN+M4tW9SyY0fCtnk33qi6ceMcfR4g38yS2Lz21HPxoIxIJKKujo7U+5Cpl3cZl9/+61//0mc/+1lVZXARWV9fr1NOOUUvvvjioE4OAADADYoe1CNTDygpZqZerwuDeo4GKqJRy3CMuokTNf3CCx17DqBQCll+m6ynXrEGZUQjEW147z21796t+mHDLO1IgtXV6o3L3iNTL/8yztTbuHGjZsyYkfGB9957b3388cc5nRQAAICbFL2nnjn9lp56gKd5ofzW7mY81w80dm7erFYjS2/2tdcqYJQxAl5gKb/N46CMZOW3xcrUW7d6tT586y1t2bBB7736auI5NTSoZtSohG1k6uVfxkG9lpYWNTQ0ZHzghoYGdaRJxQQAAPACMvUAOKlq2LCEx24sv7ULVOQSvLDL0qufPFl7f/7zOZ8bUEyW8lsHrwkyLb81e+pF+voKcm1i9sWM1zB5sqU9CJl6+ZdxUC8SiaTspQcAAFCq3DYoI0CmHuBplTZBvUJ/WJCO3fnkcoO+Y/Nmte7cmbBtFll68LB8lt+ax0pWfmtm6klSX5Gz4uonT7ZUEpCpl39E6QAAANIwy2/J1AMwGGb5bTQSKfoNuckuUJFt8MJu4m3DlCmafsEFgzo3oJjyWX5rydTLcPqtVLwJuAMaJk2yZBaSqZd/GQ/KkKS7775bS5YsyWjfTZs25XRCAAAAblPMTL1oNGoJIhLUA7zNDOpJUm9Xl4LBrG7P8sqJ8tsdmzZZs/S+9S35XfR9AtkyA21OftBn6amX4fRbqfhBvfrJk7XllVcStpGpl39ZvZuuXLkyq4P7fL6s9gcAAHCjYvbUs7sgJqgHeFuotlb+UEiRnp7Ytt64P7uBbaZeFjfodr30GqZO1d7nnz/ocwOKyczUK8b020A4LH84rEhcP86iB/UmTbK0B3EyixH2Mg7q/eY3v8nneQAAALhWMaff2t1Em42oAXiLz+dTIBxOCOq5raee3XtPNsGL3du3q23XroRts8nSQwko6PTbFL0nw3V16ty2Lfa4EEE9n9+f9PttmDLF8qEjmXr5l/E76pw5c/J5HgAAAK5lydQr4HPb3USTqQd4n88IbrkpoyUajdrejGdzjmZAr37yZE0777xBnxtQbGb57Zb16xWNRjVq0iTVNzUN6thmcD9Z+a3U31ev0EE9v9+vPpv3AV8goNpx4yyZevTUyz8GZQAAAKRh6alX7PJbpt8CnmdmrLkpUy/Z0I5sbtDNAEPTjBlk6aEk2JXEbt2wQa8//7x2bd06qGOb/+YnK7+VrH31ChHUS5Z5Vzd+vAKhkDWoR6Ze3hHUAwAASMNVPfV8vpQX+QC8wdVBvST9/bK5QTf3DdXUDOqcALcwy29jolGt+sc/1NnenvOxLZl6Kf69D9XWJjzOd1DPbnDXgPpJkyRZP3QkUy//COoBAACkUdSeesYFcbCqimFkQAmwlN+6KaiXJDiQTfmteQwzAAF4VapAW293t1a9/HLOATbzNZaq/LbQmXqpXv8NU6ZIsp4vmXr5R1APAAAgDTdl6tFPDygNrs7USxIcyKr8lkw9lKh02fJtu3bp3Vdfzek1bb7GUj1XqMBBvVSv/1imnjkog0y9vCOoBwAAkEZRB2UQ1ANKUj4naA6WE0G9iHGMYHX1oM4JcItUE2kHbN2wQR+9917Wx7Zk6rmop16q13/N6NGSRE+9IiCoBwAAkEZRy2+NC+IAQT2gJHgxUy+axQ06mXooVZn2tV3z5pvasXlzVsc2A2fppt/GK2b5bf2ECZKsPfXc9GFFqSKoBwAAkIZl+m0B9Zk99Zh8C5QEL/bUyypTzwzq0VMPJSJV9pzpnX/+Ux1tbRnvbwbBUk6/LfCgjKSTbydO1MhDD5VEpl4xENQDAABIo5g99czMGIJ6QGmwZOq5KKPFkZ565qAMMvVQIpJOv5U0+1vfSnjc29OjVStWZBxwG0ymnlny7jS71/++l12mBX/+s/x7KhosQT0Xva+VKoJ6AAAAaZjltwUdlGFe4FN+C5QEN5ff9vb02G4fzKCMIEE9lIhk2XP+YFBzbrhBk087LWF7e0uLVr/ySkbHtvTUSxFALPb0W384rKNvvz02+VayfvBIpl7+EdQDAABIo6jltwzKAEpSMT8sSCdpT71BDMoIMSgDJSJZoC1UWyufz6dj7rxTVXGBLknatnGjWnftSntsL02/tcsiZPpt4RHUAwAASMfnS3hY0Ew9gnpASXJzpp4j5bcMykCJSlZ+O9A3MlRbq+k33aRwY2PC11t37Eh7bEumXory22JPv7VrB2KeL5l6+UdQDwAAIA1Lpl4xp9/SUw8oCZbAgAeCetlMv2VQBkpVsuy5+N/xyrFj1Tx7dsLXMwm6WbLhUmXqFXhQRiYBR3rqFR5BPQAAgDT8GZbJ9XR1aeeWLerp6nLsuS2fjJOpB5QEM1PPTTe/g83Ui0aj1ixjMvVQIpIF2szf8XB9fcLj3gyCbllNvy10pp75IaNd+S099QoumH4XAACAMpdBpl57a6veWLZMPd3dClVUaP/DDlOVA5kplN8CpamUy2/tbuQpv0WpSFp+a/yOh4ygXrqgWzQatbwPZDX9NhJRNBLJWx/gTHrqkalXeGTqAQAApGFeINvdeq9dtUo93d2S+jP2Nrz7riPPbQnqUX4LlASfEdTzRPlthjfodn+foB5KRbJMPbMc1pJJl2Sq9AC711eq8lvz+FJ+s/UyKb+1XKNEo1kN2EH2COoBAACkYZbf2t18b/voo4THm9audeS5Kb8FSpMlU89FN76DzdQzh2RIlN+idCQriQ2bQb0sM/UiNtcW2Uy/lexfe07JZDJvwOYahWy9/CKoBwAAkE4GmXr5YulhQ1APKAluLr/tTZJRlGl/rIgZvPD5+EACJSPd9NsB2fa8sxtEk6r81i5zP5897MwPHuyev9DnBIJ6AAAAablp+i3lt0BpMMtv3RTUG3T5rTn5tqZGPp9v0OcFuEGm5bdmT710gzLsMvVSld/aBRfz+T6SyaAMs6eeRKZevhHUAwAASMPSU6+QQT3Kb4GSZN6Qu6X81m5y7YBcB2XQTw+lJFlJbLC6OuGxpfw2h556qcpvfX5/QadoZzIog0y9wmP6LQAAQBo+s6deAVF+C5Qmt5bfpioRzLinnnEM+umhlOSr/Nbu9ZWq/FbqD/rFl7vn88OBTIJ6dkHIgb/X2damttZWjdi8WQ35OcWyRKYeAABAGkXN1DPLbwnqASXBk0G9DDNu7MpvgVKRcflttj317DL1zCnZac4ln5l6mUy/9fl8lhLcSF+fWnbu1Ct//7tWLV+uJZ//vHa++27ezrPcENQDAABIo6g99TJoTA3Ae9wa1Es2JEPKPAvIHJRBUA+lJONMPZvpt6le53ZBs3S9KM3AWrEz9STrh4+RSESb166NfSjQtWuX3n/iifycZBkiqAcAAJCGWX6byc23JRCYIzL1gNLk1kEZqfp+ZVx+S6YeSliyoF44TfmtlF15e6p+esn2yTao19nerndffVXvv/66uru6Uu5rTue1G4ohWXsLRvr61N3ZmbCtt60tq/NEcvTUAwAASMMM0KUroZHk2KRHS089MvWAkuA3PyxwyaCMVBM6cx2UQU89lBJ/ICBfIGAJcqUblCH1Xz8EkwQFLZl6GQT1BlN+G41G9e8XXlBne7skqb2lRfsdemjS/S2ZehkODIn09lqH59gEPJEbMvUAAADSqB0zJuFxy44datmxI+Xf8TuVqcf0W6AkWabfeiBTzwxiJD0G5bcocXbZeul66knJPxTcuWWL3njhhYRt6YZkSDaZelm8j7Tv3h0L6EnSrq1bU5bfZ1p+GzKCen19fZbv2y6LEbkhqAcAAJDG+BNOUOWwYQnb1q5aFfuzXYaNE5l60WjUcmyCekBp8GJPPTL1gH52WWpmUM8fDFqy1uyC5j3d3Vr1j39YtmdSfjuYTD27fc0y2XiZDMqQ7MtvLYF+42eF3BHUAwAASCNcW6tDvvGNhG07t2zRrq1bJUl9dkE9BzL17CZNEtQDSoOlp55Lym9TtRfI9BzJ1EM5sgtUmSW4duXt2zdunmjeZwAAPvVJREFUtA325VJ+O9j3kVRBvVwz9Qjq5RdBPQAAgAzsv3ChqkeNSti2dtUqRaNRy6RHyZnyW7ugXoCgHlASvJqpl8l5MigDpa6vu9uyLZOgnl3QfNvGjbbPkUv57aAz9To6ku9v9vjNMFPPrvyWoJ5zCOoBAABkIFhVpdnXXpuwbff27dq5ZYtt8M2RTD2bC24y9YDS4NagXqqeelJm52lpik9QDyUmYhPUM6ffSumDer09Pdq5J+vf1LJ2bdrzGEymnl2PzK5sym+zmH5rBvrpqeccgnoAAAAZmnHJJaqbMCFh29pVq+yDeg701LMtv2X6LVASLOW3LgnqpZp+K2WWCWQGLuiph1JjFzyz+z03g1fma2PHpk1JA3Hdu3alPQ/LoIx8Zurl2FOvt6fHcl5k6jmHoB4AAECGAuGwZn/72wnbWnfu1JaPPrLs68TtuSWo5/Nl1DgbgPtZMvXc0lMvXaZeBhNwLZl63MCjDPgDAcs2S6ae8fpKVnorSRNOOintczo9KCOrTL1kPfWM4GZPV5d1HzL1HENQDwAAIAvTL7hADXvtlbBt/TvvWPZz4gbdvOAOVlU5kgEIoPj8oVDCY9dk6qUJ6uWSqUf5LcpVKMWgjL6+Pu3YvDnp393nwgvTHn9QmXo2AXonBmWYbULsgnqU3zonmH4XAAAADPAHg5r7ne/oLxdckHpHB27QzQtu+ukBpcOtPfWcKL+1ZOoZ5XhAuUjVU2/n5s0JrxWf369z/vEPbVqxQkP3208j581Le3wzsJbXQRlmUC9J5YBZftttl6lHoN8xZOoBAABkaa+zz1bTfvul3CdCUA9ACm4N6qUtv80kU8987+IGHmUqVU89s/R29BFHaNgBB2jfSy/NKKAnDXJQhs2+Pd3dthl8Uu7Tb81MvVBNjSPDxNCPnyQAAECWfH6/5t5wQ8p9HCm/NS+gGZIBlAzLoAyX9NRzovw2QvktICl5T71IJKLtmzYlfG3yggVZH99SfpvFhwPJgnd2mXVS5tNvzcxcSzk+PTYdRVAPAAAgB2OPPjr1Dk5k6tn01ANQGsxMPSfeMwYrGokkvdEfkO7r0WjU8t7FTTzKVbLy291bt1qyYnMJ6jk9KENKXoKbcU+9NEF8hmQ4i6AeAABADsJ1dSnLR5wopTN7WwXJ1ANKhhvLb9P105PSZxSaWTkSmXooX2ZQb+A1Zpbejpg1S3XjxmV9fMvAHQeCeskm4GY8/TZND02C/M4iqAcAAJADn9+vcGNj0q9n82l5Mp1tbQmPa8aOHfQxAbiDpfzWBUE9u3564YaGhMfp3tvsynfpqYdyZddTLxqNatvHHydsn3LaaTkdfzCDMqLJym9tMvWi0ajlPSrT6bemMEE9RxHUAwAAyFHlkCHJv+jADXpHa2vC4yHTpg36mADcITCIDJt8MTP1fH6/KpuaEralKr/duWWL/vnXv1q2k6mHcmWWmvb19Khlxw7L8IjJuQb1BjEoI5tMPbvXfaaDMkyU3zqLoB4AAECOKlIE9ZzIujGDeo177z3oYwJwB18gkPDYjZl64YYGSzP8VEGD919/3bLNHwolvfkHvMoMTDXstZftfnY99bZ99FHCtqZ99835QztzUIYjPfVsgnp2r/tkgzLSBvXI1HMUQT0AAIAcpQvqDeYmPRKJqKu9PWEbmXpA6XBlTz2boJ7ZyzNVIMD8IEKSJp1yinw+n3MnCbjAMXfckfD46F/8wnY/M6gXjUa1ZcOGhG1TchiQMWBQmXpJsm7bd++2vB/Zve6T9tRLk5lrliRjcILpdwEAAICdlOW3g9TZ3m65qG4kqAeUDEtQzwXlt+aQi4qGhowzgVp37bJsO+CqqzT7uuucO0HAJaaeeaZ62tq0cdkyTTjxRI09+mjb/cygniTHSm8la6ZeNh8OJHstd7S2qnXnTtXFXeNkE9QjU6+wCOoBAADkKFWmntR/k26W2GXKzHipHDbM0tsKgHe5cVCGXaaeKVnwsXXnzoTHow8/XEfecotj5wa4ic/n04yLLtKMiy5KuZ9dUC9e/aRJGnbggTmfh2VQRoqel6ZUHyRsWrs2IahnW35LUM8VKL8FAADIUUWK6bfS4G7SGZIBlLZCl99Go1FtWrtW7732mnZt3Wq7j9lTr8Ku/DZJ0KDNyNQbPnPmIM4WKA2Bigr5jaE48Zrnzh1Uebql/DabTL0UAcCtGzYkZO5a9vX5LO9hA0IE9QqKoB4AAECO0mbqORjUY0gGUFoKHdTbvHat3l25Uh+vWaM3XnhBbbt3W/Yxp9+GGxqsmUAZlt8S1AP6M/pSZeul+3AwnXwMypD2DPTYuDHpvoGKiqTByEBVVcrnpaeeswjqAQAA5CiT8ttcdZKpB5Q0M3sn30G9d199NeHxh2++adnHkqnX2GgJ6tm9r/V0dam7oyNh2/CDD871VIGSkiqoN9gA16AGZaTZd9PatUmPa2bwJpxTKJQyO9GcHIzBIagHAACQIzL1AOTK0lOvwIMydm3bZtlm6alXX59Rpp6ZpResqtKQ6dMdOEvA+1IG9dL03EtnMEG9qFFSO+mUUxIe7962TR1tbZLsM/VSSTUBl/JbZxHUAwAAyFFlnnrq9fb0qKe7O2EbmXpAabHrR1XIYRl2z2VOvw03NChg9tSzCRqY/fSGHXig/DkOCQJKTapsvMEG9TItv41Go1rz5pt6+S9/0ZvLl6u7q8uy79SzzlKFMZBr87p1tsdNF9RLNSwjTFDPUQT1AAAAcmRe/Jpyzbwxs/R8gYDqJ0/O6VgA3KnYQT3ZPJeZqVdh01PPzO6RbPrpHXKIAycIlIaQCzL1dm3Zog3vvqvuzk7t2LRJG9591xKoC9fXa+/zz0/YtnntWkWjUctx/YMI6pGp5yyCegAAADnKV/mtGdSrnzTJcuEOwNtsg3oFLMG1e3+yBPUaGy2TLM1hGpLUa2QWN06Z4sAZAqWhkOW3yTL1dm3fnvC4dccOy0TbYGWl9rnoooRt3Z2d2rlli2XfwWTq0VPPWQT1AAAAclRZoKBeI6W3QMkxe+pJBc7Us3nuLmPYRXVzsyqHDk3YZgbwJFmDAylu6IFyk89BGWb5bbL3kK729oTHduW3gYoKDT/oIMuQm81r12ZffptiAi6Zes4iqAcAAJCjdJ82OxXUo58eUHrspkMWM6jX3dlpyRSsnzLFGtQzsvkkm6Beiht6oNykCtylKs3NRKaZembAvqery/J6H+ifaWbrbfv4Y/V0dSVsCw5iUMZgA5lIRFAPAAAgRz6fL+Wn1U711GPyLVB6it5Tz9C5Z8rlgGBVlWpGjVLlsGEJ280hPpJNE31juAZQzvJafmteg0Sjtu8jZqZeX2+vtaR2z+t22nnnJWQARiMRbVq7NvXzGuipVzgE9QAAAAYhZVAvhxv0aDRqubkmUw8oPcXuqWcy33fqp0yRz+dTpTEQyLb8NsvSPKCc5DOoZ5bfStbXYzQSUVdnZ9pjDbxuK5uaNGXBgoSvme8P6V7jZi/OAf5wmB7BDiOoBwAAMAhOB/W6OjosF+Rk6gGlx2099TqMm/aBYRdm+W1fb6/lPYryWyC5Qg7KkKwfDnR1dtpOuzYF4zJszRJcy/PmmKlH6a3zCOoBAAAMQqoys1xu0M3S23B9vaqbm7M+DgB3c135rVGeVz95siSpyii/lazZenZTNAH0S9Z/1xcIDDoAbpepZwnqGa/tZOKvZ8Z8+tOp980xqEfprfMI6gEAAAxCyqBeDqV0dpNvfT5f1scB4G6uC+oZmXoNezL1KmymfJt99Szlt2TqATHJstPC9fWD/vfdLlPPfD1mGtSLD8YHwuGUAbh0fTOTld+mGzCG7BHUAwAAGASny2/tgnoASo8vELBuLFJPPbtengNBPX8wqIrGxoSvxWfqRaNRywcYZOoBn0hWYjvY0lsps0y9TmPybTLm9YxZeh/PLtgfL2n5LZl6jiOoBwAAMAj5DuoxJAMoTT6fz5KtV6xMvd7ubvX19iZsGwjqSUo5AdfMCpKYfgvEy2dQz+4aJNdMPTNAaA7JiWdXlh8vWVCPDyqdR1APAABgEFJNcXOk/JYhGUDJModl5Cuol+64Zj89fzCouvHjY49TTcA1++lJDMoA4iUN6jlQiuoPBOTzJ4Z1LD31MsjUC1RWWkqBU2XjmYF+U7Kg3si5c9OeC7JDUA8AAGAQGvfaK+nXsr1B7+vtVXdnZ8I2MvWA0mXJ1MtX+W2a9yJz8m3dxIkJ52aW4ZGpB2Qun5l6kjXDLmK83jPJ1LPL+EtVfptrpl4zQT3HEdQDAAAYhNnf+lbSr2Ub1DNvrCWpIUXQEIC3Far81rzJN5/P0k9vz+TbAWZWDpl6QOZCNTWSzUAMp4J6ZsVA/IcD0Wg0o0w9uz6YqcpvUwX8pD3fs/kc1dUaut9+ac8F2SGoBwAAMAgNU6bo+Ace0OjDD7d8LdusG7P0tm78+KQT5AB4X8HKb5O8Fw0E5CxBvalTEx5bym97ej45tk1QL1WvUaDc+Px+21LbUJ4y9eJf792dnRm9r9hl16Ysv00T1LML7I+YNct26jcGh6AeAADAIE075xyd/ve/a8SsWQnbs87UY/ItUFYKlamXNKi3Z3u6TL2qLMpvAxUVlt5cQLmzy8pzoqeeZA2ix78mMx2SYRfUG0z5rd0HkiPnzMnoXJAdgnoAAAAO8QUCCY8HHdRjSAZQ0goW1Ety3FimnnHjHz/5Vsqu/JbSW8DKNqhXgPLbzgxKb6UkPfVSlN9WpPhasuM1z5uX0bkgOwT1AAAAHDLYG3QzqMeQDKC0+UOhhMf5GpSRqvy2t7dXPV1dCdstQb1sMvUYkgFYhGyy8vI2KCOHTL1gFkG9isZGBYz3LpPd+0AzmXp5QVAPAADAIYOZZBmNRq2ZegzJAEpaoXrq2U2oHdjeZTOgp37SpITHZlCPTD0gO8XK1BtU+W2SoJ6ZuWtn2IEHqmr48NjjUYceqtrRozM6F2SHLoUAAAAOySZTr72lRX29vaptbJTP51NPV5fl5pjyW6C0uaH81pyMWTt2rCUwZwnq9fQoGonI5/eTqQdkIJ9BvVSDMjKZfCvZl8smK7FNVZYbO6dgUPOXLtWK731PoZoazf3udzM6D2SPoB4AAIBDLKV0SW6kN7z7rta8+aYkafjYsZo2c6YlSy9YVaW6cePyc6IAXGEw2b3ZSDUowxySUW8MyZDsG+b39vQoVFFBph6QgbwOyjDLb+OuPcx+mUmP4XCmniQNP/hgnfzooxnti9xRfgsAAOAQs5RONkG9aDQaC+hJ0pb169XR1mYJ6jXstZd8fi7VgFJWqEy9SIpMPfOmv3HqVMt+5vRb6ZO+emZQzy7jByh3dgG8fJffRqNRS6ZedXOz7TGCNkG9ZJl66SbforC4UgQAAHBIJlk3dtt2b9vGkAygDA12YnamUg3KyCRTL1BRoVBtbcK2gb56ZvmtXXAAKHfB6mrLtnwPyujp6rK89kcfeaTtMewy9QKhkO2AD7vMXRQPQT0AAACHmEE9u+yYPiOrRdozJMO4sW4kqAeUvKL31LMpvzUn3w5INgHXkqlH+S1g4fP5LNvynalnDsnwh8MaOW+e/TGSZNjaBfDI1HMXgnoAAAAOMXvq2ZXfmjfAUv8FuOXG2qYEDkBpsfThLHBPvb6eHkt5XrKgXvwkS0nq7uyURKYekAm7wHq+MvU2r1un9pYWdRqv7brx49Vgk4krJR9wY9dXL9OeeigMgnoAAAAOMXvq2d1I9/X2WrZFIhFrX6skN9YASkfBMvWSBPXajbJ/KXlQr3GvvRL/bkuLJOsHFQzKADJjlrTnysyy62ht1cpnntGW9esTtteNH29bXi9JwWSZekOGWLdRfusqBPUAAAAckskNul2mXkdrq+Wmu56gHlDyLB8EFHhQRvvu3QmPK4cNU0VDg+2+Q/fbz/bvmpl6yTJ+gHJmyeSXHBuGZZbfSv2B/B2bNiVsq584UfUTJ9ofI5vyW4J6rkJQDwAAwCGZBPXseuq17tyZ8DhUU5N0Qh2A0pHJcB0nJM3U25NtNyBZaZ4kNe27b8Ljtt27FY1GrT31COoBFvt84QsJj5vnznXs2Gb5bTJ148cnvb5I9rq1yyak/NZdCOoBAAA4JJMbdLtMPTNbpn7yZNum2gBKS7HLb3u6uhIeJyu9laSh+++f8Livt1fdnZ3W8luCeoBF/cSJmnXttZLPp6oRI3ToD3/o2LHtMvXs1O3J0quzydZLFtSze09iUIa7ENQDAABwiKXpvV2mnk1PPXO/VNkyAEpHocpvMz1uqqBe3fjxlsb+bbt3MygDyNC8G2/U/9fWpi+uXasxRx3l2HHtSnvt1E+Y0P//SZMsX0tWfms38KvCps8eioegHgAAgEN8gUDC40x76pmSNbIGUFoCGXwQ4AQz8JZMqqCez+ezlOC2795tLb9lUAaQVCActmToDvqYyQJyhro9Qb0Gm6BesmC8XZav0+ePwSGoBwAA4JCMeurZZOqZGqdOdeycALiXmalnlxXjhEx79aUK6knWEtz2lhbLscnUAwork/JbfzComtGjJSXJ1Evyup16xhkJj8nScx+CegAAAA7JdfqtiUw9oDwUbFCGA+W3kjQ0k0w9gnpAQWUS1KsZOzb2fpNN+e34E07QiFmzJPVP6z3iv/97EGeKfCBvEgAAwCGW/lg2N+h2029N6W6sAZQGM6gXKWKmXqimRlUjRqTcZ+h++yU8bm9tVbUxHTNI+S1QUJlMvx3opyfZB/V6Wlvtjx0I6Ixnn9X6v/1NNaNHa5iRrYviI6gHAADgkEz6Y6XL1PMHg6obP97R8wLgTgUrv83guA1Tp6adum2W30YjEbUbwQAy9YDCyiRTry4uqFc7dqzl670dHSmPP+Gzn83t5JB3lN8CAAA4JJNJlul66tVNmEATaqBMFKr8NpNBGZmU/Vc2NcX6cg2w9NQjUw8oqEwy9eKDev5gUCPnzUv4+qTPfc7x80JhENQDAABwSCY36Oky9einB5SPTPpwOiGTYGFjhmX/ZgmuKdNJnACckclrLj6oJ0mH3XST6saPlz8c1rwbb6RCwMP4GBgAAMAhGU2/TRPUY/ItUD4KFtTL4Lj1GQb1mvbdV2v/8pekX2f6LVBYmZTf1htBvVGHHqoL33svbck93I9MPQAAAIf4M+mpl6b8lkw9oHxkUrLvhEzKbxsyfO8x++qZKL8F3MfM1JNEQK9EENQDAABwiBPTb5l8C5QPN5XfNmSYJZy2/JZMPaCg2jdtSr2Dz2c7HAOlgaAeAACAQzK5QU/XUy/TbBkA3leoQRnpgoX+cDjjm/6mffaRz5/8NpJMPaCwQrW1ab+eSYkuvImgHgAAgEOc6KlH+S1QPtySqde0zz7yBwIZHStYVaWGvfZK+nUy9YDCmnLGGZb3knhmaxCUFoJ6AAAADsmkP1aqnnrVo0YpVF3t+HkBcKdC9dRLF9RLV1Jr2X/ffZN+jUw9oLCqhg7VyY89pjFHHaVp551n+TpZeqWNoB4AAIBDAuagjCx76jXSTw8oK4Uqv42kCRZmHdRLsT+ZekDhTTjxRJ321FM6/r77LF8L1dUV4YxQKAT1AAAAHJJRpl6KoF49QT2grGQyMdsJjmfqpZiAGySoBxTVXmefnfB43o03FulMUAgE9QAAABxi9qQyb9Cj0WjKoB5DMoDyUrCeeuky9VIE6Wz3TxIE9AeDKXt7Aci/g//P/1F1c7MkafQRR2jyqacW+YyQT7zjAgAAOCTdDXraybdk6gFlxS099WrGjMnqePWTJytYVaXejo6E7ZTeAsU3YuZMXfD22+rYvFn1EyemnFYN72N1AQAAHGK5QTdupNNNviVTDygv5gcBLdu3q233bsefJ5IiqFfd3Cyfz5fV8fyBgIbMmGHZzpAMwB3CtbVqmDyZgF4ZYIUBAAAckq4/VqrJtxI99YByY1eq+uozz2j7pk2OPk+qDMCGqVNzOqZdCS6ZegBQWAT1AAAAHJKu/DZVpl51c7Mqm5rycl4A3MnM7pX63zc2ffiho8+TqvyWoB4AeBdBPQAAAIdYgnrGjXSqnnozr7km6xI4AN6WbKjE9o8/dvR5UgX1pp1zTk7HtAvqUX4LAIXFoAwAAACHWLJuzEw9o/y2oqlJJy5erIohQzT84IPzfXoAXMYs2c+XZOW3Y446SuOOOy6nY9pNzA1WVOR0LABAbgjqAQAAOMTMuomkmX4brq/X2GOOyft5AXAnfyBQkOcxB2UcfM01GnvkkRp33HE5ZwhXNzercuhQdW7bFtsWIFMPAAqK8lsAAACHWLJuotGEDBmzp16opqYQpwXApZKV30qph1tkyzzWyHnzNOHEE1M+fzo+n89Sghukpx4AFBRBPQAAAIfY3iDH3Uyb02/pPwWUN7tBGQN6e3ocex6zp55TZb9mCS7vaQBQWAT1AAAAHGIX1CNTD0AyqTLleru7HXuefAX1Jp58csLjkYce6shxAQCZoaceAACAQ+yybuKDemZPvSBBPaCspQzqOZipZ/b39IfDjhx33Gc+o8NvvlnvPvKImufM0YFXXunIcQEAmSGoBwAA4BC77Jf4DBky9QDE625pSfo1L5Tf+nw+HfSVr+igr3zFkeMBALJD+S0AAIBD0pXfmj31COoB5a1h8uSkX3O0/NbI1As4FNQDABQXQT0AAACHZNtTj/JboLw17r23RsyaZfs1pzL1otGoNVPPofJbAEBxEdQDAABwSNaZetXVeT8nAO7l8/l02lNP6di777Z8zbFMPSNLT0rdyw8A4B0E9QAAABxiOyiDnnoAUgjV1GifCy/U9C98IWF7j0OZeuaQDMm5nnoAgOIiqAcAAOAQ20EZqabfkqkHYI/KIUMSHvc5VX5rlN5KUoDyWwAoCQT1AAAAHOIPBCzb4oN6PUY5XaiuLu/nBMAbKpuaEh6b7xe5sgvqkakHAKWBoB4AAIBDfH6/fP7Ey6uBG+poNKrOtraEr9VPnFioUwPgchVGUM/JQRkmBmUAQGkgqAcAAOAgs6/ewA11T3e3+oxBGY177VWw8wLgbhVG+a1TgzIiZOoBQMkiqAcAAOAgc6rkQFCvs7U1cb9wWLXjxhXsvAC4m9lTz7FMPYJ6AFCyCOoBAAA4yLxZHrih7jBKbxumTLHtwQegPNmV39qVzmbLtvyWoB4AlASCegAAAA5KmqlnBPUap04t2DkBcD9zUEY0ErFMzM6FJVPP7+cDBQAoEQT1AAAAHJQsqGfJ1COoByCO2VNPcqYEN2Jk6pl9PwEA3kVQDwAAwEHJBmWYPfUYkgEgXkVDg+TzJWxzYliGmalnfvAAAPAugnoAAAAOssvUi0ajlkw9ym8BxPP5/dYJuA5k6plBPTL1AKB0ENQDAABwkN2gjJ6uLktvrAYy9QAYzL56jmTqUX4LACWLoB4AAICD7DL1zCy9QGWlaseMKeRpAfCASiNTrycfmXpMvgWAkkFQDwAAwEGBioqEx5G+Pks/vYYpU+TzcxkGIJGl/NaBTL0I5bcAULK4mgQAAHBQRWNjwuPenh766QHISIVZfptFpl5ne7s2r1unduNDBMpvAaB08Y4OAADgILtMm04jqNdAUA+ADUtPvQyDeh2trVr5zDOK9PXJ5/Np/8MOU92eY1mm31J+CwAlg0w9AAAAB9ndlHcYmTONDMkAYMPsqZdp+e3m9etjw3ii0ag++uCD2NcsPfUCgUGeJQDALQjqAQAAOMhSftvdrc729oRtZOoBsGPJ9M0iUy9ey44dsT9HKL8FgJJFUA8AAMBB5k15e0tLLINmAJl6AOzk2lOvy/jgoKu9XT1dXZKYfgsApYygHgAAgIPM8tu2lpaEx8HqatWMHl3IUwLgEbmW35rZwJLUsnOnJAZlAEApI6gHAADgIDNTT8YNdcPUqfL5fAU8IwBekcugjN7eXtvgX+ueElxLph5BPQAoGQT1AAAAHGQJ6hka6acHIAmz/Lavt1cRIyhn6jKmaw8Y6KvX29ubsD1QWTmIMwQAuAlBPQAAAAelC+oxJANAMnbvH+my9exKbyWpdedORaPRWG+9ASEjcAgA8C6CegAAAA4yy+dMDMkAkIzZU09KH9Qzh2TE/73OtjZrUC/NBw8AAO8gqAcAAOCgtJl6U6YU6EwAeE2gokKhmpqEbemGZSTL1JP6S3AJ6gFA6SKoBwAA4KCKhgYpxSAMMvUApGL21cu1/FbqL8HtMYKClN8CQOkgqAcAAOAgn9+visZG26+FamtVPXJkYU8IgKdYJuCmydRLVn4rJcnUI6gHACWDoB4AAIDDkvXVa5g6Vb4UWXwAYH4okCpTLxqNpszUa9u1S33G9FvKbwGgdBDUAwAAcFiyvnqNTL4FkIal/DZFpl5vd7cifX1Jvx6NRi3bggT1AKBkENQDAABwWLLy2waCegDSsJTfpsjUM7P0/MGgGqdNS7q/PxhUsK5ucCcIAHANgnoAAAAOS1Z+y5AMAOlUGpl0qTL1zH55NaNHa+S8eUn3rxoxQj4/t4AAUCp4RwcAAHAY5bcAcmW+f6TK1ItEIgmPg9XVap4zJ+n+VcOHD+7kAACuQlAPAADAYcmCeg1k6gFIw9JTL9WgDCOo5w+HCeoBQBkhqAcAAOAwu6BeuL6eG2oAaZnl+z0pym/NoF4gHNbQ/fdXoLLSdv+qESMGf4IAANcgqAcAAOAwu556DXvtJZ/PV4SzAeAllp56qcpvjem2/lBIgVBIww8+2HZ/PlgAgNJCUA8AAMBhdpl69NMDkAm78tuoEbwbYCm/DYUkKWkJLpl6AFBaCOoBAAA4zMy0kaSGKVOKcCYAvMbyoUA0qr7eXtt9zUEZgXBYEkE9ACgXBPUAAAAcZpupx5AMABmwK99PVoJrNyhDkkYmC+pRfgsAJSVY7BMYjL/97W9auHBhyn2+//3v66yzzoo9/vjjj/Xzn/9cy5Yt09atW1VfX6+5c+fqqquu0uTJk/N9ygAAoAzY9tSj/BZABkK1tfIHg4rEZef1dndL1dWWfc2y3IFMvbqJE1U1fLg6tmxJ+HrViBHakYdzBgAUh6cz9Xbv3h37c01NjRobGy3/hff8wyZJW7du1dlnn63f/e532rhxoyRp27ZtWrp0qc455xy99957Bf8eAABA6akaMULh+vrY40BFhZr22aeIZwTAK3w+n7WvXpIJuMnKb30+n0bMnm3Zv5ryWwAoKZ4O6rW2tsb+fMstt2j58uWW/0499dTYPj/72c+0adMmSdJtt92m1157TYsXL1YoFNLu3bu1aNGign8PAACg9ATCYc294Qb5/H7J59Ps665TRWNjsU8LgEeYZbLdSYJ6yQZlSPYluJWU3wJASfF0+W18pl5tbW3KfXt6erRkyRJJ0owZM3T88cdLkg4++GAdddRR+utf/6ply5Zp27ZtGjp0aP5OGgAAlIUDr75aU88+W9G+PtWOGVPs0wHgIWZQr6ery3a/ZD31JOuwjIqmJgUrKx06QwCAG3g6Uy8+qFdXV5dy3/fff19tbW2SpOnTpyd8beBxJBLRG2+84fBZAgCAclUzciQBPQBZq25uTnicLKiXrPxWksYcfbQap02LPd77/PMdPEMAgBt4OlMvvvz2ueee06JFi7RmzRqFQiHNnj1bl156qSZOnChJ2rBhQ2zfIcZEuqa4nhXr1q1L+Zx9fX3q6+tz4Oy9a+D7L/efg1ewXt7BWnkT6+YtrJe3sF7ewDo5r3LYsITHSTP1jEEZvmDwk3Xw+7Xgb3/T27/5jSqHDtW0Cy5grTyG9fIm1s1bBrNeblhjVwX11q9fr2OPPTajfX/2s58lZOrddNNNCV9fs2aNlixZorvuukszZ86MZelJUkVFRcK+8Y/j97PzzjvvZHR+5eD1118v9ikgC6yXd7BW3sS6eQvr5S2slzewTs7Zadwo9mTYU2/rzp1auXJl4k7HHKNOSa/FrQ9r5S2slzexbt7i1fVyVVAvF417mk6feeaZ+tKXvqTu7m7dcsst+v3vf6/29nZdf/31+p//+Z+Ux4j/hMvn86Xcd9q0aaq2GSdfTvr6+vT6669r//33VyAQKPbpIA3WyztYK29i3byF9fIW1ssbWCfnhQ88UPH1Q5mW344cM0YHHXRQ0uOyVt7CenkT6+Ytg1mv9vb2oid+uSqo19zcrKVLl2a87wknnGD7tRtuuEFPP/20duzYodWrV2vdunUJgzS6jH8U4x/X1NSkfN5AIMALcw9+Ft7CenkHa+VNrJu3sF7ewnp5A+vknNqRIxMeZzooI1hRkdEasFbewnp5E+vmLbmslxvW11VBvVAopClTpgz6OOFwWOPGjdOOHTskSTt27ND48eNjX9++fXvC/lu2bIn9ecKECYN+fgAAAADIld3022g0aqkqMnvqxQ/KAACUPlcF9bLR3t6u++67T9u3b1dNTY2uvvrq2Nd6enq0fv362OORI0dq6NChGjJkiHbs2KFVq1YlHOutt96S1B9UPOCAAwrzDQAAAACADXP6bSQSUV9fn4LBoGV7PD9BPQAoK/5in0Cuqqur9eijj+rXv/61fvGLX+h3v/udIpGIOjo6tGjRolg23pw5czRixAgFAgGddtppkvqDeH/+858ViUS0fPlyPf/885KkE044QfX19UX7ngAAAACgasQIy7aezk7LNrP8lkw9ACgvns3Uk6Trr79eCxcuVHd3t6677jp997vfVV9fX+wTq+bmZv3gBz+I7X/FFVfo6aef1po1a3T11VcrFAqpp6dHUn823zXXXFOU7wMAAAAABoRqahSsrlZve3tsW093t6qM/cygnj8UKsDZAQDcwrOZepJ02GGH6fHHH9fpp5+uMWPGSOrvpzdt2jQtXLhQTzzxREIvvbq6Oj300EM6//zzNXJP89kRI0bozDPP1G9/+1s1G2nuAAAAAFAMZgmu3bCMCD31AKCseTpTT5KmTJmiH/3oRxnv39TUpO985zv6zne+k8ezAgAAAIDcVQ0frt0ffBB7bBfUs2TqEdQDgLLi6Uw9AAAAAChFZl+9TIJ6ZOoBQHkhqAcAAAAALmMpv+3utuzD9FsAKG8E9QAAAADAZaqGD0943G2XqWf21GNQBgCUFYJ6AAAAAOAy1TmU3zL9FgDKC0E9AAAAAHCZqkym31J+CwBljaAeAAAAALhMtVF+y6AMAICJoB4AAAAAuIw5/ba3p8eSmWcpvyWoBwBlhaAeAAAAALiMOf1WknqNCbgRc1AGQT0AKCsE9QAAAADAZSqamuTzJ96uxU/AjUajkhHUY1AGAJQXgnoAAAAA4DL+QECVw4YlbIvvq2eW3kpk6gFAuSGoBwAAAAAuZPbViw/qmf31JHrqAUC5IagHAAAAAC5UnSKoR6YeAICgHgAAAAC4kCVTL25QhjkkQyJTDwDKDUE9AAAAAHChbDP1GJQBAOWFoB4AAAAAuFCqnnqU3wIACOoBAAAAgAuZmXrdZOoBAOIQ1AMAAAAAF6oaPjzhcaqeev5QSD6fryDnBQBwB4J6AAAAAOBC1c3NCY97uroU3RPMMzP1KL0FgPJDUA8AAAAAXMjsqReNRNTX2xv7czxKbwGg/BDUAwAAAAAXMoN60ifDMiJmUI9MPQAoOwT1AAAAAMCFQtXVCtXWJmwbCOpFjZ56lN8CQPkhqAcAAAAALmVm65GpBwAYQFAPAAAAAFzKnIDbPZCpx6AMACh7BPUAAAAAwKUsE3C7uyUxKAMAQFAPAAAAAFwrWfmtJahHph4AlB2CegAAAADgUtVG+W2sp545KINMPQAoOwT1AAAAAMClqszyWzL1AAB7ENQDAAAAAJeqNstv9/TUM6ffMigDAMoPQT0AAAAAcKlMp98yKAMAyg9BPQAAAABwKXP6bV9PjyKRiCWoR6YeAJQfgnoAAAAA4FLm9Fupv6+eOSiDnnoAUH4I6gEAAACAS1U2NckXCCRs6+nqIlMPAEBQDwAAAADcyuf3W/rq9XR3M/0WAEBQDwAAAADczCzB7enqsky/ZVAGAJQfgnoAAAAA4GLVNhNwo0ZPPcpvAaD8ENQDAAAAABerMibg2vXUI1MPAMpPsNgnAAAAAABIztJTj0w9AIAI6gEAAACAq1UbPfW2rF9v2YdBGQBQfii/BQAAAAAXM8tv7ZCpBwDlh6AeAAAAALiYOSjDDj31AKD8ENQDAAAAABerMspv7ZCpBwDlh6AeAAAAALhYdQblt/TUA4DyQ1APAAAAAFzMnH5rh0w9ACg/BPUAAAAAwMWCVVUK1dWl3IdMPQAoPwT1AAAAAMDlgpWVKb/OoAwAKD8E9QAAAADA5Tq2bEn5dcpvAaD8ENQDAAAAAI8jUw8Ayg9BPQAAAABwuQO/8pWUXydTDwDKD0E9AAAAAHC5fS66SOH6+qRfZ1AGAJQfgnoAAAAA4HLD9t9f57/2mk76/e/VPHu25esBym8BoOwQ1AMAAAAAD6gdO1aTTz1Vw2fOtHyNTD0AKD8E9QAAAADAQ2rHjLFso6ceAJQfgnoAAAAA4CHVo0ZZtpGpBwDlh6AeAAAAAHhI9YgRlm1k6gFA+SGoBwAAAAAeUmUT1Iv09hbhTAAAxURQDwAAAAA8pGnffRMeB6urVTd+fJHOBgBQLAT1AAAAAMBDQtXVOvzmm+ULBCSfT3O+/W0Fq6qKfVoAgAILFvsEAAAAAADZOegrX9Fe55wjn8+n6ubmYp8OAKAICOoBAAAAgAfVjBxZ7FMAABQR5bcAAAAAAACAxxDUAwAAAAAAADyGoB4AAAAAAADgMQT1AAAAAAAAAI8hqAcAAAAAAAB4DEE9AAAAAAAAwGMI6gEAAAAAAAAeQ1APAAAAAAAA8BiCegAAAAAAAIDHENQDAAAAAAAAPIagHgAAAAAAAOAxBPUAAAAAAAAAjyGoBwAAAAAAAHgMQT0AAAAAAADAYwjqAQAAAAAAAB5DUA8AAAAAAADwGIJ6AAAAAAAAgMcQ1AMAAAAAAAA8hqAeAAAAAAAA4DEE9QAAAAAAAACPIagHAAAAAAAAeAxBPQAAAAAAAMBjCOoBAAAAAAAAHhMs9gl4RSQSkSR1dHQU+UyKr6+vT5LU3t6uQCBQ5LNBOqyXd7BW3sS6eQvr5S2slzewTt7BWnkL6+VNrJu3DGa9BuJDA/GiYvBFo9Fo0Z7dQ7Zt26Y1a9YU+zQAAAAAAADgEhMnTtTQoUOL8twE9TLU29urXbt2qaKiQn4/VcsAAAAAAADlKhKJqKurSw0NDQoGi1MIS1APAAAAAAAA8BhSzgAAAAAAAACPIagHAAAAAAAAeAxBPQAAAAAAAMBjitPJD1n78MMPdfvtt+vFF1/Utm3bFA6HNXXqVJ166qk699xzE0Yvv/fee/p//+//afny5dq1a5eampp05JFH6qqrrlJzc3PCcVtbW3XHHXfof//3f7VhwwZJ0tixY3X00Ufr8ssvV319fcL+77zzju6++27961//0saNG1VRUaHp06fr9NNP12mnnSafz5fx97Ry5Ur98pe/1CuvvKK2tjY1NzfruOOO0xVXXGF53m3btuk3v/mNnn76aa1fv17RaFTjx4/X8ccfr4svvljV1dXZ/kjzqpzX629/+5sWLlyY8ljf//73ddZZZ2X83PlWzuu19957pz3WnDlzdN9992X83IVQzmsmSZs2bdIdd9yh5557Ths3blQoFNLee++t8847T/Pnz8/2x5l3pbhekUhEDz30kG6++Wa1tbVJkp566imNHTvWdv+tW7fqBz/4gZYuXSrJna+rAW5Zr3gff/yxTj75ZLW2tkqSrrzySl111VUZf0/ZvL4kb6xXua8T14b9vLBeXBt+wgvrxbWh99ZM4tpwQDHXq1jXhgzK8IBVq1bp/PPPj/1iVFRUqLu7WwNLd9JJJ+mWW26RJK1evVrnnXeeWlpaJEmhUEg9PT2SpFGjRunRRx9VU1OTpP5f+PPOO0/vvPOOJCkYDMrn88X2nzhxoh555BHV1dVJkv70pz/p61//unp7eyVJlZWV6uzsjJ3nueeeq+9+97sZfU8vvviiLrvssthzxZ/nPvvso4cfflgVFRWSpA8++ED/8R//oW3btkmSwuGwenp6Yt//jBkztHjx4tj+xVbu6/XEE0/oP//zPyVJNTU1CoVCluNde+21OvXUUzN67nwr9/WaO3du0uPs3r1bkUhEc+fO1W9+85uMnrsQyn3NPvjgA5133nnasWOHZV9JWrhwob72ta9l+NPMv1Jcr3fffVfXXXedXnnllYTtyS7cfv/73+vHP/6xdu3aFdvmxhsiyT3rZbrkkku0bNmy2ONsLrSzeX1J3livcl8nrg29tV5cG3prvbg29N6acW1Y/PUq5rUh5bce8OMf/zj2C/+jH/1Ir776ql544QXtt99+kqSlS5fqX//6V+zrLS0tCofDeuihh/Taa6/ptttukyRt3LhRt956a+y49913X+wX/uyzz9Yrr7yif/3rXzr77LMlSWvWrNEDDzwgSWpra9O3v/1t9fb2qq6uTg8//LBeffVVPfnkk2psbJQkLV68WO+//37a7ycajeqGG25QT0+PmpqatHTpUq1cuVLXXnutJOmtt95K+EfixhtvjF20ffe73419/wcffLAk6c0339Tjjz+e/Q82T8p9vQY+2ZCkW265RcuXL7f855aLNon1sluf5cuX67bbbov9w3r66afn9sPNk3Jfsx/+8Iexi7avfe1rWrlypZ5++mlNnTpVknTHHXfozTffzOEnmx+ltl6bNm3SggUL9Morr2jatGkaN25cyv3vvPNOXXvttdq9e7eOPfbYTH9sReOG9TI9/PDDWrZsmYYMGZL195Pt68sr61Xu68S1YT+vrBfXhv28sl5cG3pvzbg27Fes9Sr2tSFBPZfr7u7Wpk2bNH78eB122GE6/fTT5fP51NTUpAULFsT2e+WVV7R582a98MILkqSjjjpKM2fOlN/v1/HHH6999tlHkrRkyRL19fVJ6o8mjx8/XhMmTNBXv/pVhcNhhcNhXXDBBQnHlfrfOIYOHapJkybpoosu0kEHHSSpPz37lFNOie2/atWqtN/Ta6+9pjVr1kiS5s+frylTpigYDOrzn/987ObqySeflCR1dnZq8+bNmjRpkj796U/r3HPPld/vV1NTky6++OLYMd3yJlXu6yX1f4I3oLa2NsOfXHGwXvY6Ojp07bXXKhqNatasWQk/i2Ir9zXr6uqKfU8jRozQ5ZdfrmAwqDFjxsQ+gY1EInr00Uez+bHmTSmuV2dnp0KhkK655ho99thjGjVqVMr9W1paNG3aND344IOxi3G3cst6xduwYYN+/OMfKxgM6stf/nLW31O274leWK9yXyeuDb21XhLXhl5bLztcG7p3zbg2LP56FfvakJ56LhcOh2M11qaBTyglye/364033oh9ejJ9+vSEfadPn6633npLu3fv1gcffKCpU6fq5ptvtj3u9u3bY38e6C80a9Ys/elPf7LdfyDKLvW/kaTz2muvJZxX/Pcwbdo0rVixQqtXr1ZbW5tqamq0ZMkS2+O0t7fH/mzW0hcL61WTcOGWLLXZLVivGttj3HzzzVq3bp0CgYCuv/76tM9ZSOW+Zq2trbHy0VGjRiX0gBu4uJEU+3Sz2EpxvZqamrRkyRKNHj067b5S/8X4VVddpWAwqPXr12f0d4rFLes1IBqN6lvf+pba2tq0cOFCTZs2LevvKdv3RC+sF+vEtaHX1otrQ2+tlx2uDRO5ac24Niz+ehX72pBMPY96//33E1JHZ82aFWsEKcmSNjpQZy5J69atS3rcjo4O/dd//Vfs8Zw5c1KexzPPPBO7UTrooIN0yCGHpD33+POMP6/4x9FoNGE/0/vvv69f/epXkqT6+nqdeeaZaZ+3mMppveJLLJ577jldfPHFOuaYY/TZz35W1113XexTJzcrp/UyrV69Wg8++KAkacGCBRk1S3aDclmzhoaGWOPg9evXxy7ipP4ShAFuDUYM8PJ61dXVZXzRJin26bqXFWu9HnzwQb344ouaMmVKTp+cS9m/J3p5vcppnexwbdjPjevFtaG31svEtWEit60Z14bFX69iXxsS1POgtWvX6rLLLot96rVgwQLtv//+CdkGZmPg+Mfx+8Vrb2/XVVddpX//+9+SpEmTJun888+33fczn/mMDjjgAH3pS19STU2NLr74Yt19990ZTQ6Mf/5wOJzVef7nf/6nZs6cqRNPPFEfffSRPve5z+n3v/99RtkVxVJu6xX/aexNN92k559/Xhs2bNCaNWv0u9/9TqeddpprPimyU27rZbrpppvU19enUCiU8z9shVZOa1ZZWalPfepTkvo/zbzpppu0a9curV69Wj/84Q/Tfk9u4PX1KjfFWq9169bpJz/5ifx+v37wgx9YXhuZGux7oleU8zpxbfgJt64X14beWi8T14afcOOacW1Y/PUqNoJ6HvPaa6/pnHPOiUXa99tvP1133XVp/14kEon92e6mZfv27brwwgv13HPPSeqPhP/0pz9VZWWl7fF27typrq4uSf0vonfeeSejXkSDPc/W1tbYi7arq0sffvihVqxYMejnzZdyXa/GxkY1Njbq0ksv1YoVK7Rs2TKdccYZkvrfXN2Wtj+gXNdrwEsvvaRnn31WUn8D5DFjxgz6OfOtHNfsm9/8Zuw87r33Xs2ZM0ef+9zntH79+ljZjFszjUp9vUpNsdYrGo3q2muvVXt7uy688MLY8AOnpTtPryj3deLasJ/b14trw0RuX68BXBt+ws1rxrWhe9erENy5srD17LPP6itf+UqsX8jhhx+uW2+9NfZCjW88O3CzMqC7uzv2Z7NXwrp163TJJZfoww8/lCSNGzdOd9xxhyZPnpz0XP7xj3+oo6NDr7zyiq6//notW7ZML7zwgu6//34dcsgh+t73vqf/+Z//Sfg7n/vc5/Ttb3874TzjzyvdeUrSL37xC/X09Oi9997TT37yEz333HN6/fXXtW3bNl1++eVJz7cYynW9fvazn9meww033KCnn35aO3bs0OrVq7Vu3bq0k4EKqVzXK95dd90V+7Pby5ak8l2zvfbaSw8//LB+8Ytf6PXXX5fP59OBBx6oK6+8Uuedd54kqaGhIem5FkuprFe5KOZ6PfDAA1qxYoXGjRunr371q2nPNV/viV7AOnFtKLl/vbg29NZ6xePasJ/b14xrw+KuV7ER1POI5cuX68tf/nLsl/fSSy/V17/+dfn9nyRbxv8jGN8MUpK2bNkS+/OECRNif968ebO+8IUvxOrVDz/8cP33f/93Ri/6qqoqHXroofrGN76hK6+8UpFIRIsXL9YhhxyitrY27dy5M2H/gU9R488zvhlm/HkGAoGk/6iHQiFNnz5dN998c6wm/sEHH3TVhRvrZRUOhzVu3LjYuPUdO3a45sKN9eofxb5s2TJJ0pgxY3TAAQekPcdiKvc1mz59um699daEfXfs2KFdu3ZJkqZOnZr2fAuplNarHBR7vf785z9L6r8oH5hUbPr5z3+un//85/rRj35UkH/D3Ih1+gTXht5arwFcG7p7vbg27OeVNePasF8x1qvYCOp5wNq1a3XFFVeou7tbgUBA3/3ud3XWWWdZ9jvggAMUDAbV29trKSN66623JEnDhg2L/dL39PToS1/6UuwX/owzztCNN95om5r78MMP65577tH27dt19dVXJ4yFjk93HXjTWLRokRYtWmT7/cycOTP25/jz7O3t1erVqyVJM2bMUGVlpV5//XVde+212rZtm+bMmaOf/vSnKZ/XDcp5vdrb23Xfffdp+/btqqmp0dVXXx3bv6enJ6FB68iRI22fr9DKeb3i/e1vf4ulsR9//PG2x3aLcl+zd999V6tXr9a2bdsSnveZZ56J/fnwww+3fa5iKLX1KnVuWK9s5eM90e3KeZ24NvTWenFt6K31ise1oXfWjGvD4q5XsdFTzwNuvPHG2NSor371q7a/8FJ/nfixxx4rqf8F/M9//lORSER/+MMf9O6770rqT5seiH7fc889sRfDUUcdpR/84AdJf+H32msvffDBB9q1a5fuuOOO2Itqy5YtuvPOO2P7ZVKLPn36dO23336SpCeffFLvvfeeent7dffdd6ulpUWSdM4558Sed+PGjdq2bZv+8pe/6I9//KMikYi6urp0yy23ZPW8hVLO61VdXa1HH31Uv/71r/WLX/xCv/vd7xSJRNTR0aFFixbFPmGZM2eOaxpYl/N6xVu5cmXsz27/JLbc1+yee+7RV7/6VX3ve9/T448/Lqn/Ym7gPbG+vl4LFixI+7yFUmrr1d3drS1btsT+6+npiX1t+/btse0Dn962tLTEtsV/ytzT05NwnL6+vrTPXQhuWK/bbrtNy5Yts/x32223xfa5+OKLtWzZMp100kkpv59sX19eWa9yXieuDb21Xlwbemu94nFt6J0149qwuOtV7GtDXzQajWa0J4ritddeS/glb2hosG0EOXPmTN1+++1av369zj777FiabigUiv1STZs2TQ8//LCqq6slSQcddJA6Ojok9f+Dm2zay/LlyyVJ3//+93XffffFtldVVcX+vtR/kbV48eKE2vdkXn/9dV144YWx+vn48zz00EN11113xV6cS5cu1TXXXBMbzx0Oh9XX1xf7Ja+trdX999+vffbZJ+3z5hvrJT3//PNauHBhLJU6FAqpr68v9klfc3Oz7r//fo0fPz7t8+Yb6/WJs88+W6+++qok6bHHHtOMGTPSPk8xsGb9ZQLnnnuutm7danneYDCon/3sZ/rMZz6T9jkLoRTXa/ny5brwwgvTfu9XXnmlrrrqKn3zm9/UY489lnb/p556SmPHjk27Xz65ab2SfW3gZz/w881ENq8vL6wX68S1odfWi2tDb63XAK4NvbNmXBsWd72KfW1I+a3Lxd9wSMlLCQYi3WPHjtXDDz+sW2+9VS+88IJ27dqlMWPG6LjjjtMVV1wR+4U3j93e3h57w0jmuuuu07x587R48WL9+9//1q5du1RdXa2JEyfquOOO0xe+8IWMG03vv//+euihh3TbbbfpH//4h9ra2jRx4kSdcsopuuyyyxL+UTnppJM0adIk3XPPPXr55Ze1ZcsWBQIBjR07Vp/61Kd02WWXFf1GaADrJR122GF6/PHHdeedd2r58uXavHmzwuGwxo8fr2OOOUYXXXSRhgwZktHz5hvrZf+919XVZfQ8xcCa9fcXWbx4sW6//Xa99NJL2rx5s4YMGaLZs2fr8ssvj32y6walul6lyk3r5aRc3hPdjHXi2tDu2G5eL64Nrcd283oN4NrQO2vGtaH12IVer2IiUw8AAAAAAADwGG99NAkAAAAAAACAoB4AAAAAAADgNQT1AAAAAAAAAI8hqAcAAAAAAAB4DEE9AAAAAAAAwGMI6gEAAAAAAAAeQ1APAAAAAAAA8BiCegAAAAAAAIDHENQDAAAAAAAAPIagHgAAAAAAAOAxBPUAAAAAAAAAjyGoBwAAAAAAAHgMQT0AAAAAAADAY/5/drnyrgkyv8oAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from packages.itbot.itbot.backtest import *\n", + "import yfinance as yf\n", + "\n", + "backtest_dynamic_portfolio(portfolio_return_MV)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 14.3.1. Optimal take profit" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sharpe
0.5000000.652813
0.8275861.255285
1.1551721.978354
1.4827592.174784
1.8103452.583486
2.1379312.479929
2.4655172.680874
2.7931033.028053
3.1206903.415676
3.4482764.027515
3.7758624.529454
4.1034484.920675
4.4310345.496767
4.7586215.831645
5.0862076.207020
5.4137936.589336
5.7413796.720174
6.0689666.664332
6.3965526.419067
6.7241386.704528
7.0517247.060952
7.3793107.175841
7.7068977.334617
8.0344837.680648
8.3620697.851179
8.6896558.139650
9.0172418.095902
9.3448288.071890
9.6724148.198755
10.0000008.210360
\n", + "
" + ], + "text/plain": [ + " Sharpe\n", + "0.500000 0.652813\n", + "0.827586 1.255285\n", + "1.155172 1.978354\n", + "1.482759 2.174784\n", + "1.810345 2.583486\n", + "2.137931 2.479929\n", + "2.465517 2.680874\n", + "2.793103 3.028053\n", + "3.120690 3.415676\n", + "3.448276 4.027515\n", + "3.775862 4.529454\n", + "4.103448 4.920675\n", + "4.431034 5.496767\n", + "4.758621 5.831645\n", + "5.086207 6.207020\n", + "5.413793 6.589336\n", + "5.741379 6.720174\n", + "6.068966 6.664332\n", + "6.396552 6.419067\n", + "6.724138 6.704528\n", + "7.051724 7.060952\n", + "7.379310 7.175841\n", + "7.706897 7.334617\n", + "8.034483 7.680648\n", + "8.362069 7.851179\n", + "8.689655 8.139650\n", + "9.017241 8.095902\n", + "9.344828 8.071890\n", + "9.672414 8.198755\n", + "10.000000 8.210360" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def find_best_tp(tp):\n", + " tp = tp/100\n", + " \n", + " # Create the portfolio\n", + " pf = pd.concat((low_portfolio, portfolio_return_test,high_portfolio), axis=1).dropna()-spread\n", + " pf.columns = [\"low\", \"Return\", \"high\"]\n", + "\n", + " # Apply the tp\n", + " pf[\"Return\"] = np.where(pf[\"high\"].values>tp, tp, pf[\"Return\"].values)\n", + " pf[\"Return\"] = np.where(pf[\"Return\"].values>tp, tp, pf[\"Return\"].values)\n", + " down = pf[\"Return\"].values\n", + " down = down[down<0]\n", + " \n", + " # Return sharpe raatio\n", + " return np.sqrt(252)*pf[\"Return\"].mean()/down.std()\n", + "\n", + "pd.DataFrame([find_best_tp(tp) for tp in np.linspace(0.5,10,30)], index=np.linspace(0.5,10,30), columns=[\"Sharpe\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[*********************100%***********************] 1 of 1 completed\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -----------------------------------------------------------------------------\n", + " Beta: 0.098 \t Alpha: 135.29 %\t Sharpe: 2.074 \t Sortino: 0.103\n", + " -----------------------------------------------------------------------------\n", + " VaR: 1.05 %\t cVaR: 2.44 % \t VaR/cVaR: 2.332 \t drawdown: 53.2 %\n", + " -----------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAD7QAAAYjCAYAAADNhuE1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zV9d338U8YYYiKe4K2OKjUhdrWOtqrdaMyakWrrbuu21FvL1utexS12l7OurVVq6LiYhhAhqACgqiAIEOQIcgMGELIvP/oVW5ta6skv/PNOXk+H4/zQIM55xUFchLP+/ctqqurqwsAAAAAAAAAAAAAAAAAAABoYM1SBwAAAAAAAAAAAAAAAAAAAFCYDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATLVIHAAAAAADAV1VRURHLli2L5cuXx/Lly2PFihWxatWq+Oyzz6KsrCw+++yzdX+9du3aqKioWPdjRUVFVFZWRk1NTdTU1ERtbe0XfmzWrFk0b948mjVr9oVb8+bNo7i4OFq1arXuVlxcHMXFxdG2bdvYYIMN1t3atWu37ta+ffvYZJNNYpNNNon27dvHxhtvHM2auc4sAAAAAAAAAAAATUtRXV1dXeoIAAAAAABYvXp1zJs3L+bPnx+LFi2KRYsWxcKFC+PTTz+NRYsWxbJly6K8vDx15npr1qxZbLzxxrHlllvGlltuGVtttVVstdVWseWWW8bWW28d22+/fWy//fbRunXr1KkAAAAAAAAAAADQYAzaAQAAAADImerq6vj4449jxowZMXPmzJg7d27MnTs35s2bF0uXLk2dl1xRUVFsvvnmsf3220eHDh1ihx12iJ122il22mmn2GGHHaJly5apEwEAAAAAAAAAAOBrMWgHAAAAACATy5YtiylTpsSUKVPiww8/jJkzZ8acOXOiqqoqdVpeatmyZXTs2DF22mmn6NKlS+y2227RpUuX2HTTTVOnAQAAAAAAAAAAwJcyaAcAAAAAoN7WrFkT7733XrzzzjsxadKkmDJlSnz66aeps5qEbbbZJrp06RJdu3aNffbZJ7p06eIkdwAAAAAAAAAAABoNg3YAAAAAAL62VatWxdixY+Ptt9+Od955J6ZOnRrV1dWps4iI1q1bxx577BH77rtvHHDAAbHXXntFixYtUmcBAAAAAAAAAADQRBm0AwAAAADwH1VXV8d7770Xb7zxRrzxxhsxadKkqKmpSZ3FV7DBBhvEd7/73TjwwAPj4IMPjg4dOqROAgAAAAAAAAAAoAkxaAcAAAAA4F9as2ZNjB49OoYMGRIjRoyIlStXpk6iAXTu3DkOPfTQOOyww2KXXXZJnQMAAAAAAAAAAECBM2gHAAAAAGCdioqKGDp0aLz66qsxevToWLNmTeokMrTjjjvG0UcfHd27d4+OHTumzgEAAAAAAAAAAKAAGbQDAAAAADRxtbW1MW7cuHjppZeipKQkVq9enTqJBLp27Ro9evSIbt26Rbt27VLnAAAAAAAAAAAAUCAM2gEAAAAAmqglS5ZE375949lnn42FCxemzqGRaNu2bRx77LFx8sknx84775w6BwAAAAAAAAAAgDxn0A4AAAAA0MSMHz8+nnzyyRgyZEhUVVWlzqER+853vhOnnnpq/OhHP4qioqLUOQAAAAAAAAAAAOQhg3YAAAAAgCagtrY2SkpK4oEHHogPPvggdQ55Zpdddomzzz47jjzyyGjevHnqHAAAAAAAAAAAAPKIQTsAAAAAQAGrrKyMl156KR566KGYM2dO6hzyXMeOHeP888+P7t27O7EdAAAAAAAAAACAr8SgHQAAAACgANXU1MQLL7wQd999dyxcuDB1DgXmW9/6Vlx66aVx4IEHpk4BAAAAAAAAAACgkTNoBwAAAAAoMIMHD44//vGP8dFHH6VOocAdcMAB8dvf/jY6deqUOgUAAAAAAAAAAIBGyqAdAAAAAKBATJ48OW644YZ49913U6fQhLRs2TLOOOOMOPfcc6N169apcwAAAAAAAAAAAGhkDNoBAAAAAPJcaWlp/M///E8888wzUVtbmzqHJqpDhw5x3XXXxQEHHJA6BQAAAAAAAAAAgEbEoB0AAAAAII/169cvbr311lixYkXqFIiioqI4+eST49JLL3Vae54YP358vPXWW6kz1jnkkEPiW9/6VuoMAOBrevzxx6O0tDR1xjoXXHBB6gQAAAAAAADgcwzaAQAAAADy0OLFi+Oqq66KESNGpE6Bf9KpU6f4/e9/H126dEmdwn9wyimnxJgxY1JnrNOnT5/o1atX6gwA4Gv45JNP4kc/+lE0ppeffPjhh6kTAAAAAAAAgM9pljoAAAAAAICv55VXXomjjz7amJ1Ga9asWXHCCSfEM888kzqFf2PJkiUxbty41BkAQJ4bMGBAoxqzAwAAAAAAAI2PQTsAAAAAQJ5Ys2ZN/Pd//3dceumlsXLlytQ58G9VVlbG1VdfHZdffnmsXbs2dQ7/wsCBA6O2tjZ1BgCQ5wYMGJA6AQAAAAAAAGjkDNoBAAAAAPLARx99FMcff3y8/PLLqVPga+nXr1+ceOKJsXjx4tQp/APjMwCgvmbNmhVTp05NnQEAAAAAAAA0cgbtAAAAAACN3KuvvhrHHXdcTJ8+PXUKrJcpU6bECSecEDNnzkydwv+aN29evPfee6kzAIA85wI5AAAAAAAAwFdh0A4AAAAA0Ijdf//9cfHFF8fq1atTp0C9LFiwIE488cQYN25c6hTC+AwAaBieUwAAAAAAAABfhUE7AAAAAEAjVF1dHVdddVX84Q9/iLq6utQ50CBWrVoVZ555ZowaNSp1SpNnfAYA1NfkyZNjzpw5qTMAAAAAAACAPGDQDgAAAADQyKxZsybOPvvs6Nu3b+oUaHBr166N8847L0aOHJk6pcmaPn16TJ8+PXUGAJDnXCAHAAAAAAAA+KoM2gEAAAAAGpHy8vL45S9/GaNHj06dApmprKyM888/P0aMGJE6pUkyPgMA6quuri4GDhyYOgMAAAAAAADIEwbtAAAAAACNxOrVq+Oss86KcePGpU6BzFVVVcVFF10UEydOTJ3S5Bi0AwD1NX78+Fi0aFHqDAAAAAAAACBPGLQDAAAAADQC5eXlccYZZ8T48eNTp0DOVFRUxDnnnBOzZs1KndJkvPfeezFv3rzUGQBAnuvfv3/qBAAAAAAAACCPGLQDAAAAACRWXV3tpGqarNLS0jjzzDNj6dKlqVOaBOMzAKC+qquro6SkJHUGAAAAAAAAkEcM2gEAAAAAErvqqqvi9ddfT50ByXzyySdx4YUXRlVVVeqUglZbWxuDBg1KnQEA5Lk33ngjVqxYkToDAAAAAAAAyCMG7QAAAAAACf3xj3+Mfv36pc6A5CZMmBC/+93vUmcUtLFjx8aSJUtSZwAAeW7AgAGpEwAAAAAAAIA8Y9AOAAAAAJDIwIED47777kudAY3GX//613jxxRdTZxQs4zMAoL7Wrl0bQ4cOTZ0BAAAAAAAA5BmDdgAAAACABKZPnx6//e1vU2dAo3P99dfHvHnzUmcUnKqqqhg8eHDqDAAgzw0fPjxWr16dOgMAAAAAAADIMwbtAAAAAAA59tlnn8UFF1wQ5eXlqVOg0Vm9enX893//d9TU1KROKSijRo2KlStXps4AAPLcgAEDUicAAAAAAAAAecigHQAAAAAgx6666qqYM2dO6gxotCZOnBh/+tOfUmcUFOMzAKC+ysrKYuTIkakzAAAAAAAAgDxk0A4AAAAAkEMvv/xyDBo0KHUGNHr33XdfzJo1K3VGQVizZk0MGzYsdQYAkOeGDBkSa9euTZ0BAAAAAAAA5CGDdgAAAACAHFm0aFHccMMNqTMgL1RVVcW1116bOqMgDBs2LMrLy1NnAAB5rn///qkTAAAAAAAAgDxl0A4AAAAAkCOXX355rFq1KnUG5I1x48ZFv379UmfkPeMzAKC+li9fHmPGjEmdAQAAAAAAAOQpg3YAAAAAgBx4+eWX480330ydAXnn9ttvj9WrV6fOyFurVq2KUaNGpc4AAPLcoEGDorq6OnUGAAAAAAAAkKcM2gEAAAAAMlZWVha33npr6gzIS0uXLo2HH344dUbeKikpiaqqqtQZAECeGzBgQOoEAAAAAAAAII+1SB0AAAAAAFDo7rjjjliyZEnqjILUunXr2GabbWK77baLLbbYIjbbbLPYfPPNY5NNNol27drFRhttFBtttFG0bt06WrduHa1atYpWrVpF8+bNo1mzZtG8efMoKiqKysrKqKqqWvfj3/965cqVUVpa+oXbsmXLYv78+TF37txYtGhR1NTUpP7XUPAeeeSR6N27d2y11VapU/KO8RkAUF8LFy6Md955J3UGAAAAAAAAkMcM2gEAAAAAMjRr1qz461//mjoj72244YbxrW99K3bbbbf45je/ue622WabNcj9/33o/nVVV1fHJ598EvPnz4/p06fH5MmTY/LkyfHxxx9HbW1tg7QRsWbNmrjnnnvi+uuvT52SV5YsWRLjxo1LnQEA5LkBAwZEXV1d6gwAAAAAAAAgjxm0AwAAAABk6M4774zq6urUGXlnu+22i+9+97uxzz77xL777hs77rhj6qR/qUWLFtGxY8fo2LFjfP/731/39rKyspg6dWqMHz8+Ro0aFe+9955fB/XUr1+/OOecc2LbbbdNnZI3Bg0aFDU1NakzAIA8N2DAgNQJAAAAAAAAQJ4zaAcAAAAAyMi0adOipKQkdUZeaN68eXTt2jUOOeSQOOigg6JTp06pk+qlXbt2sd9++8V+++0X5557bpSVlcVbb70Vo0aNipKSkigtLU2dmHeqqqrigQceiGuvvTZ1St4wPgMA6uujjz6KDz74IHUGAAAAAAAAkOcM2gEAAAAAMvI///M/UVdXlzqjUdtrr72ie/fuccQRR8Smm26aOicz7dq1i0MPPTQOPfTQuOqqq2LkyJHx4osvxogRI6Kqqip1Xt547rnn4pxzzomtt946dUqjN3/+/Hj33XdTZwAAec4FcgAAAAAAAICGYNAOAAAAAJCBadOmxfDhw1NnNEobbrhh9OjRI0488cS8P4l9fbRs2TIOOeSQOOSQQ6K0tDSeffbZ+POf/xxLlixJndboVVVVxZ///Of49a9/nTql0TM+AwAagucUAAAAAAAAQENoljoAAAAAAKAQPf7446kTGp0tttgi/vu//ztGjBgRV155ZZMcs/+j9u3bx1lnnRWvvfZaXH311bHddtulTmr0nnvuuSgvL0+d0ej1798/dQIAkOemTJkSs2fPTp0BAAAAAAAAFACDdgAAAACABlZaWmpM+jkbbrhhXHLJJTF06NA488wzo127dqmTGp1WrVrFSSedFIMHD46rr746Ntpoo9RJjdaqVauiX79+qTMatZkzZ8b06dNTZwAAec7XNAAAAAAAAEBDMWgHAAAAAGhgzz77bFRUVKTOaBS6d+8eJSUlcfbZZ0fr1q1T5zR6LVq0iJNOOileffXV6NGjRxQVFaVOapQef/zxqKurS53RaL3yyiupEwCAPFdXVxeDBg1KnQEAAAAAAAAUCIN2AAAAAIAG9vTTT6dOSG6LLbaIBx98MG699dbYbLPNUufknc022yxuueWWePzxx2ObbbZJndPozJkzJ8aOHZs6o9EaOHBg6gQAIM9NmDAhFi5cmDoDAAAAAAAAKBAG7QAAAAAADWjixIkxf/781BlJ7bvvvvHyyy/HwQcfnDol7+23337x4osvxg9/+MPUKY3Os88+mzqhUXr//fdj7ty5qTMAgDzXv3//1AkAAAAAAABAATFoBwAAAABoQAMGDEidkFTPnj3j0UcfjU033TR1SsFo37593HfffXHppZdG8+bNU+c0GkOGDImVK1emzmh0jM8AgPqqrq6OkpKS1BkAAAAAAABAATFoBwAAAABoILW1tfHqq6+mzkjmoosuiptvvjmKi4tTpxScoqKiOOuss+LOO+/07/d/rV271nj7H9TW1sagQYNSZwAAee7NN9+M5cuXp84AAAAAAAAACohBOwAAAABAA5kwYUIsWbIkdUYS5557bpx33nmpMwreIYccEg899FBssMEGqVMaBYP2L3r77bdj8eLFqTMAgDw3cODA1AkAAAAAAABAgTFoBwAAAABoIK+//nrqhCR+9rOfxcUXX5w6o8n47ne/G48//nhsvPHGqVOSmzhxYixcuDB1RqMxYMCA1AkAQJ5bu3ZtDBkyJHUGAAAAAAAAUGAM2gEAAAAAGsgbb7yROiHnDjrooLj66qtTZzQ5Xbp0iXvvvTdatWqVOiWpuro6J4j+r6qqqigpKUmdAQDkuZEjR0ZZWVnqDAAAAAAAAKDAGLQDAAAAADSAFStWxNSpU1Nn5NSmm24aN998cxQVFaVOaZL23XffuO2226JZs6b9rf5BgwalTmgU3njjjSgtLU2dAQDkuf79+6dOAAAAAAAAAApQ036VGwAAAABAA3nrrbeitrY2dUZO3XTTTbH55punzmjSDjvssLj88stTZyQ1efLkWLx4ceqM5IzPAID6Kisri5EjR6bOAAAAAAAAAAqQQTsAAAAAQAOYMGFC6oScOuSQQ+JHP/pR6gwi4he/+EUcfvjhqTOSqaura/LDq4qKinjttddSZwAAeW7o0KFRUVGROgMAAAAAAAAoQAbtAAAAAAANYPLkyakTcqaoqCguvPDC1Bl8zo033hjbbbdd6oxkhg0bljohqWHDhkV5eXnqDAAgzw0YMCB1AgAAAAAAAFCgDNoBAAAAAOqppqYmpk2bljojZ4466qjYddddU2fwORtttFHcdttt0aJFi9QpSbz11ltRWVmZOiMZ4zMAoL6WL18eb775ZuoMAAAAAAAAoEAZtAMAAAAA1NOMGTOioqIidUbOnHrqqakT+Be6du0aJ510UuqMJNasWRPvvPNO6owkPvvss3j99ddTZwAAea6kpCSqq6tTZwAAAAAAAAAFyqAdAAAAAKCePvjgg9QJOfPNb34z9thjj9QZfIkLLrggNttss9QZSYwZMyZ1QhKDBw9u0qfTAwANY8CAAakTAAAAAAAAgAJm0A4AAAAAUE8fffRR6oSc6dGjR+oE/o0NN9wwLrnkktQZSTTVQbvxGQBQX4sWLYrx48enzgCA9VZdXR3V1dWpMwAAAAAA+DdapA4AAAAAAMh3c+fOTZ2QM4cffnjqBP6Dn/zkJ/HUU0/F5MmTU6fk1KRJk6KsrCzatWuXOiVnli1b1mSH/NAYffbZZzFnzpxYsGBBzJ8/PxYsWBALFiyIZcuWRUVFRaxZs2bdj2vXro0WLVpE27Ztv3Dbeuuto0OHDrHDDjtEhw4domPHjrHttttGUVFR6g+P9VBZWRmLFy+OTz/9NJYsWRKlpaWxcuXKKC0tXffX5eXlUVFR8YUfq6qqorq6Ompra6O6ujpqamqipqYmWrRoEc2bN4/mzZtHixYtokWLFtGmTZvYYIMNYoMNNoi2bdtGu3bton379rHpppuuu2222Wax7bbbxjbbbBPFxcWp/7XQCA0cODDq6upSZ0DeqKuri8WLF8eiRYti6dKl627Lli2L0tLSKCsr+8KtoqJi3dj277e6urpo0aJFtGzZ8gu34uLiaNeuXWy88cb/dNtqq61i2223jW233Ta22GKLaNbMOSYUnoqKinXPpz/55JNYuHBhrFixIlauXLnux5UrV0ZFRUVUVVWtu/3981izZs2iuLh43a1Vq1ZfeG602WabxSabbBLbb799dOzYMXbYYYfYcMMNE3/UAAAAAABNg0E7AAAAAEA9NZVB+9Zbbx077rhj6gz+g6Kiojj33HPj/PPPT52SU9XV1fH+++/H97///dQpOTNo0KCoqalJnQFN1ieffBITJkxYd5s5c2bU1tZ+5fevqamJtWvXxooVK9a97b333vunf26jjTaKLl26xF577RXf/e53Y++9947WrVs3yMdA/S1cuDDmzJkTc+fOjY8//jjmzp0b8+bNi08//fQL/20bQn1PHi0qKorNN988tt122+jYsWN06tQpvvnNb0anTp2iY8eOxu5NWP/+/VMnQKO0ePHimDFjRsyYMSPmzJkT8+fPX3fRmsrKynrff2Vl5XrfT8uWLWPrrbeObbfdNjp16hS77LLLuptxLvmgsrIyZs6cGR9++GFMmzYtPvzww5gxY0YsXbq0XvdbW1sbFRUVUVFRse5tCxYs+Lfvs+mmm8YOO+wQu+yyS+y+++7x7W9/O3beeedo0cJLKwEAAAAAGlJRnctsAwAAAADUS9euXWP16tWpMzLXvXv3uPXWW1Nn8BXU1dXF0UcfHTNnzkydklMXXXRRnHfeeakzcuaEE06IiRMnps5oUH369IlevXqlzoAvtXDhwnjllVfi5ZdfjhkzZiRpaNOmTRx00EFx7LHHxn/9138Z2uRIZWVlfPDBB/HBBx/Ehx9+GNOnT4/p06dHWVlZ6rQG0bJly9h5552jS5cu8e1vfzu6dOkSnTt3jpYtW6ZOI2Nz5syJww8/PHVGg/vwww9TJ5BH6urqYs6cOTFp0qR4//33Y+rUqTFjxoxYuXJl6rT1ss0220Tnzp2ja9eu0bVr19hjjz1ctITkysrKYuLEiTF+/Ph4++234/3334+qqqrUWV+qVatW8a1vfSv23XffOPDAA2Offfbx+wgAAAAAoJ68ugEAAAAAoB6WL1/eJMbsERH77LNP6gS+oqKiojjrrLPi17/+deqUnHr33Xdz/phr167N+WNG/G1Um+LjzVp1dXWyf6dfR3FxcRQVFaXOIEdqampi4MCB8eyzz8a4ceMi9fXC16xZE4MHD47BgwfHb37zmzjttNOS9hSqJUuWxNixY+Pdd9+N9957L6ZOndqoR1f1VVVVtW6w/+yzz0ZERNu2bWOvvfaK/fbbL/bbb7/Yc889DbkyUlNTE9XV1Uke++WXX07yuFnLh+cTRUVFfk8lUllZGe+//36MHTs2JkyYEJMmTYpVq1alzmowCxcujIULF8bw4cMj4m/PXXffffd1w9yuXbu6IA45MWfOnHjttdfitddei3fffTdqampSJ31la9eujXfffTfefffdeOihh6J169ax7777xgEHHBCHHnpodOjQIXUiCZWXl8cjjzyS/GvDXDrqqKOiU6dOqTP4D5588slYvnx56oycKC4ujrPPPjt1BgAAAPA1OaEdAAAAAKAeZsyYEUcffXTqjJx44oknYr/99kudwVdUXV0dP/7xj2PRokWpU3Kmffv2MWbMmJwOjXfdddecPRaNx2uvvRbbb7996oyIiLj88ssL8sXK++67b5x11llJG2pra6N///5xzz33xJw5c5K2fJnLLrsszjjjjNQZBaGsrCzGjBkTb731VowZMyZmzpyZOqnRadu2bey///7xwx/+MH7wgx/EVlttlTqpYPTr1y8uv/zy1Bnk2He+8514/PHHU2c0CXV1dfHBBx/EyJEj112spKKiInVWMhtttFEcfPDB8cMf/jAOPvjg2HjjjVMnUUA++uijeOmll2LIkCExa9as1DmZ2WOPPeLII4+MI488MrbZZpvUOf/WXXfdFaNGjUqd0eC6desWp5xySrLHP+6442LSpEnJHj/XTj31VM9XG7kVK1bEAQcckFcXD6mPww8/PO68887UGQAAAMDX5HK7AAAAAAD1UIgjwi/zjW98I3UCX0OLFi2ie/fucf/996dOyURxcXFst9120bFjx+jYsWNsv/320bFjx6ipqXHaIE3K7NmzY+LEiakzGtzKlSuTDtqHDBkSf/jDH+Kjjz5K1kD2Fi1aFK+99loMGzYsxo4dW9AnsDeE8vLydaesRkR06dIlunXrFkceeWRsu+22iesAvmj16tXx5ptvxogRI2LkyJGxZMmS1EmNxqpVq6J///7Rv3//aNGiRey///7Rs2fPOOSQQ6JVq1ap88hDZWVlMWjQoHj++ecL8muTf+X999+P999/P2699dbYZ5994sQTT4zDDjssiouLU6f9k1dffbUgL9Z0wAEHJH383r17N6lB+5AhQwzaG7mRI0c2mTF7RESvXr1SJwAAAADrwSu6AAAAAADqYcWKFakTcmKDDTaIzTffPHUGX1OPHj3yetC+0UYbRYcOHaJjx47/9OPWW28dzZo1S50IyW2xxRapEzLxySefJHncJUuWxPXXXx+DBw9O8vhkb+nSpTFo0KDo379/vPvuu6lz8tqUKVNiypQp8fvf/z722muv6N69exxzzDHRrl271GlAE7V27doYOXJkDBgwIEaMGNGkT2H/qqqrq2PUqFExatSo2HDDDePII4+Mnj17RteuXVOnkQfmzZsXjz32WPTr1y/Ky8tT5yRRV1cX48ePj/Hjx8dmm20WP/3pT6N3796N5mI/lZWVMXv27NQZmdhggw2SPn63bt3i5ptvjrKysqQdubJgwYKYPHlyfPvb306dwpcYMWJE6oSc2WKLLeKggw5KnQEAAACsB4N2AAAAAIB6aCqD9vbt26dOYD1885vfjD333DPee++91Cn/UlFRUWy11Vbrhur/OFr36w7+s8022yx1QiaWLl0atbW1Ob1wRb9+/eLmm2+OlStX5uwxyY3KysooKSmJfv36xdixY5vUqXW5UFdXFxMnToyJEyfGLbfcEkceeWT07t079tprr9RpQBMxbty4eP7552PIkCGxevXq1Dl567PPPou+fftG3759o3PnznHaaadFt27domXLlqnTaGQmT54cDz/8cJSUlHhe9TnLli2L++67Lx588ME48sgj49xzz42ddtopadPHH39csP+N2rZtm/zxjznmmHjqqaeSduTS4MGDDdobqerq6hg9enTqjJw59thjo3nz5qkzAAAAgPVg0A4AAAAAUA+lpaWpE3Ii9alHrL/u3bsnHbQXFxfH9ttv/0+j9Y4dO8b2228frVq1StYGhWDjjTdOnZCJmpqaWLFiRU4G+5WVlXHVVVfFiy++mPljkVuzZs2KZ555Jl566aUm85wttTVr1kS/fv2iX79+sccee8Tpp58ehx12mLEB0OBWrVoVL774Yjz99NMxa9as1DkFZ9q0afHrX/86br/99vj5z38evXv3LtjnnXx1M2fOjNtvvz2GDRuWOqVRq6mpif79+8fAgQPjsMMOi/POOy923XXXJC0ff/xxksfNhcbwvcoTTjihyQ3aL7nkktQZ/Avjx4+Pzz77LHVGzvTq1St1AgAAALCeDNoBAAAAAOqhoqIidUJOpD71iPX3ox/9KK6//vpMH2PjjTf+p6H63/966623jqKiokwfH5qydu3apU7IzNKlSzMftC9ZsiTOP//8pBf+oOGNHj06Hn300SZ1Ql1j9P7778fFF18cHTp0iNNPPz2OO+64KC4uTp0F5LmPP/44HnrooXj55ZebzNfjKS1evDhuv/32+NOf/hSnnXZanH766QX9/JN/bdGiRXHnnXfGiy++WLCnfWehtrY2Xn311SgpKYkjjjgiLrvssth2221z2jB//vycPl4uNYbvVXbu3Dl23333mDRpUuqUnJg9e3bMmDEjdt5559Qp/IMRI0akTsiZ3XffPXbaaafUGQAAAMB6MmgHAAAAAKiHysrK1Ak50aKFbyfnq2222SZ23nnnmDFjxnrfR7NmzWKrrbZaN1r/xx+d1AfpNIZT6bKyYsWKTO9/6tSpcfbZZ8enn36a6eOQG38/CfOhhx6K6dOnp87hc+bNmxfXXXddPPTQQ3H++edHjx49nNgOfG1Tp06NBx54IF599dWora1NndPklJeXxz333BNPPvlknH322XHSSSdFq1atUmeRscrKynj44YfjvvvucwGJeqirq4tBgwbFiBEj4pe//GWceeaZObvITyEP2tu0aZM6ISIievfu3WQG7RF/O6XdoL3xGT58eOqEnOnZs2fqBAAAAKAevAIRAAAAAKAeqqqqUifkxNq1a1MnUA8HHXTQfxy0t2rVat3J6h06dPjCaL1Dhw5OVIVGqjGcSpeVlStXZnbf06ZNi1NPPTVKS0szewxyo7a2NgYOHBh33313zJ49O3UO/8aCBQviiiuuiAcffDAuu+yy+NGPfpQ6CcgD06ZNiz/84Q8xcuTI1ClERGlpadxyyy3x5z//OS6++OLo0aNHFBUVpc4iA2+//XZcc801MWvWrNQpBWPNmjVxxx13xAsvvBC//e1v44c//GHmj7lo0aLMHyOVxjJo79atW9x8881RVlaWOiUnBg8eHOeff37qDD5nzpw5MWfOnNQZOVFcXBxHH3106gwAAACgHgzaAQAAAADqoamc0G7Qnt8OPvjgeOSRR6J9+/b/NFTv2LFjdOzYMbbaaitDBMhDjeVF/FnIamw+c+bMOO2004zZC8DIkSPj1ltvjZkzZ6ZO4WuYPXt2nHvuufGDH/wgrrjiithxxx1TJwGN0IIFC+KOO+6IV155xYnsjdCiRYviN7/5TTz77LNxzTXXxK677po6iQZSVlYWffr0ieeeey51SsGaO3dunH322XH88cfHFVdckenXdAsXLszsvlNrLF8Lt23bNo455ph46qmnUqfkxLRp02Lu3LnRsWPH1Cn8r6Z0OvuPf/zj2HjjjVNnAAAAAPVg0A4AAAAAUA/V1dWpE3JixYoVqROoh+985zvx9ttvx0YbbZQ6BWhgrVu3Tp2QmSxOaJ8zZ06ceuqpsXz58ga/b3Jn5syZ0adPnxg9enTqFOph5MiR8eabb8ZZZ50V5557bhQXF6dOAhqBsrKyuOeee+KJJ55oMheQy2cTJkyIXr16xcknnxwXXHBBtGvXLnUS9fDuu+/GpZdeGvPmzUud0iT07ds3xo8fH7fffnvstttumTzG4sWLM7nfxqAxfS18wgknNJlBe8TfTmk/88wzU2fwv5rSoL1nz56pEwAAAIB6apY6AAAAAAAgn9XV1aVOyIlly5ZFTU1N6gzWU/PmzY3ZoUA1phfxN7RVq1Y16P2VlZXFOeecE0uWLGnQ+yV31qxZE7fccksce+yxxuwFoqqqKu699974yU9+ElOmTEmdAyQ2aNCgOOKII+KRRx4xZs8j1dXV8dhjj8XRRx8db731Vuoc1kNNTU3cfffdcdJJJxmz59hHH30Uxx9/fDz22GMNft+1tbWxbNmyBr/fxqKxnNAeEdG5c+fYY489UmfkzODBg1Mn8L8+++yzeOedd1Jn5MQWW2wRBx54YOoMAAAAoJ4M2gEAAAAA6qFFixapE3KitrY2Fi1alDoDgH9g0P7V1NXVxaWXXhqzZ89usPskt0aPHh1HH310PPLIIy6yU4CmT58exx9/fNx9991RW1ubOgfIsXnz5sWZZ54ZF198sQvP5LGFCxfGaaedFjfddFOsXbs2dQ5fUWlpaZx55plx1113RXV1deqcJqmqqir69OkTV155ZYP+N1i+fHlBP29ubF8LH3/88akTcub999/3feJGYtSoUVFVVZU6Iye6d+8ezZs3T50BAAAA1JNBOwAAAABAPTSlF1HNnDkzdQIA/6BVq1apEzKzcuXKBruvO++8M4YPH95g90fulJeXx1VXXRVnnHFGzJ8/P3UOGaquro677rorTjvtNINWaCLq6uri8ccfj6OPPjpGjRqVOocGUFdXF3/5y1+iZ8+eMXny5NQ5/AcffvhhHHfccfHmm2+mTiEinn322TjrrLPis88+a5D7K+TT2SMa1wntERHdunWLdu3apc7Iibq6uhgyZEjqDCKa1Pc5evXqlToBAAAAaAAG7QAAAAAA9dBUTmiP+NsLnQFoXBrbi/gbUkMNOV5//fX405/+1CD3RW5NmTIlevbsGX379k2dQg6NGTMmevbsGWPHjk2dAmTo008/jTPPPDNuvPHGqKioSJ1DA5s1a1accMIJ8cwzz6RO4UsMGTIkTjjhhJg3b17qFD7nzTffjBNPPDEWLFhQ7/tavnx5AxQ1Xo3t4m5t27aNY445JnVGzgwePDh1QpNXW1vbZC4ItOeee0anTp1SZwAAAAANwKAdAAAAAKAe2rZtmzohZ8aPH586AYB/0Lp169QJmVm1alWD3MeVV14ZdXV1DVBELj3xxBPRu3fvmDNnTuoUEliyZEmcfvrpLmYABerVV1+NY489NkaPHp06hQxVVVXF1VdfHVdccUWsXbs2dQ6f89RTT8WFF14Y5eXlqVP4F2bMmBEnn3xyzJ8/v173U8iD9latWkVRUVHqjH9ywgknpE7ImQkTJhT0r7F8MHHixFixYkXqjJzo2bNn6gQAAACggRi0AwAAAADUwwYbbJA6IWfGjx8f1dXVqTMA+JxCHrQ3xAntN9xwQ3z66acNUEOurF27Nn7zm9/EDTfcEFVVValzSKi6ujquuuqquOWWW6K2tjZ1DtAAqqqq4sYbb4yLLrooSktLU+eQI88//3yDnThN/d17771x7bXX+tzayH3yySdxyimnxCeffLLe91HIQ9fGdjr733Xu3Dn22GOP1Bk5UVNTE6+99lrqjCZtxIgRqRNyolWrVtGtW7fUGQAAAEADMWgHAAAAAKiHpjRoX716dbz11lupMwD4nDZt2qROyEx9B+1Dhw6Nl19+uYFqyIXFixfHiSeeGC+88ELqFBqRRx55JC6++OKorKxMnQLUw+LFi+MXv/hFPP7446lTSGDKlClx/PHHxwcffJA6pUm78cYb44477kidwVc0f/78OOWUU2LRokXr9f6FfOGQxjpoj4g4/vjjUyfkTElJSeqEJq2pDNoPOeSQ2GijjVJnAAAAAA3EoB0AAAAAoB7atWuXOiGnBg0alDoBgM8pLi6O5s2bp87IxKpVq9b7fcvKyuLaa69tuBgyN3PmzOjdu3dMmTIldQqNUElJSZx//vlRUVGROgVYD+PHj49evXrFO++8kzqFhJYuXRonn3xyvPHGG6lTmqQ+ffq4oEQemjt3bpxyyimxfPnyr/2+Bu1pdOvWrcl8v3jMmDH1vhAd62fBggUxffr01Bk50bNnz9QJAAAAQAMyaAcAAAAAqIdNN900dUJODRo0qF4DQwAaXuvWrVMnZKKqqirWrl27Xu973333xZIlSxq4iKy8/fbb8bOf/Sw++eST1Ck0Yq+//nqcddZZUV5enjoF+BpefvnlOPXUU31eJiIiVq9eHWeffXa89NJLqVOalD/+8Y/x2GOPpc5gPc2ZMycuvPDCqKqq+lrvZ9CeRtu2beOYY45JnZETVVVVMWzYsNQZTVJTOZ19q622igMOOCB1BgAAANCADNoBAAAAAOphs802S52QU+Xl5dG3b9/UGQB8Tps2bVInZGZ9TnubN29e/PnPf86ghiy88cYbceaZZ8bKlStTp5AHxo0bF+edd15UVlamTgG+ggceeCAuu+yyrz3CpLBVVVXFr3/963jiiSdSpzQJ9957b9x3332pM6int99+O66//vqv9T6F/Py6sV/U7YQTTkidkDODBw9OndAkNZULCXTv3j2aNfMydwAAACgkvtIHAAAAAKiHzTffPHVCzj388MNRVlaWOgOA/9XYX8xfH+szaL/55puNXfPEyJEj45xzzomKiorUKeSRt956K371q19FTU1N6hTgS9TU1MQ111wTt99+e9TV1aXOoRGqq6uLG264IZ588snUKQWtX79+cccdd6TOoIH07dv3a124a9WqVRnWpFVcXJw64d/q3Llz7LHHHqkzcmL06NFRXl6eOqNJKS8vj3HjxqXOyImePXumTgAAAAAamEE7AAAAAEA9bLbZZtG8efPUGTm1fPnyeOCBB1JnAPC/2rZtmzohM1930D5+/PgYOnRoRjU0pFGjRsX555/v4gOsl6FDh8aVV16ZOgP4F6qrq+NXv/pVPP3006lTyAM33HCDXysZGTduXFx99dWpM2hgt9xyS4wZM+Yr/bOFfEJ7Yx+0R0T07t07dUJOVFRUxOuvv546o0l58803m8TX0XvvvXd885vfTJ0BAAAANDCDdgAAAACAemjRokVsvfXWqTNy7pFHHompU6emzgAgCvuE9tWrV3+tf/7uu+/OqISG9O6778aFF14YVVVVqVPIY/369XORJWhkqqqq4uKLL46SkpLUKeSJurq6uPbaa+PZZ59NnVJQZs+eHRdccIHnWgWopqYmfv3rX3+lsfrXvThYPsmHQXu3bt2iXbt2qTNyYsiQIakTmpThw4enTsgJp7MDAABAYTJoBwAAAACop+222y51Qs5VVVXFZZddFmvWrEmdAtDktWrVKnVCZr7OoH3ixInx1ltvZVhDQ5g5c2acffbZUV5enjqFAvDHP/4xXnvttdQZQERUVlbGRRddZNTG11ZXVxfXXHNNkxnoZW316tVx7rnnRmlpaeoUMrJo0aK4+uqr/+M/V8iD9pYtW6ZO+I/atGkTxx57bOqMnBg+fHiTODG8Mairq4uRI0emzshc69at46ijjkqdAQAAAGTAoB0AAAAAoJ46dOiQOiGJ6dOnx5VXXpk6A6DJM2j/m3vvvTfDEhrC8uXL4+yzzzawosHU1tbGpZdeGrNmzUqdAk1adXV1XHTRRS4wwXqrqamJSy65JCZNmpQ6Je9dffXVMXv27NQZZOzVV1+NF1544Ut/vrKyMtauXZvDotzKhxPaIyJ69+6dOiEnVq9eHW+88UbqjCZh8uTJsWTJktQZmTvkkENiww03TJ0BAAAAZMCgHQAAAACgnjp16pQ6IZn+/fvH3XffnToDoElr3bp16oTMfNVTvCdPnhyvv/56xjXUR1VVVVx44YUxf/781CkUmPLy8rj44osLerQFjd3VV18dw4YNS51BnisvL49zzjnHc4V6eOqpp6J///6pM8iRG2644Ut/vxTy6ewR+TNo79y5c+y5556pM3Ji8ODBqROahOHDh6dOyIlevXqlTgAAAAAyYtAOAAAAAFBPO+20U+qEpO6666548sknU2cANFmFPGj/qie0P/TQQxmXUF833nhjvP3226kzKFDTp0+P3/3ud6kzoEm644474vnnn0+dQYFYunRp/PKXv4yysrLUKXln6tSpPhc2MatXr44bb7zxX/5cof8eypdBe0TE8ccfnzohJ4YNGxbV1dWpMwreiBEjUidkbuutt479998/dQYAAACQEYN2AAAAAIB62mWXXVInJHfDDTfEX/7yl9QZAE1Sq1atUidk5qsM2hctWhRDhgzJQQ3ra+DAgfH000+nzqDAPf300zF06NDUGdCkPPPMM3HvvfemzqDAzJo1K6644orUGXmlsrIyLrvssqisrEydQo4NHz78X57YXF5enqAmd1q2bJk64Svr1q1btGvXLnVG5kpLS13ALGOLFy+ODz74IHVG5nr06BHNmnlpOwAAABQqX/UDAAAAANTTNttsE5tuumnqjKTq6uripptuijvvvDN1CkCTU8gntH+VIcaTTz7pJLhGbO7cuXHVVVelzqCJuPbaa2PlypWpM6BJeOONN+K6665LnUGBKikpiUcffTR1Rt645557Yvr06akzSOSmm26KtWvXfuFtX+XCYPmsRYsWqRO+sjZt2sSxxx6bOiMnSkpKUicUtBEjRkRdXV3qjMz17NkzdQIAAACQIYN2AAAAAIAGsMcee6ROaBTuueeeuOSSS6KioiJ1CkCT0ZRPaK+oqIi+ffvmqIavq7a2Ni677LIoKytLnUITsWTJkrj55ptTZ0DBW7BgQVxyySVRU1OTOoUCdtttt8X48eNTZzR6kyZNioceeih1BgnNmzcvHnjggS+87R8H7oUmnwbtERG9e/dOnZATQ4cOjdra2tQZBWv48OGpEzK39957x4477pg6AwAAAMiQQTsAAAAAQAMwaP//BgwYED/96U/jo48+Sp0C0CQ0b948dUJm/tOg/aWXXorS0tLcxPC1PfbYYzFx4sTUGTQx/fr1i7feeit1BhSstWvXxgUXXODzL5mrrq6OX/3qV7FixYrUKY1WVVVVXH755VFdXZ06hcQefPDBWLhw4bq/L/QLTebboL1z586x5557ps7I3JIlS3z9l5G1a9fGmDFjUmdk7ic/+UnqBAAAACBjBu0AAAAAAA1g3333TZ3QqEyfPj1+8pOfxJNPPhl1dXWpcwAKWr69mP/rKC8v/7c//9e//jVHJXxdc+bMiTvuuCN1Bk3UTTfd5ORoyMi1114bU6ZMSZ1BE7F48eK47rrrUmc0Wn/+859jxowZqTNoBNauXRt/+tOfvvD3hSwfL+p2/PHHp07IicGDB6dOKEhjxoz5j98fyXetW7eOI488MnUGAAAAkLHCfXULAAAAAEAO7b333tG6deuCPwHp6ygvL4/rr78+Xn311bj22mujU6dOqZMAClIhD9r/3QntEydOjGnTpuWwhq/jhhtu8LyIZGbMmBFPP/10nHTSSalToKA899xz0a9fv9QZjdo3vvGN2GWXXaJDhw7rbltssUW0adMm2rZtG23bto3i4uJYs2ZNlJeXr/tx6dKl8fHHH8ecOXNi7ty5MWvWrJg/f37qD6dRGDRoUBx66KHRrVu31CmNyqeffhr33HNP6gwakX79+sVZZ50VHTp0iKqqqtQ5mcrHr4G7desWN998c3z22WepUzI1ZMiQuPzyy1NnFJzhw4enTsjcoYceGu3atUudAQAAAGQs/76zBwAAAADQCBUXF8c+++wTb7zxRuqURmfcuHHRvXv3+MUvfhHnnntubLjhhqmTAApKy5YtUydk5t8N2p966qkclvB1DB06NEaPHp06o9Fq06ZNdO7cOXbYYYfYYYcdokOHDrHZZpvFpptuGptsskm0atUqiouLo7i4OCIiKioqYu3atVFRURHLli2LRYsWxcKFC2P+/PkxZcqUmDp1asGf1rc+7rzzzjjmmGNio402Sp0CBWHevHnxu9/9LnVGo/Otb30rDjzwwNh7772ja9eusckmm3yl92vXrt0/jbYOOuigL/z9woULY+zYsTF27NgYM2ZMfPLJJw3WnW+uv/762G+//WLLLbdMndJo3HLLLT7/8wVVVVVx7733Rp8+faKmpiZ1TqbycdDepk2bOOaYY+Kvf/1r6pRMLViwICZPnhzf/va3U6cUlJEjR6ZOyFyvXr1SJwAAAAA5kH/f2QMAAAAAaKQOPvhgg/YvUVVVFQ8//HA8//zzcdZZZ8VJJ50Ubdq0SZ0FUBDy8cX8X9WXDdpLS0vj1VdfzXENX0VlZWXcfPPNqTMaleLi4th///3jhz/8Yey9996xyy67RPPmzb/y+39+9LjddtvFHnvs8YWfr62tjVmzZsWoUaNi+PDh8c4770R1dXWDfgz5qLS0NB555JG4+OKLU6dA3qutrY1f//rX//ZCM01Jly5d4vDDD48jjjgidthhh8weZ5tttokePXpEjx49oq6uLsaPHx/9+vWLkpKSJvfforS0NK666qq4//77U6c0CuPHj48BAwakzqAReumll+Kcc84p+EH713ku3Zj07t274AftEX87pd2gveFMmzat4C9qs+2228b3vve91BkAAABADhTuq1sAAAAAAHLs0EMPjT59+qTOaNRKS0vj97//fTz00ENx0kknxUknnRSbbrpp6iyAvFbIg/YvO3WyX79+sXbt2hzX8FU89dRTMW/evNQZjcLuu+8eP//5z+OQQw6JDTbYILPHadasWey8886x8847x+mnnx6lpaXxwgsvxBNPPBHz58/P7HHzweOPPx6nnXZabLzxxqlTIK89+OCDMWHChNQZSTVv3jwOPfTQOPPMM2P33XfP+eMXFRXFfvvtF/vtt19cffXV0b9///jTn/4UCxYsyHlLKiNGjIiSkpI4/PDDU6ckd9ttt6VOyGutWrWKnXbaKTp37hwdO3aMDh06xFZbbRWbbLJJtG/fPlq1ahXFxcXRokWLKC8vj7Kysli9enWUlZXF/PnzY/bs2etu06dPj6qqqtQf0jo1NTXxf//v/y34i0jm66C9c+fOseeee8Z7772XOiVTJSUl8atf/Sp1RsEYMWJE6oTMde/ePZo1a5Y6AwAAAMiBwn11CwAAAABAjm233Xax2267xQcffJA6pdFbsWJF3H333fHQQw9Fz54947TTTsv0ZDuAQlbIg/YvO320b9++OS7hqygvL48HHnggdUZye++9d1x66aWx7777Jnn89u3bx2mnnRannHJKDBkyJG677baYO3dukpbUysrK4tFHH3VKO9TDhx9+GHfddVfqjGSaN28exx13XJx55pnRsWPH1DkREdGmTZv46U9/Gj169Ihnn3027rvvvvj0009TZ+XE7373uzjooIOibdu2qVOSGTp0aEycODF1Rl5p2bJlfPe73439998/vvOd78Ruu+32lb+GateuXbRr127d3++5555f+PmKiop45513YuzYsTFmzJiYPHlyVFdXN2j/1zVp0qSkj58L+Tpoj/jbKe2FPmifPXt2zJw5M3baaafUKQWhKQzae/bsmToBAAAAyBGXtAMAAAAAaEDHHHNM6oS8UlFREU899VQcccQRccYZZ8SgQYOisrIydRZAXsnnF/P/JxUVFf/0tgkTJsTs2bMT1PCfPP7447F06dLUGclssskm0adPn3jqqaeSjdk/r1mzZnH44YdH//7949xzz42WLVumTkri8ccfj7KystQZkJfq6urimmuuaVSnD+fS7rvvHs8991xcf/31jWbM/nktW7aMn/3sZzFkyJA477zzCvoiR3+3aNGiuPvuu1NnJFNbWxt33HFH6oy8UFRUFPvvv3/ceuut8dZbb8XDDz8cZ555Zuyxxx4N+nuldevW8f3vfz9+9atfxTPPPBOjRo2Kq666Kvbaa68Gewz+WVFRUeqE9XbUUUfFhhtumDojcyUlJakTCsLy5csL/gII++yzjwvdAgAAQBNi0A4AAAAA0IB69OjRZMdC9VFbWxujR4+Oiy++OA466KC46aabYtq0aamzAPJCIQ/aa2trY+3atV9423PPPZeohn+noqIiHn300dQZyey1117x4osvRq9evRrdwKZVq1Zx8cUXxzPPPBNbbbVV6pycKysri+effz51BuSl5557rkmeBL3BBhvE1VdfHX379o3ddtstdc5/1KpVq7jooovimWeeiZ133jl1Tub+8pe/xIwZM1JnJPHyyy/H9OnTU2c0am3bto1TTjklhgwZEo899lh07949p+PhTTfdNE4++eR45pln1l1sYpNNNsnZ4zcV+fw1cJs2bZrEBVEHDx6cOqEgjBw5Mmpra1NnZKpXr16pEwAAAIAcKqqrq6tLHQEAAAAAUEguuOACL9prILvuumscdthhcdhhh8Uuu+ySOgeSmj9/fvz4xz9OnZGpPn36eCHrenj++efjiiuuSJ2RmbFjx0b79u0jImL16tVx4IEHRnl5edqoRuKyyy6LM844I3VGREQ88cQTccMNN6TOSKJXr15x/fXX58VFjRYvXhznnXdeTJo0KXVKTnXs2DFKSkqiWTPX/I+IuOuuuwr+hOMPP/wwdULeW758eRx55JFRWlqaOiWndthhh7j33ntjp512Sp2yXiorK+O2226LP//5z6lTMnXQQQfFQw89lDojp+rq6uKoo46Kjz76KHVKo9S6des45ZRT4owzzoiNN944dc4XVFRUxPPPPx/33ntvLF26NHVOQbjmmmviZz/7WeqM9TZt2rTo3r176ozMDRkyJDp27Jg6I69deOGFBX3afZs2bWL06NHRrl271CkAAABAjvi/tQAAAAAADey4445LnVAwPvzww7jrrrvimGOOicMPPzz+8Ic/xKRJk8K1WgH+v3w+ne6r+PwJ7QMHDjRmb4RqamrikUceSZ2RxE9/+tP43e9+lxdj9oiILbfcMv7yl7/EHnvskTolp+bOnRsjRoxInQF55fe//32TG7MfdNBB8dxzz+XtmD0iori4OK644oq4/vrro0WLFqlzMjNq1KgYM2ZM6oycGjp0qDH7lzjiiCOipKQkLrnkkkY3Zo/429j+pJNOiiFDhsT5558fxcXFqZPyXr5fpKhz586x5557ps7InAu+1k9VVVW88cYbqTMyddhhhxmzAwAAQBOT39/ZAwAAAABohA466KDYeuutU2cUnDlz5sT9998fxx13XBx44IFx6aWXxgsvvBCffvpp6jSApIqKilInZOrzg/Z+/folLOHLDB06NBYsWJA6I+e6desWN9xwQ979Hmzbtm088MAD8c1vfjN1Sk717ds3dQLkjcmTJ8cLL7yQOiOnfvazn8UDDzwQG220UeqUBtG7d+944IEHYsMNN0ydkpnbb789dUJOPfjgg6kTGp0tttgi7rnnnrjjjjvy4vtwbdu2jQsvvDBefPHF6Nq1a+qcvFYIF3Xr3bt36oTMDRkyJHVCXhs/fnyUlZWlzshUz549UycAAAAAOWbQDgAAAADQwJo1axY//elPU2cUtKVLl8Yrr7wSv/nNb+Lggw+Obt26xU033RRDhw5tcqcIAhTCi/n/nb8P2ufOnRvvvPNO4hr+lb/+9a+pE3Jul112iZtuuinvxux/t8kmm8TDDz8c7du3T52SM6NGjYply5alzoC8cNttt0VdXV3qjJzp3bt3XH311Xl/4u8/OuCAA+KJJ55olCdWN4T3338/SkpKUmfkxNixY+O9995LndGo7L///vHiiy/GIYcckjrla+vUqVM88cQTcf755xfcnzu5kq/PwT/vqKOOKuiLjkREvPfeey5EWg/Dhw9PnZCp7bbbLr73ve+lzgAAAAByzHdEAQAAAAAycNJJJ0Xbtm1TZzQZM2fOjL/85S9x/vnnx/e+97045phj4rrrrouBAwfG4sWLU+cBZKrQRxBVVVUREfHSSy8lLuFf+eijj2LMmDGpM3Kqbdu2cffdd0ebNm1Sp9TLtttuG9ddd13qjJyprq6OV155JXUGNHqvv/56vPXWW6kzcqZXr15x3XXXFcQ48l/p3Llz3H///QX7/Yk//vGPUVtbmzojc48++mjqhEbltNNOi0ceeSQ233zz1CnrrXnz5nHhhRfGQw89VPCj5iwUwp/Zbdq0iWOPPTZ1Rqbq6uqc0l4PI0aMSJ2QqR49ehTE72UAAADg62mROgAAAAAAoBBtsskm8bOf/Sweeuih1ClNTl1dXUyfPj2mT5++7sTYHXbYIfbZZ5/o2rVrdO3aNTp16pS4EqDhFPoJ7X8ftL/88suJS/6/1q1bx6677hqdO3eOjh07RseOHWOLLbaITTbZJNq3bx/FxcVRXFwczZs3j6qqqqipqYmamppYs2ZNrF69OlavXh2fffZZLFu2LJYsWRJLliyJefPmxbx58+Ljjz+O1atXp/4Qv7Jnn302dULOnX/++bHDDjukzmgQRxxxRHTv3r3JXDDipZdeilNPPTV1BjRatbW1cfvtt6fOyJlDDz00brrppoIfU+29995x9913x9lnn73ueVWhmD17drz66qtx1FFHpU7JzCeffBKvv/566oxGoVmzZnHllVfGSSedlDqlwRxwwAHxzDPPxFlnnRULFixInZM3CuXP7d69e8eTTz6ZOiNTJSUlcfLJJ6fOyDuzZs2Kjz/+OHVGZoqKiqJnz56pMwAAAIAEDNoBAAAAADJy+umnx5NPPhlr1qxJndLkffzxx/Hxxx9Hv379IuJvFxzYe++9143cv/3tb0dxcXHiSoD1Uygv5v8y1dXV8c4778TcuXOTNbRo0SK+853vxPe///3Yf//941vf+tZXvpDA5z+/tGvXLrbYYov/+D7z589fd3GWv98++uijqKmpWe+PIQu1tbXRv3//1Bk5tcsuuxTcIPrKK6+MkSNHRmlpaeqUzH3wwQcxf/782H777VOnQKP0yiuvxLRp01Jn5MSOO+4YN998czRr1ix1Sk4ccMAB0adPn7j00ktTpzS4Bx54oKAH7c8880yjew6YQrNmzaJPnz7Ro0eP1CkNrlOnTvHXv/41TjnllJgzZ07qnLxQKF8D77rrrrHXXnvFu+++mzolMxMmTIjly5fHpptumjolrxT66ez77rtvdOjQIXUGAAAAkIBBOwAAAABARjbbbLPo3bt3PPbYY6lT+AcrVqyIYcOGxbBhwyIiomXLltGlS5fYa6+9Yu+994699947ttpqq8SVAF9NobyY/8vU1dUlO5197733jp/85Cdx6KGHRvv27XP2uNtvv31sv/328aMf/Wjd29asWRMffPBBTJo0KSZNmhSTJ09OPsJ78803Y/HixUkbcu3SSy+NFi0K63+zb7TRRvHLX/4ybr311tQpOfHaa6/FKaeckjoDGp3a2tr405/+lDojJ9q0aRN33XVXtGvXLnVKTh1zzDHx9ttvxzPPPJM6pUFNnTo1Ro4cGT/4wQ9SpzS4qqqqeO6551JnJFdUVFSwY/a/23rrrePJJ5+Mk08+OWbPnp06p9ErpK+Bjz/++IIetNfU1MRrr70WP/3pT1On5JVCH7Q7nR0AAACarsL6P+0AAAAAAI3MGWecEU8//XRUVFSkTuHfqKqqinfffTfefffddRcg2HbbbWOvvfaKPffcM/bcc8/YbbfdolWrVmlDAf6FQnox/7/y5JNPxujRo3P2eC1atIhjjjkmTj/99Nhll11y9rj/SZs2bWKfffaJffbZZ93b6urqEhZFkzudvUuXLgU5louI+PnPfx5PPPFEfPLJJ6lTMmfQDv9aSUlJkxlRXnvttY3qc3wu/fa3v4333nsvpk2bljqlQd1///0F+Tl6yJAhsXTp0tQZyV122WUFPWb/u8033zweffTROPHEE2PhwoWpc8iRo446Kvr06ROfffZZ6pTMlJSUGLR/DatWrYp33nkndUZm2rZtG0cccUTqDAAAACCRtJfsBwAAAAAocFtuuWWcddZZqTNYD5988kkMHDgw+vTpEyeccELss88+cdxxx8UNN9wQL730Unz88cepEwGahIEDB8aqVasyf5yioqLo0aNHDB48OG6++ea8GLqlvJhBdXV1DB8+PNnjp3DOOeekTshMcXFxk3nOOmHChJz8mQL55v7770+dkBM//OEPm8Qw9su0atUq/ud//ifatm2bOqVBTZgwoSBPOH7xxRdTJyR30kknxemnn546I2e22WabePjhh2PDDTdMnUKOtGnTJo499tjUGZkaM2ZMQQ/2G9qoUaOiuro6dUZmDj/88Nhggw1SZwAAAACJGLQDAAAAAGTsrLPOio4dO6bOoJ6qqqpi0qRJ8cQTT8Rll10Whx12WHz3u9+NX/7yl3HPPffEG2+84cWZQBKFfkJ7Luyxxx7x/PPPxy233BLbbbdd6py8MG7cuCgtLU2dkTNbbrll/PjHP06dkanu3bs3iWFBdXV1vP3226kzoFEZOXJkTJ06NXVG5lq3bh1XXnll6ozkvvGNb8T/+T//J3VGg3vyySdTJzSo5cuXxxtvvJE6I6muXbvG5Zdfnjoj5zp16hS33357NGvmpZ1fptC+Bu7du3fqhExVVVXFsGHDUmfkjUK/cFzPnj1TJwAAAAAJ+a4nAAAAAEDGWrVq5UXzBaq0tDRGjhwZd955Z5x++umx3377Rbdu3eKKK66Ivn37xocffhi1tbWpM4ECV2gv5s+lVq1axW9+85t4+umno0uXLqlz8srQoUNTJ+TUMcccE82bN0+dkakNNtig4E+H/LuxY8emToBGpamczn7eeedFhw4dUmc0Cr/4xS+iU6dOqTMa1KuvvhrLly9PndFg+vfvX9An9P4nm2yySdxxxx3RsmXL1ClJ/OAHP4iLLroodQY5suuuu8Zee+2VOiNTQ4YMSZ2QF2pqamLUqFGpMzKz/fbbx3e+853UGQAAAEBCBu0AAAAAADnwgx/8oOBP9SSirq4uZs6cGc8//3xcddVVceyxx8Y+++wTv/jFL+IPf/hDvPbaa7Fs2bLUmUCBMWhfPzvuuGP07ds3TjvttIIfKmfh9ddfT52QUz169EidkBMnnHBC6oScGDduXOoEaDSmTJkSEyZMSJ2RuW984xtx2mmnpc5oNFq2bBlXXXVV6owGVVlZGc8991zqjAbz8ssvp05I6sYbb4wtt9wydUZSv/zlL2P//fdPnUGOHH/88akTMjVq1KgoLy9PndHoTZw4MUpLS1NnZKZnz56+hwUAAABNnEE7AAAAAECO/Pa3v422bdumziDHysvLY+zYsXH//ffHeeedF9///vfj8MMPj8svvzyeffbZmDVrVupEgCbnv/7rv6Jfv37RuXPn1Cl5ad68eTFv3rzUGTnzjW98I3bZZZfUGTnRuXPn+MY3vpE6I3PTpk2LVatWpc6ARuGJJ55InZAT5513XhQXF6fOaFT233//OPzww1NnNKhnnnkmamtrU2fU27x582LSpEmpM5Lp1atXHHLIIakzkmvWrFn8/ve/j/bt26dOIQeOOuqo2HDDDVNnZKaioqLJXRRtfQwfPjx1QmaKioqazIXiAAAAgC9n0A4AAAAAkCPbbbddXHPNNakzaATmzJkT/fr1iyuvvDKOOuqo+N73vhfnnntuPPjgg/HOO+9EZWVl6kSAgvXzn/887r333thggw1Sp+St0aNHp07IqQMPPDB1Qk79+Mc/Tp2Qubq6upgyZUrqDEiutLQ0Bg4cmDojczvssEN069YtdUajdOGFFxbUSanz58+PN998M3VGvQ0ZMiR1QjLt27ePyy67LHVGo7HFFlvEb37zm9QZ5ECbNm3i2GOPTZ2Rqab8Z9tXNWLEiNQJmdlvv/1i++23T50BAAAAJGbQDgAAAACQQz169IiePXumzqCRWbFiRQwbNixuu+22OPHEE2OfffaJE088MW677bYYNmxYrFixInUi8P/Yu+/wKOv8ffvXpBMglR56aNIDSJEmSAcJASWgUmysiruua1fUXb6Krq6rothRkUXE7oIoQUhAukjoVTpBeg0J6c8f+5NnWQUpM/d7yvk6jhwihJlTZMIkzHV/4BfuuOMOjRkzRkFB/DXp5Vi2bJl1gqMYtPuntWvXWicA5j777DOdPn3aOsPj/vCHPyg4ONg6wyvVqVNHXbp0sc5wq6+++so64bJ999131glmHnzwQcXGxlpneJWUlBS1b9/eOgMOSE1NtU7wqPT0dC7ieR67d+/WTz/9ZJ3hMQMHDrROAAAAAAAAXoBXagAAAAAAAACAw5544gnVrl3bOgNeLD8/XytWrNDbb7+tO++8U+3atdO1116rp556SrNnz9axY8esEwHA59x999269957rTP8wooVK6wTHBMSEqLWrVtbZziqefPmATEkY9COQFdcXKypU6daZ3hcQkKC3594e7n+8Ic/WCe41XfffaecnBzrjEt25MgRZWZmWmeYaNiwIYPHcxgzZoxCQkKsM+Bh9evXV/Pmza0zPObUqVNatGiRdYbX8ufT2SMjI9WzZ0/rDAAAAAAA4AUYtAMAAAAAAACAwyIjI/Xiiy8qPDzcOgU+oqSkRJs3b9bkyZN19913q23btkpOTta4ceOUnp7u0y/WBwAnDBs2TH/84x+tM/zC3r17tW/fPusMx9StW1eRkZHWGY4KCgry6yHNL9avX2+dAJhaunSpdu/ebZ3hcTfeeKNCQ0OtM7xa8+bN/eriLTk5OZo9e7Z1xiWbM2eOiouLrTNM3H///XK5XNYZXql27doaOnSodQYc4O+ntM+aNcs6wWulp6dbJ3hMr169Au7zagAAAAAA8NsYtAMAAAAAAACAgQYNGuipp57ihbq4JCUlJdq4caMmTZqkO+64Q61bt9aIESP0zjvvaOPGjdZ5AOBVevbsqccee8w6w28E2omhjRo1sk4wEQiD9j179igvL886AzDz73//2zrB40JCQpScnGyd4RNGjBhhneBWvvz7e968edYJJtq0aaP27dtbZ3i1P/7xjypbtqx1BjysT58+fv3/ee7cuSosLLTO8DqnTp3SsmXLrDM8ZuDAgdYJAAAAAADASzBoBwAAAAAAAAAj/fv311/+8hfrDPiBgoICLVmyRM8//7ySk5PVoUMHPfLII/ruu++Um5trnQcAZurXr69nn32WC8i40bp166wTHBWog/ZmzZpZJ3hccXGxdu7caZ0BmMjLy/PpE6wv1NVXX61y5cpZZ/iEzp07KyYmxjrDbRYvXqzDhw9bZ1y0oqIiLV261DrDxJ133mmd4PWio6P97uIT+LWIiAi/vhjLsWPH9MMPP1hneJ2FCxeqoKDAOsMjqlWrplatWllnAAAAAAAAL8GgHQAAAAAAAAAMjRo1SjfeeKN1BvzMwYMH9fnnn2v06NFq27at7rzzTn366ac++YJ+ALhUZcqU0YQJExQZGWmd4lc2bNhgneCoQB20N2nSREFB/v9ygh07dlgnACbmzp2rkydPWmd43HXXXWed4DNCQ0PVp08f6wy3KSoq0ty5c60zLtqaNWt04sQJ6wzHNW3aVO3atbPO8AkjR45UdHS0dQY8bPDgwdYJHjVr1izrBK+Tnp5uneAxAwYM4CKDAAAAAADgDP//G2gAAAAAAAAA8HJjxoxR9+7drTPgp06fPq25c+fqscceU4cOHTR06FBNmjRJ+/fvt04DAI8aO3asqlWrZp3hdzZu3Gid4KiaNWtaJ5goU6aMKleubJ3hcQzaEaimT59uneBx5cuXV6dOnawzfMqAAQOsE9xqzpw51gkXbeHChdYJJm6++WbrBJ9RtmxZDR061DoDHla/fn01b97cOsNjvvvuO5WUlFhneI2SkhLNnz/fOsMjXC6XUlJSrDMAAAAAAIAXCbEOAAAAAAAAAIBAFxQUpH/84x8aPXq0FixYYJ0DP1ZcXKwVK1ZoxYoVevbZZ9WiRQv16dNHPXv2VLly5azzAMBt+vfvr759+1pn+KVp06YpJydHp06dUk5Oznm/fb4fy83NVVFRkfV/znnFxMQE9AmYNWrUUFZWlnWGR+3Zs8c6AXDcyZMn/XY09d969uyp4OBg6wyf0qxZM9WqVUvbt2+3TnGLRYsWKScnR5GRkdYpF2zx4sXWCY4rX748F3m8SDfddJPeffdd5efnW6fAg1JTU7Vy5UrrDI84ePCgVqxYoZYtW1qneIU1a9bo0KFD1hke0aZNGyUkJFhnAAAAAAAAL8KgHQAAAAAAAAC8QEREhF5//XXde++9+u6776xzEACKi4u1fPlyLV++XE8//bSuvPJKDRgwQD179vSpF/wDwP+Kj4/XY489Zp3ht6pXr+6228rNzf3dIfz/fv/5fiw3N1eFhYVu66tWrZrbbssXVa9eXYsWLbLO8KgDBw5YJwCO+/7771VQUGCd4XHdunWzTvBJ3bt311tvvWWd4RZ5eXlauHChz4yl8/Ly/Ha8ej7XX3+9QkNDrTN8Svny5dWvXz99/vnn1inwoD59+uiZZ57RiRMnrFM8Yvbs2Qza/5+5c+daJ3gMp7MDAAAAAID/xaAdAAAAAAAAALxEWFiYXn75ZT388MOaPn26dQ4CSFFRkZYsWaIlS5Zo7Nix6t27twYNGsQLSwH4pMcee0wxMTHWGbgApUqVUqlSpRQfH++22zx9+vR5h/C/9f3n+rEGDRq4rcsX1ahRwzrB4xi0IxDNmzfPOsHjoqKidOWVV1pn+KSOHTv6zaBdkubMmeMzg/Y1a9YExMUm/pvL5dLAgQOtM3zSDTfcwKDdz0VERKh///7617/+ZZ3iEWlpaXr44YetM7xCRkaGdYJHlC5dWj179rTOAAAAAAAAXoZBOwAAAAAAAAB4kZCQED333HOKjIzUtGnTrHMQgHJycvTZZ5/ps88+U82aNTVo0CBdd911iouLs04DgN/VsmVL9e3b1zoDhiIiIhQREcGfW25QvXp16wSP279/v3UC4Kji4mLNnz/fOsPjWrdurZAQXhJ1KZKSklS6dGmdOnXKOsUtFixYYJ1wwVasWGGd4LiWLVuqWrVq1hk+qUmTJmrYsKHWr19vnQIPSk1N9dtBe1ZWltatW6dGjRpZp5jav3+/NmzYYJ3hEb169VKpUqWsMwAAAAAAgJcJsg4AAAAAAAAAAJwtKChIY8eO1V/+8hcFBfFlXNjZsWOHXnjhBXXu3FmPPPKINm7caJ0EAOfkcrn06KOPWmcAfiM+Pt46weOOHDmi4uJi6wzAMWvWrNGRI0esMzzuqquusk7wWaGhoWrbtq11htscPHhQW7Zssc64IIE4aE9OTrZO8GmDBw+2ToCH1atXT0lJSdYZHpOWlmadYC49Pd06wWMGDhxonQAAAAAAALwQr4QEAAAAAAAAAC/1hz/8QW+88YaioqKsUxDg8vPz9fnnnys5OVnDhg3T7NmzVVRUZJ0FAGfp1auXGjdubJ0B+I2YmBjrBI8rLi7WyZMnrTMAx2RkZFgnOKJ169bWCT6tQ4cO1glutWjRIuuEC7Jy5UrrBEcFBwerW7du1hk+rW/fvgoLC7POgIf584ULZs2aZZ1gzl+fm9WoUUOtWrWyzgAAAAAAAF6IQTsAAAAAAAAAeLHOnTvr008/Vd26da1TAEnSsmXLdPfdd6tnz5765JNPVFBQYJ0EAAoKCtLo0aOtMwC/Ehsba53gCAbtCCQLFiywTvC4MmXKKDEx0TrDp/nTCe2StHjxYuuE37Vz504dPXrUOsNRLVu2VFxcnHWGT4uKilKnTp2sM+Bhffr08duLnW7fvl0//fSTdYaZ06dPa8mSJdYZHjFgwADrBAAAAAAA4KUYtAMAAAAAAACAl6tRo4amTZumfv36WacAZ+zevVtjxoxRz549NXXqVOXn51snAQhgPXr04OIvgJtFRUUpKMj/X1LAoB2BIicnR+vXr7fO8LimTZsGxMcuT6pVq5bKlCljneE2y5YtU2FhoXXGea1bt846wXHdu3e3TvAL1157rXUCPCwiIkL9+/e3zvCYQD6lffHixcrNzbXOcLugoCAG7QAAAAAA4Jz4GxwAAAAAAAAA8AGlS5fWCy+8oJdffpkTrOBVsrKy9Ne//lXdu3fXv/71L4btAEzcfPPN1gmA3wkKCvLb0yD/G4N2BIpVq1Z5/ajXHRo3bmyd4PNcLpcaNWpkneE2p06d0tq1a60zzmvDhg3WCY7r3LmzdYJfuPrqq1WqVCnrDHhYamqqdYLHzJ492zrBTHp6unWCR7Rt21ZVqlSxzgAAAAAAAF4qxDoAuBxFxcU6kp1nnQEAAAAAjokrE65gThgCgIDWq1cvtW7dWn/9618D+gQbeJ99+/bp//7v//Tee+/pvvvuU58+fayTAASIpKQkNW/e3DoD8EulS5fWsWPHrDM8yh9PRQR+y/Lly60THFGvXj3rBL/QpEkTLV261DrDbTIzM736+eL69eutExxVrVo11ahRwzrDL0RERKhDhw4BPQoOBPXq1VNSUpIyMzOtU9xuw4YN2r17t6pVq2ad4rh58+ZZJ3hESkqKdQIAAAAAAPBiDNrhsz5d/JP+9O48HTjOCwwAAAAABI4K0aU0/pbOuq5dHesUAIChuLg4jR8/XjNnztTTTz+tQ4cOWScBZ+zZs0f33nuv3n//fT300ENq2bKldRIAPzd06FDrBMBvhYaGWid4XCCcWA1I0o8//mid4Ij69etbJ/gFfzvpPjMzUzfffLN1xjkF2qC9Q4cO1gl+pVu3bgzaA8DgwYP9ctAuSWlpabr11lutMxy1YcMG7du3zzrD7cqUKaMePXpYZwAAAAAAAC/GkW7wWX94cy5jdgAAAAAB58DxXP3hzbnWGQAAL9GnTx/NmjVLt9xyS0CMjeBbVq1apRtuuEF//OMftXv3buscAH4qKipKvXr1ss4A/FYgPMdk0I5AUFhYqFWrVllneFxQUJBq1qxpneEXmjRpYp3gVitXrrROOKf9+/fryJEj1hmOatOmjXWCX7n66qsVFMTLQP1dnz59FBUVZZ3hEWlpadYJjktPT7dO8IjevXsrIiLCOgMAAAAAAHgxvpIJAAAAAAAAAD6sTJkyeuihhzR9+nR17tzZOgf4lbS0NPXr10/vvPOOioqKrHMA+Jlrr71W4eHh1hmA3wqEQXtBQYF1AuBxmzZtUk5OjnWGx1WuXFlhYWHWGX4hISFBpUqVss5wm/3792vv3r3WGb9py5Yt1gmOa9WqlXWCX4mJiVHDhg2tM+BhERER6t+/v3WGR6xatUr79++3znBURkaGdYJHDBw40DoBAAAAAAB4OQbt8Flv/qGrKkT7z1+eAQAAAMCFqBBdSm/+oat1BgDAC9WqVUtvvfWW3nrrLdWrV886BzjL6dOn9fzzz+v666/X+vXrrXMA+JF+/fpZJwB+LRAG7ZzQjkAQKM/Bq1evbp3gN1wul6pVq2ad4Vbeekr7tm3brBMcVbNmTZUvX946w++0b9/eOgEOSE1NtU7wiJKSEs2ePds6wzGHDx/WmjVrrDPcrmbNmmrRooV1BgAAAAAA8HIh1gHApbquXR2ltKmtI9l51ikAAAAA4Ji4MuEKDuL6dACAc+vcubM6deqkmTNnavz48dqxY4d1EnDGunXrdP3112vkyJH64x//qIiICOskAD6sUqVKSkpKss4A/FognHRcXFxsnQB43KZNm6wTHOFvA2xrNWrU0ObNm60z3Gb16tXq06ePdcavbN261TrBUTx/94yrrrpKb775pnUGPKxevXpKSkpSZmamdYrbzZo1SzfddJN1hiMyMjL88nOQlJQU6wQAAAAAAOADGLTDpwUHBal8FKe0AwAAAAAAAP/N5XKpb9++6tWrl7744gu99tprysrKss4CJP3nFNR33nlH8+fP1/jx41WrVi3rJAA+qlevXnK5XNYZgF/jMQb4h40bN1onOKJixYrWCX7F3068X79+vXXCbwq0E9obN25sneCXmjdvrtDQUBUUFFinwMNSU1P9ctD+448/6siRI4qLi7NO8biMjAzrBLcLCgrSgAEDrDMAAAAAAIAP4Eg3AAAAAAAAAPBTwcHBuu666/Ttt9/qqaeeUu3ata2TgDM2b96sQYMGaebMmdYpAHxUly5drBMAAPAJgXJCO4N296pRo4Z1glt564UdGLTDHSIiIlSvXj3rDDigd+/eioqKss5wu6KiIs2ZM8c6w+Py8/O1cOFC6wy3a9eunSpVqmSdAQAAAAAAfACDdgAAAAAAAADwc2FhYbr++us1c+ZMTZgwQUlJSdZJgCTp1KlTuvfeezV27Fjl5+db5wDwIWXKlFHLli2tMwAA8HpZWVk6ceKEdYYjypcvb53gV/xt0H78+HFlZWVZZ5wlOztbhw4dss5wTEhIiK644grrDL/VvHlz6wQ4ICIiQsnJydYZHpGWlmad4HE//PCDTp06ZZ3hdgMHDrROAAAAAAAAPoJBOwAAAAAAAAAECJfLpW7duumjjz7SlClT1KNHD4WEhFhnAZoyZYqGDh2q/fv3W6cA8BHt27dXaGiodQYAAF4vUE5nl6SYmBjrBL/ijyfeb9iwwTrhLHv27LFOcFSNGjUUHh5uneG3GLQHjtTUVOsEj1i8eLFOnjxpneFR6enp1gluV7ZsWXXv3t06AwAAAAAA+AgG7QAAAAAAAAAQgFq1aqVXXnlFc+fO1R//+EdVqlTJOgkBbu3atRo6dKi2bdtmnQLAB7Rt29Y6AQAAn7B161brBMdER0dbJ/iV+Ph46wS3Y9Buq06dOtYJfu2KK66wToBD6tatq6SkJOsMtysoKNDcuXOtMzxq3rx51glu16dPHy5WAgAAAAAALhiDdgAAAAAAAAAIYBUrVtTdd9+tuXPnasKECerYsaOCg4OtsxCgsrKyNHToUK1atco6BYCXa9OmjXUCAAA+Yffu3dYJjuGEdveKiopSWFiYdYZbbdmyxTrhLFlZWdYJjqpbt651gl+rVauWQkNDrTPgEH89pX327NnWCR7z008/adeuXdYZbpeSkmKdAAAAAAAAfAiDdgAAAAAAAACAgoOD1a1bN73zzjvKyMjQgw8+qPr161tnIQAdO3ZMI0aM8MsTiwC4R7ly5ZSYmGidAQCAT/DH4dS5lC5d2jrB78TFxVknuNW2bdusE84SaIN2nsN7VkhIiGrXrm2dAYf07t1bUVFR1hlu9/333ys3N9c6wyPS09OtE9yuVq1aSkpKss4AAAAAAAA+hEE7AAAAAAAAAOAsFSpU0K233qp///vf+uqrr3TzzTerQoUK1lkIILm5ubrrrrv09ddfW6cA8ELNmze3TgAAwGcEyqA9JCTE704T9wbx8fHWCW61Y8cOFRUVWWecEWiD9urVq1sn+L169epZJ8AhERERSk5Ots5wu9OnT2v+/PnWGR6RkZFhneB2AwcOtE4AAAAAAAA+hkE7AAAAAAAAAOCcGjRooIcffljz58/XlClTNHz4cFWqVMk6CwGgsLBQDz74oF+eXgTg8jRr1sw6AQAAn1BQUKB9+/ZZZziiVKlS1gl+yd8G7QUFBdqzZ491xhmB8vj8RbVq1awT/F7NmjWtE+Cg1NRU6wSPSEtLs05wu+PHjyszM9M6w62CgoL88qIKAAAAAADAs0KsAwAAAAAAAAAA3s/lcqlVq1Zq1aqVHn30Ua1cuVKzZs3SnDlzAubEPzivsLBQ99xzj95++221adPGOgeAl2jatKl1AgAAPiErK8urTqP2pLy8PN11113WGX5n06ZN1glut23bNtWoUcM6Q5J06NAh6wTHREdHKzo62jrD73HRgMBSt25dJSUl+d1QOiMjQ/n5+QoLC7NOcZv58+f73XOyq666ShUrVrTOAAAAAAAAPoZBOwAAAAAAAADgorhcLiUlJSkpKUkPP/ywtm7dqvT0dKWnpyszM9PvXpwHW3l5ebrjjjs0adIkRqwAJEkNGza0TgAAwCfs3r3bOsEx+fn5mjNnjnUGfMDWrVvVpUsX6wyVlJTo8OHD1hmOqVq1qnVCQKhevbp1AhyWmprqd4P27OxsLVq0SFdffbV1ittkZGRYJ7jdoEGDrBMAAAAAAIAPYtAOAAAAAAAAALgsiYmJSkxM1G233abjx4/r+++/14IFC7R48WLt27fPOg9+ICcnR7fffrs+/PBDJSYmWucAMFS5cmVFRUVZZyBAZGdn68iRI+d9y87OVn5+vgoKCpSfn/+bb8XFxdb/KQACFJ+PAb+2a9cu6wRJ0tGjR1VQUGCd4RhO8XUGg/bA07t3bz3zzDM6fvy4dYpbzZo1y28G7UVFRfr++++tM9wqKipK11xzjXUGAAAAAADwQQzaAQAAAAAAAABuEx0drX79+qlfv36S/nPy2ZIlS7Ro0SItW7ZMJ06cMC6Erzp27JjuuusuffbZZypTpox1DgAj9erVs06Anzlx4oR27tx55m3Xrl1nvn3kyBHrPAC4LIF0+jNwobKysqwTJEkHDx60TnAUg3ZnxMfHKzw8XHl5edYpcEhERIT69++vyZMnW6e41dy5c1VYWKiQEN9/ifOPP/7odxcc6NOnj8LDw60zAAAAAACAD/L9r/YAAAAAAAAAALzWL6e333jjjSoqKtKGDRu0fPlyLV++XD/++CNDMVyUHTt26OGHH9arr75qnQLASN26da0T4MOysrK0Zs0arV27VmvWrNGmTZt09OhR6ywA8JhDhw5ZJwBeZ8+ePdYJkgLv8cmg3Tnly5f3mt/ncEZqaqrfDdqPHTumH374Qe3atbNOuWzp6enWCW43cOBA6wQAAAAAAOCjGLQDAAAAAAAAABwRHBysxo0bq3Hjxho5cqSk/5zg/sMPP5wZuO/du9c2El5v9uzZeuuttzRq1CjrFAAGatasaZ0AH3H06FFlZmaeNWBnvA4g0ATaCdDAhfj5559VUlIil8tl2nHs2DHT+3dahQoVrBMCBoP2wFO3bl0lJSUpMzPTOsWt0tLS/GLQnpGRYZ3gVomJiWrWrJl1BgAAAAAA8FEM2gEAAAAAAAAAZn45wX3IkCGS/nNy6i8D9+XLl2v79u3GhfBGL730kpo0aeIXL2oFcHEYtONcTp8+raVLl2rJkiVasmSJNmzYoJKSEussADB1+PBh6wTA6+Tl5engwYPmA+vjx4+b3r/T4uLirBMChvXvbdgYMmSI3w3aZ8+erSeeeML8AiSXY/fu3dq2bZt1hlulpKRYJwAAAAAAAB/GoB0AAAAAAAAA4DUSEhKUkJCgAQMGSPrPAGP58uVnRu6bNm1ScXGxbSTMFRUV6b777tPXX3+t2NhY6xwADmLQjv92+PBhpaena+7cuVq0aJFyc3OtkwDAq3BCO/DbsrKyzEe/J06cML1/p/G5u3Osf2/DRq9evTRu3Di/uljGwYMHlZmZqRYtWlinXLK5c+daJ7hVcHCwkpOTrTMAAAAAAIAPY9AOAAAAAAAAAPBa8fHx6tmzp3r27ClJys7O1o8//nhm5L527VoVFBQYV8LC4cOH9eyzz+rvf/+7dQoAh4SHh6t8+fLWGTCWnZ2ttLQ0zZgxQ0uWLFFRUZF1EgB4LU5oB37bzz//rKSkJNMGfxqdXghOaHdOdHS0dQIMREREqH///po8ebJ1ilulpaX59KA9PT3dOsGt2rdvz0UzAAAAAADAZWHQDgAAAAAAAADwGWXKlFHnzp3VuXNnSVJeXp5WrlypH374QT/++KNWrlypnJwc40o45csvv1T//v3Vvn176xQADqhUqZJ1AgwtW7ZM06ZN0+zZs5WXl2edAwBer7i4WCdPnrTOALzSwYMHrRM4oR0eExUVZZ0AI6mpqX45aH/44YetMy5Jdna2li9fbp3hVikpKdYJAAAAAADAxzFoBwAAAAAAAAD4rPDwcLVp00Zt2rSR9J/RxtatW7V27dozbxs3btTp06eNS+EpTz75pGbMmKGIiAjrFAAeVrlyZesEOOzUqVP6/PPPNXXqVG3dutU6BwB8SnZ2tnUC4LUOHTpknRBQF5xwuVwqU6aMdUbA4IT2wFW3bl0lJSUpMzPTOsVtsrKytG7dOjVq1Mg65aItWLBABQUF1hluEx0drW7dullnAAAAAAAAH8egHQAAAAAAAADgN4KCglS3bl3VrVv3zIkxRUVF2rJli9atW6fVq1drzZo12rx5s1+9oDCQ7d69W+PHj9eDDz5onQLAwzihPXAcPnxYH3zwgaZOnarjx49b5wCAT2LQDpybNwzaT506ZZ3gmMjISLlcLuuMgMGgPbANGTLErwbt0n9OaffFQXtGRoZ1glv17dtXYWFh1hkAAAAAAMDHMWgHAAAAAAAAAPi14OBgNWjQQA0aNNCgQYMkSXl5edqwYYNWr159ZuS+c+dOlZSUGNfiUkyaNEmDBg1SYmKidQoAD4qPj7dOgIcdPnxYb7zxhqZNm6a8vDzrHADwaYE0lgUu1sGDB60TdPr0aesEx3A6u7PKli1rnQBDvXv31rhx4/zqwmBpaWm69957rTMuSnFxsebPn2+d4Va/XDwWAAAAAADgcjBoBwAAAAAAAAAEnPDwcDVv3lzNmzc/833Hjx/XqlWrtGrVKq1cuVJr1qzxqxd/+rPCwkKNHz9eL7/8snUKAA9i0O6/Tp48qYkTJ2rSpEnKycmxzgEAv8AJ7cC5ecOgPTc31zrBMQzanRUeHm6dAEPh4eHq37+/Jk+ebJ3iNtu2bdNPP/2kOnXqWKdcsNWrV+vw4cPWGW5Tp04dNW3a1DoDAAAAAAD4AQbtAAAAAAAAAABIio6OVqdOndSpUydJUklJibZt23Zm4J6ZmamffvpJxcXFxqX4LbNmzdLGjRvVoEED6xQAHsKg3f+UlJTo008/1T//+U8dOXLEOgcA/AqDduDcvGFkGEgntJcqVco6IaDw643U1FS/GrRL/zml3ZcG7enp6dYJbsXp7AAAAAAAwF0YtAMAAAAAAAAA8BtcLpcSExOVmJiogQMHSvrPKOSXcXtmZqZWrVrFUMRLlJSU6JVXXtGECROsUwB4SGxsrHUC3Gj16tUaO3as1qxZY50CAH6Jz1OAczt27Jh1QkAN2jkx3FkRERHWCTBWt25dtWjRQitWrLBOcZu0tDTddddd1hkXzJ8G7cHBwUpOTrbOAAAAAAAAfoJBOwAAAAAAAAAAF6hMmTLq0KGDOnToIEkqLi7W5s2btWzZMi1dulTLly/3ihfGB6rvvvtOa9euVePGja1TAHhAVFSUdQLc4PTp03r55Zf1/vvvq7i42DoHAPxWbm6udQLgtQoKCpSbm2t6knUgDdrDwsKsEwJKZGSkdQK8QGpqql8N2jds2KDdu3erWrVq1im/6+eff9amTZusM9ymY8eOKl++vHUGAAAAAADwE0HWAQAAAAAAAAAA+KqgoCA1aNBAw4cP14QJE7RkyRJ9+eWXeuSRR9SlSxeVLVvWOjHgjB8/3joBgIfwMdX3rVixQsnJyXr33XcZswOAhxUWFlonAF7txIkTpvdfUFBgev9O4oR2Z4WGhlonwAv07t1b0dHR1hlulZaWZp1wQfzpdHZJSklJsU4AAAAAAAB+hEE7AAAAAAAAAABu4nK5dMUVV2jkyJF64403tGTJEk2aNEk333yzatasaZ0XEObPn6/t27dbZwDwAAbtvqu4uFivv/66brrpJu3YscM6BwACAoN24PyOHz9uev9FRUWm9+8kBu3OCgriJaH4z+Ouf//+1hlu5SuD9oyMDOsEt4mJiVHXrl2tMwAAAAAAgB/hq5cAAAAAAAAAAHhISEiI2rZtq4cfflizZs3SN998owcffFBXXnklLzD2kJKSEk2bNs06A4AHlC5d2joBl+Dw4cO67bbb9NJLLwXUcAsArPExFzg/6xPai4uLTe/fSXz9w1nBwcHWCfASQ4YMsU5wq1WrVmn//v3WGeeVm5urpUuXWme4Tb9+/RQWFmadAQAAAAAA/AhfLQYAAAAAAAAAwCG1a9fWrbfeqn/961/KyMjQww8/rEaNGlln+Z0vvvhCeXl51hkA3KxUqVLWCbhIGzdu1KBBg7Rw4ULrFAAIOAzagfPjhHbnMLB2Fr/e+EWdOnXUokUL6wy3KSkp0ezZs60zzmvRokU6ffq0dYbbpKSkWCcAAAAAAAA/w6AdAAAAAAAAAAADFStW1M0336zPP/9c33zzje666y5Vr17dOssvHDt2TN988411BgA3CgkJYZjhY9LT0zV06FD9/PPP1ikAEJAKCgqsEwCvlp2dbXr/gXRCu8vlsk4IKHzehP+WmppqneBWaWlp1gnnlZGRYZ3gNvXq1VPjxo2tMwAAAAAAgJ9h0A4AAAAAAAAAgLHatWvrnnvu0ezZs/X++++rR48eCgkJsc7yaR999JF1AgA3Cg8Pt07ARZg2bZruuusu5eTkWKcAQMAKpNOfgUthfYJuID1GGVg7iwsI4L/17t1b0dHR1hlus3z5ch05csQ645zmzZtnneA2nM4OAAAAAAA8gUE7AAAAAAAAAABepF27dnrllVc0d+5c3XXXXSpfvrx1kk/KzMzUpk2brDMAuAmDdt8xadIkPfHEEwF16igAeKPCwkLrBMCr5ebmWicEDAbWzuLjP/5beHi4+vfvb53hNkVFRZozZ451xm9at26d9u/fb53hFiEhIX71+wYAAAAAAHgPBu0AAAAAAAAAAHihihUr6p577lF6erpeeOEF1a9f3zrJ58ycOdM6AYCbcKqjb3jrrbc0btw46wwAAIDfZX1CeyA9v+VCR87i1xv/a8iQIdYJbpWWlmad8JvS09OtE9ymY8eOKleunHUGAAAAAADwQwzaAQAAAAAAAADwYqGhoerXr5+++uorvf7662rUqJF1ks/49ttvrRMAuAmnOnq/KVOm6IUXXrDOAAD8P4E0lgUuhfUJ7UFBgfOyvaKiIuuEgMIJ7fhfderUUYsWLawz3Gbx4sU6efKkdcavZGRkWCe4zcCBA60TAAAAAACAnwqcr4wDAAAAAAAAAODDXC6Xunbtqs8++0z//Oc/Vb16deskr7djxw5t2rTJOgOAGzDK824zZ87UU089ZZ0BAPgv/NkJnB8ntDunpKTEOiGgcEI7fktqaqp1gtsUFBR43WnoBw8e1Nq1a60z3CImJkZXX321dQYAAAAAAPBTDNoBAAAAAAAAAPAhLpdLffv21ddff617771XpUqVsk7yavPmzbNOAOAGgXSCpa9ZunSpHnzwQYYzAOBlQkJCrBMAr2Y9aA+k57ec0O6sgoIC6wR4od69eys6Oto6w23S0tKsE86SkZHhNxfvuPbaaxUWFmadAQAAAAAA/FTgfGUcAAAAAAAAAAA/EhYWpjvuuEMzZ85Uhw4drHO81sKFC60TAMBvZWVl6Z577mE0AwBeKJBOfwYuRWFhoen9B9JjNC8vzzohoFhfrAHeKTw8XMnJydYZbrNgwQLl5uZaZ5yRkZFhneA2AwcOtE4AAAAAAAB+jEE7AAAAAAAAAAA+rEqVKpo4caL+7//+T6VLl7bO8TorVqzwqhe4AoC/yM3N1ejRo3X06FHrFADAb+CEduD8iouLTe8/NDTU9P6dlJ+fb50QUPgaCM4lNTXVOsFtcnNzNX/+fOsMSf/5GLdo0SLrDLeoX7++GjZsaJ0BAAAAAAD8GIN2AAAAAAAAAAD8wODBg/XZZ5+pfv361ileJT8/XytXrrTOAAC/M3bsWG3YsME6AwBwDoF0+jNwKYqKikzvPyIiwvT+ncQJ7c7ihHacS506ddSyZUvrDLdJS0uzTpAkLV26VDk5OdYZbsHp7AAAAAAAwNMYtAMAAAAAAAAA4Cdq1aqljz/+WP3797dO8SqZmZnWCQDgV7755ht9/vnn1hkAgPMIDw+3TgC8GoN25zBodxaDdpzP4MGDrRPcJiMjQ/n5+dYZysjIsE5wi5CQEF177bXWGQAAAAAAwM8xaAcAAAAAAAAAwI9ERETo+eef15/+9Ce5XC7rHK+watUq6wQA8Bv79u3Tk08+aZ0BAPgdpUqVsk4AvBqDduf4y8nFvoJfb5xP7969FR0dbZ3hFtnZ2Vq0aJF1ht8M2jt37qz4+HjrDAAAAAAA4OdCrAMAAAAAAAAAAID7jR49WpUrV9Zjjz2m4uJi6xxTDNoBwH0ee+wxHT9+3DrDJ8XFxalKlSqqUqWKypUrp7i4uDNvMTExioyMPOstJCREwcHBCgkJUUhIiIKCnL9e/bBhw7Rs2TLH7xfA5StdurR1AuDVrD9PDqRB+6lTp6wTAsqJEyesE+DFwsPDlZycrA8++MA6xS3S0tJ09dVXm93/5s2btWfPHrP7d6eBAwdaJwAAAAAAgADAoB0AAAAAAAAAAD81cOBARURE6IEHHlBhYaF1jpmjR4/qwIEDqlChgnUKAPi0GTNmaMGCBdYZXq9ChQpq2LChGjRooPr166t+/fpKSEgIqOEaAHuRkZHWCYBXsz6hvVSpUqb376Ts7GzrhIDCxafwe1JTU/1m0D5nzhwVFRUpODjY5P795XT2uLg4de7c2ToDAAAAAAAEAAbtAAAAAAAAAAD4sT59+qigoEAPPfSQSkpKrHPMbNmyhUE7AFyGEydO6JlnnrHO8Erh4eG68sor1bFjR7Vv315169a1TgIATmgHfof158eB9BjNyclRSUmJXC6XdUpA4IR2/J46deqoZcuW+vHHH61TLtuxY8e0bNkytWvXzuT+09PTTe7X3fr166fQ0FDrDAAAAAAAEAAYtAMAAAAAAAAA4OeSk5N17NgxjRs3zjrFzObNm9W+fXvrDADwWePHj9ehQ4esM7xKo0aNNGjQIF177bWKioqyzgGAswTSWFaShg8frltvvdU6Az4kPDzc9P4D6blDcXGxTp48GVD/zZY4oR0XYvDgwX4xaJektLQ0k0H7sWPHtGrVKsfv1xMGDhxonQAAAAAAAAIEg3YAAAAAAAAAAALAiBEjtHHjRn3++efWKSa2b99unQAAPmvXrl366KOPrDO8gsvlUvfu3XXnnXeqYcOG1jkAcE6RkZHWCY6KiIhQpUqVrDOAC1a2bFnrBEcdOXKEQbtDjh49ap0AH9C7d28988wzOnbsmHXKZZs9e7aeeOIJuVwuR+933rx5KioqcvQ+PeGKK67QFVdcYZ0BAAAAAAACRJB1AAAAAAAAAAAAcMZf//rXgH2B4p49e6wTAMBn/fOf/1RBQYF1hrkuXbroiy++0CuvvMKYHYDXC7SxLH9OwddER0dbJziKkbVzDh48aJ0AHxAeHq7+/ftbZ7jFwYMHlZmZ6fj9ZmRkOH6fnpCSkmKdAAAAAAAAAgiDdgAAAAAAAAAAAkR4eLjGjRunkJAQ6xTHMWgHgEuzbt06ffvtt9YZpuLj4zVhwgS98cYbAXthGAC+JywsLKBG7Qza4WsC6fEpMWh30oEDB6wT4COGDBlineA2aWlpjt5fYWGhFixY4Oh9ekJoaKiuvfZa6wwAAAAAABBAGLQDAAAAAAAAABBAGjZsqBEjRlhnOG7v3r0qLi62zgAAn/Pmm2+qpKTEOsNMz549NWPGDHXr1s06BQAuWlxcnHWCYxi0w9cE2gnthw4dsk4IGAzacaESExPVsmVL6wy3cHrQvnz5cp04ccLR+/SEzp07B9TzRQAAAAAAYI9BOwAAAAAAAAAAAeaOO+4IuNPgCgoKdOzYMesMAPApO3fu1OzZs60zzNxxxx0aP348L/AH4LMC6eMXg3b4mkB6fEqMrJ2Sn5+v48ePW2fAh6SmplonuEVWVpbWrVvn2P1lZGQ4dl+eNHDgQOsEAAAAAAAQYBi0AwAAAAAAAAAQYKKiojRy5EjrDMdxIhwAXJyJEyequLjYOsNxLpdLY8aM0b333mudAgCXJTY21jrBMQza4WvKlStnneCo/fv3WycEhD179qikpMQ6Az6kV69eiomJsc5wCydPaU9PT3fsvjwlPj5enTt3ts4AAAAAAAABhkE7AAAAAAAAAAAB6IYbblBoaKh1hqMOHz5snQAAPiM7O1v//ve/rTNM/O1vf9OwYcOsMwDgssXHx1snOObUqVPWCcBFYdAOT9i9e7d1AnxMeHi4+vfvb53hFk4N2nfu3KkdO3Y4cl+edO211yokJMQ6AwAAAAAABBgG7QAAAAAAAAAABKC4uDhdc8011hmOYtAOABdu5syZys3Ntc5w3IgRI5Sammqd4TWKioqsEwBchkAatB8/ftw6AbgosbGxATUkzMrKsk4ICHv27LFOgA8aMmSIdYJbbNu2TT/99JPH78cfTmeXpJSUFOsEAAAAAAAQgBi0AwAAAAAAAAAQoJKTk60THJWdnW2dAAA+4/PPP7dOcFyHDh300EMPWWd4lUC8qAHgTypWrGid4BgG7fA1LpdLcXFx1hmOYWjtDE5ox6VITExUy5YtrTPcwolT2ufOnevx+/C0Ro0aqUGDBtYZAAAAAAAgADFoBwAAAAAAAAAgQLVr105hYWHWGY45deqUdQIA+IQdO3YoMzPTOsNRsbGx+sc//qHg4GDrFK+Sk5NjnQDgMiQkJFgnOIZBO3xR+fLlrRMcc/r0aR04cMA6w+9t3brVOgE+KjU11TrBLTw9aM/OztaKFSs8eh9O4HR2AAAAAABghUE7AAAAAAAAAAABqlSpUrryyiutMxzDoB0ALowTp9p5m4ceekixsbHWGV6HE9oB31alShXrBMcwaIcvCqTHqCTt2rXLOsHvbdmyxToBPqpXr16KiYmxzrhsGzZs0O7duz12+/Pnz1dBQYHHbt8JoaGh6tevn3UGAAAAAAAIUAzaAQAAAAAAAAAIYE2bNrVOcAynzALAhZk7d651gqPatGnDCXXnwKAd8G2BNJbNz8/nYxZ8TiA9RiVp27Zt1gl+7eTJk/r555+tM+CjwsPDlZycbJ3hFp68QFtGRobHbtspXbp04WJuAAAAAADADIN2AAAAAAAAAAACWKNGjawTHFNYWGidAABe78iRI1q1apV1hmNcLpcef/xx6wyvVFxczMVgAB9XunRpvzht9UIdPXrUOgG4KIE2aN+6dat1gl/jdHZcrtTUVOsEt5g9e7ZHbre4uFjz58/3yG07aeDAgdYJAAAAAAAggDFoBwAAAAAAAIAAkZ+fz4tb8Sv16tWzTnBMQUGBdQIAeL358+eruLjYOsMxPXr0UN26da0zvNK+ffu4GAzgBwJpMMvJxPA1CQkJ1gmO+umnn6wT/Nq6deusE+DjEhMT1apVK+uMy7Zy5Urt37/fI7fr6xfPKVeunDp27GidAQAAAAAAAliIdQAAAAAAAAAAwL3y8vK0fft2/fTTT2e97d69W4WFhZoxYwbDLZxRqVIl6wTHFBUVWScAgNf74YcfrBMcNXz4cOsEr7Vnzx7rBABuUK1aNa1fv946wxF79+5Vy5YtrTOACxZIF5yQpE2bNlkn+LVVq1ZZJ8APDB48WMuXL7fOuCwlJSWaPXu2brrpJrfebnp6ultvz0L//v0VEsLLxgEAAAAAgB2+MgEAAAAAAAAAPio3N1fbtm3TTz/9pK1bt541XD/fyarz5s1j0I4zwsPDFRsb6/MnDF0IBu0A8Pt8fbxwMWrWrOkXJxB6SlZWlnUCADeoXbu2dYJj9u7da50AXJTq1atbJzjq4MGDOnjwoMqXL2+d4pdWr15tnQA/0KtXL40bN07Hjh2zTrksaWlpbh+0Z2RkuPX2LKSkpFgnAAAAAACAAMegHQAAAAAAAAC83KlTp7R169Yzo/Vf/rlnzx6VlJRc9O3NmzdPt912mwdK4avi4uICYtAeGhpqnQAAXu3w4cPasWOHdYZjevfubZ3g1Ri0A/4hMTHROsExfNyCrylbtqzi4+N1+PBh6xTHrF+/Xp07d7bO8DtHjx7Vzp07rTPgB8LDw5WcnKxJkyZZp1yW5cuX68iRI4qLi3PL7e3du1ebN292y21ZadSokerVq2edAQAAAAAAAhyDdgAAAAAAAADwEtnZ2dq6dau2bNly1nh97969lzRcP5fMzExlZ2erTJkybrtN+LaIiAjrBEcwaAeA88vMzLROcFTXrl2tE7waoyjAPwTSoJ0T2uGLatWqFVCD9rVr1zJo94AffvjBOgF+JDU11ecH7UVFRZozZ46uv/56t9xeenq6W27H0qBBg6wTAAAAAAAAGLQDAAAAAAAAgNNOnDhx1knrv7zt27fPkfsvKCjQ/Pnz1adPH0fuD94vPDzcOsERDNoB4Pw2btxoneCYqKgoNWnSxDrDq61Zs8Y6AYAb1KpVSy6Xy60XSfNWDNrhi2rWrKnly5dbZzgm0C6g5JRFixZZJ8CPJCYmqlWrVj7/sSktLY1B+/8TGhqqvn37WmcAAAAAAAAwaAcAAAAAAAAATzl69OhZo/VfTl8/ePCgdZr+/e9/M2jHGUVFRdYJjmDQDgDnt3nzZusExzRv3lwul8s6w2udPHlSO3bssM4A4AalSpVSlSpVlJWVZZ3icbt27VJBQQHP++FTatWqZZ3gqFWrVqmkpITnYW62ePFi6wT4mcGDB/v8oH3x4sU6efKkypYte1m3k5ubq2XLlrmpykbXrl0VExNjnQEAAAAAAMCgHQAAAAAAAAAu15EjR7Rly5azTl3funWrDh06ZJ12Tt9//72OHDmiuLg46xR4gezsbOsERwTKSfQAcKk2bdpkneCYpk2bWid4tdWrVwfEac5AoKhbt25ADNoLCgq0fft21atXzzoFuGCJiYnWCY46ceKEtmzZwuPUjbKysrgQEdyuV69eGjdunI4dO2adcskKCgqUnp6u/v37X9btLFy4UHl5eW6qsjFw4EDrBAAAAAAAAEkM2gEAAAAAAADggh08ePDMaev/PV4/evSoddpFKyws1PTp0zVixAjrFHiBQBm0R0dHWycAgNfKy8vTrl27rDMcU7duXesEr7Zq1SrrBABu1LBhQ2VkZFhnOGLz5s0MZeFT6tevb53guCVLlvA4daO5c+daJ8APhYeHKzk5WZMmTbJOuSxpaWmXPWhPT093U42N8uXLq2PHjtYZAAAAAAAAkhi0AwAAAAAAAMCv7N+//6zh+i/j9ePHj1unudVXX33FoB2SpFOnTlknOIJBOwCcW1ZWloqLi60zHFOnTh3rBK+WmZlpnQDAjZo0aWKd4JjNmzdbJwAXpUqVKoqOjva7rzmdz6JFizR8+HDrDL8xZ84c6wT4qdTUVJ8ftC9YsEC5ubkqVarUJf38kpISzZs3z81Vzurfv7+Cg4OtMwAAAAAAACQxaAcAAAAAAAAASf95cdrw4cO1YcMGnTx50jrHEevWrdOqVavUrFkz6xQYKi4uVk5OjnWGIxi0A8C5/fzzz9YJjkpISLBO8Fq5ublatmyZdQYAN2LQDni3+vXrB9SfvUuXLlVBQYFCQ0OtU3zeiRMn9MMPP1hnwE8lJiaqVatWWr58uXXKJcvNzdX8+fPVs2fPS/r5a9eu1cGDB91c5ayBAwdaJwAAAAAAAJwRZB0AAAAAAAAAAN7A5XKpuLg4YMbsv3jvvfesE2Bs586dAXMib0xMjHUCAHitvXv3Wic4JiYm5pJP6AsEixYt0unTp60zALhR+fLlVaFCBesMRzBohy+qX7++dYKjcnJyGGG7yaxZs1RYWGidAT+WmppqnXDZ0tLSLvnnZmRkuC/EQJMmTVSnTh3rDAAAAAAAgDMYtAMAAAAAAADA/9OqVSvrBMelpaVpz5491hkwtGXLFusEx5QvX946AQC8VlZWlnWCY/jz4PzS09OtEwB4QOPGja0THJGVlaUDBw5YZwAX5YorrrBOcNycOXOsE/zCjBkzrBPg53r16uXzF4jMyMhQfn7+Jf1cX//cKCUlxToBAAAAAADgLAzaAQAAAAAAAOD/ad26tXWC44qKivTBBx9YZ8BQoJxgGBISoooVK1pnAIDXOnTokHWCY8qWLWud4LVKSkp8/hRCAL+tWbNm1gmOWb58uXUCcFEC5YIT/41B++U7cOCAli1bZp0BPxcWFqYBAwZYZ1yW7OxsLV68+KJ/3oEDB7R+/XoPFDkjLCxM/fr1s84AAAAAAAA4C4N2AAAAAAAAAPh/kpKSFBISYp3huE8++USHDx+2zoCRQDmhvWLFigoODrbOAACvdezYMesEx0RFRVkneK1Vq1bp4MGD1hkAPODKK6+0TnAMA0/4mrp166p06dLWGY76+eeflZmZaZ3h0/7973+ruLjYOgMBYPDgwdYJl23WrFkX/XMyMjJUUlLigRpnXHPNNYqOjrbOAAAAAAAAOAuDdgAAAAAAAAD4fyIjI9W8eXPrDMfl5ORowoQJ1hkwsnLlSusER1SpUsU6AQC82vHjx60THBMREWGd4LU+++wz6wQAHtK0aVOVKlXKOsMRP/zwg3UCcFGCgoLUpEkT6wzHTZ8+3TrBZ5WUlOiTTz6xzkCASExMVKtWrawzLsucOXNUVFR0UT8nPT3dQzXOSElJsU4AAAAAAAD4FQbtAAAAAAAAAPBfOnXqZJ1g4uOPP9bOnTutM+CwtWvXat++fdYZjkhISLBOAACvFkiD9pCQEOsEr3Tq1Cl9/fXX1hkAPCQ0NFRJSUnWGY746aefdOTIEesM4KI0a9bMOsFx33zzjQoKCqwzfNKSJUu0Y8cO6wwEkNTUVOuEy3Ls2DEtW7bsgt8/Pz9fS5Ys8WCRZ1WoUEEdOnSwzgAAAAAAAPgVBu0AAAAAAAAA8F86d+5snWCioKBAL774onUGHDZnzhzrBMckJiZaJwCAVztx4oR1gmMYtP+2mTNn6tSpU9YZADyoTZs21gmOWbp0qXUCcFGaN29uneC4I0eOBNTXJdxp6tSp1gkIML169VJMTIx1xmVJS0u74PddvHixcnJyPFjjWcnJyQoODrbOAAAAAAAA+BUG7QAAAAAAAADwXxo0aKCKFStaZ5j49ttvL+qkGvi+QHrheL169awTcAFKSkqsE4CAlZeXZ53gmMLCQusEr/Txxx9bJwBuw3OK39a6dWvrBMdczGgN8AYtWrSQy+WyznDcRx99ZJ3gc3bv3q3Zs2dbZyDAhIWFacCAAdYZl+W777674OeIGRkZno3xsJSUFOsEAAAAAACA38SgHQAAAAAAAAD+x9VXX22dYKKkpESPPvqoT58+gwu3ceNGbdq0yTrDMQzafUNBQYF1AhCwAunxF0j/rRdq7dq1Wr16tXUG4DY8zn9b06ZNVbZsWesMR2RkZOj06dPWGcAFi4mJUYMGDawzHLdkyRJt27bNOsOnvP/++youLrbOQAAaPHiwdcJlOXDggDIzMy/ofefNm+fhGs9p1qyZEhMTrTMAAAAAAAB+E4N2AAAAAAAAAPgfPXr0sE4ws3v3bv3jH/+wzoAD3n77besEx5QpU0ZVqlSxzsAFYHwG2AmkU8vz8/OtE7zOhAkTrBPMcJK3f+Jx/ttCQkLUsWNH6wxH5OTk+Pzpqgg8bdq0sU5wXElJid577z3rDJ9x8OBBffbZZ9YZCFCJiYm68sorrTMuy+zZs3/3fTZu3KisrCwHajyD09kBAAAAAIA3Y9AOAAAAAAAAAP+jbdu2io2Ntc4w8+GHH2rp0qXWGfCg3bt365tvvrHOcEzDhg2tE3CBGLQDdgLp8ceJvWfbsGGD5s6da51hhhNO/VMgfUy7WF26dLFOcEwgfc4D/xCIg3ZJ+vLLL3Xo0CHrDJ/w5ptvKjc31zoDAczXT2mfNWvW776PL18QJzw8XH379rXOAAAAAAAAOCcG7QAAAAAAAADwP0JCQtS9e3frDDMlJSV64IEHtH//fusUeMi7776roqIi6wzHtGjRwjoBFygnJ8c6AQhYgXRC++HDh60TvEogn84uKaCeEwUSnlOcW+fOnRUSEmKd4Yh58+bxewE+5corr1RwcLB1huPy8/M1ceJE6wyvt3//fn388cfWGQhwvXr1UkxMjHXGJcvKytK6devO+z6+PGjv1q2boqKirDMAAAAAAADOiUE7AAAAAAAAAPyG3r17WyeY2r9/v+68805OffJDGzdu1CeffGKd4SgG7b7j6NGj1glAwAqUcaMkTgD9Lxs3btR3331nnWGKQbt/4jnFuUVHRwfM8+Pc3FxNnz7dOgO4YGXLllWzZs2sM0xMmTKFCyv+jn/84x/Ky8uzzkCACwsL04ABA6wzLktaWto5f+zIkSNatWqVgzXulZKSYp0AAAAAAABwXgzaAQAAAAAAAOA3tGnTRhUrVrTOMLVu3Trdf//9KikpsU6BmxQWFurRRx9VQUGBdYpjXC6Xmjdvbp2BC8T4DLATSKeBHj16NKBOpD+fcePGBfxzPYZh/onnFOfXtWtX6wTHfPDBBwH/ce5S7Nu3T9u3b9fJkyetUwJOly5drBNM5OXlacKECdYZXmvVqlVcoANeY/DgwdYJl+V8g/b58+eruLjYwRr3qVixotq3b2+dAQAAAAAAcF4M2gEAAAAAAADgNwQHB3OiiaTvvvtOf//7360z4CbvvPOO1q1bZ53hqLp16yo6Oto6AxeI8RlgJ5BOaC8pKdHPP/9snWHu3//+t5YuXWqdYS43N9c6AR7Ac4rz6927t4KCAuMlQz/99JMWLFhgneFzHn74YfXq1UutWrVSkyZN1LlzZw0cOFC33XabHn74YT333HOaOHGivvzyS82fP1/r1q3T/v37lZ+fb53u8wJ10C5Jn3zyiTZs2GCd4XWKior0t7/9jYtzwGskJibqyiuvtM64ZNu2bdPWrVt/88fS09MdrnGf5OTkgHl+BwAAAAAAfFfgvCoBAAAAAAAAAC7SoEGD9Oabbwb8C0bfe+89FRcX69FHH7VOwWVYvXp1QJ521qFDB+sEXISsrCzrBCBghYWF6dSpU9YZjvnpp59UrVo16wwz2dnZeu6556wzvMLp06etE+ABPKc4v0qVKqlVq1ZatmyZdYoj3n//fXXs2NE6w2ccPnz4rN8b+fn52rdvn/bt23dBPz8qKkpxcXGKj48/6+23vo+Lj/1a3bp1VbVqVe3Zs8c6xXHFxcUaO3asPvzwQ7lcLuscrzFx4sSAuzghvN/gwYP1ww8/WGdcslmzZumuu+466/sKCgp8+iI4XJwXAAAAAAD4AgbtAAAAAAAAAHAO1atX15VXXhkwL/I/n0mTJun06dP661//ykkvPmjXrl264447AvK0vE6dOlkn4CJkZWWpsLAwoE6KBrxF6dKlA+pE4y1btgT0CagvvfSSDh48aJ3hFXJycqwT4AG7du2yTvB61157bcB8rrtw4UL99NNPqlOnjnWKT5g1a5aKioou+eefOHFCJ06c0I4dO373fUNDQxUbG3tB4/f4+HiFhYVdcpcv6dKliyZPnmydYWLFihWaOnWqbrjhBusUr7B161a9+uqr1hnAr/Tq1UtPP/20jh07Zp1ySdLS0n41aF++fLmys7ONii5PUlKSateubZ0BAAAAAADwu3g1EAAAAAAAAACcx+DBgwPmRf6/Z9q0acrJydGzzz7L2NSHHD58WLfeeqsOHz5sneK4yMhItWrVyjoDF6GwsFBZWVmqUaOGdQoQcMqWLWud4KhNmzZZJ5j54Ycf9OGHH1pneI3jx49bJ8ADLmRIG+h69uypsWPHqqCgwDrF40pKSvTyyy/rlVdesU7xCZ9//rlj91VQUKADBw7owIEDF/T+ZcqUOTN4L1eu3FnD91++75dvx8TE+Owp37169QrYQbskPf/88+rUqZOqVq1qnWIqLy9Pf/nLX5SXl2edAvxKWFiYBgwYoPfff9865ZJs2LBBu3fvVrVq1c58X3p6umHR5eF0dgAAAAAA4Ct4xSEAAAAAAAAAnEevXr303HPPXfCLq/3d9OnTtX//fr344osqV66cdQ5+x9GjRzVq1KiAPaGyffv2Cg0Ntc7ARdqyZQuDdsBAoA3aA/WCRUeOHNF99913WSfv+puTJ09aJ8ADtm7dqpKSEp8dszohOjpanTt31nfffWed4oi0tDT98MMPuvLKK61TvNrq1au1Zs0a64xzys7OVnZ2tnbu3Pm77xsSEqLY2Nizxu+33XabGjRo4EDp5WnZsqUqVaqkffv2WaeYyMnJ0QMPPKDJkycH9AUVn376aW3cuNE6AzinwYMH++ygXfrPc4Nbb731zL/PmzfPsObSRUREqE+fPtYZAAAAAAAAFyTIOgAAAAAAAAAAvFloaKhuuOEG6wyvsmzZMqWkpOjHH3+0TsF5bN++XampqVq7dq11iplevXpZJ+ASrFq1yjoBCEjR0dHWCY46cOCAtm3bZp3hqJKSEj388MPav3+/dYpX4YR2/3T8+HFt377dOsPrDRo0yDrBUc8884xKSkqsM7zalClTrBPcprCwUAcPHtSmTZu0cOFCZWRkqHr16tZZF8Tlcql3797WGaZWrFihF154wTrDzMcff6xp06ZZZwDnlZiY6NMXipk9e/aZb2/btk07duywi7kM3bp1C7gL1AEAAAAAAN/FoB0AAAAAAAAAfseQIUMUERFhneFVDhw4oBEjRmjSpEnWKfgNS5cuVWpq6gWdWuevSpUqpa5du1pn4BIwaAdslC9f3jrBcYsWLbJOcNTEiRN99tRBTzpw4IB1Ajxk9erV1gle7+qrr1aVKlWsMxyzbt06ffnll9YZXmvv3r36+uuvrTM8ZtCgQYqMjLTOuGB9+/a1TjD33nvvaebMmdYZjluyZInGjh1rnQFckNTUVOuES7Zy5cozF/vKyMiwjbkMAwcOtE4AAAAAAAC4YAzaAQAAAAAAAOB3xMbGKjk52TrD6xQUFGjcuHG67bbb9PPPP1vnQFJRUZEmTpyoW2+9NeBPG+3atatPjRXw/1u9erXy8/OtM4CAE4iDdn8e7f2vefPm6cUXX7TO8EoHDx60ToCHLFu2zDrB6wUFBWnw4MHWGY765z//GfCfK53LhAkTVFBQYJ3hES6XSzfeeKN1xkVp0qSJatasaZ1hqqSkRA8//LBWrFhhneKY9evX6+677/bbxyL8T8+ePRUTE2OdcUlKSkr03XffSZLS09ONay5N5cqV1a5dO+sMAAAAAACAC8agHQAAAAAAAAAuwKhRoxQSEmKd4ZW+//579evXT5MnT1ZRUZF1TsDatGmTUlNT9dxzz/HCZ0n9+vWzTnA7l8tlneCI3NxcLV682DoDCDgVKlSwTnBcZmamdu/ebZ3hcatWrdKf//xnFRYWWqd4pfz8fB07dsw6w1GB8pxi3rx5Kikpsc7wetddd51CQ0OtMxxz4MABPf7449YZXmfnzp1+fXp9586dVb16deuMi3b99ddbJ5jLy8vTnXfeqY0bN1qneNzWrVt166236uTJk9YpwAULCwtTSkqKdcYlmzVrlk6cOOGzF85ITk5WUBAvAwcAAAAAAL6Dr2QAAAAAAAAAwAWoWrUqp7SfR3Z2tp566ikNGDBAixYtss4JKHl5eXrllVc0aNAgrVmzxjrHK5QvX16dOnWyznC7QLqoxty5c60TgICTkJBgneC4kpISff7559YZHrV9+3b94Q9/UE5OjnWKV9u1a5d1gqMC5TnFoUOHtHr1ausMr1e+fHldc8011hmOmjVrlj755BPrDK/y9NNP+/WFT0aOHGmdcElSUlIC6oIT53Ls2DGNHDlSmzdvtk7xmA0bNmjYsGE6cuSIdQpw0QYPHmydcMmWL1+uf//73z77Z6AvX0wAAAAAAAAEJgbtAAAAAAAAAHCB7rzzzoAZf1yqzZs36+abb9bw4cOVmZlpnePX8vPzNXnyZF1zzTV69dVXOZX9vwwePNgvH6vh4eHWCY5JS0tTfn6+dQYQUGrUqGGdYGLKlCnKzs62zvCIffv26dZbb9XRo0etU7ze9u3brRMcFUjPKWbMmGGd4BNGjBhhneC4p59+Wtu2bbPO8ArffPON5s2bZ53hMUlJSWrXrp11xiWJj49X165drTO8wtGjR3XTTTfpxx9/tE5xux9++EHDhw/X4cOHrVOAS1K7dm21bt3aOuOSFBUV6eWXX7bOuCQtWrRQzZo1rTMAAAAAAAAuCoN2AAAAAAAAALhA1apV45T2C7R06VINGTJEw4YN8+sXxlvIz8/Xhx9+qO7du+upp57SwYMHrZO8SnBwsFJTU60zPCKQxmdHjhxRWlqadQYQUCpXrhxQH2d+cfz4cX344YfWGW73008/aciQIcrKyrJO8QmBNmoNCwuzTnDMl19+qdzcXOsMr9eiRQu1atXKOsNRubm5uvfee3Xq1CnrFFNHjx7V008/bZ3hUXfddZd1wmXx189vL8Xx48d18803a+bMmdYpbvPJJ5/o5ptv1okTJ6xTgMviy6e0++rjb+DAgdYJAAAAAAAAF41BOwAAAAAAAABchHvuuUcRERHWGT5j2bJlGjVqlPr06aMPPvjAZ18g6A127Nih5557Tp07d9bf/vY37du3zzrJK3Xt2lUVK1a0zvCIQBua/utf/7JOAAKKy+VS9erVrTNMvPXWWzpw4IB1htusWLFCN954o37++WfrFJ+xZs0a6wRHBdJzihMnTmj69OnWGT5h1KhR1gmO27hxo0aPHq38/HzrFBMlJSV68MEH/foiaY0bN1anTp2sMy7LVVddpcTEROsMr5GXl6d7771XzzzzjAoLC61zLllubq7GjBmjMWPGqKCgwDoHuGw9e/ZUTEyMdUbAiIiIUO/eva0zAAAAAAAALhqDdgAAAAAAAAC4CBUrVtTIkSOtM3zO1q1b9fTTT6tTp0667777NG/ePBUVFVlneb3c3FzNmDFDw4YNU8+ePTVx4kQdOXLEOsur3XrrrdYJHhMUFKTQ0FDrDMdkZmZq3rx51hlAQKlfv751gomTJ0/qqaeess5wizlz5ujmm2/WsWPHrFN8yurVq1VSUmKd4ZhAGrRL0uuvvx6wg+WL0blz54D8c2Dx4sW6//77A/Lz07feekvz58+3zvAoXz+dXfrPRYf4OtSvvf/++xo8eLC2bNlinXLRVq5cqYEDB+qTTz6xTgHcJiwsTCkpKdYZAaN79+4qU6aMdQYAAAAAAMBFY9AOAAAAAAAAABdp1KhRKleunHWGT/ploD1q1Ch17NhRjz/+uObNm8fA5L8cOnRIn3zyie644w61bdtW9913n5YtW2ad5RPatWunpKQk6wyPCgsLs05w1AsvvKDi4mLrDCBgNGjQwDrBzKxZs/TVV19ZZ1yywsJCvfjii7r77rt1+vRp6xyfc/LkSW3YsME6wzGBNmjfu3ev/vWvf1ln+IRAPKVd+s+fAU8++aR1hqNmzpypl156yTrDo5o0aaKuXbtaZ7hFcnKy4uLirDO8zrp16zRw4ECNHz9eubm51jm/6+jRo/rrX/+qoUOHatu2bdY5gNsNHjzYOiFgDBo0yDoBAAAAAADgkjBoBwAAAAAAAICLVLp0af35z3+2zvB5hw8f1scff6xRo0apTZs2uuOOOzR58mRt3brVOs1R2dnZWrhwoV555RUNGTJEHTt21JgxY5Sens4g7SLdeeed1gkeFxkZaZ3gqE2bNundd9+1zgACRsOGDa0TTD3++ONatWqVdcZFy8rK0k033aQ33niDi4Bchrlz51onOKZUqVLWCY579dVXtXv3busMr9enTx/Vq1fPOsPEJ598okcffVQFBQXWKR63aNEiPfjgg37/Z8aDDz4ol8tlneEW4eHhuuGGG6wzvFJ+fr4mTJigXr166bPPPlNhYaF10q+cPHlSEyZMULdu3TR16lS/f+whcNWuXVutW7e2zvB7VapUUdu2ba0zAAAAAAAALgmDdgAAAAAAAAC4BNddd53fnwTtpJycHKWnp+upp55Snz59dNVVV+nuu+/Wu+++q2XLlunkyZPWiW5RUFCgLVu2aPr06Ro7dqwGDBig1q1b65ZbbtGrr76qzMxMXth8iVq2bKk2bdpYZ3hcuXLlrBMc99JLLwXUqbmApcaNG/vN8OtS5OXlafTo0T51cZ1vvvlGAwYMUGZmpnWKzwukQXv58uWtExx36tQpPfDAAyoqKrJO8WpBQUG69957rTPMfPbZZ7rlllt0/Phx6xSPycjI0F133eX3w/0uXbr43ajyxhtvDLgLnF2Mffv26dFHH1XPnj314YcfKjs72zpJmzdv1lNPPaVOnTpp/PjxXtEEeBqntHtecnJyQH/eDgAAAAAAfJurpKSkxDoCAAAAAAAAAHzR5s2blZKS4pWnP/mjatWqqW7duqpdu7Zq166tmjVrqmrVqipfvryCgrzn+q3FxcU6dOiQ9u3bpz179mjr1q3asmWLtm7dqh07dvD7xUOmTp2qFi1aWGd43KhRozRv3jzrDMclJCRo6tSpqlixonWKV0pPT9cdd9xhneFRCQkJATU2tXTttddq8+bN1hmm4uPj9e6776pBgwbWKee0fft2jRs3TvPnz7dO8StffvmlrrjiCusMjzty5IjatWtnnWFi8ODB+r//+z/rDK93ww036Mcff7TOMFOzZk29+eabqlmzpnWKW3322Wd64okn/P5z0uDgYH311VeqW7eudYrb/fOf/9Sbb75pneETIiMjde2116pv37668sorHfu60a5du/T1119r5syZAf+c2pOee+45JScnW2fgN+Tn56tjx446duyYdYrfmj17tqpXr26dAQAAAAAAcElCrAMAAAAAAAAAwFfVq1dPN998s95++23rlICwe/du7d69+1eDxtDQUFWuXFmVKlVSfHy8ypUrp/j4eMXExCgqKkply5ZVVFSUIiMjFRERceYtNDRUwcHBCgoKUlBQkFwulwoLC1VUVKTCwkIVFBSosLDwzNupU6d04sQJnThxQidPnjzrnwcPHtS+ffu0b98+HThwwO8HAt6mb9++ATFml6QKFSpYJ5jIysrSbbfdpg8++ECxsbHWOYBfa9myZcCPbw4fPqxhw4bpueeeU5cuXaxzzpKdna0JEyZo8uTJfn+6roWpU6dq7Nix1hkeFxsbq9DQ0ID8PfTxxx8rJiZG9913n3WKV7v//vs1dOhQ6wwzO3bsUGpqqp588kn16dPHOuey5efn65lnntGHH35oneKIlJQUvxyzS9Itt9yiKVOmcNL3BcjJydG0adM0bdo0xcfHq1OnTmrbtq3atm2rSpUque1+jhw5ouXLl2vZsmVatmyZNm3a5LbbBnxRWFiYUlJS9N5771mn+KVWrVoxZgcAAAAAAD6NE9oBAAAAAAAA4DKcPn1aycnJ2rFjh3UKEJAiIiL0zTffqEqVKtYpjhg/frwmTJhgnWGmevXqeuONN5SYmGid4lU4oR3uNHPmTN17773WGV7B5XLp9ttv1x//+EeFhYWZtuTl5enTTz/V66+/roMHD5q2+LOwsDB9++23SkhIsE7xuC5dumjv3r3WGWYGDhyov/3tb+aPbW82evRofffdd9YZ5rp166Ynn3zSZy8stXnzZj344IPasGGDdYojypQpo2+++cZn/39diJdfflmvvfaadYZPi4+PV6NGjZSYmKhq1aqpatWqiouLU2xsrKKiohQWFqbQ0FAVFRUpJydHOTk5OnXqlI4dO6YdO3acedu6dat27Nghb3v55d13361XX33VOsOjOKHdu23btk29e/e2zvBLTz/9tK677jrrDAAAAAAAgEvGoB0AAAAAAAAALtPq1as1dOhQTuUGDIwePVp/+tOfrDMc89FHH+nJJ5+0zjBVtmxZjRkzRgMGDLBO8RoM2uFOx48fV7t27VRUVGSd4jVq1qypJ598UldddZXj933o0CF9+umnmjx5sg4dOuT4/f+W4OBgjRgxQgsXLvTLU0j79eunF154wTrD41JTU7Vy5UrrDFNJSUkaN26cateubZ3ilfbs2aN+/fopNzfXOsVcVFSUHn74YQ0aNMg65YKdOnVKr776qj744IOA+lrFI488opEjR1pneNTJkyfVvXt3HT161DoFXqhy5cr65ptv1Lx5c+sUj2LQ7v2GDRumZcuWWWf4lVKlSmnBggUqU6aMdQoAAAAAAMAlC7IOAAAAAAAAAABf17RpU78fEgLeKDExMeAeexUrVrROMHfy5Ek99NBDuuWWW0yHlNnZ2crKyjK7f8BToqOj1axZM+sMr7Jjxw7dfPPNGjFihBYsWODx+zt9+rTS0tL0pz/9SVdffbVefPFFrxmzS9INN9yghx56SF26dLFO8YgZM2Zo5syZ1hkex3MKKTMzU8nJyXrllVeUnZ1t1rFnzx6dOnXK7P7PpWrVqgH3XPtcTpw4oUcffVRDhgzRkiVLrHPOKzc3V++//7569uypd999N6DG7PXq1dNNN91kneFxZcuW1R//+EfrDHipO++8U8HBwdYZgFJTU60T/E6PHj0YswMAAAAAAJ8XYh0AAAAAAAAAAP7gzjvv1Pz587V69WrrFCAgBAUF6ZlnnlFYWJh1iqMSExOtE7zGwoULlZycrKuvvlrDhw9XmzZtPPbC/ZKSEm3btk2rV6/WypUrtXLlSm3ZskU33nijHnvsMY/cJ2CpS5cuWrFihXWG11myZImWLFmiWrVqqW/fvurdu7fq1Klz2bdbUlKirVu3asmSJVq0aJEWL16snJwcNxS7X1xcnP70pz9J+s/Y1V+NGTNGiYmJql+/vnWKx3Aq+X/k5+fr1Vdf1aRJkzR06FBdf/31ql69usfuLycnR+vXr9eqVau0atUqrVixQgcPHtSXX36pK664wmP3e6luueUWffnll9q+fbt1ilfIzMzUiBEj1Lp1aw0fPlxdu3b1muHovn379Nlnn2nKlCk6fPiwdY6JJ598UiEhgfFSuCFDhmjq1KnasmWLdQq8SPXq1TVo0CAVFRVZpwDq0aOHYmNjdfToUesUv5GSkmKdAAAAAAAAcNkC46v4AAAAAAAAAOBhISEhevHFFzVo0CAdO3bMOgfweyNHjgzIE4SrVaumyMhIrx06Oq2kpETp6elKT09XfHy8evTooTZt2qh58+aqXLnyJd1mfn6+du7cqU2bNmndunVn3ixPbgWc1qtXL73wwgvWGV5r+/btevXVV/Xqq6+qfPnySkpKUpMmTVS9enVVrVpV5cuXV2RkpCIiIhQcHKz8/Hzl5+fr+PHjOnr0qA4dOqRdu3Zp165d2rJli9atW+eVpzP/lr/85S+KioqS5N+D9lOnTmn48OF6//33vXJk7A7+PNa/FCdPntRbb72lt956S40bN1a3bt3UokULNWnSRJGRkZd0m8ePH9dPP/2kDRs2aN26dVq7dq22bt3qU0PDsLAwPfnkkxo5cqR1ildZtmyZli1bpipVqqhfv37q27evGjRo4HjH0aNHNX/+fM2YMUMLFixQcXGx4w3eIjk5Wa1atbLOcExwcLAeeeQR3XLLLdYp8CKjR49WSEiI8vPzrVMAhYWFacCAAXrvvfesU/xCQkKC2rZta50BAAAAAABw2Ri0AwAAAAAAAICbVK1aVf/4xz80atSogH4hOeBp9erV0z333GOdYcLlcqlevXpauXKldYrXOXz4sKZOnaqpU6dKksqVK6dq1aqpSpUqqlChgkqVKqVSpUopLCxMRUVFKiwsVE5Ojk6ePKnjx49r//792rdvn37++WcVFhYa/9cAtqpXr64mTZpozZo11ile7+DBg0pLS1NaWpp1isc1btxYgwYNOvPvCQkJhjWed+zYMd1www169NFHdf3111vnuB2D9nNbu3at1q5dK+k/o9Ffnk8kJCQoJiZGERERioiIUEhIiAoKClRQUKDs7GydPHlSR44cOfN8wl9OyW7Xrp0GDx6sjz/+2DrF6+zdu/fMhRCqV6+u9u3b66qrrlLz5s1VoUIFt9/fyZMntWrVKq1cuVKLFy9WZmamT10gwVNiYmL04IMPWmc4rn379urRo0dAPAfB77viiivUv39/SeJrkvAagwcPZtDuJgMGDJDL5bLOAAAAAAAAuGwM2gEAAAAAAADAjTp27KjRo0frlVdesU4B/FJkZKRefvllRUREWKeYqV+/PoP2C3Do0CEdOnRImZmZ1imAT+rXrx+DdpwRFBSkJ554QkFBQWe+r3LlygoJCfHri4Dk5ORozJgxmj59uu6++261bt3aOsltatasqVKlSik3N9c6xasVFRVpx44d2rFjh3WKqYcffliLFy/W7t27rVO81q5du7Rr164zF1eqUKGCGjVqpBo1aqh69epKSEhQXFycYmNjFRUVpbCwMIWGhio4OFgFBQXKz89Xfn6+Tp48qcOHD+vIkSM6ePCgdu7cqe3bt2vHjh3auXOnSkpKjP9Lvc+jjz6qcuXKWWeYePzxx7VkyRKdOHHCOgWGXC6XnnzyyTPP0zihHd6idu3aat26tZYtW2ad4tNcLpdSUlKsMwAAAAAAANyCQTsAAAAAAAAAuNno0aO1ceNGzZ492zoF8Dtjx45V7dq1rTNMcaIqACckJyfrxRdf1OnTp61T4AVGjBihZs2anfV9oaGhSkxM1KZNm4yqnLN06VItXbpU9erVU9euXdWxY0fVrVtX0dHRv/tzS0pKdPjwYe3du1dZWVnauXOnNm/erM2bN+uf//yn6tWr58B/wa8FBQWpTp06XLgCF6R06dJ69tlnNWzYME7+vUAHDhzQgQMHrDP8XpcuXZScnGydYaZChQp64IEH9Pjjj1unwNCgQYOUlJR05t8LCgoMa4CzpaamMmi/TK1atVK1atWsMwAAAAAAANyCQTsAAAAAAAAAuJnL5dI//vEPDRs2TKtXr7bOAfzGkCFDdO2111pnmGvYsKF1AoAAEBsbq/79++vjjz+2ToGxmjVr6s9//vNv/ljDhg0DYtD+i1+G6G+88YYkqXz58oqLi1Pp0qVVqlQpFRUVqaCgQAUFBTp58qSOHTumEydOqKio6Ddv71zf75SGDRsyaMcFa9WqlW655Ra988471imAJKlcuXJ66qmnrDPMXX/99Zo+fTqD0QAVExOj+++//6zv44R2eJMePXooNjZWR48etU7xWQMHDrROAAAAAAAAcJsg6wAAAAAAAAAA8EcRERF64403VLVqVesUwC+0a9dOY8aMsc7wCo0bN1bp0qWtMwAEgGHDhlknwFhQUJCeeeYZRURE/OaPX3HFFQ4XeZeDBw9q06ZNWrFihRYuXKglS5boxx9/1OrVq7V9+3YdPXrUfLR+Pm3btrVOgI+555571Lx5c+sMQC6XS88++6zKlStnnWLO5XLpmWeeUdmyZa1TYOD+++9XbGzsWd/HoB3eJCwsTCkpKdYZPisyMlI9e/a0zgAAAAAAAHAbBu0AAAAAAAAA4CHx8fF6++23f/XCUgAXp06dOnrllVcUGhpqneIVQkND1aZNG+sMAAGgXr16ateunXUGDI0YMUItWrQ45483bNjQwRq4W7t27RQUxMtGcOHCwsL08ssvKz4+3joFAe7WW29Vx44drTO8RtWqVfW3v/3NOgMO69Chg6677rpffT+DdnibwYMHWyf4rJ49e3JRSwAAAAAA4Ff4m0kAAAAAAAAA8KDatWvrvffeU3R0tHUK4JPKlSunt956i9Pm/keHDh2sEwAEiOHDh1snwEi9evX05z//+bzv07BhQ4WEhDgTBLeLjY1Vo0aNrDPgYypVqqR//vOfCg4Otk5BgLrqqqv0l7/8xTrD6/Tt25dTkANIXFycnn32Wblcrl/9GIN2eJtatWqpdevW1hk+iY/rAAAAAADA3zBoBwAAAAAAAAAPu+KKK/TOO++oTJky1imAT4mOjtbbb7+thIQE6xSvw6AdgFOuvvpq1ahRwzoDDouMjNRLL72kiIiI875f6dKl1bRpU4eq4Ant27e3ToAPatu2re69917rDASghIQELqhwHo8//rhq1aplnQEHPPPMMypfvvxv/lheXp7DNcDvS01NtU7wOVWrVuVCAAAAAAAAwO8waAcAAAAAAAAABzRt2lRvvfWWIiMjrVMAn1C2bFlNnDhRDRs2tE7xSjVq1FC1atWsMwAEgKCgIN1zzz3WGXDY2LFjlZiYeEHv265dOw/XwJM6duxonQAfdfvtt3NqKBxVtmxZvfnmm4qNjbVO8VqlS5fWa6+9prJly1qnwIOGDRumq6+++pw/zqAd3qhHjx58/L5IKSkpcrlc1hkAAAAAAABuxaAdAAAAAAAAABzSsmVLTZo0STExMdYpgFcrXbq03nnnHTVp0sQ6xav17NnTOgFAgOjbt6+SkpKsM+CQ1NRUXXvttRf8/ldddZUHa+BpSUlJ5zzhFfg9//d//6cOHTpYZyAAhIaG6pVXXlHdunWtU7xe7dq19cILLygoiJcF+qMmTZrogQceOO/75OfnO1QDXLiwsDAuhHMRXC6XBgwYYJ0BAAAAAADgdnzlGgAAAAAAAAAc1LRpU02ZMkUVK1a0TgG8UnR0tCZOnKjmzZtbp3i9QYMGWScACCCPPPIIp8MFgIYNG+qxxx67qJ/TrFkzlSlTxkNF8LTg4GDGRbhkoaGhevnll9WgQQPrFPgxl8ulp59+Wu3atbNO8RmdO3fWX/7yF+sMuFmlSpX02muvKTw8/Lzvxwnt8FaDBw+2TvAZV155papWrWqdAQAAAAAA4HYM2gEAAAAAAADAYXXq1NHUqVNVs2ZN6xTAq1SqVElTpkzhFOALVLt2bX6tADimWbNm6tu3r3UGPKh8+fJ6/fXXf3ck9b9CQ0N1zTXXeKgKTuAiObgcZcqU0VtvvaWEhATrFPipJ554QsnJydYZPuf222/XDTfcYJ0BN4mMjNQbb7yhChUq/O77FhYWOlAEXLxatWqpdevW1hk+YeDAgdYJAAAAAAAAHsGgHQAAAAAAAAAMJCQkaNq0aWrTpo11CuAVEhMT9dFHH6lu3brWKT7luuuus04AEEDuv/9+RUREWGfAAyIjI/Xmm2+qUqVKl/Tz+/Xr5+YiOKlmzZpq1aqVdQZ8WMWKFfXBBx+oSpUq1inwM/fffz+j7Mvw+OOPq3fv3tYZuExBQUF64YUXdMUVV1zQ+xcXF3u4CLh0qamp1gleLzIyUj179rTOAAAAAAAA8AgG7QAAAAAAAABgJCYmRu+++y4v5EPAa926tT788ENVrlzZOsXn9O7dW5GRkdYZAAJE5cqVNXr0aOsMuFlQUJCef/55NWrU6JJv46qrrlJsbKwbq+A0TmnH5apatao++OADntPDbe6//37dfvvt1hk+LSgoSM8995yuuuoq6xRchjFjxqhr164X/P5FRUUerAEuT48ePfi84Xf06tWLr/UBAAAAAAC/xaAdAAAAAAAAAAyFhIRo7NixGjNmjEJDQ61zAMfddNNNeu+99xQTE2Od4pNKly6tIUOGWGcACCC33Xab2rRpY50BN3rooYfUrVu3y7qNkJAQ9enTx01FsNC3b19VrFjROgM+rlq1apo8eTKjdly2Rx55hDG7m4SFhWnChAlq27atdQouwRNPPKEbb7zxon4OJ7TDm4WFhSklJcU6w6sNHDjQOgEAAAAAAMBjGLQDAAAAAAAAgBcYNmyY/vWvf6lKlSrWKYAjwsLCNG7cOD3++OMKCQmxzvFpt99+Oyc3AXDML6d5cyES/3DnnXdq5MiRbrmtG2+8US6Xyy23BeeFh4frzjvvtM6AH/hl1F6zZk3rFPig4OBgPfXUU277swn/ERkZqTfffFMdO3a0TsFFuJQxuySVlJR4oAZwn8GDB1sneK1q1aqpVatW1hkAAAAAAAAew6AdAAAAAAAAALxE8+bN9cUXX6hLly7WKYBHVa9eXVOmTNGgQYOsU/xCXFychg8fbp0BIIBUrFhRTz/9tHUGLtMtt9yiP//5z267vcTERIZyPu66665T1apVrTPgB6pVq6apU6eqWbNm1inwIREREXr11Vd1/fXXW6f4pYiICL322mu65pprrFNwAS51zC5xQju8X61atdS6dWvrDK+UkpLCRcIAAAAAAIBfY9AOAAAAAAAAAF4kJiZGr7/+uh599FFFRERY5wBul5KSoi+//FJNmza1TvErt956q6KioqwzAASQbt26aejQodYZuETDhg3TQw895Pbbvfnmm91+m3BOaGioRo8ebZ0BPxEXF6dJkybp6quvtk6BD4iLi9P777+vrl27Wqf4tbCwMI0fP16pqanWKTiH8PBwvfjii5c8Zpc4oR2+YciQIdYJXsflcmnAgAHWGQAAAAAAAB7FoB0AAAAAAAAAvIzL5dKIESP05Zdfqnnz5tY5gFtERUXpxRdf1LPPPqvSpUtb5/idqKgo3X777dYZAALMI488wnMVH5SamqrHHnvMI7d91VVXqVGjRh65bTgjOTlZ9erVs86AnyhVqpRee+013XDDDdYp8GL16tXTJ598oqSkJOuUgBASEqKxY8fqgQce4BRgL1OuXDlNnjxZffr0sU4BPK579+6KjY21zvAqbdq0UUJCgnUGAAAAAACARzFoBwAAAAAAAAAvVatWLX344Ye67777FBYWZp0DXLIePXpoxowZvCjbw2655RY1btzYOgNAAAkPD9ebb76pOnXqWKfgAo0aNUpjx4716IDNEye/wznBwcEaN26cQkJCrFPgJ4KDg/Xkk09q3LhxCg8Pt86Bl+nataumTp2qqlWrWqcEnNtuu00vv/yySpUqZZ0CSfXr19cnn3yiZs2aWacAjggLC1NKSop1hlfh1wMAAAAAAAQCBu0AAAAAAAAA4MWCg4M1atQozZgxQx06dLDOAS5K5cqV9dprr+mVV15RxYoVrXP8XkhIiP7+979zAQwAjoqJidG7777LSXJezuVy6bHHHtN9993n8ftq06aNrrnmGo/fDzynSZMmuv32260z4GcGDRqkKVOmqHLlytYp8ALBwcG677779Nprr6lMmTLWOQGrZ8+e+vTTT5WYmGidEtBSUlI0depUValSxToFcFRqaqp1gtcoXbq0evbsaZ0BAAAAAADgcQzaAQAAAAAAAMAH1KhRQxMnTtT48eMZAMDrhYaGauTIkfr6668ZtDmsTp06+tOf/mSdASDAVKxYURMnTlRcXJx1Cn5DaGioXnjhBQ0fPtyx+3zggQcUGhrq2P3B/UaPHq0GDRpYZ8DPNGnSRJ9//rk6depknQJDFSpU0KRJkzRq1Ci5XC7rnIBXp04dffrpp0pOTrZOCTgxMTEaP368nn32WZUuXdo6B3BczZo11bp1a+sMr9C7d2+VKlXKOgMAAAAAAMDjGLQDAAAAAAAAgA/p2bOnZs6cqbvuukuRkZHWOcCvdOvWTTNmzNAjjzzCC7KN3HrrrWrVqpV1BoAAU6tWLb399tucsuplYmNj9c4776hv376O3m+tWrV09913O3qfcK/Q0FD9/e9/V0REhHUK/ExcXJzefvttPfHEEwy3AlCfPn00ffp0XXnlldYp+C+RkZF67rnn9Oyzz6ps2bLWOQGhQ4cOmj59OicyI+ANGTLEOsErpKSkWCcAAAAAAAA4gkE7AAAAAAAAAPiYyMhI3XPPPUpLS1NqaqpCQkKskwA1adJEU6ZM0YQJE1SzZk3rnIAWFBSkV155RTVq1LBOARBgGjdurMmTJys+Pt46BZIaNWqkzz77TG3btjW5/1GjRqlFixYm9w33aNCggZ5//nkFBfHSErjfjTfeqM8//1yNGze2ToEDYmJi9MILL+jFF19UTEyMdQ7OISUlRTNmzFCnTp2sU/xW+fLl9eyzz+qdd95RhQoVrHMAc927d1dsbKx1hqkaNWpwYUoAAAAAABAw+FtHAAAAAAAAAPBR5cuX19ixYzVjxgz16dOHoQlMNGrUSK+++qo++eQTXnzpRX45+TLQXxQMwHkNGzbU1KlTVa1aNeuUgJaSkqKpU6cqISHBrCEoKEjPPfecSpcubdaAy9ejRw899NBD1hnwU7Vr19ZHH32kv/zlL4qIiLDOgYf0799fM2fOVL9+/axTcAEqVaqkt99+W+PGjePiA24UFham22+/XbNmzVJKSopcLpd1EuAVwsLCAv508gEDBlgnAAAAAAAAOIZXNwIAAAAAAACAj6tVq5ZefPFFzZw5UykpKZzYDkc0b95cb775pj7//HN1796dF2N7oRo1auiNN95gHATAcTVq1NDHH3+s1q1bW6cEnPDwcD3xxBN69tlnFR4ebp2jatWq6YUXXlBwcLB1Ci7DyJEjNXz4cOsM+KnQ0FD94Q9/0Ndff62rr77aOgduVLNmTb3//vt6/vnnFR8fb52DizRo0CDNmjVLN954I3+OXwaXy6WePXvq66+/1v3338+FfoDfkJqaGrBfVwwKCmLQDgAAAAAAAgqDdgAAAAAAAADwE7Vq1dKzzz6rtLQ03XDDDSpVqpR1EvyMy+VSp06d9N5772natGkMTnxA8+bNNX78eD4eAHBcXFyc3nvvPd10003WKQGjUaNG+uKLL3TjjTdap5ylS5cueuyxx6wzcJkeeeQRDRo0yDoDfqxq1ap68803NX78eFWpUsU6B5chJiZGjzzyiGbMmKF27dpZ5+AyxMTE6IknntCXX36pq666yjrHp4SEhKh///6aMWOGxo8fr+rVq1snAV6rZs2aAXsxtLZt2/K8BwAAAAAABBQG7QAAAAAAAADgZxISEvTkk09q/vz5evDBB1W1alXrJPi40qVLa9iwYfr222/19ttv80J2H9O5c2e9//77iomJsU4BEGBCQkL0+OOP6+WXX1ZUVJR1jt8KDg7WnXfeqWnTpikxMdE65zfdeOONuu2226wzcBmCgoI0btw43XHHHdYp8HM9e/bUrFmz9NBDD/H81ceEhYVp5MiRSktL08iRIxUaGmqdBDepV6+e3nvvPU2ePFlt2rSxzvFq4eHhSk1N1bfffqvnn39ederUsU4CfEJqaqp1gomUlBTrBAAAAAAAAEcxaAcAAAAAAAAAPxUVFaVbb71Vs2fP1oQJE9ShQwcFBfFlYVy4Bg0aaMyYMZo/f77GjBmjmjVrWifhEjVv3lxTp05VQkKCdQqAANSrVy999dVXDKA8oF69epo6dar+/Oc/e/1w8IEHHtDo0aOtM3CZ7r33Xj3xxBN8XgGPCgsL0y233KLvvvtOo0aNUkREhHUSziM0NFRDhw7Vd999p0ceeUTR0dHWSfCQ1q1b64MPPtCUKVPUoUMH6xyvUq9ePY0ZM0YLFizQ2LFjVa1aNbOWkpISs/sGLlX37t0VFxdnneGoMmXKqEePHtYZAAAAAAAAjuJvGAEAAAAAAADAzwUFBalbt26aOHGi0tPT9ec//1k1atSwzoKXio2N1bBhw/Tll1/qq6++0rBhw1SmTBnrLLhB7dq19dFHHykpKck6BUAAqlKliiZNmqSnnnqK09rdICoqSo8++qi++OILNWvWzDrngv3pT3/Sk08+yRjax91444165ZVXVLZsWesU+LmyZcvqvvvu05w5czRq1Ch+z3mZiIgI3XDDDUpLS9Nf//pXVaxY0ToJDmnVqpUmTpyob775RiNGjAjYixiULVtWgwYN0rRp0zR9+nQNGzbMK57nFhcXWyd4HM8l/U9YWJgGDBhgneGoPn36cNEeAAAAAAAQcPjKHgAAAAAAAAAEkEqVKunOO+9UWlqapkyZotTU1IA7/Qa/FhkZqd69e+vVV1/V999/rzFjxuiKK66wzoIHVKhQQVOmTNHdd9+tkJAQ6xwAAcblcun666/XzJkzlZKSIpfLZZ3kc4KCgnT99ddr1qxZGjFihE9+LL/hhhv0xhtvKD4+3joFl6Fbt27697//rdatW1unIACUK1dO9913nzIyMnT//ferfPny1kkBLTY2VnfffbfS09P15JNPqkqVKtZJMFK7dm09+uijmj9/vv7+97+rY8eOCg0Ntc7yqPj4eF1//fV66623tGjRIo0bN07Nmze3zjpLYWGhdYLH+eJzYPy+1NTUgPocMSUlxToBAAAAAADAca6SkpIS6wgAAAAAAAAAgJ2ioiItW7ZM33zzjWbPnq0jR45YJ8EBpUuXVpcuXdSzZ0916tSJE4EC0MqVK/XAAw9o165d1ik+a/jw4XrsscesM5Senq477rjDOsOjEhISNHfuXOsMuNnatWv197//XcuWLbNO8Xoul0vXXHON7r77br+56Mzhw4c1ZsyYgH5sf/nllz7//7O4uFjvvPOOxo8fr4KCAuscn+UPvxeclJ+fr2+++UYff/yxli9fbp0TMBo1aqShQ4fq2muv5fNHnNPx48f13Xff6dtvv9XSpUuVl5dnnXRZQkJC1KRJE7Vu3VodO3ZUy5Ytvf508HfffVd///vfrTM8asKECerWrZt1Bjxg+PDhWrp0qXWGx9WsWVOzZs2yzgAAAAAAAHAcl6oEAAAAAAAAgAAXHBysdu3aqV27dnryySeVmZmpefPmKSMjQ5s3b7bOgxtVq1ZNnTp1UufOndWuXTuFhYVZJ8FQ8+bN9eWXX2rChAmaPHmy8vPzrZMABJjGjRtr8uTJWrx4sV599VVGib8hODhYvXr10h133KF69epZ57hVfHy8Xn/9dX3xxRd66aWXtG/fPuskXIKgoCCNGjVKnTp10rhx4wJigAR7YWFhSk5OVnJysrZu3app06bpq6++0rFjx6zT/E6pUqXUq1cvDR06VM2aNbPOgQ+Ijo7WoEGDNGjQIOXl5WnFihVasmSJFi9erHXr1nn96eFly5ZVgwYN1Lx5c7Vp00YtW7ZUZGSkddZF8fZfY3fghHb/lZqaGhDPJzmdHQAAAAAABCpOaAcAAAAAAAAAnNPPP/+sefPmaeHChVq2bBkDAR8TGRmpFi1aqFOnTurUqZNq1aplnQQvtXfvXr344ouaPn26+Kuj8wsLC1Pr1q3VtWtXde/eXRUqVLBO4oR2+I0ffvhB77//vubOnavi4mLrHFORkZG69tprdcstt6hmzZrWOR6Xl5enKVOm6M033/Tr55tlypRRy5Yt1apVK7Vs2VLNmjXzu0FWRkaGXnjhBS6MdQHKly+vq6++Wl27dlXHjh0VGhpqneTT8vPztWDBAs2cOVNz587VqVOnrJN8lsvlUqtWrTRgwAD16tVLZcqUsU6Cn8jNzdXGjRu1fv16rVu3Ths2bND27duVm5vreEupUqWUkJCg6tWrq379+rriiivUsGFDVa1aVS6Xy/Eed3rppZf0+uuvW2d41DvvvKOOHTtaZ8ADFi5cqFtuucU6w6OCgoKUnp6uSpUqWacAAAAAAAA4jkE7AAAAAAAAAOCClJSUaNOmTVq6dKmWLVum5cuX+/XgyBeVLVtWLVq0UKtWrXTllVeqcePGDGNwUTZs2KCXX35Z8+bNC/gx6X+rWLGi2rdvry5duqh9+/YqXbq0ddJZGLTD3+zevVtTp07VV199pUOHDlnnOCopKUmDBg1Snz59vO5jjROys7P16aef6rPPPvOLQXR0dLRatmyp1q1bq3Xr1mrQoIGCg4OtszyuqKhIX3zxhd566y3t3LnTOsdrBAUFqWHDhurYsaO6du2qJk2a+Pxo0lvl5eVp3rx5+vbbb7VgwQIdP37cOsnruVwuNW3aVN27d1fv3r1VtWpV6yQEkAMHDmj37t3avXu39uzZo0OHDuno0aNn3o4fP67Tp0+roKDgzNsvgoKCFBISotDQUIWGhiosLExlypRRTEzMmbfY2FjFxsaqUqVKqlq1qqpVq6Zy5coZ/hd71rPPPqv33nvPOsOj3n//fbVr1846Ax5w3333acaMGdYZHtWhQwdNnDjROgMAAAAAAMAEg3YAAAAAAAAAwCUpKSnRjh07tGrVKq1evVqrVq3Spk2bznphMTwnJCREderUUePGjdWoUSM1b95cDRo0UFBQkHUa/MDu3bs1bdo0ffbZZzpy5Ih1juPKlSun1q1bq23btmrTpo3Xn47MoB3+qrCwUPPnz9dXX32l+fPnKycnxzrJI2rWrKlrrrlGAwcOVJ06daxzvMbKlSv16aefas6cOT7zZ1HlypWVlJSkpKQktWrVKuCfm5WUlGjhwoWaOnWq0tPTVVRUZJ3kKJfLpfr166tNmzZq06aNWrdurbJly1pnBZyioiKtWrVK8+bN0/fff6/169eLl0r9R6lSpdSqVSt17txZPXr0UMWKFa2TgAtSUlKigoKCM2N2nO2JJ57QtGnTrDM86qOPPlJSUpJ1BtwsOztb7du31+nTp61TPOqFF15Qv379rDMAAAAAAABMMGgHAAAAAAAAALhNfn6+Nm3adNbb5s2bdfToUes0nxYTE6PExETVqVNH9evXV5MmTdSgQQOFhYVZp8HP5efn69tvv9X06dO1dOlS5eXlWSe5XVhYmBo0aKAmTZqoadOmatq0qWrXrm2ddVG2b9/u9yeYlS1bViNHjrTOgKHTp0/r+++/1+zZs7Vw4UKfPrk9KChIzZs3V9euXdW1a1clJiZaJ3m1kpISrV27VgsWLNCCBQu0evVq5efnmzYFBwerevXqql+/vurVq3fm+Rlj0HPbt2+fPvnkE6WlpWnz5s3WOR4RFxd35vlEkyZN1KxZM8XExFhn4X8cOXJEP/7445m3DRs2BMxF2cLDw9WwYUO1adNGV111lZKSkvicEvBD999/v6ZPn26d4VEzZsxQ3bp1rTPgZh9//LEef/xx6wyPKlu2rBYuXKjw8HDrFAAAAAAAABMM2gEAAAAAAAAAHnfgwAFt27ZNO3bs0M6dO7V9+3bt3LlTu3fvDpjxwO+JiIhQQkKCqlatqmrVqql27dpnRuzlypWzzgOUm5urhQsXKj09XfPmzdPBgwetky5ahQoVVLduXSUmJqpu3bq64oorVL9+fYY8gI8pKSnRpk2btGjRIv3www9atWqVDh8+bJ11TmFhYWrUqJGSkpLUokULtWrVSrGxsdZZPquwsFDbtm3Txo0btXHjRm3ZskX79u3TgQMHdOzYMbfcR9myZVW+fHlVqFBBFStWVMWKFVWlShVVr15d1apVU5UqVTgR9jJkZWUpPT1d6enpWrZsmfkFCi5WaGioatSooTp16qhOnTqqW7euGjVqpGrVqlmn4RLk5uZqzZo1WrdunTZu3KgNGzZo27ZtPv95amhoqGrVqqWGDRueuWhTgwYNFBoaap0GwMNuu+02ff/999YZHjVv3jxVqlTJOgNuNmTIEGVmZlpneFRqaqrGjh1rnQEAAAAAAGCGQTsAAAAAAAAAwExxcbEOHDign3/++VdvBw4c0OHDh3XkyBHl5uZap16WyMhIlS9f/sxbuXLlVKFCBVWpUkVVq1ZV1apVGa3Dp5SUlGjbtm1au3at1q1bp/Xr12v9+vU6deqUaVdoaKgqVqyohISEM29Vq1ZV9erVVadOHUVFRZn2AfCc3bt3a82aNdq0aZM2bdqkLVu2aO/evSouLna0o3z58qpdu/aZC9M0btxYjRo14sIZDsnPz9f+/ft19OhR5ebmKi8vT/n5+crLy1NBQYFKSkrkcrkUEhKi0NBQhYWFKSIiQpGRkSpdurTKli2r2NhY/n85KDc3V+vWrTvrbfv27SoqKjLtKlOmjKpUqXLmucQv/6xZs6Zq1qzJKNjP5efna+vWrdq6dat27typXbt2nfmnN11AJTg4+MwFNxISElSjRo0zF2+qUaMGF94AAtT111+v1atXW2d41I8//qgyZcpYZ8CNduzYoZ49e1pneNy0adPUvHlz6wwAAAAAAAAzDNoBAAAAAAAAAF7v1KlTOnLkiA4fPqyjR4/q+PHjys7O1smTJ896y83N1enTp5WXl6fTp0+f9e2ioiIVFRWpuLj4V/90uVwKDg5WUFCQgoODz7z98u/h4eGKiIhQRESESpUqdebbERERKl26tKKios56i46OVlRUlGJiYhQfH6/IyEjrX0LA40pKSrR7925lZWVp3759+vnnn7Vv3z7t27dPhw4dOvNY/O/HZ2Fh4ZnHWUhIyJnHXkhIiMLCwhQZGXlmZPjLP0uXLq3o6GjFx8crPj5ecXFxiouLO/PtoKAg618KAF4iPz9fWVlZ2r17t/bu3atDhw7p4MGDOnz4sI4fP66TJ08qOztbp06dUl5engoLC888XwgODlZYWNhZb+Hh4Spbtqzi4+NVrly5Mx+H4uPjlZCQoNq1azOsAdwgNzdX27dvP+u5xC9vJ06c0OnTp5Wfn3/W8/3i4uKznsf/8rwiJCTkrIsW/PdzijJlyig2NvbM4/iXb5crV47HMs4pNzdXBw8e1IEDB87889ChQzp27NiZP1d++Vz11KlTys/PV1FRkQoKClRYWHjmz5r//b36y+edpUqVOvN79Ze3mJiYs57vxsfHq0KFCqpcuTKjdQC/0qNHD+3cudM6w2OCgoK0fv16uVwu6xS40Ysvvqg3/j/27jy86vrO+/87JGEN+yL7rqAiCIhLBWVpcRdXRmtdOnXGdlzmrp22V+/xnlprx9HWOq1VKaKtWiuoVaFoLSJg1VopS0WRioph3yFAWJKQ5PfHjPy0ahXlm89J8nhc17kO6JWcZ9As53Be5zNhQuqMTPXq1Suefvrp1BkAAAAASRm0AwAAAAAAAAAAANRygwcPjl27dqXOyEzz5s1j3rx5qTM4gKqqqmL06NGxdu3a1CmZ+sY3vhH//M//nDoDAAAAIClHVAAAAAAAAAAAAADUYqWlpXV6zB4R0bZt29QJHGAvvfRSnR+zN2jQIMaNG5c6AwAAACA5g3YAAAAAAAAAAACAWmz9+vWpEzLXvn371AkcYI8//njqhMwdf/zxcdBBB6XOAAAAAEjOoB0AAAAAAAAAAACgFqvrp1xHGLTXNVu2bInf//73qTMyd84556ROAAAAAMgJBu0AAAAAAAAAAAAAtdjy5ctTJ2SuQ4cOqRM4gB5++OEoLy9PnZGpFi1axJgxY1JnAAAAAOQEg3YAAAAAAAAAAACAWmzFihWpEzLnhPa6o7KyMiZPnpw6I3OnnnpqNGrUKHUGAAAAQE4waAcAAAAAAAAAAACoxerDCe0dO3ZMncAB8swzz8TatWtTZ2TunHPOSZ0AAAAAkDMM2gEAAAAAAAAAAABqsaVLl6ZOyFz37t1TJ3CAPPjgg6kTMnfIIYfEoEGDUmcAAAAA5AyDdgAAAAAAAAAAAIBaqrS0NNasWZM6I3M9evRIncABsGjRopg7d27qjMxddNFFqRMAAAAAcopBOwAAAAAAAAAAAEAt9cYbb0R1dXXqjEy1atUqWrZsmTqDA+DnP/956oTMNW/ePM4888zUGQAAAAA5xaAdAAAAAAAAAAAAoJZatGhR6oTMOZ29bnj77bfj2WefTZ2RubPPPjuaNm2aOgMAAAAgpxi0AwAAAAAAAAAAANRSCxcuTJ2QOYP2umHixIlRXV2dOiNTeXl5cdFFF6XOAAAAAMg5Bu0AAAAAAAAAAAAAtVR9GLT3798/dQKf0cqVK2P69OmpMzI3fPjw6NmzZ+oMAAAAgJxj0A4AAAAAAAAAAABQCy1btiw2bNiQOiNzhx56aOoEPqOf/vSnsXfv3tQZmbv00ktTJwAAAADkJIN2AAAAAAAAAAAAgFroxRdfTJ1QIwzaa7c33nijXpzO3qdPnxg+fHjqDAAAAICcZNAOAAAAAAAAAAAAUAu98MILqRMy16lTp2jdunXqDD6D2267LaqqqlJnZO6SSy6JvLy81BkAAAAAOcmgHQAAAAAAAAAAAKCW2blzZ7z00kupMzLndPbabd68eTF79uzUGZlr1apVjBs3LnUGAAAAQM4yaAcAAAAAAAAAAABqRGVlZaxZsya2bt2aOqXWmzNnTpSVlaXOyNzgwYNTJ/ApVVZWxg9+8IPUGTXiwgsvjCZNmqTOAAAAAMhZBakDAAAAAAAAAAAAgLph27ZtsXbt2lizZs2+63Xr1u37/YYNG6KysjIuv/zy+OY3v5k6t1Z7+umnUyfUiGHDhqVO4FOaPHlyvP7666kzMteoUaO4+OKLU2cAAAAA5DSDdgAAAAAAAAAAAOBjVVRUxLp16943WP/b8fquXbs+0fv64x//mHFt3VZSUhKzZ89OnZG5Jk2axIABA1Jn8Cls2bIlfvKTn6TOqBFnnXVWtG3bNnUGAAAAQE4zaAcAAAAAAAAAAABiy5YtHzpSf/eE9U2bNkVVVdUBua0lS5bEli1bok2bNgfk/dU306dPj4qKitQZmRs0aFAUFhamzuBTuPnmm2Pbtm2pMzLXoEGD+PKXv5w6AwAAACDnGbQDAAAAAAAAAABAHVdeXv6Bofp7x+vr1q2L3bt311hPdXV1zJw5M8aPH19jt1mXTJkyJXVCjRg2bFjqBD6FWbNmxRNPPJE6o0Z8/vOfj169eqXOAAAAAMh5Bu0AAAAAAAAAAABQi1VXV8fmzZs/MFJ/71h98+bNUV1dnTr1faZNm2bQ/in86U9/iqVLl6bOqBEnnHBC6gT205YtW+L//b//lzqjxlxxxRWpEwAAAABqBYN2AAAAAAAAAAAAyGG7d+/+wFD9b39dXl6eOnO/zZs3L9asWROdO3dOnVKr3HfffakTakS7du3iiCOOSJ3Bfrr++utj06ZNqTNqxPDhw2PAgAGpMwAAAABqBYN2AAAAAAAAAAAAyCGTJk2KBQsW7Butl5SUpE7KRHV1dUyZMiW+/vWvp06pNf7617/G7NmzU2fUiBNOOCHy8vJSZ7AfHnzwwfj973+fOqPGfPWrX02dAAAAAFBrNEgdAAAAAAAAAAAAAPz/li1bFs8++2y8/vrrdXbM/q6HHnoodu7cmTqj1rjzzjujuro6dUaNGDVqVOoE9sPChQvjpptuSp1RY4YOHRrDhg1LnQEAAABQaxi0AwAAAAAAAAAAQA4ZPHhw6oQas23btnj00UdTZ9QKixYtihkzZqTOqBGNGzeO448/PnUGn9DGjRvjmmuuiYqKitQpNeaqq65KnQAAAABQqxi0AwAAAAAAAAAAQA4ZMmRI6oQaNXHixCgtLU2dkfNuuummenM6++jRo6NZs2apM/gEdu7cGV/72tdiw4YNqVNqzNChQ+Nzn/tc6gwAAACAWsWgHQAAAAAAAAAAAHJInz59okOHDqkzasymTZvirrvuSp2R0x577LFYsGBB6owac8YZZ6RO4BMoLy+PK6+8Ml599dXUKTXq6quvTp0AAAAAUOsYtAMAAAAAAAAAAECOOf7441Mn1Kj7778/iouLU2fkpC1btsTNN9+cOqPGtGrVKkaMGJE6g4+xd+/e+MY3vhEvvfRS6pQaNXTo0DjuuONSZwAAAADUOgbtAAAAAAAAAAAAkGOGDx+eOqFGlZeXx7e+9a2orKxMnZJz/v3f/z1KSkpSZ9SYU045JQoLC1Nn8Hfs3r07rrzyypgxY0bqlBr39a9/PXUCAAAAQK1k0A4AAAAAAAAAAAA5ZsSIEfVu1PvKK6/EXXfdlTojpzzwwAMxa9as1Bk1avz48akT+DtKSkriy1/+csyZMyd1So0bMWJEDBs2LHUGAAAAQK1k0A4AAAAAAAAAAAA5pmXLlnHMMcekzqhxd911V7z44oupM3LCn//857j55ptTZ9SowYMHx2GHHZY6g4/w6quvxvnnnx8LFy5MnVLj8vLy4tprr02dAQAAAFBrGbQDAAAAAAAAAABADho7dmzqhBq3d+/e+Nd//dd46623UqcktXz58rj66qujoqIidUqN+tKXvpQ6gQ9RXV0dkyZNigsvvDBWrFiROieJU045xYstAAAAAHwGedXV1dWpIwAAAAAAAAAAAID327p1a4wYMaLejZojIrp06RIPPvhgdOrUKXVKjSsuLo5LLrkk1q9fnzqlRrVr1y7mzJkThYWFqVN4j8WLF8f3v//9enkq+7sKCwvjqaeeiu7du6dOAQAAAKi1nNAOAAAAAAAAAAAAOah169YxatSo1BlJrF69Or70pS/F6tWrU6fUqOLi4rj44ovr3Zg9IuKLX/yiMXsOWb9+fVx33XVx3nnn1esxe8T//L9pzA4AAADw2TihHQAAAAAAAAAAAHLU7Nmz46tf/WrqjGS6dOkSkyZNit69e6dOydzbb78dl112WWzYsCF1So1r3rx5zJo1K1q0aJE6pd5744034he/+EVMnz49KioqUuck17Jly5gxY0a0atUqdQoAAABAreaEdgAAAAAAAAAAAMhRJ5xwQnTu3Dl1RjKrV6+O8ePHx3PPPZc6JVNPPfVUnH/++fVyzB4R8aUvfcmYPaH169fH/fffHxdeeGGceeaZ8fjjjxuz/6+vfe1rxuwAAAAAB4AT2gEAAAAAAAAAACCHTZw4MW699dbUGUk1aNAgrrnmmvjnf/7nyM/PT51zwJSXl8ctt9wSDzzwQOqUZJo2bRqzZs2K1q1bp06pUT/72c+iqKgounfvHt27d4+uXbtG48aNa+S2t27dGgsWLIj58+fHvHnz4tVXX42qqqoaue3apGfPnjF9+vQoLCxMnQIAAABQ6xm0AwAAAAAAAAAAQA7bunVrjBw5Mvbs2ZM6JblBgwbFf/3Xf0Xv3r1Tp3xmixcvju9+97vx6quvpk5J6oorrohrr702dUaNGz16dKxevXrf7/Py8qJdu3bRoUOH913at28fLVq0iJYtW0bz5s2jZcuW0bRp0ygsLIzCwsIoKCiIwsLCqKioiPLy8n3XJSUlsXnz5ti8eXNs2rQpli9fHsuWLYtly5bFxo0bE37ktcfEiRPjxBNPTJ0BAAAAUCcYtAMAAAAAAAAAAECO+973vhe//vWvU2fkhEaNGsXll18e//iP/xhFRUWpc/bbxo0b48c//nE88cQT9f5U7LZt28aMGTNq5X/Hz+pvB+3kllGjRsWECRNSZwAAAADUGQ1SBwAAAAAAAAAAAAB/3z/90z9FYWFh6oycUFZWFnfccUeMHTs2fvWrX0VZWVnqpE9k06ZN8bOf/SzGjh0bjz32WL0fs0dEXH311fVyzE5ua9SoUXznO99JnQEAAABQpxi0AwAAAAAAAAAAQI7r3LlznHXWWakzcsrmzZvj+9//fpx44olx2223xbp161InfaiXX345vv71r8fIkSPj9ttvj127dqVOygl9+/aN8ePHp86AD7jiiiuiR48eqTMAAAAA6pS86urq6tQRAAAAAAAAAAAAwN+3Zs2aOOmkk6K8vDx1Sk4qKCiIY489Nk466aT4/Oc/H23atEnSUV5eHvPnz48//OEPMWvWrCguLk7SkevuvffeOP7441NnJDN69OhYvXp16gz+Rq9evWLatGnRsGHD1CkAAAAAdYpBOwAAAAAAAAAAANQSN998c9x7772pM3Jefn5+DBw4MI466qgYNmxYDBkyJJo3b57JbW3ZsiWWLFkSixcvjgULFsTLL7/sFPaPMW7cuLjllltSZyRl0J6b7rvvvjj22GNTZwAAAADUOQbtAAAAAAAAAAAAUEts3749vvCFL0RJSUnqlFqnU6dO0adPn+jTp09069Yt2rVrF+3bt4927dpFs2bNomHDhtGoUaNo2LBhVFZWRllZWezZs2ffZfPmzbF27dpYv359rF27NtauXRtvvPFGrF27NvWHVqu0adMmnnrqqWjdunXqlKQM2nPP+eefHzfeeGPqDAAAAIA6yaAdAAAAAAAAAAAAapHJkyfHd7/73dQZ8Knceuutcfrpp6fOSM6gPbd07Ngxpk+fHs2bN0+dAgAAAFAnNUgdAAAAAAAAAAAAAHxy48ePj0GDBqXOgP02duxYY3Zy0g033GDMDgAAAJAhg3YAAAAAAAAAAACoRRo0aBDXX399FBQUpE6BT6xz585x4403ps6ADzj33HPjxBNPTJ0BAAAAUKcZtAMAAAAAAAAAAEAtc9hhh8UVV1yROgM+kfz8/PjRj34ULVu2TJ0C79OtW7f4v//3/6bOAAAAAKjzDNoBAAAAAAAAAACgFvra174Whx12WOoM+FhXX311DB06NHUGvE9+fn7cfPPNUVRUlDoFAAAAoM4zaAcAAAAAAAAAAIBaqLCwMH74wx9G06ZNU6fARxo7dmx89atfTZ0BH/C1r33NCy0AAAAA1BCDdgAAAAAAAAAAAKil+vbtG9dff33qDPhQhx56aNx8882Rl5eXOgXe5+ijj44rr7wydQYAAABAvWHQDgAAAAAAAAAAALXYuHHj4oILLkidAe/Trl27uOuuu6Jp06apU+B92rZtG7feems0aOBp1AAAAAA1xSMxAAAAAAAAAAAAUMtdd911cfTRR6fOgIiIaNasWdx1113RqVOn1CnwPvn5+XHrrbdGhw4dUqcAAAAA1CsG7QAAAAAAAAAAAFDLFRYWxu233x49e/ZMnUI916hRo7jrrrti4MCBqVPgA771rW/FcccdlzoDAAAAoN4xaAcAAAAAAAAAAIA6oFWrVjFx4sRo165d6hTqqYKCgvjJT34SxxxzTOoU+IAzzjgjLrvsstQZAAAAAPWSQTsAAAAAAAAAAADUET169Ih77703WrZsmTqFeqagoCB++MMfxqhRo1KnwAcMHjw4fvCDH6TOAAAAAKi3DNoBAAAAAAAAAACgDunXr19MmjQpioqKUqdQTzRq1Ch+9rOfxamnnpo6BT6ge/fuceedd0ajRo1SpwAAAADUWwbtAAAAAAAAAAAAUMcMHDgwfvGLX0SrVq1Sp1DHNWvWLO6++24ns5OT2rRpExMnTow2bdqkTgEAAACo1wzaAQAAAAAAAAAAoA4aOHBg3H///dG2bdvUKdRR7dq1i1/+8pdxzDHHpE6BDygqKopJkyZFr169UqcAAAAA1HsG7QAAAAAAAAAAAFBH9evXLyZPnhw9e/ZMnUIdc+ihh8ajjz4aAwcOTJ0CH9CkSZOYMGFCHH744alTAAAAAAiDdgAAAAAAAAAAAKjTunfvHlOmTIlhw4alTqGO+MIXvhC//vWvo1OnTqlT4AOaNm0aP//5z33NAwAAAMghBu0AAAAAAAAAAABQx7Vq1SruvffeGD9+fOoUarH8/Py4+uqr4/bbb4+mTZumzoEPaNq0adx9991xzDHHpE4BAAAA4D0M2gEAAAAAAAAAAKAeaNiwYXz/+9+P//zP/4xGjRqlzqGWOeigg+K+++6Lq666KvLy8lLnwAe0bds2HnjggTjqqKNSpwAAAADwNwzaAQAAAAAAAAAAoB4599xzY/LkydGrV6/UKdQSo0aNiqlTp8awYcNSp8CH6tmzZ0yZMiUGDBiQOgUAAACAD2HQDgAAAAAAAAAAAPXMYYcdFo8//nhccMEFqVPIYS1atIgbb7wxJkyYEK1bt06dAx/q2GOPjcmTJ0e3bt1SpwAAAADwEQzaAQAAAAAAAAAAoB5q0qRJfO9734uJEydGx44dU+eQY8aMGRPTp0+P888/P3UKfKRLL7007r33Xi+4AAAAAJDj8qqrq6tTRwAAAAAAAAAAAADplJaWxo9//ON46KGHoqqqKnUOCXXs2DG+/e1vx6mnnpo6pU4bPXp0rF69OnVGrdWiRYv43ve+5/9TAAAAgFrCoB0AAAAAAAAAAACIiIhXXnklbrzxxli0aFHqFGpY48aN4ytf+Ur80z/9UzRp0iR1Tp1n0P7pDR06NH70ox9F586dU6cAAAAA8AkZtAMAAAAAAAAAAAD7VFdXx9SpU+PHP/5xrF+/PnUOGcvLy4vTTjst/u3f/i06deqUOqfeMGjff02aNIlrrrkmLr300sjPz0+dAwAAAMB+MGgHAAAAAAAAAAAAPmD37t3xq1/9KiZNmhQlJSWpczjA8vLy4gtf+EJcddVV0a9fv9Q59Y5B+/457rjj4vvf/35069YtdQoAAAAAn4JBOwAAAAAAAAAAAPCRSktL47777ov77rsvtm3bljqHzygvLy/GjBkTV199dfTv3z91Tr1l0P7JdOvWLb75zW/GSSedlDoFAAAAgM/AoB0AAAAAAAAAAAD4WLt27YpHHnkk7rvvPkPcWqhJkyYxbty4uPTSS6N3796pc+o9g/a/r3Xr1nH55ZfHJZdcEg0bNkydAwAAAMBnZNAOAAAAAAAAAAAAfGJ79+6N3//+9/Hggw/G/PnzU+fwMTp16hRf/OIXY/z48dGqVavUOfwvg/YP16pVq7jsssvikksuiWbNmqXOAQAAAOAAMWgHAAAAAAAAAAAAPpWlS5fGQw89FL/97W9jx44dqXP4Xw0bNozRo0fHueeeG8OHD48GDRqkTuJvGLS/X48ePeLiiy+Oc889N5o2bZo6BwAAAIADzKAdAAAAAAAAAAAA+EzKysri2WefjalTp8YLL7wQe/fuTZ1U7+Tl5cWRRx4Zp512WpxxxhlOY89xBu0RBQUFccIJJ8T5558fI0eO9MILAAAAAHWYQTsAAAAAAAAAAABwwGzZsiVmzJgRM2bMiJdfftm4PUMNGjSIIUOGxEknnRQnnXRSHHTQQamT+ITq86B9wIABceqpp8a4ceOiXbt2qXMAAAAAqAEG7QAAAAAAAAAAAEAmSkpKYvbs2TF79ux46aWXYvv27amTar3WrVvH8ccfHyNGjIjhw4cbBNdS9WnQXlhYGIMHD45Ro0bF2LFjo2vXrqmTAAAAAKhhBu0AAAAAAAAAAABA5iorK2PhwoXx/PPPx8svvxyvvfZaVFRUpM7KeUVFRXHkkUfGUUcdFccff3wMGDAgGjRokDqLz2jq1Knx2muvxbJly2LZsmWxdu3aqCtP6S0sLIz+/fvHkCFD4phjjoljjz02mjVrljoLAAAAgIQM2gEAAAAAAAAAAIAat3v37vjLX/4Sc+fOjb/85S+xePHi2LZtW+qspPLy8qJ79+4xYMCAGDx4cAwdOjT69+9vwF4PlJWVxapVq2LVqlWxcuXKWL16daxfv37fZcOGDVFWVpY68wOaNWsWvXv3jn79+kX//v3j0EMPjQEDBkTjxo1TpwEAAACQQwzaAQAAAAAAAAAAgJywfPnyeO211+L111+PN998M956661Ys2ZNnTm5+r2aN28ePXv2jIMPPjgOPfTQOOyww6J///5RVFSUOo0cVVpaGps3b44tW7bEli1boqSkJHbs2BHbtm2LHTt2xI4dO2LXrl2xa9eu2L17975LeXl5VFRU7LuurKyMysrKqK6ujqqqqqiqqoq8vLwoKCiIgoKCyM/PjyZNmkSzZs2iqKgomjdvHm3atIn27dtHu3bt4qCDDoquXbtGjx49om3btqn/WAAAAACoBQzaAQAAAAAAAAAAgJy1a9euePvtt6O4uDhWrlz5vhOsN2zYEBUVFakTP1R+fn60a9cuOnfuHB07doxOnTpFz549o1evXtGrV69o37596kQAAAAAgBph0A4AAAAAAAAAAADUStXV1bF169bYsGFDbNy4MTZt2hQlJSVRUlIS27dvj23btsX27dvfd2L1nj17Ys+ePVFRURFVVVWxd+/eqKqqisrKyoj4nyF6gwYN9p1UnZ+fH4WFhdG0adMPXJo3bx6tWrWKNm3aROvWraN169b7TrLu0KFDFBQUJP4TAgAAAABIz6AdAAAAAAAAAAAAAAAAAACATDRIHQAAAAAAAAAAAAAAAAAAAEDdZNAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBM/Q/LRQABAABJREFUGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMFKQOAAAAAAAAAAAAyEX9+vVLnZC5Z599Nrp27Zo6AwAAAGqE+/oAAGk4oR0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkoSB0AAAAAAFAXrFq1KsaMGZM6gxyRl5cX+fn50aBBg33X7/66cePG0ahRo2jUqNG+Xzdu3DiKioqiefPm+67fvbRp0+Z9l8aNG6f+8AAAAAAAAAAAAOATM2gHAAAAAIADrLq6Ovbu3ZvJ+27atGm0a9cuOnbsGB07doxOnTrtu+7atWt07949GjVqlMltAwAAAAAAAAAAwP4yaAcAAAAAgFpk165dsWLFilixYsWH/vu8vLw46KCDonv37tG9e/fo1atXHHzwwXHIIYdEp06dargWAAAAAAAAAACA+s6gHQAAAAAA6pDq6upYt25drFu3LubOnfu+f1dUVLRv3D5gwIA44ogj4uCDD46CAn9dAAAAAAAAAAAAQDY8Qw0AAAAAAOqJ0tLSWLhwYSxcuDCmTJkSERGNGjWK/v37x8CBA2Po0KFx1FFHRfv27ROXAgAAAAAAAAAAUFcYtAMAAAAAQD1WVlYWr7zySrzyyivxwAMPREREz549Y+jQoXHMMcfE8OHDo23btokrAQAAAAAAAAAAqK0M2gEAAAAAgPcpLi6O4uLi+M1vfhN5eXlx2GGHxYgRI2LEiBExePDgyM/PT50IAAAAAAAAAABALWHQDgAAAAAAfKTq6upYvHhxLF68OCZMmBCtW7eOz3/+8zF27Ng47rjjorCwMHUiAAAAAAAAAAAAOcygHQAAAAAA+MS2bt0ajzzySDzyyCPRokWLGDNmTJx11llxzDHHRF5eXuo8AAAAAAAAAAAAcoxBOwAAAAAA8Kls3749Hn/88Xj88cejS5cuceaZZ8bZZ58dPXr0SJ0GAAAAAAAAAABAjmiQOgAAAAAAAKj9Vq9eHXfddVecdNJJ8ZWvfCXmzJkTVVVVqbMAAAAAAAAAAABIzAntAAAAAADAAVNdXR0vvPBCvPDCC9G9e/e46KKL4vzzz49mzZqlTgMAAAAAAAAAACABJ7QDAAAAAACZWLFiRdx0000xevTouOOOO2LHjh2pkwAAAAAAAAAAAKhhBu0AAAAAAECmSkpK4qc//WmMGjUqbrvtNsN2AAAAAAAAAACAesSgHQAAAAAAqBE7duyICRMmxBe+8IW4//77o6KiInUSAAAAAAAAAAAAGTNoBwAAAAAAatTWrVvjBz/4QZx66qnxzDPPpM4BAAAAAAAAAAAgQwbtAAAAAABAEitWrIirrroqrrjiili1alXqHAAAAAAAAAAAADJg0A4AAAAAACQ1Z86cOP3002PixIlRWVmZOgcAAAAAAAAAAIADyKAdAAAAAABIbvfu3XHrrbfGF7/4xVixYkXqHAAAAAAAAAAAAA4Qg3YAAAAAACBn/OUvf4lx48bFI488kjoFAAAAAAAAAACAA8CgHQAAAAAAyCm7du2K6667Lq699trYvXt36hwAAAAAAAAAAAA+A4N2AAAAAAAgJz355JMxfvz4WLFiReoUAAAAAAAAAAAAPiWDdgAAAAAAIGctXbo0zjvvvHjxxRdTpwAAAAAAAAAAAPApGLQDAAAAAAA5bdu2bXHFFVfEtGnTUqcAAAAAAAAAAACwnwzaAQAAAACAnFdRURHf+ta34t57702dAgAAAAAAAAAAwH4waAcAAAAAAGqF6urquPnmm+OnP/1p6hQAAAAAAAAAAAA+IYN2AAAAAACgVrnjjjvizjvvTJ0BAAAAAAAAAADAJ2DQDgAAAAAA1Do/+clPYuLEiakzAAAAAAAAAAAA+BgG7QAAAAAAQK106623xhNPPJE6AwAAAAAAAAAAgL/DoB0AAAAAAKi1rrvuupg7d27qDAAAAAAAAAAAAD6CQTsAAAAAAFBrVVRUxNVXXx3FxcWpUwAAAAAAAAAAAPgQBu0AAAAAAECtVlJSEldffXXs2bMndQoAAAAAAAAAAAB/w6AdAAAAAACo9ZYuXRo33nhj6gwAAAAAAAAAAAD+hkE7AAAAAABQJzzyyCPx29/+NnUGAAAAAAAAAAAA72HQDgAAAAAA1Bk33HBDbNiwIXUGAAAAAAAAAAAA/8ugHQAAAAAAqDO2b98eN9xwQ+oMAAAAAAAAAAAA/pdBOwAAAAAAUKc888wz8bvf/S51BgAAAAAAAAAAAGHQDgAAAAAA1EE33XRT7N69O3UGAAAAAAAAAABAvWfQDgAAAAAA1Dnr16+Pe+65J3UGAAAAAAAAAABAvWfQDgAAAAAA1En33HNPbNiwIXUGAAAAAAAAAABAvWbQDgAAAAAA1Em7du2KO+64I3UGAAAAAAAAAABAvWbQDgAAAAAA1FmPPfaYU9oBAAAAAAAAAAASMmgHAAAAAADqrPLy8vjlL3+ZOgMAAAAAAAAAAKDeMmgHAAAAAADqtMmTJ8f27dtTZwAAAAAAAAAAANRLBu0AAAAAAECdtnPnzpg6dWrqDAAAAAAAAAAAgHqpIHUAAAAAAAC1T5cuXWLWrFmpM3JKdXV1VFRURHl5eezduzcqKiqioqIi9uzZEyUlJbFt27b3XdauXRurVq2KNWvWxPr166OioiL1h1CnPfzww3HxxRenzgAAAAAAAAAAAKh3DNoBAAAAAOAAyMvLi4YNG0bDhg33+20rKytj/fr18eabb8Zf//rXWLJkSSxZsiRWrFgRVVVVGdTWP0uXLo1XXnklBg0alDoFAAAAAAAAAACgXjFoBwAAAACAxPLz86Nz587RuXPnOPHEE/f989LS0pg3b1689NJL8dJLL8XSpUujuro6YWnt9pvf/MagHQAAAAAAAAAAoIYZtAMAAAAAQI4qKiqKkSNHxsiRIyMiYsuWLTFz5syYPn16/PnPf3Z6+36aOXNmXH/99dGgQYPUKQAAAAAAAAAAAPWGZ2wBAAAAAEAt0aZNmxg/fnzcf//98dxzz8V3vvOd6NWrV+qsWmPz5s0xf/781BkAAAAAAAAAAAD1ikE7AAAAAADUQh06dIjLLrssfve738Wdd94ZQ4cOTZ1UK8yYMSN1AgAAAAAAAAAAQL1i0A4AAAAAALVYXl5ejBkzJn7961/HQw89FAMHDkydlNOee+651AkAAAAAAAAAAAD1ikE7AAAAAADUEUOGDImHH344brrppmjfvn3qnJy0fPnyWLduXeoMAAAAAAAAAACAesOgHQAAAAAA6pC8vLw455xz4umnn46TTz45dU5Oevnll1MnAAAAAAAAAAAA1BsG7QAAAAAAUAcVFRXFT37yk/jOd74ThYWFqXNyikE7AAAAAAAAAABAzTFoBwAAAACAOuyyyy6LX/7yl1FUVJQ6JWf85S9/SZ0AAAAAAAAAAABQbxi0AwAAAABAHXfUUUfFxIkTo2nTpqlTckJxcXHs2bMndQYAAAAAAAAAAEC9YNAOAAAAAAD1wNChQ2PixInRpEmT1CnJVVZWxtKlS1NnAAAAAAAAAAAA1AsG7QAAAAAAUE8MGzYs/uM//iN1Rk5YsmRJ6gQAAAAAAAAAAIB6waAdAAAAAADqkXPOOSdOP/301BnJvfXWW6kTAAAAAAAAAAAA6gWDdgAAAAAAqGe+973vRdeuXVNnJLVq1arUCQAAAAAAAAAAAPWCQTsAAAAAANQzRUVF8c1vfjN1RlIG7QAAAAAAAAAAADXDoB0AAAAAAOqhk08+OY444ojUGckYtAMAAAAAAAAAANSMgtQBAAAAAABAGt/4xjfisssuS52RxK5du6KkpCRatWqVOoUcV1ZWFmvWrImNGzfGpk2b3nfZsWNHlJaWRmlpaezcuTNKS0ujvLw8KisrY+/evVFRURGVlZWRl5cXhYWF+y4FBQVRWFgYjRs3jhYtWkSrVq2iZcuW0aJFi2jZsmW0bt06OnXqFJ07d44uXbpE8+bNU/8xAPuprKws3nnnnVi5cuX7vn68++udO3dGWVlZlJWVRUVFRZSVlUV5eXnk5eXt+xrx7nVRUVG0bNkymjdvHi1atIjWrVvHQQcdFJ06dYqOHTvuu87Pz0/9YUONqK6ujs2bN8eGDRti/fr1sX79+ti4cWNs27YtduzYEdu3b4/S0tJ91+Xl5bF37959l4qKiti7d280aNAg8vPzo6CgIAoKCiI/Pz8aN24cRUVF0axZs32Xli1bRtu2baNt27bRrl27aNu2bRx00EHRuXPnaNiwYeo/DuATqK6ujlWrVkVxcXFs2LDhfd+TN23aFNu2bdv3ffm9358rKyv3fY1o2LBhFBQUROPGjff97P7upUOHDvu+H3fs2DG6dOkSTZs2Tf1hQ72yZs2aePPNN2P9+vWxYcOGfT8nbNy4MXbu3Bnl5eWxZ8+efZ/j1dXV0ahRow9cmjVrFh06dIgOHTpE+/bto3379tGhQ4fo1q1bdOvWLRo0cIZUrqmqqoq1a9dGcXFxrFy5MjZv3hxbtmyJzZs3x+bNm6OkpCR2794d5eXl++53vfdr/LuP1TRs2DCaN28eLVu2jFatWkWrVq2iQ4cO0aVLl/ddCgsLU3/I8KlUVlbGpk2b9n2N3LJlS2zbtm3fpaSkJHbu3Bm7du2KPXv27Lves2dPVFZWfuDy3vtT+fn5kZ+fH02aNImmTZtGs2bN9l23bNky2rRpE23atIm2bdtGmzZtolOnTtGpU6coKipK/ccC9dbu3bujuLg4Vq9eHatWrYpVq1bF6tWrY9OmTbFnz57YvXv3vktZWVk0aNAgmjZt+r5L+/bto3v37tGtW7fo0aNHdO/ePbp27ernJQAA/i6DdgAAAAAAqKeOO+64OPzww2Px4sWpU5IwaOdde/fujeLi4njzzTfjrbfeihUrVux7EtfGjRujurr6M99GZWVl7Nmz51O9bfPmzaNz587RrVu36Nu3b/Tr1y8OPvjg6NWrVxQU+Os+SG3lypWxYMGCWLp0abz99tvx9ttvx6pVq6KqqupTvb+9e/e+7+vFhg0bPvZtGjZsGL17946+fftGnz59on///nHkkUdGmzZtPlUDpFZdXR2rV6+Od955J4qLi/dd3nnnndiwYUNUVFR85tt4d4hRXl7+qd6+QYMG0aFDh+jatWt06dIlevXqFQcffHAccsgh0a1bt8jLy/vMjcD+27ZtWyxcuDBef/31ePvtt2PZsmWxbNmyT/2zeHl5eZSXl8euXbv2/bNVq1b93bfJy8uLzp07R58+faJv375x8MEHx6BBg6J3796+NsAB8Pbbb8e8efNiyZIlsXTp0li6dGns2LFjv9/Prl273ve5/XGaNGkSffr0iUMOOSQOOeSQ6NevXxx55JFewKIG7dixIxYtWhSvvPJKLFmyJIqLi2P58uVRVlb2qd7fu1/j3/Vx970KCwv33d/q169fDBo0KI444ggvckTO2Lp1a7zzzjuxYsWKWLFiRSxfvjxWrlwZ69ati02bNkVlZeUBu60Puz9VUlKyX++jZcuW0alTp+jWrVv07t07evfuHX369InevXtHs2bNDlgrELFp06aYP39+LFiwIObPnx9LliyJvXv37tf7KC8v/9jP86ZNm8Zhhx0WAwcOjGOOOSaOOuooL14BAMD75FUfiGfgAAAAAADUc6tWrYoxY8akzqgxXbp0iVmzZqXO4AB44IEH4sYbb0ydkcTkyZNj8ODBqTOoYXv27InXX389Xn311Xj11VfjjTfeiHfeeeeADONqWmFhYfTu3TsGDBgQQ4cOjaFDh0bPnj1TZ0GdVl1dHUuWLIl58+bF/PnzY/78+bFx48bUWR+pR48eMXjw4DjqqKNixIgR0bFjx9RJ8AFVVVXxzjvvxOLFi+P111/fd11aWpo67VNr0qRJ9O3bNwYOHBgDBw6MQYMGRc+ePQ1Za6l+/fqlTsjcs88+G127dk2d8amsXbs25s6du2+c8dZbbx2QF6TKQosWLWLQoEFx5JFHxvDhw2PgwIFOL4RPYN26dfHiiy/Gn/70p/jTn/70iV7wqaYUFhbGwIED49hjj41jjz02jjzySOPmA2jbtm3x/PPPx4svvhivvPJKLFu2LOe+xjdu3DgGDRoURx99dIwaNSoOP/zw1EnUA1VVVbFs2bJ47bXX4o033oilS5fGG2+8kdOPT+yPvLy86N69ewwYMCAOP/zwOPzww2PAgAFGsbCftmzZEk899VRMnTo1Fi1alKShsLAwjj322Dj99NPj5JNPjsaNGyfp+DDu6wMApGHQDgAAAABwABi0U1tt3bo1RowYUSvHvJ/VhAkTYtSoUakzyNjmzZtj7ty5MXfu3Fi4cGG8+eab+33ySG3Srl27GDJkSAwbNixGjhwZ3bt3T50EtV5FRUXMnTs3Zs6cGTNnzsypAc3+OuSQQ+KEE06I0aNHx5AhQ4xrSaKysjIWL1687/vz/Pnza/V4/ZNq2bJlDBkyJI499tj43Oc+F4ccckjqJD4hT3LPPW+88UY888wz8eyzz8brr7+eOudTa9WqVQwfPjxOOOGEGDNmjJEWvMeWLVvid7/7XTz55JOxYMGCnBsxf5QmTZrEiSeeGGeccUaccMIJxu2fQnFxccyaNStmz54dCxYsqHWP4XTp0iVGjx4dp5xySgwdOjR1DnXEzp07Y968ebFw4cJ45ZVXYtGiRfXiPtR75efnx2GHHRbDhg2Lo446KoYNGxYtWrRInQU5afbs2TFlypR44YUXcurv/i6++OK47rrrUmfs474+AEAaBu0AAAAAAAeAQTu12ZVXXhkzZ85MnVHj/uu//ivOPvvs1BkcYLt27YqXXnopXnjhhZg7d2689dZbqZOS6tOnT4waNSpGjRoVgwcPjvz8/NRJ/B3XXHNN7Ny5M3XGATdy5Mi4+OKLU2fsl+rq6vjjH/8YTzzxRMyZMye2b9+eOumA69KlS5xxxhlxxhlnRN++fVPnUMetWbMmZs+eHc8991y9GbB/nHbt2sXnPve5GDNmTIwYMSKaNWuWOomPUB+e5D5r1qzo0qVL6oy/a9myZfHoo4/GjBkzYuXKlalzDrjGjRvHyJEjjWATq6qqiiuuuCKqqqpSpxxwp5xySpx33nmpM/6uysrKeOaZZ+KRRx6Jl156KSorK1MnfSYtW7aMsWPHxplnnhlHH3106pyctmfPnnj66afj4Ycfjvnz56fOOWB69+4d5513Xpx11lnRtm3b1DnUInv37o2FCxfGH//4x/jTn/4UixYtqnUv7pC1/Pz8GDx4cJx44olxwgknRP/+/VMn8QnceuutsXTp0tQZB1zv3r3j29/+duqMmDNnTvz0pz+NxYsXp075UBdddFH8x3/8R+qMferDfX2D9v1XXl4eX/nKV2Lu3LmpU2rUmWeeGbfccosXwAWgRhi0AwAAAAAcAAbt1GYPPvhg3HDDDakzatz1118fF154YeoMDoCVK1fGnDlzYs6cOTF37twoLy9PnZSTWrVqFaeddlqcffbZccQRR6TO4UOcdtppdfJFGIYPHx733HNP6oxPZNOmTfHYY4/Fww8/XCfHch9l8ODBcckll8TYsWOjoKAgdQ51xKuvvrrvdM0lS5akzslpjRo1is997nPx+c9/Pk466aRo3rx56iTeoz48yf25556Ljh07ps74gPLy8vj9738fU6ZMiT//+c+pc2pM27Zt4x/+4R/iwgsvjA4dOqTOqXdGjBgRGzZsSJ1xwJ166qlx2223pc74UKWlpfHoo4/G/fffH6tXr06dk4n+/fvHV77ylTj11FP9vP0e77zzTjz44IMxderUOvkiYu9q2LBhnH322XH55ZdH9+7dU+eQo0pLS+MPf/hDzJo1K/7whz/Etm3bUifVKl26dImTTz45Tj311BgwYEDqHD7CN77xjZg+fXrqjAOuffv28cILLyS7/blz58Ytt9wSr776arKGT8KgveYZtO+/b33rWzF16tTUGTVq+PDhMWHChCgsLEydAkA94ZExAAAAAACo5+rrKVEVFRWpE/gM1q1bF0899VQ8+eST8dprr6XOqRVKSkriwQcfjAcffDD69u0bZ511Vpx55plx0EEHpU7jf3Xo0KFODtrXrFmTOuFjLV68OCZOnBjPPvtsvfz+sHDhwli4cGF07NgxLrroorjoooucFs2nsnz58pg2bVpMmzYtVqxYkTqn1igrK4vZs2fH7Nmz44YbbohRo0bFuHHjYsSIEZ5MSo3Iz89PnfA+mzZtinvvvTd+85vfRElJSeqcGrd58+a488474+67746TTjoprrjiijjkkENSZ9UbHTp0qJOD9lz8mbykpCQmTpwYU6ZMidLS0tQ5mfrrX/8a3/zmN+O///u/49JLL43zzz8/mjZtmjormeLi4rjzzjtj+vTpUVlZmTonc+Xl5TFlypR49NFH4+STT45rrrkmevbsmTqLHLB79+6YPXt2/Pa3v43nn3++Xj4ecaCsXr067rnnnrjnnnuiR48ecfrpp8e5554bXbp0SZ3Ge7Rv3z51QiY2bdoUFRUVNX7/vbS0NG655ZZ4+OGHwxmX8Nndfvvt9W7MfsQRR8Ttt9/u8UcAapRBOwAAAAAA1HN9+/aN1q1bx9atW1On1CineNc+O3fujCeffDKeeOKJWLBggSdpfQZvvfVW/OhHP4r//u//jpNPPjm+/OUvO70oB7Rt2zZ1QibWrVuXOuEjLVq0KO68886YPXt26pScsG7durj11lvj3nvvjcsvvzwuuuiiaNKkSeosctyOHTvit7/9bUybNi0WLlyYOqfWKysri6effjqefvrpaNOmTZxzzjlxwQUXRLdu3VKnUYflyqB9/fr1MWnSpHj44Ydjz549qXOSq6ioiOnTp8eTTz4Zp5xySlx11VXRp0+f1Fl1Xrt27VInZGLt2rWpE/YpKyuLBx54IH7+85/X6VO5P8zq1avjP//zP+Puu++Of/u3f4tx48ZFXl5e6qwas2LFirjzzjtj2rRp9WLI/rcqKyvjySefjBkzZsQFF1wQV155ZbRu3Tp1FjWsuro65s6dG48++mjMnDkzdu3alTqpzlm+fHnccccdcdddd8Xxxx8f48ePj9GjR0dBgdlEanX1sc/q6urYsGFDjb6Awpw5c+K73/1uTj/uCrXJE088ET/72c9SZ9Sonj17xsSJE+v1C20BkIZ7ZgAAAAAAUM/l5eXFkCFD4tlnn02dUqOceFN7/PWvf43JkyfHtGnTYufOnalz6pS9e/fG9OnTY/r06XH00UfHP/7jP8bIkSPr1RPqc0nLli1TJ2Ri165dUVpaGkVFRalT9lm0aFHcfvvt8Yc//CF1Sk7aunVr/PCHP4xf/OIX8X/+z/+Jc889Nxo0aJA6ixzz1ltvxa9+9auYOnWqEUZGtmzZEpMmTYp77rknjj/++PjiF78Yo0aN8vnIAZd63LNhw4aYMGFCPPLII1547ENUV1fHU089FU8//XScddZZce2119bZ0y1zQYsWLVInZGLz5s1RXV2d/L7etGnT4rbbbsvJE+Nr0saNG+Pb3/52/PrXv47rrrsuBg4cmDopU2VlZTFhwoS4++67PR4X//OY5AMPPBBTp06Na6+9Ni644ILkn5tkb8uWLfHYY4/FI488EsXFxalz6oWqqqp4/vnn4/nnn4/OnTvHJZdcEueff35OPT5V39TVxz4j/udnrZoYtFdVVcVtt90WEydOzPy2oL6YO3duXHfddakzalT79u1j0qRJ0aZNm9QpANRD/oYLAAAAAACI3r17p06ocU73zm3V1dUxc+bMuPDCC2PcuHHx0EMPGbNnbO7cufHVr341zjzzzJg5c2bqnHqpefPmqRMys3nz5tQJEfE/TyD/93//9xg/frwx+yewadOmuO666+K8886LefPmpc4hB7z7/fnSSy+N0047LR566CFj9hpQXV0dL7zwQvzLv/zL/8fefYc3Vf59HP+kezLKKEOWbMqWoQICyhRkKbL3FEQUEZQhQ0CQLcgs+GMKZSt7yoaKIHtDoYW2tHTvpM3zhw9IoIWWJuebnPN5XReXNk1P3tCRNDnf+0bz5s2xfv16Dv2SWUnt0K7X67F8+XI0a9YMa9as4df1K6SlpWHz5s1o2rQpli5dyn8vC1HroJXBYEBkZKTY7QcHB6NPnz745ptvND/M/qzz58/j008/xejRoxEXFyedYxHHjh1Dy5YtsWDBAg6zPycmJgbjx49Hly5dcPv2bekcspBbt25h9OjRqF+/PqZPn85hdiEPHz7E1KlT0aBBA8yYMQMRERHSSZqk5sUEwsPDLX4bcXFxGDRoEIfZiczozp07+PzzzzX1ONXd3R1LlixBkSJFpFOIiEijONBORERERERERERERESafNHaxcVFOoHSYTAYsG3bNnz00UcYPHgwzp49K52kOTdu3MDgwYPRoUMHnD59WjpHU9zd3aUTLEZ6oD01NRVr1qxBs2bNsHHjRi5qkkWXL19Gly5dMGrUKMTGxkrnkIC0tDRs374dLVu2xODBg3Hq1CnpJM0KCAjA999/j4YNG2LJkiVcUIDMQmKH9pMnT6JNmzaYNm0aF67Kovj4eMyYMQOtW7fGuXPnpHNUx83NTTrBYqSG99avX48WLVrg2LFjIrdv7YxGIzZu3Ii2bdviwoUL0jlmExMTg6+//hp9+vTB/fv3pXOs2t9//402bdpgxYoV0ilkRmfOnEG/fv3QsmVLbNy4kQvRWInY2FgsXboUjRo1wty5c/kch8LU/NynpRcOevDgATp06IBDhw5Z9HaItCQiIgL9+/dHdHS0dIpiHB0d8csvv6BChQrSKUREpGEcaCciIiIiIiIiIiIiIk0OtDs7O0sn0DPS0tKwadMmNGnSBCNGjMDNmzelkzTvn3/+Qffu3dGnTx/cunVLOkcT1Dw8I7kb5LVr1/Dxxx9j4sSJmjo5zRI2bdqEFi1a4PDhw9IppBCDwYCtW7eiefPm+Prrr3l/YEXCw8Mxc+ZMfPDBB1i+fDmSkpKkk8iGKblDe1RUFIYNG4aePXvyZ0o23blzB507d8bUqVP5M8CM+JjcfB4/fozevXvj+++/58IVmXD//n106tQJS5YsQVpamnROtly4cAFt2rTB9u3bpVNsRkpKCqZMmYIBAwZw52gbd+7cOfTq1QtdunTBkSNHuKCelYqPj8eCBQue/j6lpZ15Jan5cZYln3MMCQlB9+7d+fsTkRklJydj0KBBCAwMlE5RjE6nw08//YR33nlHOoWIiDSOA+1ERERERERERERERKTJgXbu0G49/vzzT7Ru3RqjRo3CgwcPpHPoOceOHUObNm0wffp07gJrYdylyLyMRiNWrFiB9u3b4+rVq4rfvlqFhoaif//+GDduHHeYU7n9+/ejRYsWGDlyJAICAqRzKAMRERGYNm0aGjVqhPXr19v8ABzJUGqH9lOnTqF169bYsWOHIrenBWlpafj111/Rtm1b3LhxQzpHFdQ8aKXkY/ILFy6gXbt2OH78uGK3qQYGgwEzZ85E3759bXbX4BUrVqBz5858fuc1/fnnn2jTpg0uXrwonUJZdPv2bfTv3x8dO3bEiRMnpHMok6KjozFt2jS0bt2anzcFuLq6SidYTFRUlEWO++jRI/To0QNBQUEWOT6RFhmNRowYMQLnzp2TTlHUd999hw8//FA6g4iIiAPtREREREREREREREQEeHl5SScoTs0nT9mKS5cuoVu3bhgwYACHL6ycXq+Hr68vmjdvjj179kjnqJazs7N0gsVY6qTOjISHh6N///6YMmUKh64tZN26dfj0009x79496RQys8uXL6Nbt24YPHgwB9ltSFhYGL7//nu0bdsWp0+fls4hG6LE7ux6vR4zZ85Er169EBISYvHb06I7d+6gffv22LBhg3SKzVPz4ndKPSbftGkTunTpwu/3bDh+/Dg6d+5sU/+GCQkJ+PzzzzFlyhTudJxNoaGh6Nq1KxeAsRGRkZGYOHEiWrVqhcOHD0vn0Gu6ffs2evXqhS+++ALh4eHSOaql5tdkLLFDe0REBHr06MHnZojMbMaMGdi9e7d0hqL69euHHj16SGcQEREB4EA7ERERERERERERERFB3ScSZUTNg6PWLi4uDpMmTUL79u3h7+8vnUNZEBISgi+++AKDBg1CRESEdI7qqPlnsZID7SdPnkSrVq1w5MgRxW5Tq65evYq2bdvizz//lE4hM3j8+DFGjhyJjz/+mPfPNuzatWvo3r07hgwZgtDQUOkcsgGWHmgPDg5Gx44dsWTJEqSlpVn0trQuKSkJY8aMwahRozhMmg0caH99aWlp+OGHHzBq1CguKmUGN27cQIcOHWxiAcAnA3f79u2TTlGNpKQkDBs2DAsXLpROoQwYjUZs2LABTZs2xZo1a2AwGKSTyAz27NmDFi1acEEJC1HzazIxMTFmPZ5er8eQIUNw584dsx6XSOv8/Pzg6+srnaGotm3bYvjw4dIZRERET3GgnYiIiIiIiIiIiIiIYGdnp+qTidLj6ekpnaBJu3fvRvPmzbFq1SoOtNiwAwcOoGXLljhw4IB0iqqoeXjGErsUpWfDhg3o27cvHj9+rMjtERAfH49BgwZh5cqV0imUDZs3b8aHH36IrVu3wmg0SueQGezduxcffvgh1qxZw8dc9FKWHGi/ePEi2rdvj0uXLlnsNuhFmzZtQp8+fRR7/KU2bm5u0gkWY8mBdoPBgG+++QarV6+22G1oUUhICDp37owzZ85Ip2QoKCgInTp1woULF6RTVGnOnDmYNm2adAY9JyAgAN27d8eYMWN4f6tCUVFRGDZsGL744gt+fs1Mzc99mnugfcqUKVZ9/09ki44dO4YJEyZIZyjqvffew6RJk6QziIiITHCgnYiIiIiIiIiIiIiIAKh7Z+D0FChQQDpBUyIiIjBo0CAMHToUjx49ks4hM3j8+DEGDRqE0aNHIz4+XjpHFdT8c9jSJwAbjUbMmDEDY8aM4a5oAlJTUzF58mRMmjSJw9A25v79++jZsye+++47i+/aSsqLi4vDxIkT0blzZ+7qRhmy1ED73r170a1bN4SFhVnk+PRyp0+fRocOHRAUFCSdYnPUPGhlqcfkKSkp+OKLL7B9+3aLHF/rYmNjMWDAAKtcHOTatWvo2LEjAgICpFNUbfny5fj+++/5u5aVWLVqFVq1agV/f3/pFLKwPXv2oG3btlyww4z4OCtzNm3ahLVr15rteEQEXL9+HUOHDtXUaweVK1fG3Llz4eDgIJ1CRERkggPtREREREREREREREQEQN0nE6WHA+3K+fPPP/HRRx9xN2+V2rhxIz755BPcvn1bOsXmqXmg3ZKDsklJSRg6dCiWLl1qsdugzFm1ahVGjRrF3aBtxJo1a/DRRx/h5MmT0ilkYefOnUO7du3w22+/SaeQFbLEic2+vr744osvkJiYaPZjU+bdvXsXXbt25aBpFqn5uRFLDLQnJCRgwIAB/H3fwuLi4tC3b1+r+r37+vXr6N69OxcuUcj69esxZcoU6QxNe/z4Mfr3749JkyYhOTlZOocU8uDBA3Tu3BkrV66UTlEFNT/3GRsba5bjXLt2DePHjzfLsYjoX48ePcKAAQMQFxcnnaKY4sWLY/HixXBzc5NOISIiegEH2omIiIiIiIiIiIiICMC/O2ppRe7cueHk5CSdoXqJiYkYN24cBgwYgPDwcOkcsqA7d+6gffv22Lt3r3SKTVPzSZ0xMTEWOW5iYiL69euHPXv2WOT4lHWbN2/G8OHDNbXbja2JiIjAZ599hokTJyIpKUk6hxSSmJiI8ePHY+DAgYiIiJDOISvi7Oxs1uPNnDkT06dP5y6yViI4OBhdu3bFrVu3pFNshppP+Df3QLter8fnn3+OEydOmPW4lL7IyEj06tULQUFB0im4d+8e+vTpY5FFEihjK1euxNy5c6UzNOmvv/5Cq1atcPjwYekUEqDX6zF58mSMHj0aer1eOsem2dvbw9HRUTrDIszx3Kder8e3336rqdfqiCwtISEBAwcORHBwsHSKYvLly4dly5bBy8tLOoWIiChdHGgnIiIiIiIiIiIiIiIA0NRAU8GCBaUTVC8gIACffvop1q1bJ51CComPj8eQIUMwY8YMpKamSufYJA60Z01iYiL69+8Pf39/sx+bsmfHjh349ttvOcxohU6ePInWrVvj4MGD0ikk5NChQ2jTpg3++ecf6RSyEubcjXrWrFlYsmSJ2Y5H5hEWFoYePXrg/v370ik2Qc07tJvzMbnRaMR3332H48ePm+2Y9GqhoaHo27ev6O6SISEh6NWrF3dmF7JgwQL4+flJZ2jKqlWr0LNnTy7WSdi4cSP69u3LxTyyydwLalkLc+zQ/ssvv+Dq1atmqCEiAEhLS8PXX3+Ny5cvS6coxsPDA76+vnjjjTekU4iIiDLEgXYiIiIiIiIiIiIiIoLRaERiYqJ0hmK8vb2lE1TtwIED+OSTT3Djxg3pFBKwdOlSDBkyRFOLZJiLmodnzH2yb2JiIgYMGMBhdiv2xx9/YMqUKdIZ9IyFCxeid+/eePTokXQKCQsNDUXXrl2xZs0a6RSyAuYaKJk1axYWL15slmOR+YWHh6N3794cQM0ENe/Qbs6B9mnTpuGPP/4w2/Eo8+7evYtRo0aJ3HZERAR69eqFBw8eiNw+/WvixIn8XVgBT3ZKnjRpEgwGg3QOWYlTp06hY8eOCA0NlU6xWWpd0FOv12fr+fCLFy9i6dKlZiwioilTpmhqUU8nJyf88ssvKFeunHQKERHRS3GgnYiIiIiIiIiIiIiIkJSUpKldVN98803pBFVKS0vD3LlzMXjwYLPsSEK268CBA+jZsyeioqKkU2yKmodn4uPjkZqaapZjJSUlYeDAgTh9+rRZjkeWs3LlSg43WoHExEQMHToUc+bMQVpamnQOWQm9Xo+JEyfiu+++g16vl84hQeZYUIfD7LYhMDAQffr0Ed3Z2RaodcgKMN8iU7/++it+/fVXsxyLXs+ePXuwfPlyRW9Tr9djyJAhuHPnjqK3Sy968rkIDAyUTlGtuLg49OvXD1u2bJFOISt0584ddO7cmd+Dr0nNC3q+7uJBqampGD16NBfPIDKjlStXYtWqVdIZirGzs8NPP/2Et99+WzqFiIjolTjQTkREREREREREREREmtulrUKFCtIJqpOcnIwvv/wSCxYs0NTiCJSxc+fOoVOnTty5LQvs7OzMtkuqtTEajWZZ6CItLQ1ff/01Tp06ZYYqUsLs2bOxf/9+6QzNevjwITp16oTdu3dLp5CV2rx5M/r27WvWXXvJtmR3oGTFihUcZrch169fxzfffMPf2V5CzQPt5lhk6ujRo/jpp5/MVETZMXPmTJw5c0ax25syZYqit0cvFxUVha+//poLE1lAaGgoOnfujJMnT0qnkBULCgpCly5duMjHa1DzY63Xfe7Tz88P169fN3MNkXYdPHgQP/74o3SGokaPHo3mzZtLZxAREWUKB9qJiIiIiIiIiIiIiAj379+XTlAUB9rNKzIyEj179sSePXukU8jK3LlzBx07dkRAQIB0is3gSZ0vN336dA5H2xij0YgRI0bg1q1b0imac/HiRXzyySe4evWqdApZuVOnTqFjx44ICgqSTiEB2RloP3ToEKZOnWrGGlLCwYMHMXfuXOkMq+Xk5AQHBwfpDIvJzmPyhw8fYvjw4UhLSzNjEb0ug8GAYcOGIS4uzuK3tXHjRqxdu9bit0NZc/78ecyePVs6Q1UePHiALl26cLCUMiU0NBS9evXiYp5ZpObnPl/nPjkmJoaPzYnM6PLly/j666819TvLwIED0bVrV+kMIiKiTONAOxERERERERERERERITAwUDpBMW5ubihevLh0hmoEBgaiY8eOOHv2rHQKWalHjx6he/fuuHfvnnSKTXB3d5dOsJjs7v67fv16LF++3Ew1pKT4+HgMHjxYkWEb+tfJkyfRo0cPPH78WDqFbMTt27fRuXNn3L59WzqFFPa6A+1Xr17FsGHDNHWSuJosWrSIiwS9hJoHrV53oD0lJQVDhw5FVFSUeYMoW0JDQzFjxgyL3saFCxcwYcIEi94Gvb7ly5dzJ3EzCQwMRLdu3TT1PDllX0hICHr16oXw8HDpFJuRnQW1rN3rPM6aP38+IiMjLVBDpD3BwcEYMGAAEhISpFMU065dO3z11VfSGURERFnCgXYiIiIiIiIiIiIiItLUiXply5aFnR1fIjGH27dvo1OnTtx9m14pNDQU3bt3x/3796VTrJ6zs7N0gsXEx8e/9sceP34cEydONGMNKS0gIAA//PCDdIYm7NmzB/3798/W9xxpU2hoKLp06YLLly9Lp5CCXmcxndDQUM2dJK42RqMRo0ePRmhoqHSKVVLzoNXrPj6YPHkyLly4YOYaMod169bh77//tsixo6KiMGTIEKSkpFjk+JR9RqMRY8aMQWJionSKTXv48CG6devGnbbptdy7dw+9e/fmIn6Z5ObmJp1gMVkdaA8MDMTatWstVEOkLXFxcejfvz/CwsKkUxTTsGFDPt9OREQ2iWdrERERERERERERERGRpoZWKlasKJ2gCrdu3UL37t01dXIIZU9ISAi6d++OoKAg6RSrpubhmdc9sff+/fsYOnQoDAaDmYtIaVu3bsWOHTukM1Rtw4YN+PLLLzl0RK8tMjISPXr04NCihmR1oCQlJQWDBg3iILQKREVFYeTIkTAajdIpVoePyU3t2rUL69ats0ANmYPRaMTYsWMt8vhvzJgxCAkJMftxybyCgoIwe/Zs6QybFRERgd69eyM4OFg6hWzY9evXMWzYMKSlpUmnWD01P87K6sJBixYtgl6vt1ANkXYYDAYMHToUN27ckE5RTNWqVTF79mw4ODhIpxAREWUZB9qJiIiIiIiIiIiIiDROr9fj/Pnz0hmKqVu3rnSCzbtx4wa6d++O8PBw6RSyMcHBwejXrx+io6OlU6yWmk/qfJ3hmZSUFHz55ZdZ3uGIrNe4ceM4BGkhmzdvxtixY3kCPWVbbGws+vTpgytXrkinkAKyOtA+ffp0XLp0yUI1pLSTJ09ixYoV0hlWh4/J//P48WNMmDDBQjVkLrdv34avr69Zj+nn54d9+/aZ9ZhkOatWreL982uIj49Hv379cPfuXekUUoHDhw9j+vTp0hlWz9nZWTrBYrIy0P7w4UNs27bNgjVE2jFhwgQcO3ZMOkMxb775JhYtWgRXV1fpFCIiotfCgXYiIiIiIiIiIiIiIo27fPkyEhMTpTMU4ejoiFq1akln2LRbt26hR48eePz4sXQK2ag7d+5g8ODB3D04AxyeMTVjxgxcvnzZAjUkJTY2FhMnTpTOUJ3t27dj9OjR3GWXzCYmJga9e/fGzZs3pVPIwrIy0H7gwAGsXLnSgjUkYe7cuQgKCpLOsCp8TP6f8ePHIzIy0kI1ZE7Lli1DVFSUWY718OFDTJ061SzHImWkpaVh8uTJ0hk2JS0tDcOHD+dCAGRWy5cvx9atW6UzrBoH2v+1ZMkS7s5OZAZLliyBn5+fdIZi8ufPj2XLliF37tzSKURERK+NA+1ERERERERERERERBrn7+8vnaCYGjVqZHkHQvpPaGgo+vbti4iICOkUsnF//fUXvv32Ww5epoPDM/85ePAgdwxVqf3792PPnj3SGaqxd+9ejBw5kjuzk9lFRkaiV69eePjwoXQKWVBmfz8KDg7GqFGjLFxDEhISEjBu3DjpDKvCx+T/2r59O/bu3WvBGjKnuLg4LFmyxCzHGjNmTJaG8sg6nD17Ftu3b5fOsBmzZs3CwYMHpTNIhSZMmIC7d+9KZ1gtNT/OSkhIyNT1QkNDsWnTJgvXEKnfrl27MGvWLOkMxXh6esLX1xeFChWSTiEiIsoWDrQTEREREREREREREWnczp07pRMUU7duXekEmxUbG4u+ffsiODhYOoVUYseOHZgzZ450htVR80mdWRmICAkJwXfffWfBGpL2ww8/cEjGDE6ePIlhw4bBYDBIp5BKhYWFoV+/foiJiZFOIQtxd3d/5XUMBgOGDRtmtp1/yfocO3aMQ5DPUPNj8swOtIeHh+OHH36wcA2Z25o1a/Do0aNsHWPTpk04fvy4mYpIaTNmzEBKSop0htXbuXMnli5dKp1BKpWQkIAvv/yS34sZUPPjrMw+z7Vy5Up+fRBl07lz5zBy5EjNLJrs5OSEhQsXomzZstIpRERE2caBdiIiIiIiIiIiIiIiDbtx4wauXr0qnaGY9957TzrBJqWkpGDw4MG4ceOGdAqpzOLFi7kb1nN4Uue/vvvuOw7NqVxYWJjZdpDUqtu3b+OLL76AXq+XTiGVu3XrFgYPHswT7lUqMwPtvr6+OHv2rAI1JGnGjBlISkqSzrAKfEwO/Pjjj3w8boOSkpKwcOHC1/74yMhI/PTTT2YsIqUFBwdj3bp10hlW7d69exgzZox0BqnctWvXMH36dOkMq+Ts7CydYDGZeZyVmJiIjRs3KlBDpF6BgYEYNGgQkpOTpVMUYWdnh5kzZ6JmzZrSKURERGbBgXYiIiIiIiIiIiIiIg3btm2bdIJiypQpgzJlykhn2KQxY8bg9OnT0hmkQkajESNHjkRgYKB0itVwdHSUTrCYzO4GuWnTJpw4ccLCNWQNfv31Vzx8+FA6wyY9fvwY/fv3567ZpBh/f39MnDhROoMs4FUD7Xfu3MEvv/yiUA1JCg4OxvLly6UzrIKDg4N0gsVk5jH533//je3btytQQ5awYcMGPH78+LU+dvr06VzIQAWWLFmCxMRE6QyrlJKSgq+++ipLC+4Rva7Vq1dzUah0qHnhoISEhFdeZ9u2bbyvJcqG6Oho9OvXDxEREdIpihk7diyaNGkinUFERGQ2HGgnIiIiIiIiIiIiItKohIQEbN68WTpDMR9//LF0gk1atWqVphY+IOXFxMRgyJAhmtlN41W0PjwTHh6OadOmKVBD1iA5ORmzZs2SzrA5SUlJ+OyzzxAUFCSdQhqzYcMG7vipQi8baDcajRg7dixSUlIULCJJS5cuRXh4uHSGOC0/Jk9LS8PkyZMVqiFL0Ov1WL9+fZY/7sKFC5p6nlDNwsLC8Ntvv0lnWKW5c+fi8uXL0hmkEWlpaRg9ejQfSz9H6zu0r1q1SoESInVKSUnB559/jrt370qnKGbQoEHo3LmzdAYREZFZcaCdiIiIiIiIiIiIiEijVq9erZkV7B0dHdGqVSvpDJvz999/c7CUFHH16lUOTfw/LQ/PAMAPP/yA6OhoBWrIWuzYsQO3b9+WzrAp48aNw/nz56UzSKMmTZqEc+fOSWeQGb1soP23337DmTNnFKwhaQkJCfD19ZXOEOfo6CidYDGvGrTauHEjhz1VYP369TAYDJm+vtFoxJQpU2A0Gi1YRUpasWIF9Hq9dIZVuXDhAn799VfpDNKYO3fuYMGCBdIZVsXe3l46wWJe9Tjr2LFjuHXrlkI1ROozZswY+Pv7S2copn379hg6dKh0BhERkdlxoJ2IiIiIiIiIiIiISIPi4uKwbNky6QzF1K9fH15eXtIZNuXRo0cYOnQoT34lxaxfvx6HDx+WzhCn5oH2V53UeeDAAezevVuhGrIWaWlpPLk7C9avX4+tW7dKZ5CG6fV6DBs2DDExMdIpZCZubm7pXh4aGoqZM2cqXEPWYN26dXj8+LF0hig1D7S/bJGp2NhYzJ49W8EaspSQkBDs378/09ffvn07F6xRmZCQEOzYsUM6w2qkpKTgu+++Q2pqqnQKadDy5csRFBQknWE11PzcZ0JCwkvfv2bNGoVKiNRn3rx52LZtm3SGYho2bIgJEyZIZxAREVmEen8jICIiIiIiIiIiIiKiDC1evBhRUVHSGYpp166ddIJNSUtLw9dff42wsDDpFKvl7OwMHx8fFC9eHEWKFEGRIkXwxhtvIEeOHHB3d4erqytcXV2h0+mQkJDw9E98fDwePHiAe/fuPf1z/fr1TO1crQWjR4/G9u3bkStXLukUMVodnklMTMTEiRMVrCFrsnPnTgwaNAglS5aUTrFqV65cweTJk6UziPDw4UOMHTsWc+fOlU4hM8hooH3y5Ml8jKpRiYmJ8PX1xciRI6VTxKh50Opli0wtXLgQERERCtaQJa1ZswbNmjV75fVSUlK4kIFK/frrr2jTpo10hlVYvnw5d0UmMcnJyfjpp5/w888/S6dYBTU/9/myx1khISFczJXoNW3duhXz58+XzlBMtWrVMGfOHNjb20unEBERWYR6n3klIiIiIiIiIiIiIqJ0nT9/XlO7s7/55pto2LChdIZNWb58Ofz9/aUzrIqzszPq1KmDWrVqoXr16qhQoUKmT77LmTMncubM+fTtypUrm7w/NTUVly9fxunTp+Hv74+//voLiYmJZu23FWFhYZg4cSJmzZolnSJGqyd1Llu2DCEhIQrWkDVJS0vD//73P/zwww/SKVYrJiYGX3zxBZKTk6VTiAAAu3fvxoYNG9C+fXvpFMomd3f3Fy47c+YM9uzZI1BD1mL9+vUYPHgwPDw8pFNEaHGgPSwsDGvXrlW4hizJ398f9+/fR9GiRV96vbVr1+LBgwcKVZGSrl27hrNnz6J69erSKaJCQ0OxePFi6QyrZW9vj1KlSqFEiRIoXrw4ihYtirx588LLywteXl5wc3ODo6MjnJyc4ODggKSkJCQlJSE5ORnR0dEICQlBcHAwgoODcfXqVVy+fBmPHz+W/mtZnT179uDMmTOoUaOGdIo4LT7OAv59fJ2amqpgDZE6+Pv7Y8yYMdIZiilVqhQWLVoEFxcX6RQiIiKLUe9vBERERERERERERERE9IKkpCSMGDFCUyfODBgwAHZ2dtIZNuP69evcbfP/OTs747333kOzZs3QsGHDdId9zMHe3h6VK1dG5cqV0a9fP8THx2PXrl3YsmUL/v77bxiNRovcrrXasWMHmjRpkqmd5NRIzSd1ZrRQw6NHjzS10Aql7/fff8ewYcOQO3du6RSrNH78eAQGBkpnEJmYMmUK6tSpg0KFCkmn0GvS6XRwdXU1ucxoNGLq1KlCRWQt4uPjsWnTJvTo0UM6RYSaF5lKSEhI9/LFixdrdmE1Ndu1axcGDBiQ4fvj4uKwaNEiBYtIaX5+fpofaJ8+fXqGP/u0SKfToVKlSvjggw/w1ltvoWLFii88HnwZNzc3uLm5AQAKFiyIcuXKvXCd4OBgnDp1CgcPHsSxY8f47///Zs2axcVjoO7nPjMaaDcYDNiwYYPCNUS2786dO/j888+h1+ulUxRRoEAB+Pr6IleuXNIpREREFqXe3wiIiIiIiIiIiIiIiOgF48aNQ0BAgHSGYt544w20bNlSOsNmpKSk4JtvvkFKSop0iigvLy906dIFXbp0ERmsdHd3xyeffIJPPvkEgYGBWLFiBdavX6+pz8vkyZNRt25dTe4IaW9vL51gMRkNyMyZM4cnNxOSkpKwYcMG9O/fXzrF6uzatQs7duyQzrAJhQsXRoUKFVC0aFEUL14c3t7e8PLyQu7cueHq6vp0V8GUlJSnOwsmJSXh8ePHT3cVDA4Oxu3bt3H16lUkJSVJ/5WsWkJCAr7//nv4+vpKp9BrcnV1hU6nM7ns999/x8WLF4WKyJqsXr0a3bp10+QCcVp7TB4aGgo/Pz+BGrK0Vw20r1y5EpGRkQoWkdJ27dqF0aNHw9PTUzpFxNWrV7F9+3bpDKtQoEABdOnSBW3atEH+/PktelsFCxZE27Zt0bZtW6SkpODAgQNYsWIFzp07Z9HbtXZ///03Tp48iXfeeUc6RZSaB9oNBgNSUlLg5ORkcvmBAwcQFhYmVEVkmyIiItC/f39ER0dLpygiZ86c8PX1RcGCBaVTiIiILE69vxEQEREREREREREREZGJ2bNnY+vWrdIZiurfv7+qT5Ayt3nz5uH69evSGWK8vb0xYMAAfPzxx3BxcZHOAQAUKVIEY8aMQZ8+fbBgwQJs3rwZBoNBOsviHj16hJ9//hmjRo2STlGcmodn9Ho9DAaDyc/la9euYcuWLYJVZE3Wrl2Lvn37anJwLiPh4eEYP368dIbVKl68OOrWrYu6deuiatWqmV6IxtXVFTlz5nzpdQwGA27duoWLFy/i2LFjOHr0aIa7rWnZ0aNHsWXLFrRt21Y6hV7D87txJiUlYfbs2UI1ZG3u37+Po0ePon79+tIpilPzY5H0BtoXLlyI5ORkgRqytKtXryIgIADFixd/4X1xcXH43//+p3gTKSspKQk7d+5Ehw4dpFNEzJkzB0ajUTpDVMGCBTFs2DB8+OGHIs+TOzk5oXnz5mjevDkuXLiAmTNn4tSpU4p3WIt58+ZpfqDd0dFROsGi4uPjXxho58JBRFmTnJyMQYMGITAwUDpFEc7OzliwYAFKly4tnUJERKQI9T7zSkRERERERERERERET61duxaLFi2SzlBUoUKFOFiTBTdu3MDy5culM0TY29ujW7du2LlzJ7p06WI1w+zPKliwIH744Qfs3LkTNWvWlM5RxOrVq3Ht2jXpDMWpeXgGwAu7HU+dOhVpaWlCNWRtgoODcfLkSekMqzJ27FhERUVJZ1iVfPnyoV+/fti2bRv27NmDsWPHomHDhpkeZs8sBwcHlCtXDu3bt8fcuXNx6tQp+Pr6on379i8MAWvd1KlT+XVqo9zc3Eze/vXXXxEcHCxUQ9Zo06ZN0gki1LzI1POD6w8fPsTGjRuFakgJu3btSvfyFStWaGbHS63T6g7l586dw59//imdIcbBwQEDBw7Erl270KpVK6tY9LVy5cpYsWIFpk+fjrx580rniPj777/h7+8vnSFK7c99Pr94UHBwME6cOCFUQ2R7jEYjRowYgXPnzkmnKMLe3h6zZs1CjRo1pFOIiIgUo+7fCIiIiIiIiIiIiIiICIsWLcLEiROlMxT33XffvbATBqXPaDRi/Pjxmtj5+3k+Pj7YsGEDxowZAw8PD+mcVypWrBhWrVqF7777zioH780pNTUVEyZM0NxOWmo/qfPZAZqTJ09yeJlesHnzZukEq7F9+3YcPHhQOsNq+Pj4YMaMGTh06BCGDx+OcuXKKXr7Tk5OqFevHiZNmoTDhw9j5MiReOONNxRtsFZRUVGYO3eudAa9hmcXZ4iJicGyZcsEa8gaHTx4UJMLVuh0OukEi0lLS0NKSsrTt5ctWwa9Xi9YRJa2d+/eFy5LSEjAypUrBWpIwpkzZxAaGiqdobiFCxdKJ4jJly8fVqxYga+++soqF+Nq1aoV/vjjD80O761YsUI6QZSaFw4CXhxo37RpExfzJMqCGTNmYPfu3dIZihk3bhwaNWoknUFERKQo+eXWiIiIiIiIiIiIiIjIIgwGAyZMmAA/Pz/pFMXVrVsXTZo0kc6wGZs2bcLff/8tnaG4du3aYcKECTa38IFOp0PPnj1Rv359fPnll6rexfzs2bPYtWsXPvzwQ+kUxaj9pM5nB9oXLFggWGJKp9OhWLFiqFixIkqUKIFixYqhQIEC8PLygpeXF5ydneHs7Ayj0Qi9Xo/k5GRER0cjMjISYWFhuH//Pu7du4dr167h2rVrL+x8SZm3f/9+xMbGwtPTUzpFVFxcHKZOnSqdYRVKlSqFoUOHWtVju5w5c6J3797o0aMH1q9fj3nz5iEiIkI6S9T69evRoUMHxRcaoOxxd3d/+v8rV65EbGysYI2p3Llzo1KlSihVqhSKFy+ON954A3ny5IGXlxfc3Nzg5OQEBwcH6PV6pKSkIC4uDpGRkYiIiEBQUBDu37+PW7du4fLlywgPD5f+69gsvV6P7du3o2vXrtIpilL7Y/KUlBQ4OTkhJiZGbDGhAgUKoEaNGihbtixKlSqFAgUKIH/+/HB1dYWLiwtSU1Offm+HhYUhJCQEt2/fxo0bN3D27FkEBweLdNuiq1evIjIyErlz5356mZ+fn/hiFbly5UL16tVRoUIFlCpVCoULF0b+/Pnh4eEBZ2dn2NnZISkpCQkJCQgPD8ejR49w9+5d3Lx5E2fPnsXdu3c1twDe60pLS8Pu3bvRo0cP6RTFXL9+HYcPH5bOEOHj44MlS5ZY/Q7oXl5e+PXXXzFu3DjNLWx38OBBBAYGokiRItIpItS+mGdSUtLT/zcajdiyZYtgDZFt8fPzg6+vr3SGYoYMGYIOHTpIZxARESmOA+1ERERERERERERERCoUGBiI7777Dn/99Zd0iuKcnJwwduxY6QybERUVhRkzZkhnKMrBwQHffvstunXrJp2SLSVKlMDatWvx1Vdfqfok3Tlz5qBx48ZwdHSUTlGE2k/qNBgMAP7dIc7f31+0pVChQqhfvz7q1q2LWrVqIUeOHJn6OAcHB7i6uiJXrlwoVqzYC+83GAy4dOkSjh8/jsOHD+P8+fPmTle1pKQkHDhwAG3atJFOEfXzzz8jLCxMOkOUm5sbBg8ejJ49e8LBwTpPb7G3t0fnzp3RqlUrLFiwAP/73/+QmpoqnSUiNTUVkydPxqpVq6RTKAs8PDwA/LuIhvROva6urqhbty7q1q2Ld999F0WLFs3Uxz1ZdMbT0xMFCxZM9zoPHjzAiRMnnt43JyQkmDNd9Xbt2sWBdpV5siP7unXrFP1+8PHxQfPmzdGkSZN0H0c/y97eHk5OTvDw8ECBAgVQqVIlNG7c+On779+/j3379mHHjh24fPmypdNtmtFoxOnTp9GsWTMA/y5osHz5cpGWIkWKoEWLFmjcuDF8fHyg0+leen13d3e4u7sjX758KF++POrXr//0fY8fP8bBgwexe/dunDhxgrvfvsL+/fs1NdCupWG4Z1WsWBHLly9Hzpw5pVMyxcnJCT/++CPc3NywevVq6RzFpKWlYc2aNfj222+lU0So/XHWswPtp06dQlBQkGANke04duwYJkyYIJ2hmA4dOuDzzz+XziAiIhJhna/4ERERERERERERERHRazEajVi7di1mzJih2ZP0+/Tpg+LFi0tn2Iz58+cjMjJSOkMxrq6uWLhwId555x3pFLNwd3fHwoULMWXKFNWe+Hnv3j34+fmhS5cu0imKUPtJnU+GZ3755ReR23dzc0OrVq3w0Ucf4a233nrlAMXrcHBwQNWqVVG1alUMHjwYgYGB+P3337F+/XqEhoaa/fbUaO/evZoeaL9+/TrWrFkjnSGqSpUqmDlzps3sWOfh4YERI0agUaNGGD58OB48eCCdJMLf3x9Hjx5FvXr1pFMok54MtK9evRrR0dGK375Op0OdOnXQpk0bfPDBB3Bzc7PI7RQuXBjt27dH+/btkZiYiIMHD2LdunXii+vYirNnzyI8PNzqd3o1J7UvMqXX66HX6xX5HdLBwQEfffQRunXrBh8fH7Mdt2jRoujTpw/69OmDS5cuYfny5di1axeHmjNw8uTJpwPtO3bsUPz3krp166J379549913zfY7WJ48eZ7+bA8KCsLq1avx22+/mQwS0n/Onj2L2NhYeHp6SqdYXFhYGHbt2iWdobgSJUrg119/zfRifdZk9OjRePz4saY+b1u2bMGwYcPg5OQknaI4SzwXZ01SUlKe/v+mTZsES4hsx/Xr1zF06NCni+GqXaNGjTBu3DjpDCIiIjHqfuaViIiIiIiIiIiIiEhD/vrrL3Tu3BkTJ07U7DB7mTJlMHDgQOkMmxEYGIh169ZJZyjGxcVFVcPsT9jb22Ps2LEYMmSIdIrFLFiwQDM/19R+Umdqair++ecfnDhxQtHbLViwIEaPHo2jR49iwoQJqFGjhmL/1kWKFMHgwYNx8OBBTJ8+nYuuZMLx48c18z2fnokTJ2rmBM709O7dG2vXrrWZYfZnVa9eHVu3bkXTpk2lU8TMnj0bRqNROoMyKUeOHEhISMD//vc/RW/XyckJnTt3xq5du7Bs2TJ89NFHFhtmf56rqytatGiBVatWYdu2bWjatKnqH39lV1paGvbt2yedoSi1D7SnpaVh586dFh9q/uijj7B7925MnTrVrMPsz6tYsSJmzZqFP/74Q3W/75vLqVOnnv6/kj/za9WqhQ0bNmDZsmWoU6eOxX7evvHGG/j2229x4MABfPzxx/y5ng6DwYCjR49KZyjCz8/v6WJ6WuHm5oZffvnFJofZgX/vd3/66SdUq1ZNOkUxUVFROHz4sHSGCLUv5pmcnAwAiIuLw/79+4VriKzfo0ePMGDAAMTFxUmnKOKtt97CrFmzVP+zkIiI6GXU/cwrEREREREREREREZEGnD17Fj179kTXrl1x9uxZ6RwxLi4umDVrFlxcXKRTbMasWbM0c4Knk5MT5s+fr+qT2z///HP06tVLOsMiwsPDsWLFCukMRaj9xPu0tDRFd2fPnTs3vv/+e+zduxfdu3d/uhOtBAcHB7Rq1Qo7duzA999/D3d3d7EWa5eUlKSZYYvnHThwAGfOnJHOEOHo6IipU6di5MiRcHBwkM55bTly5MDcuXPRo0cP6RQRly9fxu7du6UzKJPc3d2xevVqREZGKnJ7dnZ26NChA/bv349x48ahRIkSitxuRsqVK4eff/4ZGzdutOiwrRpobRhHC4/JLfn71Ztvvom1a9dixowZii5QU6pUKfzvf//D1KlT4erqqtjt2oKAgAAEBwfj5MmTuHbtmsVvL1euXJg9ezZWrVqFypUrW/z2nsibNy+mTJmC1atXo0CBAordrq04cuSIdILFpaamws/PTzpDcZMmTULJkiWlM7LFyckJ06dP19RzJVu2bJFOEKH2Ic4nr7eMGDECiYmJwjXWbdKkSShbtiwqVaqEiIgIk/dt3rwZZcuWzfSfzZs3AwBOnz6NsmXL4osvvgAAhIWFoWLFiqhVq9bTxQa05IMPPsj0v+G3334L4MV/w4w8+RxNmzbt6WVBQUEZHr9cuXKoUaMGOnbsiDVr1iA1NRUJCQkYOHAggoODLfrvYC1Kly6NhQsXwtnZWTqFiIhIlO2+AkhEREREREREREREpGFxcXHYuXMnNm3ahH/++Uc6xyqMGjUKpUuXls6wGZcuXcKuXbukMxSh0+kwc+ZM1KtXTzrF4kaOHImYmBhs2rRJOsXsVqxYgZ49e6p+MEHtwzM9evRAVFSUxW9Hp9Ohbdu2GDFiBHLnzm3x28sKBwcHdOnSBQ0bNsTYsWNx7Ngx6SSrdPToUc3tcp2WlobZs2dLZ4hwcXHBggULUKdOHekUs9DpdBg1ahS8vLw0+TldsGABmjVrpvr7NDVYvny5Yrfl4+OD8ePHKzrYmFkVK1aEn58fli1bhvnz5yMlJUU6yer89ddfSE5O1syJ92r/+dW6dWvExMRY5Njt2rXD2LFj4ebmZpHjZ0bbtm1RsWJFDBkyBHfv3hXrsDYtW7aEwWCw+O3UqVMHP/74I7y9vS1+WxmpUaMGtmzZguHDh+P48eNiHdbm1KlT0gkWd/ToUYSEhEhnKKp+/fpo0aKFdIZZFClSBKNGjcLo0aOlUxRx5MgRREZGWt3zVpZmZ6fu/RifDLRfv35duOQ/jo6OKF26NMqXL49ixYqhSJEiyJ8/P7y8vJCYmIh27dqhQoUK2Lx5M/R6PVJTU9G8eXMEBwdj69atAIDY2Fg8fvwY4eHhCA8PR1BQEC5evIiwsDAkJCRkuSkhIQFbt25F3rx5ER4ejs2bN6Nv375P31+7dm3MnTvX5GOOHj2KjRs3olmzZmjevLnJ+ypVqpTu7eTLlw+NGzfGzp07sWvXLrRp0ybLrbbs+++/R548eZ6+HRISgh9//BGlSpXCkCFDTK5buHBhs91ukSJFMHz4cJPLDAYDgoOD8fvvv2PixIk4cOAAnJyccPnyZbPdrjUrWLAgfH19kTNnTukUIiIicRxoJyIiIiIiIiIiIiKyEQkJCTh16hT27NmDPXv2cHeHZzRr1gwdOnSQzrApM2bMgNFolM5QRN++fdGkSRPpDEXodDr88MMPCAsLU93OW5GRkVi/fj169uwpnWJRah+eUWKYvWTJkpgwYQJq1qxp8dvKjkKFCmHZsmXYvHkzfvjhh9c6+VPNtDh4snXrVty8eVM6Q3Gurq5YsmQJatWqJZ1idgMHDoSdnR1mzpwpnaKoGzdu4NChQ3j//felU8gKuLu744svvkC3bt2sejdGBwcHDBgwAI0aNcI333yjmZPqMys5ORl//fUX6tatK51CZmCJYXZ3d3dMmDABH330kdmP/TpKly6NTZs2YeTIkdi3b590jlWIi4uz6PEdHR3x9ddfo2fPnlbxe62Xlxd8fX0xd+5cLFq0SDrHKgQHB+P+/fsoWrSodIrFPBm81AoXFxeMHTtWOsOsPvnkE/zxxx+aWIBBr9fj0KFDaNeunXSKoqzhPsKSDAYDQkJC8ODBA7EGnU6HqlWr4ty5c/Dw8MDJkyfh5OSU7nWDgoKefoxOp3t6vScLDxQtWhTu7u4vvb3Q0FDcuHEDly5dwpw5c+Do6Ajgv+H+9Pz++++IjY3FyJEjMWvWLKxbtw59+vR5+vVRuHDhFwasw8PDAQClSpVCs2bNXvXP8FSXLl2wc+dOrFu3TnMD7fXr18cbb7zx9O0bN24A+PdxUlb+DbMqR44cGR6/d+/e6NWrl6ae+82VKxd8fX1RoEAB6RQiIiKroO4lroiIiIiIiIiIiIiIbJjBYMDVq1exbNky9OzZE7Vq1cJnn32GrVu3cpj9GcWLF8ekSZOkM2zK2bNncfLkSekMRdSuXRtfffWVdIai7O3tMW3aNNHd0Czl119/Vf2OmWo/qdPSOnXqhK1bt1r9MPuz2rVrh9WrVyN//vzSKVbl4cOHuHPnjnSGYlJSUjBv3jzpDMU5ODhg7ty5qhxmf6J///7o3LmzdIbiODhGwL+7sv/xxx/o2bOnVQ+zP6tkyZJYs2aNZhbEyopjx45JJyiGj8mzJn/+/PDz87OaYfYn3N3dMWfOHIsO69C/3NzcsHDhQvTq1cuqvn/s7Ozw1Vdfae55oZc5ffq0dILFxMXF4eDBg9IZiuratSuKFCkinWF2w4cPt6qfJZZ04MAB6QTFqf1zm5aWht9//11kMeEcOXJg9OjROHz4MNatWwfg3+ddMhpmNxdvb2/Uq1cP3bt3B/DvY8OzZ89i48aNGDduHNq1a4cyZcqY/E64du1auLi4oHnz5mjRogUCAwNx9OhRi/TVqFEDZcuWxblz554OdJMce3t7TQ12u7i4YOHChShVqpR0ChERkdXgQDsRERERERERERERkRWIiorCxYsXsWnTJkycOBGffvopqlevjjZt2uCnn37CyZMnX7qbgVbly5cPvr6+8PT0lE6xKVoZMMqXLx9mzZplM8Mz5uTl5aXKv3tISAi2bdsmnWFRaj+p01KcnJwwefJkjB8/3uInaVqCj48PNmzYgLJly0qnWBWtLL4CAH5+fnj48KF0huLGjx+P+vXrS2dY3NixYzW3W/n58+fx119/SWeQoNatW+O33357YVc9W+Dq6oqff/4Zffr0kU6xKlrYKfUJPibPvCJFimDt2rVWO6Dh4OCAmTNncqjdgnLnzo0VK1agXr160ikZGjhwIL788kvpDKtw9uxZ6QSL2bt3L5KTk6UzFOPi4oLevXtLZ1hEpUqV0LRpU+kMRRw/fhxJSUnSGYpS++Os7du3Px0mV8o777wDAPjggw/QvXt3q1jo1snJCZUqVULnzp3x448/4o8//sCoUaMAAGfOnMH169fRrFkzeHh44JNPPgHw75C7pTxZaHD9+vUWuw3KnAMHDuD333+XzlCEvb09Zs+ejerVq0unEBERWRUH6QAiIiIiIiIiIiIiIrUwGAzQ6/VP/6vX65GSkoL4+HhERUU9/RMdHY3IyEg8ePAAgYGBCAoKQmxsrHS+zXF3d8eSJUtUuQuNJV29ehWHDx+WzlDEmDFjkDdvXukMMTVq1MAXX3yB2bNnS6eY1fLly9G+fXvpDLIiBQoUwLx581C5cmXplGwpUKAA1q5diwEDBuDMmTPSOVbhwoUL6NKli3SGxRkMBixfvlw6Q3GdOnXSzM9zOzs7/PTTT2jbti0CAwOlcxSzatUq1KxZUzqDFObg4ICRI0c+3Z3PVul0OowYMQIFChTA5MmTpXOsws2bN5GYmAhXV1fpFItT+6CVuZQqVQrLly+3iqGpl3ky1B4fH2+xnT+1qkCBAvjf//6HEiVKSKe80meffYaEhAQsWbJEOkXUpUuXpBMsZu/evdIJimrfvj3y5MkjnWExX3zxBXbv3i2dYXGJiYk4efIkGjZsKJ2iGLU/zlLysYadnR2aNm2K4cOH44MPPlDsdl/Xk8/9mjVrAODpc0LlypVD5cqVcfjwYTx8+BCFChUy+223atUKM2bMwLZt2zB8+HBN/E5jjS5duoThw4fDaDRKpyhiwoQJmlvgkoiIKDM40E5EREREREREREREWfbgwQPuIEqiHB0dMW/ePFSoUEE6xeZoZXf29957jzuwAejXrx927dqFa9euSaeYzZ07d3Dy5MmnO8+ojdpP6jS3EiVKYOXKlcifP790ill4eHhg4cKF6NKlC27cuCGdI+78+fPSCYrYvn07Hjx4IJ2hqEqVKj3dmUsrPD09MWvWLHTu3Bl6vV46RxH79+9HcHAwChYsKJ1CCnFycsL8+fNRv3596RSz6d69OyIjI7FgwQLpFHEGgwGXL19GjRo1pFMsjo/JX61w4cJYuXKlzQxTOjg4YMaMGWjXrp3mHndZiqenJ5YuXWoTw+xPfPXVV7h48SJOnjwpnSLm9u3bSEpKgouLi3SKWcXHx+PEiRPSGYrq1KmTdIJFlSxZErVq1YK/v790isWdOnVKUwPtlH0lSpRAvXr1sHLlSvTu3Vs6J0vCwsKwb98+lCxZ0uT3ik8//RQXLlzA+vXr8dVXX5n9dt3c3NCmTRusWrUKO3fuxMcff2z226D/pKWlISYmxuSyhw8fom/fvkhISBCqUtbQoUM1s5AnERFRVtlJBxAREREREREREREREWWFg4MDpk6dijp16kin2JyAgABN7Fbk7OyM77//XjrDKtjb22Ps2LHSGWa3du1a6QSyAmobZn8iR44c8PX1tchuRLYmICAA0dHR0hkWZTQa4evrK52hKBcXF/z0009wcnKSTlFc5cqVLXJitrVKTU3Fb7/9Jp1BCnFycsIvv/yiqmH2J3gi+n+0stgMvZyHhwcWL15sM8PsT+TKlQtz5syBo6OjdIrNc3R0xPz581GmTBnplCyxs7PDrFmz4O3tLZ0iJjU1VVWLHj5x9OhRJCcnS2coplKlSihZsqR0hsWpfWj/idOnT0snKIoLB70+Ozs79OvXD9u2bcO5c+dQunRpVK5cWTorS9avXw+9Xo9PP/3U5PIWLVrA3d0dGzdutNgigE9+pqxfv94ix6f/XL16FTVr1jT507p1a0RGRkqnKaJTp04YNGiQdAYREZHV4kA7ERERERERERERERHZDBcXF8yfPx8tW7aUTrFJq1evRlpamnSGxfXv3x9FihSRzrAaNWrUQKtWraQzzOrgwYMIDQ2VziBBah1mf8Lb2xu+vr7w8PCQThFlNBpx8eJF6QyLOnDgAG7evCmdoahhw4bhzTfflM4Q07NnT1SoUEE6QzGbN2+GwWCQziALezLM/t5770mnWMyECRNU/ffLLA60k729PebMmYPSpUtLp7yWypUrY8SIEdIZNk2n02Hq1Kl4++23pVNei5eXF2bNmqXpgcrLly9LJ5jdkSNHpBMU1aZNG+kERTRu3Bh58+aVzrC469evIyoqSjpDMVr++ZtdjRs3xvDhw3Hv3j1cvHjRLLuMG41GAP8+xrM0g8EAPz8/AEBQUBDmzZv39M+yZcuQP39+hIeHY9++fRa5/ZIlS+Kdd97B+fPnVbm4i7lk9nv0ydeOnd2LI2nFixfHypUrsXLlSvz666+oWLGiWRutWdOmTbngNhER0StwoJ2IiIiIiIiIiIiIiGxCjhw5sGzZMjRs2FA6xSbFx8djy5Yt0hkWlzNnTvTs2VM6w+qMGDEC7u7u0hlmYzAYuJOKhhUtWlTVw+xPlCxZEqNHj5bOEKf2wbkVK1ZIJyiqQoUK6Nq1q3SGKHt7e4wfP14zJ/GHhYXh6NGj0hlkQQ4ODpg/f77qh73t7e0xdepUm9uR2twuXLggnUDCvv32W9SrV086I1u6du0KHx8f6Qyb1bNnT5tfaLJGjRpmGQK0VWocaD9x4oR0gqKaNGkinaAIR0dHfPDBB9IZFpeWloYzZ85IZ5AVq1KlCipVqgR/f3/o9Xps2rQJjo6OaN269Us/Lnfu3IiOjkZSUlKG13myY7YSi0ccOHDg6SK1q1atwvz5803+3L17FwCwdu1aizV06dIFALBu3TqL3Yaty507NwC8ckHhJ187+fLle+F97u7uqF27NmrXro1du3bh0qVL5g+1QjVr1sSMGTPSHfInIiKi//CekoiIiIiIiIiIiIiIrF6+fPmwevVq1KhRQzrFZm3btg1xcXHSGRbXvXt3ze9onJ58+fKhU6dO0hlmtXHjRqSlpUlnkMLc3NywYMEC1Q+zP9GuXTvNnKieETUPzt2+fRv+/v7SGYrR6XQYO3asIrt+WbsqVaqgffv20hmK2bRpk3QCWdC3336L+vXrS2coIk+ePJg0aZJ0hqjg4GA8evRIOoOE1KtXD927d5fOyDY7OzuMHTtWM4vLmFP58uUxbNgw6Qyz+Prrr5EzZ07pDBFqG2i/ffs2goODpTMUU6ZMGc08JwJAEwPtADQz7ElZ17RpU6xcuRKdOnVCZGQkTp48iR07dqBBgwbw8vJ66cf6+PjAaDS+dLHIJwuCVK1a1ZzZ6VqzZg0AYPXq1bh+/Xq6f8qXL4+//voLN2/etEjD+++/j4IFC2Lnzp0WOb4aFC1aFB4eHrh58+ZLX1N88rVTpUqVDK+zZMkS+Pn5mb3RGpUpUwYLFy6Ek5OTdAoREZHV40A7ERERERERERERERFZtSpVqsDPzw9ly5aVTrFpv/32m3SCxXl4eKji5HpL6dmzp6pOpgkNDcXp06elM0hBOp0O06ZNQ+nSpaVTFDVx4sR0d7rRCjXv0K6F++ZnNWvWDNWrV5fOsBqff/65qu6XX+bPP/9EVFSUdAZZQLt27dCtWzfpDEW9//776NChg3SGKDUvNkMZy5kzJyZPniydYTbVqlVDmzZtpDNsiqurK2bOnKmaxy9eXl744osvpDNE3Lp1CykpKdIZZqOlRcIAoG7dutIJinrnnXfg5uYmnWFxaltogsyjevXqmDNnDlxcXNC8eXO4u7tjwYIFCAsLw8cff/zKj3/yWsnUqVMRExPzwvuvXbsGX19f5MyZE5988onZ+591+/ZtnD59GqVKlULNmjUzvF7Hjh0BWO45M3t7e3To0AHR0dEWOb4aODs7o2PHjoiPj8fUqVORmpr6wnW2bNmC48ePo3r16qhWrVq6x9m1axdmzZpl6VyrUKhQIfj6+sLT01M6hYiIyCZwoJ2IiIiIiIiIiIiIiKxWr169sGbNGhQqVEg6xab5+/vjxo0b0hkW17VrV+TIkUM6w2rly5cPbdu2lc4wq23btkknkIIGDhyoyd3Kc+fOjdGjR0tniImMjFTlbnsJCQnYunWrdIZi7O3tNTswlBFvb298+umn0hmK0Ov12L9/v3QGmVmlSpUwYcIE6QwRI0eORN68eaUzxFy5ckU6gQSMHTsW3t7e0hlm9dVXX8HR0VE6w2Z8++23KFmypHSGWXXq1AlFixaVzlCcwWDAnTt3pDPM5uzZs9IJiqpTp450gqKcnJw0McTPgXZKzyeffAI7u3/Hfdzc3NCiRQucO3cO+fLlw3vvvffKj69fvz6+/PJLXL16Fc2bN8esWbOwefNmbNq0CWPGjEGHDh1gb2+PefPmIU+ePOkeY//+/di9e3e6f0JDQzP9d3myO3unTp1eer2PPvoIHh4e2LZtGxISEjJ9/Kz49NNP+RjwFb788ks0aNAAGzZswCeffIIFCxbg999/x5o1azBw4EB8++23KF26NObOnZvuxyckJGDkyJEwGo0KlysvV65c8PX1Vd3vSkRERJbEgXYiIiIiIiIiIiIiIrI6uXLlwsKFC/Htt9/yxBIz2Lhxo3SCxTk4OKBLly7SGVavb9++sLe3l84wm7179yIpKUk6gxRQr149TQ/DNm/eHFWqVJHOEBMQECCdYHbbt29HbGysdIZiWrdujTfffFM6w+r0798fzs7O0hmK2L17t3QCmVHu3Lkxf/581ezSm1Xu7u4YPHiwdIYYNd4v08s1atQIH330kXSG2Xl7e6vy72UJVapUQYcOHaQzzM7e3h49e/aUzhARGBgonWA2Whtor1y5snSC4qpXry6dYHGPHz9GSEiIdAZZCR8fHwCATqczubx9+/YAgDZt2mT6Of7PPvsMv/32G+rUqYPt27dj/Pjx+PHHH3Hx4kX07NkTO3bsQO3atTP8+BEjRmDo0KHp/rl48WKmGuLj47F161a4urqidevWL72uu7s7WrVqhbi4OPz++++ZOn5W5cmTB02bNrXIsdXC0dERixcvxsyZM5E3b16sXbsWo0aNwvz58xEXF4exY8di8+bNyJ8/f7off//+fSQnJytcrTxXV1csXrxYdYs+ERERWZqDdAAREREREREREREREdGzateujalTp3JXdjNJTEzEvn37pDMsrl69ehmePEP/KVq0KBo0aIADBw5Ip5hFfHw89u/fj5YtW0qnkAV5enpi8uTJT3ck0qpvvvkGXbt2lc4QcffuXbzzzjvSGWalhcVmntDpdOjbt690hlXy9vZG8+bNsXXrVukUizt16hSioqKQK1cu6RQygzFjxqBAgQLSGaI+/fRTrFixQpPD3Vr8O2uZo6Mjvv32W+kMi+nbty+2bNmiid0jX5dOp8OYMWNeGKpTi48//hjz589HRESEdIqi7t+/L51gFmFhYQgKCpLOUEzRokWRI0cO6QzFaWWBv9u3b2v+MTYB1apVw8qVK9NdPKxy5cq4fv36C5e/8cYb6V7+7DGrVauWpY6DBw9m6frAv8Po6XW4u7tnafGRcePGYdy4cS9c3rVr11c+N1q7du2X/ls8MXPmTGzfvj3TTWpRpkyZTP37PNGyZcssvfbi6emJEiVK4O7du6+TZ1McHBwwZ84cVK1aVTqFiIjI5mj7FX8iIiIiIiIiIiIiIrIaefPmxU8//YSVK1dymN2MDhw4gISEBOkMi/vkk0+kE2xGmzZtpBPMSosnnmnNyJEj4e3tLZ0hrmbNmmjYsKF0hgi1Dc7du3cP58+fl85QTKNGjbhT0Ut07NhROkERer0ehw8fls4gM2jYsCEXE8K/J69//fXX0hki1Ha/TC/XpUsXFClSRDrDYkqWLIkGDRpIZ1i1tm3bqnpHaBcXF3Tp0kU6Q3FqGWi/cuWKdIKinuzarDU+Pj5wdHSUzrA4LQyA0st5e3tj3rx56Q6zE1m7lJQUfP7555r5WTZx4kT+HkFERPSaONBORERERERERERERESi7Ozs0LlzZ+zevRutW7eWzlGd33//XTrB4vLmzcsTR7KgQYMGqtod9cSJE5pYtEGr3n77bbRv3146w2oMGTJEOkGE2gbntHDf/KwePXpIJ1i1atWqoVy5ctIZijhy5Ih0AmWTp6cnJkyYIJ1hNZo0aYKyZctKZyguPj4eYWFh0hmkgJw5c2LQoEHSGRbXrVs36QSr5e7ujmHDhklnWFynTp3g4OAgnaEotexqrrWB9goVKkgniHB2dtbE70xqe+6DssbBwQE///wz8uXLJ51C9FrGjBkDf39/6QxFDBs2DB9//LF0BhERkc3iQDsREREREREREREREYmpWbMm/Pz8MG7cOHh6ekrnqE5ERASOHz8unWFxrVu31tyJx9nh5OSEZs2aSWeYTXJyMo4ePSqdQRbg6uqKSZMmSWdYFR8fH1SrVk06Q3FqO6n7jz/+kE5QTJkyZVCzZk3pDKv3ySefSCco4tixY0hNTZXOoGwYOXIkvL29pTOsihZ39QXUd99M6fvss8+QM2dO6QyLe/vttzk8loFu3bpp4t8mT548ePfdd6UzFKWWHdqvXr0qnaCoEiVKSCeIKV26tHSCxWllV2NK39ChQ1G1alXpDKLXMm/ePGzbtk06QxFdu3bFgAEDpDOIiIhsGs/sISIiIiIiIiIiIiIixdWsWRODBw/GO++8I52iart374bBYJDOsLgPP/xQOsHmtG3bFuvWrZPOMJsDBw6gadOm0hlkZn369EGRIkWkM6xOly5dcO7cOekMRT148AB6vR6Ojo7SKdl2/vx53Lt3TzpDMR07dpROsAlNmjTB5MmTYTQapVMsKioqCufPn0f16tWlU+g1+Pj4aGbxhaxo1aoVZsyYgZiYGOkURQUEBHDBEpXz8vJC586dpTMUYW9vjxYtWuB///ufdIpVcXZ2Rvfu3aUzFPPRRx/hyJEj0hmKefjwIQwGg80vEDlmzBh8/vnnSEhIePonLi7O5O0nf+Lj4xEfH5/u+xISEqDX66X/Oq9UtGhR6QQxWvi7P3jwQDqBhNSsWRN9+/aVziB6LVu3bsX8+fOlMxTRrFkzjB49WjqDiIjI5tn2MxFERERERERERERERGRTatWqhc8//xy1a9eWTtGEQ4cOSSdYXMGCBVGxYkXpDJtTtWpV5M+fH48ePZJOMYvDhw+r4kRs+k+uXLnQq1cv6Qyr1LRpU0ydOhXh4eHSKYoxGAwICgpSxW50O3bskE5QjKOjI1q2bCmdYRO8vb1RpUoV/PPPP9IpFnf69GkOtNuoYcOGQafTSWdYHVdXV7Rr105zg7DcQVT9OnfuDGdnZ+kMxXz00Uea+z5+lXbt2iFPnjzSGYpp1KgR3NzckJCQIJ2iCIPBgODgYJtfRC5//vzInz+/WY6VkpKS7sB7RoPwTy7LaEg+Pj7e7EPytv75yo5ixYpJJ1hcaGiodAIJcHZ2xqRJk2BnZyedQpRl/v7+GDNmjHSGImrXro3p06fze5WIiMgMeEYHERERERERERERERFZlJOTE5o0aYLOnTvjrbfeks7RjKSkJJw+fVo6w+Lef/996QSbVbduXWzevFk6wyyioqLw999/c7EMFenfvz88PDykM6ySk5MTPvnkEyxatEg6RVH3799XxUD7gQMHpBMU07BhQ+TMmVM6w2Y0btxYEwPtf/31Fz777DPpDMqiWrVqoW7dutIZVqtz586aG4QNCgqSTiALcnZ21szu7E9UrFgRxYsXR0BAgHSKVbC3t0fnzp01M9z9xHvvvYfdu3dLZyjm7t27mlq0IDOcnZ3h7OyM3Llzm+V4er3eZMg9MTEx3eH3Zy9PTEx8OiT/7OWurq4AoLnvyyfMtXCBNUtISEBYWBjc3d2lUywqKSlJOsGq9O/fH/nz59fs9zZZVlJSksW+tgICAjB48GCzL95ijcqUKYMZM2bAYDDAYDBI5xAREWVLWloakpOTkTNnTrHNAjjQTkREREREREREREREFlGiRAl06NABbdq0MdtJgJR5J0+eRHJysnSGxb377rvSCTZLTQPtAHD06FEOtKuEt7c3unbtKp1h1Zo3b665gfbHjx9LJ2Tb9evXNTUA2KpVK+kEm1K/fn1Mnz5dOsPizp07B71eD0dHR+kUyoJhw4ZJJ1i1YsWKoXz58rh69ap0imLUcL9MGWvVqpUmh1zr1avHgfb/V7NmTcTGxmrq5xoAFC9eXDpBURcvXlT94Ky1sbe3h6enJzw9PV/r47X2PfksrQz7njx5EoULF5bOsKjAwEDpBKvh7e2NGjVqaPp7myzr1q1biI6ONvtxY2Ji8P333yMmJsbsx7Y2+fLlw9ChQ/mzi4iIVKd48eJiz/9xoJ2IiIiIiIiIiIiIiMwmZ86caNiwIdq1a8fBUmF//vmndILF2dvb8+ssG+rUqQM7OzukpaVJp5jFyZMnpRPITAYNGgRnZ2fpDKtWrlw5vPHGG5oajlbD4NzBgwelExTj5uaGevXqSWfYlFKlSiF37tyIjIyUTrGohIQEXLlyBVWqVJFOoUxq2LAhqlWrJp1h9Ro1aqSpQRQ13C9Txnr27CmdIOLdd9/FqlWrpDOsQo8ePVC+fHnpDLNKTU3FjRs3UKZMGdjb26d7nTx58mhq4TB3d3er/Txn5vNF1kOpz5ejo6PqdwLOlSuXYt+XUt9nXNzsPyNGjEDlypVfeT3+TKTXVapUKRQqVMisx0xOTkb//v3x6NEjsx7XGuXKlQtLly5FsWLFpFM0jz8HbQs/X7aHnzPbkt3PV2JiIgICAkRfi+dAOxERERERERERERERZUv+/PnxwQcfoHHjxqhduzYcHPjygzU4cuSIdILFlS9f/rV3NKJ/T8apWLEiLly4IJ1iFleuXEF0dDRy5swpnULZkDt3brRr1046wyY0btwYv/76q3SGYiIiIqQTsu3AgQPSCYqpV68eXFxcpDNsik6nQ40aNbBv3z7pFIu7ePEiB9ptSJ8+faQTbELjxo0xb9486QzFqOF+mdJXrVo1lCpVSjpDRO3atTUxLPkq3t7eaNCgAezs7KRTzCo1NRXAvwsvZXTCd/HixVGqVCncunVLyTQxcXFxcHNzk85IV2Y+X2Q9lPp85cqVC2FhYRY7vjVITk5W7PtS6vuMzxX8q3LlymjZsmWmrsufifS6XFxczPozxWg04rvvvlPNa0ov4+bmhqVLl1rt4j9aw5+DtoWfL9vDz5ltMdfnS/J5H3U940RERERERERERERERBbn4OCAypUro1+/fli3bh2OHDmC8ePHo06dOhxmtxK3b9/Gw4cPpTMsrmrVqtIJNu/tt9+WTjCbtLQ0nDp1SjqDsql9+/ZwcnKSzrAJjRo1kk5QlK3vBPvo0SNcunRJOkMxWvv6NJeaNWtKJyji4sWL0gmUSWXKlNHM12V2lS1bVlO7tsXExGh+6FetPvroI+kEMe7u7lxwBUDr1q1VN8yeFe+++650gmKioqKkE4iyJHfu3NIJFhcbGyudQAoZMmSIdAJRls2YMQO7d++WzrA4BwcHzJkzB5UrV5ZOISIiUiXtPutERERERERERERERESZ4ujoiGrVqmHAgAHw9fWFv78/NmzYgOHDh6NatWrQ6XTSifScv/76SzpBETzRPPsqVqwonWBWJ0+elE6gbLC3t0fHjh2lM2xG9erVkStXLukMxdj6QPuJEydgNBqlMxSh0+lQt25d6QybVKlSJekERXCg3XZ06dJFOsGm1K9fXzpBMUajkbu0q5CDgwOaN28unSGqVq1a0gni2rZtK50gqnbt2tIJiomMjJROIMoSLTwHEhMTI51ACqhUqRLee+896QyiLPHz84Ovr690hiImTZqkqd/viYiIlMZtUoiIiIiIiIiIiIiIKEM6nQ5VqlRB6dKlkTNnTiQkJCAwMBAlSpSAs7OzdB5l4O+//5ZOUITahrElqG1wjju027YGDRqgcOHC0hk2w87ODtWqVcOhQ4ekUxRh60Nzp0+flk5QjI+PD7y8vKQzbFKZMmWg0+lsYvEDR0dHuLu7v/DHzc0t3f9/9m1PT0/pfMoET09PtGrVSjrDprz11ltYuXKldIZiIiIi4O3tLZ1BZlS3bl3N34f7+PhIJ4iqVKkS3nzzTekMURUqVJBOUAwH2snWaGGH9ri4OOkEUkCvXr2kE4iy5NixY5gwYYJ0hiK+/vprzS/wREREZGkcaCeblpqWhoikBOkMIiIiIiIixXi5uMHezk46g4iIiDTEaDTizJkzOHPmjMnldnZ2KFKkCN58802ULl0a5cuXh4+PD4oWLcod262AFgbaXVxcUKxYMekMm1eoUCHkyZPH5nc+fuLu3buIjIzUxAmuasRdYLOOA+22Q0sD7dyd/fV5eHigUKFCePDggdmP7ezsnOGAeVYH093d3eHo6Gj2RrIubdu2hZubm3SGTalevbp0gqLU8jsE/eejjz6SThCnpWHm9Lz//vvSCeIKFSqEXLlyISoqSjrF4jjQTrZGC49NExMTpRPIwgoWLIimTZtKZxBl2vXr1zF06FAYDAbpFIvr3r07+vfvL51BRESkehxoJ5u16fp5fHlwMx4lcDU6IiIiIiLSjvxuHpjzfjt8XLaKdAoRERFpXFpaGu7du4d79+6ZDNJ5eHigQoUKqFatGqpVq4aqVatysFRhoaGhFhmCsjYlS5aEvb29dIYqVKxYEYcPH5bOMJvz58+jQYMG0hmURQULFsS7774rnWFztDQ4Z8sD7YGBgZq4b36iVq1a0gk2rUyZMnjw4AFcXFyyvPO5h4dHhu9zcOApQpQ17dq1k06wOfnz58cbb7yBoKAg6RRF2PJ9M73I0dGRv0fh32FmLy8vzX59169fXzrBKlSoUAEnTpyQzrA4LQztk7poYVEtLQyMat2nn37K38/JZjx69AgDBgxAXJz653U+/PBDjBo1SjqDiIhIE/homGzWZ/v8EJ2cJJ1BRERERESkqEcJcfhsnx8H2omIiMhqxcXFwd/fH/7+/gAAnU6HUqVK4e2338a7776LWrVqwcPDQ7hS3c6cOSOdoIiSJUtKJ6hGpUqVVDXQfu7cOQ5i2KDGjRtDp9NJZ9icSpUqwdHREXq9XjrF4lJSUqDX623yBPZTp05JJyjGwcEB1apVk86waT///DMcHBxgZ2cnnUIaVqxYMZQvX146wyZVr15dMwPt3EFUXapVq8bna/5fhQoVcOzYMekMxeXLl0/zO9Q/oZWBdv4cJ1tji88HZBUH2tXN3t4eH3/8sXQGUaYkJCRg4MCBCA4Olk6xuHfeeQfTpk3j6xNEREQK4atfRERERERERERERERkMUajETdv3sSqVavw2WefoXbt2ujWrRuWL1+Ou3fvSuep0rlz56QTFFG0aFHpBNVQ2+IAWvkeUJumTZtKJ9gkFxcXlCtXTjpDMSkpKdIJr+XJQj9aUKFCBbi5uUln2DQnJycOs5M43i+/vqpVq0onKMZW75cpffXq1ZNOsBpaenz9rPfee49DPP9PK4u68Oc42RotDLRrYcFCLatXrx68vb2lM4heKS0tDcOGDcPly5elUyyufPnymD9/PpycnKRTiIiINIOvgJHNWtj4U+R346qwRERERESkLfndPLCw8afSGURERESvzWAwwN/fH9OmTUOzZs3QrFkzzJ07F7dv35ZOU40rV65IJyiCA+3mU6xYMekEs7p48SJSU1OlMygL8uXLh+rVq0tn2KzSpUtLJygmOTlZOuG1XLhwQTpBMVoa5CRSMw60v75SpUpJJyiGg5DqwoH2/6jtd+TMql+/vnSC1dDKc04cnCVbw4F2snUtW7aUTiDKlClTpuDQoUPSGRaXP39+LF68GB4enEkiIiJSkoN0ANHr+rhsFbQpXQkRSQnSKURERERERIrxcnGDPXdoIiIiIhW5e/cuFixYgAULFqBs2bJo3bo12rRpgzx58kin2azr169LJyiiSJEi0gmqobaT9RMSEnDr1i2ULVtWOoUyqUmTJtyNOBtKliwpnaAYWzyxOzo6Gvfu3ZPOUEylSpWkE4gomwoXLoyKFStKZ9gsDrSTLcqbN69mdyVPj1aGmZ9Xq1Yt6QSrobbnSTJii79fkbZpYfdco9EonUAW4uzsjIYNG0pnEL3SihUrsGrVKukMi/Py8sLIkSORN29e6RQiIiLN4UA72TR7Ozvk4y7tRERERERERERERKpw/fp1/PTTT5g9ezYaNmyI9u3bo169etDpdNJpNiMwMBBxcXHSGYrw9vaWTlANDw8PeHl5ISIiQjrFbK5evcqBdhvSpEkT6QSbpqWBdlscnLt48aKmTkjnQDuR7ePu7NmTJ08e5M6dG5GRkdIpFmeL98uUvjp16vC5l2docaC9ePHiyJ07t3SG1ciZMydy5syJ6Oho6RSLMhqN0Ov1mtj1mtSB91Vky9577z3uAk1W78CBA5g6dap0hsW5ublh0aJFMBgM0ilERESaxGXuiYiIiIiIiIiIiIjIquj1euzduxf9+vXDhx9+iLVr1yIxMVE6yyZoZXd2nU6HfPnySWeoitp2H7t69ap0AmWSi4sLqlevLp1h07gTrHW7cOGCdIJi3N3dUbx4cekMIsqmd955RzrB5mllsRlbvF+m9FWtWlU6waoULFhQE7sAP6tatWrSCVZHKwsb8Gc5EZEyuDs7WbtLly5h+PDhSEtLk06xKEdHR/z888+oWLGidAoREZFmcaCdiIiIiIiIiIiIiIis1p07dzBhwgQ0aNAA8+fPR2xsrHSSVbt27Zp0giJy5cqluZPLLU1tA+1XrlyRTqBMqlq1Kr+fs6lw4cJwcXGRzlCELQ5bXLx4UTpBMWXKlOGOeUQ2zt7engvNmAEH2snWVKpUSTrBquh0OhQpUkQ6Q1Fc1OBFanueJCN6vV46gYhI9XQ6Hd577z3pDKIMBQcHY+DAgUhISJBOsSidTofJkyejXr160ilERESaxoF2IiIiIiIiIiIiIiKyelFRUZg3bx4aNmyIOXPmcLA9A1rZoT1XrlzSCarj7e0tnWBWWlncQQ1q1qwpnWDz7OzsULhwYekMRdji4JyWFtgoU6aMdAIRZVOFChXg4eEhnWHztDIIm5ycLJ1AZuDk5ISyZctKZ1gdtf2O/CocaH9R/vz5pRMUYYu/YxER2RofHx/ky5dPOoMoXXFxcejfvz/CwsKkUyzum2++QevWraUziIiINI8D7UREREREREREREREZDNiY2OxcOFCNGrUCCtWrOBJl8+5ffu2dIIiONBufl5eXtIJZhUTE4OgoCDpDMqEWrVqSSeoQoECBaQTFGFr9/uxsbEICQmRzlAMB9qJbB8XmjGPggULSicogrv6qkO5cuXg5OQknWF1tDR05ubmhtKlS0tnWB2tDLTzZzkRkeW9/fbb0glE6TIYDBg6dChu3LghnWJxvXr1Qp8+faQziIiICBxoJyIiIiIiIiIiIiIiGxQVFYUpU6bgww8/xKFDh6RzrILRaNTMAC8H2s0vb9680glmd/PmTekEegUnJydUqVJFOkMVtDLQnpaWJp2QJbdu3ZJOUFSJEiWkE4gom7jQjHlo5X7ZaDRKJ5AZVKpUSTrBKqnxd+SMlCxZEvb29tIZVkcrXwP8WU5EZHn8PYus1YQJE3Ds2DHpDItr2bIlRo4cKZ1BRERE/48D7UREREREREREREREZLMCAwMxcOBADBo0CA8fPpTOERUaGork5GTpDEW4u7tLJ6hOnjx5pBPM7s6dO9IJ9AqVK1eGs7OzdIYqaGVwztZobaC9ePHi0glElA06nQ5vvfWWdIYq8H6ZbEnFihWlE6ySlnZoL1mypHSCVdLKQDsREVmWvb09f88iq7RkyRL4+flJZ1hcnTp1MHXqVOh0OukUIiIi+n8caCciIiIiIiIiIiIiIpt34MABtGjRAmvXrpVOEXP//n3pBMW4urpKJ6iOl5eXdILZcaDd+pUvX146QTU4OGedtDTQ7uzsjEKFCklnEFE2FCpUCDly5JDOUAVvb2+eLE82o0SJEtIJVklLw8wcaE+flhY1ICIiyylTpgw8PDykM4hM7Nq1C7NmzZLOsDgfHx/MmzcPjo6O0ilERET0DA60ExERERERERERERGRKiQkJGDChAno3bs3goODpXMUx4F2yg41nqzPgXbrV6pUKekE1eBAu3XS0kB70aJFObxJZONKly4tnaAajo6Oqnx8TepUrFgx6QSrpKXv4TfffFM6wSpp6WuAiIgsp3LlytIJRCbOnTuHkSNHwmg0SqdYVNGiRbF06VK4u7tLpxAREdFzHKQDiIiIiIiIiIiIiIiIzOn48eNo06YNpk2bhgYNGkjnKCYwMFA6QTFHjhzBgwcPpDNUJS0tTTrB7DjQbv040G4+uXLlkk6gdNy9e1c6QTHcnZ3I9vF+2bxy5syJsLAw6Qyil/L09ISXl5d0hlXy9PSUTlAMB9rTp6WvASIispwqVapIJxA9FRgYiEGDBiE5OVk6xaI8PDywbNky5MmTRzqFiIiI0sGBdiIiIiIiIiIiIiIiUp2oqCgMHDgQffr0wbBhw2Bvby+dZHFaGmgPCAhAQECAdAZZuaioKERERHBAw4pxcM58cuTIIZ1AzzEYDAgJCZHOUAwH2olsH++XzYuDkGQLihYtKp1gtTw8PKQTFOHo6MivgwzY29vD1dUViYmJ0ilERGTDfHx8pBOIAADR0dHo168fIiIipFMsLj4+HhEREXycS0REZKU40E5ERERERERERERERKpkNBrh6+uLq1evYs6cOaof9tPS0BxRZt27d48D7VYqX7583FXcjNR+H2eLgoODkZqaKp2hGA60E9k+DrSbV86cOaUTiF6pWLFi0glWSysD7fnz54eDA08jzoiHhwcH2slqpKSkIDw8HBEREU//REZGPv3/x48fIyYmBikpKS/80ev1T//fYDBI/1WINMPBwQFvvvmmdAYRUlJS8Pnnn+Pu3bvSKYowGo34/vvvsXnzZj7WJSIiskK8dyYiIiIiIiIiIiIiIlU7fvw4OnTogEWLFqn6ZO3Hjx9LJxBZnQcPHqBatWrSGZSOkiVLSieoCneBtT4PHjyQTlCUt7e3dAIRZYNOp+N9s5nxvplsAXcszJiWBtopY+7u7ggLC5POIA1JTk7G/fv3ce/ePZM/9+/fR3BwMIxGo3QiEWVB8eLF4eTkJJ1BhDFjxsDf3186Q1HXr1/HihUr0KdPH+kUIiIieg4H2omIiIiIiIiIiIiISPXu3LmDjh07YtmyZahQoYJ0jkXwBFuiF2ltoNSWFClSRDpBVRwdHeHq6srdA62I1n7+5MuXTzqBiLLBy8sLbm5u0hmqkiNHDukEolcqUKCAdILVcnFxgaOjI/R6vXSKRXFRopfTysIGJCMyMhKXLl3CpUuXcPHiRVy9epVD60QqU7p0aekEIsybNw/btm2TzhAxf/58NG/eHIUKFZJOISIiomdwoJ2IiIiIiIiIiIiIiDQhIiIC3bp1w6JFi1CzZk3pHLNKSkpCfHy8dAaR1dHaQKkt4fCr+Xl6enKg3YoEBQVJJyiK39NEto3fw+bHHdrJFuTOnVs6waq5ubkhOjpaOsOiOND+cu7u7tIJpBLJycn4559/cPHixacD7Fr7nZFIi4oXLy6dQBq3bds2zJ8/XzpDTEJCAiZOnIhFixZJpxARac4PG/2x5sh11CiZHwv6NUQONyfpJLIiHGgnIiIiIiIiIiIiIiLNiIuLQ9++fbF48WK8/fbb0jlmw93ZidLHgXbrxcE583N2dpZOoGcEBwdLJygqb9680glElA28XzY/JyeepEnWz8vLSzrBqjk6OkonWBwH2l9OC18DZBlpaWm4ePEiTpw4gVOnTuHs2bNISUmRziIihXGgnaT9/PPP0gniDh06hP3796NRo0bSKRZnNBqx5uh1zN1xHnpDKqZ1q4OmVYtJZxGRBm06dQsT/PwBALdColEwtzumd68rXEXWhAPtRERERERERERERESkKUlJSfjss8/g6+uLt956SzrHLMLDw6UTiKwSd7uyXhycMz8HB778b020tNiMvb09cuXKJZ1BRNnA+2Xz4xAk2QIOtL+cvb29dILF5cuXD6mpqdIZinjy98zK31cLXwNpaWlW+TXwOp8vaYmJiThx4gQOHTqEw4cP4/Hjx9JJZIOMRqNiX/dS32dpaWmK3p6kokWLmuXf1xZ/JhJZkx9++AG1atWCu7v708vU9n11NSgCXyw/iiNXHz69rOvcvbi/qAecHGz/Ma3aPl9qx8+X7TH352zujn9M3t58+jamdnnHLMem7H++rOF7k69oExEREREREREREVGWFS5cGAcPHpTOsCmpqanQ6/UwGAxISUmBwWCAwWBAQkICoqOjERMT8/RPdHQ0Hj16hODgYISEhCA4OBixsbHSfwVVSUhIQP/+/bFq1SpUqFBBOifbeIIkUfpCQkKkEygDHJwzPw7OWZeIiAjpBMV4enpCp9NJZxBRNvB+2fx4v0y2gAPtL6eFBaMiIiLwzz//SGco6uLFi5m+bnx8vAVLrMOVK1esejGurHy+JKSmpuLixYs4fvw4zpw5g+TkZOkksnESP5eV/j4LDAxU9PYkRUZGmvXzae0/E4msVUhICL7//nt069bthffZ+vdVYkoqlp8Iwpq/gpGaZjR5X2R8MnYd9kexPK5CdeZn658vreHnS15MkgFuTvZwsMvc6zfm+JzdCovHieumr8/fC4vF7iOnUSCHc7aPT/+x5e8x9T/jRkRERERERERERERkBezt7bO1q09cXByCgoJw+/Zt3Lp16+mf+/fvw2AwmLFUO+Li4tC/f3/4+fmhUKFC0jnZEhUVJZ1AZJWSkpIQGxsLT09P6RR6DgfnzI+Dc9ZFS4vNcHd2ItvH+2Xz08IgLNk2Ozs75MyZUzrDqmnh+7hy5cqoUqWKdIYingweV6pUKdPP0Wph0YcKFSqgcOHC0hkveJ3Pl5ICAgKwfv16/PHHH5pazIwsz8vLC1WrVlXktqS+z57dIVnNHB0dUb9+fbMsAGjtPxOJbMHevXvRt29flC9fHoA6vq9+P3MXX686hvvhcRleJ3+REqhapoCCVZahhs+XlvDzJS8uSY+hy49g7bGb8HBxxLqvmuKDSm9keH1zfs6WLz+S7uWPdbnQrGrZbB2b/pXdz1dCQgJu3LhhgbLMU/8zbkREREREREREREREKuDh4YFy5cqhXLlyJpenpKTg4sWLOHv2LP7++2+cO3eOw81ZEBYWhv79+2PdunXw8PCQznltcXEZn6xApHVhYWEcaLdCefPmlU5QHS0M3NgSLQ01cKCdyPblyZNHOkF1uNAMWbscOXLwxPJX0MLj65w5c2ru6yAri446OTlZuEaenZ2dVX8NZHeRWHNKS0vD/v37sXbtWpw6dQpGo/HVH0SURTqdTvGveaW/z+zs7BS7LUkFChQw+2MJa/qZSGRrUlNTMWHCBKxfv97k55Atfl89ik5A/0UHsf3vgFdeNzI+xeb+fi9ji58vLePnS8bdRzH4ePoOXLj376LLMYkp+H79aTSpWuyVH5vtTTqSUrD2WPqD0seuhaB7gwqvfWx60et+vqzh+1L9z7gREREREREREREREamYk5MT3nrrLbz11lvo168fjEYjbt++jUOHDmH//v04f/48T657hZs3b2LkyJGYP3++WXbLkMCBdqKMhYeH480335TOoGfY2dnB2dlZOkN1ODhnPaKjo6HX66UzFMNFQ4hsn4uLi3SC6mhhEJZsmxYGdbNLC9/Htry4oxK08DVAr5aSkoItW7Zg2bJluHfvnnQOEdmIAgVsf0dkIrW5cOECfvvtN3Tp0kU65bWlpqWhzU874H8z9IX3OdrbwcXJHrGJ/z0v/Tg2Uck8oiy78TASY347hfvhsfjiwyroXI87eGfHn5eD0GHWbjyOTTK5/GZwlCK3v/boDZOfQc86fPmBIg1kG7SxxBURERERERERERERkUbodDqUKlUK/fr1w/r163H48GF8//33qF27tnSaVdu/fz+WLFkinfHa4uPjpROIrFZ4eLh0Aj2HwzOWoZUdrmyBlnZnBwA3NzfpBCLKJi40Y368XyZrx8WQXs1WFz3MCnd3d+kEq6aFrwHKWEpKClasWIH3338f33//PYfZiShL8uTJI51AROmYPXs2wsLCpDNe286z99IdZq/vUxhnp3fE22VMF9MIf26olcia7Dp3D++M2oDNp2/jzO1H6D5vHwLDY6WzbJLRaMTCPRfRbNLvLwyzA//u0m7pTTCMRiMW772U4ftvh0bjQQQ3aaB/8ZlzIiIiIiIiIiIiIiIV8/b2RpcuXbBy5Urs3LkT3bp14+5LGZg7dy7OnDkjnfFaONBOlLFHjx5JJ9BzODRHahcTEyOdoCgOQhHZPt43E2kPF5kinU7Hx3FE6UhNTcWmTZvQtGlTTJkyxaaH3ohIDgfaiaxTbGwspkyZIp3x2hbvMx0WzevpghWfN8b+79ug/BteyOPhYvL+9AZbiaQZjUbM+P0sWk/djuiEFJP3+d96ccEGejmj0Yghyw5jyLLDMKSmZXAdID45/Z3TzeX0zVCcv2e6yPzza8QducJd2ulfHGgnIiIiIiIiIiIiItKIkiVLYsyYMTh69CjGjx+PN954QzrJqqSmpmLEiBGIi7O9laFtsZlIKY8fP5ZOoOdweIbUTmsLzXAQisj28b6ZSHu4Qzu5urpyB3Ki5/j7+6NNmzYYNWoUHj58KJ1DRDbMy8tLOoGIMrBz504cP35cOiPL7j6KwZ5/7plcNqXLu+jyXtmnj+vzerqavJ8D7WRtElMM6Dl/P75dfQJp6ewYHpuYks5H0cv879BVLHrJzuhPxCRY9t928d6LJm+XyJ8DzasVM7ns8GUOtNO/ONBORERERERERERERKQxbm5u6NSpE3bt2oUxY8Ygb9680klW48GDB5g8ebJ0RpZxoJ0oY9HR0dIJ9BwOzZHaaW2g3dXV9dVXIiKrxvtmIu3h9z3Z29tLJxBZjdDQUHz99dfo1q0bbty4IZ1DRCrAgXYi6zZx4kSkpNjW4OzS/Zfw7PxvTjcndHi3tMl1vDy5QztZrwcRcWg4bjPWHL2e4XViEy27i7jaGI1GzNnxzwuXf9O6+guXxVjw3/ZxbCL8Tt4yuaxfIx808DHdYOPIFS4aRv/iQDsRERERERERERERkUY5OTmhW7du2LdvH4YOHQo3NzfpJKuwefNmnDx5UjojSxITE6UTiKwWB9qtj7Ozs3QCkUVpbaCd39NEto/fx0Tawx3aiYj+tXHjRrRo0QLbt2+XTiEiFcmRI4d0AhG9RGBgILZu3SqdkWnJ+lT8evCqyWXd65eDu4vp73V5nxtoD4/97/XjiLgkfLv6BAYuPogrQRGWiyVKx+PYRLw/bgvO3H700uvFJXGgPSuOXQvG5UDT7+clA9/Hj13ehZuzg8nl0QnJFutYefgakvWpT992tLdDr/croL5PYZPr3QiOQnCktl4/o/RxoJ2IiIiIiIiIiIiISOPc3NwwaNAgbN26FdWqVZPOsQrjx4+3qZX59Xq+uEuUkZiYGOkEeg53gyS109pAO7+niWwfB1uJtIff90SkdSEhIejbty9Gjx6N2NhY6RwiUhlPT0/pBCJ6he3bt+P27dvSGZmy1f82wmJMFzfv17jiC9fL89xAe8QzO7R3nrMHM34/C98DV9Dqxz+QmGKwTCzRc/SGVHScvQe3Q00XIPd0dUS5wrlNLotNsp3zM6zB4r0XTd4uXTAnejYoDwDI4Wr6uk1MomX+bdPSjFiy75LJZR+/XRL5criiavG8L3QcufLAIh1kWzjQTkREREREREREREREAIBixYph7dq1GD58uOYHkwICArB06VLpjExLTU199ZWINIo7tBOR0jjQTkREREREZL0OHTqE1q1b4+jRo9IpRKRSHGgnsn4GgwETJ06UzsiURXtNh0Xfq1AIFd7weuF6eTxdTd4O//+B9r9uhWL/hcCnlweExXKolBTzzcrjOHQpyOSykt45cXxye9QrX8jk8rhELuKfWY+iE7DplOmiHP0aVYSdnQ7AiwPtsQmWGWg/eCkIN4NNX4sf0KQSAMDezg51yhU0ed+RKw8t0kG2hQPtRERERERERERERET0lJ2dHfr164cNGzagQIEC0jmifH19ER4eLp2RKRxoJ8oYd2gnIqUlJCRIJyiKO7wSEREREZEt0Ov1mDZtGj777DNERUVJ5xCRirm7u0snEFEm/PXXX9i8ebN0xktdDnyMo1dNB0AH/v+w6POe36H9cWxSursnA8Dxa8HmiyTKwPKDVzB/9wWTywrmdsPBCW1R4Q0veLiYvrYQa6FdxNXof4euQp+a9vRtZ0d79GhQ7unbOdyyt0P71aAITNr4F/xO3ERqWlqG13v+54tPES/UfWaIvb5PYZP3czENAjjQTkRERERERERERERE6ShXrhz8/PxQpkwZ6RQxCQkJmDdvnnRGphgMBukEIqvFgXYiUpper61dROzt7aUTiIiIiIiIXioqKgq9e/fG8uXLYTQapXOISOVcXV1ffSUisgo//fQTIiMjpTMytHTfZZO38+d0RZtab6Z73bzPDbSnGY0ICIvBuuM3X7ju8escaCfL+vv2Iwxe+qfJZc6O9tg4/EMU9vIAAHg+v4t4krZeW3ldaWlGLN1v+rPh03dKIY/nf48/nv+3jUnM/L/tg4g4fDBhC8b7nUbnOXswb+eFdK/3MCIO2/66Y3JZ/8YVodPpnr79XgXTgfarDyIRGqWtRaHpRRxoJyIiIiIiIiIiIiKidHl7e2Pt2rV4++23pVPEbNy4EUFBQdIZr8SBdqKMxcXFSScQkcakpqZKJyjKzo6nnhARERERkfUKCAhAhw4d4O/vL51CRBrh7OwsnUBEmRQZGYmffvpJOiNd8Ul6rDx8zeSyXg0rwMkh/QVGn9+hHQDm7vgHiSkvvo7sfzMUKQZtPY9Nyhrn52+ygzgALOrfELVLF3j69vM7tMdxoD1T9l64j7uPTBd079+kosnbOZ4faE/I/A7tUzadwaPoxKdvLztwOd3rLTt4Balp/y0W5ubsgK7vlTW5TvUS+V74PB+9+jDTLaROfFWRiIiIiIiIiIiIiIgy5OnpiaVLl+Kdd96RThFhMBjg6+srnfFKWhucI8qK1NRUpKRk/kV6IqLs0tpCMxxoJyIiIiIia3XhwgV06NABAQEB0ilEpCEcaCeyLVu2bMGZM2ekM16w7vgNxCT+9/qWTgf0a+ST4fXdnB3h6uRgcpnvgSvpXjcxxYBzd8PME0r0nKDIJOy7EGhy2Zctq6Jb/XIml3m6mg46xyby9dzMWLz3ksnbVYrlxdvPLBQAADme+7eNyeS/bbI+FYv3mR7/6oNIGJ5bnMCQmgbf53aJ71y3DHK6mT4GcrC3Q51yBU0uG7LsMD6c/DuG/e8oouKTM9VF6sJXFYmIiIiIiIiIiIiI6KWcnJwwb948lClTRjpFxKZNm/Do0SPpjJfS2uAcUVYlJSVJJxCRhmhtoRkOtBMRERERkTU6c+YMevbsiaioKOkUItIYDrQT2Raj0Yhx48ZBr7eu3aGXPDdU2qxqMRTPn+OlH5P3uV3ak/UZP1d9/Frw68cRvcSWf0JN3s7l7owfOr79wvU8XUx3EecO7a8WGB6LHX8HmFw2oElF6HQ6k8tyuJn+22Z2sYAtp2+ne/mzO8LrDan48tcjeBARb3Kd/o0rPv9hAID3KhQ2eTssJhF7z9/HzzvPY/q2s5nqInXhq4pERERERERERERERPRKnp6eWLJkCfLnzy+doriUlBT89ttv0hlElA2JiYnSCUSkIVobaDcajdIJREREREREJk6ePIm+ffsiPj7+1VcmIjIze3t76QQiyqJbt25h2bJlit/uvgv38dmSQ1jx59Wnz7OmpRnxw0Z//H3HdAf1AU3SHxZ9Vp7nBtpfhgPtZAlJKQb8cdF0s4Du9cvB1cnhhet6vLBDOwfaX8X3wBWkPfOajIeLIzrVfXFjCk9X04H2mIRXD7RfexCJKZvPpPu+6w8jAQDhMYloNvl3LHpul/iapbxR/c30zyWq/9xA+7N2/H33lV2kPhxoJyIiIiIiIiIiIiKiTClYsCAWLVoER0fHV19ZZTZs2GB1q/I/iydHEb0cd2gnIiUZDAbpBEWlpaVJJxARERERET114cIFDBo0iAscEpGY53dJJSLbsHDhQgQGBip2eyeuB6PllD+wdP9l9FlwAPN3XUBcUgo6zt6NCX7+JtctmtcTzasVe+Ux83i6Zvi+mqW8Td4+fu0hFysls9vifwfRiaavkWS0GMPzQ9dxSZnbRVyr9IZULD942eSyru+VfeHfEQByPD/Q/pId2hOS9Vh45D5qjPTDlaCIdK9z42EULtwLx9vf+eHw5QcvvH/cp7UyPP5bb+aDu3P65xhdCkz/9kjdONBORERERERERERERESZ5uPjg0GDBklnKC4sLAx79+6VzsgQB9qJXo4nMBORkrR2EqDW/r5ERERERGS9bt++jX79+iEhIUE6hYg0jK/ZENmmpKQkTJgwQbHbm77tLFLT/ntudbzfabw3dhM2n779wnXHflIT9navHgHMaId2VycHLOjXwOSy8Ngk3AiOylIz0ass2W86cN2w4hsoWyh3utf1cOEO7Vnxx5m7CI40/T2nf+P0FwvI4Za5gfbtf99F1W/W438nH0CfmvHixdO2/o16YzYhICzW5HJnR3us+LwxmlXNeMENRwd7vFO2QIbvJ+3hQDsREREREREREREREWVJ//794ePjI52huC1btkgnZMjBwUE6gciqJScnSycQkYZo7aTl1NRU6QQiIiIiIiKEh4ejT58+iIqKkk4hIo2zy8TQKRFZp6NHj2Lnzp0Wv5374bH448xdk8uiE1Jw4d5jk8vsdDpM714HPRuWz9Rx82Yw0N7h3dKoWjwvCnu5m1x+/FpwFqqJXu7i/XCcuB5ictnADHZnBwDP5wba9alpSNbz9YaMLNp3yeTtd8oWQOViedO97gs7tCeYDrTfC4tBu592oM20Hbj33JB6eh7HJiE+2XTBgUK53fHnhHbo8l7ZV358/QqFM3xfUorhlR9P6sJHykRERERERERERERElCUODg748ccf4ejo+Oorq8iJEyfw+PHjV19RgNYG54iySq/niv5EpByt3S+npWW8awcREREREZES9Ho9hgwZguBgDmURERFR9kyZMgVxcXEWvQ3f53axTk8ud2dsH/URvmpZDTqdLlPH9cpgoL1/k4rQ6XSoU66QyeXHrz3M1HGJMmPJXtOv6wK53NCqRokMr+/53NA1AMRmsJO41t14GImDF4NMLhvYuFKG13/+3/bZHdq3nL6NSsPW4vfnFtUAAAd7O4xoUx2rvmj80p7apb1xeuqnqFnKOzP5eO8lA+0RcUmZOgapBwfaiYiIiIiIiIiIiIgoy8qWLYsePXpIZygqNTVVkRX5X4fWBueIsorDlkSkJAcHB+kERXHRECIiIiIikvbDDz/g7Nmz0hlERESkAmFhYZg1a5bFjq83pGL5wSsvvU75wrlx6sf2aFKlaJaOnd4O7dVL5EPNkvkBAHXKFTR5H3doJ3PZeTYA//vzqsllvd+vAEeHjM9j8HR9cQOF2CS+3pCeJc8tgpHH0wUfv10yw+vndEt/h/bA8Fh0+3kvEpJf3BX9vfKFcHZ6R0zp/C6qFs+X4bF7NCiHg+PboWBu90z31y7tjarF099NPiIuOdPHIXXgQDsREREREREREREREb2Wfv36wdPTUzpDUfv27ZNOSJfWBueIsio1NVU6gYg0RGsLzaSkcMcUIiIiIiKSs2XLFqxfv146g4iIiFTkt99+w4ULFyxy7N/P3EVIVEKG72/5VnEcn9wepQrkyvKx86Qz0D7g/3dnB14caL8VEo2QqPgs3w7RE0ajET9t/Rutp21HYsp/Q9J2Oh36NvJ56ce6OTni/780n4pL4usNz0tMMWDFIdPFAno0KA8Xp4zPEcnx/EB7YgqMRiOW7r+MJL3p6+b5crhgXItS2Du2FSq84QUAKFkgJ+ztnvvkAKhWIh98P/sAzo5Zex3Mwd4OW0e2xLdt33rhfY+5Q7vmcKCdiIiIiIiIiIiIiIheS65cudClSxfpDEWdPXsWsbGx0hkvcHJyevWViDSMO7QTkZK0ttBMcjJ3zyAiIiIiIhmBgYH44YcfpDOIiIhIZdLS0jBu3DiLLJi8aO8lk7drlMyPLz6sgjrlCmJOr3rY/E2LF4ZRM6tYvhwmb+dwdULHOmWevl2paJ4XdsXmLu30uhKS9ej2816MWnsSRqPp+3o0KIuieV++OYKdnQ7uzqZfj7GJ3KH9Walpafh29XFExpu+DtO/8csXC8jhavozJDXNiJjEFCw/eMXk8g+rF8PFmZ3xYcV8Txe+AAAnB3vYPb/aAIABjSuaXC8r3sjjgUmd3kFJ75wml0fEcqBdazjQTkREREREREREREREr61z585wdHR89RVVQq/X4+jRo9IZL3Bzc5NOILJqBoPh1VciIjITLT02ArhDOxERERERyTAYDBg+fDji47mrKBEREZnflStXsGrVKrMe8/rDSBy6FGRy2ZDmVTCrZz0cnvgxPm9eBXbp7IqcWe+UKYBapb2fvj29ex24u/z3fLW9nR3eKWO6SzsH2ul1BIbHosH3m7Hu+M0X3teoXB7M7lkvU8d5foGF2ES+3vBEZFwSWv74B37ZfdHk8kaVi6BUgVwv/djnB9oBYPWR6wiJSjC5bHLnd5DbwzndY5Qt9OJtdKpb5sUrZtHztxdh4R3aD14KQq2R6/H2d34v/Lz783IQGozbjHdHb8Cfl4MyOAKZm7aWBSciIiIiIiIiIiIiIrPy9vbG+++/jz179kinKObkyZP48MMPpTNMuLu7SycQWTXu0E5EStLaQjNJSdw9g4iIiIiIlLd8+XL8888/0hk2ycPDA4UKFULBggXh7e0NLy8v5M6dG3ny5EGuXLng5uYGd3f3p38cHBxgb28PBweHp///RGpqKv755x9UrVrV5HJzmzdvHubPn2+x4xMREaVn7ty5aN68Oby9vV995UxYss90d/Y8ni74+O2SZjk2AOh0OhyZ+DF2/3MPb+TxQNXi+V64Tp1yBbH3/P2nbx+/9tBst0/a8Cg6AXXHbMSDCNOFpXQ6YOKntdG4mA6uTpkbWfV0cUIw/huyjkviDu0AcDUoAu2m78DN4GiTy3U6YGSbt1758Z7pDLTP/uOcydvvli2ISkXzIjU1Nd1jfFqnDC6tO/X07cHNKpkskPG68ni6mLz92II7tEcnJOPTmbsQ9f873LefuRO35neHq5MD5u26gOErjiHNaAQAdJy1G/cX94KTg+V+p6F/caCdiIiIiIiIiIiIiIiypUWLFpoaaPf395dOeIHWBueIsiqjF+KJiCxBawvNcDdEIiIiIiJSWmBgIH755RfpDKvn4eGBChUqoGzZsihXrhzKlSuHokWLIkeOHNJpRERENiEhIQGTJk3CvHnzsn2sxBQDVv55zeSyHg3KwyWTg7+Z5WBvh5Zvlcjw/XXKme7Qfu5uOGITU9IdgCVKz4+bz7wwzO7p6ohVXzRB86pFs7To1PM7tHOgHdhxNgDd5u5FzHO71Tva22FBvwZoWPGNVx7D2dEezo72SNb/9xp5QFisyXUGNqn40mMMaloJv/91B2duP0KNkvkxsePbWfhbZCyPh+lAe0RcslmOm57VR64/HWYHgEfRiVhz9DpO3wjF//68anLd8NgkXH8YiUpF81qsh/7FgXYiIiIiIiIiIiIiIsqWBg0awM3NDQkJCa++sgoEBATg0aNHyJ8/v3TKUxxoJyIish4caCciIiIiIrKs8ePHIynJcjv52SqdTodKlSqhTp06qFu3LqpWrQoHB44LEBGReel0OrRt2xZbt25FWlqadI7F7d27F4cOHULDhg2zdZwNJ24iMt50cLN/Y59sHfN11CrlDQd7OxhS//3cpRmNOH0zFI0qF1G8hWxPfJIeKw+bLsxQqkBObBnRAuXf8MryIuMezy2kEPvcELfWbDhxE53n7sH/bxr+lHdON2wY3hzvli2Y/gemI4erE8L0iem+L4+nC9rVLvnSj8/l7oyTU9rjcWwS8uZwzfTtvorXCwPtlvm9zmg0YvHeSy9cPmjpny/8+z7xMCKeA+0K4G+oRERERERERERERESULc7OzqhRowaOHDkinaKY8+fPo3HjxtIZT2ltcO63335DoUKFpDPIhuTOnVs6gYg0RGv3yxxoJyIiIiIiJe3btw/Hjh2TzrAqBQsWRJs2bfDxxx+jSBEOoxERkeUULlwYU6dORa1ateDs7IzffvtNOkkRP/zwA95++224ur7+UOeifaaDlY2rFEGpArmyWZZ1bs6OqP5mPvjfDH162fFrDznQTpmy/sRNRCf8N3Su0wE7R7fCm945X+t4Hs6mO7THJmp3h/akFAM+X3b4hWHrt97Mh43DP0SRvJ5ZOl4OVyeExaQ/0N6zYXm4OL16rFin05l1mB0AvDxNB9ofx1pmoP3o1Ye4EhTxwuUZDbMDQHAkX+9SAgfaiYiIiIiIiIiIiIgo2+rUqaOpgfZLly5Z1UC71nZoz5UrFwoUKCCdQURElC6t3S/HxcVJJxARERERkUYYDAbMmDFDOsNq+Pj44PPPP0eDBg1gZ2cnnUNERCrXpk0bjB07Fh4eHgCAL7/8Ert27UJUVJRsmAIePHiAefPmYcSIEa/18efuhpkMkAPAgMYVzZH2WuqULWg60H49WKyFbMuS5xZmaFq12GsPswOAp+tzA+1J2t2hfdOp2y8Md3esUxpLP/sArpkYPn9eDjenDN/Xv5Hcz588nsrs0P7812pmPIjgQLsS+JsrERERERERERERERFlW9WqVaUTFHXlyhXpBBM5c77+i8S2SK/X7srsRERk/Z6c0KkV0dHR0glERERERKQRfn5+CAgIkM4QV7ZsWfzyyy/YvHkz3n//fQ6zExGRReXOnRvz5s3DtGnTTJ77zJUrF7788ku5MIWtWLEC169fz/LH3Q+PRb+FB0wuK+zljpZvlTBXWpbVLVfI5O3TN0KhN6QK1ZCtOHM7FGduPzK5LLsLM3i6mg5dx2l4h/bFzw1g1/cpjFVfNHmtYXbgxcUCnmhcpQhKFpA7v8TLw9nkbUsMtD+KTsCmU7dfep3i+TzRwKewyWXcoV0Z/O2ViIiIiIiIiIiIiIiyrVy5crC3t5fOUMy1a9ekE0x4eXlJJyiKA+1ERGTNcufOLZ2gKC3swERERERERPKSkpLwyy+/SGeIcnR0xJdffoktW7agUaNG0jlERKQBDRo0wB9//IEmTZqk+/4OHTqgQoUKClfJMBgMGDduHIxGY6Y/5ujVh6j9rR/+CQg3ubzPBz5wsJcb6Xu3XEGTt+OT9Th/LzyDaxP9a/Fe04HrInk88GH1Ytk6poeL6dB1XJI2zwO4eD8cJ64Hm1w2qGkl6HS61z5mDtf0d2gf2LjSax/THLw8THdof35XenP49dBV6FPTTC5zdvzvfKYGPoVx6sdPUa+86eIeD7lDuyI40E5ERERERERERERERNnm4uKCYsWy92KlLXn06BHi463nxSytDc5xoJ2IiKxZnjx5pBMUFRMTI51AREREREQasGnTJoSHa3fQqmzZsti4cSM+++wzTS0uS0REMtzc3DBhwgQsXrwY+fLly/B6dnZ2GDNmjIJlss6dOwc/P79MXXfp/ktoMnErwmISTS4vmNsNg5rKDpTmy+GKcoVNX18+cT1EqIZsQWRcEtYdv2lyWd9GPrC3y95o6vM7tMcmpmTreLbq+cUCCuRyQ6saJbJ1zPQG2gt7uaPFW8WzddzsyuNpOtAeEZeUpYVCXiUtzYilz+123+29svhnRidM7Pg2fvuyKXaNboW8OVxRyMvd5HoPuUO7IjjQTkREREREREREREREZlG0aFHpBEUFBARIJzyltR3aDQaDdAIREVGGPDw84OzsLJ2hGIPBgNjYWOkMIiIiIiJSsdTUVCxfvlw6Q0zdunWxbt06lCtXTjqFiIg0oFq1ati6dSs6duyYqeu/9dZbaNWqlYWrrMfMmTPx+PHjDN+vN6RiiO9hfLbkzxd2CC5TMBf2j2uLvDlcLZ35SrVKeZu8fSXw37/TPwFhGPPbSaw6fA2paWnpfShp0Ooj15GY8t9r9A72dujzQYVsH/f5HdpjNbhDe2xiClYfuW5yWe/3K8DRIXuLWOVwe3Ggvc8HPnCwlx0nfn6H9hRDGuKTzfd533P+PgLCTF+zGtCkEkoXzIVR7Wqg/buln/7bFsz93EA7d2hXBAfaiYiIiIiIiIiIiIjILIoUKSKdoKh79+5JJzyltYF27tBORETWTmv3zVreJZGIiIiIiCxv9+7dCAoKks4Q0bJlSyxatAhubm7SKUREpHKOjo4YOnQo1qxZg2LFimXpY7/55hu4u7u/+ooqEB0djalTp2b4/gGLD2Hh3osvXN6sWjGcmNIeZQvlTuejlFf+DdPnsK8+iMTdRzFoPGErpm75G71+2Y+fd54XqiNrYjQaseS5Ha/b1HwTBXJl/3ve0/W5gXYN7tD+27EbiHtmkN9Op0PfRj7ZPq7nczu029vpzLIIQXY9v0M7AFQYugZ+J26a5fiLn/v5W7V4XtQu7Z3udQt7eZi8HRKVwIU8FMCBdiIiIiIiIiIiIiIiMot8+fJJJygqJCREOuGpnDlzwtHR8dVXVIn4eK6MTURE1k1rA+1hYWHSCUREREREpGJr1qyRThDRqlUrzJgxQ1PP/RIRkYySJUti/fr1GDRoEOzts74rcP78+TF48GALlFmn33//HSdPnnzh8ov3w7Hy8LUXLh/eqjq2jWyBXO7OSuRlSrnCpoP11x5E4ucd/yAyPvnpZeuPm2fAlGzb4SsPcPVBpMllA5pUNMuxPV1Mh67jNLZDu9FoxOK9posFfFi9GIrm9cz2sX2KmL5O1apGiRcGuCXkcHWCvZ3O5LKHkfHoMW8fbgZHvfLj/wkIww8b/bH3/P0X3nc/PBY7z5puTNG/cUXodLoXrgsAhZ7boT3NaERoVMIrGyh7ONBORERERERERERERERmkTu3dawmr5TQ0FDpBBNa+vePioqSTiAiInqpvHnzSicoigPtRERERERkKQEBAfj777+lMxRXpUoVTJ48OcPhC61JTU2VTiAiUiWdTodu3bphy5Yt8PHJ3o7A3bt3R4kSJcxUZv3Gjx+PlBTT3aSX7L1s8raLoz1WDmmMqV3fhb2ddY3wlX/D9LXlx7FJWHbwisllYTGJSiaRlVqyz/TrumyhXGjgU9gsx/Z4bod2rQ20n74ZivP3wk0uG9CkklmO/fHbpVD//z9Pb3rnwNze75nluNml0+ng5fHiLu361DRsPn3b5LJbIVHYcvo2YhP//Vl7OfAx6o/djAl+/vhw8u/YfOqWyfV9919GmtH49G1PV0d0rlcmw5Z8OVzhYG/6s/lhJDdXsDTrujckIiIiIiIiIiIiIiKblStXLukERT169Eg6wUSBAgWkExQTHf1/7N13eFTl1sbhZzKZ9F6podfQO0iXIggqiAURDyKC3WM7iICCHrtYjwVQ7CJIsyKgIBaUIqB0kN4JJQkhPZnvDz+jO4U6mXeS+d3XlUvftffs/YSEJGRmvSvFdAQAAE6rYsWKpiO4FQ3tAAAAAErLnDlzTEdwuwoVKujVV1+Vn5/fmU/2EhkZNNQBgKtVqFBBb7/9tsaNGyd//wufHO5wODRu3DgXJCsbdu3apcmTJxes0zKz9cEP1uns9/Zvrus61XN3tLNSPTZMfr7WtsL0rFzL+nhapjsjwQMdTk7X3EJNxqebeH2uQgOtP+/+1bjsLSYvXGdZV48NVe+mCS65dqCfr755+ArtnzJcW14eqkoeMJ39L9GhRRvaJWn+mj+nq+fm5ev+935U/bs+0FWT5qvlfz5WelaOnp77q05l/b3pwXOfryn4/8zsXE0rtCnH9Z3qKySg5H9T+fjYVDEiyFI7cJyG9tJGQzsAAAAAAAAAAHAJb3tx3fHjx01HsKhUqZLpCG5DQzsAwNNVruya6SRlxcGDB01HAAAAAFAOOZ1Offrpp6ZjuN0zzzyj2NhY0zE8Cg3tAOBa/fr10+eff6727du79LodO3ZUUNULm/RelkyZMkU7d+6UJH30w1adzPi70dLHZtOIHp77Z+Fr91HdihGnPedkRo6yc/PcEwgeadrijcrJyy9YBzjsuqFLfZddPyTAOqH9n3+HyrvjaZma+bN1wvjNPRvJx8c1mwVIf05Dj48IctkGBK4S5OdbbP3X7Ud0KPmU+j35uV78Ym1BfcfhVL3wxVp99ONWy/krth3W4eR0HTxxSt0nztWh5HTL8ZG9zvw1uGJUsGXNhPbSR0M7AAAAAAAAAABwCYfDceaTypGTJ0+ajmBBQzsAAJ7Dm74vS9KBAwdMRwAAAABQDv3+++86dOiQ6RhuNXDgQLVt29Z0DI+Tnp5+5pMAAGcUERGhF154QZMmTVJYWJjLr7/tYLI2BbdUvs3u8mt7ouzsbE2cOFFOp1OTF663HOvbopoSYkINJTs79SpHnvGcE2lZbkgCT5SXn683v91gqV1zUR1FhhQ/Xft8hBZqaM/Jy1dWjndsovDud5ss76vD7qMbuzUwmMh9th8u/vUeGdm5anLvR/rm971Fjj05Z1Wxj3lq7iq1fXCmVmw7bKl3qFdRjRNizpilcmShhnYmtJc6GtoBAAAAAAAAAIBL+Ph419MOntbQ7k2TYGloBwB4Om/6vixJ+/fvNx0BAAAAQDm0ePFi0xHcKjIyUv/5z39Mx/BITGgHgAvXsWNHffbZZ+rbt2+p3WPKovXK9Q9XclyLUruHp/n555/1/JT39dvuo5b6qF6NDSU6e/UrR53xnONpmW5IAk/09do92p1kfU2Eqz+vw4P8i9Q27D3m0nt4IqfTqSmLrJtgXNmuluLCgwwlcq9B7WqXeOx4CZtoZJaw0cEr838vMlU92N+hl4Z3PqsslQpPaKehvdR51yvLAAAAAAAAAABAqcnJyTEdwa3S0tJMR7DwpkmwJ06cMB0BAIDT8qbvyxIN7QAAAABKh7c1tN91112KjDzzpFRv5GkbzAJAWRIYGKjx48frrbfeUnx8fKndJyM7V+9+t0mSlBzXSjkOz55O7kpvv/6yfHL/bvyuERem3k0TDCY6Ow3OYkL7MRravdbkhess6xY1YtW6VpxL7xEXHqhqsdavFR/+sMWl9/hLTm6e8vLzS+Xa52rx+n3adtC6if/Ino0MpXG/azvWLbVr14gL04+PX6nmNWLP6vyKhSe0n6ChvbTR0A4AAAAAAAAAAFzC2xras7OzTUew8KbGuUOHDpmOAADAacXFxSkgIMB0DLdJTk5WSkrKmU8EAAAAgLN04MABbd261XQMt4mLi9OgQYNMx/BYbKQGAOencePGmjt3rq6//vpSv9esn/8omKzr9PHVsUodS/2eniIn46SiDi4rWN/cI1E+PjaDic5OvbNoaD9RwrRklG87Dqdo/prdltrIno1ks7n289pms+m6TvUstY9/3KbcPNc1njudTt3z9vcKv2Gymt43Xb/vPuqya5+vyQut09kbVolSpwbe83qPbo2q6NsJA/TggJYafUXLYs9pVStOkcH+53zdX568So0TYs76MZWjQizrgzS0lzoa2gEAAAAAAAAAgEtkZnrX7uy5ubmmI1hUqVLFdAS3OXDggJxOp+kYAACUyGazqXr16qZjuNWuXbtMRwAAAABQjqxatcp0BLcaPHiw/Pz8TMfwSHl5eWxyCgDnyNfXV3fccYc+/vhj1ahRwy33nLzI2qB5KqK20kO85/nLsOMb5H/qoBx2Hw3r1sB0nLNSr1KEztSffOxkhnvCwGOs2ZmkHhPn6Z9Px4cF+mlwKU3Vvr6ztaH9cEq6Fv2+12XX/3TlDr0y/3dl5+Zr8/4TeuyTFS679vk4cDxNn67cYamN7Jno8s0CPF2XhpX138Ht9dDAVkUa14d0qqclEwfqovoVz/p6d/Zpoq8e6q/o0MBzylF4QvveY2nn9HicOxraAQAAAAAAAACASyQnJ5uO4FaeNpE+JCREFSpUMB3DLXJycpSUlGQ6BgAAp1WrVi3TEdxq586dpiMAAAAAKEd+/fVX0xHcxsfHRwMHDjQdw2MdOnTI4zaYBQBPN2XKFN15553y9fV1y/1+23VUv2wtuvnI0cpd5LR5R+uaTVLsviUa2Ka64sKDTMc5K0H+DjWtZp1kHFGosfQ4E9q9ysxl29R5/GztOXrSUh/apZ6CAxylcs96lSLVuna8pfbB0s0uu/61LyywrOeu2FHCmX/LyM7VpM9Wa+xHP+tQsmsndr+1eKPy8v/eLSDI31dDu9R36T3KkuAAh6be2l2Vo4JVKTJYzw/rpHfu6KFAP19dVL/o1PqQAIc++nfvgrXD7qOpt3TXCzd2lsPXfs73T4ixTmhPPpWlkxnZ5/6O4Ky55ycTAAAAAAAAAABQ7qWkpJiO4FaeOCG8Vq1aXjOp5sCBA4qLizMdAwCAEtWsWdN0BLeioR0AAACAK3lTQ3vz5s29ZrPS87F//37TEQCgzKlWrZpb7zel0HT2v+QERCk1ponCk9a6NY8p/pnHVD1js6S+pqOctSev76ChLy3UsbRM3X1pM+0/lqZPfv6j4PjxtEyD6eAu+flOPTzjFz01t+jP4NViQzV+UJtSvf/QzvW08o/DBetv1u2V0+m84KnlWw+cUG5efpH6ma594/++0axf/vx7MG/Fdq1/YcgFZ3E6nXp9wTr9d9ZKS33wRXUVHuRfwqO8wxVtaumyVjXllFN2n783QenYoOiE9us61tXVHeqoWmyoVv5xWP1b1VC12LDzvnfVmNAitb3H0tSwStR5XxOn5x3b3AAAAAAAAAAAgFJ39OhR0xHcyuEonR3IL4Q3Nc4dOHDAdAQAAE6rdu3apiO41ZYtW0xHAAAAAFBOpKWledWmWd27dzcdwaPt3r3bdAQAwGmczMjWhz+U/LvBY/FtFRUd7cZEZn05870ytRlLzyYJ2vHav3T8nZF67oaOig4NsBw/fpKG9vIuLTNbA5/9sthm9g71KmrZ41cpJiywVDP0bVHdsj52MlNbDiRf8HWnfLOh2PrJjJwSH7Nuz9GCZnZJ2nIgWev3HrugHNm5ebp1yhLdNe17y3R2SRrZq9EFXbu88PGxWZrZJallzTiFB/lZan/9ebWtU0F39Gl6Qc3skhTo56vYQp/fe46evKBr4vRoaAcAAAAAAAAAAC5Rlp6YdwU/P78zn+RmtWrVMh3Bbbzt8w0AUPZ40/dliYZ2AAAAAK6zd++fExm9RYcOHUxH8Gjr1q0zHQEAcBof/rBFaZl/N4f6FJpi7LT7aeiI29wdy5iMjAw99thjpmOckyB/h0ID/3zuOzKkUEN7WpaJSHCju6d9ry9+3VWkPuLihvrmkSsUHxFU6hmqxYaqUmSwpbZsy8ELuubbizfqta9/L/bY4ZT0Eh83ZWHRJvhjF7Cxw+HkdPWYOE9vfruxyLGbeySqZc248752eefna9czQy+Sw/5nC/R/rmihZtVjXX6fhJgQy3rv/ze07zuWpt93e9dgD3egoR0AAAAAAAAAALiEt03MpqHdrB07dpiOAADAaVWvXt0jf14oLQcOHFBqaqrpGAAAAADKgT179piO4DZBQUGqV6+e6Rge7fffi29EAgCY53Q6NXnhekutf6saCglwWGpN2ndXs2bN3JjMrCVLlmjhwoWmY5yX6EIN7cfSmNBenu09elLvL7VuVmv3senl4Z31+shu8vO1uyWHzWZTh3oVLbVlm8+voT0nN0//nva9bn5jsbJz84s9p6SG9rTMbH3ww+Yi9dNNdD+dNTuT1G7MzGKb8x8a2Eqvjuh6Xtf1JjddnKhdrw/Tvik36onrSmcjsKoxoZb1nqNpmvrNelW/9R21eOBj3fTaN6VyX29FQzsAAAAAAAAAALhgubm52rVrl+kYbuVwOM58kpvVrl3bdAS3YQosAMDTORwOr2tK2Lix6IQRAAAAADhXe/fuNR3BbRo1aiS73T2NQmVRZmamtm3bZjoGAKAEP289pHV7jllqo3o1Ukxooabok5kaP368fHy8p43t8ccfV1pamukY5ywqxN+yPkFDe7n25rcble90FqyD/H319bjLddslTWSz2dyapUP9Qg3t5zGh/djJDPV94nP9r4TJ7H85kly0od3pdOqZeauLbV5Py8w+5yxHUzN06ROfae8x69eBIH9ffXzPJXr02nby8XHvn3FZFR8RpAoRwaV2/YRCDe3rdh/Vve/8WLB+97vNOnjiVKnd39t4z08CAAAAAAAAAACg1OzcuVPZ2ef+JF5Z5u/vf+aT3CwqKkoVK1Y884nlwPbt25WfX/yO6gAAeIpGjRqZjuBWTM0DAAAA4Ar79u0zHcFt6tSpYzqCR1u/fr1yc3NNxwAAFCMnN09Pz/3VUqsVH64ejasqJizQUj96MkONGjXSoEGD3BnRqEOHDunll182HeOcRRaa0H48LctQEpS2nNw8TVu8wVIb2rm+ujWqYiRPh3oVLOutB5OVlJpx1o9ft+eo2o35REvWn/nfEodTrNfNysnTiNe/1RNzVhV7/vlMaJ/6zQYdKXSfhJhQff/YlRrU3nsGFZQFVWNCLOsvft2ljOy//w3ia/dRWKCfu2OVW76mAwAAAAAAAAAAgLLPG6dxRkREmI5QrMaNG+vgwXPfrbysyczM1O7du1WjRg3TUQAAKFFiYqLpCG5FQ7vrDBkyREeOHFFgYKCCgoIUHBysoKCggvVfb8HBwZZa4fVfNU/cjAkAAAAoyZEjR0xHcJtatWqZjuDR1qxZYzoCAKAYx05m6Jrnv9Z3G/Zb6jf3TJSPj61IQ/tfTan33HOPFixYoJSUFLdlNemDDz7QFVdcoYYNG5qOctaiQ60N7cdOMqG9vJr9y3YdPGGdVD6yp7lNeptWi1GQv6/Ss/5uJP55y0Fd1rrmGR978MQp9Zw4T0cLfb76O+yaPKqb5vyyXZ+t2llQP5ySbnnsoOe+0vJth0u8/smMcxvukJefr6nfWDcLaFsnXnP/c6niwoPO6VoofYUntBd2eesaCg5wuClN+UdDOwAAAAAAAAAAuGCrVhW/U3V5FhkZaTpCsRo1aqSFCxeajuEWW7dupaEdAODRGjdubDqCW/3222+mI5QLubm5+u2335STc+5TX0pit9vP2Ph+Pm8OBy/iAgAAgGtlZ2d7TZObJFWpYmYCZlmxdOlS0xEAAIWs23NUA5/5SjuPpFrqIQEO/atrA0lSbKGm6L+aTKOionTXXXfpsccec09Yw/Ly8vTwww9r5syZ8vHxMR3nrEQVmtB+KitHWTl58nfYDSVCadh2MFl3vmX9Oatd3QpqWj3GUCLJ4WtXm9rxlo0ylm05dFYN7S9+ubZIM3ulyGDNeqCv2tSO10+brQMBkv5/cvrKPw7ryme/0oETp057/ZOZ5/a7+q/X7tGeoyetGW/sTDO7h6p6hob2Ub2867m+0kZDOwAAAAAAAAAAuGArV640HcHtPLmh3Vts3bpVvXv3Nh0DAIAS1a5dW4GBgcrIyDAdxS2OHDmiPXv2KCEhwXSUMm337t0ubWaX/nzxbFpamtLS0lx6XYfDUaTJPTAwsGCi/OlqNWvWVN26dV2aBwAAAGXfwYMH5XQ6TcdwmwoVKpiO4LFSUlK0evVq0zEAAP8wd/l2DfvfNzqVZf3dlb/Drnfv6KnY/5/MHl1oQvvR1L9/Pzp48GDNnDlTW7ZsKf3AHmDdunWaPn26hgwZYjrKWSk8oV2STpzKVIWIYGVk5+rrNbtVNSZErWrFG0gHV0hNz9bAZ77UiVNZlvqdfZoYSvS3lrXiLA3thZvCi5OZnat3lmyy1FrXjtecB/qqYmSwJBVpJD+ckq6vVu/SVZPmKysnz3Is2N8hh6+Pkv/x55Oafm4T2icvXGdZt6gRq1a14s7pGnCfhJiQEo/VrRihbomV3Zim/KOhHQAAAAAAAAAAXJC9e/dq586dpmO4HQ3t5q1du9Z0BAAATsvX11dNmjTR8uXLTUdxm+XLl9PQfoF27NhhOsJZy8nJUUpKynlN0Lz77rtpaAcAAEARBw4cMB3BrWJjY01H8FhLly5VXl7emU8EALjFpM9Wa/QHy4rUK0UGa/YDfdW69t8NzrGFG9r/MTn5j8OpatVvqLZsGVd6YT3M888/r549eyouzvMbWiOD/YvUjp3M1IHjp3Tls19p77E/N8x8Y2Q3jeiR6O54uEB5+fka+vJCbdp/wlIf0Kamrmpfx1Cqv1WIsDaeJ6WeebPgOcu361ih6ezv3NGjoJldkuLDrV+Tdh1J1bD/LSrSzF4jLkxz/tNX077dqFfm/15QTzuHCe27jqRq/prdltqoXo1ks9nO+hpwr7iwIPn5+ig7N7/IsZE9+di5mo/pAAAAAAAAAAAAoGxbtGiR6QhGREVFmY5QrPDwcFWvXt10DLdYvXq1cnNzTccAAOC02rRpYzqCW61YscJ0hDJv+/btpiO4Rc2aNU1HAAAAgAc6evSo6QhuFRYWZjqCx1qyZInpCACA/7dq+2E9+GHRZva2deK1/KmrLc3skhRTaMr30dQMOZ1OPTlnlRrd86Ee/eawMqPrlWpmT5KWlqYnnnjCdIyz4mv3UXiQn6U2ddEGdR4/u6CZXZLeKDSBGmXDhJkr9OXqXZZak2rRevuOHvLxMd+0GxdWqKE9Jf2Mj3lj4XrLulujKqpXyTqcIL5Qo/zaXUd1PM06ob5rYmX9/MRVapwQo5BA69+BkxlnP6H9zW83yOn8ex0W6KdrL2JjV0/m42NT1ejQIvUAh103dK1vIFH5RkM7AAAAAAAAAAC4IPPnzzcdwYjKlSubjlCi1q1bm47gFunp6dq4caPpGAAAnFarVq1MR3Crn3/+Wc5/vloL58xbfr6pUaOG6QgAAADwQMnJyaYjuE1QUJB8fX1Nx/BI2dnZ+uGHH0zHAAD8v9e+XqfCv/Ib1rWBFk8YaJmC/JfCE9oPnjil615coPEf/1JwnUPxHeTrV3QaeHk1f/78MvO9LSrEuiHB/77+XZmFJlkfPHHmRmN4lj8OJevpub9aatGhAZr9wKUKCfAr4VHuFRNm/dxLSs0s4cw/rdtzVMu2HLTUbunVqMh5ceFBRWr/1CWxsuaPvUwx//+1KzTAYTl+8iwntGfn5mnaYuvv94d2qafgQteD56kaE1Kkds1FdYp8PcSFo6EdAAAAAAAAAACct82bN+v33383HcOIhIQE0xFK5E2TYJkCCwDwdM2aNZPD4T0vVkpKSvKahuzSsnr1atMRSp2vry8N7QAAAChWamqq6QhuExBAc0RJFixYoJMnT5qOAQCQdDwtUzOXbbPU/t2vmabe2l3+Dnuxj4kOtTa07z9+Sp/8/IellucIUY12fV0b1sNNnDhRmZmnb9D1BFEhZ95o4GTm2U+shmeYvHC98v+xM4Wv3Ucz7r1ENeLCDKayKrwZxtGTGcrPL3kD3SkLN1jWFSKCdFmror93jg8PLFL7p39f2kwO37+/noWe54T2eSt26EhKhqU2smfRBnt4noSYohPa+diVDhraAQAAAAAAAADAeZs+fbrpCMZ4ckN727ZtTUdwm5UrV5qOAADAaQUEBKhJkyamY7jV0qVLTUcos/bu3aukpCTTMUpdrVq15OfnGVN/AAAA4FlSUlJMR3AbprOXbObMmaYjAAD+33vfbbZM53bYffSfy1vIZrOV+JjYsLPbtCUysYuqV69+oRHLjL179+r11183HeOMokLP/PFLz8pVXn6+G9LAFTKzc/Xud5sstdt6N1bXxCqGEhWv8CT1vHynTpwqfhOItMxsffDDZkttePeGlsb0v8RHlDyhPSEmVH1bVLPUws6zoX3yovWWdccGlZRYNfqsHguzasaHW9bNa8SqTe14Q2nKNxraAQAAAAAAAADAeUlKStLcuXNNxzAiIiJCYWGes1N5YfHx8V7z4o9Vq1YpNzfXdAwAAE6rffv2piO41ZIlS0xHKLPWrFljOoJbJCYmmo4AAAAAD+VNE9ppaC/erl272MgUADyE0+nUlEINmgPb1irSdFpYTNjppyH/JTUzTw899NB55yuL3nrrLf3xxx9nPtGgqOCz25AgLTOnlJPAVWb98oeOp2VZarf08rzp04UntEtSUmrxDe0f/bBVJzP+/hz0sdk0okfxv3cOC/STv6Noo7skjeiRKLuPtcU2NNBhWf/zPiXZtO+4lm7Yb6ndwoTvMuNfXesXfI7YfWx6/Lr2p924BeePhnYAAAAAAAAAAHBe3nzzTWVlZZ35xHKoWrVqZz7JsDZt2piO4BZpaWlatmyZ6RgAAJxWly5dTEdwq99//10HDhwwHaNMWr16tekIbtGoES/kAwAAQPG86XfObNRZvE8++UROp9N0DACApCUb9mvrwWRLbdRZNMFGBPnL7lO0EdDXbm1jS8nIVpcuXdStW7cLylmW5OTk6JFHHvHo73WNEqwTpWNCAzTngb5FzjubJl+Y9+uOIxr70c+WWvfGVVS3UqShRCXzd9iLTEdPSs0ocp7T6dTkhdbNNvq2qKaEmNBir2uz2RRfzEYcvnYfDe/eoEg95DwmtBfe/CM2LFAD2tY64+PgGarGhGrTS9frpeGd9cN/B6lX0wTTkcotGtoBAAAAAAAAAMA527Ztmz788EPTMYypX7++6Qhn1KFDB9MR3Gb+/PmmIwAAcFqNGzdWdHT0mU8sRxYsWGA6Qpn0/fffm47gFk2aNDEdAQAAAB4qJ8d7GqOys8/cGONtMjMzNXfuXNMxAAD/b/LCdZZ1wypR6tSg0hkf5+NjU9NqMZbaJc2r6fl/dbTUUk79uZHNQw89JD8/awNpebZq1SrNmTPHdIwSjeyZqM4NK8lm+7PxeflTV6tvi+pFzjubJl+Y9fGPW9Vl/GztP37KUvfkyeGFp7QnpaQXOWf5tsP6bfdRS21Ur8anvW5ceNHp71e0rqkKEcFF6qEBhSa0Z57+3yjpWTl6b+lmS21YtwYlToWHZ0qICdXtlzRRm9rxpqOUazS0AwAAAAAAAACAc/boo4961QsLC2vc+PRPhnqCTp06yeFwnPnEcuDbb7/16s9HAIDns9ls6tix45lPLEe+/PJL0xHKnE2bNmn//v2mY5S64OBgNWzY0HQMAAAAeChvmlpOQ3tRH3/8sY4dO2Y6hhGePKkXgHc6eOKUPl2501Ib2TNRNlvRyevFeXF4Z9WMD1N4kJ8evqqNPh19qRJirdOTU9L//F6YkJCg4cOHuyZ4GfHMM8/o+PHjpmMUKzo0UIsnDFT6h7dq4fgrVC02TL52HwUUas49U5MvzMnLz9dDHy3T9S8vVGZOnuVYq1px6t+qhqFkZxYTFmBZJ6VmFjmn8GYb1WND1atp1dNet7gJ7SN7Fd/YH1poQntWTp6yc/OKPVeSZvy0reDrmSTZbNLNPRJPmwfwVjS0AwAAAAAAAACAc/Lpp59qxYoVpmMYlZjo+U8+hoSEqHXr1qZjuEVKSoqWLVtmOgYAAKfVpUsX0xHcat26ddq2bZvpGGXKt99+azqCW7Rs2VJ2O5NpAAAAUDxv2riShnarrKwsvfnmm6ZjGJOXV3KTFACYMG3xRuXm5Resg/x9dX3n+mf9+A71KmrrKzfo6Ns36+Gr2sju46PwIH/LOSnpWQX/P2rUKFWoUOHCg5cRycnJevbZZ03HOC2Hr/V3eIWbfJnQ7plS0rM04Jkv9cy81UWOdWxQSZ892K/Ix9aTxBVqPE9KzbCsj6dlaubPf1hqN/dsJLvP6dtk4yOs161XKULdEisXe25oYNHBAaf7fJ+8aL1l3atpgmrGh582D+CtaGgHAAAAAAAAAABnLSkpSc8884zpGEb5+fmpTp06pmOcle7du5uO4DZfffWV6QgAAJxWp06d5HAUfRFUeTZnzhzTEcqUJUuWmI7gFt6y6RIAAADOjzc19ebm5io5Odl0DI8xY8YMJSUlmY5hTH5+/plPAgA3ycvP15vfbLDUrr2oriKC/Ut4RMn+OdE9ItjaEJ2aka38fKckKSgoSKNHjz6PtGXXnDlztHLlStMxzlrhJt9TTGj3ODm5ebr0ic/11erdRY6N6tlIC8dfXqRh3NPEhgVa1kmp6Zb1u99tUtY/ps477D66sVuDM163X8vqlvV9l7WwfH36p7BCmzdI0smM4j/ff91xRKu2H7HUbunV+Ix5AG9FQzsAAAAAAAAAADgrOTk5uuuuu3T06FHTUYxq2LBhmWlG69atm+kIbrNw4UKlpKSYjgEAQInCwsJ00UUXmY7hVvPmzWPi4FnasWOH1q9ff+YTy4GOHTuajgAAAAAPZrd77rTI0uDtv2//S3Z2tqZOnWo6hlG5ubmmIwBAga9W79beY2mW2qhejS74uoUntDud0snMv39/2LdvX7Vp0+aC71OWPPLII2Xmd6ihAYUntNPQ7mlm/7Jdv2w9ZKn52n306oiuevXmrvLz4Mnsfyna0J5Z8P9Op1NTCk1DH9i21lk16fdrWUMvDe+sXk0T9OwNF522CT7Yv5gJ7ZnF/z2dvNCap2p0iPq2qHbGPIC3oqEdAAAAAAAAAACclccff1yrV682HcO49u3bm45w1qpUqaK6deuajuEW6enpmjlzpukYZdKWLVt08ODBMvNiGQAoy/r06WM6glsdP35cX3zxhekYZYK3/BwTGxurBg3OPC0HAAAA3svbGtq9eSL5P02ZMkVHjhw584nlGL+fBeBJJhdqGG1VK04ta8Zd8HUjgopOeE8+lWVZjxs3zqt+Hti+fbveeust0zHOSkihCe0lNfjCnDcK/d2NCQ3QgvGXu2RDCncp3NB+JOXvCe2L1+/TtoPWTe7P9n3z8bHp9kua6Kuxl+mefs1LnM7+17khAYU+34vZwGHTvuP6+KetltpNFyfK7kPLLlASX9MBAAAAAAAAAACA55s1a5amT59uOoZH6NChg+kI5+TSSy/V1q1bz3xiOfDBBx/oxhtvlK8vT4GdrYMHD+ryyy+X0+mUJIWEhCg6OlpRUVGKiYlRVFSUoqOjLbW//j8iIuK0T/QDAIrq0aOH/Pz8vOpF6u+9954GDhxoOoZHy87O1rx580zHcIsuXbrw8wMAAABOy+EoOg2xPDtw4IDpCMbt2bNHU6ZMMR3DuIyMDNMRAECStPNIqhas3W2pjerpmmbYkACHbLY/J7P/JSXd+rvSevXq6brrrtP777/vknuWBa+//rouvfRSJSQkmI5yWqGBTGj3ZBv2HtOPm6w/W758Uxd1aVjZUKLzU7ih/Wjq3z8jFZ6G3rBKlDo1qFQqOUIDHUrL/Ptz/GSG9WvVF7/u1NCXFyo9K7egZvex6aaLG5ZKHqC84NU8AAAAAAAAAADgtObNm6eHH37YdAyPEBQUpGbNmpmOcU769eunF154wXQMtzh06JAWLFigSy+91HSUMmP+/PkFzeySlJaWprS0NO3evfs0j/qTr6+vIiMjT9v8/s9aQEBAab4rAFAmhISEqFOnTvr2229NR3GbTZs26ccff1THjh1NR/FY33zzjU6cOGE6hlt069bNdAQAAAB4OG9raP/jjz9MRzDuscceU1ZW1plPLOcyMzNNRwAASdKURestDefhQX66ukMdl1zbx8emsEA/SxN74YZ2Sbrrrrv05Zdf6vjx4y65r6fLysrSxIkTPX5Se4h/4YnV3rNxa1kwpdB09rjwQF3RpqahNOcvNtza0J6U+ufPSJv3n9CnK3dYjo3smVhqG6iGBvjpoP6eDv/XBg5Op1NPzf1VD8/4xfK1UpKu6VBHFSODSyUPUF7Q0A4AAAAAAAAAAEo0c+ZMPfLII8rPzzcdxSO0bt1afn5+Zz7Rg1SpUkXNmzfXmjVrTEdxi3fffZeG9nMwf/78835sbm6ukpKSlJSUpC1btpzx/KCgIEVHR1sa3f/6b+Hm94iICPn4+Jx3NgDwZP369fOqhnZJeu2112hoPw1Pf6GqqwQHB6tTp06mYwAAAMDDBQd7VwPItm3bTEcwauHChfr+++9Nx/AI6enpZz4JAEpZVk6e3lmyyVK7oUt9BQe4bsOZiGB/SxN78qmim5qEhYXp3nvv1bhx41x2X0/3448/6quvvlLfvn1NRylRaKD18+Cf06thVlpmtt5fan2+9sZuDeXnazeU6PwVmdB+MkML1u7WkJcWKi//7w7yIH9fDe1Sv9RyFP58P5mRrfSsHI14fbFmLiv6M3zLmrF6cXjnUssDlBc0tAMAAAAAAAAAgGK99957euKJJyzTm73dxRdfbDrCeenfv7/XNLT/9ttvWrx4sbp37246isf7448/9Pvvv7vtfunp6UpPT9fevXvPeK7dbldERERBg/s/m9+LqwUFBbnhPQAA1+jRo4ciIiKUnJxsOorb/Prrr/r555/Vvn1701E8zuLFi7V+/fozn1gOXHzxxfL39zcdAwAAAB4uNDTUdAS32rx5s+kIxhw/flyPPvqo6RgeIyUlxXQEANDc5duVlJphqY3s2cil9wgPsm4enlpoQnt+vlM+PjYNGjRIM2bM0Lp161x6f0/2xBNPqFOnTh7781BooPVjx4R2zzHjp21K/cfHw2aTbu6RaDDR+YsrNKE9L9+pfk9+XmQa+vWd6ik8qPR+31z4833/8VPq+vAcrd6ZVOTcwR3rasot3RXoR6sucCb8LQEAAAAAAAAAABanTp3ShAkT9Nlnn5mO4lF8fX3Vq1cv0zHOS58+ffTkk08qJ8c7dsl/+umn1alTJzkcrpsWUR598MEHpiOUKC8vT8eOHdOxY8fO6vzAwEBLk3uVKlU0duxY2Wy2Uk4KAOfOz89Pl19+ud59913TUdzq2Wef1ezZs/naXMirr75qOoLbePJ0KQAAAHiOkJAQ0xHcKikpSbt27VL16tVNR3Erp9Op//znP0pKKtoQ5K1OnjxpOgIA6I1F1o0XOzespAZVolx6j8INqMnpf05oz8rJ09CXF+rrtbvVs0mCPry7l8aPH69rrrnGazZgT0pK0vPPP69HHnnEdJRihQQUnljtHc89ezqn06nJC61/d/s0r6bqcWGGEl2YmNDAIrXCXwKaVIvWE0M6lGqOwg3tE2YuL3KOzSY9OaSD7uvfnOc+gLPkYzoAAAAAAAAAAADwHJs3b9bAgQNpZi9G+/btFRkZaTrGeYmKilK3bt1Mx3CbXbt2afr06aZjeLS0tDR9+umnpmO4TEZGhvbt26fffvtNS5YsUWZmJi8aAODRrr76atMR3G7Dhg3l6nuPK3zzzTdeM509MjJSHTt2NB0DAAAAZUB4eLjpCG73yy+/mI7gdlOnTtUPP/xgOoZHSU9PV3Y2k24BmOF0OvXCF2v046YDlvotvRq7/F6FJ7Sn/P+E9ifnrtKc5duVnpWrT1fu0JNzf1XTpk01YMAAl2fwZB9//LF+//130zGKVWRCeybftzzByu1HikwNH1UKf3fdxd9hV1ihz7V/Gti2lr5/7EpFBJfedHZJCg04/eb54UF++uzB/rr/shY8Lw2cAxraAQAAAAAAAACAsrOzNWXKFF111VXatWuX6Tge6dJLLzUd4YIMHjzYdAS3evXVV5WSkmI6hsf66KOPlJ6ebjpGqbn++utNRwCA06pdu7aaN29uOobbPffcc0yc+38ZGRl64oknTMdwmyuuuEIOx+lfAAgAAABIUmxsrOkIbrds2TLTEdxqzZo1eumll0zH8EhMrAdgQmZ2roa/+o0eeO8nSz0uPFBXtKnp8vsVntCekp6l7Nw8TSk0Hf7d7zYpLz9f999/v0JDQ12ew1Pl5+frkUceUV5enukoRYQGMqHdE01euM6yrhYbqkuaJRhK4xpx4UWntEvShKvb6uN7LlFIQMkN765SeAOHf7L72PT9Y1eqT/NqpZ4DKG9oaAcAAAAAAAAAwMstWLBAffr00aRJk5j+UYKgoCD17NnTdIwL0r59e1WvXt10DLdJTk7WCy+8YDqGR0pLS9Nbb71lOkapad26terXr286BgCc0bXXXms6gtslJSXpueeeMx3DI7z88svav3+/6Rhuc9VVV5mOAAAAgDLCGxvaly5dqrS0NNMx3GL//v266667lJubazqKR6KhHYC7HTiepm4T5ur977cUOTZmQCv5+dpdfs+I4EIT2k9l6dMVO3QkJcNS33csTd9t2K/o6GjdcccdLs/hyTZu3Kj333/fdIwiQgs1Eacxod24E2mZmvHTNkttxMWJsvuU7ZbRGvFhlnWwv0Oz7u+jcYNay8fHPdPQQwJL3qC1f6saSqwa7ZYcQHlTtr86AQAAAAAAAACA87Zy5Updf/31uuuuu7Rv3z7TcTzaZZddppCQENMxLojNZtM111xjOoZbTZ8+XUuWLDEdw+O88847Sk5ONh2j1DCdHUBZcemllyo+Pt50DLebMWOGli9fbjqGUZs3b9Z7771nOobbNG/eXLVq1TIdAwAAAGVEXFyc6Qhul5mZqYULF5qOUepOnDihm266SUeOHDEdxWPxZwPAnZZvO6S2Y2Zq5R+HixybeE1b3dGnSancN6zIhPZsvVFoOvtfPli6WdKfz/3UqVOnVPJ4qpdeekmHDh0yHcOCCe2e572lm5WZk1ew9rX7aHj3hgYTuca/L22mAMefG2rUrhCuHx+/Ule0ce/vmAtv4PBPI3s2cmMSoHyhoR0AAAAAAAAAAC+SnZ2tefPmacCAAbr++uu1cuVK05HKhPLSIDtw4ED5+/uf+cRyZMyYMbwI8B/279+vN99803SMUlOlShX16NHDdAwAOCsOh6Pc/IxxLpxOp0aPHq2UlBTTUYxIT0/Xfffd51XTCIcOHWo6AgAAAMqQChUqyKeMT5Q8H7NnzzYdoVRlZGRo1KhR2rlzp+koHm337t2mIwDwEr/uOKLuE+bq4Il0Sz0kwKE5D/TV2Ctby2YrnSnIEUHWJtFV249o6Yb9xZ47Z/kOncrMka+vr8aOHVsqeTxVenq6HnvsMdMxLEICrR+7kxlMaDfJ6XRqSqHNIAa0qan4iCBDiVynd7Nq2vzyUC2ZOFDrXxiixgkxbs8QFlR8Q3ut+HD1aFzVzWmA8sP7/rUPAAAAAAAAAIAX2rx5s1588UV1795do0eP1saNG01HKjPatWtXbnb8j4iI0OWXX246hludOHFCo0ePltPpNB3FIzz66KPKyMgwHaPUjBo1Sr6+vqZjAMBZu/baaxUUVPZfXHauDh48qLFjx3rl9+dx48bpjz/+MB3DbSpUqKDevXubjgEAAIAyxOFwKDo62nQMt1u1apVWrVplOkapyM7O1t13363ffvvNdBSPt2vXLtMRAHiJ0e//pKx/THWWpJrxYfrxv4N0WeuapXrv8EIT2nceSS3x3FNZOZq3YockqX379l73e6ZvvvlGixcvNh2jQGhAoQntmUxoN+m7Dfu15UCypTaqV/mZHF4lOkSdGlSSr91M+2vhz/e/3NwzUT4+pbPhB+ANaGgHAAAAAAAAAKCc2rBhg55//nn17t1bl19+uV5//XUlJSWZjlXm3HDDDaYjuNSIESO8bsLRsmXL9Prrr5uOYdznn3+u7777znSMUlOxYkVdccUVpmMAwDkJCwvToEGDTMcwYtGiRV73/fm9997Tl19+aTqGWw0ZMoTNZgAAAHDOKlSoYDqCEeXx30hpaWkaMWKEli5dajpKmbBjxw7TEQB4gc37T+i7QhPRuzeuop+fuEqNEkp/U5nwEqYe/8Wn0GT497/fXPD/Dz74oAIDA0sll6d67LHHlJ6ebjqGJCm00IT2rJw85eTmlXA2Stvkhdbp7PUrR6pLw8qG0pQ/hT/fJcnfYdewrg0MpAHKD+96tRIAAAAAAAAAAOVUdna2Vq9erTfffFO33nqr2rVrp4EDB2ry5MlM9LgAiYmJ6t69u+kYLlWtWjX16tXLdAy3e+mll/TJJ5+YjmHMrl279Mgjj5iOUapuvvlm+fmd/kVQAOCJbrrpJq/9+vXyyy9r4cKFpmO4xcKFC/X000+bjuFWwcHBuuaaa0zHAAAAQBnkrQ3tP/74Y7lq/E5KStL111+v5cuXm45SZmzatEm5ubmmYwAo56YssjbBxoQG6LPR/RQd6p5G8fBg/xKP2WzSxGvaWmrfrtur/cfTJEmVKlXSzTffXKr5PM2BAwf0yiuvmI4hSQoNLDqxmintZhw8cUrzVlo3whnZs5FsNiaHu0pwMRPaB7WrrZgw79pUA3A1GtoBAAAAAAAAAChDsrOztX37di1cuFCvv/667rvvPl1xxRVq2bKlBg8erGeffVaLFy/WiRMnTEctF+66665y+aTvyJEjTUcw4pFHHvGaprl/yszM1N13361Tp06ZjlJqYmNjvXbCMYCyr0KFCl7b9Ot0OnXffffpl19+MR2lVC1dulT33nuv1zUlDBkyROHh4aZjAAAAoAxKSEgwHcGYiRMneswU1guxc+dOXXvttdq0aZPpKGVKRkaGtmzZYjoGgHIsPStH7y3dbKkN69ZQAX6+bstwugntvZom6N/9minsH5ORnU7pox+2FqxHjBihqlWrlmpGT/Pee+9p8+bNZz6xlIUGFP3YpdHQbsTbSzYpNy+/YB3o56sbutQ3mKj8Ke5r1ciejQwkAcoX9/3EAQAAAAAAAAAA5HQ6lZOTo9zc3IK3nJwcZWRkKDU1VSkpKTp58qRSUlKUmpqqw4cP69ChQwVvx48fl9PpNP1ueIVmzZqpa9eupmOUisTERHXs2FE//vij6ShulZeXp/vuu09TpkxR+/btTcdxi7y8PN1zzz0e8SKX0nTrrbfK37/kiR4A4OlGjRqlWbNmKSMjw3QUt8vOztZtt92mKVOmqFWrVqbjuNxPP/2kO++8Uzk53vXCzqCgIN14442mYwAAAKCMqlatmukIxuzfv1+PP/64Hn/8cdNRzttXX32lhx9+WCdPnjQdpUxauXKlEhMTTccAUE7NXLZNyaeyCtY2mzSyp3u/5kScZkL7qJ6NFOjnq0Hta2va4o0F9Q++36z7L2sum80mf39/9R8yUq89Nd4dcT1Cbm6uJkyYoOnTpxvdjD2kmInVJzOyDSTxbulZOXrzmw2W2rUX1Tnt3y2cuxY1YhUTGqCjJzMlSe3rVVCHehUMpwLKPhraAQAAAAAAAADnbP/+/apXr57pGECpuueee0xHKFV33XWX1zW0S383zT333HO6+OKLTccpdePGjdPixYtNxyhV1atX99rJxgDKj9jYWF133XV66623TEcx4tSpUxoxYoReffVVXXTRRabjuMzs2bP1yCOPeF0zuyRde+21ioqKMh0DAAAAZVRCQoLsdrvy8vJMRzFi1qxZqlu3rv71r3+ZjnJOMjIy9MQTT2jmzJmmo5Rpixcv1rBhw0zHAFBOvbFwvWXdq2mCasaHuzVDSRPaq0SHqG+L6pKk6zvXszS0b9h7XGt3HVXzGrGSpF+Sw5QemqCgk3tKPa+nWLNmjWbMmKFrr73WWAYfH5uC/R06lfX37ztPZnjf7z5N2nP0pAY+86X2HLVuHDSqF5PDXS3Az1ezH7hUT8xZqZjQQD0z9CKjG0oA5YWP6QAAAAAAAAAAAACe5pJLLlG7du1MxyhVTZs2Va9evUzHMCI9PV133HGHpk2bZjpKqcnNzdWYMWM0Z84c01FK3b333itfX/bxBlD2jRgxQiEhIaZjGJORkaFRo0bpk08+MR3lgjmdTk2aNEkPPfSQVzazh4aGauTIkaZjAAAAoAzz8/NTnTp1TMcw6umnn9aCBQtMxzhrmzdv1pVXXkkzuwv8+uuvSk5ONh0DQDn0644jWrX9iKU2qqf7m2DDg4qfIj3i4kT52v9sc+tYv5Kqx4Zajr+/dLMk6XByuuau2KGjlTvLafOutrhJkybp2LFjRjOEBlqntJ/MZEK7u/yw6YDaPjhTa3cdtdRb1YpTq1rxhlKVbxfVr6gvH7pM797ZU/ERQabjAOWCd33nBgAAAAAAAAAAOIOgoCCNGTPGdAy3uOeee2S3203HMCI/P19PP/20xo8fr9zcXNNxXCojI0N33HGHVzSzN2vWTL179zYdAwBcIioqSrfffrvpGEbl5ORo3Lhx+u9//6vs7LL5QsikpCTdfPPNmjJliukoxowcOVKRkZGmYwAAAKCMa9mypekIRuXl5emee+7RZ599ZjrKaaWmpurdd9/V1Vdfre3bt5uOUy7k5uZq3rx5pmMAKIemFJrO/s+J6O4U4LDLz9fazmb3semmixsWrH18bLquUz3LOR//tFU5uXmatnijcvPyleMfqeSYZu6I7DFSU1P15JNPGs1QuKG9z38/06crdhhK4z2mLFqvno/OU1JqhqUeHuSnN0Z1M5QKAM4dDe0AAAAAAAAAAAD/cOutt6pChQqmY7hFzZo1deWVV5qOYdTMmTM1bNgw7d2713QUl9i+fbuuvvpqLVmyxHQUt3jggQdMRwAAlxo6dKhq1KhhOoZx77//fplshli4cKH69eunH374wXQUYypWrKh//etfpmMAAACgHGjRooXpCMbl5eVp9OjReu211+R0Ok3HscjPz9fMmTPVt29fLViwoNxtGmrajBkzPO5jDqBsS0nP0vSftlpq/5yI7k42m63IlPbLW9dUxchgS+36ztaG9iMpGfp67R5N/WZDQe1EfGv5BYeXXlgP9Pnnn2vZsmXG7h8S4FekdvXz87XlwAkDacq//Hyn7nxzqW6b+p1y8/Itx+pVitCyJ65Ss+qxhtIBwLmjoR0AAAAAAAAAAOD/1a1bVzfeeKPpGG51xx13KCgoyHQMo1auXKn+/fvrnXfeUX5+/pkf4IGcTqdmzpypK6+8Ulu3bj3zA8qBSy65RK1atTIdAwBcyuFw6KGHHjIdwyNs2rRJAwYM0P/+9z+Pn9a+d+9e3X333brzzjuVnJxsOo5R9913n/z9/c98IgAAAHAGrVu3ls1mMx3DuPz8fL300ksaNWqUjh49ajqOJGnx4sW68sorNX78eB0/ftx0nHJpx44dmj9/vukYAMqRD77fovSsvzcfsfvYNLx7A2N5mtWIsaxv7d24yDl1K0WqbZ14S+3uad9rz9GTBWun3U/Db72zdEJ6sIkTJxr7nWlIgKNILS/fyZT2UvLGwnV6feG6IvU+zatp2RNXqV6lSAOpAOD80dAOAAAAAAAAAACgPxvInn32WTkcRZ+EL8/i4+N12223mY5hXEZGhp588kkNHjy4zE2D3bx5swYPHqzx48crIyPDdBy3CAoK0pgxY0zHAIBS0blzZ3Xr1s10DI+QlZWlV155RZdeeqk+//xzj9t4JjU1Vc8884z69u2rr7/+2nQc49q2bav+/fubjgEAAIByIiYmRg0amGu08zRLly5Vnz599OGHHxr5t1FmZqbmzJmjyy67TLfeeqs2btzo9gzF6devX7n9N/SkSZM8foM3AGWD0+nU5IXrLbXLW9dUpagQQ4mkide0U+0K4Qry99XYK1urW6MqxZ43tEt9y/qfzeyS1KJGrP494nq1bNmy1LJ6ol27dumNN94wcu/QwOKfS1+6cb+bk5R/+flOPf/5miL1By5voXmjL1V4EBuLAih7aGgHAAAAAAAAAADQn5PK69evf+YTy6Fhw4apTp06pmN4hLVr1+ryyy/XxIkTdeTIEdNxTmvXrl168MEHNXDgQK1ZU/TFDOXZbbfdpgoVKpiOAQClZvz48QoKCjIdw2Ps2bNH999/vy677DLNmTPH+Av69+zZo8cff1xdu3bVW2+9ZTyPJ3A4HHrkkUdMxwAAAEA507lzZ9MRPEpqaqoeffRR9enTR5988kmp/1vE6XRq1apVevTRR9W5c2eNGTNGW7ZsKdV7nouGDRvq2Wef1dChQ01HKRX79u3TE088YToGgHLgx80HtXHfcUttVK9GhtL8qU3teK1/YYiS3x2lide0LfG8qzvUkcNecuvbyJ6NZLPZNH78eNnt9tKI6rGmTp2qHTvcPxU9JMCv2Prh5HQ3Jyn/Fvy2R7uSrJs4vHXbxXpySAfZfWgJBVA28dULAAAAAAAAAAB4vWbNmunmm282HcMYh8Ohhx9+2HQMj5GTk6OPPvpIPXv21IQJEzxuYvuKFSt07733qm/fvpo7d67y8vJMR3KrWrVqadiwYaZjAECpqly5su6//37TMTzOtm3bNGbMGHXt2lVPP/20NmzY4LZ7p6Wl6csvv9Qtt9yi3r1767333tOpU6fcdn9PN2LECNWqVct0DAAAAJQz5XXy9oXatWuXxo0bpy5dumjChAlauXKly35HePjwYX322WcaM2aMOnXqpCFDhujDDz9USkqKS67vSuPGjZOPj4+qVCl+qm95MH36dM2ZM8d0DABl3OSF6yzrOhXD1S3R/NdOX7uPfHxspz0nKiRA/VpWL/ZYWKCfBnesK0lq0KCBrr76aldH9GjZ2dmaMGGC2++743DxPxNs2n9CuXn5bk5Tvk1ZtN6yblY9Rjd08c4N+gGUH76mAwAAAAAAAAAAAJgUERGhSZMmed2u/YW1adNGl19+uT799FPTUTxGZmampk+frunTp6tNmzbq37+/evXqpYiICLdn2bp1q7799lvNmzdPu3btcvv9Pcn48ePlcDhMxwCAUnfddddp/vz5WrlypekoHufYsWOaNm2apk2bpoSEBHXu3FkXXXSRmjdvrsjISJfcIy8vT1u3btWaNWv0/fff66effmISewnq1q2r2267zXQMAAAAlENNmzZVpUqVdODAAdNRPNLx48cLfn8ZFBSkZs2aqVmzZqpevbqqVKmiihUrKigoSIGBgfLz81NOTo6ys7N16tQpHT9+XMeOHdO+ffu0e/du7dy5U+vXr1dSUpLpd+us9O/fXy1btpQkVaxYUT4+PsrPL59NdGPHjpXNZtOAAQNMRwFQBh1JSdfsX6wbN4/s2eiMjeSeZGiX+pq7ougk8qFd6ik44O/ni/79739r/vz5Sk5OdmM6s5YvX6558+bpiiuucNs9uyZW0artR4rUs3LyVOv2d9W+bkU9eX0H1YgLc1um8mjP0ZP68tddltrIno1ks5Wdv7sAUBwa2gEAAAAAAAAAgNfy8fHRs88+W64nuJyLMWPGaNmyZWXmRYvutGLFCq1YsUITJ05Us2bNdNFFF6lt27ZKTExUQECAy++3d+9erVmzRqtXr9b333+v/fv3u/weZVH//v3Vvn170zEAwC1sNpsef/xxXXbZZcrMzDQdx2Pt2bNHH3zwgT744ANJUtWqVdWwYUNVr15dCQkJqlChgqKiohQZGSl/f3/5+fnJbrcrMzNTGRkZysjIUFpamvbv36/9+/dr37592rFjh9avX6/09HTD753nczgceuaZZ+Tn52c6CgAAAMohm82mPn366K233jIdxeOlp6dr2bJlWrZsmekopS4oKEgPPPBAwdrPz09xcXE6dOiQwVSlJz8/X2PGjNGGDRv0wAMPyN/f33QkAGXIO0s2KecfU7P9HfYyN+H5kubVFB0aoGMnrb8jHdmzkWUdERGhf//730amlpv09NNPq1u3bgoPD3fL/a5oU1PPfba62GP7j5/SrF/+UFpWjr4Y098tecqrN7/ZoHyns2AdGujQ4I51DSYCANegoR0AAAAAAAAAAHit22+/XZ07dzYdw2NERkbq8ccf18iRI01H8Vi5ublatWqVVq1aJUmy2+2qVauW6tWrp4SEBCUkJCg+Pl6RkZGKjIxUcHCwHA6HHA6HnE6nsrOzlZ2draysLJ04caJgEtKhQ4e0c+dO7dq1S9u3b9eJEycMv6eeJzo6WmPHjjUdAwDcqlq1aho9erQmTpxoOkqZsXfvXu3du9d0DK9x++23q0GDBqZjAAAAoBzr168fDe2wuOOOOxQfH2+pJSQklNuGdklyOp16//339cMPP+jWW29Vv3795OtLKwiA08vPd2rqNxsstavb11Z0aKChROfHz9euazrU0WsL1hXUOjaopMSq0UXOveaaazRz5kxt3LjRnRGNOn78uJ577jk99thjbrlf2zrx+uKh/pq3fLve/Lb4P+ev1+xWWma2QgLYBPN85OTmadpi65/tkE71FBrInyeAso9/xQAAAAAAAAAAAK/UvXt33X777aZjeJwuXbrommuu0YwZM0xHKRPy8vK0detWbd261XSUcu+RRx5RZGSk6RgA4HbXXXedfvnlFy1YsMB0FMCiTZs2bIQEAACAUtewYUM1adJEv//+u+ko8ACNGzfWsGHDitTr1aunFStWuD+Qm+3atUujR4/WpEmT1L17d3Xt2lUNGzYs0uBfktTUVB04cEB79+7V8uXLNXv2bG3btk2DBg3SNddcU8rpAbjbl6t3aeeRVEttVK/GhtJcmP9c0VIzlm3TsZOZ8vP10VNDOhR7no+Pj8aPH6/rrrtOzn9Mty7vPvnkE11xxRVq2bJlqd/LZrPpkmbVdEmzagryd+jlr34r9rzVO5LUuWHlUs9THn22aqcOJadbaqN6NTKUBgBci4Z2AAAAAAAAAADgdZo0aaLnn39eNpvNdBSP9OCDD+rnn3/Wnj17TEcBJEkDBgxQ7969TccAAGMef/xxrV+/Xvv37zcdBZAkxcTEaNKkSbLb7aajAAAAwAvccMMNuv/++03HgGF+fn566qmniv13SMOGDQ0kMufIkSP6+OOP9fHHH0uSQkNDVaFCBQUHBysoKEhOp1M5OTnKzc1Venq6Tpw4oeTkZOXk5BR7vUsvvdSd8QG4wYI1u3XPzHWWWtNqMWpb5+w2wPA0VaJDtP6FIfp+4361qBmnGnFhJZ7bokULXXbZZfr000/dmNAsp9OpCRMmaM6cOXI4HG67b6OE6BKPrdp+hIb28/TGwvWWdYd6FdU4IcZQGgBwLR/TAQAAAAAAAAAAANwpISFBkydPVmBgoOkoHisoKEjPP/+8/Pz8TEcBVL16dY0fP950DAAwKjQ0VC+88IJbX4wIlMTHx0fPPfec4uLiTEcBAACAl7jkkksUGxtrOgYMu/POO1W7du1ij3lbQ3thJ0+e1LZt27R27VotW7ZMP//8s1atWqW1a9dq69atSkpKKrGZHUD5dPtbS5WelWupjerVqExv9h0bFqgr29U+bTP7X+6//34FBwe7IZXn2Lp1q95++2233jOxalSJx1b+cdiNScqPLQdOaMn6fZbaqJ5MZwdQftDQDgAAAAAAAAAAvEZ0dLTefPNNRUWV/OQ6/tS4cWONGzfOdAx4OX9/f73wwgte96IjAChO06ZNNWbMGNMxAN13331q37696RgAAADwIg6HQ9ddd53pGDCocePGuummm0o8XqtWLTaBA4DT6JpYWcO7e8/mH3Fxcbr99ttNx3C71157Tfv27TvziS7SsEqUStojYdX2I27LUZ5MWWSdzh4dGqAr29UylAYAXI+GdgAAAAAAAAAA4BWio6P17rvvqlq1aqajlBnXXHONBg4caDoGvNjEiRO9froSAPzTkCFDdO2115qOAS82YMAAjRgxwnQMAAAAeKFrr71Wfn5+pmPAgKCgID399NOy2+0lnuNwOJSYmOjGVABQdtzYrYG+fOgy+dq9q4XshhtuUM2aNU3HcKuMjAw99thjbrtfaKCfrulQp9hjO4+k6mhqhtuylAcZ2bl677vNltq/ujZQgJ+voUQA4Hre9dMIAAAAAAAAAADwSn81s9epU/wT6ijZhAkTeCEgjBg6dKgGDBhgOgYAeJzx48erbdu2pmPAC7Vo0UKPPvqo6RgAAADwUlFRUerfv7/pGDBgwoQJqlXrzJNJ27Vr54Y0AFB22H1semFYJ025pbv8HSVvClJeORwOjR071nQMt/vuu++0YMECt93v9ZHdNOlfHfXotUW/D6/aUfKU9szsXD0z71fd+eZSrd2VVJoRy4xPlm3TiVNZltrInjxPD6B8oaEdAAAAAAAAAACUazSzXxh/f3+99tprio+PNx0FXqRTp0568MEHTccAAI/k6+url19+WdWqVTMdBV6kRo0aevXVV5mICQAAAKNuu+02+fv7m44BN7r66qt1+eWXn9W57du3L+U0AFB2hAf66auxl+nOvk1ls9lMxzGmY8eO6tGjh+kYbvf4448rLS3NLfcKDfTT3Zc200MDW6lDvYqWYyv/OFzi4+5790c99NHPen3hOvWYOE+7k1JLPNfpdLosryd7Y9F6y7pn06qqXSHCTBgAKCU0tAMAAAAAAAAAgHKrevXq+vjjj2lmv0AVKlTQ1KlTFRISYjoKvECDBg304osvytfX13QUAPBYERERevPNNxUbG2s6CrxAhQoVNG3aNEVFRZmOAgAAAC9XpUoV/etf/zIdA25Sr149jRs37qzPb9GihQIDA0sxEQCUHXP/c6kublzVdAyP8OCDD3rdhjiHDx/WSy+95Pb7tqoVZ1mv+qP4Ce0HT5zSW4s3FqyTT2Xp8dmripy3dON+1b/7Q/V99VfN+Gmba8N6mDU7k7Rim3UDgFE9GxlKAwClh4Z2AAAAAAAAAABQLjVt2lTTp09XQkKC6SjlQr169fS///1PDofDdBSUY5UrV9bkyZPZPAEAzkJCQoLeeusthYeHm46CciwiIkJvvfWWKlWqZDoKAAAAIEkaNWqUYmJiTMdAKQsJCdFLL710Tg2Ifn5+atWqVSmmAoCyIyE21HQEj1G1alWNGDHCdAy3+/DDD7Vhwwa33rN17UIN7duPFDtdfdrijcrNy7fU3v1uk7YdTC5Yn8rM0VXPfaWdR1J1/FSO7n77B53KzDnt/Z1Op56au0r9n/xc7323qUxNdp9SaDp75ahg9WtZw1AaACg9NLQDAAAAAAAAAIBy5+KLL9a7777LFEkXa9++vZ544gnZbDbTUVAOxcbG6p133lF8fLzpKABQZtSrV0+TJ09WUFCQ6Sgoh8LDwzVt2jTVrl3bdBQAAACgQEhIiO6++27TMVCKfH199eKLL6pGjXNv4rrkkktKIREAoKwbOXKkKleubDqGW+Xl5enhhx9Wfn7+mU92kVa1rM/xHU5J175jadZc+fl685uijfZ5+U499smKgvXHP23V8bSsgvWJU1na+o+G9+K88MVajZv+i+av2a3hr32rZVsOncd74X6p6dn66IetltpNFyfK107bJ4Dyh69sAAAAAAAAAACg3PDx8dGdd96pV199VcCgzv8AAQAASURBVIGBgabjlEuXXXaZHnvsMZra4VKRkZF6++23lZCQYDoKAJQ5zZs316uvvqqAgADTUVCORERE6O2331ZiYqLpKAAAAEARgwYNUv369U3HQCkZN26cOnXqdF6P7d27t/z8/FycCABQ1gUEBGj06NGmY7jd+vXr9eGHH7rtfrUrhCsi2N9SW/nHYcv6q9W7tbdQk/tfpv+0VRv2HpNUdGK5JB1KTi/x3jm5eXrhizWW2uerdp5VbpPy8vM1bvrPOpX19/R5u49NN13c0GAqACg9NLQDAAAAAAAAAIByITw8XG+88YbuuOMOmq1L2VVXXaVHH32UP2e4RHR0tN577z3VqVPHdBQAKLM6dOigqVOnKjg42HQUlAM0swMAAMDT+fj46OGHH5bdbjcdBS42fPhwDR48+LwfHxoaqs6dO7swEQCgvOjdu7c6dOhgOobbvfjiizp8+PCZT3QBm82mVrXiLLWV249Y1pOLaVT/i9MpTZy5Qiv/OKxfdyQVOX7oxKkSH/v5qp06eMLa8H4kpeQGeE+Qkp6lK57+Uq8tWGep929VQ5WjQgylAoDSRUM7AAAAAAAAAAAo85o2barZs2erS5cupqN4jauvvloTJ06kqR0XJDY2Vu+//77q1q1rOgoAlHlt2rTRO++8o/DwcNNRUIZVrFhRH330kRo2ZAIQAAAAPFvLli11yy23mI4BF+rRo4ceeOCBC75O//79XZAGAFAejRs3Tr6+vqZjuFVaWpqeeOIJt92vcEP7qn80tO88kqoFa3dbjjdOiLas5yzfrnvf/aHYa59uQvsbxTTKH/bghvatB06ow0OfaP4a65+HzSbd06+5oVQAUPpoaAcAAAAAAAAAAGWWr6+v7rzzTk2fPl1Vq1Y1HcfrXHPNNXryySe97oUfcI2EhAR99NFHqlWrlukoAFBuNGnSRO+9956io6PPfDJQSO3atfXxxx/zvRkAAABlxu23364WLVqYjgEX6NChg55//nn5+Fx4e0OPHj1UoUIFF6QCAJQ3tWrV0pAhQ0zHcLuvv/5aS5cudcu9WteKt6x/3X5E+flOSdLUb9bL6fz7WHiQn74ae5kig/0tj/l5y6Fir324hIb2rQdOaPG6fUXqSSkZ5xLdbb5eu1vtH/pEWw4kW+q+dh9NHtVdF9WvaCYYALgBDe0AAAAAAAAAAKBMqlmzpmbMmKE77rhDdrvddByvNWDAAL3++usKCgoyHQVlSGJioqZPn66EhATTUQCg3Klfv75mzJih2rVrm46CMqRly5b68MMPafoAAABAmWK32/Xcc88pLCzMdBRcgNatW+u1116Tv7//mU8+C76+vrr++utdci0AQPlz++23Kzw83HQMt3v00UeVmZlZ6vdpVds6oT01I1tbDyYrOzdPby/eZDl2Q5f6qhgZrPsvP7sNig4mnyq2PuWbDcXWPXFC+8c/btVlT36hlPRsSz02LFCLHr5Cw7s3NJQMANyDhnYAAAAAAAAAAFCm+Pn56fbbb9e8efPUqFEj03EgqXPnzkyDxVn76/MlJibGdBQAKLeqVq2qGTNmqGPHjqajoAwYNGiQ3nnnHUVERJiOAgAAAJyzypUra+LEiaZj4Dw1b95ckydPVmBgoEuve80117AJKwCgWCEhIRo8eLDpGG63b98+vfbaa6V+n8pRIaoUGWyprdp+WHOXb1dSqnVi+s09/3yu/45Lmigu/Mw/CxwqZkJ7Rnau3vtuUzFnS0dSMuT850h4w05mZOu2qd8pv1CmZtVj9MuTV6lTg0qGkgGA+9DQDgAAAAAAAAAAyoz27dvrs88+01133eWyaS1wjcaNG+vjjz9mGixO64YbbtAbb7yhkJAQ01EAoNwLCQnRlClTNGTIENNR4KHsdrvGjBmjxx9/XH5+fqbjAAAAAOetb9++uuGGG0zHwDlq0qSJpk6dquDg4DOffI7CwsJ07bXXuvy6AIDyoVOnTmratKnpGG43bdo0bdu2rdTv06qWdUr7qj+O6I2F6y21zg0rqWGVKElScIBDo69oecbrHi6moX3Wz3/oeFpWsefn5OXrxKnij5kw/cetSs2wTma/qn1tLX30SlWLDTOUCgDci4Z2AAAAAAAAAADg8SpXrqznn39e77zzjmrUqGE6DkqQkJCgmTNnqnfv3qajwMM4HA7997//1dixY2W3203HAQCvYbfb9fDDD+vxxx9XQECA6TjwILGxsXrrrbc0bNgw01EAAAAAl3jooYfUr18/0zFwli666CK98847Cg0NLbV7jBo1SuHh4aV2fQBA2WWz2TRu3Dj5+HhXW11OTo4eeeSRUp9a3qp2vGU9Z/l2/bDpgKU26v+ns/9zXTnKusmNn6/143PwhLWhPSsnT/+b/9tpsxTXBH+hth44oaUb9ysnN08Z2bmav2a3th1MPu1jnE6nJhdq6r+keTV99O/eCg5wuDwjAHgq7/rOCwAAAAAAAAAAypSwsDA98MAD+vrrr3XppZeajoOzEBwcrJdffln33Xef170IBMWrXLmypk+frquuusp0FADwWoMGDdInn3yiWrVqmY4CD3DRRRfp008/Vfv27U1HAQAAAFzGZrPpqaeeUqdOnUxHwRn069dPkydPLpXJ7P8UERGh2267rVTvAQAouxITEzVo0CDTMdzu119/1axZs0r1HoUntB84ccqyjgsP1IC21t9VB/j5auI1bS21e/o1t6xPZeUoLfPPCecHT5xS9wlz9OuOpNNmOZKacU7Zz2TKovVq+O8PdfGEueo2Ya6a3z9d/Z/8XI3v/Ugffr+lxMf9su2Qftt91FK7o08T2Ww2l+YDAE/Hq4gAAAAAAAAAAIDHCQgI0I033qhFixZpxIgR8vPzMx0J52jkyJF66623FBsbazoKDOrWrZvmzp2rxo0bm44CAF6vbt26mjVrlgYMGGA6CgxxOBy699579eabbyo6Otp0HAAAAMDlHA6HXnnlFTVv3vzMJ8OIG264Qc8995wcDvdMIh0yZIiqV6/ulnsBAMqee+65R+Hh4aZjuN1zzz2n48ePl9r1Cze0F3Zjt4by87UXqQ/r1lCvjuiqfi2r68UbO+mhga2KnHPwRLpW/nFYbR+cqeXbDluOVY0OUY24MEvtiAsntKdlZmv0Bz8VrH/Zekh/HEqRJOXm5Wvk5MVaveNIsY+dUmg6e424MPVqkuCybABQVtDQDgAAAAAAAAAAPEZQUJCGDx+ub7/9Vg8++KAiIiJMR8IF6NChgz7//HP16tXLdBS4WVBQkCZOnKg33njDK18IBACeKigoSE899ZReeOEFRUVFmY4DN6pfv75mzZqlUaNGyceHlwsBAACg/AoMDNQbb7yhunXrmo6Cf7Db7RozZozGjh3r1kmkDodDjz/+OP8OAgAUKyoqSnfddZfpGG6XnJysZ555ptSuHxUSoNoVin9+0GaTbu6RWOJjR/VqpHmj++mOPk0VHOBQaKB1E5znP1+jro/MKTL1PSTAoXfv7KlKUcGW+uEU1zW0T/9xq05m5JR4PCsnT9c8/7VOpGVa6sdOZmjmz39Yajf3SJSPD9PZAXgf/mUGAAAAAAAAAACMCw8P16hRo/Ttt99q9OjRiomJMR0JLhIZGalXXnlFTzzxhIKDg8/8AJR5LVu21GeffaZrr73WdBQAQAn69u2rL7/8Un369DEdBaXM19dXt912m2bNmqX69eubjgMAAAC4RUREhN5//301a9bMdBToz2bBadOmadiwYUbu36pVK40YMcLIvQEAnm/w4MGqV6+e6RhuN3fuXC1fvrzUrl/SlPZLmlVT9UJT1E8nPjzIsp76zQZl5eRZajXiwvTjfwepc8PKRc4/nJJx1vc6HafTqcmFpqwXZ+eRVA1/7Vvl5zsLau8t3WzJ7LD76MbuDV2SCwDKGhraAQAAAAAAAACAMTVr1tQjjzyipUuX6t5772VSaDl25ZVX6vPPP1fXrl1NR0EpCQsL04QJE/Thhx+qatWqpuMAAM4gKipKL774ol5++WU2EyqnWrdurXnz5unuu++Ww+E48wMAAACAciQiIkJvv/22OnXqZDqKV2vUqJHmzJmjdu3aGc1x1113qWFDGscAAEXZ7XaNHz/edAwjJkyYoOzs7FK5dqta8cXWR/VqdE7XqRgRdNrj3RpV0S9PXqVGCdGSijbAH0l2zYT25dsOa+2uo2d17uerdmrS52skSfn5Tk1ZZG2Ev7JdLcWGBbokFwCUNTS0AwAAAAAAAAAAt/L19VX37t01depUffXVV7ruuusUGMgTtt6gcuXKmjx5sl555RVVqFDBdBy4UL9+/TR//nwNHjxYNpvNdBwAwDno3bu3FixYoOHDh9P0XE7ExsbqmWee0QcffKA6deqYjgMAAAAYExQUpMmTJ+uGG24wHcUrXX311Zo+fboqVqxoOoocDodeeeUVNnQDABSrdevW6tevn+kYbrdjxw69+eabpXLt1rWLNrQnxISqT/Nq53Sd+NM0tN/Zp4nmj71M0aF/v9YgNtz6uoMjqa6Z0F64Kb2wwk+Pjv3oZy3duF+L1+/TtoMplmOjejV2SSYAKItoaAcAAAAAAAAAAG5Rs2ZN3X///Vq6dKlef/11de7cmcZXL9WrVy999dVXuvHGG2mcK+OaNm2q6dOna9KkSbwYFADKsJCQEI0ePVqfffaZOnfubDoOzlNAQIBGjhypr7/+WpdffrnpOAAAAIBHsNvtGjt2rJ588kn5+/ubjuMVYmJi9Prrr+uxxx6Tn5+f6TgFqlSpotdff50NdgEAxfrPf/6joKDTTwMvj9544w3t3r3b5ddtXiNGdh/rawFG9EiU3efcWhlLamh/ZuhFeuHGzvK1W69XeEL74ZQLn9B+PC1TM5dtK/F4aKBDM+/tY2lqz3c6dd0LC/TU3FWWcxOrRqljffOb/QCAKTS0AwAAAAAAAACAUhMfH6+hQ4dqxowZmj9/vm6++WaaXiFJCg4O1oMPPqj58+fr0ksvZXODMqZq1aqaNGmSZs6cqRYtWpiOAwBwkZo1a2rq1KmaMmWK6tevbzoOzpLdbteVV16phQsX6r777lNISIjpSAAAAIDHGThwoD755BPVrl3bdJRyrWfPnvr888/VvXt301GK1aRJE02aNEm+vr6mowAAPEx8fLxuvfVW0zHcLisrSxMnTnT5dYP8Hbq8dc2CdVSIv4Z3b3DO16lYTEN7hYgg3dmnSbHnx0cUmtCefOEN7e9+t0mZOXkFa4fdR2MGtlKgn6/Cg/z01q0Xa0DbWnr4qjaWxx1OSdd3G/ZbaiN7NuJ5cQBejX+JAQAAAAAAAAAAl6pQoYJ69OihPn36qGXLljwhi9OqWrWqnn/+ed10002aNGmSfvrpJ9ORcBqVK1fWLbfcooEDB/KiTwAox7p06aLOnTtrwYIF+t///qdt20qePgNz7Ha7+vTpo9tuu021atUyHQcAAADwePXq1dPs2bP1zDPP6KOPPpLT6TQdqdyIjIzU6NGjNWDAANNRzujiiy/Wq6++qn//+9/KyMgwHQcA4EGGDRum2bNna9euXaajuNVPP/2kL774Qv369XPpdV++qbMqRgbp2MlM3dGnqSpEBJ/zNaJDA4rUhndvKIevvdjz44pMaM+Q0+k879csOJ1OTVm03lIb2LaWHru2ncYMaCmH3acgy9iBrfXzlkNa+NueYq8V5O+r6zvXO68cAFBe8CoTAAAAAAAAAABwQex2u5o1a6YuXbqoS5cuTPPEeUlMTNS0adO0atUqTZ06VUuXLuUFpR4kISFBN910kwYOHCg/Pz/TcQAAbmCz2XTJJZeoV69e+vLLL/X6669r+/btpmNBkq+vr/r3769Ro0apRo0apuMAAAAAZUpAQIAefvhh9e3bV+PGjdPOnTtNRyrT7Ha7unfvrkcffVRRUVGm45y1rl276u2339Ytt9yi5ORk03EAAB7Cz89PDz30kEaOHGk6its99dRT6tKli0JDQ112zQoRwXppeJcLukZCTNE8I3oklnh+fKGG9ozsXKVl5ig08Nyf38zJzdN97/6obQdTLPVRvRpJ+nMK/T/5+Nj03p091Xr0DO09llbkeoMvqqvwIP9zzgEA5QkN7QAAAAAAAAAA4JzYbDbVrVtXbdq0UZs2bdSuXTuFhYWZjoVyolWrVmrVqpW2bt2qqVOn6quvvlJubq7pWF6rSZMmuummm9SrVy/5+PiYjgMAMMDHx0f9+/dXv379tHTpUr399tv65ZdfTMfySqGhoRo0aJCGDh2qypUrm44DAAAAlGmtWrXSZ599pmnTpmny5MlKT083HanMadOmjR566CGlp6crPDzcdJxz1rx5c3388ce67777tGHDBtNxAAAeokuXLurWrZuWLFliOopbJSUladKkSZowYYLpKBadGlRSTIhDR9NyJEk3dW9YbJP7X+LCA4vUjqRknHND+9HUDF37wtf6bsN+S71hlSh1alCpxMfFhAVqxn191GX8bOXk5VuO/dUIDwDejIZ2AAAAAAAAAABwWkFBQWrUqJEaN26sFi1aqFWrVoqIiDAdC+Vc3bp19eyzz+ree+/VzJkzNXv2bB0+fNh0LK/gcDjUu3dvDR48WK1atTIdBwDgIWw2m7p27aquXbtq8+bNeuedd/Tll18qOzvbdLRyr3r16ho6dKgGDBig4OBg03EAAACAcsPPz0+33HKLBg4cqBdeeEGffvqp8vLyTMfyeImJibrtttvUo0cP5eXlae3ataYjnbcaNWpoxowZ+t///qepU6fy8QcASJIeeugh/fTTT173u88ZM2ZowIABatq0qekoBfwddk2+rpG+35evytEhuqNPk9OeHxLgUKCfrzKy/94w/VByumpVOPvNd9btOaoBT3+pXUknixx77Np2stlsp318m9rxmvSvjrpr2vcFtXZ1K6hFzbizzgAA5RUN7QAAAAAAAAAAoEBoaKjq1q2r+vXrq0GDBmrSpInq1KnDZGYYU7FiRd1999264447tGTJEs2cOVM//PCD8vPzz/xgnJOqVavqqquu0qBBgxQdHW06DgDAg9WvX19PPfWUHnzwQX3xxReaPXu2Nm7caDpWueLv76+ePXtq0KBBatfuzC+SBAAAAHD+4uLi9OSTT2rkyJF67bXX9OWXX9LYXIzmzZvr1ltvVZcuXUxHcSmHw6F77rlHXbt21RNPPKHff//ddCQAgGEJCQkaPny43njjDdNR3Co/P18PP/yw5syZI7vdbjpOgSqRAXqmW7OzymSz2VQlOljbDqYU1DbtO66L6lc8q3vNXb5dw/73jU5l5Vjq/g67pozqrsvb1Dyr69zau7FOnMrSK1/9poSYUL1128Vn9TgAKO9oaAcAAAAAAAAAwAtFRESoevXqqlGjhmrUqKHatWurXr16qlKliuloQLHsdrt69OihHj166MiRI/r666/11Vdfae3atXI6nabjlVnBwcG65JJLNGDAALVq1YpmOQDAOYmIiND111+v66+/Xps3b9bs2bP11Vdf6ejRo6ajlVlNmjTR5Zdfrv79+ys8/OynBgEAAAC4cDVq1NCzzz6rO+64Q++++67mzp2r9PR007GMstvt6tSpk2688Ua1a9fOdJxS1bx5c33yySdauHChXnzxRW3fvt10pFLj6+urmjVrqnPnzmrTpo1atWplOhIAeJxRo0Zp3rx5OnTokOkobrV582a99957uvHGG01HOW/Na8RZGtpXbT+sET0Sz/i4L37dqasmzS9SrxQZrNkP9FXr2vFnncFms2nsla019srWZ/0YAPAGNLQDAAAAAAAAAFAOhYeHKy4uThUrVlSlSpVUuXLlgv9Wq1ZNUVFRpiMC5y0uLk433HCDbrjhBh08eFDz58/XokWL9NtvvzE56SwEBQWpc+fO6t27t7p166bAwEDTkQAA5UD9+vU1duxYjRkzRmvWrNE333yjRYsWae/evaajebxGjRqpT58+6tOnjypXrmw6DgAAAOD1qlWrpocfflj33HOPZs+erVmzZmnbtm2mY7lV1apVNXDgQF155ZWKjz/75q3yoFevXrr44ou1cOFCzZw5Uz///HOZ31TVz89PzZo1U+vWrdW6dWs1adJEmzdvVrNmZzftFgC8UVBQkEaPHq177rnHdBS3e/nll3XJJZeoYsWzm2ruaVrVitPMZX//7LZq+5EzPsbpdGrMB8uK1NvWides+/uqYmSwSzMCgLeioR0AAAAAAAAAAA9gt9vl4+NT8F9fX185HA4FBAQoMDCw4L9BQUEKDQ1VWFiY5S0qKkqxsbGKiYlRTEyM/Pz8TL9LgFtUrFhRw4cP1/Dhw5Wamqoff/xRP/zwg3744QclJSWZjucxKlasqA4dOujiiy9Wx44d5e/vbzoSAKCc8vHxUcuWLdWyZUuNHj1amzdv1pIlS/Tzzz9r7dq1ysrKMh3RuODgYLVt21adOnVSly5daGIHAAAAPFRoaKiGDRumYcOG6ffff9e8efO0cOHCcvt7x6ioKHXt2lWXXXaZ2rVrJ5vNZjqSMXa7vWDjsX379mnWrFmaP3++du3aZTraWQkPD1fTpk3VrFkztWrVSs2aNbP8TpiNYQHg7PTt21fTp0/XihUrTEdxq/T0dD322GN67bXXTEc5L61qxVnW6/YcU0Z2rgL9Sm6jXLpxvzbtP2Gp/atrfb12czf5O9j8BQBcxeYs69uFAQAAAAAAAAAAAIU4nU798ccfWrVqlX799VetXr1a+/fvNx3LbWJiYtSiRQu1a9dOHTp0UI0aNUxHwlnavHmzFi1aZDpGqYqJidHgwYNNxyh35syZU+6/zg0YMEBVqlQxHQMXICsrS6tXr9Yvv/yi5cuXa+PGjV7R4B4UFKQmTZqoRYsWatu2rVq2bCmHw2E6FgAAKOfS09O1adMmNWjQQEFBQabjGJWXl6e1a9cyibiM8PSPV35+vlavXq1FixZp6dKl2rlzp+lIF6RGjRrq3r27unfvrhYtWsjHx+ecHu/pHy9X27t3r77//nv9+OOPWrVqlVJTU01HUoUKFVS3bl3Vq1dPdevWVWJiomrWrHnaDQlMfdyOHTumjz76yG33M+XOO+902bW87e9YWXc+H6/kU1mqOuptZWTnFtQmXtNWY69sXVoxvR5/r8qW8/l4pWVmK+pfU5X/j5bJH/57pdrXLXni/HUvLrBMda9XKULrXxji1Rv8nA/+fpU9fMzKlgv9eHnC74qY0A4AAAAAAAAAAIByx2azqU6dOqpTp05B4+zhw4e1du1abdy4UVu2bNGmTZt06NAhw0kvXEREhOrUqaNGjRqpSZMmatq0KZNey7D69eurfv36pmOgDBo4cKDpCMAZ+fv7q3379mrfvr0kKTc3V1u3btX69esL3rZu3aqcnBzDSc+fw+FQ7dq1Va9ePSUmJqpFixZq0KABLwQDAAAAygkfHx+1atVKrVq10pgxY3Tw4EH99NNPWrFihdauXavdu3ebjlgiHx8f1a5dW82bN1fz5s3VqlUrVa1a1XSsMqVq1aoaMmSIhgwZIknat2+fNm/erM2bN2vr1q3at2+fjhw5ouPHj7tkCnpAQIBiYmIUHx+vuLg4xcfHq2LFiqpatWrBW2Bg4AXfx12io6Nd2uwNlAcffL/Z0szua/fR8O4NDSYCyr6QAD81qBKpDXuPF9RW/XGkxIb2w8npmrt8u6U2smcjmtkBoBTQ0A4AAAAAAAAAAACvEB8fr969e6t3794FtRMnTmjr1q3atWuXdu/erT179mj37t3au3evMjIyDKa1CgoKUsWKFVW5cmVVqVJFNWvWVO3atVW7dm3FxsaajgcAwHnx9fVVw4YN1bBhQ1199dWS/mxy37dvn3bu3Gl527Nnj44ePeqShgBXiIyMVEJCQsFbjRo1VLduXdWqVUu+vrwcBwAAAPAWFStW1KBBgzRo0CBJ0vHjx/X7779r8+bN2rZtW8HvHrOzs92aKywsTDVq1FDNmjVVs2ZNNWjQQM2aNVNoaKhbc5R3VapUUZUqVdSjRw9LPS8vT0ePHtXRo0eVnp6urKysgrfs7Gw5nU7ZbDbZ7Xb5+vrKz89PAQEBCgwMVFBQkMLCwhQREWFsaiIA93A6nZq8cL2ldnnrGqoYGWwoEVB+tKoVZ21o336kxHOnLd6onLz8gnWAw64burD5NACUBp5BAwAAAAAAAAAAgNeKjIxU27Zt1bZt2yLHjh8/rqSkJMvb0aNHdfLkyYK3tLQ0paWlKT09Xbm5uQVvOTk5ysvLk9PplN1uL3jz9fWVr69vwQsTg4ODC/4bGhqqiIgIRUdHKzo6WlFRUYqOjlalSpUUFRVl4E8HAAD38/X1VfXq1VW9enV169bNcuyvhoDDhw/ryJEjOnz4cMH35tTUVKWmpiotLa3gvzk5OUW+P+fm5hbc5683u90uh8Oh4OBghYSEKCQkRKGhoQXfm2NjYxUTE6PY2FjFxsaqQoUKCgkJMfHHAwAAAMDDRUVFqWvXruratWtBLT8/X4cPH9bevXu1b9++gt81Hjt2TMePH9fJkyd16tQppaWlKTMzU7m5ucrLy1Nubq58fHzk5+dX5C0oKEjR0dGKiYmx/LdChQqqUaOGYmJizP0hQHa7XfHx8YqPjzcdBYAH+37TAW3af8JSG9WrsaE0QPnSqla83v1uc8F61fbDxZ6Xl5+vN7/dYKldc1EdRYYElGo+APBWNLQDAAAAAAAAAAAAxYiKilJUVJTq1atnOgoAABANAQAAAADKJh8fH1WsWFEVK1ZUmzZtTMcBAHiIKYWms9etGKFuiZUNpQHKl9a14yzrLQeS9duuo2pa3brpz9dr92h30klLjY0lAKD0+JgOAAAAAAAAAAAAAAAAAAAAAAAAAADeYNeRVM1Zvt1SG9mzkWw2m6FEQPnStFqMYsMCLbXnPltd5LzJC9dZ1i1qxKp1rbgi5wEAXIOGdgAAAAAAAAAAAAAAAAAAAAAAAAAoZcu2HNRFY2cpJy+/oBbgsOuGrvUNpgLKF4evXXf0aWKpzfhpm3YcTilY705K1fw1uy3nsLEEAJQuGtoBAAAAAAAAAAAAAAAAAAAAAAAAoBS9vXijekycq8Mp6Zb6tRfVVVRIgKFUQPl0W+/GCglwFKzznU698PnagvXUbzbI6fz7/LBAPw3uWNeNCQHA+9DQDgAAAAAAAAAAAAAAAAAAAAAAAAClIDcvX/e8/b1ufmOxsnPzLcdqVwjXk9d3MJQMKL8iQwI0okeipfb2ko06nJyu7Nw8TVu80XJsaJd6Cv5HAzwAwPVoaAcAAAAAAAAAAAAAAAAAAAAAAAAAF0vLzFbfJz7TK/N/L3KsZ9Oq+vmJqxQbFmggGVD+/fvSZnLY/26fzMzJ0yvzf9OnK3boSEqG5dyRPRu5Ox4AeB0a2gEAAAAAAAAAAAAAAAAAAAAAAADAxR547yctXrevSP3f/Zrp8wf7KzIkwEAqwDtUiQ7R9Z3rWWqvL1inF75ca6l1bFBJiVWj3ZgMALwTDe0AAAAAAAAAAAAAAAAAAAAAAAAA4EJHUzP07nebLDV/h11v395Dz93QUb522rqA0nbfZS1ks/29TknP1opthy3n3MJ0dgBwC37yAQAAAAAAAAAAAAAAAAAAAAAAAAAXeue7TcrOzS9Y+/n6aPGEARrapb7BVIB3qV85Ule0rlni8diwQA1oW8uNiQDAe9HQDgAAAAAAAAAAAAAAAAAAAAAAAAAukp/v1NRFGyy1q9rXUds6FQwlArzXA1e0LPHYsG4N5O+wuzENAHgvGtoBAAAAAAAAAAAAAAAAAAAAAAAAwEW+WbdX2w+nWGojezYylAbwbm1qx6trYuUidZtNurlHooFEAOCdaGgHAAAAAAAAAAAAAAAAAAAAAAAAABeZvHC9Zd04IVod6jGdHTDlP8VMae/VNEE148MNpAEA70RDOwAAAAAAAAAAAAAAAAAAAAAAAAC4wL5jafp81U5LbVSvRrLZbIYSAejZpKpa1Ii11G7t3dhQGgDwTjS0AwAAAAAAAAAAAAAAAAAAAAAAAIALvPXtBuU7nQXrYH+HrutYz2AiADabTe/f3Ut1K0bI32HXv/s106UtqpuOBQBexdd0AAAAAAAAAAAAAAAAAAAAAAAAAAAo63Jy8/TWtxsttSGd6iosyM9QIgB/qVcpUhtful7ZuXny87WbjgMAXocJ7QAAAAAAAAAAAAAAAAAAAAAAAABwgb5as1sHTpyy1Eb1amwoDYDi0MwOAGbQ0A4AAAAAAAAAAAAAAAAAAAAAAAAYlJmdq1k//6FFv++R0+k0HQfnafKiDZZ12zrxalo9xlAaAAAAz+FrOgAAAAAAAAAAAAAAAAAAAAAAAADgrTbuO66Bz3ypPw6lSJIeHNBSE69uYzgVztWe4xn6dt0+S+0WprMDAABIYkI7AAAAAAAAAAAAAAAAAAAAAAAAUOqOp2XqzW826MvVuwqmsH++aqcuGvtJQTO7JE1euN5URFyA2WsOW9aRwf4a1L62oTQAAACehQntAAAAAAAAAAAAAAAAAAAAAAAAQClKz8pRl/GztWn/CUnSXX2bKjYsUA/P+EX/39te4MSpLKVl5hhIifNx4Hia7nv3R32y6qCl/q9uDRToR+sWAACAREM7AAAAAAAAAAAAAAAAAAAAAAAA4FKb9h3XN7/vVbdGVdQoIVoffL+loJldkl7+6rfTPv5ISkZpR8QFys3L12sL1umRGb/oZEbRDQhG9kg0kAoAAMAz0dAOAAAAAAAAAAAAAAAAAAAAAAAAuIDT6dTjs1dpwszlkiRfu49+efIqTV64/pyuk5SaLv/SCAiX+GXrId3x5ndau+toscfvu6y56laKdHMqAAAAz0VDOwAAAAAAAAAAAAAAAAAAAAAAAHCBTmXmaPhr32j2L9sLarl5+Rr60kLLdPbCbDbJYfdRdm5+Qe1ISoaq0vXjcVLSs/TgB8v05rcb5HQWPR4Z7K8nh3TQ8O4N3R8OAADAg/mYDgAAAAAAAAAAAAAAAAAAAAAAAACUNSnpWVq6cb9OZeZo15FUdRo/y9LM/pfTNbOHB/npswf7q0m1GEv9SEqGZZ2Vk6f8/GI6qOE2efn5GvTcfE39pvhm9ksbxWrd84M1okeifHxs7g8IAADgwdirCQAAAAAAAAAAAAAAAAAAAAAAADgHm/YdV4exn+hkRs55Pd5h91HbuhU0eVQ31asUqde+/t1yPCk1Q4q2S5KmLFqv/7z/k3xsNk25pbsGta99wflx7r5avVtL1u8rUm9UNUovDe+kkMwjig0LNJAMAADA89HQDgAAAAAAAAAAAAAAAAAAAAAAAJyD/7z/03k1szvsPtoz+UZFhwRYpnjHhwdZzjuSmiEpRHuOntRd075Xbl6+JGnoywtVIz5MLWvGXVB+nLspi9Zb1sH+Dj18VWvd1bepfGzS2rVHDCUDAADwfD6mAwAAAAAAAAAAAAAAAAAAAAAAAABlxa4jqfp67e4Sj9evHKleTROKPXZlu1qKDQu0NLNLUmy4dbJ3UkqGJGna4k0FzeySlJOXr+teWKDU9OyCWkp6lg4np5/z+4Gzt7OYj/kLN3bSfZe1kMPXbigVAABA2UFDOwAAAAAAAAAAAAAAAAAAAAAAAHCWpn6zQU5n8cf6tqimnx4fpH91rV/s8VG9GhdbjyvU0H4kNUO5efl6e8mmIuduP5yi26YukdPp1Gtf/66YG6eq2q3vaNJnq8/tHcFZm/rNesvHPDzIT9d0qGMuEAAAQBnjazoAAAAAAAAAAAAAAAAAAAAAAAAAUBZk5+bp7SUbi9Srx4bq5p6NdP9lzWX38VG3RlWKnJNYNUod61cs9rpxYUGW9ZGUdC3ddkKHSpi8/vFP21S/cpQem7VCTqeUm5evR2Ys1/DuDRUZEnAe7xlKkp2bp7cXWzcWGNq5voIDHIYSAQAAlD00tAMAAAAAAAAAAAAAAAAAAAAAAABnYd6KHTqSkmGp/f78dWpYJcpSiwsPUvMasVqzM6mgNrJnI9lstmKvGxdhndCelJqhOWsPnTbLhJnLLevMnDyt2XVU3Ytppsf5m7t8u5JSrR/zkb0aGUoDAABQNvmYDgAAAAAAAAAAAAAAAAAAAAAAAACUBW8sXGdZd2pQqUgz+1/+O7idfO1/tu60qROv4d0blnjdwhPak1IztWp3qqV27UV1zphv7T8a6OEabyxcb1mf7mMOAACA4jGhHQAAAAAAAAAAAAAAAAAAAAAAADiDjfuO6/uNByy1W04zqbt3s2ra9fq/tONwqlrVipOfr73Ec+PCA0s8JkkxoQF667YeigwO0OuFmur/6bddR097HZybjfuO64dNZ/8xBwAAQPGY0A4AAAAAAAAAAAAAAAAAAAAAAACcxuHkdF3y2KeWWmxYoK5oU+u0j6sQEawO9Sqetpld+rNh/XT+1a2B/B12PXvDRWpSLbrE837bxYR2V5pSaDp7bFigBrQ9/cccAAAARdHQDgAAAAAAAAAAAAAAAAAAAAAAABTD6XTq6Xm/qsZt7+jAiVOWYzd2/7PJ3BUcvnZFn6apfWSPP6eCB/j56qN/X6Igf99iz9u0/4QysnNdksnbncrM0fvfb7bUbuze4IybEwAAAKAoGtoBAAAAAAAAAAAAAAAAAAAAAACAQtKzcjTkpYUa+9HPys7Ntxyz2aSb/7/J3FXiwgKLrfdqmqBaFcIL1vUrR+rdO3oqoJhm+rx8pzbsPebSXN5qxrJtSknPLljbbH9vLAAAAIBzQ0M7AAAAAAAAAAAAAAAAAAAAAAAA8A97jp5Ul4fnaOaybcUe/1eXBqoRF+bSe8aGF9/QPqpn0SbqAW1rafur/9LKp69RnYrhlmO/7Trq0lzeavLCdZb1Jc2qqbqLP+YAAADewtd0AAAAAAAAAAAAAAAAAAAAAAAAAMBT/LDpgK6eNF9JqRlFjvVtUU1Xta+jwR3ruvy+8eFBRWpVooJ1acvqxZ8fEaT4iCA1qx6rbQdTCuprd9LQfiFOpGVq7Ec/69cdSZb6yGI2FgAAAMDZoaEdAAAAAAAAAAAAAAAAAAAAAAAAkPTRD1t002vfKicv31IPD/LTB3f3Vp/m1Urt3nHFTGgf3r2hfO0+p31csxqx+uTnPwrWa3YlneZslMTpdOqD77foP+//VGQzg4SYUPVtUXofewAAgPKOhnYAAAAAAAAAAAAAAAAAAAAAAAB4vZ1HUnXzG4uLNLPXrRihuaMvVb1KkaV6/9gw64R2u00a1q3+GR/XsEqUZb336EmX5vIGG/Ye0x1vLtUPmw4Ue3zsla1k9zn9xgIAAAAoGQ3tAAAAAAAAAAAAAAAAAAAAAAAA8HqTF65XVk6epda7WYI+vLu3IoL9S/3+bevGW9Zd60arclTIGR8XExZgWaekZ7s0V3l2KjNH/529Ui98sVa5hTYykKQgf189dm073XRxooF0AAAA5QcN7QAAAAAAAAAAAAAAAAAAAAAAAPBqWTl5emfJRkvt2ovq6N07e7ptMnePxlV1xyVN9M53m9SseoxG96p8Vo+LCLI226dl5ig3L1++diaKn05qera6PDxb6/YcK/b45a1r6oUbOykhJtTNyQAAAMofGtoBAAAAAAAAAAAAAAAAAAAAAADg1Wb/8oeOnsy01MYNauO2ZnZJstlsenF4Z71wYyfl5+dr7dq1Z/W44qbHJ5/KUkxYoIsTli+PzVpRbDN79dhQvTi8s/q1rGEgFQAAQPlEQzsAAAAAAAAAAAAAAAAAAAAAAAC82uRF6y3rromVVb9ypJEsNpvtnM4vtqE9nYb208nIztU7SzZZag67j+67rLkeGthKQf4OQ8kAAADKJxraAQAAAAAAAAAAAAAAAAAAAAAA4LXW7TmqnzYftNRu6dXYUJpzF+Cwy8/XR9m5+QW15FNZBhN5vlk//6EThf6MfvjvlWpVK95QIgAAgPLNx3QAAAAAAAAAAAAAAAAAAAAAAAAAwJQpCzdY1hUignR56xqG0pw7m81WZEp78qlsQ2nKhjcWrrOsezSpSjM7AABAKaKhHQAAAAAAAAAAAAAAAAAAAAAAAF4pLTNbH/yw2VK7sXtDOXzthhKdn8hCDe0p6UxoL8naXUlavu2wpXZLr0aG0gAAAHgHGtoBAAAAAAAAAAAAAAAAAAAAAADglab/uFUnM3IK1j42m27ukWgw0fkJLzKhnYb2kkxZuN6yrhQZrH4taxhKAwAA4B1oaAcAAAAAAAAAAAAAAAAAAAAAAIDXcTqdmlyoublvi2pKiAk1lOj8RQTR0H42UtOz9eEPWy21my5uKF87LVYAAACliZ+2AAAAAAAAAAAAAAAAAAAAAAAA4HVW/HFYa3cdtdRG9mxkKM2FiSg8oT0921ASz/bhD1t0KiunYG33sWlEj0SDiQAAALwDDe0AAAAAAAAAAAAAAAAAAAAAAADwOoWns1ePDVXvZgmG0lyYiCA/yzqFCe1FOJ1OTV64zlLr17KGKkeFGEoEAADgPWhoBwAAAAAAAAAAAAAAAAAAAAAAgFc5npapmcu2WWo392wku0/ZbLUJLzyhnYb2IpZtOaT1e49baqN6NTKUBgAAwLuUzZ+yAQAAAAAAAAAAAAAAAAAAAAAAgPP07neblJmTV7B22H10Y7cGBhNdmIjCDe3pNLQXVng6e634cPVoXNVQGgAAAO9CQzsAAAAAAAAAAAAAAAAAAAAAAAC8htPp1JRF6y21gW1rKS48yFCiCxcRVHhCe7ahJJ4pKTVDs375w1K7uWeifHxshhIBAAB4FxraAQAAAAAAAAAAAAAAAAAAAAAA4DUWr9+nbQdTLLVRvRoZSuMaEcF+lnUKE9ot3v1uk7Jz8wvW/g67hnVtYDARAACAd6GhHQAAAAAAAAAAAAAAAAAAAAAAAF5j8kLrdPaGVaLUqUElQ2lcIzy48IR2Gtr/kp/v1NRFGyy1Qe1qKyYs0FAiAAAA70NDOwAAAAAAAAAAAAAAAAAAAAAAALzCxz9u1acrd1hqI3smymazGUrkGhFBhRvasw0l8TyLft+j7YdTLLWRPRsZSgMAAOCdfE0HAAAAAAAAAAAAAAAAAAAAANxlxYoVmjNnjrZu3apTp04pOjpaNWvW1ODBg5WYmGg6HgAAKCV5+fkaN/0XPfvpaks9yN9XQ7vUN5TKdSIKTWg/lZWjnNw8OXzthhJ5jimFprM3TohWh3oVDKUBAADwTkxoBwAAAAAAAAAAAAAAAAAAgFeYNWuWbrjhBq1du1YVK1ZUkyZNFBYWpiVLlmjQoEGaM2eO6YgAAKAUpKRn6YqnvyzSzC5Jd/ZpqvBC083LoohgvyK15HSmtO89elKfr9ppqY3q1Ug2m81QIgAAAO/EhHYAAAAAAAAAAAAAAAAAAAB4hWnTpum+++7TzTffbKnn5eXp3nvv1f/+9z8NHDjQUDoAAFAath44oQHPfKktB5KLHBvVs5EmXN3G/aFKQUQxTfnJp7IUGxZoII1n2HLghAY+86Xync6CWrC/Q9d1rGcwFQAAgHdiQjsAAAAAAAAAAAAAAAAAAADKnaefflrZ2dappMePH1e7du2KnGu323XRRRfp6NGj7ooHAADcYMfhFF00dlaRZnZfu49eHdFVr97cVQ5fu5lwLhbg5yt/h/V9ST6VZSiNefPX7FaHhz4p8rEf0qmuwoKKTrMHAABA6aKhHQAAAAAAAAAAAAAAAAAAAOXOZ599pssvv1y//fZbQa1+/fp69tln9dtvvyktLU35+flKTU3Vjz/+qLfeekuJiYkGEwMAAFcbN/0XnSjU1B0TGqCF4y/XqF6NDKUqPZHB1intyene19DudDr13GerddlTnysl3bq5UYWIII2/qo2hZAAAAN7N13QAAAAAAAAAAAAAAAAAAAAAwNW++OILTZgwQdddd52GDRumu+++W+PGjdPIkSN17bXXWs51Op2qVKmSHn30UUNpAQCAqx1OTtfc5dsttabVYjTnP31VLTbMUKrSFRHsr0PJ6QXrlFPZpzm7/MnMztXINxbrox+3FjnWrHqMZj/QVxUjgw0kAwAAAA3tAAAAAAAAAAAAAAAAAAAAKHciIyP10ksv6auvvtJjjz2mJUuW6KmnntKCBQu0fPlybd++XadOnVJQUJBq166ttm3byuFwmI4NAABc5O0lG5WTl1+wDnDYtfDhyxUdGmgwVekKD/KzrJNPedeE9vvf+7HYZvar2tfWm7derOAAftYDAAAwhYZ24P/Yu+8oq+szf+DPncYMMPSq9CZIUaPYKwJGYmxRE6PGmCiY5qZvdjfZZLOJJWWzSUwiWGKLJnZjB8SCBXuhKkVBqnRmYIZp9/dHfjvxywxImZnLXF6vc3LC5/mW+57xHHXO8T0PAAAAAAAAAAAAkLXGjRsXRx55ZPznf/5nnH/++XHJJZfEFVdcEccee2ymowEAjaS6piaunzo7MfvsMQOzuswe8Y8N7R+1Ycu+U2hfsX5z3PDknMQslYr46WePjB+cdWikUqkMJQMAICIiJ9MBAAAAAAAAAAAAAKAxdejQIa699tq46qqr4u67746zzz473n777UzHAgAayRNvLonFq0sSs/FjhmUoTdNp13KbQvs+tKH9xifnRFV1Te25MD837vvep+Lfzj5MmR0AYC+g0A4AAAAAAAAAAADAPuH000+Phx9+OHr06BGf//zn43/+53+ioqIi07EAgAY2cfKsxPmQvp3j8AFdM5Sm6Wy7oX3j5n3j33OqqmvihidnJ2afP+6A+PRhfTOUCACAbeVlOgAAAAAAAAAAAAAANJY5c+bE4sWLIy8vL7p16xbDhg2L6667Lu6///646qqr4qmnnoorr7wyhg8fnumoAEADWLx6Uzz6xvuJ2YQxw/aJLd1tWhYkzhu37Bsb2h97Y3EsXVuamE0YOyxDaQAAqI9COwAAAAAAAAAAAABZZ/HixfH1r389FixYEOl0OiIiUqlU9OjRI37605/GWWedFUcffXT86Ec/ivPPPz++/OUvx9e//vXIz8/PcHIAYE/c8OSc+P//6I+IiOKi/PjcsQMzF6gJFRUka0JlFVUZStJ41mwqiz8/NTfWby6PS08eGv26to3rJs9M3HNY/y5xaL8uGUoIAEB9FNoBAAAAAAAAAAAAyDo//vGPo6SkJH71q1/FwIEDIy8vLxYvXhwTJ06Mb37zmzF9+vTo2rVrTJo0Ke6+++645pprYtq0afHQQw9lOjoAsJsqqqrjpifnJGYXHT84WhcWbOeJ7FKn0F5ZnaEkjeON91bH2b94JD74/9vYH371/bjrO6fG5LeWJO6bMMZ2dgCAvU1OpgMAAAAAAAAAAAAAQEN744034qtf/Wp86lOfikGDBkW/fv3ipJNOiquvvjo2btwY8+bNq7333HPPjYceeii6dLHJEwCaswdfXhSrNm5JzMbvQ+Xmli2yd0P7XS/Mj+N/dG9tmT0iYs7SdfHFa6dEOv3P+9q1ahGfPWZgBhICALAjNrQDAAAAAAAAAAAAkHUKCwtj9erVdeZr166NVCoVhYWFiXn37t3jxhtvbKp4AEAjmDhlVuJ8zODuMaxXxwylaXp1NrRnQaG9piYdP/rrjLjmgdfqvf7qwg8T5y+cMDhatshvimgAAOwChXYAAAAAAAAAAAAAss6oUaNi4sSJsXr16hg4cGDk5eXF0qVL4/7774/+/fvHoEGDMh0RAGhA85atj6dnL0vMLh+772xnj4goKshNnMu2Nu9C+6YtFXHR7ybHI6+/v9PPXDZ6aOMFAgBgtym0AwAAAAAAAAAAAJB1fvSjH0VeXl489NBDsXnz5oj4x9b2sWPHxre//e0MpwMAGtqkbbazd25TFGcfMSBDaTIjmza0V1ZVx7gr/x4z3l2508+cMHT/GNKjQyOmAgBgdym0AwAAAAAAAAAAAJB1WrZsGf/93/8dP/3pT2Pt2rWRm5sb7du3z3QsAKARbNlaGbc+My8x++JJQ6JFfu52nshOhVlUaL9nxoI6Zfa83Jy46oKj4t/+8mJUVdfUeebyMcOaKh4AALsoJ9MBAAAAAAAAAAAAAKCxpFKp6NSpkzI7AGSxu16YHxs2b609p1IRl40emsFEmZFNG9qvmzwrce5UXBhP/OiM+NZph8Rh/bvUub9r25ZxxuH9mioeAAC7SKEdAAAAAAAAAAAAAACAZmvb8vPYg3pFv65tM5Qmc+oW2qszlGTPzFyyJp6ftyIxu/bSE+OEA/ePiKj9/4+6ZNSQKMjLbZJ8AADsOoV2AAAAAAAAAAAAAAAAmqWXF6yKVxd+mJhdPnZ4htJkVlFBstBdVlEV6XQ6Q2l23/VTZifO3dq1jDNG9q09nzgsWWhPpSIuPXlok2QDAGD3KLQDAAAAAAAAAAAAAADQ7EyfuzzOuPrhxKxHx9Zx6iG9M5Qos7bd0B4RsbWyeW1pLy2viNuenZeYXTLqwMj/yPb1k4b2iIN6d6o9TxgzLPp0adNkGQEA2HV1/00VAAAAAAAAAAAAAAAA9mKTpsyKK256NqqqaxLzS08eGnm5++b+x/oK7WUVVVFYz3xvdedz70ZJWWXtOSeVistGJ7ev5+XmxBM/OiP+Mv2d6FRcFOcdPaCpYwIAsIuaz7+RAgAAAAAAAAAAAAAAsE+rrKqOb908Pa6bPKvOtWE9O8S3Tju46UPtJbZXaG+fgSy7I51Ox6QpsxOzUw/pHb06Fde5t1OboviXTx3cRMkAANhTCu0AAAAAAAAAAAAAAADs9daWlMW5v34snp2zvM61Tx7SO26/Ymy0KszPQLK9Q/2F9uoMJNk9Ly9YFW+8tzoxmzB2WIbSAADQkBTaAQAAAAAAAAAAAMhqFRUV8fvf/z4ee+yxWLlyZVRX11/sSqVSMWfOnCZOBwDsrEv+MLXeMvt3T/9E/PzzR0ZuTk4GUu09CvNz68zKKqoykGT3TJw8K3Hu07k4Tjm4V4bSAADQkBTaAQAAAAAAAAAAAMhqf/rTn+L666+PiIiOHTtGixYtMpwIANhVb72/Jh59fXFiVpifG5MuHxWfP+6ADKXau6RSqSgqyEuU2Lc0k0L7utLyuOuF+YnZpaOH7vO/pAAAIFsotAMAAAAAAAAAAACQ1R555JEYPnx4XHvttdG1a9dMxwEAdsPEyTMT547FhfHIv386Duvvn+0fVVSQmyi0N5cN7bc+PS/KK6trz/m5OfGlUQdmMBEAAA3JrykCAAAAAAAAAAAAIKutXLkyPvvZzyqzA0AzVVJWEXc8925i9pVThiuz16OoILn7sjkU2tPpdEyaMisxO/uI/tGlbcsMJQIAoKEptAMAAAAAAAAAAACQ1Tp37hzV1dUffyMAsFf6y/R3orS8svack0rFpScPzWCivde2hfbyZlBof2r2snh3xYbEbPzYYZkJAwBAo1BoBwAAAAAAAAAAACCrnXHGGfHYY49lOgYAsBvS6XRMnJzc3n3aoX2iR8fWGUq0d2uOG9onTp6ZOB/Yo0McP2S/DKUBAKAxKLQDAAAAAAAAAAAAkNW+/vWvx/777x+XXnppPPvss/H+++/H8uXL6/0fALB3efHdlTFzydrEbILt3dtVWKfQXp2hJDtnxfrN8eAr7yVm48cMjVQqlaFEAAA0hryPvwUAAAAAAAAAAAAAmq+hQ4dGxD82vD7//PPbvS+VSsWcOXOaKhYAsBO23c7er2ubGDOiV4bS7P2KCnIT5719Q/tN0+ZEVXVN7blli7y48PjBGUwEAEBjUGgHAAAAAAAAAAAAIKuNGDEiCgoKMh0DANhFazaVxd0vzk/MLhs9LHJybO/enqI6G9r33kL7lq2VccPU2YnZ544ZFO1atchQIgAAGotCOwAAAAAAAAAAAABZ7W9/+1umIwAAu+GWp+dGRdU/t3cX5OXEF08aksFEe7/mUmhfsqYkPvPLR+ODtaWJ+fgxQzOUCACAxpST6QAAAAAAAAAAAAAA0FgqKiri1ltvjXfffTfTUQCAXVBTk45JU5Lbu885ckB0blOUoUTNQ3MotD83b3kc+W93xRvvrU7MD+vfJQ7r3zVDqQAAaEwK7QAAAAAAAAAAAABkrYKCgvj1r38dc+bMyXQUAGAXTJ35QSxctTExmzB2eIbSNB/bFtrLK6ozlKR+N0ydHWP+64H4cGNZYt6mqCCum3BShlIBANDYFNoBAAAAAAAAAAAAyGqHHHJIPPPMM5mOAQDsgklTZiXOw3p2iKMP6JahNM1HUUFu4rxla2WGkiTV1KTjX256Ji6f9FRUVtckrg3q3i5euPLcOLhP5wylAwCgseV9/C0AAAAAAAAAAAAA0Hz9/Oc/j2uuuSYuvfTSOP3006Nnz55RXFxc770DBgxo4nQAwLaWrSuNh159LzGbMHZ4pFKpDCVqPooK8hPnsr1kQ/t1k2fGHx6fWWd+ysG94i//ckq0a9UiA6kAAGgqCu0AAAAAAAAAAAAAZLWTTz45UqlUpNPpeP7557d7XyqVijlz5jRhMgCgPjdMnR3VNenac6sW+XHBcQdkMFHzse2G9rKKqgwl+afqmpr49UNv1Jl/5/RD4srPHxW5OTkZSAUAQFNSaAcAAAAAAAAAAAAgq40cOTLTEQCAnVRVXRM3Ppn8BTOfP25QtGlZkKFEzUtRQbIqtDcU2p94c0ksXl2SmN3wlVHxxZMOzFAiAACamkI7AAAAAAAAAAAAAFnttttuy3QEAGAnPfzae7F8/ebEbMLYYRlK0/zsjYX2iZNnJc6H9O0cF584JENpAADIhJxMBwAAAAAAAAAAAAAAAICNW7bG1fe/lpgdMbBrHNync4YSNT97W6F98epN8egb7ydmE8YMi1QqlZlAAABkhA3tAAAAAAAAAAAAAGS1Bx544GPvSafTUVlZGeedd17jBwIA6nhn+fo4+xePxDvLNyTmE8bYzr4rti20l1dUZyjJP9zw5JxIp/95Li7Kj88dOzBzgQAAyAiFdgAAAAAAAAAAAACy2g9+8IOP3QKaTqcjlUoptANABjz2xuK48LdPxMYtFYn5/h1axblHKz/viqKC3MQ5kxvaK6qq46Yn5yRmFx0/OFoXFmQoEQAAmaLQDgAAAAAAAAAAAEBW+9rXvlZvob2ysjI++OCDeOqpp+KYY46Jk08+OQPpAGDflU6n49cPvRH/9pcXElu8IyI6tymKu787rs7GcXascJvv1/YK7SvWb44rbnwmVm7cEv/xmZHxyYN7N3iWB19eFKs2bknMxo8Z1uCfAwDA3s+/1QMAAAAAAAAAAACQ1b7xjW/s8PratWvjoosuis985jNNlAgASKfT8bXrn45JU2fXuXZwn05x3/c/Fb06FWcgWfO27S8AqK/Qnk6n49xfPxYz3l0ZERGf+5/H44OJl0RxUcNuTp84ZVbifMzg7jGsV8cG/QwAAJqHnEwHAAAAAAAAAAAAAIBM6tixY3zta1+LP/3pT5mOAgD7jMfeWFxvmf3cowbEMz/9jDL7btq20L6lnkL7jPkra8vsERGl5ZXxysIPGzTHvGXr4+nZyxKzy8fazg4AsK+yoR0AAAAAAAAAAACAfV7Pnj1j/vz5mY4BAPuMPz4xM3FOpSJ++tkj4wdnHRqpVCpDqZq/+ja0p9PpxPd00uRZ2z4Wm7ZsbdAck7bZzt6puDDOPmJAg34GAADNh0I7AAAAAAAAAAAAAPu8119/PYqKijIdAwD2Ce99uCmeeHNxYvY/Fx8X3xh3UIYSZY+igtzEOZ2OqKiqiRb5/5ivLSmLu15cUOe5zeV1N7nvri1bK+PWZ+YlZl886cDaDAAA7HsU2gEAAAAAAAAAAADIatdee+12r1VWVsZ7770X06ZNi2OPPbYJUwHAvuv6qbMinf7nuW3LgvjSqAMzFyiLtGyRX2dWVlFVWya/5el5sbWyus49peWVDZbhrhfmx4bNyY3v48cMbbD3AwDQ/Ci0AwAAAAAAAAAAAJDVrr322kilUpH+aHNuG507d47vfe97TZgKAPZNWyur48/T5iZmXzhhcLQqrFvEZtdtu6E94h+F9natWkRNTTqunzqr3udKyisaLMPEKbMT57EH9Yp+Xds22PsBAGh+FNoBAAAAAAAAAAAAyGpXXnllpFKpeq/l5eVF165d4+CDD46CgoImTgYA+577X1oYqzeVJWbjxwzLUJrsU1RQtypUVlEVERHTZi2N+Ss21vtcSVnDbGh/fdGH8cqCVYnZ5WP99QUA2NcptAMAAAAAAAAAAACQ1c4+++yPvaeioiLKysqiqKioCRIBwL7ruinJDeHHH7hfDOnRIUNpsk9h/vYL7ZOm1L+dPSKipKxhNrRv+xk9OraOcZ/o0yDvBgCg+crJdAAAAAAAAAAAAAAAaEwnn3xyTJ8+fYf33HzzzXHOOec0USIA2DfN/mBtPDd3eWJ2+djhGUqTnXJyUtEiPzcxK6uoiplL1sSDryza7nOby/d8Q/vGLVvjjufeTcy+fPKBkZervgQAsK+zoR0AAAAAAAAAAACArLZs2bIoLy/f4T2rV6+O5cuX7/AeAGDPbLu9u0vbojjz8H4ZSpO9igryYmtlde357hcXxMTJs6K6Jr3dZ0r2sNBeXVMTP7pzRmzZWlU7y81JxZdHHbhH7wUAIDsotAMAAAAAAAAAAACQdW655Za49dZba88/+clP4uqrr6733q1bt8batWtjv/32a6p4ALDPKS2viNueeScxu+SkA6MgL3c7T7C7igpyY8Pmf55//fc3PvaZkrKK3f68jVu2xkW/mxyPvr44MT/9sL6xX4fWu/1eAACyh0I7AAAAAAAAAAAAAFnnkEMOiYULF8bbb78dqVQq1q5du917c3Nzo1evXvHDH/6wCRMCwL7lb8/Pj00fKU2nUhGXjR6awUTZq6hgx3WhkQO6xhkj+8YP75xRO9vdDe3zV2yIs37xSMxbtj4xT6Uivn36Ibv1TgAAso9COwAAAAAAAAAAAABZZ8SIETFixIiIiBg8eHD87ne/i7Fjx2Y4FQDsm9LpdEycPCsxO/WQ3tGnS5sMJcpuOyq0X3j8AXHd+JPirhfmJ+alu7Gh/Yk3F8cFv50cGzZvTczzcnPiD5eeEEcN6r7L7wQAIDsptAMAAAAAAAAAAACQ1W699dYYOHBgpmMAwD7rlYUfxuvvrU7Mxo8ZlqE02a++QntOKhVXX3h0fOu0gyOVSkVxUUHieukubmi/8cnZ8ZVJT0dNOp2YdyoujL9959Q44cD9dz04AABZS6EdAAAAAAAAAAAAgKx2+OGHR0TEhg0b4sUXX4zly5fHuHHjonv3f2wNLS8vj8LCwkxGBICsNmmb7ey9OxfHqYf0zlCa7NerU3G8uvDD2nPblgVxxzdPiVMO/uf3vHVRfuKZkrKdL7RPffuD+Or1dcvsB/XuFPd+b1z06dJmN5MDAJCtFNoBAAAAAAAAAAAAyHo333xz/O///m9s3bo1IiJGjBgR3bt3j5qamhg3blxceOGF8aUvfSnDKQEg+6wvLY+/vTA/Mbv05KGRm5OToUTZ75unHRxT3/4gNpVVxIjeHeOv3/pkDNqvfeKe4sLkhvaS8oqdeveClRvi/N88HtU1yTL7OUcOiBu/enK0KszfzpMAAOzLFNoBAAAAAAAAAAAAyGpTp06Nq6++Ovr27Rsnn3xy3HjjjbXXSkpKolOnTvHLX/4yevXqFaNHj85gUgDIPrc+My/KKqpqz3m5OXHJqCEZTJT9jj6geyz648WxdG1pDO3ZIVKpVJ17irfZ0L5la1VU19Ts8BcNbNpSEWdd80is37w1Mf/O6YfE1RccXe/nAABARIRfZwUAAAAAAAAAAABAVrvtttti0KBB8eCDD8b48eMjnf7nRtG2bdvG7bffHkOGDInbb789gykBIPuk0+mYNGVWYnbW4f2iW7tWGUq072jXqkUM69VxuyXz1vVsUt9cXlXPnf9QU5OOL/x+csxdtj4xP/PwfnHV55XZAQDYMYV2AAAAAAAAAAAAALLa3Llz4+yzz46CgoJ6y1YFBQVx1llnxbvvvpuBdACQnSqqquNr1z8d7yzfkJhPGDssM4FIKC4qqDMrKa/Y7v23PjM3Hn7t/cRseK+OcfPXR0dOjjI7AAA7lpfpAAAAAAAAAAAAAADQmLZs2RIdOnTY4T3t2rWL0tLSJkoEANlt9aayOPfXj8Vzc5cn5oP3bx8nHLh/hlLxUcX1bGgvKaus9950Oh2/f/TtxKxTcWHc//1PRevCusV4AADYlkI7AAAAAAAAAAAAAFmtS5cusXDhwh3eM2PGjOjcuXMTJQKA7PXm+6vj7F88GkvWlNS59vPzj4pUyjbvvUF+Xm60yM+NrZXVtbOSsvo3tM+YvzLeWrwmMZt0+ajo06VNo2YEACB75GQ6AAAAAAAAAAAAAAA0puOPPz7uuOOOmDdvXu3s/8p0paWl8cc//jHuv//+OPHEEzOUEACywz0vLojjf3RvnTJ7YX5u3H7F2Djj8H4ZSkZ9tt3SXlJe/4b2SZNnJc59u7SJ0w7t22i5AADIPja0AwAAAAAAAAAAAJDVvvrVr8bUqVPj3HPPjQEDBkQqlYpf/epXUVlZGYsWLYry8vLo1KlTXH755ZmOCgDN1sOvvRef+83jdeY9OraOe783Lg7t1yUDqdiR1oX5saakvPa8uZ5C+9qSsrjrxQWJ2WWjh0ZOTqrR8wEAkD1saAcAAAAAAAAAAAAgq3Xp0iXuueeeGDVqVMyfPz/S6XS8+eabMXv27KiqqopPfvKTcffdd0fnzp0zHRUAmqV0Oh3/cceLdeZHH9A9XrrqPGX2vVRxUUHiXFJWUeeeW5+ZF1srq2vP+bk5ccmoAxs9GwAA2cWGdgAAAAAAAAAAAACyXrdu3eK3v/1tbN26Nd57773YvHlztG7dOvr27RsFBQUf/wIAYLuem7ciZn+wLjH70qgD4/dfPiFa5OdmKBUfp3VRfuJcUpbc0F5Tk45JU2YlZp85sn90blPU6NkAAMguCu0AAAAAAAAAAAAAZK2tW7fG//zP/8Spp54aBx98cLRo0SIGDx6c6VgAkFUmTp6ZOA/s3jauG39S5OSkMpSInVFcuM2G9vLkhvanZi+N+Ss2JmYTxg5v9FwAAGSfnEwHAAAAAAAAAAAAAIDG0qJFi7jrrrti0aJFmY4CAFnpw41b4t4ZCxOzy0YPU2ZvBoq32dBeWv7PDe3VNTXxm4ffTFwf2rNDHDu4e1NEAwAgyyi0AwAAAAAAAAAAAJDVjj/++HjkkUeiuro601EAIOvc/NTcqKyuqT23yM+Ni08cnMFE7KzWhclCe0nZPza0b9i8Nc645pF4/I3FievjxwyLVMovKgAAYNflZToAAAAAAAAAAAAAADSmyy67LCZNmhRnnnlmjBs3Lnr27BnFxcX13nvCCSc0cToAaL5qatJx/dTZidl5Rw2IjsVFGUrEriguLEicS8sq453l6+PsXzwS7yzfkLy3KD8uPP6AJkwHAEA2UWgHAAAAAAAAAAAAIKudc845kUqlIp1Ox+9+97sd3jt37twmSgUAzd/kt5fEex9uSszGjx2WoTTsqtZFyQ3t98xYEPfMWBAbt1Qk5nm5OXHjV06Oti1bNGU8AACyiEI7AAAAAAAAAAAAAFntzDPPjFQqlekYAJB1Jk6elTgf1LtTHDmwW4bSsKuKi5Ib2rctskdEdG5TFHd959Q4bsh+TRULAIAspNAOAAAAAAAAAAAAQFa7+uqrMx0BALLOkjUl8chr7ydmE8YO80tkmpHiwvwdXj+kb+e493vjolen4iZKBABAtlJoBwAAAAAAAAAAAAAAYJfc+OScqEmna8+tC/Pj/GMHZTARu6r1Dgrt5x09MG74yqho2WLHpXcAANgZCu0AAAAAAAAAAAAAAADstMqq6rhp2uzE7MLjD4jiooIMJWJ3bO+v1zdPOzh+edExkUqlmjgRAADZKifTAQAAAAAAAAAAAAAAAGg+Hnr1vVixfktiNn7MsAylYXe1Lqq7fb2oIC/+4+zDlNkBAGhQCu0AAAAAAAAAAAAAAADstOumzEqcjzqgW4zo3SlDadhdxYV1N7R/9uiB0b51YQbSAACQzRTaAQAAAAAAAAAAAAAA2CnvLl8f02YuTcwuHzM8Q2nYE+1bt6gzGz92WAaSAACQ7RTaAQAAAAAAAAAAAAAA2CmTps5OnDsWF8ZnjuyfoTTsiUHd28XQnh1qz6ce0jtG9u+SwUQAAGSrvEwHAAAAAAAAAAAAAICmUF1dHbNnz47ly5fH4YcfHh06dPj4hwCAWmUVVXHLU3MTs4tPHBKFBeopzVEqlYonfnRG/PaRt6K4qCC+ceqISKVSmY4FAEAW8hMDAAAAAAAAAAAAAFnv8ccfjyuvvDJWr14dERG33nprbaH9nHPOiS996Usxbty4TEYEgL3eLU/PjfWbtyZm48cMzVAaGkK3dq3iqguOznQMAACyXE6mAwAAAAAAAAAAAABAY3r11Vfj29/+dlRWVtYpra9fvz7Wr18f3/ve9+KVV17JUEIA2Lul0+n41d9fj2/c+ExiPnpEzxjQrV1mQgEAAM2GQjsAAAAAAAAAAAAAWe2GG26I/fbbLx555JH48Y9/HOl0uvZa+/bt4/7774/9998/brrppgymBIC9U1lFVVz8+ynxg9tfiI/8IzQiIr56yvDMhAIAAJoVhXYAAAAAAAAAAAAAstpbb70V5513XnTo0CFSqVSd623atInzzjsvZs6cmYF0ALD3Wrq2NE768X1xx3Pv1rn2xROHxKcP65uBVAAAQHOTl+kAAAAAAAAAAAAAANCYSkpKonv37ju8p1u3brFx48YmSgQAe7/XF30Yn77q4Vi1cUtinkpF/Pfnjox/PfPQen9RDAAAwLYU2gEAAAAAAAAAAADIau3bt48PPvhgh/fMmjUrOnTo0ESJAGDvVl5RFef86rE6Zfbiovy49RtjbWYHAAB2SU6mAwAAAAAAAAAAAABAYzryyCPjjjvuiA8//LDOtXQ6HQ8++GDccccdcdRRR2UgHQDsfe6dsTCWrClJzAZ0axvP//xcZXYAAGCX2dAOAAAAAAAAAAAAQFb72te+Fk899VR8+tOfjkMPPTRSqVTccsstcdttt8XMmTNj5cqV0bp16/jKV76S6agAsFeYOGVW4nxI384x+UdnRPvWhRlKBAAANGc2tAMAAAAAAAAAAACQ1fr06RO33HJL9OzZM6ZNmxbpdDqmTp0akydPjhUrVsTw4cPjlltuid69e2c6KgBk3Mwla+KFd1YkZj8461BldgAAYLfZ0A4AAAAAAAAAAABA1hs6dGjcc889sWTJknj33Xdjy5Yt0bp16xg0aFD06NEj0/EAYK8xcXJyO3u3di3j9MP6ZigNAACQDRTaAQAAAAAAAAAAAMhqv/nNb+Kss86KPn36RK9evaJXr16ZjgQAERGRTqfj+XdWxPrSrTHuE70jNycno3lKyiri9mffScy+NOrAyM/LzVAiAAAgG2T2Jx0AAAAAAAAAAAAAaGQTJ06MU089NT73uc/F3/72tygpKcl0JACIiIif3v1ynPif98VZv3gkzvrFI5mOE3c+926UllfWnnNSqbhs9NAMJgIAALKBQjsAAAAAAAAAAAAAWe2nP/1pjBw5Mt5+++34yU9+Escee2x85zvfienTp0c6nc50PAD2UcvWlcaV971ae3709cXx3oebMpYnnU7HxMmzErNPHdonenYqzlAiAAAgW+RlOgAAAAAAAAAAAAAANKbzzjsvzjvvvFi9enU88sgj8fDDD8cjjzwSjz76aHTu3DnOOOOMOPPMM6N///6ZjgrAPuTGJ+dEdU3yF6ssX7c5+nZpk5E8L81fFW8tXpOYjR8zLCNZAACA7GJDOwAAAAAAAAAAAAD7hM6dO8cXv/jFuOeee2LKlCnxjW98I9q0aRPXX399nHbaaXHeeedlOiIA+4iq6pq48cnZdeYl5RUZSPMPEyfPTJz7dmkTpxzUK0NpAACAbKLQDgAAAAAAAAAAAMA+p2fPnvHVr341HnroobjqqquiY8eOMXPmzI9/EAAawCOvvR/L1m2uMy8tq8xAmoh1peVx14sLErPLRg+NnJxURvIAAADZJS/TAQAAAAAAAAAAAACgKaXT6ZgxY0Y89thjMXXq1Fi/fn1ERBxxxBEZTgbAvuK6KfX/EpWSssxsaL/l6bmxtbK69pyfmxNfPGlIRrIAAADZR6EdAAAAAAAAAAAAgH3CK6+8Eo8++mhMnjw51q1bF+l0OgYMGBBf/OIX4/TTT49u3bplOiIA+4CFKzfGlLc+qPdaSXnTb2ivqKqOSVNmJWafObJ/dGnbssmzAAAA2UmhHQAAAAAAAAAAAICs9vOf/zwef/zxWLNmTaTT6ejUqVNcfPHFccYZZ8SQIbbPAtDwKqqqY87SdTG0R4fIz8tNXJs0ddZ2nooobeJC+zNzlsU3bngm5q/YmJhPGDu8SXMAAADZTaEdAAAAAAAAAAAAgKx22223RVFRUZx22mlx+umnxzHHHBM5OTmZjgVAllq+rjSO+Y974oO1pdGjY+u445unxNEHdI+IiPKKqrj5qbnbfbakrKJJMq7asCX+/c4Zcfuz79S5NrRnhzh2cPcmyQEAAOwbFNoBAAAAAAAAAAAAyGpXX311jB07Nlq2bJnpKADsA35454z4YG1pREQsXVsap/z3g3Hnt06J0w7tG/e9tDDWlpRv99nSssbd0F5dUxP3vrEyJl37WmzYXLc8n5+bE7/78gmRSqUaNQcAALBvUWgHAAAAAAAAAAAAIKudeeaZmY4AwD5iXWl53PXC/MSsrKIqPvPLR2PS5aPixifn7PD5kvLG29D+1vtrYsLEafHqwg/rvX5ov85x7aUnxsgBXRstAwAAsG9SaAcAAAAAAAAAAAAgqwwZMiR++9vfxtixY2vPOyOVSsWcOTsuGgLAjtzy9Nwor6yuM6+uSceX//hknfmI3h3j7cVra88ljbShfeHKjTH6v+6P9Zu31rnWpqggfnb+kTFh7LDIzclplM8HAAD2bQrtAAAAAAAAAAAAAGSV7t27R1FRUeIMAI0tnU7HpCmzdvr+bu1axvnHHhBvL36hdtZYG9qveeC1esvsnz92UPziC8dEt3atGuVzAQAAIhTaAQAAAAAAAAAAAMgy06ZN2+EZABrDtFlLY/6KjYnZ6Yf1jb+/+l69939p1IHRoXWLxKwxNrRv2Lw17nzu3cRs0H7t4tpLT4xRw3o0+OcBAABsKyfTAQAAAAAAAAAAAACgMT3wwAOxYsWKHd4zffr0uPnmm5smEABZadvt7Af26BD3fm9c/PILx9S5NyeVistGD43iooLEfHN5wxfab392XpRVVNWec3NSMfmHpyuzAwAATUahHQAAAAAAAAAAAICs9m//9m8xc+bMHd6zYMGCuPHGG5soEQDZZsX6zfHgK8lN7OPHDI1UKhXfOu2QuOXrYyIv958Vji+cMDh6diqOVoX5iWdKyioaNFc6nY6Jk5NF+xMGto/u7Vs16OcAAADsSF6mAwAAAAAAAAAAAABAQ5s3b17MmzcvIv5R5nv55Zdjy5Yt9d5bXl4e99xzT2zevLkpIwKQRW58ck5UVdfUnlu2yIsLjx9ce77g+ANiSI/2cf3U2dGjY+v4zqcPiYiI4m0L7Q28of3Zuctj7rL1idlnDunWoJ8BAADwcRTaAQAAAAAAAAAAAMg606dPj1//+teRSqUilUrFX/7ylx3en06n45Of/GQTpQMgm1RV18QNT85OzD53zKBo16pFYvaJfl3iT+O7JGbFRQWJc0lZRaTT6UilUg2SbdI229kHdm8bh/Zq0yDvBgAA2FkK7QAAAAAAAAAAAABkncsuuyzOOuusePPNN+PrX/96fPKTn4wBAwbUe29ubm707NkzTjnllCZOCUA2eOyNxbF0bWliNmHssJ16trgouaG9uiYd5ZXVUVSw53WPVRu2xH0vLUzMLhs9NFKp9B6/GwAAYFcotAMAAAAAAAAAAACQlTp16hSjR4+OkSNHxoUXXhiHHXZYpiMBkIWumzwzcT6sf5c4tF+X7dydVFxYUGdWUlbRIIX2m5+eG5XVNbXnwvzcuOj4A2LJgnl7/G4AAIBdkZPpAAAAAAAAAAAAAADQmG677baPLbNPnTo1Lr744iZKBEC2WLRqY0x+a0liNmHMzm1nj6i7oT0ioqSsco9zVdfUxPVTZiVm5x09MDq0LtzjdwMAAOwqG9oBAAAAAAAAAAAA2CesWrUqli1bFtXV1Yl5eXl53HXXXfHmm29mJhgAzdb1U2dHOv3Pc9uWBfHZYwbu9PNFBXmRk0pFzUdeUlq+54X2J95cEu+vLknMJozd+aI9AABAQ1JoBwAAAAAAAAAAACCrVVRUxL/+67/G448/vt170ul0HHTQQU2YCoDmbmtldfx52pzE7AsnDI6WLepuXd+eVCoVrQvzY1NZRe2spLxiB0/snEnbbGc/uE+nOHxA16ipqdnjdwMAAOwqhXYAAAAAAAAAAAAAstrEiRPjsccei969e0ffvn3j6aefjpEjR0ZhYWG8/fbbERHx5S9/Oc4666wMJwWgObn/pYWxpqQ8MRs/Zte3oBcXbVNoL9uzDe1L1pTEo68vTswmjB0WqVRqj94LAACwu3IyHQAAAAAAAAAAAAAAGtMjjzwSJ554Yjz++OPxi1/8IiIirrjiirj++uvj2WefjXHjxsULL7wQbdu2zXBSAJqT67bZgn7C0P1jSI8Ou/ye4qKCxLm0bM82tF8/dXbUpNMfeX9+nH/soD16JwAAwJ5QaAcAAAAAAAAAAAAgqy1fvjzGjBkTqVSqznbaFi1axI9//OOoqamJa6+9NkMJAWhu3l68Jp6buzwxm7Ab29kjIloX5ifOJeW7v6G9sqo6bnpyTmJ24XGDo3VhwXaeAAAAaHwK7QAAAAAAAAAAAABktfz8/MjNza39c0TE5s2bE/eMGzcuHn300SbPBkDz8+K7K2Lcz/+emHVt2zLOPLzfbr1v2w3tJXuwof3BV96LVRu3JGYTxu5e0R4AAKChKLQDAAAAAAAAAAAAkNW6du0ab775ZkREFBYWRlFRUcyaNStxT25ubqxZsyYD6QBoTm5+ak6c/JP7Y+WGZGn8klFDoiAvd7feWWdDe9nub2ifOCX5z7djBnePYb067vb7AAAAGkJepgMAAAAAAAAAAAAAQGM66aST4qabboo2bdrEt7/97TjooIPi5ptvjgMOOCBGjhwZy5Yti5tvvjm6deuW6agA7KWqqmvi+7c9H7979K061wbv3z6+f8ahu/3u4m0K7aXlu1don/Huynhq1tLEbMIY29kBAIDMU2gHAAAAAAAAAAAAIKtddtll8fTTT8eCBQsiImL8+PFx6aWXxhVXXFF7Tzqdjh/84AeZigjAXmzD5q1x3v88FtNmLq1zbfSInnHnN0+JNi0Ldvv9xUXJZ0vLK3b5HXe9MD++/McnE7NOxYXxmSMH7HYuAACAhqLQDgAAAAAAAAAAAEBWa9euXTz44IOxePHiiIg4+uij4/rrr4+bbropli1bFl27do1Pf/rTcc4552Q4KQB7o8v+9GS9ZfZ/+dRBcc2Fx0Rebs4evb91UXJDe0nZzm9or6lJx4/+OiOueeC1OtcuHT00WuTn7lE2AACAhqDQDgAAAAAAAAAAAEDWy8vLi/79+9eejznmmDjmmGMymAiA5mDu0nVx/8uLErOCvJy4bvxJ8YUThzTIZxQXJje0l5Tt3Ib2TVsq4qLfTY5HXn+/zrXjhuwX//GZkQ0RDwAAYI8ptAMAAAAAAAAAAAAAANTj+qmzE+d2rVrEI//+6ThiYLcG+4zWhdtsaC//+A3ty9eVxin//WDMXba+zrXxo4fG/37p+CjIs50dAADYOyi0AwAAAAAAAAAAAJBVTj755N16LpVKxdSpUxs4DQDN1ZatlXHrM/MSs8tGD23QMntERHHRNoX2ndjQfvmkp+qU2fNyc+K3lxwfE8YOa9B8AAAAe0qhHQAAAAAAAAAAAICssmzZskxHACAL/O35+bFh89bacyr1j0J7QysuKkicSz9mQ/v8FRvi0dcXJ2adigvjb985NU44cP8GzwcAALCnFNoBAAAAAAAAAAAAyCrz5s37+JsA4GNMnDIrcR57UK/o17Vtg39O68LkhvaPK7RP2iZXh9YtYsZV50WfLm0aPBsAAEBDyMl0AAAAAAAAAAAAAAAAgL3Ja4s+jFcXfpiYXT52eKN81rYb2teWlEdFVXW995ZXVMUtT89NzC4+cYgyOwAAsFezoR0AAAAAAAAAAACArLZ8+fKPvSedTkdlZWX06dOn8QMBsNebNDm5Bb1Hx9Zx6iG9G+Wz+ndNltHLKqrisdcXxxmH96tz7z0zFsS60q2J2fgxwxolFwAAQENRaAcAAAAAAAAAAAAgq40aNSpSqdRO3Tt37tyPvwmArLZxy9a48/l3E7NLTx4aebk5jfJ5+3VoHccM7h7Pz1tRO7v92Xn1Ftqv26Zof/LwnjGwe7tGyQUAANBQFNoBAAAAAAAAAAAAyGojR46sd15ZWRnLli2L1atXx8iRI6NHjx5NnAyAvdFtz8yLLVuras+5Oan48skHNupnXnj8AYlC+yOvvx/rS8ujfevC2tlb76+JGe+uTDx3+Vjb2QEAgL2fQjsAAAAAAAAAAAAAWe22227b4fWnn346fvazn8VPfvKTpgkEwF4rnU7HpCmzE7MzRvaL7u1bNernnnPkgPiXm56NiqqaiIioqKqJu19cEOPH/LOwPmlKcjt79/Yt47RD+zRqLgAAgIaQk+kAAAAAAAAAAAAAAJBJJ554Ylx88cXxy1/+MtNRAMiw6XOXx5yl6xKzCU2wBb1968I47dC+idntz75T++eSsor4y/R3Ete/fPLQyM/LbfRsAAAAe0qhHQAAAAAAAAAAAIB93vDhw+P111/PdAyA3ZZOp+OaB16L4350T/z7HS/Epi0VmY7ULG27BX1g97Zx0tAeTfLZFx5/QOL8wjsrYtGqjRERccf0d6O0vLL2Wk4qFV8edWCT5AIAANhTCu0AAAAAAAAAAAAA7PNWrFgR1dXVmY4BsNtufWZe/McdL8aL76yMXzzwehz6/b/G8/NWZDpWs/Lhxi1x74yFidn4McMiJyfVJJ//yUN6R8fiwsTsjunvRjqdjolTZibmpx3aJ3p2Km6SXAAAAHsqL9MBAAAAAAAAAAAAAKAxvfLKK9u9VllZGYsWLYqJEydGv379mjAVQMNJp9PxPw+9kZi99+GmOOnH98W/nX1Y/PAzh0V+Xm6G0jUff35qblRW19SeW+TnxsUnDmmyzy/Iy43zjhoYf5r8z/L6X6bPi1HDe8Tbi9cm7p0wdliT5QIAANhTCu0AAAAAAAAAAAAAZLWLLrooUqntb9dNp9ORk5MTP/vZz5owFUDDef6dFTH7g3V15jXpdPz83ldi8ltL4rYrxsSAbu2aPlwzUVOTjuunzErMzjtqQHRoXbidJxrH548flCi0z1+xMb5xwzOJe/p1bRNjRvRq0lwAAAB7QqEdAAAAAAAAAAAAgKx25plnbrfQnpeXF127do3Ro0fH4MGDmzgZQMOYOHnWDq+/smBVHPq9v8VvLjkuLjlpyA5/yUe2eXvxmnjxnZXxyUN6Re/ObbZ73xNvLYn3V5ckZhPGDm/seHUcObBbDOjWNhas3Fg7e2vxmsQ9l40eFjk5+85fQwAAoPlTaAcAAAAAAAAAAAAgq1199dWZjgDQaFZvKot7ZyxIzI4/cL944Z2VUVVdUzvbvLUyxl83LZ54c3Hc+o2x0SI/t6mjNprN5ZXxzvL1MbxXx8jP++fX9dy85TH2pw9ERVVN5OfmxKzfXBD9u7Wt8/ymLRVx5X2vJGYH9+kURwzs2ujZt5VKpeLzxx0QP7375XqvF+TlxBdPGtLEqQAAAPZMTqYDAAAAAAAAAAAAAAAAu+fmp+ZGRdU/i+st8nPj7u+cGtP/+zMxsHvd8va9MxbGLx98vSkjNqqZS9ZEzwl/jsN/cFf0+9otcdsz86KmJh0REVfc+Ezt96ayuiZunDa7zvMLV26MY394T7z4zsrEfPyYYRnbZH/BcQds99pnjhwQndsUNWEaAACAPWdDOwAAAAAAAAAAAABZb86cOfHkk0/G6tWro7Kyst57UqlUXHnllU2cDGD31dSk4/qpsxKzc48aEB2Li6JjcVG8es3n4ru3PhfXT00WuV9ekCxvN2ff+vP02FRWERERK9ZviUv+MDWumzwzLh87PN5evDZx7/0vLYwrP3907Xnq2x/E+b95PNZv3pq4r2vblnH+sYMaP/x29O/WNo46oFudkn1ExISxwzKQCAAAYM8otAMAAAAAAAAAAACQ1R5//PH49re/Hel0OtLp9HbvU2gHmpspby+JRas2JWYfLTy3KsyPP40/Kbq2axk/u+eV2vmmsvp/sUdzM2/Z+nh69rI685fmr4qX5q+qM8/LyYmIiHQ6Hb9/7O343q3PRXVN8p8LHVq3iLu+c2oUFxU0TuiddOFxg+sU2of27BDHHNA9Q4kAAAB2n0I7AAAAAAAAAAAAAFntj3/8Y7Rs2TIuu+yyGDRoULRq1SrTkQAaxMTJye3sI3p3jCMHdqtz34BubRPn0v+/0by5mzRl1sff9BEfrC2NdDod3755evz+sbfrXB/eq2Pc9/1PRd8ubRoq4m479+gB8a2bn42Kqpra2YQxwyKVSmUwFQAAwO5RaAcAAAAAAAAAAAAgqy1ZsiS++tWvxvjx4zMdBaDBfLCmJB5+7f3EbMKY4fUWnttss218UxYU2rdsrYxbn5mXmLXIz42tldXbfaa0vDL+9vz8esvsZx7eL27++uhoXZjZzez/p0PrwvjqJ0fE/z78ZkREDOzeNi46YXBmQwEAAOwmhXYAAAAAAAAAAAAAslrbtm2jU6dOmY4B0KBunDYnatLp2nPrwvz4/HGD6r23eNtC+5bmX2i/+8UFsWHz1sTs1Ws+Gw+/9n78/N5XorS8st7n/uPOF+vMfnze4fEfZ4+MnJy9a/v5lZ8/Kg7p0zmWr98c5x87qM5fRwAAgOZCoR0AAAAAAAAAAACArDZu3Lh4+umn4+yzz850FIAGUVlVHTc+OTsxu+C4A7ZbeC4uyk+cs2FD+3WTZyXOYw/qFUN6dIghPTrEBccNip/c9XI89Op7sXpTWeK+xatLEuerLzw6vnv6Jxo97+4oyMuNC44/INMxAAAA9lhOpgMAAAAAAAAAAAAAQGP61re+FTU1NfHNb34zXnjhhVi8eHEsX7683v8BNAcPv/Z+rFi/JTEbP2bYdu9vs03RvaKqJrZWVjdKtqbw+qIP45UFqxKzCR/5+vfr0DomXT4qVtzw5Rh7UK/tvqdVi/wYP3r73zcAAAAahg3tAAAAAAAAAAAAAGS1DRs2RFlZWbzwwgvxxBNPbPe+VCoVc+bMacJkALtn2+3kRw7qFgf16bTd+9u0rLu5vaSsIlrkFzV4tqYwaUry69+/Q6v41KF96r23f9e2233PBccNqvd7AwAAQMNSaAcAAAAAAAAAAAAgq/3oRz+K559/Pvr27RsDBw6MVq1aZToSwG6bv2JDPDnzg8Ts8rE73jK+7Yb2iIhNZRXRqU3zK7Rv3LI17nju3cTsyycPjbzcnHrv79etzXbfNf5jvm8AAAA0DIV2AAAAAAAAAAAAALLaa6+9FmeddVZcddVVmY4CsMe23U7eoXWLOOfIATt8pqggL3JzUlFdk66dbSqraJR8je0vz74TW7ZW1Z5zc1Lx5ZMP3O79/brUv6H9iIFd4+A+nRs8HwAAAHXV/yvIAAAAAAAAAAAAACBLpNPpOOKIIzIdA2CPlVVUxS1Pz03MLj5xSBQW7HjXXSqViuJttrRv2tL8Cu3pdDomblPoP/2wvrF/h9bbfWZ7G9ovHzu8QbMBAACwfQrtAAAAAAAAAAAAAGS1ww47LN55551MxwDYI1XVNfH9W5+PdaVbE/PxY4bt1PNttim0l5RXNli2pvL8Oyti9gfrErPxY3f89fftUrfQ3r5VizjnqB1vtQcAAKDhKLQDAAAAAAAAAAAAkNV+/OMfx/Tp0+Mvf/lLVFQ0v43EAOtKy+O0qx6KP02emZifPLxnDOzebqfe0aYoP3EuaYYb2idOTm5nH9CtbZw8rOcOn2ldWBBd27ZMzC4+aUgUfcxWewAAABqOn8AAAAAAAAAAAAAAyGrf+973orCwMH72s5/FlVdeGR07doz8/Pw696VSqZg6dWoGEgJs3+wP1sbZv3g0Fq7amJinUhE/OOvQnX5PccvkhvZNZc2r0L56U1ncO2NBYjZ+zLDIyUl97LNnH9G/9pcBtC7Mj6+MHd4oGQEAAKifQjsAAAAAAAAAAAAAWe21116r/XN1dXV8+OGHGUwDsPMeevW9uOh3k6O0vDIxL8jLiT+NPylOGtZjp99VXNi8C+03PzU3Kqpqas8t8nPj4hMH79SzP/3cEdGqMD+Wri2JS0cPjf7d2jZWTAAAAOqh0A4AAAAAAAAAAABAVnv77bejoKDg428E2Ivc9cL8uOC3T0Q6nZx3a9cy7v7uqXHUoO679L42Rcm/D5aUVW7nzr1PTU06rp86KzE796gB0bG4aKeeb9+6MK6+8OjGiAYAAMBOUGgHAAAAAAAAAAAAIKspswPNzdbK6rjixmfqlNkP698l7v3euNi/Q+tdfmebltsW2pvPhvbH3lwci1ZtSswmjB2WoTQAAADsKoV2AAAAAAAAAAAAAIiIysrKyM/Pz3QMgLh3xoJYU1KemF1w3AFx3YSToqhg92oAxUXJv79t2tI8Cu0Pv/ZeXPS7yYnZiN4d48iB3TKUCAAAgF2l0A4AAAAAAAAAAABAVhsyZMhO3ZdKpWLOnDmNnAbIFul0OjZs3hrtWxc2+LsnTpmVOB9/4H5x89dHRyqV2u13tilKbmjftJdvaE+n03HNA6/Fj/46o86m+gljhu/R9wIAAICmpdAOAAAAAAAAAAAAQFbr3r17vfPKyspYs2ZNpNPpGDx4cBQXFzdxMqC5Wrlhc4z96YMxZ+m6GDW8R/z9X0+Lwt3cnL6tmUvWxPPzViRmXz1lxB4XuIubUaF9y9bKuOxP0+JvL8yvc+2Ywd3jS6N27heVAAAAsHdQaAcAAAAAAAAAAAAgq02bNm271yoqKuLuu++OO+64I371q181YSqgOfvuLc/FnKXrIiJi2syl8au/vxE/PGdkg7x70uTZiXPXti3j9JF99/i9225oL9lLC+3L1pXGWdc8Eq+/t7rOtfOPHRSTLh8V+Xm5GUgGAADA7srJdAAAAAAAAAAAAAAAyJSCgoK44IIL4rTTTotf/OIXmY4DNAMfbtwS985YmJhdP3VWVFXX7PG7S8sr4vbp8xKzL518YBQ0QIG7TcttC+2Ve/zOnVFRVR3Pz1sR60vLP/bempp0nPOrx+qU2VOpiKsvPDpu/caYKCqw1w8AAKC5UWgHAAAAAAAAAAAAYJ93xBFHxAsvvJDpGEAz8Oen5kblNuX1Zes2x8OvvbfH777zuXcTRfOcVCouGz10j98bEVG8zYb2TU2woX3Tloo47Pt/ixP+897oMeHP8cqCVTu8f9qspXXuaduyIP7+g0/Hd0//RKRSqcaMCwAAQCNRaAcAAAAAAAAAAABgn7dx48YoL//47cHAvq26piaunzKr3mvXTa5/vrPS6XRM3OYdpx7SO3p1Kt6j9/6f4qL8xHnTlsYvtP/vI2/GnKXrIiJia2V1/Ovtz+/w/omTZybOPTu2jheuPDdOPaR3o2UEAACg8eVlOgAAAAAAAAAAAAAANKbly5dv91plZWUsWrQofvWrX0XPnj2bMBXQHE1+64N4f3VJvdemvv1BzF+xIQZ2b7db7355wap48/01idmEscN26131abPNhvaS8opIp9ONtvW8qrombnxydmI2fe7yWLlhc3Rr16rO/cvXlcbfX01uuf/uGZ+IA/Zr3yj5AAAAaDoK7QAAAAAAAAAAAABktVGjRn1sYTOdTsdVV13VRImA5mrbDeJ1rk+ZFb/6wrG7+e7kdvY+nYvjlIN77da76rNtoT2djti8tTJaFxZs54k988hr78eydZvrfOb9Ly2Kr5wyvM79N06bE9U16dpzyxZ5ceHxBzRKNgAAAJqWQjsAAAAAAAAAAAAAWW3kyJHbvZafnx9du3aNsWPHxkknndSEqYDmZsmaknj09cWJWd8ubeK9DzfVnm95am789LNHRMsW+bv07nWl5XHXC/MTs0tHD43cnJzdD7yNNi3rFtc3balotEL7dVPqL//fM2NBnUJ7VXVN3DA1uc3988cOirYtWzRKNgAAAJqWQjsAAAAAAAAAAAAAWe22227LdAQgC9wwdXbUpP+5Qby4KD/u+e64OPT7f62drd+8Ne56YX588aQDd+ndtz49L8orq2vP+bk58aVRu/aOj1NcWLdkv6msMgpLyyMVEe1bFzbYZy1YuSGmvPVBvdemz1keqzZsia7tWtbOHn297jb38WOGNVgeAAAAMqvhfl0bAAAAAAAAAAAAADQzNTU1mY4ANAOVVdVx07Q5idmFxw2Og/p0irEH9UrMr5s8a5fenU6nY9KU5DNnH9E/urRtuZ0ndk9+Xm4U5ucmZt+6+dno8qUbovdXbo47n3unwT7r+m22rX9UTTod97+8MDHb9ns2ckDX+ES/Lg2WBwAAgMxSaAcAAAAAAAAAAAAgK1VWVsZvfvObuOuuu7Z7z8UXXxw333xz04UCmqUHX3kvVm7YkpiNHzs0IiIuH5vcJP7qwg/j1YWrdvrdT81eFu+u2LDNuxtnO3mblgWJ8/9tUd+ytSq+e8vzUVOTru+xXVJeURU3PzU3McvLTVYX7n5xQe2fF67cGJPfWpK4vu33FAAAgOZNoR0AAAAAAAAAAACArPRf//VfMWnSpJgyZUq919etWxdLly6Na665Jm688cYmTgc0JxO32aB+9AHdY3ivThERMe4TfaJnx9bJ+3dhS/vEyTMT5yH7t4/jh+y3m0l3rE1RwXavrdq4JRZ9uHGPP+PeGQtjbUl5YvbTzx6ROE+fszxW/f9fELDtNvd2rVrEuUcN2OMcAAAA7D0U2gEAAAAAAAAAAADIOi+99FLcc889cdhhh8XPf/7zeu/p0KFDPPzww3HooYfGb37zm1i4cGETpwSag3eWr4+nZi1NzD66QTwvNycuHT00cf2vz8+P9aXJUnd9VqzfHA++8l5iNn7MsEilUnuQePt2VGiPiHj7/TV79P4tWyvjV39/PTE7aViP+Ma4g6J1YX7trCadjvtfXhhbK6vj5qfmJO7/wgmDo2WL/AAAACB7KLQDAAAAAAAAAAAAkHUeeOCBaNeuXfzhD3+ILl26bPe+Vq1axR/+8Ido2bJl3HPPPU2YEGguJm2znb1jcWGcfUT/xOzLJx8Yebn//M/zyyqq4tZn5n3su294cnZUVdfUnlu2yIuLThi8h4m3r3XRjovib+5BoT2dTsdlf5oWM5esTcwvHzssigry4lOf6JOY3/Pigrh3xoJYs8029wkf+WUBAAAAZAeFdgAAAAAAAAAAAACyzptvvhmnn356tGnT5mPvbdu2bZx55pnx/PPPN0EyoDkpq6iKW59OFtO/eNKQKCzIS8y6tWsVZx3eLzGbOHlWpNPpet+bTqfj94++FT+755XE/HPHDIp2rVo0QPL6DezWbofX39qDQvsvHnw9/vbC/MRsyP7t4/TD+kZExDlHDUhce3bO8vjlg8lt7icO3T8O2K/9bmcAAABg76TQDgAAAAAAAAAAAEDWWb16dQwcOHCn7x80aFCsWLGiERMBzdFdL8yP9Zu3JmbjR9e/QXzbzeLvrtgQ02YtrXPf1srqGH/dtPjWzdOjuiZZeB8/ZugeJt6x7595aPTo2Hq7199evHuF9odfey9+eOeLiVmbooK46zunRn5ebkREfPKQ3tGqxT83xNek0/Vscx++W58PAADA3k2hHQAAAAAAAAAAAICsU1VVFQUFBTt9f15eXtTU1DRiIqA5mjhlVuI85qCe0b9b23rvPeHA/WPI/snt4tc9MTNxXrlhc5z8X/fHn5+aW+f58aOHxmH9u+5h4h3r361tvPmr8+OLJw6p9/oHa0tjXWn5Lr1zytsfxEW/mxwfXUafSkXc/i9jY0iPDrWzooK8+NShfbb7nm7tWsYZI/vu0mcDAADQPCi0AwAAAAAAAAAAAJB1OnbsGO+///5O3//OO+9Ely5dGi8Q0Oy88d7qeHn+qsTs8jHb3yCeSqXqbGn/+6vvxbJ1pRER8dqiD+OIH9wVM95dWefZH54zMq699MQ9D70T2rVqETd89eRYOumSeO0Xn4sW+bmJ62+9v3Nb2tPpdNzx8vI4/epHoqSsMnHt5+cfFeM+0afOM+cc2X+777tk1IG129wBAADILgrtAAAAAAAAAAAAAGSdgw8+OB555JGorq7+2Hu3bNkSDz30UBxyyCFNkAxoDmYuWRPn/urRxGz/Dq12uGE8IuKiEwZHyxZ5tefqmnTc/uw7sWZTWXz6qodi2brNiftbtsiLu779yfjJeUdETk6qwfLvjG7tWsVBfTrF0I9sUY/YuUJ7eUVVXPqnafHbpxZHzUdXs0fE+ccOiu+d8Yl6n/vkIb0T35//k5NKxWWjh+5CegAAAJoThXYAAAAAAAAAAAAAss5ZZ50VS5YsiZ/97Gc7vK+ioiK++93vxtq1a+Pss89uonTA3uz+lxbGsf9xb7y/uiQx//LJQyMvd8f/CX7bli3ic8cMSsxmvLsybnhydny4sSwx79O5OJ772Tlx9pEDGib4bjqoT6fE+a33V+/w/uXrSmPUf90ft09/t861s4/oH9dfPipSqfrL+S1b5Men6tncPu4TvaNXp+KdDw0AAECzotAOAAAAAAAAAAAAQNY59thjY+zYsfHXv/41Lrjggnjqqadi8+Z/bkZev359PPjgg3HWWWfFU089Feecc04cdthhGUwMZFpNTTr+666X4txfPxabt1YmrvXr2iauGHfQTr3nhAP3T5xfW/hh3DB1dmJ25KBuMeOq82JE72SZPBO2LbS/vXjtdu9duHJjHPFvd8XL81fVufaT846Iv37rk1FYUHcD+0edc1TdAv/4McN2Mi0AAADN0Y5/UgQAAAAAAAAAAACAZuqaa66JdDodU6ZMiddffz0iIlq2bBk1NTVRXl4eERHpdDrOO++8+OEPf5jJqECGlZZXxBevnRoPvLyozrUjBnaNe747Ltq1arFT7zqkX+fEefn6zXXu+Z8vHhed2hTtXtgGtm2pfs7SdVFRVR0Febl17v3K9U/FivVbErPWhflxy9fHxBmH99upzzv1kN7Rs2Pr+GBtaUREDO/VMU45uNdupgcAAKA5UGgHAAAAAAAAAAAAICsVFRXF73//+5g+fXrcd9998dZbb8XatWsjLy8v+vbtG4ceemicddZZ8YlPfCLTUYEM+9Ifnqy3zP7FE4fEHy47MVrk1y13b88B+7WLooK8KKuoqvf6IX07x8j+XXY7a0PbdkN7ZXVNzFm6Lg7ukyzmz126LqbNXJqY7de2RTz8H2fEiD47//W0bJEf933/U3H1/a9GUUFe/Oe5h0duTs7ufwEAAADs9RTaAQAAAAAAAAAAAMhqxx13XBx33HGZjgHspd56f03c99LCxCw3JxW//MKx8Y1TR0Qqldql9+Xm5MRBfTrFjHdX1nt9wphhu/zOxtS2ZYvo26VNvPfhptrZ2++vqVNonzRlVuLcuU1h3HzxsBjas+Muf+YhfTvH37596u4FBgAAoNnxa8wAAAAAAAAAAAAAANhnbVvUblNUEI/8++lxxbiDdrt4fmi/zvXOi4vy43PHDtytdzamEb2TW9rffH9N4rxla2Xc+sy8xOziE4dE26L8Rs8GAABA86fQDgAAAAAAAAAAAADAPqmkrCL+Mv2dxOwb4w6K0SN67tF7D+lbf6H9ouMHR+vCgj16d2M4qE+y0P7W4mSh/W/Pz4+NWypqz6lUxKUnH9gk2QAAAGj+FNoBAAAAAAAAAAAAANgn3TH93Sgtr6w956RSDVLUPqRvl3rn48cM2+N3N4aDtym0v/3+mkin07XnidtssT/l4N7Rt0ubJskGAABA86fQDgAAAAAAAAAAAADAPiedTsfEKTMTs9MO7RM9OxXv8bsP7NE+CvKS/7n+MYO7x7BeHff43Y1hRO9koX395q3xwdrSiIh4deGqeHXhh4nrE/bSYj4AAAB7J4V2AAAAAAAAAAAAAAD2OTPmr4y3F69NzMaPbZiidn5ebhw5qFtidnkDvbsx9O5cHG1bFiRmb72/JiIiJk2ZnZj37Ng6xn2id5NlAwAAoPlTaAcAAAAAAAAAAAAAYJ8zcfKsxLlvlzYxdkSvBnv/zz9/VHRuUxQREecdPTA+e/SgBnt3Q0ulUnFQn+SW9rfeXxMbNm+NO597NzG/dPTQyM1RRQAAAGDn5WU6AAAAAAAAAAAAAAAANKW1JWVx94sLErPLRg+NnJxUg33GUYO6x3t/vDg2bNka3dq1arD3NpaDeneKZ+csrz2/9f7quO2ZeVFWUVU7y8vNiS+NOjAT8QAAAGjGFNoBAAAAAAAAAAAAANin3PL0vNhaWV17LsjLiUsaoahdWJAX3Qqax3+2X2dD++I1MW/Z+sTsjJF9o3v7vb+cDwAAwN6lefxkDAAAAAAAAAAAAAAADaCmJh2TpsxKzD5z5IDo3KYoQ4n2DiN6Jwvti1ZtqnPPhLHDmyoOAAAAWSQn0wEAAAAAAAAAAAAAAKCpTJu1NBas3JiYjR8zLENp9h4H9ugQebnbrxgM6t4uThq6fxMmAgAAIFsotAMAAAAAAAAAAAAAsM+YOHlm4jy0Z4c4dnD3DKXZexQW5MWQ/dtv9/r4McMilUo1YSIAAACyhUI7AAAAAAAAAAAAAAD7hGXrSuPvr76XmE1Q1K41oneneueF+bnxhRMHN3EaAAAAsoVCOwAAAAAAAAAAAAAA+4Sbps2J6pp07blli7y44PgDMpho73JQn/oL7Z89ZmB0aF3YxGkAAADIFgrtAAAAAAAAAAAAAABkvarqmrhh6uzE7PPHDoq2LVtkKNHeZ3uF9vFjhjVxEgAAALKJQjsAAAAAAAAAAAAAAFnv0dffj2XrNidmE8YOz1CavdNBvesW2g/p2zkOH9A1A2kAAADIFgrtAAAAAAAAAAAAAABktfKKqvj1Q28kZiMHdI1D+nbOUKK9U6c2RdGrU3FiNmHMsEilUhlKBAAAQDZQaAcAAAAAAAAAAAAAIGstX1caJ/3k/nh+3orE/PKxwzKUaO/2vTM+Ufvnw/p3iQuOPyCDaQAAAMgGeZkOAAAAAAAAAAAAAAAAjeGl+SvjnF89GivWb0nMu7QtinOPGpChVHu3r5wyPA7t3+UfvwhgWI8oKlA7AAAAYM/4yRIAAAAAAAAAAAAAgKxz69Nz4/JJT0VFVU1i3rowP27/l1OiZYv8DCXb+x0+oGtEdM10DAAAALKEQjsAAAAAAAAAAAAAAFnlh3e+GFff/1qdeb+ubeK+730qhvXqmIFUAAAAsG9SaAcAAAAAAAAAAAAAIGs88ebiesvso4b3iDu/eUp0LC7KQCoAAADYdym0AwAAAAAAAAAAAACQNa597O06syvGHRS/uOiYyMvNyUAiAAAA2LcptAMAAAAAAAAAAAAAkBXe+3BTPP7m4sTsvz93ZPzb2YdlKBEAAADg18sBAAAAAAAAAAAAAJAVrp86K9Lpf57btiyIK8YdlLlAAAAAgEI7AAAAAAAAAAAAAADNX0VVdfx52tzE7KLjB0erwvwMJQIAAAAiFNoBAAAAAAAAAAAAAMgC97+0MFZvKkvMxo8dlqE0AAAAwP9RaAcAAAAAAAAAAAAAoNm7bvKsxPm4IfvFgT06ZCgNAAAA8H8U2gEAAAAAAAAAAAAAaNbmLF0X0+cuT8wut50dAAAA9goK7QAAAAAAAAAAAAAANGuTttnO3rlNUZx1RP8MpQEAAAA+SqEdAAAAAAAAAAAAAIBma3N5Zdz27LzE7JJRQ6IgLzdDiQAAAICPUmgHAAAAAAAAAAAAAKDZ+tsL82PjloracyoVcdnoYRlMBAAAAHyUQjsAAAAAAAAAAAAAAM3WxMkzE+dTDu4dfbu0yVAaAAAAYFsK7QAAAAAAAAAAAAAANEuvLlwVry1anZhNGGM7OwAAAOxNFNoBAAAAAAAAAAAAAGiWJk6elTj37Ng6xn2id4bSAAAAAPVRaAcAAAAAAAAAAAAAoNlZX1oef31+fmJ26eihkZvjP5MHAACAvYmf1AEAAAAAAAAAAAAAaHZuf/adKKuoqj3n5ebEl08+MIOJAAAAgPootAMAAAAAAAAAAAAA0Kyk0+mYNGVWYnbmyH7RrV2rDCUCAAAAtkehHQAAAAAAAAAAAACAZqOmJh3/+beXYu6y9Yn5+LHDMpQIAAAA2JG8TAcAAAAAAAAAAAAAAICdUVJWEV+8dmo8+MqixPyA/drFSUP3z1AqAAAAYEcU2gEAAAAAAAAAAAAA2OstWrUxzv7FIzHrg3V1rv3onMMjlUplIBUAAADwcRTaAQAAAAAAAAAAAADYq02btTQ+9z+PxbrSrYl5bk4qfn3xsfG5YwdlKBkAAADwcRTaAQAAAAAAAAAAAADYaz0584MY9/O/R3VNOjHv0LpF3PmtT8bJw3tmKBkAAACwMxTaAQAAAAAAAAAAAADYK6XT6fj2zdPrlNmH9uwQ93//U9Gva9sMJQMAAAB2lkI7AAAAAAAAAAAAAAB7peffWRGzP1iXmJ0xsl/c/PXRUVxUkKFUAAAAwK5QaAcAAAAAAAAAAAAAYK80cfKsxHlAt7Zx93dOjZycVIYSAQAAALsqJ9MBAAAAAAAAAAAAAABgW6s3lcW9MxYkZuPHDFNmBwAAgGZGoR0AAAAAAAAAAAAAgL3OzU/NjYqqmtpzi/zcuPjEwRlMBAAAAOwOhXYAAAAAAAAAAAAAAPYqNTXpuH7qrMTs3KMGRMfiogwlAgAAAHaXQjsAAAAAAAAAAAAAAHuVyW8viUWrNiVmE8YOy1AaAAAAYE8otAMAAAAAAAAAAAAAsFeZNDm5nX1E745x5MBuGUoDAAAA7AmFdgAAAAAAAAAAAAAA9hofrC2Nh197PzGbMGZ4pFKpzAQCAAAA9ohCOwAAAAAAAAAAAAAAe40/T5sTNel07bl1YX58/rhBGUwEAAAA7AmFdgAAAAAAAAAAAAAA9gpV1TVx07S5idkFxx0QxUUFGUoEAAAA7CmFdgAAAAAAAAAAAAAA9grPLlgfKzZsScwmjB2WoTQAAABAQ1BoBwAAAAAAAAAAAABgr3D/G6sS56MO6BYjenfKUBoAAACgISi0AwAAAAAAAAAAAACQcfNXbIiXF29MzCaMsZ0dAAAAmjuFdgAAAAAAAAAAAAAAMu76qXMS5w6tW8Q5Rw7IUBoAAACgoSi0AwAAAAAAAAAAAACQUWUVVXHbs/MSs4tPHBKFBXkZSgQAAAA0FIV2AAAAAAAAAAAAAAAy6q/PvRvrSrcmZuPHDMtQGgAAAKAhKbQDAAAAAAAAAAAAAJAxtzw9N752w9OJ2egRPWNg93YZyQMAAAA0rLxMBwAAAAAAAAAAAAAAYN9TVV0T37/t+fjdo2/VuTbBdnYAAADIGgrtAAAAAAAAAAAAAAA0qXWl5XH+b56IJ2d+UOfamYf3jTMP75eBVAAAAEBjUGgHAAAAAAAAAAAAAKDJzFu2Ps64+uFYuGpjnWufO6x73HjF2EilUhlIBgAAwL4mnU7Hys0l0aGwZUxZ/E788qUnY235lvjJMZ+Mcw44ONPxsoZCOwAAAAAAAAAAAAAATWJrZXWceU3dMntBXk784dITYkTb8sjLzclQOgAAAJqjmnRN5KR2/WfJRRvWxhceuT1eWbmkzrVLH/9rjO59QLQrLGqIiPs8hXYAAAAAAAAAAAAAAJrEvTMWxIKVyTJ7t3Yt457vjouR/TvHm2++mZlgAAAA7LUWblgTLy1fHAW5udGuRVG8v2ldzF27KuauXRXz1q6KZaUbY0Tn/eLWT10QQzp2q33u7Q+Xx40zZ0SXlq3jM4MOisEdu9Zee27pojjvwT/H2vIt9X5mWVVlVNZUN/rXtq9QaAcAAAAAAAAAAAAAoElMnDIrcT6wR4d47Ienx/4dWkd1taIAAADAvmDl5k3xwaYN0a9dx+hQ2DLWlm2OZaUbY2nJxlhWuiFeXrE4nl6yIMqqKqM6XRPry8s+9p1vr14eR93+v/HX0y+OAzp0iblrV8V5D95cW0r/6QtPxOHde8WFB46Mvu06xHkP3hxlVZXbfd+3DjsxOrds3WBf875OoR0AAAAAAAAAAAAAgEY3c8maeH7eisTsP889PPbvoCAAAACwr3h00Zz47N9vjor//0vNclM5UZ2uaZB3l1VVxhn33bDd6y+vWBIvr1iyw3e0zCuIX590Rlwy/IgGycQ/KLQDAAAAAAAAAAAAANDoJk2enTh3a9cyzhjZN0NpAAAAaGqbK7fG+Mf/Vltmj4gGK7PviWP27xuXH3xMbK6siFP6Do79WrfNdKSso9AOAAAAAAAAAAAAAECjKi2viNunz0vMLhl1YOTn5WYoEQAA0JzMWbMyvv3UA/HWh8vi/CGHxi9PPD1yc3IyHStjSiu2xty1q6JVfkH0atM+Whe02OH9Ly1fHL94+ckoLmgR3z7spBjasWuj5Nq4tSzWlm2JLZUVsbmyIkort8bmyorYUlkR5VWV8fcFs2J1Weluv79TUasoq6qMPm07xJAOXWNIx65xQIcucc3LT8bM1Su2+1xRXn6UVVXWe21MnwPi/jO/HPm5fj5tTArtAAAAAAAAAAAAAAA0qjufezdKyv5ZHshJpeKy0UMzmAgAANgbPLVkfvzpjeejd9v28e9Hjom2LQpj0YZ1sax0Qywr2RjLSjbE4pL1cfvsV2sLyX94Y3r0KG4b3x55UobTN661ZZtj8aZ10b1V23h3/Ydx17w3IyLi7EEj4iuT74rFm9bX3tuxsGX0atMhurUujjVb/vHc4d17x69OOiPWbNkcY+/+Y5RXVUVExF3z3oyvH3JsfLplw5Xa31n3YXznqQdi6vvvRjrSu/WOVKSiW6vi2L+4bfQsbh9H7tcnOha1jBWlm6J76zZx+oBh0bZFUb3PHtezf1z86F/imSUL63z+54ccGn8ae25MWzI/bp/9ajy0cFbthviR3XrFnZ/+gjJ7E1BoBwAAAAAAAAAAAACg0aTT6Zg4eVZiNu4TvaNXp+IMJQIAAPYGjy6aE5954KaoSf+jgPy7156NVvkFsbmy4mOf/e8XJsc5Bxwcvdq0b+yYTaqyujoeXTQnbpv9Sjz23tyoqqmpc88Nb79YZ7a2fEusLd8S8eE/Zw8vnB0PL5xd597qdE389vVn484WLeO37YrirEEjIpVK7VbedDodv33t2fjRc4/UlsR3xZ/GnBtDOnaN/YvbRfdWbXa7WN6tVZt44tyvRGV1deSkUvHhltKYvWZFtGlRGCO79YpUKhXj+h0Y4/odGOvKtsSTi9+JdEScNXCEMnsTUWgHAAAAAAAAAAAAAKDRvLxgVbz5/prEbPyYYRlKAwAANJWK6qp4acXiWFG6KUoqtkZJxdYorSiPkoqtsalia9w1743aMvv/2Zkye0TElqqK+NqUe+LeMy+JgtxkVTadTsf89WuitLI8DujQJVrlt2iwr6kxVNfUxJsfLos7574ef537eqwuK22Sz/1w65Y4/+FbY1y/A+M3o86KPm077NLzVTXV8c1p98f1b9Ut2O+M0/oPjS+NOHK3nt2e/yund2/dJrq3blPvPR2KWsa5gw9p0M/l4ym0AwAAAAAAAAAAAADQaLbdzt6nc3GccnCvDKUBAAAa0+bKrfHEe/Piwfkz47H35sbGreWN9lmT358Xp993Q/zt9IujbYui2LS1PG6f82pMfPOFmLduVUREpCIVJ/TqH9ef8rm9bpv75sqt8a0n74/75r8dJRVbM5bj0UVz4qkl8+Obh50QZw0cEQd27PaxW8vT6XRc9vjf4o65r233nlb5BdEqvyBa/v//L63YGos3rY+IiHYtiuKq4z/doF8HezeFdgAAAAAAAAAAAAAAGsW60vK464X5idllY4ZFbk5OhhIBAACNoTpdE9e//WL89IUnYm35lj1+X4vcvOjXrmPs37pt9ChuFz2K28VR+/WJLz56R2KD+VNL5seJd14bx/XoF3+Z81qUViaL4elIx9NLFsQVT94bD5x16U599nNLF8UvXn4y2rcoiqtO+HTs17rtHn899fn+0w/FLbNf2e3nW+YVxFOf+1oU5RfE4k3rYsmm9bG0ZEPkRCoee29uvL5qaeL+YZ26x3Vjz4v/fO7RmLYk+XNaWVVlXDVjalw1Y2q0a1EUZw8aEZcffEwc1GX/ej/7N68+XW+Z/YpDj4/vHT4qOhW1ipxU3Z/73l23Ot5ZtyqO2q9PdGrZere/dpofhXYAAAAAAAAAAAAAABrFrU/Pi/LK6tpzfm5OXHLSkAwmAgCAfU95VWW8sWppVKfT0a9dx+jeqk2kUqmdfr6ssjLWlJVG99ZtIi+n7ubuBetXx/jXJ8fcknW7la97qzZRkJsXizeti/1at4lfnnhGfGbQQfVmvPVTF8RnHvhzbKmqqJ3NWbsy5qxducPPeHzRvFhasiF6FLfb4X1LNq2P0++7PjZX/uP9M9esiBkXfisKchu2jvvOug/jzzNf2u71o/frExcNHRlnDRoRS0s2xKat5TGoQ5e44OFb45kPFkar/IL486mfj4O79oiIiAM6dEk8/5/HfDJmrV4RT3+wICqqq6JTUas4e9BB0bqgRTx6zoT465zX4ttP3h/rKsvrfPaGrWVx08yX4pZZr8SU874Sx/ToV3tt9ZbSuGrG1PjDG9MTz7TIzYubx30+zh500A6/7kEdOsegDp0/9vtD9lFoBwAAAAAAAAAAAACgwaXT6Zg0ZVZidvYR/aNL25YZSgQAAPuO5aUb47FFc+PRRXNi2uL5iQJ4UV5+9GvXMfq17Rj923WKfu06Rf92HaN/+07Rs7hdrCvfEje9/VI8u3RhzFq9IlZtKYmIf2wEP3vQiDiwU7dYV7Y5VmzeFMtKN8YrK5bUFsDrM7B952hfWBSt81tEcUFhtGnRovbP/dp1jPOHfCJyUzmxeNP66NO2fb2l+f8zqvegmPrZr8aZ998QH24p3e5920pHOu6c81p85/CT4vH35sXCDWtia1VVlFdVRnl1VZRXVUWr/IJ4YP7MxNcye83K+M2rT8e/HjF6pz/rY7Ok0/GNqfdEdbomMe9Z3C7OH3JoXDR0ZKL03b7wnz9DPXHuV2Lu2lXRuWXr6PwxG86Hde4ewzp3rzNPpVJx3uBDontJZdxbsiyuf3tGpCNd577qdE38+7MPx9PnfyPmr18Tv3v9mbh99qtRVlWZfF+k4o5PfyFO6z90p75+9k0K7QAAAAAAAAAAAAAANLinZi+Ld1dsSMwmjB2WmTAAAJClqmqq460Pl8e68i1Rk07HS8vfj0cXzY03Ply63WfKqipj9pqVMXvNjreab2tLVUXcPufVnbr3xJ4D4qxBI+LT/YfF/sVtd+qZAe077dR9h3brGc9+/oo4474b4p11Hyau5aRS8en+w+Lyg4+OW2a9HH+d90bttVtnvxJvrV4ed7/z5k59zv+5csaU+Mygg3c6345MX7owrph6X52N8pcMOzyuO+WzH/t8KpWKAzt12+McERHF+QXxv6POiouHHx6/ffWZeHnlknh/47rEPTNWLI4xd/0xnlv6Xr2l94iIHx9zijI7H0uhHQAAAAAAAAAAAACABjdx8szE+cAeHeK4IftlKA0AAGSXdWVb4kfPPRr3vPNmbNhaluk4tQa17xy/G/2ZOKnXwEb9nL5tO8Yz538jJjxxVzy4YGZ0bVkcXxx+eFw64qjo1aZ9REQU5OYlCu3vrl8d765fvcufVV5VFf/53KNxx6e/sEeZl5VsjDPuu6HONvt2LYriqhM+vUfv3hOHdesVt512UURELNqwNobceGXi+vSli+p9Li8nJ74z8qT41yNObvSMNH8K7QAAAAAAAAAAAAAANKgV6zfHg6+8l5iNHzM0UqlUhhIBAED2WL2lND5593Uxa82KnX4mJ5WKgtzcKK+qarRclww7PH496sxold+i0T7jo9oXtoy7zvhibKmsiKK8/Do/bxyzf9/o27ZjvLdx7R5/1n3vvh3z16+Oge077/Y7rnlpap0ye0TEfx83LtoXttyTeA2mX7uO8acx58ZXpty93XvycnLi/CGfiH8/cmz0a9exCdPRnCm0AwAAAAAAAAAAAADQoG6aNieqqmtqzy1b5MWFxw/OYCIAANi7pdPpWLjh/7V33+FRlen/xz9T0zshCSShQ6jSpHcBFRs2FHXVtYC66ld3XXfXdf3ZV11dV921sCp2wYoFUFAE6b0XCSRAAiGk9zYz5/cHy8iQDgmT8n5dVy7mPOcp95mbjEeuc8+TpYziAtktVkUFBCk6IEjZpcVKK8zXkcJ8HS3K197sY3pz2xrll5fWOmeIj6/O75igKV16aXLHBIX5+imtsEBJeZnan5OppLysX//MzVRe2a9z2swWTe85UBd27qmeEVFyGYZmb1+nVYeT5WOxKCYwRO0CQxQTGKwY/yAF5BTq4uGjZbFYGvNtqpK/zV5lu8lk0m39humvy+dXPieTJnfqIX+rXT4WiwrKy7Q0ZZ+74DzSL1BZpUVyGYYkyZChFzcs1auTrq41HofLqc3ph5VZUuRuK3GU6+3tayv1fWfKdZrec1CdrvNsuaH3YD2z9gcdzM/xaA/18dNt/YbprgGj1T4oxEvRobmioB0AAAAAAAAAAAAAAAAAAAAA0GCS0vP0+qLtHm3Xjuyu0ICzs0sjAAAA0NwYhqG7Fn+mt7evOe05wn395TRcah8YqvM7JWhK514a3q6jbKcUmLcPClH7oBCNju1SKYbs0mLtz81UQXmZ+kbGqK1/kEef58dfVuXaTqdTW7ZsOe3YG9P9g8dpU3qqPt+71aP90ZEX6M/DJnq0ZZUU6YNdG1RQVqrf9h2m/2xerhfW/+Q+//7O9frL0ImKCw6rci3DMPT53q3624oFSsqteVd4k0z65faH1CE4/DSvrPHYLVa9PnmaLp/3lkodDnUIDte9g8bo5j5DFGjn/+tweihoBwAAAAAAAAAAAAAAAAAAAAA0iB+3p2j6i98pu7DMo33m5D5eiggAAACorLiiXIsO7JHFZNbg6HgVVpTpaFG+iisqVOqoULGjXCUVFTpaVKAfDv6i9OICdQ9rq8u79dU1CQNlyNDKw8kqLC+TIUMu4/iPceJPSX3axKhPZEyd4nl9y8rTLmbvEBymuZferAFRsac1/gSTyaQIvwBF+AWc0TxNjcVs1ocX/0bT9vXXYyu/14G8bN12zjA9OHRCpb4RfgH6v0Fj3cf3DByjVzb9rHKnU5JU7nTqmq/f1eJr7lSArXJh9/1LvtRrW1bWKa47B4xsksXsJ0zo0F2H7nhURwrz1T0sUhaz2dshoZmjoB0AAAAAAAAAAAAAAAAAAAAAcEYMw9C/F27TA++tkNNleJwb06udBnVu66XIAAAAAE85pcWaOPdV7chMq9e4fTmZWpC0S7d/P1cWk1lOw1XrmD+cO15Pjp4is8msfTmZ2peboeKKchX976ewvKzK3cPranB0nD665MYmXRjdFJhMJk3t1k9Tu/WTy3DJbKpbcXZMYLBu7D1Eb25b7W7bmJ6im+Z/qLmX3uxR5H0wP7vOxeyBNh89OOS8+l2EF4T4+CnEx8/bYaCFoKAdAAAAAAAAAAAAAAAAAAAAAHDayiqcuvvNpZr90+5K53rHhevduyd5ISoAAICWwzAM5ZaVqMLlVIjdTz5WygJPl2EYunPRp/UuZj9VXYrZJemF9T9pX06mIvwCTnsHdkkym0xq6x+omIAQRQcGqW+bdrqka28Njo6rc3E2jqvv+/XYyAv048G9Ss7Lcrd9s3+n/vLzt3pu3KVyuJw6VlyoD3ZuqDTW12pVW78gSZLJdLwtLihMj4w8XzGBwad/EUAzxH+5AAAAAAAAAAAAAAAAAAAAAACnpazCqQue/ErLdx+pdO7SwZ307j2TFORn90JkAAAATVOZw6H5STu18WiKguy+Sohoq47B4YoLDlO4r79MJ6peJSXnZemR5Qv0XfIe5ZeXutt9LFaF+Pgq2MdXIXY/Bfv4qm9kjO7sP0qdQyO8cVlNTrnToeKKCplNJplNJllMZlW4nHp05Xf6MnHbWY3lq33b69X/3kFj9NzYS5VeXKCM4kJF+AWorX+grGZLI0WImrTxD9S8y2/V2I9fUW5Zibv9pY3LZDaZ9H3yHu3KOlpp3Kj2nfXDNXd5/E4DrRkF7QAAAAAAAAAAAAAAAAAAAACA0/Lygq1VFrM/fNW5euSqITKbKd4AAAA4Yfb2tXro52+VXVpc5fkAm11xQWGKDw5TsN1Hn+3dWmW/MqdDx4oLday40N3206FE/WfTCt3ab5jOjY7TkJgOSoiIUkF5qQ7l58hsMstq/t+PyaxiR4X2ZKXLZDLp/I4JLWLX99SCXL2w/ictS9mnPVnH6ryL+gnBdl8F2X3ka7XJ738//jabEsKjFO7nr7l7NispN8tjTFv/QIX4+LkL580mk0wyaU92uhyu+q0vSSPaddSToy6SyWRSdECwogPYxbspSIiI0ieX3ayLPpulCpfT3f7ihqXVjvn72IspZgdO0vz/KwMAAAAAAAAAAAAAAAAAAAAAOOucLpfeWOS526S/j1WzfzdRVw7r6qWoAAAAmqaXNi7Tg0u/rrFPUUW59mSna092+mmt4TRcmrV1lWZtPb6L+6Vd+2he4naPAtyq9IyI0sj2nTV//071iGirdy68XjGBTbuQOq+sRAuTdmtHZpqSc7OUUVKolYeT611EPvfSm9Qvsr3Cff0V6utXY9/fDx6v38z/QN8l75Yk3dj7XL0y8Ur5Wm2V+v54cK+mf/Ou8spKPdotJrM6h0YowGZXgM0uf5tdwXZfdQ+P1IC2sbqgU88W8eUCLdHYuK56bfLVuu27ObX27R4WqXOj489CVEDzwScbAAAAAAAAAAAAAAAAAAAAAKDevt9ySAcyCjza5v3pYk3oE+uliAAAAM6cYRg6kJ+tQJuPIv0Dqzz/7NofNXvHWgXY7Boa00GTOvbQBZ16yt9mr9S/wunUM2t/0JOrF52N8N3KnA59+suWOvXdnZWu3VnHi+jTivI1/Zt39dO1dze53aUNw9CGoyl6a9tqzd2zRcWO8jOa7/FRF2pqt3517h/s46t5l9+qzcdS5We1qWdEdLV9z+vQXet+8wfd9t3HWp6aJEnytVr18SU3aUrnXmcUN7znN73PVXJulp5as7jWfk3t9wfwNgraAQAAAAAAAAAAAAAAAAAAAAD19saiHR7H/Tu20fje7b0UDQAAQM02H0vVwqNJ2r/XpCAfPwXa7Qq0+SjYx1edQsJlNpnlcDl1+3dz9dHujbKZLfrjkAl6ePhkWcxm9zz/3LBU/2/lQvfxzsyjenv78eL2/xs0Vg8Nm6T88lKtSE3S8tQkfZe8W4k5GZXi6RHeVpF+gUrOy9KRwnwZMqqNvXtYpN696Hq1CwxRXlmp8stKlV9+/M+8shItSNqtr/Ztb7D3avWRA/po90Zd32twg815JooqyvThro16c+tqbc04csbzjYntomfGXqJB0XH1HmsymTQwqm7jOoaEa9G0O/X5L1v1S/YxXZ0wQD3C29Z7TTQtfxtxvvbnZmrOns1Vnm8fGKLf9h16lqMCmj4K2gEAAAAAAAAAAAAAAAAAAAAA9XIwI18LNh/waJs5uQ+7EAIAgCbHMAw9uvI7PbP2h+MNe9ZU6tMtLFJfXXGbXt28Qh/t3ihJqnA59fSaxXp/53pF+AUowGaXv82uJQcTq1ynqKJcT69ZrKdr2blZkp4afZEeGDLBfVzhdOpwYZ4O5ecopSBH244d0Vf7duhgfrYu6dJHb5w/TWG+/pKk6IDgSvPd2Odc/XP9Ur26eYUOF+bVun5d/GXZt4oJCNb4+G4Nfo9X4XRqX26mDuXn6GB+9vE/87JV7KjQpI49NPOcEe6+hwvzdOmXb7p3kK+NSSbd1Odc3dj7XHUICZdhGHIahlyGIafhUqiPnyL9Axv0empiNpl1dcKAs7YeGp/JZNKs86+V2WTWR7s3qkNwuN6dcp0OF+Zpf26mruze/6z+HQOaCwraAQAAAAAAAAAAAAAAAAAAAAD18uaPu2SctIlokJ9N00d1915AAACgVTAMQ9sz0rQpPUXFjgoF233VLSxSXcPaKMIvoFL/UkeFfv/TPL21rXIR+8kSczLU662/V3kupSBXKQW5DRG+zCaTnhg1xaOYXZJsFos6hoSrY0i4JOn6XtKz4y6VYRh1KiY3m8x6YMgEPTBkgjKKCzXw3X/oWHGh+/x5Hbpr3uW3yjAkh+GU02XIZJJSC3I1fs6/lVNaUmnO9OICXfjZGxoUFacHhozXZV37euxUf7qWpezT9d+8r4ySwirPf7t/pwzD0Ix+w2UYhu5c9Gm1xewWk1kTOnRTnzYxCrb7yt9m1/mdEtQzIuqM4wRq4mO1avaU6/SfSVfJbrHIarZ4OySgyaOgHQAAAAAAAAAAAAAAAAAAAABQZ+UOp97+cZdH2w2jExToa/dSRAAAoLV4ft0SPbxiQZXnwn391SW0jUwm6ZfsYyp3OlXiqGjUeILsPhoUHaelh/bV2rd3m2jNOv8aDY6Or/P8p7MzeqR/oD68+EZN+3q2ckpLNDg6Tu9OuV52y/FSQp+TSgp7RkRrxXX36YX1P8nXatXPKfu1IzPNY76N6Sma/s176hrWRnf1H6UJHborIbxtnWJbmLRbj65cqNSCXLkMQ/5Wm1LrsIP846u+17Tu/fXlkX364dDeSuc7BIfplr7DdGOfc9UuMKTW+YDG4m/j/4GAuqKgHQAAAAAAAAAAAAAAAAAAAABQZ1+vT1Z6XrFH28zJfbwUDQAAaC0yiwv1+Orvqz2fXVqs7KOHapzDLJO6hUWq2FGuwooy5ZeVyWm4TiueCzv31OeX3SKL2az1aYd0/bfv62B+tvu8n9WmYe06akxsF42J66IR7TvKbDrzHc7rYkxcF+347Z+VVpSvnhFRNe4e3TWsjV6bfLUk6XBBni76/I0qd0Tfl5Op3/80T5LUL7Kd/jPpKg2J6VDtvFvSU3X1V7NV4XK627Kr7e0pu7RYIz56SUdOKX5vFxis1yZP06QOPRpkt3gAwNlDQTsAAAAAAAAAAAAAAAAAAAAAoM5eX7Td43hkQoz6xEd4KRoAANDU7MxM00sblmlbRpp8LBb52ezys9rkb7Up1NdfV3bvpwkduquookxPrFqkuXs2qUNwuB4YMkEXde5V7c7f7+1cr3Kns8pzdWG3WPT/Eobr/kmXymI5XuCdkp+jUR+9pKNFBe5+FpNZT4yeovsGjdXqIwd0rLhARRXl7p/iinJ1DAnXtQkD3UXV58bEa8ONf9BHuzeq1OHQ0Jh4DYqOc++K7g1t/APVxj+wXmPaB4Vo9fX36/1d6/XP9UuVnJdVZb9tGUc05qNXdFGXXrqkS29d32uwbJZfi+bzy0p144IPPYrZqxLm66dOIRHqEByug/nZ2pSe6j53IL9y+fsb51+jyR0T6nVNAICmgYJ2AAAAAAAAAAAAAAAAAAAAAECd7Dmco6U7D3u0zZzE7uwAALR2OzLS9GXiNm05dlgLk3bXuOv529vX6JER5+v9nRu0PzdTknSkMF9Xzntb8UFhGhgdqz5tYtS7TbR6t4lR19A2MpmkN7etqTRX97BIJeVlyeGqeZf14e066l/jL5fzsOfO43HBYZp3+W2a9tU7OlSQo3HxXfXCuKnqExkjSRoV27nO70Gwj6/u6D+yzv2bKj+bTTPOGaFb+g7Vl3u36R/rlmhrxpFK/QwZ+nb/Tn27f6de37JKn0+9ReuPHtSne7ZoQdJuFTvKa1zn3Oh4LZ52l/xsNklSYk6G+r/zXLW5vKP/SIrZAaAZo6AdAAAAAAAAAAAAAAAAAAAAAFAnsxbv8DhuE+SrK4d19VI0AACgKZiXuE03fPtBrbtxn+AyDD268rsqzx0qyNGhghzNS9zubvO1WlXqcFTq+9O1d2tE+05yuJw6kJejxJwM7cvNUJnDoW5hkTJkaH9ulrqFReriLr1kuAxtOaWgXZIGRMXql9sfUkF5mUJ8/Op41S2f1WzR1QkDdFWP/vrh4F59sHO9fji4V5klRZX6bj6Wqs6zHq9xvkdGnK+3tq3R4cI89W/bXp9e9lt3MbskdQuL1F0DRunljT9XGntp1z56YfxlZ35RAACvoaAdAAAAAAAAAAAAAAAAAAAAAFCr4rIKvbdsj0fbzeN7ycdm8VJEAACgsRmGoWfW/qBXNv4sp2GoQ3CYOoSEKz44TDEBwfol+5je27m+UWOoqpi9d5toDW/XUdLxwuuuYW3UNayNpJ7VzuNU9QX3ZpOZYvZqmEwmTerYQ5M69pDD5dQL63/Sk6sXqdxZty8wCLT5aPUN96t7eKT+Mmyi0goLFBMYJLPJXKnvU6MvUpR/kF7fslIpBbmSpCmde+r9i26Q1cw9JwA0ZxS0AwAAAAAAAAAAAAAAAAAAAABq9cmqROUWlXm0zZjU20vRAACAhnIoP0cLk3Zr/dGDMsmktv6Bmtqtn86Nidcrm5Z77Kaem1GirRlHap3TbDLpsq59NS6+qypcTpVUVGhe4nZtTE9pkJhv7zdcJpOpQeZC3VnNFv1p6ETd1GeIvti7TY+uXKi8stIq+1pMZk3o0E3/GHeZuodHSjr+xQHtg0Kqnd9useqBIRN0/+BxWp92UHt++UU3jJkoq5UySABo7vgkBwAAAAAAAAAAAAAAAAAAAADU6o3FOz2OJ58Tr85R1RckAQCApsVluLQn65jKnA5llxZrycG9Wpi8Wzszj1bq+6+Ny/TnoRP19zU/1GuNDsFhurH3ubqi+znq1Sba49zl3ftp0LvPq8z5647rw9t11MKr7pDdYtHmY6namXlUOzLTtCMjTTszjyq9uKDSGhd06qnb+g2vV1xoWNEBwbprwChN7pigyZ+8qsOFeZIkk0waG9dFV/Y4R5d366dI/8DTmt9iNuvc6HjZjmbzxQUA0EJQ0A4AAAAAAAAAAAAAAAAAAAAAqNGmpGNavy/do+2OyX28FA0AAKiPwvIyfbt/px5ZsVAH87PrNMbhcunJ1Yvqtc7vB4/T02MurrYAuVtYpP414XL97ofP5DIMDYqK0xdTb5WfzSZJGhwdr8HR8R5jMooLtSMzTQfzstXGP1AJ4VHqGtamXnGh8XQNa6NNN/1RH+3eKH+rTRd07qnogGBvhwUAaIIoaAcAAAAAAAAAAAAAAAAAAAAA1OiNRTs8jmMjAjVlYEfvBAMAACpxulzKLi1WZkmhjhUXKqO4UCtSk/TVvu06UpjfIGvcNWCU+rSJ0cH8bB3Kz9HBvGzZLVYNb99RU7v2Vf+o2FrnuKXfMI1o30lpRfkaE9tFFrO5xv6R/oEaH9+tQeJH4wj19dNdA0Z5OwwAQBNHQTsAAAAAAAAAAAAAAAAAAAAAoFp5xWX6eOVej7Zbz+slq6XmAjQAAND4lh7ap/uXfKk92elyGcZpzxPu668xcV00L3F7lecv7NxTL4y/TGbTmf/3PyEiSgkRUWc8DwAAaD4oaAcAAAAAAAAAAAAAAAAAAAAAVCm7sFTTX/xexWUOd5vFbNKtE3p5MSoAACBJyXlZuuqrt1VQXnZa4/tGxujCTr10YeeeGhrTQRazWV8lbte0r9/x6NfGL0BvTL6mQYrZAQBA60RBOwAAAAAAAAAAAAAAAAAAAACgkp0pWbr8uflKSs/3aL/s3M5qFx7opagAADh78stKlVqQq0MFOUrJz5XVbNbYuK7qHBrRYGuUORxafPAX7co8qhAfP5W7HMouKVaIj59ig0LULjBE7YNC1C4gRDaLxT3O6XLp1oUf16uYvVtYpP46fJKuSRggp8vwmO+ES7v20dCYDlqbdtDd9uqkqxUVEHRmFwoAAFo1CtoBAAAAAAAAAAAAAAAAAAAAAB6+Xp+kG19ZrMLSCo92X5tFj1w9xEtRAQBweg4X5On59Ut0IC9bd/QfqfM7JUiSckqLtSvzqFIKcpWSn6NDBblK+V/xekpBjvLKSqucr2dElPq2iVHPiGj1jIhSj7BIOVyuOsXiMlz6dv8urTqcrEP5OVp6KFFZpcW1jjPJpKiAQLUPDNXo2M7KKyvRysPJVfYN9fFTpH+gYgKCNT6+my7t2kcdQ8IVaPdx9zFXrmU/vo7JpA8v/o1mfD9XhwpydPeA0bqsW986XRsAAEB1KGgHAAAAAAAAAAAAAAAAAAAAAEiSDMPQU59v0KOfrK10LjrUX589MEV94htuV1oAABrLseIC7chI06b0VP1j3RLllpVIkhYd2KNb+g7Tjwf3an9u5mnNvTsrXbuz0j3arCazuu/8SSNjO+uPQyaoQ3B4pXE/p+zXX37+RhuOptR7TUOGjhYV6GhRgTamVx7fIThc30+7Q+0DQ2S3nFnJWFxwmBZefccZzQEAAHAyCtoBAAAAAAAAAAAAAAAAAAAAAJKk577aVGUx++AubfX5H6eofXigF6ICAKBqhmFoV9ZRfbt/p3ZmHpVhGMooKdLOzDQdKy6scozD5dKsrasaPBaH4dKurHTtykrXl3u36dsrZ2hAVKwkaXfWUT3083wtSNrV4OtKktlk0uwLp6tTCF86AwAAmiYK2gEAAAAAAAAAAAAAAAAAAAAAKigp19+/2FCp/YYxPfT6jPHytfP4OQCg6SipqNC0r9/RogN7Gn2tKP8gRfoHKrUg173Te00yS4o09uNXdEmX3qpwufTN/h1yGUaNY8wmkwZGxcrXYlO4n79yS0t0uDBPhwtzVepw1Dj23xOv0sjYzvW6JgAAgLOJf1EAAAAAAAAAAAAAAAAAAAAAAOij5XtVWFrhPjaZpGdvGKn7L+4vk8nkxcgAAKjsydXfN1gxe/ewSMUFhyk+KFRxwWGKc/8ZptigEPlabZIkh8up9WmHtD0zTbuz0rU7K117stKVVpRfac4yp0Of7d1a7ZpBdh/1ioiWJF3Wra/uHThGNoulUj/DMJRdWqzDBXlKysvU7O3r9F3ybvf5f024XLf2G3ambwEAAECjoqAdAAAAAAAAAAAAAAAAAAAAAFqYrQcy9cB7K1RW4dQT04dpbK/2NfY3DENvLN7u0XbJoE76/SUDGjNMAABOy/aMI3pxw7Ja+/lZbeoVEa2+kTHys9r02paVHuev6n6O3plyfZWF5FWxmi0a3r6Thrfv5NGeWVSgb9au1JzMZC1N2VfjHG39A/Xw8PN1S9+hdVrXZDIpwi9AEX4B6te2naZ266cfDvyiFYeTNCG+u8bEdalT7AAAAN5EQTsAAAAAAAAAAAAAAAAAAAAAtCAVDqeuen6Bko8d3y126rPfas9Lv1FUqH+1Y1bvPaptB7M82mZO7tOocQIAUB8Ol1MH8nK06nCSHlj6lZyGy+P85d36qXt4pPysNvWMiFLvNjHqHBIhi9ks6fiXt5Q6KjR7xzpJ0mVd++rdi66X1Vy3YvaahPn6q19IpKaNHKd7lnyhD3dtrNTH32rXfYPH6vfnjlOQ3feM1pvYsYcmduxxRnMAAACcTRS0AwAAAAAAAAAAAAAAAAAAAEAL8s2GZHcxuyQVlFTo2Xkb9c+bR1c7ZtbiHR7HnaOCNalffKPFCABofQzDUH55qYLtvjKZTLX23511VHP3bNbOzKPam52h/bmZqnA5q+z70LBJ+n8jL6hxPpPJpNcmT9P0XoPkMgyNi+tapzjqw9dq09sXXqc/DjlP72xfq51ZR9XGL0DnRsfryh7nKDoguEHXAwAAaC4oaAcAAAAAAAAAAAAAAAAAAACAFuT1U4rTJemNxTv0+0sGKDYisNK5rIISfbp6n0fb7RP7yGxu2CI/oCk5vlOzQ3nlJcovK1N+eYnyy0oVZPfVgKj2DbJjM4BfrUxN0u9++Ey7s9IV4euvwTHxGhwVd/zP6Di19Q9y9z2Yn60Hl36teYnb6zR3t7BI/WnoeXXqazKZNDau62ldQ330jIjSs+MubfR1AAAAmgsK2gEAAAAAAAAAAAAAAAAAAACghdh7JEdLtqdWai+rcOrvX2zQf24fV+ncOz/tVlnFrzve2q1m3Ty+Z2OGCZwRp8ulpLwshfr4KdK/8pc0nOxwQZ62ZRyRIUPtA0PUL7Kdnly9SK9s+ll5ZaVVjgnz9dPl3c7RE6MuVJta5gdak4P52VqekqT88lIVV5Sr1FEhi9mscN8AtfELUIRfgCL8/OVrtelIYZ7KnA45XC7N379Lb21bI0OGJCmrtFjfJ+/R98l73HMH2X2Oj/cN0Mb0lDrHNDAqVh9fcpN8rbYGv14AAAA0HAraAQAAAAAAAAAAAAAAAAAAAKCFmPXDzmrPvb1klx64bKA6tQ12t7lchmYt9hxz5bCuigz2a7QYgdN1MD9bT65apPn7dyqrtFg2s0V/GTZRfxk2USaZdLSoQL9kH9Mv2ce0JztdG44e0rq0Q/VeJ6e0RG9vX6P9uRn6/uo7ZTKZGuFqgKYrp7RYPx7cq++Sd2tFarKcLpfKXQ4dLSpotDULystUUF6mA3nZtfYN9/VXv8h2uq3fMF3Z4xyZTeZGiwsAAAANg4J2AAAAAAAAAAAAAAAAAAAAAGgBSsodeven3dWer3C69NRn6/XmXee5237ckaL96Xke/WZO7tNoMQKno6SiQstS9+mWBR8pq7TY3V7hcurxVd/r8VXfK9juq/zyqndcP13LUvbr/Z3rdWOfIVWed7pcyiotUqRfYJMuene6XLKYzTIMQ8eKC1XmdHo7JDQhTpdLyXnZ2ptzTFuPHdai5D1ak3ZQLsPwdmiSpBAfX03vOUgD2rZX9/C26h4WqTb+gd4OCwAAAPVEQTsAAAAAAAAAAAAAAAAAAAAAtACfrd6nnKIyj7bLzu2sr9YnuY/fW7ZHD04dqO7twiRJbyza4dG/T1y4RvaIafxggVMUV5TrXxuWaU92utr6B8nhcmpvTob25WToUH6uDNVcXHumxew+FqvsFosKyj1/h27/fq6OFhXolr5D1cY/UC7DpdWHD2jOns36Yu9WZZYUKSE8Sn8edp6m9Rggi7lp7BSdnJellzYs0yd7Niu7tESxQSHKLy9VXtnx96ntxvnqGBKu+KAwxQcf/+kQEq5R7Tsr2Me33uv9dChR8xK3a3i7jrq258CGvhw0IMMw9Pnerfoqcbt2Z6drb3aGypyOs7K23WLRb/sM1ajYztqUnqoNRw9pU3qqiirKq+w/Oraz5lxyEwXsAAAALQAF7QAAAAAAAAAAAAAAAAAAAADQAry+aLvH8cR+cXptxjgt3nZIxWXHixVdhqEnPluv9++drMPZhfpmQ7LHmBmT+jTpnabRMuWXleqyL/6rVUcONMr8flabShwVldqfGXuJbug1WMF2X/lYj5dXzN6+Vncs+sSj399WLNDfVixQTECwLCaTUgvzPM7vyU7XzQs+0uubV2rOpTcrJjDYfc4wDCXmZGpt2gGtOXJQe7LS1TEkXM+MvUSRjVSk+9OhRF01b7YKK34tzk8pyPXoc6y4UMeKC7Uu7ZBHe6DNRy+Mv0w39x3q0e4yXNqRcVRLDiVqWco+ZZcUaVrCAN3Rf6Re3vSz/rzsG0nS61tWKiU/R38cel6jXBvO3Nvb1+quxZ+e9ngfi1UDo2IVZPeVn9WmCpdT2SVFyiotVlZJkXJKS2TIUJDdR74WmzJKChXlH6Treg3SXQNGKT74+BeqTEsYIOn4DvH7cjOVXlSgHw/u1Ts71iqjuEi/6T1Y/5pwhfxstga5bgAAAHgXBe0AAAAAAAAAAAAAAAAAAAAA0MxtOZChtYnpHm13TO6jtiH+uvvCfnpu3iZ3+5yVe/WnqYP0xdr9crp+3fU6wMemG8YknLWY0bwZhqFyl1NZJUUqdTlV4qhQpF+gwnz96vWlCFklRbriy7e0Ju1gncdM7pigy7r10WMrv9Ox4kKPc/5Wu7qHR6pHeFv1CG+rwdHxGh/fVRUupx746SvN3r5OkvTw8Em6f/C4SnP/tu9QLTqwR1/s3VbpXFpRfo1xrUk7qI5vPKb4oDC1DQiUv9WunZlpyiot9ui34nCStmcc0c/X3Stfa8MW6xaWl+mWhR95FLPXa3xFmWYu+kQ/HUrU5E4JKiwv188p+7Q0ZZ8yS4o8+q5JO6jf/zSv0hyPrvpOPSKiFB0QpDKnQ2UOhxyGS51CItQ9LJIvzfCicqdDT61eVKe+vlarxsZ11di4rvK32nS4ME+xQaGa1mOAwv38qx3ndLlU5nTI32aXJDlcTlnNlmr7W8xm9+/rmLguemzUhSpzONxfMgEAAICWgbs7AAAAAAAAAAAAAAAAAAAAAGjmZi3a4XHcLixAFw/qJEl64NKBev37HcovKZckGYb0tzlrtCnpmMeY60Z3V7C//ewEjGbpSGGe7lj0idYeOajCijI5XC7pZ88+/la7YoNCdE7b9vrDueM1ICq22vl2Zx3VFfPeVlJuVp3W7xAcrpn9R+i+QWNlMZt1dY/+WpGaLEOGAm0+6hwaodigEJlN5kpj7RarXps8TY+MuEAmkxQdEFzFCse9OOFybUpP1YG87DrFdapDBTk6VJBTY5+tGUf04NKv9fLEK+s8b3FFuZYcSlTnkAj1ahNdZZ+/r1msI4U1F97XxZw9mzVnz+bTGutwuXT1V7OrPBcdEKR7B4115xBn12e/bNXhwrwqz4X7+qt7WKQGRMXqgs49NTa262ntjm4xm+Vv/vW/JTUVs1eHYnYAAICWhzs8AAAAAAAAAAAAAAAAAAAAAGjG8ovL9eHyvR5tt57XS1bL8WLR8EBf/d9F5+iJz9a7z3+zIbnSPDMm9WncQNFolqXs0xtbVik6IFi/7TtEfSPbNfgaFU6nrpo3WxvTU2rsV+wo196cDO3NydBX+7br/Ytu0NRu/Sr1m79/l25a8IEKyivvJH5udLy6h0eqa2ikuodHqltYpLqEtlGg3cejX4iPny7q0qte1xETWH0h+wnRAcHactODmp+0U5/9slVfJlberb1nRJSuSRggf5tdr25ecVrF729sXaXOoW103+CxtfY9XJCnyZ++qn05mbKazXrrgum6JmGAkvKytDxlv1YcTtLy1KRKcbQPDNGLEy5XYUWZAmx29QiN1PZdu+TXrq1SC/N0KD9Hh/JzlJSXpU3pqfW+hvo6WlSgh37+VgfzsvXSeVewW3sjKaoo0wM/fa01Rw7IYjbJ12KTn9WmX7I9v8hkUFScnh13iRLCoxTpH+ilaAEAANAaUNAOAAAAAAAAAAAAAAAAAAAAAM3Yh8t/UVFZhfvYYjbptom9Pfrcd3F//XvhNuUUVS4elqQh3aI0oFNko8aJxrHh6CFd9NksVbickqT/bF6uDsHh6hIaoc6hbdQlNEJdQtuoc2iEOodGKMDmU8uMVXti9fe1FrOfqtzp1DVfv6uxcV3ULjBEGcWFSi8uUHpRgY4VF1bqHxMQrIVXz1TPiKp3Hz+b/Gw2XdWjv67q0V9LD+3T39cuVk5JsSZ17KFrew5UnzYx7mLs63sO0vXfvq+lKfuqnS8mIFhDYjpo0YE9KnH8+vv6p2Vf63Bhrp4de4nHzvLZJcValrJPy1L2qaiiXO/t/PULKRwul25a8KHu/fFz5ZWVVrumzWzRwqvvUI/wtu42p9Op4sAj6t+5lywWz52zP9i5Qb/74VOVOhzVztkxJFwRvgGV/i7YLRaVO53VjjvVG1uPfwHDQ8Mn1XkMqldSUaED+VlKK8xXp9AIPbpioebs2VzruD8NPU+jY7uchQgBAADQ2lHQDgAAAAAAAAAAAAAAAAAAAADNlMtlaNbiHR5tFw/qpPbhnjvthvj76A+XDtDDH6+pcp472J292TEMQ/tzszRp7mvuYvYTDuZn62B+tpYcSqw0blT7zrqh92Dty8lQfnmZ7uw/Ur3aVC4gLygv1Ts71ulIQZ62ZRzRDwf3nnasy1L219pnUFScPr3st2ofFHLa6zSWcfFdNS6+a7Xn2/gHauHVM/VzSpIySwplM1t0tKhAWSVF6hIaoWHtOyo+KEwmk0nv7linGd/P9Rj/8saftSI1Sb8fPE7bMtL048G92pSeKkNGjXHVVMwuSfcOGuNRzF6bG3oP1pi4Lnpn+1p9+ssWHSnMV4eQMPVtE6OxcV01vkM3dQqJkCQVV5Trkz2blVNWos4hERrRvpPKnU7dOP8DrTqSLJNM8rFY5WO1yMdiVYXTqazSYo/1Hlv1nS7onKCBUXF1jrExbE5P1SubflZybpamJQzQzP4jPL5cQDr+xREf7tqo5LwsmWVSQkSU/jhkgsJ8/c9anNklxTqYn62c0mLllpUou7RYOSXFWnkkWT8c2Fvpc6A2XULb6OIuvWvvCAAAADQACtoBAAAAAAAAAAAAAAAAAAAAoBkqKCnXTa8s1vZDWR7tMydXXZx+94X99NL8rcrIL/FoDwvw0dUjujVanGh4iw/8ogd++kp7stPrPXbF4SStOJzkPn5v5zp9cNFvdEnXX//eFFeUa+LcV7Xl2OEq57CazZpz8Y1yHs3U4HP6K8TXT3azVUeL85Wan6v3d67X7B3r6hzTNQkD9Mbka+Rns9X7epoKs8lcY9H7CTf1GaKM4kL9dfl8j/ZN6am6Yf4HDRJLqI+fpvccqEdHXlDvsfHBYXpk5AV6pJax/ja7bu47tFL7j9f+Ti7DVakg3DAM/Xfbat37wxcehfqPrFiob6+cUe84G8KBvGw9uPRrfbVvu7tt1ZED+mrfDr15wbUK9/XX3D2bNWvrKm1KT/UYOz9pl5an7tdP194tq9ly6tQNyjAMPbbyO/19zQ+1fslBXZlk0jNjL5HFbK69MwAAANAAKGgHAAAAAAAAAAAAAAAAAAAA0KwcyixQoK9N4YG+VZ7/eddhfbpqn/rEh6t/qOssR3d27D+apyv+MV87U7I92rtEhWhi36p3Ow70tetPUwfpgfdWeLTfOC5BfnYeLW8OMooLNWvrKj25epFcRsMUtpY6HLrqq9nqEByuPm2i1btNjPbmHKu2mF2S/jb8fE3p3Etb8rcoJiBYFsvxgt4OweHqEByuEe07qXNoGz21ZpFKHY5q5wnx8dWfhk7U7wePk8lkapDraQ4eGDJBMYHBmvH9XDlcZ/4Z1dY/UKNiO2tU+84aE9dFvdtEVyooP5uqWttkMmnGOSOUUVyox1d9725ffOAXPb16scbHd1ViToZ+yT6mX7KPaV9upsJ9/fXM2Es0JKZDg8RlGIb25mRoeep+LTu0T1/t26EyZ+W/nz8dSlSXWU/UOt+6tEP696YVum/w2AaJrzr/WP+Tnl6z+LTH337OcA2KilOpo0IljgoZksbEdtG5MfENFyQAAABQC/7VAQAAAAAAAAAAAAAAAAAAAECzYBiGbn9tid5Zult+dqvev3eSpg7p4tFn+6FMXfT0NyopP16k+IeJHTV4kDeibTw/bEvR9Be/U05RmUe7xWzSS7eOkdlcfWHwzMl99OK3m3U4u8g9Zuakqnd0R9NQUlGh+Uk79eGujVp0YE+1BdABNrtWXn+fShzl2p+TqaS8LCXlZml/bqaScrN0uDCvxnUO5mfrYH625iftqrZPgM2uvwydqAeGTJCrhkJsk8mkB4eep5n9R+jb/Tu19shB2S1WRQcEKep/P9H+weoa1kb+Nnvd3ogW5vpegxXlH6Rrvn5XhRVlVfbxs9o0ODpOhiHtzEpTkM1XF3Tuqbe2rZHTOP7+/3noRD0y4vxms9P2/YPHadbWVTpaVOBue2zVd3psVdX9p3z2hrb/9s+KCQyWw+VUflmZwnz96vUFCN/s26GPd2/SitQkpRcX1D6gHh5b+Z0u6dpbXULbNOi8J3yfnqzHdq8+7fEdgsP0/LjL5Gu1NWBUAAAAQP1R0A4AAAAAAAAAAAAAAAAAAACgWVi09ZDeWbpbklRS7tCD76+sVND+u/8ucxezS9Li3Vl6+qxG2bheWbBVD7y3Qk6X5+7c4YE+mvP7CzWhT2yN4/3sVn3+xyn67b9/UHZhmR6/dqi6twtrzJBxGtalHdSCpF3am52hxQd+UX55aY39e0VE6/nxl6lnRJQkaWBUXKU+BeWlemPLKj29ZrGKKsrrFU+/yHaa2q2vbus3XFEBQXUeF+Ljp+t7Ddb1vQbXa73WYmLHHlo6/W795edvtS8nU06XS9GBQRoX103ndeiuYe06VFmIfH2vQVqesl/ndexeZa6bMn+bXX8ZNkn/9+MXdepfUF6mv62Yr4u79NYflsxTamGeOodGaHT7zvKz2WUYxz8LDR3/woUruvfz2NH9ne1rNXPRJw0Se1xQqKICgrThaIq7rdhRros+m6VF0+5UfHDDfpaWOir08r7Nldrb+AUozNdfYb5+CvP1V5R/kCZ06KYpnXvpy73bdOfiT+UyDFlMZr044QqK2QEAANAkUNAOAAAAAAAAAAAAAAAAAAAAoFl4Y9EOj+Ok9HylZhUqNiJQkpRdWKpVv6R59Nl2uGF34/WmL9fu1/3vLK/U3icuXF88eJE6R4XUaZ7BXaK0/cXrZRhGvXY5xpn5cNcG/XP9UhWUl6mNX4Ai/ALUxi9AQXYfHSrI0dojB+VrtepIYX6d5jPJpD8PO08PD58sq9lSa/8gu68eGDJBdw4YqeTcbHULi9Qrm37Ws2t/rLFg/p0p12l6z0F1vk7UT9/Idvr2yhn1GjOsXUcNa9excQI6C27pO1Svb1mp3Vnpder//s4Nen/nBvdxUm6WknKzquz7n83L9e2VM5RdUqzNx1L17Nofa5zbJJNm9h+hx0ZeKJdh6K/Lv9Xs7etkyHCfn9Sxh2acM1xTOveSxWzWvT98rje2/rqlfHJeliZ98qqWX3ev2vrX/QsfavPh7o3KqfD83fzn+Kn63cDR1Y65ue9QDWvXUQuTd2tEu04a2q5DtX0BAACAs4mCdgAAAAAAAAAAAAAAAAAAAABNXkpmgb7deKBS+7rEo4qN6CpJevd/u7efyuUyZKm93rdJMwxDT3+xoVL7Zed21jt3T1SQn73ec1LMfvasSE3SLQs/dh8fzM8+7bl8rVZd2qWP7howSsPbd6r3+ACbj/pExkiSHhgyQXcPHK1fso9pR2aadmYe1Y7MNO3KPCpJun/wOIrZ0eDsFqsWXnWHXtywVN8l79Yv2cdkNZvVJbSNeoS3VbewSM3aukoF5WX1nrvc6dTkT16rsU+7wGCNju2iUbGdNbljgjqGhLvPvTZ5mmacM0If7d6oMB9/XdtzoDqHRniMf3L0Rfo5db9HQf6BvGzdtehTfXrZbz0+W/PLSvXyxmVKzMnQb/sO07j4rnW6Dpfh0subfvZomxDfrcZi9hMSIqKUEBFVp3UAAACAs4WCdgAAAAAAAAAAAAAAAAAAAABN3ps/7pLLMCq1r92XriuGdVVqVqH+vXBblWOzCksVHRbY2CE2qnX70rU5OcOj7U9TB+mJa4fJbKYwvSlzuJy6b8kXZzSHSSaNje+i63sO0tRu/RTs49tA0Um+VpvOadte57Rt32BzArWJCQzWc+Mu1XPjLlVxRblsZotsJ33zSIRfgB76+dsGXfP6XoP00LDJ6hIaUeMXegyIitWAqNhqzwf7+Or7q+/U+Z++5lHU/s3+nbpr8WfqHh6pMB8/Bdl99cTq7919Pt+7TUun363B0fG1xvrl3u1KzMn0aPv9ueNrHQcAAAA0VRS0AwAAAAAAAAAAAAAAAAAAAGjSKhxOvb1kZ5Xn1iWma+WeNE17YaHS84qr7JOWU9TsC9rfWLTD47hDZJAev3YoxexeZBiGDuRnq9zprPK8v9WmuOAw/Xfram3PSKv3/D4Wq65JGKDB0fG6qEsvxQaFnmHEQNPkb7NXartn4Gj9cOAXLTmU6G4L8/XTb3qfqzAffx0uzJPJdPzLHkySlhxKVGJORqV5TujTJkb/mXi1/Gy2Bok5KiBI3119hwa/+4IySgrd7W9vX1PtmAqXU//34xdaft29MpvM1fZLzMnQXYs/9WjrGxmjiR26n3ngAAAAgJdQ0A4AAAAAAAAAAAAAAAAAAACgSftmQ7LScqouVl+z96gmPvalKpyuascfySnSgMYK7izILizVJ6sSPdpun9hbFnP1BZGom6KKMj279kftyjyquOAwxQWFytDxYnXDMGToeLHtxV16q2NIuHtcUm6WLvlilvadsoNyXfRuE617Bo5RVkmRMkuKlFlSKB+LTSE+vkrMydDGoyk6p217PTv2UnUPj2y4iwWaEbvFqm+uvF1bjh1WdmmxAqx2DY6Ol4+16jKYTekpGvnhS3IZhke7SSYNb9dBs6dc32DF7CdEBwTrP5Ou0rSv36nzmA1HUzR7+zrd2m9Ylef35WTqii/fUm5ZiUf7A+dOqHFXeQAAAKCpo6AdAAAAAAAAAAAAAAAAAAAAQJP2+uId1Z6rqZD9hCPZRQ0Zzln33tI9Kq34dRdwm8WsWyb08mJEZ25PVroyS4pkNZtlNZtlMZllMqSMsqq/uKAxlDoqdPmXb2lZyv5a+z6x6nstufZ36t0mRk6XSzct+OC0itkl6V8TrtCYuC6nNRZoTaxmiwZHx9ep78CoOD068gI9smKhJKlnRJS+ueJ2xQWHNWaIuqxbX93Sd6je3r62zmMe+vlbTe7YwyO2kooKvbtznf62fIHyy0s9+k/t2lfXJDTnr2UBAAAAKGgHAAAAAAAAAAAAAAAAAAAA0ITtPZKjJdtT69x/0jlxKip1aNUvae626nZ3bw4Mw9CsUwr6rxjaRW1D/M9aDBVOp1ILc3UoP0eH8nOUVVIss8mkbmGROq9DN9ktdX8svcLp1MxFc/Xhro3V9rkiM0nvXXSDbBZLQ4RfJafLpZsXfFSnYnZJyi0r0TVfv6vVN9ynN7et0bq0Q6e17q39hlHMDjSSPw2dqHFx3XSsuEAXdOrZqJ8hJ/v3xKt0bnS8NqSnKLe0RDmlxcorK1VOWbHKHA6ZTSalFOS6++eWlejmBR9p0bQ7lV9eqje2rNJ/Ni/XseLCSnN3DQjVrMnT2J0dAAAAzR4F7QAAAAAAAAAAAAAAAAAAAEATVlZWpv/+979asGCBUlJSZLPZ1KdPH91+++0aPXq0t8NrdG8v2e1xHBHkq9E922neuqRKfX9/yQA9fd1w3fvWMo+C9iM5zXeH9iU7UrU3LdejbcbkPg2+Tk5psW5d+LFWHUlW+8BQdQoJV1ZJkQ7l5+hIUb5chlHluE4hEbq171BF+geq2FGhEkeFyhyO4386HUoIb6vf9D5XNotFpY4KXffNe5qftKvGWL5I3Kauq77XE6OnSJJchkv/3bpGK1L3q8zpVIXLKYfLpQqXU2aTScNiOui8Dt01P2mXUvJz1CWsjfq3ba++ke1U5nAopSBXKQU5Si3I1eGCPIX5+quwokxfJm6r13uUmJOhnm/+XZklp/f36bwO3fXShCtOayyAuhnarsNZX9NiNuuWfsN0i4ZV2+fG+R9o7p7N7uMVh5Pk/+Ifa5w3Ibytnu4+XIF2nwaLFQAAAPAWCtoBAAAAAAAAAAAAAAAAAACAJsowDN15551auXKlJMlms6moqEhr167VunXr9Pzzz+viiy/2cpSN65cjOR7HN43rqR7tQj0K2n1sFr0xc7xuGJMgSYoJD/AYk9aMC9pP3Z29Z2yYIiJNmpe4TftyMrUvJ0P7cjOVUpCrLqFt9PcxF+uctu0rzWMYhhwul8pdDlU4j/9Z/r/i8HYBIbr9uznuQvOc0hLtyEyrNEdVkvOy9PCKBTX2WXUkWW9eMF0PLP2q1mL2E55b96NGxXbW+Z0S9OSqRXpqzeJq+/54cG+N5+uqe1ikOoSEy2wyySSTzCaTdmUd1YG8bHefjBLPHZRNMmnxNXdqRLtOHu0Ol0vPrftRz6z9QQ6XSyPaddTHl9x41naMBtC0vHzelVpz5IAO5ufU3lnS9b0G6cVxU7Vv1+7aOwMAAADNAAXtAAAAAAAAAAAAAAAAAAAAQBP17bffuovZb7nlFt1///3KycnRTTfdpOTkZD3xxBOaOHGifH19vRxp47mgfwd9syFZkhQZ7Kd7p5yjNkG++nT1Pv2wLUUJ7cP09u8makjXKPeYdmGeBe3NdYf2tJwifbU++dcGu0O5nfZr0Hubqux/IC9bIz78l67vOUhWi+V48WRejrt43Vve37lB53dM0Nvb1nq0W0xmBdjscrhcchjOSjFO+3q2/jHuMr24YVmjxmcxmTX/qhkaH9+t0rnkvCwNe/9F5ZaVVDn2rgGjNDq2S+U5zWb9bcT5mtl/hA4X5KlvZIysZorZgdYq1NdP7065XufNfVVOw1Vtv4kduuuPQ87TuPiucnrxcxsAAABoaBS0AwAAAAAAAAAAAAAAAAAAAE3UV199JUkym8268847ZbfbFRUVpenTp+vpp59Wbm6uli1bpvPPP9/LkTae2yf2VrvwAO1MydIVQ7soNiJQkrTwr5eqsLRCAT42mc0mjzHtwgM9jjcnZ+qyZ77V7y8doLG9Ku9e3lS99eMuOZwnCh8NWbtk6Vh5cY1jHC6X3t25vlHiCbT5KD44TG0DArX2yEGVOCrqPPaG+R94HPtarVpw5UyNjO3sbvvX+p/0p5+/dR+XOhy654fPzzzwWvxtxOQqi9klqVNIhOZcepOumjdbhRVlHucu7NxTz4y9uMa52/oHqa1/UIPFCqD5Gt6+kz697Le6a/EnOlpU4G43m0y6svs5euDc8eofFevFCAEAAIDGQ0E7AAAAAAAAAAAAAAAAAAAA0ERt375dkhQTE6Pg4GB3e0JCgvv11q1bW3RBu9ls0iWDO+mSwZ082k0mk4L87FWOOXWHdkmav+mAlu48rENv3KwQf59GibUhOZwuvfnjzl8bQotlBNdczN5QBrSN1fj4rmoXFKL4oDB1CA5TfHC4wnz9ZDId//KAcqdDz679UW9uWy1JigkIUbCPj3wsNvlZbcorK9HSlH3VrnFj7yEexeySdPeA0Vq4a6uWZqZUO25U+846v1OCrGazDEmrDyfr2/27ZMiQr9WqAW1j5WO1atuxI8ouPf5+RfoFKjYoVNGBQVp9+IDHbuujYzvrwSHn1fh+jI/vpqXT79blX76llIJcSdKkjj0055KbZLfwSD6AuruoSy/tjPuL/rN5uZYcTFSfyBjdNWCUuoS28XZoAAAAQKPi/54BAAAAAAAAAAAAAAAAAACAJqiwsFC5ubmSpPDwcI9zERER7tepqalVjnc6nXI6nY0WX1MWFeJbudHuUHFUlqZ88l+FBdpV7nSo7H8/IT5+mnHOcE3t2vfsB1uNbzckKzWr8PiBX7nMnTM9zgfY7BoUFasuoW0UFxSmVYeTtSQlUS7DOKN1L+7cW3MvudFduH4yl8vlfm2RSQ8NnaiHhk6scp5yp0MD3nteyXnZVZ6/65wRlf5+ulwuPd5rpN7NTtZbO9ZWOe75cZeqX2Q79/F9A8foQF62dmena2hMB4X7+kuSDMNQVmmxAmx2+Vlt7v6GYWjOns36YNcGdQqJ0FOjp0iGUevvSq/wKK274X59+stWhfj46opu/WQxmVvt75gk97W35vegOSJv3udnseqBweP1wODx7raq8kGumhfy1TyQp+aFfDUv5Kv5IWfNy5nmqynk2WQYZ/gvFgAAAAAAAAAAAAAAAAAAAAAaXHp6usaMGSNJGjx4sD788EP3uZSUFE2ceLyQeNSoUXrrrbfc54qLi7V79+6zG2wT4zIMjX5+rRyu/z0qbXLJ3PeITH4V1Y4xy6RXB0xUv5DIsxRlze77ZLdWJ+fK1KZApk6ZMpk9zz/ac4QmR3X0aEsuytN36clak3VEGeUlGhYeo/PadlAbu5+sJrNsZrPHn1aTWXmOMs07sk/rstPUNTBUf+h2rgJOKgA/E0uOHdLDu1ZUah8e3k4v9BtX49jPD+/VvxI3yqlfH3cfFh6jf/YbX8MoAAAAAABQnZ49e8rf398ra7NDOwAAAAAAAAAAAAAAAAAAANDMnLxTdnW6d+/utYeUG5phGMouLVagzUevbV2p93duUKR/gF6acIV6hLetckx44FYdyy+RJJmiCmosZpcklwy9eWSPlo45T+ZTq8cbwLaMI3p7+1rFBoXqngGj5WOt/lHupPR8rTmwWvIrl6lzpk7dLH1k+0764+TLKu2i3l/S5Rpb79gu1uh6j6mL/uqvoOhIPbxigQrKyyRJFpNZT0+8XP3bdajU3+l0avv27erbt6/69++v8YcG6LcLP1JGSZEifP31+sXXq3s1+cbZd3K+LBaLt8NBHZG35oNcNS/kq3kgT80L+WpeyFfzQ86alzPNV3Fxsfbu3dsIkdUdBe0AAAAAAAAAAAAAAAAAAABAExQYGOh+XVZW5nHu5OOAgIAqx1sslhbxUPquzKO6+PNZOlyY59G+O1u6+Iv/atUN96mNX4DSCvN1KD9HRwrz1MY/UMcKiiWZJItLpna5dVprQ3qKAl/6s8bHd9ObF1yr2KDQBrmGvdkZmvjJayqsOJ63pLwsvXH+NZIkl+FSZkmRcktLlVtWrNyyEr3+w1YpokDmKorZE8Kj9N5FN8haQ0F8U3LHgFG6rtdgfbhrg3Znpevy7v00Iq5zjWNO/N2d1ClB+2b8TRuPpqhPZIxCfPzOUtSoj5byWdPakLfmg1w1L+SreSBPzQv5al7IV/NDzpqX081XU8hx8/hXDAAAAAAAAAAAAAAAAAAAAKCVCQgIUEREhLKyspSdne1xLjMz0/26Y8eOZzmys+u5dT9WKmY/4XBhnvq8/YyKKyrkNDx3rfcdYlPZUT+Z7A6ZbJ7n/jJsotr4BcrHYtWLG5Zqf26mx/mfDiVq2lfvaOX1/1dpF/SqOFxO/XRon6xms8bFdfUY43S5NPP7Oe5idkl6Z8c63dl/pFYdOaB/rPtRRwrzK81p7lJ5nat79NebF1wrX6ut1piakmAfX905YNRpjfW12jQytuYCeAAAAAAA0LRR0A4AAAAAAAAAAAAAAAAAAAA0UQMHDtTixYuVlpamvLw8hYSESJJ27drl7jNo0CBvhXdW2M017yJWUF5WZXuFKmSOrqjU3sEapUdHXug+jgoI0tVfza7Ub2N6in44uFeTOvaocX3DMHTT/A/12d6tkqQbeg3WmxdcK0OGVqQm681tq7XqyIFK44Z+8GKN856qU0iE/nt+8ytmBwAAAAAAMHs7AAAAAAAAAAAAAAAAAAAAAABVu+qqqyRJLpdLr732msrLy3XkyBF9/PHHkqT27dtr5MiR3gyx0T00fLJGtu/UIHMZLqmH4bn1+SVdeuvybv2q7P/8+iXVzlVSUaGdmWn6Zv9OdzG7JH2wa4OmfvmWusx6QpM+eVVz92xukNj/OWGq/GwUswMAAAAAgOaHHdoBAAAAAAAAAAAAAAAAAACAJmrcuHG68MILtXDhQs2ePVsffPCBKiqO7zpus9n05JNPympt2Y8EdwwJ15Jr79bRonztzDwqq9msYLuvLvrsDWWVFnv09bVa5W+1K/uUdul4MbuRFCnF2z3aTSaT3r/oBn2+d6v+vuYH7clOd59bemifNhw9pMHR8R5jdmela/Inr+pYcWGVMX+XvPu0rtVwmiSn+fiPJPlWyGY265GR52tK516nNScAAAAAAIC3tex/vQIAAAAAAAAAAAAAAAAAAACauX/84x/q1auXvvrqKx06dEjBwcEaMGCA7rrrLvXv39/b4Z010QHBig4Idh9vuOkBLUvZJ1+LTfHBYYoLDlWkX6BMJpOScrP03Nof9M6O9TJkyHCY5doXKeX5K69NeaW5bRaLru05UFO79VWPN5/S0aIC97m/Lp+v7666QyaTSZJkGIbuXPRJtcXs1bGazeoUEqHEnAyP9vYBoSpPCtXRg4ZkmD3O/f7S/nrm+hEymzzbAQAAAAAAmhMK2gEAAAAAAAAAAAAAAAAAAIAmzGazacaMGZoxY4a3Q2lS2gWGaHrPQVWe6xwaodfPv0Z/HnKeHvlsgT5akuve9bygpHJB+wm+VpvuGThGf10+39229NA+fbhro6Z266sAm13fJe/R6iMH6hxn38gYTesxQFcn9FeH4DD9vxXf6Zv9O9QjvK36BHTQ8+/tUVGJU5LJPcZuNev1GeN147iedV4HAAAAAACgqaKgHQAAAAAAAAAAAAAAAAAAAECLFBccpkHB7fSRM9/dlldcfUG7JN01YJRe37JSKQW57rZbv/tYt373sSwms8wmU7Vj44JCVeZ0KNw3QJd376trEgaoZ0S0R58nRk/RE6OnqNzhVLe73/tfMfuvYsL89dkDUzS0m+c4AAAAAACA5oqCdgAAAAAAAAAAAAAAAAAAAAAtVoCPxeM4r7isxv7+NrueG3eppn/zXqVzTsMlp1H1uAnx3fT1FbfLZrFU3eEUX69P1uHsIo+2c7tG6fMHLlS78MA6zQEAAAAAANAcUNAOAAAAAAAAAAAAAAAAAAAAoMU6taA9v6RchmHIVMNO65d366fx8d3006HEGufuEd5Wcy+9WZklhRoS3aHOxeyS9Pqi7R7Hg7u01U+PXi5fO494AwAAAACAlsXs7QAAAAAAAAAAAAAAAAAAAAAAoLEEnlLQbhhSYWlFjWNMJpNmX3idxsR2kUlVF777W+16ffI09YyI0ujYLvKx1r0Qfc/hHC3dedij7f8uOodidgAAAAAA0CLxLx4AAAAAAAAAAAAAAAAAAAAAWqxAn8qPTOcVlyvIz17juJjAYC2+5i45XE7ll5Upr7xE+WWlyi0rUbnTqf5t2yvSP/C0Ypq1eIfHcZsgX10xtOtpzQUAAAAAANDUUdAOAAAAAAAAAAAAAAAAAAAAoMXyt1sqteUVlyk2om7F6FazReF+/gr382+QeIrLKvTesj0ebTeP7yUfW+U4AQAAAAAAWgKztwMAAAAAAAAAAAAAAAAAAAAAgMZiNZsUcMou7fkl5V6KRvpkVaJyi8o82mZM6u2laAAAAAAAABofBe0AAAAAAAAAAAAAAAAAAAAAWrQQfx+P47xi7xW0v7F4p8fx5HPi1TkqxEvRAAAAAAAAND4K2gEAAAAAAAAAAAAAAAAAAAC0aMH+do/jfC8VtG9KOqb1+9I92u6Y3McrsQAAAAAAAJwtFLQDAAAAAAAAAAAAAAAAAAAAaNGC/Wwex3nFZV6J441FOzyOYyMCNWVgR6/EAgAAAAAAcLZQ0A4AAAAAAAAAAAAAAAAAAACgRQv29/E49sYO7XnFZfp45V6PtlvP6yWrhUe6AQAAAABAy2b1dgAAAAAAAAAAAAAAAAAAAAAA0JhC/Owex3kNUND+045Urdl7VJcP7aKE9mHV9vtxe4qe+ny9ft51xKPdYjbp1gm9zjgOAAAAAACApo6CdgAAAAAAAAAAAAAAAAAAAAAtWrC/zeP4THdo/3p9kq74xwJJ0mOfrtPul25Qp7bBHn0Mw9A/v9msv3y4Wi7DqDTHZed2VrvwwDOKAwAAAAAAoDkwezsAAAAAAAAAAAAAAAAAAAAAAGhMwX4+Hsf5Jadf0G4Yhm577Uf3scPp0rtLd3v0KSl36OZ//6A/fbCqymJ2SZoxqc9pxwAAAAAAANCcUNAOAAAAAAAAAAAAAAAAAAAAoEUL8bd7HOedtEP7pqRj+nRVonIKS+s01/LdR5RdWObRtnDTAffrw9mFGv//vtCHy3+pdo7uMaGa0Ce2TusBAAAAAAA0d1ZvBwAAAAAAAAAAAAAAAAAAAAAAjSm4UkF7mSocTv3+nRV6bdF2SVLnqGBteX66/H1sNc41a/GOas+tTTyqK/+xQEdzi6vt0ybIV/+98zyZzaZ6XAEAAAAAAEDzRUE7AAAAAAAAAAAAAAAAAAAAgBYt2M+zoP1wdqHOf/Ir/bzriLstKT1f3285pMuHdql2nt2p2fp8zf5K7Unp+UrNKtRFT3+j3CLP3dsDfW16/97JumRwJ+UVl8nPbpXdajnDKwIAAAAAAGg+KGgHAAAAAAAAAAAAAAAAAAAA0KKFnLJDe2JanhLT8ir1O5CRX+0c8zcd0G9eWqQKp6vSuZyiMj3x6bpKxexdokL0xYNT1Dsu4n9x+JxO+AAAAAAAAM0aBe0AAAAAAAAAAAAAAAAAAAAAWrTgUwraq3M0t7hSm2EY+sdXm/TXj1fLMKofO/un3R7HY3q102cPTFF4oG+9YgUAAAAAAGhpKGgHAAAAAAAAAAAAAAAAAAAA0KKF+NWxoD3Hs6C9uKxCM15fojkrE2sd6zql2v3V28dTzA4AAAAAACDJ7O0AAAAAAAAAAAAAAAAAAAAAAKAxBVWzQ7u/j+f+YCfv0J5bVKbx/++LKovZrx3ZTaN6tqt2vXG92yuhfdhpRgsAAAAAANCyUNAOAAAAAAAAAAAAAAAAAAAAoEWLjwhUkJ/No+2WCb30r9+O8Wg7mlvkfv3H91ZoY1KGx3mTSXr6uuF6/97J6hcfUe16d0zu2wBRAwAAAAAAtAwUtAMAAAAAAAAAAAAAAAAAAABo0XztVv371nEK8bcrMthPr9w6Vm/MHK/4NkEe/U7s0J6ZX6IPl//icS7Yz655f7pYD04dJJPJpC7RIVWuFRXir0vP7dQ4FwIAAAAAANAMWb0dAAAAAAAAAAAAAAAAAAAAAAA0tuvH9NB1o7vLZRiymI/vCxYT5u/RJ6ugVOUOp95ZulvlDpe73W41a8VTV6lXbLi7rbqC9lvO6yW71dIIVwAAAAAAANA8UdAOAAAAAAAAAAAAAAAAAAAAoFUwmUyymEzu4+hQ/0p90nKK9N/FOz3arhrW1aOYXZK6RodWGms2mXT7xN4NEywAAAAAAEALYfZ2AAAAAAAAAAAAAAAAAAAAAADgDeGBvrJbPR+p/nD5Xu1Pz/Nomzm5b6WxndoG66TaeEnShQM6KL5NUIPHCQAAAAAA0JxR0A4AAAAAAAAAAAAAAAAAAACgVTKZTIoODfBo++c3mz2O+8ZHaESP6EpjfWwW9T5l1/aZk/s0fJAAAAAAAADNHAXtAAAAAAAAAAAAAAAAAAAAAFqtqFB/j+PcojKP4xmT+sh06lbs//P4tcMU4GOTJN00LkEXDujQOEECAAAAAAA0Y1ZvBwAAAAAAAAAAAAAAAAAAAAAA3hJzSkH7yQJ8bLp+dI9qz196bmclvXqjSiucahcWUG3hOwAAAAAAQGtGQTsAAAAAAAAAAAAAAAAAAACAViu6hoL260d3V7C/vcbxEUF+DR0SAAAAAABAi2L2dgAAAAAAAAAAAAAAAAAAAAAA4C3RYQHVnpsxuc9ZjAQAAAAAAKBloqAdAAAAAAAAAAAAAAAAAAAAQKtV3Q7tQ7tFqX/HyLMcDQAAAAAAQMtDQTsAAAAAAAAAAAAAAAAAAACAViummh3a75jc9yxHAgAAAAAA0DJR0A4AAAAAAAAAAAAAAAAAAACg1YqqYof2sAAfXTW8qxeiAQAAAAAAaHkoaAcAAAAAAAAAAAAAAAAAAADQasVUUdB+0/ie8rNbvRANAAAAAABAy0NBOwAAAAAAAAAAAAAAAAAAAIBWKzrUXxFBvh5tMyb29lI0AAAAAAAALQ8F7QAAAAAAAAAAAAAAAAAAAABaLZvVoieuHSYfm0WS9PR1w9W9XZiXowIAAAAAAGg5rN4OAAAAAAAAAAAAAAAAAAAAAAC8acakPpo6pLPsVotCA3y8HQ4AAAAAAECLQkE7AAAAAAAAAAAAAAAAAAAAgFavbYi/t0MAAAAAAABokczeDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0DJR0A4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAaBQUtAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGgUF7QAAAAAAAAAAAAAAAAAAAAAAAAAAAACARkFBOwAAAAAAAAAAAAAAAAAAAAAAAAAAAACgUVDQDgAAAAAAAAAAAAAAAAAAAAAAAAAAAABoFBS0AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaBQXtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBGQUE7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBRUNAOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGgUFLQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoFBe0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEZBQTsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoFFQ0A4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAaBQUtAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGgUF7QAAAAAAAAAAAAAAAAAAAAAAAAAAAACARkFBOwAAAAAAAAAAAAAAAAAAAAAAAAAAAACgUVDQDgAAAAAAAAAAAAAAAAAAAAAAAAAAAABoFBS0AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaBQXtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBGQUE7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBRUNAOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGgUFLQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAABqF1dsBAAAAAAAAAAAAAAAAAAAAAGg4LpdLklRSUuLlSLzP6XRKkoqLi2WxWLwcDWpDvpoX8tU8kbfmg1w1L+SreSBPzQv5al7IV/NDzpqXM83XiX8jOvFvRt5gMgzD8NrqAAAAAAAAAAAAAAAAAAAAABpUVlaWDhw44O0wAAAAAAAA0IR07NhRERERXlmbgnYAAAAAAAAAAAAAAAAAAACgBXE4HMrLy5OPj4/MZrO3wwEAAAAAAIAXuVwulZWVKSQkRFar1SsxUNAOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGgUfOUiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBRUNAOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGgUFLQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoFBe0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEZh9XYAAAAAAAAAAAAAAAAAAAAAAFqWgwcP6rXXXtPq1auVlZUlu92url276rLLLtO1114ri8Xi7rt//3795z//0dq1a5WXl6fw8HCNGTNG99xzj6KiojzmLSws1KxZs7R48WIdPnxYkhQbG6vx48dr5syZCg4O9ui/d+9evf3229q0aZPS0tLk4+OjhIQEXXHFFbr88stlMpnqfE1btmzR66+/rs2bN6uoqEhRUVGaNGmS7rrrrkrrZmVl6b333tOSJUuUmpoqwzAUHx+vyZMn65ZbbpG/v39939JG1Zrz9dNPP+mOO+6oca4nn3xSV199dZ3XbkytOVc9evSoda4hQ4bo/fffr/PaZ0trzpskpaena9asWVq+fLnS0tJks9nUo0cPTZ8+XZdeeml9385G1xLz5XK59PHHH+uFF15QUVGRJOnHH39UbGxslf0zMzP11FNPacGCBZKa7u+W1HTydbKjR4/qoosuUmFhoSTp7rvv1j333FPna6rP75fUPPLV2vPUnO4NW3Oumtt9odS688W9YfPMm8S94QnezJe37g1NhmEY9R4FAAAAAAAAAAAAAAAAAAAAAFXYs2ePrrvuOvdD0T4+PiovL9eJx5anTJmiF198UZKUmJio6dOnq6CgQJJks9lUUVEhSYqJidEXX3yh8PBwSccf9p4+fbr27t0rSbJarTKZTO7+HTt21GeffaagoCBJ0nfffac//OEPcjgckiRfX1+Vlpa647z22mv12GOP1emaVq9erdtvv9291slx9uzZU3PnzpWPj48kKTk5Wddff72ysrIkSXa7XRUVFe7r79Wrl+bMmePu722tPV9fffWVHnzwQUlSQECAbDZbpfkeeughXXbZZXVauzG19lwNHTq02nny8/Plcrk0dOhQvffee3Va+2xp7XlLTk7W9OnTlZOTU6mvJN1xxx26//776/huNr6WmK99+/bp4Ycf1ubNmz3aqyta+vzzz/Xss88qLy/P3dZUCwKbSr5Odeutt2rFihXu4/oUmdXn90tqHvlq7XlqTveGrT1Xzem+UCJf3Bs2z7xxb+j9fHnz3tBc7xEAAAAAAAAAAAAAAAAAAAAAUI1nn33W/bD33//+d23dulWrVq1Snz59JEkLFizQpk2b3OcLCgpkt9v18ccfa9u2bXrllVckSWlpaXr55Zfd877//vvuh72nTZumzZs3a9OmTZo2bZok6cCBA/rwww8lSUVFRfrb3/4mh8OhoKAgzZ07V1u3btXXX3+t0NBQSdKcOXOUlJRU6/UYhqFHH31UFRUVCg8P14IFC7RlyxY99NBDkqTdu3d7FEk8/vjj7oKlxx57zH39AwYMkCTt2rVL8+bNq/8b20hae75O7GgnSS+++KLWrl1b6aepFC219lxVlZu1a9fqlVdecReUXHHFFaf35jai1p63p59+2l2wdP/992vLli1asmSJunbtKkmaNWuWdu3adRrvbONoaflKT0/X1KlTtXnzZnXv3l1xcXE19n/zzTf10EMPKT8/X+edd15d3zavaQr5OtXcuXO1YsUKhYWF1ft66vv71Vzy1drz1JzuDVt7rprTfaFEvrg3bJ55497wOG/ly9v3hhS0AwAAAAAAAAAAAAAAAAAAAGgQ5eXlSk9PV3x8vEaOHKkrrrhCJpNJ4eHhmjp1qrvf5s2bdezYMa1atUqSNHbsWA0cOFBms1mTJ09Wz549JUnz58+X0+mUdHwXsfj4eHXo0EH33Xef7Ha77Ha7brjhBo95peMPzUdERKhTp066+eab1b9/f0lSjx49dMkll7j779mzp9Zr2rZtmw4cOCBJuvTSS9WlSxdZrVb95je/cRcWfv3115Kk0tJSHTt2TJ06ddK4ceN07bXXymw2Kzw8XLfccot7zqbygH5rz5d0fPfGEwIDA+v4zp195KpqJSUleuihh2QYhgYPHuzxXjQFrT1vZWVl7mtq27atZs6cKavVqvbt27t33nS5XPriiy/q87Y2mpaYr9LSUtlsNv3xj3/Ul19+qZiYmBr7FxQUqHv37vroo4/chWhNVVPJ18kOHz6sZ599VlarVb/73e/qfU31/VxsDvlq7XlqTveGrT1XUvO5L5TIV3W4N2zaeePe0Pv58va9ofWMZwAAAAAAAAAAAAAAAAAAAAAASXa7XQsWLKjy3ImdKSXJbDZrx44d7p3zEhISPPomJCRo9+7dys/PV3Jysrp27aoXXnihynmzs7Pdr00mkyRp8ODB+u6776rsf2J3Nen4Q/S12bZtm0dcJ19D9+7dtW7dOiUmJqqoqEgBAQGaP39+lfMUFxe7X0dFRdW67tlAvgI8CpeCgoJqnd9byFVAlXO88MILSklJkcVi0SOPPFLrmmdba89bYWGhHA6HJCkmJsYdjyR3YY8k966W3tYS8xUeHq758+erXbt2tfaVjhei3XPPPbJarUpNTa3TGG9pKvk6wTAM/fWvf1VRUZHuuOMOde/evd7XVN/PxeaQL/LUfO4NyVXzuS+UyBf3hs0zb9wbej9f3r43ZId2AAAAAAAAAAAAAAAAAAAAAI0qKSlJH374oft48ODBOnz4sPs4LCzMo394eLj7dUpKSrXzlpSU6B//+If7eMiQITXGsWzZMneRYP/+/TVo0KBaYz85zpPjOvnYMAyPfqdKSkrSf//7X0lScHCwrrrqqlrX9abWlK/CwkL3+eXLl+uWW27RhAkTdP755+vhhx927zbYVLWmXJ0qMTFRH330kSRp6tSp6tGjR61rNhWtJW8hISGyWCySpNTUVHcBkySlpaW5XzfVQtwTmnO+goKC6lywJMm9q2pz5q18ffTRR1q9erW6dOlyWjumSvX/XGzO+WpNeapKc7o3bE25au73hVLrytepuDesrKnljXtD7+fL2/eGFLQDAAAAAAAAAAAAAAAAAAAAaDSHDh3S7bff7t7xcOrUqerbt6/HLrM+Pj4eY04+PrnfyYqLi3XPPfdo586dkqROnTrpuuuuq7LvxIkT1a9fP82YMUMBAQG65ZZb9Pbbb1fa8awqJ69vt9vrFeeDDz6ogQMH6sILL9SRI0d08cUX6/PPP6/Trrre0trydfJOnM8995xWrlypw4cP68CBA/r00091+eWXN5kdAk/V2nJ1queee05Op1M2m+20Czq8oTXlzdfXV8OHD5d0fBfL5557Tnl5eUpMTNTTTz9d6zU1Bc09X62Nt/KVkpKi559/XmazWU899VSl3426OtPPxeaiNeepud0btrZcNef7Qqn15etU3Bt6aop5497Q+/nyNgraAQAAAAAAAAAAAAAAAAAAADSKbdu26ZprrnHvsNanTx89/PDDtY5zuVzu11UV7GVnZ+vGG2/U8uXLJR3fAe1f//qXfH19q5wvNzdXZWVlko4/QL53717t2bOn3tdT3zgLCwvdD6yXlZXp4MGDWrdu3Rmv21haa75CQ0MVGhqq2267TevWrdOKFSt05ZVXSjpeWPDII4+c8doNrbXm6oQ1a9bo559/liRdccUVat++/RmveTa0xrz9+c9/dsfx7rvvasiQIbr44ouVmpqqgIAASWqyO0y39Hy1NN7Kl2EYeuihh1RcXKwbb7xRAwYMaIjLqXeczUVrz1NzujdsrblqjveFUuvN1wncG3pqynnj3rDp5utsaJqZBQAAAAAAAAAAAAAAAAAAANCs/fzzz/q///s/FRcXS5JGjRqll19+2f2QemBgoLvviUK9E8rLy92vT/Q/ISUlRbfeeqsOHjwoSYqLi9OsWbPUuXPnamPZsGGDSkpKtHnzZj3yyCNasWKFVq1apQ8++ECDBg3SE088oW+//dZjzMUXX6y//e1vHnGeHFdtcUrSq6++qoqKCu3fv1/PP/+8li9fru3btysrK0szZ86sNl5vaK35eumll6qM4dFHH9WSJUuUk5OjxMREpaSkKC4urtqYz6bWmquTvfXWW+7XV111VbXxNSWtNW/dunXT3Llz9eqrr2r79u0ymUw655xzdPfdd2v69OmSpJCQkGpj9ZaWkq/Wwpv5+vDDD7Vu3TrFxcXpvvvuqzXWxvpcbA7IU/O5N2ytuWqO94VS683Xybg3/FVTzxv3ht7Nl7dR0A4AAAAAAAAAAAAAAAAAAACgQa1du1a/+93v3A9u33bbbfrDH/4gs9ns7nNyEUh2drbH+IyMDPfrDh06uF8fO3ZMN910kw4fPizp+EPk//znP+v0wLufn59GjBihP/3pT7r77rvlcrk0Z84cDRo0SEVFRcrNzfXof2L3zJPjzMrKqjJOi8VSbVGLzWZTQkKCXnjhBQ0ZMkSS9NFHHzWpoiXyVZndbldcXJxycnIkSTk5OU2icIlcSenp6VqxYoUkqX379urXr1+tMXpba89bQkKCXn75ZY++OTk5ysvLkyR17dq11njPppaUr9bA2/n6/vvvJR0vSOvfv3+VMf773//Wv//9b/39738/K/8Na4rI06+a+r0huaqsqd4XSuRL4t6wOeaNe8PjvJEvb6OgHQAAAAAAAAAAAAAAAAAAAECDOXTokO666y6Vl5fLYrHoscce09VXX12pX79+/WS1WuVwOLRnzx6Pc7t375YktWnTxv3Ad0VFhWbMmOF+2PvKK6/U448/Lqu18iPRc+fO1ezZs5Wdna17771XN9xwg/ucyWRyvz7xwPwzzzyjZ555psrrGThwoPv1yXE6HA4lJiZKknr16iVfX19t375dDz30kLKysjRkyBD961//qnHdpqA156u4uFjvv/++srOzFRAQoHvvvdfdv6KiQqmpqe7j6OjoKtc7m1pzrk72008/yeVySZImT55c5dxNSWvP2759+5SYmKisrCyPdZctW+Z+PWrUqCrX8oaWlq+Wrinkq74a43OxqWvNeWpu94atOVfN7b5Qat35Ohn3hs0rb9wbejdf3mauvQsAAAAAAAAAAAAAAAAAAAAA1M3jjz+uwsJCSdJ9991X5cPekhQWFqbzzjtP0vGH1zdu3CiXy6VvvvlG+/btkyRdddVV7l3PZs+e7X4QfOzYsXrqqaeqfdi7W7duSk5OVl5enmbNmuV+oDwjI0Nvvvmmu9+AAQNqvZ6EhAT16dNHkvT1119r//79cjgcevvtt1VQUCBJuuaaa9zrpqWlKSsrS4sWLdLChQvlcrlUVlamF198sV7rni2tOV/+/v764osv9M477+jVV1/Vp59+KpfLpZKSEj3zzDPunfWGDBmitm3b1rp2Y2vNuTrZli1b3K+bww6crT1vs2fP1n333acnnnhC8+bNk3S8kOnEZ2JwcLCmTp1a67pnS0vLV3l5uTIyMtw/FRUV7nPZ2dnu9hO7dhYUFLjbTt5dtKKiwmMep9NZ69pnQ1PI1yuvvKIVK1ZU+nnllVfcfW655RatWLFCU6ZMqfF66vv71Vzy1Zrz1NzuDVtzrprbfaHUuvN1Mu4Nm1feuDf0br68fW9oMgzDqFNPAAAAAAAAAAAAAAAAAAAAAKjBtm3bPB7wDgkJ8dh98oSBAwfqtddeU2pqqqZNm6asrCxJks1mcz9Q3b17d82dO1f+/v6SpP79+6ukpETS8YITu91eZQxr166VJD355JN6//333e1+fn7u8dLxAqM5c+YoMDCw1uvavn27brzxRhUXF1eKc8SIEXrrrbfcD6YvWLBAf/zjH+VwOCRJdrtdTqfT/YB3YGCgPvjgA/Xs2bPWdRsb+ZJWrlypO+64Q+Xl5e6+TqfTvctjVFSUPvjgA8XHx9e6bmMiV7+aNm2atm7dKkn68ssv1atXr1rX8RbyJqWkpOjaa69VZmZmpXWtVqteeuklTZw4sdY1z4aWmK+1a9fqxhtvrPXa7777bt1zzz3685//rC+//LLW/j/++KNiY2Nr7deYmlK+qjt34r0/8f7WRX1+v5pDvshT87k3JFfN575QIl8n496weeWNe0Pv5svb94Znvv88AAAAAAAAAAAAAAAAAAAAAEgexXaSlJeXV2W/EzucxcbGau7cuXr55Ze1atUq5eXlqX379po0aZLuuusu98Pep85dXFzsfli+Og8//LCGDRumOXPmaOfOncrLy5O/v786duyoSZMm6aabblJAQECdrqtv3776+OOP9corr2jDhg0qKipSx44ddckll+j222/3KKqYMmWKOnXqpNmzZ2v9+vXKyMiQxWJRbGyshg8frttvv93rRYAnkC9p5MiRmjcIjnfYAAAB5UlEQVRvnt58802tXbtWx44dk91uV3x8vCZMmKCbb75ZYWFhdVq3MZGrqq89KCioTut4C3mT4uLiNGfOHL322mtas2aNjh07prCwMJ177rmaOXOme0fPpqCl5qulakr5akin87nYlJGn5nNvSK6az32hRL5Oxr1h5bmbct64N6w899nOlzexQzsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoFE0r6/lAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0GxS0AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaBQXtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBGQUE7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAKBRUNAOAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGgUFLQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoFBe0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEZBQTsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoFFQ0A4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAaBQUtAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGgUF7QAAAAAAAAAAAAAAAAAAAAAAAAAAAACARkFBOwAAAAAAAAAAAAAAAAAAAAAAAAAAAACgUfx/UNFZx9jpoMwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPUAAAKrCAYAAACZc7hJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZwkdX0//lef090zOzM75973vVyyu+yyLCywuMACyy2gEUWFeCdev8RojIJGEmMSo1G/GtQEURMVoih4RJHlXEC5l/vc+5j77qt+f8z20PX5fKq7urq663o9Hw8f0jU9PbV9VNfnXe8jpGmaBiIiIiIiIiIiIvKMsNM7QERERERERERERJVhUI+IiIiIiIiIiMhjGNQjIiIiIiIiIiLyGAb1iIiIiIiIiIiIPIZBPSIiIiIiIiIiIo9hUI+IiIiIiIiIiMhjGNQjIiIiIiIiIiLyGAb1iIiIiIiIiIiIPIZBPSIiIiIiIiIiIo9hUI+IiIiIiIiIiMhjGNQjIiIismDnzp1Yvny57n8rV67ESSedhAsvvBCf+9zn8OSTT5r6veLfX79+Pa6++mrcfvvtZfdh165dU7/7/e9/X/r5V77yFSxfvhxf/epXlb+fTqfxpje9CcuXL8fzzz+vvM+dd96J5cuX4/3vfz8A4NZbb5X2e9WqVdiwYQMuv/xy/MM//ANeeumlkvutaRp+//vf4y//8i9x5pln4vjjj8eJJ56Ic845B3/zN3+Dhx56SPqdt73tbVi+fDl27typfMw//elPWL58OU4++WTk83nlfT73uc9h+fLl+N73vgcA+Ou//mssX74cb37zmzE+Pm64v29/+9uxfPnykv8mIiIionqLOr0DRERERF52wgkn4JprrgEA5PN5DAwM4JlnnsEdd9yBH/zgB7jooovw2c9+Fslk0vD3CtLpNHbv3o2f/vSn+PjHP44HH3wQX/jCFwz/9i233IJwOIyWlhb88Ic/xJ/92Z/pfn7mmWfi61//Ov7whz/gQx/6kPT7jzzyCEZHRwEAd999N5YtWybdZ8eOHQCAM844Q7f9jDPOwEUXXQQAyOVy6OvrwxNPPIEf/ehH+O53v4t3vetd+PjHP45wWH8Nub+/Hx/5yEdw//33Y/Hixbjwwgsxf/58aJqGV155BXfccQd++tOfYvv27fjsZz+LxsbGqX/LI488gj/84Q9Yv369tJ933303AKC3txdPPfUUjjvuOOk+99xzz9RjFXv99dfx1a9+FZ/4xCek3yEiIiJyKwb1iIiIiKrQ3d2Nc845R9r+V3/1V/jMZz6D//3f/8XQ0BC+/vWvm/o9ALjmmmtw2WWX4Sc/+QkuvvhirF27VrrPwMAAfvGLX2Dt2rVYtWoVvve97+Ghhx7CSSedNHWfY445Bp2dnXj66afR09OD9vZ23WPs2LEDsVgMc+fOxY4dO3DttddKf+fee+9FKBTC6aefrtu+cOFC5f739vbiYx/7GG666Sak02l8+tOfnvpZNpvFBz7wATzyyCP40Ic+hPe///1S0O9DH/oQ/v7v/x4/+MEPkE6n8ZWvfAXAZBDxH//xH7Fjxw781V/9lfR377nnHixbtgwvvPACduzYIQX1Xn75ZezevRuLFy/GvHnzdD875ZRT8L3vfQ/nn38+Vq5cKT02ERERkRux/JaIiIioBhobG/GP//iPWLduHX73u9/hN7/5jenfTaVS2L59OwAYlpveeuutGB8fx/bt23HhhRcCAH74wx/q7hMKhXDGGWdA07SpjLtid999N1atWoWNGzfi0UcfxfDwsO7nzzzzDA4dOoRjjz0WnZ2dpva9ra0N//7v/44FCxbg+9//Pp566qmpn91222145JFHcP755+ODH/ygFNADgFgshs985jM46aST8Ktf/Qp/+MMfAACLFi3CggUL8OKLL2Lv3r263zl8+DB27dqFzZs3Y+nSpVNZe8WMMg6BybLcWCyGT33qU8jlcqb+nUREREROY1CPiIiIqEYikQg+8IEPAAB++tOfVvS7sVgMABCNyoUVmqbhhz/8IVKpFM4991ysWrUKq1atwm9/+1scOXJEd99CEEsMdO3Zswcvv/wyTjrpJKxduxaZTAb333+/7j6FclVVIKyUVCqF97znPdA0DbfeeuvU9sJzoMoILBYKhfDe974XAHS/b/Rv2bFjBzRNm/q3PPXUU+jt7TX9b5k7dy4++MEP4umnn57qt0dERETkdgzqEREREdXQmjVrEIvF8Nhjj5n+ncIgCQCGveFee+01bNu2DU1NTQCAyy+/HJlMBj/+8Y919924cSMSiQTuu+8+ZLPZqe2FwNgpp5yCk08+GeFwWAqWGfWgM2PDhg0AMPXvzmazePLJJ9Ha2ooVK1aU/f21a9ciGo3qnrdSQb14PI5169bhlFNOQT6fn9p3ABgfH8fDDz+M1tZWvOlNb1L+vWuuuQarVq3CV7/6VezevbuSfyoRERGRIxjUIyIiIqqheDyO1tZW9Pf364JqmUwGg4ODuv/19PTg0UcfxV/8xV/gkUcewebNm3HyySdLj/mDH/wAAHDFFVdMbdu+fTuSyST+53/+R1dCmkgkcPLJJ2NwcBCPPvro1PZ77rkHyWQSa9asQWtrK4499lhdie7w8DAeffRRzJo1y1QQTtTd3Q0AU5mDhX9/V1eXqd9vaGhAa2srjhw5MvXvWbNmDVpaWrBz505MTEwAmBzScf/99+PEE09EMpnEhg0bEIvFdP+Wwv03b96MSCSi/HuRSASf//znkU6n8Xd/93cV/3uJiIiI6o1BPSIiIqIaGx8fRzwe1wWUfv/732PdunW6/23cuBFXXnkl/vjHP+I973kPvva1r0mPtWfPHtx9991Yvny5LouvqakJ5557Lvbt2zfVh65AzHBLp9PYuXMn1q1bh3g8DgDYtGkTDh06hGeffRYA8MADDyCTyVRcelv8bwYwNfW3UE6cz+dNP0Y+n0c4HJ7qvReNRnHqqadibGxsqtfgY489hsHBQWzatAnA5PNwwgkn4N577536W2YzDlevXo13vOMduO+++3DbbbeZ3k8iIiIiJzCoR0RERFRDQ0NDGBoaQldXF0Kh0NT2devW4b/+6790/9uyZQsA4BOf+AQ+8YlPTAXciv3oRz9CPp/HtGnT8NWvflX3v0IgTRyYccYZZyAUCk0F9R555BGMjo7i1FNPnbpPIShWyHCz2k+vYN++fQDeyNhraWlBMpnEgQMHTAX2xsbGMDAwgM7OTt3zVgjMFfaz8P/iv6W/vx9PPPHE1L8lFotN/RtL+fCHP4w5c+bgxhtvlPryEREREbmJ3HmZiIiIiGxT6I23ceNG3fa2tjasX79et23x4sX44x//iC984QvYsGEDZsyYoft5Op3GT37yEwCTgblHHnlE+TfvvfdevP7665g3bx4AoKurC6tXr8ZTTz2Fnp4e3HvvvQCgC3Idf/zxaG5uxgMPPIDrrrsO99xzD1KplLSP1fy7165di3vuuQePPfYYTjzxxJK///DDDyOXy0l//9RTT0U0GsUDDzwAALjvvvvQ2dmpKxHetGkT/uVf/gUPPPAA2tvb8eqrr+KUU06Z6j9YSjKZxOc+9zm8+93vxhe+8AV8+ctfNv1vJiIiIqonZuoRERER1cjExAS++c1vAgAuu+yysvfv6OjAJz/5SQwODuJTn/qU9PM77rgDfX19uOSSS/Dcc88p//fJT34SmqbhRz/6ke53Cxl3Dz/8MB566CHMnj0bixYtmvp5JBLBySefjD/96U948cUXsW/fPmzatEmZLVhOT08Pbr75ZsRiMVx44YVT2y+99FIAwL//+7+X/H1N0/Dtb38bgPy8NTc3Y82aNXjxxRfx+uuvY9euXbosPWCyjLatrQ0PPvggHnzwQd2/34xNmzZh+/bt+MUvfiEN5SAiIiJyCwb1iIiIiGpgcHAQH/zgB/Hyyy/j6quvxvHHH2/q9y666CKceuqpuPfee6cGYhTccsstAICrrrrK8PcvueQSJBIJ/PSnP0U6nZ7aXihbvfvuu/HMM89IgTBgMpg1Pj6O//qv/wJgrfT2wIEDuO6669Db24uPf/zjmDlz5tTPzj33XJx55pm499578fnPf143OKQgk8ng+uuvx0MPPYS3vvWtWLt2rXSfwr/l29/+NnK5nPRvCYVC2LhxIx5//PGp3nunn356Rf+OT37yk5g+fTo++9nPYmRkpKLfJSIiIqoHlt8SERERVeHgwYP41a9+NXV7YGAAzz33HG6//XYMDg7i6quvxv/3//1/FT3m9ddfj/POOw9f+tKXsGnTJsybNw9PPfUUnnjiCaxevVo3IEPU3NyMbdu24dZbb8Udd9yBiy66CACwatUqzJgxA7fffjuy2axhUA8Abr31VoTD4ZKBsFdeeUX37+7p6cFTTz2FO++8E5lMBh/72Mfwzne+U/q9L33pS/jUpz6Fm2++GTt27MC2bduwYMGCqcf85S9/id27d+Ptb3+74fN2xhln4Itf/CJuu+02hMNhqbQZmCzT/cUvfoFf/epXWLZsGebOnWv4b1Fpa2vDX//1X+Ov/uqvpvoDEhEREbkJg3pEREREVXjsscfwF3/xF1O3U6kUuru7sXXrVlx++eU44YQTKn7MWbNm4eMf/ziuv/56/NVf/RVuueUWU1l6BVdddRVuvfVW/PCHP5wK6gGT2Wo/+tGPEIvFsGHDBuXfXbRoEV5++WW86U1vQltbm+HfuOuuu3DXXXdN3W5qasLMmTNx+eWX4y1veQuWLl2q/L2mpiZ85StfwT333IOf/exnuPPOO3Ho0CGEw2F0d3dj48aNuOyyy0oGLufPnz+1nyeccAJaW1ul+5xyyikIhUJVTfC96KKLcPvtt0/1ICQiIiJyk5CmaZrTO0FERERERERERETmsaceERERERERERGRxzCoR0RERERERERE5DEM6hEREREREREREXkMg3pEREREREREREQew6AeERERERERERGRxzCoR0RERERERERE5DFRp3fAK7LZLAYGBtDQ0IBwmLFQIiIiIiIiIqKgyufzmJiYQEtLC6JRZ8JrDOqZNDAwgFdffdXp3SAiIiIiIiIiIpdYsGAB2tvbHfnbDOqZ1NDQAGDyxUomkw7vjbNyuRyef/55LFu2DJFIxOndoTL4enkHXytv4uvmLXy9vIWvlzfwdfIOvlbewtfLm/i6eUs1r9fY2BheffXVqXiRExjUM6lQcptMJpFKpRzeG2flcjkAQCqV4kHKA/h6eQdfK2/i6+YtfL28ha+XN/B18g6+Vt7C18ub+Lp5ix2vl5Mt2tgcjoiIiIiIiIiIyGMY1CMiIiIiIiIiIvIYBvWIiIiIiIiIiIg8hkE9IiIiIiIiIiIij2FQj4iIiIiIiIiIyGMY1CMiIiIiIiIiIvIYBvWIiIiIiIiIiIg8hkE9IiIiIiIiIiIij2FQj4iIiIiIiIiIyGMY1CMiIiIiIiIiIvIYBvWIiIiIiIiIiIg8hkE9IiIiIiIiIiIij2FQj4iIiIiIiIiIyGMY1CMiIiIiIiIiIvIYBvWIiIiIiIiIiIg8hkE9IiIiIiIiIiIij2FQj4iIiIiIiIiIyGMY1CMiIiIiIiIiIvIYBvWIiIiIiIiIiIg8Jur0DjhhYmIC3/72t3HHHXdg9+7diMViOOaYY3Dttdfi1FNPdXr3iIiIiIiIiIiISgpcUE/TNLzvfe/DfffdBwCIxWIYGRnBzp078dBDD+Gf/umfcP755zu8l0RERERERERERMYCV377i1/8Yiqg9653vQt/+tOfsGPHDixcuBCapuGGG27A+Pi4w3tJRERERERERERkLHBBvZ/97GcAgHA4jPe9732Ix+Po7u7GVVddBQDo7+/H3Xff7eQuEhERERERERERlRS48tsnn3wSADBz5kw0NzdPbV+xYsXUfz/++OM4++yz675v9fTQDTdg13e+g4n+/qltqa4urP3Up7Dy6qul++/dsQP3fvzjgKZh45e+BEybVse9dc6z3/8+Hv785zF68ODUtlhjI5a/7W04+e//HuFIpOxjaPk87v34x/HCj3+MzPBwLXfXUD6XwyMm9tUNQqEQutauxZabbsK0uXNtfex8Lod7PvIRvPTTnyIzOlrR73avW4fT/vVf0bZqla37FDSapuGRv/97PP3tb2NiYMDSY7StWoUzv/UttK9eLT32w5//PHbddBMmBgYQS6Ww9IorcMqXvmTqs1oPIwcO4PfXXosDDzyAfC7n9O64VigcxsyNG3HGN76BpjlzprY/+/3v44833ohkZyfO+MY3MH3FCvQ89RT+8P73Y7y3F+v+9m+x7Iorpu4/+Oqr+N173oPhvXvxpo9+FMdce60T/xyqI03T8PANN+Dp//gPpIeGnN4dW4XCYczYsAFnfec7SHV3O707jnvo+uux67vf1Z3LFrQuXYrNX/0qZqxfP7Vt744duP+v/xq9zzxT0d+JT5uGFVdfjQ033IBQKFTtbhMREdkqUEG94eFh9B/94m9ra9P9rL29feq/9+zZY/gYuVwOOY8vxPb8/vd46HOfk7YPDA3hd+9+N+acdZbuZDGfy+G373wnhl9/HQDwf+98J4798Y89/zyUM3b4MH7/nvcgn83qtmeGhvDol7+M7g0bsHD79rKP88z3vofH/+3farWbpnnp1drz+9/jno9+FGf/6Ee2Pu5T/+//4cmvf93yPv3fu9+NS++919Z9Klb4TPn5s3XgwQex8+/+rqrHOLhzJ+563/tw8V136bY/e/PNumNbZmgIj//bv6Fz7VosLQr02K2S1+2Bv/1bvHbnnTXbFz957c47cdf73odt//u/AICnv/Ut7PjQhwAAfc8+i7s//GFccOeduOsDH8CB++8HAPzuXe/CrM2bkezsBAD85uqrp372h/e9D3O2bEHqaJDQz58zP6n0uPjol7+Mh66/vpa75KjXf/1r3P83f4MzvvUtp3dFp97fX6/87GclX+fDf/oTfvuOd+Cqp55CKBRCdnwcv37b2zC6f3/FfyszNIQ/3ngjZmzciHk+uOgfhHMNP+Hr5U183bylmtfLDa9xoIJ6IyMjU//d0NCg+1nx7eL7iZ5//nn7d6zOeh591PiHmoaH3/tetBZlRoz09EwF9ABgZM8epP/t3/CUz7P1+nbvlgJ6xZ78whcw+Nvfln2cXVzAW7L3t7/F40cX8HZ5+pe/rOr3Dz38MHa+4x1IFGX52i0E4KmaPbrz9j3xhC2Pc+D++/HHP/9zRONxAEA2ncaj//3fyvs+88//jNEaBmMB86/ba7fdVtP98JvXfvUrPHLttRjYtw/P/9//6X62/5578Oj7348DR/vkAkBuYgI7rroKM1auxNDBg1MBvYJHPvQhtM2f7/vPmd+Yfb0G9u7F03fcUevdcdzuO+6w/fvRDvX8XD3zq1+Vvc/Aiy/iT3/+54g2NKD39dctBfSKPfWFL6DvF7+o6jHcgsdAb+Hr5U183YxpF1wAdHU5vRuSQlWn1wQqqFdKPp83db9ly5YhlUrVeG9qK7dyJQZvvx0HHnhA+fP84cMIRd94a2QPH5buEz58GKESwU8/SO/bV/LnmZ4ehA4cKHkfLZ/HYJnHIbXM2FjZ57cS+XweQzY8Xv+uXZi5YEH1OxRQ6UOHbHuskeeeQ+vRjKw9Tz2FzNiY+o7Dw7a+l6zSNA3jg4NO74a3aBpeu+suHFZk0OcyGUy8/LK0PX3wIELTp2P/I4/Ij9fTg5BwUY/8IZ/P44Xf/x7QNKd3pfYmJlxxTHNKNp1G/+7dpu6bef11xKZNQ9+uXdX/4cHBQD/vRER2CEWjmN/ejuYTTnB6V6bkcjk8+eSTOPbYYxGpsGXP6Oio44lfgQrqNTU1Tf33xMSE7mfFtxsbGw0fIxKJVPxCu00klcKlO3ag79lnMdHfj/975zsx8NJLUz8X+zxlMxnpMbQAnDSny0xBLvdzABgeGJCez+133IFYHbMc8/k8XnjhBSxduhThsHtn44zs3YtfXXnl1O380VJ3uz5vI6rX4s47ESs6Lqj88cYb8WpRhl//oUMM6lVhQvjcLH/723HMddeZ+t0/vP/96Cm6gjbc34/Wzk5kMxnsf/VVw99zy/FqYmwMmnAB6YJf/hLxGmZ+etFDn/0sdv/ud1O3D5VYvI8qgqSZiQlMjI3hiCIrxy3vBbLfUG8v0kJg/8SPfxwLL7zQoT2yz57f/Q47P/vZqdtBfx/3HDigew7C8TguvPNOhONx/OKCC3Q99tJjY0g2NaFXCMad8JGPYPEll5T8Ow/8zd9g3z33TN0Wj99ERGRNOBx2ZUzFSqzHDf+OQAX1Ghsb0d7ejp6eHvT29up+duTIkan/XhCABXsoFELbypUAgER7uy6oJ9aFq4J6+QCcUIqLg1hjIzJF2YlmgnoDRe8rAJi+ciXmbd1qzw6alMvlcCCRwIwTTnDFQcfIeF+ftC07MYGITZmxg8JnfvqKFZj35jeX/b0ll12mC+oNHDmCfD7v6gCpm4mfq+61azHz5JNN/e6s007TBfWGjr5nRoeGSi+2XHK8GhcG5cSbmzFv61Y2XhcsveoqXVCvlGHFsJXxkRHsf+UV5ese9GCInw309Ohutx1zDE7++79HyAfH6hEhQB309/GRvXt1t+efcw5mb94MAGiaO1cf1Bsfx1BfHzLptO53jvnzP0frkiUl/05SKA0L+vNORETu5P0znQqdeOKJAID9+/djoGgxsKsoLX/NmjV13y8nxYTMRLGPXFY4EQKCcbVSzCjqWrdOdzstZHuqDAqLjMJJJ8kaWloQEoKO4kl4NcTXYuYpp5j6vblnnaW7nctmMawIQJI5YjC8eLJpOTNOOkl3e6ivD5qmlX2fuGUZNia0LGhZsoQBPYWF550HmHxeRhSZeqODgzj42mvK+wfhuyuoxGP83C1bfBHQA4BwVH8NPsjBpczEBPqFC6ZL3/KWqf9unDVL97P0xISUpde2enXZgB7A552IiLzBH2c7FbjssssATJYkfuMb30A6nca+ffvwwx/+EAAwe/ZsnGJyse8XUSETSszUyyiCV0FYGKkyiopl02mpnLOYls9L2WEM6hkLhcNIdnTottkV1NM0DUPCazFr0yZTv9s4cybajztOt61P0WeSytM0TQrqNc6ebfr3u4WgXqHMMlsuwO6Shdi4ENQzs6gMomRnpzJ7c+6b34zw0cEoBSOKTL1MOq3MMAe4KPerfC4nHeP99H0bFi54Bfl93LN/v+6YHk0mseD886dui0G9ibGxyd8psvCCC0z9LQb1iIjICwIX1Dv99NNx7rnnAgC++93v4sQTT8QZZ5yBPXv2IBaL4fOf/zyi0UBVJcuZemJQT5WpF4ATGzH40CUEFIDS2XrDg4PICVmPs087zZ6d86lEjYJ6YyMj0mOZDeoBkMp0+20c9hAkmYkJ6dhRSaZey5IlaGhr020bVpRVidxyvJIy9RYvdmhP3G/pFVfobnefdBLO/fGPpf6DqotOpQShdUQQDff36weehUIVHePdLiQGlwJwYdXIEWH42Pxt2xAv6o3bOHOm7ucDR45IF1QWmeyzKD3vPH4QEZELBS6oBwBf+tKX8LGPfQxLjpY+NTc3Y/Pmzfj+97+PjRs3Or17dRcVgnrM1JsssRQzPdpXrUIkkdBtK9VXT+yf1bJkCVLd3fbtpA+JmXplM7BMGinqrwNMXsmfVkHvTLEP4nB/v62lwUExIWS/hqNRpCoYZx8KhdAtlMEP9fWVD+y4ZCEmLixbmKlnaPV112HF1Vcj0d6ORRdfjPNvvx3xpqbqh4q45L1A9hL76bUfeywSwgUAL2PG2KT0+LjUq7i49BYAmoTs7zHhXKxx1ix0mWyzw+ediIi8IFgpaUfFYjFcd911uM7kxEW/K9dTTxW88Hu2gypY1zhnDhpnzcLgyy+XvF+BGGgQTzRJluzs1N22K3AmZlS2Ll1aUS+zmaecgmgyiWxRUKr/8GF08jWtiKr0ttKeVzPWr8frv/711O2hvj4kSkwsB9zRU0/TNIyPjuq2sfzWWCQWw1nf+Y60PV7l5HC/X5AKKql/rc+y4hlcmiSW0cYaGzH/aPVNgVh+K1q4fbvp7x2xzy+PH0RE5EaBzNQjPfbUk4lDMuItLYg3NUllHSWDekJASgxYkaxW5bfisJdKX4toIiH1Z2IJbuXETD0rgW6xr97IwEDZSdRuWABPjI1Jx01m6lUuVlRmZ4a4KPf7Bakgyiv6185iUM+XxKm3Cy64ADHhHLZsUM9kPz1Aft6Z6UtERG7EoB5JJ0TFPfU0TVMH9Xx+YiMOySj0/WJQr7akQRk2ld+Kj2PltRBLcPsPH/b958Bu1Uy+LRCDevl8HkPCNOJ4S4v+l1zwOomlt7GmJiQrKD2mSZVk6iXa2zHn9NP1G13wXiB7jQwMSL2A/dRPD2BPPWDywogYvBVLb4HSQb3YtGnyMaEEBlOJiMgLGNQjuadeUfltLptVnsT4/YRSCj4czSgSTxYrKb8Vs9BIJgbbxAw7q8QAq5XXQgzqpcfHMTo0VNV+BY0YLK9k8m1Boq0NLUuX6raJC3qxd6UbFmLikIxKS8BpUiU99Y657jrEhCCg37+7gkjssTZ95cqKenV6ATPGgB5hQEa8uRnzzz5bul+yq0vK0C1YcO65iDQ0mP6bUvltAJ93IiJyPwb1qOT0W6NMKb8vjKQyQYNMvVKZZMzUq1ytym/tyNRrXb4c0+bN023rP3y4qv0KGrGs3UqmHgDMUEyiLiYNpHHBQmxC6KfXvGiRQ3vibWKQzkg4GsUx73ufFAxh+a3/+L2fHsCMMUCeervwwguVAbpwJILUjBnKx1i4fXtFf5PPOxEReQGDeiQF9XImgnp+XxhJDf2PZuhVk6nHoF55UvltjTL1rLwWoVAIc9/8Zt029tWrjFFZe6XEElyRlKln6a/Yi4Nz7GG2p96Gz38eTbNmIRyL6X/g8++uoNE0zff99ABF+a2mBSrAND46KrVZWHr55Yb3b1KU4IajUcw/55yK/i4z9YiIyAsCOf2W9MTy2+Lpt0ZBlaBm6olXf0sF9aThDCy/LUt8jrLpNDRNq7pMUQrqWXwt5m3dil033TR1e7CnB7lcDhGDUh96g6ZpcqaexcBW9/r1JX8ufk7dsBCTgvw8HlhSqqfe2T/8IabNnYt4Swumr1gBgL3I/G5kYEDXMgQIRqZe0IhZeg3Tp2PuWWcZ3l/VV2/26aejobW1or8rZerx+EFERC7ETD1CNJnU3TaTqeeGRXItme2pl81kpGnBwGTz/mwmo9vGTL3yEornqNq+evl8HjmbXos5Z56JUPiNw2Y+n5dKv0gtm05LCyKrmXodxx1n2BcpHIvJCzcXHK+kwLLPen7VS6meesmODszYsAFtK1dOXQhg+a2/DQjH35alS6U2GX6gCuoFKcA0ILS6WHzxxYjE44b3V/VrrbT0FmD5LREReQODesSeeoLMxIT0724s9NRTXP3NKLL1VIEoBvXKU2UvVVuCa+drkZg+XSr9ZAmuOVJWayhk2PeonEg8js43vUn5s0RHhytLpliOb49SPfVUgVKW3/qb1E/v1FMd2pPaEjNOAXcc1+pFzPKevXlzyfurArsLL7ig4r+rKnsmIiJyGwb1SNlTr3DiEsTyW3GREE2lpkq54s3NiKZSup+rSnBVz1uivd3GvfSnSDwuZeJUG9RTBaareS2kvnoclmGKNIG4vb2qkjKjvnrJzk6EXVgObVcJeNCVKr9VBUpZPudfmqZJ39d+7KcHGGTqBSjAlBUvipTJdG5dtkx3u2vtWkybO7fiv8upw0RE5AUM6pHUUw+aNrXwCeKgDLGcZ+bGjYgczfYIhULSFeC04jkSn7eGtrbA98QxS1yYl5owbIbdwaR5W7fqbo8ODUk9GEkmvo6pKstPjfrqJTs6gLD+q83pxW8um9VlQAMsv7XKMKgXCimD9Sy/9a/RwUGpzYUf++kBwQ7qaZpW8bCrBdu2of244wAA4XgcG264wdLfZvktERF5AYN6JGXqAW/01Qtipt7AkSO622KZhxTUM5Gpx1I78xI2T8C1+7XoXrdO6tnGbL3ypOBqlZlqM4yCeqpMPYcXYqr3MI8J1hiV3yba2pQZmsy08S9x6u20BQswbd48h/amtpTltz4+DyumbKFR5qJINJnE5ffdh0v+8Adc/cILmCdk2JvlxlYOREREIgb1SConBd7oq2eUgeTXE5tMOo3RoSHdNimoJ/TVUwX1OPnWOtUE3GrYPXU0HI1izpYtum197KtXlt2ZetPmz1cu7JKdna7L1BP/7eFYDPGWFof2xtuMMvWMgqRiMCQfkEBIEEgX4HyapQcEO1NPla1v5ns8mkxi1qZNlqesAyzfJyIib2BQj9SZetks0hMTGB8ZUf6OX09spH56ySS61q7VbUuZydRjU3zLal5+a8NrIZbgDhw+HJgFllV2Z0yGQiFlX71kR4freuqp/u2F6axUGaNMPaNFfkQYlMHPqT8EqZ8eEPCgnnD8bGhtLTn51k4clEFERF7AoB4hEo/LfYdyOemEuZhfT2zEK/8zN26UTh5Nld8yqGeZuDivevptDV4LsZQnm8lguL+/6sf1s1p8JmaognqdnQi5PFOPxwPrxEE6BUbBeqls0affXUEzNjwsfTf4dfItwKBeMTsuzJnFnnpEROQFDOoRAHlYRi6XkwJcxYKSqSeW3gLmym856dI6sdda1eW3NXgtps2bNzURuaCfJbgl1aLPpCpTL9HZ6bo+SOyxaR+j8lujcm7pgpVPv7uCRuyn1zh7NpoXLXJob2pP2VMvIAEmu1toVIJBPSIi8gIG9QiAXIKbz+WkKbC6n/twYZRJpzEyOKjbpirnsTQog5MuTat1+a1dARWxBLePwzJKqkW2Wte6dYBQxprs6JAy9ZzOzqpFtmhQRRIJKWgLGC/0w0L5rdPvBbLHxOio7nb3unW+LmmXjmkA4MPzMBW7+7FWguW3RETkBQzqEQB5WMb46CjGhIERxfx4YqPqp9e9bp10PzFTL5fNIpfN6rax3M66RHu77nbV029r9FqIJbjDfX2+/FzYpRbB1YaWFt3rEG9uRtfatXKmXtV/qTrM1LNPKBRSZusZleQx08afxM9UasYMh/akPkKhUGDfy46W37os65uIiEiFQT0CIGfq9R08WPL+fiy/FTMTZ5x8MiINDdL9xEw9AEgLgSOW31onZeql01WdSNfqtWhZulR3W9M0X34u7JDP55HLZHTb7Apsnfmtb2H529+OBeefjwt++UvEUinXZeoxyG8vVV89Tr8NFidLMp0S1KwxKVOvjsdP9uQkIiIvkJt0UCCJmXql+ukB/jyZHBT+zbMNJunFpk1DrLERmaLJwOnxcSSPBkY1TZP6wHERb574XGn5PHK5HKKKnkLl1PK1UJVD+fFzYQdVtqVdJelNc+bgzd/9rm4be+r5m2oCrtnpt1yU+0MQW1yEo1Hkim47fVyrFyePn1J2JC8KEBGRCzFTjwCoe+oVE/sS+e3ERtVPTzUkA5gsg0mVGJahGuxQz3IRr1MtzsWeZGbV8rVQ9fUKxhKrcuLrFwqHkWhrq9nfc/302wAEIGopmkxK28xm6jn9XiB7BDH7NagBJiePnyy/JSIiL2BQjwDIQT3R3LPO0t3224mN2E8vkkgoJ2sWiCW4maKgnjIrKQClQXaJTZuGcDyu22a1r14tXwvxZB8As4AMiIuyhGqYhY2kgKvTQT2W49sqL5RyA8YLfU6/9acgZr8GNUDt5PEzqM85ERF5C4N6BEAuvy0Wa2rCjPXrddv8tjASg3ozDfrpFZSagCsGMBpaWxERglRkLBQKKfvqWVHL10KZqccTfqV6L8DdNCgjl81Kmc9BCEDUUlYxcVwcsFPA6bf+U8senW4WxEEZyhYazNQjIiLSYVCPAADREpl6M085BRGh3MlvZR/ikIxZBv30CioJ6rHUrnLilXir5be1fC2UmWY84Veqd1N7Nw3KqGU/waDKKY4HUu+8o4IYCPE75WeKQT1fcvq1ZqYeERF5AYN6BACIlcjUm715s7Rg8tOJTTadxsjAgG6bUT+9gkaxp17RIjOIZUF2E4M+dpXf2vlaMFPPvHo3tXdTdoUY0AzHYsrprWReTpGpZ0TM1PNblnkQSRd5QiHDTE0/CWKASXVBL1HH8tsgBlKJiMh7GNQjAKV76s3evNnXgzIGent1t8v10wMUQb1SmXoM6lVMHGZhV/ltzYN6tj26v9T9M+GiQRmqgGYoFHJob/yhoqCeODWbi3LPEz9TifZ2dY9TnwnioIy08Fo3TJ9umJVbC0F8zomIyHsY1CMAxuW3saYmdJ54ohzU89HCaPDIEd3tGevXI5pIlPyd1IwZutssv7WXbZl6NXwtOCjDvHpnr7ppgc8gv/3WfPKTutuzTz/d8L5Sf0V+Rj0vqJ+pIGaNiZl69X6txexIfscTEZEbMahHAIzLb2du3IhILCZNI/VTCZPYT69c6S0gZ+rlslnkslkAcgAjFZAFh52koJ7Vnnq1fC0UPfWCsMiyot6LcLGnnqsy9Tj5tmor3/EOTFuwAMDkhacNN9xgeF+W3/pPUFtcBLH81unXOoiBVCIi8p5o+btQEBhl6hUCXH7N1MtmMhX30wPkQRnAZLZesqlJCmCIpaRUntgzR5x+Z1YtXwtVNphfPhd2q3dPPVcNymDmru2SHR248o9/xKFHHsH05cvRNGeO4X1Zfus/zNSbFITvG6dfa2b6EhGRFzCoRwCMe+oVAlzSoAyfZDsM9/XpbkcaGtC9fn3Z34tPm4bYtGnIDA1NbUtPTEwG9cTsMC7iKyaeuNs1KMPO10LVU48BAzWnp986uRATA9LM1LNHQ0sL5m7ZUvZ+YiAkz8+o5wX1O1YKUPvkPKwUpy+KSM85Jr9P2BeViIjchOW3BEAd1Is1NqJzzRoAikw9n5xMpoWG663LlpXtp1cgZusVHsvpK8t+YFv5bb0HZTBgIMnnclOl6QW1XoQrA64O4fHAWX797goyKQM7IIHyIGaNOd2+wCioR0RE5CYM6hEAIKroqTfzlFOmMvT8WvYhTlarJNigCurl83lkMxnddpbbVU5cpOWy2Yp7YdX6tZBKPAFm6imosixrXZLupky9epcekx4b3ftPUAPlfj0PK8Xp46cyqMcLA0RE5DIM6hEAdVCvuLecX5uNS5PVKgnqCcMy0uPjyt5vQVlw2En1nFXaV6/Wr0UoFAKEEpwgLLIqJS7KQpEIEtOn1/RvSpl6buqpx+NBXZUrv9U0Dblcrp67RFVi+e2kIHzfOH38lC4KIBjPOxEReQt76hEAdfltqaCeX05qqpmspsrUk8pEQyEk2tst719QJdraJgNmRe+zzMQE4iZLowv316nBaxGORJAvKi31x6fCXqp+esosRxu5OlOPQb26Er+7oGlTPbFGBgbwzEMPYWJsDF3z5mHJ8cezV5YHiJ+poJTfBjKoV8sJ9iawzQYREXkBM/UIANC8YAHC8fjU7UR7+1Q/PcC/fYmqacKcUgX1FP1fVFNSqbRwNIoGIZur0mEZqmCS3a+FmzLC3MqJadBS76ma/0W1XDaLvJAFxqBefanK5wqf093PP4+JsTEAwKHXX8dAT089d40syOfzyAltFYKSqSdmjfnlPMyIls9LGff1+P4oxp56RETkBQzqEQAg3tyMjV/8IkLhMOLNzdj8ta/pJt5GigJ+gH9OatJCwKGinnqK8lunS0X8pNoJuPXIkApi4/JKOZFpIWUCOvS6qN6zPCbUl5SphzdKcEcGB3XbxWno5D5B/kwFLVPPDa91qYsCREREbsHyW5pywl/8BY593/ug5XKIJpO6n/k2U8/u8luW2tkm2d6O/qLblfbUq0eA1U1lnm7lRKDbLcFW8d8ejscRb252ZF+CqlSmjfj6jA0P12WfyDqxDy5CITS0tTmzM3XGoB6n3xIREakwqEc6YkZegaqnXqEvkVdpmlZV+a2YqZfP5TA+MmL58UhPytQTF3Nl1GNqHstvy3NieqFbM/WSnZ2ePmZ6karRPfJ55HM55Ir6YQIM6nmBVM7f3h6YFhdS+a3Pv2/E17qhrU2dOVdDykEZPrmoTURE/sHyWzJFVcLk9RPKXDYrnZxVVH4rZOoBcjkXg3rWib1zqu6pV4egnrc/EbWh6m1Ya255XViO77yIQfmt6ngyJlyUIfdJi+X83d0O7Un9BT1Tz4neiczUIyIiL2BQj0xRBvU8frVSlflVSeAn1tgoldKNDAzoHy8gU/lqISlMqq26p14NXgsxQ4Qn+zKxbLou5bcuKYtmUM95ykwbRZY2MPlerfQ4Q/UV5M+UFNTz+DlYOU5cEBJx+i0REXkBg3pkih8z9cTFWzSZRKyxsaLHEEtwxXKuoEzlqwVxsVZtT71avBZuKfN0s3pkTIrcUhbNHpvOU5br5fOGwbtxluC6Wj2O624VuPJbB1o3iKTvePj/eSciIu9hUI9MCUKmnpUTRlUJbrWPSZOq7qnnRPktT/Yl9ciYFLllIeZEliLpGU2/NTqesK+eu7kh0OOUwJXfuiArMxQKBe55JyIi72FQj0xRDdDw+omNHVk0qXJBPZbfWpbwQPmtWzLC3Eo1jKAei3C3NM53w6I06Ix6YhkG9dhXz9WC/JmS3ss+/75xy0WRoGVIEhGR9zCoR6Yosx2YqcdMvRpSld+aPZnO1SmYxEy90lSB2LoszFySqcfyW+cpe2KVKL9lpp67OVHO7xZScMnj52DluCWAKwVTff68ExGR9zCoR6YEofzWSm8esaeeKEgLDruJJ/CapkmBOiPZKoegmOWWgQxuJX7GwtEoGlpba/53lZl6TgT1Atz/yy2MyudYfutN0kTUIE2/DdhFJLdcFOHFOyIicjtFB2kiWRAGZVg5YSwV1KtXAMOvEopy2czEBKKK96J0P+G1rdVrEdTy2/2vvoq9L76IhkQCS044AcmmJuX9xNch0dGh7HdnN7f01FP9+6n+QtEoUHRBoFRQb3xkBJqmIRQK1Wv3qAJuyd5yQtB6u7nltQ7a805ERN7DTD0yJRyJAMIix2+ZepbKb2fMMPxZorOTC8MqxFIpRFMp3TazffXE17ZWr4WUOWH7X3Cf8dFRvPzEE5gYHcVgby9e3bXL8L5OlcopSy7r8pffkJmYQD6X020LUgDCTaRFeYny23w+j4mxsXrsFlUol81Kn6kgZb8GqbdbPp9HNpPRbWNQj4iISI1BPTJNzNbz+olNrctvg7TYqBVxuIXVoF6tXosgluXse+kl3e3eAwcM7ysF9eqUqabMBqzza9MjPC+RhgY0zZlT132gSarvrlLTtAsluJl0GsMDA57vH+sXqtcsSC0uVMFpvxKHZADOvdZBCqYSEZE3sfyWTIvEYsgXnWh5/YTSjtKOUtNvmZVTvURnJ4Zef33qtqpXnkq6Tr14glh+W0kWk1M9kZSZenV+bY7s3au7veC88xBNJOq6DzSpkkw9YLIEd6ivD7sefBDZTAaNLS049pRTEFFM0qX6Eb+zI4kEYgal/34UpIwx6fMZCiHR3u7IvpR63of7+zHU14fWzk7DNhRERES1xjNUMi0cjwMjI1O38x4+odQ0TQ44WLgKHEul0NDaion+fulnDOpVz2qmnhj8q1lQL4CDMswOKwEcLL91OFMvPT6OgSNHdNuWXnFF3f4+6YmZerlMRirjLDY2PIye/funyv9GBgbQc+AAuphp6SjxYk2qqytQLS4CFdQTW2i0t6sHINWBUYbkwJEjeOqBBwBNQzgSwfGbNyPFwB4RETmA5bdkmlTC5OFMPTtLO4yy9RjUq57l8luHMvX8tMjKZjLo2b8fo0ND0nazxosuAgBAKiCZej379+tux5qaMP/cc+v290lPXJSny2T8jg0PS0HZPc8/b/t+UWWcukjgFkEqA3XLkAzA+Hv+5aeemrpYlM/lsO/FF+u+b0RERACDelQBP/XUUwWHrPb7ajQK6gVswVEL4rTQUn2wSt2vVq9FuA6TXJ2Qy2bx+I4dePbhh/HoXXfhcFEpqSpTT3UsyGWzGOrr023rOOEE2/dVRTn9ti5/edLhPXt0txdu346YMPSF6kcMhqTHx0vev9BTrxhLb53npkCPE4LUU088R3OyR7FRhuTo4KBu+8GiViFERET15M8VKdWEnzL1xMVBQ2srIvG4pccyGpYRtAVHLYjPoSrDUqVeCwK/Zur1Hzqky7J7/Zlnpv5tOUWmnurfPdjbq9sejkYx69RTa7C3MlWmXr3Kb8dHR6Vg5tK3vKUuf5vUxO+uckE9Vd9Ip0r/6A12tMzwsiCX3zr5WosXBYy+S4JUCk5ERO7CoB6Z5uegXjUnjEaZepx+Wz27pt+yp15lxoWgxvjoKIaPBqqyikw91XRQsXyxa906xKdNs3EvjSkz9er02hzZt093u2H6dMzburUuf5vUpPJbIag3fcWKso/BTD3nSVPNA3bhLEjlt2KJfKq726E9MR9MZeCfiIicwqAemRYRgnpeHpRhZ881w/LbgC04akF8Ds0E9TRNq19Qz6fTb1VlzoUSXFUwX1MMHeg/fFh3e84ZZ9i0d+U5maknTr1dfMkllrOAyR7lgnrNCxcaZlwXRLhgd5ybsrecEOhMPQfPp8RgnaZpyueeQT0iInIKg3pkmp8y9cSrwFVl6hmV3wZswVELifZ23W0zPfVyuZyUOVar18Kv5beq5/nI3r2Gk2/F5zubTmNkYEC3bc6ZZ9q3g2U4lak3Njws/btZeuu8cuW3yc5OtC5bVs9dIgsY1AtwUM9F5bdaPq9sBcKgHhEROYVBPTLNV4MyxNKOGpTfMlOveuJzmM/lkFdkhRXLKgJStXotpJN4D38miqmCepl0Wjcwo5gY4B/o6dHdjiQSmLFhg307WIYyU68OxCy9VHc3Zp9+uiP7Qm8Q3w/iBOdUV1fZoF6uzHGHaq9eU83dShVc8iupL66T5beKi3eqqgG/Ds4iIiL3Y5MYMk0M6o0NDyOfy3ny6qR4lbWq8ltFpl4kkUCsqcnyY9Ik1euSSafRkEwa/o4YkKrpa+HTnnpiJmvBvpdfVm4XM/XEfnozN25ENJGwZ+dMcCJTT9M0Kei5+LLLPHl89Bsxw0mU7OpCasaMkvcpdzGBakvVViFofWul97FPvm9U3FR+q+plqLrw5ecgKxERuRsvK5FpYlBv74sv4tE//AHjo6MO7ZF1dpZ2pBSZeqmuLk5Cs0FDa6uUZVOur15aMfm2Vq+F6gq+Hxg9x2NDQ8rtYlCvXwjq1bP0FlAH9Wq9AB4dHMTY8LBu2zKW3rqC+N0lSnZ1oXXp0pL3YVDPWapyR5bf+uP7RpTLZqXPm5MBXNXzrrrwxWxeIiJyCoN6ZJo4KAMAxkdGcPD11x3Ym+pIk9WqOGGMJhJomD5dty0RsLKgWgmFwxX31RPLb2u58HOqzLOWjLIQSv5O0WImPT4uBf/qOSQDAEKhUN0nE4tTb5vmzsWMk0+u6d8kc8pl6qW6utC6fHnJ+3DB7izVhYbAl9/6NKin+v5Jumz6rWofjXrOEhER1RqDemSaUbbDnuefr/OeVM/u3jxiCW4qYIuNWqp0Aq702nZ02L5PBX4clJHLZisuIyrO1BNLb+PNzehas8aWfauEFNSr4d9Sld4ufctb1BmDVHdmym+bFywoeT9m6jlLDKI0tLYGbqq0FFzyabmn+FpHk0nEGhsd2hs5mAqDnnr5XM4X5wBEROQ9XHGQaeVKmLwin88jJzRKrzabSxyWEbSyoFoSM/VUZVjF7JxsXE69s8HqodIsPUAf1BNLb2eddlrZoEotSFmUNXxthvv7MSG0IVh6xRU1+3tUmXLfXanuboSjUTQvXmx4Hwb1nCW1zHAwc8spfm33IFJ9hzvZzkR63vN5w+9JZusREZETGNQj0/wS1FOWdlQZ+Jk2f77udtPs2VU9Hr1BytQrE3RKj43pf7+OmXp+aFyuGjQSLTGYBNBnjIiZevUuvS2oZ8BVnHrbsnQpOt/0ppr9PaqMlGkjSBw9RkwvMQGX5bfOkqahBjAbPjDlt4q+uE4yOygD4HGCiIicwaAemWYU1PNaiZl4whiKRJAQeuJVauXVV09lI0WTSSy76qqqHo/eUEn5raZpGOjp0W2bvmJFTfYLUFzBr9lfqh9xsdI4axYWXnBByd8pZOqNj4xIGWv1HpJRUK+Aq6ZpUj+9ZW95CwfluIiqH2xBor196uelhmUwU89Z9czAdqugDMqwc5CZHcz21AOYqUdERM7wVjSGHBU26F8T9VgGn3TC2NFRdWBy5imn4C0PPYTTv/51XPHHP6Jt1aqqHo/ekKyg/HZ0cFD6eS2DSn7M1BOnByc7O8sGqQsBD7H0NtnZifbVq+3dQZPq1VNvsKcH6fFx3TaW3rpLqUy94oBBqWEZWj7v2x5mXuC2QI8TGNRzhjKoZ3AekmdQj4iIHFD/RkfkWUbZDjGPNauu1Qljx3HHoeO442x5LHqDOEm4VPlt/+HDutvNixahecGCWuwWAH8OyhCf31RXF+adfTYa2tow0dur/J1CsEMsvZ19+umOZfLW67URS2/bjz2WQX2XKdXTsbi0r1SmHgDk8nlEPZaZ7hfS93YAy2+DOijDU+W3DOoREZEDeHZKphmV30a9FtSzefIt1ZbYE69U+a3Uz63GpZ9BGJSR7O5GJB7HkssuM/ydfD4/Wfpc5+e/FCmYWIPXRsvncWT/ft02Zum5T6l+sMUXdaaXyNQDmIXjJLcFepwQ1J56bsvUy2WzhsE7BvWIiMgJDOqRaUYLI7GvmNu5rbSDSjMb1Mvn81I/vblbttRsv4CAZOodDXovL1GCm8/nMTY0JP2uU0MygPq8NuOjo1K599K3vMX2v0PVKZmpVzRFNdnVhXhzs+F92VfPOW4L9DghKOW3buufKH6XiO0WinFQBhEROYFBPTLNcGHksRNLXvH3FjGTMptOKxczw3190qJ7zumn13LXfNlTT5WpB0z2jew88UTl72j5vNRPr2nuXLQsXlybnTShHmW/4uIzNm0aWhYtqvnfpcqU7KlXdHwJhUJoLTEBl0E957D8NjhBPbedo4nPe8mgHjP1iIjIAQzqkWlGmXpeO7Fk+a23JIRMPUA9LEMMKnUcf3zNX1tp+q3HPgsqYqCqsKAKhcPY9tOf4tgPfED6nXw+ryy9dXICbD0y9dy2+CQ1s5l6AEoG9ZiF44x8LicFS4L4WZOC05rmi++cYlo+L32/O52pJx4/SvX1ZVCPiIicwKAemeaboJ7LSjuoNLH8FlCX4A4IQzLqUfpZj75t9VYq6D1t7lxs/spXsPTKK3X3yedyGBRKn50svQXq0+/QKKuR3KVUUE88/ncce6zhfZmp5wzV8T6I39vK97EPvnOKqV5rpwO4FZXfMqhHREQOYFCPTIsYDcTw2Ekly3i8JdLQIPW5Ek/8c9kshvr6dNvqMaRBygar+V+srXw+j1wmo9smZjIBk69JsWw6jazwezPWr7d/BytQj9JoqfcTjyWuZHb6LQCsfOc70ThrlvK+DOo5Q/zODkejaGhtdWZnHKR6H3vtomo5UhZcKKTM1q+nUscPEYfpEBGRExjUI9P8kKmnaZpheSG5l3hSnxVew8GeHt37MByNYtZpp9V8v/w2/VZVVqTKiBGDehNjY9J9UjNn2rdjFjiSqcdjiSuZnX4LTAZm3/b007jw179GrKlJ9zOW3zpD/JwlOjvr0jPTbVS9Ib3+nSOSjqkdHY4PY5MuEJXATD0iInJC8M6KyDI/BPVy2Sy0fF63TZWJRO5SbgKu2E+ve/16xIUFeS34bVCGuKAKRSJItLVJ94smErrbYlAvmkrV5fkvpZKFmFVSTz0eS1ypkp56ABCfNg1zt2xBy5Iluu3M1HMGe1dOCkKmXtpl/fSAyjL1GPgnIiInMKhHpvkhqKfMROJC3PXEskYxqCf106tD6S3g/0y9pEFGjFiKLwb13BDcYqYeFRhNv42mUog1Nhr+XjSZ1N1mUM8ZUqAnoGXuyqCecJHS69wYwK0oqMdMPSIicgCDemSaYQmThwIZ4gljrKkJsVTKob0hs8Ty2+KgXmZiAiODg7qfz61XUM9n02/NBqnE8lsx2OGG4JZUslWP6bcuCGaSzOi7q9z7VPxuYBaOMxg8nxTI8lsXvNZGFwVUGNQjIiInMKhHpoVCIeV2L51USv30uAj3BKn8tuh1HBBKb6OpFLrrNKTB6V4/dhMzYoyyJMSgnsgN2RWoQ6YeB2V4g1GmTbmAQVQI6jFTzxkcbjUpCOW3brxQwvJbIiJyOwb1yLSJgQHldi+dUrrxKjCVJwb1skXBJ7Gf3uzTTjOe1GyzoGbqhcsE9dxQ0i4GXO1+ZXLZrCszFElmlKlXLvjMoJ47uDHQ44RABPVcWGrN8lsiInI7BvXItIn+fvUPPHRS6cZ+LVReokRPPaf66QH+H5Th5Uw9qRegza+Nqj9nUIMNbmdXph6zcOovm81isLdXt61pzhyH9sZZQeyp54YLJZUMXcozqEdERA5gUI9MywwPK7d76aRSOmHkItwTjMpvx0dHMT46qvtZXYN6fh+UYTWo54LPVa2zKKVJwQ0NiE2bZuvfIHsYBvXKZAExU895vfv36573cDSKeVu3OrhHzgliTz03XCBiph4REbkdg3pk2sp3vEO53UunlFJPPRecMFJ5DS0tutuFjBkxSy/R0YGO446r234FtfzWE0E9sQeoza+NeCyJTZ9u2HeUnGV5UAan3zru8J49uttzt26VLvIEhWoSude/c4ppmubOTD0G9YiIyOUY1CPTOk88EUuvvFLa7qWTSvbm8aZoY6PudqHEReynN+eMM5QLn1qpx4TVehL7GVktv3XFQqzGPfWkSdptbTb/BbKL0aKcgzLcLT0+jn7hws3yt77Vob1xXigUkrLGvHT+VU4um0VeqPxww4XXUpl64gUDTdN4nCAiorpjUI9MC4VC2HrzzTjjW9/S/8BDJ5Usv/WmmLC41jQN+Xwegz09uu31LL0F/JWpV0mWRDSRKPlYbliI1bo0Wnyu4gzquZbRorzSQRnsqVdfR/bt092ONjZi4QUXOLQ37iAGqL38nSNS9Sl1wwWiUkG9lsWLpW08ThARUb0xqEcVCYVCUpNqL51UsvzWm8RMPQDIZjJIj4/rts3YsKFeuwTAXz31spmMtP9Gmazlpgu7IVhe6yEmYlYjM/Xcy2r5LTP1nCWW3i668ELEFN8FQSIFmI5mtg329uL5P/4Rrz3zjGeDStIxtbHRFa93qUEZyqAeS3CJiKjOzDeKIDrKq9lJuWxWWpS54Sowlac6sZ8QBmQAQOPMmfXYnSmVTMVzO2WWhMEggVLlt+F4HA2trXbtlmW1DriqeuqRO0ll8kcxqOdeY8PDGO7v121Ttf8IGlX5bXp8HE8/8MDU+zObTmPx8cc7sXtVcWM/PaB0pl7zokXSNgb1iIio3pipRxWrdQZMraiCFuyp5w3i4hqANPU2FIkgUedsKa8GuFWkctLmZsMy21JBvVRXlysGRtQ64Mqeet6hXJSbOF6IZf9ezYDyIjFLLzZ9OuZs2eLQ3riHqvz2yL59uoCz2GvWK9wa1Cs1KCPV3S1ddMwzqEdERHXGoB5VzKuBDLG0I9LQgHhzs0N7Q5WINDRImVdipl6yq6uuQzIAfw3KED8fpUpowyWCem4ovQXq31OPQT33UpXfxlpbyx4vopx+6whN03B4717dtvY3v7lkxlRQqDL1xGEimjBswiukQWYuCeqVet+lursRmzZNt42ZekREVG8M6lHFvBrUk/rpdXe7IqOIyguFQlJfvfGREd3txhkz6rlLk3zUU09aUBmU3gLlM/XcoOY99RjU8wxVpo2Zcmmp/JaL9boY7u+Xju8dZ5/t0N64ixhgyudy0sAor34PiedobsnUMyrfByZbVMSamnTbmNFLRET1xqAeVcyr2UluLe0gc8QSF7H81onXU/wseHUxBSgWVCUy7koF9dzyuaplpl4+n0c2k9FtY1DPvVSZNmZeL06/dYZYetu8aBGaVq92aG/cRQxQD/b2SplhXv0eErPFXXOBqFymnhjUY/CfiIjqjLUMVDGvZupJmUguKRMkc8QFthjUc+L19POgjFILKk9m6tlI1Z+TQT33Upbfmni9xJ56+VwOmqYxw7uGtHweR4TS26VXXcXn/CgxQN1/6JB8J4+ck4nceuG1VKZeqrsbcQb1yEU0TcP+l19Gz4EDaG5vx7xly+remoaI6o9BPaqYX4J6bjlhJHPETL2JsTHdbSeCSV79LKhIn48S5bdGAzQA9wTLa5mpJz5XoUgEUfbndC27MvWAyaCTn4L5btN/5IiUsbXsyivxqmLaeRCJ7+WRwUHpPl78HtI0DWNDQ7ptrvkuKZGpl+zqYqYeuUrvwYN45emnAQCDPT2INzRg5sKFDu8VEdUaQ/dUMdUCyQsnkVJPPQb1PEVaYAvvOScGNPg5qFdqQVWy/NYtC7EavjaqCwS8Eu5eykw9Cz31AJbg1ppYetu1di1aly1zaG/cp1SAqcCL30Ojg4NSMLdr7VqH9kbPaFBGvKUF0URCHpTBYwQ5SDyGDvX2OrQnRFRPXIVQxZSLVw+cRLL81tvEUjiRI+W34mfBA58DI5Vksnqi/LaGrw0vEHiLnZl6nIBbO7lsFj379+u2LbvqKof2xp3MTAD2YlCvT5jg27xoEVoWLXJob/SMnvPCOQcz9cgtNE3DgDgN24PHAyKqHIN6VDFV6ZEXvjSkoAWDep4iTr8VORFY8fWgDIvTb91S1i69NjY+diWlyuQ8q9NvVRcSGNSrnd4DB3TPbygcxtIrrnBwj9zHTFDPixeXxEDE3LPOcmhPZEbZkYXjflzM1GNQjxwy3N8vDfHy8nkpEZnHoB5VTNU02AtfGpUMAiD3EXvqiVh+a10um5WCFakZMwzvHwqHy2YvOK6GmXq8QOAtEYuDMsLxuJTxydK62jksDMiYc+aZaCxxHAoiM/0cvfY9lM/lMNjTo9vmpqBe2Uw94dwkz6AeOaRfCI4D3jseEJE1DOpRxZSZeg7sRyXy+bx09cotGUVkjqoUrpgrpt969ORJNc213POpytYLhcNItLfbtl/VqGUWJYfueIsyU89EUC8UCknvcy2ft22/6A2ZiQlpkuuyt77Vob1xLz+W3w729iJf9LkKhcOYc8YZDu6RnlEgleW35DaqoB4RBQODelQx5QmOy08irQQtyF1KZeqFIhFHgkmhUEh3292fAmNi6W0kkUC8zDTXsCKol+zsVGbyOqGWWZTsqectqRkz0FBUbpuaMQNxk8cLv2Tjut2Rfft0z20kkcDiiy5ybodcylT5Lbz1PhUDEV1r1yJhojy+Xoye88LFHA7KIDfIZbPKoRheOhYQkXUM6lHFvNhTTwzqhSIRJExkapB7lMrUcyqY5NdMvVR3txSwFKky9dxUhlrLQRnM1POWSCyG0/7t3xBvbkbD9OnY9K//amqKKCAv6N3+XedV4oCMhRdcUPbCQhCZDep56btIDOq5qfQW4KAM8oaBnh7195OHjgVEZJ3JswOiN/ghqJfs6lJP8SXXKpWp51TWpV+yeKTMMxPPpyqo56aMNem1sfGxVceTMRsfn+y3/KqrsPyqq6BpGvL5PB577DFTv+eXwL3bjY2M6G4vvuQSh/bE3cwGozVNQ+nLMu6QnpjAyMCAbptXgnqFizkclEFuYFR669XzUiKqDKMaVDFlRpTLvzSsBC3IXUpm6jkUTPLL9FtVpl450URC2uamjLVaZeppmoZMOq3bxuOJd5TLQBUxU6/2NE2TjkHN8+c7tDfu5rfyW3HqbayxETM2bHBob9SMAqmFi1jiBUcG9cgJ4mepwCvHAiKqDoN6VDE/ZOq5KaOIzHFlpl4NSzzryco0V89l6tn02ogBPcBdwUyyl1+ycd0sl8lIA0jcVMrvJqqgnuq70SvvUzG7aNbmzYjE4w7tjVrZQRnM1COHTYyPY3RoyOndICIHMahHFfNDUI+LcO8pGdRz6PWsZYlnPaXHx3W3G80E9RQLLzdlrNUq4KoaupPo6LDlscl9mKlXe2ImPeCuY4mbqLLGZqsmxXrgfappmhTUm+ey0lugRPmtQU+9fC7H4wTVlVGWHsDvLKKgYFCPKubF6becVul9Jctv2VOvKnZl6rkpu6ZWAVfxuUq0tyMSi9n06OQ2fvmMu5n4mYq3tCjL+0kdYJp/zjnSNi+8T8eGh6ULSm7rpwcYB/XiR4N5cSGoB0wG9ojqpf/QIcOfeeFYQETVY1CPKqY6wXH7l4aVoAW5S6mgnlsGZbg9uG3ESk8915ffCr3TbCu/ZX/OQJEyo4QyUaoee96aJ55/hcJhzN2yRbqf28/JALn0tnH2bExfudKhvTGmOuct/u4Xy28BluBS/Wiahv4jR0rdoX47Q0SOYVCPKuaH8lsuGrzHCz313P45MGJlUR1WBfVc9LmqVcBVfK5Yyu9v0jAch/bDz/j9bJ4YZO5aswbJzk7pfl74LhKDenPPOqviQTb1oCp5TrS3T/23WH4LMKhH9TM6OKhsC1LghWMBEVWPQT2qmNSrCu7/0uCgDO9jpl5t5LJZqVTIaqaemwJctQq48lgSLOKCXhzoQNVjUM+85gULdLfnn3uuJ1ui5PN5DAjZRW4svQXUmXrFQb1IQ4N0nxzLb6lOxOC4yO3rMyKyB4N6VLFQKAR4aOqnpmnSxEouGrzHjZl6UhaPiz8HRqw2qXd9UK9GAVeW8geLHz7jbidlv/IzZWjVu9+NtmOOAQB0rlmDE/7yLz1ZPTHU1yddTFKVEbuB6vlNtLW98fNQSMrWY6Ye1YsY1Is3N+vv4PJjARHZQ939laiMUDisy1hw8wmkKi3dTcEHMscoqBcKhx2bPuqHJvri5yOaTCp7BInERvYNbW2uGhghZerZ9LjM1AsWKVPPg59xt+NnyrymWbNw1Z/+hNFDh5Dq7kYoFEJOuGgJuP99KgYiOo4/3rWvu6o6pThTD5jsqzfR3z91m0E9qod8LofBnh7dtjlbtuDl226buu32YwER2YOZemSNh4IZUlAvFFL2oCF3ixoE9RIdHVI2Tb14MUNCpMo8M9PXSMzUc1v2a60yrKT+gzNm2PK45E5hD2Wle5UU1ONnqqRQOIzGGTOmjtNe/B4aEPvpuTRLD5CHLgGKoJ6QqZdnUI/qYLC3F/nilhChEOYJZezuPhIQkV0Y1CNLpCuXLj6BFBcMifZ2ZY8UcreYQU89J4NJqiv4XpMeH9fdNpstIQX13JZlUaNjFPt/BQsz9WpPCpS77Vjicl7rc5zNZjHU16fb5tZ+ekaKy28BIM7yW3KAmPHavXatXLni4mMBEdnH+ytScoSXpn6Oj47qbnMR7k3heFyZkeDkAtCLGRIiq1kyYjm027JrapGpp2mapUnB5F3sqVdbmqYxUF6lUCjkqaFNE8I5GQDM3LTJgT2xbvqKFbrbUk89DsqgOlANm/FDWxgiqhyDemSN+KXh0G6Y0S986bWtWuXQnlA1QqGQsq+ek03VlWW/HjuBsrqgnn/OObrbiy66yK5dskUtsiiz6bT0+rotmEn2YqZebeUyGWmiMAdlVM5LC/mMkB2e6OgwzMR3i+Lvt0RHB5ZddZXu5xyUQfWm5fMYHRzUbZu9ebOnKqmIyD6sQSRLvJKpp2ma1Ltl3pvf7NDeULWiqRTSwkkMM/WqYzXzbOYpp+C8//1fvHbnnZi5cSOWXHZZLXbPslosclWTgjl0x9+YqVdbVqdvk144EkFxaNTN71Mv9iXd8h//gaY5czDe24sTP/5xaVCUOFyKQT2qtbGREX0/PQAdJ5yAAw8+qNvm5mMBEdmHQT2yxCtXgob7+5HNZHTb5jKo51mqTD0nFwRe62WkUk3p28Lzz8fC88+3e5dsUYtjlNSfs6MDkViMpVY+JmbqufW7zqvEz1S8pUUKmFB5XsrUE4N6jR4I4ja0tuK0f/1Xw58zU4/qbWRgQHe7cdYsJBWD49x7JCAiO7H8lqzxyAlk/6FDutvTV67EtLlzHdobqpZqAq6jgzIcmrprJ9X0Wz+oR6YeM4r8z0vBEi/iZ8oe0vAvF79P/TjtmIMyqN5GhKqVjuOPB6A4L3XxsYCI7MOgHlnilYVOH0tvfSWaTErbnCx/9GP5rReyJsyoRU89sRcUAxD+JwZLvPb5djsOybCHV87JAH8eR5mpR/UmBfWOOw6Ad9ojEZG9GNQjS7zwpZHNZDDU16fbNm/rVof2huygLL912aAMN34WjOSyWeSF0lFm6hnzYi8oqo6XgiVexKCePbz0PhWPo374zhF76onfq0R2E8tvjTL13HwsICL7MKhHlnihp97AkSO6/Yo0NGDWaac5uEdULbcF9aDKBnPhZ8GIn5vU1+LCgxSA4JAM32OmXm35McDjBC+9T8XjaKMPLo4wU4/qKTMxIX2OpjL1WH5LFEgM6pE1HrgS1Cf005u1aRNiqZRDe0N2kHrqhUJIdnY6szPwfqaeWAYVTaWkxYlX1eLE1o+9oKg0LpBqSwrwMKhniZfep37so8igHtWTWHobTSbRsnQpAE5sJwoqBvXIEreX32qahn6hn95clt56nhiUTbS3yw3C60g5KMNln4VSVKVvoVDIob2xVy2OUWmxFxSDer7npQwoL+Jnyh5eKbnL5/PIptO6bX54zaVBGSy/pRoSS2/bVq9+I5jn8vUZEdUGg3pkiduvCo+PjGBidFS3jUMyvE/M1HP6Cr/XB2VIpW8+KietxWRi9v8KHilYks87tCf+xM+UPbwSfBZfb8Afrzkz9aiejCbfAuoKEiLyPwb1yBqXXwkSs/RSM2ei/dhjHdobsouYqed0TzPPl9/6sLdRgd2Zelo+j4yYYeKDxSiVJgVLHNoPP9I0jSXtNvFKpp74eociESTa2x3aG/uIgzIY1KNakoZkHO2nB3jnWEBE9mJQjyxxe/mt2E9v3pvf7JuywiBrWbJEd7tt9WqH9uQo1aAMD/Fzk3q7T2zFgB7AAEQQMFOvdrLptPS55GfKGq/00VL105MGr3mQWH6r5fPI81hBNZDP5TA2PKzbVpyp5/ZKKiKqDe9/k5Ij3Pylkc/nJyffFpnL0ltfWHLppZhx8skAgJbFi3HcBz/o6P74LVPP6cxHO9k9oVtcjPolw4RKk3p2eujz7Xaq6dt+agFQT24+Jyvm18xMMVMPAPLM1qMaGB0els4zmalHRM51mCdvc3Gm3lBvL/LFTYpDIcw76yzndohsE29uxiV33YXRQ4eQaGtDNJFwdH9UGQZu+iyU49cFFqA4sa3y8cTnKtnZyd41AcAFUu2In6lERwcisZhDe+NtXumpJw1G8Ul2uGpqfC6X4yKLbDcqlN42L1yIeHPz1G2j81JWKxH5G79vyBI3l9+K/fQ6TzwRyc5Oh/aG7BaORtE0a5bTuzElFIlAKw4iu+izUI6qFMovbM/U45TOQPJKWaMX8TNlH68En/06GCUmDPEC2FePakMaklGUpQdwUEat5fN5hKAOntba6NAQXn/2WYTCYcxfsQIJxXGHgotBPbKkFpMl7SL102OWHtVQKBzWBfXcupgSKZvU+2SBBdgfjPHzc0XGvBIs8SJpUA8/U5a5+UJrMb9eSApHo4gmk8iOjU1tY1CPakEM6rULQT3V+oyZevYYOHIEz/3xj8im05izbBnmLV9et7+taRqe2bkT46OjAICx4WGcsHlz3f4+uR976pElbm0enp6YkKZCzdu61aG9oSCwu8yzXnK5nL5MHf5ZYAGwvUWAXxejVJpXyhq9SPpMMVPPMq/0fsz4ODtTLMFlUI/spmmanKlXNCQDMA7qUXU0TcNLTzyBzMQENE3D7ueew0RREL/WxkdGpgJ6wOQE5GwmU7e/T+7HoB5Z49KrwgNC6W2sqWlqsAJRLUilDi75LJQjLq4Af02/tbsEhZl6wcRMvdqRAjz8TFnmlfepnwO54rAMBvXIbunxcWTTad02sfxWWRbq0uOBl4wND0tTh8dHRur291WDpRjUo2IM6pElbi31EKfezj79dETicYf2hoLAK4spkRikijU2Iq5o9u1Vdh+j2P8rmLySAeVFfg7w1JtXvof8fHGEmXpUa2KWXmzaNDQvWKDbxky92ugXWjsB9X1eVRfieYyhYgzqkSVu7alXnJoMADM3bnRoTygo3BrgLkdcUPspSw+wf1CGnycFkzGvBEu8iJ8p+3ihTDyXzUqLUD8F9cSLYjmhvQVRtSaENU7bypXSuY5yfebC44HXiP3aAdT1eVVl6uWYqUdFGNQja1wayBAXCU2zZzu0JxQU0gmUSz4L5Yi9QFJdXQ7tSW3YHWyVAhA+e75IzQvBEq9in0r7eOF7SDyGAv4K5DJTj2pNGi40a5Z0H1XrEX5vVSeXy2Gwp0faXs9nVawWAXiMIT0G9cgSt2YncZFA9ebVTB6x/+T0FSsc2pPasDObOJ/LSb1L/LQYJWNe/Xy7XT6fl3pD8TNlnRfep2JAIpJIIN7c7NDe2E8M6uW54CabmWlZoOqp58bjgZcM9vQgrxgIWdfyW1VPPR5jqAiDemSJG08guUggJ3ghQ0KUz+UwIFx19NuUaDuPUX7PMCFj7KlXG/xM2csLGaWqgEQoFHJob+zHQRlUa2K2VqMqqKfK1KvZHgWDsvQW9T3OsvyWymFQj6yxuV+VHbhIICeIpQ7OfxLKG+jpQb6o308oHMacLVsc3CP72dlTTzyZCsfjaGhttfx45B1uvIDlB9JnKhZDYvp0h/bG+7zwPpWCej5rYSCV37KnHtnMTB9S9tSzn2pIBgBAkb1XKxyUQeUwqEeWuPEEUvyyC0ejSLS1ObQ3FBRuLUUvRTxB6Vq3Dsn2dof2pjZqmamX6u72VYYJGXPjd50fiAuUVHe3smyMzJH6aLnwfSq95j676CoNyuCCm2xmpsUQp9/aa3x0FGPDw8qf1bWnHstvqQyeQZElbgxkqKZ5cpFAtebF8luxlGD+Oec4tCe1Ix2jqngs9uoMLi+UNXqRmd5QZJ4Xgs9+f805KINqSdM0U4Fx5brHhccDrzDM0kP9jrOapimr0XiMoWKMeJA1biy/9flVYHInLyymiqmuOs4/+2yH9qZ27Ay28tgSXF77fHuFKvuVrPNC8Nnvrzl76lEtZTMZ6XPdOHOmdD9Ov7WXUT89oH7PqyqgB7CnHukxqEeWuHGhI14FVjWQJbKbGz8LpYhXHRPt7ehcs8ahvakdO7OJmakXXByUURtiw3cGyqvjhe8hcWHqt3M0ZupRLal6qiUVfSk5KMM++XweA0eOGN+hTsdZVektwGMM6TGoR5a48QTSTANZIrt5rcRbvOo4b+tW5ZVdr7M1U49BvcCSvuvq2Bjbz/iZspcbz8lEqhYpfhIXMvXyHJRBNhI/P4n2dkTicel+HJRhn6He3pKBM6cz9bLM1KMi3lqNknu4saeeovE2Ua15YTFVkM/n0X/4sG7bPB+W3gI17qnHCwaB4YWyRi/iZ8pebs8oVfYD89k5WqyxUXebWTRkJ2mNoyi9BaAc4sXvLWtKld4C9Xtexde+gMcYKsagHlkiZSe54AuDmXrkBDHLzc0nT0O9vVL2wLw3v9mhvaktO18XZhUFl5eC9l7CPpX2cvv7NJfNIi9kubL8lsg8qXy9xHmI248HXlFqSAbgfKYejzFUjEE9ssSNXxi88k9O8NL0W/GqY+eJJ/o3QGXjhQdmAQcXM/VqQ+qBy89UVdx4TlZMtSj1e/ltLpt13etA3lVJH1IvnZe6VXp8HCODg7pt0VRKfydm6pGLMKhH1nig/JaLBKoHOwcy1JoY1PPj1NsCuybA5bJZKbuRFwyCg4sj+/EzZT+3Z4yLQdx4czNi4gLZ48RMPYB99cg+lQzscvvxwAvELL14czO6hKFydSu/ZU89MoFBPbLEbQsdLhLIKW4sRVeZGB/HqHDV0a/99AD7BpioTqZ4bAkOLo7sp8o68FvWVr257ZxMJJZb+/H1jgmZegCQY1CPbCK1ATHoqQe4/3jgBX1C/+k5W7YgkkjottWt/NYgUy+fy/GchKYwqEeW2NmE3g6qhbcfTxrJfdxe9lQgXXVsacGMDRsc2pvaU02As/LajAwM6G7HmpoQV2RkkD955fPtJeLilJ+p6rk9+ByEcmtVph7L48gulbQY8lIFiRtpmiadM88/+2y5AsThTD2Axxh6A4N6ZI3LvjDEqxhcJFC9uH0xVSCW3s7dskWemOgjykw9C6+N+Lz5ORBKMvbUs18lZWRkTsjl79MgDDKLJpPS906eC26yibjOqWhQRk32yL9GBgel0tZ5Z5/t2EU+o0EZAJBjCS4dxaAeWeK21G4OySDH2FTmWUtaPo9+oZRg/jnnOLQ39WFHpp7yau2551a1X+QtzNSzH6dJ28/tF5eCcI4WCoU4AZdqIp/LSUEmDsqonYmxMd3tpjlzMG3uXEfOB3LZbMnjSJbHGDrK/atRciW3pXZLi4SuLof2hILG7YspABjq75eu5s3butWhvakPVaZepa/M6OCg1P/L78FQ0pOyWV34+faaSqY4kjluX8SLWUZ+PUeTgnrsqUc2UGVqleqp54XzUjeTsiKPPtdOBPVKld4CzNSjNzCoR5a4LagnLRJKfNkR2ckLmTxiCWnbMcegac4ch/amPlSZepUudMXnrXnhQrQuW1bNbpHHeOHz7TVByNqqN7e/T4NyjiYOy2CmHtlBPGaG43E0tLYa/4LL1mheY3S8cqKnntGQjAIeY6iAQT2yxmVXhaUmzD49YST3cSpDYmxkBOMjI6buO9Tbq7s93+dZeoBBpl6lQb2DB3W35597LkKhUFX7Rd7Cnnr2Y/mt/dz+PpXO0XwayGX5LdWCGGRqnDGj5LmIUwMd/MLowpMbM/VYfksF/u2STjXltqvCUmmHT08YyX2c+Cy89uyz2PP88wCA+StXYs7SpSXvL54UdJxwQq12zTWqzdTLZjIY7OvTbZt/9tnV7hZ5jNu+6/yA5bf2c3P5raZpciDXpxdexQFtDOqRHSodNMNBGdURn+/CRQgnLp6UGpIB8BhDb2CmHlni+vJbLhKoTpRTVmsom8lg74svTt3e/fzzyJfp2yP1BwnA56PaTL3+w4d1C+NIQwNmn3GGLftG3uH2DCgvYqae/dwcfFYtSv1aTcFMPaqFSlsWuPl44AVG5bduzNRjTz0qYFCPrHHZF0ZQSjvIferdkHhidBRaPj91O5/LlbySp5ya5tMFVTHl9NsKfl8svZ29eTNiqVSVe0Veo8qAcvr7zsuUWVv8vq6am4PP4gI5FA4j0dHh0N7UlthTr9wFNyIzKk1ckC5quuh44AWqcmfAmYxocV9ELL+lAgb1yBI3fWFo+bycKh2AoAW5Q72v3Kmu2mXS6YruH4TPhzKD0uRro2maNCSDU2+DSZp+S1XJptPSMZIX4arn5swc8Tso2d0t9/zyCWbqUS1Umt3s5uOB25W68OTE88ryWzKLQT2yxE3lt2lFQCMImUjkDnUP6imu2pUM6gn3jzQ0IN7SYvt+uY0yU8/kazMyOCidSM0/91xb9ou8Rfk+KsqUpcr0Chmw4VgMya4uh/bGP9zcGF/KevHx+VmssVF3mwtuskOlwwDdfDxwO+WFJ4Ppt3UpvxWOn/HmZt1tlt9SAYN6ZI2LrgKJ/cLC0SiSPi3tIPepd9aqKqiXLRHUk4bIzJwZiAmu1WTqiaW3LYsXo7XMMBLyJ1WmHrMerDv4+uu623PPOguReNyhvfGPkIvLb4NUbh0Xym8Z1CM7VDoMkJl61knVLaEQkkczI50ovxWPn63Llulu8xhDBQzqkSWuytRTlHbUe3gBBVe9T55UqfiVlN8GpdRNVd5l9rURS2/nsfQ2sKrJ+CS90aEhDPX26ratete7HNobf3HzIt6oP5UfsfyW7KZpmjwoo1z5rYvWaF4jHq+SHR2IxGIAFL1La7wvqlJg8QKz2DObgouRD7LETT31OPmWnFTvK3eVZupJJ4M+Ln3SsRjYz6bTUuBhAYN6gSVmQAFgKZNFh4QsvWRnJxacd55De+MvTpSFmRWkczQpU4+DMqhKuUxGavlQrvzWiYwyvyiVFSkFS2vcikNVCiwG9XjhgAoY1CNrXHQCKR6A/XwVmNyn3oupanvq+bmfUTGrmXr9hw/rbkcSCcw+/XS7dos8ppqMT3pDPp/Hod27dduW/9mfsfTWJm7O1AvSIDNm6pHdVMPOKs7Us3WP/E26EF4c1HN6MF4ohBYG9cgAg3pkiZu+MAKbiUSuUO/Pgqr8tpKeeoEJeqv6Bpo4ARNLb2dv3oxoMmnXXpHHqDL13BQw8Yq+gweliw8svbWP1PvRRe9RKVPPx+doUWFQRp6ZelQl8fPTMH06Ig0NJX/HzUF+tys1lKTeGZDi+XuyowOJtjbdNgb1qIBBPbLEzeW3gQlakCvU80te1VsFqKynnp8XVMVCoVDFfWU0TZOCepx6G2zM1LOHOCBjxoYNaFu50qG98R+3LuJV31l+PkeLJhK62wzqUbWsDJpx0xrNa6SLEEVZkVJlTq33RfHai9Nv2VOPChjUI2tcdAIZpNIOcp96LqZy2axykVCyp16Ag96VZlGODAxIx5P57KcXaMzUq156fFwKljNLz15uDeqp+oH5uaeemNXNoB5Vy0pQ3M09Nt1Oqm4pkalX73Y7qe5uKaiXz+X4+hIABvXIIjedQAapCTO5Tz0/C6p+eoBxpp5qclaQPh+VZlH2Hzmiu92ydClalyyxe7fIQ1SZesx6qMyh3bt1z1m0sRFLLr/cwT3yH7cu4pX9wHz8HRRNpXS3GdSjallZ46imtpM5papb6l5+ayJTD2AJLk1iUI8sccu4dOWodx+fMJL7KBf9NaJaIAHG6feq/ntBKb8FKj9OTYyO6m7POuUU2/eJvIWZetXRNE0qvV16+eXSlFCqjlunXar6gYklqn4iZerl8zxeUFWkwE6ZIRmAuxIvvKZUdYvYu7TegzJS3d1oaGmR7pdjCS6BQT2yyC0nkFkLo96JbCUMZKjll7xYFlCQz+WUV+rEk5NQOIxkZ2dN9s2NKj1Oic9X0+zZdu8SeQx76lVnsLcX4yMjum2rrrnGob3xL7cu4oM2fV3M1AOYrUfVsTJoxq3HA7dTtbhxdPqt4vgpTtgGgCwz9QiAfAmayAyXZOopM5GYqUd1JC76J0ZHsevBBzExNoZZixahe/582/6WUfktMNlXLyJcRRSv8iW7u+uaWei0SnvqBXWoCBkLhcOTgfui7zgukMw7+Nprututy5djxsaNDu2Nf9U7g8SsoLV/UE1Kz+fzCM63LtlN6htuYVCGW44Hbqc6xy5Vflv3nnozZyIUDiM2bRoyQ0NT21l+SwCDemSRW74wxANeor0dkXjckX2hYBK/5AeK+rK9+PjjaOnsREJx9d4Ko/JbAMhkMmgQtwUsS0JU6QlY0J8vUgtHIsgXnTRzgWRONpNBz/79um2rrrkGISG7mapX6lg3OjSEfS+/jFg8jjlLl0oXf2opaD2PmalHdspmMhgbHtZta5w1q+zvuaWaymvEc+xYUxPiRZlx0kXxOvfUK5yTxpub9UE9lt8SWH5LFrnlCyNoJ4zkPuUaEouZKtUomamnCPgFvd+kePGh1HGK/TnJiNhXj0E9c47s3asLaISjUax4+9sd3CP/Mlps5nM5PHnffTj42mvY88ILeOmJJ+q6X1Ymd3qZMlOPQT2yqP/wYd33TTgeR9e6dWV/z62Dc9xOvLArVmvUM1Mvl81KGXiFoJ7YV4/ltwQwqEdWuSVTL2AnjOQ+UuBIYDTEwgpVufnUzxQTcIPWz0hUyQmYsj+niSvi5H/1vjrvF+KAjAXnnWeqyTtVzijwfGT/fmSLvhsO79lT1/2y0g/My8KxmPS9k2NQjyzqO3hQd3v25s26zDEjbkm88BppTSl8X9UzqFeqFDgmDJpi+S0BLL8li9xSflvuqgpRrZXL1IvGYrb9rZKZeorgYakpXkFQyYmt8gSKAQiCImAiBH9JNjI4iOH+ft22lRyQUTNGmTljRSVaBflcrm69VY3Kx/wqFAohmkwiU1Qymc/l0HfoEF56/HHk83ksOvZYdPCCEZWhaZoU1Jt/7rmmftctazSvKXcRQuxdWstgaalS4Hhzs+5nLL8lgJl6ZJFbrgIxU4+cVm5xZOfiqVRQT5XFF7Qm5aJKBmVI/Tk7OtifkwAors47tB9eImbppWbOxPxzznFob/zPKINEtZhXZXXXShBbpIh99fK5HF56/HFMjI0hMzGBF48G94hKGe7vlz6rpoN6/M6ypFx1i5OZesWVI2JQj+W3BDCoR1a55CpQ0Eo7yH3KZerZ1U8nl8uVTLE3U34btM+HGJQr9VpwSAYZkSaLckFeUj6fl8o8V159tZzlQLYxWmyqgkel2jjYSfWdFYQLr2JfvdGhIUyMjU3dzmUyGB0crPdukcf0Cll6yQUL0LxokanfdUvihdeUuxDuZFCveF+kTD0G9QgM6pFFbkntDnomEjmvXE89u/rpiEEnkVh+qxr8EIQFVbFkR4fudqkMFem5YlCPjuICqTIjg4O6Pm4AS29rzagsTJXdXWqKup1U31lBuLAkBvWKA3oF9Sp/Ju8SS29bTznF9O9yUIY15TKL6/m8lrrQzPJbUmFQjyxRZSc58aUR9J5h5Lx6ZeqVW4iJAe6cYvBDEBZUxZJdXbrbpTJUgp7VSMa4QKpMWghiTJs3D61Llji0N8FgdE6mCqzVK1NPPKZGk0lpMepHYvntxOioQ3tCXjUxPo6RgQHdtukVBPXcUk3lNeUuhNfzAp+4L8zUo3IY1CNLygUy6kE17psLcaq3cp8Fu75sS/XTAyBlxqiCgEELelcT1Avac0XGjCaLkhoD5PVnFNRTfQ/ULagnLkpnzkQoFKrL33ZSNJHQ3R5XBPVYwk+liFl68ZYWTDv+eNO/z4ntlcvn89J5tPjd5daeegzqEcCgHlmlKDms90mKMmjBxQPVWbkyGrsy9cotxDJC+r14QtDQ1oZIQ4Mt++IVyc5O3e1Kym8ZiKACZupVRsp24KTPmlP1K9Q0TXkxqF6DMqTJtwG5UCJm6o2PjEj34TGEShGDenPPOquinqQclFE51Tm2uKas57lAqaEd0qAMlt8SGNQji9xQfiuWlcQaGxGfNq2u+0DkVKZe05w5uttSph4HPyBVQaYeB2WQEWbqVYbHnvpTfQ/lMhnlRSWnym+D0vNY7KmnOgdgph4Zyedy6D98WLdt/rZtFT0G+8BWTjxehaNRJNradNvqeS5QqhSYmXqkwqAeWaIaDlDtoS2Xy6Fn/34MC30kjJTqN0BUL+UGZdjWU0844WhbvVr6O8Vf7EEfkgGYL79VDhVhIIKOYqZeZRggrz9VxrhqQAPgYFAvIO8DMVNPhccQMjLY06M/bwyFMO/ssyt6DLcMM/QS1ZpSfB7rVdacy+Wk4RepUoMyGNQjMKhHVqkCGVUc3PL5PB6/+248+/DDePzuu3Fo927D+2qahv7Dh/HK00/rtjOoR06oW6aecMLRfswx0n2KU/DFhXUQPx9S+a3BYjaXzUrBVwYiqEC8Os+sh9KCGsxxkvQehXEf1nqV3wb1wpKYqafCIAsZ6RVKb7vXrZPOZcqpZ+83vzBzzlyvYKlqwFGpnnosvyWAQT2yyO7y28N79mBseHjq9uvPPmt43yN79+LpBx6QJuxxEU5OqNf0W/FLfvqKFdLfLl6sMZNVUX6bTiuPU6rFLwMRVMBMvcqw/Lb+6pGpNzIwgL0vvoih/n5T95cWyQF5H5jK1GP5LSlomib101tQYektwEEZVpip1qhXsLTc5HAxqJfP5XheQjDfdZOoiLL8tooDipiZZ3QyCgB7XnxRuT0oJ4zkLuX6OOZqVH7bOHMmEu3tGDt0aGpbcV89LqyBhOLqdjadRkwYGCINFWltlSYYUnAx68G8fD4vZYIF8dhTb6qLS+KFz4LMxAQ0TatoEu1wfz8ev+ce4OjvHbNxI5rb20v+jrRI7u42/fe8zMx3B48hpDI2MiJNS15w3nkVPw7Lbytnpgdo3YJ6ZSaHi0E9YLLiJBqL1WR/yBuYqUfWqLKTqji4ib0DjIyPjmJ0cFD5s6CUdpC7zDr11JJ99ewov9UMFsoJYVFVfB8xGyOIQe9kR4e0TZWlwmmdVAqDeuYpJwjy81RzqsmYEwblt5qmVfy9tPell6bO8TRNw5H9+0veX8vnA/sdxJ56ZJWYpdc4axY6Tjih4sdhUK9y0vFKsaasVwakdFFe2BdlUI8luIHHoB5ZYnemntl+AOIXXrGgnDCSuzTOnIk5W7YY/tyOtPi0ogdSauZMJIWgXslMvQAGvSPxOBqmT9dtUz2X7D9IpYgBEy6QjEkTBGMx6eID2a+STD1AvpBRipbPo78oIxwov4BUHWeDkrFpqqcey29JQVzjzD/33Ioyags4/bZyZqpb6jX9VtoX4cKYqkIoy2EZgcegHlniyqBeQEo7yH1W/Nmflfx5tX31xKBTOBpFsqMDCSETrZCpl8tmpUyMoAa9zUzAZakylcIFknmqEiYri1KqjCqoV6qNSSV99Qb7+qRztHyZoNTY0JC0f+L3lV9xUAZZkc1kMNjTo9tmpZ8eoMgut7xXwWHmPLDa/rr5XA77Xn4Ze158seS6t1yWcygcRkwI7HECLjGoR9bYXX6rOBiJB8tcNov+I0cMH2P6smWW/z5RNRZddFHJn1cb1BNPNpLd3QiFw1IGTCFTT5WFEdRAVcrEBFwOFaFSmKlnnplm42Q/ZVDPoPwWqCyo13fggLStXKaZeAG24/jjlcM8/Ijlt2TF6NCQ7n0RjsVKVoGUwuFOldE0zVQblmpbcTz/6KN45amn8NquXXj6gQcM72em0kYswWVQjxjUI0vsztRTER+v//BhwxPJVe96F5oXLrT17xOZFWtsxPK3v93w59UOyzBaKBv11BMz+2KNjWUHeviVlKmnKAsrV+pAwcaeeuYx69UZyoBZifdpJUG9XkWFRLlMPfF3rDT79yqW35IV4rGzae5cxJuaLD0Ws8srk5mYkJ4jVXWL6uKJWblsFj379k3dHu7vx6iQ0VwgZbwr9kUM6pmteCP/4vRbskR1YNM0DZqmYffzz+PI3r1oam3F4uOOQ0TRwLmYUcAjn8shXBQ8FE8SZ59+Os767ncx0deHjuOOs/CvILLPyV/4Avb87ncYKfrSLshXeQXNaCqXOAjCKFMvyJlnLL+lakmZelyQG2KA3BmhcBgIhUwv3lUXN1TGhocxNjwsbS/1GRgdHsb4yIhuW6CCeszUIwvEc5Nq+iBzUEZlxHPmUDiMlHDuCFR3gU9VQWN0HDaT8S5eqGemHjFTj6wxyNTrPXAAu597DmPDwzi8Z8/kxLQyxKyiguKSRU3TpHKOheefj2lz5zKgR67QNGsWrn7xRVz56KMIx+O6n1WbqSd+Rspl6nFh/YakifJbM1PPKLiquTofNBw645xKylvNZuoZ9TEulaknluumZs5E14knmt43r4smEmXvwyALiew8b+N3VmVULW5UE8WrKWtWrXVV/Wbz+bxu6B1gENRradHd5vRbYlCPLAmFQnIJrqbh8J49uk3D/f1lH0s8mBYUnzQO9/dLJ6FBuvJL3hCJx9Fx7LG297oQU/SbZs8GwKCeGeLVVvHKqGqoCDP1qBgz9czjscc54mTGUswG9VSlt0Dpz4Cq9FbVssWvmKlHVtQyqMf3W2lmn3tVWbPZ51a11lX121YF/8yU3zJTj4LzLUu2Ew9u+VwOfYcO6baZWfyoUpILj1cgXi1uXb4crUuXmt1VorqKNTbqblczKEPTNAwPDOi2db7pTQDkoF7WKKgX4CBVufJb1YlWUCcFkxoXSOZJZUPM1KubijL1TJTfqqZxFhhl6mXTaQz29uq2LQzYBVj21CMr7Dxv43dWZcw+96rsPdN/Q7HWVR1HxX0Jx+NItLVJ95N66jGoF3gM6pFl4pdG/5EjUvCiXDNlwFymnnTl1+KYd6J6EIN61ZTfjg0PS5+rzjVrAMg99fK5HHLZLLNlipQrvxVPtGLTplluTk3+xOm35mj5vNwXKsDHnnqrpOTOTKZe/6FDhu91o6BU36FDur5+kUTC8gRPr2KmHllha6aeopKKjJkN6hn1k7fyNwD1BX9VPz1Vma7UU4/lt4HHoB5ZJh7ceoU+KoC5g51hUO/owW5ibAwjQqbSwvPPN7ubRHUnntRXMyhDLGFvnD17KvslIQT1gMnsCgb13iCW3+ayWd2JFLMaqRxmPZijykRg1mv9lCq/FXsbmgnqGZXeAsYXbMXfmXPmmYiZCHL5ialMPR5DSGDnuUg1vd+CyFVBPZN9aVl+SyIG9cgy8UtD1T/PTImB0cll4WAnlt42tLZixsaNJveSqP5iQqZXNZl6YultccPxhpYW6YpsJp02fVIQBGL5LaAvPeNzReUwU88cqWwoGpWyial2SpXfdhx/vO52NpMpWUmhaZrUTkX8uSifz0u/E8QLsBGW31KFcrkcskKmFXvq1Y/lnnqA6SzIajL1VKRBGQzqBR6DemSZmVIPUz31ypTfild+5519NiKxmIk9JHKGVH5bxZftiBAs7zpaegtMlliIffUmRkflwQ8BztRraG2VgjLFFxKMJgsTFaiaY5NMXIykZswI1IAEp5U6JxODekDpvnpDvb3SBMZiqsXoUG+vVAIWxFYpZjITGWShYqrhCLZOv+X7rSTTPfUcyNQzDOqxpx4JeLZFlpkJ6lXVU+9of7CBw4d12xcE8MoveYtdgzKUQzKKMvUAuQRXnJQLBDtQFQqHkRD76hVn6pm8KkrBxUw9c1jK7qxSTdzbjzlGzuouUYIrXkwVf1f1GRBbsHS+6U1omjPH8G/4FctvqVLisTOaSiEm9EyrhJnPK03SNM10L9iqym8Vx1tVFY/ZC81S+S176gUeg3pkWT0y9QaOHNEFBkORCOaffbb5nSRyQNSmQRmqIRnFmXoApKlYI4ODutuxadOkhrpBI/bVKz6Bk8pvGYggAUuZzBEXI/ws1Vepc7Km2bOlC0Clgnpi25NZp52mu626UCUNNAvY1NuCcDxeNkOV5bdUTLq4OGuWcjiCWdJ3luVH8j/VcdDou8tqUC+XzSqDbmam3xrtizQog5l6gcegHllWqn9LQb7MwS6v6CNR/DPxJHHmxo3K0d5EbiJl6ln8shX7VDbNmYNUd7dum9izalQI6gW59Lag1ARcZupROczUM4cDepxVKqjXOGuW1F/UKKg3PjIiZXwvvuQS3W3xMzA2PIzxkRHdtqBWVYRCobLZeuXOjSlY7M5yZvmteeJzH4pEpHPGAmU2tJmBkGV6x5e6b6PRoAyhp57RWpqCg0E9ssyOTD1xqm2xfC4nXS0O6pVf8happ57FTD0xqCeW3gKQeuqNDQ/rbjNIVSaoJ55Mc1AGCVjKZI7ZxQjVRqlzstTMmUiVaENQTLyYmujowKxNm3TbtHxe9zkQS29TM2bohjoFTbRcXz0eQ6iI3RdEOP3WPNWwNKOkFauZeqqeiYAc1NPyeelii2GmnlB+m8/l+DoHHIN6ZJkdQT3x5LFYenxcOtjOP/dccztH5CC7BmWIQT2x9BaQg3oiZssognpHF7P5XE4qiWDJIImkq/M8cVZipp6zjHrqxZubEW9qMp2pJ11M3bZNmXmmC+opLsAGeUhKuUw9lt9SMdsz9cTPHr+zDFXy3FsN6pXqHa+7n+KYbPQ9Kgb1AJbgBl1wv3GpaqbKb8sF9YSru8XGR0elba1Ll5bfMSKHiT31rAzK0PJ5qT+eKvNB7JMkYqYeDBezqhOtptmz67JP5B3sqWeOKuOB6sfoQmthUWg2qCd+78w/5xyE43HpfoXAVDadxmBvr+5nCwNaeltQLlOP5bdUzO4LIvzOMq+S51657rWx/FasXgvHYlKLnQJlUI8luIHGoB5ZZipTr8TBbkzRt6WY2J8l2dWFiOLEksht7Ci/HVUMyehkpp4l4qCMtEFQL9bYWNXEOfIn9tQrT1U2xGNPfRldaC1c2JEGBinKb1WvY+uyZcpzr8JF277Dh3UL20gigTlbtlS28z5TdgIujyFUpOZBvaoezd8q6atsd6aeuDYQM567TzrJMOM51tQkbcsyUy/QGNQjy1QHNzHAIPZdKdZXIksPkIN6XCCQV0iZeha+aEfEIRlz50qLMgBIlgvqMVNPKr/NHl3MToiZRVVOnCN/YtZDeWlFgIjHnvoKGZTfVpKpZ1T+FWlokLYXMvXE7JJZp52GWLmecj7H8luqhN1ZzhyUYZ5bym81TZOq1xZu3274mOFIRLoIzfLbYGNQjyxTHdxUByCjA16pfnqAfHDiAoG8Ii5cQbOSqTcsLJSMmo6z/LY81WJW0zTb+9iQP0mZelyQSyqZIEi1ETbI6DDM1FMF9YTXsVD+pSq/LWTqib8zfcUK8zvtU5x+S2blsll5vVNtph6HO5lWSZakKmvOzHM7MTam3F4c1Bvu75eOyQsvuKDk44oluHtffBH7X3mFwb2AYlCPLFOVeiy++GJpm2oBlE2nMdDTo9vWsmRJyb/HTD3yCrGfjpVMPTNDMgCW35ohLmbz+TxyuZx0Msd+eqRiptVE0InT/VIzZgR6UIITyvbUUwwMEhekqgsdoXC4ZKYeL47IIiy/JZNUWVzVfoY4/da8ijL1QqGKsyAnRkcxKKx3C4r7zotZeq3Ll2P6smUlH1sM6vUeOICXn3wSu3buLPl75E884yLLxANb86JF6DjuOOl+qqBe36FDUg+WBeedV/LvMThBXlFtTz3VkIxOg0w9oya6BZzmKmfqAZNZKlyMkhnsqVceP0vOM5p+a1R+m8/lpO8mqQzw6OuoemyjTL0Uz9XKlh/zGEIFYsl7bNo0xKvs7cvpt+ZY6QVbaTuOA6+/bviz4kw9Mai3qEyWHgDD98lgT49hdiD5F4N6ZFk4FtPdXnj++cqruaoJuOLBa+6WLeV7g/FEkTxCNf22kpP44YEBaUiGUaZeQ2urYUZMQ2tr4HsbAZNBVjF7UhnU4zGGFKSTeJbfShjUc55hpt7R18Lo4kYxo2NiKBSSSnCZqWesXKYejyFUUIvzEPaBNceoh2gplWRB5vN5HHztNeOfHz3PH1cMjixXeguoJ+AWZDkJN3AY1CPLuk866Y0boRCWv+1tyr4r4gEvn89PZuoVWXjBBYgkEiX/Hk8UySvETD1AHl1fipSGv2yZYX+qUDiMhrY25c8YpHqDqq+edDLN8ltSYKZeedIEQR576q5c+W2ssVHq9WY2qAdAumibz+fV/cB4roaGlpaSP+cxhApqERRnUM8cqYdoNFq2pU0lz23vgQPK3qUFhXWB2GM+0dGB7g0bSu4HAMRLHGc49C14GNQjy0767Gex+tprMXPjRpz1ne+ga80aREo0Uy4Y7OmRTgIXnHde2cbCXCSQV6hGzVdSgitNwDr//JL3NyrB5eLqDSmxnxTLb8kkLpDKs3t6I1XOKKhXKKENhUJlJ+CWOiaK53daPq/sB8aWD5DayYi3eQyhgppk6rH81hRVu4FyvWAr6al34NVX9b8rPHZhXSCe8y847zxl33pRqUw9HmOCR92Ag8iEWFMTzvjGN3TblJl6QlBPPHh1r1uHxpkzy2bqsYk9eYUyUy+bBRTl6SJlGn6JsfYAkDDI1GNvozeIi9nxkREpe5IXDkhF6ifGk2UJS9mdp+p719DWhmjRuVWysxNDReVgmXRad/9KM/XEDM1IKlV1PzA/mLtlC8773//F7t/9DnPPPBMj+/bh1V/+curnLL+lgrpk6lX9iP4kZZibeO7NXuQbHR7GwJEjum0n/OVf4tF//uep2/lcTjk40kzpLWDcU6/UfpF/MVOPbBWORORR6kUnL5qmSWnGhYNXqUy9UCRiWH5I5Daq97LZTD0x6J3o6MCMk08u+TsJZuqVJQb1hgcGpPswEEEqzNQrT5okzc9S3aky9cTvgLKZeiUWuaqeeuLrHuN52pSF55+P0/7lX7DwggsQYgk/GahFUE/K8uL7TcnKxSiz7TgOCll6ifZ2LH/726X79R44oB8c2dCAuWedVXY/gDKZerxwEDgM6pHtxBO/fNHBanRoCBOjo7qfLzga1CuVqddoIiWayC1C4bA0mCEvlJwb6bGQhs/y2/LEiwLidGExo4WogAvy0vIWJgiS/VTfE+J3QKpEUK+QNaL7/XKZesKExXiZaexBxb6cZISDMpxj5bk3U36by+VwaPdu3baV73wnGlpbpfse2bdPd3vOli2IK1r4qLD8looxSkK2U/VdKRCzkKYtWID2Y44BgJILai4QyGvEElwzmXqZdBqDvb26bYvKlN4CxuW3/Ny8QVzMllq8EhWrZNpdEGUUfdU4dKb+xOAzIB/XxIsbxeW35SZBmumpF2emnlI4FtPdZhYNFdSk/FasmOJ3lpL43dVoohesdD6guE/P3r3S9NnV114rXewHoBwcaVapQRk8xgRP1T31HnroIdx66614/vnnMTIygvb2dixatAhXXXUVVq9ebcc+kseoSjQKpAEAF1wwNaGnZKYeF9zkMdHGRuDw4anbZoJ6fQcP6tPwEwlTafgsvy1PLDsTsVyQjEjBEi6QdKQJgvF42QmCZD8zmXqlym/F1zGSSOgyS6QqDEVPPWbqqTFTj1Sy2WxNevsaDc0hPWlQhoVMPVXwbH9R31IAmHvWWWhdsgQZoVJNRRyqUwoz9ahYVZl6P/nJT3D11Vfjsccew8yZM3HcccehubkZd911Fy677DLceuutdu0neYh4RbIw/TY9Po7h/n7dz4qnepbqqcegHnmNOAHXTPmtGPSee9ZZyqEbIsOgHj83U4xKlAv4XJERZuqVNqEoYSpcrKP6UfbUE45rpcpvVaVoxa8jM/WskzL1eAwhyJ85wJ7p0Sy/NcdKlmS553Z4YADDfX26bauvuw5A6Yo0AOhau7aiC8wclEHFqsrU+853voOPfexjuPbaa3Xbc7kcPvrRj+JrX/saLrnkkqp2kLzHqPy2vyhrCZhMG5512mlTt0uW3zLjiDwmJqTZl8vUy+dyltPwkwZZMfzcvKFcph6fKzLCBVJpHJLhDqbKbysI6omvo3Rup2kM6pkkZeqxNI4gf+YaWlulc0creCGqvHw+L03/tqOn3gFhQEa8sxPzj2bfhcJhRBIJ5BTBXKCy0luAgzJIz3Sm3j/8wz8gLbz5e3t7sWHDBum+kUgEp5xyCo4Io5wpGIzKb8UBGTNPPhmRoquXkVKZeuzPQx4jZtiVy9Qb6OnRl2GEQrpM1lJUpW6J9napsXmQlQ3qMRBBBlg6V1otGr1T5SwNykinp97P5V5HaVBGLidPv2X5rRIvDJBKzY6d4mBBvt8k4nAnwOL026L/zmYyOLxnj+7nXRddpPudUlVptgb1+JoHjumg3s9//nNceOGFePzxx6e2rVixAl/60pfw+OOPY3h4GPl8HoODg7j33ntx0003sadeQIlXc/MGJ4xNc+fqbjNTj/wkWuGgjN79+3W3Z6xfj1R3t6m/pSq/5cJar2z5LS8ckAE2HS+NQT13mBgYkLaVy9QD3hiWIfWXEprGixdsM+m01A+MmXpqLL8llXKfOatUAX6+5/SUvWANhs4VKxWgP7xnj+6YGIpE0CUMuzMK6k2bPx/txx5b9u8X46AMKmY6qPeLX/wCy5Ytw1vf+lZ86UtfQjqdxqc//Wns2bMHV155JdatW4fVq1dj/fr1eM973oNMJoPrr7++lvtOLmVUfqvqu1OMPfXIT6RMvRJBPU3T0HvwoG7bQhNTbwtUmXoMhOtF4nE0TJ9u+HM+X2SEmXqlMajnDmNC+wZADhKoLgAVMlak11G40CGe240rmr7HOSBFieW3pCJNX7Xp2KkclMHvLR2xx7vZXrBGpc2apkmltwsuuAANwoUU1QRcAJh12mkV96Jlph4VM91Tb/r06fjKV76CO+64AzfccAPuuusu3Hjjjfj1r3+NnTt34qWXXsLIyAhSqRSWLFmC9evXIyZcmaJgkK5IFg3KKCaVdjCoRz4iDsrIlSi/HR4YkD4flaThN7S2IhQO6xYKdjRb9ptkVxcmhAbGBTzGkJFyPXSCrlwwiOpjVBHUEwNxkVgMDW1tmOjtndpmFNRrEoN6Qvmt2FKlYfp0hNnyQYkXBkjFyqAGM1RBPU3TwPFFbxAH083cuNHU7xmdDwz19mJ0aEj3o9XXXose4fcNM/XmzDH194uJ6wzdbvHCQeBUPChj27Zt2LBhAz7zmc/gqquuwjXXXIMPf/jD2LRpUy32jzxIKr81COqJTZiNym+jySQaWlvt20GiOhAz9UqV34onFy1LlmD6ihWm/1Y4EkHD9OkY73nj9IGZZ7JUZyf6n3tO2h4Kh02XOlPwMMumNA7KcIcxIdvbSKqrSx/UO1p+OzE2prufeKFDLL8VM/V4YcSYeLE7z2MIoXZZzmLLCICB5GLZTAYDQt//RRdeaOp3jdpxHHjtNd32liVLMOfMM9HzxBO67UZrXSuvvarMWtwvCg7T5bfF2tra8LWvfQ1f/OIX8eMf/xiXXHIJnhDetBRc0qAMTZucMiQ0JZVOGKNRafFUuF+lKclEThNT7EsNyhD76S244IKK3/NiWRUXWDKjYRnJ7m7lsYcIUPTQcWg/3CibzUpZyDz2OCM9OGjqfkmh711mYgLZTEZqEVFuUEbWwuTIoJImE3PBTVC0JbIpy1mZqWfLI/tD38GDuqBXpKEB87ZuNfW7Rj31Bnv0OXmrr71WGVw1Kr+1O8M9z2NM4FgK6hVs374dv/jFLzBnzhy89a1vxT//8z9LE3IpeFSZesopQ4oDWERxBYMZR+RFZjP1xkdGpJT9BSan3hbrXrdOd3uGYjJ50BkF9bgYpVKYqWcsLWR3Afw8OWXt3/yN7vbcN79ZeT/xOJiZmJAyhgBF+a1wbidi2bUxlt+SSNO0mpXfKjO4+J6b0iNUx8zZsgXxadNM/a6qp57qtZx92mnK3zcqv7V9rcvXO3AqDurt2rULd955J37729/iySefREdHB775zW/ihhtuwI9+9CNceumlePLJJ2uxr+QRUqZePq+eMqRoqKw62HGBQF5kdlBGn9AHKdraihknn1zx31v/2c9i1qmnItXdjfWf/Sy6Tjyx4sfwOzFDpYDlglRKqWl3QSd+t8dbWqRjH9XHqmuumRqMEW9pwSn/+I/K+6XEoF46Lb2ODdOnS+djYgmpiOdqxlTTb3kcCbZsOi1dIBID6VYZ9dSjyXPxPqFVgdnSW0CddZuZmJCeX6PjoVH/eKsXRVZfd51yO0v8g8d0vdFrr72GD37wg3jxxRen3rihUAhz5szB9ddfj4svvhgbN27E3/7t3+Kqq67Cu9/9bnzwgx/ksIwAUg3KUPWNUJUXKjP1eKJIHmR2UMb4yIjudsuaNSX7ZBhpXrAAl9x1V8W/FyTiYraAxxgqhaVzxsoNV6D6aV64EFc9+igOP/oo2o891jDzQ1V+a2bYiVh+K2qcNQuZCvc5KJTtHTQNYGuZwJKyY0Mh2wacqco++b01aeDIEf1F9lAICyuojlFl6qWFarRCn2bVMx5TlN9W09d5ww03IDs6iue+/339fjGoFzimM/X+7u/+DkNDQ/inf/on/PznP8cdd9yBr3/962hvb8df/uVfIp1Oo7u7G9/61rfwd3/3d7jllltwySWX1HLfyaVU5bdmU8yZqUd+ETVZfitlSLDcvGYMy2/5nFMJ0km8Q/vhRrVq9E7WJDs7MW/r1pLHNDPlt6rs5bLlt3ztDamCesycCjaxn16qqwsRmxJhmKlnTCy9nbFhQ0UBNVXmvtiGIjVjhmGfZlWmXmrGDEsX8wEg2d6ON3/ve1LbHr7ewWM6qPfoo4/i/e9/P8477zwsW7YMixYtwhlnnIEbb7wRAwMDePbZZ6fue/nll+P2229Hl8ECivxNVX4rTlUzuprPTD3yC/FqnNGgDKl8zaBElKpnVH7LYwyVImU98GR5CoN63qMK6kmTb61k6jFL05CqdJmN7IPNTHasVRyUoaZpGnqFoF4lpbeAQVCvgu9BVaaeHd+bqhJ/ChbTQb1EIoHDhw9L23t6ehAKhZAQgjEzZ87ETTfdVP0ekueIV3MrOeCpRn1zkUBeZHZQhni1lkG92mH5LVkiBPV4svwGBvW8JyV8x6RNZuqJF2xFfO2NSSX8AMDyuEATs7vs/PxwUIbacF+fNLix2qAeKgzq1Sp5Rczy5HlK8JjuqXfmmWfi//2//4fDhw9j6dKliEaj2LNnD2677TYsXrwYy5Ytq+V+koeIJ37K8lujBqIM6pFPiOW3qkEZqoB3nBnONcPpt2SFaoGkaZqyL2zQMKjnPUmh1Cyfy0m9XZWZeiWCeuFYDMmODmDfPnt20mdYfkuiWvYjZfmtmlh627ZqFVqXLq3oMVQ99cSL86VeS1WbKTtee/HCAXvqBY/poN7f/u3fIhqN4vbbb8fI0S//RCKBrVu34qMf/WjNdpC8R7paUEFQT9lTj/2uyIPEQRn5XE4KBKimnzFTr3YaWlsRjkalUmgGIqgUZdNxAiBnGnNQhvupMpZHh4d1t1XHxFLlt42zZvFzUgLLb0lUywsiqs8ig3qQSm8Xbt9e8WNIwbMKM/WiLL+lGjEd1EulUrjhhhtw/fXXo6enB5FIBNOnT6/lvpFHqXrqWS2/jbe0SGWMRF6get/mczlEik4IVNPPYh0dtd61wAqFw0h0dGC06MQuHI8j0d7u4F6R6xkskIKeqadpGjLM1POceEsLwrEY8pmiWbXCAlD1OpYqv+XrXpqyaT4zaQJNvCBS6556QS+/HR0awphw8aLS0ltAkbmvGJRRMqhXo4GQ4jGGmXrBU/FltVAohI6ODgb0yJBYopHNZJAzmRkjTgXiVX/yKlVQT/wciCd1ya4uw4lZZA+xBLdx1qzAB2eoNGUGUsAXSMDkgAUxG4DBHfcLhUKGrQgKVOdepTL1eK5WGstvSWSmj6VVLL+ViVl6jbNmoWvNmoofRzkoQ+jT50hQj5l6gcdcebKdGNQbHx2V7mM2U4+lt+RVYk89QB6WwX5U9Sc2iecxhspR9tRzYD/cRjx+hcJhpIR+beRORkODgKP98RRtIEr11ON3V2ksv6Vi+VwO2XRat83WTD1eiJKI/fQWbt9uqWWAGNTLKV7LUhc5VH+zJpl6AX+9g4hBPbKdWKIxIaQlx5ubERf6jRWIgZAUTxTJo6LJJCBkgIm93Go5/YzUxAwVZphQWVwgKYlBvWR3NzONPUIVtCtonDlTufBUBaamfofH0ZKU5ZAsjwssqfUKbB6UEQpJ559BDvJMjI9juK9Pt22RhX56gPxZFs/jgdLn8hP9/dI2O157lt8Sg3pkO/Fqrjj1s2nOHMPfnXP66brbC84917b9IqqnUCiEmNAQl5l6zpu+fLn+9sqVDu0JeQWbjqvVcnoj1Vap8lvD9ihlBmWQsVAopCzbo2ASW69EUynEW1ps/RvSlFZbH91b+oQsvXhzM2YL602zxOdVTFwp91qqym/teO1ZfksM6pHtSl3NBUqf/C266CKc+i//gvnbtmHTP/0TFl96qd27R1Q3qgm4xbgorr+V11yD1mXLAAAtS5di9Xve4/Aekdsps2yIFyU8rGSmnsH3UKnyWzv7gfmVeG7M8tvgko6ds2fb3ttX+t4K8PttSMjSm3/uuSWPZ6WIz6sY1Cv3Wi6+9FLdsWD+uefa8tozU49YJ0G2KzUhDSidqRcKhXD8hz6E4z/0Ibt3i6juxHLycoMyGmfPhlyUQXZqmj0bV/7pTxjevRtNc+dKfTyJRMzUU5OOXwzseEapnnpGF5dKZurxglRZ4WgUust6XHQHVi2HZBQwM/QN4vPdcfzxlh9LDJ5lxCEZZfo0J9vbsfWWW/DHL34Ryc5OnPov/2J5X3T7xUy9wGNQj2xX7uoHT/wpKMQJuGbKbxnUq71oIoHWpUud3g3yCDYdV8vUYWFKtWGl/LbUBVtmmZfHRvZUIPVTrsHnR/zeCvL7TbwAVc3xqlzmvpnHXnLJJVhyySWW90GFxxeyFNRLp9P46le/ijvvvBMHDhyQFqoFoVAIu3btqmoHyXuqydQj8pOo0FOveFCG0fSzHuGqHxE5i5l6auJCiYOtvKNk+W2FPfUapk9HNJk0XAvQJJbfUoETmXpBvhBl51C6ckE9pxJXpEw9ZgIHjqWg3je+8Q18+9vfBgC0t7ejoURKPgUPM/WIJpXK1FNNP2ucNQt45ZWa7xcRmceeemr1WJhSbVgalGFwbsfSW3NC4mRoLroDS9VTz25S+a3tf8Ebstms1PqmmuQSZeZ+8WM7dDxk+S1ZCur98pe/xLHHHouvfe1r6O7utnufyOPKDcpgmQYFRalBGWKWS6yxEfHm5rrsFxGZx0w9mVGmMXmDlZ56RlUYDOaaI5bHMVMvuFT9lO0mTb8N6PtNzNIDqnu+xedVemyHqtHEiwZ5XjQIHEvTbw8cOIArrriCAT1SKpepx/JbCgopU6/oaqGqp4rd08+IqHrsqSczzDQmTyiZqVfhoAwGc81hJg0Bk697Xcpvxe+tgL7fxOe6Yfp0xITWOJUo21PPoe/BiJhQE9DXO8gsBfU6OzvZO4MMleqpF47HkejoqOPeEDlHnH6bL1F+ywUxkTspM/Uc2A83mRAuSkSTSTS0tjqzM1SxaCKhzAxvaG01XPAaXbBlpp45YqYey2+DKZtOS/3O6lJ+G9Agj91DSaTPscCpxBUpUy+gr3eQWQrqXXjhhbjzzjvt3hfyiVKZeo2zZjEbiQJDXBwVZ+rZOY2LiGpHeWU+4CfMfYcO6W43L1rE73aPUWXrlVrwMlOvOiy/JUCR5RwKITVjhu1/h4MyJtl9rl0qUy8UDtfktTSDgzLIUlDvgx/8IGbPno33vOc92LFjB1599VXs27dP+T8KnlKZegxcUJBUMiiDmXpE7sSeenqapqFn/37dtgXbtjm0N2SVagJuqe8ho3M7fneZw/JbAhRTw7u75dJJGzBTb5JU6lzDoF5qxoyymXy1Iv7doL7eQWbpnbd69WoAk2+Y++67z/B+oVAIu3btsrZn5FmlvpwY1KMgKTUow+6SACKqDZbf6o0NDWF8ZES3bfHFFzu0N2SValhGqXM0o8Uqz+vM4fRbAuoz+RaQv7eCGuSx+/kuNSjDyWMhLxqQpaDecccdh3iZYQgUXKUy9Ri4oCARe+rpBmWw/JbIE1h+q3dEyNJrmjMHXWvXOrQ3ZJWy/HbmTMP7h0IhRBoakJuY0P8Ov7tMEYMBLL8NJvGCbq16UrL8dpLY/7WWmXpOHgtZfkuWgnr//d//bfd+kI+U6qnHwAUFiVh+W8jUU04/42eDyJWUveICukACgF4hqLfo4ovVE4LJ1ZTlt2W+h8LxuC6oF47FkOTwM1OYSUNA/TL1xCByUN9t9Sy/dWpIBqB4vXl8CRxLZ2Hvf//78d///d/YL5zYEQHM1CMqkHrqHc3Uy6TT0hcuPxtE7sVSpkljIyMYGRzUbVt80UXO7AxVRZWpV27BKw7LaJw1iwFdk6Ty5YAeQ4JOCuqVyI6tBnvqAfl8HhmbM4tLZuo52F+UmXpkKVPv97//Pe666y4AwOLFi3HaaafhtNNOw9q1axF1qEEkuQcz9YgmRYXpt4VMPfGkLhQOI9XdHdgrqURuFwqHdSfJQf2sill6yc5OzNy0yaG9oWqoeuqVW5SK53cckmGeuOjOc9EdSOKgjJr11GP5rTxpGNVn05UahOFoph4HZQSepQjcgw8+iJ07d+KBBx7Agw8+iO985zv47ne/i1QqhZNPPnkqyDfDobHO5Cxm6hFNEgdlFKbfij1VChOziqfjEpF7hCIRoKgnZhAXSACkqbcLL7ywZONwci+r5be6+zOoZxoX3QQoykFr1VOP2eXScx1JJNAwfXpVj1my/NZNPfUC+HoHnaWgXmtrK84++2ycffbZAICDBw9OBfh27tyJ//u//0MoFMLSpUvx85//3NYdJvcrlalXqzRzIjeSeuodDQpI5RdcGBG5mrRAcmg/nDQxNoahvj7dNpbeete0+fN1t2NNTcrsvWJi+S2rL8yTpt9y0R04+VwO2XRat42ZerUjDSWZM0fdI7cCpS5iOTooQ7xoUIdM4MGeHowOD6OtuxvxRKLmf49Ks6VWtru7GxdddBEuuugivPDCC7jtttvwP//zP3jhhRfseHjyGKNMvVR3d8mAH5HfSEG9fB6apknlF1wYEbmb1DcsgAuk3gMHdLfjLS2Yc+aZDu0NVatl0SIsOP98vPqLXwAAjvvgB8v2x2P5rXUsvyVlOWitBmXwQpRc6mzD8YqZepMO7dmDF/70JwDAa/E41mzZgujRfchmMnjh0Ucx3N+PjtmzsWDVqqqDqVRe1UG9V199FTt37sSDDz6Ihx56CL29vQiFQli+fDnWrVtnxz6Sxxj1G2DpLQVNVAjqAZPDMuo1/YyI7MGm44rS2/PP54U6j9v205/i9V/9CrGmJszevLns/RtnzULPk09O3Z6+fHktd89XWH5L4yMjutvRVArxlpaa/C1+Z6kz9aplFNRraGtDNJms+vGtqvegjNd27Zr672w6jYOvv47ZixcDAF5/9tmpi4D7XnoJrR0dmN7dXdP9IYtBvZ/85CfYuXMndu7ciUOHDiESiWDFihXYvn07TjrpJKxduxbTpk2ze1/JI0KhEMLxOPJCijmzkShoxEw9YLL8QjzRYLYDkbsFPVMvMzGBgSNHdNsWXXyxQ3tDdglHIlhw3nmm73/8hz6EvXffjdz4OLrWrsW8c86p4d75C6ffUu/Bg7rb01esqFkGE3vq1aZ/oVFQz8khGYBc3q9pGjRNq9n7S3xuD+/ejdmLF0PL53F4717dz4YHBhjUqwNLQb1Pf/rTaGpqwkUXXYTTTjsNJ554IpqEhvAUbJFYTArqMRuJgkYV1FNl6jHgTeRyAS9lEhej0VQK87ZudWhvyCnzzzkHf/bMMxjevRvdJ51UchIk6bH8Ntg0TZOznS+4oGZ/T6wUyWUyNftbbiWV39oQeDM65tVq4IlZEeH4UkvKAPHR4OFAT4/UN7Ie/f3IYlBv0aJFePnll/GDH/wADz/8ME466SSsX78e69atQ0uN0ojJW8LxOCCkmTt9wCOqt0gigVA4rPtCy+dyHJRB5DFBz9Tr2bdPd3v+Oecglko5tDfkpGlz52La3LlO74bnsPw22Ib6+qRzvyWXXlqzv5eaMUN3Oz0xUbO/5Va1uIBulKlnR8CwGtIgHkwG00r1ALSq1HtJPFcAeAGjXiwF9e644w4cPnwY999/Px588EH89re/xc0334xwOIzly5dj/fr12LBhA9auXcsMvoBS9dlx+oBHVG+hUAjRxkZkhoamtmUmJpAVrpgyU4/I3cSJd0FakGczGfSz9JaoKqWm32r5PBAKsZm8j4lZetNXrEDbqlU1+3uNQlAvoxjS4Weapsk99Ww41zaafuv0ebyYCQzU7jxFfF6ByWOYpmnoEQZqFX5GtWc5b76zsxMXXnghLrzwQgDAyy+/jAceeAAPPvggbrvtNvznf/4nIpEInnrqKdt2lrxDNQGXmXoURDEhqDcmZLACDHgTuV6ZqaB+1nfwoO6kPByLYcG2bQ7uEZH3GJXf9h86hOcffRS5TAbzVq6cajZP/qFpmpTBtPiSS2r6N4OeqZdJp6Wglh1toAx76jkd1DPI1KsF1RTn9MQEBnt7kVG8z5ipVx+2NcNYtGgRIpEI4vE4Ghsb8Zvf/AZjikguBYMqU8/pJqJEThD76o0ND+tuN7S2Is6MZiJXC3LT8cHeXt3tuVu2oIGtVogqosr21TQNLzz22NRC+NVdu9A1dy5inCrtKyMDA5gQ1sS1Duo1zpypu60KtviZmE0WikSkQKcVhuW3Tgf16pipJ76XgckJuIf37FHen0G9+qgqqPfqq6/i4Ycfxs6dO/Hwww/j0KFD0DQNnZ2dOPvss3HqqafatZ/kMapMPacPeEROEJsVi0E9ZukRuZ9UchOgoJ54At990kkO7QmRd0k99fJ5DPb06LNeNA3jo6MM6vmMWHrbsngxOo4/vqZ/MyVMG1VlV/mZ+O9NzZhhWDpbCam/7lGOZ+opgnr5WpXfGryXjIJ6LL+tD0tBvY997GN4+OGHcfjwYWiahlgshhNPPBF/9md/hlNPPRUrVqywez/JY8RMvdi0aYhPm+bQ3hA5R8zUGxWCetMY1CNyvwBPv5WajfOYRVQxcdGtaRqOKJrKB+mCQRCoXufFF19c8/6JYlZaLptFLptFJCATq8WLUXYF3Qx76jn8vVjX8luDSsx8LqfezqBeXVj6ZP/yl7/EvHnzcNVVV2HTpk3YsGEDUpyCRkXEkxenD3ZEThGDeuKXITP1iNwvyOW30jGLWfdEFVNl6okZXECwji1BMDo0hHGhl/LiGk69LRDLb4HJEtygBPXEi1F2fW+ppsxGUynEHW5JUdfy2wqzPpmpVx+WPtm//vWvMX/+fLv3hXxEzNTjkAwKKjGoJ3I6ZZ+IypNKbgKy8M7ncsik07ptvEhHVDkxGGDUVJ5BPX8RB2RMmzcPXWvX1vzvxqZNQzSZRLbookx6YgKJMuekflGrDHNVpl7TnDmOT652Q6aeEaMMPrKXpaBeIaD3y1/+Er/73e/wyiuvYHR0FI2NjViyZAm2bduG008/3c79JI8Re+rxyj4FldhTT8QFMpH7Sc2xA7LwVvXO4TGLqHJiJo3R4AIG9fxFzMZcdNFFdQkAhUIhpGbOxODLL09tywSor55UfmtTcolqUEajCxJXVPtVi2OJpmmVZ+rxmFYXloJ66XQaf/7nf44HH3xQeqF27dqF22+/Hdu2bcM//dM/OR65JmdImXoM6lFAlc3U4wKZyPWk8luH9qPexJP3WFMT4s3NDu0NkXepMmmUWKrmG6NDQxgdGtJtW1KH0tuCVHe3LqiXDtAE3JqV3xpk6jktFAohHIshn8lMbatFMC2bTlecAchMvfqwFNS76aab8MADD+Ccc87BFVdcgSVLliCZTGJkZATPP/88brnlFtxxxx048cQT8ba3vc3ufSYPaD/mGLz+m99M3ea0PAoqBvWIvC+oPfXEMhs3lBkReZHZoF4wjizBIGbppWbOxIyTT67b3xf76gU5qGdXcokyqOeSxJVwNKoP6tXgAoGZKcqpmTMxWvTe56CM+lDPZS7jzjvvxKZNm/Cv//qvOPnkk9HZ2YmmpiZ0d3fj1FNPxTe/+U1s3LgRt912m937Sx5xwkc+gtmnn454czOO+fM/x/xt25zeJSJHMKhH5H1B7alXqwmCREGjamSvEpQLBkEgBvUWX3yx/F1SQ+IEXDMBGT/IZjLIZbO6bXZl6ql66rmlxZRqwrbdzJTeLn3LW/T7waBeXVg6suzevRtnnHFGyfucc845eOmllyztFHlf48yZuPj//g/X9fbi9H//d8MR4ER+V6qnXry5GfFp0+q4N0RkhXh1PijLbqmEiRchiCwxnanHBbAvjI+MYGRgQLdt8cUX13UfUt3duttGfRz9RtkL1uflt4A8jKcmmXplhmRMmzcPM085RbeNmXr1YSmop2kaGstkn8Tjcb6IRBR4pTL13HIiQESlMVNvEjP1iKwRF9yGAnJs8bueAwd0t5OdnZh16ql13Qep/DYgmXri91aivR3RZNKeB1e0n3DDoAwAiLggU2/RRRdJffV5oaI+LAX15syZgx07dpS8z44dOzCHC1YiCrhSmXoM6hF5Q2B76ol9iXjMIrKE5bfBMjo4qLu94LzzzA9LsUlgM/XEi1Fz59r22BO9vdI2t1zskjL1anAsKZept+TSSxFpaNBtY5JXfVgK6m3duhV33nknPv/5z+PVV1+d2p7L5fDcc8/hM5/5DO644w5sYx81Igq4eFOT4c+4QCbyhnr2QXITZuoR2cN0+S2Der4gXhBpXbas7vuQUgzKCML7S8wms/Ncu+OEE6Rtya4u2x6/GlJPvRoE08RzgmKzTz8dM04+WQrqMVOvPixdMrj22muxY8cOfP/738ctt9yCeDyOhoYGDA8PQ9M0aJqGNWvW4D3veY/d+0tE5CnRVMrwZ25prktEpQUxUy+fz0uZHXZmPBAFiVFQL5pMIlu0UA7CsSUIpAsiDlzEFQdlQNOQSacRF4IuVqXHx7H7+eeRz+UwZ9kyJMu05qqXWj73yY4OHPfBD+KJr30NoXAYm778Zdf0ja/LoAzhuX3zzTcj3tSEzMgIFl10EULhMDP1HGIpqJdMJvGDH/wAt9xyC37961/jpZdewsjICJqamrB06VJs27YNV1xxBaJ1TjMmInIb9tQj8r4g9tRTNhvnMYvIElX5bfPChWhoa8PhP/5xahuDet6naZorspxTXV2TPeCK3lOZiQnbgnrP/+lPGDhyBAAwcOQI1px1FkKKnnP1JpXf2vy9ddq//iuOfe97EWloQPPChbY+djXECwd2H0s0TZPOC6bNnYtZmzbptjGo5wzLUbd4PI5rrrkG11xzjZ37Q0TkK+ypR+R9QczUExdG0WQSDdOnO7Q3RN6mytRbfMkl2HfPPfqNATi2+F0um0U+l9NtcyLLORyNoqGlBRP9/VPbspmMLY+dzWanAnrAZAbXyMAAmlpbbXn8aojlt9Nq8NxPX7HC9sesVq3Lb7OZjPy+VqxjxKAejlZxuiHg62fBbBJDRFQnzNQj8r6QS8pr6klcGDXOns2TciKLVMeQJZdeKm0PwgUDv1P1HXOqH2m8pUV3O2dTUE81MMEtvdPEfQtKq5taZ+pJr3kopHxupaAeIAUDyX6mMvWuvvrqih9Y0zRkMhn86Ec/qvh3iYj8gkE9Iu9jph6PV0TVmDZvnv72ggXoWreu5gtxqj+xRDHZ1aUMdNRDQ2srhl57beq2XZl6yimoLhgolc1kkMtmddtqkannRtKxxOYgqxisTs2YgYiirYDqve6WgK+fmQrqPfTQQxU9aCgUYpolERGAmMH021hTE+LNzXXeGyKyIog99aSeUAFZGBHVQtvq1Vj21rfi+R/8ANFUCpu/8hWEQiFm6vmQG4ZkFEiZekLAyyoxkxtwR+BGFWwMaqZe3uZjifi+nmbwvo7E49I29tWrPVNBvd/97ne629lsFtdffz2y2SyuuOIKLFmyBMlkEsPDw3juuefwox/9CB0dHbjxxhtrstNERF5hlKnXNHcuL3wQeYS08HZoP2opl81ibHgYyaYmRKJRVzR6J/KLUCiEN//nf+LkL3wBsaYmJI72p2Smnv+4Kcu5QehxZ1emnqrE2A1BPTHYmOzsRDSRcGhv6ksaxmN3+a3YksMoqMdMPUeYCurNFk7kvvrVr2JsbAzf//73ERauXq9cuRLbt2/HO97xDtx00034i7/4C/v2lojIY8LxOEKRCDSxuSwXyESe4fdMvbHhYTxx773IptNINDbi2FNOUU65IyLrQqGQ9DmSeu357NgSRG7O1Ktl+a0bsrGCnGEuBvXsfj2kTD2D51bZU88F7w2/s1T8/rOf/QznnnuuFNCbetBwGNu3b8fPf/7zqnaOiMjrQqGQMluP/amIPMTnPfVef+45ZNNpAMD4yAiO7N3rqoUpkV+x/NZ/xAsivszU80j5bZAuoNc669fsOUGY5beOsBTUO3jwIKKK0ezFcrkcDh06ZGmniIj8JKoK6gXoRIPI66RMPR/JZbPoPXBAt210eBiZiQndtiBlPBDVC8tv/cdNF0Qa6jj91g2BGzHYGKTvLTFTz+4gq9lgdSgUkgJ7bgj4+p2ls9SOjg7cfvvtyBgcGHK5HG6//XZMP9ovgogoyFTDMox6URCR+4R9nE3Td+gQ8kJ7gNGhIel+QVocEdULM/X8RdM0V/UjDVpPPTf1M6y3UA0vEGiaVtFzK5bguiHg63emeuqJzjvvPPzHf/wHLr/8cpxzzjmYP38+EokEJiYm8Prrr+NXv/oVnnnmGbz97W+3e3+JiDxHVX5rNDWKiFzIx+W3R/bulbaNDg7qbscaG6XFIRFVj5l6/pLLZqWLJE5eEKnF9NtsNqt8HDcE9dyUJVlvETFTz8ZjSTadlgJzpd7XkYYGZIouDjKoV3uWgnof/vCHsX//fvzyl7/Es88+q5vgWHgDnXHGGfjIRz5iz14SEXlYLJWStjFTj8g7/DooI5fNou/gQeX2YpzWTVQbHJThL6oMNr9l6qlKbwEg7/B7V5klGaBzbSlTz8ZAmvi8hsJhNM6caXh/MVPPDQFfv7MU1IvH4/jyl7+M97///bjvvvvw+uuvY2xsDIlEAnPmzMGGDRuwcuVKu/eViMiTlD31AnSiQeR1YlDPL8vu3oMHTV1B5/GKqDb8XNofRGLAK9nVpZwGWi+16KmnClwC5gI3+Xwe2XQasYYG2y8UKbMkA/TdJfXUs/FYIvYqTM2cKWUZF4sIPfWYqVd7loJ63/ve97B582YsXrwYixcvtnufiIh8RSy/jaZSLGUj8hC/ZtOoSm9VgrQwIqqnWvbBovobHhjQ3W6eP9+hPZkUV2TqaZpWVUDNMFOvTOBmYnQUTz/4IMaGhzFt+nSsWr8eUcWkVKvcliVZb2JQL5fNVv1aF1Taq5CZevVnaVDGjTfeiG3btuGss87CDTfcgLvvvhvjitHWREQkD8pgKRuRt0iZej5YeGczGfQdOmTqvgzqEdUGM/X8Zai3V3e7e8MGh/Zkkpipp2malM1WKTFra+qxywRu9r70EsaGhwEAQ319OLJvX1X7IRIDT6nubkezJOtNzJw7+NpreHzHDsPMykpUWtYsDcqo8j1H5VkK6v3bv/0brrrqKjQ0NOCWW27Be9/7Xqxfvx7vfve7cfPNN+PVV1+1eTeJiLxLzNQL0pVDIj+Qeur5QO/Bg6avnnPyLVFtiJl6fskCDiJN0zDU16fbNvPkkx3am0liph4wOeiiGkZBonKZevtfeUV3+9Vdu6raD5G4X0HrXS1m6gHAyMAADtgQl6k4U0/IwGSmXu1ZKr/dunUrtm7dCgA4fPgwHnjgATzwwAPYuXMn7rvvPoRCIcyZMwebN2/Gpz/9aVt3mIjIa5IdHbrbzQsWOLMjRGSJWH7rh2was6W3ADP1iGqFmXr+MTY8LA2imOFwUE/M1AOO9tVLJCw/5sToqHJ7pYEb8b1fLTGDcFrAvreMns89L7yA+VXOOpCe2zIX+qRMPQb1aq7qS8+dnZ3Yvn07vvjFL+L3v/89fvOb3+Caa65BX18fbrnlFjv2kYjI0xZfdhkiR0+gQpEIVr7jHQ7vERFVwm/Tb7OZDPoPHzZ9/3In8ERkjR8vGASVWHrbNGeO48fOcDQqtYCpZgJuNpuVshELSgX1VO/reBWBRRUpmyxg31uqTD27VF1+y6BezVnK1BO98sorePDBB7Fz50489NBD6O3tRTgcxvLly+14eCIiT+s49lhc8dBD2Hv33Zhx8snoPOEEp3eJiCrgt+m3vQcO6BZg4Xgc4WgUWYMMjKAtjojqhUE9/xgUgl1OZ+kVxFtakDnayw6obgJu34EDhv3R8iXeu6q/aXdQTwo8BazVTalptNXQNK3i8tswB2XUnaVXf/fu3VNBvJ07d+LIkSMIhUJYsWIFLrzwQqxbtw5r165Fc3Oz3ftLRORJbatWoW3VKqd3g4gs8Fumnlh6O//ss9Hz9NMYfPll6b7xlhbEp02r164RBYpUMufxY0uQiZl6TvfTK2hobcVI0TG/mky9UsMtSgVuVH34YjYPsUgLJaJBuxhVq0y9zMSEdLGh3HMr9tRjpl7tWe6pl0gksHr1amzfvh0nnXQS1qxZgyYhvZeIiIjI6/yUTZNNp6XS2yWXX45hg8Va0BZGRPUkDspgRos3ZdLpqcmuBW7J1BP76lkN6mUzGfQdPGj481KBG1VQLxQKWdoPFU3TmKlXIqinaVrJ57vv0CG8tmsXQpEIFh1zDKZNnz71M7GfXigSQWrGjJL7Ipbf8rhWe5Z66mmahnQ6jdHRUaTTaaTT6aon6RARERG5kZ8y9XoOHNAFJSMNDVh4wQVIFJ3EFwvawoionqRBGQ7tB1VH7DMXTSbR4ZJWK+IE3JzFNXvP/v0lL2hVmqln58WxbCYjlQUH7YJUqfLbnEHJdOFnz//pTxgZHMRwXx9eeOwx3Wsjlt42zppVdsgJe+rVn6VMvfvvvx8PPPAA7r//fvzud7/DzTffjHA4jGXLlmH9+vVYv349TjrpJGbuERERkef5qaeeVHp77rmIT5uGBqOgXsAWRkT15Kcs4CATS2+71q5FpIaDCyphV6ZeuYnppQI3YmksYG/2lhh4QiiExlmzbHt8LyiVqZdNpxE1CPqNDQ0hm07rbueyWUSPPl6lQzIAZuo5wVJQr62tDeeddx7OO+88AMBrr702FeT72c9+hv/6r/9COBzGqlWr8OMf/9jWHSYiIiKqJ79k6mmahkFh8bnk8ssBwDCoN83ECTwRWSNm13Dx603icdUtpbfAZE+9YlaCepmJCfQfOaLb1rZ6NXqffnrqtpOZemKJaKq7W+rr5ndiKX+x4td8ZGAAPfv3o7GlBe0zZypfm8zExFRQTwyYmpnozEy9+rNlTMr8+fMxf/58XHnllXjllVfwwx/+ED/5yU/w1FNP2fHwRERERI6RMvU8GtTLptNSiVKhmbu48Ctgph5R7YiZeuQ9+Xwew/39um1uGZIBTA47KmZl+m3P/v26i1nRZBKLL7qoqqCenRfHrGST+U2pzNBCJt7Y8DCeuPfeqfOApSecoGyhlkmnkTz632LAtNFESw5pUEaJ8l+yR9VBvddeew0PPfQQdu7ciYcffhiHDh2CpmmYPXs2LrjgAjv2kYiIiMgxUqaeR4kLn1A4PFWiZNhTL4CLI6J6Yaae940ODkpBC79l6olTbxecfz4a2tp020qW39Y4U098/CBejCpXfgsA+199VfdePbJvH5KK6faZiYmp/xbPG6xk6vG4VnuWgnr/8z//MxXEO3z4MDRNQyKRwLp16/Dud78bp556KhYuXGj3vhIRERHVnV8y9cST88ZZs6aCCuICrSCIiyOiemFPPe8Th2S0LluGZEeHQ3sjkzL1KhyUkR4fx4BQerv0LW/B6IEDum1G711N06Rsr1L3t2J8dFR3O4gXo0qV32YyGWiaJvVFzKTTCKvKb4t67FkJmLL8tv4sBfU+85nPAACWLFmCbdu24dRTT8W6desQD1jtOhEREfmfVCLn0YW3VKJUdHJuOCgjgIsjonphUM/73NxPD6g+U0/M0os1NWH+OefguR/8QLfdKBsrMzGh/Jld7/V8Loe+gwd126YvW2bLY3tJuUy9gZ4eXQYeMPleCCmCeoXMPk3TpCEnTSbKb8NCTIiZerVnKah3ww034NRTT8WMGTMM7/Pss8/iiSeewFve8hbLO0dERETkNL9Mv5XKaObNm/rvhKKnXqK9HbFUqta7RRRYUvktg3qe4+Z+ekD102/FoN6iCy9ENJmU+6YZBG5UWXqAfe/1vkOH9NmHoRAWbt9uy2N7iXgsKZbNZJTTi7OZjLLfXSH4N9TbK71OTUXnDUaYqVd/lprEXH755SUDegCwY8cO3HjjjZZ2ioiIiMgt/FJ+K5XRFGXhqTL1mKVHVFt+yQIOKk3TpIslbatXO7Q3ajGhZ1ol5bcTY2MYMpiYbjYbS9VPb/IX7HmvHxaCVbM2bTKVTeY3meFh45+Nj6NHCM4Ckxl5YiYe8Eb5rfjcTl+xAo1lYkAAe+o5wfKgjLvvvhv/+Z//ib1790pTUyYmJtDT04P29vaqd5CIiIjISX5ZeJfK1GNQj6j+WH7rbarS0mkmMpnqSQqwVPAeE7O7GlpbMW/r1snHNZmpJ5YnW9kPI7lsViq9XXbllVU/rheJPQ6L9R48WFEwN5NOQ8vnpUDg0iuuMPX7zNSrP0tBvbvvvhvvfe97DT+M0WgUCxYswIc//OGqdo6IiIjIaX6dfqsrv1UMyuCQDKLaYvmtt4nH1HA0ipSJTKZ6EoNvWj4PTdMQCoXK/q5UenvxxVOPp3pckWo4Q/HPqtV74ICufDQUiWDxpZdW/bheNH3FCsOfVTocJTMxgYEjR3QDMwAG9dzM0lnqTTfdhBkzZuCWW27B73//ewDAt7/9bdx333348pe/jIULF+K6667Dueeea+vOEhEREdWbH8pv8/m83PC6KBMvNm2alDXETD2i2mKmnreJpaWNs2cjLGZ2O0wskwXMvc+y6bTUL3BpUa988XFVgZvB3l5leSdgT0mmWB4696yzXDV5uJ4WbNtmW0A5m05Lz23niSeaHkDC8tv6s5Spt2vXLnzgAx/AmjVrMDQ0BABIJBJob2/Heeedh/Xr1+PSSy9Fc3MztmzZYusOExEREdWVD4J6qoVVccPrUCiEhtZWjPf0TG2bxkw9opqSmtt78NgSZFL2swuPmWJGHXA0yFImA31c+LeFwmHMPv10w8dVfS8e2bPH8PGr/R7NpNPoP3RIty2opbfAZCDtLTt34pnvfhe9u3bhhf/5H8uPlZmYQM/+/bptZrP0APOl2WQfS5l6ExMT6OrqAoCp1N1M0SSdjo4OXH755fj2t79twy4SEREROcdtmRdWiIvPaColldx2HHec7nbXmjU13y+iIGOmnreJx1Uzk0HrTZmpZyLIMjE6qrvdOHs2IrGY4eOKj5nP53FECAzp7l/le71n/37dY0QaGrDowgurekyva5o9G+s+/Wmc8NGPVvU4+XxeKtktztIsx+wQFbKPpaBee3s79h2tsU+lUgiHw1O3C+bOnYvnn3+++j0kIiIicpIPMvWkxefcuVJPpZP//u8xbcEChKNRrPvUp0r26CGi6okXDLx4bAky6bjqwpYFqkw9M5lT5bIQy2VjDRw+jKzQk02nyve62Ktv/rZtiDc3V/WYfqHqkVuNWZs2VZSFyp569WcpqHfsscfi5ptvxsMPP4xwOIwFCxbghz/8ISYmJqbuc//99yOVStm2o0REREROkAZleHDhLfZ+Up2gd69bh3e8+CLeNzaG9Z/7XL12jSiwQhyU4Wmlhg+5hbL81sT7rFwWoiobq/hxxZ5sVvbBSHp8HANHjui2LaugPNTvjIJ64WgUnW96U8WPt7TCsmYpqFc0zIRqw1JQ753vfCd6e3vxzW9+EwCwfft2PP3009iyZQve+973Yvv27fj5z3+O9evX27qzRERERPXmh0EZlSw+zUxFJKLqSaX9Hjy2BJkXMvVU5be1yNQD3vhuzOVyUk+2WZs2Ke9rhTiVN9bUhAXnnWf58fwm3tIilfYDwNytW9G8aFFFjxWKRLCkwonCHJRRf5aCemvWrMF3v/vdqSEY7373u7F9+3YcOXIEf/jDH/D888/jxBNPxCc/+Ulbd5aIiIio3lQnx17jhcUnUdCwp5535XM5ZIqq1AB3ZuqFi/rgFZgJskjZ3cK/zXAAB4C+gwd12VmhcFjK9qoqqCdkAS668EJEk0nLj+c3oVAIDdOnS9uXXXklGlpbK3qsuVu2INnZWdHvSEE9TeOxrcYsTb8FgHXr1mHdunUAgFgshn/8x3/EJz7xCezduxfd3d2YOXOmbTtJRERE5BRfZOoJTc/d2NCdKGgY1PMu1URxVwb1IhGEIhFoRUE2U4MyFH1YdY9bIqgnBt1mb96Mptmz9fe1+F4fHx3FUF+fblslQxyCItHWhvGiEuVIIoGFF1yAI48/XtHjVFp6C8hBPWDyveGHC6RuVXGm3sTEBL74xS/iscce+//bu/Mwueo63+Ofquqq3tfsSXdn7yyEQAIBWRQUCYhEAgISVGBQlkFgYBwcHoZRRB2QGQYFt8u44yi4IDoDM3PviM8MEQ2XKxFUGMISyJ5Op9NJ77Wc+0fbRZ2l1q6qc07V+/U8PPQ5fbrq1/lVnzrnW9/v72v73owZM3TssccS0AMAABWjEtbUG7PcgOaz6DWA0qBRhn9Zg17hpiZFWltdGk1m1my9bOW3iUTCFrS0Zeo5BG4SiYRi0agO7ttn2r/0kksULNL6kdaAYW1Hh7rOPLOgx6pk1ky9heeeq0hzs2MGXzqh2lot3rgx7+dO99pA6eQd1KutrdUPf/hDvfbaa6UYDwAAgKfYsmlcGkehYtGo4tGoaZ816wJA+dEow7+c1in16nqk1lLZbK8za+mtlGP5rWHo4J49pkzAYDisxRdcYM/SKjSoZ1lPb/EFFziOpdrNtvQ2WHH55ZKUV/ltoR2F02XqoXQKWlPvHe94hx5//HHF6WQCAAAqnN8z9Rxv0AjqAa6jUYZ/+WmdUqdOtZnYshCbm21ZiOkacFi73nafdZbq2tvtmXoFBHkSiYSGBgZM+5ZedFHej1MNjr/tNi3auFEtixbpbXfeqfnveY8kewZfJj0FlN5KzgFfMvVKq6A19a666io9+OCD2rhxo8455xx1dXWpubnZ8djTTjttSgMEAABwk9/X1LOW3tbPmMGi4oAHkKnnX6NDQ6ZtL69Tag2yZAuw5JKF6NSAY3x0VIdS1nGT3goM2V7rmYfsyGkdwxlr1hTwSJWvfvp0nfPjH9v2p8vUCzc2Kprymg43NWnBOecU9NyU35ZfQUG9Cy+8UIFAQIZh6P7778947IsvvljQwAAAALzAlqnnMzTJALyJNfX8KZFI6ODevaZ97T09Lo0mu6lm6jlldjs14OjdudOUbVrT0KCFGzYkj89nDI7jsryXhZua8so8Q/qg3rIPf1i//9rXktsrrrii4A//KL8tv4KCehs3bvTsmgEAAADF5PcOlbYbNA+XiQHVxO/nlmp1aP9+xSzrlC4+/3yXRpOdbU29PIN66T4ICkUiiqUcaw10LtywQeHGRknFyUr10zqGXpUuCNp5+umaf9ZZ+sM3vqG2pUt1wqc+VfBzBIJBBWtqlIjFkvvI1CutgoJ6d999d7HHAQAA4El+X1Mv1xs0AOVVrI6gKK/enTtN27NPOkktCxe6NJrsrJl6iSyvM2tGXLo1WIORiJTy/hIdGzN9v+vd705+XYxGGbb3MtaGzVu6TL2mri7NPvHEZGblVIVqa01BPYNeDCU15XoSoq4AAKCS+X5NvRxKqQCUn1Ogw2/nl2oTi8V0cN8+075ll17q0mhyM9VMPWvn23SPa9Uyf37y62IEsG3jSnl85CZdpl6xA6ShujrTNjGj0iooU+8///M/9eMf/1hbt27VwMCAIpGIZs6cqZNPPlnvf//7tXr16mKPEwAAwBW2G2+fsXa/JbsB8AZroAPed3DPHiVSso6CNTVa4vEOrNamFpkCLIZh5JwR59QBN1VzsYN6OWYQIr1QOGxrihEMh9U4e3Zxn4egXlnl9U4yOjqqv/qrv9IvfvELGYahmpoaTZs2TWNjY9qxY4ceeeQR/fCHP9Tll1+uW265RSGfXwQDAAD4OVPP6QaNGyHAG5w+MDAMg3XCPMxaett15pmqnz7dpdHkJp9MvVg0agpaShky9RwaIiQFAmpKWb+1GK91MvWKI9LWZgrqNXV2Fr0hmLXJhvU1heLKK6h3xx136D//8z+1bt06XXfddTr++OMV/lPkf3BwUL/4xS/0ta99Td/5znckSbfeemvxRwwAAFBGfg7qRcfGbONlTT3AG9IFOuBN46OjOtTba9rX4/HSWym/oJ41cBYIBtU4b15Oj5uqYfZsU9DPKSs1n6AeH1AVT217u4Z27UpuN5WgeZYtU4+gXknlHJL9/e9/r8cee0wbNmzQd77zHZ100knJgJ4kNTU16bzzztPPfvYznXrqqfrOd76j559/viSDBgAAKJdif4JdTtaboGBNjRpmzXJpNABSpQt0wJsO7N5t2q5pbNSi973PpdHkztYoI4+gXuPcuQpZynfTPW4qa3bfVAPYsfFxewYhmXoFqbM0y0iXiTkVNZTfllXOV6mPPvqo2tradOeddyqY4eI2Eono3nvvVXNzs3784x8XZZAAAABu8XP3W9sNWmengiyPAniC43qdPjq/VJvelOwmSVp03nkKNza6NJrc2TL1MrzG8lmDNVOmXosl4DbVALYtgzAUUuPcuTn/PN5S29Fh2i5Fpp4tqEemXknlHNT77W9/q7POOkv1lvpoJy0tLdqwYYOeffbZKQ0OAADAbX4uv6VcCfAux0AHGS2eNDI4qMH+ftO+nksucWk0+bE2yshYfmttRpEhi8v6uKmswcCpBrBtzTvmzaPRTIHmn3WWaXthCbJNQ9Y19TivlVTOfwl79uzRpk2bcn7gZcuW6ac//WlBgwIAAPAKW1DPpXEUwnqDRudbwDtYU88/Dliy9OqmT1fXmWe6NJr85FN+O5rHB0GZMvWspbFTDWDzXlY8Kz/6UUWHh7XvmWe05P3v1+wTTyz6c5CpV145B/WOHDmi1tbWnB+4tbVVI5aTAgAAgN/Ybrx9dNNty9SjSQbgGY5BPRfGgcwMw7CV3i69+OK0a815TT6NMmzlt5ky9TIF9ayZekUuv2U9vcIFQyGtufnmkj4H3W/LK+fy20QikXEtPQAAgErk6/JbaykVN0KAZziWD1Km5jlDAwMaGRw07fNL6a1kD75leg/LZ8mGvDL1ppiVylIS/mLrfst5raSI0gEAAGRQSY0yyNQDvIPyW3/o3bnTtN2ycKFmn3SSS6PJnzX4li7AkkgkND46atqXcU29PIJ6ZOpVFzL1yiuv1SW/+c1v6vHHH8/p2H379hU0IAAAAE/x6Zp68VhMsWjUtM/akRCAe6baERTl0bd3r2m755JLFAgEXBpN/nJtlGEtvZUyl9+Gamsd90daWlRrWbbLset6PkE9a9Y5mXqeZn1tkKlXWnkF9bZu3ZrXg/vpZAcAAODEdjPik5tu602QlPkGDUB5kannfYl43HYuXXjeeS6NpjC5ZupZs+HCTU2qbWvL+XEnOWXRTSVTLx6PKzo+btrHe5m3kalXXjkH9b773e+WchwAAACe5Nc19axdDOtnzFC4ocGl0QCwspX2S7750KBaWANdktS2dKkLIymcbU29HIN6zd3dGZN00pXfOnWmncqaek5zwFIS3mZbU4+gXknlHNQ74YQTSjkOAAAAb/JpozCaZADeFggEFAiFZKTc8PrlQ4NqYQ0o1ba12UpLvc7W/TbNa8z6uzoF5zI97iSnZR4CwaAUCJiC1rm+1sct72W17e2KNDfn9LNwhy1Tj/LbkvLnVSoAAECZ+DVTjyYZgPdZS3D9cn6pFpXw4Yg1oy7X8tts7xnWtfqy/Zx1DclcX+vWrHM/zkG1ofy2vAjqAQAAZGBb98onN90E9QDvKzTQgfKwBZR8eB61ZeqlC+rl2YwiXaZeuvXuCg1g297LaJLhebbyWzL1SoqgHgAAQAa2TD2XxpGvSsgwASodmXreVgnn0ZyDetbg2YIFeT1u8udyzNRTjoEea1deP85BtSFTr7wI6gEAAGRgW8zeJzfdths0boQAz/Frd+1qUQkZz9Yy2YTDa8wwDHsAM1v5bZ5BvUID2KOWcWVb6w/uo1FGeRHUAwAAyMCPmTSJRELjo6OmfX68GQUqXYDyW0+zBbqyZK95US7db6NjY7YSyZZsmXq1tfbnCofVOGeO8zgKfK1bM/WcGnHAW2oovy0rgnoAAAAZ2DL15P0bb2t2iUSmHuBF1kw9r59bqomRSGisAj4cyaX81vqeEaypUUOa4Fy6x5Umsuic3jMnH9M0jhxe64Zh5N2VF+6zBvUMMvVKiqAeAABABuluULzMml0Sbm5WbVubO4MBkBaZet41PjpqK4f2Y5ZYLt1vre8ZTV1d9tLwLI8rZW5iUUjW+/jYmO04PqDyvpBlTb04Qb2Sqsl+CAAAQPVyDOoZhhQIlH8wOXJaTy/g4fEC1YpMPe+ydr6tqa9X3fTpLo2mcCHLmnpOmXq2Lr85BM6cMvUy/VwhmXrWYGMwElHDzJlZfw7usmXq/ek1NzI0pMGBAU3fvVutbgysQvnvo2cAAIAysmYXSN6/8c53wXMA7rCdXzx+bqkmTp1v/fjhSCGZerkE9Rwz9TK81xTyWndqVOLH7PlqY+1+axiGDh88qOeefFIvP/usnrjiCvX/z/+4NLrKw18EAABABo5r6rkwjnxYb4T8WDIGVAPKb72rUjqI29bUc3iNFdLl1zFTL1NQrwiZepnKe+Ed1u63krT7tdeScz5++LDe+Ld/K/ewKhZBPQAAgAzSlt96WCE3aADKj/Jb7yoke82Lcul+a/1ds3W+dXpcKfN7TUHlt9YmGbyX+YI1U0+Shg8fdmEk1YGgHgAAQAaO5bcujCMflXIzClQ6MvW8q1I+HLFm1FnLb506zOaUqWdZq0/KHHQrpFFGIcFGuM8pU290aMi03cxcFg1BPQAAgAz8lqlX6A0agPIjU8+7RivkwxGnTL3U11ksGlU8FjMdU5ZMPYeMQatCGnjAfU6ZerYuxlyXFA1BPQAAgAwc19Tz8I33+Oio/eKZGyHAk2iU4U2GYWjcujapT4MQTmvfpb7OrB8CBYJBNXZ2Zn3cxjlzTNvNCxbYup6aHjfP17phGPZMPd7LfCEYDktZmsqQdVk8BPUAAAAy8FumnvUGLRiJqGHWLJdGAyATMvW8KTo2ZitT9euHI05BvdTfzRo4a5w717G01qrjqKPUdeaZExuBgI675ZaMx+f7Wo+NjysRj5v2UbLpD4FAwDFbb1K4uVm17e1lHFFlq8l+CAAAQPVyXFPPwzfetvX0urudA5MAXFfIOmMoPduHI+GwGiyZaX7hVCab+jordA3WQCCgDf/yL9rz9NOqmzZN0446KvPxeb7WraW3gVBITfPm5TQ2uK+mvl4xy2trUsuCBQpkyeRD7gjqAQAAZOC3gBjr6QH+UUhHUJSeNdDV1NVlyzTzi6BD1l3qenZTWbcuWFOjee94R87HmsaQ5bXuOAc1hC/8wqlZxiSuS4rLX1epAAAAZea3NfXofAv4B2vqeZMt0OXjIES+5bel+l2nGtTz8xxUo0zlt5RRFxdBPQAAgAzI1ANQKpTfelMlfTjiWH6bGtSzNgQpUcAl39d6ucaF0siUqUfDk+Ly11UqAABAmfltTb2plFIBKC9b9pKlOQPcUUkfjjhm6mVaU88jmXqjFRRYrUaZOiGTqVdcBPUAAAAy8FP3W8MwKFkCfIRMPW+ynkf9nCUWCIUkS1OCyeBxLBZTLBo1fa9UwbN8S80raQ6qUcagHtclRUVQDwAAIAM/ral3qLdXiXjctK918WKXRgMgGxb+9x7DMCoqUy8QCNiy9SaDetbAmeSNTD3DMOyZej6eg2oUyrCmHgHa4iKoBwAAkIFj+a0L48jF/h07TNsz1qxRc1eXS6MBkI0tU4/yW9fFo1HFYzHTPr+XflrX1ZtslGENXjbMmpWxwcFUBPIoNY9Fo7YPqAgE+Uu6TL1wY6Pqpk0r82gqG0E9AACADPxSfhuLRnVwzx7TvuWXXebSaADkgvJb77GuS6pAQE2dne4MpkhyzdQrZTZc0Ppaz3CsdVyBYFCNPp+DapMuONy8YIEClnJwTA1BPQAAgEycLj49eON9YPfuZPaFJAXDYfVs2uTiiABkk2/zAJSeNaDUOHeuY7MJP7Fm6qUN6pUwGy6fTD3ruJo6OxUKh0syLpRGuu63lFEXH0E9AACADAKBgH2RcZfGksn+N980bS845xzVT5/u0mgA5IJMPe+xlqS2+Lz0VrJn6k12v7V1Sy9hwCWfRhnlHBdKI12mHmXUxUdQDwAAIAtb2ZDHbrxHBgd1pL/ftG/55Ze7NBoAubI1yvDYuaUa2bLXKiCol3OmXgl/13yyUsuZQYjSCNXWOu6vhL8nryGoBwAAkI11XT2P3XhbG2TUz5ih+e95j0ujAZArMvW8x9p1tRIyi9KuqVfGrMR8XuuVmC1ZbcjUKx+CegAAAFlYm2V46bbbMAxbUK9n0ybWHwJ8gKCe91Rilpit/DaRUDweV3RszLTfK5l61sBqJcxBtWFNvfIhqAcAAJCFtfzWS5l6AwcOaHx01LRvBaW3gC/QKMN7KjFTz+l1NmhZskHyRlDPMIyyduVFaWTqfoviIqgHAACQjTVTz0M33tYGGdOPPVbTjznGpdEAyAeZet4SGx9XPBYz7auIoJ5Dpp41w7vjqKMUaW4u2RhsGe9pXuvxaLQi56DaOAX1aurrVT9jhgujqWwE9QAAALKw3ox4JVMvFo2qb+9e074Vl13m0mgA5MvLWcDVyNp1NRAMqqmry6XRFI+1/DY2Pq4Du3eb9i3/8IdLOoZcm8JY50CBQEXMQbVxKr9tXrBAgUDAhdFUNoJ6AAAAWXh1Tb2+3buViMeT28GaGvVs2uTiiADkg0w9bxkbGjJtN86bZwuI+ZE1U6931y7Te0cgFNKyD32opGOwvdb/1KzDylp621Qhc1BtnDL1KKMuDYJ6AAAAWVhvRrySTWMtn5p/zjmUtgA+Ys3UI6jnLmuWWKWUfVqDYiNHjpi25599thpnzy7pGGxr6qU5zraeHp1vfckpU69S/p68hqAeAABAFrmuBVROo0NDOnzwoGkfDTIAfwnQKMNTKrHzrWTP1LNaccUVJR+D7bWeJlPPGlglqOdPNU7lt8xlSRDUAwAAyMK2pp4HHLZ0LqybNk3z3/Mel0YDoBBk6nlLJXa+leyZeqnqpk/Xgve+t+RjyPW1bg2sthAI8iWnoF6l/D15jfeuUAEAADzGi+teWW98Zh53HOsOAT5jzV7ySml/tbIFlCokCJEpU2/ZpZeW5b0j16zUSs2WrDYh1tQrG4J6AAAAWXix+601o4QbH8B/yNTzDsMwqjJTr1zLNuTa6dm2riGZer7kWH5bIX9PXkNQDwAAIAsvdr+t1IwSoJp4MQu4WsXGx00dYaXKCUKky9SbsWaNph9zTFnGkEum3uDAgOLRqGlfpcxBtWnq7jad3xpmzVLDzJkujqhyEdQDAADIwouZerag3sKFLo0EQKFolOEd1iy9YE2NmubNc2k0xRUKhx33Ly9jc6VcslL3v/mmabupq0utixaVdFwojfpp07T2llskSaHaWp10112eXJ+4EtRkPwQAAKC6eS2bxjAMjVGiBPheriWJKD3rByVNXV0KWtc89CmnTL1gJKKeTZvKNoZsAexEPK7enTtN+1ZcfjmBIB876bOf1TE33KBAKKT66dPdHk7FqoyzFAAAQAl5LVNvfGTEdkNEph7gP2TqeUelrqcnOa+pt3DDBtVPm1a2MVgDpNbXet/evYpZSm/Ltd4fSqdh1iy3h1DxCHsDAABk4bU19aw3n+HGRtXxKTjgO9ZMvYEDB3Rg926Cey6o5K6rQYfy23IHzLJlvFtLbzvf9S4+rAJyQFAPAAAgC69l6jl1vg0EAi6NBkChrIEOSfqfZ5+1BThQepWcqVfT0GDabpgzR93r15d1DLZS5pT30dHhYR3q7TV9e8Wf/Vk5hgX4HkE9AACALLy2ph6db4HKkG7NtjdeeqnMI4FtndIKOq92nn66lPLBz7E33lj29QJt76OJRPLr/Tt2mL4XaW3V4o0byzEswPdYUw8AACALr5ffUqIE+JNTpp4kRcfGyjyS6mYYRkVn6s1Ys0bvffRRbfvhDzVj7Vodc+ONZR9DujX1DMOwZab2bNqkmvr6so0N8DOCegAAAFnkUn6bSCT05ksvaeDAAbXNmKHuZctK1rXPmlHSTOdbwJfSBfVQXtGxMVPmmFRZa+pJE40xFm7Y4NrzpwvqDRw4YHtPW0npLZAzgnoAAABZ5FJ+27tzp3a98ookafDQIdU3N2tmZ2dJxkOmHlAZyl0CCWfWc2owElHjnDkujaYypXsf3WfJ0pu2erVmrF1btnEBfseaegAAAFnk0oTila1bTds7SrQmViKR0HgFr/0EVBMy9bzB1vl2/vySZVpXK6dGGbHxcfXt2WPavfKKK2j8BOSBMxUAAEA21jX1cmiUYc38KBbrzadEUA/wq0yZem435KkmlbyenlfY1qY1DPXu2mUqew6Gw+q59NJyDw3wNYJ6AAAAWeSypp5VuLa2JGOx3nzWtrertq2tJM8FoLQyZerFY7EyjqS60VG89AIOa+pZS28XnXee6qdPL+ewAN9jEQcAAIAsglnW1HO6+a5taCjJWGwZJYsWleR5AJRephLPeCymmnC4jKOpXmTqlZ71fXR8dFTjo6OmfSuuuKKMIwIqA5l6AAAA2WRZW8mp1La2rq4kQxkbGjJtt9IkA/CtTOW3ZOqVj21NPYJ6RWfN1LNqnDtXXWeeWabRAJWDoB4AAEAWTmsBpRq1BNqk3JprFILOt0DloPzWfdGxMY3SfKjksnV6nrVunS2bD0B2BPUAAACysN1oWIJ6Ts0rSrXIPeW3QOUgU899vTt3ms7pwUhEHStXujiiypSt0zPZkUBhCOoBAABkY83Us3zbqfy2FEE9wzBsWYGU3wL+lTFTLxot40iqk2EY2mtp1rD4ggsUaW52aUSVK1umXisfUAEFIagHAACQRbbut+UK6sWiUVv2Dpl6gH8ZiUTa78XI1Cu5I/39GjlyxLTvqI98xKXRVLZsmXosJQEUhqAeAABAFlnX1HMK6mW4WS+U9XkCoZCaurqK/jwAymOktzft9yi/Lb19b7xh2m5dvFjzTjvNpdFUNjL1gNIgqAcAAJBFpgwDwzDKtqaetfNtc3e3QuFw0Z8HQHnMOfnktN8jqFdasWhUB3bvNu1beeWV9sxsFEW2oB5r6gGF4YwFAACQRaZMvejYmBLxuO1nShHUo/MtUFma5s3T0X/+547fI6hXWgd27TKduwOhkJZfdpmLI6psmT4ca5w7VzV1dWUcDVA5COoBAABkkWlNPafS24lDyhDUo1wJ8L3THnhAl73yihZt3GjaT1CvtPZaSm8XnnuuGufMcWk0lS9Tph4fUAGFI6gHAACQRaZMPWs32pSDij4OOt8ClallwQK1LVli2kf329IZHBjQ0MCAad9KGmSUVKZMPT6gAgqXubAdAAAAtpuR1HCd03p6Epl6APITaWkxbffu2qVEIqF5S5aoub3dpVFVJmuDjKbOTnWfdZZLo6kOmTL1+IAKKByZegAAAFkUVH5b5O63iURCYyMjpn2ULAGVI9zcbNvXt2ePfv/004pRils08VhMvTt3mvatuOIKBTNkkmHqyNQDSoOgHgAAQBaZuiGWa0298ZERW0lvKzdCQMWwZupNSsTjOmjp0orC9e3ZY16vMBDQij/7M/cGVCXI1ANKg6AeAABAFrbyWxcaZVifJ9LaqlpK8oCKkS6oJ0njY2NlHElls5bedp95plrmz3dpNNUjkCGo10xQDygYQT0AAIAs0jXKSMTjExl0Dooe1LM2yVi0SIFAoKjPAcA94aamtN+jNLQ4RgYHdfjgQdM+GmSUR7rXcKiuTo2zZ5d5NEDlIKgHAACQRbo19axr3JkPKW2mHuvpAZUlU6ZenDX1iuLIoUOm7brp07VwwwZ3BlNl0mXqtSxcmHGJCwCZ8dcDAACQhS1T70//T1d6KxW/UQZBPaCyZQrqxaLRMo6kco1ZMp5nHnecQpGIS6OpLuky9XgvA6aGoB4AAEAWtq59f8rCyxjUK0P5LYDKEXHofjuJoF5xWM/ZnEfLJ12mHnMATA1BPQAAgCzSralnzfpwOqZYxsjUAypaxky98fEyjqRyWT8c4TxaPulKbJkDYGoI6gEAAGSR7makXJl6sfFxW6ZOC9kNQEXJ1CiDTL3isC1jwHm0bAKBgD3rXQT1gKkiqAcAAJCF9UbEyKX8tohr6lmfJxAMqrm7u2iPD8B9gWBQwTTru8UJ6k1ZIh7X+OioaR+ln+VlxOO2fQT1gKkhqAcAAJBFuu63mYJ6KmKmnvV5mrq6WNwdqECJNGW2ZOpNndP5moCS+5gDYGoI6gEAAGQTCJg2DUnjY2MZs2eKWX7LOlBAdSOoN3XWoF79jBkZm5OgPCIZys4BZEdQDwAAIAunTL3enTsz/oxhGEUL7NGxEahu8VisqCX91YgPRwBUIoJ6AAAAWQQd1tTbu327ad+MNWtK9vx0vgVAtt7U2D4cWbzYpZFgUsPs2W4PAfA9gnoAAADZWDL1Bvr6bFkfR193ne3HipVZY8swIVMPqEjNCxak/R5BvanhwxHvae7qcnsIgO8R1AMAAMjCWn47PjJi2m5fsUKdp59u+7lilN8aiYTGLM/Xys0oUJFOvOOOtN8jqDc1fDjiPU10cQemjKAeAABAFtbyW6tVV1+tYDhs21+MoN7Y6KjtcbgZBSrTsg9+UO/+9rd19J//ue17BPUKZxiGvfyWD0fKbt5pp5m2j7/1VpdGAlQOgnoAAADZWBtlpKipr9eyD31IgZoa2/eKEdSzZpeEm5tVN23alB8XgPcEAgEt/9CHdNoDD6h9xQrT9wjqFS46NqZEPG7ax4cj5XfiHXck379W33BDSdeiBaqF/eoTAAAAJrbutymWfuADqmtv18iBA7bvFWNNPafOt4FAYMqPC8DbatvaTNux8XF3BlIBrB+OhGpr1TRvnkujqV5z3/52Xblrl2LDw4q0tLg9HKAikKkHAACQRaag3qqrr5YkBUuUqcfi7kB1qm1vN22TqVe4EYf19DKd11E6wZoaAnpAEXEmAwAAyCKQZk29GWvWaOa6dRPHlKn8lqAeUB3qCOoVjfU82rp4sUsjAYDiIqgHAACQRbqMjqOuvjpZCluqTD2n8lsAlY9MveKxnUcJ6gGoEAT1AAAAsnAK6oWbm9WzaVNyu1xBPTL1gOpQ29pq2o4T1CuYNVOvbckSl0YCAMVFUA8AACALp6De8g99SJGmpreOcSrRnWKjjFg0alscn46NQHUgU694nNbUA4BKQFAPAAAgC6eA3VFXXWU+JhCwHTfVTD1rlp4CAbXMnz+lxwTgD7agHt1vCxIdH7dlOZKpB6BSENQDAADIonHOHNP27Le9TdNXr7YdZy3BnWpQb2Rw0LTd1NmpUG3tlB4TgD+QqVcc1tLbYE2NmvlwBECFIKgHAACQxfyzz9aMtWslSTWNjXr7F77geFyxg3q9O3aYttt7eqb0eAD8o7atzbRNUK8w1qBe8/z5jmugAoAfcTYDAADIItLSogs3b9bBP/xBrYsXK9LS4nhcwBrUm8KaeqNDQ+rfv9+0b8nFFxf8eAD8xZqpF4/FZBhGsuM2cmMN6tH5FkAlIagHAACQg1Akohlr1mQ8pphr6u194w3TdqS1VT2XXFLw4wHwlzpLUE+ayNYLRyIujMa/rE0yWllPD0AFofwWAACgSIpVfpuIx7XvzTdN+1ZcfrnCjY0Fjw2Av1gz9SSaZRTClqlH51sAFYRMPQAAgCIpVlDvwO7dtpv3VddcU/C4APhPTUODguGwEilr6aVbV88wDL35P/+j/r171TJtmuavXKmQQ9fuakT5LYBKRlAPAACgSIoV1Nuzfbtpu+uMM9S+bFmhwwLgQ4FAQLXt7RpJWVszXVCvb88e7Xz5ZUnS0OHDqmto0FyCV4rFYopaPiCh/BZAJaH8FgAAoEiK0Shj8NAhDfb3m/at+vM/n9K4APiTtQQ3XVBvMqA36fU//KFkY/ITa5aeAgG1LFzozmAAoAQI6gEAABRJMTL1rFl6TZ2dWnjuuVMZFgCfqm1rM22nC+oNHT5chtH4jzWo19TZqZq6OpdGAwDFR1APAACgSKYa1IuNj+vAzp2mfUdddZXtcQFUB2sH3HiaoJ4Tmmqwnh6AykdQDwAAoEhs5bd5BvX27dihRErJbjAc1sqPfKQoYwPgP7byW4dAXSIed/zZ4SNHSjImP7EF9VhPD0CF4WNfAACAIrFl1OWxpp5hGNprKb1dfMEFapw9uwgjA+BHuaypNzo87PizQ4cPq2XatOR2dGxM27Zu1eChQ5o+d64WHnWUAsHKzvEYsQb1Fi1yaSQAUBqVfRYHAAAoo2AoZNrOJ1PvUG+vLavk6GuvLcq4APhTLmvq2ZpB/Ik1U2/Xq6+qf98+RcfGtOf119Xf21u0cXqVNeBJph6ASkNQDwAAoEimUn67f8cO03bHqlWac+qpRRkXAH/KKVMvx6De4b4+0/bQwMAUR+dt8Xhc4yMjpn1trKkHoMIQ1AMAACiSQhtlGIahQ/v3m/atuuoqBQKBoo0NgP9Mpfx2+PBh0znIWoqabi2+SjHm8O/SQlAPQIUhqAcAAFAkhQb1jvT3227WF77vfUUbFwB/sna/dQrqWYN1qceOj41NfD0+bmuykchjzU8/smYwNsyapUhTk0ujAYDSIKgHAABQJIWW31qz9DqOOkrNXV1FGxcAf5rKmnrSRLae5Bz4q/RMPVuTDLL0AFQggnoAAABFYsvUyzETpt8S1Otev75oYwLgX9by23g0avqwwEgkHMtMJ02uq+cU+Ms1U298bExxHwYArb8zTTIAVKKa7IcAAAAgF4WU30bHxjR46JBp3/yzzy7msAD4lDWoJ00E9moiEUnS2MhIxvPMVDL1DMPQtueeU+/OnaqJRLRi3Tq1TJuWz/BdZQvqLVrk0kgAoHTI1AMAACiSQspvD/X2mrZrGho0l663AOQc1EstwU23nt6kTJl62TKJjxw8qN6dOyeec3xcO15+Oet4vYRMPQDVgKAeAABAkRSSqWctve185zsVqq0t6rgA+FO4sdF2XkkN6mVaT0+aCOoZhuFcfpslU8+aQZztubwkkUhodGTEtI819QBUIoJ6AAAARWK9+VaWoJ5hGLYmGZTeApgUCARs2XqmTL3BQdP3Ot/5TtN2Ih7X6PCwc/ltlkw968/4qVvu2PCw7fxLUA9AJSKoBwAAUCS28tssN8FDAwOKjo+b9nWfdVbRxwXAvzIF9azZc3NOOUV106eb9h3p61PMcp6RsmfqWR/bT0G9UUvzkNr2dtV1dLg0GgAoHYJ6AAAARZJv+a219Latp4fF3AGY1La1mbZTA3TWTL22nh5NO+oo076+vXsdHzfvTD0fdcC1radHlh6ACkVQDwAAoEimGtQjSw+AVbpMPad149qWLFHHqlWmfdZmPJMyBekS8fhECWuKbJnHXmINSNIkA0ClIqgHAABQJPkE9WLRqI4cPGjaN3/9+pKMC4B/pQvqOa4bt3SpLVMvXfAuU6aetXxVmjif5dL8xwtsmXpkQAOoUAT1AAAAisS2pl6GG2BrZ8lQba3mnX56CUYFwM/q0gT1rKW3ddOnq669XdMsmXrpZMrUS9fp1i8luLagHpl6ACoUQT0AAIAiCYZCpu1M5WrWG/L2FStUU19fknEB8C/bmnqTQT1L4KrtT4GrDkumXjqZMvWcuuVm+xmvMAzDlmnYxpp6ACoUQT0AAIAiyaf81ppJ0rZ0aUnGBMDfbOW3f2qUYTuH9PRMHN/aqqaurqyPa2TK1LN86DDJD0G98dFR2wcqLQT1AFQognoAAABFkk/5bbosGwBIlW5NPVvn25RziHVdPSeJRCLtOSpdpl6mQKBXWMcebmxUw6xZLo0GAEqLoB4AAECR5JOpZ70hbyVTD4ADa1Av/qegnm3duJRzSK7r6qVbIiDtmno+yNTr37vXtN26ZIkCgYBLowGA0iKoBwAAUCS2oF6aG2AjkZjoXJmC8lsATpzW1IvH4xobGTHtTz2HdOTaLMPhHJVweOxMx3tJLBbTvjffNO3rfOc7XRoNAJQeQT0AAIAiybX8dnRkxPY9gnoAnDh1v3XKpGvNs/xWcu5mmy5LL93xXrL/zTcVj8Xe2hEI6OjrrnNvQABQYgT1AAAAisSaqad0QT1L6W1tW5vqpk0r1bAA+Ji1/FaSBg8dMm03zJmjSFNTcrt9+XIFgtlv9ZyCdOnW05O8nalnGIb2vP66ad/CDRvUumiRSyMCgNIjqAcAAFAkua6pZ2uSsXQpaz4BcOQY1OvvN21bM31r6utzWqfTKUiXKajn5UYZ/fv22bIMj7nxRpdGAwDlQVAPAACgSHIuv82wwD0ApAo3NSkQCpn2HbFk6jmV7+faAdcqY/mthzP1dr/2mml72urVmnfaaS6NBgDKg6AeAABAkeTaKMPa+Zb19ACkEwgEbNl6w4cPm7bbUtbTm9SRS1DPqfzWcn4yHe/RoN7Q4cMaOHDAtO+YG28kAxpAxSOoBwAAUCRTKb8FgHSsQT1bo52eHtvPTLN0wA0Eg4q0tpr2VUqjjD2WLL36GTPUc8klLo0GAMqHoB4AAECR5FJ+m4jHNTY8bNrX6pBlAwCT6traMn7f6Rwy55RTFKqtTW7PPukkRVpaTMdYM+/isZjGR0fTPo8XM/WiY2Pq3bnTtG/V1Verpq7OpREBQPkQ1AMAACiSXDL1Ri0BPYlMPQCZOTXLSAoE1Lp4sW134+zZetfXv662nh7NPukknf7lLytkCXRZG184nZ8yHe8Fe994wxRsDIbDWnXttS6OCADKpyb7IQAAAMhFLmvqWUtv62fOVK2lJA4AUmUK6jV3d6fNSlu2aZOWbdqU3LYeF7eco0YzrKcneS9TL5FIaO/27aZ9Sy++WI1z5rgzIAAoMzL1AAAAiiSnTD1rkwxKbwFkkSmol885JFumnvVDByuvBfX6du+2lQsfc+ONLo0GAMqPoB4AAECR5LKmnq1JhsMC9wCQqjbDmnqteZTv19TXm7atQbqsQT2Pld/27d1r2p5zyimaedxxLo0GAMqPoB4AAECRBEMh07Zjpp7lppkmGQCyyZipl0dQL7VxhmQP0vmt/HbkyBHT9rIPftClkQCAOwjqAQAAFEkgh6DeiLX8liYZALKoK1H5bWqQbnR4WIf7+03fb+rsNG17qVGGYRi2zMKOFStcGg0AuIOgHgAAQJFka5QRj8Vs6z8R1AOQTaZMvbzKb61BvZQg3Z7XX5dSPoioaWxU9/r15uM9lKk3NjxsO8eynAGAakP3WwAAgCKxBvVkydSzlt5KlN8CyC7dmnqBUEgtCxfm/DihNGvqxaJR7XvjDdP3Vv7ZnynS3Ox4vBdYs/Qira2qnznTpdEAgDvI1AMAACiSbI0yrDehjfPmKdzQUPJxAfC3dJl6LQsXKhQO5/w46dbU2/fmm4rHYm99IxDQMTfeaC/X9VD5rXUpg/aeHgUCAZdGAwDuIKgHAABQJLby2yyZepTeAshFuqBePuvpSQ7lt4mEjERCe157zbR/0caNal20yBYEtJa7usm2PumyZS6NBADcQ1APAACgSLIF9WiSAaAQ6Rpl5LOenuTQKCMeV9/evRobGTHtX3PTTc7Hezmox/kUQBViTT0AAIAisZXfptwAJxIJHTpwwPR91tMDkItwc7MCoZCt+2y+gawa65p68bh2vfqqad+sdes0++STJ44vcfltLBrV/zz7rA719qptxgx1LVumndu2yUgk1L18uZozNAixld+SqQegChHUAwAAKJJMmXp9u3dr3JINM+/tby/LuAD4WyAQUG1bm0b7+kz78y2/tZbTDhw4YF5LT9Kxf/mXybXpSp2pt/eNN3Sot1eSdKi3N/m1JA0fOaLjzjhDwVDI9nOOncTpfAugClF+CwAAUCS27reaCOwZhmHPhjnxRM1ct65cQwPgc07r6uWbqWcN0lkDes3d3Vp8/vlvHW9trFHkoN4bf/xj2u+Nj47qsCWIOcnadEiBAOW3AKoSQT0AAIAisZbfShNBvcN9fRoaGDDtX/Pxj9OpEUDOatvaTNvBSERN3d15PYa1/NZq9Q03mD6csJbfWst/S60/JXMvlbX0trm7O+vvBgCViKAeAABAkThm6iUStiy9lkWLtOi888o1LAAVwJqp17p4sWNpaibWTL1U4eZmrbzySvPxJczUy6WT7qH9+x330yQDACYQ1AMAACgSp6De8JEj6t+3z7Tv2L/4i7xvxgFUN2sH3HzX05PsmXepjvrIR1Tb2mra59Qtt1hGh4ezHjN85IitM6/kENSjSQaAKkVQDwAAoEicym93vfKKabu2vV0rrriiTCMCUClaFi40bU9fvTrvx7Bm3k0KBINaff31tv227rdFzNSzrYuXxiGHElxb51uaZACoUgT1AAAAisQpU69vzx7T9qprrlG4sbFcQwJQIVZeeaUa582TJDV1demoq6/O+zHSrTvXunSpWhYssO0vZfmtNTCXTr+lBNcwDI1aAoJ0vgVQrexXngAAACiIU1DP9P1IRKs/9rEyjQZAJWldvFiXPv+8Dm3bpvblyxVpasr7MdKtqZduTTrb8YYhI5FQIDj13JBcg3oDvb0yDCPZWCg6Nmbr2ttO+S2AKkWmHgAAQJFkC+otu/RSNc6ZU6bRAKg0ta2tmnX88QUF9KT0Qb105atOxxcrWy/XoF4sGtXgoUNpf66mvl5NnZ1FGRMA+A1BPQAAgCJxWlMv1bE331ymkQCAXdpMvTSZbk6NNcod1JPMJbjWn2tdurQomYMA4Eec/QAAAIokU6be/LPP1rSjjirjaADALF3327SZeg6NNYrRATcWjSo6Npbz8YcyBPVokgGgmhHUAwAAKJJMQT2y9AC4Ld9MvVKV3+aTpSdJRw4dUiwanfhZmmQAQBJBPQAAgCIJBIPSnxZzT1XT0KDOd77ThREBwFvSZerVz5jhuN8pU88oQqZetqDekosuMgcUDUOHensdf5YmGQCqGUE9AACAInLK1mvr6WHNJwCuC9XX2/bVz5yZ7CxrFQgEbIG9omTqWbLtrNb85V9q7tvfbtp3qLdXiURCo8PDpv3pOvcCQDXg6hIAAKCInIJ6ZJIA8AKnzLvm7u7MP2PJ7itF+e38c87RjLVrFW5u1nG33qpZ69ape/160zGH9u/X6NCQZBim/elKhwGgGmRu0QYAAIC8OHXAZc0nAF4QDIVs+5rnz8/4M7ZMvRKU3y4891ytuvpq077u9ev1q1tuSW6PjYzo4N69pmMaZs1SbWvrlMcDAH5Fph4AAEARkakHwE+ynZ+s6/BNNVPPMIyJjLsUTh98dKxcqcZ580z79mzfnvXnAKCaENQDAAAoosSfOjSmIqgHwCta1q5Nfh0Mh7Xq2mszHm8tv51qo4yxkRFbtp/TOTIQCNhKcMdHRkzbBPUAVDuCegAAAEUUdejqyI0nAK9YcPPNmn7ssWrq7NTpX/6ymubOzXh8sdfUs5behpub1TB7tuOx1qCeFedWANWONfUAAABKLNzY6PYQAECS1NjTo4u2bFHIYX09JzVF7n5rDeq1L1uWtvtu1xlnKBAMykjznO0E9QBUOTL1AAAAAACOit0owxrUy5RtV9fRoZnHH5/2+3S+BVDtCOoBAACUUGOW0jYA8LJSl99my7ZLV4IbrKlRy8KFUxoLAPgdQT0AAIASmr56tdtDAICC2RplTDWoZ+18myXbrvussxz3tyxapFA4PKWxAIDfEdQDAAAoop5Nm0zbJ911l0sjAYCpq7Fm6k2h/DY6Pm7rYJstU2/WunWqbWuz7adJBgAQ1AMAACiqt33mM5r7jneoqbNTp9xzj6YffbTbQwKAgtnW1JtCpt7e7dtN28FwWK1Ll2b8mWBNjTrPOMO2nyYZAED3WwAAgKJqWbBAFzz5pNvDAICiKNaaevFYTLtfe820b9HGjQo3NGT92e716/XqT35i2keTDAAgUw8AAAAAkIYtqFdg+e3+HTsUGx837TvuE5/I6WedmmWQqQcABPUAAAAAAGlEmppM2/FoNO/HSCQS2vXKK6Z93WedpRlr1uT0881dXZp3+unJ7fqZMzVz3bq8xwEAlYbyWwAAAACAo7rp003bUUu2XS4O7NqlMUuDjFyz9Cad+e1v65nPfEbjAwM67tZbbQ08AKAaEdQDAAAAADiqtwT1rCW02RiGoZ3btpn2zX7b2zT3He/I63GaOjv1rv/1v/L6GQCodJTfAgAAAAAc1U2bZtrON1Pv4N69GhkcNO077q//WoFAYMpjA4BqR1APAAAAAOCofsYM03Z0fFyGYeT0s4ZhaKdlLb2OVau04L3vLdr4AKCaEdQDAAAAADiylt8aiYTiOXbAHejr02B/v2nfcbfcokCQ21AAKAbOpgAAAAAAR9ZGGZIUGxvL6Wd3WdbSa16wQEs/8IGijAsAQFAPAAAAAJBGuKlJwUjEtC+XdfWGBgZ0qLfXtG/txz+uYA29GgGgWAjqAQAAAAAcBQKBgjrg9lsCevUzZ2rFFVcUc2gAUPUI6gEAAAAA0rKW4OaSqTdy5Ihpe+G556qmvr6o4wKAakdQDwAAAACQVv20aabtXIJ6w4ODpu32FSuKOiYAgOTrBQ1++ctf6tprr814zGc/+1lddNFFye29e/fqS1/6kjZv3qwDBw6opaVFJ554om644QYtWrSo1EMGAAAAAF+xZuplK781DMOWqdexfHnRxwUA1c7XQb3Dhw8nv25sbFQ4HLYdE0lZ1PXAgQO6+OKLtW/fPklSOBxWX1+fnnjiCW3evFkPP/ywFi9eXPqBAwAAAIBPWNfUy5apNz42pngsZtpHph4AFJ+vg3qDKSnd9913n0477bSMx3/xi19MBvQeeOABvfvd79bvfvc7ffjDH9bhw4d1991365/+6Z9KOmYAAAAA8JM6a/nt2FjG461ZejUNDWru7i76uACg2vl6Tb3UTL2mpqaMx0ajUT3++OOSpJUrV2r9+vUKBoNas2ZNMhi4efNm9fX1lW7AAAAAAOAz+ZbfjljX01u+XIGgr289AcCTfH1mTQ3qNTc3Zzz2tdde09DQkCRpuWU9h8ntRCKh3//+90UeJQAAAAD4V77lt8OWTL121tMDgJKomPLbp556Snfffbe2b9+ucDisdevW6aMf/agWLFggSdq1a1fy2Pb2dtPjdHR0JL/esWNHxueMx+OKx+NFGL1/Tf7+1f7v4BfMl38wV/7EvPkL8+UvzJc/ME/+UehcRSz3T/lm6rUtW8browD8bfkT8+YvU5kvL8yxp4J6O3fu1BlnnJHTsV/84hdNmXr33HOP6fvbt2/X448/rm984xtau3ZtMktPkmpra03Hpm6nHufk5Zdfzml81eCFF15wewjIA/PlH8yVPzFv/sJ8+Qvz5Q/Mk3/kO1dDliWKouPjMgxDgUDA8Xhrpt6h2lpt3bo1r+fEW/jb8ifmzV/8Ol+eCuoVoq2tTZJ04YUX6uqrr9b4+Ljuu+8+/eQnP9Hw8LA++clP6l//9V8zPoZhGMmv070xTerp6VFDQ8OUx+1n8XhcL7zwgo4++miFQiG3h4MsmC//YK78iXnzF+bLX5gvf2Ce/KPQuRqcPl3PW/bFolGFIxHbsbHxcVsjjbVnn0332wLwt+VPzJu/TGW+hoeHXU/88lRQb9asWXriiSdyPvbss892/N4dd9yhJ598Uv39/dq2bZt27NhhaqQxZnmTSd1ubGzM+LyhUIg/zD/h38JfmC//YK78iXnzF+bLX5gvf2Ce/CPfuWqcOdO2LzY+7hjUG7aU3gZratS+bBmvjSngb8ufmDd/KWS+vDC/ngrqhcNhLV68eMqPE4lE1NXVpf7+fklSf3+/ulNaqB88eNB0fG9vb/Lr+fPnT/n5AQAAAKBS1NTXK9zYqGjKUkXR8XHVOxxrLb1t6+lRKBwu8QgBoDp5KqiXj+HhYT300EM6ePCgGhsbdeONNya/F41GtXPnzuT27NmzNW3aNLW3t6u/v18vvfSS6bFefPFFSRNBxdWrV5fnFwAAAAAAn6ibPt0W1HNi63xL2S0AlEzQ7QEUqqGhQY8++qi+/e1v6ytf+Yp+9KMfKZFIaGRkRHfffXcyG++EE07QzJkzFQqFdP7550uaCOL9x3/8hxKJhLZs2aJf/epXkqSzzz5bLS0trv1OAAAAAOBF9TNmmLbHR0YcjxtOaWYoSR0rV5ZsTABQ7Xwb1JOkT37yk4pEIjIMQ7fffrtWr16ttWvX6nvf+56kiXX3Pve5zyWPv+6667RgwQJJ0o033qjVq1frsssuUywW0+zZs3XLLbe48WsAAAAAgKe1L1tm2h6yBO8mWTP1ph11VMnGBADVztdBvVNOOUWPPfaYLrjgAs2bN0/SxHp6PT09uvbaa/Wzn/3MtJZec3OzfvCDH+jSSy/V7NmzJUkzZ87UhRdeqB/+8IeaNWuWK78HAAAAAHjZNMsyRUMDA7ZjnDrfkqkHAKXj2zX1Ji1evFh33XVXzsd3dHToU5/6lD71qU+VcFQAAAAAUDlmHHOMaXv4yBEZhqFAIGDalyoYDqt16dKyjA8AqpGvM/UAAAAAAKU33RLUS8TjGhkcNO2j8y0AlBdBPQAAAABARvUzZqhhzhzTPuu6etagXgedbwGgpAjqAQAAAACyspbgWtfVswX1WE8PAEqKoB4AAAAAICtrs4zhbJl6dL4FgJIiqAcAAAAAyMq6rt5gSqZelM63AFB2BPUAAAAAAFlZy2+jY2PJQN6IU+fbJUvKNjYAqEYE9QAAAAAAWbUuXaqa+nrTvslmGbbOt8uW0fkWAEqMoB4AAAAAIKtgKGRbJ2+yWYY1qDeN0lsAKDmCegAAAACAnEw/9ljTdrpMvfYVK8o1JACoWgT1AAAAAAA5mW7pgJsuU4/OtwBQegT1AAAAAAA5sQb1RgYHNT46aut8S/ktAJQeQT0AAAAAQE6sQT3DMHRg927TvmAkQudbACgDgnoAAAAAgJxEWlrUsmiRad+BXbtM2+3LlilYU1POYQFAVSKoBwAAAADImTVb70h/v2m7g9JbACgLgnoAAAAAgJxNP+aYjN/voPMtAJQFQT0AAAAAQM6yBvXofAsAZUFQDwAAAACQM2v5rRXltwBQHgT1AAAAAAA5a54/X5HWVsfvBSMRtS5eXOYRAUB1IqgHAAAAAMhZIBBIm63Xvnw5nW8BoEwI6gEAAAAA8pJuXT1KbwGgfAjqAQAAAADyki6oN42gHgCUDUE9AAAAAEBe0pbfEtQDgLIhqAcAAAAAyEvHUUcpEArZ9xPUA4CyIagHAAAAAMhLTV2d2pcvN+0L1dbS+RYAyoigHgAAAAAgb9YS3PblyxV0yN4DAJQGQT0AAAAAQN5mv+1tpu2Zxx/v0kgAoDoR1AMAAAAA5G355Zdrxpo1kqSmzk6tuflml0cEANWlxu0BAAAAAAD8J9LUpIt+8xsdfv11Nc6Zo3Bjo9tDAoCqQlAPAAAAAFCQYCiktiVL3B4GAFQlym8BAAAAAAAAnyGoBwAAAAAAAPgMQT0AAAAAAADAZwjqAQAAAAAAAD5DUA8AAAAAAADwGYJ6AAAAAAAAgM8Q1AMAAAAAAAB8hqAeAAAAAAAA4DME9QAAAAAAAACfIagHAAAAAAAA+AxBPQAAAAAAAMBnCOoBAAAAAAAAPkNQDwAAAAAAAPAZgnoAAAAAAACAzxDUAwAAAAAAAHyGoB4AAAAAAADgMwT1AAAAAAAAAJ8hqAcAAAAAAAD4DEE9AAAAAAAAwGcI6gEAAAAAAAA+Q1APAAAAAAAA8BmCegAAAAAAAIDPENQDAAAAAAAAfKbG7QH4RSKRkCSNjIy4PBL3xeNxSdLw8LBCoZDLo0E2zJd/MFf+xLz5C/PlL8yXPzBP/sFc+Qvz5U/Mm79MZb4m40OT8SI3BAzDMFx7dh/p6+vT9u3b3R4GAAAAAAAAPGLBggWaNm2aK89NUC9HsVhMAwMDqq2tVTBI1TIAAAAAAEC1SiQSGhsbU2trq2pq3CmEJagHAAAAAAAA+AwpZwAAAAAAAIDPENQDAAAAAAAAfIagHgAAAAAAAOAz7qzkh7y98cYb+upXv6pf//rX6uvrUyQS0ZIlS3TeeefpkksuMbVefvXVV/XlL39ZW7Zs0cDAgDo6OvSOd7xDN9xwg2bNmmV63MHBQT344IP6P//n/2jXrl2SpM7OTr3zne/UNddco5aWFtPxL7/8sr75zW/qt7/9rfbs2aPa2lotX75cF1xwgc4//3wFAoGcf6etW7fqa1/7mp577jkNDQ1p1qxZOvPMM3XdddfZnrevr0/f/e539eSTT2rnzp0yDEPd3d1av369rrzySjU0NOT7T1pS1Txfv/zlL3XttddmfKzPfvazuuiii3J+7lKr5vlatmxZ1sc64YQT9NBDD+X83OVQzXMmSfv27dODDz6op556Snv27FE4HNayZcu0adMmve9978v3n7PkKnG+EomEfvCDH+jee+/V0NCQJOkXv/iFOjs7HY8/cOCAPve5z+mJJ56Q5M2/q0lema9Ue/fu1Xvf+14NDg5Kkq6//nrdcMMNOf9O+fx9Sf6Yr2qfJ64NJ/hhvrg2fIsf5otrQ//NmcS14SQ358uta0MaZfjASy+9pEsvvTT5wqitrdX4+Lgmp+6cc87RfffdJ0natm2bNm3apCNHjkiSwuGwotGoJGnOnDl69NFH1dHRIWniBb9p0ya9/PLLkqSamhoFAoHk8QsWLNCPf/xjNTc3S5L+/d//XR//+McVi8UkSXV1dRodHU2O85JLLtGnP/3pnH6nX//617rqqquSz5U6zhUrVuiRRx5RbW2tJOn111/XBz/4QfX19UmSIpGIotFo8vdfuXKlHn744eTxbqv2+frZz36mT3ziE5KkxsZGhcNh2+PddtttOu+883J67lKr9vk68cQT0z7O4cOHlUgkdOKJJ+q73/1uTs9dDtU+Z6+//ro2bdqk/v5+27GSdO211+rmm2/O8V+z9Cpxvl555RXdfvvteu6550z70124/eQnP9HnP/95DQwMJPd58YZI8s58WX3kIx/R5s2bk9v5XGjn8/cl+WO+qn2euDb013xxbeiv+eLa0H9zxrWh+/Pl5rUh5bc+8PnPfz75gr/rrrv0u9/9Tk8//bRWrVolSXriiSf029/+Nvn9I0eOKBKJ6Ac/+IGef/55PfDAA5KkPXv26P77708+7kMPPZR8wV988cV67rnn9Nvf/lYXX3yxJGn79u3653/+Z0nS0NCQ/vZv/1axWEzNzc165JFH9Lvf/U4///nP1dbWJkl6+OGH9dprr2X9fQzD0B133KFoNKqOjg498cQT2rp1q2677TZJ0osvvmh6k7jzzjuTF22f/vSnk7//mjVrJEl//OMf9dhjj+X/D1si1T5fk59sSNJ9992nLVu22P7zykWbxHw5zc+WLVv0wAMPJN9YL7jggsL+cUuk2ufs7/7u75IXbTfffLO2bt2qJ598UkuWLJEkPfjgg/rjH/9YwL9saVTafO3bt08bN27Uc889p56eHnV1dWU8/utf/7puu+02HT58WGeccUau/2yu8cJ8WT3yyCPavHmz2tvb8/598v378st8Vfs8cW04wS/zxbXhBL/MF9eG/pszrg0nuDVfbl8bEtTzuPHxce3bt0/d3d065ZRTdMEFFygQCKijo0MbN25MHvfcc89p//79evrppyVJp512mtauXatgMKj169drxYoVkqTHH39c8Xhc0kQ0ubu7W/Pnz9dNN92kSCSiSCSiD33oQ6bHlSZOHNOmTdPChQt1xRVX6Nhjj5U0kZ69YcOG5PEvvfRS1t/p+eef1/bt2yVJ73vf+7R48WLV1NTowx/+cPLm6uc//7kkaXR0VPv379fChQt1+umn65JLLlEwGFRHR4euvPLK5GN65SRV7fMljZt9iwAADMtJREFUTXyCN6mpqSnHfzl3MF/ORkZGdNttt8kwDB1//PGmfwu3VfucjY2NJX+nmTNn6pprrlFNTY3mzZuX/AQ2kUjo0UcfzeeftWQqcb5GR0cVDod1yy236Kc//anmzJmT8fgjR46op6dH3//+95MX417llflKtWvXLn3+859XTU2NPvaxj+X9O+V7TvTDfFX7PHFt6K/5krg29Nt8OeHa0LtzxrWh+/Pl9rUha+p5XCQSSdZYW01+QilJwWBQv//975Ofnixfvtx07PLly/Xiiy/q8OHDev3117VkyRLde++9jo978ODB5NeT6wsdf/zx+vd//3fH4yej7NLEiSSb559/3jSu1N+hp6dHzzzzjLZt26ahoSE1Njbq8ccfd3yc4eHh5NfWWnq3MF+Npgu3dKnNXsF8NTo+xr333qsdO3YoFArpk5/8ZNbnLKdqn7PBwcFk+eicOXNMa8BNXtxISn666bZKnK+Ojg49/vjjmjt3btZjpYmL8RtuuEE1NTXauXNnTj/jFq/M1yTDMPQ3f/M3Ghoa0rXXXquenp68f6d8z4l+mC/miWtDv80X14b+mi8nXBuaeWnOuDZ0f77cvjYkU8+nXnvtNVPq6PHHH59cCFKSLW10ss5cknbs2JH2cUdGRvT3f//3ye0TTjgh4zj+67/+K3mjdOyxx+q4447LOvbUcaaOK3XbMAzTcVavvfaa/umf/kmS1NLSogsvvDDr87qpmuYrtcTiqaee0pVXXql3vetdOuuss3T77bcnP3XysmqaL6tt27bp+9//viRp48aNOS2W7AXVMmetra3JhYN37tyZvIiTJkoQJnk1GDHJz/PV3Nyc80WbpOSn637m1nx9//vf169//WstXry4oE/OpfzPiX6er2qaJydcG07w4nxxbeiv+bLi2tDMa3PGtaH78+X2tSFBPR968803ddVVVyU/9dq4caOOPvpoU7aBdWHg1O3U41INDw/rhhtu0B/+8AdJ0sKFC3XppZc6Hvvud79bq1ev1tVXX63GxkZdeeWV+uY3v5lT58DU549EInmN8xOf+ITWrl2r97znPdq9e7fOPfdc/eQnP8kpu8It1TZfqZ/G3nPPPfrVr36lXbt2afv27frRj36k888/3zOfFDmptvmyuueeexSPxxUOhwt+Yyu3apqzuro6nXTSSZImPs285557NDAwoG3btunv/u7vsv5OXuD3+ao2bs3Xjh079A//8A8KBoP63Oc+Z/vbyNVUz4l+Uc3zxLXhW7w6X1wb+mu+rLg2fIsX54xrQ/fny20E9Xzm+eef1wc+8IFkpH3VqlW6/fbbs/5cIpFIfu1003Lw4EFddtlleuqppyRNRMK/8IUvqK6uzvHxDh06pLGxMUkTf0Qvv/xyTmsRTXWcg4ODyT/asbExvfHGG3rmmWem/LylUq3z1dbWpra2Nn30ox/VM888o82bN+v973+/pImTq9fS9idV63xN+s1vfqP//u//ljSxAPK8efOm/JylVo1zduuttybH8Z3vfEcnnHCCzj33XO3cuTNZNuPVTKNKn69K49Z8GYah2267TcPDw7rsssuSzQ+KLds4/aLa54lrwwleny+uDc28Pl+TuDZ8i5fnjGtD785XOXhzZuHov//7v/UXf/EXyfVCTj31VN1///3JP9TUhWcnb1YmjY+PJ7+2rpWwY8cOfeQjH9Ebb7whSerq6tKDDz6oRYsWpR3Ls88+q5GRET333HP65Cc/qc2bN+vpp5/W9773PR133HH6zGc+o3/91381/cy5556rv/3bvzWNM3Vc2cYpSV/5ylcUjUb16quv6h/+4R/01FNP6YUXXlBfX5+uueaatON1Q7XO1xe/+EXHMdxxxx168skn1d/fr23btmnHjh1ZOwOVU7XOV6pvfOMbya+9XrYkVe+cLV26VI888oi+8pWv6IUXXlAgENAxxxyj66+/Xps2bZIktba2ph2rWyplvqqFm/P1z//8z3rmmWfU1dWlm266KetYS3VO9APmiWtDyfvzxbWhv+YrFdeGE7w+Z1wbujtfbiOo5xNbtmzRxz72seSL96Mf/ag+/vGPKxh8K9ky9U0wdTFISert7U1+PX/+/OTX+/fv1+WXX56sVz/11FP1j//4jzn90dfX1+vkk0/WX//1X+v6669XIpHQww8/rOOOO05DQ0M6dOiQ6fjJT1FTx5m6GGbqOEOhUNo39XA4rOXLl+vee+9N1sR///vf99SFG/NlF4lE1NXVlWy33t/f75kLN+ZrohX75s2bJUnz5s3T6tWrs47RTdU+Z8uXL9f9999vOra/v18DAwOSpCVLlmQdbzlV0nxVA7fn6z/+4z8kTVyUT3YqtvrSl76kL33pS7rrrrvK8h7mRczTW7g29Nd8TeLa0NvzxbXhBL/MGdeGE9yYL7cR1POBN998U9ddd53Gx8cVCoX06U9/WhdddJHtuNWrV6umpkaxWMxWRvTiiy9KkqZPn5580UejUV199dXJF/z73/9+3XnnnY6puY888oi+9a1v6eDBg7rxxhtNbaFT010nTxp333237r77bsffZ+3atcmvU8cZi8W0bds2SdLKlStVV1enF154Qbfddpv6+vp0wgkn6Atf+ELG5/WCap6v4eFhPfTQQzp48KAaGxt14403Jo+PRqOmBVpnz57t+HzlVs3zleqXv/xlMo19/fr1jo/tFdU+Z6+88oq2bdumvr4+0/P+13/9V/LrU0891fG53FBp81XpvDBf+SrFOdHrqnmeuDb013xxbeiv+UrFtaF/5oxrQ3fny22sqecDd955Z7Jr1E033eT4gpcm6sTPOOMMSRN/wP/v//0/JRIJ/cu//IteeeUVSRNp05PR729961vJP4bTTjtNn/vc59K+4JcuXarXX39dAwMDevDBB5N/VL29vfr617+ePC6XWvTly5dr1apVkqSf//znevXVVxWLxfTNb35TR44ckSR94AMfSD7vnj171NfXp//9v/+3/u3f/k2JREJjY2O677778nrecqnm+WpoaNCjjz6qb3/72/rKV76iH/3oR0okEhoZGdHdd9+d/ITlhBNO8MwC1tU8X6m2bt2a/Nrrn8RW+5x961vf0k033aTPfOYzeuyxxyRNXMxNnhNbWlq0cePGrM9bLpU2X+Pj4+rt7U3+F41Gk987ePBgcv/kp7dHjhxJ7kv9lDkajZoeJx6PZ33ucvDCfD3wwAPavHmz7b8HHnggecyVV16pzZs365xzzsn4++T79+WX+armeeLa0F/zxbWhv+YrFdeG/pkzrg3dnS+3rw0DhmEYOR0JVzz//POmF3lra6vjQpBr167VV7/6Ve3cuVMXX3xxMk03HA4nX1Q9PT165JFH1NDQIEk69thjNTIyImniDTddt5ctW7ZIkj772c/qoYceSu6vr69P/rw0cZH18MMPm2rf03nhhRd02WWXJevnU8d58skn6xvf+Ebyj/OJJ57QLbfckmzPHYlEFI/Hky/ypqYmfe9739OKFSuyPm+pMV/Sr371K1177bXJVOpwOKx4PJ78pG/WrFn63ve+p+7u7qzPW2rM11suvvhi/e53v5Mk/fSnP9XKlSuzPo8bmLOJMoFLLrlEBw4csD1vTU2NvvjFL+rd73531ucsh0qcry1btuiyyy7L+rtff/31uuGGG3Trrbfqpz/9adbjf/GLX6izszPrcaXkpflK973Jf/vJf99c5PP35Yf5Yp64NvTbfHFt6K/5msS1oX/mjGtDd+fL7WtDym89LvWGQ0pfSjAZ6e7s7NQjjzyi+++/X08//bQGBgY0b948nXnmmbruuuuSL3jrYw8PDydPGOncfvvtetvb3qaHH35Yf/jDHzQwMKCGhgYtWLBAZ555pi6//PKcF5o++uij9YMf/EAPPPCAnn32WQ0NDWnBggXasGGDrrrqKtObyjnnnKOFCxfqW9/6lv7v//2/6u3tVSgUUmdnp0466SRdddVVrt8ITWK+pFNOOUWPPfaYvv71r2vLli3av3+/IpGIuru79a53vUtXXHGF2tvbc3reUmO+nH/35ubmnJ7HDczZxPoiDz/8sL761a/qN7/5jfbv36/29natW7dO11xzTfKTXS+o1PmqVF6ar2Iq5JzoZcwT14ZOj+3l+eLa0P7YXp6vSVwb+mfOuDa0P3a558tNZOoBAAAAAAAAPuOvjyYBAAAAAAAAENQDAAAAAAAA/IagHgAAAAAAAOAzBPUAAAAAAAAAnyGoBwAAAAAAAPgMQT0AAAAAAADAZwjqAQAAAAAAAD5DUA8AAAAAAADwGYJ6AAAAAAAAgM8Q1AMAAAAAAAB8hqAeAAAAAAAA4DME9QAAAAAAAACfIagHAAAAAAAA+Mz/B/0KuSqzBfqNAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "tp = 2.1/100\n", + "pf = pd.concat((low_portfolio, portfolio_return_MV,high_portfolio), axis=1).dropna()-spread\n", + "pf.columns = [\"low\", \"Return\", \"high\"]\n", + "\n", + "pf[\"Return\"] = np.where(pf[\"high\"].values>tp, tp, pf[\"Return\"].values)\n", + "pf[\"Return\"] = np.where(pf[\"Return\"].values>tp, tp, pf[\"Return\"].values)\n", + "\n", + "backtest_dynamic_portfolio(pf[\"Return\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 16.3.2. Optimal stop loss" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Sharpe
1.000000-2.916320
1.310345-0.917915
1.6206900.570221
1.9310340.609511
2.2413791.562921
2.5517241.851339
2.8620691.421271
3.1724141.481469
3.4827591.773496
3.7931031.803406
4.1034482.487827
4.4137932.738282
4.7241382.857965
5.0344833.221247
5.3448283.350820
5.6551723.629219
5.9655173.829923
6.2758623.869764
6.5862074.514864
6.8965524.423134
7.2068974.575048
7.5172414.763723
7.8275864.632232
8.1379314.592370
8.4482764.739847
8.7586214.866876
9.0689664.865640
9.3793105.005223
9.6896555.063508
10.0000005.120047
\n", + "
" + ], + "text/plain": [ + " Sharpe\n", + "1.000000 -2.916320\n", + "1.310345 -0.917915\n", + "1.620690 0.570221\n", + "1.931034 0.609511\n", + "2.241379 1.562921\n", + "2.551724 1.851339\n", + "2.862069 1.421271\n", + "3.172414 1.481469\n", + "3.482759 1.773496\n", + "3.793103 1.803406\n", + "4.103448 2.487827\n", + "4.413793 2.738282\n", + "4.724138 2.857965\n", + "5.034483 3.221247\n", + "5.344828 3.350820\n", + "5.655172 3.629219\n", + "5.965517 3.829923\n", + "6.275862 3.869764\n", + "6.586207 4.514864\n", + "6.896552 4.423134\n", + "7.206897 4.575048\n", + "7.517241 4.763723\n", + "7.827586 4.632232\n", + "8.137931 4.592370\n", + "8.448276 4.739847\n", + "8.758621 4.866876\n", + "9.068966 4.865640\n", + "9.379310 5.005223\n", + "9.689655 5.063508\n", + "10.000000 5.120047" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "def find_best_sl(sl):\n", + " sl = sl/100\n", + " \n", + " # Create the portfolio\n", + " pf = pd.concat((low_portfolio, portfolio_return_test,high_portfolio), axis=1).dropna()-spread\n", + " pf.columns = [\"low\", \"Return\", \"high\"]\n", + "\n", + " # Apply the tp\n", + " pf[\"Return\"] = np.where(pf[\"low\"].values<-sl, -sl, pf[\"Return\"].values)\n", + " pf[\"Return\"] = np.where(pf[\"Return\"].values<-sl, -sl, pf[\"Return\"].values)\n", + " \n", + " # Return sharpe raatio\n", + " return np.sqrt(252)*pf[\"Return\"].mean()/pf[\"Return\"].std()\n", + "\n", + "pd.DataFrame([find_best_sl(sl) for sl in np.linspace(1,10,30)], index=np.linspace(1,10,30), columns=[\"Sharpe\"])" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[*********************100%***********************] 1 of 1 completed\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -----------------------------------------------------------------------------\n", + " Beta: -0.579 \t Alpha: 488.92 %\t Sharpe: 3.791 \t Sortino: 0.503\n", + " -----------------------------------------------------------------------------\n", + " VaR: -11.55 %\t cVaR: -8.93 % \t VaR/cVaR: 0.773 \t drawdown: 57.61 %\n", + " -----------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAD7QAAAYjCAYAAADNhuE1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zV9d338U8YYYiKe4K2OKjUhdrWOtqrdaMyakWrrbuu21FvL1utexS12l7OurVVq6LiYhhAhqACgqiAIEOQIcgMGELIvP/oVW5ta6skv/PNOXk+H4/zQIM55xUFchLP+/ctqqurqwsAAAAAAAAAAAAAAAAAAABoYM1SBwAAAAAAAAAAAAAAAAAAAFCYDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATLVIHAAAAAADAV1VRURHLli2L5cuXx/Lly2PFihWxatWq+Oyzz6KsrCw+++yzdX+9du3aqKioWPdjRUVFVFZWRk1NTdTU1ERtbe0XfmzWrFk0b948mjVr9oVb8+bNo7i4OFq1arXuVlxcHMXFxdG2bdvYYIMN1t3atWu37ta+ffvYZJNNYpNNNon27dvHxhtvHM2auc4sAAAAAAAAAAAATUtRXV1dXeoIAAAAAABYvXp1zJs3L+bPnx+LFi2KRYsWxcKFC+PTTz+NRYsWxbJly6K8vDx15npr1qxZbLzxxrHlllvGlltuGVtttVVstdVWseWWW8bWW28d22+/fWy//fbRunXr1KkAAAAAAAAAAADQYAzaAQAAAADImerq6vj4449jxowZMXPmzJg7d27MnTs35s2bF0uXLk2dl1xRUVFsvvnmsf3220eHDh1ihx12iJ122il22mmn2GGHHaJly5apEwEAAAAAAAAAAOBrMWgHAAAAACATy5YtiylTpsSUKVPiww8/jJkzZ8acOXOiqqoqdVpeatmyZXTs2DF22mmn6NKlS+y2227RpUuX2HTTTVOnAQAAAAAAAAAAwJcyaAcAAAAAoN7WrFkT7733XrzzzjsxadKkmDJlSnz66aeps5qEbbbZJrp06RJdu3aNffbZJ7p06eIkdwAAAAAAAAAAABoNg3YAAAAAAL62VatWxdixY+Ptt9+Od955J6ZOnRrV1dWps4iI1q1bxx577BH77rtvHHDAAbHXXntFixYtUmcBAAAAAAAAAADQRBm0AwAAAADwH1VXV8d7770Xb7zxRrzxxhsxadKkqKmpSZ3FV7DBBhvEd7/73TjwwAPj4IMPjg4dOqROAgAAAAAAAAAAoAkxaAcAAAAA4F9as2ZNjB49OoYMGRIjRoyIlStXpk6iAXTu3DkOPfTQOOyww2KXXXZJnQMAAAAAAAAAAECBM2gHAAAAAGCdioqKGDp0aLz66qsxevToWLNmTeokMrTjjjvG0UcfHd27d4+OHTumzgEAAAAAAAAAAKAAGbQDAAAAADRxtbW1MW7cuHjppZeipKQkVq9enTqJBLp27Ro9evSIbt26Rbt27VLnAAAAAAAAAAAAUCAM2gEAAAAAmqglS5ZE375949lnn42FCxemzqGRaNu2bRx77LFx8sknx84775w6BwAAAAAAAAAAgDxn0A4AAAAA0MSMHz8+nnzyyRgyZEhUVVWlzqER+853vhOnnnpq/OhHP4qioqLUOQAAAAAAAAAAAOQhg3YAAAAAgCagtrY2SkpK4oEHHogPPvggdQ55Zpdddomzzz47jjzyyGjevHnqHAAAAAAAAAAAAPKIQTsAAAAAQAGrrKyMl156KR566KGYM2dO6hzyXMeOHeP888+P7t27O7EdAAAAAAAAAACAr8SgHQAAAACgANXU1MQLL7wQd999dyxcuDB1DgXmW9/6Vlx66aVx4IEHpk4BAAAAAAAAAACgkTNoBwAAAAAoMIMHD44//vGP8dFHH6VOocAdcMAB8dvf/jY6deqUOgUAAAAAAAAAAIBGyqAdAAAAAKBATJ48OW644YZ49913U6fQhLRs2TLOOOOMOPfcc6N169apcwAAAAAAAAAAAGhkDNoBAAAAAPJcaWlp/M///E8888wzUVtbmzqHJqpDhw5x3XXXxQEHHJA6BQAAAAAAAAAAgEbEoB0AAAAAII/169cvbr311lixYkXqFIiioqI4+eST49JLL3Vae54YP358vPXWW6kz1jnkkEPiW9/6VuoMAOBrevzxx6O0tDR1xjoXXHBB6gQAAAAAAADgcwzaAQAAAADy0OLFi+Oqq66KESNGpE6Bf9KpU6f4/e9/H126dEmdwn9wyimnxJgxY1JnrNOnT5/o1atX6gwA4Gv45JNP4kc/+lE0ppeffPjhh6kTAAAAAAAAgM9pljoAAAAAAICv55VXXomjjz7amJ1Ga9asWXHCCSfEM888kzqFf2PJkiUxbty41BkAQJ4bMGBAoxqzAwAAAAAAAI2PQTsAAAAAQJ5Ys2ZN/Pd//3dceumlsXLlytQ58G9VVlbG1VdfHZdffnmsXbs2dQ7/wsCBA6O2tjZ1BgCQ5wYMGJA6AQAAAAAAAGjkDNoBAAAAAPLARx99FMcff3y8/PLLqVPga+nXr1+ceOKJsXjx4tQp/APjMwCgvmbNmhVTp05NnQEAAAAAAAA0cgbtAAAAAACN3KuvvhrHHXdcTJ8+PXUKrJcpU6bECSecEDNnzkydwv+aN29evPfee6kzAIA85wI5AAAAAAAAwFdh0A4AAAAA0Ijdf//9cfHFF8fq1atTp0C9LFiwIE488cQYN25c6hTC+AwAaBieUwAAAAAAAABfhUE7AAAAAEAjVF1dHVdddVX84Q9/iLq6utQ50CBWrVoVZ555ZowaNSp1SpNnfAYA1NfkyZNjzpw5qTMAAAAAAACAPGDQDgAAAADQyKxZsybOPvvs6Nu3b+oUaHBr166N8847L0aOHJk6pcmaPn16TJ8+PXUGAJDnXCAHAAAAAAAA+KoM2gEAAAAAGpHy8vL45S9/GaNHj06dApmprKyM888/P0aMGJE6pUkyPgMA6quuri4GDhyYOgMAAAAAAADIEwbtAAAAAACNxOrVq+Oss86KcePGpU6BzFVVVcVFF10UEydOTJ3S5Bi0AwD1NX78+Fi0aFHqDAAAAAAAACBPGLQDAAAAADQC5eXlccYZZ8T48eNTp0DOVFRUxDnnnBOzZs1KndJkvPfeezFv3rzUGQBAnuvfv3/qBAAAAAAAACCPGLQDAAAAACRWXV3tpGqarNLS0jjzzDNj6dKlqVOaBOMzAKC+qquro6SkJHUGAAAAAAAAkEcM2gEAAAAAErvqqqvi9ddfT50ByXzyySdx4YUXRlVVVeqUglZbWxuDBg1KnQEA5Lk33ngjVqxYkToDAAAAAAAAyCMG7QAAAAAACf3xj3+Mfv36pc6A5CZMmBC/+93vUmcUtLFjx8aSJUtSZwAAeW7AgAGpEwAAAAAAAIA8Y9AOAAAAAJDIwIED47777kudAY3GX//613jxxRdTZxQs4zMAoL7Wrl0bQ4cOTZ0BAAAAAAAA5BmDdgAAAACABKZPnx6//e1vU2dAo3P99dfHvHnzUmcUnKqqqhg8eHDqDAAgzw0fPjxWr16dOgMAAAAAAADIMwbtAAAAAAA59tlnn8UFF1wQ5eXlqVOg0Vm9enX893//d9TU1KROKSijRo2KlStXps4AAPLcgAEDUicAAAAAAAAAecigHQAAAAAgx6666qqYM2dO6gxotCZOnBh/+tOfUmcUFOMzAKC+ysrKYuTIkakzAAAAAAAAgDxk0A4AAAAAkEMvv/xyDBo0KHUGNHr33XdfzJo1K3VGQVizZk0MGzYsdQYAkOeGDBkSa9euTZ0BAAAAAAAA5CGDdgAAAACAHFm0aFHccMMNqTMgL1RVVcW1116bOqMgDBs2LMrLy1NnAAB5rn///qkTAAAAAAAAgDxl0A4AAAAAkCOXX355rFq1KnUG5I1x48ZFv379UmfkPeMzAKC+li9fHmPGjEmdAQAAAAAAAOQpg3YAAAAAgBx4+eWX480330ydAXnn9ttvj9WrV6fOyFurVq2KUaNGpc4AAPLcoEGDorq6OnUGAAAAAAAAkKcM2gEAAAAAMlZWVha33npr6gzIS0uXLo2HH344dUbeKikpiaqqqtQZAECeGzBgQOoEAAAAAAAAII+1SB0AAAAAAFDo7rjjjliyZEnqjILUunXr2GabbWK77baLLbbYIjbbbLPYfPPNY5NNNol27drFRhttFBtttFG0bt06WrduHa1atYpWrVpF8+bNo1mzZtG8efMoKiqKysrKqKqqWvfj3/965cqVUVpa+oXbsmXLYv78+TF37txYtGhR1NTUpP7XUPAeeeSR6N27d2y11VapU/KO8RkAUF8LFy6Md955J3UGAAAAAAAAkMcM2gEAAAAAMjRr1qz461//mjoj72244YbxrW99K3bbbbf45je/ue622WabNcj9/33o/nVVV1fHJ598EvPnz4/p06fH5MmTY/LkyfHxxx9HbW1tg7QRsWbNmrjnnnvi+uuvT52SV5YsWRLjxo1LnQEA5LkBAwZEXV1d6gwAAAAAAAAgjxm0AwAAAABk6M4774zq6urUGXlnu+22i+9+97uxzz77xL777hs77rhj6qR/qUWLFtGxY8fo2LFjfP/731/39rKyspg6dWqMHz8+Ro0aFe+9955fB/XUr1+/OOecc2LbbbdNnZI3Bg0aFDU1NakzAIA8N2DAgNQJAAAAAAAAQJ4zaAcAAAAAyMi0adOipKQkdUZeaN68eXTt2jUOOeSQOOigg6JTp06pk+qlXbt2sd9++8V+++0X5557bpSVlcVbb70Vo0aNipKSkigtLU2dmHeqqqrigQceiGuvvTZ1St4wPgMA6uujjz6KDz74IHUGAAAAAAAAkOcM2gEAAAAAMvI///M/UVdXlzqjUdtrr72ie/fuccQRR8Smm26aOicz7dq1i0MPPTQOPfTQuOqqq2LkyJHx4osvxogRI6Kqqip1Xt547rnn4pxzzomtt946dUqjN3/+/Hj33XdTZwAAec4FcgAAAAAAAICGYNAOAAAAAJCBadOmxfDhw1NnNEobbrhh9OjRI0488cS8P4l9fbRs2TIOOeSQOOSQQ6K0tDSeffbZ+POf/xxLlixJndboVVVVxZ///Of49a9/nTql0TM+AwAagucUAAAAAAAAQENoljoAAAAAAKAQPf7446kTGp0tttgi/vu//ztGjBgRV155ZZMcs/+j9u3bx1lnnRWvvfZaXH311bHddtulTmr0nnvuuSgvL0+d0ej1798/dQIAkOemTJkSs2fPTp0BAAAAAAAAFACDdgAAAACABlZaWmpM+jkbbrhhXHLJJTF06NA488wzo127dqmTGp1WrVrFSSedFIMHD46rr746Ntpoo9RJjdaqVauiX79+qTMatZkzZ8b06dNTZwAAec7XNAAAAAAAAEBDMWgHAAAAAGhgzz77bFRUVKTOaBS6d+8eJSUlcfbZZ0fr1q1T5zR6LVq0iJNOOileffXV6NGjRxQVFaVOapQef/zxqKurS53RaL3yyiupEwCAPFdXVxeDBg1KnQEAAAAAAAAUCIN2AAAAAIAG9vTTT6dOSG6LLbaIBx98MG699dbYbLPNUufknc022yxuueWWePzxx2ObbbZJndPozJkzJ8aOHZs6o9EaOHBg6gQAIM9NmDAhFi5cmDoDAAAAAAAAKBAG7QAAAAAADWjixIkxf/781BlJ7bvvvvHyyy/HwQcfnDol7+23337x4osvxg9/+MPUKY3Os88+mzqhUXr//fdj7ty5qTMAgDzXv3//1AkAAAAAAABAATFoBwAAAABoQAMGDEidkFTPnj3j0UcfjU033TR1SsFo37593HfffXHppZdG8+bNU+c0GkOGDImVK1emzmh0jM8AgPqqrq6OkpKS1BkAAAAAAABAATFoBwAAAABoILW1tfHqq6+mzkjmoosuiptvvjmKi4tTpxScoqKiOOuss+LOO+/07/d/rV271nj7H9TW1sagQYNSZwAAee7NN9+M5cuXp84AAAAAAAAACohBOwAAAABAA5kwYUIsWbIkdUYS5557bpx33nmpMwreIYccEg899FBssMEGqVMaBYP2L3r77bdj8eLFqTMAgDw3cODA1AkAAAAAAABAgTFoBwAAAABoIK+//nrqhCR+9rOfxcUXX5w6o8n47ne/G48//nhsvPHGqVOSmzhxYixcuDB1RqMxYMCA1AkAQJ5bu3ZtDBkyJHUGAAAAAAAAUGAM2gEAAAAAGsgbb7yROiHnDjrooLj66qtTZzQ5Xbp0iXvvvTdatWqVOiWpuro6J4j+r6qqqigpKUmdAQDkuZEjR0ZZWVnqDAAAAAAAAKDAGLQDAAAAADSAFStWxNSpU1Nn5NSmm24aN998cxQVFaVOaZL23XffuO2226JZs6b9rf5BgwalTmgU3njjjSgtLU2dAQDkuf79+6dOAAAAAAAAAApQ036VGwAAAABAA3nrrbeitrY2dUZO3XTTTbH55punzmjSDjvssLj88stTZyQ1efLkWLx4ceqM5IzPAID6Kisri5EjR6bOAAAAAAAAAAqQQTsAAAAAQAOYMGFC6oScOuSQQ+JHP/pR6gwi4he/+EUcfvjhqTOSqaura/LDq4qKinjttddSZwAAeW7o0KFRUVGROgMAAAAAAAAoQAbtAAAAAAANYPLkyakTcqaoqCguvPDC1Bl8zo033hjbbbdd6oxkhg0bljohqWHDhkV5eXnqDAAgzw0YMCB1AgAAAAAAAFCgDNoBAAAAAOqppqYmpk2bljojZ4466qjYddddU2fwORtttFHcdttt0aJFi9QpSbz11ltRWVmZOiMZ4zMAoL6WL18eb775ZuoMAAAAAAAAoEAZtAMAAAAA1NOMGTOioqIidUbOnHrqqakT+Be6du0aJ510UuqMJNasWRPvvPNO6owkPvvss3j99ddTZwAAea6kpCSqq6tTZwAAAAAAAAAFyqAdAAAAAKCePvjgg9QJOfPNb34z9thjj9QZfIkLLrggNttss9QZSYwZMyZ1QhKDBw9u0qfTAwANY8CAAakTAAAAAAAAgAJm0A4AAAAAUE8fffRR6oSc6dGjR+oE/o0NN9wwLrnkktQZSTTVQbvxGQBQX4sWLYrx48enzgCA9VZdXR3V1dWpMwAAAAAA+DdapA4AAAAAAMh3c+fOTZ2QM4cffnjqBP6Dn/zkJ/HUU0/F5MmTU6fk1KRJk6KsrCzatWuXOiVnli1b1mSH/NAYffbZZzFnzpxYsGBBzJ8/PxYsWBALFiyIZcuWRUVFRaxZs2bdj2vXro0WLVpE27Ztv3Dbeuuto0OHDrHDDjtEhw4domPHjrHttttGUVFR6g+P9VBZWRmLFy+OTz/9NJYsWRKlpaWxcuXKKC0tXffX5eXlUVFR8YUfq6qqorq6Ompra6O6ujpqamqipqYmWrRoEc2bN4/mzZtHixYtokWLFtGmTZvYYIMNYoMNNoi2bdtGu3bton379rHpppuuu2222Wax7bbbxjbbbBPFxcWp/7XQCA0cODDq6upSZ0DeqKuri8WLF8eiRYti6dKl627Lli2L0tLSKCsr+8KtoqJi3dj277e6urpo0aJFtGzZ8gu34uLiaNeuXWy88cb/dNtqq61i2223jW233Ta22GKLaNbMOSYUnoqKinXPpz/55JNYuHBhrFixIlauXLnux5UrV0ZFRUVUVVWtu/3981izZs2iuLh43a1Vq1ZfeG602WabxSabbBLbb799dOzYMXbYYYfYcMMNE3/UAAAAAABNg0E7AAAAAEA9NZVB+9Zbbx077rhj6gz+g6Kiojj33HPj/PPPT52SU9XV1fH+++/H97///dQpOTNo0KCoqalJnQFN1ieffBITJkxYd5s5c2bU1tZ+5fevqamJtWvXxooVK9a97b333vunf26jjTaKLl26xF577RXf/e53Y++9947WrVs3yMdA/S1cuDDmzJkTc+fOjY8//jjmzp0b8+bNi08//fQL/20bQn1PHi0qKorNN988tt122+jYsWN06tQpvvnNb0anTp2iY8eOxu5NWP/+/VMnQKO0ePHimDFjRsyYMSPmzJkT8+fPX3fRmsrKynrff2Vl5XrfT8uWLWPrrbeObbfdNjp16hS77LLLuptxLvmgsrIyZs6cGR9++GFMmzYtPvzww5gxY0YsXbq0XvdbW1sbFRUVUVFRse5tCxYs+Lfvs+mmm8YOO+wQu+yyS+y+++7x7W9/O3beeedo0cJLKwEAAAAAGlJRnctsAwAAAADUS9euXWP16tWpMzLXvXv3uPXWW1Nn8BXU1dXF0UcfHTNnzkydklMXXXRRnHfeeakzcuaEE06IiRMnps5oUH369IlevXqlzoAvtXDhwnjllVfi5ZdfjhkzZiRpaNOmTRx00EFx7LHHxn/9138Z2uRIZWVlfPDBB/HBBx/Ehx9+GNOnT4/p06dHWVlZ6rQG0bJly9h5552jS5cu8e1vfzu6dOkSnTt3jpYtW6ZOI2Nz5syJww8/PHVGg/vwww9TJ5BH6urqYs6cOTFp0qR4//33Y+rUqTFjxoxYuXJl6rT1ss0220Tnzp2ja9eu0bVr19hjjz1ctITkysrKYuLEiTF+/Ph4++234/3334+qqqrUWV+qVatW8a1vfSv23XffOPDAA2Offfbx+wgAAAAAoJ68ugEAAAAAoB6WL1/eJMbsERH77LNP6gS+oqKiojjrrLPi17/+deqUnHr33Xdz/phr167N+WNG/G1Um+LjzVp1dXWyf6dfR3FxcRQVFaXOIEdqampi4MCB8eyzz8a4ceMi9fXC16xZE4MHD47BgwfHb37zmzjttNOS9hSqJUuWxNixY+Pdd9+N9957L6ZOndqoR1f1VVVVtW6w/+yzz0ZERNu2bWOvvfaK/fbbL/bbb7/Yc889DbkyUlNTE9XV1Uke++WXX07yuFnLh+cTRUVFfk8lUllZGe+//36MHTs2JkyYEJMmTYpVq1alzmowCxcujIULF8bw4cMj4m/PXXffffd1w9yuXbu6IA45MWfOnHjttdfitddei3fffTdqampSJ31la9eujXfffTfefffdeOihh6J169ax7777xgEHHBCHHnpodOjQIXUiCZWXl8cjjzyS/GvDXDrqqKOiU6dOqTP4D5588slYvnx56oycKC4ujrPPPjt1BgAAAPA1OaEdAAAAAKAeZsyYEUcffXTqjJx44oknYr/99kudwVdUXV0dP/7xj2PRokWpU3Kmffv2MWbMmJwOjXfdddecPRaNx2uvvRbbb7996oyIiLj88ssL8sXK++67b5x11llJG2pra6N///5xzz33xJw5c5K2fJnLLrsszjjjjNQZBaGsrCzGjBkTb731VowZMyZmzpyZOqnRadu2bey///7xwx/+MH7wgx/EVlttlTqpYPTr1y8uv/zy1Bnk2He+8514/PHHU2c0CXV1dfHBBx/EyJEj112spKKiInVWMhtttFEcfPDB8cMf/jAOPvjg2HjjjVMnUUA++uijeOmll2LIkCExa9as1DmZ2WOPPeLII4+MI488MrbZZpvUOf/WXXfdFaNGjUqd0eC6desWp5xySrLHP+6442LSpEnJHj/XTj31VM9XG7kVK1bEAQcckFcXD6mPww8/PO68887UGQAAAMDX5HK7AAAAAAD1UIgjwi/zjW98I3UCX0OLFi2ie/fucf/996dOyURxcXFst9120bFjx+jYsWNsv/320bFjx6ipqXHaIE3K7NmzY+LEiakzGtzKlSuTDtqHDBkSf/jDH+Kjjz5K1kD2Fi1aFK+99loMGzYsxo4dW9AnsDeE8vLydaesRkR06dIlunXrFkceeWRsu+22iesAvmj16tXx5ptvxogRI2LkyJGxZMmS1EmNxqpVq6J///7Rv3//aNGiRey///7Rs2fPOOSQQ6JVq1ap88hDZWVlMWjQoHj++ecL8muTf+X999+P999/P2699dbYZ5994sQTT4zDDjssiouLU6f9k1dffbUgL9Z0wAEHJH383r17N6lB+5AhQwzaG7mRI0c2mTF7RESvXr1SJwAAAADrwSu6AAAAAADqYcWKFakTcmKDDTaIzTffPHUGX1OPHj3yetC+0UYbRYcOHaJjx47/9OPWW28dzZo1S50IyW2xxRapEzLxySefJHncJUuWxPXXXx+DBw9O8vhkb+nSpTFo0KDo379/vPvuu6lz8tqUKVNiypQp8fvf/z722muv6N69exxzzDHRrl271GlAE7V27doYOXJkDBgwIEaMGNGkT2H/qqqrq2PUqFExatSo2HDDDePII4+Mnj17RteuXVOnkQfmzZsXjz32WPTr1y/Ky8tT5yRRV1cX48ePj/Hjx8dmm20WP/3pT6N3796N5mI/lZWVMXv27NQZmdhggw2SPn63bt3i5ptvjrKysqQdubJgwYKYPHlyfPvb306dwpcYMWJE6oSc2WKLLeKggw5KnQEAAACsB4N2AAAAAIB6aCqD9vbt26dOYD1885vfjD333DPee++91Cn/UlFRUWy11Vbrhur/OFr36w7+s8022yx1QiaWLl0atbW1Ob1wRb9+/eLmm2+OlStX5uwxyY3KysooKSmJfv36xdixY5vUqXW5UFdXFxMnToyJEyfGLbfcEkceeWT07t079tprr9RpQBMxbty4eP7552PIkCGxevXq1Dl567PPPou+fftG3759o3PnznHaaadFt27domXLlqnTaGQmT54cDz/8cJSUlHhe9TnLli2L++67Lx588ME48sgj49xzz42ddtopadPHH39csP+N2rZtm/zxjznmmHjqqaeSduTS4MGDDdobqerq6hg9enTqjJw59thjo3nz5qkzAAAAgPVg0A4AAAAAUA+lpaWpE3Ii9alHrL/u3bsnHbQXFxfH9ttv/0+j9Y4dO8b2228frVq1StYGhWDjjTdOnZCJmpqaWLFiRU4G+5WVlXHVVVfFiy++mPljkVuzZs2KZ555Jl566aUm85wttTVr1kS/fv2iX79+sccee8Tpp58ehx12mLEB0OBWrVoVL774Yjz99NMxa9as1DkFZ9q0afHrX/86br/99vj5z38evXv3LtjnnXx1M2fOjNtvvz2GDRuWOqVRq6mpif79+8fAgQPjsMMOi/POOy923XXXJC0ff/xxksfNhcbwvcoTTjihyQ3aL7nkktQZ/Avjx4+Pzz77LHVGzvTq1St1AgAAALCeDNoBAAAAAOqhoqIidUJOpD71iPX3ox/9KK6//vpMH2PjjTf+p6H63/966623jqKiokwfH5qydu3apU7IzNKlSzMftC9ZsiTOP//8pBf+oOGNHj06Hn300SZ1Ql1j9P7778fFF18cHTp0iNNPPz2OO+64KC4uTp0F5LmPP/44HnrooXj55ZebzNfjKS1evDhuv/32+NOf/hSnnXZanH766QX9/JN/bdGiRXHnnXfGiy++WLCnfWehtrY2Xn311SgpKYkjjjgiLrvssth2221z2jB//vycPl4uNYbvVXbu3Dl23333mDRpUuqUnJg9e3bMmDEjdt5559Qp/IMRI0akTsiZ3XffPXbaaafUGQAAAMB6MmgHAAAAAKiHysrK1Ak50aKFbyfnq2222SZ23nnnmDFjxnrfR7NmzWKrrbZaN1r/xx+d1AfpNIZT6bKyYsWKTO9/6tSpcfbZZ8enn36a6eOQG38/CfOhhx6K6dOnp87hc+bNmxfXXXddPPTQQ3H++edHjx49nNgOfG1Tp06NBx54IF599dWora1NndPklJeXxz333BNPPvlknH322XHSSSdFq1atUmeRscrKynj44YfjvvvucwGJeqirq4tBgwbFiBEj4pe//GWceeaZObvITyEP2tu0aZM6ISIievfu3WQG7RF/O6XdoL3xGT58eOqEnOnZs2fqBAAAAKAevAIRAAAAAKAeqqqqUifkxNq1a1MnUA8HHXTQfxy0t2rVat3J6h06dPjCaL1Dhw5OVIVGqjGcSpeVlStXZnbf06ZNi1NPPTVKS0szewxyo7a2NgYOHBh33313zJ49O3UO/8aCBQviiiuuiAcffDAuu+yy+NGPfpQ6CcgD06ZNiz/84Q8xcuTI1ClERGlpadxyyy3x5z//OS6++OLo0aNHFBUVpc4iA2+//XZcc801MWvWrNQpBWPNmjVxxx13xAsvvBC//e1v44c//GHmj7lo0aLMHyOVxjJo79atW9x8881RVlaWOiUnBg8eHOeff37qDD5nzpw5MWfOnNQZOVFcXBxHH3106gwAAACgHgzaAQAAAADqoamc0G7Qnt8OPvjgeOSRR6J9+/b/NFTv2LFjdOzYMbbaaitDBMhDjeVF/FnIamw+c+bMOO2004zZC8DIkSPj1ltvjZkzZ6ZO4WuYPXt2nHvuufGDH/wgrrjiithxxx1TJwGN0IIFC+KOO+6IV155xYnsjdCiRYviN7/5TTz77LNxzTXXxK677po6iQZSVlYWffr0ieeeey51SsGaO3dunH322XH88cfHFVdckenXdAsXLszsvlNrLF8Lt23bNo455ph46qmnUqfkxLRp02Lu3LnRsWPH1Cn8r6Z0OvuPf/zj2HjjjVNnAAAAAPVg0A4AAAAAUA/V1dWpE3JixYoVqROoh+985zvx9ttvx0YbbZQ6BWhgrVu3Tp2QmSxOaJ8zZ06ceuqpsXz58ga/b3Jn5syZ0adPnxg9enTqFOph5MiR8eabb8ZZZ50V5557bhQXF6dOAhqBsrKyuOeee+KJJ55oMheQy2cTJkyIXr16xcknnxwXXHBBtGvXLnUS9fDuu+/GpZdeGvPmzUud0iT07ds3xo8fH7fffnvstttumTzG4sWLM7nfxqAxfS18wgknNJlBe8TfTmk/88wzU2fwv5rSoL1nz56pEwAAAIB6apY6AAAAAAAgn9XV1aVOyIlly5ZFTU1N6gzWU/PmzY3ZoUA1phfxN7RVq1Y16P2VlZXFOeecE0uWLGnQ+yV31qxZE7fccksce+yxxuwFoqqqKu699974yU9+ElOmTEmdAyQ2aNCgOOKII+KRRx4xZs8j1dXV8dhjj8XRRx8db731Vuoc1kNNTU3cfffdcdJJJxmz59hHH30Uxx9/fDz22GMNft+1tbWxbNmyBr/fxqKxnNAeEdG5c+fYY489UmfkzODBg1Mn8L8+++yzeOedd1Jn5MQWW2wRBx54YOoMAAAAoJ4M2gEAAAAA6qFFixapE3KitrY2Fi1alDoDgH9g0P7V1NXVxaWXXhqzZ89usPskt0aPHh1HH310PPLIIy6yU4CmT58exx9/fNx9991RW1ubOgfIsXnz5sWZZ54ZF198sQvP5LGFCxfGaaedFjfddFOsXbs2dQ5fUWlpaZx55plx1113RXV1deqcJqmqqir69OkTV155ZYP+N1i+fHlBP29ubF8LH3/88akTcub999/3feJGYtSoUVFVVZU6Iye6d+8ezZs3T50BAAAA1JNBOwAAAABAPTSlF1HNnDkzdQIA/6BVq1apEzKzcuXKBruvO++8M4YPH95g90fulJeXx1VXXRVnnHFGzJ8/P3UOGaquro677rorTjvtNINWaCLq6uri8ccfj6OPPjpGjRqVOocGUFdXF3/5y1+iZ8+eMXny5NQ5/AcffvhhHHfccfHmm2+mTiEinn322TjrrLPis88+a5D7K+TT2SMa1wntERHdunWLdu3apc7Iibq6uhgyZEjqDCKa1Pc5evXqlToBAAAAaAAG7QAAAAAA9dBUTmiP+NsLnQFoXBrbi/gbUkMNOV5//fX405/+1CD3RW5NmTIlevbsGX379k2dQg6NGTMmevbsGWPHjk2dAmTo008/jTPPPDNuvPHGqKioSJ1DA5s1a1accMIJ8cwzz6RO4UsMGTIkTjjhhJg3b17qFD7nzTffjBNPPDEWLFhQ7/tavnx5AxQ1Xo3t4m5t27aNY445JnVGzgwePDh1QpNXW1vbZC4ItOeee0anTp1SZwAAAAANwKAdAAAAAKAe2rZtmzohZ8aPH586AYB/0Lp169QJmVm1alWD3MeVV14ZdXV1DVBELj3xxBPRu3fvmDNnTuoUEliyZEmcfvrpLmYABerVV1+NY489NkaPHp06hQxVVVXF1VdfHVdccUWsXbs2dQ6f89RTT8WFF14Y5eXlqVP4F2bMmBEnn3xyzJ8/v173U8iD9latWkVRUVHqjH9ywgknpE7ImQkTJhT0r7F8MHHixFixYkXqjJzo2bNn6gQAAACggRi0AwAAAADUwwYbbJA6IWfGjx8f1dXVqTMA+JxCHrQ3xAntN9xwQ3z66acNUEOurF27Nn7zm9/EDTfcEFVVValzSKi6ujquuuqquOWWW6K2tjZ1DtAAqqqq4sYbb4yLLrooSktLU+eQI88//3yDnThN/d17771x7bXX+tzayH3yySdxyimnxCeffLLe91HIQ9fGdjr733Xu3Dn22GOP1Bk5UVNTE6+99lrqjCZtxIgRqRNyolWrVtGtW7fUGQAAAEADMWgHAAAAAKiHpjRoX716dbz11lupMwD4nDZt2qROyEx9B+1Dhw6Nl19+uYFqyIXFixfHiSeeGC+88ELqFBqRRx55JC6++OKorKxMnQLUw+LFi+MXv/hFPP7446lTSGDKlClx/PHHxwcffJA6pUm78cYb44477kidwVc0f/78OOWUU2LRokXr9f6FfOGQxjpoj4g4/vjjUyfkTElJSeqEJq2pDNoPOeSQ2GijjVJnAAAAAA3EoB0AAAAAoB7atWuXOiGnBg0alDoBgM8pLi6O5s2bp87IxKpVq9b7fcvKyuLaa69tuBgyN3PmzOjdu3dMmTIldQqNUElJSZx//vlRUVGROgVYD+PHj49evXrFO++8kzqFhJYuXRonn3xyvPHGG6lTmqQ+ffq4oEQemjt3bpxyyimxfPnyr/2+Bu1pdOvWrcl8v3jMmDH1vhAd62fBggUxffr01Bk50bNnz9QJAAAAQAMyaAcAAAAAqIdNN900dUJODRo0qF4DQwAaXuvWrVMnZKKqqirWrl27Xu973333xZIlSxq4iKy8/fbb8bOf/Sw++eST1Ck0Yq+//nqcddZZUV5enjoF+BpefvnlOPXUU31eJiIiVq9eHWeffXa89NJLqVOalD/+8Y/x2GOPpc5gPc2ZMycuvPDCqKqq+lrvZ9CeRtu2beOYY45JnZETVVVVMWzYsNQZTVJTOZ19q622igMOOCB1BgAAANCADNoBAAAAAOphs802S52QU+Xl5dG3b9/UGQB8Tps2bVInZGZ9TnubN29e/PnPf86ghiy88cYbceaZZ8bKlStTp5AHxo0bF+edd15UVlamTgG+ggceeCAuu+yyrz3CpLBVVVXFr3/963jiiSdSpzQJ9957b9x3332pM6int99+O66//vqv9T6F/Py6sV/U7YQTTkidkDODBw9OndAkNZULCXTv3j2aNfMydwAAACgkvtIHAAAAAKiHzTffPHVCzj388MNRVlaWOgOA/9XYX8xfH+szaL/55puNXfPEyJEj45xzzomKiorUKeSRt956K371q19FTU1N6hTgS9TU1MQ111wTt99+e9TV1aXOoRGqq6uLG264IZ588snUKQWtX79+cccdd6TOoIH07dv3a124a9WqVRnWpFVcXJw64d/q3Llz7LHHHqkzcmL06NFRXl6eOqNJKS8vj3HjxqXOyImePXumTgAAAAAamEE7AAAAAEA9bLbZZtG8efPUGTm1fPnyeOCBB1JnAPC/2rZtmzohM1930D5+/PgYOnRoRjU0pFGjRsX555/v4gOsl6FDh8aVV16ZOgP4F6qrq+NXv/pVPP3006lTyAM33HCDXysZGTduXFx99dWpM2hgt9xyS4wZM+Yr/bOFfEJ7Yx+0R0T07t07dUJOVFRUxOuvv546o0l58803m8TX0XvvvXd885vfTJ0BAAAANDCDdgAAAACAemjRokVsvfXWqTNy7pFHHompU6emzgAgCvuE9tWrV3+tf/7uu+/OqISG9O6778aFF14YVVVVqVPIY/369XORJWhkqqqq4uKLL46SkpLUKeSJurq6uPbaa+PZZ59NnVJQZs+eHRdccIHnWgWopqYmfv3rX3+lsfrXvThYPsmHQXu3bt2iXbt2qTNyYsiQIakTmpThw4enTsgJp7MDAABAYTJoBwAAAACop+222y51Qs5VVVXFZZddFmvWrEmdAtDktWrVKnVCZr7OoH3ixInx1ltvZVhDQ5g5c2acffbZUV5enjqFAvDHP/4xXnvttdQZQERUVlbGRRddZNTG11ZXVxfXXHNNkxnoZW316tVx7rnnRmlpaeoUMrJo0aK4+uqr/+M/V8iD9pYtW6ZO+I/atGkTxx57bOqMnBg+fHiTODG8Mairq4uRI0emzshc69at46ijjkqdAQAAAGTAoB0AAAAAoJ46dOiQOiGJ6dOnx5VXXpk6A6DJM2j/m3vvvTfDEhrC8uXL4+yzzzawosHU1tbGpZdeGrNmzUqdAk1adXV1XHTRRS4wwXqrqamJSy65JCZNmpQ6Je9dffXVMXv27NQZZOzVV1+NF1544Ut/vrKyMtauXZvDotzKhxPaIyJ69+6dOiEnVq9eHW+88UbqjCZh8uTJsWTJktQZmTvkkENiww03TJ0BAAAAZMCgHQAAAACgnjp16pQ6IZn+/fvH3XffnToDoElr3bp16oTMfNVTvCdPnhyvv/56xjXUR1VVVVx44YUxf/781CkUmPLy8rj44osLerQFjd3VV18dw4YNS51BnisvL49zzjnHc4V6eOqpp6J///6pM8iRG2644Ut/vxTy6ewR+TNo79y5c+y5556pM3Ji8ODBqROahOHDh6dOyIlevXqlTgAAAAAyYtAOAAAAAFBPO+20U+qEpO6666548sknU2cANFmFPGj/qie0P/TQQxmXUF833nhjvP3226kzKFDTp0+P3/3ud6kzoEm644474vnnn0+dQYFYunRp/PKXv4yysrLUKXln6tSpPhc2MatXr44bb7zxX/5cof8eypdBe0TE8ccfnzohJ4YNGxbV1dWpMwreiBEjUidkbuutt479998/dQYAAACQEYN2AAAAAIB62mWXXVInJHfDDTfEX/7yl9QZAE1Sq1atUidk5qsM2hctWhRDhgzJQQ3ra+DAgfH000+nzqDAPf300zF06NDUGdCkPPPMM3HvvfemzqDAzJo1K6644orUGXmlsrIyLrvssqisrEydQo4NHz78X57YXF5enqAmd1q2bJk64Svr1q1btGvXLnVG5kpLS13ALGOLFy+ODz74IHVG5nr06BHNmnlpOwAAABQqX/UDAAAAANTTNttsE5tuumnqjKTq6uripptuijvvvDN1CkCTU8gntH+VIcaTTz7pJLhGbO7cuXHVVVelzqCJuPbaa2PlypWpM6BJeOONN+K6665LnUGBKikpiUcffTR1Rt645557Yvr06akzSOSmm26KtWvXfuFtX+XCYPmsRYsWqRO+sjZt2sSxxx6bOiMnSkpKUicUtBEjRkRdXV3qjMz17NkzdQIAAACQIYN2AAAAAIAGsMcee6ROaBTuueeeuOSSS6KioiJ1CkCT0ZRPaK+oqIi+ffvmqIavq7a2Ni677LIoKytLnUITsWTJkrj55ptTZ0DBW7BgQVxyySVRU1OTOoUCdtttt8X48eNTZzR6kyZNioceeih1BgnNmzcvHnjggS+87R8H7oUmnwbtERG9e/dOnZATQ4cOjdra2tQZBWv48OGpEzK39957x4477pg6AwAAAMiQQTsAAAAAQAMwaP//BgwYED/96U/jo48+Sp0C0CQ0b948dUJm/tOg/aWXXorS0tLcxPC1PfbYYzFx4sTUGTQx/fr1i7feeit1BhSstWvXxgUXXODzL5mrrq6OX/3qV7FixYrUKY1WVVVVXH755VFdXZ06hcQefPDBWLhw4bq/L/QLTebboL1z586x5557ps7I3JIlS3z9l5G1a9fGmDFjUmdk7ic/+UnqBAAAACBjBu0AAAAAAA1g3333TZ3QqEyfPj1+8pOfxJNPPhl1dXWpcwAKWr69mP/rKC8v/7c//9e//jVHJXxdc+bMiTvuuCN1Bk3UTTfd5ORoyMi1114bU6ZMSZ1BE7F48eK47rrrUmc0Wn/+859jxowZqTNoBNauXRt/+tOfvvD3hSwfL+p2/PHHp07IicGDB6dOKEhjxoz5j98fyXetW7eOI488MnUGAAAAkLHCfXULAAAAAEAO7b333tG6deuCPwHp6ygvL4/rr78+Xn311bj22mujU6dOqZMAClIhD9r/3QntEydOjGnTpuWwhq/jhhtu8LyIZGbMmBFPP/10nHTSSalToKA899xz0a9fv9QZjdo3vvGN2GWXXaJDhw7rbltssUW0adMm2rZtG23bto3i4uJYs2ZNlJeXr/tx6dKl8fHHH8ecOXNi7ty5MWvWrJg/f37qD6dRGDRoUBx66KHRrVu31CmNyqeffhr33HNP6gwakX79+sVZZ50VHTp0iKqqqtQ5mcrHr4G7desWN998c3z22WepUzI1ZMiQuPzyy1NnFJzhw4enTsjcoYceGu3atUudAQAAAGQs/76zBwAAAADQCBUXF8c+++wTb7zxRuqURmfcuHHRvXv3+MUvfhHnnntubLjhhqmTAApKy5YtUydk5t8N2p966qkclvB1DB06NEaPHp06o9Fq06ZNdO7cOXbYYYfYYYcdokOHDrHZZpvFpptuGptsskm0atUqiouLo7i4OCIiKioqYu3atVFRURHLli2LRYsWxcKFC2P+/PkxZcqUmDp1asGf1rc+7rzzzjjmmGNio402Sp0CBWHevHnxu9/9LnVGo/Otb30rDjzwwNh7772ja9eusckmm3yl92vXrt0/jbYOOuigL/z9woULY+zYsTF27NgYM2ZMfPLJJw3WnW+uv/762G+//WLLLbdMndJo3HLLLT7/8wVVVVVx7733Rp8+faKmpiZ1TqbycdDepk2bOOaYY+Kvf/1r6pRMLViwICZPnhzf/va3U6cUlJEjR6ZOyFyvXr1SJwAAAAA5kH/f2QMAAAAAaKQOPvhgg/YvUVVVFQ8//HA8//zzcdZZZ8VJJ50Ubdq0SZ0FUBDy8cX8X9WXDdpLS0vj1VdfzXENX0VlZWXcfPPNqTMaleLi4th///3jhz/8Yey9996xyy67RPPmzb/y+39+9LjddtvFHnvs8YWfr62tjVmzZsWoUaNi+PDh8c4770R1dXWDfgz5qLS0NB555JG4+OKLU6dA3qutrY1f//rX//ZCM01Jly5d4vDDD48jjjgidthhh8weZ5tttokePXpEjx49oq6uLsaPHx/9+vWLkpKSJvfforS0NK666qq4//77U6c0CuPHj48BAwakzqAReumll+Kcc84p+EH713ku3Zj07t274AftEX87pd2gveFMmzat4C9qs+2228b3vve91BkAAABADhTuq1sAAAAAAHLs0EMPjT59+qTOaNRKS0vj97//fTz00ENx0kknxUknnRSbbrpp6iyAvFbIg/YvO3WyX79+sXbt2hzX8FU89dRTMW/evNQZjcLuu+8eP//5z+OQQw6JDTbYILPHadasWey8886x8847x+mnnx6lpaXxwgsvxBNPPBHz58/P7HHzweOPPx6nnXZabLzxxqlTIK89+OCDMWHChNQZSTVv3jwOPfTQOPPMM2P33XfP+eMXFRXFfvvtF/vtt19cffXV0b9///jTn/4UCxYsyHlLKiNGjIiSkpI4/PDDU6ckd9ttt6VOyGutWrWKnXbaKTp37hwdO3aMDh06xFZbbRWbbLJJtG/fPlq1ahXFxcXRokWLKC8vj7Kysli9enWUlZXF/PnzY/bs2etu06dPj6qqqtQf0jo1NTXxf//v/y34i0jm66C9c+fOseeee8Z7772XOiVTJSUl8atf/Sp1RsEYMWJE6oTMde/ePZo1a5Y6AwAAAMiBwn11CwAAAABAjm233Xax2267xQcffJA6pdFbsWJF3H333fHQQw9Fz54947TTTsv0ZDuAQlbIg/YvO320b9++OS7hqygvL48HHnggdUZye++9d1x66aWx7777Jnn89u3bx2mnnRannHJKDBkyJG677baYO3dukpbUysrK4tFHH3VKO9TDhx9+GHfddVfqjGSaN28exx13XJx55pnRsWPH1DkREdGmTZv46U9/Gj169Ihnn3027rvvvvj0009TZ+XE7373uzjooIOibdu2qVOSGTp0aEycODF1Rl5p2bJlfPe73439998/vvOd78Ruu+32lb+GateuXbRr127d3++5555f+PmKiop45513YuzYsTFmzJiYPHlyVFdXN2j/1zVp0qSkj58L+Tpoj/jbKe2FPmifPXt2zJw5M3baaafUKQWhKQzae/bsmToBAAAAyBGXtAMAAAAAaEDHHHNM6oS8UlFREU899VQcccQRccYZZ8SgQYOisrIydRZAXsnnF/P/JxUVFf/0tgkTJsTs2bMT1PCfPP7447F06dLUGclssskm0adPn3jqqaeSjdk/r1mzZnH44YdH//7949xzz42WLVumTkri8ccfj7KystQZkJfq6urimmuuaVSnD+fS7rvvHs8991xcf/31jWbM/nktW7aMn/3sZzFkyJA477zzCvoiR3+3aNGiuPvuu1NnJFNbWxt33HFH6oy8UFRUFPvvv3/ceuut8dZbb8XDDz8cZ555Zuyxxx4N+nuldevW8f3vfz9+9atfxTPPPBOjRo2Kq666Kvbaa68Gewz+WVFRUeqE9XbUUUfFhhtumDojcyUlJakTCsLy5csL/gII++yzjwvdAgAAQBNi0A4AAAAA0IB69OjRZMdC9VFbWxujR4+Oiy++OA466KC46aabYtq0aamzAPJCIQ/aa2trY+3atV9423PPPZeohn+noqIiHn300dQZyey1117x4osvRq9evRrdwKZVq1Zx8cUXxzPPPBNbbbVV6pycKysri+effz51BuSl5557rkmeBL3BBhvE1VdfHX379o3ddtstdc5/1KpVq7jooovimWeeiZ133jl1Tub+8pe/xIwZM1JnJPHyyy/H9OnTU2c0am3bto1TTjklhgwZEo899lh07949p+PhTTfdNE4++eR45pln1l1sYpNNNsnZ4zcV+fw1cJs2bZrEBVEHDx6cOqEgjBw5Mmpra1NnZKpXr16pEwAAAIAcKqqrq6tLHQEAAAAAUEguuOACL9prILvuumscdthhcdhhh8Uuu+ySOgeSmj9/fvz4xz9OnZGpPn36eCHrenj++efjiiuuSJ2RmbFjx0b79u0jImL16tVx4IEHRnl5edqoRuKyyy6LM844I3VGREQ88cQTccMNN6TOSKJXr15x/fXX58VFjRYvXhznnXdeTJo0KXVKTnXs2DFKSkqiWTPX/I+IuOuuuwr+hOMPP/wwdULeW758eRx55JFRWlqaOiWndthhh7j33ntjp512Sp2yXiorK+O2226LP//5z6lTMnXQQQfFQw89lDojp+rq6uKoo46Kjz76KHVKo9S6des45ZRT4owzzoiNN944dc4XVFRUxPPPPx/33ntvLF26NHVOQbjmmmviZz/7WeqM9TZt2rTo3r176ozMDRkyJDp27Jg6I69deOGFBX3afZs2bWL06NHRrl271CkAAABAjvi/tQAAAAAADey4445LnVAwPvzww7jrrrvimGOOicMPPzz+8Ic/xKRJk8K1WgH+v3w+ne6r+PwJ7QMHDjRmb4RqamrikUceSZ2RxE9/+tP43e9+lxdj9oiILbfcMv7yl7/EHnvskTolp+bOnRsjRoxInQF55fe//32TG7MfdNBB8dxzz+XtmD0iori4OK644oq4/vrro0WLFqlzMjNq1KgYM2ZM6oycGjp0qDH7lzjiiCOipKQkLrnkkkY3Zo/429j+pJNOiiFDhsT5558fxcXFqZPyXr5fpKhz586x5557ps7InAu+1k9VVVW88cYbqTMyddhhhxmzAwAAQBOT39/ZAwAAAABohA466KDYeuutU2cUnDlz5sT9998fxx13XBx44IFx6aWXxgsvvBCffvpp6jSApIqKilInZOrzg/Z+/folLOHLDB06NBYsWJA6I+e6desWN9xwQ979Hmzbtm088MAD8c1vfjN1Sk717ds3dQLkjcmTJ8cLL7yQOiOnfvazn8UDDzwQG220UeqUBtG7d+944IEHYsMNN0ydkpnbb789dUJOPfjgg6kTGp0tttgi7rnnnrjjjjvy4vtwbdu2jQsvvDBefPHF6Nq1a+qcvFYIF3Xr3bt36oTMDRkyJHVCXhs/fnyUlZWlzshUz549UycAAAAAOWbQDgAAAADQwJo1axY//elPU2cUtKVLl8Yrr7wSv/nNb+Lggw+Obt26xU033RRDhw5tcqcIAhTCi/n/nb8P2ufOnRvvvPNO4hr+lb/+9a+pE3Jul112iZtuuinvxux/t8kmm8TDDz8c7du3T52SM6NGjYply5alzoC8cNttt0VdXV3qjJzp3bt3XH311Xl/4u8/OuCAA+KJJ55olCdWN4T3338/SkpKUmfkxNixY+O9995LndGo7L///vHiiy/GIYcckjrla+vUqVM88cQTcf755xfcnzu5kq/PwT/vqKOOKuiLjkREvPfeey5EWg/Dhw9PnZCp7bbbLr73ve+lzgAAAAByzHdEAQAAAAAycNJJJ0Xbtm1TZzQZM2fOjL/85S9x/vnnx/e+97045phj4rrrrouBAwfG4sWLU+cBZKrQRxBVVVUREfHSSy8lLuFf+eijj2LMmDGpM3Kqbdu2cffdd0ebNm1Sp9TLtttuG9ddd13qjJyprq6OV155JXUGNHqvv/56vPXWW6kzcqZXr15x3XXXFcQ48l/p3Llz3H///QX7/Yk//vGPUVtbmzojc48++mjqhEbltNNOi0ceeSQ233zz1CnrrXnz5nHhhRfGQw89VPCj5iwUwp/Zbdq0iWOPPTZ1Rqbq6uqc0l4PI0aMSJ2QqR49ehTE72UAAADg62mROgAAAAAAoBBtsskm8bOf/Sweeuih1ClNTl1dXUyfPj2mT5++7sTYHXbYIfbZZ5/o2rVrdO3aNTp16pS4EqDhFPoJ7X8ftL/88suJS/6/1q1bx6677hqdO3eOjh07RseOHWOLLbaITTbZJNq3bx/FxcVRXFwczZs3j6qqqqipqYmamppYs2ZNrF69OlavXh2fffZZLFu2LJYsWRJLliyJefPmxbx58+Ljjz+O1atXp/4Qv7Jnn302dULOnX/++bHDDjukzmgQRxxxRHTv3r3JXDDipZdeilNPPTV1BjRatbW1cfvtt6fOyJlDDz00brrppoIfU+29995x9913x9lnn73ueVWhmD17drz66qtx1FFHpU7JzCeffBKvv/566oxGoVmzZnHllVfGSSedlDqlwRxwwAHxzDPPxFlnnRULFixInZM3CuXP7d69e8eTTz6ZOiNTJSUlcfLJJ6fOyDuzZs2Kjz/+OHVGZoqKiqJnz56pMwAAAIAEDNoBAAAAADJy+umnx5NPPhlr1qxJndLkffzxx/Hxxx9Hv379IuJvFxzYe++9143cv/3tb0dxcXHiSoD1Uygv5v8y1dXV8c4778TcuXOTNbRo0SK+853vxPe///3Yf//941vf+tZXvpDA5z+/tGvXLrbYYov/+D7z589fd3GWv98++uijqKmpWe+PIQu1tbXRv3//1Bk5tcsuuxTcIPrKK6+MkSNHRmlpaeqUzH3wwQcxf/782H777VOnQKP0yiuvxLRp01Jn5MSOO+4YN998czRr1ix1Sk4ccMAB0adPn7j00ktTpzS4Bx54oKAH7c8880yjew6YQrNmzaJPnz7Ro0eP1CkNrlOnTvHXv/41TjnllJgzZ07qnLxQKF8D77rrrrHXXnvFu+++mzolMxMmTIjly5fHpptumjolrxT66ez77rtvdOjQIXUGAAAAkIBBOwAAAABARjbbbLPo3bt3PPbYY6lT+AcrVqyIYcOGxbBhwyIiomXLltGlS5fYa6+9Yu+994699947ttpqq8SVAF9NobyY/8vU1dUlO5197733jp/85Cdx6KGHRvv27XP2uNtvv31sv/328aMf/Wjd29asWRMffPBBTJo0KSZNmhSTJ09OPsJ78803Y/HixUkbcu3SSy+NFi0K63+zb7TRRvHLX/4ybr311tQpOfHaa6/FKaeckjoDGp3a2tr405/+lDojJ9q0aRN33XVXtGvXLnVKTh1zzDHx9ttvxzPPPJM6pUFNnTo1Ro4cGT/4wQ9SpzS4qqqqeO6551JnJFdUVFSwY/a/23rrrePJJ5+Mk08+OWbPnp06p9ErpK+Bjz/++IIetNfU1MRrr70WP/3pT1On5JVCH7Q7nR0AAACarsL6P+0AAAAAAI3MGWecEU8//XRUVFSkTuHfqKqqinfffTfefffddRcg2HbbbWOvvfaKPffcM/bcc8/YbbfdolWrVmlDAf6FQnox/7/y5JNPxujRo3P2eC1atIhjjjkmTj/99Nhll11y9rj/SZs2bWKfffaJffbZZ93b6urqEhZFkzudvUuXLgU5louI+PnPfx5PPPFEfPLJJ6lTMmfQDv9aSUlJkxlRXnvttY3qc3wu/fa3v4333nsvpk2bljqlQd1///0F+Tl6yJAhsXTp0tQZyV122WUFPWb/u8033zweffTROPHEE2PhwoWpc8iRo446Kvr06ROfffZZ6pTMlJSUGLR/DatWrYp33nkndUZm2rZtG0cccUTqDAAAACCRtJfsBwAAAAAocFtuuWWcddZZqTNYD5988kkMHDgw+vTpEyeccELss88+cdxxx8UNN9wQL730Unz88cepEwGahIEDB8aqVasyf5yioqLo0aNHDB48OG6++ea8GLqlvJhBdXV1DB8+PNnjp3DOOeekTshMcXFxk3nOOmHChJz8mQL55v7770+dkBM//OEPm8Qw9su0atUq/ud//ifatm2bOqVBTZgwoSBPOH7xxRdTJyR30kknxemnn546I2e22WabePjhh2PDDTdMnUKOtGnTJo499tjUGZkaM2ZMQQ/2G9qoUaOiuro6dUZmDj/88Nhggw1SZwAAAACJGLQDAAAAAGTsrLPOio4dO6bOoJ6qqqpi0qRJ8cQTT8Rll10Whx12WHz3u9+NX/7yl3HPPffEG2+84cWZQBKFfkJ7Luyxxx7x/PPPxy233BLbbbdd6py8MG7cuCgtLU2dkTNbbrll/PjHP06dkanu3bs3iWFBdXV1vP3226kzoFEZOXJkTJ06NXVG5lq3bh1XXnll6ozkvvGNb8T/+T//J3VGg3vyySdTJzSo5cuXxxtvvJE6I6muXbvG5Zdfnjoj5zp16hS33357NGvmpZ1fptC+Bu7du3fqhExVVVXFsGHDUmfkjUK/cFzPnj1TJwAAAAAJ+a4nAAAAAEDGWrVq5UXzBaq0tDRGjhwZd955Z5x++umx3377Rbdu3eKKK66Ivn37xocffhi1tbWpM4ECV2gv5s+lVq1axW9+85t4+umno0uXLqlz8srQoUNTJ+TUMcccE82bN0+dkakNNtig4E+H/LuxY8emToBGpamczn7eeedFhw4dUmc0Cr/4xS+iU6dOqTMa1KuvvhrLly9PndFg+vfvX9An9P4nm2yySdxxxx3RsmXL1ClJ/OAHP4iLLroodQY5suuuu8Zee+2VOiNTQ4YMSZ2QF2pqamLUqFGpMzKz/fbbx3e+853UGQAAAEBCBu0AAAAAADnwgx/8oOBP9SSirq4uZs6cGc8//3xcddVVceyxx8Y+++wTv/jFL+IPf/hDvPbaa7Fs2bLUmUCBMWhfPzvuuGP07ds3TjvttIIfKmfh9ddfT52QUz169EidkBMnnHBC6oScGDduXOoEaDSmTJkSEyZMSJ2RuW984xtx2mmnpc5oNFq2bBlXXXVV6owGVVlZGc8991zqjAbz8ssvp05I6sYbb4wtt9wydUZSv/zlL2P//fdPnUGOHH/88akTMjVq1KgoLy9PndHoTZw4MUpLS1NnZKZnz56+hwUAAABNnEE7AAAAAECO/Pa3v422bdumziDHysvLY+zYsXH//ffHeeedF9///vfj8MMPj8svvzyeffbZmDVrVupEgCbnv/7rv6Jfv37RuXPn1Cl5ad68eTFv3rzUGTnzjW98I3bZZZfUGTnRuXPn+MY3vpE6I3PTpk2LVatWpc6ARuGJJ55InZAT5513XhQXF6fOaFT233//OPzww1NnNKhnnnkmamtrU2fU27x582LSpEmpM5Lp1atXHHLIIakzkmvWrFn8/ve/j/bt26dOIQeOOuqo2HDDDVNnZKaioqLJXRRtfQwfPjx1QmaKioqazIXiAAAAgC9n0A4AAAAAkCPbbbddXHPNNakzaATmzJkT/fr1iyuvvDKOOuqo+N73vhfnnntuPPjgg/HOO+9EZWVl6kSAgvXzn/887r333thggw1Sp+St0aNHp07IqQMPPDB1Qk79+Mc/Tp2Qubq6upgyZUrqDEiutLQ0Bg4cmDojczvssEN069YtdUajdOGFFxbUSanz58+PN998M3VGvQ0ZMiR1QjLt27ePyy67LHVGo7HFFlvEb37zm9QZ5ECbNm3i2GOPTZ2Rqab8Z9tXNWLEiNQJmdlvv/1i++23T50BAAAAJGbQDgAAAACQQz169IiePXumzqCRWbFiRQwbNixuu+22OPHEE2OfffaJE088MW677bYYNmxYrFixInUi8P/Yu+/wKOv8ffvXpBMglR56aNIDSJEmSAcJASWgUmysiruua1fUXb6Krq6rothRkUXE7oIoQUhAukjoVTpBeg0J6c8f+5NnWQUpM/d7yvk6jhwihJlTZMIkzHV/4BfuuOMOjRkzRkFB/DXp5Vi2bJl1gqMYtPuntWvXWicA5j777DOdPn3aOsPj/vCHPyg4ONg6wyvVqVNHXbp0sc5wq6+++so64bJ999131glmHnzwQcXGxlpneJWUlBS1b9/eOgMOSE1NtU7wqPT0dC7ieR67d+/WTz/9ZJ3hMQMHDrROAAAAAAAAXoBXagAAAAAAAACAw5544gnVrl3bOgNeLD8/XytWrNDbb7+tO++8U+3atdO1116rp556SrNnz9axY8esEwHA59x999269957rTP8wooVK6wTHBMSEqLWrVtbZziqefPmATEkY9COQFdcXKypU6daZ3hcQkKC3594e7n+8Ic/WCe41XfffaecnBzrjEt25MgRZWZmWmeYaNiwIYPHcxgzZoxCQkKsM+Bh9evXV/Pmza0zPObUqVNatGiRdYbX8ufT2SMjI9WzZ0/rDAAAAAAA4AUYtAMAAAAAAACAwyIjI/Xiiy8qPDzcOgU+oqSkRJs3b9bkyZN19913q23btkpOTta4ceOUnp7u0y/WBwAnDBs2TH/84x+tM/zC3r17tW/fPusMx9StW1eRkZHWGY4KCgry6yHNL9avX2+dAJhaunSpdu/ebZ3hcTfeeKNCQ0OtM7xa8+bN/eriLTk5OZo9e7Z1xiWbM2eOiouLrTNM3H///XK5XNYZXql27doaOnSodQYc4O+ntM+aNcs6wWulp6dbJ3hMr169Au7zagAAAAAA8NsYtAMAAAAAAACAgQYNGuipp57ihbq4JCUlJdq4caMmTZqkO+64Q61bt9aIESP0zjvvaOPGjdZ5AOBVevbsqccee8w6w28E2omhjRo1sk4wEQiD9j179igvL886AzDz73//2zrB40JCQpScnGyd4RNGjBhhneBWvvz7e968edYJJtq0aaP27dtbZ3i1P/7xjypbtqx1BjysT58+fv3/ee7cuSosLLTO8DqnTp3SsmXLrDM8ZuDAgdYJAAAAAADASzBoBwAAAAAAAAAj/fv311/+8hfrDPiBgoICLVmyRM8//7ySk5PVoUMHPfLII/ruu++Um5trnQcAZurXr69nn32WC8i40bp166wTHBWog/ZmzZpZJ3hccXGxdu7caZ0BmMjLy/PpE6wv1NVXX61y5cpZZ/iEzp07KyYmxjrDbRYvXqzDhw9bZ1y0oqIiLV261DrDxJ133mmd4PWio6P97uIT+LWIiAi/vhjLsWPH9MMPP1hneJ2FCxeqoKDAOsMjqlWrplatWllnAAAAAAAAL8GgHQAAAAAAAAAMjRo1SjfeeKN1BvzMwYMH9fnnn2v06NFq27at7rzzTn366ac++YJ+ALhUZcqU0YQJExQZGWmd4lc2bNhgneCoQB20N2nSREFB/v9ygh07dlgnACbmzp2rkydPWmd43HXXXWed4DNCQ0PVp08f6wy3KSoq0ty5c60zLtqaNWt04sQJ6wzHNW3aVO3atbPO8AkjR45UdHS0dQY8bPDgwdYJHjVr1izrBK+Tnp5uneAxAwYM4CKDAAAAAADgDP//G2gAAAAAAAAA8HJjxoxR9+7drTPgp06fPq25c+fqscceU4cOHTR06FBNmjRJ+/fvt04DAI8aO3asqlWrZp3hdzZu3Gid4KiaNWtaJ5goU6aMKleubJ3hcQzaEaimT59uneBx5cuXV6dOnawzfMqAAQOsE9xqzpw51gkXbeHChdYJJm6++WbrBJ9RtmxZDR061DoDHla/fn01b97cOsNjvvvuO5WUlFhneI2SkhLNnz/fOsMjXC6XUlJSrDMAAAAAAIAXCbEOAAAAAAAAAIBAFxQUpH/84x8aPXq0FixYYJ0DP1ZcXKwVK1ZoxYoVevbZZ9WiRQv16dNHPXv2VLly5azzAMBt+vfvr759+1pn+KVp06YpJydHp06dUk5Oznm/fb4fy83NVVFRkfV/znnFxMQE9AmYNWrUUFZWlnWGR+3Zs8c6AXDcyZMn/XY09d969uyp4OBg6wyf0qxZM9WqVUvbt2+3TnGLRYsWKScnR5GRkdYpF2zx4sXWCY4rX748F3m8SDfddJPeffdd5efnW6fAg1JTU7Vy5UrrDI84ePCgVqxYoZYtW1qneIU1a9bo0KFD1hke0aZNGyUkJFhnAAAAAAAAL8KgHQAAAAAAAAC8QEREhF5//XXde++9+u6776xzEACKi4u1fPlyLV++XE8//bSuvPJKDRgwQD179vSpF/wDwP+Kj4/XY489Zp3ht6pXr+6228rNzf3dIfz/fv/5fiw3N1eFhYVu66tWrZrbbssXVa9eXYsWLbLO8KgDBw5YJwCO+/7771VQUGCd4XHdunWzTvBJ3bt311tvvWWd4RZ5eXlauHChz4yl8/Ly/Ha8ej7XX3+9QkNDrTN8Svny5dWvXz99/vnn1inwoD59+uiZZ57RiRMnrFM8Yvbs2Qza/5+5c+daJ3gMp7MDAAAAAID/xaAdAAAAAAAAALxEWFiYXn75ZT388MOaPn26dQ4CSFFRkZYsWaIlS5Zo7Nix6t27twYNGsQLSwH4pMcee0wxMTHWGbgApUqVUqlSpRQfH++22zx9+vR5h/C/9f3n+rEGDRq4rcsX1ahRwzrB4xi0IxDNmzfPOsHjoqKidOWVV1pn+KSOHTv6zaBdkubMmeMzg/Y1a9YExMUm/pvL5dLAgQOtM3zSDTfcwKDdz0VERKh///7617/+ZZ3iEWlpaXr44YetM7xCRkaGdYJHlC5dWj179rTOAAAAAAAAXoZBOwAAAAAAAAB4kZCQED333HOKjIzUtGnTrHMQgHJycvTZZ5/ps88+U82aNTVo0CBdd911iouLs04DgN/VsmVL9e3b1zoDhiIiIhQREcGfW25QvXp16wSP279/v3UC4Kji4mLNnz/fOsPjWrdurZAQXhJ1KZKSklS6dGmdOnXKOsUtFixYYJ1wwVasWGGd4LiWLVuqWrVq1hk+qUmTJmrYsKHWr19vnQIPSk1N9dtBe1ZWltatW6dGjRpZp5jav3+/NmzYYJ3hEb169VKpUqWsMwAAAAAAgJcJsg4AAAAAAAAAAJwtKChIY8eO1V/+8hcFBfFlXNjZsWOHXnjhBXXu3FmPPPKINm7caJ0EAOfkcrn06KOPWmcAfiM+Pt46weOOHDmi4uJi6wzAMWvWrNGRI0esMzzuqquusk7wWaGhoWrbtq11htscPHhQW7Zssc64IIE4aE9OTrZO8GmDBw+2ToCH1atXT0lJSdYZHpOWlmadYC49Pd06wWMGDhxonQAAAAAAALwQr4QEAAAAAAAAAC/1hz/8QW+88YaioqKsUxDg8vPz9fnnnys5OVnDhg3T7NmzVVRUZJ0FAGfp1auXGjdubJ0B+I2YmBjrBI8rLi7WyZMnrTMAx2RkZFgnOKJ169bWCT6tQ4cO1glutWjRIuuEC7Jy5UrrBEcFBwerW7du1hk+rW/fvgoLC7POgIf584ULZs2aZZ1gzl+fm9WoUUOtWrWyzgAAAAAAAF6IQTsAAAAAAAAAeLHOnTvr008/Vd26da1TAEnSsmXLdPfdd6tnz5765JNPVFBQYJ0EAAoKCtLo0aOtMwC/Ehsba53gCAbtCCQLFiywTvC4MmXKKDEx0TrDp/nTCe2StHjxYuuE37Vz504dPXrUOsNRLVu2VFxcnHWGT4uKilKnTp2sM+Bhffr08duLnW7fvl0//fSTdYaZ06dPa8mSJdYZHjFgwADrBAAAAAAA4KUYtAMAAAAAAACAl6tRo4amTZumfv36WacAZ+zevVtjxoxRz549NXXqVOXn51snAQhgPXr04OIvgJtFRUUpKMj/X1LAoB2BIicnR+vXr7fO8LimTZsGxMcuT6pVq5bKlCljneE2y5YtU2FhoXXGea1bt846wXHdu3e3TvAL1157rXUCPCwiIkL9+/e3zvCYQD6lffHixcrNzbXOcLugoCAG7QAAAAAA4Jz4GxwAAAAAAAAA8AGlS5fWCy+8oJdffpkTrOBVsrKy9Ne//lXdu3fXv/71L4btAEzcfPPN1gmA3wkKCvLb0yD/G4N2BIpVq1Z5/ajXHRo3bmyd4PNcLpcaNWpkneE2p06d0tq1a60zzmvDhg3WCY7r3LmzdYJfuPrqq1WqVCnrDHhYamqqdYLHzJ492zrBTHp6unWCR7Rt21ZVqlSxzgAAAAAAAF4qxDoAuBxFxcU6kp1nnQEAAAAAjokrE65gThgCgIDWq1cvtW7dWn/9618D+gQbeJ99+/bp//7v//Tee+/pvvvuU58+fayTAASIpKQkNW/e3DoD8EulS5fWsWPHrDM8yh9PRQR+y/Lly60THFGvXj3rBL/QpEkTLV261DrDbTIzM736+eL69eutExxVrVo11ahRwzrDL0RERKhDhw4BPQoOBPXq1VNSUpIyMzOtU9xuw4YN2r17t6pVq2ad4rh58+ZZJ3hESkqKdQIAAAAAAPBiDNrhsz5d/JP+9O48HTjOCwwAAAAABI4K0aU0/pbOuq5dHesUAIChuLg4jR8/XjNnztTTTz+tQ4cOWScBZ+zZs0f33nuv3n//fT300ENq2bKldRIAPzd06FDrBMBvhYaGWid4XCCcWA1I0o8//mid4Ij69etbJ/gFfzvpPjMzUzfffLN1xjkF2qC9Q4cO1gl+pVu3bgzaA8DgwYP9ctAuSWlpabr11lutMxy1YcMG7du3zzrD7cqUKaMePXpYZwAAAAAAAC/GkW7wWX94cy5jdgAAAAAB58DxXP3hzbnWGQAAL9GnTx/NmjVLt9xyS0CMjeBbVq1apRtuuEF//OMftXv3buscAH4qKipKvXr1ss4A/FYgPMdk0I5AUFhYqFWrVllneFxQUJBq1qxpneEXmjRpYp3gVitXrrROOKf9+/fryJEj1hmOatOmjXWCX7n66qsVFMTLQP1dnz59FBUVZZ3hEWlpadYJjktPT7dO8IjevXsrIiLCOgMAAAAAAHgxvpIJAAAAAAAAAD6sTJkyeuihhzR9+nR17tzZOgf4lbS0NPXr10/vvPOOioqKrHMA+Jlrr71W4eHh1hmA3wqEQXtBQYF1AuBxmzZtUk5OjnWGx1WuXFlhYWHWGX4hISFBpUqVss5wm/3792vv3r3WGb9py5Yt1gmOa9WqlXWCX4mJiVHDhg2tM+BhERER6t+/v3WGR6xatUr79++3znBURkaGdYJHDBw40DoBAAAAAAB4OQbt8Flv/qGrKkT7z1+eAQAAAMCFqBBdSm/+oat1BgDAC9WqVUtvvfWW3nrrLdWrV886BzjL6dOn9fzzz+v666/X+vXrrXMA+JF+/fpZJwB+LRAG7ZzQjkAQKM/Bq1evbp3gN1wul6pVq2ad4Vbeekr7tm3brBMcVbNmTZUvX946w++0b9/eOgEOSE1NtU7wiJKSEs2ePds6wzGHDx/WmjVrrDPcrmbNmmrRooV1BgAAAAAA8HIh1gHApbquXR2ltKmtI9l51ikAAAAA4Ji4MuEKDuL6dACAc+vcubM6deqkmTNnavz48dqxY4d1EnDGunXrdP3112vkyJH64x//qIiICOskAD6sUqVKSkpKss4A/FognHRcXFxsnQB43KZNm6wTHOFvA2xrNWrU0ObNm60z3Gb16tXq06ePdcavbN261TrBUTx/94yrrrpKb775pnUGPKxevXpKSkpSZmamdYrbzZo1SzfddJN1hiMyMjL88nOQlJQU6wQAAAAAAOADGLTDpwUHBal8FKe0AwAAAAAAAP/N5XKpb9++6tWrl7744gu99tprysrKss4CJP3nFNR33nlH8+fP1/jx41WrVi3rJAA+qlevXnK5XNYZgF/jMQb4h40bN1onOKJixYrWCX7F3068X79+vXXCbwq0E9obN25sneCXmjdvrtDQUBUUFFinwMNSU1P9ctD+448/6siRI4qLi7NO8biMjAzrBLcLCgrSgAEDrDMAAAAAAIAP4Eg3AAAAAAAAAPBTwcHBuu666/Ttt9/qqaeeUu3ata2TgDM2b96sQYMGaebMmdYpAHxUly5drBMAAPAJgXJCO4N296pRo4Z1glt564UdGLTDHSIiIlSvXj3rDDigd+/eioqKss5wu6KiIs2ZM8c6w+Py8/O1cOFC6wy3a9eunSpVqmSdAQAAAAAAfACDdgAAAAAAAADwc2FhYbr++us1c+ZMTZgwQUlJSdZJgCTp1KlTuvfeezV27Fjl5+db5wDwIWXKlFHLli2tMwAA8HpZWVk6ceKEdYYjypcvb53gV/xt0H78+HFlZWVZZ5wlOztbhw4dss5wTEhIiK644grrDL/VvHlz6wQ4ICIiQsnJydYZHpGWlmad4HE//PCDTp06ZZ3hdgMHDrROAAAAAAAAPoJBOwAAAAAAAAAECJfLpW7duumjjz7SlClT1KNHD4WEhFhnAZoyZYqGDh2q/fv3W6cA8BHt27dXaGiodQYAAF4vUE5nl6SYmBjrBL/ijyfeb9iwwTrhLHv27LFOcFSNGjUUHh5uneG3GLQHjtTUVOsEj1i8eLFOnjxpneFR6enp1gluV7ZsWXXv3t06AwAAAAAA+AgG7QAAAAAAAAAQgFq1aqVXXnlFc+fO1R//+EdVqlTJOgkBbu3atRo6dKi2bdtmnQLAB7Rt29Y6AQAAn7B161brBMdER0dbJ/iV+Ph46wS3Y9Buq06dOtYJfu2KK66wToBD6tatq6SkJOsMtysoKNDcuXOtMzxq3rx51glu16dPHy5WAgAAAAAALhiDdgAAAAAAAAAIYBUrVtTdd9+tuXPnasKECerYsaOCg4OtsxCgsrKyNHToUK1atco6BYCXa9OmjXUCAAA+Yffu3dYJjuGEdveKiopSWFiYdYZbbdmyxTrhLFlZWdYJjqpbt651gl+rVauWQkNDrTPgEH89pX327NnWCR7z008/adeuXdYZbpeSkmKdAAAAAAAAfAiDdgAAAAAAAACAgoOD1a1bN73zzjvKyMjQgw8+qPr161tnIQAdO3ZMI0aM8MsTiwC4R7ly5ZSYmGidAQCAT/DH4dS5lC5d2jrB78TFxVknuNW2bdusE84SaIN2nsN7VkhIiGrXrm2dAYf07t1bUVFR1hlu9/333ys3N9c6wyPS09OtE9yuVq1aSkpKss4AAAAAAAA+hEE7AAAAAAAAAOAsFSpU0K233qp///vf+uqrr3TzzTerQoUK1lkIILm5ubrrrrv09ddfW6cA8ELNmze3TgAAwGcEyqA9JCTE704T9wbx8fHWCW61Y8cOFRUVWWecEWiD9urVq1sn+L169epZJ8AhERERSk5Ots5wu9OnT2v+/PnWGR6RkZFhneB2AwcOtE4AAAAAAAA+hkE7AAAAAAAAAOCcGjRooIcffljz58/XlClTNHz4cFWqVMk6CwGgsLBQDz74oF+eXgTg8jRr1sw6AQAAn1BQUKB9+/ZZZziiVKlS1gl+yd8G7QUFBdqzZ491xhmB8vj8RbVq1awT/F7NmjWtE+Cg1NRU6wSPSEtLs05wu+PHjyszM9M6w62CgoL88qIKAAAAAADAs0KsAwAAAAAAAAAA3s/lcqlVq1Zq1aqVHn30Ua1cuVKzZs3SnDlzAubEPzivsLBQ99xzj95++221adPGOgeAl2jatKl1AgAAPiErK8urTqP2pLy8PN11113WGX5n06ZN1glut23bNtWoUcM6Q5J06NAh6wTHREdHKzo62jrD73HRgMBSt25dJSUl+d1QOiMjQ/n5+QoLC7NOcZv58+f73XOyq666ShUrVrTOAAAAAAAAPoZBOwAAAAAAAADgorhcLiUlJSkpKUkPP/ywtm7dqvT0dKWnpyszM9PvXpwHW3l5ebrjjjs0adIkRqwAJEkNGza0TgAAwCfs3r3bOsEx+fn5mjNnjnUGfMDWrVvVpUsX6wyVlJTo8OHD1hmOqVq1qnVCQKhevbp1AhyWmprqd4P27OxsLVq0SFdffbV1ittkZGRYJ7jdoEGDrBMAAAAAAIAPYtAOAAAAAAAAALgsiYmJSkxM1G233abjx4/r+++/14IFC7R48WLt27fPOg9+ICcnR7fffrs+/PBDJSYmWucAMFS5cmVFRUVZZyBAZGdn68iRI+d9y87OVn5+vgoKCpSfn/+bb8XFxdb/KQACFJ+PAb+2a9cu6wRJ0tGjR1VQUGCd4RhO8XUGg/bA07t3bz3zzDM6fvy4dYpbzZo1y28G7UVFRfr++++tM9wqKipK11xzjXUGAAAAAADwQQzaAQAAAAAAAABuEx0drX79+qlfv36S/nPy2ZIlS7Ro0SItW7ZMJ06cMC6Erzp27JjuuusuffbZZypTpox1DgAj9erVs06Anzlx4oR27tx55m3Xrl1nvn3kyBHrPAC4LIF0+jNwobKysqwTJEkHDx60TnAUg3ZnxMfHKzw8XHl5edYpcEhERIT69++vyZMnW6e41dy5c1VYWKiQEN9/ifOPP/7odxcc6NOnj8LDw60zAAAAAACAD/L9r/YAAAAAAAAAALzWL6e333jjjSoqKtKGDRu0fPlyLV++XD/++CNDMVyUHTt26OGHH9arr75qnQLASN26da0T4MOysrK0Zs0arV27VmvWrNGmTZt09OhR6ywA8JhDhw5ZJwBeZ8+ePdYJkgLv8cmg3Tnly5f3mt/ncEZqaqrfDdqPHTumH374Qe3atbNOuWzp6enWCW43cOBA6wQAAAAAAOCjGLQDAAAAAAAAABwRHBysxo0bq3Hjxho5cqSk/5zg/sMPP5wZuO/du9c2El5v9uzZeuuttzRq1CjrFAAGatasaZ0AH3H06FFlZmaeNWBnvA4g0ATaCdDAhfj5559VUlIil8tl2nHs2DHT+3dahQoVrBMCBoP2wFO3bl0lJSUpMzPTOsWt0tLS/GLQnpGRYZ3gVomJiWrWrJl1BgAAAAAA8FEM2gEAAAAAAAAAZn45wX3IkCGS/nNy6i8D9+XLl2v79u3GhfBGL730kpo0aeIXL2oFcHEYtONcTp8+raVLl2rJkiVasmSJNmzYoJKSEussADB1+PBh6wTA6+Tl5engwYPmA+vjx4+b3r/T4uLirBMChvXvbdgYMmSI3w3aZ8+erSeeeML8AiSXY/fu3dq2bZt1hlulpKRYJwAAAAAAAB/GoB0AAAAAAAAA4DUSEhKUkJCgAQMGSPrPAGP58uVnRu6bNm1ScXGxbSTMFRUV6b777tPXX3+t2NhY6xwADmLQjv92+PBhpaena+7cuVq0aJFyc3OtkwDAq3BCO/DbsrKyzEe/J06cML1/p/G5u3Osf2/DRq9evTRu3Di/uljGwYMHlZmZqRYtWlinXLK5c+daJ7hVcHCwkpOTrTMAAAAAAIAPY9AOAAAAAAAAAPBa8fHx6tmzp3r27ClJys7O1o8//nhm5L527VoVFBQYV8LC4cOH9eyzz+rvf/+7dQoAh4SHh6t8+fLWGTCWnZ2ttLQ0zZgxQ0uWLFFRUZF1EgB4LU5oB37bzz//rKSkJNMGfxqdXghOaHdOdHS0dQIMREREqH///po8ebJ1ilulpaX59KA9PT3dOsGt2rdvz0UzAAAAAADAZWHQDgAAAAAAAADwGWXKlFHnzp3VuXNnSVJeXp5WrlypH374QT/++KNWrlypnJwc40o45csvv1T//v3Vvn176xQADqhUqZJ1AgwtW7ZM06ZN0+zZs5WXl2edAwBer7i4WCdPnrTOALzSwYMHrRM4oR0eExUVZZ0AI6mpqX45aH/44YetMy5Jdna2li9fbp3hVikpKdYJAAAAAADAxzFoBwAAAAAAAAD4rPDwcLVp00Zt2rSR9J/RxtatW7V27dozbxs3btTp06eNS+EpTz75pGbMmKGIiAjrFAAeVrlyZesEOOzUqVP6/PPPNXXqVG3dutU6BwB8SnZ2tnUC4LUOHTpknRBQF5xwuVwqU6aMdUbA4IT2wFW3bl0lJSUpMzPTOsVtsrKytG7dOjVq1Mg65aItWLBABQUF1hluEx0drW7dullnAAAAAAAAH8egHQAAAAAAAADgN4KCglS3bl3VrVv3zIkxRUVF2rJli9atW6fVq1drzZo12rx5s1+9oDCQ7d69W+PHj9eDDz5onQLAwzihPXAcPnxYH3zwgaZOnarjx49b5wCAT2LQDpybNwzaT506ZZ3gmMjISLlcLuuMgMGgPbANGTLErwbt0n9OaffFQXtGRoZ1glv17dtXYWFh1hkAAAAAAMDHMWgHAAAAAAAAAPi14OBgNWjQQA0aNNCgQYMkSXl5edqwYYNWr159ZuS+c+dOlZSUGNfiUkyaNEmDBg1SYmKidQoAD4qPj7dOgIcdPnxYb7zxhqZNm6a8vDzrHADwaYE0lgUu1sGDB60TdPr0aesEx3A6u7PKli1rnQBDvXv31rhx4/zqwmBpaWm69957rTMuSnFxsebPn2+d4Va/XDwWAAAAAADgcjBoBwAAAAAAAAAEnPDwcDVv3lzNmzc/833Hjx/XqlWrtGrVKq1cuVJr1qzxqxd/+rPCwkKNHz9eL7/8snUKAA9i0O6/Tp48qYkTJ2rSpEnKycmxzgEAv8AJ7cC5ecOgPTc31zrBMQzanRUeHm6dAEPh4eHq37+/Jk+ebJ3iNtu2bdNPP/2kOnXqWKdcsNWrV+vw4cPWGW5Tp04dNW3a1DoDAAAAAAD4AQbtAAAAAAAAAABIio6OVqdOndSpUydJUklJibZt23Zm4J6ZmamffvpJxcXFxqX4LbNmzdLGjRvVoEED6xQAHsKg3f+UlJTo008/1T//+U8dOXLEOgcA/AqDduDcvGFkGEgntJcqVco6IaDw643U1FS/GrRL/zml3ZcG7enp6dYJbsXp7AAAAAAAwF0YtAMAAAAAAAAA8BtcLpcSExOVmJiogQMHSvrPKOSXcXtmZqZWrVrFUMRLlJSU6JVXXtGECROsUwB4SGxsrHUC3Gj16tUaO3as1qxZY50CAH6Jz1OAczt27Jh1QkAN2jkx3FkRERHWCTBWt25dtWjRQitWrLBOcZu0tDTddddd1hkXzJ8G7cHBwUpOTrbOAAAAAAAAfoJBOwAAAAAAAAAAF6hMmTLq0KGDOnToIEkqLi7W5s2btWzZMi1dulTLly/3ihfGB6rvvvtOa9euVePGja1TAHhAVFSUdQLc4PTp03r55Zf1/vvvq7i42DoHAPxWbm6udQLgtQoKCpSbm2t6knUgDdrDwsKsEwJKZGSkdQK8QGpqql8N2jds2KDdu3erWrVq1im/6+eff9amTZusM9ymY8eOKl++vHUGAAAAAADwE0HWAQAAAAAAAAAA+KqgoCA1aNBAw4cP14QJE7RkyRJ9+eWXeuSRR9SlSxeVLVvWOjHgjB8/3joBgIfwMdX3rVixQsnJyXr33XcZswOAhxUWFlonAF7txIkTpvdfUFBgev9O4oR2Z4WGhlonwAv07t1b0dHR1hlulZaWZp1wQfzpdHZJSklJsU4AAAAAAAB+hEE7AAAAAAAAAABu4nK5dMUVV2jkyJF64403tGTJEk2aNEk333yzatasaZ0XEObPn6/t27dbZwDwAAbtvqu4uFivv/66brrpJu3YscM6BwACAoN24PyOHz9uev9FRUWm9+8kBu3OCgriJaH4z+Ouf//+1hlu5SuD9oyMDOsEt4mJiVHXrl2tMwAAAAAAgB/hq5cAAAAAAAAAAHhISEiI2rZtq4cfflizZs3SN998owcffFBXXnklLzD2kJKSEk2bNs06A4AHlC5d2joBl+Dw4cO67bbb9NJLLwXUcAsArPExFzg/6xPai4uLTe/fSXz9w1nBwcHWCfASQ4YMsU5wq1WrVmn//v3WGeeVm5urpUuXWme4Tb9+/RQWFmadAQAAAAAA/AhfLQYAAAAAAAAAwCG1a9fWrbfeqn/961/KyMjQww8/rEaNGlln+Z0vvvhCeXl51hkA3KxUqVLWCbhIGzdu1KBBg7Rw4ULrFAAIOAzagfPjhHbnMLB2Fr/e+EWdOnXUokUL6wy3KSkp0ezZs60zzmvRokU6ffq0dYbbpKSkWCcAAAAAAAA/w6AdAAAAAAAAAAADFStW1M0336zPP/9c33zzje666y5Vr17dOssvHDt2TN988411BgA3CgkJYZjhY9LT0zV06FD9/PPP1ikAEJAKCgqsEwCvlp2dbXr/gXRCu8vlsk4IKHzehP+WmppqneBWaWlp1gnnlZGRYZ3gNvXq1VPjxo2tMwAAAAAAgJ9h0A4AAAAAAAAAgLHatWvrnnvu0ezZs/X++++rR48eCgkJsc7yaR999JF1AgA3Cg8Pt07ARZg2bZruuusu5eTkWKcAQMAKpNOfgUthfYJuID1GGVg7iwsI4L/17t1b0dHR1hlus3z5ch05csQ645zmzZtnneA2nM4OAAAAAAA8gUE7AAAAAAAAAABepF27dnrllVc0d+5c3XXXXSpfvrx1kk/KzMzUpk2brDMAuAmDdt8xadIkPfHEEwF16igAeKPCwkLrBMCr5ebmWicEDAbWzuLjP/5beHi4+vfvb53hNkVFRZozZ451xm9at26d9u/fb53hFiEhIX71+wYAAAAAAHgPBu0AAAAAAAAAAHihihUr6p577lF6erpeeOEF1a9f3zrJ58ycOdM6AYCbcKqjb3jrrbc0btw46wwAAIDfZX1CeyA9v+VCR87i1xv/a8iQIdYJbpWWlmad8JvS09OtE9ymY8eOKleunHUGAAAAAADwQwzaAQAAAAAAAADwYqGhoerXr5+++uorvf7662rUqJF1ks/49ttvrRMAuAmnOnq/KVOm6IUXXrDOAAD8P4E0lgUuhfUJ7UFBgfOyvaKiIuuEgMIJ7fhfderUUYsWLawz3Gbx4sU6efKkdcavZGRkWCe4zcCBA60TAAAAAACAnwqcr4wDAAAAAAAAAODDXC6Xunbtqs8++0z//Oc/Vb16deskr7djxw5t2rTJOgOAGzDK824zZ87UU089ZZ0BAPgv/NkJnB8ntDunpKTEOiGgcEI7fktqaqp1gtsUFBR43WnoBw8e1Nq1a60z3CImJkZXX321dQYAAAAAAPBTDNoBAAAAAAAAAPAhLpdLffv21ddff617771XpUqVsk7yavPmzbNOAOAGgXSCpa9ZunSpHnzwQYYzAOBlQkJCrBMAr2Y9aA+k57ec0O6sgoIC6wR4od69eys6Oto6w23S0tKsE86SkZHhNxfvuPbaaxUWFmadAQAAAAAA/FTgfGUcAAAAAAAAAAA/EhYWpjvuuEMzZ85Uhw4drHO81sKFC60TAMBvZWVl6Z577mE0AwBeKJBOfwYuRWFhoen9B9JjNC8vzzohoFhfrAHeKTw8XMnJydYZbrNgwQLl5uZaZ5yRkZFhneA2AwcOtE4AAAAAAAB+jEE7AAAAAAAAAAA+rEqVKpo4caL+7//+T6VLl7bO8TorVqzwqhe4AoC/yM3N1ejRo3X06FHrFADAb+CEduD8iouLTe8/NDTU9P6dlJ+fb50QUPgaCM4lNTXVOsFtcnNzNX/+fOsMSf/5GLdo0SLrDLeoX7++GjZsaJ0BAAAAAAD8GIN2AAAAAAAAAAD8wODBg/XZZ5+pfv361ileJT8/XytXrrTOAAC/M3bsWG3YsME6AwBwDoF0+jNwKYqKikzvPyIiwvT+ncQJ7c7ihHacS506ddSyZUvrDLdJS0uzTpAkLV26VDk5OdYZbsHp7AAAAAAAwNMYtAMAAAAAAAAA4Cdq1aqljz/+WP3797dO8SqZmZnWCQDgV7755ht9/vnn1hkAgPMIDw+3TgC8GoN25zBodxaDdpzP4MGDrRPcJiMjQ/n5+dYZysjIsE5wi5CQEF177bXWGQAAAAAAwM8xaAcAAAAAAAAAwI9ERETo+eef15/+9Ce5XC7rHK+watUq6wQA8Bv79u3Tk08+aZ0BAPgdpUqVsk4AvBqDduf4y8nFvoJfb5xP7969FR0dbZ3hFtnZ2Vq0aJF1ht8M2jt37qz4+HjrDAAAAAAA4OdCrAMAAAAAAAAAAID7jR49WpUrV9Zjjz2m4uJi6xxTDNoBwH0ee+wxHT9+3DrDJ8XFxalKlSqqUqWKypUrp7i4uDNvMTExioyMPOstJCREwcHBCgkJUUhIiIKCnL9e/bBhw7Rs2TLH7xfA5StdurR1AuDVrD9PDqRB+6lTp6wTAsqJEyesE+DFwsPDlZycrA8++MA6xS3S0tJ09dVXm93/5s2btWfPHrP7d6eBAwdaJwAAAAAAgADAoB0AAAAAAAAAAD81cOBARURE6IEHHlBhYaF1jpmjR4/qwIEDqlChgnUKAPi0GTNmaMGCBdYZXq9ChQpq2LChGjRooPr166t+/fpKSEgIqOEaAHuRkZHWCYBXsz6hvVSpUqb376Ts7GzrhIDCxafwe1JTU/1m0D5nzhwVFRUpODjY5P795XT2uLg4de7c2ToDAAAAAAAEAAbtAAAAAAAAAAD4sT59+qigoEAPPfSQSkpKrHPMbNmyhUE7AFyGEydO6JlnnrHO8Erh4eG68sor1bFjR7Vv315169a1TgIATmgHfof158eB9BjNyclRSUmJXC6XdUpA4IR2/J46deqoZcuW+vHHH61TLtuxY8e0bNkytWvXzuT+09PTTe7X3fr166fQ0FDrDAAAAAAAEAAYtAMAAAAAAAAA4OeSk5N17NgxjRs3zjrFzObNm9W+fXvrDADwWePHj9ehQ4esM7xKo0aNNGjQIF177bWKioqyzgGAswTSWFaShg8frltvvdU6Az4kPDzc9P4D6blDcXGxTp48GVD/zZY4oR0XYvDgwX4xaJektLQ0k0H7sWPHtGrVKsfv1xMGDhxonQAAAAAAAAIEg3YAAAAAAAAAAALAiBEjtHHjRn3++efWKSa2b99unQAAPmvXrl366KOPrDO8gsvlUvfu3XXnnXeqYcOG1jkAcE6RkZHWCY6KiIhQpUqVrDOAC1a2bFnrBEcdOXKEQbtDjh49ap0AH9C7d28988wzOnbsmHXKZZs9e7aeeOIJuVwuR+933rx5KioqcvQ+PeGKK67QFVdcYZ0BAAAAAAACRJB1AAAAAAAAAAAAcMZf//rXgH2B4p49e6wTAMBn/fOf/1RBQYF1hrkuXbroiy++0CuvvMKYHYDXC7SxLH9OwddER0dbJziKkbVzDh48aJ0AHxAeHq7+/ftbZ7jFwYMHlZmZ6fj9ZmRkOH6fnpCSkmKdAAAAAAAAAgiDdgAAAAAAAAAAAkR4eLjGjRunkJAQ6xTHMWgHgEuzbt06ffvtt9YZpuLj4zVhwgS98cYbAXthGAC+JywsLKBG7Qza4WsC6fEpMWh30oEDB6wT4COGDBlineA2aWlpjt5fYWGhFixY4Oh9ekJoaKiuvfZa6wwAAAAAABBAGLQDAAAAAAAAABBAGjZsqBEjRlhnOG7v3r0qLi62zgAAn/Pmm2+qpKTEOsNMz549NWPGDHXr1s06BQAuWlxcnHWCYxi0w9cE2gnthw4dsk4IGAzacaESExPVsmVL6wy3cHrQvnz5cp04ccLR+/SEzp07B9TzRQAAAAAAYI9BOwAAAAAAAAAAAeaOO+4IuNPgCgoKdOzYMesMAPApO3fu1OzZs60zzNxxxx0aP348L/AH4LMC6eMXg3b4mkB6fEqMrJ2Sn5+v48ePW2fAh6SmplonuEVWVpbWrVvn2P1lZGQ4dl+eNHDgQOsEAAAAAAAQYBi0AwAAAAAAAAAQYKKiojRy5EjrDMdxIhwAXJyJEyequLjYOsNxLpdLY8aM0b333mudAgCXJTY21jrBMQza4WvKlStnneCo/fv3WycEhD179qikpMQ6Az6kV69eiomJsc5wCydPaU9PT3fsvjwlPj5enTt3ts4AAAAAAAABhkE7AAAAAAAAAAAB6IYbblBoaKh1hqMOHz5snQAAPiM7O1v//ve/rTNM/O1vf9OwYcOsMwDgssXHx1snOObUqVPWCcBFYdAOT9i9e7d1AnxMeHi4+vfvb53hFk4N2nfu3KkdO3Y4cl+edO211yokJMQ6AwAAAAAABBgG7QAAAAAAAAAABKC4uDhdc8011hmOYtAOABdu5syZys3Ntc5w3IgRI5Sammqd4TWKioqsEwBchkAatB8/ftw6AbgosbGxATUkzMrKsk4ICHv27LFOgA8aMmSIdYJbbNu2TT/99JPH78cfTmeXpJSUFOsEAAAAAAAQgBi0AwAAAAAAAAAQoJKTk60THJWdnW2dAAA+4/PPP7dOcFyHDh300EMPWWd4lUC8qAHgTypWrGid4BgG7fA1LpdLcXFx1hmOYWjtDE5ox6VITExUy5YtrTPcwolT2ufOnevx+/C0Ro0aqUGDBtYZAAAAAAAgADFoBwAAAAAAAAAgQLVr105hYWHWGY45deqUdQIA+IQdO3YoMzPTOsNRsbGx+sc//qHg4GDrFK+Sk5NjnQDgMiQkJFgnOIZBO3xR+fLlrRMcc/r0aR04cMA6w+9t3brVOgE+KjU11TrBLTw9aM/OztaKFSs8eh9O4HR2AAAAAABghUE7AAAAAAAAAAABqlSpUrryyiutMxzDoB0ALowTp9p5m4ceekixsbHWGV6HE9oB31alShXrBMcwaIcvCqTHqCTt2rXLOsHvbdmyxToBPqpXr16KiYmxzrhsGzZs0O7duz12+/Pnz1dBQYHHbt8JoaGh6tevn3UGAAAAAAAIUAzaAQAAAAAAAAAIYE2bNrVOcAynzALAhZk7d651gqPatGnDCXXnwKAd8G2BNJbNz8/nYxZ8TiA9RiVp27Zt1gl+7eTJk/r555+tM+CjwsPDlZycbJ3hFp68QFtGRobHbtspXbp04WJuAAAAAADADIN2AAAAAAAAAAACWKNGjawTHFNYWGidAABe78iRI1q1apV1hmNcLpcef/xx6wyvVFxczMVgAB9XunRpvzht9UIdPXrUOgG4KIE2aN+6dat1gl/jdHZcrtTUVOsEt5g9e7ZHbre4uFjz58/3yG07aeDAgdYJAAAAAAAggDFoBwAAAAAAAIAAkZ+fz4tb8Sv16tWzTnBMQUGBdQIAeL358+eruLjYOsMxPXr0UN26da0zvNK+ffu4GAzgBwJpMMvJxPA1CQkJ1gmO+umnn6wT/Nq6deusE+DjEhMT1apVK+uMy7Zy5Urt37/fI7fr6xfPKVeunDp27GidAQAAAAAAAliIdQAAAAAAAAAAwL3y8vK0fft2/fTTT2e97d69W4WFhZoxYwbDLZxRqVIl6wTHFBUVWScAgNf74YcfrBMcNXz4cOsEr7Vnzx7rBABuUK1aNa1fv946wxF79+5Vy5YtrTOACxZIF5yQpE2bNlkn+LVVq1ZZJ8APDB48WMuXL7fOuCwlJSWaPXu2brrpJrfebnp6ultvz0L//v0VEsLLxgEAAAAAgB2+MgEAAAAAAAAAPio3N1fbtm3TTz/9pK1bt541XD/fyarz5s1j0I4zwsPDFRsb6/MnDF0IBu0A8Pt8fbxwMWrWrOkXJxB6SlZWlnUCADeoXbu2dYJj9u7da50AXJTq1atbJzjq4MGDOnjwoMqXL2+d4pdWr15tnQA/0KtXL40bN07Hjh2zTrksaWlpbh+0Z2RkuPX2LKSkpFgnAAAAAACAAMegHQAAAAAAAAC83KlTp7R169Yzo/Vf/rlnzx6VlJRc9O3NmzdPt912mwdK4avi4uICYtAeGhpqnQAAXu3w4cPasWOHdYZjevfubZ3g1Ri0A/4hMTHROsExfNyCrylbtqzi4+N1+PBh6xTHrF+/Xp07d7bO8DtHjx7Vzp07rTPgB8LDw5WcnKxJkyZZp1yW5cuX68iRI4qLi3PL7e3du1ebN292y21ZadSokerVq2edAQAAAAAAAhyDdgAAAAAAAADwEtnZ2dq6dau2bNly1nh97969lzRcP5fMzExlZ2erTJkybrtN+LaIiAjrBEcwaAeA88vMzLROcFTXrl2tE7waoyjAPwTSoJ0T2uGLatWqFVCD9rVr1zJo94AffvjBOgF+JDU11ecH7UVFRZozZ46uv/56t9xeenq6W27H0qBBg6wTAAAAAAAAGLQDAAAAAAAAgNNOnDhx1knrv7zt27fPkfsvKCjQ/Pnz1adPH0fuD94vPDzcOsERDNoB4Pw2btxoneCYqKgoNWnSxDrDq61Zs8Y6AYAb1KpVSy6Xy60XSfNWDNrhi2rWrKnly5dbZzgm0C6g5JRFixZZJ8CPJCYmqlWrVj7/sSktLY1B+/8TGhqqvn37WmcAAAAAAAAwaAcAAAAAAAAATzl69OhZo/VfTl8/ePCgdZr+/e9/M2jHGUVFRdYJjmDQDgDnt3nzZusExzRv3lwul8s6w2udPHlSO3bssM4A4AalSpVSlSpVlJWVZZ3icbt27VJBQQHP++FTatWqZZ3gqFWrVqmkpITnYW62ePFi6wT4mcGDB/v8oH3x4sU6efKkypYte1m3k5ubq2XLlrmpykbXrl0VExNjnQEAAAAAAMCgHQAAAAAAAAAu15EjR7Rly5azTl3funWrDh06ZJ12Tt9//72OHDmiuLg46xR4gezsbOsERwTKSfQAcKk2bdpkneCYpk2bWid4tdWrVwfEac5AoKhbt25ADNoLCgq0fft21atXzzoFuGCJiYnWCY46ceKEtmzZwuPUjbKysrgQEdyuV69eGjdunI4dO2adcskKCgqUnp6u/v37X9btLFy4UHl5eW6qsjFw4EDrBAAAAAAAAEkM2gEAAAAAAADggh08ePDMaev/PV4/evSoddpFKyws1PTp0zVixAjrFHiBQBm0R0dHWycAgNfKy8vTrl27rDMcU7duXesEr7Zq1SrrBABu1LBhQ2VkZFhnOGLz5s0MZeFT6tevb53guCVLlvA4daO5c+daJ8APhYeHKzk5WZMmTbJOuSxpaWmXPWhPT093U42N8uXLq2PHjtYZAAAAAAAAkhi0AwAAAAAAAMCv7N+//6zh+i/j9ePHj1unudVXX33FoB2SpFOnTlknOIJBOwCcW1ZWloqLi60zHFOnTh3rBK+WmZlpnQDAjZo0aWKd4JjNmzdbJwAXpUqVKoqOjva7rzmdz6JFizR8+HDrDL8xZ84c6wT4qdTUVJ8ftC9YsEC5ubkqVarUJf38kpISzZs3z81Vzurfv7+Cg4OtMwAAAAAAACQxaAcAAAAAAAAASf95cdrw4cO1YcMGnTx50jrHEevWrdOqVavUrFkz6xQYKi4uVk5OjnWGIxi0A8C5/fzzz9YJjkpISLBO8Fq5ublatmyZdQYAN2LQDni3+vXrB9SfvUuXLlVBQYFCQ0OtU3zeiRMn9MMPP1hnwE8lJiaqVatWWr58uXXKJcvNzdX8+fPVs2fPS/r5a9eu1cGDB91c5ayBAwdaJwAAAAAAAJwRZB0AAAAAAAAAAN7A5XKpuLg4YMbsv3jvvfesE2Bs586dAXMib0xMjHUCAHitvXv3Wic4JiYm5pJP6AsEixYt0unTp60zALhR+fLlVaFCBesMRzBohy+qX7++dYKjcnJyGGG7yaxZs1RYWGidAT+WmppqnXDZ0tLSLvnnZmRkuC/EQJMmTVSnTh3rDAAAAAAAgDMYtAMAAAAAAADA/9OqVSvrBMelpaVpz5491hkwtGXLFusEx5QvX946AQC8VlZWlnWCY/jz4PzS09OtEwB4QOPGja0THJGVlaUDBw5YZwAX5YorrrBOcNycOXOsE/zCjBkzrBPg53r16uXzF4jMyMhQfn7+Jf1cX//cKCUlxToBAAAAAADgLAzaAQAAAAAAAOD/ad26tXWC44qKivTBBx9YZ8BQoJxgGBISoooVK1pnAIDXOnTokHWCY8qWLWud4LVKSkp8/hRCAL+tWbNm1gmOWb58uXUCcFEC5YIT/41B++U7cOCAli1bZp0BPxcWFqYBAwZYZ1yW7OxsLV68+KJ/3oEDB7R+/XoPFDkjLCxM/fr1s84AAAAAAAA4C4N2AAAAAAAAAPh/kpKSFBISYp3huE8++USHDx+2zoCRQDmhvWLFigoODrbOAACvdezYMesEx0RFRVkneK1Vq1bp4MGD1hkAPODKK6+0TnAMA0/4mrp166p06dLWGY76+eeflZmZaZ3h0/7973+ruLjYOgMBYPDgwdYJl23WrFkX/XMyMjJUUlLigRpnXHPNNYqOjrbOAAAAAAAAOAuDdgAAAAAAAAD4fyIjI9W8eXPrDMfl5ORowoQJ1hkwsnLlSusER1SpUsU6AQC82vHjx60THBMREWGd4LU+++wz6wQAHtK0aVOVKlXKOsMRP/zwg3UCcFGCgoLUpEkT6wzHTZ8+3TrBZ5WUlOiTTz6xzkCASExMVKtWrawzLsucOXNUVFR0UT8nPT3dQzXOSElJsU4AAAAAAAD4FQbtAAAAAAAAAPBfOnXqZJ1g4uOPP9bOnTutM+CwtWvXat++fdYZjkhISLBOAACvFkiD9pCQEOsEr3Tq1Cl9/fXX1hkAPCQ0NFRJSUnWGY746aefdOTIEesM4KI0a9bMOsFx33zzjQoKCqwzfNKSJUu0Y8cO6wwEkNTUVOuEy3Ls2DEtW7bsgt8/Pz9fS5Ys8WCRZ1WoUEEdOnSwzgAAAAAAAPgVBu0AAAAAAAAA8F86d+5snWCioKBAL774onUGHDZnzhzrBMckJiZaJwCAVztx4oR1gmMYtP+2mTNn6tSpU9YZADyoTZs21gmOWbp0qXUCcFGaN29uneC4I0eOBNTXJdxp6tSp1gkIML169VJMTIx1xmVJS0u74PddvHixcnJyPFjjWcnJyQoODrbOAAAAAAAA+BUG7QAAAAAAAADwXxo0aKCKFStaZ5j49ttvL+qkGvi+QHrheL169awTcAFKSkqsE4CAlZeXZ53gmMLCQusEr/Txxx9bJwBuw3OK39a6dWvrBMdczGgN8AYtWrSQy+WyznDcRx99ZJ3gc3bv3q3Zs2dbZyDAhIWFacCAAdYZl+W777674OeIGRkZno3xsJSUFOsEAAAAAACA38SgHQAAAAAAAAD+x9VXX22dYKKkpESPPvqoT58+gwu3ceNGbdq0yTrDMQzafUNBQYF1AhCwAunxF0j/rRdq7dq1Wr16tXUG4DY8zn9b06ZNVbZsWesMR2RkZOj06dPWGcAFi4mJUYMGDawzHLdkyRJt27bNOsOnvP/++youLrbOQAAaPHiwdcJlOXDggDIzMy/ofefNm+fhGs9p1qyZEhMTrTMAAAAAAAB+E4N2AAAAAAAAAPgfPXr0sE4ws3v3bv3jH/+wzoAD3n77besEx5QpU0ZVqlSxzsAFYHwG2AmkU8vz8/OtE7zOhAkTrBPMcJK3f+Jx/ttCQkLUsWNH6wxH5OTk+Pzpqgg8bdq0sU5wXElJid577z3rDJ9x8OBBffbZZ9YZCFCJiYm68sorrTMuy+zZs3/3fTZu3KisrCwHajyD09kBAAAAAIA3Y9AOAAAAAAAAAP+jbdu2io2Ntc4w8+GHH2rp0qXWGfCg3bt365tvvrHOcEzDhg2tE3CBGLQDdgLp8ceJvWfbsGGD5s6da51hhhNO/VMgfUy7WF26dLFOcEwgfc4D/xCIg3ZJ+vLLL3Xo0CHrDJ/w5ptvKjc31zoDAczXT2mfNWvW776PL18QJzw8XH379rXOAAAAAAAAOCcG7QAAAAAAAADwP0JCQtS9e3frDDMlJSV64IEHtH//fusUeMi7776roqIi6wzHtGjRwjoBFygnJ8c6AQhYgXRC++HDh60TvEogn84uKaCeEwUSnlOcW+fOnRUSEmKd4Yh58+bxewE+5corr1RwcLB1huPy8/M1ceJE6wyvt3//fn388cfWGQhwvXr1UkxMjHXGJcvKytK6devO+z6+PGjv1q2boqKirDMAAAAAAADOiUE7AAAAAAAAAPyG3r17WyeY2r9/v+68805OffJDGzdu1CeffGKd4SgG7b7j6NGj1glAwAqUcaMkTgD9Lxs3btR3331nnWGKQbt/4jnFuUVHRwfM8+Pc3FxNnz7dOgO4YGXLllWzZs2sM0xMmTKFCyv+jn/84x/Ky8uzzkCACwsL04ABA6wzLktaWto5f+zIkSNatWqVgzXulZKSYp0AAAAAAABwXgzaAQAAAAAAAOA3tGnTRhUrVrTOMLVu3Trdf//9KikpsU6BmxQWFurRRx9VQUGBdYpjXC6Xmjdvbp2BC8T4DLATSKeBHj16NKBOpD+fcePGBfxzPYZh/onnFOfXtWtX6wTHfPDBBwH/ce5S7Nu3T9u3b9fJkyetUwJOly5drBNM5OXlacKECdYZXmvVqlVcoANeY/DgwdYJl+V8g/b58+eruLjYwRr3qVixotq3b2+dAQAAAAAAcF4M2gEAAAAAAADgNwQHB3OiiaTvvvtOf//7360z4CbvvPOO1q1bZ53hqLp16yo6Oto6AxeI8RlgJ5BOaC8pKdHPP/9snWHu3//+t5YuXWqdYS43N9c6AR7Ac4rz6927t4KCAuMlQz/99JMWLFhgneFzHn74YfXq1UutWrVSkyZN1LlzZw0cOFC33XabHn74YT333HOaOHGivvzyS82fP1/r1q3T/v37lZ+fb53u8wJ10C5Jn3zyiTZs2GCd4XWKior0t7/9jYtzwGskJibqyiuvtM64ZNu2bdPWrVt/88fS09MdrnGf5OTkgHl+BwAAAAAAfFfgvCoBAAAAAAAAAC7SoEGD9Oabbwb8C0bfe+89FRcX69FHH7VOwWVYvXp1QJ521qFDB+sEXISsrCzrBCBghYWF6dSpU9YZjvnpp59UrVo16wwz2dnZeu6556wzvMLp06etE+ABPKc4v0qVKqlVq1ZatmyZdYoj3n//fXXs2NE6w2ccPnz4rN8b+fn52rdvn/bt23dBPz8qKkpxcXGKj48/6+23vo+Lj/1a3bp1VbVqVe3Zs8c6xXHFxcUaO3asPvzwQ7lcLuscrzFx4sSAuzghvN/gwYP1ww8/WGdcslmzZumuu+466/sKCgp8+iI4XJwXAAAAAAD4AgbtAAAAAAAAAHAO1atX15VXXhkwL/I/n0mTJun06dP661//ykkvPmjXrl264447AvK0vE6dOlkn4CJkZWWpsLAwoE6KBrxF6dKlA+pE4y1btgT0CagvvfSSDh48aJ3hFXJycqwT4AG7du2yTvB61157bcB8rrtw4UL99NNPqlOnjnWKT5g1a5aKioou+eefOHFCJ06c0I4dO373fUNDQxUbG3tB4/f4+HiFhYVdcpcv6dKliyZPnmydYWLFihWaOnWqbrjhBusUr7B161a9+uqr1hnAr/Tq1UtPP/20jh07Zp1ySdLS0n41aF++fLmys7ONii5PUlKSateubZ0BAAAAAADwu3g1EAAAAAAAAACcx+DBgwPmRf6/Z9q0acrJydGzzz7L2NSHHD58WLfeeqsOHz5sneK4yMhItWrVyjoDF6GwsFBZWVmqUaOGdQoQcMqWLWud4KhNmzZZJ5j54Ycf9OGHH1pneI3jx49bJ8ADLmRIG+h69uypsWPHqqCgwDrF40pKSvTyyy/rlVdesU7xCZ9//rlj91VQUKADBw7owIEDF/T+ZcqUOTN4L1eu3FnD91++75dvx8TE+Owp37169QrYQbskPf/88+rUqZOqVq1qnWIqLy9Pf/nLX5SXl2edAvxKWFiYBgwYoPfff9865ZJs2LBBu3fvVrVq1c58X3p6umHR5eF0dgAAAAAA4Ct4xSEAAAAAAAAAnEevXr303HPPXfCLq/3d9OnTtX//fr344osqV66cdQ5+x9GjRzVq1KiAPaGyffv2Cg0Ntc7ARdqyZQuDdsBAoA3aA/WCRUeOHNF99913WSfv+puTJ09aJ8ADtm7dqpKSEp8dszohOjpanTt31nfffWed4oi0tDT98MMPuvLKK61TvNrq1au1Zs0a64xzys7OVnZ2tnbu3Pm77xsSEqLY2Nizxu+33XabGjRo4EDp5WnZsqUqVaqkffv2WaeYyMnJ0QMPPKDJkycH9AUVn376aW3cuNE6AzinwYMH++ygXfrPc4Nbb731zL/PmzfPsObSRUREqE+fPtYZAAAAAAAAFyTIOgAAAAAAAAAAvFloaKhuuOEG6wyvsmzZMqWkpOjHH3+0TsF5bN++XampqVq7dq11iplevXpZJ+ASrFq1yjoBCEjR0dHWCY46cOCAtm3bZp3hqJKSEj388MPav3+/dYpX4YR2/3T8+HFt377dOsPrDRo0yDrBUc8884xKSkqsM7zalClTrBPcprCwUAcPHtSmTZu0cOFCZWRkqHr16tZZF8Tlcql3797WGaZWrFihF154wTrDzMcff6xp06ZZZwDnlZiY6NMXipk9e/aZb2/btk07duywi7kM3bp1C7gL1AEAAAAAAN/FoB0AAAAAAAAAfseQIUMUERFhneFVDhw4oBEjRmjSpEnWKfgNS5cuVWpq6gWdWuevSpUqpa5du1pn4BIwaAdslC9f3jrBcYsWLbJOcNTEiRN99tRBTzpw4IB1Ajxk9erV1gle7+qrr1aVKlWsMxyzbt06ffnll9YZXmvv3r36+uuvrTM8ZtCgQYqMjLTOuGB9+/a1TjD33nvvaebMmdYZjluyZInGjh1rnQFckNTUVOuES7Zy5cozF/vKyMiwjbkMAwcOtE4AAAAAAAC4YAzaAQAAAAAAAOB3xMbGKjk52TrD6xQUFGjcuHG67bbb9PPPP1vnQFJRUZEmTpyoW2+9NeBPG+3atatPjRXw/1u9erXy8/OtM4CAE4iDdn8e7f2vefPm6cUXX7TO8EoHDx60ToCHLFu2zDrB6wUFBWnw4MHWGY765z//GfCfK53LhAkTVFBQYJ3hES6XSzfeeKN1xkVp0qSJatasaZ1hqqSkRA8//LBWrFhhneKY9evX6+677/bbxyL8T8+ePRUTE2OdcUlKSkr03XffSZLS09ONay5N5cqV1a5dO+sMAAAAAACAC8agHQAAAAAAAAAuwKhRoxQSEmKd4ZW+//579evXT5MnT1ZRUZF1TsDatGmTUlNT9dxzz/HCZ0n9+vWzTnA7l8tlneCI3NxcLV682DoDCDgVKlSwTnBcZmamdu/ebZ3hcatWrdKf//xnFRYWWqd4pfz8fB07dsw6w1GB8pxi3rx5Kikpsc7wetddd51CQ0OtMxxz4MABPf7449YZXmfnzp1+fXp9586dVb16deuMi3b99ddbJ5jLy8vTnXfeqY0bN1qneNzWrVt166236uTJk9YpwAULCwtTSkqKdcYlmzVrlk6cOOGzF85ITk5WUBAvAwcAAAAAAL6Dr2QAAAAAAAAAwAWoWrUqp7SfR3Z2tp566ikNGDBAixYtss4JKHl5eXrllVc0aNAgrVmzxjrHK5QvX16dOnWyznC7QLqoxty5c60TgICTkJBgneC4kpISff7559YZHrV9+3b94Q9/UE5OjnWKV9u1a5d1gqMC5TnFoUOHtHr1ausMr1e+fHldc8011hmOmjVrlj755BPrDK/y9NNP+/WFT0aOHGmdcElSUlIC6oIT53Ls2DGNHDlSmzdvtk7xmA0bNmjYsGE6cuSIdQpw0QYPHmydcMmWL1+uf//73z77Z6AvX0wAAAAAAAAEJgbtAAAAAAAAAHCB7rzzzoAZf1yqzZs36+abb9bw4cOVmZlpnePX8vPzNXnyZF1zzTV69dVXOZX9vwwePNgvH6vh4eHWCY5JS0tTfn6+dQYQUGrUqGGdYGLKlCnKzs62zvCIffv26dZbb9XRo0etU7ze9u3brRMcFUjPKWbMmGGd4BNGjBhhneC4p59+Wtu2bbPO8ArffPON5s2bZ53hMUlJSWrXrp11xiWJj49X165drTO8wtGjR3XTTTfpxx9/tE5xux9++EHDhw/X4cOHrVOAS1K7dm21bt3aOuOSFBUV6eWXX7bOuCQtWrRQzZo1rTMAAAAAAAAuCoN2AAAAAAAAALhA1apV45T2C7R06VINGTJEw4YN8+sXxlvIz8/Xhx9+qO7du+upp57SwYMHrZO8SnBwsFJTU60zPCKQxmdHjhxRWlqadQYQUCpXrhxQH2d+cfz4cX344YfWGW73008/aciQIcrKyrJO8QmBNmoNCwuzTnDMl19+qdzcXOsMr9eiRQu1atXKOsNRubm5uvfee3Xq1CnrFFNHjx7V008/bZ3hUXfddZd1wmXx189vL8Xx48d18803a+bMmdYpbvPJJ5/o5ptv1okTJ6xTgMviy6e0++rjb+DAgdYJAAAAAAAAF41BOwAAAAAAAABchHvuuUcRERHWGT5j2bJlGjVqlPr06aMPPvjAZ18g6A127Nih5557Tp07d9bf/vY37du3zzrJK3Xt2lUVK1a0zvCIQBua/utf/7JOAAKKy+VS9erVrTNMvPXWWzpw4IB1htusWLFCN954o37++WfrFJ+xZs0a6wRHBdJzihMnTmj69OnWGT5h1KhR1gmO27hxo0aPHq38/HzrFBMlJSV68MEH/foiaY0bN1anTp2sMy7LVVddpcTEROsMr5GXl6d7771XzzzzjAoLC61zLllubq7GjBmjMWPGqKCgwDoHuGw9e/ZUTEyMdUbAiIiIUO/eva0zAAAAAAAALhqDdgAAAAAAAAC4CBUrVtTIkSOtM3zO1q1b9fTTT6tTp0667777NG/ePBUVFVlneb3c3FzNmDFDw4YNU8+ePTVx4kQdOXLEOsur3XrrrdYJHhMUFKTQ0FDrDMdkZmZq3rx51hlAQKlfv751gomTJ0/qqaeess5wizlz5ujmm2/WsWPHrFN8yurVq1VSUmKd4ZhAGrRL0uuvvx6wg+WL0blz54D8c2Dx4sW6//77A/Lz07feekvz58+3zvAoXz+dXfrPRYf4OtSvvf/++xo8eLC2bNlinXLRVq5cqYEDB+qTTz6xTgHcJiwsTCkpKdYZAaN79+4qU6aMdQYAAAAAAMBFY9AOAAAAAAAAABdp1KhRKleunHWGT/ploD1q1Ch17NhRjz/+uObNm8fA5L8cOnRIn3zyie644w61bdtW9913n5YtW2ad5RPatWunpKQk6wyPCgsLs05w1AsvvKDi4mLrDCBgNGjQwDrBzKxZs/TVV19ZZ1yywsJCvfjii7r77rt1+vRp6xyfc/LkSW3YsME6wzGBNmjfu3ev/vWvf1ln+IRAPKVd+s+fAU8++aR1hqNmzpypl156yTrDo5o0aaKuXbtaZ7hFcnKy4uLirDO8zrp16zRw4ECNHz9eubm51jm/6+jRo/rrX/+qoUOHatu2bdY5gNsNHjzYOiFgDBo0yDoBAAAAAADgkjBoBwAAAAAAAICLVLp0af35z3+2zvB5hw8f1scff6xRo0apTZs2uuOOOzR58mRt3brVOs1R2dnZWrhwoV555RUNGTJEHTt21JgxY5Sens4g7SLdeeed1gkeFxkZaZ3gqE2bNundd9+1zgACRsOGDa0TTD3++ONatWqVdcZFy8rK0k033aQ33niDi4Bchrlz51onOKZUqVLWCY579dVXtXv3busMr9enTx/Vq1fPOsPEJ598okcffVQFBQXWKR63aNEiPfjgg37/Z8aDDz4ol8tlneEW4eHhuuGGG6wzvFJ+fr4mTJigXr166bPPPlNhYaF10q+cPHlSEyZMULdu3TR16lS/f+whcNWuXVutW7e2zvB7VapUUdu2ba0zAAAAAAAALgmDdgAAAAAAAAC4BNddd53fnwTtpJycHKWnp+upp55Snz59dNVVV+nuu+/Wu+++q2XLlunkyZPWiW5RUFCgLVu2aPr06Ro7dqwGDBig1q1b65ZbbtGrr76qzMxMXth8iVq2bKk2bdpYZ3hcuXLlrBMc99JLLwXUqbmApcaNG/vN8OtS5OXlafTo0T51cZ1vvvlGAwYMUGZmpnWKzwukQXv58uWtExx36tQpPfDAAyoqKrJO8WpBQUG69957rTPMfPbZZ7rlllt0/Phx6xSPycjI0F133eX3w/0uXbr43ajyxhtvDLgLnF2Mffv26dFHH1XPnj314YcfKjs72zpJmzdv1lNPPaVOnTpp/PjxXtEEeBqntHtecnJyQH/eDgAAAAAAfJurpKSkxDoCAAAAAAAAAHzR5s2blZKS4pWnP/mjatWqqW7duqpdu7Zq166tmjVrqmrVqipfvryCgrzn+q3FxcU6dOiQ9u3bpz179mjr1q3asmWLtm7dqh07dvD7xUOmTp2qFi1aWGd43KhRozRv3jzrDMclJCRo6tSpqlixonWKV0pPT9cdd9xhneFRCQkJATU2tXTttddq8+bN1hmm4uPj9e6776pBgwbWKee0fft2jRs3TvPnz7dO8StffvmlrrjiCusMjzty5IjatWtnnWFi8ODB+r//+z/rDK93ww036Mcff7TOMFOzZk29+eabqlmzpnWKW3322Wd64okn/P5z0uDgYH311VeqW7eudYrb/fOf/9Sbb75pneETIiMjde2116pv37668sorHfu60a5du/T1119r5syZAf+c2pOee+45JScnW2fgN+Tn56tjx446duyYdYrfmj17tqpXr26dAQAAAAAAcElCrAMAAAAAAAAAwFfVq1dPN998s95++23rlICwe/du7d69+1eDxtDQUFWuXFmVKlVSfHy8ypUrp/j4eMXExCgqKkply5ZVVFSUIiMjFRERceYtNDRUwcHBCgoKUlBQkFwulwoLC1VUVKTCwkIVFBSosLDwzNupU6d04sQJnThxQidPnjzrnwcPHtS+ffu0b98+HThwwO8HAt6mb9++ATFml6QKFSpYJ5jIysrSbbfdpg8++ECxsbHWOYBfa9myZcCPbw4fPqxhw4bpueeeU5cuXaxzzpKdna0JEyZo8uTJfn+6roWpU6dq7Nix1hkeFxsbq9DQ0ID8PfTxxx8rJiZG9913n3WKV7v//vs1dOhQ6wwzO3bsUGpqqp588kn16dPHOuey5efn65lnntGHH35oneKIlJQUvxyzS9Itt9yiKVOmcNL3BcjJydG0adM0bdo0xcfHq1OnTmrbtq3atm2rSpUque1+jhw5ouXLl2vZsmVatmyZNm3a5LbbBnxRWFiYUlJS9N5771mn+KVWrVoxZgcAAAAAAD6NE9oBAAAAAAAA4DKcPn1aycnJ2rFjh3UKEJAiIiL0zTffqEqVKtYpjhg/frwmTJhgnWGmevXqeuONN5SYmGid4lU4oR3uNHPmTN17773WGV7B5XLp9ttv1x//+EeFhYWZtuTl5enTTz/V66+/roMHD5q2+LOwsDB9++23SkhIsE7xuC5dumjv3r3WGWYGDhyov/3tb+aPbW82evRofffdd9YZ5rp166Ynn3zSZy8stXnzZj344IPasGGDdYojypQpo2+++cZn/39diJdfflmvvfaadYZPi4+PV6NGjZSYmKhq1aqpatWqiouLU2xsrKKiohQWFqbQ0FAVFRUpJydHOTk5OnXqlI4dO6YdO3acedu6dat27Nghb3v55d13361XX33VOsOjOKHdu23btk29e/e2zvBLTz/9tK677jrrDAAAAAAAgEvGoB0AAAAAAAAALtPq1as1dOhQTuUGDIwePVp/+tOfrDMc89FHH+nJJ5+0zjBVtmxZjRkzRgMGDLBO8RoM2uFOx48fV7t27VRUVGSd4jVq1qypJ598UldddZXj933o0CF9+umnmjx5sg4dOuT4/f+W4OBgjRgxQgsXLvTLU0j79eunF154wTrD41JTU7Vy5UrrDFNJSUkaN26cateubZ3ilfbs2aN+/fopNzfXOsVcVFSUHn74YQ0aNMg65YKdOnVKr776qj744IOA+lrFI488opEjR1pneNTJkyfVvXt3HT161DoFXqhy5cr65ptv1Lx5c+sUj2LQ7v2GDRumZcuWWWf4lVKlSmnBggUqU6aMdQoAAAAAAMAlC7IOAAAAAAAAAABf17RpU78fEgLeKDExMeAeexUrVrROMHfy5Ek99NBDuuWWW0yHlNnZ2crKyjK7f8BToqOj1axZM+sMr7Jjxw7dfPPNGjFihBYsWODx+zt9+rTS0tL0pz/9SVdffbVefPFFrxmzS9INN9yghx56SF26dLFO8YgZM2Zo5syZ1hkex3MKKTMzU8nJyXrllVeUnZ1t1rFnzx6dOnXK7P7PpWrVqgH3XPtcTpw4oUcffVRDhgzRkiVLrHPOKzc3V++//7569uypd999N6DG7PXq1dNNN91kneFxZcuW1R//+EfrDHipO++8U8HBwdYZgFJTU60T/E6PHj0YswMAAAAAAJ8XYh0AAAAAAAAAAP7gzjvv1Pz587V69WrrFCAgBAUF6ZlnnlFYWJh1iqMSExOtE7zGwoULlZycrKuvvlrDhw9XmzZtPPbC/ZKSEm3btk2rV6/WypUrtXLlSm3ZskU33nijHnvsMY/cJ2CpS5cuWrFihXWG11myZImWLFmiWrVqqW/fvurdu7fq1Klz2bdbUlKirVu3asmSJVq0aJEWL16snJwcNxS7X1xcnP70pz9J+s/Y1V+NGTNGiYmJql+/vnWKx3Aq+X/k5+fr1Vdf1aRJkzR06FBdf/31ql69usfuLycnR+vXr9eqVau0atUqrVixQgcPHtSXX36pK664wmP3e6luueUWffnll9q+fbt1ilfIzMzUiBEj1Lp1aw0fPlxdu3b1muHovn379Nlnn2nKlCk6fPiwdY6JJ598UiEhgfFSuCFDhmjq1KnasmWLdQq8SPXq1TVo0CAVFRVZpwDq0aOHYmNjdfToUesUv5GSkmKdAAAAAAAAcNkC46v4AAAAAAAAAOBhISEhevHFFzVo0CAdO3bMOgfweyNHjgzIE4SrVaumyMhIrx06Oq2kpETp6elKT09XfHy8evTooTZt2qh58+aqXLnyJd1mfn6+du7cqU2bNmndunVn3ixPbgWc1qtXL73wwgvWGV5r+/btevXVV/Xqq6+qfPnySkpKUpMmTVS9enVVrVpV5cuXV2RkpCIiIhQcHKz8/Hzl5+fr+PHjOnr0qA4dOqRdu3Zp165d2rJli9atW+eVpzP/lr/85S+KioqS5N+D9lOnTmn48OF6//33vXJk7A7+PNa/FCdPntRbb72lt956S40bN1a3bt3UokULNWnSRJGRkZd0m8ePH9dPP/2kDRs2aN26dVq7dq22bt3qU0PDsLAwPfnkkxo5cqR1ildZtmyZli1bpipVqqhfv37q27evGjRo4HjH0aNHNX/+fM2YMUMLFixQcXGx4w3eIjk5Wa1atbLOcExwcLAeeeQR3XLLLdYp8CKjR49WSEiI8vPzrVMAhYWFacCAAXrvvfesU/xCQkKC2rZta50BAAAAAABw2Ri0AwAAAAAAAICbVK1aVf/4xz80atSogH4hOeBp9erV0z333GOdYcLlcqlevXpauXKldYrXOXz4sKZOnaqpU6dKksqVK6dq1aqpSpUqqlChgkqVKqVSpUopLCxMRUVFKiwsVE5Ojk6ePKnjx49r//792rdvn37++WcVFhYa/9cAtqpXr64mTZpozZo11ile7+DBg0pLS1NaWpp1isc1btxYgwYNOvPvCQkJhjWed+zYMd1www169NFHdf3111vnuB2D9nNbu3at1q5dK+k/o9Ffnk8kJCQoJiZGERERioiIUEhIiAoKClRQUKDs7GydPHlSR44cOfN8wl9OyW7Xrp0GDx6sjz/+2DrF6+zdu/fMhRCqV6+u9u3b66qrrlLz5s1VoUIFt9/fyZMntWrVKq1cuVKLFy9WZmamT10gwVNiYmL04IMPWmc4rn379urRo0dAPAfB77viiivUv39/SeJrkvAagwcPZtDuJgMGDJDL5bLOAAAAAAAAuGwM2gEAAAAAAADAjTp27KjRo0frlVdesU4B/FJkZKRefvllRUREWKeYqV+/PoP2C3Do0CEdOnRImZmZ1imAT+rXrx+DdpwRFBSkJ554QkFBQWe+r3LlygoJCfHri4Dk5ORozJgxmj59uu6++261bt3aOsltatasqVKlSik3N9c6xasVFRVpx44d2rFjh3WKqYcffliLFy/W7t27rVO81q5du7Rr164zF1eqUKGCGjVqpBo1aqh69epKSEhQXFycYmNjFRUVpbCwMIWGhio4OFgFBQXKz89Xfn6+Tp48qcOHD+vIkSM6ePCgdu7cqe3bt2vHjh3auXOnSkpKjP9Lvc+jjz6qcuXKWWeYePzxx7VkyRKdOHHCOgWGXC6XnnzyyTPP0zihHd6idu3aat26tZYtW2ad4tNcLpdSUlKsMwAAAAAAANyCQTsAAAAAAAAAuNno0aO1ceNGzZ492zoF8Dtjx45V7dq1rTNMcaIqACckJyfrxRdf1OnTp61T4AVGjBihZs2anfV9oaGhSkxM1KZNm4yqnLN06VItXbpU9erVU9euXdWxY0fVrVtX0dHRv/tzS0pKdPjwYe3du1dZWVnauXOnNm/erM2bN+uf//yn6tWr58B/wa8FBQWpTp06XLgCF6R06dJ69tlnNWzYME7+vUAHDhzQgQMHrDP8XpcuXZScnGydYaZChQp64IEH9Pjjj1unwNCgQYOUlJR05t8LCgoMa4CzpaamMmi/TK1atVK1atWsMwAAAAAAANyCQTsAAAAAAAAAuJnL5dI//vEPDRs2TKtXr7bOAfzGkCFDdO2111pnmGvYsKF1AoAAEBsbq/79++vjjz+2ToGxmjVr6s9//vNv/ljDhg0DYtD+i1+G6G+88YYkqXz58oqLi1Pp0qVVqlQpFRUVqaCgQAUFBTp58qSOHTumEydOqKio6Ddv71zf75SGDRsyaMcFa9WqlW655Ra988471imAJKlcuXJ66qmnrDPMXX/99Zo+fTqD0QAVExOj+++//6zv44R2eJMePXooNjZWR48etU7xWQMHDrROAAAAAAAAcJsg6wAAAAAAAAAA8EcRERF64403VLVqVesUwC+0a9dOY8aMsc7wCo0bN1bp0qWtMwAEgGHDhlknwFhQUJCeeeYZRURE/OaPX3HFFQ4XeZeDBw9q06ZNWrFihRYuXKglS5boxx9/1OrVq7V9+3YdPXrUfLR+Pm3btrVOgI+555571Lx5c+sMQC6XS88++6zKlStnnWLO5XLpmWeeUdmyZa1TYOD+++9XbGzsWd/HoB3eJCwsTCkpKdYZPisyMlI9e/a0zgAAAAAAAHAbBu0AAAAAAAAA4CHx8fF6++23f/XCUgAXp06dOnrllVcUGhpqneIVQkND1aZNG+sMAAGgXr16ateunXUGDI0YMUItWrQ45483bNjQwRq4W7t27RQUxMtGcOHCwsL08ssvKz4+3joFAe7WW29Vx44drTO8RtWqVfW3v/3NOgMO69Chg6677rpffT+DdnibwYMHWyf4rJ49e3JRSwAAAAAA4Ff4m0kAAAAAAAAA8KDatWvrvffeU3R0tHUK4JPKlSunt956i9Pm/keHDh2sEwAEiOHDh1snwEi9evX05z//+bzv07BhQ4WEhDgTBLeLjY1Vo0aNrDPgYypVqqR//vOfCg4Otk5BgLrqqqv0l7/8xTrD6/Tt25dTkANIXFycnn32Wblcrl/9GIN2eJtatWqpdevW1hk+iY/rAAAAAADA3zBoBwAAAAAAAAAPu+KKK/TOO++oTJky1imAT4mOjtbbb7+thIQE6xSvw6AdgFOuvvpq1ahRwzoDDouMjNRLL72kiIiI875f6dKl1bRpU4eq4Ant27e3ToAPatu2re69917rDASghIQELqhwHo8//rhq1aplnQEHPPPMMypfvvxv/lheXp7DNcDvS01NtU7wOVWrVuVCAAAAAAAAwO8waAcAAAAAAAAABzRt2lRvvfWWIiMjrVMAn1C2bFlNnDhRDRs2tE7xSjVq1FC1atWsMwAEgKCgIN1zzz3WGXDY2LFjlZiYeEHv265dOw/XwJM6duxonQAfdfvtt3NqKBxVtmxZvfnmm4qNjbVO8VqlS5fWa6+9prJly1qnwIOGDRumq6+++pw/zqAd3qhHjx58/L5IKSkpcrlc1hkAAAAAAABuxaAdAAAAAAAAABzSsmVLTZo0STExMdYpgFcrXbq03nnnHTVp0sQ6xav17NnTOgFAgOjbt6+SkpKsM+CQ1NRUXXvttRf8/ldddZUHa+BpSUlJ5zzhFfg9//d//6cOHTpYZyAAhIaG6pVXXlHdunWtU7xe7dq19cILLygoiJcF+qMmTZrogQceOO/75OfnO1QDXLiwsDAuhHMRXC6XBgwYYJ0BAAAAAADgdnzlGgAAAAAAAAAc1LRpU02ZMkUVK1a0TgG8UnR0tCZOnKjmzZtbp3i9QYMGWScACCCPPPIIp8MFgIYNG+qxxx67qJ/TrFkzlSlTxkNF8LTg4GDGRbhkoaGhevnll9WgQQPrFPgxl8ulp59+Wu3atbNO8RmdO3fWX/7yF+sMuFmlSpX02muvKTw8/Lzvxwnt8FaDBw+2TvAZV155papWrWqdAQAAAAAA4HYM2gEAAAAAAADAYXXq1NHUqVNVs2ZN6xTAq1SqVElTpkzhFOALVLt2bX6tADimWbNm6tu3r3UGPKh8+fJ6/fXXf3ck9b9CQ0N1zTXXeKgKTuAiObgcZcqU0VtvvaWEhATrFPipJ554QsnJydYZPuf222/XDTfcYJ0BN4mMjNQbb7yhChUq/O77FhYWOlAEXLxatWqpdevW1hk+YeDAgdYJAAAAAAAAHsGgHQAAAAAAAAAMJCQkaNq0aWrTpo11CuAVEhMT9dFHH6lu3brWKT7luuuus04AEEDuv/9+RUREWGfAAyIjI/Xmm2+qUqVKl/Tz+/Xr5+YiOKlmzZpq1aqVdQZ8WMWKFfXBBx+oSpUq1inwM/fffz+j7Mvw+OOPq3fv3tYZuExBQUF64YUXdMUVV1zQ+xcXF3u4CLh0qamp1gleLzIyUj179rTOAAAAAAAA8AgG7QAAAAAAAABgJCYmRu+++y4v5EPAa926tT788ENVrlzZOsXn9O7dW5GRkdYZAAJE5cqVNXr0aOsMuFlQUJCef/55NWrU6JJv46qrrlJsbKwbq+A0TmnH5apatao++OADntPDbe6//37dfvvt1hk+LSgoSM8995yuuuoq6xRchjFjxqhr164X/P5FRUUerAEuT48ePfi84Xf06tWLr/UBAAAAAAC/xaAdAAAAAAAAAAyFhIRo7NixGjNmjEJDQ61zAMfddNNNeu+99xQTE2Od4pNKly6tIUOGWGcACCC33Xab2rRpY50BN3rooYfUrVu3y7qNkJAQ9enTx01FsNC3b19VrFjROgM+rlq1apo8eTKjdly2Rx55hDG7m4SFhWnChAlq27atdQouwRNPPKEbb7zxon4OJ7TDm4WFhSklJcU6w6sNHDjQOgEAAAAAAMBjGLQDAAAAAAAAgBcYNmyY/vWvf6lKlSrWKYAjwsLCNG7cOD3++OMKCQmxzvFpt99+Oyc3AXDML6d5cyES/3DnnXdq5MiRbrmtG2+8US6Xyy23BeeFh4frzjvvtM6AH/hl1F6zZk3rFPig4OBgPfXUU277swn/ERkZqTfffFMdO3a0TsFFuJQxuySVlJR4oAZwn8GDB1sneK1q1aqpVatW1hkAAAAAAAAew6AdAAAAAAAAALxE8+bN9cUXX6hLly7WKYBHVa9eXVOmTNGgQYOsU/xCXFychg8fbp0BIIBUrFhRTz/9tHUGLtMtt9yiP//5z267vcTERIZyPu66665T1apVrTPgB6pVq6apU6eqWbNm1inwIREREXr11Vd1/fXXW6f4pYiICL322mu65pprrFNwAS51zC5xQju8X61atdS6dWvrDK+UkpLCRcIAAAAAAIBfY9AOAAAAAAAAAF4kJiZGr7/+uh599FFFRERY5wBul5KSoi+//FJNmza1TvErt956q6KioqwzAASQbt26aejQodYZuETDhg3TQw895Pbbvfnmm91+m3BOaGioRo8ebZ0BPxEXF6dJkybp6quvtk6BD4iLi9P777+vrl27Wqf4tbCwMI0fP16pqanWKTiH8PBwvfjii5c8Zpc4oR2+YciQIdYJXsflcmnAgAHWGQAAAAAAAB7FoB0AAAAAAAAAvIzL5dKIESP05Zdfqnnz5tY5gFtERUXpxRdf1LPPPqvSpUtb5/idqKgo3X777dYZAALMI488wnMVH5SamqrHHnvMI7d91VVXqVGjRh65bTgjOTlZ9erVs86AnyhVqpRee+013XDDDdYp8GL16tXTJ598oqSkJOuUgBASEqKxY8fqgQce4BRgL1OuXDlNnjxZffr0sU4BPK579+6KjY21zvAqbdq0UUJCgnUGAAAAAACARzFoBwAAAAAAAAAvVatWLX344Ye67777FBYWZp0DXLIePXpoxowZvCjbw2655RY1btzYOgNAAAkPD9ebb76pOnXqWKfgAo0aNUpjx4716IDNEye/wznBwcEaN26cQkJCrFPgJ4KDg/Xkk09q3LhxCg8Pt86Bl+nataumTp2qqlWrWqcEnNtuu00vv/yySpUqZZ0CSfXr19cnn3yiZs2aWacAjggLC1NKSop1hlfh1wMAAAAAAAQCBu0AAAAAAAAA4MWCg4M1atQozZgxQx06dLDOAS5K5cqV9dprr+mVV15RxYoVrXP8XkhIiP7+979zAQwAjoqJidG7777LSXJezuVy6bHHHtN9993n8ftq06aNrrnmGo/fDzynSZMmuv32260z4GcGDRqkKVOmqHLlytYp8ALBwcG677779Nprr6lMmTLWOQGrZ8+e+vTTT5WYmGidEtBSUlI0depUValSxToFcFRqaqp1gtcoXbq0evbsaZ0BAAAAAADgcQzaAQAAAAAAAMAH1KhRQxMnTtT48eMZAMDrhYaGauTIkfr6668ZtDmsTp06+tOf/mSdASDAVKxYURMnTlRcXJx1Cn5DaGioXnjhBQ0fPtyx+3zggQcUGhrq2P3B/UaPHq0GDRpYZ8DPNGnSRJ9//rk6depknQJDFSpU0KRJkzRq1Ci5XC7rnIBXp04dffrpp0pOTrZOCTgxMTEaP368nn32WZUuXdo6B3BczZo11bp1a+sMr9C7d2+VKlXKOgMAAAAAAMDjGLQDAAAAAAAAgA/p2bOnZs6cqbvuukuRkZHWOcCvdOvWTTNmzNAjjzzCC7KN3HrrrWrVqpV1BoAAU6tWLb399tucsuplYmNj9c4776hv376O3m+tWrV09913O3qfcK/Q0FD9/e9/V0REhHUK/ExcXJzefvttPfHEEwy3AlCfPn00ffp0XXnlldYp+C+RkZF67rnn9Oyzz6ps2bLWOQGhQ4cOmj59OicyI+ANGTLEOsErpKSkWCcAAAAAAAA4gkE7AAAAAAAAAPiYyMhI3XPPPUpLS1NqaqpCQkKskwA1adJEU6ZM0YQJE1SzZk3rnIAWFBSkV155RTVq1LBOARBgGjdurMmTJys+Pt46BZIaNWqkzz77TG3btjW5/1GjRqlFixYm9w33aNCggZ5//nkFBfHSErjfjTfeqM8//1yNGze2ToEDYmJi9MILL+jFF19UTEyMdQ7OISUlRTNmzFCnTp2sU/xW+fLl9eyzz+qdd95RhQoVrHMAc927d1dsbKx1hqkaNWpwYUoAAAAAABAw+FtHAAAAAAAAAPBR5cuX19ixYzVjxgz16dOHoQlMNGrUSK+++qo++eQTXnzpRX45+TLQXxQMwHkNGzbU1KlTVa1aNeuUgJaSkqKpU6cqISHBrCEoKEjPPfecSpcubdaAy9ejRw899NBD1hnwU7Vr19ZHH32kv/zlL4qIiLDOgYf0799fM2fOVL9+/axTcAEqVaqkt99+W+PGjePiA24UFham22+/XbNmzVJKSopcLpd1EuAVwsLCAv508gEDBlgnAAAAAAAAOIZXNwIAAAAAAACAj6tVq5ZefPFFzZw5UykpKZzYDkc0b95cb775pj7//HN1796dF2N7oRo1auiNN95gHATAcTVq1NDHH3+s1q1bW6cEnPDwcD3xxBN69tlnFR4ebp2jatWq6YUXXlBwcLB1Ci7DyJEjNXz4cOsM+KnQ0FD94Q9/0Ndff62rr77aOgduVLNmTb3//vt6/vnnFR8fb52DizRo0CDNmjVLN954I3+OXwaXy6WePXvq66+/1v3338+FfoDfkJqaGrBfVwwKCmLQDgAAAAAAAgqDdgAAAAAAAADwE7Vq1dKzzz6rtLQ03XDDDSpVqpR1EvyMy+VSp06d9N5772natGkMTnxA8+bNNX78eD4eAHBcXFyc3nvvPd10003WKQGjUaNG+uKLL3TjjTdap5ylS5cueuyxx6wzcJkeeeQRDRo0yDoDfqxq1ap68803NX78eFWpUsU6B5chJiZGjzzyiGbMmKF27dpZ5+AyxMTE6IknntCXX36pq666yjrHp4SEhKh///6aMWOGxo8fr+rVq1snAV6rZs2aAXsxtLZt2/K8BwAAAAAABBQG7QAAAAAAAADgZxISEvTkk09q/vz5evDBB1W1alXrJPi40qVLa9iwYfr222/19ttv80J2H9O5c2e9//77iomJsU4BEGBCQkL0+OOP6+WXX1ZUVJR1jt8KDg7WnXfeqWnTpikxMdE65zfdeOONuu2226wzcBmCgoI0btw43XHHHdYp8HM9e/bUrFmz9NBDD/H81ceEhYVp5MiRSktL08iRIxUaGmqdBDepV6+e3nvvPU2ePFlt2rSxzvFq4eHhSk1N1bfffqvnn39ederUsU4CfEJqaqp1gomUlBTrBAAAAAAAAEcxaAcAAAAAAAAAPxUVFaVbb71Vs2fP1oQJE9ShQwcFBfFlYVy4Bg0aaMyYMZo/f77GjBmjmjVrWifhEjVv3lxTp05VQkKCdQqAANSrVy999dVXDKA8oF69epo6dar+/Oc/e/1w8IEHHtDo0aOtM3CZ7r33Xj3xxBN8XgGPCgsL0y233KLvvvtOo0aNUkREhHUSziM0NFRDhw7Vd999p0ceeUTR0dHWSfCQ1q1b64MPPtCUKVPUoUMH6xyvUq9ePY0ZM0YLFizQ2LFjVa1aNbOWkpISs/sGLlX37t0VFxdnneGoMmXKqEePHtYZAAAAAAAAjuJvGAEAAAAAAADAzwUFBalbt26aOHGi0tPT9ec//1k1atSwzoKXio2N1bBhw/Tll1/qq6++0rBhw1SmTBnrLLhB7dq19dFHHykpKck6BUAAqlKliiZNmqSnnnqK09rdICoqSo8++qi++OILNWvWzDrngv3pT3/Sk08+yRjax91444165ZVXVLZsWesU+LmyZcvqvvvu05w5czRq1Ch+z3mZiIgI3XDDDUpLS9Nf//pXVaxY0ToJDmnVqpUmTpyob775RiNGjAjYixiULVtWgwYN0rRp0zR9+nQNGzbMK57nFhcXWyd4HM8l/U9YWJgGDBhgneGoPn36cNEeAAAAAAAQcPjKHgAAAAAAAAAEkEqVKunOO+9UWlqapkyZotTU1IA7/Qa/FhkZqd69e+vVV1/V999/rzFjxuiKK66wzoIHVKhQQVOmTNHdd9+tkJAQ6xwAAcblcun666/XzJkzlZKSIpfLZZ3kc4KCgnT99ddr1qxZGjFihE9+LL/hhhv0xhtvKD4+3joFl6Fbt27697//rdatW1unIACUK1dO9913nzIyMnT//ferfPny1kkBLTY2VnfffbfS09P15JNPqkqVKtZJMFK7dm09+uijmj9/vv7+97+rY8eOCg0Ntc7yqPj4eF1//fV66623tGjRIo0bN07Nmze3zjpLYWGhdYLH+eJzYPy+1NTUgPocMSUlxToBAAAAAADAca6SkpIS6wgAAAAAAAAAgJ2ioiItW7ZM33zzjWbPnq0jR45YJ8EBpUuXVpcuXdSzZ0916tSJE4EC0MqVK/XAAw9o165d1ik+a/jw4XrsscesM5Senq477rjDOsOjEhISNHfuXOsMuNnatWv197//XcuWLbNO8Xoul0vXXHON7r77br+56Mzhw4c1ZsyYgH5sf/nllz7//7O4uFjvvPOOxo8fr4KCAuscn+UPvxeclJ+fr2+++UYff/yxli9fbp0TMBo1aqShQ4fq2muv5fNHnNPx48f13Xff6dtvv9XSpUuVl5dnnXRZQkJC1KRJE7Vu3VodO3ZUy5Ytvf508HfffVd///vfrTM8asKECerWrZt1Bjxg+PDhWrp0qXWGx9WsWVOzZs2yzgAAAAAAAHAcl6oEAAAAAAAAgAAXHBysdu3aqV27dnryySeVmZmpefPmKSMjQ5s3b7bOgxtVq1ZNnTp1UufOndWuXTuFhYVZJ8FQ8+bN9eWXX2rChAmaPHmy8vPzrZMABJjGjRtr8uTJWrx4sV599VVGib8hODhYvXr10h133KF69epZ57hVfHy8Xn/9dX3xxRd66aWXtG/fPuskXIKgoCCNGjVKnTp10rhx4wJigAR7YWFhSk5OVnJysrZu3app06bpq6++0rFjx6zT/E6pUqXUq1cvDR06VM2aNbPOgQ+Ijo7WoEGDNGjQIOXl5WnFihVasmSJFi9erHXr1nn96eFly5ZVgwYN1Lx5c7Vp00YtW7ZUZGSkddZF8fZfY3fghHb/lZqaGhDPJzmdHQAAAAAABCpOaAcAAAAAAAAAnNPPP/+sefPmaeHChVq2bBkDAR8TGRmpFi1aqFOnTurUqZNq1aplnQQvtXfvXr344ouaPn26+Kuj8wsLC1Pr1q3VtWtXde/eXRUqVLBO4oR2+I0ffvhB77//vubOnavi4mLrHFORkZG69tprdcstt6hmzZrWOR6Xl5enKVOm6M033/Tr55tlypRRy5Yt1apVK7Vs2VLNmjXzu0FWRkaGXnjhBS6MdQHKly+vq6++Wl27dlXHjh0VGhpqneTT8vPztWDBAs2cOVNz587VqVOnrJN8lsvlUqtWrTRgwAD16tVLZcqUsU6Cn8jNzdXGjRu1fv16rVu3Ths2bND27duVm5vreEupUqWUkJCg6tWrq379+rriiivUsGFDVa1aVS6Xy/Eed3rppZf0+uuvW2d41DvvvKOOHTtaZ8ADFi5cqFtuucU6w6OCgoKUnp6uSpUqWacAAAAAAAA4jkE7AAAAAAAAAOCClJSUaNOmTVq6dKmWLVum5cuX+/XgyBeVLVtWLVq0UKtWrXTllVeqcePGDGNwUTZs2KCXX35Z8+bNC/gx6X+rWLGi2rdvry5duqh9+/YqXbq0ddJZGLTD3+zevVtTp07VV199pUOHDlnnOCopKUmDBg1Snz59vO5jjROys7P16aef6rPPPvOLQXR0dLRatmyp1q1bq3Xr1mrQoIGCg4OtszyuqKhIX3zxhd566y3t3LnTOsdrBAUFqWHDhurYsaO6du2qJk2a+Pxo0lvl5eVp3rx5+vbbb7VgwQIdP37cOsnruVwuNW3aVN27d1fv3r1VtWpV6yQEkAMHDmj37t3avXu39uzZo0OHDuno0aNn3o4fP67Tp0+roKDgzNsvgoKCFBISotDQUIWGhiosLExlypRRTEzMmbfY2FjFxsaqUqVKqlq1qqpVq6Zy5coZ/hd71rPPPqv33nvPOsOj3n//fbVr1846Ax5w3333acaMGdYZHtWhQwdNnDjROgMAAAAAAMAEg3YAAAAAAAAAwCUpKSnRjh07tGrVKq1evVqrVq3Spk2bznphMTwnJCREderUUePGjdWoUSM1b95cDRo0UFBQkHUa/MDu3bs1bdo0ffbZZzpy5Ih1juPKlSun1q1bq23btmrTpo3Xn47MoB3+qrCwUPPnz9dXX32l+fPnKycnxzrJI2rWrKlrrrlGAwcOVJ06daxzvMbKlSv16aefas6cOT7zZ1HlypWVlJSkpKQktWrVKuCfm5WUlGjhwoWaOnWq0tPTVVRUZJ3kKJfLpfr166tNmzZq06aNWrdurbJly1pnBZyioiKtWrVK8+bN0/fff6/169eLl0r9R6lSpdSqVSt17txZPXr0UMWKFa2TgAtSUlKigoKCM2N2nO2JJ57QtGnTrDM86qOPPlJSUpJ1BtwsOztb7du31+nTp61TPOqFF15Qv379rDMAAAAAAABMMGgHAAAAAAAAALhNfn6+Nm3adNbb5s2bdfToUes0nxYTE6PExETVqVNH9evXV5MmTdSgQQOFhYVZp8HP5efn69tvv9X06dO1dOlS5eXlWSe5XVhYmBo0aKAmTZqoadOmatq0qWrXrm2ddVG2b9/u9yeYlS1bViNHjrTOgKHTp0/r+++/1+zZs7Vw4UKfPrk9KChIzZs3V9euXdW1a1clJiZaJ3m1kpISrV27VgsWLNCCBQu0evVq5efnmzYFBwerevXqql+/vurVq3fm+Rlj0HPbt2+fPvnkE6WlpWnz5s3WOR4RFxd35vlEkyZN1KxZM8XExFhn4X8cOXJEP/7445m3DRs2BMxF2cLDw9WwYUO1adNGV111lZKSkvicEvBD999/v6ZPn26d4VEzZsxQ3bp1rTPgZh9//LEef/xx6wyPKlu2rBYuXKjw8HDrFAAAAAAAABMM2gEAAAAAAAAAHnfgwAFt27ZNO3bs0M6dO7V9+3bt3LlTu3fvDpjxwO+JiIhQQkKCqlatqmrVqql27dpnRuzlypWzzgOUm5urhQsXKj09XfPmzdPBgwetky5ahQoVVLduXSUmJqpu3bq64oorVL9+fYY8gI8pKSnRpk2btGjRIv3www9atWqVDh8+bJ11TmFhYWrUqJGSkpLUokULtWrVSrGxsdZZPquwsFDbtm3Txo0btXHjRm3ZskX79u3TgQMHdOzYMbfcR9myZVW+fHlVqFBBFStWVMWKFVWlShVVr15d1apVU5UqVTgR9jJkZWUpPT1d6enpWrZsmfkFCi5WaGioatSooTp16qhOnTqqW7euGjVqpGrVqlmn4RLk5uZqzZo1WrdunTZu3KgNGzZo27ZtPv95amhoqGrVqqWGDRueuWhTgwYNFBoaap0GwMNuu+02ff/999YZHjVv3jxVqlTJOgNuNmTIEGVmZlpneFRqaqrGjh1rnQEAAAAAAGCGQTsAAAAAAAAAwExxcbEOHDign3/++VdvBw4c0OHDh3XkyBHl5uZap16WyMhIlS9f/sxbuXLlVKFCBVWpUkVVq1ZV1apVGa3Dp5SUlGjbtm1au3at1q1bp/Xr12v9+vU6deqUaVdoaKgqVqyohISEM29Vq1ZV9erVVadOHUVFRZn2AfCc3bt3a82aNdq0aZM2bdqkLVu2aO/evSouLna0o3z58qpdu/aZC9M0btxYjRo14sIZDsnPz9f+/ft19OhR5ebmKi8vT/n5+crLy1NBQYFKSkrkcrkUEhKi0NBQhYWFKSIiQpGRkSpdurTKli2r2NhY/n85KDc3V+vWrTvrbfv27SoqKjLtKlOmjKpUqXLmucQv/6xZs6Zq1qzJKNjP5efna+vWrdq6dat27typXbt2nfmnN11AJTg4+MwFNxISElSjRo0zF2+qUaMGF94AAtT111+v1atXW2d41I8//qgyZcpYZ8CNduzYoZ49e1pneNy0adPUvHlz6wwAAAAAAAAzDNoBAAAAAAAAAF7v1KlTOnLkiA4fPqyjR4/q+PHjys7O1smTJ896y83N1enTp5WXl6fTp0+f9e2ioiIVFRWpuLj4V/90uVwKDg5WUFCQgoODz7z98u/h4eGKiIhQRESESpUqdebbERERKl26tKKios56i46OVlRUlGJiYhQfH6/IyEjrX0LA40pKSrR7925lZWVp3759+vnnn7Vv3z7t27dPhw4dOvNY/O/HZ2Fh4ZnHWUhIyJnHXkhIiMLCwhQZGXlmZPjLP0uXLq3o6GjFx8crPj5ecXFxiouLO/PtoKAg618KAF4iPz9fWVlZ2r17t/bu3atDhw7p4MGDOnz4sI4fP66TJ08qOztbp06dUl5engoLC888XwgODlZYWNhZb+Hh4Spbtqzi4+NVrly5Mx+H4uPjlZCQoNq1azOsAdwgNzdX27dvP+u5xC9vJ06c0OnTp5Wfn3/W8/3i4uKznsf/8rwiJCTkrIsW/PdzijJlyig2NvbM4/iXb5crV47HMs4pNzdXBw8e1IEDB87889ChQzp27NiZP1d++Vz11KlTys/PV1FRkQoKClRYWHjmz5r//b36y+edpUqVOvN79Ze3mJiYs57vxsfHq0KFCqpcuTKjdQC/0qNHD+3cudM6w2OCgoK0fv16uVwu6xS40Ysvvqg3/j/27jy86vrO+/87JGEN+yL7rqAiCIhLBWVpcRdXRmtdOnXGdlzmrp22V+/xnlprx9HWOq1VKaKtWiuoVaFoLSJg1VopS0WRioph3yFAWJKQ5PfHjPy0ahXlm89J8nhc17kO6JWcZ9As53Be5zNhQuqMTPXq1Suefvrp1BkAAAAASRm0AwAAAAAAAAAAANRygwcPjl27dqXOyEzz5s1j3rx5qTM4gKqqqmL06NGxdu3a1CmZ+sY3vhH//M//nDoDAAAAIClHVAAAAAAAAAAAAADUYqWlpXV6zB4R0bZt29QJHGAvvfRSnR+zN2jQIMaNG5c6AwAAACA5g3YAAAAAAAAAAACAWmz9+vWpEzLXvn371AkcYI8//njqhMwdf/zxcdBBB6XOAAAAAEjOoB0AAAAAAAAAAACgFqvrp1xHGLTXNVu2bInf//73qTMyd84556ROAAAAAMgJBu0AAAAAAAAAAAAAtdjy5ctTJ2SuQ4cOqRM4gB5++OEoLy9PnZGpFi1axJgxY1JnAAAAAOQEg3YAAAAAAAAAAACAWmzFihWpEzLnhPa6o7KyMiZPnpw6I3OnnnpqNGrUKHUGAAAAQE4waAcAAAAAAAAAAACoxerDCe0dO3ZMncAB8swzz8TatWtTZ2TunHPOSZ0AAAAAkDMM2gEAAAAAAAAAAABqsaVLl6ZOyFz37t1TJ3CAPPjgg6kTMnfIIYfEoEGDUmcAAAAA5AyDdgAAAAAAAAAAAIBaqrS0NNasWZM6I3M9evRIncABsGjRopg7d27qjMxddNFFqRMAAAAAcopBOwAAAAAAAAAAAEAt9cYbb0R1dXXqjEy1atUqWrZsmTqDA+DnP/956oTMNW/ePM4888zUGQAAAAA5xaAdAAAAAAAAAAAAoJZatGhR6oTMOZ29bnj77bfj2WefTZ2RubPPPjuaNm2aOgMAAAAgpxi0AwAAAAAAAAAAANRSCxcuTJ2QOYP2umHixIlRXV2dOiNTeXl5cdFFF6XOAAAAAMg5Bu0AAAAAAAAAAAAAtVR9GLT3798/dQKf0cqVK2P69OmpMzI3fPjw6NmzZ+oMAAAAgJxj0A4AAAAAAAAAAABQCy1btiw2bNiQOiNzhx56aOoEPqOf/vSnsXfv3tQZmbv00ktTJwAAAADkJIN2AAAAAAAAAAAAgFroxRdfTJ1QIwzaa7c33nijXpzO3qdPnxg+fHjqDAAAAICcZNAOAAAAAAAAAAAAUAu98MILqRMy16lTp2jdunXqDD6D2267LaqqqlJnZO6SSy6JvLy81BkAAAAAOcmgHQAAAAAAAAAAAKCW2blzZ7z00kupMzLndPbabd68eTF79uzUGZlr1apVjBs3LnUGAAAAQM4yaAcAAAAAAAAAAABqRGVlZaxZsya2bt2aOqXWmzNnTpSVlaXOyNzgwYNTJ/ApVVZWxg9+8IPUGTXiwgsvjCZNmqTOAAAAAMhZBakDAAAAAAAAAAAAgLph27ZtsXbt2lizZs2+63Xr1u37/YYNG6KysjIuv/zy+OY3v5k6t1Z7+umnUyfUiGHDhqVO4FOaPHlyvP7666kzMteoUaO4+OKLU2cAAAAA5DSDdgAAAAAAAAAAAOBjVVRUxLp16943WP/b8fquXbs+0fv64x//mHFt3VZSUhKzZ89OnZG5Jk2axIABA1Jn8Cls2bIlfvKTn6TOqBFnnXVWtG3bNnUGAAAAQE4zaAcAAAAAAAAAAABiy5YtHzpSf/eE9U2bNkVVVdUBua0lS5bEli1bok2bNgfk/dU306dPj4qKitQZmRs0aFAUFhamzuBTuPnmm2Pbtm2pMzLXoEGD+PKXv5w6AwAAACDnGbQDAAAAAAAAAABAHVdeXv6Bofp7x+vr1q2L3bt311hPdXV1zJw5M8aPH19jt1mXTJkyJXVCjRg2bFjqBD6FWbNmxRNPPJE6o0Z8/vOfj169eqXOAAAAAMh5Bu0AAAAAAAAAAABQi1VXV8fmzZs/MFJ/71h98+bNUV1dnTr1faZNm2bQ/in86U9/iqVLl6bOqBEnnHBC6gT205YtW+L//b//lzqjxlxxxRWpEwAAAABqBYN2AAAAAAAAAAAAyGG7d+/+wFD9b39dXl6eOnO/zZs3L9asWROdO3dOnVKr3HfffakTakS7du3iiCOOSJ3Bfrr++utj06ZNqTNqxPDhw2PAgAGpMwAAAABqBYN2AAAAAAAAAAAAyCGTJk2KBQsW7Butl5SUpE7KRHV1dUyZMiW+/vWvp06pNf7617/G7NmzU2fUiBNOOCHy8vJSZ7AfHnzwwfj973+fOqPGfPWrX02dAAAAAFBrNEgdAAAAAAAAAAAAAPz/li1bFs8++2y8/vrrdXbM/q6HHnoodu7cmTqj1rjzzjujuro6dUaNGDVqVOoE9sPChQvjpptuSp1RY4YOHRrDhg1LnQEAAABQaxi0AwAAAAAAAAAAQA4ZPHhw6oQas23btnj00UdTZ9QKixYtihkzZqTOqBGNGzeO448/PnUGn9DGjRvjmmuuiYqKitQpNeaqq65KnQAAAABQqxi0AwAAAAAAAAAAQA4ZMmRI6oQaNXHixCgtLU2dkfNuuummenM6++jRo6NZs2apM/gEdu7cGV/72tdiw4YNqVNqzNChQ+Nzn/tc6gwAAACAWsWgHQAAAAAAAAAAAHJInz59okOHDqkzasymTZvirrvuSp2R0x577LFYsGBB6owac8YZZ6RO4BMoLy+PK6+8Ml599dXUKTXq6quvTp0AAAAAUOsYtAMAAAAAAAAAAECOOf7441Mn1Kj7778/iouLU2fkpC1btsTNN9+cOqPGtGrVKkaMGJE6g4+xd+/e+MY3vhEvvfRS6pQaNXTo0DjuuONSZwAAAADUOgbtAAAAAAAAAAAAkGOGDx+eOqFGlZeXx7e+9a2orKxMnZJz/v3f/z1KSkpSZ9SYU045JQoLC1Nn8Hfs3r07rrzyypgxY0bqlBr39a9/PXUCAAAAQK1k0A4AAAAAAAAAAAA5ZsSIEfVu1PvKK6/EXXfdlTojpzzwwAMxa9as1Bk1avz48akT+DtKSkriy1/+csyZMyd1So0bMWJEDBs2LHUGAAAAQK1k0A4AAAAAAAAAAAA5pmXLlnHMMcekzqhxd911V7z44oupM3LCn//857j55ptTZ9SowYMHx2GHHZY6g4/w6quvxvnnnx8LFy5MnVLj8vLy4tprr02dAQAAAFBrGbQDAAAAAAAAAABADho7dmzqhBq3d+/e+Nd//dd46623UqcktXz58rj66qujoqIidUqN+tKXvpQ6gQ9RXV0dkyZNigsvvDBWrFiROieJU045xYstAAAAAHwGedXV1dWpIwAAAAAAAAAAAID327p1a4wYMaLejZojIrp06RIPPvhgdOrUKXVKjSsuLo5LLrkk1q9fnzqlRrVr1y7mzJkThYWFqVN4j8WLF8f3v//9enkq+7sKCwvjqaeeiu7du6dOAQAAAKi1nNAOAAAAAAAAAAAAOah169YxatSo1BlJrF69Or70pS/F6tWrU6fUqOLi4rj44ovr3Zg9IuKLX/yiMXsOWb9+fVx33XVx3nnn1esxe8T//L9pzA4AAADw2TihHQAAAAAAAAAAAHLU7Nmz46tf/WrqjGS6dOkSkyZNit69e6dOydzbb78dl112WWzYsCF1So1r3rx5zJo1K1q0aJE6pd5744034he/+EVMnz49KioqUuck17Jly5gxY0a0atUqdQoAAABAreaEdgAAAAAAAAAAAMhRJ5xwQnTu3Dl1RjKrV6+O8ePHx3PPPZc6JVNPPfVUnH/++fVyzB4R8aUvfcmYPaH169fH/fffHxdeeGGceeaZ8fjjjxuz/6+vfe1rxuwAAAAAB4AT2gEAAAAAAAAAACCHTZw4MW699dbUGUk1aNAgrrnmmvjnf/7nyM/PT51zwJSXl8ctt9wSDzzwQOqUZJo2bRqzZs2K1q1bp06pUT/72c+iqKgounfvHt27d4+uXbtG48aNa+S2t27dGgsWLIj58+fHvHnz4tVXX42qqqoaue3apGfPnjF9+vQoLCxMnQIAAABQ6xm0AwAAAAAAAAAAQA7bunVrjBw5Mvbs2ZM6JblBgwbFf/3Xf0Xv3r1Tp3xmixcvju9+97vx6quvpk5J6oorrohrr702dUaNGz16dKxevXrf7/Py8qJdu3bRoUOH913at28fLVq0iJYtW0bz5s2jZcuW0bRp0ygsLIzCwsIoKCiIwsLCqKioiPLy8n3XJSUlsXnz5ti8eXNs2rQpli9fHsuWLYtly5bFxo0bE37ktcfEiRPjxBNPTJ0BAAAAUCcYtAMAAAAAAAAAAECO+973vhe//vWvU2fkhEaNGsXll18e//iP/xhFRUWpc/bbxo0b48c//nE88cQT9f5U7LZt28aMGTNq5X/Hz+pvB+3kllGjRsWECRNSZwAAAADUGQ1SBwAAAAAAAAAAAAB/3z/90z9FYWFh6oycUFZWFnfccUeMHTs2fvWrX0VZWVnqpE9k06ZN8bOf/SzGjh0bjz32WL0fs0dEXH311fVyzE5ua9SoUXznO99JnQEAAABQpxi0AwAAAAAAAAAAQI7r3LlznHXWWakzcsrmzZvj+9//fpx44olx2223xbp161InfaiXX345vv71r8fIkSPj9ttvj127dqVOygl9+/aN8ePHp86AD7jiiiuiR48eqTMAAAAA6pS86urq6tQRAAAAAAAAAAAAwN+3Zs2aOOmkk6K8vDx1Sk4qKCiIY489Nk466aT4/Oc/H23atEnSUV5eHvPnz48//OEPMWvWrCguLk7SkevuvffeOP7441NnJDN69OhYvXp16gz+Rq9evWLatGnRsGHD1CkAAAAAdYpBOwAAAAAAAAAAANQSN998c9x7772pM3Jefn5+DBw4MI466qgYNmxYDBkyJJo3b57JbW3ZsiWWLFkSixcvjgULFsTLL7/sFPaPMW7cuLjllltSZyRl0J6b7rvvvjj22GNTZwAAAADUOQbtAAAAAAAAAAAAUEts3749vvCFL0RJSUnqlFqnU6dO0adPn+jTp09069Yt2rVrF+3bt4927dpFs2bNomHDhtGoUaNo2LBhVFZWRllZWezZs2ffZfPmzbF27dpYv359rF27NtauXRtvvPFGrF27NvWHVqu0adMmnnrqqWjdunXqlKQM2nPP+eefHzfeeGPqDAAAAIA6yaAdAAAAAAAAAAAAapHJkyfHd7/73dQZ8Knceuutcfrpp6fOSM6gPbd07Ngxpk+fHs2bN0+dAgAAAFAnNUgdAAAAAAAAAAAAAHxy48ePj0GDBqXOgP02duxYY3Zy0g033GDMDgAAAJAhg3YAAAAAAAAAAACoRRo0aBDXX399FBQUpE6BT6xz585x4403ps6ADzj33HPjxBNPTJ0BAAAAUKcZtAMAAAAAAAAAAEAtc9hhh8UVV1yROgM+kfz8/PjRj34ULVu2TJ0C79OtW7f4v//3/6bOAAAAAKjzDNoBAAAAAAAAAACgFvra174Whx12WOoM+FhXX311DB06NHUGvE9+fn7cfPPNUVRUlDoFAAAAoM4zaAcAAAAAAAAAAIBaqLCwMH74wx9G06ZNU6fARxo7dmx89atfTZ0BH/C1r33NCy0AAAAA1BCDdgAAAAAAAAAAAKil+vbtG9dff33qDPhQhx56aNx8882Rl5eXOgXe5+ijj44rr7wydQYAAABAvWHQDgAAAAAAAAAAALXYuHHj4oILLkidAe/Trl27uOuuu6Jp06apU+B92rZtG7feems0aOBp1AAAAAA1xSMxAAAAAAAAAAAAUMtdd911cfTRR6fOgIiIaNasWdx1113RqVOn1CnwPvn5+XHrrbdGhw4dUqcAAAAA1CsG7QAAAAAAAAAAAFDLFRYWxu233x49e/ZMnUI916hRo7jrrrti4MCBqVPgA771rW/FcccdlzoDAAAAoN4xaAcAAAAAAAAAAIA6oFWrVjFx4sRo165d6hTqqYKCgvjJT34SxxxzTOoU+IAzzjgjLrvsstQZAAAAAPWSQTsAAAAAAAAAAADUET169Ih77703WrZsmTqFeqagoCB++MMfxqhRo1KnwAcMHjw4fvCDH6TOAAAAAKi3DNoBAAAAAAAAAACgDunXr19MmjQpioqKUqdQTzRq1Ch+9rOfxamnnpo6BT6ge/fuceedd0ajRo1SpwAAAADUWwbtAAAAAAAAAAAAUMcMHDgwfvGLX0SrVq1Sp1DHNWvWLO6++24ns5OT2rRpExMnTow2bdqkTgEAAACo1wzaAQAAAAAAAAAAoA4aOHBg3H///dG2bdvUKdRR7dq1i1/+8pdxzDHHpE6BDygqKopJkyZFr169UqcAAAAA1HsG7QAAAAAAAAAAAFBH9evXLyZPnhw9e/ZMnUIdc+ihh8ajjz4aAwcOTJ0CH9CkSZOYMGFCHH744alTAAAAAAiDdgAAAAAAAAAAAKjTunfvHlOmTIlhw4alTqGO+MIXvhC//vWvo1OnTqlT4AOaNm0aP//5z33NAwAAAMghBu0AAAAAAAAAAABQx7Vq1SruvffeGD9+fOoUarH8/Py4+uqr4/bbb4+mTZumzoEPaNq0adx9991xzDHHpE4BAAAA4D0M2gEAAAAAAAAAAKAeaNiwYXz/+9+P//zP/4xGjRqlzqGWOeigg+K+++6Lq666KvLy8lLnwAe0bds2HnjggTjqqKNSpwAAAADwNwzaAQAAAAAAAAAAoB4599xzY/LkydGrV6/UKdQSo0aNiqlTp8awYcNSp8CH6tmzZ0yZMiUGDBiQOgUAAACAD2HQDgAAAAAAAAAAAPXMYYcdFo8//nhccMEFqVPIYS1atIgbb7wxJkyYEK1bt06dAx/q2GOPjcmTJ0e3bt1SpwAAAADwEQzaAQAAAAAAAAAAoB5q0qRJfO9734uJEydGx44dU+eQY8aMGRPTp0+P888/P3UKfKRLL7007r33Xi+4AAAAAJDj8qqrq6tTRwAAAAAAAAAAAADplJaWxo9//ON46KGHoqqqKnUOCXXs2DG+/e1vx6mnnpo6pU4bPXp0rF69OnVGrdWiRYv43ve+5/9TAAAAgFrCoB0AAAAAAAAAAACIiIhXXnklbrzxxli0aFHqFGpY48aN4ytf+Ur80z/9UzRp0iR1Tp1n0P7pDR06NH70ox9F586dU6cAAAAA8AkZtAMAAAAAAAAAAAD7VFdXx9SpU+PHP/5xrF+/PnUOGcvLy4vTTjst/u3f/i06deqUOqfeMGjff02aNIlrrrkmLr300sjPz0+dAwAAAMB+MGgHAAAAAAAAAAAAPmD37t3xq1/9KiZNmhQlJSWpczjA8vLy4gtf+EJcddVV0a9fv9Q59Y5B+/457rjj4vvf/35069YtdQoAAAAAn4JBOwAAAAAAAAAAAPCRSktL47777ov77rsvtm3bljqHzygvLy/GjBkTV199dfTv3z91Tr1l0P7JdOvWLb75zW/GSSedlDoFAAAAgM/AoB0AAAAAAAAAAAD4WLt27YpHHnkk7rvvPkPcWqhJkyYxbty4uPTSS6N3796pc+o9g/a/r3Xr1nH55ZfHJZdcEg0bNkydAwAAAMBnZNAOAAAAAAAAAAAAfGJ79+6N3//+9/Hggw/G/PnzU+fwMTp16hRf/OIXY/z48dGqVavUOfwvg/YP16pVq7jsssvikksuiWbNmqXOAQAAAOAAMWgHAAAAAAAAAAAAPpWlS5fGQw89FL/97W9jx44dqXP4Xw0bNozRo0fHueeeG8OHD48GDRqkTuJvGLS/X48ePeLiiy+Oc889N5o2bZo6BwAAAIADzKAdAAAAAAAAAAAA+EzKysri2WefjalTp8YLL7wQe/fuTZ1U7+Tl5cWRRx4Zp512WpxxxhlOY89xBu0RBQUFccIJJ8T5558fI0eO9MILAAAAAHWYQTsAAAAAAAAAAABwwGzZsiVmzJgRM2bMiJdfftm4PUMNGjSIIUOGxEknnRQnnXRSHHTQQamT+ITq86B9wIABceqpp8a4ceOiXbt2qXMAAAAAqAEG7QAAAAAAAAAAAEAmSkpKYvbs2TF79ux46aWXYvv27amTar3WrVvH8ccfHyNGjIjhw4cbBNdS9WnQXlhYGIMHD45Ro0bF2LFjo2vXrqmTAAAAAKhhBu0AAAAAAAAAAABA5iorK2PhwoXx/PPPx8svvxyvvfZaVFRUpM7KeUVFRXHkkUfGUUcdFccff3wMGDAgGjRokDqLz2jq1Knx2muvxbJly2LZsmWxdu3aqCtP6S0sLIz+/fvHkCFD4phjjoljjz02mjVrljoLAAAAgIQM2gEAAAAAAAAAAIAat3v37vjLX/4Sc+fOjb/85S+xePHi2LZtW+qspPLy8qJ79+4xYMCAGDx4cAwdOjT69+9vwF4PlJWVxapVq2LVqlWxcuXKWL16daxfv37fZcOGDVFWVpY68wOaNWsWvXv3jn79+kX//v3j0EMPjQEDBkTjxo1TpwEAAACQQwzaAQAAAAAAAAAAgJywfPnyeO211+L111+PN998M956661Ys2ZNnTm5+r2aN28ePXv2jIMPPjgOPfTQOOyww6J///5RVFSUOo0cVVpaGps3b44tW7bEli1boqSkJHbs2BHbtm2LHTt2xI4dO2LXrl2xa9eu2L17975LeXl5VFRU7LuurKyMysrKqK6ujqqqqqiqqoq8vLwoKCiIgoKCyM/PjyZNmkSzZs2iqKgomjdvHm3atIn27dtHu3bt4qCDDoquXbtGjx49om3btqn/WAAAAACoBQzaAQAAAAAAAAAAgJy1a9euePvtt6O4uDhWrlz5vhOsN2zYEBUVFakTP1R+fn60a9cuOnfuHB07doxOnTpFz549o1evXtGrV69o37596kQAAAAAgBph0A4AAAAAAAAAAADUStXV1bF169bYsGFDbNy4MTZt2hQlJSVRUlIS27dvj23btsX27dvfd2L1nj17Ys+ePVFRURFVVVWxd+/eqKqqisrKyoj4nyF6gwYN9p1UnZ+fH4WFhdG0adMPXJo3bx6tWrWKNm3aROvWraN169b7TrLu0KFDFBQUJP4TAgAAAABIz6AdAAAAAAAAAAAAAAAAAACATDRIHQAAAAAAAAAAAAAAAAAAAEDdZNAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBM/Q/LRQABAABJREFUGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMFKQOAAAAAAAAAAAAyEX9+vVLnZC5Z599Nrp27Zo6AwAAAGqE+/oAAGk4oR0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkoSB0AAAAAAFAXrFq1KsaMGZM6gxyRl5cX+fn50aBBg33X7/66cePG0ahRo2jUqNG+Xzdu3DiKioqiefPm+67fvbRp0+Z9l8aNG6f+8AAAAAAAAAAAAOATM2gHAAAAAIADrLq6Ovbu3ZvJ+27atGm0a9cuOnbsGB07doxOnTrtu+7atWt07949GjVqlMltAwAAAAAAAAAAwP4yaAcAAAAAgFpk165dsWLFilixYsWH/vu8vLw46KCDonv37tG9e/fo1atXHHzwwXHIIYdEp06dargWAAAAAAAAAACA+s6gHQAAAAAA6pDq6upYt25drFu3LubOnfu+f1dUVLRv3D5gwIA44ogj4uCDD46CAn9dAAAAAAAAAAAAQDY8Qw0AAAAAAOqJ0tLSWLhwYSxcuDCmTJkSERGNGjWK/v37x8CBA2Po0KFx1FFHRfv27ROXAgAAAAAAAAAAUFcYtAMAAAAAQD1WVlYWr7zySrzyyivxwAMPREREz549Y+jQoXHMMcfE8OHDo23btokrAQAAAAAAAAAAqK0M2gEAAAAAgPcpLi6O4uLi+M1vfhN5eXlx2GGHxYgRI2LEiBExePDgyM/PT50IAAAAAAAAAABALWHQDgAAAAAAfKTq6upYvHhxLF68OCZMmBCtW7eOz3/+8zF27Ng47rjjorCwMHUiAAAAAAAAAAAAOcygHQAAAAAA+MS2bt0ajzzySDzyyCPRokWLGDNmTJx11llxzDHHRF5eXuo8AAAAAAAAAAAAcoxBOwAAAAAA8Kls3749Hn/88Xj88cejS5cuceaZZ8bZZ58dPXr0SJ0GAAAAAAAAAABAjmiQOgAAAAAAAKj9Vq9eHXfddVecdNJJ8ZWvfCXmzJkTVVVVqbMAAAAAAAAAAABIzAntAAAAAADAAVNdXR0vvPBCvPDCC9G9e/e46KKL4vzzz49mzZqlTgMAAAAAAAAAACABJ7QDAAAAAACZWLFiRdx0000xevTouOOOO2LHjh2pkwAAAAAAAAAAAKhhBu0AAAAAAECmSkpK4qc//WmMGjUqbrvtNsN2AAAAAAAAAACAesSgHQAAAAAAqBE7duyICRMmxBe+8IW4//77o6KiInUSAAAAAAAAAAAAGTNoBwAAAAAAatTWrVvjBz/4QZx66qnxzDPPpM4BAAAAAAAAAAAgQwbtAAAAAABAEitWrIirrroqrrjiili1alXqHAAAAAAAAAAAADJg0A4AAAAAACQ1Z86cOP3002PixIlRWVmZOgcAAAAAAAAAAIADyKAdAAAAAABIbvfu3XHrrbfGF7/4xVixYkXqHAAAAAAAAAAAAA4Qg3YAAAAAACBn/OUvf4lx48bFI488kjoFAAAAAAAAAACAA8CgHQAAAAAAyCm7du2K6667Lq699trYvXt36hwAAAAAAAAAAAA+A4N2AAAAAAAgJz355JMxfvz4WLFiReoUAAAAAAAAAAAAPiWDdgAAAAAAIGctXbo0zjvvvHjxxRdTpwAAAAAAAAAAAPApGLQDAAAAAAA5bdu2bXHFFVfEtGnTUqcAAAAAAAAAAACwnwzaAQAAAACAnFdRURHf+ta34t57702dAgAAAAAAAAAAwH4waAcAAAAAAGqF6urquPnmm+OnP/1p6hQAAAAAAAAAAAA+IYN2AAAAAACgVrnjjjvizjvvTJ0BAAAAAAAAAADAJ2DQDgAAAAAA1Do/+clPYuLEiakzAAAAAAAAAAAA+BgG7QAAAAAAQK106623xhNPPJE6AwAAAAAAAAAAgL/DoB0AAAAAAKi1rrvuupg7d27qDAAAAAAAAAAAAD6CQTsAAAAAAFBrVVRUxNVXXx3FxcWpUwAAAAAAAAAAAPgQBu0AAAAAAECtVlJSEldffXXs2bMndQoAAAAAAAAAAAB/w6AdAAAAAACo9ZYuXRo33nhj6gwAAAAAAAAAAAD+hkE7AAAAAABQJzzyyCPx29/+NnUGAAAAAAAAAAAA72HQDgAAAAAA1Bk33HBDbNiwIXUGAAAAAAAAAAAA/8ugHQAAAAAAqDO2b98eN9xwQ+oMAAAAAAAAAAAA/pdBOwAAAAAAUKc888wz8bvf/S51BgAAAAAAAAAAAGHQDgAAAAAA1EE33XRT7N69O3UGAAAAAAAAAABAvWfQDgAAAAAA1Dnr16+Pe+65J3UGAAAAAAAAAABAvWfQDgAAAAAA1En33HNPbNiwIXUGAAAAAAAAAABAvWbQDgAAAAAA1Em7du2KO+64I3UGAAAAAAAAAABAvWbQDgAAAAAA1FmPPfaYU9oBAAAAAAAAAAASMmgHAAAAAADqrPLy8vjlL3+ZOgMAAAAAAAAAAKDeMmgHAAAAAADqtMmTJ8f27dtTZwAAAAAAAAAAANRLBu0AAAAAAECdtnPnzpg6dWrqDAAAAAAAAAAAgHqpIHUAAAAAAAC1T5cuXWLWrFmpM3JKdXV1VFRURHl5eezduzcqKiqioqIi9uzZEyUlJbFt27b3XdauXRurVq2KNWvWxPr166OioiL1h1CnPfzww3HxxRenzgAAAAAAAAAAAKh3DNoBAAAAAOAAyMvLi4YNG0bDhg33+20rKytj/fr18eabb8Zf//rXWLJkSSxZsiRWrFgRVVVVGdTWP0uXLo1XXnklBg0alDoFAAAAAAAAAACgXjFoBwAAAACAxPLz86Nz587RuXPnOPHEE/f989LS0pg3b1689NJL8dJLL8XSpUujuro6YWnt9pvf/MagHQAAAAAAAAAAoIYZtAMAAAAAQI4qKiqKkSNHxsiRIyMiYsuWLTFz5syYPn16/PnPf3Z6+36aOXNmXH/99dGgQYPUKQAAAAAAAAAAAPWGZ2wBAAAAAEAt0aZNmxg/fnzcf//98dxzz8V3vvOd6NWrV+qsWmPz5s0xf/781BkAAAAAAAAAAAD1ikE7AAAAAADUQh06dIjLLrssfve738Wdd94ZQ4cOTZ1UK8yYMSN1AgAAAAAAAAAAQL1i0A4AAAAAALVYXl5ejBkzJn7961/HQw89FAMHDkydlNOee+651AkAAAAAAAAAAAD1ikE7AAAAAADUEUOGDImHH344brrppmjfvn3qnJy0fPnyWLduXeoMAAAAAAAAAACAesOgHQAAAAAA6pC8vLw455xz4umnn46TTz45dU5Oevnll1MnAAAAAAAAAAAA1BsG7QAAAAAAUAcVFRXFT37yk/jOd74ThYWFqXNyikE7AAAAAAAAAABAzTFoBwAAAACAOuyyyy6LX/7yl1FUVJQ6JWf85S9/SZ0AAAAAAAAAAABQbxi0AwAAAABAHXfUUUfFxIkTo2nTpqlTckJxcXHs2bMndQYAAAAAAAAAAEC9YNAOAAAAAAD1wNChQ2PixInRpEmT1CnJVVZWxtKlS1NnAAAAAAAAAAAA1AsG7QAAAAAAUE8MGzYs/uM//iN1Rk5YsmRJ6gQAAAAAAAAAAIB6waAdAAAAAADqkXPOOSdOP/301BnJvfXWW6kTAAAAAAAAAAAA6gWDdgAAAAAAqGe+973vRdeuXVNnJLVq1arUCQAAAAAAAAAAAPWCQTsAAAAAANQzRUVF8c1vfjN1RlIG7QAAAAAAAAAAADXDoB0AAAAAAOqhk08+OY444ojUGckYtAMAAAAAAAAAANSMgtQBAAAAAABAGt/4xjfisssuS52RxK5du6KkpCRatWqVOoUcV1ZWFmvWrImNGzfGpk2b3nfZsWNHlJaWRmlpaezcuTNKS0ujvLw8KisrY+/evVFRURGVlZWRl5cXhYWF+y4FBQVRWFgYjRs3jhYtWkSrVq2iZcuW0aJFi2jZsmW0bt06OnXqFJ07d44uXbpE8+bNU/8xAPuprKws3nnnnVi5cuX7vn68++udO3dGWVlZlJWVRUVFRZSVlUV5eXnk5eXt+xrx7nVRUVG0bNkymjdvHi1atIjWrVvHQQcdFJ06dYqOHTvuu87Pz0/9YUONqK6ujs2bN8eGDRti/fr1sX79+ti4cWNs27YtduzYEdu3b4/S0tJ91+Xl5bF37959l4qKiti7d280aNAg8vPzo6CgIAoKCiI/Pz8aN24cRUVF0axZs32Xli1bRtu2baNt27bRrl27aNu2bRx00EHRuXPnaNiwYeo/DuATqK6ujlWrVkVxcXFs2LDhfd+TN23aFNu2bdv3ffm9358rKyv3fY1o2LBhFBQUROPGjff97P7upUOHDvu+H3fs2DG6dOkSTZs2Tf1hQ72yZs2aePPNN2P9+vWxYcOGfT8nbNy4MXbu3Bnl5eWxZ8+efZ/j1dXV0ahRow9cmjVrFh06dIgOHTpE+/bto3379tGhQ4fo1q1bdOvWLRo0cIZUrqmqqoq1a9dGcXFxrFy5MjZv3hxbtmyJzZs3x+bNm6OkpCR2794d5eXl++53vfdr/LuP1TRs2DCaN28eLVu2jFatWkWrVq2iQ4cO0aVLl/ddCgsLU3/I8KlUVlbGpk2b9n2N3LJlS2zbtm3fpaSkJHbu3Bm7du2KPXv27Lves2dPVFZWfuDy3vtT+fn5kZ+fH02aNImmTZtGs2bN9l23bNky2rRpE23atIm2bdtGmzZtolOnTtGpU6coKipK/ccC9dbu3bujuLg4Vq9eHatWrYpVq1bF6tWrY9OmTbFnz57YvXv3vktZWVk0aNAgmjZt+r5L+/bto3v37tGtW7fo0aNHdO/ePbp27ernJQAA/i6DdgAAAAAAqKeOO+64OPzww2Px4sWpU5IwaOdde/fujeLi4njzzTfjrbfeihUrVux7EtfGjRujurr6M99GZWVl7Nmz51O9bfPmzaNz587RrVu36Nu3b/Tr1y8OPvjg6NWrVxQU+Os+SG3lypWxYMGCWLp0abz99tvx9ttvx6pVq6KqqupTvb+9e/e+7+vFhg0bPvZtGjZsGL17946+fftGnz59on///nHkkUdGmzZtPlUDpFZdXR2rV6+Od955J4qLi/dd3nnnndiwYUNUVFR85tt4d4hRXl7+qd6+QYMG0aFDh+jatWt06dIlevXqFQcffHAccsgh0a1bt8jLy/vMjcD+27ZtWyxcuDBef/31ePvtt2PZsmWxbNmyT/2zeHl5eZSXl8euXbv2/bNVq1b93bfJy8uLzp07R58+faJv375x8MEHx6BBg6J3796+NsAB8Pbbb8e8efNiyZIlsXTp0li6dGns2LFjv9/Prl273ve5/XGaNGkSffr0iUMOOSQOOeSQ6NevXxx55JFewKIG7dixIxYtWhSvvPJKLFmyJIqLi2P58uVRVlb2qd7fu1/j3/Vx970KCwv33d/q169fDBo0KI444ggvckTO2Lp1a7zzzjuxYsWKWLFiRSxfvjxWrlwZ69ati02bNkVlZeUBu60Puz9VUlKyX++jZcuW0alTp+jWrVv07t07evfuHX369InevXtHs2bNDlgrELFp06aYP39+LFiwIObPnx9LliyJvXv37tf7KC8v/9jP86ZNm8Zhhx0WAwcOjGOOOSaOOuooL14BAMD75FUfiGfgAAAAAADUc6tWrYoxY8akzqgxXbp0iVmzZqXO4AB44IEH4sYbb0ydkcTkyZNj8ODBqTOoYXv27InXX389Xn311Xj11VfjjTfeiHfeeeeADONqWmFhYfTu3TsGDBgQQ4cOjaFDh0bPnj1TZ0GdVl1dHUuWLIl58+bF/PnzY/78+bFx48bUWR+pR48eMXjw4DjqqKNixIgR0bFjx9RJ8AFVVVXxzjvvxOLFi+P111/fd11aWpo67VNr0qRJ9O3bNwYOHBgDBw6MQYMGRc+ePQ1Za6l+/fqlTsjcs88+G127dk2d8amsXbs25s6du2+c8dZbbx2QF6TKQosWLWLQoEFx5JFHxvDhw2PgwIFOL4RPYN26dfHiiy/Gn/70p/jTn/70iV7wqaYUFhbGwIED49hjj41jjz02jjzySOPmA2jbtm3x/PPPx4svvhivvPJKLFu2LOe+xjdu3DgGDRoURx99dIwaNSoOP/zw1EnUA1VVVbFs2bJ47bXX4o033oilS5fGG2+8kdOPT+yPvLy86N69ewwYMCAOP/zwOPzww2PAgAFGsbCftmzZEk899VRMnTo1Fi1alKShsLAwjj322Dj99NPj5JNPjsaNGyfp+DDu6wMApGHQDgAAAABwABi0U1tt3bo1RowYUSvHvJ/VhAkTYtSoUakzyNjmzZtj7ty5MXfu3Fi4cGG8+eab+33ySG3Srl27GDJkSAwbNixGjhwZ3bt3T50EtV5FRUXMnTs3Zs6cGTNnzsypAc3+OuSQQ+KEE06I0aNHx5AhQ4xrSaKysjIWL1687/vz/Pnza/V4/ZNq2bJlDBkyJI499tj43Oc+F4ccckjqJD4hT3LPPW+88UY888wz8eyzz8brr7+eOudTa9WqVQwfPjxOOOGEGDNmjJEWvMeWLVvid7/7XTz55JOxYMGCnBsxf5QmTZrEiSeeGGeccUaccMIJxu2fQnFxccyaNStmz54dCxYsqHWP4XTp0iVGjx4dp5xySgwdOjR1DnXEzp07Y968ebFw4cJ45ZVXYtGiRfXiPtR75efnx2GHHRbDhg2Lo446KoYNGxYtWrRInQU5afbs2TFlypR44YUXcurv/i6++OK47rrrUmfs474+AEAaBu0AAAAAAAeAQTu12ZVXXhkzZ85MnVHj/uu//ivOPvvs1BkcYLt27YqXXnopXnjhhZg7d2689dZbqZOS6tOnT4waNSpGjRoVgwcPjvz8/NRJ/B3XXHNN7Ny5M3XGATdy5Mi4+OKLU2fsl+rq6vjjH/8YTzzxRMyZMye2b9+eOumA69KlS5xxxhlxxhlnRN++fVPnUMetWbMmZs+eHc8991y9GbB/nHbt2sXnPve5GDNmTIwYMSKaNWuWOomPUB+e5D5r1qzo0qVL6oy/a9myZfHoo4/GjBkzYuXKlalzDrjGjRvHyJEjjWATq6qqiiuuuCKqqqpSpxxwp5xySpx33nmpM/6uysrKeOaZZ+KRRx6Jl156KSorK1MnfSYtW7aMsWPHxplnnhlHH3106pyctmfPnnj66afj4Ycfjvnz56fOOWB69+4d5513Xpx11lnRtm3b1DnUInv37o2FCxfGH//4x/jTn/4UixYtqnUv7pC1/Pz8GDx4cJx44olxwgknRP/+/VMn8QnceuutsXTp0tQZB1zv3r3j29/+duqMmDNnTvz0pz+NxYsXp075UBdddFH8x3/8R+qMferDfX2D9v1XXl4eX/nKV2Lu3LmpU2rUmWeeGbfccosXwAWgRhi0AwAAAAAcAAbt1GYPPvhg3HDDDakzatz1118fF154YeoMDoCVK1fGnDlzYs6cOTF37twoLy9PnZSTWrVqFaeddlqcffbZccQRR6TO4UOcdtppdfJFGIYPHx733HNP6oxPZNOmTfHYY4/Fww8/XCfHch9l8ODBcckll8TYsWOjoKAgdQ51xKuvvrrvdM0lS5akzslpjRo1is997nPx+c9/Pk466aRo3rx56iTeoz48yf25556Ljh07ps74gPLy8vj9738fU6ZMiT//+c+pc2pM27Zt4x/+4R/iwgsvjA4dOqTOqXdGjBgRGzZsSJ1xwJ166qlx2223pc74UKWlpfHoo4/G/fffH6tXr06dk4n+/fvHV77ylTj11FP9vP0e77zzTjz44IMxderUOvkiYu9q2LBhnH322XH55ZdH9+7dU+eQo0pLS+MPf/hDzJo1K/7whz/Etm3bUifVKl26dImTTz45Tj311BgwYEDqHD7CN77xjZg+fXrqjAOuffv28cILLyS7/blz58Ytt9wSr776arKGT8KgveYZtO+/b33rWzF16tTUGTVq+PDhMWHChCgsLEydAkA94ZExAAAAAACo5+rrKVEVFRWpE/gM1q1bF0899VQ8+eST8dprr6XOqRVKSkriwQcfjAcffDD69u0bZ511Vpx55plx0EEHpU7jf3Xo0KFODtrXrFmTOuFjLV68OCZOnBjPPvtsvfz+sHDhwli4cGF07NgxLrroorjoooucFs2nsnz58pg2bVpMmzYtVqxYkTqn1igrK4vZs2fH7Nmz44YbbohRo0bFuHHjYsSIEZ5MSo3Iz89PnfA+mzZtinvvvTd+85vfRElJSeqcGrd58+a488474+67746TTjoprrjiijjkkENSZ9UbHTp0qJOD9lz8mbykpCQmTpwYU6ZMidLS0tQ5mfrrX/8a3/zmN+O///u/49JLL43zzz8/mjZtmjormeLi4rjzzjtj+vTpUVlZmTonc+Xl5TFlypR49NFH4+STT45rrrkmevbsmTqLHLB79+6YPXt2/Pa3v43nn3++Xj4ecaCsXr067rnnnrjnnnuiR48ecfrpp8e5554bXbp0SZ3Ge7Rv3z51QiY2bdoUFRUVNX7/vbS0NG655ZZ4+OGHwxmX8Nndfvvt9W7MfsQRR8Ttt9/u8UcAapRBOwAAAAAA1HN9+/aN1q1bx9atW1On1CineNc+O3fujCeffDKeeOKJWLBggSdpfQZvvfVW/OhHP4r//u//jpNPPjm+/OUvO70oB7Rt2zZ1QibWrVuXOuEjLVq0KO68886YPXt26pScsG7durj11lvj3nvvjcsvvzwuuuiiaNKkSeosctyOHTvit7/9bUybNi0WLlyYOqfWKysri6effjqefvrpaNOmTZxzzjlxwQUXRLdu3VKnUYflyqB9/fr1MWnSpHj44Ydjz549qXOSq6ioiOnTp8eTTz4Zp5xySlx11VXRp0+f1Fl1Xrt27VInZGLt2rWpE/YpKyuLBx54IH7+85/X6VO5P8zq1avjP//zP+Puu++Of/u3f4tx48ZFXl5e6qwas2LFirjzzjtj2rRp9WLI/rcqKyvjySefjBkzZsQFF1wQV155ZbRu3Tp1FjWsuro65s6dG48++mjMnDkzdu3alTqpzlm+fHnccccdcdddd8Xxxx8f48ePj9GjR0dBgdlEanX1sc/q6urYsGFDjb6Awpw5c+K73/1uTj/uCrXJE088ET/72c9SZ9Sonj17xsSJE+v1C20BkIZ7ZgAAAAAAUM/l5eXFkCFD4tlnn02dUqOceFN7/PWvf43JkyfHtGnTYufOnalz6pS9e/fG9OnTY/r06XH00UfHP/7jP8bIkSPr1RPqc0nLli1TJ2Ri165dUVpaGkVFRalT9lm0aFHcfvvt8Yc//CF1Sk7aunVr/PCHP4xf/OIX8X/+z/+Jc889Nxo0aJA6ixzz1ltvxa9+9auYOnWqEUZGtmzZEpMmTYp77rknjj/++PjiF78Yo0aN8vnIAZd63LNhw4aYMGFCPPLII1547ENUV1fHU089FU8//XScddZZce2119bZ0y1zQYsWLVInZGLz5s1RXV2d/L7etGnT4rbbbsvJE+Nr0saNG+Pb3/52/PrXv47rrrsuBg4cmDopU2VlZTFhwoS4++67PR4X//OY5AMPPBBTp06Na6+9Ni644ILkn5tkb8uWLfHYY4/FI488EsXFxalz6oWqqqp4/vnn4/nnn4/OnTvHJZdcEueff35OPT5V39TVxz4j/udnrZoYtFdVVcVtt90WEydOzPy2oL6YO3duXHfddakzalT79u1j0qRJ0aZNm9QpANRD/oYLAAAAAACI3r17p06ocU73zm3V1dUxc+bMuPDCC2PcuHHx0EMPGbNnbO7cufHVr341zjzzzJg5c2bqnHqpefPmqRMys3nz5tQJEfE/TyD/93//9xg/frwx+yewadOmuO666+K8886LefPmpc4hB7z7/fnSSy+N0047LR566CFj9hpQXV0dL7zwQvzLv/zL/8fefYdVWf9/HH+xtwIO3CNnbs2RucuZ2zT3njnLTM2RIzX3SHOFmltxlztHTtzmypEDBQUE2fscOL8/+uk3EhTknPt9zn2/HtflVRwO93miwBnc788HzZo1w9atWzn0S0YltUO7TqfD6tWr0bRpU2zcuJFf12+RkpKCnTt3okmTJvj555/592Uiah200uv1CA8PF7v9wMBA9O3bF998843mh9n/7dq1a/j8888xfvx4xMTESOeYxOnTp9GiRQssXbqUw+z/ERUVhcmTJ6Nr16548OCBdA6ZyP379zF+/HjUq1cPc+bM4TC7kGfPnmHmzJmoX78+5s6di7CwMOkkTVLzYgKhoaEmv42YmBgMHjyYw+xERvTw4UMMHTpUU49TXVxcsHLlShQsWFA6hYiINIoD7UREREREREREREREpMlfWjs6OkonUBr0ej327NmDli1bYsiQIbhy5Yp0kubcu3cPQ4YMQceOHXH+/HnpHE1xcXGRTjAZ6YH25ORkbNy4EU2bNsX27du5qEkm3bp1C127dsW4ceMQHR0tnUMCUlJSsHfvXrRo0QJDhgzBuXPnpJM0y8/PD9999x0aNGiAlStXckEBMgqJHdp9fX3Rpk0bzJo1iwtXZVJsbCzmzp2L1q1b4+rVq9I5quPs7CydYDJSw3tbt25F8+bNcfr0aZHbN3cGgwHbt29H27Ztcf36dekco4mKisLXX3+Nvn374smTJ9I5Zu3y5cto06YN1q5dK51CRnTp0iX0798fLVq0wPbt27kQjZmIjo7Gzz//jIYNG2LRokV8jUNhan7t09QLBz19+hQdO3bE8ePHTXo7RFoSFhaGAQMGIDIyUjpFMXZ2dvjpp59QpkwZ6RQiItIwDrQTEREREREREREREZEmB9odHBykE+hfUlJSsGPHDjRu3BijR4/G33//LZ2keX/++Sd69OiBvn374v79+9I5mqDm4RnJ3SDv3LmDzz77DFOnTtXUyWmmsGPHDjRv3hwnTpyQTiGF6PV67N69G82aNcPXX3/N+wMzEhoainnz5uGTTz7B6tWrkZCQIJ1EFkzJHdojIiIwcuRI9OrViz9Tsujhw4fo0qULZs6cyZ8BRsTH5Mbz4sUL9OnTB9999x0XrsiAJ0+eoHPnzli5ciVSUlKkc7Lk+vXraNOmDfbu3SudYjGSkpIwY8YMDBw4kDtHW7irV6+id+/e6Nq1K06ePMkF9cxUbGwsli5d+ur5lJZ25pWk5sdZpnzNMSgoCD169ODzJyIjSkxMxODBg+Hv7y+dohgrKyvMnj0bNWvWlE4hIiKN40A7ERERERERERERERFpcqCdO7Sbjz/++AOtW7fGuHHj8PTpU+kc+o/Tp0+jTZs2mDNnDneBNTHuUmRcBoMBa9euRYcOHXD79m3Fb1+tgoODMWDAAEyaNIk7zKnckSNH0Lx5c4wZMwZ+fn7SOZSOsLAwzJo1Cw0bNsTWrVstfgCOZCi1Q/u5c+fQunVr7Nu3T5Hb04KUlBSsWbMGbdu2xb1796RzVEHNg1ZKPia/fv062rVrhzNnzih2m2qg1+sxb9489OvXz2J3DV67di26dOnC13fe0R9//IE2bdrgxo0b0imUSQ8ePMCAAQPQqVMnnD17VjqHMigyMhKzZs1C69at+e+mACcnJ+kEk4mIiDDJcZ8/f46ePXsiICDAJMcn0iKDwYDRo0fj6tWr0imK+vbbb/Hpp59KZxAREXGgnYiIiIiIiIiIiIiIAE9PT+kExan55ClLcfPmTXTv3h0DBw7k8IWZ0+l08Pb2RrNmzXDo0CHpHNVycHCQTjAZU53UmZ7Q0FAMGDAAM2bM4NC1iWzZsgWff/45Hj9+LJ1CRnbr1i10794dQ4YM4SC7BQkJCcF3332Htm3b4vz589I5ZEGU2J1dp9Nh3rx56N27N4KCgkx+e1r08OFDdOjQAdu2bZNOsXhqXvxOqcfkO3bsQNeuXfn9ngVnzpxBly5dLOrvMC4uDkOHDsWMGTO403EWBQcHo1u3blwAxkKEh4dj6tSpaNWqFU6cOCGdQ+/owYMH6N27N4YPH47Q0FDpHNVS8+9kTLFDe1hYGHr27MnXZoiMbO7cuTh48KB0hqL69++Pnj17SmcQEREB4EA7ERERERERERERERFB3ScSpUfNg6PmLiYmBtOmTUOHDh1w4cIF6RzKhKCgIAwfPhyDBw9GWFiYdI7qqPlnsZID7b6+vmjVqhVOnjyp2G1q1e3bt9G2bVv88ccf0ilkBC9evMCYMWPw2Wef8f7Zgt25cwc9evTAsGHDEBwcLJ1DFsDUA+2BgYHo1KkTVq5ciZSUFJPeltYlJCRgwoQJGDduHIdJs4AD7e8uJSUF33//PcaNG8dFpYzg3r176Nixo0UsAPhy4O7333+XTlGNhIQEjBw5EsuWLZNOoXQYDAZs27YNTZo0wcaNG6HX66WTyAgOHTqE5s2bc0EJE1Hz72SioqKMejydTodhw4bh4cOHRj0ukdb5+PjA29tbOkNRbdu2xahRo6QziIiIXuFAOxERERERERERERERwdraWtUnE6XFzc1NOkGTDh48iGbNmmH9+vUcaLFgR48eRYsWLXD06FHpFFVR8/CMKXYpSsu2bdvQr18/vHjxQpHbIyA2NhaDBw/GunXrpFMoC3bu3IlPP/0Uu3fvhsFgkM4hIzh8+DA+/fRTbNy4kY+56I1MOdB+48YNdOjQATdv3jTZbdDrduzYgb59+yr2+EttnJ2dpRNMxpQD7Xq9Ht988w02bNhgstvQoqCgIHTp0gWXLl2STklXQEAAOnfujOvXr0unqNLChQsxa9Ys6Qz6Dz8/P/To0QMTJkzg/a0KRUREYOTIkRg+fDj/fY1Mza99GnugfcaMGWZ9/09kiU6fPo0pU6ZIZyiqbt26mDZtmnQGERFRKhxoJyIiIiIiIiIiIiIiAOreGTgtefLkkU7QlLCwMAwePBgjRozA8+fPpXPICF68eIHBgwdj/PjxiI2Nlc5RBTX/HDb1CcAGgwFz587FhAkTuCuagOTkZEyfPh3Tpk3jMLSFefLkCXr16oVvv/3W5Lu2kvJiYmIwdepUdOnShbu6UbpMNdB++PBhdO/eHSEhISY5Pr3Z+fPn0bFjRwQEBEinWBw1D1qZ6jF5UlIShg8fjr1795rk+FoXHR2NgQMHmuXiIHfu3EGnTp3g5+cnnaJqq1evxnfffcfnWmZi/fr1aNWqFS5cuCCdQiZ26NAhtG3blgt2GBEfZ2XMjh07sGnTJqMdj4iAu3fvYsSIEZr63UGFChWwaNEi2NraSqcQERGlwoF2IiIiIiIiIiIiIiICoO6TidLCgXbl/PHHH2jZsiV381ap7du3o3379njw4IF0isVT80C7KQdlExISMGLECPz8888muw3KmPXr12PcuHHcDdpCbNy4ES1btoSvr690CpnY1atX0a5dO2zevFk6hcyQKU5s9vb2xvDhwxEfH2/0Y1PGPXr0CN26deOgaSap+bURUwy0x8XFYeDAgXy+b2IxMTHo16+fWT3vvnv3Lnr06MGFSxSydetWzJgxQzpD0168eIEBAwZg2rRpSExMlM4hhTx9+hRdunTBunXrpFNUQc2vfUZHRxvlOHfu3MHkyZONciwi+sfz588xcOBAxMTESKcopkiRIlixYgWcnZ2lU4iIiF7DgXYiIiIiIiIiIiIiIgLwz45aWuHh4QF7e3vpDNWLj4/HpEmTMHDgQISGhkrnkAk9fPgQHTp0wOHDh6VTLJqaT+qMiooyyXHj4+PRv39/HDp0yCTHp8zbuXMnRo0apandbixNWFgYvvjiC0ydOhUJCQnSOaSQ+Ph4TJ48GYMGDUJYWJh0DpkRBwcHox5v3rx5mDNnDneRNROBgYHo1q0b7t+/L51iMdR8wr+xB9p1Oh2GDh2Ks2fPGvW4lLbw8HD07t0bAQEB0il4/Pgx+vbta5JFEih969atw6JFi6QzNOnixYto1aoVTpw4IZ1CAnQ6HaZPn47x48dDp9NJ51g0Gxsb2NnZSWeYhDFe+9TpdBg7dqymfldHZGpxcXEYNGgQAgMDpVMUkytXLqxatQqenp7SKURERGniQDsREREREREREREREQGApgaa8ubNK52gen5+fvj888+xZcsW6RRSSGxsLIYNG4a5c+ciOTlZOscicaA9c+Lj4zFgwABcuHDB6MemrNm3bx/Gjh3LYUYz5Ovri9atW+PYsWPSKSTk+PHjaNOmDf7880/pFDITxtyNev78+Vi5cqXRjkfGERISgp49e+LJkyfSKRZBzTu0G/MxucFgwLfffoszZ84Y7Zj0dsHBwejXr5/o7pJBQUHo3bs3d2YXsnTpUvj4+EhnaMr69evRq1cvLtZJ2L59O/r168fFPLLI2AtqmQtj7ND+008/4fbt20aoISIASElJwddff41bt25JpyjG1dUV3t7eKFCggHQKERFRujjQTkREREREREREREREMBgMiI+Pl85QjJeXl3SCqh09ehTt27fHvXv3pFNIwM8//4xhw4ZpapEMY1Hz8IyxT/aNj4/HwIEDOcxuxn777TfMmDFDOoP+ZdmyZejTpw+eP38unULCgoOD0a1bN2zcuFE6hcyAsQZK5s+fjxUrVhjlWGR8oaGh6NOnDwdQM0DNO7Qbc6B91qxZ+O2334x2PMq4R48eYdy4cSK3HRYWht69e+Pp06cit0//mDp1Kp8LK+DlTsnTpk2DXq+XziEzce7cOXTq1AnBwcHSKRZLrQt66nS6LL0efuPGDfz8889GLCKiGTNmaGpRT3t7e/z0008oXbq0dAoREdEbcaCdiIiIiIiIiIiIiIiQkJCgqV1U33vvPekEVUpJScGiRYswZMgQo+xIQpbr6NGj6NWrFyIiIqRTLIqah2diY2ORnJxslGMlJCRg0KBBOH/+vFGOR6azbt06Djeagfj4eIwYMQILFy5ESkqKdA6ZCZ1Oh6lTp+Lbb7+FTqeTziFBxlhQh8PslsHf3x99+/YV3dnZEqh1yAow3iJTa9aswZo1a4xyLHo3hw4dwurVqxW9TZ1Oh2HDhuHhw4eK3i697uW/hb+/v3SKasXExKB///7YtWuXdAqZoYcPH6JLly78HnxHal7Q810XD0pOTsb48eO5eAaREa1btw7r16+XzlCMtbU1Zs+ejQ8//FA6hYiI6K040E5ERERERERERERERJrbpa1MmTLSCaqTmJiIL7/8EkuXLtXU4giUvqtXr6Jz587cuS0TrK2tjbZLqrkxGAxGWegiJSUFX3/9Nc6dO2eEKlLCggULcOTIEekMzXr27Bk6d+6MgwcPSqeQmdq5cyf69etn1F17ybJkdaBk7dq1HGa3IHfv3sU333zD52xvoOaBdmMsMnXq1CnMnj3bSEWUFfPmzcOlS5cUu70ZM2Yoenv0ZhEREfj666+5MJEJBAcHo0uXLvD19ZVOITMWEBCArl27cpGPd6Dmx1rv+tqnj48P7t69a+QaIu06duwYfvjhB+kMRY0fPx7NmjWTziAiIsoQDrQTERERERERERERERGePHkinaAoDrQbV3h4OHr16oVDhw5Jp5CZefjwITp16gQ/Pz/pFIvBkzrfbM6cORyOtjAGgwGjR4/G/fv3pVM058aNG2jfvj1u374tnUJm7ty5c+jUqRMCAgKkU0hAVgbajx8/jpkzZxqxhpRw7NgxLFq0SDrDbNnb28PW1lY6w2Sy8pj82bNnGDVqFFJSUoxYRO9Kr9dj5MiRiImJMfltbd++HZs2bTL57VDmXLt2DQsWLJDOUJWnT5+ia9euHCylDAkODkbv3r25mGcmqfm1z3e5T46KiuJjcyIjunXrFr7++mtNPWcZNGgQunXrJp1BRESUYRxoJyIiIiIiIiIiIiIi+Pv7SycoxtnZGUWKFJHOUA1/f3906tQJV65ckU4hM/X8+XP06NEDjx8/lk6xCC4uLtIJJpPV3X+3bt2K1atXG6mGlBQbG4shQ4YoMmxD//D19UXPnj3x4sUL6RSyEA8ePECXLl3w4MED6RRS2LsOtN++fRsjR47U1EniarJ8+XIuEvQGah60eteB9qSkJIwYMQIRERHGDaIsCQ4Oxty5c016G9evX8eUKVNMehv07lavXs2dxI3E398f3bt319Tr5JR1QUFB6N27N0JDQ6VTLEZWFtQyd+/yOGvJkiUIDw83QQ2R9gQGBmLgwIGIi4uTTlFMu3bt8NVXX0lnEBERZQoH2omIiIiIiIiIiIiISFMn6pUqVQrW1vwViTE8ePAAnTt35u7b9FbBwcHo0aMHnjx5Ip1i9hwcHKQTTCY2NvadP/bMmTOYOnWqEWtIaX5+fvj++++lMzTh0KFDGDBgQJa+50ibgoOD0bVrV9y6dUs6hRT0LovpBAcHa+4kcbUxGAwYP348goODpVPMkpoHrd718cH06dNx/fp1I9eQMWzZsgWXL182ybEjIiIwbNgwJCUlmeT4lHUGgwETJkxAfHy8dIpFe/bsGbp3786dtumdPH78GH369OEifhnk7OwsnWAymR1o9/f3x6ZNm0xUQ6QtMTExGDBgAEJCQqRTFNOgQQO+3k5ERBaJZ2sREREREREREREREZGmhlbKlSsnnaAK9+/fR48ePTR1cghlTVBQEHr06IGAgADpFLOm5uGZdz2x98mTJxgxYgT0er2Ri0hpu3fvxr59+6QzVG3btm348ssvOXRE7yw8PBw9e/bk0KKGZHagJCkpCYMHD+YgtApERERgzJgxMBgM0ilmh4/JUztw4AC2bNlighoyBoPBgIkTJ5rk8d+ECRMQFBRk9OOScQUEBGDBggXSGRYrLCwMffr0QWBgoHQKWbC7d+9i5MiRSElJkU4xe2p+nJXZhYOWL18OnU5nohoi7dDr9RgxYgTu3bsnnaKYSpUqYcGCBbC1tZVOISIiyjQOtBMRERERERERERERaZxOp8O1a9ekMxRTu3Zt6QSLd+/ePfTo0QOhoaHSKWRhAgMD0b9/f0RGRkqnmC01n9T5LsMzSUlJ+PLLLzO9wxGZr0mTJnEI0kR27tyJiRMn8gR6yrLo6Gj07dsXf/31l3QKKSCzA+1z5szBzZs3TVRDSvP19cXatWulM8wOH5P/z4sXLzBlyhQT1ZCxPHjwAN7e3kY9po+PD37//XejHpNMZ/369bx/fgexsbHo378/Hj16JJ1CKnDixAnMmTNHOsPsOTg4SCeYTGYG2p89e4Y9e/aYsIZIO6ZMmYLTp09LZyjmvffew/Lly+Hk5CSdQkRE9E440E5EREREREREREREpHG3bt1CfHy8dIYi7OzsUL16dekMi3b//n307NkTL168kE4hC/Xw4UMMGTKEuweng8Mzqc2dOxe3bt0yQQ1JiY6OxtSpU6UzVGfv3r0YP348d9klo4mKikKfPn3w999/S6eQiWVmoP3o0aNYt26dCWtIwqJFixAQECCdYVb4mPx/Jk+ejPDwcBPVkDGtWrUKERERRjnWs2fPMHPmTKMci5SRkpKC6dOnS2dYlJSUFIwaNYoLAZBRrV69Grt375bOMGscaP/HypUruTs7kRGsXLkSPj4+0hmKyZ07N1atWgUPDw/pFCIionfGgXYiIiIiIiIiIiIiIo27cOGCdIJiqlatmukdCOl/goOD0a9fP4SFhUmnkIW7ePEixo4dy8HLNHB45n+OHTvGHUNV6siRIzh06JB0hmocPnwYY8aM4c7sZHTh4eHo3bs3nj17Jp1CJpTR50eBgYEYN26ciWtIQlxcHCZNmiSdYVb4mPwfe/fuxeHDh01YQ8YUExODlStXGuVYEyZMyNRQHpmHK1euYO/evdIZFmP+/Pk4duyYdAap0JQpU/Do0SPpDLOl5sdZcXFxGbpecHAwduzYYeIaIvU7cOAA5s+fL52hGDc3N3h7eyNfvnzSKURERFnCgXYiIiIiIiIiIiIiIo3bv3+/dIJiateuLZ1gsaKjo9GvXz8EBgZKp5BK7Nu3DwsXLpTOMDtqPqkzMwMRQUFB+Pbbb01YQ9K+//57DskYga+vL0aOHAm9Xi+dQioVEhKC/v37IyoqSjqFTMTFxeWt19Hr9Rg5cqTRdv4l83P69GkOQf6Lmh+TZ3SgPTQ0FN9//72Ja8jYNm7ciOfPn2fpGDt27MCZM2eMVERKmzt3LpKSkqQzzN7+/fvx888/S2eQSsXFxeHLL7/k92I61Pw4K6Ovc61bt45fH0RZdPXqVYwZM0Yziybb29tj2bJlKFWqlHQKERFRlnGgnYiIiIiIiIiIiIhIw+7du4fbt29LZyimbt260gkWKSkpCUOGDMG9e/ekU0hlVqxYwd2w/oMndf7j22+/5dCcyoWEhBhtB0mtevDgAYYPHw6dTiedQip3//59DBkyhCfcq1RGBtq9vb1x5coVBWpI0ty5c5GQkCCdYRb4mBz44Ycf+HjcAiUkJGDZsmXv/PHh4eGYPXu2EYtIaYGBgdiyZYt0hll7/PgxJkyYIJ1BKnfnzh3MmTNHOsMsOTg4SCeYTEYeZ8XHx2P79u0K1BCpl7+/PwYPHozExETpFEVYW1tj3rx5qFatmnQKERGRUXCgnYiIiIiIiIiIiIhIw/bs2SOdoJiSJUuiZMmS0hkWacKECTh//rx0BqmQwWDAmDFj4O/vL51iNuzs7KQTTCaju0Hu2LEDZ8+eNXENmYM1a9bg2bNn0hkW6cWLFxgwYAB3zSbFXLhwAVOnTpXOIBN420D7w4cP8dNPPylUQ5ICAwOxevVq6QyzYGtrK51gMhl5TH758mXs3btXgRoyhW3btuHFixfv9LFz5szhQgYqsHLlSsTHx0tnmKWkpCR89dVXmVpwj+hdbdiwgYtCpUHNCwfFxcW99Tp79uzhfS1RFkRGRqJ///4ICwuTTlHMxIkT0bhxY+kMIiIio+FAOxERERERERERERGRRsXFxWHnzp3SGYr57LPPpBMs0vr16zW18AEpLyoqCsOGDdPMbhpvo/XhmdDQUMyaNUuBGjIHiYmJmD9/vnSGxUlISMAXX3yBgIAA6RTSmG3btnHHTxV600C7wWDAxIkTkZSUpGARSfr5558RGhoqnSFOy4/JU1JSMH36dIVqyBR0Oh22bt2a6Y+7fv26pl4nVLOQkBBs3rxZOsMsLVq0CLdu3ZLOII1ISUnB+PHj+Vj6P7S+Q/v69esVKCFSp6SkJAwdOhSPHj2STlHM4MGD0aVLF+kMIiIio+JAOxERERERERERERGRRm3YsEEzK9jb2dmhVatW0hkW5/LlyxwsJUXcvn2bQxP/T8vDMwDw/fffIzIyUoEaMhf79u3DgwcPpDMsyqRJk3Dt2jXpDNKoadOm4erVq9IZZERvGmjfvHkzLl26pGANSYuLi4O3t7d0hjg7OzvpBJN526DV9u3bOeypAlu3boVer8/w9Q0GA2bMmAGDwWDCKlLS2rVrodPppDPMyvXr17FmzRrpDNKYhw8fYunSpdIZZsXGxkY6wWTe9jjr9OnTuH//vkI1ROozYcIEXLhwQTpDMR06dMCIESOkM4iIiIyOA+1ERERERERERERERBoUExODVatWSWcopl69evD09JTOsCjPnz/HiBEjePIrKWbr1q04ceKEdIY4NQ+0v+2kzqNHj+LgwYMK1ZC5SElJ4cndmbB161bs3r1bOoM0TKfTYeTIkYiKipJOISNxdnZO8/Lg4GDMmzdP4RoyB1u2bMGLFy+kM0SpeaD9TYtMRUdHY8GCBQrWkKkEBQXhyJEjGb7+3r17uWCNygQFBWHfvn3SGWYjKSkJ3377LZKTk6VTSINWr16NgIAA6QyzoebXPuPi4t74/o0bNypUQqQ+ixcvxp49e6QzFNOgQQNMmTJFOoOIiMgk1PuMgIiIiIiIiIiIiIiI0rVixQpERERIZyimXbt20gkWJSUlBV9//TVCQkKkU8yWg4MDypYtiyJFiqBgwYIoWLAgChQogGzZssHFxQVOTk5wcnKClZUV4uLiXv2JjY3F06dP8fjx41d/7t69m6Gdq7Vg/Pjx2Lt3L9zd3aVTxGh1eCY+Ph5Tp05VsIbMyf79+zF48GAUK1ZMOsWs/fXXX5g+fbp0BhGePXuGiRMnYtGiRdIpZATpDbRPnz6dj1E1Kj4+Ht7e3hgzZox0ihg1D1q9aZGpZcuWISwsTMEaMqWNGzeiadOmb71eUlISFzJQqTVr1qBNmzbSGWZh9erV3BWZxCQmJmL27Nn48ccfpVPMgppf+3zT46ygoCAu5kr0jnbv3o0lS5ZIZyimcuXKWLhwIWxsbKRTiIiITEK9r7wSEREREREREREREVGarl27pqnd2d977z00aNBAOsOirF69GhcuXJDOMCsODg6oVasWqlevjipVqqBMmTIZPvkue/bsyJ49+6u3K1SokOr9ycnJuHXrFs6fP48LFy7g4sWLiI+PN2q/pQgJCcHUqVMxf/586RQxWj2pc9WqVQgKClKwhsxJSkoKfvnlF3z//ffSKWYrKioKw4cPR2JionQKEQDg4MGD2LZtGzp06CCdQlnk4uLy2mWXLl3CoUOHBGrIXGzduhVDhgyBq6urdIoILQ60h4SEYNOmTQrXkClduHABT548QaFChd54vU2bNuHp06cKVZGS7ty5gytXrqBKlSrSKaKCg4OxYsUK6QyzZWNjg+LFi6No0aIoUqQIChUqhJw5c8LT0xOenp5wdnaGnZ0d7O3tYWtri4SEBCQkJCAxMRGRkZEICgpCYGAgAgMDcfv2bdy6dQsvXryQ/rTMzqFDh3Dp0iVUrVpVOkWcFh9nAf88vk5OTlawhkgdLly4gAkTJkhnKKZ48eJYvnw5HB0dpVOIiIhMRr3PCIiIiIiIiIiIiIiI6DUJCQkYPXq0pk6cGThwIKytraUzLMbdu3e52+b/c3BwQN26ddG0aVM0aNAgzWEfY7CxsUGFChVQoUIF9O/fH7GxsThw4AB27dqFy5cvw2AwmOR2zdW+ffvQuHHjDO0kp0ZqPqkzvYUanj9/rqmFVihtv/76K0aOHAkPDw/pFLM0efJk+Pv7S2cQpTJjxgzUqlUL+fLlk06hd2RlZQUnJ6dUlxkMBsycOVOoiMxFbGwsduzYgZ49e0qniFDzIlNxcXFpXr5ixQrNLqymZgcOHMDAgQPTfX9MTAyWL1+uYBEpzcfHR/MD7XPmzEn3Z58WWVlZoXz58vjkk0/wwQcfoFy5cq89HnwTZ2dnODs7AwDy5s2L0qVLv3adwMBAnDt3DseOHcPp06f59///5s+fz8VjoO7XPtMbaNfr9di2bZvCNUSW7+HDhxg6dCh0Op10iiLy5MkDb29vuLu7S6cQERGZlHqfERARERERERERERER0WsmTZoEPz8/6QzFFChQAC1atJDOsBhJSUn45ptvkJSUJJ0iytPTE127dkXXrl1FBitdXFzQvn17tG/fHv7+/li7di22bt2qqX+X6dOno3bt2prcEdLGxkY6wWTSG5BZuHAhT24mJCQkYNu2bRgwYIB0itk5cOAA9u3bJ51hEfLnz48yZcqgUKFCKFKkCLy8vODp6QkPDw84OTm92lUwKSnp1c6CCQkJePHixatdBQMDA/HgwQPcvn0bCQkJ0p+SWYuLi8N3330Hb29v6RR6R05OTrCyskp12a+//oobN24IFZE52bBhA7p3767JBeK09pg8ODgYPj4+AjVkam8baF+3bh3Cw8MVLCKlHThwAOPHj4ebm5t0iojbt29j79690hlmIU+ePOjatSvatGmD3Llzm/S28ubNi7Zt26Jt27ZISkrC0aNHsXbtWly9etWkt2vuLl++DF9fX9SsWVM6RZSaB9r1ej2SkpJgb2+f6vKjR48iJCREqIrIMoWFhWHAgAGIjIyUTlFE9uzZ4e3tjbx580qnEBERmZx6nxEQEREREREREREREVEqCxYswO7du6UzFDVgwABVnyBlbIsXL8bdu3elM8R4eXlh4MCB+Oyzz+Do6CidAwAoWLAgJkyYgL59+2Lp0qXYuXMn9Hq9dJbJPX/+HD/++CPGjRsnnaI4NQ/P6HQ66PX6VD+X79y5g127dglWkTnZtGkT+vXrp8nBufSEhoZi8uTJ0hlmq0iRIqhduzZq166NSpUqZXghGicnJ2TPnv2N19Hr9bh//z5u3LiB06dP49SpU+nutqZlp06dwq5du9C2bVvpFHoH/92NMyEhAQsWLBCqIXPz5MkTnDp1CvXq1ZNOUZyaH4ukNdC+bNkyJCYmCtSQqd2+fRt+fn4oUqTIa++LiYnBL7/8ongTKSshIQH79+9Hx44dpVNELFy4EAaDQTpDVN68eTFy5Eh8+umnIq+T29vbo1mzZmjWrBmuX7+OefPm4dy5c4p3mIvFixdrfqDdzs5OOsGkYmNjXxto58JBRJmTmJiIwYMHw9/fXzpFEQ4ODli6dClKlCghnUJERKQI9b7ySkREREREREREREREr2zatAnLly+XzlBUvnz5OFiTCffu3cPq1aulM0TY2Nige/fu2L9/P7p27Wo2w+z/ljdvXnz//ffYv38/qlWrJp2jiA0bNuDOnTvSGYpT8/AMgNd2O545cyZSUlKEasjcBAYGwtfXVzrDrEycOBERERHSGWYlV65c6N+/P/bs2YNDhw5h4sSJaNCgQYaH2TPK1tYWpUuXRocOHbBo0SKcO3cO3t7e6NChw2tDwFo3c+ZMfp1aKGdn51Rvr1mzBoGBgUI1ZI527NghnSBCzYtM/Xdw/dmzZ9i+fbtQDSnhwIEDaV6+du1azex4qXVa3aH86tWr+OOPP6QzxNja2mLQoEE4cOAAWrVqZRaLvlaoUAFr167FnDlzkDNnTukcEZcvX8aFCxekM0Sp/bXP/y4eFBgYiLNnzwrVEFkeg8GA0aNH4+rVq9IpirCxscH8+fNRtWpV6RQiIiLFqPsZARERERERERERERERYfny5Zg6dap0huK+/fbb13bCoLQZDAZMnjxZEzt//1fZsmWxbds2TJgwAa6urtI5b1W4cGGsX78e3377rVkO3htTcnIypkyZormdtNR+Uue/B2h8fX05vEyv2blzp3SC2di7dy+OHTsmnWE2ypYti7lz5+L48eMYNWoUSpcurejt29vbo06dOpg2bRpOnDiBMWPGoECBAoo2mKuIiAgsWrRIOoPewb8XZ4iKisKqVasEa8gcHTt2TJMLVlhZWUknmExKSgqSkpJevb1q1SrodDrBIjK1w4cPv3ZZXFwc1q1bJ1BDEi5duoTg4GDpDMUtW7ZMOkFMrly5sHbtWnz11VdmuRhXq1at8Ntvv2l2eG/t2rXSCaLUvHAQ8PpA+44dO7iYJ1EmzJ07FwcPHpTOUMykSZPQsGFD6QwiIiJFyS+3RkREREREREREREREJqHX6zFlyhT4+PhIpyiudu3aaNy4sXSGxdixYwcuX74snaG4du3aYcqUKRa38IGVlRV69eqFevXq4csvv1T1LuZXrlzBgQMH8Omnn0qnKEbtJ3X+e6B96dKlgiWpWVlZoXDhwihXrhyKFi2KwoULI0+ePPD09ISnpyccHBzg4OAAg8EAnU6HxMREREZGIjw8HCEhIXjy5AkeP36MO3fu4M6dO6/tfEkZd+TIEURHR8PNzU06RVRMTAxmzpwpnWEWihcvjhEjRpjVY7vs2bOjT58+6NmzJ7Zu3YrFixcjLCxMOkvU1q1b0bFjR8UXGqCscXFxefX/69atQ3R0tGBNah4eHihfvjyKFy+OIkWKoECBAsiRIwc8PT3h7OwMe3t72NraQqfTISkpCTExMQgPD0dYWBgCAgLw5MkT3L9/H7du3UJoaKj0p2OxdDod9u7di27dukmnKErtj8mTkpJgb2+PqKgoscWE8uTJg6pVq6JUqVIoXrw48uTJg9y5c8PJyQmOjo5ITk5+9b0dEhKCoKAgPHjwAPfu3cOVK1cQGBgo0m2Jbt++jfDwcHh4eLy6zMfHR3yxCnd3d1SpUgVlypRB8eLFkT9/fuTOnRuurq5wcHCAtbU1EhISEBcXh9DQUDx//hyPHj3C33//jStXruDRo0eaWwDvXaWkpODgwYPo2bOndIpi7t69ixMnTkhniChbtixWrlxp9juge3p6Ys2aNZg0aZLmFrY7duwY/P39UbBgQekUEWpfzDMhIeHV/xsMBuzatUuwhsiy+Pj4wNvbWzpDMcOGDUPHjh2lM4iIiBTHgXYiIiIiIiIiIiIiIhXy9/fHt99+i4sXL0qnKM7e3h4TJ06UzrAYERERmDt3rnSGomxtbTF27Fh0795dOiVLihYtik2bNuGrr75S9Um6CxcuRKNGjWBnZyedogi1n9Sp1+sB/LND3IULF0Rb8uXLh3r16qF27dqoXr06smXLlqGPs7W1hZOTE9zd3VG4cOHX3q/X63Hz5k2cOXMGJ06cwLVr14ydrmoJCQk4evQo2rRpI50i6scff0RISIh0hihnZ2cMGTIEvXr1gq2teZ7eYmNjgy5duqBVq1ZYunQpfvnlFyQnJ0tniUhOTsb06dOxfv166RTKBFdXVwD/LKIhvVOvk5MTateujdq1a+Ojjz5CoUKFMvRxLxedcXNzQ968edO8ztOnT3H27NlX981xcXHGTFe9AwcOcKBdZV7uyL5lyxZFvx/Kli2LZs2aoXHjxmk+jv43Gxsb2Nvbw9XVFXny5EH58uXRqFGjV+9/8uQJfv/9d+zbtw+3bt0ydbpFMxgMOH/+PJo2bQrgnwUNVq9eLdJSsGBBNG/eHI0aNULZsmVhZWX1xuu7uLjAxcUFuXLlwvvvv4969eq9et+LFy9w7NgxHDx4EGfPnuXut29x5MgRTQ20a2kY7t/KlSuH1atXI3v27NIpGWJvb48ffvgBzs7O2LBhg3SOYlJSUrBx40aMHTtWOkWE2h9n/Xug/dy5cwgICBCsIbIcp0+fxpQpU6QzFNOxY0cMHTpUOoOIiEiEef7Gj4iIiIiIiIiIiIiI3onBYMCmTZswd+5czZ6k37dvXxQpUkQ6w2IsWbIE4eHh0hmKcXJywrJly1CzZk3pFKNwcXHBsmXLMGPGDNWe+Pn48WP4+Piga9eu0imKUPtJnS+HZ3766SeR23d2dkarVq3QsmVLfPDBB28doHgXtra2qFSpEipVqoQhQ4bA398fv/76K7Zu3Yrg4GCj354aHT58WNMD7Xfv3sXGjRulM0RVrFgR8+bNs5gd61xdXTF69Gg0bNgQo0aNwtOnT6WTRFy4cAGnTp1CnTp1pFMog14OtG/YsAGRkZGK376VlRVq1aqFNm3a4JNPPoGzs7NJbid//vzo0KEDOnTogPj4eBw7dgxbtmwRX1zHUly5cgWhoaFmv9OrMal9kSmdTgedTqfIc0hbW1u0bNkS3bt3R9myZY123EKFCqFv377o27cvbt68idWrV+PAgQMcak6Hr6/vq4H2ffv2Kf68pHbt2ujTpw8++ugjoz0Hy5Ejx6uf7QEBAdiwYQM2b96capCQ/ufKlSuIjo6Gm5ubdIrJhYSE4MCBA9IZiitatCjWrFmT4cX6zMn48ePx4sULTf277dq1CyNHjoS9vb10iuJM8VqcOUlKSnr1/zt27BAsIbIcd+/exYgRI14thqt2DRs2xKRJk6QziIiIxKj7lVciIiIiIiIiIiIiIg25ePEiunTpgqlTp2p2mL1kyZIYNGiQdIbF8Pf3x5YtW6QzFOPo6KiqYfaXbGxsMHHiRAwbNkw6xWSWLl2qmZ9raj+pMzk5GX/++SfOnj2r6O3mzZsX48ePx6lTpzBlyhRUrVpVsb/rggULYsiQITh27BjmzJnDRVcy4MyZM5r5nk/L1KlTNXMCZ1r69OmDTZs2Wcww+79VqVIFu3fvRpMmTaRTxCxYsAAGg0E6gzIoW7ZsiIuLwy+//KLo7drb26NLly44cOAAVq1ahZYtW5psmP2/nJyc0Lx5c6xfvx579uxBkyZNVP/4K6tSUlLw+++/S2coSu0D7SkpKdi/f7/Jh5pbtmyJgwcPYubMmUYdZv+vcuXKYf78+fjtt99U93zfWM6dO/fq/5X8mV+9enVs27YNq1atQq1atUz287ZAgQIYO3Ysjh49is8++4w/19Og1+tx6tQp6QxF+Pj4vFpMTyucnZ3x008/WeQwO/DP/e7s2bNRuXJl6RTFRERE4MSJE9IZItS+mGdiYiIAICYmBkeOHBGuITJ/z58/x8CBAxETEyOdoogPPvgA8+fPV/3PQiIiojdR9yuvREREREREREREREQacOXKFfTq1QvdunXDlStXpHPEODo6Yv78+XB0dJROsRjz58/XzAme9vb2WLJkiapPbh86dCh69+4tnWESoaGhWLt2rXSGItR+4n1KSoqiu7N7eHjgu+++w+HDh9GjR49XO9FKsLW1RatWrbBv3z589913cHFxEWsxdwkJCZoZtvivo0eP4tKlS9IZIuzs7DBz5kyMGTMGtra20jnvLFu2bFi0aBF69uwpnSLi1q1bOHjwoHQGZZCLiws2bNiA8PBwRW7P2toaHTt2xJEjRzBp0iQULVpUkdtNT+nSpfHjjz9i+/btJh22VQOtDeNo4TG5KZ9fvffee9i0aRPmzp2r6AI1xYsXxy+//IKZM2fCyclJsdu1BH5+fggMDISvry/u3Llj8ttzd3fHggULsH79elSoUMHkt/dSzpw5MWPGDGzYsAF58uRR7HYtxcmTJ6UTTC45ORk+Pj7SGYqbNm0aihUrJp2RJfb29pgzZ46mXivZtWuXdIIItQ9xvvx9y+jRoxEfHy9cY96mTZuGUqVKoXz58ggLC0v1vp07d6JUqVIZ/rNz504AwPnz51GqVCkMHz4cABASEoJy5cqhevXqrxYb0JJPPvkkw3+HY8eOBfD632F6Xv4bzZo169VlAQEB6R6/dOnSqFq1Kjp16oSNGzciOTkZcXFxGDRoEAIDA03692AuSpQogWXLlsHBwUE6hYiISJTl/gaQiIiIiIiIiIiIiEjDYmJisH//fuzYsQN//vmndI5ZGDduHEqUKCGdYTFu3ryJAwcOSGcowsrKCvPmzUOdOnWkU0xuzJgxiIqKwo4dO6RTjG7t2rXo1auX6gcT1D4807NnT0RERJj8dqysrNC2bVuMHj0aHh4eJr+9zLC1tUXXrl3RoEEDTJw4EadPn5ZOMkunTp3S3C7XKSkpWLBggXSGCEdHRyxduhS1atWSTjEKKysrjBs3Dp6enpr8N126dCmaNm2q+vs0NVi9erVit1W2bFlMnjxZ0cHGjCpXrhx8fHywatUqLFmyBElJSdJJZufixYtITEzUzIn3av/51bp1a0RFRZnk2O3atcPEiRPh7OxskuNnRNu2bVGuXDkMGzYMjx49EuswNy1atIBerzf57dSqVQs//PADvLy8TH5b6alatSp27dqFUaNG4cyZM2Id5ubcuXPSCSZ36tQpBAUFSWcoql69emjevLl0hlEULFgQ48aNw/jx46VTFHHy5EmEh4eb3etWpmZtre79GF8OtN+9e1e45H/s7OxQokQJvP/++yhcuDAKFiyI3Llzw9PTE/Hx8WjXrh3KlCmDnTt3QqfTITk5Gc2aNUNgYCB2794NAIiOjsaLFy8QGhqK0NBQBAQE4MaNGwgJCUFcXFymm+Li4rB7927kzJkToaGh2LlzJ/r16/fq/TVq1MCiRYtSfcypU6ewfft2NG3aFM2aNUv1vvLly6d5O7ly5UKjRo2wf/9+HDhwAG3atMl0qyX77rvvkCNHjldvBwUF4YcffkDx4sUxbNiwVNfNnz+/0W63YMGCGDVqVKrL9Ho9AgMD8euvv2Lq1Kk4evQo7O3tcevWLaPdrjnLmzcvvL29kT17dukUIiIicRxoJyIiIiIiIiIiIiKyEHFxcTh37hwOHTqEQ4cOcXeHf2natCk6duwonWFR5s6dC4PBIJ2hiH79+qFx48bSGYqwsrLC999/j5CQENXtvBUeHo6tW7eiV69e0ikmpfbhGSWG2YsVK4YpU6agWrVqJr+trMiXLx9WrVqFnTt34vvvv3+nkz/VTIuDJ7t378bff/8tnaE4JycnrFy5EtWrV5dOMbpBgwbB2toa8+bNk05R1L1793D8+HF8/PHH0ilkBlxcXDB8+HB0797drHdjtLW1xcCBA9GwYUN88803mjmpPqMSExNx8eJF1K5dWzqFjMAUw+wuLi6YMmUKWrZsafRjv4sSJUpgx44dGDNmDH7//XfpHLMQExNj0uPb2dnh66+/Rq9evcziea2npye8vb2xaNEiLF++XDrHLAQGBuLJkycoVKiQdIrJvBy81ApHR0dMnDhROsOo2rdvj99++00TCzDodDocP34c7dq1k05RlDncR5iSXq9HUFAQnj59KtZgZWWFSpUq4erVq3B1dYWvry/s7e3TvG5AQMCrj7Gysnp1vZcLDxQqVAguLi5vvL3g4GDcu3cPN2/exMKFC2FnZwfgf8P9afn1118RHR2NMWPGYP78+diyZQv69u376usjf/78rw1Yh4aGAgCKFy+Opk2bvu2v4ZWuXbti//792LJli+YG2uvVq4cCBQq8evvevXsA/nmclJm/w8zKli1busfv06cPevfuranXft3d3eHt7Y08efJIpxAREZkFdS9xRURERERERERERERkwfR6PW7fvo1Vq1ahV69eqF69Or744gvs3r2bw+z/UqRIEUybNk06w6JcuXIFvr6+0hmKqFGjBr766ivpDEXZ2Nhg1qxZoruhmcqaNWtUv2Om2k/qNLXOnTtj9+7dZj/M/m/t2rXDhg0bkDt3bukUs/Ls2TM8fPhQOkMxSUlJWLx4sXSG4mxtbbFo0SJVDrO/NGDAAHTp0kU6Q3EcHCPgn13Zf/vtN/Tq1cush9n/rVixYti4caNmFsTKjNOnT0snKIaPyTMnd+7c8PHxMZth9pdcXFywcOFCkw7r0D+cnZ2xbNky9O7d26y+f6ytrfHVV19p7nWhNzl//rx0gsnExMTg2LFj0hmK6tatGwoWLCidYXSjRo0yq58lpnT06FHpBMWp/d82JSUFv/76q8hiwtmyZcP48eNx4sQJbNmyBcA/r7ukN8xuLF5eXqhTpw569OgB4J/HhleuXMH27dsxadIktGvXDiVLlkz1nHDTpk1wdHREs2bN0Lx5c/j7++PUqVMm6atatSpKlSqFq1evvhroJjk2NjaaGux2dHTEsmXLULx4cekUIiIis8GBdiIiIiIiIiIiIiIiMxAREYEbN25gx44dmDp1Kj7//HNUqVIFbdq0wezZs+Hr6/vG3Qy0KleuXPD29oabm5t0ikXRyoBRrly5MH/+fIsZnjEmT09PVX7uQUFB2LNnj3SGSan9pE5Tsbe3x/Tp0zF58mSTn6RpCmXLlsW2bdtQqlQp6RSzopXFVwDAx8cHz549k85Q3OTJk1GvXj3pDJObOHGi5nYrv3btGi5evCidQYJat26NzZs3v7arniVwcnLCjz/+iL59+0qnmBUt7JT6Eh+TZ1zBggWxadMmsx3QsLW1xbx58zjUbkIeHh5Yu3Yt6tSpI52SrkGDBuHLL7+UzjALV65ckU4wmcOHDyMxMVE6QzGOjo7o06ePdIZJlC9fHk2aNJHOUMSZM2eQkJAgnaEotT/O2rt376thcqXUrFkTAPDJJ5+gR48eZrHQrb29PcqXL48uXbrghx9+wG+//YZx48YBAC5duoS7d++iadOmcHV1Rfv27QH8M+RuKi8XGty6davJboMy5ujRo/j111+lMxRhY2ODBQsWoEqVKtIpREREZsVWOoCIiIiIiIiIiIiISC30ej10Ot2r/+p0OiQlJSE2NhYRERGv/kRGRiI8PBxPnz6Fv78/AgICEB0dLZ1vcVxcXLBy5UpV7kJjSrdv38aJEyekMxQxYcIE5MyZUzpDTNWqVTF8+HAsWLBAOsWoVq9ejQ4dOkhnkBnJkycPFi9ejAoVKkinZEmePHmwadMmDBw4EJcuXZLOMQvXr19H165dpTNMTq/XY/Xq1dIZiuvcubNmfp5bW1tj9uzZaNu2Lfz9/aVzFLN+/XpUq1ZNOoMUZmtrizFjxrzanc9SWVlZYfTo0ciTJw+mT58unWMW/v77b8THx8PJyUk6xeTUPmhlLMWLF8fq1avNYmjqTV4OtcfGxpps50+typMnD3755RcULVpUOuWtvvjiC8TFxWHlypXSKaJu3rwpnWAyhw8flk5QVIcOHZAjRw7pDJMZPnw4Dh48KJ1hcvHx8fD19UWDBg2kUxSj9sdZSj7WsLa2RpMmTTBq1Ch88sknit3uu3r5b79x40YAePWaUOnSpVGhQgWcOHECz549Q758+Yx+261atcLcuXOxZ88ejBo1ShPPaczRzZs3MWrUKBgMBukURUyZMkVzC1wSERFlBAfaiYiIiIiIiIiIiCjTnj59yh1ESZSdnR0WL16MMmXKSKdYHK3szl63bl3uwAagf//+OHDgAO7cuSOdYjQPHz6Er6/vq51n1EbtJ3UaW9GiRbFu3Trkzp1bOsUoXF1dsWzZMnTt2hX37t2TzhF37do16QRF7N27F0+fPpXOUFT58uVf7cylFW5ubpg/fz66dOkCnU4nnaOII0eOIDAwEHnz5pVOIYXY29tjyZIlqFevnnSK0fTo0QPh4eFYunSpdIo4vV6PW7duoWrVqtIpJsfH5G+XP39+rFu3zmKGKW1tbTF37ly0a9dOc4+7TMXNzQ0///yzRQyzv/TVV1/hxo0b8PX1lU4R8+DBAyQkJMDR0VE6xahiY2Nx9uxZ6QxFde7cWTrBpIoVK4bq1avjwoUL0ikmd+7cOU0NtFPWFS1aFHXq1MG6devQp08f6ZxMCQkJwe+//45ixYqlel7x+eef4/r169i6dSu++uoro9+us7Mz2rRpg/Xr12P//v347LPPjH4b9D8pKSmIiopKddmzZ8/Qr18/xMXFCVUpa8SIEZpZyJOIiCizrKUDiIiIiIiIiIiIiIiIMsPW1hYzZ85ErVq1pFMsjp+fnyZ2K3JwcMB3330nnWEWbGxsMHHiROkMo9u0aZN0ApkBtQ2zv5QtWzZ4e3ubZDciS+Pn54fIyEjpDJMyGAzw9vaWzlCUo6MjZs+eDXt7e+kUxVWoUMEkJ2abq+TkZGzevFk6gxRib2+Pn376SVXD7C/xRPT/0cpiM/Rmrq6uWLFihcUMs7/k7u6OhQsXws7OTjrF4tnZ2WHJkiUoWbKkdEqmWFtbY/78+fDy8pJOEZOcnKyqRQ9fOnXqFBITE6UzFFO+fHkUK1ZMOsPk1D60/9L58+elExTFhYPenbW1Nfr37489e/bg6tWrKFGiBCpUqCCdlSlbt26FTqfD559/nury5s2bw8XFBdu3bzfZIoAvf6Zs3brVJMen/7l9+zaqVauW6k/r1q0RHh4unaaIzp07Y/DgwdIZREREZosD7UREREREREREREREZDEcHR2xZMkStGjRQjrFIm3YsAEpKSnSGSY3YMAAFCxYUDrDbFStWhWtWrWSzjCqY8eOITg4WDqDBKl1mP0lLy8veHt7w9XVVTpFlMFgwI0bN6QzTOro0aP4+++/pTMUNXLkSLz33nvSGWJ69eqFMmXKSGcoZufOndDr9dIZZGIvh9nr1q0rnWIyU6ZMUfXnl1EcaCcbGxssXLgQJUqUkE55JxUqVMDo0aOlMyyalZUVZs6ciQ8//FA65Z14enpi/vz5mh6ovHXrlnSC0Z08eVI6QVFt2rSRTlBEo0aNkDNnTukMk7t79y4iIiKkMxSj5Z+/WdWoUSOMGjUKjx8/xo0bN4yyy7jBYADwz2M8U9Pr9fDx8QEABAQEYPHixa/+rFq1Crlz50ZoaCh+//13k9x+sWLFULNmTVy7dk2Vi7sYS0a/R19+7Vhbvz6SVqRIEaxbtw7r1q3DmjVrUK5cOaM2mrMmTZpwwW0iIqK34EA7ERERERERERERERFZhGzZsmHVqlVo0KCBdIpFio2Nxa5du6QzTC579uzo1auXdIbZGT16NFxcXKQzjEav13MnFQ0rVKiQqofZXypWrBjGjx8vnSFO7YNza9eulU5QVJkyZdCtWzfpDFE2NjaYPHmyZk7iDwkJwalTp6QzyIRsbW2xZMkS1Q9729jYYObMmRa3I7WxXb9+XTqBhI0dOxZ16tSRzsiSbt26oWzZstIZFqtXr14Wv9Bk1apVjTIEaKnUONB+9uxZ6QRFNW7cWDpBEXZ2dvjkk0+kM0wuJSUFly5dks4gM1axYkWUL18eFy5cgE6nw44dO2BnZ4fWrVu/8eM8PDwQGRmJhISEdK/zcsdsJRaPOHr06KtFatevX48lS5ak+vPo0SMAwKZNm0zW0LVrVwDAli1bTHYbls7DwwMA3rqg8MuvnVy5cr32PhcXF9SoUQM1atTAgQMHcPPmTeOHmqFq1aph7ty5aQ75ExER0f/wnpKIiIiIiIiIiIiIiMxerly5sGHDBlStWlU6xWLt2bMHMTEx0hkm16NHD83vaJyWXLlyoXPnztIZRrV9+3akpKRIZ5DCnJ2dsXTpUtUPs7/Url07zZyonh41D849ePAAFy5ckM5QjJWVFSZOnKjIrl/mrmLFiujQoYN0hmJ27NghnUAmNHbsWNSrV086QxE5cuTAtGnTpDNEBQYG4vnz59IZJKROnTro0aOHdEaWWVtbY+LEiZpZXMaY3n//fYwcOVI6wyi+/vprZM+eXTpDhNoG2h88eIDAwEDpDMWULFlSM6+JANDEQDsAzQx7UuY1adIE69atQ+fOnREeHg5fX1/s27cP9evXh6en5xs/tmzZsjAYDG9cLPLlgiCVKlUyZnaaNm7cCADYsGED7t69m+af999/HxcvXsTff/9tkoaPP/4YefPmxf79+01yfDUoVKgQXF1d8ffff7/xd4ovv3YqVqyY7nVWrlwJHx8fozeao5IlS2LZsmWwt7eXTiEiIjJ7HGgnIiIiIiIiIiIiIiKzVrFiRfj4+KBUqVLSKRZt8+bN0gkm5+rqqoqT602lV69eqjqZJjg4GOfPn5fOIAVZWVlh1qxZKFGihHSKoqZOnZrmTjdaoeYd2rVw3/xvTZs2RZUqVaQzzMbQoUNVdb/8Jn/88QciIiKkM8gE2rVrh+7du0tnKOrjjz9Gx44dpTNEqXmxGUpf9uzZMX36dOkMo6lcuTLatGkjnWFRnJycMG/ePNU8fvH09MTw4cOlM0Tcv38fSUlJ0hlGo6VFwgCgdu3a0gmKqlmzJpydnaUzTE5tC02QcVSpUgULFy6Eo6MjmjVrBhcXFyxduhQhISH47LPP3vrxL39XMnPmTERFRb32/jt37sDb2xvZs2dH+/btjd7/bw8ePMD58+dRvHhxVKtWLd3rderUCYDpXjOzsbFBx44dERkZaZLjq4GDgwM6deqE2NhYzJw5E8nJya9dZ9euXThz5gyqVKmCypUrp3mcAwcOYP78+abONQv58uWDt7c33NzcpFOIiIgsAgfaiYiIiIiIiIiIiIjIbPXu3RsbN25Evnz5pFMs2oULF3Dv3j3pDJPr1q0bsmXLJp1htnLlyoW2bdtKZxjVnj17pBNIQYMGDdLkbuUeHh4YP368dIaY8PBwVe62FxcXh927d0tnKMbGxkazA0Pp8fLywueffy6doQidTocjR45IZ5CRlS9fHlOmTJHOEDFmzBjkzJlTOkPMX3/9JZ1AAiZOnAgvLy/pDKP66quvYGdnJ51hMcaOHYtixYpJZxhV586dUahQIekMxen1ejx8+FA6w2iuXLkinaCoWrVqSScoyt7eXhND/Bxop7S0b98e1tb/jPs4OzujefPmuHr1KnLlyoW6deu+9ePr1auHL7/8Erdv30azZs0wf/587Ny5Ezt27MCECRPQsWNH2NjYYPHixciRI0eaxzhy5AgOHjyY5p/g4OAMfy4vd2fv3LnzG6/XsmVLuLq6Ys+ePYiLi8vw8TPj888/52PAt/jyyy9Rv359bNu2De3bt8fSpUvx66+/YuPGjRg0aBDGjh2LEiVKYNGiRWl+fFxcHMaMGQODwaBwufLc3d3h7e2tuudKREREpsSBdiIiIiIiIiIiIiIiMjvu7u5YtmwZxo4dyxNLjGD79u3SCSZna2uLrl27SmeYvX79+sHGxkY6w2gOHz6MhIQE6QxSQJ06dTQ9DNusWTNUrFhROkOMn5+fdILR7d27F9HR0dIZimndujXee+896QyzM2DAADg4OEhnKOLgwYPSCWREHh4eWLJkiWp26c0sFxcXDBkyRDpDjBrvl+nNGjZsiJYtW0pnGJ2Xl5cqPy9TqFixIjp27CidYXQ2Njbo1auXdIYIf39/6QSj0dpAe4UKFaQTFFelShXpBJN78eIFgoKCpDPITJQtWxYAYGVlleryDh06AADatGmT4df4v/jiC2zevBm1atXC3r17MXnyZPzwww+4ceMGevXqhX379qFGjRrpfvzo0aMxYsSINP/cuHEjQw2xsbHYvXs3nJyc0Lp16zde18XFBa1atUJMTAx+/fXXDB0/s3LkyIEmTZqY5NhqYWdnhxUrVmDevHnImTMnNm3ahHHjxmHJkiWIiYnBxIkTsXPnTuTOnTvNj3/y5AkSExMVrlaek5MTVqxYobpFn4iIiEzNVjqAiIiIiIiIiIiIiIjo32rUqIGZM2dyV3YjiY+Px++//y6dYXJ16tRJ9+QZ+p9ChQqhfv36OHr0qHSKUcTGxuLIkSNo0aKFdAqZkJubG6ZPn/5qRyKt+uabb9CtWzfpDBGPHj1CzZo1pTOMSguLzbxkZWWFfv36SWeYJS8vLzRr1gy7d++WTjG5c+fOISIiAu7u7tIpZAQTJkxAnjx5pDNEff7551i7dq0mh7u1+DlrmZ2dHcaOHSudYTL9+vXDrl27NLF75LuysrLChAkTXhuqU4vPPvsMS5YsQVhYmHSKop48eSKdYBQhISEICAiQzlBMoUKFkC1bNukMxWllgb8HDx5o/jE2AZUrV8a6devSXDysQoUKuHv37muXFyhQIM3L/33MypUrZ6rj2LFjmbo+8M8welodLi4umVp8ZNKkSZg0adJrl3fr1u2tr43WqFHjjX8XL82bNw979+7NcJNalCxZMkN/Py+1aNEiU797cXNzQ9GiRfHo0aN3ybMotra2WLhwISpVqiSdQkREZHG0/Rt/IiIiIiIiIiIiIiIyGzlz5sTs2bOxbt06DrMb0dGjRxEXFyedYXLt27eXTrAYbdq0kU4wKi2eeKY1Y8aMgZeXl3SGuGrVqqFBgwbSGSLUNjj3+PFjXLt2TTpDMQ0bNuRORW/QqVMn6QRF6HQ6nDhxQjqDjKBBgwZcTAj/nLz+9ddfS2eIUNv9Mr1Z165dUbBgQekMkylWrBjq168vnWHW2rZtq+odoR0dHdG1a1fpDMWpZaD9r7/+kk5Q1Mtdm7WmbNmysLOzk84wOS0MgNKbeXl5YfHixWkOsxOZu6SkJAwdOlQzP8umTp3K5xFERETviAPtREREREREREREREQkytraGl26dMHBgwfRunVr6RzV+fXXX6UTTC5nzpw8cSQT6tevr6rdUc+ePauJRRu06sMPP0SHDh2kM8zGsGHDpBNEqG1wTgv3zf/Ws2dP6QSzVrlyZZQuXVo6QxEnT56UTqAscnNzw5QpU6QzzEbjxo1RqlQp6QzFxcbGIiQkRDqDFJA9e3YMHjxYOsPkunfvLp1gtlxcXDBy5EjpDJPr3LkzbG1tpTMUpZZdzbU20F6mTBnpBBEODg6aeM6kttc+KHNsbW3x448/IleuXNIpRO9kwoQJuHDhgnSGIkaOHInPPvtMOoOIiMhicaCdiIiIiIiIiIiIiIjEVKtWDT4+Ppg0aRLc3Nykc1QnLCwMZ86ckc4wudatW2vuxOOssLe3R9OmTaUzjCYxMRGnTp2SziATcHJywrRp06QzzErZsmVRuXJl6QzFqe2k7t9++006QTElS5ZEtWrVpDPMXvv27aUTFHH69GkkJydLZ1AWjBkzBl5eXtIZZkWLu/oC6rtvprR98cUXyJ49u3SGyX344YccHktH9+7dNfF3kyNHDnz00UfSGYpSyw7tt2/flk5QVNGiRaUTxJQoUUI6weS0sqsxpW3EiBGoVKmSdAbRO1m8eDH27NkjnaGIbt26YeDAgdIZREREFo1n9hARERERERERERERkeKqVauGIUOGoGbNmtIpqnbw4EHo9XrpDJP79NNPpRMsTtu2bbFlyxbpDKM5evQomjRpIp1BRta3b18ULFhQOsPsdO3aFVevXpXOUNTTp0+h0+lgZ2cnnZJl165dw+PHj6UzFNOpUyfpBIvQuHFjTJ8+HQaDQTrFpCIiInDt2jVUqVJFOoXeQdmyZTWz+EJmtGrVCnPnzkVUVJR0iqL8/Py4YInKeXp6okuXLtIZirCxsUHz5s3xyy+/SKeYFQcHB/To0UM6QzEtW7bEyZMnpTMU8+zZM+j1eotfIHLChAkYOnQo4uLiXv2JiYlJ9fbLP7GxsYiNjU3zfXFxcdDpdNKfzlsVKlRIOkGMFj73p0+fSieQkGrVqqFfv37SGUTvZPfu3ViyZIl0hiKaNm2K8ePHS2cQERFZPMt+JYKIiIiIiIiIiIiIiCxK9erVMXToUNSoUUM6RROOHz8unWByefPmRbly5aQzLE6lSpWQO3duPH/+XDrFKE6cOKGKE7Hpf9zd3dG7d2/pDLPUpEkTzJw5E6GhodIpitHr9QgICFDFbnT79u2TTlCMnZ0dWrRoIZ1hEby8vFCxYkX8+eef0ikmd/78eQ60W6iRI0fCyspKOsPsODk5oV27dpobhOUOourXpUsXODg4SGcopmXLlpr7Pn6bdu3aIUeOHNIZimnYsCGcnZ0RFxcnnaIIvV6PwMBAi19ELnfu3MidO7dRjpWUlJTmwHt6g/AvL0tvSD42NtboQ/KW/u+VFYULF5ZOMLng4GDpBBLg4OCAadOmwdraWjqFKNMuXLiACRMmSGcookaNGpgzZw6/V4mIiIyAZ3QQEREREREREREREZFJ2dvbo3HjxujSpQs++OAD6RzNSEhIwPnz56UzTO7jjz+WTrBYtWvXxs6dO6UzjCIiIgKXL1/mYhkqMmDAALi6ukpnmCV7e3u0b98ey5cvl05R1JMnT1Qx0H706FHpBMU0aNAA2bNnl86wGI0aNdLEQPvFixfxxRdfSGdQJlWvXh21a9eWzjBbXbp00dwgbEBAgHQCmZCDg4Nmdmd/qVy5cihSpAj8/PykU8yCjY0NunTpopnh7pfq1q2LgwcPSmco5tGjR5patCAjHBwc4ODgAA8PD6McT6fTpRpyj4+PT3P4/d+Xx8fHvxqS//flTk5OAKC578uXjLVwgTmLi4tDSEgIXFxcpFNMKiEhQTrBrAwYMAC5c+fW7Pc2mVZCQoLJvrb8/PwwZMgQoy/eYo5KliyJuXPnQq/XQ6/XS+cQERFlSUpKChITE5E9e3axzQI40E5ERERERERERERERCZRtGhRdOzYEW3atDHaSYCUcb6+vkhMTJTOMLmPPvpIOsFiqWmgHQBOnTrFgXaV8PLyQrdu3aQzzFqzZs00N9D+4sUL6YQsu3v3rqYGAFu1aiWdYFHq1auHOXPmSGeY3NWrV6HT6WBnZyedQpkwcuRI6QSzVrhwYbz//vu4ffu2dIpi1HC/TOlr1aqVJodc69Spw4H2/1etWjVER0dr6ucaABQpUkQ6QVE3btxQ/eCsubGxsYGbmxvc3Nze6eO19j35b1oZ9vX19UX+/PmlM0zK399fOsFseHl5oWrVqpr+3ibTun//PiIjI41+3KioKHz33XeIiooy+rHNTa5cuTBixAj+7CIiItUpUqSI2Ot/HGgnIiIiIiIiIiIiIiKjyZ49Oxo0aIB27dpxsFTYH3/8IZ1gcjY2Nvw6y4JatWrB2toaKSkp0ilG4evrK51ARjJ48GA4ODhIZ5i10qVLo0CBApoajlbD4NyxY8ekExTj7OyMOnXqSGdYlOLFi8PDwwPh4eHSKSYVFxeHv/76CxUrVpROoQxq0KABKleuLJ1h9ho2bKipQRQ13C9T+nr16iWdIOKjjz7C+vXrpTPMQs+ePfH+++9LZxhVcnIy7t27h5IlS8LGxibN6+TIkUNTC4e5uLiY7b9zRv69yHwo9e9lZ2en+p2A3d3dFfu+lPo+4+Jm/zN69GhUqFDhrdfjz0R6V8WLF0e+fPmMeszExEQMGDAAz58/N+pxzZG7uzt+/vlnFC5cWDpF8/hz0LLw38vy8N/MsmT13ys+Ph5+fn6iv4vnQDsREREREREREREREWVJ7ty58cknn6BRo0aoUaMGbG356wdzcPLkSekEk3v//fffeUcj+udknHLlyuH69evSKUbx119/ITIyEtmzZ5dOoSzw8PBAu3btpDMsQqNGjbBmzRrpDMWEhYVJJ2TZ0aNHpRMUU6dOHTg6OkpnWBQrKytUrVoVv//+u3SKyd24cYMD7Rakb9++0gkWoVGjRli8eLF0hmLUcL9MaatcuTKKFy8unSGiRo0amhiWfBsvLy/Ur18f1tbW0ilGlZycDOCfhZfSO+G7SJEiKF68OO7fv69kmpiYmBg4OztLZ6QpI/9eZD6U+vdyd3dHSEiIyY5vDhITExX7vpT6PuNrBf+oUKECWrRokaHr8mcivStHR0ej/kwxGAz49ttvVfM7pTdxdnbGzz//bLaL/2gNfw5aFv57WR7+m1kWY/17Sb7uo65XnIiIiIiIiIiIiIiIyORsbW1RoUIF9O/fH1u2bMHJkycxefJk1KpVi8PsZuLBgwd49uyZdIbJVapUSTrB4n344YfSCUaTkpKCc+fOSWdQFnXo0AH29vbSGRahYcOG0gmKsvSdYJ8/f46bN29KZyhGa1+fxlKtWjXpBEXcuHFDOoEyqGTJkpr5usyqUqVKaWrXtqioKM0P/apVy5YtpRPEuLi4cMEVAK1bt1bdMHtmfPTRR9IJiomIiJBOIMoUDw8P6QSTi46Olk4ghQwbNkw6gSjT5s6di4MHD0pnmJytrS0WLlyIChUqSKcQERGpknZfdSIiIiIiIiIiIiIiogyxs7ND5cqVMXDgQHh7e+PChQvYtm0bRo0ahcqVK8PKyko6kf7j4sWL0gmK4InmWVeuXDnpBKPy9fWVTqAssLGxQadOnaQzLEaVKlXg7u4unaEYSx9oP3v2LAwGg3SGIqysrFC7dm3pDItUvnx56QRFcKDdcnTt2lU6waLUq1dPOkExBoOBu7SrkK2tLZo1ayadIap69erSCeLatm0rnSCqRo0a0gmKCQ8Pl04gyhQtvAYSFRUlnUAKKF++POrWrSudQZQpPj4+8Pb2ls5QxLRp0zT1/J6IiEhp3CaFiIiIiIiIiIiIiIjSZWVlhYoVK6JEiRLInj074uLi4O/vj6JFi8LBwUE6j9Jx+fJl6QRFqG0YW4LaBue4Q7tlq1+/PvLnzy+dYTGsra1RuXJlHD9+XDpFEZY+NHf+/HnpBMWULVsWnp6e0hkWqWTJkrCysrKIxQ/s7Ozg4uLy2h9nZ+c0///fb7u5uUnnUwa4ubmhVatW0hkW5YMPPsC6deukMxQTFhYGLy8v6Qwyotq1a2v+Prxs2bLSCaLKly+P9957TzpDVJkyZaQTFMOBdrI0WtihPSYmRjqBFNC7d2/pBKJMOX36NKZMmSKdoYivv/5a8ws8ERERmRoH2smiJaekICwhTjqDiIiIiIhIMZ6OzrCxtpbOICIiIg0xGAy4dOkSLl26lOpya2trFCxYEO+99x5KlCiB999/H2XLlkWhQoW4Y7sZ0MJAu6OjIwoXLiydYfHy5cuHHDlyWPzOxy89evQI4eHhmjjBVY24C2zmcaDdcmhpoJ27s787V1dX5MuXD0+fPjX6sR0cHNIdMM/sYLqLiwvs7OyM3kjmpW3btnB2dpbOsChVqlSRTlCUWp5D0P+0bNlSOkGcloaZ0/Lxxx9LJ4jLly8f3N3dERERIZ1ichxoJ0ujhcem8fHx0glkYnnz5kWTJk2kM4gy7O7duxgxYgT0er10isn16NEDAwYMkM4gIiJSPQ60k8Xacfcavjy2E8/juBodERERERFpR25nVyz8uB0+K1VROoWIiIg0LiUlBY8fP8bjx49TDdK5urqiTJkyqFy5MipXroxKlSpxsFRhwcHBJhmCMjfFihWDjY2NdIYqlCtXDidOnJDOMJpr166hfv360hmUSXnz5sVHH30knWFxtDQ4Z8kD7f7+/pq4b36pevXq0gkWrWTJknj69CkcHR0zvfO5q6truu+zteUpQpQ57dq1k06wOLlz50aBAgUQEBAgnaIIS75vptfZ2dnxeRT+GWb29PTU7Nd3vXr1pBPMQpkyZXD27FnpDJPTwtA+qYsWFtXSwsCo1n3++ed8fk4W4/nz5xg4cCBiYtQ/r/Ppp59i3Lhx0hlERESawEfDZLG++N0HkYkJ0hlERERERESKeh4Xgy9+9+FAOxEREZmtmJgYXLhwARcuXAAAWFlZoXjx4vjwww/x0UcfoXr16nB1dRWuVLdLly5JJyiiWLFi0gmqUb58eVUNtF+9epWDGBaoUaNGsLKyks6wOOXLl4ednR10Op10isklJSVBp9NZ5Ans586dk05QjK2tLSpXriydYdF+/PFH2NrawtraWjqFNKxw4cJ4//33pTMsUpUqVTQz0M4dRNWlcuXKfL3m/5UpUwanT5+WzlBcrly5NL9D/UtaGWjnz3GyNJb4ekBmcaBd3WxsbPDZZ59JZxBlSFxcHAYNGoTAwEDpFJOrWbMmZs2axd9PEBERKYS//SIiIiIiIiIiIiIiIpMxGAz4+++/sX79enzxxReoUaMGunfvjtWrV+PRo0fSeap09epV6QRFFCpUSDpBNdS2OIBWvgfUpkmTJtIJFsnR0RGlS5eWzlBMUlKSdMI7ebnQjxaUKVMGzs7O0hkWzd7ensPsJI73y++uUqVK0gmKsdT7ZUpbnTp1pBPMhpYeX/9b3bp1OcTz/7SyqAt/jpOl0cJAuxYWLNSyOnXqwMvLSzqD6K1SUlIwcuRI3Lp1SzrF5N5//30sWbIE9vb20ilERESawd+AkcVa1uhz5HbmqrBERERERKQtuZ1dsazR59IZRERERO9Mr9fjwoULmDVrFpo2bYqmTZti0aJFePDggXSaavz111/SCYrgQLvxFC5cWDrBqG7cuIHk5GTpDMqEXLlyoUqVKtIZFqtEiRLSCYpJTEyUTngn169fl05QjJYGOYnUjAPt76548eLSCYrhIKS6cKD9f9T2HDmj6tWrJ51gNrTymhMHZ8nScKCdLF2LFi2kE4gyZMaMGTh+/Lh0hsnlzp0bK1asgKsrZ5KIiIiUZCsdQPSuPitVEW1KlEdYQpx0ChERERERkWI8HZ1hwx2aiIiISEUePXqEpUuXYunSpShVqhRat26NNm3aIEeOHNJpFuvu3bvSCYooWLCgdIJqqO1k/bi4ONy/fx+lSpWSTqEMaty4MXcjzoJixYpJJyjGEk/sjoyMxOPHj6UzFFO+fHnpBCLKovz586NcuXLSGRaLA+1kiXLmzKnZXcnTopVh5v+qXr26dILZUNvrJOmxxOdXpG1a2D3XYDBIJ5CJODg4oEGDBtIZRG+1du1arF+/XjrD5Dw9PTFmzBjkzJlTOoWIiEhzONBOFs3G2hq5uEs7ERERERERERERkSrcvXsXs2fPxoIFC9CgQQN06NABderUgZWVlXSaxfD390dMTIx0hiK8vLykE1TD1dUVnp6eCAsLk04xmtu3b3Og3YI0btxYOsGiaWmg3RIH527cuKGpE9I50E5k+bg7e9bkyJEDHh4eCA8Pl04xOUu8X6a01apVi6+9/IsWB9qLFCkCDw8P6QyzkT17dmTPnh2RkZHSKSZlMBig0+k0ses1qQPvq8iS1a1bl7tAk9k7evQoZs6cKZ1hcs7Ozli+fDn0er10ChERkSZxmXsiIiIiIiIiIiIiIjIrOp0Ohw8fRv/+/fHpp59i06ZNiI+Pl86yCFrZnd3Kygq5cuWSzlAVte0+dvv2bekEyiBHR0dUqVJFOsOicSdY83b9+nXpBMW4uLigSJEi0hlElEU1a9aUTrB4WllsxhLvlyltlSpVkk4wK3nz5tXELsD/VrlyZekEs6OVhQ34s5yISBncnZ3M3c2bNzFq1CikpKRIp5iUnZ0dfvzxR5QrV046hYiISLM40E5ERERERERERERERGbr4cOHmDJlCurXr48lS5YgOjpaOsms3blzRzpBEe7u7po7udzU1DbQ/tdff0knUAZVqlSJ389ZlD9/fjg6OkpnKMIShy1u3LghnaCYkiVLcsc8IgtnY2PDhWaMgAPtZGnKly8vnWBWrKysULBgQekMRXFRg9ep7XWS9Oh0OukEIiLVs7KyQt26daUziNIVGBiIQYMGIS4uTjrFpKysrDB9+nTUqVNHOoWIiEjTONBORERERERERERERERmLyIiAosXL0aDBg2wcOFCDranQys7tLu7u0snqI6Xl5d0glFpZXEHNahWrZp0gsWztrZG/vz5pTMUYYmDc1paYKNkyZLSCUSURWXKlIGrq6t0hsXTyiBsYmKidAIZgb29PUqVKiWdYXbU9hz5bTjQ/rrcuXNLJyjCEp9jERFZmrJlyyJXrlzSGURpiomJwYABAxASEiKdYnLffPMNWrduLZ1BRESkeRxoJyIiIiIiIiIiIiIiixEdHY1ly5ahYcOGWLt2LU+6/I8HDx5IJyiCA+3G5+npKZ1gVFFRUQgICJDOoAyoXr26dIIq5MmTRzpBEZZ2vx8dHY2goCDpDMVwoJ3I8nGhGePImzevdIIiuKuvOpQuXRr29vbSGWZHS0Nnzs7OKFGihHSG2dHKQDt/lhMRmd6HH34onUCUJr1ejxEjRuDevXvSKSbXu3dv9O3bVzqDiIiIwIF2IiIiIiIiIiIiIiKyQBEREZgxYwY+/fRTHD9+XDrHLBgMBs0M8HKg3fhy5swpnWB0f//9t3QCvYW9vT0qVqwonaEKWhloT0lJkU7IlPv370snKKpo0aLSCUSURVxoxji0cr9sMBikE8gIypcvL51gltT4HDk9xYoVg42NjXSG2dHK1wB/lhMRmR6fZ5G5mjJlCk6fPi2dYXItWrTAmDFjpDOIiIjo/3GgnYiIiIiIiIiIiIiILJa/vz8GDRqEwYMH49mzZ9I5ooKDg5GYmCidoQgXFxfpBNXJkSOHdILRPXz4UDqB3qJChQpwcHCQzlAFrQzOWRqtDbQXKVJEOoGIssDKygoffPCBdIYq8H6ZLEm5cuWkE8ySlnZoL1asmHSCWdLKQDsREZmWjY0Nn2eRWVq5ciV8fHykM0yuVq1amDlzJqysrKRTiIiI6P9xoJ2IiIiIiIiIiIiIiCze0aNH0bx5c2zatEk6RcyTJ0+kExTj5OQknaA6np6e0glGx4F28/f+++9LJ6gGB+fMk5YG2h0cHJAvXz7pDCLKgnz58iFbtmzSGarg5eXFk+XJYhQtWlQ6wSxpaZiZA+1p09KiBkREZDolS5aEq6urdAZRKgcOHMD8+fOlM0yubNmyWLx4Mezs7KRTiIiI6F840E5ERERERERERERERKoQFxeHKVOmoE+fPggMDJTOURwH2ikr1HiyPgfazV/x4sWlE1SDA+3mSUsD7YUKFeLwJpGFK1GihHSCatjZ2any8TWpU+HChaUTzJKWvoffe+896QSzpKWvASIiMp0KFSpIJxClcvXqVYwZMwYGg0E6xaQKFSqEn3/+GS4uLtIpRERE9B+20gFERERERERERERERETGdObMGbRp0wazZs1C/fr1pXMU4+/vL52gmJMnT+Lp06fSGaqSkpIinWB0HGg3fxxoNx53d3fpBErDo0ePpBMUw93ZiSwf75eNK3v27AgJCZHOIHojNzc3eHp6SmeYJTc3N+kExXCgPW1a+hogIiLTqVixonQC0Sv+/v4YPHgwEhMTpVNMytXVFatWrUKOHDmkU4iIiCgNHGgnIiIiIiIiIiIiIiLViYiIwKBBg9C3b1+MHDkSNjY20kkmp6WBdj8/P/j5+UlnkJmLiIhAWFgYBzTMGAfnjCdbtmzSCfQfer0eQUFB0hmK4UA7keXj/bJxcRCSLEGhQoWkE8yWq6urdIIi7Ozs+HWQDhsbGzg5OSE+Pl46hYiILFjZsmWlE4gAAJGRkejfvz/CwsKkU0wuNjYWYWFhfJxLRERkpjjQTkREREREREREREREqmQwGODt7Y3bt29j4cKFqh/209LQHFFGPX78mAPtZipXrlzcVdyI1H4fZ4kCAwORnJwsnaEYDrQTWT4OtBtX9uzZpROI3qpw4cLSCWZLKwPtuXPnhq0tTyNOj6urKwfayWwkJSUhNDQUYWFhr/6Eh4e/+v8XL14gKioKSUlJr/3R6XSv/l+v10t/KkSaYWtri/fee086gwhJSUkYOnQoHj16JJ2iCIPBgO+++w47d+7kY10iIiIzxHtnIiIiIiIiIiIiIiJStTNnzqBjx45Yvny5qk/WfvHihXQCkdl5+vQpKleuLJ1BaShWrJh0gqpwF1jz8/TpU+kERXl5eUknEFEWWFlZ8b7ZyHjfTJaAOxamT0sD7ZQ+FxcXhISESGeQhiQmJuLJkyd4/Phxqj9PnjxBYGAgDAaDdCIRZUKRIkVgb28vnUGECRMm4MKFC9IZirp79y7Wrl2Lvn37SqcQERHRf3CgnYiIiIiIiIiIiIiIVO/hw4fo1KkTVq1ahTJlykjnmARPsCV6ndYGSi1JwYIFpRNUxc7ODk5OTtw90Ixo7edPrly5pBOIKAs8PT3h7OwsnaEq2bJlk04geqs8efJIJ5gtR0dH2NnZQafTSaeYFBclejOtLGxAMsLDw3Hz5k3cvHkTN27cwO3btzm0TqQyJUqUkE4gwuLFi7Fnzx7pDBFLlixBs2bNkC9fPukUIiIi+hcOtBMRERERERERERERkSaEhYWhe/fuWL58OapVqyadY1QJCQmIjY2VziAyO1obKLUkHH41Pjc3Nw60m5GAgADpBEXxe5rIsvF72Pi4QztZAg8PD+kEs+bs7IzIyEjpDJPiQPububi4SCeQSiQmJuLPP//EjRs3Xg2wa+05I5EWFSlSRDqBNG7Pnj1YsmSJdIaYuLg4TJ06FcuXL5dOISJK5ZpfKL5ccxK3A8Lg7uKAj0rlxfedP0R+Ty6qRtrAgXYiIiIiIiIiIiIiItKMmJgY9OvXDytWrMCHH34onWM03J2dKG0caDdfHJwzPgcHB+kE+pfAwEDpBEXlzJlTOoGIsoD3y8Znb28vnUD0Vp6entIJZs3Ozk46weQ40P5mWvgaINNISUnBjRs3cPbsWZw7dw5XrlxBUlKSdBYRKYwD7STtxx9/lE4Qd/z4cRw5cgQNGzaUTiEiAgAkp6Sg04ID+DvwnwX0QqMTcD8oEkERcdg/vpVwHZEyONBORERERERERERERESakpCQgC+++ALe3t744IMPpHOMIjQ0VDqByCxxtyvzxcE547O15a//zYmWFpuxsbGBu7u7dAYRZQHvl42PQ5BkCTjQ/mY2NjbSCSbHgfY343Msyoz4+HicOXMGx44dwx9//IEXL15IJxGRMA60E5mH77//HjVr1oSLi4t0ChERTv717NUw+78dvvYEAS9iUCAHd2kn9eOrLURERERERERERESUafnz58exY8ekMyxKcnIydDod9Ho9kpKSoNfrodfrERcXh8jISERFRb36ExkZiefPnyMwMBBBQUEIDAxEdHS09KegKnFxcRgwYADWr1+PMmXKSOdkGU+QJEpbUFCQdAKlg4NzxsfBOfMSFhYmnaAYNzc3WFlZSWcQURbwftn4eL9MloAD7W+mhWFmDw8P6QSzpoWvAcoavV6PM2fO4LfffsPRo0cRFxcnnUREZiR//vzSCUSEf35P9OOPP+Lbb7+VTiEiwpbT99J9397LjzCocXkFa4hk8NUWIiIiIiIiIiIiIiIF2NjYZGlnp5iYGAQEBODBgwe4f//+qz9PnjyBXq83Yql2xMTEYMCAAfDx8UG+fPmkc7IkIiJCOoHILCUkJCA6Ohpubm7SKfQfHJwzPg7OmRctLTbD3dmJLB/vl42PQ5Bk7qytrZE9e3bpDLOmhe9jV1fu/PYmWXktl9Tt0aNH2Lp1K/bs2aOpxcyIKOPs7OyQM2dO6Qwi+n/r169HmzZt8P7770unEJGGJeqSsfP8g3Tf/+vFR+jzcRnY2/K5KKmb+l9xIyIiIiIiIiIiIiJSAVdXV5QuXRqlS5dOdXlSUhJu3LiBK1eu4PLly7h69SqHmzMhJCQEAwYMwJYtWyz6JN6YmBjpBCKzFRISwoF2M8QTOo1PCwM3lkRLQw0caCeyfDly5JBOUB0uNEPmLlu2bBzWfQstPL625NfClMCf5fRvKSkpOHLkCDZt2oRz587BYDBIJxGRGcuTJw+srKykM4jo/yUnJ+O7777D1q1bYW1tLZ1DRBp1+NoThMcmvvH9zl2WoeNHJbBueCPY8OcVqRS/somIiIiIiIiIiIiILJi9vT0++OAD9O/fH8uXL8e5c+ewb98+jBo1CpUqVeIJMxnw999/Y8yYMRZ9EiIH2onSFxoaKp1A/2FtbQ0HBwfpDNXhsIX5iIyMhE6nk85QDBcNIbJ8jo6O0gmqo4VBWLJs9vb20glmTwvfxxxofzMtfA3Q2yUlJWHr1q1o2rQphg0bBl9fX4t+HZmIlJEnTx7pBCL6j+vXr2Pz5s3SGUSkYZtP30v1dsXCOWFn8/po79azf2PjybuvXZ6ckoItp+9h9u7LeBYWg98uPUKjqbsxYPkxhMckpLrus7AY+Jz9Gyf/emrcT4LICPhqCxERERERERERERGRilhZWaF48eIoXrw4+vfvj+DgYBw5cgSHDh3C+fPnpfPM1pEjR7By5UoMHDhQOuWdxMbGSicQmS0OtJsfDs+YBneWMR9a2p0dAJydnaUTiCiLuNCM8fF+mcwdF0N6Oy0sEuni4iKdYNa08DVA6UtKSsLmzZvx888/IyQkRDqHiCxMjhw5pBOIKA0LFixA48aN4enpKZ1CRBoTk5CE3y49SnVZ/0Zl8evFRzh87clr19972Q896r+f6rKp2y5i+o6LAIBxm3xfXX4cwE3/Fzg0oTUOXH2MtX/cxu/X/JHy/wtx/dD1I3zTuoqRPyOid8dXzomIiIiIiIiIiIiIVMzLywtdu3bFunXrsH//fnTv3p27L6Vj0aJFuHTpknTGO+FAO1H6nj9/Lp1A/8GhOVK7qKgo6QRFcRCKyPLxvplIe7jIFFlZWfFxHFEakpOTsWPHDjRp0gQzZszgMDsRvRMOtBOZp+joaMyYMUM6g4g06NeLjxCfpH/1tq2NNdp/WBztaxZP8/rHbwYgOSXl1dv65BQsPXg93eNf+DsYuft4o8vCQzj055NXw+wAMHv35VTHIpLGgXYiIiIiIiIiIiIiIo0oVqwYJkyYgFOnTmHy5MkoUKCAdJJZSU5OxujRoxETEyOdkmmW2EyklBcvXkgn0H9weIbUTmsLzXAQisjy8b6ZSHu4Qzs5OTlxB3Ki/7hw4QLatGmDcePG4dmzZ9I5RGTBuPszkfnav38/zpw5I51BRBqz+fS9VG83rFAQObM5oWf90uhUq8Rr1w+PTcTVR/9bXOvig2CExya+8TZ0yWkPrf/3WETSONBORERERERERERERKQxzs7O6Ny5Mw4cOIAJEyYgZ86c0klm4+nTp5g+fbp0RqZxoJ0ofZGRkdIJ9B8cmiO109pAu5OTk3QCEWUR75uJtIff92RjYyOdQGQ2goOD8fXXX6N79+64d+/e2z+AiOgtONBOZN6mTp2KpKQk6QwiUrH4JD28j9zCyt9v4tHzKPx+3T/V+zvXKgkAsLG2xoYRTRC36QuUyuee6jrHbgS8+v+DV59kqefov45FJI0D7UREREREREREREREGmVvb4/u3bvj999/x4gRI+Ds7CydZBZ27twJX19f6YxMiY+Pl04gMlscaDc/Dg4O0glEJqW1gXZ+TxNZPn4fE2kPd2gnIvrH9u3b0bx5c+zdu1c6hYhUJFu2bNIJRPQG/v7+2L17t3QGEalUSooBbWbtw6CVxzH45z9QYug66P+1e7qTvS1aVSua6mPsbW3wcbmCqS47dO3Jq4879OfjDN22lRXQoFwB1CubP9XlxzjQTmaEA+1ERERERERERERERBrn7OyMwYMHY/fu3ahcubJ0jlmYPHmyRa3Mr9PppBOIzFZUVJR0Av0Hd4MktdPaQDu/p4ksHwdbibSH3/dEpHVBQUHo168fxo8fj+joaOkcIlIZNzc36QQieou9e/fiwYMH0hlEpEK//HEbR2/4p/v+Fh8UgZvT679X+aRCgVRvn7j1FB49V6LuxB24/PB5qvdVKZoLo1pVQfCqvvAZ2RT9PimD7zt9iPtLeuD379pgeLOKqa5/+s4zxCfps/BZERkPB9qJiIiIiIiIiIiIiAgAULhwYWzatAmjRo3S/GCSn58ffv75Z+mMDEtOTpZOIDJb3KGdiJTGgXYiIiIiIiLzdfz4cbRu3RqnTp2STiEileJAO5H50+v1mDp1qnQGEamITp+MXecfYMDyY2+8XufaJdO8vF6Z/LC2skp1WXySHmfvBsJg+N9lLg52ODWtPWZ2+wg53JzQ7sPiWD7wY3zbrioK58r2z7HKpj5Woi4ZZ+8GvuNnRmRcHGgnIiIiIiIiIiIiIqJXrK2t0b9/f2zbtg158uSRzhHl7e2N0NBQ6YwM4UA7Ufq4QzsRKS0uLk46QVHc4ZWIiIiIiCyBTqfDrFmz8MUXXyAiIkI6h4hUzMXFRTqBiDLg4sWL2Llzp3QGEalAUEQsKo3ajA7zDrzxeu4uDmhSqXCa7/NwdUSrakXfelsNyuWHg53NW2+navHcqS57067xREriQDsREREREREREREREb2mdOnS8PHxQcmSaa8OrQVxcXFYvHixdEaG6PV66QQis8WBdiJSmk6nk05QlI3Nm0+cIiIiIiIikhYREYE+ffpg9erVMPx7e0MiIhNwcnKSTiCiDJo9ezbCw8OlM4jIzDwLi8FXa06i5+LfcfVRyFuvv2Dvn7j7LOKt12tXo9gbh9GXDWiAIU3L4z2vbOlep1OtjJ3D80n5gqnePnYjIEMfR2RqHGgnIiIiIiIiIiIiIqI0eXl5YdOmTfjwww+lU8Rs374dAQHm/4s9DrQTpS8mJkY6gYg0Jjk5WTpBUdbWPPWEiIiIiIjMl5+fHzp27IgLFy5IpxCRRjg4OEgnEFEGhYeHY/bs2dIZRGRmBqw4jsUHrmPjqbtoN3sfYhKS3nj9E7eeZui4nWq/eRg9VzYnLOpTD/cW90CQd1/sHdcSkz6vjuZViqBqsdz4rkN1fP5RiQzd1sflCqR6+/LD5wiLScjQx76rlBQDLtwPxoOgSJPeDlk2/laRiIiIiIiIiIiIiIjS5ebmhp9//hk1a9aUThGh1+vh7e0tnfFWWhucI8qM5ORkJCW9+SQDIiJj0tpCMxxoJyIiIiIic3X9+nV07NgRfn5+0ilEpCEcaCeyLLt27cKlS5ekM4jITASGx+Lg1cev3vZ/EYNDfz5J9/rxSXr86Rea6rJyBT0xps0HqS7L6+GMemXyZbgjZzYnNK1UGBPbV8eesS1w7ofP8V2H6rC2tsrQx9csmQdO9rav3jYYgD9umm4zB4PBgE4LDuKjcdtQavh6rDh802S3RZaNv1UkIiIiIiIiIiIiIqI3sre3x+LFi1Gy5JtXi1arHTt24Pnz59IZb6S1wTmizEpIMO1q80RE/6a1hWY40E5ERERERObo0qVL6NWrFyIiIqRTiEhjONBOZFkMBgMmTZoEnU4nnUJEZuCPW68PfR+7kf4g+OWHz6FPTnn1trWVFU5Pb49Jn1dHzVJ5Xl0+p3tt2Cj4+xRHe1vUfj9vqsuOvuHzyKo/bj3FzvMPXr09btPZVH8vRC/xt4pERERERERERERERPRWbm5uWLlyJXLnzi2dorikpCRs3rxZOoOIsiA+Pl46gYg0RGsD7QaDQTqBiIiIiIgoFV9fX/Tr1w+xsbHSKUSkQTY2NtIJRJRJ9+/fx6pVq6QziMgMHL/59LXLTvz1+mUvnbsXlOrt8oVywNXRHva2Njg6qS0Of9cG9xZ3R6faym8g8Un5gqnePnrD32S3terorVRvR8Yl4eKDYJPdHlkuDrQTEREREREREREREVGG5M2bF8uXL4ednZ10iuK2bdtm1qvy8+QoojfjDu1EpCS9Xi+doKiUFO6wQURERERE5uP69esYPHgwFzgkIjFWVlbSCUT0DpYtWwZ/f9MNexKRrPtBEUhIevvvb47ffH0X8ztPwxHwIibN65//z0D7hyX/tyu7va0NPi5XAO95Zc9krXH8d6D9flAkHodEGf12EnXJOPjnk9cuP3rddDvCk+XiQDsREREREREREREREWVY2bJlMXjwYOkMxYWEhODw4cPSGeniQDvRm/EEZiJSktZ2LNfa50tERERERObrwYMH6N+/P+Li4qRTiEjD+DsbIsuUkJCAKVOmSGcQkZEZDAa0mbUXpYdvgFffVa/tqP5vj55H4dHztAe+j6Wxu7nBYMC5v1Mfr0YJr6wFG1HFwjmRw80x1WXHbhh/yPzQn48REZv42uXHbnKREHodB9qJiIiIiIiIiIiIiChTBgwYgLJly0pnKG7Xrl3SCemytbWVTiAya4mJr/8CnYjIVLR20nJycrJ0AhEREREREUJDQ9G3b19ERERIpxCRxllbc0yHyFKdOnUK+/fvl84gIiM6dO0J9l72AwDEJurw1S+nXruOwWDALf8XmLnzUrrHOZrGIPjjkGgEhqdeTOvfO7RLs7a2wsflCqS67NdLj/DrxYdYc+wvnLr9DM8j47K8cPHm0/fSvNz3bhBiE3RZOjapD89uIiIiIiIiIiIiIiKiTLG1tcUPP/yAzz77DDqddn75dPbsWbx48QI5cuSQTnmN1gbniDJLSz+riEie1u6XU1JSpBOIiIiIiEjjdDodhg0bhsDAQOkUIiIisnAzZsxA3bp14erqKp1CREaw+VTqYeuL94MRGhUPe1sbnPs7CAeu+GHvZb90d2Z/ae/lR3geGYfc2Z0BAPFJevRZeiTVdTxdHVAir7tR+7Pq4/IFsM33/qu3f7v0CL9depTqOm4ONni/4EOUzOeBkvk88GHJPKhfJj+sra3eenydPhn7rvil/b7kFJy68wxNKxXO0udA6sKln4iIiIiIiIiIiIiIKNNKlSqFnj17SmcoKjk52WxX5Nfa4BxRZnHYkoiUZGurrb0FuGgIERERERFJ+/7773HlyhXpDCIiIlKBkJAQzJ8/XzqDiIwkODLutcvy9FuFHL1X4tPpv2LxgetvHWYHgMi4JIzb6AvgnyHuzgsO4uRfz1Jdp2mlwrCyevsQuJI+KV/wrdeJTkzGhfvPseHkXXy35RwaT92NYatOZOj4V/1CEZeoT/f9Pmf+znAraQMH2omIiIiIiIiIiIiI6J30798fbm5u0hmK+v3336UT0qS1wTmizEpOTpZOICIN0dpCM0lJSdIJRERERESkYbt27cLWrVulM4iIiEhFNm/ejOvXr0tnEJER3A4IS/Nyg+HNH1etuBfaVn8v1WW//HEbp+88Q//lx7D3sl+q9+XO7oQpnT7MSqpJvOeVHUVzZ8v0x634/SauPgp56/VO3372xvevO3EH60/cyfTtk3pxoJ2IiIiIiIiIiIiIiN6Ju7s7unbtKp2hqCtXriA6Olo64zX29vbSCURmjTu0E5GStLbQTGJionQCERERERFplL+/P77//nvpDCIiIlKZlJQUTJo0iQsmE1m4kKh4PA2LzfD1C+RwxaDG5fDbty1xetpnWNSnLtyc7FJdp/53O7Hh5N1Ul2V3tsf+8a3eaXBcCZ+UL5Dm5TbWb95Nfuq2C2899pk7ganeblSxIBzsUi/8/MXK47jy8Plbj0XawIF2IiIiIiIiIiIiIiJ6Z126dIGdnd3br6gSOp0Op06dks54jbOzs3QCkVnT6/XSCUSkIVp6bARwh3YiIiIiIpKh1+sxatQoxMZmfECFiIiIKKP++usvrF+/XjqDiLLgT7+37zBerbgXJn9eA5dmd8SjpT2xpF99NKtcGDbW1sjn6YpJHWq88eOd7G2xZ2wLVCqSy1jZRvdJ+YKvXZYrmxMi1w3E7YVdsbBDacztUQufVimc6jq/XXr0xkF0g8GAM3dS79DetU4pLO1fP9VlCbpktJ97AKFR8e/+SZiQwWCQTtAUbS0LTkRERERERERERERERuXl5YWPP/4Yhw4dkk5RjK+vLz799FPpjFRcXFykE4jMGndoJyIlaW2hmYSEBOkEIiIiIiLSoNWrV+PPP/+UzrBIrq6uyJcvH/LmzQsvLy94enrCw8MDOXLkgLu7O5ydneHi4vLqj62tLWxsbGBra/vq/19KTk7Gn3/+iUqVKqW63NgWL16MJUuWmOz4REREaVm0aBGaNWsGLy8v6RQiegfX/ELf+P4f+9TF4KYV3nidoc0qYMuZe7j04PXBblsba/h83Qy1S+fLUqepNSj3+g7tQ5tVgKO9Ld7zyoaa73mgUqUK6PtJWRQfug4vov/3e585e65g81dNU32swWDA9ccvcPDPxwiNTv07otql86FI7my48vA5fjp449XlT0Kj0XnhIRwY3wq2NuaxR/eGk3cwd88VJOiSMatbLbSu/p50kiZwoJ2IiIiIiIiIiIiIiLKkefPmmhpov3DhgnTCa7Q2OEeUWcnJydIJRKQhWltohrshEhERERGR0vz9/fHTTz9JZ5g9V1dXlClTBqVKlULp0qVRunRpFCpUCNmyZZNOIyIisghxcXGYNm0aFi9eLJ1CRO/gz0fp79BeMq87BjQq99Zj2NpYw/uLT1BtzFbokv+3iLqVFbB2aEM0q1z4DR9tHnJmc0Lrau9hz8WHAIA87s74okn5167n5mSPkS0rY/wm31eXHfrzCfT//3mfvvMMv158hD0XH+JxSPRrH5/f0wWFc7kBAOb2qI0//UJx5k7gq/cfvxmAcZt8Mbt7LaN+fpkVk5CEYd4nsP7k3VeX9V12FPXL5Ud2ZwfBMm3gQDsREREREREREREREWVJ/fr14ezsjLi4OOkURfj5+eH58+fInTu3dMorHGgnIiIyHxxoJyIiIiIiMq3JkycjISHh7VfUGCsrK5QvXx61atVC7dq1UalSJdjaclyAiIiMy8rKCm3btsXu3buRkpLy9g+wcIcPH8bx48fRoEED6RQiSkdKigETt5zDmuN/ISZBBxtrK9hYWyM6PinN61tbWWFuz9oZ3im8XKEcmNyxRqpB7yV966NjrZJG6VfC8oENUCxPdkTFJWJIswrwdHVM83o96pVO9XlGxSeh9oTteBgcibCYxDfeRq3S+WBlZQUAsLO1wdaRTVF9jA+ehf/v90jzf7uKqsVy4/OPShjhs3q7hCQ9Dv75GDbW1mhSqRDuPA1Hl4WHcOdpeKrrRcQm4o+bT7lLuwL4DJWIiIiIiIiIiIiIiLLEwcEBVatWxcmTJ6VTFHPt2jU0atRIOuMVrQ3Obd68Gfny5ZPOIAvi4eEhnUBEGqK1+2UOtBMRERERkZJ+//13nD59WjrDrOTNmxdt2rTBZ599hoIFC0rnEBGRiuXPnx8zZ85E9erV4eDggM2bN0snKeL777/Hhx9+CCcnJ+kUIkrDH389xazdl996vVndPkJEXBI+LlcADcoVyNRtjG5dBfk9XXDuXhDafVgcH2fy46XlyuaUoZ3R83q4oGxBT9zyD3t12aUHzzN0G3XLpD6HI4+7C3y+boYGk3am2t1+2KoT+LRKYbg62mew/t31WXoUPmf/ztB1j97w50C7AjjQTkREREREREREREREWVarVi1NDbTfvHnTrAbatbZDu7u7O/LkySOdQURElCat3S/HxMRIJxARERERkUbo9XrMnTtXOsNslC1bFkOHDkX9+vVhbZ2x3SWJiIjeVZs2bTBx4kS4uroCAL788kscOHAAERERsmEKePr0KRYvXozRo0dLpxBRGi5nYODawc4GgxqXh4uj3TvdhpWVFbrVLY1udUu/08dbkk/KF0w10J4RRXNnQ7e6pV67/MOSebC4bz0MWnn81WUvohOw4vBNfN2qSpZb3+TvwIgMD7MD/wy0k+nxmSsREREREREREREREWVZpUqVpBMU9ddff0knpJI9e3bpBEXpdDrpBCIionS9PKFTKyIjI6UTiIiIiIhII3x8fODn5yedIa5UqVL46aefsHPnTnz88cccZiciIpPy8PDA4sWLMWvWrFSvfbq7u+PLL7+UC1PY2rVrcffuXekMIkpDcGTcW6/zbduq7zzMrjUfl09/9/nKRXNh0ufVcWVOJ+i2DsGVOZ3w27ctcW1e53R3XO/XsCyaVymS6rL5v/2J+CR9ptuuPgrBpK3n8dulR2+97vGbAW98fzGv1OfZ3H0WAf/Q6Ew3UeZwh3YiIiIiIiIiIiIiIsqy0qVLw8bGBsnJydIpirhz5450Qiqenp7SCYriQDsREZkzDw8P6QRFaWEHJiIiIiIikpeQkICffvpJOkOUnZ0dhgwZggEDBsDGxkY6h4iINKB+/fqYNm0acuXKleb7O3bsCB8fH7NbDNwU9Ho9Jk2ahM2bN8PKyko6h4j+JSQyPtXbnWuXxIBG5ZCckoLkFAMK53JD8TzuMnEWqF6Z/Gle/m27qvi+04epLqtQOCcqFM751mOOb18N+674vXo7ODIOq47ewtBmFTPcdedpOGqO2wZ9ckq6Pf/2x62n6b5v+KcVMb1LTRQauAbhsYmvLj92MwA9678PADAYDEjSp8DBjs+9jInLsRERERERERERERERUZY5OjqicOHC0hmKef78OWJjY6UzXtHa4BwH2omIyJzlyJFDOkFRUVFR0glERERERKQBO3bsQGhoqHSGmFKlSmH79u344osvOMxOREQm5+zsjClTpmDFihXpDrMDgLW1NSZMmKBgmayrV6/Cx8dHOoOI/uO/O7RXKJwTdd7Ph/plC+CT8gU5zJ5Jbk72qFkqz2uXf9Wi0jsfs3pxLzSqWDDVZev+yNxGEquO3no1zA4AP+y8hPGbfPEsLOa16xoMBvxx6/Ud2kvmdceOUZ9ifq86cLK3RYNyqXejP3bjn485+ddTFBiwBrn7eGPRvj8z1UlvxoF2IiIiIiIiIiIiIiIyikKFCkknKMrPz0864RWt7dCu1+ulE4iIiNLl6uoKBwcH6QzF6PV6REdHS2cQEREREZGKJScnY/Xq1dIZYmrXro0tW7agdOnS0ilERKQBlStXxu7du9GpU6cMXf+DDz5Aq1atTFxlPubNm4cXL15IZxDRvzz/z0C7V3YnoRL1aFejWKq3x7b9AJ6ujlk65siWlVO9fdUvBKFR8Wle987TcHwyZRcKDFiNiVvOISXFgOM3Xx9Qn7X7MgoN+gW1J2zH3F+v4H5QBADgr4AwPI9Mfexr8zrj1sKuaF39vVeXfVI+9ZD9wT8fIyouCR3nH0RwZBxiE3UYs+EsQtLppMzjQDsRERERERERERERERlFwYIF334lFXn8+LF0witaG2jnDu1ERGTutHbfrOVdEomIiIiIyPQOHjyIgIDXhxe0oEWLFli+fDmcnZ2lU4iISOXs7OwwYsQIbNy4EYULF87Ux37zzTdwcXExUZl5iYyMxMyZM6UziOhf/ju4nNudj52zakjTCuhetxTyuDujZ/3S+K5D9Swfs+77+eHsYPvqbYMB+OPW09eud/nhc9T7bgdO3HqKoIi4f3Zi3+yLP/3S/13UuXtBGLvhLEoP34A6E7djw8m7qd5fKKcbyhTwhJWVVarLG1dKvXHHi+gEdF10KNUAuz45BQ62Npn6XCl9HGgnIiIiIiIiIiIiIiKjyJUrl3SCooKCgqQTXsmePTvs7OykMxQTGxsrnUBERPRGWhtoDwkJkU4gIiIiIiIV27hxo3SCiFatWmHu3Lmaeu2XiIhkFCtWDFu3bsXgwYNhY5P5ob3cuXNjyJAhJigzT7/++it8fX2lM4gIQEqK4bXds3Nn4w7tWWVva4M1QxshYGUfrBrcEPZGGOh2sLNBnffzpbps1/kH8HseBYPBAAA4dfsZGk3ZjRfRCamuN2fPlQzfju/doNeuX79s/teG2QGgaO5sqFkqT6rLDlxNvblF44qFkM3ZPsO3T2/GgXYiIiIiIiIiIiIiIjIKDw8P6QRFBQcHSyekoqW//4iICOkEIiKiN8qZM6d0gqI40E5ERERERKbi5+eHy5cvS2cormLFipg+fXqaQxdalJycLJ1ARKRKVlZW6N69O3bt2oWyZctm6Vg9evRA0aJFjVRm/iZPnoykpCTpDCLNexGTgOQUQ6rLvLhDu9n6uFyBVG9vPfs3ig9dh8/m7MeeCw/RbNoeRMW//Wers4MtOtcuiWxOGRs0r182f7rv61an9Bs/9utWlTN0G5QxHGgnIiIiIiIiIiIiIiKjcHd3l05Q1PPnz6UTUsmTJ8/br6QSkZGR0glERERvlDdvXukERXGgnYiIiIiITGXnzp3SCYrLkycPfvrpJ9jbcxfAl+Lj499+JSIiypQ8efJgzZo1mDBhAhwcHLJ8PDs7O0yYMMEIZZbBz88PK1askM4gskiPnkfhh52XUH3MVhQfshZLD15/52MFR8S9dhl3aDdfn1QomOblv156hM/m7keCLmMLWU3+vAbWD2+MoFV9sXdcS/RvWBbZ09lF3c3JDi2qpr/gSoePisPOJu0x60pFcr42hE9Zw4F2IiIiIiIiIiIiIiIyCq2dXBcWFiadkEq+fPmkExTDgXYiIjJ3+fOnv9ODGgUGBkonEBERERGRChkMBuzZs0c6Q3GzZ89Grly5pDPMCgfaiYiMq0WLFvjtt99Qs2ZNox63du3aaNiwoVGPac5WrlyJR48eSWcQKWbOnivw6usN9x4rUHr4eny78SyiM7CbNvDP4PlPB6+j9oTtKDF0HSZuOYcrj0LgFxKNEWtO4uaTF+/U9Dwq9eNET1cH2NnavNOxyPQqFMqJnG6OGbpus8qF8cF7aT8v+rj8P0Pm9rY2aFqpMJYNaIBVgz9J87oLe9eFp2v6t+np6ohPqxRJ833ftK4CKyurDPVSxnCgnYiIiIiIiIiIiIiIjMLOzk46QVHR0dHSCalwoJ2IiMh8aOl+GQCePXsmnUBERERERCp0/fp1BAUFSWcoql27dqhRo4Z0htmJi3t9500iIso8d3d3LFiwAPPmzUO2bNlMchtjx441yo7vliApKQlTpkyRziBSxM0nL/DtxrN4EZ2AmAQd7gdFYs6eK6g7cQf8nke9ut71gGh8s/4Mtpy+B4PBgJQUAyb7nEfhL37BiNUnce7e64/vDYZ/duh+F8//s0N77uzO73QcUoa1tRU+Lp/2Lu3/1qV2Sez85lPsH98KlYumHmrPlc0JFQrlfO1jWld7D00rF0512WcfFkOPeqXfenvDPq2Q6m1bG2uMaF4Rn39U4q0fS5nDgXYiIiIiIiIiIiIiIjIKa2tt/drB3AbatbQTLAfaiYjI3GnpfhkAnj59Kp1AREREREQqdOzYMekERXl4eGD06NHSGWaJO7QTEWVd7dq18euvv+LTTz816e0ULFgQ/fr1M+ltmBNfX1/s2bNHOoPI5A7++TjNy288eYEPv/XB6TvPcOF+MAZvuYUf919Htx8PY9qOi+ix+DCmbb8IfXLKG49/9Ib/O3UFR/53oN3pnY5Dyhnb9gPY2aR/ftGgxuXwy9BGsLO1QQ43Jxye2Bq1SucFAFhZAVM71YC19eu7pltZWcH7i49Ro4QXAODTKoWxYuDHGdphvX7ZAtj2dTN0rl0SUzrWwMOfemBezzrcnd0EbKUDiIiIiIiIiIiIiIhIHXQ6nXSComJiYqQTUtHSTrDh4eHSCURERG+kpftlgAPtRERERERkGlobaB8+fDg8PDykM8ySuS0wS0RkSZycnDBq1Ch069ZNsdscMGAAdu/erZnXDWfNmoX69esje/bs0ilEJnPqr2fpvi80OgGNpuxGPk8X6JINry6f4nMh3Y9xsrdFfJL+1du+dwMRm6CDi6Ndprr+O9DuxR3azd7/sXff0VFVex/Gv5PJJCEJpBMCISQQeu9FOgjSRBBBBAuKoIjYL6IgIIIFxF4QwX7pSJGqgAiiFOm9Q+ihExJIm/eP+xodEnpm9iR5Pmtl6ew5c84T8N6EML+zKxUL1ab3HtCyrUd0Z+UozVi1Ry9++7usHhYN6FBDr95bw2GQPMjfR0uGdNSfu44pJL+PShe++p+ZCgX66ffh9yktPV0eFstNDaR3qF1CHWqXuK3PDdeXt7ZKAQAAAAAAAAAATpPXBtqTk5NNJzjIS4Nzx44dM50AAMA1FSxYUD4+PqYzXObs2bM6d+6c6QwAAAAAuciRI0e0c+dO0xkuU7BgQXXq1Ml0htvKKwORAJDdKlasqB9//NGlw+yS5OPjo/79+7v0miadOnVK7777rukMwGnS0+36fcfRax6TkpauA/HXvgmR1cOirvVLadbLbXXg80dk/dcu28mp6Vq+/epD81cTfy7J4TE7tOcMsYUC1aNpOUWG+Ktvq8o6/fXjOjr2MQ3sVDPLIXQPD4vqlY645jD7v1k9PNhd3U0x0A4AAAAAAAAAALLFpUuXTCe4VGpq6vUPcqHIyEjTCS5z5MgR2e326x8IAIAhFotF0dHRpjNcav/+/aYTAAAAAOQia9asMZ3gUl27dpWXl5fpDLeUlpbGTU4B4CZ5enqqb9++mjhxomJiYow0tGzZUnXr1jVybRMmT56stWvXms4AnGJz3CmdvXjZYW3j6Ad0V9ViN3wOfx+bZr3cVt/1a6HW1aIV7O+jWiXDHY5ZvPnQTbdduUN7QXZoz5F8vW0q4Mufh/ICBtoBAAAAAAAAAEC2OHv2rOkEl3K3Hen9/f1VqFAh0xkukZKSovj4eNMZAABcU4kSJUwnuNS+fftMJwAAAADIRf766y/TCS7j4eGhjh07ms5wW8eOHXO7G8wCgLv74osv9PTTT8vT09Nox8CBA403uIrdbtfgwYP5moVcadk2x53TYwoWULnIYM3s30bPta1y3ddHBPlqydCOalnFcQC+WcWiDo/n/rVfl1PSbqrtxBU7tIcz0A64NQbaAQAAAAAAAABAtjh37pzpBJdyxx3C89Lg3JEjR65/EAAABhUvXtx0gksx0A4AAAAgO+WlgfaqVavmmZuV3orDhw+bTgCAHKdYsRvfNdmZYmNj1b17d9MZLrNz5059/fXXpjOAbDd7jePP/xuULSxJsnp4aORD9TX2iaayWf8ZUy0a4q9iYfklSbVLhmv5G51UNSYs03mbVoh0eLzt8Bm1HjFL5xIvZzr2ao6fddyhPTyQgXbAnTHQDgAAAAAAAAAAssXJkydNJ7iUzWYznZBJXhqcY6AdAODuYmNjTSe41I4dO0wnAAAAAMglEhIS8tRNs5o2bWo6wa0dOHDAdAIA4DY8/fTTCg0NNZ3hMh9//DE3Y0GukZaertenrNIvG+Mc1uv//0D733o0Lac/3rxPjzUrp4frFNH6Ufdrx4cP6sDnj2j5G51ULKxAluevU6pQxuD735ZuOazuHyy8oQ0GVu0+rrhTCQ5rYQXy3cinBsAQBtoBAAAAAAAAAEC2yGt/Me/l5WU6IZO8tEN7XvvvDQCQ8+Slr8sSA+0AAAAAsk9cXNwNDbDkFvXq1TOd4NY2bdpkOgEAcBv8/f314osvms5wmaSkJA0bNsx0BpAtBk38U69PWZVpvcEVA+2SVCU6TJ/2bKQ+jaLk72OTp9VDRYL9ZbFYrnp+L0+rvnqqufx9HDcTmLfugD5bcPXvAdPT7er75a+q98qUTM+xQzvg3hhoBwAAAAAAAAAA2SKv7ZjNQLtZe/fuNZ0AAMA1RUdHu+X3C85y5MgRnT9/3nQGAAAAgFzg4MGDphNcxtfXV6VLlzad4dY2btxoOgEAcJvuueceValSxXSGyyxZskQLFy40nQHcFrvdrm9/3Z5pvUmFSMUWCsi26zQsV0RLhnbMtLP6f777XTuOnMl0fFp6uh799Bd9vnBzlucLD2CHdsCdMdAOAAAAAAAAAABuW2pqqvbv3286w6VsNtv1D3Kx2NhY0wkuwy6wAAB3Z7PZ8txQwtatW00nAAAAAMgF4uLiTCe4TIUKFWS1Wk1nuK1Lly5p165dpjMAALfJYrFo0KBB8vDIO2Nsw4cPV0JCgukM4JbtPHpWx84mOqx1rldSP/6n9TV3Xb8VVWPC9HXf5g5rl1LS9NHcDZmOHbNws77/Lev3ChQPLyBfb/d7HweAf+Sd7wQAAAAAAAAAAIDT7Nu3T8nJyaYzXMrb29t0QibBwcGKiIgwneESe/bsUXp6uukMAACuqUKFCqYTXIpd8wAAAABkh0OHDplOcJmSJUuaTnBrmzdvVmpqqukMAEA2qFChgjp16mQ6w2WOHTumDz/80HQGcMuWbjns8DjY31s/PNNC/j5eTrleyyrF9NRdFR3Wft6Q+UZX4xZlfWPd/PlsevfhBk5pA5B9PE0HAAAAAAAAAACAnC8v7sYZGBhoOiFLFStW1NGjR01nON2lS5d04MABxcTEmE4BAOCqypcvbzrBpRhozz7dunXTiRMnlC9fPvn6+srPz0++vr4Zj//+8PPzc1i78vHfa+54MyYAAADgak6cOGE6wWVKlChhOsGtrVu3znQCACAbPffcc1qwYIHOnTtnOsUlvv/+e91zzz0qV66c6RTgpv16xUD7XVWKZfvO7Ffq0bScPpm/KePxnuPntP/EeUUXLCBJOnEuURsOnHR4zX+fbanW1YrJ18smDw/n9gG4fQy0AwAAAAAAAACA27ZmzRrTCS4XFBRkOiFLFSpU0MKFC01nuMTOnTsZaAcAuLWKFSte/6BcZMOGDaYTcoXU1FRt2LBBKSkp2XZOq9V63cH3W/mw2WzZ1ggAAABIUnJycp4ZcpOkyMhI0wlubenSpaYTAADZKDg4WP369dOwYcNMp7hEWlqaXnvtNU2ePFkeHh6mc4AbZrfbM+3Q3qh8Eadft1JUqELz++jkhUsZa4s3H9KjTf93U4glmw85HO/vY1OHWsVl87Q6vQ1A9mCgHQAAAAAAAAAA3LbVq1ebTnA5dx5ozyt27typli1bms4AAOCqYmNjlS9fPiUlJZlOcYkTJ07o4MGDioqKMp2Sox04cCBbh9ml/715NiEhQQkJCdl6XpvNlmnIPV++fBk7yl9rrXjx4ipVqlS29gAAACDnO3r0qOx2u+kMlylUqJDpBLd17tw5rV271nQGACCbde3aVZMnT9aOHTtMp7jEpk2bNGHCBHXr1s10CnDDdhw5q+PnEh3WXDHQ7uFhUdOKRTV5xa6MtUUb4zIG2hdtchxob1iuMMPsQA7DQDsAAAAAAAAAALgtcXFx2rdvn+kMl2Og3bz169ebTgAA4Jo8PT1VqVIlrVy50nSKy6xcuZKB9tu0d+9e0wk3LCUlRefOnbulHTSfeeYZBtoBAACQyZEjR0wnuFRYWJjpBLe1dOlSpaWlmc4AAGQzq9WqQYMGqXv37qZTXGb06NG68847VbBgQdMpwHWdSbikgRP+cFiLDPFXifAAl1y/WcVIh4H2XzbFaeLynSoc7KdfNsZdcWxRlzQByD4epgMAAAAAAAAAAEDO9vPPP5tOMCI4ONh0QpYCAgIUHR1tOsMl1q5dq9TUVNMZAABcU61atUwnuNSqVatMJ+R4e/bsMZ3gEsWLFzedAAAAADd08uRJ0wkuVaBAAdMJbmvJkiWmEwAATlKzZk21adPGdIbLJCQkaMSIEaYzgOv6ZWOcqrw4QTNWOd50tVG5IrJYLC5puHJI/dSFS+r+4UI1HfKjDp68cM1jAbg/BtoBAAAAAAAAAMBtmTdvnukEI4oUKWI64apq1qxpOsElEhMTtXXrVtMZAABcU40aNUwnuNQff/whu91uOiNHyyvf38TExJhOAAAAgBs6e/as6QSX8fX1laenp+kMt5ScnKxly5aZzgAAOFH//v3l6+trOsNl5s2bx9c2uB273a5LyalKSk7V818v011vzNTh0xczHdetYWmXNUUXLHBDu8GHB/iqfFH33IQAwNUx0A4AAAAAAAAAAG7Z9u3btXHjRtMZRkRFRZlOuKq8tBMsu8ACANxdlSpVZLPZTGe4THx8fJ4ZyHaWtWvXmk5wOk9PTwbaAQAAkKXz58+bTnAZHx8f0wlua8GCBbpw4cL1DwQA5Fjh4eF64oknTGe41NChQ3Xp0iWXX/f42UQ9//Uy9fx0kbYfPuPy68M9rd59XDX7T5J/98+Vv/vn+nDuhkzHBPp5a8KzLdWismvfG9G3VaXrHtOySpTLdo0HkH0YaAcAAAAAAAAAALdswoQJphOMceeB9tq1a5tOcJnVq1ebTgAA4Jp8fHxUqdL133yVmyxdutR0Qo4VFxen+Ph40xlOV6JECXl5eZnOAAAAgBs6d+6c6QSXYXf2q5s8ebLpBACAC/To0UPR0dGmM1wmLi5On332mcuv2+OTX/Th3A36+tdtqvfKFO08wlB7XpaSmqYhk1eq/sCpWr//5FWPa1axqNaP6qr76pV0Yd3/9LmroiY+d5cebFhaTStGqnThQPl5/3Pj4Oiw/Hrl3hou7wJw+/hTMAAAAAAAAAAAuCXx8fH68ccfTWcYERgYqAIFCpjOuKrw8HBFR0dr//79plOcbs2aNUpNTeXNnwAAt1a3bl399ddfpjNcZsmSJerTp4/pjBxp3bp1phNconz58qYTAAAA4Kby0g7t/Ewza/v37+dGpgCQR3h5eemVV15Rr169TKe4zLhx49SuXTvFxsa65Hr7T5zXwg0HMx6fT0pWp1Hz9PvwTsqfjxtO5jW7j53VA+8t0Np9V7+pqo/Nqre611OflpXk4WFmB3Srh4c61Y1Vp7r//O/EbrfrfFKyziRcVpFgP9k8rUbaANwedmgHAAAAAAAAAAC35Msvv9Tly5dNZxhRrFgx0wnXVatWLdMJLpGQkKAVK1aYzgAA4JoaNWpkOsGlNm7cqCNHjpjOyJHWrl1rOsElKlSoYDoBAAAAbiov/cw5NTXVdIJbmjJliux2u+kMAICLNGrUSE2aNDGd4TIpKSkaPHiwy77WzVqzL9Pa1kOn9dini/h6m8ckJafqnrfnXHOYvXrxMK1+u4v6tqpsbJj9aiwWiwJ8vRVdsADD7EAOxkA7AAAAAAAAAAC4abt27dIPP/xgOsOYMmXKmE64rnr16plOcJl58+aZTgAA4JoqVqyokJAQ0xkutWDBAtMJOdJvv/1mOsElKlWqZDoBAAAAbiolJcV0gsskJyebTnA7ly5d0o8//mg6AwDgYq+88oq8vPLObuFr1qzR9OnTs+18aenpWrbtiAZPWqmhk1fqxLnEjOdmrd6b5Wumr9yjd2bmjZtr4n9mrtqr7YfPOKx5Wj30ZIuKWjK0o1aMuE9/jOisspHBhgoB5AWepgMAAAAAAAAAAEDO8/rrr+epNxZeqWLFiqYTrqtBgway2Wx54vdp0aJFSklJkc1mM50CAECWLBaL6tevr5kzZ5pOcZk5c+aoR48epjNylG3btunw4cOmM5zOz89P5cqVM50BAAAAN5WXdi1noD2ziRMn6tSpU6YzjGCXXAB5WVRUlB599FF9/vnnplNc5p133lGTJk0UHHxrw8OXklP1y6Y4zVq9T7PX7FP8+aSM5+au3a8/RnTW2cTLWrbtyFXPMXDCH6oSHaqWVYrdUgNylgnLdzo8Lh5eQP99tqVqlAg3VAQgL2KHdgAAAAAAAAAAcFNmzpypVatWmc4wqnz58qYTrsvf3181a9Y0neES586d04oVK0xnAABwTY0aNTKd4FKbNm3Srl27TGfkKIsWLTKd4BLVq1eX1Wo1nQEAAAA3lRdu0Pk3BtodXb58WV9++aXpDGPS0tJMJwCAUb1791ahQoVMZ7jM2bNnNXLkyJt6TVp6uqas2KX7R89XoZ7jdM/bczR+8VaHYXZJ+mtvvP7YeUzdP1iotPR/bphis3rIYvnnOLtd6v7BQu09fu62Phe4v1MXkrRgw0GHtUGdajHMDsDlGGgHAAAAAAAAAAA3LD4+Xu+8847pDKO8vLxUsmRJ0xk3pGnTpqYTXGbu3LmmEwAAuKYGDRrIZrOZznCp6dOnm07IUZYsWWI6wSXyyk2XAAAAcGvy0lBvamqqzp49azrDbUyaNEnx8fGmM4xJT083nQAARvn6+qp///6mM1xq+vTpWr169Q0da7fbdf/o+er6/gJN/XO3Ei5d+yZAjV6bpoVXDDC3qlpMw+6v47B25uJldRo1V5eSU28uHjnKtD/3KDXtn+81fGxWta9Z3GARgLyKgXYAAAAAAAAAAHBDUlJS1K9fP508edJ0ilHlypXLMcNoTZo0MZ3gMgsXLtS5c+weAABwXwUKFNAdd9xhOsOlZsyYwY6DN2jv3r3avHmz6QyXqF+/vukEAAAAuDGr1Wo6waXy+s/b/5acnKyxY8eazjAqNZVBQgBo3bq1atWqZTrDpQYPHnxDP0NdsuWwfly197au1bFOCfW/p7o61i7hsL7xwCl9/9uO2zo33Nf5xGR9Mn+jw1rb6jEq4OtlqAhAXsZAOwAAAAAAAAAAuCHDhw/X2rVrTWcYV7duXdMJNywyMlKlSpUyneESiYmJmjx5sumMHGnHjh06evQoA4cA4AKtWrUyneBSp0+f1k8//WQ6I0fIK9/HhIWFqWzZsqYzAAAA4Mby2kB7Xt6R/N+++OILnThxwnSGUfx8FgD+Z+DAgXnq+4E9e/Zo3Lhx1z1u+LTMO7lbLNIdZSI08qE79N4jDa75+ruqFlOXeiVlsVg0rk8zlYsMdnh+7tr9N9WNnCEpOVXt3/5JW+JOO6x3rZ833kMAwP14mg4AAAAAAAAAAADub+rUqZowYYLpDLdQr1490wk3pU2bNtq5c6fpDJf4/vvv1aNHD3l68ldgN+ro0aNq37697Ha7JMnf318hISEKDg5WaGiogoODFRIS4rD2978HBgbKYrEY/gwAIGdp3ry5vLy88tSb1L/99lt17NjRdIZbS05O1owZM0xnuESjRo34/gEAAADXZLPZTCe41JEjR0wnGHfw4EF98cUXpjOMS0pKMp0AAG6hdOnSeuCBB/Tdd9+ZTnGZzz77TG3atFFUVFSWzy/bdkRLtxx2WHu+XVW90K6qwgN9JUlnEi7phW+WK/3//87v3z59vLEeb14+4+dy+fN5qf891fXwxz9nHLNgw0FN+n2n8nl5qk31aFk92EM3p1m8+ZCe/vJXpaSla/QjDdSicpQ6vztPy7Y5fr9ZKiJQraoVM1QJIK/j3TwAAAAAAAAAAOCaZsyYoddee810hlvw9fVVlSpVTGfclLZt2+q9994zneESx44d04IFC9SmTRvTKTnGvHnzMobZJSkhIUEJCQk6cODAdV/r6empoKCgaw6//3vNx8fHmZ8KAOQI/v7+atCggRYtWmQ6xWW2bdum5cuXq379+qZT3NYvv/yiM2fOmM5wiSZNmphOAAAAgJvLawPtu3fvNp1g3LBhw3T58mXTGcZdunTJdAIAuI1+/fppzpw5On369PUPzgUuX76soUOHXnWn9tGz1zk8LhLsp2H315G37Z+d7IP8fVS9REGt3n3c4dimFSPV684Kmc7ZtGKkY0NKmrp9sFCS9Hjz8vqsFz/Hy0nS0+16Ysxi7T1+XpJ036h5aloxUgvWH3Q4LqxAPv3Yv428PK1ZnQYAnI6BdgAAAAAAAAAAcFWTJ0/W4MGDlZ6ebjrFLdSsWVNeXl6mM25KZGSkqlatqnXr1l3/4Fzgm2++YaD9JsybN++WX5uamqr4+HjFx8drx44d1z3e19dXISEhDoPuf//zyuH3wMBAebDzA4Bcqm3btnlqoF2SPv30Uwbar+Fqb1TNbfz8/NSgQQPTGQAAAHBzfn5+phNcateuXaYTjFq4cKF+++030xluITEx0XQCALiNAgUK6Pnnn9fAgQNNp7jM8uXLNXfuXLVu3TrTcyt2HHV4/OLd1RyG2f/WoGzhTAPtT7aomOX1IoL8VL5osLbEZb5pwJeLtmjY/XUUWiDfzXwKMOjw6YSMYXZJSklLzzTMHuDrpXkD71bpwkGuzgOADAy0AwAAAAAAAACALH377bcaMWKEw+7NeV2zZs1MJ9ySdu3a5ZmB9g0bNmjx4sVq2rSp6RS3t3v3bm3cuNFl10tMTFRiYqLi4uKue6zValVgYGDGgPu/h9+zWvP19XXBZwAA2aN58+YKDAzU2bNnTae4zF9//aU//vhDdevWNZ3idhYvXqzNmzebznCJZs2aydvb23QGAAAA3Fz+/PlNJ7jU9u3bTScYc/r0ab3++uumM9zGuXPnTCcAgFvp1KmTJk2apE2bNplOcZkRI0aoQYMGDt8PJSWn6tSFSw7HNatUNMvX310zxmE39yLBfmpXI+aq12taITLLgXa7Xfp1y2F1qht7s58CDNl97NrfR/h6e2r2gHaqEh3moiIAyBoD7QAAAAAAAAAAwMHFixc1ZMgQzZo1y3SKW/H09FSLFi1MZ9ySVq1a6c0331RKSorpFJd4++231aBBA9lsNtMpbu377783nXBVaWlpOnXqlE6dOnVDx+fLl89hyD0yMlKvvvqqLBaLk0sB4OZ5eXmpffv2+uabb0ynuNTIkSM1bdo0/r/5Cp988onpBJfJancpAAAA4Er+/v6mE1wqPj5e+/fvV3R0tOkUl7Lb7frPf/6j+Ph40ylu48KFC6YTAMCtWCwWDRo0SF26dMkzN2CPj4/X6NGjNXjw4Iy1Q6cSMh1XNCTr75fqlymsHk3K6qsl2+Rts2pcn+bytHpc9XpNKxbVR/Oyvvn1ok1xDLTnIHuPX32g3cvTQ9NfaqN6pSNcWAQAWbv6VyUAAAAAAAAAAJDnbN++XR07dmSYPQt169ZVUFCQ6YxbEhwcrCZNmpjOcJn9+/drwoQJpjPcWkJCgmbOnGk6I9skJSXp0KFD2rBhg5YsWaJLly4xMAnArXXu3Nl0gstt2bIlV33tyQ6//PJLntmdPSgoSPXr1zedAQAAgBwgICDAdILL/fnnn6YTXG7s2LFatmyZ6Qy3kpiYqOTkZNMZAOBWKleurA4dOpjOcKmJEydq48Z/hszjrhhoD/D1Uv58Xld9/dgnm2nfpw/r5FePq/lVdnL/W6NyRWT1yPrv0xZvOnQT1XmL3W7XpeRU0xkO9lxloN3qYdGEZ++67n8LAOAqDLQDAAAAAAAAAAAlJyfriy++0H333af9+/ebznFLbdq0MZ1wW7p27Wo6waU++eQTnTt39TvR53X//e9/lZiYaDrDabp37246AQCuKTY2VlWrVjWd4XKjRo1ix7n/l5SUpBEjRpjOcJl77rlHNpvNdAYAAABygLCwMNMJLrdixQrTCS61bt06ffDBB6Yz3BI71gNAZi+++KLy589vOsNl0tPTNXjwYKWlpUmSDl8x0B55ld3Z/61oaH7l8/K87nEFfL3UoVaJLJ/bc/yc9p04fwPFecvSrYdV+PHxCnr4Cz395VK3GWzfeyzz71VIfh9936+F2tcqbqAIALLGQDsAAAAAAAAAAHncggUL1KpVK7377rvs/nEVvr6+uvPOO01n3Ja6desqOjradIbLnD17Vu+9957pDLeUkJCgcePGmc5wmpo1a6pMmTKmMwDguu6//37TCS4XHx+vUaNGmc5wCx9++KEOHz5sOsNl7rvvPtMJAAAAyCHy4kD70qVLlZCQcP0Dc4HDhw+rX79+Sk11j+Evd8NAOwBkFhISor59+5rOcKmtW7fqu+++k5R5h/YbGWi/GR8+1lB9WlbUvXUyD7Yv3hSXrdfKDV74epnizycpJS1dny3cpEavTdPRMxdNZ2nvFTu0v9mtnvZ88pDuq1fSUBEAZI2BdgAAAAAAAAAA8qjVq1ere/fu6tevnw4dOmQ6x63dfffd8vfP3jcHuJrFYlGXLl1MZ7jUhAkTtGTJEtMZbufrr7/W2bNnTWc4DbuzA8gp2rRpo/DwcNMZLjdp0iStXLnSdIZR27dv17fffms6w2WqVq2qEiWy3ukJAAAAuFLBggVNJ7jcpUuXtHDhQtMZTnfmzBk99thjOnHihOkUt8WvDQBkrXv37ipZMm8N5n7wwQc6duxY5h3ag7P376wLBvjqw8caadLzrdT5iuHnRZt4D8G/XUhK1vr9Jx3W/tobr56fLTJU9D92u117rhhorxITKn8fL0NFAHB1DLQDAAAAAAAAAJCHJCcna8aMGerQoYO6d++u1atXm07KEXLLgGzHjh3l7e1tOsOlBgwYwJsA/+Xw4cP68ssvTWc4TWRkpJo3b246AwBuiM1myzXfY9wMu92u/v3769y5c9c/OBdKTEzUCy+8kKd2I3zwwQdNJwAAACAHKVSokDw88t5b3KdNm2Y6wamSkpLUu3dv7du3z3SKWztw4IDpBABwS56ennr11VdNZ7hUYmKihg0bprhTFxzWI0OddxP2ZhUjHR4v3hSn9HS7066X02yJO53l+oL1B3Ug/ryLa/5xOuGSziUmO6yVCA8wVAMA15b3/rQPAAAAAAAAAEAetH37dr3//vtq2rSp+vfvr61bt5pOyjHq1KmTa+74HxgYqPbt25vOcKkzZ86of//+stt5s4Ukvf7660pKSjKd4TS9e/eWp6en6QwAuGH333+/fH19TWe43NGjR/Xqq6/mya/PAwcO1O7du01nuEyhQoXUsmVL0xkAAADIQWw2m0JCQkxnuNyaNWu0Zs0a0xlOkZycrGeeeUYbNmwwneL29u/fbzoBANxW3bp189zPmX755Rft3/KXw1rREGcOtBd1eHzywiVtOnjKadfLaTZf49discHd7Pccdxym97R6KCo0v6EaALg2BtoBAAAAAAAAAMiltmzZotGjR6tly5Zq3769PvvsM8XHx5vOynEeeugh0wnZqmfPnnluh6MVK1bos88+M51h3OzZs/Xrr7+aznCaiIgI3XPPPaYzAOCmFChQQJ06dTKdYcTPP/+c574+f/vtt5ozZ47pDJfq1q0bN5sBAADATStUqJDpBCNy45+REhIS1LNnTy1dutR0So6wd+9e0wkA4NZefvll5cuXz3SGSyVu+EmWtJSMx0WcONAeXbBApp29F22Kc9r1cppNB09e9TmTv057j51zeFwsNL88rXnr/QAAcg7+3wkAAAAAAAAAgFwgOTlZa9eu1Zdffqknn3xSderUUceOHTVmzBh29LgN5cuXV9OmTU1nZKtixYqpRYsWpjNc7oMPPtCUKVNMZxizf/9+DR482HSGUz3++OPy8vIynQEAN+2xxx7Ls///9eGHH2rhwoWmM1xi4cKFevvtt01nuJSfn5+6dOliOgMAAAA5UF4daF++fHmuGvyOj49X9+7dtXLlStMpOca2bduUmppqOgMA3FbhwoX1+OOPm85wKevlCwo+/s/X0qIhzt15u1nFSIfHDLT/41q71S/adEjp6fZbOm96ul2z1+zTkMkrtfHA1Yfms7L/xHkNn7baYS0mvMAtdQCAKzDQDgAAAAAAAABADpKcnKw9e/Zo4cKF+uyzz/TCCy/onnvuUfXq1dW1a1eNHDlSixcv1pkzZ0yn5gr9+vWTxWIxnZHtevXqZTrBiMGDB+eZobl/u3Tpkp555hldvHjRdIrThIWF5dkdjgHkfIUKFcqzQ792u10vvPCC/vzzT9MpTrV06VI9//zzeW4ooVu3bgoICLj+gQAAAMAVoqKiTCcYM3ToUCUmJprOuG379u3T/fffr23btplOyVGSkpK0Y8cO0xkA4NZ69uypokWLms5wqYD4DfJK+t+gc2SIn1Ov1ayS46/tsm1HdDklzanXzAnsdrs2X2OgPf58kjbHXf35qzl8OkGths9Sh3fm6I2pq1V/4FTtPX7u+i+UtCXulKq8OEHbDju+N6REOD+TBeC+PE0HAAAAAAAAAACQl9jtdqWkpCg1NTXjIyUlRUlJSTp//rzOnTunCxcu6Ny5czp//ryOHz+uY8eOZXycPn1advut3dkbN6dKlSpq3Lix6QynKF++vOrXr6/ly5ebTnGptLQ0vfDCC/riiy9Ut25d0zkukZaWpueee07bt283neJUTz75pLy9vU1nAMAt6927t6ZOnaqkpCTTKS6XnJysPn366IsvvlCNGjVM52S733//XU8//bRSUlJMp7iUr6+vevToYToDAAAAOVSxYsVMJxhz+PBhDR8+XMOHDzedcsvmzp2r1157TRcuXDCdkiOtXr1a5cuXN50BAG7L29tbAwYMUJ8+fUynuIxF6Qo7tEQXK3eTv4+XU6/VuHwRWSzS329JSLycqj93HVOjckWcel13d+TMRZ1OuHzNYxZtilOlYqGZ1tfvj9f8dQdUv2xh1S9TOGN9+p+79cQXSxzOm3g5VV8u2qIRD9S7btP4xVuVcCnzz52Ls0M7ADfGQDsAAAAAAAAA4KYdPnxYpUuXNp0BONVzzz1nOsGp+vXrl+cG2qV/huZGjRqlZs2amc5xuoEDB2rx4sWmM5wqOjo6z+5sDCD3CAsL0wMPPKBx48aZTjHi4sWL6tmzpz755BPdcccdpnOyzbRp0zR48OA8N8wuSffff7+Cg4NNZwAAACCHioqKktVqVVpa3twNdOrUqSpVqpQefvhh0yk3JSkpSSNGjNDkyZNNp+Roixcv1iOPPGI6AwDcWrNmzdSgQQMtW7bMdIrL+CQeU/6EHU6/Tkj+fKoaHaa1++Iz1gZPWqmfB7WXzdPq9OvfjuTUND331TL9vv2IOtQuodfuqyWLxZIt516x/ajDY38fmzrXK6nxi7dmrA2ftkZ1S0WoTqlCGWvr98er9suTlZZul4fFoqkvtlKTCpF69qvf9M2vWd+QfPGmQzfUtPXQ6SzXa8aG39DrAcAED9MBAAAAAAAAAAAA7uauu+5SnTp1TGc4VeXKldWiRQvTGUYkJiaqb9++Gj9+vOkUp0lNTdWAAQM0ffp00ylO9/zzz8vTk/t4A8j5evbsKX9/f9MZxiQlJal3796aMmWK6ZTbZrfb9e677+qVV17Jk8Ps+fPnV69evUxnAAAAIAfz8vJSyZIlTWcY9fbbb2vBggWmM27Y9u3bde+99zLMng3++usvnT171nQGALi9V199VTabzXSGS6XtWKRTp045/Tqtq0c7PF6+7Yhe+vZ3p1/3dvX/7neN+XmzNsed1rCpqzV95Z6bPkdyapr+3HlM4xZt0fNfL1OLYTNU5PHx6vq+4/dl5YsGq+0Vv05nL15Wy2EztWhTXMbaR3M3KC39f9vdp9vt6jP2V1X/z8SrDrNL0l97T+h0wqXrtu48cjbTWq/m5dWgbOHMBwOAm2CgHQAAAAAAAAAA4F98fX01YMAA0xku8dxzz8lqde876TtLenq63n77bQ0aNEipqammc7JVUlKS+vbtmyeG2atUqaKWLVuazgCAbBEcHKynnnrKdIZRKSkpGjhwoN544w0lJyebzrkl8fHxevzxx/XFF1+YTjGmV69eCgoKMp0BAACAHK569eqmE4xKS0vTc889p1mzZplOuabz58/rm2++UefOnbVnz80PjSGz1NRUzZgxw3QGALi9mJgYPfzww6YzXCo9OUlvvvmm06/Tr3VlRYXmd1j7eP5Gfbf06kPYpu0/cV4fzdvosDZ5xa6bOseWuFOKfepb1R84Vb3HLNGHczdo8aZDOn4uMdOxFaNC1K5GjO6sXNRh/eLlFN391k+avWaf0tPtmrxit8Pzx84mau/x89fssNulXzdfe5f2pORUHTx5wWFt5Vud9WmvJtm2Kz0AOAMD7QAAAAAAAAAAAP/y5JNPqlChQqYzXKJ48eK69957TWcYNXnyZD3yyCOKi4u7/sE5wJ49e9S5c2ctWbLEdIpLvPTSS6YTACBbPfjgg4qJiTGdYdx3332XI4chFi5cqLZt22rZsmWmU4yJiIjIc28kBgAAgHNUq1bNdIJxaWlp6t+/vz799FPZ7XbTOQ7S09M1efJktW7dWgsWLMh1Nw01bdKkSW73ew4A7qhPnz4qWLCg6QyXmj17tlasWOHUawT7+2jKi63kbXO8MfqTXyzRX3tPOPXat2rY1FWZ1qb9uUfp6Tf+9bTf+N905MzFGzr2jjKFZbFYNO3F1rqrajGH5y6npKnTqLl6dcIfSkq+9vdI+fPZ9NVTzTMNxi/adO2B9l1Hz+rKbxXKFOYmowDcHwPtAAAAAAAAAAAA/69UqVLq0aOH6QyX6tu3r3x9fU1nGLV69Wq1a9dOX3/9tdLT003n3BK73a7Jkyfr3nvv1c6dO03nuMRdd92lGjVqmM4AgGxls9n0yiuvmM5wC9u2bVOHDh308ccfu/1u7XFxcXrmmWf09NNP6+zZs6ZzjHrhhRfk7e1tOgMAAAC5QM2aNdldUv8bHP/ggw/Uu3dvnTx50nSOJGnx4sW69957NWjQIJ0+fdp0Tq60d+9ezZs3z3QGALg9Pz+/PHnz46FDhzr9Z6bVixfU572aOKxdSknTfaPmKf58klOvfbO2Hjqt75buyPK59fvjb+gcW+JOaemWw9c9zuph0X11Y3Vf3VhJkq+3TdNfaq1OdWIdjktLt2vkzLXXPFe90hFaO7KrHmxURs0qXjnQfu2bse86etbhcWSIv/x8bNftBwDTGGgHAAAAAAAAAADQ/wbIRo4cKZstb/1Fb3h4uPr06WM6w7ikpCS9+eab6tq1a47bDXb79u3q2rWrBg0apKQk93oDibP4+vpqwIABpjMAwCkaNmyoJk2aXP/APODy5cv66KOP1KZNG82ePdvtbjxz/vx5vfPOO2rdurXmz59vOse42rVrq127dqYzAAAAkEuEhoaqbNmypjPcxtKlS9WqVSv98MMPRv5sdOnSJU2fPl133323nnzySW3dutXlDVlp27Ztrv0z9Lvvvuv2N3gDAHdw9913q3r16qYzXGr//v36/PPPnX6dBxuV0VN3VXRYO3jygh54f4FS09znZ7X/+e53pV+5Xfn/u95O59L/bhz+2YJNDmv+PjZ1qhOrwZ1racoLrbTl/W46Mb6nzn3bWxOeu0s+Xp4Zx3p5WvXDsy3Uo8mNfe/qafXQ6/fX0eIhHRRTsIAkZRpo333snA7En7/qOXYcOevwuFThwBu6NgCYxkA7AAAAAAAAAACA/rdTeZkyZUxnGPHII4+oZMmSpjPcwvr169W+fXsNHTpUJ06cMJ1zTfv379fLL7+sjh07at26daZzXKpPnz4qVKiQ6QwAcJpBgwbJ19fXdIbbOHjwoF588UXdfffdmj59uvE39B88eFDDhw9X48aNNW7cOOM97sBms2nw4MGmMwAAAJDLNGzY0HSCWzl//rxef/11tWrVSlOmTHH6n0XsdrvWrFmj119/XQ0bNtSAAQO0Y0fWu5+aUK5cOY0cOVIPPvig6RSnOHTokEaMGGE6AwByhEGDBslqtZrOcKmxY8dq7969Tr/OqIfqq37Zwg5rSzYf0jvX2X08O/yx86jqD5ymh77eqAXrD2Z5zIL1BzR/3YGrnuNaO51vPHBSD364UF73f6LPF252eK5vq0qa+PxdGtSpljrULqHShYMU7O/jMMj+b1YPD43p3VT9Wle+6vUea1pOQzrX1tqR9+uVjjXkaf1nrLNysVCF5PdxOH7xNYbxdx454/C4dETQVY8FAHfCQDsAAAAAAAAAAMjzqlSposcff9x0hjE2m02vvfaa6Qy3kZKSov/+97+68847NWTIELfbsX3VqlV6/vnn1bp1a/34449KS0szneRSJUqU0COPPGI6AwCcqkiRInrxxRdNZ7idXbt2acCAAWrcuLHefvttbdmyxWXXTkhI0Jw5c/TEE0+oZcuW+vbbb3Xx4kWXXd/d9ezZUyVKlDCdAQAAgFwmt+68fbv279+vgQMHqlGjRhoyZIhWr16dbT8jPH78uGbNmqUBAwaoQYMG6tatm3744QedO3cuW86fnQYOHCgPDw9FRkaaTnGaCRMmaPr06aYzAMDtlS1bVp07dzad4VLJyckaMmSI069j87Rq4nMtVTjIz2H9swUbZb/KrujZIT3drsc/W6zVe05ox/GLevjjX3T24mWHY/YeP6d+43675nmWbzuiS8mpmdbf/2m9qr00UROW79SVn4aHxaJed1a46WYPD4vefbi+Bnaqmek5H5tV7z/aUAM71VS5yOAsX9u0guP3NNcaxmeHdgA5Vda3BQEAAAAAAAAAAMgjAgMD9e677+a5u/ZfqVatWmrfvr1mzpxpOsVtXLp0SRMmTNCECRNUq1YttWvXTi1atFBgYKDLW3bu3KlFixZpxowZ2r9/v8uv704GDRokm81mOgMAnO6BBx7QvHnztHr1atMpbufUqVMaP368xo8fr6ioKDVs2FB33HGHqlatqqCg7NmJJi0tTTt37tS6dev022+/6ffff2cn9qsoVaqU+vTpYzoDAAAAuVDlypVVuHBhHTlyxHSKWzp9+nTGzy99fX1VpUoVValSRdHR0YqMjFRERIR8fX2VL18+eXl5KSUlRcnJybp48aJOnz6tU6dO6dChQzpw4ID27dunzZs3Kz4+3vSndUPatWun6tWrS5IiIiLk4eGh9PR0w1XO8eqrr8pisahDhw6mUwDArT377LOaN2+ezp49azrFZVauXKkZM2bonnvucep1CgX66YdnW6rJ4H9usnL0TKK2HT6T5XB2dog7dUHbD/+zC/mZi5c1c/VePdy4rCTp1y2H1GX0fJ26cMnhde88eIf6f/97xpD6pZQ0fbZwk55rWzXjmPOJyRo44Y+rXrtt9WhFhea/pW6LxaIhnWurQD4v/ee73zPWO9YuoXxX2d39b80qFtWUP3ZnPF606ZCSklM1cMIfWr7tiIoE+6tmbLhqxoZn2qG9JAPtAHIIBtoBAAAAAAAAAECe5eHhoZEjR+bqHVxuxoABA7RixYoc86ZFV1q1apVWrVqloUOHqkqVKrrjjjtUu3ZtlS9fXj4+Ptl+vbi4OK1bt05r167Vb7/9psOHD2f7NXKidu3aqW7duqYzAMAlLBaLhg8frrvvvluXLl26/gvyqIMHD+r777/X999/L0kqWrSoypUrp+joaEVFRalQoUIKDg5WUFCQvL295eXlJavVqkuXLikpKUlJSUlKSEjQ4cOHdfjwYR06dEh79+7V5s2blZiYaPizc382m03vvPOOvLy8TKcAAAAgF7JYLGrVqpXGjRtnOsXtJSYmasWKFVqxYoXpFKfz9fXVSy+9lPHYy8tLBQsW1LFjxwxWOU96eroGDBigLVu26KWXXpK3t7fpJABwS4GBgXr22Wddsmu5O3n77bfVpEkTBQQEOPU69ctEqGiIv+JOJWSsLdoY57SB9q2HzmRaW7zpkB5uXFZjf9msp8f9ptQ0x5vZVC8epmfaVNasNfu0fNs/N0QaPGml7qlVQjEFC0j63zD8pZS0LK9bMCCf3n2kwW33P9+uqmILBejzhZsVFeqvN7pe/+83m1Uq6vA4/nySnv5yqb7+dZsk6a+98Zq1Zl+Wry1dOHtu9AoAzsZAOwAAAAAAAAAAyLOeeuopNWzY0HSG2wgKCtLw4cPVq1cv0yluKzU1VWvWrNGaNWskSVarVSVKlFDp0qUVFRWlqKgohYeHKygoSEFBQfLz85PNZpPNZpPdbldycrKSk5N1+fJlnTlzJmMnpGPHjmnfvn3av3+/9uzZozNnMr9JI68LCQnRq6++ajoDAFyqWLFi6t+/v4YOHWo6JceIi4tTXFyc6Yw846mnnlLZsmVNZwAAACAXa9u2LQPtcNC3b1+Fh4c7rEVFReXagXZJstvt+u6777Rs2TI9+eSTatu2rTw9GQUBgCt16dJFkydP1tatW02nuMzp06c1atQoDRs2zKnXsVgsalaxaMZwtSQt2hSnp1tXdsr1tsadyrQ2Z+1+9Ru3VJ8u2JTpuQpFgzXlxdayenhoeNe6avTatIznEi+nqt2bs/VdvxaqGhOmnzdk/vnxL4Pvka+3TZWLhcrbZs2Wz+HumsV1d83iN3x8TMECiilYQPtOnM9Y+/ev99V426yKCvW/pUYAcDX+FAMAAAAAAAAAAPKkpk2b6qmnnjKd4XYaNWqkLl26aNKkSaZTcoS0tDTt3LlTO3fuNJ2S6w0ePFhBQewuACDveeCBB/Tnn39qwYIFplMAB7Vq1eJGSAAAAHC6cuXKqVKlStq4caPpFLiBihUr6pFHHsm0Xrp0aa1atcr1QS62f/9+9e/fX++++66aNm2qxo0bq1y5cpkG/K/m/PnzOnLkiOLi4rRy5UpNmzZNu3btUqdOndSlSxcn1wOA83l4eGjQoEF64IEHZLfbTee4zJQpU3TPPfeoevXqTr1Os0qRDgPWP/21X498/LMebVpODcsVydZrbctih/azFy9nOczetnq0vuvXQvnzeUmS7igToSdbVNRnC/85dvvhM6r3yhS9dl8tLdxw0OH1wx+oq8blI7O1/1Y1qxipLxfd3A0ZyhYJktXDw0lFAJC9GGgHAAAAAAAAAAB5TqVKlTR69GhZLBbTKW7p5Zdf1h9//KGDBw9e/2DABTp06KCWLVuazgAAY4YPH67Nmzfr8OHDplMASVJoaKjeffddWa3Zs1sRAAAAcC0PPfSQXnzxRdMZMMzLy0tvvfVWln8OKVeunIEic06cOKGJEydq4sSJkqT8+fOrUKFC8vPzk6+vr+x2u1JSUpSamqrExESdOXNGZ8+eVUpKSpbna9OmjSvzAcCpqlWrprvvvlszZ840neIydrtdQ4YM0fTp02Wz2Zx2naYVimZa+/63HZryx25teLerYgsFZtu1th4+fUPH/eeeahp2f51MA93DH6irOWv36+DJCxlrKWnpGjTxz0znaFE56vZis1GzikWvOdBeNSZMW+JOKTk1PWPt6daVXZEGANmC228AAAAAAAAAAIA8JSoqSmPGjFG+fPlMp7gtX19fjR49Wl5eXqZTAEVHR2vQoEGmMwDAqPz58+u9995z6psRgRvl4eGhUaNGqWDBgqZTAAAAkEfcddddCgsLM50Bw55++mnFxsZm+VxeG2i/0oULF7Rr1y6tX79eK1as0B9//KE1a9Zo/fr12rlzp+Lj4686zA4AudGLL74oPz8/0xkutXPnTn311VdOvUZ4oK8qRoVkWr+ckqYfftuRbdex2+3adujaA+1enh76um9zjXigXpa7kxfw9dKCQe1VJTr0mucpGJBPlYtd+xhXalLh6jvFB/h6adVbnXX2297688379F2/O/Xnm/fp4cZlXVgIALeHgXYAAAAAAAAAAJBnhISE6Msvv1RwcLDpFLdXsWJFDRw40HQG8jhvb2+99957ee5NRwCQlcqVK2vAgAGmMwC98MILqlu3rukMAAAA5CE2m00PPPCA6QwYVLFiRT322GNXfb5EiRLcBA4AkKFgwYJ66qmnTGe43KeffqpDhw459RrNKmXepV2SFm/OvuseOpWgC0lXvxFL4SA/LR7SUd0blrnmeUpGBGrFiPv0cofq8rBYsjzmzkpR8vDI+jkTQgvkU9WYrG/kVDk6VBaLRV6eVtUoEa6u9UurRolwFxcCwO1hoB0AAAAAAAAAAOQJISEh+uabb1SsWDHTKTlGly5d1LFjR9MZyMOGDh2a53dXAoB/69atm+6//37TGcjDOnTooJ49e5rOAAAAQB50//33y8vLy3QGDPD19dXbb78tq9V61WNsNpvKly/vwioAgLt76KGHVLx4cdMZLpWUlKRhw4Y59RrPta2iID/vTOsrdx3XhaTkmzqX3W6X3W7PtL71Kruze3l66Lm2VbT5vW6qU6rQDV3Dy9OqN7rW1a+vd1SJ8IBMz7esEnVTza7QtGLWu7RXic560B0AchIG2gEAAAAAAAAAQK739zB7yZIlTafkOEOGDOGNgDDiwQcfVIcOHUxnAIDbGTRokGrXrm06A3lQtWrV9Prrr5vOAAAAQB4VHBysdu3amc6AAUOGDFGJEiWue1ydOnVcUAMAyClsNpteffVV0xku9+uvv2rBggVOO3+RYH/t/uQh/ffZlg7rqWnp+m3bkRs+z4odR1X3lSkq0mu8+n75q04nXMp4btuhMw7Hlo/w195PHtTpr3tp5EP1VcD35m9yVK90hP4a2UW9mv/z997Vi4fpvrqxN30uZ2tWsWiW61fbuR0AchIG2gEAAAAAAAAAQK7GMPvt8fb21qeffqrw8HDTKchDGjRooJdfftl0BgC4JU9PT3344YcqVqyY6RTkITExMfrkk0/YERMAAABG9enTR97emXcERe7VuXNntW/f/oaOrVu3rpNrAAA5Tf369dW8eXPTGS43fPhwJSQkOO38Ab7e6lyvpBqULeywvmhj3A29fvaafWrx+gyt2XNCJ84l6fOFm1XhuR80YfkO2e32TDu0x4TmU5Fgf/l4ed5Wt7+Plz7t1UR7PnlICwa11/I3Osnmab2tczpD/TIR8vLMPPJZOTrUQA0AZC8G2gEAAAAAAAAAQK4VHR2tiRMnMsx+mwoVKqSxY8fK39/fdArygLJly+r999+Xp+ftvSkFAHKzwMBAffnllwoLY0cWOF+hQoU0fvx4BQcHm04BAABAHhcZGamHH37YdAZcpHTp0ho4cOANH1+tWjXly5fPiUUAgJzo5ZdfznM3xDl+/Lg++OADp1/nyp3El2w+dN3X/L79qDqNmqtLKWkO6yfOJenBD39Wq+GzNGPVHofnYkJ8bz/2X4qFFVCzikXdcphdkny9bapbOsJhzdtmVdkiQYaKACD7MNAOAAAAAAAAAABypcqVK2vChAmKiooynZIrlC5dWh9//LFsNpvpFORiRYoU0ZgxY7h5AgDcgKioKI0bN04BAQGmU5CLBQYGaty4cSpcuPD1DwYAAABcoHfv3goNZXfK3M7f318ffPDBTQ0genl5qUaNGk6sAgDkREWLFlXPnj1NZ7jcDz/8oC1btjj1Gs0qRTo83nTwlLZdsbv6lcYv3qK0dPtVn/9lY5xOJ1x2WKseVeDWI3OoK28WUKFosNsO4APAzWCgHQAAAAAAAAAA5DrNmjXTN998wy6S2axu3boaMWKELBaL6RTkQmFhYfr6668VHh5uOgUAcozSpUtrzJgx8vXN3h1qAEkKCAjQ+PHjFRsbazoFAAAAyODv769nnnnGdAacyNPTU++//75iYmJu+rV33XWXE4oAADldr169VKRIEdMZLpWWlqbXXntN6enpTrtGzRLhCvRzvPnMoIl/XvM12w6fualrdKpTQmUj8t6NsHs0Kaugf/3a9m1V2WANAGQfBtoBAAAAAAAAAECu4eHhoaefflqffPKJ8uXLZzonV7r77rs1bNgwhtqRrYKCgvTVV18pKirKdAoA5DhVq1bVJ598Ih8fH9MpyEUCAwP11VdfqXz58qZTAAAAgEw6deqkMmXKmM6AkwwcOFANGjS4pde2bNlSXl5e2VwEAMjpfHx81L9/f9MZLrd582b98MMPTju/p9VDfVpWdFibsWqv/tx5LMvj7Xa7dh4567A2e0A7TX2xlQoH+WU6PiLIVx8+2jDbenOSiCA//TbsXg3tUluzXm6rbg1Km04CgGzBQDsAAAAAAAAAAMgVAgIC9Pnnn6tv374MWzvZfffdp9dff51fZ2SLkJAQffvttypZsqTpFADIserVq6exY8fKzy/zm/6Am8UwOwAAANydh4eHXnvtNVmtVtMpyGaPPvqounbtesuvz58/vxo2zJuDbwCAa2vZsqXq1atnOsPl3n//fR0/ftxp53/h7qoKye94s9V+45bqUnJqpmNPXbiksxcvO6yVLhyoe2qV0Ob3uqnvXZX0918/e9usGv9U80znzkvKRgbr1XtrqnW1aHl48PfyAHIHBtoBAAAAAAAAAECOV7lyZU2bNk2NGjUynZJndO7cWUOHDmWoHbclLCxM3333nUqVKmU6BQByvFq1aunrr79WQECA6RTkYBEREfrvf/+rcuXKmU4BAAAArql69ep64oknTGcgGzVv3lwvvfTSbZ+nXbt22VADAMiNBg4cKE9PT9MZLpWQkKARI0Y47fwBvt56uUN1h7W1++LV98ulstvtDus7j551eGyzeqhYWH5JUgFfL73/aENtGt1Nn/VqrFVvddadlaKc1g0AMIOBdgAAAAAAAAAAkGN5enrq6aef1oQJE1S0aFHTOXlOly5d9Oabb+a5N34ge0RFRem///2vSpQoYToFAHKNSpUq6dtvv1VISIjpFORAsbGxmjhxIl+bAQAAkGM89dRTqlatmukMZIN69epp9OjR8vC4/fGG5s2bq1ChQtlQBQDIbUqUKKFu3bqZznC5+fPna+nSpU47/5MtKqpURKDD2te/btOYnzc7rO08csbhcWyhAFmv+NpfpkiQHm9eQeWL8jNuAMiNGGgHAAAAAAAAAAA5UvHixTVp0iT17dtXVqvVdE6e1aFDB3322Wfy9fU1nYIcpHz58powYYKiothZAQCyW5kyZTRp0iTFxsaaTkEOUr16df3www8MfQAAACBHsVqtGjVqlAoUKGA6BbehZs2a+vTTT+Xt7Z0t5/P09FT37t2z5VwAgNznqaeeUkBAgOkMl3v99dd16dIlp5zbx8tTU15sJT9vm8P6s18t0+/bj2Y8vnKH9pJXDMEDAHI/BtoBAAAAAAAAAECO4uXlpaeeekozZsxQhQoVTOdAUsOGDdkNFjfs7/9eQkNDTacAQK5VtGhRTZo0SfXr1zedghygU6dO+vrrrxUYGGg6BQAAALhpRYoU0dChQ01n4BZVrVpVY8aMUb58+bL1vF26dOEmrACALPn7+6tr166mM1zu0KFD+vTTT512/vJFQzT+qWYOa6lp6eoyep6OnE7QhaRkbTl42uH5koUDndYDAHBPDLQDAAAAAAAAAIAco27dupo1a5b69euXbbu1IHtUrFhREydOZDdYXNNDDz2kzz//XP7+/qZTACDX8/f31xdffKFu3bqZToGbslqtGjBggIYPHy4vLy/TOQAAAMAta926tR566CHTGbhJlSpV0tixY+Xn55ft5y5QoIDuv//+bD8vACB3aNCggSpXrmw6w+XGjx+vXbt2Oe3899aJ1UvtqzmsHTubqKgnvlbQw19oztr9Ds+VLhzktBYAgHtioB0AAAAAAAAAALi9IkWKaPTo0fr6668VExNjOgdXERUVpcmTJ6tly5amU+BmbDab3njjDb366quyWq2mcwAgz7BarXrttdc0fPhw+fj4mM6BGwkLC9O4ceP0yCOPmE4BAAAAssUrr7yitm3bms7ADbrjjjv09ddfK3/+/E67Ru/evRUQEOC08wMAci6LxaKBAwfKwyNvjdWlpKRo8ODBstvtTrvGG13r6M7KRW/o2JIRgU7rAAC4p7z1lRcAAAAAAAAAAOQoBQoU0EsvvaT58+erTZs2pnNwA/z8/PThhx/qhRdeyHNvAkHWihQpogkTJui+++4znQIAeVanTp00ZcoUlShRwnQK3MAdd9yhmTNnqm7duqZTAAAAgGxjsVj01ltvqUGDBqZTcB1t27bVmDFjnLIz+78FBgaqT58+Tr0GACDnKl++vDp16mQ6w+X++usvTZ061Wnnt3p46Pt+LRQddv2b1pRioB0A8hzeRQQAAAAAAAAAANyOj4+PevTooZ9//lk9e/aUl5eX6STcpF69emncuHEKCwsznQKDmjRpoh9//FEVK1Y0nQIAeV6pUqU0depUdejQwXQKDLHZbHr++ef15ZdfKiQkxHQOAAAAkO1sNps++ugjVa1a1XQKruKhhx7SqFGjZLPZXHK9bt26KTo62iXXAgDkPM8995wCAgJMZ7jcqFGjdPr0aaedPyR/Pk19qbXyeXle87iCAfmc1gAAcE8MtAMAAAAAAAAAALfh6+urRx99VIsWLdLLL7+swMBA00m4DfXq1dPs2bPVokUL0ylwMV9fXw0dOlSff/55nnwjEAC4K19fX7311lt67733FBwcbDoHLlSmTBlNnTpVvXv3locHbxcCAABA7pUvXz59/vnnKlWqlOkU/IvVatWAAQP06quvymKxuOy6NptNw4cP589BAIAsBQcHq1+/fqYzXO7s2bN65513nHqNKtFhmvj8XQrwzfrG9TVKFHTp9wQAAPfAn8wAAAAAAAAAAIBxAQEB6t27txYtWqT+/fsrNDTUdBKySVBQkD766CONGDFCfn5+pnPgAtWrV9esWbN0//33m04BAFxF69atNWfOHLVq1cp0CpzM09NTffr00dSpU1WmTBnTOQAAAIBLBAYG6rvvvlOVKlVMp0D/GxYcP368HnnkESPXr1Gjhnr27Gnk2gAA99e1a1eVLl3adIbL/fjjj1q5cqVTr9GmWrROjO+ps9/20pp3usjP25bx3MONyzr12gAA98RAOwAAAAAAAAAAMKZ48eIaPHiwli5dqueff56dQnOxe++9V7Nnz1bjxo1Np8BJChQooCFDhuiHH35Q0aJFTecAAK4jODhY77//vj788ENuJpRL1axZUzNmzNAzzzwjm812/RcAAAAAuUhgYKC++uorNWjQwHRKnlahQgVNnz5dderUMdrRr18/lStXzmgDAMA9Wa1WDRo0yHSGEUOGDFFycrJTr2H18JC/j5eqRIfpjzfv0+DOtTTxubv0RIsKTr0uAMA9MdAOAAAAAAAAAABcytPTU02bNtXYsWM1d+5cPfDAA8qXL5/pLLhAkSJFNGbMGH300UcqVKiQ6Rxko7Zt22revHnq2rWrLBaL6RwAwE1o2bKlFixYoEcffZSh51wiLCxM77zzjr7//nuVLFnSdA4AAABgjK+vr8aMGaOHHnrIdEqe1LlzZ02YMEERERGmU2Sz2fTRRx9xQzcAQJZq1qyptm3bms5wub179+rLL7902fXKRQZrUKda6lQ3lr9PBIA8ioF2AAAAAAAAAADgEsWLF9eLL76opUuX6rPPPlPDhg35i+o8qkWLFpo7d6569OjB4FwOV7lyZU2YMEHvvvsubwYFgBzM399f/fv316xZs9SwYUPTObhFPj4+6tWrl+bPn6/27dubzgEAAADcgtVq1auvvqo333xT3t7epnPyhNDQUH322WcaNmyYvLy8TOdkiIyM1GeffcYNdgEAWfrPf/4jX19f0xku9/nnn+vAgQOmMwAAeQQD7QAAAAAAAAAAwGnCw8P14IMPatKkSZo3b54ef/xxhl4hSfLz89PLL7+sefPmqU2bNtzcIIcpWrSo3n33XU2ePFnVqlUznQMAyCbFixfX2LFj9cUXX6hMmTKmc3CDrFar7r33Xi1cuFAvvPCC/P39TScBAAAAbqdjx46aMmWKYmNjTafkanfeeadmz56tpk2bmk7JUqVKlfTuu+/K09PTdAoAwM2Eh4frySefNJ3hcpcvX9bQoUNNZwAA8ggG2gEAAAAAAAAAQLYqVKiQunfvrh9++EFLly7VwIEDVaVKFdNZcFNFixbV6NGjNW3aNN1xxx2mc3AdRYoU0bBhwzR//ny1bdvWdA4AwEkaNWqkGTNm6IMPPlDJkiVN5+AqrFar2rZtq9mzZ2vEiBEKDw83nQQAAAC4tdKlS2vatGnq1q0bN9jMZkFBQXrrrbf08ccfKzg42HTONTVr1kyffPIJO7UDADJ55JFHFB0dbTrD5X7//Xf99NNPpjMAAHkAA+0AAAAAAAAAAOC2WK1WVa9eXc8//7xmzpyppUuXatCgQapRowZvCsQNK1++vMaPH68ffvhBjRs35r8dNxMVFaWhQ4dq/vz56ty5MzsYAUAeYLFYdNddd2nWrFkaNWqUSpQoYToJ/8/T01MdOnTQnDlz9O677/J7AwAAANwEHx8fvfbaa/r+++8VExNjOifHs1qtuvPOOzV37lx16NDBdM4Na9y4sb766isFBgaaTgEAuBEvLy+98sorpjOMeOutt3ThwgXTGQCAXI53mgAAAAAAAAAAgJtisVhUqlQp1apVS7Vq1VKdOnVUoEAB01nIJWrUqKEaNWpo586dGjt2rObOnavU1FTTWXlWpUqV9Nhjj6lFixby8OBe2QCQF3l4eKhdu3Zq27atli5dqq+++kp//vmn6aw8KX/+/OrUqZMefPBBFSlSxHQOAAAAkKPVqFFDs2bN0vjx4zVmzBglJiaaTspxatWqpVdeeUWJiYkKCAgwnXPTqlatqokTJ+qFF17Qli1bTOcAANxEo0aN1KRJEy1ZssR0ikvFx8fr3Xff1ZAhQ0ynAAByMQbaAQAAAAAAAADANfn6+qpChQqqWLGiqlWrpho1arBrCZyuVKlSGjlypJ5//nlNnjxZ06ZN0/Hjx01n5Qk2m00tW7ZU165dVaNGDdM5AAA3YbFY1LhxYzVu3Fjbt2/X119/rTlz5ig5Odl0Wq4XHR2tBx98UB06dJCfn5/pHAAAACDX8PLy0hNPPKGOHTvqvffe08yZM5WWlmY6y+2VL19effr0UfPmzZWWlqb169ebTrplMTExmjRpkj7++GONHTuW338AgCTp2Rde0pKlv0npeevrwqRJk9ShQwdVrlzZdAoAIJdioB0AAAAAAAAAAGTInz+/SpUqpTJlyqhs2bKqVKmSSpYsyc7MMCYiIkLPPPOM+vbtqyVLlmjy5MlatmyZ0tPTTaflOkWLFgCHOt0AANNbSURBVNV9992nTp06KSQkxHQOAMCNlSlTRm+99ZZefvll/fTTT5o2bZq2bt1qOitX8fb21p133qlOnTqpTp06slgsppMAAACAXKtgwYJ688031atXL3366aeaM2cOg81ZqFq1qp588kk1atTIdEq2stlseu6559S4cWONGDFCGzduNJ0EADBsxuYzOhNaVUEn1phOcan09HS99tprmj59uqxWq+kcAEAuxEA7AAAAAAAAAAB5UGBgoKKjoxUTE6OYmBjFxsaqdOnSioyMNJ0GZMlqtap58+Zq3ry5Tpw4ofnz52vu3Llav3697Ha76bwcy8/PT3fddZc6dOigGjVqMCwHALgpgYGB6t69u7p3767t27dr2rRpmjt3rk6ePGk6LceqVKmS2rdvr3bt2ikgIMB0DgAAAJCnxMTEaOTIkerbt6+++eYb/fjjj0pMTDSdZZTValWDBg3Uo0cP1alTx3SOU1WtWlVTpkzRwoUL9f7772vPnj2mk5zG09NTxYsXV8OGDVWrVi3VqFHDdBIAuI3TCZc0cuZanS9YQ/nPbJdnSoLpJJfavn27vv32W/Xo0cN0CgAgF2KgHQAAAAAAAACAXCggIEAFCxZURESEChcurCJFimT8s1ixYgoODjadCNyyggUL6qGHHtJDDz2ko0ePat68efr555+1YcMGdk66Ab6+vmrYsKFatmypJk2aKF++fKaTAAC5QJkyZfTqq69qwIABWrdunX755Rf9/PPPiouLM53m9ipUqKBWrVqpVatWKlKkiOkcAAAAIM8rVqyYXnvtNT333HOaNm2apk6dql27dpnOcqmiRYuqY8eOuvfeexUeHm46x6VatGihZs2aaeHChZo8ebL++OOPHH9TVS8vL1WpUkU1a9ZUzZo1ValSJW3fvl1VqlRhB14AuMLrk1fpXGKyZLXpZMQdKnRwgekkl/vwww911113KSIiwnQKACCXYaAdAAAAAAAAAAA3YLVa5eHhkfFPT09P2Ww2+fj4KF++fBn/9PX1Vf78+VWgQAGHj+DgYIWFhSk0NFShoaHy8vIy/SkBLhEREaFHH31Ujz76qM6fP6/ly5dr2bJlWrZsmeLj403nuY2IiAjVq1dPzZo1U/369eXt7W06CQCQS3l4eKh69eqqXr26+vfvr+3bt2vJkiX6448/tH79el2+fNl0onF+fn6qXbu2GjRooEaNGjHEDgAAALip/Pnz65FHHtEjjzyijRs3asaMGVq4cGGu/bljcHCwGjdurLvvvlt16tSRxWIxnWSM1WrNuPHYoUOHNHXqVM2bN0/79+83nXZDAgICVLlyZVWpUkU1atRQlSpVHH4mzI1hASBrw6au0sfzN2Y8vhhUSvlT9+jCkd0Gq1wvMTFRw4YN06effmo6BQCQy1jsOf12YQAAAAAAAAAAAMAV7Ha7du/erTVr1uivv/7S2rVrdfjwYdNZLhMaGqpq1aqpTp06qlevnmJiYkwn4QZt375dP//8s+kMpwoNDVXXrl1NZ+Q606dPz/X/P9ehQwdFRkaazsBtuHz5stauXas///xTK1eu1NatW/PEgLuvr68qVaqkatWqqXbt2qpevbpsNpvpLAAAkMslJiZq27ZtKlu2rHx9fU3nGJWWlqb169ezE3EO4e6/X+np6Vq7dq1+/vlnLV26VPv27TOddFtiYmLUtGlTNW3aVNWqVZOHh8dNvd7df7+yW1xcnH777TctX75ca9as0fnz500nqVChQipVqpRKly6tUqVKqXz58ipevPg1b0hg6vft1KlT+u9//+uy65ny9NNPZ9u58tr/xnI6fr9yhqv9Pk1ZsUtd33fcjd3T6qFNox9QyYhAF1fib/zvKmfh9yvn4fcsZ7nd3y93+FkRO7QDAAAAAAAAAAAg17FYLCpZsqRKliyZMTh7/PhxrV+/Xlu3btWOHTu0bds2HTt2zHDp7QsMDFTJkiVVoUIFVapUSZUrV2an1xysTJkyKlOmjOkM5EAdO3Y0nQBcl7e3t+rWrau6detKklJTU7Vz505t3rw542Pnzp1KSUkxXHrrbDabYmNjVbp0aZUvX17VqlVT2bJleSMYAAAAkEt4eHioRo0aqlGjhgYMGKCjR4/q999/16pVq7R+/XodOHDAdOJVeXh4KDY2VlWrVlXVqlVVo0YNFS1a1HRWjlK0aFF169ZN3bp1kyQdOnRI27dv1/bt27Vz504dOnRIJ06c0OnTp7NlF3QfHx+FhoYqPDxcBQsWVHh4uCIiIlS0aNGMj3z58t32dVwlJCQkW4e9ASA7jf5pfaa1D3o0ZJgdAIBsxEA7AAAAAAAAAAAA8oTw8HC1bNlSLVu2zFg7c+aMdu7cqf379+vAgQM6ePCgDhw4oLi4OCUlJRmsdeTr66uIiAgVKVJEkZGRKl68uGJjYxUbG6uwsDDTeQAA3BJPT0+VK1dO5cqVU+fOnSX9b8j90KFD2rdvn8PHwYMHdfLkyWwZCMgOQUFBioqKyviIiYlRqVKlVKJECXl68nYcAAAAIK+IiIhQp06d1KlTJ0nS6dOntXHjRm3fvl27du3K+NljcnKyS7sKFCigmJgYFS9eXMWLF1fZsmVVpUoV5c+f36UduV1kZKQiIyPVvHlzh/W0tDSdPHlSJ0+eVGJioi5fvpzxkZycLLvdLovFIqvVKk9PT3l5ecnHx0f58uWTr6+vChQooMDAQGO7JgJAXpN4OUXr9sU7rI186A71blHBUBEAALkTf4MGAAAAAAAAAACAPCsoKEi1a9dW7dq1Mz13+vRpxcfHO3ycPHlSFy5cyPhISEhQQkKCEhMTlZqamvGRkpKitLQ02e12Wa3WjA9PT095enpmvDHRz88v45/58+dXYGCgQkJCFBISouDgYIWEhKhw4cIKDg428KsDAIDreXp6Kjo6WtHR0WrSpInDc38PBBw/flwnTpzQ8ePHM742nz9/XufPn1dCQkLGP1NSUjJ9fU5NTc24zt8fVqtVNptNfn5+8vf3l7+/v/Lnz5/xtTksLEyhoaEKCwtTWFiYChUqJH9/fxO/PAAAAADcXHBwsBo3bqzGjRtnrKWnp+v48eOKi4vToUOHMn7WeOrUKZ0+fVoXLlzQxYsXlZCQoEuXLik1NVVpaWlKTU2Vh4eHvLy8Mn34+voqJCREoaGhDv8sVKiQYmJiFBoaau4XAbJarQoPD1d4eLjpFADADVi1+7hS09IzHls9LOrVnGF2AACyGwPtAAAAAAAAAAAAQBaCg4MVHBys0qVLm04BAABiIAAAAABAzuTh4aGIiAhFRESoVq1apnMAAMAVft9+1OFxlehQ+fnYDNUAAJB7eZgOAAAAAAAAAAAAAAAAAAAAAAAAAADA1VbscBxov6NMYUMlAADkbgy0AwAAAAAAAAAAAAAAAAAAAAAAAAByPLvdrqTk1Bs6Ni09XX/sOOawVq90hDOyAADI8xhoBwAAAAAAAAAAAAAAAAAAAAAAAADkaKt2H1fR3l8ptMdYDZm88rrHb4k7rfNJyQ5r9UoXclYeAAB5GgPtAAAAAAAAAAAAAAAAAAAAAAAAAIAcKyU1TfePnq9jZxN1OSVNb0xdrY0HTl7zNbPX7HN4HFOwgAoH+zszEwCAPIuBdgAAAAAAAAAAAAAAAAAAAAAAAABAjjV5xW4dPHnBYW3u2v1XPX7HkTN6c/oah7U7ykQ4Iw0AAIiBdgAAAAAAAAAAAAAAAAAAAAAAAABADmW32zVq1tpM64s2Hcry+LT0dD326SJdSklzWO/dooJT+gAAAAPtAAAAAAAAAAAAAAAAAAAAAAAAAIAcav76g9p08FSm9d+3H1Hi5ZRM6x/O3ag/dx5zWHu6VSXVLcUO7QAAOAsD7QAAAAAAAAAAAAAAAAAAAAAAAACAHCmr3dklKTk1Xcu3H3VYO3AqSUMmr3JYKxEeoDe61nVaHwAAYKAdAAAAAAAAAAAAAAAAAAAAAAAAAJADrdp9XEu3HL7q84s2xWX8e1p6uobN3a1LKWkZaxaL9GWfZvLzsTm1EwCAvI6BdgAAAAAAAAAAAAAAAAAAAAAAAABAjjNqZta7s//tlw1xstvtkqQP5m7UpiMJDs8/3aqyGpQt7LQ+AADwP56mAwAAAAAAAAAAAAAAAAAAAAAAAAAAuBm7jp7Vj6v2OKy1qRatOWv3ZzzecOCkfly5R2cuXtaAH/5wODa2UIDe6FrHFakAAOR5DLQDAAAAAAAAAAAAAAAAAAAAAAAAAHKU0bPX6f83X5ckFcjnpXF9mqnaSxN15MzFjPXOo+dneq3FIn3Zp5l8vW2uSAUAIM/zMB0AAAAAAAAAAAAAAAAAAAAAAAAAAMCNOnb2or5dut1hrXeLCgotkE9vP1jvuq9/ulVl1S9T2Fl5AADgCgy0AwAAAAAAAAAAAAAAAAAAAAAAAAByjI/nbdTllLSMx16eHnq6VSVJ0v13lFKzikWv+trG5Qrrja51nN4IAAD+wUA7AAAAAAAAAAAAAAAAAAAAAAAAACBHOHUhSZ8v3Oyw1r1hGRUO9pckWSwWfdyzkULy+zgcU714mAa3idVPA9rK19vmsl4AACB5mg4AAAAAAAAAAAAAAAAAAAAAAAAAAOBGvPLDHzp78XLGY4tFeuHuqg7HlIwI1B8j7tPUP3bLz8emu6oUU3SYv9avXy+bp9XVyQAA5HkMtAMAAAAAAAAAAAAAAAAAAAAAAAAA3N6KHUc1bvFWh7VOdWJVunBQpmOLhwfoP/dUz3iclpbm9D4AAJA1D9MBAAAAAAAAAAAAAAAAAAAAAAAAAABci91u1wvfLHdY8/exaeRD9Q0VAQCAG8VAOwAAAAAAAAAAAAAAAAAAAAAAAADAra3afVyrdx93WBvcuZYiQ/wNFQEAgBvFQDsAAAAAAAAAAAAAAAAAAAAAAAAAwK19tmCTw+NiYfnV965KhmoAAMDNYKAdAAAAAAAAAAAAAAAAAAAAAAAAAOC2Tp5P0uQVuxzWet9ZQTZPq6EiAABwMxhoBwAAAAAAAAAAAAAAAAAAAAAAAAC4ra9/3abk1PSMx16eHurRtJzBIgAAcDMYaAcAAAAAAAAAAAAAAAAAAAAAAAAAuK0F6w86PL6vbkmFFchnqAYAANwsBtoBAAAAAAAAAAAAAAAAAAAAAAAAIIdJT7frTMIl0xkusff4OYfH7WrEGCoBAAC3goF2AAAAAAAAAAAAAAAAAAAAAAAAAMhBNh44qWJPfqXwx8ap1+eLZbfbjbWkpafr7Rl/qVb/SXpq7K9KuJScredPSU1T3MkEh7WY8ALZeg0AAOBcnqYDAAAAAAAAAAAAAAAAAAAAAAAAAAA3rs/YX3X0TKIkafzirbqvXqzurBQlSdp66LQe+nChNh08pbJFgtS8cpSebVNFkSH+2d5ht9vV98ulGvvLFknS2n3xOnDygmb2byOrR/bsxXrwZILSrxjYL16QgXYAAHISdmgHAAAAAAAAAAAAAAAAAAAAAAAAgBwi7uQF/bnzmMPad79ulyTtOnpWdw6dofX7Tyot3a7Ncaf1/k/r1WTw9GzfOV2SXvnvHxnD7H+bv+6AXv3vn9l2jb0nzjk8DvD1UpC/T7adHwAAOB8D7QAAAAAAAAAAAAAAAAAAAAAAAACQQ8xcvTfT2po9J3Qg/rxavD5Dx88lZnp+34nzemPqmmztmPT7To2cuTbL50bNWquVu45l+dyV7Ha7pv25W09+sURTVuyS/Yrd2PefOO/wuHh4wK0FAwAAYxhoBwAAAAAAAAAAAAAAAAAAAAAAAIAc4sdVmQfadx49q6ZDflTcqYSrvm7UrLXy7PyxGr02TcfPZh56vxnbDp1W7zFLrnnMpN93Xfc8F5KS9cD7C9Rl9HyN/WWLur6/QC9+u9xhqH3vcceB9uiw/LcWDQAAjGGgHQAAAAAAAAAAAAAAAAAAAAAAAABygPjzSVq29UiWzx2Iv3BD5/h9+1H957vfb+n6aenp+mDOetUZMEUJl1IcnisYkM/h8eJNcdc9V5sRszXlj90O6x/M2aAnxixRWnq6pMw7tMewQzsAADkOA+0AAAAAAAAAAAAAAAAAAAAAAAAAkAPMWr1X6f/avfxqyhcN1rEvH9N/7qmW5fNT/til+PNJN3XttXtPqN4rU/TCN8t18bLjMPsjjctq2kutHdY2x53WsbMXr3q+6X/u0YodR7N8btzirXrww5+VnJqmfVcOtBcscFPdAADAPE/TAQAAAAAAAAAAAAAAAAAAAAAAAACAa7Pb7Rr7y5brHhdbKEDzB7ZXaIF8erVjTc1be0CbDp5yOCY5NV1fLd6q/9xT3WH9XOJl/bU3XimpadoSd1qLNsUp4VKKdh09qxPnsh6ArxIdqg8faygvT6vy57PpQtI/w+6LNx3SAw1KZ/m6OWv3X/PzmLxilxIuJWvPsXMO6zHhDLQDAJDTMNAOAAAAAAAAAAAAAAAAAAAAAAAAANnockqa9sefV/GCBWTztDo8F3fygnYcOasKUcEqFOh3w+f8c9cxrdlz4prHFA3x14JB7RUR9L/z+vnY9OvrHTX1j93qPWaJw7Fjf9miJ1pUVAFfL0nS5oOndOfrM25q5/bHmpbT2w/eIV9vmySpcflIzV6zL+P5RZvishxoT0+3a/66Aw5rd1YuqqVbDis5NT1jbe7aA1e+lB3aAQDIgRhoBwAAAAAAAAAAAAAAAAAAAAAAAIDrSElN009/7Vdaul31ShdS4WD/LI87EH9ebUbM1vbDZxQVml/jn2omT6uH5q7d77Bbup+3TUuGdlC14gVv6Pofz93o8DgqNL8KBflq1a7jkqTwAF8tfO0eFQtzHPgO8PXWY83Kq1zRYDUYOC1jfd+J84rsPV5d6pXUI03Kqd+4pTc8zF62SJA+7dVEDcoWdlhvVtFxoH3eugOas3a/WlaOkqfVI2N9zd4TOnnhksNrP328ifYcO6eOI+co8XJqlte1WKRioflvqBEAALgPBtoBAAAAAAAAAAAAAAAAAAAAAAAA4BpSUtPUesRsLdl8KGOtXGSwmlcqqsblCyswJU2SlJyapi6j52v74TOSpIMnL6j50BlZnvPi5RS99eNfmvxCq2teOy09Xe/9tF5T/9ztsN7nrop6sGEZvTt7nVLT0vV8u6qKDMl6yF6S6pQspErFQrTxwKmMtcTLqfpqyTZ9tWTbNRv+5m2zakCHGnqpfTV526yZnm9WsajD4xPnktT+rZ8UEeSrbg3K6JEmZVWmSJDmrd3vcFzZIkGKKVhAMQULaP7A9mr35mydS0zOdP4iwf7y8WIkDgCAnIav3gAAAAAAAAAAAAAAAAAAAAAAAABwDe/MXOswzC5JWw+d1tZDp/Xh3A2yelhUs8QBrdx9XHb7jZ938eZDSktPl9XDI8vntx8+o8c+/UUr/38X9r/5envqsablFOTvo3cevOOGrmWxWDSoUy3d9+68Gzo+PMBXd5SJUP58Nu0+dk5Rofk1qFNNlSocdNXXlCkSpOiw/Noff8Fh/eiZRI2atVajZq1Vx9oltOvoWYfnW1YtlvHv9UpHaNGQDmr1xqxMO8ZHF3TcfR4AAOQMDLQDAAAAAAAAAAAAAAAAAAAAAAAAwFVsPXRaw6etvuYxael2/XnF0PmNOHvxstbujVfN2PArzpeu939ar9cmrdTl/9/9/d+eaVNFQf4+N329DrVLaPGQDvpgzgb99Nc+paVnnr73sFi0YkQn1SgRnsUZrs1isejDxxqp+wcLdT4p8w7rkjR95Z5Ma63+NdAuSVWiw/Tr6x3VcthMHTqV8M96sdCbbgIAAOZlfeseAAAAAAAAAAAAAAAAAAAAAAAAAIBe+GaZklPTb/s8FaNC9J97qinmil3GF22Kc3i848gZNXptuvp/vyLTMLvFIj3btoqGdK51yx0NyxXRtJdaa/9nj+iNrnUy9bzcofotDbP/rXW1aO399GF90rNxpkH9rPh6e6p+mcKZ1ksXDtLS1zuqRomCkqQS4QHq16byLXcBAABz2KEdAAAAAAAAAAAAAAAAAAAAAAAAALJw6kKSftnoOHD+XNsq6lQ3Vos2HdIvGw/qjx3HlJLmOPBusUhf9G6qWiXDtfvoOVUtHqao0PySpIuXUvTJ/E0Zxy7adEgvd6ghSRr7y2Y999UyXcpiV/aSEQH68snmuqNMRLZ8bhFBfnq5Qw39p311Ld58SEu3HlbZIkHqWr/UbZ870M9bvVtUUO8WFbQl7pRGz16nb37dnuWxDcoWlrfNmuVzxcIK6I8R9+nw6YsqGJBPXp5ZHwcAANwbA+0AAAAAAAAAAAAAAAAAAAAAAAAAkIWfN8TJbv/ncT4vTw3tUlu+3jbVLllIr3SsofMXL+nbuct1LMVXyWl2lYoIVP2yhVWmSJAkqXzREIdzNqtY1GGgfcWOo0pKTtWSzYf05Be/ZmqwWKR+rStr2P115Otty/bP0cPDouaViqp5paLZfm7pf5//293v0LdLtzv8Wv6tSYXIa77eYrEoMsTfKW0AAMA1GGgHAAAAAAAAAAAAAAAAAAAAAAAAgCwsWH/A4XGTCkUyDZX7+dhUt3iQqlSpIqv1+juINyxXRB4Wi9L/f7r7ckqalmw+pBe+WZbp2NhCAfqyTzPVL1P4Nj4L80IL5FPV6DCt3Ref6bmm1xloBwAAOZ+H6QAAAAAAAAAAAAAAAAAAAAAAAAAAcDfp6XYt2HDQYa1llWK3fd5AP2/ViC3osNZx5FztOnrOYe2JFhW0duT9OX6Y/W9NKmYeXA/y81bl6FADNQAAwJUYaAcAAAAAAAAAAAAAAAAAAAAAAACQp9jtdg2etFLVX5qovl/+qhPnEjMds25/vE6cS3JYuysbBtolqVnFog6PU9PSHR7XKhmuDx9tlGk3+Jzsys9ZkqoWD5PVgxE3AAByO77aAwAAAAAAAAAAAAAAAAAAAAAAAMhTPp63UcOnrdaGAyf1+cLNqvj8fzVx+U7Z7faMY+avO+DwmpIRASpRKCBbrt8si93K/+29RxrIw8OSLddyF/XLRGRaa1E5ykAJAABwNQbaAQAAAAAAAAAAAAAAAAAAAAAAAOQZCZeSNWL6Goe1UxcuqfuHC3XvyLk6euai7Ha7Jizf6XBMy8rZszu7JNUtFaF8Xp5ZPteuRoxqlyyUbddyF77eNnVvWDrjcf58NnWtX8pgEQAAcJWsv+sBAAAAAAAAAAAAAAAAAAAAAAAAgFxo5Mx1ij+flOVzs9bs02/bjujhxmW0/fAZh+fuqV082xq8bVY1KFtYCzcczPRcjyZls+067mb0Iw0U7O+jfSfO66m7KqlIsL/pJAAA4AIMtAMAAAAAAAAAAAAAAAAAAAAAAADI9U6eT9LACX/oy0Vbr3nc2YuX9cGcDQ5rZYoEqVG5Itna06xiZKaB9tD8PrqravbtBO9ugv19NPqRBqYzAACAi3mYDgAAAAAAAAAAAAAAAAAAAAAAAAAAZzp65qLqD5ya5TD7G13rqGBAvmu+/okWFWSxWLK1qVmlopnWOtQuIS9Pa7ZeBwAAwDR2aAcAAAAAAAAAAAAAAAAAAAAAAACQ6xw5naBRs9Zp8aY4bY47neUxDzYsrZc71FDPZuX13NfLNGH5zkzH+Hp76sFGZbK9r1JUqIoE++nw6YsZa71bVMj26wAAAJjGDu0AAAAAAAAAAAAAAAAAAAAAAAAAco3zicl6beKfKvPM9/pw7oYsh9m9PD3Ur3VlffFEU0lSaIF8+q5fC/34nzYqFOjrcOzDjcoqwNc72zs9PCz6uGdjBfp5y9PqoYGdaqpKdFi2XwcAAMA0dmgHAAAAAAAAAAAAAAAAAAAAAAAAkOOlpKZp7C9bNGzqasWfT7rqcSUjAvTTgLtVolBApufa1YhR/TIRGjJ5peauPaBaseF6q3s9pzW3qxGjuDE9lJKargK+Xk67DgAAgEkMtAMAAAAAAAAAAAAAAAAAAAAAAADI0TYfPKXO787TzqNnr3lcifAALRx0j4qG5r/qMUH+Pvrg0Ub64NFsjryKfF6eyscsOwAAyMUYaAcAAAAAAAAAAAAAAAAAAAAAAACQo/UeszjLYXYPi0X31Y1V4wpFFOzvo5ZVouTvw/Q4AACAKzHQDgAAAAAAAAAAAAAAAAAAAAAAACDHOnw6QSt3Hc+03q5GjIY/UFflIoMNVAEAAOBvDLQDAAAAAAAAAAAAAAAAAAAAAAAAyLEWrD/o8LhAPi/N6N9GDcsVMVQEAACAf2OgHQAAAAAAAAAAAAAAAAAAAHnGqlWrNH36dO3cuVMXL15USEiIihcvrq5du6p8+fKm8wAAAHAL5q874PC4ReUohtkBAADciIfpAAAAAAAAAAAAAAAAAAAAAMAVpk6dqoceekjr169XRESEKlWqpAIFCmjJkiXq1KmTpk+fbjoRAAAANyklNU2/bIxzWLurapShGgAAAGSFHdoBAAAAAAAAAAAAAAAAAACQJ4wfP14vvPCCHn/8cYf1tLQ0Pf/88/r444/VsWNHQ3UAAAC4FSt2HtP5pGSHtZZVihmqAQAAQFbYoR0AAAAAAAAAAAAAAAAAAAC5zttvv63kZMfBptOnT6tOnTqZjrVarbrjjjt08uRJV+UBAAAgm8xdu9/hcdWYMEUE+ZmJAQAAQJYYaAcAAAAAAAAAAAAAAAAAAECuM2vWLLVv314bNmzIWCtTpoxGjhypDRs2KCEhQenp6Tp//ryWL1+ucePGqXz58gaLAQAAcLPS0+2asmK3w1rLKlGGagAAAHA1DLQDAAAAAAAAAAAAAAAAAAAg1/npp59UqlQpPfDAAxo5cqSSk5M1cOBAHTp0SPfff79q1qyp8uXLq3bt2urZs6dSUlL0+uuvm84GAADATfht22EdPHnBYe3eOrGGagAAAHA1nqYDAAAAAAAAAAAAAAAAAAAAgOwWFBSkDz74QHPnztWwYcO0ZMkSvfXWW1qwYIFWrlypPXv26OLFi/L19VVsbKxq164tm81mOhsAAAA34Yffdjg8Ll80WFWiQw3VAAAA4GoYaAcAAAAAAAAAAAAAAAAAAECu1bp1a9WpU0evvfaaunbtqh49eqhfv36qX7++6TQAAADchqTkVE37c4/DWveGZWSxWAwVAQAA4Go8TAcAAAAAAAAAAAAAAAAAAAAAzhQcHKyPP/5Yb775pqZMmaKOHTtq48aNprMAAABwG2av2afzSckZjy0WqWv9UgaLAAAAcDUMtAMAAAAAAAAAAAAAAAAAACBPuPvuu/XTTz8pMjJSDzzwgEaPHq3k5OTrvxAAAABuIT3drg37T2rlrmP6/rftDs81qRCpyBB/Q2UAAAC4Fk/TAQAAAAAAAAAAAAAAAAAAAICzbN26VQcOHJCnp6cKFSqkChUq6PPPP9ePP/6oN998U0uWLNGIESNUsWJF06kAAAC4ihPnEvXNr9s1btEW7T52Lstjujco7eIqAAAA3CgG2gEAAAAAAAAAAAAAAAAAAJDrHDhwQH379tXu3btlt9slSRaLRZGRkXr99dfVoUMH1atXT4MGDVLXrl312GOPqW/fvrLZbIbLAQAAIEl2u12LNx/Sl79s0YxVe5WSln7VY/N5eapD7RIurAMAAMDNYKAdAAAAAAAAAAAAAAAAAAAAuc7gwYN14cIFjRo1SiVLlpSnp6cOHDigMWPG6Nlnn9WyZcsUHh6uL774QlOmTNHbb7+txYsXa/bs2abTAQAA8ryU1DQ9/PEvmrxi1w0df0+t4sqfz8vJVQAAALhVHqYDAAAAAAAAAAAAAAAAAAAAgOy2bt069enTR23atFGpUqVUvHhxNWnSRG+99ZbOnTun7du3Zxx73333afbs2SpYsKDBYgAAAPxt6JRVNzzMLkndGpZ2Yg0AAABuFwPtAAAAAAAAAAAAAAAAAAAAyHV8fHwUHx+faf3UqVOyWCzy8fFxWI+IiNC4ceNclQcAAICr+GVjnN6e8VemdR+bVQ82LK2XO1R3WC8c5KfmFYu6Kg8AAAC3wNN0AAAAAAAAAAAAAAAAAAAAAJDdmjZtqjFjxig+Pl4lS5aUp6enDh06pB9//FElSpRQqVKlTCcCAADgCna7Xc9+9Zvs9n/WPK0eert7PT3UqIyC/H1kt9vlafXQ8GmrFeLvoy+ebCpPK3t+AgAAuDMG2gEAAAAAAAAAAAAAAAAAAJDrDBo0SJ6enpo9e7YuXrwo6X+7trdo0ULPP/+84ToAAABk5dCpBG0/fMZhbcQDdfVMmyoZjy0Wi4Z0rq1XOtaQ3S5526wurgQAAMDNYqAdAAAAAAAAAAAAAAAAAAAAuY6vr6+GDRum119/XadOnZLValVQUJDpLAAAAFzDjiNnHR77edv07L+G2f/Ny5NBdgAAgJyCgXYAAAAAAAAAAAAAAAAAAADkWhaLRaGhoaYzAAAAcAN2HnHcnb104UB5eFgM1QAAACC7eJgOAAAAAAAAAAAAAAAAAAAAAAAAAICdV+zQXqpwoJEOAAAAZC8G2gEAAAAAAAAAAAAAAAAAAAAAAAAYt+Oo4w7tpQoHGSoBAABAdmKgHQAAAAAAAAAAAAAAAAAAAAAAAIBxV+7QXpod2gEAAHIFBtoBAAAAAAAAAAAAAAAAAAAAAAAAGJWUnKqDJy84rLFDOwAAQO7AQDsAAAAAAAAAAAAAAAAAAAAAAAAAo3YdPSu73XGtVESgkRYAAABkLwbaAQAAAAAAAAAAAAAAAAAAAAAAABi188hZh8eRIf7y87GZiQEAAEC28jQdAAAAAAAAAAAAAAAAAAAAADhTcnKyPvroI82bN0/Hjh1TWlpalsdZLBZt3brVxXUAAACQpB1Hzjg8Ll04yFAJAAAAshsD7QAAAAAAAAAAAAAAAAAAAMjVPvvsM40dO1aSFBISIm9vb8NFAAAA+Lfk1DS9MXW1w1rpwoFmYgAAAJDtGGgHAAAAAAAAAAAAAAAAAABArjZnzhxVrFhRH3/8scLDw03nAAAA4F9OXUjSXW/MUkpausN6KQbaAQAAcg0P0wEAAAAAAAAAAAAAAAAAAACAMx07dkxdunRhmB0AAMANfTBng9bti8+0fkeZwgZqAAAA4Azs0A4AAAAAAAAAAAAAAAAAAIBcLSwsTGlpaU459/fff69hw4Zd85ivvvpK9erVkyTt2bNHn3zyiVauXKlz584pODhYDRs21NNPP53lwP3MmTM1YcIE7dixQ2lpaYqJidG9996rBx98UBaLxSmfEwAAgCvNXrMv09rb3eupakyYgRoAAAA4AwPtAAAAAAAAAAAAAAAAAAAAyNXat2+vefPmqUuXLtl+7vPnz2f8e4ECBeTh4ZHpGJvNJknatWuXunbtqgsXLmSsHz9+XFOmTNHy5cs1ffp0BQcHZ7zu008/1QcffCBJslgsslqt2r59u4YPH649e/Zo6NCh2f75AAAAuNLBkxe06eAph7XPezVRz+blDRUBAADAGTL/xAwAAAAAAAAAAAAAAAAAAADIRfr27asiRYqoZ8+e+u2337R//34dOXIky4+b9fdwuiRNmDBBK1euzPRRs2ZNSdKbb76pCxcuyMvLSxMmTNDGjRv10UcfSZKOHj2qDz/8MONchw8f1qeffipJqlmzpv7880+tXr1abdq0kSRNnDhRGzduvOVfEwAAAHcwb+0Bh8fB/t7q0bSsoRoAAAA4Czu0AwAAAAAAAAAAAAAAAAAAIFcrX/5/O3za7Xb9/vvvVz3OYrFo69atN3Xufw+058+f/6rHnThxQitWrJAkNWrUSNWqVZMktWjRQmXLltW2bds0Z84cDRo0SFarVXPmzFFKSookqUePHgoMDJQk9erVS3PmzJEkzZw5U5UqVbqpXgAAAHcyb91+h8ctqxST1YP9OwEAAHIbBtoBAAAAAAAAAAAAAAAAAACQq1WqVEleXl5OOff58+cz/t3f3/+qx23evFl2u12SVKZMGYfnypQpo23btun8+fPat2+fYmNjtWnTJofn/xYbGyur1aq0tDRt2LAhuz4NAAAAl7uUnKrFmw85rLWuVsxQDQAAAJyJgXYAAAAAAAAAAAAAAAAAAADkapMmTXLauRMSEiRJHh4emjFjhubPn6+DBw8qf/78qlevnnr27KmCBQvq8OHDGa8JCgpyOEdwcHDGv8fFxSk2Ntbh+H8/7+npqYD/Y+8+w+ysyrYB33taeu+9NyCVJLQAgUDoJZSIAoIKWBAVFcUKKgIqoCCiqEgV6dJrChAILYGQ3hMy6b23ycz+fryfozszSSbJzOwp53kc7/Fm3Wvt57km+wfEgyurQYNYu3Zt5Obm7jVbfn5+5OfnH9TPV9n95+ev7r8PlYXvq3LxfVVOvrfKozp8V2On5sbWHbsK1xmJRAw7rG2l/Jmrw/dVFfieKhffV+Xi+6p8fGeVy8F+XxXhe1ZoBwAAAAAAAAAAAKDK2rlzZzz22GNx5JFHRvfu3Uv9+f+5ob2goCB++ctfFs6XL18ec+bMiRdffDEeffTR2LJlS+FejRo1Up7xv+v/nCvJ+f89U5zZs2fvz49Spf3vjfdUfL6vysX3VTn53iqPqvxd/WvMwpT1oa3qRO68mbH3v7KnYqvK31dV4nuqXHxflYvvq/LxnVUulfn7UmgHAAAAAAAAAAAAoMrKycmJ22+/PX7xi1+USaE9IyMjGjZsGIlEIr761a/GyJEjY926dfGrX/0q3nzzzVizZk3ccsst0b9//z0+o6CgoPDXiURin+/8z/l9ne3evXvUrl27hD9J1ZSfnx9TpkyJ3r17R2ZmZrrjsA++r8rF91U5+d4qj+rwXU1+dFbK+tyjeka/fv3SE+YgVYfvqyrwPVUuvq/KxfdV+fjOKpeD/b62bt2a9r/4UKEdAAAAAAAAAAAAgCqtf//+8dZbb8W5555b6s9+4okniszq1KkTt956axx99NFRUFAQ7777bhxzzDGF+zt27Eg5v3PnzpTP/u///8/5WrVqFfn8/54pTmZmpv8o/f/ze1G5+L4qF99X5eR7qzyq6ne1bN2WmJq7NmU2vH+HSv+zVtXvq6rxPVUuvq/KxfdV+fjOKpcD/b4qwnecke4AAAAAAAAAAAAAAFCWfv3rX0d+fn5cccUV8fzzz8cnn3wSc+fOLfb/SkujRo2iUaNGERGRl5cX9evXL9xbuza1vLVq1arCX3fo0CEiItq3b184W7NmTeGvd+7cGRs2bIiIiI4dO5ZaXgCA8jRqcm7KukHtnBjUpUWa0gAAUNbc0A4AAAAAAAAAAABAlTZs2LBIJBKRTCbj3Xff3eO5RCIR06dPL/FzV65cGU899VSsXbs2OnToEJdeemnh3vr162PdunUREVG7du0YMmRIZGVlxa5du2LmzJkpz5kxY0ZERDRt2rSw0D5gwIB45ZVXIiJi5syZ0bZt28JfJ5PJwjMAAJXR7oX2Ew5rG1mZ7u0EAKiqFNoBAAAAAAAAAAAAqNIGDRpUJs9t0KBB3HfffbF58+bIycmJ9u3bx3HHHRcbN26Mn//851FQUBAREaeeemo0bdo0hg0bFq+99lq89dZbMXHixOjfv3+89NJLhTfDX3DBBZGR8X9FrjPOOCPuuOOO2LZtW9x///0xaNCgyMrKir/85S8REZGZmRnnn39+mfxcAABlqaAgWaTQfnKf9mlKAwBAeVBoBwAAAAAAAAAAAKBKe/jhh8vkuTVq1Iif/vSn8eMf/zh27twZV111VdSoUSN27txZeIt6t27d4rrrrouIiB/84AcxYcKEWLNmTXzhC1+I7OzsyMvLi4iI7t27x1e/+tXCZzdp0iR+8IMfxC9+8YuYMGFCHHnkkZGRkRG7du2KiIirr746unTpUiY/FwBAWZqyaE2s2LA1ZXZSn3ZpSgMAQHlQaAcAAAAAAAAAAACAAzRixIjo1KlTPPDAAzFx4sRYu3Zt1KpVKzp37hynnHJKXHrppVGrVq2IiGjbtm08/vjjcdddd8X48eNjw4YN0aZNmzj55JPjG9/4RtSuXTvl2V/4wheiadOmcf/998eMGTMiIuKQQw6JSy65JM4555xy/1kBAErDqMmLUtadW9SPLi0bpCkNAADlQaEdAAAAAAAAAAAAgCrt2Wef3eeZZDIZeXl5MXLkyP1+fr9+/eIPf/hDic62a9cufve735X42cOHD4/hw4fvdyYAgIrqjcm5KeuT+7RPUxIAAMqLQjsAAAAAAAAAAAAAVdr1118fiURir2eSyWQkEokDKrQDAFAy23buinEzlqbMTurTLk1pAAAoLwrtAAAAAAAAAAAAAFRpV199dbGF9ry8vMjNzY2xY8fGMcccE8OGDUtDOgCA6uOdmUtjR15+4TojkYgTDmubxkQAAJQHhXYAAAAAAAAAAAAAqrRrrrlmr/tr1qyJSy+9NM4///xySgQAUD298WluynpwtxbRsE6NNKUBAKC8ZKQ7AAAAAAAAAAAAAACkU5MmTeLqq6+OP//5z+mOAgBQpY2avChlfVKfdmlKAgBAeVJoBwAAAAAAAAAAAKDaa9euXcyZMyfdMQAAqqzl67fE5M/WpMxO7tM+TWkAAChPCu0AAAAAAAAAAAAAVHsff/xx1KpVK90xAACqrNGTF6es69XKjsFdm6cpDQAA5Skr3QEAAAAAAAAAAAAAoCzdfffde9zLy8uLBQsWxJgxY2LIkCHlmAoAoHp5Y/KilPUJh7aN7KzMNKUBAKA8KbQDAAAAAAAAAAAAUKXdfffdkUgkIplM7vFMs2bN4rrrrivHVAAA1UcymYxRk3NTZif3bZ+mNAAAlDeFdgAAAAAAAAAAAACqtJtvvjkSiUSxe1lZWdGiRYvo169f5OTklHMyAIDqYWrumli+fmvK7KQ+7dKUBgCA8qbQDgAAAAAAAAAAAECVdt555+3zzM6dO2Pbtm1Rq1atckgEAFC9vPFp6u3sHZvVi64tG6QpDQAA5S0j3QEAAAAAAAAAAAAAoCwNGzYsxo0bt9czDzzwQFxwwQXllAgAoHp56eOFKeuT+7aPRCKRnjAAAJQ7N7QDAAAAAAAAAAAAUKUtWbIktm/fvtczq1atiqVLl5ZTIgCA0rFw5cb49dMfRTIZ8bMLB0WHZvXTHamIVRu3xbjpqf+edWq/DmlKAwBAOii0AwAAAAAAAAAAAFDlPPjgg/HQQw8Vrm+88ca49dZbiz27Y8eOWLNmTbRu3bq84gEAHLRkMhkX/f7VmDBvZUREjJ6SG5Pv+ELUq5WT5mSpnv9ofhQkk4Xr2jWyYni/9mlMBABAeVNoBwAAAAAAAAAAAKDK6d+/f8ybNy8mT54ciUQi1qxZs8ezmZmZ0b59+/jpT39ajgkBAA7O0nVbCsvsERG5azbHDY9/EHdcfmwaUxX17w/np6xP698hauWoNAEAVCf+7Q8AAAAAAAAAAACAKqdPnz7Rp0+fiIjo2bNn3HXXXTF8+PA0pwIAqouFKzfGB3OWx7G9WkfrxnXL5B2frdpUZHbPa1Pi66f0jm6tGpbJO/dHfkFBPPjmzHj1k89S5iMGd0lTIgAA0kWhHQAAAAAAAAAAAIAq7aGHHopu3bqlOwYAUA2s2bQtbnz8w7j3jalRkExGjezMmPjbi6Jnm0al/q5FxRTad+UXxM8fez/+de2ppf6+/ZFMJuOC216JFyYsSJnnZGXE6QM6picUAABpk5HuAAAAAAAAAAAAAABQlgYPHhyNGjWK9evXxyuvvBL33XdfLFu2rHB/+/btaUwHAFQFu/IL4k+vTo6e33ok/vz6lChIJiMiYkdefvzuuYll8s5Fq4sW2iMiXvp4YezIyy+Td5bUy598VqTMHhFxSr8OUb92ThoSAQCQTm5oBwAAAAAAAAAAAKDKe+CBB+IPf/hD7NixIyIi+vTpE61atYqCgoI4/fTT45JLLokvf/nLaU4JAFQWyWQy7hs9PcbNWBqbtu2MD+euiOXrtxZ7dvSUxZFMJiORSJRqhj0V2rfu2BXvz1kexx/SplTfV1LJZDJueWZCkXn7pvXi1184Kg2JAABINze0AwAAAAAAAAAAAFCljRo1Km699dZo1apVfOUrX0nZ27RpUzRt2jR+97vfxahRo9KUEACoyDZt2xn3jZ4Wv3l2YixduzkiIn799IT42l/Hxj/HzYrnJyzYY5k9ImLxms0xZ9n6Us/12ariC+0REaMn55b6+0rqzWlL4v3Zy1NmFx3TLab/4eI4pG3jNKUCACCdFNoBAAAAAAAAAAAAqNIefvjh6N69ezz33HNx1VVXRTKZLNxr0KBBPPLII9GrV6945JFH0pgSAKiIXpiwIHp/99H46r1j4yePvhen3vR8vD19SfzqqQ/3+rnszNTKzugpiw84w8KVG+Nr946Jb933Vqzc8N/i/J5uaI+IGDP1wN93sH773MSUdYdm9eL+q0+KmjlZaUoEAEC6KbQDAAAAAAAAAAAAUKXNmDEjzjvvvMjJyYlEIlFkPycnJ0aMGBGzZ89OQzoAoCJaunZzjLz9lRjx25di8ZrNhfPpi9fGiTf+O/ILksV+rn+nZjH2F+fFRcd0S5mPnnJgN6bnrtkcR/7oifj76Olxz2tT4pifPBVrN2+PZDK51xvaP5q7IjZs3XFA7zwYy9dviVG73Q5/3TkDIjsrs9yzAABQcfirjQAAAAAAAAAAAACo0rZu3RqNGzfe65mGDRvG5s2b93oGAKi6CgqS8e6sZTF32fr4aO6KeOzdObFx284Sf/7YXq3jkuN6xOUn9IrMjIxYuHJjPPz2rML9N6ctifyCgsjMKPndlHn5BXHJna/H6k3bC2cLVm6Mi+98LR6+Znhs3p63x8/mFyTj7elL46yBnUr8vtLw7IfzI/k/Xf96tbLjsqG9yjUDAAAVj0I7AAAAAAAAAAAAAFVa8+bNY968eXs98/7770ezZs3KKREAUNH86NHxcfvzn+z3547o1iLe+uX5kZWZWlQ/sXfblPX6LTvi5Y8/26+C+YPvLYn356woMn/j09y44s+jU2aJRMRR3VvF+FnLCmejJ+eWe6H96fdT/53rjAEdo1aO+hIAQHVX8r/WCQAAAAAAAAAAAAAqoeOOOy4effTRmDlzZuEskUhERMTmzZvjnnvuiX//+98xdOjQNCUEANJp7vL1cccLey6z16mRvce9757Vv0iZPSKiTeO60atNo5TZVX8ZE0vWbi5xrucnr9zj3osTF6asWzeqE6f175AyGz0lt8TvKg2rNm6Lt6cvSZmdf2TXcs0AAEDFpNAOAAAAAAAAAAAAQJX2jW98I2rUqBEXXnhhfPGLX4xEIhG33XZbnH/++XHsscfGH//4x2jSpEl87WtfS3dUACAN/vTK5Egmi9/74vE9Y9YfL4l6tYqW2mvXyCpSIv9fV5/WJ2W9auO2OP93L8f6LTv2mWnrjrxYsWnnPs/9R7um9WJYn3YpsxlL1u1Xgf5g3fv61Mgv+O9vZO0aWXFKv/bl9n4AACouhXYAAAAAAAAAAAAAqrTmzZvHU089FSeeeGLMmTMnkslkTJo0KaZNmxa7du2KU089NZ588slo1qxZuqMCAOVsw9Ydcf/YGUXmp/RrH6/97Jz4x9UnRcuGdeL4Q9oUOXPGgI5Rey+3t1910mFx5uEdU2YT5q2MYTf+O6YsWr3XXAtXbioy+80lR+/xfIem9eLwzs2iQe2clPnYqYv3+p7SsGnbzrjsj2/EjU98kDI/tV+Hvf7+AABQfWSlOwAAAAAAAAAAAAAAlLWWLVvGnXfeGTt27IgFCxbEli1bom7dutGpU6fIycnZ9wMAgCrpgbEzYvP2vMJ1RiIRc+6+NDo0q59y7oTD2saLExemzC48quten52RkYh/XH1SDP7h47Fw1X8L6p9+tjr6f/+xOO+ILvHXr50YDevUKPLZ+Ss3pqxbNqwd3z2rf8xYvC4eeLNoAb99s3qRmZERQw9tG899NL9wPnpyblxyXM9i8+3KL4jN2/OKfX9JTZi3Ii7+w+sxb8WGIntfHFr8ewEAqH7c0A4AAAAAAAAAAABAlbVjx4645ZZbYtKkSRERUaNGjejZs2ccfvjh0aNHD2V2AKjGkslk/PWNqSmzcwd3LlJmj4g4tX+HlHXdmtlFZsVpXLdmvPCjs6JVo9pF9p75YF58/g+vRn5BQZG9BbsV2ju1qB+JRCLuvuL4GNileZHzHZrVi4iIYb3bpsxHT1kcBQXJIufHTF0cLa+4L1pdcV/87LH39/ozjJm6OD53xytx/SPjY9vOXRERUVCQjDte+CSO/enTxZbZv31G3zjz8E57fS4AANWHQjsAAAAAAAAAAAAAVVaNGjXiiSeeiPnz5+/7MABQrbw3e3nMWro+ZXb1aX2KPdujdaP4zpn9IiIiMyMRd375uKhdI7tE7+nVtnGMufG8aNekbpG9Nz7NjZ8/9kGR+e6F9s7NG0RERM2crHjye6dFs/q1UvYP7/x/JfdhfdqlzJeu2xItvvL3OOfWF+O3z06M8bOWxY68/PjKn0bF+i07Ii+/IG55ZkJMWbS62OwLVm6Mc3/zYjz9/ry47fmP44p7Rsfm7TvjwttfiR88/G7k5aeW8evXyolHv3NK3H7Zsfv4XQEAoDrJSncAAAAAAAAAAAAAAChLxx13XLz00ktxzjnnRGZmZrrjAAAVxANjZ6Ssu7VqEMf1ar3H87d9cUhcc1qfqFcrJxrXrblf7+rWqmFM/N1F8YcXJ8XNz0xI2fvNsxPj8M7N4rwjuxbOiruh/T/aNa0Xz11/Znzh96/GwlWb4prT+sSgri0iIqJ7q4bRtkndWLxmc+H5dVt2xEsfL4yXPl64x3zPf7QgerdvWmR+/5jpsXXHrsL14+PnxMT5K2Pu8qK3sh/RrUU88u1TolPzojfcAwBQvSm0AwAAAAAAAAAAAFClXXnllfHXv/41zj333Dj99NOjXbt2Ua9evWLPHn/88eWcDgBIh83bd8YT4+ekzC4/4ZBIJBJ7/VyHZgde1m5ct2b88qIj4+S+7ePkXz4bu/7ndvMv/Wl09GjTKA5t1yQiIhas2P2G9tT3Du7aIubc/cUoSCYjMyOjcJ5IJOLiY3vEb56duF/Zxs1YWmSWTCbj0XGzisx3L7MnEhE/PPfwuOHCwZGd5S8PAgCgKIV2AAAAAAAAAAAAAKq0Cy64IBKJRCSTybjrrrv2enbGjBl73QcAqoan358Xm7fnFa4zEom49Lge5fLuY3u1jjsuGxLf+sfbhbMtO/LigttejvduHhkNaucUc0N7gyLPSSQSkVlMAf8n5w+MZCTj8XfnxGerNpUo0zszlsb2nbuiZs5/q0bvz1keC/fx+UZ1asSj154SJ/dpX6L3AABQPSm0AwAAAAAAAAAAAFClnXvuufu8bRUAqF7uH5v6l9ic2r99tG5ct9ze//VTeseEeSvjobdmFs7mLNsQl/3xjbjnqqGxPS8/5XznFiW/Gb52jey4+QtHx81fODpyV2+Kd2cui3dmLo2n358XqzZuK/Yz2/PyY/zs5XHiYW0LZ/8aN3uv7+nZplE8+8MzomvLhiXOBgBA9aTQDgAAAAAAAAAAAECVduutt6Y7AgBQgcxeui7embE0ZfalEw4p1wyJRCL+dOXQmJa7JibOX1U4f+njhXH1395MOVsjOzNaNaxzQO9p17ReXDSkXlw0pHsM79s+zvvdy3s8O2ZKbmGh/fVPF8UDb87Y49lT+rWPR79zSjSoXeOAcgEAUL1kpDsAAAAAAAAAAAAAAAAAlJcH35yZsm5ar2accXjHcs9RKycrnvz+6dG0Xs2U+YsTF6asOzWvHxkZiYN+31kDO8XJfdvtcX/U5NyIiHj4rZlx9q0vxtYdu1L2f3zewDj/yC5x9xXHx3M/PFOZHQCAEnNDOwAAAAAAAAAAAAAAANXCrvyCePit1EL7F47tETlZmWnJ075pvXj02lNj+C+f3eOZTs3rl8q7EolE3H/1SXHBba/ExHkro2n9mrFs3dbC/QnzVsaVfx4d948tejP7pcf1iF9edGSp5AAAoPpRaAcAAAAAAAAAAAAAAKBaePK9ObF03ZaU2ZdO7JWmNP/nxMPaxiFtG8f0xWuL3e/conQK7RERLRvWiXduuiDyCwpiV34yOn79gVi1cVvhfnFl9s8d3S3+8tUTSy0DAADVT0a6AwAAAAAAAAAAAAAAAEBZ27krP254/IOU2cAuzaN3+6ZpSvRfw3q33ePeYe2blPr7MjMyokZ2Zvzg3AF7PXftmf3i4W8NjxrZ6bnBHgCAqkGhHQAAAAAAAAAAAAAAgCrvb6OmxfwVG1NmPz5vYJrSpDqxd7ti5zWyM+P8I7uW2Xu/Nrx3tGpUu9i92744JH73xSGRkZEos/cDAFA9KLQDAAAAAAAAAAAAAABQpW3evjN+/fRHKbOjerSMswZ2SlOiVMcf0iYyiymOnzOwUzSuW7PM3lsrJyuuH5Fa6s/JyohHv3NKfOfMfmX2XgAAqheFdgAAAAAAAAAAAACqhfz8/Jg8eXK8+uqrsXbt2nTHAQDK0CNvz4zjf/50fO3eMbFp2874/YuTYuWGbSlnbv7C0ZFIVIzbx+vXzonWjeoUmX/pxF5l/u6vnnxYXHxsj0gkIrq1ahAv/+TsGHl0tzJ/LwAA1UdWugMAAAAAAAAAAAAAQFl79dVX4+abb45Vq1ZFRMRDDz0UjRs3joiICy64IL785S/H6aefns6IAEApeW3SZ3H53aMiIuLdmcti9abtMXpKbsqZ0wd0iGN7tU5HvD364tBeKbfIt25QI4Ye0qbM35uVmREPXnNy3HPl0KiVkxUZxdwUDwAAB8MN7QAAAAAAAAAAAABUaRMmTIjvfve7kZeXV6S0vm7duli3bl1cd9118dFHH+3hCQBAZZG3Kz++9+A7KbNnP5wfm7blFa4TiYibPn9UeUfbpyuGHRL1amUXrq8c0q5cy+V1amYrswMAUCbc0A4AAAAAAAAAAABAlfb3v/89WrduHU888URkZWXFSy+9VLjXqFGj+Pe//x0XXHBB/OMf/4hBgwalMSkAcDA+Xbg6Lvvj6zFzybq9nvvCkB7Rp0PTckpVcu2a1ov3bh4Zz3wwL/p2aBwtY+8/BwAAVBZuaAcAAAAAAAAAAACgSvv0009j5MiR0bhx40gkit46Wr9+/Rg5cmRMmTIlDekAgNLw59emxOE/eCym5q7d67nszIy48XNHlFOq/dezTaP48XkD49R+HdIdBQAASo1COwAAAAAAAAAAAABV2qZNm6JVq1Z7PdOyZcvYsGFDOSUCAEpTQUEyfvnkhyU6+7Xhh0Wn5vXLOBEAAPC/FNoBAAAAAAAAAAAAqNIaNWoUubm5ez0zderUaNy4cTklAgBK07TFa2LVxm0lOvuj8waWcRoAAGB3Cu0AAAAAAAAAAAAAVGlHHnlkPProo7Fy5coie8lkMp577rl49NFH46ijjkpDOgDgYL01bUmR2b9/cEb8eLfy+g0jB0fzBrXLKxYAAPD/ZaU7AAAAAAAAAAAAAACUpauvvjrGjh0bZ511Vhx++OGRSCTiwQcfjIcffjimTJkSy5cvj7p168bXv/71dEcFAA7A7oX2y4f2irMGdorhfdtH7upNMXbakjjz8I7xoxFuZwcAgHRQaAcAAAAAAAAAAACgSuvYsWM8+OCDccMNN8SYMWMiImLUqFGF+3369Ikbb7wxOnTokK6IAMABKihIxtszlqbMjj+0TURE1MjOjPu/eXI6YgEAAP9DoR0AAAAAAAAAAACAKu/QQw+Np556KhYtWhSzZ8+OrVu3Rt26daN79+7Rtm3bdMcDAA7QtMVrYs2m7Smz4w5pnaY0AABAcRTaAQAAAAAAAAAAAKjSfv/738eIESOiY8eO0b59+2jfvn26IwEApWTs1CUp607N60eHZvXTlAYAAChORroDAAAAAAAAAAAAAEBZuvfee+O0006Liy66KB5//PHYtGlTuiMBAKVg8ZrNccszE1Jmxx/SJk1pAACAPVFoBwAAAAAAAAAAAKBK++UvfxmDBg2KyZMnx4033hhDhgyJ733vezFu3LhIJpPpjgcAHIAdeflx4e2vxKqN21LmZw3slKZEAADAnmSlOwAAAAAAAAAAAAAAlKWRI0fGyJEjY9WqVfHSSy/Fiy++GC+99FK8/PLL0axZszjnnHPi3HPPjS5duqQ7KgBQQt+5/+34aO6KlNlp/TsotAMAQAXkhnYAAAAAAAAAAAAAqoVmzZrF5ZdfHk899VS88cYbcc0110T9+vXjb3/7W5x55pkxcuTIdEcEAErgvtHT4m+jpqXMurRoEA9dc3JkZCTSlAoAANgThXYAAAAAAAAAAAAAqp127drFN77xjXjhhRfilltuiSZNmsSUKVPSHQsA2IcP566Ia+57K2VWu0ZWPHXdadGobs00pQIAAPYmK90BAAAAAAAAAAAAAKA8JZPJeP/99+OVV16JUaNGxbp16yIi4ogjjkhzMgBgb1Zu2Bojb38ldu4qSJn/7WsnRu/2TdOUCgAA2BeFdgAAAAAAAAAAAACqhY8++ihefvnleP3112Pt2rWRTCaja9eucfnll8fZZ58dLVu2THdEAGAvrvzzmFi8ZnPK7Dtn9ovPHdM9TYkAAICSUGgHAAAAAAAAAAAAoEr79a9/Ha+++mqsXr06kslkNG3aNC677LI455xzolevXumOBwCUwPuzl8dLHy9MmR1/aJu49eKj0xMIAAAoMYV2AAAAAAAAAAAAAKq0hx9+OGrVqhVnnnlmnH322XHMMcdERkZGumMBAPvh109/lLJu3qBW/Os7p0RWpn+mAwBARafQDgAAAAAAAAAAAECVduutt8bw4cOjdu3a6Y4CAByAifNXxiuffJYyu+6cAdG8gX+2AwBAZaDQDgAAAAAAAAAAAECVdu6556Y7AgCwn+55dXL85tmJ0bZJ3Ujutte0Xs246qTD0pILAADYfwrtAAAAAAAAAAAAAFQpvXr1ijvvvDOGDx9euC6JRCIR06dPL8toAEAJzF66Lr5z/7goSCZjydotRfavPat/1KmZnYZkAADAgVBoBwAAAAAAAAAAAKBKadWqVdSqVStlDQBUHm9Mzo2C5O73sv+fnKyMuPKkQ8s5EQAAcDAU2gEAAAAAAAAAAACoUsaMGbPXNQBQsU2ct3KPe2ce3ika161ZjmkAAICDlZHuAAAAAAAAAAAAAABQlp599tlYtmzZXs+MGzcuHnjggfIJBADs1aSFq/a4d+nxPcsxCQAAUBoU2gEAAAAAAAAAAACo0n70ox/FlClT9npm7ty5cd9995VTIgBgT7bt3BXTctcWu9ekXs04tV/7ck4EAAAcrKx0BwAAAAAAAAAAAACA0jZz5syYOXNmREQkk8n48MMPY+vWrcWe3b59ezz11FOxZcuW8owIABRj8merI78gWezel088JLKzMss5EQAAcLAU2gEAAAAAAAAAAACocsaNGxe33357JBKJSCQS8c9//nOv55PJZJx66qnllA4A2JOP568qMmvVqHYc26tN/PzCwWlIBAAAHCyFdgAAAAAAAAAAAACqnCuvvDJGjBgRkyZNim9+85tx6qmnRteuXYs9m5mZGe3atYtTTjmlnFMCALv7eP7KlPUXhnSPh741PE1pAACA0qDQDgAAAAAAAAAAAECV1LRp0zjppJNi0KBBcckll8TAgQPTHQkAKMaaTdti3Iyl8ebUJfHsh/NT9gZ0bp6mVAAAQGlRaAcAAAAAAAAAAACgSnv44Yf3eWbUqFHx8MMPx4MPPlgOiQCAiIjnP5ofv3rqo5i0cFUkk8WfGdC5WfmGAgAASp1COwAAAAAAAAAAAADVwooVK2LJkiWRn5+fMt++fXs88cQTMWnSpPQEA4BqaN7yDXHh7a9EfsEemuwR0bBOjTjcDe0AAFDpKbQDAAAAAAAAAAAAUKXt3LkzfvjDH8arr766xzPJZDL69u1bjqkAoHp7+eOFey2zN6lXM+65cmjUqZldjqkAAICyoNAOAAAAAAAAAAAAQJV27733xiuvvBIdOnSITp06xZtvvhmDBg2KmjVrxuTJkyMi4itf+UqMGDEizUkBoPqYlrsmZV0rJyuO6dkqjj+kTRx/aJsY2KV55GRlpikdAABQmhTaAQAAAAAAAAAAAKjSXnrppRg6dGj8+c9/jk2bNsXgwYPjW9/6VgwaNCh27NgRt956a4wfPz4uv/zydEcFgGpjau7alPWNIwfH984ekKY0AABAWcpIdwAAAAAAAAAAAAAAKEtLly6Nk08+ORKJRCQSiZS9GjVqxA033BAFBQVx9913pykhAFQvyWSyyA3th7ZvkqY0AABAWVNoBwAAAAAAAAAAAKBKy87OjszMzMJfR0Rs2bIl5czpp58eL7/8crlnA4DqKHfN5ti0LS9ldlg7hXYAAKiqFNoBAAAAAAAAAAAAqNJatGgRkyZNioiImjVrRq1atWLq1KkpZzIzM2P16tVpSAcA1c+03LUp6wa1c6JN4zppSgMAAJQ1hXYAAAAAAAAAAAAAqrQTTjghHn/88bjjjjsiIqJv377xwAMPxBtvvBHr16+PadOmxQMPPBAtW7ZMc1IAqB6m5a5JWR/SrnEkEok0pQEAAMpaVroDAAAAAAAAAAAAAEBZuvLKK+PNN9+MuXPnRkTEVVddFVdccUV861vfKjyTTCbj+uuvT1dEAKhWpi1KLbQf1q5JmpIAAADlQaEdAAAAAAAAAAAAgCqtYcOG8dxzz8Vnn30WERFHH310/O1vf4t//OMfsWTJkmjRokWcddZZccEFF6Q5KQBUD9Ny16asD23XOE1JAACA8qDQDgAAAAAAAAAAAECVl5WVFV26dClcH3PMMXHMMcekMREAVE/5BQUxffHuhXY3tAMAQFWWke4AAAAAAAAAAAAAAAAAVA8T56+K7Xn5KTM3tAMAQNXmhnYAAAAAAAAAAAAAqpRhw4Yd0OcSiUSMGjWqlNMAAP/r2Q/npax7tG4YzRvUTlMaAACgPCi0AwAAAAAAAAAAAFClLFmyJN0RAIBiJJPJePaD+SmzcwZ3TlMaAACgvCi0AwAAAAAAAAAAAFClzJw5M90RAIBizFiyLmYvW58yO3dwl/SEAQAAyk1GugMAAAAAAAAAAAAAAABQ9T37Yert7G0a14mBnZunKQ0AAFBe3NAOAAAAAAAAAAAAQJW2dOnSfZ5JJpORl5cXHTt2LPtAAFANJZPJeHL8nJTZOYM6R0ZGIk2JAACA8qLQDgAAAAAAAAAAAECVduKJJ0YiUbKy3IwZM8o4DQBUT29OWxJTFq1JmZ0zuHOa0gAAAOVJoR0AAAAAAAAAAACAKm3QoEHFzvPy8mLJkiWxatWqGDRoULRt27ackwFA9fGHFyelrLu2bBBDD22TnjAAAEC5UmgHAAAAAAAAAAAAoEp7+OGH97r/5ptvxk033RQ33nhj+QQCgGpm9tJ18dLHC1Nm3zq9b2RmZKQnEAAAUK78mz8AAAAAAAAAAAAA1drQoUPjsssui9/97nfpjgIAVdLfR09PWTesUyO+OLRnmtIAAADlTaEdAAAAAAAAAAAAgGqvd+/e8fHHH6c7BgBUSRPmrUhZf+mEXlG3Zk6a0gAAAOVNoR0AAAAAAAAAAACAam/ZsmWRn5+f7hgAUCXNXLIuZT2kZ+s0JQEAANIhK90BAAAAAAAAAAAAAKAsffTRR3vcy8vLi/nz58e9994bnTt3LsdUAFA9rN28PVZu2JYy69m2UZrSAAAA6aDQDgAAAAAAAAAAAECVdumll0YikdjjfjKZjIyMjLjpppvKMRUAVA8zFqfezp6dmRFdWjRIUxoAACAdFNoBAAAAAAAAAAAAqNLOPffcPRbas7KyokWLFnHSSSdFz549yzkZAFRuE+atiD+/NiWaN6gdPzhnQDSqW7PImZlL1qasu7VqGFmZGeUVEQAAqAAU2gEAAAAAAAAAAACo0m699dZ0RwCAKmfByo1x8i+fjU3b8iIiYtm6LfHAN08ucm7mktQb2nu2aVQu+QAAgIrDX2kFAAAAAAAAAAAAAADAfvn+g+8UltkjIp4YPye2bM8rcm73QnsPhXYAAKh23NAOAAAAAAAAAAAAQJU3ffr0GD16dKxatSry8oqW7SIiEolE3HzzzeWcDAAqn3dnLovnPpqfMtu5qyDembk0TunXIWW+e6G9l0I7AABUOwrtAAAAAAAAAAAAAFRpr776anz3u9+NZDIZyWRyj+cU2gGgZH7yr/eKnY+esjil0L5t565YuGpjypmeCu0AAFDtKLQDAAAAAAAAAAAAUKXdc889Ubt27bjyyiuje/fuUadOnXRHAoBKa+3m7fHOjKXF7t3xwidRv1ZOrN64LVZv2hZL1m6J3f8umR6tFdoBAKC6UWgHAAAAAAAAAAAAoEpbtGhRfOMb34irrroq3VEAoNKbvnjtXvdvfOKDPe51aFYv6tTMLu1IAABABafQDgAAAAAAAAAAAECV1qBBg2jatGm6YwBApbJ8/Zb4zb8nRiKRiB+dNzCa1a8VERHTc/deaN+bAZ2alVY8AACgEslIdwAAAAAAAAAAAAAAKEunn356vPnmm+mOAQCVxubtO+O4nz0df3xlctz18qdx5I+eiNUbt0XEgRfa69fKievPG1iaMQEAgErCDe0AAAAAAAAAAAAAVGnXXnttfPe7343vfOc7MXLkyGjTpk1kZ2cXe7Z169blnA4AKp5fPfVRzF+xsXD92apN8YU7X4uXf3x2TF+SWmhv07hOLFm7pXBdMzszPndMt2hWv3Y0qVczmtarGU3r14qhh7aJerVyyu1nAAAAKg6FdgAAAAAAAAAAAACqtPXr18e2bdti/Pjx8dprr+3xXCKRiOnTp5djMgCoeKYuWhN3vvRpkfmYKYvjx4++V+SG9tu+OCSeen9uPPvh/BjYpXn88SvHx4DOzcsrLgAAUAkotAMAAAAAAAAAAABQpf3sZz+Ld999Nzp16hTdunWLOnXqpDsSAFRYNzz+QezKLyh2744XPiky692haVx4dLfYvnNX1MxRUwEAAIryJwUAAAAAAAAAAAAAqrSJEyfGiBEj4pZbbkl3FACo0AoKkjFmam6Jz+dkZUTXlg0iIpTZAQCAPcpIdwAAAAAAAAAAAAAAKEvJZDKOOOKIdMcAgApv4aqNsWlbXsrsJ+cP2uP5Hq0bRVamagoAALB3/tQAAAAAAAAAAAAAQJU2cODAmDVrVrpjAECF9+nC1SnrJvVqxo0jB8dXTjyk2PO92jYuj1gAAEAlp9AOAAAAAAAAAAAAQJV2ww03xLhx4+Kf//xn7Ny5M91xAKDC+vSz1EJ7345NI5FIxF1fOT4Gd2tR5PwhCu0AAEAJZKU7AAAAAAAAAAAAAACUpeuuuy5q1qwZN910U9x8883RpEmTyM7OLnIukUjEqFGj0pAQACqG3W9o79OhaURE1MjOjCe+e1oMvv7xWLlhW+H+0T1blWs+AACgclJoBwAAAAAAAAAAAKBKmzhxYuGv8/PzY+XKlWlMAwAV1+6F9n4dmxb+um2TuvHcD8+Mi37/any2alN86YReccKhbco7IgAAUAkptAMAAAAAAAAAAABQpU2ePDlycnLSHQMAKrR1m7fHotWbUmb/uaH9PwZ1bRGz/3hp7MjLj9o1ssszHgAAUIkptAMAAAAAAAAAAABQpSmzA8C+ffpZ6u3sOVkZ0bNNoyLnMjMyonaNjPKKBQAAVAH+BAEAAAAAAAAAAAAAEZGXl5fuCACQNpM/W5OyPqRt48jJykxTGgAAoCpxQzsAAAAAAAAAAAAAVVqvXr1KdC6RSMT06dPLOA0AVEyfzF+Zsu7bsWmakgAAAFWNQjsAAAAAAAAAAAAAVVqrVq2Knefl5cXq1asjmUxGz549o169euWcDAAqjvdmL09Z9+/ULE1JAACAqkahHQAAAAAAAAAAAIAqbcyYMXvc27lzZzz55JPx6KOPxm233VaOqQCg4li5YWvMXb4hZXZ0j+L/QhgAAID9lZHuAAAAAAAAAAAAAACQLjk5OXHxxRfHmWeeGb/97W/THQcA0uK9Wam3s9epkR19OjRNUxoAAKCqUWgHAAAAAAAAAAAAoNo74ogjYvz48emOAQBpMX72spT14G4tIitT5QQAACgd/nQBAAAAAAAAAAAAQLW3YcOG2L59e7pjAEBajJ+VWmg/ukerNCUBAACqoqx0BwAAAAAAAAAAAACAsrR06dI97uXl5cX8+fPjtttui3bt2pVjKgCoGLbv3BUT561MmR3do2Wa0gAAAFWRQjsAAAAAAAAAAAAAVdqJJ54YiURir2eSyWTccsst5ZQIANJv6468+Nc7s+PuVybHzl0FhfNEIuLI7grtAABA6VFoBwAAAAAAAAAAAKBKGzRo0B73srOzo0WLFjF8+PA44YQTyjEVAKTHsg074olH34v7x86ItZt3FNk/rF2TaFC7RhqSAQAAVZVCOwAAAAAAAAAAAABV2sMPP5zuCACQduNnLYs7Xvg4nv9oQRQk93zui0N7ll8oAACgWlBoBwAAAAAAAAAAAKDaKigoiIyMjHTHAIAyM/mz1XHtA+PirWlL9nqua8sG8f2zB8RXhh1STskAAIDqQqEdAAAAAAAAAAAAgCopLy8v7r777mjTpk2MHDmy2DOXXXZZDBs2LC6//PLyDQcA5WDd5u1x0i/+HWs379jjmVP6tY9vntY3TunbPjIyEuWYDgAAqC4U2gEAAAAAAAAAAACokn7xi1/E008/HUOGDCm20L527dpYvHhx/OY3v4n8/Pz4yle+koaUAFB2Hh8/p9gye92a2XHZ0J7xjVP7RI/WjdKQDAAAqE4y0h0AAAAAAAAAAAAAAErbBx98EE899VQMHDgwfv3rXxd7pnHjxvHiiy/G4YcfHr///e9j3rx55ZwSAMrWw2/NLDL7zokdYsGfvhh3fvl4ZXYAAKBcKLQDAAAAAAAAAAAAUOU8++yz0bBhw/jTn/4UzZs33+O5OnXqxJ/+9KeoXbt2PPXUU+WYEADK1pxl6+ODOStSZo99Z3h8flDrqF87J02pAACA6kihHQAAAAAAAAAAAIAqZ9KkSXH22WdH/fr193m2QYMGce6558a7775bDskAoHz8c9yslHWz+rXizMM7picMAABQrSm0AwAAAAAAAAAAAFDlrFq1Krp161bi8927d49ly5aVYSIAKD8bt+6Mf4yenjK76JhukZ2VmaZEAABAdabQDgAAAAAAAAAAAECVs2vXrsjJySnx+aysrCgoKCjDRABQfq5/5N1Yum5Lyuzi43qkKQ0AAFDdKbQDAAAAAAAAAAAAUOU0adIkFi5cWOLzs2bNiubNm5ddIAAoJ2OmLo6/jpqWMhvWu10c3tk/5wAAgPRQaAcAAAAAAAAAAACgyunXr1+89NJLkZ+fv8+zW7dujRdeeCH69+9fDskAoGzd8cInKes6NbLjL189IRKJRJoSAQAA1Z1COwAAAAAAAAAAAABVzogRI2LRokVx00037fXczp074/vf/36sWbMmzjvvvHJKBwD/Z8K8FTH4h49Hz289HE+On3PQzysoSMb4mctSZr/6/JHRqXn9g342AADAgVJoBwAAAAAAAAAAAKDKGTJkSAwfPjwee+yxuPjii2Ps2LGxZcuWwv1169bFc889FyNGjIixY8fGBRdcEAMHDkxjYgCqo6v+MiY+XrAq5i7fEF/58+hYuWHrQT1v5tJ1sXHbzpTZBUd2OahnAgAAHKysdAcAAAAAAAAAAAAAgLLwm9/8JpLJZLzxxhvx8ccfR0RE7dq1o6CgILZv3x4REclkMkaOHBk//elP0xkVgGpo3ebtMfmzNYXrrTt2xRPj58Q3T+t7wM/8aO6KlHXbJnWjdeO6B/w8AACA0qDQDgAAAAAAAAAAAECVVKtWrfjjH/8Y48aNi2eeeSY+/fTTWLNmTWRlZUWnTp3i8MMPjxEjRsSAAQPSHRWAamjW0vVFZh/OWRFx2oE/88M5qYX2QV2aH/jDAAAASolCOwAAAAAAAAAAAABV2rHHHhvHHntsumMAQIrZS9cVmb09Y2kkk8lIJBIH9Mzdb2gf3K3lAT0HAACgNGWkOwAAAAAAAAAAAAAAAEB1U9wN7YvXbI7Zy4rOIyImLVwV1z8yPu4fMz125RcU2d+2c1dMXrQmZTa4W4vSiAoAAHBQ3NAOAAAAAAAAAAAAAABQzoq7oT0iYvTk3OjRulHKbFrumhj682di8/a8iIhYvWl7XHfOgIiIyC8oiE8Xro6n35+XUnTPSCTi8M7Nyig9AABAySm0AwAAAAAAAAAAAAAAlLM93cT+3EcL4mvDe0dGRiIiIpLJZHzn/nGFZfaIiHtenRytGtWOp9+fF+NmLI31W3YUec6h7RpH3Zo5ZZIdAABgf2SkOwAAAAAAAAAAAAAAAEB1kl9QEHOXbyh2b/SU3Lj0rtdjR15+REQ8++H8GDt1ccqZ3DWb4/K7R8ULExYUW2aPiDimZ6vSDQ0AAHCAFNoBAAAAAAAAAAAAAABKUUFBMrZsz4uCgmSx+5+t2lRYWC/O4+PnxBk3Px8r1m+N6x56Z7/f36pR7bj2zP77/TkAAICykJXuAAAAAAAAAAAAAAAAAFXF0rWb43O/fzXem7U8mtarGaf27xCnD+gYw/u2j4Z1akRExKyl64t8LiszI3blFxSu35y2JHp9+5HYuG1nid7bvVXDOP7QNjH00DZxxuEdo27NnFL5eQAAAA6WQjsAAAAAAAAAAAAAAEAp2JGXHxfc/kp8OGdFRESs3rQ9Hnl7Vjzy9qzIzEjE0T1axeeO6Rabt+elfO6Ibi3ihpFHxMjbX0nZK0mZ/bhDWsfD3xoebRrXLd0fBgAAoJQotAMAAAAAAAAAAAAAAJSCb//jrcIy++7yC5IxbsbSGDdjaZG9Hq0bxfC+7WPMjSPirFtejBUbthY5k0hEJJNFn3v1qX2U2QEAgAotI90BAAAAAAAAAAAAAAAAKruP5q6Iv4+efkCf7d66YUREDOjcPMbddH50a9WgyJkrhx1a7GfPGtjpgN4JAABQXhTaAQAAAAAAAAAAAAAADtIzH8xLWdeukRU3ff7IOKVf+6iRnbnXz55wWNvCX3du0SDG/eqCGNytReGsbZO68cuLjoxvnd435XPfOr1v5GTt/dkAAADplpXuAAAAAAAAAAAAAAAAAJXd65MWpayvOa1vXD9iYFw/ImLL9rx4/dNFcfXf34yVG7YVnsnMSMTvLz82jujWMuWzTevXijE3jIiH354ZKzdsi0uP7xlN69eKH503MF75ZGHMWbYhDmvXOH5+4eBy+dkAAAAOhkI7AAAAAAAAAAAAAADAQVi6dnN8+tnqlNlpAzoU/rpOzewYcUSX6NuxaYy8/ZWYtHB1dGhWL+6/+qQ47pA2xT6zZk5WXHnSYSmzZvVrxbTfXxKLVm+KDs3qRSKRKP0fBgAAoJQptAMAAAAAAAAAAAAAAByE1z9NvZ29Qe2cOHK3W9cjIjq3aBAf3vq5yF2zKVo3qhPZWZn7/a6MjER0bF7/gLMCAACUN4V2AAAAAAAAAAAAAACAg/DapNRC+0l92kVWZkaxZzMyEtGhmUI6AABQfRT/pyMAAAAAAAAAAAAAAAD2aVd+QYyanJsyO6VfhzSlAQAAqHgU2gEAAAAAAAAAAAAAAA7Q+FnLYt2WHSmz4X3bpykNAABAxaPQDgAAAAAAAAAAAAAAcICen7AgZd2vY9No26RumtIAAABUPArtAAAAAAAAAAAAAAAAByCZTMYLH6UW2s8c2ClNaQAAAComhXYAAAAAAAAAAAAAAIADMGPJupi3YkPK7GyFdgAAgBQK7QAAAAAAAAAAAAAAAAfg+Y/mp6zbNqkb/Ts1S1MaAACAikmhHQAAAAAAAAAAAAAA4AC89PHClPVZh3eKRCKRnjAAAAAVlEI7AAAAAAAAAAAAAADAfsovKIiP569KmZ1+eMf0hAEAAKjAFNoBAAAAAAAAAAAAAAD207zlG2JHXn7KbGCX5mlKAwAAUHEptAMAAAAAAAAAAAAAAOynablrU9bNG9SKZvVrpSkNAABAxaXQDgAAAAAAAAAAAAAAsJ+m5q5JWR/arkmakgAAAFRsCu0AAAAAAAAAAAAAAAD7adqi1BvaD2vXOE1JAAAAKjaFdgAAAAAAAAAAAAAAgP00zQ3tAAAAJaLQDgAAAAAAAAAAAAAAsB925OXH7GXrU2aHtndDOwAAQHEU2gEAAAAAAAAAAAAAAPbDrKXrIr8gmTI7tK0b2gEAAIqj0A4AAAAAAAAAAAAAALAfpuWuSVl3aFYv6tfOSVMaAACAik2hHQAAAAAAAAAAAAAAYD98OGdFyvrQdo3TlAQAAKDiU2gHAAAAAAAAAAAAAAAooQ/nrog/vz41ZXZY+yZpSgMAAFDxKbQDAAAAAAAAAAAAAACUwMatO+OSO1+LXfkFhbOMRCIuOqZ7GlMBAABUbArtAAAAAAAAAAAAAAAAJXDNfW/F/BUbU2Y/Om9g9OnQNE2JAAAAKj6FdgAAAAAAAAAAAAAAgH3459uz4p/jZqXMjurRMn52waA0JQIAAKgcFNoBAAAAAAAAAAAAAAD2Yt7yDXH1399MmTWonRMPXzM8sjJVMwAAAPbGn5oAAAAAAAAAAAAAAAD2YOeu/Lj4ztdi8/a8lPlfrjohOjavn6ZUAAAAlYdCOwAAAAAAAAAAAAAAUOms27w9nhw/Jxas3Fim7/npv96PCfNWpsy+dEKvuPDobmX6XgAAgKoiK90BAAAAAAAAAAAAAAAA9sfazduj97WPxooNWyORiHj7V+fHUd1blfp7Hntndtzxwicps+6tGsYfvnRcqb8LAACgqnJDOwAAAAAAAAAAAAAAUKn8+bUpsWLD1oiISCYjbnz8w1J/x5ipi+OKP49OmWVnZsQj3x4edWpml/r7AAAAqiqFdgAAAAAAAAAAAAAAoFL59dMfpaxHT8mNbTt3lcqzk8lk/PHlT+O0m56L7Xn5KXt3fvm4GNC5eam8BwAAoLpQaAcAAAAAAAAAAAAAACqNHXn5sXNXQZH5+FnLDvrZy9ZtiTNveSGufWBc5BckU/a+NvywuOrkww76HQAAANWNQjsAAAAAAAAAAAAAAFBpfDRvRbHz0VNyD+q5W3fkxWk3PRevTVpUZO/cwZ3jjsuPPajnAwAAVFdZ6Q4AAAAAAAAAAAAAAABQUm9NW1LsfMyUxQf13IfemhlTc9cWmf/k/EFxw4WDIyMjcVDPBwAAqK4U2gEAAAAAAAAAAAAAgErj7elLi51PnL8y/jZqagzo3DwObds4auaUvDJRUJCMu176NGVWMzsznvz+6XFa/w4HlRcAAKC6U2gHAAAAAAAAAAAAAAAqhZ278mP8rGXF7iWTEV//65sREZGZkYhebRrF6Yd3jBsuPCJqZGfu9bmvTPosZi9bnzJ7/HunKbMDAACUAoV2AAAAAAAAAAAAAACgUnhn5rLYtnPXPs/lFyRjau7amJq7NtZv3hH3XHXCHs8mk8m47bmPU2a92zeJ05XZAQAASkVGugMAAAAAAAAAAAAAAADVz4KVG+O3z06MFycuiGQyWaLPPDl+TpFZZkZir5/52+hp8enC1Xvcv/uVyTFuxtKU2bdO7xuJxN6fCwAAQMm4oR0AAAAAAAAAAAAAADhg85ZviNc/XRR5+QVRr2Z21K2ZHd1bN4q+HZvGpIWr4snxc6N/p2Zx/pFdCkvi6zZvj2N+8mSs3LAtIiLuuXJoXHXyYXt9T96u/Hj6/bkps5u/cFSMOKJLPP3+3Ji0YHV8+tmqmLNsQ8qZZDLi+w+9E6//7JwiJfXJn62O6/85PmXWpnGd+PyQ7gf0ewEAAEBRCu0AAAAAAAAAAAAAAMABmZ67Nobe+O/YsHVnkb3jDmkd789eHjt3FURExI/OGxi/uujIiIh49J3ZhWX2iIjfPffxPgvto6cujrWbd6TMRh7dLTo2rx/XjxhYONu0bWfc/MyE+N1zHxfOxk5dHK988lmcPqBj4Wzbzl1xyZ2vx468/JRn/u3rw6JmjroFAABAaclIdwAAAAAAAAAAAAAAAKByuu6R8cWW2SMi3p6+tLDMHhFxyzMT4pn/f8P6396YmnJ2wcqNMX9F6s3qu3vi3Tkp68HdWkTH5vWLnKtXKyd+fuHgaNekbsr8rpc/TVn/8OF3Y/ritSmza8/sF8P7tt9rDgAAAPaPQjsAAAAAAAAAAAAAALDfJny2IUZNzt2vz3zpT6NjWu6aWLdlR5G9MVMW7/Fzu/IL4vkJC1Jmnzu62x7P18rJip9fODhlNmpybsxeui4iIl6YsCDueW1Kyn6/jk3jps8ftc+fAQAAgP2j0A4AAAAAAAAAAAAAAOyXZDIZ97y1KGXWoHZOtN3tVvTdbdmRF2fc/EIsWbulyN7oKXsux09auCrW71aCP//Irnt910VDukfjujVSZrc//0ksW7clrvjz6JR5rZyseOTbp0SN7My9PhMAAID9p9AOAAAAAAAAAAAAAADsl+cnLIxpyzanzG65+Oi447Ih+/zs4jWbi52Pnbo4CgqSxe69PX1pyrpH64b7LM/XysmKL514SMrsvjHTo91X7481m7anzO+4fEj0bNNoX9EBAAA4AArtAAAAAAAAAAAAAABAieUXFMTPH/8gZda1ZYP40gm9YuhhbSOROLDnrt60PSYvWl3s3lvTlqSsjz+kTYme+dWTD9tnnnMHd44rhh1aoucBAACw/xTaAQAAAAAAAAAAAACAYuXtyo/RU3Ijd/Wmwtkjb8+KmUvWpZz75UVHRnZWZjSuWzMGdGpW5DmXHNcjmtWvtc/3jZ6cW2SWX1AQ42ak3tB+XAkL7Z1bNIhzB3Xe436bxnXi3q+eEIkDbeEDAACwTwrtAAAAAAAAAAAAAABQyWzZnhcr1m8t03fk7cqPIT99Kk751XPR6RsPxgsTFsT2nbviF098mHKuf6dmccGRXQvXR3ZvWeRZFx/XI/517SmRmbH34vjoKYuLzCYtXB0bt+1MmR13SOsS/xx/vuqEuPjYHpGTlVqhaN2oTjzxvdOiSb19F+0BAAA4cFnpDgAAAAAAAAAAAAAAAJTcCxMWxJf/NCrWbdkRIwZ3jn9cfVLUq5VT6u956v25MXH+qsL1Tx59L+av2BCL/ue29oiIX33+yMj4n6L6WQM7x59enVK4zs7MiGN6tIraNbLjN5ccE99/6J09vvP1TxfFTU99FLOXrotVm7bFqg3bYvGazSlnurdqGK0b1y3xz9G0fq148JqT447Lh8SYKYtj285d0bdjszi0XePIynRPIAAAQFlTaAcAAAAAAAAAAAAAgApo+uK18cHs5ZGZkYjsrIzIzsyM1Zu2xbX3j4u8/IKIiPj3h/Mjd82z8eKPzoqm9Uv3pvG/vjGtSJ7vPZhaRj+uV+s4pW/7lNkJh7WJwd1axIdzVkRExDdP6xO1a2RHRMS3z+gbuWs2xZ0vfRqZGYn46QWD4pdPfhjJ5H8/f+MTH+w11/7czv6/mtSrFRce3e2APgsAAMCBU2gHAAAAAAAAAAAAAIAK5i+vT4lv/v2tEp2dMG9lXP6nUfHC9WdGIpHY9wdKIJlMxrzlG/Z57lcXHVHknZkZGfHij86Kp9+fG03r1YozDu9YuJdIJOL2y46Nb5/RL7IyEtG6cd144aMF8fGCVVFSp/bvUOKzAAAApJ9COwAAAAAAAAAAAAAAVCD5BQXx88fe36/PvPrJZzF3+Ybo1qrhfn1u4cqNUTMnM1o2rJMyn7t8Qyxdt2Wvnz2uW6M4snvLYvca160ZV5502B4/275pvcJfn9i7XYkK7YlExBeG9IhzBnXe51kAAAAqDoV2AAAAAAAAAAAAAACoQD5ZsCrWbt6x358bPSV3vwrt33twXNz50qeRlZkRt33xmPjmaX0L98ZMWbzPz3/t2Pb7nbE4w/q0jdue/7jI/Fun942+HZtG0/q1onn9WtG+ab1o0bB2qbwTAACA8qPQDgAAAAAAAAAAAAAAFcjuZfI6NbKjc4v6kZdfEHm7CiIrMxFnDewci1ZviifGzyk8N3pybnxteO8SvSN39aa46+VPIyJiV35BfOf+cdGhWf04a2Cn/3vWlNy9fv6sgR2jS7PSKZcP6dk6amRnxo68/MJZ15YN4vbLhkQikSiVdwAAAJA+Cu0AAAAAAAAAAAAAAFCBjJmaWmi/9PgecfcVQ4uce+jNGSmF9rHTlkR+QUFkZmTs8x1Tc9dGMpk6u+yPb8T7t1wYXVo2iDen7f2G9uvO7h+xZfk+31MStXKy4owBHeOZD+YVzv505VBldgAAgCpi339KBQAAAAAAAAAAAAAAysWOvPx4d+aylNmJh7Ut9uyJvdulrNdv2REfz19VovcsWLGhyGzjtp1x/u9ejpc//izWbt6xx88e26t1HNGtZYneU1K3XzYkTh/QIXq2aRR3X3F8DNvtZwMAAKDyckM7AAAAAAAAAAAAAABUEO/NXhbbdu4qXCcSEUP3UGhv26Ru9GzTKGYuWVc4O+rHT8b9V58UR/doFZ1b1N/jLefzV24sdj5jybr4/O9fTZllZiQiI5GIvPyCqJWTFb+59Jj9/bH2qV3TevH89WeV+nMBAABIP4V2AAAAAAAAAAAAAACqlbnL18ftz38SY6cuji078qJZ/Vpx9al94ivDDk1rroKCZPx91LSUWf+OzaJx3Zp7/Myw3m1TCu0REV/606iIiGjRoHYc3aNlHNWjVRzdo1UM6NwscrIyIyJiwYriC+0REdvz8lPWv7royLjgqK4xZsriGNKrdfRs0yjy8/P38GkAAABIpdAOAAAAAAAAAAAAAEC18bPH3o/f/HtiFCSThbNl67bG1//6Zgzo3Dz6d2qWllzJZDKu/vub8di7c1LmJ/Qu/nb2/zipT/v406tTit1bsWFr/PvD+fHvD+dHRETN7MwYeXS3uPPLx8WClRtKnO1zx3SLDs3qR+cWDUr8GQAAAPiPjHQHAAAAAAAAAAAAAACA8vDh3BVxyzMTUsrs/1GQTMZT781NQ6r/88onn8XfdrudPTszI648ae+3xp8xoGMM692uRO/YnpcfD701M3773MexYGXqDe3XnTMgMhKJIp85uker6NCsfomeDwAAAMVxQzsAAAAAAAAAAAAAANXC6Mm5e9+fkhu/jqPKKU2qR96elbLOysyIf117SnRt2XCvn8vISMSrPz073pq+JD6YsyI+nLMi3pu9LFZu2LbHz/z1jamxaVteyuyrJx8WDevUiJ88+l7K/PNDuu/fDwIAAAC7UWgHAAAAAAAAAAAAAKBa+HDuir3ufzx/VazbvD0a1a1ZZO/BN2fET//1XuQXJKNfx2Yx8uiucenxPSMzI+Ogc23fuSte/nhhyuzWi4+Ocwd3KdHnE4lEDD20bQw9tG1ERCSTyZi3YkO8N2t5jJ+1LN6ZsTRmLFlXeH7Npu0pn8/KzIi2TerGD84ZEJMWrIon//9N9a0a1VZoBwAA4KAptAMAAAAAAAAAAAAAUOUlk8n4cE5qof3er54Q3/7H27E9Lz8iIgqSyXhr+pIiRfIV67fG1/86NnbuKoiIiNc/XRSvf7ooNm/Pi2+e1vegs42eujg2b//vjemJRMRFQ7od8PMSiUR0bdkwurZsGJce3zPyCwqi5Vfui3VbdhR7vkPTepGV+X/F/Ee+PTxO7N02Fq/ZEpcN7RkN69Q44BwAAAAQEXHwfxUcAAAAAAAAAAAAAABUIDc/MyG6XP1gnHHz8/H+7OUREbFo9aZYsWFryrnjDmkTx/RsnTIbPXlxkee9M3NpYZn9f/191LRSyfvsB/NS1kf3aBUtG9YplWdHRGRmZMQJh7Xd437H5vVTzl550mHxi88dEZ1bNCi1DAAAAFRfCu0AAAAAAAAAAAAAAFQZL05cED9/7P34bNWmeG3Sohjy06fiintGx4sTF6aca1y3RnRt2SCG9U4tej/zwbx4YcKCKChIFs4mzFtZ7Lum5q6N5eu3HFTeqYvWxP1jZ6TMRux2Q3xpOLH3ngvtnVvU3+MeAAAAHCyFdgAAAAAAAAAAAAAAqoy7X5lcZPbAmzPi2/94O2U2qGuLSCQSMaxPu5T5ig1bY8RvX4p+3/9XPPTmjMjblR8T5xdfaI+IGDu16I3uJfXKJ5/FUT9+ssj83MGdD/iZezKsd7s97nVqrtAOAABA2VFoBwAAAAAAAAAAAACgUlu0elN88a7Xo/s1D8Woybkl+szgri0iIqJfx6bRvmm9IvvTF6+NL98zOrpd83CMmbLn0vroyQdWaF+9cVtcetfrsW3nrpT5SX3aRccyKJh3bdmg2J8zIqJziwal/j4AAAD4D4V2AAAAAAAAAAAAAAAqta/eOyYefWd2zF+xscSfGdytZUREZGZkxCPfHh4dmxVf9l68ZvNenzN6Sm4kk8mSh/3/fvHEh7F+y46UWe/2TeK+bwzb72eVRCKRiPOO7FLs3iHtGpfJOwEAACBCoR0AAAAAAAAAAAAAgEps5Yat8canxd/K/sXje8bnh3QvMs/MSMTgrs0L10f3aBUz7rwkHvzmyXHofpa7c9dsjjnL1u/XZ6YsWh33vjE1ZXb6gA4x/uYLo03juvv1rP3x0/MHxUXHdIucrP9WCS48qmsc0lahHQAAgLKTle4AAAAAAAAAAAAAAABwoN6atmSPe9ePODy6t24UV5x0aHz7vrdiau7aiIj45ml9okm9Wilns7My4+LjesTnh3SPlz9ZGLf+e2K8P3t5kWee2r9DfLpwVSxbt7VwdtW9Y+O5H54RDWrX2GfeZDIZ33vwnSj4n1vda+Vkxd1XDI1aOWX7n/g3rFMjHvn2KbEjLz+mLFodiUQiBnRqVqbvBAAAAIV2AAAAAAAAAAAAAAAqrbFTFxc7v3xor+jeulFERBx/SJuY8NuLYuL8lZFMRhzRrcUen5eRkYgzD+8Up/RtH4de+8+Yv2Jjyv7ALs2jVcPacf/YGYWzd2YsjeG/fDZe+vHZ0bR+rd0fmeKFCQtizJTUzN8/u3+0b1pvr58rTTWyM2Nglz3/HgAAAEBpykh3AAAAAAAAAAAAAAAAOFBjdiu0d2nRIB785slx9xXHp8yzMjPiiG4t48juLSORSOzzudlZmfHT8wcVmR/euXn85PxB0ahO6m3sE+evihNv/HcsXbt5j8/ckZcf1z30bsqsbZO6cd05A/aZBwAAACorhXYAAAAAAAAAAAAAACqlRas3xdzlG1Jmj3331Lj4uB5RMyfroJ//hWN7xKHtGheuG9etEcf2ah0dm9eP0TeOiBYNaqecn754bQy94ZlYsHLj7o+KiIi7Xv405q1IzXvLxUdF7RrZB50VAAAAKiqFdgAAAAAAAAAAAAAAKqU3d7udvVGdGtG3Q9NSe35WZka8+KOz4pxBneO4Q1rHv649NRr+/5vZ+3RoGm/+8rxo37Reymfmr9gYx//s6ZixeG3KfPn6LXHzMx+lzI7q0TIuOqZ7qeUFAACAikihHQAAAAAAAAAAAACASun1TxelrIce2iYyMhKl+o52TevF09edHmNuPC+G9W6XstetVcN485fnRfdWDVPmS9dtiRNueCY+nr+ycPazf70fm7blpZy747JjI5Eo3bwAAABQ0Si0AwAAAAAAAAAAAABQ6WzcujOe+2hByuzE3Qrn5aF903ox9hfnFbkZfvWm7XHSL56NmUvWxRPj58T9Y2ek7H/x+J4xqGuL8owKAAAAaaHQDgAAAAAAAAAAAABApfPU+3Nj285dheuszIw4/8guacnSomHtGHXDuXFEt9SC+sZtO+Owa/8Zl/3xjZR5nRrZcdPnjyzPiAAAAJA2Cu0AAAAAAAAAAAAAAFQ6D76ZeuP5af07RPMGtdOUJqJR3Zrx2s/OiRN7ty2yl5dfkLK+6fNHRuvGdcsrGgAAAKSVQjsAAAAAAAAAAAAAAJXC8vVb4t7Xp8apNz0X785clrJ32dCeaUr1X3Vr5sSzPzgjOjart8cz3zild3zztD7lmAoAAADSKyvdAQAAAAAAAAAAAAAAYE8KCpLx0Fsz4h9jZsR7s5dFMln0TJN6NeP0AR3LPVtxatfIjt9/6bgY8duXiuydd0SX+P2Xjo1EIpGGZAAAAJAebmgHAAAAAAAAAAAAAKDCuuPFT+KKP4+J8bOKL7NHRFx+Qq/Iycos32B7cdbATnHOoM4ps2vP7Bf/uvaUyMzwn/EDAABQvbihHQAAAAAAAAAAAACACqmgIBl3vzJ5j/s1sjPj88d0j59dMKgcU5XMw986OX722Psxb/mG+PKJh8TZuxXcAQAAoLpQaAcAAAAAAAAAAAAAoEL6YO7yWLxmc8qsXq3sOGNAxxhxRJc4pV/7qFszJ03p9q52jey4/bJj0x0DAAAA0k6hHQAAAAAAAAAAAACACunp9+elrHu0bhgTf3tR1Mzxn8IDAABAZZGR7gAAAAAAAAAAAAAAALC7ZDIZz+xWaL/gqG7K7AAAAFDJKLQDAAAAAAAAAAAAAFDhfDh3RSxavSlldsFRXdKUBgAAADhQCu0AAAAAAAAAAAAAAFQ4r3zyWcq6e6uGcVi7JmlKAwAAABwohXYAAAAAAAAAAAAAACqc6blrU9an9u8QiUQiTWkAAACAA6XQDgAAAAAAAAAAAABAhTNr6bqU9aHtGqcpCQAAAHAwFNoBAAAAAAAAAAAAAKhQduUXxOyl61NmPdsotAMAAEBlpNAOAAAAAAAAAAAAAECFsmDlxsjLL0iZ9WzTMD1hAAAAgIOi0A4AAAAAAAAAAAAAQIUyc8m6lHXTejWjSb1aaUoDAAAAHAyFdgAAAAAAAAAAAAAAKpRZS1ML7T3aNEpTEgAAAOBgKbQDAAAAAAAAAAAAAFChzNrthvZeCu0AAABQaSm0AwAAAAAAAAAAAABQocxY4oZ2AAAAqCoU2gEAAAAAAAAAAAAAqDCSyWSRG9p7tFZoBwAAgMpKoR0AAAAAAAAAAAAAgApj1cZtsW7LjpRZTze0AwAAQKWl0A4AAAAAAAAAAAAAQIUxY7fb2WtmZ0aHZvXSlAYAAAA4WArtAAAAAAAAAAAAAABUGO/MWJay7tmmUWRm+E/fAQAAoLLyp3oAAAAAAAAAAAAAACqMsVMXp6yPP7RNmpIAAAAApUGhHQAAAAAAAAAAAACACmHrzvx4f86KlNmJvdulKQ0AAABQGhTaAQAAAAAAAAAAAACoECblboy8/ILCdVZmRhzXq3UaEwEAAAAHS6EdAAAAAAAAAAAAAIAK4aPPNqSsj+jWIurVyklTGgAAAKA0KLQDAAAAAAAAAAAAAFAh7F5oP/GwtmlKAgAAAJQWhXYAAAAAAAAAAAAAANJu+fqtMWfl1pTZsD7t0pQGAAAAKC0K7QAAAAAAAAAAAAAAlKtkMllk9uonn6Ws69XKjsFdW5RXJAAAAKCMKLQDAAAAAAAAAAAAAFBuHh03K9pc9Y/o/I0H46anPoqNW3dGRMQrk1IL7Sf3aR85WZnpiAgAAACUoqx0BwAAAAAAAAAAAAAAoHpYvn5LXPWXMbE9Lz8iIm584oO46+VJ8b2zB8ToKYtTzp5xeMc0JAQAAABKm0I7AAAAAAAAAAAAAADl4snxcwvL7P+xdvOO+Mmj7xU5e2q/DuUVCwAAAChDGekOAAAAAAAAAAAAAABA9fCvd2eX6Nygri2iRcPaZZwGAAAAKA8K7QAAAAAAAAAAAAAAlLl5yzfEh3NWlOjs6QPczg4AAABVhUI7AAAAAAAAAAAAAABl7rHdbmdvWq9mvHPTBXFq/9TyenZmRow8ult5RgMAAADKUFa6AwAAAAAAAAAAAAAAULUlk8n459uzUmYXHtUtjuzeMl780Vkxftay+OPLn8asRSvi+guOih6tG6UpKQAAAFDaFNoBAAAAAAAAAAAAAChTY6YujtnL1qfMPjfkv7ewH92jVRzRtXlMmjQp+vXrUs7pAAAAgLKUke4AAAAAAAAAAAAAAABUbX95bUrKulebRnFMj1ZpSgMAAACUJ4V2AAAAAAAAAAAAAADKzOI1m+P5CQtSZl87pXckEok0JQIAAADKU1a6AwAAAAAAAAAAAAAAULX8651ZcePjH0ajujWiTs3syC9IFu7VqZEdlxzXI43pAAAAgPKk0A4AAAAAAAAAAAAAQKl55ZPP4tK73vi/xYqi+5cc1yMa1K5RvqEAAACAtMlIdwAAAAAAAAAAAAAAAKqGpWs3x5fufmOP+9mZGfHtM/qWYyIAAAAg3RTaAQAAAAAAAAAAAAA4aPkFBfHFP74Rqzdt3+OZ758zILq3blSOqQAAAIB0U2gHAAAAAAAAAAAAAOCg3fzMhHhz2pI97ndp0SB+fN7AckwEAAAAVAQK7QAAAAAAAAAAAAAAHJS3pi+JXz35UcosMyMR7ZvWi4iIJvVqxkPfOjlq5WSlIx4AAACQRv7XAAAAAAAAAAAAAAAADtjqjdvi0jtfj4JksnCWmZGIMTeeF0d0axFTc9dE+6b1onHdmmlMCQAAAKSLQjsAAAAAAAAAAAAAAAckmUzGl+8ZFUvXbUmZ3zjyiDimZ6uIiOjXsVk6ogEAAAAVREa6AwAAAAAAAAAAAAAAUDnd89qUePnjz1Jmw3q3ix+ee3iaEgEAAAAVjUI7AAAAAAAAAAAAAAD7bfbSdXH9I+NTZs0b1IoHrzkpMjISaUoFAAAAVDRZ6Q4AAAAAAAAAAAAAAEDlsWV7XvzhpUlxw+MfFNl74JsnR8uGddKQCgAAAKioFNoBAAAAAAAAAAAAACiRZDIZ59/2coyanFtk7xun9I7hfdunIRUAAABQkWWkOwAAAAAAAAAAAAAAAJXDh3NXFFtm79qyQdxy8dFpSAQAAABUdG5oBwAAAAAAAAAAAACgRP7y2pQis4Fdmsej3zkl6tTMTkMiAAAAoKJTaAcAAAAAAAAAAAAAYJ9Wb9wWT7w3N2X2+SHd46FrTo5EIpGmVAAAAEBFl5HuAAAAAAAAAAAAAAAAVHz3j50RO/LyC9c5WRlx+2VDlNkBAACAvVJoBwAAAAAAAAAAAABgr9Zv2RG3P/9xyuyCI7vG/2vvvsPjqM647/+2V/VuFXe5YBvjRq+hhBoCJOAUQkgoIZBC3pSHEJ4EUkghBRLIQxJIQmgJJXRCB5tiU9xwr7Ikq5fVavvuzPuH7MVCkiUXWZL1/VxRdnfmzDln5vaKY19zz12Y5R2iGQEAAAAAgJGChHYAAAAAAAAAAAAAAAAAAAAAwB799NF31RyMdtt2zSdnDdFsAAAAAADASGIf6gkAAAAAAAAAAAAAAAAAAAAAAIaXZMrQe5sb9dLKar20qlpvravrtv9T8yfoqMriIZodAAAAAAAYSUhoBwAAAAAAAAAAAAAAAAAAAABIkhoDYf3wgbf12JLNCoTjvbZx2q361RePPcgzAwAAAAAAIxUJ7QAAAAAAAAAAAAAAAAAAAAAASdJ1f3tdj76zeY9tvnHWbE0szjpIMwIAAAAAACMdCe0AAAAAAAAAAAAAAAAAAAAAAAUjcT3x7tY+9ztsVl187GT95OIjD+KsAAAAAADASEdCOwAAAAAAAAAAAAAAAAAAAABAr35Yo2TK6LZtelmuTp1VrlNnleuE6WPkdzuHaHYAAAAAAGCkIqEdAAAAAAAAAAAAAAAAAAAAAEaxPzyzXP94ba1WVrV0237iYaV6+f9+eohmBQAAAAAADhUktAMAAAAAAAAAAAAAAAAAAADAISJlGHpw8Qat39GuoyuLddqscjnstj7bL163Q9/5x+Je951+eMVgTRMAAAAAAIwiJLQDAAAAAAAAAAAAAAAAAAAAwCHi1098oBsffCf9uSjLq99edpwuPray1/ZPvru1z77OmE1COwAAAAAA2H/WoZ4AAAAAAAAAAAAAAAAAAAAAAGD/ReJJ3fbksm7bGgJhff4PL+j2Z1f0eszSTQ29bs/PcGtWRf4BnyMAAAAAABh9SGgHAAAAAAAAAAAAAAAAAAAAgEPAo+9sUlso1uu+6/++SD995F2ZppnelkwZen9zY6/tP3nEWFmtlkGZJwAAAAAAGF1IaAcAAAAAAAAAAAAAAAAAAACAQ8DdL67e4/4f/3uJvnffm+mk9lXbWxSJJ3tte9nJ0w74/AAAAAAAGO7aoxGFE/GhnsYhxz7UEwAAAAAAAAAAAAAAAAAAAAAA7J8Pt7forfV13bbNnVCg97c0ddv2u6eXKxiJ609XnKSlGxt69HPJsZN1/oKJOumwskGdLwAAAAAAfTFNU0nDUNxIKpJIqKqjTds72mSzWuWy2RVKxNQRiyqYiCkYiymSTGhKbqHOmXiYst2edD9VHa16u3abrBaLKjJzVJGZo2JfhqwWq+pDHfrvxlV6adt6rWquk8tmVzSZVFVHqyTpxqNP14+OOWOoLsEhh4R2AAAAAAAAAAAAAAAAAAAAABjhHn5rY7fPxdleLf7pRfrry2t03d9e77bvry+vUTCSkM1q6bb9c8dV6p/fOH3Q5woAAAAA+6IxHFR9Z1DT84tkt9qGejojTkcsqqRhKNfjPajjGqahlGEqZRpy2ex6rXqTbn3nJS1rrJHf4ZLTZlcilVQslVIslVTcSCqWTMmUuU/jZbs8slksslttaggHe+x3WG3KcrnVHAntsZ+fvf2irptzQrcEeew7EtoBAAAAAAAAAAAAAAAAAAAAYIT7eLX1hcdVymG36WtnzFSGx6Gv3PmyUsZHyQAfT4CXpAWTiwZ9ngAAAABGl5RhKJJMKGkYShopJXa+Jk1DrZGwntuyRi9sW69Cr1/zSyoUT6VU1dGqcCKhSLLrJ5pMqDHcqc3tzZKk8oxs3Xj06bp46hx5HI5exzVNU6ZMWS3Wg3m6+8w0TTVFOrW9o01VgTZVdbRqe0ebmiMhZThdShmGNrU3y+dwKcvl1o7OgJY11EqSvA6HvHanPA6HPHaHYqmkwomExmflam5xuSyS3qjZrKV12yVJZf4szS4sU4lh1ZlZLs0rGasiX8Y+zTuaTGhxzRa9XLVB7zdUa01zQ1e8zZRSRleV9T0lpgdi0X0ad0/aY5E97k8YqX6T2SXJY+/9zxb2DQntAAAAAAAAAAAAAAAAAAAAAA451c1BFWS4hnoaB4VpmvpgS2O3bcdMKUm//8IJU+V3O/S53/9P8aTRZz9HTi4etDkCAAAAGFrRZEKGacpjd8hisez18aZp7vG4plhYT2z6UO83VGttS4PqQh3a0RlQQ6hzwJW2n9q8ekDtqoPtuuqFf+ubrzym48sm6rRxUyRJW9tbtCXQoi3tLarqaFUiZSjT5dJpY6fox8edqck5BQPqvybYrv+sX64sp1sXTZmtTJd7QMftrU1tzbrlref1WvUmNUdCShp9/31tT8LJuKSeCdpVHa16rXpTj+01nQHVdAYkSX/ZtkqSVOrP0vT8YhV5M1To9avEn6UzJ0zrcc1M01RtZ0DrWxv12IaVemjtB+pMxPZp3sNZntur35x8PtXZDyAS2gEAAAAAAAAAAAAAAAAAAAAcMpIpQ+fe+pReXFGtwkyP/vCZSs0e6kkNsm1NQbWFuicQzJnQPeng/AUT9cQPztGFv35W4ViyRx9uh02Hj8sf1HkCAAAAOLBqgwGtat6hpnCnIsmEbBar2qJhNYSDqu/sUH0oqPpQ12tHvKsStkUW+RxO+Z1OeR3OrvcOl7w7X30Op6wWi7YGWrSjs0OhREyd8bjCybhy3B5Nyi6Q1WJRdGf19Fgqqc54TC3R8EE//2gyqRe3rdeL29b32SYQi+qRDSv0yvaNuvXEc+Wy2fXkpg9VHWxTyjBlmKZSpqGUachhtSmciGtDW1P6+BsXPaPvHvkJXXvE8XLYbPs956qOVv3zw3f1Xn21Xqpav89J7AdabWdAtTuT3Hf5/utP6oSyiZpTVKbqYLs2tDZqY1vzzgT6g8tqsag8I0dWi0WxVEI+h0uZTrcynC75nS4F41G9vWOb4qlUj2O9dqcKvD7VhTp67Pc5nDp34mE6oXyS/A6n4kZKM/JLNLOgRHbr/scbHyGhHQAAAAAAAAAAAAAAAAAAAMAh4++vrtWLK6olSY0dEf3xtSpdcOoxQzyrwfX+5u7V2fMy3KrIz+jR7rRZFXruh5/Sebc+pUC4ewLCN84+XE47N+sDAAAAQ6UjFtVLVevVHAnJabXJabPLbrUqlkoqmkwqmkoolkwqnIirIdyp5Y01eq++eq/HMWWqMxHbp6rabdGI3q3fvtfHDQet0bCu/N/De31cSzSsH7z+lB5Zv1x3n3GxDssv2WP7YDyq5Y21WtfSqEgykd5uytSqph16ZP2KbtuHM8M09Vr1pl6rvO+vDKdLX5l5lE4on6SUachls8tps8lls6ffO3d7n+f2yWXfc0p0IBbRmuZ6pUxTCSOlQCyiXLdPR40ZK6fNLsM01BDq1PaONlUH2+RzuHRC+QT5HK4Dfn7oiYR2AAAAAAAAAAAAAAAAAAAAAIeMm/+ztNvnNze3KxpPyuc5uMnajYGw/rd8u55bVqVFa2vltNv0+y+foHPnjT/gY72/pXtC+5wJBbJYLL22PXZqiV6/+UJ9/19vqikQ0dyJhTp33nidecTYAz4vAAAAHBixZFLhZFyGacphtclutaZf+1r3oW/t0Yj+tuodPb9lrSLJhHLcXsWNpKKJhJKmoZTxUcXuRCql5khIHfGoCjx+VWTmaHZhqUxJq5vrFEkmZJpd/ZoyZe76IKkiM0fHl0/USeWTVOTL0CtVG1UbbFfcSCmeSimWSqZfmyOdeqVqY7qK+miS7/Hp8MJSGaapmmC7Cr1+HV5YqmyXRx67Q267Qx67Q16HQ1NyC9UUDul3772qRTVbZOx2vQfbe/XVmvOP3+joMeP0xcPm6zNTZivT5ZakdNxve/dV/fydFxVK7HsFc7vVqlJ/tsZm5mhsVo6KvBnqTMSVNAwVev3a0t6sN2u3qiwjW5+fPk8z8osVS6UUTsYVSSQUTsblstllmqZWNO3QlvYWmTKV4/LorImHaVxmrlY27dD79du1eMsGbQq3K7yfCfYWWbSgpEKnjJ2suUXlKvRmyGa1yG6xym61yWa1ymaxymKRmsKdao9FdGTJWOV5fPs17sdluTw6urTvv3NbLVaV+DNV4s/UkeLvwAcbCe0AAAAAAAAAAAAAAAAAAAAADgmNgbB2tIV6bH9nY4M+Mati0Mevbw/p/73woZ5bVqX3PlY1XZIu/9NL2nbXZYomkvrKnS9rTU2rLj9lur5//tz9SkT6YEtTt89zJxTusf2Mijw9c8N5+zweAAAApKSRkkUW2azWAbVvj0b01OYP9fyWtdrc3qK6UEAum0OZLpcynW5lON3KdLqU4XIr0+mW3+FUXSioF7etU1VHW5/92q1W2a1WFXoydHz5BI3NzJUkzS+p0InlE/W/reu0pb1FhtmVpG2YplKGoZRpyjBNZTpdOn38VPmdLr1fX63JOQU6oqjsgFyjwdQZj6mqo1UdsWg6QbwlEtLyxlpVd7SpPRZRwkhJ6kq27fqfRa2RkNa2NiieSu31mHWhDtWFOrSkrmpA7Vc07dBTm1fv9TgjWabTrXnF5ZpXXKHxWbkq8Wep1J+lTJdbDqtNDptVdost/ed218MZ9vbvQ2dOmKa2aFivVG3UC9vW6YOGGvkcTk3IztOErDyN3/kqSd9//akBx2wg3t6xTW/v2KbvvPpflWVkKxiPqj4U3Of+bBarvjrrKC2cNkdlGdka488a8O+V/lw8bU6v22cVjtHCqUdoefZyzZw1S5s7WrSsoVa1wXY1Rjq1obVJL25br5Rp9Nm3z+HUlNxCnT1hui6beaTKMrIHNKfJOQX7cio4BJDQDgAAAAAAAAAAAAAAAAAAAOCQ8N+lW3rd/sqHNYOe0N7cEdHc7z6shkC4zzZtoZgWr9uhe19Zq6ff3yZJuvHBdzShKEufPWbyPo1rmqY++FiF9v4S2gEAAEabqo5WPbNptZZuWqfiYK0cNns6mdZls2tecYVOKJ+gpnBI9695T69Vb5JpSkePGafSjCzZLB8l3zZHQnp840ot3lkdOt/jU6E3Q6UZWVpQXKHyzBwFYlE1RzrVHAmpORzSpvYmrW1pGJRq0knDUNIwtD3YpvvXvL9Pfdy4+Nlun88YP1WXzzxSh+WXaHxWruxW24GYalo0mVBVR5siibhCibjCyYTCibisFouOGjNOBV5/t/ZL66r0zOY12tzerG2BVm0NtKg50vNBVqNVptOtcVm58jucSpqGMpxulfgyVeTLULEvU8U7X4t8GXJYbQolYgol4uqMd73u+ulMxBTe+T6aTKosI0sTsvO6HrDgdMljd6i2M6CqQJvsVqvcdnu6grrTYlWgeofOO+Z4OeyOg3LeOW6vLpxyuC6ccvge271yydd1+/tv6L7V72lda9f3cG5RuS6onKUCr182i1U2q0VWWRSIR7WqqU6S9JWZRyqaSuqrzz+kjW1NPfqNJBO9bh8Iiyy6sHKWPjG2UqeMrdS4rNx96udAsFmtmpZXrGl5xd22r21p0I8WPaNN7c2qyMxRZU6hKnMLNDmnQJU5hRrjz9yvB7Nh9CGhHQAAAAAAAAAAAAAAAAAAAMAh4ZF3NvW6/dUPawZ97L+8tHqPyey7/PWl1frvu90T72+4/y2dv2CCnPa9SxQyTVN/f3Wt2kKxbtvnTKDiHQAAGFpJI6WOWExWi0V2qzWdMGq3WmW1fFR52DRNtUbD8tqd8jj6T4J9t267bl3ykt6t266Uachps8nncMnvcMnvdMrncMlqsagjFpXFInnsTm1oa9S2QOtHndSsG/B5vLCt/7aN4U41hjv1YXOd/rd14H0PZ//bui59Lg6rTROy8zQ5p0DlGdkq8Po1La9I84orNMaf2Weye8ow9PTm1fr3umVqCAdlmlKhz6/OeFyLa7YonIz3epzTZtO1Rxyv8yYeplfqt+r7/3lHi2p7f3DVocgii6bmFcrvcCmWSippGHLZ7HLb7XLbHV2vNofyPD6V+rO0oKRCJ5ZPksN2YB860JeZBWN63Z5KpbS8NdTt+z1c2K02XT//ZF0//2RFEglJGtDvm12WfvF63brkJd2zcomaIp0DPm5KbqFK/Vk9to/LytWXZx6pBSVjB9zXUJiWV6RHzr98qKeBQwgJ7QAAAAAAAAAAAAAAAAAAAABGvLfW1+m1D2t73bd0U6PO/cVTuuHCeTq6suSAjPfUe1v19oY6nTtvvI6aXKx/vLa2Rxu/26GSHK821gXS2x7vpYr8tqag/t8LH+q6s3pWFlxb06rfPrVMPpdDN140X/mZHknSxrp2ff2vr+mVVd2T9fMy3KrIz9jf0wMAAOimPtShUCIur90pn8Mpr8Mhu9WmlGGoprNdz29ZpyV12xRKxNUQCmpZY42iyWSPfpw2m44pHa/DC0q1vaNNb9VuVUM4KKvFoknZ+SryZSjT6Vamy60Mp1tZLne6OvSSHdv0n/UrlDKNIbgCo1fCSGl9a6PWtzb2ur/Un6XTxk3RuKxcNUdCqg0GVBNs18a2JrXHIns9XjyV0m/fe02/fe+1/Zz5ntksVp076TAdWTJWhmnKtbPauN1ilW3XQxgsFtmtNuV6vMp0ulUfCmpJ3Ta9s2ObbBarji0dr3FZeZKkXYWqLbLIYpGiyaSW1lXp9erN2tzeLEnyOZw6asw4ZThdctnsctpscljtctlsctrsKvT6df7kWZqUkz+o5z6a7U0i+y5eh1M3H3eWfnT0GXpu61r988Olem7rWiWN3n8XeewO/fPsL+i8STP2d7rAIYWEdgAAAAAAAAAAAAAAAAAAAAAjWkN7WJf89nkZptlnm+eWVemNNTu04Y4vqijbu1/j3f/Gen3pjy9Kkn7/9HLd+oVjtak+0K3NP649TZ85ZpKWbmrQSTc91m+fN/9nqc6bP15jCzLT295YU6vzbn1andGuKoIvrNiu126+QH95abV+/th7iiVSPfo5e844WXZl0wAAAOymIRTU+tZGmTJlmlJTOKi6UFANoQ41hINqDHfKNKVMp0ufnDBNF1XO1mMbV+iPHyzSBw01PfpzWG1KmcYe12AfF0+l9Nr2TXpt+6Zu2w3T1Ia2Jm1oa9rv8xzOnDabTh83VaePm6qKzBylTEPBeFQdsVjXazyqjlhUwXhMHfGokoahuUVlOnviYSr0ZshmtSiRSilhGEoYKSWNlBKplGKplN5vqNbbtVsVSSb0YXO9tgZa0uPOKSpTiS9TVotFNqu169ViVcJI6f36alUH2/f5nGo7A/r7h0sPwNXZN7snh7vtDk3JLdRhecXK8/jktjtkmqZMSV3/Lzmtdk3LK9LhhWOU5fLs9XhnT5w+4LZfnnmkJKk2GFBHPKLxWXly2/c+oRrDg8Nm03mTZui8STPUGA7qwbUf6NXtGzU2M1cLSirUGg2rPRrRwmlzeSgB0AsS2gEAAAAAAAAAAAAAAAAAAACMWMmUoc/94X/a0Rbqt20oltBT723VV089TJJU3x7SDx94WxvrAvraGTO08Lgp/fYRT6Z044Nv7/bZ0PV/X9StzZQx2frc8ZWyWCw6clKR/G5HOim9L22hmD7zm+f0+i0XyuO06631dTrnF08pHPuosumGunaNueKePvv41PwJ+t2Xj+/3HAAAwKGjJRLSI+tXaGugRbFUUvFUSvFUUrFUUh3xqGqDAbVHIwolYmqJhgfc7yMbVuirzz+0xzYJo+fDdYazPLdXM/y5KisoUso0lDQMJQxDa1rqtXG3RHqv3amTKyYp1+PV1vZWRVMJJQ0jfUzKMFSemaMLKw/XzIIStcciaggFtaqpTu/s2KbOREwFHr/yPD7leXwq8PhU4PVrdmGpZheW7VOF6IE4csxYXXPEcZIk0zS1uHaLNrQ26YTyiZqcU9DncYZpaFNbi0yZKvFl6q7li/XclrXa0Nq4V39m9oXDapPX4ZDX7lTSMNQU6eyz7Rh/ps6fPEuVOQUal5Wn8Vm5GpuZO2jX80AqzchSqbKGeho4gAq9Gfrm3BP1zbknDvVUgBGDhHYAAAAAAAAAAAAAAAAAAAAAI8YrH9boH6+uVWGWRz+6aIF+/th7en11bbc2p8ws06UnTtVlf3ypx/Evr6rWV089TBt2tOmsnz2pbU1BSdI7G+o1a2y+DivP2+P4Dy7eoOqWvhNtJOnSk6alq6Q77DYdP22MnltW1e+5fbC1Sdfc/aru+fqpuvr/vdotmX1PyvL8+sOXT9CnFkwYUHsAAEYLwzQUjMdUGwxoaV2VOuIxnTdphioys7W+tVH1oaA6YlGFk3GFEwmFk3FFEwmFkwmFE3GFkwlFd3tvtVhU4s9UocevDJdbGU6XMp1u+ewONbQ3ytq0QxVZucrz+Hqdj2ma2h5s04dN9doSaJbLZlckmdAH9dVqioTktNnktHZVmu56b5O9l23lmTly2+x6s3ar7lv9nsLJ+EG+skPvwsrD9ZVZRyllGgrF4+pMxNQZjymUiCtpGMp0uSVJwXhURd4MHVFUpmk5hVq1cqVmz54tm82W7ss0TX3YXKdtgVaNzczVtLwiOXbbPxJZLBYdXzZRx5dN7Let1WJVZe5HCe/fP/JUff/IUyV1PTBhQ2ujNrY1aVN7s5rCnarqaNP79dVqj0UGNJfDC8bogsrD5Xe6tKmtSe2xiA4vLNUlU+eoxJ/Zre2a5nr99O0XtKhmsxrDnbLJolPGVmrh9Dm6qHK2XHbSIQFgpOI3OAAAAAAAAAAAAAAAAAAAAIBhr7kjouv/vkgPLN6Q3va7p5f3aFeW59f93zxD+RluOawWXfanl5RImen9r3xYoyUb6/WpW59WczCa3m6Yph59Z7MOK8+TYZhaW9uqZMqUzWrR1sYOba4PaEtDQI8v3bzHeVotFn3xhO6V3j8xs7xHQnumx6nnf/QpXXbHi9pQ157eft8b62WzWrWmprXfa2K1WHTtmbP0k4uPVIbH2W97AAAOJaZp6pkta/TkxlXaHmxXWzQs0zSVMAx1xCIKxKMKxmM9jvvua08M3qSWdz1MZ15xuY4vm6iyjGxFkwlVdbTpw6YdWt1Sr0As2k8nI1OWy60zx0/T5JwCeRxOzcgv0fS8IlksFqVMQynDVDgR13Nb1ujO5YvVEOrUCeUTdfHUIzSvuFyRZEKb2prVHosoGI8qEIuqIx5VMBZVIB5VZzwml82uEn+mvjB9vk6qmLTXc0yleq8ob7FYNLNgjGYWjNnfy3DIyfP4dHTpeB1dOr7bdsM01BjuVH1nh16q2qBXt29U0jRUnpGtUn92V0Vyf7YmZOdpam5h+mFP/ZmeX6wHzr1UkhSMRrRm1YeaN2dOtwcQAABGJhLaAQAAAAAAAAAAAAAAAAAAAAxri9bu0Bf+8D/Vtob22M5hs+rh6z+pgkyPJOmioyfJF2/R+X/+IN2mJRjVSTc9pkTK6HH8y6uq9a2zZ+vEmx7Vqu0t+zTXy0+ZpjG5/m7bzl8wQf/n/rfSY47J8enpG87VrLH5evS7Z+noG/6jzmgi3f7vr63t0a/VYpFhfpSYP39Skf741RM1d0LhPs0TAIChYJrmgBNbU4ah6p2J6p2JmILxrgrcnfGYtnW06rkta7Wyaccgz3jfvFdfrffqq4d6Gr3y2B3yOZxKmYbyPX6V+DJV5Mvo+vFmKJSI69/rl2lL+0droRPKJuraOcfr1HGViiaT6Yr14URcVotFBV6/irwZslmt/Y4/o6BE/9+CU5Q0jB5V0BeUjD3g54vBYbVYVezLVLEvU7OLyvT/LTjlgI/hdThlH8CfKQDAyEBCOwAAAAAAAAAAAAAAAAAAAIBha/G6HTr1J48rZZj9tv3tZcfryMnF3baVZLk0sThLm+sD6W29JbNL0pKNDbrpoXf2OZl9RnmufnvZ8T22jyvM1MPXf1J/eHaFyvP8+unCo1WW15X0Pq0sV/d+/VR95rbn+uz3xovm66KjJun+ReuV63frrDljNb0sd8AJgcChwjRNbWhr0ub2ZrVEQsrz+HTMmPHKdntkmqaiyaSCiWi3pNdgYudrPCbbzgq8W9pb9FLVBrXHwkoahhJGSolUSknT6Kr+68vU7MJSfeGwecpwuof6tIGDLmmk1BQOqSHUoYZwpwzTVI7bo7rODlV1tCmRSiplmukHrditVlktFtmtNtmtVtl2e2+1WFQf6tDalgYtqavStkCrMpwu5bp9yvN4e7xmuTyq6wzo5aqNWt1Sp3gfFbXRnc1i1UkVkzQ2M0dOm12unT9eh0MlvkwVeDPksdtV4s9SZU5Bv4nnPzz6ND26YYW2d7TpjHFTNbuoLL3P53Apz+Pbr/laLJYeyewAAODQRkI7AAAAAAAAAAAAAAAAAAAAgGHr908vH1Ay++ePn6KrT5/R675TZpR2S2jvSzJl6I/PrxzQvJx2q0pz/dra2CFJyvQ49e/vnCmvy9Fr+/PmT9B58yf0uu/TR07UDz49V7c+/n6v+z93XKUqx+ToF58/ZkBzA0aiLe0tembLam1tb5XLZpMpqTPRPTF9Q2ujdnR2dDvOIotcdpsSKUMps/eHVeyrW976nz41eaYmZOVpen6Jinx+NYQ6VRNsT/+0xyIqy8jW9LwinVA+UdPzirs9bCJlGGqPRdQaDastGlYgFtWE7DxNzM4/oHPdnWmaeqNms17fvkmb25sVSsSV5fIonkqqPRZRJBhSSd0a+RxOeRxOee0O+RwueR1OVeYW6PiyCT0S+Q3TUGskrKZIpxrDnUoahg7LL1axL1Od8Zj+t3WdljXW6PCCMTp/8iwSVYcx0zT1UtUGvbBtnQLRiIK7VT7viEfVFO5UUzgkU/3/t3dfBWJRBWJRbQ3s2wNkDqQMp0sFXr/8Dpc8doc8Doe8dqc8doe8Doc8u7332p2KpZLa0dmh9lhYHbHozuvWde0CkZBCqWQ60X9PslxuTcstktViUdI0ND2vWJW5hTJNU/FUSnEj2fWaSilh7Hrt2haMx7SysVZ1oaCm5BbqwspZ+uKM+RqbmXvArovTZtfCaXMPWH8AAAAktAMAAAAAAAAAAAAAAAAAAAAYtsp3VjLf5ZSZZcryOPX40i3pbTMr8nTXlSf1WbH8lBll+stLa3psX3hcpbY0BLRkY8Me51CU5dXE4ixNLMrUxOJsTSzO1CdmlsvncuiO51aooT2sq8+YqcoxOftwhl1+cvGRWra1Sf9bvr3b9nkTC/erX4wOsWRSHzbXKWkYmpCdpxy3R3brgU8org0GdM+qd7SyaYfiqaTa2gPybl6artTstNl2Jn46VeD16+SKyTqxfKKyXJ50H6ZpKpZKqjMe05K67Xpl+wa9XLVBa1v2/D3si6muyuyDoSUa1j2rluzVMU6bTY6dlaklqSMW6zUx+PiyCbp85lE6Y/zUAVc6XtFYq5erNmhidr7OnjhdVotFjeFOtURCao6E1BwOqbYzoEfXL9c7dVX9nFxNn7tsFqsqMnOU5/GqMx5Xa7Sr/96SdL12pyLJRLdzzHZ5NCW3UKa6/lzs+sl0ulXky9DxZRN1YeUs5Xv9PfrDgVPd0ab3G6plmKZslq5K6cF4TH//cIler9481NM7oCbl5Gvh1Dkam5Urm6WrQnymy6Msl1uZTrcyXW5luzzKdLm1ub1Z96x8RynT1Kcnz9KCkoo+1w97I5VKafny5Zo+c4berqvSq9s3aUt7s+pDQfmcTuV7fJqWW6TDCko0M79EZRnZ+z2uaZoHZO4AAAAHAwntAAAAAAAAAAAAAAAAAAAAAIatmy85SqFYUmtqWnXxMZN1zSdnKpZIyX7ny3r0nc2aN6lQD3zzjD4ro0vSSYeVyu2wKZpIpbd965zZ+tUXjtXPHnu3z4T2eRML9frNF8rl6Dsx+AefnrfvJ7cbm9Wqf33jdB35f/6tLQ0fVaD+/PFTDkj/OLS0RcN6o3qztgZaVR1s0yPrl6s+FOzWxmmzye9wyedwyutwyu9wye90amJ2vioyc9QY7pRFFh1bOl5HjRmnbLdbXrsznRy5vrUx3a8pU5vbmrWoZosSRupjk+l7nncuWyxJ8jtcslosiqWSiqUGJ/l8uNhVUbk/i2q2aFHNFlktFi0ortAxpePlstsViO2qkN1VCb0xHFTCSMk0pY54tFsfLpt9UK5nyjS0NdAyoOrZ4WS8x7b2WERL9pBQ/5/1y3X9q4/r8plH6ebjzlSO29ttv2l2PaTAbbcParJuRyyqNS31WtVUp1VNO9QRj2pqbpHmFZdrXnGF7FartgZatKW9RVsDrdoaaFEgFpEkTcrO15dmLFB55sF54Eh9qEPPb1mrhnDwYxW7U+qIRVXbGVAgFlE0mVSWy63tHW2qDrYflLkdDHarVRlOlzIcbvmcTmU4Xcp1+zQ9r0hHjRmnsydOH/BDPCZm5+tnJ5wzaHN12uw6ZWylThlbOWhj7EIyOwAAGElIaAcAAAAAAAAAAAAAAAAAAAAwbGV4nLr76lO6bfO6rHrw25+UubNacH8JXbl+t3572fG6/u+LZLdZdcslR+m6sw6XJH1iZrl+8u+lvR731U8ctsdk9gMtx+/Wf79/ji741TPaVB/QaYeX66rTZxy08TH4osmEOuMxuex2Oa12OW02WSwWJY2UWqNhee1O+RxObQ+2aX1ro0LxuJoinaruaFd1sC39ur2jvdeq37uLp1JqTYXVGg132/7xysx/WrYo/d5msSrT5ZJVFrV87Lj90ZmIHbC+JKnA41eO26OqjrY+E7qtFov8DpcynC75nS75HS41hoPpJN/jSifo6NJx8jmcclhtslmtclhtCiViem37Jr2yfeMBnXNfDNPUO3VV/VdU78VIfjhA0jB094q3dPeKt3RYfrFShqnOeFTBREyd8bhSpqE8t1dfPGy+vnr40ZKk9+urVdsZUL7H1yMJXpJ8DqcWlFQow+lObwsn4npo7QdaVLNFjeGgmiOhdEX7SDKxX+fwy6Uv6wvT5+miKbN1YvnEASdU741toYBufuIevbBtvQxzz9/5wWC1WFTo9ctqsagtGlGO26NJ2QXyOZ07K6FbJXU9BCFpGEoaKaVMU6md75M7t2e63JqUXaCZBSWaVTBGKdNQaySslkhIrdGer6Zp6ujS8Tpt3BTNyC9RvsdH8jYAAMAIR0I7AAAAAAAAAAAAAAAAAAAAMIzFYjH95S9/0bPPPqvq6mo5HA7NmDFDV1xxhY4//vihnt6Q2pvktitPm6HLTp4m01S3JPX5EwtVkuNVXVv35F2vy67PHjP5gM11oKaX5Wr17z+vQDiuXL+7/wMwImxobdJNi5/V05tX96hw7rDalDSMdIL6YFXdHoiUaagtGhmSsSUp3+PT8WUT5bE7ZLFoZ1V5V/o1x+3RgpKxqswpkMViUTSZ0LqWBiVNQ3aLVX6nu6uKs9O1s4+evyOawp1y2+3dkp4/7vtHnqr36rfrmc1rVBts16b2Zi1vrFUoEVexL0NlGdnpn2yXR5vbm/VW7VZVdeyhXL0kt92uaPLgxbbUn6VzJ81QodevjlhUDptNGQ6XanbUKis/X9FUUqFEXJFkXOFEQk3hoN6tr+7xZ/TjslxuxVLJA3Yuq5vre93eEg3r9++/rt+///qA+3JYbSrPzJYkdcZjagx3Hogp9iqeSumeVUt0z6olKs/I1ldmHaXpecVy2uxyWK1y2GxqiYS0qGaLmsOd+nTlLH168qwB/bcrnIjrbyve1g/ff16xfuKxr/LcXi2cPleZTrf8O783GU6X8j1+FfsyVOTLUJ7bJ5vVOijjAwAAYHQhoR0AAAAAAAAAAAAAAAAAAAAYpkzT1Ne+9jW9+eabkiSHw6FQKKQlS5Zo6dKl+s1vfqNzzjlniGc5cjjtPavnOuw23fv10/TVu15WTctHiY/fOnu2Mr3Ogzm9NJvVekgnsxumodXN9WqJhGWxdFUAtsgi0zBU19mumYYhm+3AVzrubR5v127TIxtWaFNbszx2h9z2rlvszd0qIXsdTp1SMVmfrpwlp61r/4dNdfr9+6/p7R3blEgZvfZvs1o0NjNX4URc79VXK2X23u7jycPDveq2y2bXpyfP1PS8YjXW12tsWbnsNpusFsvOJOeEQom4luyo0uLaLUoavZ+31JV8fPSYcTpl7GSdUlGpucVle1Xl2m13aHZR2V7Nv8DrH1C7ecUVmldckf5smqZSptHn/EzT1PZgm1oioZ2Vqg2lTEPZLo9y3F7luX3yOByKp5J6dMMK/Xvdcr26feN+VwnfJcftUb7Hr3yPTwVev06pmKwvzzxSbrujW7tUKqXly5dr9uzZvX7PQomY1jQ3qKqjVR2xqDJdbmW5PCr0+pXv8avA65PTZlfKMLShrUmBWER+h0sVmTnKdLm1rKFGHzTUyJQpm8Uqq8WSruLdGg1ryY5tenrL6kFL7E8YKW1pbxmUvvekOtiuH7/5/B7b/Hv9cs0rLtf/Oeo0nTVhmqw7r4thGqoNBrSxrUlrWxr0Vu1WvVi1XoFY9IDMbXxWnmxWi1KGKcM0ZLNadXLFZN149Oka4886IGMAAAAA/SGhHQAAAAAAAAAAAAAAAAAAABimnn766XQy++WXX65vf/vbamtr05e+9CVt3bpVt9xyi0499VS53Ydu8vPBcOqscm3+06X6YEuT3t3UoNJcv86dN36op9WrUCKmDxpqFIhFFYrH1JmIKxiPKZKMq8SXqfklFZqYnS+71aqaYECBWESGaXb7MdX9c47bI9OU/rziTb1Xt11uu0M+h1PxVErRVELRZFLRVEKxZDL9PppMKtPp0tziChX7MhRNJpTamfCbMoyuvmVqel6xrpp9jMZm5qop3KlfvPOSHt2wXPWhYJ/nOH7jO/raEcfp3IkzNCE7T4FYRHcuW6w3qjenK5kbpplOOi/PzFGB16/tHW27JeC6len0KGUaiiTiiiQTCicTiiQTynZ5ZLVY9H5D9YATX//+4VIVvfak5hWXqy0a1ls7tg3ouMFMrHXb7ZpbVK5sl0cVmTm6dMZ8zSoYo/pQUJ3xmMLJuDrjcYUScYUSMYUScTVHQlrZWKu6UIcKPH41R0N6u3Zbn0n0OW6PTh07RVkuj4p9GZqeV6wTyycq3+vvNzFakqLJhGqCAdWHOmS1WOS22+W2OeSy2+Wy2ZXv8fVIuB6uLBaL7Ja+k+0tlq4HGIzNzN1jP06bXQunzdXCaXMVTSa0qGaLXtq2XrWdAZmmKZ/DqUJfhgq8fhV6/Srw+GW32tQQ6lChL0PHlo7XK9s3asmOKk3JLdQxpeM1xp+5Vw8C2BOfw6X5JRWaX1Kxx3Y2q1XT8op6bD+iqExH7OkhA3NP0PaONl3/yuN6avPq/Z3ufrNaLKrMKdTMghLlur1a3lir5Y213b4Tpf4sjc/K0/jsXBV5M7S5vUXPbFmteGrvK6e/V1+tC/97j8b4M1WZU6i2aFgb25oVTsb7PdbncOqoMeOU5XLLYbXJabPJYbXJbXeo1J+lPI9PCSOlxTVbtLq5XgtKxurGo09XaQZJ6wAAABh6JLQDAAAAAAAAAAAAAAAAAAAAw9QTTzwhSbJarfra174mp9OpoqIiLVy4UD//+c/V3t6u119/XWecccYQz3RkiCQSqgt17JbM3ZUcne3yqsSfqfmTijR/Us8EzeGgPtShe1ct0W3vvqpgPNZve6vFImO3KuODoSUa1gvb1u2xzXNb1urOZYs1I79E79ZvH1C/WwOt+t5rT+p7rz0pp83Wf9LoAJPL91dDOKhntqw5KGNJUrbLowKvX1kut8ozclSema3yjBxV7Hw9LL+412TwsozsvRonaaQUiEUViEUVjHe9dsSj8todOmrMOHkdzn0+B7fdoUk5+ZqUk7/PfRzK3HaHThs3RaeNm7JXx31y/DR9cvy0QZrV4KvIzNEj51+uqo5WrW9tVHM4JIfVKr/TrQynSxlOl5ojIf115dt6atNqJYyu3wH5Hp+m5BYqGI8pGI/JYvmoz1A8roZw3w/K+MTYSp1cPkmFvox0Jfs8j09lGVk9vkfxVFIbWptks1o1Piu31+9ZTbBdD6x5X49tWKlljTV7fQ12dHZoR2fHgNt/bfax+unxZ8vvdPXb9srDj9nr+QAAAACDjYR2AAAAAAAAAAAAAAAAAAAAYJhatWqVJKmkpESZmZnp7VOnTk2/X7FiRa8J7alUSql9qB47HLVGw1rWUCOXza6GcFAb25pV4PXpvIkzVOD1p9ulDEORZEIum10Omy19/s2hTt2y5EXdt/pdRfuoRH1UyVhdefjRmpCVr8Pyi+XbjyTe3tQE2/XCtvUqy8jWqWMny2qx9mhjmIYSKUMJIyXDNOW02XTvh0v15xVvamNb816NN9jJ7HsjkkwMOJn94/alAvJw5bU7dNXhx+hLh82Xx+5Q3EgplkoqnkrJZrEq3+tTezSiHZ0BlWZkaUpOoSy7Z+z24kB8xy2Ssp1uZTvdezXGru2Hyu+Z0WI4xa3Ml6UyX9/Vw08qm6hIMqHOeEx2q1XZLs8evxMrGnfoT8sWqSkS0nGl4zU9v1imaWp6XrHGZeX2edzHr4VNFk3LLexzvySVeDP0nXkn6fq5J+rN2q3684q3tLalQXGj6zudMFJKGoZM01SWy6OqjjalTGNPl6MHiyw6KrdYPzzhbJ0yrrLPuWB4GE7fLfSNOI0sxGtkIV4jDzEbWfY3XsMhzhbTHEb/UgEAAAAAAAAAAAAAAAAAAABAktTZ2am5c+dKkmbOnKlHHnkkvW/Tpk06++yzJUlnnHGGbr/99vS+cDistWvXHtzJDqJl7Y365opXlOwjETDX4VbCNLoSg3e2sUjKc3pU4c2Q3WLV2mCLgsnEgMd0WKxaWD5NXxk3Qw6rrc92hmnKarFodUezHqndIJvFqpMLyjXBl62mWFgN0ZAaY2Gt72zTa03V6XMo92Rofk6x2hMxrQ22qCUeVcowlNLourXbZ3PIbrHKlClTUjSVVGIvEz4PhLHeTB2dO0Zem13J3W6vt0hKmoZWBpq0qqPnAwUy7A6dVzJJM7MKZOslyTaYiGt1R7MSpqEZmfk6uaBCvl4qPQM49CUNQy82btOD1eu0KdTeaxuP1a5yb4Ym+rI1O7tQC3KKVeT2HdyJAgAA4JA2bdo0eb3eIRmbCu0AAAAAAAAAAAAAAAAAAADAMBQKhdLvXS5Xt327f9693e4qKyuH7CblA+lXT9/XZzK7JLUmoj22mZKa4xE1xyP7NGbCNPTP7au1LNyqnx1/to4vnSCHzZquqv5W7VZ9/42n9UFDzc5U7I88W7+l3/6rI0FVR4L7NLddSnyZyvN45XO45Hc4ZbfatKalXtXB9m7tbBarbFaLrLLIarHIYul63fVZktpiXdfJ73Dq4qlHaHpesZJGSi6bQ267XW6bXS67Q26bfednhxw2m7YFWrWssUYJIyWnzS6H1SarxSKbxSqLRXqvvlrPbV3bo1r8qRWV+sUJ5+iw/OJu25PJpO5b/IreiDTrle0b1RTp/md7Zn6JPjNltjKcrq5zkUUJI6UNbU1qDAc1NjNHY3xZCiZiCsQiCsSislut8tqd8jgc8tgdctnsWt/aqI1tTSr1Z+lLMxbo5PJJ/VZCX9/aqP9tW6f36qvldTh1xrgpOmPcVHkdzn0J3yEhlUpp1apVmjlzpmy2vh/8gOGFuA2deZqjH5im1rY2aEXjDm0NtKjA69fknAJNzinQGF9mt99FxGpkIV4jA3EaWYjXyEK8Rh5iNrLsb7zC4bA2bNgwCDMbOBLaAQAAAAAAAAAAAAAAAAAAgBHGMPqvYm2z2Q6Jm9LLMrOHbOxVzXU67/G/pj9bLZYeydkHk8/h1CfGVurGo0/X4YWlvbZpj0ZUH+pQJJlQeUa28jy+fpO1O+MxNUU6VZ6RLfseKtJ/3PwxY/WZaUfssc2a5no9sn651rc2qi0W0acmzdQVhx+VfjjAxx2RXagvn3S6LFaLVjXV6aWqDdrY2qhjyybo89Pn9nncYJteUKLpBSVDMvZwd6j8rhltiNvQmVlYqpl9/A7vDbEaWYjXyECcRhbiNbIQr5GHmI0s+xqv4RBjEtoBAAAAAAAAAAAAAAAAAACAYcjv96ffx2Kxbvt2/+zz+Q7anIbCTcecoVgqqRe2rlcgFpHLZpff6dL2jjYljNRe9fWpSTN1y/FnaVxmbleVcotFScPQn5Yt0l9Wvq0t7S17PH6oktmPGTNO//fYM3Vc2fh+E86z3R5luz171b/f6ZLf6dqfKfZpen6xbsr/5F4fZ7VYdXhhaZ+J+wAAAAAAYOQgoR0AAAAAAAAAAAAAAAAAAAAYhnw+n/Ly8tTS0qLW1tZu+5qbm9Pvx40bd5BndnBluTz646kX9djeFg3r/fpqGTLltTvlsTvkdTjktjsUiEZU1dGmVU07tHb7Nh0/5TCdOXG6xmbm9ujHZrXq+vkn6/r5J8s0Ta1orNWXn3tQa1rq92vebrtdZRnZKsvIVnlGtqbmFumCysP1xKZVem37JtksFpVn5mh2Yamm5xXLY3fIYbPKbrXJubNyWjAWU47bq9KMrP2aCwAAAAAAwFAioR0AAAAAAAAAAAAAAAAAAAAYpubMmaMXX3xRdXV1CgQCysrqSmxes2ZNus3cuXOHanpDKsft1anjpvS+M0uaXVSmcyZM13LXcs2eNVs2254rm0uSxWLR7KIyLf3i9br3wyW69Z2XVNsZ6LVthtOlsyZM1/S8YkVTCX1u2jxNzslXSyQkScrz+GSxWHoc9+15J+nb804a8HkCAAAAAACMdCS0AwAAAAAAAAAAAAAAAAAAAMPURRddpBdffFGGYeiuu+7S9ddfr+bmZj344IOSpNLSUh177LFDPMtDj8Nm05WHH6MrZh2tmmC7oqmkkkZKiZShhJGSxSLNyC+R09bzdux8r38IZgwAAAAAADB8kdAOAAAAAAAAAAAAAAAAAAAADFMnnXSSzjzzTD333HO699579a9//UuJREKS5HA49NOf/lR2O7cEDxaLxaLyzJyhngYAAAAAAMCIxr9eAQAAAAAAAAAAAAAAAAAAAMPYr3/9a02fPl1PPPGEtm/frszMTB1xxBG65pprNHv27KGeHgAAAAAAALBHJLQDAAAAAAAAAAAAAAAAAAAAw5jD4dCVV16pK6+8cqinAgAAAAAAAOw161BPAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwaCKhHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKEhoBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMChLaAQAAAAAAAAAAAAAAAAAAAAAAAAAAAACDgoR2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCgIKEdAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAoSGgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKEtoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIOChHYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKAgoR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAMChIaAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAoS2gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg4KEdgAAAAAAAAAAAAAAAAAAAAAAAAAAAADAoCChHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKEhoBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMChLaAQAAAAAAAAAAAAAAAAAAAAAAAAAAAACDgoR2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCgIKEdAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAoSGgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKEtoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIOChHYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKCwD/UEAAAAAAAAAAAAAAAAAAAAABw4hmFIkiKRyBDPZOilUilJUjgcls1mG+LZoD/Ea2QhXiMTcRs5iNXIQrxGBuI0shCvkYV4jTzEbGTZ33jt+jeiXf9mNBQspmmaQzY6AAAAAAAAAAAAAAAAAAAAgAOqpaVF27ZtG+ppAAAAAAAAYBgZN26c8vLyhmRsEtoBAAAAAAAAAAAAAAAAAACAQ0gymVQgEJDL5ZLVah3q6QAAAAAAAGAIGYahWCymrKws2e32IZkDCe0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgEHBIxcBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIOChHYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKAgoR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAMChIaAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAr7UE8AAAAAAAAAAAAAAAAAAAAAwKGlqqpKd911l95++221tLTI6XRq0qRJ+tSnPqVLLrlENpst3Xbz5s3605/+pCVLligQCCg3N1cnnHCCrrvuOhUVFXXrt7OzU3fffbdefPFF1dbWSpLKysp08skn66qrrlJmZma39hs2bNA999yjDz74QHV1dXK5XJo6daouuOACffrTn5bFYhnwOS1fvlx//vOftWzZMoVCIRUVFem0007TNddc02PclpYW/fOf/9Qrr7yimpoamaapiooKnX766br88svl9Xr39pIOqtEcr1dffVVXX331Hvv66U9/qs985jMDHnswjeZYTZkypd++FixYoPvuu2/AYx8sozluktTQ0KC7775bixYtUl1dnRwOh6ZMmaKFCxfqvPPO29vLOegOxXgZhqEHH3xQt912m0KhkCTp5ZdfVllZWa/tm5ub9bOf/UzPPvuspOH73ZKGT7x2V19fr7PPPludnZ2SpGuvvVbXXXfdgM9pb75f0siI12iP00haG47mWI20daE0uuPF2nBkxk1ibbjLUMZrqNaGFtM0zb0+CgAAAAAAAAAAAAAAAAAAAAB6sW7dOn3uc59L3xTtcrkUj8e167bls846S7/73e8kSRs3btTChQsVDAYlSQ6HQ4lEQpJUUlKixx57TLm5uZK6bvZeuHChNmzYIEmy2+2yWCzp9uPGjdMjjzyijIwMSdLzzz+v73znO0omk5Ikt9utaDSanucll1yin/zkJwM6p7fffltXXHFFeqzd5zlt2jQ9/PDDcrlckqStW7fq85//vFpaWiRJTqdTiUQiff7Tp0/XQw89lG4/1EZ7vJ544gl973vfkyT5fD45HI4e/d1www361Kc+NaCxB9Noj9WRRx7ZZz8dHR0yDENHHnmk/vnPfw5o7INltMdt69atWrhwodra2nq0laSrr75a3/72twd4NQffoRivTZs26cYbb9SyZcu6be8raenRRx/VL3/5SwUCgfS24ZoQOFzi9XFf+cpXtHjx4vTnvUky25vvlzQy4jXa4zSS1oajPVYjaV0oES/WhiMzbqwNhz5eQ7k2tO71EQAAAAAAAAAAAAAAAAAAAADQh1/+8pfpm71/8YtfaMWKFXrrrbc0Y8YMSdKzzz6rDz74IL0/GAzK6XTqwQcf1MqVK3XHHXdIkurq6nT77ben+73vvvvSN3t/9rOf1bJly/TBBx/os5/9rCRp27Ztuv/++yVJoVBIP/rRj5RMJpWRkaGHH35YK1as0JNPPqns7GxJ0kMPPaQtW7b0ez6maerHP/6xEomEcnNz9eyzz2r58uW64YYbJElr167tliRx8803pxOWfvKTn6TP/4gjjpAkrVmzRv/973/3/sIOktEer10V7STpd7/7nZYsWdLjZ7gkLY32WPUWmyVLluiOO+5IJ5RccMEF+3ZxB9Foj9vPf/7zdMLSt7/9bS1fvlyvvPKKJk2aJEm6++67tWbNmn24soPjUItXQ0ODzj//fC1btkyVlZUqLy/fY/u//vWvuuGGG9TR0aFPfOITA71sQ2Y4xOvjHn74YS1evFg5OTl7fT57+/0aKfEa7XEaSWvD0R6rkbQulIgXa8ORGTfWhl2GKl5DvTYkoR0AAAAAAAAAAAAAAAAAAADAARGPx9XQ0KCKigode+yxuuCCC2SxWJSbm6vzzz8/3W7ZsmVqbGzUW2+9JUk68cQTNWfOHFmtVp1++umaNm2aJOmZZ55RKpWS1FVFrKKiQmPHjtW3vvUtOZ1OOZ1OfeELX+jWr9R103xeXp7Gjx+vyy67TLNnz5YkTZkyReeee266/bp16/o9p5UrV2rbtm2SpPPOO08TJ06U3W7XF7/4xXRi4ZNPPilJikajamxs1Pjx43XSSSfpkksukdVqVW5uri6//PJ0n8PlBv3RHi+pq3rjLn6/f4BX7uAjVr2LRCK64YYbZJqm5s2b1+1aDAejPW6xWCx9ToWFhbrqqqtkt9tVWlqarrxpGIYee+yxvbmsg+ZQjFc0GpXD4dB3v/tdPf744yopKdlj+2AwqMrKSj3wwAPpRLTharjEa3e1tbX65S9/Kbvdrq9//et7fU57+3txJMRrtMdpJK0NR3uspJGzLpSIV19YGw7vuLE2HPp4DfXa0L7fPQAAAAAAAAAAAAAAAAAAAACAJKfTqWeffbbXfbsqU0qS1WrVhx9+mK6cN3Xq1G5tp06dqrVr16qjo0Nbt27VpEmTdNttt/Xab2tra/q9xWKRJM2bN0/PP/98r+13VVeTum6i78/KlSu7zWv3c6isrNTSpUu1ceNGhUIh+Xw+PfPMM732Ew6H0++Lior6HfdgIF6+bolLGRkZ/fY/VIiVr9c+brvtNlVXV8tms+mmm27qd8yDbbTHrbOzU8lkUpJUUlKSno+kdGKPpHRVy6F2KMYrNzdXzzzzjMaMGdNvW6krEe26666T3W5XTU3NgI4ZKsMlXruYpqkf/vCHCoVCuvrqq1VZWbnX57S3vxdHQryI08hZGxKrkbMulIgXa8ORGTfWhkMfr6FeG1KhHQAAAAAAAAAAAAAAAAAAAMCg2rJli+6///7053nz5qm2tjb9OScnp1v73Nzc9Pvq6uo++41EIvr1r3+d/rxgwYI9zuP1119PJwnOnj1bc+fO7Xfuu89z93nt/tk0zW7tPm7Lli36y1/+IknKzMzURRdd1O+4Q2k0xauzszO9f9GiRbr88st1yimn6IwzztCNN96YrjY4XI2mWH3cxo0b9cADD0iSzj//fE2ZMqXfMYeL0RK3rKws2Ww2SVJNTU06gUmS6urq0u+HayLuLiM5XhkZGQNOWJKUrqo6kg1VvB544AG9/fbbmjhx4j5VTJX2/vfiSI7XaIpTb0bS2nA0xWqkrwul0RWvj2Nt2NNwixtrw6GP11CvDUloBwAAAAAAAAAAAAAAAAAAADBotm/friuuuCJd8fD888/XzJkzu1WZdblc3Y7Z/fPu7XYXDod13XXXafXq1ZKk8ePH63Of+1yvbU899VTNmjVLV155pXw+ny6//HLdc889PSqe9Wb38Z1O517N83vf+57mzJmjM888Uzt27NA555yjRx99dEBVdYfKaIvX7pU4f/WrX+nNN99UbW2ttm3bpv/85z/69Kc/PWwqBH7caIvVx/3qV79SKpWSw+HY54SOoTCa4uZ2u3X00UdL6qpi+atf/UqBQEAbN27Uz3/+837PaTgY6fEabYYqXtXV1frNb34jq9Wqn/3sZz2+GwO1v78XR4rRHKeRtjYcbbEayetCafTF6+NYG3Y3HOPG2nDo4zXUSGgHAAAAAAAAAAAAAAAAAAAAMChWrlypiy++OF1hbcaMGbrxxhv7Pc4wjPT73hL2Wltbdemll2rRokWSuiqg/f73v5fb7e61v/b2dsViMUldN5Bv2LBB69at2+vz2dt5dnZ2pm9Yj8Viqqqq0tKlS/d73MEyWuOVnZ2t7OxsffWrX9XSpUu1ePFiXXjhhZK6Egtuuumm/R77QButsdrlnXfe0RtvvCFJuuCCC1RaWrrfYx4MozFuP/jBD9Lz+Mc//qEFCxbonHPOUU1NjXw+nyQN2wrTh3q8DjVDFS/TNHXDDTcoHA7r0ksv1RFHHHEgTmev5zlSjPY4jaS14WiN1UhcF0qjN167sDbsbjjHjbXh8I3XwTA8IwsAAAAAAAAAAAAAAAAAAABgRHvjjTf0zW9+U+FwWJJ03HHH6fbbb0/fpO73+9NtdyXq7RKPx9Pvd7Xfpbq6Wl/5yldUVVUlSSovL9fdd9+tCRMm9DmX9957T5FIRMuWLdNNN92kxYsX66233tK//vUvzZ07V7fccouefvrpbsecc845+tGPftRtnrvPq795StKdd96pRCKhzZs36ze/+Y0WLVqkVatWqaWlRVdddVWf8x0KozVef/jDH3qdw49//GO98soramtr08aNG1VdXa3y8vI+53wwjdZY7e5vf/tb+v1FF13U5/yGk9Eat8mTJ+vhhx/WnXfeqVWrVslisejwww/Xtddeq4ULF0qSsrKy+pzrUDlU4jVaDGW87r//fi1dulTl5eX61re+1e9cB+v34khAnEbO2nC0xmokrgul0Ruv3bE2/Mhwjxtrw6GN11AjoR0AAAAAAAAAAAAAAAAAAADAAbVkyRJ9/etfT9+4/dWvflXf+c53ZLVa0212TwJpbW3tdnxTU1P6/dixY9PvGxsb9aUvfUm1tbWSum4i/+1vfzugG949Ho+OOeYYff/739e1114rwzD00EMPae7cuQqFQmpvb+/Wflf1zN3n2dLS0us8bTZbn0ktDodDU6dO1W233aYFCxZIkh544IFhlbREvHpyOp0qLy9XW1ubJKmtrW1YJC4RK6mhoUGLFy+WJJWWlmrWrFn9znGojfa4TZ06Vbfffnu3tm1tbQoEApKkSZMm9Tvfg+lQitdoMNTx+t///iepKyFt9uzZvc7xj3/8o/74xz/qF7/4xUH5b9hwRJw+MtzXhsSqp+G6LpSIl8TacCTGjbVhl6GI11AjoR0AAAAAAAAAAAAAAAAAAADAAbN9+3Zdc801isfjstls+slPfqLPfOYzPdrNmjVLdrtdyWRS69at67Zv7dq1kqT8/Pz0Dd+JREJXXnll+mbvCy+8UDfffLPs9p63RD/88MO699571draqm984xv6whe+kN5nsVjS73fdMH/rrbfq1ltv7fV85syZk36/+zyTyaQ2btwoSZo+fbrcbrdWrVqlG264QS0tLVqwYIF+//vf73Hc4WA0xyscDuu+++5Ta2urfD6fvvGNb6TbJxIJ1dTUpD8XFxf3Ot7BNJpjtbtXX31VhmFIkk4//fRe+x5ORnvcNm3apI0bN6qlpaXbuK+//nr6/XHHHdfrWEPhUIvXoW44xGtvDcbvxeFuNMdppK0NR3OsRtq6UBrd8doda8ORFTfWhkMbr6Fm7b8JAAAAAAAAAAAAAAAAAAAAAAzMzTffrM7OTknSt771rV5v9paknJwcfeITn5DUdfP6+++/L8Mw9NRTT2nTpk2SpIsuuihd9ezee+9N3wh+4okn6mc/+1mfN3tPnjxZW7duVSAQ0N13352+obypqUl//etf0+2OOOKIfs9n6tSpmjFjhiTpySef1ObNm5VMJnXPPfcoGAxKki6++OL0uHV1dWppadELL7yg5557ToZhKBaL6Xe/+91ejXuwjOZ4eb1ePfbYY/r73/+uO++8U//5z39kGIYikYhuvfXWdGW9BQsWqLCwsN+xB9tojtXuli9fnn4/Eipwjva43XvvvfrWt76lW265Rf/9738ldSUy7fqdmJmZqfPPP7/fcQ+WQy1e8XhcTU1N6Z9EIpHe19ramt6+q2pnMBhMb9u9umgikejWTyqV6nfsg2E4xOuOO+7Q4sWLe/zccccd6TaXX365Fi9erLPOOmuP57O336+REq/RHKeRtjYczbEaaetCaXTHa3esDUdW3FgbDm28hnptaDFN0xxQSwAAAAAAAAAAAAAAAAAAAADYg5UrV3a7wTsrK6tb9cld5syZo7vuuks1NTX67Gc/q5aWFkmSw+FI31BdWVmphx9+WF6vV5I0e/ZsRSIRSV0JJ06ns9c5LFmyRJL005/+VPfdd196u8fjSR8vdSUYPfTQQ/L7/f2e16pVq3TppZcqHA73mOcxxxyjv/3tb+kb05999ll997vfVTKZlCQ5nU6lUqn0Dd5+v1//+te/NG3atH7HHWzES3rzzTd19dVXKx6Pp9umUql0lceioiL961//UkVFRb/jDiZi9ZHPfvazWrFihSTp8ccf1/Tp0/sdZ6gQN6m6ulqXXHKJmpube4xrt9v1hz/8Qaeeemq/Yx4Mh2K8lixZoksvvbTfc7/22mt13XXX6Qc/+IEef/zxftu//PLLKisr67fdYBpO8epr365rv+v6DsTefL9GQryI08hZGxKrkbMulIjX7lgbjqy4sTYc2ngN9dpw/+vPAwAAAAAAAAAAAAAAAAAAAIDULdlOkgKBQK/tdlU4Kysr08MPP6zbb79db731lgKBgEpLS3XaaafpmmuuSd/s/fG+w+Fw+mb5vtx444066qij9NBDD2n16tUKBALyer0aN26cTjvtNH3pS1+Sz+cb0HnNnDlTDz74oO644w699957CoVCGjdunM4991xdccUV3ZIqzjrrLI0fP1733nuv3n33XTU1Nclms6msrExHH320rrjiiiFPAtyFeEnHHnus/vvf/+qvf/2rlixZosbGRjmdTlVUVOiUU07RZZddppycnAGNO5iIVe/nnpGRMaBxhgpxk8rLy/XQQw/prrvu0jvvvKPGxkbl5ORo/vz5uuqqq9IVPYeDQzVeh6rhFK8DaV9+Lw5nxGnkrA2J1chZF0rEa3esDXv2PZzjxtqwZ98HO15DiQrtAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIBBMbIeywMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGDFIaAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAoS2gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAg4KEdgAAAAAAAAAAAAAAAAAAAAAAAAAAAADAoCChHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKEhoBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMChLaAQAAAAAAAAAAAAAAAAAAAAAAAAAAAACDgoR2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCgIKEdAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAoSGgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKEtoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIOChHYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwKD4/wGLcBgcQevtVQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPUAAAKrCAYAAACZc7hJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd7xcZZ3/P2fK7bn35iY3N50UUggtBAgQagBB6d3FglLUVdHdVVx1UVGxs80V92f5WXata8F1QfCnLkiRGqSEDoaSkARCbpKbdsvMnN8f984w85RzntPPzHzerxcvMnOnnJk55Xk+z+fz/Vq2bdsghBBCCCGEEEIIIYTUDZmkN4AQQgghhBBCCCGEEOINinqEEEIIIYQQQgghhNQZFPUIIYQQQgghhBBCCKkzKOoRQgghhBBCCCGEEFJnUNQjhBBCCCGEEEIIIaTOoKhHCCGEEEIIIYQQQkidQVGPEEIIIYQQQgghhJA6g6IeIYQQQgghhBBCCCF1BkU9QgghhBBCCCGEEELqDIp6hBBCCCGEEEIIIYTUGRT1CCGEEEJ8cN9992HJkiU1/+23335YuXIlzj77bHzmM5/B2rVrjZ5X/fwjjjgCl1xyCW688UbXbXjiiScqz/3hD38o/f2rX/0qlixZgq997WvK54+OjuKQQw7BkiVL8Mwzzygfc8stt2DJkiV43/veBwC44YYbpO1etmwZjjzySFx44YX48pe/jL/85S+O223bNm699Vb87d/+LU488UQcfPDBWLFiBd74xjfiH/7hH3D//fdLz3nrW9+KJUuW4L777lO+5p///GcsWbIERx11FEqlkvIxn/nMZ7BkyRJ8//vfBwB87GMfw5IlS/CGN7wBw8PD2u19+9vfjiVLljh+JkIIIYSQuMklvQGEEEIIIfXM8uXLcemllwIASqUSduzYgSeffBI333wzfvzjH+Occ87Bpz/9abS3t2ufV2Z0dBTr16/HL3/5S1x11VW499578fnPf1773j/60Y+QyWTQ09ODn/zkJ3jb295W8/cTTzwR//7v/44//vGP+MAHPiA9f82aNdizZw8A4Pbbb8fixYulx9xxxx0AgNWrV9fcv3r1apxzzjkAgGKxiG3btuHRRx/FT3/6U3zve9/DZZddhquuugqZTO0a8vbt2/F3f/d3uPvuu7Fw4UKcffbZ2GeffWDbNp5//nncfPPN+OUvf4mzzjoLn/70p9HZ2Vn5LGvWrMEf//hHHHHEEdJ23n777QCAwcFBPPbYYzjooIOkx9x5552V16rmpZdewte+9jV85CMfkZ5DCCGEEJJWKOoRQgghhARgYGAAb3zjG6X7P/rRj+JTn/oU/vu//xs7d+7Ev//7vxs9DwAuvfRSXHDBBfjFL36Bc889F4cddpj0mB07duCmm27CYYcdhmXLluH73/8+7r//fqxcubLymAMOOAD9/f14/PHHsXXrVkyZMqXmNe644w7k83nMmTMHd9xxB971rndJ73PXXXfBsiyccMIJNffPnz9fuf2Dg4P48Ic/jO985zsYHR3FJz7xicrfCoUC3v/+92PNmjX4wAc+gPe9732S6PeBD3wAX/jCF/DjH/8Yo6Oj+OpXvwpgXET8yle+gjvuuAMf/ehHpfe98847sXjxYjz77LO44447JFFv3bp1WL9+PRYuXIi5c+fW/O3oo4/G97//fZxxxhnYb7/9pNcmhBBCCEkjjN8SQgghhERAZ2cnvvKVr+Dwww/H//7v/+J3v/ud8XM7Ojpw1llnAYA2bnrDDTdgeHgYZ511Fs4++2wAwE9+8pOax1iWhdWrV8O27Yrjrprbb78dy5Ytw6pVq/DQQw9h165dNX9/8skn8eqrr+LAAw9Ef3+/0bb39fXh61//OubNm4cf/vCHeOyxxyp/+9WvfoU1a9bgjDPOwJVXXikJegCQz+fxqU99CitXrsRvf/tb/PGPfwQALFiwAPPmzcNzzz2Hl19+ueY5W7ZswRNPPIHjjz8eixYtqrj2qtE5DoHxWG4+n8fVV1+NYrFo9DkJIYQQQpKGoh4hhBBCSERks1m8//3vBwD88pe/9PTcfD4PAMjl5GCFbdv4yU9+go6ODrzpTW/CsmXLsGzZMvz+97/Ha6+9VvPYsoglCl0bNmzAunXrsHLlShx22GEYGxvD3XffXfOYclxVJYQ50dHRgSuuuAK2beOGG26o3F/+DlSOwGosy8Jf//VfA0DN83Wf5Y477oBt25XP8thjj2FwcND4s8yZMwdXXnklHn/88Uq9PUIIIYSQtENRjxBCCCEkQg499FDk83k8/PDDxs8pN5IAoK0N9+KLL+K0005DV1cXAODCCy/E2NgYfv7zn9c8dtWqVWhra8Of/vQnFAqFyv1lYezoo4/GUUcdhUwmI4lluhp0Jhx55JEAUPnchUIBa9euRW9vL5YuXer6/MMOOwy5XK7me3MS9VpaWnD44Yfj6KOPRqlUqmw7AAwPD+OBBx5Ab28vDjnkEOX7XXrppVi2bBm+9rWvYf369V4+KiGEEEJIIlDUI4QQQgiJkJaWFvT29mL79u01otrY2BiGhoZq/tu6dSseeugh/M3f/A3WrFmD448/HkcddZT0mj/+8Y8BAG9+85sr95111llob2/Hz372s5oIaVtbG4466igMDQ3hoYceqtx/5513or29HYceeih6e3tx4IEH1kR0d+3ahYceeggzZ840EuFEBgYGAKDiHCx//mnTphk9v7W1Fb29vXjttdcqn+fQQw9FT08P7rvvPoyMjAAYb9Jx9913Y8WKFWhvb8eRRx6JfD5f81nKjz/++OORzWaV75fNZvG5z30Oo6OjuOaaazx/XkIIIYSQuKGoRwghhBASMcPDw2hpaakRlG699VYcfvjhNf+tWrUKf/VXf4UHH3wQV1xxBa6//nrptTZs2IDbb78dS5YsqXHxdXV14U1vehM2btxYqUNXRnS4jY6O4r777sPhhx+OlpYWAMAxxxyDV199FU899RQA4J577sHY2Jjn6G31ZwZQ6fpbjhOXSiXj1yiVSshkMpXae7lcDsceeyz27t1bqTX48MMPY2hoCMcccwyA8e9h+fLluOuuuyrvZeo43H///fGOd7wDf/rTn/CrX/3KeDsJIYQQQpKAoh4hhBBCSITs3LkTO3fuxLRp02BZVuX+ww8/HP/5n/9Z899JJ50EAPjIRz6Cj3zkIxXBrZqf/vSnKJVKmDRpEr72ta/V/FcW0sSGGatXr4ZlWRVRb82aNdizZw+OPfbYymPKoljZ4ea3nl6ZjRs3AnjdsdfT04P29nZs3rzZSNjbu3cvduzYgf7+/prvrSzMlbez/H/xs2zfvh2PPvpo5bPk8/nKZ3Tigx/8IGbPno0vfelLUl0+QgghhJA0IVdeJoQQQgghoVGujbdq1aqa+/v6+nDEEUfU3Ldw4UI8+OCD+PznP48jjzwS06dPr/n76OgofvGLXwAYF+bWrFmjfM+77roLL730EubOnQsAmDZtGvbff3889thj2Lp1K+666y4AqBG5Dj74YHR3d+Oee+7Bu9/9btx5553o6OiQtjHI5z7ssMNw55134uGHH8aKFSscn//AAw+gWCxK73/ssccil8vhnnvuAQD86U9/Qn9/f01E+JhjjsG//Mu/4J577sGUKVPwwgsv4Oijj67UH3Sivb0dn/nMZ3D55Zfj85//PP7pn/7J+DMTQgghhMQJnXqEEEIIIRExMjKCb3zjGwCACy64wPXxU6dOxcc//nEMDQ3h6quvlv5+8803Y9u2bTjvvPPw9NNPK//7+Mc/Dtu28dOf/rTmuWXH3QMPPID7778fs2bNwoIFCyp/z2azOOqoo/DnP/8Zzz33HDZu3IhjjjlG6RZ0Y+vWrfjBD36AfD6Ps88+u3L/+eefDwD4+te/7vh827bx7W9/G4D8vXV3d+PQQw/Fc889h5deeglPPPFEjUsPGI/R9vX14d5778W9995b8/lNOOaYY3DWWWfhpptukppyEEIIIYSkBYp6hBBCCCERMDQ0hCuvvBLr1q3DJZdcgoMPPtjoeeeccw6OPfZY3HXXXZWGGGV+9KMfAQAuvvhi7fPPO+88tLW14Ze//CVGR0cr95djq7fffjuefPJJSQgDxsWs4eFh/Od//icAf9HbzZs3493vfjcGBwdx1VVXYcaMGZW/velNb8KJJ56Iu+66C5/73OdqGoeUGRsbw2c/+1ncf//9eMtb3oLDDjtMekz5s3z7299GsViUPotlWVi1ahUeeeSRSu29E044wdPn+PjHP47Jkyfj05/+NHbv3u3puYQQQgghccD4LSGEEEJIAF555RX89re/rdzesWMHnn76adx4440YGhrCJZdcgr//+7/39Jqf/exncfrpp+O6667DMcccg7lz5+Kxxx7Do48+iv3337+mQYZId3c3TjvtNNxwww24+eabcc455wAAli1bhunTp+PGG29EoVDQinoAcMMNNyCTyTgKYc8//3zN5966dSsee+wx3HLLLRgbG8OHP/xhvPOd75Sed9111+Hqq6/GD37wA9xxxx047bTTMG/evMpr/uY3v8H69evx9re/Xfu9rV69Gl/84hfxq1/9CplMRoo2A+Mx3Ztuugm//e1vsXjxYsyZM0f7WVT09fXhYx/7GD760Y9W6gMSQgghhKQJinqEEEIIIQF4+OGH8Td/8zeV2x0dHRgYGMApp5yCCy+8EMuXL/f8mjNnzsRVV12Fz372s/joRz+KH/3oR0YuvTIXX3wxbrjhBvzkJz+piHrAuFvtpz/9KfL5PI488kjl+y5YsADr1q3DIYccgr6+Pu173Hbbbbjtttsqt7u6ujBjxgxceOGFuOiii7Bo0SLl87q6uvDVr34Vd955J37961/jlltuwauvvopMJoOBgQGsWrUKF1xwgaNwuc8++1S2c/ny5ejt7ZUec/TRR8OyrEAdfM855xzceOONlRqEhBBCCCFpwrJt2056IwghhBBCCCGEEEIIIeawph4hhBBCCCGEEEIIIXUGRT1CCCGEEEIIIYQQQuoMinqEEEIIIYQQQgghhNQZFPUIIYQQQgghhBBCCKkzKOoRQgghhBBCCCGEEFJnUNQjhBBCCCGEEEIIIaTOyCW9AfVCoVDAjh070NraikyGWighhBBCCCGEEEJIs1IqlTAyMoKenh7kcsnIaxT1DNmxYwdeeOGFpDeDEEIIIYQQQgghhKSEefPmYcqUKYm8N0U9Q1pbWwGM/1jt7e0Jb02yFItFPPPMM1i8eDGy2WzSm0Nc4O9VP/C3qk/4u9UX/L3qC/5e9QF/p/qBv1V9wd+rPuHvVl8E+b327t2LF154oaIXJQFFPUPKkdv29nZ0dHQkvDXJUiwWAQAdHR08SdUB/L3qB/5W9Ql/t/qCv1d9wd+rPuDvVD/wt6ov+HvVJ/zd6oswfq8kS7SxOBwhhBBCCCGEEEIIIXUGRT1CCCGEEEIIIYQQQuoMinqEEEIIIYQQQgghhNQZFPUIIYQQQgghhBBCCKkzKOoRQgghhBBCCCGEEFJnUNQjhBBCCCGEEEIIIaTOoKhHCCGEEEIIIYQQQkidQVGPEEIIIYQQQgghhJA6g6IeIYQQQgghhBBCCCF1BkU9QgghhBBCCCGEEELqDIp6hBBCCCGEEEIIIYTUGRT1CCGEEEIIIYQQQgipMyjqEUIIIYQQQgghhBBSZ1DUI4QQQgghhBBCCCGkzqCoRwghhBBCCCGEEEJInUFRjxBCCCGEEEIIIYSQOoOiHiGEEEIIIYQQQgghdQZFPUIIIYQQQgghhBBC6gyKeoQQQgghhBBCCCGE1Bm5pDcgCUZGRvDtb38bN998M9avX498Po8DDjgA73rXu3DssccmvXmEEEIIIYQQQgghhDjSdKKebdt473vfiz/96U8AgHw+j927d+O+++7D/fffj3/8x3/EGWeckfBWEkIIIYQQQgghhBCip+nitzfddFNF0Lvsssvw5z//GXfccQfmz58P27Zx7bXXYnh4OOGtJIQQQgghhBBCCCFET9OJer/+9a8BAJlMBu9973vR0tKCgYEBXHzxxQCA7du34/bbb09yEwkhhBBCCCGEEEIIcaTp4rdr164FAMyYMQPd3d2V+5cuXVr59yOPPIJTTz019m2Lk/uvvRZPfPe7GNm+vXJfx7RpOOzqq7HfJZdU7ht64QX87+WXY8tDD8G2bXTPn4+jr7sO6O2Nf6MT4Okf/xj3X3st9mzejEwuh1nHHYfV3/oW2qdMcXzexjvvxJ0f/jAA4OgvfQnP3XAD/nLDDSjs3Rt4m9r7+7HiIx/B2K5dePT66zE8OFj5W2tvLw563/uw4iMfqdw3vHUrnrrqKjy4di3sYtHz++Xa2rDgnHOw7wUX4O6PfQy2beOY667D7NWrK495Zc0a/PH978f2Z56p3JfJ5TB79Wqc9H//L1qqjrUkKezdi7uuugrr//AHdM6ahblveAPmnnIK+g85BGN79uCef/gHvPCb32DmMcfg+OuvR8ukSYlt67pf/xr3fvKTyHV04PCrr8b8M8+M9P22P/ccbr3iCrz26KOwbRu9ixbhuK9+FTOOOirS962mODKCB7/yFTz9wx9iz6uvKh9jWRamH3UUjvvXf0XvokXKx4zu3Ik7/vZvsenuu7HgzDNx5Oc/j2w+H2jbbNvGfddcgye//32M7twp/b1ULGJNNmv8eq09Pdj/Xe/CYf/wD7Asa3y7h4bwv+96FzbcdhtKY2PomD4dKz/xCSx561u1r/PI9dfj4X/9Vwxv3erp83TOmIGV11yDbU89hSe++12MDg15ev6kffbBMV/5Cuaeckrlvi0PPYTb3vtebHv6aenx+c5OLL74Yqz60peQmfieNt93Hx7653/G1rVrMf/MM3Hktdci29KCtd/4Bh7+6lcxac4cnPjNb6J7/vzK6zz5H/+BB7/yFXT092P1N7+JyUuWeNruZuGVNWtwxwc+gMGnnvL0vHxHB/a96CLsc8op+NPHP46dL77o+HjLstC3//6YcuCBGFq3Dq+uWYNS1XWmb+lSrP7GNzD14IOVzx/bswe3X3klXvjNb1AcHUXH9Ok45EMfwgHvepf2PZ/9+c9x/2c/i/YpU3DCv/87+pYtq/zt+RtvxD2f+ATynZ044etfR/8hh3j6/E98//t48ItfxJ5XX0Umn8fck0/G6m9+M9FrQVyM7tyJP77vfXjpd79DcXRU+Zhsayvmn3kmTrj+emRbW11f0y6VcN+nPy2dNztnzMChH/tYzXhz6+OP4/Yrr8RrjzwC27aVr9fS3Y39L78ch3/ykzXnzVvf/W6sv/VWlMbGKo/tXbwYJ1x/PQYOP7xy34bbbsOdH/4whp5/3nXba9530iQsveQSHHntta+/b9V1Zv4ZZ+CoL3wh8HWGNCevPfoo/vj+92Nk+3as/NSnsOjCC32/ll0q4a6rrsK6//kfzDzmGJzw9a8j39np+/U23nkn7vzQhzCyfTv6li1D//LlmLp8OaYedBA23nUXHv33f0dx714c9fnPu45TR3fuxJ1/93fY+Kc/GR8zT3z3u3jwy1+uGRO2dHdj2aWXYuU119ScB/545ZXYdPfdWHjOOTjq8583OkcR0ihYtu7K2YDs2rULhx56KADgwAMPxC9+8YvK35577jmcfvrpAIBTTz0V//Zv/1bz3D179uDJJ5/E4sWL0dHREd9GR8CGW2/FjW96k/qPloV3vPgiOgYGAAC3XHABXrjxxpqHtE+bhoN//WscdPDByHqYxNYbw4OD+P6sWbBLpZr7D/rgB8eFTQ12qYQfLl6MXevXR72JWi647z70L18OALj9gx/EE9/8Zqiv3zlrFt769NOVi/FPly/HtiefVD72kI98BEd+7nOhvr9fnvjOd3D7+95n9NgjPve5GnE0DorFItauXYul8+fjB/PmobBnT+VvS9/xDhz9j/8YmUB642mnYcP//m/Nfd3z5+MtTz5ZGTRFyWuPPopbL7sMWycWXtyYdcIJOOv//T/l3x7+l3/BPR/7WOX2qT/7GRacfXag7Vv/hz/gpolrRJicc9ttmLFqFQDg3k98Ag8J5xYrk8E7N2xAm2IhYduTT+KnE8d5ErROnox3btiATG58ffBnhx3m+vut/PSnMeuEE7Dm85/H+t//vuZvp/z4x+g/5BD8aL/9KvfNOeUUnDFxDXroH/8R9159deVvs088EWfecovn7S4fZwceeGBDXsMKe/fix8uWYffGjUlvCgCgf8UKXHDPPcq/PfKv/4q7P/rRmvusbBYXPvAApuy/P4Da32tsxw7857x5KI6MAABmnnACzp44D4xs24YfLl5cEainHHQQLnrgAePt3L1xI/5zwQJAGBYfevXVWPmpTxm/Tr3y4Je+hPuvucbosUf/0z/hoCuvrLlPdVxt+N//xY2nnaZ8DSubxUVr1qBv2TK8+Nvf4vdvexvGFAsmKs7+/e8x87jjAAD3fepT+POXv6x8XO/ixbh44pxUKhbxn/PnY+8rrxi9h4rT/+d/MHdi0V+8zpzy059i4bnn+n7tOGn0c2C98ctjj8Wr999fuX3KT36CheedV7nt5fd66gc/wG1XXFG5fdQXv4jlH/qQr+2ybRs/WLgQu19+2fWxuY4OXLZ5s6OQJp7vT/2v/8KCc87RPn7Xyy/jBwsWaP9+5m9/WzEYiOevOaecgjf+7GfItbe7bntU8DirL4L8Xnv27MEzzzyD/fbbLzGdqKmcert37678u1U46VTfrn6cyDNVTqR6ZetDD+n/aNt44K//Gr2zZwMANvzud9JD9r76Kgpf/zoeq3Nx042hzZslQQ8AnvvhD9HlUHdx7/btiQp6APDghz6EGRMTovUTkfMw2f3yy7jvHe9A55QpKJVKWkEPAJ7/6U/RvmNH6Nvgh+c8ROuf/b//F9mXXopwa9RYANa8+mqNoAcAT/3Hf2DdL3+JRSecgJ6ZM0N/31fuvlu6b+j55/HQe98bqfvALpXw8iOPYP2DDyqPNx0v//GPePDd70ZOMYC851vfqrl926WXYqeD282EjY8+Guj5Oh65+mq8esABAIDnFQKVXSrh/ve8Bz0zZkh/e+0vf4lkm0wZ2bYND1xxBdomTUKpWDQSZO//9Ke1f1v7hS+gQxAv1//ud3jg8sux5Zln8GLVpAcANt11Fx75wAd8bbsF4DFfz0w/mx5/PDWCHgBs+fOf8dD7349MRq748uRvfyvdZxeLuOfd78acFSsq95V/r81PPFER9ABg4x//iIevvBKWZWHrunU1jtOtjz6Kh9//fliK91Wx7aWXJEEPAJ7/0Y/QumWL0WvUM0/ddJPxY5/91rdgKxy54nG1/s9/1r6GXSzi9re+FW09PXjh3nuV372Ohz/xCWyZcH8+r9iHymx/5hk89L73IZPNYmTXrkCCHgA89rnPYdvE9yReZ2595zux69ZbA71+nDTyObCeKBWLNYIeAPzu4otx4DnnYNK0aZX7TH+vJ26+ueb2s//3/8Ly6EwtM7p3r5GgBwCFPXtw/+WXo2PyZO1j7hbHZpddhp3CYnI121zmUms//WlsveEGAMCzwnlg/e9+h18cdBCWnnpqLAvTOnic6bHPPBOo2sfTwlpDc0HaaCpRz4mS4WSyEZx6xf32w9CNN2KzZuW8tGULrFwOhbExFKoGzzW88gqsBFc/YuG115R37922DfbLL1ciZCLWrl1RbpURI5s2wZqYHJdCiPyqKGzcCGtsDHZV3EXJ8DCszZsj2QavFD1EDAtDQ4ltd1Ez8RjdtQtP3HwzDjr2WHT19IT6niXd77h5M6yIRL09u3bh2Ycewq5t23w9f+dTT6FvwlXsxNjevYF/SzsiYbq0bdvr26ZbLHjtNeWg1K6K3ifGK6/A2r0bxRAaTNm7dkF1JX765puxU/FZ7WIxNeeWtFAqlbDRQUhJisKLL6JVMWbYoxHLdjz/POYqFi+Kiph5acMG5PJ57HjuOfmFNm2CZbjiXtRE/u0Qzh9px7Zt7PYiXO7ZY/SdjLm85uYnnjB/T+F1y+9fEhbAJDZtgpXLoWToAnTCdhgXFFI01iH1w6jGSPLinXfiwKOP9vRaxUIBO4QFHdvwWFXi9bq+ZQss3bxRwZjbtrmUFbF37Kg8X+Xy3fbSS9jz9NPoapKSUfWElcthnylT0J1g2kQkDKdekjSVqNfV1VX594hw0qm+3elQeyCbzda9hTbb0YHz77gD2556CiPbt+MPl12GHc8+W/l7sVAAAAw7OBa9OGrqFd1ntG0be3bu1F4k3FaEll1+OfZ75zs9b88df/M32GI4WRuuGuQWhTp6R33+85XYihMv3nwz1nzxi9q/j0yIhSWXOn1pSvgXBOEqP2mSNu4z5iZWRsiYpp4RML5fDm7eHL6op9vfIzrWdw8NYe1dd1XON9VMOeggrPrCF9AifMY7/+7v8OqaNZXbOwcHjUS9bC74pU7cj2cecwyOmjg+SqUSnn32WSxatEjpRqrmgWuvxUtVDujqfVL7G2iOIfG36Vu2DKtdova3XHAB9mhE41knnIAjr73W8fm/PO64GkdNeZtV++z5t98OZDJ49r/+C49ef73j6wLjn1N1PlEJeuXHk1q2bNhQOTeXOek730Hv4sWOz3vsW9/C0z/4gfJv+UmTcJbg/gAA2Da2rl2Ltd/4BrauXYtJc+fiwPe/H9NXrsR/n3oqSlX7xOjwsCTqFcbGpG0ts3PbNhSLRXm8pbi+jo2MIJfPY0gxAfSyj4jXh8prNMF4Z2TvXhSFz3/6r36FtqlTAcj7h+lC+IggCiw8/3z85YYbHF15i978Zhz0/vfX/NaPffObePqHP6zcHq0as5uOQcTPl21rwzlCCQCRez/xCbxc5fDnOYeEje4cOLR1K2zb9uQy275li3S+CrTPKp4789hjsfXxxzGiWmjzeK50G5u5bXv1eaigGTc7jadJsmQymVRqKn60njR8jqYS9To7OzFlyhRs3boVg8LJ6LUqV9a8efNi3rL4sSwLfRN1i9qnTq0V9SYGSMMOq5/NMLBx+oy7d+zQinpu383kJUt8NR/omjXLXNSrEmRF0aT/kEOM3n+0qomKCmNRL0UTInHSdtxXv4pZxx2H9X/4A9Z88Ys1ReF1A4Q4cHtvlRBWplQsYvOLL8IulTAwbx5yBoKWbduOInYUvPLSS9LnsDIZrPjIR7DyU59S1mWZc9JJNaKeahKvIoyLrfj9tA8MVI6jYrGIzW1tmL58uet7VTd9AGp/S1Pxrow4sW7r63M9tvPd3YBG1OuaNcv1+dnW1hpXnk7Ua+3rw4wJl8G0FSvw8u2318RzO6ZPR8f06Xjt4Ycr99mlklZYUZGmc0sasG0bG6qu5QAwY9UqLL3kEteJ4csOpQnaJk/W7hczVq3CAe95D/Zu3Yq2vr7K+3TOnImdL7xQedzo3r2AEMva7eCctksl7BwcRG9/f839quvN2OgosiMj2KNYoPGyj2hFvSYY7+wWnMitkydj3hlnVH7Pl4Rom+l3MiqIenPf8AaMDg1J9TTLrLzmGhz+iU9I++sr991XK+opzkE6yvtAQbjetPb2up7vOoRFI55zSNiMOqRpxkZH0eKh2cM2hds4yD6rOs7PvOkm5Do6sGvDBvyHMJ7xeq4MKupVfzadeMdjljQLZoVGGogVEzVaNm3ahB1Vg5gnqiIA5WYazUK+ysEIACUTp14TDHKdPuMuhyie2wUk77OLnuhaqmbKgQfW3B7es6ey/eIkyLQLVoeihlc1ZVFPdAKKpGlfEVfqW3t70T1vHva/4gq86Wc/q/lbYXQ0sW13W1l02q6nH3wQzz/2GF544gk8oYnYizhNiqL6DsSBbM/ChTjv9tsdO5bNEKIoO7dvdxWVgWicehmfkWSxi6aRqGco9mVaWlzfP9fWpv1b1uFvlccI71GZMAv7bPuEwwcYFwLPvOkmLDzvPMw4+mgc+y//gkuefRZzTz659rVsWzpG3UjT+SVptm7aJF23D/3Yx4ycHk7dXU2uWe1TptS8T5cQnRUdWwCwx6Ucwg5FCQzVgsfYyAiGNOUyQnHqNcE+Jop6/cuX1/ye4vnOdKIsinqdM2dif0Vn42xbG079yU+wsqqrbTXieMSTqFd26gminknTKelzN8G+QOJF59QDoC+BpMC2bWxTLNgF2WdVz7WyWViWhUlz5kjzktCdei6vVz727VJJO3agqEeahaYT9S644AIA4yeC//N//g9GR0exceNG/OQnPwEAzJo1C0d7rGFQ74iiXsWp1+zxWxennp/nAc6TJ8fnOYh6/YccUnO7VCxibEKUEgeyOUNRr9NF1Bs1dOqZxnTiQJy0tVZ9p2J3UdV3FxduTj3d8VcsFDBYVZ9k57ZtSveKiNNvGNWxLn63B7znPa6uienC3+1SSRLYVftbJKKez9cUJ5I1op5Ht6T4WZ26zpk8xkjUE55fceoJkw/xeOqaNQtv+tnPcP7tt+PgD3wAufZ25YTZyal3wHveI93HSfY4tm1jg1DPZery5dhH1+lewEng8HPN6hREPVHcAZydeoAHUW90VPlYACgxfmuEeB6dKtQ5soTznclxVyqVpPNC16xZmH/mmTULkR3Tp+O8W2/Fogsv1L5W5/TpNbfH/MRvfYh60udugn2BxIuTqDfqITGye2hIeZ4NO35bXaPUi+jtZ2xm6tRzKpfj5RpASD3TdKLeCSecgDdNDHK/973vYcWKFVi9ejU2bNiAfD6Pz33uc0ZxtUZCdG5Vauo5xG+b4STpKOoNDekn2i7fjalTTqTVYQDat99+kktnZPdu5QBUFHF1tPf3OxYYr7eaeirBoLUqQi2KEEByEVw3p97o8DDWPfYYnn/sMdfJjWqQJ+IkvEZ1rIu/hZNoXaZt8mT0TXSKLTMklFJQTcxDEfVEV5xPp15eOI6rt9dr/FZ8vOiiU+Hk1FN1EhYRRT0Tp54O1YRZJ6ys+tKXsOKqq6T7OckeZ9urr0oi2WGGLj3A2Y3nx11uIuqJTr05J51Uc3vn9u1SZFJ1bhwbGcEOTRTfy/6hdXqk5BoWJSqnXjV+nHpjit+8c9YsZPN5nPE//4PDPv5xHP6JT+DNa9ZgYOVKx9cSnXrFQqEyVjUtASL+viZitU60MHGIE2JCWE49lUsPCD9+m3ES9RzeSzWeDsup5zRW5xiBNAtNJ+oBwHXXXYcPf/jD2HfffWFZFrq7u3H88cfjhz/8IVatWpX05sWOn/gtmuAk6XQhKBWL2Kv7fhKI37ZOnoxuoRbk3j17lNFYU1HRymTQIayOVzOyd++4m61ORD2V666lStTLd3VJA5SkCuyKwoYlNF8Y3LwZm9atw8Z16/DUAw8Efj/b6TeMyanXatj4Y6YYwRVFPR8DRxPqwalnEr/NOnQtzxl0NBffozy5FY+VNgNRL6ty6gn7xaS5c3HurbdixVVXSSJg+TnNjsql17tkCRace67xazgJHCaOJpHOWbNqbouiXrnhVDX7v+c9tedg25bqZqpE391DQ9ir6TrPRhnujI2MSL+P6NRTHatuiJHrbGtrZfFs0pw5OPLaa3HEpz8tufBUqB5Tbpbh9vuUt1U8t5js17rP7aX2JyFOuNXUM0Ur6oUdv60aj4rjIKf3Uh0zGZcaxMZOPYp6hDSnqJfP5/Hud78bv/nNb7B27Vo88MAD+Na3voXlKWqrHCeSU69YRKlYdFw9ananHqCP4Lp9N77jt07xqO5uqQD/yO7dSiHL1KkHOEdwS8UiimNjddMoQ+XCqHbqWZYlufWSGriLkSUncXVocLCynX4Hb2lw6pmK3WJdvaHBwZrPHdVvFpZTz1HU8+rUE+O3cdTUE516E9ssDqrbFc5XEdUqv3icHv2Vr2DWRLdu1XeelvNLkgxt3Yqd27bV3HfoRz/qOmGqxu364hU3p97Inj3S9Wn6EUdg+pFH1twnxmpVkzfdZBZgowwTRIdntq0Nk5csqbnPT/xWVU/PSyfPavKTJiHX0VFzX9kJaNooQ9zfRNe0Cl38Vleao9H3FRI+TnMtcSzo9DjxGlAmSAkccX8W0zviNdlpvKg6v7qdD0y73zo59ZphvkoI0KSiHqlFFb8ddrjIAM0xkXK7mAz7dAZ4EdWqcXLqtXR3o2fBgpr7hvfsUQpu4sDYCbe6eiN799ZN/FYaUFiWJLCKol5anHpOol71432LeimoqWfq1JshuKkLo6M1Lh3VwDGMfTA0p57YKMMgfqsblPpy6oUs6pX3HXFQbeLUUwkFThF5paiXkvNLkogdbyftsw8WX3yxp9dwdOr5WIgSG2WIAo/o0mudPBmdM2di9urVNfeLop5q8uZ4/vKwf+jit2mqCxsFYiqjb9ky6fzmJ36rEvX8YlmWNB4ZHRmBbduR1tTTOZF0AnCj7yskXApjY461m03HoKqut2XCrKnnJup5jd+aCvJuf6dTjxCKegSK+G2x6By9RXNMpNwuBLrCrFF1v3WqqdfS0yM59YYVTohsW5sn94ZJB9x6ceqJ0ZvWnh4p1io59RIQ9WzblgYobqJeeTLq97uOu/ttqVSS9huTmnrAuGAhRvuq6+qpfrMw9sEk47eqYtWqx5s49ZyEOycXX+X5mkG85NTr73d9LWmVX1FTrzoir/rOm+Fa5MTeXbuwfcuWmvtWXHWV9Du54eRa8tUoQzhGi4VCzTlYdKD0LFwIy7IkUW/3jh2VfatUKnluXhRG/FZ3/DUK4nekKtHhpwusGCvsEvYJr4jXwdHhYaNze3lRJJSaei5OPa/du0lz4+TSA8ydeo5u5RDjt+L8IWj81u3c6uayY009Ql6Hoh6Ru98WChT14P4ZdRcR1+63ETj1Wnt60C069XbvlurdeXUJmjj16qWmnpNYUCYNol6pWJQGIW41h8oTjEicehH8fsr6hoainmVZjnX1InPqCb+Jqr6bCaKoVyqVKgNT3eBTJ7pKop5Bo4uw47cljainajwjvZYwYS4WCtJncnXqRThg37ltG1556SWjZjNJIUYnW/v6sN873+n5dZwEjjAaZQC1zi1xny7XcxxYuVKq7Tg04dbzcz423T+cOi83enzLLWIHKCbvBt+rWFMviFMPkMcjo8PDRs44nRDnx6lXcnHqeRWdSXPjKuoZnPNKpZKzUy/G+K2jU09xzLgev2HU1Gvw8zchZSjqEWVNPafOt0BzrHz4FvXcnHpRxG97etAjOPVGh4elbfTaeddP/FbczrTsK+IKequBqJdE/Fb1nh0DA47PKTiJegYDGkenXgS/n7K+oaGoByjq6lUV0/c1cDRAnNh7dUKVUU0k3URZU7HPpM5f2PHbMLvfqs6pbqJeVILL1k2b8Oidd+K5hx/GQ3/8o7FjIm7EfaNr9myjhici+c5OQFPfyE9NvXxHh3SOrXZuiftued/LtrZKx/f2sqjnwwVlOqFzEmPScg2LCjc3DuDTqSeKekGdesJ4ZGxkxKgLbZBGGVqnHkU9EgJhiHo7Bwedz19Rxm+9OPVUKQpDJ57b3x1r6jX4+ZuQMhT1iLL7LZ167p9RG791eF6+s1OKfJriJHq0KJx6ALBHcHF4FfXcYp+jClFP3M607CtSrS7F99nW11f7nAREPfE9M7kcWoXtEqmIQorBi8m379T9NorfT5xcWdmsp1qP4qR/eM+eygRS+ZuF8RnEwW1ITj2gKj6tE/UM7w/aKMNX99uJSKR4HjCpqWfSbbp6kUAZeY5owP6XRx+t/LswOooNzz0XyfsERRLHDPYBFVYmo3Xr+RH1AOdmGeL+Ur1fSnX1JkR7P4sspoKck2CYlmtYZJg49UIQ9YLGb0XHus6pJ15LdEKcL1FPIxCW0d1PiAoxoi7ukyaLSVL0VlicidSpFzB+69rdlk49QoyhqEfUTj03Ua8JVj7cPqOf+K1flx6gd+pZ2SzynZ1omTRJqmMlFiP37NRzicuonHpibaa0XFCdCvCXSaNTr23KFNeJupMoZHKsFhN26rV0d3vqijjlwAOlSGC5rp7SqRfCPujHFaci19EhCftOoixg7uAL2igjZxDfVTn1VOdCE6eeVFNPPJd0dtY4Ii3LkiYVUTn1xMnUay+/HMn7BMVPXUUdupit3+uWo6jnEB0XRb29O3cqnecmGDv1nES9Bh/vRBG/tW071EYZgOzUGx0eVjr1xP1V2yjDpKaeRrTQOvVYU494QHTq9R9ySM3twuio6zlsUIjeDqxcWXM70pp6ARtlmDbC0KEr/+HlNQhpFCjqEeRU3W/d4rcpEWqiRPyMoqjmJ37rt0kGMDFQVQgf1YKI2CxDrLck/tZuuMZvh4elmnriQDktF1RJSDKpqZfAAF3VRdStKYNTfNPkWI3dqSf+Fh6it8D4wHL6kUfW3Ock6oWyD4bUKMOyLGk13jE+DfP4bVCnnt+aeuKA2spmjX5Tt++wdfJk+Tk+HENhYBLzSwJp0hVA1NM5l3w79QRnVrXII55zqve9/hUrpPfc8dprZossokvFcP9oaqeegCpN4MWRA4xfb8VjJmyn3tjIiLzYkstJjuNA3W81ooXOkcf4LfGCKOpNO/RQ6TFOixnDu3djr7B4v+Dss2tupyZ+G4JTz7T8h+oxhDQ6FPWIsvuteBKcNHduze1mGOSKn1Gsa1YYG/MsovjpIlhGJQYAtQNTVbOMarw6LtqnTXP8++jevdIgVhW/TcP+YhK/bU9BowzJqdfX5+oKKzjFb4PW1IuhUYaXenpldM0y/NRtMSEspx6g7oDrdJzE5dQzEfVU8Vup8+3UqUbOS7fvUCW8+ynYHwZprcsjCidBnHq6Jk5+r1uqxgZldDX1gPHfeOZxx9X8fcdrr7mej9umTJHHKozfumLk1FN0qnZC1VwmbKfe2OiodC3JtrUpzxG2bYcj6rk59SjqEQ9ITr0VK6THOC1miA0y2qZOxYyjjqq5L1D8VrgddqMME8dvNaIxwcip1+Dnb0LKUNQjrt1Ycx0d0op7M6x8iBcCMdoKeL9IeY2/iqjEj2pHjNgsI+j7qwpmV2PbNkYEV6dyoJyCi2q9xG+VTj0X8SNo/Nax+20U8VsfkysRsa7erh07UCwUInPqSY4on049QI6oF8fGHI8RY6dewO63Tn/TvYcqfmtSTw9wP7+oznd06tWSZqee6Mxy7H4r7HtSXT0DUW/W8cdLnz8UUS/h8c4rL76Ie37zG9x3yy0Y3Lw59Nf3Fb91aySmKLFgcn5yQtUFXhx/ZNvalOeI0oSwJ26TG7pFBHa/JUGxbVuqqdezYIHkcneqqyeKevu88Y3yNTrO+K3De6nG06Y188qIcxi7VIJdKjnG3tO6IEdI2FDUI67ure4FCxKbSCWJeDFRdSD16goKEr8F1DHFVgennvT+PkTF+Wee6fj3vbt21dxWbWNUda+8ILnDDES9UrEY+2ReVVPPrSmDY6MME1Ev5pp6QeO3wHjdmJoJl21j57ZtviIeJkiD2yBOPeE8UCwUHI8RU6eeiUsr7O63KqeeeBzpcPsOVceoF2dAMxBWowzAoaaeX6eeIOqNODTKEPer2SecUHN7eM8e7Nqxw/H9Zp1wgtSVOoyael5eJ2yKhQLWPfYYSsUiCmNjWLd2bfjbEkH3Wz+dZt1omzJFEtnEUjG59nblOUL1+wZy6jF+SwIyNjIiHUddc+ZIBgKnxWUxejv3DW8I9RrpuVGGV6eex/itOIcplUrapoUm20RII0FRj7jWWetZsEAeKDfBSVK6mHR1SV3VvK48BYnfAupBaI1Tz03U81Hw/Mhrr0Xf/vsj196Owz7+cUk4lAQaxWdMgwgsbaeBqAfouxxHhSgUt0+ZIh1/IuWJhEoYSmX81iAK7Ua+sxNTly+vuW9ocDCy+K0UdQ3g1FPV1HM6p+q2X4oEm9TUc+hwa9L9VnUtUMVvTfAl6nl0DDU6fiLYOkKvqSfGJYeHK7+Xm8t0yoEHSufjHa+95vh+s084QY6JhlBTD0huzLNj69YaAXREUfIiKH7it27fh7iNQRc0gfFafx2CW0/p1FOcI1TfWaDut5r9JYk6vKQ+EaO3mXweHQMD0vXTyaknXnu75sxR7rO+r5PiuUE4tkzFftu2I4nf6hp1mWwTIY0GRT0yPpFzqH/Uo3DqpcF5FTWquJ3USMFjN6cg3W8BtaOp+j43p54oSpow5YAD8JZHHsFf79yJI6+9Fl2zZztvo2KgnAYR2CR+2zp5snQsFBwGVFGgcj251tRziN+aHKtObsQojvWwXBxiBHf7q6/6jiC7EapTT1NTT/veuq64KXHq+Y7fhtEoIwXnliTxE8HWoToOM/m879eUynbYdmWCKv5uYvzWymQwS3DrOdExMIDJ++0nTTrDiN8CyU0MVU2MIhf1wmiUIZ7jA459yoiinuTUMxT1Mi0tRvu1zonEmnokKKKo1zV7NqxMRqplrXPqlYpFaX9r7+9XX1d9nr/Cit8WCwXlNniO3wpzGFVSQITxW9IsUNQjsCzLUWzqWbjQ90C5nhE/o6US9TzayYOKeipHU/V9nTNnOjo1gtb0A4BJc+Y4/l0lPKZhpczEHZbJZiWxLwqn3ujICJ575BE88+c/S/FllUCick5UEzR+6/iYGJx6fkW9mcccU3N757ZtysdF4dRzi0Q7IYl6Y2O+nHp+6qk5TWT91tSTnHphxW9TVFMvrfgRdnWork/5SZOMmp6o6Jg2TRKIRidEPSl+q9j3xLp6Tsw55RRYluXbyZlWp55q+92iwj7epOZmFE69MOK3gOz+VIp6im31u5CkdeoxfksCIol6E2NrKX47cc4cGhzE2rvuwmN3343dO3Yoxaz2adOU11W/10k3F684DtIJaLrzq1ennqqmnqtTrwnmq4QAFPXIBE5iT9PW1FM4c9oE54gyfhu3U69qcJrJZtE9b15k7w+8PvDQoRT1Er6oqqz/KqceIEdwo+iA+8yDD+KVF1/Elg0b8Ng999Tsa36631ZEPb/xWyenXhQ19cQJlo/4LQDMWLXK6HFROPXcItFOqGrq+XHqSS4tg21yEu78dr/17dQLo/ttE1yLnPATwdbh1l3dK5lcTnJWlQvDO3W/LeMm6pUnmL1LluCIT31q/HV8OjlNnXq2bWPzCy/g0bvuwnOPPBJ53FIlHukEJb+4dbgE1Meq07EXRfwWkDvgio0Gsm1t8iK0bfteSFIJhKrXK0NRj5giinrlzt1S/HZ0FLZt46kHHsDQ4CB2vPYanvnzn6VYrpXNom3yZOWx6jtx4SLqmdYw1Y2jvTr1pPhtlftb+xpNPkYgzQNFPQLAWezpWbjQd/HpekZlOzeK3yZYUw8Auh064Mbi1FPFbxPeX5T1dHSiXl9fze2wRT27VKqpDTW6dy+GBgdffz9hstA+dapxTT3fjTLi7n4bQk09YDxyJ0ZVVETRKCNUp56LqKcbkEsuLYM4mWP81uT5KqeeMKg2rqnnFr9lowxXpH0gRLFZd58XOmfOrLld7oBrEhvuXbxYen41F95zD949OIi3PPJI5bqnEnRMcHO/lY/BXTt24C+PPoqdg4N45cUXsf6ZZ4xe3y8q0TDq+K2yUYbiWHU69qIS9VQdcKvJtrUphV2/zkHxu7BtG6ViUS9esKYeMUQUpMulbVROvV3bttVcZ/fs3CmlPNqmTIGVySjHJn6vk57jtx6dem6Lxm5OPaC2q7ryNZp8jECaB4p6BIBe1LOyWUzaZ5+mjN9KHeFMa+pF2P3WLX4LODfLcGuKYoKrU0/VKCPh/UU1YdM59cS6g2E71VQCTXk/KhYKksBm0v3WqaZeKhtlhOTUA+QBsIpIut+G2SjDLX5r6NQzapShEfWyra1GMcvUdb9tggUmJ6JulBGVqCfWilPtl5ZlaevqZdvaMHnJErR0d9cci373D9P47eCmTTX3b/zLXyLdB1VjjNCFIx/x2/GnmTv1worfik49EVX8tqSoqWe6X0uvpRAIq6FTj5iideoJC5WF0VHlGE18fvl5qoWduOK3nsXugN1vgddLOpi+BiGNCkU9AkAuPlpm0ty5yObzTTmRUtbUE1xcqnprkcZvFQPjvHBf1E49X/HbhPcXaUBhWdpBfdROIKfXUw182qZOdRU/ys4Bv00i4hb1pE7EASZ8JgJSKPHbCLvfusZvTZ16JjX1NB1uTTrfAmqnntSx2UBoBXzW1BOdM82wwOSAuEgQpKZe2PFbAOgSmmWM6Jx6GrFZF8Hd753vVF7P/J6/TeO3ojsGAPbu3Gn0Hn5Iwqln0ihD9bxqomqU4ebUy7W3KxehfTv1xHOUpotnGYp6xBRVowxAEb/ViFZiPcny85QCvN/rpMu5wbQchs5N5xYLlhplqEQ94XuMemGekLRCUY8A0ItNZddXM0aexItNJpdDq0E00+kiFTh+q3LqCYPTnoULtc+PJX7b1SV1kE16fxFrELX29CgnLkD0TiDldzHxfYmOJyuTQWtPj1Gn1WKhoI7fBqypF0n8NkQXh0nUUyd4eiHy7rd+GmWE6dQzqKcHyKLR2MiItH1xdr9thk7sTviJYOvQNcoIQpD4LaAX9Zb/7d8q74+6UUZOcYxt27LF6D38oBT1QnbqublxAO9CQVjNkETcnHpZVaMMhRBnLOqJjQAUrr9qKOoRE0rFoiTWVZx6YvxW59QTRb2J5ynjtxE59UxrmFaXmBHewNOCpiptJAqGYjOdpOcfhMQFRT0CQC/qdU8IRE1ZnNxn/NbJTh6FU89TTb0QVstbenocJ3q5jo7UOTulAb0meguYF/71i9PrSQ0HJmqkmLjCimNjdRG/tVVRqIjjtxNv7Ps9gHCdeuJxGFqjDBOnXlBRTxBfVCvwxjX1QojfRtGdWUfS5zEVaW6UATiIegbxWwDonjcPk4TmT/NOPx29++6rfLyfBchSqeS4sAG8/turRLbtUYp6qvhtxMJRmhtl+Kqpp7jmmG6PspOug6haKhbpDCKujCiumzpRD1BfZyWnnlP8NqKaeibxW9u2MbR1q/F7OP3NpKae2JyJoh5pFijqEQD6Wmtap14KJzdho+x+axC/dRrQBRb1VIXMY26UYVmWo1sv196eOhG4KEyMnBozRF0/UvV6ZV+jrjaZiSusoBGG0tYoQ+Vk8NsoAzCv3xbU0RWlU6+gEWR17w2ofxcTUU8nnjh1xa15D0VNvZq/t7VJ8Rcdbt+h6nwpOWdiHLC7CT9J4CeCrUMldARx/gHBnXoAsN9ll9U87ojPfEb7WD9jFbdC69WvoxLZhrZujWzfSMSpZxq/9dAoI2hKoUz7wICUBKgmp+p+q4rfGm6PSSddEbr1iBti9Lalu7syLlCJeqKAByicek7x24iceiaLKMO7dzt2qPVST1g1hxHHzeI1J+n5ByFx4d9qQBoKXb2THp1TrwlWPlTOnKS736pW0EWBoGXSJLT392Ovwj0QRqMMYLyu3uATTyj/pnTqJby/iOKrKM5WE7WA7SQuqZx6qm1SESR+6yf66RfVhCiQU8/QFWaXSoDi+DElykYZbu4O1e+jenyQ7remTj23fbF96lSjhhuA+3eo+jyxnVssS3IBlopFZAP87lEQpqgXVkSyGrGmXmF0dLwGqCCCOe1/y//u7/Dq4CDatm3D0re9Df3Ll2sf62esIk6wcx0d47XTqu4vv46y5EaxiKHBQfSauoY9EEdNPbe6WYD6uHe6lkXVKCObz6N96lTl+AbQx2/9bo8qXugW1S4WCsgHOA5J4yN1vp1w6QHj172W7m6MDg1V7hMFPEAek1Tit5mMdP0KraaeW/xWcU7QRm8dnqP7W6a1FVYm4/h5xPgtnbOkWaBTjwDQO7i0ol4TrHxIK1QKUa9ULEor9I6NMgKKeqKtHFAPTnVuvTDit4Bzs4xce3vqnJ06sUyFqttdmDjtH1qnnkn8NiqnXsi/nRQdc2haYoJp/bbANfVEkT9Epx6gifKX39swVm0Svczk80qni6kjy+1xpr9HZVs8vpdpt72gZBTCRjGFTr1Q47eq4zDg9yu6JoBxZ5xpowxgXKiccfHFWP2tb2lr7JXx5dRTFKzXiccqdz4A7HSZuPpFJSCF3f3WLWIHhBC/DWnsATjX1VN1v1UJcb4bZUDtmqombCclaTykzrcTTTLKiG49lagnUv2csMbgYXS/dYreum2btGiVz7uOQToGBoxfn5BGgqIeAaB3cHU3caMMlTNH5fASB/lOF5CgA9vefffFwBFHVG7PPfVUtCmKyZd/N+n9Q3LqiQOQMtm2NmUNuKT3F1EsExueVBN5TT0HN53URdQhTiFSHBtTO7qC1tQLO34rTq4mTdI2LTHBNH4b5HOoGm2oilGbohT1HCaCqn1Q6dQzEHQsy1J2uvXb/Vak3fD3ANz3a9Xf41owUIl6jR6/NY1Ne6Glp0d6XZUoYhr/dsPP/qHqQql7HZ34HrbQVn5PlUAUefdbhainui+J+C3gXFdPV/7Dr1NPdZ7f49LtmPFb4oZ4LRH3R3FxTDxHqagW9cIax7oJ/iZzQ1dRz0NSxMrlXBeupPhtE8xXCQEYvyUTqMSmjoGBSiy3KZ16ivht6+TJkq29MDqK1qoJSZSiHgCcdfPNePT665HJ5XDQlVcqH9OjEPWsTCZwfaQy1VGBasrCQNo6VEpOPQdRL/Kaeg6uK8mpN7GdQWrqmThtknTqBYneAh7ityF/DlUxalNUjl3xt69GKQQr7jN1aWXb2lAQhBXjmnou7+HJqecgjGbyeaXYa9ptLwpS6dQT9usg53hlbNowSu30mp0zZ2LHc89V7lOJeqbxbzfCiN92zZmDwccfr30d21Y688tEIfjqhMLQBUQTUc+ykMnlUKo6f+vOqaVSSVp0CDPa7eTUizp+CwB7qmKRKqJuZELqH7cavZJTz6OoF9U4Vqqp5zI3HBkednW2eorf+nHqUdQjTQJFPQJALTZVu73SFqeMA+UKUTaL1t5ejGzbVrlfFIycLiBBhIAyrT09OPzqqx0fo3Lq5bu6jGtduaFz6pUdGWnbX8RJkJf4bSxOPU29prJAEiR+axIfTtSpF3CyF0f8VtncJIBTL5PNIt/ZibHduyv3eY7f+nTqAeMCnli22m/3W5Gw4re6zxJX/FZ5LKVwsi7WpgsSv1UxvcoZ7hdJ1Kva78uEteAkNVLx0ShjkiZ+q4veAtEIvjrxLgmnHjB+vNaIepprg2r7wup+Czg79bJtbZKbyC6VlA5xE1TnKDeBhU494oZbOY+OiU62Xkgifuvm1BNdepmWFpQ8zJlU5gqncY7KGZ60qYCQuGD8lgBQxzLL9fQAxm+B178DURASHTZJC1gA0KOoqRdWkwzAwalXFvVSFr/1VFMv4m1XDTC0Tj0vjTI08Vu3/bHsQPGyvUEQJ6pBOt8CHhtl+ERZvy6gQJ9XdMDVvr9howwvTj2T+5TPDTF+a2Uy2uh1RvM+cV2LlKJePTj1Au6Xh3/yk5V/d82ejX0vvDDQ6wFys4xY47c+nXqqSbGT8B6nUy+J7reAuaCuErXCjN861tTT1PQNM34r0rNoUc1t1tQjbrg59bwsjgHjx2x1AiWs66RnUU94vCjqzTr+eNf3cPpbJpdzHIO0T53alPNVQgCKemQClVOvOsIprX43wUlS1+1SjG56cerFhdKpF6aop3Hq5VPq1NPFWlXUbU09n40yXEW/kPfn0ZFaj1i7EJXwSq6jw0iQCtupF6T7LSBPKoM69axsVlngXoVKQDEVVdyEQ8+TEc33qFuNT/Lcksb4reRkCOjUW/mpT+HUH/8YR3/lK3jzAw8EqtFXRuxGqHTqRRW/9VlTTxVfczpGo3Bn6d4vaieY7jxieuwpnXohNsoQ96dqVI0yVN3FgzTKqKa1r09aRKVTj7ghNThyid+60TZ1ao0Y78exrMK1pp7L3FAU9WafcILrezi+v4uo19bXJ12z0jAnIyQOGL8lAHw49VLgRosale0bUIh6ho0y9r3gghC3zpnOmTMlm3uYol6urQ3t/f3Yu2VL7f2amnpJX1S9xG+jjvc5CTTamnoGAlKhUEBGEa922343gT7szz8miHp+YibVWJaF9qlTsWvDBsfHpc2pJzpXHGvqGcSqvYgvkTr1PIp62XxeiuM4vU9c9V3rxakXZqMMYPx4WnTRRYFeQ6RTcOpJnRwtK/DxVMbrWKVYLEriWdecOdLiTsm2Hd20cTr1yjXrVM1c/GAavzWtZ6nqfBukGZKIY/y2tVU6R6jOraJTWvt6Lvvl5MWL5QUainrEBZ1poIxXUU98fGhzNo9OverHj42OSk1lZh53HKxstqZshKf4bT7vuHDVpnLqTTQ6C6v8ECFphU49AoA19VRonXo+4rfTjzoKR37ucyFvoZ5MNovuefNq7gszfguoI7gVUS9FjVWKiuLmnmrqhd0oQ+PUUxVhb/Pa/daPU89lMhq1qNceUNQDzNxhQT6HapU7dKeex/htEIdWEKeea009D/FbQL9v6z5PbAsGit88jU49yfERck29MBDjt+K+nmtrC23C5XX/GFXUR5ukid86Ce9x1tQDQo54Gop6fuO3YdbTA4AOt5p6wm+ncjyGFb/tXbJEei069YgbbjX1vC6OSaJeSGVk3MRHp6Z4OwcHa/6Wa2/HtEMP9dRIT+nU8yjqqV6HkEaEoh4BYODUS1mNtDhQNcoA5EmrW/z2hP/zf3DBnXeid999I9hKPWIH3DCdeoC6WUYaa+qpBvROwkMS8dtSqaScMJa307Is7USrjDZ+G9SpF/JvJzn1AsZvAbM6boF+R1X8NqhTz0P8VjXolWqpxeXUc3kfr5MRbfw2jU69FE7Ww3bqRYFTXBIIr0kG4H3/EKO3Ld3daOnuTnX8FgjXDealUUbN8wydemF2vgW819STxFHLMh4PuZ3nJy9eLImWrKlH3HDtfutxsTMqp55rTT2Hsf4OIXo7sHIlsi0t8oKowxhTFVN2FPUU8VtxuwhpVCjqEQBA7+LFaK2KlfYdcEAknZTqCV0tCa/x26COHr+IdfViceqlsKaeNDGyLLT29mofH7UTSNcoQ7mdkye/vl0u+1GxUPDVKMMtNhZ5/DYEUa/NIKoS5HdsNKeeSsALzannUdTTTZq1NfViWDDQ7fNpi9+WY0XVhCmQhYUYvxUJq54eENyp1zVnzvjrKMTBtMRvgXCFI9NGGX5r6oXZJAMYr92rEwqzbW3Sbyd+jy3d3cbOULfz/OSlS+nUI55xdeqFHb/1e530KupVPX5IcOrNPPZY5bY51vtTmCu8NsoQt4uQRoWiHgEwPoF6449/jP4VKzD9qKNw8ne+UzPoSVuNtDjQXXS9xm/DqhXklVlCQdqBww8P9fVVzTK0Tr0EL6hjYrfV3l7HhgJRC5I6gUbcj1onT67ZTrf9qFAoqAVDl2PVVdSLuFFG0Jp6gJk7LEgXX2WjjJCdek6/Q9g19VQCnqmw4iYeenXq6SbNpo0ywu7O7ETa4rfK/bIenXphinpenXrDwzW3y9c1Vf04p/ht3KJeIk49Q0FdFBzDFvUAvVtP1yijZns8OAfdXPK9ipp6FPWIG9JijHDeDizqhTQG99z9duKcUCwUsHv79pq/zTzmGMfnqFB1d3etqUenHmlS2CiDVJhz8sl488knK/+WJpEmLnSOu1aP3W+TcuotOPtsHPLhD+Mvv/oVWpcuxf7veU+orz9pwtFQTRobZYi/j1vNLzF2FXanZ11EVpzAieKIm4hUHBvz59SLsVFGsVCQJlih1NQzqeMWcqMMtzi0G14muiZOPS8OrSDxW2uiqUFJITjkJ03y7BQLWlNPVfsuKPXi1FMJmmmM32ZbW9E2dSqGX3tN+XdTl6gJXhdlpM63E9c1Vf04x/htFKKe0/tFGPEMu/tt2DX1gPFmGdufflq6XxW/FfEaB87k8+rf17LQs3ChdC5nowzihptTL9fWhnxXF8Z27TJ6vbhEPbfut+XH79y2rea5mVwO0486ytO22bYdmlMvzsU/QpKCTj1iRJrilHGhrannJuqlxKmXyWZx9Je/jLc++ST2veaa0FfLu7yIeimK34q/n0gSNfXsUkmKpYrbaRS/9ePUi1HUEz8jEFJNvaidegqBP2hhf68TS3EbAjXKmDhO3e7ToRtUe3XpAQ7xW8OaemGL7gC0QiGdev4Rm2VUE2pNvYDx23KtWNXruEXkw168cozf1lNNvRideqr4rYjX7dGdo3Lt7ci2tMhOPdbUIy6oasWJeFnwTCx+qxkvDwn19PoPOaRSx9J0fqC6P5PPO14v2vr61PFbOvVIE0BRjxiRpsYHcWHa/bYgdB11W4FrFFROvXwKG2WIkSk3V1fk3W8NnXpibTJXp15UNfVC/PyiqJdtawvFxWHyGkE+RxTHdFBRL0j8NkhNPUAvwnjtfAs4xG91ol4MCwb14tRT7dNpdOoBzhHcMEU90w6tZXROPdV+5uScA8IXfZ3EoVAjnqainnC/bqFEdKqF3SgDGHfqqVB1vxXx7NTTnaMmzpmiSMj4LXHDZPHfyyJZZE494bZp/FZXT8/pOdJ7a2oZu8Vv2SiDNCsU9YgRXgfKjYAuRitOXG3brhnEudnVG4WOGTOkC7yuUUaS1nev8duoRQOVs0hVr0ncThMhSRX7SVP8VqqnNzAQ2PEGqAds4iA3yOfQuXaDkPcq6gmfMYjQmFOIKF7qmukG1aE69Qzjt5E0ytDcnzZRT3XsptWp59QsI8yaeqpaeE7oauqpJsVONfWA8EU9sR5sNU4uPq9E3Sgj39UVYOvUaGvqRRS/Vb5XWdRjTT3iEZPrt5e6elE59dzODarzZKlUws5t22rurxH1TOO3mlrGvhplUNQjTQBFPWKE14FyI2AavwVqhaO0xG+jJpPNSpEqnagXRd0rUyQHnEv8VhKww3bqadx0ovjYLop6BkKSyknitv12gk49r8WgdUxbsUK6T4yuhCnqheLU8+hQlOK3LoW2nVDW1PNSk0/n1PMj6nl16sWxwGQoViSN0qmXwu63ANA5c6b2b0nV1CsWCpIbTuvUc4nfAkAp5P3D0akXpahXB/FbnfMz29rqHr8NS9SbKFkgLtDoSmEQUsbIqRemqOd3f3Srqac4J+zavl1aAJtx9NGOz1G/tdqp5zTWae3rG6/7K5bp4PFImgCKesSINNVIiwtp0jzxHeS7uqTvo3pFPS2NMuKgd9Gimtvl+mhRN5vwgtf4beQ19TR170Jx6ilEPbfBTKw19YTtC6OeHgBMOeAAzDnppMrtFR/5SKiOriiOac/xW2EbpJo8Abvfpi1+a9ooIxKnXp3Eb5VOvZReb5xEvTCdel6uPWL0Fqhy6gn7WUFT3qDmvULcP8QEgEiozRgM0wWmgrrk1IspfpvJ55HJZl2vlV5LPrjGbxWfL231N0m6kBpdBRD1rEzGtQazb6ee8DyTmnpiPb2+Aw6o2b7ATj3N2KClp6fyPaapWR8hcUFRjxiRJpEmDnRdl4Dx7o9SXb0mdOoBwEFXXlm5yHfPn4993vQmANELY17w2igj8pp6hk490fVkEvlUOUmCTkTDPNZFp15Yoh4AnHHTTXjjz36Gs265BUd94QuhOroiceqF3Cgjru63gN4VGEujjDjOLXUi6qmapYQRZ4+CLidRL0R3oTQ5dtg/RFGvbcoUbV1YVZMfkTCFHDdXaNM3ylCIemXnnFtn8rCceo6iHptlEAfExdYgTr22qVPlWGxI10nXmnqKcen2LVtqbs+qit6qnuOpUYZDTb3q8Yf4GIp6pBlI55IuSR1pilPGguZiUqZtyhTs2by5crtakBFFkDDqb6WV+WeeiYsfegjbn3sOs44/vjJ4T9MqmRS/daupF3G8T9cow82pp1rJ9ft+1Uj7ayZT+3tFWFPPS3c3N7L5PPY977zK7YZz6oXYKCOq7re+4rdea+rFEL/VOpBSLuqltUkGEJ9Tz0vsSux8W93RXdwvR4Xae1Ymg/b+fux55ZXX3ytEoc1V1AszfivcDr2mXkzdb8v7UWw19SbOgyrRMm1RfZIuwqypp3pcaKKex/gtAOx47bWa27NOOMF527zEbx1q6tW4AVNkLCAkLhpXbSChIgoKjV6fQLdCVEZ0e9UIMk3k1AOAvmXL0LdsWc19aWqsIollXmvqxdAoo1QqhVJTT4VXp15+0iSM7tjx+t/DjN9G6NQTaTinnlujDC819QI2ygjVqaeLtrFRhitBIthx49QoI8yael5qokqdbyeit4C8n4nnrta+vvEGEFWiXqhOPRfRLsr4rdapZ/jdxuHUa+3tRba1FcWq36W8H7ktgIXd/TaTyyHX0YHCnj2Vv1HUI05IYwrFPmZ6PVU9LrR0lcu5wW0slG1rw9xTT3XcNk/xW4eaetWLilKzPjr1SBPA+C0xQnKb2XZDr3yohAzLQdSrceoZXKwbnbDqeQRFGWv1WlMvhvhtqViUJgHidvp1fHp16omdCiNtlBGiU08kzJVakwG4V7xOdMXzShCnHhQRTS/Cik488lVTTzMpMK6px0YZFdLs1NN1JQRCdup52D/EzreTqp16LvHbtr4+5Do7a+4LU9RzE+3Crt9XjXH81vA4iULUsyxLcuuV9yO3a2XY8VvVazJ+S5wwceq1mTr1FOOosErguJ0b3I61fU49FS3CmNJ0jO3ZqVcl6onXwkaerxJShqIeMULZIryRT5IuBcilmnoTAzhVLb5Gd+qpSEtNPdXA2jV+G7ErVfVdqOo1iVFGv/uRq6gnTA7FCViojTJEp16col6Y8dsQjulsa6u3WmIhOvWU2xNCo4xYaurFsGBQN40yxGZOKe18C4xHOnUdS3MR1tRz2j+k+G21U0/Yz1Rd1Mv198rEGb8Ndb8PsVGGXSop3d9RIDbLKJcQcI3fhtQoI+cg6oXqpCQNh8mYwnR8ZBS/9dsow0XUc3PFLqwqiaLbNt0YW9pmy4KVyfiL39KpR5oAinrECNWgppFPkroVojK6+K1bbLdZSEv8VjWwbp082fE5STTKEGvNAfI+5rumnlv8NianXqlUkibGdRu/DemY9uIYEQe+gVxaiu8iDFHPV009r/HbOM4tDoW70xTjCVvYjRpdXb0wxUgv1x4pfuvg1BNp7etDThT1YozfhrnfSxN305p6imNB5Vb06owzRXLqTexHodfUc4nfql4zba5eki5MSnoY19QziN/6Pl+4CP5OTr1MPo95Z5zhvm2GTr3yd2TSKENy6qXouk1IVFDUI0Y0m1PPtaaepvutmxjYLKRllUw1AXdrCBB1vE/p1BNiYC29vdJEIkjDFafPYIuuCkHUc3u+KSo3YnuUol6YTr0UiHri9geK3yrwEr/V1rRxqVepIo3db51eM01uvbD3gajR1dVLIn5r27anmnoibVOmIJ9g/DbMa6pvUU/x3arErCjitwAk52d1jTsnQmuUUS3qCZ+Roh5xQqqHqtjHcu3t0jlGhSp+G9bil5tTz+k8Oeu449Da0yNvm4dzdM3zJj6TyaJi1IkbQtIIRT1iBEU9w/itS2y3WUhL/FYUrGBZ2npBZaKO9+kaZVSjEkeCiMNOn0F8b9UELIzfT+wemcnl0ObimgxCmIM68fsLq6O1J1HPxannyaWlqKkX1KnXOnmyr3NdKuO3Dn9Lk6hXTzX1AAenXpSinq6Zw9iY9FtOcuh+K6KqqdcwTr0AjTJU2x1Z/FYQ9coLUnF1v81WLRCyph7xgmnzLZO6esr4bUjXySDx2w4hHq97jmmjjPJ3pF1UrJqXpcVYQEicUNQjRqQpflssFPD8Y4/hsbvvxqsvvRTJe6g+W/VEvtVL/LYJnXpeOhBGiVRzqqUFlkLQqCZqAdvku1DFGAOJek7OI5f4LRDO7yeKep2zZmkdIWEQpvgTRfdbQP1dm26Dat82pWfBAuk+XR0tFSrBzU/0FtAvepg2yohkBd7hNdPkwDFxe6SJLo2oF2b3W+VYRfF7ii49WFaNk9BNoG7r65OdeiHuG6JTr0VwvIS6UBZiowzxO8h1dHg6t3hh/lln1dzeZ6LLpttx4FVk1NbUqzoP5llTj3hAWpDR7LMdJqKewXgxiUYZYnkC3XOM47cuTr12inqkyWk+CxHxRZqcehuefRYb160DAOx47TV0dHejq7c31Pdwdepput/SqTdOLB0qDRCdeia1m5T7eqnk6vAz3iaD70Lp1IsofisVNY8ofiuKel2aKF5YhNr9VhRPUhC/DeLSmnnccZi8dCm2PfUUAGDpJZcYPxdQC25+mmQAIcRvY2yUAdCpF4QknHqA+vwtdr7tGBio+f5M4rfDW7fW3Bdm/FbVDX10x47K7VDjt8JtY6eegagXVfQWAKbsvz/OuuUWPPPTn6L/kENw4Hvfq9xOEc+NMvx0v6WoRzR4Wfw3cuqp4rdhXSddSo9kstlx57/iM+lK3fiO35Zr6um+K4f4bSMnywgp03xqA/GFbqCcBFtefrnm9tDgYPyinhC/LRYKsEslOvUmiKWYvQGii8ckotiQTj2H9xQ/m2ogFsaxLjpjdPW1wiJUUS8ip15S8VvLsnD+HXfgsW9+Ey3d3dj/3e82fi6gFo9CF/U0nyeWJjwenK1JIol6Ke5+C8TTKMP0/O1UT0/3OtW0xdwoo62vD0MTi5lAyA5Vw+634rGnOhZEh5roYAubuW94A+a+4Q019zn9drmODs+LMjo3EmvqET8oF/81+6xJswyj+G1ETj1gfNtLE8aGanROPVPBUbeYqnXqOTTKSNN1m5CooKhHjDCNtETN8O7dGNmzp3Y7onBqiDW0MpmaqKAo6gHA2NiY8jsJq/5WPZEW67ufSW/U+7pvp14AIclpAih+R6qBWChOPXESHbWoF2X8NgVOvaBNEtr6+nDYxz/u6TmV9woxfqtzBemO1TjqdTq9YppiPFL8Nu1OvTgaZRiev6XzUVU9Pd3rVBN1/Fbl1KsmiUYZJsdenE49HU7XSj+deHXRSEenHmvqEQ1eFv/dFsusTMZovOi7pp74uipRL5dTinq6Jh+mgqNuMVU3Nqgui5SWOQghccKaesSItDj1dghxFyCiSZ04yBUuQqqLaGF0VPmdOBWSbVTSYn33I3xEva+brBgqnXpB4rcenHr5iEQ9Me4mOmPCJtL4bVhOPQ8TXjenXpwuLaVTT7HQYfRamu9S9x1L99t2LB2qTf4WN+K21Gv8Nhe1U09x/hOdepNEUc/lGG+N2KlXEJ16oqiXRKMMg4myKOp5qRsaFk7XSj+iHuO3JEzCdOq1TZ2qFOFDG/8YOvVUGDv1DBtllOdhqutcS09PzVhCfEyartuERAVFPWKEpegamsRJcseWLdJ9Udiq3Zw52ZYWabBaGB1l/HYC8ftKyvruy6mn+L3CjDoZxW/D7n7rwamXjSh+q2qUESXS+SrAZ5Bi3CnofpukSyvURhkea+qpnM+hX4s8HC9JUm9OvZauLuU+H3VNPdX5260cgElNPdGJEmr8VhCFRMdOlPuhTtQzib5LTr2I47cqwnbqGcVv2SiDGKI6H2lFPUW9PJO/xx2/VaEV9Xw2ysg6OPXE8yOdeqQZoahHjJGEmphFPdu2sf2115T3R/Fe1agm8eLK+djYmHzhsKxIO3ymlbQ69fzW1EOEUScVcdbUE49jlVMv6LFu23bsjTJCjWlG1f02oUYZQcmEGb/VTJh1n0fl7At7wO7YKCNFK/711igDUIv5odbUU+1Piv1DPB+JTj23shltU6YgF2f8VrHQE9Z11bdTL63xWyenno/tMXLqsaYeMcSTU8/lujrvjW9U3h9a/NZE1NMcb6qxpOrxuvOYeK0tn5NV43jx/Ch+ftbUI81A8xX7Ir7J5PMojoxUbse98rF31y6MVb1/lNuhs31X0zZlCna++GLldmF0FLbgOGhGlx6QHlHPz6RXNUBJhVMvQPfdoE69oKJmYWxMcrHUU6MMcUAYVp3MQDX1fDSBCYs44rem3W8BOvXKpN2pBwCdM2Zg25NP1twXt1PPtm25pp5QDsCpbEYmn0e+szNSp54Uv1VM7sPqyi4tYurqXPqJ37KmHiE1eKqpp4jfLjj3XGRbWtCzcKG2Lm5U8VtlTT2dU09XU89UcNSUPTFJCojXQsZvSTNAUY8Yk7RQs0Ph0gMiEvU0tu9qROFFFb8NK6ZXb4TZpCAIvkS9iJ1AiTj1PIgUmXx+vPBx1eQsqKgpTqBhWeicMSPQa7ohRcVCbJQRVp3MMLvfxunSiiN+qxOolPHbsJ16Tn9L0eSg3rrfAmoxPxd1owzheyqMjkqCqNQow+EYb5syBZZlSU6UYoTxW1VzrpJthxO3EfdpTbrAV/w2ZU49P914tfHbquNNVVPPtm1YluX5/Uhj46X2tkrUm3faaVh26aWO7xFWCZxA8VvVArHi8aZOvbKgqBrrSKIe47ekCWm+XCDxTdJCjVbUS6BRBqCI3yoaZTStUy+keh5B8eNkUQ1awtx+o0YZpjX1DCcMXhplZFtaQhXEADnq1jEwELkIFWb81sS56wcvE17JbZTgucakpo0p2vhtgk49LyJ4ktRl/FYh5ofp1DM5f4v19KxMRtoup2O8fH6OKn5bKpUk15/qmhBGWQilayjERhlJiHpWJqMte+KrUYZO1KsSLcTXtW2bkT+iJKhTT1erzvH1oqypF1H81kv3W/H8KDXK4LFImgCKesSYJJ16tm0n6tRT1tQTnXpjY3TqTZCWVTI/ThbLsiLdfiOnnsKVodqXcu3tRp/JUdRTOfVCPtbFzrdRR2+BcPdB3eAyKIHitwm6tJQ1bWJqlKF0YsUZv02RU09atKiDRSRVLc0wnXrK87eLqNc5c6bcDMvJqTdx7VfFbzc8+2xgcU/1fJVoHkpZCMVrhFlTL4n4LaA/FiKrqac4lzOCS1RIi4QOInS+s1MS8XRiWTVSTbk6jN9KY1OHmnpSo4yEa8ATkgQU9YgxSYp6u4eGpBozZaI4WesuJtUo47d1OMmKgrQ69UydLFHu627iUrajQ7mdqn0pk88bCUOOziOFEB3255fqV8Ug6plExUwxrTnlFaffThzkpzl+a2WzaO3p8fVauoUP3eeJOh4P0KkXJVE3ygDcUwVS0x6hnp7qNapp1Yh6APDik0/i6TVrjLdVhUrUUy30hLEvqvZ1rahn4OBOQ/dbwEHUC9Gp5yrqsVkGUSDFSl3mCZOXLq253b1gget7hJWskpx6CvFRt/2mTj2do9WTU4/xW0Io6hFzkozf7tiyRfu3OJx6xvFbOvUAmF9Qi4UCXnjiCTy9Zg12bN0a+nZIIqupqBfhvu72WrneXuX9WlHPQExx7OapqalX8/yAn1906qkm0WETpjAZlVjvNMEUV+fdnHpxNknICYPqtr4+312+PTv1Em6UkaYV/3ptlCESZvwWcD/2RaeeWE8PcInfTlz7dTG4ba++GkjQER1eViaDFsV1IYz9XinqaY7leul+C+jHXr5EPZ0TqWq/zba2SscfRT2iwut4YuUnP1lxvS1+61sxZf/9Xd8jrIX1IPFb3fnRdGymM1coRT1hPibFb1N03SYkKijqEWOSdOrpordRbYdR/Fa4iBRGRz2vwDUqpvvK8489hpefew6vbdyIJ+69V5psBcVvRDFSp57La2lFPcU+aOzU81BTL4r4rejU65w5M9DrmWDSqdGUqMR6R1FPKDKdJqfewMqVNYP72atX+34tr40yTBohBMWxUUaKVvxV9TDTTu/ixTXn4Y6BAaXjLQhui0qSqKdy6vmI31YTpBNuQeF2U8WBQ3HqKe4LEr8VExWpi9+GKOqJYrT42uLvSAjgvZzH/DPPxNuffRYr/vu/ceJ3vmP0HmE51RIV9TTfUyablRYe2oX5GJ16pBmhqEeMSeokWSqVHF1ckTj1DFbSWidPrrldGBuTCleHVVC/3jBdJdxeJdaWikU8/9hjoW6HX+Ejyn3drXh2XuO8U+2D2XzeyAnhJU6YVYl6ITfKiMOpJx57QRxWUTn1ch0dWleMk6hn27Y84I1R0Gnv78ebfvYzTD/ySCw87zwc/ZWv+H4tbbRNI8BbliVNLMJ2z3mJqydJPXa/bZs8GSuvuQZWNotMSwuO+sIXfLs8dbhdf8RFhkkKp55JTT1dzSjAf7dJQHbqtXR3R+dQ9dIow0/8Nm2inp+aegbxW0DRAZc19YgCP+PStilT0DpjhnE35dBK4ASoqadb9DBNgjglpnoXL379/mxWiiiL4yE2rSHNQHMqDsQXSdVJ27V9u+Oqd1qcemMKp57TxKCRMRWFRvbsqbm9ddMm2LZtPHBxox6delnD1c3yfZE49UI+1kdHRmpuqyJ4YRNpo4yQxHrLstDS3Y2R7dulvznFb1W/R9wurQVnn40FZ58d+HW0LhiHz5PJ51GsuibE2igjRZODeozfAsChf//3WHb55eOLEhHUXIsrfutUWzOQqCc2m+jurhTTrzkPJF1TT3QP27Y0VkvMqRdz/BaQBUPGb4mKqBpvOb1mEvFbXVkFv0696vnUqi9+Eb+75BIUdu/GEddcg46BAcf32PbKK1h7111YtGIF2gwajRBSj1DUI8YkVVPPKXob1XaYXMhEUc8ulaRBXNM69RQXbVOxbue2begWmpD4JayaemE6gdz214yHrp+mop7T9sfR/Vac6MXh3gi1pl6Eg3CtqOfk1FPsQ/Xg0lKhFKtzOUf3ViaXQ/UeFWujjDQ79epE1APkuFSYOAn6tm2bNcpwOMZbDa5PdpD4reDwap04x2fyeRSrFkiS7n4rCpcqEashGmWYxm8p6hED4mioF2v8VrH9uY4O7Xjfb/fb6vnU/DPPxBWbN6NUKCgdgapr4dDgINY//TQWHXKI8v0IqXcYvyXGhNlN0guiqCdOXtPi1AOAMcGR1LQ19VRipuJ3yikuvK+uXx/adoTW/TYk0cBkX80Yrm6W7wvS/VYX4wxTwFe5N7KCYBUFoX6GCGP1ec3vJ04Yq7dBPM8A9ePSElHGeVw+S+T1XenUq2ucxiqjIyPS/qJy6jm5cduqRD0x9lUmTKdeS5WoV01kTj1dowyXMaBS1Etb/DbE7reiU088l1PUIypUzcnCJs5GGarxkK6enpdtc1tMzba26iO+mu80zPkFIWmDoh4xJolGGcViEUODgzX3zTz22JrbkdRKMBD1Wnt6pMGv6ABwiuc0MqoLqspVoJqUbN24MbR9K7SaehFtj/K9PXT9zOTzRvEm05ol5dcMNbqqeK7oQouCKJ16YcbqdZPevBi/ndiGsZERPHn//dLj4/hOo0BZK9LFdRh1fVfHRhl06qUepyY5Yj29TD6PjmnTpNcwaZQBAPtfcYXyMaGKehN1VqO4LnmK37q8v0rESip+q1t4Ccupl2lpkcZ/UqMM1tQjChKJ34Z0jVTNaVTjIacmQkG735rQrIYK0txQ1CPGiCfuOAqP7hwcrDmxW5kMZp94Ys1jophkSStpiouJlclIzTLo1BvHtKi3rnteYXQ0lO3w62SJakBkEpfyFL/N5YI59VQxzpBr6qnOE7GIeiF+BqeCzUHR/X6im9EulTA2MoLH7r4be3burPnbwBFHoFXTYCXtKEU9N6dexK5xL41lkoROPTVSTLTq91R1vlU50xxFvSqX/vK//Vuc98c/So8J1P1W0ShDtU2h7IteGmW4vL8o6mXb2hKrK6x737BEPdGlp3ptOvWIijjityq3sp/rpMnYRxe/1eG3UYaX74kLXKQZoahHjEkifitGb6cdeijap06NfDtMLyZSswyKegDUF37VhdvUdu8XyWFl2igjon3dyKkXRfzWq1MvxJqCqsltIqJeiG7DsGvqqRC/o7HRUTx+zz2SoNe9YAHe9F//Fdr2xI1KrE7aqecUvw27024QpPMbJzIAFNefqv1DJeqpMI3fAsDMY47BpLlzhbcM0ak34XaLxKmnuM9vo4y0dL4FNItgLS2+ao8qz1EqUY819YgBUTXeqkYpaocg6qkEf6/xW9O5ZJDvqVnnXqS5ac4q/sQXkU+kFIii3uwTT9Rux9aNG/Hqhg3o7O7G7MWLkXEotO6KoTNHHNyLXT6juFjXA6oBhVLUMyyQ6xeplpvPRhmh1dQLEr8N0CjDi1Mv7PhtYqJelI0yYnDqid/R1k2bpMdMmjcP5/7hD1phoh7QRdu8PKdZnXqM36pxWpQQ47eqenqAflKYa29Xnr/E83agRhmCU721t1e5TbF3v/Xo1Esqeguox2x+m3bQqUfCJIlGGcD4se7eqk56Us1N00YZeYcxnlN5BKf7PYl6vBaSJqQ5FQfii7hr6pVKJewUukLOXr0aewWhzy6VsHtoCE+tWQMAGNy8GZlsFrMXLfL93qYXEzr11JjEb532n7DcML6delHV1AsQv9XFHoI49VTfc9jdb1WiXhydWuvGqaeZ+LoJn11z5+LcP/xBcgjVG75q6kXtGq+T7reM36pxmjQaO/UM3fllRJEniFNvWCM8RnJdCtAoo7wN5S6XugYfSaD6/cIU9ZROPYp6xIA4auqpxosl2/YUzzMV/FWL+LkwauoFWExNKvZPSJIwfkuMiXwiJVAqFqUB5+SlS5UXhBeffLLmPvG2V0wvJuIAXxzENatTTxm/9SDqhebUS1lNvSDxW9UgJZPPG0WcPDv1QhTEiqKbqLVVO2kMk0Zz6lXTOWsWzv3979E9b15o25EUaYzf0qlX3zjFu0aEZlaTdE49zTHeKrjzy4j7rF9Rz7ZtjOzZU3PfpH32UW5T0k498fmSqNfVFXDr/KP6/XyLeiohw0DUY6MMokI8N0QhQCmPVY/nC9NzQ2zxWw/fk7ZjNcU+0sBQ1CPGxB2/VTp82tqU2yHWmQqKaWF8sVGGSLM69Uzit077T2TdbxOuqWcy0fPS/TYbV/w2RKdeXF1aIxX1EqipV6Z9YADn/uEP6Fm4MLRtSBJdrUgvzwk9fuv0Nzr1Uo/T/iHFb7069UxFPZ/x28LoqPTcsnjv1ADEL8qJu86p53Jdl+K3aXPq+YwDK+O3ius0nXrEhDjit8oxuNfzhWETHWX81qlRhs/4rZcGZbprYZqu34SETXPaiIgvkojfimTb2pSCSzn+ERam8dt2TRTH7XmNTtD4bVTOOOOaegH29ZE9e/DcI49geM8ezFq4ENOr3FRpi99qG2WEKYiJdQ3jEvWijN8m6NSbe8op6A1QWiBtKEU9jVNI9/c4G2Wkxaln2zadehp0k8ZSqYRRwanntaaeTtQT47d+95NhwaWXyeXQOXOmcptM38O2bezYuhX5lhZ0iucbcQEzk9GOp3Tx2zKpapSRRPyWjTKIAUnFb6Ny6qnOC07xW1Fw1C1OSOVzvDj1NI9Ny/WbkChoTsWB+CKq5gE6VKJeTiHqlUolZEMWz/x2vxVpVqeelckAllUzYZCcejHUrQorfuslSvXCk09i+5YtAIC/PPooevv70TYxwDE5ZlSTBdU2le9r6elxfU1Tp56VySCTzUYav03SqadbABjevRu2baNdExeLO35rZTLafbVz+vTQ3jsNqL5Lt3h2oo0y0rLSr9gOinrj6JzWoqAHOIh6hiU3yojnbb/xW6nm35w5lW3x4yC3bRtP3Htv5Zq04MADMWP+/Nf/LjxeF70FfDj1Utb91reoZ9r9lk49YkCSjTK8EEjUcxjnSYKjZmwWxKmnuxamqXs9IWFDUY8YE7dTT3T4WBNiQxzb4bemnoiXi1CjkcnnUarq4ic59Zzit3Xs1NslNHfZuW3b66JeAKeetqZeiE698uduxPgtgHEhRBg4bnjuObz4xBMAgFn77ot5y5Ypnhbdyrpq4qtyS5bpaDRRT/U5Exb1nJx6QRoghInSyR5DA5p6QOdoE6O3ufZ2rfNOJ25FHb8VnXrVjXBMu0ZWs2v79oqgBwAvPvVUraincOrpcBMKxBpyjezUU13HxNcvFYsolUrIxFBDltQPcTj1TErguGIq6gWM346/lULUC1JTT/dYh8VdQuodXmmIMUnHb8uDZtWAPfT4ramopxngV57XpE49QDEBSaD7rbQPxdEoQ9j2QtVqvVGjDI/x22xrq+t+po03aFaMw6yfKU5udU7EsFEds+L3UCoWK4IeALz83HMoVAnRZSKN36pEPcXiRZnOGTNCe+80oPqcrk49hVs7TOrBqaesh0mnHgD9WEVsktE1Z4527GBZlnLf1DbKCMupJ4p6VeUb/IzBBjdvrrldHBurfZ4o6jk59VwifWmP3+Z9Nu5QinqK65iqhiDdekQkDqeeSbM6N5TlWQxFPadGGW7nEd37exl3OV0LGcEljQpFPWJM5HWMBCRBZmIQ5bcduheMG2W4iXpN7NSTOlx5id9G5dSLoVGG+NhilXvBqFGGh/gtLAuWZbk7EDTbL4pc5fcw7U5mguTUi0vUM1ipHlMIeKqmO7rvKQxUv52qA3GZjoGB0N47DaQyfuv0t5RMCFSdNenUG0d3/pairZomGbrXAfTufPG8Flb8tnui8y3gb7FFtR3V+4401vEav3Woqdfs8VuAoh6RiXI8UXnNbFZKJcRZUy/vUFPPNBocRPy0HY67tCzMERI2FPWIMUl3v83pRL1SSbp4AQFFPfFioovisKaeFrdOfXF0vw2rpp6XfV0S9aqdeiHHb8u4TVZ0E0zdoMlPzMv0vZOM34rfvyoipxKUgtR2cUMr6unit3TqRX8tqgOn3u6hoZrbrb29rtejZsE0fqurp6d7HcA8fiuWDzElbKee6jE1ixmiwOBR1Cs5iHp+RbQwiDp+qxpL5Ds7pbFoUSG+k+YmDqee6nU9O/UU95nGbx2deqaiXgCnXnt/v/ZvaVmYIyRsKOoRYxKP3zo49VQBmlKAFdKwauq5dXFsZKTvLA1OvRhq6omPrXFFhBy/LeM2WTF1szZUTT2DiIdK7FSKejE79awmj9+qFmlq/hyik1RFHOemoIii3tSDD2adoAlMnXqT3Jx6AUQ9P04927almnpBnXqqcgKFkZGa96zBQVBXTejrKX7rV9RTlr5QOYwVrnk69YhIHDX1gGCJEwDSmB1IOH7r4Xvqmj0bc04+Wfk3NssgjQpFPWJM4AuER3TRSWUBWMXziz5XygHzi0m+o8OxRhideq8jOfUidsOUu51WYxy/DSJqOYl6Jk49D/Hb8iTebfKkbZShWTEWJ2+BRL06c+qpXFpRdr9VRdSymvhtrqPDd12otOInfutWrzMw9eDU27Gj5vbUgw9OaEvSh078UnWWdXwdVfw2wpp6hdFR6Zzk5NQzmZyqOv6OOTSwclqItCzLcRwoxW8TPFeFGb9VjTl1MWXxPQoU9YhAlDV6a143oKM9UPfbMJx6AR2Np//3f+Po665zfV1CGgWKesQYaUCZkvgtoD5J++0+p3o9J5eUU7OMZq6p5yaMRe2GCVJIPkj9SPFTFUNqlOE0oFEV6K7ZJsNGGWUnY5jHutQoI0WinspFoaz9GOHKeiablerP6OK3nTNmNJwbSylWuzico47f1qtTj4wjNVKZ+D2l+K0fp55pTT0f449hYfusbBZds2Zpt8dkXxytcuWVcYrfBjn2UhW/VYl6Pp2DyvitoahHpx4RkRab0xq/jbP7bciNMoDxc/L+V1zh+rqENAoU9Ygx0ok4Jd1vAfUFIVSnnpOo5xDBbWqnnlujDKeaeiFMnFVClG+nXpCaeh4aZWRaWrQuJad90DV+q3lfXcHmMJ1QiTXKMIh4qM4RJo7SsMV6UZTVxW8brUkGoHbluTn13JrwBMWxUUYKJgSFsTGp9hpFvddRXXtKxaLUGMdPTT1t91uxpp6PfVL8Tbtmz675LH7SEiqnXnUkV3wFN1FPF323bbup4rdap57wmVlTj4jEVlMv4HUyspp6hp15pZrYPr4n0/kiIY0ART1ijLT6HbNTT1dTD1BHHAI59byIenTqKQni1Auj5oXqwu23pp6X7RHf10v81mtkoVx7zHdNPV38NkTRRHccR41R/NbEqadyfIY8CBd/v0w+r3SCNFqTDB1Jd791WrCK+rpngujSy+Tz6Fu2LKGtSR+q/UPV6dqtPqV4HsxPmqR11YQRv5WaZFTV0wO8LzYVi0WlqDTmUFPPrQ6w7thTjbcapvstnXokRGKrqRf0Oqla0IwxfislJHzMp4zfi5AGgKIeMSbuRhm6mnqqk7Rq4BRmowzH+C2dekrcJiBRR9yScuqJFDzEb53qzTntS6419UwbZUzs56E2ykiopp6VyUgNF0yceibic9hivfj7ZR3it82AW8Q46pp6Udf7DIpYT69v2TLjBYtmQHX+Uh3rbqKTuJ85XeslUc/HoqJY86+7qp4e4P28PKZw6QHO8VunRhmAvjO6agyWtu63bmUqdChr6mmuAaypR9wIw4Fmgq4MgSnK+K3q/KC4XjvFby3Lkus2q0oohSHqZbPSNtOpRxoVinrEGPGEOrp3b6SuBUkMcHDqqVaUAsVvPRSypainxi0q5Bi/jcipZ1xTL0BTGKf4ratTz6npSgTxW51TL8ymOEl1vwXcJ8HGNfVcXjco4u9nZbPK37sR47dKEo7fOjbKSMGEgPX0nFHGb4VjPdva6lrLStzPnFz5YXS/FTvfBnXqqaK3gBC/9ejU08VvlaJegzj1TLvfqt6DTj0ikphTL2CjDN0+X1K4oHNCnWBp2wwERy+1zR3fK0DyhpB6gqIeMUY8MQ7v2YNHbr9dWl0OCy/xW5Pne8HLRbd18mTt3/xehBoB15p6STj1fMZvA4l6hcLrdYfcnHouq5u6+3zHbzX7eZhOxSRFPTdHl+ocYRS/Ddupp4rfqmrqNYtTzy1+G3En9npz6k096KCEtiSdKJ16grjiNulUvY6TqCcuyIRRU09y6nnc73WinlP3W7+NMkRHWqalxdgZHwXS+dOypIZEvl8L+u9JdH+yph4Ria2mXsjxW90+X1Ls405jWdW2waRRhs/vKerGWoSkBYp6xBjVCXXPzp145cUXI3k/qVGGR1EvDY0youpqVQ8E6n4bgVPPymSMxZhAgwCVa3RiwuPm3vArePlulCEeYzpRrw7jt4C7o0sZ2zeJ38ZRU08Vv20Sp57nmnpxNspIwYSgIDgjehYuTGhL0olq/xDHAy1dXe6v48WpFzB+a9t2+E49RedbAMr6gmU8i3oap16SLj1A3s6W7m7fncNV4wbW1CN+ic2pF7RRRgBRzyl+C5i554J2v9W9VxoW5giJAop6xBid60wciIaFtqae4Yk9tkYZDqIenXqv4yV+G0asW6pb4qHmlN9BgO5x5WYZbq+TjUrU89goI+hgsJqkGmUA7gNHv/HbsI9rSdTL5ZR1aujUGydorSBXUu7UE48pvw6kRkV17RHjt3k/op7TAp5wffF6DSuMjUm/q+jUExcJ3fZ7rVPPoVGGq6inuTaIjrQkm2QA8jk6SH0/pUue8Vvik3px6pmeG4qKRQK3cZ7JGDOs74lOPdIsNK/iQDyjc50VIooXSLG9iYuEZVnI5HKujTACiXoeajm0s6aekkCNMiJw6nmJAvkdBOi2uzzhCdIoQ4lh/FY3wZTE64mJaahOvRTV1BMjHsr4rYH4HLYDV3S1ZPJ5jAoRSwDomD491PdNK16dek4inB+iLg0QFNF15hZ1ajZMGmWYfGde4rdBu9+K0Vsrk0HnrFmO2+O3pl6pWESpWEQmm5Un7j47T0tOvQSbZADyOTrs7dEJHGyUQdxIzKkXMH6rc6eqauq5uWJNxphJOfV2Dw1h3dq1KBWLmLt0KSZPm+brfQmJGzr1iDFtU6cq78+4DAL9IkUDq0QZk4tgkPitl1bqTgP9sGtv1ROieCOKv5HX1BNe30t3SN+DIZ1Tb2Jg79ooIyKnnm67dCuh4uvtGRqSIn+mJFpTTxByxXNCWpx6nTNn1txunzoVvYsWSY9r7+8P9X3Tyj5vfKPj3yVXlM9zvW3b2LhuHdatXYtd1SKqw3GadJFt27blY4qiXg3K+K0Pp167MObpnD1b+1ixpp7XfVJMPHTNni0JU14npzpRD6iK4HpslKFzJEqinsH3GyXieLUz5AWRGUceqbxf3K/cFp9J8yEtOEfUuVxq3uOjJEA1OiF7+qpV3jYMcnImTU695x5+GENbt2LX9u14+sEHAxlECIkTinrEmJnHHIO+/feX7o+qA66uph5gNqkOMpjy1CjDSdRrYqeeWOdpz86dNbcdu9+GsE81hVNvAlennsdGGTOPPbbmOyiVSnh1wwZf2+Z0HEeNOCkXa0n5cupZluvE1ysLzzsP7ROrwZl8Hkvf/nZ0z5+PfU47rfKYQz784dDfNy2c+K1vVf49eb/9sO9FFzk+PqyI2/pnnsHzjz2GTc8/j0fvvLNSg8xRKrHtRCO4qnMIRb1aVOKXFFk2EJ32e+c7Kws87QMDWHjeedrHitcXr9cwseGYWE8PCM+pB7x+LvQavxWj3uXvVRJNE47fzj3llMp3aGUy2P/d7w70ekd85jOVf8889litkBE0hk0aH3E8FtU8QRS2xzQ1NnWYnhtmHX88BlaurNxe9aUvub62eB4RF1yVtYzDcuppmnKUSiWUikXs2r799e0aG8P2LVt8vS8hcdO8NiLimUwuhwvvuQe/OukkvPrAA5X7o5rgSLW4YnTqSfXYfNbUa2an3uRly2pu7921q+Z21PHbNNbUc3P5eJ2cTz3wQAD+G2XoVkI7pk3DgrPPxnO/+EXlb5tffBEz5s/3XGw8Saee6GwTB7V+nHpRHNMdAwN4yyOPYMNtt6Fv//0xZWLx5PQbbsCLt9yCXHs7Zp90UujvmxaWXXYZphxwAHauX4993vhG13hzS09PzW2/JSDWP/105d92qYRN69Zhn/32cz3ebdv2XXQ/KKrrGkW9WoycegZ1CPd54xtx0QMPYNuTT2L2SSc5ltoQFyvsCfHXdD8R47eThHp6QHjdb4GqZise47eiGFr+XtMWv22ZNAl/9eCDWP+HP6Bn4UL0H3JIoNc7/OqrMfOYYzC8bRvmnXaa9neNujM3qX/iqqnXITTWcmqQo8RQ1LMsC+fddhteuPlmtPf3Y+Yxx7i+tCTqCeePMBuUudUiLYyN4ek1a7B9yxa0Ka6lgVJfhMRI8yoOxBf5jg7se9FFtaJeRCuR4utWx1tMaloFskyHFL/tmjPH/zbUOX377Vdze+/u3SiVSpW4dtTx2yARB9815XROvXL81s2p5+JiW/H3f48/f+UrAMZXYZe+4x0A/DfKkCLKVZ97/3e9q0bU27tzJ3YODqLbYWKrfI8Eu9+2C7VQxEGtarAmfid7BDE6qqYE7f39WCQ41DK5HOafeWYk75c2BlaurFntd0KsQRhWMfqd27aN/8NN1CuVgIjKTrihuq7FeUzVA6oGOX7it8D4wkl58cQJ1bm7VCwia7gIIMZvuwM69WzFZ67Gt1PPVNRL2KkHAK29vdj3ggtCe71Zxx/v+hgW5SduSKJeRIv/bouabohXQaekQLa1FQvPPdf4td1i6qrjJiqn3taNGytuvKgaPxISBxT1iGdEQS02p17VoNlkxSbM7rdOA91MLoeWnh6psH37tGmYtmKF722odyYvXVp7h21jeNcudEwIUI7dbyNw6nmK3/rs/hp199ujPvc59CxciF0bNmDZZZdVJpK5jg5YmYyxI093f/VxNXv1avTsuy92PPdc5b7NL77oSdRTxd7ijN92hODUG9y8uea2n/oxJFwkp17IdatMnHpJobqu5enUq0Hp1Iu4Y7DqvFYqlWAamDdy6nkYe7mNf8rnQq+NMkxFPVPRtNGgqEfciKtRRoe4qBlR/NYP0nlEOF+p3Pctvb2+3svtvPncI484Pp/HMKkXWFOPeCauQUuSjTK8Ru5UEdz5Z5zhOkBuZFp7eqTufdWup7idel4GTuLvbSoyamvqmTr1XCbnViaD/S+/HEdccw0mVblALctydOvptstpcGllMtj/iitq/v7axo2eIhzK+l9JOvWEQa1bTb1SsYhtr7xS8/cFZ50V4hYSP7QKol5xbMyz0Ob4eBOnXkKI+6yVyXgqLdAMqBZlRCdI2KKTatHItJ6abdtSTT0Tp57T67sdD7rGR15r6hU1NfWSjt8mRZid40ljIqVIIhL13MY/bkQq6rnEb8VxppXNStd9U/wu0qu2rTA2hpeeegp/efRRqU44IUnTvIoD8U1cgxanAvtGTr0gjTJCsMc3S2zOiT7BrVd9EYy7pl4sjTI09xdMG2UEcLE5inqmTj1hP9/vHe+oEQzsUgmvrl9vvE1JRwVd47cuTr0dW7fWfgbLwrwzzgh3I4lnRKce4H0Rxyma6Hb2SXKiLn7OXEdHYvX90opYasG27UScerbhPlkYG5P2x+6gTj2Xa40ufuvWjMfYqZeC+G0SeBFeSXMSV6MMMX476lHUM62p5wcpfis69YRtbZsyxbdJwu286XbOq3YNrlu7FuufeQabX3gBa++6i51xSaqgqEc8E9egRSqw71HUC9Wp5/J+Q+vWSfc1cmF7U6RmGdWiXtzdb5OsqWfaKCOA4JX349RzaSbS3t8v1Ul55cUXjb+PYtJOPYf4rSoaXL6/zOCmTTV/G1i5Ep3Tp4e8lcQrKgG76LFZhtPjXeO3KXLqsUmGjFGjjBQ59cTorZXJoHP2bOlxXq5LbvtoWDX1SimuqZcEKkGZkGriapQhLmqWikVP9We9il9ecHXqCddnp4aEbrgt0rt9rvK2lYpFvPbyy5X7C2Nj2CWUXSIkSSjqEc+IE/+4GmV4jd+GWlPPxaknuvLyXV2scwS5WUaSTj1P3W/DrqkXUvzWidknnKDfLs37OjXKKLP/u95Vc3vvrl0Y2rrVaJtUTpVERb3R0cpvZJdKyt+rvN/Yto1BRm9TSRiinqoOX2V/cDn/hFHz0y8U9dxRNcoQv7ewRb1MNiuXbfAp6nXOmqU8F3tqlOHy3qF1v2X8tgbW1CNuJFVTD/DWATfRmnrCdjp1HndDdT2oJusm6k2MLXYPDUnfCZ16JE1Q1COeSSx+Wy3qGcRhwxT13N5vgeBmOuUHP/D93o2E2Cxj7+7dlUFu7N1vg8Rvg9bUC6lRhhMrr7kGyy6/HDOPOw6HfuxjNX/TTS5NVoxnHX88epcsqblv84svGm2T6hiMtVGGOKi17UqUQufkLX8nu7Zvx+jwcM3f5lPUSwWZXE5a6ffaLENViLtS+zLFTj0pRkpRT8LIqRdBF2vx3GYavx02qKcHKBabgsRvdY0yworfslFGBbr1SDVxOfVaenqk1/ZSVy/OmnpiuSRxO9umTvX9XkGdeuWxxa7t26W/8dgmaYKiHvFM0KKjpiQav/VYU2/p29+OY//5nzH/rLNw4re+xXp6E/QJ8Vu7VKq0jI+9pl6Q+K3pPu7W/dbNqRdA1GubPBknfvObOO/WW7HkrW9VbJq8bSYrxpZlSQ0ztm7aZDQ4FOO32dbWWOt/iU494PXBoq7mZvk7Ebve9ixaJHd0Jokh1tXzEisC1M4+U7dfmrrfBlkIaFTSIur5deqpOt8C4Tr1worflr9XUVSnU+916NYjZVTXjqhEPcuyXOsKOxJl/FZzHikjbmeoop7o1HOZ35W3bee2bdLfeGyTNEFRj3imbhpl+BT1bNv2HL+1LAsHf/CDOP2GG7Dssst8vW8j0j51qnQxLnfAdboYhlGnMWynnsl+7tr9NsKaetWYTixMV4yXXnJJzfdn2jBDEuZjFiCyra2S+FMW9dyceqKot+DMM9mQIEWIooHKeeeE6vGFOnDqSTFSinoSqvO35HCMwEkmXmOMRT1Dp54YyXW8hhp0v1UKDB6735aKxfHvlzX1AKivoUnG9Um6UB2zUYl6gJxWSI1Tzy1+K9bU6+vz/V5u503XmnoT26IS9dgIh6QJinrEM1HVDNm+ZQuevP9+PP/44ygWCrIoUyXqmbSALw82vSJG7gC144eYIdbVKzfLiNqp59YEwgmT/Uv5ni5OPbcBQKSink+nHjBez2Th+efX3LfZoGFGGlxFupVqnbPLtm0M795dU/8RYPQ2bYiinudGGYrfvzg2ZiTgp8mpx5p6MipXtrh/5CJw6ondy00XFocNnXri4qLjNdTlvctCnNeJe4vCYVMqFiVXD7vfvg7dPKSMSuCNUtRzahbmhnRu8Nl9VoWrU0/YzvYInXpui7WFQgGF0VEM794t/Y3xW5ImKOoRz0TR/XZ0eBiP33svBjdvxsa//AXPP/649BivjTIAf249cYCda29Hx8CA59ch44gR3D0mol4I+5RTTUY3VM5Mo23SfKZSsYhSqRRp/LaasJ16AHCA0DBjePdu1wFi0k49AOjQDGp15wa7VJJceu39/Zh+1FHRbCDxRdD4rcqpV+mInGKnnuhooKgnYzI+iMSp5yF+a9s2hgYHsen557FnaKjmb9qaeh7GXqJ4oNpPxkZGPE/cVZNx1bHXrPFblaBMUY+UidupJy1qehD1pPitQS1zU1SO32rERhlR1tRzOz6LhYKynp7JcwmJk/COUNI0iIOWMFYqXv7LX2ouIK8oCvF7rakHjF8o3OoliIwIqzGT5s1j7C4AUrMMg/htFE69IDX1gPFJktsqiNN2FwsFd6deRwfgpeaJBpXTUPXe4sTP6bgaOOII6b5CoQCnb1V8zyREPd2g1smpt1UQ9eadfnqo9WRIcFoFUc9rowyds68w4dZzgt1v001iop6wcOTklhvctAlPrVmj/NskQ1HPy8JYa2/veG3BqiRCYXRU7n7rsaYeoK7Txfjt69DNQ8qoxr1+kyEmSE69tHS/FUQ9t5p6YXa/lTrYuhyfxbEx7NSJejy2SYqgU494Jor4rcrWLOK1ph7gr1mG6NTrnj/f82uQ1xHjt3t27nSNuEXh1POyGuo3QuMo6o2NuTv1QuoMq4oaK+O3HoTPbEuLtFKrazZR+XsKnHra+K3m3DA6MoKhwcGa+xi9TR9B47c6EdDE8ZemmnoU9WSMRL0oGmV4qKm34bnn1H+wLHTNmaN+/QCNMrKtrcoJftBGGYBcssTKZmPtcp4mGL8lTsTZKAOoo5p6QikAqaZeiKKeeF52Oz4LhYKynp7JcwmJE4p6xDN+mwg4YfJ8P6JeGPFbinrBmCzEb0vFIkb27o29pp6X+K1q5TSoqFcwcOqFVXMuivgtINehchPNpZp6Hn6DsBBrsbh1v905OFjjXsm1t2POySdHt4HEF1E0yijfn+aaelLDB4p6EkmJelJNPc35vlgsauNcXbNmaRdXvLjApEWtlhb5XBiSU08U9Vq6u5s23cBGGcSJ2OO3QumgQPHbCEU94PVzVqVOZxWB4rcutUhdx/a2jaGtW5V/YqMMkiYo6hHPKOsqxDBo8VNTz49Tb0QU9TRFq4kZnTNmSBPwvbt2eXIZ+EGqqechfqusqWeyjzuJemNjriJzWK6bsBtllBEHYm6fJ9XxW8Nzw5yTT6ZwkkKC1tTTOfuKJqJeipx6zeqIcsItzpZtawu1PlTldUWnnuYcs1sj6AH66C3gTdRTLWqJE2OVU89t4p7r6AAEwU4U9Zq1SQagHh/TzUPKxO7US2v8ViXqTVzDxXp6QMiNMoTj0USYcyrXQkhaoKhHPJPESqSVydQMlkwH5HTqJY9lWZisieDqCGN/CuLU81sXJ3D8NiynnuHEwqtTz60Oikga4rdS/MSl+60Io7fpRKyp57lRhubxhbEx90YZKaqpR8FZxq3TeRQuPcC8UYYY76/GaRHRS7RTVVpBnBgXRkch7slujTIsy5Im5JKoF0G9wnrBsixXZxBpXtLQKMN0f4xb1CsvtIrCo5XNSot4XnCrqRdEdKdgT9IERT3imUhqhrhcZLJtbTVxDuP4rceJXqlYlAaoPRT1AiPW1dvrIupFUlPPg1MvivhtcWzMdUUwrMGdamKhEkqlRhkuYrnUsawORD2pjpRL99saLAvzTj89is0iAckHjN9qG2UItX1UpMmpx5p6Ml4dx2Ehinq6/URXnwkIz6mnqikrOfVGRjzHbwH5+xMjfc3a+baMONbgxJ+UEcdcVjYbaVRdFPVs2/Zcf7ZMmKKeaixY1Dj12qZMCfQdheHU00HBnqQJinrEM6oYY9BBi9tpURwsRxW/Hdm7V7qPTr3gKJ16cXe/jcGp5xi/VdQJEQlzcGcysfBcU08QEFxr6om/QQrit4UJcdXE2TX9yCMlpx9JB5JTL6SaevUWv6WoJ5PJZqWIaDVRiXpSTT3htyqMjWHT889jUOiuXU1oTj1hH1Y59fw0ygDk70+qqdfETj0gmmZypDHwOuYKirioCYw3AzPBazTfC1Ymo10kljrfBojeAooGQ6JTL8B8gzX1SJqgqEc841vwcMLNqScIMlHFb8XobWtfX9OvOoeB1AF3167onXqKSY0pYtwbAPYadGh22ou91DIJA5OJheeaegEbZaQhfguMrwSbCP49++4bxSaREJAaZYRUU8/E8ZemRhkU9dQ4ncuiiiw7db+1SyU8cvvtWLd2reNrdM6Yof2bl9InJo0yCj5FPVG0E6+NQaJyjYDUbZNuHjKB1zFXUHJtbfJirOG1Msr4LaDogKuJ3wbpfAu4j4UZvyWNAkU94plI4rcuiCvgUTn1hoXBKV164SCKesWxMYwqXJFlwtifbOG39xK/BYD+Qw+tuf3qSy+5v6fD4F3VdWzaYYeNb1suh5O/9z1P2+eGWx0RQOFm9Nj91nP8NoGi/q19fVKdqLGREaNofhIiJDEjSKOMUrGo70xq4NRLcpLOmnpmOJ3LIovfOoh6Q4OD0qKhSCafr1wTdH8X8VJTT9Uow0+HS3FxR4zL9S5e7PoajQydekRH3E49wH+n+NhFPV38NqBTTxLZGb8lDUr47b9IwxNFowy3E6Pf+K1Xpx4730bDpH32Qa69HYUqIW/30JD28WFMmiWnnof4LQDs98534pX77qvcHnzlFYwOD6PFQZjyKuqddsMN2Pvqq2jt7UX3vHm+ujXr8OXUcyswr1lZ1SHFbxMQ9TLZLNqmTsXeV1+t3Dc2MmL0XSchQhIzxImKXSqhVCwaiRJOrr5CoeDeKCNN8VsKz0ocnXpx1dSr+q10kbdcRwdaursxsn07Vn3pS8q4XBkvnVVNnHqq+K1TbLmM2/c35aCDXF+jkXGL+5HmRRoTeVxs9kNLTw/2VEX+jRfAIhb1xEXi2Jx6VZ/Ltm069UjDQKce8Uw9OfW8NsoQV9LZJCMcrExGqqvniG0HHgirnApeWPzmN9fGFmwbr65f7/Km3kS9XHs7+pcvj0Q8FicWKqE0aPdbN9E8LQKEOFEeHR01Gth6FYJJfIg19QBzB4JT/T2jmnopcupR1FPjtEAhTibDwsmppzvfnHnjjXjniy/ir3fuxMFXXun4+l5Kn6hqyoqOF1XzJiOnnpuod+CBrq/RyLBRBtEh1u3uGBiI/D1bJk2que03fhtmTT1A33hNdOq1Rxm/jdiQQkicUNQjnlGt1gQ9sbmJA+IgyS0mWMZrnSVR1GP8NjwmL13q6fGB96mAol5Ldzf2vfDCmvteeekl51qAHkW9KEUj1zoiCuHUVdTzWJtF/HtS9SlVHXBNXLxJOAuJGaq6XaaTFSfxr5DyRhmsqWdGEk49qVGGi6j3Vw8+iFnHH4+MYQdMVQMQL/FbVcF58brkp1FGzTa2t6Nn4ULX12hkTEpfkOZEFPUmzZ0b+XuK4y7TplJJxW8lp17Q+K0osld9Lq/RW7coLyFJQlGPeMayLFgGgoEX3CbYvmvqeeyIKMZvJzF+GxpiXT03AlnibRsFYbLip3j3/pddVnN7ePdux9iw036vil9FKuo5DGRUtwGD7rcenXqieNLa2+v4+KgQm2WMjYwYCUCM36aXXFubtI8bO/Xc4rcuJDVJt22b3W8NcRT1onLqOXS/FcciC845B1MPPtjze5gKRqr4rSrGFrao17FwoVTDtNlgTT2iQ5xjdCUg6hmbHRJqlCE59cLufis0MPJC/4oV2tciJGma+8pLfGMJtV3KJ7ZSqYSnHngAd994Ix6+/XZpVUqHW30rvzX1TCd55ceKj6dTLzw8xW8RbOJcUMSKumbP9vw601etkoTd115+Wf8Eh20WJ+OZXC70OEPN6/vo+OXmgJW637oMDtMi6rWLop5h/JbRxnQjORBCcOqp4rei+J7UQF71vhT11CQi6jnsJ2G5lk3rtamceplcDq2TJ9fcL4l6BoKc0/fXwY7hdPMQLXTqvY4o6pV0Tr2+vkDv47QQ4uXYtLJZTD/iCO1rEZI0FPWIL0RRr1yva+umTdi6aRMAYPeOHdi4bp3R67k5fsTBchSintSZzrLQvc8+xs8nzsTp1JM661oWOmbM8Pw6lmVh0UUX1dz32ssv6ydSHi7wUUc7TeK3bs8R8VpTTxw8+nFLhoEqfmtUU49OvVQj1tUznaw4Pa4wNiaJ81IDhIQG8qrFL4p6ahLpfushfutX1DN1gYk1VMvPU3bArSKoU69z0SLX5zc6YkMTTvxJmUREPZ+d4uOuqVcsFsdTNjF2v/VybE458EDpu6RTj6QJinrEFzqn3u4dO2ru37trl9HrRRa/VVy8bNvG4ObN2LhuHUaHhyv3S7b4WbNYKD9EehYuNP7dgGAdcEeqflcA6Jwxw7gOo4go6o3s3Ytd27YpH+tJ1It43xInFuL3qRqMuIp6Hrrf2radXqeeYfdbinrpRhxgm8aKnBZ7SsWitHrvVCstTlTXSbHOJRkniZp6olA3sndv5ZogjkX8boM0QfXg1APco2xBG2V0UNRzjPuR5sW2bWnBORZRT2iUYXqdjNypp0h+qK6/QeO3TiK7l2v5wOGHs7M1STUU9YgvJFFv4sQ2KogppoMZV6deiPHbTevW4cn778fzjz2Gh2+/vTLYlppksJ5eqGRyOfQuXmz8+DCdel2zZvl+rakHH4zeJUtq7tuycaP6wSly6rlNLFSTQa819ZxWfFV/S0tNvZG9e41+K9bUSzd+Y0VukxrxuiHFKhMayKuuk3TqqUlC1JtywAE1t8dGRipjotidej5FvcBOPcZvXevZkuZkdGRE2hcSid+mtaZeoSA5h4HwnXp+a+oNHH4462WSVENRj/hCWvmYOLGJ9VlMBjO2bbuuloQp6j3/+OOVf4+NjGDLRI00qUkG6+mFjpcIbpCLpeTU81FPr4yXCG6qnHpujTJUTj2XDsGiK8hJjFcJLIk59RTxWxNYUy/dSPXBQmiUAShcTmL8NiVOPSuT8eR+biaSqKnXu+++yAuumF0T6QVRSA5N1DN06pXP7W4T5CCiXs/ChchG9N3WE5z4ExXiHCPT0oKOgYHI3zesmnqhx2/FmnrFohS9zeRyvs+VlddwOGd6OTanKUQ91sskaYKiHvGF1qknTJZNTnhuLj3Af009VdFzke1btgAY72xaDZ164eOlWUaQ1W3JqRdA1APkCO7YyAiGtm6VHpcqUS/hRhmioG5lMpE5ZNwQ47emMH6fbkSxVux4rcPrJDstTj0xMp7r6IBlWYlsS9pxGiNE5cC1Mhn0H3JIzX27t28HoHDqCeKfKaaCkSRMT+zDrk69AI0yZh5/vOtzmwFT4ZU0F1I9vTlzYukU7depF3ejDJVTr23KlMDXOKdzpmqOmmtvx/Qjj5S2tW/ZMh7bJNVQ1CO+kBpllJ16PuK3JqJezqeoZ9t2zesrmwNMXDCk+C2deqHjJWoQyKkXYvwWGHcYTjnooJr7HLvgGhB1tNNt8OGnUYYYv3U6diVnSk9PLANYFaL4Ywpr6qWb9ilTam6rojsqvA7E09L9VjzeGL3V47RAEaUDd9qKFTW3y0690OK3hk0YdPHbMJx6OkFy9oknuj63GaCbh6iQ0kAxRG8B+VxjWlMv8vitolFG2E0yAG9OvdbeXvz1zp04/447ahZoDnzf+5DJZuUEDI9tkiIo6hFfqBpl2KWSNKkymTz5KVivG7D3KOq5VDuGVJM+K5OBbduSENRDUS90vMSeAjn1BHE5qFMPkN16r23aJA3WvWyzW9Q1KG4TC3EwYmUyrqKb+Ps5RefT0iQDGB/U+vm+WVMv3Uix6ohEPXE/oKiXfpwWKKIU66cddljN7V0ap15YjTJMnXqZGBplzDrhBNfnNgNslEFUSIvNCYl6xvFb4Xbk8VuNUy8ojk49MWI8cZ60Mhmce9ttOOk738Hpv/oVjvr859WvRaceSREU9YgvVPFb1YQqLKeeOAjXrRj1KjqvVV/AlPEsy8LYyIi0HXTqhY+XSajfgbBKoA3q1ANkUa8wOoodr70mvbcpUQtGXhtlmLhfVZO5kmbVVxw4JinqWZYlNcswgU69dNPms1ail4Y2gOzUC9KZOwjiAhg73+pxjN9G6NTrF5x6YyMjGBkels6HkTfKEPbRqBtlTF661LcjutHgxJ+okOK3SYl6hYJxvfNq4uh+Kzn1QhD1xLFwycGpl61a/G3p6sJ+73gH5p95ZiUCTMGepBmKesQXKqeeWE8PiL+mXuesWdKAs9oxNKoQHkuFghS9zbS0oHPmTNftIt7wMgn1O3EuFgrSPhWGU69nwQLJhSFGcL1c4NPWKMNI1FM4LXVOW9Gp19LT4/r6UeKnrh4bZaQbUaCILH5Lp17d4eTMjVKsVzXL2Dk4KO1zUcdv426UMXDEEa7PaxYY0SMq0iLqAWYJqdi73xaL0jXcbRHCBGlsa9uV86buPGn6Wkkt8BGigqIe8YXSqSdEHsv3u2FycRFdTVpRb2BAcgRV149QOfUKY2OSqDdpn30Sq//VyMTh1BObZAAITaBd9OY319zeummTkSitImoXmGujDB9OPbGmHqAvupym+C3gr64enXrpRmqUMTrqy4HgRloaZUiiHkVnLUk0ygDUzTJERzcASfgzxXRSqXOguJ0HjRplKES92atXuz6vWaBTj6hIS009wCyCG3n3W0WNZtFtH0X8Fnj9/KirPap9LQr2JMVQtSC+UAkGKqdeVPFbXU299oEBtIiinktNvcLYmHSxZefbaFCJQjr8DoRHBHG5fdq00Fxxiy68sOZ2sVDAtonuyUDKu9+G4NTL5vPypFJz/KYpfgv4dOpR1Es1KoFCjO8oCerUo6iXepKqqQfIzTJ2KDqlRx6/9VlTz7RRRt8BB1Rud0yfjoXnnef6vGaBjTKISGFsTFoATVTUM2iWEXf3W0B2M0bi1AP8O/UUKTVC0gJFPeIL8eResm1lPaPQut8KkxfdgL1jYACtQsyvWlxQbaPKqdezYIHrNhHveInfhuXUCyN6W/1aM44+uua+6giuJ1EvZqeeW1MPtxXKMqqOZSrSFr/toFOv4VAN+E0iuPXaKEM81hi/1ePU/Tbq47r/0ENrbu/dubPmtpXJ+BZkTV1gOqdeftIkR8HTdOL+xh//GHNPPRWzTjgBb/qv/2J9xypMI9KkeRDFKgDomjMnlvfO5HLStcJE1Is8fqtwK4sGi6idek419Uxei8c2SRM594cQIqOqqacU9QxOeCainijUOYp6Hp16RTr1YsNT/DYkp14YTTKqWfTmN2PTn/5UuT24eTOKhQKyuVy6nHouK4p+nHrA+OrqyERHR0DfKCN18Vs2ymg4sq2taOnuxujQUOU+P6JeJpfT7sfl93F6flywpp45ScVvAdmpJ9LS3V0pvO4Vv0698mTVsiy09/dj98aN6tc3nLj3LVuGs37zG6PHNhsspk9ERFGvY2Ag1iRAS3c3ClXzHHF8piJqp16LQtSLo/st8HrZAq8N43hskzRDpx7xRZiNMkxq6omRWi+inpFTb/fumvvY+TYaVI0WyoRVjD5Kpx4A7Hv++TV1h0rFIra9+ur4jRSJeuKKYxjxW0COUOuOX3ElOHFRz6NTz8pmHd0+JB2Iv6tJB1zxWHCbOEiiHhtlpB7H+G3E597eRYsca+b5jd4Cikmlx0YZgHOzjLAn7s2IqfBKmoek6umVUXXAdSPqmnrZlhbXc3Fk8duQnHpslEHSBEU94gtlo4wInXptkyfX3HYS9aSaelUXL5WLw7ZtuSsVnXqR4DQJFf/m92Ipdc/y4dByomNgQCoKXo7genHw5OKuqScMXryuUJaR4rf14tTzKOqxnl59IAoURh1wvYp6rKlXd+jOZ5mWlsibYFmZDPqXL9f+3W+TDCC4Uw8A2h32dzYIC45b53nSfIhzjK46FPWiEPzdzoVu3bpNcKqpp6s9qn0tNsogKYZXb+ILpVNP1f22VHId0JiIeqZOvfykSVJUt+Di1FPBmnrRkMnltBdNcYLq92IpDlaCuCJ07HvRRTW3t73yCgpjY/K+7hCxqsdGGYBcF1F3/KZO1PMo7jJ6Wx9IHXD9OPX6+hwfn1qnHvdRLbrzWVzfWb9DBFcVOzNFtaCqQnLZVIt6DgscdOoFh40yiIhkHEha1DOI30ZdUw9wH5+HEb9VJS5Cq6nHY5ukCIp6xBcqC7JWMHMR9Uzit6IgoBqwt/b1wbIs5/itgYujpbsbrYIzkISHrqC2JOr5XN2OQ9RbeO65NTXrSqUSBjdvlvZ1JyErbY0yxBp8OqT4rWbFVxw0Jt4og6JeQyLGc/zU1HObOIhCUFKRG8l9FfHCQD2ji87HdVxPE5plVBPkmmQiGNm27ThZZfw2WlhMn4ikLX5bSIlTz2mBI5PLhTJ+D9Wppzi2eXyTtEBRj/hCXC0uKtq1l3GbALk59bKtrdKkSnWSLrstdI0ybNtGwWDC1z1/vu8i1sQdXQRXvD80p14AV4SOtr4+zDnllJr7Xtu40ZMDKHanXliNMgRRT3X82radPqce47cNSRyiXmqceqJQw31US9JOPSdRL0j8VpzkqrpqqiaZNTX1HPb3sOtmNSMspk9EJKfePvvE+v5enHq2bWPzCy9g57ZtNfdHcW5wGp+3TZ0aylzMymSksgJ+nXrKxSKKeiQlUNQjvhBFPdXAsozbgMZN1FOJAU6inlRTb+LiZVRrCex8GzWi06tyf0h1q0RRL8gEyonFb35zze3tW7ZI2+zk+Ix6Qu7UKMO2bQxt3Vrzdy/db6tROW1VAn/Sol6uvd3TvpBlvbK6oM1HowzJUevizE5L91tpAkKnnhbd+Syu49qpWUYQ90n/wQfX3N4lTLwB9Zgraxq/ZU29wDCiR6opKcoTTZozJ9Zt8FJTb+umTfjLo49K98ddUy+MenpldA0unBoKmbxO9WsRkjS8ehNfiKKeqp5emcCinmLCpVotqTj1hJhfeUXKpNYSwCYZUWMcv02xUw8ABo44oua2XSpJ+7KTIyIpp55t23j+8cexZaK5RxnTLmOSU08xOFStAict6gHeIrh06tUHUvfbKJx6IXXmDgrjt+Yk7dRzapYR5Jo07fDDa26P7N0rjb+Uol7VvuJ0rqeoFxzGb0k1qvlR0k49p/jt4ObNyvvjrqnn1NDHK7rxsCjIuV1TVaIfRXuSFnj1Jr7w5NQLWFNPVYtLV1MPUMdvbds2duqxSUa06Do2SvFbHwNh27Zjc+qpLv6SqOcQv416cqmbWLz01FPYtG6d9NiDP/hBo9cVfyfV8StGb61MRnL4JYGXCC4Fk/pAFChMSix4cdQCKY7fch/VonNcxPmd6ZplBBH1+pYtkxZWdm3fXnNbVWfPNH7LmnrBEfc9NspobsR6evnOztjrdnt16qmI3akXpaincep5bZSheg1CkoKiHvGFeHJ3ctu5DWhCi99OXADEx9u2jVKxyPhtShAnJAAAy5ImW34GwiqBKYpGGYDGhi9ss2P8NmanXqlUwvpnnsGGZ5+tud/KZnHqj3+MmcccY/S64u+nGhyKq8AtPT2pcIB4EfXo1KsPJKfeyIjrgoD492xrq6PoLDn1korfsvutMUk3ygD0dfXyQRplZLPoF153pyDqBYrfUtQLjHjt3b1jB1586ins3bUroS0iSaKqpxd33W4vNfXaNGka02ZqXnCrqRcWWqeex9rSTk03CEma5GdZpC4xrb8FRFNTTzXwbJsQUMSaesC4yGBUawnjjTJIdKgaZWRyuVDq0KgEpqjit6oVPXFfzra2ahuDxN39dveOHXjpqadqH2RZOPn738fCc881fl2xJqLq+E1bk4wy7Zr4rUrQYROC+kAUKFRuXQmx83M269ypOiXOGzr1zEk6fgsA0yJw6gHAgBDBFevqqfZP0+63bJQRHJWgvOGZZ/Dw7bcbOYlJYyGKel0x19MDvDn1dAYIcVEpDJzOhZHGb3069VTHNp16JC1Q1CO+EOO3TritYvipqada5SrXwhNr6gHjq1Kmoh5r6kWLqlFGJpdzbOxgimr1Mar4rYlTL5PNKuPjgPvgISgmr3/iN7+JJRdf7Ol1JaeeqlFGWkU9jUNFFZPWxcRJulD9pm7nevHcYjkcp0B4TXyCQlHPHG2jjBhFvd7Fi5ULBkHd4wMrV9bc3rV9u9QISaT6+3CcLKfAUV3v6Pa9UrGITS+8EO/GkMSRnHpz58a+DaJ4pqupZ9u2VnjunDEj/O1yOBfG4dQLI37LRhkkLfDqTXzhSdRzWcVwq6mnEukAYPbq1a8/pq8Piy68EMC4QCQOpAtjY0bx246BAW0jBxIOqu83k89H4tTLtrVpY1hBMXHqWdmsdv+NO34rcuy//iuWXXaZ59cVjy1VowzRqeckmMSJrlGGshkPnXp1Qb6zUxJgnRo3AWpRT3ecAulplOG1U18zkwannq5ZRtD6oqJTrzA2huHduyu3pcWlXK6m/EG2tVU7maZTLzhOMUWx/iFpfMSaeomIeobx23INcpFphx2G6UcdFfp2JVZTTxe/dRP12CiDpBiKesQXXkQ9t1UMP/FbADjpu9/FwvPPx5yTT8bpN9xQM7FTNctwex9AX9iahIcqjmqp4rd+nHoxdb4FNCt2ClFPN3mKPH7rcIwu/7u/w8FXXunrdU2cevUWv1VtH0W9+qF38eKa23t27nR8vHhuyeRyyrINZVT7QhJuPTr1zEmDUw9QjymCOvW65sxBx8BAzX3VdfVMxF+dC4Y19YLjtKCWhtqyJF7S4NQzXZhSmR9O/9WvcO6tt0aSLomr+624uF+el0r1dd1EvWwWEJJiFPVIWuDVhfgiTKeem9imm2xNmjMHb/qv/8LZv/2tVORffE5xbMyoDtKck092fQwJhmlNPV+NMkRRL6ImGcD44FwcoIvbbDnU6krSqRdEvBZdUarjt57it5mWFmUknE0I6ocpBx1Uc3vXjh3OT/Do1FPtC0kM5MVjjfuoHt3kLG5RT9UsI+h1ybIsTHOoqydFyhTXGt2EmaJecJzcPhmKek2FbdvpEPXEurCaRSmxdEV+0iTMP/PMyBJMLQ6u5STitybu9zAMCIREAa8uxBdxinp+BAFxgmbq1KOoFz3a+K2wT4Xh1Iuqnl4ZcQAg7mOZXE4bPY16Qu4k6ik7EBtiIupJ8dsIxVUvqJx6+a4uZUSbLqj6of/gg2tu73YR9cQzi5XJODfKUByrSdTRMRFryDg6p3LcQqhS1AvhujRdUVevjOToVDn1NPVFKeoFx6nkB516zUVhdFQaI3UlIOpJ40HbVo6xRVFPV7IkLBydelGKehOf3eRcKSIe33TqkbTAqwvxRZiNMlxr6vkR9VTxW5cTb+fMmehbtszzexFvxNn9Nsr4LSAPFFROPW2jjIgn5E6DkyCinihwqI6rtMZvVQPUlkmTlAIoG2XUD1MFUW/Pzp2O53tpdd4hJg9o4rcxD+RtxSSMop4ebfw25u+sd/Fi9CxaVLndMX16KM24JKfejh2Vfd7EfaKbMFN0Co7Tghqdes2F6NKzMhl0zZoV+3aY1oITRT1dc7GwSLqmni+nnqHrkZC44dWF+MKpXpeI0+THtm3XyVEYol7RwKk3e/VqZVddEi4qQUkp6tWBU0+KNIhOvWwWrUnV1IvRqSf+VuLvkBZRr23KFKkeSr6rS/ldsaZe/SCKenaphL27dmkfLzXKyOWcnXoKIShuUU8lUlLU06NtlBGzWG9lMjjlP/4DM44+GgMrV+KNP/lJKM0oph12WM1tu1TC7qEhAIZOPc2EmY0ygkNRj5QRRb3OWbM8zZ/CwrRrq1hTT1eHOCy0DXvy+VDH72E69cIwIBASBfGfWUhD4KlRhsMJzyQS60cQEGvqFQoF1xPvgBBnIdGgdOpF1P026tin5NRTdb9NYU29IN0XVZNiu1SqiW1J8duUiHqZXA5tfX0Y3rq1cl++s1O5Ost6ZfVDW18fuubMwa716yv37R4aQqfu+BcbZTg4aq1sVjnQj92ppxL1uI9qSUujDGB8bHH+7beH+pptkyejd/FibH/mmcp9u7Ztw6TeXrkRjMqpx/htZLBRBimThs63gFqsMnLqRSzq6YS7tqlTQzVZ6CKzrKlHGgleXYgvworfiqtYKnw59YTJnFtNPSubxcLzz/f8PsQ7qqYEVi4nX3RT3v0WcF/Vc4zf1qlTT1lfTBgYpTV+C8iDVF38loJJfSG69Zzq6kk19RzEdyuTMXY5RInq+kWnnh6tU6+BjusBMYI7UVfPxH2ijd9S1AuM07WXNBdpaJIBqPdJpagnOvVCrGunQjdGD/t9pQV4OvVIA0JRj/girEYZLzzxhOvz/bh8TLrfVgbEloXDP/EJdE6f7vl9iHfyCqdXWDX1RDEpiCPNBLfBe5I19eJ06omCg9T91qGzaNyIDhVdowzW1KsvpgodcB1FPVXtS42rz8pmjSdEUcL4rTfS0v02SsR0wc6JDriS+0Sx/9KpFx1OwgAFgOYiLaKe0qmXgkYZ2ZYW5XWsra8v1PfR1tQT69RS1CN1DOO3xBdhiHqDmzdj2yuvuD7fqZOYDpNGGYddfTX6DzkEpUIB3fvs4/k9iD9MG2W4NTZREXv81mUAkMlmlYKWlclEXlfFaXCickua4ibq2badaqeeOEjN06nXEExdvrzmdrm+mAqppp6DUy+TzSKTzcLKZGquZamI31LU05Km+G1UiE69vbt2oTA2ZtQlWVdTj/HQ4DgtqDGq11ykRdRTus1TEL8Fxsfpe7dsqbmvLWKnXvk49BO/lWpp85gmKYFXb+ILTzX1FCe8UrGI5x97rOa+9oGBwNtVRinqCW6ibGsrumbNoqAXMypBKapGGXF3vxXROfWyra2RN2XRbptlBXKhucVvxd8ASE9NPQDomj275nZ7f79SYG2kmF4z0Ld0ac3twuioUc1WYPz8o3PUYkLkSLrjnTQBsyzG/Bxohvjt1IMPlj7nru3bzRplaCbNbJQRHKfj0s9iJalf0lJTz7j7rRi/jbj7LaCuqxd1/Lb82Rm/JY0ERT3iCy+TCdUJb8Nzz2FYuNgd/eUvB96uMqI7qqhYvW6kwX09kVc49VR1q+qhUYZJTT2VUy8Oh43uGM13dgYSFDOKOGK1eCJGb4F0OfWWvO1tFWEy29aGxRdfrHbq0QVVV6icR6JjtIxXpx6Q/EBetSjFbu16msGpl21tlWpJ7tq+3ch9wvhtdDg69SgANA3FYlESybqSEvWyWUC4Xoj7ol0qoRBz91tAPU7XOYn9EqZTT1wEpvuWpAWKesQXQRplDO/Zg5effbbmvhlHH40lb31rKNsGqLvfSpOiBhrc1xOq+G1pbCwSp56us1ZYuEVotU69GPY9J1EvKKLTr/rYkoQUy4rcMemF/uXL8Vd//jNO/Pa38Vdr1mDaihWM3zYAKlFOK+qJA3kHUa/s1BMF/KTjtxSdndGKeg32vanq6pm4T1p7epQCHkW94DB+S9Y/8wzu/c1vpPuTcuoBimuYsC+KAiQQfU09AGhR1HiOWtQrj1ml6yqdeqSOYU094gsnUc/KZmFX19gqlVAYG8OWDRuQzeXw2ssv1ww6rUwGx//bv4XqOhAnaHapJHU85KQ9GVSiUlEl6oXh1Iu6UYZBTT1d/DZqtKJeCN9Jtq0NqKpZVn08F4TfoLWnJ3V1miYvXozJixdXbqu+KzbKqC+yra3ItbejUFXDSCXqqSbVVjaLbFsbMvk8SsJztE69hOO3jSZOhU0zxG+B8bp6a6tu79q+HZ2C80V1nbIyGbRNmYK9r74q3U+Cwfhtc7N7xw689NRT0v2tkycnusCZyedRrKqZJ+6LKlEvbHFNRV7h1As7fiuKk4ObN2P+AQdI34GRUy/hsQAhOnj1Jr5wEvU6Z86suV0qlfD4Pfdg3dq1ePahh7BNGEQe8N73ShGSoJjE/RptcF8vKJ16o6PalvNeiD1+a1JTT7ENcQjKum0L0iSj8hoenHppqqenQynq8fxQd7ROnlxzWxUFV5HJ5WBZlvK6UXYuScWxE+5+y/3TmWbofgvITr3R4WGptInuu1BFcOnUCw7jt81NuQu1SNecOTFvSS2iYCU59YQmGW1TpkTe0A1Q174OW0xccM45NbdH9u6V5qKAmVMv6bEAIToo6hFfOIl6YiH6vbt2Ydf27crHtvf348jPfKZy+4iqfwPAIR/6kK/t0xY9r6LRBvf1gsoBVRwZkVx1phPyMrZtxx+/Naipl8lmpe1IuqZeUCRRr7pRRoo73+pQuYR5fqg/RFHPi1MPUF83ys6lpCM3UmSYTj1HmsWp17tokbTf7hwcrLmtu06pJs4U9YJT7patgq6exkcU1csk3ZRPXOgVrylJdL4FNDX1QnbqTTvsMMk8svn556XHMX5L6hmKesQXOlHPymQkp554oajmqC9+sWbSv9+ll2LyRBfDnkWLcPAHP+hr+7L5vKt40WiD+3pBNdgtjo5KA4ixkRFPA2BVp8uonXpuDWPK0T2xWUYuhgm5lckoJ2hhiHqi4OXk1FM1Ckkbqn2Hol79oep6LuIk6jk59dxcDlGjapRB9DRDowxg/Dw/cNhhNfcZO/UUE2d2vw0H3f5HAaDxGakqAVHNlAMOiHlLapGuYcK+KC6KxzV2U5WEaQ/ZqWdZFpZdfnnNfSqnHuO3pJ6hqEd8oRP12vv7JRePWGOrzMARR2C/Sy6pua9r5ky8ec0avO2pp3Dxn/8suf684Bb7a7TBfT1TGhuTRD3btj259cQBCRCDU88gfgvIDqC4JuSq7Qujpp4oiDuKenXg1LMVoh5F//ojqKinWgRIi1OPNfW8oXXqNWCtzGmHH+74d92+wvhtdOj2P0b1Gp8RhVOvd/FiHPCe9ySwNa8jlbgRu98K18a4rjHK+G3ITj0AWPKWt7ie/+nUI/UMRT3iC12dhY7p06UTnkqYmXbYYXjjT36idG3l2trQu+++gQffbmICRb30UBwZUXbZGlUU7tWhEo+jLkrsNgCwNE69uPY9pagXc/y2HmrqKUW9Bpz8Nzom8VsoRL2MgVMv6To64sQhDrdvPaNrvNWI1/3+5csd/64TmJTxWzbKCAWtU4+unoZHdMoe+8//jL8KaFIIA7fut36aRoSBuJiWaWkJZfFZpLW3FwsvuMDxMX6cehTqSVrg1Zv4QufU6xgYkEU9QWzpXrAAF917b+St3Z2s41YmE0sBWGJGaXQUufZ2yVnnFN0WEfezbGur0apbEFydehMTpDQ59cJolNFo8VuVqNeIk/9Gx3dNvYlrgbKmXjl+K1wv2P22PmlEB67bQo2X+C2deuHA+G1zUioWpXHrrNWrU3HecXOYibejHj+XEcf97VOnahdlgrK/EMEV8dMog0I9SQsU9YgvtKLe9OnSCU8UW1TdT6PAySGUbWuL7KJBvFOccOR1DAzU3O9J1BMm8FFHbwH3Vb2MLn4b0wBPNUCJxKlX5/FbVU09N8GWpA9RQC4onL6qAbiu9iVQFb91qUcUNaypFw6NKNa7Xod0jTIYv40MnThAUa+xUdXTS7pBRhm3a1hSTr3OGTNqbkfpaJxx9NGVuu0qfNXU4zFNUgJFPeILR6ee8DdJ1ItpUO0kJjTiwL6eKU0IQWKNnyBOvaibZAByNzERbfw2yZp6UcdvxWLLdSDqqZx6FP3rD9Gpp6qz6bX7bVnwc+scGDWSi4Kini8aUax3+0xap54ifstGGeGgralHV09DI0ZvW/v6YhmLmiDOzcR9MSmn3pyTTkLv4sXjNywLB77vfZG9l2VZWHbZZeq/ZTJG5z82yiBphaIe8YWTU89tpSMVoh4nRKlErKsXSNSLw6lnKOr1LlpUc3/3vHlRbVINUTXK8BK/rYeaeiVNMx9SX0jxW1VNTo/db6Fx6sVdR0eK33JhyheNKNa7Tb51YzJxEc3KZllTLyQYv21OxCYZcY31TJBioy5OvbjmSdnWVlx0//14089/jovuvRdL3/a2SN9v6dvfrjw+TT8vnXokrfDqTXxhZTLKmEbH9Omu7qVsTAXonWp5paG+BZFpDxK/TbGot+Stb8WUAw8EAPTsu692pTBsknDq1WP8Nk0Db+Ifv91vyw4G1b5aXrlPenWeNfWIDr9OvSkHHlgTdZu9enWo29XMUNRrTsT4bdS1w73gtaZeXPFbAGjp6sLCc8/FtEMPjfy92vv7seCcc6T7TT+vOMdlowySFijqEd+oBi2qRhkicXWVdKupR5JDdNTMPPZYAECHGL/10P1WFPXiqKnn6pCYEATa+/tx0X334e3PPIOLH3qo7p16oihe7dQTaxvWQ6OM/d75zhqxc5lLMWWSTvyKek7xW133W8ZvSVpwm4zq9pVMLoezf/tbLHnrW3HAe96DU37wgyg2rynRnR8Y1WtsxPjtpJTU0wMUHdxTEr9NAlXDDNPPm/QCHyE62P6T+CaTz6M4PFxzX6dJ/DYup56DqEenXrKc/L3v4TfllTLLwtFf/jIA2ak32iBOPWB8wNCzYEHUm1SDapASZfdb27br0qmX7+zEebffjkf+7d/QOWMGDvuHf0h6k4gPVDX1bNuuiVw6iXqOjTLo1CMpxW/8FgAmL12KN/zHf4S9SU1PUTN2oaunsUlz/NbNqSc1ymjA+qNlZp94Irrnz8fQ889X7jN16jF+S9IKRT3iG6VTb/p09ygIa+o1PfPPOANn/PrX2PinP2GfU0/FwMqVAMKtqZePoTixa9dBTe3JuFC9f5Tx26Ki4UQ91NQDgP7ly3Hyd7+b9GaQALQJoh4w7tbLVx+nDt1vlU69tNTUY/dbosFv/JZEh07UowDQ2IhOvVSJei5u82Zy6lmZDJZddhnu/eQnK/eZjo2TXuAjRAfjt8Q34okt29qKlp6e1MRvnWJ/jN8mz7zTT8eqL3wBs44/vnJfqN1vQ4iZuuHFqZcEsdXUmxAcxOgtUB9OPdIYqARkcZ9UOvUmhDvVvmrpauoxfktSgtvku5En52lFK+pRAGhYSsWiNGZNU/zWTYwS47iNft5YdvnlNXOOfd70JqPnJT0WIEQHnXrEN+KJrWP6dFiW5XohiCv66uQQYvw2nXQI8dtioYBSsWjUZl4S9WJw6rnt640q6unit1INM8uKJQZNCDC+b2dyuZpuxuI+KU5kqt2sTk49sTg247ckLbg6xht8cp5G6NRrPsQmGUC6RD2ppp6bU6/BrzEd06bh3P/9Xzzxve9h0ty5OPC97zV6ntv3SEhSUNQjvhEnOWVBJjVOPTbKqDvahfgtMN4so9Vgn0miUUbanXqqCUQojTI08Vupnl5PT0UUISRqLMtC6+TJ2LtlS+U+N1Gv+hhVLQTonHqxx2+bbMJFzHGN3zZwbay0ItabLmPbtlTnkzQGYj291smTU9UoLM3db5Oib9kyHHPddZ6ew/gtSSucbRHfqJx6qvtFUlFTj6JeKmnt7ZXqwJk2yygk4NRz29dNHIZRUlJ0Dw6jUYZp/LZe6umRxkHc5yT3qIOol8lmpcUAbaMMxm9JSgjSKINEQ0lRiqIMRYDGZFhw6qXJpQcoOriL8dsmqqkXhKTHAoTooKhHfKMT9VzjtzE59VRRqso2UNRLJVYmI7n1TOvqJdH9Nu3xW1WNuzBqDYqCgtapR1GPxEybi6jn5NQD5H22LMy7TYiiRmqUwWsYmYCNMuoLigCNidT5NmWinpvbvBmden6gU4+kFYp6xDeSqJey+G02n9fWD+OEKL34FvWEyXsYMVM30h6/jdupp4rfEhInrUIH3IJwDDjV1APkxaC0NMpg/JbocBX1uK+kCop6jYnY+TZtTj23axidemYkPRYgRAdFPeKbXEdHze3OGTMAyJMkkWxMoh6gj/9xkJteOsJy6sURv3WLPSXt1FN8d2Fsk2n8lk49EjfiPuclfgvIQnQlfptwcWzGb4kOy7IchT06btIFC+s3JpJTb968ZDZEg5vDjE49M6RGGXTqkZRAUY/4Zs4b3lD5t5XNYt5ppwFwvxDEGX3ViQqcEKUXP04927aTid+m3KlXVDj1wkDqfquJ37KmHokb0aknCs2SU88lfqt16rH7LUkRTqIeHTfpgnG9xkTsfjspZaKeVEJCdOoJ+yWvMWro1CNphd1viW9WfPSjyHd0YNtTT2HZpZeia/ZsAO5CR1zxW0Af/2NNvfTS3t9fc9tE1BPrTQHpaJSRtKinit+GgXgM26USbNuWmpUwfkvixs2p51ZTT4rfTjj13CZEUSOKejlOuDzTyM6TbEsLCoJTqEwjf+7UYlmSK7gMRYDGo1QsYlToeFzvNfW4GKBGTKNRpCdpgU494ptMNosVH/4wTvr2tzFj1arX709J91tA3yyDNfXSS7k2Y5kxA2FKdOkBkLpYRkHaRb2onHoqYb5ULDJ+SxJHqqnn5tQTBujGTr2447diowyKeq4c99Wv1tw+5Yc/TGhLosdJuOPkPH5O/u53tX9jXK/xEF16QApr6rk0e5Lity7j22Yl6bEAITro1COh4xq/jdOppxEV6NRLL2L8dtTAqacS9dLQ/TaNNfXCQCWKl0oldr8liRO4pp7w/PIxnnQdHcZvvbPfpZdi8MknsfGuuzDvtNMw/8wzk96kyGBNvXSx6KKLsOXhh7H+D3/A4OOP1/yNIkDjIYp6LT09qRv/iCkqNsrwR9KufUJ0UNQjoePa/TYNNfUo6qUWP40yRFEv09ISy6Q37U69uOK3wLhTjzX1SNJ4deqJx+jcN7wBa77whcrtmccdByD51XlxwpWhqOdKvqMDJ1x/fdKbEQtOE3BOzuMn29qKY//pnwAA/97RUXMtpgjQeIidb9PWJANQOPVc4rdcDFAjxZjpvCUpgaIeCR23AWSs3W8Zv607pEYZo6OwbRuWZWmfI9Zyi8OlB7gPepIW9aJy6jF+S9JK0Jp6M445Bid///v4yw03YPoRR2D/d70LgPuEKEps25bej25zUo1j/JYCcKJk83mKeg2O2Pk2bdFbwF2MohvcjKQX+AjRwZp6JHRcnXqM3xIHRKcebBsFF8eZ1Pk2hiYZQPqdekdfd13N7UUXXRTK62ZaWsYLgVehjN+yUQaJGfGcXxwbqxHy3LrfWpaFpW97G06/4QYc+tGPVv6eZPdb1XtxwkWqYfw2vYjfP509jYco6qXRqecWG2WjDDOSHAsQ4gRFPRI69SDq0amXXkSnHuDeLEMU9eJokgGkv6be0ksuwZSDDgIAdM6ahcM/+clQXteyLEkYV8Vv6dQjcSPGb23bru2OLTr1cmaBBbEekehqiBJVd2+KeqQap2uR2AyGxAudPY2PWFOvHpx61fuhbdvyghdFPSWq75HCHkkDvNKT0HGN36ahph4nRKkl29KC1t5ejGzfXrlvbGQEcBDqxNhnbPHblDv12qdMwYV3342hdevQNXt2qA7GbHs7ClUDWZXwypp6JG5EUQ8Yj+BmJ4QNN6eejiQn5qr34jWMVKMT7jItLY6lK0j0SA4pCgANx8jwcM3tSXPnJrQlepy63yrd4BT1lKi+F7cSQYTEAZ16JHTS5NTT1dRj/DbdtA8M1Nx264ArxW9T4tRLWtQDxvf1vmXLQo8ki8fQqDCoBejUI/Gj2s+r4/tuNfV0JNnxTuUKpNucVKO7FnFinjxSLTM69RoO0U2d7+pKaEv0OLnNVfsknXpqVN8L3bckDVDUI6HD7rckKB39/TW33TrgJhW/dXXqZRr3FCuK82OiqGdZsYmrhJTJZLPSYk51Ix1J1DM8RpOso6MU9ejUI1XoJuCcmCdPkk12SDyIol6c5gVTHOO3qmsMzx1KdE49QpKmcWecJDHcurDFKXSwUUZ9InXA9erUS0GjDCuTaWg7vtjFWnRTtnR3N7SoSdKLGMGtabQjxm8N641Jxe6Tjt9ywkWq0F2LuJ8kD2vqNT5S59gUzjE8i3pcOFKiOtfymCZpgDMuEjqixbvmbzFf6OjUq086hPit50YZMUUfnATsNERvo8QtfsvoLUmKNlHUq6q56Td+m6hTT3CBZPJ5CuakBm38lhPzxGFNvcbGtm1J1EmjccBpP2T81hzV98JIPUkDHBWS0HFyL8VtSdfV1ONAN920B4zfxuXUcxKwm03UE38jinokKcTzfjEEUU9VUy+uyXk9uEBIsjB+m15ENzAFgMZC9XvWQ/y2xPitL5TxWx7TJAVQ1COhY2Uy2olS3Be6bEsLch0d8v2cFKUayamX0kYZTgK2aayvXnGN32oEdUKiRorfOoh6frvfTryY943zgThh4KIUEWH8Nr0k2WSHRI8tOKmBdM4xHLvfqpx6LjWjmxVlowy6b0kKoKhHIkF3MUhi9UrlGEqjNZ68Tr3U1HMSsJvNqcf4LUkLTvFbUYjz69QD4nPcSE49inpEgN1v00uS0X0SPfXSnVxVU6+8L4qfIZPPN3RN6CCoFuzpviVpgKIeiQTtqnECFzqVuJDGCy55HTF+K7rARJLqfgvoJ00NL+oJAr240ktRjySF1P3WKX5r2ihDVRw7rvit4AShqEdEdGMuum2Sh91vGxvx/Ayk0zigHKtOXMMkNzgXA7RYlsXmNySVUNQjkaC7ICRxoVPFADkpSjdi/LZULErCXTUF0akXU6MMwGEy1eCinhi/FaGoR5LCS6MM4/htgnV06qEIO0kWOvXSC516jU29OvWA17e9JF4XOUdyhJF6kkYo6pFISHP8NtvaSlt5yhHjt4BzB9yk4reAvhB5wzv1XAatrKlHksJLTT2/3W8BeSIUFYzfEje0i0sU9RJHFAAY1WssVN3J07ioq2zwQKeeL8TzalxjAUKcoKhHIkG7apwGUS+FK2iklpbubmniqqurZ9t2ovFb3WSq0UU9t+OITj2SFC3CvleMqKZeXKvz4vmN1zAiwkYZ6YVRvcamXrqTK0tIlJ16FPU8QaceSSMU9UgkaJ16Kaipx+hS+rEsy7hZRqlYlCbqcTr1dIOfNK7UhombaEdRjyRFm7DvOcZvg9TUi2kgP7J3b83trtmzY3lfUj9oF1Lp6kwc1tRrbESnXhKJJBNUrt2SxqlHh68zPKZJGqGoRyJBu2qcwMVOjAGmdRWN1CKKerpmGapaey106kVO/yGHOP6doh5Jirjit3EN5If37Km53b3PPrG8L6kfdJNwTs6TJyucOxjVayxEl1tajQN06oWH+F0yUk/SAEU9Egm6gWQqauql9IJLaukwdOqpRD12v42eGatWOf6dNfVIUoiiXqlYrLgp/Ip6lmVJrr64Jucjgqg3ad68WN6X1A+M36YXunoaG6k7eUrnGE4lJOjU84YUv6VQT1IART0SCWmO3zKOUh9I8VtNowxR1Mvk87H+xs3q1Gvr68Pk/fbT/p1OPZIUqn2v4tbz2f0WSG5yLop6dOoREW0ZCE7OE4fdbxubehH1nJx6bJThDalRBoV6kgIo6pFI0NUpSuJiN+2ww2puu8UGSTrw69TLT5oUa3djbdfBBhf1AL1bLz9pEiYvXRrz1hAyjujUA14X9SSnnmFNPSCZgvfFQkFa0OiePz/y9yX1BZ166UWM39Kp11jUS/zWyW3O+K032CiDpBGKeiQSdBeEJOK3/cuX44jPfAYd06dj5rHHYuUnPxn7NhDvmDbKEEW9OJtkAM3r1AP0ot7St789tQNb0vhkW1qQ6+iouU8n6nkR38XrWhzxW7FJBgBMolOPCNCpl15Yf6uxkVxuKR776BampOsizxuOsKM1SSPmS9SEeEAbv02oK9ThV1+Nw6++OpH3Jv7w69SLs0kG0Nyi3vSjjlLef8B73hPzlhBSS2tvLwpVsdWizqnnJX6bwEBebJLRMTCQ2u6KJDl0k3DRJUbihzX1Gpui2P02zaJeSwtQtVDERhn+YKSepBE69Ugk6GqacTJCTDF16hUSFvWatVEGAPQuWiTd1zV7Nqbsv38CW0PI62g74AYR9RKYnEtNMujSIwq08VvWEE4cKX5LAaChsEVRL8XzHMk1OrEvslGGNyTXPoV6kgIo6pFImHLAAcr702xLJ+lCcuqNjioHw6qaenGiramXafzTq2VZWPqOd9Tcd8w//VNCW0PI64jNMrQ19Twcp0mszotOvW52viUKGL9NL3TqNTaSyy3F8xxdLTjpM3AxwBEe0ySNNP6skyTC/DPPVN6f5hUski7aBwak+1RuvaTjt83s1AOAI6+9FrNPPBFtU6fi0I9+FAvPOy/pTSLEWNTTNXVSkcTqPJ16xARt/JaiXuKwpl5jUy/dbwGHmnqM33qCjTJIGmFNPRIJA0ccgfZp07D31Vdr7qeoR0xpnzpVum9sdBQtwoCJjTKSpWvmTJzzu9/Btu1Yuw4T4oQufltvNfXERhnsfEtU6MRpOvWSRxIAGL9tKOql+y2gcJgxfuuLJJpmEeIGnXokEjLZrNKtl+aLHUkXmVwObVOm1NyndOqVa2VNkO/qinS7RHSDn2YR9cpQ0CNpwrSmnqfutymI39KpR1TonDV03CQPO2U2NvXk1BOvYSU2yvAFj2mSRijqkcjQRXAJMaVDiOAaxW9T4tTzIhYQQsKltaen5nY9dr8tFAoojI7W3MeaekSF9jrEyXniiL8B47eNRV079crxW3Gxi+cNR3hMkzRCUY9ExpyTTpLu65o7N4EtIfVKe39/zW0TUS/uRhnNXlOPkDRiGr/1UlNPF12KCrGeHgBM4jWUKKBTL70k0WCHxEc9OfXE6115X5Q+g2aRgIzDmnokjVDUI5GRa2/HkddeW7k989hj0bdsWYJbROqNdqED7mgdOfUo6hGSHJKoN+F4C9OpF/XqvCjqdUyfzrq0RInOWUPHTfJQAGhs6smpp2v2JF4X2f3WmbgX+AgxgY0ySKQc+rGPYdbxx2N461bMecMbWHeLeEKK3wpRNCD57rcU9QhJH22GNfXSHL+VmmQweks06K5DnJwnD+tvNTaSyy3FCy+m3W+5GOCMVF+XxzRJART1SKRYloUZq1YlvRmkTvEVv425UYYupsCaeoQkR4tQUy+M7rdxO26Gd++uuT2Joh7RoI3fMkaXOFJzArp6GgrxOpBmp56uph4bZXgjbtc+ISYwfksISS110ShDV1PPQ60uQki4iPHbYqEA27blmnpB4rdR19QTnXrsfEs0MH6bXujUa2zqqqaepr4jnXre0ImjhCRJ4Fnn/fffjxtuuAHPPPMMdu/ejSlTpmDBggW4+OKLsf/++4exjYSQJkWsqSeKerZtpzZ+S6ceIckhxm+Bcbee5NTzIL7H7tQTaurRqUd0aOO3nJwnDgWAxkaqqZfi+K2uph6det6QxgJ035IUEMip94tf/AKXXHIJHn74YcyYMQMHHXQQuru7cdttt+GCCy7ADTfcENZ2EkKaEFX8tvriWSqVpIspG2UQQlp6e6X7imNjUk29IE69yGvqCaIenXpEB7vfphd2v21sJKdeiutY0qkXDuL3w/gtSQOBnHrf/e538eEPfxjvete7au4vFov40Ic+hOuvvx7nnXdeoA0khDQvYvy2VCqhWCwiN+GuEV16AJCP2amnmzRR1CMkOfKdncjkcihVnSOUTj0vop7h6vzQ1q3YsXUreqZORXdfn4etfp3C2NjrzT0moFOP6GD8Nr3o3FGkMRBFvTTX1NO5zSWnXoqFyTTAjtYkjRg79b785S9jVOg8OTg4iCOPPFJ6bDabxdFHH43XXnst+BYSQpoWMX4L1EZwi8KkF0hP/JaiHiHJYVmWVFevMDYGUYYL0v1WNTnfsXUr1v7pT3jpqaew9q67MDQ4aPz61YguPYBOPaJH1xCDTr3kYU29xkYSxFIs6pl2v+V5wxke0ySNGIt6//M//4Ozzz4bjzzySOW+pUuX4rrrrsMjjzyCXbt2oVQqYWhoCHfddRe+853vsKYeISQQLV1dyHV01NxXI+oJK6SZXC72AZVu8MOaeoQkixjBLajit15q6hkM5Nc9+mjN7ecff9z49asZFppkdM6cSfcE0aJz5HGfSR7VGIER3Mahnmrq6WKjUgMpinqO0H1L0oixqHfTTTdh8eLFeMtb3oLrrrsOo6Oj+MQnPoENGzbgr/7qr3D44Ydj//33xxFHHIErrrgCY2Nj+OxnPxvlthNCmgCnZhmiUy8/aRIsy4plu8roREQ69QhJljaFqCcKcUGceqqJ+Z6dO2tu79q2zfj1qxGdepPo0iMOaBs2cXKeOKrfhs6exsC2bdnlVk9OvYlrmOQ21JxPyDimpTgIiRPjJerJkyfjq1/9Km6++WZce+21uO222/ClL30J/+///T/cd999+Mtf/oLdu3ejo6MD++67L4444gjkeVIghASko78fO194oXK7RtQTO9/G3CQDAKYdeqjyfop6hCSLFL8dHQ1UUy/O1XmpSQbr6REHdM5wxuiSRyWslkoluvkbALGeHpDymnqG8VsuBjjDmnokjXhulHHaaafhyCOPxKc+9SlcfPHFuPTSS/HBD34QxxxzTBTbRwhpctqFZhlOol7cTTIAYMoBB2D6UUdh8z331NzPATshySKKesVCQaqpl9but8N06pEQ4OQ8eZROPTp7GgLVwk42zfFbzTVMcurxvOEIu9+SNGIcv62mr68P119/Pb74xS/i5z//Oc477zw8KtSRIYSQMOgQ47dVDXskp14Coh4AHPT+90v3DT7xRAJbQggp0yrGb0dHpZp6loeaenFGbkaEmnrd8+dH9l6kceHkPHmUNfUoAjQEKjEn1U49UYyauIZJEWLW4nRErMXL45mkAV+iXpmzzjoLN910E2bPno23vOUt+Od//mepQy4hhARBrKk36hS/TUjUW3jeedJ9fWwUREiiSKKeoqZeEKeeqvt2WIhOPXa+JX6gUy95VE49OnsaA1X8tq5q6jF+6wspfkvnLUkBnkW9J554Arfccgt+//vfY+3atZg6dSq+8Y1v4Nprr8VPf/pTnH/++Vi7dm0U20oIaUIkp16VqFdIQfwWGL/AHyk0BhpYuTKRbSGEjCPV1Bsbk+K3VsZ8GDRpzpya20PbtmF0eNjv5mkpjI1JguEk1tQjPqBTL3no1Gtc7DqrqSeKdbu2b8fo8DDjtx5h/JakEePcyYsvvogrr7wSzz33XEWRtiwLs2fPxmc/+1mce+65WLVqFT75yU/i4osvxuWXX44rr7ySzTIIIYFw7H6bgkYZZVb8/d9j9+bN2HDrrZh3+ulYfPHFiW0LIUTj1AvQKGPuqaci19GBQtlFZ9vYsmEDZu27b9BNrUFskgHLkgRFQkwQY2IkflhTr3ERxZxMS4unhaK4ERu7jQ4P48kHHpAeR1HPGTbKIGnE+Gp/zTXXYOfOnfjHf/xHLFq0CLlcDi+++CK++c1v4m//9m9x5513YmBgAN/61rfw85//HF/+8pdx66234sYbb4xy+wkhDY6TUy8t8VtgfPJ0/L/9W2LvTwipReXUk2rqeRD1WiZNwsLzz8fTP/hB5b5X16/HzIULYVlWsI2tQozeds6cyRpHhNQpViaDTC6HUtV4hc6exkCM36bZpQcAs1evxoyjj8amP/2pct+ubdukxzF+64xUX5fHM0kBxssJDz30EN73vvfh9NNPx+LFi7FgwQKsXr0aX/rSl7Bjxw489dRTlcdeeOGFuPHGGzFNmIwTQohXRKdeYWysMiBOk6hHCEkXRjX1PDqZ9nvHO2pu79m5E7u2b/ezeVqkJhmsp0dIXUMRoDGRYqspF/WsTAan/eIXruUcuIjkTFZw31KkJ2nAWNRra2vDli1bpPu3bt0Ky7LQJpzIZsyYge985zvBt5AQ0tR0DAxI95U74IqiXlI19Qgh6UMU9YqqmnoenHoAMOu446ROtK+uX+9j6/RITTLY+ZaQukYUSSjqNQaSU6+9PaEtMae9vx+n/+pXyHd1aR/D+K0zKicjI/UkaYyXqE888UR885vfxJYtWyrx2w0bNuBXv/oVFi5ciMWLF0e5neT/t3ffYXLW9f7/X1O3bza7m0Y6CWmQgCEFpCoISAmRjiIqRfghcCxHj4eDHgU5RI4cFfyqFwiIdEUpnmAFDp0EpfdAEpJASC+brdN+f2x22LnLtL1n7vueeT6ui+ti7pm957N7z9y55z3vAlSpmtZWBYLBjIvgWG+vamprTc3kydQDMMBYfptKpUznjEKm30r9mQ4zzj5by7///fS2Te+/r8l7713wvlKplHZs2qREPK7ho0cruLsXk7GnXhOZeoCvGYMkZPZUBr9l6g1onz1bR912m5aedJKpJYVE+W0udsNvCv2SEHBS3kG973znOwqHw/rjH/+ozs5OSf3Ze0cddZS+/vWvl2yBAKpbMBRSbXu7ujduTG8b6KtnytRzcVAGAG8xBvUk87fpxVyEz/j85zOCeolYTFs+/FDte+xR0H7ee+MNvf/OO5KklhEjtPeBB0oyB/WamXwL+Jqp/Jasnorgt556g00+4QR9/L/+S0//+7+b7iNTLzuroGcymSz4iz3ASXkH9err63XllVfqiiuu0JYtWxQKhTTc4oIZAJxWP2pUXkG9aJZyAgDVpWbYMCkQsMxEGFDMdNDmSZM07hOf0LpHH01v27hmjVpHj857H6lUKh3Qk6Ttmzapc+dONTQ3m8pvydQD/M2UqWcIBsGfTJl6PutF97F//Vdtef31jOFP0eZm3/0e5WaXqQe4qeC524FAQO3t7QT0AJRN3YgRGbdtg3pk6gHYLRAM5jwnFFsuM/OLX8y4vX3TJvXs2pX3z1tl6nTu2KF4LGY6r5GpB/gbmXqVyY899QYLBAL65C9/qfFHHpnets8FFygQLDg8UFWChkEZkpTkPQ2XFf4VNQCUmXFYRqy3V6lUSnGCegCyqGlpUd+OHbb3FxvU2/Mzn1Hk4osV6+hIb9uwZk3eP2+VqZNKpUxZegoE1Dh+fFFrBOAN9NSrTH7tqTdYqKZGix56SGv//neF6+q0xyGHuL0kz7MclMF7Gi4jFA/A80yZen19isdiprI64+MAVLdcH7KKDepF6uu112mnZWxbv3p13j9vF9Qz9tNrHDeO/kaAzxkzewgAVAY/99QbLBAMasJRRxHQyxPlt/AignoAPK9u5MiM27He3nQJbsbjCOoBGCRXQGwoja1nfuELmRssym8CgYDlz+abqddMPz3A94znIQIAlcF4HEM+K79FcazKb3lPw20E9QB4nrH8tq+3V7G+voxtNPcFYGRVJjNYoIhBGQNGH3igWqZPz/qYVCpl2T/LqvwulUyaMvWa6KcH+J7xPET5bWWolEw9FCYQCJgCe/TUg9sI6gHwPKtBGcZMPbL0ABiFLL5RH2womXqBQEAzzz475+Msg3oWmXrJREK93d0Z25omTCh6fQC8wfiFI1k9lcF4HvdjTz0Uh5J6eA1BPQCeV9vamnE7HouZMvUI6gEwypmpN4SgniRNOfnknI+xuti3CuolEglzph7lt4DvmcpvyeqpCKZBGVSLVA1K6uE1RdWd9PX16frrr9ef/vQnffjhh0pYXJxK/d9iv/7660NaIAAYp9omEwnFenoythHUA2CUq6feUIN69YZ+n1aSyaSMz2JVfpeMx9VrOK81MfkW8D3KbytTPBbLuB1tanJpJSg33tPwmqKCer/4xS904403SpLa2tpUwzcTAEooOmyYaZuxoTxBPQBGuTIngkPoqSdJkcbGnI/JN1Ovr7dXcUMGciNBPeSptr1dPZs3u70MWCCrpzL1GdrA1I8e7dJKUG5k38JrirqaXbp0qWbPnq2f/exnGmVoYA8ATjNm6klST2dnxu3a9vZyLQeAT5S6/DYQDCrS2KjYrl22j8k3qNdtsQ+CesjXETfeqKWf+Uz69idvuMHF1WAwsnoqk7FihKBe9eA9Da8pKqj34Ycf6stf/jIBPQBlYZUNY8zUy6cMDkB1KXX5rdT/pUO2oJ5lqW0eQb2a4cMVzSMTEJCkSccdp4OuuUarH3pIexx8sKZ//vNuLwm7kalXeVKplDlTj8/FVYNBGfCaooJ6I0aMsO2jBwBOC4ZCpmwYpt8CyCVXpt5Qpt8OiDY3q/ODD2zvtyrLSeQR6GPyLQoRCAb1sa9/XR/7+tfdXgoMyOqpPIl43BTIaSBTr2qUM1Df1dGhFS+8oL6eHo3bay+NmTy5ZM8F/ypq+u2JJ56oP/3pT06vBQBsWZXgDkb5LQCjnJl6Q+ypJ+Xuq2f1AT6VxxejjePGFb0mAN4RIqun4vQZSm8lqY5MvaphDNSX8j29+vXXtWv7dvX19GjlK6+ot7u7ZM8F/yoqqHfxxRdr7NixOu+88/T4449r9erV+uCDDyz/AwAnWA3LGIxMPQBGuYJ6TmXqZWPZUy+PDwBk6gGVoZwBAJSHsVok2tysSH29S6tBuRkD9ckSDsrYtmFDxu0PV68u2XPBv4r6inrvvfeW1F9S8tRTT9k+LhAI6PXXXy9uZQAwSLSpKev99NQDYFTqQRlScUG9fFqYkKkHVAbjlwulDACgPJh8W93cDNRb9eQFigrqzZkzR9EcF8oA4KRcH5zJ1ANgVI5BGZEcXzjkOyjDqJFMPaAihGpqMm6Tqed/psm3lN5WFTdL6gOBQNmeC/5RVFDvnnvucXodAJBVtqBepKnJdNEMADmDesGiupBkyJmpZ5GVk09Qr4lMPaAiUH5beYyZeg1jxri0ErihXMNvrK4fRFAPFoq6mr3ooot0zz33aP369U6vBwAsZfvgTJYeACvZym8DoZAj33jnag1gFcDL5wMAmXpAZTCV3xLU8z1jTz3Kb6uLafptiUrqra4fyNSDlaIy9R555BE9+uijkqQpU6bo0EMP1aGHHqp58+Yp7MAkOQAwIqgHoFDZMvWcKL2Vcgf1isrUCwTUsMceQ1kWAI8wBQAI6vmecfot5bfVpVyZepbXCgT1YKGoCNyzzz6rZcuW6ZlnntGzzz6rm2++Wbfccovq6+t14IEHpoN8o/nWAoBDCOoBKFS2snwnJt9Kuctvi+mp17DHHqaePQD8qVwBAJQPmXrVrVyBeqtzBZl6sFJUUK+lpUVHH320jj76aEnShg0b0gG+ZcuW6e9//7sCgYD22msvPfjgg44uGEB1IqgHoFC5ym+dUMz021wf6pl8C1QOMvUqj2n6LZl6VSVYpkEZlN8iX47Uyo4aNUqLFy/W4sWLtWLFCt1333367W9/qxUrVjixewDIHtRrby/jSgD4RdbyW4faheSafmsZ1MuRqdc0fvyQ1gTAO0yZeiXqv4XySKVSZOpVOdPwmzL21CvVc8HfhnxFu3r1ai1btkzPPvusli9frq1btyoQCGj69OmaP3++E2sEgOxBvZEjy7gSAH6RLVPPsfLbXIMyigjqNRLUAyoGmXqVxRjQkwjqVZtyDb8hqId8FRXUu/fee7Vs2TItW7ZMGzduVCgU0owZM7Ro0SItWLBA8+bNU1OOi1wAKES2D86UqgGwUpZBGcWU35KpB1SNcpXqoTyMpbeBYJA2MFWmXO/phMV+U7kGbaEqFRXUu/zyy9XY2KjFixfr0EMP1dy5c9XY2Oj02gAgLTpsmO19fAAGYKUcPfVylt9aTb/N1VNvwoQhrQmAd5QrqwflYczUqxsxwrHMb/hD2QZlWATwKN+HlaKCenvuuadWrlypO++8U88995wWLFighQsXav78+RqW5YM3ABQrWzYMH4ABWPFCpl5R5bdkHwMVwziFm0w9f+vr6cm4Telt9TFm6pUq0GZZfsv5AxaKCuo99NBD2rRpk55++mk9++yz+tvf/qbbbrtNwWBQ06dP18KFC3XAAQdo3rx5ZPABcITdB+dgOMzUMQCWsgX1HOupV4ryW76oACqGaVAGH8p9zTQkg2vQqlO2TD2r6wfOH7BQ9KCMESNG6MQTT9SJJ54oSVq5cqWeeeYZPfvss7rvvvt06623KhQK6dVXX3VssQCql90H54Zx4yh7AGCpHOW34bo6BUIh2z43hV6Uh2pq6M8EVBBTAIDyOV8z9tQjU6/6mKbflnNQBkE9WBjy9NsBe+65p0KhkKLRqBoaGvTXv/5V3d3dTu0eQJWz61tFPz0AdspRfhsIBBSur1eso8PyfuMFeCqVypqp1zh+vAKBgCNrA+A+qwBAKpXife5TMWP5LZl6VcfN6bdk6sHKkIJ6q1ev1nPPPadly5bpueee08aNG5VKpTRixAgdffTROuSQQ5xaJ4AqFwyFFGlsVGzXroztlKkBsJMtU8/JDN9QNKqYzX2moF6uIRn00wMqitWXCwT1/COZTCoZjysUiSgQCJCpB3Ognp56cFlRQb1vfOMbeu6557Rp0yalUilFIhHNnTtXZ511lg455BDNmDHD6XUCgKLNzaagHh+AAdgxNqjPuK+uzrHnMTbNHszYQDvXt+x8UQFUFqsvF1LJpBQMurAaFKJ71y69vmyZejo71TJihGYuWGDuqUdQr+qULVPPYr8E9WClqKDe0qVLNWHCBJ155pk6+OCDdcABB6i+vt7ptQFAhmhzszo/+CBjGx+AAdjJVn4bdvC6JVtQz3gBzuRboLpYnYeSyaToBux961etUk9npyRp+6ZN2rx+vXn6LeW3VcfNnnqU38JKUUG9v/zlL5o4caLTawGArKIWffUa6akHwEa28ttIuTL1Cgzq8UUFUFlsM/XgeetXrcq4veKFFyRD9nUDmXpVp2zTbym/RZ6KCuoNBPSWLl2qhx9+WKtWrVJXV5caGho0depUHXvssTr88MOdXCcAWJbS8QEYgJ2smXoNDY49D5l6AOxY9tTjg7k/WfROo/y2+hg/j5Sz/JZMPVgpKqjX19enCy64QM8++6ypMeTrr7+uP/7xjzr22GP1ox/9iCawABzTZzFdkqAeADvZMvVcK7+lpx5QVay+kOSDeWUI1dQoOmyY28tAmRn/zSdTD24rKqh300036ZlnntExxxyj008/XVOnTlVdXZ06Ozv19ttv64477tBDDz2kuXPn6nOf+5zTawZQpXq3bzdtizY3l38hAHwha6aeg+W3IQfLb2kpAFQWq6B/qaZlorzqR48mgaUKlS1Tz6qnHucOWCgqqPenP/1JBx98sH7yk59kbG9sbNSoUaN0yCGH6Nxzz9V9991HUA+AY/p27HB7CQB8JNv0Wy8OyqgfNcqydygA/woEAgpGIkrGYultZOpVBoZkVCd66sFripqlvnbtWn3iE5/I+phjjjlG7777blGLAgArow880O0lAPCRbMG2cgX1jN+qJ7JckO/31a86tSQAHlKuIADKi3561cnY2oOeenBbUZl6qVRKDTkaTEejUV50ABy1/7/9m97705/Stw//f//PxdUA8DqrDJkBEY9k6g3bay8dcu21qm1t1egDDnBsTQC8IxiNSp2d6dsE9SoDQb3qZKwCIFMPbisqU2/cuHF6/PHHsz7m8ccf1zgmuAFw0B4HH6xP3Xabppx0kj6+ZIlmnnOO20sC4HF2ffWc7Km38Hvfs70vV1Av2tSkScceS0APqGDG8xCJD5WB8tvqZMq8TaVK0ieToB7yVVSm3lFHHaVf/OIXam1t1VlnnaVJkyZJkhKJhN555530oIyLL77YybUCgKafeaamn3mm28sA4BPGDJkBTpbfjjnoIE0/6yy9dfvtpvtyDcoI19Y6tg4A3mQs1+ODeaaujg51bN2q5rY21TU2ur2cvDWQqVeVrPr1ppJJBUIhR5+H8lvkq6ig3vnnn6/HH39ct99+u+644w5Fo1HV1NRo165d6Uj1/vvvr/POO8/p9QIAAOTNbliGk0G9QCCgT/361zrs+uu17pFH9NDJJ6fvM2XqGW47mTEIwJvI1LO3a/t2vfLUU0omEgoEg5pzyCFqHDbM7WXlhfLb6mQM0kv97+mg00E9MvWQp6LKb+vq6nTnnXfq3/7t37TvvvsqGo2qs7NTjY2Nmjt3rr7zne/o1ltvVU2WqXMAAAClZlt+62BQb0C0qcm031yZeiGCekDFM2XqlaBUz6/Wr1qVPi+mkkmtfOUVl1eUP8pvq5Ndpp7TLIN6JSr1hb8Vlakn9Q/C+NKXvqQvfelLTq4HAADAMVbfqEuly5Cz6rUzGJl6QPUhU8/exrVrM253bN3q0krMgqGQZWBlAJl61cnqy8JSvKcTNq+9UpT6wt+KytQDAADwg3Jm6km5e2eZMvXoqQdUPFOwn6CeL4RyBE7I1KtOVl8WliRTz2affCkAo7wy9c4+++yCd5xKpRSLxXT33XcX/LMAAABOsM3UK1FQL1dGjmlQBpl6QMVjUIa9aG2t+np6MralUikFAgGXVjRoHVnuiw4bxvm7SlmV3zodaEsmk5JNmS3nDxjlFdRbvnx5QTsNBAKeORkDAIDqFYpELLdHGhpK8nxWH94HXxMx/RaoPpTf2rMK6sVjMUVsvpApp2y9yyi9rV7BUEiBYDAjuOZ0oC1b2XeSnnowyCuo9/DDD2fcjsfjuuKKKxSPx3X66adr6tSpqqur065du/TWW2/p7rvvVnt7u5YsWVKSRQMAAOTDdvptmXrqSer/tn0gqEdPPaDqkKlnL2Jxju7t6vJEUM8uU0qi9LbahWpqFO/uTt92PFMvS1AvleU+VKe8gnpjx47NuH399deru7tbt99+u4LBzLZ8M2fO1KJFi/SFL3xBN910k/7lX/7FudUCAAAUwO3yW6n/Yj+0+3qJ8lug+uQaoINMvV1damxpcXsZWY9TA5l6VS0YjUqDgnqOZ+pl2R+ZejAqalDGAw88oE9/+tOmgF56p8GgFi1apAcffHBIiwMAABgKtwdlSJkfDE2DMgjqARXPeF7IloVTbayCIT2DgiVuyhaoofy2uhmrAMqaqUemLwyKCupt2LBB4XD2JL9EIqGNGzcWtSgAAAAn2GbqlbH8dvDFPj31gOpDpp49q79Fr1eCepTfwkap39NZe+oR1INBUUG99vZ2/fGPf1QsFrO8P5FI6I9//KOGDx8+pMUBAAAMhVWQLRCJKJjjy8liWWbqDboANzaErxs5siTrAOAdpkw9PpSnWWUd9XZ1ubCSTLmCNGTqVbdSZ9+SqYdCFHVFe9xxx+lXv/qVTj31VB1zzDGaOHGiamtr1dvbqzVr1ujPf/6z3njjDX3+8593er0AAAB5sxqUESxhdpxVEHHgAjyVSpkyUJomTCjZWgB4gymrhw/laVb9wXwR1CNTr6oZry0cz9TLco7g/AGjooJ6l156qdavX6+lS5fqzTffVGD3RDfpoxf0Jz7xCX3ta19zZpUAAABFsMqcK2VQz+r5Bi7OY729pgt/gnpA5St1/y0/s8zU80D5ba7ACZl61c0YqC9nph7nDxgVFdSLRqO69tprddFFF+mpp57SmjVr1N3drdraWo0bN04HHHCAZs6c6fRaAQAACmKVOWeVveeUYCikQDCY8YFw4P+NH1SDkQjZHkAVCEYiGbfJtPmI1d8iHospHo/n7OFeSpTfIhs3e+px/oBRUWfKX//61zrssMM0ZcoUTZkyxek1AQAAOKLcmXpSf9AwPiiAl7QJ6jWOH69AsKj2xgB8hPJbe3bBkN6uLoWbm8u8mo9kC9IEgkHVjRhRxtXAa0reUy/LOYJMPRgVdSW5ZMkSHXvssTryyCN15ZVX6rHHHlOPofEzAACA20KGDBmp9EE948V+OlPP0Ceqafz4kq4DgDeYAgBMv02zC3C63VcvW1CvbsQIBUOhMq4GXlPynnpk6qEARWXqXXfddXr22We1bNky3XHHHbrzzjsVjUY1b948HX744TrkkEM0adIkh5cKAABQGFcy9Ww+wJsy9einB1QFMvXs2QVD4rFYmVeSKVuQhtJbmP6dd/g9TU89FKKooN5RRx2lo446SpK0adMmPfPMM3rmmWe0bNkyPfXUUwoEAho3bpwOO+wwXX755Y4uGAAAIF9W/fNCbmXqGSffkqkHVAVTph4fytPs/hau/42yPD+9UGH377xTmH6LQgy5kcuIESO0aNEiXX311XrkkUf017/+VV/60pe0bds23XHHHU6sEQAAoChWgzLKnalnG9QjUw+oCmTq2bPLiHP7b0SmHrIp9UTrRLbyW8r3YeDISKFVq1aly3GXL1+urVu3KhgMavr06U7sHgAAoChulN/aZeVYDcoAUPkI6tmz+1u4namXNahHpl7VM76n33/nHSXjcY2aOFH1TU1D3j/ltyhEUUG9tWvXpoN4y5Yt0+bNmxUIBDRjxgydeOKJmj9/vubNm6dmFycWAQAAuJGpFzbsP5lIKBGPK97Xl7GdTD2gOlB+a49MPfiRaVBGMqkPVq7UhjVrNOfQQ1Xf2Dik/TMoA4UouqdebW2t9t57by1atEgLFizQ/vvvr8YhvngBAACcZJWpV+qeepGGhozbiXjclKUnkakHVAsy9ex5NlMvW089gnpVz+raQur/9/6dF1/U7IMOUiAQKHr/2V7/br834D1F9dRLpVLq6+tTV1eX+vr61NfXp3g87vTaAAAAhsSNTL2IofTGKqhX09qqKF+GAlXB1H+LnliS+j9T+jFTr4GgXtWzurYY0LF1q9avWjWk/ZOph0IUlan39NNP65lnntHTTz+thx9+WLfddpuCwaCmTZumhQsXauHChVqwYAGZewAAwFVW029LHdSLGoN6iQRDMoAqVupJmb6VJXDmdjaSXVCvbtQojT7wwDKvBl6TLagnSe+98YZaR41SrSFzP1/ZzhFuvzfgPUUF9VpbW3XcccfpuOOOkyS999576SDfAw88oN/85jcKBoOaNWuWfve73zm6YAAAgHy5MSgjn0y9JkpvgaoRikQybvOhvF+2jEW3A59WQb3ZX/mK9rv00pwBHVQ+u/LbAclEQu+89JL2PvDAospws50j3H5vwHscmX47ceJETZw4UWeccYZWrVqlu+66S/fee69effVVJ3YPAABQFOOHack6e89Jpky9eFyJWCxjW9PEiSVdAwDviBiql4zng2rl5WwkY1CvprVVh/30py6tBl6Tz3XEjs2btWHNGo0u4t97L7834D1DDuq99957Wr58uZYtW6bnnntOGzduVCqV0tixY3XCCSc4sUYAAICiuJKpZ/wAbzH5liEZQPWobW/PuJ2Ix5VMJhUMFtXevGJk61vndjaS8fmDYUdyYVAh8s3WXP3aaxo+cqRq6uoK2j+ZeihEUWen3/72t+kg3qZNm5RKpVRbW6v58+fr3HPP1SGHHKLJkyc7vVYAAICCuDEowypTr7erK2MbPfWA6lFnCOpJUryvT9ESn4u8zsvZSMaAI0E9DJZvxn8iHte7L72kmQsXFlSGy/RbFKKos9N3v/tdSdLUqVN17LHH6pBDDtH8+fMVpb8AAADwEFcGZTQ3Z9xOxGLq7enJ2EZPPaB61LS2SoFAxmCIGEE9b2fqEdRDFnY99QKhkKafdZbevPXW9LZtGzdq07p1GlnAv/vZXv9uvzfgPUWdna688kodcsghGp1lnPebb76pl19+WaeddlrRiwMAABgKqwvvUJkHZfR0dpouwhvJ1AOqRjAUUm1rq3q2bElvi/X2urgib/BTpl6AoB4GscvUizQ26uAf/Uhr/vpXda1fn96+8tVX1TJiRN6B/Kzlt1mC4ahORTVyOPXUU7MG9CTp8ccf15IlS4paFAAAgBOsBmWUu/w2ZuinF4xE1JDjOgpAZTH21TP22axG2abfJhOJMq7EagH01IM9u556kcZG1Q4frkOvvz5jeyIW07svv5x3QC6V5fXv+nsDnlP02emxxx7Trbfeqvfff1/xeDzjvt7eXm3ZskVtbW1DXiAAAEDRLHrYBCwCfU4yDsowahw3ToEqb5APVJu69nZtf+ut9G1jsL8aZS0xdDkbifJbZGNXfjvw7//kE05Q21FHactf/5q+b+uHH6pz5041DhuWc//ZAt5uvzfgPUWdnR577DFdeOGFti+ocDisSZMm6dJLLx3S4gAAAIYiafjiUSp9GZWx/NaIybdA9TEOyyColz04QfktvCxb+e2Ayd/4hjr/+c+Msvtd27fnFdTLmqlHTz0YFPU18U033aTRo0frjjvu0COPPCJJuvHGG/XUU0/p2muv1eTJk/XlL39Zn/70px1dLAAAQCFqLC6eQ/X1JX1OY/mtEZNvgepD+a1Z1kw9l0sMydRDNlatPSQp0tDw0f+3tKh9330z7k9YfNFoJWtPPYJ6MCjq7PT666/rK1/5ivbff391dHRIkmpra9XW1qbjjjtOCxcu1Mknn6zm5mYdccQRji4YAAAgX8OmTNGIuXO16fnnJUljDj5Y0RK3B8mVqcfkW6D6kKlnlnVQhtfKb0Mhl1YCL7LN1BsU1JPM1wP5BvW8nMUK7ykqU6+3t1cjR46UJAV296qJxWLp+9vb23XqqafqxhtvdGCJAAAAxVu0dKk+9vWva+6//quO+d3vSv58uTL1mHwLVB9jph7Tb3P0DXM7U88QOKH8FoPl6qmXvl1kUC/bMAwy9WBU1Nmpra1NH3zwgSSpvr5ewWAwfXvA+PHj9fbbbw99hQAAAENQN2KEDrrmGklSIpGQ1qwp6fMZv6k3IlMPqD7GTD3Kb3Nk6nmspx7ltxgsn556khQ13M4nqJcraOf2ewPeU1Sm3uzZs3XbbbfpueeeUzAY1KRJk3TXXXepd9A3Tk8//bTqS9yzBgAAwGsCwWDWCbj01AOqD+W3ZtlKDN3ORiKoh2xCJczUyxW0c/u9Ae8pKqj3xS9+UVu3btUvf/lLSdKiRYv02muv6YgjjtCFF16oRYsW6cEHH9TChQsdXSwAAIAfZOurR/ktUH1M5bd9fVmDWtXAT5l6lN9iMNvyWwd66uUK2hHUg1FRZ6f9999ft9xyi1asWCFJOvfcc7Vy5Uo9+OCD+r//+7/0Y/793//dsYUCAAD4RbSpSV3r15u217S2mspxAFQ+Y6ZeKplUIpFQuIqDRWTqwa9KWX6bK6DtdsAb3lP02Wn+/PmaP3++JCkSieiaa67RN7/5Tb3//vsaNWqUxowZ49giAQAA/MQuU4/SW6A61Y4YYdoW7+2t7qBejky9VCqVHspYdgT1kAXlt/CSgstve3t7dfXVV+vFF1803TdixAjtt99+BPQAAEBVs8vGY0gGUJ0iDQ2m7J5q76uXMzjhYnky02+RTb6ZeqUovyVTD0YFB/Vqamr029/+VitXrizFegAAAHzPLlOPfnpAdQoEApZ99apZMkfQzs3gBeW3yCbfnnqlKL+Vspeuo/oUNSjj0EMP1dKlS5VIJJxeDwAAgO9F7cpvydQDqladoQQ3XuVBPS9nJBHUQza2mXplGJQhSUniMBikqLPT+eefrxtuuEGLFy/Wscceq/Hjx6vJ5uL1sMMOG9ICAQAA/IaeegCM6traMm7HentdWok35Mo2crN3GNNvkU0wErHcnqv8NplI5OwVmU8wOxGPK8RrErsV9Uo45ZRTFAgElEqldN1112V97BtvvFHUwgAAAPzKrqdeI5l6QNWi/DaTpzP1DM9Nph4GC4ZCCoRCShky5nJNv5X6A3Jhm6CgZH7tRYcNU9+OHRnbYn19itbWFrpsVKiizk6LFy92bxIRAACAx5GpB8CI8ttMvsrUC4VcWgm8KhAIyPgKzpWpJ+UO6hmD2ZGGBgWCQfVu25beVu1ZvshUVFBvyZIlTq8DAACgYlj11AuGw6ofPdqF1QDwglpj+W21B/W8nKlHTz3kkLToj5dvUC8b4/siVFOjSGNjRlCv2r8QQKaiBmUMxkhlAACATFYX8g3jxilItgdQteoov82Qa/qtlzL1COohH8Zy21AkYhqqkSuoZ4yvBKNRzh3Iqqiz09///nfde++9evHFF7Vjxw5Fo1GNHDlSH//4x3XyySdrzpw5Tq8TAADAN6wy9Zh8C1Q3ym8z+SlTj/Jb5CNsmH4r9X/JlxhULltoUC9UU2M6d1B+i8EKytTr6enRxRdfrEsuuUT/93//p127dqmtrU3RaFRr167VPffco9NPP11LlixRgjHLAACgShlLcCT66QHVzlR+W+UfzHP11GNQBvzGKhvf+CVfweW30ahqjUG9Kv9CAJkKOjt973vf09///nfNnz9fF110kebNm6fI7iaPu3bt0sMPP6xf/vKXuvXWWyVJ3/72t51fMQAAgMdFm5tN25h8C1Q34/TbeCymVDKpQHDIHZF8KVemHuW3qATGL/kKztSj/BY55P0vyKuvvqr7779fJ5xwgm699VYdeOCB6YCeJDU2NurEE0/UAw88oIMPPli33nqrXn755ZIsGgAAwMssy28nTnRhJQC8wlhCJ/UH9qqVpzP1COrBIaagXo6KRqtBGZTfIpu8g3p/+MMf1NLSoiuuuELBLN8mRaNRXXvttWpqatK9997ryCIBAAD8xGpQBj31gOpmLL+VqjvjxsuZejL21COohyIVWn6bNAT9rIJ61d6PE5nyDuo9//zzOvroo1VXV5fzsc3NzTrhhBP0j3/8Y0iLAwAA8CPLTD166gFVLRSJKDpsWMa2qg7qkamHKmD8ki9nTz3ja8+q/JZMPQySd1Bv/fr1mjVrVt47nj59uj788MOiFgUAAOBnte3tapo0KX27ftQoDZs61b0FAfAEU8ZNFX84zxW0c7WnHoMy4JCCM/Usym+N/ThjsVjOoDiqR95BvY6ODg0zfLOUzbBhw9Td3V3UogAAAPwsEAjoyJtvVtvs2WqdNUtH3nKLQtGo28sC4DLTBFwy9WwZyxDLybg2ym9RrIIz9fIov1UqVdX9OJEp77NTMpnM2ksPAAAAHxl76KE684UX3F4GAA9hiuVHcvbUczETifJbOCVa6PRbw2svFI1aDtmJ9fYqwpeFUAGZegAAAACA4pmmWFZzUM9HmXoE9VAsY6ZesohMvXBtrWmKbjWfO5CpoLPTzTffrKVLl+b12A0bNhS1IAAAAACoRMby22ruqefl6bfG56b8Fkb1o0apa1DMo33ffS0fN9SeesHd2Xh1I0YotmtXens1nzuQqaCz04svvljQzgOBQEGPBwAAAIBKRfntR5h+Cz87/Oc/10Mnn5y+fdh111k+ruCeesZBGQNBvfZ27Vy1Kr29ms8dyJT32ek3v/lNKdcBAAAAABWtlvLbNE9n6hHUQw57nniijvntb7X+ySc14eijNeaggywf58T0W4lzB+zlfXZasGBBKdcBAAAAABWtzlh+W8UfzI0DAQLBYEYgz0uZepTfwsrUk07S1JNOyvoYYy+8YoN69OOEHQZlAAAAAEAZ1FJ+m2bMxAs3NGTc9lJQj0w9FKvQTD3j+yI4qPx2sBg99bAbQT0AAAAAKANjtk0ykcj5Ib9SGYMXxowmLw3KIKiHYpmm3yaTWV/b+WbqVXOWLzIR1AMAAACAMjBm20jV++HcmA1nDOq5maknMvXgEGOmnpQ9W880KMOu/JZMPexGUA8AAAAAyiA6bJgpQFStJbimTD1D+a2XBmUEQiGXVgK/M2bqSdmDeqZMPbvy2yo9b8CMoB4AAAAAlEEgEKCv3m6mTD166qECGV/XkpRIJGwfn3emXl+f6XWK6kRQDwAAAADKhKBeP2PQjp56qETBcFiBYGbYxYmeeqlksmr7cSITQT0AAAAAKJO6traM2/TU6+flTL0AQT0MQai2NuN2tte2KVNvd/ltrSGoJ1XvFwLIRFAPAAAAAMrEqoyuGnl6+i3lt3DQQLbdgGxBPeN9wd1BvUhDgyk4GGdYBkRQDwAAAADKxlR+W6UfzL08/ZagHpxkDOqliuipFwgE+EIAlgjqAQAAAECZUH7bz1fTbwnqYQiGkqk3+GeZgAsrBPUAAAAAoEyMvbG8/ME8Ho9r07p12rl1q6P7TaVSvuqpR6YehsKJnnoSWb6wxtkJAAAAAMrEL9k2yWRSLz32mHo6OyVJU/bdV6MnTnRk38agmeRsT71UKqWunTsVra1VxJAlldfaCOrBQflm6lkFuzMy9Xz0hQDKh7MTAAAAAJRJrbH81qPZNpvWrUsH9CTp3Zdeci6oZxHUcKqnXiqZ1CtPP62OrVsVCoc1c8ECDTMEUrPvwBxwpPwWQzE4206yD1hbveazlt969NyB8qL8FgAAAADKxJRtE4tZZq65beuHH5Zs31a/b9ih8tutGzaoY3e5cCIe1/vvvjvktZGph6EwZerZDMqwCvYFBwUEjeeOau3HiUwE9QAAAACgTIzZNkqlFI/F3FlMFqXsaWcVvIg6VH67a/v2jNt93d0F/TxBPTjNNP222Ew9ym9hgaAeAAAAAJSJsdm95M2MG7tsIidY9tRzKFOve9euIe3Ham2U32Io8h2UYRXsI6iHXAjqAQAAAECZhGtrTf3jvNgbayiDKorZt7H8VhZDA/LR1dGRcbvgoJ5VCSRBPQxBvoMyrALpg/vx0VMPVgjqAQAAAEAZGbP1vJhxU8pMvWQe02+lwgNyyWQyY7iHVHhwkvJbOC3f8lur197gn601ZOolEwklSvg+hT8Q1AMAAACAMjJm3Hiy/NYi8ODUQI98pt/aPS6bns5O0xoLDU4S1IPT8h2UYXzPBcNhBYIfhWyM5beSd6dno3wI6gEAAABAGZnK6HwS1HMqe89y+m1d3ZCfz1h6K9FTD+4L59FTL5VKaeeWLRnbBk++laSalhZTgNmL5w6UF0E9AAAAACgjv5bfOtVnz7ifYDRqCnxIhQfkjEMyrJ6r0LVJZOphaHL11EulUnr7+ee16tVXs/5cIBDwxbkD5UVQDwAAAADKqLatLeO2X8pvi51Ia2TMhgtFIoo0NpqCGH09PQXt1ypTL1XgwA3Kb+G0kCHjzhg47ti6VZvff9/8c4b3g2QxAZfy26pHUA8AAAAAysgPH8ytMtYcC+oZM/UiEQWCQTWOH5+xvbe7u6D9dlsE9aTCynhNQb1AIKOvGVCoXJl6G9autf45QzBQ8kfpPsqLsxMAAAAAlJHXP5inUinLQJhTQT3j9NtgJCJJahw3LmN7IUG9VCqlbsPk2/TzFbBuY1CPLD0MVchQWj44qJ1MJLR1/XrLnwuSqYc8ENQDAAAAgDIy9sXyWvmtXRAs5dSgDItMPUlqmjAhY3tfAUG93q4u24y8QvrqEdSD07JNv922caPisZjlz1lliNYag3oeO3eg/AjqAQAAAEAZeT1TL2ETZChVT710UG8I5bddFkMyBhS0bsNjmXyLocpWfrtp3Trbn9v+1lumbcZzh9e+EED5EdQDAAAAgDIyfjBPxOMF9X0rNbvMIaeCer1dXRm30+W3hky9QoJ6dv30pKH11CNTD0NlDOoNZI7G+/q0dcOGgvZF+S2MOEMBAAAAQBkZy28lKRaLqSYUcmE1Zol43HJ7IWWsdta+/bbWvPlmxjYneuply9Sj/BZuMvbUGwiOb16/Putrc9Lxx5u2eT3LF+VHph4AAAAAlFFta6upX1bcQxk3tpl6Q8wm3L55symgJ0nRxkZJ5p568b4+U4AxlUqpY9s2dRky87Jm6g0hqEf5LYbKrqfeJsPU27GHHab6MWMkSYFQSHufe65pX8YvBAjqgTMUorJTZQAAQ/NJREFUAAAAAJRRIBhUuK5OsUHTWr1UfmuXqTeU8ttEPK53X3zR8r4pp5wiSWo09NST+rP16pua0rff+uc/teWDDyRJe86erTGTJyuVSpmCfMWum0w9OM2q/Lanq0s7t27N2D7nkks07vDD9d5f/qLWmTPVPmeOaV/G8ttELKZkMqmgxVANVAeOPAAAAACUmV1JnhfYZeoNpfz2vTffVI+hl17dyJH61G236WNf/7qk/oy9mtbWjMcMnoDb1dGRDuhJ0spXXpHU31fMLhApFTa11/g7BjxSEg3/CkWjGbeTyaRpQEbN8OGa9OlPq6alRdNOP90yoCeZg3oSwzKqHV87AAAAAECZZZuI6Tanp9/u3LpV61euzNg25qCDdNKjj5rKkJvGj1fvoAymwX31dmzebNp3riw9iUw9uMvqvW4M6k099VTT46zUtrVJgYA06HUa6+1V1PAlAaoHmXoAAAAAUGaeztSzK78tokQ4mUjoHUPZbaimRp+84QZTQE8yl+AODuoFLbLm4rGYurMMyZAI6sFdxvd6vK/P9Jqd/tnP5rWvYCikWkM2K331qhtBPQAAAAAoM1OfLS/11HOw/Hbt22+bAhgL/vM/NXz6dMvHG4dlZAT1LIKA8b6+kmbqMSgDQ5UrA69p0iSNOeigvPdnLMElqFfdCOoBAAAAQJmFvZyp51D57a4dO7TunXcyto3Yf/90Dz0rTVky9azkk6k3lJ56ZOphqHIF9aZ/9rMKBAJ576/OOAHXQ5OzUX4E9QAAAACgzDzdU8+B6bepZFLvvPBCRu+vYDisI268MWugLFv5rdXzx2MxeurB03IG9T73uYL2V0umHgYhqAcAAAAAZWYqv/VQUM+J6bfbN29W586dGdv2//a3bad6DjBm6vV1d6cDbVY9/Xo6O02ZSsbAYL5BvVQqpZ1btmRsY/othsqYlTvYyHnzbEvR7RjLb+Nk6lU1gnoAAAAAUGamQRk+6KlXyBq7DAG9YVOnat6//3vOn2s09NRLJpOK785Esnr+jm3bMm4Hw2G1zpqVsS3fYOQby5dr49q1pv0BQ5EtU691770L3p+p/JZMvapGUA8AAAAAyszL5be2028LWKOxhLdtn31yliFKUsOYMabsuIESXKvn79i6NeN2y7RpijQ0ZGzLJxjZ1dGhbRs2mLYT1MNQZXvd1wwbVvD+GJSBwQjqAQAAAECZeXlQhm2m3hCCepGmprx+LhgOq2GPPTK2pYN6VuW3XV0Zt4fPmGHOgsxj3X09PbbrAYYiW1Av2txc8P5MQT3Kb6saQT0AAAAAKLOgsaeeR8pvU6mUbaZeIWtMGB4bzTOoJ9lPwM0n4274jBlFZUEaB2QM2PbWWzl/FsgmGI3a3ldUUI/yWwxCUA8AAAAAysyrmXrJRCJjYm3GfUPJ1GtszPtnjX31Cgnqtc6aVdQQErvHtO+3X86fBbIJBAK22XpRB8pv4319tkHpckokEnrvjTf02rPPasOaNW4vp2oQ1AMAAACAMvNqTz27ybfS0IJ60QKCeraZenk8v9OZemMPPTTnzwK52AX1iumpV2sI6klKD5Nx0/qVK7VuxQpt37hR77z4onYa+l2iNAjqAQAAAECZmQJPHim/zRbUy3eKrFR8Tz1JarQJ6hlLek0CAQ2fPr2ov61V4G+/r31N+1x4Yc6fBXKxzdRzoPxW8kYJ7tYPP8y4vXPLFpdWUl0I6gEAAABAmVVbpl4hQT1Tpt7uYRi5gnPNkycrXFfnSPlt+7776uD//m9F6uvzWTKQlZPlt6Fo1BQMdDuol0ql1L1rV8Y2r3xRUekI6gEAAABAmRl76hWSBVdK2cr4hlR+W0hQz9BTL9bbq2QymTNIMHzGDEnF9Ss0lt8GI5F8lgrkxTiReUAx5beS9ybgxnp7TV8IeOWLikpHUA8AAAAAysw4/dYrWS1Zy28LmX5rzNRraMj7Z42DMiSpr7s7Z5CgdXdQr5jyW2NQNRgO5/wZIF9OZupJUm1ra8btRJb3bTl0GbL0JIJ65UJQDwAAAADKzKvTb50qvzUG0grJ1KtpaTEFAXu7u3MG51r33luSOYCSV/ktmXooIaeDesby27ghiF5u3R0dpm1e+aKi0hHUAwAAAIAyKybwVA5OBPVSqdSQeuoFAgFTtl5vPpl6s2ZJMpc65lV+a8zUI6gHB4WiUdO2YDiscF1dUfuLGIJ6xvdbuXVZBPW8ck6rdAT1AAAAAKDMigk8lUPWnnp5Zt5YPa6QTD3JYlhGHpl6w2fOlFTcEJIkmXooIaueetFhwxQIBIranzFTz+3yW+OQDMk757RKR1APAAAAAMrMVH7rkVK1rD318vyQbpU1FGlsLGgdlpl6Wf5GTZMmKbr7OZyYfktQD06yKr8ttvRWMg/YcLv81ipTzyvntEpHUA8AAAAAyqySy28tg3qFZuqNG5dxuy9HUG+g9FZyZlCGVbkkUCyroF6xk28lc+arm+W38b4+y+m7ZOqVB0E9AAAAACizYkpEy6EUQb1gOGw7KMBOoT312rIF9RiUAZdZZuoZSmgLYeqp52L5rdXkW8k7X1RUOoJ6AAAAAFBmng3qZempp1TKFPyyYjUko9DeYcaeej1dXVmDBAOTbyXKb+E9dj31imXqqedipp5V6a1E+W25ENQDAAAAgDIzDcrwyAfgbJl6Un7rNAX1CuynJ0mNhqBerucdXH5r6lfIoAy4rJJ76nXbBfU88kVFpSOoBwAAAABl5sWeeqlUKndQL491JgwBuEIn30pSo6GnXi4Dk28lZ3rqEdSDk0reU8+D5bcE9cqDoB4AAAAAlJkxmyyVSrke2EskElKO8tp81uhEpl64tlb1o0bl/fhIfX36/60CKLnWTU89lJLV4JWh9NTzUvmtXaZeyiPZx5WOoB4AAAAAlJlV4MntzJas/fR2yytTzxBgKCZTTzKX4NqZvGhRxm2r/mW51m3K1AuH83puIB/GIL40tPJb06CMeDyvfpdOS8Tj6u3utrzP7fNZtSCoBwAAAABlVkzgaSjisZjefv55Pf/oo1rz1luWAYBcpbdSkT31ShjUq2lt1fz/+I+MbcUETI1BPavMKqBYTpffWv2sG9l6dqW3knf6hFY6vn4AAAAAgDIrd6be+pUrtWndOknS2rfeUnNrq1pGjMh4jDGoV9vWpt7t2zPK6MpVfiuZJ+AOFgiFdPry5WocP161ra0Z91n+bXMEGBiUgVJyelCGVeluIh5XuMyvW7vSW4lMvXIhUw8AAAAAyswqU6+UPajWvPVWxu13X37Z9JiEofy2Zvhw89CJMpbfNk2YYHtfTUuL2vfd1xTQk2z+toWW3xLUg4Msg3pD6Klnlf3qSqYeQT3XEdQDAAAAgDJzu6deX0+PaVvMkKlX09LiSFCv2Ey9xixBvXBdne19RZXfkqmHEnK6/DYYCinS0JCxrVwTcFOpVDrztTtL+a08MPynGlB+CwAAAABlFgyFFAyHlRwUACtnUC+fnno1w4ebst7yySY0lroWnak3bpztfaEsQb1gKKRAKJSx1oIHZRDUg4MCoZBp21DKbwd+PtbZmb4dL0OmXldHh95Yvlw9nZ0aMW5c1kw9qf99FwqSS1ZK/HUBAAAAwAXG7J1Slt+aWAT1jJk+ta2tvszUk8zTRnP9bY1BzhBBPTgo0dtr2jbkoJ7FBNxSW7dihXp2BxI3rVuX/n87lOCWHkE9AAAAAHCBMQvO9Uy9EvXUK3b6bf3IkQraTKE1Bu2MggWu25Spx/RbOChuUe4+lPJbyZwBW47y24FhO/liAm7pEdQDAAAAABe4GdSzYtVTzxg8K+egjEAwaDsBN1emXqHBSKbfopQSFkG9cH39kPZpzNQrR/ltNrXt7aZtbp/TqgFBPQAAAABwQTFZcKVkzPSpGT5cIUPGWj6N750qv5WkRpu+elYTbgcrNBhJTz2UktXrOBAIDGmfERfKb7MZse++pm0Myig9gnoAAAAA4IJC+76VmnFQRq3FoIx8yukcDerZ9NUrNFMvV3CBoB5Kaa/TTsvIrJt+1llD3qexfLdc02/ttO69t6lsnfLb0mP6LQAAAAC4wGuZejFDM/+aIgZlpFIpx8pvJTlXfsugDLgoXFenkx57TC/+5CeqHzlS8y67bMj79Fr57fAZMxSurVXfoN6cbp/TqgFBPQAAAABwgZeCeolEQr3d3RnbmidOLCjjLRGP64OVK03bix2UIUlNDmXqUX4Lt7XPnq0jb7rJsf2ZBmWUIagXCAZtzwGtM2d66pxWLQjqAQAAAIALCs0mK6WeXbtM21qmTSuo/HblK69o49q1pu1DydSz7anndPmtcVBGmI/K8DZTT70Sl9+mUqms76PhM2eazhdutxSoBvTUAwAAAAAXmD4Au5jV0t3ZmXG7cdw4RRoa8s68icdi2rhuneV9Q+mpZ5upl2NQRqEBU+PvZewNBniNqadeiTP1jIHvwepGjFBde7vnJnpXA4J6AAAAAOACL5WqdRsy9YZPny4p/4y3nVu3ShYf+kM1NTkn1WbTWGxPvUKn3xoz9Si/hceVu6detsD48JkzJXkr+7haENQDAAAAABcYs81KFdTLlmEzoLujI+N2y+6gXr5r3LFpk+X2ySecoEAgkM8yLUWbmlQzfLhpe6l76jEoA15n6qlX4vLbbAG61t1BvXKd0/ARgnoAAAAA4IJgmbJa8grqGcpvW6ZNk2TOeLMr8duxebNp24FXXaUjbr4532XassrWKzSoV3BPPYJ68Dhjpl6py2+zBejsMnsJ6pUe3T8BAAAAwAXGrJZS9dSz228qlVIgEFAqlTKX3+4O6tW2tWVsj/f1mfYT6+tT586dGdtOevRR7XHIIUNZdlrT+PHa8vLLGdtyDcowZQzlCJgy/RZ+E7XoqTfwni6FbO+hht0DbUznNMpvS45MPQAAAABwQbmyWuyCegPPF+vtNWX5DJTf1rW3Z2yPWZT4GbP0wnV1GrVwYdHrNbIalpFzUEYBZYCpVIpMPfiOMVNPKm22nt17KFxXp3GHHy7JIvuYTL2SI6gHAAAAAC4oV1N5uw/WA89nzNIL19WpaXfJqylTr7fXtB9jUG/MwQcr5OD0WCfKb7P9ba3KkwnqwevKHtSzeA/VtLbq0OuvV21rqyR66rmB8lsAAAAAcEHZMvVseuoNfEjvMgT1WqZNUyDYn/9hDOrFLMpvjUHBPQ4+uOi1WrEK6uWaqGsM+mXN1LO4z8mgJFAK4fp607ZSTps17rtuxAidu359xjZThizltyVHph4AAAAAuMCY1bLlgw/04Xvv5TXYohC5ym+NQbmBIRmSufw2EY+bAmSmD/uGnxmqpiIy9QrpV0imHvwoGIlIhv55pcyMM+7b6j3IoIzyI6gHAAAAAC6wyjZ796WXtH7VKkefJ1f5bY/NkAzJnKknmYdlmD7sW2QQDYVlT71c5bcFZAxZBfwI6sHrAoFAwQNhhsK4b6vzV7mG/+AjBPUAAAAAwAXGrJYBG9eudfR5bDP1bHrqDQzJkPp7ZhmZgnqGD/u5Am6FathjDwXDmZ2jrPqJDVbIoIwkmXrwKeMU6GIy45LJZF7BwKIy9Si/LTmCegAAAADgAru+cJ07djj6PLY99XZ/mO/p6srYPrj8NhSJqKalJeN+Y1+9Ugf1guGwppx8cvr2sClT1DprVtafKSSDiUw9+NVQM/XWr1qlZ5cu1fK//EWbP/gg62NNmXoWX0oUEkyHMxiUAQAAAAAusMvUc1q28tvuzk7T9uGDMvWk/hLc3u3b07fLnaknSZ+88Ua177uv+nbu1JyLL04P8rBD+S2qwVCCaIl4XKtfe02pVEqJeFyrXn1VbWPGKGDo0zfA+D7JJ1OP8tvSI6gHAAAAAC4wZtkMiOaY7FqobOW3xtLbhj32ULSpKWNbbVubdrz7bvq2MVMvYczgKUFQL1Jfr/2/9a28H1/Q9FvKb+FTph52BWTq7dqxI+N90dfTo76eHtXYvH9N7/M8eupRflt6lN8CAAAAgAvsMvWCObLQClVIUG9w6e2AWsM028FBvVQqZfrgHnF4UEYxCpnCafz7BIJBBUOhkqwLcNJQMvWszjN9PT22jzcGDC0z9Si/LTuCegAAAADgArugntMfhK0GQQw8jzGoZyy9lcwTcOOGoJ5RKTL1ClVIBpPx70OWHvxiKJlxVueZ3u7uvB9vlanHoIzyI6gHAAAAAC4wTnQd4PQH4ayZeoaeelaZenWGoN7gTD2rtXoiU6+AjCHj34egHvxiKJlxVu/dvmxBPTL1PImgHgAAAAC4IGAX1HP4g3DWoF5HR8Y2y0w9Q/ltPEdQzwuZegUNyiBTDz5VyOvcyOqxWTP1jEG9PHrqMSij9AjqAQAAAIALRs2fr0hDg2l7MpGwLGstll2QsLe7W4l4PGNbPuW3uTL1SjH9tlDGNaRSKdu/KZl68CtT+W0hmXpW5bdZeupRfutNBPUAAAAAwAXhujod/+CDahw/3nSfk0E9u3117tiRcTtUU6PGCRNMj6vLkqlnnIgp2U/1LSerNdgFGMjUg185nalXUPltPkE9MvVKjqAeAAAAALhk7GGH6eTHHzdtdzLDxa4ErnPnzozbw/bay3LqayGZeqHaWgUcnt5bDKssIrsAg/HvE4pGS7ImwGnGjNSh9tQrZFAGPfW8wf2zLQAAAABUsUKyyoph98HaVHprMSRDMgf1EvF4ep+mD/oeGJIh2QT17DL1KL+FTzmeqdfTk7UHZ7bnloY2jRfFIagHAAAAAC4qJKusGPmW8lpNvpXM5bfSRyW4+UzEdINloNQuWEH5LXwqbCh3LWQwhd37oa+3N6/HW2bqDWE9KA5BPQAAAABwkdWHY0eDennua/iMGZbba1pbTdu8HtQzBhckKUWmHiqM05l6kn0Jbj6ZesZt2QbUwBkE9QAAAADARcFwWAFDLzu7AFQx8g0Q2pXfhiIRRYcNy9g20FfPOCjDK+W3gWAw76b9pkEZ4XDJ1gU4aUjTb4cY1LMK4Je6lQDMCOoBAAAAgMtK2Ysq30y9lunTbe8zluDG7DL1PDD5dkC+WUxk6sGvQsZBGQ5k6tlNwDUGDK0y9YIWGbIMyygtgnoAAAAA4LJSTo3Mp/ytftQo1Riy8QarGzky43ZvV5cki6CeRzL1pPyzmEyZegT14BNDytSzeWzemXp5DMqQ6KtXagT1AAAAAMBlxlI2J4N6+ezLbkjGgNZZszJud+7c2b9vj/bUk/LP1DNlIEWjJVsT4KSh9NQzls4PsA3q5ZGpV8jUaTiDoB4AAAAAuGwoH85zySdTxm5IxoC22bMzbnf5Mahnl6lH+S18qpAM31hvrzauW6fOHTv6H2tzjtm1fbtldm8+73WrATWU35YWHUABAAAAwGVuB/VyZeq1z5mTcburo0PJZNLb5bd59huj/BZ+lW8vzlhfn55/9NH+qdWBgGYuWGDfU6+nR9s2blTrqFHpbalUKq/y22AopGA4rGQ8/tGaCOqVFJl6AAAAAOCyofTGyiWfnnp2k28HGDP1UqmUunftMq3TU5l6+U6/JVMPPpXveWPTunX9AT1JSqW04b33sp5jNrz3XsZtq3OIcUhHensJv6CAGUE9AAAAAHBZKaff5tVTL8vkW0mqHT5cjePHZ2zr3LnT1JfLS0G9fP+mZOrBr4wBtJTNa7yroyPjdm9XV9ZzzNYNG9Tb05O+bfVYu0nXxmxdgnqlRVAPAAAAAFxW0um3OfYVqqlR86RJOfdjKsHdsaMieuoZtxPUg1/k+xrv6ezMuN3X25s92JZKaeOaNVn3a/dejzQ0ZNxODCrFhfMI6gEAAACAy0pZspYrQNi+334KhnO3WzeW4Hbu3OnpoJ4xk8gui8mYqcf0W/hFvtmo3YagXqyvz/TY+kE99CRpw5o16feG1X6tJt1KUqSx0bSmRDyud156Sf/829/0z+uvz+i5h6EhqAcAAAAALnOzp97ohQvz2k/7vvtm3LYM6nloUAbTb1HpTOW3qZTp/Z5IJNTX3S3DA9Vr2Dbn4oszbvd2dWn7pk2Shp6pt2HNGm147z11d3To9Tvu0Mr777f9nVAYgnoAAAAA4DJj03m7rLJi5Cq/HbVgQV77aTdk6sV6e02BAU9l6jH9FhXO6v1mfJ0bS2/tjD30ULUZSuwHBmYY9xnYPeXWijFTL5FIaOfWrRnbtrzySl5rQm4E9QAAAADAZSXN1Muxr3wz9YZNnWrKDOretSvjdkVk6uVRigx4gVUJrPF1nm9QL1RXp73PPTdj29YPP1RfT4/pS4ZswXtjpl4yHlciFst8THNzXmtCbgT1AAAAAMBlbvbUa8pjSIbUH+xq22efrI/xUqZeqKYm47bd35RBGfArqwm0xte5MfBuu6+6Ok3/3OcyzkWpVEob165VwvAeseunJ1ln6sUNQb2aYcPyWhNyI6gHAAAAAC4LGwNQZeqp1zRpkgKBQN77Mg7LMPJSUC/f7EfToAyCevAJJzP1wnV1qmlp0dRTT83YvmHNmoIG4piCevG4aQJuTUtLXmtCbgT1AAAAAMBlxp56TmbqZSu/NfbJy6Xd0HPLyEtBvXyzHxmUAb8yZqNKFpl6BQT1JGmf887L2N7T2antGzdmPm+2TD2LQRnGTL0omXqOIagHAAAAAC4rZU+9bPva64wzCtqXnzP17IKbpkEZ0WjJ1gQ4KRAI5OwdWUimniSN/vjHNXzmzIz71q9aZflYy/0Ye+pZld+SqecYgnoAAAAA4LJS9tSzC2a1zZ6tqaecUtC+cmbqeWlQhjH7Md9BGWTqwUdMwetB545EPK6+np689jPwfgkEAqaBGabntMgQHGAsv4319ZneY2TqOYegHgAAAAC4rKTTbw2ZaHtfcIE+8ctf6uTHH1cwFCpoX7WtrWocN872fi9n6tmW3xoz9QjqwUeyZerlm6UXCIUyeklO++xnsz9nlvd51BDUswoqkqnnHGZ1AwAAAIDLStlTzxggnHLSSZpwxBFF769t9mztWrfO8r5sH/bLLd/sR+Pfh0EZ8JNsr/NC++kNqBsxQqGaGiV6e60fn6WnnrH81jKoR6aeY8jUAwAAAACXlTRTz1heOsSecdlKcCMeKr/Ne/ot5bfwsWyv80L76Q0IBAKqbW/P+/GDGctvrSbnWg34QHHI1AMAAAAAlxmzbVIl7KkXGmJQry1LUM9TmXqGwEEymdTGdev0/jvvqKauTlP33VfR2lrKb+FrxgBbRqberl1F7UOS6trb1fn++5aPL2T6rRH99JxFph4AAAAAuMwqAOWUpMPTXbNl6nmqp55hLb1dXVrx/PPq2rlT2zZs0OvLlimVTJKpB1/Ldu7IN1PPKhhf29Zm+3hjNl6+90n003MaQT0AAAAAcFm2bJuhSKVSksOZaC177WVZPheMRgsevFFK2bKJJKlzxw6tX7XKnKk3xKAnUE6l6Kkn9Wfq2akfNcr2PjL1yougHgAAAAC4rFQ99YxZaNLQB0EEw2G17r23abuXsvSk3EE9SXrvzTcVMwwDYFAG/MR47li/cqV27diheCxmem2HbXpeWg2+yNZTr370aNv7cmbqEdRzFEE9AAAAAHCZVbaNMYOsGFbBQScy0axKcO0CBm7JNqFzQDKRUDwWy9gWDNN6Hv5hPHf0dHXppccf14Y1azIfGAho5Lx5lvuweu9mK79tGDPG9j7Kb8uLoB4AAAAAuMwqq8yJoJ7VPoY6KEOS2mbPNm3zY6aeFXrqwU8s33eplFa/9lrGpqYJE9QydWre+yhZ+S1BPUcR1AMAAAAAl1l9qHair55V+a0TQatKydSzQlAPfpJv8Lpl6lQ1T55seZ/V+afY8ttwXZ0UCNjeT/mtswjqAQAAAIDLrAJQTgT1SlV+a5mpV2QQrVSsJnrmg6Ae/CTf992wvfbSsClTLO+zeq/UZSm/zRbUCwSDWbP1GJThLIJ6AAAAAOAyq2wbJ4ZlWA7KcCCoV9feroY99sjY5rXy26Iz9Zh+Cx+xmkRtxalMvWhzsyI5snKz9dWjp56zCOoBAAAAgMtKFtSz6KnnVCaasQTXa+W3uYIdI/bf3zKAx/Rb+Em+5bfDpk5V8557Wt5nFQC366lXn2VIxoBsmXoE9ZxFUA8AAAAAXBaKRBQIhTK2pUpRfhsKKRB05mOgsQTXa72yguFw1km2bXvvrf2/9S3T9nwznwAvyDdDtmWvvVTb2mpZ/mqZqWdTfpttSMaArJl6HjtP+B1BPQAAAADwAGO2TCkGZWQLchVq+llnZTTEn3ziiY7t2ynZsphCNTXa/9vf1vAZM9LbGseNU8u0aeVYGuCIfDL1AsGgmidPViAQ0DCLbD2roF64rs4y465hiJl69NRzlnNndAAAAABA0UK1tYp1dqZvl6KnXsDB0tK2vffWKU88oXfvu0+jDzhAUz7zGcf27ZRQba1iu3ZZ31dTo3BtrT7z8MN65j/+Q7HOTi34znccy2QEyiGf3pFNkyale2k277mnNr3wQsb9dkNlatvaMs5JkgOZepTfOoqgHgAAAAB4gDHjxomgXtLQU8/JoJ4kjT7gAI0+4ABH9+mkbKWJA2W29aNG6Yhf/apcSwIclU+mXstee6X/f5jFsAy790lte7s61qzJ2JZPpl44W6YeQT1HEdQDAAAAAA8otvw2lUxqzVtvaeuHH6q5rU2T9t5bod39+UyZeg6W3/pBrvJbwO/yydQbHNRrnjLFvI8smXpG9aNH53w+euqVT3Wd0QEAAADAo4wlcPkG9TavX691K1ZIkro6OlRbX6+xU6dKKm1PPT/IFvAgqIdK0LtjR87HDNt9PpAKy9SzmoCbT/lt1CaoFwyHPTcl2+9oFgAAAAAAHmDK1Muz/HbHpk0Zt7du2GC7D6fLb72OoB4qXT49IFsGBfWaLQZlxLu6LH/OaqhFfT7ltzaBu2hLiwKDhutg6AjqAQAAAIAHGINM+WbqdRsa2e/avl2p3b30UiXuqed1dgMApPx6kQFeN3nRoowp1FYGl982TZhguj/R22v5c8ZMX0lqGEL5LUMynEdQDwAAAAA8oNhMvW7DdNdkIqGujg5JlN/mMygD8LPGPfbQEb/6lYbPmGHZ7y4YDqtp4sSM28bhNpOOP95y38lYzLTNqs+ekV1QzyrzD0NDUA8AAAAAPKCYnnrxWEwxiyybjm3b+vdR5YMyCOqhGsz8whf0uVdf1edee810X/Oee5qC+Qf/6EdqnjxZ4bo6HXjVVWoaP95yv8MshmrkU+5rF9RrHhRchDOq64wOAAAAAB4VMfShSsTjOX/GWHo7YNe2bdLEiebpt1VWfputKT9BPVSaaHOzIg0Nig06LwwekjFg9AEH6PNvv52zv93e556r5d//fjpjb9Y55+S1jkhDg+X2Sccdl9fPI3++Duo9+uijuvDCC7M+5gc/+IFOPfXU9O0PP/xQP/vZz/Tkk09q8+bNam5u1sKFC3XJJZdoT4uGkQAAAABQDjWtrRm34xalb0Y9htLbAQOZesaeesFqC+plydTLNkQD8KNAIKCGsWO1/e2309taLIJ6A4/NpW7ECJ3wv/+rl667To3jx+uAK6/Max1WmXqBUMi2zBfF83VQb+fOnen/b2hoUMTiH6hoNJr+/82bN+u0007Tht3ToCKRiLZs2aKHHnpITz75pO6++25NsUgvBQAAAIBSqzUG9fr6cv6MsZ/egK6ODiXicVMJL+W3HwkN+qwIVIphU6ZkBPVa9957SPsbf8QRGn/EEQX9jFWm3thDD1VdHv34UBhfn9F3DfoH7Mc//rEOO+ywrI//6U9/mg7oXX/99TryyCP10ksv6fOf/7x27typJUuW6MYbbyzpmgEAAADAiimol0emnl35rdQ/Bde4j5BNWVylypaNR/ktKtHs/+//09q//U3JeFyN48Zpr0GVi+ViFUzfc/Hisq+jGvh6UMbgTL1Gm0aMA2KxmJYuXSpJmjVrlo466igFg0F97GMfSwcDn3zySW3ZsqV0CwYAAAAAG8apkkPJ1JP6S3D7enoytkXb24tbnE8Zh49k3EdQDxVo0rHH6owXXtCn771Xn335ZUWbm8u+hlqL88yeJ55Y9nVUg4oJ6jU1NWV97MqVK9W5+1usGTNmZNw3cDuZTOrVV191eJUAAAAAkFvN8OEZt2M5gnqpVCprUG/X9u2moF6kyoJ6Wctv6amHCtU6c6amLF7sSkBPklr22kut++yTvj311FPVOG6cK2updBVTfvvEE09oyZIlWr16tSKRiObPn6/zzjtPkyZNkiS9//776ccON/xj2ToozX3t2rVZnzORSCiRx2j5Sjbw+1f738EvOF7+wbHyJ46bv3C8/IXj5Q8cJ+dEDZ9TcpXfxnp7TT3zBuvYtk1hQ9/xaFtbVR2rYLZsvEjE038L3lv+xHHrd+Jf/6rXb7pJ4fp6zfziFz379xjK8fLC7+SpoN66det0RJ4NGH/6059mZOpdc801GfevXr1aS5cu1U033aS5c+ems/QkqcZwYh98uzNLTwpJentQw8lq98orr7i9BBSA4+UfHCt/4rj5C8fLXzhe/sBxGrru3f2/ByQTCSUTCQVDIevHZ8nSk6S+nh5Ttl+kvb2qjtWGzZtt73v73XdVl0ffQrdV0/GqJBw3KXjUUUpKeu2dd9xeSk5+PV6eCuoVo6WlRZJ0yimn6Mtf/rL6+vr04x//WL///e/V1dWl7373u/rf//3frPsYPOY911jnadOmqb6+fsjr9rNEIqFXXnlFs2fPVsjmAgPewfHyD46VP3Hc/IXj5S8cL3/gODmne9w4vWjYFovFVGPzdzVm8jVNmqSeLVsU6+hIb0slkxmPiba3V9Wxevv117XS5r599ttPTRMmlHU9heC95U8cN38ZyvHq6upyPfHLU0G9UaNG6aGHHsr7scccc4zlfd/73vf0yCOPaNu2bVqxYoXWrl2bMUijt7c34/GDbzfkmAYVCoV4Y+7G38JfOF7+wbHyJ46bv3C8/IXj5Q8cp6GrNwzKkPqHZdTY9H4zBuwi9fUaNnmy1j36qO1zRNraqupYRbJ8vovW1/vi71BNx6uScNz8pZjj5YXj66mgXiQS0ZQpU4a8n2g0qvHjx2vbtm2SpG3btmnCoG9gtm7dmvH4TZs2pf9/4sSJQ35+AAAAAChUMBxWTUuLerdvT2/LNgE3aQjqhWpqNGrBAtugXqimRmGXGue7JZxlGAaDMgD4naeCeoXo6urSbbfdpq1bt6qhoUGXXnpp+r5YLKZ169alb48ePVptbW0aPny4tm3bpjfffDNjX2+88Yak/qDinDlzyvMLAAAAAIBBTWtr3kG9wW2EJCkYiWjUwoW2j68fPTpnu6FKk3X6bbYhGgDgA0G3F1Cs+vp6/eEPf9Cvf/1r/fznP9fvfvc7JZNJdXd3a8mSJelsvAULFmjkyJEKhUL6zGc+I6k/iPeXv/xFyWRSy5Yt01NPPSVJOuaYY9RcZd9cAQAAAPCO2tbWjNuxLIMcjJNvQ9GoRs2fb/v4+tGjh7Y4H8oa1ItGy7gSAHCeb4N6kvTd735X0WhUqVRKl19+uebMmaO5c+fq9ttvl9Tfd++qq65KP/6iiy7SpEmTJEmXXnqp5syZo7PPPlvxeFyjR4/WN7/5TTd+DQAAAACQZA7qFZSpF42qYcwYNY4fb/l4gnofCUYiCgR9/XEYAPwd1DvooIN0//3366STTtLYsWMl9ffTmzZtmi688EI98MADGb30mpqadNddd+mzn/2sRu/+B23kyJE65ZRT9Nvf/lajRo1y5fcAAAAAAKm//HYw44TbwUw99XZnno1asMDy8VUZ1Kuvt9xOPz0AlcC3PfUGTJkyRVdffXXej29tbdV//ud/6j//8z9LuCoAAAAAKFytYQJu1kw9i0EZkjRq/ny9+/vfmx7fMGaMAyv0F7tMPfrpAagEvs7UAwAAAIBKUjt8eMbtWAFBvSCZeiYhgnoAKhhBPQAAAADwCFOmXhHltyP331+BUMj0+GoM6pGpB6CSEdQDAAAAAI8oaFCGTaZepKFBbfvsY3p8fTWW39r0zrPbDgB+QlAPAAAAADzCFNQrIlNPkkbOn296fEMVZuoFgkHLrDwy9QBUAoJ6AAAAAOARxum3sb4+pVIpy8catwcHBfVGG/rqBUIh1Y4Y4dAq/cWqBHfw3woA/IqgHgAAAAB4hLGnXiqZVDKRsHysafrtoEDV2MMPVyD40ce99n33VdCiz141sBqWQaYegEpAUA8AAAAAPMJYfivZl+BmK78dtueeOvCqqxSqqVH9mDE6+Ec/cnahPmKVqUdPPQCVIOz2AgAAAAAA/WpaWqRAQBpUWhvv61ONRWDKblDGgLnf/KY+9o1vpDP2EjYZf5XOKqhHph6ASkCmHgAAAAB4RCAYVM3w4RnbYjYTcLNl6g3eX7UjqAegUnGGBwAAAAAPaRgzJuN2X3e35eNyZeqhn1WpLUE9AJWAoB4AAAAAeEjjuHEZt3t7eiwfZ8rUI1BlyXJQBj31AFQAgnoAAAAA4CGN48dn3O7NM1PPqvwWlN8CqFwE9QAAAADAQ5oMmXp25bfGTD3Kb61ZBvX4WwGoAAT1AAAAAMBDyNRzVri+3rSNTD0AlYCgHgAAAAB4iKmnnl1QL5XKuE2mnjXLTD166gGoAAT1AAAAAMBDjJl6iXhc8Xjc9DjToIxIpKTr8ium3wKoVAT1AAAAAMBDjJl6knVfPVP5LYEqSwzKAFCpCOoBAAAAgIdE6utV29aWsc2qBJdBGfkJEdQDUKEI6gEAAACAx+QzLINBGfmhpx6ASkVQDwAAAAA8xliCm0/5LZl61ii/BVCpCOoBAAAAgMc05ZGpZxqUQVDPEkE9AJWKoB4AAAAAeIwxU88Y1DNm6UkE9exYBvX4WwGoAAT1AAAAAMBjjD31+np6Mm4bs/Qkss/sWPXPC9NTD0AFIKgHAAAAAB5jlamXSqXStwf//wB66lmj/BZApSKoBwAAAAAeY+ypl0wklIjFPrpN+W3eCOoBqFQE9QAAAADAYxrGjpUCgYxtg/vqWfXUI1PPGkE9AJWKoB4AAAAAeEwoGlX9qFEZ23oH9dUjUy9/wUjEtC0QCrmwEgBwFkE9AAAAAPCgbBNwydQrgCHjUbLuSQgAfkNQDwAAAAA8yBjU68sS1AuEQgqSfWappqXFtC3a3Fz+hQCAwwjqAQAAAIAHNRqGZQzO1DOW31J6a69x7FiNPvDA9O2R8+apeeJEF1cEAM4Iu70AAAAAAIBZIeW3lN5md/wDD+j5//5vKZXSx/71X91eDgA4gqAeAAAAAHhQkyFTr49MvaLVtrbq41df7fYyAMBRlN8CAAAAgAeZMvV6etIDHoyDHsjUA4DqQ1APAAAAADzI2FMvlUwq1tcnySJTr6ambOsCAHgDQT0AAAAA8KCGMWMUCGZ+ZBsowTX21KP8FgCqD0E9AAAAAPCgYDishj32yNjWaxPUo/wWAKoPQT0AAAAA8Ci7CbgMygAAENQDAAAAAI8y9tWzK78NRiJlWxMAwBsI6gEAAACAR1lNwJUYlAEAIKgHAAAAAJ7VZMjUs+upR/ktAFQfgnoAAAAA4FG25bepVMZ2BmUAQPUhqAcAAAAAHmVVfptKpRiUAQAgqAcAAAAAXmXM1FMqpb6eHvOgDIJ6AFB1COoBAAAAgEfVjxxpmmzb191Nph4AgKAeAAAAAHhVIBi0LsFl+i0AVD2CegAAAADgYaagnkWmHuW3AFB9wm4vAAAAAABgz9hXb+uHH6pzx46MbSFDiS4AoPIR1AMAAAAADzNm6u3cssX0GDL1AKD6UH4LAAAAAB7WZJyAa4FBGQBQfQjqAQAAAICHGTP1rBDUA4DqQ1APAAAAADzM2FPPSpDptwBQdQjqAQAAAICH5RPUI1MPAKoPQT0AAAAA8LDa1laF6+qyPoagHgBUH4J6AAAAAOBhgUBA8Z6erI9h+i0AVB+CegAAAADgdalU1rvJ1AOA6kNQDwAAAAA8bvrnPpf1/hCDMgCg6hDUAwAAAACPm3bGGVnvp/wWAKoPQT0AAAAA8LiJn/60jrv/fu37L/9ieX8oEinzigAAbiOoBwAAAAA+MPn443XItddq5Lx5pvvI1AOA6kNQDwAAAAB8pGGPPUzbGJQBANWHoB4AAAAA+EjjuHGmbWTqAUD1IagHAAAAAD5imanH9FsAqDoE9QAAAADARyi/BQBIBPUAAAAAwFfq2ttN2yi/BYDqQ1APAAAAAHykbuRI07ZUPO7CSgAAbiKoBwAAAAA+0jprVsbtcH29miZOdGk1AAC3ENQDAAAAAB+J1NfrkP/5HwVCISkQ0PzLL1e4rs7tZQEAyizs9gIAAAAAAIXZ99JLNfW00xQIBFQ/apTbywEAuICgHgAAAAD4UMPo0W4vAQDgIspvAQAAAAAAAJ8hqAcAAAAAAAD4DEE9AAAAAAAAwGcI6gEAAAAAAAA+Q1APAAAAAAAA8BmCegAAAAAAAIDPENQDAAAAAAAAfIagHgAAAAAAAOAzBPUAAAAAAAAAnyGoBwAAAAAAAPgMQT0AAAAAAADAZwjqAQAAAAAAAD5DUA8AAAAAAADwGYJ6AAAAAAAAgM8Q1AMAAAAAAAB8hqAeAAAAAAAA4DME9QAAAAAAAACfIagHAAAAAAAA+AxBPQAAAAAAAMBnCOoBAAAAAAAAPkNQDwAAAAAAAPAZgnoAAAAAAACAzxDUAwAAAAAAAHwm7PYC/CKZTEqSuru7XV6J+xKJhCSpq6tLoVDI5dUgF46Xf3Cs/Inj5i8cL3/hePkDx8k/OFb+wvHyJ46bvwzleA3EhwbiRW4IpFKplGvP7iNbtmzR6tWr3V4GAAAAAAAAPGLSpElqa2tz5bkJ6uUpHo9rx44dqqmpUTBI1TIAAAAAAEC1SiaT6u3t1bBhwxQOu1MIS1APAAAAAAAA8BlSzgAAAAAAAACfIagHAAAAAAAA+AxBPQAAAAAAAMBn3Onkh4K99957+sUvfqFnnnlGW7ZsUTQa1dSpU3XiiSfqjDPOyBi9/O677+r//b//p2XLlmnHjh1qbW3VoYceqksuuUSjRo3K2O+uXbt0ww036G9/+5vef/99SdK4ceP0iU98QhdccIGam5szHv/222/r5ptv1vPPP6/169erpqZGM2bM0EknnaTPfOYzCgQCef9OL774on75y1/qhRdeUGdnp0aNGqVPfepTuuiii0zPu2XLFv3mN7/RI488onXr1imVSmnChAk66qijdM4556i+vr7QP2lJVfPxevTRR3XhhRdm3dcPfvADnXrqqXk/d6lV8/GaPn16zn0tWLBAt912W97PXQ7VfMwkacOGDbrhhhv0xBNPaP369YpEIpo+fbrOPPNMLVq0qNA/Z8lV4vFKJpO66667dO2116qzs1OS9PDDD2vcuHGWj9+8ebOuuuoqPfTQQ5K8+b4a4JXjNdiHH36o4447Trt27ZIkXXzxxbrkkkvy/p0KeX9J/jhe1X6cuDbs54fjxbXhR/xwvLg29N8xk7g2HODm8XLr2pBBGT7w5ptv6rOf/Wz6hVFTU6O+vj4NHLpjjz1WP/7xjyVJK1as0JlnnqmOjg5JUiQSUSwWkySNGTNGf/jDH9Ta2iqp/wV/5pln6u2335YkhcNhBQKB9OMnTZqke++9V01NTZKkP//5z/rGN76heDwuSaqtrVVPT096nWeccYa+//3v5/U7PfPMMzr//PPTzzV4nTNnztQ999yjmpoaSdKqVav0uc99Tlu2bJEkRaNRxWKx9O8/a9Ys3X333enHu63aj9cDDzygb33rW5KkhoYGRSIR0/4uu+wynXjiiXk9d6lV+/FauHCh7X527typZDKphQsX6je/+U1ez10O1X7MVq1apTPPPFPbtm0zPVaSLrzwQn3ta1/L869ZepV4vN555x1dfvnleuGFFzK22124/f73v9cPf/hD7dixI73Nix+IJO8cL6Nzzz1XTz75ZPp2IRfahby/JH8cr2o/Tlwb+ut4cW3or+PFtaH/jhnXhu4fLzevDSm/9YEf/vCH6Rf81VdfrZdeeklPP/209tlnH0nSQw89pOeffz59f0dHh6LRqO666y69/PLLuv766yVJ69ev13XXXZfe72233ZZ+wZ922ml64YUX9Pzzz+u0006TJK1evVp33HGHJKmzs1Pf+c53FI/H1dTUpHvuuUcvvfSSHnzwQbW0tEiS7r77bq1cuTLn75NKpfS9731PsVhMra2teuihh/Tiiy/qsssukyS98cYbGf9IXHHFFemLtu9///vp3/9jH/uYJOn111/X/fffX/gftkSq/XgNfLMhST/+8Y+1bNky039euWiTOF5Wx2fZsmW6/vrr0/+wnnTSScX9cUuk2o/Zf/3Xf6Uv2r72ta/pxRdf1COPPKKpU6dKkm644Qa9/vrrRfxlS6PSjteGDRu0ePFivfDCC5o2bZrGjx+f9fG/+tWvdNlll2nnzp064ogj8v2zucYLx8vonnvu0ZNPPqnhw4cX/PsU+v7yy/Gq9uPEtWE/vxwvrg37+eV4cW3ov2PGtWE/t46X29eGBPU8rq+vTxs2bNCECRN00EEH6aSTTlIgEFBra6sWL16cftwLL7ygjRs36umnn5YkHXbYYZo7d66CwaCOOuoozZw5U5K0dOlSJRIJSf3R5AkTJmjixIn66le/qmg0qmg0qrPOOitjv1L/iaOtrU2TJ0/WF7/4Re23336S+tOzTzjhhPTj33zzzZy/08svv6zVq1dLkhYtWqQpU6YoHA7r85//fPrD1YMPPihJ6unp0caNGzV58mQdfvjhOuOMMxQMBtXa2qpzzjknvU+vnKSq/XhJ/d/gDWhsbMzzL+cOjpe17u5uXXbZZUqlUpo3b17G38Jt1X7Ment707/TyJEjdcEFFygcDmvs2LHpb2CTyaT+8Ic/FPJnLZlKPF49PT2KRCL65je/qfvuu09jxozJ+viOjg5NmzZNd955Z/pi3Ku8crwGe//99/XDH/5Q4XBYX/nKVwr+nQo9J/rheFX7ceLa0F/HS+La0G/HywrXht49Zlwbun+83L42pKeex0Wj0XSNtdHAN5SSFAwG9eqrr6a/PZkxY0bGY2fMmKE33nhDO3fu1KpVqzR16lRde+21lvvdunVr+v8H+gvNmzdPf/7zny0fPxBll/pPJLm8/PLLGesa/DtMmzZNy5cv14oVK9TZ2amGhgYtXbrUcj9dXV3p/zfW0ruF49WQceFml9rsFRyvBst9XHvttVq7dq1CoZC++93v5nzOcqr2Y7Zr1650+eiYMWMyesANXNxISn+76bZKPF6tra1aunSp9thjj5yPlfovxi+55BKFw2GtW7cur59xi1eO14BUKqX/+I//UGdnpy688EJNmzat4N+p0HOiH44Xx4lrQ78dL64N/XW8rHBtmMlLx4xrQ/ePl9vXhmTq+dTKlSszUkfnzZuXbgQpyZQ2OlBnLklr16613W93d7f++7//O317wYIFWdfx2GOPpT8o7bffftp///1zrn3wOgeva/DtVCqV8TijlStX6sYbb5QkNTc365RTTsn5vG6qpuM1uMTiiSee0DnnnKNPfvKTOvroo3X55Zenv3Xysmo6XkYrVqzQnXfeKUlavHhxXs2SvaBajtmwYcPSjYPXrVuXvoiT+ksQBng1GDHAz8erqakp74s2Selv1/3MreN155136plnntGUKVOK+uZcKvyc6OfjVU3HyQrXhv28eLy4NvTX8TLi2jCT144Z14buHy+3rw0J6vnQmjVrdP7556e/9Vq8eLFmz56dkW1gbAw8+Pbgxw3W1dWlSy65RK+99pokafLkyfrsZz9r+dgjjzxSc+bM0Ze//GU1NDTonHPO0c0335zX5MDBzx+NRgta57e+9S3NnTtXn/70p/XBBx/o+OOP1+9///u8sivcUm3Ha/C3sddcc42eeuopvf/++1q9erV+97vf6TOf+YxnvimyUm3Hy+iaa65RIpFQJBIp+h+2cqumY1ZbW6sDDzxQUv+3mddcc4127NihFStW6L/+679y/k5e4PfjVW3cOl5r167Vj370IwWDQV111VWm90a+hnpO9ItqPk5cG37Eq8eLa0N/HS8jrg0/4sVjxrWh+8fLbQT1fObll1/W6aefno6077PPPrr88stz/lwymUz/v9WHlq1bt+rss8/WE088Iak/Ev6Tn/xEtbW1lvvbvn27ent7JfW/id5+++28ehENdZ27du1Kv2l7e3v13nvvafny5UN+3lKp1uPV0tKilpYWnXfeeVq+fLmefPJJnXzyyZL6T65eS9sfUK3Ha8Czzz6rxx9/XFJ/A+SxY8cO+TlLrRqP2be//e30Om699VYtWLBAxx9/vNatW5cum/FqplGlH69K49bxSqVSuuyyy9TV1aWzzz47PfzAabnW6RfVfpy4Nuzn9ePFtWEmrx+vAVwbfsTLx4xrQ+8er3Lw5pGFpccff1z/8i//ku4XcvDBB+u6665Lv1EHN54d+LAyoK+vL/3/xl4Ja9eu1bnnnqv33ntPkjR+/HjdcMMN2nPPPW3X8o9//EPd3d164YUX9N3vfldPPvmknn76ad1+++3af//9deWVV+p///d/M37m+OOP13e+852MdQ5eV651StLPf/5zxWIxvfvuu/rRj36kJ554Qq+88oq2bNmiCy64wHa9bqjW4/XTn/7Ucg3f+9739Mgjj2jbtm1asWKF1q5dm3MyUDlV6/Ea7Kabbkr/v9fLlqTqPWZ77bWX7rnnHv385z/XK6+8okAgoH333VcXX3yxzjzzTEnSsGHDbNfqlko5XtXCzeN1xx13aPny5Ro/fry++tWv5lxrqc6JfsBx4tpQ8v7x4trQX8drMK4N+3n9mHFt6O7xchtBPZ9YtmyZvvKVr6RfvOedd56+8Y1vKBj8KNly8D+Cg5tBStKmTZvS/z9x4sT0/2/cuFFf+MIX0vXqBx98sP7nf/4nrzd9XV2dPv7xj+vf/u3fdPHFFyuZTOruu+/W/vvvr87OTm3fvj3j8QPfog5e5+BmmIPXGQqFbP9Rj0QimjFjhq699tp0Tfydd97pqQs3jpdZNBrV+PHj0+PWt23b5pkLN45X/yj2J598UpI0duxYzZkzJ+ca3VTtx2zGjBm67rrrMh67bds27dixQ5I0derUnOstp0o6XtXA7eP1l7/8RVL/RfnApGKjn/3sZ/rZz36mq6++uiz/hnkRx+kjXBv663gN4NrQ28eLa8N+fjlmXBv2c+N4uY2gng+sWbNGF110kfr6+hQKhfT9739fp556qulxc+bMUTgcVjweN5URvfHGG5Kk9vb29Is+Fovpy1/+cvoFf/LJJ+uKK66wTM295557dMstt2jr1q269NJLM8ZCD053HThpLFmyREuWLLH8febOnZv+/8HrjMfjWrFihSRp1qxZqq2t1SuvvKLLLrtMW7Zs0YIFC/STn/wk6/N6QTUfr66uLt12223aunWrGhoadOmll6YfH4vFMhq0jh492vL5yq2aj9dgjz76aDqN/aijjrLct1dU+zF75513tGLFCm3ZsiXjeR977LH0/x988MGWz+WGSjtelc4Lx6tQpTgnel01HyeuDf11vLg29NfxGoxrQ/8cM64N3T1ebqOnng9cccUV6alRX/3qVy1f8FJ/nfgRRxwhqf8N/M9//lPJZFJ//OMf9c4770jqT5seiH7fcsst6TfDYYcdpquuusr2Bb/XXntp1apV2rFjh2644Yb0m2rTpk361a9+lX5cPrXoM2bM0D777CNJevDBB/Xuu+8qHo/r5ptvVkdHhyTp9NNPTz/v+vXrtWXLFv31r3/Vn/70JyWTSfX29urHP/5xQc9bLtV8vOrr6/WHP/xBv/71r/Xzn/9cv/vd75RMJtXd3a0lS5akv2FZsGCBZxpYV/PxGuzFF19M/7/Xv4mt9mN2yy236Ktf/aquvPJK3X///ZL6L+YGzonNzc1avHhxzuctl0o7Xn19fdq0aVP6v1gslr5v69at6e0D3952dHSktw3+ljkWi2XsJ5FI5HzucvDC8br++uv15JNPmv67/vrr048555xz9OSTT+rYY4/N+vsU+v7yy/Gq5uPEtaG/jhfXhv46XoNxbeifY8a1obvHy+1rw0AqlUrl9Ui44uWXX854kQ8bNsyyEeTcuXP1i1/8QuvWrdNpp52WTtONRCLpF9W0adN0zz33qL6+XpK03377qbu7W1L/P7h2016WLVsmSfrBD36g2267Lb29rq4u/fNS/0XW3XffnVH7bueVV17R2Wefna6fH7zOj3/847rpppvSb86HHnpI3/zmN9PjuaPRqBKJRPpF3tjYqNtvv10zZ87M+bylxvGSnnrqKV144YXpVOpIJKJEIpH+pm/UqFG6/fbbNWHChJzPW2ocr4+cdtppeumllyRJ9913n2bNmpXzedzAMesvEzjjjDO0efNm0/OGw2H99Kc/1ZFHHpnzOcuhEo/XsmXLdPbZZ+f83S+++GJdcskl+va3v6377rsv5+MffvhhjRs3LufjSslLx8vuvoG//cDfNx+FvL/8cLw4Tlwb+u14cW3or+M1gGtD/xwzrg3dPV5uXxtSfutxgz9wSPalBAOR7nHjxumee+7Rddddp6efflo7duzQ2LFj9alPfUoXXXRR+gVv3HdXV1f6hGHn8ssv1wEHHKC7775br732mnbs2KH6+npNmjRJn/rUp/SFL3wh70bTs2fP1l133aXrr79e//jHP9TZ2alJkybphBNO0Pnnn5/xj8qxxx6ryZMn65ZbbtFzzz2nTZs2KRQKady4cTrwwAN1/vnnu/5BaADHSzrooIN0//3361e/+pWWLVumjRs3KhqNasKECfrkJz+pL37xixo+fHhez1tqHC/r372pqSmv53EDx6y/v8jdd9+tX/ziF3r22We1ceNGDR8+XPPnz9cFF1yQ/mbXCyr1eFUqLx0vJxVzTvQyjhPXhlb79vLx4trQvG8vH68BXBv655hxbWjed7mPl5vI1AMAAAAAAAB8xl9fTQIAAAAAAAAgqAcAAAAAAAD4DUE9AAAAAAAAwGcI6gEAAAAAAAA+Q1APAAAAAAAA8BmCegAAAAAAAIDPENQDAAAAAAAAfIagHgAAAAAAAOAzBPUAAAAAAAAAnyGoBwAAAAAAAPgMQT0AAAAAAADAZwjqAQAAAAAAAD5DUA8AAAAAAADwmf8fYHjQxrETCqcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "sl = 10/100\n", + "pf = pd.concat((low_portfolio, portfolio_return_MV,high_portfolio), axis=1).dropna()-spread\n", + "\n", + "pf.columns = [\"low\", \"Return\", \"high\"]\n", + "pf[\"Return\"] = np.where(pf[\"low\"].values<-sl, -sl, pf[\"Return\"].values)\n", + "pf[\"Return\"] = np.where(pf[\"Return\"].values<-sl, -sl, pf[\"Return\"].values)\n", + "\n", + "\n", + "backtest_dynamic_portfolio(pf[\"Return\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 14.3.3. Optimal leverage" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "metadata": { + "scrolled": true + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "[*********************100%***********************] 1 of 1 completed\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + " -----------------------------------------------------------------------------\n", + " Beta: -0.213 \t Alpha: 586.73 %\t Sharpe: 3.837 \t Sortino: 0.332\n", + " -----------------------------------------------------------------------------\n", + " VaR: -14.2 %\t cVaR: -10.99 % \t VaR/cVaR: 0.774 \t drawdown: 75.15 %\n", + " -----------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAD7QAAAYjCAYAAADNhuE1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zV9d338U8YYYiKe4K2OKjUhdrWOtqrdaMyakWrrbuu21FvL1utexS12l7OurVVq6LiYhhAhqACgqiAIEOQIcgMGELIvP/oVW5ta6skv/PNOXk+H4/zQIM55xUFchLP+/ctqqurqwsAAAAAAAAAAAAAAAAAAABoYM1SBwAAAAAAAAAAAAAAAAAAAFCYDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATLVIHAAAAAADAV1VRURHLli2L5cuXx/Lly2PFihWxatWq+Oyzz6KsrCw+++yzdX+9du3aqKioWPdjRUVFVFZWRk1NTdTU1ERtbe0XfmzWrFk0b948mjVr9oVb8+bNo7i4OFq1arXuVlxcHMXFxdG2bdvYYIMN1t3atWu37ta+ffvYZJNNYpNNNon27dvHxhtvHM2auc4sAAAAAAAAAAAATUtRXV1dXeoIAAAAAABYvXp1zJs3L+bPnx+LFi2KRYsWxcKFC+PTTz+NRYsWxbJly6K8vDx15npr1qxZbLzxxrHlllvGlltuGVtttVVstdVWseWWW8bWW28d22+/fWy//fbRunXr1KkAAAAAAAAAAADQYAzaAQAAAADImerq6vj4449jxowZMXPmzJg7d27MnTs35s2bF0uXLk2dl1xRUVFsvvnmsf3220eHDh1ihx12iJ122il22mmn2GGHHaJly5apEwEAAAAAAAAAAOBrMWgHAAAAACATy5YtiylTpsSUKVPiww8/jJkzZ8acOXOiqqoqdVpeatmyZXTs2DF22mmn6NKlS+y2227RpUuX2HTTTVOnAQAAAAAAAAAAwJcyaAcAAAAAoN7WrFkT7733XrzzzjsxadKkmDJlSnz66aeps5qEbbbZJrp06RJdu3aNffbZJ7p06eIkdwAAAAAAAAAAABoNg3YAAAAAAL62VatWxdixY+Ptt9+Od955J6ZOnRrV1dWps4iI1q1bxx577BH77rtvHHDAAbHXXntFixYtUmcBAAAAAAAAAADQRBm0AwAAAADwH1VXV8d7770Xb7zxRrzxxhsxadKkqKmpSZ3FV7DBBhvEd7/73TjwwAPj4IMPjg4dOqROAgAAAAAAAAAAoAkxaAcAAAAA4F9as2ZNjB49OoYMGRIjRoyIlStXpk6iAXTu3DkOPfTQOOyww2KXXXZJnQMAAAAAAAAAAECBM2gHAAAAAGCdioqKGDp0aLz66qsxevToWLNmTeokMrTjjjvG0UcfHd27d4+OHTumzgEAAAAAAAAAAKAAGbQDAAAAADRxtbW1MW7cuHjppZeipKQkVq9enTqJBLp27Ro9evSIbt26Rbt27VLnAAAAAAAAAAAAUCAM2gEAAAAAmqglS5ZE375949lnn42FCxemzqGRaNu2bRx77LFx8sknx84775w6BwAAAAAAAAAAgDxn0A4AAAAA0MSMHz8+nnzyyRgyZEhUVVWlzqER+853vhOnnnpq/OhHP4qioqLUOQAAAAAAAAAAAOQhg3YAAAAAgCagtrY2SkpK4oEHHogPPvggdQ55Zpdddomzzz47jjzyyGjevHnqHAAAAAAAAAAAAPKIQTsAAAAAQAGrrKyMl156KR566KGYM2dO6hzyXMeOHeP888+P7t27O7EdAAAAAAAAAACAr8SgHQAAAACgANXU1MQLL7wQd999dyxcuDB1DgXmW9/6Vlx66aVx4IEHpk4BAAAAAAAAAACgkTNoBwAAAAAoMIMHD44//vGP8dFHH6VOocAdcMAB8dvf/jY6deqUOgUAAAAAAAAAAIBGyqAdAAAAAKBATJ48OW644YZ49913U6fQhLRs2TLOOOOMOPfcc6N169apcwAAAAAAAAAAAGhkDNoBAAAAAPJcaWlp/M///E8888wzUVtbmzqHJqpDhw5x3XXXxQEHHJA6BQAAAAAAAAAAgEbEoB0AAAAAII/169cvbr311lixYkXqFIiioqI4+eST49JLL3Vae54YP358vPXWW6kz1jnkkEPiW9/6VuoMAOBrevzxx6O0tDR1xjoXXHBB6gQAAAAAAADgcwzaAQAAAADy0OLFi+Oqq66KESNGpE6Bf9KpU6f4/e9/H126dEmdwn9wyimnxJgxY1JnrNOnT5/o1atX6gwA4Gv45JNP4kc/+lE0ppeffPjhh6kTAAAAAAAAgM9pljoAAAAAAICv55VXXomjjz7amJ1Ga9asWXHCCSfEM888kzqFf2PJkiUxbty41BkAQJ4bMGBAoxqzAwAAAAAAAI2PQTsAAAAAQJ5Ys2ZN/Pd//3dceumlsXLlytQ58G9VVlbG1VdfHZdffnmsXbs2dQ7/wsCBA6O2tjZ1BgCQ5wYMGJA6AQAAAAAAAGjkDNoBAAAAAPLARx99FMcff3y8/PLLqVPga+nXr1+ceOKJsXjx4tQp/APjMwCgvmbNmhVTp05NnQEAAAAAAAA0cgbtAAAAAACN3KuvvhrHHXdcTJ8+PXUKrJcpU6bECSecEDNnzkydwv+aN29evPfee6kzAIA85wI5AAAAAAAAwFdh0A4AAAAA0Ijdf//9cfHFF8fq1atTp0C9LFiwIE488cQYN25c6hTC+AwAaBieUwAAAAAAAABfhUE7AAAAAEAjVF1dHVdddVX84Q9/iLq6utQ50CBWrVoVZ555ZowaNSp1SpNnfAYA1NfkyZNjzpw5qTMAAAAAAACAPGDQDgAAAADQyKxZsybOPvvs6Nu3b+oUaHBr166N8847L0aOHJk6pcmaPn16TJ8+PXUGAJDnXCAHAAAAAAAA+KoM2gEAAAAAGpHy8vL45S9/GaNHj06dApmprKyM888/P0aMGJE6pUkyPgMA6quuri4GDhyYOgMAAAAAAADIEwbtAAAAAACNxOrVq+Oss86KcePGpU6BzFVVVcVFF10UEydOTJ3S5Bi0AwD1NX78+Fi0aFHqDAAAAAAAACBPGLQDAAAAADQC5eXlccYZZ8T48eNTp0DOVFRUxDnnnBOzZs1KndJkvPfeezFv3rzUGQBAnuvfv3/qBAAAAAAAACCPGLQDAAAAACRWXV3tpGqarNLS0jjzzDNj6dKlqVOaBOMzAKC+qquro6SkJHUGAAAAAAAAkEcM2gEAAAAAErvqqqvi9ddfT50ByXzyySdx4YUXRlVVVeqUglZbWxuDBg1KnQEA5Lk33ngjVqxYkToDAAAAAAAAyCMG7QAAAAAACf3xj3+Mfv36pc6A5CZMmBC/+93vUmcUtLFjx8aSJUtSZwAAeW7AgAGpEwAAAAAAAIA8Y9AOAAAAAJDIwIED47777kudAY3GX//613jxxRdTZxQs4zMAoL7Wrl0bQ4cOTZ0BAAAAAAAA5BmDdgAAAACABKZPnx6//e1vU2dAo3P99dfHvHnzUmcUnKqqqhg8eHDqDAAgzw0fPjxWr16dOgMAAAAAAADIMwbtAAAAAAA59tlnn8UFF1wQ5eXlqVOg0Vm9enX893//d9TU1KROKSijRo2KlStXps4AAPLcgAEDUicAAAAAAAAAecigHQAAAAAgx6666qqYM2dO6gxotCZOnBh/+tOfUmcUFOMzAKC+ysrKYuTIkakzAAAAAAAAgDxk0A4AAAAAkEMvv/xyDBo0KHUGNHr33XdfzJo1K3VGQVizZk0MGzYsdQYAkOeGDBkSa9euTZ0BAAAAAAAA5CGDdgAAAACAHFm0aFHccMMNqTMgL1RVVcW1116bOqMgDBs2LMrLy1NnAAB5rn///qkTAAAAAAAAgDxl0A4AAAAAkCOXX355rFq1KnUG5I1x48ZFv379UmfkPeMzAKC+li9fHmPGjEmdAQAAAAAAAOQpg3YAAAAAgBx4+eWX480330ydAXnn9ttvj9WrV6fOyFurVq2KUaNGpc4AAPLcoEGDorq6OnUGAAAAAAAAkKcM2gEAAAAAMlZWVha33npr6gzIS0uXLo2HH344dUbeKikpiaqqqtQZAECeGzBgQOoEAAAAAAAAII+1SB0AAAAAAFDo7rjjjliyZEnqjILUunXr2GabbWK77baLLbbYIjbbbLPYfPPNY5NNNol27drFRhttFBtttFG0bt06WrduHa1atYpWrVpF8+bNo1mzZtG8efMoKiqKysrKqKqqWvfj3/965cqVUVpa+oXbsmXLYv78+TF37txYtGhR1NTUpP7XUPAeeeSR6N27d2y11VapU/KO8RkAUF8LFy6Md955J3UGAAAAAAAAkMcM2gEAAAAAMjRr1qz461//mjoj72244YbxrW99K3bbbbf45je/ue622WabNcj9/33o/nVVV1fHJ598EvPnz4/p06fH5MmTY/LkyfHxxx9HbW1tg7QRsWbNmrjnnnvi+uuvT52SV5YsWRLjxo1LnQEA5LkBAwZEXV1d6gwAAAAAAAAgjxm0AwAAAABk6M4774zq6urUGXlnu+22i+9+97uxzz77xL777hs77rhj6qR/qUWLFtGxY8fo2LFjfP/731/39rKyspg6dWqMHz8+Ro0aFe+9955fB/XUr1+/OOecc2LbbbdNnZI3Bg0aFDU1NakzAIA8N2DAgNQJAAAAAAAAQJ4zaAcAAAAAyMi0adOipKQkdUZeaN68eXTt2jUOOeSQOOigg6JTp06pk+qlXbt2sd9++8V+++0X5557bpSVlcVbb70Vo0aNipKSkigtLU2dmHeqqqrigQceiGuvvTZ1St4wPgMA6uujjz6KDz74IHUGAAAAAAAAkOcM2gEAAAAAMvI///M/UVdXlzqjUdtrr72ie/fuccQRR8Smm26aOicz7dq1i0MPPTQOPfTQuOqqq2LkyJHx4osvxogRI6Kqqip1Xt547rnn4pxzzomtt946dUqjN3/+/Hj33XdTZwAAec4FcgAAAAAAAICGYNAOAAAAAJCBadOmxfDhw1NnNEobbrhh9OjRI0488cS8P4l9fbRs2TIOOeSQOOSQQ6K0tDSeffbZ+POf/xxLlixJndboVVVVxZ///Of49a9/nTql0TM+AwAagucUAAAAAAAAQENoljoAAAAAAKAQPf7446kTGp0tttgi/vu//ztGjBgRV155ZZMcs/+j9u3bx1lnnRWvvfZaXH311bHddtulTmr0nnvuuSgvL0+d0ej1798/dQIAkOemTJkSs2fPTp0BAAAAAAAAFACDdgAAAACABlZaWmpM+jkbbrhhXHLJJTF06NA488wzo127dqmTGp1WrVrFSSedFIMHD46rr746Ntpoo9RJjdaqVauiX79+qTMatZkzZ8b06dNTZwAAec7XNAAAAAAAAEBDMWgHAAAAAGhgzz77bFRUVKTOaBS6d+8eJSUlcfbZZ0fr1q1T5zR6LVq0iJNOOileffXV6NGjRxQVFaVOapQef/zxqKurS53RaL3yyiupEwCAPFdXVxeDBg1KnQEAAAAAAAAUCIN2AAAAAIAG9vTTT6dOSG6LLbaIBx98MG699dbYbLPNUufknc022yxuueWWePzxx2ObbbZJndPozJkzJ8aOHZs6o9EaOHBg6gQAIM9NmDAhFi5cmDoDAAAAAAAAKBAG7QAAAAAADWjixIkxf/781BlJ7bvvvvHyyy/HwQcfnDol7+23337x4osvxg9/+MPUKY3Os88+mzqhUXr//fdj7ty5qTMAgDzXv3//1AkAAAAAAABAATFoBwAAAABoQAMGDEidkFTPnj3j0UcfjU033TR1SsFo37593HfffXHppZdG8+bNU+c0GkOGDImVK1emzmh0jM8AgPqqrq6OkpKS1BkAAAAAAABAATFoBwAAAABoILW1tfHqq6+mzkjmoosuiptvvjmKi4tTpxScoqKiOOuss+LOO+/07/d/rV271nj7H9TW1sagQYNSZwAAee7NN9+M5cuXp84AAAAAAAAACohBOwAAAABAA5kwYUIsWbIkdUYS5557bpx33nmpMwreIYccEg899FBssMEGqVMaBYP2L3r77bdj8eLFqTMAgDw3cODA1AkAAAAAAABAgTFoBwAAAABoIK+//nrqhCR+9rOfxcUXX5w6o8n47ne/G48//nhsvPHGqVOSmzhxYixcuDB1RqMxYMCA1AkAQJ5bu3ZtDBkyJHUGAAAAAAAAUGAM2gEAAAAAGsgbb7yROiHnDjrooLj66qtTZzQ5Xbp0iXvvvTdatWqVOiWpuro6J4j+r6qqqigpKUmdAQDkuZEjR0ZZWVnqDAAAAAAAAKDAGLQDAAAAADSAFStWxNSpU1Nn5NSmm24aN998cxQVFaVOaZL23XffuO2226JZs6b9rf5BgwalTmgU3njjjSgtLU2dAQDkuf79+6dOAAAAAAAAAApQ036VGwAAAABAA3nrrbeitrY2dUZO3XTTTbH55punzmjSDjvssLj88stTZyQ1efLkWLx4ceqM5IzPAID6Kisri5EjR6bOAAAAAAAAAAqQQTsAAAAAQAOYMGFC6oScOuSQQ+JHP/pR6gwi4he/+EUcfvjhqTOSqaura/LDq4qKinjttddSZwAAeW7o0KFRUVGROgMAAAAAAAAoQAbtAAAAAAANYPLkyakTcqaoqCguvPDC1Bl8zo033hjbbbdd6oxkhg0bljohqWHDhkV5eXnqDAAgzw0YMCB1AgAAAAAAAFCgDNoBAAAAAOqppqYmpk2bljojZ4466qjYddddU2fwORtttFHcdttt0aJFi9QpSbz11ltRWVmZOiMZ4zMAoL6WL18eb775ZuoMAAAAAAAAoEAZtAMAAAAA1NOMGTOioqIidUbOnHrqqakT+Be6du0aJ510UuqMJNasWRPvvPNO6owkPvvss3j99ddTZwAAea6kpCSqq6tTZwAAAAAAAAAFyqAdAAAAAKCePvjgg9QJOfPNb34z9thjj9QZfIkLLrggNttss9QZSYwZMyZ1QhKDBw9u0qfTAwANY8CAAakTAAAAAAAAgAJm0A4AAAAAUE8fffRR6oSc6dGjR+oE/o0NN9wwLrnkktQZSTTVQbvxGQBQX4sWLYrx48enzgCA9VZdXR3V1dWpMwAAAAAA+DdapA4AAAAAAMh3c+fOTZ2QM4cffnjqBP6Dn/zkJ/HUU0/F5MmTU6fk1KRJk6KsrCzatWuXOiVnli1b1mSH/NAYffbZZzFnzpxYsGBBzJ8/PxYsWBALFiyIZcuWRUVFRaxZs2bdj2vXro0WLVpE27Ztv3Dbeuuto0OHDrHDDjtEhw4domPHjrHttttGUVFR6g+P9VBZWRmLFy+OTz/9NJYsWRKlpaWxcuXKKC0tXffX5eXlUVFR8YUfq6qqorq6Ompra6O6ujpqamqipqYmWrRoEc2bN4/mzZtHixYtokWLFtGmTZvYYIMNYoMNNoi2bdtGu3bton379rHpppuuu2222Wax7bbbxjbbbBPFxcWp/7XQCA0cODDq6upSZ0DeqKuri8WLF8eiRYti6dKl627Lli2L0tLSKCsr+8KtoqJi3dj277e6urpo0aJFtGzZ8gu34uLiaNeuXWy88cb/dNtqq61i2223jW233Ta22GKLaNbMOSYUnoqKinXPpz/55JNYuHBhrFixIlauXLnux5UrV0ZFRUVUVVWtu/3981izZs2iuLh43a1Vq1ZfeG602WabxSabbBLbb799dOzYMXbYYYfYcMMNE3/UAAAAAABNg0E7AAAAAEA9NZVB+9Zbbx077rhj6gz+g6Kiojj33HPj/PPPT52SU9XV1fH+++/H97///dQpOTNo0KCoqalJnQFN1ieffBITJkxYd5s5c2bU1tZ+5fevqamJtWvXxooVK9a97b333vunf26jjTaKLl26xF577RXf/e53Y++9947WrVs3yMdA/S1cuDDmzJkTc+fOjY8//jjmzp0b8+bNi08//fQL/20bQn1PHi0qKorNN988tt122+jYsWN06tQpvvnNb0anTp2iY8eOxu5NWP/+/VMnQKO0ePHimDFjRsyYMSPmzJkT8+fPX3fRmsrKynrff2Vl5XrfT8uWLWPrrbeObbfdNjp16hS77LLLuptxLvmgsrIyZs6cGR9++GFMmzYtPvzww5gxY0YsXbq0XvdbW1sbFRUVUVFRse5tCxYs+Lfvs+mmm8YOO+wQu+yyS+y+++7x7W9/O3beeedo0cJLKwEAAAAAGlJRnctsAwAAAADUS9euXWP16tWpMzLXvXv3uPXWW1Nn8BXU1dXF0UcfHTNnzkydklMXXXRRnHfeeakzcuaEE06IiRMnps5oUH369IlevXqlzoAvtXDhwnjllVfi5ZdfjhkzZiRpaNOmTRx00EFx7LHHxn/9138Z2uRIZWVlfPDBB/HBBx/Ehx9+GNOnT4/p06dHWVlZ6rQG0bJly9h5552jS5cu8e1vfzu6dOkSnTt3jpYtW6ZOI2Nz5syJww8/PHVGg/vwww9TJ5BH6urqYs6cOTFp0qR4//33Y+rUqTFjxoxYuXJl6rT1ss0220Tnzp2ja9eu0bVr19hjjz1ctITkysrKYuLEiTF+/Ph4++234/3334+qqqrUWV+qVatW8a1vfSv23XffOPDAA2Offfbx+wgAAAAAoJ68ugEAAAAAoB6WL1/eJMbsERH77LNP6gS+oqKiojjrrLPi17/+deqUnHr33Xdz/phr167N+WNG/G1Um+LjzVp1dXWyf6dfR3FxcRQVFaXOIEdqampi4MCB8eyzz8a4ceMi9fXC16xZE4MHD47BgwfHb37zmzjttNOS9hSqJUuWxNixY+Pdd9+N9957L6ZOndqoR1f1VVVVtW6w/+yzz0ZERNu2bWOvvfaK/fbbL/bbb7/Yc889DbkyUlNTE9XV1Uke++WXX07yuFnLh+cTRUVFfk8lUllZGe+//36MHTs2JkyYEJMmTYpVq1alzmowCxcujIULF8bw4cMj4m/PXXffffd1w9yuXbu6IA45MWfOnHjttdfitddei3fffTdqampSJ31la9eujXfffTfefffdeOihh6J169ax7777xgEHHBCHHnpodOjQIXUiCZWXl8cjjzyS/GvDXDrqqKOiU6dOqTP4D5588slYvnx56oycKC4ujrPPPjt1BgAAAPA1OaEdAAAAAKAeZsyYEUcffXTqjJx44oknYr/99kudwVdUXV0dP/7xj2PRokWpU3Kmffv2MWbMmJwOjXfdddecPRaNx2uvvRbbb7996oyIiLj88ssL8sXK++67b5x11llJG2pra6N///5xzz33xJw5c5K2fJnLLrsszjjjjNQZBaGsrCzGjBkTb731VowZMyZmzpyZOqnRadu2bey///7xwx/+MH7wgx/EVlttlTqpYPTr1y8uv/zy1Bnk2He+8514/PHHU2c0CXV1dfHBBx/EyJEj112spKKiInVWMhtttFEcfPDB8cMf/jAOPvjg2HjjjVMnUUA++uijeOmll2LIkCExa9as1DmZ2WOPPeLII4+MI488MrbZZpvUOf/WXXfdFaNGjUqd0eC6desWp5xySrLHP+6442LSpEnJHj/XTj31VM9XG7kVK1bEAQcckFcXD6mPww8/PO68887UGQAAAMDX5HK7AAAAAAD1UIgjwi/zjW98I3UCX0OLFi2ie/fucf/996dOyURxcXFst9120bFjx+jYsWNsv/320bFjx6ipqXHaIE3K7NmzY+LEiakzGtzKlSuTDtqHDBkSf/jDH+Kjjz5K1kD2Fi1aFK+99loMGzYsxo4dW9AnsDeE8vLydaesRkR06dIlunXrFkceeWRsu+22iesAvmj16tXx5ptvxogRI2LkyJGxZMmS1EmNxqpVq6J///7Rv3//aNGiRey///7Rs2fPOOSQQ6JVq1ap88hDZWVlMWjQoHj++ecL8muTf+X999+P999/P2699dbYZ5994sQTT4zDDjssiouLU6f9k1dffbUgL9Z0wAEHJH383r17N6lB+5AhQwzaG7mRI0c2mTF7RESvXr1SJwAAAADrwSu6AAAAAADqYcWKFakTcmKDDTaIzTffPHUGX1OPHj3yetC+0UYbRYcOHaJjx47/9OPWW28dzZo1S50IyW2xxRapEzLxySefJHncJUuWxPXXXx+DBw9O8vhkb+nSpTFo0KDo379/vPvuu6lz8tqUKVNiypQp8fvf/z722muv6N69exxzzDHRrl271GlAE7V27doYOXJkDBgwIEaMGNGkT2H/qqqrq2PUqFExatSo2HDDDePII4+Mnj17RteuXVOnkQfmzZsXjz32WPTr1y/Ky8tT5yRRV1cX48ePj/Hjx8dmm20WP/3pT6N3796N5mI/lZWVMXv27NQZmdhggw2SPn63bt3i5ptvjrKysqQdubJgwYKYPHlyfPvb306dwpcYMWJE6oSc2WKLLeKggw5KnQEAAACsB4N2AAAAAIB6aCqD9vbt26dOYD1885vfjD333DPee++91Cn/UlFRUWy11Vbrhur/OFr36w7+s8022yx1QiaWLl0atbW1Ob1wRb9+/eLmm2+OlStX5uwxyY3KysooKSmJfv36xdixY5vUqXW5UFdXFxMnToyJEyfGLbfcEkceeWT07t079tprr9RpQBMxbty4eP7552PIkCGxevXq1Dl567PPPou+fftG3759o3PnznHaaadFt27domXLlqnTaGQmT54cDz/8cJSUlHhe9TnLli2L++67Lx588ME48sgj49xzz42ddtopadPHH39csP+N2rZtm/zxjznmmHjqqaeSduTS4MGDDdobqerq6hg9enTqjJw59thjo3nz5qkzAAAAgPVg0A4AAAAAUA+lpaWpE3Ii9alHrL/u3bsnHbQXFxfH9ttv/0+j9Y4dO8b2228frVq1StYGhWDjjTdOnZCJmpqaWLFiRU4G+5WVlXHVVVfFiy++mPljkVuzZs2KZ555Jl566aUm85wttTVr1kS/fv2iX79+sccee8Tpp58ehx12mLEB0OBWrVoVL774Yjz99NMxa9as1DkFZ9q0afHrX/86br/99vj5z38evXv3LtjnnXx1M2fOjNtvvz2GDRuWOqVRq6mpif79+8fAgQPjsMMOi/POOy923XXXJC0ff/xxksfNhcbwvcoTTjihyQ3aL7nkktQZ/Avjx4+Pzz77LHVGzvTq1St1AgAAALCeDNoBAAAAAOqhoqIidUJOpD71iPX3ox/9KK6//vpMH2PjjTf+p6H63/966623jqKiokwfH5qydu3apU7IzNKlSzMftC9ZsiTOP//8pBf+oOGNHj06Hn300SZ1Ql1j9P7778fFF18cHTp0iNNPPz2OO+64KC4uTp0F5LmPP/44HnrooXj55ZebzNfjKS1evDhuv/32+NOf/hSnnXZanH766QX9/JN/bdGiRXHnnXfGiy++WLCnfWehtrY2Xn311SgpKYkjjjgiLrvssth2221z2jB//vycPl4uNYbvVXbu3Dl23333mDRpUuqUnJg9e3bMmDEjdt5559Qp/IMRI0akTsiZ3XffPXbaaafUGQAAAMB6MmgHAAAAAKiHysrK1Ak50aKFbyfnq2222SZ23nnnmDFjxnrfR7NmzWKrrbZaN1r/xx+d1AfpNIZT6bKyYsWKTO9/6tSpcfbZZ8enn36a6eOQG38/CfOhhx6K6dOnp87hc+bNmxfXXXddPPTQQ3H++edHjx49nNgOfG1Tp06NBx54IF599dWora1NndPklJeXxz333BNPPvlknH322XHSSSdFq1atUmeRscrKynj44YfjvvvucwGJeqirq4tBgwbFiBEj4pe//GWceeaZObvITyEP2tu0aZM6ISIievfu3WQG7RF/O6XdoL3xGT58eOqEnOnZs2fqBAAAAKAevAIRAAAAAKAeqqqqUifkxNq1a1MnUA8HHXTQfxy0t2rVat3J6h06dPjCaL1Dhw5OVIVGqjGcSpeVlStXZnbf06ZNi1NPPTVKS0szewxyo7a2NgYOHBh33313zJ49O3UO/8aCBQviiiuuiAcffDAuu+yy+NGPfpQ6CcgD06ZNiz/84Q8xcuTI1ClERGlpadxyyy3x5z//OS6++OLo0aNHFBUVpc4iA2+//XZcc801MWvWrNQpBWPNmjVxxx13xAsvvBC//e1v44c//GHmj7lo0aLMHyOVxjJo79atW9x8881RVlaWOiUnBg8eHOeff37qDD5nzpw5MWfOnNQZOVFcXBxHH3106gwAAACgHgzaAQAAAADqoamc0G7Qnt8OPvjgeOSRR6J9+/b/NFTv2LFjdOzYMbbaaitDBMhDjeVF/FnIamw+c+bMOO2004zZC8DIkSPj1ltvjZkzZ6ZO4WuYPXt2nHvuufGDH/wgrrjiithxxx1TJwGN0IIFC+KOO+6IV155xYnsjdCiRYviN7/5TTz77LNxzTXXxK677po6iQZSVlYWffr0ieeeey51SsGaO3dunH322XH88cfHFVdckenXdAsXLszsvlNrLF8Lt23bNo455ph46qmnUqfkxLRp02Lu3LnRsWPH1Cn8r6Z0OvuPf/zj2HjjjVNnAAAAAPVg0A4AAAAAUA/V1dWpE3JixYoVqROoh+985zvx9ttvx0YbbZQ6BWhgrVu3Tp2QmSxOaJ8zZ06ceuqpsXz58ga/b3Jn5syZ0adPnxg9enTqFOph5MiR8eabb8ZZZ50V5557bhQXF6dOAhqBsrKyuOeee+KJJ55oMheQy2cTJkyIXr16xcknnxwXXHBBtGvXLnUS9fDuu+/GpZdeGvPmzUud0iT07ds3xo8fH7fffnvstttumTzG4sWLM7nfxqAxfS18wgknNJlBe8TfTmk/88wzU2fwv5rSoL1nz56pEwAAAIB6apY6AAAAAAAgn9XV1aVOyIlly5ZFTU1N6gzWU/PmzY3ZoUA1phfxN7RVq1Y16P2VlZXFOeecE0uWLGnQ+yV31qxZE7fccksce+yxxuwFoqqqKu699974yU9+ElOmTEmdAyQ2aNCgOOKII+KRRx4xZs8j1dXV8dhjj8XRRx8db731Vuoc1kNNTU3cfffdcdJJJxmz59hHH30Uxx9/fDz22GMNft+1tbWxbNmyBr/fxqKxnNAeEdG5c+fYY489UmfkzODBg1Mn8L8+++yzeOedd1Jn5MQWW2wRBx54YOoMAAAAoJ4M2gEAAAAA6qFFixapE3KitrY2Fi1alDoDgH9g0P7V1NXVxaWXXhqzZ89usPskt0aPHh1HH310PPLIIy6yU4CmT58exx9/fNx9991RW1ubOgfIsXnz5sWZZ54ZF198sQvP5LGFCxfGaaedFjfddFOsXbs2dQ5fUWlpaZx55plx1113RXV1deqcJqmqqir69OkTV155ZYP+N1i+fHlBP29ubF8LH3/88akTcub999/3feJGYtSoUVFVVZU6Iye6d+8ezZs3T50BAAAA1JNBOwAAAABAPTSlF1HNnDkzdQIA/6BVq1apEzKzcuXKBruvO++8M4YPH95g90fulJeXx1VXXRVnnHFGzJ8/P3UOGaquro677rorTjvtNINWaCLq6uri8ccfj6OPPjpGjRqVOocGUFdXF3/5y1+iZ8+eMXny5NQ5/AcffvhhHHfccfHmm2+mTiEinn322TjrrLPis88+a5D7K+TT2SMa1wntERHdunWLdu3apc7Iibq6uhgyZEjqDCKa1Pc5evXqlToBAAAAaAAG7QAAAAAA9dBUTmiP+NsLnQFoXBrbi/gbUkMNOV5//fX405/+1CD3RW5NmTIlevbsGX379k2dQg6NGTMmevbsGWPHjk2dAmTo008/jTPPPDNuvPHGqKioSJ1DA5s1a1accMIJ8cwzz6RO4UsMGTIkTjjhhJg3b17qFD7nzTffjBNPPDEWLFhQ7/tavnx5AxQ1Xo3t4m5t27aNY445JnVGzgwePDh1QpNXW1vbZC4ItOeee0anTp1SZwAAAAANwKAdAAAAAKAe2rZtmzohZ8aPH586AYB/0Lp169QJmVm1alWD3MeVV14ZdXV1DVBELj3xxBPRu3fvmDNnTuoUEliyZEmcfvrpLmYABerVV1+NY489NkaPHp06hQxVVVXF1VdfHVdccUWsXbs2dQ6f89RTT8WFF14Y5eXlqVP4F2bMmBEnn3xyzJ8/v173U8iD9latWkVRUVHqjH9ywgknpE7ImQkTJhT0r7F8MHHixFixYkXqjJzo2bNn6gQAAACggRi0AwAAAADUwwYbbJA6IWfGjx8f1dXVqTMA+JxCHrQ3xAntN9xwQ3z66acNUEOurF27Nn7zm9/EDTfcEFVVValzSKi6ujquuuqquOWWW6K2tjZ1DtAAqqqq4sYbb4yLLrooSktLU+eQI88//3yDnThN/d17771x7bXX+tzayH3yySdxyimnxCeffLLe91HIQ9fGdjr733Xu3Dn22GOP1Bk5UVNTE6+99lrqjCZtxIgRqRNyolWrVtGtW7fUGQAAAEADMWgHAAAAAKiHpjRoX716dbz11lupMwD4nDZt2qROyEx9B+1Dhw6Nl19+uYFqyIXFixfHiSeeGC+88ELqFBqRRx55JC6++OKorKxMnQLUw+LFi+MXv/hFPP7446lTSGDKlClx/PHHxwcffJA6pUm78cYb44477kidwVc0f/78OOWUU2LRokXr9f6FfOGQxjpoj4g4/vjjUyfkTElJSeqEJq2pDNoPOeSQ2GijjVJnAAAAAA3EoB0AAAAAoB7atWuXOiGnBg0alDoBgM8pLi6O5s2bp87IxKpVq9b7fcvKyuLaa69tuBgyN3PmzOjdu3dMmTIldQqNUElJSZx//vlRUVGROgVYD+PHj49evXrFO++8kzqFhJYuXRonn3xyvPHGG6lTmqQ+ffq4oEQemjt3bpxyyimxfPnyr/2+Bu1pdOvWrcl8v3jMmDH1vhAd62fBggUxffr01Bk50bNnz9QJAAAAQAMyaAcAAAAAqIdNN900dUJODRo0qF4DQwAaXuvWrVMnZKKqqirWrl27Xu973333xZIlSxq4iKy8/fbb8bOf/Sw++eST1Ck0Yq+//nqcddZZUV5enjoF+BpefvnlOPXUU31eJiIiVq9eHWeffXa89NJLqVOalD/+8Y/x2GOPpc5gPc2ZMycuvPDCqKqq+lrvZ9CeRtu2beOYY45JnZETVVVVMWzYsNQZTVJTOZ19q622igMOOCB1BgAAANCADNoBAAAAAOphs802S52QU+Xl5dG3b9/UGQB8Tps2bVInZGZ9TnubN29e/PnPf86ghiy88cYbceaZZ8bKlStTp5AHxo0bF+edd15UVlamTgG+ggceeCAuu+yyrz3CpLBVVVXFr3/963jiiSdSpzQJ9957b9x3332pM6int99+O66//vqv9T6F/Py6sV/U7YQTTkidkDODBw9OndAkNZULCXTv3j2aNfMydwAAACgkvtIHAAAAAKiHzTffPHVCzj388MNRVlaWOgOA/9XYX8xfH+szaL/55puNXfPEyJEj45xzzomKiorUKeSRt956K371q19FTU1N6hTgS9TU1MQ111wTt99+e9TV1aXOoRGqq6uLG264IZ588snUKQWtX79+cccdd6TOoIH07dv3a124a9WqVRnWpFVcXJw64d/q3Llz7LHHHqkzcmL06NFRXl6eOqNJKS8vj3HjxqXOyImePXumTgAAAAAamEE7AAAAAEA9bLbZZtG8efPUGTm1fPnyeOCBB1JnAPC/2rZtmzohM1930D5+/PgYOnRoRjU0pFGjRsX555/v4gOsl6FDh8aVV16ZOgP4F6qrq+NXv/pVPP3006lTyAM33HCDXysZGTduXFx99dWpM2hgt9xyS4wZM+Yr/bOFfEJ7Yx+0R0T07t07dUJOVFRUxOuvv546o0l58803m8TX0XvvvXd885vfTJ0BAAAANDCDdgAAAACAemjRokVsvfXWqTNy7pFHHompU6emzgAgCvuE9tWrV3+tf/7uu+/OqISG9O6778aFF14YVVVVqVPIY/369XORJWhkqqqq4uKLL46SkpLUKeSJurq6uPbaa+PZZ59NnVJQZs+eHRdccIHnWgWopqYmfv3rX3+lsfrXvThYPsmHQXu3bt2iXbt2qTNyYsiQIakTmpThw4enTsgJp7MDAABAYTJoBwAAAACop+222y51Qs5VVVXFZZddFmvWrEmdAtDktWrVKnVCZr7OoH3ixInx1ltvZVhDQ5g5c2acffbZUV5enjqFAvDHP/4xXnvttdQZQERUVlbGRRddZNTG11ZXVxfXXHNNkxnoZW316tVx7rnnRmlpaeoUMrJo0aK4+uqr/+M/V8iD9pYtW6ZO+I/atGkTxx57bOqMnBg+fHiTODG8Mairq4uRI0emzshc69at46ijjkqdAQAAAGTAoB0AAAAAoJ46dOiQOiGJ6dOnx5VXXpk6A6DJM2j/m3vvvTfDEhrC8uXL4+yzzzawosHU1tbGpZdeGrNmzUqdAk1adXV1XHTRRS4wwXqrqamJSy65JCZNmpQ6Je9dffXVMXv27NQZZOzVV1+NF1544Ut/vrKyMtauXZvDotzKhxPaIyJ69+6dOiEnVq9eHW+88UbqjCZh8uTJsWTJktQZmTvkkENiww03TJ0BAAAAZMCgHQAAAACgnjp16pQ6IZn+/fvH3XffnToDoElr3bp16oTMfNVTvCdPnhyvv/56xjXUR1VVVVx44YUxf/781CkUmPLy8rj44osLerQFjd3VV18dw4YNS51BnisvL49zzjnHc4V6eOqpp6J///6pM8iRG2644Ut/vxTy6ewR+TNo79y5c+y5556pM3Ji8ODBqROahOHDh6dOyIlevXqlTgAAAAAyYtAOAAAAAFBPO+20U+qEpO6666548sknU2cANFmFPGj/qie0P/TQQxmXUF833nhjvP3226kzKFDTp0+P3/3ud6kzoEm644474vnnn0+dQYFYunRp/PKXv4yysrLUKXln6tSpPhc2MatXr44bb7zxX/5cof8eypdBe0TE8ccfnzohJ4YNGxbV1dWpMwreiBEjUidkbuutt479998/dQYAAACQEYN2AAAAAIB62mWXXVInJHfDDTfEX/7yl9QZAE1Sq1atUidk5qsM2hctWhRDhgzJQQ3ra+DAgfH000+nzqDAPf300zF06NDUGdCkPPPMM3HvvfemzqDAzJo1K6644orUGXmlsrIyLrvssqisrEydQo4NHz78X57YXF5enqAmd1q2bJk64Svr1q1btGvXLnVG5kpLS13ALGOLFy+ODz74IHVG5nr06BHNmnlpOwAAABQqX/UDAAAAANTTNttsE5tuumnqjKTq6uripptuijvvvDN1CkCTU8gntH+VIcaTTz7pJLhGbO7cuXHVVVelzqCJuPbaa2PlypWpM6BJeOONN+K6665LnUGBKikpiUcffTR1Rt645557Yvr06akzSOSmm26KtWvXfuFtX+XCYPmsRYsWqRO+sjZt2sSxxx6bOiMnSkpKUicUtBEjRkRdXV3qjMz17NkzdQIAAACQIYN2AAAAAIAGsMcee6ROaBTuueeeuOSSS6KioiJ1CkCT0ZRPaK+oqIi+ffvmqIavq7a2Ni677LIoKytLnUITsWTJkrj55ptTZ0DBW7BgQVxyySVRU1OTOoUCdtttt8X48eNTZzR6kyZNioceeih1BgnNmzcvHnjggS+87R8H7oUmnwbtERG9e/dOnZATQ4cOjdra2tQZBWv48OGpEzK39957x4477pg6AwAAAMiQQTsAAAAAQAMwaP//BgwYED/96U/jo48+Sp0C0CQ0b948dUJm/tOg/aWXXorS0tLcxPC1PfbYYzFx4sTUGTQx/fr1i7feeit1BhSstWvXxgUXXODzL5mrrq6OX/3qV7FixYrUKY1WVVVVXH755VFdXZ06hcQefPDBWLhw4bq/L/QLTebboL1z586x5557ps7I3JIlS3z9l5G1a9fGmDFjUmdk7ic/+UnqBAAAACBjBu0AAAAAAA1g3333TZ3QqEyfPj1+8pOfxJNPPhl1dXWpcwAKWr69mP/rKC8v/7c//9e//jVHJXxdc+bMiTvuuCN1Bk3UTTfd5ORoyMi1114bU6ZMSZ1BE7F48eK47rrrUmc0Wn/+859jxowZqTNoBNauXRt/+tOfvvD3hSwfL+p2/PHHp07IicGDB6dOKEhjxoz5j98fyXetW7eOI488MnUGAAAAkLHCfXULAAAAAEAO7b333tG6deuCPwHp6ygvL4/rr78+Xn311bj22mujU6dOqZMAClIhD9r/3QntEydOjGnTpuWwhq/jhhtu8LyIZGbMmBFPP/10nHTSSalToKA899xz0a9fv9QZjdo3vvGN2GWXXaJDhw7rbltssUW0adMm2rZtG23bto3i4uJYs2ZNlJeXr/tx6dKl8fHHH8ecOXNi7ty5MWvWrJg/f37qD6dRGDRoUBx66KHRrVu31CmNyqeffhr33HNP6gwakX79+sVZZ50VHTp0iKqqqtQ5mcrHr4G7desWN998c3z22WepUzI1ZMiQuPzyy1NnFJzhw4enTsjcoYceGu3atUudAQAAAGQs/76zBwAAAADQCBUXF8c+++wTb7zxRuqURmfcuHHRvXv3+MUvfhHnnntubLjhhqmTAApKy5YtUydk5t8N2p966qkclvB1DB06NEaPHp06o9Fq06ZNdO7cOXbYYYfYYYcdokOHDrHZZpvFpptuGptsskm0atUqiouLo7i4OCIiKioqYu3atVFRURHLli2LRYsWxcKFC2P+/PkxZcqUmDp1asGf1rc+7rzzzjjmmGNio402Sp0CBWHevHnxu9/9LnVGo/Otb30rDjzwwNh7772ja9eusckmm3yl92vXrt0/jbYOOuigL/z9woULY+zYsTF27NgYM2ZMfPLJJw3WnW+uv/762G+//WLLLbdMndJo3HLLLT7/8wVVVVVx7733Rp8+faKmpiZ1TqbycdDepk2bOOaYY+Kvf/1r6pRMLViwICZPnhzf/va3U6cUlJEjR6ZOyFyvXr1SJwAAAAA5kH/f2QMAAAAAaKQOPvhgg/YvUVVVFQ8//HA8//zzcdZZZ8VJJ50Ubdq0SZ0FUBDy8cX8X9WXDdpLS0vj1VdfzXENX0VlZWXcfPPNqTMaleLi4th///3jhz/8Yey9996xyy67RPPmzb/y+39+9LjddtvFHnvs8YWfr62tjVmzZsWoUaNi+PDh8c4770R1dXWDfgz5qLS0NB555JG4+OKLU6dA3qutrY1f//rX//ZCM01Jly5d4vDDD48jjjgidthhh8weZ5tttokePXpEjx49oq6uLsaPHx/9+vWLkpKSJvfforS0NK666qq4//77U6c0CuPHj48BAwakzqAReumll+Kcc84p+EH713ku3Zj07t274AftEX87pd2gveFMmzat4C9qs+2228b3vve91BkAAABADhTuq1sAAAAAAHLs0EMPjT59+qTOaNRKS0vj97//fTz00ENx0kknxUknnRSbbrpp6iyAvFbIg/YvO3WyX79+sXbt2hzX8FU89dRTMW/evNQZjcLuu+8eP//5z+OQQw6JDTbYILPHadasWey8886x8847x+mnnx6lpaXxwgsvxBNPPBHz58/P7HHzweOPPx6nnXZabLzxxqlTIK89+OCDMWHChNQZSTVv3jwOPfTQOPPMM2P33XfP+eMXFRXFfvvtF/vtt19cffXV0b9///jTn/4UCxYsyHlLKiNGjIiSkpI4/PDDU6ckd9ttt6VOyGutWrWKnXbaKTp37hwdO3aMDh06xFZbbRWbbLJJtG/fPlq1ahXFxcXRokWLKC8vj7Kysli9enWUlZXF/PnzY/bs2etu06dPj6qqqtQf0jo1NTXxf//v/y34i0jm66C9c+fOseeee8Z7772XOiVTJSUl8atf/Sp1RsEYMWJE6oTMde/ePZo1a5Y6AwAAAMiBwn11CwAAAABAjm233Xax2267xQcffJA6pdFbsWJF3H333fHQQw9Fz54947TTTsv0ZDuAQlbIg/YvO320b9++OS7hqygvL48HHnggdUZye++9d1x66aWx7777Jnn89u3bx2mnnRannHJKDBkyJG677baYO3dukpbUysrK4tFHH3VKO9TDhx9+GHfddVfqjGSaN28exx13XJx55pnRsWPH1DkREdGmTZv46U9/Gj169Ihnn3027rvvvvj0009TZ+XE7373uzjooIOibdu2qVOSGTp0aEycODF1Rl5p2bJlfPe73439998/vvOd78Ruu+32lb+GateuXbRr127d3++5555f+PmKiop45513YuzYsTFmzJiYPHlyVFdXN2j/1zVp0qSkj58L+Tpoj/jbKe2FPmifPXt2zJw5M3baaafUKQWhKQzae/bsmToBAAAAyBGXtAMAAAAAaEDHHHNM6oS8UlFREU899VQcccQRccYZZ8SgQYOisrIydRZAXsnnF/P/JxUVFf/0tgkTJsTs2bMT1PCfPP7447F06dLUGclssskm0adPn3jqqaeSjdk/r1mzZnH44YdH//7949xzz42WLVumTkri8ccfj7KystQZkJfq6urimmuuaVSnD+fS7rvvHs8991xcf/31jWbM/nktW7aMn/3sZzFkyJA477zzCvoiR3+3aNGiuPvuu1NnJFNbWxt33HFH6oy8UFRUFPvvv3/ceuut8dZbb8XDDz8cZ555Zuyxxx4N+nuldevW8f3vfz9+9atfxTPPPBOjRo2Kq666Kvbaa68Gewz+WVFRUeqE9XbUUUfFhhtumDojcyUlJakTCsLy5csL/gII++yzjwvdAgAAQBNi0A4AAAAA0IB69OjRZMdC9VFbWxujR4+Oiy++OA466KC46aabYtq0aamzAPJCIQ/aa2trY+3atV9423PPPZeohn+noqIiHn300dQZyey1117x4osvRq9evRrdwKZVq1Zx8cUXxzPPPBNbbbVV6pycKysri+effz51BuSl5557rkmeBL3BBhvE1VdfHX379o3ddtstdc5/1KpVq7jooovimWeeiZ133jl1Tub+8pe/xIwZM1JnJPHyyy/H9OnTU2c0am3bto1TTjklhgwZEo899lh07949p+PhTTfdNE4++eR45pln1l1sYpNNNsnZ4zcV+fw1cJs2bZrEBVEHDx6cOqEgjBw5Mmpra1NnZKpXr16pEwAAAIAcKqqrq6tLHQEAAAAAUEguuOACL9prILvuumscdthhcdhhh8Uuu+ySOgeSmj9/fvz4xz9OnZGpPn36eCHrenj++efjiiuuSJ2RmbFjx0b79u0jImL16tVx4IEHRnl5edqoRuKyyy6LM844I3VGREQ88cQTccMNN6TOSKJXr15x/fXX58VFjRYvXhznnXdeTJo0KXVKTnXs2DFKSkqiWTPX/I+IuOuuuwr+hOMPP/wwdULeW758eRx55JFRWlqaOiWndthhh7j33ntjp512Sp2yXiorK+O2226LP//5z6lTMnXQQQfFQw89lDojp+rq6uKoo46Kjz76KHVKo9S6des45ZRT4owzzoiNN944dc4XVFRUxPPPPx/33ntvLF26NHVOQbjmmmviZz/7WeqM9TZt2rTo3r176ozMDRkyJDp27Jg6I69deOGFBX3afZs2bWL06NHRrl271CkAAABAjvi/tQAAAAAADey4445LnVAwPvzww7jrrrvimGOOicMPPzz+8Ic/xKRJk8K1WgH+v3w+ne6r+PwJ7QMHDjRmb4RqamrikUceSZ2RxE9/+tP43e9+lxdj9oiILbfcMv7yl7/EHnvskTolp+bOnRsjRoxInQF55fe//32TG7MfdNBB8dxzz+XtmD0iori4OK644oq4/vrro0WLFqlzMjNq1KgYM2ZM6oycGjp0qDH7lzjiiCOipKQkLrnkkkY3Zo/429j+pJNOiiFDhsT5558fxcXFqZPyXr5fpKhz586x5557ps7InAu+1k9VVVW88cYbqTMyddhhhxmzAwAAQBOT39/ZAwAAAABohA466KDYeuutU2cUnDlz5sT9998fxx13XBx44IFx6aWXxgsvvBCffvpp6jSApIqKilInZOrzg/Z+/folLOHLDB06NBYsWJA6I+e6desWN9xwQ979Hmzbtm088MAD8c1vfjN1Sk717ds3dQLkjcmTJ8cLL7yQOiOnfvazn8UDDzwQG220UeqUBtG7d+944IEHYsMNN0ydkpnbb789dUJOPfjgg6kTGp0tttgi7rnnnrjjjjvy4vtwbdu2jQsvvDBefPHF6Nq1a+qcvFYIF3Xr3bt36oTMDRkyJHVCXhs/fnyUlZWlzshUz549UycAAAAAOWbQDgAAAADQwJo1axY//elPU2cUtKVLl8Yrr7wSv/nNb+Lggw+Obt26xU033RRDhw5tcqcIAhTCi/n/nb8P2ufOnRvvvPNO4hr+lb/+9a+pE3Jul112iZtuuinvxux/t8kmm8TDDz8c7du3T52SM6NGjYply5alzoC8cNttt0VdXV3qjJzp3bt3XH311Xl/4u8/OuCAA+KJJ55olCdWN4T3338/SkpKUmfkxNixY+O9995LndGo7L///vHiiy/GIYcckjrla+vUqVM88cQTcf755xfcnzu5kq/PwT/vqKOOKuiLjkREvPfeey5EWg/Dhw9PnZCp7bbbLr73ve+lzgAAAAByzHdEAQAAAAAycNJJJ0Xbtm1TZzQZM2fOjL/85S9x/vnnx/e+97045phj4rrrrouBAwfG4sWLU+cBZKrQRxBVVVUREfHSSy8lLuFf+eijj2LMmDGpM3Kqbdu2cffdd0ebNm1Sp9TLtttuG9ddd13qjJyprq6OV155JXUGNHqvv/56vPXWW6kzcqZXr15x3XXXFcQ48l/p3Llz3H///QX7/Yk//vGPUVtbmzojc48++mjqhEbltNNOi0ceeSQ233zz1CnrrXnz5nHhhRfGQw89VPCj5iwUwp/Zbdq0iWOPPTZ1Rqbq6uqc0l4PI0aMSJ2QqR49ehTE72UAAADg62mROgAAAAAAoBBtsskm8bOf/Sweeuih1ClNTl1dXUyfPj2mT5++7sTYHXbYIfbZZ5/o2rVrdO3aNTp16pS4EqDhFPoJ7X8ftL/88suJS/6/1q1bx6677hqdO3eOjh07RseOHWOLLbaITTbZJNq3bx/FxcVRXFwczZs3j6qqqqipqYmamppYs2ZNrF69OlavXh2fffZZLFu2LJYsWRJLliyJefPmxbx58+Ljjz+O1atXp/4Qv7Jnn302dULOnX/++bHDDjukzmgQRxxxRHTv3r3JXDDipZdeilNPPTV1BjRatbW1cfvtt6fOyJlDDz00brrppoIfU+29995x9913x9lnn73ueVWhmD17drz66qtx1FFHpU7JzCeffBKvv/566oxGoVmzZnHllVfGSSedlDqlwRxwwAHxzDPPxFlnnRULFixInZM3CuXP7d69e8eTTz6ZOiNTJSUlcfLJJ6fOyDuzZs2Kjz/+OHVGZoqKiqJnz56pMwAAAIAEDNoBAAAAADJy+umnx5NPPhlr1qxJndLkffzxx/Hxxx9Hv379IuJvFxzYe++9143cv/3tb0dxcXHiSoD1Uygv5v8y1dXV8c4778TcuXOTNbRo0SK+853vxPe///3Yf//941vf+tZXvpDA5z+/tGvXLrbYYov/+D7z589fd3GWv98++uijqKmpWe+PIQu1tbXRv3//1Bk5tcsuuxTcIPrKK6+MkSNHRmlpaeqUzH3wwQcxf/782H777VOnQKP0yiuvxLRp01Jn5MSOO+4YN998czRr1ix1Sk4ccMAB0adPn7j00ktTpzS4Bx54oKAH7c8880yjew6YQrNmzaJPnz7Ro0eP1CkNrlOnTvHXv/41TjnllJgzZ07qnLxQKF8D77rrrrHXXnvFu+++mzolMxMmTIjly5fHpptumjolrxT66ez77rtvdOjQIXUGAAAAkIBBOwAAAABARjbbbLPo3bt3PPbYY6lT+AcrVqyIYcOGxbBhwyIiomXLltGlS5fYa6+9Yu+994699947ttpqq8SVAF9NobyY/8vU1dUlO5197733jp/85Cdx6KGHRvv27XP2uNtvv31sv/328aMf/Wjd29asWRMffPBBTJo0KSZNmhSTJ09OPsJ78803Y/HixUkbcu3SSy+NFi0K63+zb7TRRvHLX/4ybr311tQpOfHaa6/FKaeckjoDGp3a2tr405/+lDojJ9q0aRN33XVXtGvXLnVKTh1zzDHx9ttvxzPPPJM6pUFNnTo1Ro4cGT/4wQ9SpzS4qqqqeO6551JnJFdUVFSwY/a/23rrrePJJ5+Mk08+OWbPnp06p9ErpK+Bjz/++IIetNfU1MRrr70WP/3pT1On5JVCH7Q7nR0AAACarsL6P+0AAAAAAI3MGWecEU8//XRUVFSkTuHfqKqqinfffTfefffddRcg2HbbbWOvvfaKPffcM/bcc8/YbbfdolWrVmlDAf6FQnox/7/y5JNPxujRo3P2eC1atIhjjjkmTj/99Nhll11y9rj/SZs2bWKfffaJffbZZ93b6urqEhZFkzudvUuXLgU5louI+PnPfx5PPPFEfPLJJ6lTMmfQDv9aSUlJkxlRXnvttY3qc3wu/fa3v4333nsvpk2bljqlQd1///0F+Tl6yJAhsXTp0tQZyV122WUFPWb/u8033zweffTROPHEE2PhwoWpc8iRo446Kvr06ROfffZZ6pTMlJSUGLR/DatWrYp33nkndUZm2rZtG0cccUTqDAAAACCRtJfsBwAAAAAocFtuuWWcddZZqTNYD5988kkMHDgw+vTpEyeccELss88+cdxxx8UNN9wQL730Unz88cepEwGahIEDB8aqVasyf5yioqLo0aNHDB48OG6++ea8GLqlvJhBdXV1DB8+PNnjp3DOOeekTshMcXFxk3nOOmHChJz8mQL55v7770+dkBM//OEPm8Qw9su0atUq/ud//ifatm2bOqVBTZgwoSBPOH7xxRdTJyR30kknxemnn546I2e22WabePjhh2PDDTdMnUKOtGnTJo499tjUGZkaM2ZMQQ/2G9qoUaOiuro6dUZmDj/88Nhggw1SZwAAAACJGLQDAAAAAGTsrLPOio4dO6bOoJ6qqqpi0qRJ8cQTT8Rll10Whx12WHz3u9+NX/7yl3HPPffEG2+84cWZQBKFfkJ7Luyxxx7x/PPPxy233BLbbbdd6py8MG7cuCgtLU2dkTNbbrll/PjHP06dkanu3bs3iWFBdXV1vP3226kzoFEZOXJkTJ06NXVG5lq3bh1XXnll6ozkvvGNb8T/+T//J3VGg3vyySdTJzSo5cuXxxtvvJE6I6muXbvG5Zdfnjoj5zp16hS33357NGvmpZ1fptC+Bu7du3fqhExVVVXFsGHDUmfkjUK/cFzPnj1TJwAAAAAJ+a4nAAAAAEDGWrVq5UXzBaq0tDRGjhwZd955Z5x++umx3377Rbdu3eKKK66Ivn37xocffhi1tbWpM4ECV2gv5s+lVq1axW9+85t4+umno0uXLqlz8srQoUNTJ+TUMcccE82bN0+dkakNNtig4E+H/LuxY8emToBGpamczn7eeedFhw4dUmc0Cr/4xS+iU6dOqTMa1KuvvhrLly9PndFg+vfvX9An9P4nm2yySdxxxx3RsmXL1ClJ/OAHP4iLLroodQY5suuuu8Zee+2VOiNTQ4YMSZ2QF2pqamLUqFGpMzKz/fbbx3e+853UGQAAAEBCBu0AAAAAADnwgx/8oOBP9SSirq4uZs6cGc8//3xcddVVceyxx8Y+++wTv/jFL+IPf/hDvPbaa7Fs2bLUmUCBMWhfPzvuuGP07ds3TjvttIIfKmfh9ddfT52QUz169EidkBMnnHBC6oScGDduXOoEaDSmTJkSEyZMSJ2RuW984xtx2mmnpc5oNFq2bBlXXXVV6owGVVlZGc8991zqjAbz8ssvp05I6sYbb4wtt9wydUZSv/zlL2P//fdPnUGOHH/88akTMjVq1KgoLy9PndHoTZw4MUpLS1NnZKZnz56+hwUAAABNnEE7AAAAAECO/Pa3v422bdumziDHysvLY+zYsXH//ffHeeedF9///vfj8MMPj8svvzyeffbZmDVrVupEgCbnv/7rv6Jfv37RuXPn1Cl5ad68eTFv3rzUGTnzjW98I3bZZZfUGTnRuXPn+MY3vpE6I3PTpk2LVatWpc6ARuGJJ55InZAT5513XhQXF6fOaFT233//OPzww1NnNKhnnnkmamtrU2fU27x582LSpEmpM5Lp1atXHHLIIakzkmvWrFn8/ve/j/bt26dOIQeOOuqo2HDDDVNnZKaioqLJXRRtfQwfPjx1QmaKioqazIXiAAAAgC9n0A4AAAAAkCPbbbddXHPNNakzaATmzJkT/fr1iyuvvDKOOuqo+N73vhfnnntuPPjgg/HOO+9EZWVl6kSAgvXzn/887r333thggw1Sp+St0aNHp07IqQMPPDB1Qk79+Mc/Tp2Qubq6upgyZUrqDEiutLQ0Bg4cmDojczvssEN069YtdUajdOGFFxbUSanz58+PN998M3VGvQ0ZMiR1QjLt27ePyy67LHVGo7HFFlvEb37zm9QZ5ECbNm3i2GOPTZ2Rqab8Z9tXNWLEiNQJmdlvv/1i++23T50BAAAAJGbQDgAAAACQQz169IiePXumzqCRWbFiRQwbNixuu+22OPHEE2OfffaJE088MW677bYYNmxYrFixInUi8P/Yu+/wKOv8ffvXpBMglR56aNIDSJEmSAcJASWgUmysiruua1fUXb6Krq6rothRkUXE7oIoQUhAukjoVTpBeg0J6c8f+5NnWQUpM/d7yvk6jhwihJlTZMIkzHV/4BfuuOMOjRkzRkFB/DXp5Vi2bJl1gqMYtPuntWvXWicA5j777DOdPn3aOsPj/vCHPyg4ONg6wyvVqVNHXbp0sc5wq6+++so64bJ999131glmHnzwQcXGxlpneJWUlBS1b9/eOgMOSE1NtU7wqPT0dC7ieR67d+/WTz/9ZJ3hMQMHDrROAAAAAAAAXoBXagAAAAAAAACAw5544gnVrl3bOgNeLD8/XytWrNDbb7+tO++8U+3atdO1116rp556SrNnz9axY8esEwHA59x999269957rTP8wooVK6wTHBMSEqLWrVtbZziqefPmATEkY9COQFdcXKypU6daZ3hcQkKC3594e7n+8Ic/WCe41XfffaecnBzrjEt25MgRZWZmWmeYaNiwIYPHcxgzZoxCQkKsM+Bh9evXV/Pmza0zPObUqVNatGiRdYbX8ufT2SMjI9WzZ0/rDAAAAAAA4AUYtAMAAAAAAACAwyIjI/Xiiy8qPDzcOgU+oqSkRJs3b9bkyZN19913q23btkpOTta4ceOUnp7u0y/WBwAnDBs2TH/84x+tM/zC3r17tW/fPusMx9StW1eRkZHWGY4KCgry6yHNL9avX2+dAJhaunSpdu/ebZ3hcTfeeKNCQ0OtM7xa8+bN/eriLTk5OZo9e7Z1xiWbM2eOiouLrTNM3H///XK5XNYZXql27doaOnSodQYc4O+ntM+aNcs6wWulp6dbJ3hMr169Au7zagAAAAAA8NsYtAMAAAAAAACAgQYNGuipp57ihbq4JCUlJdq4caMmTZqkO+64Q61bt9aIESP0zjvvaOPGjdZ5AOBVevbsqccee8w6w28E2omhjRo1sk4wEQiD9j179igvL886AzDz73//2zrB40JCQpScnGyd4RNGjBhhneBWvvz7e968edYJJtq0aaP27dtbZ3i1P/7xjypbtqx1BjysT58+fv3/ee7cuSosLLTO8DqnTp3SsmXLrDM8ZuDAgdYJAAAAAADASzBoBwAAAAAAAAAj/fv311/+8hfrDPiBgoICLVmyRM8//7ySk5PVoUMHPfLII/ruu++Um5trnQcAZurXr69nn32WC8i40bp166wTHBWog/ZmzZpZJ3hccXGxdu7caZ0BmMjLy/PpE6wv1NVXX61y5cpZZ/iEzp07KyYmxjrDbRYvXqzDhw9bZ1y0oqIiLV261DrDxJ133mmd4PWio6P97uIT+LWIiAi/vhjLsWPH9MMPP1hneJ2FCxeqoKDAOsMjqlWrplatWllnAAAAAAAAL8GgHQAAAAAAAAAMjRo1SjfeeKN1BvzMwYMH9fnnn2v06NFq27at7rzzTn366ac++YJ+ALhUZcqU0YQJExQZGWmd4lc2bNhgneCoQB20N2nSREFB/v9ygh07dlgnACbmzp2rkydPWmd43HXXXWed4DNCQ0PVp08f6wy3KSoq0ty5c60zLtqaNWt04sQJ6wzHNW3aVO3atbPO8AkjR45UdHS0dQY8bPDgwdYJHjVr1izrBK+Tnp5uneAxAwYM4CKDAAAAAADgDP//G2gAAAAAAAAA8HJjxoxR9+7drTPgp06fPq25c+fqscceU4cOHTR06FBNmjRJ+/fvt04DAI8aO3asqlWrZp3hdzZu3Gid4KiaNWtaJ5goU6aMKleubJ3hcQzaEaimT59uneBx5cuXV6dOnawzfMqAAQOsE9xqzpw51gkXbeHChdYJJm6++WbrBJ9RtmxZDR061DoDHla/fn01b97cOsNjvvvuO5WUlFhneI2SkhLNnz/fOsMjXC6XUlJSrDMAAAAAAIAXCbEOAAAAAAAAAIBAFxQUpH/84x8aPXq0FixYYJ0DP1ZcXKwVK1ZoxYoVevbZZ9WiRQv16dNHPXv2VLly5azzAMBt+vfvr759+1pn+KVp06YpJydHp06dUk5Oznm/fb4fy83NVVFRkfV/znnFxMQE9AmYNWrUUFZWlnWGR+3Zs8c6AXDcyZMn/XY09d969uyp4OBg6wyf0qxZM9WqVUvbt2+3TnGLRYsWKScnR5GRkdYpF2zx4sXWCY4rX748F3m8SDfddJPeffdd5efnW6fAg1JTU7Vy5UrrDI84ePCgVqxYoZYtW1qneIU1a9bo0KFD1hke0aZNGyUkJFhnAAAAAAAAL8KgHQAAAAAAAAC8QEREhF5//XXde++9+u6776xzEACKi4u1fPlyLV++XE8//bSuvPJKDRgwQD179vSpF/wDwP+Kj4/XY489Zp3ht6pXr+6228rNzf3dIfz/fv/5fiw3N1eFhYVu66tWrZrbbssXVa9eXYsWLbLO8KgDBw5YJwCO+/7771VQUGCd4XHdunWzTvBJ3bt311tvvWWd4RZ5eXlauHChz4yl8/Ly/Ha8ej7XX3+9QkNDrTN8Svny5dWvXz99/vnn1inwoD59+uiZZ57RiRMnrFM8Yvbs2Qza/5+5c+daJ3gMp7MDAAAAAID/xaAdAAAAAAAAALxEWFiYXn75ZT388MOaPn26dQ4CSFFRkZYsWaIlS5Zo7Nix6t27twYNGsQLSwH4pMcee0wxMTHWGbgApUqVUqlSpRQfH++22zx9+vR5h/C/9f3n+rEGDRq4rcsX1ahRwzrB4xi0IxDNmzfPOsHjoqKidOWVV1pn+KSOHTv6zaBdkubMmeMzg/Y1a9YExMUm/pvL5dLAgQOtM3zSDTfcwKDdz0VERKh///7617/+ZZ3iEWlpaXr44YetM7xCRkaGdYJHlC5dWj179rTOAAAAAAAAXoZBOwAAAAAAAAB4kZCQED333HOKjIzUtGnTrHMQgHJycvTZZ5/ps88+U82aNTVo0CBdd911iouLs04DgN/VsmVL9e3b1zoDhiIiIhQREcGfW25QvXp16wSP279/v3UC4Kji4mLNnz/fOsPjWrdurZAQXhJ1KZKSklS6dGmdOnXKOsUtFixYYJ1wwVasWGGd4LiWLVuqWrVq1hk+qUmTJmrYsKHWr19vnQIPSk1N9dtBe1ZWltatW6dGjRpZp5jav3+/NmzYYJ3hEb169VKpUqWsMwAAAAAAgJcJsg4AAAAAAAAAAJwtKChIY8eO1V/+8hcFBfFlXNjZsWOHXnjhBXXu3FmPPPKINm7caJ0EAOfkcrn06KOPWmcAfiM+Pt46weOOHDmi4uJi6wzAMWvWrNGRI0esMzzuqquusk7wWaGhoWrbtq11htscPHhQW7Zssc64IIE4aE9OTrZO8GmDBw+2ToCH1atXT0lJSdYZHpOWlmadYC49Pd06wWMGDhxonQAAAAAAALwQr4QEAAAAAAAAAC/1hz/8QW+88YaioqKsUxDg8vPz9fnnnys5OVnDhg3T7NmzVVRUZJ0FAGfp1auXGjdubJ0B+I2YmBjrBI8rLi7WyZMnrTMAx2RkZFgnOKJ169bWCT6tQ4cO1glutWjRIuuEC7Jy5UrrBEcFBwerW7du1hk+rW/fvgoLC7POgIf584ULZs2aZZ1gzl+fm9WoUUOtWrWyzgAAAAAAAF6IQTsAAAAAAAAAeLHOnTvr008/Vd26da1TAEnSsmXLdPfdd6tnz5765JNPVFBQYJ0EAAoKCtLo0aOtMwC/Ehsba53gCAbtCCQLFiywTvC4MmXKKDEx0TrDp/nTCe2StHjxYuuE37Vz504dPXrUOsNRLVu2VFxcnHWGT4uKilKnTp2sM+Bhffr08duLnW7fvl0//fSTdYaZ06dPa8mSJdYZHjFgwADrBAAAAAAA4KUYtAMAAAAAAACAl6tRo4amTZumfv36WacAZ+zevVtjxoxRz549NXXqVOXn51snAQhgPXr04OIvgJtFRUUpKMj/X1LAoB2BIicnR+vXr7fO8LimTZsGxMcuT6pVq5bKlCljneE2y5YtU2FhoXXGea1bt846wXHdu3e3TvAL1157rXUCPCwiIkL9+/e3zvCYQD6lffHixcrNzbXOcLugoCAG7QAAAAAA4Jz4GxwAAAAAAAAA8AGlS5fWCy+8oJdffpkTrOBVsrKy9Ne//lXdu3fXv/71L4btAEzcfPPN1gmA3wkKCvLb0yD/G4N2BIpVq1Z5/ajXHRo3bmyd4PNcLpcaNWpkneE2p06d0tq1a60zzmvDhg3WCY7r3LmzdYJfuPrqq1WqVCnrDHhYamqqdYLHzJ492zrBTHp6unWCR7Rt21ZVqlSxzgAAAAAAAF4qxDoAuBxFxcU6kp1nnQEAAAAAjokrE65gThgCgIDWq1cvtW7dWn/9618D+gQbeJ99+/bp//7v//Tee+/pvvvuU58+fayTAASIpKQkNW/e3DoD8EulS5fWsWPHrDM8yh9PRQR+y/Lly60THFGvXj3rBL/QpEkTLV261DrDbTIzM736+eL69eutExxVrVo11ahRwzrDL0RERKhDhw4BPQoOBPXq1VNSUpIyMzOtU9xuw4YN2r17t6pVq2ad4rh58+ZZJ3hESkqKdQIAAAAAAPBiDNrhsz5d/JP+9O48HTjOCwwAAAAABI4K0aU0/pbOuq5dHesUAIChuLg4jR8/XjNnztTTTz+tQ4cOWScBZ+zZs0f33nuv3n//fT300ENq2bKldRIAPzd06FDrBMBvhYaGWid4XCCcWA1I0o8//mid4Ij69etbJ/gFfzvpPjMzUzfffLN1xjkF2qC9Q4cO1gl+pVu3bgzaA8DgwYP9ctAuSWlpabr11lutMxy1YcMG7du3zzrD7cqUKaMePXpYZwAAAAAAAC/GkW7wWX94cy5jdgAAAAAB58DxXP3hzbnWGQAAL9GnTx/NmjVLt9xyS0CMjeBbVq1apRtuuEF//OMftXv3buscAH4qKipKvXr1ss4A/FYgPMdk0I5AUFhYqFWrVllneFxQUJBq1qxpneEXmjRpYp3gVitXrrROOKf9+/fryJEj1hmOatOmjXWCX7n66qsVFMTLQP1dnz59FBUVZZ3hEWlpadYJjktPT7dO8IjevXsrIiLCOgMAAAAAAHgxvpIJAAAAAAAAAD6sTJkyeuihhzR9+nR17tzZOgf4lbS0NPXr10/vvPOOioqKrHMA+Jlrr71W4eHh1hmA3wqEQXtBQYF1AuBxmzZtUk5OjnWGx1WuXFlhYWHWGX4hISFBpUqVss5wm/3792vv3r3WGb9py5Yt1gmOa9WqlXWCX4mJiVHDhg2tM+BhERER6t+/v3WGR6xatUr79++3znBURkaGdYJHDBw40DoBAAAAAAB4OQbt8Flv/qGrKkT7z1+eAQAAAMCFqBBdSm/+oat1BgDAC9WqVUtvvfWW3nrrLdWrV886BzjL6dOn9fzzz+v666/X+vXrrXMA+JF+/fpZJwB+LRAG7ZzQjkAQKM/Bq1evbp3gN1wul6pVq2ad4Vbeekr7tm3brBMcVbNmTZUvX946w++0b9/eOgEOSE1NtU7wiJKSEs2ePds6wzGHDx/WmjVrrDPcrmbNmmrRooV1BgAAAAAA8HIh1gHApbquXR2ltKmtI9l51ikAAAAA4Ji4MuEKDuL6dACAc+vcubM6deqkmTNnavz48dqxY4d1EnDGunXrdP3112vkyJH64x//qIiICOskAD6sUqVKSkpKss4A/FognHRcXFxsnQB43KZNm6wTHOFvA2xrNWrU0ObNm60z3Gb16tXq06ePdcavbN261TrBUTx/94yrrrpKb775pnUGPKxevXpKSkpSZmamdYrbzZo1SzfddJN1hiMyMjL88nOQlJQU6wQAAAAAAOADGLTDpwUHBal8FKe0AwAAAAAAAP/N5XKpb9++6tWrl7744gu99tprysrKss4CJP3nFNR33nlH8+fP1/jx41WrVi3rJAA+qlevXnK5XNYZgF/jMQb4h40bN1onOKJixYrWCX7F3068X79+vXXCbwq0E9obN25sneCXmjdvrtDQUBUUFFinwMNSU1P9ctD+448/6siRI4qLi7NO8biMjAzrBLcLCgrSgAEDrDMAAAAAAIAP4Eg3AAAAAAAAAPBTwcHBuu666/Ttt9/qqaeeUu3ata2TgDM2b96sQYMGaebMmdYpAHxUly5drBMAAPAJgXJCO4N296pRo4Z1glt564UdGLTDHSIiIlSvXj3rDDigd+/eioqKss5wu6KiIs2ZM8c6w+Py8/O1cOFC6wy3a9eunSpVqmSdAQAAAAAAfACDdgAAAAAAAADwc2FhYbr++us1c+ZMTZgwQUlJSdZJgCTp1KlTuvfeezV27Fjl5+db5wDwIWXKlFHLli2tMwAA8HpZWVk6ceKEdYYjypcvb53gV/xt0H78+HFlZWVZZ5wlOztbhw4dss5wTEhIiK644grrDL/VvHlz6wQ4ICIiQsnJydYZHpGWlmad4HE//PCDTp06ZZ3hdgMHDrROAAAAAAAAPoJBOwAAAAAAAAAECJfLpW7duumjjz7SlClT1KNHD4WEhFhnAZoyZYqGDh2q/fv3W6cA8BHt27dXaGiodQYAAF4vUE5nl6SYmBjrBL/ijyfeb9iwwTrhLHv27LFOcFSNGjUUHh5uneG3GLQHjtTUVOsEj1i8eLFOnjxpneFR6enp1gluV7ZsWXXv3t06AwAAAAAA+AgG7QAAAAAAAAAQgFq1aqVXXnlFc+fO1R//+EdVqlTJOgkBbu3atRo6dKi2bdtmnQLAB7Rt29Y6AQAAn7B161brBMdER0dbJ/iV+Ph46wS3Y9Buq06dOtYJfu2KK66wToBD6tatq6SkJOsMtysoKNDcuXOtMzxq3rx51glu16dPHy5WAgAAAAAALhiDdgAAAAAAAAAIYBUrVtTdd9+tuXPnasKECerYsaOCg4OtsxCgsrKyNHToUK1atco6BYCXa9OmjXUCAAA+Yffu3dYJjuGEdveKiopSWFiYdYZbbdmyxTrhLFlZWdYJjqpbt651gl+rVauWQkNDrTPgEH89pX327NnWCR7z008/adeuXdYZbpeSkmKdAAAAAAAAfAiDdgAAAAAAAACAgoOD1a1bN73zzjvKyMjQgw8+qPr161tnIQAdO3ZMI0aM8MsTiwC4R7ly5ZSYmGidAQCAT/DH4dS5lC5d2jrB78TFxVknuNW2bdusE84SaIN2nsN7VkhIiGrXrm2dAYf07t1bUVFR1hlu9/333ys3N9c6wyPS09OtE9yuVq1aSkpKss4AAAAAAAA+hEE7AAAAAAAAAOAsFSpU0K233qp///vf+uqrr3TzzTerQoUK1lkIILm5ubrrrrv09ddfW6cA8ELNmze3TgAAwGcEyqA9JCTE704T9wbx8fHWCW61Y8cOFRUVWWecEWiD9urVq1sn+L169epZJ8AhERERSk5Ots5wu9OnT2v+/PnWGR6RkZFhneB2AwcOtE4AAAAAAAA+hkE7AAAAAAAAAOCcGjRooIcffljz58/XlClTNHz4cFWqVMk6CwGgsLBQDz74oF+eXgTg8jRr1sw6AQAAn1BQUKB9+/ZZZziiVKlS1gl+yd8G7QUFBdqzZ491xhmB8vj8RbVq1awT/F7NmjWtE+Cg1NRU6wSPSEtLs05wu+PHjyszM9M6w62CgoL88qIKAAAAAADAs0KsAwAAAAAAAAAA3s/lcqlVq1Zq1aqVHn30Ua1cuVKzZs3SnDlzAubEPzivsLBQ99xzj95++221adPGOgeAl2jatKl1AgAAPiErK8urTqP2pLy8PN11113WGX5n06ZN1glut23bNtWoUcM6Q5J06NAh6wTHREdHKzo62jrD73HRgMBSt25dJSUl+d1QOiMjQ/n5+QoLC7NOcZv58+f73XOyq666ShUrVrTOAAAAAAAAPoZBOwAAAAAAAADgorhcLiUlJSkpKUkPP/ywtm7dqvT0dKWnpyszM9PvXpwHW3l5ebrjjjs0adIkRqwAJEkNGza0TgAAwCfs3r3bOsEx+fn5mjNnjnUGfMDWrVvVpUsX6wyVlJTo8OHD1hmOqVq1qnVCQKhevbp1AhyWmprqd4P27OxsLVq0SFdffbV1ittkZGRYJ7jdoEGDrBMAAAAAAIAPYtAOAAAAAAAAALgsiYmJSkxM1G233abjx4/r+++/14IFC7R48WLt27fPOg9+ICcnR7fffrs+/PBDJSYmWucAMFS5cmVFRUVZZyBAZGdn68iRI+d9y87OVn5+vgoKCpSfn/+bb8XFxdb/KQACFJ+PAb+2a9cu6wRJ0tGjR1VQUGCd4RhO8XUGg/bA07t3bz3zzDM6fvy4dYpbzZo1y28G7UVFRfr++++tM9wqKipK11xzjXUGAAAAAADwQQzaAQAAAAAAAABuEx0drX79+qlfv36S/nPy2ZIlS7Ro0SItW7ZMJ06cMC6Erzp27JjuuusuffbZZypTpox1DgAj9erVs06Anzlx4oR27tx55m3Xrl1nvn3kyBHrPAC4LIF0+jNwobKysqwTJEkHDx60TnAUg3ZnxMfHKzw8XHl5edYpcEhERIT69++vyZMnW6e41dy5c1VYWKiQEN9/ifOPP/7odxcc6NOnj8LDw60zAAAAAACAD/L9r/YAAAAAAAAAALzWL6e333jjjSoqKtKGDRu0fPlyLV++XD/++CNDMVyUHTt26OGHH9arr75qnQLASN26da0T4MOysrK0Zs0arV27VmvWrNGmTZt09OhR6ywA8JhDhw5ZJwBeZ8+ePdYJkgLv8cmg3Tnly5f3mt/ncEZqaqrfDdqPHTumH374Qe3atbNOuWzp6enWCW43cOBA6wQAAAAAAOCjGLQDAAAAAAAAABwRHBysxo0bq3Hjxho5cqSk/5zg/sMPP5wZuO/du9c2El5v9uzZeuuttzRq1CjrFAAGatasaZ0AH3H06FFlZmaeNWBnvA4g0ATaCdDAhfj5559VUlIil8tl2nHs2DHT+3dahQoVrBMCBoP2wFO3bl0lJSUpMzPTOsWt0tLS/GLQnpGRYZ3gVomJiWrWrJl1BgAAAAAA8FEM2gEAAAAAAAAAZn45wX3IkCGS/nNy6i8D9+XLl2v79u3GhfBGL730kpo0aeIXL2oFcHEYtONcTp8+raVLl2rJkiVasmSJNmzYoJKSEussADB1+PBh6wTA6+Tl5engwYPmA+vjx4+b3r/T4uLirBMChvXvbdgYMmSI3w3aZ8+erSeeeML8AiSXY/fu3dq2bZt1hlulpKRYJwAAAAAAAB/GoB0AAAAAAAAA4DUSEhKUkJCgAQMGSPrPAGP58uVnRu6bNm1ScXGxbSTMFRUV6b777tPXX3+t2NhY6xwADmLQjv92+PBhpaena+7cuVq0aJFyc3OtkwDAq3BCO/DbsrKyzEe/J06cML1/p/G5u3Osf2/DRq9evTRu3Di/uljGwYMHlZmZqRYtWlinXLK5c+daJ7hVcHCwkpOTrTMAAAAAAIAPY9AOAAAAAAAAAPBa8fHx6tmzp3r27ClJys7O1o8//nhm5L527VoVFBQYV8LC4cOH9eyzz+rvf/+7dQoAh4SHh6t8+fLWGTCWnZ2ttLQ0zZgxQ0uWLFFRUZF1EgB4LU5oB37bzz//rKSkJNMGfxqdXghOaHdOdHS0dQIMREREqH///po8ebJ1ilulpaX59KA9PT3dOsGt2rdvz0UzAAAAAADAZWHQDgAAAAAAAADwGWXKlFHnzp3VuXNnSVJeXp5WrlypH374QT/++KNWrlypnJwc40o45csvv1T//v3Vvn176xQADqhUqZJ1AgwtW7ZM06ZN0+zZs5WXl2edAwBer7i4WCdPnrTOALzSwYMHrRM4oR0eExUVZZ0AI6mpqX45aH/44YetMy5Jdna2li9fbp3hVikpKdYJAAAAAADAxzFoBwAAAAAAAAD4rPDwcLVp00Zt2rSR9J/RxtatW7V27dozbxs3btTp06eNS+EpTz75pGbMmKGIiAjrFAAeVrlyZesEOOzUqVP6/PPPNXXqVG3dutU6BwB8SnZ2tnUC4LUOHTpknRBQF5xwuVwqU6aMdUbA4IT2wFW3bl0lJSUpMzPTOsVtsrKytG7dOjVq1Mg65aItWLBABQUF1hluEx0drW7dullnAAAAAAAAH8egHQAAAAAAAADgN4KCglS3bl3VrVv3zIkxRUVF2rJli9atW6fVq1drzZo12rx5s1+9oDCQ7d69W+PHj9eDDz5onQLAwzihPXAcPnxYH3zwgaZOnarjx49b5wCAT2LQDpybNwzaT506ZZ3gmMjISLlcLuuMgMGgPbANGTLErwbt0n9OaffFQXtGRoZ1glv17dtXYWFh1hkAAAAAAMDHMWgHAAAAAAAAAPi14OBgNWjQQA0aNNCgQYMkSXl5edqwYYNWr159ZuS+c+dOlZSUGNfiUkyaNEmDBg1SYmKidQoAD4qPj7dOgIcdPnxYb7zxhqZNm6a8vDzrHADwaYE0lgUu1sGDB60TdPr0aesEx3A6u7PKli1rnQBDvXv31rhx4/zqwmBpaWm69957rTMuSnFxsebPn2+d4Va/XDwWAAAAAADgcjBoBwAAAAAAAAAEnPDwcDVv3lzNmzc/833Hjx/XqlWrtGrVKq1cuVJr1qzxqxd/+rPCwkKNHz9eL7/8snUKAA9i0O6/Tp48qYkTJ2rSpEnKycmxzgEAv8AJ7cC5ecOgPTc31zrBMQzanRUeHm6dAEPh4eHq37+/Jk+ebJ3iNtu2bdNPP/2kOnXqWKdcsNWrV+vw4cPWGW5Tp04dNW3a1DoDAAAAAAD4AQbtAAAAAAAAAABIio6OVqdOndSpUydJUklJibZt23Zm4J6ZmamffvpJxcXFxqX4LbNmzdLGjRvVoEED6xQAHsKg3f+UlJTo008/1T//+U8dOXLEOgcA/AqDduDcvGFkGEgntJcqVco6IaDw643U1FS/GrRL/zml3ZcG7enp6dYJbsXp7AAAAAAAwF0YtAMAAAAAAAAA8BtcLpcSExOVmJiogQMHSvrPKOSXcXtmZqZWrVrFUMRLlJSU6JVXXtGECROsUwB4SGxsrHUC3Gj16tUaO3as1qxZY50CAH6Jz1OAczt27Jh1QkAN2jkx3FkRERHWCTBWt25dtWjRQitWrLBOcZu0tDTddddd1hkXzJ8G7cHBwUpOTrbOAAAAAAAAfoJBOwAAAAAAAAAAF6hMmTLq0KGDOnToIEkqLi7W5s2btWzZMi1dulTLly/3ihfGB6rvvvtOa9euVePGja1TAHhAVFSUdQLc4PTp03r55Zf1/vvvq7i42DoHAPxWbm6udQLgtQoKCpSbm2t6knUgDdrDwsKsEwJKZGSkdQK8QGpqql8N2jds2KDdu3erWrVq1im/6+eff9amTZusM9ymY8eOKl++vHUGAAAAAADwE0HWAQAAAAAAAAAA+KqgoCA1aNBAw4cP14QJE7RkyRJ9+eWXeuSRR9SlSxeVLVvWOjHgjB8/3joBgIfwMdX3rVixQsnJyXr33XcZswOAhxUWFlonAF7txIkTpvdfUFBgev9O4oR2Z4WGhlonwAv07t1b0dHR1hlulZaWZp1wQfzpdHZJSklJsU4AAAAAAAB+hEE7AAAAAAAAAABu4nK5dMUVV2jkyJF64403tGTJEk2aNEk333yzatasaZ0XEObPn6/t27dbZwDwAAbtvqu4uFivv/66brrpJu3YscM6BwACAoN24PyOHz9uev9FRUWm9+8kBu3OCgriJaH4z+Ouf//+1hlu5SuD9oyMDOsEt4mJiVHXrl2tMwAAAAAAgB/hq5cAAAAAAAAAAHhISEiI2rZtq4cfflizZs3SN998owcffFBXXnklLzD2kJKSEk2bNs06A4AHlC5d2joBl+Dw4cO67bbb9NJLLwXUcAsArPExFzg/6xPai4uLTe/fSXz9w1nBwcHWCfASQ4YMsU5wq1WrVmn//v3WGeeVm5urpUuXWme4Tb9+/RQWFmadAQAAAAAA/AhfLQYAAAAAAAAAwCG1a9fWrbfeqn/961/KyMjQww8/rEaNGlln+Z0vvvhCeXl51hkA3KxUqVLWCbhIGzdu1KBBg7Rw4ULrFAAIOAzagfPjhHbnMLB2Fr/e+EWdOnXUokUL6wy3KSkp0ezZs60zzmvRokU6ffq0dYbbpKSkWCcAAAAAAAA/w6AdAAAAAAAAAAADFStW1M0336zPP/9c33zzje666y5Vr17dOssvHDt2TN988411BgA3CgkJYZjhY9LT0zV06FD9/PPP1ikAEJAKCgqsEwCvlp2dbXr/gXRCu8vlsk4IKHzehP+WmppqneBWaWlp1gnnlZGRYZ3gNvXq1VPjxo2tMwAAAAAAgJ9h0A4AAAAAAAAAgLHatWvrnnvu0ezZs/X++++rR48eCgkJsc7yaR999JF1AgA3Cg8Pt07ARZg2bZruuusu5eTkWKcAQMAKpNOfgUthfYJuID1GGVg7iwsI4L/17t1b0dHR1hlus3z5ch05csQ645zmzZtnneA2nM4OAAAAAAA8gUE7AAAAAAAAAABepF27dnrllVc0d+5c3XXXXSpfvrx1kk/KzMzUpk2brDMAuAmDdt8xadIkPfHEEwF16igAeKPCwkLrBMCr5ebmWicEDAbWzuLjP/5beHi4+vfvb53hNkVFRZozZ451xm9at26d9u/fb53hFiEhIX71+wYAAAAAAHgPBu0AAAAAAAAAAHihihUr6p577lF6erpeeOEF1a9f3zrJ58ycOdM6AYCbcKqjb3jrrbc0btw46wwAAIDfZX1CeyA9v+VCR87i1xv/a8iQIdYJbpWWlmad8JvS09OtE9ymY8eOKleunHUGAAAAAADwQwzaAQAAAAAAAADwYqGhoerXr5+++uorvf7662rUqJF1ks/49ttvrRMAuAmnOnq/KVOm6IUXXrDOAAD8P4E0lgUuhfUJ7UFBgfOyvaKiIuuEgMIJ7fhfderUUYsWLawz3Gbx4sU6efKkdcavZGRkWCe4zcCBA60TAAAAAACAnwqcr4wDAAAAAAAAAODDXC6Xunbtqs8++0z//Oc/Vb16deskr7djxw5t2rTJOgOAGzDK824zZ87UU089ZZ0BAPgv/NkJnB8ntDunpKTEOiGgcEI7fktqaqp1gtsUFBR43WnoBw8e1Nq1a60z3CImJkZXX321dQYAAAAAAPBTDNoBAAAAAAAAAPAhLpdLffv21ddff617771XpUqVsk7yavPmzbNOAOAGgXSCpa9ZunSpHnzwQYYzAOBlQkJCrBMAr2Y9aA+k57ec0O6sgoIC6wR4od69eys6Oto6w23S0tKsE86SkZHhNxfvuPbaaxUWFmadAQAAAAAA/FTgfGUcAAAAAAAAAAA/EhYWpjvuuEMzZ85Uhw4drHO81sKFC60TAMBvZWVl6Z577mE0AwBeKJBOfwYuRWFhoen9B9JjNC8vzzohoFhfrAHeKTw8XMnJydYZbrNgwQLl5uZaZ5yRkZFhneA2AwcOtE4AAAAAAAB+jEE7AAAAAAAAAAA+rEqVKpo4caL+7//+T6VLl7bO8TorVqzwqhe4AoC/yM3N1ejRo3X06FHrFADAb+CEduD8iouLTe8/NDTU9P6dlJ+fb50QUPgaCM4lNTXVOsFtcnNzNX/+fOsMSf/5GLdo0SLrDLeoX7++GjZsaJ0BAAAAAAD8GIN2AAAAAAAAAAD8wODBg/XZZ5+pfv361ileJT8/XytXrrTOAAC/M3bsWG3YsME6AwBwDoF0+jNwKYqKikzvPyIiwvT+ncQJ7c7ihHacS506ddSyZUvrDLdJS0uzTpAkLV26VDk5OdYZbsHp7AAAAAAAwNMYtAMAAAAAAAAA4Cdq1aqljz/+WP3797dO8SqZmZnWCQDgV7755ht9/vnn1hkAgPMIDw+3TgC8GoN25zBodxaDdpzP4MGDrRPcJiMjQ/n5+dYZysjIsE5wi5CQEF177bXWGQAAAAAAwM8xaAcAAAAAAAAAwI9ERETo+eef15/+9Ce5XC7rHK+watUq6wQA8Bv79u3Tk08+aZ0BAPgdpUqVsk4AvBqDduf4y8nFvoJfb5xP7969FR0dbZ3hFtnZ2Vq0aJF1ht8M2jt37qz4+HjrDAAAAAAA4OdCrAMAAAAAAAAAAID7jR49WpUrV9Zjjz2m4uJi6xxTDNoBwH0ee+wxHT9+3DrDJ8XFxalKlSqqUqWKypUrp7i4uDNvMTExioyMPOstJCREwcHBCgkJUUhIiIKCnL9e/bBhw7Rs2TLH7xfA5StdurR1AuDVrD9PDqRB+6lTp6wTAsqJEyesE+DFwsPDlZycrA8++MA6xS3S0tJ09dVXm93/5s2btWfPHrP7d6eBAwdaJwAAAAAAgADAoB0AAAAAAAAAAD81cOBARURE6IEHHlBhYaF1jpmjR4/qwIEDqlChgnUKAPi0GTNmaMGCBdYZXq9ChQpq2LChGjRooPr166t+/fpKSEgIqOEaAHuRkZHWCYBXsz6hvVSpUqb376Ts7GzrhIDCxafwe1JTU/1m0D5nzhwVFRUpODjY5P795XT2uLg4de7c2ToDAAAAAAAEAAbtAAAAAAAAAAD4sT59+qigoEAPPfSQSkpKrHPMbNmyhUE7AFyGEydO6JlnnrHO8Erh4eG68sor1bFjR7Vv315169a1TgIATmgHfof158eB9BjNyclRSUmJXC6XdUpA4IR2/J46deqoZcuW+vHHH61TLtuxY8e0bNkytWvXzuT+09PTTe7X3fr166fQ0FDrDAAAAAAAEAAYtAMAAAAAAAAA4OeSk5N17NgxjRs3zjrFzObNm9W+fXvrDADwWePHj9ehQ4esM7xKo0aNNGjQIF177bWKioqyzgGAswTSWFaShg8frltvvdU6Az4kPDzc9P4D6blDcXGxTp48GVD/zZY4oR0XYvDgwX4xaJektLQ0k0H7sWPHtGrVKsfv1xMGDhxonQAAAAAAAAIEg3YAAAAAAAAAAALAiBEjtHHjRn3++efWKSa2b99unQAAPmvXrl366KOPrDO8gsvlUvfu3XXnnXeqYcOG1jkAcE6RkZHWCY6KiIhQpUqVrDOAC1a2bFnrBEcdOXKEQbtDjh49ap0AH9C7d28988wzOnbsmHXKZZs9e7aeeOIJuVwuR+933rx5KioqcvQ+PeGKK67QFVdcYZ0BAAAAAAACRJB1AAAAAAAAAAAAcMZf//rXgH2B4p49e6wTAMBn/fOf/1RBQYF1hrkuXbroiy++0CuvvMKYHYDXC7SxLH9OwddER0dbJziKkbVzDh48aJ0AHxAeHq7+/ftbZ7jFwYMHlZmZ6fj9ZmRkOH6fnpCSkmKdAAAAAAAAAgiDdgAAAAAAAAAAAkR4eLjGjRunkJAQ6xTHMWgHgEuzbt06ffvtt9YZpuLj4zVhwgS98cYbAXthGAC+JywsLKBG7Qza4WsC6fEpMWh30oEDB6wT4COGDBlineA2aWlpjt5fYWGhFixY4Oh9ekJoaKiuvfZa6wwAAAAAABBAGLQDAAAAAAAAABBAGjZsqBEjRlhnOG7v3r0qLi62zgAAn/Pmm2+qpKTEOsNMz549NWPGDHXr1s06BQAuWlxcnHWCYxi0w9cE2gnthw4dsk4IGAzacaESExPVsmVL6wy3cHrQvnz5cp04ccLR+/SEzp07B9TzRQAAAAAAYI9BOwAAAAAAAAAAAeaOO+4IuNPgCgoKdOzYMesMAPApO3fu1OzZs60zzNxxxx0aP348L/AH4LMC6eMXg3b4mkB6fEqMrJ2Sn5+v48ePW2fAh6SmplonuEVWVpbWrVvn2P1lZGQ4dl+eNHDgQOsEAAAAAAAQYBi0AwAAAAAAAAAQYKKiojRy5EjrDMdxIhwAXJyJEyequLjYOsNxLpdLY8aM0b333mudAgCXJTY21jrBMQza4WvKlStnneCo/fv3WycEhD179qikpMQ6Az6kV69eiomJsc5wCydPaU9PT3fsvjwlPj5enTt3ts4AAAAAAAABhkE7AAAAAAAAAAAB6IYbblBoaKh1hqMOHz5snQAAPiM7O1v//ve/rTNM/O1vf9OwYcOsMwDgssXHx1snOObUqVPWCcBFYdAOT9i9e7d1AnxMeHi4+vfvb53hFk4N2nfu3KkdO3Y4cl+edO211yokJMQ6AwAAAAAABBgG7QAAAAAAAAAABKC4uDhdc8011hmOYtAOABdu5syZys3Ntc5w3IgRI5Sammqd4TWKioqsEwBchkAatB8/ftw6AbgosbGxATUkzMrKsk4ICHv27LFOgA8aMmSIdYJbbNu2TT/99JPH78cfTmeXpJSUFOsEAAAAAAAQgBi0AwAAAAAAAAAQoJKTk60THJWdnW2dAAA+4/PPP7dOcFyHDh300EMPWWd4lUC8qAHgTypWrGid4BgG7fA1LpdLcXFx1hmOYWjtDE5ox6VITExUy5YtrTPcwolT2ufOnevx+/C0Ro0aqUGDBtYZAAAAAAAgADFoBwAAAAAAAAAgQLVr105hYWHWGY45deqUdQIA+IQdO3YoMzPTOsNRsbGx+sc//qHg4GDrFK+Sk5NjnQDgMiQkJFgnOIZBO3xR+fLlrRMcc/r0aR04cMA6w+9t3brVOgE+KjU11TrBLTw9aM/OztaKFSs8eh9O4HR2AAAAAABghUE7AAAAAAAAAAABqlSpUrryyiutMxzDoB0ALowTp9p5m4ceekixsbHWGV6HE9oB31alShXrBMcwaIcvCqTHqCTt2rXLOsHvbdmyxToBPqpXr16KiYmxzrhsGzZs0O7duz12+/Pnz1dBQYHHbt8JoaGh6tevn3UGAAAAAAAIUAzaAQAAAAAAAAAIYE2bNrVOcAynzALAhZk7d651gqPatGnDCXXnwKAd8G2BNJbNz8/nYxZ8TiA9RiVp27Zt1gl+7eTJk/r555+tM+CjwsPDlZycbJ3hFp68QFtGRobHbtspXbp04WJuAAAAAADADIN2AAAAAAAAAAACWKNGjawTHFNYWGidAABe78iRI1q1apV1hmNcLpcef/xx6wyvVFxczMVgAB9XunRpvzht9UIdPXrUOgG4KIE2aN+6dat1gl/jdHZcrtTUVOsEt5g9e7ZHbre4uFjz58/3yG07aeDAgdYJAAAAAAAggDFoBwAAAAAAAIAAkZ+fz4tb8Sv16tWzTnBMQUGBdQIAeL358+eruLjYOsMxPXr0UN26da0zvNK+ffu4GAzgBwJpMMvJxPA1CQkJ1gmO+umnn6wT/Nq6deusE+DjEhMT1apVK+uMy7Zy5Urt37/fI7fr6xfPKVeunDp27GidAQAAAAAAAliIdQAAAAAAAAAAwL3y8vK0fft2/fTTT2e97d69W4WFhZoxYwbDLZxRqVIl6wTHFBUVWScAgNf74YcfrBMcNXz4cOsEr7Vnzx7rBABuUK1aNa1fv946wxF79+5Vy5YtrTOACxZIF5yQpE2bNlkn+LVVq1ZZJ8APDB48WMuXL7fOuCwlJSWaPXu2brrpJrfebnp6ultvz0L//v0VEsLLxgEAAAAAgB2+MgEAAAAAAAAAPio3N1fbtm3TTz/9pK1bt541XD/fyarz5s1j0I4zwsPDFRsb6/MnDF0IBu0A8Pt8fbxwMWrWrOkXJxB6SlZWlnUCADeoXbu2dYJj9u7da50AXJTq1atbJzjq4MGDOnjwoMqXL2+d4pdWr15tnQA/0KtXL40bN07Hjh2zTrksaWlpbh+0Z2RkuPX2LKSkpFgnAAAAAACAAMegHQAAAAAAAAC83KlTp7R169Yzo/Vf/rlnzx6VlJRc9O3NmzdPt912mwdK4avi4uICYtAeGhpqnQAAXu3w4cPasWOHdYZjevfubZ3g1Ri0A/4hMTHROsExfNyCrylbtqzi4+N1+PBh6xTHrF+/Xp07d7bO8DtHjx7Vzp07rTPgB8LDw5WcnKxJkyZZp1yW5cuX68iRI4qLi3PL7e3du1ebN292y21ZadSokerVq2edAQAAAAAAAhyDdgAAAAAAAADwEtnZ2dq6dau2bNly1nh97969lzRcP5fMzExlZ2erTJkybrtN+LaIiAjrBEcwaAeA88vMzLROcFTXrl2tE7waoyjAPwTSoJ0T2uGLatWqFVCD9rVr1zJo94AffvjBOgF+JDU11ecH7UVFRZozZ46uv/56t9xeenq6W27H0qBBg6wTAAAAAAAAGLQDAAAAAAAAgNNOnDhx1knrv7zt27fPkfsvKCjQ/Pnz1adPH0fuD94vPDzcOsERDNoB4Pw2btxoneCYqKgoNWnSxDrDq61Zs8Y6AYAb1KpVSy6Xy60XSfNWDNrhi2rWrKnly5dbZzgm0C6g5JRFixZZJ8CPJCYmqlWrVj7/sSktLY1B+/8TGhqqvn37WmcAAAAAAAAwaAcAAAAAAAAATzl69OhZo/VfTl8/ePCgdZr+/e9/M2jHGUVFRdYJjmDQDgDnt3nzZusExzRv3lwul8s6w2udPHlSO3bssM4A4AalSpVSlSpVlJWVZZ3icbt27VJBQQHP++FTatWqZZ3gqFWrVqmkpITnYW62ePFi6wT4mcGDB/v8oH3x4sU6efKkypYte1m3k5ubq2XLlrmpykbXrl0VExNjnQEAAAAAAMCgHQAAAAAAAAAu15EjR7Rly5azTl3funWrDh06ZJ12Tt9//72OHDmiuLg46xR4gezsbOsERwTKSfQAcKk2bdpkneCYpk2bWid4tdWrVwfEac5AoKhbt25ADNoLCgq0fft21atXzzoFuGCJiYnWCY46ceKEtmzZwuPUjbKysrgQEdyuV69eGjdunI4dO2adcskKCgqUnp6u/v37X9btLFy4UHl5eW6qsjFw4EDrBAAAAAAAAEkM2gEAAAAAAADggh08ePDMaev/PV4/evSoddpFKyws1PTp0zVixAjrFHiBQBm0R0dHWycAgNfKy8vTrl27rDMcU7duXesEr7Zq1SrrBABu1LBhQ2VkZFhnOGLz5s0MZeFT6tevb53guCVLlvA4daO5c+daJ8APhYeHKzk5WZMmTbJOuSxpaWmXPWhPT093U42N8uXLq2PHjtYZAAAAAAAAkhi0AwAAAAAAAMCv7N+//6zh+i/j9ePHj1unudVXX33FoB2SpFOnTlknOIJBOwCcW1ZWloqLi60zHFOnTh3rBK+WmZlpnQDAjZo0aWKd4JjNmzdbJwAXpUqVKoqOjva7rzmdz6JFizR8+HDrDL8xZ84c6wT4qdTUVJ8ftC9YsEC5ubkqVarUJf38kpISzZs3z81Vzurfv7+Cg4OtMwAAAAAAACQxaAcAAAAAAAAASf95cdrw4cO1YcMGnTx50jrHEevWrdOqVavUrFkz6xQYKi4uVk5OjnWGIxi0A8C5/fzzz9YJjkpISLBO8Fq5ublatmyZdQYAN2LQDni3+vXrB9SfvUuXLlVBQYFCQ0OtU3zeiRMn9MMPP1hnwE8lJiaqVatWWr58uXXKJcvNzdX8+fPVs2fPS/r5a9eu1cGDB91c5ayBAwdaJwAAAAAAAJwRZB0AAAAAAAAAAN7A5XKpuLg4YMbsv3jvvfesE2Bs586dAXMib0xMjHUCAHitvXv3Wic4JiYm5pJP6AsEixYt0unTp60zALhR+fLlVaFCBesMRzBohy+qX7++dYKjcnJyGGG7yaxZs1RYWGidAT+WmppqnXDZ0tLSLvnnZmRkuC/EQJMmTVSnTh3rDAAAAAAAgDMYtAMAAAAAAADA/9OqVSvrBMelpaVpz5491hkwtGXLFusEx5QvX946AQC8VlZWlnWCY/jz4PzS09OtEwB4QOPGja0THJGVlaUDBw5YZwAX5YorrrBOcNycOXOsE/zCjBkzrBPg53r16uXzF4jMyMhQfn7+Jf1cX//cKCUlxToBAAAAAADgLAzaAQAAAAAAAOD/ad26tXWC44qKivTBBx9YZ8BQoJxgGBISoooVK1pnAIDXOnTokHWCY8qWLWud4LVKSkp8/hRCAL+tWbNm1gmOWb58uXUCcFEC5YIT/41B++U7cOCAli1bZp0BPxcWFqYBAwZYZ1yW7OxsLV68+KJ/3oEDB7R+/XoPFDkjLCxM/fr1s84AAAAAAAA4C4N2AAAAAAAAAPh/kpKSFBISYp3huE8++USHDx+2zoCRQDmhvWLFigoODrbOAACvdezYMesEx0RFRVkneK1Vq1bp4MGD1hkAPODKK6+0TnAMA0/4mrp166p06dLWGY76+eeflZmZaZ3h0/7973+ruLjYOgMBYPDgwdYJl23WrFkX/XMyMjJUUlLigRpnXHPNNYqOjrbOAAAAAAAAOAuDdgAAAAAAAAD4fyIjI9W8eXPrDMfl5ORowoQJ1hkwsnLlSusER1SpUsU6AQC82vHjx60THBMREWGd4LU+++wz6wQAHtK0aVOVKlXKOsMRP/zwg3UCcFGCgoLUpEkT6wzHTZ8+3TrBZ5WUlOiTTz6xzkCASExMVKtWrawzLsucOXNUVFR0UT8nPT3dQzXOSElJsU4AAAAAAAD4FQbtAAAAAAAAAPBfOnXqZJ1g4uOPP9bOnTutM+CwtWvXat++fdYZjkhISLBOAACvFkiD9pCQEOsEr3Tq1Cl9/fXX1hkAPCQ0NFRJSUnWGY746aefdOTIEesM4KI0a9bMOsFx33zzjQoKCqwzfNKSJUu0Y8cO6wwEkNTUVOuEy3Ls2DEtW7bsgt8/Pz9fS5Ys8WCRZ1WoUEEdOnSwzgAAAAAAAPgVBu0AAAAAAAAA8F86d+5snWCioKBAL774onUGHDZnzhzrBMckJiZaJwCAVztx4oR1gmMYtP+2mTNn6tSpU9YZADyoTZs21gmOWbp0qXUCcFGaN29uneC4I0eOBNTXJdxp6tSp1gkIML169VJMTIx1xmVJS0u74PddvHixcnJyPFjjWcnJyQoODrbOAAAAAAAA+BUG7QAAAAAAAADwXxo0aKCKFStaZ5j49ttvL+qkGvi+QHrheL169awTcAFKSkqsE4CAlZeXZ53gmMLCQusEr/Txxx9bJwBuw3OK39a6dWvrBMdczGgN8AYtWrSQy+WyznDcRx99ZJ3gc3bv3q3Zs2dbZyDAhIWFacCAAdYZl+W777674OeIGRkZno3xsJSUFOsEAAAAAACA38SgHQAAAAAAAAD+x9VXX22dYKKkpESPPvqoT58+gwu3ceNGbdq0yTrDMQzafUNBQYF1AhCwAunxF0j/rRdq7dq1Wr16tXUG4DY8zn9b06ZNVbZsWesMR2RkZOj06dPWGcAFi4mJUYMGDawzHLdkyRJt27bNOsOnvP/++youLrbOQAAaPHiwdcJlOXDggDIzMy/ofefNm+fhGs9p1qyZEhMTrTMAAAAAAAB+E4N2AAAAAAAAAPgfPXr0sE4ws3v3bv3jH/+wzoAD3n77besEx5QpU0ZVqlSxzsAFYHwG2AmkU8vz8/OtE7zOhAkTrBPMcJK3f+Jx/ttCQkLUsWNH6wxH5OTk+Pzpqgg8bdq0sU5wXElJid577z3rDJ9x8OBBffbZZ9YZCFCJiYm68sorrTMuy+zZs3/3fTZu3KisrCwHajyD09kBAAAAAIA3Y9AOAAAAAAAAAP+jbdu2io2Ntc4w8+GHH2rp0qXWGfCg3bt365tvvrHOcEzDhg2tE3CBGLQDdgLp8ceJvWfbsGGD5s6da51hhhNO/VMgfUy7WF26dLFOcEwgfc4D/xCIg3ZJ+vLLL3Xo0CHrDJ/w5ptvKjc31zoDAczXT2mfNWvW776PL18QJzw8XH379rXOAAAAAAAAOCcG7QAAAAAAAADwP0JCQtS9e3frDDMlJSV64IEHtH//fusUeMi7776roqIi6wzHtGjRwjoBFygnJ8c6AQhYgXRC++HDh60TvEogn84uKaCeEwUSnlOcW+fOnRUSEmKd4Yh58+bxewE+5corr1RwcLB1huPy8/M1ceJE6wyvt3//fn388cfWGQhwvXr1UkxMjHXGJcvKytK6devO+z6+PGjv1q2boqKirDMAAAAAAADOiUE7AAAAAAAAAPyG3r17WyeY2r9/v+68805OffJDGzdu1CeffGKd4SgG7b7j6NGj1glAwAqUcaMkTgD9Lxs3btR3331nnWGKQbt/4jnFuUVHRwfM8+Pc3FxNnz7dOgO4YGXLllWzZs2sM0xMmTKFCyv+jn/84x/Ky8uzzkCACwsL04ABA6wzLktaWto5f+zIkSNatWqVgzXulZKSYp0AAAAAAABwXgzaAQAAAAAAAOA3tGnTRhUrVrTOMLVu3Trdf//9KikpsU6BmxQWFurRRx9VQUGBdYpjXC6Xmjdvbp2BC8T4DLATSKeBHj16NKBOpD+fcePGBfxzPYZh/onnFOfXtWtX6wTHfPDBBwH/ce5S7Nu3T9u3b9fJkyetUwJOly5drBNM5OXlacKECdYZXmvVqlVcoANeY/DgwdYJl+V8g/b58+eruLjYwRr3qVixotq3b2+dAQAAAAAAcF4M2gEAAAAAAADgNwQHB3OiiaTvvvtOf//7360z4CbvvPOO1q1bZ53hqLp16yo6Oto6AxeI8RlgJ5BOaC8pKdHPP/9snWHu3//+t5YuXWqdYS43N9c6AR7Ac4rz6927t4KCAuMlQz/99JMWLFhgneFzHn74YfXq1UutWrVSkyZN1LlzZw0cOFC33XabHn74YT333HOaOHGivvzyS82fP1/r1q3T/v37lZ+fb53u8wJ10C5Jn3zyiTZs2GCd4XWKior0t7/9jYtzwGskJibqyiuvtM64ZNu2bdPWrVt/88fS09MdrnGf5OTkgHl+BwAAAAAAfFfgvCoBAAAAAAAAAC7SoEGD9Oabbwb8C0bfe+89FRcX69FHH7VOwWVYvXp1QJ521qFDB+sEXISsrCzrBCBghYWF6dSpU9YZjvnpp59UrVo16wwz2dnZeu6556wzvMLp06etE+ABPKc4v0qVKqlVq1ZatmyZdYoj3n//fXXs2NE6w2ccPnz4rN8b+fn52rdvn/bt23dBPz8qKkpxcXGKj48/6+23vo+Lj/1a3bp1VbVqVe3Zs8c6xXHFxcUaO3asPvzwQ7lcLuscrzFx4sSAuzghvN/gwYP1ww8/WGdcslmzZumuu+466/sKCgp8+iI4XJwXAAAAAAD4AgbtAAAAAAAAAHAO1atX15VXXhkwL/I/n0mTJun06dP661//ykkvPmjXrl264447AvK0vE6dOlkn4CJkZWWpsLAwoE6KBrxF6dKlA+pE4y1btgT0CagvvfSSDh48aJ3hFXJycqwT4AG7du2yTvB61157bcB8rrtw4UL99NNPqlOnjnWKT5g1a5aKioou+eefOHFCJ06c0I4dO373fUNDQxUbG3tB4/f4+HiFhYVdcpcv6dKliyZPnmydYWLFihWaOnWqbrjhBusUr7B161a9+uqr1hnAr/Tq1UtPP/20jh07Zp1ySdLS0n41aF++fLmys7ONii5PUlKSateubZ0BAAAAAADwu3g1EAAAAAAAAACcx+DBgwPmRf6/Z9q0acrJydGzzz7L2NSHHD58WLfeeqsOHz5sneK4yMhItWrVyjoDF6GwsFBZWVmqUaOGdQoQcMqWLWud4KhNmzZZJ5j54Ycf9OGHH1pneI3jx49bJ8ADLmRIG+h69uypsWPHqqCgwDrF40pKSvTyyy/rlVdesU7xCZ9//rlj91VQUKADBw7owIEDF/T+ZcqUOTN4L1eu3FnD91++75dvx8TE+Owp37169QrYQbskPf/88+rUqZOqVq1qnWIqLy9Pf/nLX5SXl2edAvxKWFiYBgwYoPfff9865ZJs2LBBu3fvVrVq1c58X3p6umHR5eF0dgAAAAAA4Ct4xSEAAAAAAAAAnEevXr303HPPXfCLq/3d9OnTtX//fr344osqV66cdQ5+x9GjRzVq1KiAPaGyffv2Cg0Ntc7ARdqyZQuDdsBAoA3aA/WCRUeOHNF99913WSfv+puTJ09aJ8ADtm7dqpKSEp8dszohOjpanTt31nfffWed4oi0tDT98MMPuvLKK61TvNrq1au1Zs0a64xzys7OVnZ2tnbu3Pm77xsSEqLY2Nizxu+33XabGjRo4EDp5WnZsqUqVaqkffv2WaeYyMnJ0QMPPKDJkycH9AUVn376aW3cuNE6AzinwYMH++ygXfrPc4Nbb731zL/PmzfPsObSRUREqE+fPtYZAAAAAAAAFyTIOgAAAAAAAAAAvFloaKhuuOEG6wyvsmzZMqWkpOjHH3+0TsF5bN++XampqVq7dq11iplevXpZJ+ASrFq1yjoBCEjR0dHWCY46cOCAtm3bZp3hqJKSEj388MPav3+/dYpX4YR2/3T8+HFt377dOsPrDRo0yDrBUc8884xKSkqsM7zalClTrBPcprCwUAcPHtSmTZu0cOFCZWRkqHr16tZZF8Tlcql3797WGaZWrFihF154wTrDzMcff6xp06ZZZwDnlZiY6NMXipk9e/aZb2/btk07duywi7kM3bp1C7gL1AEAAAAAAN/FoB0AAAAAAAAAfseQIUMUERFhneFVDhw4oBEjRmjSpEnWKfgNS5cuVWpq6gWdWuevSpUqpa5du1pn4BIwaAdslC9f3jrBcYsWLbJOcNTEiRN99tRBTzpw4IB1Ajxk9erV1gle7+qrr1aVKlWsMxyzbt06ffnll9YZXmvv3r36+uuvrTM8ZtCgQYqMjLTOuGB9+/a1TjD33nvvaebMmdYZjluyZInGjh1rnQFckNTUVOuES7Zy5cozF/vKyMiwjbkMAwcOtE4AAAAAAAC4YAzaAQAAAAAAAOB3xMbGKjk52TrD6xQUFGjcuHG67bbb9PPPP1vnQFJRUZEmTpyoW2+9NeBPG+3atatPjRXw/1u9erXy8/OtM4CAE4iDdn8e7f2vefPm6cUXX7TO8EoHDx60ToCHLFu2zDrB6wUFBWnw4MHWGY765z//GfCfK53LhAkTVFBQYJ3hES6XSzfeeKN1xkVp0qSJatasaZ1hqqSkRA8//LBWrFhhneKY9evX6+677/bbxyL8T8+ePRUTE2OdcUlKSkr03XffSZLS09ONay5N5cqV1a5dO+sMAAAAAACAC8agHQAAAAAAAAAuwKhRoxQSEmKd4ZW+//579evXT5MnT1ZRUZF1TsDatGmTUlNT9dxzz/HCZ0n9+vWzTnA7l8tlneCI3NxcLV682DoDCDgVKlSwTnBcZmamdu/ebZ3hcatWrdKf//xnFRYWWqd4pfz8fB07dsw6w1GB8pxi3rx5Kikpsc7wetddd51CQ0OtMxxz4MABPf7449YZXmfnzp1+fXp9586dVb16deuMi3b99ddbJ5jLy8vTnXfeqY0bN1qneNzWrVt166236uTJk9YpwAULCwtTSkqKdcYlmzVrlk6cOOGzF85ITk5WUBAvAwcAAAAAAL6Dr2QAAAAAAAAAwAWoWrUqp7SfR3Z2tp566ikNGDBAixYtss4JKHl5eXrllVc0aNAgrVmzxjrHK5QvX16dOnWyznC7QLqoxty5c60TgICTkJBgneC4kpISff7559YZHrV9+3b94Q9/UE5OjnWKV9u1a5d1gqMC5TnFoUOHtHr1ausMr1e+fHldc8011hmOmjVrlj755BPrDK/y9NNP+/WFT0aOHGmdcElSUlIC6oIT53Ls2DGNHDlSmzdvtk7xmA0bNmjYsGE6cuSIdQpw0QYPHmydcMmWL1+uf//73z77Z6AvX0wAAAAAAAAEJgbtAAAAAAAAAHCB7rzzzoAZf1yqzZs36+abb9bw4cOVmZlpnePX8vPzNXnyZF1zzTV69dVXOZX9vwwePNgvH6vh4eHWCY5JS0tTfn6+dQYQUGrUqGGdYGLKlCnKzs62zvCIffv26dZbb9XRo0etU7ze9u3brRMcFUjPKWbMmGGd4BNGjBhhneC4p59+Wtu2bbPO8ArffPON5s2bZ53hMUlJSWrXrp11xiWJj49X165drTO8wtGjR3XTTTfpxx9/tE5xux9++EHDhw/X4cOHrVOAS1K7dm21bt3aOuOSFBUV6eWXX7bOuCQtWrRQzZo1rTMAAAAAAAAuCoN2AAAAAAAAALhA1apV45T2C7R06VINGTJEw4YN8+sXxlvIz8/Xhx9+qO7du+upp57SwYMHrZO8SnBwsFJTU60zPCKQxmdHjhxRWlqadQYQUCpXrhxQH2d+cfz4cX344YfWGW73008/aciQIcrKyrJO8QmBNmoNCwuzTnDMl19+qdzcXOsMr9eiRQu1atXKOsNRubm5uvfee3Xq1CnrFFNHjx7V008/bZ3hUXfddZd1wmXx189vL8Xx48d18803a+bMmdYpbvPJJ5/o5ptv1okTJ6xTgMviy6e0++rjb+DAgdYJAAAAAAAAF41BOwAAAAAAAABchHvuuUcRERHWGT5j2bJlGjVqlPr06aMPPvjAZ18g6A127Nih5557Tp07d9bf/vY37du3zzrJK3Xt2lUVK1a0zvCIQBua/utf/7JOAAKKy+VS9erVrTNMvPXWWzpw4IB1htusWLFCN954o37++WfrFJ+xZs0a6wRHBdJzihMnTmj69OnWGT5h1KhR1gmO27hxo0aPHq38/HzrFBMlJSV68MEH/foiaY0bN1anTp2sMy7LVVddpcTEROsMr5GXl6d7771XzzzzjAoLC61zLllubq7GjBmjMWPGqKCgwDoHuGw9e/ZUTEyMdUbAiIiIUO/eva0zAAAAAAAALhqDdgAAAAAAAAC4CBUrVtTIkSOtM3zO1q1b9fTTT6tTp0667777NG/ePBUVFVlneb3c3FzNmDFDw4YNU8+ePTVx4kQdOXLEOsur3XrrrdYJHhMUFKTQ0FDrDMdkZmZq3rx51hlAQKlfv751gomTJ0/qqaeess5wizlz5ujmm2/WsWPHrFN8yurVq1VSUmKd4ZhAGrRL0uuvvx6wg+WL0blz54D8c2Dx4sW6//77A/Lz07feekvz58+3zvAoXz+dXfrPRYf4OtSvvf/++xo8eLC2bNlinXLRVq5cqYEDB+qTTz6xTgHcJiwsTCkpKdYZAaN79+4qU6aMdQYAAAAAAMBFY9AOAAAAAAAAABdp1KhRKleunHWGT/ploD1q1Ch17NhRjz/+uObNm8fA5L8cOnRIn3zyie644w61bdtW9913n5YtW2ad5RPatWunpKQk6wyPCgsLs05w1AsvvKDi4mLrDCBgNGjQwDrBzKxZs/TVV19ZZ1yywsJCvfjii7r77rt1+vRp6xyfc/LkSW3YsME6wzGBNmjfu3ev/vWvf1ln+IRAPKVd+s+fAU8++aR1hqNmzpypl156yTrDo5o0aaKuXbtaZ7hFcnKy4uLirDO8zrp16zRw4ECNHz9eubm51jm/6+jRo/rrX/+qoUOHatu2bdY5gNsNHjzYOiFgDBo0yDoBAAAAAADgkjBoBwAAAAAAAICLVLp0af35z3+2zvB5hw8f1scff6xRo0apTZs2uuOOOzR58mRt3brVOs1R2dnZWrhwoV555RUNGTJEHTt21JgxY5Sens4g7SLdeeed1gkeFxkZaZ3gqE2bNundd9+1zgACRsOGDa0TTD3++ONatWqVdcZFy8rK0k033aQ33niDi4Bchrlz51onOKZUqVLWCY579dVXtXv3busMr9enTx/Vq1fPOsPEJ598okcffVQFBQXWKR63aNEiPfjgg37/Z8aDDz4ol8tlneEW4eHhuuGGG6wzvFJ+fr4mTJigXr166bPPPlNhYaF10q+cPHlSEyZMULdu3TR16lS/f+whcNWuXVutW7e2zvB7VapUUdu2ba0zAAAAAAAALgmDdgAAAAAAAAC4BNddd53fnwTtpJycHKWnp+upp55Snz59dNVVV+nuu+/Wu+++q2XLlunkyZPWiW5RUFCgLVu2aPr06Ro7dqwGDBig1q1b65ZbbtGrr76qzMxMXth8iVq2bKk2bdpYZ3hcuXLlrBMc99JLLwXUqbmApcaNG/vN8OtS5OXlafTo0T51cZ1vvvlGAwYMUGZmpnWKzwukQXv58uWtExx36tQpPfDAAyoqKrJO8WpBQUG69957rTPMfPbZZ7rlllt0/Phx6xSPycjI0F133eX3w/0uXbr43ajyxhtvDLgLnF2Mffv26dFHH1XPnj314YcfKjs72zpJmzdv1lNPPaVOnTpp/PjxXtEEeBqntHtecnJyQH/eDgAAAAAAfJurpKSkxDoCAAAAAAAAAHzR5s2blZKS4pWnP/mjatWqqW7duqpdu7Zq166tmjVrqmrVqipfvryCgrzn+q3FxcU6dOiQ9u3bpz179mjr1q3asmWLtm7dqh07dvD7xUOmTp2qFi1aWGd43KhRozRv3jzrDMclJCRo6tSpqlixonWKV0pPT9cdd9xhneFRCQkJATU2tXTttddq8+bN1hmm4uPj9e6776pBgwbWKee0fft2jRs3TvPnz7dO8StffvmlrrjiCusMjzty5IjatWtnnWFi8ODB+r//+z/rDK93ww036Mcff7TOMFOzZk29+eabqlmzpnWKW3322Wd64okn/P5z0uDgYH311VeqW7eudYrb/fOf/9Sbb75pneETIiMjde2116pv37668sorHfu60a5du/T1119r5syZAf+c2pOee+45JScnW2fgN+Tn56tjx446duyYdYrfmj17tqpXr26dAQAAAAAAcElCrAMAAAAAAAAAwFfVq1dPN998s95++23rlICwe/du7d69+1eDxtDQUFWuXFmVKlVSfHy8ypUrp/j4eMXExCgqKkply5ZVVFSUIiMjFRERceYtNDRUwcHBCgoKUlBQkFwulwoLC1VUVKTCwkIVFBSosLDwzNupU6d04sQJnThxQidPnjzrnwcPHtS+ffu0b98+HThwwO8HAt6mb9++ATFml6QKFSpYJ5jIysrSbbfdpg8++ECxsbHWOYBfa9myZcCPbw4fPqxhw4bpueeeU5cuXaxzzpKdna0JEyZo8uTJfn+6roWpU6dq7Nix1hkeFxsbq9DQ0ID8PfTxxx8rJiZG9913n3WKV7v//vs1dOhQ6wwzO3bsUGpqqp588kn16dPHOuey5efn65lnntGHH35oneKIlJQUvxyzS9Itt9yiKVOmcNL3BcjJydG0adM0bdo0xcfHq1OnTmrbtq3atm2rSpUque1+jhw5ouXLl2vZsmVatmyZNm3a5LbbBnxRWFiYUlJS9N5771mn+KVWrVoxZgcAAAAAAD6NE9oBAAAAAAAA4DKcPn1aycnJ2rFjh3UKEJAiIiL0zTffqEqVKtYpjhg/frwmTJhgnWGmevXqeuONN5SYmGid4lU4oR3uNHPmTN17773WGV7B5XLp9ttv1x//+EeFhYWZtuTl5enTTz/V66+/roMHD5q2+LOwsDB9++23SkhIsE7xuC5dumjv3r3WGWYGDhyov/3tb+aPbW82evRofffdd9YZ5rp166Ynn3zSZy8stXnzZj344IPasGGDdYojypQpo2+++cZn/39diJdfflmvvfaadYZPi4+PV6NGjZSYmKhq1aqpatWqiouLU2xsrKKiohQWFqbQ0FAVFRUpJydHOTk5OnXqlI4dO6YdO3acedu6dat27Nghb3v55d13361XX33VOsOjOKHdu23btk29e/e2zvBLTz/9tK677jrrDAAAAAAAgEvGoB0AAAAAAAAALtPq1as1dOhQTuUGDIwePVp/+tOfrDMc89FHH+nJJ5+0zjBVtmxZjRkzRgMGDLBO8RoM2uFOx48fV7t27VRUVGSd4jVq1qypJ598UldddZXj933o0CF9+umnmjx5sg4dOuT4/f+W4OBgjRgxQgsXLvTLU0j79eunF154wTrD41JTU7Vy5UrrDFNJSUkaN26cateubZ3ilfbs2aN+/fopNzfXOsVcVFSUHn74YQ0aNMg65YKdOnVKr776qj744IOA+lrFI488opEjR1pneNTJkyfVvXt3HT161DoFXqhy5cr65ptv1Lx5c+sUj2LQ7v2GDRumZcuWWWf4lVKlSmnBggUqU6aMdQoAAAAAAMAlC7IOAAAAAAAAAABf17RpU78fEgLeKDExMeAeexUrVrROMHfy5Ek99NBDuuWWW0yHlNnZ2crKyjK7f8BToqOj1axZM+sMr7Jjxw7dfPPNGjFihBYsWODx+zt9+rTS0tL0pz/9SVdffbVefPFFrxmzS9INN9yghx56SF26dLFO8YgZM2Zo5syZ1hkex3MKKTMzU8nJyXrllVeUnZ1t1rFnzx6dOnXK7P7PpWrVqgH3XPtcTpw4oUcffVRDhgzRkiVLrHPOKzc3V++//7569uypd999N6DG7PXq1dNNN91kneFxZcuW1R//+EfrDHipO++8U8HBwdYZgFJTU60T/E6PHj0YswMAAAAAAJ8XYh0AAAAAAAAAAP7gzjvv1Pz587V69WrrFCAgBAUF6ZlnnlFYWJh1iqMSExOtE7zGwoULlZycrKuvvlrDhw9XmzZtPPbC/ZKSEm3btk2rV6/WypUrtXLlSm3ZskU33nijHnvsMY/cJ2CpS5cuWrFihXWG11myZImWLFmiWrVqqW/fvurdu7fq1Klz2bdbUlKirVu3asmSJVq0aJEWL16snJwcNxS7X1xcnP70pz9J+s/Y1V+NGTNGiYmJql+/vnWKx3Aq+X/k5+fr1Vdf1aRJkzR06FBdf/31ql69usfuLycnR+vXr9eqVau0atUqrVixQgcPHtSXX36pK664wmP3e6luueUWffnll9q+fbt1ilfIzMzUiBEj1Lp1aw0fPlxdu3b1muHovn379Nlnn2nKlCk6fPiwdY6JJ598UiEhgfFSuCFDhmjq1KnasmWLdQq8SPXq1TVo0CAVFRVZpwDq0aOHYmNjdfToUesUv5GSkmKdAAAAAAAAcNkC46v4AAAAAAAAAOBhISEhevHFFzVo0CAdO3bMOgfweyNHjgzIE4SrVaumyMhIrx06Oq2kpETp6elKT09XfHy8evTooTZt2qh58+aqXLnyJd1mfn6+du7cqU2bNmndunVn3ixPbgWc1qtXL73wwgvWGV5r+/btevXVV/Xqq6+qfPnySkpKUpMmTVS9enVVrVpV5cuXV2RkpCIiIhQcHKz8/Hzl5+fr+PHjOnr0qA4dOqRdu3Zp165d2rJli9atW+eVpzP/lr/85S+KioqS5N+D9lOnTmn48OF6//33vXJk7A7+PNa/FCdPntRbb72lt956S40bN1a3bt3UokULNWnSRJGRkZd0m8ePH9dPP/2kDRs2aN26dVq7dq22bt3qU0PDsLAwPfnkkxo5cqR1ildZtmyZli1bpipVqqhfv37q27evGjRo4HjH0aNHNX/+fM2YMUMLFixQcXGx4w3eIjk5Wa1atbLOcExwcLAeeeQR3XLLLdYp8CKjR49WSEiI8vPzrVMAhYWFacCAAXrvvfesU/xCQkKC2rZta50BAAAAAABw2Ri0AwAAAAAAAICbVK1aVf/4xz80atSogH4hOeBp9erV0z333GOdYcLlcqlevXpauXKldYrXOXz4sKZOnaqpU6dKksqVK6dq1aqpSpUqqlChgkqVKqVSpUopLCxMRUVFKiwsVE5Ojk6ePKnjx49r//792rdvn37++WcVFhYa/9cAtqpXr64mTZpozZo11ile7+DBg0pLS1NaWpp1isc1btxYgwYNOvPvCQkJhjWed+zYMd1www169NFHdf3111vnuB2D9nNbu3at1q5dK+k/o9Ffnk8kJCQoJiZGERERioiIUEhIiAoKClRQUKDs7GydPHlSR44cOfN8wl9OyW7Xrp0GDx6sjz/+2DrF6+zdu/fMhRCqV6+u9u3b66qrrlLz5s1VoUIFt9/fyZMntWrVKq1cuVKLFy9WZmamT10gwVNiYmL04IMPWmc4rn379urRo0dAPAfB77viiivUv39/SeJrkvAagwcPZtDuJgMGDJDL5bLOAAAAAAAAuGwM2gEAAAAAAADAjTp27KjRo0frlVdesU4B/FJkZKRefvllRUREWKeYqV+/PoP2C3Do0CEdOnRImZmZ1imAT+rXrx+DdpwRFBSkJ554QkFBQWe+r3LlygoJCfHri4Dk5ORozJgxmj59uu6++261bt3aOsltatasqVKlSik3N9c6xasVFRVpx44d2rFjh3WKqYcffliLFy/W7t27rVO81q5du7Rr164zF1eqUKGCGjVqpBo1aqh69epKSEhQXFycYmNjFRUVpbCwMIWGhio4OFgFBQXKz89Xfn6+Tp48qcOHD+vIkSM6ePCgdu7cqe3bt2vHjh3auXOnSkpKjP9Lvc+jjz6qcuXKWWeYePzxx7VkyRKdOHHCOgWGXC6XnnzyyTPP0zihHd6idu3aat26tZYtW2ad4tNcLpdSUlKsMwAAAAAAANyCQTsAAAAAAAAAuNno0aO1ceNGzZ492zoF8Dtjx45V7dq1rTNMcaIqACckJyfrxRdf1OnTp61T4AVGjBihZs2anfV9oaGhSkxM1KZNm4yqnLN06VItXbpU9erVU9euXdWxY0fVrVtX0dHRv/tzS0pKdPjwYe3du1dZWVnauXOnNm/erM2bN+uf//yn6tWr58B/wa8FBQWpTp06XLgCF6R06dJ69tlnNWzYME7+vUAHDhzQgQMHrDP8XpcuXZScnGydYaZChQp64IEH9Pjjj1unwNCgQYOUlJR05t8LCgoMa4CzpaamMmi/TK1atVK1atWsMwAAAAAAANyCQTsAAAAAAAAAuJnL5dI//vEPDRs2TKtXr7bOAfzGkCFDdO2111pnmGvYsKF1AoAAEBsbq/79++vjjz+2ToGxmjVr6s9//vNv/ljDhg0DYtD+i1+G6G+88YYkqXz58oqLi1Pp0qVVqlQpFRUVqaCgQAUFBTp58qSOHTumEydOqKio6Ddv71zf75SGDRsyaMcFa9WqlW655Ra988471imAJKlcuXJ66qmnrDPMXX/99Zo+fTqD0QAVExOj+++//6zv44R2eJMePXooNjZWR48etU7xWQMHDrROAAAAAAAAcJsg6wAAAAAAAAAA8EcRERF64403VLVqVesUwC+0a9dOY8aMsc7wCo0bN1bp0qWtMwAEgGHDhlknwFhQUJCeeeYZRURE/OaPX3HFFQ4XeZeDBw9q06ZNWrFihRYuXKglS5boxx9/1OrVq7V9+3YdPXrUfLR+Pm3btrVOgI+555571Lx5c+sMQC6XS88++6zKlStnnWLO5XLpmWeeUdmyZa1TYOD+++9XbGzsWd/HoB3eJCwsTCkpKdYZPisyMlI9e/a0zgAAAAAAAHAbBu0AAAAAAAAA4CHx8fF6++23f/XCUgAXp06dOnrllVcUGhpqneIVQkND1aZNG+sMAAGgXr16ateunXUGDI0YMUItWrQ45483bNjQwRq4W7t27RQUxMtGcOHCwsL08ssvKz4+3joFAe7WW29Vx44drTO8RtWqVfW3v/3NOgMO69Chg6677rpffT+DdnibwYMHWyf4rJ49e3JRSwAAAAAA4Ff4m0kAAAAAAAAA8KDatWvrvffeU3R0tHUK4JPKlSunt956i9Pm/keHDh2sEwAEiOHDh1snwEi9evX05z//+bzv07BhQ4WEhDgTBLeLjY1Vo0aNrDPgYypVqqR//vOfCg4Otk5BgLrqqqv0l7/8xTrD6/Tt25dTkANIXFycnn32Wblcrl/9GIN2eJtatWqpdevW1hk+iY/rAAAAAADA3zBoBwAAAAAAAAAPu+KKK/TOO++oTJky1imAT4mOjtbbb7+thIQE6xSvw6AdgFOuvvpq1ahRwzoDDouMjNRLL72kiIiI875f6dKl1bRpU4eq4Ant27e3ToAPatu2re69917rDASghIQELqhwHo8//rhq1aplnQEHPPPMMypfvvxv/lheXp7DNcDvS01NtU7wOVWrVuVCAAAAAAAAwO8waAcAAAAAAAAABzRt2lRvvfWWIiMjrVMAn1C2bFlNnDhRDRs2tE7xSjVq1FC1atWsMwAEgKCgIN1zzz3WGXDY2LFjlZiYeEHv265dOw/XwJM6duxonQAfdfvtt3NqKBxVtmxZvfnmm4qNjbVO8VqlS5fWa6+9prJly1qnwIOGDRumq6+++pw/zqAd3qhHjx58/L5IKSkpcrlc1hkAAAAAAABuxaAdAAAAAAAAABzSsmVLTZo0STExMdYpgFcrXbq03nnnHTVp0sQ6xav17NnTOgFAgOjbt6+SkpKsM+CQ1NRUXXvttRf8/ldddZUHa+BpSUlJ5zzhFfg9//d//6cOHTpYZyAAhIaG6pVXXlHdunWtU7xe7dq19cILLygoiJcF+qMmTZrogQceOO/75OfnO1QDXLiwsDAuhHMRXC6XBgwYYJ0BAAAAAADgdnzlGgAAAAAAAAAc1LRpU02ZMkUVK1a0TgG8UnR0tCZOnKjmzZtbp3i9QYMGWScACCCPPPIIp8MFgIYNG+qxxx67qJ/TrFkzlSlTxkNF8LTg4GDGRbhkoaGhevnll9WgQQPrFPgxl8ulp59+Wu3atbNO8RmdO3fWX/7yF+sMuFmlSpX02muvKTw8/Lzvxwnt8FaDBw+2TvAZV155papWrWqdAQAAAAAA4HYM2gEAAAAAAADAYXXq1NHUqVNVs2ZN6xTAq1SqVElTpkzhFOALVLt2bX6tADimWbNm6tu3r3UGPKh8+fJ6/fXXf3ck9b9CQ0N1zTXXeKgKTuAiObgcZcqU0VtvvaWEhATrFPipJ554QsnJydYZPuf222/XDTfcYJ0BN4mMjNQbb7yhChUq/O77FhYWOlAEXLxatWqpdevW1hk+YeDAgdYJAAAAAAAAHsGgHQAAAAAAAAAMJCQkaNq0aWrTpo11CuAVEhMT9dFHH6lu3brWKT7luuuus04AEEDuv/9+RUREWGfAAyIjI/Xmm2+qUqVKl/Tz+/Xr5+YiOKlmzZpq1aqVdQZ8WMWKFfXBBx+oSpUq1inwM/fffz+j7Mvw+OOPq3fv3tYZuExBQUF64YUXdMUVV1zQ+xcXF3u4CLh0qamp1gleLzIyUj179rTOAAAAAAAA8AgG7QAAAAAAAABgJCYmRu+++y4v5EPAa926tT788ENVrlzZOsXn9O7dW5GRkdYZAAJE5cqVNXr0aOsMuFlQUJCef/55NWrU6JJv46qrrlJsbKwbq+A0TmnH5apatao++OADntPDbe6//37dfvvt1hk+LSgoSM8995yuuuoq6xRchjFjxqhr164X/P5FRUUerAEuT48ePfi84Xf06tWLr/UBAAAAAAC/xaAdAAAAAAAAAAyFhIRo7NixGjNmjEJDQ61zAMfddNNNeu+99xQTE2Od4pNKly6tIUOGWGcACCC33Xab2rRpY50BN3rooYfUrVu3y7qNkJAQ9enTx01FsNC3b19VrFjROgM+rlq1apo8eTKjdly2Rx55hDG7m4SFhWnChAlq27atdQouwRNPPKEbb7zxon4OJ7TDm4WFhSklJcU6w6sNHDjQOgEAAAAAAMBjGLQDAAAAAAAAgBcYNmyY/vWvf6lKlSrWKYAjwsLCNG7cOD3++OMKCQmxzvFpt99+Oyc3AXDML6d5cyES/3DnnXdq5MiRbrmtG2+8US6Xyy23BeeFh4frzjvvtM6AH/hl1F6zZk3rFPig4OBgPfXUU277swn/ERkZqTfffFMdO3a0TsFFuJQxuySVlJR4oAZwn8GDB1sneK1q1aqpVatW1hkAAAAAAAAew6AdAAAAAAAAALxE8+bN9cUXX6hLly7WKYBHVa9eXVOmTNGgQYOsU/xCXFychg8fbp0BIIBUrFhRTz/9tHUGLtMtt9yiP//5z267vcTERIZyPu66665T1apVrTPgB6pVq6apU6eqWbNm1inwIREREXr11Vd1/fXXW6f4pYiICL322mu65pprrFNwAS51zC5xQju8X61atdS6dWvrDK+UkpLCRcIAAAAAAIBfY9AOAAAAAAAAAF4kJiZGr7/+uh599FFFRERY5wBul5KSoi+//FJNmza1TvErt956q6KioqwzAASQbt26aejQodYZuETDhg3TQw895Pbbvfnmm91+m3BOaGioRo8ebZ0BPxEXF6dJkybp6quvtk6BD4iLi9P777+vrl27Wqf4tbCwMI0fP16pqanWKTiH8PBwvfjii5c8Zpc4oR2+YciQIdYJXsflcmnAgAHWGQAAAAAAAB7FoB0AAAAAAAAAvIzL5dKIESP05Zdfqnnz5tY5gFtERUXpxRdf1LPPPqvSpUtb5/idqKgo3X777dYZAALMI488wnMVH5SamqrHHnvMI7d91VVXqVGjRh65bTgjOTlZ9erVs86AnyhVqpRee+013XDDDdYp8GL16tXTJ598oqSkJOuUgBASEqKxY8fqgQce4BRgL1OuXDlNnjxZffr0sU4BPK579+6KjY21zvAqbdq0UUJCgnUGAAAAAACARzFoBwAAAAAAAAAvVatWLX344Ye67777FBYWZp0DXLIePXpoxowZvCjbw2655RY1btzYOgNAAAkPD9ebb76pOnXqWKfgAo0aNUpjx4716IDNEye/wznBwcEaN26cQkJCrFPgJ4KDg/Xkk09q3LhxCg8Pt86Bl+nataumTp2qqlWrWqcEnNtuu00vv/yySpUqZZ0CSfXr19cnn3yiZs2aWacAjggLC1NKSop1hlfh1wMAAAAAAAQCBu0AAAAAAAAA4MWCg4M1atQozZgxQx06dLDOAS5K5cqV9dprr+mVV15RxYoVrXP8XkhIiP7+979zAQwAjoqJidG7777LSXJezuVy6bHHHtN9993n8ftq06aNrrnmGo/fDzynSZMmuv32260z4GcGDRqkKVOmqHLlytYp8ALBwcG677779Nprr6lMmTLWOQGrZ8+e+vTTT5WYmGidEtBSUlI0depUValSxToFcFRqaqp1gtcoXbq0evbsaZ0BAAAAAADgcQzaAQAAAAAAAMAH1KhRQxMnTtT48eMZAMDrhYaGauTIkfr6668ZtDmsTp06+tOf/mSdASDAVKxYURMnTlRcXJx1Cn5DaGioXnjhBQ0fPtyx+3zggQcUGhrq2P3B/UaPHq0GDRpYZ8DPNGnSRJ9//rk6depknQJDFSpU0KRJkzRq1Ci5XC7rnIBXp04dffrpp0pOTrZOCTgxMTEaP368nn32WZUuXdo6B3BczZo11bp1a+sMr9C7d2+VKlXKOgMAAAAAAMDjGLQDAAAAAAAAgA/p2bOnZs6cqbvuukuRkZHWOcCvdOvWTTNmzNAjjzzCC7KN3HrrrWrVqpV1BoAAU6tWLb399tucsuplYmNj9c4776hv376O3m+tWrV09913O3qfcK/Q0FD9/e9/V0REhHUK/ExcXJzefvttPfHEEwy3AlCfPn00ffp0XXnlldYp+C+RkZF67rnn9Oyzz6ps2bLWOQGhQ4cOmj59OicyI+ANGTLEOsErpKSkWCcAAAAAAAA4gkE7AAAAAAAAAPiYyMhI3XPPPUpLS1NqaqpCQkKskwA1adJEU6ZM0YQJE1SzZk3rnIAWFBSkV155RTVq1LBOARBgGjdurMmTJys+Pt46BZIaNWqkzz77TG3btjW5/1GjRqlFixYm9w33aNCggZ5//nkFBfHSErjfjTfeqM8//1yNGze2ToEDYmJi9MILL+jFF19UTEyMdQ7OISUlRTNmzFCnTp2sU/xW+fLl9eyzz+qdd95RhQoVrHMAc927d1dsbKx1hqkaNWpwYUoAAAAAABAw+FtHAAAAAAAAAPBR5cuX19ixYzVjxgz16dOHoQlMNGrUSK+++qo++eQTXnzpRX45+TLQXxQMwHkNGzbU1KlTVa1aNeuUgJaSkqKpU6cqISHBrCEoKEjPPfecSpcubdaAy9ejRw899NBD1hnwU7Vr19ZHH32kv/zlL4qIiLDOgYf0799fM2fOVL9+/axTcAEqVaqkt99+W+PGjePiA24UFham22+/XbNmzVJKSopcLpd1EuAVwsLCAv508gEDBlgnAAAAAAAAOIZXNwIAAAAAAACAj6tVq5ZefPFFzZw5UykpKZzYDkc0b95cb775pj7//HN1796dF2N7oRo1auiNN95gHATAcTVq1NDHH3+s1q1bW6cEnPDwcD3xxBN69tlnFR4ebp2jatWq6YUXXlBwcLB1Ci7DyJEjNXz4cOsM+KnQ0FD94Q9/0Ndff62rr77aOgduVLNmTb3//vt6/vnnFR8fb52DizRo0CDNmjVLN954I3+OXwaXy6WePXvq66+/1v3338+FfoDfkJqaGrBfVwwKCmLQDgAAAAAAAgqDdgAAAAAAAADwE7Vq1dKzzz6rtLQ03XDDDSpVqpR1EvyMy+VSp06d9N5772natGkMTnxA8+bNNX78eD4eAHBcXFyc3nvvPd10003WKQGjUaNG+uKLL3TjjTdap5ylS5cueuyxx6wzcJkeeeQRDRo0yDoDfqxq1ap68803NX78eFWpUsU6B5chJiZGjzzyiGbMmKF27dpZ5+AyxMTE6IknntCXX36pq666yjrHp4SEhKh///6aMWOGxo8fr+rVq1snAV6rZs2aAXsxtLZt2/K8BwAAAAAABBQG7QAAAAAAAADgZxISEvTkk09q/vz5evDBB1W1alXrJPi40qVLa9iwYfr222/19ttv80J2H9O5c2e9//77iomJsU4BEGBCQkL0+OOP6+WXX1ZUVJR1jt8KDg7WnXfeqWnTpikxMdE65zfdeOONuu2226wzcBmCgoI0btw43XHHHdYp8HM9e/bUrFmz9NBDD/H81ceEhYVp5MiRSktL08iRIxUaGmqdBDepV6+e3nvvPU2ePFlt2rSxzvFq4eHhSk1N1bfffqvnn39ederUsU4CfEJqaqp1gomUlBTrBAAAAAAAAEcxaAcAAAAAAAAAPxUVFaVbb71Vs2fP1oQJE9ShQwcFBfFlYVy4Bg0aaMyYMZo/f77GjBmjmjVrWifhEjVv3lxTp05VQkKCdQqAANSrVy999dVXDKA8oF69epo6dar+/Oc/e/1w8IEHHtDo0aOtM3CZ7r33Xj3xxBN8XgGPCgsL0y233KLvvvtOo0aNUkREhHUSziM0NFRDhw7Vd999p0ceeUTR0dHWSfCQ1q1b64MPPtCUKVPUoUMH6xyvUq9ePY0ZM0YLFizQ2LFjVa1aNbOWkpISs/sGLlX37t0VFxdnneGoMmXKqEePHtYZAAAAAAAAjuJvGAEAAAAAAADAzwUFBalbt26aOHGi0tPT9ec//1k1atSwzoKXio2N1bBhw/Tll1/qq6++0rBhw1SmTBnrLLhB7dq19dFHHykpKck6BUAAqlKliiZNmqSnnnqK09rdICoqSo8++qi++OILNWvWzDrngv3pT3/Sk08+yRjax91444165ZVXVLZsWesU+LmyZcvqvvvu05w5czRq1Ch+z3mZiIgI3XDDDUpLS9Nf//pXVaxY0ToJDmnVqpUmTpyob775RiNGjAjYixiULVtWgwYN0rRp0zR9+nQNGzbMK57nFhcXWyd4HM8l/U9YWJgGDBhgneGoPn36cNEeAAAAAAAQcPjKHgAAAAAAAAAEkEqVKunOO+9UWlqapkyZotTU1IA7/Qa/FhkZqd69e+vVV1/V999/rzFjxuiKK66wzoIHVKhQQVOmTNHdd9+tkJAQ6xwAAcblcun666/XzJkzlZKSIpfLZZ3kc4KCgnT99ddr1qxZGjFihE9+LL/hhhv0xhtvKD4+3joFl6Fbt27697//rdatW1unIACUK1dO9913nzIyMnT//ferfPny1kkBLTY2VnfffbfS09P15JNPqkqVKtZJMFK7dm09+uijmj9/vv7+97+rY8eOCg0Ntc7yqPj4eF1//fV66623tGjRIo0bN07Nmze3zjpLYWGhdYLH+eJzYPy+1NTUgPocMSUlxToBAAAAAADAca6SkpIS6wgAAAAAAAAAgJ2ioiItW7ZM33zzjWbPnq0jR45YJ8EBpUuXVpcuXdSzZ0916tSJE4EC0MqVK/XAAw9o165d1ik+a/jw4XrsscesM5Senq477rjDOsOjEhISNHfuXOsMuNnatWv197//XcuWLbNO8Xoul0vXXHON7r77br+56Mzhw4c1ZsyYgH5sf/nllz7//7O4uFjvvPOOxo8fr4KCAuscn+UPvxeclJ+fr2+++UYff/yxli9fbp0TMBo1aqShQ4fq2muv5fNHnNPx48f13Xff6dtvv9XSpUuVl5dnnXRZQkJC1KRJE7Vu3VodO3ZUy5Ytvf508HfffVd///vfrTM8asKECerWrZt1Bjxg+PDhWrp0qXWGx9WsWVOzZs2yzgAAAAAAAHAcl6oEAAAAAAAAgAAXHBysdu3aqV27dnryySeVmZmpefPmKSMjQ5s3b7bOgxtVq1ZNnTp1UufOndWuXTuFhYVZJ8FQ8+bN9eWXX2rChAmaPHmy8vPzrZMABJjGjRtr8uTJWrx4sV599VVGib8hODhYvXr10h133KF69epZ57hVfHy8Xn/9dX3xxRd66aWXtG/fPuskXIKgoCCNGjVKnTp10rhx4wJigAR7YWFhSk5OVnJysrZu3app06bpq6++0rFjx6zT/E6pUqXUq1cvDR06VM2aNbPOgQ+Ijo7WoEGDNGjQIOXl5WnFihVasmSJFi9erHXr1nn96eFly5ZVgwYN1Lx5c7Vp00YtW7ZUZGSkddZF8fZfY3fghHb/lZqaGhDPJzmdHQAAAAAABCpOaAcAAAAAAAAAnNPPP/+sefPmaeHChVq2bBkDAR8TGRmpFi1aqFOnTurUqZNq1aplnQQvtXfvXr344ouaPn26+Kuj8wsLC1Pr1q3VtWtXde/eXRUqVLBO4oR2+I0ffvhB77//vubOnavi4mLrHFORkZG69tprdcstt6hmzZrWOR6Xl5enKVOm6M033/Tr55tlypRRy5Yt1apVK7Vs2VLNmjXzu0FWRkaGXnjhBS6MdQHKly+vq6++Wl27dlXHjh0VGhpqneTT8vPztWDBAs2cOVNz587VqVOnrJN8lsvlUqtWrTRgwAD16tVLZcqUsU6Cn8jNzdXGjRu1fv16rVu3Ths2bND27duVm5vreEupUqWUkJCg6tWrq379+rriiivUsGFDVa1aVS6Xy/Eed3rppZf0+uuvW2d41DvvvKOOHTtaZ8ADFi5cqFtuucU6w6OCgoKUnp6uSpUqWacAAAAAAAA4jkE7AAAAAAAAAOCClJSUaNOmTVq6dKmWLVum5cuX+/XgyBeVLVtWLVq0UKtWrXTllVeqcePGDGNwUTZs2KCXX35Z8+bNC/gx6X+rWLGi2rdvry5duqh9+/YqXbq0ddJZGLTD3+zevVtTp07VV199pUOHDlnnOCopKUmDBg1Snz59vO5jjROys7P16aef6rPPPvOLQXR0dLRatmyp1q1bq3Xr1mrQoIGCg4OtszyuqKhIX3zxhd566y3t3LnTOsdrBAUFqWHDhurYsaO6du2qJk2a+Pxo0lvl5eVp3rx5+vbbb7VgwQIdP37cOsnruVwuNW3aVN27d1fv3r1VtWpV6yQEkAMHDmj37t3avXu39uzZo0OHDuno0aNn3o4fP67Tp0+roKDgzNsvgoKCFBISotDQUIWGhiosLExlypRRTEzMmbfY2FjFxsaqUqVKqlq1qqpVq6Zy5coZ/hd71rPPPqv33nvPOsOj3n//fbVr1846Ax5w3333acaMGdYZHtWhQwdNnDjROgMAAAAAAMAEg3YAAAAAAAAAwCUpKSnRjh07tGrVKq1evVqrVq3Spk2bznphMTwnJCREderUUePGjdWoUSM1b95cDRo0UFBQkHUa/MDu3bs1bdo0ffbZZzpy5Ih1juPKlSun1q1bq23btmrTpo3Xn47MoB3+qrCwUPPnz9dXX32l+fPnKycnxzrJI2rWrKlrrrlGAwcOVJ06daxzvMbKlSv16aefas6cOT7zZ1HlypWVlJSkpKQktWrVKuCfm5WUlGjhwoWaOnWq0tPTVVRUZJ3kKJfLpfr166tNmzZq06aNWrdurbJly1pnBZyioiKtWrVK8+bN0/fff6/169eLl0r9R6lSpdSqVSt17txZPXr0UMWKFa2TgAtSUlKigoKCM2N2nO2JJ57QtGnTrDM86qOPPlJSUpJ1BtwsOztb7du31+nTp61TPOqFF15Qv379rDMAAAAAAABMMGgHAAAAAAAAALhNfn6+Nm3adNbb5s2bdfToUes0nxYTE6PExETVqVNH9evXV5MmTdSgQQOFhYVZp8HP5efn69tvv9X06dO1dOlS5eXlWSe5XVhYmBo0aKAmTZqoadOmatq0qWrXrm2ddVG2b9/u9yeYlS1bViNHjrTOgKHTp0/r+++/1+zZs7Vw4UKfPrk9KChIzZs3V9euXdW1a1clJiZaJ3m1kpISrV27VgsWLNCCBQu0evVq5efnmzYFBwerevXqql+/vurVq3fm+Rlj0HPbt2+fPvnkE6WlpWnz5s3WOR4RFxd35vlEkyZN1KxZM8XExFhn4X8cOXJEP/7445m3DRs2BMxF2cLDw9WwYUO1adNGV111lZKSkvicEvBD999/v6ZPn26d4VEzZsxQ3bp1rTPgZh9//LEef/xx6wyPKlu2rBYuXKjw8HDrFAAAAAAAABMM2gEAAAAAAAAAHnfgwAFt27ZNO3bs0M6dO7V9+3bt3LlTu3fvDpjxwO+JiIhQQkKCqlatqmrVqql27dpnRuzlypWzzgOUm5urhQsXKj09XfPmzdPBgwetky5ahQoVVLduXSUmJqpu3bq64oorVL9+fYY8gI8pKSnRpk2btGjRIv3www9atWqVDh8+bJ11TmFhYWrUqJGSkpLUokULtWrVSrGxsdZZPquwsFDbtm3Txo0btXHjRm3ZskX79u3TgQMHdOzYMbfcR9myZVW+fHlVqFBBFStWVMWKFVWlShVVr15d1apVU5UqVTgR9jJkZWUpPT1d6enpWrZsmfkFCi5WaGioatSooTp16qhOnTqqW7euGjVqpGrVqlmn4RLk5uZqzZo1WrdunTZu3KgNGzZo27ZtPv95amhoqGrVqqWGDRueuWhTgwYNFBoaap0GwMNuu+02ff/999YZHjVv3jxVqlTJOgNuNmTIEGVmZlpneFRqaqrGjh1rnQEAAAAAAGCGQTsAAAAAAAAAwExxcbEOHDign3/++VdvBw4c0OHDh3XkyBHl5uZap16WyMhIlS9f/sxbuXLlVKFCBVWpUkVVq1ZV1apVGa3Dp5SUlGjbtm1au3at1q1bp/Xr12v9+vU6deqUaVdoaKgqVqyohISEM29Vq1ZV9erVVadOHUVFRZn2AfCc3bt3a82aNdq0aZM2bdqkLVu2aO/evSouLna0o3z58qpdu/aZC9M0btxYjRo14sIZDsnPz9f+/ft19OhR5ebmKi8vT/n5+crLy1NBQYFKSkrkcrkUEhKi0NBQhYWFKSIiQpGRkSpdurTKli2r2NhY/n85KDc3V+vWrTvrbfv27SoqKjLtKlOmjKpUqXLmucQv/6xZs6Zq1qzJKNjP5efna+vWrdq6dat27typXbt2nfmnN11AJTg4+MwFNxISElSjRo0zF2+qUaMGF94AAtT111+v1atXW2d41I8//qgyZcpYZ8CNduzYoZ49e1pneNy0adPUvHlz6wwAAAAAAAAzDNoBAAAAAAAAAF7v1KlTOnLkiA4fPqyjR4/q+PHjys7O1smTJ896y83N1enTp5WXl6fTp0+f9e2ioiIVFRWpuLj4V/90uVwKDg5WUFCQgoODz7z98u/h4eGKiIhQRESESpUqdebbERERKl26tKKios56i46OVlRUlGJiYhQfH6/IyEjrX0LA40pKSrR7925lZWVp3759+vnnn7Vv3z7t27dPhw4dOvNY/O/HZ2Fh4ZnHWUhIyJnHXkhIiMLCwhQZGXlmZPjLP0uXLq3o6GjFx8crPj5ecXFxiouLO/PtoKAg618KAF4iPz9fWVlZ2r17t/bu3atDhw7p4MGDOnz4sI4fP66TJ08qOztbp06dUl5engoLC888XwgODlZYWNhZb+Hh4Spbtqzi4+NVrly5Mx+H4uPjlZCQoNq1azOsAdwgNzdX27dvP+u5xC9vJ06c0OnTp5Wfn3/W8/3i4uKznsf/8rwiJCTkrIsW/PdzijJlyig2NvbM4/iXb5crV47HMs4pNzdXBw8e1IEDB87889ChQzp27NiZP1d++Vz11KlTys/PV1FRkQoKClRYWHjmz5r//b36y+edpUqVOvN79Ze3mJiYs57vxsfHq0KFCqpcuTKjdQC/0qNHD+3cudM6w2OCgoK0fv16uVwu6xS40Ysvvqg3/j/27jy86vrO+/87JGEN+yL7rqAiCIhLBWVpcRdXRmtdOnXGdlzmrp22V+/xnlprx9HWOq1VKaKtWiuoVaFoLSJg1VopS0WRioph3yFAWJKQ5PfHjPy0ahXlm89J8nhc17kO6JWcZ9As53Be5zNhQuqMTPXq1Suefvrp1BkAAAAASRm0AwAAAAAAAAAAANRygwcPjl27dqXOyEzz5s1j3rx5qTM4gKqqqmL06NGxdu3a1CmZ+sY3vhH//M//nDoDAAAAIClHVAAAAAAAAAAAAADUYqWlpXV6zB4R0bZt29QJHGAvvfRSnR+zN2jQIMaNG5c6AwAAACA5g3YAAAAAAAAAAACAWmz9+vWpEzLXvn371AkcYI8//njqhMwdf/zxcdBBB6XOAAAAAEjOoB0AAAAAAAAAAACgFqvrp1xHGLTXNVu2bInf//73qTMyd84556ROAAAAAMgJBu0AAAAAAAAAAAAAtdjy5ctTJ2SuQ4cOqRM4gB5++OEoLy9PnZGpFi1axJgxY1JnAAAAAOQEg3YAAAAAAAAAAACAWmzFihWpEzLnhPa6o7KyMiZPnpw6I3OnnnpqNGrUKHUGAAAAQE4waAcAAAAAAAAAAACoxerDCe0dO3ZMncAB8swzz8TatWtTZ2TunHPOSZ0AAAAAkDMM2gEAAAAAAAAAAABqsaVLl6ZOyFz37t1TJ3CAPPjgg6kTMnfIIYfEoEGDUmcAAAAA5AyDdgAAAAAAAAAAAIBaqrS0NNasWZM6I3M9evRIncABsGjRopg7d27qjMxddNFFqRMAAAAAcopBOwAAAAAAAAAAAEAt9cYbb0R1dXXqjEy1atUqWrZsmTqDA+DnP/956oTMNW/ePM4888zUGQAAAAA5xaAdAAAAAAAAAAAAoJZatGhR6oTMOZ29bnj77bfj2WefTZ2RubPPPjuaNm2aOgMAAAAgpxi0AwAAAAAAAAAAANRSCxcuTJ2QOYP2umHixIlRXV2dOiNTeXl5cdFFF6XOAAAAAMg5Bu0AAAAAAAAAAAAAtVR9GLT3798/dQKf0cqVK2P69OmpMzI3fPjw6NmzZ+oMAAAAgJxj0A4AAAAAAAAAAABQCy1btiw2bNiQOiNzhx56aOoEPqOf/vSnsXfv3tQZmbv00ktTJwAAAADkJIN2AAAAAAAAAAAAgFroxRdfTJ1QIwzaa7c33nijXpzO3qdPnxg+fHjqDAAAAICcZNAOAAAAAAAAAAAAUAu98MILqRMy16lTp2jdunXqDD6D2267LaqqqlJnZO6SSy6JvLy81BkAAAAAOcmgHQAAAAAAAAAAAKCW2blzZ7z00kupMzLndPbabd68eTF79uzUGZlr1apVjBs3LnUGAAAAQM4yaAcAAAAAAAAAAABqRGVlZaxZsya2bt2aOqXWmzNnTpSVlaXOyNzgwYNTJ/ApVVZWxg9+8IPUGTXiwgsvjCZNmqTOAAAAAMhZBakDAAAAAAAAAAAAgLph27ZtsXbt2lizZs2+63Xr1u37/YYNG6KysjIuv/zy+OY3v5k6t1Z7+umnUyfUiGHDhqVO4FOaPHlyvP7666kzMteoUaO4+OKLU2cAAAAA5DSDdgAAAAAAAAAAAOBjVVRUxLp16943WP/b8fquXbs+0fv64x//mHFt3VZSUhKzZ89OnZG5Jk2axIABA1Jn8Cls2bIlfvKTn6TOqBFnnXVWtG3bNnUGAAAAQE4zaAcAAAAAAAAAAABiy5YtHzpSf/eE9U2bNkVVVdUBua0lS5bEli1bok2bNgfk/dU306dPj4qKitQZmRs0aFAUFhamzuBTuPnmm2Pbtm2pMzLXoEGD+PKXv5w6AwAAACDnGbQDAAAAAAAAAABAHVdeXv6Bofp7x+vr1q2L3bt311hPdXV1zJw5M8aPH19jt1mXTJkyJXVCjRg2bFjqBD6FWbNmxRNPPJE6o0Z8/vOfj169eqXOAAAAAMh5Bu0AAAAAAAAAAABQi1VXV8fmzZs/MFJ/71h98+bNUV1dnTr1faZNm2bQ/in86U9/iqVLl6bOqBEnnHBC6gT205YtW+L//b//lzqjxlxxxRWpEwAAAABqBYN2AAAAAAAAAAAAyGG7d+/+wFD9b39dXl6eOnO/zZs3L9asWROdO3dOnVKr3HfffakTakS7du3iiCOOSJ3Bfrr++utj06ZNqTNqxPDhw2PAgAGpMwAAAABqBYN2AAAAAAAAAAAAyCGTJk2KBQsW7Butl5SUpE7KRHV1dUyZMiW+/vWvp06pNf7617/G7NmzU2fUiBNOOCHy8vJSZ7AfHnzwwfj973+fOqPGfPWrX02dAAAAAFBrNEgdAAAAAAAAAAAAAPz/li1bFs8++2y8/vrrdXbM/q6HHnoodu7cmTqj1rjzzjujuro6dUaNGDVqVOoE9sPChQvjpptuSp1RY4YOHRrDhg1LnQEAAABQaxi0AwAAAAAAAAAAQA4ZPHhw6oQas23btnj00UdTZ9QKixYtihkzZqTOqBGNGzeO448/PnUGn9DGjRvjmmuuiYqKitQpNeaqq65KnQAAAABQqxi0AwAAAAAAAAAAQA4ZMmRI6oQaNXHixCgtLU2dkfNuuummenM6++jRo6NZs2apM/gEdu7cGV/72tdiw4YNqVNqzNChQ+Nzn/tc6gwAAACAWsWgHQAAAAAAAAAAAHJInz59okOHDqkzasymTZvirrvuSp2R0x577LFYsGBB6owac8YZZ6RO4BMoLy+PK6+8Ml599dXUKTXq6quvTp0AAAAAUOsYtAMAAAAAAAAAAECOOf7441Mn1Kj7778/iouLU2fkpC1btsTNN9+cOqPGtGrVKkaMGJE6g4+xd+/e+MY3vhEvvfRS6pQaNXTo0DjuuONSZwAAAADUOgbtAAAAAAAAAAAAkGOGDx+eOqFGlZeXx7e+9a2orKxMnZJz/v3f/z1KSkpSZ9SYU045JQoLC1Nn8Hfs3r07rrzyypgxY0bqlBr39a9/PXUCAAAAQK1k0A4AAAAAAAAAAAA5ZsSIEfVu1PvKK6/EXXfdlTojpzzwwAMxa9as1Bk1avz48akT+DtKSkriy1/+csyZMyd1So0bMWJEDBs2LHUGAAAAQK1k0A4AAAAAAAAAAAA5pmXLlnHMMcekzqhxd911V7z44oupM3LCn//857j55ptTZ9SowYMHx2GHHZY6g4/w6quvxvnnnx8LFy5MnVLj8vLy4tprr02dAQAAAFBrGbQDAAAAAAAAAABADho7dmzqhBq3d+/e+Nd//dd46623UqcktXz58rj66qujoqIidUqN+tKXvpQ6gQ9RXV0dkyZNigsvvDBWrFiROieJU045xYstAAAAAHwGedXV1dWpIwAAAAAAAAAAAID327p1a4wYMaLejZojIrp06RIPPvhgdOrUKXVKjSsuLo5LLrkk1q9fnzqlRrVr1y7mzJkThYWFqVN4j8WLF8f3v//9enkq+7sKCwvjqaeeiu7du6dOAQAAAKi1nNAOAAAAAAAAAAAAOah169YxatSo1BlJrF69Or70pS/F6tWrU6fUqOLi4rj44ovr3Zg9IuKLX/yiMXsOWb9+fVx33XVx3nnn1esxe8T//L9pzA4AAADw2TihHQAAAAAAAAAAAHLU7Nmz46tf/WrqjGS6dOkSkyZNit69e6dOydzbb78dl112WWzYsCF1So1r3rx5zJo1K1q0aJE6pd5744034he/+EVMnz49KioqUuck17Jly5gxY0a0atUqdQoAAABAreaEdgAAAAAAAAAAAMhRJ5xwQnTu3Dl1RjKrV6+O8ePHx3PPPZc6JVNPPfVUnH/++fVyzB4R8aUvfcmYPaH169fH/fffHxdeeGGceeaZ8fjjjxuz/6+vfe1rxuwAAAAAB4AT2gEAAAAAAAAAACCHTZw4MW699dbUGUk1aNAgrrnmmvjnf/7nyM/PT51zwJSXl8ctt9wSDzzwQOqUZJo2bRqzZs2K1q1bp06pUT/72c+iqKgounfvHt27d4+uXbtG48aNa+S2t27dGgsWLIj58+fHvHnz4tVXX42qqqoaue3apGfPnjF9+vQoLCxMnQIAAABQ6xm0AwAAAAAAAAAAQA7bunVrjBw5Mvbs2ZM6JblBgwbFf/3Xf0Xv3r1Tp3xmixcvju9+97vx6quvpk5J6oorrohrr702dUaNGz16dKxevXrf7/Py8qJdu3bRoUOH913at28fLVq0iJYtW0bz5s2jZcuW0bRp0ygsLIzCwsIoKCiIwsLCqKioiPLy8n3XJSUlsXnz5ti8eXNs2rQpli9fHsuWLYtly5bFxo0bE37ktcfEiRPjxBNPTJ0BAAAAUCcYtAMAAAAAAAAAAECO+973vhe//vWvU2fkhEaNGsXll18e//iP/xhFRUWpc/bbxo0b48c//nE88cQT9f5U7LZt28aMGTNq5X/Hz+pvB+3kllGjRsWECRNSZwAAAADUGQ1SBwAAAAAAAAAAAAB/3z/90z9FYWFh6oycUFZWFnfccUeMHTs2fvWrX0VZWVnqpE9k06ZN8bOf/SzGjh0bjz32WL0fs0dEXH311fVyzE5ua9SoUXznO99JnQEAAABQpxi0AwAAAAAAAAAAQI7r3LlznHXWWakzcsrmzZvj+9//fpx44olx2223xbp161InfaiXX345vv71r8fIkSPj9ttvj127dqVOygl9+/aN8ePHp86AD7jiiiuiR48eqTMAAAAA6pS86urq6tQRAAAAAAAAAAAAwN+3Zs2aOOmkk6K8vDx1Sk4qKCiIY489Nk466aT4/Oc/H23atEnSUV5eHvPnz48//OEPMWvWrCguLk7SkevuvffeOP7441NnJDN69OhYvXp16gz+Rq9evWLatGnRsGHD1CkAAAAAdYpBOwAAAAAAAAAAANQSN998c9x7772pM3Jefn5+DBw4MI466qgYNmxYDBkyJJo3b57JbW3ZsiWWLFkSixcvjgULFsTLL7/sFPaPMW7cuLjllltSZyRl0J6b7rvvvjj22GNTZwAAAADUOQbtAAAAAAAAAAAAUEts3749vvCFL0RJSUnqlFqnU6dO0adPn+jTp09069Yt2rVrF+3bt4927dpFs2bNomHDhtGoUaNo2LBhVFZWRllZWezZs2ffZfPmzbF27dpYv359rF27NtauXRtvvPFGrF27NvWHVqu0adMmnnrqqWjdunXqlKQM2nPP+eefHzfeeGPqDAAAAIA6yaAdAAAAAAAAAAAAapHJkyfHd7/73dQZ8Knceuutcfrpp6fOSM6gPbd07Ngxpk+fHs2bN0+dAgAAAFAnNUgdAAAAAAAAAAAAAHxy48ePj0GDBqXOgP02duxYY3Zy0g033GDMDgAAAJAhg3YAAAAAAAAAAACoRRo0aBDXX399FBQUpE6BT6xz585x4403ps6ADzj33HPjxBNPTJ0BAAAAUKcZtAMAAAAAAAAAAEAtc9hhh8UVV1yROgM+kfz8/PjRj34ULVu2TJ0C79OtW7f4v//3/6bOAAAAAKjzDNoBAAAAAAAAAACgFvra174Whx12WOoM+FhXX311DB06NHUGvE9+fn7cfPPNUVRUlDoFAAAAoM4zaAcAAAAAAAAAAIBaqLCwMH74wx9G06ZNU6fARxo7dmx89atfTZ0BH/C1r33NCy0AAAAA1BCDdgAAAAAAAAAAAKil+vbtG9dff33qDPhQhx56aNx8882Rl5eXOgXe5+ijj44rr7wydQYAAABAvWHQDgAAAAAAAAAAALXYuHHj4oILLkidAe/Trl27uOuuu6Jp06apU+B92rZtG7feems0aOBp1AAAAAA1xSMxAAAAAAAAAAAAUMtdd911cfTRR6fOgIiIaNasWdx1113RqVOn1CnwPvn5+XHrrbdGhw4dUqcAAAAA1CsG7QAAAAAAAAAAAFDLFRYWxu233x49e/ZMnUI916hRo7jrrrti4MCBqVPgA771rW/FcccdlzoDAAAAoN4xaAcAAAAAAAAAAIA6oFWrVjFx4sRo165d6hTqqYKCgvjJT34SxxxzTOoU+IAzzjgjLrvsstQZAAAAAPWSQTsAAAAAAAAAAADUET169Ih77703WrZsmTqFeqagoCB++MMfxqhRo1KnwAcMHjw4fvCDH6TOAAAAAKi3DNoBAAAAAAAAAACgDunXr19MmjQpioqKUqdQTzRq1Ch+9rOfxamnnpo6BT6ge/fuceedd0ajRo1SpwAAAADUWwbtAAAAAAAAAAAAUMcMHDgwfvGLX0SrVq1Sp1DHNWvWLO6++24ns5OT2rRpExMnTow2bdqkTgEAAACo1wzaAQAAAAAAAAAAoA4aOHBg3H///dG2bdvUKdRR7dq1i1/+8pdxzDHHpE6BDygqKopJkyZFr169UqcAAAAA1HsG7QAAAAAAAAAAAFBH9evXLyZPnhw9e/ZMnUIdc+ihh8ajjz4aAwcOTJ0CH9CkSZOYMGFCHH744alTAAAAAAiDdgAAAAAAAAAAAKjTunfvHlOmTIlhw4alTqGO+MIXvhC//vWvo1OnTqlT4AOaNm0aP//5z33NAwAAAMghBu0AAAAAAAAAAABQx7Vq1SruvffeGD9+fOoUarH8/Py4+uqr4/bbb4+mTZumzoEPaNq0adx9991xzDHHpE4BAAAA4D0M2gEAAAAAAAAAAKAeaNiwYXz/+9+P//zP/4xGjRqlzqGWOeigg+K+++6Lq666KvLy8lLnwAe0bds2HnjggTjqqKNSpwAAAADwNwzaAQAAAAAAAAAAoB4599xzY/LkydGrV6/UKdQSo0aNiqlTp8awYcNSp8CH6tmzZ0yZMiUGDBiQOgUAAACAD2HQDgAAAAAAAAAAAPXMYYcdFo8//nhccMEFqVPIYS1atIgbb7wxJkyYEK1bt06dAx/q2GOPjcmTJ0e3bt1SpwAAAADwEQzaAQAAAAAAAAAAoB5q0qRJfO9734uJEydGx44dU+eQY8aMGRPTp0+P888/P3UKfKRLL7007r33Xi+4AAAAAJDj8qqrq6tTRwAAAAAAAAAAAADplJaWxo9//ON46KGHoqqqKnUOCXXs2DG+/e1vx6mnnpo6pU4bPXp0rF69OnVGrdWiRYv43ve+5/9TAAAAgFrCoB0AAAAAAAAAAACIiIhXXnklbrzxxli0aFHqFGpY48aN4ytf+Ur80z/9UzRp0iR1Tp1n0P7pDR06NH70ox9F586dU6cAAAAA8AkZtAMAAAAAAAAAAAD7VFdXx9SpU+PHP/5xrF+/PnUOGcvLy4vTTjst/u3f/i06deqUOqfeMGjff02aNIlrrrkmLr300sjPz0+dAwAAAMB+MGgHAAAAAAAAAAAAPmD37t3xq1/9KiZNmhQlJSWpczjA8vLy4gtf+EJcddVV0a9fv9Q59Y5B+/457rjj4vvf/35069YtdQoAAAAAn4JBOwAAAAAAAAAAAPCRSktL47777ov77rsvtm3bljqHzygvLy/GjBkTV199dfTv3z91Tr1l0P7JdOvWLb75zW/GSSedlDoFAAAAgM/AoB0AAAAAAAAAAAD4WLt27YpHHnkk7rvvPkPcWqhJkyYxbty4uPTSS6N3796pc+o9g/a/r3Xr1nH55ZfHJZdcEg0bNkydAwAAAMBnZNAOAAAAAAAAAAAAfGJ79+6N3//+9/Hggw/G/PnzU+fwMTp16hRf/OIXY/z48dGqVavUOfwvg/YP16pVq7jsssvikksuiWbNmqXOAQAAAOAAMWgHAAAAAAAAAAAAPpWlS5fGQw89FL/97W9jx44dqXP4Xw0bNozRo0fHueeeG8OHD48GDRqkTuJvGLS/X48ePeLiiy+Oc889N5o2bZo6BwAAAIADzKAdAAAAAAAAAAAA+EzKysri2WefjalTp8YLL7wQe/fuTZ1U7+Tl5cWRRx4Zp512WpxxxhlOY89xBu0RBQUFccIJJ8T5558fI0eO9MILAAAAAHWYQTsAAAAAAAAAAABwwGzZsiVmzJgRM2bMiJdfftm4PUMNGjSIIUOGxEknnRQnnXRSHHTQQamT+ITq86B9wIABceqpp8a4ceOiXbt2qXMAAAAAqAEG7QAAAAAAAAAAAEAmSkpKYvbs2TF79ux46aWXYvv27amTar3WrVvH8ccfHyNGjIjhw4cbBNdS9WnQXlhYGIMHD45Ro0bF2LFjo2vXrqmTAAAAAKhhBu0AAAAAAAAAAABA5iorK2PhwoXx/PPPx8svvxyvvfZaVFRUpM7KeUVFRXHkkUfGUUcdFccff3wMGDAgGjRokDqLz2jq1Knx2muvxbJly2LZsmWxdu3aqCtP6S0sLIz+/fvHkCFD4phjjoljjz02mjVrljoLAAAAgIQM2gEAAAAAAAAAAIAat3v37vjLX/4Sc+fOjb/85S+xePHi2LZtW+qspPLy8qJ79+4xYMCAGDx4cAwdOjT69+9vwF4PlJWVxapVq2LVqlWxcuXKWL16daxfv37fZcOGDVFWVpY68wOaNWsWvXv3jn79+kX//v3j0EMPjQEDBkTjxo1TpwEAAACQQwzaAQAAAAAAAAAAgJywfPnyeO211+L111+PN998M956661Ys2ZNnTm5+r2aN28ePXv2jIMPPjgOPfTQOOyww6J///5RVFSUOo0cVVpaGps3b44tW7bEli1boqSkJHbs2BHbtm2LHTt2xI4dO2LXrl2xa9eu2L17975LeXl5VFRU7LuurKyMysrKqK6ujqqqqqiqqoq8vLwoKCiIgoKCyM/PjyZNmkSzZs2iqKgomjdvHm3atIn27dtHu3bt4qCDDoquXbtGjx49om3btqn/WAAAAACoBQzaAQAAAAAAAAAAgJy1a9euePvtt6O4uDhWrlz5vhOsN2zYEBUVFakTP1R+fn60a9cuOnfuHB07doxOnTpFz549o1evXtGrV69o37596kQAAAAAgBph0A4AAAAAAAAAAADUStXV1bF169bYsGFDbNy4MTZt2hQlJSVRUlIS27dvj23btsX27dvfd2L1nj17Ys+ePVFRURFVVVWxd+/eqKqqisrKyoj4nyF6gwYN9p1UnZ+fH4WFhdG0adMPXJo3bx6tWrWKNm3aROvWraN169b7TrLu0KFDFBQUJP4TAgAAAABIz6AdAAAAAAAAAAAAAAAAAACATDRIHQAAAAAAAAAAAAAAAAAAAEDdZNAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBM/Q/LRQABAABJREFUGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkwaAcAAAAAAAAAAAAAAAAAACATBu0AAAAAAAAAAAAAAAAAAABkwqAdAAAAAAAAAAAAAAAAAACATBi0AwAAAAAAAAAAAAAAAAAAkAmDdgAAAAAAAAAAAAAAAAAAADJh0A4AAAAAAAAAAAAAAAAAAEAmDNoBAAAAAAAAAAAAAAAAAADIhEE7AAAAAAAAAAAAAAAAAAAAmTBoBwAAAAAAAAAAAAAAAAAAIBMG7QAAAAAAAAAAAAAAAAAAAGTCoB0AAAAAAAAAAAAAAAAAAIBMFKQOAAAAAAAAAAAAyEX9+vVLnZC5Z599Nrp27Zo6AwAAAGqE+/oAAGk4oR0AAAAAAAAAAAAAAAAAAIBMGLQDAAAAAAAAAAAAAAAAAACQCYN2AAAAAAAAAAAAAAAAAAAAMmHQDgAAAAAAAAAAAAAAAAAAQCYM2gEAAAAAAAAAAAAAAAAAAMiEQTsAAAAAAAAAAAAAAAAAAACZMGgHAAAAAAAAAAAAAAAAAAAgEwbtAAAAAAAAAAAAAAAAAAAAZMKgHQAAAAAAAAAAAAAAAAAAgEwYtAMAAAAAAAAAAAAAAAAAAJAJg3YAAAAAAAAAAAAAAAAAAAAyYdAOAAAAAAAAAAAAAAAAAABAJgzaAQAAAAAAAAAAAAAAAAAAyIRBOwAAAAAAAAAAAAAAAAAAAJkoSB0AAAAAAFAXrFq1KsaMGZM6gxyRl5cX+fn50aBBg33X7/66cePG0ahRo2jUqNG+Xzdu3DiKioqiefPm+67fvbRp0+Z9l8aNG6f+8AAAAAAAAAAAAOATM2gHAAAAAIADrLq6Ovbu3ZvJ+27atGm0a9cuOnbsGB07doxOnTrtu+7atWt07949GjVqlMltAwAAAAAAAAAAwP4yaAcAAAAAgFpk165dsWLFilixYsWH/vu8vLw46KCDonv37tG9e/fo1atXHHzwwXHIIYdEp06dargWAAAAAAAAAACA+s6gHQAAAAAA6pDq6upYt25drFu3LubOnfu+f1dUVLRv3D5gwIA44ogj4uCDD46CAn9dAAAAAAAAAAAAQDY8Qw0AAAAAAOqJ0tLSWLhwYSxcuDCmTJkSERGNGjWK/v37x8CBA2Po0KFx1FFHRfv27ROXAgAAAAAAAAAAUFcYtAMAAAAAQD1WVlYWr7zySrzyyivxwAMPREREz549Y+jQoXHMMcfE8OHDo23btokrAQAAAAAAAAAAqK0M2gEAAAAAgPcpLi6O4uLi+M1vfhN5eXlx2GGHxYgRI2LEiBExePDgyM/PT50IAAAAAAAAAABALWHQDgAAAAAAfKTq6upYvHhxLF68OCZMmBCtW7eOz3/+8zF27Ng47rjjorCwMHUiAAAAAAAAAAAAOcygHQAAAAAA+MS2bt0ajzzySDzyyCPRokWLGDNmTJx11llxzDHHRF5eXuo8AAAAAAAAAAAAcoxBOwAAAAAA8Kls3749Hn/88Xj88cejS5cuceaZZ8bZZ58dPXr0SJ0GAAAAAAAAAABAjmiQOgAAAAAAAKj9Vq9eHXfddVecdNJJ8ZWvfCXmzJkTVVVVqbMAAAAAAAAAAABIzAntAAAAAADAAVNdXR0vvPBCvPDCC9G9e/e46KKL4vzzz49mzZqlTgMAAAAAAAAAACABJ7QDAAAAAACZWLFiRdx0000xevTouOOOO2LHjh2pkwAAAAAAAAAAAKhhBu0AAAAAAECmSkpK4qc//WmMGjUqbrvtNsN2AAAAAAAAAACAesSgHQAAAAAAqBE7duyICRMmxBe+8IW4//77o6KiInUSAAAAAAAAAAAAGTNoBwAAAAAAatTWrVvjBz/4QZx66qnxzDPPpM4BAAAAAAAAAAAgQwbtAAAAAABAEitWrIirrroqrrjiili1alXqHAAAAAAAAAAAADJg0A4AAAAAACQ1Z86cOP3002PixIlRWVmZOgcAAAAAAAAAAIADyKAdAAAAAABIbvfu3XHrrbfGF7/4xVixYkXqHAAAAAAAAAAAAA4Qg3YAAAAAACBn/OUvf4lx48bFI488kjoFAAAAAAAAAACAA8CgHQAAAAAAyCm7du2K6667Lq699trYvXt36hwAAAAAAAAAAAA+A4N2AAAAAAAgJz355JMxfvz4WLFiReoUAAAAAAAAAAAAPiWDdgAAAAAAIGctXbo0zjvvvHjxxRdTpwAAAAAAAAAAAPApGLQDAAAAAAA5bdu2bXHFFVfEtGnTUqcAAAAAAAAAAACwnwzaAQAAAACAnFdRURHf+ta34t57702dAgAAAAAAAAAAwH4waAcAAAAAAGqF6urquPnmm+OnP/1p6hQAAAAAAAAAAAA+IYN2AAAAAACgVrnjjjvizjvvTJ0BAAAAAAAAAADAJ2DQDgAAAAAA1Do/+clPYuLEiakzAAAAAAAAAAAA+BgG7QAAAAAAQK106623xhNPPJE6AwAAAAAAAAAAgL/DoB0AAAAAAKi1rrvuupg7d27qDAAAAAAAAAAAAD6CQTsAAAAAAFBrVVRUxNVXXx3FxcWpUwAAAAAAAAAAAPgQBu0AAAAAAECtVlJSEldffXXs2bMndQoAAAAAAAAAAAB/w6AdAAAAAACo9ZYuXRo33nhj6gwAAAAAAAAAAAD+hkE7AAAAAABQJzzyyCPx29/+NnUGAAAAAAAAAAAA72HQDgAAAAAA1Bk33HBDbNiwIXUGAAAAAAAAAAAA/8ugHQAAAAAAqDO2b98eN9xwQ+oMAAAAAAAAAAAA/pdBOwAAAAAAUKc888wz8bvf/S51BgAAAAAAAAAAAGHQDgAAAAAA1EE33XRT7N69O3UGAAAAAAAAAABAvWfQDgAAAAAA1Dnr16+Pe+65J3UGAAAAAAAAAABAvWfQDgAAAAAA1En33HNPbNiwIXUGAAAAAAAAAABAvWbQDgAAAAAA1Em7du2KO+64I3UGAAAAAAAAAABAvWbQDgAAAAAA1FmPPfaYU9oBAAAAAAAAAAASMmgHAAAAAADqrPLy8vjlL3+ZOgMAAAAAAAAAAKDeMmgHAAAAAADqtMmTJ8f27dtTZwAAAAAAAAAAANRLBu0AAAAAAECdtnPnzpg6dWrqDAAAAAAAAAAAgHqpIHUAAAAAAAC1T5cuXWLWrFmpM3JKdXV1VFRURHl5eezduzcqKiqioqIi9uzZEyUlJbFt27b3XdauXRurVq2KNWvWxPr166OioiL1h1CnPfzww3HxxRenzgAAAAAAAAAAAKh3DNoBAAAAAOAAyMvLi4YNG0bDhg33+20rKytj/fr18eabb8Zf//rXWLJkSSxZsiRWrFgRVVVVGdTWP0uXLo1XXnklBg0alDoFAAAAAAAAAACgXjFoBwAAAACAxPLz86Nz587RuXPnOPHEE/f989LS0pg3b1689NJL8dJLL8XSpUujuro6YWnt9pvf/MagHQAAAAAAAAAAoIYZtAMAAAAAQI4qKiqKkSNHxsiRIyMiYsuWLTFz5syYPn16/PnPf3Z6+36aOXNmXH/99dGgQYPUKQAAAAAAAAAAAPWGZ2wBAAAAAEAt0aZNmxg/fnzcf//98dxzz8V3vvOd6NWrV+qsWmPz5s0xf/781BkAAAAAAAAAAAD1ikE7AAAAAADUQh06dIjLLrssfve738Wdd94ZQ4cOTZ1UK8yYMSN1AgAAAAAAAAAAQL1i0A4AAAAAALVYXl5ejBkzJn7961/HQw89FAMHDkydlNOee+651AkAAAAAAAAAAAD1ikE7AAAAAADUEUOGDImHH344brrppmjfvn3qnJy0fPnyWLduXeoMAAAAAAAAAACAesOgHQAAAAAA6pC8vLw455xz4umnn46TTz45dU5Oevnll1MnAAAAAAAAAAAA1BsG7QAAAAAAUAcVFRXFT37yk/jOd74ThYWFqXNyikE7AAAAAAAAAABAzTFoBwAAAACAOuyyyy6LX/7yl1FUVJQ6JWf85S9/SZ0AAAAAAAAAAABQbxi0AwAAAABAHXfUUUfFxIkTo2nTpqlTckJxcXHs2bMndQYAAAAAAAAAAEC9YNAOAAAAAAD1wNChQ2PixInRpEmT1CnJVVZWxtKlS1NnAAAAAAAAAAAA1AsG7QAAAAAAUE8MGzYs/uM//iN1Rk5YsmRJ6gQAAAAAAAAAAIB6waAdAAAAAADqkXPOOSdOP/301BnJvfXWW6kTAAAAAAAAAAAA6gWDdgAAAAAAqGe+973vRdeuXVNnJLVq1arUCQAAAAAAAAAAAPWCQTsAAAAAANQzRUVF8c1vfjN1RlIG7QAAAAAAAAAAADXDoB0AAAAAAOqhk08+OY444ojUGckYtAMAAAAAAAAAANSMgtQBAAAAAABAGt/4xjfisssuS52RxK5du6KkpCRatWqVOoUcV1ZWFmvWrImNGzfGpk2b3nfZsWNHlJaWRmlpaezcuTNKS0ujvLw8KisrY+/evVFRURGVlZWRl5cXhYWF+y4FBQVRWFgYjRs3jhYtWkSrVq2iZcuW0aJFi2jZsmW0bt06OnXqFJ07d44uXbpE8+bNU/8xAPuprKws3nnnnVi5cuX7vn68++udO3dGWVlZlJWVRUVFRZSVlUV5eXnk5eXt+xrx7nVRUVG0bNkymjdvHi1atIjWrVvHQQcdFJ06dYqOHTvuu87Pz0/9YUONqK6ujs2bN8eGDRti/fr1sX79+ti4cWNs27YtduzYEdu3b4/S0tJ91+Xl5bF37959l4qKiti7d280aNAg8vPzo6CgIAoKCiI/Pz8aN24cRUVF0axZs32Xli1bRtu2baNt27bRrl27aNu2bRx00EHRuXPnaNiwYeo/DuATqK6ujlWrVkVxcXFs2LDhfd+TN23aFNu2bdv3ffm9358rKyv3fY1o2LBhFBQUROPGjff97P7upUOHDvu+H3fs2DG6dOkSTZs2Tf1hQ72yZs2aePPNN2P9+vWxYcOGfT8nbNy4MXbu3Bnl5eWxZ8+efZ/j1dXV0ahRow9cmjVrFh06dIgOHTpE+/bto3379tGhQ4fo1q1bdOvWLRo0cIZUrqmqqoq1a9dGcXFxrFy5MjZv3hxbtmyJzZs3x+bNm6OkpCR2794d5eXl++53vfdr/LuP1TRs2DCaN28eLVu2jFatWkWrVq2iQ4cO0aVLl/ddCgsLU3/I8KlUVlbGpk2b9n2N3LJlS2zbtm3fpaSkJHbu3Bm7du2KPXv27Lves2dPVFZWfuDy3vtT+fn5kZ+fH02aNImmTZtGs2bN9l23bNky2rRpE23atIm2bdtGmzZtolOnTtGpU6coKipK/ccC9dbu3bujuLg4Vq9eHatWrYpVq1bF6tWrY9OmTbFnz57YvXv3vktZWVk0aNAgmjZt+r5L+/bto3v37tGtW7fo0aNHdO/ePbp27ernJQAA/i6DdgAAAAAAqKeOO+64OPzww2Px4sWpU5IwaOdde/fujeLi4njzzTfjrbfeihUrVux7EtfGjRujurr6M99GZWVl7Nmz51O9bfPmzaNz587RrVu36Nu3b/Tr1y8OPvjg6NWrVxQU+Os+SG3lypWxYMGCWLp0abz99tvx9ttvx6pVq6KqqupTvb+9e/e+7+vFhg0bPvZtGjZsGL17946+fftGnz59on///nHkkUdGmzZtPlUDpFZdXR2rV6+Od955J4qLi/dd3nnnndiwYUNUVFR85tt4d4hRXl7+qd6+QYMG0aFDh+jatWt06dIlevXqFQcffHAccsgh0a1bt8jLy/vMjcD+27ZtWyxcuDBef/31ePvtt2PZsmWxbNmyT/2zeHl5eZSXl8euXbv2/bNVq1b93bfJy8uLzp07R58+faJv375x8MEHx6BBg6J3796+NsAB8Pbbb8e8efNiyZIlsXTp0li6dGns2LFjv9/Prl273ve5/XGaNGkSffr0iUMOOSQOOeSQ6NevXxx55JFewKIG7dixIxYtWhSvvPJKLFmyJIqLi2P58uVRVlb2qd7fu1/j3/Vx970KCwv33d/q169fDBo0KI444ggvckTO2Lp1a7zzzjuxYsWKWLFiRSxfvjxWrlwZ69ati02bNkVlZeUBu60Puz9VUlKyX++jZcuW0alTp+jWrVv07t07evfuHX369InevXtHs2bNDlgrELFp06aYP39+LFiwIObPnx9LliyJvXv37tf7KC8v/9jP86ZNm8Zhhx0WAwcOjGOOOSaOOuooL14BAMD75FUfiGfgAAAAAADUc6tWrYoxY8akzqgxXbp0iVmzZqXO4AB44IEH4sYbb0ydkcTkyZNj8ODBqTOoYXv27InXX389Xn311Xj11VfjjTfeiHfeeeeADONqWmFhYfTu3TsGDBgQQ4cOjaFDh0bPnj1TZ0GdVl1dHUuWLIl58+bF/PnzY/78+bFx48bUWR+pR48eMXjw4DjqqKNixIgR0bFjx9RJ8AFVVVXxzjvvxOLFi+P111/fd11aWpo67VNr0qRJ9O3bNwYOHBgDBw6MQYMGRc+ePQ1Za6l+/fqlTsjcs88+G127dk2d8amsXbs25s6du2+c8dZbbx2QF6TKQosWLWLQoEFx5JFHxvDhw2PgwIFOL4RPYN26dfHiiy/Gn/70p/jTn/70iV7wqaYUFhbGwIED49hjj41jjz02jjzySOPmA2jbtm3x/PPPx4svvhivvPJKLFu2LOe+xjdu3DgGDRoURx99dIwaNSoOP/zw1EnUA1VVVbFs2bJ47bXX4o033oilS5fGG2+8kdOPT+yPvLy86N69ewwYMCAOP/zwOPzww2PAgAFGsbCftmzZEk899VRMnTo1Fi1alKShsLAwjj322Dj99NPj5JNPjsaNGyfp+DDu6wMApGHQDgAAAABwABi0U1tt3bo1RowYUSvHvJ/VhAkTYtSoUakzyNjmzZtj7ty5MXfu3Fi4cGG8+eab+33ySG3Srl27GDJkSAwbNixGjhwZ3bt3T50EtV5FRUXMnTs3Zs6cGTNnzsypAc3+OuSQQ+KEE06I0aNHx5AhQ4xrSaKysjIWL1687/vz/Pnza/V4/ZNq2bJlDBkyJI499tj43Oc+F4ccckjqJD4hT3LPPW+88UY888wz8eyzz8brr7+eOudTa9WqVQwfPjxOOOGEGDNmjJEWvMeWLVvid7/7XTz55JOxYMGCnBsxf5QmTZrEiSeeGGeccUaccMIJxu2fQnFxccyaNStmz54dCxYsqHWP4XTp0iVGjx4dp5xySgwdOjR1DnXEzp07Y968ebFw4cJ45ZVXYtGiRfXiPtR75efnx2GHHRbDhg2Lo446KoYNGxYtWrRInQU5afbs2TFlypR44YUXcurv/i6++OK47rrrUmfs474+AEAaBu0AAAAAAAeAQTu12ZVXXhkzZ85MnVHj/uu//ivOPvvs1BkcYLt27YqXXnopXnjhhZg7d2689dZbqZOS6tOnT4waNSpGjRoVgwcPjvz8/NRJ/B3XXHNN7Ny5M3XGATdy5Mi4+OKLU2fsl+rq6vjjH/8YTzzxRMyZMye2b9+eOumA69KlS5xxxhlxxhlnRN++fVPnUMetWbMmZs+eHc8991y9GbB/nHbt2sXnPve5GDNmTIwYMSKaNWuWOomPUB+e5D5r1qzo0qVL6oy/a9myZfHoo4/GjBkzYuXKlalzDrjGjRvHyJEjjWATq6qqiiuuuCKqqqpSpxxwp5xySpx33nmpM/6uysrKeOaZZ+KRRx6Jl156KSorK1MnfSYtW7aMsWPHxplnnhlHH3106pyctmfPnnj66afj4Ycfjvnz56fOOWB69+4d5513Xpx11lnRtm3b1DnUInv37o2FCxfGH//4x/jTn/4UixYtqnUv7pC1/Pz8GDx4cJx44olxwgknRP/+/VMn8QnceuutsXTp0tQZB1zv3r3j29/+duqMmDNnTvz0pz+NxYsXp075UBdddFH8x3/8R+qMferDfX2D9v1XXl4eX/nKV2Lu3LmpU2rUmWeeGbfccosXwAWgRhi0AwAAAAAcAAbt1GYPPvhg3HDDDakzatz1118fF154YeoMDoCVK1fGnDlzYs6cOTF37twoLy9PnZSTWrVqFaeddlqcffbZccQRR6TO4UOcdtppdfJFGIYPHx733HNP6oxPZNOmTfHYY4/Fww8/XCfHch9l8ODBcckll8TYsWOjoKAgdQ51xKuvvrrvdM0lS5akzslpjRo1is997nPx+c9/Pk466aRo3rx56iTeoz48yf25556Ljh07ps74gPLy8vj9738fU6ZMiT//+c+pc2pM27Zt4x/+4R/iwgsvjA4dOqTOqXdGjBgRGzZsSJ1xwJ166qlx2223pc74UKWlpfHoo4/G/fffH6tXr06dk4n+/fvHV77ylTj11FP9vP0e77zzTjz44IMxderUOvkiYu9q2LBhnH322XH55ZdH9+7dU+eQo0pLS+MPf/hDzJo1K/7whz/Etm3bUifVKl26dImTTz45Tj311BgwYEDqHD7CN77xjZg+fXrqjAOuffv28cILLyS7/blz58Ytt9wSr776arKGT8KgveYZtO+/b33rWzF16tTUGTVq+PDhMWHChCgsLEydAkA94ZExAAAAAACo5+rrKVEVFRWpE/gM1q1bF0899VQ8+eST8dprr6XOqRVKSkriwQcfjAcffDD69u0bZ511Vpx55plx0EEHpU7jf3Xo0KFODtrXrFmTOuFjLV68OCZOnBjPPvtsvfz+sHDhwli4cGF07NgxLrroorjoooucFs2nsnz58pg2bVpMmzYtVqxYkTqn1igrK4vZs2fH7Nmz44YbbohRo0bFuHHjYsSIEZ5MSo3Iz89PnfA+mzZtinvvvTd+85vfRElJSeqcGrd58+a488474+67746TTjoprrjiijjkkENSZ9UbHTp0qJOD9lz8mbykpCQmTpwYU6ZMidLS0tQ5mfrrX/8a3/zmN+O///u/49JLL43zzz8/mjZtmjormeLi4rjzzjtj+vTpUVlZmTonc+Xl5TFlypR49NFH4+STT45rrrkmevbsmTqLHLB79+6YPXt2/Pa3v43nn3++Xj4ecaCsXr067rnnnrjnnnuiR48ecfrpp8e5554bXbp0SZ3Ge7Rv3z51QiY2bdoUFRUVNX7/vbS0NG655ZZ4+OGHwxmX8Nndfvvt9W7MfsQRR8Ttt9/u8UcAapRBOwAAAAAA1HN9+/aN1q1bx9atW1On1CineNc+O3fujCeffDKeeOKJWLBggSdpfQZvvfVW/OhHP4r//u//jpNPPjm+/OUvO70oB7Rt2zZ1QibWrVuXOuEjLVq0KO68886YPXt26pScsG7durj11lvj3nvvjcsvvzwuuuiiaNKkSeosctyOHTvit7/9bUybNi0WLlyYOqfWKysri6effjqefvrpaNOmTZxzzjlxwQUXRLdu3VKnUYflyqB9/fr1MWnSpHj44Ydjz549qXOSq6ioiOnTp8eTTz4Zp5xySlx11VXRp0+f1Fl1Xrt27VInZGLt2rWpE/YpKyuLBx54IH7+85/X6VO5P8zq1avjP//zP+Puu++Of/u3f4tx48ZFXl5e6qwas2LFirjzzjtj2rRp9WLI/rcqKyvjySefjBkzZsQFF1wQV155ZbRu3Tp1FjWsuro65s6dG48++mjMnDkzdu3alTqpzlm+fHnccccdcdddd8Xxxx8f48ePj9GjR0dBgdlEanX1sc/q6urYsGFDjb6Awpw5c+K73/1uTj/uCrXJE088ET/72c9SZ9Sonj17xsSJE+v1C20BkIZ7ZgAAAAAAUM/l5eXFkCFD4tlnn02dUqOceFN7/PWvf43JkyfHtGnTYufOnalz6pS9e/fG9OnTY/r06XH00UfHP/7jP8bIkSPr1RPqc0nLli1TJ2Ri165dUVpaGkVFRalT9lm0aFHcfvvt8Yc//CF1Sk7aunVr/PCHP4xf/OIX8X/+z/+Jc889Nxo0aJA6ixzz1ltvxa9+9auYOnWqEUZGtmzZEpMmTYp77rknjj/++PjiF78Yo0aN8vnIAZd63LNhw4aYMGFCPPLII1547ENUV1fHU089FU8//XScddZZce2119bZ0y1zQYsWLVInZGLz5s1RXV2d/L7etGnT4rbbbsvJE+Nr0saNG+Pb3/52/PrXv47rrrsuBg4cmDopU2VlZTFhwoS4++67PR4X//OY5AMPPBBTp06Na6+9Ni644ILkn5tkb8uWLfHYY4/FI488EsXFxalz6oWqqqp4/vnn4/nnn4/OnTvHJZdcEueff35OPT5V39TVxz4j/udnrZoYtFdVVcVtt90WEydOzPy2oL6YO3duXHfddakzalT79u1j0qRJ0aZNm9QpANRD/oYLAAAAAACI3r17p06ocU73zm3V1dUxc+bMuPDCC2PcuHHx0EMPGbNnbO7cufHVr341zjzzzJg5c2bqnHqpefPmqRMys3nz5tQJEfE/TyD/93//9xg/frwx+yewadOmuO666+K8886LefPmpc4hB7z7/fnSSy+N0047LR566CFj9hpQXV0dL7zwQvzLv/zL/8fefYc3Wb5tHD/TPaEtlDJk7z1kiGxFhqyCIHtPAUWRnyhDNrIFQUAoKCDI3nuKjEJBkD1kFFpoS0v3Tpq8f/iCFlpoafJcSZ7zcxwc2jRNvpC2Wc9132jZsiU2bNjAoV8yKqkd2rVaLVauXIkWLVpg7dq1/L5+Db1ej61bt6J58+ZYvnw5/71MxFoHrXQ6HaKiosSuPyQkBP3798f//vc/1Q+z/9elS5fw8ccfY+zYsYiPj5fOMYmTJ0+idevWWLx4MYfZXxAbG4uJEyeie/fuuHv3rnQOmcidO3cwduxYNGrUCLNnz+Ywu5DHjx9jxowZaNy4MebMmYPIyEjpJFWy5sUEIiIiTH4d8fHxGDp0KIfZiYzo3r17GD58uKoep7q6umLZsmUoXLiwdAoREakUB9qJiIiIiIiIiIiIiEiVb1o7OTlJJ1AGdDodduzYgTZt2mDYsGG4cOGCdJLq3L59G8OGDUPnzp1x9uxZ6RxVcXV1lU4wGemB9rS0NKxduxYtWrTA5s2buahJNl27dg3du3fHmDFjEBcXJ51DAvR6PXbv3o3WrVtj2LBhOHPmjHSSagUGBuLbb79FkyZNsGzZMi4oQEYhsUO7v78/fH19MXPmTC5clU0JCQmYM2cO2rVrh4sXL0rnWB0XFxfpBJORGt7bsGEDWrVqhZMnT4pcv7kzGAzYvHkz2rdvj8uXL0vnGE1sbCy+/PJL9O/fHw8fPpTOMWt//vknfH19sWrVKukUMqLz589j4MCBaN26NTZv3syFaMxEXFwcli9fjqZNm2LBggV8jUNh1vzap6kXDnr06BE6d+6MY8eOmfR6iNQkMjISgwYNQkxMjHSKYuzt7fHjjz+iQoUK0ilERKRiHGgnIiIiIiIiIiIiIiJVDrQ7OjpKJ9B/6PV6bNmyBc2aNcNXX32Fv//+WzpJ9f766y/06tUL/fv3x507d6RzVMGah2ckd4O8efMmPvroI0yePFlVB6eZwpYtW9CqVSscP35cOoUUotPpsH37drRs2RJffvkl7w/MSEREBObOnYv3338fK1euRHJysnQSWTAld2iPjo7GyJEj0adPH/5OyaF79+6hW7dumDFjBn8HGBEfkxvP06dP0a9fP3z77bdcuCILHj58iK5du2LZsmXQ6/XSOTly+fJl+Pr6Yvfu3dIpFiM1NRXTp0/H4MGDuXO0hbt48SL69u2L7t27448//uCCemYqISEBixcvfv58Sk0780qy5sdZpnzNMTQ0FL169eLzJyIjSklJwdChQxEUFCSdohiNRoNZs2ahbt260ilERKRyHGgnIiIiIiIiIiIiIiJVDrRzh3bz8fvvv6Ndu3YYM2YMHj16JJ1DLzh58iR8fX0xe/Zs7gJrYtylyLgMBgNWrVqFTp064caNG4pfv7UKCwvDoEGDMGHCBO4wZ+UOHz6MVq1aYfTo0QgMDJTOoUxERkZi5syZaNq0KTZs2GDxA3AkQ6kd2s+cOYN27dphz549ilyfGuj1evz8889o3749bt++LZ1jFax50ErJx+SXL19Ghw4dcOrUKcWu0xrodDrMnTsXAwYMsNhdg1etWoVu3brx9Z039Pvvv8PX1xdXrlyRTqFsunv3LgYNGoQuXbrg9OnT0jmURTExMZg5cybatWvH200Bzs7O0gkmEx0dbZLLffLkCXr37o3g4GCTXD6RGhkMBnz11Ve4ePGidIqivvnmG3z44YfSGURERBxoJyIiIiIiIiIiIiIiwMvLSzpBcdZ88JSluHr1Knr27InBgwdz+MLMabVa+Pn5oWXLljhw4IB0jtVydHSUTjAZUx3UmZmIiAgMGjQI06dP59C1iaxfvx4ff/wxHjx4IJ1CRnbt2jX07NkTw4YN4yC7BQkPD8e3336L9u3b4+zZs9I5ZEGU2J1dq9Vi7ty56Nu3L0JDQ01+fWp07949dOrUCZs2bZJOsXjWvPidUo/Jt2zZgu7du/PnPQdOnTqFbt26WdS/YWJiIoYPH47p06dzp+McCgsLQ48ePbgAjIWIiorC5MmT0bZtWxw/flw6h97Q3bt30bdvX3z22WeIiIiQzrFa1vyejCl2aI+MjETv3r352gyRkc2ZMwf79++XzlDUwIED0bt3b+kMIiIiABxoJyIiIiIiIiIiIiIiWPeBRJmx5sFRcxcfH4+pU6eiU6dOCAgIkM6hbAgNDcVnn32GoUOHIjIyUjrH6ljz72IlB9r9/f3Rtm1b/PHHH4pdp1rduHED7du3x++//y6dQkbw9OlTjB49Gh999BHvny3YzZs30atXL3z66acICwuTziELYOqB9pCQEHTp0gXLli2DXq836XWpXXJyMsaNG4cxY8ZwmDQHOND+5vR6PaZMmYIxY8ZwUSkjuH37Njp37mwRCwA+G7g7dOiQdIrVSE5OxsiRI7FkyRLpFMqEwWDApk2b0Lx5c6xduxY6nU46iYzgwIEDaNWqFReUMBFrfk8mNjbWqJen1Wrx6aef4t69e0a9XCK127hxI/z8/KQzFNW+fXuMGjVKOoOIiOg5DrQTERERERERERERERFsbGys+mCijLi7u0snqNL+/fvRsmVLrFmzhgMtFuzIkSNo3bo1jhw5Ip1iVax5eMYUuxRlZNOmTRgwYACePn2qyPURkJCQgKFDh2L16tXSKZQDW7duxYcffojt27fDYDBI55ARHDx4EB9++CHWrl3Lx1z0SqYcaL9y5Qo6deqEq1evmuw66GVbtmxB//79FXv8ZW1cXFykE0zGlAPtOp0O//vf//Drr7+a7DrUKDQ0FN26dcP58+elUzIVHByMrl274vLly9IpVmn+/PmYOXOmdAa9IDAwEL169cK4ceN4f2uFoqOjMXLkSHz22We8fY3Mml/7NPZA+/Tp0836/p/IEp08eRKTJk2SzlBUw4YNMXXqVOkMIiKidDjQTkREREREREREREREAKx7Z+CM5M+fXzpBVSIjIzF06FCMGDECT548kc4hI3j69CmGDh2KsWPHIiEhQTrHKljz72FTHwBsMBgwZ84cjBs3jruiCUhLS8O0adMwdepUDkNbmIcPH6JPnz745ptvTL5rKykvPj4ekydPRrdu3birG2XKVAPtBw8eRM+ePREeHm6Sy6dXO3v2LDp37ozg4GDpFItjzYNWpnpMnpqais8++wy7d+82yeWrXVxcHAYPHmyWi4PcvHkTXbp0QWBgoHSKVVu5ciW+/fZbPtcyE2vWrEHbtm0REBAgnUImduDAAbRv354LdhgRH2dlzZYtW7Bu3TqjXR4RAbdu3cKIESNU9d5BlSpVsGDBAtjZ2UmnEBERpcOBdiIiIiIiIiIiIiIiAmDdBxNlhAPtyvn999/Rpk0b7uZtpTZv3oyOHTvi7t270ikWz5oH2k05KJucnIwRI0Zg+fLlJrsOypo1a9ZgzJgx3A3aQqxduxZt2rSBv7+/dAqZ2MWLF9GhQwf89ttv0ilkhkxxYLOfnx8+++wzJCUlGf2yKevu37+PHj16cNA0m6z5tRFTDLQnJiZi8ODBfL5vYvHx8RgwYIBZPe++desWevXqxYVLFLJhwwZMnz5dOkPVnj59ikGDBmHq1KlISUmRziGFPHr0CN26dcPq1aulU6yCNb/2GRcXZ5TLuXnzJiZOnGiUyyKifzx58gSDBw9GfHy8dIpiihUrhp9++gkuLi7SKURERC/hQDsREREREREREREREQH4Z0cttfD09ISDg4N0htVLSkrChAkTMHjwYEREREjnkAndu3cPnTp1wsGDB6VTLJo1H9QZGxtrkstNSkrCwIEDceDAAZNcPmXf1q1bMWrUKFXtdmNpIiMj8cknn2Dy5MlITk6WziGFJCUlYeLEiRgyZAgiIyOlc8iMODo6GvXy5s6di9mzZ3MXWTMREhKCHj164M6dO9IpFsOaD/g39kC7VqvF8OHDcfr0aaNeLmUsKioKffv2RXBwsHQKHjx4gP79+5tkkQTK3OrVq7FgwQLpDFU6d+4c2rZti+PHj0unkACtVotp06Zh7Nix0Gq10jkWzdbWFvb29tIZJmGM1z61Wi2+/vprVb1XR2RqiYmJGDJkCEJCQqRTFOPt7Y0VK1bAy8tLOoWIiChDHGgnIiIiIiIiIiIiIiIAUNVAU4ECBaQTrF5gYCA+/vhjrF+/XjqFFJKQkIBPP/0Uc+bMQVpamnSOReJAe/YkJSVh0KBBCAgIMPplU87s2bMHX3/9NYcZzZC/vz/atWuHo0ePSqeQkGPHjsHX1xd//fWXdAqZCWPuRj1v3jwsW7bMaJdHxhEeHo7evXvj4cOH0ikWwZp3aDfmY3KDwYBvvvkGp06dMtpl0uuFhYVhwIABortLhoaGom/fvtyZXcjixYuxceNG6QxVWbNmDfr06cPFOgmbN2/GgAEDuJhHDhl7QS1zYYwd2n/88UfcuHHDCDVEBAB6vR5ffvklrl27Jp2iGDc3N/j5+eGtt96STiEiIsoUB9qJiIiIiIiIiIiIiAgGgwFJSUnSGYrx8fGRTrBqR44cQceOHXH79m3pFBKwfPlyfPrpp6paJMNYrHl4xtgH+yYlJWHw4MEcZjdju3btwvTp06Uz6D+WLFmCfv364cmTJ9IpJCwsLAw9evTA2rVrpVPIDBhroGTevHn46aefjHJZZHwRERHo168fB1CzwJp3aDfmQPvMmTOxa9cuo10eZd39+/cxZswYkeuOjIxE37598ejRI5Hrp39MnjyZz4UV8Gyn5KlTp0Kn00nnkJk4c+YMunTpgrCwMOkUi2WtC3pqtdocvR5+5coVLF++3IhFRDR9+nRVLerp4OCAH3/8EeXKlZNOISIieiUOtBMREREREREREREREZKTk1W1i2qJEiWkE6ySXq/HggULMGzYMKPsSEKW68iRI+jTpw+io6OlUyyKNQ/PJCQkIC0tzSiXlZycjCFDhuDs2bNGuTwyndWrV3O40QwkJSVhxIgRmD9/PvR6vXQOmQmtVovJkyfjm2++gVarlc4hQcZYUIfD7JYhKCgI/fv3F93Z2RJY65AVYLxFpn7++Wf8/PPPRrksejMHDhzAypUrFb1OrVaLTz/9FPfu3VP0eullz26LoKAg6RSrFR8fj4EDB2Lbtm3SKWSG7t27h27duvFn8A1Z84Keb7p4UFpaGsaOHcvFM4iMaPXq1VizZo10hmJsbGwwa9YsvPPOO9IpREREr8WBdiIiIiIiIiIiIiIiUt0ubRUqVJBOsDopKSn4/PPPsXjxYlUtjkCZu3jxIrp27cqd27LBxsbGaLukmhuDwWCUhS70ej2+/PJLnDlzxghVpITvv/8ehw8fls5QrcePH6Nr167Yv3+/dAqZqa1bt2LAgAFG3bWXLEtOB0pWrVrFYXYLcuvWLfzvf//jc7ZXsOaBdmMsMnXixAnMmjXLSEWUE3PnzsX58+cVu77p06cren30atHR0fjyyy+5MJEJhIWFoVu3bvD395dOITMWHByM7t27c5GPN2DNj7Xe9LXPjRs34tatW0auIVKvo0eP4rvvvpPOUNTYsWPRsmVL6QwiIqIs4UA7ERERERERERERERHh4cOH0gmK4kC7cUVFRaFPnz44cOCAdAqZmXv37qFLly4IDAyUTrEYPKjz1WbPns3haAtjMBjw1Vdf4c6dO9IpqnPlyhV07NgRN27ckE4hM3fmzBl06dIFwcHB0ikkICcD7ceOHcOMGTOMWENKOHr0KBYsWCCdYbYcHBxgZ2cnnWEyOXlM/vjxY4waNQp6vd6IRfSmdDodRo4cifj4eJNf1+bNm7Fu3TqTXw9lz6VLl/D9999LZ1iVR48eoXv37hwspSwJCwtD3759uZhnNlnza59vcp8cGxvLx+ZERnTt2jV8+eWXqnrOMmTIEPTo0UM6g4iIKMs40E5ERERERERERERERAgKCpJOUIyLiwuKFSsmnWE1goKC0KVLF1y4cEE6hczUkydP0KtXLzx48EA6xSK4urpKJ5hMTnf/3bBhA1auXGmkGlJSQkIChg0bpsiwDf3D398fvXv3xtOnT6VTyELcvXsX3bp1w927d6VTSGFvOtB+48YNjBw5UlUHiVuTpUuXcpGgV7DmQas3HWhPTU3FiBEjEB0dbdwgypGwsDDMmTPHpNdx+fJlTJo0yaTXQW9u5cqV3EncSIKCgtCzZ09VvU5OORcaGoq+ffsiIiJCOsVi5GRBLXP3Jo+zFi1ahKioKBPUEKlPSEgIBg8ejMTEROkUxXTo0AFffPGFdAYREVG2cKCdiIiIiIiIiIiIiIhUdaBe2bJlYWPDt0iM4e7du+jatSt336bXCgsLQ69evfDw4UPpFLPn6OgonWAyCQkJb/y1p06dwuTJk41YQ0oLDAzElClTpDNU4cCBAxg0aFCOfuZIncLCwtC9e3dcu3ZNOoUU9CaL6YSFhanuIHFrYzAYMHbsWISFhUmnmCVrHrR608cH06ZNw+XLl41cQ8awfv16/Pnnnya57OjoaHz66adITU01yeVTzhkMBowbNw5JSUnSKRbt8ePH6NmzJ3fapjfy4MED9OvXj4v4ZZGLi4t0gslkd6A9KCgI69atM1ENkbrEx8dj0KBBCA8Pl05RTJMmTfh6OxERWSQerUVERERERERERERERKoaWqlUqZJ0glW4c+cOevXqpaqDQyhnQkND0atXLwQHB0unmDVrHp550wN7Hz58iBEjRkCn0xm5iJS2fft27NmzRzrDqm3atAmff/45h47ojUVFRaF3794cWlSR7A6UpKamYujQoRyEtgLR0dEYPXo0DAaDdIrZ4WPy9Pbt24f169eboIaMwWAwYPz48SZ5/Ddu3DiEhoYa/XLJuIKDg/H9999LZ1isyMhI9OvXDyEhIdIpZMFu3bqFkSNHQq/XS6eYPWt+nJXdhYOWLl0KrVZrohoi9dDpdBgxYgRu374tnaKYatWq4fvvv4ednZ10ChERUbZxoJ2IiIiIiIiIiIiISOW0Wi0uXboknaGY+vXrSydYvNu3b6NXr16IiIiQTiELExISgoEDByImJkY6xWxZ80GdbzI8k5qais8//zzbOxyR+ZowYQKHIE1k69atGD9+PA+gpxyLi4tD//79cf36dekUUkB2B9pnz56Nq1evmqiGlObv749Vq1ZJZ5gdPib/19OnTzFp0iQT1ZCx3L17F35+fka9zI0bN+LQoUNGvUwynTVr1vD++Q0kJCRg4MCBuH//vnQKWYHjx49j9uzZ0hlmz9HRUTrBZLIz0P748WPs2LHDhDVE6jFp0iScPHlSOkMxJUqUwNKlS+Hs7CydQkRE9EY40E5EREREREREREREpHLXrl1DUlKSdIYi7O3tUbt2bekMi3bnzh307t0bT58+lU4hC3Xv3j0MGzaMuwdngsMz6c2ZMwfXrl0zQQ1JiYuLw+TJk6UzrM7u3bsxduxY7rJLRhMbG4t+/frh77//lk4hE8vOQPuRI0ewevVqE9aQhAULFiA4OFg6w6zwMfm/Jk6ciKioKBPVkDGtWLEC0dHRRrmsx48fY8aMGUa5LFKGXq/HtGnTpDMsil6vx6hRo7gQABnVypUrsX37dukMs8aB9n8sW7aMu7MTGcGyZcuwceNG6QzF5MuXDytWrICnp6d0ChER0RvjQDsRERERERERERERkcoFBARIJyimZs2a2d6BkP4VFhaGAQMGIDIyUjqFLNy5c+fw9ddfc/AyAxye+dfRo0e5Y6iVOnz4MA4cOCCdYTUOHjyI0aNHc2d2MrqoqCj07dsXjx8/lk4hE8rq86OQkBCMGTPGxDUkITExERMmTJDOMCt8TP6P3bt34+DBgyasIWOKj4/HsmXLjHJZ48aNy9ZQHpmHCxcuYPfu3dIZFmPevHk4evSodAZZoUmTJuH+/fvSGWbLmh9nJSYmZul8YWFh2LJli4lriKzfvn37MG/ePOkMxbi7u8PPzw8FCxaUTiEiIsoRDrQTEREREREREREREanc3r17pRMUU79+fekEixUXF4cBAwYgJCREOoWsxJ49ezB//nzpDLNjzQd1ZmcgIjQ0FN98840Ja0jalClTOCRjBP7+/hg5ciR0Op10Clmp8PBwDBw4ELGxsdIpZCKurq6vPY9Op8PIkSONtvMvmZ+TJ09yCPI/rPkxeVYH2iMiIjBlyhQT15CxrV27Fk+ePMnRZWzZsgWnTp0yUhEpbc6cOUhNTZXOMHt79+7F8uXLpTPISiUmJuLzzz/nz2ImrPlxVlZf51q9ejW/P4hy6OLFixg9erRqFk12cHDAkiVLULZsWekUIiKiHONAOxERERERERERERGRit2+fRs3btyQzlBMw4YNpRMsUmpqKoYNG4bbt29Lp5CV+emnn7gb1gt4UOc/vvnmGw7NWbnw8HCj7SCpVnfv3sVnn30GrVYrnUJW7s6dOxg2bBgPuLdSWRlo9/Pzw4ULFxSoIUlz5sxBcnKydIZZ4GNy4LvvvuPjcQuUnJyMJUuWvPHXR0VFYdasWUYsIqWFhIRg/fr10hlm7cGDBxg3bpx0Blm5mzdvYvbs2dIZZsnR0VE6wWSy8jgrKSkJmzdvVqCGyHoFBQVh6NChSElJkU5RhI2NDebOnYtatWpJpxARERkFB9qJiIiIiIiIiIiIiFRsx44d0gmKKVOmDMqUKSOdYZHGjRuHs2fPSmeQFTIYDBg9ejSCgoKkU8yGvb29dILJZHU3yC1btuD06dMmriFz8PPPP+Px48fSGRbp6dOnGDRoEHfNJsUEBARg8uTJ0hlkAq8baL937x5+/PFHhWpIUkhICFauXCmdYRbs7OykE0wmK4/J//zzT+zevVuBGjKFTZs24enTp2/0tbNnz+ZCBlZg2bJlSEpKks4wS6mpqfjiiy+yteAe0Zv69ddfuShUBqx54aDExMTXnmfHjh28ryXKgZiYGAwcOBCRkZHSKYoZP348mjVrJp1BRERkNBxoJyIiIiIiIiIiIiJSqcTERGzdulU6QzEfffSRdIJFWrNmjaoWPiDlxcbG4tNPP1XNbhqvo/bhmYiICMycOVOBGjIHKSkpmDdvnnSGxUlOTsYnn3yC4OBg6RRSmU2bNnHHTyv0qoF2g8GA8ePHIzU1VcEikrR8+XJERERIZ4hT82NyvV6PadOmKVRDpqDVarFhw4Zsf93ly5dV9TqhNQsPD8dvv/0mnWGWFixYgGvXrklnkEro9XqMHTuWj6VfoPYd2tesWaNACZF1Sk1NxfDhw3H//n3pFMUMHToU3bp1k84gIiIyKg60ExERERERERERERGp1K+//qqaFezt7e3Rtm1b6QyL8+eff3KwlBRx48YNDk38PzUPzwDAlClTEBMTo0ANmYs9e/bg7t270hkWZcKECbh06ZJ0BqnU1KlTcfHiRekMMqJXDbT/9ttvOH/+vII1JC0xMRF+fn7SGeLs7e2lE0zmdYNWmzdv5rCnFdiwYQN0Ol2Wz28wGDB9+nQYDAYTVpGSVq1aBa1WK51hVi5fvoyff/5ZOoNU5t69e1i8eLF0hlmxtbWVTjCZ1z3OOnnyJO7cuaNQDZH1GTduHAICAqQzFNOpUyeMGDFCOoOIiMjoONBORERERERERERERKRC8fHxWLFihXSGYho1agQvLy/pDIvy5MkTjBgxgge/kmI2bNiA48ePS2eIs+aB9tcd1HnkyBHs379foRoyF3q9ngd3Z8OGDRuwfft26QxSMa1Wi5EjRyI2NlY6hYzExcUlw9PDwsIwd+5chWvIHKxfvx5Pnz6VzhBlzQPtr1pkKi4uDt9//72CNWQqoaGhOHz4cJbPv3v3bi5YY2VCQ0OxZ88e6QyzkZqaim+++QZpaWnSKaRCK1euRHBwsHSG2bDm1z4TExNf+fm1a9cqVEJkfRYuXIgdO3ZIZyimSZMmmDRpknQGERGRSVjvMwIiIiIiIiIiIiIiIsrUTz/9hOjoaOkMxXTo0EE6waLo9Xp8+eWXCA8Pl04xW46OjqhYsSKKFSuGwoULo3DhwnjrrbeQK1cuuLq6wtnZGc7OztBoNEhMTHz+JyEhAY8ePcKDBw+e/7l161aWdq5Wg7Fjx2L37t3w8PCQThGj1uGZpKQkTJ48WcEaMid79+7F0KFDUbJkSekUs3b9+nVMmzZNOoMIjx8/xvjx47FgwQLpFDKCzAbap02bxseoKpWUlAQ/Pz+MHj1aOkWMNQ9avWqRqSVLliAyMlLBGjKltWvXokWLFq89X2pqKhcysFI///wzfH19pTPMwsqVK7krMolJSUnBrFmz8MMPP0inmAVrfu3zVY+zQkNDuZgr0Rvavn07Fi1aJJ2hmOrVq2P+/PmwtbWVTiEiIjIJ633llYiIiIiIiIiIiIiIMnTp0iVV7c5eokQJNGnSRDrDoqxcuRIBAQHSGWbF0dER9erVQ+3atVGjRg1UqFAhywff5c6dG7lz537+cZUqVdJ9Pi0tDdeuXcPZs2cREBCAc+fOISkpyaj9liI8PByTJ0/GvHnzpFPEqPWgzhUrViA0NFTBGjIner0ev/zyC6ZMmSKdYrZiY2Px2WefISUlRTqFCACwf/9+bNq0CZ06dZJOoRxydXV96bTz58/jwIEDAjVkLjZs2IBhw4bBzc1NOkWEGgfaw8PDsW7dOoVryJQCAgLw8OFDFClS5JXnW7duHR49eqRQFSnp5s2buHDhAmrUqCGdIiosLAw//fSTdIbZsrW1RalSpVC8eHEUK1YMRYoUQd68eeHl5QUvLy+4uLjA3t4eDg4OsLOzQ3JyMpKTk5GSkoKYmBiEhoYiJCQEISEhuHHjBq5du4anT59K/7XMzoEDB3D+/HnUrFlTOkWcGh9nAf88vk5LS1Owhsg6BAQEYNy4cdIZiilVqhSWLl0KJycn6RQiIiKTsd5nBERERERERERERERE9JLk5GR89dVXqjpwZvDgwbCxsZHOsBi3bt3ibpv/z9HREQ0bNkSLFi3QpEmTDId9jMHW1hZVqlRBlSpVMHDgQCQkJGDfvn3Ytm0b/vzzTxgMBpNcr7nas2cPmjVrlqWd5KyRNR/UmdlCDU+ePFHVQiuUsZ07d2LkyJHw9PSUTjFLEydORFBQkHQGUTrTp09HvXr1ULBgQekUekMajQbOzs7pTjMYDJgxY4ZQEZmLhIQEbNmyBb1795ZOEWHNi0wlJiZmePpPP/2k2oXVrNm+ffswePDgTD8fHx+PpUuXKlhEStu4caPqB9pnz56d6e8+NdJoNKhcuTLef/99vP3226hUqdJLjwdfxcXFBS4uLgCAAgUKoFy5ci+dJyQkBGfOnMHRo0dx8uRJ/vv/v3nz5nHxGFj3a5+ZDbTrdDps2rRJ4Roiy3fv3j0MHz4cWq1WOkUR+fPnh5+fHzw8PKRTiIiITMp6nxEQEREREREREREREdFLJkyYgMDAQOkMxbz11lto3bq1dIbFSE1Nxf/+9z+kpqZKp4jy8vJC9+7d0b17d5HBSldXV3Ts2BEdO3ZEUFAQVq1ahQ0bNqjqdpk2bRrq16+vyh0hbW1tpRNMJrMBmfnz5/PgZkJycjI2bdqEQYMGSaeYnX379mHPnj3SGRahUKFCqFChAooUKYJixYrBx8cHXl5e8PT0hLOz8/NdBVNTU5/vLJicnIynT58+31UwJCQEd+/exY0bN5CcnCz9VzJriYmJ+Pbbb+Hn5yedQm/I2dkZGo0m3Wk7d+7ElStXhIrInPz666/o2bOnKheIU9tj8rCwMGzcuFGghkztdQPtq1evRlRUlIJFpLR9+/Zh7NixcHd3l04RcePGDezevVs6wyzkz58f3bt3h6+vL/Lly2fS6ypQoADat2+P9u3bIzU1FUeOHMGqVatw8eJFk16vufvzzz/h7++PunXrSqeIsuaBdp1Oh9TUVDg4OKQ7/ciRIwgPDxeqIrJMkZGRGDRoEGJiYqRTFJE7d274+fmhQIEC0ilEREQmZ73PCIiIiIiIiIiIiIiIKJ3vv/8e27dvl85Q1KBBg6z6ACljW7hwIW7duiWdIcbHxweDBw/GRx99BCcnJ+kcAEDhwoUxbtw49O/fH4sXL8bWrVuh0+mks0zuyZMn+OGHHzBmzBjpFMVZ8/CMVquFTqdL93v55s2b2LZtm2AVmZN169ZhwIABqhycy0xERAQmTpwonWG2ihUrhvr166N+/fqoVq1alheicXZ2Ru7cuV95Hp1Ohzt37uDKlSs4efIkTpw4kelua2p24sQJbNu2De3bt5dOoTfw4m6cycnJ+P7774VqyNw8fPgQJ06cQKNGjaRTFGfNj0UyGmhfsmQJUlJSBGrI1G7cuIHAwEAUK1bspc/Fx8fjl19+UbyJlJWcnIy9e/eic+fO0iki5s+fD4PBIJ0hqkCBAhg5ciQ+/PBDkdfJHRwc0LJlS7Rs2RKXL1/G3LlzcebMGcU7zMXChQtVP9Bub28vnWBSCQkJLw20c+EgouxJSUnB0KFDERQUJJ2iCEdHRyxevBilS5eWTiEiIlKE9b7ySkREREREREREREREz61btw5Lly6VzlBUwYIFOViTDbdv38bKlSulM0TY2tqiZ8+e2Lt3L7p37242w+z/VaBAAUyZMgV79+5FrVq1pHMU8euvv+LmzZvSGYqz5uEZAC/tdjxjxgzo9XqhGjI3ISEh8Pf3l84wK+PHj0d0dLR0hlnx9vbGwIEDsWPHDhw4cADjx49HkyZNsjzMnlV2dnYoV64cOnXqhAULFuDMmTPw8/NDp06dXhoCVrsZM2bw+9RCubi4pPv4559/RkhIiFANmaMtW7ZIJ4iw5kWmXhxcf/z4MTZv3ixUQ0rYt29fhqevWrVKNTteqp1adyi/ePEifv/9d+kMMXZ2dhgyZAj27duHtm3bmsWir1WqVMGqVaswe/Zs5M2bVzpHxJ9//omAgADpDFHW/trni4sHhYSE4PTp00I1RJbHYDDgq6++wsWLF6VTFGFra4t58+ahZs2a0ilERESKse5nBEREREREREREREREhKVLl2Ly5MnSGYr75ptvXtoJgzJmMBgwceJEVez8/aKKFSti06ZNGDduHNzc3KRzXqto0aJYs2YNvvnmG7McvDemtLQ0TJo0SXU7aVn7QZ3/HaDx9/fn8DK9ZOvWrdIJZmP37t04evSodIbZqFixIubMmYNjx45h1KhRKFeunKLX7+DggAYNGmDq1Kk4fvw4Ro8ejbfeekvRBnMVHR2NBQsWSGfQG/jv4gyxsbFYsWKFYA2Zo6NHj6pywQqNRiOdYDJ6vR6pqanPP16xYgW0Wq1gEZnawYMHXzotMTERq1evFqghCefPn0dYWJh0huKWLFkinSDG29sbq1atwhdffGGWi3G1bdsWu3btUu3w3qpVq6QTRFnzwkHAywPtW7Zs4WKeRNkwZ84c7N+/XzpDMRMmTEDTpk2lM4iIiBQlv9waERERERERERERERGZhE6nw6RJk7Bx40bpFMXVr18fzZo1k86wGFu2bMGff/4pnaG4Dh06YNKkSRa38IFGo0GfPn3QqFEjfP7551a9i/mFCxewb98+fPjhh9IpirH2gzr/O9C+ePFiwZL0NBoNihYtikqVKqF48eIoWrQo8ufPDy8vL3h5ecHR0RGOjo4wGAzQarVISUlBTEwMoqKiEB4ejocPH+LBgwe4efMmbt68+dLOl5R1hw8fRlxcHNzd3aVTRMXHx2PGjBnSGWahVKlSGDFihFk9tsudOzf69euH3r17Y8OGDVi4cCEiIyOls0Rt2LABnTt3VnyhAcoZV1fX5/+/evVqxMXFCdak5+npicqVK6NUqVIoVqwY3nrrLeTJkwdeXl5wcXGBg4MD7OzsoNVqkZqaivj4eERFRSEyMhLBwcF4+PAh7ty5g2vXriEiIkL6r2OxtFotdu/ejR49ekinKMraH5OnpqbCwcEBsbGxYosJ5c+fHzVr1kTZsmVRqlQp5M+fH/ny5YOzszOcnJyQlpb2/Gc7PDwcoaGhuHv3Lm7fvo0LFy4gJCREpNsS3bhxA1FRUfD09Hx+2saNG8UXq/Dw8ECNGjVQoUIFlCpVCoUKFUK+fPng5uYGR0dH2NjYIDk5GYmJiYiIiMCTJ09w//59/P3337hw4QLu37+vugXw3pRer8f+/fvRu3dv6RTF3Lp1C8ePH5fOEFGxYkUsW7bM7HdA9/Lyws8//4wJEyaobmG7o0ePIigoCIULF5ZOEWHti3kmJyc//3+DwYBt27YJ1hBZlo0bN8LPz086QzGffvopOnfuLJ1BRESkOA60ExERERERERERERFZoaCgIHzzzTc4d+6cdIriHBwcMH78eOkMixEdHY05c+ZIZyjKzs4OX3/9NXr27CmdkiPFixfHunXr8MUXX1j1Qbrz58/HBx98AHt7e+kURVj7QZ06nQ7APzvEBQQEiLYULFgQjRo1Qv369VG7dm3kypUrS19nZ2cHZ2dneHh4oGjRoi99XqfT4erVqzh16hSOHz+OS5cuGTvdqiUnJ+PIkSPw9fWVThH1ww8/IDw8XDpDlIuLC4YNG4Y+ffrAzs48D2+xtbVFt27d0LZtWyxevBi//PIL0tLSpLNEpKWlYdq0aVizZo10CmWDm5sbgH8W0ZDeqdfZ2Rn169dH/fr18e6776JIkSJZ+rpni864u7ujQIECGZ7n0aNHOH369PP75sTERGOmW719+/ZxoN3KPNuRff369Yr+PFSsWBEtW7ZEs2bNMnwc/V+2trZwcHCAm5sb8ufPj8qVK+ODDz54/vmHDx/i0KFD2LNnD65du2bqdItmMBhw9uxZtGjRAsA/CxqsXLlSpKVw4cJo1aoVPvjgA1SsWBEajeaV53d1dYWrqyu8vb1Rvnx5NGrU6Pnnnj59iqNHj2L//v04ffo0d799jcOHD6tqoF1Nw3D/ValSJaxcuRK5c+eWTskSBwcHfPfdd3BxccGvv/4qnaMYvV6PtWvX4uuvv5ZOEWHtj7P+O9B+5swZBAcHC9YQWY6TJ09i0qRJ0hmK6dy5M4YPHy6dQUREJMI83/EjIiIiIiIiIiIiIqI3YjAYsG7dOsyZM0e1B+n3798fxYoVk86wGIsWLUJUVJR0hmKcnZ2xZMkS1K1bVzrFKFxdXbFkyRJMnz7dag/8fPDgATZu3Iju3btLpyjC2g/qfDY88+OPP4pcv4uLC9q2bYs2bdrg7bfffu0AxZuws7NDtWrVUK1aNQwbNgxBQUHYuXMnNmzYgLCwMKNfnzU6ePCgqgfab926hbVr10pniKpatSrmzp1rMTvWubm54auvvkLTpk0xatQoPHr0SDpJREBAAE6cOIEGDRpIp1AWPRto//XXXxETE6P49Ws0GtSrVw++vr54//334eLiYpLrKVSoEDp16oROnTohKSkJR48exfr168UX17EUFy5cQEREhNnv9GpM1r7IlFarhVarVeQ5pJ2dHdq0aYOePXuiYsWKRrvcIkWKoH///ujfvz+uXr2KlStXYt++fRxqzoS/v//zgfY9e/Yo/rykfv366NevH959912jPQfLkyfP89/twcHB+PXXX/Hbb7+lGySkf124cAFxcXFwd3eXTjG58PBw7Nu3TzpDccWLF8fPP/+c5cX6zMnYsWPx9OlTVd1u27Ztw8iRI+Hg4CCdojhTvBZnTlJTU5///5YtWwRLiCzHrVu3MGLEiOeL4Vq7pk2bYsKECdIZREREYqz7lVciIiIiIiIiIiIiIhU5d+4cunXrhsmTJ6t2mL1MmTIYMmSIdIbFCAoKwvr166UzFOPk5GRVw+zP2NraYvz48fj000+lU0xm8eLFqvm9Zu0HdaalpeGvv/7C6dOnFb3eAgUKYOzYsThx4gQmTZqEmjVrKvZvXbhwYQwbNgxHjx7F7NmzuehKFpw6dUo1P/MZmTx5smoO4MxIv379sG7dOosZZv+vGjVqYPv27WjevLl0ipjvv/8eBoNBOoOyKFeuXEhMTMQvv/yi6PU6ODigW7du2LdvH1asWIE2bdqYbJj9Rc7OzmjVqhXWrFmDHTt2oHnz5lb/+Cun9Ho9Dh06JJ2hKGsfaNfr9di7d6/Jh5rbtGmD/fv3Y8aMGUYdZn9RpUqVMG/ePOzatcvqnu8by5kzZ57/v5K/82vXro1NmzZhxYoVqFevnsl+37711lv4+uuvceTIEXz00Uf8vZ4BnU6HEydOSGcoYuPGjc8X01MLFxcX/PjjjxY5zA78c787a9YsVK9eXTpFMdHR0Th+/Lh0hghrX8wzJSUFABAfH4/Dhw8L1xCZvydPnmDw4MGIj4+XTlHE22+/jXnz5ln970IiIqJXse5XXomIiIiIiIiIiIiIVODChQvo06cPevTogQsXLkjniHFycsK8efPg5OQknWIx5s2bp5oDPB0cHLBo0SKrPrh9+PDh6Nu3r3SGSURERGDVqlXSGYqw9gPv9Xq9oruze3p64ttvv8XBgwfRq1ev5zvRSrCzs0Pbtm2xZ88efPvtt3B1dRVrMXfJycmqGbZ40ZEjR3D+/HnpDBH29vaYMWMGRo8eDTs7O+mcN5YrVy4sWLAAvXv3lk4Rce3aNezfv186g7LI1dUVv/76K6KiohS5PhsbG3Tu3BmHDx/GhAkTULx4cUWuNzPlypXDDz/8gM2bN5t02NYaqG0YRw2PyU35/KpEiRJYt24d5syZo+gCNaVKlcIvv/yCGTNmwNnZWbHrtQSBgYEICQmBv78/bt68afLr8/DwwPfff481a9agSpUqJr++Z/LmzYvp06fj119/Rf78+RW7Xkvxxx9/SCeYXFpaGjZu3CidobipU6eiZMmS0hk54uDggNmzZ6vqtZJt27ZJJ4iw9iHOZ++3fPXVV0hKShKuMW9Tp05F2bJlUblyZURGRqb73NatW1G2bNks/9m6dSsA4OzZsyhbtiw+++wzAEB4eDgqVaqE2rVrP19sQE3ef//9LP8bfv311wBe/jfMzLPbaObMmc9PCw4OzvTyy5Urh5o1a6JLly5Yu3Yt0tLSkJiYiCFDhiAkJMSk/w7monTp0liyZAkcHR2lU4iIiERZ7juAREREREREREREREQqFh8fj71792LLli3466+/pHPMwpgxY1C6dGnpDItx9epV7Nu3TzpDERqNBnPnzkWDBg2kU0xu9OjRiI2NxZYtW6RTjG7VqlXo06eP1Q8mWPvwTO/evREdHW3y69FoNGjfvj2++uoreHp6mvz6ssPOzg7du3dHkyZNMH78eJw8eVI6ySydOHFCdbtc6/V6fP/999IZIpycnLB48WLUq1dPOsUoNBoNxowZAy8vL1XeposXL0aLFi2s/j7NGqxcuVKx66pYsSImTpyo6GBjVlWqVAkbN27EihUrsGjRIqSmpkonmZ1z584hJSVFNQfeW/vvr3bt2iE2NtYkl92hQweMHz8eLi4uJrn8rGjfvj0qVaqETz/9FPfv3xfrMDetW7eGTqcz+fXUq1cP3333HXx8fEx+XZmpWbMmtm3bhlGjRuHUqVNiHebmzJkz0gkmd+LECYSGhkpnKKpRo0Zo1aqVdIZRFC5cGGPGjMHYsWOlUxTxxx9/ICoqyuxetzI1Gxvr3o/x2UD7rVu3hEv+ZW9vj9KlS6N8+fIoWrQoChcujHz58sHLywtJSUno0KEDKlSogK1bt0Kr1SItLQ0tW7ZESEgItm/fDgCIi4vD06dPERERgYiICAQHB+PKlSsIDw9HYmJitpsSExOxfft25M2bFxEREdi6dSsGDBjw/PN16tTBggUL0n3NiRMnsHnzZrRo0QItW7ZM97nKlStneD3e3t744IMPsHfvXuzbtw++vr7ZbrVk3377LfLkyfP849DQUHz33XcoVaoUPv3003TnLVSokNGut3Dhwhg1alS603Q6HUJCQrBz505MnjwZR44cgYODA65du2a06zVnBQoUgJ+fH3Lnzi2dQkREJI4D7UREREREREREREREFiIxMRFnzpzBgQMHcODAAe7u8B8tWrRA586dpTMsypw5c2AwGKQzFDFgwAA0a9ZMOkMRGo0GU6ZMQXh4uNXtvBUVFYUNGzagT58+0ikmZe3DM0oMs5csWRKTJk1CrVq1TH5dOVGwYEGsWLECW7duxZQpU97o4E9rpsbBk+3bt+Pvv/+WzlCcs7Mzli1bhtq1a0unGN2QIUNgY2ODuXPnSqco6vbt2zh27Bjee+896RQyA66urvjss8/Qs2dPs96N0c7ODoMHD0bTpk3xv//9TzUH1WdVSkoKzp07h/r160unkBGYYpjd1dUVkyZNQps2bYx+2W+idOnS2LJlC0aPHo1Dhw5J55iF+Ph4k16+vb09vvzyS/Tp08csntd6eXnBz88PCxYswNKlS6VzzEJISAgePnyIIkWKSKeYzLPBS7VwcnLC+PHjpTOMqmPHjti1a5cqFmDQarU4duwYOnToIJ2iKHO4jzAlnU6H0NBQPHr0SKxBo9GgWrVquHjxItzc3ODv7w8HB4cMzxscHPz8azQazfPzPVt4oEiRInB1dX3l9YWFheH27du4evUq5s+fD3t7ewD/DvdnZOfOnYiLi8Po0aMxb948rF+/Hv3793/+/VGoUKGXBqwjIiIAAKVKlUKLFi1e98/wXPfu3bF3716sX79edQPtjRo1wltvvfX849u3bwP453FSdv4NsytXrlyZXn6/fv3Qt29fVb326+HhAT8/P+TPn186hYiIyCxY9xJXREREREREREREREQWTKfT4caNG1ixYgX69OmD2rVr45NPPsH27ds5zP4fxYoVw9SpU6UzLMqFCxfg7+8vnaGIOnXq4IsvvpDOUJStrS1mzpwpuhuaqfz8889Wv2OmtR/UaWpdu3bF9u3bzX6Y/b86dOiAX3/9Ffny5ZNOMSuPHz/GvXv3pDMUk5qaioULF0pnKM7Ozg4LFiywymH2ZwYNGoRu3bpJZyiOg2ME/LMr+65du9CnTx+zHmb/r5IlS2Lt2rWqWRArO06ePCmdoBg+Js+efPnyYePGjWYzzP6Mq6sr5s+fb9JhHfqHi4sLlixZgr59+5rVz4+NjQ2++OIL1b0u9Cpnz56VTjCZ+Ph4HD16VDpDUT169EDhwoWlM4xu1KhRZvW7xJSOHDkinaA4a79t9Xo9du7cKbKYcK5cuTB27FgcP34c69evB/DP6y6ZDbMbi4+PDxo0aIBevXoB+Oex4YULF7B582ZMmDABHTp0QJkyZdI9J1y3bh2cnJzQsmVLtGrVCkFBQThx4oRJ+mrWrImyZcvi4sWLzwe6SY6tra2qBrudnJywZMkSlCpVSjqFiIjIbHCgnYiIiIiIiIiIiIjIDERHR+PKlSvYsmULJk+ejI8//hg1atSAr68vZs2aBX9//1fuZqBW3t7e8PPzg7u7u3SKRVHLgJG3tzfmzZtnMcMzxuTl5WWVf/fQ0FDs2LFDOsOkrP2gTlNxcHDAtGnTMHHiRJMfpGkKFStWxKZNm1C2bFnpFLOilsVXAGDjxo14/PixdIbiJk6ciEaNGklnmNz48eNVt1v5pUuXcO7cOekMEtSuXTv89ttvL+2qZwmcnZ3xww8/oH///tIpZkUNO6U+w8fkWVe4cGGsW7fObAc07OzsMHfuXA61m5CnpydWrVqFBg0aSKdkasiQIfj888+lM8zChQsXpBNM5uDBg0hJSZHOUIyTkxP69esnnWESlStXRvPmzaUzFHHq1CkkJydLZyjK2h9n7d69+/kwuVLq1q0LAHj//ffRq1cvs1jo1sHBAZUrV0a3bt3w3XffYdeuXRgzZgwA4Pz587h16xZatGgBNzc3dOzYEcA/Q+6m8myhwQ0bNpjsOihrjhw5gp07d0pnKMLW1hbff/89atSoIZ1CRERkVuykA4iIiIiIiIiIiIiIrIVOp4NWq33+X61Wi9TUVCQkJCA6Ovr5n5iYGERFReHRo0cICgpCcHAw4uLipPMtjqurK5YtW2aVu9CY0o0bN3D8+HHpDEWMGzcOefPmlc4QU7NmTXz22Wf4/vvvpVOMauXKlejUqZN0BpmR/PnzY+HChahSpYp0So7kz58f69atw+DBg3H+/HnpHLNw+fJldO/eXTrD5HQ6HVauXCmdobiuXbuq5ve5jY0NZs2ahfbt2yMoKEg6RzFr1qxBrVq1pDNIYXZ2dhg9evTz3fkslUajwVdffYX8+fNj2rRp0jlm4e+//0ZSUhKcnZ2lU0zO2getjKVUqVJYuXKlWQxNvcqzofaEhAST7fypVvnz58cvv/yC4sWLS6e81ieffILExEQsW7ZMOkXU1atXpRNM5uDBg9IJiurUqRPy5MkjnWEyn332Gfbv3y+dYXJJSUnw9/dHkyZNpFMUY+2Ps5R8rGFjY4PmzZtj1KhReP/99xW73jf17LZfu3YtADx/TahcuXKoUqUKjh8/jsePH6NgwYJGv+62bdtizpw52LFjB0aNGqWK5zTm6OrVqxg1ahQMBoN0iiImTZqkugUuiYiIsoID7URERERERERERESUbY8ePeIOoiTK3t4eCxcuRIUKFaRTLI5admdv2LAhd2ADMHDgQOzbtw83b96UTjGae/fuwd/f//nOM9bG2g/qNLbixYtj9erVyJcvn3SKUbi5uWHJkiXo3r07bt++LZ0j7tKlS9IJiti9ezcePXoknaGoypUrP9+ZSy3c3d0xb948dOvWDVqtVjpHEYcPH0ZISAgKFCggnUIKcXBwwKJFi9CoUSPpFKPp1asXoqKisHjxYukUcTqdDteuXUPNmjWlU0yOj8lfr1ChQli9erXFDFPa2dlhzpw56NChg+oed5mKu7s7li9fbhHD7M988cUXuHLlCvz9/aVTxNy9exfJyclwcnKSTjGqhIQEnD59WjpDUV27dpVOMKmSJUuidu3aCAgIkE4xuTNnzqhqoJ1yrnjx4mjQoAFWr16Nfv36SedkS3h4OA4dOoSSJUume17x8ccf4/Lly9iwYQO++OILo1+vi4sLfH19sWbNGuzduxcfffSR0a+D/qXX6xEbG5vutMePH2PAgAFITEwUqlLWiBEjVLOQJxERUXbZSAcQERERERERERERERFlh52dHWbMmIF69epJp1icwMBAVexW5OjoiG+//VY6wyzY2tpi/Pjx0hlGt27dOukEMgPWNsz+TK5cueDn52eS3YgsTWBgIGJiYqQzTMpgMMDPz086Q1FOTk6YNWsWHBwcpFMUV6VKFZMcmG2u0tLS8Ntvv0lnkEIcHBzw448/WtUw+zM8EP1fallshl7Nzc0NP/30k8UMsz/j4eGB+fPnw97eXjrF4tnb22PRokUoU6aMdEq22NjYYN68efDx8ZFOEZOWlmZVix4+c+LECaSkpEhnKKZy5cooWbKkdIbJWfvQ/jNnz56VTlAUFw56czY2Nhg4cCB27NiBixcvonTp0qhSpYp0VrZs2LABWq0WH3/8cbrTW7VqBVdXV2zevNlkiwA++52yYcMGk1w+/evGjRuoVatWuj/t2rVDVFSUdJoiunbtiqFDh0pnEBERmS0OtBMRERERERERERERkcVwcnLCokWL0Lp1a+kUi/Trr79Cr9dLZ5jcoEGDULhwYekMs1GzZk20bdtWOsOojh49irCwMOkMEmStw+zP+Pj4wM/PD25ubtIpogwGA65cuSKdYVJHjhzB33//LZ2hqJEjR6JEiRLSGWL69OmDChUqSGcoZuvWrdDpdNIZZGLPhtkbNmwonWIykyZNsuq/X1ZxoJ1sbW0xf/58lC5dWjrljVSpUgVfffWVdIZF02g0mDFjBt555x3plDfi5eWFefPmqXqg8tq1a9IJRvfHH39IJyjK19dXOkERH3zwAfLmzSudYXK3bt1CdHS0dIZi1Pz7N6c++OADjBo1Cg8ePMCVK1eMssu4wWAA8M9jPFPT6XTYuHEjACA4OBgLFy58/mfFihXIly8fIiIicOjQIZNcf8mSJVG3bl1cunTJKhd3MZas/ow++96xsXl5JK1YsWJYvXo1Vq9ejZ9//hmVKlUyaqM5a968ORfcJiIieg0OtBMRERERERERERERkUXIlSsXVqxYgSZNmkinWKSEhARs27ZNOsPkcufOjT59+khnmJ2vvvoKrq6u0hlGo9PpuJOKihUpUsSqh9mfKVmyJMaOHSudIc7aB+dWrVolnaCoChUqoEePHtIZomxtbTFx4kTVHMQfHh6OEydOSGeQCdnZ2WHRokVWP+xta2uLGTNmWNyO1MZ2+fJl6QQS9vXXX6NBgwbSGTnSo0cPVKxYUTrDYvXp08fiF5qsWbOmUYYALZU1DrSfPn1aOkFRzZo1k05QhL29Pd5//33pDJPT6/U4f/68dAaZsapVq6Jy5coICAiAVqvFli1bYG9vj3bt2r3y6zw9PRETE4Pk5ORMz/Nsx2wlFo84cuTI80Vq16xZg0WLFqX7c//+fQDAunXrTNbQvXt3AMD69etNdh2WztPTEwBeu6Dws+8db2/vlz7n6uqKOnXqoE6dOti3bx+uXr1q/FAzVKtWLcyZMyfDIX8iIiL6F+8piYiIiIiIiIiIiIjI7Hl7e+PXX39FzZo1pVMs1o4dOxAfHy+dYXK9evVS/Y7GGfH29kbXrl2lM4xq8+bN0Ov10hmkMBcXFyxevNjqh9mf6dChg2oOVM+MNQ/O3b17FwEBAdIZitFoNBg/frwiu36Zu6pVq6JTp07SGYrZsmWLdAKZ0Ndff41GjRpJZygiT548mDp1qnSGqJCQEDx58kQ6g4Q0aNAAvXr1ks7IMRsbG4wfP141i8sYU/ny5TFy5EjpDKP48ssvkTt3bukMEdY20H737l2EhIRIZyimTJkyqnlNBIAqBtoBqGbYk7KvefPmWL16Nbp27YqoqCj4+/tjz549aNy4Mby8vF75tRUrVoTBYHjlYpHPFgSpVq2aMbMztHbtWgDAr7/+ilu3bmX4p3z58jh37hz+/vtvkzS89957KFCgAPbu3WuSy7cGRYoUgZubG/7+++9Xvqf47HunatWqmZ5n2bJl2Lhxo9EbzVGZMmWwZMkSODg4SKcQERGZPQ60ExERERERERERERGRWatatSo2btyIsmXLSqdYtN9++006weTc3Nys4uB6U+nTp49VHUwTFhaGs2fPSmeQgjQaDWbOnInSpUtLpyhq8uTJGe50oxbWvEO7Gu6b/6tFixaoUaOGdIbZGD58uFXdL7/K77//jujoaOkMMoEOHTqgZ8+e0hmKeu+999C5c2fpDFHWvNgMZS537tyYNm2adIbRVK9eHb6+vtIZFsXZ2Rlz5861mscvXl5e+Oyzz6QzRNy5cwepqanSGUajpkXCAKB+/frSCYqqW7cuXFxcpDNMztoWmiDjqFGjBubPnw8nJye0bNkSrq6uWLx4McLDw/HRRx+99uufvVcyY8YMxMbGvvT5mzdvws/PD7lz50bHjh2N3v9fd+/exdmzZ1GqVCnUqlUr0/N16dIFgOleM7O1tUXnzp0RExNjksu3Bo6OjujSpQsSEhIwY8YMpKWlvXSebdu24dSpU6hRowaqV6+e4eXs27cP8+bNM3WuWShYsCD8/Pzg7u4unUJERGQRONBORERERERERERERERmq2/fvli7di0KFiwonWLRAgICcPv2bekMk+vRowdy5colnWG2vL290b59e+kMo9qxY4d0AiloyJAhqtyt3NPTE2PHjpXOEBMVFWWVu+0lJiZi+/bt0hmKsbW1Ve3AUGZ8fHzw8ccfS2coQqvV4vDhw9IZZGSVK1fGpEmTpDNEjB49Gnnz5pXOEHP9+nXpBBIwfvx4+Pj4SGcY1RdffAF7e3vpDIvx9ddfo2TJktIZRtW1a1cUKVJEOkNxOp0O9+7dk84wmgsXLkgnKKpevXrSCYpycHBQxRA/B9opIx07doSNzT/jPi4uLmjVqhUuXrwIb29vNGzY8LVf36hRI3z++ee4ceMGWrZsiXnz5mHr1q3YsmULxo0bh86dO8PW1hYLFy5Enjx5MryMw4cPY//+/Rn+CQsLy/Lf5dnu7F27dn3l+dq0aQM3Nzfs2LEDiYmJWb787Pj444/5GPA1Pv/8czRu3BibNm1Cx44dsXjxYuzcuRNr167FkCFD8PXXX6N06dJYsGBBhl+fmJiI0aNHw2AwKFyuPA8PD/j5+VndcyUiIiJT4kA7ERERERERERERERGZHQ8PDyxZsgRff/01Dywxgs2bN0snmJydnR26d+8unWH2BgwYAFtbW+kMozl48CCSk5OlM0gBDRo0UPUwbMuWLVG1alXpDDGBgYHSCUa3e/duxMXFSWcopl27dihRooR0htkZNGgQHB0dpTMUsX//fukEMiJPT08sWrTIanbpzS5XV1cMGzZMOkOMNd4v06s1bdoUbdq0kc4wOh8fH6v8e5lC1apV0blzZ+kMo7O1tUWfPn2kM0QEBQVJJxiN2gbaq1SpIp2guBo1akgnmNzTp08RGhoqnUFmomLFigAAjUaT7vROnToBAHx9fbP8Gv8nn3yC3377DfXq1cPu3bsxceJEfPfdd7hy5Qr69OmDPXv2oE6dOpl+/VdffYURI0Zk+OfKlStZakhISMD27dvh7OyMdu3avfK8rq6uaNu2LeLj47Fz584sXX525cmTB82bNzfJZVsLe3t7/PTTT5g7dy7y5s2LdevWYcyYMVi0aBHi4+Mxfvx4bN26Ffny5cvw6x8+fIiUlBSFq5Xn7OyMn376yeoWfSIiIjI1O+kAIiIiIiIiIiIiIiKi/6pTpw5mzJjBXdmNJCkpCYcOHZLOMLkGDRpkevAM/atIkSJo3Lgxjhw5Ip1iFAkJCTh8+DBat24tnUIm5O7ujmnTpj3fkUit/ve//6FHjx7SGSLu37+PunXrSmcYlRoWm3lGo9FgwIAB0hlmycfHBy1btsT27dulU0zuzJkziI6OhoeHh3QKGcG4ceOQP39+6QxRH3/8MVatWqXK4W41/p3VzN7eHl9//bV0hskMGDAA27ZtU8XukW9Ko9Fg3LhxLw3VWYuPPvoIixYtQmRkpHSKoh4+fCidYBTh4eEIDg6WzlBMkSJFkCtXLukMxallgb+7d++q/jE2AdWrV8fq1aszXDysSpUquHXr1kunv/XWWxme/t/LrF69erY6jh49mq3zA/8Mo2fU4erqmq3FRyZMmIAJEya8dHqPHj1e+9ponTp1Xvlv8czcuXOxe/fuLDdZizJlymTp3+eZ1q1bZ+u9F3d3dxQvXhz3799/kzyLYmdnh/nz56NatWrSKURERBZH3e/4ExERERERERERERGR2cibNy9mzZqF1atXc5jdiI4cOYLExETpDJPr2LGjdILF8PX1lU4wKjUeeKY2o0ePho+Pj3SGuFq1aqFJkybSGSKsbXDuwYMHuHTpknSGYpo2bcqdil6hS5cu0gmK0Gq1OH78uHQGGUGTJk24mBD+OXj9yy+/lM4QYW33y/Rq3bt3R+HChaUzTKZkyZJo3LixdIZZa9++vVXvCO3k5ITu3btLZyjOWgbar1+/Lp2gqGe7NqtNxYoVYW9vL51hcmoYAKVX8/HxwcKFCzMcZicyd6mpqRg+fLhqfpdNnjyZzyOIiIjeEAfaiYiIiIiIiIiIiIhIlI2NDbp164b9+/ejXbt20jlWZ+fOndIJJpc3b14eOJINjRs3tqrdUU+fPq2KRRvU6p133kGnTp2kM8zGp59+Kp0gwtoG59Rw3/xfvXv3lk4wa9WrV0e5cuWkMxTxxx9/SCdQDrm7u2PSpEnSGWajWbNmKFu2rHSG4hISEhAeHi6dQQrInTs3hg4dKp1hcj179pROMFuurq4YOXKkdIbJde3aFXZ2dtIZirKWXc3VNtBeoUIF6QQRjo6OqnjOZG2vfVD22NnZ4YcffoC3t7d0CtEbGTduHAICAqQzFDFy5Eh89NFH0hlEREQWiwPtREREREREREREREQkplatWti4cSMmTJgAd3d36RyrExkZiVOnTklnmFy7du1Ud+BxTjg4OKBFixbSGUaTkpKCEydOSGeQCTg7O2Pq1KnSGWalYsWKqF69unSG4qztoO5du3ZJJyimTJkyqFWrlnSG2evYsaN0giJOnjyJtLQ06QzKgdGjR8PHx0c6w6yocVdfwPrumyljn3zyCXLnzi2dYXLvvPMOh8cy0bNnT1X82+TJkwfvvvuudIairGWH9hs3bkgnKKp48eLSCWJKly4tnWByatnVmDI2YsQIVKtWTTqD6I0sXLgQO3bskM5QRI8ePTB48GDpDCIiIovGI3uIiIiIiIiIiIiIiEhxtWrVwrBhw1C3bl3pFKu2f/9+6HQ66QyT+/DDD6UTLE779u2xfv166QyjOXLkCJo3by6dQUbWv39/FC5cWDrD7HTv3h0XL16UzlDUo0ePoNVqYW9vL52SY5cuXcKDBw+kMxTTpUsX6QSL0KxZM0ybNg0Gg0E6xaSio6Nx6dIl1KhRQzqF3kDFihVVs/hCdrRt2xZz5sxBbGysdIqiAgMDuWCJlfPy8kK3bt2kMxRha2uLVq1a4ZdffpFOMSuOjo7o1auXdIZi2rRpgz/++EM6QzGPHz+GTqez+AUix40bh+HDhyMxMfH5n/j4+HQfP/uTkJCAhISEDD+XmJgIrVYr/dd5rSJFikgniFHD3/3Ro0fSCSSkVq1aGDBggHQG0RvZvn07Fi1aJJ2hiBYtWmDs2LHSGURERBbPsl+JICIiIiIiIiIiIiIii1K7dm0MHz4cderUkU5RhWPHjkknmFyBAgVQqVIl6QyLU61aNeTLlw9PnjyRTjGK48ePW8WB2PQvDw8P9O3bVzrDLDVv3hwzZsxARESEdIpidDodgoODrWI3uj179kgnKMbe3h6tW7eWzrAIPj4+qFq1Kv766y/pFJM7e/YsB9ot1MiRI6HRaKQzzI6zszM6dOigukFY7iBq/bp16wZHR0fpDMW0adNGdT/Hr9OhQwfkyZNHOkMxTZs2hYuLCxITE6VTFKHT6RASEmLxi8jly5cP+fLlM8plpaamZjjwntkg/LPTMhuST0hIMPqQvKXfXjlRtGhR6QSTCwsLk04gAY6Ojpg6dSpsbGykU4iyLSAgAOPGjZPOUESdOnUwe/Zs/qwSEREZAY/oICIiIiIiIiIiIiIik3JwcECzZs3QrVs3vP3229I5qpGcnIyzZ89KZ5jce++9J51gserXr4+tW7dKZxhFdHQ0/vzzTy6WYUUGDRoENzc36Qyz5ODggI4dO2Lp0qXSKYp6+PChVQy0HzlyRDpBMU2aNEHu3LmlMyzGBx98oIqB9nPnzuGTTz6RzqBsql27NurXry+dYba6deumukHY4OBg6QQyIUdHR9Xszv5MpUqVUKxYMQQGBkqnmAVbW1t069ZNNcPdzzRs2BD79++XzlDM/fv3VbVoQVY4OjrC0dERnp6eRrk8rVabbsg9KSkpw+H3/56elJT0fEj+v6c7OzsDgOp+Lp8x1sIF5iwxMRHh4eFwdXWVTjGp5ORk6QSzMmjQIOTLl0+1P9tkWsnJySb73goMDMSwYcOMvniLOSpTpgzmzJkDnU4HnU4nnUNERJQjer0eKSkpyJ07t9hmARxoJyIiIiIiIiIiIiIikyhevDg6d+4MX19fox0ESFnn7++PlJQU6QyTe/fdd6UTLJY1DbQDwIkTJzjQbiV8fHzQo0cP6Qyz1rJlS9UNtD99+lQ6Icdu3bqlqgHAtm3bSidYlEaNGmH27NnSGSZ38eJFaLVa2NvbS6dQNowcOVI6wawVLVoU5cuXx40bN6RTFGMN98uUubZt26pyyLVBgwYcaP9/tWrVQlxcnKp+rwFAsWLFpBMUdeXKFasfnDU3tra2cHd3h7u7+xt9vdp+Jv9LLcO+/v7+KFSokHSGSQUFBUknmA0fHx/UrFlT1T/bZFp37txBTEyM0S83NjYW3377LWJjY41+2ebG29sbI0aM4O8uIiKyOsWKFRN7/Y8D7UREREREREREREREZDS5c+dGkyZN0KFDBw6WCvv999+lE0zO1taW32c5UK9ePdjY2ECv10unGIW/v790AhnJ0KFD4ejoKJ1h1sqVK4e33npLVcPR1jA4d/ToUekExbi4uKBBgwbSGRalVKlS8PT0RFRUlHSKSSUmJuL69euoWrWqdAplUZMmTVC9enXpDLPXtGlTVQ2iWMP9MmWuT58+0gki3n33XaxZs0Y6wyz07t0b5cuXl84wqrS0NNy+fRtlypSBra1thufJkyePqhYOc3V1NdvbOSu3F5kPpW4ve3t7q98J2MPDQ7GfS6mfMy5u9q+vvvoKVapUee35+DuR3lSpUqVQsGBBo15mSkoKBg0ahCdPnhj1cs2Rh4cHli9fjqJFi0qnqB5/D1oW3l6Wh7eZZcnp7ZWUlITAwEDR9+I50E5ERERERERERERERDmSL18+vP/++/jggw9Qp04d2Nnx7Qdz8Mcff0gnmFz58uXfeEcj+udgnEqVKuHy5cvSKUZx/fp1xMTEIHfu3NIplAOenp7o0KGDdIZF+OCDD/Dzzz9LZygmMjJSOiHHjhw5Ip2gmAYNGsDJyUk6w6JoNBrUrFkThw4dkk4xuStXrnCg3YL0799fOsEifPDBB1i4cKF0hmKs4X6ZMla9enWUKlVKOkNEnTp1VDEs+To+Pj5o3LgxbGxspFOMKi0tDcA/Cy9ldsB3sWLFUKpUKdy5c0fJNDHx8fFwcXGRzshQVm4vMh9K3V4eHh4IDw832eWbg5SUFMV+LqV+zvhawT+qVKmC1q1bZ+m8/J1Ib8rJycmov1MMBgO++eYbq3lP6VVcXFywfPlys138R234e9Cy8PayPLzNLIuxbi/J132s6xUnIiIiIiIiIiIiIiIyOTs7O1SpUgUDBw7E+vXr8ccff2DixImoV68eh9nNxN27d/H48WPpDJOrVq2adILFe+edd6QTjEav1+PMmTPSGZRDnTp1goODg3SGRWjatKl0gqIsfSfYJ0+e4OrVq9IZilHb96ex1KpVSzpBEVeuXJFOoCwqU6aMar4vc6ps2bKq2rUtNjZW9UO/1qpNmzbSCWJcXV254AqAdu3aWd0we3a8++670gmKiY6Olk4gyhZPT0/pBJOLi4uTTiCFfPrpp9IJRNk2Z84c7N+/XzrD5Ozs7DB//nxUqVJFOoWIiMgqqfdVJyIiIiIiIiIiIiIiyhJ7e3tUr14dgwcPhp+fHwICArBp0yaMGjUK1atXh0ajkU6kF5w7d046QRE80DznKlWqJJ1gVP7+/tIJlAO2trbo0qWLdIbFqFGjBjw8PKQzFGPpA+2nT5+GwWCQzlCERqNB/fr1pTMsUuXKlaUTFMGBdsvRvXt36QSL0qhRI+kExRgMBu7SboXs7OzQsmVL6QxRtWvXlk4Q1759e+kEUXXq1JFOUExUVJR0AlG2qOE1kNjYWOkEUkDlypXRsGFD6QyibNm4cSP8/PykMxQxdepUVT2/JyIiUhq3SSEiIiIiIiIiIiIiokxpNBpUrVoVpUuXRu7cuZGYmIigoCAUL14cjo6O0nmUiT///FM6QRHWNowtwdoG57hDu2Vr3LgxChUqJJ1hMWxsbFC9enUcO3ZMOkURlj40d/bsWekExVSsWBFeXl7SGRapTJky0Gg0FrH4gb29PVxdXV/64+LikuH///djd3d36XzKAnd3d7Rt21Y6w6K8/fbbWL16tXSGYiIjI+Hj4yOdQUZUv3591d+HV6xYUTpBVOXKlVGiRAnpDFEVKlSQTlAMB9rJ0qhhh/b4+HjpBFJA3759pROIsuXkyZOYNGmSdIYivvzyS9Uv8ERERGRqHGgni5am1yMyOVE6g4iIiIiISDFeTi6wtbGRziAiIiIVMRgMOH/+PM6fP5/udBsbGxQuXBglSpRA6dKlUb58eVSsWBFFihThju1mQA0D7U5OTihatKh0hsUrWLAg8uTJY/E7Hz9z//59REVFqeIAV2vEXWCzjwPtlkNNA+3cnf3Nubm5oWDBgnj06JHRL9vR0THTAfPsDqa7urrC3t7e6I1kXtq3bw8XFxfpDItSo0YN6QRFWctzCPpXmzZtpBPEqWmYOSPvvfeedIK4ggULwsPDA9HR0dIpJseBdrI0anhsmpSUJJ1AJlagQAE0b95cOoMoy27duoURI0ZAp9NJp5hcr169MGjQIOkMIiIiq8eBdrJYW25dwudHt+JJIlejIyIiIiIi9cjn4ob573XAR2WrSqcQERGRyun1ejx48AAPHjxIN0jn5uaGChUqoHr16qhevTqqVavGwVKFhYWFmWQIytyULFkStra20hlWoVKlSjh+/Lh0htFcunQJjRs3ls6gbCpQoADeffdd6QyLo6bBOUseaA8KClLFffMztWvXlk6waGXKlMGjR4/g5OSU7Z3P3dzcMv2cnR0PEaLs6dChg3SCxcmXLx/eeustBAcHS6cowpLvm+ll9vb2fB6Ff4aZvby8VPv93ahRI+kEs1ChQgWcPn1aOsPk1DC0T9ZFDYtqqWFgVO0+/vhjPj8ni/HkyRMMHjwY8fHWP6/z4YcfYsyYMdIZREREqsBHw2SxPjm0ETEpydIZREREREREinqSGI9PDm3kQDsRERGZrfj4eAQEBCAgIAAAoNFoUKpUKbzzzjt49913Ubt2bbi5uQlXWrfz589LJyiiZMmS0glWo3LlylY10H7x4kUOYligDz74ABqNRjrD4lSuXBn29vbQarXSKSaXmpoKrVZrkQewnzlzRjpBMXZ2dqhevbp0hkX74YcfYGdnBxsbG+kUUrGiRYuifPny0hkWqUaNGqoZaOcOotalevXqfL3m/1WoUAEnT56UzlCct7e36neof0YtA+38PU6WxhJfD8guDrRbN1tbW3z00UfSGURZkpiYiCFDhiAkJEQ6xeTq1q2LmTNn8v0JIiIihfDdLyIiIiIiIiIiIiIiMhmDwYC///4ba9aswSeffII6deqgZ8+eWLlyJe7fvy+dZ5UuXrwonaCIIkWKSCdYDWtbHEAtPwPWpnnz5tIJFsnJyQnlypWTzlBMamqqdMIbebbQjxpUqFABLi4u0hkWzcHBgcPsJI73y2+uWrVq0gmKsdT7ZcpYgwYNpBPMhpoeX/9Xw4YNOcTz/9SyqAt/j5OlUcNAuxoWLFSzBg0awMfHRzqD6LX0ej1GjhyJa9euSaeYXPny5bFo0SI4ODhIpxAREakG3wEji7Xkg4+Rz4WrwhIRERERkbrkc3HDkg8+ls4gIiIiemM6nQ4BAQGYOXMmWrRogRYtWmDBggW4e/eudJrVuH79unSCIjjQbjxFixaVTjCqK1euIC0tTTqDssHb2xs1atSQzrBYpUuXlk5QTEpKinTCG7l8+bJ0gmLUNMhJZM040P7mSpUqJZ2gGA5CWhcOtP/L2p4jZ1WjRo2kE8yGWl5z4uAsWRoOtJOla926tXQCUZZMnz4dx44dk84wuXz58uGnn36CmxtnkoiIiJRkJx1A9KY+KlsVvqUrIzI5UTqFiIiIiIhIMV5OLrDlDk1ERERkRe7fv4/Fixdj8eLFKFu2LNq1awdfX1/kyZNHOs1i3bp1SzpBEYULF5ZOsBrWdrB+YmIi7ty5g7Jly0qnUBY1a9aMuxHnQMmSJaUTFGOJB3bHxMTgwYMH0hmKqVy5snQCEeVQoUKFUKlSJekMi8WBdrJEefPmVe2u5BlRyzDzi2rXri2dYDas7XWSzFji8ytSNzXsnmswGKQTyEQcHR3RpEkT6Qyi11q1ahXWrFkjnWFyXl5eGD16NPLmzSudQkREpDocaCeLZmtjA2/u0k5ERERERERERERkFW7duoVZs2bh+++/R5MmTdCpUyc0aNAAGo1GOs1iBAUFIT4+XjpDET4+PtIJVsPNzQ1eXl6IjIyUTjGaGzducKDdgjRr1kw6waKpaaDdEgfnrly5oqoD0jnQTmT5uDt7zuTJkweenp6IioqSTjE5S7xfpozVq1ePr738hxoH2osVKwZPT0/pDLORO3du5M6dGzExMdIpJmUwGKDValWx6zVZB95XkSVr2LAhd4Ems3fkyBHMmDFDOsPkXFxcsHTpUuh0OukUIiIiVeIy90REREREREREREREZFa0Wi0OHjyIgQMH4sMPP8S6deuQlJQknWUR1LI7u0ajgbe3t3SGVbG23cdu3LghnUBZ5OTkhBo1akhnWDTuBGveLl++LJ2gGFdXVxQrVkw6g4hyqG7dutIJFk8ti81Y4v0yZaxatWrSCWalQIECqtgF+L+qV68unWB21LKwAX+XExEpg7uzk7m7evUqRo0aBb1eL51iUvb29vjhhx9QqVIl6RQiIiLV4kA7ERERERERERERERGZrXv37mHSpElo3LgxFi1ahLi4OOkks3bz5k3pBEV4eHio7uByU7O2gfbr169LJ1AWVatWjT/POVSoUCE4OTlJZyjCEoctrly5Ip2gmDJlynDHPCILZ2try4VmjIAD7WRpKleuLJ1gVjQaDQoXLiydoSguavAya3udJDNarVY6gYjI6mk0GjRs2FA6gyhTISEhGDJkCBITE6VTTEqj0WDatGlo0KCBdAoREZGqcaCdiIiIiIiIiIiIiIjMXnR0NBYuXIgmTZpg/vz5HGzPhFp2aPfw8JBOsDo+Pj7SCUallsUdrEGtWrWkEyyejY0NChUqJJ2hCEscnFPTAhtlypSRTiCiHKpQoQLc3NykMyyeWgZhU1JSpBPICBwcHFC2bFnpDLNjbc+RX4cD7S/Lly+fdIIiLPE5FhGRpalYsSK8vb2lM4gyFB8fj0GDBiE8PFw6xeT+97//oV27dtIZREREqseBdiIiIiIiIiIiIiIishhxcXFYsmQJmjZtilWrVvGgyxfcvXtXOkERHGg3Pi8vL+kEo4qNjUVwcLB0BmVB7dq1pROsQv78+aUTFGFp9/txcXEIDQ2VzlAMB9qJLB8XmjGOAgUKSCcogrv6Wody5crBwcFBOsPsqGnozMXFBaVLl5bOMDtqGWjn73IiItN75513pBOIMqTT6TBixAjcvn1bOsXk+vbti/79+0tnEBERETjQTkREREREREREREREFig6OhrTp0/Hhx9+iGPHjknnmAWDwaCaAV4OtBtf3rx5pROM7u+//5ZOoNdwcHBA1apVpTOsgloG2vV6vXRCtty5c0c6QVHFixeXTiCiHOJCM8ahlvtlg8EgnUBGULlyZekEs2SNz5EzU7JkSdja2kpnmB21fA/wdzkRkenxeRaZq0mTJuHkyZPSGSbXunVrjB49WjqDiIiI/h8H2omIiIiIiIiIiIiIyGIFBQVhyJAhGDp0KB4/fiydIyosLAwpKSnSGYpwdXWVTrA6efLkkU4wunv37kkn0GtUqVIFjo6O0hlWQS2Dc5ZGbQPtxYoVk04gohzQaDR4++23pTOsAu+XyZJUqlRJOsEsqWmH9pIlS0onmCW1DLQTEZFp2dra8nkWmaVly5Zh48aN0hkmV69ePcyYMQMajUY6hYiIiP4fB9qJiIiIiIiIiIiIiMjiHTlyBK1atcK6deukU8Q8fPhQOkExzs7O0glWx8vLSzrB6DjQbv7Kly8vnWA1ODhnntQ00O7o6IiCBQtKZxBRDhQsWBC5cuWSzrAKPj4+PFieLEbx4sWlE8ySmoaZOdCeMTUtakBERKZTpkwZuLm5SWcQpbNv3z7MmzdPOsPkKlasiIULF8Le3l46hYiIiP6DA+1ERERERERERERERGQVEhMTMWnSJPTr1w8hISHSOYrjQDvlhDUerM+BdvNXqlQp6QSrwYF286SmgfYiRYpweJPIwpUuXVo6wWrY29tb5eNrsk5FixaVTjBLavoZLlGihHSCWVLT9wAREZlOlSpVpBOI0rl48SJGjx4Ng8EgnWJSRYoUwfLly+Hq6iqdQkRERC+wkw4gIiIiIiIiIiIiIiIyplOnTsHX1xczZ85E48aNpXMUExQUJJ2gmD/++AOPHj2SzrAqer1eOsHoONBu/jjQbjweHh7SCZSB+/fvSycohruzE1k+3i8bV+7cuREeHi6dQfRK7u7u8PLyks4wS+7u7tIJiuFAe8bU9D1ARESmU7VqVekEoueCgoIwdOhQpKSkSKeYlJubG1asWIE8efJIpxAREVEGONBORERERERERERERERWJzo6GkOGDEH//v0xcuRI2NraSieZnJoG2gMDAxEYGCidQWYuOjoakZGRHNAwYxycM55cuXJJJ9ALdDodQkNDpTMUw4F2IsvH+2Xj4iAkWYIiRYpIJ5gtNzc36QRF2Nvb8/sgE7a2tnB2dkZSUpJ0ChERWbCKFStKJxABAGJiYjBw4EBERkZKp5hcQkICIiMj+TiXiIjITHGgnYiIiIiIiIiIiIiIrJLBYICfnx9u3LiB+fPnW/2wn5qG5oiy6sGDBxxoN1Pe3t7cVdyIrP0+zhKFhIQgLS1NOkMxHGgnsnwcaDeu3LlzSycQvVbRokWlE8yWWgba8+XLBzs7HkacGTc3Nw60k9lITU1FREQEIiMjn/+Jiop6/v9Pnz5FbGwsUlNTX/qj1Wqf/79Op5P+qxCphp2dHUqUKCGdQYTU1FQMHz4c9+/fl05RhMFgwLfffoutW7fysS4REZEZ4r0zERERERERERERERFZtVOnTqFz585YunSpVR+s/fTpU+kEIrPz6NEjVK9eXTqDMlCyZEnpBKvCXWDNz6NHj6QTFOXj4yOdQEQ5oNFoeN9sZLxvJkvAHQszp6aBdsqcq6srwsPDpTNIRVJSUvDw4UM8ePAg3Z+HDx8iJCQEBoNBOpGIsqFYsWJwcHCQziDCuHHjEBAQIJ2hqFu3bmHVqlXo37+/dAoRERG9gAPtRERERERERERERERk9e7du4cuXbpgxYoVqFChgnSOSfAAW6KXqW2g1JIULlxYOsGq2Nvbw9nZmbsHmhG1/f7x9vaWTiCiHPDy8oKLi4t0hlXJlSuXdALRa+XPn186wWw5OTnB3t4eWq1WOsWkuCjRq6llYQOSERUVhatXr+Lq1au4cuUKbty4waF1IitTunRp6QQiLFy4EDt27JDOELFo0SK0bNkSBQsWlE4hIiKi/+BAOxERERERERERERERqUJkZCR69uyJpUuXolatWtI5RpWcnIyEhATpDCKzo7aBUkvC4Vfjc3d350C7GQkODpZOUBR/poksG3+GjY87tJMl8PT0lE4way4uLoiJiZHOMCkOtL+aq6urdAJZiZSUFPz111+4cuXK8wF2tT1nJFKjYsWKSSeQyu3YsQOLFi2SzhCTmJiIyZMnY+nSpdIpRETpnLz5GF/8fAKPIuORx80JDcoXxPhOtVHAk89BSR040E5ERERERERERERERKoRHx+PAQMG4KeffsI777wjnWM03J2dKGMcaDdfHJwzPkdHR+kE+o+QkBDpBEXlzZtXOoGIcoD3y8bn4OAgnUD0Wl5eXtIJZs3e3l46weQ40P5qavgeINPQ6/W4cuUKTp8+jTNnzuDChQtITU2VziIihXGgnaT98MMP0gnijh07hsOHD6Np06bSKUREAIA/rj9Cq+m7kJSqAwA8iUnCjUdRCI1OxJb/fYiQqAQU9HITriQyLQ60ExERERERERERERGRqiQnJ+OTTz6Bn58f3n77bekco4iIiJBOIDJL3O3KfHFwzvjs7Pj2vzlR02Iztra28PDwkM4gohzg/bLxcQiSLAEH2l/N1tZWOsHkOND+anyORdmRlJSEU6dO4ejRo/j999/x9OlT6SQiEsaBdiLzMGXKFNStWxeurtz5mIhknf07FG1n7H4+zP5fO8/fR54+yxGblIomld7C3jFtYG9n/a9LkDrx1RYiIiIiIiIiIiIiyrZChQrh6NGj0hkWJS0tDVqtFjqdDqmpqdDpdNDpdEhMTERMTAxiY2Of/4mJicGTJ08QEhKC0NBQhISEIC4uTvqvYFUSExMxaNAgrFmzBhUqVJDOyTEeIEmUsdDQUOkEygQH54yPg3PmJTIyUjpBMe7u7tBoNNIZRJQDvF82Pt4vkyXgQPurxcfHSyeYnKenp3SCWeNAO72OTqfDqVOnsGvXLhw5cgSJiYnSSURkRgoVKiSdQET4532iH374Ad988410ChGp2F+B4Wg1fRfik7WZnic2KRUAcOxqMNaeuIU+TSz/OBaijPDVFiIiIiIiIiIiIiIiBdja2uZoZ6f4+HgEBwfj7t27uHPnzvM/Dx8+hE738grO9Hrx8fEYNGgQNm7ciIIFC0rn5Eh0dLR0ApFZSk5ORlxcHNzd3aVT6AUcnDM+Ds6ZFzUtNsPd2YksH++XjY9DkGTubGxskDt3bukMEubm5iadYNZy8louWbf79+9jw4YN2LFjh6oWMyOirLO3t0fevHmlM4jo/61Zswa+vr4oX768dAoRqdD14Ei0mLID0QkpWf6aX36/+dqB9hVHrmHBnksoni8XfhrSBPk9XJ9/LjI+GadvhcA7lzPqlM7/xu1EpsBXzomIiIiIiIiIiIiILICbmxvKlSuHcuXKpTs9NTUVV65cwYULF/Dnn3/i4sWLHG7OhvDwcAwaNAjr16+36IN41bBrGNGbCg8P50C7GeIBncbHwTnzoqahBg60E1m+PHnySCdYHS40Q+YuV65cHNZ9DS8vLyQkJEhnmJQlvxamBP4up//S6/U4fPgw1q1bhzNnzsBgMEgnEZEZy58/PzQajXQGEf2/tLQ0fPvtt9iwYQNsbGykc4hIRe6ERqP5lO2IiEtOd3qzqkVQtVhezN5xIcOvC4qIe+Xl/hUYjk+W/Q69wYDrwZHoMHsvTk7piEeR8fh+919YceQ6ElL+2Q1+Xp8G+OzDqsb5CxEZAd/RJiIiIiIiIiIiIiKyYA4ODnj77bfx9ttvY+DAgTAYDLh79y6OHTuGw4cP49KlSzy47jX+/vtvjB49GosWLbLYA4w40E6UuYiICJQoUUI6g/7DxsYGjo6O0hlWh8MW5iMmJgZarVY6QzFcNITI8jk5OUknWB0uNEPmzsHBQTrB7Lm4uEgnmJyzszPS0tKkMxTx7O+Znb+vGhZ90Ov1Zvk98Ca3l6mkpqZi+/btWLlyJR4+fCidQ1bOYDAo9n0v9XOm1+sVvT4pPj4+Rvu3NaffiUSW7PLly1i3bh26du3KnysLw9vLsvD2+ldyqg6tpu9CSFRiutMbli+IDV80w9m/wzIdaA+JSkBSSioc7DJ+Xrr2j5vQ/+c4oIC/w9B00jacvh0KXVr6x1vzd1/EsOaVMu3kbWZZcnp7mcPtzFfOiYiIiIiIiIiIiIisiEajQalSpVCqVCkMHDgQYWFhOHz4MA4cOICzZ89K55mtw4cPY9myZRg8eLB0yhux9h3DiHIiIiJCOoFewOEZ0+DOMuZDTbuzA+oY9iKydlxoxvh4v0zmjoshvZ6lLnqYHffu3UNISIh0hqKuXLmS5fNGRUWZsMQ8XL9+HeHh4dIZmcrO7WVsWq0Whw8fxq5duxAdHS3WQeoSGRmJv/76S9HrVPrnLCgoSNHrk2Jra2v021LydyKRtZg7dy4KFCgADw8PAPy5sjS8vSwLby9g/7Vw3A2NSXdapYJumNj8Ldy+cQ3O2swHi1N1euw4egal87k+Py0oKgnT9t1FaGwqQmJSXvqaP248zvCyHkbEwz/gTzg7vHrRNt5mlsWSby8OtBMRERERERERERERWTEfHx90794d3bt3x927d/Hbb79h27Zt3NE7AwsWLMDbb7+NmjVrSqdkGwfaiTL35MkT6QR6AYfmyNrFxsZKJyjK1dX19WciIrPG+2Yi9eEiU6TRaPDOO++oYnAf+GcHsitXrqBy5cpZ3nndy8vLxFXyKlSogEKFCklnvORNbi9jXveOHTvw448/qm7BB5Ln5eWFatWqKXJdUj9nankNoWTJkka7LSV/JxJZm8TEROzatQuzZs3iz5UF4e9By8Lb61/fHduf7uOKhb1wZIIvPFz/fS3W1fECElJ0GX59smMeVKtW7vnHX0/biYtBcW/U4p6/GCoVyZPh53ibWZac3l6JiYm4ffu2CcqyjgPtREREREREREREREQqUbJkSYwbNw4jR47Ejh074Ofnh+DgYOkss5GWloavvvoKO3fuhJubm3ROtnCBAqLMPX36VDqBXsDhGbJ2altoRi0HoxNZM943E6kPd2gnZ2dn2Nmp7xBiW1vbLB/wrYZhfxsbG7MeWMjO7WUMAQEBmDJlivjB/aReGo1G8Z9JpX/ObGxsFLsuSXny5DH6v6vStxWRtdq3bx86dOgAV1dX/lxZGN5elkXtt1diihYH/gpKd9oXrashTy6XdKeNaFUN07eez/AyLj+MfP5v+DgyHseuPsrSdTs72MFgMCD5PzvAB4bHo2rxfK/8OrXfZpbmTW8vc7iN1fGMgIiIiIiIiIiIiIiInnNxcUHXrl2xb98+jBs3Dnnz5pVOMhuPHj3CtGnTpDOyjQPtRJmLiYmRTqAXcGiOrJ3aBtqdnZ2lE4goh3jfTKQ+/LkncziAmchchIWF4csvv0TPnj05zE5ERuHl5SWdQESvMHnyZKSmpkpnEJEVO3jpIZJS/9153dZGg9ZvF3/pfEOaVUIu54xfo7n0IOL5/+88f/+11+nl5ojxHWvh/uLeqFnKJ93n7obx/XIyHxxoJyIiIiIiIiIiIiJSKQcHB/Ts2ROHDh3CiBEj4OLi8vovUoGtW7fC399fOiNbkpKSpBOIzBYH2s2Po6OjdAKRSaltoJ0/00SWjz/HROrDHdqJiP6xefNmtGrVCrt375ZOISIrkitXLukEInqFoKAgbN++XTqDiKzYtrP30n3csEIh5M318uLABb3ccHFOFyzs3whjP6qV7nMX74XjwF8PkJCsfeny/uvIxPa4saAHgpf1w4SP6yBvLmeUyJf+scg9DrSTGeFAOxERERERERERERGRyrm4uGDo0KHYvn07qlevLp1jFiZOnGhRK/NrtVrpBCKzFRsbK51AL+BukGTt1DbQzp9pIsvHwVYi9eHP/eulpaVJJxCRCYWGhmLAgAEYO3Ys4uLipHOIyMq4u7tLJxDRa+zevRt3796VziAiK5SqS8PuP9PvqN6+dolMz1/UOxc+aV4ZA96vkO702KRUtJq+C3n7LsfRq0EZfm3Fwl6oX64AShfwgIOd7fPTS/jkTnc+7tBO5oQD7UREREREREREREREBAAoWrQo1q1bh1GjRql+MCkwMBDLly+XzsgyHmRNlDnu0E5ESuNAOxEREZHle/TokXQCEZnIsWPH0K5dO5w4cUI6hYisFAfaicyfTqfD5MmTpTOIyAoduxqMmMT0mye0e8VA+zNv5XGDT26Xl07XpulhMKQ/rX3tEujZsCw2j/oQtjYvjweXzP/CDu2hyiwAf/bvUHSasxdtvtuFIT8dxbazXDiEXsaBdiIiIiIiIiIiIiIies7GxgYDBw7Epk2bkD9/fukcUX5+foiIiJDOyBIOtBNljju0E5HSEhMTpRMUxR1eiYiIiIjIEmi1WsycOROffPIJoqOjpXOIyIq5urpKJxBRFpw7dw5bt26VziAiK7M94F66j+uU9kEhL7fXfp1Go8HYj2q+9nztapXAplEf4ufhH6B0AY8Mz/PiDu0PIuKgS9O/9rJzIio+Ga2n78K2gHvYd/EB/I5cR6e5+7Bw7yWTXi9ZHg60ExERERERERERERHRS8qVK4eNGzeiTJky0iliEhMTsXDhQumMLNHpdNIJRGaLA+1EpDStViudoChbW1vpBCIiIiKjK1KkiHQCERlRdHQ0+vXrh5UrV8Lw4vaGRERG5uzsLJ1ARFk0a9YsREVFSWcQkZVI0+ux41z6gfb2dUpm+euHtqiCczM7Y+xHtfBu2QKws3159HdA04qvvZySLwy069L0eBgRl+WON7Hj3D1EJaS8dPrY3/zxIJzv19O/ONBOREREREREREREREQZ8vHxwbp16/DOO+9Ip4jZvHkzgoODpTNeiwPtRJmLj4+XTiAilUlLS5NOUJSNDQ89ISIiIiIi8xUYGIjOnTsjICBAOoWIVMLR0VE6gYiyKCoqCrNmzZLOICIr4X87FE9iktKd5lu7RLYuo3pxb0zqXAd/TPkIET8PwK5v2uCL1tXQqW4prBr+AVpWL/ray8jj7oRczg7pTrsbFpOtjuzadvZehqcnpujwxc8nTHrdZFn4riIREREREREREREREWXK3d0dy5cvR926daVTROh0Ovj5+UlnvJbaBueIsiMtLQ2pqanSGUSkImpbaIYD7UREREREZK4uX76Mzp07IzAwUDqFiFSEA+1ElmXbtm04f/68dAYRWYFtZ++m+7hK0Twold/jjS/PzckBLasXxexe9fHbFy3QvWHZLH2dRqNByfzpd2m/H2a6XdLjklJx6PLDTD+/8/x97Dp/32TXT5aF7yoSEREREREREREREdErOTg4YOHChShTpox0iogtW7bgyZMn0hmvpLbBOaLsSk5Olk4gIhVR20IzHGgnIiIiIiJzdP78efTp0wfR0dHSKUSkMhxoJ7IsBoMBEyZMgFarlU4hIgtmMBiwPSD9LuW+tUsK1QAlfHKl+9iUO7Tvu/gAqTp9utMc7NK/dzRi5R9ISObvWeJAOxERERERERERERERZYG7uzuWLVuGfPnySacoLjU1Fb/99pt0BhHlQFJSknQCEamI2gbaDQaDdAIREREREVE6/v7+GDBgABISEqRTiEiFbG1tpROIKJvu3LmDFStWSGcQkQW7eD8cD8Lj0p3Wvk4JoRq8tEP79aBIk13XizvTN69WBMuHvJ/utIcRcZi65ZzJGshycKCdiIiIiIiIiIiIiIiypECBAli6dCns7e2lUxS3adMms16VnwdHEb0ad2gnIiXpdDrpBEXp9frXn4mIiIiIiEghly9fxtChQ7nAIRGJ0Wg00glE9AaWLFmCoKAg6QwislDbXtidvaRPblQqnEeoBqhaNG+6j8/cDoVeb/wFipNTddh74UG609rXLoluDcqgccVC6U7/fvdfuPrwqdEbyLJwoJ2IiIiIiIiIiIiIiLKsYsWKGDp0qHSG4sLDw3Hw4EHpjExxoJ3o1XgAMxEpSW07lqvt70tERERERObr7t27GDhwIBITE6VTiEjF+J4NkWVKTk7GpEmTpDOIyAyERSfii5//QL8fD+NGcNZ2Nt/+wi7lvnVKiC5yU69cwXQfRyWk4MYj4+/SfuhyEBJS/t0cQqMB2tQsDo1Gg0UDGsPe9t/xZV2aHsNXHOf7SirHgXYiIiIiIiIiIiIiIsqWQYMGoWLFitIZitu2bZt0Qqbs7OykE4jMWkpKinQCEamI2g5aTktLk04gIiIiIiJCREQE+vfvj+joaOkUIlI5GxuO6RBZqhMnTmDv3r3SGUQkrM+Ph7Bw32WsPn4TTSdtR6ru1e+D3AiOxI1HUelOa1+7pCkTX+utPG4o6u2e7rRTN0OMfj3bA9IP8tcrVxA+Hi4AgHKFPPFl2+rpPn/yxmOsPn7T6B1kOfhImYiIiIiIiIiIiIiIssXOzg7fffcd7O3tpVMUdfr0aTx9+lQ6I0NqG5wjyi6tVvv6MxERGYna7pf1er10AhERERERqZxWq8Wnn36KkBDjD2gQERGRukyfPh3x8fHSGUQk5F5YDA5dCnr+cVhMIs7defLKr9kecC/dxwU9XVG7lI9J+rLj3bIF0n18+pZxny9pdWnYdf5+utPa1y6R7uMxHWqieL5c6U4b95s/tK9ZJICsFwfaiYiIiIiIiIiIiIgo28qWLYvevXtLZygqLS3NbFfkV9vgHFF2cdiSiJRkZ2cnnaAoLhpCRERERETSpkyZggsXLkhnEBERkRUIDw/HvHnzpDOISMiLw+nAP0Pur/6a9LuU+9YuARsbjVG73kS9cukH2o29Q/sfNx4jMj4l3Wm+Lwy0uzjaY0G/hulOC4lKxJ4LgUZtIcvBgXYiIiIiIiIiIiIiInojAwcOhLu7u3SGog4dOiSdkCG1Dc4RZVdaGld4JyLlqG2hmdTUVOkEIiIiIiJSsW3btmHDhg3SGURERGRFfvvtN1y+fFk6g4gEbHthOB0AHkbEZXr+B+Gx+PNeeLrTfOuUNHrXm3hxh/b7T2LxODLeaJe//Wz64f+3S3ijqHeul873YY1iqFs2f7rTVhy5brQOsiwcaCciIiIiIiIiIiIiojfi4eGB7t27S2co6sKFC4iLy/zNSikODg7SCURmjTu0E5GS1LbQTEpKyuvPREREREREZAJBQUGYMmWKdAYRERFZGb1ejwkTJnDBZCKVCYlKwJnboS+dHvgkNtOveXFHdy83RzQsX9DobW+iYmEv5HZJfyzJ6Vsv//3ehF5vwI5z6f/uvrUzH+Tv/16FdB8f+Oshgl6xUABZLw60ExERERERERERERHRG+vWrRvs7e2lMxSj1Wpx4sQJ6YyXuLi4SCcQmTWdTiedQEQqoqbHRgB3aCciIiIiIhk6nQ6jRo1CQkKCdAoRERFZoevXr2PNmjXSGUSkoK1n78JgePn0wPDMB6+3vTDQ3rZmCdjZmsfIrq2NDeqUTr8z+oX7T4xy2QF3wvA4Kv1zsfav2Jm+Y91ScHf+9/0zvcGAX36/YZSWN3Xw0kNU/mItyny6GjteuB3JdNS1LDgRERERERERERERERmVj48P3nvvPRw4cEA6RTH+/v748MMPpTPScXV1lU4gMmvcoZ2IlKS2hWaSk5OlE4iIiIiISIVWrlyJv/76SzrDIrm5uaFgwYIoUKAAfHx84OXlBU9PT+TJkwceHh5wcXGBq6vr8z92dnawtbWFnZ3d8/9/Ji0tDX/99ReqVauW7nRjW7hwIRYtWmSyyyciIsrIggUL0LJlS/j4+EinEJGJnbz5GN+sPZ3h5zLboT3wSSxO3Xyc7jTfOiWM3pYT1YrnxcFLD59/fOXBU6Nc7raAu+k+Ll/IE+UKeWZ6fjcnB3SpVwbLD197ftqePwMxvmNto/Rk194Lgfho9l5o0/45jqDvj4cRWKkPcv1nR3uDwQCDAbCx0Yg0WisOtBMRERERERERERERUY60atVKVQPtAQEB0gkvUdvgHFF2paWlSScQkYqobaEZ7oZIRERERERKCwoKwo8//iidYfbc3NxQoUIFlC1bFuXKlUO5cuVQpEgR5MqVSzqNiIjIIiQmJmLq1KlYuHChdAoRmdC5O2Fo890uJKboMvz8w4g46NL06XZeD4tOxIfTdqbb0d3NyR5NKxc2dW62VCmSN93HB/56iIkbz0KXpkeVonlRqbAn0vQZbEv/CgaDAdvPpt/R3PcVu7M/0+GdkukG2q8+fIo0vR62NsruaH/kShA6zd33fJgdAGKTUnH8+iO0qVkcAHDqZggGLDmM6IRUTO5SBwObVlK00ZpxoJ2IiIiIiIiIiIiIiHKkcePGcHFxQWJionSKIgIDA/HkyRPky5dPOuU5DrQTERGZDw60ExERERERmdbEiRORnJwsnWF2NBoNKleujHr16qF+/fqoVq0a7Ow4LkBERMal0WjQvn17bN++HXq9/vVfYOEOHjyIY8eOoUmTJtIpRGQClwIj8OG0nYhL0mZ6njS9AY8i41HU+5+FoZ7GJaH5lO24HRKd7nwfv1saTg7m9fi7ctE86T7WGwyYuvlcutOc7W1Qtdh9VCvujarF8qJB+UKv3G394v1w3A2LSXda+9qv35m+WjHvdB8na9NwJzQGZQtmfl3G8CgyHjYaDQp4uuLUzRC0n7UHKdqXF8T//Vow2tQsDr3egD6LDuH+k1gAwKcr/sBH75SCl5uTSTvVwrx+QoiIiIiIiIiIiIiIyOI4OjqiZs2a+OOPP6RTFHPp0iV88MEH0hnPqW1w7rfffkPBggWlM8iCeHqa9k1wIqL/Utv9MgfaiYiIiIhISYcOHcLJkyelM8xKgQIF4Ovri48++giFC5vXjpBERGRdChUqhBkzZqB27dpwdHTEb7/9Jp2kiClTpuCdd96Bs7OzdAoRGdGN4Ei0mLoDUQkp6U5vU7M4Dl56mG7o+f6TWBT1zoXohBS0nLoTV4Mi031NuUKemN6triLd2VG2oCcc7GyQqst8AZIkrR5n/g7Dmb/Dnp82qXMdjP2o1kvnDYlKQLf5B9KdVtTbHdWLe7903hd553JGfg8XhEb/u1nG5cCITAfag5/GIzA8FtWLecPVyR4AsPvP+9jsfwe1S/lgSLPKsLHRvPI6p289jwkbzkADDd6v8hbO3A5FYoouw/P+fvURAODsndDnw+wAoEvTZ3sXe8ocB9qJiIiIiIiIiIiIiCjH6tWrp6qB9qtXr5rVQLvadmj38PBA/vz5pTOIiIgypLb75fj4eOkEIiIiIiJSCZ1Ohzlz5khnmI2KFSti+PDhaNy4MWxsbKRziIjIyvn6+mL8+PFwc3MDAHz++efYt28foqOjZcMU8OjRIyxcuBBfffWVdAoRGcnd0Bg0n7ID4bFJ6U7/oGphrP+iBep8vSHd0Hrgk1jEl0xF6+924cL98HRfU9InNw6Ob4e8ucxv0Qs7WxtULJwHF19ofp3JmwLQ770KKOD57yLO4bFJaD5lB+6Ept+dvXO90tBoXj1Y/kzlonnSD7Q/fIpO75Z+6Xy/HLuOYX7HkaJNQ/Xi3jg4vh1uh0Sj/aw9MBiAX/+4hftPYjG7V/1MryskKgGTNp6FwQAYYMChS0GvbLv0IAJP45Kw7ey9dKdXeMsL3mZ421oqPnMlIiIiIiIiIiIiIqIcq1atmnSCoq5fvy6dkE7u3LmlExSl1WqlE4iIiDL17IBOtYiJiXn9mYiIiIiIiIxg48aNCAwMlM4QV7ZsWfz444/YunUr3nvvPQ6zExGRSXl6emLhwoWYOXNmutc+PTw88Pnnn8uFKWzVqlW4deuWdAYRGYHBYECPHw7icVRCutMbViiILaM+hKO9LYrly5XuczcfRaPdzD04czs03emF87jh4LftUNDLfN8bqlwkT4anuzraZ/o1aXoD1hy/+fzjqPhktJy6A9eD0+9MX7GwF0b7vp3llipF86b7+MqDiJfOs+7ELQxcehQp2jQAwMX74Ziw4SyWH7oGw382Sv9+91/Y/ef9TK9rx7l7r9xZvVWNYnBxTL9f+PFrj7A94G6603xrl8j0Mij7+OyViIiIiIiIiIiIiIhyrFy5crC1tZXOUMzNmzdffyYFeXl5SScoigPtRERkzjw9PaUTFKWGHZiIiIiIiEhecnIyfvzxR+kMUfb29vj888+xbds2NG3aVDqHiIhUoHHjxti1axeaNWuW4ec7d+6MChUqKFwlQ6fTYcKECTAYMh+OJKKsSdPrsev8fXScsxcNx2/BtrN3X/9FRnT5wVOcuxOW7rQ6pX2wY3RruPz/kHcx7/QD7XN2XsDxa4/SnVbA0wWHJvii6AvnNTeVi2Y80H7l+254sKQ3FnQqj2ld30GN4t7pPr/y6HUYDAbEJaWi1Xe78Fdg+uHz0gVyY/+4dsjt4pjllipF0g+07/4zED/svYTHkfEAgK1n7qDvj4fx4q/axQeu4Jffb7x0eZ3n7UfPHw7i+PVHL/1+fnGn9f9qWqUwNoxsgXfLFkh3+g/7LuNeWGy60zjQblx2rz8LERERERERERERERHRqzk5OaFo0aK4dy/zN4SsyZMnT5CQkABXV1fpFADqG5zjQDsREZmzPHkyPjDIWsXGxr7+TERERERERDm0ZcsWRES8vHufWpQtWxazZs1CuXLlpFOIiEgFXFxcMHr0aHTp0uWV57OxscG4cePQrVs3hcpkXbx4ERs3bkTnzp2lU4gsUlxSKn45dgOL9l3G3bCY56efuxOGvxf1wlt5TLPL+e3HUdjkfwflCnmiXa0S2PbCDtxv5XHDnjFt4e7s8Py0F3dof1FedyccGO+LUvk9TJFsVJVfGCIHgOrFvVEkrzvS0tLwTgkPVKtWDQ0qFELD8Vuen+dOaAz2//UQs7b/iYC/0y8AUNTbHQfH+6KAZ/aOmalS7OX30Eb+cgJzdlzAt51q49MVx1+5q/qLUrRp+O3kbfx28jbKFPBAv/croHfj8rDRAL9fC87waxqUL4it//sQTg52aFLpLRy+HPT8cydvPE533qLe7qj+wqA/5QwH2omIiIiIiIiIiIiIyCiKFCmimoF2AAgMDETFihWlMwCob4d2nU4nnUBERJQpNzc3ODo6IiUlRTpFETqdDnFxcXB3d5dOISIiIiIiK5WWloaVK1dKZ4ipX78+Fi5cCBcXF+kUIiJSgerVq2PmzJkoWrRols7/9ttvo23btti5c6eJy8zD3Llz0bRpU9UtbEqUE7GJqZi06Sx+PnoDsUmpL31em6bH79eC0aOh8RdvCo9NwnsTtyE0OhEAMKdXfWx/YUf4jnVLwcM1/S7jxV8z0L5+ZAtUeMsyjtOoksEO7Y0rFnrptLpl8qN8IU/ceBT1/LQ23+166XwFPV1xcLwvCufN/vtCZQt6ws7WBro0fbrTH0clYMiyY9m+vP+6HRKNr389jWlbzqFT3dIvDcZ3fKcUKhXJg5FtqsHF0R4A0KTSW6+8TN/aJaDRaHLURenZSAcQEREREREREREREZF1KFy4sHSCoh48eCCd8JzaBtq5QzsREZk7td03q3mXRCIiIiIiMr39+/cjODjj3fWsXevWrbF06VIOsxMRkcnZ29tjxIgRWLt2bZaH2Z/53//+B1fX7O3Sa6liYmIwY8YM6Qwii5GUqsN7E7diwZ5LGQ6zP/MgPM4k17/y6PXnw+wAMHlTAK4GRaY7T/vaJV/6urKFPDO9zMJ53NCowssD4eYqX26XdMP3tjYaDPqg0kvn02g06Pd+hVdelncuZxz81hcl8+d+oxYHO1tUeCvzf9v/GvB+BRT1znxo3t4249HouCQtVh69nu60drVKYP3IFhjXsdbzYXYAeLuEN/K6O2V6He3rvPy9QTnDgXYiIiIiIiIiIiIiIjIKb29v6QRFhYaGSic8lzt3btjb27/+jFYiISFBOoGIiOiV1DbQHh4eLp1ARERERERWbO3atdIJItq2bYs5c+ao6rVfIiKSUbJkSWzYsAFDhw6Fra1ttr8+X758GDZsmAnKzNPOnTvh7+8vnUGkuPjkVGw8/TfWnbiF368FIz755QF1XZoeZ26H4mlcEgBgyuYA/BX4+kVxTTXQ/t3W8+k+fnGoPr+HC+qWyf/S15Ut6IGaJfNleJnt65S0uF27f+jfEMXz5YKHqyPm9q6P0gU8Mjxfj4blMh0Ut7O1wf5x7VDuFcP+WVG1aN7XnqdXo3JYPLAJfh3RLMPPX/2+Ox7+1BezetZD2YIer728DpkMptva2KBF9YwXcfHJnfH3BuUMB9qJiIiIiIiIiIiIiMgoPD1z9qaVpQkLC5NOSEdN//7R0dHSCURERK+UN+/rD8axJhxoJyIiIiIiUwkMDMSff/4pnaG4qlWrYtq0aRY3KGMqaWlp0glERFZJo9GgZ8+e2LZtGypWrJijy+rVqxeKFy9upDLzN3HiRKSmZr7bNJG1SdGm4d0xm9Ft/gH0WngITSdtR+nhaxBw59/jJuKSUtFt5SU0mrANpYavxvLDVzF358V0l6PRAL61S6Bb/TLpTg8MjzV68+PIeMQna195nna1SsDG5uXH3BqNBmM61Mzwa3xrlzBKn5IaV3wLN3/ogbAV/TG8ZdVMz+edyxntamX892vzdjFULZbz97/6N60Im1c8z/n43dJY/sl7sLHRoG6ZAlg59P10n69e3BvlCnnCO5czRrapjqvfd8exSR1QKpNd4/O6O6Ftrczvnz6sUSzD09vVKg5bG45fGxv/RYmIiIiIiIiIiIiIyCg8PDykExT15MkT6YR08udXz8rQMTEx0glERESvVKBAAekERXGgnYiIiIiITGXr1q3SCYrLnz8/fvzxRzg4OEinmI2kpCTpBCIiq5M/f378/PPPGDduHBwdHXN8efb29hg3bpwRyixDYGAgfvrpJ+kMIsVsO3sX14Mj050WHpuED6ftxIV7/xw7sfTgVTyITAYAxCVp8cmy35GmNzw/v72tDc589zE2j/oQrd4ulu6yHjwx/g7tO87df+15fOtkPpze+u3iKJ4vV7rTvHM5o145y3wPyNbGJksD2v3er5Dh6QOa5mzhk2fqlyuIszM+xvy+DXB5Xjd80qzy8899/G5prBreNF1nr8bl8eOAxngrjxuqF/fG8k/eS3d5Go0GDcoXxPiOtTO8vkmd34G7c+bPrT6oUjjD030z2dWdcoYD7UREREREREREREREZBRqO7guMjLy9WdSUMGCBaUTFMOBdiIiMneFChWSTlBUSEiIdAIREREREVkhg8GAHTt2SGcobtasWfD29pbOMCscaCciMq7WrVtj165dqFu3rlEvt379+mjatKlRL9OcLVu2DPfvv35glsgabAu4m+Hp0QkpaDltJ648jMDaE7dfeRlft38bb5fIBwAo6p1+UPxhRBz0/xl+N4atZzNufsbD1RGNK2T+fo6NjQaze9VLd1rPRuWsftfuppULI6+7U7rT8ro74YMqRYx2HdWLe2N4y6qo8JYXfujfEP7TO+H09E5Y93lz2NvZvnT+wc3+j737Do+i3Psw/t1sNh1SICShBJLQpJcQehVBOkEUEFRUBAtiP4h0EazYGyB2RRCpSlNBBFGKNBHphF5CJySQtu8f5zXHNaFv9tlN7s915dJ5ZnbmRjgnIdnfTDUlvddXq1/soVrl8v67Uo/GFRQX4fiU9mplwnTvRQb0/xYa5KcSwf651ltULVw/63OVgv2/HgAAAAAAAAAA4DI2m810gkudPev8O4RfDwbaAQBwH4Xp87IkHTx40HQCAAAAgAJo48aNOnz4sOkMl+rWrZvq169vOsPtpKammk4AgAIhJCREr732msaPH6+iRYte/gXX4Omnn3bKE989QXp6ukaPHm06A8h3aemZWrBu70X3Hz97Xq1Hz9JfB05e9JgbSoXq6cT4nO1yJYo47M/IytahU+euP/b/vTVvg5Zs2n/JYzrWLZfn8PQ/dU2I02t9m6pubLj63VhFo27L+yngBYmXl0WPd6rtsPZklzry8rLky/UsFovqlY9QQvmI6zqPt9VLL/RplLNts3rpjXuby9t6+RHqp7rUcdi+q0Vl+VzmzwauDQPtAAAAAAAAAADAKbwK+F2o/83dBtoL05NgGWgHALi7wvR5WZIOHDhgOgEAAABAAbR48WLTCS4VGhqq//znP6Yz3BJPaAeA69ekSRPNmTNH7du3z9frlClTRv369cvXa7iTX3/9VbNnzzadAeSrHzbu07kLGQ5rNcoWc9g+fvb8Jc/x/oBW8rX9b0A4IjhAfjbHgeGko855D8bkH//UYx8vu+xxiQlxV3S+h9vX1MoXeuj9Aa0U4Fs4HvTweKfaur9NNcWUKKoH2lTXYx1rmU66Ion14zRvaGc90y1ei0cnqnmVK/t53YNta6j5/z+RvVLJEI27vdFlXoFr5W06AAAAAAAAAAAAFAwZGRmXP6gASUlJMZ3goDA9CfbkyYvf2R0AAHdQmD4vSwy0AwAAAMgfhW2gfdCgQQoNDTWd4Zbc7QazAOBJ/P399eSTT6pPnz4uu2b//v01a9asQvN9wxdffFEtWrRQcHCw6RQgX8z4bYfDdvOqpTRncEe1HzdHv2w5dNnXP9CmuhpXjnJYs1gsKhteRFsPnspZ25N8JtdxV+vLZVt1/8Qllz0uwNdbN9Usc13XKsi8rV56u18L0xnXpE3NaLWpGX1Vr/G1WfXjyEQln0lT8SJ+sljy52n04AntAAAAAAAAAADASQrbQHt6errpBAeFaXDu8OHDphMAALikEiVKyM/Pz3SGy5w6dUqnT582nQEAAACgADl48KC2bdtmOsNlSpQooe7du5vOcFuFZSASAJytevXqmjlzpkuH2SXJz89PgwcPduk1TTp+/LjGjx9vOgNwuqzsbD39+Qp99vNWh/XEhFgF+tk09+lOSqgQcclz3Fi9jJ7v0zDPfWXDizpsJyVf302MZvy2Q3e/84Psdsf153o1UN8WNzis3VyrbKF52jquXHhRf4bZ8xkD7QAAAAAAAAAAwCnOnz9vOsGlMjMzTSc4KF26tOkElzl48KDs//4pNAAAbsRisahcuXKmM1wqKSnJdAIAAACAAmTNmjWmE1yqV69e8vHxMZ3hlrKysrjJKQBcJW9vbw0cOFBfffWVYmJijDS0bdtWDRvmPcRaEE2bNk1r1641nQE41fg56/TKHMc/1xaL1KVerCSpaICP5j3TWXViwh2OCfKz6ezn9+voh/20cHgXBfnl/XVuufAiDtt7k89cc+u8tUnq/cYiZWU7vo/gmW7xejoxXg+3rymv/x9Utlm99J+uda75WgCuHQPtAAAAAAAAAADAKU6dOmU6waXc7Yn0QUFBioyMNJ3hEhkZGUpOTjadAQDAJcXFxZlOcKndu3ebTgAAAABQgPz++++mE1zGy8tL3bp1M53htg4fPux2N5gFAHc3ceJEPfzww/L29jbaMWzYMOMNrmK32zVy5Eg+Z6HAyMzK1vi563KtD+5aV2WK/28QPSTQV/OHdVbd2P8NtT/dtY78fbwVFuR3yWtE/2ug/Vqf0L732Fn1fG2BMrKyHdYf7VhLo3vUlyTVLFdca1/uqVfubKLfnr9N8XGXfrI8gPzBQDsAAAAAAAAAAHCK06dPm05wKXd8QnhhGpw7ePCg6QQAAC4pNjbWdIJLMdAOAAAAwJkK00B77dq1C83NSq/FgQMHTCcAgMcpW7as6QRJUvny5dWnTx/TGS6zbds2ffzxx6YzAKdY9tdBHT973mHt1b5NNaZng1zHFivir+XPddfMp9rrgz7V9FSXK3v6ebnwog7be67xCe2Tf9ys1AuON5MYcFM1vXxHY1n+/6nsklQtupge7VhLNcsVv6brALh+DLQDAAAAAAAAAACnOHbsmOkEl7LZbKYTcilMg3MMtAMA3F358uVNJ7jU1q1bTScAAAAAKCBSUlIK1U2zWrVqZTrBre3Zs8d0AgDgOjz88MMqXrzwDI++/fbb3IwFBcKsVTsdtuvEhGtQ+5oOA+L/ZPO2qn2dsqpeqkie+/NStoTjsXuSz+rIqdTrbr2lQZzeurf5RVsBmMNAOwAAAAAAAAAAcIrC9oN5Hx8f0wm5FKYntBe2P28AAM9TmD4vSwy0AwAAAHCeffv2yW63m85wmUaNGplOcGt//PGH6QQAwHUICgrSk08+aTrDZdLS0jRmzBjTGcB1yc62a9aqXQ5rXes7/2cesSWCHbbTM7PV8fm5OpOafsXn2HrwpP7cd8Jh7ZEOteTlxTA74I4YaAcAAAAAAAAAAE5R2J6YzUC7Wbt27br8QQAAGFSuXDm3/Hohvxw8eFBnzpwxnQEAAACgANi7d6/pBJcJCAhQpUqVTGe4tY0bN5pOAABcp65du6pWrVqmM1xmyZIlWrRokekM4Jqt2nFEB06cc1jrmhDr9OtEhASofZ2yDmvrdifroQ9+uuxr7Xa7fvpzv3q9tsBhPTIkQA0qRDozE4ATMdAOAAAAAAAAAACuW2ZmppKSkkxnuJTNZjOdkEv58uVNJ7gMT4EFALg7m81W6IYSNm/ebDoBAAAAQAGwb98+0wkuU61aNVmtVtMZbuv8+fPavn276QwAwHWyWCwaPny4vLwKzxjb2LFjlZKSYjoDuGrHzqTp/gmLHdYqlQzRDaVC8+V6E+9vpZgSRR3WpizfphVbD13ydaOmrVLr0bO0cc9xh/WuCbE8nR1wY4XnKwEAAAAAAAAAAJBvdu/erfT0dNMZLuXr62s6IZewsDBFRUWZznCJnTt3Kjs723QGAACXVK1aNdMJLsVT8wAAAAA4w/79+00nuEyFChVMJ7i1TZs2KTMz03QGAMAJqlWrpu7du5vOcJnDhw/rzTffNJ0BXJVT5y6o/dg52rTvhMN694YVZLHkz5B4ZEig5g/rrJBAx/dfPP7xMmVn2/N8zbnzGRo/Z22e+7omxDm9EYDzeJsOAAAAAAAAAAAAnq8wPo0zJCTEdEKeqlevrkOHLn238oLg/Pnz2rNnj2JiYkynAABwUVWrVjWd4FIMtDtP7969dfToUfn7+ysgIECBgYEKCAjI2f77IzAw0GHt39t/r7njzZgAAACAizl69KjpBJeJi2Pg5lLWrVtnOgEA4ESPPfaYFi5cqNOnT5tOcYnPP/9cXbt2VZUqVUynAJeVcj5dHZ+fq7W7kx3W4yKC9VjHWvl67fKRIRpxa4Ie/3hZztqanUf19a/b1aNxxVzHL1y/R+czsnKtFy/ip+ZVSuZrK4Drw0A7AAAAAAAAAAC4bmvWrDGd4HKhoaGmE/JUrVo1LVq0yHSGS2zbto2BdgCAW6tevbrpBJfasGGD6YQCITMzUxs2bFBGRobTzmm1Wi87+H4tHzabzWmNAAAAgCSlp6cXmiE3SSpdurTpBLe2dOlS0wkAACcKCwvToEGDNGbMGNMpLpGVlaURI0Zo2rRp8vLyMp0DXFRaeqa6vPidftt22GE9ungRLRrRJdfT0/PDA22qaeL3m7TlwMmctZkrd+U50D5z1a5ca0F+Nr1zXwvZvK352gng+jDQDgAAAAAAAAAArtvq1atNJ7icOw+0Fxbbtm1T27ZtTWcAAHBR5cuXl7+/v9LS0kynuMTRo0e1d+9eRUdHm07xaHv27HHqMLv03zfPpqSkKCUlxanntdlsuYbc/f39c54of6m12NhYVayY+82IAAAAKNwOHToku91uOsNlIiMjTSe4rdOnT2vt2rWmMwAATtarVy9NmzZNW7duNZ3iEn/88YemTJmi3r17m04BHKRnZmn8nHVa8ud+Lf5jf679UaEBWjSii8qGF3VJj83bqkc71NL9E5fkrK3ZeSTXcemZWfru9ySHtWd7NtCjHWoqwJcbsALujoF2AAAAAAAAAABwXfbt26fdu3ebznA5BtrNW79+vekEAAAuydvbWzVq1NDKlStNp7jMypUrGWi/Trt25X66jLvKyMjQ6dOnr+kJmo888ggD7QAAAMjl4MGDphNcKjw83HSC21q6dKmysrJMZwAAnMxqtWr48OHq06eP6RSXefXVV3XTTTepRIkSplMASdKJlPO6dfx8Lf3zQJ77ixfx08LhXVU+MsSlXQkVIhy2k5LPKvlMmsKL+uesLd60X2fS0nO2LRbp7pY3MMwOeAgv0wEAAAAAAAAAAMCzff/996YTjAgLCzOdkKfg4GCVK1fOdIZLrF27VpmZmaYzAAC4pISEBNMJLrVq1SrTCR5v586dphNcIjY21nQCAAAA3NCxY8dMJ7hU0aKueeKlJ1qyZMnlDwIAeKR69eqpQ4cOpjNcJiUlRePGjTOdAUiSdhw+pSZDp190mD0k0FcLhndRldKufz9EldJh8vdxfH7zmp1HHbZnrXT8/nn9CpGKCg3M9zYAzsFAOwAAAAAAAAAAuC7z5883nWBEqVKlTCdcVL169UwnuERqaqo2b95sOgMAgEuKj483neBSv/76q+x2u+kMj1ZYvr6JiYkxnQAAAAA3dOrUKdMJLhMQECBvb+/LH1gIpaena9myZaYzAAD5aPDgwQoICDCd4TLz58/ncxuM+3XbITUeOl3bDp3Kc3+Qn03fPdNJtcqFuzbs/3lbvVQ7xvHaa3Yeyfn3rOxszV6922F/YgI3TgU8CQPtAAAAAAAAAADgmm3ZskUbN240nWFEdHS06YSLKkxPguUpsAAAd1erVi3ZbDbTGS6TnJxcaAay88vatWtNJ+Q7b29vBtoBAACQpzNnzphOcBk/Pz/TCW5r4cKFOnv2rOkMAEA+ioiI0P333286w6VGjx6t8+fPm85AIXU2LV09xi/Q8bO5/wzeVLOMHulQU6teuE31K0QaqPuf+LgSDttrdvzvCe2/bDmk5DNpDvu7JsS5pAuAczDQDgAAAAAAAAAArtmUKVNMJxjjzgPt9evXN53gMqtXrzadAADAJfn5+alGjRqmM1xq6dKlphM81r59+5ScnGw6I9/FxcXJx8fHdAYAAADc0OnTp00nuAxPZ7+4adOmmU4AALjA3XffrXLlypnOcJl9+/bpvffeM52BQmrumt06ePKcw1rNssWV9F5fzR/aRePvaqqKJUMN1f1PvfKOA+2rdx6R3W6XJM1atcthX82yxRUXGeyyNgDXj4F2AAAAAAAAAABwTZKTkzVz5kzTGUaEhISoaNGipjMuKiIiotC8+WPNmjXKzMw0nQEAwCU1bNjQdIJLLVmyxHSCx1q3bp3pBJeoWrWq6QQAAAC4qcL0hHYG2vOWlJTEjUwBoJDw8fHRM888YzrDpSZPnqwdO3aYzkAhNHPlToft+LgS+unZbipdLMhQUd7i4yIcto+eTlP8f6bq1lfmacrybQ77utaPdWUaACdgoB0AAAAAAAAAAFyTDz74QBcuXDCdYUTZsmVNJ1xWQkKC6QSXSElJ0YoVK0xnAABwSc2bNzed4FIbN27UwYMHTWd4pLVr15pOcIlq1aqZTgAAAICbKkzfc+ZGnXn7+uuvc57CCQAo+Jo3b66WLVuaznCZjIwMjRw5ks91cKnUCxlasH6vw9qAm6qpiL+PoaKLKx8ZrJBAX4e1DXuOaeaqXUo+k+awnpgQ58o0AE7AQDsAAAAAAAAAALhq27dv1xdffGE6w5jKlSubTrisRo0amU5wmfnz55tOAADgkqpXr65ixYqZznCphQsXmk7wSD///LPpBJeoUaOG6QQAAAC4qYyMDNMJLpOenm46we2cP39eM2fONJ0BAHCxZ555Rj4+7jdYm1/WrFmjGTNmuOx6p1Mv6IWZazT0y1+179hZl10X7uP7DfuUlv6/myl5WSzqFB9jsOjiLBaLbqxe+rLHVYgKVtUyYS4oAuBMDLQDAAAAAAAAAICr9uyzzxaqNxb+W/Xq1U0nXFbTpk1ls9lMZ7jEjz/+WKj/PAIA3J/FYlGTJk1MZ7jUd999ZzrB4/z11186cOCA6Yx8FxgYqCpVqpjOAAAAgJsqTE8tZ6A9t6+++krHjx83nWEET+oFUJhFR0frnnvuMZ3hUi+99JJOnDjhkmv1f3+xhk35TS/O+l0tRs7Q6dQLLrku3MfXv2532G5WpaSKF/U3VHN5z/VqqBplL32T4Lta3CCLxeKiIgDOwkA7AAAAAAAAAAC4KrNnz9aqVatMZxhVtWpV0wmXFRQUpHr16pnOcInTp09rxYoVpjMAALik5s2bm05wqT/++EPbt2+//IHI8eOPP5pOcIm6devKarWazgAAAICbKkw3rmSg3dGFCxf0wQcfmM4wJisry3QCABg1YMAARUZGms5wmVOnTunll1/O9+vsP56ib37bmbO9J/msxkxfne/XhetlZ9v1w8Z9mr9ujy5k/O/rincXbNRXvzh+rz6xfpyr865KhagQ/f5ST21/+04tHN5F7/dvqae61FH3BuXVvGopDe5aV491rG06E8A1YKAdAAAAAAAAAABcseTkZL300kumM4zy8fFRhQoVTGdckVatWplOcJl58+aZTgAA4JKaNm0qm81mOsOlZsyYYTrBoyxZssR0gksUlpsuAQAA4NoUpqHezMxMnTp1ynSG25g6daqSk5NNZxiTnZ1tOgEAjAoICNDgwYNNZ7jUjBkztHq1c4bLf/xjn5qP+EaNhn6tn/7cn7M+e/WuXMe+PX+j/trvmqfDw3Ue+/hn3fzcbHV6fq7ueHOR7Ha7Plq8WYM+/NnhOB9vLyUmxBqqvHIWi0UxJYrqxupl1K91VT3fu5G+evxm/TgyUWNvbyhfGzdNBTwRA+0AAAAAAAAAAOCKZGRkaNCgQTp27JjpFKOqVKniMcNoLVu2NJ3gMosWLdLp06dNZwAAcFFFixZV48aNTWe41KxZs3ji4BXatWuXNm3aZDrDJZo0aWI6AQAAAG7Mai1cgymF/fvtf0tPT9ekSZNMZxiVmZlpOgEAjGvfvr0SEhJMZ7jUyJEjr+t7qNnZdo2bsUY3Pzdbv2w5pFXbj6jXawt1Pv2/n1dmrtyZ6zWZWdl64pPlstvt13xduJdDJ8/pnQV/5GzPWLlTD09eqv4TFuc69qU7GqtkWJAr8wAgBwPtAAAAAAAAAADgiowdO1Zr1641nWFcw4YNTSdcsdKlS6tixYqmM1wiNTVV06ZNM53hkbZu3apDhw4xcAgALtCuXTvTCS514sQJffvtt6YzPEJh+TomPDxcN9xwg+kMAAAAuLHCNtBemJ9I/k8TJ07U0aNHTWcYxfdnAeC/hg0bVqi+Hti5c6cmT558Ta89de6Cur38nUZ89Zv+OZuefCZN65OO6diZNP28+WCer120Ya++/T3pmq4L9zN79a5ca+8v2qR/37NgdI/6GtiupouqACA3b9MBAAAAAAAAAADA/U2fPl1TpkwxneEWGjVqZDrhqnTo0EHbtm0zneESn3/+ue6++255e/MjsCt16NAhdenSJecJDEFBQSpWrJjCwsJUvHhxhYWFqVixYg5rf/97SEiILBaL4V8BAHiW1q1by8fHp1C9Sf3TTz9Vt27dTGe4tfT0dM2aNct0hks0b96crx8AAABwSTabzXSCSx08mPeQWWGyd+9eTZw40XSGcWlpaaYTAMAtVKpUSbfffrs+++wz0yku895776lDhw6Kjo6+4tds3HNMt74yXzuPnM5z/7rdyXp17jplX+Ip7E9+slxtakbL11Z4biBQUM1cmXug/d8Gd62rZ7rFu6AGAC6Od/MAAAAAAAAAAIBLmjVrlkaMGGE6wy0EBASoVq1apjOuSseOHfXaa6+ZznCJw4cPa+HCherQoYPpFI8xf/78nGF2SUpJSVFKSor27Nlz2dd6e3srNDT0ksPv/1zz8/PLz18KAHiEoKAgNW3aVD/++KPpFJf566+/tHz5cjVp0sR0itv64YcfdPLkSdMZLtGyZUvTCQAAAHBzhW2gfceOHaYTjBszZowuXLhgOsO48+fPm04AALcxaNAgfffddzpx4oTpFJe4cOGCRo8efcVPav9y2VYNmLBEaemZFz3m4clLc61FhgTo8KnUnO2dR07r9e/Wa3DXulcfDbdxIuW8fvpz/yWPGdS+pp7r1YCbjQIwjoF2AAAAAAAAAABwUdOmTdPIkSOVnZ1tOsUt1KtXTz4+PqYzrkrp0qVVu3ZtrVu3znSKS3zyyScMtF+F+fPnX/NrMzMzlZycrOTkZG3duvWyxwcEBKhYsWIOg+5///Pfw+8hISHy8vK65jYAcGcdO3YsVAPtkvTuu+8y0H4JV/pGVU8XGBiopk2bms4AAACAmwsMDDSd4FLbt283nWDUokWL9PPPP5vOcAupqamXPwgAComiRYvq8ccf17Bhw0ynuMzy5cs1b948tW/f/qLHpGdm6alPl+udBX9c0zXG39VEb83fqN+2Hc5ZG/fNGt3RrJJs3lZ9/vMW+dm81adZJRXx96yfiRdm367Zraxs+0X339e6qsbf1YRhdgBugYF2AAAAAAAAAACQp08//VTjxo1zeHpzYXfjjTeaTrgmnTp1KjQD7Rs2bNDixYvVqlUr0ylub8eOHdq4caPLrpeamqrU1FTt27fvssdarVaFhITkDLj/c/g9r7WAgAAX/AoAwDlat26tkJAQnTp1ynSKy/z+++/69ddf1bBhQ9Mpbmfx4sXatGmT6QyXuPHGG+Xr62s6AwAAAG6uSJEiphNcasuWLaYTjDlx4oSeffZZ0xlu4/Tp06YTAMCtdO/eXVOnTtUff1zb8LYnGjdunJo2bXrRr4cenPiTPv7pr1zr9cpHqH/rqrrv/cUXPXevJhXVvWF5lY8KUYMh0/T3WwDOXcjQ4M9XKCn5jH7d+t9B9583H9CUx26+/l8QXGLmql0X3Xdn88p6p18LhtkBuA0G2gEAAAAAAAAAgINz585p1KhRmjNnjukUt+Lt7a02bdqYzrgm7dq10/PPP6+MjAzTKS7x4osvqmnTprLZbKZT3Nrnn39uOuGisrKydPz4cR0/fvyKjvf393cYci9durSGDh3KmzMAuCUfHx916dJFn3zyiekUl3r55Zf1zTff8P/N//LOO++YTnCZSz1dCgAAAPhbUFCQ6QSXSk5OVlJSksqVK2c6xaXsdrv+85//KDk52XSK2zh79qzpBABwKxaLRcOHD1ePHj0KzQ3Yk5OT9eqrr2rkyJG59m05cDLPYfYBN1XTq32b6kxa+kXP+0y3eD3bs4EkqW5sCd3dsoo+XLw5Z/+U5dscjv/61x0af1eKSoYVrq/LPFHK+XQt2rDXYe3Vvk1Voqi/ihf1143VS/M9eQBuxct0AAAAAAAAAAAAcB9btmxRt27dGGbPQ8OGDRUaGmo645qEhYWpZcuWpjNcJikpSVOmTDGd4dZSUlI0e/Zs0xlOk5aWpv3792vDhg1asmSJzp8/z5szALi12267zXSCy/35558F6nOPM/zwww+F5unsoaGhatKkiekMAAAAeIDg4GDTCS7322+/mU5wuUmTJmnZsmWmM9xKamqq0tMvPowIAIVRzZo1lZiYaDrDpb766itt3Lgx1/rMlTsdtn1tVk1+8Ea9c18L+dqsCi/qr1JhgbleFxLoq2Hd6zmsPdergYr6+1yyY/Gm/ddQD1dbsG6vLmRk5Wx7W710R7NK6tmkolrXKMPPSwG4HQbaAQAAAAAAAACA0tPTNXHiRN16661KSkoyneOWOnToYDrhuvTq1ct0gku98847On36tOkMt/Xll18qNTXVdEa+6dOnj+kEALik8uXLq3bt2qYzXO6VV17hiXP/Ly0tTePGjTOd4TJdu3aVzWYznQEAAAAPEB4ebjrB5VasWGE6waXWrVunN954w3SGW+KJ9QCQ25NPPqkiRYqYznCZ7OxsjRw5UllZWQ7rs1Y5DrTf07KK7mpxg8NarXK5v47qWLecfLytDmslggP0n651Ltnx48Z9V5MNQ/59o4OW1UopNMjPUA0AXB4D7QAAAAAAAAAAFHILFy5Uu3btNH78eJ7+cREBAQG66aabTGdcl4YNG6pcuXKmM1zm1KlTeu2110xnuKWUlBRNnjzZdEa+qVevnipXrmw6AwAuq2fPnqYTXC45OVmvvPKK6Qy38Oabb+rAgQOmM1zm1ltvNZ0AAAAAD1EYB9qXLl2qlJQU0xkuceDAAQ0aNEiZmZmmU9wSA+0AkFuxYsU0cOBA0xkutXnzZn322Wc523uSz+j3XY6fI7rWj831urjI4FxriQlxeV7j3huryma9+Fjhj3/sl91uv9JkGHA+PVPfrU1yWLvY7zcAuAsG2gEAAAAAAAAAKKRWr16tPn36aNCgQdq/f7/pHLfWuXNnBQUFmc64LhaLRT169DCd4VJTpkzRkiVLTGe4nY8//linTp0ynZFveDo7AE/RoUMHRUREmM5wualTp2rlypWmM4zasmWLPv30U9MZLlO7dm3FxfFGSgAAAFyZEiVKmE5wufPnz2vRokWmM/LdyZMnde+99+ro0aOmU9wW/20AIG99+vRRhQoVTGe41BtvvKHDhw9Lkmav3u2wLyzIV81uKJnrNU3zWLupZpk8zx9e1F9d6uUeiv/bwZPntOXAyatJhov9uGm/Us5n5GxbLFLnejEGiwDg8hhoBwAAAAAAAACgEElPT9esWbOUmJioPn36aPXq1aaTPEJBGZDt1q2bfH19TWe41JAhQ3gT4D8cOHBAH3zwgemMfFO6dGm1bt3adAYAXBGbzVZgvsa4Gna7XYMHD9bp06dNpxiRmpqqJ554olA9jfCOO+4wnQAAAAAPEhkZKS+vwvcW92+++cZ0Qr5KS0vTgAEDtHv37ssfXIjt2bPHdAIAuCVvb28NHTrUdIZLpaamasyYMZKkmSt3OuzrFB8jm7c112va1S6rsuFFcrYHd62rAF/bRa9xb+sql2z48Y99V5MMF5v1rz8XjSpFKTIk0FANAFyZwve3fQAAAAAAAAAACqEtW7bo9ddfV6tWrTR48GBt3rzZdJLHaNCgQYG5439ISIi6dOliOsOlTp48qcGDB8tut5tOcQvPPvus0tLSTGfkmwEDBsjb29t0BgBcsZ49eyogIMB0hssdOnRIQ4cOLZSfn4cNG6YdO3aYznCZyMhItW3b1nQGAAAAPIjNZlOxYsVMZ7jcmjVrtGbNGtMZ+SI9PV2PPPKINmzYYDrF7SUlJZlOAAC31bBhw0L3faYffvhBM+bO1/ItBx3WuybE5Xm8n4+3lozuptE96uujh1pr1G0Jlzz/jdXKqHxk8EX3//jH/quPhktkZmVr7hrHGwV1TYg1VAMAV46BdgAAAAAAAAAACqg///xTr776qtq2basuXbrovffeU3Jysuksj3PnnXeaTnCqfv36FbonHK1YsULvvfee6Qzj5s6dq59++sl0Rr6JiopS165dTWcAwFUpWrSounfvbjrDiO+//77QfX7+9NNP9d1335nOcKnevXtzsxkAAABctcjISNMJRhTEvyOlpKSoX79+Wrp0qekUj7Br1y7TCQDg1p5++mn5+/ubznCp58c+J2Vm5GwH+tp0U40yFz0+ungRDb2lnu5oXjnPp7j/k5eXRZ8OaqPSxYIU4OutilEhDvvX7ea9Be7g3PkM/bH3mM6kpuesLd9yUMfOnnc47mI3OgAAd8JPjAAAAAAAAAAAKADS09O1adMmrV27Vr///rvWrVunkydPms7yeFWrVlWrVq1MZzhV2bJl1aZNGy1YsMB0iku98cYbCg8P16233mo6xYikpCSNHDnSdEa+uu++++Tj42M6AwCu2r333quvvvpK6enplz+4gHnzzTdVvnx5tWnTxnRKvlu0aJFefPFF0xkuFRgYqB49epjOAAAAgAeKjIzUH3/8YTrD5ZYvX66lS5eqefPmplOcIjk5Wffdd5/++usv0yke46+//lJmZiY3BgOAiyhZsqTuu+8+vfnmm6ZTXObMyWMK816p4yWbSJLa1ykrPx/nfZ5IKB+h3e/epfTMbO04fEo1n5iSs2//8RSdSDmvsCA/p10PV2fn4dNqPuIbHT6VKquXRfFxJdSyWmltOeD4XpDaMeGKKVHUUCUAXDn+pgMAAAAAAAAAgAdJT0/Xvn37tHPnTu3cuVM7duzI+ffCOASV3wYNGiSLxWI6w+n69+9f6AbaJWnkyJEKDg4uFENz/3T+/Hk98sgjOnfunOmUfBMeHl5on3AMwPNFRkaqR48e+uyzz0ynuJzdbtcTTzyhSZMmqUGDBqZz8s3SpUv1+OOPKzMz03SKS/Xu3VvBwcGmMwAAAOCBoqOjTScYM3r0aH377bcKCAgwnXJddu/erX79+mn//v2mUzxKWlqatm7dqqpVq5pOAQC31a9fP82cOVP79u0zneIywckbdDa0stL9iyuxvvOfwm2xWORrs6piVIh8vL2Unpmds++PvcfVvEopp18TV+a56at0+FSqJCkr266V249o5fYjuY7rmhDr6jQAuCYMtAMAAAAAAAAA4EJ2u10ZGRnKzMzM+cjIyFBaWprOnDmj06dP6+zZszp9+rTOnDmjI0eO6PDhwzkfJ06ckN1uN/3LKBRq1aqlFi1amM7IF1WrVlWTJk20fPly0ykulZWVpSeeeEITJ05Uw4YNTee4RFZWlh577DFt2bLFdEq+euCBB+Tr62s6AwCu2YABAzR9+nSlpaWZTnG59PR0Pfjgg5o4caLi4+NN5zjdL7/8oocfflgZGRmmU1wqICBAd999t+kMAAAAeKiyZcuaTjDmwIEDGjt2rMaOHWs65ZrNmzdPI0aM0NmzZ02neKTVq1cz0A4Al+Dr66shQ4bowQcfNJ3iMhZlK3z/EiVXvk3tauff10k2b6uqlA7T+qRjOWubGGg3Jj0zS3PW7L6iY/PjRgcAkB8YaAcAAAAAAAAAXLUDBw6oUqVKpjOAfPXYY4+ZTshXgwYNKnQD7dL/huZeeeUV3XjjjaZz8t2wYcO0ePFi0xn5qly5curRo4fpDAC4LuHh4br99ts1efJk0ylGnDt3Tv369dM777yjxo0bm85xmm+++UYjR44sdMPsktSzZ0+FhYWZzgAAAICHio6OltVqVVZWlukUI6ZPn66KFSvqrrvuMp1yVdLS0jRu3DhNmzbNdIpHW7x4sfr27Ws6AwDc2o033qimTZtq2bJlplNcxi/1sOJ9D6iIv0++XqdadDGHgfY/9hy7xNHIDzN+26FhU37TtkOnruj4SiVDdEOp0PyNAgAn8TIdAAAAAAAAAAAA4G5uvvlmNWjQwHRGvqpZs6batGljOsOI1NRUDRw4UB9++KHplHyTmZmpIUOGaMaMGaZT8t3jjz8ub2/u4w3A8/Xr109BQUGmM4xJS0vTgAED9PXXX5tOuW52u13jx4/XM888UyiH2YsUKaL+/fubzgAAAIAH8/HxUYUKFUxnGPXiiy9q4cKFpjOu2JYtW3TLLbcwzO4Ev//+u06dOmU6AwDc3tChQ2Wz2UxnuNSp9Qt0/PjxfL1G9ehiDtsb9+bv9TzNtoMn1XbMbNV+coo+/3mLU85pt9s1d81ujfjqN81bm6S+7/yQ5zB71TJheqpLHcXHlZDF8t81m9VL425vJMvfCwDg5hhoBwAAAAAAAAAA+IeAgAANGTLEdIZLPPbYY7JaraYzjMjOztaLL76o4cOHKzMz03SOU6WlpWngwIGFYpi9Vq1aatu2rekMAHCKsLAwPfTQQ6YzjMrIyNCwYcP03HPPKT093XTONUlOTtZ9992niRMnmk4xpn///goN5YlAAAAAuD5169Y1nWBUVlaWHnvsMc2ZM8d0yiWdOXNGn3zyiW677Tbt3LnTdE6BkJmZqVmzZpnOAAC3FxMTo7vuust0hktdSDun559/Pl+vUb1scYftP/eeUHa2PV+v6Unue3+xfvxjn/7Ye1x93/5Br8xZe13ns9vtenjyUiW+9J3GzVijzi98q9QLef/suk+zynq+dyP99vxtOjq5n5aM7qatb92hLgmx19UAAK7EQDsAAAAAAAAAAMA/PPDAA4qMjDSd4RKxsbG65ZZbTGcYNW3aNPXt21f79u0zneIUO3fu1G233aYlS5aYTnGJp556ynQCADjVHXfcoZiYGNMZxn322WceOQyxaNEidezYUcuWLTOdYkxUVFSheyMxAAAA8kedOnVMJxiXlZWlwYMH691335Xd7l6DZNnZ2Zo2bZrat2+vhQsXFribhpo2depUt/s9BwB39OCDD6pEiRKmM1xq7ty5WrFiRb6dv0ZZxye0n7uQod1Hz+Tb9TzJ7qNn9MuWQw5rT3++Qu8s2HhN57Pb7frPZ7/o/UWbruj4rv8YXA8N8lPTG0oquniRa7o2AJjCQDsAAAAAAAAAAMD/q1ixou6++27TGS41cOBABQQEmM4wavXq1erUqZM+/vhjZWdnm865Jna7XdOmTdMtt9yibdu2mc5xiZtvvlnx8fGmMwDAqWw2m5555hnTGW7hr7/+UmJiot5++223f1r7vn379Mgjj+jhhx/WqVOnTOcY9cQTT8jX19d0BgAAAAqAevXqyWKxmM4wLjs7W2+88YYGDBigY8eOmc6RJC1evFi33HKLhg8frhMnTpjOKZB27dql+fPnm84AALcXGBhYKG9+PHr06Hz7nmlEcICKF/FzWPtjr3t8DWLarFV534D16c9XKPlM2kVfl51t17aDJ5WZ5fhz6NFfr9Jr366/omtXjy6mClEhV5oKAG6LgXYAAAAAAAAAAAD9d4Ds5Zdfls1mM53iUhEREXrwwQdNZxiXlpam559/Xr169fK4p8Fu2bJFvXr10vDhw5WWdvE3SxQkAQEBGjJkiOkMAMgXzZo1U8uWLU1nuIULFy7orbfeUocOHTR37ly3u/HMmTNn9NJLL6l9+/ZasGCB6Rzj6tevr06dOpnOAAAAQAFRvHhx3XDDDaYz3MbSpUvVrl07ffHFF0b+bnT+/HnNmDFDnTt31gMPPKDNmze7vCEvHTt2LLB/hx4/frzb3+ANANxB586dVbduXdMZLpWUlKT3338/X85tsVhUvWxxh7Xpv+7Il2t5mpkrd+W5npaeqbfn5/2U9lPnLqjmE1+qyqNfqNKgz7Tv2FlJ0ouzftdz01df8bWH3lLv6oMBwA0x0A4AAAAAAAAAAKD/Pqm8cuXKpjOM6Nu3rypUqGA6wy2sX79eXbp00ejRo3X06FHTOZeUlJSkp59+Wt26ddO6detM57jUgw8+qMjISNMZAJBvhg8froCAANMZbmPv3r168skn1blzZ82YMcP4G/r37t2rsWPHqkWLFpo8ebLxHndgs9k0cuRI0xkAAAAoYJo1a2Y6wa2cOXNGzz77rNq1a6evv/463/8uYrfbtWbNGj377LNq1qyZhgwZoq1bt+brNa9GlSpV9PLLL+uOO+4wnZIv9u/fr3HjxpnOAACPMHz4cFmtVtMZLjVp0iTt2pX3gPX1ql8hwmH7q1+2X/Tp5AWd3W7XjsOnNGHRJq3Yeuiix727YKPOpuX+2uyl2b/rrwMnJUl7ks/q8Y+X6a15GzT0y18ve+34uBL6eGBrrXzhNnVvWP7afxEA4EYYaAcAAAAAAAAAAIVerVq1dN9995nOMMZms2nEiBGmM9xGRkaGvvzyS910000aNWqU2z2xfdWqVXr88cfVvn17zZw5U1lZWaaTXCouLk59+/Y1nQEA+apUqVJ68sknTWe4ne3bt2vIkCFq0aKFXnzxRf35558uu3ZKSoq+++473X///Wrbtq0+/fRTnTt3zmXXd3f9+vVTXFyc6QwAAAAUMAX1ydvXKykpScOGDVPz5s01atQorV692mnfIzxy5IjmzJmjIUOGqGnTpurdu7e++OILnT592innd6Zhw4bJy8tLpUuXNp2Sb6ZMmaIZM2aYzgAAt3fDDTfotttuM53hUunp6Ro1alS+nPuBttUVHODjuDbxJx09nZov13M2u91+za9NvZChBev36NmvV6nj83MV2W+yKg/6XA998NMlX3fy3AV1efFbrdpxxKFj0veO38OeuWqXHvt4Wa7XD2pfM9faA22rq0+zyqobW+LafjEA4Ia8TQcAAAAAAAAAAACYFBISovHjxxe6u/b/W0JCgrp06aLZs2ebTnEb58+f15QpUzRlyhQlJCSoU6dOatOmjUJCQlzesm3bNv3444+aNWuWkpKSXH59dzJ8+HDZbDbTGQCQ726//XbNnz9fq1evNp3ido4fP64PP/xQH374oaKjo9WsWTM1btxYtWvXVmhoqFOukZWVpW3btmndunX6+eef9csvv/Ak9ouoWLGiHnzwQdMZAAAAKIBq1qypkiVL6uDBg6ZT3NKJEydyvn8ZEBCgWrVqqVatWipXrpxKly6tqKgoBQQEyN/fXz4+PsrIyFB6errOnTunEydO6Pjx49q/f7/27Nmj3bt3a9OmTUpOTjb9y7oinTp1Ut26dSVJUVFR8vLyUnZ2tuGq/DF06FBZLBYlJiaaTgEAt/boo49q/vz5OnXqlOkUl1m5cqVmzZqlrl27OvW8pcKC9PrdzXT3Oz/krCWfSdMDE3/S9CfbyWKxOPV6zpJ6IUN3vPm9lm85qFsblteb9zSXl9eVt65PSlb7sXN09HTaZY/t2biC0tKzNHv1rpy1nzcfVKNnvlaXerEa3aO+7LLr5LkLlz3X+Lua6JEOtbTz8Gl9tzZJkhQVGqAu9WKvuB0APAUD7QAAAAAAAAAAoNDy8vLSyy+/XKCf4HI1hgwZohUrVnjMmxZdadWqVVq1apVGjx6tWrVqqXHjxqpfv76qVq0qPz8/p19v3759WrdundauXauff/5ZBw4ccPo1PFGnTp3UsGFD0xkA4BIWi0Vjx45V586ddf78edM5bmvv3r36/PPP9fnnn0uSypQpoypVqqhcuXKKjo5WZGSkwsLCFBoaKl9fX/n4+Mhqter8+fNKS0tTWlqaUlJSdODAAR04cED79+/Xrl27tGnTJqWmesYTh0yy2Wx66aWX5OPjc/mDAQAAgKtksVjUrl07TZ482XSK20tNTdWKFSu0YsUK0yn5LiAgQE899VTOto+Pj0qUKKHDhw8brMo/2dnZGjJkiP7880899dRT8vX1NZ0EAG4pJCREjz76aL49tdxdvfjii2rZsqWCg4Odet4+zSpp1qpdDgPbs1fv0hfLtqpPs8pOvZazjP56VU7v+4s2qWHFKPVuVumKXz/4sxVXNMwuSf1aV1URfx/NX5ek9EzHm+rMXr1Lc9bsUoXIkMue57leDfRIh1qSpE8evkkvzPxdx86kaWD7GgoJ5HM+gIKHgXYAAAAAAAAAAFBoPfTQQ2rWrJnpDLcRGhqqsWPHqn///qZT3FZmZqbWrFmjNWvWSJKsVqvi4uJUqVIlRUdHKzo6WhEREQoNDVVoaKgCAwNls9lks9lkt9uVnp6u9PR0XbhwQSdPnsx5EtLhw4e1e/duJSUlaefOnTp58qThX6n7KVasmIYOHWo6AwBcqmzZsho8eLBGjx5tOsVj7Nu3T/v27TOdUWg89NBDuuGGG0xnAAAAoADr2LEjA+1wMHDgQEVERDisRUdHF9iBdkmy2+367LPPtGzZMj3wwAPq2LGjvL0ZBQGAf+vRo4emTZumzZs3m05xmRMnTuiVV17RmDFjnHpei8Wi9/q30Iqth5R85n9D3o98+LOaVymlMsWLOPV61ys7264py7Y5rM1bm3TFA+1HT6dqyab9F90fXtRfpcICVayIv+5sXlktqv73hvlfP9leD0xYooMnzzkcb7dL2w6duuQ1R96WoKcT43O2QwJ99UKfRlfUCwCeir/FAAAAAAAAAACAQqlVq1Z66KGHTGe4nebNm6tHjx6aOnWq6RSPkJWVpW3btmnbtm2XPxjXZeTIkQoNDTWdAQAud/vtt+u3337TwoULTacADhISErgREgAAAPJdlSpVVKNGDW3cuNF0CtxA9erV1bdv31zrlSpV0qpVq1wf5GJJSUkaPHiwxo8fr1atWqlFixaqUqVKrgH/izlz5owOHjyoffv2aeXKlfrmm2+0fft2de/eXT169MjnegDIf15eXho+fLhuv/122e120zku8/XXX6tr166qW7euU89bIjhA797XQreOn5+zdjo1Xfe9v1jzh3aWxWJx6vWux6odR3INlf+2/cpvdjNz5S5l/+PPjL+Pt/rfVFX1K0QqoXyEyoYXyfPX26FOOW196w69u2CjXpz1u06kXLjstbytXnq/fwv1bVnlivsAoKBgoB0AAAAAAAAAABQ6NWrU0KuvvupWP2R3J08//bR+/fVX7d2713QKIElKTExU27ZtTWcAgDFjx47Vpk2bdODAAdMpgCSpePHiGj9+vKxWq+kUAAAAFAJ33nmnnnzySdMZMMzHx0cvvPBCnn8PqVKlcA2EHT16VF999ZW++uorSVKRIkUUGRmpwMBABQQEyG63KyMjQ5mZmUpNTdXJkyd16tQpZWRk5Hm+Dh06uDIfAPJVnTp11LlzZ82ePdt0isvY7XaNGjVKM2bMkM1mc+q5E+vHqXfTSvpi2dactR827tPkHzerX+uqTr3W9Zi5ameutT3JZ3Xo5DlFhQZe8rUZmVkOvz5J6hwfo/F3Nb2ia/v7eOuJznV0X+tqeu3bdXrt2/VKOe/4ObdEsL9evqOJthw8qZ6NK6hqmWJXdG4AKGi8TAcAAAAAAAAAAAC4UnR0tCZMmCB/f3/TKW4rICBAr776qnx8fEynACpXrpyGDx9uOgMAjCpSpIhee+01p78ZEbgWXl5eeuWVV1SiRAnTKQAAACgkbr75ZoWHh5vOgGEPP/ywypcvn+e+wjbQ/m9nz57V9u3btX79eq1YsUK//vqr1qxZo/Xr12vbtm1KTk6+6DA7ABRETz75pAIDLz3EXNBs27ZNH330Ub6c+417mqlUmON/zwnfb8qXa10Lu92uWSt35blv5WWe0v7Mlyvkf/t7WrH1kMP6rY3y/prjUooG+GjkbfW14+079VjHWvK1/e8mPM90i1fvZpU0pmcDhtkBFGoMtAMAAAAAAAAAgEKjWLFi+uCDDxQWFmY6xe1Vr15dw4YNM52BQs7X11evvfZaoXvTEQDkpWbNmhoyZIjpDEBPPPGEGjZsaDoDAAAAhYjNZtPtt99uOgMGVa9eXffee+9F98fFxXETOABAjhIlSuihhx4yneFy7777rvbv3+/084YE+uq1vo5PK/9r/wnZ7XanX+ta/LH3uHYeOZ3nvt+2Hbno61btOKKXZq3NtR7kZ1PbWmWvuad4UX+9fGcTbX/rDn30UGstHpWoh26ucc3nA4CChIF2AAAAAAAAAABQKBQrVkyffPKJypa99h8+FzY9evRQt27dTGegEBs9enShf7oSAPxT79691bNnT9MZKMQSExPVr18/0xkAAAAohHr27CkfHx/TGTAgICBAL774oqxW60WPsdlsqlq1qgurAADu7s4771RsbKzpDJdKS0vTmDFj8uXcCRUiHbbPZ2TpyOnUfLnW1Zq5cudF9/12iSe0T1uxPc/1TvEx8vfxvu6ukmFBuqN5ZTWrUkoWi+W6zwcABQED7QAAAAAAAAAAoMD7e5i9QoUKplM8zqhRo3gjIIy44447lJiYaDoDANzO8OHDVb9+fdMZKITq1KmjZ5991nQGAAAACqmwsDB16tTJdAYMGDVqlOLi4i57XIMGDVxQAwDwFDabTUOHDjWd4XI//fSTFi5c6PTzRoUGyGZ1HENMOnrW6de5FrNW7brovt93HlVGZlaudbvdrll5DMJHBAfo+d6NnNoHAPgfBtoBAAAAAAAAAECBxjD79fH19dW7776riIgI0ykoRJo2baqnn37adAYAuCVvb2+9+eabKlu2rOkUFCIxMTF65513eCImAAAAjHrwwQfl6+trOgMudNttt6lLly5XdGzDhg3zuQYA4GmaNGmi1q1bm85wubFjxyolJcWp57R6eSm6eBGHtT3JZ5x6jWux4/Ap/bH3+EX3p6Vn6ue/DuZaX590TEnJjgP5HzzQSknv3aXSxYKc3gkA+C8G2gEAAAAAAAAAQIFVrlw5ffXVVwyzX6fIyEhNmjRJQUH88B7574YbbtDrr78ub29v0ykA4LZCQkL0wQcfKDw83HQKCoHIyEh9+OGHCgsLM50CAACAQq506dK66667TGfARSpVqqRhw4Zd8fF16tSRv79/PhYBADzR008/XehuiHPkyBG98cYbTj9v2RKOA+3/Hgg34d9PZy8R7K/KpUId1sZMXy273e6wNvNfT2ePKVFUd7W4QTZva/6EAgAkMdAOAAAAAAAAAAAKqJo1a2rKlCmKjo42nVIgVKpUSW+//bZsNpvpFBRgpUqV0oQJE7h5AgBcgejoaE2ePFnBwcGmU1CAhYSEaPLkySpZsqTpFAAAAECSNGDAABUvXtx0BvJZUFCQ3njjjasaQPTx8VF8fHw+VgEAPFGZMmXUr18/0xku98UXX+jPP/906jljwos6bO85av4J7f8eTO9SL1YP3VzDYW35Xwf1wx/7HNb+PQjfNSFWFoslfyIBADkYaAcAAAAAAAAAAAXOjTfeqE8++YSnSDpZw4YNNW7cOH6Yj3wRHh6ujz/+WBEREaZTAMBjVKpUSRMmTFBAQIDpFBRAwcHB+vDDD1W+fHnTKQAAAECOoKAgPfLII6YzkI+8vb31+uuvKyYm5qpfe/PNN+dDEQDA0/Xv31+lSpUyneFSWVlZGjFihLKzs512zrIlHAfaJ/7wp3q9tkDz1+1x2jWuxoRFm7Ry+xGHta4JsbqnVRWVDXd8mvxDk37S9kOnJElbDpzU5v0nHPYn1o/L11YAwH8x0A4AAAAAAAAAAAoMLy8vPfzww3rnnXfk7+9vOqdA6ty5s8aMGcNQO5wqNDRUH330kaKjo02nAIDHqV27tt555x35+fmZTkEBEhISoo8++khVq1Y1nQIAAADk0r17d1WuXNl0BvLJsGHD1LRp02t6bdu2beXj4+PkIgCAp/Pz89PgwYNNZ7jcpk2b9MUXXzjtfOX+NSQuSV//ukPdXvpO63YnO+06V+LTn/7SQx/85LAWGuirltVKy9dm1bBb6jns23XkjBoP/VrL/jqoWascn+oeGRKgBhUi8zsZACAG2gEAAAAAAAAAQAERHBys999/XwMHDmTYOp/deuutevbZZ/nvDKcoVqyYPv30U1WoUMF0CgB4rEaNGmnSpEkKDAw0nYICgGF2AAAAuDsvLy+NGDFCVqvVdAqc7J577lGvXr2u+fVFihRRs2bNnFgEACgo2rZtq0aNGpnOcLnXX39dR44cufyBV6BseNE81zOysvXy7LVOucY/2e12rd+drPX7z8hut+esf71iu/q9tzjX8WNvbygf7/9+fXhH88qqWba4w/4TKRfUdswsvbNgo8N614RYeXnxc28AcAUG2gEAAAAAAAAAgMerWbOmvvnmGzVv3tx0SqFx2223afTo0Qy147qEh4frs88+U8WKFU2nAIDHS0hI0Mcff6zg4GDTKfBgUVFR+vLLL1WlShXTKQAAAMAl1a1bV/fff7/pDDhR69at9dRTT133eTp16uSEGgBAQTRs2DB5e3ubznCplJQUjRs3zinniimR+wntf5u2YrsOnkhxynX+NnLqStV/ZroGfPGn+k9YIkmau2a37njre2X/Y8BdkkbcmqD+N1XL2fa2emnukI6qHRPucFx6ZrYOnUx1WOuaEOfUbgDAxTHQDgAAAAAAAAAAPJa3t7cefvhhTZkyRWXKlDGdU+j06NFDzz//fKF74wecIzo6Wl9++aXi4niTCAA4S40aNfTpp5+qWLFiplPggcqXL6+vvvqKz80AAADwGA899JDq1KljOgNO0KhRI7366qvy8rr+8YbWrVsrMjLSCVUAgIImLi5OvXv3Np3hcgsWLNDSpUuv+zyRIYHy8b745+oJ3/953df429HTqXph5u85258u3ar3Fv6hHq/OV2ZWtsOxT3auo+Hd6+U6R8mwIC0Znaj2dcpe9Dqhgb5qXqWk07oBAJfGQDsAAAAAAAAAAPBIsbGxmjp1qgYOHCir1Wo6p9BKTEzUe++9p4CAANMp8CBVq1bVlClTFB0dbToFAAqcypUra+rUqSpfvrzpFHiQunXr6osvvmDoAwAAAB7FarXqlVdeUdGiRU2n4DrUq1dP7777rnx9fZ1yPm9vb/Xp08cp5wIAFDwPPfSQgoODTWe43LPPPqvz589f1zm8vCyKLn7xp7RP/H6TLmRkXdc1/jZ3ze5cT2F/ePJSpWc6DrM/dHN1Pd+7oSwWS57nCfLz0cz/dNBDN1fPc3+n+BjZvHmvAQC4CgPtAAAAAAAAAADAo/j4+Oihhx7SrFmzVK1aNdM5kNSsWTOeBosr9vefl+LFi5tOAYACq0yZMpo6daqaNGliOgUeoHv37vr4448VEhJiOgUAAAC4aqVKldLo0aNNZ+Aa1a5dWxMmTJC/v79Tz9ujRw9uwgoAyFNQUJB69eplOsPl9u/fr3ffffe6z3Ps7MWH4pPPpGnaiu3XfQ1Jmrlq12WPuadVFb3Wt9lFh9n/ZvXy0hv3NNdrfZvq34d2b8iNYQHAlRhoBwAAAAAAAAAAHqNhw4aaM2eOBg0a5LSntcA5qlevrq+++oqnweKS7rzzTr3//vsKCgoynQIABV5QUJAmTpyo3r17m06Bm7JarRoyZIjGjh0rHx8f0zkAAADANWvfvr3uvPNO0xm4SjVq1NCkSZMUGBjo9HMXLVpUPXv2dPp5AQAFQ9OmTVWzZk3TGS734Ycfavv26xs4b1wp6pL7356/QfZ/PVn9ap1OvaDFf+y75DG3NIjTe/1byMvr0sPs//Rw+5qa8VQHlQsvIquXRQNuqqZ2tcteVysA4Oow0A4AAAAAAAAAANxeqVKl9Oqrr+rjjz9WTEyM6RxcRHR0tKZNm6a2bduaToGbsdlseu655zR06FBZrVbTOQBQaFitVo0YMUJjx46Vn5+f6Ry4kfDwcE2ePFl9+/Y1nQIAAAA4xTPPPKOOHTuazsAVaty4sT7++GMVKVIk364xYMAABQcH59v5AQCey2KxaNiwYfLyKlxjdRkZGRo5cuR1DZzf1qiCw3admHCH7d93Jeu37Yev+fySNH/tHqVnZl/ymKG31JP1Gn7/OsXHaNtbd+rYR/fpnftaXPbp7gAA5ypcn3kBAAAAAAAAAIBHKVq0qJ566iktWLBAHTp0MJ2DKxAYGKg333xTTzzxRKF7EwjyVqpUKU2ZMkW33nqr6RQAKLS6d++ur7/+WnFxcaZT4AYaN26s2bNnq2HDhqZTAAAAAKexWCx64YUX1LRpU9MpuIyOHTtqwoQJ+fJk9n8KCQnRgw8+mK/XAAB4rqpVq6p79+6mM1zu999/1/Tp06/59bc2Kq+H29VQufAiurN5ZS0Z3U1lwx1vUPPmdxsuex673a7lWw7q85+36NS5Cw77Zq7aecnXxkUEq3p0sauP/39eXhYV8fe55tcDAK4d7yICAAAAAAAAAABux8/PT3fffbe+//579evXTz4+/EDZ0/Tv31+TJ09WeHj45Q9GgdWyZUvNnDlT1atXN50CAIVexYoVNX36dCUmJppOgSE2m02PP/64PvjgAxUrdu1v+AQAAADclc1m01tvvaXatWubTsFF3HnnnXrllVdks9lccr3evXurXLlyLrkWAMDzPPbYYwoODjad4XKvvPKKTpw4cU2v9fG26rW7m2nHO3fpw4daK9DPpgfaOv4ccPpvO/TnvuOXPM97C/9QixEz1PftH1R50Gf68Y99kqS09EzNX7fnkq/tWj+WJ6sDgIdioB0AAAAAAAAAALiNgIAA3XPPPfrxxx/19NNPKyQkxHQSrkOjRo00d+5ctWnTxnQKXCwgIECjR4/W+++/XyjfCAQA7iogIEAvvPCCXnvtNYWFhZnOgQtVrlxZ06dP14ABA+TlxduFAAAAUHD5+/vr/fffV8WKFU2n4B+sVquGDBmioUOHunQAzWazaezYsfw9CACQp7CwMA0aNMh0hsudOnVKL730ktPOd0+rKgry+9/Naux2afS0VRc9PjMrW6O//t/+Y2fPq91zc/TSrN+1aP1epV7IvOT1EhPirj8aAGAEfzMDAAAAAAAAAADGBQcHa8CAAfrxxx81ePBgFS9e3HQSnCQ0NFRvvfWWxo0bp8DAQNM5cIG6detqzpw56tmzp+kUAMBFtG/fXt99953atWtnOgX5zNvbWw8++KCmT5+uypUrm84BAAAAXCIkJESfffaZatWqZToF+u+w4Icffqi+ffsauX58fLz69etn5NoAAPfXq1cvVapUyXSGy82cOVMrV650yrnCgvz0SIdaDmszVu7U2l1H8zx+2V8HdfzseYe1bLtdz3z5q+5+5weHdT+b1WG7VFigEspHXH80AMAIBtoBAAAAAAAAAIAxsbGxGjlypJYuXarHH3+cJ4UWYLfccovmzp2rFi1amE5BPilatKhGjRqlL774QmXKlDGdAwC4jLCwML3++ut68803uZlQAVWvXj3NmjVLjzzyiGw22+VfAAAAABQgISEh+uijj9S0aVPTKYVatWrVNGPGDDVo0MBox6BBg1SlShWjDQAA92S1WjV8+HDTGUaMGjVK6enpTjnXYx1rKTTQ1/H80/IemJ+1audFz3MmzbFn3O0N1aFauCTJZvXS2/1ayMvLcp21AABTGGgHAAAAAAAAAAAu5e3trVatWmnSpEmaN2+ebr/9dvn7+5vOgguUKlVKEyZM0FtvvaXIyEjTOXCijh07av78+erVq5csFt5EAgCepG3btlq4cKHuuecehp4LiPDwcL300kv6/PPPVaFCBdM5AAAAgDEBAQGaMGGC7rzzTtMphdJtt92mKVOmKCoqynSKbDab3nrrLW7oBgDIU7169dSxY0fTGS63a9cuffDBB045V0igr57oXNthbd7aPfp12yGHtexsu2at2nXF5+1cL0YjOpTXn6/driOT+6lTfIxTegEAZjDQDgAAAAAAAAAAXCI2NlZPPvmkli5dqvfee0/NmjVj8LWQatOmjebNm6e7776bwTkPV7NmTU2ZMkXjx4/nzaAA4MGCgoI0ePBgzZkzR82aNTOdg2vk5+en/v37a8GCBerSpYvpHAAAAMAtWK1WDR06VM8//7x8fX0v/wJct+LFi+u9997TmDFj5OPjYzonR+nSpfXee+9xg10AQJ7+85//KCAgwHSGy73//vvas2ePU871cLuaKhHs+Hl2xFeOT2lfvfOIDpw457D2Wt+mKlbEL9f56pWPUJliQZKk8pHBKhrgPl9XAACuDQPtAAAAAAAAAAAg30REROiOO+7Q1KlTNX/+fN13330MvUKSFBgYqKefflrz589Xhw4duLmBhylTpozGjx+vadOmqU6dOqZzAABOEhsbq0mTJmnixImqXLmy6RxcIavVqltuuUWLFi3SE088oaCgINNJAAAAgNvp1q2bvv76a5UvX950SoF20003ae7cuWrVqpXplDzVqFFD48ePl7e3t+kUAICbiYiI0AMPPGA6w+UuXLig0aNHO+VcgX42De5a12Ftyab9Wrxpf872zJWOT2evVDJEA9vV0KoXblN8XAmHff1urOKULgCA+2CgHQAAAAAAAAAAOFVkZKT69OmjL774QkuXLtWwYcNUq1Yt01lwU2XKlNGrr76qb775Ro0bNzadg8soVaqUxowZowULFqhjx46mcwAA+aR58+aaNWuW3njjDVWoUMF0Di7CarWqY8eOmjt3rsaNG6eIiAjTSQAAAIBbq1Spkr755hv17t2bG2w6WWhoqF544QW9/fbbCgsLM51zSTfeeKPeeecdntQOAMilb9++KleunOkMl/vll1/07bffOuVcA26qplJhgQ5r9733o56bvlqvf7teU5ZvddjXNU5HYNoAANJWSURBVCFOFotFZcOL6qfR3TSmZwM1vaGknu3ZQPe0YqAdAAoabi0GAAAAAAAAAACui9VqVa1atdS8eXM1b96cp3nimlStWlUffvih1qxZo0mTJmnp0qWy2+2ms/D/oqOjde+996pbt27y8fExnQMAcAGLxaKbb75Zbdq00Xfffaf33ntPO3fuNJ0FSd7e3urUqZMGDBigmJgY0zkAAACAR/Hz89OIESPUvn17DRs2TLt37zad5NGsVqtatWqlZ5991u0H2f+pRYsW+uijj3T//ffr1KlTpnMAAG7Cx8dHzzzzjPr37286xeVeeOEFNW/eXEWKFLmu8/j5eGvoLfX04KSfctb2JJ/VqGkr8zw+sX6sw2uHdIvXkG7x19UAAHBfDLQDAAAAAAAAAICrYrFYVLFiRSUkJCghIUENGjRQ0aJFTWehgIiPj1d8fLy2bdumSZMmad68ecrMzDSdVWjVqFFD9957r9q0aSMvLy/TOQAAA7y8vNSpUyd17NhRS5cu1UcffaTffvvNdFahVKRIEXXv3l133HGHSpUqZToHAAAA8Gjx8fGaM2eOPvzwQ02YMEGpqammkzxOQkKCnnnmGaWmpio4ONh0zlWrXbu2vvrqKz3xxBP6888/TecAANxE8+bN1bJlSy1ZssR0ikslJydr/PjxGjVq1HWf6+6WN+iVOWu168iZSx5XpliQ6saWuO7rAQA8BwPtAAAAAAAAAADgkgICAlStWjVVr15dderUUXx8vEJCQkxnoYCrWLGiXn75ZT3++OOaNm2avvnmGx05csR0VqFgs9nUtm1b9erVS/HxPAEBAPBfFotFLVq0UIsWLbRlyxZ9/PHH+u6775Senm46rcArV66c7rjjDiUmJiowMNB0DgAAAFBg+Pj46P7771e3bt302muvafbs2crKyjKd5faqVq2qBx98UK1bt1ZWVpbWr19vOumaxcTEaOrUqXr77bc1adIkfv8BAJKkZ555Rr/88kuh+97n1KlTlZiYqJo1a17XeWzeVg3vnqC73/nhkscl1o+TxWK5rmsBADwLA+0AAAAAAAAAACBHkSJFVLFiRVWuXFk33HCDatSooQoVKvBkZhgTFRWlRx55RAMHDtSSJUs0bdo0LVu2TNnZ2abTCpwyZcro1ltvVffu3VWsWDHTOQAAN1a5cmW98MILevrpp/Xtt9/qm2++0ebNm01nFSi+vr666aab1L17dzVo0IA3dgIAAAD5qESJEnr++efVv39/vfvuu/ruu+8YbM5D7dq19cADD6h58+amU5zKZrPpscceU4sWLTRu3Dht3LjRdBIAwLDo6Gjd1bevJk2caDrFpbKzszVixAjNmDFDVqv1us51e9OKemXOWv2578RFj+maEHtd1wAAeB4G2gEAAAAAAAAAKIRCQkJUrlw5xcTEKCYmRuXLl1elSpVUunRp02lAnqxWq1q3bq3WrVvr6NGjWrBggebNm6f169fLbrebzvNYgYGBuvnmm5WYmKj4+HiG5QAAVyUkJER9+vRRnz59tGXLFn3zzTeaN2+ejh07ZjrNY9WoUUNdunRRp06dFBwcbDoHAAAAKFRiYmL08ssva+DAgfrkk080c+ZMpaamms4yymq1qmnTprr77rvVoEED0zn5qnbt2vr666+1aNEivf7669q5c6fppHzj7e2t2NhYNWvWTAkJCYqPjzedBABu54amnZT50ZfyzkgxneJSW7Zs0aeffqq77777us5j9fLSrMEd9cDEJTp2Jk3rkxy/Zxxe1F+NK0dd1zUAAJ6HgXYAAAAAAAAAAAqg4OBglShRQlFRUSpZsqRKlSqV88+yZcsqLCzMdCJwzUqUKKE777xTd955pw4dOqT58+fr+++/14YNG3hy0hUICAhQs2bN1LZtW7Vs2VL+/v6mkwAABUDlypU1dOhQDRkyROvWrdMPP/yg77//Xvv27TOd5vaqVaumdu3aqV27dipVqpTpHAAAAKDQK1u2rEaMGKHHHntM33zzjaZPn67t27ebznKpMmXKqFu3brrlllsUERFhOsel2rRpoxtvvFGLFi3StGnT9Ouvv3r8TVV9fHxUq1Yt1atXT/Xq1VONGjW0ZcsW1apV67qfwAsABdX8jQd1LKqxIvcuNJ3icm+++aZuvvlmRUVd38B5TImiWjCsiyTply2H1GrUDGVl//dz6n2tq8rq5XXdrQAAz8JAOwAAAAAAAAAAbsBqtcrLyyvnn97e3rLZbPLz85O/v3/OPwMCAlSkSBEVLVrU4SMsLEzh4eEqXry4ihcvLh8fH9O/JMAloqKidM899+iee+7RmTNntHz5ci1btkzLli1TcnKy6Ty3ERUVpUaNGunGG29UkyZN5OvrazoJAFBAeXl5qW7duqpbt64GDx6sLVu2aMmSJfr111+1fv16XbhwwXSicYGBgapfv76aNm2q5s2bM8QOAAAAuKkiRYqob9++6tu3rzZu3KhZs2Zp0aJFBfb7jmFhYWrRooU6d+6sBg0ayGKxmE4yxmq15tx4bP/+/Zo+fbrmz5+vpKQk02lXJDg4WDVr1lStWrUUHx+vWrVqOXxPmBvDAsClZWfbNWvVLp0Lrai045vkf+6A6SSXSk1N1ZgxY/Tuu+867ZyNK0dp1uCO+mzpFlUtE6YnO9dx2rkBAJ7DYvf024UBAAAAAAAAAAAA/2K327Vjxw6tWbNGv//+u9auXasDBwrPm02KFy+uOnXqqEGDBmrUqJFiYmJMJ+EKbdmyRd9//73pjHxVvHhx9erVy3RGgTNjxowC//9ziYmJKl26tOkMXIcLFy5o7dq1+u2337Ry5Upt3ry5UAy4BwQEqEaNGqpTp47q16+vunXrymazmc4CAAAFXGpqqv766y/dcMMNCggIMJ1jVFZWltavX8+TiD2Eu/9+ZWdna+3atfr++++1dOlS7d6923TSdYmJiVGrVq3UqlUr1alTR15X+aRUd//9crZ9+/bp559/1vLly7VmzRqdOXPGdJIiIyNVsWJFVapUSRUrVlTVqlUVGxt7yRsSmPp9O378uL788kuXXc+Uhx9+2GnnKmz/G/N0/H55hiv5fVqx9ZCaDf/GYW3z671VsWSoKxLxD/zvyrPw++V5+D3zLNf7++UO3yviCe0AAAAAAAAAAAAocCwWiypUqKAKFSrkDM4eOXJE69ev1+bNm7V161b99ddfOnz4sOHS6xcSEqIKFSqoWrVqqlGjhmrWrMmTXj1Y5cqVVblyZdMZ8EDdunUznQBclq+vrxo2bKiGDRtKkjIzM7Vt2zZt2rQp52Pbtm3KyMgwXHrtbDabypcvr0qVKqlq1aqqU6eObrjhBt4IBgAAABQQXl5eio+PV3x8vIYMGaJDhw7pl19+0apVq7R+/Xrt2bPHdOJFeXl5qXz58qpdu7Zq166t+Ph4lSlTxnSWRylTpox69+6t3r17S5L279+vLVu2aMuWLdq2bZv279+vo0eP6sSJE055Crqfn5+KFy+uiIgIlShRQhEREYqKilKZMmVyPvz9/a/7Oq5SrFgxpw57A0B+mblyp8N21TJhDLMDAOAEDLQDAAAAAAAAAACgUIiIiFDbtm3Vtm3bnLWTJ09q27ZtSkpK0p49e7R3717t2bNH+/btU1pamsFaRwEBAYqKilKpUqVUunRpxcbGqnz58ipfvrzCw8NN5wEAcE28vb1VpUoVValSRbfddpuk/w6579+/X7t373b42Lt3r44dO+aUgQBnCA0NVXR0dM5HTEyMKlasqLi4OHl783YcAAAAoLCIiopS9+7d1b17d0nSiRMntHHjRm3ZskXbt2/P+d5jenq6S7uKFi2qmJgYxcbGKjY2VjfccINq1aqlIkWKuLSjoCtdurRKly6t1q1bO6xnZWXp2LFjOnbsmFJTU3XhwoWcj/T0dNntdlksFlmtVnl7e8vHx0d+fn7y9/dXQECAihYtqpCQEGNPTQSAwsxut2vWql0Oa10T4gzVAABQsPATNAAAAAAAAAAAABRaoaGhql+/vurXr59r34kTJ5ScnOzwcezYMZ09ezbnIyUlRSkpKUpNTVVmZmbOR0ZGhrKysmS322W1WnM+vL295e3tnfPGxMDAwJx/FilSRCEhISpWrJiKFSumsLAwFStWTCVLllRYWJiB/zoAALiet7e3ypUrp3Llyqlly5YO+/4eCDhy5IiOHj2qI0eO5HxuPnPmjM6cOaOUlJScf2ZkZOT6/JyZmZlznb8/rFarbDabAgMDFRQUpKCgIBUpUiTnc3N4eLiKFy+u8PBwhYeHKzIyUkFBQSb+8wAAAABwc2FhYWrRooVatGiRs5adna0jR45o37592r9/f873Go8fP64TJ07o7NmzOnfunFJSUnT+/HllZmYqKytLmZmZ8vLyko+PT66PgIAAFStWTMWLF3f4Z2RkpGJiYlS8eHFz/xEgq9WqiIgIRUREmE4BAFylDXuOaffRMw5rXRNiDdUAAFCwMNAOAAAAAAAAAAAA5CEsLExhYWGqVKmS6RQAACAGAgAAAAB4Ji8vL0VFRSkqKkoJCQmmcwAAwCXMXOn4dPZy4UVUqxw3igEAwBm8TAcAAAAAAAAAAAAAAAAAAAAAAAAAAGDKqXMX9PnPWxzWutaPk8ViMVQEAEDBwkA7AAAAAAAAAAAAAAAAAAAAAAAAAKBQysrO1h1vLtKe5LMO610TYg0VAQBQ8DDQDgAAAAAAAAAAAAAAAAAAAAAAAAAolN6ct0Hz1+1xWKtfIUKNKkYZKgIAoOBhoB0AAAAAAAAAAAAAAAAAAAAAAAAAUOjY7Xa9v3CTw1p4UX9NeexmeXlZDFUBAFDwMNAOAAAAAAAAAAAAAAAAAAAAAAAAACh0/th7XDuPnHZY++ThmxRdvIihIgAACiYG2gEAAAAAAAAAAAAAAAAAAAAAAAAAhc7MlTsdtqOLF9FNNcoYqgEAoOBioB0AAAAAAAAAAAAAAAAAAAAAAAAAUOjMXr3LYbtrQqwsFouhGgAACi4G2gEAAAAAAAAAAAAAAAAAAAAAAAAAhcqOw6e0cc9xh7XE+nGGagAAKNgYaAcAAAAAAAAAAAAAAAAAAAAAAAAAeLz1SclasH6PMjKzLnncufMZuuedHx3WSgT7q1GlyPzMAwCg0PI2HQAAAAAAAAAAAAAAAAAAAAAAAAAAwLWy2+0aNuU3vTjrd0lSo0pR+ml0N3l5WXIdm5aeqcSX52vF1kMO693qx8nqxfNjAQDID3yGBQAAAAAAAAAAAAAAAAAAAAAAAAB4rNFfr8oZZpekFVsP6fuNe3Mdl5GVrZ6vLdSSTfsd1iOCAzSkW3y+dwIAUFgx0A4AAAAAAAAAAAAAAAAAAAAAAAAA8Egvzfpdz01fnWt98b+G1jOzsjV8znYtWO846F6siJ8WDu+iUmFB+doJAEBhxkA7AAAAAAAAAAAAAAAAAAAAAAAAAMDjvD1/g5758tc89y35438D7RmZWbrn3R+1ZNsJh2OCA3w0f2hnVYsulq+dAAAUdt6mAwAAAAAAAAAAAAAAAAAAAAAAAAAAnut06gX9tu2wKpcKVdnwoi655uQf/9SjHy276P51Sck6kXJeK7cf0ZOfLNPWg6cc9gf62vTtM51UJ7ZEPpcCAAAG2gEAAAAAAAAAAAAAAAAAAAAAAAAA12TbwZNqO2a29h1PUZCfTdOfbK/WNcrk6zW/Wr5N909ckmvdy2JRtt0uSbLbpaFf/qpJP/yZ6zg/m1Wzn+6ghhWj8rUTAAD8l5fpAAAAAAAAAAAAAAAAAAAAAAAAAACA50m9kKEery7QvuMpkqSU8xm6+53vdTLlfL5d89iZNN0/cYn+f249x3O9GqhV9dIOa3kNs/t4e+mbp9qrRdXSufYBAID8wUA7AAAAAAAAAAAAAAAAAAAAAAAAAOCqPfrRMv2x97jD2qGTqXrq01/y7ZqzV+9SyvkMh7VnusXr6cR4tax26SH1AB8vLRreRW1rlc23PgAAkBsD7QAAAAAAAAAAAAAAAAAAAAAAAACAq/LnvuP6cPHmPPd9/NNfWrXjSL5cd+aqXQ7bHeqU0+ge9SVJrS4z0D7r/jpqWDEyX7oAAMDFMdAOAAAAAAAAAAAAAAAAAAAAAAAAALgq03/dccn9c1bvuuT+a3E69YJ+3LjPYe32phVlsVgkSXVjSyg2omier72pRhkF+9uc3gQAAC6PgXYAAAAAAAAAAAAAAAAAAAAAAAAAwFWZterSA+trdyU7/Zrz1iYpIys7Z9vH20vtapfL2fbysujpxPg8X9s1IdbpPQAA4Mow0A4AAAAAAAAAAAAAAAAAAAAAAAAAuGLbD53SH3uPO6wNvLmGw/baXUdlt9udet2ZKx2H6FvXKKOiAT4Oa3c0q6Qgv9xPYu9Ut5xTWwAAwJVjoB0AAAAAAAAAAAAAAAAAAAAAAAAAcMX+/XT2iOAAPdTOcaD92Nnz2n88xWnXTL2QoQXr9zisJSbE5TrO5m3Vq32bOqy1qFpKESEBTmsBAABXh4F2AAAAAAAAAAAAAAAAAAAAAAAAAMAV2X7olCYs+sNhrUu9GJWPDFZIoK/D+tpdyU677vcb9in1QmbOtpfFok7xMXkee1eLyrqrRWV5WSwqG15Eb9zTzGkdAADg6jHQDgAAAAAAAAAAAAAAAAAAAAAAAAAF3JTlW9Xx+bkaNW2lMrOyr+kcs1ftUv2npykp+azDetf6cbJYLKodE+6w/vuuo5c9Z1p6prq++K0Ce7+nTs/P1bEzaXkeN3PVToftZlVKqnhR/zyPtXp5afKDrXX84/u0/a07VbVMsct2AACA/MNAOwAAAAAAAAAAAAAAAAAAAAAAAAAUIEs3H9C7CzZq+ZaDys6265cth3TnW99rwbo9em76ar00e+0Vncdut8tutyszK1vPfLlCt7wyT2fS0h2OqVm2uFpWLSVJqhPrONC+dvfln9D++rfr9e3vSbqQkaX56/ao0wvfKuW84zUyMrP07e9JDmuJ9eMue+4i/j7y8rJc9jgAAJC/vE0HAAAAAAAAAAAAAAAAAAAAAAAAAACcY/hXv+n5GWtytkuGBurY2TTZ7f875tW56/R017q5hr3PpqXrl62HlJKWoV+2HNTUFduVfMbxtf9UrUyYvn6ynWzeVklSnX89oX3trqNKz8ySz//vz8vUX7Y5bK/ecUS3jp+v2YM75rzup80HdOrcBYfjutSLveg5AQCAe2GgHQAAAAAAAAAAAAAAAAAAAAAAAAA8yNHTqXp48lLtOHRaD7WroXtaVZEkjZuxxmGYXZIOnjyX6/Wnzl3Qqh1H1KBiZM7a7qNnFP+fr3Q6NT3X8Xm5vUlFvde/pQL9bDlrdWJL/KszTZUe/kyPdaqte1tVcThWkrYdPKlN+07kOvf3G/bpnnd+0KcPt5GXl0WzVu5y2J9QIUKliwVdUScAADDPy3QAAAAAAAAAAAAAAAAAAAAAAAAAAODKPfrRMn3z205t2HNMAyYs1i9bDun1b9drxFe/XfE5vvlth8P2qKkrr2iY3dvqpTfvaaZPHr4p14B6XESwwoJ8Hdb2HU/R4x8vU+xDn+i56at1MuV8zr5ZqxwH1f/pq1+264lPlikrOzvXcYkJcZftBAAA7oOBdgAAAAAAAAAAAAAAAAAAAAAAAADwEKdTL2jmyp0523a7dOv4eXry0+VXdZ4ZK3fKbrdLktIzszR3ze7LvqZkaKAWj0rUgzfXkMViybXfy8uiJzvXyfO1x8+e16hpKxU/eKoOnkiRJM28xEC7JL01f6N6v75IR06nOqx3TYi9bCsAAHAfDLQDAAAAAAAAAAAAAAAAAAAAAAAAgIeYtzZJGVnZDmtHT6flOu6pLnkPlv9tT/JZ3f3OD9p+6JQWb9qvM2mOT2cv4m9Tz8YVdH+bauoUH6OBN9fQ6hd7qFGlqEue9z9d62rukE4XPW5P8ll98tMW7T+eotU7jjjse6JzbXlbHUfepv/rSfLVo4upQlTIJRsAAIB78TYdAAAAAAAAAAAAAAAAAAAAAAAAAAC4MjNXXvqp5pL0Qp9GerJzHR09napPftpy0eM+/3mrvly2TaWLBTmsN6gYqeXPdb/mxna1y6pd7bJavuWgXpz5u+av2+Owf9Pe45q92vHXERLoqzE9G6h2uXD1eXPRRc/N09kBAPA8PKEdAAAAAAAAAAAAAAAAAAAAAAAAADxA6oUMLVi/55LHjLg1QU92/u/T2Z/pVk++Nuslj8+227X32FmHtUQnDY03qVxSc4d00kt3NHZY33bolGau3Omw1rFuOfl4W9WzSUW91rfpRc+ZWD/OKW0AAMB1GGgHAAAAAAAAAAAAAAAAAAAAAAAAAA/w/YZ9Sr2QedH9T3SureHd6+Vsx0UGa9oT7dSwUqTa1ymrja/erqcT68rfx/uS1+ma4Nyh8Zrlijts/7X/hH7efNBhLfEf13y4fU09nVg313niIoJVPbqYU9sAAED+u/RXHgAAAAAAAAAAAAAAAAAAAAAAAAAAtzBz1c5ca14Wi7ytFj3ZuY5G96gvi8XisL9DnXLqUKdczvZzvRpqUPuaenXuer238A+du5DhcHzNssUVFxns1O6KUSEO2+czshy2A3y9dVPNMg5rY3o2UPLpNE1evDlnrU/zSrl+fQAAwP0x0A4AAAAAAAAAAAAAAAAAAAAAAAAAbi49M0vf/p7ksPbGPc10b6sqOnchQ8WK+F/xuUoEB+iFPo30ZOfaemPeBr09f4POpmXIy2LRc7c3dHK5VCosSAG+3hd9uvzNtcoqwNfmsGaxWPTOfS0UFRaouat3q36FCD3VuY7T2wAAQP5joB0AAAAAAAAAAAAAAAAAAAAAAAAA3NxPfx7QqXMXHNa61IuVn4+3/HyubUyseFF/jenZQE92rq1VO46oYlSIyoYXdUauAy8viypEhmjDnmN57k+sH5vnurfVS6Nuq69Rt9V3ehMAAHAdL9MBAAAAAAAAAAAAAAAAAAAAAAAAAIBLm7Vyp8N2QoUIlS4W5JRzBwf46qYa0fkyzP63ClEhea7brF5qX6dcvl0XAACYx0A7AAAAAAAAAAAAAAAAAAAAAAAAALixrOxszV6922Gta728n2ruriqUDMlz/cYaZRQc4OvaGAAA4FLepgMAAAAAAAAAAAAAAAAAAAAAAAAAAHk7nXpB97zzo46cTnVY75rgWQPtlS4y0J7oYb8OAABw9RhoBwAAAAAAAAAAAAAAAAAAAAAAAAA3tGnvcd06fp62HzrtsF6tTJgqlgw1VHVtKkSF5FrzsljUKT7G9TEAAMClGGgHAAAAAAAAAAAAAAAAAAAAAAAAADfz1fJt6j9hsVIvZDqse1kseuWupoaqrl1eA+1NbohSieAA18cAAACXYqAdAAAAAAAAAAAAAAAAAAAAAAAAANxERmaWBn++Qm/O25BrX7EifvrikbZqXaOMgbLrExbkp+JF/HTs7PmctcSEOINFAADAVbxMBwAAAAAAAAAAAAAAAAAAAAAAAAAApEMnz+nG0bPyHGaPjyuh1S/28Mhh9r/1aV45598jggPUs0lFgzUAAMBVeEI7AAAAAAAAAAAAAAAAAAAAAAAAABiWcj5dLUfO0I7Dp3Ptu691Vb3Wt6n8fDx7HGzUbQmKCgnQvmMpuqvlDQov6m86CQAAuIBnfwUDAAAAAAAAAAAAAAAAAAAAAAAAAAXAhEWbcg2z+9qsevve5rq7VRVDVc4V5OejJzrXMZ0BAABcjIF2AAAAAAAAAAAAAAAAAAAAAAAAADBs5qpdDttlw4vo6yfaqU5sCUNFAAAAzuFlOgAAAAAAAAAAAAAAAAAAAAAAAAAACrODJ1L027bDDmvv3NeCYXYAAFAgMNAOAAAAAAAAAAAAAAAAAAAAAAAAAAbNXr3bYbuov49aVSttqAYAAMC5GGgHAAAAAAAAAAAAAAAAAAAAAAAAAINmrtrpsN2xbjn5eFsN1QAAADgXA+0AAAAAAAAAAAAAAAAAAAAAAAAAYMjxs2la+ucBh7XE+nGGagAAAJyPgXYAAAAAAAAAAAAAAAAAAAAAAAAAMOTb35OUlW3P2fb38VabmtEGiwAAAJyLgXYAAAAAAAAAAAAAAAAAAAAAAAAAMGTmyp0O221rRSvQz2aoBgAAwPkYaAcAAAAAAAAAAAAAAAAAAAAAAAAAA86mpev7jfsc1hIT4gzVAAAA5A9v0wEAAAAAAAAAAAAAAAAAAAAAAAAAUJicSU3XE58s00dL/nJY97Z6qUPdcmaiAAAA8glPaAcAAAAAAAAAAAAAAAAAAAAAAAAAFxr99cpcw+yS1KpaaYUE+hooAgAAyD88oR0AAAAAAAAAAAAAAAAAAAAebdWqVZoxY4a2bdumc+fOqVixYoqNjVWvXr1UtWpV03kAAACAg6zsbH3x89Y89yXWj3VxDQAAQP7jCe0AAAAAAAAAAAAAAAAAAADwWNOnT9edd96p9evXKyoqSjVq1FDRokW1ZMkSde/eXTNmzDCdCAAAADhYvuWQjp09n2u9iL9NXRPiDBQBAADkL57QDgAAAAAAAAAAAAAAAAAAAI/14Ycf6oknntB9993nsJ6VlaXHH39cb7/9trp162aoDgAAAMht1sqdudYaVYrS0FviFV7U30ARAABA/uIJ7QAAAAAAAAAAAAAAAAAAAPAIL774otLT0x3WTpw4oQYNGuQ61mq1qnHjxjp27Jir8gAAAIAcGZlZ2nH4lC5kZDms2+12zVy1y2Ft1G319fOYW9S2VllXJgIAALgMA+0AAAAAAAAAAAAAAAAAAADwCHPmzFGXLl20YcOGnLXKlSvr5Zdf1oYNG5SSkqLs7GydOXNGy5cv1+TJk1W1alWDxQAAACiMjp1JU60np6jyoM9V84kvtWnvcaWcT9dnS7eo7XOztf94isPxifVjDZUCAAC4hrfpAAAAAAAAAAAAAAAAAAAAAOBKfPvttxo1apRuv/129e3bV4888oiGDRum/v37q2fPng7H2u12lSxZUs8++6yhWgAAABRWL81eq60HT0mSdhw+rRYjZyg9M0upFzJzHVsxKkRVSoe5uBAAAMC1GGgHAAAAAAAAAAAAAAAAAACARwgNDdUbb7yhefPmacyYMVqyZIleeOEFLVy4UCtXrtTOnTt17tw5BQQEqHz58qpfv75sNpvpbAAAABQidrtdM37b4bB26tyFix5/Z4vKslgs+Z0FAABgFAPtAAAAAAAAAAAAAAAAAAAA8Cjt27dXgwYNNGLECPXq1Ut33323Bg0apCZNmphOAwAAQCG3PumYkpLPXva4Iv423XtjVT3aoVb+RwEAABjGQDsAAAAAAAAAAAAAAAAAAAA8TlhYmN5++23NmTNHY8eO1U8//aRx48apRo0aptMAAABQiM1ateui+6xeFt1UM1p3NKukTvExCvC1ubAMAADAHAbaAQAAAAAAAAAAAAAAAAAA4LE6d+6shg0bavjw4br99tt1zz33aODAgfLx8TGdBgAAgEJo1qqdudZ6NKqghAoR6tm4oiJCAgxUAQAAmMVAOwAAAAAAAAAAAAAAAAAAADzK5s2btWfPHnl7eysyMlLVqlXT+++/r5kzZ+r555/XkiVLNG7cOFWvXt10KgAAAAqRrQdP6s99JxzWfh5zixpVijJUBAAA4B4YaAcAAAAAAAAAAAAAAAAAAIBH2LNnjwYOHKgdO3bIbrdLkiwWi0qXLq1nn31WiYmJatSokYYPH65evXrp3nvv1cCBA2Wz2QyXAwAAoDCYs3q3w3ZkSIAaVIg0VAMAAOA+GGgHAAAAAAAAAAAAAAAAAACARxg5cqTOnj2rV155RRUqVJC3t7f27NmjCRMm6NFHH9WyZcsUERGhiRMn6uuvv9aLL76oxYsXa+7cuabTAQAAUACknE/X1F+2y9vqpTY1oxUVGuiwf9a/Btq7JsTKy8viykQAAAC3xEA7AAAAAAAAAAAAAAAAAAAAPMK6des0dOhQdejQIWctNjZWMTExuvnmm7VlyxbVqFFDknTrrbeqSZMmGjZsmKlcAAAAFCBZ2dm6+bk5+m3bYUmSxSI1rlxS3RvEqUt8jA6fuaA1O486vKZrQpyJVAAAALfDQDsAAAAAAAAAAAAAAAAAAAA8gp+fn5KTk3OtHz9+XBaLRX5+fg7rUVFRmjx5sqvyAAAAUIAt++tgzjC7JNnt0vK/Dmr5Xwf12MfLFFnE1+H40EBfNa9S0tWZAAAAbomBdgAAAAAAAAAAAAAAAAAAAHiEVq1aacKECUpOTlaFChXk7e2t/fv3a+bMmYqLi1PFihVNJwIAAKCAmrVy10X32e3SoTMXHNY6xcfI5m3N7ywAAACPwEA7AAAAAAAAAAAAAAAAAAAAPMLw4cPl7e2tuXPn6ty5c5L++9T2Nm3a6PHHHzdcBwAAgIIqO9uumat2XtVrEuvH5VMNAACA52GgHQAAAAAAAAAAAAAAAAAAAB4hICBAY8aM0bPPPqvjx4/LarUqNDTUdBYAAAAKuDW7jurAiXMOa2/e00yrdhzRnNW7dSYt3WFfsSJ+al2jjCsTAQAA3BoD7QAAAAAAAAAAAAAAAAAAAPAoFotFxYsXN50BAACAQmLmSsens1eMCtEDbavrwZtr6EJGlhauT9IH89do3f5z8rVZ9ea9zeXvw9gWAADA3/jKCAAAAAAAAAAAAAAAAAAAAAAAAADyYLfbNWuV40B71/qxslgskiRfm1Ud6pRTKa9TqlWrlqxWq4lMAAAAt+ZlOgAAAAAAAAAAAAAAAAAAAAAAAAAA3NHm/Se0/dBph7XEhDhDNQAAAJ6JgXYAAAAAAAAAAAAAAAAAAAAAAAAAyMPMlbsctksXC1J8XAlDNQAAAJ6JgXYAAAAAAAAAAAAAAAAAAAAAAAAAyMOsVTsdthMTYmWxWAzVAAAAeCYG2gEAAAAAAAAAAAAAAAAAAAAAAAAUOl+v2K4731ykyT/+qcys7Fz7dx05rfVJxxzWutaPc1UeAABAgeFtOgAAAAAAAAAAAAAAAAAAAAAAAAAAXOn7jXvV6/WFkqQvl2/T9N926MtH2io0yC/nmFmrdjm8Jryov5pUjnJpJwAAQEHAQDsAAAAAAAAAAAAAAAAAAAA8Tnp6ut566y3Nnz9fhw8fVlZWVp7HWSwWbd682cV1AAAAcHfvLvjDYfv7DfvUeOh0zRzcQZVKhkqSZq7a6XBM5/gYWb28XNYIAABQUDDQDgAAAAAAAAAAAAAAAAAAAI/z3nvvadKkSZKkYsWKydfX13ARAAAAPEXK+XQt2rA31/q2Q6fUcMjX+uLRtqpVrrh+3XrYYX+XhFhXJQIAABQoDLQDAAAAAAAAAAAAAAAAAADA43z33XeqXr263n77bUVERJjOAQAAgAdZsG6vLmRk5bnvTFq6Or8wVy2qlnZYL+Jv043Vy7giDwAAoMDxMh0AAAAAAAAAAAAAAAAAAAAAXK3Dhw+rR48eDLMDAADgqs1cufOS++12acmm/Q5rHeqUk6/Nmp9ZAAAABRYD7QAAAAAAAAAAAAAAAAAAAPA44eHhysrK+6maAAAAwMUs33JQU1dsd1h7+c7Guq1RhUu+LrF+XH5mAQAAFGgMtAMAAAAAAAAAAAAAAAAAAMDjdOnSRfPnzzedAQAAAA8yfs5atRgxw2HNYpF6Nq6oLx5pozE9G8hiyf06P5tVbWtFu6gSAACg4GGgHQAAAAAAAAAAAAAAAAAAAB5n4MCBKlWqlPr166eff/5ZSUlJOnjwYJ4fAAAAwNw1uzX48xW51ptXKaWo0EBZLBYN6RavGU91UJCfzeGYm2uXVZCfj6tSAQAAChxv0wEAAAAAAAAAAAAAAAAAAADA1apataokyW6365dffrnocRaLRZs3b3ZVFgAAANzIvmNnNfyr3zRtxXalZ2bn2l8xKkRv92vhsNYpPka/jO2uPm8s0h97jyu8qL9euqOxi4oBAAAKJgbaAQAAAAAAAAAAAAAAAAAA4HFq1KghHx+ekgkAAIDc7Ha7Pl26RY99tExn0tLzPObRjrU0tldD+dqsufZVLVNMa1/uqe2HTik2IljeVq/8TgYAACjQGGgHAAAAAAAAAAAAAAAAAACAx5k6darpBAAAALihw6fO6f4JS/Tt70kXPaZn4wp6+Y7GslgsFz3GYrGoYsnQfCgEAAAofLg9EAAAAAAAAAAAAAAAAAAAADxKenq6Pv30U23bts10CgAAANzItBXbVePxLy85zN6wUqTeH9DyksPsAAAAcC6e0A4AAAAAAAAAAAAAAAAAAACP4uPjo/Hjx2v06NGqWLGi6Rz8H3v3HZ9nWe8P/PtkdO+9R1JKC7QUaFP2pgyhJAi4D3gAFVGPoBz1CIKKDEVRXAcFZSiyDm0ZpUCByu4ASguFUpoOOujeK2ny/P7wZ/RuupvkyZO+33/1+l7Xfd+f1n+or35yAQDUA/dOeC/+83fPbXfvnKF946ITB0SXNs3jiIKOkZ+XW8fpAAD2bwrtAAAAAAAAAAAAAGSdww47LP7+979HcXFxpqMAAJBh5Vsr4tv3vlxt3rl1s/jfL58U5wztm4FUAAD8k0I7AAAAAAAAAAAAAFnnJz/5Sdxyyy1x6aWXxsiRI6Nnz57RsmXL7Z7t169fHacDAKAuvfjeoli5fktidsFR/eLXl5wQHVo1zVAqAAD+SaEdAAAAAAAAAAAAgKxzyimnRCqVinQ6Ha+88soOz6VSqZgxY0YdJgMAoK6NnliaWA8t7BR/u/KMDKUBAGBbCu0AAAAAAAAAAAAAZJ1hw4ZlOgIAAPVAZWU6Rk+enZiVDC/MUBoAALZHoR0AAAAAAAAAAACArHPfffdlOgIAAPXAxA8/jsWrNiZmJUUFGUoDAMD25GQ6AAAAAAAAAAAAAAAAAMDeGDWxNLE+uGe76N+tbYbSAACwPW5oBwAAAAAAAAAAACDrjB49epdn0ul0lJeXx4UXXlj7gQAAqHPpdDpGT5qdmBUXFWYoDQAAO6LQDgAAAAAAAAAAAEDW+e53vxupVGqnZ9LpdKRSKYV2AIAGatq8FVG6ZG1iVlxUkKE0AADsiEI7AAAAAAAAAAAAAFnniiuu2G6hvby8PD766KN44YUX4phjjolTTjklA+kAAKgLo7a5nb1Px5YxpE+HDKUBAGBHFNoBAAAAAAAAAAAAyDpf//rXd7q/YsWK+MIXvhCf/OQn6ygRAAB1bfTEZKG9eHjhdn/oEQAAmZWT6QAAAAAAAAAAAAAAUNPat28fV1xxRfz+97/PdBQAAGrBB4tWxTsfrUzMSooKM5QGAICdUWgHAAAAAAAAAAAAoEHq2bNnzJo1K9MxAACoBaMnlSbWXdo0i6P6d8lQGgAAdiYv0wEAAAAAAAAAAAAAoDa8+eab0bRp00zHAACghmzYXB6/f2Z6rNtUHvf9/f3E3rnDCiInJ5WhZAAA7IxCOwAAAAAAAAAAAABZ5ze/+c0O98rLy2POnDnx/PPPx7HHHluHqQAA/mHdprKYMntpHNqnQ7Rr0STTcRqEVes3x2k/Gh1T5y7f7n7x8II6TgQAwO5SaAcAAAAAAAAAAAAg6/zmN7+JVCoV6XR6h2c6duwYV199dR2mAgCI+OuLM+Prd/091m4qi06tm8Yz1xbHIb3aZzpWVlu7sSzOuvHxHZbZ2zRvHCce1L2OUwEAsLsU2gEAAAAAAAAAAADIOjfeeGOkUqnt7uXl5UXnzp1jyJAh0ahRozpOBgDsr9ZuLIuv3Tkh7n/5g6rZ0jWb4uLfPBuv3XhB5OflZjBd9tq4pTxG3vJETP5wyQ7PnHNEH3++AAD1mEI7AAAAAAAAAAAAAFnnvPPO2+WZsrKy2LRpUzRt2rQOEgEA+7PXP/g4vnD7MzFn6dpqe1PnLo+fjnkzvv/JYRlIlt02l22N8342Nl5+b9FOz5UML6yjRAAA7I2cTAcAAAAAAAAAAAAAgD11yimnxEsvvbTTM3fffXecf/75dZQIANifbNhcHp/95dPR5/K7I+/C38Sx1zyy3TL7P93wyOR4b8HKOkyY/cq3VsSnbxsX46d9tNNzzRrnxWmH9qqjVAAA7A2FdgAAAAAAAAAAAACyzsKFC2Pz5s07PbNs2bJYtGjnt3kCAOyNn455Mx56dVYsWLF+u/utmjaKnFSqal1eURlfv+vvkU6n6ypiVkun0/HF346PJ96Ym5i3bd44Jt18YZw6uGfV7Nrzi6Jpo7w6TggAwJ7wX2sAAAAAAAAAAAAAZIV77rkn7r333qr19ddfHzfffPN2z27ZsiVWrFgR3bp1q6t4AMB+Ip1Ox/0vzdzh/lEHdon7vj4i/veZd+LWx96smk94d2E88MoH8ZljD6yLmFnt4dc+jAdemZWYtWyaH2O/PzIOL+gUj3337Hj5/cXRplmjOLygU4ZSAgCwuxTaAQAAAAAAAAAAAMgKhx12WMyePTumTZsWqVQqVqxYscOzubm50atXr7jmmmvqMCEAsD94e97ymLN0bbV5TioV3//k0Pj+J4dFXm5OXHv+sHjo1Vkxf/m6qjPf/PNLcWT/rtG3U6u6jJxV1m8ui6vvfTkxa9Y4Lx7/3jkxrF/niIholJcbJx/SIxPxAADYCwrtAAAAAAAAAAAAAGSFwYMHx+DBgyMiYsCAAXH77bfHiBEjMpwKANjfjJpYWm32pVMPjotPPiiK/n/hOiKieZP8+OUXj4vzfja2arZi3eY49+Yn4tkfFEfnNs3qJG+2uenRN2Lhyg2J2V2XnxLHDuiWoUQAAOyrnEwHAAAAAAAAAAAAAIA9de+998awYcMyHQMA2A+NnjQ7sf7m2UPid186KVFm/6dzhvaN4qKCxGzGgpUx6Kq/xp3j363VnNlo/eayuH3s24nZqYN7xvlH9ctQIgAAaoJCOwAAAAAAAAAAAABZp6ioKNq2bRurV6+Op556Ku66665YvHhx1f7mzZszmA4AaKg+WLQq3v1oZWJWUlS4w/OpVCr+9NVT46Ae7RLzleu3xFf+8EL8+fkZtZIzWz09dX5sKttatc7NScUvv3h8pFKpDKYCAGBfKbQDAAAAAAAAAAAAkJXuvvvuOPHEE+Oqq66KW2+9NRYsWBAREZWVlXHWWWfFn/70pwwnBAAamtGTShPrLm2axVH9u+z0mVbNGsXo73wiOrZqWm3vBw++Hpv/rcC9N8q3VkRlZXqf3lFfjJo4O7E+6ZAeMaB72wylAQCgpii0AwAAAAAAAAAAAJB1xo8fHzfffHN07do1LrnkksTeunXrokOHDvGzn/0sxo8fn6GEAEBDNGqbQvu5wwoiJ2fXt4cXdG4dr914QYw4tFdivnjVxrh7wnt7nefhV2dFzy//OTpdcmfc/9LMvX5PfbClvCKefHNuYlZSVJiZMAAA1CiFdgAAAAAAAAAAAACyzn333Rf9+/ePMWPGxJe+9KVIp/91K2nr1q3jL3/5SwwcODD+8pe/ZDAlANCQfLR8XUz+cEliVjy8YLef79OpVYz9/sg4+sCuiflPR78ZZVsr9jjP+s1l8eU7Xojl6zbH6g1b4pLfPRcfLV+3x++pL56b/lGs21RetU6lIkYO65vBRAAA1BSFdgAAAAAAAAAAAACyznvvvRfnnXdeNGrUKFKp6reiNmrUKEpKSuKDDz7IQDoAoCEaMzl5O3ub5o3jxIO67/F7fvTp4Yn1/OXr4q8v7vh29U1lW+OBlz+IURNnx+ayrVXzcW/Nj7WbyqrW5RWVcdsTU/c4T30xelLyz/eo/l2ja9vmGUoDAEBNUmgHAAAAAAAAAAAAIOts3Lgx2rVrt9Mzbdq0ifXr19dRIgCgofp49Yb4zl9eiW/++aXE/Jwj+kR+Xu4ev++Eg7pXu6X9ltFvxNaKympnKyor45ybHo/P3/5MXPDzp+Kgb/41/vrizKisTMeoibOrnb/ruRmxYt2mPc6UaVsrKuOxbX5gQHFRQYbSAABQ0xTaAQAAAAAAAAAAAMg6nTp1itmzq5e4/t3rr78eHTt2rKNEAEBD9NJ7i2Lofz8YP3/srWp7JcML9+qdqVQq/ueTQxOzDz9eEw+/Nqva2f995t2Y8O7CqvX85eviot88G0XffTCefHNutfMbtpTHb56atle5Munl9xfF8nWbEzOFdgCAhkOhHQAAAAAAAAAAAICsc/zxx8f9998f77//ftUslUpFRMT69evjd7/7XYwaNSpOPPHEDCUEALJZOp2OX499O0770ej4ePXGavstmuTHaYf22uv3n35orxha2Ckxu+nRN6KyMl21XrauLK57aOJ2n586d3ms31y+3b2HX/twr3NlyuiJydvZh/TpEAWdW2coDQAANS0v0wEAAAAAAAAAAAAAYE999atfjfHjx8cFF1wQ/fr1i1QqFbfeemuUl5dHaWlpbN68OTp06BBf+cpXMh0VAMgyGzaXx1f+8EL87eUPtrufm5OKn37hmGjaaO9rOalUKv7nvKFx3s/GVs1mLFgZYyaXVt38/rsX58e6Tdsvre/MrMWrY0t5RTTOz93rfHUpnU7H6MnJQntxUWGG0gAAUBsU2gEAAAAAAAAAAADIOp06dYpHHnkkbrrppnjuuecinU7H1KlTIyIiPz8/zjjjjPjOd74THTt2zGxQACArzFm6Nq574PX4cMmamDRryXbPDOvXOb5x1uA4bmD36NG+xT5/8+wj+sagXu1j+vwVVbMbH50SxUUFsX5zeYx/b3ni/KmDe8ailRtixoKVO31vRWU6Zi9ZEwf1aLfPGevClNlLY8GK9YlZyfCCDKUBAKA2KLQDAAAAAAAAAAAAkJW6dOkSv/rVr2LLli0xZ86c2LBhQ7Ro0SL69u0bjRo1ynQ8ACBLpNPp+NTPn4o35yzb4ZnvnTc0rr+wKHJzcmrsuzk5qfjeeUPjs798umr21pxlMfatebFhU1mUVaSr5nm5OXHv10+Ldi2axD0T3ovrH5oYi1dtjIiITq2bxqr1W6K8orLq/MyFq7Km0D5q0uzEun/XNlmTHQCA3aPQDgAAAAAAAAAAAEBW2bJlS/ziF7+IM888M4YMGRKNGzeOAQMGZDoWAJClps1bscMye6umjeLur50aI4fVzo3hnzyyMA7s1iZmLlpdNfvZmDejW5tmiXMnHdI9OrX+x+ySUw6OTx/TPx58dVbMXbo2Pn/8gfHVP06ICe8urDr//sJVtZK3pqXT6Rg1MVloLx5eEKlUKkOJAACoDTX3Y6EAAAAAAAAAAAAAoA40btw4HnrooSgtLc10FACgAdj2hvB/Orhnu3j9pgtqrcweEZGbkxPfLRmamL3y/qIY+9a8xKx4WGFi3bxJfvznyQfFjz59ZPTv1jYGdG+b2J+5KDsK7TMWrIxZi9ckZiVFhTs4DQBAtlJoBwAAAAAAAAAAACDrHH/88fHkk09GRUVFpqMAAFlu9MTqhfaffuGYePUnF0T/bm2380TNuuCofpGf+6+KTzodsX5zedU6lYoYOazvTt9x4DY5s+WG9lETkz+gqEf7FjG0sFOG0gAAUFvyMh0AAAAAAAAAAAAAAPbUZZddFn/4wx+iuLg4zjrrrOjZs2e0bNlyu2dPOOGEOk4HAGSLWYtXxzsfrUzMJvzovDh2QLc6y9CkUV4c2qdDTJm9dLv7R/XvGl3bNt/pOw7czg3t6XQ6UqlUjeWsDaMnJX+YQElRQb3PDADAnlNoBwAAAAAAAAAAACDrnH/++ZFKpSKdTsftt9++07PvvfdeHaUCALLN6EnJG8I7t24WR/XvUuc5hh/QeYeF9pLhBbt8fsA2hfZ1m8rj49Ubd1mEz6SX318UU+cuT8yKhxdmKA0AALVJoR0AAAAAAAAAAACArFNcXOz2TgBgn43a5obwc4f1jdycnDrPUdSvS/w2pm93r7ho1yXvHu1aRLPGebFxy9aq2fsLV9XbQvsbpUtj5E1PJGYdWzWNYwd0zVAiAABqk0I7AAAAAAAAAAAAAFnn5ptvznQEACDLLVixPibNWpKYZeqG8KIDOm93PqRPh+jbqdUun8/JScWB3drGW3OWVc1mLloVJx3So8Yy1pR35q+IM28YE2s3lSXml516cEZ+mAAAALXPf+UBAAAAAAAAAAAAAACw3xkzuTSxbtO8cZx4cPeMZOnXpXW0a9G42rx4WMFuv+PAbm0S6/cXrNrXWDVu5qJVcfqPx8TK9VsS87MO7x3XnD8sQ6kAAKhtCu0AAAAAAAAAAAAAAADsd0ZNnJ1Yn31En2iUl5uRLKlUKooO6FJtXlzUd7ffUdilTWK9YOX6fY1Vo+YsXRsjfjQ6lqzZmJifMqhnPHTVmRn7swcAoPYptAMAAAAAAAAAAAAAALBfWb52U7w4Y1FiVlJUmKE0/1DUr3Ni3btdkxjQve1uP9+5ddPEeumaTTWSqyYsX7spRvxodCxcuSExP2ZA13j06rOiSaO8DCUDAKAuKLQDAAAAAAAAAAAAAACwX3l8ypyoTKer1s0a58Vph/bMYKKIi08aGE3/rdj9heHdI5VK7fbznds0S6yXbnMTeibd+OiUmLN0bWI2tLBTPP7dc6J5k/wMpQIAoK748UUAAAAAAAAAAAAAAADsV0ZNmp1Yn35or2jWOLPF6l4dWsZLN3wyHn71wzisT/vo02jtrh/6N51ab1torx83tFdWpuPh12YlZoN7t4+x3x8ZrZo1ylAqAADqkkI7AAAAAAAAAAAAAAAA+421G8ti/LSPErOS4YUZSpM0pE/HGNKnY1RUVMTUqVP36NlOrZsm1ms3lcXmsq3RpFFm60MTP/w4Fq9K3hb/1/86Pdq1aJKhRAAA1LWcTAcAAAAAAAAAAAAAgL1VUVER06ZNi3HjxsXKlSszHQcAyAJPvTU3yrZWVq3zc3PirMP7ZC5QDem8zQ3tERFL1mzczsm6NWpiaWJ9UI92MbBHuwylAQAgExTaAQAAAAAAAAAAAMhK48aNi5NOOik+9alPxZVXXhmzZ8+u2jv//PNj7NixGUwHAGTS8rWb4q8vzoy35iyrtrdtwfrkQT2iTfPGdRWt1rRu1iga5SWrQkvXbMpQmn9Ip9Nx39/fT8yKiwoylAYAgExRaAcAAAAAAAAAAAAg60yZMiWuuuqqKC8vj7POOiuxt2rVqli1alVcffXVMXny5AwlBAAyZc3GLXHk9x6Ki37zbAz7zoPx6OsfVu2t21QWT701L3G+pKiwriPWilQqFZ22uaU9kze0z1u2No655pFYtjZZqi8Z3jD+vAEA2H0K7QAAAAAAAAAAAABknTvvvDO6desWTz75ZFx33XWRTqer9tq2bRujRo2K7t27x5/+9KcMpgQAMuGu52bE3GXrqtY/eHBiRERsKtsa5/1sbGzYUl61l0pFjBzWt84z1pbOrZsm1ssydEP7lvKKOPn6UTFp1pLEvE/HljGkT4eMZAIAIHMU2gEAAAAAAAAAAADIOm+//XZceOGF0a5du0ilUtX2W7VqFRdeeGFMnz49A+kAgEz6xeNvJdbvL1wV7360Ii78+VPxwjsLEnunDu5Z7VbzbNaxntzQ/szb82Pev/1QgX+65JSDt/vfbgAANGx5mQ4AAAAAAAAAAAAAAHtq3bp10bVr152e6dKlS6xZs6aOEgEA9cHiVRvi49XVS9yn/3hMtXn7lk3il188vq6i1Yltb2hfmqEb2kdNnF1tdvPnj44rzx5S92EAAMg4hXYAAAAAAAAAAAAAsk7btm3jo48+2umZd955J9q1a1dHiQCA+uCxyXO2O9+2zN66WaN46vsj48BubesiVp3p2Cp5Q/vSDNzQXr61Ih6fkvzf4UefPjK+PfLwOs8CAED9kJPpAAAAAAAAAAAAAACwp4488si4//77Y+nSpdX20ul0jBkzJu6///446qijMpAOAKhr6XQ6nnhjTlxx54Rdnm3eOD+e+J9z4vCCTrUfrI51bpO8oX1JBm5o//uMRbFqw5bE7AvHH1jnOQAAqD/c0A4AAAAAAAAAAABA1rniiivihRdeiHPOOSeOOOKISKVScc8998R9990X06dPj48//jhatGgRl19+eaajAgB14IcPT4obHpm8y3NN8nNjzHc/EUf171oHqepep21uaF+WgRvaR0+anVgPLewUPTu0rPMcAADUH25oBwAAAAAAAAAAACDr9OnTJ+65557o2bNnPP/885FOp2P8+PHxzDPPxOLFi2PQoEFxzz33RO/evTMdFQCoZZvKtsZtj0/d5bn83Jx45Oqz4sSDe9R+qAzplOEb2isr0zFmcmliVlxUUKcZAACof9zQDgAAAAAAAAAAAEBWOvjgg+ORRx6J+fPnxwcffBAbN26MFi1aRP/+/aNHj4ZbVAMAksZP+yg2bCmvNv/0MQfEg6/OinT6H2X2B648I84Y0rB/2E3n1skb2pev2xQVlZWRm1M3d2JO/PDjWLwqeSt8yfDCOvk2AAD1l0I7AAAAAAAAAAAAAFnntttui5KSkujTp0/06tUrevXqlelIAECGjJo4u9rsg19/IQo6t47vlBwRr77/cZx4SPc4sFvbDKSrW51aJ29oT6cjlq/dHJ3bNNvBEzVr1MTk7ewH9Wi3X/y5AwCwc3Xz45UAAAAAAAAAAAAAoAbdcccdceaZZ8anP/3pePDBB2PdunWZjgQAZED51op4fMqcxOwXFx8XBZ1bR0TEoF4d4ssjDtlvStUdWjaNVCo5W7Jm43bPbtxSHus3l9XYt9PpdIyelPzhAsVFBTX2fgAAspdCOwAAAAAAAAAAAABZ50c/+lEMGzYspk2bFtdff30ce+yx8a1vfSteeumlSKfTmY4HANSRv89YFKs2bEnM9ucSdV5uTrRv0SQxe/CVWbFgxfrEbNzUedH7K3dHm//4Q3z3L6/WyLenzVsRpUvWJmYlwwtr5N0AAGS3vEwHAAAAAAAAAAAAAIA9deGFF8aFF14Yy5YtiyeffDKeeOKJePLJJ2Ps2LHRsWPHOPfcc6O4uDgKC5WoAKChWrV+c3z3L68kZkMLO0WvDi0zlKh+6NymWSxft7lqfcvoN+KW0W/Eob07xFlH9InPHNs/rvjjhKofBHDrY2/GZaceHIVdWu/1N9PpdPzmqbcTsz4dW8aQPh32+p0AADQcbmgHAAAAAAAAAAAAIGt17NgxLr744njkkUfi2Wefja9//evRqlWr+OMf/xhnn312XHjhhZmOCADUgnWbyuITNz0eU+cuT8zdCB4xsHu77c7fnrc8bnp0Sgy+6v6Yt2xdYm/irI/36ZvXPvB6/PmF9xKz4uGFkUql9um9AAA0DArtAAAAAAAAAAAAADQIPXv2jK9+9avx+OOPx0033RTt27eP6dOnZzoWAFDDNm4pj3NveSImzVqSmPfu2DIuHzEoQ6nqj2+fe1h0bt1sj575ePXGvf7ejY9OiZtHvZGY5eXmxKWnHLzX7wQAoGHJy3QAAAAAAAAAAAAAANhX6XQ6Xn/99Xjqqadi/PjxsWrVqoiIGD58eIaTAQA1aUt5RXzy1rHx4oxFiXnXts3imWuLo1WzRhlKVn8MLewcM371uRj75tx48o258fTU+bFqw5adPjN/mxvbd9dtT7wVP3jg9cQslYq4+4pTY0D3tnv1TgAAGh6FdgAAAAAAAAAAAACy1uTJk2Ps2LHxzDPPxMqVKyOdTke/fv3i4osvjpEjR0aXLl0yHREAqCHlWyviM7eNi2ff/igx79iqaTxzbXEUdmmdoWT1T+tmjeMzxx4Ynzn2wNhaURmvffBxfOWO52PmotXbPT932do9/sYdz7wTV9/7SrX5H758cnz62P57/D4AABouhXYAAAAAAAAAAAAAss5PfvKTGDduXCxfvjzS6XR06NAhLrroojj33HNj4MCBmY4HANSC7/zl1XhsypzErG3zxjHumnNjYI92GUpV/+Xl5sRxA7vF984bGhf/Zvx2z8zbwxva//byzLjizgnV5rf/5/HxxZMP2puYAAA0YArtAAAAAAAAAAAAAGSd++67L5o2bRpnn312jBw5Mo455pjIycnJdCwAoJas3rAlfv/09MSsZdP8GPv9kXFonw4ZSpVdPnX0AfGDBybG/OXVy+tzl62NdDodqVSq2t6bpUvjz8+/FwVdWsXXzhgcC1duiK/cMaHauZs/f3R89YzBtREdAIAsp9AOAAAAAAAAAAAAQNa5+eabY8SIEdGsWbNMRwEA6sCTb8yN8orKqnV+bk489t1zYli/zhlMlV3y83Ljls8fHZ/55dPV9tZtKo9VG7ZEuxZNEvPFqzbE6T8eE6s2bImIiPnL1sXMRatjw5byxLkfXFAU3x55eO2FBwAgqym0AwAAAAAAAAAAAJB1iouLMx0BAKhDoybNTqxHHNorjhvYLUNpstcFRx8QHVo1jVdnLo7rHpyY2Ju3bF21QvtfX5pZVWaPiPj1U9OqvfOLJw2Ma88fVjuBAQBoEBTaAQAAAAAAAAAAAKj3Bg4cGL/61a9ixIgRVevdkUqlYsaMGbUZDQCoZRu3lMfTU+cnZiXDCzKUJvuddEiPOOmQHnHn+HfjoxXrq+bzlq2Nw/p2TJx94OUPdvqurm2bxa0XHRupVKpWsgIA0DAotAMAAAAAAAAAAABQ73Xt2jWaNm2aWAMADVv51orIy82JZ96eH5vKtlbNc3NScfYRfTOYrGHo3alVotA+d+m6xP7Cletj6tzlO33Hby45MVo3a1wr+QAAaDgU2gEAAAAAAAAAAACo955//vmdrgGAhuWHD02Mnz/+VnRt0zyaN0nWX44/qHt0aNV0B0+yu3p3aBkv/9t63rK1if0xk0p3+vx5wwvj3KKCWkgGAEBDk5PpAAAAAAAAAAAAAACwp0aPHh2LFy/e6ZmXXnop7r777roJBADUmImzPo4fPzI5Nm7ZGrOXrIlp81Yk9kuUqGtE744tE+u5y/51Q3s6nY5HXv9wh8+2btYofvWfx9daNgAAGhaFdgAAAAAAAAAAAACyzve+972YPn36Ts98+OGHcdddd9VRIgCgptz39/d3uu9W8JrRp1OrxHr+vxXab3x0Srw4Y9EOn73t4uOia9vmtZYNAICGJS/TAQAAAAAAAAAAAABgd7z//vvx/vv/KLil0+mYNGlSbNy4cbtnN2/eHI888khs2LChLiMCAPsonU7H2Dfn7XB/+AGdo3u7FnWYqOHa9ob20qVrYmtFZfz6qbfjugcnJvbaNG8cd15+crw4Y1GcdEiPOGdo37qMCgBAllNoBwAAAAAAAAAAACArvPTSS/Hzn/88UqlUpFKp+Otf/7rT8+l0Os4444w6SgcA1IS35iyL+cvX7XC/ZHhhHaZp2A7o2iaxXrepPL5w+zPx8GsfVjt7+38eH8VFhVFc5M8fAIA9p9AOAAAAAAAAAAAAQFa47LLLoqSkJKZOnRpf+9rX4owzzoh+/fpt92xubm707NkzTj/99DpOCQDsrXQ6HQ+8MmunZ4qLCuooTcPXq0PLGFrYKabMXlo121GZ/bPHHViX0QAAaGAU2gEAAAAAAAAAAADIGh06dIhTTz01hg0bFp///Odj6NChmY4EAOyDrRWV8crMxTFmUmk8Nrk05i7b8e3sh/RsF/26tKm7cPuBy08fFJf87rkd7t/8+aPjq2cMrsNEAAA0RArtAAAAAAAAAAAAAGSd++67b5dnxo8fH/fdd1/cc889dZAIANhTvxs3LX708KRYvm7zbp2/7LRDajnR/ufCow+Ib9/zcqzasKXa3g8uKIpvjzw8A6kAAGhoFNoBAAAAAAAAAAAAyFpLliyJhQsXRkVFRWK+efPmeOihh2Lq1KmZCQYA7NSkD5fEN/704k7PDC3sFBedODDGTC6N4w/qHpePGFRH6fYfTRvlxcUnDYzbnpiamH975OFx7fnDMhMKAIAGR6EdAAAAAAAAAAAAgKxTVlYW3/nOd2LcuHE7PJNOp+PQQw+tw1QAwO66/8WZO9zr07FlnHdkv/jvcw+PDq2axuWnK7LXpm+ePSQeeOWDWLxqY0REfO2MwXHT546KVCqV4WQAADQUCu0AAAAAAAAAAAAAZJ077rgjnnrqqejdu3f07ds3JkyYEMOGDYsmTZrEtGnTIiLikksuiZKSkgwnBQC2lU6nY/Tk0sTswG5t4lPH9I9zhxXE4N7tlanrUPd2LeLvP/pkjH1zbhzcs32cdEiPTEcCAKCBUWgHAAAAAAAAAAAAIOs8+eSTceKJJ8bvf//7WLduXRQVFcU3vvGNGDZsWGzZsiVuvvnmePXVV+Piiy/OdFQAYBtTZi+NBSvWJ2YPfevMOLhn+wwloqBz6/jamYdmOgYAAA1UTqYDAAAAAAAAAAAAAMCeWrRoUZx22mmRSqWq3eDauHHjuO6666KysjJ+85vfZCghALAjoybNTqz7d20TB/Vol6E0AABAbVNoBwAAAAAAAAAAACDr5OfnR25ubtWvIyI2bNiQOHPWWWfF2LFj6zwbALBj6XQ6Rk1MFtqLhxdU+wE1AABAw6HQDgAAAAAAAAAAAEDW6dy5c0ydOjUiIpo0aRJNmzaNd955J3EmNzc3li9fnoF0AMCOzFiwMmYtXpOYlRQVZigNAABQFxTaAQAAAAAAAAAAAMg6J510Ujz44IPxi1/8IiIiDj300Lj77rvj2WefjdWrV8e7774bd999d3Tp0iXDSQGAfzdqYmli3aN9ixha2ClDaQAAgLqQl+kAAAAAAAAAAAAAALCnLrvsspgwYUJ8+OGHERHxpS99KS699NL4xje+UXUmnU7Hd7/73UxFBAC2Y/Sk2Yl18bCCSKVSGUoDAADUBYV2AAAAAAAAAAAAALJOmzZtYsyYMTFv3ryIiDj66KPjj3/8Y/zpT3+KhQsXRufOneOcc86J888/P8NJAYB/Kl2yJqbOXZ6YFQ8vyFAaAACgrii0AwAAAAAAAAAAAJCV8vLyorCwsGp9zDHHxDHHHJPBRADAzoyeVJpYd2jZJI4d0C1DaQAAgLqSk+kAAAAAAAAAAAAAAAAANHyjJs1OrEcOK4i8XNUWAABo6NzQDgAAAAAAAAAAAEC9d8opp+zVc6lUKsaPH1/DaQCAPbV41YZ4bebHiVlxUUGG0gAAAHVJoR0AAAAAAAAAAACAem/hwoWZjgAA7IPHJs9JrFs2zY9TBvXMUBoAAKAuKbQDAAAAAAAAAAAAUO+9//77mY4AAOyDUZNmJ9afOLxPNM7PzVAaAACgLuVkOgAAAAAAAAAAAAAAAAAN18r1m2PCuwsTs5LhhRlKAwAA1DU3tAMAAAAAAAAAAACQdRYtWrTLM+l0OsrLy6NPnz61HwgA2KEn35gbWysqq9ZN8nPj9CG9MpgIAACoSwrtAAAAAAAAAAAAAGSdk08+OVKp1G6dfe+992o5DQCwM6Mmzk6sTzu0V7Ro0ihDaQAAgLqm0A4AAAAAAAAAAABA1hk2bNh25+Xl5bFw4cJYtmxZDBs2LHr06FHHyQBg//Hx6g0xamJpdG/XPM46vE/k5eZUO7N+c1k88/b8xKykqKCuIgIAAPWAQjsAAAAAAAAAAAAAWee+++7b6f6ECRPihhtuiOuvv75uAgHAfmZT2dY448dj4p2PVkZExHUXFsW15xdVO/f01Pmxubyiap2bk4qzh/ats5wAAEDmVf/RVwAAAAAAAAAAAACQ5U488cS46KKL4mc/+1mmowBAgzRq4uyqMntExO1Pvh3pdHq75/7diQf3iHYtmtR6PgAAoP5wQzsAAAAAAAAAAAAADdKgQYPi17/+daZjAECDtG1RfdWGLfFG6dKYu3RdLF61IT5evTGWrN4Yj02ZkzhXMrygLmMCAAD1gEI7AAAAAAAAAAAAAA3S4sWLo6KiItMxAKDB2bilPMZNnV9tfuT3Ht7pc6lUxLnDFNoBAGB/o9AOAAAAAAAAAAAAQNaZPHnyDvfKy8ujtLQ07rjjjigoUJoDgJr2zNvzY1PZ1j1+7sj+XaJr2+a1kAgAAKjPFNoBAAAAAAAAAAAAyDpf+MIXIpVK7XA/nU5HTk5O3HDDDXWYCgD2D6Mmlu7xM7k5qbjhM0fVQhoAAKC+U2gHAAAAAAAAAAAAIOsUFxfvsNCel5cXnTt3jlNPPTUGDBhQx8kAoGEr21oRT745d6dnmuTnxtlH9I2ubZtF5zbNokubZjHi0F7RrV2LugkJAADUKwrtAAAAAAAAAAAAAGSdm2++OdMRAKBBe2f+irjx0SmRl5OKL48YFMcM6BoRERPeXRirN2zZ6bOfOKJPPHDVGXUREwAAyAIK7QAAAAAAAAAAAAAAAFQp21oR5986Nj78eE1ERNz/8gdxyckHxU2fPzpGT5y9y+dLigprOyIAAJBFFNoBAAAAAAAAAAAAyEozZsyI5557LpYtWxbl5eXbPZNKpeLGG2+s42QAkN0mvLuwqsz+T3c9PyMemzInyisqd/n8WYf3qaVkAABANlJoBwAAAAAAAAAAACDrjBs3Lq666qpIp9ORTqd3eE6hHQD23I5uYV+2dlO12ReOPzDue3Fm1fqMw3pHq2aNai0bAACQfRTaAQAAAAAAAAAAAMg6v/vd76JZs2Zx2WWXRf/+/aN58+aZjgQADUJFZWWMmTxnt84O6tU+br3o2Hj67fmxdM2maJyfGz/5zFG1nBAAAMg2Cu0AAAAAAAAAAAAAZJ358+fHV7/61fjSl76U6SgA0KC89sHHsWTNxsTslEE947npH1U7W1xUEO1bNo1Zv/6PmDBjYRxR0DG6tPFDZgAAgKScTAcAAAAAAAAAAAAAgD3VunXr6NChQ6ZjAECDM2ri7MR6UK/28fS158b/ffus6NG+RdW8RZP8uPikgRER0bxJfnzi8D7K7AAAwHa5oR0AAAAAAAAAAACArHPWWWfFhAkT4rzzzst0FABoMNLpdIyeVJqYFRcVRETEuUUFcfKgHvGn52fErMWr4wsnDIjeHVtlIiYAAJBlFNoBAAAAAAAAAAAAyDpXXnllXHXVVfHNb34zLrzwwujevXvk5+dv92y3bt3qOB0AZKe35iyLecvWJWYlwwurft2yaaP4r08MqeNUAABAtlNoBwAAAAAAAAAAACDrrF69OjZt2hSvvvpqPP300zs8l0qlYsaMGXWYDACy16htbmcv7Nw6BvVqn6E0AABAQ6HQDgAAAAAAAAAAAEDWufbaa+OVV16Jvn37xgEHHBDNmzfPdCQAyHqjJ85OrIuHF0QqlcpQGgAAoKFQaAcAAAAAAAAAAAAg67zxxhtRUlISN910U6ajAECD8N6ClfHewlWJWUlRYYbSAAAADUlOpgMAAAAAAAAAAAAAwJ5Kp9MxfPjwTMcAgAZj9KTSxLpb2+ZR1K9zhtIAAAANiUI7AAAAAAAAAAAAAFln6NChMXPmzEzHAIAGY/Sk2Yl1cVFB5OSkMpQGAABoSBTaAQAAAAAAAAAAAMg61113Xbz00kvx17/+NcrKyjIdBwCy2rxla+ON0mWJWfHwwgylAQAAGpq8TAcAAAAAAAAAAAAAgD119dVXR5MmTeKGG26IG2+8Mdq3bx/5+fnVzqVSqRg/fnwGEgJA9hg9qTSxbteicRw/sFuG0gAAAA2NQjsAAAAAAAAAAAAAWeeNN96o+nVFRUUsXbo0g2kAILuN2qbQPnJoQeTl5mQoDQAA0NAotAMAAAAAAAAAAACQdaZNmxaNGjXKdAwAyHozFqyMV95flJgVDy/IUBoAAKAh8uOyAAAAAAAAAAAAAMg6yuwAsO9GT5odx3z/4Uin/zVr0SQ/Th3UM3OhAACABscN7QAAAAAAAAAAAAA0WOXl5ZGfn5/pGABQr2ytqIxrHpgYPxvzZrW9C47qF00aqZsAAAA1x98wAAAAAAAAAAAAAMg6AwcO3K1zqVQqZsyYUctpACB7rNxQHp+46YmY8O7CanuDe7ePW75wTAZSAQAADZlCOwAAAAAAAAAAAABZp2vXrtudl5eXx/LlyyOdTseAAQOiZcuWdZwMAOqvSR8uiYvumRZL15VV2/vccQfG7790YjRrnJ+BZAAAQEOm0A4AAAAAAAAAAABA1nn++ed3uFdWVhYPP/xw3H///XHrrbfWYSoAqJ8qK9Px+2emx9X3vhxlWysTe/m5OfGLi4+Lr4w4JFKpVIYSAgAADZlCOwAAAAAAAAAAAAANSqNGjeJzn/tcrF27Nn7605/Gz3/+80xHAoCMmbFgZVz6++di0qwl1fa6tW0eD37rjDiqf9cMJAMAAPYXCu0AAAAAAAAAAAAANEjDhw+Pe++9N9MxACBj1m4si1OuHxXL1m6qtnfCwd3j/v86PTq3aZaBZAAAwP5EoR0AAAAAAAAAAACABmnNmjWxefPmTMcAgIx5bErpdsvsV509JG783NGRl5uTgVQAAMD+RqEdAAAAAAAAAAAAgKyzaNGiHe6Vl5dHaWlp3HrrrdGzZ886TAUA9cuoiaXVZrdfODC+XHJU5CqzAwAAdUShHQAAAAAAAAAAAICsc/LJJ0cqldrpmXQ6HTfddFMdJQKA+mXD5vJ4euq8xOx3l54QR7Qvy1AiAABgf6XQDgAAAAAAAAAAAEDWGTZs2A738vPzo3PnzjFixIg46aST6jAVANQfz7w9PzaXV1Stc3NSUTK8IOZ/+H4GUwEAAPsjhXYAAAAAAAAAAAAAss59992X6QgAsM82bimPPz0/I9ZtKo/LTj04OrRqWmPvHjVxdmJ9wsHdo12LJjG/xr4AAACwexTaAQAAAAAAAAAAAGhQKisrIycnJ9MxAGCXvnzHC/G3lz+IiIj7X5oZb//8s5GTk9rn9y5dszHGTJ6TmJUUFe7zewEAAPaG/6cOAAAAAAAAAAAAgKxRXl4et912Wzz00EM7PHPRRRfF3XffXXehAGAvLF61oarMHhHx3sJV8dbcZTXy7hv/b0ps2FJetc5JpeLcYX1r5N0AAAB7SqEdAAAAAAAAAAAAgKzxwx/+MP7whz/Es88+u939lStXxoIFC+KWW26Ju+66q47TAcA/bCrbGvOWrY0Nm8t3eGbM5NJqsw8Xr97nb5cuWRN3PPtOYvYfJwyIbu1a7PO7AQAA9oZCOwAAAAAAAAAAAABZYeLEifHII4/E0KFD4yc/+cl2z7Rr1y6eeOKJOOKII+K2226L2bNn13FKAPZ385atjSO/91AUXnFvdLn0rvjC7c/E01PnxdaKysS5UROrF9oXrFi/z9+/ZdQbUf5v32qUlxM/uLBon98LAACwtxTaAQAAAAAAAAAAAMgKo0ePjjZt2sRvf/vb6NSp0w7PNW/ePH77299Gs2bN4pFHHqnDhADs7yor0/HF346Pdz9aGRH/uKn9by9/EJ+48fHoc/nd8e17X44ZC1bGyvWbY8K7C6o9P3/5un36ftnWivi/ickf5nL56YOiV4eW+/ReAACAfZGX6QAAAAAAAAAAAAAAsDumTp0aI0eOjFatWu3ybOvWraO4uDheeeWVOkgGAP9w1/PvxoszFm137+PVG+OXT0yNX499Ow7t3SEqKtPVzsxdum+F9gnvLozVG7YkZt/8xJB9eicAAMC+ckM7AAAAAAAAAAAAAFlh2bJlccABB+z2+f79+8fixYtrMREA/MvytZviO/e9ustzFZXpeHPOsu3uzVu2dp8yjJlUmlgP69c5erqdHQAAyDCFdgAAAAAAAAAAAACywtatW6NRo0a7fT4vLy8qKytrMREA/MsDr3wQazeVJWZXnj0khhZ22u13zF22LtLp6je3746KysoYvU2hvaSoYK/eBQAAUJPyMh0AAAAAAAAAAAAAAHZH+/btY+7cubt9fubMmdGp0+6XCAFgX4zapkx+3vDC+Nl/HBsREe8tWBm/HTct/veZd3b6jvWby2Pl+s3RvmXT3f7uvGVr47HJc+LRibNjyZqNib1ihXYAAKAeUGgHAAAAAAAAAAAAICsMGTIknnzyyfja174Wubm5Oz27cePGePzxx+P444+vo3QA7M+Wrd0UL81YlJh9/vgDq349sEe7+PUlJ0SjvNy4fezbVfPjD+oWL27z3Nxl63ZZaC/fWhH/+8w7cd/f34835yzb7plDeraL/t3a7ulvBQAAoMYptAMAAAAAAAAAAACQFUpKSuLJJ5+MG264Ia677rodnisrK4tvf/vbsWLFijjvvPPqMCEA+6vHp8yJynS6at2scV6cdmivxJlUKhW3/sex0aN9i3h8ypw46sAuce35RXHIlX+NecvWVZ2bt3RtHFHQqdo37nru3fjDs+/EgO7tolnjvPjj+Hd3mulzxw/Yx98VAABAzVBoBwAAAAAAAAAAACArHHvssTFixIh44IEH4oMPPohLL700ioqKonnz5hERsWrVqnjxxRfjD3/4Q5SWlsb5558fQ4cOzXBqAPYHoyfNTqzPPKx3NG1UvbKRk5OKq845LK4657CqWe+OLROF9rn/9ut/mvDugvjyHS9ERMQbpdu/kf2fmjbKi4tOHBDfOOvQPfo9AAAA1BaFdgAAAAAAAAAAAACyxi233BLpdDqeffbZePPNNyMiolmzZlFZWRmbN2+OiIh0Oh0XXnhhXHPNNZmMCsB+Yu3Gshg/7aPErKSocLef79OxVbwYi6rW87dTaP/Rw5N2+o52LRrH2Uf0jeKigjh1cM9o1jh/t78PAABQ2xTaAQAAAAAAAAAAAMgaTZs2jV//+tfx0ksvxaOPPhpvv/12rFixIvLy8qJv375xxBFHRElJSRx++OGZjgrAfuKpt+ZG2dbKqnWjvJw46/A+u/18744tE+u5y9Ym1m+WLo0XZyyKHRnWr3O89ONPRl5uzm5/EwAAoC4ptAMAAAAAAAAAAACQdY477rg47rjjMh0DAGLUxNLE+pRBPaNVs0a7/XyfTq0S61mLV0c6nY5UKhURET9/7K2dPn/+kYXK7AAAQL3mbywAAAAAAAAAAAAAAAB7YVPZ1njqrXmJWcnwwj16x7Y3tM9ctDqufeD1iIhYsnpjPPzahzt9vrhoz74HAABQ19zQDgAAAAAAAAAAAAAAsBfGT/soNmwpr1rnpFJxztC+e/SOIw/oEp1aN42lazZVzW4e9UZ0adMsGufnRmU6vcNn27dsEoVdWu95cAAAgDrkhnYAAAAAAAAAAAAAAIC9MGri7MT62IFdo2Orpnv0jiaN8uKOL58cOalUYn7l3S/FTY++sdNnrzrnsD36FgAAQCYotAMAAAAAAAAAAAAAAOyh8q0V8fiUOYlZSVHhXr3rnKF94/dfOjExS6cj5i9fl5jdefnJcergnpGfmxPnDO0b3/zEkL36HgAAQF3Ky3QAAAAAAAAAAAAAAACAbPP3GYti1YYtiVlxUcFev++SUw6Oxas2xvUPTdzufuP83Pjkkf3i4pMOivKtFZGfl7vX3wIAAKhLbmgHAAAAAAAAAAAAAADYQ6MnzU6shxZ2ip4dWu7TO7//yaFx+YhB2907bXDPaNm0UUSEMjsAAJBVFNoBAAAAAAAAAAAAAAD2QGVlOkZPKk3MSoYX7vN7U6lU/PI/j4vztvOumng/AABAJii0AwAAAAAAAAAAAAAA7IHXZ30cH6/emJiVFBXUyLtzc3Li3q+fFscf1K1q1q1t8ygpUmgHAACyU16mAwAAAAAAAAAAAAAAAGSLdZvK4up7X07MDu7ZLvp3a1tj32jSKC/G/s/I+N3T02PJmo1x2akHR6tmjWrs/QAAAHVJoR0AAAAAAAAAAAAAAGA3bNxSHsU/fTImzlqSmJcMr/nb05s0yourzjmsxt8LAABQ13IyHQAAAAAAAAAAAAAAAKC+21JeEeff+lT8/d2FiXnXts3i62cOzlAqAACA+k+hHQAAAAAAAAAAAAAAYCfKt1bEZ3/5dDzz9vzEvEPLJvH0tcXRvmXTDCUDAACo/xTaAQAAAAAAAAAAAAAAdqCisjIu/s34GDO5NDFv07xxjLv23DioR7sMJQMAAMgOCu0AAAAAAAAAAAAAAEBWSafTcc3fXouCr94Tn7ltXKzdWFZr37r+oUnx4KuzErOWTfNj7PdHxpA+HWvtuwAAAA1FXqYDAAAAAAAAAAAAAAAA7IlRE2fHzaPeiIiI+cvXRd/OreLGzx5d49/ZsLk8fvnE1MSsaaO8eOy750RRv841/j0AAICGyA3tAAAAAAAAAAAAAABAVrnvxZmJ9dg35tbKd555e35sKttatc7NScWj/31WHDewW618DwAAoCFSaAcAAAAAAAAAAAAAALLG+s1l8czb8xOzGQtWxYbN5TX+rVETZyfWJxzcPU4b3KvGvwMAANCQKbQDAAAAAAAAAAAAAABZY9xb82NLeUViVplOx9S5y2v0O2VbK+KJbW5+LykqrNFvAAAA7A8U2gEAAAAAAAAAAAAAgKyx7a3p//RG6dIa/c7z7yyItZvKErORw/rW6DcAAAD2BwrtAAAAAAAAAAAAAABAVthctjWefHPudvemfLikxr6zav3muPZvrydmww/oHN3btaixbwAAAOwvFNoBAAAAAAAAAAAAAICs8Nw7C2L95vLt7tXUDe1L12yMM3/yWLw1Z1liXjK8sEbeDwAAsL/Jy3QAAAAAAAAAAAAAAACA3TF64uwd7s1ctDrWbiyLVs0a7fX731uwMkbe/ETMWbo2Me/VoWV86dRD9vq9AAAA+zOFdgAAAAAAAAAAAAAAoN7bWlEZj02Zs9MzR/z3A3HcwG5x7MBuccyArtG/a5tIpVK79f4Nm8u3W2bv3q55PPODc/epKA8AALA/U2gHAAAAAAAAAAAAAADqvZfeWxQr1m1OzLq3ax4LV26oWs9ZujbmLF0b9/79/YiIOKRnu/i/qz8RhV1a7/L9oyeVbvdm9nHXjIx+Xdrs+28AAABgP5WT6QAAAAAAAAAAAAAAAMCeeWf+ihg3dV6Uba3IdJQ6M3rS7MT68L4d49JTD97pM+98tDK++scJu/X+Udu8f1Cv9vHqjedH/25t9ygnAAAASW5oBwAAAAAAAAAAAACALPLbcdPiyj+/FJXpdAzq1T6evvbc6NS6WaZj1arKynSMnlSamBUPL4xvnDU4lq7eFH99aWas3VS23Wefm/5RvDVnWRzWt+MO379hc3k8PXV+YvbNs4dElzbN9z08AADAfs4N7QAAAAAAAAAAAAAAUA9traiMDxatitIla2LBivWxdM3GeObt+VVl9oiI6fNXxLm3PBkbt5RnOO32lW+tiImzPo6lazbu03umlC6NhSs3JGYlRQXRokmj+PWlJ8SyP18aU376qfjVfx4fFxzVL5o3zk+cve3xt3b6/mfenh+byrZWrXNzUnH2EX32KTMAAAD/4IZ2AAAAAAAAAAAAAACoZ55/Z0F86udPxaoNW3Z5dvKHS+Ibd70Yd371lDpItvs2bC6Po/7n4ZixYGW0atooHrjqjBhxaK+q/Y1byuOJN+ZG6ZI1saW8Ik4f0juO7N9lu+8aNXF2Yj2ge9sY2KNd1To3JyeG9OkYQ/p0jCvOGBw3PjolfvDA61X7D746K37y2aOiZ4eWu/X+Ew7uHu1bNt3j3zMAAADVuaEdAAAAAAAAAAAAAADqkcrKdHzp98/tVpn9n+79+/uxYt2mWky1ez5evSEu+d34OP/WsXHZ/z4fMxasjIiItZvK4tO/GBfv/f/1xi3lMew7D8Znf/l0XPO31+PHj0yO46/9v3jtg8XV3plOp6sVzouLCnaa48unHRzNGv/rDsCKynT8cfy72z378Kuz4oFXZiVmJUWFu/7NAgAAsFsU2gEAAAAAAAAAAAAAoB6ZUro05i5bt0fPVKbTMW3eilpKtHu2lFfE6T8eE/dMeD9GTyqNh15NlsTXbiqL4luejBXrNsU9E96PmYtWJ/Yr0+m4+/n3qtZlWyti3rK1MXpSaXz48ZrE2ZLhOy+ct2/ZNC4+cWBi9shrH0Y6nU7MHp8yJ77w62ej8t/mebk5ce6wvrv8/QIAALB78nZ9BAAAAAAAAAAAAAAAqCvb3ka+PUf27xKLVm6I+cv/VXyfPn9FnHRIj9qMtlO3jH4j3v1o5U7PzF6yJj5929NRUVm53f27np8Ri1dviCmzl8bSNdu/cb5Xh5ZxeN+Ou8zzueMPjN89Pb1q/cHi1TF9/ooY3LtDREQ8O21+fOoXT8XWimSW75UcEd3atdjl+wEAANg9Cu0AAAAAAAAAAAAAAFBPpNPpaoX2b408LP7nvKFRtrUyyrZWRF5OTnRu0ywu+d34uGfC+1Xnps9bXtdxq8xYsDJuenTKbp194Z0FO90f++a8ne4XFxVEKpXa5XeK+nWOXh1aJkr/D7/2YQzu3SFenLEwzvvp2Cjbmiyzf/X0QfGDC4p2+W4AAAB2n0I7AAAAAAAAAAAAAADUE+9+tDI+/HhNYnbBUf2idbPG1c4e0qt9Yj19/opazbYjlZXp+PIdz0d5xfZvXa9Jebk5cfFJA3frbCqVivOP6he/ePytqtlNj06J5o3z4sZHp8Smsq2J8xefODB++cXjd6ssDwAAwO7LyXQAAAAAAAAAAAAAAADItLfnLo8ps5dERWXtl7J35o/j30mse7ZvEUcUdNru2UG9OiTW7360MiP573j2nXht5sc7PfPtkYdH4/zcvXp/4/zcKOjcKk4d3DMe/taZMbh3h10/9P9dcFS/arNr/vZ6bNySLLN/6ugD4o6vnBQ5OcrsAAAANc0N7QAAAAAAAAAAAAAA7Neue3Bi/OT/JkdExODe7eO2Lx4fJxzUvc5zPPDyB/HbcdMTs5LhhTu8MXxw7+QN7ZvKtsbsj9dE/25tay3jtj5YvDr+5/5Xd3qmSX5uXHP+0Di0T/v4wu3PVttv0SQ/1m8urzb/9sjD47+LD4+2zRvv9a3pQws7Rd9OrWLO0rU7PHPusIK4+2unRm6OOwMBAABqg79tAQAAAAAAAAAAAACw31q+dlPcPGpK1XravBVxyvWj4tO/GBfzlv2rBL1+c1nc9dy78afnZ8TMRasinU7XaI45S9fGpb9/LjHLy82JS089eIfPdGrdLDq3bpaYTZ+/okZz7cyiNZvjzBsei3WbkmX0p64ZGacP6VW1/p9PDosWTRrFZ449ML5TfETibH5uTvzwU8O3+/6LThwQ7Vo02esye0REKpWKGz97VOTu4Ob104f0ivu/eXrk5+3d7fEAAADsmhvaAQAAAAAAAAAAAADYbz0+ZU5UVFYvpz/y+ofxxBtz4upzD4+rzjksTv3hqHijdFnV/uF9O8YjV58VvTq0rJEcfxz/Tmwur0jMfvXF4+OgHu12+twhvdrHkukbq9ZPvTkvPnlkvxrJtDMLV66Prz0wIxau3pKYX3ziwDhtcK84bkC3+PuMhdG2RZMYVtipav/Hnz4yFq1cH/e9ODMiIq69oChOH9I7vnXPy4n3tGiSHwN38XvfXRccfUAc3Kt93Drmzfjbyx9ERWU6hvXrFJ86pn98ZcQh0UiZHQAAoFYptAMAAAAAAAAAAAAAsN8aNWn2Dvc2l1fEjx+ZHD9+ZHK1vTfnLIvv3PdK/O3KM/Y5QzqdjlETkzn+44QB8eURh+zy2UG928dz0z+qWt894b14ZeaiOGNI7zj9sN5xwkHdo2mjmq0OLFm9Mc74yePVyuxDCzvFbV88LiIimjTKi9OH9K72bE5OKv50xalx5TmHRaO83BjQvW1UbucHCnz6mANqNPNBPdrFn644NX572YkRETX+ZwIAAMCO+RsYAAAAAAAAAAAAAAD7pXWbymL8tI8Ss/zcnCivqNyt58dMLo3VG7ZEm+aN9ynHjAUrY9biNYnZ5acP2q1nB/dqX202a/GamLV4Wvz6qWnRJD83TjykR5x+aK8447DecUDXNvuUdeX6zXHGDWPig0Wrkzl6t4+x3x8ZLZs22uU7UqlUDO7doWqdk5OKS085KO58bkZERDTOz41vnn3YPuXcEUV2AACAupeT6QAAAAAAAAAAAAAAAFDXfjduWrS96A9RtvVf5fX83JyY8avPx1dPHxQ5qdQu31G2tTIenbjjG95316iJpYl1j/YtYmhhp9169hNH9IkWTfJ3uL+5vCLGvTUvrrz7pRj4X3+J0340Opas3rhXOdduLIuzfvJYTJ+/IjE/sFubGHfNudGuRZO9em9ExE8+e1RcPmJQnDKoZ/z1v0bEgO5t9/pdAAAA1C8K7QAAAAAAAAAAAAAA7Fceee3D+MafXqw2P2Vwz+jbqVXcfskJ8dQ1I3frXX97+YN9zjN6UrIUX1JUEKndKNRHRLRv2TQm/Oi8OG94YbRrseub4l94Z0Hc9sTUvYkZ1/zttZgye2li1rdTq3jmB8XRqXWzvXrnP7Vv2TR+fekJ8fS150ZxUeE+vQsAAID6JS/TAQAAAAAAAAAAAAAAoC7d8ew7252XFBVU/frkQ3rEYX07xltzlu30XRPeXRAfLV8XPTu03OMclZXp+M5fXompc5cn5sXD96zQPaRPx3joW2dGZWU63pq7LMa9NS+enjo/Xv/g46hMp6udf+2DxXucdUt5RfzlxZmJWaeWjWLcNedE93Yt9vh9AAAA7D/c0A4AAAAAAAAAAAAAwH5j+dpN8eKMhdXmh/XtGJ8/fkDVOpVKxVdGHFLt3LdGHhYtm+ZXrdPpiPN+NjaWr920RzkqK9Nx+R9eqHZbeufWzeLYAV336F3/lJOTiiMKOsX3PzksXvzxJ2PJXZfE3755epx9RJ/EudIla/b43c+/syDWbipLzG6/cGD06dhqr7ICAACw/1BoBwAAAAAAAAAAAABgv/HEG3OiojJ5a/mjV58Vr/7k/Gicn5uYf/qY/tG6WaPE7HPHHRgXHHVAYvbWnGVx2o9Gx9I1G3crQzqdjivvfjHuen5Gtb1bLzomcnNq5p/6t23RJC44+oD48WeOTMwXr9oYG7eU79G7Rk+cnVgf1b9L9O3QbJ8zAgAA0PAptAMAAAAAAAAAAAAAsN8YNbE0sS4pKoiRwwoiPy+32tnmTfLjj185ORrl5UROKhXfHnl4DO7dIa6/sCi6t2ueODt9/oo45fpRsXjVhp1+P51Ox/f++lr8dtz0xDw3JxV/vuLU+MyxB+7l72zHCjq1rjabu2zdbj9fUVkZYyYn/9zOHdZ3n3MBAACwf1BoBwAAAAAAAAAAAABgv7BuU1k8O21+YlYyvHCnz5x3ZL9Y/ufL4qM7vhg3f/7oiIjo1q5FPH/9edGrQ8vE2fcWropTrh8VC1eu3+H7bvi/yXHrY28mZnm5OfHwt86ML5wwYE9+O7uteZP86Nw6eZt66ZI1u/38y+8vjuXrNidm5w4rqJFsAAAANHwK7QAAAAAAAAAAAAAANCivzlwcX7tzQtzxzDuxuWxr1fypt+ZF2dbKqnV+bk6cdXifXb6vWeP86NwmWQgv7NI6nr++JPp0TJbaP1i8Ok6+blTMX179BvRbH3szfvjQpMQsJ5WKe79+Woys5YJ4386tEuvSJWt367l0Oh03PDI5MRvSp0MUbPM+AAAA2BGFdgAAAAAAAAAAAAAAGoxZi1fHGTeMif995p244s4Jcew1j8QHi1ZFRMSoibMTZ08e1CPaNG+819/q06lVvPDD86Jfl9aJ+ewla+Kk6x6NOUv/VRr//dPT47t/ebXaO+68/OS48OgD9jrD7irolCygz1myJsZP+yiOv/b/4uybHo9Zi1dv97l7JrwXL7yzIDE7/6h+tRUTAACABkihHQAAAAAAAAAAAACABuPO596NjVv+dSv71LnLo+i7D8XdL8yIsW/OS5wtKSrc5+/17NAynr++JA7s1iYxn7dsXZx03aPx8eoN8eKMhfGNP/292rO/ufSE+I8TB+5zht1RsE3pfkrp0vj0bePi1ZmLY9xb86L4lidia0Vl4szK9Zvj6ntfScx6tm8RV5wxuNbzAgAA0HAotAMAAAAAAAAAAAAA0CCk0+kYPbG02nz95vK49PfPx4Yt5VWzVCpi5LC+NfLdbu1axPPXnxcH92yXmC9YsT6+cdeLcdGvn410OvnMz/7jmPjKiEE18v3dse0N7a/N/DhWb9hStZ65aHU8us0N9g+9OitW/duZiIjfXnZitGzaqPaCAgAA0OAotAMAAAAAAAAAAAAA0CBMn78iZi9Zs1tnjx3QLTq1blZj3+7cplmMv64kDu3dITF/dOLs+GjF+sTsf84bGleefViNfXt39O3cepdnbh3zZqT/rXk/apsfDnDusII46/A+NR0NAACABk6hHQAAAAAAAAAAAACABmHUNjeMN8rb8T+ZLy4qqPHvd2zVNJ74n3OiSX7uDs+ccHD3uO7Cohr/9q4Udm61yzNvzlkWz01fEBERK9dvjgnvLkjsf/74A2slGwAAAA2bQjsAAAAAAAAAAAAAAA3C6EnJG8W/MmJQ3Pv106J54/xqZ2uj0B4R0bVt87j0lIO3u9e2eeO4+4pTIzen7v8pf5c2zXdatP+nWx97MyIinpgyJyoq/3Vbe9NGeTHi0F61lg8AAICGS6EdAAAAAAAAAAAAAICsN2vx6pg+f0ViVjK8MD573IEx+ZYL49DeHarmXxlxSPTuuOsby/fWt0YeFvm5yX+u37RRXjz87TOjZ4eWtfbdncnJSUXfTrv+PY+f9lG8NWdZjNrmhwOMOLRXNG9S/QcDAAAAwK7kZToAAAAAAAAAAAAAAADsq21vZ+/UumkcfWCXiIjo361tTLz5wnjh3QWRl5MTxw3sVqtZenZoGVeeMyR+Ovoft503zs+NR//7rDjx4B61+t1dOahnu3hv4apdnvvhQxPj2WkfJWYlw2vnRnsAAAAaPoV2AAAAAAAAAAAAAACy3qhJsxPrc4cVRG7Ov25Jz8vNidMG96qzPD/5zFHRr0ubmLV4dfznyQfFAV3b1Nm3d+SbZw+Jp6fOj/Wby6tmrZs1iotPGhi/evLtqtkTb8xNPJeXmxOfOLxPHaUEAACgoVFoBwAAAAAAAAAAAAAgqy1cuT4mzVqSmBUXZfZG8VQqFf958kEZzbCto/p3jXd/+bl4+NUP48UZC2NrZWVcfe4RcUjPdnHn+BmxYUv5dp876ZDu0bZFkzpOCwAAQEOh0A4AAAAAAAAAAAAAQFYbM6k0sW7drFGcdEiPDKWp37q3axHfPHtIfPPsIYn5pacelLil/d+VFBXWQTIAAAAaqpxMBwAAAAAAAAAAAAAAgH0xaptC+9lH9I1GebkZSpOdvvmJIZGXW71ikEpFjBzWNwOJAAAAaCgU2gEAAAAAAAAAAAAAyFrL126KF2csTMxKhhdkKE326tmhZXzmmAOqzY8+sGt0adM8A4kAAABoKBTaAQAAAAAAAAAAAADIWk+8MScqKtNV66aN8mLEob0ymCh7fWvk4dVmJUWFGUgCAABAQ6LQDgAAAAAAAAAAAABA1ho1sTSxPmNIr2jWOD9DabLbIb3ax4VH/+uW9jbNG8entnNrOwAAAOyJvEwHAAAAAAAAAAAAAACAvbFuU1k8O21+YlYy3I3i++LOy0+OPp1axoLl6+Mrpw+Krm2bZzoSAAAAWU6hHQAAAAAAAAAAAACArPTUW/OibGtl1To/NyfOOrxP5gI1AM0a58eNnz060zEAAABoQHIyHQAAAAAAAAAAAAAAAPbGqImzE+uTB/WINs0bZygNAAAAsD0K7QAAAAAAAAAAAAAAZJ3NZVtj7JvzErOSosIMpQEAAAB2RKEdAAAAAAAAAAAAAICs8+y0j2LDlvKqdSoVMXJY3wwmAgAAALZHoR0AAAAAAAAAAAAAgKwzetLsxPrYAd2iU+tmGUoDAAAA7IhCOwAAAAAAAAAAAAAAWaVsa0U8PmVOYlYyvDBDaQAAAICdyct0AAAAAAAAAAAAAAAA2B3zlq2NPz3/Xvz5+Rmxcv2WxF5xUUGGUgEAAAA7o9AOAAAAAAAAAAAAAEC99szb8+P2sW/H01PnRTpdfX9oYafo1aFl3QcDAAAAdkmhHQAAAAAAAAAAAACAeuvPz8+Iy/73+Z2eufz0QXWUBgAAANhTCu0AAAAAAAAAAAAAANRL6XQ6fjbmzR3uD+vXOb51zmHxySML6zAVAAAAsCcU2gEAAAAAAAAAAAAAqJfeW7gqPli8OjFr1bRRfP74A+OSUw6OQ/t0yEwwAAAAYLcptAMAAAAAAAAAAAAAUC+Nmjg7se7ernnM+OXno3mT/AwlAgAAAPZUTqYDAAAAAAAAAAAAAADA9oyeVJpYlxQVKrMDAABAllFoBwAAAAAAAAAAAACg3pmzdG28NWdZYlY8vCBDaQAAAIC9pdAOAAAAAAAAAAAAAEC9M3rS7MS6Q8smceyAbhlKAwAAAOwthXYAAAAAAAAAAAAAAOqdURNLE+uRwwoiL9c/gQcAAIBs42/zAAAAAAAAAAAAAADUKx+v3hCvfbA4MSsuKshQGgAAAGBfKLQDAAAAAAAAAAAAAFCvPDZ5TqTT/1q3bJofpwzqmblAAAAAwF5TaAcAAAAAAAAAAAAAoF4ZNWl2Yv2Jw/tE4/zcDKUBAAAA9oVCOwAAAAAAAAAAAAAA9caq9VvihXcWJmYlwwszlAYAAADYVwrtAAAAAAAAAAAAAADUG2PfmhtbKyqr1k3yc+P0Ib0ymAgAAADYFwrtAAAAAAAAAAAAAADUG6MnzUmsRxzaK1o0aZShNAAAAMC+UmgHAAAAAAAAAAAAAKBe2FRWEc+8PT8xKxlemKE0AAAAQE1QaAcAAAAAAAAAAAAAoF54bc7q2FxeUbXOy82JTxzRJ3OBAAAAgH2m0A4AAAAAAAAAAAAAQL0w4YOVifUJB3WPdi2aZCgNAAAAUBMU2gEAAAAAAAAAAAAAyLiyrRXx8oerErOS4QUZSgMAAADUlLxMBwAAAAAAAAAAAAAAYP/xzvwVcetjb0bzxvnxldMPiUG9OkRExAvvLIwNZRVV51KpiHOHKbQDAABAtlNoBwAAAAAAAAAAAACgTmwq2xolP30y5ixdGxERdz0/I7498rC45pPDYvTk0sTZI/t3ia5tm2ciJgAAAFCDFNoBAAAAAAAAAAAAAKgTz749v6rMHhGxtaIybh71Rvzf6x/GinWbE2dLigrrOh4AAABQCxTaAQAAAAAAAAAAAACoE6Mmzt7ufNbiNdVmxUUFtR0HAAAAqAM5mQ4AAAAAAAAAAAAAAEDDV761Ih5/Y+5unR3Sp0MUdG5du4EAAACAOqHQDgAAAAAAAAAAAABArZswY2Gs3rAlMTuioON2zxYXFdZFJAAAAKAOKLQDAAAAAAAAAAAAAFDrRk8sTayH9escr954Qfzyi8dFiyb5VfNmjfPic8cfWNfxAAAAgFqSl+kAAAAAAAAAAAAAAAA0bBWVlTF6UrLQXlJUELk5OfG1Mw+NkcMK4rbH34qpsz6K71xwTPTt1CpDSQEAAICaptAOAAAAAAAAAAAAAECtev2DJbFkzcbErLiooOrXvTq0jFv/45iYOnVqDBncs67jAQAAALUoJ9MBAAAAAAAAAAAAAABo2EZNmp1YH9KzXfTv1jZDaQAAAIC6pNAOAAAAAAAAAAAAAECtSafTMWZSaWJWPLwwQ2kAAACAuqbQDgAAAAAAAAAAAABArXl73vKYs3RtYlZSpNAOAAAA+4u8TAcAAAAAAAAAAAAAAKBheaN0afzisbeiXYsmUZlOJ/YKOreKwb3bZygZAAAAUNcU2gEAAAAAAAAAAAAAqDHjp30U597yRGwpr9ju/rnDCiKVStVxKgAAACBTcjIdAAAAAAAAAAAAAACAhuGl9xbFeT97codl9oiIi04cWIeJAAAAgExTaAcAAAAAAAAAAAAAYJ9N+nBJjLz58di4ZesOz5x/ZL84pFf7OkwFAAAAZJpCOwAAAAAAAAAAAAAA+2Tq3GVx1k8ei3Wbynd67vvnD62jRAAAAEB9odAOAAAAAAAAAAAAAMBem7FgZZzx4zGxesOWnZ47/8h+MahXhzpKBQAAANQXCu0AAAAAAAAAAAAAAOyVFes2xek/Hh3L121OzEcc2ivW3vfl+PqZg6N9yyZx6uCe8dvLTshQSgAAACCT8jIdAAAAAAAAAAAAAACA7HT72GmxeNXGxOz4g7rFI98+M5o1zo/bvnh83PbF4zOUDgAAAKgP3NAOAAAAAAAAAAAAAMBeGTVxdmJddEDnGPOds6NZ4/wMJQIAAADqG4V2AAAAAAAAAAAAAAD22PsLV8WMBSsTs59fdGy0bNooQ4kAAACA+kihHQAAAAAAAAAAAACAPTZ6UvJ29q5tm8Xwfl0ylAYAAACorxTaAQAAAAAAAAAAAADYI1srKuOGRyYnZsXDCiMnJ5WhRAAAAEB9pdAOAAAAAAAAAAAAAMBue3Xm4ij46j2xubwiMS8eXpChRAAAAEB9ptAOAAAAAAAAAAAAAMBuKd9aEZ+5bVwsWrUhMW/bvHEcP7BbhlIBAAAA9ZlCOwAAAAAAAAAAAAAAu+XF9xbFwpUbqs2vOuewyM/LzUAiAAAAoL7Ly3QAAAAAAAAAAAAAAACyw+iJpdVmD111RpQML8xAGgAAACAbKLQDAAAAAAAAAAAAALBLlZXpGD15dmL2408fGecd2S9DiQAAAIBskJPpAAAAAAAAAAAAAAAA1H8TP/w4Fq/amJi5mR0AAADYFYV2AAAAAAAAAAAAAAB2adTE0sR6YPe2MaB72wylAQAAALKFQjsAAAAAAAAAAAAAADuVTqdjzKRkob3Y7ewAAADAblBoBwAAAAAAAAAAAABgp6bPXxGzl6xJzEqKCjKUBgAAAMgmCu0AAAAAAAAAAAAAAOzUqImzE+veHVvGYX07ZigNAAAAkE0U2gEAAAAAAAAAAAAA2KnRk0oT6+KigkilUhlKAwAAAGQThXYAAAAAAAAAAAAAAHZo1uLVMX3+isSsuKgwQ2kAAACAbKPQDgAAAAAAAAAAAADAdpVvrYjv3PdKYtapddM4+sAuGUoEAAAAZBuFdgAAAAAAAAAAAAAAqqmorIyLfzM+HpsyJzE/d1hB5Ob4p+gAAADA7vH/IgAAAAAAAAAAAAAAkFBZmY4v/+8L8eCrsxLzFk3y4+pzD89QKgAAACAbKbQDAAAAAAAAAAAAAFAlnU7HN//8Ytw94b3EvGmjvHj8e+dEQefWGUoGAAAAZCOFdgAAAAAAAAAAAAAAIuIfZfbv/OXV+N3T0xPzRnk58eh/nxXHDeyWoWQAAABAtlJoBwAAAAAAAAAAAAAgIiLuePad+MXjbyVmebk58eBVZ8Zpg3tlKBUAAACQzRTaAQAAAAAAAAAAAAAakIrKythSXrFXz/344cmJWU4qFX/5xog4Z2jfmooHAAAA7GfyMh0AAAAAAAAAAAAAAICa8d6ClVHy0ydj9pI1cVT/rnHl2UPi3GEFkZOT2uEzdzzzTtw94b3YsLk8lqzZmNi78/KT4/yj+tV2bAAAAKABU2gHAAAAAAAAAAAAAGggrrz7pfjw4zUREfHqzMXx6szFcdIhPeKv/zUiOrVuVu38S+8tiivunLDddw3q1T7+48SBtRkXAAAA2A/kZDoAAAAAAAAAAAAAAAD7btnaTfH89AXV5i+8syCKvvtQTJz1cbW9eye8t8P3FRcV1Gg+AAAAYP+k0A4AAAAAAAAAAAAA0AA8PmVOVKbT291bsGJ9nPiDR+OOZ96J9P8/s7WiMv7v9dk7fF/J8MJayQkAAADsXxTaAQAAAAAAAAAAAAAagNGTdlxOj4gor6iMK+6cEJf87rnYVLY1XnxvUazdVLbds13bNotBvdrXRkwAAABgP5OX6QAAAAAAAAAAAAAAAOybtRvLYvy0jxKzn190bDw+ZU5MeHdhYn7v39+PafOWR6tmjXb4vs8ce2CkUqlayQoAAADsX9zQDgAAAAAAAAAAAADw/9q77/A6qnPf47+ZPbtvddmyLMm9Yxs3bDqElsChQwiQHJJLQiAEuOTkphxCctM7yQnkwLmkkITqkEAgoaRAAhiDbcDGxgV3S7LV++5l5v4he2Nh2ZJsyZKs7+d59qO9Z9astWZebbHwM++8w9xzq3cqmbazn90uU5/4wEw9f+cl+j8XLzig/ZqdjXp5w55u+yrJC+jzF80fsLkCAAAAAICRhQrtAAAAAAAAAAAAAAAAAAAAADDMPblie5fPZ8+tUF7AK0n6/sdO1uIpo3X9vS8oHE8dtI+/fe1SpdIZnTKjVCHfwau3AwAAAAAA9AUJ7QAAAAAAAAAAAAAAAAAAAAAwCDK2LZdpHnE/sWRaz63e1WXbZYsndfl8+YlTNKuiSFf++Flt2t1yQB8nTCnRWbPLj3guAAAAAAAA73fk//oBAAAAAAAAAAAAAAAAAAAAAOi1qsYOLf7SUuX9+//Tbb96SY7jHFF//1hbpUjivcrrpmHookUTD2g3o6xAr333w7rixMnZbS7T0AULxuuh2847ojkAAAAAAAAcDBXaAQAAAAAAAAAAAAAAAAAAAOAouu3XL+utHQ2SpHv/uk5Lpo7RR0+fftj9PbliW5fPp84s1ei8QLdtc/wePfa5D2nFljo1heM6adoYFYZ8hz02AAAAAABAT0hoBwAAAAAAAAAAAAAAAAAAAICjpKE9pj+/saPLtq//foWuPW2aDMPoc3+ReOqA/i5bPPkgrTsZhqETp43p81gAAAAAAACHwxzsCQAAAAAAAAAAAAAAAAAAAADASPGH17YesG1HfbuWbarpc1+b97TolK88rpZIosv2SxdPOuz5AQAAAAAA9DcS2gEAAAAAAAAAAAAAAAAAAADgKHl02eZut9/9zJputz++fIsmf/a3mvsfj2j5u+8lvT+5YpuW/Ofv9U5Vc5f2J00fo4rinH6bLwAAAAAAwJEioR0AAAAAAAAAAAAAAAAAAAAAjoKd9e1dktL399SqHdpa29plW31bVJ+87wXtaujQhupmXfL9v2h3c1hfeuhVffiu59QRS3Vpn+v36L8/deYAzR4AAAAAAODwWIM9AQAAAAAAAAAAAAAAAAAAAAA4VrVGEnpxXZWawwl96aFXD9rOdhz9+Km39D83npXd9tSq7Yom0tnPLZGExt/0m26PnzOuSL///PmaWprfX1MHAAAAAADoFyS0AwAAAAAAAAAAAAAAAAAAAEA/SqQyem71Tj388rt65q2dSqbtXh33239t0p1XLlZ5UUiS9OSK7b067mOnT9e9N5ypgNd92HMGAAAAAAAYKCS0AwAAAAAAAAAAAAAAAAAAAEA/2Fbbph8//ZYef22rWiOJQ7YtyQvo6f+8UKd/9Y9KpDKSpFTG1k/+vFo/+cRpnZXd36k+ZB8ey9RPP3G6Pn3ucTIMo9/OAwAAAAAAoD+Zgz0BAAAAAAAAAAAAAAAAAAAAABju6lqjWvzlpfrFP9b3mMye43frL3dcpIWTRuv6D8zqsu8X/1ivhvaYnnlzp9KZg1d2nzAqR//65hW68bzZJLMDAAAAAIAhjQrtAAAAAAAAAAAAAAAAAAAAAHCEfvuvjWqLJrvdZxhSXsCr1khCE0bl6Le3nqf5E0dJkv7PJfP1ixfWZ5PXY8m07n72bW2sbj6gnznjijSuOEfXnjZNl5wwST4Pt4MDAAAAAIChj3/BAAAAAAAAAAAAAAAAAAAAAIAj9KdV2w/Ydvqssbr21Om64sTJKgj5lM7YslxmlzbjR+Xq2lOn6Xcvbcpu++/n1ir1vursv7r5bH38zJkDM3kAAAAAAIABREI7AAAAAAAAAAAAAAAAAAAAAByB6qawVm6p67LtyS/+my5aNLHLtvcns+/zxUsX6sGXN8lxOj+3x7pWeneZhi5cOKHf5gsAAAAAAHA0df8vIgAAAAAAAAAAAAAAAAAAAAAwTKXSGb26qUbN4fhRGe+p91Vnzw969aF543p9/IyyAl2+ZPJB958+q0xFOf7Dnh8AAAAAAMBgokI7AAAAAAAAAAAAAAAAAAAAgGNGLJnWyXc8rnWVTfJYpu69epbmzev/cf66Zpde21yrCxdO0JMrtnXZd9HCCXJbrj719+XLFumPr2/rdt9liycd9jwBAAAAAAAGGwntAAAAAAAAAAAAAAAAAAAAAI4Zv/jHeq2rbJIkJdO2vv3sNj21KazKhrC+cMkCXX3qtCMe44nXt+qqnzwvSfr2H1YdsP/SxQevtn4w8yeO0vnzx+u51bsO2HcJCe0AAAAAAGAYMwd7AgAAAAAAAAAAAAAAAAAAAADQX77x+xVdPu9sjunPb+zU27sa9cn7XtDu5vAR9e84jr7VTRL7PgGvpXOPrzisvr982aIDti2ZWqKywtBh9QcAAAAAADAUkNAOAAAAAAAAAAAAAAAAAAAA4JhQ1xpVWzR50P2JVEZ/XVN5RGO8taMhWwG+Ox+aN14Br/uw+j5lRqlOnzW2y7YrTpxyWH0BAAAAAICeOY6j5lhUkVRC7Ym4Xtu9Q2vr9yhj24M9tWOKNdgTAAAAAAAAAAAAAAAAAAAAAID+8Oc3dvTYZltt2xGN8ZsXNx5y/2VLJh1R//d9+gP6wP99QvVtMZ0wpUSf+eCcI+oPAAAAAIChZntrkzY01SpguWWZLsUzKcXTacXTqc5XJq1YOqXE3m2xvds696cVz+zdlk4rkU4paWc0Ob9Y506YrrGhPHlcLknSmvrdWlVTKZdhqjSU2/kK5irf69e21ib9Y9e7en3PTtVHwwfM8ZqZC/SbCz56tC/NMYuEdgAAAAAAAAAAAAAAAAAAAADHhCdXbuuxTVVjx2H3H0+m9eirmw+63+0ydcGCCYfdvyRNH1ugXfd9QrsaOzS5JE+GYRxRfwAAAAAwlNWE27W6vloht1dLSserKR7R7o62LgnOyUxGLYmo3q7fo0Q6pUWl43TtzIUKebyDPf0B4TiOWhMx1YTb1RSPKOT2ynYcVba3yO92a/GY8VpVW6k3a6skSV7Lkt9yy+ey5LPcSu5NBq/ILdCsojEyDUOr66r1cvU2ZWxbM4pKNL1glOxkTI7j9Mt8d7Q1653GGm1taVAik1bGtpVxHGUcWxnblu04sh1HLtPUqppKvVzd8/+/99UbtVVauml1v/X36Ma39MMzL9boQE6/9TmSkdAOAAAAAAAAAAAAAAAAAAAAYNj7+9pKvbCuusd2Ww6zQrttO7rlly+pNZI4aJuTZ5QqL3DkCRVuy6UpY/KPuB8AAAAAOFocx9GutmZtaKnXttZGNUTD2Vc0ndqb4Gwrvd/PcCqhbS1NctS3pOrfrl+lO195RmdUTNHJZRN10tgJchxH1R2tqupoVXVHm3aHW5W2beV4vDqtfLI+OmuhfJa7V/2nMhmtrNmlHI9Pc0aVDtiDxhLptB7b9JaW796hlnhMjbGw9oTbVRNpUzydHpAx36/wrb9qZlGJZhaN0cS8QhX5gyr0BTQ6ENKCkgp5rQPTkB3HUUMsrJcqt+pPW9bplertqose/sPjhqoiX0BBt2ewp3HMIKEdAAAAAAAAAAAAAAAAAAAAwLCxuzmsB1/apJK8gK47c4ZcpqmXN+zW5T98VumM3ePxW2tau3x29qsSdzCO4+j2B17Wb/618ZB9X3vqtF6dAwAAAAD0h+qOVm1sqlNzLKJEJi2Xaao9EVdTLKKGWERNsYgaYxE1xsJqikVkO478lkcBt1t+y62A5ZHPcivg7vreNAzt7mhTfbRD0VRK0XRSsXRK+V6/KnLyZRiGEpm0Epm0kum0oumUtjTVK/JS6qide1sirqe3vqOnt77TY9tHN76l+9Ys01dP+qAk6YVdm7Un3NZZNVxOtnq4ZZpymy69UVupPeF2SdLcUWN128LTde3MhYf8/8be2hNu0+83rdGmplo9v2OTaiLtR9znkWiOR/Xq7h16dfeOA/YV+QK6bNrxmpBboKqOVu1qb9Gu9mbtamtRNJ0chNkeHZZpalFJhb512r8p6D7yh9ahEwntAAAAAAAAAAAAAAAAAAAAAIaFSDyls7/+pLburbK+cmudPvGBmbr4+39RLNm76nUtkYSaw3EVhnxasaVW1939d22ra9Nnzpujuz95+gGV9xzH0ZceWq57/7quy3aPZWpmWaHe3tUoSSorDOqKE6f0w1kCAAAAOBqSmbRsx5HPcstxHKXsjDK2I1t258+921riMUVSCRX4AioJ5MjvdmePT9kZSZKzt8D4/pXGQ25vnyp7r2vYo2e2bVBzPCq3acrtcsllmIqlU4qkkoqlkorufR9NJ1Xd0aqtLY39d0F6aU397qM+Zn9Y11Cjq57+TZ+PW9uwR596/jHd8+bLuuOkc3XehBkKHKRqt+M4WlO/W6tqK7W9tUnxdNcE/93hNv1t56ajVn39SDXFo/rl2tcGdIxCX0COHPktt3yWWz6XWz7Lkt9yy+uy3ttuWQfs97ks+dyd2yKppF6p3qZ1DTVKZFKdD1xIZ1TsD+qU8okq9AVVH+1QbaRde8Ltqo20K2B59IFxU/TBiTO1cEy5PC5LqUxGE/OKuq1MjyPDFQUAAAAAAAAAAAAAAAAAAAAwLDy1ans2mV2SfvGP9Vr66haF412TBD5y8lR9YHa5brr/n932s6WmVS7T0Pnfflrtsc6qcvf9bZ0uO3Gyzppd3qXtNx9fqZ/8eXWXbZbL1NL/OF9nzynX//ztHe1uDuuTZx+n/CCV2wAAAHBotZF2Vba3qD4alsflUtDyKOTxKuj2Kuj2KOTxKOj2yDRMRVNJLd+9QzvamhVLp+TIkWWYcpmmLNOUZZiyTJcs01ShP6BFJeNU6A8M9ikOqlQmo4ZYWB3JhNJ7k80NGerMKzfUnohrXeMe/eHdt/Vy1TZlHFtu06W0bXdJRj8Y0zA0tWCUbMfR1pbGQx6T6/FpwZhyLSypUNDt0bqGGtVG2pXMZJSy93tlMupIJtQcj/bTVRj+PC6XQm6vvC5LXsvKJjGXhnJVHwnrzbqqoz6ntxv26CNP/1Z+y61zxk/TxVNm67yJM7SxqU7bW5vkcbn023dW6pXq7f06bq7Hp2g6KdtxNMofUlM8orRtS5LmjCrVhNxCJTIZJTIpxdNpxdIpuU2XXKahTU31ak/GJUkuw9SJY8drdCBHO9uatam5TrH3JdwfqSJfQLOKxyjf65fLNOUyTLkMI/veMKTmWFRpx9ZpZZN047xTlOv19dv4ty86o9/6Qv8joR0AAAAAAAAAAAAAAAAAAADAsPDEim0HbNuXkL7PxYsm6je3nCPLZaojltBfXt+ol7a0dGnz5Irt+vWL6w849m9rKnXW7HKt3dWoZ97cqf/52zrtbo50aWMahh667TxdtGiiJOk/LprfH6cGAACAAdYSj2pruEXuxlq5LUsuozMp3OuyVBrKkWmYkjoTzl/fs1OGDM0rKVOxP7g3KdOUyzSUyth6fsdGvbp7hySpyB9QoS+okmCO5owq1dhgnloTsc5XPKaWRFTVHa16u36P/lm5RVtaGno1X7/lVjyd7lWS9f68Lku24+i44jEaHcjRnnCbqjpaZDtO9pVx7Oz7kNurRWMq5Lfcqo10aHxegT4xe4nOnTAte02OFsdxuq1obju2trY0qaqjRbs7WrUn3K7qcKv2dLQpkkpmE8Nb4zFtb2vKJvv21r4q671hO47eba7vVdv2ZFz/qtyqf1Vu7dN8hrt8r1+zikpUlpOvUYGQRgdCCrq9nQ9h2JvYvO+nyzRUEsjRKWWTFE4ltLWlUaODIY3PLTjk719Ve4tert6m5bt3avnuHdrQVCufZakslK+KnHyV733ZjqNHNryh6nDbQfvqq1g6pT9vW68/b1vfb30uKR2vs8ZP1Sh/SGNDeSoN5ao0lKsxgVx5LUuO48iRI9MwFUkltKW5QUX+oCpyCw7Zr+M4akvE5chR0O2Rx/VeSnEqndJzry+XUVKod1satKm5TjXhdrXEY9oTblNNpL3HebtNl06vmKzLp83VB8ZN1aS8om6/w4BEQjsAAAAAAAAAAAAAAAAAAACAYSCaSOmvayoP2ea848fp0c99SG7LJUm67YLjdfpYR1/76+4ux/746be6PX7Zpj3aWN2sU+/8g6KJ9AH7DUP69WfP1pUnTTmCMwEAAMDhaoyG9Zt3Vmptwx5lbFtul0t+q7OiecDtVsDyyDCkjmRChgz5Lbcq25v1Zl211jXUdCaHv/HcAf2O8oc0d/RYtSVierO2us9J5APhcCsnJzKd69g19bt71b49GdeLlVuyn9+sq9ITm9fKMk2Nyy1QRU6+KnIKsgnCFbn52W09VVbe1tqoZ7ZtUEM0LEkqDgSVymS0bPd2bWlpUDyVUjyTzlaVNg1DJ5dN0K0LTtcHKqZoe6RVz77+d/1u/Ruq7Gg55FgjWZ7Xp7GhPPkttzK2rZDHqyJ/UMX+oIr9oez7In9Qlmkqmkoqnk4pmk4plk51+bzvfdLOaEwwV2NDecrxeBWw3PK4LDXEwtrT0SbX3odBeC1LXpclt2EqUtugixafrHF5hYeV1Oy1LBX5g71qW5FboI/OWqSPzlokSUrbmb0VwA8c944Tz9WPV72ox99do60tjco4thaWVOgD46Yoz+uXaRgyDEOmYSiSTGhra6NyPT5dOOU4JdJpfW3Zc9rQVNvn8zkUyzR14eTjNH90uc6omKwTx0445DUzDEOGOvcH3V7NKynv1TiGYSjf5+92n2mYKvOHNG/SLF3kch2w//U9O/WzN1/SxqY6jQ6END63UONzCzQ+r7DzfV6BykJ5sswDjwW6Q0I7AAAAAAAAAAAAAAAAAAAAgCHvb29XKpY8MMl8n9NnjdUf/s/58roPvJl+ypg8/bUXY7y5rV7fe+KNbpPZJeneG87Ux06f0dspAwAAHBP2VceOp1PyWW75LEt+yy2/5VbKzqg20qHlu3dodX21YqmUmuIRrW+oVVM8InNvkqhpGHIZpgKWR4tLx2lifpEaomG9VVetLS0NyvF4NSW/WIX+oEJuj4Ier0Jub/a933JrR1uTHlr/hprj0X4/x4ZYWC/s2tzv/Q5nadvW9tYmbW9tOmibXI9Pk/OLdWr5JJWGctUUi6g+2qG6SFh7wm16p7GmT2NmHOmlqm16qWrbkU6/37kMUxmnb5XfD0dZKE8njZ0gt8ulZCajjGPLb7kVcO99cMPeBzj43W7luL2aO3qs5o0uO2Q186Mhk8loTWqNynPyB6VC96GSqv1ut7568gf11ZM/qGQmLcfpTJ7vrfMnzdSD69/QYxvf0ivV23v1e+CzLJ0/cVa3CfpjQ7n6yIwFmlJQ3Os5DIYTx07QiWMnDPY0cAwhoR0AAAAAAAAAAAAAAAAAAADAkPenldsPum/J1BI99aULFfC6u90/uSSvV2OkMrYeWdZ9ItNdHz9VN5wzu1f9AAAADAUZ21ZTPKL2RELxdErb2zqTk/dVH2+ORdUYi6gpFlFjLJxNFA+6PTpr3DR9cOIM/W3nJj228S3tau+v6tiRbittx9Ip1e+t4j0SeFwulQRylLZtRVJJhVMJ2U73VeFdhqm5o8Yq39dZSTpj28o4ttL2e6+knda21kbF0wd/ANRAaE/Gtbq+Wqvrq4/quEfCMk1NyivSccWlumTqbM0dNVbxdDpbbdxlmHsfwGDINEy5TEN5Hr98lqW2RFzvNNborbpqWaapBSXlGhPMlSTty+HeV0c7aWe0vrFWb9RW6o3aKrXGY5ozqlTzS8rlt9xymy55XC65TZesve+L/AEdP6pMLnNwk9OPZR5X31NqLdOl/zVnif7XnCVqikX03PaNenrrO/rbzk2KpVOSOh/uEEunlLIzumTKHP383Cs0OpDT39MHhjUS2gEAAAAAAAAAAAAAAAAAAAAMacl0Rn95c2eXbeOKczQ6z68Tp47R1z+yRDl+z0GPnzKm+4T2E6aUKJpIaX1V80GPnVVeqK9csUgfOWXaYc0dAAAMP7ZjK5HOKJZOKZ5JKZ5OK5FJyZCh0YEc5ft8/VYN2XEcVXe0qjkezSa2WqYpt2nKvTfZNftymXIZZrb6cWs8pqWbVuuPm9eoqqNVqUxGKTujZKbzFU0nD5ok3ZM3aqv0w5Uv9Ms5DkeGDHkt10ETxA0ZWlI6ThPyCtWWjKspFtHWlsYDqscHLI/yfT4V+YOaUVii40eN1Vnjp2l+SdeK2o7jKJFJK5xMKJxKKro3yT1t2zqueIzyvP4e55zMpLWpqV5JO63K9hY9sXmttrY06qSyCTpvwgwV7E2I35ewbRqGbMfRhqZaLaveIclR2rb1+p6d2tzScETXb6AU+PwqC+WrLCdPZaHOV57PL49pyeNyyWdZmphXpMn5xcrz+rokLzv7fRcOt4J4vs+vU8sn6dTySb1qPzm/WBdP4aFYx5Iif1AfO26RPnbcIsVSKW1rbVS+z6/ynHzF053/vcj39fx9BUYiEtoBAAAAAAAAAAAAAAAAAAAADGn/Wr9brZFEl20vf+sKlReFenX81NL8A7bNm1CsZ++4SN/6w6qDJrTPm1CsN354dZ/nCwAAjo5IKqEVe3apJtKulnhMkpRxbEWSncnAncnBCdVHw3qnoUYuw9DsUWM1NpSr6o42NUTDCqcSSqTT2cT1eCalZCbT49h+y62Q26uA26Og2y0l0xq9baXGhvJ0SvlEzR9drtGBkBKZjGoj7dra0qAtLQ3a0tKora0Nqmpvlds0lbJttSfjvT5nQ4bKQrkKuD3a1tqkjGMf9vUbzhaUlOvs8dPkOI6i6ZRiqaSi6ZSiqaTSjq0ct1eSFE4lNcof1MziMTqhpEJWbZNOWLBQhmkoY3cmcFd2tOj5HRtV2d6i8px8zS4u1Wnlk+R1WaqJtCuRSStjO8o4tmzHVsZ2VBrKVZE/2GVOjuOoqqNV0VRSBb6A8r1+ea3epe8ZhiGf5ZbPcqv4MK+Jx2Vp7uixkqRFY8bp8mnH9+q4+SXl+uisRdnPjuNoT7hdVR0tqu5oVWV7i6o72lTd0ZrdVh8N93pehb6ATt17PSvbW9SaiGlOcanOnzRLxYGgfC63/JZblmlqRc0u3f/2cm1sqsseX5GTrwsmzdLHZy/WgpLyw05GP9zjgIPxu92aPao0+3nfdxhA90hoBwAAAAAAAAAAAAAAAAAAADCk/WnFti6fF08t6XUyuyRNHJ2jJVNLtGJLZ2LMzLICPXfnJSoI+XTqjFLd/ezb3R53yeLeVV4EAAADI5ZKqT0ZVzTdWbE6mkopkkqqJtKmVTVVemjDKrUlep8MLknV4bb+mVs6pVg6JcXe27aho0mS9MjGN/tljO44cvrtHPrKkCFH3Vd8Lwnk6PSKySrPyZffcmta4ShNzCuSJNlOZzJ4MpPRyppd+t36VaoJt+uUsok6b+IMzSoao3g6pV3tLdmHEISTCUVS+x5MkFQsnZTHZWmUP6grp8/ThZOP63OCciaT0Zr6VkmSaZgyXZLb5dL0wtGaXji622PGhvJ6f30MQ+NyC/o0p6HIMIzOCug5Bz/3eDql6o427Wpv1vLdO7R89w7ZjqPRgZBKgrkqCYRUEsxRRW6BTh47sdeJ/QvHVOjm+aeqPRFXVXuztr+7ReefeIqsXh4PABi6+EsOAAAAAAAAAAAAAAAAAAAAYMjK2LaeWrWjy7bLFk/uUx+GYejZr1yse59fJ7dl6sZzZyvH75EknTJj7EGP6+s4AAZWPJ3SmvrdqmpvUUsipgKvXwvGVCjf61fatrMJr5H9kl6jqYSi6c73LsPUuNwCNcbCem3PTnUk4ko7ttK2rYxtK+3YcpsujQ6EdFxxqa6ZueCA6rvAsc527Oz3J5xKZL9T+5KLo+l9nzu/byk7I5dhyGWachmmzP3e79veFItoR1uT1jXUqKq9RUG3V3k+n/K9fuV5/cr3+pXr7fyc4/GqOR7V63t26t3m+j5VgUbPRvlDml44Wj7Lku04KvQFVBwIqdgfVJE/qCJfQCnb1j92vavfb1qjjGOrJJCjj8ycr2tnLtS80WVK2RnF0+lsQr9pGCryBxSwPL1KMD97/DT954nnynEcKmYPYz7LrSkFxZpSUKyzx0/r9/5zvT7NKCxR3F/D7wkAHCNIaAcAAAAAAAAAAAAAAAAAAAAwZL22uVZ1bdEu2y49jMrpeQGv/vPyRQdsL8kP6MoTp+gPr2/tsn1GWYGOqyjs8zjASJC2M0qkU4pl0mpPxCXTkO048rhc8rncskyz18lnjuOosqNFy6q365+VW1TV3iq3yyXHcRRLpxRNpRRNJxVLpVQbbVcykxngs3vPHS//RYvGVGhsKE9TC0ap2B9UfTSsuki7aqMdqot0qD0Z19hgniblF2nhmApNLxwtyzDlMk0ZMtSejKs9EVdrIqa2REyRVFLjcwt04eTZKvQHBmTeTbGIHli3QitqdqmyvUWxdEoht1dpO6OOZELpZEr56/8lv+WWz7Lks9zyudzyW5Ym5hfphDHjNSm/SPlev6LppNoTcTXHo2qJR7M/07ataQWjNDaUp9ZEXMt3b9eu9hZNyCvUZVPnalxugWzH2e9lK8fjU67XK9MwB+S80TvtibjuW7NML1VtU0cyrnBy30MgOhPYY+nUgM+hKR6VOgZ8mGHnUNXPD8XjcumCSbN00eTZKg4E5TZd8rhc8piWfJalUYGQCn0BeV1Wr/82f+y4RfrhmRerNtyhWcUlskzXfuNZ8rgs5Xp9fZ7r/khSBgBgZCGhHQAAAAAAAAAAAAAAAAAAAMCQ9aeV27t8nl1RqKml+f06xu9uO1cnzyjVQy9t0ls7GjQq16+ff+oMEq0wLERSCT215R39q3KLbDkqz8lXjscnv+VWwHLLb7nld3vkt9wKuj0al1ugsaFcNcYiMmRoVCB00L5jqZRaEp0PlKjuaNWLu7bo4Q1vaHNLw3uNXvn9AceZhqEiX1BLxo7XwpIKjQ6GZMhQMpNWIpNRKtNZ2fedxlqtrNmlmkh7v1+X/pDIpPXq7h09ttva0qiXq7fpN++s7HXfbvMPOr1isk4rn6RTyiZp3ugyWaapcCqhpljX5PFUJiO3y6U3aqu0rHq7JuYV6vSKKQq43apsb1FLPKbWeFQtiZiaYhG901jTY+J/ZWzgrvmPVr540H2WaeqEMeN0waRZ+vfjTlBpKHfA5tFbjuOoLtqh9kRC43ML5LUOTLWxHVv10bDaEwkZhlQWylPA7Tnqc83YttK2rZSdyb7i6XT2oQkdyYTGhnJV6Avol2tf1+r6ajlO53fSZRhKZNJavnunounkUZ/7QJteOFolgRyZpiGXYSrk9irk8Sjo9irk9ijH41NxIKgtLQ16ass6ZWxb502coRPHTlCux9f5YAfL6nzQg8uSd98DH1zv/fRaLqUytuqjHerYW7E+nOr82RGPadP2bcorGaU1DXv0+p5d2h1uVdq2JUlel6XJ+Z3VrKcWjNKU/GJNyi+WYUhp29bUglGqyMmXI0fp/eOcyShl20rbnT9TdkaxVFKbWxpUG+nQ1IJROr1ikoJub79f09GBHI0O5PR7vwAAYGQioR0AAAAAAAAAAAAAAAAAAAAYwhKJhH7xi1/o2WefVVVVldxut2bPnq0bbrhBp5122mBPb8DtqOuadHnpksn9PobHcum2C47XbRccr3A8Kcs05fNwqzUGVyqTUTSdVEs8ptpIu+oiHaqJtKs20q5tLY1aVVulyvYWZRy7z32bRmdFdUkal1Og2aNKlePxdiZ+ejxymy69Xb9b/6zcelj9246jhlhYf9m2Xn/Ztr7Px48EKTujF3Zt1gu7Nvf52Hcaa/TnYXpd07at1/bs1Gt7duo7r/9NV0w7XjMLS5RxHEXT71UKj6aSKgnm6uqZ87WgpEJSZ+X5ukiHCnwB5XoPTN7trEp94N/uPeE2raqpzD4goDURU2s8puZ4VNtbm7SlpUHtybgkyWWYmlY4SrOLS2VI2h1uU3VHm/aE25SyM13GumzqHH1izhKdUjZRPss9YNfr8XfX6Olt6/XPyi1qjkcHZJzhZN/DOfJ9fk3OL9a80WX6+OzFmpxf3Os+fnTmJYc9vtcyVZFbcMD2TCajNXFD8+bNk8vVWc08Y9tqS8QVcLt7XR3dkCGPy5THdeh280rKD2v+AAAAg4V/ZQEAAAAAAAAAAAAAAAAAAACGKMdx9JnPfEavvvqqJMntdisSiWjFihVauXKlfvzjH+vCCy8c5FkOrJOnj9FTqzqrtOcFPLr+rFkDOl7Id/Qr7uLY1xSL6P63l+vPW9erLRnrTLw1XXK7XHKbLqXsjJrjUQUsjwp8fu1sa1ZVR+uAzWdfMrskVXa0qLKjZcDG6m+GDE0uKFKRL6htrY1qjEUOaLMv4TXo9ijg9ihgdb5vSUS1obFObpepMyumas6oUnldlizTlGWYMk1T8XRKaxv26JltG7okMKP/xdNpPbzhzUO2+dmbL2mUPyTLNFUTOXRVedMwtKR0vGYUjlZbMq5wMqnmeERv1lbLkXPIY/fJOLY2NtVpY1PdIdul7Ix+/+4a/f7dNfJbbn1o4kx9ePo8lefkyzJNuU2X3C5T4WRSq2orZTuOTimbqPm9TELO2Lb+sWuzPv/m89oSae3VMQPFkLG30nnn9ynk9mbfB90eeUyXMo6jjGN3VpDf+zPjOLIdWxnbUcjjVUVuvqYXjtb0wtFKZWy1JWJqTcQ6f8b3/kzE1ZaIyZG0sKRcJ46doMn5xRoVCCngdstvuWUa5qBej75wmaYK/YHBngYAAMCQQEI7AAAAAAAAAAAAAAAAAAAAMET95S9/ySazX3/99frc5z6nlpYWffzjH9eOHTv0rW99S+ecc458Pt8gz3TgfO7C+SrO9Wt9VbOuOXWaxhXnDPaUjmmO43RbQTZj20pmMkpk0kraaSXSaYU8XhX4+p6o156Ia0XNLrXurTRsGIYMGXIcW/XNNZqSnKm8o5AAGE0l9Y9dm/XXHZu0o61JPpclr9V5i/1++d7yW26dWj5Jl02dq0J/QI7j6NXdO/Trda/rzdpqpZ3uk55dhqlxuQVKZTJ6vWan4un0gJ/TcFboC+jU8kk6Ycw4WWZnwmrQ7VXA7VbA6kyezfV4NWfUWOV6O//mOXsrwWdsRy7TUNDt6THhNW1n5DLMHisl10ba9XLVNtVGOlTV0aJNTfWKpBIaHchRSTBHY4I5KgnkKMfjVWVHq9Y17NGq2ko1x6J7E3sdOXKU4/Eq1+NTntevXK9PyUxaK2sqlcgM7O+DZZq6fOpcnTFuivK9foWTCbldLvldbm3bvl2lFeVK2BnF0ynF0iklMmm1xGNaXVet9U01aonHuvRV6AuowBdQgdevAn9AadvWxsZatScTCrjdGp9bqJDHq/WNNaqNdPTruTTEwr1qZztOtvr70RRLp/TklrV6csvaHtueVj5J1885URdPma2QxyvHcVQX7dCuthbtam/WjrYmra7brVd3b1d9tHfnfbjOqJisy6bOVZE/2CVR/b3EdY+Cbq98Vu8qiwMAAACHQkI7AAAAAAAAAAAAAAAAAAAAMEQ99dRTkiTTNPWZz3xGHo9HJSUluuaaa/Td735Xra2teumll/TBD35wkGc6cEzT0MfPnDnY0xgSHMfRi5Vb9Gr1dnWkEoqlU4qlUoqmk4qlUyoJ5Oi44lKV5+TJ47K0J9ymjmRCjuPIdjqTa23HkeNItmPv3Sblen0KJxP6645NWlO/W16XpYDb/V4CeyajjGN3O6fyUJ6K/EFlHEdp21bGsZW27b1VeW1NKRylG48/WZdOnaPX9+zS1199Tsuqdxy0P0m6c+OrunDycTqtfLJOHDtesXRKP1jxglbVVCptZ2Sr8xz2VVwuDeapJBjSrvYWhZMJBd1e5Xg6XxnHVjydVnxvwm48nVau16ccj1fvNtcrkkr26to/svFN3fqPP2pSfpHaErFeJ5q+21zfq3ZHypCh08onaUpBsVrisc7fif1+N6KplOLplFoTMcXSqcMawzJNTcgr1BkVU3TltONVHsrTuxs3ac5xx8ltuWUahpJ2Onu91zfWavmeHaruaFVjNCLTMOR1WXK7XPK6LHlcLo0O5GhJ6XgtLh2vqQXFfU6aNQxDowN9e8iFZbp61W5MMFdXzZjfp757qy0R04u7tmjZ7u16tXqH3m7YLdvpWkE85PbuTSL3yzJdaoxFVOwPqsDnV22kQ9tbmzQqENK80WUaFQipwOdXvtevfJ9fRb6gThw7QaWh3APGzmQyWhNOa97MeXK5Dn4tYqmUIqmEAnsfEtDb2DiOo8ZYRFJnxXRDhsy9x3Yk41rfVKsn3n1bD298U2n74H8HjlWvVG/XK9XbZchQaShHzfFovzzswpChXK9XlmGqae/DQjwuly6bOldzR42V1BkbW45chqmTyybqpLETSFQHAADAUUNCOwAAAAAAAAAAAAAAAAAAADBErVu3TpJUWlqq3Nz3EhNnzJiRff/2228f0wnt3elIxhWwPHKZB6/C/H6V7S1auvEtVXa07pfY3fnK8fr0b5OO0xkVkwc0uc92bBky+jRGJJXQc9s36q26aj27fYM2NtUN2Pz2SdkZhVOJXrWtDrepOtx2yP3/qtzap/EjqaSWblqtpZtW96p9WyKuTc3vXZd9ybQHUxc9vOrRGcfWlpaGwzr2SHldlsYEczUmmKMxwVyVhnI1Z1Spjh9VppDHq9JgrvJ9/h77cRxH1R2tqo+GNSoQUlsippU1lWqMhRVOJhVOJRRNJRVOJuS1LJ0zfrrOqJgir8ul/L2J1ftkMhl1+EOqyC3oNjH6+NFlunbWwn69DseKPK9fl02bq8umzZUkhZMJNcYicuQoYHlU4PPL4xrcdA+/2y2/293n4wzD0KhAqNt9+T6/KnIL9KGJM/WfJ52rB99Zpe1tTWqJx2SZpgKWe291cK86knH9dcemw/6+vl/A8mhG0ehslfn8vQ8LKAvlaWrBKE0tHKV8r18bm+q0rqFG7zbXyzJNlefkqzwnT2WhfJXl5KnYH1RLPKZHNr6pxzet0Vt11dmHa/SFI0d7wu29bj+7uFSfnX+qlowdL6/LLbfLlGW45HaZ8ros5Xi8Mo3O/yZWd7Tq3eZ6zRlV2ucHPgAAAAADhYR2AAAAAAAAAAAAAAAAAAAAYAgKh8NqbW2VJBUWFnbZV1RUlH1fXV3d7fGZTEaZTGbA5ne0tCfiuv2fT+q1PTvlcbnUGo+pIRaR33LrrHFTNT63QMlMRvFMZ1XoeDqtkMejipwClYfyVFuzR/fWvaul765Ryj749bj7zZc1yh/U6ECOZhWV6LaFp2thSUWv5hhJJfXc9g1ymabOGjdVeV6/0nZGDbGI6iId2tbaqKWb1ugfu95VaShX1x13gpaUjteecJs2NNapIRZWxrGVymSUdmylMrYcOUrZGa2sqVRrItZflxODyDJNXT51rs4eN01+y1LKtpW0M0plMnKZhgp8AXUkEqqPdmhMsDNhvdAXUNDtUb7X3+ODEHr7fR8bzNXYYOcDMsqCuZpVWNK7E3C6jrHv/bHwd2aw+V2WKkJ5XbYN1HUdKnEbF8rXV04895Bt4umUVtVWqjURl8swNCGvUJPzitWWjCuaSmr/b0TKzuj1ml364+a1aoxFNLt4jCblFSnjOJpWMEofmjhDAbenx3mdUFKhE3r421/sC+i2+afptvmnqTke1ePvrtGjG9/SlpYGpeyM0ratlG0r43RWoB8dCKkxFpHt9D3xfWqoQDcvOl2fnHtilwdKvJ9jO8qoM6algRyV7k1kH+w4jyRD5buFQyNOwwvxGl6I1/BDzIaXI43XUIiz4TiHsSIGAAAAAAAAAAAAAAAAAAAAMKDq6up0+umnS5IWLVqkhx9+OLuvqqpK55xzjiTp1FNP1a9+9avsvmg0qo0bNx7dyQ6guzav0h/3bDnq4xqSPlgyQddUzNSkYJ7M/SqrV0bb9WDlBr3b0SzTMLQj0qbU3sRFQ1LIciucTh1Gzd6Rw22YKvOHZMiQs7e+ccq2VRMPH9XrZsrQvPxRmpc3WpZpKm3b2X2GYch2HG2LtOr1pj1KOnaXY8f5c/ShMRM1IZCn7lLNo5m0tkValcikNSu3WCcXjVWe2zvAZwRgqHAcR7YcuQxTKTujfzZU6bnaHVrVUiv7fX/p3IapMb6gxviCqvDnaEZOoebljVY5FdYBAADQj2bOnKlAIDAoY1OhHQAAAAAAAAAAAAAAAAAAABhmbNvusc20adMG7Sbl/pSuXjso4zqSnq/bqefrdma3WabZOadDXH9HUkc6NaBzm5RXpJPGTlDI41XAcstnueU2XdrR1qTNLQ1qikUUS6c0JpirIn9ApmHINAwZet/PvVnYDdGwGmMRTS0YpcumztG4nAIlMml5XJY8Lpc8piWv1fnT43J1bjdd2hNp04bGWiXtjFyGKcs05TJMuUxTLsPQzrZm/Wb9Sr3TWJude8jt0VdOPFefmnuSgu+rlpzJZPTSmyu12Z3R67WVWlGzS7vaW7LH3TTvFJ1ZMUVelyVDnQnnqUxGu9pb1BSPqDyUp+JASOFkQuFUQuFkUpZpymdZ8ro6Xx6Xpcr2Fm1vbdLYUK4unTpHY99XGbs7kVRSb9RWam3DHvkst84on6ypBaN6rJp+LMtkMlq3bp3mzJkjl+vglaMxtBC3wXOCFuqLksLJhLa2Nqq6o1XF/qDG5RZoTDBHpmF2aU+shhfiNTwQp+GFeA0vxGv4IWbDy5HGKxqNavPmzQMws94joR0AAAAAAAAAAAAAAAAAAAAYgkKhUPZ9IpHosm//z8FgsNvjXS7XMXFT+udPOEv/2LVZkVTyiPvyuFw6d/x0VeQWZJO8I8mE/rFrs6o6Wns8/lCJ7APtA+OmanHpOJ1ePllnjZ96QOLjYCgKhjRndNkh29yy8HRtb2vSjtYmSdIJpeOU5/UftH2hx6+b5s3TZ/f+7tZG2rW9tUmzi0uV6/X13+T7KNfl11kTpuusCdMHbQ5D1bHyt2akIW6DJ88f0EL/OC0sHder9sRqeCFewwNxGl6I1/BCvIYfYja8HG68hkKMSWgHAAAAAAAAAAAAAAAAAAAAhqBgMKiioiI1NTWpubm5y77Gxsbs+wkTJhzlmR1dS8aOV+VNX9fyPTvUkUjIa1kaHQjpnYYaraqtlO048ros+fdWKve6LDXHo6psb9Gu9mbVt7dpzphynV4xWVfPXKDynPwDxkhlMnq5epsq21u0uq5aD294U+FU4sDJHAbTMFQSyNHk/GKV5+Rpe1uT1jbskSlTY0I5mllYoon5RfK6LFmmKbfpkmWaMmQonEoo1+PTRVNma2ZRSb/M52gzDEOT84s1Ob/4sI4fE8zVmGBuP88KAAAAAAAcTSS0AwAAAAAAAAAAAAAAAAAAAEPUggUL9Pe//101NTVqa2tTXl6eJGnDhg3ZNgsXLhys6R01IY9X502Y0WXb4tLxun7uiYc8LpPJaM2aNZo3b94hq5G5XS6dPX6aJOl/zVmiO08+T/etflX/b82raopHuz0mYHl0avkklQZzlHEcXTtroRaUlGtlTaVchqGSYI5Kgjkq8gXlMrtWU7cde0hUWAcAAAAAADgaSGgHAAAAAAAAAAAAAAAAAAAAhqgrr7xSf//732Xbtu677z79x3/8hxobG/Xoo49KksrKynTKKacM8iyPPaMDOfq/p3xId550nio7WpRIp5VxbKXtzpckzSwqUcDtOeDYD06cccC29yOZHQAAAAAAjCQktAMAAAAAAAAAAAAAAAAAAABD1Jlnnqnzzz9fzz33nB544AE99NBDSqVSkiS3261vf/vbsixuCR4oLtPUxLyiwZ4GAAAAAADAsMa/XgEAAAAAAAAAAAAAAAAAAABD2I9+9CPNmjVLTz31lCorK5Wbm6v58+fr5ptv1rx58wZ7egAAAAAAAMAhkdAOAAAAAAAAAAAAAAAAAAAADGFut1uf/vSn9elPf3qwpwIAAAAAAAD0mTnYEwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHJtIaAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAgS2gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4KEdgAAAAAAAAAAAAAAAAAAAAAAAAAAAADAgCChHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIEhoBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCBLaAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgoR2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCAIKEdAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAgSGgHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIEtoBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOChHYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIAgoR0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCBIaAcAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAgS2gEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA4KEdgAAAAAAAAAAAAAAAAAAAAAAAAAAAADAgCChHQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIEhoBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCBLaAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAADgoR2AAAAAAAAAAAAAAAAAAAAAAAAAAAAAMCAIKEdAAAAAAAAAAAAAAAAAAAAAAAAAAAAADAgrMGeAAAAAAAAAAAAAAAAAAAAAID+Y9u2JCkWiw3yTAZfJpORJEWjUblcrkGeDXpCvIYX4jU8Ebfhg1gNL8RreCBOwwvxGl6I1/BDzIaXI43Xvn8j2vdvRoPBcBzHGbTRAQAAAAAAAAAAAAAAAAAAAPSrpqYm7dy5c7CnAQAAAAAAgCFkwoQJKioqGpSxSWgHAAAAAAAAAAAAAAAAAAAAjiHpdFptbW3yer0yTXOwpwMAAAAAAIBBZNu2EomE8vLyZFnWoMyBhHYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwIDgkYsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAgAFBQjsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYECQ0A4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBAktAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAABoQ12BMAAAAAAAAAAAAAAAAAAAAAcGzZtWuX7rvvPr322mtqamqSx+PRlClTdMkll+jqq6+Wy+XKtt22bZv++7//WytWrFBbW5sKCwt1+umn69Zbb1VJSUmXfsPhsO6//379/e9/1+7duyVJ5eXl+sAHPqAbb7xRubm5Xdpv3rxZv/71r/XWW2+ppqZGXq9XM2bM0OWXX67LLrtMhmH0+pzWrFmj//mf/9Hq1asViURUUlKic889VzfffPMB4zY1Nel3v/udXnzxRVVXV8txHI0bN07nnXeerr/+egUCgb5e0gE1kuP1z3/+UzfddNMh+/r2t7+tD3/4w70eeyCN5FhNnz69x74WL16sBx98sNdjHy0jOW6SVFdXp/vvv1+vvPKKampq5Ha7NX36dF1zzTW6+OKL+3o5B9yxGC/btvXoo4/qrrvuUiQSkSS98MILKi8v77Z9Y2OjvvOd7+jZZ5+VNHS/W9LQidf+amtr9W//9m8Kh8OSpFtuuUW33nprr8+pL98vaXjEa6THaTitDUdyrIbbulAa2fFibTg84yaxNtxnMOM1WGtDw3Ecp89HAQAAAAAAAAAAAAAAAAAAAEA3Nm3apGuvvTZ7U7TX61UymdS+25YvuOAC/fSnP5UkbdmyRddcc406OjokSW63W6lUSpJUWlqqJ554QoWFhZI6b/a+5pprtHnzZkmSZVkyDCPbfsKECfrDH/6gnJwcSdLzzz+vz3/+80qn05Ikn8+neDyenefVV1+tb3zjG706p9dee0033HBDdqz95zlz5kwtXbpUXq9XkrRjxw599KMfVVNTkyTJ4/EolUplz3/WrFl67LHHsu0H20iP11NPPaUvfvGLkqRgMCi3231Af3fccYcuueSSXo09kEZ6rJYsWXLQftrb22XbtpYsWaLf/e53vRr7aBnpcduxY4euueYatbS0HNBWkm666SZ97nOf6+XVHHjHYry2bt2qO++8U6tXr+6y/WBJS3/84x/1gx/8QG1tbdltQzUhcKjE6/0++clPatmyZdnPfUky68v3Sxoe8RrpcRpOa8ORHqvhtC6UiBdrw+EZN9aGgx+vwVwbmn0+AgAAAAAAAAAAAAAAAAAAAAAO4gc/+EH2Zu/vfe97evvtt7V8+XLNnj1bkvTss8/qrbfeyu7v6OiQx+PRo48+qrVr1+qee+6RJNXU1Ojuu+/O9vvggw9mb/a+6qqrtHr1ar311lu66qqrJEk7d+7Uww8/LEmKRCL66le/qnQ6rZycHC1dulRvv/22nn76aeXn50uSHnvsMW3fvr3H83EcR1//+teVSqVUWFioZ599VmvWrNEdd9whSdq4cWOXJIlvfvOb2YSlb3zjG9nznz9/viRpw4YN+tOf/tT3CztARnq89lW0k6Sf/vSnWrFixQGvoZK0NNJj1V1sVqxYoXvuuSebUHL55Zcf3sUdQCM9bt/97nezCUuf+9zntGbNGr344ouaMmWKJOn+++/Xhg0bDuPKDoxjLV51dXW69NJLtXr1ak2bNk0VFRWHbP/LX/5Sd9xxh9rb23X22Wf39rINmqEQr/dbunSpli1bpoKCgj6fT1+/X8MlXiM9TsNpbTjSYzWc1oUS8WJtODzjxtqw02DFa7DXhiS0AwAAAAAAAAAAAAAAAAAAAOgXyWRSdXV1GjdunE455RRdfvnlMgxDhYWFuvTSS7PtVq9erfr6ei1fvlySdMYZZ2jBggUyTVPnnXeeZs6cKUl65plnlMlkJHVWERs3bpzGjx+v22+/XR6PRx6PRx/72Me69Ct13jRfVFSkiRMn6hOf+ITmzZsnSZo+fbouuuiibPtNmzb1eE5r167Vzp07JUkXX3yxJk+eLMuy9O///u/ZxMKnn35akhSPx1VfX6+JEyfqzDPP1NVXXy3TNFVYWKjrr78+2+dQuUF/pMdL6qzeuE8oFOrllTv6iFX3YrGY7rjjDjmOo0WLFnW5FkPBSI9bIpHIntPo0aN14403yrIslZWVZStv2ratJ554oi+XdcAci/GKx+Nyu936whe+oCeffFKlpaWHbN/R0aFp06bpkUceySaiDVVDJV772717t37wgx/Isix99rOf7fM59fXv4nCI10iP03BaG470WEnDZ10oEa+DYW04tOPG2nDw4zXYa0PriHsAAAAAAAAAAAAAAAAAAAAAAEkej0fPPvtst/v2VaaUJNM09c4772Qr582YMaNL2xkzZmjjxo1qb2/Xjh07NGXKFN11113d9tvc3Jx9bxiGJGnRokV6/vnnu22/r7qa1HkTfU/Wrl3bZV77n8O0adO0cuVKbdmyRZFIRMFgUM8880y3/USj0ez7kpKSHsc9GohXsEviUk5OTo/9DxZiFey2j7vuuktVVVVyuVz62te+1uOYR9tIj1s4HFY6nZYklZaWZucjKZvYIylb1XKwHYvxKiws1DPPPKOxY8f22FbqTES79dZbZVmWqqure3XMYBkq8drHcRx95StfUSQS0U033aRp06b1+Zz6+ndxOMSLOA2ftSGxGj7rQol4sTYcnnFjbTj48RrstSEV2gEAAAAAAAAAAAAAAAAAAAAMqO3bt+vhhx/Ofl60aJF2796d/VxQUNClfWFhYfZ9VVXVQfuNxWL60Y9+lP28ePHiQ87jpZdeyiYJzps3TwsXLuxx7vvPc/957f/ZcZwu7d5v+/bt+sUvfiFJys3N1ZVXXtnjuINpJMUrHA5n97/yyiu6/vrrddZZZ+mDH/yg7rzzzmy1waFqJMXq/bZs2aJHHnlEknTppZdq+vTpPY45VIyUuOXl5cnlckmSqqurswlMklRTU5N9P1QTcfcZzvHKycnpdcKSpGxV1eFssOL1yCOP6LXXXtPkyZMPq2Kq1Pe/i8M5XiMpTt0ZTmvDkRSr4b4ulEZWvN6PteGBhlrcWBsOfrwGe21IQjsAAAAAAAAAAAAAAAAAAACAAVNZWakbbrghW/Hw0ksv1Zw5c7pUmfV6vV2O2f/z/u32F41Gdeutt2r9+vWSpIkTJ+raa6/ttu0555yjuXPn6tOf/rSCwaCuv/56/frXvz6g4ll39h/f4/H0aZ5f/OIXtWDBAp1//vnas2ePLrzwQv3xj3/sVVXdwTLS4rV/Jc4f/vCHevXVV7V7927t3LlTjz/+uC677LIhUyHw/UZarN7vhz/8oTKZjNxu92EndAyGkRQ3n8+nk046SVJnFcsf/vCHamtr05YtW/Td7363x3MaCoZ7vEaawYpXVVWVfvzjH8s0TX3nO9854LvRW0f6d3G4GMlxGm5rw5EWq+G8LpRGXrzej7VhV0MxbqwNBz9eg42EdgAAAAAAAAAAAAAAAAAAAAADYu3atfrIRz6SrbA2e/Zs3XnnnT0eZ9t29n13CXvNzc267rrr9Morr0jqrID2X//1X/L5fN3219raqkQiIanzBvLNmzdr06ZNfT6fvs4zHA5nb1hPJBLatWuXVq5cecTjDpSRGq/8/Hzl5+frU5/6lFauXKlly5bpiiuukNSZWPC1r33tiMfubyM1Vvu8/vrrevnllyVJl19+ucrKyo54zKNhJMbty1/+cnYev/3tb7V48WJdeOGFqq6uVjAYlKQhW2H6WI/XsWaw4uU4ju644w5Fo1Fdd911mj9/fn+cTp/nOVyM9DgNp7XhSI3VcFwXSiM3XvuwNuxqKMeNteHQjdfRMDQjCwAAAAAAAAAAAAAAAAAAAGBYe/nll/W///f/VjQalSSdeuqpuvvuu7M3qYdCoWzbfYl6+ySTyez7fe33qaqq0ic/+Unt2rVLklRRUaH7779fkyZNOuhc3njjDcViMa1evVpf+9rXtGzZMi1fvlwPPfSQFi5cqG9961v6y1/+0uWYCy+8UF/96le7zHP/efU0T0m69957lUqltG3bNv34xz/WK6+8onXr1qmpqUk33njjQec7GEZqvH72s591O4evf/3revHFF9XS0qItW7aoqqpKFRUVB53z0TRSY7W/X/3qV9n3V1555UHnN5SM1LhNnTpVS5cu1b333qt169bJMAwdf/zxuuWWW3TNNddIkvLy8g4618FyrMRrpBjMeD388MNauXKlKioqdPvtt/c414H6uzgcEKfhszYcqbEajutCaeTGa3+sDd8z1OPG2nBw4zXYSGgHAAAAAAAAAAAAAAAAAAAA0K9WrFihz372s9kbtz/1qU/p85//vEzTzLbZPwmkubm5y/ENDQ3Z9+PHj8++r6+v18c//nHt3r1bUudN5D/5yU96dcO73+/XySefrC996Uu65ZZbZNu2HnvsMS1cuFCRSEStra1d2u+rnrn/PJuamrqdp8vlOmhSi9vt1owZM3TXXXdp8eLFkqRHHnlkSCUtEa8DeTweVVRUqKWlRZLU0tIyJBKXiJVUV1enZcuWSZLKyso0d+7cHuc42EZ63GbMmKG77767S9uWlha1tbVJkqZMmdLjfI+mYyleI8Fgx+uvf/2rpM6EtHnz5nU7x5///Of6+c9/ru9973tH5b9hQxFxes9QXxsSqwMN1XWhRLwk1obDMW6sDTsNRrwGGwntAAAAAAAAAAAAAAAAAAAAAPpNZWWlbr75ZiWTSblcLn3jG9/Qhz/84QPazZ07V5ZlKZ1Oa9OmTV32bdy4UZJUXFycveE7lUrp05/+dPZm7yuuuELf/OY3ZVkH3hK9dOlSPfDAA2pubtZtt92mj33sY9l9hmFk3++7Yf773/++vv/973d7PgsWLMi+33+e6XRaW7ZskSTNmjVLPp9P69at0x133KGmpiYtXrxY//Vf/3XIcYeCkRyvaDSqBx98UM3NzQoGg7rtttuy7VOplKqrq7Ofx4wZ0+14R9NIjtX+/vnPf8q2bUnSeeed123fQ8lIj9vWrVu1ZcsWNTU1dRn3pZdeyr4/9dRTux1rMBxr8TrWDYV49dVA/F0c6kZynIbb2nAkx2q4rQulkR2v/bE2HF5xY204uPEabGbPTQAAAAAAAAAAAAAAAAAAAACgd775zW8qHA5Lkm6//fZub/aWpIKCAp199tmSOm9ef/PNN2Xbtv785z9r69atkqQrr7wyW/XsgQceyN4IfsYZZ+g73/nOQW/2njp1qnbs2KG2tjbdf//92RvKGxoa9Mtf/jLbbv78+T2ez4wZMzR79mxJ0tNPP61t27YpnU7r17/+tTo6OiRJH/nIR7Lj1tTUqKmpSX/729/03HPPybZtJRIJ/fSnP+3TuEfLSI5XIBDQE088od/85je699579fjjj8u2bcViMX3/+9/PVtZbvHixRo8e3ePYA20kx2p/a9asyb4fDhU4R3rcHnjgAd1+++361re+pT/96U+SOhOZ9v1NzM3N1aWXXtrjuEfLsRavZDKphoaG7CuVSmX3NTc3Z7fvq9rZ0dGR3bZ/ddFUKtWln0wm0+PYR8NQiNc999yjZcuWHfC65557sm2uv/56LVu2TBdccMEhz6ev36/hEq+RHKfhtjYcybEabutCaWTHa3+sDYdX3FgbDm68BnttaDiO4/SqJQAAAAAAAAAAAAAAAAAAAAAcwtq1a7vc4J2Xl9el+uQ+CxYs0H333afq6mpdddVVampqkiS53e7sDdXTpk3T0qVLFQgEJEnz5s1TLBaT1Jlw4vF4up3DihUrJEnf/va39eCDD2a3+/3+7PFSZ4LRY489plAo1ON5rVu3Ttddd52i0egB8zz55JP1q1/9Kntj+rPPPqsvfOELSqfTkiSPx6NMJpO9wTsUCumhhx7SzJkzexx3oBEv6dVXX9VNN92kZDKZbZvJZLJVHktKSvTQQw9p3LhxPY47kIjVe6666iq9/fbbkqQnn3xSs2bN6nGcwULcpKqqKl199dVqbGw8YFzLsvSzn/1M55xzTo9jHg3HYrxWrFih6667rsdzv+WWW3Trrbfqy1/+sp588ske27/wwgsqLy/vsd1AGkrxOti+fdd+3/Xtjb58v4ZDvIjT8FkbEqvhsy6UiNf+WBsOr7ixNhzceA322vDI688DAAAAAAAAAAAAAAAAAAAAgNQl2U6S2traum23r8JZeXm5li5dqrvvvlvLly9XW1ubysrKdO655+rmm2/O3uz9/r6j0Wj2ZvmDufPOO3XiiSfqscce0/r169XW1qZAIKAJEybo3HPP1cc//nEFg8FendecOXP06KOP6p577tEbb7yhSCSiCRMm6KKLLtINN9zQJaniggsu0MSJE/XAAw9o1apVamhokMvlUnl5uU466STdcMMNg54EuA/xkk455RT96U9/0i9/+UutWLFC9fX18ng8GjdunM466yx94hOfUEFBQa/GHUjEqvtzz8nJ6dU4g4W4SRUVFXrsscd033336fXXX1d9fb0KCgp0wgkn6MYbb8xW9BwKjtV4HauGUrz60+H8XRzKiNPwWRsSq+GzLpSI1/5YGx7Y91COG2vDA/s+2vEaTFRoBwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAMiOH1WB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAwLBBQjsAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYECQ0A4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBAktAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgQJ7QAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAUFCOwAAAAAAAAAAAAAAAAAAAAAAAAAAAABgQJDQDgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYECS0AwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBAntAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIABQUI7AAAAAAAAAAAAAAAAAAAAAAAAAAAAAGBAkNAOAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgQJLQDAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAbE/wc2Fw1hAyroKwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABPUAAAKrCAYAAACZc7hJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydebgcVZ3+3+rl7ltys68kgSQQAgESAiHsyi4gggOKKIo77ru4oo4Ljo6i4/bTccYFxwVGUXAcB2QRCPsm+05YkpA9uUvf212/P5Juus85VXWq6lR1VfX7eR4e0n37dlff7jp1znve9/u1bNu2QQghhBBCCCGEEEIISQ25Zh8AIYQQQgghhBBCCCHEHxT1CCGEEEIIIYQQQghJGRT1CCGEEEIIIYQQQghJGRT1CCGEEEIIIYQQQghJGRT1CCGEEEIIIYQQQghJGRT1CCGEEEIIIYQQQghJGRT1CCGEEEIIIYQQQghJGRT1CCGEEEIIIYQQQghJGRT1CCGEEEIIIYQQQghJGRT1CCGEEEIIIYQQQghJGRT1CCGEEEICsGbNGixatKjhv7333hsHH3wwTjvtNHz+85/Hfffdp/V79b+/cuVKnHfeebjyyis9j+GBBx6o/e7Pf/5z6eff+ta3sGjRIlx66aXK3y+VSjjggAOwaNEiPPLII8rHXH311Vi0aBHe9a53AQAuv/xy6bj32WcfHHLIITjrrLPw1a9+FY8//rjrcdu2jWuuuQbvf//7ccwxx2D//ffHgQceiBNOOAGf/OQnceutt0q/8/rXvx6LFi3CmjVrlM955513YtGiRTj00ENRqVSUj/n85z+PRYsW4ac//SkA4OMf/zgWLVqEV77ylRgZGXE83je84Q1YtGiR63sihBBCCImbQrMPgBBCCCEkzSxbtgznn38+AKBSqWDr1q148MEHcdVVV+GXv/wlTj/9dHzuc59DZ2en4+9VKZVKePbZZ/G73/0OH/7wh3HLLbfgS1/6kuNr/+IXv0Aul0N/fz8uu+wynHvuuQ0/P+aYY/Bv//Zv+Nvf/ob3vOc90u/ffvvtGBoaAgBcd911WLhwofSY66+/HgBw9NFHN9x/9NFH4/TTTwcAlMtlbN68Gffeey9+9atf4d///d/x5je/GR/+8IeRyzXuIW/ZsgUf+MAHcNNNN2HBggU47bTTMHfuXNi2jSeffBJXXXUVfve73+HUU0/F5z73OXR3d9fey+23346//e1vWLlypXSc1113HQBg06ZNuP/++7HffvtJj7nhhhtqz1XPM888g0svvRQf+chHpN8hhBBCCEkqFPUIIYQQQkIwdepUnHDCCdL9H/vYx/CZz3wG//3f/43t27fj3/7t37R+DwDOP/98nHnmmfjtb3+LV7/61Vi+fLn0mK1bt+KPf/wjli9fjn322Qc//elPceutt+Lggw+uPWbffffF5MmT8Y9//AMbN27E4OBgw3Ncf/31KBaLmD17Nq6//nq89a1vlV7nxhtvhGVZOOqooxrunzdvnvL4N23ahA996EP48Y9/jFKphE996lO1n42Pj+Pd7343br/9drznPe/Bu971Lkn0e8973oN//ud/xi9/+UuUSiV861vfArBLRPza176G66+/Hh/72Mek173hhhuwcOFCPProo7j++uslUe+JJ57As88+iwULFmDOnDkNPzvssMPw05/+FKeccgr23ntv6bkJIYQQQpII47eEEEIIIRHQ3d2Nr33ta1ixYgX+7//+D3/5y1+0f7erqwunnnoqADjGTS+//HKMjIzg1FNPxWmnnQYAuOyyyxoeY1kWjj76aNi2XXPc1XPddddhn332wapVq3DXXXdhx44dDT9/8MEHsX79eixduhSTJ0/WOvaJEyfiu9/9LvbYYw/8/Oc/x/3331/72RVXXIHbb78dp5xyCi688EJJ0AOAYrGIz3zmMzj44IPx5z//GX/7298AAPPnz8cee+yBxx57DM8991zD72zYsAEPPPAAjjzySOy111411149To5DYFcst1gs4qKLLkK5XNZ6n4QQQgghzYaiHiGEEEJIROTzebz73e8GAPzud7/z9bvFYhEAUCjIwQrbtnHZZZehq6sLJ554IvbZZx/ss88++N///V+89NJLDY+tilii0LV27Vo88cQTOPjgg7F8+XKMjY3hpptuanhMNa6qEsLc6OrqwgUXXADbtnH55ZfX7q/+DVSOwHosy8I73vEOAGj4faf3cv3118O27dp7uf/++7Fp0ybt9zJ79mxceOGF+Mc//lGrt0cIIYQQknQo6hFCCCGERMhBBx2EYrGIu+++W/t3qo0kADjWhnv66adx0kknoaenBwBw1llnYWxsDL/5zW8aHrtq1Sp0dHTg73//O8bHx2v3V4Wxww47DIceeihyuZwkljnVoNPhkEMOAYDa+x4fH8d9992HgYEBLF682PP3ly9fjkKh0PB3cxP12trasGLFChx22GGoVCq1YweAkZER3HbbbRgYGMABBxygfL3zzz8f++yzDy699FI8++yzft4qIYQQQkhToKhHCCGEEBIhbW1tGBgYwJYtWxpEtbGxMWzbtq3hv40bN+Kuu+7C+973Ptx+++048sgjceihh0rP+ctf/hIA8E//9E+1+0499VR0dnbi17/+dUOEtKOjA4ceeii2bduGu+66q3b/DTfcgM7OThx00EEYGBjA0qVLGyK6O3bswF133YUZM2ZoiXAiU6dOBYCac7D6/qdMmaL1++3t7RgYGMBLL71Uez8HHXQQ+vv7sWbNGoyOjgLY1aTjpptuwoEHHojOzk4ccsghKBaLDe+l+vgjjzwS+Xxe+Xr5fB5f/OIXUSqV8NnPftb3+yWEEEIIiRuKeoQQQgghETMyMoK2trYGQemaa67BihUrGv5btWoVzj77bNxxxx244IIL8J3vfEd6rrVr1+K6667DokWLGlx8PT09OPHEE/H888/X6tBVER1upVIJa9aswYoVK9DW1gYAWL16NdavX4+HHnoIAHDzzTdjbGzMd/S2/j0DqHX9rcaJK5WK9nNUKhXkcrla7b1CoYDDDz8cw8PDtVqDd999N7Zt24bVq1cD2PV3WLZsGW688cbaa+k6DpcsWYI3vvGN+Pvf/44rrrhC+zgJIYQQQpoBRT1CCCGEkAjZvn07tm/fjilTpsCyrNr9K1aswH/+5382/HfssccCAD7ykY/gIx/5SE1wq+dXv/oVKpUKent7cemllzb8VxXSxIYZRx99NCzLqol6t99+O4aGhnD44YfXHlMVxaoOt6D19Ko8//zzAF527PX396OzsxMvvviilrA3PDyMrVu3YvLkyQ1/t6owVz3O6v/F97Jlyxbce++9tfdSLBZr79GN9773vZg1axa+8pWvSHX5CCGEEEKShFx5mRBCCCGEGKNaG2/VqlUN90+cOBErV65suG/BggW444478KUvfQmHHHIIpk2b1vDzUqmE3/72twB2CXO333678jVvvPFGPPPMM5gzZw4AYMqUKViyZAnuv/9+bNy4ETfeeCMANIhc+++/P/r6+nDzzTfjbW97G2644QZ0dXVJxxjmfS9fvhw33HAD7r77bhx44IGuv3/bbbehXC5Lr3/44YejUCjg5ptvBgD8/e9/x+TJkxsiwqtXr8Y3v/lN3HzzzRgcHMRTTz2Fww47rFZ/0I3Ozk58/vOfx1ve8hZ86Utfwr/8y79ov2dCCCGEkDihU48QQgghJCJGR0fx/e9/HwBw5plnej5+0qRJ+MQnPoFt27bhoosukn5+1VVXYfPmzTjjjDPw8MMPK//7xCc+Adu28atf/arhd6uOu9tuuw233norZs6cifnz59d+ns/nceihh+LOO+/EY489hueffx6rV69WugW92LhxI372s5+hWCzitNNOq93/mte8BgDw3e9+1/X3bdvGj370IwDy362vrw8HHXQQHnvsMTzzzDN44IEHGlx6wK4Y7cSJE3HLLbfglltuaXj/OqxevRqnnnoq/vjHP0pNOQghhBBCkgJFPUIIIYSQCNi2bRsuvPBCPPHEEzjvvPOw//77a/3e6aefjsMPPxw33nhjrSFGlV/84hcAgHPOOcfx98844wx0dHTgd7/7HUqlUu3+amz1uuuuw4MPPigJYcAuMWtkZAT/+Z//CSBY9PbFF1/E2972NmzatAkf/vCHMX369NrPTjzxRBxzzDG48cYb8cUvfrGhcUiVsbExXHzxxbj11lvxute9DsuXL5ceU30vP/rRj1Aul6X3YlkWVq1ahXvuuadWe++oo47y9T4+8YlPYMKECfjc5z6HnTt3+vpdQgghhJA4YPyWEEIIISQE69atw5///Ofa7a1bt+Lhhx/GlVdeiW3btuG8887DRz/6UV/PefHFF+Pkk0/GJZdcgtWrV2POnDm4//77ce+992LJkiUNDTJE+vr6cNJJJ+Hyyy/HVVddhdNPPx0AsM8++2DatGm48sorMT4+7ijqAcDll1+OXC7nKoQ9+eSTDe9748aNuP/++3H11VdjbGwMH/rQh/CmN71J+r1LLrkEF110EX72s5/h+uuvx0knnYQ99tij9px/+tOf8Oyzz+INb3iD49/t6KOPxpe//GVcccUVyOVyUrQZ2BXT/eMf/4g///nPWLhwIWbPnu34XlRMnDgRH//4x/Gxj32sVh+QEEIIISRJUNQjhBBCCAnB3Xffjfe97321211dXZg6dSqOO+44nHXWWVi2bJnv55wxYwY+/OEP4+KLL8bHPvYx/OIXv9By6VU555xzcPnll+Oyyy6riXrALrfar371KxSLRRxyyCHK150/fz6eeOIJHHDAAZg4caLja1x77bW49tpra7d7enowffp0nHXWWXjta1+LvfbaS/l7PT09+Na3voUbbrgBv//973H11Vdj/fr1yOVymDp1KlatWoUzzzzTVbicO3du7TiXLVuGgYEB6TGHHXYYLMsK1cH39NNPx5VXXlmrQUgIIYQQkiQs27btZh8EIYQQQgghhBBCCCFEH9bUI4QQQgghhBBCCCEkZVDUI4QQQgghhBBCCCEkZVDUI4QQQgghhBBCCCEkZVDUI4QQQgghhBBCCCEkZVDUI4QQQgghhBBCCCEkZVDUI4QQQgghhBBCCCEkZRSafQBpYXx8HFu3bkV7eztyOWqhhBBCCCGEEEIIIa1KpVLB6Ogo+vv7USg0R16jqKfJ1q1b8dRTTzX7MAghhBBCCCGEEEJIQthjjz0wODjYlNemqKdJe3s7gF0fVmdnZ5OPprmUy2U88sgjWLhwIfL5fLMPh3jAzys98LNKJ/zc0gU/r3TBzysd8HNKD/ys0gU/r3TCzy1dhPm8hoeH8dRTT9X0omZAUU+TauS2s7MTXV1dTT6a5lIulwEAXV1dHKRSAD+v9MDPKp3wc0sX/LzSBT+vdMDPKT3ws0oX/LzSCT+3dGHi82pmiTYWhyOEEEIIIYQQQgghJGVQ1COEEEIIIYQQQgghJGVQ1COEEEIIIYQQQgghJGVQ1COEEEIIIYQQQgghJGVQ1COEEEIIIYQQQgghJGVQ1COEEEIIIYQQQgghJGVQ1COEEEIIIYQQQgghJGVQ1COEEEIIIYQQQgghJGVQ1COEEEIIIYQQQgghJGVQ1COEEEIIIYQQQgghJGVQ1COEEEIIIYQQQgghJGVQ1COEEEIIIYQQQgghJGVQ1COEEEIIIYQQQgghJGVQ1COEEEIIIYQQQgghJGVQ1COEEEIIIYQQQgghJGVQ1COEEEIIIYQQQgghJGVQ1COEEEIIIYQQQgghJGVQ1COEEEIIIYQQQgghJGVQ1COEEEIIIYQQQgghJGUUmn0AzWB0dBQ/+tGPcNVVV+HZZ59FsVjEvvvui7e+9a04/PDDm314hBBCCCGEEEIIIYS40nKinm3beOc734m///3vAIBisYidO3dizZo1uPXWW/H1r38dp5xySpOPkhBCCCGEEEIIIYQQZ1oufvvHP/6xJui9+c1vxp133onrr78e8+bNg23b+MIXvoCRkZEmHyUhhBBCCCGEEEIIIc60nKj3+9//HgCQy+Xwzne+E21tbZg6dSrOOeccAMCWLVtw3XXXNfMQCSGEEEIIIYQQQghxpeXit/fddx8AYPr06ejr66vdv3jx4tq/77nnHhx//PGxH1uc3PqFL+CBn/wEo1u21O7rmjIFyy+6CHufd17tvm1PPYX/e8tbsOGuu2DbNvrmzcNhl1wCDAzEcpwv3Hwzrn/ve7Hlscekn7UPDGDft74VE/bZB2s+9zlsf/pp5AoFzDj8cBz74x+jY8KE0K//8C9/iVu/8AUMvfgicoUCZh55JI754Q/RMXGi9nOUx8Zwwwc+gMcvvxzjw8Ohj6lz0iQc+NGPYmzHDtx76aUY2by59rP2gQHs9+5348APf7h238jGjXjowx/GHffdB7tcDv36vXPnYvUll2DOK19Zu2/9HXfgb+9+NzY//LD0+GJPDxa97nU49J//Gbl8PvTrh2F8ZATXv//9WHvNNeifNw/zTjsN8087DT0zZ2J8eBg3X3QRnvjDHzBj9WoceemlaOvtberxNoNn//pX/P1jH0OuWMSRl16KqStWxPr6//h//w93feMb2PnCC46PGVyyBEf/4AcYXLJE+fPS9u24/v3vxws33YT5r3oVDvnSl5AvFo0e5+ZHHsE1b30rXrr3XgBApVzG7T6+3219fVhywQVY8alPwbIsAMDo1q245q1vxdprr0VlfBxd06bh4E99Cote/3rH57nn0ktx97e+hZGNG30df/f06Tj4s5/F5ocewgM/+QlK27b5+v3euXOx+mtfw5zjjpN+9vAvfoFbL74YQ+vX1+4rdndj0etfj1Vf/jKs3K79xE0PPohbL74Ya6+9FuXR0YbnsHI5TF+1Ckd/73vomTWr4blv//KX0TlpEo7+/vcxoe7aTeLloZ/9DHd89avonj4ds44+Gi/ccgtevPlmVMbHa4+ZuHgxjv7BDzBpv/2UzzE2NITr3vMePPXHP6JcKqF7+nQs+8AHsO9b3yo9dsOdd+L697yndp0ZXLIEx/zwh5i4zz61xzx+xRW4+aKLsPOFF5ArFDD7Fa/AQR/7GNZ87nN4/oYbYFcq2u8vVyxizitegaN/8IPatcC2bdz+pS/hoZ/9DIP77oujv/99dE6ejLXXXIMbP/pR5AoFHPGtb2HaypXaryMyunUrrn372/HsNdegMjZWu39gr71w5KWXhnruoJRHR3HjRz+KZ/7yF8w66igc/o1voNDZ6fo7j/7mN1jz2c+6juV+aevrw5K3vAUrPv3p2rhZ2rYN17ztbfLfa889ceR3vtPw93ru+utx08c/jk0PPujvdXt7sfi883DIF77w8uvu2IHr3/c+vHDTTZh3yik49J//2fh1hmSTSrmMv3/0o3j0v/4LYzt31u7vmjoVB3/2s1i022jixY61a/F/b3kL1t1+uzS25dvaMPeEE3DU976HYleX0eP3i23buPXii2tzjWJXF/Z87Wux+utf11oXOP29VBQ6O7HnWWdh9SWXIN/WZuotEJJ4LNu27WYfRFzs2LEDBx10EABg6dKl+O1vf1v72WOPPYaTTz4ZAHD88cfj29/+dsPvDg0N4cEHH8TChQvR1eTBMSxrr7kGV554ovqHloU3Pv00uqZOBQBcfeaZeOrKKxse0jllCvb//e+x3/77Ix+hSGPbNn6xeDG2P/WU799deuGFWP0v/xLq9Uc2bsRPZ82SLpT7v+99WPW1r2k/z4M//Sn+9va3hzoWv5y5Zg0mL1sGALj+fe/DP77/faPP3zF5Ms578snaBPZXy5Zhs8ck+YTf/hbzXvUqo8fhl/u//33c8L73SfdPWb4cALD+9ttr9x3ypS/hgDpxNA7K5TLuu+8+LF26NNJzy/H1x8bws/nzMbxbjJmw9944++67Y3v9TQ8+iF8fdJCW+Dxt1Sq8+tprlT+7+5vfxM0f/3jt9vG//jXmn3aaseMEgD8cfzye+9vfQj/Paf/3f5ixejUA4JZPfQp3XXJJw8+tXA5vWrsWHYOD0u9ufvBB/Gr3ed4M2idMwJvWrkWu8PL+4PCGDfjPefMaFtf1rPra17Do3HNx+xe/iPt/8APPz3ruySfjpMsvBwA8/POf45q3vKX2s1nHHINXXX217+Nu9nmWBbY+9hh+tWyZ4+dcz+QDD8SZN9+s/Nk9//qvuOljH2u4z8rn8do77sDEvfcG8PLn9dCb3iRdZ6Ydeihevfs8HN2yBf85fz7GPRZ9fjnoootw8Gc+AwB4/sYb8ftjj639bMnb347V3/gG/nP+fAyvWwcAGFi4EGffe29N/PHLms98Bnd+9avKn/XvuSfOuf/+wM8dlId+9jNce8EFtdtHfve72KfuNtB4Xo1v346fzp6NSqkUyfGc9te/YsbuxnZrPvtZ3PmVrygf17/XXjjnvvtgWRbGR0bwy733xs7nnw/8uif/4Q+Ys3vT/55vfQs3ffSjtZ8d/1//hfmnnx74ueOEY2Bzefzyy/EXJ+HOsvCqq6/GrKOPrt3l9Hn977nn4rHf/Mb1tVZ+4Qs4sO572gyev/56/L7OCFDl2P/4Dyw8+2zP33/st7/F/7psbqpY+LrX4Zif/CT2sbIenmfpIsznNTQ0hEceeQR7771303SilnLq7ayb6LW3tzf8rP72TpcJ4SOPPGL+wGJm4113Of/QtnHbO96Bgd3OiOf++lfpIcPr12P8u9/F/RF/aculUiBBDwCe/t3v0BtyMrn1hReUu/qP/eIX6PbhuHtidw3HOLnzQx/CtN3uhWf+8Afjzz+yYQNue8tb0NnfD7tS8RT0AOC+L34R2/7yF+PH4oeH/ud/lPfXi3lVHvnRj5B7+umoD0nCAnB/7K+6i63PP18T9IBdotGdb397bLuda++6S9tN+uLNN+POd7xD6Yy4+Yc/bLh97fnnY7vPCaEX6xxECr/c/clPYsP++wMAnlQIVHalgtve/nb0TZ8u/ewlhYM5TkY3b8ZtF1yAjjpH66ann3YVem656CLc+ulPY1xw5jnx9FVX4Y63vQ07N27EA1dd1fCzF264Afe85z2Bjr2Z51kWWHv33VqCHrDLYXf3u99dc2jWoxqT7XIZN7/tbZhVJ1jb5bLyOrPu1ltx94UXwrIsbHrmGeOCHgA88fOfo33DBgDA49df3/Czf/zgB8i9+GJN0AOALY88gjve+lYUPZxsTjwmbKTWs/Wxx3DXO98ZuyPsMeF9P/jtb2Psnnukx1XPq20vvBCZoAcA93zqU9iw2/355J//7Pi4rY8+ijvf8Q4U2tqw+dlnQwl6AHD/l76EzX/8IwDgJuE689dzz8XK888P9fxxwjGweTx9663OP7Rt/PnVr8b+r3kN2urWWarPa63DnLaex3/6U+SffTbYgRpircPm8EPf/CaGNdZIrn8vBx755S+x84EHMPfgg33/rkl4njljv+pVwJQpzT4MiWqqM220lKjnRkUzkpEFp155772x7cor8aLDorTy0kuwCgVUymWMOYlX69bBCjhh1cXWXPSpqIyMwHrxxXCvv3sSLzK8eTPwwgvauz/29u2hjiMIpXXrYO2OCFcMRH5VjK1di67hYZTrolZujK5fH/ozCctOh89URXnHjqYfb9yU6xamNdatgxXTAnKbHxHftjH0yCPoUzjYRMaGh41/lrqChheluvOiMjSkfIy9caNyvKls2mTkGEKxbh2sOiFl+JlnXB9eGRuDfgASgG3jhVtuwfOPPy5tspTHxnyNxcQcqpIYbow/8wzaOjqk+4cdYuM7nnkG1rRptdsVh/mAXS7Dfu455AoF7Hj8cV/HpIs9NFQ7R0deekn6+YjqO79+PSxh81iXkbqyKCoqzz2HguJvGSXjwjHZO3e6jqljBiO3yud/6SXPcbP22KefRrG3F1seeij8C2/b5vi+y2NjLTdnIMEo15XNUTE2PIyn//Y3LDzwQNfHaZX0iWD+45cxp7m35jy74rM8SJXn7r4b0wYH0dHdHej3SXRYhQLmDg6ir4lpExETTr1m0lKiXk9PT+3fo8IEsf52t8vJn8/nU2+hzXd14TXXX4/NDz2E0S1b8L9vfCO2PfFE7eeV3U6ZUZeLhZ+6NEFRCa2nXn01Ch0duPKUU1zrKpioHVdxeI5KuYzRoSHti4T4Pha9/vXY9x3v8H081114IV5S7IyrGK2b5Irv45CLL8bMOlu/Ln95wxsanJOl3V2iVX+nU/7wBzx33XW4qy4CPRKRuKjL+NhYw98FAApdXRh3WBCMGxJt0oRKoI2rQkOlUsE2QaRa9dWvYvqqVbXb17z1rdhctzDbsWWLlqiXL5i91Nm2LZ3Xe118MfY98kjkFG6keh786U/xwI9/XLs94nKuvvwD9XgrPn7SsmU48tJLXV//qjPOwLDDBHvGEUfg0C99yfmXbRu/O+KIxruEYxvesaPh9vxXvxq5fB6P1ZW7qCff3o5lH/gA9jjpJGC3OHfzJz+J52+4ofaYZxW1OqtUymXjny9xZ7xUwjbForTQ1YX9LrwQc447Dv/9ylcCdWPH2OioJOpVKhWMOFzHt2/aBNu2a4LtuMvm0fjYGPKFArZ7LJQBYGDRIhz7//6f62OeuOIK3PWNb7x8nHXnWUGxwbFNIUwGnSNVymWUPK6VZQPzG7+MCa47r+vCmDDHHtxvPxz13e8Gfv17L70Uj/7618rn9/pbl0ZH0dnTg83CptXSd7/bM/onjkUtVLGIRIg4ni0+7zwMrVuHZ+qcdxtfeKFhDBSxbVuap77ipz/Fc9ddhwf//d9ffpzB4w6K03pS93wS5zoLzjgDyz7wAelxW3bXOq4fE4Z37qSol1ByuVwiNZUgWk8S3kdLzYS7u7sxODiIjRs3YpOweHypbvd1jz32iPnI4seyrFq9mo6JE/2LejFMbFSi3ozDD0ehowPzzzgDD//sZ75+18TrVxnasUNf1BMuRn3z52P6oYf6Pp6uadMAXVGv7rOTFv777x/o9fvmzlWKeioBdcbq1YBtN4h6oxHEovwwJOz05QoFvPn557HullvwxO9/j/u+972Gn7eiqKcSleJaxOzYskV6/b3f+EZ0TppUuz3t0EMlUU8H06KP6u/Uu99+mHbIIZ4X9s0PPtgg6tUv4J1cr06fgXgcXVOmeJ7bxZ4eR1Gve/p0z9/PFYsNLsWKcGxDgqg347DDsOdrX4un//xnjAk/2+u1r8Wh//zP6BOuuQte85qGhbQbZYp6sbNlw4YGwc7K5XD6X/+KyQceiLbdm6edkyY1fM9Ko6MQr5ijQ0OO3+2xUqlh88zNET5WKqGto0NL1Jt55JGe3/HNgqOrfi5Qve7VI25GAMFFPbd5VxVdd7xJRJHO6/2Jj++fNy/QvKPKc9de2yjq1YmMXvO9sZERDO/Y0bCBAgD7nH9+rfawE51CNCyODW2SfcT55cS998ZBH/sYflHX/KtSLqNcLqPgcH1TjQMzDj+8YT0HoGGsbhaqcROA9rGJc53euXOV48n0Qw/FrZ//PLbXuacpxJNWwd1SkEEO3G1lfuGFF7B169ba/Q888EDt39VmGq1CURCnqheKZjv1VK9Rre219xve4Pq7jo4XH7g9hygQ+Xker45xTrh1Ym0XuvG6iXqFgPHxLqGm19jui3RZ9Tl1dqJXWKiPlUpNWYxU2Sl8ZgOLF6OtpwezX/EKHHnppXj1Ndc0/Hw8wnpASaWZop7odhlcurRB0AOAKcLYvKNuDHfD9A6a6nuc04zD9c6Z03B7xOVcraIr6umMLXmXSKDbz2qPEeor1o/Ttm1jWCg3MGHxYvTMmIGjf/ADWLs/hynLl+M1112H43/5S0nQA4C5J5zgeRxVmjmmtCqb6+puAsCc447DzCOOqAl6ANC5u9lWFVHkAWQBWKReLCu7bLKMl0oY2r5d67o/7ZBDPB8jnkf1z1tSvA/RnQrIYrcuonOxY3AQbf39jc/dhO+8eD30dOoJjxfFMb+Iv1//ffIS9UojI9J3tnvGDEzaXcvUDbEzJwUCYgJxPGsbGNi1cS/gNg9VbTx3TJhQu85WScJ31tGpp/n74jnuNtfJCW5qCvGkVWg5Ue/MM88EsGuA+N73vodSqYTnn38el112GQBg5syZOOyww5p5iLEjijw1p55LnZKgE1Y/iBP0XLFYK7Q986ijMLBwofbvBnp9lwuBahKv+zxBRb1i3YJJpOq6rFIaGaldyMWoTlBRr1sQ9ZycelYuh1yhoFys67gQokIUYictXdpwu31goOF2eXw8EZOhOFHGumL6G2wValXNPPJI6TGiqDe8Y4eWozIOp15O87zuEUS98thY7T34FvWEsSUfg6jnNmEujY5KItuE3WPTwn/6J7z5+edx7oMP4qybb8Z0l+vswJ57on+vvaT7e/fYQ2q20AyBo5WxbVuKMc498UTpcV0uIkwVr+tovfPONX5bKmG7Zn1JHbdYXhETBna9d0fHiUDQhaToJuufP1+69sctZNuVijTO+nXqdU6eHOoYxN+vFw3FYxHHsdLoqPI7q1OL0xKuHa02JyDRIJ5P7QMDaOvrkwQ5V1FP+JmVz6PY26tsSNRMKpWKcvwHENip57aO4jlLWpVknfkxcNRRR+HE3RPQf//3f8eBBx6Io48+GmvXrkWxWMQXv/hFR6tzVnEU9RJWU69+om3lcjj+F7/A1BUr0L9gAZa++92uvxsEt7p8Qz6aX5hy6hVdnHoT6yz7wMuLD9u2jTn1umfMaLhddSyo3p9lWSh2d0u76+KCJU5Ep96k3Z3zqrRPmCD9jps7JIsonXoxnetihG2GULsN2PWZiaLSTsGtp3oPpkU9lfiZ0yyK3zt7tnRfNYLrVCvLaVIqPr6ocW67dTLWEvWE368fa0WXXqGrq+H9dg4OYmCvvbQW03sIQlH7wABedeWVTRc4Wp0dW7ZILiylqCc49XQdbvXUi3puY/HY2JgUvZ1/2mnKx/bvuafrawKQmlBUx5TxsTHt8TDoHER06vXNny+59OOuqSd+3oD/mnri98Evkqjn4tQTUwLDO3ZITvA9TjpJ63VzFAhIBEiiXn8/LMtCh5C6cdu0lJ5jwgRYliWJes3+zrpthAStqUenHiEyLSfqAcAll1yCD33oQ9hzzz1hWRb6+vpw5JFH4uc//zlW1RVlbxVEkaesI+rFcJHw2n2dfMABOOvmm/GGhx/G3ued1/CzyGvqbd8eycXIjTYXp17//PnSYnt0eFh5MdNZ+Ktwcuq5ia99c+c2HlOTRD3btiVRb1B06ilEvVarq6daLMZxru9U1NObefjh0uPy7e3S5ybW1VN9ZlE79QpdXdodWAudnbLYPTysFOCr6MZvtZx6LjHhQPHbumMTRZoJixcHdg0c8MEPomN3E5S2/n6c+NvfYuLee0ubG81oGtDKiDHGgUWL0D9/vvQ4t7hkFfH7Mu9Vr2q4vXPbtppo6ybejpdKkqg386ijpMd1TZ+udZ46OfXGNF16gDmnXt+8eU0XsoOIeqKIazp+WymXa38HqW6xMO/Ysn59w/HmikXMOvZYrdcVnVNJqE9G0o+4SVFNinQIjb/qz70Na9dizdVX49b/+R9sWrdOKeoByfvOujX+iWIdlRdFPZ6zpEVoSVGvWCzibW97G/70pz/hvvvuw2233YYf/vCHWJagtspxIoo8OvHbpjj13GJjwiTcrlRCD+RuEd5KuewZJbUrFVR2/1eP26LaDTenXltfn+QAGh0eVi54Tcdv3S62ffPmNfysWU690aEh6TgHBadesbtbjj60mKjXrJp6WwUXxcR993WMa0l19QRRT7XgjdqpV/DZWU2sq+ckwFdx+pl07mmMLaHjty5OPdHBPGHxYs/nc6Jn1iy84eGH8ao//Qmv/8c/MGu3SNNsgaPVEWOMoqOyiujM0hH1Fr7udY3OKNuund9un/PIzp3Sc01buRKHXHxxw30rP/tZx+eox6mmnm70Fggh6glOvf4FC5r+nVdFAD3jt2JNPcPx2/rXEI9FdOqJ1zCx/qMbdOoR01TKZWldUBXkxM3l6rlXKZfx+L33YnxsDGOjo3ji3nul87JjtzCYNKfeqI9x0wk/pUaSWFOQkDhoSVGPNKKawNq27ToQx9L91seCVbVrE7aunpfbzy2Cu/6ZZ3DLVVdhzdVXS4sNnYW3CrdGGcXeXvQIol5peFj5NwjqFBQbZZTHx1EeH3cVLXsT4tQTXXodg4OSSGlZljyhajFRT7VYjEXU06inV8VL1FN9ZrouOl3EOm5+3a+iqFdyEOCrpKVRhjjWTQwh6gG73Atzjz8e3XUFxJstcLQypdFR6XxTRW8BSEXfRefW2OiotCidfMABGBSaF1Rj+W5jsegezLe3Y9KyZVj2wQ9iwRlnoH1gAHu/6U3Y+/zzHZ+jHlX81rZtZYTYiSBpAdu2U+PUc6urXKlUJCdS2PhtW1+ftKFQFYrFv7Xo1BOZqxm9BSgQEPOoxrKaU88hfrt9y5aG8350eBjDwgZAzamXMFEvbqce47ekVWmt4nFEidT9tlzG2Oiou3MkDlEvhFOv+vthel56iYLD27cDiolqpVLBk//4h+OkPoqaem09PZKoN+ok6hly6gG7nAtpcOqJLpH+BQuUQk/7hAkYqROYKOpFf66r6un5EfVGhoYwXiqhsHvBp3wPBo6znrDNZ8RzdUThJG1As1FGHKKe24RZcuoJDXxMIDpsKOrFxxZBPCv29GDG6tXKx3o1yhAF4FyxiL499sC0Qw7BhjvuqN1fjdW6fc7ic08+8MCa+Hzir38N27Z9CfsqF4ifJhlAsIXk2OioNA70q2rqxS3qKcRMt/enenzY+K1lWeiaMgU71q59+XWqLiYPp56Ibj09wNmp12yhhKQX1byy2uFajN+6NcoQz7P23YKgFL9tMq5OvaCinos5Qpqj8FwlLQKdekTZKMPLURXHzodXTb16VAN82Lp6Xr/vNMEf8ejIqVP3SoWXU08nfmvl89IFz8/ri46B0uioq/gqdsBtllPPqfaISPvuiZXT72UdVTH6qM913Xp6VSYuWSKNBTvqmmUoPzPDk7qwzWcic+rpNMowHL+tfj9UHe50mhL4RRyDTHQ6J3qI0dvZxx7r+J1RxW/rv8dSl9cFC5ArFKTutNs3b4Zt276aFk1bubLhtl+nrnI+US77EvWCzD/Ev0murQ3dM2cm0qnnR9Sz8nl0OFxz/aBqlmHbtjS+uzn1+vfcEwOKztpOODn1HOuf0hVEPBDHskJXV20TwiktohrDxPGog049AIqaejwnSYtAUY8oRb0RjXpxUePHqRdJ/Nbj9x2jOB4LiMBOPZcaMG29vco6XWEK+quQOuB6OPXEHfPxsbGmCGWSqLc76iDC+K1isRjxhFCqp7dkiWv9pXxbm9S5uD4SGIfbUPzOi25nL8RY+oiDq7ZKouK3woS5GsNTOQrCRu5UNFvgaFXsSgWbN2xouM8pegsAnYrPvl4cEr+71TF52iGHNNw/XiphZOdOjPv4nKcJwqBfnOYTUTv1pOjtHnsgl89L40vcQraypp7LmKqqpxe0YY74PA2vo3A2ArtcgU61i/249AAg59B0wEm0ZeMe4oU4ltXPRztdGmWIiONR9XkS1yjDhFPPRyrBEty1bqUCCMkSFPWIsvutVxOIOAZJqbOjz8WobbimnriYVEVMdAjc/dZnTT2VqBe0820VsU7SmELUc+t+CzTHrSd1GnNwDYhuAj/ukCygWjhHvcsrinpu0dsqU5Yvb7hdL+rF4dQThSTfTj1F/Uu371qSRD0np55q8SHWBzKB1P2Wol4sbN+8WfqOuop6qsYGdYs78Ttd/e71zp0rXWe2b9rk63MWnXp+cSrnEbmoJ9TIqpavaPZ33nf8Vvg7mRL3pY7KpZLyOPIdHcpyIYD7d1aFKBDUnMkO80uKesQLt03mdrGmnkMzGADSOs2xpl7gIzWDa312zeeQ1hmsqUeIBEU9Ijv1xseTGb91qaFg5XKuXRmDIF5ExPpwThN8r79NJN1vFfHb8VJJWmgHradXRenUc9lBy7e3S7/TjLp60iRKiNlWaRMcfHTqRSvqVSoVbAsg6k12aZahjBAHOzxHQsdvFWK3uKCvx2lMEReQOtF+040yKg6iXvvEiVI9KhNINWAp6sWC2Ixi0v77o2fmTMfH54tFqT5UvTjktGlnWZbk1tumEBSd6Jk1Cz2zZmk91glHp17EjTLEeVf/ggUAmu9OVcZvXa4LJcOdb2vPM2lS43Epyn8Au75LojAM7Bo7Zh5xhK/XFJ161XftJOqJTZQIERHnlW1181Gppt7ux6q+55LbuVpTT3TFNtGp5lWLVGd+aVcq0uN8NcqgU4+0CBT1iOTeqmg49ZLWKANQd6wL9fqiqCdESZ0uVF6T+biceoBcjDy0qCfsfpcU8Rfxc0hCXT3t+G0Li3pOdauiPNd3bt0qfX9muNTTqyI2yxgdHq4JBnG4DUUxzW/8tmNwUBoHhoRztR5Hp54oqGtsGIiiXMPPQjj1xIieuAA3hdQog86YWBDr6c094QTP33HrgCt+d+u/V2J8dvvmzdpC1tSQLj1gV3MEMcLm26kXYMxxcuo1vVGGqvutj5p6YZtkOD2Pm6incurNcqkB6YSjU4/xWxIQKTlSN+8U0yJuTj2RWk29BHVsLo2OuouKGsdWVrx3V1HPobkNIVmHoh4JFL9NpKgnDPJhnXriRVR06pXHx5UTuKhEPUennmWh2N2Ntt5eKVYqiXoBX7uKJOqp4rfCa4h19Zri1BNrmGjGb906j2UN1W4oEO25vrWu0zAATNxnH6lrpoqJe+8tfZerzTKUjp6oG2X4PK8sy0KPUANzWOgcW09sjTJcBL/aYxx2wcWFvOg4MIU4DtIZEz2jw8PYuW1bw306MUa3DrhujbCmC069oW3btF1yossvKOI5XRoZ8ZVQMNEoo3/+fAAJcOqp4rduNfWEx+uM6Tqo4reOTj2FqOe3nh7gLBDQqUeC4ta4TXI3j43Btm2t8aRWU89A/UpTuDXJAPTml6pzzZdTj/Fb0iIk58wnTSOQUy+O+K1LrTYV4s/DOvVEwU50nAFy7RjA+29julFGsaen1vxCbJZh3KmnE7/1cup5fLeiQBTntBtltNAE3em9RnmuB6mnB+xaaE1atqzhvmoEV+WuNO7UE2vq+XTqAd7naj1Ga+q5jKM6pQGcyhyoiuNHQbMFjlZEjN62T5igJZ6JzTLGXJx69aLe5IMOkhZmutfzsPX0ascjnAt+HeZ+x82yohFH325RT3LqxegGs21b3SijGU49RfxWqp1sWcgVCuhWxG/91tMD/He/pVOPeOGnph5sG+XxcT1RL4Hdb71EPR1Ci3p06pEWgaIekZ164+OS20VcgCbRqSeJeoadep1Tpsi794odbLfXzRUKgetM5fJ5pShXP+EXawmZdupJcSqPRhmA7HB0qx0WFeL3uc2hpp4Uv20hp55TzaqoznU7YD29Kk7NMuIQecJ2vwXkMdXNwerkoGxK99smx28p6sXPkODSm33ssVrXMdGhVdJ06hU6OjBZEO11yBWLmHzggb5/T4V4Lvm9bvmdf6hEw1qjjCbWkSyPj/t2cEsCvyFRT3J+Kpx6hY4OWJZVq0dYZdKyZa41IJ2Qvuce3W/j7kxM0odbjWeVw33coSGMSLUxVZK637o1yQCCO/XYKIMQGYp6RMu9JQozcQySoeO3hmvqFTo7ld1fRdz+NkGbZFRR1dWrj6OJQkHYgv4iolOvPD4uTVAkp57QFGBkaCjWnTPbtrXjt6Ko10rdb50WilF9VjtU9fR8FDEX6+rF6dQLG78F5HPVFdWi2medmSpxdb+NLH7LmnqxI/6NxeuAE2LXU1ennvC9EuvqSc+tcGJNXrZMq66kDuK12m/ZCL9zJFE07JwypVY/spmRc1X0FvDn1IsqfmtXKtK4Ux3D9jj5ZPTvtReAXc6lgz/zmUCv6dupx00G4oG0yVw37yx2d0ui1NjYWHadejqinvDerXxeKgNSD2vqkVaFoh7xFHq6pk6VFlJxDJLipLHg5dQTfh66+62i+65b4W+d1w3rlFPV1Wtw6imaZTT8vuFGGYC8GBHfoygIV8rlWBtQVMpl6bukHb/dXc+kFYhb1AtaT6+KKOqVRkZQGhlRv4+ENcoA/Il6qgW0apwJXVMvTPdbMXIXUfxWapTBRXTkSK46jdqLQPD4LeAt6qnKYXj9jh+8nHodHk5Uv/MPp3p6gCxkVyqV2NwnTm5127YdHXyRxW8VY4pYzqP6PSp2d+Of1qzBKb//PV53//2Yf+qpgV7Td009bjIQD9zit5ZlyR1wNZx6uWKxdv2XRL0QxxoWyam3u1RQFZ1j87uJSqceaVUo6hHPhWDP7NlyfZs4nHpirLPJ3W8LmqKeVOOl/jlCinpKp17dhN9L1Avr1Gvr7ZUWGOJiRHQ4dM+aJU0y4myWoaoVp9v9VhVxzCqONfUiEvXEaPj0ww7z9fsDCxdK38UdW7eqO/j6PzxXTDhgfYl6is/Ab52ZKqGdeg71asTFv5foERTGb+PHr2u+Srcg6rnGb0WnnkvNvlyxqHQLmuh8W0WcT7iJbip8O/WE5++re37VdT8uh6qq820NxbhUVmyEmXLqFbu7pbFWdALVfzfb+vqwx8knY8LChYFf01HUY/dbEhA3UQ94OUZbe3yp5DkPbZ8woVZbO0nxW/H8lOY9AeK3nqIenXqkRaGoRzxdJr1z5zal8GjT47cKp56q+6v0ey5/G7c6EDqommXUT/h7vUS9kK8PQOoq53XBzReLktjot+h4GFQij65TD1DHObOIY9Q4IgFf/N74rcGWy+cx+YADGu7bsWWLWpxMQaMMN1TjrWrx2BRRz6lRRkzx20q5zEl7xLjVv3NDcuqVSo6iiPicvbNnSzViq7T19Snj3aaaZADejbfEmm0iYeO3/XUOd9V1Py4x203UU811SorHm3LqqZ5LcuoZil9X8Ru/Zfdb4oU412oXajxLot7YmOd4Uj93TVL8VnTqiWsUrZp6YmrLr6hHpx5pESjqkV2TacESXU+vwqkXS/dbhajmhslGGU5F6MWOan5r6kURv3WrqSe9fkinHqCO4Naj+pzEqFSsTj1hkVHs6XEs8q5qoNEyol7MTr2g7p96xAjuto0bledf1DX1gsTau2fOdB1369F16uksaKOI39q2HV/32ya6lloV8VzNaZ6rYk091HVS1REKndx6bf390sK3a9o09Ar1W8Pgda32cuqFjd/2ucRvgRhFPYeaeoB6XBIf39bXZ6zOISBv/ogbq0GuI274jd9yLCJuqGo8twmbzGIH3LFSydUsAAAdLqJes5x6tm1L56c4RgdplOFljpCSZdz0Iy0CRT0Cy7JcF6VpceqJC9owwqPq/WnX1HOZ1IWdcKpiOPX3dc+YIV/Q6whbU6/6Gm6oFkO9gqgXp1NPapLh4NIDdrm/2vr6Gn+fol4kryeen2IDBh3EDrhinb6oEBduQcTyfFubdsMBHVEvv7vro87rOv4sYKMMVd3KuOK3AN0xURO4pp7CoVW9ZkpCoeI5HUW9vj7077lnw30zVq/W+v7r4iVE9RmM39q2jVHRqVf3/LlCQZrfJMGpp3qPUdXTc3o+p5p6pnCKMrKmHgmCqh6mFL8Va+qNjbmW9QE8nHoBjtMEY4pagF4lglSEranXzPgxIXFCUY8AcF+U9s6Z0xSnnmrR6oY40IfZMXWqVyWJeqr4bdxOvbpFbq5QcBUKjDj1FF0H69Fx6sUq6olRB4fOt04/b5UOuFlw6jkReffbAPFbwDsuX0Up6omRFM1z27RTT+XSA/zHqXURG2UArKsXNX7r29YeVyzKrpPdok8op15vLxaccQYGly4FsMvZsvwTn9A6Jl283CCeTj0fY87Y6Kh0PouiobihF9d33qlRBqAp6hl27Ir1+aSaegE2h9xwivI51tTjWERcUG0Si3PODrFhW6nk6fx1E/WaJWqJ56aVz6Nn5szGBwWpqeexFmxGDXhCkgBFPQLAfUHYM3u2NLHZ+OKLePzee7HhueciOybfNfVEp55pUU/h1KuvEVR73ShFPYV4IDpX3HbCjIh6Xk69hMVvveqXiKg64LYCTu8zLqdeEFGvf8ECvc6zBt+DMpof8LzSjQsqu9/63L2u4rY5EqSmXqVSkRbyubY25QaECfLt7dIxcCEdLWEEeDGCW3PqaQiFkw84QHl/W38/2vv7cdbNN+PsO+7AeY88gkn77699TDp4LRx75sxxLOMA+Nv4FOvp5dvbpTIXUoOYuBplhIzfShHskIibBSY2h9ywHOK3Tn9/xm+JG8oaz2JNPUX3W1+inkMdyLgR6+l1T58eKPUVuqYenXqkRaCoRwB4OPUU8dvS8DBefOopPHLHHdj4wguRHJPfRb/48zC7M6rfVTXKgG1Lk9gonXpe8VvAva5eFI0ypNfQdOrFdaEVxSqxfolIsxwRzSaNTj0rl9OKd5l8DyrBP2isPZRTL6io5/B3tvJ5V5Gi9vuK+K3o5umcNMloFFKkWQJHqxJGgBedVTWnnvCdVj1nvr0dkw88ULq/WiKh0NGBSfvv71pSIShe51P3tGmubj4/8w9VPT3RbSOK5IzfqjHdKCPnIJA4bRqzFABxQ5yPqmo8S+5mjUYZrjX1moTo1OueOVMWHDWeJ2xNPTbKIK1CMs580nScRL1CVxc6Jk50Xew9evfdkRyTtDvjM35rWtQrdHaic8oU6YIp1tVrZqMMwF0oiKVRhkZNPZW7Jyr8xm9bdZfPUdSLqvutIYeF1+cJmK0po+w6G/C86tHsgBuHqKf791fV1BMX/lHV06siiXpcSEdKKKee6G53cOo51dRURXDFuqdR4PYeOwYHkW9vdz3nwjj1+uo631YRHclxiUeuop7KqSc8vstw/NZT1IvJqecYv+UGA3FB3ABTbUiEduolpPutWJ6oZ9asQNHgsDX1WmUOTwhFPQLA2WnSO3cuLMuSC4/WEVXNMWkh4VErRep+azB+W3Wx5PJ5qUaMH6ee1w6TFzpOPdf4rQGnnpeopxJfu2fMkL5DVbfe+mefxbOPPBJZnT1J1PNwdThN4rNOGuO3gFx/Rv1iETv1gtbU0xT1VMfvt85MlbCintT9VtX5NmJRr1XdtM0iaKMMQI5fjjk0ynD6/k079FDpvjhEPbdrZbUEhZuYryPqDW3fjo3PP4+d27Y13K+q19csIds1fqt4j+Imp3GnnsfYYrz7rUOjDCfxjo0yiBs6XeJVNfW8xhO3+G2zauqJTWx6Zs4MJDj6FvUc6mASknW8szakJXCanFZdX3kXUS8qxHiD3+63YSZX4mvXL5i7pk/H0Lp1tdvibpRr/DZkNMSrUQbgEb9tUvfbXD6P3rlzsfWxx2r3jQwNYfP69Xj2kUcAAC8+9RQOOPpoFAx/1/zW1HOK22SdpsdvAxY4F6MqKozGbxV/p8A19cI49Qw3ygjj1FPFb6OkWa6lVkWnU60ToqhTcmqUkTSnnsu1urqx5ba49HLWbFq3Dg/eeqtywa0S9ZohZFfKZdd5lKoZSOQ19eJ26jnMB5z+LtxgIG6I54fK1d4hzGnGx8Y81zNu8dtmzWCVTr0AgqPvmnp06pEWhU49AsBF1NtdyN3NqRcV0qLfK34rinoG47f1Djsn50EV1/htSFFP1fnRj1MvaO0v8fXcnElObsQ+oSnAyNAQXnr++drt0sgInqsT/UzhN34rOvWatcsZN7GLeprxOy904rcmP0PRoZHv6Ahcw0a7UYbi+MXPK7b4raJeTdPjt3THREqomnohnXo9M2ZI50mznXpdGqKelzvk+ccfdxyXlPHbJjj13KK3QDK634oYr6nnFL+lU48EQMupJ8RvVb8nksT4reTUU8RvdY5NvL77FfV2bNmCx++9F889/jgFPpJpKOoRAC7x290CkSR0xIDv7rdiTb0w8VuXen5i/NSPUy9s/Farpl7ETj0A6HJx6zkJl73CQmV0eBjDO3Y03BeLqOcRv6VTTyAD8VuT70AcV4JGb4FdrlEdgULZ/dZl48EN4/FbRX3MyJ16rKkXK6Fq6jk1yvDxnPNf/eqG2zOPOEL79YOi5dRzeYzbPMC2bWx96SXHn/ep4reiUy8G8chT1BOuDZVyWToXjcdvPUTC2Jx6rKlHAqDjalelD8R1hvQ7CYvf2rYtO/UUjTJ0kBpleAj3KhPKi089haf+8Y9aMoiQLEJRjwBInlPPtm3/3W9NOvVcLiJi4W/xwhVlowxVwxLRqdc+YYJr4xMTuNXVc3qPklNPKA4O7PrcTS/Qwzr1WqUeh9P5kvhGGRrx2yidemHPKZ1mGYlqlKFw6okLlcideqypFythztVOwalXGh2Fbdu+4vfLL7oI0177Wsw8+mi88j/+A4P77qv9+kFxralXFfUC1tTzWqDrNMqI4zs/7tHMSnyPKhHQdPw2397uuhEStIyDE76dehyLiAs69WeLXV3SesarsVzSnHqqyHB3QKde2Jp69Tz78MOer0dIWqGoRwA4D5I9Taqpp5oQe+3ORNkoo/7v49TNr/a7EYp6KsQFlmVZjm69OEQ9p89JXKiI1vwqW9avD35gCkLX1DN6NMnFaRGahUYZRmvqGXTqAXp19ZIk6imdenHX1KNTLzZs25ZEcT/nardwvYRtKwu/uz1nW18f5n3oQzj1z3/Gote/Xvu1w+Dq1Ks2ynCrqecy5uzcutXxZ13TpyuTE82oqefXqSfOhXKFgqczPghu7r9mO/UqlUrLuPuJf6Saeg7OU7Guntd3yq2mXjMoifN7y0L39OmO55MbYWvqEdIqNP/MJ4nAaWHaLKeeasLkGb+NsqZe3Wt7xW/ddujD1nuZfOCBDcJcx6RJksgIONfVM1FTD3AW9axczvG70rfHHg23R4eGAMuSHrfxxRdDH18V27bDd79tFaeegwgexQLFtm3peSN16hlEqmUXg6in1f1W89y2cjnlTrauw0VqlNGE7rdSowxG3iIjyLW4HpUAU3XrBX3OOHCtqbf7mutaU8/lOyl2u62nX+HSA2QhO47vvN+aeirBIgqBwW18CVu3WMSpk6bb358RXOKETk09QF1Xz4l8e3vDWBREODPNqLAu6po6Ffm2Nnk8iNmpR0iWoahHAKgXhFYuV9uRToKo5zVZE3/uNqn2fH237reKOFHD70bo1Ct2deHQL34RuUIB+fZ2rPryl5UXsF4HUS9sTb8qXQ6iXr6jA5ZCqAOAXkHUUzlAAGDzunXGJiEqN4Nn/DYB9Ujixu3vHYmoF1IoqKfpTr2Q55Qxp56Pxaxqc0F3w0F0bVfK5djjt81wLbUqynPVR8Qx39Ymjbkql3biRD2X46nOi9yup65OPRdRr2/BAuX9SWyUIb5HcS5kOnpbxc2pl4vYqVedD7h2BeZ4RBzQrT+r1QCs+lhhYzOIcGYa0anXM2sWAEjrA50jo6hHiB785hMAalGve+bM2gIu9pp6ARb9RmvquRShF11qlXIZ4+PjKOy+kERZUw8A9n/ve7H3m94EWJa0uK2icurlCgVjMepuh0YZru6GqVOR7+hA2aOe0PjYGMZLJRQNTM7F6C0AtHnFbx1q6GQZtwVKFO8/rPunnmZ3v43DqacU9XxGUurJt7djTGhSo11TT4zfKr47sXe/5SI6MlSfr99ztWvqVIxu3ly7rRL1gna/jgo3wa4aKXZzvrvNA4YCOPWkWpYxXJe86nh5OfVMd76tPW+M8Vu/NfUAOvWImkq5LH1vTDj1xI3NJNTUE516PTNnAgi2aS7VOGf8lhAldOoRAGpRr97tFffOR5CFhNHut25OPUXcdazuAub2uqaiIW19fY6CHqAWCkzV0wMUdZJ24+b2sSxLiuA6EUaQraescnx6/B2SEF2IG7cFaNJFPbH2jAqj3W/F+G3I80pL1FN1vw1YUw9Q/62D1tRTwZp62cGEq1YUYaR6SwGeM2qcrtUdg4O1Y3W73qn+bts2bcKDt94qdX2vx6lxjlMMNEpEB66IVFNPeLzY+dgUbuOL8Zp6TqKey9+fTj2iQuV8dRT1fJQVEUvKBOkwaxpxjO+uOvWCNMpgTT1CtKCoRwCod5x767qVJiF+67WTL06wVXW7gr5+/XMXu7ul7ov1sZO4G2WoUMVvjYp6AZx6gFxXzwlTCxYpgm1ZngJ1Szr13ES9CBaPYSN99ejU1Mtio4wwXXjDiHpe43BbX5/xDpQi7H4bHyYEeDGGOTo0FPo5o8bpWlZ/7XOtqSfMP8ZLJfzj5puxyaNmrNglvkozrktha+pF5dRzEwuNO/UUAolt267XRTr1iArxfLLyeccaz75EPQ+nHhD/PFasNd6ze9wMIjj6LTVCUY+0KhT1CAD1grA+wtns+G2+vd2xVlsV1UAf1K3n5YJxa5bh2igjJlFPFb81KSg6Ncrwqssl1tVzwpRTT9XwxOt71IpOPVdRLwqnnoFIX5VCZ6d3dC/C+G1YUa9r+nRPodlk91sgWqde1NFbAGgTnXpcREdGkA02EdHdnoaaek7Xsvr34nXO1c8Ftm/Z4jkf6Zo6FdNXrVL+zMkxFiWe8VuP7rfNqKlnulGG+HcHvDcR6NQjKqRGMoODjo1kfIl6Yk09lXAW8zxWHON7wjj1WFOPEC0o6hEAalGvfse42fFbnQm/SjALKg5JoqIwURQnqw3xWzennuEJpxPVC2jDaxt06hV7e5Vihtf7izt+qxKHvRB35ltB1Is7fqt6zqCLesuyPCfAUTr1worluXy+Fk1xQkfU87NhEKVTL+roLaDofstFdGSIY0Ourc1zY0REdFYpRb2E1dTTcup5XFPrr2NOgt70VauwzwUXYK/XvhanXn2143nYjOtSaKdeBuK3Kqeel6jHTQaiQrfzLWC2ph5gtgSJDqJTrztMTT3GbwnRgnI2AaCO3zbTqecWf3XCpFNPirYJzy059eoms1E3ytCh0NmJzilTMLx+/cv3GRT1LMtC1/Tp2PrYY42v6/E56bp4wnQurkfl1PNCErBbQNRzFVFjqKmXKxQcd6x16Jg4EUNusbYoG2UYOK96Z8/G9qeecvy58UYZCgFFW9TzuBbE4dRj/DY+pDE0gPgmxW+FBV/Y8z8KnOYc3QGdek5zkVVf/jKmH3aY5/HEHb+1bVuqqdfW34/S1q2OxyB2v21KowzD4nAQpx5FPaJiXLPzLaBXVqT2WLGmnmosjXEeOz42Jp0jQZ16tm2zUQYhmiRrFkWahrJRRoJq6mk59QyKeqKoJDn1hDhRSdOpF1f8FpBrdZkU9QB1BNfr/ek6FaOM33rB+G0jkTj1Ajhx3fDqgBtlowyxaUMQeh3qaFXRit/6cAErnXqai2Gvx8Xi1BP+5pVKJZbGAa1IELeziCTCCN/npEVvgfA19QCgUvc+VWPsOffcoyXoAYr4bcTfd1WTDLGWbv0xqETAZsRvo+5+C3iLdnQOExW+nHphauo51IGMC9GlB9R1vxVFPY/nUo1zjN8SooaiHgEgOx+ARlHIbZD0G8XRIchCQvWYoOKQ5ILxEPXGEubUA+QIrunXVjXL8BIWdByXQJPjty3YKMPNGRlH99tcxKJekmvqAXJjG51Ol5Kol5BGGc0Q9QC6Y6IiyMaIiJe4E/b8jwITol79uCqew9MOPRSDS5ZoH0/cDnJV9Fbsel8vWo6PjUnXiqjit27RRN05hi4qgYROPRIE8Zxyc7X7EfXExzY7fit2vu0YHKyNlX7jtypjBuO3hKihqEcAAAN77om+efNqt2cdcwza6oQ+t0EyClEvSPzWsizpcXE3yvDquBunqCc59Qy/tihs6ryGrpvIlAuBTj094u5+a0IoqCfOmnrigs6EU2/2K17RcHvmkUc2PsB0owzFeai7GE5EowzFJhQjuNEQh6iXRKderlBQCjp+GmW4OfX8vue4N5tEAaKtrw8FYQOj/tqgaqoRVfw2Xyw6xhPjcOp5OfGCzjtJtpFqTrqJej5q6iUtfiuWV6g3GPiN35aDOPUo6pEWhaIeAbBroD39L3/BPhdcgP0uvBDH/exnDT93HSSjEPUCxvNE0ciUU8+rUUa1loyXAGJ6F9mNWUcf3XB72qGHGn1+lVPP6/3F7tQL8D3ScUlljdgbZRgW9TydegYRxyYTTr0ZRxyB1V//OqauWIGl73wnln3gAw0/Fz8D27bD1dQL49TzmDDH4dQTxQWAol5UmDhXPUW9hDXJqKI6p3w59epr6oX8O8bd/Vas/9UxaZJ07tcfgyhYtPX3R9oYTGy+UsW0qBfIqcexiCgQ4+mZjd8KTr1qkwzAoTOvC3TqEaIPg+ekRt+8eTjm+99X/szVqRdBgWtxIVHQnKiJolHQhguSqCiKeoJTb7xUQqVS8RSj8jFebPY4+WSs/Nzn8PgVVyC/117Y561vNfr8qpp6ppx6kdXU01g8+p10ZIG4a+qZKL5fj9j9TSRKp56JWpWWZWHZ+9+PZe9/PwDghZtvbvi5ePyqzysuUc+yLOQKBUe3SlTunHryxSLy7e0o1wkJjLxFQ9ANNvF32gcGMLpli+PPk0i+owNjO3Y03FcfQfWqIdtQcy7lTr3OSZOk+UuDU098fETR2/rj2ay4P5aaenTqkQD4qamXb29HsbsbYzt3ej6vJOplyKmnOpe8zAFeNfVs244kYUZIs6FTj2jR9PitrlNPmGQbq6nnEb8Fdu1UmxKjTGDlcljxqU/hrFtvxfyPfETZ4TgMykYZHp+TrvDQzPhtKzr1mi7qhXXqee1qG3wPklPPQPxWJOcRAR8WhAbAXxOeMKIe4F5Xz09sKAzi353umGgQv3tBXRCdLm69pIp64vWqY3Cw4Vg947cGnXpxX5dUAoQfp15XxOK+k2iYhEYZ3GAgKvzEbwH9Drg6ol4zG2X01LmbxbmN35p6+Y4OzzWn1zWqFUrqkNaEoh7RInZRL6A7ILKaesLzdkycKE32SqOjLSEAVQni1NOO3xqaFAdxR7RiTb3Ux2/7+91fL9SzNyLV1DMQvxVxi9qVRkbw0K23Ssfg5VasJ6yo5+asjMOpB8jNndhxMhpMOPUA57hkmOeMGi+HvpdLt8GpF/LvGHf8VlXUXxL16t5fSRQsonbqOYl6CWiUwbGIiNiVCsbHxhru6/C4VupukInX/manTcRrRltf38s3/Dr1ApQZoahHWhWKekQLt9hoLN1vNSdqkdXUEybgVi4nd8AdGUmUUy9qoqyplyinXgtMAFy/tymI33p9RqY+w0qlIj1XFKKekyunXC7jodtuw6hQs2bxeefFFr8FPJx6MdTUA+jUiwtTArxbXb2k1kDycug306kHRHttUrmKfDn1POoohsXJ5ZSE+C2dekRkTBD0AG+nns5GXaGrS7k+EYlzHus21vk9Nq9SSCp04reEZBGKekQLcZe44WcJit/G1f0WkLu/lkZGWsqpV+ztlZwKia+pR6eeElenXgTfadNOvYadYOULGhL1FONJJPFbhwX8Y3fdhe2bGytJTT34YBz2ta/5en6ViGrCqWfl856uSVOIYipFvWgwFZVPZfxWOC5xIyvORhlxi3qqov6iqFf/niQRMCPxW5UIIf5tRFhTj4iIjWcA7w0wHaeeqklYs2vqifO7XN05KcVvPZCcehprCE+nYgut00hrQVGPaOG2k56kmltxdb8FFKKeR029lZ//fKBjSSqWZUmLHK9dNF03kbHutwacenFOhpqF2yIkkvPbUKSvypxXvhJtdWKSSuQz8T5UwpGqE2tYVJsoTz/4IF56/vmG+3rnzsXJV1zhy6UHODj1fLglna4HnZMmRdI4SUWbEL+lOyYaTIl6qYzfik494Zrvx6knXYt8upNjd+qp4rcuLnZJ1Is4fuvY/TaCTsri+1bVNK2HGwxERDyf2gcGPBvn6dTUUwl/yu63ns9kDtfyRT6deoFK6FhW7GtWQpIART2iRdwDZND4rSmnnlT/RvH6YhRnbGRE2W33kC98Aa/82c+w/JOfDHQsSWZgr70abtd3uVKRhvhtKzr14m6UYdqpV+jsxAmXXYYpy5dj1tFH45j/9/9CPZ8TKuEojvgtADz32GONr9vbi1N+//tAMbeo4rdxRW8Bxm/jwlj8VhDETDxn1PTOmdNwe8LixQ2343TqqYT+psdvXbrfRh2/VY01uba2SDYVxL+9KOoNLl3acJtOPSIiieQaTlad+O0eJ50k3ddsp57bWKd06vmJ32qOmxT1SCviHjwnZDeuO0oJcvJI3W8DTK4qlYp0UVJ1jhUnraXRUVSEv0X7xIlY/olP+D6GtLDs/e/Hc9ddh/GhIQzutx/mHHec6+NzxSJgWb47XgUlSHHyuAuSJ4G4G2WI55dbjTZd5hx3XO37t/mRR6Sf27YdulSAWAA9Vywi39Zm3CXmFR+xcjmccNllGNx330DPnwsp6jm5YeLqfAvIoh6L00eDqXM1jU69/d79bjx11VUY3bQJg/vthwWveU3Dz70EJNvNqWcgfhtVjMy27dDdb6OO36q+T1F9j3L5POpHeLHhweDSpdh4332123QNExG/nW8B9+vp4je+EQN77okDPvQh6WdKp14T47f18wW/NfWCOpzd6uq1wpyetCYU9YgWrrseEbxe0EL6kqgXYNIrtmMH1E0hRKdeaXRUFpEiiIIkidnHHotzH3gA2595BpMPPNCz3oVlWSh0dmJ8aMj1cVHV1NNZkIo7ia0wAYjbqWcq0udEVDvV4mItCpce4F3o+fB//VfMPeGEwM+vOk/9dI10Oo/i6nwLKOK3FPUiIY5GGUm9Tk5dsQLnPvggdjzzDCbuu69nXE6kfpMvTTX1KuWy9Ll3quK3ux9TKZel889NxDWBKt4blajnVlMaACbttx8e+eUva7e5wUBEVCK5F07x20n7749X/PjHjr+nFM48X80crmOdTyetTikkFXTqkVaEoh7RwrU7XQyLft0GC2LjhiCOL7GzZLG7u6FeVxWd7rdJdSCYpGfWLM/YbT35jg5PUa+p8dsWdOq5inopaJQhoop4mPgcxcVaFE0yAHdRb+rKldjvXe8K9fxh47dO4oaO+8AUUqMMumMioZUbZQBA5+AgOgM6UBvitwG6ONYTZ/xWdBUB7k495eMjFvU6Jk6Elcs1/I0jE/U8nNNi/JZjERGRGs9oXCudxh2vbuFpi9+6dr8NeP2hqEdaEdbUI1q4TWpMDpDl8XFUKpXAi37RqRdkclUSRL3uWbOUsT2dRhlJXqw0Cx2BtqmNMsTvegtMAJodvzV+nkTUrEEcT6JokgG4O0PaBwbCP79iPPdVU89hwtzM+C2detEQtsFDFVenXoqvk4vOPdfxZ66NMhLs1BNdRbm2NhR7ex1r6pXExxcKyq6cJrFyOamuXmTxW5fxuGNwED0zZzbcVymXKRyQBkThW6f+rNM55PU99xtxNY3rWOdTcAw6bjJ+S1oROvWIFpZlIVcoKGMFJgZI27bx2D33YP0zz6CtoyOw5dqIU0+I3/Y6uNDE+K1dqUgX7jQvVqJC57OMKn5Lp54a1793HI0yDMfvoprUisJRM+K3UY0pJmrqxRm/LTJ+GwumBPhCRwfa+vpQ2rZN+pmJmprN4vBvfhNtvb3Y+fzzeO666zC6ZUvtZyYbZShFvYhq6klRwUmTlB0lnZx6nVOmhK5fqkPnlCkYXr++dls30eEXt/G4f/585XWgUi4j7xHbJa1DkPit0yaZ1jxWcLHG6tRzqWXt26kXQaOMqGqREtJs6NQj2jgOkgYuFju2bMH6Z54BsKumnWhVj7NRhsqpp0LlPBgVYqVpXqxEhVfHQMDcYsWEU68VRD1V1+baz1Lo1FM6i03EbxNQUy8Jol4iu98y8hYJQRdVKpw64Ca1pp4OHRMm4MhLL8VJv/sdZh59dMPPKgZFvTiL3487NL0Q54DV9xR3k4za68Tk1HNLqvTvuafSsc1NBlJPkHOkw6Gmnq6oV09cs1jV3L1+I99vvT/GbwnRh6Ie0cZpkDQxQK599FHXn2uLehHU1BOjFfXHJBayHRF+N82LlaiI1akXpPttC4p6cTfKiLqmXlSFouNy6rktIv3W4tLFiFOP3W8zh8lz1al5QlYc7eJ5EXX327jit1XxTKyl6ebUiwPx+xTVJmpQpx4hVZzOKTecGmXorCukOURM81jVXLJ+rPO74Ro4fktRj7QgFPWINo6iXgyvrbuQLQqiXqCaekL81q0JRLfgPBCdellZrJikoPE3aWajjFZ06mWt+21UjTKk7rdNaJSRZKderPFbsVEGRb1ICNqJXoVTs4ysXCfF88LVqefz72jlcoAQaY1L1Ks6cJ1q6o0I857uGTMiOS4RUTxsmlOvs1P6bOgcJlVs25bSRzqu9nyxKJWZAAI69ZIi6vksjRK4+y1r6pEWhKIe0SbK+K3XINtUp56LqCfGiSjqeaMTvzW1yx1kl0+qqdcC9TdcG2VE8P7Fz9e4wyKi7m+iGyyyRhluTr0kiHpOjTJijN+2saZeLBh16mVc1HNz6pmIMYsL1diceg7x2+rrD+/Y0XD/wMKFkRyXiOh2akpNvQULYOVy0oYyncOkSnl8XDpXdTfAVHX1cgFEvcQ49Xw2MQu6GUKnHmlFKOoRbZq58xGXqFdRNLtwdeoJzTLEyTDjtzLNbJShM+lvxe63jN/qITn1ohL1LMtR2DMxpoiCGOA+vuseg06kyBSsqRcPJl21mY/fCu/DZPwWUIh6UTXKEOO0Hk49SdTba69IjktkllDDcPqqVZG8jls38v4FCwDIGzwcj0gV8XwCfIh6ighuoDIyWq8WHlV9Zq/4rdscU3w+dr8lxBmKekSbSHc+TDn1BNHGr6gnRm8BD6eeg/OgSlYWKybREfWaGb9txe63Xn9v03+DZsRvo3DqRSXqAc6TUhN/qz1OOQVtfX212zMOP9zX76uclcXubi0XrilEUc+uVIxtBpCXMSnAO8Vvs9JQSmokUTfmmBjz4ro2OUUFVU698bExSbSIy6k3bdUqHP6Nb2DK8uXY9+1vx/7vf38kr6O8nmDXGF2NAEvlACjqkd2Im/2Fri7J2emEUtTTqamXJqeen/gtRT1CHGG/daKNa4vwhDr1/E6sxM63ha4utE+Y4Pj4LsGpJ0JRT0YrfhtR91udxSNr6snYtg1LqBkUhqideqr4bSQ19SIW9cqKHX4TEbNCRwdO/M1vsOazn0VbXx8O/9d/9fX7qkVFnNFbAMpaQ+Xx8cwIREnBpAAv1qA18ZxJQorf1o0XkTj1Ym6UoXLqiS495PPo2+1eixrLsrD/e9+L/d/73mhfx2mDpaOjdl0UnXqM35IqYbpDBxX1xDlQXPNYcZyzcrmGccuvUy+K7rfg5h/JKBT1iDZROvW8fjuu+O2ookmGm5gh1tQTycpixSTNjN/SqadGR9SL8vXiiN+a2HgQ67ZFVVMPcK6rZ+pvNfvYYzH72GMD/a7qWhC3qNemaFJSGR8HKOoZxeS56tQVNSvXSXGxXXXq2bYtjaFJFvXEeVNVQBdfv2LbkqjXMX165sqO5BzqgNXPZUw0aSPZxKlGpQ6qmnqBGr5pv2I4vBpb+C2Nwu63hOjD+C3RxnWQDPvkHoOsrjtFJer5GcBFp17PzJmuj3dyHlTJymLFJDqfpaouRxCCFCeXapG0wATA6+9t+m8QtVMvqu630mI3ou63gIs7JAFjimrRHmc9PUAtqLJZhnkkt7ObA8KDrDfKEF2i1b+dVyRNF2lMiMhx4iTk6jj1OvfYI5JjaiY6Y7Ho2jbV7IukHynOrhDqnFAlhYJ0v21W/FY8VuVmZRTdbynqkRaEoh7RxrWQekLit6o6FX7qs0mdb2fPdn282ChDJMwCKKvofJZRxW+1djjF73kLTAA8/96GF49BO5pp47PDmi6iaJTWmnphUY1rcYt6uXw+dLkF4o3RRhlOol5GrpNOjTJUc5A0OfUcRT2VU2/OnEiOqZk41dSr/wylRhncYCC7CRW/VXW/1amp16TNaa/GFqrkUyTxW9bUIy0IRT2iTZSDpNfv6w7keUW9Nj8LPbFRhpdTj/Fb/+jU1DPRKCNo5CmuhVOSyFqjDGXEI2VOPafxNpeAMUVZU8+H+8AUUgdcLqSNY9JVW+jsVNZCzMp1UorfVp16Hh0hdYnr2iR+5lV3vSi+Kp16c+dGckzNhE49EganGpU6BO5+G9HGphc6czs/LsLA3W/p1CMtCEU9ok0zB0ldy7XKqednciU59Vw63wJAW3+/67FlZbFiEt2aeqGF4oDuCL+FfLNA3DX1JKHAsFMvspp6oqin2cEuCE6inolGGWFROQX8uA9MQVEvekwL8Cq3Xlauk07xW1NOvTjqvbpthkndfSsVDO/c2XBfFkU9nbGY3W+JE6Fq6hkS9aKcw+7cuhXbN22Cbdt6op6Pen9RNMrI+nyetC5slEG0SWP3WyBaUc+yLHRNm4btTz2l/HlWFism0RUlwnZcDVrHSDWBN939NWk0u1GGafeZZVmAZTWMSybeQZYaZYQhCd1vAaBNcH1R1DOLbdvG6192TZ2KrY89ZvQ5k4KjUy9F8Vu3Y1XV1BPJYvzWaSyuF3HZ/ZY4ESZ+2x5U1BO/sxGt0Z595BE889BDAIAps2djQHhvoZ16Aa8/Tu7aXS9HUY9kEzr1iDaRdr/1EBX8FEcVL2a6ol6lUpEuvl6iHuDeLEOn9kWroRO/BcJHcIMupFrNqadauKseE+XrRbGol7q/GSgRkIhGGQkYU5ROvSaIenTHRIsph1k9WXbqie+jOl6orkVB5gaSqBdBowxV06Tq/MttoQwAbX19KCpEiLSjU9+U3W+JE2KjjNDdb3Vq6sXg1LNtuyboAcD6Z5/FiODc1XLq+amppzluutZpjajBECHNhqIe0SZKp56XU0h7d8ayAhdPHxPq6QFAt4ao1+XSLCMrixWT6Aq0YZtlBF2QOjn1sorOezO5eFS9XiTnieHub6rNATbKeJmmiHpi/HZsLPZjyDKmxKh6VKJeVja/xMZZIzt3KiNpuba2QM7vZjv1vBqatE+YkElHu5NTzzV+S6ce2Y0Yv/VTfzZo/DaqZmH1qOZE27dsabgd1qnH7reE6ENRj2gT5SDp6qazLPfOuwKiE0zXqSdGbwudncoLqoibUy8JC/CkoS3qhdzpDlqcXDmBz/AkQEc8NTkJMhVF80LaqQ75fKrNgVYV9ZISv20fGGi4zYW0WaJw6nVOmWL8OZPCxCVLGm5XKhWMDA0FLvYuEkdHSz/xW5GsiLMiOmOxFL+lU49g1zVJ/C74it9OmCDdp7U5HcNYobo+6KQw/IxjQVMdFPVIK0JRj2gTZfdbtwlQoaPD1+6v6NQTn7s0MoKHbrsNd193HdY/+2zt/lHBqdc9a5bW67p1wM3KYsUk2jX1onDqaSw6lE69DNv1VXEr6TEm47eGOkF6IU5qQzv1FIJRM7rf6oriUZKU+K1Yb0h0RJBwRCHAZzl+2zllivSdHNq+Xfo7Bm1202ynnpeol4QmPlGgFb9lKQCiQHVN8iPq5fJ5afMqSPw2io1p1Vjh1GSnHj8bruL6TTu15eCuBSjqkexCUY9o47rzEfK53dxCfif8XrVNnn7oIWx84QXs3LoVj951F0aGhgAAJbFJxsyZWq/nKupldOc6DHHFb6XIU7Go7ooq0Go19bLq1BPjJ2Hfg2qRplsfMgipapRhWcqC3lEjLnbGGb81Cmvq+cOyLAzus0/DfcPbtxurIdqUmnqWVZv7eYl6WfkcRRzH4rq5DBtlEBWiqJcrFtHW3+/rOSYfeGDD7Yn77uv9SzHU1DMl6jkJjm6duL1wKxWQ5fk8aW0o6hFtIq2p57Kr6Xei6OXUW//MMw231z76KADZqdcze7bW67nGbzO6cx0G3d1806Ketm2/1WrqxSzqRSEUqDC9Uy0u0ord3VoicVCSLOqJ14KOiRNlZ2QMiOURxILkJBxRCPDK+G2GNr/ECO7Qtm2Br0UiYqOKOBbq+fb2WmLBM36bgLEpChybFtGpRzwYF5rvdUya5Lvu5GFf/SomLF6MfG8vDv3yl9GrsTaR4re+XlEPpahnMH4bZq7I+C1pRfQLlZGWJ9Kaem5OPZ/CmN+aelWHXmCnnkujjP4FC7Seo5Vw+jxzxSIqdU4b0/HbULb9DE8CVOdeobMT4/Xng0FHiFIoiGBRL00cQz6fuEgTnRmmSXJNvUn77ddwe8ry5U05DrHeEJ16ZhHPVSufDy3e9s2bB1hWbUwt9vZKG3FpZqLg1Bvavh0TonLqxSTq1V7fK36bgLEpCpy+827db+nUI4Ds1AtSpmLyAQfg7Hvuwd13341ly5Zp/U4c8VtVKRWdDQzdzdAwm0punbq91hajw8N46oEHUB4fx5xFi9AjJAIISSp06hFtXDufhbhg2LZt1qnnU9SrXjjERhk9Gp1vAef4bdfUqRjUscm3GE6RRbE+GZ168aBauIt/qyjjt1Yu56sRji6mJ7ViE4Yom2QAya6p1ztnDlb/y7+gc8oUTFq2DKu+8pWmHIfk1KOoZxRpY8SA+N49bRoWv+ENtdv7X3hhJOd/sxBFveEdOwLXhRKR/k4xFL+vd9a3bPxWx6knduKmU4/AjKgXhGY11RHnSWGcesoNZ835j1enbjceufNOvPTcc9i8bh0eWLMm0zW1SbbIzkyKRE5UTj2v3w0bv/WaXFUH7JIYv9UV9aZMaXAeVJl17LG+bfatgEqUsHI5WUgK2/3WoFMvy6KeytEYZczLVH0pL6RizIZLBETZJANItlMPAJa9731Y9r73NfUY6NSLFlOxUZFjf/xj7P2mN6HQ0YGpBx9s5DmTgqoD7vCOHQ33Be0S26z4bRVPUS8BGw5RELT7rW3bnAO2OGNC/NZPk4wwxPG9U4lu0gaGw3y/gbjjty4inW3b2LZxY+322OgoNm/YgImKWrCEJA2KekSbqLoJeTnpTNfUk16/UkGlUgks6uUKBXQMDmLkpZca7p997LFav99qqHba7EpF+pzDOvWCiket7tTLt7dHGvOKSigQkcYrw40yoo4M6rhDWh1R1CuPjXEhbRBxY8XUd8+yLMw84ggjz5U0uqZMQcekSQ3zgZ1btzY8JtHxW+Ezr6+T5+WozOrYpFPfVOXcrpTLyGfIhUr8Izr1OmIS9eJolKHaeJeceooNDG2nnuL5o66pp1p3sFYvSQuM3xJtXOsgpFjUsysVjAmCHqAv6gGQBD2Aop4TTrv5pkW9oJEn1fc8y6KeauEeZXSjaU69kM+napQRJUl36iUBMX4L0K1nkrgE+Kwxce+9G27viErUi6L7rUv81rIsV2Evq98Pp5p69X8bJ1GPtDaiIBRX/Fb6ziYpfqs5N1M9v67L2bWmnsvfQqdOICFJhaIe0cbLshwUrwFTt4ZCFalgcd0grXoPFduWOt/mOzrQMTjo63VF/IiCrYRTTT0pfmvaqecj8hSHIyIpZNWpJ3V/M9zMx+l7bAqVO8REo4IsITr1AO6qm0QcQ7Pa3dQ0YgRX/E6mrfttPW4OmKyKejpOPVXjJNbVI02L38bg1NMRu7QaZWjGb3NtbdoufLeaen6deqypR9ICRT2ijauoF+J5vXYz/S4kRCdY/cRKOWCXy3Ln21mzfEW49n372xtuL6orBE4aic2pF0I8Mh3dTDJaop7BSY24ExqZUGC4UYapYve6qBwxfjc4sk6hs1P6HOjUMwedesEQm2WIJDp+67EZ1oqino5rWtxMBtgBlzSvUYY0/4mAwKJewEYZfsYXk/HbLG/qk2xBUY/o4zawRejU8ztRdHPqKQu72rbc+XbmTF+vufeb3lSL/Ra6unDwpz/t6/dbCccJsrB4CBtdCTUhaCGnXtyNMrwWjaYwHr8VjztigU11ntAp1YhlWWyWESEU9YKRZlFPKscgjHOuol5GNx2c5iz147GVy0nubTr1iFRTr0nx27hq6oloOfUckNIRPsaXoPFbHafe+NiY5MAkJAmwgivRJrL4rceFwa87xa2mnuq17EpFit/2zJ7t6zWnrliBc+66C+tuuw0zjzwS3dOn+/r9VsLJARl1/NaPIBJlTbmkoVq4i3+7NMZvTbst4xY4VJNSiioyHRMnYujFF2u3KeqZQ1pU8funxaAQvxUJHL+N4brE+K2MU/xWnJsWursxXrdBTFGvtalUKigL16NmxW/jqqknoux+qzmOham/HLj7rUdNvY0vvohH77wT5fFxTJ83D/OXLtU+JkKihk49oo3brkxaut+qBnO7UpHjtz6degDQv2ABFp59NgW9gCQqfttCTj2Vc05yJhh8/2Ih5ahq05muKeNWQD4KVO6QrC6aw9A+MNBwmzX1zBFV99us0zl5suviPcmNMijqyeg2LRKbZTB+29qorkVxiXpS99sIXiLqmnphSp641dRzm896Nf946h//qN1+4cknMTI0pH1MhEQNRT2ijesEMkHxW7cIhDJ+q3LqsclF7JgW9ULt8rWQUy/u+K1UY2bKFGPPXY/pnWpxgqnbhS0oFPX0aBc64NKpZ464I+dZYoLQAbeeoCUH4thskq4HfuK3GR2fHBtlCJ+jKOrRqdfa7Ny2rfEOywrdgE+XWOK3AUU93WNLSk29qohXGh3FyM6dDT8bpahHEgRFPaJNsxplmHTqKUW9clkamCnqxY/p+G2YXT4p+pjh7leqv1Muws5pYi2SrqhEPXHiGPL5wtR3CYJqIclGGTJSTT069YzBmnrBcYvgBnbqxRG/9bhuOrnWVI/NCo5OPTF+K8496dRrSWzbxsN33IEHbrml4f6OiRPj614fR/w2YE093WMLszHvJMTvejnnv4UqkVYV9Ya2bvX1XITEDUU9ok1kNfUidup51dQDZKGBol78iBNk0/FbP4KItHgKdSTJRsupZ1DUFM+1qOIopp16YSaYQVA69SJ2B6aRDjbKiAwv1xZxxq1Zhqn4bRx1snzFbzP6/XAquu8Vv6VTrzXZvmkTXnruOen+uJpkAObLj6jQit8q5ixiXW2nIxOf3086Igqn3g6KeiThUNQj2kQWvzXs1HPrfqsrTlDUi5+oG2WEqqmXZaee4u8UZZfFuOK3pl0tcUcR2ShDD3a/jQ7x2kynqD5RiHpxXJe8NsNaMX7r5K4S329BrKlHUa8lkWK3u+mMKXoLOH9nTRK4pl7ARhl+rj9uNfWCinrKz5WiHkkQFPWINlE59bwmpn4Xz2IEwqumnvR67e2x7qiRXUTeKMPPLl8L1dSTdkOjFvViit+ajp+EiXMHQTUpz+qiOQwdrKkXGYzfBmdiFPHbZtTUE66bbgvrrH4/HJ16wt9CcuoxftuSlIQa3VWKvb3xHUQMTr2gNfXiaJThdM7uejkXUU/V/Xb3fTvp1CMJh6Ie0cZt5znMwOYVUTARv60en87Oac+sWZI9nESPuHgIu8vN7rd6NL1RRlTxW82Ihy5J6H6by+iiOQysqRcdFPWC0zlpkqMLOcmintdnLgpXbo/NCrpOPcZvCeAs6g0sXBjbMUjf2WbV1FPMk+JolCEJh/Wv52ZQcXDqlcfHMbxjh/x47SMiJHoo6hFt9n3b25x3msI49TwuDH4Xz6JTD3h5oNbZWeqeOdPX6xEzJCl+G8fiKSnEGb+tVCooC06qyES9iOO3UQtsqp1mxh9lWFMvOsRrc1ZFm6iY6NABN2h0PxZRT/zMxWYQLSjq6dbUY/yWAGpRL9/ejsXnnhvbMUg19SJ4jaDxWylFofn8vsYXt2YYAeK3Qw6RasZvSZKgqEe0aevtxWtvuQX7vfe90s8S1ShDIepVJ1c6FyHW02sOxuO3woTajwgjdc7K8IVbFbeKqiC7GL0FoqupZ7pRRtz1xRi/1YM19aIj7jqSWcMpgmuspl4c8Vs/Tr2Mfj+cut+K1wCxnjPjt62JKOrNOvponH3nnZhy0EHxHUQM3W9NxW91a+r5GTddBfUAot4OB1Evyxv+JH1Q1CO+mLBoEQ675BJ0L1rU+IMENcpQiXplinqJYvIBBzTcXvCa10RfU49OPSWqv5PkcjNUkF2M3lq5nFQTzRSmd6rjjiKyUYYe7cL3p1Iu0yFjCMZvw+FUssRY/DaGRhmSG00xv3J6bFaQNvl2IwmePT0NtzkOtSaiqHfQxz+OCeKaKWLiqAsd1KmnGw0Odf0JWANedc6Wx8eV9fS8nouQuKGoR4IhXjBCPJWnqOdz91fcLa1/Dd2aeiRaDv/mN2td9ApdXVj5uc8lKn6ru5OYBVTFiKMSNUWnXufkya61T8Jg2m0Zt8ChcodkddEcBjF+C9CtZwp2vw1H5KJeHDX1PJpB1JPV74eTU8+zph6dei1HuVyWrj89zSjpE4NTT6umnkb81tGp51EKwI2gjR1Vv2fbNnZs3uz0ZNrHREjUOLeHIcQFk6KHZ/zWR9dSAMi1tQGW1TDYVi8+OkIRRb3ombF6NV67Zg3W3XYbZh5xBAb22gvPX399w2Oa2SijlZx6qgYQUcW8JFEvqs63MC/Mxl1fjKKeHmL8Ftgl6rVlVGCIkzAbI8QlfutzTlMllvitxzjn5tTLtbUBw8PGj6nZ6Dr1WFOPlBTf/2bU6Y6jpl7Q+K3kInT4XWkO72PcnLJihePP/NbUA4CdjN+SFECnHgmEUVHPcPzWsizJrceaeslj0n77Yclb3oKBvfYCINe8Cxu/DeXUiyG6kBRUzozInHoxdb4FIqipF3P3W8Zv9cgVCmjr72+4z6n7IPEHa+qFo3NwEF1Tp0r3p8qpx+636k7kxaJ0jWH3WyJee4o9PWhzajAYIUmO3+q6CMNszLf39+OQL35xl8FDIIio50SW1wYkfVDUI8EwGG3zdOoFWEiIu8msqZd8TMdvTTr1smyx14rfmqqpF6dTz2CJACB+gYNOPX36589vuD28Y0eTjiRbsKZeeFQR3CSLeirndsNtF6deVuO3Kqee6jMURb0K47cthyjqNcOlByDR8VtdwTGsU3z5xz+Ot7zwAlZ95StarwfITmVPMrw2IOmDoh4JhCXsfiTJqQfIE0/dmnq5tjZ0Tprk+/VIeNqEItNh62KFse63ulMvrvhtV4zx2zCTL9u2Y48i6i4kCTBh8eKG2xT1zCAJ/hkVbaJkgkFRTxqXY2iUkROumy3p1NMci502k0nrIIp6PTNmNOU4oqpVXI+XSSJXKCjPHd1jM7Gp1DlpkrR57DZu0qlH0gxFPRIIk0XoPZ16JkS93a/hNQnunT07loshkREvvGOlUqgL5rgQ9Wzr69P+3Ti6DCYFlTMjE/Fbg8Ks6vOnUy85iKLe0PbtTTqSbCEJ2QFrwbUygxE69SJx33h1v3UT9TIq+ipLISjeq+TUo6jXcowmxKkXR/zWa17sOM5plm9SpUiCoNttF6CoR9IN1QsSjBhr6gWJdBQ6OxtfY3cMwmvAnnLQQb5fi5hBrD1kVyqBu8eVx8el71X39Onav99STr1mdr+N06kXAtW40ZRGGRldNIeFTr1oiLuOZBZJW/zWq+MxnXq70InflsfHMz13IDJS/NbHvNMohhuFqfB06jmMB7oim7SpFPD64yd5QiGepBl2vyWBSHKjDEAW9cqa8dvphx3m+7WIGVQCz9joKArFou/nUhXK71QULHci6d1vt2/ahKceeACwLMxbsgQ9AwOBn0vlzDDdObZKMxtlmO7QzUYZyUEU9UojIxgfGws0dpCXYfw2PKoOuO0Bx+tYut96OfWEuVWVXKGQ2ZSD7liscjFWKhXkHbrnkuyRlJp6SYjfOs1XdOdmpmq6+pnP+03lJG1tQFqbbF6BSeSo6j0FJY5GGdXFideAPX3VKt+vRcxQ7OpCUairVxKcXbqIjrBiT49Us88Nk/Fy09i2jYduvx3bNm3Cto0b8ciddxoVrFTdb029f8mpl5b4rWIzoClOPYp6Sgb23FNaKNCtF56460hmkY6JE7HXa19buz37la8MPO5FXRbCtm1pnNTtfptlwVfl1FNt6qj+NmyW0VpINfUSIupFsgEQ0JChu35shqjH+C1JM3TqkWAk3KlXdGqU4TJgF3t6MLh0qe/XIubonDIFY3WLcVEE0kUUA7umTfP1+0l26pVGRhomjsM7dmBsdBRtARdVqvhtFAXZVZHotDTKUMZvo3bqsVGGNvn2dvQtWICtjz5au294xw70TpjQxKNKN7Ztx97xOau84j/+A3NOOAH2+DgWvu51gZ8n6jpZOmUGHEW9DI9NKqee2EAEUP9tyuUy6BduDWzbTkz81uT8R4Xq+iAS1qlnalPJj8BJUY+kGYp6JBBRR9vqMdkow+21pq1cqXTHkPjomjIF2554onY7qKgndVn1Eb0Fkl1TTyWCj4+NBRb14mqUofos46ypF+YdqMaNXMTRTjr1/DFh0aIGUY/NMsKhOuf5/QtGvljE3uedF/p5oo7fKh3JwnXFqVFGlgVf3bFYGb9lja6WYbxUkuZTWW2UofN8TiVKdOfX0qZSwEZNvpx6fs/XBK0NCGH8lgTDpAsmITX1JrNJRtOROuAGdeoJu6VZcuqpBCax068uyrhVRKKe+JkUOjuluLVJouzQne/ogGVZgZ9PB4p6/pjIZhlGUV0r2SijuUR9XaJTT43KNa06F3L5vPR3CNrsi6QPqZazZfmeexojYqeejqPNSYTTdRGa6n7rJ3nCmnokzdCWRAJhyqln27anqBfEPRekpt7kAw7w/TrELKKjrlnx27Q59cbGxow9V1Tdb1UFpKMUxky6iUUHSxwLWMZv/TFAUc8oqmslv3/NJQminji3cnpclvCzwVLo7ka5bv5Bp17rMCpuJk+dinyTmjWZTCqo8KqnB/iI3zq9hqHyD141om3bxvOPP45N69Z5Ovz75s3DtiefdHwuQpoJnXokEKZEj6jEEtGpVy1W7LS71NbXh7knnBDJsRB9xALiYrdUXcZEAYlOPSXKhXtHRyQxL0nUmzEj9HO6EWVNvTgcS3Tq+UN06o3s3Jmo8zZtNKOOJHGnKaKe8Jk7OfWy7OJUbbCoauoB8t+nTFGvZYh7juNGM+pvimg3yoi4+63XenXzunV46oEHsG3jRtfnyRWLGNx3X9fnIqSZUNQjwTC0YI5qF9NPTb32iRNx1L/9G9p6eyM5FqJPUp16SdqNU+2Qjgd16inOh0JHRyRORXEXO+qucNJ7CPFcpiaXfqCo54+OSZMabtu2bbw7aCvh5OIlzSOKBkYNzyd+5pYljUO5QkEpaDmJXFlANRY7JUhEUY/db1uHJIl6SYjf5hLSKMNrM+TJ++/Xep6JS5ZImxzJWRkQwvgtCYgpa7ffTkO6iKJedbdUnLSedPnlmPeqV0VeH4voIdbUE8U5XcI2ymgVp552/NbAeRp3VziTTj0pfhuHK0UxJmXZDRMWp86TomOB6KETxSTxEvVmk2rzQjU3KnZ3Y1S45mR5bPIj6onNMujUax3EOU7UG5duSPMfw4SK32qMY8p6zxGJeiNDQ1rPM2n//Rui9bufLNAxERIFdOqRYBiqV1UO6DDyQorfVhtlKLopUdBLDl0GGmXYtp3tmnomRT2HhXtcNfWixORn2AynnrITJUUVR1SiHl0ywRGF/ByvlU0n6s0mVSd0Faq6elkem1TxW9E1WUVy6lHUaxlKw8MNt6PeuHQjCfFbcR1WRccUYtIpbqqczORlyyL/uxISBop6JBCmXDBBnVheODXKaMbinOgjOvXK4+O+J8XjpZL0fcyUqGeyUYa4cC8Uav81EIGoF3n81uBOdTPGDZUgxfHKGdEhA9AlEwZxnMmyEystqEQ9k9cm3XFOJaBneWxSOvUcHMDi32Z45048eOutuPOaa/BCfYF9kjni3rh0xWCjMBVaop7DNUMnfqva0O8USmzoIglxwrHrblZN2n//RK8NCKGoRwJhamALWjPNi6JD/FZqkc6FSqJQxWT9NsuQhGLLkhpweCFN2BN04TbaKMOhq6vpRhm2bTe9UUYop14Tut/SqeePXD4v/X0o6gWHG2DJwynyaYpQol6G51JhnHovPPEENr34IoZ37MAT992HIXblzixJqqkXdfxWq1GGpqinml+L8/h8RweKAeueq87V+vmgbokOinok6VDUI8EwtGCOStRzit+aKrxKoqF9YEBauPh1c4oTq85Jk5AvFn09R9QFyYOwc+tWvPj00xjevl36malGGdVJmPgZhK19WR4bk4SxyEU9g5Mv3ViaSZSdiTleueLk0Cb+cRobSPNQLk4NXpt0a4e2Wvw2TE09kbUPP2zkmEiyqJTL0gZ0U2vqRSw+6Yw7eYfmOUGcel3TpgUu/6A8V+tFPQ0BdOqKFWjv7090Ez1C2CiDBMJY/FYQYEyhWtypoiqMFCULK5dD55Qp2Pn887X7/Aq/qsmAXyS7vu9nMMu2jRtx/003OU7MTNXUqy7iOiZObLh/57ZtKI2MoC3g+SJ2vgXid+qFQYopxxG/VTn1OF65UuzuxujmzbXbrKkXHGkDjN+9pqNanDYjfqsU9TL8/VCJqSr3HqB2MdYTdAOOJBvV5nOinHqm47c6jTKcnHoazjipLrbPZnf1OI2bVYnQba6Yb2/HhMWLceR3vqN8LJ16JElQ1COBMNX9Nk6nHrv5pYOwop4oFAcR9ZLm1Fu/dq3r5CGwU88hVjrzqKNQ6OrCeLUrmG1jw3PPYeaCBYFeR3JPTp7suItrCnFX12SjjDg2A6atXCndl/PpOG012HnSHM2InBN3kiLqtVxNPYUI4VhTTyF4NsBmM5lEnOPkOzrQPmFCk44mevEp7pp6YUS9MPHbt7zwAtr6+hwfS1GPJAnGb0kwUtYoo1wuq2tUZXh3Oa2E7YAbiVOvyRduL0dreXw8UETWKVba1tuLBWec0fCz9c8+6/v5qzSj1ozJmEQzBI6emTOx9F3vArBrEnz4v/4ru496IHWepFMvMM0Qsok7XovTsIQS9SLepGkmqr970PgtySaqRmDNvF7ruOHCoBW/1XXqqUQ9A5vzVVSina0ZvxXfA+O3JMnQqUcCkfRGGVI8xLZRZjfJVCB2wPXt1BMe3x1gh890o4iwlDWceOOlUkM8duPzz+O5J55AW3s75i9dqozOutXN2vu88/Dwz39euz20bRt2bN2Knv5+38ffFFHP4E51s6KIR37721j6znci396O/vnzY3nNNOPUIIn4RxobMizapAWlUy/KmnpO8VuFcJVl0VclCgSN33JjJpuUhocbbjczegvE4NQLE7/VSHpJ8VthXeCHMJshYjqC8VuSZCjqkUCYGtiicuqpIhCqiCKdeskjEU49cRLQ5Au3Trx2fGysJty98OSTeOK++2o/s20bex98sPQ7kgOtbuE+86ij0DtnDrY/80ztvvXPPhtM1BMnvDEUkDbq1Gtig52Je+8d22ulHcZvzaHbNIHER2Lity3WKMOPU89L1CPZJEmdbwGFEJ2k+K2OU8/APL6K12aI03vJd3RIIjy735Ikw/gtCYYBUc+27ficenAQ9TI8EU0rolMvbPfbQDX1Enbh1hL1djfLWPfMMw2CHgBsr2seUI+bU8/K5bDo3HMbfr5h7dpAMV+xUUb39Om+n8Mvpup+As0V9Yg+7H5rDn7nk0fs8Vs/3W8zLPqqCumrPgvAO35Lp142keY4TRb1TKzR3NCZBzpdM3RMIZJTz7SoV/9vJ1FPcfxRi6WEhIGiHgmECRdMeWxMGkyXvf/9DbdXfeUrvp8XkBtlAIoOoZbluNtKmocUv/XZ2dVEgV3xe9FsUU8VHRcZGxuDbdt48h//kH7m1B3Xq27W4je8QXqezevWeR6LiKreTNSY7P7GpgHpgDX1zKEr8JD4iNqpJ5UZYKMMAGohzrGmHhtltCTNmOO44dbR1QShaup5iHoqw0eo+K0qKq/h1FM5DaUN/8BHRYh5KOqRYBjoLKlyYC374AcxY/VqAMC0Qw/F3m98Y6DDU11MRLdTQWGtJs0nTPy2Ui5Ln3PanXp2paIl6o2XSiiPjyvr7zl19/KqoTSw116YvmpVw31BGmYkoVGGyZp6Wa4flWZEsYHx2+DoCjwkPiKP34aoqddq3w9HUc/j2sAZZzZJWvw26jms0fitQLlclsYi4069ur+Hk6NfNaYlaW1AiAhtSiQQJjoriaJe+8AAembMwKuvuQbl0VHk29sD7zZZloVCVxfGh4Zq94liT6tNQtOCqlGGbdtaAqxKKDZRU6+ZF+5xTbfR+NiY40TL6fh13DiL3/hGvHDTTbXbm9etw9joKIo+zh9x0tQ+YYL27wbF5E41XUvpgPFbc4h/OwrZzcfLcRIW3Y7HSqdei30/HOO3ipRI4y9S1ssi4njZFqD2sEkS0SgjYPxW7HwLBEvc1F7PS9RzqaknPRfjtyTB0KlHAmHiguFUCNXK5VDo7Ay9KBcXeJKo12KT0LSgung7xUdFxO9Uvr0d7QMDvo8hSRdunc63wK6/kei8q+IUldARq/Y888yG+23bxobnntM6ptrrNEEgMDmpZfw2HUhOPcZvA8OaesnDsqxInSK6n7mypl7Gvx9Tli+v/dvK57Ho9a9XPs5L1GM6JJskbRMk0fFbj/m1uDlf7OkJ1YBGlVSpjpu2bYeqqUenHkkSFPVIMEyIesJujOjQCovYoY1OvXTQOXmydJ9uBFfVJCPIJDpRTj0fop6bU0/1HnTEqvb+fix49asb7vMTwVW9dhyCOuO3rQedeuagqJdMorw2SZHrum7o9ai632Z9TFz15S+jc/Jk5AoFHPqlLznW+PJ06pFMkjQ3f6Ljt15OPYNNMmqv51Ayyk2cZPyWpA3Gb0kgTDiZxN2Y7pADt0hemFyJbq9mX3SJmnxbG9onTMBoXcfWUqkEj/LTAMw0yQCSdeHWFfXGxsZcRQxVhFlXrFr8hjfgkcsuq93euXUrdm7dim6NiInqmJrh1AuDOIHNUeBIJKypZw6p3iavl4kgVyigXHedi7SmnoNApYzfOgiAWWHW0UfjLS+84FkKxOlvVoUiQPawbTv5Tr1mxG8D1tQz2SSjSq5QQKVuLl09D93ESR1Rj/FbkiTo1COBiDJ+awo69dKLqq6eDqJQHPQ7JbkhDNYt8ouf+K3bBEX1HnTdOLOOPRbdQjc3Xbee6phicepF2P222RN2okYs4E+nXnDo1EsmYn0ok9cm3Zp6rdwow8v57+XUa+ZcgkSDav3T7E0QaY1m+Pm14rcBa+qZmsfX4zSnd5sjaHW/pahHEgRFPRIMA6KeOHCbjt+KkytJ1Mv4znKaCdoBV4x0B50MJKltvYlGGYD6HJWcGQ4T0Vw+j8Xnnttw34a1a7XO+6aJegYnXxQ40gFr6plDV+Ah8RJl/Fb3eqCqqZfjfAqAhqhHESBzNGuO40bUjjKd+K2jU89jw9XUPL7hNcVmGRpOPVUigzX1SJKhqEcC4TQo27aNZx56CHdecw0eufNO1+hg1E49r0YZXKQkF2NOvYDx2yQ59XzV1POI34r4EasWCaLeWKkk1TBUvm5C4rcma+pR1EsmojubTr3gsDlMMomzpp6f7reMoe3CS9TTEUNIumjWHMeNyLvfhqmp5yGMSfN4E/Fbh9d0ex86Tj1CkgRr6pFAOF0wtmzYgGcfeQQAMLxjBzp7ejB74ULlc0hNDUw79URRT6ypx0VKYhHFuKCiXtA6jUmqm6Et6nk59RQ/89MAon/PPaX7dJxQyl3sGM49k5MvChzpQBzzWVMvOJKQzU2wRCDFb6PsfuvDqVehKxaA93nC+G32SKRTL8k19TyiwVEYPpzGTZUgW4WNMkjaoFOPBMMhnrht48aG+7fXNTtoeLxtY0wQ2Yw79bzit1ykJBaxA64o1jlhyrafJIu9bk298vi4q8gWJn4LAPliUXKJ6EzsxMfk2tqMNrFwwuRONaOI6UB0ENGpFxxGzpNJIuK3Cjea0r3XguTyeeSKRcefU9TLHspmYE3ugpyEmnq6Tj1RcDSVuKnHadx0bZShcupF7IAkJAwU9UggnHaBRPed08A/XipJA3nU8VsRLlKSi+TUEwRgFbZtG5sMJGk3TtepB8jnXz1hGmVUCdKIoFmCmNFGGex+mwpU309OuoOh69oi8RJlaQjdsbq9vx9TDz64drt3zhxMWb7c2HGkHTdBh/Hb7CF9ppblKuzGQdROPZ05uVOdTTdhzLZt2akXpajnNodV/M2SlOIhRISiHgmGw6AsiipOCyqV80p0Z4XFU9TjIiWxBKmpVx4flxY4XdOnB3r9KN0QfvFT7N9N1Kvo1NTzOCeCxBv9uAFNYkqYtW3bV0yZNA+VW4huvWAwcp5MIo3f+vjMj7/sMiw85xwsOOMMvOqPf4zFfZ0W3EQ9OvWyh3jeFDo6PLskR03UG9Nec/K8y99ATMLUC2PlsTF5Hm8ifhugpt64Yj6dpBQPISKsqUcC4bQLJMYfnSYw4gWhY9Ik5A3vbBU97O9cpCSXIN1vVYKWKadeGmrqAQGceorJqBtB4o2JceoFRPV349iRTFSiXnl8HHmx8x3xRBKy+Z1PBJHGb31s8vTNnYvjfvYzY6+dJfJuTj2KAJkjia7mKGOiXqVeAI85kks0WGn4MNEow8Hh7DaHLSuOJUkpHkJEuLVGAuF0wRAHZKddEKlJhuHoLcD4bZoRL+KVctlzEiEKf+0DA4EFpCQ59fyIeqKoXo/qPUjF8B3iElUkp56Gi1AsRBybU8/QpDaJRbCJGmUBfzr1AsGaeskkzpp6dCQHg0691qJZcxw3onTO6tS4dhs73KLBJufxDa/p1CjD5XwsK+bTSdrwJ0SEoh4JhmK3QlULwWnCKdVMMNz5FvAuVMsJa3JROey83HpSPb0QQnGSduN0G2UAwGjYmnpeTj1BNAni1Etb/LZZ3XuJf1RjPjvgBiOJ7hMiL05hUCRix2MzUNRrLZLYSCvKOazb5nEVt7HDLcJqch7f8JriuKkRv9UR9ejUI0mCoh4JhMoFoxJdnCYwUQ3c9bCmXnop9vRIn4/X7qDU+TZEcd20OvVc47ca3W+9JqMmaurFFeOLMn6bhEk7kbFyOek7SqdeMCT3CYXsRJCLqKulXalI1wiOc8Fw+7uxUUb2SOIGSJSNMnSceq5/A5cUhTiPNxG9BVxq6rnMD7Rq6hk4NkJMQVGPBEKyIEM90DtNYGJx6nmIepywJhfLsuQOuC3o1LNt21ejDDcXgOpn4n1eXV1N1NRrVvw26KRW9R4pcCQX8Tvq5/whu7BtO5ELVaKIkRkSiVhmwBx06rUWSYytS8YLg8+tU+Pa7W8gNcqoQ5zHd0fk1NNplNG/YIF0H+O3JMlQ1CPBELoa2battGQ7dr9NQk29BFx4iTNiN2RPUS+DTj0/0VsvxPegWrj7deppiXop736rmvTlPGoPkuZRCCA8k0ZU50oSFqokumsTRT1zuDbKoKiXOZJYfzRK8cktEVLF7W/gp6aesfhtAKfe8o9/XLovKRv+hKhgSzgSCNWgrHLq6Xa/jUTU8+p+ywlropGceqWS6+NNfqdUEyLbtmEJYnbUjBt0GYnnorKrq8/ut1rx24R0vw069RLjz/n29ti/B0SfIN9R0gjdqcklMlFP8ZlTyA2Gq1OPIkDmaNbGpRtRdr/Vit+6XS8UphCn5zYWv/Xh1Jt7wgnY+81vxoTFi6WfudUDJKTZUNQjwVAMbH5q6iWiUYbHz0lzES/mfuO33dOnB35tqahuk/BTT8+LijD5CNIAQnLqaYiOSWmUEXSnesuGDQ23++bPD3pIJAbEcZ1OPf8EEfxJPDgtTsOiFPU4RwqEV/y2GRuEJDoS2Sgjwu63xhtl1D93XE693Z+ZeK3b6+yzcfzPf+74PFHWKiQkLIzfkkCodoFUlmxRSAB2DaKi6yoKp57YqVMkCRde4owo9MbZKENVM7IZO3JG47fC5EUl6nnGb4XFSpBGGc2qqRf089v84osNt+eecELgYyLRw5p64WHH5+QiOfUirKnHMgPB8BJD6e7JFlJToQSsLaKMieo49Vznki7CmFRGJ2qnns96iIzfkiRDUY8EQuWC0Y3fqmKUrKlHRPw49UwLxSqnXjMKXJt06kk19VQRO5/xWx0XlPh3a1b8NsiO6ujwMHZu29Zw37xTTglzWCRiWFMvPIxiJpe4aurlOzroJguI13WUzTKyRRKbCkXa/VYQ3lTivy+n3u5js207MsOHbqMMr8+Ooh5JMhT1SDAU9aqUjTIUkxdR/LNyOXQMDho9PEBD1KPzINH46X5rWigWd/WA5rSuNyrqaTj1fMdv0+TUC/AcmwSXXvuECZh+2GEhjopEDWvqhUcaGyyLrq2EEFX8VtzkoYgbHE+nHkW9TJGK7remxglFqaXe2bOlx7nN85wEx/FSSRIfoxL14CTqecyBpc69FPVIgqCoRwIh7uDaTk693Q0G6hEvCJ1Tpri2OA+KZ029BFx4iTNS91uXRhmSUJzPhxKKVfFbNGEi7hW/9SNMi+ehcuFeLLo+h5FGGTGJ6SZ2qjevW9dwe+4JJySm3iJRI7lJGb/1jWqRStdWMojTqUeC4TX3VJWlIekliedOVCVkVJvrPbNmSfe5ra8kt9vu/6vWkOI6IChODjvGb0mWoKhHAqGM3zoUTxUHPalmQojaZ254OfVYBDrZiN+L8VJJ6S4D5O9UWKFYGb9twsXby6nXPWOG9nNJTr0AC/dAjTJEp15M513Ynery+Di2vPRSw317MHqbeMTvKJ16/kniIpXswslxEpYkdvBMK3TqtRZ+3V5xEFWjDFXSSjUP9ePUq87NRMGwY9Ik5D02mnVx2gwRz0XP+G2EXYUJCQtFPRIMYWArj487RvHEQVPqbtQkUY+T1mSjamU/7uDWE79T3SEt+0lplDHuIZr56fAr1dQLMBEV65UFcuo1qfut389vy4YNDX8jK5/H3OOPN3JsJDrEBkmsqecfSfDnBlhikOK3GgLR0PbtePTuu/HUAw84bhQlsYNnWqGo11okMn6r2tSOwKnXOXmycu6YdynX4JSikAwfBmutO42bdOqRLMEcEQmE8oLhgOTUi6hluYjX4ExRL9l0DA7CyuUaJsCl0VG0KT430+7PpDj1vOK3xd5eFHt6MLZjh+dzedXU0zkfisJiJU019fyySYjezli9Gu0DA6Gek0SPJDwzfusbOvWSi7hY9tr4qZTLuO/GG2tiXml4GAsPOkj5uIbX4WceGC83ulPigKQTv26vOFDNf2zbRtgiCtJce/p0ZdkWX/FbB6eeqc63gMKpt/v/fl2Wfta+hMQNnXokEH4WzOKgGeXAXY+Vy7numCZhN404k8vn0TFpUsN9Ts0ypO+UDwebisQ49TxEvUJHBzomTtR6LrGOT5BFXJDOok3rfhuioLFt21I9PUZv00GQDs2kETZNSC798+c33Ba7c4vs2LKl4ToiblZUSWKEMK3QqddaJNKppxL1DDyvKmmlEvV8NcrYTZSGD0lIrDr12P2WZAiKeiQYPopme8ZvI3LqAe47pknYTSPu6HbAlSYDGXHqeYl6+Y4O7YYgnk49nfhtgHplzXL9hKl9smPLFum7No+iXipg99vw0LWVXCYfcEDD7aGtW11FIvH7Xx4fV54Tzdp8ySJslNFaJNHZHFX8VnTqdU+frpwvu4p6uk49g6WZnGrq+b3WibW6KeqRJEFRjwQiVPxWbGoQUU09QK6vVA/rBCUfqQOuk1PPcC2OqCZEfvHsftvRgfYJE7Sey6v7rc4iThRM7ErF03WQlPitn09PdLMMLFqEgb32MnBUJGqCNHMhjbC+WnKZfOCBDbcrlQqGXMovqJyq44rrKIVcc3idL3TqZYsknjtO8duwqDbQVaKea/xWt6ZelKLe7nPQ72ZGmAQIIVFDUY8Ew0f81sup1x2hqOfWLCMJF17iTlCnXthGGarOuUlslOEnfis1yhAnogGceoC3EyopjTL8TL42v/hiw+15J59s4pBIDARp5kIaSaLzhOyic9Ik9M6Z03Dfzi1bHB+vEvVKioZTFHLNwfhta5HEcyeq7reqDXTf8Vtdp57BFJe4+b31pZcA+Bdkk1KahxAVFPVIIHw59eoueJVyWYoURhm/dRX1WDMm8UhOPc3ut2F3+KxcTpoUOQmKUeIZv21vR7uuqFd3Htq2jS27JzX1z+WF6NQDvGuWSZOmmM67oPHb0aEhqU4V6+mlB3a/DU8SnSfkZUS33o6tWx0fq2rKQKdetLBRRmuRxE2QqMQnaQM9SPzWwUUYZb31uSee2HB7aPt27Ny61XcZGtWGP916JClQ1COB8NUoo27AU4kyUcZvnXZMc8WienAmiaJTuKiLEwpgd40gwdFmQigeWLSo4faG554L/Zx+sG3bO37b1qbv1KubvDzz0EN4SXg/On8zlUjuKeolpKaeLmL0tn3CBExftcrEIZEYYE298CSx8Dt5GbGunquop/j+qzaokihMpBXGb1uLJDYWUs5/Iqip59gow0UccxT1hPWhScPHzCOOQM+sWQ33bVi71rfLkk49kmQo6pFgBIzfiqJMrlhEh2ZNsCA4iXqcsKYDnfitSugzMRlYePbZDbdfeu65WAUCUahUYlm+47fPP/EE1j76aMPP8h0dOPDDH/Z8DtX55Bm/bdKEN2iXMlHUm3viicqdaJJMpA7NrKnnG2mhw/qziWKK4NTbuXWr4/imcoUp47cJFCbSCuO3rUUSO0dHUVOvPD4ujRNd06crRb2Cm6inEMZUc3uj3W9zOSw855yG+zY895zvJAlFPZJkKOqRQPhxwdRPYKR6DFOnRlb7AXCO33KRkg50GmWI36lCVxeKPT2hX3vxG97Q0OW5PD6OTS+8EPp5dfGK3gK7zi0/8duXnnsOT95/f8P9Vi6HEy67DFMOOsjzOSzLkhsReIh64gKmaU49jYlXeXy8VmulCrvepgsxfmvbNuNuPqFrK9lIzTLKZQw7NMvQbpSRQGEirXjGbykCZIokRteV4lPI5xRdesAu4c0yEL8Vn9vK5dAxOBjgKJ1ZdO650msaqakX/tAIMQJFPRKMgPFb0VUVZfQWcO5+y13odKBy6kndlBXFda06MS4ovXPmYPYxxzTct/7ZZ0M/ry5e0Vtgl2DWqTnx2bJhAx656y7p/qO+9z3Me9WrtI9Lije6OKHsSkX6vGJz6gWoqbdlw4YGETJXKGDO8ccbPzYSHaJTD2BdPb8kcZFKXqZr6lR0z5jRcJ9TBFclaKvKoEhOPW58BoZOvdYiNY0yQorJ4qZ6sbsbbT09yKucej4aZQCyqNc5ZYrxEkmDS5Zg0rJlro/x+uxYU48kGYp6JBBBG2WYbmjghZNTj4uUdCDW1FPVmZO6KRu07C9+4xsbbm/ZsCG2hhmiU0/VpMIul6WuXk6MDA1Ji4mVn/sclrzlLb6Oy49TT7WgjM2pFyAmsVNYGE8/7DC09/cbPS4SLarzhHX1/MEoZvIR3XpOHXB1a+o1y1GdRbxEPTqHs4Nt24ncBIlC1JM20KdPBwD/3W81nHpRNVBc9LrXuf6c3W9JmqGoRwIROH5LUY/4QNX9SqwHpHLqmWL+6adL36GNMUVwRVGvQ4giA7smE7o19USWvvOdWH7RRb5/T/x7uAkmTRX1NMeobZs24e7rrsNd116LjS++2PCz3rlzozg0EiHKDs2sq+eLJDpPSCO6zTJUrjAtpx4/88B4RZfp1MsOKkEnCeuLKMQnVZMMQD3XchX1NJx6Jjvf1rPX2Wc3lNURoahH0gxFPRKMoI0yHC4KUeE0MXUr4kqSQ6GzE8Xe3ob7RGFYqtNoUNQrdnVhj5NOarjvpeefN/b8boixVlVDGT819eqZd+qpOPxf/zVQTFkUTVydeoqfNatRBgBpp9q2bTx6113YuXUrhrZvx9C2bQ0/ZwQtfeTa2qTPnk49f9C1lXx0m2WovvvsfhstXtdVinrZQbVxmQRBXNkoI+RzSqmY3U49pbDps/ttXE69nhkzpLI69QTpfsv4LUkKFPVIIPzEb+tr6klOvYgG7iqOTj0u1lODVwdcyalnWCje88wzG25v3bgxlgiu6NRr6+uTH1SpBHLqzXvVqwLXKxGFrsTGbzW6v42VShjZudPxOVgsPn1YliULz3Tq+SKJcTLSiBi/LY+PK8cy20HUE8dCfubxwfhtdlCdX0k4d6IQn5yEN9XfwLWmno6oF5FTDwAWvv71jj/z+uxU82Y69UhSoKhHAuHH4dPg1EtI/DYJO2lED68OuFHv8M098cRGIcu2pZhmFIiiXvvAgPSYPU4+Gfm2Nt/dfsM40Hw1ylBNeGMSynR2qr0cE3TqpRO/HZpJI2yakHy6Z8yQas6qIrgqAalSqUifMSPX8UERIDukyqlnuFFGdf2m2jQLHb+N0PCx4NWvdrym5dvaXH83ir8rIaagqEeC4adRhptTjzX1iAdeTr2ov1PF7m7MFSK4G2OI4IoNQdoGBnDsT35Sm1RMXbkSc447DgB8u/XCfP/DNMrIt7cb6Uysg85OtZsgCXCcSCuS8ExRzxeMYiYfy7KUEVwRp/FZvG7yM48POvWyg+r8SsK546fuuS6S8FaN3/r8GzQzfgsAbb29mHfaadL9ubY2z78b47ckyVDUI4Hwc8GoTmDK4+PSIjrq+G2RTr3UI7oR6hcjtm3HEukWI7hbXnop8giu5NTr78fe552Hs++8E6f9+c84429/q52Hfuvqhfn+F3wIJs2MdOnsqHqJPXQopRM/31Eiw6YJ6UBqlqHogOskIInXL3Fhzs88OlhTLzuI55eVyym7wcaNZVlSQ4jQjTLEmnq7N9B9x28Vwpg4340yfguou+DqjHlslEGSDEU9Egi/3W83vfgibvvLX6SfRe3Uc6qdl4SdNKKHeHGvn1iMl0rSBbU7AlFvj5NOij2C6xS/Hdx3X8x+xSuQr5s4xunUE4VyP069OBeKOmOUV601jhPpRPqOBqypVx4fx8jQUMtM2nds3YoXnnoKQ9u3N9zP8yCZTD7ooIbbqmYZjk49oQOuylVNooGiXnZQbVzGlUbwQpoDhbiOKTfQdzv1VNfXXKGgf1wKojZ8zH7lK6XSPjrXOYp6JMlQ1CPB8BG/LY+P4+E77pBcevmODnXxf4M4OvXowEkNklOvbjEi7hwCQGcEQnGxuxtzTzyx4b6oI7ji+aKqqVfFr6gX5vsfKn4bp6inMfnyit9ynEgnJuK3O7duxZ3XXIM7/vpX3H/TTZmvy7f1pZdwz/XX44l775V+RtdWMhGdeuNjYxgdGmq4T9epx0YZ8UERIDskObYuimdhvnWqZIpboww3dBotRi3q5YtF7PVP/9R4n8ZGhrLBHM9nkhAo6pFAuO1EtfX3N9we2rZNuSDqmjo18h0tx2Ko3IVODW419cSJRsekSQ0ONpMseM1rGm5veeklye1gEqn7rXBe1RNn/FYUytMUv5Vq6nnFbxM0QSf6mGiUsfaxx2p1frZt3IiNL7xg5NiSyvpnn3VcnCRpoUpepnfOHGnsF5tlBHXqceyLDtbUyw5Jjq2L4lkYMVncQLdyuZrTrX+vvfwdl4dTL1cson3CBH8HGIC93/jGhojy5GXLPH9HpwEbIc2Coh4JjNNuS++cOQ23ndwwUUdvATbKyAJu3W/jLK67x8knN35vbBubIlzo63S/reI7fhvGqSe4oNyijUmL3/p16oX5O5HmIX1HA4h6Lz33XMPtpx98MNQxJZ0RweFVT5IWquRldJpl6Dj1bNumUy9GGL/NDmly6oVxlI0Jc+3OKVNqrrUFZ5zRMPde8ra3+TsugTgMH8Aup/OR3/42eufOxfTDDsPqr39d6/dMiqWEmISiHgmMk6jXM3t2w21RnKgy94QTjB+TiJOox0VKehDF3/L4eG0BIjr1uiMUitt6eqTv7EsRRnCl7rcuTj2VqOdWrDlUo4wwTr0YHbLK+K1w26vWWoGO3lQixW8D1tSrJ+sTd3GDpB7G0JOLV7MMne63qu92ksSJrEGnXnZIssPVpKgnOvXqRbx8sYizbr4ZB37kIzjsa1/DEf/6r+7H5RG/9Zs8CcPSd74Tb3z8cbzmuuvQv2CB1u9Ix5/xuQFJD86VLAnxIJfPQ5yaFHt60CHYplULqpWf/zwO/OhHIzy6XTgtRrhISQ9iTT1g14KkvasrVqcesKsL7hP//d+121t3R3CLbW1GX8e2bV9OPdUkqNjbi9FNm5SPD/P9FwUTNxeU6EhIXfyW40QqMVFTT6SVRT0KPMllikOzjKrTxdGpVxe/VY3hSRInsgadetkhyQ5Xo/Fb4fogNqTrnT0bq778Zb3j8nDqJX3sEde+WZ8bkPRApx4JjGq3pWvaNMkhJIp6AwsXYsVFF0VW+6wexm/TT/vAgPSdqu4aSruHEUe69zj55Aa3mW3b2BRBF1yVCOE3ftvW2+v4+DDff1+NMppYb0a5G+w3fstxIpWYqKknkeGJ+3id+1kFz4PkIjr1xkqlhgW4jlNPJfzxMw/H/NNPd/wZRYDskOSu0VE2ygizge4p6iV8M5XxW5JUKOqRwKgWzd3TpiEnuJbGhYVznAO2U/dbTljTg2VZjh1wTU40dGjr7ZUiuFF0wRWjt4B/Ua/oIuqFcur5id8mzKnH7retgfQdNRG/Df0MycXNpQck3znRyvTNny+VZqhGcG3bdnSF1Tv1VN0rOfaFY+XnP4+2vj7lzxi/zQ7N3Lj0wmj81mAqxrKshgYVIkkfexi/JUmFoh4JjGrRrHTqCQJFnDtZrKmXDZw64LrV+YiKBWee2XB7y4YNGDfcBVf1fG4inVLUEyKIVXKFAnKF4JUXRGEusU49jS5lXg4uiv/pxESjDJEs78Z7inoJX2S1MpZlyXX1djfLcIt5jo2O1r7TdOqZZ3DJEpx911044Ve/wv7vfW/Dzxi/zQ6JbpRh0FFmegM951JXL0l/QxV06pGkQlGPBEYZv50+3TNWG+cCwem1kn7RII04dcAVO3KJdT6iYN4pp0gR3I2GI7iiWFnfaUyFqqaeU/w27HdfPKfcXAdNdeoZiN9SzEgnfuo+apPhibuXqMfrZbIRRb1qB1zXeqe2XdtwFR9n5XKhNn7ILvrmzsWeZ56JCYsWNdxPUS87iC7XJI2VXjFXP4hz0tBzbZdjS/q8S5yLU9QjSYGiHgmMUtSbOtW16yYQ74Bt5XJKZyCdeulCdOqVdrsMxGYSHYL4FwVtvb2Yc/zxDfeZjuBKRYlnzHB9vJ/4bdjzT5y0qqJbVZpZRNpE/DZJE3Sij+jU8xu/VU3SszxxdxX1LMvzmk6aiyjqDe/YAcA75lmN4Ko2XyyXeBzxh1iShvHb7JDo7rcRNsoI69RzExyTLuoxfkuSCkU9EhiVc6hr2jTkPTqBxr1QVkVwuVhPFyqnniqi2jE4GMvx7KmK4Crq4AWlNDzccNtL1Mu3taHY09NwX2ROPTF+W6k4ThabOeHV2aVm99tsEtapp3LStKqoV+jspMCTcMTabdXvr9f3vup4T3KEMAuIc2I69bJDorvfGqqpV1Y0UmL89mWyOzMgaYOiHgmMY6OMBDn1ALWol6TdNOKNqqaeSkRTOdaiYN4ppzTsvtu2jU0vvGDs+f069QD5vUfl1FP9vtMiRYqmxFhPU1WMWRRmKl7xW44TqcRPMxcVSidNi4p6SV9gEUhRWbdaefXURL0EF/vPApJTL8NjSauRaKeeoe63qutD6PrVbk69BP0NVTB+S5IKRT0SGMdGGR5OvSSIelyopAup++3oaEP3PmDX5xzXZKCtrw9zjjuu4b6XTIp6Yv2S6dM9f0cUPrscoshhv/uq33daPEoT3pjPfa+datdYpmV5jmUkmYhjvl+nnurxWZ64i7VJ60n6Aou4iHpeTj2X+C0xB5162UU6d2LcuPTCVExUnI8We3rQJiRD/OLm1Et8QkIUSzM8NyDpgqIeCYxu91uR2OO3igsEJ63pQorflkpyPb2YXHpVxAju1g0bjF3cgzj1Fp17bu3f7RMnYu6JJyofF3aRrhT1HBaP4mck1jqLGq+YhJuDq8C6UqlFjN+Wx8d9nZtGGmukCDr10o1T7Szd+K3oqKaQaxZxTkxRLzuIZWDEMijNRHLqBZyfmu58C8DVqZf0a44kSFLUIwmB7a1IYMSJpJXLoXPyZM+aenFPGFU7QonfCSINtPf3N9wuj49Lk6m46ulVmXrwwQ23K5UK7EpF3XXVJ6NiTT0Np95+7343eufMwZZHH8WeZ53luHAw3f0WcF48SuKkxvswidek1s2pl+cYkVpU4rGfc9PJeWrbduaEXtu2PWvqkWQjdarVjd/SqRcL4pyYjTKyg5Sq0NiAjQtTNfWkeZwBUS9LjTLo1CNJgaIeCYw4sHVOmYJcPp+4mnqqHSHuRKcLcfezUi5L8du4nXp5xffcxMXdrlSkndGemTO1fnfeq15V+/eO555TPiZ091tFvMRpkRLEcWgSt0mtbduuThaOEelFdOoBu1yZbpGfepy+F+VyGQVRQEk55bExV5GBAk/ysQzX1PPamCX+EMs40KmXHaSmZjFvXLphqqFDFE69NMdvKeqRpML4LQmMOLBVL2ZedajiXiSonBVcqKQLVaRBdLO1xyzqqVw/Ji7uJUVX3yBimJO4HlasUgn3KhGkPD4uOeFiF/VcYhJe0bSkTyyJMypRz6spSsNjHb4bfp4jLbi59ACgkKAaUUSN6Zp6HPvMQqdeNrFtW3bqaW7AxoGp+K14jegyIVymOH5rqlYhIaahqEcCI+60VAv1qxxM9cReLJ+iXupRdXIdHRpquB13/FYZ5TMh6gkTKCufl2oK6uAk6pmIlYrnj2qRohILmu3Uq5/UujbJAMeINKNqjuSnA67TotvrO5NGvEQ9ngfJR3KO7P7+6tbUk5x6FPWMIjn1KAJkgrHRUWnOl8n4rejUE5qyBSHNTj12vyVJhaIeCYw4kaxaspPW/Zbx2/Sj6rQlOvU6JkyI63AAKOoYwZBTT1GHzq3+iBNROfUA+RxWLR7F99HW1xe6Y5pfJFGv7t9eAk3SJ5bEmVyhIF2H/DS/cIvfZg1Ppx7Pg8Tj6NQLGL/lZ24WVfdbCgHpx9QGbFSYiomK3dFNxG/d6tsmffyhU48kFYp6JDDigrkm6iWs+63KqacSZEhyybW1SZ+ZJOolwKlnRNQzVKPFyTFrYsIkCoM6Tr1mxFLcJl9eAo2qdiBJD1IHXANOvUzGbwUXhgidesnHaYNJFOvahY2vsVJJ+bikL6rThmqjm6Je+lFtwOrWbY2DIJvBKqSIsQFRT1Uio0rS515um8WENBOKeiQwYnHmqqiXuPitoQsbaR6WZUl19cTut3HX1IvMqWeoRotj/NbAhEmK3yoEk9Emd74F3OO3XgINF7bpRlw0mKip15JOPYp6iUeciwG7RT1BnO6dM0d63HipxJp6EaNqPMJmGelHJeolCRM19WzbjqRRhpuol/Txh40ySFKh2kECM3XFiobbs446CoC3U4+iHgmCqq5ePZ1ZceoZ6hhr5XLK774Rp54Yv9Vx6jWh1ozbue/p1KOYkWoKYZx6TqJeFp16XjX1Er7AIg71qRQOPNUG0VipJJ0bSV9Upw2lU4+iXuqRNi4T1CQDMFNTT9w8B8zU1HObzyf9msOaeiSpMINIArPi059GacsWbHrwQez7trdhcN99AWh0v43bWk1RLxOoOuDWI0aLoiauRhlhdn+tQgG2MCkzsWATz2Fbo6ZeU0Q9l8kXa+plm6LQLMOXU88pfkunHkkgTk49UThq6+tD+8AARrdsqd03NjoqN8pIePwtbaicehUKAaknCXMcN0zERFWbYV5zcR3cniPp1xzW1CNJhaIeCUz7hAl45X/8h3R/4uK3ipp6JH242fWB+GvqxdYoI8REMV8soiKIeiYcaEG63zZjwit+RvXHye632UbsgKtanIyPjeHJf/wDwzt2YNoee2DKrFkA6NSrhwJP8tGtqVfo7ETnlCmSqCeKf9zQMAvjt9kkCXMcN0yIT6proYnxwVXUS/j4w/gtSSq0MBHjeDr14h6wKeplAq/dwY6Ya+olPX4LqKPwkcRvNZx6PU2IpnRMmtRwu742jJfrKukTS+KOVFNP8Xk//eCDWP/MM9i+aRMevfNODG3f7vhYIHs19WzbplMvAyivRZWKLOp1dEjdOcdKJTbKiBjVdZiiXvpJuqgnjt1BNqXEDdtcoWCk0WAb47eEGIeiHjGOZ029mBcJB37oQw23Zx55ZKyvT8zgGb+NW9RTxLrDXtwr5bJUw8S0qGfCgebV/VYlFjSjiHTXlCkNt+tFPc/4LcWMVKNTU2/bxo0NtzevWwegdbrfju/ufupG0hdYxMWpJ3yP8ypRb3RUOjf4mZtFdR1m/DY9lMfH8dg99+Du667Dc489VhszpY3LhIl6ncL8x6vTuQopmm9obHBtlJHwuRfjtySpUNQjxlFFDeqJexd49nHHYe4JJwDYJfys/PznY319Yga3nb1ib69n7Ns0lmUZt+GrJl1JdOp5db8dL5UkJ0IzikiLBZ39iHqM36Ybne6342NjDbd3btu267Et4tTzcukBasGIJAtdUa/Q0SEt9MdGR9n9NmKU9Xfp1EsNzz/xBNY9/TR2bt2Kpx54ANs2bTK+ARsFqnPdL1G5eBm/JcQ8nK0R43g59eJeLOfyeZxy5ZXY/tRTaJ84Ee39/bG+PjGD2yQg7np6Vax8vrFJRFhRT1hk5zs60D4wEPj5InPqecRvJbHAstA1bVro1/WL2061l0CT9N1i4o5uTb16PEW9jDn1xE0EK5eTxHixJidJHk6NMiSXTUcHuhi/jR3LspArFBo2FujUSw/PPPRQw+0n77sPi1eskB6XtO633cKcK1Ginlv8NuFzL6kBCc9lkhDo1CPG8aqp14wJo2VZ6Js3j4JeinGz68ddT6+K6doaqhotYRq9KJ16MTTKEMWCrilTYndSAuGcelzYphup+62wOKkoao4Nb9++6/4Wid+K403fggXSY8oBFoIkXsTrEADAoVFGhyJ+S1EvekThlUJAehkZGpLGzkJXF9r6+pp0RGo6hflPoPhtRC5ep036fHt74psbMn5LkgpFPWKcpMVvSTZwdeo1SdQzPVE3XaMlKqee2BFTcuoNDzfcblYsxU3U8xJokr5bTNwRNwFEp57o0gN2nb/D27e3bPx2YM89pcdQ1Es+jk49RU09qc6owqnHjsfmEa/FbJSRXpQ1g0NuwEaBW01hXeKO36Zhfcj4LUkqjN8S43jGbzlhJAFIoqgXh1MvDKpaS5F0vxWdegnpCufaKIPdbzON2ChDFHFVoh6wK4LbMvFb8TxVxMfKjN8mHpVTTxW/VXa/HR0FBDGCY595xGsxhYD04iTqJQ3VpqZt277ER1WE3wRtTk69FIw90ry/ScdBiAidesQ4bk69fHu7smsoIV64NcpoWk09UTQzLOp1hewYG1X8Vup+K0z8RhMy4RXjJ+NjYzUBko0yso2XU6/sJuo5xW8z7tTrnj5dGnP2eu1r4zwkEgArl5OEOVsRI893dkp1RsfHxqSxkKKeeejUyxC2nZg5jhuqOsZjPjdpYnfqpWDexfgtSSpUV4hx3Jx6nCySoNCpZwYTO6GeNfUSMuEVd6qBl916rKmXbSSnnkb8FgB2bt3auk69GTNw5Le/XXPT73HKKZi6cmUzDo34RHKCQbEgVzj1AFlg4thnHknUoxCQWlROvbClUqKgc/JkSewf0+h4Xk/cNfXSMPYwfkuSCuO3xDhujTLofiFBcRP12ptVUy/hop6tECciaZTh0f22WaJex8SJUofisdFRtHd2erquWCYg3YiNMkRBbtzBsTC0bRvaHM6RVnDqzTvlFLzh0UcxumkTJi5Zkrg6UURNrlBApU6oVjr12tt3udoty9VdkoYIXNpg/DZbJGWO40auUEDH4CBGXnqpdp/funqiwz3yRhkpGHso6pGkQqceMU4un5d2h6qkYReGJBO37rfNmlCZnqib3v1VNYOIoqae6PRQiQXNwMrlpLhZtQOcl0DDsSrdFDy63zo59cZKJYwKjV6qZMmpZ9u21A2xOo72zJiBwX33paCXIlRNm8RNnUJnJ3L5PDonTXJ9Lo595mH8Nlvo1CNNAmJawW8HXKmmnqGxwamcTiEFm6lSDVOKeiQhUNQjkeBUV4+TRRKUoktNvaaJRgZ37MbHxyXRIKxYqRL1TLhl3WrqVSoVaTe4p4kTXqcOuJ6iHl3FqSZI91uvn2Wp++3Y6Ki0GEmi24TooVpoit/X6tiviuDWw3maeejUSydOn1NSNi69cJr/6KKK8JuA8VtCzENRj0SCU109xm9JUNzit81ajJosmKuqdRK2UYYyfhtxTT3VpLGZYoFTB1ynZghV0hADIc6Iop64OHFqlOFGpVzOzAReXJRa+byn2EOSi9Kp51APy+tz5jzNPHTqpROnzT/x/mZuXLoR2qkXc029NMy7KOqRpEJRj0SCU109ul9IUJIo6pncfRcX2W19fWhzec86qJx64jEHwc2pJ76PXLGIDo+4V5SIHXC147ccq1KNqlFG/fnp5tRzIyt19aRO21Onym4vkhrEcb1SqUjXo+qYJpYkEEmDWyZt0KmXTrw2/6qE3YCNCvFcD+vUMyX45woF5XOlYd7F+C1JKhT1SCTkHZx6nCySoDiJeu0TJzZtImByxy6KGi12RDXA3Jx6qgLSzazNpXLq2YoFrwjHqnQjNsoAGhcoQUW9rNTVS0Ohd6KPKBqpvqd5DaderlikuBsBFPXSic4mTsfgYGLFKOPxW4PzItWcPpVOvSYdByEiFPVIJDg59RjrIEFxcq01czFqUtQbjaBGi8qpZwI/Tr1miwWqSW1ZY/edY1W6EZ16QGNNvMCiXkadekmtCUX0EK9FKlFPJ37LzYxoYPw2neiIes2e47jRNW1aw+2wjTKiFvXSMP5YuUbphAI9SQoU9UgkONXUS8OATZJJvr1d+b1q5mJUirKGmKhHIYapauqZQNxN9XLqNROVqKcjdnKsSjeqbtn1n3vg+G1WnHoOnW9JOtFx6lXHNNG9rHoMMYuq5iFJPqkX9cLGbyOqqQc4iHop2Ew1WUubEJNQ1COR4NT9Ng3WapJcVJOAZhYolnbsQjxXFM6ZuJx69XFW8X00u4C0WFOmNDqqVSeHTr10o1p8mHDq6dZYSjp06mULUTRyE/U6XJx6nKNFg1iShk69dKAz3ida1FNsavoRlKN06qnSN2mYd4nlCSjQk6RAUY9EgqNTLwUDNkkuKlEvSU69MBd3sfttop16ivO4OvkbHR5uuL/ZYoE4qR0vlbTqouXb26M6JBIDVi6HglBXr36BIna/1W3mkpUJfNIctSQc4kJTHONyxWLtetXF+G3s0KmXTrScegneEBEbhQHAWKmk/ftSowzGb9n9liQWinokEhy736ZgwCbJRSnqJammnsn4rQGHW2ROPcV5XN3RlmJ9TXbqiaIeIAuPKprZ3IOYQRT1qkKHbduSU2/G4YdrPWdWJvB06mULL6de/Zjt1v2WG6/RINXUy8g4knV0RL1mpxHcUEXt/URwY4/fpmCNyJp6JKlQ1CORINUa2w3dLyQMqjpZSRL1gmLbdiSNMmJ16lVFvYQ59TomTZImYaNDQ006GhIn4nhRXaCpnJozjzhC6zmzEJuzKxVpYUenXrrxqqnXIOq5xW8p6kWC5OrPwDjSCqS9pl6uUEBbX1/DfX5KT0jxW4PjQ7G3V7ovDeMPa+qRpEJRj0SCU029NOzCkOSiFPUyEL8dHxuTJvkmJopx1dQDdk3+yuPj0mKy2U69XD4vLWJHKOq1BOJ4Ua2pp1rUzDzySK3nzMKuvKoDYpIXpsQbr/htvWu1fWDAceOVc7RoEJ16lQyMI61AOeU19QCgrb+/4bZYesKNuGvqpWH8YfyWJBWKeiQS2P2WREFZtRhtZqMMQ/FbMQoHAN3TpgV6rnqcFm5hUe2m2uWy+n0kYMIr1pURnXqdU6Y07Brvc8EFsRwXiRanmnqiqGflchjcd1/J0aAiCxN48TzNFYvoGBxs0tEQE4jXIjennpXLOTbL4BwtGqQ5cQbGkVYg7U49QBb1xn1s9kYav1Vs0qdh/GGjDJJUKOqRSHCyUKfBWk2SS2n7duk+Vc20uDB1cRcX2R2TJhmJqh/74x833F7+yU+Gfk5gV7058fgqlYr0Ptr6+pS7sXEj1pURa+p1DA7izBtuwD5vfjNWXHQRjvjmN+M8PBIRklNv92JGFPXaBgZ2CXtLl3o+ZxYm8Kp6emJEnaQLr/itWODeKYKbhkV1GhE/n6x00c46XqKelc+71qhMAu0BnXq2bUfbKCMr8VtCEgJncSQSBvfdV3k/J4wkDKWtW6X7onKj6WCqo11UnSjnnXoqFpxxBqxcDtMOOQRL3/lOI88LyJOvisKpl5QdbFH4FeO3hc5ODO67L4754Q+x8vOf5ziVEQpONfWE7n8dEyYAACbtv7/3k2ZgMS6ep11skpF6PBtlCOO1Uwdck4t28jJslJFOvES9rmnTpM3dpCHFbzWdeqrkSeSNMlIo6vFcJkmheathkmnmnXwy7vza16T7uVgmYSht29bsQ2hAmsyZEvUMLbKLXV048de/NvJcIoXOzgaRVeXUa3aTjCriTvq4IOqkYSJJ/FMUu986xG/bq6Lefvt5PmcWamFJHaoTIr6T4PhplAE4d8DlWBgNbJSRTrwclT0pGDtFp55uowyVoMnut2yUQZILnXokEqYecgjaJ06U7k+DtZokl1nHHNPsQ2ggKqdeVwomiiqnntTBt8lNMqp4RbTF2mskG0hOPYf4bXXRoyPqZWFXPqmOWhIcz5p6whjH+G280KmXTrycemkYO6WaepqinqpJSNSiXhrWiKypR5IKRT0SCbl8HnuceKJ0P3eBSRgO+tjHGm4f86MfNelIdhFVTb2kONzcEM/lJDv1PEU9LmQziW7326pTb+K++3rXlsuAwyap5ykJjm+nnlP8lnO0SGBkL514inoJ2bh0Q2wApRu/jdqpx+63hJiFoh6JjD1OPrnZh0AyxtQVK3Dyf/839j7/fBz9/e9j7ze+sanHY+rinsZFtlZNvYRMeL0KWadhIkn8I8ZvazX1hEVN1clQ7OpC/157uT5nFibwdOplD6/astrxW46FkZAXnXoZ2BxoBbzit2mYqwVtlKES9UyK/qrnSsP4w/gtSSqha+rdeuutuPzyy/HII49g586dGBwcxPz583HOOedgyZIlJo6RpJQ5xx0n3dfZxE6lJBvMO+UUzDvllGYfBgA5fmuspl4KFtlaTr2EvA8vpx6Lw2cTMX5bFfPKwmKl3tE3aelSbHn4YcfnzKSol4KFKXHHqyOjuFgWO4I7PY6YgfHbdJIFp177wEDD7aA19fIdHbAsy9RhKTci0uAUplOPJJVQTr3f/va3OO+883D33Xdj+vTp2G+//dDX14drr70WZ555Ji6//HJTx0lSSPvAAPY+//za7d65czF52bLmHRAhhjERv7VtO5WF63WcekkpIs34bWsi1hGrLlLExUr95z915UrX50z7BN62balRjJPAQ9KDX6dex6RJWo8jZpDq79Kplwo8Rb0UbIgE7X4ruhRNjw2qjQivcSwJsKYeSSqhzp6f/OQn+NCHPoS3vvWtDfeXy2V88IMfxHe+8x2cccYZoQ6QpJsjvvUtTNpvP4xs2oQlF1yQigGbEF1M7NiNjY5KDr+uFEwURadeaWREWqgkRZzsnDwZsCxHJyVrfWYTsaaejqi3z5vfjAd+/GNsfughdE2bBgAYevHF2s/TPoFXLeiqNQVJepFc4wJ06jUXKX6b8nGkVchEowyhpl5Qp57psWHCokXSfR2KBotJg049klS0nXpf/epXURJ2dzdt2oRDDjlEemw+n8dhhx2Gl156KfwRklRT7OrC/u95D1Z+9rPoSYFNnRA/iCJ1kIu76G5DPu9ZAy4JiJHVkZ07pcckRZzMFQroGBx0/Dm732YTp0YZ0mKl7vNv7+/H2XfdhbPvuAOv/8c/pI64aXfYqBZ0FPXSj9eGqTheO11j0hB/SyOSU49CQCoQSzWIpGFdI9bUS4qo1zl5MvZ9xztqtw/88IdTsanAmnokqWiLen/4wx9w2mmn4Z577qndt3jxYlxyySW45557sGPHDlQqFWzbtg033ngjfvzjH7OmHiEk05jYsRNFvbaJEyV7fxIR3W0jQ0MNtzunTJHcCc3ELYKbhokk8Y9TTT2vxUq+WMSk/fdHe39/5hbj4oLOyudRVHQhJOnCb029Yk8P8u3tno8jZpBq6qV8c6BVcGuUUejslKKtSUQ8xkq5rHUdU9XUM82Rl16KM2+8EWfdcgtWfeUrxp8/CujUI0lFW9T74x//iIULF+J1r3sdLrnkEpRKJXzqU5/C2rVrcfbZZ2PFihVYsmQJVq5ciQsuuABjY2O4+OKLozx2QghpKiZ27ERRrzh5cphDig1xgic69ZK2g+1WN4wL2Wzi2P3WxaknYsKNmyTEenrtAwNGi5+T5uBZU0/4jluWpXTrsRRBNLBRRjpxi992z5yZirFTJTzqdMCNuqYesGscmnbIIZi6fLnx544KqaZek46DEBHtAmcTJkzAt771LVx11VX4whe+gGuvvRZf+cpX8D//8z9Ys2YNHn/8cezcuRNdXV3Yc889sXLlShQT5NIghBDTmCiYOyYssttSUFMEkCd4Yq2upERvq7h13qaol01EIcMxfuvy+UuiXsodNqJTj9HbbOC3UQawy02949lnG+5jJ/BoyNo40iq4inoJm+M4IXa/BYDx8XEU2tpcf0+6TlLwBwBYOcEPRYGeJATfXQtOOukkHHLIIfjMZz6Dc845B+effz7e+973YvXq1VEcHyGEJBYTNnxx4pRLSX03VXSrnjQ59biQzSZSo4xq/NaHAyFzTj1R1FMs+Ej68Bu/BYBORQdcbnBEA5166cTLqZcGij09sHK5BiFZy6knxm85NgBg/JYkF+34bT0TJ07Ed77zHXz5y1/Gb37zG5xxxhm49957TR8bIYQkGhMLfjEKmPMQy5KCakFYT9J2sVlTr/UQRT3btlGpVHw59bJeU49OvWzgKeopXDbK+C3HwkjI2uZAq+BWUy9pcxwnLMuSO+AquqCLRN0oI61Q1CNJJZCoV+XUU0/FH//4R8yaNQuve93r8I1vfEPqkEsIIVklCqdeWroPTl2xwvXn3TNmxHQkejB+23qIjTKAXeebW/dbkaw5bESHRgdFvUwQJH7bpajfyrEwGtgoI524OfWSlkZwQ6yrp9MBN46aemmE8VuSVHzHbx944AE8/fTTKBQKmDZtGvbdd198//vfxxVXXIEvf/nLuPbaa/HP//zPWLp0aRTHSwghicFEowwpfpsSUW/KwQfDyudhO0x6kybqsVFG6yE69YBdzthQNfVSPoGnUy+b+G2UAQCdClEvLZtKaSNr40grYNu2e/w2YXMcN0RRTyd+KzWU4jwJgJla2oREgbao9/TTT+PCCy/EY489VvsCW5aFWbNm4eKLL8arX/1qrFq1Cp/+9Kdxzjnn4C1veQsuvPBCNssghGQWExN1SdRLSfy2racHk/bfHxvuvFP586TtYjN+23qohIzy2Jh0nvrqfptyhw1r6mWTQDX1GL+NDdGp5xbrJMnAa6zvnTMnpiMJT7sQvxUbm6kQN2w5NuyiGfHb0eFhPH7vvSgND2PGggWYMnt25K9J0od2/Pazn/0stm/fjq9//ev4wx/+gKuuugr/9m//hsHBQbz//e9HqVTC1KlT8cMf/hCf/exn8Ytf/AJnnHFGlMdOCCFNJZJGGSlySkxftUp5f+fkyZiwzz4xH407FPVaj3x7uxSVEbtNAy1WU094/3TqZQMvp56qyL3KqcexMBqkzyfl40gr4Ca8Tli8GFMPPjjGowlHm7B5EyR+SxfvLkwkdPzyxH33YfO6ddi5bRsevesuPPvII5G/Jkkf2qLeXXfdhXe96104+eSTsXDhQsyfPx9HH300vvKVr2Dr1q146KGHao8966yzcOWVV2KKS9yJEELSjmjDD3JxT2ujDACYduihyvv3Pv985BPm0la5UqpwIZtNLMuS6uqNj45Kj3N16mUsakOnXjYJUlNPNSZy4R4N4udTSfk40gqooreHf+MbWP0v/4Izb7xRrq2WYNp9xG9t28a6Z57B+mefbbif86RdSJv5Mbzm9s2bG24/89BDeO6xx2J4ZZImtOO3HR0d2LBhg3T/xo0bYVkWOoSJwPTp0/HjH/84/BESQkhCMeHiyaJTb9+3vS3mI/Em39aG9gkTMCpMjgC1i4Vkg2J3N8a2b6/d9uvUy5rDhjX1sol4LRJRCdeTli5Fx6RJGHnpJQC7xnNpo4oYgY0y0odK1NvnggtQdNkESipSowyX+O2mF17AY3ffLd1PUW8XzdjoU81bnnn4YUyfPx+5FInLJFq0Rb1jjjkGP/jBD7BhwwbstddeKBQKWLt2La644gosWLAACxcujPI4CSEkcZi4uEvdb1Pk1OudPRudkydjuG7DZ9KyZejbY4/mHZQLXVOnKkU9TlaziyhmqGJHfuK3aa+FRadeNglSUy/f3o6Tf/c7rPnc51Ds6cHqr389qsNrebIW428FVKJeIUWbrvW0CTX13OK3m9avV97PedIumhG/tSA7AivlMsZLJbSl9DtJzKMt6n36059GoVDAlVdeiZ07dwLY5d477rjj8MEPfjCyAySEkKTS6jX1AGDhOefgnm9/u3b7sK9+tYlH407nlCnYXFcqoopb/JKkm3xbW8NtcTGjqrtXT5a6Vtq2TadeRvGM3zpcV6YfdhhO/9//jeKQSB1iOQo69ZJPWawp53GtSDJ+4rfbNm5U3k9RbxdxN8qwKxXH1xgfG6OoR2poi3pdXV34whe+gIsvvhgbN25EPp/HBE4GCSEtjIloXppr6gHAwZ/5DMZ27MCGe+7Bkje/GbOPPbbZh+SIU7MMTlazS85D1PMSdLMUvy2Xy9Lxd3AelwncRL00ixFZgU699CFuuKZ5niA2ynDrftvZ04OR3eadelhvcxdxi3qiuFyP2PiKtDbaol4Vy7IwadKkKI6FEEJShRGnnnDBTpuo1z4wgGN++MNmH4YWKlEvVyyyjlSGEZ164mLGa6Em1cJK8WK8rFgA0KmXDdzit2kWI7JClsaRVkEqjZLi80h06rnFb1WxY4CiXhUTDfL8UHERYHW6GJPWgVt3hBASkFZvlJE2uhTdHrngzTbiYjqsUy/NsTlpAWBZUq0lkk7cnHosL9B82CgjfWTKqSeM825OPSdRb/KyZSYPKbXE7dRz+jwAinqkEYp6hBASkLCNMmzblib3FPWio1Ph1EvzRJ14Izn1RFHP4/PPUmxO1SSDscxs4Nb9lmNc81GJrmkeS1oBMUWR5vPIj6gnloQBgOWf/CQmLFpk/LjSiMoVHeW5TFGP6OI7fksIIWQXYXfsVBfrtMVv04TKqZfmSA3xxrOmnlf8NsuiHqO3mcG1ph7HuKYjOvWAXWOJZVlNOBqiQ5acenlhXunWxV183yf+5jdY8OpXR3JcaSTuc9m1ph5FPVIHt2gJISQgYYvoq3ZEWbckOrqmTZPuKzKalmlC19TLsqgnFE8n6cW1ph6vKU1H6dRjBDfRSKJeis8jcXPLraOq9L45R2pAnFMA0Z7LdOoRXSjqEUJIQOjUSxeqRhl0sWSbsN1vpfhtihfiFPWyC2vqJRsndw9JLllqlKESopw2ocX3zY3PRkTXI+DufAyLq6jH7rekDop6hBASEIp66aJT1SgjxbvvxBtxMeM3UpVppx7jt5nBVdRLsRiRFejUSx9ZqqmnEvWchCgxQcJNgUbEjUIgYqceu98STQLV1CuVSrj00ktx9dVX48UXX1RGyADAsiw88MADoQ6QEEKSSthGGVLn27Y214LnJByFjg609fejtHXry/eleKJOvFFNwOvx3f02zaKesKtPUS87uMZvOcY1HTr10ofkWOvubtKRhEf3+6dq3kZRr5G4nXpuNfXExl+ktQm0evze976HH/3oRwCAwcFBtNNZQghpQUw79bj4ip6uqVMp6rUQythRHZ5OPWExlGZ3jbir38H4bWYQN5jq4RjXfCjqpY8sOdZ03WWq9Eia33cUsKYeSSqBRL0//elPWLp0Kb7zne9gqqJGESGEtAKSOyJkowxOnqKna8oUbHnkkdptLnizTWhRL0NOPXFXv42iXmZwc3jzutJ8GL9NH1lqGKEbv1WKepwjNaAS6JtWU4+iHqkjUE29F198Ef/0T/9EQY8Q0tKEXfBnqbtaWugUrltpLn5NvFFNwOvxWrBIjTLSLOoJ401bb2+TjoSYhjX1kg2deulDrGWW5vNI16mnKqeVZjEzCizLUnYTjgqKekSXQKLe5MmTHevoEUJIq2A8fsvJU+T0zpnTcLtr8uQmHQmJA0+nnldNvZDneJLgeJNdXGvqcbOo6ag+Hzr1ko2UpEixqKd06imuZXTq6SHW1Yu0pp6L3lIpl11FP9JaBBL1TjvtNFx99dWmj4UQQlKFcaceF9mRs/i882p/50JXF/Y6++wmHxGJEs9GGS0Uv+V4k13cnHp0Izcfy7Kkz0glqpDkkKXx0srnActquE+npl6+vd21XmerIoqkzXLqAXTrkZcJVFPvwgsvxKc//WlccMEFOO+88zBnzhy0OUycZ8yYEeoACSEkqUhOPZ8XdnF3jzui0TNp6VKcc/fdePHmmzF15UoM7Llnsw+JREhYp54Uv02xu0bc8S+meJFKGmH8NvlYhQJQF+lM8wZBKyB1v03xeGlZFnLFIip1HdB14rccO9TE6dTTEfXa6MYmCCjqLVmyBMCuC9Lf//53x8dZloUHHngg2JERQkjCCbuDWc5QzZY00T9/Pvrnz2/2YZAYMO3U89sMJ0mw23Z2YaOM5JMrFlEeGandTvMGQSuQtUZm+bY2T1EvS+7EKBFFPTr1SBIIJOrtt99+js48QghpFcIW0Rd39xiTIsQsoWvqZTl+293dpCMhpnHbYKJ4mwzEZhlpHktagawJXOIGl05NvbS/56iQ/pZNqqkHUNQjLxNI1Puv//ov08dBCCGpQyqi7zd+m6F4ByFJxNOp5xFbEYX7KCfvUWLbNuO3GYZOveQjbRCkdCxpFbLmbNapA0dRT49EOfXq3JektQnUKONd73oX/uu//gsvvPCC6eMhhJDUoOxo52P3PWuTRkKSRminnuCuSWv81rZt6di5YMsObjX1KN4mAzr10kXWNl3Fa6Fqg0qKHLNWmxKdv6UpGL8lugRy6l1zzTW49tprAQALFizAEUccgSOOOALLly9HwWViQQghWcJtIaWDOIFi/JYQs7D77S5UCwOKetlBtcFUhZ9zMsjKWNIqZK2mniQq06kXGIp6JIkEWpHecsstWLNmDW6++Wbccsst+MlPfoJ///d/R1dXFw499NCayDdt2jTTx0sIIYlB6dSrVFwXWPVwAkVItERRU8+2bViWFfrY4kRVl4fjTXagUy/56IgqJBnYtp25+Zm4waUSlbP2nqNC+lvGKOrlikVU6oQ8inqkSiBRb2BgAMcffzyOP/54AMC6detqAt+aNWvw17/+FZZlYa+99sIf/vAHowdMCCFJgfFbQpKN8e63KaUidNoGKPZkCbfvKRfmyYBOvfSgEmnSfh7puMuyFjmOCrGmXpyNMrpnzsT2p56q3WZNPVLFyGx16tSpOP3003H66afj0UcfxRVXXIFf//rXePTRR008PSGEJBLVQsrPNJ2iHiHRkhdr4gl4LdRUDQj8uHGTgjjWWLmcp+BJ0gMbZSQfOvXSQxbLFeh8/7IWOY4KnaYjphC/iz0zZjSKenTqkd2EFvWeeuoprFmzBrfccgtuvfVWbNq0CZZlYdGiRVixYoWJYySEkESiXNj7uLirog6yn4YQEpQonHppdNioxpq0RYiJM2In9nq4ME8GbJSRHlTlCtLuWgvU/ZYbzUridOqJn0n3zJkNt8sU9chuAol6v/3tb7FmzRqsWbMG69evRz6fx+LFi3Hqqafi4IMPxvLly9Hb22v6WAkhJFGEXfBLu6KdnRT1CDGI6Zp6QDoX43RgZBs69ZKPKLymcRxpFTLp1AsQv6Wop6aZNfW6p09vuE2nHqkSSNT71Kc+hZ6eHpx++uk44ogjcOCBB6Knp8f0sRFCSKIxXlMv5ZNGQpKGp6jX0eH6c2X8NoWLcY412YaNMpIP47fpQSpXkM9Ln1/aYPdbc8Tl1LNtW3pu0alHUY9UCSTqzZ8/H0888QR++ctf4rbbbsPBBx+MlStXYsWKFejv7zd9jIQQkkhCi3rCxZq7ooSYxS1+m+/ogJXLuf++YiGXxsU4C6BnG0dRz7KQ9xCuSTyIGwRp3BxoFVTO5rSXK5Dit4rvHx3deoiiXlRzApVjtIeiHnEgkKh31VVXYcOGDbjppptwyy234H//93/xs5/9DLlcDosWLcLKlStxyCGHYPny5XTwEUIyi3Ih5UfUEzpSUtQjxCxuTj2d843xW5IGnBq3FDMgRmQFsWlPGjcHWoUsboIwfmsOnU7CJlCJet0zZkiPqZTLrnVVSWsQuFHG5MmTcdppp+G0004DADzxxBO4+eabccstt+CKK67Af/zHfyCfz+P+++83drCEEJIkwjr1uNAmJFrcnHo651tWRD0u1rKNk1OP15TkQKdeeshiDDVQo4wMvO8oiKv7rY6oB+xy67VR1Gt5Qne/rTJ//nzk83m0tbWhu7sbf/nLXzA8PGzq6QkhJHGodsZ0J+qqWhmFzk5fTj9CiDuuTj2NWKJS1Euhw4aLtWzj5NTj55wc2P02PWRxw1WnuUMWHYpRoON6NIGqC7MYvwV2i3oss9DyhBL1nnrqKdx2221Ys2YNbrvtNqxfvx62bWPy5Mk4/vjjcfjhh5s6TkIISRxhiujbti0JeIXOTmBoyMixEUI8auppuNWy0igji4tU8jKWZcHK5aSFOj/n5MBGGekhi85mMf5dYU29wMRWU0943lyhgEJnJ4rd3RjbubN2P+vqESCgqPehD30It912GzZs2ADbtlEsFnHggQfi3HPPxeGHH47FixebPk5CCEkcqiL7ugt+la2+0NVFUY8Qg7g59Yrd3Z6/H+YcTxJ0YGQfq1CAXSo13MdFeXIQXb8qUYUkgyw6m4M49XTc7K1IbPFbse727u9h+4QJFPWIRCBR709/+hPmzJmDc845B6tXr8YhhxyCrgwMeIQQ4gelOyKMqJeB3WBCkkTYmnqWZSFXKDRMrrMg6mVhkUoayRUKqAiiXpHXlMQgddJO4TjSKoiOtSxsgrCmnjlEp15cjTJqot7Eidixdm3t/nFh3CetSSBR73/+538wd+5c08dCCCGpQ3RHhHbqEUKM4VpTT/N8swoFIOWinhSrotiTOVT1H3lNSQ6SU4/x28SSRXFLFJW1ut9m4H1HgY7r0QRlh3IK7QMDDffTqUeAgKJeVdD705/+hP/7v//Dk08+iaGhIXR3d2PPPffESSedhKOOOsrkcRJCSCLJ5fOov+zqLvhVBXDzjDoQYhQ3p55O/BbYtRhvOFtTuBjnYi37qJplFDS/4yR62CgjPWRxvJScesL3T9m8LQPvOwqa5tTbvRnXMWFCw/0U9QgQUNQrlUp4+9vfjltuuUUaFB544AFceeWVOOmkk/D1r38dlmUZOVBC/n97dx4lR13v///VPd09PXtmJivZScgmiSGBRDaRVQiCiKwuqCDKDwH13i9e5XJRVAS5clFwOyhy2YMLAgouV1EgLAEkYZEggRBIAtkmySSzTy+/PybTTH+qeq/urup+Ps7hnFR3T/dnqJmaqne9F8CNzEb6+WbqBerqOF4CDrPLXhqW7QWLJcPBgxfj9NSrfHY/6+xn9zD3D4My3KsSg3qZsstoCZO9kvXUSxHUqyWoBxt5BfVuvvlmPfnkkzr++ON15plnaubMmaqrq1N3d7deffVV3XnnnXrooYe0aNEiffzjH3d6zQDgGn4zOyLbTL0UDXABOMfn88kfCll6jUnZX7BYLsYrIKjH8aby2E1qZj+7B5l63lGJ7Qoyld/SEiZ7Ze+pZ5bf0lMPyjOo94c//EGHHXaYvv/97yc93tjYqHHjxunwww/Xeeedp9/+9rcE9QBUNLPkKR6Pa8fmzerv7dXoffZR0PjjP8y8sxZuby/aGoFqVpMiqJdt+a0lWOLBDBvLRSoXaxXHcoNJlRGMqBSVcHOgWlRiZnOm7DK7oF4lfN/FYAb1itZTj0w95MCfzxdt2LBBRx55ZNrXHH/88Xr99dfzWhQAeIV5or7ptde05umnte7FF7X6kUdsT5QkabC/P2mboB5QHKn66mVdflsBF+Nk6lU+MvXcjfJb70hV9uhllvJb4++YbZ/nCvi+iyGboSNOSJmpZwT1ogT1oDyDevF4XA0Z7nCHQiEmOwGoeGam3s6tWxP/Hujr09YNG2y/btDIHKobM8b5xQFIOQGXoB4qCT313I3yW++oxOOl+XfQUn5rbPuDQdUYP7MYUqpMvVQZo2TqwU5eQb1Jkybp0UcfTfuaRx99VJMmTcprUQDgFXYTB0fq3L7d9nGzB0bd6NGOrQnAuwoN6uU7DMdNzCyMIBkYFccuqFcJwYhKYTmOkPjgWpXYriDjoAyzzzN/I1LKFCB1SqrgctjsqUdQD8ozqHfcccfpD3/4g7797W9r/fr1icej0aj+9a9/6YorrtBDDz2kZcuWObVOAHCldNM1pdQBADNTj/JboDhSld9m21OPTD14gd0NJvaze5hZT148jlSLSjxeWn7+MvTUq4TvuVj89NSDC+U1KOP888/Xo48+qjvuuEN33nmnQqGQamtr1dXVpXg8rng8rsWLF+uzn/2s0+sFAFfJlKmXMqhn9tQjUw8oCsfLbz2YYWPJwuCCreLYlt9mGbhG8VVCxm+1qMQAl3lzy8wuq8TsxGKxy9SLx+Py+XyOfo75c1gTDkuyBvVi0ahi0ajtsCRUj7yCenV1dbrrrrt055136k9/+pNef/11dXd3q7GxUfvtt5+WLVumM888U4EMGSwA4HX5BvUs5bf01AOKIuWgjCzLi7zeCysej1su4LhgqzwMynA3y3HEgzcHqkUltiuwTL81/o7xNyJ7Zk89SVI8LhU5qDd8k8YM6klD2XohgnpVLe+oWygU0mc+8xl95jOfcXI9AOApmcpvlWX5bR3lt0BRpGr2nXX5rXGi7LWgnt0EbgYoVB67LA36YrmH128OVJOKzNTLtfx2b1YYrOyy/2OxmGr8eXU1SylqZNhnDOqxz6qasz99AFBl8snUi8fj1p56lN8CRZEyUy/fQRkey7CxC+pVwkUqktFTz90qoYy/WlRiUC/TcIdUASRYmT31pOL8Plt+Dvfuk5pg0LJ/6KuHrDL1zjnnnJzfOB6Pa3BwUMuXL8/5awHAK/IZlBGLRi0nAJTfAsWRsqdelQzKMEvJpMq4SEUypt+6G5l63hCPxysyqJdzpl4FfM/FYld+W4wJuJYy8BHnLLVtbRrs7k5sE9RDVkG9p59+Oqc39fl8RWkYCQBu48uQbm93987M0pOkOjL1gKIouKeex4N6tpl6lGVWHptzbsqs3cPrx5FqUantCnIdlEGmXmqpym+dlm7AVW1rq7o2bEhsm326UX2yCur99a9/TdqORCL65je/qUgkojPPPFMzZ85UXV2durq69K9//UvLly/X6NGjdc011xRl0QDgFpnKb82SBska1PMHgwo2NRXlpACodoVOv/X61ErzItUfCmXuBQrPidlc1JFt4x4MyvCGSm1XkHFQhhlAIqiXkl2mXjF+ny2B1pFBvVGjkp4jUw9ZndVNnDgxafvGG29Ub2+v7rjjDvmNLJW5c+fq5JNP1qc+9SndfPPN+uIXv+jcagHAZTJdHNsF9SL9/Unb4dGjyWwGiiRVpl7WgzI83gsr3YUBKkfU5qKuEoIRlYJMPW+o1KCe+XcwHoslVdWRqZc9M0AvFSlTL80+CRvDMgjqIa9BGffff79OOOEES0Av8aZ+v04++WQ98MADBS0OANwuU6ZeJItMPfrpAcWTMlOvSstvK+ECFVZ2mXpcmLuHGQggM9+dbHuQVkC7Atu/gyP+lln+TlTA91wsPp/PNkjqpHg8bvlZNMtvRyKoh7yCelu2bFEgU3ZKNKqtW7fmtSgA8Aq/A+W3de3tjq4JwLvsMvX8tbUZ+2EmXuvxBvcE9apD1K78lgtz17Bk9XvsOFItKrVdQaY+cEy/zU2macKFisfjlmPEyJJos/zWLlMb1SWvoN7o0aP1u9/9ToMpfoCi0ah+97vfqdWIIgNApTH7bZnisZjlJNFsaBtmSAZQNHYXM/5wOOuv93qmXrq7/agcUaOtg5R5kBNKxzyOxDx2HKkWlZqxZlcyGk+XqUdQLy2zr57TmXpmj0PJmH5Lph4Med16OPHEE/Xzn/9cp59+uo4//nhNnTpV4XBY/f39euutt/THP/5Ra9as0Sc/+Umn1wsArpIpU08augM68nWWTD2CekDR2Gbq5XChZgnce+xivFIvUpHMLqgH9zCDJGTWuFOl9paz+zs4MrssXf82WGWaJlwouzLwtEE9pt9WvbyCepdcconeeecdPfjgg3rllVeSGrwPR/2PPPJIffnLX3ZmlQDgUpl66klDffWCI+7qDdoMygBQHDU2GQo1BWTqea0XluVijUy9imTXUw/uYfbOjUYiisViKfuTozwqdQqsXcb6yOwyMrpzU+xMPdvejvTUQxp5BfVCoZCuu+46XXjhhXr88cf11ltvqbe3V+FwWJMmTdL73vc+zZ071+m1AoDrZNNrxexVYt5RI1MPKJ5UPfWy/nqPl9+aQb0aMvUqkl1PPbiH3UCswYEB1eZwgwHFV02ZenF66uWt2D31LL0dA4GkzwwbPfUI6iGvoN7//u//6ogjjtCMGTM0Y8YMp9cEAJ6RTaaeWWZjlt+SqQcUj21PvSoqv+VirTpQfutu4bY2+fz+pEBKpL+foJ7LWIJ6FZKxZjsoI01PvUr5voul1D31zIxRMvVgyivn+5prrtGyZct0zDHH6Fvf+pYeeeQR9fX1Ob02AHC9fDL16KkHlI7jgzI8Vn5bqZknSEb5rbv5/H6FjUn3ZisOlF+llt/a3YCOp+mpVynfd7GYQb1i99Qzy6HNoF4sGrXsQ1SXvDL1brjhBj311FNauXKl7rzzTt11110KhUI68MAD9YEPfECHH364pk2b5vBSAcB9su2pNywej1un3xon+gCcY1d2VEhPPa+X33KxBpRH3dix6t22LbFt3uBD+VXqTRCfzyd/KJQU/KenXv7MacKOZ+pl+Dk0g3rSULZeKItrElSmvIJ6xx13nI477jhJ0rZt2/Tkk0/qySef1MqVK/X444/L5/Np0qRJOuKII3T55Zc7umAAcJNcy2/t7qTVGr0xADin0Ew983fca0E9S/ktF2tAWZhZ+QT13KeSp8DWpAjqxWMxS1Cqkr7vYih6pl6Gthkpg3qU81etgkcujRkzRieffLKuvvpqPfzww/rzn/+sz3zmM9q5c6fuvPNOJ9YIAK6Va/mt+Yda4uQJKCbbTL0ceupZ7sh7LKhXyRepgJeYwzIov3Uf8xytkjKbzb+Fwz317Cat8nciPfNmYbEz9czMyZpgUMHGxqTH6KtX3fLK1DO98cYbiXLcp59+Wjt27JDf79fs2bOdeHsAcK2sMvVGnCTaZepV0kkj4DaO99TzWFCvki9S8a4P/OhH+vsXvpDYXvzVr5ZxNbBjCeqRqec6lTwwIlUgivPS3JW6p57dz2Fta6sGu7oS2wT1qlteQb0NGzYkgngrV67U9u3b5fP5NGfOHH34wx/WQQcdpAMPPFDNzc1OrxcAXCXXoJ7ljqjPp0AOWUMAcmOXqVdNgzLI1KsOM884Q6/efbfeXrFCYxYt0vwLLyz3kmAgU8/9KrWnnmQN6g0HomwrSCoomFkM5nlF0TP1bH4Oa1tb1bVhQ2Lb7NeN6pJ3T71wOKz3vOc9Ovnkk7VkyRItXrxYjUYaKABUumzKb0fePbPrb+Xz+RxfF4Ahdpl61TQow3KRyrlaRQq3tuojDz+swa4uBerrs/rbhNIiU8/9KnX6rZR6uIMlU8/ny+lvZDUqd089ydqPm0y96pbXX/x4PK6BgQH19PRoYGBAAwMDSdMdAaBaFFp+W0knjIAbFZqp5/N4UM+8SK2kzBMk8/n9ClEl41pk6rlfJU+BTZVdZpedyM3m9EreU8/m73bYGJZBUK+65RXUe+KJJ/Tkk0/qiSee0F//+lfdfvvt8vv9mjVrlpYuXaqlS5dqyZIlZO4BqHj+XMtvucAGSqrGyE6QJH8ugzI8Xn5byRepgJeEmX7repXcrsBSfrv3BlUlf8/F4paeeiMR1KtueQX12tradOKJJ+rEE0+UJL355puJIN/999+v2267TX6/X/PmzdOvfvUrRxcMAG5Cph7gbo731PNaph4XbIAr1I8dm7QdHRxULBaT3+8v04pgquQbr6nKby3DlLjxk1HJe+rZBfWM8tsoQb2q5kjDjalTp2rq1Kk666yz9MYbb+juu+/Wr3/9a7300ktOvD0AuFY2Qb2knnoVPFkNcKNCe+p5ufw2Ho9X9EUq4CVm+a001Nw+RP8y18gmmOJV2U6/5WZzZqmGjjglq556ZOphhIKDem+++aaefvpprVy5Us8884y2bt2qeDyuiRMn6qSTTnJijQDgWtk0I0/K1OMCGyipgjP1zOwGLwX1bC40uGADyqO2rU3y+aQRx5DB/n6Cei5SydNvzb9lsVQ99SookFksZvltWTL1zKAe5fxVLa+g3i9/+ctEEG/btm2Kx+MKh8M66KCDdN555+nwww/X9OnTnV4rALhOruW3lv5WFXTCCLiRXaZetZTfmscbqbIuUgEv8dfUKNzerr7t2xOP0VfPXSr5xmuqklFaNOSu2Jl62ewTMvUwUl5BvSuuuEKSNHPmTC1btkyHH364DjroIIVsTpwBoJJlMygjFo0qHovJ5/db/1AzUAgoKjM7Qcqt/NbLgzLMC1SJCzagnOrHjk0O6jEB1zXi8bglOFNJN14t5bd7b1DRUy93xc7Us+wTu+m3Rk89gnrVLa+g3re+9S0dfvjhGj9+fMrXvPLKK3rhhRd0xhln5L04AHA7s99WKtFIRIFQiP5WQKn5fNaHbAJ9Kb/c/B33eKZeJV2kAl7DBFz3qvTMZjNTL0amXt5S/b90Cpl6yFVe45ZOP/30tAE9SXr00Ud1zTXX5LUoAPCKbDL1JCmyN5hXyf1aADeK2ZzoZhuMlyqr/LamtjbrYxYA55nDMsjUc49Kz2xONSiDtjC5K3qmnrlP6uosrzGDerFo1BIMRPXIe1DGI488oltvvVWbNm1KXKwO6+/vV0dHh9rb2wteIAC4WTY99aR3U+krebIa4EbhtjbLY4Gmpqy/3gzqOX1HvpjMi1Qu1oDysgT1yNRzDbuASCUdM+mp5xw39tSThrL1Qty4q0p5BfUeeeQRXXDBBSnvVgcCAU2bNk2XXHJJQYsDALfLZvqtJEX3ZgtRfguUVvO0aRp/8MHa/OSTkqRJRx2loM3JcCqW33EPZ+pxvAHKi0w997KU3/p8thlSXlVjTr9N1VOvgr7nYrEESB08L4jH41ldK6QM6jFNuyrlFdS7+eabNX78eH3ve9/ThAkTdNRRR+lnP/uZ5s2bp6eeeko//elPde655+qEE05wer0A4CqFZupxkQ0U30m//71euPFG+WpqtP+FF+qfr72W9deav+NeKr/leAO4ixnUi5Cp5xqWybf19fLZ9GT1KjL1nJOqlNkJdu9lV9VTEwwq2Niowa6uxGP01ateeQX1Xn75ZX3hC1/Q4sWLtWfPHklSOBxWe3u7TjzxRC1dulQf/ehH1dzcrKOPPtrRBQOAm2SbqZfoqUc5HFBytS0tOujyyyXZN0NPx9M99TjeAK5iBvUGyNRzjUrvLZeypx5/J3JWzEEZuQy4qm1tJagHSXkOyujv79fYsWMlKXEHY3DED9Ho0aN1+umn62c/+5kDSwQA9yJTD6hsfqNkyemG2MVkOd7QwxMoqzpj+i2Zeu5R6e0KzL9lTL/Nn1nK7OR5gV1vx1T7hAm4GJZXUK+9vV1vv/22JKm+vl5+vz+xPWzy5Ml69dVXC18hALhYtnc0Ez31OHkCPKWSMvU43gDlVbc3KWJYZHDQU8N3KlmlDxayZOrt/VvGALfcFbOnnm2mXop9EmpsTP5amwnOqA55BfXmz5+v22+/Xc8884z8fr+mTZumu+++W/0jUsifeOIJ1XNQAFDh9jnssKyy9RKZeuZJI8dJwNV8Hg7qWS7WKuwiFfAas/xWIlvPLSw3XStsYESqrHNuNucuVdajE8zrBH8waMkMHBZsakraJqhXvfIK6n3605/Wjh079NOf/lSSdPLJJ+uf//ynjj76aF1wwQU6+eST9cADD2jp0qWOLhYA3KZp8mTN/vjHM74u0VOPkyfAUzydqcfxBnCVcHu7ZAxfYAKuO1T6TRAzu6x7925FBgasPfW42ZxRMQdl5PJ3O0RQD3vlFdRbvHixbrnllsQQjPPOO08nn3yytm/frr///e969dVXtWjRIn3ta19zdLEA4EaLv/rVjK+JRiKKx+PW3iVG6jwAd/H09FvKbwFX8dfUKNzWlvTYIJl6Jdfd2anXVq/WhldfTWRZVXq7AjNLtK+7W/986qmK/76LIdUkYSfkElw2ryEI6lWvvKbfStJBBx2kgw46SJIUDAZ17bXX6tJLL9WmTZs0btw4TZgwwbFFAoCbtc6apf3OOktrly9PPBZub1dfR0diOzo4mFPzWwDu4PdwUM8yzZEMDKDs6saOTTo/IKhXWpFIRC+sWJE4J+vr7tZ+BxxQ8QMjZp52mp69+mrtWb8+8VjXrl2W1/F3IjMzU6+Y5bfpfg7N8lvza1E9cs7U6+/v19VXX63Vq1dbnhszZowWLlxIQA9A1Xn/9derfcECSdKEQw/V/p/7XNLz0UgkpzH1ANzB0jPTS0E9MjAA1zEn4FJ+W1qd27cnBfC2btig7t27rTdBKux4WdvSolP+/Gc17LNP2tfxdyIzM6gnOXfDL5ebcQzKwLCcg3q1tbX65S9/qXXr1hVjPQDgSXVjxuisf/xD523ZolP//nc1TZ2a9Hw0ErG9g8bJE+BudoNwvJKtV+k9ogAvMssgydQrrejgoOWxDa++WhXtClr23Ven/PnPlinMI1Xi9+00s/xWci5bz9JTL01Qj0EZGJZXT733v//9evDBB22zTgCgWvl8PtW1t8vn8ynU3Jz0XCRVpl6FTVcDKo2Xg3oMygDcxxLUI1OvpOwCHx1vv20pRa3UMtTWOXP04T/9SbVGb8dhlfp9O8k2U8+hoJ4ZXE53M45BGRiWV0+9888/XzfddJNOOeUULVu2TJMnT1aT8UM17IgjjihogQDgRZY/tDY99QL19fL587q3AqBEzJ56kjxTglsNmSeA15hBvQiZeiVl199YGpoGO1IlHy9Hz5+vD//hD7rv2GM1UEXft1PsMvWcCupZbsalGahHph6G5RXUO+200+Tz+RSPx3XDDTekfe2aNWvyWhgAeJmZqReNROhvBXhQJWXqUX4LlB+ZeuWVbeCj0s/Rxi5erJN+/3s9cMIJGuzuliTtc9hhqqmtLfPK3M8fDFoeizl0XmC5GZcmqEemHoblFdQ75ZRT5PP5nF4LAFSMYBZBPS6wAffzclDPMs2Rsiqg7OipV17Zto+qhnO0CYccotMef1z/uPZaBerqtPTKK8u9JE8oZvmt+fNpDsMYyQw8E9SrXnkF9a655hqn1wEAFcXM1JOsd+Mr/S4wUAnsgnpeKb8lOxhwH6bflheZesna999fx912W7mX4SlFLb/N4e+2pfyWeQdVq+BmTk5NegGASmKmxEvSgBnUI2sGcD27vpdezdSrhswTwO3MyaORwUHHAgLILFVPPVO1BPWQO3/Amhfl2PTbAgZlxKJRz5yfwFl5Zer95S9/0a9//WutXr1anZ2dCoVCGjt2rA455BB99KMf1YIFC5xeJwB4inn3TJIG+vqStrnABtzPblCGF06aY7GYZZ1cpALlZ5bfSkMluKFwuAyrqT5m0KS2rU39O3ZYXscUWKTi8/nkD4UUG1E679j02wIGZUhDP98Bm55/qGw5Zer19fXpoosu0sUXX6y///3v6urqUnt7u0KhkDZs2KB77rlHZ555pq655hrSPwFUtZpgUIG6uqTHLOW3af5QA3AH2/JbDzCbbUsccwA3CLe3Wx6jr17pmEG9Bf/f/6dQS4vlddwEQTpmX72ild/mMCjD7utRHXIK6n3jG9/QX/7yFx144IG65ZZbtGrVKq1YsULPPPOMnn32WX33u9/VtGnTdOutt+q///u/i7VmAPAEs6+emanHCSPgfl4dlGF3c5VjDlB+/kBAtW1tSY/RV690zEyohkmT9N5LLrG8juMl0jH76jk1/db82502U8/mOYJ61SnroN5LL72k++67TyeddJJuvfVWHXzwwQqOSO1sbGzUhz/8Yd1///067LDDdOutt+qFF14oyqIBwAvMCbgE9QDvqaSgHiX/gDvUG331yNQrHbtMqIVf/GJStl6woUHNM2aUemnwkBqjxNWx8tscBmX4AwHVGGX7BPWqU9ZBvXvvvVejRo3SN7/5TfltmkYPC4VCuu6669TU1KRf//rXjiwSALzIkqln3InnAhtwP7ueel6YfmteGPiDQctFCIDyYAJu+Zg3PEKNjaodNUrLfv1r1Y8bp2BTkw77n/9RiHYFSMPM1CvH9FvJWoJLUK86ZT0o47nnntMHP/hB1Rk9ouw0NzfrpJNO0pNPPlnQ4gDAyyy9Lsym9TRhBlyvUjL1yAwG3CNsDMsgU690zBsewwMxJh15pM7dtEnxWMx26jkwktlTz7HptzmU30pDwzJ6t2179+sJ6lWlrI9Y77zzjubNm5f1G8+ePVubN2/Oa1EAUAnMTD0TF9mA+3k1qJfLBD0ApWVOwI2QqVcymYImBPSQDUumngPnBfF4POe/3WTqQcohqLdnzx612EwGSqWlpUW9vb15LQoAKkGmoB7lt4D72V7geSCol8sEPQClVU+mXlnkEzQB7BQjU8/82ZQyJwCYP78E9apT1kG9WCyWtpceACAZmXqA9/l8PktgzwuZegT1APeylN+SqVcStlPBOTYiD/4iDMqwC8iRqYdsEKUDgCKx9NQzBDM8D8AdzBJc94f0bMpvuYkAuIZZfkumXmmY/fQkjo3Ij5mpV66gnnktYRe4RuXLelCGJP3iF7/Qgw8+mNVrt2zZkteCAKBSkKkHVAZfTY00OJjYJlMPQCEs02+rOKgXi8X01po12rVtm0aNGaMpc+cWrTosn6AJYMfM1CtG+a2vpkY1tbVpv4byW0g5BvVWr16d05v7fL6cXg8AlSRjUI8TScAT/DU1SjrVJqgHoAB1Y8cmbUcGBqp26uq2jRu16fXXJUndu3errqlJ46ZMKcpnmVlM2QRNADvFGJRh93c7UzyF8ltIOQT1brvttmKuAwAqDkE9oELQUw+Ag8zyW2koWy8UDpdhNeX11iuvJG2/tnp1UYJ6u3fs0LaNG5MeyyZoAtgpSvltHm0zyNSDlENQb8mSJcVcBwBUnExBvRAX2YAn+M2eel4I6tFTD3CtcHu75bFqDeoN9PUV/TM2v/mmXn/+ecvjHBeRLzNTz4ny23xuxpGpB4lBGQBQNJkGYTAoA/AGc1CGF8tvMw3uAVA6NcGgaltbkx6r2r56JciUe2vNGtvHyWBGvoqRqWcZcJXFz6d5LWE3DAaVj6AeABQJ5bdAZbBMv/VAUM88sed4A7iL2VdvsL+/TCspr5BNT7vIiMFETkgVMOW4iHxZeuoVI1Mvi0xSMvUgEdQDgKJh+i1QGTyZqZfHHX8ApWNOwI1UaaZewJgiKkl93d0l+WzOw5AvM1MvVoxBGfTUQ5YI6gFAkaQL6tWEw/IHchpADqBMLD31yrSOXDAoA3A3c1hGtWbq2WU+9zoY1EuXWc1xEfkqyaCMbMpvCepBBPUAoGjSBfU4kQS8w4vltwT1AHezBPWqNFPPLgjhZKZeugEGZOohX34jw9SJQRn5tM2g/BZSDtNvAQC5qamtlT8YVMymNwxN6wHvqIigHhevgKuQqTekWEG9jrff1uY331TAyKgaiZsdyJcZ1Ctbpp45KCMWUzwWk89P7lY1IagHAEXi8/kUam5WX0eH5TlOJAHv8GJPvXym6AEoHTL1hm6QFCOo19vVpVeefTbj6zguIl+W8tsi9NQL1Ndn/Bq7JIFoJJI2mI3KQwgXAIooVQkuWTOAd1h66rk8qGd3oczFK+AuZOqlLlns6+kp6H13bt2a1es4F0O+zOm32zdt0sa1a9Xf15f3e5o340J5ZOpJ1ow/VD6CegBQRCmDelxgA57htfJb88JA4pgDuI05/bYaM/VS9f8a6OsrqDdYb1dXVq8jqId8mZl6kvTmmjVa/fe/551pms/NuEA4bHnM7hwAlY2gHgAUUareeVxgA97htfJbu7v09PEE3KVu7Nik7cjAgOtvGDjNHAwwUiHZetkGVTgXQ77MTL1hkYEB/esf/8grsJZPTz2zt5/kTH8/eAtBPQAooiCZeoDnea381u5CmWMO4C5m+a1Ufdl66bLxCumrl3WmHsdF5MkuU29Y165dWv/yyzm/Zz7Tb31+v3USr8vPUeA8gnoAUESpym/JmgE8xJgi5/agnnmh7PP7VWNTogOgfMJG+a0kRaqsr166oF6+Ac5oNKr+3t6sXktQD/myy5Ab6Z033lDHO+/k9J75DMqQbIZ2kKlXdQjqAUARMSgD8D6/EdRzffmtzd1+n89XptUAsFMTDFqC7dXW4D7d9xvJM6iXS4ZftkETwJSq/HaktatW5fTzmE/5rd1aUg2gQeUiqAcARURPPcD7vDYoI98LAwClZWb7uP3Y4rR0mXqRwcG83jOXIArHRuQrXfntsGgkMtRfL8sgW75T62tqa5O2ydSrPgT1AKCImH4LeJ/ngnp5XhgAKC2Ces4H9bLtpydxbET+sgnqSdn314vHYpZgXCjboB6ZelWPoB4AFBFBPcD7LNNvXS6fZtsASs8fCCRtV1uGTboJoXkH9XLJ1KMVCvKUrvy2ZebMpO131q3L2F/PrhQ9kOXPp59MvapHUA8AiihlUI9BGYBneG36raX8lgtXwJXI1EudqRfNt/w2h0w9M6gKZKsmxaCMmnBYxy9fbimJXbt6tfp6elK+n93vQtblt2TqVT2CegBQRAzKALzP8+W33EQAXKnaM/XKWX5bP368mqdPz+szgFSZeqGmJo1ZuFCHXndd0uPRwUH969lnU54/2GXqZXutQE89ENQDgCJiUAbgfZbyW7cH9YyLg2z78gAoLTL1nA3qRQYHNZjF1NyWGTN09M9+RqYe8mb+7g4bvok277OfVfsxxyQ917Vrl3Z3dNh+3WB/f9J2oK4u67595lrI1Ks+BPUAoIjoqQd4n+cz9TjeAK5kydRz+bHFaXbZScPyCepl00/viBtv1Cf/9S9NPeGEnN8fGJYq4Db899bn82nfr31NjZMnJz3fs2eP7deZGaZmX760ayFTr+oR1AOAIkoV1CNzBvAOz/XUI6gHeIIlU6/KLsYzZerleqzNpp8ex0M4IWX57Yifr0Bjo9r33z/p+VQ/82ZQb9SsWVmvhZ56IKgHAEUUZFAG4HleK7+1TL+lhyfgStWeqWceq5LE42mDfnay6afH+ReckDJTz/j5CrW0JG2nykA1f3ZbcwnqkalX9QjqAUARUX4LeJ/nym/N6bccbwBXqvagXqagXa4luNmU33KTA05Ilaln/r01rwNSTXUuJFPPXAuZetXH091B//a3v+mCCy5I+5pvf/vbOv300xPbmzdv1g9/+EOtWLFC27dvV3Nzs5YuXaqLL75Y++67b7GXDKDKpDp55KQS8A5L+W2Z1pEtym8Bb/BV+/TbND31pNyDen1ZBPVSDTADcpEqU8/8+bJk6tkEsmOxmPp7epIey6n8lky9qufpoN7u3bsT/25oaFDQZgpNaMQv3Pbt23XGGWdoy5YtkqRgMKiOjg499NBDWrFihZYvX64ZM2YUf+EAqobP57N9nIlrgIf4jcIGl2fTENQDvIHpt85l6sXj8ezKbzkewgEpM/UyBPXsMvX6enosv/uts2dnvRZ66sHTV5VdIw7c119/vY444oi0r//BD36QCOjdeOONOuaYY/T888/rk5/8pHbv3q1rrrlGP/vZz4q6ZgAA4C1eG5QRo/wW8IQaBmWkf35gIOv3Guzvz6oHH8dDOCFlTz2jEscsv7XL1DOD0XVjx6p21Kjs10KmXtXzdE+9kZl6jRkO0IODg3rwwQclSfPmzdNxxx0nv9+vAw44IBEMXLFihTo6Ooq3YAAA4Dme66lHph7gCWb5bczlxxan5Zupt3n9eq38wx/0j7/8Rbt37JCUXT89iUEZcIaZZTssU/mtXaZeIUMyJPf11Ovr7taOzZs1mENQHoWpmKBeU4YD9Lp169S992A/Z86cpOeGt2OxmF566SWHVwkAALzM60G9EEE9wJUsgQGXH1ucFI/HLVnF9RMmJG3bBfUG+/u17sUXFRkcVF9Pj97Ye+3WZwRGUrU54XgIJ6TM1DN+vmrzyNQblUPprd1aypmp19nRoef+9jetefpprX7kEQ3095dtLdXE00G9keW3jz32mM4991wdddRR+uAHP6jLL79c69evTzy/adOmxL9bW1uT3qetrS3x7w0bNhRvwQAAwHPMoJ6bL7zj8TjTbwGPMANP5c6wKSUzoCdJTZMmJW3bBfU6Nm9OurHStWvXUD89I1Ovbf/9bT/XLFUE8uFoT70CJt9K7uqp9866dYmg4kBvr3a8807Z1lJNXNVTb+PGjTr66KOzeu0PfvCDpEy9a6+9Nun59evX68EHH9TNN9+sRYsWJbL0JKnWOJiP3O7OkLodjUYzTmqqdMPff7X/f/AK9pc72e0P9pU3sd+8Ja/9ZQy8cXOm3mB/vyXoGGhq8uzPJ79f3sB+yo9l+q2Ljy1Osyu9bZg8WXrmmcS2XVDPLgspGolYsp3GLl6s7atXW1/rsZ9Rfrfcy+f3W34eAw0NSfGCgHFTLRqJKB6PJw3SM392W2bOzGl/+1yUqdc9Ij4jKWWmXiwWc9XPdCG/Z274PlwV1MvHqL1NJE877TR97nOf08DAgK6//nr95je/UU9Pj6644gr9/ve/T/seI/+ApppUOezVV18teM2V4sUXXyz3EpAD9pe7rLY50RzGvvIm9pu35LK/OnbuTH7AxRfe5sWBr7ZWr3V0yGd+Dx7D75c3sJ9y07lnT9K2GxvcRyMR7dq2TbV1dWrMoXl/Nu9r6jUSL+yCej5zGrmkyMCA+ozEjL6xY20/N935l5vxu+VCwaBkBK3e2rxZu0f8jK2zyVSLRiIK7C29jwwMWHrPvRONalcOP6dbt29P2i5Xpl4sGlVfT4/lMcvr4nGtW7dOMqsgXMCrv2euCuqNGzdODz30UNavPf74422f+8Y3vqGHH35YO3fu1Nq1a7Vhw4akQRr9xi/fyO0GY2KNadasWaqvr89qjZUqGo3qxRdf1Pz581Xjwl9GJGN/ld8rc+dq55o1ie1QS4sWLlxoeR37ypvYb96Sz/7qGjdOW0ZsuzekZw3qtc2erQMWLSrTagrH75c3sJ/ys2PsWI28HHdbpl4sFtMLjz2mnr3Bx5kLF2rclCmOvLeZ3eIPBDR1//01MgRiOyjD5v/R4MCApfx2wbHHat3VV1tea3f+5Wb8brnXP2prLZlocxYu1PiFCxP7bcGSJXrO+Lro4GAiqGf+zfYHAlqybJllMnY6vmnT9NaI7XLdHOjr6bH8ftoF9fw+n6buu6+aXfS7WMjvWU9PT9kTv1wV1AsGg5oxY0bB7xMKhTR58mTt3HtXeufOnZoy4g/Qjr1TkoZt27Yt8e+pU6emfe+amhoOqHvx/8Jb2F/lc8QPfqD7jjsusX3kT3+adl+wr7yJ/eYtuewvs++V2y68R+oxg3pz5lTEzyW/X97AfsqNeeHutmNLx9tvJwJ6kvT6Cy84F9SzmdJd196e9JhdUM8uw6+7s9MSyGgzBiMO8+rPJ79b7mOWz0tSuKUlaT+FR40aauEx4nc7EoloOCfVDEY377uvQuFwTusIGK8vV6Zer5F5LKUuTfX7/a78ec7n98wN34ergnq56Onp0e23364dO3aooaFBl1xySeK5wcFBbdy4MbE9fvx4tbe3q7W1VTt37tQrr7yS9F5r9mbQBINBLViwoDTfAICqMemoo3T88uVa/4c/aJ/DD9fM004r95IA5MDvoUEZhU7RA1A65vRbt5Xfdhilg06tr6uzUy89/njSY8GmJtUawwwjRlmiZB/U22O0Fwg1N6tuzBgHVgqkFrMJOpuDqXx+v0JNTRoY0Wtu5LAMy9/sHIdkSNbhL+U6jpg3FSX7TD04z7NBvfr6et17771av369fD6fJkyYoI9+9KPq7+/X9773vUQ23pIlSzR2b0+Fj3zkI/rFL36hNWvW6E9/+pOOPfZYPfPMM3p87x+V448/Xs3G2GkAcMLM004jmAd4lDn91m3ZNCOZFwitKbJVAJSfJajnsmNLMdbT39urfz7xhOXxYGOjao2efXaTQrMJ6o2aNStjn3SgUFGbIRDm9FtpqO3OyKBeZMTPsOVvdh5BPXMSb9ky9QjqlY1ng3qSdMUVV+iCCy7QwMCALr/8cl155ZWKRqOJH+Rx48bpqquuSrz+wgsv1MMPP6z169frkksuUTAY1ODePxbjx4/XpZdeWpbvAwAAuJdXgnrRSET9RpPqVjL1ANdy+7HF6YyfeDyutatW2ZbVjjvoIGum3uCgZVKo7YANM9tpv/0cWjGQWswmkzSUIqinDRsS22kz9fL4m+2WTD2CeuVjHR/kIYceeqjuu+8+nXrqqZo4caKkoX56s2bN0gUXXKD7778/qZdeU1OT7r77bn3sYx/T+PHjJUljx47Vaaedpl/+8pcaN25cWb4PAADgXmb5rdsuvIeZ0x+l/Ep5AJSGpaeey8pvnc742fTaa+o0JnVK0oRDD9VB//mfChtBvXg8bgkKRGyCeiaCeiiXGiNrTpJqjUrA4aB2PB639NTLJ1PP/MxyZOrF43GCemXk6Uw9SZoxY4autplslEpbW5u+/vWv6+tf/3oRVwUAACqG37gH6tKgntnPpmnqVAXr68u0GgCZmI323XbDwG49ZuZctvbs2qW3jL7mNeGwznjqKbXvv78kqb+z0/J1fT09ahgRFIllE9TbGxhZ+OUva/X11ycef9+3vpXzuoFChVpakraHs037e3osgfy8MvWMoF45bg4M9PfbZtGmGpQBZ3k6Uw8AAKDYvJKpZ+nNQ+kt4GpuH5Rht558soCikYhe/cc/ko+dPp9OfuihREBPkmpbWtRkTNfdtXWr5b0yaZk5U5K04KKL1DJjhiSpbd48zf3MZ3JeO1AoM6g3nKlnZumFWlryGvDihp56dpNvJTL1SoWgkh/KzAAAPs1JREFUHgAAQBpu73s1jCEZgLf4vZipl8dF+rqXXrK0Bzjwq1/VxPe/3/LaqSeckLS90wjq5VJ+2zx1qs5atUqfWLNGZzz9tBr2tl8CSqk2Raae3ZCMfLJg3dBTz670ViKoVyoE9QAAANIwg3puLb8175STqQe4m+un39oEB6I5Bgy2v/22tr71VtJj45Ys0UFXXGH7+qnHH5+0vbujI2mwRqZMvfpx45KCKMH6eo3abz8FwuGc1g04JZSip54TQzIkd/TUI6hXXgT1AAAA0vBCpp5dw+18LxAAlIYlU89l5bexAjP1IgMDeu3555MeCzY16bg77rAMCRk26aijksoJ4/G4OrdtS2xnCuoxJANuk6qnnl2mXj7cnKlHT73SIKgHAACQhhd66vX39lruiFN+C7ibFzP1cskC2rFli6Ijsuwk6Ygbb1TLvvum/JpgQ4MmHnFE8vuMKMHNGNRj4jdcxlJ+63CmntlTLx6Pl/xYYg7qGhaLRl13XKtEBPUAAADSsJTfupB5cRBqaVH9uHFlWg2AbLh9UIZdAC2XcrqBvr6k7QmHHqrZH/94xq+bZvbV27JF8XhcsVgs4/8jMvXgNnaDMqKRiOX3I9+AtJmpJ5X2WBKNRDTQ25vyebcd1yoRQT0AAIA0vFB+azf5Np+G2wBKx+2DMgoN6plf3zh5clbHJXNYxmB/v7p3785q8m37/PlZrw8oBbOnXjQSsbTLkM+nUXunNufK7Kkn2ZfOF0uq0tth5ejxV20I6gEAAKRhlt+6cVCGZUgGpbeA67m5/DYej9sG8HK5QI8YpbdmcCOVUfvtpxYjwLFzy5asgnqj3/verNcHFGLuZz6TtL3wS1+yfZ1ZfhsZHLQEwpqmTlWgri6vddhm6pWwl12moB599YqPoB4AAEAaXsjUM/vZMPkWcD83D8pIFUArJFOvNsugnmTN1ttp05/PFB49WvXjx2f9GUAhFv2//6f6CRMkSc3Tp2vhv/2b7evsBmVYbsQV0AvS7KknlTZTL1U/vWGxLILxKAxBPQAAgDS8ENSzlN+SqQe4npsz9VIG9UqQqSdJU48/Pml7z86d6k/Tt0uSRi9YQNsBlEzr7Nn62PPP6/Qnn9RZq1apcZ99bF9nBvUkqauzM2m7kAEvbs/Uo/y2+AKZXwIAAFC93B7UiwwOarC/P+kxMvUA9/MZmXpuuvgtRqaeXXAjlYlHHKFAXZ0iIwJ5299+O+3XjF6wIOv3B5wQbmtTuK0t7WvM8ltJ6tq5M2m7oKBeuXvqGVmHpuFjRiwW08a1a7Vn5071TZ2qpYsXE4R3CJl6AAAAabi9p555l9wfCKh5xowyrQZAtmqMTD03HVscCeoVkKkXCIc16aijkh7bsXlz2q+hnx7cKNjUZHlscGAgabug8ttAQD5/cljHLlMvHo/r9eef15MPPqgXV6xIZL52bt+uFx57TC8+/rglg9BOPB7X9rff1luvvKKePXusQz8Mwz31tm3YoA3/+pd2bd2qZ6+/XusffDDbbxEZENQDAABIxzxZdtGFt2S9S948Y4Y1WADAdcws4FJm12SSqn9dLtmElky9HIJ6krWvXqZBGWTqwY38NTW2gb2RRhWYXW/21bM7luzcskWb33xTsWhUu3fs0KbXXlMsFtMrzz6rPTt3andHh9Y+91zGc5zN69frX88+qw2vvqpVf/ubpRdooL4+eS17g3q7tm9Penzrs89m/f0hPYJ6AAAAaZiZeu657B7CkAzAmyw99Sqs/DZSaFDP6KuXSevcuTm9HigVuxLcYYH6ejVOnFjQ+5t99ewy9To7OpK2u3btUveuXYqMyBrs2bMnadvOxrVrUz5X29qqxkmTkh4bPmaYNwrM4B/yR1APAAAgDTObxk0lcpLNkAyCeoAnWKbfuujYYgbkhmWbqRePxwsqv5Wk5mnT1DZvXtavt+stBrhBun6So2bNspTP5sr82bfL1OsxsvoH+/ttX9ff15f2swbSPN86e3bKTL1CM3eRGkE9AACANNw+KIPJt4A3eXL6bZaZevFYzPL95DIoY1i22XqL/t//y/m9gVJJF8Bq2Xffgt/fkqlnE3w3W3UM9Pfb/j739/TkvY7WOXMUqKtLemz4MwrN3EVqBPUAAADSsJTfuujCOxaLqc9oUk2mHuANniy/zXKNEZuefPlcxJt99Uxt8+Zp1tlna9F//EfO7w2USrry2/Do0QW/v6WnnvF7GolEEoMxEq+JRm2z7szX5aJ19mwFjUy9aKpMvQx9BpG9QOaXAAAAVC9LWYyLgnp9PT2WIGOhDbcBlIaby28LzdSz+/p0gY1UJhx6qIJNTRo0sowkadGll+qQq6/O+T2BUkuXpVo7alTB758pU8/M0ks8bmT6S+mDepmOUa1z5ujtxx9PeixVTz0y9ZxDph4AAEAabi6/NU/U68eNU7i1tUyrAZALT2bqZRnUM0vt/KGQJfCQjZpQSJOPOcb2OYIC8Ip0Qb1wW1vB72/pqWccS8x+esPMTH8pfVAvmuH3f5RNpl4sGh3qsUn5bdEQ1AMAAEjD1UE94y47WXqAd5iZepJ7ji+Flt86mZUzLUUJbpDyPXhEbZqf/1oHbsRlukGQKqhnl6k3kC6oZ1NWP3INzdOn2w7KGA7sjURQzzkE9QAAANIwe+q5qfyWIRmAd5kX4pIHgnp5lt/mU3o7bEqKYRn05IJXpC2/dSCoZ2bBmsH3lOW3uWbqpTguSFLLzJmqCQYtQb1oNGr7dfkMzoE9gnoAAABpWDL1yrQOO5agHpl6gGfYZuq5pAQ31cV7tutzMlOvcZ99NHrhQsvjZPrAK9KW3zoR1DPKb7PN1LP7fR7o60uZkZsuU2/4/CMQDic9HksV1CMo7xiCegAAAGm4tfw2Ho+rh6Ae4FmVnKln9tQrNAA31SZbL9jYWNB7AqWSLlO12Jl6dpNvM7Gbijv8Xqkkgno25bfm19XU1ubVYxP2COoBAACkYQb13FJ+O9jfb7lrTvkt4B0+F2fqRVJk5GTdU8/hoJ5dXz0yfeAV6X7+HemplyZTL1XpbTqpgoDpym+b991Xkn1Qj8m3xUVQDwAAIA2zp55bMmnM0tuacFhNU6aUaTUAclXJmXpOX8SPW7pUdWPHJrZ9fr9aZswo6D2BUin69Ns0mXqpSm/T6e/psX08bU+9vb+Pgbo6y1qYfFtcBPUAAADS8SefLrnlonugvz9pu3n6dPn8nNoBXlFTwUE9S/ltgU3x/YGAPvCjHyWCAQf913+pbsyYgt4TKJVU5be+mhpHysjT9dTLK6iXIlMvVQZv05QpmnDooZKsmXp2gzII6jnLmvMNAACABLdOvzUzYQqZLgmg9NxafhuPx1MG7/Iuv3WgVHbGRz6iKccdJ0kKNjQU/H5AqaQKaofb2uTz+Qp+fzNTb9Nrr6musVFjJ08uevnt7E9+Uou/8pXETQpL+W0kYvm6IKXzjiKoBwAAkIZbB2U4nQkDoLTcWn6brsQu7/Jbh45PBPPgRal+/p3opydZe+pJ0murV8vn8zlbfmv8Xs/51Kd0zM03Jz1mV35rZvhxE9JZ1GgAAACkYRmUIZdceNN4GvA0v12mnhuOLemCellm6jk9/RbwslQ//7WjRjny/mb57bD1L7+c8+RbSers6NDgwIDl8WzKaC1BPcpvi46gHgAAQBqW8lvJFSW4lpNk7nwDnuLz+ayZwC4ov03VN0saukDPJvBYrEw9wIv8KXrnOTEkQ0od1Bs0eu/6/H5LeaydeCymLW+9ZXncEqy3KaMN2vXU4yZkURHUAwAASMOtmXqWchZOkgHPMbP13HBsMS/ATVkF9YrQUw/wMrvAtlPlt2ZPvVSaZ8xQ46RJWb128/r1lt/1bIJzNTaZemYwkJ56ziKoBwAAkIZbg3pk6gHeZ/bVc0OmXrryWym7vnqU3wLJ7PrI1TqUqWfXU89O29y5qh83LqvX9vf0aOfWrUmPZXPeYWbqxWMxMvWKjKAeAABAGnZBPTcwM/U4SQa8x8zUi7nghoEZkDNlCurF43GmcwMGu7/RYad66mWZqdc2b54aJkywfS5QV6fR731v0mOb169P2s6qp55Nee+AUQbM+YqzCOoBAACkYddTj0w9AE6wZOq54diSofw23bCM7t279fyjj1oe5yIe1a6o5bfZZurNm6emadNsnwu1tGj/Cy5Iemznli3q6+5ObGfTU88clCFZe/txPHAWQT0AAIA0XFt+SyYM4Hk+s6eeC8pv0w3KkNJn6r3x0kvq7uy0PM5NB1S7Ypbf5pKpN2rmTNvnQs3Nmv2xj1kCbpvffDPx72zKaLPJ1ON8xVkE9QAAANKwLb91QVAvmzvmANytxo2ZepnKb1MEHuPxuHZ3dNg+R2N8VDu7wHbYoUy9bHrq+fx+tc6ereZ997V9PtTcrGBDg+Z86lNJj295663E1Ousym9tMvXMcyaOB84iqAcAAJCGGzP17HpWkQkDeE8lDcoYvvA3tey3nyV4CVQbuwBYbQl76jXvu68CdXVqmTHD9vnh9c03SnAjAwPa/vbbitr83tudd/gDActxLdVnwRkE9QAAANJwY0+9eCxmWQNBPcB7LOW3LsjUy7f8NtWAjYOvuqrgNQFeF2xstDzmVPmtfL6ML2mbO1eS1Dhxom0QcDjQ1jp7tiYddVTSc++88YZtr81UwTm7Etxsvg75IagHAACQhs9vc7pU5gtvu4tuTpIB73HloIw8y2/tLvo/u3WrZp56qiPrAjzN5nfbqUEZXRs2ZHxN27x5kobOaZqnT7c8P/IcYv6FFya//65d6ty+3fo1KcpoM7UD4XzFWQT1AAAA0nBj+a3dRTeNpwHv8VfQoAwzqBeoq1PYqUwkwOPiNr83TvXUG7NwYcbXDAf1JNn21RsZaJv+oQ+pcdKkpOc3vvZa0nagvt5y/Bpml5WY6rNQOIJ6AAAAabgxqGeWudXU1mY9/Q6Ae1iCem7I1MsU1EsReLQM73GoXxhQCewC9rZDJfIw8cgj1TRtWtrXtO4tv5Vk21dvZHadPxDQe84/P+n53j17kl+f5kZiuqCePxRSIBxOu1bkhqAeAABAGrZBvTKsYyTLkAzuegOe5MqgXp6DMszjEtnDwLv2PeWUpG3H+ulpaIr2GU89pcO//30d8t3vWl/g86l1zpzEpm1Qz/h9nXfuuWk/M915R7qgHucrziOoBwAAkIbdoIxy99Rj8i1QGcyeeq8//7zWrl6dsQS2mFINvBiWqkTYkqnHxTuQMGbRIk0/6SRJQ8H8w6+7ztH3rxs9Wu+96CIt+MIXLM81T5+u4IjhFS0Zym8lqX78eNWkyahL1zcv7XMcFxxnXwQNAAAASfaDMsqdTWO5eCaoB3iSXU+qrW+9pVA4rKkjMmtKJR6PW24a1I0dq96tWxPb2WbqcVwC3uXz+bTsN7/R1ueeU7itzTaw5oRAOKzw6NHqGzHYYmQ/Pck+U8+8Wenz+VQ3ZkzKIRxpM/UI6pUUmXoAAAAZmCW45Q7qmeVxmSbNAXAnM1Nv2MZXXy3xSobEolHL8a1+3DjLa+yYNxsovwWS+fx+jTvwwKIF9IY1TpyYtN02op+eJDXb9N8b7OmxPFY3dmzKz8i7/JbzFccR1AMAAMjA0lev3Jl69K4CKkKqoF652PXTqzcu7FMNyiBTD3CHsYsXJ23vc9hhSds1tbVqX7Ag6bHpH/qQ5X3qRo9O+Rnpfr9DaYJ6tQzQcRxBPQAAgAzMvnquy9Tj4hnwJLvy23Ky66dXl22mHgN8AFc48Gtf05hFi+SrqdG8887T1BNOsLzmkKuuSpw7zL/wQo3abz/La+rGjEn5GQ3jx6d8Lm2mHucrjnPXXxEAAAAXclumHtNvgcqQLlMvHo/L5/OVcDXWY0tNOGzJBE6ZqUf5LeAKzdOn68ynn077mqknnKBPr1+vaH9/yoy8dJl6DUaJ70jpeuqRqec8gnoAAAAZuK2nHlMmgcrgS5OpF41EFChxea4Z1KttaVGwoSHpsVSTeS2Zely8A64WamqS0gTg0vXUa9hnn/Tvm+o5zlccR/ktAABABpagXpnWMYzeVUBlSJepFxkYKOFK9n6mccMg2NxsubAf7O+3/Vq7gCAA70pXftuYJqiXrvyWTD3nEdQDAADIwOdPPmUqd6aepaced74BT0rXUy9VRlwx2QXmzOm3qYJ6lgxignqAp+VdfktPvZIiqAcAAJCBOSij3D31mH4LVIZ0mXqDLsjUC9lk6g1kmanHzQbA21Jl6vn8fkuwfyQy9UqLoB4AAEAGbuupR6YeUBnSZuqVIahnV9pvXrxHBgYUN4ZlxONxS0CQmw2At6XqqVc3blzaYxc99UqLoB4AAEAGbgvqWRrSc5IMeJLbym/tAnN2GTlmFmEsGrVkMFNmB3hbqky9dEMyJKbflhpBPQAAgAzMoF45y2/j8fjQBfQIXDwD3uS28lu7Etrw6NGWvqJmCa4ZDJQ4LgFeF2xsVE1treXxdEMyhr8uFY4LziOoBwAAkIHZU6+cmXp2TeopcwO8yXXltzal/f6aGoWNhvnmccgMBkoclwCv8/l8ttl66YZkSOnLb8nUcx5BPQAAgAzcVH7b8c47Sds14XDKvjcA3M1tmXqW0v69gblME3DNrws2NKQNWALwBtug3oQJab8m2NCQ8jmC/c4jqAcAAJCBm8pvt23cmLS978knqyYUKtNqABTC7Zl6wxfg9Rkm4Foy/LhwBypCPpl6Pr/fNrBXEw7blvOiMAT1AAAAMnBLpl5vV5f27NyZ9Nisj32sLGsBULh0mXplGZRhBBKHh/DUjx+f9HimTD2CekBlyCdTT7IflkHpbXEQ1AMAAMjALT31tm3alLQdHj1aUz74wbKsBUDhfGky9UpdfhuNRNTX05P0WOPkyZJkKfHP1FOPidxAZbAL0DdmyNST7IdlEOwvDoJ6AAAAGVjKb8tkx+bNSdv7nXmmatJk+gBwt3S/v6Uuv+3ZvTtp2+f3q33+fElZ9NRLUbYLwNtiNpOtGzJMv5Xsh2VwXCgOgnoAAAAZ+PzJp0zlytQb6OtL2p563HFlWQcAZ6TL1ItGIorFYiVbS1dnZ9J265w5CtbXS7IG9Sw99Si/BSpSzG6ydWtrxq+z66nHcaE4COoBAABk4JaeeuaFc3j06LKsA4Az0vXUk0qbrddtZOqNXrgw8e+M5bcMygAq0rRlyyyP+Xy+jF9HT73SIagHAACQgZmpV47pt7Fo1JK1k83dcgDulW76rVTaYRndRqbe6Pe+N/Fvu/LbkTc3zHVSZgdUhmkf+pBa9tsvsX3497+f1dfZld8S7C+O9H9FAAAA4IpBGXYX99z1BrwtU6ZeqYZlxGIxS6bemBGZemZQTxpaW6i2VhJBPaBS1QSDOvPpp7Xu/vvVOGmSJn3gA1l9nd2gDI4LxUFQDwAAIAM3lN8S1AMqj1vKb3u7uhQ3MoHHHHBA4t91Y8ZIPl9SlvJgf38iqEf5LVC5Qk1NmvOJT+T0NQT1SofyWwAAgAws02/LENQz++kF6utVEwqVfB0AnJOx/LZEQT2z9LZpyhSF29oS2/5AQOH29qTXjOyrZ66T1gBAdbML6oW4EVkUBPUAAAAycGOmHll6gPe5pfzWnHw7ckjGMLMEt7+3N/Fvjk8ARrLrqUemXnEQ1AMAAMjAjT31yIQBvM88tphKNSjDzNQbYxPUa5kxI+XXENQDMJLd9FvK8ouDoB4AAEAGlvLbMqARPVB5fBnKb0eWuBZLPB63DskY0U9v2LglS5K29+zcKWloyEYsGk16jpsOQHWjp17pMCgDAAAgAzeW39KbBvC+WIZMPCfLb+PxuLZu2KCuXbvUPmGCRo0ZI0nq7+mx9Owc/d73Wr5+/NKlSdvdnZ2KRqOKGUMyJIJ6QLULNjRYHuO8pTjI1AMAAMjADUE986I7zEUz4HmRnp70zzsY1Nvy1lt6bfVqbV6/Xv988slEdp5Zelvb1qbGyZMtXz/2wAOHJuDuFY/H1d3ZyWRuABZ250kcF4qDoB4AAEAGbuypxx1vwPsGu7vTP+9gUO/1559P2t7wr39JkrrM0tuFC+UbEbwbFmpqUvv++yc9tmfnTsuxqSYcViAcdmLJADwqbpTkS5TfFgtBPQAAgAwsPfVcENQLE9QDPM8saTUVs6de5/btkrIbkjHMrq8eQzIAmEbPn295zK7PHgpHUA8AACADN5TfkqkHVJ62efM07cQTE9tzPvWppOejkYhisVhRPtvnH7oUNIN6o22GZAwzg5BddkE9WgMAVa91zhxNPeGExPYB//ZviWMOnMWgDAAAgAzcmKnHhTNQGZbde682/f3vCrW0qGnKFL1y661Jz0cGBhQqQjmrz+/XQH+/Bvr6kh7PJVOvv7dXvXv2JD1Gph4ASTrxt7/VG7//vYL19Zp87LHlXk7FIqgHAACQgXl32Q2DMrhwBiqDv6ZGk48+WpJsJ8kOOhDUsztm+X0+S5ZeoK5Oo2bNSvk+rXPnKtjUpMERgbyd27YlvYZjEwBJ8gcCmnHKKeVeRsUj/xEAACADy6CMMqzBkqlHw2mg4vgDAdW2tSU95kRfvZhN03qf328J6rXPn2853iWtr6ZG4w48MOmxrp07k7bJIgaA0iGoBwAAkEG5y2/j8Tjlt0CVqBs9Omk74sAEXPP4IUl+m6DemDT99IaNyzDcg0w9ACgdgnoAAAAZlHtQRtQmy4YLZ6AymUG9wSIF9eTzqcsckpGmn96wTBN7OTYBQOnQUw8AACCDsgf1bC7qydQDKlO4REG9wYEBDfT2Jj2WbkjGMHNYholjEwCUDpl6AAAAGVh66pU4qGe5IPf5FGpqKukaAJRG3ZgxSdtO9NSzK+E1A3q+mhq1z5+f8b3qx41T07RpKZ8nUw8ASoegHgAAQAbm9NtS99SzG5JhWROAihBub0/aLlZPPVPr3LkKZDllN10JLpl6AFA6nA0CAABkUO7yW4ZkANXDkqlXoqBeNqW3w9KV4DKZGwBKh6AeAABABuUO6kXNoB7lbUDFKtmgDMPo97436/dLG9TjpgMAlAxBPQAAgAzMnnplL78lqAdULEtQz4GeeuaNATu5ZOqNOeAA+YNB2+cI6gFA6RDUAwAAyKDcmXpmUC9EUA+oWOb028jAQMHHnGz68o3OIagXCIdTZvZx0wEASoegHgAAQAZlD+pFIknbXDQDlcvsqRePxxU1jgG5ylR+G2xqUjjHDLvx73uf5TGf389kbgAoIYJ6AAAAGVjKb0vMzLIhqAdULjNTTyq8r16moF64rS3n97TrqxcaNYrJ3ABQQhxxAQAAMjEuUstdfpvPBTgAbwg2NKgmHE56LFJgX71iBPXGL11qeYwbDgBQWgT1AAAAMij7oAwjS4egHlC5fD6f6seOTXpsoNCgXoZMv3yGWzTvu68lq5AhGQBQWgT1AAAAMsi2p14sGlVfd7di0aijn2+ZfktQD6ho9RMmJG0P9PXl/V7xeDxjpl4+wTifz2cpwa1tacn5fQAA+SOoBwAAkIE/GEza7tq1y3KR3d/bq9WPPKJ//PWvev7RRwu6CDdZMvXIhgEqWsM++yRtF3I8iUWjGVsG5Jv9O+GQQ5K2m6ZOzet9AAD5IagHAACQgXnhGhkc1GvPP590ofz2unXq7eqSJPXs2aOtGzY48tl2WTZk6gGVrXHixKTtQoJ6mbL0pPzLZvf/3OfUsHetoeZm7X/++Xm9DwAgPwT1AAAAMhizaJFmnHpq0mM7t2zR1rfeSmy//frrSc+/uWaNI58dtcmyoaceUNmczNTLJqiX7zEl3NamT7z8sj78xz/qYy+9ZDsRFwBQPAT1AAAAMvD5fPrAj36k+nHjkh5f99JL6uvuLupn2zW4J6gHVDYzqNfv0qCeNDStd/Ixx6jRWDMAoPgI6gEAAGShbswYHfnTnyY9FotGtXbVqoz9qgphBvV8NTUKNjUV7fMAlJ8ZIBvo7c37vTJNvpUo6QcAryKoBwAAkKXpJ52keeeem/TY7h07LKW30lB2nxPMLJtwW5tj7w3AnRqMnnrRSETRSCSv98oqU4/hOwDgSQT1AAAAcnDY976npmnTkh5785VXLK+rCQQc+Twzy4aMGqDymeW3Uv599bIalMFxBQA8iaAeAABADkLNzTrm5pulEdly8VjM8jq/Q0G9QZtMPQCVLdTUZCmzL2ZQj+MKAHgTQT0AAIAcTTziCC380pfSvqampsaRzzIz9bj4BqpDo1GCm3dQL4ueehxXAMCbCOoBAADkYckVV6R93rHyWyPLhjI5oDo0TJiQtJ1pAm5XZ6c2rl2r3Tt2JD0+mCGoVxMOK1BXl98iAQBl5czZJgAAQJUJNTUp1Nysgd27i/o5lkw9GtoDVcEclpEuU6+rs1MvPPZYohXAe973Po0aO1ZS5ky9Wo4pAOBZZOoBAADkqd7IpBkpZtNnLx92028BVD5zWEa6oF7H228n9fZ8+403Ev/O1FOPYwoAeBdBPQAAgDw1jB+f8jm74Rn5YPotUJ0sQb3e3pSvHejvT9ru3L49cWMhU6Ye2b8A4F0E9QAAAPJEph6AYrEMyjACdyOZgbtYNKo9O3dKytxTjxsFAOBdBPUAAADyVIpMPfOCnP5XQHWwK7+Nx+O2r7XLxtu1dati0ahi0Wjaz6kdNSrvNQIAyougHgAAQJ7Mi+6RnMjUi8fjZOoBVco8vsRjsZSltHbZeLu2bcvYT08amn4LAPAmgnoAAAB5Sld+60SmXiwatbwPQT2gOtSPHy/5fEmPpRqWYRfs69q1S73d3Rk/p6a2Nr8FAgDKjqAeAABAntKV3zqRqWeXZUP/K6A61ASDqh87NumxfpugXjwe12CKjLyOt99O2vaHQrafAwDwJoJ6AAAAeWrIkKmXqv9VtizZNz6faltaCnpPAN7RYA7LsAnqRSMRKcWxZrsR1LNrGUCmHgB4F0E9AACAPKUrv5VUcFDPzL6pbW2Vz8/pG1At7IZlmNJNtx00JubWjR5teU3dmDF5rg4AUG6cFQIAAOQp1NysQF1dyucL7atnZurRTw+oLtkE9VINz7BT29amliVLEts1tbWa/YlP5L9AAEBZEdQDAADIk8/nS5vlUmhfvf7e3qTtcGtrQe8HwFsazaCecUyQcgvqhdvbNf3SSzXxyCPVvmCBjr3tNm4WAICHBcq9AAAAAC+rCYdTPldopt6eHTuSttvnzy/o/QB4SzY99dKV35rCra2qmzJFJ//xj6qpqSl4fQCA8iJTDwAAoADpmswXkqkXj8e12wjqTTj00LzfD4D3mMN4bMtvU0y+tVPb3l7wmgAA7kFQDwAAoADpgnqFZOr19fRYmtxPOOSQvN8PgPeYmXqDAwOKRaOWx0Yaf/DBKd+PUlsAqCwE9QAAAArgDwZTPldIpt6ejo6k7bqxY9Uyc2be7wfAexqNoJ4kDRjBfrOnXtt73pOyVD9Mph4AVBSCegAAAAXY95RTUj5XSKbe7p07k7YnHHKIfD5f3u8HwHtqW1st2cBmCa7dlOzJxxxj+35k6gFAZSGoBwAAUID9zz8/ZfZLIZl6u41MPfrpAdXH5/NlHJZhlt+G29tTBvVqCeoBQEUhqAcAAFCAUHOzzl69Woddd53luXwz9QYHBtTb1ZX0GP30gOrUuM8+SduWTD1jUEa4vV37HH64bb9PMvUAoLIQ1AMAAChQw4QJWvjFL6remFSZb1BvjzH1NlBXpzEHHJD3+gB4V4MZ1OvtTdo2y2/r2tsVrK+3ze6lpx4AVBaCegAAAA4xM2PyLb/dbQT1xh50kGpCobzXBcC7LEG9TOW3e7Pxphx7bNLj/kBAwaamIqwQAFAuBPUAAAAcYgbe8s3UM4N6+9BPD6haZk+9/hFBvVg0qlg0mvT8cDbe1GXLkh5vnTuXYTsAUGEI6gEAADjEiUy9WDSqrl27kh5jSAZQvdJl6plZepIUHj1aktT+nvdo8X/8h3x+v4JNTTrkO98p7kIBACUXKPcCAAAAKoXfgUy9rl27kr/O59P4gw8udGkAPMpuUEY8HpfP57P005PPp9rW1sTmwVddpUWXXqpAfb1qQiFFjaw+AIC3EdQDAABwiFl+m0+mnll62z5/vmpbWgpaFwDvMstvY9GoopGIAsGgBo3Jt7WjRslfU2N5DABQmSi/BQAAcIilp148nvN7mEG9CYccUtCaAHhbgzFVW3q3BNfM1GO6LQBUF4J6AAAADrH01Mux1C0ej2vPzp1Jj9FPD6hugbo61e6daDtsOKg32N+f9Hjd3n56AIDqQFAPAADAIZaeejlm6vV2dVkyb8jUA9BolOAO9PZKsg7KqBszpmRrAgCUH0E9AAAAhxSaqWeW3jZOmqSmKVMKXhcAbzNLcPtTZeoR1AOAqkJQDwAAwCGF9tTbY9NPz+fzFbwuAN5mDstIlN+aPfUovwWAqkJQDwAAwCEFZ+p1dCRt008PgCQ17rNP0naqQRlk6gFAdSGoBwAA4JBCeuoN9PWpr6cn6TH66QGQpAYjqLdj82Zt3bDBcswgqAcA1SVQ7gUAAABUCkumXiyW9dea/fSCTU1qnz/fkXUB8DYzqCdJa1etsjzG9FsAqC5k6gEAADikJhhM2o7nENQz++mNf9/75A9w/xWAtadeKmTqAUB1IagHAADgkEIy9bo6O5O2Jxx8sCNrAuB9dpl6dgjqAUB1IagHAADgEEtPvSyDevF4XD179iQ9NuaAAxxbFwBvqx87NqvMXYJ6AFBdqOkAAABwSLaZen3d3Vr/8suKRiKaPHu2wvX1limWbfPmFW2dALzF5/erfvx4dW3cmPI1wYYGBerqSrgqAEC5EdQDAABwSE2WmXprV61KDMbo7uzUTCMrL1BXp+bp04uzSACe1LNlS9rnw2TpAUDVofwWAADAIdlk6sWi0aRJt4MDA3pn3bqk17TOmyefn9M0AO/K1FePybcAUH04WwQAAHBINj31Bo0yW0natW1b0nb7e97j7MIAeN6cc85J+zz99ACg+hDUAwAAcIhZfmuXqTfY35/xfdoI6gEw7P/5z6t9wYKUzxPUA4DqQ1APAADAIWb5rW2mXhZBvXaGZAAwNIwfrzOfeUbnbtqkMYsWWZ6n/BYAqg9BPQAAAIeY5bd5Z+rtv79jawJQOfw1NaofN04t++5reY5MPQCoPgT1AAAAHJLN9NsBm556I4Wam9U4aZKj6wJQWeymYzP9FgCqD0E9AAAAhzjRU69t3jz5fD5H1wWgsrTMmGF5jPJbAKg+BPUAAAAc4kRPPUpvAWTSPG2a5THKbwGg+hDUAwAAcEhWPfUylN+2M/kWQAaNU6ZYHqttaSnDSgAA5URQDwAAwCGOZOox+RZABqNmzlTLfvsltpumTtWoWbPKuCIAQDkQ1AMAAHCIZVBGPK54PJ70WKagXjvltwAy8Pn9+uAdd2jSkUdq4hFH6Pi775bPz6UdAFSbQLkXAAAAUCnMTD1pKFvPV1Mz9O94PG1QLzx6tOrGji3a+gBUjrGLF+uU//u/ci8DAFBG3M4BAABwiNlTT0ruqxeNRCyZeyMx+RYAAADZIqgHAADgkFSZesMovQUAAIBTCOoBAAA4xOypJyVn6jEkAwAAAE4hqAcAAOCQTJl6A5ky9d7zHsfXBAAAgMpEUA8AAMAhmXrqZczUI6gHAACALBHUAwAAcIi/piYx6XZYUk+9gYGUXztq9myF29qKtjYAAABUFoJ6AAAADjL76mXM1PP5VNvWpsOvu67YSwMAAEAFCZR7AQAAAJWkprZWkd7exHa66bcHXnaZDvza1ySfT4FwuGRrBAAAgPcR1AMAAHCQ2VdvZKZeX3d30nN1Y8cqUFdXknUBAACgslB+CwAA4CBzAu5wpl5/X5+6d+9Oem70ggUlWxcAAAAqC0E9AAAAB6Xqqbdr69akx0MtLRp/8MElWxcAAAAqC0E9AAAAB9UYvfFi0agkaeeWLUmPTz7mGNUEgyVbFwAAACoLQT0AAAAH1Y0Zk7Td39enWCymXdu2JT0+9fjjS7ksAAAAVBiCegAAAA5qnDw5aXugt1d7du5UNBJJenzKBz9YymUBAACgwhDUAwAAcFCTEdTr7+21lN6OXrhQjfvsU8plAQAAoMIEyr0AAACASmJm6vX39qq/pyfpsalk6QEAAKBABPUAAAAc1DRpUtJ2b1dXYljGsKknnFDKJQEAAKACUX4LAADgIDNTzwzo1Y4apfHve18plwQAAIAKRFAPAADAQWZQzzT5mGPkD1AsAQAAgMIQ1AMAAHBQbUuLgk1NKZ+fcvzxJVwNAAAAKhVBPQAAAIeZE3BHYkgGAAAAnEBQDwAAwGGNxrCMYWMOOEANEyaUeDUAAACoRAT1AAAAHJaqr94UsvQAAADgEIJ6AAAADkuVqTfthBNKvBIAAABUKoJ6AAAADrPL1KsdNUrjli4tw2oAAABQiQjqAQAAOMxuUMbkY4+VPxAow2oAAABQiQjqAQAAOMwuU2/q8ceXYSUAAACoVAT1AAAAHNY0ZYqCjY2JbV9NDUMyAAAA4CiCegAAAA4LhMNaeuWVks8nn9+vpV//uhrGjy/3sgAAAFBBaOwCAABQBAu/+EXtd+aZikejapw4sdzLAQAAQIUhqAcAAFAkZOcBAACgWCi/BQAAAAAAADyGoB4AAAAAAADgMQT1AAAAAAAAAI8hqAcAAAAAAAB4DEE9AAAAAAAAwGMI6gEAAAAAAAAeQ1APAAAAAAAA8BiCegAAAAAAAIDHENQDAAAAAAAAPIagHgAAAAAAAOAxBPUAAAAAAAAAjyGoBwAAAAAAAHgMQT0AAAAAAADAYwjqAQAAAAAAAB5DUA8AAAAAAADwGIJ6AAAAAAAAgMcQ1AMAAAAAAAA8hqAeAAAAAAAA4DEE9QAAAAAAAACPIagHAAAAAAAAeAxBPQAAAAAAAMBjCOoBAAAAAAAAHkNQDwAAAAAAAPCYQLkX4BWxWEyS1NvbW+aVlF80GpUk9fT0qKampsyrQSbsL+9gX3kT+81b2F/ewv7yBvaTd7CvvIX95U3sN28pZH8Nx4eG40Xl4IvH4/GyfbqHdHR0aP369eVeBgAAAAAAAFxi2rRpam9vL8tnE9TLUiQSUWdnp2pra+X3U7UMAAAAAABQrWKxmPr7+9XS0qJAoDyFsAT1AAAAAAAAAI8h5QwAAAAAAADwGIJ6AAAAAAAAgMcQ1AMAAAAAAAA8pjyd/JCzN998Uz/5yU/05JNPqqOjQ6FQSDNnztSHP/xhnXXWWUmjl19//XX96Ec/0sqVK9XZ2am2tja9//3v18UXX6xx48YlvW9XV5duuukm/d///Z82bdokSZo0aZKOPPJIff7zn1dzc3PS61999VX94he/0HPPPad33nlHtbW1mjNnjk499VR95CMfkc/ny/p7Wr16tX76059q1apV6u7u1rhx43TsscfqwgsvtHxuR0eHbrvtNj388MPauHGj4vG4pkyZouOOO07nnnuu6uvrc/1fWlTVvL/+9re/6YILLkj7Xt/+9rd1+umnZ/3ZxVbN+2v27NkZ32vJkiW6/fbbs/7sUqjmfSZJW7Zs0U033aTHHntM77zzjoLBoGbPnq2zzz5bJ598cq7/O4uuEvdXLBbT3Xffreuuu07d3d2SpL/+9a+aNGmS7eu3b9+uq666Sg899JAkd/5eDXPL/hpp8+bNOvHEE9XV1SVJuuiii3TxxRdn/T3l8vsleWN/Vft+4txwiBf2F+eG7/LC/uLc0Hv7TOLccFg591e5zg0ZlOEBr7zyij72sY8lfjBqa2s1MDCg4V23bNkyXX/99ZKktWvX6uyzz9aePXskScFgUIODg5KkCRMm6N5771VbW5ukoR/4s88+W6+++qokKRAIyOfzJV4/bdo0/frXv1ZTU5Mk6Y9//KP+/d//XZFIRJIUDofV19eXWOdZZ52lK6+8Mqvv6cknn9T555+f+KyR65w7d67uuece1dbWSpLeeOMNffzjH1dHR4ckKRQKaXBwMPH9z5s3T8uXL0+8vtyqfX/df//9+spXviJJamhoUDAYtLzfZZddpg9/+MNZfXaxVfv+Wrp0acr32b17t2KxmJYuXarbbrstq88uhWrfZ2+88YbOPvts7dy50/JaSbrgggv05S9/Ocv/m8VXifvrtdde0+WXX65Vq1YlPZ7qxO03v/mNvvvd76qzszPxmBsviCT37C/TeeedpxUrViS2cznRzuX3S/LG/qr2/cS5obf2F+eG3tpfnBt6b59xblj+/VXOc0PKbz3gu9/9buIH/uqrr9bzzz+vJ554Qvvvv78k6aGHHtJzzz2XeH7Pnj0KhUK6++679cILL+jGG2+UJL3zzju64YYbEu97++23J37gzzjjDK1atUrPPfeczjjjDEnS+vXrdeedd0qSuru79V//9V+KRCJqamrSPffco+eff14PPPCARo0aJUlavny51q1bl/H7icfj+sY3vqHBwUG1tbXpoYce0urVq3XZZZdJktasWZP0R+Kb3/xm4qTtyiuvTHz/BxxwgCTp5Zdf1n333Zf7/9giqfb9NXxnQ5Kuv/56rVy50vKfW07aJPaX3f5ZuXKlbrzxxsQf1lNPPTW//7lFUu377Dvf+U7ipO3LX/6yVq9erYcfflgzZ86UJN100016+eWX8/g/WxyVtr+2bNmiU045RatWrdKsWbM0efLktK//+c9/rssuu0y7d+/W0Ucfne3/trJxw/4y3XPPPVqxYoVaW1tz/n5y/f3yyv6q9v3EueEQr+wvzg2HeGV/cW7ovX3GueGQcu2vcp8bEtRzuYGBAW3ZskVTpkzRoYceqlNPPVU+n09tbW065ZRTEq9btWqVtm7dqieeeEKSdMQRR2jRokXy+/067rjjNHfuXEnSgw8+qGg0KmkomjxlyhRNnTpVX/rSlxQKhRQKhfSJT3wi6X2loQNHe3u7pk+frk9/+tNauHChpKH07JNOOinx+ldeeSXj9/TCCy9o/fr1kqSTTz5ZM2bMUCAQ0Cc/+cnExdUDDzwgSerr69PWrVs1ffp0feADH9BZZ50lv9+vtrY2nXvuuYn3dMtBqtr3lzR0B29YY2Njlv/nyoP9Za+3t1eXXXaZ4vG4DjzwwKT/F+VW7fusv78/8T2NHTtWn//85xUIBDRx4sTEHdhYLKZ77703l/+tRVOJ+6uvr0/BYFCXXnqpfvvb32rChAlpX79nzx7NmjVLd911V+Jk3K3csr9G2rRpk7773e8qEAjoC1/4Qs7fU67HRC/sr2rfT5wbemt/SZwbem1/2eHc0L37jHPD8u+vcp8b0lPP5UKhUKLG2jR8h1KS/H6/XnrppcTdkzlz5iS9ds6cOVqzZo12796tN954QzNnztR1111n+747duxI/Hu4v9CBBx6oP/7xj7avH46yS0MHkkxeeOGFpHWN/B5mzZqlp59+WmvXrlV3d7caGhr04IMP2r5PT09P4t9mLX25sL8akk7cUqU2uwX7q8H2Pa677jpt2LBBNTU1uuKKKzJ+ZilV+z7r6upKlI9OmDAhqQfc8MmNpMTdzXKrxP3V1tamBx98UPvss0/G10pDJ+MXX3yxAoGANm7cmNXXlItb9teweDyu//zP/1R3d7cuuOACzZo1K+fvKddjohf2F/uJc0Ov7S/ODb21v+xwbpjMTfuMc8Py769ynxuSqedR69atS0odPfDAAxONICVZ0kaH68wlacOGDSnft7e3V//93/+d2F6yZEnadTzyyCOJC6WFCxdq8eLFGdc+cp0j1zVyOx6PJ73OtG7dOv3sZz+TJDU3N+u0007L+LnlVE37a2SJxWOPPaZzzz1XRx11lD74wQ/q8ssvT9x1crNq2l+mtWvX6q677pIknXLKKVk1S3aDatlnLS0ticbBGzduTJzESUMlCMPcGowY5uX91dTUlPVJm6TE3XUvK9f+uuuuu/Tkk09qxowZed05l3I/Jnp5f1XTfrLDueEQN+4vzg29tb9MnBsmc9s+49yw/Pur3OeGBPU86K233tL555+fuOt1yimnaP78+UnZBmZj4JHbI183Uk9Pjy6++GL985//lCRNnz5dH/vYx2xfe8wxx2jBggX63Oc+p4aGBp177rn6xS9+kdXkwJGfHwqFclrnV77yFS1atEgnnHCC3n77bX3oQx/Sb37zm6yyK8ql2vbXyLux1157rR5//HFt2rRJ69ev169+9St95CMfcc2dIjvVtr9M1157raLRqILBYN5/2EqtmvZZOBzWwQcfLGnobua1116rzs5OrV27Vt/5zncyfk9u4PX9VW3Ktb82bNig733ve/L7/brqqqssvxvZKvSY6BXVvJ84N3yXW/cX54be2l8mzg3f5cZ9xrlh+fdXuRHU85gXXnhBZ555ZiLSvv/+++vyyy/P+HWxWCzxb7uLlh07duicc87RY489JmkoEv79739f4XDY9v127dql/v5+SUO/RK+++mpWvYgKXWdXV1fil7a/v19vvvmmnn766YI/t1iqdX+NGjVKo0aN0mc/+1k9/fTTWrFihT760Y9KGjq4ui1tf1i17q9hTz31lB599FFJQw2QJ06cWPBnFls17rOvfvWriXXceuutWrJkiT70oQ9p48aNibIZt2YaVfr+qjTl2l/xeFyXXXaZenp6dM455ySGHzgt0zq9otr3E+eGQ9y+vzg3TOb2/TWMc8N3uXmfcW7o3v1VCu7cs7D16KOP6otf/GKiX8hhhx2mG264IfGLOrLx7PDFyrCBgYHEv81eCRs2bNB5552nN998U5I0efJk3XTTTdp3331TruXZZ59Vb2+vVq1apSuuuEIrVqzQE088oTvuuEOLFy/Wt771Lf3+979P+poPfehD+q//+q+kdY5cV6Z1StKPf/xjDQ4O6vXXX9f3vvc9PfbYY3rxxRfV0dGhz3/+8ynXWw7Vur9+8IMf2K7hG9/4hh5++GHt3LlTa9eu1YYNGzJOBiqlat1fI918882Jf7u9bEmq3n2233776Z577tGPf/xjvfjii/L5fHrve9+riy66SGeffbYkqaWlJeVay6VS9le1KOf+uvPOO/X0009r8uTJ+tKXvpRxrcU6JnoB+4lzQ8n9+4tzQ2/tr5E4Nxzi9n3GuWF591e5EdTziJUrV+oLX/hC4of3s5/9rP793/9dfv+7yZYj/wiObAYpSdu2bUv8e+rUqYl/b926VZ/61KcS9eqHHXaY/ud//ierX/q6ujodcsgh+o//+A9ddNFFisViWr58uRYvXqzu7m7t2rUr6fXDd1FHrnNkM8yR66ypqUn5Rz0YDGrOnDm67rrrEjXxd911l6tO3NhfVqFQSJMnT06MW9+5c6drTtzYX0Oj2FesWCFJmjhxohYsWJBxjeVU7ftszpw5uuGGG5Jeu3PnTnV2dkqSZs6cmXG9pVRJ+6salHt//elPf5I0dFI+PKnY9MMf/lA//OEPdfXVV5fkb5gbsZ/exbmht/bXMM4N3b2/ODcc4pV9xrnhkHLsr3IjqOcBb731li688EINDAyopqZGV155pU4//XTL6xYsWKBAIKBIJGIpI1qzZo0kafTo0Ykf+sHBQX3uc59L/MB/9KMf1Te/+U3b1Nx77rlHt9xyi3bs2KFLLrkkaSz0yHTX4YPGNddco2uuucb2+1m0aFHi3yPXGYlEtHbtWknSvHnzFA6H9eKLL+qyyy5TR0eHlixZou9///tpP9cNqnl/9fT06Pbbb9eOHTvU0NCgSy65JPH6wcHBpAat48ePt/28Uqvm/TXS3/72t0Qa+3HHHWf73m5R7fvstdde09q1a9XR0ZH0uY888kji34cddpjtZ5VDpe2vSueG/ZWrYhwT3a6a9xPnht7aX5wbemt/jcS5oXf2GeeG5d1f5UZPPQ/45je/mZga9aUvfcn2B14aqhM/+uijJQ39Av/jH/9QLBbT7373O7322muShtKmh6Pft9xyS+KX4YgjjtBVV12V8gd+v/320xtvvKHOzk7ddNNNiV+qbdu26ec//3niddnUos+ZM0f777+/JOmBBx7Q66+/rkgkol/84hfas2ePJOnMM89MfO4777yjjo4O/fnPf9Yf/vAHxWIx9ff36/rrr8/pc0ulmvdXfX297r33Xv3v//6vfvzjH+tXv/qVYrGYent7dc011yTusCxZssQ1DayreX+NtHr16sS/3X4nttr32S233KIvfelL+ta3vqX77rtP0tDJ3PAxsbm5WaecckrGzy2VSttfAwMD2rZtW+K/wcHBxHM7duxIPD5893bPnj2Jx0beZR4cHEx6n2g0mvGzS8EN++vGG2/UihUrLP/deOONidece+65WrFihZYtW5b2+8n198sr+6ua9xPnht7aX5wbemt/jcS5oXf2GeeG5d1f5T439MXj8XhWr0RZvPDCC0k/5C0tLbaNIBctWqSf/OQn2rhxo84444xEmm4wGEz8UM2aNUv33HOP6uvrJUkLFy5Ub2+vpKE/uKmmvaxcuVKS9O1vf1u333574vG6urrE10tDJ1nLly9Pqn1P5cUXX9Q555yTqJ8fuc5DDjlEN998c+KX86GHHtKll16aGM8dCoUUjUYTP+SNjY264447NHfu3IyfW2zsL+nxxx/XBRdckEilDgaDikajiTt948aN0x133KEpU6Zk/NxiY3+964wzztDzzz8vSfrtb3+refPmZfyccmCfDZUJnHXWWdq+fbvlcwOBgH7wgx/omGOOyfiZpVCJ+2vlypU655xzMn7vF110kS6++GJ99atf1W9/+9uMr//rX/+qSZMmZXxdMblpf6V6bvj//fD/32zk8vvlhf3FfuLc0Gv7i3NDb+2vYZwbemefcW5Y3v1V7nNDym9dbuQFh5S6lGA40j1p0iTdc889uuGGG/TEE0+os7NTEydO1LHHHqsLL7ww8QNvvndPT0/igJHK5Zdfrve9731avny5/vnPf6qzs1P19fWaNm2ajj32WH3qU5/KutH0/Pnzdffdd+vGG2/Us88+q+7ubk2bNk0nnXSSzj///KQ/KsuWLdP06dN1yy236JlnntG2bdtUU1OjSZMm6eCDD9b5559f9guhYewv6dBDD9V9992nn//851q5cqW2bt2qUCikKVOm6KijjtKnP/1ptba2ZvW5xcb+sv/em5qasvqccmCfDfUXWb58uX7yk5/oqaee0tatW9Xa2qqDDjpIn//85xN3dt2gUvdXpXLT/nJSPsdEN2M/cW5o995u3l+cG1rf2837axjnht7ZZ5wbWt+71PurnMjUAwAAAAAAADzGW7cmAQAAAAAAABDUAwAAAAAAALyGoB4AAAAAAADgMQT1AAAAAAAAAI8hqAcAAAAAAAB4DEE9AAAAAAAAwGMI6gEAAAAAAAAeQ1APAAAAAAAA8BiCegAAAAAAAIDHENQDAAAAAAAAPIagHgAAAAAAAOAxBPUAAAAAAAAAjyGoBwAAAAAAAHjM/w9yJG7MZHz5GwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "leverage = 1.5\n", + "tp = 10/100 # 2.1/100\n", + "sl = 10 # 7.3\n", + "pf = (pd.concat((low_portfolio, portfolio_return_MV,high_portfolio), axis=1).dropna()-spread)*leverage\n", + "pf.columns = [\"low\", \"Return\", \"high\"]\n", + "\n", + "pf[\"Return\"] = np.where(pf[\"high\"].values>tp, tp, pf[\"Return\"].values)\n", + "pf[\"Return\"] = np.where(pf[\"Return\"].values>tp, tp, pf[\"Return\"].values)\n", + "pf[\"Return\"] = np.where(pf[\"low\"].values<-sl, -sl, pf[\"Return\"].values)\n", + "pf[\"Return\"] = np.where(pf[\"Return\"].values<-sl, -sl, pf[\"Return\"].values)\n", + "\n", + "# Plot the CM\n", + "backtest_dynamic_portfolio(pf[\"Return\"])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Why has the performance does not grown since 06-2021? There are some explanations. The period's volatility is less than the other, and the strategy does not work on it, or the weight of the algorithm needs to be adjusted because the market situation has evolved." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "algo_trading", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.10" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From 04cafdd771aeda784855cf4493fb7e0499df565c Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 08:25:01 +0100 Subject: [PATCH 14/23] Fix: Update Seaborn style for consistency --- packages/itbot/itbot/backtest.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/packages/itbot/itbot/backtest.py b/packages/itbot/itbot/backtest.py index f9a7f02..4512858 100644 --- a/packages/itbot/itbot/backtest.py +++ b/packages/itbot/itbot/backtest.py @@ -4,7 +4,7 @@ from scipy.optimize import minimize import matplotlib.pyplot as plt -plt.style.use("seaborn") +plt.style.use('seaborn-v0_8-whitegrid') import matplotlib as mpl @@ -25,7 +25,7 @@ def backtest_static_portfolio(weights, database, ben="^GSPC", timeframe=252, CR= from scipy.optimize import minimize import matplotlib.pyplot as plt - plt.style.use("seaborn") + plt.style.use('seaborn-v0_8-whitegrid') # Compute the portfolio portfolio = np.multiply(database, np.transpose(weights)) @@ -189,7 +189,7 @@ def backtest_dynamic_portfolio(dfc, ben="^GSPC", timeframe=252): from scipy.optimize import minimize import matplotlib.pyplot as plt - plt.style.use("seaborn") + plt.style.use('seaborn-v0_8-whitegrid') import matplotlib as mpl import matplotlib.pyplot as plt From c9edcdcc47e81302d10a3fa44692631e81b39a67 Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 09:24:49 +0100 Subject: [PATCH 15/23] feat: Remove unused Agent001 and its model --- packages/itbot/agents/__init__.py | 1 - packages/itbot/agents/agent_001.py | 89 ------------------------------ packages/itbot/models/001.model | 0 3 files changed, 90 deletions(-) delete mode 100644 packages/itbot/agents/agent_001.py delete mode 100644 packages/itbot/models/001.model diff --git a/packages/itbot/agents/__init__.py b/packages/itbot/agents/__init__.py index db9d1b3..39a3347 100644 --- a/packages/itbot/agents/__init__.py +++ b/packages/itbot/agents/__init__.py @@ -1,3 +1,2 @@ from .agent import * -from .agent_001 import * from .basic_ml_agent import * diff --git a/packages/itbot/agents/agent_001.py b/packages/itbot/agents/agent_001.py deleted file mode 100644 index 6149418..0000000 --- a/packages/itbot/agents/agent_001.py +++ /dev/null @@ -1,89 +0,0 @@ -import asyncio -import os -from typing import Dict, List, Optional - -import pandas as pd -from packages.itbot.itbot import Signal -from packages.itbot.agents.agent import Agent -from trade_flow.common.logging import Logger - - -class Agent001(Agent): - """ - Example agent that implements Agent, for loading a model, generating signals, and sending them to ITBot. - """ - - def __init__(self, logger: Optional[Logger] = None): - super().__init__(logger) - self.model = None - - def load_model(self, model_path: str) -> None: - """ - Load the trained model from the specified path. - """ - if os.path.exists(model_path): - # Dummy model loading for demonstration purposes - self.model = f"Loaded model from {model_path}" - self.logger.info(f"Model loaded from {model_path}") - else: - raise FileNotFoundError(f"Model file {model_path} not found.") - - async def generate_signals(self, symbol: str, data: pd.DataFrame) -> List[Signal]: - """ - Generate trading signals using the loaded model and input data. - - Args: - symbol (str): The trading symbol for which signals are being generated. - data (pd.DataFrame): The input data used by the agent to make trading decisions. - - Returns: - List[Signal]: A list of trading signals generated by the model. - """ - if self.model is None: - raise ValueError("Model is not loaded. Please load the model first.") - - # Simulate signal generation delay - await asyncio.sleep(1) - - # Example signals based on input data - signals = [ - Signal( - symbol="BTCUSD", - price=data["price"], - score=data["score"], - trend="↑", - zone="Buy Zone", - trade_type="Buy", - ), - Signal( - symbol="ETHUSD", - price=data["price"] * 0.05, - score=data["score"] - 0.2, - trend="↓", - zone="Sell Zone", - trade_type="Sell", - ), - ] - return signals - - async def send_signals(self) -> None: - """ - Asynchronously send the generated signals to ITBot for further processing and forwarding to MT5. - """ - while True: - # Wait for new data to be added - data = await self.signals_queue.get() - - # Generate signals asynchronously based on new data - signals = await self.generate_signals(data) - - for signal in signals: - # Forward the signal to ITBot's queue - self.trader.execute_trade(signal) - self.logger.info(f"Signal sent to ITBot: {signal}") - - def run(self): - """ - Run the agent in the background, processing data and sending signals. - """ - super().run() # Starts the event loop and processes tasks diff --git a/packages/itbot/models/001.model b/packages/itbot/models/001.model deleted file mode 100644 index e69de29..0000000 From 572ccbfe46cea7ebe436867acb45d59a099827cd Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 09:38:13 +0100 Subject: [PATCH 16/23] feat: Update BasicMLAgent and integrate into ITBot --- packages/itbot/agents/agent.py | 61 +++++- packages/itbot/agents/basic_ml_agent.py | 272 ++++++++++++++++++++---- packages/itbot/main.py | 61 ++---- 3 files changed, 301 insertions(+), 93 deletions(-) diff --git a/packages/itbot/agents/agent.py b/packages/itbot/agents/agent.py index 10aab1a..88e5257 100644 --- a/packages/itbot/agents/agent.py +++ b/packages/itbot/agents/agent.py @@ -1,5 +1,7 @@ import asyncio from abc import ABC, abstractmethod +import os +import joblib from typing import Dict, List, Optional import pandas as pd @@ -15,25 +17,64 @@ class Agent(ABC): The agent continuously waits for data and sends signals asynchronously as an event-driven program. """ - def __init__(self, logger: Optional[Logger] = None): + def __init__( + self, + selected_symbols: List[str] = ["EURUSD", "BTCUSD", "XAUUSD"], + logger: Optional[Logger] = None, + ): + """Initialize the trading bot with logging and a list of trading symbols. + + Args: + selected_symbols (List[str]): List of symbols to trade. Default is ["EURUSD", "BTCUSD","XAUUSD"]. + logger (Optional[Logger]): An optional logger instance. If not provided, a default logger will be created. + """ # Set up logging - self.logger = logger or Logger(name="it_bot", log_level=logging.DEBUG, filename="ITBot.log") + self.logger = logger or Logger(name="it_bot", level=logging.DEBUG, filename="ITBot.log") - self.model = None + # Initialize the signal queue for asynchronous handling self.signals_queue = asyncio.Queue() - self.loop = None - self.selected_symbols = ["BTCUSD", "EURUSD", "XAUUSD"] # List of symbols you want to trade + # Initialize the event loop + self.loop = asyncio.get_event_loop() # Use the current event loop - @abstractmethod - def load_model(self, model_path: str) -> None: + # Store the selected symbols for trading + self.selected_symbols = selected_symbols + self.models = { + symbol: None for symbol in self.selected_symbols + } # Initialize models for symbols + + # Log the initialized symbols + self.logger.debug(f"Initialized with symbols: {self.selected_symbols}") + + def load_models(self, model_path: str) -> None: """ - Load the trained model from the specified path. + Load the trained models from the specified path. Args: - model_path (str): The file path of the trained model. + model_path (str): The directory path where the trained models are stored. + + Raises: + ValueError: If the provided path is not a directory or if the model file is not found. """ - pass + # Check if the provided path is a valid directory + if not os.path.isdir(model_path): + raise ValueError(f"The provided path '{model_path}' is not a valid directory.") + + # Load models for each symbol from the specified directory + for symbol in self.selected_symbols: + model_file = os.path.join( + model_path, f"{symbol}_voting.joblib" + ) # Adjust the file naming as needed + + # Check if the model file exists + if os.path.isfile(model_file): + try: + self.models[symbol] = joblib.load(model_file) + self.logger.info(f"Model for {symbol} loaded successfully from {model_file}.") + except Exception as e: + self.logger.error(f"Error loading model for {symbol}: {e}") + else: + self.logger.warning(f"No model file found for {symbol} at {model_file}.") @abstractmethod async def generate_signals(self, symbol: str, data: pd.DataFrame) -> List[Signal]: diff --git a/packages/itbot/agents/basic_ml_agent.py b/packages/itbot/agents/basic_ml_agent.py index b1cb059..f47b563 100644 --- a/packages/itbot/agents/basic_ml_agent.py +++ b/packages/itbot/agents/basic_ml_agent.py @@ -1,32 +1,146 @@ -import asyncio -import os -from typing import Dict, List, Optional +from datetime import datetime +from typing import Any, List, Optional, Tuple +import numpy as np import pandas as pd -from packages.itbot.itbot import Signal +from packages.itbot.itbot import Signal, TradeType from packages.itbot.agents.agent import Agent +from packages.itbot.itbot.portfolio import RiskManager from trade_flow.common.logging import Logger class BasicMLAgent(Agent): """ - An agent that implements Agent, for loading a model, generating signals, and sending them to ITBot. + An agent that implements the Agent interface for loading a model, generating signals, + and sending them to ITBot. + + Attributes: + logger (Logger): Instance of Logger for logging activities and errors. + risk_manager (RiskManager): Instance of RiskManager for managing trade risks. + position_size (float): Size of the trading position to be executed. """ - def __init__(self, logger: Optional[Logger] = None): - super().__init__(logger) - self.model = None + def __init__( + self, + initial_balance: float, + strategy_name: str = "fixed_percentage", + selected_symbols: List[str] = ["EURUSD", "BTCUSD", "ETHUSD", "XAUUSD"], + whitelist_symbols: List[str] = ["BTCUSD", "ETHUSD"], + logger: Optional[Logger] = None, + ): + """ + Initialize the BasicMLAgent. - def load_model(self, model_path: str) -> None: + Args: + initial_balance (float): Initial account balance for trading. + strategy_name (str): The strategy to apply for risk management. + Options: ['fixed_percentage', 'kelly_criterion', 'martingale', + 'mean_reversion', 'equity_curve', 'volatility_based']. + Defaults to 'fixed_percentage'. + selected_symbols (List[str]): A list of symbols to trade. Defaults to ["EURUSD", "BTCUSD", "XAUUSD"]. + whitelist_symbols (List[str]): Symbols that can be traded during weekends (e.g., crypto pairs). + logger (Optional[Logger]): Instance of Logger for logging activities and errors. """ - Load the trained model from the specified path. + super().__init__(selected_symbols, logger) + self.whitelist_symbols = whitelist_symbols + self.start_time = datetime.now().strftime("%H:%M:%S") + self.is_time = False + + # Validate whitelist symbols are in selected symbols + invalid_symbols = [ + symbol for symbol in self.whitelist_symbols if symbol not in self.selected_symbols + ] + if invalid_symbols: + error_message = f"Invalid whitelist symbols: {invalid_symbols}. These symbols are not in selected symbols." + self.logger.error(error_message) + raise ValueError(error_message) + + # Risk Manager Setup + target_returns: Optional[List[float]] = None + period_per_return: int = 3 + total_periods: int = 30 + contract_size: float = 1.0 + self.risk_manager = RiskManager( + initial_balance=initial_balance, + risk_percentage=0.1, + contract_size=contract_size, + logger=logger, + ) + + self.position_size = 0.1 + + self.risk_manager.select_strategy(strategy_name) + self.logger.info( + f"Executing trade with strategy '{strategy_name}' and position size: {self.position_size}" + ) + + async def _generate_signal( + self, data: pd.DataFrame, model: Any, is_classification: bool = True + ) -> Tuple[bool, bool, float]: """ - if os.path.exists(model_path): - # Dummy model loading for demonstration purposes - self.model = f"Loaded model from {model_path}" - self.logger.info(f"Model loaded from {model_path}") - else: - raise FileNotFoundError(f"Model file {model_path} not found.") + Generate trading signals based on classification from input data and the model. + + Args: + data (pd.DataFrame): The input data containing return values for feature engineering. + model (Any): The trained model used for making predictions. + is_classification (bool): A flag indicating whether to perform classification. + If True, predictions are classified as buy or sell. + If False, predictions are returned as is. + + Returns: + Tuple[bool, bool, float]: A tuple containing: + - buy (bool): Whether to buy. + - sell (bool): Whether to sell. + - score (float): The confidence score of the prediction, ranging from 0 to 1. + + Notes: + - The method performs feature engineering by calculating mean and volatility of returns + over different rolling windows. + - The predictions are adjusted based on the classification flag. If `is_classification` + is True, predictions are transformed into -1 (sell) or 1 (buy). + - If the model supports probability estimation, the score is calculated from + `model.predict_proba`; otherwise, a default score of 1.0 is returned. + """ + # Create new variable + data.columns = ["returns"] + + # Features engineering + data["mean returns 15"] = data["returns"].rolling(15).mean() + data["mean returns 60"] = data["returns"].rolling(60).mean() + data["volatility returns 15"] = data["returns"].rolling(15).std() + data["volatility returns 60"] = data["returns"].rolling(60).std() + + # Prepare input features for the model + X = ( + data[ + [ + "returns", + "mean returns 15", + "mean returns 60", + "volatility returns 15", + "volatility returns 60", + ] + ] + .iloc[-1:, :] + .values + ) + + # Find the signal + prediction = model.predict(X) + self.logger.debug(f"Prediction: {prediction}") + + if is_classification: + prediction = np.where(prediction == 0, -1, 1) # -1 for sell, 1 for buy + + buy = prediction[0] > 0 + sell = not buy + + # Confidence score (assuming model.predict_proba returns probabilities) + score = ( + model.predict_proba(X)[0][1] if hasattr(model, "predict_proba") else 1.0 + ) # Default score if not available + + return buy, sell, score async def generate_signals(self, symbol: str, data: pd.DataFrame) -> List[Signal]: """ @@ -38,49 +152,117 @@ async def generate_signals(self, symbol: str, data: pd.DataFrame) -> List[Signal Returns: List[Signal]: A list of trading signals generated by the model. + + Raises: + ValueError: If the model is not loaded before generating signals. + + Notes: + - The method verifies if the current day is a weekend and prevents trading if so. + - The signals are categorized into Buy, Sell, or Neutral zones based on the model's predictions. """ - if self.model is None: - raise ValueError("Model is not loaded. Please load the model first.") - - # Simulate signal generation delay - await asyncio.sleep(1) - - self.logger.debug(symbol) # data = {"price": 50000, "score": 0.4} - - # Example signals based on input data - # signals = [ - # Signal( - # symbol="BTCUSD", - # price=data["price"], - # score=data["score"], - # trend="↑", - # zone="Buy Zone", - # trade_type="Buy", - # ), - # Signal( - # symbol="ETHUSD", - # price=data["price"] * 0.05, - # score=data["score"] - 0.2, - # trend="↓", - # zone="Sell Zone", - # trade_type="Sell", - # ), - # ] - return [] + if self.models[symbol] is None: + raise ValueError(f"{symbol} Model is not loaded. Please load the model first.") + + current_time = datetime.now().strftime("%H:%M:%S") + current_weekday = datetime.now().weekday() + + # Verification for launch + if current_weekday in (5, 6): # Weekend check + if symbol in self.whitelist_symbols: + self.logger.info(f"Trading pair {symbol} during the weekend is allowed.") + else: + self.logger.warning(f"Trading symbol {symbol} is not allowed during the weekend.") + raise RuntimeError(f"Trading {symbol} is restricted on weekends.") + else: + # If not weekend, check trading window + if current_time == self.start_time: + self.is_time = True + self.logger.info(f"Trading window opened at {self.start_time} for {symbol}.") + else: + self.is_time = False + self.logger.debug( + f"Current time: {current_time}. Waiting for trading window at {self.start_time}." + ) + + self.logger.debug(f"Processing data for {symbol}") + self.logger.debug(data) + + # Calculate returns + data["returns"] = data["close"].pct_change(1) # .dropna() + + # Check if data is sufficient for processing + if len(data) < 1: + self.logger.warning(f"Not enough data for {symbol} to generate signals.") + return [] + + # Create the signals + buy, sell, score = await self._generate_signal(data, self.models[symbol]) + self.logger.debug(f"Signal => Buy: {buy} | Sell: {sell} => {score*100}%") + + price = data["close"].iloc[-1] # Latest close price + + signals = [] + if buy: + signals.append( + Signal( + symbol=symbol, + price=price, + score=score, + trend="↑", + zone="Buy Zone", + trade_type=TradeType.BUY, + position_size=self.position_size, + ) + ) + elif sell: + signals.append( + Signal( + symbol=symbol, + price=price, + score=score, + trend="↓", + zone="Sell Zone", + trade_type=TradeType.SELL, + position_size=self.position_size, + ) + ) + else: + signals.append( + Signal( + symbol=symbol, + price=price, + score=score, + trend="→", + zone="Neutral Zone", + trade_type=TradeType.NEUTRAL, + ) + ) + + return signals async def send_signals(self) -> None: """ Asynchronously send the generated signals to ITBot for further processing and forwarding to MT5. + + Notes: + - The method continuously listens for new data, generates signals for the selected symbols, + and logs the generated signals. """ while True: # Wait for new data to be added data = await self.signals_queue.get() # Generate signals based on new data - signals = await self.generate_signals(data) + for symbol in self.selected_symbols: + signals = await self.generate_signals(symbol, data[symbol]) + # Logic to send signals to ITBot would go here + self.logger.info(f"Generated signals for {symbol}: {signals}") def run(self): """ Run the agent in the background, processing data and sending signals. + + Notes: + - This method starts the event loop and processes tasks. """ super().run() # Starts the event loop and processes tasks diff --git a/packages/itbot/main.py b/packages/itbot/main.py index a37544c..b468be1 100644 --- a/packages/itbot/main.py +++ b/packages/itbot/main.py @@ -10,7 +10,6 @@ from packages.itbot.itbot.mt5_trader import MT5Trader from packages.itbot.itbot.MetaTrader5 import MetaTrader5 as mt5 from packages.itbot.itbot.interfaces import TelegramInterface -from packages.itbot.itbot.portfolio.risk_manager import RiskManager from trade_flow.common.logging import Logger from dotenv import load_dotenv @@ -28,8 +27,6 @@ class ITBot: logger (Logger): Instance of Logger for logging activities and errors. notifications_handler (TelegramInterface): Instance of TelegramInterface for handling Telegram messages. db (str): Path to the database for storing trade logs. - risk_manager (RiskManager): Instance of RiskManager for managing trade risks. - position_size (float): Size of the trading position to be executed. default_chats (List[str]): List of default Telegram channels to listen for signals. """ @@ -38,7 +35,6 @@ def __init__( agent: Agent, trader: MT5Trader, notifications_handler: TelegramInterface, - risk_manager: RiskManager, db: str = "it_bot_mt5_trades.db", logger: Optional[Logger] = None, ): @@ -49,7 +45,6 @@ def __init__( agent (Agent): An instance of an agent for generating trading signals. trader (MT5Trader): An instance of MT5Trader for executing trades. notifications_handler (TelegramInterface): An instance of TelegramInterface for handling messages. - risk_manager (RiskManager): An instance of RiskManager for trade risk management. db (str, optional): Path to the SQLite database for storing trade logs. Defaults to "it_bot_mt5_trades.db". logger (Optional[Logger], optional): A Logger instance for logging. If not provided, a default logger is created. """ @@ -63,9 +58,7 @@ def __init__( self.trader = trader self.notifications_handler = notifications_handler self.agent = agent - self.risk_manager = risk_manager self.db = db - # self.position_size = 0 # Define a default position size # Change signals_queue to hold only Signal objects self.signals_queue: asyncio.Queue[Signal] = asyncio.Queue() @@ -166,13 +159,9 @@ async def run_agent(self): Continuously run the agent to generate trading signals for multiple symbols and send them to the ITBot for execution. - This method loads the agent's model and enters an infinite loop to generate - and process signals for each symbol. + This method generates and processes signals for each symbol selected by the agent symbol. """ - self.logger.debug("Starting Agent") - - # Load model for the agent (modify path as needed) - self.agent.load_model(f"{os.getcwd()}/models/001.model") + self.logger.debug("Starting Agent...") while True: tasks = [] @@ -195,7 +184,7 @@ async def process_agent_symbol(self, symbol: str): """ # Fetch data for the symbol self.logger.info(f"Fetching data for {symbol}") - data = await self.trader.get_bar_data(symbol=symbol, timeframe=mt5.TIMEFRAME_D1, count=10) + data = await self.trader.get_bar_data(symbol=symbol, timeframe=mt5.TIMEFRAME_D1, count=3500) # Generate signals from the agent self.logger.info(f"Generating signals for {symbol}") @@ -207,23 +196,12 @@ async def process_agent_symbol(self, symbol: str): if self._validate_signal(signal): await self.signals_queue.put(signal) - async def run_trader(self, strategy_name: str = "fixed_percentage"): + async def run_trader(self): """ - Run the trader using the specified strategy for risk management. - - Args: - strategy_name (str): The strategy to apply for risk management. - Options: ['fixed_percentage', 'kelly_criterion', 'martingale', - 'mean_reversion', 'equity_curve', 'volatility_based']. - Defaults to 'fixed_percentage'. + Run the trader. """ signal = await self.signals_queue.get() # Get signal from the queue - self.risk_manager.select_strategy(strategy_name) - self.logger.info( - f"Executing trade with strategy '{strategy_name}' and position size: {signal.position_size}" - ) - # Get current open positions self.current_open_positions = await self.trader.get_open_positions() self.current_open_positions.to_csv("current_open_positions.csv") @@ -312,22 +290,29 @@ def main(): ) # Initialize ML Agent instance - agent = BasicMLAgent(logger=logger) - - # Risk Manager Setup - target_returns: Optional[List[float]] = None - period_per_return: int = 3 - total_periods: int = 30 - contract_size: float = 1.0 - risk_manager = RiskManager( + agent = BasicMLAgent( initial_balance=trader.initial_balance, - risk_percentage=0.1, - contract_size=contract_size, + selected_symbols=[ + "ETCUSD", + "IBM", + "Volatility 150 (1s) Index", + "Volatility 200 (1s) Index", + "Volatility 250 (1s) Index", + ], + whitelist_symbols=[ + "ETCUSD", + "Volatility 150 (1s) Index", + "Volatility 200 (1s) Index", + "Volatility 250 (1s) Index", + ], logger=logger, ) + # Load model for the agent (modify path as needed) + agent.load_models(f"{os.getcwd()}/models/") + # Setup and Start ITBot - it_bot = ITBot(agent, trader, notifications_handler, risk_manager, logger=logger) + it_bot = ITBot(agent, trader, notifications_handler, logger=logger) asyncio.run(it_bot.run()) From 29551d9ca7aac601bd4e46d2618c4ca7aeee9a5f Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 13:00:55 +0100 Subject: [PATCH 17/23] feat: improve trading logic --- packages/itbot/agents/__init__.py | 1 + packages/itbot/agents/basic_ml_agent.py | 15 +++- packages/itbot/itbot/db.py | 3 + packages/itbot/itbot/mt5_trader.py | 35 ++++---- packages/itbot/main.py | 105 +++++++++++++++--------- packages/itbot/requirements.txt | 1 + 6 files changed, 99 insertions(+), 61 deletions(-) diff --git a/packages/itbot/agents/__init__.py b/packages/itbot/agents/__init__.py index 39a3347..2bf4ec8 100644 --- a/packages/itbot/agents/__init__.py +++ b/packages/itbot/agents/__init__.py @@ -1,2 +1,3 @@ from .agent import * from .basic_ml_agent import * +from .itb_agent import * diff --git a/packages/itbot/agents/basic_ml_agent.py b/packages/itbot/agents/basic_ml_agent.py index f47b563..01edc12 100644 --- a/packages/itbot/agents/basic_ml_agent.py +++ b/packages/itbot/agents/basic_ml_agent.py @@ -1,3 +1,4 @@ +import asyncio from datetime import datetime from typing import Any, List, Optional, Tuple @@ -14,6 +15,10 @@ class BasicMLAgent(Agent): An agent that implements the Agent interface for loading a model, generating signals, and sending them to ITBot. + The book Python for finance and algorithmic trading (2nd edition) + + https://github.com/Quantreo/2nd-edition-BOOK-AMAZON-Python-for-Finance-and-Algorithmic-Trading/ + Attributes: logger (Logger): Instance of Logger for logging activities and errors. risk_manager (RiskManager): Instance of RiskManager for managing trade risks. @@ -102,7 +107,7 @@ async def _generate_signal( `model.predict_proba`; otherwise, a default score of 1.0 is returned. """ # Create new variable - data.columns = ["returns"] + # data.columns = ["returns"] # Features engineering data["mean returns 15"] = data["returns"].rolling(15).mean() @@ -172,7 +177,7 @@ async def generate_signals(self, symbol: str, data: pd.DataFrame) -> List[Signal self.logger.info(f"Trading pair {symbol} during the weekend is allowed.") else: self.logger.warning(f"Trading symbol {symbol} is not allowed during the weekend.") - raise RuntimeError(f"Trading {symbol} is restricted on weekends.") + return [] else: # If not weekend, check trading window if current_time == self.start_time: @@ -185,10 +190,10 @@ async def generate_signals(self, symbol: str, data: pd.DataFrame) -> List[Signal ) self.logger.debug(f"Processing data for {symbol}") - self.logger.debug(data) # Calculate returns data["returns"] = data["close"].pct_change(1) # .dropna() + self.logger.debug(data) # Check if data is sufficient for processing if len(data) < 1: @@ -196,7 +201,9 @@ async def generate_signals(self, symbol: str, data: pd.DataFrame) -> List[Signal return [] # Create the signals - buy, sell, score = await self._generate_signal(data, self.models[symbol]) + await asyncio.sleep(5) + buy, sell, score = True, False, 0.6 + # buy, sell, score = await self._generate_signal(data, self.models[symbol]) self.logger.debug(f"Signal => Buy: {buy} | Sell: {sell} => {score*100}%") price = data["close"].iloc[-1] # Latest close price diff --git a/packages/itbot/itbot/db.py b/packages/itbot/itbot/db.py index 14812fc..c8133db 100644 --- a/packages/itbot/itbot/db.py +++ b/packages/itbot/itbot/db.py @@ -50,3 +50,6 @@ def fetch_trades(self): def close(self): self.connection.close() + + +# https://github.com/ErikKalkoken/aiodbm diff --git a/packages/itbot/itbot/mt5_trader.py b/packages/itbot/itbot/mt5_trader.py index ea94b0c..802c2e0 100644 --- a/packages/itbot/itbot/mt5_trader.py +++ b/packages/itbot/itbot/mt5_trader.py @@ -103,7 +103,7 @@ def _initialize_terminal(self) -> None: try: self.mt5_terminal.safe_start() time.sleep(5) - + self.logger.info(f"MetaTrader 5 Terminal started for account {self.mt5_account_number}") except Exception as e: self.logger.error(f"Error initializing Dockerized MT5 Terminal: {e}") @@ -176,17 +176,17 @@ async def _prepare_trade_request( If position_id is required for closing a trade and is not provided. """ - # Validate the position size - position_size = await self.validate_position_size(symbol, position_size) - # Fetch symbol info and validate symbol_info = self.mt5.symbol_info(symbol) if not symbol_info: raise ValueError(f"Symbol info for {symbol} not available") + # Validate the position size + position_size = await self.validate_position_size(symbol_info, position_size) + # Get necessary symbol info and pricing data filling_mode = symbol_info.filling_mode - 1 - tick_data = mt5.symbol_info_tick(symbol) + tick_data = self.mt5.symbol_info_tick(symbol) ask_price = tick_data.ask bid_price = tick_data.bid point = symbol_info.point @@ -204,9 +204,9 @@ async def _prepare_trade_request( trade_type_code = mt5.ORDER_TYPE_SELL price = bid_price - # Calculate stop loss (sl) and take profit (tp) - sl = price * (1 - 0.01) - tp = price * (1 + 0.01) + # Calculate stop loss (sl) and take profit (tp) | TODO: fix SL and TP + sl = price * (1 - trade_tick_size) + tp = price + (1 * trade_stops_level * point) request = { "action": mt5.TRADE_ACTION_DEAL, @@ -214,10 +214,10 @@ async def _prepare_trade_request( "volume": position_size, "type": trade_type_code, "price": price, - "sl": sl, - "tp": tp, + # "sl": sl, + # "tp": tp, "deviation": deviation, - "magic": random.randint(234000, 237000), # Random magic number + "magic": random.randint(234000, 237000), "comment": "ITBot", "type_time": mt5.ORDER_TIME_GTC, "type_filling": filling_mode, @@ -244,7 +244,7 @@ async def _prepare_trade_request( "position": position_id, "price": price, "deviation": deviation, - "magic": kwargs.get("magic", 0), # Default to 0 if not provided + # "magic": kwargs.get("magic", 0), # Default to 0 if not provided "comment": "ITBot", "type_time": mt5.ORDER_TIME_GTC, "type_filling": filling_mode, @@ -337,13 +337,13 @@ async def validate_position_size(self, symbol_info: SymbolInfo, volume: float) - the trading symbol. """ - # Ensure symbol_info is available + # Ensure symbol_info is available | isinstance(symbol_info, SymbolInfo) if not symbol_info: + self.logger.warning("Symbol information is not available.") raise ValueError("Symbol information is not available.") # Extract the trading symbol symbol = symbol_info.name - self.logger.debug(f"Symbol Info: {symbol_info}") # Check and adjust the volume based on minimum and maximum allowed values min_volume = symbol_info.volume_min @@ -408,9 +408,11 @@ async def open_trade( None, self.mt5.order_send, request ) + self.logger.debug(f"result: {result}") + # Check if the trade was successfully executed - if result.retcode != self.mt5.TRADE_RETCODE_DONE: - raise ValueError(f"Order send failed with retcode={result.retcode}") + if result.retcode != mt5.TRADE_RETCODE_DONE: + self.logger.error(f"Order send failed with retcode={result.retcode}") # Log success and return the result as a dictionary self.logger.info(f"MT5 order sent successfully: Order ID = {result.order}") @@ -462,6 +464,7 @@ async def close_trade( position_id=position_id, **kwargs, ) + self.logger.debug(f"Trade Request: {request}") # Execute the trade request asynchronously result = await asyncio.get_running_loop().run_in_executor( diff --git a/packages/itbot/main.py b/packages/itbot/main.py index b468be1..5c65994 100644 --- a/packages/itbot/main.py +++ b/packages/itbot/main.py @@ -4,6 +4,7 @@ import random import re from typing import List, Optional +import aiodbm from telethon import events from packages.itbot.agents import Agent, BasicMLAgent from packages.itbot.itbot import Signal, TradeType @@ -63,6 +64,11 @@ def __init__( # Change signals_queue to hold only Signal objects self.signals_queue: asyncio.Queue[Signal] = asyncio.Queue() + # # Initialize aiodbm for storing signals persistently + # self.signals_db = aiodbm.open( + # "signals.dbm", "c" + # ) # 'c' mode opens for read/write, creates if not exists + def _validate_signal(self, signal: Signal) -> bool: """ Validate the signal to ensure it meets the required criteria. @@ -104,17 +110,19 @@ def _parse_telegram_signals(self, data: str) -> List[Signal]: signals = [] for match in pattern.finditer(data): # Create a Signal object using the parsed data + trade_type = ( + match.group("zone").upper().split("ZONE")[0].strip() + if match.group("zone") + else "None" + ) signal = Signal( symbol="BTCUSD", price=float(match.group("price").replace(",", "")) if match.group("price") else 0.0, score=float(match.group("score")) if match.group("score") else 0.0, trend=match.group("trend") or "None", zone=match.group("zone") or "None", - trade_type=( - match.group("zone").upper().split("ZONE")[0].strip() - if match.group("zone") - else "None" - ), + trade_type=TradeType.BUY if "BUY" in trade_type else TradeType.SELL, + position_size=0.01, ) # Validate the signal before adding it to the list if self._validate_signal(signal): @@ -149,10 +157,12 @@ async def handle_new_message(self, event: events.NewMessage) -> None: signals = self._parse_telegram_signals(text) self.logger.debug(f"Processed signals: {signals}") - self.logger.debug(f"Executing Telegram signals...") + # Process each signal and forward it to MT5 trader for execution if signals: for signal in signals: - await self.signals_queue.put(signal) + if self._validate_signal(signal): + self.logger.debug(f"Adding signal to queue: {signal}") + await self.signals_queue.put(signal) async def run_agent(self): """ @@ -168,6 +178,7 @@ async def run_agent(self): # Loop over selected symbols and create tasks to fetch data and generate signals concurrently for symbol in self.agent.selected_symbols: + self.logger.debug(symbol) tasks.append(self.process_agent_symbol(symbol)) # Run the tasks concurrently @@ -179,12 +190,14 @@ async def process_agent_symbol(self, symbol: str): """ Process agent's trading signals for a specific symbol. + Timeframe: 1 min + Args: symbol (str): The trading symbol to process. """ # Fetch data for the symbol self.logger.info(f"Fetching data for {symbol}") - data = await self.trader.get_bar_data(symbol=symbol, timeframe=mt5.TIMEFRAME_D1, count=3500) + data = await self.trader.get_bar_data(symbol=symbol, timeframe=mt5.TIMEFRAME_M1, count=3500) # Generate signals from the agent self.logger.info(f"Generating signals for {symbol}") @@ -194,46 +207,56 @@ async def process_agent_symbol(self, symbol: str): if signals: for signal in signals: if self._validate_signal(signal): + self.logger.debug(f"Adding signal to queue: {signal}") await self.signals_queue.put(signal) async def run_trader(self): """ Run the trader. """ - signal = await self.signals_queue.get() # Get signal from the queue - - # Get current open positions - self.current_open_positions = await self.trader.get_open_positions() - self.current_open_positions.to_csv("current_open_positions.csv") - - # Close trade if applicable try: - # Filter the DataFrame for the specific symbol - position_info = self.current_open_positions.loc[ - self.current_open_positions["symbol"] == signal.symbol - ].iloc[ - 0 - ] # Get the first matching row - - position = position_info["position_decoded"] # Use column name directly - identifier = position_info["identifier"] # Use column name directly - except IndexError: - position = None - identifier = None - self.logger.warning(f"No open position found for symbol: {signal.symbol}") - - # Close trades based on position state and signal received - if position is not None and signal.trade_type in [TradeType.BUY, TradeType.SELL]: - self.logger.info(f"POSITION: {position} \t ID: {identifier}") - await self.trader.execute(signal, close_trade=True, position_id=identifier) - else: - self.logger.info("No open positions to close.") - - # Open new trades based on the signal - if position is None and signal.trade_type in [TradeType.BUY, TradeType.SELL]: - await self.trader.execute(signal) - - self.logger.info("------------------------------------------------------------------") + while True: + self.logger.debug("Waiting for signal in queue...") + signal = await self.signals_queue.get() # Get signal from the queue + self.logger.debug(f"Received Signal from queue: {signal}") + + # Get current open positions + self.current_open_positions = await self.trader.get_open_positions() + self.current_open_positions.to_csv("current_open_positions.csv") + + # Close trade if applicable + try: + # Filter the DataFrame for the specific symbol + position_info = self.current_open_positions.loc[ + self.current_open_positions["symbol"] == signal.symbol + ].iloc[ + 0 + ] # Get the first matching row + + position = position_info["position_decoded"] # Use column name directly + identifier = position_info["ticket"] # Use column name directly + except IndexError: + position = None + identifier = None + self.logger.warning(f"No open position found for symbol: {signal.symbol}") + + # Close trades based on position state and signal received + if position is not None and signal.trade_type in [TradeType.BUY, TradeType.SELL]: + self.logger.info(f"POSITION: {position} \t ID: {identifier}") + await self.trader.execute(signal, close_trade=True, position_id=identifier) + else: + self.logger.info("No open positions to close.") + + # Open new trades based on the signal + if position is None and signal.trade_type in [TradeType.BUY, TradeType.SELL]: + await self.trader.execute(signal) + + self.logger.info( + "------------------------------------------------------------------" + ) + except KeyboardInterrupt: + self.logger.info("Logging out...") + # await self.trader.execute(signal, close_trade=True, position_id=identifier) async def run(self): """ diff --git a/packages/itbot/requirements.txt b/packages/itbot/requirements.txt index 9478a06..7133953 100644 --- a/packages/itbot/requirements.txt +++ b/packages/itbot/requirements.txt @@ -8,6 +8,7 @@ stable-baselines3[extra] rpyc git+https://github.com/fortesenselabs/trade_flow.git joblib +aiodbm # dev ta From a214265649d235f393058f90a0706ca9f0b04763 Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 17:40:28 +0100 Subject: [PATCH 18/23] feat: Add JSON serialization/deserialization to Signal Model --- packages/itbot/itbot/__init__.py | 32 +++++++++++++++++++++++++++++++- 1 file changed, 31 insertions(+), 1 deletion(-) diff --git a/packages/itbot/itbot/__init__.py b/packages/itbot/itbot/__init__.py index 4b1bdb5..6f3f394 100644 --- a/packages/itbot/itbot/__init__.py +++ b/packages/itbot/itbot/__init__.py @@ -1,4 +1,5 @@ -from dataclasses import dataclass +import json +from dataclasses import dataclass, asdict from typing import Optional from enum import Enum @@ -31,3 +32,32 @@ class Signal: zone: Optional[str] = None trade_type: TradeType = TradeType.NEUTRAL # Default type set to TradeType.NEUTRAL position_size: float = 0.01 # Default position size set to 0.01 + + def to_json(self) -> str: + """ + Convert the Signal instance to a JSON string. + + Returns: + str: The JSON string representation of the Signal. + """ + # Convert the dataclass to a dict and handle TradeType conversion + signal_dict = asdict(self) + signal_dict["trade_type"] = self.trade_type.name # Store TradeType as a string + return json.dumps(signal_dict) + + @staticmethod + def from_json(json_str: str) -> "Signal": + """ + Create a Signal instance from a JSON string. + + Args: + json_str (str): The JSON string representing a Signal. + + Returns: + Signal: A new Signal instance created from the JSON data. + """ + # Parse JSON string into a dict + signal_dict = json.loads(json_str) + # Convert trade_type back to TradeType enum + signal_dict["trade_type"] = TradeType[signal_dict["trade_type"]] + return Signal(**signal_dict) From df2bb72bcd8e8c113b553c133cb3f8cbda71bfaf Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 17:54:03 +0100 Subject: [PATCH 19/23] feat: Add environment URL to available environments --- trade_flow/environments/default/metadata.toml | 1 + trade_flow/environments/utils.py | 13 ++++++++++++- 2 files changed, 13 insertions(+), 1 deletion(-) diff --git a/trade_flow/environments/default/metadata.toml b/trade_flow/environments/default/metadata.toml index 615bbc1..c98b44a 100644 --- a/trade_flow/environments/default/metadata.toml +++ b/trade_flow/environments/default/metadata.toml @@ -4,3 +4,4 @@ version = "0.1.0" description = "A Default Gym Training Environment using predefined cyptocurrency market models" type = "train" engine = "gym" +url = "https://github.com/fortesenselabs/trade_flow/trade_flow/environments/default" diff --git a/trade_flow/environments/utils.py b/trade_flow/environments/utils.py index dd4f5eb..812d419 100644 --- a/trade_flow/environments/utils.py +++ b/trade_flow/environments/utils.py @@ -47,6 +47,7 @@ def get_available_environments() -> list[tuple]: "description": {"type": "string"}, "type": {"type": "string"}, "engine": {"type": "string"}, + "url": {"type": "string"}, }, }, }, @@ -68,8 +69,18 @@ def get_available_environments() -> list[tuple]: environment_name = environment_config["environment"]["name"] environment_version = environment_config["environment"]["version"] environment_description = environment_config["environment"]["description"] + environment_type = environment_config["environment"]["type"] + environment_engine = environment_config["environment"]["engine"] + environment_url = environment_config["environment"]["url"] environments.append( - (environment_name, environment_description, environment_version) + ( + environment_name, + environment_description, + environment_version, + environment_type, + environment_engine, + environment_url, + ) ) except FileNotFoundError as e: raise ValueError( From 5fe4a446aad399e527c74d17510f500caef8a21c Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 17:56:59 +0100 Subject: [PATCH 20/23] fix: repackage the gym-mtsim library --- trade_flow/environments/gym-mtsim/LICENSE | 21 - .../environments/gym-mtsim/README.ipynb | 7022 ----------------- trade_flow/environments/gym-mtsim/setup.py | 26 - .../{gym-mtsim => gym_mtsim}/CITATION.cff | 0 .../{gym-mtsim => gym_mtsim}/README.md | 0 .../{gym-mtsim => }/gym_mtsim/__init__.py | 0 .../gym_mtsim/data/__init__.py | 0 .../gym_mtsim/data/symbols_crypto.pkl | Bin .../gym_mtsim/data/symbols_forex.pkl | Bin .../gym_mtsim/data/symbols_mixed.pkl | Bin .../gym_mtsim/data/symbols_stocks.pkl | Bin .../doc/output_28_0.png | Bin .../doc/output_30_0.png | Bin .../doc/output_32_0.png | Bin .../gym_mtsim/envs/__init__.py | 0 .../{gym-mtsim => }/gym_mtsim/envs/mt_env.py | 0 .../examples/SB3_a2c_ppo.ipynb | 20 +- .../environments/gym_mtsim/metadata.toml | 7 + .../gym_mtsim/metatrader/__init__.py | 0 .../gym_mtsim/metatrader/api.py | 0 .../gym_mtsim/metatrader/interface.py | 0 .../gym_mtsim/metatrader/symbol.py | 0 .../gym_mtsim/simulator/__init__.py | 0 .../gym_mtsim/simulator/exceptions.py | 0 .../gym_mtsim/simulator/mt_simulator.py | 133 +- .../gym_mtsim/simulator/order.py | 0 26 files changed, 97 insertions(+), 7132 deletions(-) delete mode 100644 trade_flow/environments/gym-mtsim/LICENSE delete mode 100644 trade_flow/environments/gym-mtsim/README.ipynb delete mode 100644 trade_flow/environments/gym-mtsim/setup.py rename trade_flow/environments/{gym-mtsim => gym_mtsim}/CITATION.cff (100%) rename trade_flow/environments/{gym-mtsim => gym_mtsim}/README.md (100%) rename trade_flow/environments/{gym-mtsim => }/gym_mtsim/__init__.py (100%) rename trade_flow/environments/{gym-mtsim => }/gym_mtsim/data/__init__.py (100%) rename trade_flow/environments/{gym-mtsim => }/gym_mtsim/data/symbols_crypto.pkl (100%) rename trade_flow/environments/{gym-mtsim => }/gym_mtsim/data/symbols_forex.pkl (100%) rename trade_flow/environments/{gym-mtsim => }/gym_mtsim/data/symbols_mixed.pkl (100%) rename trade_flow/environments/{gym-mtsim => }/gym_mtsim/data/symbols_stocks.pkl (100%) rename trade_flow/environments/{gym-mtsim => gym_mtsim}/doc/output_28_0.png (100%) rename trade_flow/environments/{gym-mtsim => gym_mtsim}/doc/output_30_0.png (100%) rename trade_flow/environments/{gym-mtsim => gym_mtsim}/doc/output_32_0.png (100%) rename trade_flow/environments/{gym-mtsim => }/gym_mtsim/envs/__init__.py (100%) rename trade_flow/environments/{gym-mtsim => }/gym_mtsim/envs/mt_env.py (100%) rename trade_flow/environments/{gym-mtsim => gym_mtsim}/examples/SB3_a2c_ppo.ipynb (92%) create mode 100644 trade_flow/environments/gym_mtsim/metadata.toml rename trade_flow/environments/{gym-mtsim => }/gym_mtsim/metatrader/__init__.py (100%) rename trade_flow/environments/{gym-mtsim => }/gym_mtsim/metatrader/api.py (100%) rename trade_flow/environments/{gym-mtsim => }/gym_mtsim/metatrader/interface.py (100%) rename trade_flow/environments/{gym-mtsim => }/gym_mtsim/metatrader/symbol.py (100%) rename trade_flow/environments/{gym-mtsim => }/gym_mtsim/simulator/__init__.py (100%) rename trade_flow/environments/{gym-mtsim => }/gym_mtsim/simulator/exceptions.py (100%) rename trade_flow/environments/{gym-mtsim => }/gym_mtsim/simulator/mt_simulator.py (76%) rename trade_flow/environments/{gym-mtsim => }/gym_mtsim/simulator/order.py (100%) diff --git a/trade_flow/environments/gym-mtsim/LICENSE b/trade_flow/environments/gym-mtsim/LICENSE deleted file mode 100644 index 1c2d1cf..0000000 --- a/trade_flow/environments/gym-mtsim/LICENSE +++ /dev/null @@ -1,21 +0,0 @@ -MIT License - -Copyright (c) 2021 Mohammad Amin Haghpanah - -Permission is hereby granted, free of charge, to any person obtaining a copy -of this software and associated documentation files (the "Software"), to deal -in the Software without restriction, including without limitation the rights -to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -copies of the Software, and to permit persons to whom the Software is -furnished to do so, subject to the following conditions: - -The above copyright notice and this permission notice shall be included in all -copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. diff --git a/trade_flow/environments/gym-mtsim/README.ipynb b/trade_flow/environments/gym-mtsim/README.ipynb deleted file mode 100644 index 28e2304..0000000 --- a/trade_flow/environments/gym-mtsim/README.ipynb +++ /dev/null @@ -1,7022 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# gym-mtsim: OpenAI Gym - MetaTrader 5 Simulator\n", - "\n", - "`MtSim` is a simulator for the [MetaTrader 5](https://www.metatrader5.com) trading platform alongside an [OpenAI Gym](https://github.com/openai/gym) environment for reinforcement learning-based trading algorithms. `MetaTrader 5` is a **multi-asset** platform that allows trading **Forex**, **Stocks**, **Crypto**, and Futures. It is one of the most popular trading platforms and supports numerous useful features, such as opening demo accounts on various brokers.\n", - "\n", - "The simulator is separated from the Gym environment and can work independently. Although the Gym environment is designed to be suitable for RL frameworks, it is also proper for backtesting and classic analysis.\n", - "\n", - "The goal of this project was to provide a *general-purpose*, *flexible*, and *easy-to-use* library with a focus on *code readability* that enables users to do all parts of the trading process through it from 0 to 100. So, `gym-mtsim` is not just a testing tool or a Gym environment. It is a combination of a **real-world** simulator, a **backtesting** tool with *high detail visualization*, and a **Gym environment** appropriate for RL/classic algorithms.\n", - "\n", - "**Note:** For beginners, it is recommended to check out the [gym-anytrading](https://github.com/AminHP/gym-anytrading) project." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Prerequisites\n", - "\n", - "### Install MetaTrader 5\n", - "Download and install MetaTrader 5 software from [here](https://www.metatrader5.com/en/download).\n", - "\n", - "Open a demo account on any broker. By default, the software opens a demo account automatically after installation.\n", - "\n", - "Explore the software and try to get familiar with it by trading different symbols in both **hedged** and **unhedged** accounts.\n", - "\n", - "### Install gym-mtsim\n", - "\n", - "#### Via PIP\n", - "```bash\n", - "pip install gym-mtsim\n", - "```\n", - "\n", - "#### From Repository\n", - "```bash\n", - "git clone https://github.com/AminHP/gym-mtsim\n", - "cd gym-mtsim\n", - "pip install -e .\n", - "\n", - "## or\n", - "\n", - "pip install --upgrade --no-deps --force-reinstall https://github.com/AminHP/gym-mtsim/archive/main.zip\n", - "```\n", - "\n", - "### Install stable-baselines3\n", - "This package is required to run some examples. Install it from [here](https://github.com/DLR-RM/stable-baselines3#installation)." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Components" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 1. SymbolInfo\n", - "\n", - "This is a data class that contains the essential properties of a symbol. Try to get fully acquainted with [these properties](https://github.com/AminHP/gym-mtsim/blob/main/gym_mtsim/metatrader/symbol.py) in case they are unfamiliar. There are plenty of resources that provide good explanations." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 2. Order\n", - "\n", - "This is another data class that consists of information of an order. Each order has the following properties:\n", - "\n", - "> `id`: A unique number that helps with tracking orders.\n", - ">\n", - "> `type`: An enum that specifies the type of the order. It can be either **Buy** or **Sell**.\n", - ">\n", - "> `symbol`: The symbol selected for the order.\n", - ">\n", - "> `volume`: The volume chose for the order. It can be a multiple of *volume_step* between *volume_min* and *volume_max*. \n", - ">\n", - "> `fee`: It is a tricky property. In MetaTrader, there is *no* such concept called fee. Each symbol has bid and ask prices, the difference between which represents the **fee**. Although MetaTrader API provides these bid/ask prices for the recent past, it is not possible to access them for the distant past. Therefore, the **fee** property helps to manage the mentioned difference.\n", - ">\n", - "> `entry_time`: The time when the order was placed.\n", - ">\n", - "> `entry_price`: The **close** price when the order was placed.\n", - ">\n", - "> `exit_time`: The time when the order was closed.\n", - ">\n", - "> `exit_price`: The **close** price when the order was closed.\n", - ">\n", - "> `profit`: The amount of profit earned by this order so far.\n", - ">\n", - "> `margin`: The required amount of margin for this order.\n", - ">\n", - "> `closed`: A boolean that specifies whether this order is closed or not." - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 3. MtSimulator\n", - "\n", - "This is the core class that simulates the main parts of MetaTrader. Most of its public properties and methods are explained here. But feel free to take a look at the complete [source code](https://github.com/AminHP/gym-mtsim/blob/main/gym_mtsim/simulator/mt_simulator.py).\n", - "\n", - "* Properties:\n", - "\n", - " > `unit`: The unit currency. It is usually *USD*, but it can be anything the broker allows, such as *EUR*.\n", - " >\n", - " > `balance`: The amount of money before taking into account any open positions.\n", - " >\n", - " > `equity`: The amount of money, including the value of any open positions.\n", - " >\n", - " > `margin`: The amount of money which is required for having positions opened.\n", - " >\n", - " > `leverage`: The leverage ratio.\n", - " >\n", - " > `free_margin`: The amount of money that is available to open new positions.\n", - " >\n", - " > `margin_level`: The ratio between **equity** and **margin**.\n", - " >\n", - " > `stop_out_level`: If the **margin_level** drops below **stop_out_level**, the most unprofitable position will be closed automatically by the broker.\n", - " >\n", - " > `hedge`: A boolean that specifies whether hedging is enabled or not.\n", - " >\n", - " > `symbols_info`: A dictionary that contains symbols' information.\n", - " >\n", - " > `symbols_data`: A dictionary that contains symbols' OHLCV data.\n", - " >\n", - " > `orders`: The list of open orders.\n", - " >\n", - " > `closed_orders`: The list of closed orders.\n", - " >\n", - " > `current_time`: The current time of the system.\n", - "\n", - "* Methods:\n", - "\n", - " > `download_data`: Downloads required data from MetaTrader for a list of symbols in a time range. This method can be overridden in order to download data from servers other than MetaTrader. *Note that this method only works on Windows, as the MetaTrader5 Python package is not available on other platforms.*\n", - " >\n", - " > `save_symbols`: Saves the downloaded symbols' data to a file.\n", - " >\n", - " > `load_symbols`: Loads the symbols' data from a file.\n", - " >\n", - " > `tick`: Moves forward in time (by a delta time) and updates orders and other related properties.\n", - " >\n", - " > `create_order`: Creates a **Buy** or **Sell** order and updates related properties.\n", - " >\n", - " > `close_order`: Closes an order and updates related properties.\n", - " >\n", - " > `get_state`: Returns the state of the system. The result is similar to the *Trading tab* and *History tab* of the *Toolbox window* in MetaTrader software." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### 4. MtEnv\n", - "\n", - "This is the Gym environment that works on top of the *MtSim*. Most of its public properties and methods are explained here. But feel free to take a look at the complete [source code](https://github.com/AminHP/gym-mtsim/blob/main/gym_mtsim/envs/mt_env.py).\n", - "\n", - "* Properties:\n", - "\n", - " > `original_simulator`: An instance of **MtSim** class as a baseline for simulating the system.\n", - " >\n", - " > `simulator`: The current simulator in use. It is a copy of the **original_simulator**.\n", - " >\n", - " > `trading_symbols`: The list of symbols to trade.\n", - " >\n", - " > `time_points`: A list of time points based on which the simulator moves time. The default value is taken from the *pandas DataFrame.Index* of the first symbol in the **trading_symbols** list.\n", - " >\n", - " > `hold_threshold`: A probability threshold that controls holding or placing a new order.\n", - " >\n", - " > `close_threshold`: A probability threshold that controls closing an order.\n", - " >\n", - " > `fee`: A constant number or a callable that takes a *symbol* as input and returns the **fee** based on that.\n", - " >\n", - " > `symbol_max_orders`: Specifies the maximum number of open positions per symbol in hedge trading. \n", - " >\n", - " > `multiprocessing_processes`: Specifies the maximum number of processes used for parallel processing.\n", - " >\n", - " > `prices`: The symbol prices over time. It is used to calculate signal features and render the environment.\n", - " >\n", - " > `signal_features`: The extracted features over time. It is used to generate *Gym observations*.\n", - " >\n", - " > `window_size`: The number of time points (current and previous points) as the length of each observation's features. \n", - " >\n", - " > `features_shape`: The shape of a single observation's features.\n", - " >\n", - " > `action_space`: The *Gym action_space* property. It has a complex structure since **stable-baselines** does not support *Dict* or *2D Box* action spaces. The action space is a 1D vector of size `count(trading_symbols) * (symbol_max_orders + 2)`. For each symbol, two types of actions can be performed, closing previous orders and placing a new order. The former is controlled by the first *symbol_max_orders* elements and the latter is controlled by the last two elements. Therefore, the action for each symbol is ***[probability of closing order 1, probability of closing order 2, ..., probability of closing order symbol_max_orders, probability of holding or creating a new order, volume of the new order]***. The last two elements specify whether to hold or place a new order and the volume of the new order (positive volume indicates buy and negative volume indicates sell). These elements are a number in range (-∞, ∞), but the probability values must be in the range [0, 1]. This is a problem with **stable-baselines** as mentioned earlier. To overcome this problem, it is assumed that the probability values belong to the [logit](https://en.wikipedia.org/wiki/Logit) function. So, applying the [expit](https://en.wikipedia.org/wiki/Expit) function on them gives the desired probability values in the range [0, 1]. This function is applied in the **step** method of the environment.\n", - " >\n", - " > `observation_space`: The *Gym observation_space* property. Each observation contains information about *balance*, *equity*, *margin*, *features*, and *orders*. The **features** is a window on the *signal_features* from index *current_tick - window_size + 1* to *current_tick*. The **orders** is a 3D array. Its first dimension specifies the symbol index in the *trading_symbols* list. The second dimension specifies the order number (each symbol can have more than one open order at the same time in hedge trading). The last dimension has three elements, *entry_price*, *volume*, and *profit* of corresponding order.\n", - " >\n", - " > `history`: Stores the information of all steps.\n", - "\n", - "* Methods:\n", - "\n", - " > `seed`: The typical *Gym seed* method.\n", - " >\n", - " > `reset`: The typical *Gym reset* method.\n", - " >\n", - " > `step`: The typical *Gym step* method.\n", - " >\n", - " > `render`: The typical *Gym render* method. It can render in three modes, **human**, **simple_figure**, and **advanced_figure**.\n", - " >\n", - " > `close`: The typical *Gym close* method.\n", - "\n", - "* Virtual Methods:\n", - "\n", - " > `_get_prices`: It is called in the constructor and calculates symbol **prices**.\n", - " >\n", - " > `_process_data`: It is called in the constructor and calculates **signal_features**.\n", - " >\n", - " > `_calculate_reward`: The reward function for the RL agent." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## A Simple Example" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### MtSim" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Create a simulator with custom parameters" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], - "source": [ - "import pytz\n", - "from datetime import datetime, timedelta\n", - "from gym_mtsim import MtSimulator, OrderType, Timeframe, FOREX_DATA_PATH\n", - "\n", - "\n", - "sim = MtSimulator(\n", - " unit='USD',\n", - " balance=10000.,\n", - " leverage=100.,\n", - " stop_out_level=0.2,\n", - " hedge=False,\n", - ")\n", - "\n", - "if not sim.load_symbols(FOREX_DATA_PATH):\n", - " sim.download_data(\n", - " symbols=['EURUSD', 'GBPCAD', 'GBPUSD', 'USDCAD', 'USDCHF', 'GBPJPY', 'USDJPY'],\n", - " time_range=(\n", - " datetime(2021, 5, 5, tzinfo=pytz.UTC),\n", - " datetime(2021, 9, 5, tzinfo=pytz.UTC)\n", - " ),\n", - " timeframe=Timeframe.D1\n", - " )\n", - " sim.save_symbols(FOREX_DATA_PATH)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Place some orders" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "balance: 10000.0, equity: 10717.58118589908, margin: 3375.480933228619\n", - "free_margin: 7342.1002526704615, margin_level: 3.1751271592500743\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
IdSymbolTypeVolumeEntry TimeEntry PriceExit TimeExit PriceExit BalanceExit EquityProfitMarginFeeClosed
02USDJPYSell2.02021-09-01 00:17:52+00:00110.025002021-09-06 00:17:52+00:00109.71200NaNNaN552.3552572000.0000000.0100False
11GBPCADBuy1.02021-08-30 00:17:52+00:001.733892021-09-06 00:17:52+00:001.73626NaNNaN165.2259281375.4809330.0003False
\n", - "
" - ], - "text/plain": [ - " Id Symbol Type Volume Entry Time Entry Price \\\n", - "0 2 USDJPY Sell 2.0 2021-09-01 00:17:52+00:00 110.02500 \n", - "1 1 GBPCAD Buy 1.0 2021-08-30 00:17:52+00:00 1.73389 \n", - "\n", - " Exit Time Exit Price Exit Balance Exit Equity \\\n", - "0 2021-09-06 00:17:52+00:00 109.71200 NaN NaN \n", - "1 2021-09-06 00:17:52+00:00 1.73626 NaN NaN \n", - "\n", - " Profit Margin Fee Closed \n", - "0 552.355257 2000.000000 0.0100 False \n", - "1 165.225928 1375.480933 0.0003 False " - ] - }, - "execution_count": 2, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "sim.current_time = datetime(2021, 8, 30, 0, 17, 52, tzinfo=pytz.UTC)\n", - "\n", - "order1 = sim.create_order(\n", - " order_type=OrderType.Buy,\n", - " symbol='GBPCAD',\n", - " volume=1.,\n", - " fee=0.0003,\n", - ")\n", - "\n", - "sim.tick(timedelta(days=2))\n", - "\n", - "order2 = sim.create_order(\n", - " order_type=OrderType.Sell,\n", - " symbol='USDJPY',\n", - " volume=2.,\n", - " fee=0.01,\n", - ")\n", - "\n", - "sim.tick(timedelta(days=5))\n", - "\n", - "state = sim.get_state()\n", - "\n", - "print(\n", - " f\"balance: {state['balance']}, equity: {state['equity']}, margin: {state['margin']}\\n\"\n", - " f\"free_margin: {state['free_margin']}, margin_level: {state['margin_level']}\\n\"\n", - ")\n", - "state['orders']" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Close all orders" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "balance: 10717.58118589908, equity: 10717.58118589908, margin: 0.0\n", - "free_margin: 10717.58118589908, margin_level: inf\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
IdSymbolTypeVolumeEntry TimeEntry PriceExit TimeExit PriceExit BalanceExit EquityProfitMarginFeeClosed
02USDJPYSell2.02021-09-01 00:17:52+00:00110.025002021-09-06 00:17:52+00:00109.7120010717.58118610717.581186552.3552572000.0000000.0100True
11GBPCADBuy1.02021-08-30 00:17:52+00:001.733892021-09-06 00:17:52+00:001.7362610165.22592810717.581186165.2259281375.4809330.0003True
\n", - "
" - ], - "text/plain": [ - " Id Symbol Type Volume Entry Time Entry Price \\\n", - "0 2 USDJPY Sell 2.0 2021-09-01 00:17:52+00:00 110.02500 \n", - "1 1 GBPCAD Buy 1.0 2021-08-30 00:17:52+00:00 1.73389 \n", - "\n", - " Exit Time Exit Price Exit Balance Exit Equity \\\n", - "0 2021-09-06 00:17:52+00:00 109.71200 10717.581186 10717.581186 \n", - "1 2021-09-06 00:17:52+00:00 1.73626 10165.225928 10717.581186 \n", - "\n", - " Profit Margin Fee Closed \n", - "0 552.355257 2000.000000 0.0100 True \n", - "1 165.225928 1375.480933 0.0003 True " - ] - }, - "execution_count": 3, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "order1_profit = sim.close_order(order1)\n", - "order2_profit = sim.close_order(order2)\n", - "\n", - "# alternatively:\n", - "# for order in sim.orders:\n", - "# sim.close_order(order)\n", - "\n", - "state = sim.get_state()\n", - "\n", - "print(\n", - " f\"balance: {state['balance']}, equity: {state['equity']}, margin: {state['margin']}\\n\"\n", - " f\"free_margin: {state['free_margin']}, margin_level: {state['margin_level']}\\n\"\n", - ")\n", - "state['orders']" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### MtEnv" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Create an environment" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": {}, - "outputs": [], - "source": [ - "import gymnasium as gym\n", - "import gym_mtsim\n", - "\n", - "env = gym.make('forex-hedge-v0')\n", - "# env = gym.make('stocks-hedge-v0')\n", - "# env = gym.make('crypto-hedge-v0')\n", - "# env = gym.make('mixed-hedge-v0')\n", - "\n", - "# env = gym.make('forex-unhedge-v0')\n", - "# env = gym.make('stocks-unhedge-v0')\n", - "# env = gym.make('crypto-unhedge-v0')\n", - "# env = gym.make('mixed-unhedge-v0')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "* This will create a default environment. There are eight default environments, but it is also possible to create environments with custom parameters." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Create an environment with custom parameters" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": {}, - "outputs": [], - "source": [ - "import pytz\n", - "from datetime import datetime, timedelta\n", - "import numpy as np\n", - "from gym_mtsim import MtEnv, MtSimulator, FOREX_DATA_PATH\n", - "\n", - "\n", - "sim = MtSimulator(\n", - " unit='USD',\n", - " balance=10000.,\n", - " leverage=100.,\n", - " stop_out_level=0.2,\n", - " hedge=True,\n", - " symbols_filename=FOREX_DATA_PATH\n", - ")\n", - "\n", - "env = MtEnv(\n", - " original_simulator=sim,\n", - " trading_symbols=['GBPCAD', 'EURUSD', 'USDJPY'],\n", - " window_size=10,\n", - " # time_points=[desired time points ...],\n", - " hold_threshold=0.5,\n", - " close_threshold=0.5,\n", - " fee=lambda symbol: {\n", - " 'GBPCAD': max(0., np.random.normal(0.0007, 0.00005)),\n", - " 'EURUSD': max(0., np.random.normal(0.0002, 0.00003)),\n", - " 'USDJPY': max(0., np.random.normal(0.02, 0.003)),\n", - " }[symbol],\n", - " symbol_max_orders=2,\n", - " multiprocessing_processes=2\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Print some information" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "env information:\n", - "> prices[GBPCAD].shape: (88, 2)\n", - "> prices[EURUSD].shape: (88, 2)\n", - "> prices[USDJPY].shape: (88, 2)\n", - "> signal_features.shape: (88, 6)\n", - "> features_shape: (10, 6)\n" - ] - } - ], - "source": [ - "print(\"env information:\")\n", - "\n", - "for symbol in env.prices:\n", - " print(f\"> prices[{symbol}].shape:\", env.prices[symbol].shape)\n", - "\n", - "print(\"> signal_features.shape:\", env.signal_features.shape)\n", - "print(\"> features_shape:\", env.features_shape)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Trade randomly" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "balance: 18179.65219519348, equity: 18179.65219519348, margin: 0.0\n", - "free_margin: 18179.65219519348, margin_level: inf\n", - "step_reward: 0.0\n" - ] - } - ], - "source": [ - "observation = env.reset()\n", - "\n", - "while True:\n", - " action = env.action_space.sample()\n", - " observation, reward, terminated, truncated, info = env.step(action)\n", - " done = terminated or truncated\n", - "\n", - " if done:\n", - " # print(info)\n", - " print(\n", - " f\"balance: {info['balance']}, equity: {info['equity']}, margin: {info['margin']}\\n\"\n", - " f\"free_margin: {info['free_margin']}, margin_level: {info['margin_level']}\\n\"\n", - " f\"step_reward: {info['step_reward']}\"\n", - " )\n", - " break" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Render in *human* mode" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "balance: 18179.65219519348, equity: 18179.65219519348, margin: 0.0\n", - "free_margin: 18179.65219519348, margin_level: inf\n", - "\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
IdSymbolTypeVolumeEntry TimeEntry PriceExit TimeExit PriceExit BalanceExit EquityProfitMarginFeeClosed
014EURUSDBuy9.952021-08-27 00:00:00+00:001.179552021-08-31 00:00:00+00:001.1808318179.65219518179.6521951052.55463111736.5225000.000222True
113EURUSDBuy0.222021-08-26 00:00:00+00:001.175152021-08-31 00:00:00+00:001.1808317127.09756518179.652195120.009649258.5330000.000225True
212GBPCADBuy7.102021-08-24 00:00:00+00:001.727842021-08-26 00:00:00+00:001.7377017007.08791617007.0879165140.9968539746.5292730.000675True
311EURUSDSell3.332021-08-20 00:00:00+00:001.169962021-08-23 00:00:00+00:001.1745711866.09106211866.091062-1610.6503243895.9668000.000227True
410GBPCADBuy6.652021-07-30 00:00:00+00:001.733352021-08-02 00:00:00+00:001.7357713476.74138713476.741387868.9413389248.1306010.000786True
59EURUSDSell0.262021-07-21 00:00:00+00:001.179462021-07-22 00:00:00+00:001.1770712607.80004812607.80004856.809064306.6596000.000205True
68USDJPYBuy7.112021-07-12 00:00:00+00:00110.349002021-07-16 00:00:00+00:00110.0810012550.99098412550.990984-1850.3013097110.0000000.018474True
77EURUSDBuy4.232021-07-07 00:00:00+00:001.179032021-07-09 00:00:00+00:001.1877414401.29229314401.2922933618.6999104987.2969000.000155True
86GBPCADSell2.772021-07-02 00:00:00+00:001.705112021-07-05 00:00:00+00:001.7071610782.59238310782.592383-612.3379273831.4281190.000678True
95EURUSDSell6.072021-06-21 00:00:00+00:001.191852021-06-22 00:00:00+00:001.1941311394.93031011394.930310-1512.8136117234.5295000.000212True
104USDJPYBuy4.182021-06-11 00:00:00+00:00109.682002021-06-17 00:00:00+00:00110.2210012907.74392112907.7439211980.4396734180.0000000.016785True
113GBPCADBuy5.582021-06-01 00:00:00+00:001.707552021-06-02 00:00:00+00:001.7046210927.30424810927.304248-1678.5310177894.5166660.000689True
122EURUSDBuy2.652021-05-26 00:00:00+00:001.219222021-05-28 00:00:00+00:001.2189612605.83526512605.835265-130.5464443230.9330000.000233True
131USDJPYSell6.732021-05-19 00:00:00+00:00109.227002021-05-20 00:00:00+00:00108.7670012736.38170912736.3817092736.3817096730.0000000.017759True
\n", - "
" - ], - "text/plain": [ - " Id Symbol Type Volume Entry Time Entry Price \\\n", - "0 14 EURUSD Buy 9.95 2021-08-27 00:00:00+00:00 1.17955 \n", - "1 13 EURUSD Buy 0.22 2021-08-26 00:00:00+00:00 1.17515 \n", - "2 12 GBPCAD Buy 7.10 2021-08-24 00:00:00+00:00 1.72784 \n", - "3 11 EURUSD Sell 3.33 2021-08-20 00:00:00+00:00 1.16996 \n", - "4 10 GBPCAD Buy 6.65 2021-07-30 00:00:00+00:00 1.73335 \n", - "5 9 EURUSD Sell 0.26 2021-07-21 00:00:00+00:00 1.17946 \n", - "6 8 USDJPY Buy 7.11 2021-07-12 00:00:00+00:00 110.34900 \n", - "7 7 EURUSD Buy 4.23 2021-07-07 00:00:00+00:00 1.17903 \n", - "8 6 GBPCAD Sell 2.77 2021-07-02 00:00:00+00:00 1.70511 \n", - "9 5 EURUSD Sell 6.07 2021-06-21 00:00:00+00:00 1.19185 \n", - "10 4 USDJPY Buy 4.18 2021-06-11 00:00:00+00:00 109.68200 \n", - "11 3 GBPCAD Buy 5.58 2021-06-01 00:00:00+00:00 1.70755 \n", - "12 2 EURUSD Buy 2.65 2021-05-26 00:00:00+00:00 1.21922 \n", - "13 1 USDJPY Sell 6.73 2021-05-19 00:00:00+00:00 109.22700 \n", - "\n", - " Exit Time Exit Price Exit Balance Exit Equity \\\n", - "0 2021-08-31 00:00:00+00:00 1.18083 18179.652195 18179.652195 \n", - "1 2021-08-31 00:00:00+00:00 1.18083 17127.097565 18179.652195 \n", - "2 2021-08-26 00:00:00+00:00 1.73770 17007.087916 17007.087916 \n", - "3 2021-08-23 00:00:00+00:00 1.17457 11866.091062 11866.091062 \n", - "4 2021-08-02 00:00:00+00:00 1.73577 13476.741387 13476.741387 \n", - "5 2021-07-22 00:00:00+00:00 1.17707 12607.800048 12607.800048 \n", - "6 2021-07-16 00:00:00+00:00 110.08100 12550.990984 12550.990984 \n", - "7 2021-07-09 00:00:00+00:00 1.18774 14401.292293 14401.292293 \n", - "8 2021-07-05 00:00:00+00:00 1.70716 10782.592383 10782.592383 \n", - "9 2021-06-22 00:00:00+00:00 1.19413 11394.930310 11394.930310 \n", - "10 2021-06-17 00:00:00+00:00 110.22100 12907.743921 12907.743921 \n", - "11 2021-06-02 00:00:00+00:00 1.70462 10927.304248 10927.304248 \n", - "12 2021-05-28 00:00:00+00:00 1.21896 12605.835265 12605.835265 \n", - "13 2021-05-20 00:00:00+00:00 108.76700 12736.381709 12736.381709 \n", - "\n", - " Profit Margin Fee Closed \n", - "0 1052.554631 11736.522500 0.000222 True \n", - "1 120.009649 258.533000 0.000225 True \n", - "2 5140.996853 9746.529273 0.000675 True \n", - "3 -1610.650324 3895.966800 0.000227 True \n", - "4 868.941338 9248.130601 0.000786 True \n", - "5 56.809064 306.659600 0.000205 True \n", - "6 -1850.301309 7110.000000 0.018474 True \n", - "7 3618.699910 4987.296900 0.000155 True \n", - "8 -612.337927 3831.428119 0.000678 True \n", - "9 -1512.813611 7234.529500 0.000212 True \n", - "10 1980.439673 4180.000000 0.016785 True \n", - "11 -1678.531017 7894.516666 0.000689 True \n", - "12 -130.546444 3230.933000 0.000233 True \n", - "13 2736.381709 6730.000000 0.017759 True " - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "state = env.render()\n", - "\n", - "print(\n", - " f\"balance: {state['balance']}, equity: {state['equity']}, margin: {state['margin']}\\n\"\n", - " f\"free_margin: {state['free_margin']}, margin_level: {state['margin_level']}\\n\"\n", - ")\n", - "state['orders']" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Render in *simple_figure* mode\n", - "\n", - "* Each *symbol* is illustrated with a separate color.\n", - "* The **green**/**red** triangles show successful **buy**/**sell** actions.\n", - "* The **gray** triangles indicate that the **buy**/**sell** action has encountered an **error**.\n", - "* The **black** vertical bars specify **close** actions." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABQcAAAI1CAYAAABrKEweAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8g+/7EAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hS9/4H8PeBBMiC7L3jSlxx1q1xxL1btdplx6+37e21e9ne7nU7btftslZbq63a1lbrXlVbbd0jahwxe09CEgIBvr8/yCEhQEISCCT5vJ4nz6OHw+FLAhz48BkcY4yBEEIIIYQQQgghhBDS7QgcvQBCCCGEEEIIIYQQQohjUHCQEEIIIYQQQgghhJBuioKDhBBCCCGEEEIIIYR0UxQcJIQQQgghhBBCCCGkm6LgICGEEEIIIYQQQggh3RQFBwkhhBBCCCGEEEII6aYoOEgIIYQQQgghhBBCSDdFwUFCCCGEEEIIIYQQQropCg4SQgghhBBCCCGEENJNUXCwg0RHR+Ouu+5y9DIIIZ3U77//Do7j8Pvvvzt6KYR0WRkZGeA4DmvXrnX0Ugjp9O666y5ER0c7ehmEdBnd7Ry1du1acByHjIyMNl1/woQJmDBhQptvf926dejTpw9cXV3h7e3d5uMQ0llQcLAJ/kWo8U9gYCCSkpKwc+dORy/Pab3++uuYM2cOgoKCwHEcXnrpJYv77tu3D0lJSfD394e3tzeGDx+OdevWmez32Wef4ZZbbkFkZCQ4jrMYXJ0wYYLJ34z/cXV1Ndq3qqoKjzzyCMLDwyEWixEfH4/PPvusVfc1LS0NS5cuRWBgINzc3NCzZ0+sXLnSaJ+77rrL7Hr69OljtF9qaiqeeuopJCYmwsvLCyEhIZg5cyZOnjxpcrtXrlzBo48+ilGjRkEikTR7srT2fpp7vPM/BQUFLf4uoqOjMWvWLLOXnTx50uwbmD/++APTp09HWFgYJBIJIiMjMXv2bGzYsMFov8ZrcXFxga+vL4YMGYIVK1bg0qVLLa7NHiz9XTmOg0Qi6fD1bNiwAR988IHdbyc/Px/PPPMMkpKS4OXl1WyQUqfT4fPPP0diYiI8PT0RFBSE6dOn4+jRo0b7VVVV4cUXX8S0adPg6+vb7JtdS79zjuMwZcoUo32vX7+Om2++GT4+PnB3d8eYMWNw8ODBVt3fffv2YeLEiZDJZPDy8sKQIUOwceNGo32io6PNrucf//iH0X779+/H3XffjV69esHd3R2xsbG49957kZ+fb3K7e/bswT333IN+/fpBKBQ2+6Ha2vtp7WtRR+Bfq3v27Gn28r179xrW9+OPP3bw6hxj69atGDx4sOG18MUXX4RGo7HqujqdDv/5z38QExMDiUSCAQMG4Pvvvze77+XLlzFt2jR4enrC19cXt99+O4qLizvtMe2tufcVqampHb6epvgviziOw3fffWd2n9GjR4PjOPTr16+DV9fx6BxF5yhb6K7nqAkTJnSL14nWSk1NxV133YW4uDisWrUKX375paOXRIjduTh6Ac7qlVdeQUxMDBhjKCwsxNq1azFjxgxs27bNYjCkO3v++ecRHByMQYMGYffu3Rb327p1K+bNm4eRI0fipZdeAsdx2LRpE+644w6UlJTg0UcfNez79ttvQ6FQYPjw4WbfpPBWrlyJe++912hbdXU1/vGPfyA5OdmwTavVYurUqTh58iQeeugh9OzZE7t378aDDz6I8vJyPPfccy3ez7Nnz2LChAkICwvD448/Dj8/P2RlZSE7O9tkX7FYjK+++spom0wmM/r/V199hdWrV2PhwoV48MEHIZfL8cUXX2DEiBHYtWsXJk+ebNj32LFj+Oijj5CQkID4+HicPXvW7Brbcj/5x3tj9viGbPPmzVi8eDESExOxYsUK+Pj4ID09HYcPH8aqVauwdOlSo/2nTJmCO+64A4wxyOVynDt3Dt988w0+/fRTvP3223jsscdsvsaWmPu7AoBQKLTr7Y4bNw5KpRIikciwbcOGDUhJScEjjzxi19u+cuUK3n77bfTs2RP9+/fHsWPHLO775JNP4v3338dtt92GBx98EBUVFfjiiy8wfvx4/Pnnnxg+fDgAoKSkBK+88goiIyMxcODAZjMizX15cPLkSXz44YdGz/Hs7GyMHDkSQqEQTz75JDw8PLBmzRokJydj//79GDduXIv3dc2aNbjnnnswZcoUvPHGGxAKhbhy5YrZ53hiYiIef/xxo229evUy+v/TTz+NsrIy3HLLLejZsydu3LiBTz75BL/99hvOnj2L4OBgw74bNmzAxo0bMXjwYISGhlpcY2vvpzWvRR1FIpHg+vXrOH78uOGxwFu/fj0kEglqa2sdsjYAiIqKglKpNPliyR527tyJefPmYcKECfj4449x4cIFvPbaaygqKrLqS6uVK1firbfewn333Ydhw4bh119/xdKlS8FxHJYsWWLYLycnB+PGjYNMJsMbb7yBqqoqvPvuu7hw4QKOHz9u9JrSWY7ZEcLDw/Hmm2+abG/uudnRJBIJNmzYgNtuu81oe0ZGBo4ePeqQL60aW7VqFXQ6nd1vh85RdI6yFTpHdS179uxp83V///136HQ6fPjhh+jRo4cNV0WIE2PEyJo1axgAduLECaPtZWVlzNXVlS1durRNx42KimJ33nmnDVbonNLT0xljjBUXFzMA7MUXXzS735QpU1hoaCirra01bKurq2NxcXFswIABRvtmZGQwnU7HGGPMw8OjVb+/devWMQBs/fr1hm2bNm1iANjq1auN9l24cCGTSCSssLCw2WNqtVrWr18/dtNNN7Gamppm973zzjuZh4dHi+s8efIkUygURttKSkpYQEAAGz16tNH20tJSVllZyRhj7J133mEADL/3xlpzPy093q0VFRXFZs6cafayEydOMABszZo1hm0JCQmsb9++TKVSmezf9PcPgD300EMm+5WUlLCRI0cyAGz79u1tWndbWft37SgzZ85kUVFRdr+dyspKVlpayhhjbPPmzQwAO3jwoMl+dXV1zM3Njd18881G22/cuMEAsH/961+GbbW1tSw/P58xZv6x0pJ77rmHcRzHsrOzDdsefPBB5uLiwlJTUw3bqqurWUREBBs8eHCLx0xPT2dubm5G67Skucd+Y4cOHWJardZkGwC2cuVKo+25ublMrVYzxpr/27bmfjrTY3b8+PGsb9++rHfv3uyRRx4xukypVDKpVMoWLlzIALDNmzfb5Darqqpschx7SEhIYAMHDmR1dXWGbStXrmQcx7HLly83e92cnBzm6upq9Bqp0+nY2LFjWXh4ONNoNIbtDzzwAHNzc2OZmZmGbXv37mUA2BdffNHpjtkR+Mdqa3TkY+3gwYMMAFuwYAFzcXFhxcXFRpe//vrrLCgoiI0ZM6bV98MSnU7X4nsfR6FzlCk6R7Vedz1HteX1rqPwn1PMfd6xt5dffpkBMHl9JaQro7JiK3l7e8PNzQ0uLsbJlu+++y5GjRoFPz8/uLm5YciQIValmpeVleGJJ55A//794enpCalUiunTp+PcuXNG+/GlI5s2bcLrr7+O8PBwSCQSTJo0CdevXzc57t9//40ZM2bAx8cHHh4eGDBgAD788EOjfVJTU3HzzTfD19cXEokEQ4cOxdatW02OlZaWhrS0NGt+PVb3lKmsrISPjw/EYrFhm4uLC/z9/eHm5ma0b1RUFDiOs+q4TW3YsAEeHh6YO3euYduRI0cAwChTgf9/bW0tfv3112aPuWfPHqSkpODFF1+Em5sbampqoNVqm72OVqtFZWWlxcuHDBkCT09Po21+fn4YO3YsLl++bLTd19cXXl5ezd4e0Pb7qVAoWrw/7ZWWloZhw4aZzQAJDAy06hh+fn744Ycf4OLigtdff93WS7SZixcvYuLEiXBzc0N4eDhee+01fP311ybl4JbK8Jv2KW3ac3DChAnYvn07MjMzDWUu0dHRqKqqgoeHB1asWGFyzJycHAiFQrz55puoq6tDampqs1m5PC8vL/j6+ra4X11dHZRKJYKCgoy2BwYGQiAQGD3HxWKxUUZCa6hUKvz0008YP348wsPDDduPHDmCQYMGoXfv3oZt7u7umDNnDk6fPo1r1641e9zPP/8cWq0Wr7zyCgB9WRljrNnrqNVqVFdXW7x83LhxEAgEJtt8fX1NnuOhoaFWZQO05X629FrUkW699VZs3LjRKKNo27ZtqKmpwaJFi0z2z8zMxIMPPojevXvDzc0Nfn5+uOWWW0zaKvBtEg4dOoQHH3wQgYGBRo+P//3vf4iNjYWbmxuGDx+OI0eOmPQjMtfP6a677oKnpydyc3Mxb948eHp6IiAgAE888YTJa2Z+fj5SU1NRV1fX7O/g0qVLuHTpEv7v//7P6H3Fgw8+CMZYi+8jfv31V9TV1eHBBx80bOM4Dg888ABycnKMMqd++uknzJo1C5GRkYZtkydPRq9evbBp06ZOd0xnwD8m0tLSMGPGDHh5eWHZsmUA9GWrH3zwAfr27QuJRIKgoCDcf//9KC8vNznOzp07MXbsWHh4eMDLywszZ87ExYsXrV7H3LlzIRaLsXnzZqPtGzZswKJFi8xmtK9ZswYTJ05EYGAgxGIxEhISzGaq8m1Ddu/ejaFDh8LNzQ1ffPEFAP1zcs6cOfDw8EBgYCAeffRR7N6926Sct2nPQf759e677+LLL79EXFwcxGIxhg0bhhMnThjdPp2jTNE5qmN05XNUe7T0evXuu++C4zhkZmaaXPfZZ5+FSCQyeh38+++/MW3aNMhkMri7uxuyd1sil8uRmpoKuVze4r5Nf3/Wfq6Ojo7Giy++CAAICAhosWUWIV0FBQctkMvlKCkpQXFxMS5evIgHHngAVVVVJqUbH374IQYNGoRXXnkFb7zxBlxcXHDLLbdg+/btzR7/xo0b+OWXXzBr1iy8//77ePLJJ3HhwgWMHz8eeXl5Jvu/9dZb2LJlC5544gk8++yz+OuvvwxvRHl79+7FuHHjcOnSJaxYsQLvvfcekpKS8Ntvvxn2uXjxIkaMGIHLly/jmWeewXvvvQcPDw/MmzcPW7ZsMTrepEmTMGnSpNb+6po1YcIEXLx4ES+88AKuX7+OtLQ0vPrqqzh58iSeeuopm9xGcXEx9u7di3nz5sHDw8OwXaVSQSgUmgSm3N3dAQCnTp1q9rj79u0DoH/DOHToUHh4eMDd3R1LlixBWVmZyf41NTWQSqWQyWTw9fXFQw89hKqqKqvuQ0FBAfz9/a3at6m23M+kpCRIpVLDm7eW3qC2VVRUFPbv34+cnJx2HScyMhLjx4/HX3/95ZA3kyUlJSY/jddRUFCApKQknD17Fs888wweeeQRfPvttyaB+vZYuXIlEhMT4e/vj3Xr1mHdunX44IMP4Onpifnz52Pjxo0mbwq///57MMawbNky5ObmIj4+Hs8++6zN1uTm5oabbroJa9euxfr165GVlYXz58/jrrvugo+PD/7v//7PJrezY8cOVFRUmLwGqlQqky8ZgNY9x/v06YMdO3YgPDwcXl5e8PPzwwsvvGC2NO7AgQNwd3eHp6cnoqOjrf77VlVVoaqqql3P8dbcz/a8FtnD0qVLkZ+fbxRE2LBhAyZNmmT2S4ITJ07g6NGjWLJkCT766CP84x//wP79+zFhwgTU1NSY7P/ggw/i0qVL+Pe//41nnnkGgL6H7T//+U+Eh4fjP//5D8aOHYt58+ZZ/VrEt2vw8/PDu+++i/Hjx+O9994z6UH07LPPIj4+Hrm5uc0e78yZMwCAoUOHGm0PDQ1FeHi44fLmru/h4YH4+Hij7XwZHH/93NxcFBUVmdwOv2/j2+ksx+woWq3W5HW+8fNGo9Fg6tSpCAwMxLvvvouFCxcCAO6//348+eSTGD16ND788EMsX74c69evx9SpU42CxuvWrcPMmTPh6emJt99+Gy+88AIuXbqEMWPGWN18393dHXPnzjXq4Xju3DlcvHjRpE0H77PPPkNUVBSee+45vPfee4iIiMCDDz6I//3vfyb7XrlyBbfeeiumTJmCDz/8EImJiaiursbEiROxb98+/Otf/8LKlStx9OhRPP3001atGdA/39955x3cf//9eO2115CRkYEFCxYY/X7oHGWKzlEdoyufo9rKmterRYsWGQJvTW3atAnJycnw8fEBoH9sjhs3DpWVlXjxxRfxxhtvoKKiAhMnTsTx48ebXcuWLVsQHx9v8rm1NVr6XP3BBx9g/vz5APR/m3Xr1mHBggVtvj1COg3HJi46Hz59uemPWCxma9euNdm/aYmFWq1m/fr1YxMnTjTa3rSsuLa21iSNPz09nYnFYvbKK68YtvGlI/Hx8UalmB9++CEDwC5cuMAYY0yj0bCYmBgWFRXFysvLjY7Ll+YyxtikSZNY//79jcp6dTodGzVqFOvZs6fJmltbsthSWXFVVRVbtGgR4zjO8Lt1d3dnv/zyS7PHbU1Z8ccff8wAsB07dhhtf++99xgAduTIEaPtzzzzDAPAZs2a1exx58yZwwAwPz8/tmzZMvbjjz+yF154gbm4uLBRo0YZ/Z6feeYZ9vTTT7ONGzey77//nt15550MABs9erRRCZk5hw8fZhzHsRdeeMHiPs2VFbfmfm7cuJHddddd7JtvvmFbtmxhzz//PHN3d2f+/v4sKyur2XUy1vqy4tWrVzMATCQSsaSkJPbCCy+wI0eOmDwXGLNcVsxbsWIFA8DOnTvX4joZ0z9HmpZwN1ZRUdHiMfi/o7mfqVOnGvZ75JFHGAD2999/G7YVFRUxmUxm8nez9Hxp+prBvxY0LpWyVNaze/duBoDt3LnTaPuAAQPY+PHjGWP61xsArW530FzJFmOMXbt2jQ0ePNjodxMbG2tUXtRUa0u2Fi5cyMRisclr3ezZs5m3t7eh/J7Hl6G/++67zR5XKpUyHx8fJhaL2QsvvMB+/PFHtnTpUgaAPfPMMya39fbbb7NffvmFrV69mo0dO5YBYE899VSL63/11VcZALZ//36L+zRXstWa+9me16LG6urqWHV1tcXLrXn+NC5dGjp0KLvnnnsYY4yVl5czkUjEvvnmG8PjvHHJlrlSxmPHjjEA7NtvvzVs48/fY8aMMSpXValUzM/Pjw0bNszoPq9du5YBMDwnGGt4XjR+LPK/s8bnZsYYGzRoEBsyZIjRNn7flkqg+Ndwc6+zw4YNYyNGjGj2+jNnzmSxsbEm26urq40er/xzq/Hviffkk08yAIb3A53lmC2x1WPV3Os8/3rJ/52bvi4cOXLEpKUJY4zt2rXLaLtCoWDe3t7svvvuM9qvoKCAyWQyk+1NNX6e/Pbbb4zjOMNj6cknnzT8zs2VC5p7Pk2dOtXk7xQVFcUAsF27dhlt599jNH7fplQqWZ8+fUzODXfeeafR6xj//PLz82NlZWWG7b/++isDwLZt22ayL52jGtA5yjI6R1l3jmrpfpvTmterkSNHmtzm8ePHjX4XOp2O9ezZk02dOtXos1NNTQ2LiYlhU6ZMMWwzV1bMb7Pm+Th+/Hij35+1n6sZY+zFF1+ksmLS7VDmoAX/+9//sHfvXuzduxffffcdkpKScO+99+Lnn3822q/xN2Pl5eWQy+UYO3YsTp8+3ezxxWKxIY1fq9WitLQUnp6e6N27t9nrLl++3CgTbOzYsQD0GYiA/tv39PR0PPLIIyaDJPjS3LKyMhw4cACLFi2CQqEwfBNeWlqKqVOn4tq1a0bZDhkZGW0eHW+JWCxGr169cPPNN+P777/Hd999h6FDh+K2227DX3/9ZZPb2LBhAwICAkwmxC1duhQymQx333039u7di4yMDHz55Zf49NNPAQBKpbLZ4/LfYg4bNgzfffcdFi5ciFdeeQWvvvoqjh49iv379xv2ffPNN/HWW29h0aJFWLJkCdauXYvXX38df/75Z7PlYkVFRVi6dCliYmLanEnZmvu5aNEirFmzBnfccQfmzZuHV199Fbt370ZpaaldSnbvvvtu7Nq1CxMmTMAff/yBV199FWPHjkXPnj1NJgW2hC/HVigUze53/fp1LFmyBF5eXvDy8kJwcDDuuece/PLLL0hPT8eZM2fw+OOPW50xIJFIDK8NjX/eeustwz47duzAiBEjjJpZBwQEmGQR2MvkyZMRGhqK9evXG7alpKTg/Pnzhuzn6OhoMMYsTl9sKy8vL/Tt2xcPPfQQfv75Z3z66afQaDSYN28eSkpK2n38yspKbN++HTNmzDB5rXvggQdQUVGBxYsX48yZM7h69SoeeeQRw/Rva57j5eXlePnll/HKK69g4cKFWL9+PaZNm4YPP/zQ6LG2detWPPXUU5g7dy7uvvtuHDp0CFOnTsX777/f7Df9hw8fxssvv4xFixZh4sSJbfodtOZ+tvW1iHf69GnMnDkT7u7u8PDwQHR0NB5++GHs2rULGRkZOHbsGO655x68/PLLrboPS5cuxc8//wy1Wo0ff/wRQqHQ8C19U43Ps3V1dSgtLUWPHj3g7e1t9nx53333GZVTnjx5EqWlpbjvvvuMSniXLVtmyGKwRtMpn2PHjjWcg3lr164FY6zFVhv836hxiw2eRCJp8bGqVCotXrfx8Vu6nab7doZjWmLrx2p0dLTJ63zT8/IDDzxg9P/NmzdDJpNhypQpRhmHfAsRflrr3r17UVFRgVtvvdVoP6FQiJtuuqlV02uTk5Ph6+uLH374AYwx/PDDD7j11lst7t/4+cRXyYwfPx43btwwKdOLiYnB1KlTjbbt2rULYWFhmDNnjmGbRCLBfffdZ/WaFy9ebPTca/qeFqBzlDl0jjJF56gG1pyj2qI1r1eLFy/GqVOnjNpSbdy4EWKx2NDq6ezZs7h27RqWLl2K0tJSw/Gqq6sxadIkHD58uNlBRnfddRcYY0atd1qrpc/VhHRXFBy0YPjw4Zg8eTImT56MZcuWYfv27UhISMA///lPqNVqw36//fYbRowYAYlEAl9fXwQEBOCzzz5rsQ+CTqfDf//7X/Ts2RNisRj+/v4ICAjA+fPnzV63cQ8eAIaTBd+7gX8Rbm4U/fXr18EYwwsvvICAgACjH76vQlFRkRW/nbb75z//iW3btuGHH37AkiVLsGzZMuzbtw8hISFme6S11o0bN3Ds2DEsXrzYpD9kcHAwtm7dCpVKheTkZMTExODJJ5/Exx9/DAAmvf+a4k/+Td9086U7LQW3Hn30UQgEAkN5clPV1dWYNWsWFAoFfv311xbXY0l77+eYMWNw0003WVxnazXtGzl16lTs3r0bFRUVOHz4MB566CFkZmZi1qxZrXr88cHalvow3nfffaiursaqVauwZcsW3HPPPTh+/Djmz5+P2NhYDB48GAcOHMDDDz9s1e0KhULDa0Pjn8TERMM+mZmZ6Nmzp8l1G/ffsSeBQIBly5bhl19+MZS08FP2brnlFrvdrkajweTJkyGTyfDJJ59g/vz5eOCBB7Bv3z6kpaXhnXfeafdt/PTTT6itrTUbaJ0+fTo+/vhjHD58GIMHD0bv3r2xfft2Q6C7rc/xW2+9FUqlstnSRo7j8Oijj0Kj0Vicapmamor58+ejX79+ZideW6u997Ol16LGFi1aBB8fH6xfvx4//vgj5s2bh507d2L69OmIiYnBqFGjkJaWhnvuuadV92HJkiWQy+XYuXMn1q9fj1mzZll8LiuVSvz73/9GRESE0fmyoqLC7Pmy6eR1vv9R02mDLi4uVvfLlUgkCAgIMNrm4+Njto+cNfjHmkqlMrmstrbWbEle0+tbum7j47d0O0337QzHtMTWj1UPDw+T1/mEhATD5S4uLkb9wgDg2rVrkMvlCAwMNHmfVVVVZTjH8a07Jk6caLLfnj17WnUudHV1xS233IINGzbg8OHDyM7OtlhSDAB//vknJk+eDA8PD3h7eyMgIADPPfccAJgNDjaVmZmJuLg4k3N7a6Z5tvSe1l7oHEXnKGt193NUY615vbrlllsgEAiwceNGAABjDJs3b8b06dMhlUqNjnfnnXeaHO+rr76CSqWyqp9gezjqNYgQZ+fS8i4E0H/YTkpKwocffohr166hb9++OHLkCObMmYNx48bh008/RUhICFxdXbFmzRps2LCh2eO98cYbeOGFF3D33Xfj1Vdfha+vLwQCAR555BGz35aYayoNoMVGxI3xx33iiSdMvgnm2XNUu1qtxurVq/HUU08ZNT92dXXF9OnT8cknn0CtVpsdVmEt/vduKUNr3LhxuHHjBi5cuIDq6moMHDjQ0OOxV69ezR47NDQUAMw2sgZaPqHwTYrN9SdUq9VYsGABzp8/j927dzcb5LVGe+4nAERERODKlSst7tdchgsflOKzPppyd3fH2LFjMXbsWPj7++Pll1/Gzp07ceedd7Z4u4A+E04oFJr98NLY//73P6MPdPPmzcPrr7+OnJwcpKenIygoyKrfSUdrbxPpO+64A++88w5++eUX3HrrrdiwYQNmzZoFmUxmoxWaOnz4MFJSUvD+++8bbe/Zsyfi4+OtajTdkvXr10Mmk2HWrFlmL//nP/+J5cuX4/z58xCJREhMTMTq1asBWPccv3btWpuf4xEREQBg9jmenZ2N5ORkyGQy7Nixw6rhQs1pz/1s7rWoqa1btxo9fxYuXIgPPvgAN27cQE5ODqKiohAVFdXq9YeEhGDChAl477338Oeff+Knn36yuO/DDz+MNWvW4JFHHsHIkSMhk8nAcRyWLFli9nzZUhCpLSydg9sqJCQEgH6ACf+44eXn5xtlHVu6/sGDB8EYMwrS8MMb+PNV49tpKj8/H76+voZsvc5yTEvs9Vi1pHEFCE+n0yEwMNAoa7sx/sM7/7hdt26d2aEXTb/cbMnSpUvx+eef46WXXsLAgQONfg+NpaWlYdKkSejTpw/ef/99REREQCQSYceOHfjvf/9r8nyyx3MJsM172ragcxSdo6zV3c9RjbXm9So0NBRjx47Fpk2b8Nxzz+Gvv/5CVlYW3n77bZPjvfPOO0ZfrDfW1gQJaznqNYgQZ0fBwVbQaDQAGjKWfvrpJ0gkEuzevdvoTeuaNWtaPNaPP/6IpKQkw4mSV1FR0aYGwHFxcQD0AZPJkyeb3Sc2NhaAPhhnaR97Ki0thUajMRv0qKurg06na3dAZMOGDYiLi8OIESMs7iMUCo1ORvw3ky39ToYMGYJVq1aZNJrng25Nv7Frii/lbrqfTqfDHXfcgf3792PTpk0YP358s8exVlvvJ6DPwGzp/gD6ASOXLl0yexkfXLTmTRnfhN6aqYQAkJWVhUOHDmHkyJEtvoG19CEpPDzcJOvDVqKioswOdTEXcPXx8UFFRYXRNrVabdXvorlp3v369cOgQYOwfv16hIeHIysry5A9ai+FhYUAzAc26+rqDK+hbZWfn4+DBw/irrvuajZQ4OHhgZEjRxr+v2/fPri5uWH06NHNHn/IkCGG9gr86yVg/XOcL0dpul9paSmSk5OhUqmwf/9+QyCkvdp6Py29Fplj6fkTGxtr9Dtqi6VLl+Lee++Ft7c3ZsyYYXG/H3/8EXfeeSfee+89w7ba2lqT540l/GvQ9evXkZSUZNiu0WiQkZGBAQMGtO0OtAP/2nzy5EmjQGBeXh5ycnJabHOQmJiIr776CpcvXzb6G/39999Gxw8LC0NAQIChnK+x48ePG50jOssxLbHnY9VacXFx2LdvH0aPHt1sAIB/zxYYGGiT92NjxoxBZGQkfv/9d6MP4U1t27YNKpUKW7duNcqcaU0ZM3/ebxrwbTzp01nROYrOUa3Rnc9RjbX29Wrx4sV48MEHceXKFWzcuBHu7u6YPXu2yfGkUqlDPo8SQiyjsmIr1dXVYc+ePRCJRIape0KhEBzHGb3JyMjIwC+//NLi8YRCocm3E5s3b25xwqElgwcPRkxMDD744AOTkxF/O4GBgZgwYQK++OILs4GH4uJio/+npaUZ9Yxor8DAQHh7e2PLli1GpdlVVVXYtm0b+vTp065v086cOYPLly83W07TVHFxMd5++20MGDDA6AQll8uRmppqlNY+d+5ciMVirFmzxuibQL70gu9xWFtba7YP3quvvgrGGKZNm2a0/eGHH8bGjRvx6aef2m0SlqX72fRvDuj75Z06dcpknebMmDEDOTk5Jo95lUqFr776CoGBgRg8eLBhe+O+jE1vE7Cu7LasrAy33nortFotVq5c2eL+jjBjxgz89ddfRhPXiouLzWaTxMXF4fDhw0bbvvzyS6sC5R4eHs2WXtx+++3Ys2cPPvjgA/j5+WH69OmGy+rq6pCammp1QNYafDbADz/8YLT99OnTuHLlCgYNGtSu4//www/Q6XSt6t149OhR/Pzzz7jnnnuMsibz8/ORmppqNB1z8eLFAGD0pY1Op8OaNWvg6+uLIUOGANA/Bpv+ferq6vDWW29BJBIZvbmvrq7GjBkzkJubix07dpgtN7cFc/ezta9FHe3mm2/Giy++iE8//bTZjHFz58uPP/7Y6i+Thg4dCj8/P6xatcrow//69ettXkJk7nFlTt++fdGnTx+T5/pnn30GjuNw8803G7ZZOh+5uroaeskC+nP9559/jrCwMIwaNcqwfeHChfjtt9+QnZ1t2LZ//35cvXrVqM1AZzmmM1u0aBG0Wi1effVVk8s0Go3h/dnUqVMhlUrxxhtvmH2smDs3N4fjOHz00Ud48cUXcfvtt1vcj8+Wafx8ksvlVn2pzZs6dSpyc3OxdetWw7ba2lqsWrWqVWtuCZ2j6BxF5yjbn6PaorWvVwsXLoRQKMT333+PzZs3Y9asWfDw8DBcPmTIEMTFxeHdd981O5W6pdc/c+dEQohtUOagBTt37kRqaioAfR++DRs24Nq1a3jmmWcMPRNmzpyJ999/H9OmTcPSpUtRVFSE//3vf+jRowfOnz/f7PFnzZqFV155BcuXL8eoUaNw4cIFrF+/vs3fcgkEAnz22WeYPXs2EhMTsXz5coSEhCA1NRUXL17E7t27AehLLMeMGYP+/fvjvvvuQ2xsLAoLC3Hs2DHk5OTg3LlzhmNOmjQJAKwaSrJu3TpkZmYaSkkPHz6M1157DYA+QBEVFQWhUIgnnngCzz//PEaMGIE77rgDWq0Wq1evRk5ODr777jujY27bts2wnrq6Opw/f95wzDlz5ph8k8YHXpp7UzZ+/HiMHDkSPXr0QEFBAb788ktUVVXht99+MyoP2rJlC5YvX441a9YYGt4GBwdj5cqV+Pe//41p06Zh3rx5OHfuHFatWoVbb70Vw4YNAwAUFBRg0KBBuPXWW9GnTx8AwO7du7Fjxw5MmzbN0JAXAD744AN8+umnGDlyJNzd3U1+B/PnzzecUOVyuSHziy99+eSTT+Dt7Q1vb2/885//bPX9HDVqFAYNGoShQ4dCJpPh9OnT+PrrrxEREWHoQdSc//u//8PXX3+NW265BXfffTcGDRqE0tJSbNy4ESkpKfj222+N3lDNnTsXMTExmD17NuLi4lBdXY19+/Zh27ZtGDZsmNE3iwBw9epVfPfdd2CMobKyEufOncPmzZtRVVVleO51NI1GY/J34vF/r6eeegrr1q3DtGnTsGLFCnh4eODLL79EVFSUyWvDvffei3/84x9YuHAhpkyZgnPnzmH37t1WZRAPGTIEGzduxGOPPYZhw4bB09PT6He4dOlSPPXUU9iyZQseeOABuLq6Gi7Lzc1FfHw87rzzTqsavvPPvYsXLwLQP+f/+OMPAMDzzz9vWM+UKVPwzTffoLKyEsnJycjPz8fHH38MNzc3PPLII0bH/OSTT1BRUWHIeti2bZuhUfrDDz9sUgK9fv16hIaGYsKECWbXmJmZiUWLFmHOnDkIDg7GxYsX8fnnn2PAgAF44403jPZ99tln8c033yA9Pd3Q02fu3LmYNGkS3nzzTZSUlGDgwIH45Zdf8Mcff+CLL74wZIJs3boVr732Gm6++WbExMSgrKwMGzZsQEpKCt544w2jsptly5bh+PHjuPvuu3H58mVcvnzZcJmnpyfmzZtn+P/58+cNH7ivX78OuVxu+L0PHDjQ8Le19n625rXIEWQyGV566aUW95s1axbWrVsHmUyGhIQEHDt2DPv27YOfn59VtyMSifDSSy/h4YcfxsSJE7Fo0SJkZGRg7dq1ZnuntYe5x5Ul77zzDubMmYPk5GQsWbIEKSkp+OSTT3DvvfcavoQEzJ+PwsPD8cgjj+Cdd95BXV0dhg0bhl9++QVHjhzB+vXrjUqmnnvuOWzevBlJSUlYsWIFqqqq8M4776B///5Yvny5Yb/OckxnNn78eNx///148803cfbsWSQnJ8PV1RXXrl3D5s2b8eGHH+Lmm2+GVCrFZ599httvvx2DBw/GkiVLEBAQgKysLGzfvh2jR4/GJ5980qrbnjt3bovP6eTkZIhEIsyePRv3338/qqqqsGrVKgQGBlodhLv//vvxySef4NZbb8WKFSsQEhJi6GkLNJ/R3hp0jqJzFJ2jbH+OsqS4uNjwt2wsJiYGy5Yta9XrVWBgIJKSkvD+++9DoVAYgto8gUCAr776CtOnT0ffvn2xfPlyhIWFITc3FwcPHoRUKsW2bdssrtXcOZEQYiMdNRa5s+DHozf+kUgkLDExkX322WdGI9cZY2z16tWsZ8+eTCwWsz59+rA1a9YYRp83FhUVxe68807D/2tra9njjz/OQkJCmJubGxs9ejQ7duyYxZHrmzdvNjqeuVH2jDH2xx9/sClTpjAvLy/m4eHBBgwYwD7++GOjfdLS0tgdd9zBgoODmaurKwsLC2OzZs1iP/74o8mao6KirPq9jR8/3uT3xv8cPHjQaN/169ez4cOHM29vb+bm5sZuuukmk9tmjLE777zT4jGb3m+tVsvCwsLY4MGDm13no48+ymJjY5lYLGYBAQFs6dKlLC0tzWQ//nHQ9HZ0Oh37+OOPWa9evZirqyuLiIhgzz//PFOr1YZ9ysvL2W233cZ69OjB3N3dmVgsZn379mVvvPGG0X4t3UcALD093bAv/zc399P072Tt/Vy5ciVLTExkMpmMubq6ssjISPbAAw+wgoKCZn+PjZWXl7NHH32UxcTEMFdXVyaVSllSUhLbuXOnyb7ff/89W7JkCYuLi2Nubm5MIpGwhIQEtnLlSlZZWWm0b+P7JxAImLe3Nxs0aBBbsWIFu3jxotXrs6XW/L3Onz/Pxo8fzyQSCQsLC2OvvvoqW716tcl+Wq2WPf3008zf35+5u7uzqVOnsuvXr5u8ZvCvBY2fT1VVVWzp0qXM29vb7OOAMcZmzJjBALCjR48abecfT41voznN3e/Gampq2CuvvMISEhKYm5sbk8lkbNasWezMmTMmx4yKirLqd8kYY6mpqQwAe+yxxyyusaysjM2dO5cFBwczkUjEYmJi2NNPP23y2GKs4W/Z9HYUCgVbsWKF4Rj9+/dn3333ndE+J0+eZLNnz2ZhYWFMJBIxT09PNmbMGLZp06ZW3cemfy9z5x/+p/Hfydr72ZrXoo4wfvx41rdv32b3MXfOKy8vZ8uXL2f+/v7M09OTTZ06laWmppo8R/jf34kTJ8we+6OPPmJRUVFMLBaz4cOHsz///JMNGTKETZs2zbCPuXPrnXfeyTw8PEyOZ+5cb+lxZcmWLVtYYmIiE4vFLDw83OR80vh+mTvvvfHGGywqKoqJRCLWt29fk8cqLyUlhSUnJzN3d3fm7e3Nli1bZvZ1vrMc095aeqxaekzwvvzySzZkyBDm5ubGvLy8WP/+/dlTTz3F8vLyjPY7ePAgmzp1KpPJZEwikbC4uDh21113sZMnTza7PkvvDa25H1u3bmUDBgxgEomERUdHs7fffpt9/fXXJo/bqKgoNnPmTLPHvXHjBps5cyZzc3NjAQEB7PHHH2c//fQTA8D++usvw3533nmn0esc//x65513TI4JgL344osm+9I5yvh26BxlP93hHGXpflv6u06aNMnovlv7erVq1SoGgHl5eTGlUmn2ds+cOcMWLFjA/Pz8mFgsZlFRUWzRokVs//79Jr+zxs8DS+dES/etrZ+r+d9fcXFxi7dDSFfBMUadNwkhpCOsXbsWy5cvtyqryFbmz5+PCxcudIp+UIR0JJ1Oh4CAACxYsMDmJZGEdDcffPABHn30UeTk5CAsLMzRyyGk06NzFCGko1HPQUII6aLy8/Oxffv2ZntQEdId1NbWmvSE+vbbb1FWVmaxBJAQYp5SqTT6f21tLb744gv07NmTAoOEtAGdowghzoB6DhJCSBeTnp6OP//8E1999RVcXV1x//33O3pJhDjUX3/9hUcffRS33HIL/Pz8cPr0aaxevRr9+vXrNMMuCHEWCxYsQGRkJBITEyGXy/Hdd98hNTXV7NAtQkjL6BxFCHEGFBwkhJAu5tChQ1i+fDkiIyPxzTffGDUfJ6Q7io6ORkREBD766COUlZXB19cXd9xxh2F6JyHEelOnTsVXX32F9evXQ6vVIiEhAT/88IPJ4AFCiHXoHEUIcQbUc5AQQgghhBBCCCGEkG6Keg4SQgghhBBCCCGEENJNUXCQEEIIIYQQQgghhJBuioKDhBBCCCGEEEIIIYR0UxQcJIQQQgghhBBCCCGkm6LgICGEEEIIIYQQQggh3RQFBwkhhBBCCCGEEEII6aYoOEgIIYQQQgghhBBCSDdFwUFCCCGEEEIIIYQQQropCg4SQgghhBBCCCGEENJNUXCQEEIIIYQQQgghhJBuioKDhBBCCCGEEEIIIYR0UxQcJIQQQgghhBBCCCGkm6LgICGEEEIIIYQQQggh3RQFBwkhhBBCCCGEEEII6aYoOEgIIYQQQgghhBBCSDdFwUFCCCGEEEIIIYQQQropCg4SQgghhBBCCCGEENJNUXCQEEIIIYQQQgghhJBuioKDhBBCCCGEEEIIIYR0UxQcJIQQQgghhBBCCCGkm6LgICGEEEIIIYQQQggh3RQFBwkhhBBCCCGEEEII6aYoOEgIIYQQQgghhBBCSDdFwUFCCCGEEEIIIYQQQropCg4SQgghhBBCCCGEENJNUXCQEEIIIYQQQgghhJBuioKDhBBCCCGEEEIIIYR0UxQcJIQQQgghhBBCCCGkm6LgICGEEEIIIYQQQggh3RQFBwkhhBBCCCGEEEII6aYoOEgIIYQQQgghhBBCSDdFwUFCCCGEEEIIIYQQQropCg4SQgghhBBCCCGEENJNUXCQEEIIIYQQQgghhJBuioKDhBBCCCGEEEIIIYR0UxQcJIQQQgghhBBCCCGkm6LgICGEEEIIIYQQQggh3RQFBwkhhBBCCCGEEEII6aYoOEgIIYQQQgghhBBCSDfl4ugFdBS1Wo09e/YgOjoaQqHQ0cshhBBCCCGEEEIIsQmtVouMjAwkJydDJBI5ejmkk+k2wcE9e/Zg9uzZjl4GIYQQQgghhBBCiF1s27YNs2bNcvQySCfTbYKD0dHRAPRPlLi4OMcuhhBCCCGEEEIIIcRG0tLSMHv2bEPsg5DW6DbBQb6UOC4uDvHx8Q5eDSGEEEIIIYQQQohtURs10hY0kIQQQgghhBBCCCGEkG6KgoOEEEIIIYQQQgghhHRTFBwkhBBCCCGEEEIIIaSbouAgIYQQQgghhBBCCCHdFAUHCSGEEEIIIYQQQgjppig4SAghhBBCCCGEEEJIN+Vij4P+faMUXx6+gQu5chQpVPji9iGY2jfY4v6PbzqHn07nmGzvGeiJvY+NBwD8d+9VfLj/mtHlsQEeOPD4BJuunRBCCCGEEEIIIYSQ7sIuwcGaOi3iQ6S4ZWgE/vHdqRb3f3FOAp6e3tvwf62OYfqHRzCjf4jRfr2CPPHdvTcZ/u8ioMRHQgghhBBCCCGEEELayi7BwaTegUjqHWj1/lKJK6QSV8P/d18sgFxZh1uGhhvtJxQIEOglsdk6CSGEEEIIIYQQQgjpzuwSHGyvTSeyMaaHP8J93I22Z5RUY/jr+yB2FWBwpA+emtYHYd5uZo+hUqmgUqkM/6+qqrLrmgkhhBBCCCGEEEII6Wycri63sLIWv18txuJhEUbbEyO98e4tA/HN3cPx2rz+yC6rwaLPj6FKpTF7nDfffBMymczwM3z48I5YPiGEEEIIIYQQQgghnYbTBQd/PJUDqcQFyQnGA0ySegdi5oAQxIdIMb5XANYsH45KZR22n88ze5xnn30Wcrnc8HP8+PGOWD4hhBBCCCGEEEIIIZ2GU5UVM8aw+WQ25g8Kh8il+bilzM0VMQEeyCitMXu5WCyGWCw2/N/T09OmayWEEEIIIYQQQgghpLNzquDgXzfKkFFaY1JSbE61SoPM0hrMHyRucV9CCCGEEEIIIcQacrkcNTXmk1AAwMPDA1KptANXRAgh9mWX4GC1SoOM0mrD/7PLanAxTw5vdxHCvN3w9q5UFMpr8f7iRKPrbTqZjcQIb/QO9jI55uvbL2FSfBDCvN1QpKjFf/deg1DAYc7AUHvcBUIIIYQQQggh3YxGo8GqVatQXV1tcR9PT0+sWLECLi5OlWtDCCFtZpdXs/M5cty66i/D/1/bfhkAsHBwON5bNBBFlSrkViiNrlNZW4edKfl4cXZfs8fMl9fiX9+fQUVNHXw9RBga7YMtD46CnydlDhLiCIqySlQUlsE7yBdevvTNKSHEudXW5qNGmQF3t2hIJCGOXg4hhBAnJRQKIZPJmg0OSqVSCIXCDlwVIYTYF8cYY45eREe4fPkyEhIScOnSJcTHxzt6OYR0aimHzuDAmh1gjIHjOExcPgP9xg9y9LIIIcSsvLxNuJy6EoAOgADxfV5HaOgiRy+LEEKIk7p+/TrWr19v8fJly5ahR48eHbgiQlpGMQ/SHpQHTQhpFUVZpSEwCOgHCR1YuwNR/eMog5AQ4nRqa/MbBQYBQIfLqSvh6zuWMggJaQXqwUa6k7i4OAQEBaOwoAACrmG7jgFBwcGIi4tz3OIIIcQOWh0cLC8/jqysVahUpECtLsKA/p8hICDZcHlR0W7k5m5ApSIFGk0Fhg/bBi+vBKNj5OZ+j4LCbVAoLkKrrcK4sWfg6tr8m4kbNz5EesZHRtvc3WMxcsTe1t4FQkg7VBSWoWnCMdMxyAvLKDhICHE6NcoMNAQGeToolZkUHCTEStSDjXQ3HMchvO8wFBduM9ou4ICIvsPAcZyFaxJCSOckaO0VtLoaeHr2Qe/eL5m/XFsDmfdQ9OjxVDPHqIWf7zhERz3Qqtv28OiJMaP/MvwMGbyxVdcnhLSfd5CvyTZOwEFmZjshhDiau1s0TN/uCODmFuWA1RDSOfE92JpDPdhIVzO0fx+U6Nyhq/9OXMeAEp07hvTv49iFEUKIHbT6qz1/vwnw95tg8fKQkPkAAKUyx+I+kRHLAQDl5X9Z3MccjnOBWBxg1b4qlQoqlcrw/6qqqlbdFiHEPDdPNwhdhNBqtAD036xOvGsGZQ0SQpySRBKC+D6v43Lqs4Zt8X1ep6xBQlqB4zgkJSU124MtKSmJsqlIlxLq7Q5dcF8Iik4A0GcNsuB+CPV2d/DKCCHE9lqdOehINTUZOPLHSPx5dAJSLj6K2to8i/u++eabkMlkhp/hw4d34EoJ6bqyUtINgUEAGDhlKA0jIYQ4tcDAGYZ/SyRhNIyEkDbge7Dpmowy1DEgIIh6sJGuiZMGoVinDwYW69yxJ4chvcRyeT0hhHRWnSY4KJUNRELCf5CYuAZ9er+CWmU2Tp1aDI3GfEbgs88+C7lcbvg5fvx4B6+YkK7p+snLAACxhwQAUFFY7sjlEEJIi5S1DdUManWJSd9UQkjL+B5sgibJgdSDjXRl6aU1OFUXDjcvb6gDE6DWMDz/ywU6jxBCupxOExz095uAoMAZ8PLsAz+/cRg48GvUaSpRVLTD7P5isRhSqdTw4+np2cErJqTr0Wq0uHHmGgBg6MxRAIDizAJHLokQQlqkVGYa/q3TqVBXR19qENIW1IONdCeM6bME83VSLLz9HqxcMgFiFwH+vF6KX87mOnp5hBBiU50mONiUq6sU7u4xqGn0hp8QYl85qZlQ1dTCTeqB/hOHABxQXVGF6grq6UkIcV5KZbbR/1WqfAethJDOLdTbHYk3jTFkDwo4IPGmMdSDjXRJRQoVatRaCAUcInzcEeXngX9N6gkAeO23y6ioUTt4hYQQYjudNjio0VRDqcyCWGTdgBJCSPulnUwFAMQN7gWxmxg+wX4AKHuQEOLclMoso//X1lJwkJC2unv6CJQyDwD6rMHbk6mvN+mabhTrewtG+LhB5KL/2Hzf2Fj0DPREabUab+9KdeTyCCHEplodHNRoqqFQXIJCcQmAfiqxQnHJMBykrq4CCsUlVFfrSw9ram5AobgElarYcAyVqhgKxSVD1l9V9RUoFJdQV1dh2Of0mduQnfOt4f/Xrr2B8vK/oVTmoEJ+ChcuPACOEyIoaHbr7zUhpNV0Oh3STl8BAPQYqi8fCogKBgAUZVFwkBDivBqCg/p0p1rKHCSkzVQaHU6ow1Chk+BkXTiyy5WOXhIhdsEPHonx9zBsE7kI8Pr8/gCA749n40RGmUPWRgghtubS2isoFBdw+swyw/+vXX8dABASvAAJCe+guGQfLl9+2nB5ysUVAICY6H8hNlb/79zcDUjP+Miwz+nTSwAA8fFvIzTkZgD6N/J16oaeQLWqAqRcfAR1dRUQiXwhkw3B0CE/QiTya+1dIIS0Qf71HNTIqyFyFyM8PhoAEBgVjKt/XURxBgUHCSHOiw8Oenr2QVXVZagoc5CQNiurViNfJ8UWVT8AQFpRFeICqLc36XrSS/Rtc2L8jR/fw2N8sXhoBDaezMbKLRfw28NjDZmFhBDSWbU6OOjjMwKTJqZZvDw05GZDgM+S2NgVhkChJaNHHTb6f/9+H1nYkxDSEdJO6rMGYxN7QegiBAAERtdnDlJZMSHESTGmRW2tvnG8t/dwVFVdpsxBQtqhrNq4z1pafeklIV2NIXMwwMPksmdn9MG+y4W4WliF9/dewbheAYjx90CIzK2jl0kIITZBX3EQQlrEGMP1U/q+KnxJMQAEROqDg5XFFaitprIiQojzqa3NB2MacJwIMmkiAFDmICHt0DQ4eL2IhpKRrulGfXAw1t80OOjtLsLKmfEAgM8P3cDSVX9j9FsHsPFElsm+hBDSGbQ6c5AQYh9yuRw1NTUWL/fw8IBUKu3AFTUoziyAokQOF5ErIvvFGrZLPN0g9ZehskSO4qxCRNSXGxNCiLPgS4rd3MIhcQsDQD0HCWkP08xBCg6Srkej1SGrVP++PMZMcBAARsT6Gv1fx4Dnfk7BuF4BlEFICOl0KDhIiBPQaDRYtWoVqqstl+Z4enpixYoVcHHp+Kft9fopxdED4uAqdjW6LCA6RB8czCyg4CAhxOk0BAcjIBGHAABUqkIwpgPHUQEFIa1VWh8c7BXkiauFVUgrqgJjDBzHOXhlhNhOdrkSGh2DxFWAYKnE7D4ZpaZf6msZQ0ZJDQUHCSGdDr0rJsQJCIVCyGSyZveRSqUQCoUdtCJjaaf0/QbjGpUU8wIjgwAARTSUhBDihBqCg5EQiQIBCMBYHdTqEscujJBOqqxaBQAYEuUDAQcoVBoUK1QOXhUhtsUPI4n284BAYD7wHePvgaYXCTkO0f7u9l4eIYTYHAUHCXECHMchKSmp2X2SkpIc8q18WV4JyvJKIHQRIiaxp8nlAdH6TJziTjiURFFWiezLGVCUVTp6KYQQO1HWZgMA3CSREAhcIBYHAqDSYkLaii8rDpJKEOWnL7e8TqXFpIu5UT9oJ9bMMBJeiMwNby7oj8Zvz99Y0I+yBgkhnRKVFRPiJOLi4hAUGITCwkKgcQyQAUFBQYiLi3PIuviS4oi+MRC7iU0uD4zSZw6W55eiTqWGq1jUoetrq5RDZ3BgzQ5DKdTE5TPQb/wgRy+LEGJjSmUmAH3mIACIxSFQqQr0Q0mkAx25NEI6pdIqfXDQz0OEuAAPpJdUI62oCqPi/B28MkJsxzCp2EK/Qd7iYZGID5Fizid/AgCS+gTafW2EEGIPlDlIiJPgOA4D+/Q3DgwCAAck9unvsF4+afXBwbghvc1e7uHtBXeZJxhjKMku6siltZmirNIQGAT005gPrN1BGYSEdEFKZX3moFsEAEAi0Wc7U+YgIW3DZw76eogRF+gJAEgrttwzmZDOqCE46NnivgPCvTEwXN8eaP/lzvFemBBCmqLgICF20NZy1b4D+kGoAsDqNzBAqAISBvSz+RqtUVlcgaLMAnAch9hBvSzuFxgdDAAo6iSlxcVZhYbAII/pGOSFZQ5aESHEHurqKqDR6F+H+cxBw1CSWgoOEtIWZTV8cFCEuAB94OR6EZUVk67F2sxBXnJf/XvhvZcK7bYmQgixJyorJsTGUg6dwf412wGGVperSv1kiJSGIl2Vp9/AASOGjYDUr/lhJfZyvX4QSVifSLhLLb85CogMQsa56yjuBENJ6lR1OPHrEZPtHMdBFuTrgBURQuyFH0YiEgVAKNT3gBJT5iAh7cJnDvp5iiBy0ecZpFHPQdKF1Kg1yJfXAgDimuk52NiUhCC8s/sK/rhegmqVBh5i+phNCOlcKHOQEBtSlFVi/5odhsy/tpSrumlFEOrfj0Co4jB+5kQ7rNQ6aaf0JcU9hphOKW4ssH4oibNnDmo1Wmz/5EcU3MiD0NXFqFRbKHKBRlXnwNURQmyt8aRiHmUOEtJ2Gq0OFTX6c6WPuwg96jMH8+W1qFJpHLk0Qmwmo6QGAODj7gpvd+t6afcM9ESUnzvUGh2OXCu25/IIIcQuKDhIiA1VFJYB7ShX1Wl1KMoogKRcAIEakJRxDsvGq66oQt41fa+uWAv9BnkB9UNJSnOKoNVo7b62ttDpdNj9+S/IPJ8GF5EL5j+1FMvffxhzHlsC/4ggaFR12PLuBlSVKxy9VEKIjTTtNwhQ5iAh7VFe0/Almo+7K2TurvD31A8ru0HZg6SLaG1JMaCvQJkSr38/vIdKiwkhnRAFBwmxIW8zZamcwPpy1bK8EmjUdfBgYiQGxsNVySH3apatl2mVtNNXAAYEx4XBy1fa7L5Sf2+I3SXQaXUozXW+b0uZjmH/19tx7cRlCIQCzPrXLQjrFQkvXyliBvbA/KeWQhbkA0WJHL++/wNUNbWOXjIhxAYaMgejDNsMmYOqIuh0lOlESGvwJcXe7q5wEeo/RvBll1RaTLqK9BL9Y9maYSSNTUnQBwcPpBZBo9XZfF2EEGJPFBwkxIa8fKXwCW4UCOSAiXfNaDG4xitIywUABMaEIDw+GgCQe8UxwcErx1IAAOHxUS3sqf+2NKB+KEmxk5UWM8ZweMMeXDpyDhzHYfqDCxDVP85oH3epB+Y/sRTuMg+UZBXit482Q1NHQQNCOjtDcFDSkDkoEvmD41wB6KBW01RJQlqjtFoFQD+MhNcjkIaSkK7lRn3mYKyV/QZ5Q6J84OPuioqaOpzMLLfH0gghxG4oOEiIjamUKsO/g+PCrB5GAgCFN/SDSIJjwxDWS/9hNv9aDnS6jv328eye48i7qi/HO7X9GFIOnWnxOoGR9ROLnWwoyV9bDuHs3hMAgCn3zkaPoeb7J8oCfTD38VshkoiQczkTe77cisoSeZumThNCnIMhOOje0HOQ4wQQi/XZHVRaTEjrGIaRNAoO8hOL04qqHbImQmytLWXFAOAiFGBin/rS4otUWkwI6VwoOEiIDdVWK1Ejb3hzXJJV2KoefAXp+uBgUGwo/CODIJKIoFaqUJLdcdktlSVyHFq/x/B/a4eqOGPm4Kkdx3D81z8AABNun4b4MQOa3T8wKhgz/3UzBEIBrh2/hDWPf4yf3/oOax772KoAKSHEeeh0akPwz00SaXQZDSUhpG3K64OD5jIHqayYdBVtDQ4CDaXFey8XgDXpQ04IIc6MgoOE2FB5fikAwMPbExIPN2jUGquDZXUqNUrrg4DBsaEQCAQIqc8e7KjSYsYYfl+3y3S7FUNVAqPqg4NZhR2e6WjOhYOn8cfG/QCAUTcnYeDkoVZdL7JvLMbdOsVom6UAqaKskjILCXFStbW5ABgEAjeIRP5Gl4kl+tcryhwkpHVKDcFBsWFbXH1wMKO0utP3WZPL5cjPz7f4U1lJ5/uurrxabZjIHe3X+uDguF7+ELsIkF2mxJVCGnJHCOk8XBy9AEK6krK8EgCAb6g/XESuSD97DXnXshEcF9bidYsy9N8wevp4wbO+R2FYr0hknk9D3pUsDEoebte1M8ZweP0epJ+9ZnKZNUNVvIN94SJyhUZdh4qCMviG+je7vz2lHkvBgW92AACGzhyFYbNHt+r6vuEBJtuYjuGnN9chekAcQntFQFFaiT83HQBjDBzHYeLyGa0qISeE2FfDMJIIcBxndBmfOVhLmYOEtIq5suIQqQRurkIo67TIKqtBbEDrhjg4C41Gg1WrVqG62nJ5tKenJ1asWAEXF/oI1VXx/QZDZRK4iYStvr67yAVjevhjf2oR9l4sRJ9g6/qOE0KIo1HmICE2xGcO+ob6I6y3voyN793XEr7fYFBsqGEbf4zcK1l2LU1gjOHPTQcMvfnixwwAJ9B/mOYEnFVDVQQCAQIi9aUURQ4sLU47fQV7vvwVYMCASUMw6pakVh/DO8jXJJgAAPKicpzbdxI7P92CPzbuN/xNrC29JoR0nBpDcDDS5DKxhJ9YTMFBQlqDzxz0aRQcFAg4xAXyE4s7b99BoVAImUzW7D5SqRRCYesDRqTzMJQUt3IYSWMNpcXUd5AQ0nlQcJAQG+KDgz4h/gitLwnOu5ptVWCPn1TcODgYGBMCoasLlIoaw7Ht4a8th3BqxzEAwMS7piP5vjlY/t7DWPjMbVj+3sNWZ8QF8KXFDhpKknUxHTv/9zOYjqHPqP6YcNs0s0G+lnj5SjFx+QyjAOmYJZMw46EFSEweDm8zWZTWlF4TQjpOrVL/xYy54CBlDhLSNmVVppmDQMNQks48sZjjOCQlNf+FYlJSUpveV5DOI71E/xhuS79B3qT4IHAccD5HjgJ5ra2WRgghdkU58YTYUFm+vqzYJ8QPAVHBhsBeRWEZfIL9mr0uP4ykcQmyi6sLguNCkZuahbyrWXYp1T2+9Q/D0I7xy5LRP2kIAH2ArKVswaYC64eSFGV2/Afu/Os5+O3DTdBqtIgb0htT7p1tCO61Rb/xgxDVPw7ywjLIgnwNv4uewxMwePoIrHnsY6OgrzWl14SQjlOjzARAmYOE2FKZmYEkANAjoGsMJYmLi0NAUDAKCwrQ+C2EjgFBwcGIi4tz3OJIh7hRzA8jaXt5fICXGIMivHE6qwJ7Lxfi9hFRtloeIYTYDWUOEmIjWo0W8qJyAPU9B11dEFyfBdhSaXG1vAqKEjnAAYHRIUaXNS4ttrVTO47h2E+/AwDGLJ6ExHb2NTRkDmYWduiEtuLMAvz63g+oU9Uhsm8Mpj0wHwJh+1/evHylCI+PNgmS8pmFBpx1pdeEkI7TkDkYYXIZnzmoVpdAp1N16LoI6cxKLQQH+aEknTlzENBnD4b3HYam3y0KOCCi7zDKGuwG+LLi2HZkDgLAlAT9e+K9l6i0mBDSOVBwkBAbqSgsA9MxiCQieHjr3yQ3Li1uDt9v0DfEH2I3sdFlob3qg4NW9i601tm9JwzTfEcuGI8hM0a2+5h+YQEQCAVQ1dSisqSi3cezRnl+Kba8swGqmlqE9AzHrBW3wMXV/knR/cYPQp+R/QAAAycNoWEkhDgRxhiUtfrXTHc304wNV1dfCAT611qVij64EWINnY6hvKa+rNjTfFlxWnFVh345aA9D+/dBic4duvq7oWNAic4dQ/r3cezCiN3pdKyh52C7g4P6voPH0kqgqK1r99oIIcTe7PIJOjc1E6d2/oWijHxUV1Rh1r9uQdyQ3hb3v34yFecPnEJJViG0dRr4hgVgxPxxiOrfkLp/YtufuH4qFeX5pXBxdUFIz3CMWTQJPiHNl2oS0lEa9xvkv1kO7dm64KC5qcYhPcLBCTgoSuSoLKmA1N+73Wu9cPA0Dn23GwAwfM4YDJ87tt3HBAChixD+4YEoyixAcWYhZAE+NjmuJZUlFfj5P99BqahBYFQw5j62BK5iUctXtBH/yCDgWAqUVcoOu01CSMvUdaXQamsAcJBITF9XOY6DWBwMpTITtbX5ZkuPCSHGFLUaaOsjZk0zB6P93SHg9PsUV6kQ6CVxxBJtItTbHYnDxyDn5B4A+qzBuoB4hHq7O3hlxN7yK2uh0ujgIuAQ7uPWrmP1CPRErL8HbpRU49DVYswaENrylQghxIHskjlYp6qDf0QgJtw+zar9c69kIbJvDOY8tgRLXr4X4fFR2PrfjUYTT3OvZGLgpKFY/MJyzH9qGXRaHba8sx51KrU97gIhrVaW19BvkBfSIxzg9FmF1XLLpTYFZiYV80QSkaHUOO9K+7MHLx05hwNrdwAAhswYiRELxrf7mI3xpcVFGfbt5VVdocDPb69HVZkCPiF+mPvErRC7d+yHEWmANwCgsriiQ2+XENI8ZX2/QYk4BAKB+S8M+NJilcpx09UJ6UxKq/Ul+J5iF4hdjCf2il2EiPTVB886e2kxAMwbPxjFOv39Kda541iJK5RqrYNXRewtvb7fYKSfO1xs0J7GMLWYSosJIZ2AXYKD0QN7YNTNSegx1Lr0+/HLkjF05igEx4bCJ9gXo2+ZCO8gX6SfuWrYZ94TS5EwdiD8wgMQEBmEKffOhqK0EkXp1EycOIfy+mEkjYeGiD0k8A8PBADkX8sxez2mYw2Zg2aCgwAQZigtbl/fwdRjKdi7ehsAIHHKMIxeNNHm/XMCDENJ7PeBW1lVgy3vbIC8qBzSAG8seGoZ3KXtK/9oC1mgPjOS7zVJCHEOymYmFfP4oSQ0sZgQ6/DDSHw8XM1e3lBaXN1ha7KXjNIanKoLhwJuyJbEQq7UYOu5XEcvi9gZP6k4th3DSBrjg4MHU4tQp9XZ5JiEEGIvTtlzkOkY1LVqSDwsp3OrlfpvL8We5vdRqVSorKw0/FRVdf5vMYlzKzOUFRuXuvN9By0NFKkoKoOqphZCVxf41QcSm7LFUJJrJy5jz5e/AgzolzQY45Yl26WxdmCjoST2oFKq8Ou7P6A0pxge3p5Y8NQyeDpoEIisPnNQqagxvCYRQhxPqdS/VjYXHOQzB2tpYjEhVmkYRiI2e3mP+qEkaV0gczCjpBr5OilyQsZi5uhEAMA3RzM7fT9F0rwb/DCSANt84Two0gd+HiJU1mpwPL3MJsckhBB7ccrg4Kmdx1CnUqPnTQlmL2c6hkPr9yCkZ7ghK6upN998EzKZzPAzfHj7prAS0hzGmKHnYOPMQaBR38Fr5kuCC9P0WYOBUcEQNinTMRyjPsBYnl+KmsrWfyN/4/RV7PpsC5iOIWHsQEy8Y7rdJu75RwSB4zjUyKtQXaGw6bE16jps++9GFKbnQeLphvlPLTNk7zmC2F0CSf0XFHIqLSbEaVgTHOQzB1UUHCTEKnzmoJ+H+VL9xkNJOrvM0oahFIuGRkDiKsCl/EqczKRKga7MVsNIeEIBh0nx+s+qVFpMCHF2ThccTD2Wgr9/OYIZDy2wWCZ48NudKM0txvQHF1g8zrPPPgu5XG74OX78uL2WTAiqyhWoq1VDIBSYBKv4wF5xZgHUtaY9Mgtu6MtUzPUb5Ek83eAXHgCg5eEmTWWcT8OO//0EnVaH3iP7YdLdM8EJ7BMYBABXsSt8QvxwxS0NiasHYd+NfWb3U5RVIvtyBhRllVYdV6vRYvsnPyH3ShZEbmLMe2Ip/MICbLn0NuGHrlBpMSHOoyE4GGFxH0PmIJUVEyvI5XLk5+db/KmstO5c1pmVGTIHLQQHu1DmYHppDQAg2s8D3u4izEvUDzb65miGA1dF7M3WwUEASE7QV9TsvVRImaeEEKdml2nFbXXlr4vY//VvmPHQQkT2jTW7z8FvdyH93DXc/Nwd8GqmlFAsFkMsbih78PS0Te8IQszh+w3KAn1Msv+8/GTw8pNCUVqJgrRcRPaNMbq8oJlJxY2F9Y5EaU4xcq9kWd3PM+tiOn77aBO0Gi16DotH8n1zIBDY/zsB/8gg/Ia9yK7KxdO7n8LJf5wyylRMOXQGB9bsAGMMHMdh4vIZ6Dd+EORyOWpqakyOp9PpcHTzQeSkpEMkcsWcRxcjKCbE7vfDGrJAbxSm5znVUBJLv0eeh4cHpFLHlGIT0hGs6Tkokei/kKHMQdISjUaDVatWobracua+p6cnVqxYARcXp3prbVOlVS1lDuoDKnnyWlSrNPAQd97fRUZ9kCi6Pkh0x8ho/HAiG7tSClBYWYsgaeedxkzMU2t0yC7Tv3eKtWFwcExPf7i5CpFbocSl/Er0DZXZ7NiEEGJLTnPWvnIsBXtX/4bpD85HTGJPk8sZY/h93W6knbqChc/ebsjWIcQZlOeZ7zfIC+0VgSvHLiLvarZRcFBTp0FJlr7MwNIwEl5Y70ic338KeVb2HcxNzcS2DzZCW6dF7OBemPqPeRDYYPKaNU7Wnka2RJ8RebroDL7c8ilun3wXqsoVKM4swP4124H6L08ZYziwdgfCEqKw+puvDR++FAoFTp48iaFDh8LLywsAwIUBty1cYOjB6Az4icXyYufIHKQPsaS702qVUKuLALRQVizWZ3PU1ZVDq1VCKLTc55h0b0KhEDKZrNnXValUCqHQfGuQrqK8pvnMQW93Efw9RSipUuNGcTX6h3fOIAhjzBAc5DPIEkKlGB7ti+MZZVj/dxYem9LLkUskdpBVVgMdAzxEQgR4me+r2RYSVyHG9vTHnkuF2HupkIKDhBCnZZdIgbpWjeLMAhTXTyuVF1egOLMAlaVyAMCfmw5g9xe/GvZPPZaCPau2YuytkxEcG4bqiipUV1RBVVNr2Ofgt7uQeuwCpj0wDyKJyLCPRl1nj7tASKuU1WcO+oT4m708tKf+A2rTvoMlWYXQarRw83I3BJksCa2fWFycVWj03DAn/3oOfv3vRmjUGkQNiMP0BxdY7Gdoa5WlcqwqXgOO6TMFOcbh9RNv4suH38f3//4K+1b/ZggM8piO4fgvf8DDveGbWoVCgUOHDkGhqO9byAAfPx/EDDT98sCRGsqKKxy7kHr8h9jmdIcPsaT74rMGXVykcHX1trifi4sUQqE7AEClst90ddL5cRyHpKSkZvdJSkqyWy9fZ1HaQlkx0NB38HqxbXsOd6TSajUUKg04Doj0dTdsv2NUFABgw99ZUGvaPnmWStSdk6GkOMDD5s9lfmox9R0khDgzu6SNFKXn4ae3vjP8/8j3ewEA8WMGIPm+OaiWV0FRJjdcnvL7aei0Ovz+7S78/u0uw3Z+fwC4cOAUAOCnN9cZ3daUe2cjYexAe9wNQqxWZhhGYjlzEAAKrudAp9UZMvgK60uKg2JDW3wj4unjBVmgD+RF5ci/loPogT3M7leYnodf3v0edbVqRPSNwayHb4aLa8dliG09/wuyxbmG/zOOIVuSi1S36xgiGgQ3L3eU5hSZXC/1j/Ooc2OApWphDpg+a4bTffiSBdUHB50kc5D/ELt+/XqL+3SHD7Gk+7Km3yCgf66IxSGoqUlDbW0e3N1jmt2fdG9xcXEICApGYUEBGrft1TEgKDgYcXFxjltcBymrVgFoITgY6Im/08uQVtT64WnOgs8aDJW5QeLa8EXa1L7BCJKKUVipws6UfMxNbL4djDmU3e+80kv0vTJj/G3fimpSfBAEHHAxrxI55TUI93Fv+UqEENLB7HLWCY+Pxopvnrd4OR/w49387B0tHrO54xHiaHxZsa+FzEG/sACI3MVQ16hQnFVo6JfH9xsMimm+pJgX2isC8qJy5F7NMhscLM4swJZ3NkCtVCGsdyRmr1gEF5FrW+5SmzDG8N/UD8ExDoxrSA/kGIfjAy7gswfWguM4fc/BtTvAdAycgEP86AGorqhC5sU0CGsBbdNqDgYEBQU55YcvWX3Gp6JEDp1O1yE9HVsSFxeHoMAgFBYWAo1jgE78eyTEVhqCg1Et7ivhg4PUd5C0gOM4hPcdhuLCbUbbBRwQ0XdYt/jCpayq5czBHl1gYnG6od+gcQDHVSjAspui8P7eq1h7NKNNwUEqUXde9hhGwvP1EGFolL4sfd+lQtw1mr6MIoQ4H8d/iiWkk1MpVaiu0JfPWOo5yAk4hPbUZ7E0Li3mJxW31G+Qx/fayzXTd7Akpwhb3tkAVXUtQnqEY86ji+Eq7rjAIADsSduD00VnjAKDgD578EzxGexJ2wMA6Dd+EJa/9zAWPnMblr/3MKbcOxvznrgV//fRY+gbG28c0AIADkjs098pP3x5+kohEAqg1WhRVe4cZVQcxyHWL6JT/R4JsRVlbX1wUNJ85iAAiCX6L2pUNLGYWMHDPxTFOnfo6k9xOgaU6NwxpL91Q8I6M8aYoazYz8NyPzZ+YvH1TjyxOKO0PjjoZxokunV4JFyFHM5kVeB8TkWrj00l6s7rRrH+727LYSSNGUqLL1NpMSHEOVFwkJB2Ks/T9xv08PaE2N3y9Dq+tDjvqj44WFutREVBGQAgKK51wcGi9Hyjfpvl+aXY8p/1UCpqEBgTgrmPL4HIzXbNlK3BGMMLB1+AwMLLigACvHDwBTCm/1Tl5StFeHy00dRxNy93TFowFUKV8XWFKiBhQD+7rb09BAIBvPz1Pf4qixxfWqzVaPHn5gO4tP00hLVo6O/InPv3SIitNGQOtjy4SCLWBwcpc5C0pE6rwzu7r+J0XZihrFjAAYk3jUGod9cvEaxRa6Gq77Pn69lcz0F9YCWjtBoabdv78jlSRol+Yq25DLIALzFm9te/bnxzNLNNx+dL1HVN+i/rGOAbQNn9jmLPzEGgITj4940yyJXUM58Q4nwoOEhIO5XnNz+pmNc4OMgYQ2G6/sOoLNAHbp4tf7CQy+Wo0dbC1c8NKoEGKScvID8/H1dTUvH9O2tRVVWFgMggzH9iabNBSntRa9XIkmdBB/MfBnTQIbsyG2qtutnjSP1kGDFshNG2EcNGQOrnvNPdDENJiiscuo6SnCL88PLXOPnbUXDgEOoW0JA9yAE9gmOc+vdIiC3wA0la6jkIABLKHCRW+uJQGlILFFCK/aAS6V9HmZsP7p4+ooVrdg1l9VmDIhcBPESWS15DZW5wcxWiTsuQVVbTUcuzKUNZsZnMQQC4c1Q0AGDb+TyUVqnM7tMcjuOgCuhj1LsS0AebN+ZKccfXx/H98aw2HZu0TZVKgyKF/vcdbafgYLS/B3oGekKjY/j9imnvbUIIcTTqdEtIO7U0qZgXFB0KoYsQNfIqyIvKUZimLykOsqKk2KiBtQyADPh1b6O+RzJAKBVg9orFkHi6tfm+tIfYRYwT951AcU2xxX0CPQIhdmk5o3HSvGQcOH4IAODn64dJ85Jttk57kAXyE4sdkzmo0+lwZtffOPbT79BqtJB4umHiXTPQY2gffPH5FygsKoSwFii9mI/K4ooWJ2PL5XLU1Fj+UOfh4QGpVGrxckIchTEtlMocANb1HBRT5iCxwvUiBT7afx0A8OKcfrie5obcC8fgHty325R/lhlKikXN3meBgENsgAcu5lUirbgasQG2H+5gT4yxhrJif/Nf3CZGeGNAuAznc+RYdeQGxvUKQIy/B0Jk1r3/+u18Hj45qcB0kTv8uBoIOH3WYClzR45WipxrJThyrQQrt1zA8BhfzOgfUj8MpeO/+O0u+CE0/p4iyNzs15JnSkIQrhVVYc+lwjb1rCSEEHui4CAh7dQwjKT5zEEXkQsCY0KQfy0HedeyDcNIguNafnPQYgNrBvgHB8DT26t1i7exCFkEImQtZ+u0hOM4zJk7B2fPncWcuXOc/sMXP5TEEZmDlcUV2LNqq6EPZfTAHph89yx4eOs/kCVPTcbOnTvhXiZEZV4J9n79GxY8uQxc05SFejRJkXRmKlUhGFOD41wgFge3uL8hc1BVYO+lkU5Kq2N46sfzUGt1SOodgLmJoVhXW4dPTiowjfN29PI6DB8cbG4YCa9HoGd9cLAKUxBk76XZVLFChRq1Vj9oxtd8cJDjONw5MhqPbz6Hzw/dwOeHbkDAAW8u6I/Fw5pvZ7DpZDae+ek8dIyD3LsXAirPAtBnDQ4aPgaPDeuPnSkF2JVSgAu5cvx1owx/3SjDi1svYnCkD6b3C8a0fsE07dbG+AE69iop5k1JCMKnv6fh0JViqDRaiF1o8AwhxHnQJztC2smQORjafOYgAIT2itQHB69kozC9PjhoReYg38B6/fr1FnYAJk+e7PRBtNYYMWIEduzY4ehlWIXPHKzswOAgYwyXjpzD4fV7oK5Vw1XsinFLp6Dv+EFGj4PY2Fg89NBDqCgsw/rnv0TOpQxcOHgaAyYNMXtcmqRIOjO+36BEEgaBoOW3OHzmoEajgEZTBReXzpXlROxv3bEMnM6qgIdIiNfn6wc68QEyPmDWHZS2IjgYF9B5h5JklOqz5kO93ZoN3AyJ8jH6v44Bz/2cgnG9AuAOtdns+23n8vDFoTRImCvmDo/Dq3P74ctVBSguLEBAUDDunj4CHMfhoaQeeCipB7LLarArpQA7U/JxOqsCpzLLcSqzHK9tv4wB4TJM7xeC6f2C7VYG253Yu98gb2C4NwK9xChSqPDXjTKM7xVg19sjhJDWoOAgIe2g1WgNpaQtZQ4C+r6Dp7YDaaevoLZKCYFQgIBI675Vj4uLQ1BgEAoLC42n0DIgKIgaWDuSIXOwg8qKayqrsX/Ndtw4fRUAENIzHMn3zYF3kK/F63gH+WLULRNxeP0e/LFxH6IGxBp6JTbWYiAawPDhw1FQYDnTisqOiaM09BtseRgJALi4eMDFRQqNphK1qnx4uvS05/JIOzii3UFOeQ3+s/sKAOCZGfEI9daXjfq61wcHa7pPcLCsWt+PrTXBQT4bqzPJsDJIlCdXmmzTMoajV4uQfmizxS/Y5kgAuEjw3OxZcBEKMC15Cnbu3IlpyVNMvuCN8HXHfeNicd+4WOTLldidUoCdKQU4kVGG8zlynM+R4+1dqegT7IUZ/fWBwp5Bjq0g6Uwav6Zk5eTCj6tGuFiF/Hx9mwl7vKYIBBwmxQfh++NZ2HupgIKDhBCnQsFBQtqhsrgCOq0OrmJXePq2/AYitEc4AKC2Sv+m0j8iCC4i63qbcByHgX36Y09RYZMLgMQ+/btU1mBnw/fwUypqoFKqILbjpOi001ew/+vtUCpqIBAKMHLhBAyePgICQcvzpRInD8P1E5eRdzUb+1b/hgVP3Wa2vLi5QHRgYCD27t1LZcfEKSmV+umh1gYHAf3E4ipNJVS1+fD0oOCgM3JEuwPGGJ7bkoIatRbDo32xbHjDY4qf1kuZg+b1CGzIHGSMdar3J+mlzQ8j4cX4exh6BTb2+E8XsMRLiOa6D4YG+hoep3x2f0tCZG64a3QM7hodg2KFCnsu6UuPj6aVIrVAgdQCBd7fexVxAR6Y0T8E0/oFIyFEioLKWqSXVLeqJ2J30PQ1RQZ94Lb89GV8eVq/j73eyyQn6IOD+y4V4dW5nev5QQjp2uiTGyHtUJbXMIzEmpO7xNMNfmEBKM3VD+3wtaIUubG+A/ph/9590IqgD9owQKgGEgb0a+3SiQ2J3SWQeLqhtkqJyuIKq7NBW0OlVOHwhj24dPgcAMAvPBBT75/bqtviBBym3Dsb3774BTLSMnBk20H0HB5vsp8QQsiUEhQ2fUhzAHJVcPFuvqSYyo6Jo7RmUjFPLAlBVfUVGkrixBzR7uDn07k4fLUYIhcB3lzYH4JGX6TwmYMVNWpodQxCCz1cu5KyqoaBJC2J8nOHgAMUtRoUV6kQ6NV5BmnwmYMtleqGyNzw5oL+eO7nFGgZg4ADegZ64mpRFQ5XB2GquNLidZOSktoVEArwEmPZTVFYdlMUyqvV2Hu5ELtSCvDHtRKkFVfj4wPX8fGB6/D1EKG8Wg0GWN0TsbtwZAuVkXF+cBcJUVBZiwu5cgwI97b5bRBCSFtQcJCQdmiYVNxySTFP3GiacOqxCwjrE4l+4wdZdV2pnwwjho3An+f/0m/ggBHDRkDqJ7N+0cQuZIE+qK1SQl5UbvPgYG5qJvas2orKEjnAAUOmj8SIBePh4tr6l3BPPylqIgFVnQ4Hzx7BwbNHTPYRaAHPTA7CUEArRkMgWgWo8hTQlAIIsXwb7f3gQ0hb8T0HW5s5CACqWgoOOitr2h3Y8nWnWKHCK79dAgA8MrmnoUyW51MfINMxQK6ssyqbrrNrGEjScma8xFWICF93ZJbWYOvZPMwcENJpstYaes+1PPBj8bBIjOsVgIySGkT7uyNE5oa8CiU2n8xGxp/5kLIqNI4b6xgQFBxs0zYwPh4iLBoagUVDI1BZW4cDl4uwMyUfB1OLjDJbG/dE7Cx/C3vq6NeUxiSuQozvFYCdKQXYe6mQgoOEEKfRch0aIcSi8nzrJhXzFGWVyLua1bCBAQfW7oCizPI3zE1NmpeMoEB98CkoMAiT5iVbv2BiN3zfQVsOJdGoNTjywz78+NY6VJbIIfWX4eZnbseYxZPaFBgE9N+W+/k3k7HKAK4O8A8PQt+Y+IayYg4YOmAwJt4xAzHR0RCq9Ps2vW5QIPW/JI6jrK3PHJRYHxzkpxpT5qBzi4uLQ0BQsEkZp44BAUG2Dbi8tO0i5Mo6JIRIcd/YWJPLXYUCSCX61+DuUlrM91e0NhDq7qrPuHpt+2WMfusANp7IauEajscYQ2b9QJKWyop5ITI3jIzzMwTcQr3dsGJyLyRNSELThFIBB0T0HWa3L8+kElfMGxSGL24fis9vNx06pmUMGSWW+3Z2Nx35mtLUlAT9+/i9lwpb2JMQQjqOXTIH/75Rii8P38CFXDmKFCp8cfsQTO0bbHH/xzedw0+nc0y29wz0xN7Hxpts//T36/jPritYPjoaL87ua9O1E9IahrJiK8uDKwrLTAIqTMcgLyyDlxU9CwH9t53JU5Oxc+dOJE9NpgwtJ8FPLJYX22YoSXFWIXZ/8QtKc/Ql6H3HJWLs0int7mfIcRySJjY/+XrUTSMxYY5++nXh51+gsKgQQYFBmLpkFjiOw4BJQ3Bk50EcOH7Y5LrU/5I4ikajQF2d/vnXmrJiiYQyBzsDjuMQ3ncYigu3GW23dcBl98UCbD+fD6GAw39uHgBXofnv0X09RKis1XSf4GD9/fTzbDk4mC9XIrVAYfh/Z8laK6xUQVmnhVDAIcK35czB5gwd2Ad7D+yHL1dj6E1YxtwxpH8fG622efEhUpOeiEKOQ7QVGZGdTb5c2aa+ih31mmLOxD6BEAo4pBYokF1W0+7HGyGE2IJdMgdr6rSID5HilbnW9UF7cU4Cjq+cZPg59uxEeLu7YkZ/07q1c9kV2PB3FvoE0zQu4liMsUaZg9YFB72DfE3ebHACDrJmpsyawzewjo01zWggjiE1TCyuaNdxdDodTvz2J354aTVKc4rh5uWO2SsWYfI9s2w26IQfOGIu8y8wIBBJc6dAIBAYAtH+/v4mgeiBwwcbZw/Wlx1T/0viKHxJsaurL1xcPFvYu4G4vqyYMged39D+fVCsczcEPHQMKNHZLuAiV9bhhV9SAAD/Ny4W/cIst+zgM+i6TXCwyvrMwfSSapPTS2fIWuNLisN93CwGha0V6u2OxJvGGLIHBRyQeNMYhHp3TBCI74nY+C3nGwv6OXVwti02nsjC6LcOYOmqv9uUoWrv1xRLvN1FGBat/1J5D2UPEkKchF2Cg0m9A/HE1N6Y1s9ytmBjUokrAr0khp/zOXLIlXW4ZWi40X7VKg0e2XgWby0YAJmbdRNeCbGXGnkV1EoVOI6DLMjHqut4+UoxcfkMw4RYTsBh4l0zrM4aJM7LkDlY1PbMwYrCMvz4+rc4uvkgdFod4gb3xm1v3I/Ywb1stUwADZOv0fRLcQ4YFD/AKAhoKRDN979sXHZM/S+JI9UY+g1Gtep6fOZgbW0+GGsa0iDOJNTbHZdYhN0CLm/tvIwihQox/h5YMan5ydXdKTio0mihUGkANAxjaQ4/ybexzpC1lmHlpGJr3T19BAKC9J+FAoKCcff0ETY5rrUWD4vEqjuGAgD8PUVdbhhJvlyJZ3++YBTYe+7nFOTLlVYfI9TbHWkuUQ4J4k5J0D829l4qsPttEUKINZyy5+CmE9kY08Mf4T7GL8wv/JqCpN6BGNOz5SwtlUqFyspKw09VVZW9lku6qbL6rEFpoHer+r/1Gz8Iy997GAufuQ3L33vY6mEkxLkZeg6WVECn01l1HUVZJbIvZ6CyVI4LB09jwwurkH89ByKJCFPunY2Z/7oZ7lLbfEhpqu+Afu3O/Js0Lxl+3vqsV9c6AfW/JA5VpbgIABCJWjcFns8c1OmU0GjkNl8XsR15TR1uqD1RrNO/PyyHB+6aepNNjn30egm+P67vWfnWgv6QuDY/pZQPDpbXdP3gYHl1HQBAKOCs+nLekLVW/38OnSNrLcMwjMQ2512O4zAteQr8/f0xLXmKQ1puDI7Uf3FZUqVGbZ22w2/fntJLqk36BbY2Q7WiRo3L1e6G15SODOIm1/cdPJFRjvJu8CUDIcT5OV1wsLCyFr9fLcbiYcb9graey8PF3Eo8Na23Vcd58803IZPJDD/Dhw+3x3JJN8b3G7S2pLgxL18pwuOjKWOwC/H0lUIgFECn1aGqXNHi/imHzmDNYx/j57e+w5rHPsaBtTtQp6pDWJ9ILHvt/5AwdqBdP0jYIvOP4zhMSU6GQA2ISgB1jco+iyWkBXl5m5CR+RkAoKRkH/LyNll9XaFQAldXfZC7lvoOOrX00moAHK4Jo1HJJPhbFYbzue0P6CrVWjzz8wUAwG0jInFTbMtDxviJxaVVXf9DfWm1/rXdx90VgqYpgRYsHhaJd28ZCEAfSL1liPV9QB2FLyuO9rNd1pij28D4uLvCU6z/Ajun3LnLulsrrdg08UPIoVUZqmezKwBwyHPv0eFB3Ahfd/QJ9oJWx3AgtahDbpMQQprjdMHBH0/lQCpxQXJCQ0lyXoUSr2y7iA+WJLb4TS7v2WefhVwuN/wcP37cXksm3ZSh36CVw0hI1yYQCCD19wYAVLZQWqwoq8SBNTtMShiHzxmDhU/fbuhfaG+2mHzdO743Qqu94arkUJZfYuslEtKi2tp8XE5d2WgLw+XUla0K9EnqswdV1HfQqfGZXbKgcKh7JyNfJ7VJv673915BVlkNQmQSPD3Nul5jft0oc5AvnbZ2UjFv9sBQeElcUFqtxslM2wzrsie+rDjKRpmDzoDjGoarZJdZX27r7C7nV+KN7akAjDukPDG1d6syVPXBQSAqOsYhQdxkmlpMCHEiThUcZIxh88lszB8UDpFLw9Iu5MpRUqXGrI//QNxzOxD33A78nV6GtUczEPfcDmib5pQDEIvFkEqlhh9PT+ubkxNijXJ+UnFIyxkGpHuQBXoDAOTFFc3uV1FYZra3WURCtKEfZUdobuBIa/ABcj6blpCOVKPMANC0lF8HpTLT6mOIG/UdJM7rRn1wMNbfw/Ches/F9vXrOpddgdV/pAMAXp/fD14S63pa+9T33ivtBuWAbQ0OilwEmFL/d9pxwbmfWzodQ2apPrMuxkY9B51FpK8+WJZV1jUyB8ur1fi/dSehrNNibE9/HH5qAuLqA7qtLV3ng4OJEd42XqV1+L6Dh68Vd7myb0JI5+NUwcG/bpQho7TGpKR4dA9/7H5kHHb8a6zhZ0C4DPMSw7DjX2Mh7MAP050d3+NMUVbp6KV0enyWFAUHCU8aYN1QEltNrbYFW5Q8GYKDuRQcJB3P3S0apm9nBK0aTCKhicWdAp85GO3vgQm9A+Aq5JBWXI3rRW3rK63W6PD0T+ehY8DcxFBM7BNk9XX9PPmBJF2/nQIfHPTzELf6ujP7659bO1PyoTPzZb6zKKishUqjg4uAQ7iPc/dGbK3I+szBrhAc1Gh1+Of3p5FdpkSkrzs+vnUQInw9ML53IADgVCsyVBljOFcfHBzooOBgvzApQmQS1Ki1OJpG76EIIY5ll+BgtUqDi3lyXMzT94HJLqvBxTw5civ06exv70rFYxvPmlxv08lsJEZ4o3ewl9F2T7ELegd7Gf24uQrh7e5qsi+xLOXQGXzdqMdZyqEzjl5Sp6VWqlBVpu8r15aeg6Rr4oeStBQc9PKVou/4RMP/O/vUat+w+uAglRUTB5BIQtC714uNtggQ3+d1wxRia/CZg1RW7NwaT5P1krhiVJz+tWdPG6d9fn4oDakFCvh6iPDvWQmtui6fOcgP6+jK2po5CABjevrDS+yCwkoVTmc5b2kxH3iO8HWHi9CpcifaLaILBQff2pmKP6+Xws1ViC/vGALv+ufh0Gj9l7OtKV/PKqtBeU0dREIB4kMc83mS4zhMjqfSYkKIc7DL2e98jhwzP/oDMz/6AwDw2vbLmPnRH3h/z1UAQFGlyhAo5FXW1mFnSr5J1iCxDb7HGepLGRljOLB2B2UQtlF5QRkAwE3qAYln1/qGmbSdLLA+c7CFsmIA0Gr05SM9h8V3+qnVfIC8LLfYwSsh3ZWv71gAAMeJMGrkIYSGLmrV9Q2Zg1RW7LQYY4aBEfw02eS+fGlx6z9UXytU4OMD1wAAL85OgJ9n67Li+Cy60m6QOVjajuCg2EWIyfWlxduduLQ4vdT2w0icRUPPwc4dHNxyJgdf1bcAeG/RQPQJbvhCdWiU/v3XlYJKKGqtC9jzJcUJoVKIXazraW8PfOn9vstFTp1dSwjp+lzscdCRcX7IeGumxcvfWzTQZJtU4orUV6dbfRsb7x/ZprV1V+Z6nDEdg7ywrNNmKzlSeT4/qZhKikkDPjhY2UJwkDGGzAs3AAD9kgZ1+uegb1gAAKCyVI46VR1cxdb17CLEVlRq/aRHiSQEbm6hrb4+ZQ46v7JqNRS1GgBAVH0AZ0p8EJ7/JQVnsytQWFmLIKnEqmNpdQxP/3QedVqGiX0CMWdg6x8zPh7617naOh2Uai3cRI4LLthbWVXbg4MAMKN/CLacycWulAK8MDPB6onHHalxyXpXE9koOMgY67BpvLZ0IUeOZ37STxT/Z1IPzOhvnBkeKJUgwtcN2WVKnMmqwLheAS0e80xWBQDH9RvkjYj1g5fYBcUKFc7mVGBwpI9D10MI6b66Vt48scg7yBcw82Yg43yaA1bT+fGDF3xoUjFphJ8yrFTUQKW0nE1Skl2EGnkVXESuCO0Z2UGrsx83L3e4ebkDDCgvKHX0ckg3pFbpM8fEosA2Xb9hWnGB2WFBxPH4kuJQmQQSV30gLlAqwaD6D/atKcn79lgGTmdVwFPsgtfm9WtTsMRT7AJRfflpV88ebE9ZMQCM7ekPT7EL8uW1OFOfreVs0kvqh5F0weBgmLcbOA6oVmsNf8vOpKRKhfvXnYRKo8PEPoF4dEovs/sNjdL3bba2tJjPHBwU6W2LZbaZyEWA8b31wUwqLSaEOBIFB7sJL18pBk4e2rCh/n3wqR3HcHL7UccsqhMrz9cHQChzkDQmdhPrg2RoPnsw84I+KB8eHwUXkV0SuDtcw1ASKi0mHU+l1j/uROK2BQfF4kAAHHQ6NerqKMDtjPjgTdPMruS++mmfe6z8UJ1dVoP/7LoCAHh6eh+EeretNQjHcYZgWVfvO8gHP/3aGByUuAoxOV7/3HTWqcWN+1l2NRJXIYLrs2o7W9/BOq0OD64/jTx5LWL9PfDfxYkWB1EOri8tPpVZ1uJxVRotLuXpWys5OnMQaCgtpuAgIcSRKDjYjfAf3kN6hOPu9/+FkQsnAAD+3HSAAoStxAcHfWgYCWlCasVQksz6jN3o/nEdsaQOwWfR8lm1hHQkFZ85KLZ+2mxjAoEIIpH+MUx9B52TpbLP5PoP1cfSSlDZQq8xxhie23IByjothkf7Ytnw9mVu+9QHy7pN5qBn24KDADCdn1p8wfmmFmt1DFmlXTdzEAAifDrnUJJXf7uE4+ll8BS74Ms7hkDmZrltCd938ExWBTRaXbPHvZyvgFqrg4+7q6Hs2pEm9A6Ei4DD9aIqQ29VQgjpaBQc7EYUpfrp0QFRwfDylWL4nDEYuWA8AH2A8NSOY45cXqeh0+oMpZNit9Y1MCddHz+x2FLmoFqpQt61bABA1ICuExz0o+AgcSC1St9zUCxquc+UJXxpcWnp7xQgdEL8wIiYJpldsQGe6BHoiTotw+9Xms9c/ul0Lo5cK4HIRYC3FvZvd+87PpOuvKbzlWpaS6tjqFDqg65tLSsGgPG9AuAhEiJPXotzORU2Wp1t5FUoodbqIBIK2pxJ6uw641CSjSey8O2xTADAB4sT0SOw+YnCvYK84CV2QY1ai9QCRbP7nqsvKR4Y4e0UPRhlbq4YEauvRtrbxunrhBDSXhQc7Eaq6icTe/k1DD8YPncsRswfBwD4Y+N+nN75l0PW1pmc3H4UuvpvJDe//g1SDp1x8IqIM+GHklRYyBzMuZwJnVYHWaCPvhdoF0GZg8SR2ps5CAA6pp8gfiP9A/x5dBzy8jbZZG3ENpobGMFnD+6+aPlDdZGiFq/+dgkA8MjknogN8Gz3mgyZg1VdNzhYUaMG34bTx73twUGJqxCT4vV/J2crLeZLiiN83SyWrHZ2DUNJlA5eiXVOZ5XjhV8uAgAem9LLMPG6OUIBh0H12YMnM5ovLeb7DTpDSTGPSosJIY5GwcFuRMEHB5tMRr1p3jjcNE8fIDzywz6c3kUBQnM0ag1unLmKYz/9btjGGMOBtTsMv1tCGiYWmw8OZtT3G4zqH9tha+oIfOZgRWEZtBqtg1dDupv29hysrc1HVdWlRlt0uJy6kjIInQRjzFBqZ67sk+87+HtqEVQWXn9e2noRcmUd+oZKcd9Y27z+dofMQb6kWObmCldh+z428BNmd1xwrsE/Gc08trqKSD99RmRnKCsuqqzFP9adglqrw9S+QfhnUg+rr8uXFrc0lMQZg4N8APRUZjlKqzq+VUF+fj5eeukl5OfTeY+Q7qrVnfDLy48jK2sVKhUpUKuLMKD/ZwgISDZcXlS0G7m5G1CpSIFGU4Hhw7bByyvB6Bi5ud+joHAbFIqL0GqrMG7sGbi6SpvelInsnHXIyloFtboYnp7x6NXrRcikA1t7F7otRak+gOXpZ/q71mcPMvz9yxEc+X4fAA6Dp91kn3WUVaKisAzeQb4mgUpnodPpUJ5XisL0PBTcyEPhjTyUZBcaMgYbYzoGeWGZ094X0rFkhp6DFSaXMcaQef46ACCqC/UbBAAPHy+IJCKoa9WoKCyDX1jbyzsJaS1D5qCobZmDNcoMAE2DFTrk5m5AVNT9cHFpf5YZabtihQo1ai0EHMz2BxsQJkOQVIzCShWOppUiqbdxkHhXSgF2XCiAUMDh7YUD2h3k4vGZdJ1xAqy1Sts5qbixCb0D4C4SIrdCifM5cgx0ksCMYdhNFxxGwuOfN84eHFRptLj/u1MoUqjQK8gT7y1KbFX5/1DDUBLLwcGKGrXhywZnCg6Gebuhb6gUF/MqsT+1CIuGRnTo7Z+/mo6XX34ZI5OSERIS0qG3TQhxDq0ODmp1NfD07IOQ0Jtx4cKDppdrayDzHorAoBlITX3OwjFq4ec7Dn6+45B24x2rbrew8Ddcu/YG+vR+FVLZQGRnr8HZs3dh5Ii9hibixDKmYw1lxRaCWDfNGwfGGI7/+geOfL8XHAcMmmrbAGHKoTM4sGYHGGPgOA4Tl89Av/GDbHobrcUYg6JUjsL0fBTeyEPBjVwUZRSgrtb0zb7EQ4La6lqjbZyAg6wLlYeS9pHymYMlFdDpdBAIGj6EVhSWobJEDoFQgPD4aAet0D44joNPqD8Kb+ShLK+EgoOkw2g01dBqqwAAYnHbHnfubtHQF1MYfwGUkfkpsrJXw88vCUFBM+HvlwShsGv2JHNm/Af5MB83iFxMA3sCAYcpCUH47q8s7LlYaBQclNfU4YVfUwAA94+LRb8wmc3WxQ/o6MrBwTIbBgclrkJM7BOI387nY8eFfKcJDhomFXfhzEF+IEm+XAm1Rmf2eeRojDH8+5eLOJNVAanEBV/ePhSe4tZ9VE2M9IZQwCFfXovcCiXCzPSQ5LMGY/w94N2OUnl7mJIQhIt5ldh7qbBDg4MbT2ThsbUnAAB3rz2B993DsXhY+wY2EUI6n1YHB/39JsDfb4LFy0NC5gMAlMoci/tERiwHAJSXW1++mpX9NcJCFyM09GYAQJ/er6G05Hfk5f2I6Oh/mOyvUqmgUjWkZFdVVVl9W11RTWU1dFodOI6Dh7f5hr4cx2HE/PEAA45v/QOHN+wFOA6DkofbZA2KskpDYBBoKMmN6h/XoVl3SkUNCm/kNWQFpudDWWk6GcxV7IrA6BAExYYiODYUQTGh8PKX4eLhsziwdgeYjoETcJh41wzKGiQGnj5eEAgF0Gl1qCpXQOrX8EGUn1Ic2jsSIolzvSG1Bd9GwUFCOoparR9GIhS6QyhsW4afRBKC+D6v43LqSugDhAL4+U2AUpmOmpp0FBfvQnHxLgiF7vD3n4SgwJnw8xsHgYCGUnUEQ/Cmmcyu5IRgfPdXFvZeKsTr8/oZso3e2HEZxQoVYv098K9JPW26Ll/KHGy1mf1D8Nv5fGy/kI9npvdximEQ1jy+OrsALzHELgKoNDrkVSidMhD63d9Z2HgyGwIO+Hjp4Dat0V3kgoQQKS7kynEyowxhiWEm+/DBwYHhtvuiwFamJAThg33XcORaMZRqLdxEQrvfZr5ciWd/vgB+iLiOAc/9nIJxvQIQIqMvwwjpTlodHHQEnU4NhSIF0VENQUCOE8DHdxTkleaHQbz55pt4+eWXO2qJTo+fVOzh7Qmhi+UTDcdxGLFgPBhjOLHtTxxevwccgEQbBAgrCstMeszYoyS3cdmyxEOCoowCFKbrS4MLb+RBbmaKrEAogH94IIJiQw0/vqH+RllfvH7jByGqfxzkhWWQOXFpNHEMgUAAqb+3PkuwqNw4OJhyAwAQ3cVKinm+/FCS3OYnhhJiSypVfb9BUWC7Ag2hoYvg6zsWSmUm3NyiIJGEgDGGqqrLKCz8DYVF21Fbm4PCwm0oLNwGFxcvBPhPQVDQLPj4jIJA4Gqru0Sa4Ms+m+sJNyLWD14SF5RUqXAmuwJDonzw5/USbDypnw7/1sIBkLja9oM2HzDrysHBsvphK342Cg5O6B0IN1chcsqVuJArx4Bwb5sct600Wp1hgm+0v2nJelfBcRwifd1xragK2eU1ThccPJ5ehpe36geQPDWtD8b3anv1wZAoH1zIleNUZjnmmgkOnnPCfoO8hBApwrzdkFuhxB/XSwxDSuwpvaTaEBjkaRlDRklNpwsO5suVSC+pRoy/R6dbOyHOoFMEB+vqysGY1qR8WCTyR03NDbPXefbZZ/HYY48Z/n/lyhUMH26bDLjOiB+Y4WlFIIvjOIxcOAEAcGLbnzi0fg84jsPAKcPatQZmpl+frUtyUw6dwf41O4AWGl17B/sasgGDYkMREBkMF5H1TwcvXykFBYlFskB9cFBeXIHweP02jVqDnMsZALpev0Geb30pcVl+qYNXQroTlbr9k4p5EkkIJJKGXkscx8HLKwFeXgmIi3sSlYrzKCz8DUVFO6BSFSC/4GfkF/wMV1cfBAQkIyhwFnx8bgLH2T/bozsxTCpuJrNLWa3AlGgRDl2RY9eJy/DlIvDGj2fgx9ViRv8Q9PGz/Vve7hAc5Iet2Cpz0E2kLy3efiEfOy4UODw4mFdRizotg8hFgNAuHkzgg4PO1ncwr0KJB9efgkbHMGtACO4f176BQUOjfbD2aAZOZpj2HWSMNQwjifRp1+3YA8fpWySsPZqBPRcLOiQ4GOPvgaZfqwm4zhcs33giC8/8fAGM6df/5oL+VBpNSCt1iuBgW4jFYojFDeU+np7du5m4od+gn3Up9HyAkOkYTm4/it+/2w1wHAZOHtqm22eM4fi2P4xvw8YluXzZctPAoJvUA6E9whEYG6IPCEaHQuwhscltEmIOP7FYXtTwxjT3ahY0ag08vL3gF941+/H5hvgBAMrzS0z6LRJiL2qVvqxYLLLv84rjOMikAyGTDkTPHs+iQn4KRYXbUVi0A3V1pcjL24i8vI0QifwRGDgdQYGzIJMNBsfR86C9+LJPS5mDGo0Gq1atgqy6GnMkgObiZXx7ERgOABIA1y5j1arjWLFiBVxcbPfWlw+YVSjroNUxCFsxOKGzsHVZMaCfWrz9Qj62nsvFuJ7+iAlwXJZPev1jK8rXvVWDLzqjCCccSlJbp8X9606hpEqN+BAp/nPzgHaXmg+N0icdpBZUokqlMepbmFVWg/KaOoiEAsSHmG+z5Gh8cPBAalGHvK6EyNwQ5uOGtIKGbRN6BXaqzLt8udIQGASoNJqQtuoUwUFXVx9wnBBqtXEfK7W6BCI7fxjoKvhJxa0JxHEch1G3JIEBOLX9KH5ftwvggIGTWh8gvPr3JeSmZsFF5AJOIEBdrRqzVyxCTKLt+v+YK1sGgBkPzu9ywx+Ic5MFmAYHMy/o+w1G9Y91ih5L9iAN8IbQ1QXaOg0qiyvgTYN6SAcwTCq2QeagtThOAB/vYfDxHoaePZ9HRcXf+ozC4j1Qq0uQk7MOOTnrIBYHIyhwJgKDZkLqNQAqVQFqlBlwd4s2ylAklul0rMWBEUKhEDKZDNXVpv2DeVKpFEKhbTM6vd31peSM6Seg+nl2vR6UZdX6/t1+nrYLDib1CYCLkENeRS2WfvW3Q7N8DFmpTlZmaw/8xOJsJwkOMsbw3M8XcCFXDh93V3x5+xC4t6KKx5JgmcRQmns2qwJjejZUnvFZgwmhUoibabPkSMNjfCGVuKC0Wo3TWeUYFm3f91I1ag0K5MbDFv9OL0VZtdqmXwrY042iapOisc5aGk2II3WKr7MFAhG8vPqhrPyoYRtjOpSXH4NM6thJt52FoazYr3VZehzHYfQtSRgyYyQA4Pdvd+H8/lOtOoa6Vo0j3+8DAAybNRoBkfoPcGqlqrmrtZp3kC+a5sXTJGHiCNIAbwAw6m/JDyPpqiXFgL7fok999iCVFpOOolLX9xwUB7awp30IBC7w9R2N+Pg3MXbMMQwc8BWCg+dDKPSESlWArOzVOHlyAQ4fGYY/j47FmTO34c+j45CXt8kh6+1sChW1qK3TQSjgEO5j/kMex3FISkpq9jhJSUk2/2LGVSiAzE0fIOyqpcWlVXzmoO0Cn3JlHTTahk/yfJZPvlxps9uwFj8Ju7l+ll2Fs2UOfv1nBn4+kwuhgMP/lg42rM8Whkbrv6Q9mVlmtP1MVgUA5+w3yHMVCjCxj/58tvdSod1v72xWBTQ6htCQEPz73/9G3x6RqFZr8cWhNLvftq1cL1aY3V6j1nTwSgjp3FodHNRoqqFQXIJCcQmAfiqxQnEJtbV5AIC6ugooFJdQXX0NAFBTcwMKxSVDw3BA3zxcobiEGmUmAKCq+goUikuoq6sw7HP6zG3IzvnW8P/IiLuRl7cR+fk/obr6OlKvvACttgYh9dOLSfMMZcVtKOHlOA6jF03E4OkjAAAHv92JCwetDxCe2PoHqisUkAV4Y/D0kfAO1gfrKgrLWrhm63j5StF7RL+GddMkYeIgfFlxZX1wsLJUjrK8En1D8L4xDlyZ/dFQEudUW5uPsvJjqK3Nd/RSbM6QOShyTHCwMYFABH//JPRNeBdjxxzHgP6fIShwFjhOAo2mHAAfENHhcurKLvn3sDU+eBPh4wZXoeW3rXFxcQgICjZprK9jQEBQMOLi7PPFjF8X7zvI3y9+MrMt8H/Txvgsn47WHSYV8xoyBzs+CNvUn9dL8MaOywCAlTPiMaqHfwvXaJ2hUfr3YacyjfsOnnXiYSSNTUkIBqAPDpqrirKlE/W9GUcP6ImXX34Zz908CgDwzbEMFClqm7uqU1BrdFj9RwYAkxwRPLbpHC7lVXb4mgjprFqdu61QXMDpM8sM/792/XUAQEjwAiQkvIPikn24fPlpw+UpF1cAAGKi/4XYWP2/c3M3ID3jI8M+p08vAQDEx7+N0BB9sE+pzEKduuEFPShoFtR1Zbhx4wOo1CXw8opH4sA1EItsezLpqvhpxV6tzBzkcRyHMYsnAQw4vesvHFi7EwCH/kmDm71eeUEpTu/6CwAwblkyXEQuhlJDWwcHAUDsrv9mu9eIvhizeBIFBolD8JmDSkUNVEoVsupLioPjwiDx7NrlDYbgYF5JC3uSjpKXtwmXU1cC0AEQIL7P6wgNXeToZdmMWl3fc9BBmYOWCIViBAQkIyAgGSUlv+Pc+Xua7KGDUplJ5cUtSLey7JPjOIT3HYbiwm1G2wUcENF3mN3aOfh4iICS6i4ZHGSMNQwksWFZcYy/BwQcjAK5Qo5zyACEhrLizjV8oS0ifPXvP+TKOshr6iBzd8yE9eyyGvxzw2lodQwLB4dj+ehom9/GkPq+g2eyKgx9+9QanSFQ5OzBwfG9AyASCpBeUo204ir0CLRff8QTGfrPY8Pqsy2TegciMcIbZ7Mr8OnBNLw0p6/dbtsWNp7IQlZZDfw9xdh0/wgUVqoQ6CXGUz+dx6nMctz71WH8d0EfRFr4AsDDwwNSqf7zIk07Jt1dq4ODPj4jMGmi5TTj0JCbDQE+S2JjVxgChZaMHnXYZFtE+B2ICL/DuoUSA61Gi2p5FQDrphVbwnEcxiyZBAaGM7v+xoG1O8BxQL8J5gOEjDEc+m4PdFodogf2MPQX5IOD5QW2Dw6W5uizlWIG9KDAIHEYsZsYbl7uUCpqUFlcgcwL+qnqUf3bN4GvM6DgoHOprc1vFBgE+Iw1X9+xXSYopeIHknRgz8HW8vTsDX2xhq7RVgHc3KIctKLOI6MVZZ9D+/fB3n374cvVGIJPZcwdQ/r3sdv6DBOLa7pecLCyVoO6+vJfPxv2HguRueHNBf3xzE8XwKDP9nljQb8O/zBep9Uhu1yfRdcdyordRS7w9xSjpEqF7PIayNytG1JoSzVqDf5v3SmU19RhYLgMr8/vZ5fAfe9gL3iKXVCl0iC1oBJ9Q2W4nF8JtVYHH3dXRPk5dzDYU+yCkXF+OHS1GHsuFdotOKjR6nA6S5+MMyxG//mM4zg8ntwLt68+jg1/Z+H+8bFOGyirVmnw4f7rAIAVk3ogNsATsQH6IaRrlg/D7auOIb70CHb9ZLnizdPTEytWrMBPZ/Lw7M8XoKNpx6Qb6xQ9B0n7VJcrAAYIXYVw92rfmx+O4zB2yWQkJg8HAOxfswMpv58xu2/6mWvIvJAGoYsQ45YmG07+9socZIwZgoNddRos6Tz40uLy/FJkXUwH0LX7DfL44GB5XondS2FIy2qUGTAOSAF8xlpXoNFUQavVB4+ceUCZRBKC+D6vo6HoiUN8n9e7TIDWntLrS02tCd6Eersj8aYx4Id7Cjgg8aYxCPW2XyCAL7ctq+p6wcHy+mxId5EQElfbDm9YPCwSby7oDwAI8BLjliERNj2+JXK5HPn5+cjPz8e5qxnwZlUIcVVCV1WO/Px8VFZ27RLEyPrsQUf0HWSM4akfz+NyfiX8PUX4/PYhNn9c8YQCDoMivQE0lBbzJcUDI7w7xWC4KQn6L7zs2XfwUn4latRaSCUu6NUoADmmhz+GR/tCrdXhkwPX7Xb77bXmz3SUVKkQ6etuEsiTSlyx9u6boHVxMxlWYrSfVIrLBVV4pj4wCDi2DyohjkTBwW6ALyn29JGCE7T/ZMhxHMYtndIoQLgdKYeMA4QadR0ObdgDABg07Sb4BDcMBeGDg6rqWiirbPfmpEZehdpqJTiOg08IlZsTx+JLi6/8lQK1UgWJpxsCY7p+IMA7yBcCoQDqWjWqys03iCYdx90tGqZdeABX164xqEldP4xEKPSEi4ung1fTvNDQRYiNeQwA4O19U5cq7ban1vaEu3v6CAQE6ft1BQQF4+76fsn2wpfbdsXMwVK+36CdJpbOGxQGL7ELihQqQ/aSPWk0GqxatQpffvklvvzyS/yw+lN4HfsUo5V/4auv9NtXrVoFjabrDjFw5FCSzw/dwG/n8+Ei4PDZbUPsno02pL7v4MkM4+Cgs5cU8/jg4NnsCrv1/uP7DQ6N9oWg0WdEjuPwWHIvAMCmk9lOM+G6sfJqNb44pK/MeTy5F0QupmENHw8xbp03Hc3FgrcUeGP2J39anHZMSHdCwcFuQNGOYSSWmAsQXjx81nD5qR3HUFlcAU9fLwyfM8bouq5iV3j66r+dqrBhaXFJfdagd7AvXEStrpgnxKZk9cHB9DP64UyRfWMgEHT9l1yhi9CQNenI0uLG2SHmfrp6dghPIglBcNA8k+1pN97rEpmdhmEkYufNGmzM21vfhqO2NtfBK+kctDqGrFLrMwcB/fuTaclT4O/vj2nJU+yeIWTIHOyCPQf5+2TLkuLGJK5CTOmrD4BsO5dnl9toTCgUQiZrKKVVKBQ4dOgQFIqGL7KkUimEQvtkszmDhqEkHRf0yJcr8dnv1/H2rlQAwEtz+mJYtP2/oBpa33ewaeZgZwkOBkklGBguA2PA/stFdrmNE+n6z2H8dOfGRsT6YUwPf9RpGT4+cM0ut98enx1Kg0KlQXyIFLMHhFrcb1DfPvD2DzI7rKpY545L1eaD1I7qg0qII1EEpRtQlNYHB9s4jMQSPkDIGMO5vSew7+vf9Fl7wX44vvUPAMDYJVPgKjZ9U+kd5IuqMgUqCsoQ0iPcJusxlBSHdY4PiaRr4wNkfAAmakDXLynm+YYFoDy/FGV5JYjq1/F9FvnskOpq04mYPL7HjItL1z8NCl30b3yDAmchOGQ+zp9/ACUl+5CVvRpRkfc6eHXtw/cbFDnBpGJruHv0AADU1uZAq62FUChx8IqcW16FEmqtDiKhAKHe1mcZxcbG4qGHHrLjyhr4duFpxWXVKgD2yxwEgNkDQ/Hz6Vxsv1CAf8/uC6ENKlws4TgOSUlJWL9+vcV9kpKSOkXJaVt1dObgxhNZhj5uADA8xhe3jeiYXquJkd4QcEBuhRKX8ysNw40Ghnt3yO3bwpSEIJzLkWPvpULcOty2/e8YYziZqQ8ODrcQrH1gVAgup2Xi4JmrONXXy+R1uPEwj46UV6HE2qMZAICnpvU2ynpsiuM4xAwYjooDpsOqAnoOxk9jBiM+xAvbzuXhuZ9ToGUMQo5zSB9UQhyt638qIobMwfYMI7GE4ziMX5YMMIZz+05i71fGL7xqpcrs9byD/ZBzOdOmfQdLc/UfEn0pOEicAJ85yHNEkMxRfEP8kAbHZQ7y2SHNBQe7enZIYwrFRQBAQMAU+PtNQK+ez+PK1X8jLe0deMsGQyZrfuq8M1OpnX8YSWMiV7//Z++849uq7/X/PtqSZXnHsmNn2Ens7IRMIBACJATKaIHSUkoZt4tyC78uKKW0QFtoud3t7YCy2nIptNAWKCNAgLBCIHvv5XjEU9ae5/fH0ZGXvGLJGv6+Xy+/INLR0Vce0jnPeT7Pg06XRyjkwOM5RG7ujFQvKa1RR4orC81JFY1GQjaLg+pYcUESxcFlU4rJt+hpcfn54FArZ0xJbixMdXU1JaV2mhobe9wekaHUbqe6Orsv5I2mc7DB4e0hDAJ8dKSNBod3VEQXq1HH9DIbO+s7eeQdJft5UpElqb/PiWblDDs/XbOPdw604PaHyDEm7tT9cIubFlcAg07D7Iq+5TShUIj3X3yaS03K+/ALT+/qs02qLrT+6rX9BEIRlkwu5Jxpg5/39VdWdcfHTo9l0n5q0QTOnlbCkRYPk4otQhgUjEmyf8ZNgEsdKy5KTiuZJEks/+wF1J45p899ax9/MSZOdqcgCaUkqnOwWJSRCNKAxkM9R6QOb03fQOdEE2ssPtGckudX3SEDke3uEJVIJITLpYxy5ebOBGD8+M8wbtzH8PkMvPvedzh2bE/Gjl4H1KbiNC4j6Y4kSeTkKOKD2z123hNOleE0FacKVRxsz0JxUC1ZSdZYMYBeq+HCWUpG5PPbkj9a3OkLsS08nt5as0aCypmLsv5zQRUH69q9hHvPWSaYwy3uuKOco5Xj5nA4WFgCRZKbdVv3UyS5WVBCRn3GTSu1MqHQQiAU4e39iT2mUrMY51XkY9T1vVjaeww/HqNxobV3TMyGnQd5fdMeiiQ3X1pU2CMWoD+GWlZVlmfm9OoiIQwKxizCOTgGUAtJEpk52BtJkpi+bDZ73t3W43Y5IuNoauvz3GopSXuCMgfliBxzKRVVZMZ4mSB7cbZ18t7f3+hx29rHXmTi7Oqk/h2mC6p7t72hNWVrqK6upnRcKU1NTT37OGQoLS3NeneIisdzkEjEj1abg9msjHJJksTUKffywvP/QyBg4MMNT8V9bCaMXndlDmaGcxAgxzIFh2MTbs/BVC8l7VGbiodaRpIKVHGw1R1AluWsEpfaYoUkxqQ+zyVzynlyw3Fe2tHIvZfNQq9Njnfhjb0nueOZ7TR2wsVGC6puJQMtEQsLZtcm5XnTiVKbCb1WIhiWaXB4qShIXqba5OIcJKC7PjhaOW5qvIjG7eZSNb1BDxzdzYMPrgMy4zNOkiRWzijl4XcOs2ZXE6tnJa7YbsMR5Rxs0eS+eYPqc6d6DL+/mJhLom9Jbz+/m81D/DneeOFSfn9sG81NjaNSViUQZCLCOTgGiI0VJzhzsDcF9qI+HxCSRiKvtG+ORb69yzmYiFB8Z6uDoC/QowxBIEgV8X6vVaF8LFBgLwIJvE4Pns7+R3tHwmCFI06nkwm28r5FvRLMq52dVSfwA6GOFOdaZyBJXR/5RmMeBQWl9Dxt60kmjF77o23FBmPmXBTKieYOCufg4MSaijPAOegPRfAEwileTWJRG5iT6RwEWFJVRLHVSIcnyDsHEh9H0ekLcts/tnLDox/S2OljcrGV8tqFsY8HifguomxEq5FiguDxNm9Sn6ssz8yKmq735tHMcUsX11siUFuLX9nZyPG2xB1TfXRELSPpvxxGHcOP5wDNL07+hdZE/hxHu6xKIMhE0vdSiSAhBHwB/G4fkLyxYpXcQhvn3nARax97ETkiI2kkzr3+orhOKVtJPpIkEfQF8Djc5ORbR/TcLdHxxYKyIrRxrPECwWiSX1qIJEk9BML+hPJsRG/UYyvOp7O5g/b6Fiy2xJ7YD6VwRCdpsRyMoC2HsBFU+4I2ADPmzEroetKZmDgYHSlWkSSJ88+/KOOD+WPOQUPmOAct0bFij3AODkomjBVbDFqMOg3+UIQ2dyChmWCppss5mFxxUKuR+NhsO4+/f5Tnt9b3EJRGypt7T3LHs9tpcPiQJLjxzMl8c1UNJr2GO7a/BkBBUfGYchFVFlo43OLmeJuH06uLkvpcmug1qevPmMSXlleN2rhmOrjeEsWhZhcAbn+Ys//nTX58+Ww+tWhk5SQnnT6OtHqQJFgwsX9ThSRJVMxcRHNT3zKPv9fb2PGXjXxmyQTOnlqSlFzYRP8cR7OsSiDIRIRzMMtR8wYNZiNGc3LHQgBmLZ/PDT/7Kld8+7Pc8LOvMmv5/Ljb6fQ6cosVsbKjceSjh611Su5UkcgbFKQBqlAuRQ+UBhLKs5VY7mBD4l0gg15JlkH2htFqtUzIK6O7PWTpoqXYknyhJJ3oTxwExRFgtxcDkV73RLDbS9J+9FqWZQKxQpLMee/PsSjOQY/nCJFIKMWrSV9C4UisUTWdxUFJkrK2lKQ1mjlYaE1+gcMlc8sBWLOzCV9w5A5M1S14/aMf0uDwManIwtNfOp27Lp6B2aBFkiQ+fuklXHjhhXz80ksyQiRKFBMKFYFuNBqL9zQqeXCrZ9lHPcdtINdbSWlmlM80OLx89187Yv+WZfjOsztocIzM9fnhYSVvsNZuw2bSD7jtwtm1tEQsse9jRIbmiIW6sI1XdzVxw6MfcvYDb/Dr1/fT1Okb0brikQ0/R4EgUxDiYJYzGnmDvckttFExfdKgzxnLHUzAqKVaRlI0PnNGywTZzVCF8mylq5Qk8eLgoIUjEkwqrODa+77Mtbd/AaOsHPgW5OZz3sdXJXw96YosR3C6dgPxxUFJkli8ZAJ9DwU0LFkyIe1PlsNhF+GwcnJrMGTOe7/JVI5GY0aWg3i9x1K9nLSlrt1LKCJj1Gmw20yDPyCFxMRBT3aJg6rYmeyxYoDTJhRQlmfC5Q/x1r6RFS+8ta+ZC36xjqc/qou5BV+69WwW9RqfXLp0KS+++CJLl44d1yB0lZIkWxx0+UPUtSsiVq09N6nPFQ/V9ZbJ5TPxSl3CsjziUpcPoyPFiycNHsUUr8xj/pJlvPq15dx45mTyzHpOdHj5+av7OOPHa/nCnz/ijb0nE1p4c9Q4OaN/jgJBpiDEwSxntPIGT4WCWO5g+4j31RodKxbOQUE6MVShPBuJiYP1iRcHQbmSPK54XN/IPBkKbPlc880bYzmoFTl2NAGYObl2TB1Eer1HCYddaDRGLJb4V9ZraxZgtbbQ5R6MYLW2UFNz2qit81Tx+5X3fa3Wik6Xvs6y3kiShpycKgA8HpE72B+H1bzBohw0SRhXSyQxcdCVPeKgNxDGG3XwFYyCOKjRSFw8RylbeH7rqbUWd/qC3P6PbVz3yIaYW/CpL57O9y5R3IIChdESB/dGXYOlNiP5luT/DsUjnustk8pnJhfn9BHFElHq8uEQ8ga7c+OFSykpVVrF1TKPqaW5fO+SGXzwnfP4xafmsnhSIeGInFA3YSQic+8Lu3hqb4DmDP45CgSZghAHsxxnqyIOpqM4oToHO0boHIyEI7THmoqFOCgQpAPJFAebjzXxxuMv4d3dHrdwZPG8hT1EQHvhOGx1WnK1mSMgJQJ1pNhqrUWjiZ+DZjaXs2zZfLoOBzRMmXoMkyn9M/z8gcxrKlZRR4vdbpE72B9q3uBoNJuOFFUcbM8i52Cr2w+AXiuRO0o5ihfPUUaLX999Ek9geCP3qlvwqY+OI0lww5mTeOnWs1k8eWxk/Q4HtZCkrj254uCeRuUcpNaeunOQeK63TCqfKcszc//ls3sIhHdfOnNEI9pOX5DdDcrPprebtj8GKvMw6bV8Yn4FT3/5dF792tnDdhP2VzB3vO4Et/3lLZ56dx8gYaicnbE/R4EgU8ie1GRBXNTMwbQWB0eYOdjR1EY4FEZn0GMryk/AygQCwUhRxUFXuxO/1z/izNNQIMSBD3ezbe1GGg7UAaBBRps7eOGIOVc5ePQmqTk5XRkob7A7ixffwJYtv6exsRlrbhs5OTuor/8748d/ejSWecoE/NG8QUPmXRRSS0lEY3H/dImD6S/qF0RdUa1ZlDnYvYxktBzXcyrymFBo4Vibh9d3n4zlEA6E0xfkR//Zzd8+PA7AxCILD1wxhyVVyS3ayGQmFCmfiS2uAG5/KGklOqpzMBUjxd258cKl/P7YNpqbGmOut0ziU4smcPa0Ei74xTo6fSHmVeaPaH+bjnUQkaGy0Iw9b+iRDUMp81DdhLetruGlHQ08+cFxNhxp49VdTby6q4nx+WY+taiSTy2qpNRmGrRgLhe41KRn4ceu4YqFE/j9H49m7M9RIMgEhHMwy1HHipPdVHwq5HcbK5ZHkEsRGykeXxIrgBAIBKnFaDGRk6+cELSPwD3Y0dTGO0+9zsNf+xWvPPhvGg7UodFqmLJoOlfc/lmWLlo6aOGIOdqW7HEmP3w9nYiJg9aBxUFJkli5cjXFxcWceUYtkgQHD/2MYNAxGss8ZWJNxZnsHBRjxf1yuDVaRlKU/uKgmsnXnkXiYGtMHEx+mZ2KJElcMnfoo8Xrom5BVRi8/oxJvHTrWUIYHASbSU++RcniPZ5E96BaRlKTYnFwINdbplCWZ2Z6mWL02NfkHNG+PoqOFA/VNXgqDNVNuO5AKzZb/+eosgwlhflcsXBCVvwcBYJ0RzgHsxy1kCQdMwdtxflotBrCwRCu9s5TFjBjZSRipFggSCsKy4twdzhpq2/BXj1+yI+LhCMc3rqf7Ws3cnT7odjt1kIbs8+Zz8zl82LCY8X0SRxoOkzTySZKx5XGLRyxjEHnoCzLOF27AMjNnTHo9qojIBIJsuHDf+N27+fQ4V9QM+3uJK/01PEHlPd+gzFzykhUcqLOQY/nELIcQZLEtdreZJRzMCf7nIPto1hG0p2L55Tzv28c5M29zXT6gnGbVJ2+IPe9uJsnNyii4IRCC/9zpXALDocJhRY6PA6OtXqSMvYryzJ7GlI/VqwyFNdbujOtNJcPDrex7+TIxMENh5MvDnZnMDfhHFshC4h/MUCS4LKLVsWEwGz4OQoE6YwQB7MYWZbTeqxYo9VgK8mno7GN9sa2UxcHRRmJQJCWFI4v4fiuI0POHXS1O9m5bgs73tyEqy168CvBxFnVzDl3AZPmTkGj7SmiSJLEqgtW8dJLL7HqglVxrySbbVFxcAw5B/3+BoLBdiRJR05OzZAfp9HomTb1e2zeci11dU9QXv5pcq3pGfidyc5Bs3kikqQjHPbg9zdiMg0+PjmWCIQisTy0yRkgDmajc7D7WPFoUmvPZco4KwdOunh1ZxNXLKjocf/b+5u5/R/bqHcoJQfXnzGJ21bXYDGIU5rhUFloYVudI2mlJI2dPjp9IbQaiepx6f83nAlMK7UCsL/Jdcr7CIQibDneAYyeOKiiugk/Mb+C/U1OntxwnGc21bGtU2aC0UKR5OmRrRiRodRup7o6fqGaQCBIPOKTNIvxub2EooHO1oL0EwdByR3saGyjo6mNCTMnn9I+WuuU3Kmi8UIcFAjSAYfDgcfjQZOrJ2SQqTteR0NDQ+z+nJwcbDblPUmWZY7vOsL2tRs5tHkfkbDSmmvOtTDjrLnMXnEaeeMKBny+wa4kW9Sx4s6xIw46nTsAyMmZilY7vLHAwsIzGFdyISebX2Lfvns4bf7/peX4TiZnDmo0eszmSXg8B3C7DwhxsBfH2z1EZLAYtIzLHb2x1lNFdQ62ZZE42JoicVCSJC6ZU84vXtvHHzf8i7vW/45fX/hrlpQv574X9/DkhmOA4nx74Mo5LBVuwVOiMlZK4k3K/tWR4qriHIw60RSdCKaWKhMT+0fgHNx+woE/FKEwx0B1SepE295uwr+9FqTEs63HNhoJKmcuSsvjD4EgWxHiYBajNhWbbTno0vSKaoG9iCNbD5xyY3EoEIo9tqgi80bLBIJso0+4dAXsdR9h74MPxraxWq186fNfZN/7u9j+xkY6Grv+/sumVjDn3AVMWTQdnT4x71tqIYnP5UGOyGMim7RziGUk/TF16ndoaX2Djo4NNJ18AXvpJYlcXkJQ24oNGegcBGW0WBUHi4rOTvVy0gp1pHhiUU5GnBiqzsG2LGorros6ygza0f/+Xzy3jJ+/tpe3Gn9NQLOfm57/JiWen8XcgtedPpHbL6wVbsERMKFQ+VxMlnNwb5rkDWYT06Li4PE2L55A6JR+/9W8wYUTC9LivVV1Ey6ZXMj9vzhAYdQ9GJGhTbawYHZ6Ti4IBNmK+FTNYlyt6TtSrNLVWHxq4mB7YytyRMaYYyIn35rIpQkEglNAq9WSl5fXb/McgOwP8+g3fkskGAbAYDJQe+ZsZq9YQHFl4kV+tZAkEo7g9/gwWc0Jf450Y6hNxf1hMpUzaeKX2b3nQTZt+l9mz5qJTtf3+9bdBTqayLKM369EShgNmXlhKMdSTTOilCQeh6Pi4ORiS4pXMjRU52CHJ0goHEGnzewMyac+PMbz2xS390NvH6Z6nJVPLZowas9fXWLFkruDQGg/AAc6ttLpf5dphct44Iq5nF4t3IIjJdnioJo3qJZoCEZOYY6BYquBFleAAyddzKnIH/Y+PhyFMpJToTzfwrwly6j7cA2guAbnLV5GeX5mfAYIBNmCEAezmK6m4vT9YM63K+OCp+oc7D5SnA5XwASCsY4kSaxYsYInnnii/42O+YkEJYonlDLn3NOoWToLgzl5o4NanRaDxUjA48fT6R4T4qDLGS0jsQ5eRtIf5eU38re/NRIIGPhww1/ibmO1Wrn11lvR6Ub3cCIcdhGJKONwxgwsJAHIyYk2FrsPpngl6UeXOJgZWWUFFgOSpDRrtnuClGTAKHR/NDi83PHs9ti/ZeA7z+7g7GkllOWNzntnfYeHQ4FHQNKAFAFZQ4f+rzx63deYUiqcaIlAFQePt3mQZTnhx9CxpmLx80ooU8fl0uJqZV/T8MXBSETmo6PtACyanF7iIMCNFy7l98e20dzUSEmpnRsvXJrqJQkEY47MvrQpGBC1qTgTnIOOk+2xrLHhEGsqFnmDAkHaUF1dTem4UuWssjsyaP0wa95srrrrej5z7+eZvWJBUoVBFUuuIjKMhVISv785OnIrYbVOP+X9GAwW8vIK6PuD7MJms6HVjn6elFpGotPlotVmpthriTUWC3GwN0dao03FRZkhDmo1EvlmpVW3PcNHiw+3uIn0+pMPyzJHWkbvvfOp7S8Q0OxXhEEAKUJAs5/n9708amvIdsryTWg1Ev5QhGanP6H7DoYjHGxWSjPEWHFimRorJRla7qDD4aChoYGGhgY27DqI1ttBud5HkeSmoaGBzs7OZC53WEiSxOpVKykuLmb1qpXC9CEQpADhHMxiVOegNY3FwdzCPLR6LeFgGGerY9Digd50NRVnpnNEIMhGJElibu1s1pxs6nUHLD97OWetPmfU12TOtdDR1Ians/9x52zB6VJGii2WKnS6UxdXJEli5crL+L//+79+t1mxYkVKDuD90TISgyEz8wZBGSsGiWCwnUCgFYNBjEqqqEJUpjgHQRktbvcEaXUFIHN/LanI7yu2ayWJSaM04i3LMo/vfABkTZc4CCBreHznT/h/y64UokEC0Gs1lOWZqGv3cqzNwzibqd9tGxxeDre4mVycMyT36KFmN8GwjNWoo6IgMy/epCtqKcm+IYiDfTKggUujP+ZHHlZKy1Ll/u+PwQrmBAJBckn4O8GJPUfZ+NJ6Th5pwN3h4uJbPkn1gpp+tz/w0R62rd1Iy7EmwsEQheNLWPqJs5k4u/qU9ylQiDkHi/JSvJL+kTQS+eMKaT3RTHtj2wjEQeEcFAjSiZlzZvH6q68RNgASimswAHMXzU/JetTG4rHgHBxp3mB3pkyZwrhxNk6e7KDnsEEEu72U6urqfh6ZXPyBaFNxho4UA2i1Zkym8fh8dbjdB8e0OKg2nAP4Q2F8nS0USZATdtLQ4E9ZtuVwKMoxcKjZnfHOwZd2NPb4t1aSuO/yWaM2Urzm4Bq2Nm1UPje6I0XY2rSRNQfXcMGUC0ZlLdnOhEJLTBxc2E8G3ZMbjvGdf25HlpUcuPsvnz1o/uSeRsWcUGPPFUJugpk2TnEO7mtyDbrtUDKgU+X+FwgE6UnCxcGgP0hx5ThmnDWX//zmH4Nuf2LvMSbMnMwZV67AaDGx6+0tPPeLp/jU929k3ET7Ke1ToODKgMxBUEaLW080R3MHh36iGfAF6GzuAMRYsUCQbtiK8li6aCnvbluv3CDB0kVLsaXoYoXZprhevGPBOZhAcVCSJJaePoXn/r2p1z0aliyZkLITv0B0rDiTxUFQGot9vjrcngMUFCxO9XJSQlx3SzRp4Om/7gbSz90SjwKLUkrS6s5ccbDR4ePXryslIHdeVMus8flMKraMmjAoyzJ3vXEXGjRE6Bs1o0HDXW/cxarqVUJ0SgATCi28d7C131KS423uHvmTEXlo+ZOiqTh5qI3FJzq8uP0hcoz9vycOJQM6Ve5/gUCQniT8KGvS3ClMmjtlyNsvv2ZVj3+f+clzObRpH4c374uJg8PdpwAikQiuduXDOZ0zBwHy7dHG4mGWkrRFXYOWPCvmXNFmJRCkG+d9fBUHGg/TdLKJ0nGlnPfxVYM/KEmo7xGezrHgHIyWkSRAHASorVnAWusaXK5CFPdgBKu1jZqa0xKy/1NBHSvO1KZilRzLFFpb38LtHruNxdnibimyKuJgewaLg/e9uBt3IMz8Cfn817IqNJrRFQ0C4QDHHMfiCoMAESIc7zxOIBzAqMvc0pd0oXKAxuJAKMI3nt7a53Y1f3Io4uB0IQ4mnIIcA8VWIy0uPwdOuphbmT/g9tXV1ZSU2mlqbKT7n3NEhlK7PWXuf4FAkJ6k3SVYOSIT8AUw5YzsKqXf78fv7wrYdbkGt19nE+4OF3JERqPVYMm3pno5A6KWknQ0Dk8cFCPFAkF6I0kSqy5YxUsvvcSqC1Lr9BgrY8XBoAOf7zgwsqbi7pjN5SxbNp+XXz4evUXDxElb6OhYj9l8eUKeY7ioY8WGDHcOxkpJxnBjcba4W1TnYFuGioPvH2zlua31SBL84LJZoy4MAhh1Rj78woc0e5r73WZczjghDCYItbG4rs3b43ZfMMzNT2xiw5H2Po8ZSv5krKnYnt7mhExlWqmVFpeffU3OQcVBSZKomLmI5qbne9yukaBy5qK0f18VCASjS9qJgxtfep+gP8DUJSM7qbn//vu55557ErSqzEMdKc7Jt6LRpHcpdcw52Ng6rMeJpmKBIP1Jl3Bp1TmY7WPF6kixyVSJXp+4Ee7Fi29gy5bf09jYTEFBiPz8enbt/haRiJ/x469O2PMMlZhz0JjBzQ9ATo4yFeH2jF3nIGSHu6UwJ3PFwWA4wt3PKe8dn1k8gVnjU5dVXZlXSWVeZcqefywRzznoDYT54l8+4u39LRh1Gq5ZOpFH3zmMjBIDOVj+ZKcvyIkORWysKRXOwWQwdZyV9w62sv/k0IwvC2fXsua11ymSPGgk5X21TbawYHZtklcqEAgyjbRSjfa8v4MP/vU2F918eczlcarccccdOByO2NeGDRsStMrMwNmq5g2mbxmJiuoc7GxxEA6Fh/y41jrl5FA4BwUCwWCYx4hzUG0qTtRIsYrSXLya4uJiPvax66isvBaAPXu/y/HjjyX0uYZCIIvGigH8/kZCobE14dAd1d3S26yWSe6WTBYH//z+UfY2OSmw6PnWBaLwbyzgcDgwBTspktwEna0cOV7HoaPHuemh19h14ChFhhCP3rCI7108g99crRSJ5Zn1XLlgYOF2X9Q1WJZnIs+iT/rrGIsMp7EYoDzfwn7txNj7q0aCeUuWUZ4vIpkEAkFP0sY5uHf9Tl5/5AUuuvkKJsysGvH+jEYjRmPX2IHVmt6jtYlGbSq2pnneICjuRr1RT9AfpLO5g4KyoTU2xsaKhXNQIBAMgnrByZP1zkElb9CWYHEQerpAZfn7aDQmjh17iH37f0A44mfSxC8l/DnjIcsy/kB2FJLo9XkYDMUEAi14PIew2eakekkpY+HsWl597XUKM9Tdkqni4Emnj1++ug+A21bXkh8djxZkL91LgC41Kbc9/ohS/jMZmGwCo8nC4okfA2D1LDt5Zj0d3iAbj7azeHL8ZmOA3VFxsFbkDSYNtZRk/xAaiwGOt3nY67EwzWihWOOhpNTOjRcuTeYSBQJBhpIWzsG97+/g1T89z+qbPsHkeVNTvZysINZUnAHioCRJMfdg+xBHi30uL+4O5UOxUIiDAoFgEGJjxS4PkUj8sPtsIJFNxQMhSRJTqm9n8qSvAnDw4AMcOvxrZFlO6vMChEJOIhElU9iQ4c5BAItFGZl1u/eneCWppTzfgnXy3Ix1t2SqOPjjl/bg9IeYU5HHVQvFOO9YQC0BGoiiwvxYCZBOq+HcWuW99tVdjQM+bm+jcv4h8gaTx7RSxfByosOLyx8adPv3D7UCEh0FNRQXF7N61cqMcGMLBILRJ+HiYMAXoPloI81HlQ8PR3MHzUcb6Yw62d59ei2v/PHfse33vL+DNQ89x1lXn4+9ajzuDhfuDhd+j2/I+xT0xdmWOWPF0K2UZIiNxaprMLc4D6NZBFMLBIKBiTWay8rFhe74fA20tb+Pz9eQgpUljlDIjcdzCABrksVBUATCqqr/R3XVNwE4fPhXHDz4P0kXCFXXoE6Xh1ZrSupzjQax3MExXEqiEjCPozmi/K1mmrslJg56AqMikieCj4608eymE0gS3HvZLLQpKCERjD5qCdBA9C4BWjlDyXd9dVfTgL/fe4VzMOnkWwyU5CrnPgeGkDu4/qBivJgzfRo333wzVVUjn9ATCATZScLHik8erueZH/819u+3n3wVgOnL5rDqC5fidrhwtnWJejve3EQkHOHNP7/Mm39+OXa7uv1Q9inoSyxzMAOcg9C9lGSI4qAoIxEIBMNAo9VgyjHjc3vxdnpiY8b19U+ze8+dQATQML32R5SXX5XStZ4qLtduQMZoKMVoKB6155006SY0WhP79/+Qo8f+SDjiY9rUu5LmTIjlDWb4SLFKjuoc9IxtcVCWZd4/1IocrODykuaMc7cU5Sgn64FQBHcgjNWYNsk9cQlHZO76t+I0/tTCSuYN0noqyC6GWwJ09rQSDFoNR1o9HGx2MWVcX/FPluVYU3FtmRAHk8m0UivNTqWxeKC/XfV9FeD0qtE7LhAIBJlJwo9cKqZP4tbHv9vv/b3FvCvv+NyI9ynoi+octBZlmDg4ZOegWkaSHSeHAoEg+ZhtFkUcdLqBEny+hm7CIECE3XvupLDwLEymshSu9NQYrZHieEyovAGNZGDvvu9RV/c4kYif2pofIEmJTy/x+6N5g1kwUgzdnYNju7H4aKuHeocPvTaP/775KswGbaqXNCzMBi0mvQZfMEKbK5D24uATHxxld0MnNpNOlJCMQdQSoOam53vc3l8JkNWo4/TqIt7a18yaXU1xxcF6hw+nL4ROI1FVPLay3kebqeNyefdAK/sHKSU52uqhweFDr5VYMLFglFYnEAgylbTIHBQkllAghDcaup+bKeJgLHNweM7BYuEcFAgEQ6SrlERpLPZ4j9AlDKpE8HqPjuq6EoXTpZSRpEIcBKiouIbptT8BJOrr/8au3bcRiQyehzRc/AHl/d+QLc7BqDjo9R6LZSkmGofDQUNDQ79fnZ2dSXne4fBedPRt/oSCjBMGVVT3YJsnvXMHW11+fvrKXgC+dUENRVYRzzIWWTi7lpaIhUh0SjgiQ0uk/xKg7qPF8VDzBqtLrBh04hQzmUyN5g7uG6SURHUNzq/M3PdVgUAweqT3ZU3BKeFqVz6cdQYdphxzilczNFRx0NXWSSgQRGfQ97utLMtdY8UVQhwUCARDI1ZKEr14YjFPQrlG1l0g1GA2TxztpSWEVDoHVcrLr0SjMbBr9zdpbPwnkYifmTN+jkbT/3v6cIk5B42lCdtnKjEYxqHVWgmHXXg8R7BaE+vi6t5M2h9Wq5Vbb70VnS51h4XqSewZ1UUpW8NIKcjRc6LDS5s7OSJvonjg5b10+kLMKLPxmSWZ+X4nGDnl+RbmLVlG3YdrgGgJ0OL+S4DOn17Kd/+1gy3HOzjp9DEut2fmqzpSXCPyBpNOV2PxwM7B96MXXZZm8PuqQCAYPcRlnSwkNlJcaMuYvB5zrgWjRTnI6DjZPuC2HocLn9uLJEkUlIn8DIFAMDTMqnPQqTgHTaYypk79TrctJKbX/igjR4rDYX+s7TaV4iCA3X4ps2b+BknSc/Lki2zf8d8JdcTFMgcN2XFxSJKkpI4WD6WZ1GazxZpJU4Esy7x/sAWAM6oz93O9UHUOuoMpXkn/bD7WzlMfHQfgBx+fKUpIxjg3XriUklI7MHgJkD3PxJyKPGQZ1u4+2ef+PQ0ib3C0mBYd61ZGueO/3/TMGxTioEAgGBwhDmYhrtbMaioG5eQo1lg8yGhxS9Q1mFdagM4gzK8CgWBo9HYOAhQVnhX7f7v9ExlbRuJ270WWQ+j1BRiNqRc3x427gDmzf49GY6Cl5TW2bfsy4bAvIftW24oNWeIchOSWkpxKM+los/+kixZXAJNek9HFGIUWxSGbrs7BcETme9ESkitOq2DBxMIUr0iQaiRJYvWqlRQXFw+pBGjl9P5Hi0VT8eiRZ9EzbpDG4oPNbpqdfgw6DfMn5I/i6gQCQaYixMEsxNmqtEFnSlOxSr5dCcodrJSka6Q4O/KmBALB6KBmDnqjzkGAQKA19v+hkGPU15QoYiPF1plp4xgvLl7B3Dl/QqMx0dq2jq3bPk847Bn8gYPg9yufAdnSVgzJLyVRm0nVbDGViKy4hXo3k4427x1QXIOLJhVmdFZZujsHn/rwONtPOMg16vj2hfFz5QRjj6qqKm6++WaqqqoG3XblTEUcfOdAC55AV6ZsIBThYLMiUtXYM+v8I1PpGi2OLw6qbuyFEwsw6UXeoEAgGJzMPQIT9Ev3seJMIr9UsbwP5hxsOnQCyDzxUyAQpBaLTXEOero5BwPBLnHQ56sf9TUlig7HRwBpl5dYWHgm8+Y9hlabQ3v7+2zecj2h0MAZSQMhyzKBgNpWnEXOwag46EmCcxC6mkl7T5BqJKiY0beZdLRRy0gyeaQYoDAnfZ2D7e4AD7yyB4CvrZxGSa4oIREMn5rSXCoKzPhDEd7e3xK7/WCzi1BEJtekozzPNMAeBImiq5Qk/meqGCkWCATDJSkzmR8cauXBdYfYfsLBSaefP167gAtm2vvd/htPb+WZTXV9bp86zsqrX18OwF/WH+WJ9Uepa/cq95VaueW8qayoyR7nQKJQxcFMaSpWybdHx4oHcA7ueGsz+z5QGjm3vLqBoooSZi2fPyrrEwgEmU1srLiHc7Dr5CZTxcH6+qdpbPwXACfq/w+bbVZajUcX5C9i/rzH2bL1BhyOjWze/DnmzXsUvT5/2PsKhRxEIkoTrCFLMgcBLNGxYo/nELIcRpIS7/KYN2Maa16zUCR50EiKa7BVtvDodg9zZ7qZWJST8OccCuGIzPosKCOB9HYO/nTNXjo8QWpKc/nc6el1EUGQOUiSxMoZpTz67hFe3dUUO7/rPlKc6osNY4Wp0dzBfXHGiiMRmfWHlPOp0zP8fVUgEIweSXEOeoJhppfZuPeyWUPa/vuXzmDDnefFvt6/41zyLXoumt2Vm1RmM3H76lqe/+oynvvvMzmjuogv/vmjfq+WjGVimYMZ5qxTMwfb+3EOOts6Wfvoi103yLD2sRdjYqhAIBAMhFpI4u3sf6w4FOq/0TUd8fka2L3nzm63yOzecyc+X0PK1hSPvLz5zJ//V/T6Ajqd29i0+bM9vvdDxR8tI9Hp8tFqs8f5ZDZXoNEYiEQCeL19L5YmgnqHn03B8TH3oEaCbeEKNh93cMEv1/HwO4cJ9547HgV21XfS6QuRa9Ixszyzjlt6k67Owe11Dv5vwzEA7r1sJjqtGBwSnDorZyiu7bV7TsbeM0RT8egzLeocjNdYvO+kkzZ3ALNey5yK/FFemUAgyFSScnSwomYc37yghtWz+ncLdsdm0jMu1xT72lbnwOEN8smFFbFtzp9RyoracUwuzqGqxMq3LqjFYtCx+djAzbZjkS7nYOYUkgAURMVBj8NFwNv3wHrX21uR5Z4nLnJExjFIRqFAIBBAl3PQ5/YSDoUBCPYSqPz+9BLVBsPjPQJEet0awes9moLVDIwtdxanzX8Cvb4Il2s3mzZfExP7hoo/EG0qzqK8QQBJ0mKxKHlfbk9ycgdf3tFIfcRG0KgcG5SU2vnL/7uU06uK8AUj/OCFXXzyD+/1G26fLN6L5mItmVyU8aKV6hxs96SPczASkfneczuQZbhsXjlLxIihYIQsmlRInllPmzvApuh52N5G5dyjVuQNjhpTo5mDDQ4fnb0ai9+PRjUsnFSQ0TmuAoFgdEnLd4unPzzOsinFVBRY4t4fjsg8t7UebyDMaRMK4m7j9/vp7OyMfblco3uwmyr8Hl9MWMu0zEFjjil28t5xskv0jYQjvPP0WtY/+1afx0gaibxS0bYnEAgGx2Q1x8adfC4loqJ75iBk3mixxTwJ6D3CpUm77EEVq7WGBac9idFQitu9n3ffu54jR7bR0NAQ96uzs6czPOCP5g1mUVOxw+GgoaGBgL8Gl6uQ48d2D/g9OBVkWeaVnY2AxLwlZ8WaSScW5/DE55fwo0/MwmrUselYBxf9+m1+9+YBQuHeonNi8PkaaGt/P+Zu7cobzHzRSnUOtrrSxzn4j011bD7WQY5By3cump7q5QiyAL1Ww4oaJdZBbS3eI5qKR508s55Sm3JBoncpiSoOipFigUAwHJKSOTgSmjp9vLmvmV99el6f+/Y0dnL5797DH4pgMWj547ULYldNenP//fdzzz33JHm16YfqGjTmmDCYDClezfDJLy3E6/TQ0djKuIl23A4XL//un9TtUVwwlTMmU7fnCHJERtJInHv9RRk3Pi0QCFKDRqPBlGvB2+nG0+kmJ9/aLXNQA0QyThw0mcooKV5Fc8sr0Vs0TK/9ESZT2YCPSyU5OdWcdtqTbNx4LW+/PYe31/2z322tViu33norOp1yuKI6DY1ZkjcYCoV46KGHcLvdQB5wMVs2twIPxraxWCx8+tOfjn0PepOTk4PNNvDn4LY6Bw0OHxaDlouXzcO0YkHsPo1G4polEzmnZhzfeXY7b+1r5oGX9/LS9kb+55NzEuoEqq9/OjoGHwE0TJ36Qz48ojgZs+EkVnUOdvpCBMMR9Cl2Qjo8QX7yklJCcuv5Uym1iaIIQWJYOcPOv7bU8+quJm4+ZwoNDh8A04Q4OKpMK82lqdPPgZNOFkxUDDORiMwHh6N5g8IpLBAIhkHaiYP/2FiHzaRj1Yy+I8lVxVZevOUsnL4QL+5o4Bt/38pTX1waVyC84447+PrXvx779969e1m8eHFS154OxPIGM2ykWCXfXkjDgTqObj+IpNXw1l9ewd3hQm8ycP6NFzNtyQycbZ04mtrIKy0UwqBAIBgWlqg4qJaSqLl3OTnVuN378WXYWDGAVmcGoLzsKiZPviWthUEVi2UiCxc+yUcf/Zxg0ERf96OCzWZDq+0q51DHig1Z4hzUarXk5eVFxcH4+Hw+HnnkkX7v7y2gxuPlnY0ArKgdh0kfv+xkfL6Zx25YxDObTnDv8zvZfsLBJb95h5tXTOEr50wZ8WhaVz6m6kiMsH//dzFK38eUU0pNPxd7M4k8sz5W9tLuCTAuN7Vi3C9e20erO8CUcVZuOHNyStciyC6W15Rg0Go43OLmxR3K5+b4fDM2kz7FKxtbTB2Xy9v7W9jXzTm4q6EThzeI1ahj9vjMPB8UCASpIa3GimVZ5u8fHecT8yviHoQadBomFecwuyKP21fXMr0sl0fePRJ3X0ajEZvNFvuyWq1JXn164GxzAJlXRqLij45E73p7Gy/+5hncHS4Ky4v59PdvZNqSGYDy2iqmT8rY1ygQCFKH2RZtLO5UxBhVHLTlzgbAn2HOQQC3ez8AxcUrMkIYVDGbx7N69dX0JwwCrFixokfzZcw5mCWZg5IksWLFigG3yc/PH/D+3gJqb2RZ5uUdiji4eubAWdCSJHHlggpe+/pyVs4oJRiW+eVr+7n0t++wvc4x4GMHo798zHGWFk6vKkKjyfyGU61GIt+iTG20p7ixeFd9J39+/wgA91w6M+UuRkF2Efa5ObtSR5Hk5i9rt1AkuZldEEloHIJgcNRSku4FnepI8eLJhRmf4yoQCEaXtHrHWH+ojSOtHj61qHJI20ciEAglJxMnU3FGnYOZljcIykj0oU17+9z+sVs+SWF5cQpWJBAIsg1zrtJY7HF6CIf9hMPK1fZcmyIOZtpYsSxHcLsPApCTMzXFqxk+tbULKC0tIJ5oZLeXUF1d3ePWWOagITvEQYDq6mrs9hLifQ8KCyUWLBhYNOstoPZm/0kXh1vcGLQazqkZ2jj2OJuJB69dwG+unk9hjoE9jU4+/rt3+cnLe/AFw0PaR2+UfMyeh50RWcNJT3FWjBSrFOYo4mBrChuLZVnm+8/tICLDx2aXceYUcQwlSBxqHEJl03tcatrNEv9mLjXtpqzxXR588EEefPBBHnroIUKhUKqXmvVMjTUWdzkH3z8UzRsUI8UCgWCYJEUcdPtD7Kx3sLNeucp8vM3DznoHJzqUAPifvLyHrz+1pc/jnv7oOPMq86mJk1fxk5f38MGhVo63edjT2MlPXt7D+sOtfHx+eTJeQsbiijUVZ5442NHUBnLf2z0dzr43CgQCwSlg6eYcDEbLSCRJhzWnFgCfP7PEQZ/vBJGID0kyYDIN7cJaOiFJEkuWTqbv4YiGJUsm9BG9srGtWJIkFi+pJN73oKz8VTzeX2C1tjBUAbU3r0Rdg8umFpM7jJE/SZK4ZG45r37tbC6ZW044IvP7Nw9y0a/fZuPRtiHvR8VkKqNi/Ge6PwNP7P407f6CrCgjUSmMOgfb3IGUreFfW07w4ZF2zHotd35MlJAIEosahzAQgzmaBYlhyjjlnLmx04fDGyQUjrBBzRvMovdVgUAwOiQlc3BbnYOrH1of+/cP/7MbgCtOq+BnV83lZKc/JhSqdPqCvLSjge9fMjPuPltdfr7+9FaanX5yTTpqy3L5842LOWtqdoSSJwrVOZiJI7f5pYVIkoQsdymEoo1YIBAkErUR3dvpiZWRGPRFmEzjAfD5GpHlCJKUVsb6fnG7DwCQY5mMRpN2McJDorZmAWuta3C5ClGLYazWNmpqTuuxnSzL+P3NABgM2ZE5qNLv92DaaWg0iwjO6GDDht7ur/gCam/UvMHBRor7o8hq5DdXz+fiOWV89187ONTs5so/vM8NZ0zmmxdMw2IY+u+dTtd1bKIxr+TNuqXYbSYmF+ec0trSEdU52H4K4qDD4cDj8fR7/1DKZ5y+IPe9qJSQ/Pe5UyjPNw97HQLBQKhxCE888US/2wzmaBYkhjyzHrvNRGOnjwMnnWg1Glz+EDaTjullmXcuKBAIUktSziROry7iyI8/1u/9P7tqbp/bbCY9e35wYb+PeeDKvo8R9MXR3AGAVpd5V+tyC22ce8NFrH3sRdFGLBAIkoLZpogQXqcnljeoNxRFnWgSshwgEGzDaMiMMTw1b9CSMyXFKzl1zOZyli2bz8svH4/eomHipC14fUcxm7umA0KhDmRZEVyMxsz4+QyVeN+DZcvmM3v2jQBUVdWza9f9gwqovVEmNzrRSHD+jJEJqhfMtLN0chE/+M8u/rGxjkfePcxru5v48RWzmVmsH5Ko1encHrutza1MBZxRXZRVIkJBbKx4eOJgz+bq+AylfOZXr+2n2elncnEOnz9LlJAIkkN1dTUlpXaaGhvpHhcakaHUbh/U0SxIHFNLrTR2+tjX5KLDo2SdLqkqQpsFOa4CgWB0yUybgSAuO97cjLNVGeV+6Xf/xO/1M2v5/BSvanjMWj6fibOrRRuxQCBICpaoOOjpdBMIKgfOBkMRGo0eo7EUv78Rv68+g8RBxTlozcC8we4sXnwDW7b8nsbGZvILguTn17Nz59dYvPiF2M9CLSPR6wvQaIypXG5S6P49sNtLWLz4hth9/YmH3cXTeLwSdQ0umVwUc7SNhDyLnp9+ci4XzynjO89u51ibh88+9D6fy92JFOo/Y89qtXLLLbfgdO6I3ebxKc7dbBt9KzpF5+BQmqsHG9Xc1+Tk0feOAPD9S2ZgzMALxYLMQJIkKmYuornp+R63aySonLkoqwT/dGdaqdJYvL/JxYFmJXswm6IaBALB6JEZc1OCQXG2dbL2sRdj/5ZlmbWPvYizLfPawkQbsUAgSBbqWLHH6SYYdQ4aDMpBtMmoNP1mUimJ2xMdK85wcVCSJFauXE1xcTEXXfgZrNapBALN7Nr5DWRZydrzZ2EZSXe6fw9Wrlzd5+R68eIbKCpSDtvy8wM9xMP+iLUUzzq1keL+OKdmHK987WyuWTKBCBItAW28yOAYNpuNYLCRYLA9dptW7gCyTxw8VefgUJqrBxrVlGWZ7/17B+GIzKoZpZxTk51/J4L0YeHsWloiFiLRP/6IDC0RCwtm16Z2YWMMtbF4V4ODj46IvEGBQHDqCHEwS+hoauuR1QcgR2QcTcMPDRcIBIJsxRJnrNigVw6ijSbFhZUp4qAsy12Zgxk8VqxSVVXFzTffzNSpM5g189doNCba2t/h6NE/AF1lJIYsKiPpjfo9qKqq6nOfJEksWVKB2dzB9BntgzpzTnb62HhMEeNWzUx8RmOuSc+PPjGb//vCUupMVQy0mhUrVuB0Ka5BnU4J0LcaXEwsslBRYEn42lJJzDnoGX7moDqqGemltEZkKCm1U1xcTENDQ9yvp9dtZ9uhRow6DXddPCMRL0UwRvD5Gmhrfx+fr2FYjyvPtzBvybLYWLFGgnlLllGen11/0+nO1FLlPfWDw214AmEKcwxMG9e33FMgEAgGQ4wVZwn5cUo7RJmHQCAQ9ER1DgY8fnz+Xs5BU9Q56B/eCVKq8PsbCIfdSJIOs3liqpeTUKzWadRMu4ctW+9h67bH8Qem4XKewOUqxGSy09Cg/IyGUtCQTUycVM6ChT8kzzZ4ZMiaXU3IMsytzKcsL3mlFGdUF/PE1y/lJ7+sQ/J29Js/dvDgMwAUFizjZPNL5Oi9nFmdfT+7mHPQNXxxcKBRzfHTT+NPf/rTgGPHl5h0lJ1xBZWFQpwRDI26E//H3r3fA2RAw/TaH1FeftWQH3/jhUv5/bFtNDc1UlJq58YLlyZtrYL4TBmnOAc90hbaDX9kjv3baDQrU7wqgUCQiQhxMEvILbRhrx5P48ETAKLMQyAQCOJgtJjQaDVEwhH8XrX5Vsm0MxkzyzkYKyOxTEaj0ad4NYmnpOQytm3djt+vYcvmd6O3Xhz974PA0Aoasgm9Lg+AYGjwyJBXRthSPBxyjHoWnnEWm9f2FbXchcqIoVpGUlh4Jo0nX0EjRTh9cvb93o7EOQjKqOaa116nSPKgkRSBtVW2MKOmhpP7tvQrDsoyhDQmvnRO5ruIBaODz9fQTRgEiLB7z50UFp4Vu1g2GJIksXrVSl566SVWr1opsgZTgM2kx24zstn/OEHNcbZ2/gFZvkn8LAQCwbARY8VZRCigNFSdfsU53PCzr2ZcGYlAIBAkG0kjxdyDfr9SiKCPOQcVcdCfMeJgdKTYkp1igE6no7CwDAZIsxusoCHb0EXFwVDIMeB2Dk+Q9w8qztgLkjBSHI94+WPNEQv/u8nJx//3bdo7FHGwNTAFZ0AZ759bPlBSYWbhcDhoaGgg7G6jSHKDp536+vrY2G9n59AyoMvyzOyIVPQY1dwUHM+d/97JGWed3e/jJAlOP2s5ZsPYEMoFI8fjPULf99cIXu/RYe1noDgEwegQ0G8moFEuGB5zbefOl/6a4hUJBIJMRBxBZAnhUJi2euVEt/aMWcIxKBAIBP1gzrXg7nARDCmZrGrmoCoO+vwZJg5mQd5gPCRJ4txzz+eJJ57od5uBChqyEb0+6hwMdiLLcr+v/fU9TYQiMjWluVSVWEdlbWr+WN2HawBF1MI+k5x6DQ1tB0F2EYrouPzBBu5aaiXP6OSjQweZUDp3VNaXTEKhEA899FDM1XepSbn9oYd2xbYZqsu1weHjSDCXFo2FYo0Ha0EJztZCNhxu44fA8tJimppO0vP6foSgIZcrzlmQ2BcmyGrMpnhxFJqsi6nIduo7POx0PQSSBqQIyBp+9sEP+O8zrhD5jwKBYFgI52CW0FbfQiQcwWAxkluUl+rlCAQCQdpituUAMuFIB9CVOWiMthUHAi1EIv4UrW7oqGPF2SoOglLQYLeXAJFe90Sw20uorq5OxbJShk6nXPiT5QCRiK/f7dSW4gsS3FI8GDdeuJSSUuU5S0rt/OZLF/LWbSu4bqEXgKOd4wnJWpwBJSz/7xt20ODwjuoak4FWqyUvb+Bjr6G6XPc0dgISjdYpFBcX84mLV/P4fy3BatTx/uE2Dmug7+G7hvOWV40poVwwciRN39PA2pofDHmkWJAePLX9BcU1KEU/J6UIAc1+ntr+n9QuTCAQZBxCHMwSWo43AVBcMU4cHAoEAsEAmHMtaA0BIAx0iYN6fQEajWL58fkaU7W8ISHLMm6P6hycmuLVJA9Jkli8pJJ4YsiSJRPG3OedVpuDJCkCU6hb7qA60trQ0MDhY8fZtu8IRZKbJaXSsEZaR4qaP1ZcXBzLHyu2Glk1tQOAI52KI8kZUNyMOfpOjrR4RmVtyUSSJFasWDHgNkN1ue5ucAJQVjEpNqp52oQCHrthERaDljUnbFitLXQJ5hGs1hamTuhfLBYI4uFyKs5Wk6kcjUZxmBmzuA0+G5Flmcd3PgByr89IWcPjO3+CLGdPdINAIEg+Yqw4S2g5dhKAkgmjky0kEAgEmYrFloPWpLiVdLpcNBojoJzgm0zleDyH8PnrsVjSd7TKH2giFHIiSVoslkmpXk5Sqa1ZwFrrGlyuQhSRMILV2kZNzWmpXtqoI0kSOp2NYLCdYNCB0VjaZ6QV4EI9oIfX/rkbGN3iFjV/rDtqGcnRzkoAnEFFHMwzuJlUnB1jb9XV1ZSU2mlqbOy3sXko7G5QhNzpZT3jYRZOKuTR6xdx/aMfYh53DJerOHqPhomTtrBv/yvo9TZKSy9GIBgKnc6dAOTnL8ZgKObYsT9x/PjjFBefm+KVCYbKmoNr2Nq0EXpfd5AibG3ayJqDa7hgygUpWZtAIMg8hu0cbG/fwNatX+Dtd07n9bXVNDev6XH/yZOvsHnzdby1bgGvr63G6dzVZx/hsJ89e7/PW+sW8OZbs9m2/Sv4Ay0DPu+uXd/i9bXVPb42b7l+uMvPWppV52ClEAcFAoFgIMw2Czqz4rLRR/MGVdTG4nQvJVHzBs3miTFxM1sxm8tZtmw+XYcsGpYtm4/ZXJ7KZaUMdbRYdQ4mcqQ1GchyGKdzBwCfWHweWkmiM+ocPLdGT1meOSXrSjSSJFExc1EPYRCU7MXKmYuG7HLd06g4B2vLcvvct6SqiAeunI3V1hx1D0K7bGCXpwJZDrNj59doaPzXiF6HYOzgioqDudaZVIy/FtDQ1v5O7PNFkN7Issxdb9yFpp/TeQ0a7nrjLuEeFAgEQ2bY4mA44sFqraWm5u7494c95OUvZMqU2/rdx/4DP6Sl5XVmz/oNp83/P/z+k2zfftOgz11UeDbLzlwf+5o181fDXX5WIssyLcdUcVCMAwgEAsFAWHIt6KLOQXWkWMUYzVry+RpGfV3DYSzkDXZn8eIbotmDYLeXsHjxDSleUerQRxuLg9HG4kSOtCYDt+cQ4bAHjcbMFUuW8c63V3DV4tkAVOSlf7bncIjX2NwSsbBgdu2QHu8LhjnU7AJguj1+sVxhjo5xOS1MmrQZp6zng8AkHt35GbTWy4AIu3Z9k/r6fyTi5QiyHKcqDubOxGyuoKT4PACO1/0llcsSDJFAOMAxxzEifTJ5FSJEON55nEA4MMorEwgEmcqw50uKi86huOicfu8vK/sEAF5vXdz7QyEn9fV/Z+bMX1BYeAYAM6b/hPUfrMLh2Exe3vx+9y1pDBiNJUNap9/vx+/vOuh0uVxDelwm4nG48To9SJJEUYUQBwUCgWAgzLYcdCbFOWgwFPe4L1Mai2NNxZaxIQ5KksTKlat56aWXWLly9ZjLGuyOLtpYHAo6YrclaqQ1GTg7lZHi3NyZSJKWsjwz2vKJbG+DYLAtZetKBvEam+ctXjbkxtD9TS4iMhRY9JTa4juCK2xODmjC5OSd5BnfbGQ0aCWJadN+QGeTlRMnnmD3ntuR5SDjx1+dsNcmyC6CwfbY51xu7gwAKiqvo7nlVRobn6W66hvo9fEFakF6YNQZ+fALH9Lsae53m3E54zDqsnu6QCAQJI5Rzxzs7NyOLAcpLDgzdltOTjUmY/mg4mBHxwese3sRen0eBQWnU131dfT6grjb3n///dxzzz0JX386opaR5NsL0Rv1KV6NQCAQpDfmXEs3cTD+WLEvQ8aKs7mMpDfxsuzGIupYseochK6R1uam53tsO9yR1mSg5g3abLNjt+kNhQAEAq0pWVMyufHCpfz2yFbamptojlj46tlDz8bc3aiMitfabf3+zHJ1yjFfi6c4Jgzed/ksyvNzKMu7B42k53jdY+zZ+10icojKimtH/qIEWYca+2Q2T0CnU0bYC/KXkpMzDbd7Hw0N/2DChBtTuUTBEKjMq6QyrzLVyxAIBFnCqLcVBwItSJKhz9Uog6GYQKD/Kx+FRWczY/pPOW3+X5lSfRvt7RvYsuVGZDkcd/s77rgDh8MR+9qwYUNCX0c60XxM5A0KBALBULHYctCao2PFvTMHM2CsWJblMTdWLOhCH3MO9mwgXji7luYRjLQmC9U5aMvtEgcNekUczDbnIChC7cdWr8ItWdgYrGDrCcfgD4qyp6H/vEEVj+cIAFPHT+fJLyzlnW+v4FOLJsSee+rU7zJhwucB2Lfvbo4de+QUX4kgm3F2yxtUkSSJyorPAVBX95d+z7EEAoFAkJ2Mujh4qthLL6Gk5Hys1hpKSlYxb+5DdDq30d6+Pu72RqMRm80W+7JaraO84tGj5bjIGxQIBIKh0n2sWKvJ73GfOlbs9zekbYh3INhKKOQANFgsValejmCU6V1IomIzG9gcHB8bK9ZIMG/J0Edak0EkEsLpUhxKNtuc2O2qYzcUchKJZFfuICgu13DtKhoiNjYf6xjy4/prKu6O13sUgAJbFadXF/UpdJEkiSnV32bSRCXLe/+BH3H06B+H+QoE2Y76d5mbO7PH7Xb7Zeh0eXh9x2hpfTMFKxMIBAJBqhh1cdBgKEaWAwR7XfEOBFowGIaWJwiKDV6vL8QTPUgay7QcPwlA8QThHBQIBILBMJgM6KNtxXK454Ujo1FxDobD7j7iS7rgdu0DwGyuRKs1pXg1gtFGH2esGGDLsQ5ORGx0oPxOl5TaufHCpaO+vu64PQeIRPxotVbM5omx23U6G5KktCcHgu2pWl5SmTchH4DNx4b2+mRZZk90rLi/MhIAj/cIAJZu38/eSJJEVdU3mDz5VgAOHHyAw4d/O6R1CMYGXWUkM3rcrtVaKC+/CoC644+P+roEAoFAkDpGXRy02WYjSXra29+L3eZ2H8Lnrx8wb7A3Pl8DwWA7RsPYdsuFgiHaG5TMnhLhHBQIBIJBkSQJvUVxK0X8PV1VWq0JfXTkMV1zB92esZc3KOhCF20r7i1ef3S0DZDQVMymuLiY1atWpry4pWukeBaS1HXIKUma2N9ZMJB9o8UA8yvzAdhyvINIZHAX8kmnn3ZPEI0EU0v7n3bxeJSL4mbLpAH3J0kSVZNvoarq6wAcOvwLDh76Rdo6ogWjRyjkxuM5DIC1l3MQoGL8ZwENbe3v4opGWAgEAoEg+xm2OBgKuXE6d8WCbL3eOpzOXbGTqGCwA6dzVywPyeM5hNO5C79fyRPU6XIpL/8k+/f/iLb29+ns3M7u3beRZ5vfQxx8f/1KTja/EnvO/Qfux+HYjNdbR1vbu2zb/iXM5okUFZ01su9AhtNW30IkHMGYY8JaKFrFBAKBYChoTUrmYNDX13mX7o3FXWUkIm9wLKK2FQeDPZ2DG48qDrV5M6Zx8803U1WV+pHzTuc2AHK7lZGoqLmD2VhKAlBrz8Wk1+D0hTjU4h50e3WkuKrEikmvjbuNLIfxeo8BAzsHuzN50s1Mqb4dgCNHfsvBQz8VAuEYx+XaDcgYDaUYDcV97jebKygpOR9QsgcFAoFAMDYYdlux07mdTZuvif17/4EfAVBmv5wZM/6H5pbX2L379tj9O3YqIw2TJ91CVZXy/1OnfBfQsH37zUQiAYqKzqJm2r09nsfjOUQopAQzS5IWl2svDQ3PEgo5MRrHUVi4jKqqr6PRjO169pZjXXmDqXYICAQCQSYQifjR6BTnYNBt6HO/yViG07kjfZ2DqjhoEeLgWEQfyxzsEgfDETmWbbdgYmEqlhWXzjhlJCp6QyG4s7OUBECn1TCnIp8Nh9vYfKydKeMGzr7erZaR2PsvI/H5GpHlAJKkj13EGAoTJ34RSaNn//4fcvToH5AjQaZMuUMcN45R+ssb7E5Fxedobl5DQ8OzVFd9s0+RpEAgEAiyj2GLgwUFSznv3IP93l9ediXlZVcOuA+t1khtzT3U1tzT7zbdn0OrNTF/3mPDXeqYQM0bLBFNxQKBQDAkVKeSHJHwOfueHBvVUpI0bSwWTcVjG12ctuI9jZ24/CFyjTpqBhCXRpNIxI/LtQdQImV6ozaFZ6tzEJTR4g2H29h8vINPLqwccNtY3uCAZSRHACVvVM1sHCoTKm9AI+nZu+/7HDv+MBE5wLSp3xcC4RhEzRu09sob7E5B/lJycqbhdu+joeHvTJjwX6O1PIFAIBCkiIxpKxbEp1ltKhZlJAKBQDAkVDEi5DPjc/r63J/OY8WBQGvMaZWTU53i1QhSgT6aOdi9kCQ2UjwhH60mPcQel2sfshxEp8vHZOorjOkN0bHiLHUOAsyPlZJ0DLrtnqhzcHpZ/+KuWsJnMU86pfVUVHyW2tr7AIm6ur+wd+9dyHLklPYlyFzUaKjeZSTdkSSJyorrADh2/FHa2t7Fl6YXzAQCgUCQGIQ4mMHIstxtrFiIgwKBQDAUAsGoOOg14ensmwUWEwfTcKzY7VZc9SZTBVqtZZCtBdmILjpWHIn4iESU8fiPjiji4MJ0Gil2RkeKbbPjutNU52Awm52DEwoA2NvYiScQ6nc7fyjMwWYXALUDNBV7PUcAMFuGljcYj/Hln2LG9J8AEifqn2T3njuQ5fAp70+QWUQiftxupfE+1zprwG3t9svQaMz4/Q1s3vI53n3vbOrrnx6NZQoEAoEgBQhxMINxtzvxubxIkkTR+JJUL0cgEAgygmDMOdiPOGhMZ3FQjBSPdXS6XEAR24LRbGbVObhgYkGqltWH7k3F8RgLzsFSm4myPBMRGbbVOfrd7sBJF6GIjM2koyyvb0mSiuocNA+xjKQ/ysquYOaMnwMaGhr+wa5dtxGJ9C9eCrIHl3s/shxCp8sbNLcyGOwgEunuro+we8+dwkEoEAgEWcqwMwcF6UNzNG+woKwInUH8KAUCgWAoqGPFYZ+ZgNPT536TqSy63UkikRAaTfq8v7o9qjg4NcUrEaQKSdKg0+USCnUSCjpo8+ZwosOLRlLGitOFTucOIH5TMYwN5yAoo8UN2xvZfKyDpVVFcbfpGim2DZgB6B3hWHF37PZLkTQ6du78fzQ2/QtZDjFjxk/RaPQj3rcgfVHzBnNzZw6aN+nxHgF6N1tHcLsPxj4nBQKBAJSJxlAoRDgsnOjpjFarRafT9fv+nz5nPIJh03K8q6lYIBAIBEMjEGgBFOegN45z0GAoQZL0yHKQQODksFpBk02sqVg4B8c0Ol2eIg6GHHx0xAwowpLVmB6HdeGwD7d7LxC/qRjAYIgWkgSzXBysLODF7Y1sPtbe7za7GwYvI5HlSJc4OIKx4u6UjrsISdKyY8etNJ18AZc7QmXFt/oVCHNycrDZRGttJjOUvEEVRYTWAD1zKQ8c/AkWyyTM5orEL1AgEGQcgUCAhoYGPJ6+F9wF6YfFYqGsrAyDwdDnvvQ4ihScErG8QVFGIhAIBEOmK3PQjNfpQZblHlfQJEmD0WjH5zuOz1efpuKgcA6OZfR6Gz4fBIMONh41ArAwjUaKXa7dyHIYvb4IozG+w0ivj44VB7J3rBi6lZIc7+jzXqOyp1FxDtYO0DTt9zcSiQSQJD1GY+Lek8aVXMCc2b9jy9avsvb1HILBR/vd1mq1cuutt6LTidOHTCXmHLTOHHRbk6mM6bU/YveeO1EEQg0ajQGXaxcbPryE6bU/Zty4C5K7YIFAkNZEIhEOHz6MVqulvLwcg8EwqCtZkBpkWSYQCNDc3Mzhw4eZOnUqGk3PlEHx6Z7BtETHiktEGYlAIBAMmUC3zMFQIETQH8Rg6nn1zGQqj4mD6UIw2EEg0AxAjkU0FY9ldNHG4lCok4+OKodyCyZlThkJdDkHw2EXkYgfjcY4ausbTWaNz0OnkWh2+ql3+Bifb+6zzZ7GwZ2DHrWMxFyR8KiD4uJzmTf3f9m69VmCQRNqpmVvbDYbWq02oc8tGD1kOYzLtRtQxoqHQnn5VRQWnoXXexSzeSKyHGbHzlvp7NzC9h1foaLiWioqbsDvr8diniTGjQWCMUYgECASiVBZWYnFIory0h2z2Yxer+fo0aMEAgFMpp45x6KQJEMJBYK0NygnuGKsWCAQCIZOMOpUkkM5AHid8UpJlBMcvz99gtdV16DRWIZOZ03xagSpRB8VB92+DnZH8+rSyTnYVUYSf6QYlNZlSVJErmx2D5r02pjoF2+0uNnpp8UVQJJgWmn/zkEl/23kZST9UVx8DueuOJ/+hEGAFStWCEdIBuP2HCIS8aHVWrBYJg35cSZTGQUFSzGZyjCbK1hw2t+YMOELANTV/YX1689l8+bPijZjgWAM09uBJkhfBvpZiZ9ihtJ6ogVZljFZzeQU9H8wKRAIBIKeqJmDOq3itPJ29l9Kkk6tjCJvUKCiNBZDXWsT4YhMeZ6J8jiOtFShOgf7KyMBkCQJvV4RNINZ3FgM3UaLj3X0uU/NG5xclIPZ0L8rL5FlJP0xb94llJRY6J0xBxHs9hKqq4VjOZNxRfMGrdZaJOnUHaAajZ6pU77N9On/0+se0WYsEAgEmYwQBzOUWBnJhFJxFVcgEAiGiCzLscxBfXSs0ROnlMQYzRn0+dNnrNjtFk3FAgWdXnEONnYoY+bpNFIcCrlxuw8CAzsHoVspyRhoLIb4zsGhjBRDt7HiBJWRxEOSJE4/o5a+pwcaliyZII43M5zuTcWJIP4IcVdxjkAgEAgyCyEOZihqGYnIGxQIBIKhEwp1IsshAEymYgC8znjOwag4mEaZg8I5KFBRx4rbXYqolk4jxS/seowbPzrKdpcJo3Hg2JNYKUmWOwfnVSo/nx31nQRCPV15exoGLyOB0XEOAtTWLMBqbaHLPRjBam2hpua0pD6vIPkMp4xkKHS1GXdHk7TRd4FAIBAkFyEOZijNqnNQ5A0KBALBkFEdSlqtFbNVEVjiOQfVzMF0Go9yexRx0Cqcg2Me1Tno9XcAsCBNxEFZlvneup9wzBvkocNNyLI84PaqczCY5c7BSUUW8i16AqFIbIxYZVf037UDOAdlOYLXewxIXuagitlczrJl8+k6RdCwbNl8zOb0aW0XDB9ZlnG6lLHiRDoHa6bd3e0WDdNrfyRKSQQCQcbQ2NjIrbfeypQpUzCZTJSWlnLmmWfy+9//Ho9HMQ9MmjQJSZKQJCnWyvxf//VftLd3TQO8+eabsW0kSaK0tJQrrriCQ4cO9Xi+zZs388lPfpLS0lJMJhNTp07lC1/4Avv27euztgsuuACtVsuHH37Y577rr78+9lx6vZ7S0lJWrlzJI488QiTSOxpk6AhxMAORZTnWVFw8QTgHBQKBYKioI8UGQxEWm1pI0r9zMBTqIBTqKx6ONqGQE7+/EQCLRTgHxzp6nSIkGTRucgzaQV1no8WTG+5ke+txAHZ1tPLkhjsH3H6sOAclSWJ+ZT7Qc7Q4EIpwsNkFwPSy/n+Gfn8jkYgfSdJhMo1P6loBFi++gYJCRdgtKAizePENSX9OQXLx+eoIhTqRJH1C3ecVFdcgSUrT+ILT/kZ5+VUJ27dAIBhbNDi8vHewhQaHd1Se79ChQ8yfP581a9Zw3333sXnzZt5//31uu+02XnjhBV577bXYtvfeey8NDQ0cO3aMJ554gnXr1nHLLbf02efevXupr6/n73//Ozt37uSSSy4hHA4D8MILL7B06VL8fj9PPPEEu3fv5q9//St5eXncddddPfZz7Ngx3nvvPf77v/+bRx55JO76V69eTUNDA0eOHOGll15ixYoV3HrrrVx88cWEQqFT+p7oTulRgpTiauvE7/ah0WooLC9O9XIEAoEgY1DLSAyGYqRcCwDeOM5BnS4XnS43Kso1oNOlVpCLNRUbStHrB84mE2Q/uuhYcY7ew7wJ+ei0qb/W6/XWc+87P0eDMpCqAe595+d8Ys5/9+s663IOZrc4CMpo8Rt7m9l8vIPro7cdanERDMvkGnWMH6BQxhMdKTaZKtBokn/oLkkSixeVsm7dPmbOlETWYBbgVMtIcqah0RgSum+DoQC/vxGNRp/Q/QoEgsxDlmW8wfCwH/fMxjq+/9xOIjJoJLjn0plcsaBiWPsw67XD+rz6yle+gk6n46OPPiInJyd2e1VVFZdddlmP6Yfc3FzsdjsA48eP57rrruPJJ5/ss89x48aRn59PWVkZ3/ve97jmmms4cOAAlZWV3HDDDVx00UX885//jG0/efJklixZQkdHR4/9PProo1x88cXcdNNNLF26lJ///OeYzT2PE4xGY481nXbaaSxdupTzzjuPxx57jM9//vND/l6oCHEwA2mOugYLyorQ6cWPUCAQCIaKOr5oMBShsynioCdOWzGAyViOK7QXn68+JTl/DocjNtLQ3Lwdl6sQTe4MGhqUUeecnBxsNiEUjkX00bFii87LgonpUUbyn71Psdflj/07Aux1+fnP3qe5ct7/i/sYQ8w5mN1jxdBVSrLleEfstljeYFnugCc03mgZiSWJZSS9mTy5Erfnp+TnLx615xQkD6dzB5C4keLu6HV5+P2NBIOOhO9bIBBkFt5gmBnfe2VE+4jIcNe/d3LXv3cO63G77r0Ai2Fo2khra2vMMdhdGOxOf5/LJ06c4Pnnn2fJkiUDPocq5gUCAV555RVaWlq47bbb4m6bn58f+39Zlnn00Uf53//9X2pra5kyZQr/+Mc/uPbaawd9Xeeeey5z587l2WefPSVxMPWXmgXDRi0jEXmDAoFAMDzUzEGDvghLbv9jxQDGaG6Szz/6uYOhUIiHHnqIBx98kAcffJB//vMwWzZfzLp1lbHbHnrooVMeGxBkNjqdMoJq0XvSooxElmXue/+PcaoJ4McfPNZv9qDeEBUHx4BzcG50rPhoq4fWqIiq5g8O2lQcdQ6ak1xG0h2DoQSAQKB51J5TkDzUvEFr7oyE71unzwcgGOpI+L4FAoEgGRw4cABZlqmpqelxe3FxMVarFavVyu233x67/fbbb8dqtWI2m6moqECSJH7+85/3u/+GhgZ++tOfMn78eGpqati/fz8AtbW1g67ttddew+PxcMEFFwDw2c9+locffnjIr622tpYjR44MefvuCNtZBhLLGxRNxQKBQDAsVIeS3lCE2RgVB+OMFUNqG4u1Wi15eXm43f3nHdpsNrRa7SiuSpAutHtNAJh1fuZVWlO8Gnhp/3/YfHJvn9sjwMbGraw5uIYLplzQ536DfmwUkgDkmfVMGWflwEkXW453cN70UnY3qk3FA4uDMefgKLbAquKg3y/EwWxAbSq2JcM5GBUHQ8I5KBCMecx6Lbvu7ft5PxCNDh/n//wtIt2uI2okeO3ry7HnmYb13CNlw4YNRCIRrrnmGvz+rmmIb33rW1x//fXIsszx48f5zne+w8c+9jHWrVvX41i8oqICWZbxeDzMnTuXZ555BoPBMGhBW3ceeeQRPvWpT6HTKVLd1Vdfzbe+9S0OHjxIdXX1oI+XZfmU40CEczADaYk2FZeIMhKBQCAYFt0zB83RsWKv0xP3Q9tkVMRBfwrEQUmSWLFixYDbrFixQmSBjVG21HU5Rk3a0Qnu7g9Zlvn2K1+mv99EDRrueuOuuH9jauZgtheSqMyLlZJ0ALAn1lQ8cKGM6hy0WCYla2l9MBoVcTAcdhEOp/Z3TDAy/P6TUQeohNU6uGtluOijGajBYPsgWwoEgmxHkiQsBt2wvqpKrNx/+Wy00WNarSRx/+WzqSqxDms/wzkmnjJlCpIksXdvzwubVVVVTJkypU++X3FxMVOmTGHq1Kmce+65/PKXv+S9997jjTfe6LHd22+/zbZt2+js7GTLli2x0eNp06YBsGfPngHX1dbWxj//+U9+97vfodPp0Ol0jB8/nlAo1G8xSW92797N5MmTh7Rtb4Q4mGEE/UE6GpWDaOEcFAgEguER6JY5aIkWkoRDYQJef59tU+kcBKiursZuL0HxX3Ungt1eMqSrh4Ls5KNjnXhDSkNoKJRat05Ty7vUORvp75p4hAjHO48TCAf63KePOgcVAarv32A24XA4mJ4Xpkhys/vgUXYfPErY1UaRxk2+7KKzszPu42Q5gjc2Vjx6zkGt1opGo/yOqRdVBJmJ6hq0WKrRai0J378+NlYsnIMCgeDU+NSiCbzz7RU8+YWlvPPtFXxq0YSkPl9RURErV67kt7/97YBTOv2hugW93p4XzyZPnkx1dTW5uT0v+q1atYri4mIeeOCBuPtTC0meeOIJKioq2Lp1K1u2bIl9/exnP+Oxxx6LNR/3x9q1a9m+fTtXXHHFsF8TiLHijKO17iSyLGPOtWDJix+eKRAIBIL4BINdmYM6gx69yUDQF8DT6cFo6Tm6YDSqmYOpEQd9vhNUTviQxsZJve7RsGTJBOEaHMNsOtrO9MkWzDo/wVB8UWk0CIVcHNx/J/87fzyGvHOZPPmrcbcblzMOo87Y53adLhdJ0iPLQYLBVrTa+K3GmY6aIep2u7nUBDTD0399X/l/4C+P7cZqtXLrrbfGxohU/P4mIhE/kqTDZBpec+NIkCQJg6EEn6+OQKAZs7ly1J5bkFjUvMHcJOQNQjdxMNiRlP0LBIKxQVmembI88+AbJojf/e53nHnmmSxcuJC7776bOXPmoNFo+PDDD9mzZw8LFiyIbet0OmlsbIyNFd92222UlJRwxhlnDOm5cnJy+NOf/sQnP/lJLr30Um655RamTJlCS0sLTz/9NMeOHeNvf/sbDz/8MFdeeSWzZs3q8fjKykruuOMOXn75ZT72sY8B4Pf7aWxsJBwO09TUxMsvv8z999/PxRdfzOc+97lT+p4IcTDDiOUNTigVJ4YCQRrSvWE2HqJhNrV0dw4CWHItOHwBvE43Bfaera+qc9Dvb0SWI0jS6JjtIxE/x449zOEj/4vB4MNqteJyFaKY/SNYrW3U1Jw2KmsRpB/eQJid9Z24KywUmdtTmvO1f/+P8PnqmJA3iSWLfx0rShkqkiSh1xcQCJwkEGyL/c1lGyPJEFVdgybTeDSa0T1s7xIHhXMwk1Gdg8loKoauQhKROSgQCDKJ6upqNm/ezH333ccdd9xBXV0dRqORGTNm8M1vfpOvfOUrsW2/973v8b3vfQ+AkpISFi1axJo1aygqKhry81122WW899573H///XzmM5+hs7OTyspKzj33XH74wx+yceNGtm7dykMPPdTnsXl5eZx33nk8/PDDMXHw5ZdfpqysDJ1OR0FBAXPnzuXXv/411113HRrNqZ2zCHEww4jlDYqRYoEg7ejuDumP/twhguQTifgJRV1WBkMxAGZbDo7mDrydfQVdo7EUkIhEAgSCbRijj0kmbW3vsnff9/F4DgNQULCYJUsm8frrrugWGpYtm4/ZnJ0iimBwthzvIBSRCcnK9EAoRc7B5pbXqW94GpCYMf2BYQuDKgZDEYHAyawuJVEzRJ944ol+t+kvQ9STgjISFfUiil+IgxmN0xl1DlqT5BzU5QMic1AgEGQeZWVl/OY3v+E3v/lNv9sMpfn3nHPOGVLpyMKFC3nmmWf6vX+gfbz44oux/3/sscd47LHHBn2+4SLOTjOMxoMnALAWntpBuEAgSB6iYTa9CQSUvFZJ0qHTKe5Nc65aStL3Z6bR6DEaS/H7G/H76pMqDvr8jezffx8nT/4HUMTL8eW3YjKdA8CWLX+ntbWDoqJ8KitX09DQIFyoY5SNR5XfY5MxWgKQAnEwEGhl9+47AJhQeSMFBUtOeV8GfWF0n9ldSlJcXExRUT6trW30jPyOUFRUSElJSdzHxfIGR7GMRMUYbSwOiMbijCUYdODzHQeS5xzU69X3IuEcFAgEgkxGiIMZxI43N9N0uAGAdU++ht5kYNby+SlelUAgUBmJO0SQfALRvEG9vjA2ImyxKe4rTxznICi5g35/Iz5fPTbbnISvKRIJUlf3Zw4d/hXhsBvQUFHxWSZO+Cq//e0juN09RwtaWzti4wbChTo2+eio4s6xWQohMvqjfLIss2fvXQSDreTkTKWq6hsj2p8+6k4LZnFjcSgU4k9/+hOyfBwo7HWvBq/3EH/605/i/j17vEeAVDkHo+JgQIiDmUpr29sAGI32mIiXaPT6AkBkDgoEAkGmk5QzihN7jrLxpfWcPNKAu8PFxbd8kuoFNf1uf+CjPWxbu5GWY02EgyEKx5ew9BNnM3F2zybGra99xMaX3sfjcFFcWco5n70Ae/X4ZLyEtMPZ1snax7qspMgyax97kYmzq8ktFM4RgSBdUBtmGxub6O0OsdtLRcNsCgn2yhuEbs7BzvhuT5OpjM7Ozfj8DQlfT0fHR+zd+z1c7r0A2GzzqK25l9zcmciyLFyogj5EIjKbouJgSV4x3vbRd+s0Nv2b5uZXkCQdM2b8FK22b9HIcOhyDmbvWLHqKm9uPonV2tInQ9TvN1NS0k/moCd1zkGDUREH/UIczEjq659m957vAEp2bn3905SXX5Xw59FFRcdQyIEsy+ICqEAgEGQoSUlXD/qDFFeO45xrVw9p+xN7jzFh5mQu/fqn+fQ9n6di+kSe+8VTnDzaGNtm3wc7efvJV1ly2Vlcfc/nKaks5V8/fRJPPyd02UZHU1ufGXQ5IuNoyt4r7QJBJiJJEouXVNL37VU0zKaaWBmJvps4qDoHnfGdg2pBgs+XuMbiQKCFXbu+xcZNn8Ll3otOl09t7X0sXPD32NiX6kIdCOFCHXu8d7CVTl8Ik07DuDxFuBlN56DPV8++fXcDMHnSV7Hlzhr4AUNAb4iKg1nsHFT/noPBHHQ6P12fDxqKio8QDObE/XuW5Qie6FhxKpyDapSCKCTJLLzeExw+/L/s3nMH0HXusHvPnfh8ib/QpWYOynKYcNg18MYCgUAgSFuS4hycNHcKk+ZOGfL2y69Z1ePfZ37yXA5t2sfhzfsYN9EOwKaXP2Dm8vnMPHseAOdefxGHtx5g57otLLr4zIStPV3JLy1EkqQeAqGkkcgr7T2eIhAIUk1tzQLWWteIhtk0Qz3BNXTLDrQM5hw0Jk4clOUwJ048ycFDP4uVSJSXXUV19bcwGPq+l1dXV1NSaqepsRFNN80gIkOp3S5cqGOMpz48xref2Q6ALxRhZ0MEK6OXOSjLEXbtvp1QyInNNpeJE7+ckP2qYn02F5JA19/zyaYwudYWXK5irNYWysr24fOvjPv37A+cJBLxIUlaTKaKUV+zGCvODCKREI7OzbS2vEFL61rc7v39bYnXexSTqSyhz6/VmtBojEQifoLBjlMuJxIIBAJBaknLoCI5IhPwBTDlmAEIh8KcPNLQQwSUNBITZk6i8cCJuPvw+/34/f7Yv12uzL6SlVto49wbLmLtYy8iR2QkjcS5118kRooFgjTEbC7njDNqWbNGdVuIhtl0QM0cNBiKcDgceDwePGEvIYNMu9NBQ0OXoyISiaDRaHA6c3G5CpEj7TQUd90/3DKQzs5t7Nl7F07nDgByrTOpqbmHvLz+c2N3NzjZHq7ALjX2uF0jQeXMRcI1OIZocHi549ntdJ8f+NtHDj4/e/TaiutO/JX29vfQaEzMmP5TNJrEHEIaxoBzEBT3YMXMRTgd+5g0aTMHDy7GXrYPnS7ExGnOuH/P6kixyTQejUY/2kvuIQ6KcdH0Ihhsp7V1HS2tb9Dauo5Qj3gBDbbc2XQ6t0GPdw0N5iQ5UPX6Avz+RoLBDszmyqQ8h0AgEAiSS1qKgxtfep+gP8DUJTMA8Do9yBEZS15Oj+0seVbaGuJfab7//vu55557kr7W0WTW8vlMnF2No6mNvNJCIQwKBGnMrNkree+93+ByFVNQILN48Q2pXtKYRx0r1uryeeihh7ry/CrARQsPPvhgbNvuTm2nczkfffQRCxf+jNxcxREx1DKQYLCDgwd/yon6vwEyOl0uVVVfp2L8NUhS33yxUDjCa7ubePTdI3xwuA2QudhooUjyoJEU12CbbGHB7NqRf0MEGcPhFjeRnskiuIImgF6iQHJwuw9x4MBPAJgy5XZycqoStm+1kCSbMwdVFs6uZcvGIPkFDUyf8Sb19Uoet9XwFrL8nT7im1pGkixBZzBUl3UkEiAcdglHWIJQL071R7yLT7Is43LvjboD38Dh2AxEYvfrdPkUFy2nqOgciorORq/Pj2YO3hndTsP02h8l3DWootflKeKgaCwWCASCjCXtxME97+/gg3+9zSX/75OxFslT4Y477uDrX/967N979+5l8eLFiVhiSskttAlRUCDIAELBjqg7ZBFz5liE4yINUMcWjcYS8vI6Biz70Ol0BINBAJxOJ2+99RY1NTUxcXCwMhBZjtDQ8CwHDv4k1sJqt3+cKVPuiOV4dafDE+BvHx7nL+8f5USHFwCtRmL1rDLKpRyC+9YBimtw3uJllOdbTuE7IMhUJhfnINHTA+QLKcdIwWBynYORSIhdu79JJOKjsOBMKsZ/NqH7VwtJsrmtWKU830LN9FIAfD4rzSerqKreSsB3kI6ODRQULOmxveoctKSgjASUcVGdLpdQyInf3yzEwQQQCoV6XpyKg3rxSZKCtLe/T0vrG7S0vIG/VzGWNaeGouIVFBetwGab18fNW15+FYWFZ+H1HsVsnpg0YRBAp88HFEejQCAQCDKTtBIH967fyeuPvMBFN1/BhJldV6XNuRYkjYTH0fOD1ONwkZNnjbsvo9GI0djVoGe1xt9OIBAIkkEw2E5+QQMLFj5HYeHKVC9HQJczyWgoZsWK+TzxxBP9brts2TLeeOONfu8fqAzE6dzN3n3fw+HYBEBOzlRqpt3T58QfYG+jk8feO8I/N9fhCyoukAKLns8smcBnl06kLM+MLMvc8z/bkbzthIx53Hjh0iG/ZkF2MC7XRL5FT7tHEay1ksSXzpkLnuQ7B48e/QOdnVvR6XKZPv3HSFJiu+z00czBcNhNOOxDqzUldP/pxoJqA0ePKeJgYfEEKsZfTn39k9Sd+Guf94hUOwdBcQ+GQk4CgeaEOkbHKmpz9UDioMkUZPuOL9HR8T6RSFdEkkZjpKDgDIqLVlBcvCJWmDUQJlNZUkVBFb3aWDyKBUkCgUAgSCxpIw7ufX8Hrz78Ahd+5RNMnje1x31anZZxk8o4vusw1QuUEQw5InN81xHmnL8wFcsVCASCAenuggmIK+lpQffMwerqakrHldLU1ATdNT4ZSktLWbZsGbt376CxsanXXiKUlpb0KA/w+RrweI9gNJRwov5v1NX9GVkOo9VamDz5Fiorru+RFxaOyLy+u4nH3jvCewe7Rimnl9m44YxJXDqvHJO+y5UoSRLTF5zO+nVradRPFi7UMcibe0/S7gmSa9Lx26vnM82eS6HZzTvvQCjkRJYjCRftADqdOzh85DcATJt295DEiOGi0+UiSXpkOUgw2IZWm93ZrD5fHQA6bSmrV62kpMRPff2TNDevwe8/idE4LratN9ZUPCkVSwWU3EGP57AoJUkQanP1QBenSu3/oa1NKcEyGssoLj6X4qIVFBQsRas1j9ZSh4XaWBwMdqR0HQKBQCA4dRJ/JAkEfAGajzbSfFQJUXc0d9B8tJHOVuVq0rtPr+WVP/47tv2e93ew5qHnOOvq87FXjcfd4cLd4cLv8cW2OW31Ena8tZld72ylrb6FtY+/SNAfZMZZc5PxEgQCgWBEdD9AFgfLqUeW5Zhz0GAoRpIk5tbO7ikMAkgwr3Y2Go2GxUsq6fsxqaG45Cnee38FW7d9iS1bP8+7753F5s2fZf0HF3D8+KPIcphx4y5i6ZI1TJzwhZgw6PAG+dPbhzjnp2/wxb9s5L2DrWgkuHCWnae+uJQXb1nGVYsqewiDKssWzOKf/ll82KrHFwwn/hskSGv+/L4iEn16USXLa8ZRlmdGr1MjRmRCIWfCnzMc9rNr1zeR5RAlJauxl16W8OcARSxRR4vHQu6gNyoOnnfep6iqqiI3dzp5eachyyHq65+KbSfLMp4UjxVDV+6gX4iDCaO6uhq7vYTumYEKEazWFiZOLKO66pssWfwiZ57xNrU191JcvCJthUEAvTpWLDIHBQJBhnD99dcjSVKfr9WrVwPK8cm//vWvuI/7+Mc/Hvv3OeecE3usyWRi2rRp3H///bHscoA333wTSZLo6Ojos79Jkybxy1/+Mvbvt956i3PPPZfCwkIsFgtTp07luuuuIxAI9NiXJEloNBry8vKYP38+t912W49yxVMhKc7Bk4freebHf439++0nXwVg+rI5rPrCpbgdLpxtXR8eO97cRCQc4c0/v8ybf345dru6PcC0JTPxdnpY/+xbeBxuiieU8vFvXt3vWLFAIBCkku65OyKDJ/Uo7iplJFMdY5w5Zxavv/oaYQOogW7aAMyYMwuA2poFrLWuoSvpTcZqbSE/vx6fD3y+43Gfq7zse4wf/wlMJkW8OXBSGR1+ZuMJvFFhL9+i59OLJvDZpROoKBg8P7A8z0RRjoFWd4DdDZ3Mn1Bwyt8LQWZxuMXNW/uakST47NKu8VKNxoBGYyYS8RIKOWJjfYni0KGf4Xbvx2Aoprbm3qQ6VvWGIvyBppi7N5tRnYMmc0Xstorxn8Xh2MSJ+r8xceJNaDQ6AoGTRCJeQIPJND5Fq+3eWNySsjVkG5IksXhJJc/9u7fgquGcc85iwYKrUrKukSAyBwUCwUhxtnXS0dRG/igWr65evZpHH320x23do+mGyhe+8AXuvfde/H4/a9eu5Ytf/CL5+fncdNNNw9rPrl27WL16NV/96lf59a9/jdlsZv/+/TzzzDOEwz3NAXv37sVms9HZ2cmmTZt44IEHePjhh3nzzTeZPXv2sF8DJEkcrJg+iVsf/26/96uCn8qVd3xuSPudu3IRc1cuGtHaBAKBYDQIdBsrDoU6kGVZjIOmkGBUdNBqrWi1yoe+rSiPpYuW8u629cpGEixdtBRbkSKymM3lLFs2n337PkDdYNmy+cyZcxePP34/lpy9jB+/t89zvfLKekKhZuZd+BkeX3+ct/d3nVTXlOZyw5mTuGzeeMyG/gtNeiNJErMr8nhzbzPbTziEODiG+Ot6xT12zrQSJhb1LGrT6/Pw+70EQ50k0lPU3v4Bx44/AkBt7X0Yoo3CySJWShLI7lKScNgbE9nMpsrY7ePGrWbf/h/i9zfS2rqWkpJVMdeg2VSBRmNIyXoBjKo46BfOwUSiXnxyuQpRHOoRrNY2ZsxYluqlnRJ6ncgcFAgEius9FAgO+3G73tnGW395JXa+tPzaC5ixbM6w9qEz6Id9rmU0GrHb7cN6TDwsFktsPzfccAO//e1vefXVV4ctDq5Zswa73c4DDzwQu626ujrmZuzOuHHjyM/Px263M23aNC677DLmz5/PTTfdxDvvvHNKryMp4uAHh1p5cN0htp9wcNLp54/XLuCCmf1/07/x9Fae2VTX5/ap46y8+vXlAPzvGwd4ZWcjB0+6MOm1nDaxgG9fWEt1iXAOCgSC9KP71XNZDhMKOdHrRdN4qvBHT8h7ixznfXwV2/ftoNPnwqI1cd7HV/W4f/HiG3juuX0AFBcXsHjxDQBotTM4UaenvHwfktQ1NiDLEl5vLi1Bid/+ZRMgoZHg/OmlXH/mJE6vKjplkXhORT5v7m1mW504+RoreAIhnv5Icah+7oxJfe7X6XLx+xsTekIeCjnZtfs2QKa87CpKis9L2L77Q2+IjhVneWOxOlKs1VrR6bo+DzQaI+XlV3H06B+oq3uCkpJVeNUyEkvqykigShP0uwABAABJREFUu3NQiIOJxGwuZ+5cHe++q0ZXaFi2bD5mc2Zmbur1ygWrYKgjtQsRCAQpJRQI8rsvPjD4hgMgy3KfidKh8JUHb0NvTN3FNFDW/s4777Bnzx6mTp06+AN6YbfbaWhoYN26dZx99tnDeqzZbObLX/4yX/va1zh58iTjxo0b/EG9SErmoCcYZnqZjXsvmzWk7b9/6Qw23Hle7Ov9O84l36Lnotld7VofHG7j2qUT+efNZ/KX/1pCKBzhcw9vwBMIJeMlCAQCwYjoPVojRm1SSzDQVUbSHUmSWDj7NDQBKI7Y+gh3kiRxySUf58ILL+SSSz4ey/hYsWIFgUAOB/YvRZaVx8iyxIH9SwkEcnjfV4bNpOeLZ1fx1rdW8ODnFnJGdfGI3KNzxivOjO1CHBwz/HtLPU5fiIlFFpZPLelzvy7q1gmGOhP2nPv334fPV4fJVMHUqd9J2H4HQv27DGZ55qDPq4iDZnNln/eC8eVXAxJt7e/g8RzGkwZlJAAGo5o5KMaKE01FRR5Wq/J9tdtLYhefMhE11iAonIMCgSCDeOGFF7BarT2+7rvvvmHv53e/+x1WqxWj0cjZZ59NJBLhlltuGfZ+PvnJT3L11VezfPlyysrK+MQnPsFvf/tbOjuHdpxXW1sLwJEjR4b93JAk5+CKmnGsqBm6Umkz6bGZupocX9nZiMMb5JMLu/JY/nzj4h6P+ekn57Lgh6+xvc7BkqrkjrsIBALBcAkGeomDoQ4gtQ6QsUysjETf9/Ni2vQaNj31LuF8f9zHLl26lBdffLHHbdXV1ZSU2mlohPb2csxmJ15vLj5/Di6Nla9cegaXn1aBxZC4j9nZFcrJ1/6TTjyBUEL3LUg/ZFmOFZF8dslENJq+wrJ6Qp4o52Bzy+vUNzwNSMyY/gA6XW5C9jsYsUKSMeIcNJsq+txnNldQVHQOra1vUHfi//D5lLbaVDsHjSJzMGn4/HVMmrSHurqPsXLl6oyOHhGZgwKBAJTR3q88eNuwHuNqd/KXb/+hR4GHpJG49v4vYy0Y+nGIzqAffKNerFixgt///vc9bissLBz2fq655hruvPNO2tvb+f73v88ZZ5zBGWecMez9aLVaHn30UX74wx+ydu1aPvjgA+677z5+8pOfsGHDBsrKygZ8vPo9PNXPk7Q8s3j6w+Msm1I8YEi706c4BvMt8a2jfr8fv7/rRM/lciV2kQKBQDAA6kmuVmshHPaIA+YUoxYdqM2b3bGV5APg7nARCgTRGfQ4HA48Hk//O9QZOaSfRK7USCCQQyCgZMFpJDhnxQouWTop0S+BUpuJUpuRpk4/O+s7WTRp+Acvgszho6Pt7G7oxKTX9LhY2h11NDWUgIbQQKCV3bvvAGBC5Y0UFCwZ8T6Hij7qHMz2tmKfVxkR715G0p082xUcPbqVffteRa/Pw+crxO0qirUP5uTkYLONbjyF+p4ZDLYiy2EkaehZqYKB8fnqyC9o4JxzllFUVJXq5YwIta04FHKIjGWBYAwjSdKwR3sL7EWce8NFrH3sReSIjKSROPf6iyiwJ98AlpOTw5QpU+Lel5ubi8PR9/iqo6ODvLyeJXB5eXmx/Tz99NNMmTKFpUuXcv755wPEPrsdDgf5+fmD7m/8+PFce+21XHvttfzgBz9g2rRp/OEPf+Cee+4Z8PXs3r0bUBqQT4W0EwebOn28ua+ZX316Xr/bRCIy976wi4UTC6ixx1eT77///kG/eQKBQJAMIpEA4bByQcJinozTtbOPk1AwuqiuF32cYgVTjhm9yUDQF8DZ2kluSR4PPfQQbre73/350POsdxYXGS0USR40EkRkaJMtLJhdm7TXMacin1d3NbGtziHEwSxHdQ1eNnd8vxdC9QkaK5ZlmT177yIYbCUnZypVVd8Y0f6GS6yQZAw7B0OhEM88sxO3++Jut57Gls2bgc0AWK1Wbr31VnS60Tt81+sLAQlZDhMMtse9wCIYPrIsx9yhqWyjThR6XT6gZCyHw65Rcx0LBILsYNby+UycXY2jqY28UWwrHoiamho2btzIddddF7stHA6zdetWPv/5z/f7OPWz+pvf/CabN29GkiSmTp2KRqNh48aNTJzYNRFw6NAhHA4H06ZN63d/BQUFlJWVDXheAuD1ennwwQc5++yzKSnpG0UzFJKSOTgS/rGxDptJx6oZ/ReY3PXvHextdPKbz8zvd5s77rgDh8MR+9qwYUMylisQCAR9CAY7ov+niY2EiZDu1BLoJ3MQlKuctuJ8ABzNHWi12j5X8Lojy+CM6JlYlEvhlPmo054aCeYtWUZ5fv+u95HSlTvYkbTnEKSek50+XtquuMWuPb3/sVJdgsaKG5v+TXPzK0iSjhkzfhpr9B4tYoUkWd5W7IuKgyZzZZ/7BnvfAcV5oNWOrnNPo9HHyiZE7mDiCIU6CIeVEz2TKTNLSLqj1ZrQaJT3DZE7KBAIToXcQhsV0yeNqjDo9/tpbGzs8dXSonzWff3rX+dPf/oTv/vd79i/fz9btmzhi1/8Iu3t7QOKgwBf+tKX2LdvH8888wyguBA///nP841vfIPnnnuOw4cPs27dOq655hqWLl0aG0H+4x//yE033cSaNWs4ePAgO3fu5Pbbb2fnzp1ccsklPZ7j5MmTNDY2sn//fv72t79x5pln0tLS0mdMejiklTgoyzJ//+g4n5hfgUEXf2nf+/cO1u45yd++uJSyPHO/+zIajdhsttiX1SpajQUCweigjhDr9fmxjDsxVpxaggNkDgLkRUeLO5s7YoUj/SFJMP2003nla8u557PnUVKqXMwqKbVz44VLE7vwXqi5g6KxOLt5csNxQhGZBRMLmDW+f8FIHx0rHolz0OerZ9++uwGYPOmr2HKHViaXSLreJ7N7rNjr7d85ONj7DijZSKkY14zlDvpFY3GiUH8XDIYStFpTileTGFT3oDjeEQgEmcLLL79MWVlZj69ly5YBcPXVV/OnP/2JRx55hAULFrB69WoaGxtZt24dpaWlA+63sLCQz33uc9x9991EIhEAfvWrX3Hddddx++23M3PmTK6//nrmzJnD888/H/tsX7x4MS6Xiy9/+cvMnDmT5cuXs379ev71r3+xfPnyHs9RU1NDeXk5CxYs4Mc//jHnn38+O3bsYMaMGaf8/UirseL1h9o40urhU4v6XlGVZZnvP7eTV3Y28rcvnk5lYfKcGQKBQDASusTBglgOjzhYTi1dmYPxxUFbsSLAdLZ0AF2FI02NjXTvgYjIUDyulK9cembsg3z1qpW89NJLrF61Mukn7nMq8gE41OKm0xfsUeYlyEx651uGwhGeX7+TIinAldMr6Ozs7Ddnritz8NTEQVmOsGv37YRCTmy2uUyc+OVT2s9IUf8uw2EP4bAXrbb/i7+ZSijkjGVDmuKIg6C879jtJTQ2NtHz+n0Eu72U6urq5C80DgZDCbj3EggIcTBR+HwngP5/FzIRvT4ff6CJYAIyUAUCgSDZPPbYYzz22GMDbvOZz3yGz3zmMwNu8+abb8a9/Q9/+EOPf5tMJu6++27uvvvufvc1f/58/vKXvwz4fOecc06P8pZEkhRx0O0PcaS1ayb6eJuHnfUO8i0Gxueb+cnLe2hy+Pj5p+b1eNzTHx1nXmV+3BzBu/69g39vqeehzy0kx6jlpNMHKE3HJr0IRxYIBOlDIK442JG6BQm6jRXHz8uydXMOguLiqZi5iOam53tsp5Fg0uzFPUTAqqoqbr755sQvOg6FOQYqCszUtXvZccLBGdUi/yuTCYVCcfMtzwIwwb63dlO/sf+cuZGOFded+Cvt7e+h0ZiYMf2naDSpuWas1VqRJAOyHCAQaMNszvwMtt54o2Uken0hOl1O3G0kSWLxkkqe+3dvEU7DkiUTUlbyYDAq7zNCHEwcqjhozoK8QRW1sTgkjncEAoEgI0nKUeC2OgdXP7Q+9u8f/kdpTbnitAp+dtVcTnb6OdHh7fGYTl+Ql3Y08P1LZsbd51/XHwPg0w+u73H7/1w5h08u7Os0FAgEglShugQN+oJomLtwDqaSSCQQc+z07xzMB8ARdQ4CLJxdy6uvvU7hKBaODIU5FXnUtXvZXifEwUxHzZkbKGR6oJy5rkKS4YuDbvchDhz4CQBTptxOTk7q2lIlScJgKMTvbyQYbM1KcdA3QBlJd2prFrDWugaXqxDFPRjBam2jpua05C+yHwzRsWKROZg41HKabCgjUdFHL1aIzEGBQCDITJIiDp5eXcSRH3+s3/t/dtXcPrfZTHr2/ODCfh8z0P4EAoEgnQhGQ/WFczA9CEQbUCVJi04XP79NdQ46W7pOaoqtJnbKlSzX7AWihSOLk1s4MhRmj8/nxe2NIncwC1Bz5p544ol+txkoZ26oY8W9R5cjkRC799yF223Blns6ttxLT2H1iUWvV8RB1eWbbagZcybzwOKg2VzOsmXzefnl49FbNCxbNh+zOXWlFbHMQSEOJozYWPEgvw+ZhMgcFAgEgswmrTIHBQKBIBsQmYPphVpGotcXIknxy67UzEGv00PAF8BgMvD67iYOBazMMedQgHtUCkeGwhy1lORER2oXIkgIA+VbltrtA+bMqU6dUKgTWZbjioj9jS7DtOgXbNr0cL+jy6OF6uoNBrOzsdjrU8S+wZyDAIsX38CWLb+nsbEZu72ExYtvSPbyBsQQEwfFWHGi8MXKabLJOZgPnJqTWSAQCASpJ63aigUCgSAbiImDhgL0+oIetwlGn8HyBgGMFhPGHKUxUi0leeqj44DEuNqFFBcXj0rhyFBQ22uPt3lpdwdSvBrBSFHzLTW9frU0ElTOXDTg75zqhJXlMOFw/NFkdXR5IAYaXR4tDNEIhkCWioNdTrHBo3AkSWLlytUUFxezcuXqlL/vqMKtcA4mBlmW8WZhIYnIHBQIBILMRoiDAoFAkGDUk1vFOaiIg5GIn3DYO9DDBElCPaE16OPnDarkRXMHO5s7qO/w8tY+xSVz9XmLuPnmm6mqSl0mW3fyzHomFyuFBttPCIdGNrBwdi0tEQuRaPlcRIaWyOD5llqtCY3GAPQ/WqyOLg/EQKPLo4U+JkBl61jx0J2D0FV0lA7vO7HMQb9wDiaCUKiTcNgFgMmUunHxRDOSDFSBQCAQpB4hDgoEAkGCUfMFDfpCtNocJEkfvV24B1NBIKg6BwcWB7s3Fv9jYx2yDEsmF8aEuHRidtQ9uK2uI7ULESSE8nwLtaedHnMPaiSYt2Ro+ZZq7uBAJQDV1dXY7SVApNc9Eez2kgFHl0cL1TmoZraOhIaGBu6++24aGhpGvK9EIMtyrJAkE51iRqMiDoZCHUQi/hSvJvNRfxf0+iK0WnOKV5M4RIyKQCAQZDZCHBQIBIIE0z1zUJIkccCcYlQnkn4wcVBtLG7u4OmPFJfPpxYNPgKYCmK5gwOUkjgcDhoaGvr96uwcuMRCMLqsWDSb5ogiBg4n31IdLQ4N4NaRJInFSyrpe9inYcmSCSl3DQLoDepY8cidg0eObOOee+7hyJFtI95XIggG2wmHlUKYTGyn1enyYhe5stXZOZqoTcXmLCojge7ioHAOZiI+XwNt7e/j86XHRRWBQDD6iEISgUAgSDDdxUHlv/kEAs2isThJ+HwNeLxHsJgnYTKVAT3bWU82teNyFeJ05sWcRDk5Odhsth77UZ2DR46epK6zgFyTjgtnlY3eCxkGcyrygf7HivsvoejCarWmvIRC0EWT08/GYAVnm+uGlW+pV52Dg4zy1dYsYK11DS5XIYpIGMFqbaOm5rQRrjwxqGP/I3UO1tc/zdat3wBg69bPM3Hizygvv2rE6xsJqlPMaChFqzWmdC2ngiRpMBiKom3SLVk1CpsKfF41bzDzhOKB0MXEwY6UrkMwfOrrn2b3nu8AMqBheu2PUv6+KRAIRh9xRiAQCAQJJBz2x4oB9NExOfW/wjmYeJQD2jtRxiWVA9px4y7vJYxZgIvZsrkVeBCIL4ypjcVN9W1gLeCyeeWYDaktaeiPmeU2JAkaHD5OOn2MyzX1uF8toRhIHEyHEgpBF00OHw0RGycrlg8rZ06nNhYHB3aCms3lVFUdYNs21ZGoYdmy+ZjN6SH0GAwjLyTx+Rq6neACyOzecyeFhWfFLhykAjVv0JTBTjGDoQS/vxG/aCweMTHnYAaOmA+EvpuLub/2dEH60fd9M5IW75sCgWD0EWPFAoFAkECCIUUAlCQtOl0u0DVqExDiYEJRDmhVYRDUA1qvd/8ptbOqzkFciqD26UUTErvgBJJj1DGlxArA9jijxZlSQiHooqlTyXKz55kG2bInQy0BCIe95Nr2Y7UqBT12ewmLF99wCitNDnr9yAtJPN4jdJ3gqkTweo+e8j4TQTaIQcZoKYloLB45sebqLHMOqsc6shyKFa4I0p9jxx8lHd83BYJkc8455/D//t//63P7Y489Rn5+PgAej4c77riD6upqTCYTJSUlLF++nH//+9899iNJEpIkYTQaGT9+PJdccgnPPvtsn31LksS//vWvHv9Wv/Ly8jjzzDNZu3YtLS0t2O127rvvvj77uOqqq1i6dCnhcHjE34PeCHFQIBAIEkgw0DNvUPn/fOU+MWqTUBQhoG/BwoYPL6Z8/FsDPjaeMKZmDhrlMHNKzMwaP7DAmGpmD5I7WF1dTUmpPdaAqxKRlUy7dCihEHTR2OkD6OMCHQydXhkr7q+tWMXjOYQkyVRV76O4uJiVK1enlTisOgcjEW8sn2+4WMyT4tyqwWyeeOoLSwCxMpKMdg4WAxAQjcUjJlvFQa3WjEajjM2L3MHMoKHhGY4ffzjOPal/3xSMPdIx9/LLX/4yzz77LL/5zW/Ys2cPL7/8MldeeSWtrT0vZH7hC1+goaGBgwcP8swzzzBjxgw+/elP88UvfnHQ53j00UdpaGjg3Xffpbi4mIsvvpjOzk4efPBB7rnnHrZv3x7b9u9//zsvvPACjz/+eFKmf8RYsUAgECSQYHQkTs0bVP5fjBUnA5Ox/xNto/F9rNaCbvlqKhHs9tK4wpjOoMOv02MMBfn41PQWBgHmVuTz7KYT/eYOSpJExcxFNDc93+N2jQSVMxellTAkgJNRcXC4zsFYIckgY8Vu90EAKivz+MTHbz6FFSYXrdaKJBmQ5QCBQBtm8+BNzb1R3mu7HyxLTK/9UcpH49SxYrMpPQuOhkJMHBTOwRGTDWJxf+h1+fgDTQRDHZjJvteXTTQ2Pseu3d8GoKBgKe3tH6A6CNPhfVOQmciyTCTiHfbjGhqeZe++e1BjgmqmfZ+yssuHtQ+NxpzwY9vnnnuOX/3qV1x00UUATJo0iQULFvTZzmKxYLfbAaioqGDp0qXU1tZy4403ctVVV3H++ef3+xz5+fnY7Xbsdju///3vGT9+PK+++ipf+tKX+MxnPsN1113HBx98QEdHBzfffDM//vGPqampSejrVBHioEAgECSQ3mUkyv/nAxASzsGE0tm5udctSuZgUdE5tLW/Rzj0CuvXD72ddVudgzZJTxlBFhalf2lAd+dgf/lO1uLxNEcsFEkeNJLiGmyTLSyYXTvayxUMguocLLUN73dvqIUkbs8BAHIs6ekYlSQJg6EQv7+RYLDtlJpcnc7tQNeYjcFYlhah+jExKIOdYgajMlYsMgdHRjDYSSjkBMCcwb8P/aHT5+EPNBESzsG0oHs5W3da297l0MH/Qac3MXnypdTW/JC2tnfYsvV6NBozdvvwRJlU0t9rVIlXQCdIHpGIlzffmj3SvbB33/fZu+/7w3rUOcu3o9UO/8LiQNjtdl588UUuv/xycnNzh/XY6667jm984xs8++yzA4qD3TGbzQAEAgEAfvWrXzF79mx+8IMfsHv3bmbNmsVXv/rV4b2IYSDEQYFAIEgg6uhwPHFwJEH7mUqDw8vhFjeTi3MoyzMndN/H6x4HYELlf1FcfC5m88TYle4y+8fJz1vMjh33D7md9W8fHsehNVAW9BDqTP+8pBllNrQaiRaXnwaHj/L8nt/fYDjCT9fsoyM4nguM+wHFNegqrKU8P7EHT4KR0xQTB0/ROTiYOBh1DubkTDmF1Y0OBr3aiHtquYMOxyYAJk9exLWf82C1NuHzN2Iy2hO5zGEhy5HYGKnZnMnOQTVzUIiDI0EVivX6woSfxKYDXTEqYlIi1YRCoV7lbL25CJMpwsrz70SSJAoLz0SnyyMUcuB07STPNndU13sqDP4a4xfQCQRD5cEHH+Saa66hqKiIuXPnsmzZMq688krOPPPMQR+r0WiYNm0aR44cGdJzeTwevvvd76LValm+fDmgZKQ/+uijrFq1ipycHLZt25bUyR/xVyIQCAQJJBDXOaj8/1jLHHzqw2Pc8ex2IrIiSt1/+Ww+laCSD4djM52dW5AkAxMnfjE28tYds7mcZcvm8/LLx6O39N/O6gmEeH5rPXO1imvL0dyRkHUmE5Ney7TSXHY3dLKtztFHHHz4ncPsaugkz1xEQXEn7S1NNEcsvHdSS7s7QEGOIUUrF/QmGI7Q4lKuEtuHKQ7qo5mDwUHGij0eRRy05KSncxBAH2ssHpk4WDv9Y3z1v6HTuY32tncpK7siYWscLoFAM5FIAEnSYjRm7pieUYiDCSFb8wZVusRB4RxMNVqtlry8vAGEM5nCwvHodHoAJElDfv4iWlpeo6P9g4wQBwd/jfEL6ATJQ6Mxc87y7YNv2A2fv5H16y+gZ464hqVLXxnWxT2NJrEmBICzzz6bQ4cOsX79et577z1ef/11fvWrX3HPPfdw1113Dfr4oTS3X3311Wi1WrxeLyUlJTz88MPMmTMndv+5557L0qVLmTdvHhMnJjcLVBSSCAQCQQJRMwcN3cRBwxgUBxsc3pgwCMo463ee3UGDY/g5JPFQ2vXAbr80rjCosnjxDdjtJdFt+29n/c+2Blz+EDqb0gDc2dKRkHUmm7nR0eLtJzp63H6kxc0vXt0HwHc/NoOLL1xFcXExrbZp+EMyT354bLSXKhiAk06lqVivlSiwDE+0HYpzMBIJ4fEcASDHkt7OQYBgYPgua1mW6YiKg/l5p1FYqFzVb2t7N3ELPAXUvEGjsQyNJnOvyYvMwcSQDc3VA6HX5QMQDHWkdB0CJaphxYoVA23BihXn9hAu8vMXAdDR8WGSV5cYBn+N8QvoBMlDkiS0WsuwvnIsVUyv/RFd0pQSE5RjqRrWfob7c7bZbDgcfY+dOjo6yMvryh7X6/WcddZZ3H777axZs4Z7772XH/zgB7HR3/4Ih8Ps37+fyZMnD7jdL37xC7Zs2UJjYyONjY1cd911fbbR6XSj4n4dtjjY3r6BrVu/wNvvnM7ra6tpbl7T4/6TJ19h8+breGvdAl5fW43TuavPPsJhP3v2fp+31i3gzbdms237V/APcrAhyzIHD/2Ct99ZyhtvzmDT5mvxeA4Pd/kCgUCQVLoyBwtjt3U5B8fOmM3hFnefltywLHOk5dRaSLvj89XT3PwyAJUV1w+4rSRJrFy5etB21qc/Uk7gF85STtg6M8A5CPEbi2VZ5jv/3I4/FOHMKUVcuaCCqqoqbr75Zq48RwlR/vN7RwmGezc9C1JFU7emYo1meAe3Or3yOzCQU8fnO44sB9FoTJhMfZ2z6cJInINe7zGCwVYkyUBu7kwKVHGw/V1kWR7k0cnDmwV5g9A1VhwOewiF+nfpCAYm5hw0Z/bvQ3+o70ciczA9qK6ujl4g7f15H8FuL+lTzlaQvxiADseHyHKYdKN3m20w2ElOzg7y8/0M9TUK0pPy8qs484x1nDb/Cc48Y92o5AXX1NSwadOmPrdv2rSJadOm9fu4GTNmEAqF8Pl8A+7/8ccfp729nSuuGHh6wW63M2XKFEpKSoa28CQybHEwHPFgtdZSU3N3/PvDHvLyFzJlym397mP/gR/S0vI6s2f9htPm/x9+/0m2b79pwOc9euxB6uoep7bmByxc+CxarYXNW24gHPYP9yUIBAJB0ggG+i8kCYddRCIDX2XKFiYX5xBP4li3f+QjaXV1f0WWwxTkLyU3d/qg26vCWFVVVdz73z/YyodH2pGA1UsUV1VniyOlgsJQmTM+H4DtJ7rW+/eNdbx3sBWTXsN9n5jdQxC9eG4ZxVYjjZ0+XtrRmIolC+LQ5Di1MhLoKiQJhZz9/s663UoZicVShSSl79DISJyD6kixzTYLjcZIft5paDQmAoEW3O59CV3ncPB5o06xDM4bBNDpcmIZeWK0+NRRfx9M2eocHIMXQ9MZSZJYvKSSvqf88cvZrNYZaLVWQiEnLteeUVvnUKivf5p33zubzZs/y7vvncX6D1bz9juL2bX7G4yveJuhvkZB+mIylVFQsHTUmrJvuukm9u3bxy233MK2bdvYu3cvP//5z3nyySf5xje+AcA555zDH//4RzZu3MiRI0d48cUX+c53vsOKFSt6FN14PB4aGxupq6tj/fr13H777Xz5y1/mpptuGtTdmk4M+wixuOgcqqu/wbiSC+LeX1b2Caomf5XCgvghjaGQk/r6vzN16p0UFp6BzTabGdN/gsOxCYejd/OkgizLHD/+KJMm3UxJyUpyrbXMnPFTAoEmmlvWxH2MQCAQpIKYc9DQJQ7qdDaISmVjJYenMMdArqnL/q4emv3+zYP88rV9pyy8hcNeTtT/DYDKyutHuEolF/EzD60HQAY2tvpAglAgiNc5cpdjsqmx52LQaujwBDne5qXZ6edH/9kNwNfOn8bEopwe2xt1Wj67VMl9fPRd4b5PF9SmYnve8PIGQX1/AVkOEInEv4rdVUaS3g4Kwwicg45ORRzMy1MKhzQaY2xELpWjxdk0RipGi0eOz1cPZMfvQzz00ZiDwdrTBaNHbc0CrNYWupx1EazWlrjlbBqNjvzoe2h7x4bRW+Qg+HwN7N5zJ12vQcbt3o8sB8nJmcqsmecP+TUKBCpVVVWsW7eOPXv2cP7557NkyRKefvpp/v73v7N69WoALrjgAh5//HFWrVrF9OnT+epXv8oFF1zA008/3WNfDz30EGVlZVRXV3P55Zeza9cunnrqKX73u9/FtolElN/PdC7HGfWVdXZuR5aDPcTDnJxqTMZyHI7N5OXN7/MYn+84gUBzj8fodLnYbPNwODZjL72kz2P8fj9+f5er0OVK/+ZJgUCQ+QRimYNdY8WSpEWvzycYbCcYbMdoTL1tPNn8a/MJOn0hSqxGfnbVHKaW5vLsphP8zyt7+eVr+/EFI9y+umbYV3QbGv9JKOTAbJpAcfG5I1pjg8PLt5/dTneZ8s5/7+Z2mxWvw0VncwcWW06/j08HDDoN08ty2VrnYNuJDl7e0YjDG2RmuY3/WhY/4+T/s3fe8W3d9fp/H23ZsmTLezt2hrO3kyZp2rRNuksppYVSRoBL4RYoFO6lpXDvj1kuUC6X3RZoaemETjrTmTZ77x3HW97W3tL5/XEk2Y6XbMu27Jz36+VXG+no6CsP6ZznPJ/n+dSKUv7w3ln211nZX9fF4pKMfreTGT9a7NLxynCbigGUylQEQYkohggEbSiVfQO5XW7JOZiaktzioFojOQf9o3AORsVBALN5DZ2dH9LZtYWSks8nZpHDxBvJHJwKTjGNJguPp04WB0dB95h58o73j4buQhLrhK5Dphu9voBZlR3s3RPNZx64nA0gPX0FHZ0fYLXuoqS4/5zm8cbtqaHv2DDMnv1LCvI/CoDN9tdeBXTl5WfQaNLHa4kyk5Tly5ezadPAZrN7772Xe++9d9B9vP/++3E9V2trKyCNEUeJ1ywR73OMlnGfLfH72xEETaxdL4pGkzXgmIIvcvv5ofODPeb+++/HZDLFvqqqqhKwehkZGZnB6c4cTO91e/cB89QftQmFRR7cXA3AHZeUs3ZmDvkmPXeum873r5sDwJ82n+UH/zo2LAehKIapr38UgKLizyAIo2ufO1hv5fynD4kiyklWShLNHfzlppO8csiCUiHwPx9bgErZ/0d8dpqWGxZJJwWPbK0Zr2XKDEI0c3Ak4qAgCN2lJAM4k92uaFNx8paRQPdFlWixU7xII3AnATAZe4uDIOVlh8MTE0PjiWTMTfaxYujOHfTJY8UjIhh0xIqDJnsG5UDEk4EqM/5kZLREnHWDl7NJ20ZyB627EcXkyCb2+/q7IKHAnLEy9q+eBXRpaVbSjKeorv71+CxQRmYQRFGkpqaGH//4x+Tm5jJv3ryJXtKAJG/wzCi59957sdlssa9du5LHGi0jIzM1CYU8sbG+npmD0KPB7wK4mr7paDPV7S5MejWfqCrpdd8X1kzjRzdKH4qPbqvhvhePED6/uWQAOju34HafRak0UJB/86jW6AuG+OP7Z/vcrhQEMvMkgcI2SUpJvH7p4D1a9rKmIpN5habBHsLG1WUAvHbYkrAGaZmRExUH80YgDkL3aHEgaO9znyiKuNySWJ/0zsGIOOj3D2+s2GY/CIjodSW9nNmG1Jmo1ZmEwx5stgMJXGl8hMNBfD5pjFSnnwrOQel7K2cOjoyoUKxWZ6BSGSZ4NWODnDmYfIRCPrzeOsrK9pOZmTFoORtAWto8FAo9gUAXLtfpcVxp/4TDfs7V/Cbyr+i6pTbbntl0PQvo1q27GEGAuvpHsNsPjfuaZWR6YrPZmDVrFlu2bOHpp59GpxvZsd54MO5jxRpNFqLoJxCw93IP+v3tsYOO89HGDkba0Wpzej3GYOg/jF6r1aLVdgd7GwxT80NYRkYmeYgeDAuCGqWy93tOtIVzqh8wi6LIHzdLottnLyrFoO37MfPplaVoVQq+89whntxZhy8Q5uc3L0A5REtrfcOjABTk34xKlTaqNX7vhSMcbLChVSkIhMKERUkY/OlN88itr6aW5G8sttls1LV28t6Bk2T2+NYdPevi8OkcSnMze4Ul92RugYkV08zsPNfJ49tr+c+rKsdp1cPDZrPhdg+c/Ziamjrga5xMRDMHc0ZQSAKgVpvwePp3Dvp8zYRCTgRBSUpK2WiWOWZEf87BYBCnU3qvbGg4h1IpHUAP9XPub6QYQBAUmM2raWl5mc7OLWRkrBijV9A/Pl8zohhCEDRoNTlDPyDJ0UYzB32yODgSustIpqZrELozB4NBqSRLLoOYeNyec0CYrGw3N930tSF/JgqFBpNpMV1d27Bad2MwzBqfhQ5AXd1fcbur0WiyWLzo7wQCHej1pf2WVkQL6ACOHP2QlpaXOX7iXpYvexGFQj3eS5eRASA9Pb1X3F0yM+7ioNE4H0FQ09W1jZwcKejR5arG62vqN28QQKcrRqPJprNrG2lp0khaMOjAbj9AYeFt47Z2GRkZmcHoHinO6HPwdaE4B7ef7eBQgw2dWsFnV5UNuN0ty4rRqhTc/exBntvXgC8Y4n9vXYR6gFFYl+ssHR2bAYGios+Mao1/2XKOf+xtQCHAg59eyqy8NGra3ZRlpZBv0nPUI4002tuTdywqGAzy8MMP43K5uEELDoeDPXv2sGzZMtLS0nj+yeMYDAbuuuuuAYOPP79mGjvPdfLUrjq+dtkM9JrRjWknmp6vcSCGeo2ThWhb8Widg8F+nIMutyTW6/UlKBSaEa5w7Oj7c74OgAP7H4ttM9TPeSBxEMCcEREHu7ZRwbcSu/gh8PbIl0vmluh40fS4WC8zfLwR5+BUyJ8ciGiEiigGCYVcU9YhOZmIuv9SU6fHLdZmpFfR1bWNLutOiopuH8vlDYrX28S5mt8BML3iHgyGGcCMuB47c8b36Oz8EKfzBHV1D1NW9u9juFIZmanBsI9UgkEXDscxHI5jAHg8DTgcx2LtW4GAFYfjWOyNyO2uxuE4hi9ylVGlSqOg4OOcPv0TOru2Y7cf5vjx/8RkXNxLHNy+Yz2tbW8Ckk24uHgjNTW/p63tbZzOkxw99m00mlyyszaM7jsgIyMjkyD8EXFQo+5b8NCdOTj8oP3JRNQ1eOuyYjINg7ugPrKokN/ftgS1UuCVQxb+/Yl9+IKhfretb/gbAFlZl5OSUjri9b13spWfvia1+d537RwunSXlIV5UkUm+SSpyMGWnA8ntHFQqlZhM3aPDDoeDzZs343A4YrcZjUaUyoEFv+UFOuakh1B4rDy9+SAWi6XXl93eV2gaT85/jf0x1GucDDh9QVx+6fd+JJmDMHhDqNsllZGkJOlI8Wh/zqIYwmbbDwwgDpqlMju7/dC456B5Ik6xqZA3CKDRypmDoyEqDuqnsHNQodDFLkLIuYPJgSvyGZA6jMzZ9HTJZW217hpWNnSiOXX6J4TDHkymZeTl3Tisx2o0mcyY8T0AztX8FperegxWKBNlIn9PZIbHYD+rYV9qdzgOs2//p2L/Pn3mJwDk593EnDm/oK39bY4f/07s/iNH7wJgWtnXKS+X/n/G9O8BCg4fvpNw2E9m5sXMmvnDXs/jdlcTDHaf5JSWfIlQyM2Jk/cRDNoxmZaxeNEjKJUjG8GRkZGRSTSBSMPm+XmDPW+bys7Bww02PjzdjlIh8MWLy+N6zFXz8njo08u44+97eetYC196bC8PfnopOnW3EBAIWLFYngcYVXPemVYHX39yP2ERbllWxOcjuXvnY8xKB8DRYUMMiwhDjDtPBIIgsG7dOp544okBt1m3bt2ALoFgMMhf//JnVvhcoIO6bcd5aFvvbSbalTfa1zhZaI64BtO0KlL7GcOPB1UkpiUYGNg5OJwTw/FktD9nl+sMoZATpTIVg2Fmn/t1unxSUipwu8/S1bWDnJwrE7b2ofB4peZM/RRximnlzMFR0d1UPHXFQUEQUKsy8PlbCAS70DN1X+tkoVscjM9xB2A0LkSh0OD3t+Px1JCSMm2sljcgHR0f0Nb2BoKgpHLWD0f0WZ+X+xFaWl6mo2Mzx0/cy9IlT00JF3cyoVZL49putxu9Xj/Bq5GJh2hcT/Rn15NhH4VmZKzk8sv6hrhHKci/ecigeKVSS+WsH1A56wcDbnP+cwiCQEX5N6ko/+bwFiwjIyMzTsTGiiP5gj2JiYNB63guaVz5U8Q1eMPCAorNKXE/bl1lDn/97HK++NhuNp9q4/OP7ubPn11Gikb6iGpqeoZw2IPBMDt2NXs4WGwejjTY+MG/juLwBVlelsGPbpw34IGmwWxEUAiEgiFcVgcGc3Jm2lVUVJCbk0tLS0vvO0TIzc2lomJgp1jUrTXYyG4yuPIqKirIzs2jpbmZnhptWITcvLxBX+NkoTXaVGwaeUC1ahDnoCvSVJzMZSQVFRXk5WXT3NxC76GWMHl5g/8uW217AelkdqAGc7N5FW73WTq7to6rONidMTc1xEFNNHPQ3yHnyY2A2Jj5FCinGQyV2oTP3zJge7rM+BIbK06J/wKRUqnFaFyE1bqLrq6d4y4OhsM+Tp6SdIKios+OOPdQEARmzfwRO3ddhc22h5raBzGZFpGiL+s3s1Bm+CiVStLT02ltbQUgJSVF/mxIUkRRxO1209raSnp6er/H+JM7pEdGRkYmieiZOXg+U73B71y7i9eOWAC445L4XIM9WTMji8c+v4KNj+xi29kOPvOXXTyycTmpGoH6hscBKC763LAPOJ7ZXce9zx8mWoicrlfzx9uXolUNLHoplArSzEbs7TZs7dakFQcFQWBh5Xw2tZ4nDgqwqHL+oN+rkbi1HJ12rC2dpOeaSRun74kgCBTNXU5by7963a4QIKVs4ZQ4AI2WkeSOsIwEQB3LHOxPHBz+SNl4IwgCVSuKefml8x1pClasKBn05zxY3mAUc8YaGhoep7NzSyKWGzdRp5h+iohBGk0mAKIYIBi0xeIyZOLD44mOFU+N34eB6I5RsU7oOmSkpl+PpwaAVEP8zkGA9PQqrNZdWK27KCz8xBisbmDq6v6Cx1ODRpNN+bSvj2pfen0hFeXf4tTpH1Fd/cvIrVLbcUHBLaNfrAx5eXkAMYFQJrlJT0+P/czORxYHZWRkZBKEPyYOpve5r/tgeWqKgw99cBZRhMsrc6jMG5lwVDXNzONfXMFn/7qLPbVd3P6XXfz6hk58PgtqtZnc3OuHtT+LzdNLGASwewMEQuEhH2vMTsfebsPeZqVwZslwX8q4MWfuHN7Z9Hav25Q+mLNg3pCPHY4r78jm/bz7yGsxt9BlG69h3iX9l4glmqXzZrHp7XfIFNwoBGl9HWIKz27rorSslXWVk7sFtlscHIVzUB1pCD1vrDgQsBIIdACQkjJ80X48qZy1lHcNmyJtxQogjMHQyaxZA4t+0C0Opg8iDmZkrEAQlHg8tXg8DeMm1nU7xaZG5qBCoUWlMhEM2vD522RxcBgEg06CkckBna5gYhczxsQyUGVxcMJxu2sQxRBKpQGtJndYj81Ir6IG6LLuHFOncLStPorX28rhI08gimbKp30Dt1tkkLL6uMjKWs+p0z/qcUuY4yfuw2y+WHYQJgBBEMjPzycnJ4dAIDDRy5EZBLVaPehUkCwOysjIyCSIaNlI/87B9Mg21nFc0fjQYvfy3F7JEfGVS0c3urikJIOn/m0ln/7LTg7WW/nwwO8oTIWiwk8NO2P2XLurlzAIkrBU0+6OlY8MhDE7HY7XJnVjMYDldAO6rt75ObpOBY42K8bMwUseBnPlFc9dHjsRaDxZxzt/fTV2vyiKvPvoa5TOrxgXB2Gz3ce+QCFXak/H1tekK8dlDfP5v+3m2xtm8e+XVkxaF2Gr3QeMThwcqJAk6hrUavOSvjVUry9gzZrFvPFGfeQWBfPmh9DrBxZSpDysWgCMxoHFapUqDaNxITbbPjq7tlKovzWRS++XcNiHzye5eqeSU0yjySYYtOH3tcEwMswudKJlJCqVCZUqbYJXM7ZcCDEqkwWXuztvcLifkSbTYgRBhc/XjNfbMCbFSn3b6qNIhaMH9p/EYGgcdf6xx1vXz61hPJ5aWRxMIEqlcsLjaGRGh5zIKSMjI5MgosKfRt1f5qA5so0NURzauTZZsNg8/OiVY/hDYZaXZbCsrO9rHy7zCk08/aWLWJRnoTD1DKGwEq3pY8Pej9MX7HObUhAoyxo6DzFaSpLMjcXhcJhd/9qCygOpWuk16ZQ6VB5448GX8Lo8Q+5j2fxK2sMpMRE1LEJ7OIWl8yvpau5k08Mv88/7H+vzODEs8sGTb9HeMPYjJI9tr6UpbCSglQSw7Nw8nvrWjXxqRQmiCL948yRfe2o/1W1Otp1tx2Ib+nUnE9FCkrzROAdjY8W9nYOxMpJhZE1NJFVVG8nLk0ovDIZ2NJqtBPopWYkSbSlOTZ2BWj24UG3OWANAZ+fWBK12cLzeJkBEodDH3v+nAtpY7mD7kNt6vRY6u7bj9VrGellJT3dT8dQRigei28mc3BfXLgRGEyuhVKZgTJsPSO7BsWC0bfXxkqIvo6/soUCvLx3VfmVkphqyOCgjIyOTIAbPHIwe/IT7nMCPNzabDYvFMuCX3R7f+p7ZXcfqn73LK4ekE7+5BYlzkc3KS+OetQcB2Nm8hNsfOUuTNX7Rp9Xh5fsvHul1m1IQ+OlN84Z0DQKYJoE4eGb3CbosHehS9Xz05pu4+uqrufkTN5ORm4mz0847kTHgwShIT2HRijUoQ6DygDIEC2Yv5vAzm3j8nj9yfMshGGAXZ3Yf54n7HuLp//dXDr27F5/Lm/DX2O708dphCyCwbt3lZGVlcdWG9WjVSn7y0fn8+MZ5qBQCrxyycNkDm7nt4Z2s/tm7PLO7P5dActLiGP1YsXqAsWJ3pIwkJTV5y0h6IggC69dfRVZWFpWVrYTDThoaHx9w+3jyBqOYzasB6OraPi4XaDye7rzByepq7Q+NNr7G4qamZ9m6bS3799/O1m1raWp6djyWl7TEmor1U7+9V61KB6bmpMRkI1ZGMsLM2fQMqQTO2rUrYWvqSTT/eDAGa6uPF50un9mVPwGi+xGYXfkT2TUoI3Me8lixjIyMTIIYTBxUKDQolQZCISeBQNeEZTUNPMLRjcFgGHKEo788v8e313LHJRVxiW9D4fO14LZtAuBg55Wca3dxy4PbeerfVg7ZhOwPhvn3v++jxe5jeo6BP92+lDaHj7KslLjXZsxOB8Debh3NyxgzxLDIrpelcoVF66tYufZiLl57MQAziyt49kePcmb3cY59eJC5axcNuq8VKTrerlMiIOmA7rodnIjcN23RDKo+cjHt9S28++hriGERQSGw4PJlODvtnDtwmpZzTbSca+KDJ99i+rJK5q5dSFFlGYJi9ILIM7vrCYREFhanc/mK+Vy+Yn6v+29fWUpmqoavPLEvdltYhO8+f4S1M7MT8rs41rTYRl9IEnUO9hkrjjoHk7iM5HzKy8u58847aW4u5uixPdTXP0pJ8UaUyr5/99ZhiING40KUylQCgU4czmMY04bO5RwNHq80Hq3XTY28wSgajSQO+gYRB71eC8dP3AdERVg532uqNVcPRvRihTxWPPGMtpAqI72K2to/0WUdG3EQICfHT0ZGmK4uGG5b/XAoKLgFQVBz7Pi30Wrz5DISGZl+kMVBGRkZmQQgimKPzMH+R8jU6oyYOAjTxnF13URHOAYTB+MZ4egvzy8UZ55fPDQ0/B1RDJJuWs7/feYTfOrhHdR0uLnlwe088cUVlGcPnJ/2g38dZU9tF2k6FQ99einl2Qam5wwvb82YJZ3cODrthENhFMrkMtpX7z9FR0MrGp2GRRuW97ovd1oBF33sUj587h3efvp1VBna2Jh0T1JTUxGC8M6jr/W4li5ROq+cVR9fR06ZdCKfV15A6fwKbC2dmHq0FbvtLk5sO8yxDw7S0djGye1HOLn9CMYsE3MuXsjsixcOmX04EKGwyJM7JQfgZ1YOPPpjSlH3fawoJux3cSwJh0VaHVLmYJ5pNGPFpsj+vITDPhQKSWh0uaJjxZPDOdiTnJxrqK7+XzzeOhqbnqGkeGOv+8NhPw7HIQDSTUuH3J9CoSYjfQXtHe/S1bl1zMXBmBg0RZqKo3SPFQ8sDro9NXQLg1Eu7Hwvacx86peRQI/MQdk5OKGEwwHc7nMApKaMLB9UuvCiwOutx+ttStjvr9/fTnPzy1ian8fpPE5BYQFdXVect9XQbfXDJTt7A8IJJT6fBY+nEf0F4OSVkRkOsjgoIyOTNJzfWHY+qampGEdbWTZGhEJuwmE/ABpNX+cgSKUkXm/9hB4wR0c4nnjiiQG3iWeEY1pWaqw5Nkq8eX5DEQp5aWx6CoDi4o3kpOt55o6LuO3hHZxtc3HrQzt48osrmJHbN9T96V11PLGzDkGA//vEokFFxMFITU9DqVISCoZwdtpjTsJkQBRFdr70IQAL1y9Hl9pXAFu4fjlv7HmXEH6efr7/cb4UfQrTxHzoZ/R42XWrYsJglDSzsU8BSYoxlSVXrWTxlStoqW7i6IcHObXjKPZ2Gzte+IAdL35AyZxpzFm7iIols1Bpeh92DPY3v6O6gy6rjfSUVK5dMLCgMJa/i2NNh8tPMCwiCJBlGI1z0AAR72cgYEerzSYU8sbaclMnyVhxTxQKFaWlX+LEye9RV/dnigo/hUKhid3vcBwjHPajVmeg15fFtU+zeTXtHe/S2bmV0tI7xmjlEtEx0qmWMRd1Dvr9HQNuE3Wy9ubCzveaqr8P/RHNHAzImYMTisdThygGUCpTRizKq1RppKXNxeE4jNW6m7y8j4x4PeGwj7b2d2m2PE9H52ZEMQSAIKgpL59BbU37sNvqh4tKlUpa2gLs9v1YrTvQ64efZy0jM5WRxUEZGZmkIFHjrhNFdKRYodCiUPTvVoqOEvsjDsOJoqKiguzcPFqam+k5+RkWITcvL64RjnyTnk+tKOHxHZKzazh5fkPR3PISgUAXOl0R2dnSleRco45n7riI2/+8kxPNDm59aAePf6GKuQXdrrR9dV3810tHAbj7iplcVpk74jUICoG0TBPWlk5s7dakEgdrDp6hrbYZtVbN4itX9LuNSq0iKyeLlpaWbjvgefisbhoazyGcv4EgYModXoGCIAjkVRSSV1HI2k+u5+yeExz98AANx2upO3qOuqPn0KbomHXRPOauXUhOWX5cf/PX61SYlnwEnXpgJ2u+Sc/9N83vNeZ+94aZSe8aBKnpGyRhUD0Kd6ogKFCpjASDNoJBG1ptNm53NSCiUqWjVmcmaMXjS37+TVSf+w0+XzPNzS/2GgPrmTcYr7MkI5I7aLXtJhTyolSO3K05FF7v1HQOdouDAzsHO9rfO+8WxQWf7xUtJLkgxoojmYNBeax4QomNFKdMRxBG/vmSkV6Fw3GYLuvOYYuDoihitx/E0vw8LS2vEOwRfWE0LiQ/7yZyc69Frc4g4P9rr7b6NWsWD9pWP1IyMlZgt++nq2sn+fmyOCgj05PkmpOSkZG5YLDYPL2aRcersWys6B4pzhjwRDVZRm0EQaBg9jLOj4RTCFA8d3ncJ9rqyM/iitk5bLlnHbcuLxn12kRRpL7+UQCKij6NIHT/vLMMWp7+0koWFJnodPn55EM7OFBvBaQCkq/8fS/+UJgr5+Zy57rRZ6zFcgeTqJREFLuzBhdcvgx9Wv/uOEEQuGL9FQMKgwC6TgXTFs5g+Q1rYvmAYcC7dHEfh+BwUGvVVK6ez8fu+TSf+8WdVH1kDQazEZ/by6F39vDUf/+FJ77/MIff2Uuaoa/7s/u1glvU8KmVQ4/g37q8hK33XMa8SCmOKgF5h+NBVBwcTVNxFLUqmvMlnXx1Z01VTNpCDIVCS0nJFwCoqX0w5jSBHuKgMX5nSWrKdLSaXMJhPzbb3sQu9jw8nqmaOSiNFft8/YuD4XAw5vyWULLqovcv6HyvUMgdO0bQ6ab+GGMsczBgHbIUS2bsGG0ZSZRYKYl1d9yP8Xot1NT8kR07r2TP3o/R2PhE5MJVHqWlX2blijdZvux5iopujx0b92yrz8vLpqpq42BPMWIy0lcC0GXdMSb7l5GZzCSf/UZGRmbK88zuupjLRyHA/TfN56YlRSyqWk3Ti/8Y8HHLLroYUYRkPM8drIwkSrKIg6Io8la9iBBOIVNwx0YyO8UUls6vjHs/u2ukk53rFxYkzKXV1bUNl+sUSmUKBfl9TybTUzT8/Ysr2PjIbvbWdnH7n3dy/03z+O27Z2IFJA/csghFAsShZCwlqTt6juazjag0KhZf1b9rMEpFRQW5Obl93YMi6AQNt33rdgpmSMLF/HVL+Of7x3lgexNVadkJW68pJ4OLbrqUFTeupf7oOY59eJCze0/SXtfCB0++RcggQE7/jxUECObMoTQrNa7nyjfpubWqhCMvHuGNo83ccUnyj9I220dfRhJFpTaCt7uxOFZGMgnzBntSWPBJamr+gMdTQ2vrG+TmXosoisNqKo4iCAJm82oszc/T2bkl1mCcaHqLQVPLKRZtKw4EOgmHgygUvU8l2tvfwedrRq02Eww6EMXApBWnE4Un4hpUqYyo1ckZjZJIosc6ohgkFHJFYg9kxhuXe3RlJFHSTcsAAbe7Gp+vDa22/2OEUMhNa9smmi3P09m1DaniDBQKHTnZV5KXfxPmjIt6XfTtSbSt/vXXX2f9+qvG7H1Dcpur8Hob8Xga0E8xd7eMzGiQxUEZGZlx5fyW27AI33nuMN957jAgcqNOS4bg4fzGsi5Rz0f/fgaVohpzqoZMg5Ysg4asyH+lf/e8TYs5VYNGNbBB2mLzcK7dxbSs1FGLW1HBLz5xsGtUzzVa/u+d07x6pIVCRSEbtNKVZYUAi6rWUJAeX06b0xfkaJPkUKqaNrwR1MGIugbz8z824EmUUafmsc9X8YW/7WZHdSdfe+pA7L4bFxVg0Cbmoy1aSpIszkFRFNkVyRqcd+kSUk2Dn3AJgsDCyvlsam057w64ZO3amDAIUp7g7EXTce5q52ybM+FrVygUlM6voHR+BV6nh5Pbj3D0w4O01lpQGiGkpY+A2RnWc/O6oYsmerJhTi7ff/EI++usNNu8oyr5GA+6m4oT5xwMBiVx0O2afE3F/aFSpVJc/DnOnfs/amr/SE7ONXi9Tfj8LQiCCqNx/tA76UFGVBzs2prQdfbMz3S7a3E6zSiVqbS3uwBXUmfmDgeNOoNoJlgg0IlW21vdb2h4DIDCgltpaX0Nj6cWj6fugijiGIjupuKp7xoESQxSKDSEw34CAZssDk4Q3e7xkZWRRFGrTRgMlTidx7Fad5Gbe23sPlEMY7XuxtL8PK2trxMKdceEpKdXkZ93Ezk5V6FSDTwl0JNoW/1YolKlYjQuwGbbR1fXDvT6m8f0+WRkJhOyOCgjIzOu9NdyG0WpUGBPU5LhPF/QU9CeogavQDDS7hlt+BwKk15NZkQwzDZoY/9/rt3Ji/ubEOl2L45mLNbfY6x4IKKZgxMpDj67u55fvy0Jgl+5YRVNO7vwWNuxYuD7QzjRerKvtouwCMVmfcJcg273Odo73gWguOizg26bqlVx/0cXsO6B93vd/r9vneZjS4sSsiZTxDlomyhxsL4e2rpH91rPNRHYvpM8pYLlBTpoaICiwa94z10wj3feepuQhmhfBUo/zFnQt6m1IlLeUt/pxhsIDZrzNxp0Bj0L1y9n4frltNY289Y/X+eMs673RgJ0kcels4aXG5lr1LGkJJ19dVY2HWvmMxeVJW7hY0CLXXofS4Q4GC2BiI0VR1wjKZOwjOR8ios+Q13dwzidx+noeJ9g0AFAmmEOSuXw/tbNGZJb0OE4ht/fiUYz+osb/ednXgfA3j0PAcmdmTscBEGJRpOJ39+G39/WSxx0uk5HRvUUFBbeht1+OCIONpAx8EfjlKc7b/DCEAcFQUClSsfvb43kDl4YrzuZEMUQbnfiLhClp1fhdB6nueVlTKYlhMN+mptfwNL8QixfFUCvKyEv/6Pk592IXj/6qJmxIiN9hSQOWndQUCCLgzIyUSb3EYqMjMykY1pWalSjiKEQ4NWvX8zMnBR27n2S7R9m9GosSzV08pNPf5p8cxmdLj/tTh/tTh8dzt7/39bjtg6Xn1BYxOYJYPMEqG4buPQgLMJ3nz/C2pnZIxaVooKfRj3wiWa3OGgd0XOMlvdPtnLvC4cB+Oq66dy+sowT5g089MTz7AgUUNPhjrvdd9c5SQxdXpZA12DD3wDIzFxHSsrQOXMWu6fPbSFRpKbdnRBx0JiVDoCjfQIaF30+WL4cWrpdf7nAbdF/vPx7yMuDmhrQDjySasw0sXL5SrYeimTrCLBy+UqMmX3zPbMMGow6FXZvkJoOF5V5Y+9yyinN4/rP3cRvHvh1LwFT4YOVaxahHMF4+FXz8thXZ+XNo8kvDjYnMHNQFXHaBgM2wuEgbncNMPnHikF670w3fYLauhc5eOhRUlKm4XSaSU1ZjMViAeJvs9dqs0lNnYnLdYquru29XDAjJZqZO1i5TjJn5g4XjSYbv78Nn7+Nnn6gxoYnAMjOvgKdrkAqY+kCj7e+/x1dIFxITcVR1GpJHJzoGJULFY+njnDYj0KhS4goLYaDALS3v017+9u97lMqDeTmXENe/k2km5ZNihiB9IyVUPtHrF07EUVxUqxZRmY8kMVBGRmZcUWtVKBUSA5A6G65rcxL4+Sp/8bj3E5JWRHHjlwWeYSCkrJjFJpzUKkU5Jl0cY0KhiPCoCQe9hYRjzbZeO9k7zD10YpK8WQORoXDiXAOHmm0cecT+wiFRW5aXMi3NswEoHLmDJoK12Kp7mTr2Y74xcFI3mBVgsTBQMCOxfIcACXF8YVQT8tKjeUlRlEKAmVZ8Y1GD0U0c9BpdRAMBFGpx/EjU6OBkhLJORgO971foYDiYmm7Ibj8xg2caT5HS2sLuTm5XH7jhn63EwSBihwD++usnG0dH3HQZrPh9rtZMGc++88ejiwE6gJmPj47HbvdPuxRzCvn5vHT106wo7qTLpefjNShv0cTRbSQJDcB48/dhSR2vN56RDGQsBPDiSYYDPLWW2rc7ut63Hod0mWm4TvzzOY1uFyn6OzckhBxUBAE1q1bxxNPPDHgNuvWrZsyJ6BaTRZOwO9rj90WDDqwND8PQFHh7UB3GUt0rPZCJeYcvICyzSb6YuiFTndTccWAGX/x4vVazisZkkhPr6Kw4JNkZ68ftoN7okk3LUEQ1Hh9TXi99UntcpSRGU/ktmIZGZlx5ZGt5wiGRWbnpfHUv62ItdzW1j5IY+MTgMDaNfeQmZ0JQFqaHXN6DXV1fxnW8ygUAhmpGmbkpnFRRSbXLyxg4+ppfPvKWfz0pvl9mnpHKyoF/BFxUBPPWLF1xM8zXCw2Dy/tb+Qzf92Fyx9i9fRMfvaxBb1OUldXSO2T28+2D7SbXviCoVhL8PIE5Q1aLP8gFHKTmjqDjIxVcT0m36Tn/pvmo4y8lqjQnKgxZ31aCiqNGkRwdIyze1AQ4Ec/6l8YBOn2H/0ornYeQRDYcOUGsrKy2HDlhkEFiuho8VjkDp5PdBTzoYcekoTByEtVeqFM6OSZxx/h4YcfJhgMDmu/pZmpzM43EgqLvH28ZegHTCAtiSwkiWYOBmyxE8OUlHIEYfIf6imVStLTM+jtOe/NcJx50SKSzq6tCWtTraioiDRtnv83GyYvL5uKisnv4Iyi0UiFBH5/90U2S/OLhEIuUlIqYu/h0aD/C905GBUH9VNAqI+X89vTZcaX7rzB0Y8Uuz019H1fg/Jpd5GXd8OkEwYBlMoUjMYFAHR17Zzg1cjIJA+T/4hRRkZm0uDwBnhsey0Ad10xk4sqssg36bFYXuBs9S8AmDnje+TmXs01V11DVlYWl1y6HEGAuvo/4/PHJ14NRVRUiiIIjFpUii9zsLuQJFEnpIPxzO46Vv/sXe565gCdLj95Ri1/vH1pn5KWVdMlIXb72Q7CAwVC9uBwgw1/MEyWQUN5nE2ygxEOB2MjxcXFG4flrrl1eQlb7lnHU/+2MiY0JwpBECa2lGTDBkKLFxM+7/sRFgRCixfDhv4dgP0RDfkuLy8fdLvxFAejo5gxFCCEQNelQOuQfkdHOop51dw8AN482pyQtY4F3kCILncASPBYcdCOK1ZGMjUEqagzr3drTW+G48zLSK+SXCPeRjye2oStsWpFMX0PrRWsWFEyZVyD0N1Y7I98JouiSEPD3wEoKro99lp1etk5COC5wApJAFSRi6FB2Tk4ISSqjAQgRV9Gf+9ren3pqPc9kWRkrASgq2vHBK9ERiZ5kMVBGRmZceOJnXU4vEEqslPZMEcqGujs3MrxE/cAUFLyRYqLPwd0ixlLFt+K0biQUMhNzbnfJWwtty4v4VMrJSHpIwsLRi0qxZc5KImDohjo1eg2FpzfCg3Q6vDh8vV1YS0oSidVo6TLHeB4s33IfUdHipeVmhNywtve/g5ebyNqdQZ5uR8Z9uPzTXouqshMmGOwJ9HRYnu7NeH7HhJBoOPLd6E4T0hWiCKdX7krLtfgcKnIlsTe8RAHuwWfHreFQe0RUHlAERj5KOaV86T3lw9Ot+Ps53c+GWiLlCppVApMevWo99dzrDhaRjIV8gajJNKZp1SmYDItAaTPoERROWspBkN7jzWGMRjamTVrScKeIxnQaCS3uS/iHOzq2o7bfQalMpX8vI/Gtotm7Pn8LYRC8ZWITTVCIQ+BQAcAugsscxDkseKJwuWWiucS4RzU6fKZXfkTumUDBbMrf4JOlz/qfU8kGelSCV+Xdce4XLCXkZkMyOKgjMwEYLF52Ha2HYutb6HCVMUbCPGXLecA+PIlFfj9zTQ2PsPBQ19GFIPk5lzH9Irv9HmcIAhUVPwHAI1NT+F2J8blAbAmMk57unX0Qkh35mD6gNsolXoUCm1ke+uon3MwXjnU1KcVOixCTbu7z7ZqpYKqyHjwtjMdQ+57d7SMJEEjxfUNjwJQWPAJlMrRO6gSSXdj8cSMRjUUz6Q5szDmHgwLAs2ZhehuunFMnq8iJ+IcbHXF5SId9fNVVJCdmxf7XQ2rIaAXERBID6eNeBRzVm4aZZkp+INh3j/ZmsAVJ46eZSSJENlV6shYcdCGO+IcTEnAiWGykGhnnjky+trZlThxUK8v4KJVM+l5Er1mzWL0+oKEPUcyEBUHo87BhkbJNZiX91FUqu6KErXajFIpxXVER2svNKKvW6k0xBrFLwTUqnRAFgcnAlEM93CPJ+YzoKDgFlav+oAli59g9aoPKCi4JSH7nUhMpiUIggafrzlhDnIZmcmOLA7KyIwz0VHP2x7eyeqfvcszu+smeknjwj/3NtDm8FFg0rEidxtbt63lxMnvEg670eunMWfOzwfMxjJnXESmeS2iGKS6+lcJW9OiknQATjQ78PhDI96PKIpxFZL0vD8QGUNONL5giPtfO85PXj3R577BchVXT5dO9rYOkTsYCovsqZFeayLKSOyOI1ituxAEFYVFt496f4mmu7HYOu7P7ff62ffGTrYvujzmHlSIIt7v3EtaP23DiaDEnIJaKeAJhGLi1VgiCAJFc5f3ygD1p0mvVegKIY5QoBQEgSvnRUeLkzN3sNmWuLxBAHVEeAgErLjc1cDUcg5CYp15ZvMaQHK9ieLI3//7rnF5ZI2Ql5dNVVV8BUuTCW2PzEGvtynWXlpU+Kle2wmCEHPLeS/Q3MFYU7G+aEqNlg+FWn1hZQ56vRY6u7bj9Vomeil4vQ2Ew14UCg26SClQItDp8snIWDnpHYNRlEo9JuNCALqscu6gjAzI4qCMzLhy/qhnWITvPn9kyjsIg6EwD34gXcX88sVpnD79PXqOhnk8tfj9g4tlUfdgS+sr2B1HErKuPKOOnDQtobDI0aaRH8CGQk5EURpdHFocTAfG5mr6mVYHH/39Nh78QBIGqqZlxESXoco6LqqQcgd3neskEBqgBAM40WzH4QuSqlEyOz9twO3ipb7+UQBycq5Bp80b9f4Shc1mw2KxENSECWpEWtpasVgssS+7fejx69Gy99VtuKxObAuXEVy0GIDQ4sWUffvfx+w51UoFpZnjN1oMoEnPoy2cEntf9KWIhBQQcvuoOXRmxPuN5g6+e7wFbyBx4k+i6C4jSYxbNupK8vmaCYWcCIKSlJSyhOw7WdDrC1izZjGJcOYZjfNRqdIIBu0J+0wB8HhrKSvbj8HgZ/36q6akINSzkKSx8SlEMUR6+goMhpl9ttVHcgc9F2juoNfbBFxYI8XQnTl4ITgHm5qeZeu2tezffztbt62lqenZCV1Pz0IqhWLo9vYLmfQMabTYKpeSyMgAsjgoIzOuvH64uc+oZ0gU+x31nEq8ethCfacHc6qGDTMD9JcZNZSlPy1tTiyP7uyZXyRkXYIgsLA4HSDWvjsSoq5BhUI/ZGtbt3Nw5M93PqIo8tj2Gq79zRaOWexkpKh56NNLefaOVWy957K4yjpm5xkxp2pw+0McHOR7ER0pXlpmRqUc3UeIz9dGS8srALGsyWSgZ4vu61vewlkUppYWHnroodjXSFp0h4O9w8be16WQ7DWfXI/qFz+H2bNR/vznY5I12JNY7mACxu2HwukL8tPXT7IvUBgTshUK0M2QflePvL9/xPteWJROnlGHyx9iW5xN3ONJS4+x4kQQdepE0etLUCg0Cdl3MlFVtTGSPTg6Z54gKMnIuAiAzs4tCVufx11DeoaF667XDFkANFmJioPBoIPGpqcBKC76TL/bRkWxC7Wx2BsrI5lao+VDcaFkDnq9Fo6fuI+ebubjJ+6bUAehyxXJG0yZOrESY0XPUhI5d1BGRhYHZWQSRtRp1N9XTX0DP3lxLz985VifxykEBhz1nAqIosgf35dcgxtXlZFuLGekrWfl5d9EENR0dm1JWIj8ogSIg/5YGcngrkHo3VicCFodXjY+upv/eukovmCYtTOzefMba9kQcU3FW9ahUAhcVC65B7edHTh3cHdspHjo1zoUjY1PIIoBTMbFsdGOZKBPi24/jLRFN162PvsuoUCQwsoSKpbOgiuugGPHpP+OMd2NxWNbmgPw41eOUdfpRkjLxZwtlYhk5+Zx62evBqDm4BkcnSNzaSoUAlfOlfb5xpHkay1usUsFDYl2DkZJmWIjxVEEQWD9+qvIysoatTPPnCGNFieylMQdudCVMsmbPAdDpUqLCc+BQCdabR5ZWf2/N+kv8Mbi2FjxBeYcjGYOBoPWCV3HaBjsuN5isWCzWamr+zP9XfCOuvcmgu6mYlkcHAqTcbGUO+hvweOpmejlyMhMOLLXWEYmAUSdRi7XwCfTblGFggUsKc1kX11XzEGoVipweIPkj02E2ITz3slWTjQ7SNUo+cxFZeh0asrL76a6+peRLeJvPdPriyksvI2Ghr9x5uzPWZ7xwoA5hfESFQcPNlhHvI9AZCRarYlHHJSeLxHi4NvHWvjOc4focPnRqBR89+pKPnNRGQrFyE6WL6rI5NXDFraeaefrl8/oc78oirGm4uWjzBsMhXw0ND4JQHFxcmVyRVt0n3jiiQG3GWmLbjxYzjRwasdREGDtJ9eP+1hitzg4ts7Bt4+18PTuegQBfnnLInKFabz++utctWE9mYXZFM4qofFkHcc+PMiKj1w8oue4cm4ef9tey1vHWgiGwqN2uyaSaKZjrikx4qAgKFEqDYRC0s9tKp8YRtvsR4vZLJWS2Gz7CIXcsfKM0eBx1wCgn2Ij3T0RBAG12ozPJ4nuhQWfGHB8UX8BOgdtNhtutzQR0tLSictlxuHIwGKR3GSpqakYjVO7nCSWORiwIYripBuvj+e4XqsNsHTZMyj6+Vg5cfK/mTP7fjIiY6vjSbc42Pc4TqY3SqUOk2kxVutOurp2kJIybaKXJCMzocjioIxMAog6jQY6iBBF8Ala/vTp5WyYm4fF5uF0i4MHNp3iYIONjY/s5sU7V5Odlphg+mTiD+9JrsFPrSzFlKIGwJyxgmpArc6mavkLwwo3nlZ2JxbLczgcR2htfY3c3OtGtb75RSYEAeo7PXQ4fWQahv8z6C4jGVowS8RYsdsf5MevHufJnVKZTWVeGr/55GJm5o4uAzBaSrK/zorHH0Kv6e2Mq+1w0+bwoVEqYuPYI6Wl9V8EAh1otflkZ185qn2NBRUVFeTm5NLS0gI9z2lEyM3NHXGL7lCIYZEPnnwLgDkXLySnbPyDv2ONxWMoDnY4fdzz/CEAvrhmWiTzMrOX4DPvksU0nqzj6AcHqLp+DcIIRO+qaWbSU9R0uQPsqulkVaShPBmIZQ4m8H1frTZ1i4NT1DmYSPT6MnS6QrzeRrqsu8jKvHRU+xNF8YJwDjY1PRsTBgEUg4iqugssc7CvqDQDmMGB/YeBwwAYDAbuuusuVKqpexoWvRAqigFCITcqVerELmgIvF4Lbk8NKfoydLr8IY/rQUSttqFS6cnOvoyWlleRHIQCSmUqXm8t+/bfRn7eTUyffg8aTea4vA5RFHG5ZXFwOGSkr5DEQetOCgs/OdHLkZGZUJLnErrMBYPF5mHb2fYpVcIRdRoNfD985mPX9hr1XDszh0c3VlGWmUKj1cMXH9szqsbcZGTXuU721HahUSr4wpruq3F+vzS2qtcXDLv1TKPJpKTkiwCcrX6AcDgwqjUadeqYU2qk7sF4m4p7bjNS5+ChBivX/WZLTBj80tpyXvrq6lELgwBlmSnkm3T4Q2H21PYtiIm6BhcUmdCpRz5SK4pirIikuOjTSRmYLQgCCyvn9xYGAQRYVDl/zFwQJ3cepflsI2qtmlUfu3RMnmMoyiOZgy12Hw7v6P6++kMURe59/jDtTj+zctP41oZZ/W43fXkl2hQdjnYbdUerR/RcKqWC9bOl0eI3k2i0WBTF7szBBDgHo+NvLlceTqc58pU1rgU6kxFBEDBnrAagq3PbqPfn87cQDnsRBOWULaDozljr5syZnw2YsRZ1DgaDVoJBx5ivb6JJhliKZECh0PcYPbdO7GKGoL9CkaGO60Fg/gK4aOUbzJv7a1av+oAli59g9aoPWb3qQwoLPwUIWJqfZ/uO9TQ2PYMoDlz2lih8PguhkBtBUKPXD5wzLdNN1N0p5w7KyIyBc7DxRC17X99Ba40Fl9XJdV//uJSXNAAuq4MPnnqb1nMWrK2dLFpfxSWf2tBrm1AwxJ5XtnJ8yyGcVgcZeZmsvuVyyhbIV8UnG8/srou19SoEuP+m+YOWJEwmKioqyM7No6W5mZ4Gl7AIOXl5LJ5b2ecxGakaHtlYxUf/sJWD9VbufvYAv79tyYjHQpONP7wvXb382NKiXrla/oAkMmnUI7uSWlL8eRoaHsfjqaOp6RmKim4f1ToXFqVzptXJgXobl1XmDvvx/uGIg5EcnuEeLIfCIn/afJb/fesUwbBInlHHr25ZyKrpiXNCCYLAqoosntvXwLazHVw8I7vX/bsiZSTLp41upNhq3YnTeRyFQkdBwa2j2tdYMnfBPN55621CGiSRUASlH+YsmDcmzxfwBdj67DsALLt+Nanpoxd8R4JRpyYnTUurw8fZNlds9D5R/HNvA5uOtaBWCvzq1oUDCs0qjZrK1fM5+NZujry/n9L5I/vMv2peHv/Y28CbR1v47+vnJsX7q90TxBuQThRHmznY26k0N/IFB/a/B7wHXBhOpZFiNq+myfJsQkpJPG7JNajTFaFQqEe9v2TE7alhoFKx/i72qVQG1OoMAoEuPJ4G0tJmj8cyJ4yJjqVIFgRBQKVKx+9vjeQOFk70kvql/0KR79Le/h4KhZ70dD1Wq4refpowWVl6rrj8/1BEZop1uvxev/+Vs35Ift5NnDj5fZzOY5w48V0sln9SOevHGAwDnxePFqfrFAApKWVT9j0o0RiNi1EoNPj9bbjd50hNnZpFUjIy8ZBw52DAFyCrOIdLP31VXNuHAiFS0lKoumEN2cX9n5Rvf+59Dr+3n0s+fRWf/umXmb9uKa/85h+01iaPC0BmaCw2T0wYBEk0++7zR6aMg1AQBIrmLuf8806FACVzlw94IDgtK5UHb1+KWinw+pFmfv7myXFY7diz+WQr759sQwC+fEnvD9pAxDmoHuGYhUqVSvm0rwNQfe43BIOjK05YVCxd5R9pKUkgInbG5xxMjzwmfudgfaebTz60g1+8eZJgWOTa+fm88Y2LEyoMRllVESklOdO33XV3xDlYNcq8wahrMD//ptj3IxkxZppYuXxlt3tQgJVLV2DMHJuA0H1v7MDZ6SAt08iSK8c/p6gnsdzBBDcW13e6+cG/pGKmb66fydyCwb+X8y5ZDED1/lO4bCNby+rpWaRqlDTbvRxqtI1oH4mmxSG5Bk169ahcuCA7lUZLRoaUO+h0ncTnaxvVvtyRQPupPFKcoi9juKViURel9wLJHayoqIg0avcVUfPysscsliLZ6M4dtE7sQgahf7FbpK19Ey2tL1FY9AH9/b6vXj0vJgwOhMm0iOXLXmDG9PtQKlOw2faxa/cNnDnzP4RC7sS9iB7IeYPDR6nUYjRKxxpd1h0TvBoZmYkl4eJg2cLprLp5HdOX9XVJ9YcxO51Lbr+S2WsWoEnpP3fnxLbDLL9+NdMWTseUk8GCy5dStnA6+16X/4AnE+faXTFhMEpIFKlpH5sPyIlg2fxK2sIpvQTQ9nAKS+cP/vewojyTn9+8AIA/bT7Ln94/O6lHr5/ZXcdnH9kNgAjsqO7dfhsdK9bEkdE3EAUFt6LXlxAIdFBf/9cR7wdgUbEk6h2st45opCB64BtXW7HGHHlMfOLgi/sbueb/PmRXTSepGiW//PhCfnfbYtJTNMNeZzysmi6Jg4cbbdg83SOlrXYvtR1uBAGWlI68qdjjqaOt/W0Aios+O7rFjgOX37iB3BzpwpXSC/OXLBiT53F22tnzijTWuObWy1FpJvaKf0WONFqcyNzBUFjkW88exOkLsqw0gzvWDn2CnFWcQ15FIeFQmONbDo3oeXVqJesqc4DkaS1utkVGihPQVDz0+NuF4VQaKRqNmTSD5Lbs6hrdaPGFUEai0+Uzu/IndJ9CDF0qpr/AcgcFQaBqRTH9iUorVpRcMH+LsUmJYHJclOkPSew+H4Gysq8xY/p9LFp0EwZDOz2dhQZDO7NmLYlr/wqFipKSz7NyxZtkZ1+JKAaprXuIHTuupK39nQS9im5i4mDK1C2kGgsyMi4CpNFiGZkLmUmRORgKhFCed2VdpVbRdHrgK5A+nw+73R77cjrHtnVRZmimZfUNI1YKAmVZo28HTBYK0lM4pSiNuQcVAixasYaC9KFf40cXF3FXpCH2Z2+c4LaHd7L6Z+/yzO66sVxywok6RHtyvkM0NlY8ioBmhUJNRfm3AKitezgmOI6EWXlpaFQKbJ4AtR3DF6uHlTkYO1i2DrqdzRPg60/t5xvPHMDhC7KkJJ3X71rLzUuLxvTEIt+kpzwrlbAIO3uIutG8wdl5Rkz6kQtX9Q2PASKZ5rWTok1VEAQ2XLkBraBB16Wg6fTYnNxue+59gv4A+dOLmFE1Z0yeYziMRWPxnz+sjoncv7plEco4x3vnXrIIgCOb9484D+iqeVLe6wv7G2iyTvwFqWhTcY4xMWUkslNpdJjNUu7gaEeLL4QyEoCCglt6ZKx9QEHBLYNufyE2FlfOWjoqUWkq0D0pYZ3QdQyGIJzvqFYwu/KnVJR/g5KSzzO94pusWbOYnmL4mjWL0esLhvU8Ol0BC+b/gYULHpZKkHxNHDr0JQ4d/gpeb1MiXgrQ0zmY/MdXyURGujStYbXulHMHZS5oJoU4WDK/nP1v7KSruRMxLFJ7pJqze0/gtg580nL//fdjMpliX1VVVeO4Ypn+SFGr6KlpKAT46U3zyDfpJ25RCabZ5uWUJ4X2sCQGZufm8fmrV8b9+FuX9w4wn4yj1/E4REc7VhwlJ+ca0tLmEgq5qKn5w4j3o1EpmFtgBEY2WjySQpJQyE0o5Ot3mx3VHVz96w94+WATSoXA3etn8uwdF1GSOT5CetQ9uO1stzi4O5I3WDWKvMFg0EFT0z8AKC7eOIoVji/l5eVcvngtao9A06nEn9y2nGuKueLW3rY+KVwl3eLg6Eb2oxy32Hlgk5SF9F/XzxnW7/LMFXPR6DTYWrrY/+ZOHJ3DL9focPoBqWRlzf+8N+EXXVrtiXMOguxUGi1m8xoAOru2jerE8EJwDkbR6fLJyFgZV6lYtLHYe4E4B0EqXCsvP8toRaXJjCoiDgaTWBxsbXsDAINh7oBid1XVxsjFF8jLy6aqauTHL1lZl7FyxRuUltyBIKhoa9vEjp1XUlf3F8Lh4MhfCJGmYtdpQBYHh4vJtBCFQovf347bfXailyMjM2FMCnHwkk9tID3PzOP3/JHffuGnvP/4G8y5eCEMcrB77733YrPZYl+7du0axxXL9Mf7p1rpecz9X9fNmTJlJFH21XUBAq1pM8nKyuKqDcM70a/px7U22Uav43GI+gOjHysGEAQF0yu+A0BD4xN4PCMXbqKlCyMRB/3+SOagZujXo1Klxa5UB4K9R4v9wTA/e/0En3x4B002L6WZKfzzyxfx9ctnoFKO39v1qgopy3Db2e7cwV010lqXjyJvsMnyT0IhJykpFZjNF49ukeNMwUzp5LbpVF1CryqLosgHT74FQOWqeeRVJEdoe0WOJA7WdrgIhEbXsOgLhvjmMwfwh8JcMTuHW5YVD+vxGp2GrFLJ+ffhU2/zyN2/5cjm/XE/3mLz8IN/HY39OxkuujQnsKk4iuxUGjkm01IUCg0+X/OITwxFUezhHCxL4OomPxeiczAQsJFmPBn5mxy9qDQZmQyZg60trwGQn3fjgGK3IAisX38VWVlZrF9/1agvtiiVKUyf/p9ULX8Zk2kpoZCb02d+yu49N2Kzxf/Zdj4+fwuhkBNBUJJyAVygSCQKhRaTSfqs7OraOcGrkZGZOBJeW7ezuoOHPqjmcKONTwH767uoWDrw9t969iDP7ZOuJN7c0UlbnYfPHn6VGTkG3rr7EgAOt3t50TSNoxXpOOwuHvj0StRHj2HKTh9wv1qtFq22e1zHYDAk4uXJjIJ3jrcCoFIIBMMijdbJ44aLl721koAyY3o5d974kWE/flpWKgqBXs67yTZ6nZumI1WjxOUPAdL6z3eIRsW00YwVRzGbV2POWENn1xaqq/+XuXN/NaL9jFQcFMVwpIkvvszBaINfINBBIGBFp5VEjzOtDu56+gBHmyRX1K3Livmv6+eQqh3/dtGLyqWfy6kWJ20OHxqVghPN0rqWTxtZ3qAohmhoeAyA4uLPTTonU+60ApQqJW6bC1trF+m5oxO2o5zZfZymU/WoNCpWffyyhOwzEeQbdejVSjyBEPWdbsqzR/4Z+qu3TnGi2UFmqob7b1ow7J+9o9Pey7EpiiLvPvoapfMrSDMbh3z8YG7miXKut9gl13BOgpyDIDmV1qxZzBtvRL9XF55TaaQolTrSTcvp7NpKZ+fWEblufP4WwmEvgqBEp0sOkT9Z6Jk5KIripHv/HwkOx1EEAWbMbKC+rjIhotJkI9kzB72+Zqy2PQDk5AxepFleXs6dd96Z0Oc3GGaxdMnTWCz/5PSZ/8HpPM6evR+nsOATVFT8B243uN0DmwNSU1MxGrs/A11OyTWo15ehUCQmsuJCIiN9BV1d22lpfZWsrMvickXLyEw1En7W6Q6EmJ1v5OPLijn5i6FDPf/7hjl852qp0v2dX7dhKszhYIOKa+Z3/0H23OeX/74XwiJn9pxgRtXsRC9fZowIhMK8f1ISB29aUsizexo4Zhn+aFiyIzkHYekICxvyTXruv2l+r1bne66unFSj10eb7Lj8IVI0Sh769FIqcgy91i+K4e523wSIgwAV0/+Dzt1baG55mZKSL5KWNvzMtoVF6QAca7LjD4bRqOJz6gWDDkRREkLjbd5VqzMIBDposbZwuDmLfXVd/O69M3gDYdJT1PzspgWxjLSJICNVw5x8I8csdradbSdNp0IUoSwzhZy0kYkZ7e3v4fHUoVKZyM+7MbELHgdUGhU50/KxnG6g8WRdQsTBoD/IlmekQPKl11wUl9A1XigUAuXZqRxtsnO2zTVicTB6wRDg/pvmk502/BMWa0snnOfWFMMitpbOuL5n/V90YUIvurQkeKw4SlXVRg4c+CPNzW0XpFNpNGSYV0viYNdWiouHX5YUHSnW6YpQKCa2UCjZ0OkKAIFw2EMg0IFGkzXRSxpzHE7JrVxWVsAN1ydWVJosJHvmYGvr64CIybQ08js6/giCgoKCW8jKupwzZ36Gpfl5GpueornlbXbtvB6PZ+BRY4PBwF133YVKJZ3Ou9xy3uBoCIUk04rVupOt29Yyu/InQ+apyshMNRI+p7a6NJ3PVppYmib9O2B10FbbjL1Dumq09dl3efPBl2LbG3VqhE4rQqcVgiFaWm1o7DauLOoWE2arAtyYKXJRjpZCv5P6f7yBKIosu2ZVopcvM0bsqenC7g1iTtXwqRVSUPexJnu/43ler4XOru14vZbxXuao8AZCHGmUfs+XlIy8zfXW5SVsvecyZkTaQhVxhvYnC1ER+OIZWayZkd1H2AwG7YiidLATj9MuHoxp88jNuQ4QOXv2FyPaR2lmCukpavyhcMwlFw9RoVOpNMR9pTZ6wHzvPz7ktj/v5JebTuENhLl4RhZvfmPthAqDUVZHcge3n+1g17nRjxTX1z8CQGHBJ1AqJ48TticFM6UYhMHKsIbD/k07sbfbMGSksfSaixKyz0Qy2lIShzfAt/5xEFGEjy8tYsPckf1ep+ea+zhuBIWAKU6BNnrRpedb6bc2zJrQiy7RtuLcBBWSREn0+NuFRLSUpKtrJ+FwYIit+3KhlJGMBIVCi1Yrtb5fKI3FDvsRQDo+uVBRJb04KI0U5+ZcM8ErkSZp5sz5BUsWP0FKSgXBYBtKZTMwcIyJ0WjE6XRisViwWCw01J/B6TTj9U6L3Wa3Tz0jxljg9VqorXu4xy1hjp+4b9Kdi8rIjJaEOwdbzzXx3M/+3v3v93by5Hs7mb1mARv+7QZcNieOzt728if/68+9/v0pYMefm5nzwNcACAaCbH/ufWxtXVwfBFXeND5+98fRpg58xd3n8+HzdYf9y23FE8s7x1sAuHRWNrPy0lApBLrcASw2LwXp3SdoTU3PcvzEd5E+DBWT6qrNkUYbgZBIlkFDiXl04ke+Sc/tK8v475eP8vKBRr6wZlqCVjn2bD7VBsAlM3P6vT86UqxSpSV07KG8/Ju0tr1BR+cHdHZtx5wxPLFFEAQWFqWz+VQbB+qtLIg4CYeiu4wkvu0BwoLkdkpRd5c9CAL87Kb55CbYSTRSVk3P4uEPz7H1bHvMLbh8BGUkb1e/zVdf/TKfL3CxzJxGUdHtiV7quFE4s5i9r5KQUhKX1cnuf20FYNXH16HWaka9z0QTEwdbR/b5+aNXjtHQ5aEoQ89/XT/yBuY0s5HLNl7Du4+8FrugdNlnrxmW0/LW5SWsnZnNp/+ykzOtLvLTJ+7vLBgK0+6Ujk8S7RyEsRl/uxBIM8yJuLq7sNsPkp6+bFiPv5DKSEaCTleEz9dMZ+cp3O7cAbc7f1RyshJ1DqalzZ3glUwcapWUORhMwrFir7cJm20fIJA9xEjxeJKRsZIVVa9QW/cwNttzHDl8yYDbrl27lj//+c+4XNFjSQ1wHQf2u4GHgL7uQpn+cXtq6M7rjRLG46mVx4tlLigS/k5RNLuMu/72PQDK7nmVBz+9lCt7uAU2/NsNfR4T3b7F7mXVz97l/z6xiOsWdNu7iypL+fT9X+7e57VLMWSkDbqO+++/nx/84Aejfj0yo0cURd6OiINXzM5Fp1YyPcfAiWYHx5rsMXHQ67Vw/MR9dF8lk67amM0XT4o35uhI8ZKSjIS4Na6Zn88PXznGwQYb59pd/RZ9JBs2dyD2fVg7s/+xoWgZiVqdmJHiKCkpZRQWfJKGxsc5e+bnZCx7ftg/h0XF3eLgZ+LUFqNXxONpKo7iDkqii6GHOCiKUNfpoTAjOVx1VWVmVAqB+k4PjV2e2G3DQRRF7nnr25zsPMtf/RqumvmxCRvdSQT5M4pAAGtzJy6bk1TTyHP4tj//PgGvn9xpBVReND+Bq0wc03NG7hzcdLSZZ/c0IAjwq1sWkaYb3ZjlvEsWU1RZyuPffZBwMERu+fB/j/JNei6ZmcOZ1nPsr7Py0cVFQz9oDGh3+gmLoFQIZBrkXKhkQRAUZGRcRGvra3R2bh22OCiXkQyOXl+EzbaHLVtepLr6+IDbTQUxIxh04HafAy5wcTByXJSMzsHWVqmlON20LJb9nCwoFBqmld1JTva11Nf9CZtNS+9hvzB5eTnMmDEDk8nUQxzsi9FoRKlUjvmaJzvS+7aC3gKhAr3sBJe5wEiqtuJ/7m3AqFOxYc7o36TltuLk4Wybi5oON2qlwMUzJMFoToF0Vbhn7uBgV20mA9EykiUjzBs8n+w0LaunS9+vlw80JWSfY83Ws+2ERUlUKBpA5Ar4I03FcTT7DpeyaV9FqUzB7jhEa9sbw358tJTk4DBKSfyRseLhjEinp0o/157iYLIVz6RqVbHvR1iEnDQtpZnDW99Tu+5jb/NBAE46/ey1ehO9zHFFl6ons1ByxFpOj3w0rq22maMfHABg7W3rEZI0OqAiEm1wts01rIbmNoePe58/DMCX1pZTNQLHaX+k55opmSu5qGsPj6xRdnFJOgD766wJWdNIiOYNZhu0KJP0Z3+hYjavAaCza+uwH9vtHJRPJvtDr5NKSQxpg38OTAUxw+GQxE+tNj8hxWuTlZ5txcP5DBkPWlpfBSAn99oJXsnApKaWccklq+h7uq4gK/sFjhy9k/nzB/++rlu3To6XiAOdLp/ZlT+h+3stTa9NBnOKjEwiSRpxUBRF/rGnno8uLoq7CGAwtFotRqMx9iW3FU8c0ZHileWZMffInHxJHDza1D1qIF21Of8DbHJctRFFkb21VmDkZST98ZGFkjvmpYONSXdg1R+bT0ZHirMH3KZbTEv8AbNWk0VJ8RcAqK5+YNi5UQuKpAPZs20ubJ74Hts9Vhy/ABITBzWSONhfo3MysKqi+2c0r9A0rANMj6eJH275VY/DLPifXX/H45kcQvdAFMyUTnAbT9aN6PGiKPLBk2+BCDNXzIntLxkpy0xFEMDmCdDh8sf1GFEUuff5Q3S4/FTmpXH3+pkJXVPp/AoAao9Uj+jxiyN5sMctdjyRRvXxpjkiDuaakiNCQKYbc4aUO2i3HyAYdMT9OFEMy87BIdDpJaduTs7gx/hTQcyQR4olonErohggFBq4dXe88XgasNsPAAI52ckzUtwflZXLMBja6TZPhDEY2jGZztHWtgmn63/Ou5/Ydnl52VRUVIzvgicxBQW3sHrVByxZ/ASrV30waWKtZGQSSdKIgzuqO6npcHPr8uQ9UZIZGe8clwoqrpjdnTHTn3NQp8unoODWHo8UJs1Vm/pOD+1OH2qlwPxCU8L2u2FuLlqVguo2F0ebkjtUWBTFHnmDg4iDEedgopqKz6ek5Auo1Wbc7nM0Wf4xrMdmGrSxvMjDDfFl5AT8EXFQE78o3GiXRgmNWjePfG45W+5Zx63LS4a11vHAG+w+2HzvRCvP7I5fEHv15DOcdPp6HM7CSaePV08+m9hFjjNRMW+kpSTV+07RcKIWpVrJ6lsuS+TSEo5OraQ44gA+E2fu4LN76nn7eCsapYL/vXURWlViHUCl88sBaDpZh98bn2DZkwKTjlyjlmBY5HDjxORgRZ2DuSNobpYZW/T6IvT6UkQxRFfXzrgf5/O3Eg57EQQlOl3hGK5w8hJ1DgpCB7k5uX17FkTIzcmdEmKGwyGVkaRdwGUkAAqFHkGQ8nSTKXewte11ANLTq9BqBz5eTQb0+gLWrFlMT0fb6jULWb78eSrKv4U5YyWlZYfpz124YkXJpBfaxxudLp+MjJWT4txTRmYsSLg46PIFOdpkiznC6jvdHG2y0WiVMqv+540T3P3MgT6Pe3ZPPYuK05mV1zdLcKh9yiQvXS4/e2olp9jls7sLKubmSwJafaenl0PLmNadvZWSUj5prtpEc/bmFpjQqRN3MpymU8dE1ZcPJrfj6lSLk2a7F51aMegYYWyseBhOu+GgUqUxrUwK4z937rfDvlq9MDJKe6C+K67tu52D8YuDW6ql3/kiU4B1lTlJ5xgEsNg8/PnDbneWCHz3+SNYbEO/74qiyM92/q2fQ1X42c5HJ4ULdiAKI+JgW23zsMWpYCDIh0+/DcCSq1ZizEpP9PISTkV2dLR4aHGwrsPND/91DIBvbZjJ7PzElwqk55oxZqcTDoVpODH8yAlBEFhcLP2tRt+3x5uoOJgnOweTkmhr8XBGi6MjxTpdEQrF6PI1pyp6vfTe6fVaWDBrbt9BEQEWVc7vJWZ4vRY6u7ZPusZQh0NyDl7ITcUgvd+qk7CxuKVFGinOzUnekeKeVFVtJC9PEjHz8rJZUfUFTMaFlJX9O0uWPMFVV/21X3fhrFlLJmzNMjIyk5OEi4OHGmxc+5stXPubLQD8+NXjXPubLfxq0ykAWu2+PqKe3Rvg9SOWAV2DQ+1TJnl5/1QrYREq89J6ZdCZUtQURopIjvdwDwZD3Segbnf1sMZ6JpJY3mBJ4kaKo9ywSBotfvlAE+Fw8ooqm09JDtGV5ZmDCqTRQpKxzOEpLPwkOl0xfn8r9fWPDuuxCyOjxQfq47vKHR2TjlccdHgDfHBGaio165JnzOZ8zrW7OP/XLSSK1LQPveZNZzext/lgP0MusLf5IJvObkrYOsebtEwTaZlGxLBI89nh5Q4eensPttYuUkwGll27aoxWmFi6G4sHDjwHCIVF7n72AC5/iKppZr54cfmYrEcQBErnSfuuG2Hu4JLSdAD2T5A42GyT/v6TpZlcpjfmjEjuYGf84mBspFhuKh4QrTYXQVAjigFmzM5G6aXbPSiC0gdzFnSLaU1Nz7J121r277+drdvW0tQ0OVznoZAbl0t6b7rQx4qhZ+7gxLzfno/HU4fDITntcnKunOjlxIUgCKxffxVZWVmsX39VHzegIbW8j7twzZrF6PWTtwBORkZmYkh4FdhFFZnU/GzgKzEP3LKwz21GnZoTP7p6xPuUSV7ejowU93QNRplTYKTR6uFYk52V5ZJQFAr2PAEVsdkOkJl58XgsdVRExcFE5g1GuXRWNmk6Fc12L7tqOmPfq2Tj/Uje4KWDjBRDj7HiMXIOAigUWirK7+bosW9SU/sghYWfjFu8ixYWHKiXArSHGsmIHvDG64R89ZCFTo8kjCtI3lHxaVmpKAR6CYTxlKaIosj33/s+ChSE+8iDoEDB99/7PhsqNkzacZeCmSWc3H6EplP1lMyNTwRz213sfPlDAFbdfCka/eQYKa2Is7H4wQ/Osqe2C4NWxQMfXzimRRul8ys4/N4+akZcShJ1Dsb3N55oWh2RseJxFAdtNhtu98DCfmpqKkZj4p2ek5GMjJWAArf7LF6vJa7xslgZySTISJ4opJHrfDyeOkTa0HUpcOVHPiMESLGpCHgkN7bXa+H4ifvo6YQ6fuI+zOaLk37cz+k8AYTRaLLRavse+15oqFXpAASSZKy4pVUaKc7IWIlGkzXBq4mf8vJy7rzzzgHvr6rayIEDf6S5uY28vGyqqjaO4+pkZGSmCkmTOSgz9fAHw7GCist75A1GmdtP7mBP5yCAzbZ3DFeYGFy+ICeapdcQdaQkEq1KyTXzpIPhl5K0tdjlC7K7RnLQXTJr8IPhQLSQZIwb/HJzr8NgmEMo5KSm5o9xP25ugQmlQqDd6aPJNnS77nDHip/dU4/DL41qBoN2wuFg3GsbL2w2G7it/Pfl+WQr3GQKLrIVbv7r8jxwW7HbBxY1/SE/dba6foVBgDBh6u31+EPDz4tLFmKlJKfizx3c8cIH+N0+sktymb1mwVgtLeHEnIODiINHm2z871uSk/+/r59DsXlsW7eL5pShUCqwtXRhax2+G2V+oQmVQqDN0XeSYTxojryv5I2TOBgMBnn44Yd56KGHeOihh3jggQf45Cc/yQMPPBC77eGHHyYYTL73oolArTZhNEoRJ/GOFrs9NYBcRjIU0dzBppqDqDygCUlTBjo0KJxh/vXrZ/A43JHvZ1/vuccz/CiB8cbuiJaRXNgjxVFUPRqLk4HW1uhI8TUTvJLEMpS7UEZGRiYeZHFQZszYda4Tpy9IlkHDoqL0Pvd3NxZ3Cw2hoHQCqtXmAWDtRxy02DxsO9seV/bZeHCw3kpYlILuxyo7Ljpa/NphC/5g/6LLRLL9bAeBkEiJOYWyzMGFgahzcKyv2AqCgukV/wFAfcPjeDyNcT1Op1ZSGck+PVhvHXL7bnEwfchtz7Q62FdnxRdOjd2WTCHd0FtIqNn6L67THuMG3XGu0x6jZuu/hhQStCotu/9tN3u/tJeXrvkWf1xcyD/Xf469X9ob+9r9b7vRqiaHc64/CmdK5THNZxoJBYduvG1vaOXIe/sAWHvbehSKyfPRG80cbLR6+m339QZCfPOZAwRCIhvm5HLz0qIxX5NWryV/uvQ8tYeH31qsUytjpVj76qyJXFpcxNqKjePzN6BUKjGZuouyHA4HmzdvxuHoju0wGo0olYktj5nMRFuL4x0t9rgl0UqfIjsHByPaWNzZcgIBgVmFM8jKyuKGj30EU3YGtjYrr/3uObSa/gq6FJPCmdldRiKPFEP3hdNgYOKPddzuGhyOowiCkuzsyTFSPByi7sLy8rGJ9bgQcHTaqT9eg6MzeSd7ZGTGkslzhiIz6Xj7eAsAl1XmoOhnxCx6cnam1RETvIIhaaw4M/MSAOz2A72cVc/srmP1z97ltod3svpn7w6rPXWsiOUNjsFIcZSV5Zlkp2mxeQJ8EGkETiZ6thQPdrVSFEM9xLSxGyuOYjZfTEb6SkTRz7lzv477cYsipSRDiYPS65EOeON5Pc/ukTLqLpmZj0ol/f4nSw5PlPOFhP4YSkgoNhWzJH8J0/R+Zhi0LCtaxZL8JbGvIuPYC0hjibkgC22qjqA/QFtt86DbiqLIh0++hSiKVCydRdHssvFZZIIwp2pIT1EjilIO5fk8sOkkp1qcZBk03H/T/HFzK5REWotrj4wwdzAyWjzeuYNufxCHV/pMyx2nQhJBEFi3bt2g26xbt052mvQgVkrSuXXIAiVRDHdnDsrOwUGJOgddTun7tWDpQu68805mz5vDDd+4FbVOQ93pGt55ahPnN5ZkZHyUri4Gda4nA91lJLI4CMmVOdja+hoAGRmr0GjG/hhUZnJxZPN+Hrn7tzz/s7/zyN2/5cjm/RO9JBmZcUcWB2XGBFEUeeeEJA72N1IMUJiux6RXEwiJnG6VHAyhyFixybgIlSqNUMiN03UCkByD9z5/OJaBFhbjb08dS/bWjV3eYBSlQuD6BZJ78KUkay0WRZH3I2UklwyRNygdHEo/wOG0+44UQRCYPv07AFiaX8DpPBnX46KNxfuHEAeDQTvR0aehnIOBUJjn90ni4C3LimKvP1lGbaIkUkhwuyVXV2pKRULWliwICoGCGZHxuNODjxbXHDxD3dFzKJQK1tx6+XgsL6EIgjDgaPH2sx38ecs5AP7nYwvINIyfG7R0nvQ7VX+sJi735vlEs0XH2znYYpfKSPRqJWnahMc+D0hFRQW5ObndBRBRRMjNyaWiYmr9jY4Wk2kxCoWeQKADp2vwzw2fv5Vw2IsgqNDpJveFj7Em6hwUlR0IgkDR7G4nYGZRNuu/dAOOwjCNgfcAEZcrndbWMgDqajfz0EMPJvUIfCjkw+U6DchjxVGSKXOwJSIOTrWRYpn4Od8ZaO+wcXzLIV77/XO889dXYxeDRFHk3Udfkx2EMhccsjgoMyacbnVS3+lBo1Jw8Yz+x0cFQegzWhyMFJKoVEZMxsUA2KzSaPFo2lPHinBYZH/k5HIsxUGAj0RGi9861ozLlzwHxjUdbuo7PaiVAhdVDJ4j6Pd3N/sqFONzYmw0LiAn5xpA5MzZX8T1mKhz8HCDjWBo4DFuv18ShlWqNBQK9aD7fO9EK+1OP1kGLesqc3qIgxN/Nf18KioqyMvLpr/Mp7y87LiEBFEMx8TBlJSpN+ISzR1sGiR3MBQM8eHTbwOwaEMV6bmT06kQHS3uKQ7avQG+/Y+DiCJ8YnnxgBeBxoqc0jz0aSkEvH4sZ4bXGg3dzsFjTTa8geGLiyOlJTJSnGfSjatTTxAEFlbOP9+MBQIYnGqc8glQLxQKLRkZVQB0DTFaHC0j0ekKx+1zbbISdQ5qDA6yy/LQpfaOYpm+ZBZGoxGzWXpf7Wgv4Vz1ckIhJWnGdtLTLUk9Au9ynUQUg6jVZrTa5C5OGWtsNhsWiwWrTYvTaaatzYXFYol9jYcDNLoGi8VCdfVumptbcDmzCYUWjtsaZJKHns7Av37zNzx05wM8cvdv2fTwy5zedbzP9mJYxNbSOQErlZGZOOSjGJkxITpSvKoikxTNwL9mcwqMbK/u4FhEHAxFxoqVylRMpqV0dH6A1baX4uLPMi0rFYHexgeFwJDtqWNJdbsTmyeATq1gdv7YNj0uKDJRlplCTYebt461cOPiwjF9vnjZfFJyDS4vM5M6hBPGHxj7puL+qCi/m7a2N+noeI+url2xk74Bt882YNCqaAvsYdbvvsGD1/+OK8qv6LNdtFwlHhdkdKT4Y0sKUSsVMadhsjkHQRISqlYU8/JL54+wK1ixoiQuUcPrbSIc9iEIminppukpDg7UeHv43b10WTrQp6VQdcOa8V5iwuh2DnaPFf/g5WM0Wj2UmFP43nVzxn1NgkKgZF45J7cfofbwWYoqh5dFVpShJ8ugod3p52iTfcwv7kRpGee8wZ6Ul5Wh3NT7NqUX2qubePQ/fs/cSxaz/PrVpJnl1mKQcgc7OjbT2bmFkpIvDLidOyIOpqSUjc/CJjH6iHNQneqmeE7fzwVBELjmIxuoqf0TAB0dxQQCepqbZ1JYeJziksMsmP8fSTsCb++RN5isaxwPotnFLlf0M+M6AN5/76HYNgaDgbvuuguVamxORfuuoXsd+/c/PS5rkEkeHJ123n3ktV4xER6nBwTIKy8kuzSPw+/t7XWSKSgETJP0oq6MzEiRnYMyY8I7xyXBaCg3yfmNxcFIIYlKlYopfSnQ3VicZ9Rh1Pf+AJ+VmzZujY/9Ec0bXFCUjlo5tn9OgiBwwyJJEHzpQHzlGuNBz7zBoQjEykjGtqn4fFJSplFQcCsAZ87+fMgMKaVCYF6BEav6b1RbT/LtTff0+5h48xNb7V7ei4ioH18WOTmKiYPJeVWyctZSDIZ2ut2DYQyGdmbNWhLX47tdg6VT0k2TU5aPUq3C43Bjbe77M/Q6Pex48QMAVt50CdqUiXufGi0xcbBVen9+44iF5/Y1oBDgV7csxDCO47E9KY3mDo6glEQQBBYVj3/uYLSpOHcCPrcspxvRdfX+nJo3fQ7Fs8sIh8Icfncvf/uP3/PeY2/Io1SA2SwJ+l3W3YTDvgG3izboToayjIlGpTITDkrvF3mz+v8bMJvbUCqD+HwpuFzSZ2tjwxzCYQUmUws1O19h17+2cGL7EZpO1+PsciCeP1YyQTjkpmIgMdnFU2ENMsmDtaWz3+P4G75xK7f+10Yu++zVXL7xWoRIRr6gELjsc9fIF8tkLjim3hmbzITT7vSxL3KydXllzqDbRktJjjfZCYfFHs5BAwZDJYKgxOdrxutt4lirHpsniF6t4PvXzeG/XjrC8WYHbx5t5qp5EzO+sa/WCoz9SHGUGxYW8Jt3TvPB6XY6nL5xzfjqD28gxPZqSfC7dNbgP2sAf0QI06jHVxwEmFb2NSyWF7Db99Pe/hbZ2RsG3b49uBu/QsoOOtiyl/te/zs/vebTvbbpFgcH//k/v7+RUFhkSUk603PSIo8xR/ZhHcnLGXOUSi1lZYc5ciSaP6hgzZrF6PUFcT3e5ZaKIlKmWN5gFJVaRV55AY0n62g8WUdGfu/f6Z0vfoDP5SWzKJt5lyyeoFUmhoocSRysbnfSYvdy7/OHAfjyJRUsK5u4q+ol8yRxsK22GZfNSarJMKzHLylN5+3jLbFoiPEgmjk4ERe1Tu08hsoDhnRpTDzTnMlHPn8zgiDQcLyGHS9+QOOJOg69s4ejm/cz79LFLLt2FYYL9OQoNXUmGk0Wfn87Ntt+MjJW9rud21MDyGUk8WBr6cLvMKDLsGLM63+cv73jHQA6O4qIzsH7/am0tFSQn38aZ/g5jv6zd/6pUq0kLdOEMSsdY1aP/2anY8xKJ8WU2q+Tz9Fpx9rSSXquOSEigNxULBHNLn7iiScG3GasS5CSYQ0yyUN/sS6CQiCrpNvEMu+SxZTOr8DW0okpQe8JMjKTDVkclEk4751oRRRhTr6RgnT9oNtWZBvQqBQ4fEEaujw9nIMGlMoUDIbZOBxHsFr38Oqh6QBsmJvHbStKabJ6+d17Z/h/Lx9j9fQs0nSDZ76NBdEykmh+1VgzPcfAvEIjRxrt/O69M3xpbTn5psG/x2PJrnOdeANh8ow6ZuYOfWLujzgH1RPQEqfV5lBSvJGa2j9w5uwvycy8bEBHW5PVzYetvwNBAUIYRAUP7PwRX131MQrSu8fY/RFxUDOIOCiKIs/ukfKTbllWHLs9mceKARoan8SUXo/B0IHTmYnJ5KKqamPcj+8uI5k2VkuccApmFtN4so6m0/XMu7RbAOxsaufQu5Lj+eJPrkcxxq7isaY4Q49aKeANhPnkQzvocgeYk2/kG1fMnNB1pZoMZJfm0VbbTP2Rc1Sunj+sxy+OOAf3jaNzsLq2HuuWJ9CsvGvcnhPA3m7FcqYBQRC4/vrrOX76BDd85IbYiXHR7DJunl1G/fEadjy/maZT9Rx8ew9HNu9n3qVLJJEwI21c1zzRCIKAOWM1zS0v0dm5ZUBx0OOONBXLY8VDUnfsHH5nGroMK/6Apc/9oijS3iaJg9aWYmnEL5InY6meR37eWdIKm5h9uQl7owl7uw1nh51QIIS1ubNfFzeAUq2KiIYm0iLCob3NypHNByASC3HZxmtGdSEnHPbjdJ4C5KZi6M4ubm5uofegWpi8vPEpQUqGNcgkB4b0NDR6DX6PHxjYGZhmNsqioMwFjSwOyiScVw9JB3wryocWgNRKBbNy0zjcaONYUztqUXrTVioloclkWhoRB/fy+mHJ7XDtfMkl+NXLpvOvQ03Udrh5YNMp/t8N43swZnX7ORMZs1sSab4cD0rNqRxptPPI1hr+tq2G+2+az63LS8bt+XvSc6Q4nquvsbHiCXAOApSWfomz1S/Q2trF4SNPkNOPezA1NZVnDr8Rcw0CIITxC6d55vCrfPPij8dujidzcF9dF9VtLvRqJdcu6Ha4Rh/jT8Kx4lDIR0PD4wgCrFhZzLatTZSWHkIaMY5vBMflmtrOQYCCmSXAVppO1vW6/cOn3yYcCjNt0QxK503+MhaVUkFGioZWh4/qdsndfeXcXDSqiRc9S+eV01bbTM3hs8MWBxcWm1AIYLF5sdg8Y3ahxWaz4XZLxVltDdWkVL+Pu/VGLBbpfTs1NRWjcWxPRqJh64WzSrj0inVcekX/jeTFs8so+m6p5CR84QNJJHxrN0fe38f8S5ew7LpVpKZfOCKh2RwRB7u20d87mSiGcctjxXFTf/Qcgcjxncfbt8zJ4TiCz9+CUplKZfkNbD0kXWRBgMXz1pOXD83NL5C76AgbPvMgIBU/uboc2Nut2Nqs2NttONql/9rbrTg7HYQCQbosHXRZOvpdlyiKvPvIa5TOryCsFGN/r/0x0N+ry3UGUfSjUhnR6Yr7eeSFRSKyi6fCGmSSg+bqRvweP2qdhmu/djPmgixZBJSR6QdZHJRJKH/fUcv7EcHo0W01VOalDSlczck3crjRxglLC/Mjv5FKpeTOSjctpaHhbzS376LJVoVBq2JtJNtOp1byo4/M4zN/3cVj22u4aUkhC4rSx+y1nU90FG1aVuq4jfdabB5eP9J9tT0swnefP8LamdkT4iCMiYOzhs4bhB5jxeOcOdiNnv37rsTrDXNgfw3wUJ8tUlNTeTL1WRAjrsEoooK/Hf0fvrHm5tgBZdT1N5g4+Mxu6QTo2gX5vdytyewcbG55kUCgA602n4tWfp1AYAnhsBePp46UOJ2AMedg6tQVB/NnFCEIArY2K84uB4aMNGoPn6Xm4BkUSgUXf6Jvic1kxGLz0Oronbn2m3fOcMvy4gl1LgOULqhgz6vbqDtSjRgWY3lB8ZCiUVGZZ+SYxc7+Oiv58/UJHzM8PxS/Sg9Vd9xB2HKchx6SBLvxCMU/tUPKQpu5YuiLaIIgUDxnGkWzy6g/VsOOFzZjOd3Agbd2c/j9/cxft4Rl1150QYiEGebVANjthwkEbKjVvTPMfL4WwmEvgqCaksVLiSQcDtNwvBZDmfR74/X0bRlvb38XALP5YuavvZYzzQ20tLaQm5PL5TduwO2eTnPzi7S3v43DeYI0QyVKlVIaH85Op2h23+cNBUM4u+zY27oFQ8uZRuqPnuu1nSiKvPSrp2k0dOH1eQd8HQP9vXbnDV7YZSQ9qZy1lHcNm3A6zUjOvTAGQ2fc2cVTZQ0yE8/ZvScBpsxFWxmZsWLiL/vLTBksNg/ff+lI7N9iRLiy2DyDPi6aO1jdIhU2KBS62LhntJQk6DuDTunlitk56NTdzqW1M7O5YWGBJJK9cJhgKMx4sW+cR4oBzrW7OD93OySK1LS7+n9AgrHZbFgsFiwWCwdOnqOrrYVspZsZhiAWiwW7ffAQ+4kcKwYpoDojI4fendfnoYX9rbt7C4MAQpiDLXv516F/xb4HbW1OnE4zNps+dlvP78HZVicvHWgCeo8UQ7egmGzioCiGqav7KwDFxZ9DqdRiMFQC3Sc/QxEI2PH7JeE4XjFxMqLVa8kqlrI2LafrCYfCfPjU2wAsuHxZnxzCycq5ft5fpPedgd0140X+9CLUOg0eh5u2uuZhP35JaToglZIc2byfR+7+Lc//7O88cvdvObJ5/6jXlwyh+F3NnbTWNiMoBKYvq4z7cYIgUDJ3Gh+/77N89D9vI396EaFAkAObdvHIt3/PB0++hcsqued7fjb09zXUZ0OyotPmkZIyHQjT1bWjz/3RMhKdrnBKFi8lkrbaZnxuL2Gf9NnXn3OwvV0aKc7OugxBENhw5QaysrLYcOUGBEEgNbWCnJyrAaip+UNcz6tUKTFlZ1A8Zxpz1y7iopsuZf0Xr+9XwGuvbyFg8w56iDDQ36tdzhvsg15fwJo1i+k+3VSwZElG3NnFiUCny6es7EivNQwnP1lmalC9Xxr5r1gysXEoMjLJjnwkI5MwzrW7OL8IKnoCOZi7JNpYXNfRDoVS3mAUnTYPnbYQr6+RaaZarl2wps/jv3fdbN4/2cqRRjuPba/l82vGR4yINhVHTy7Hg2lZqSgE+giEj26tYVFxBnrN2J1gnu+AAbghkqn/5GPHgKEdMIHAxI4VC4LAZZddPmhA9bu8iwIFYfoKzWrU7Hh5B/vDUdEgB7iOA/triboQo9+D5/Y3cc9zh2PnGNVtTqqmdYui3eLg+OWdxUNHx2bc7jMolQYKIw3PaYbZ2O0HcDiPk5t73ZD7iLoGtZpcVKqp7S4qmFlMW10Ljafq8Tg9dDS2oUvVs+IjF0/00hJGf+87SkGgLCtl4AeNE0qVkuLZZVTvP0Xt4WpyyoZXTrW4OIO/76jjyOlmDAe2xUQBURR556+vsu2f76PRaVBpVKjUalTayH81qh63qVGpI//WRP9f2gaVEq+QAzQNuIaxDsU/vVMS9UvmTiPFmDrsx0siYTnFc6ZRd6SaHS98QPPZRva/uZPD7+1l7qWL2d10aNBRzPFwR44VZvMq3O4zdHZtISfnyl73ud01gJw3GA/1x2oAMOfMAt7Ec55z0OttwuE8CijIzLwUgPLycu68885e25WV3Ulr62u0tr6Gy/UNUlOH7wJKMxu5bOM1vPvoazHH8eqb1+G2u9m7fTc2nX/Axw709yo3FfdPVdVGDhz4I83NbRgM7ehTqhEjOY/jgc9nwZReh8HQjtOZRV5e9rDyk2UmP9FIAYVSQemC6RO9HBmZpGbyHaXJJC3FGX0FwHhOICvzJXHQ6ZWcBUpl75OXkHoe+BqZm1XDxTOy+jw+J03Hd66u5L4XjvDAppNcPT9vzEfdgqEwB+qtwPg1FQPkm/Tcf9N8vvv8EUKiSPTY6s1jLdz0x208ePtSSjLH5oQ96oDpKQ6ez1AOGL9/oseKowHVWTQ3t3J+QHVubjb7HPv6FQYBAgSwYSOHgZuZjUYjrU4/9z5/uJf54L4XjnDJrO7x7+hYcTBoHdcD5aGoq/8LAIUFt8aEPUPaHCB+56A72lQ8gpO2yUbBzBIOvr2H2sNnY6ObKz66Fp1hYsdtE8n57ztKQeCnN82b8JHiKCXzyyPi4FmWX796WI9dEnn/ttc29esW8thdeOyjc2aLiCgLIKQlWr4avYPMrOwxD8U/tVO6eDOjas6o9iMIAqXzKyiZV95LJDywaRe+IhE0Az92rN2RY4nZvIaGhsfo7NzS5z5PLG+wbJxXNfmoi4zxFlQsogvpsy8YdMQ+Z6IjxSbTkkGPEdIMlWRlXUF7+9vU1v6ROXN+MaL1DNRMuvz61fzh93/A4XH2+XvNze2/xCIcDuJ0SjEBRlkc7IUgCKxffxWvvfYqhYUf4nKdo739HbKzxyd2w+U6iyDArMpmamsqWb/+qqQ53pIZH87uk0aKi2aXodWPTwyUjMxkRRYHZRJGfWfv8eF4TyANWhVlmSnoBCnjRaXs3Xp7vGMa07WwrKCh10hxTz65vITn9jawr87KPc8d4o5LKpiWlTpmJ68nWxy4/SHStCpm5IyvM+rW5SWsnZlNTbubsqwUajvcfPXJfRy32Ln+d1v49ScWsW7WwOLVSBEEgXXr1g3quhvMARMO+wkGbQCo1RMzVgzRgOoSXn6p/bx7FKxcWcbuabtpc3eHVzu8AT7zl134Q2F++fGFVKh0vPnCmwPuf926ddR0uAcY/+520apVkighiiGCQQdq9cQHIzscx+jq2o4gKCku/lzs9jSDJCpET36GwhVxDk7lMpIoBTOlcfFoS2ZGfibz1029LKPz33eSRRi02Wyk5KUR1IjU19VTe64Wja5bpRqq7KMsMwWzXsni1r4jyYIgcMPdn0Cj1xD0Bwj6g9JXIPr/Pf4bCMb+v8vu4URDFzanD5UYRqcQMXmCOHXnRWwIsGzuwjE9UW1vaKWjsQ2FUsH0pfGPFA9GT5Gw9nA1O17YTIOlEVf+wLOYY+2OHEsy0lcgCEo8njo8nnr0+u6ICLenBoAUuYxkUIL+IE2npDHi0jlzcJxNJxi04vE0kJYmBQW2tUuRDNlZlw+5v7Kyf6e9/W2aW15i2rSv9/qZDIf+mkl1Bj0XVa1k0wdv995YgEWV8/v9PXa7zxIOe1EqDXIxTT+Ul5fz1a9+jTNnvdTW/olzNb8jK+vycXlPcLnPAFBSksV11945xNYyU5HqfdGR4lkTvBIZmeRHFgdlEsYrh6WijOsX5HPbitJhnUDOLTDR0iqJg8oeY8XhsMhrJ7P4+gLI0p5GFEMIQl+BUKEQ+OlN87nm/z5k86l2Np9qRyEwZk2++yIjxYtK0lEOIwA/UeSb9LHvbb5Jzytfu5ivPLGX/XVWPv/obu6+YiZ3rpuOIsFrq6ioIDs3j5bmZnruOixCbl7eoA6Y7vFZRcw1N1EMFlCt1xdQbOp9onHLQh3/2NvAntPp3HbLQg5u30dzcwvnOw/z8iRXgbar73jd+S5apVKLUplCKOQmEOhKCnGwrk5yDeZkX41O153HYzDMAhT4/e34fK1otYOLz+5IU3FqytR3DtYcOtPr3yXzylGqJqdDaih6vu8kA72iDooAwjz62KO9thlqnFUQBK7xtZAd8oJKhRAKSU5ehcBln7uGsgXxC9xtDh+/eusUz1TXEdYa0KQo2Li6jH9fNx3B7eY3D/yakAbJjSSC0g9zFoyty+h0xDVYtmA62lRdQvctCAJlCyoonV9OzcEzPPPCP/AJgbjdVpMFlcqA0bgIm20vnZ1bKSz8ROw+eaw4PixnGwgFgqSmGzAXZKFvKsLhsOL11pOWNptg0BHLdMzKGtpRZjIuxJyxhs6uLdTWPkhl5Y8Tut65C+bxzltvx/332j1SPAdBkOPcB6Kk+PPU1z+Kw3GYzs4PycxcO+bP2X08Mnnfg2RGjsvmxHJWijAoXzxjglcjI5P8yJ9gMgkhGArz5hHJefHxZcVcVJE5rJPIOQVG9Kqoc7B7rHhfXReHmrPwBHUIohun8+SA+zDp1b0yD8Mi3PPcYX777mnePtbCcYsdmycwzFfWP7G8wXEsIxmMPJOOp7+0kk+tKEEU4YG3TvGlx/di9ybm9UYRBIH82Us5X3NUCFA8d/mgV4G7R4rNE37w3F9I9sKF2gEDqm9fKTkBXj1kocsdYNmybPq+fSpYsaIEQRD48HRHr3sGctGqlJLrNHpleyLxei20tL4CQEnJF3rdp1TqSYkIfQ7nsSH3FXMOTuGmYgBHp513H3mt122H3tmDo3Nyli9MNhJR9nF693GyGyVHk2XhYjb+6mt87J7b2fjA15h3yeK41uENhPjj+2dZ98v3eWpXHWERrp6Xx1t3r+Xea2Zj0qsxZppYuXxlt3AmwMrlKzFmDr7+0SCKIid3RluKRzdSPBiCIDBt0QwuuWRtb2EQBnVbTSbMZinvuLNra+w2UQzj8dQByG6xIYg2AxfNLkMQBPR66aJtNHewo3MLohggJWVa3BmCZWWSC6zJ8hxeryWh6+3v7zVLNA3499qzqVhmYDSaTAoLbwPgXM3vEM8PKh8DXJGYk9RUWRi6EDm3/zSIkDMtH4N54i/Cy8gkO7I4KJMQdp3rpMPlJz1FzUUVw8+Tm5NvRKf0AaBUdYuDrxyyIKLAGZas4Fbb3gH3ca7d1ScySgQe2HSKLz62h6v/70MW/mAT8//7Ta783w/Y+MguvvfiYf7w/hleOtDInppOmqyeuBqPd9ZIQte0rOGHu48VWpWSn3x0Pj//2AI0KgVvH2/hI7/byqkWR0Kf55wvjbZwSmxsNixCeziFpfMHH1nzR8pIJnKkuCdVVRvJy8sGwGBoR6l6E6+3/9KAhcXpLCgy4Q+FeXZ3HQrlJgyGdohlE4YxGNqZNWsJbn+Q/31bGmH4xuUzeOrfVrLlnnV9HKxNTc/i87cAcOjQHTQ1PTsmrzNeGhoeQxSDpKdXYTQu6HN/WiR30OkYXBwMhwOxE+ap7hy0tnT2ObkRwyK2ls4JWtGFRTTqYDAGG2e1tXbx9l8kQXx3ag5bPGrSzEaKZpf1GTXsD1EUeeVQE1f8ajP/88YJnL4g8wtNPPOllfzx9qWUZvb+fLj8xg3kZEnvOUovLFu9PJ6XOWJaa5qxtXSh0qiYtnjsGxrnLpyP0kd3dqMISt/YuyPHA3PGKgC6urYjitL7vs/XQjjsRRBU6HRFE7m8pCdaRlIyVyqM00e+X9HG4vbISHFWHCPFUTIyqkg3LUcU/dTV/TmBq5W4/MYN5ObkAtLfq7fJQWfT+XEkErGmYoMsDg5FackXUSg02Gx7sVp3jvnzuVzSxdepfrFSpn9iLcXj8BkoIzMVGPZYcVfXLurqHsbuOILf38qC+X8kO3tD7H5RFKk+92uamp4hGLRjMi2lctYPSUnpbpC1O45w9szPsTsOAUpycq5kxvT7UKkGFlqOHfsPLM3P97rNbL6YxYseHe5LkBkDoiPFV87JQ60cvuY8t8CILuIcRJB+D8JhkdePSPvNNi8H50Fstr0UF326333016gpAGtnZtHpCtBo9dDp8uPwBTnZ4uDkAKKZUiGQZ9RRmK6nIF1HYYaegnTpqyhdz1vHWrBYpbXe/ewBfMHQmIwuj5RblhdTmZ/GV/6+j3PtLm78/VZ+cfNCrl0wvBbP/rB5Ajy2o5aUQCFXak8DkmtwUdUaCtIHL0IJ+CNNxRNYRtKTaEj266+/TkVFLeGwmxMn/4uFCx7uV0y4fUUp/9lwiMNnnmFG+buUlhVw9Eh0/EnBmjWL0esL+M07p2lz+Cg26/nKugq0/YyYer0Wjp+4r8ctIsdP3IfZfDE63eh/TkNhs9l6NYsGg25OnHyNUMhMft6t2O32PjltaYbZtLS8jGOI3EGvtwFRDKBUpqDV5o3J+pOF9FwzgiD0EggFhYApNzkE8AuBiooKcnNyaWlpGdY4azAQ5LU/PI/f4yOnopDt7mxCXR5aHV5y0oYevz1Qb+XHrxxjT8RFnmvU8p9XVvLRxYUDxjkIgsCVV1/FM48/jborRP3Rc6TnjN3vyqmIa3Dawhm9chjHiqjbaushaTx0PNyR44XRuBCl0kAg0IXDcRSjcX6sjESnK0KhkFN6BsLn9tJSLV14K55TBoAukhHo9TQQDgdpb38fiG+kuCdlZXdy4ODnaGx6mrKyr6DR9C2tGymCILDhyg28/vrrZHhSaGtq5NC7e7n09t6N1aIYxhlx1KcZJ78QPtZotbnk599CY+PfOVfzOzIyVo7Zc/n9nQQC0sW6qX6xUqYvfq+fuqPSJEv5UjlvUEYmHoZ9NBMKuzEYKskvuJnDh/+9z/21dQ/R0PA35sz+BTp9MdXV/8v+AxtZueJNlEotPl8L+/d/htzca5k58/8RCjk5dfpHHDv+nyyY//tBnzvTvJbZs38e+7dCMfYHuzJD03OkeKQCVHaaFrNeGoG1edUA7K3rosXuI02nYt601Rw5/Gds1oGdgwM1avYU7jz+EI1WD02Rr8bIV/T/LVYvwbAYu30owiJ89/kjrJ2ZnVRZXAuK0nn5q6v5+tP72Xqmgzuf3MehhnL+48pZqEYg3kb5w/tnsLoDZGcXkJVip721hezcPD5/9dAHd/7IAZpGnRziIEgh2XfeeScu1xl27tpOR8d7tLa+Sm7udX22vX5hAX945wOuLpEKWZYsvoWOdiXNzW3k5WVTVbWRdqePBzdLIyz/cWVlv8IgREPsz3eohvF4asdcHOyV09aLywA4sP8gBsPZPjlt8TYWuyL5Pikp0yZ8fHysSTMbuWzjNbz76GuI4e6cunhcZzKJQRAEFlbOZ1Nry3l3QGXxjAFdg1ufeYfWcxZ0qXquu/MmHn3sICdbHOyvs3Ll3IFF7Sarh5+/cYIXD0hih06t4I61FdxxSTkpmqEPqcrLy7l80cVsr95M7eFq5q9bGv+LHQZiWOT0LkmwmLly/NxMl9+4gUOnjuDwOklR6rj8xg1DP2gSoFCoychYQXv7O3R2bcNonN8jb1AeKR6MxhN1iKJIeq6ZtIhQ3NM5aLPtIxi0olZnYDLGN8ofxWxegzFtAXbHIerqH2F6xX8kdO3RY4Taw2d58fBTHN9yiFU3r+sltrvdNYRCbhQKnSxAxUlZ6R00NT1NV9d2rLa9pJvG5n0wOlKs0xWiVA5+AVtm6lF3pJpQIIQpO53MwuyJXo6MzKRg2OJgVualZGVe2u99oihSX/8IZWV3kp29HoC5c37Jh1uqaGvfRF7u9bS3v4sgqJg18wexE8fKWT9m565rcLtrBg11FhQatFr5jzvZGO1IMUgneLlpkljS7pJ+LV89JLkG18/JJTNjOqDA62vC67UMKKAM1aip1yiZnmNgeo6h38eHwiJtDl8vwbDJ6qGxS/r/ug4X7kBvUef8FtpkIdOg5W8bq/jFppM8uLmaBz+o5nCjjd9+cjGZBu2w99fQ5eaRrTUA3HvtbMo0Jbz++utctWF9XHlS/ohzUK1JPldVaup0ysq+wrlz/8fJUz/EbL4Ytbq320WrErlr6VPolT5avbO4bNq/s359La+//jrr11+FIAj89p3TuPwh5heauG7+wCJfir6MaBFKN8K45FZFc9r6ioPd9JfTlmaQGiU9nlqCQScqVf9/Q253VBy8MEZ45l2ymNL5FdhaOjHlmmVhcALotzzAB4de2InGq2DZtavQ6Lvf887sOcGBt3YDsP5LN5CWaWJJafqg4qDLF+TBzWd56MNqvJHPgJuWFPKfV1aSZxpe0UfJvHK2P7+Z+mM1hIKhMSmwsZxtwNFhR6PTDKtUZbQIgsCyeYvZvO1DsnTGSZ812BNzxmpJHOzcQlnpHbGmYr2+bELXlezUHZPyBovndk8QRduFPZ6G2EhxZualw3ZgCoJAWdmdHDp8Bw0Nj1Na8m9jUnhWMrccU24GtpYuTu04wrxLuxvpHbGR4tn9FubJ9EWnKyA/7yaaLM9SU/N7Fi3865g8jzsyUiyXkVyYVO+TcurLl8yaUp9FMjJjSUJtHV5vPX5/G+aM1bHbVKq0SMvbfgDCYT8KhbqXo0ShkA7arbY9g+7fat3JBx8uZ/uOKzhx8vs92k/74vP5sNvtsS+n0zmalyYzCKMdKY6SlRoCoMkuEAqLvBbZ73UL8lGpDDFxwjZI7iBIDsLhFqJEUSoE8kw6lpZmcP3CAr58SQU//Mg8/vK55bzxjbW88+1L+5RxnN9Cm0yolAruvXo2f/jUElI0Srad7eD6327hUIN12Pv61aZT+INhVpabWTcrJ3ZFvbw8vivlsbHiJHIO9qSs9A5SUqYTCHRw5szP+txfW/snjMrjeIJafrX7EzR0+Xp9D861u3hip5S1d+/VlYM2Ret0+cyu/AnnvwUHg4nNh+yPkea0aTSZsTFhp/PEgI+NlpFcSA6K4eTUySSefssDMCEGw+z+11b+9p0/cmTzfuztVk5sP8ymh18GYMnVKylfNAPq61nnamBu8xm6tuyAfftiX+E9e3nl1V2s++X7/ObdM3gDYZaXZfDyV1fzq1sWDVsYBCkYXZeqx+/xxcYtE82pSEtx+ZJZqDTqMXmOgZg5uxJjg5JQu29cn3esiZaS2Gx7CIW8sbHiFLmMZFCiZSTRkWKQxCEQCIc9WJpfBIaXN9iTrKzLMBgqCYVc1Dc8NsrV9o+gEFgQcfkeemdvryiJmDgojxQPi9LSLyMISjo6NmO3HxqT55DLSC5cwqEw5w5I4nD5EjlvUEYmXhIqDvr8bQB9Mj80miz8kfsyMi7C72+ntvYhwmE/gYCNM2d/AYDf1zbgvs2Za5kz+5csWfx3plf8J11duzhw4POIYqjf7e+//35MJlPsq6qqKhEvccKx2DxsO9uOxTb0yOt4kIiR4igmnR+AeqvAnppOWh3SSPGa6ZJb1JQuXakdrJRkrImOLisjwslALbTJxjXz83npztWUZ6XSZPNy85+28+zu+rgff6TRxgsHGgG475o5I7oCFxsrTpLMwfNRKLTMrvwJPl8Kp06/zcmTm7BYLFgsFk6f3szhw4/jdJrZ3fI52jyZPLWrrtfjf/nmSYJhkUtnZbNq+tC5RwUFt7B61QcsWfwEZvNaQOTUqR+MS3tfRUVFpIyl72hzXl72gDltaYbIaPEgjcXu6FixHP4tM470LA/IzcnlSz/5Otd9/eOYcjNw25y889dXeeRbv+PNP71EwOvHmJ3OqpvXgc8Hy5ez4TPX8urfvsH//HQjLF0a+1IsX0bVrVdh7XJSbNbzx08t4dk7LmJBUfqI16pQKCiZJ7moao+cTcTL70U4HOb0LikbdCxbigfClJMOgMvqJOALjPvzjxUpKeVotXmEw36stj09xorLJnRdyYzLGinxEKB4dhkgZd62tHTi803H6TTT1SXicubi983EYrFgtw+v7V0QFJSVSjFH9fWPjtlFttkXL0CpVtFW10Lz2cbY7bGmYoMsDg6HlJRScnOvB6Cm5g9j8hxyGcmFS9OpOrwuDzqDnoIZxRO9HBmZScO4JygbDDOZM/sXnD7zE85W/xJQUlz8GUlQHCSfKi/yASLtYxYGQyXbtq+jq2sHZvPqPtvfe++93H333bF/nzx5ctILhA9/UM1PXzuOiFQCcf9N8ye8CCMRI8VRUtV+fAGo6YB/HZLcFBvm5KFRSb8XJtNSGhoeH9I5ONYMNbqcrMzITePFr67mW88e5K1jLfznc4c40GDlv6+fM2A2HkhxAfe/fhxRhI8sKmB+0cjC5ZN5rDiKwbCIQ4c+hs8rcGD/dmB7j3uvAUCrBQVhnt1Tz11XzECrUrK/rotXD1sQBPjOVYO3NvdEp8uPfBWxY+cGuqw7aG19jdzcaxP7ws5DEASqVhTz8kvnX5BRsGJFyYDiryFtNu0d7+IYoLFYFMUezkH5YFxm/OhZHrDhyg0oFAoqls6ibOF0dr28hV0vfdhre0e7DbfdRVpGGpSUILa1IYT7NtWHEWg1ZfOt6+bxuTXTBn2vHA4l88o5tfMYtYerueimSxOyzyiNJ+tw25xoU3WUzBt/B68uVY9Gr8Xv8WFvt06ZrCdBEDBnrMbS/BydnR/GWtnlseKBqT9aA0BOSR46g/68zNuLem27f//fATAYDH0yb4ciJ+cqUs6V43ZX09D4JGWldyTqJcTQG1KYuWIOx7cc4tA7e8mfXoQoitgdhwGpaENmeJSV/jvNzS/R1v4WDucJ0gzxHz/Fg0seK75gObtPaimetmgGilFMtcnIXGgk9K9Fq5EOAP3+9l63+/3taDTdB4d5eTdw8ZqdrF69jbUX76F82l34/Z2xDJJ40OtLUKvNuCNjHX3WotViNBpjXwZD//lYkwWLzcNPX5eEQeguwphoB+GrCRopBlArpPZUu0/NP/Y0ANJIcZRoYLHTeYJgcOC8tPFgNKPLE4lRp+bB25fy7Q0zEQR4cmcdtz64Y9Dfo82n2th6pgONUsG3N4y87SvZx4pByuMzZ+QBA7v3sszpZKfpaHf6eeNIc0Q8lcZsb1pcxOz84Y+W6vVFlJZ+BYDTZ346Lr/flbOWYjC00+0eDGMwtDNr1pIBH5NmkIoNnAM4BwOBDoJBG+OVnygj05P+og6UKiVFs/v+LoqiiK2lEwQBfvSjfoVBAAUiJb9/gDsunZ4wYRCgNCLatZxrwuN0D7H18Dj6vhTjUjq/fEzyDIdCEARM2ekA2Nqs4/78Y0n0YnRL878Ih70IggqdrnCCV5W8nJ83GM28HYz+Mm+HQhCUlJV+WXrOuj8TCo3NsfGCy6Tj0NO7juFxuKmp/ROhkPR5feDg52lqenZMnneqkppaQU7O1UDi3YPBoAufzxJ5nukJ3bdMciOKItX7JXGwfLE8UiwjMxwSKg7qdMVoNNl0dm2L3RYMOrDbD2Ay9W0g02qyUKlSaWl5FYVCizljTdzP5fVaCAS60GpyErL2ZOdcu4vzpw2jRRgTRTAU5o3ISPE1oxwpBmIHWN6QDl8wjFGnYnWP8UydrgCtNh9RDGG3Hxz1812oKBQCX71sBo9urMKkV3Og3sr1v93CjuqOPtuGwiL3vyYJX59dVUqxeeTZisk+VgzSSe1ll11Bd3hZXy677DJuW1EGwJ/f3Mdnv/ofbDt8Bo1Kwbc2jPwgpLTk39DpivH5mqmp/eOI9xMven0Bc+Z66P4YULBmzWL0+oIBH5OWJuV+Op2nCYf7jgu6XJJrUKcrQqkcfhabjMxYkJ5r7uOGFRQCptyIi3nDBvyLlxI8b3ohKCjwL16K8SOJd/IazEbJUSd2Z7IlgsPv7ePkDmnM8dTOYxzZvD9h+x4OxpwMAOytA2dDTzZsNhs+/0ycTjMdnQGcTjN+fyUtLW0jGoed6oiiSO0R6TMhq1g6Vh9p5m085ObegE5XRCDQSVPTM8NfcDzPUV5ATlk+oWCIIx++S3X1Az3uDXP8xH14vZYxee6pSlnZnQC0tr6Gy5W4mIVoOZpanTkmJTUyyUtHQxv2NitKtYrS+RdO/rWMTCIYtjgYDLpwOI7Fxso8ngYcjmN4vU0IgkBx8UZqan5PW9vbOJ0nOXrs22g0uWRnbYjto77hMeyOI7jd56hveJyTp/4f0yu+jVrd7bjZvmM9rW1vxp7z9Jn7sdn24/E00Nm5lUOH70CvLyUz8+LRfg8mBdOyUpOuCKPnSPGqUY4UAzG3lCcoiQoXz8iKjRRHiboHm5tflA/ARsklM7P511fXMDvfSLvTz6f+vJO/bDnXK/Puub0NnGxxYNSpuHPdyK+8hkJeQiGpFEidxM5BiC+P7xNVxSgVAnuOV/P4Hx4g5Oxk4+oyCtJH7iRVKnXMnPE9QHI+uN2JEwwGIiOjJeIehLy8bKqqNg66vU5XjFJpQBT9saDvnrhj4d/ywZhM8pBmNnLZxmsQIh+igkLgss9d010gIwic+dp/ohJ7/82rxDBnvvYdyV04BpRETlqiAspocXTaefdvr3XfIMK7j76Go3P8Raup5hyMjsM++sizHNh/Xexr544lPPTQQzz00EM8/PDDBIPBiV5q0rD7X1txW6XP/U0PvRwTqkeaeTsUCoWa0sg4cW3dw4TDiS/EEQSBBZdLx6FnDnxI3ymDcKyoRiY+0gyVZGVdAYjU1CbOPRgVGmXX4IXH2UhLccncaai1mglejYzM5GLY4qDDcZhdu69n124pA/D0mZ+wa/f1VFf/LwClJV+iqOgznDh5H7v33Ego5GbxokdQKrWxfdjtB9m//7Ps2HkNTU1PUznrxxQXf67X87jd1bFQYUFQ4nSe5OChL7F9xxUcP3EvaWnzWLr0mVjT8VQn36Tne9d2B4srBCa8CCORI8VATDzyBqWf6WtHmnlmd+/Sh+hJmqX5ObZuWyuPcIySkswUnv/KKj66uJBQWORHrxzjrqcP4PYHOdfm4v7XpVD7r102g/SUkX/ABiKuQUFQo1KlJWTtY0U0j6/v22N3Hl+uUcec/N6vI884eqdcVtblZGZegigGOHXqh2NaThIMunC5TlBWtp/MzHTWr79qSLeGIAikpUnvQ85ICHtPonmDKXK+j0ySMe+SxWx84Gt87J7b2fjA15h3Se9phoyPXsfBvBkx92BQUHAwbwYZHx27/M/oaHHd4eqE/K1bWzr7aBViODI+Pc6YsiPOwSkiDo7VOOxUxdFpZ/tz78f+LYpiTKiO5zN2pBTkfwytJhefrxmL5fkR72cwZq6YizZFR2d9f8e9CjlSYwRMi7gHW1r+hdudGHG1u6lYFgcvNKojeYNyS7GMzPAZdiFJRsZKLr9sYNu3IAhUlH+TivJvDrjN3DkPDHhflJ7PoVTqWLzo0WGtcyrymYtK+eErkmPz1a9fPKJss0SR6JHicDgYu8rrjTgHxUiu4tqZ2eSb9Hi9FlpaXun5KI6fuA+z+WJ0utGv4UJFr1Hyq1sWsrDIxI9fPc7LB5vYda6DZruv1zajIVpGotFkjurAf7yonLWUdw2bcDrNSCcwYQyGzlgen8Xm4UhTbzfOj185zlXz8kYl2AuCwMwZ32dH53Y6Oj+gvf0dsrOvGMUrGRi74xAQJjdP5GMfuyvux6UZ5mC17sLhPM75f3Ux52CK7ByUST7SzMZut+B55KencOre76O66zOA5Bq03vv9/9/efce3VtePH3+dJM1o06R73fa2t72jvXtP4C7oZQuooOIAFVBR+Ypfv4qioP4QF+IegIAoKKBM2XDh3gtcuHD33r2993avpCOjSc7vjzTp3mkz+n4+Hn1AT04++fQmbZJ33oN5SWOXnT9pxmS0cTpaGptpOFtHau7oBnckBcqku+hWPj2OAhOLbbWxUVYcKId99NFH+z1npOWwsaipj4B0IFCdmGIZ9Dl2pDQaA5Pzb+Do0f9H2ak/k539MTSauFGt2VOcIY4py2aw751deJwp6IyBn1VDdvb/0dgICQl2LJbwvUaPNhbLXFJTzqO+YTOnTv2ZkpK7R71ma+tRQIaRTDTNDXZqyipB8Q8jEUIMj4zviSI6rQazwR/PNcaF99PpUJcUB/oNgr/nYPB4l76KbY4ypIRjbCiKwnWrpvDPG5eTkqDvFhgEuOPZ/aMafuNu75hUHBe5k4q7MplyOOecBfTXj28se4DGx09h8uQvAHDk6P/D63WOes2+2G3+Ei+rdXhvxswdfQf7mljc1uovhZbMQRGNVn/t07gX+EsG3QsWsfprnx7T29Pp48gtngzAqX2j77UVb0lA0XYGp3qVT48jS0fmoK2maUwzoMfTWJXDxiJvu7fXsa6B6sGeY0djUs4niItLwek8Q3X186NeryePx8OemoO05PrwKv7n52NHl7Ht/St58okKKTEfoYIpXwWgsuppnM6KUa/XJpmDE9KBt/cAkJGfRYI1uoeRChEOEhyMMlaT/xNQu6P3MIDxFOqSYo/HX1Lc7tXhVTsDn137KsabCuirDEVKOEJnSUEKP/7IrF7HRxv4au+SORgtli69vuONYO9+fGPdA3RKwVcwGLJwOk9zqvz+kKzZky0QHLT0HhY1kK4Ti7u+6fd6XTicpwHpOSiilKKg//lPoaTE/99xyAKb3FFafGrv6PsONpytRfWqxBn1XPXtvsunx0tiqgUU8LjbabOP/fT18TCW5bCxJtDzK6CvQPVAz7GjodWamDz5iwCUnfoTqto7UDm69bUkJSejKF70ev/rorq6fNzuhOA5UmI+fEnWRSQnLUdV2zl16r5RreXzuXE4/G2J4hMkaD9R7Nu0k/c62hnUlFWFbSCXENFMgoNRJtHozxy0hTE46PH6eGV/6EqKobPfoFZnRtvxAlurKN36KhqN2ZQU30XXh63JlIfBkBmSPQi/hfnJIQ98BScVR/gwkq4UReGCCy4kLS2tVz++bKuJu6+a0+9jdbS02nimTf0uAKdO/QmH40xI1g1QVRWbfRdAn5PkB5KQUISixOHxNON0du7L0ZHZq9NZI37ojBD9Ov98OHDA/99xkD/b/8b17OFyPO7RPa9Xn/Rn22QV5pA3syAsGYMBujgd5mT/7Q+372Bzg53TB8vCMkhlMMUzFnUMcQpkD/owm+tGXQ4bS9wOF4e37gPgoq9c2W+fz4GeY0crd9Kn0OmstLWdoKbm5ZCtC50l5kZjC4oCHo8Oj6d7//OlS5dSVVVFZWVln18y2bpvgezBisrHcblqRrxOW1sZqupFqzVj0Mt7hImgucHOxode7HYsXAO5hIhmw+45KMIrmDnoDF9wcNvJBupaQldSDODpCA4mGCy8/Z21lNW1UZAW3yvYkpNzNSkp52Kz7eDAwf/D4ThFZeW/ycm5OiT7EJ2Br+8+tQ+vqoYk8BXoORinj46y4oDCwkJuvvnmPi+7Zslkkq5bzIUPw1+vW8yGJZNDetsZGReTfPYxGpve4+ixu5g7508hW9vhKKO9vQFF0QcHjAyVRqPHnDCd5pb9NLccwGTKA7o0/44vlAwaIYYoZVIa5uREWhqbOXu4nPw5I89yqT7pz+jPmDL60sxQsGYk0dJgx1bTSPbU3CFdZ9+mnWx86EVUVUVRFNZdf3HYsh/7EiiHffnl0x1HQlcOGysOv7ePdqeb5OxUpi2dOeDzwUDPsaOh0yWSl/s5Tpb9lrJTfyQj4+KQPi8VFRWRlel/C+VyJgIda6uQkZHBa6+9Rmtr/xmzZrOZW265BZ1O3oZ1lZy0HKt1ITbbDsrLH2DatO+OaJ2uw0jk9cjE0FTd0KuFRdc+p0KIoZHMwShj6QgOhjNzMNQlxQBej/9FlFaXQLbVxIqi1H6DUUZjNpmZl1BUeCsAR4/9LBh8EqFxzZLJvP2dtfzzhuW8/Z21XDPKwFewrDjGMsrmTp/CHXfcwdzpU0K+tqIoTJ9+B4qipbb2VerrN4ds7UBJsSVx1ogmvvfVd7Ct1f9iXEp4hBg6RVGYPKejtHjf6EqLazqCg5lTImNAV2BisW2ImYOBzI/AG7yuE24jyViVw8YCVVXZ+6b/+WX2mgVhDczk5X0OrTaBlpZD1NVvDOnaiqJQkOcvI3Y6u/Q1UyDfkjPoMBIpO+6boihMKfBnD545+9iIX9u3tR4DZBjJRBJJA7mEiGYSHIwynT0Hw9PoeCxKiv3r+oODOu3Qm8fm5n4Os3kmHk8TR4+NfrKZ6G6wIO1wBMuKo6jn4FBkZ2dz5513kp09Nm/Gzebp5OZ+DoAjR3+Ez+cOybo2+8iGkQQkmv3Zhi0tB4PHWtv8gQ2ZVCzE8ARKi8tH0XfQ4/ZQd8Zfhhc5wcEkAGw1Q5tYPFDmRyQZy3LYaFd9ooLaU1Vo47SUnDM3rHuJi0sid5J/qFBZ2R9CPhgnJd2/XjA4qILWCUde24PrYNOA15XJ1v1LSTmPxMQ5+HwOyk8/NKI1WgPBQfmwcsLwebv3Fg3nQC4hopkEB6OMxRjezMGxKCkG8HoCPQcTBjmzk0ajo7j4/wEKVVVP09Dwbsj2I0IrWsuKI0HhlK+j16fR1naS0yN8odyTbYSTigPMHaXIzc37g8cCkwFlUrEQw5M3qwAUqD9bO+IsubrT1fi8PkyJ8SSmWkO7wRGyZPgzB4faczApM6VXwERRIjPzI1AOW1goH4Z0tfetHQBMW1KCyRyaAV2jMXny59FojNjtu2lofCeka/uoBsDpTPQfUCAvMZv4xAS8DS60TqBnPFKFzIxMmWw9AH/2oL/U/MyZv9Pe3jTsNQJlxfEyqXjCOPj2XgCyp+f12+dUCDE4CQ5GGYvJ358kXD0Hx6KkGDp7Dmq1Qw8OAlgt84KfDB8+8gN8PlfI9iRCJ1bLiseDTpfI1KLvAHCy7Pc4XVWjWs/jaaGlxT9JcrjDSAISzcUAuFxVuN0NqKqP1taOzEH5pF6IYTGZ48ns6BNYPsLS4uqyjn6DBdkRk5EUzBysHVrmYGKKhVXXrOt2LDUvQzI/ooSr1cmR9/ytJuasXRTm3fjp9WlMyvkE4M8eDKXAoDCj0d93NzMjk8/edgNf+PUtXHHrJ8lLzA62IgxSYH7xnIj5HY1UaWnrMZuL8XpbOH3mkWFdV1W9tAUrGeT1yESgqiqH3tkDwNw1C8ktCe9ALiGimQQHo4w1jD0Hx6qkGDp7Dup0Qy8rDigq+iZ6fQZtbScpO/WXkO5LjJ6qqjFbVjxesrKuwGpdhNfbxrFjPx3VWnb7HsCH0ZAz4knfOl0iJpO/D2VLy0Fcrip8PgeKEofROLTBA0KITvkdfQdHGhwM9hssjIySYgBrR+ZgS2MzHvfQWqGk5Ph7+elN/l6odeXVNFTUjc0GRUgdencvHnc7qZPSyZ4WOc8Dkyd/EUXR09S0jcbGbSFZU1VVHI5yAJYuvYi0tDRKN5SiKApanZaCeVO58qZr0LrozB5UQeuCmXNnh2QPsUxRNBTkfwWA06cfwuNpHvJ1nc6z+HwuNBp9cGCaiG0VR09jq20izqinaPGMcG9HiKgmwcEoEygrtochODhWJcXQmTk4nJ6DATpdItOn3Q5AWdmfghlMIjJ4vW34fE4A4uIirzwsGiiKwozpdwIaqqufp7Hx/RGvFeg3aBlh1mCAuaPvYHPLgWC/QZMpH40mblTrCjERBfsO7juJz+cb9vUDk4ozCyJnaq4pMZ44Qxyo0FxvG9J1asv9H0BOmT+NwoXTAdj+4tYx26MIDVVVgyXFs9cujKjMOKMxm5zsjwJQduqPIVnT42nC2/G6ddq0FX2WmFtSrSxfvLwze1CB5UuWY4mQsv9Il5FxIfHxRXg8ds6c+ceQr9caGI4WX4iiyNCXieDg2/6swWlLSogz6MO8GyGimwQHo0znQJLxDw6OVUkxgNcbmFY8/OAgQEbGxaSmnIequjl46Ns0NLyL01kZyi2KEWpv95cUazRGtNrw9yCKVomJM5k06VMAHD5yJz7fyIYS2Wz+N3AjLSnuuh+AluaDwUnFCQnSf0uIkcgszEFvMuBsdQSzAIeq3eWm4WwtABkRMowE/B9qWIY5sbj2lL+PW/rkTBZfshLwZ6S1RNjEYtFd5bEz1J+pRafXUbJyTri300t+/k0oipaGhi0d2fOj43CcBkCvz0CrNfZ73vorS9H7/O2AkhOTWH9F6ahve6JQFC0F+V8GoPz0g3i9bUO6XmubfxiJ9D+eGDzudo5u8w/HK1kVeX97hIg2EhyMMpZAcNA5vtOKvT51zEqKwd8HDUA3zJ6DAYqiMGPGj1AUHTbbDnbu+gzvvHseFRVPhHKbYgTc7s6S4kjKJohGRYXfIC4umdbWI5w9O/RP0gNUVcVm2wWMfBhJQGKXzMG2tpOA/5N6IcTwaXVa8mYWALD3ze3DGkxSe6oaVVVJSErEnJw4RjscGWtGEjD0voOBzMH0/Eyyp+aSMz0Pn9fHzldDUw4qxsbejf4PnaYvm4Uhof9gWbiYTHlkZl4OwMkQ9B4MBAcHK1tVFIUpyXlo3DAjZ6q8BhqmzMzLMJkm097ewNmz/xzSdTonFcswkong+I4juB0uEtOsTJqRH+7tCBH1JDgYZcLVc/D9k/VjVlIMXTIHRxgcBFAUHaradZS9j4OHvicZhGHm7sgclJLi0YuLS6Ko8H8BOH7iXlzu4fXiams7icfThEZjINFcMqq9BDIHW1uP09zin1qcIMFBIUYszuB/fj+wZQ8P3fo79m3aOaTrBYaRZEZQ1mCAtSNz0F7TNOi5bocLW7U/iJg+OQsgmD24780duFqdY7NJMSrOFgdHPwgMIhndh05jyZ+FplBX9zrNLYdGtdZQg4P+283HckaLtq3n6GIxGI1GF8wePFV+P17v4EMHA2XFMoxkYgiUFJesmoOikeC7EKMlwcEoE5xW7GhHVcfvhcYLe8aupBi6ZA6OsKwYoM1RRmfn5wAfDsepEa8pRi84qViGkYRETs7HSUycg9fbwvHjvxjWdW12f3ZHYuJsNJrR9WXR6zM6Ar6+YKmylPEIMTLNDXYOb90f/F5VVTY+/OKQMghrTlYAkVVSHDCcicV1p2sAMKckYkr0t6AomDeV1Nx03E43ezZuH7N9ipE78PYevO1e0idnklkYOT0ve0pIKCIj4yIAyspG13vQ4ewIDhoHDw4mZ6cB0FhZP6rbnKiysq7AaMjB7a6lonLgaiBVVWlrk8zBiaKlsTk4xKtk1dww70aI2CDBwSgTyBz0+FTa3N5Bzg6NsS4pBoKNnUeTORhvKqCvh7TTWT3iNcXoBcuK4yQ4GAqKou0YTgKVlf/GZhtadhEQPHe0/QZtNhtVVVV4vQtoaUkJftntCVRWVmK3S38wIYajqbqh1wd+qk/FVt0w6HU7h5FEXnDQkjH0noO15YF+g1nBY4qisOjiFQDsem3bkKcei/Ghqir7InQQSV8KCm4GoKbmxVENr3MOI3MwJdv/2keCgyOj0ejJz78JgFOn/oLP5+73XLe7tmOysYb4+ILx2aAIm8Nb96GqKtlTc0nKlOokIUJBgoNRxhSnRdeRNm13jk9p8ViXFAN4PKMbSAL+iXQlxXfR82F98ND/UVX17Gi2J0YhWFaslyfuULFa55Od/XHAP5ykezl9/+yB4KBl5KVfHo+H+++/n/vuu4/Nmyaxa+elwa8HH3yM++67j/vvvx+PR97ECzFUSZkpvQIrikbBOsgbHpfDFQw6RHLmoL2mcdBqh2C/wcmZ3Y5PXzYLc4qFNlsrB9/ZPSb7FCNz9nA5jZX1xBnimLFidri3M6hEczFpaecDKqdO/WnE6wQyB42myYOem5Tl/x12NLfhaB7aUA3RXXb2x9HrM3C5Kqmserrf8wL9Bk2myWg0hvHanggDVVU7S4rPkaxBIUJFgoNRRlGUce87ONYlxdDZc1CnHXlwECAn52pWrdzMwgWPsmL5m2RmXoaqeth/4FZOlT8Qiq2KYZKy4rExteh/0ekSaW7eN6TBOx5PMy2tR4DRZQ5qtVqsVuuA51gsFrRa7YhvQ4iJJjHFwrrrL+4WIDzv2lISUywDXq+2o99gYpqVeMvIM+/HiiXN/7fC7XTjbHEMeG4gczCtR3BQq9Oy8MJlAGx/6T18Pt8Y7FQMV3ODnfef3gzAjBWzMZiiIxhTUPAVAKqqnw32DhwOn8+D0+kv5TcZcwc9P86gJzHV/3ss2YMjo9UayJ98AwCnyv6Mz9f3h4+tUlI8YdSeqqL+bC3aOC3Tl84M93aEiBkSHIxCwYnFjrHPzBmPkmLo2nNw9G9ujMZskpOXEx8/mVkzf0Ve3ucBOHbsbo4e/QmqKm8sxpO7XcqKx4Jen0bhlG8AcOz4L2lvH7inl92+B1AxGidhMGSM+HYVRWHt2rUDnrN27dqILy8TItLMXr2A6+75KuaOgOBQgi2RXFIMoNPHkZDkn6Bsq+n/b5TP66P+jL/nYM/MQYBZqxdgSDBiq27k+IejGyYhRm/fpp08dOvvOHPI39M5EgPT/bFa5pGSci6q6uXUqb8M+/ouVxWq6kFR9BgMvR+rfQn2HayS4OBITZr0CeLiUnA4y6mufr7Pc2QYycQRyBosWjgjIiekCxGtJDgYhSzjmDk4HiXFqurF5/NnFIym52BfFEXD9GnfY+rU7wBQfvqv7D/wzQF7lojQcrulrHisTJp0LeaEGXg8TRw/ce+A5waGhlgto+s3CFBUVERWVjrQM9DuIysrnaIieWEuxEhYUq3MOm8eAEfePzDo+YHgYCSWFAdYM5KAgfsONlbW4233ojfqgxOOu9Ib9cw4bzYevcrbL2yioqKCysrKbl/S63R8NDfY2fjQi93KxD/47ztDGp4TKQK9B89W/Juq6hdwOiuHfN3gMBJTLooytLdR0ndw9LTaeCbnfQGAslN/7LOdSltrIHNQXoPEMq/Hy+H3/AO8imUQiRAhJcHBKGQxdk4sHmvjUVIc6DcIo5tWPJD8yTcws+SXKIqO6urn2L37hmC2ohhb7ZI5OGY0Gh3TO4aTnD37GPbmff2ea7OHZhgJ+LMHly7Lo/dTiIZlyyZL1qAQozB92SwAyvedwNk6cCluYFJx5pTInRI7lInFgX6DaZMzUTS9/354PB4+PL2Xllwf5ZqaYN/Trl/S63R8jGZ4TqRITlqCyVQAtLN//9d5593zhtSeA7oMIxlCSXHw9joyBxsq6oa7VdFFbu616HRW2tpOUFPzcq/LW9s6MgcTpo331sQ4OrXnOI7mNuKtZvJnF4Z7O0LEFAkORqHx6jk4XiXFgUnFihI3pg2Es7OvZN7c+9Bq42lofJsdO6/F5ZYXamNJVdVg5qD0HBwbyclLycy8HFA5cvjOPsvmVdWHzbYLAKt15MNIuiqesQizuY7O7EEfZnMdM2aEZn0hJqqUnDRSczPweX0c33643/OcLY5gNl5GQVa/54WbpSMT0F7T1O85nZOK+y7T1Gq1JCUlDXw70ut0XOj0cb2ODWV4TiRxOitxOE51OeLj4KHvDSmD0OEoB4Y2jCQgOUcyB0NBp0skL+86AMrK/tDt9U57ux23uxaA+HgJGMUSm83WLUv8w03v49GrTFpQQHVNtWSNCxFCEhyMQsGeg2M8rXg8SooBPIFhJGOUNdhVaupqFi54lLi4FJqb97F9+8dpazs1+BXFiHg8zaiq/3EaJ5mDY2ba1O+g1SZgs++kquqZXpe3tZ3E47Gh0Rgwm4tDcpsmUw7nnLOAzqcRDeecswCTKXIzmISIFtOX+RusD1RaXN0xjMSamYwxwTQu+xqJzrLiATIHT3VmDvZFep1GhnaXmzcffrHbMUWjsO66iwcdnhNJ2hxlQM/p2b4eAcO+OZxnAH9Z8VAlZ/lf/9hqG/G0S3braOTlfg6t1kxL62Hq6l4PHm/rGEZiMGSNy/sJMT48Hk+3TPF77rmHPz77VyqtNj4o3y1Z40KEmAQHo9B4ZQ6+uNf/xqN0ZuaYlRQDeDvKe0Pdb7A/FstcFi96AqMxD4ejnA+3f3zAckwxcu3t/k/JtVozWm10TDKMRgZDJlMKvgrAseM/w+Np7na5zeYvKbYkzkWj0Yfsdpcuvb6j9yBkZaWzdOn1IVtbiIksEBw8feAkbfbWPs+pDpQUR+gwkoBAD0F7Pz0HVVUNZg5m5PefAVlUVERmRmbvmI4KmRmZ0ut0jKmqyqv3P09teTUmSwJX/+B6PvqdT3P9PV9j9urRt6sYT/GmAvpqi2Ey5Q96XUewrHjomYMJSWb0Rr2//HqAwTxicHFxVnJzPwPAybI/BEvcWwP9BuNlUnEs0Wq1WK3W4PfNzc1s2rSJ5ubO17mSNS5E6EhwMApZjGM/rdjrU3l5n/+T/Evmjm0mUDBzcJyCgwDx8VNYvOhJzOaZtLfXs2PHp6hveHvcbn+i6Cwpjp5yo2iVl3cd8fGFuN11nDj5m26X2WzbgdD0G+xKURQuuOBC0tLSuOCCCyVrR4gQScpMISM/C9Wncnx739N5awKTigsjO1s3kDnYXG/H6+k9RKClsRlniwONVkNKTnq/6yiKwrziOdDzz4wCk+JHPoFdDM22597m2AcH0Wg1XPK1j5JdNInckoKoyhgMMBqzKSm+i65vg0qK78JoHDzQHigrNpnyhnx7iqJ0TiyW0uJRm5x3PRqNiebmfdQ3bAI6g4PxMowkpkjWuBDjS4KDUWg8MgfHq6QYwNsxkEQ7zmUABkM6ixY+RnLyCrzeVnbv/iJVVc+N6x5inbsjc1BKiseeRqNn+rQfAHDmzCO0tHT2KgvlMJKeCgsLufnmmykslB4/QoTStEFKiwOTiiM9czDeakYbp0NVVZrrbb0uD2QNJmenodPrBlxr1tzZaF10Zg+qoHXC8Y37efL//Y2q42cB/0Td0wfLomqCbiTo2dsr8LXtjXd5+79v4dOqrP3cRUyaPvSsuUiVk3M1SxY/E/w+I+OiQa/j8bQGh6wNJzgIkCwTi0NGr08ld9KnACg7+XtUVe0yjEQyB2ONZI0LMX4GfhUmIpLF1DGteAx7Do5XSTGAx+tPDR/PzMEAnS6R+fP+yv4D36Km5gX2H/gGbnctkyd/Ydz3Eova3R2TimUYybhITT2X9PQN1Na+wuEjP2ThgkfxeluCn6hbQjSMRAgx9qYvnck7T2zk7KFyWptaSEjq/ACt1dZCS4MdFEgfoBQ3EiiKgjU9iYaKOmy1TST1GFxR19FvsL9hJF1ZUq0sX7Kcd/a817E4TEnJpamujspjZ3j8Rw+RWZhDzclKVFVFURTWXX9x1JW9hkOgt1dra99l7ORCnDaO4lVzxndjY8himYXRkIPTVYHdvpeUlJUDnu/s6Deo0yWh0yUO67Y6h5LIILxQSEr6BAcP/ZeWllOYza9QWVmN251Ca0s6lZWVJCQkYLFEX1ar6E1RFIrzplFdU93jAphfPEeyBoUIIQkORqFA5qB9jDIHx7OkGMKXORig0RiYPevXHNWnc/rMwxw99hNc7hqmFn0bRZHk2tEIlhXHSVnxeJk29XvU179FU9P71NS8gE5nBVSMxjwM+rRwb08IMUSW9CSyiiZRdfwsxz44yLwLlgQvC5QUp2SnoTdFfj9Xa0YyDRV12PsYShKcVJw/eHAQYP0VpRyrOkl1TTWZGZl86kufp7WxmXf/8xYH395D9YmK4LmqqrLxoRfJnppL6qT+S5ZFZ2+vfoODQFpGWsz19rJY5+OsqcBu3z1ocDDYb3CYWYPg/10FaJDMwVHzeDz87W9P0dq6AYBdO98HlnT8/7vAu5jNZm655RZ0OnmrG+3a7K2c3HQAbY+7UuuCmXNnh2dTQsSokP/FPHvoFK//ZzO1ZVXEuV08lzyF/7thPRtm9f3JdmtTM7/52b9xV9eR5HWxMz6dTVb/BLBpGWZeu3U1ADtfeZ+3X3gPt70Vh0ZLY1om137pUhYWTrw3u509B8cmODieJcUAHq9/IIlOG77pYoqiYdq029EbMjh+/OeUlz+A21VHSclP0WjiwravaBcsK5bMwXFjMk2iIP/LnDj5a44eu5vMzEuBsSkpFkKMrWlLZ1J1/CxHth3oFhwMlhRPieyS4gBrehIAtpqmXpcFg4NDyBwEfxZJ6YZSXnrpJUo3lKIoCuYUC6U3XE5W0STe/NtL3c5XVZV/fPcvJGWlkDklm8wpOWRMySZ9chZ6Y+gGNEW7QG+vRx99tN9z1q1bF3NZOhbLPGpqXsRm3zXouQ7nyIODgYnFjZX1waxWMTJDCWTLkIrY4Ha4ePZX/8JeYyMxufsHYcuXLMeSau3nmkKIkQh5cLDd1Y4+LQUlcxJseXfQ873tXhYXZ2FdP5dDb27nE1Nz+elVa7noN1u4eI7/Re+hrfvY8vhGXrFO5trPllIQ5+W9v7/En+59mrvv/ixp5sj/1DyUgpmDzrEZSDKeJcXQNXNw/MuKu1IUhYL8mzDo0zh46Daqqp/B3V7PnNl/QBeKvZ0+DbW1/V+ekQG5uaO/nQgiZcXhMXnyjVRWPoXDWU55+YMAxMdLTxYhos20pSVs+edrVBw5TXODPTj8oabM/zydMSWyh5EEWDL8E4ttPSYWuxyu4PTWtCEGB6Gz12lPU+ZP461HXg5OMO2qqaqBpqoGDm/dD/if81Ny0siYkk1mQXZHwDATnX7ifiAY6O1VXV3dffCLCpmZsdnby2qZD4DdvnvQoF1wGIlx+MFBa2YyiqLgdrhos7WQkDS8smTRaSiBbBlSEf087R6e/+2T1JysxJQYz0e/9Rnu+f29AKSmpLL+itIw71CI2BPy4GDBvKkUzPM3g/3NEIKDlvQkSj/nbwJ8+oP9xOt17Dljw+Zo5+OL/YGSyqNnqE9IZNGaeXxqXQkA7acrqd98gCc+PM1X1kys5rOWjuBgi8uDx+tDF8IA3niXFEPntGJtGHoO9iU7+6PE6VPZu/erNDRsYcfOa5k/7wH0oynJdLlgyRKoru7/nKwsKCsDQ+wEuwOZg3oZSDKutFoD06bfzp49NwI+AE6e/DVGQwY5OVeHd3NCiCFLTLGQMz2PiiOnObrtIAsvXIaqqlGbOWiv6V5WXHfa/5xoTrFgMseP+nYSUyysu/5iNj78IqpPRdEorLvuYooWzqD6ZCU1JyuoLquk5mQlLY3N1J+tpf5sLQff3gOAolFIzc0IBgszp2STmpuBLq77y+XmBjtN1Q0kZaZE5bTe/iiKwrwZs3l1AvX2SkychaLocLtrcbkqMRr7f+3rdPh7DhpNw/8gVxenw5KRhK26kcbK+pgPDtpsNtra2vq9fLQ9AYuKisjKSqeqqpru8zV9ZGXFZiA7VvX1WPH5fLzzxEZOHytDH6/nI9/8BKmT0rn8I5eza/cuLv/I5TH590iIcIvIRgxPfHCac6amkZvsf6GYXjiJhI07mZ7gf5Nrq2nk1J5jxE3OYceppj7XsNvt2O2dU+qqqqrGfN/jxWLsvNuanR6SE0JXFjPeJcUAXk9HWXGYeg72JS11DQsXPsru3V+kuXkvH26/mgXzH8ZkGuGEPr0eJk/2Zw76fL0v12ggL89/XgwJ9ByM00vPwfFmTijpcUTl4KHvkZJyLkZjdAQUhBD+wST+4OABFl64jJbGZtpsLSgahbS8oWfbhZMlUFbcI3Ow7tTwSoqHYvbqBeTPKcJW3YC1S/CuYG4RBXM7AwatTc1Ul1X5A4YnK6k+WYnD3kpdeTV15dXs37wLAK1OS2peZ8CwpcHOtmffHv7AkyioHlBVleYTjWid4DXgzx5UQeuO3d5eWq0Js3kGzc37sdl3DRgc7CwrHtlrwZTsNGzVjTRU1pNbUjCiNaLBoMNtYNQ9ARVFYemyPJ57tufvlIZlyyZL4ChKDGUQkskIqXkZACxfvpwXX3xxHHcoxMQSccHBNreHt47W8ptPzA8eS587jXcTszA+9l9+99h/8Xl9zFm7kLMZU6g92dDnOpdffjmbNm0ap12PL51WQ4JeS6vbi83RHtLg4HiXFENnz8FIyRwMsFrmsXjRE+zcdR0Oxyk+3P5x5s97kMTEWcNfTFHgxz+GCy/s+3Kfz395jL2YaW/vKCuWzMFx53Ce6uOoD4fjlAQHhYgiU5eUsOnRV6k6fhZ7bVOwR19qbgZxhugogQ1kDrranDhbHRgTTADUlHdMKh7iMJKhSkyxDJrRl5CUSOH8RArnTwP8gbGWxmaqT1RQU1bZkWlYibPVQU3H//Nm9zVUVWXjwy+SP6do4NuLguoBVVV5+/E3OLhlN0aThtbsjg8yldjv7WWxzKe5eT922y4yMy7u8xxVVTsHkoygrBggOTuVk7uO0hjjQ0nGqydg8YxFbDS/SktLCv7sQR9mcwMzZiwc1bqib6+feJ2vv/R1fnvRbzm/8PyQrDmUx0pySor0jxRinETcKNaj1S1YjDpKZ3YOMKk+Ws7SlmqKLl3NJ3/4RS752sc4ufsYuv0H+13nueee4/Tp08GvjRs3jsf2x01n38HQDSXpWlIc6Pc4HrwdZcXhHEjSn/j4KSxe9CRmcwludx3bd3yKhoZ3cDoraWjcitNZOfTFSkvxLZqHr8dvnU8DvkXzoDS2emeoqg+39BwMm3hTAb3/xGswmfLDsBshxEglJJmZVOzPVDqy7QDVJ/3TeDMLoifIH2fQE2/1fwDYdShJZ+Zg30PrxpOiKCSmWJi6uJiVH1vLld/6FDf+4Vau++XNXHzzVSy6eAVpfQQxVZ+KrbrvD6qDAtUDmn5edoe5ekBVVd598k12vPQeAKVXX0Rmhv9nzczIjPneXlbLPIABh5K43XX4fE5AM2B24UCSswNDSepGdP1oEegJOJBQ9AQ0mXI455wFdL7W0XDOOQswmaKjF2s0UVWVb7/yfxysO8i3X/m/Pvu6jsR4PVaEEEMTWZmDKhytbebKtbPR6zpfQB186V0OxaewaEYRaXkZpOVl4HG189IDz5O+uu9P7ywWS7deFs3NzWO+/fFkMcVRYXNiC+HE4kBJsdUUx6qp4zcF2hOBZcVdGQwZLFr4T/bs+RKNTe+xc9f1+Pu4qYCGkuK7htbHTVFo/c7nSPz4rd0Oa3zQ/J3rSIyxJ7729iYC/e7i4pLDupeJyGjMpqT4Lg4e+h7++8H/WJWsQSGiz/RlMzlz8BRH3z+AyeJvuZIRJf0GA6zpybTZWrHXNpI5JRuvx0v9WX9JYKgzB0NFURSs6clY05OZtnQm8xqW8NCtv+v2xlhRFKyZg7TOiPDqgfee3sSHL/j7hK/5zIXMXbcYc0FKt4nQsczSMZSkuXkfPl87Gk3vjFyH0z+MxGjM7vPyoQgEBxtiPHMQxm+4zdKl17Nr15+oqqolKyudpUuvD8m6orv7nvkjO2p2ArCjZid3/uw21k9ej9fjxef14vP6Ov7fh8/r7fx/jxevt/P/fV6f/3tP53W8Xi/aFAVvnDphBiEJEakiKjhod3qwOzx8dUn3gJ/P7SEt0ci7x+rYMKvj02VFwafCgsmxW+YwEIuxI3PQEbqJxYGS4g2zxq+kGDozByOtrLgrnS6R+fMfZM/em6mv71pX5BtWH7e4S67BPuM2zEddaHz+rMGWaQb0l8TekIhASbFOZx3xC2kxOjk5V5OSci4OxylMpnwJDAoRpaYuLuHNR15mS807PO17kStNF/OJKAsOWtKTqDx2Jth3sLGyHq/Hi95kwJKWFNa9DVXPgScAiakWzEMZLlFainfBApRdu9B0CS76FAV1/ny0YaoeeP+ZzWx79m0Azru2lHnnLwb6nwgdi+Ljp6DTJeLxNNPSehhLYu/+iqMtKQZ/z0GA5job7a72qGkLMBKKojCveE6fw21mTJoasoCzoihccMGFvPTSS1xwwYUxH8gOB3u9jbs+uBtFr6AqKoqq8JDtHyS/koBCaP69japCa3aPbMQYHoQkRKQKeXDQ7XRTdaaWiiYHABaPm7KjZ9mueMjKSaXs1a28v/8MZ2bO5VfXzAeg9pS/lLWusZUck5EUVyv1Z52kTkoHYMqCadS++B4vb9rNvxK15Ou9vPvYa5THW7l9ycQqkXM6K2lzlJFp9g9bCVXmYLhKiiHyMwcDNBoDk/M+3yM4CMPp42Y05XDq5sXM+Po7/jV90P6DW7HEYAlEYBiJlBSHl9GYLUFBIaKcKTGe3JICftn4J6riangh5TV+M+m+cG9rWKwZSUDnUJLaQL/ByZlR9eYvMPCk6thZXnvgOex1NvZt2sGctYsGvqKi0PDlW0i/8bpuhzWqSu2XbyE9DP8G255/m/ee3gzAuZ84nwWlS8d9D5FAUTRYEufR0Pg2dtvuPoODzo7goNE08uCgKTEeo9mEs8VBU3VDSAfxRKJZc2fzxmuv49XTOdzGBXufeR+9S8OSS1ehN42+x+ZECmSHw3N7nuG04Wzwe1VROW08S8uCdtbnrUOj06LRatDqtGi0Xf9fg0arDf5/X8cC/99mb+Whvz3U/bESw4OQhIhUIQ8O1pys4Omf/iP4/ZrmszifPstfTCkkrlvFBlsL7fZWznYEDwEe+8EDABiALGw89oMHSEyz8vl7vgbA0svPBRSUjTs4+8jTHNNosaVm8OkvXkR6YngaN4dDRcUTwRLBj2QrNDZ+AruzOCRrh6ukGKIjczAgPn4KwWetoOH1cbMtS8Y+Q4/lsBvnnDxSP3lXqLcZEdztHZOK42RSsRBCjNYh01FOO/xv0MoNZ3nwhfu46croeUNsTfe3l7DXNAIEB6tEY4AkMcVC4lILLU3NbH70Vd554k2KFhUTbxn4dYzu0kuoSp1ERkMFGlXFpyjUpOSQcNUV47PxLj584V22/vstAFZdvY6FFy0f9z1EEou1Izho3wVc2+vyYObgKIKD4C8trjx6hsbKuqh87A+HJdVKQXIux9vO+A8okK5Jwult5sP/vsvBt/ew6uPrKF45B0UTPR8QTCSqqnLvod+gqP6swQBFVXja8F++d9UPQ/LhTnJ2KsuXLOedPe913EDsD0ISIhKFPDiYW1LALX+7fYAz5tGzcGLg80Gj1bD8yvNYfuV5o95ftHI6Kzl46LsEglKKovLZmf9in+NCYPS9GMJVUqyqvs7gYIRnDoI/C2v6tDs4cvTOjiPD6+Omqj5a205w7AspTP99PY23riEvijImhqNdhpEIIURI2Ott/LnygW5lXXd9cDefPO/TUfPmKTCxuDNz0B8cTIviAMm89Ys5uGU3teXVvP34G5TecHm/56qqyntPb8Y5fz1XvvEI4M8aPFD6MdaN83244+X3eecJ/6C+FR9dw+JLVo7r7Ucia0ffQZt9d5+XO5yjLysGf2lx5dEzNFTEft9BgCSjFW3DGbxG/3CbG266kbJdx9j8z9ew1TTy6v3PsWfjdlZfW0pW0aRwb1f08OrxV/29Bnu8VVEVlR01O3n1+KtsmLohJLe1/opSjlWdpLqmekIMQhIiEkXctGLRtzZHGd2z1UCrqHjd5aNe219S7H+RPt4lxYHAIETmtOK+5OV9BqPBXwY8a9a9QxtG0sHpPIPP56RxUTzvP5RHw0LTWG0z7KSsWAghQiNQ1hXI3FAVldOGszy355nwbmwYLBn+zMHmehs+r69zUnF++CcVj5RGq2HddReDAgff3sPZQ6f6PXfnK+9z5P0DnMmbjnOmv1SuKnUSe3WpwcEs42HXax+w5Z+vAbDsinNZevk543bbkczSMbG4re047e32XpeHMnMQYn9icUBjRR3GRg3WRAulG0rRaDQULpzOp39yE6uuXkecUU/V8bM8/qOHePX+52htiq0BktFMVVW+/+b30fQTLtCg4ftvfj+kk4tLN5SSlpY2IQYhCRGJJDgYJeJNBfS8u7yqQnVb+qjX3naygboWV1hKij0dwUFF0aLRRE+JeGLiLADc7uG9oG9pPdrte6fzTMj2FGmkrFgIIUava1lXV4qqcO+h34TsjdlYMyclotVp8Xl9VB47g7PVgUarISVnfF93hFpW0SRmr1kIwMa/vYTX4+11zumDZbz9+BsAnHftBoy/uRdKSii75npQFLa/uHVc9rr7jQ/Z9I9XAFhy2SqWXTFxK3J60utTMRknA2Bv3tPtMp/Phcvl75EZuuBg7GcOej1emqobiHMofOG6L1BYWBi8TBenY/ElK/nsT79Myao5gD/A/rdv/4kPX3gXT3voBi6KkXF73ZTbyvHh6/NyHz5O20/j9rpDdpuB/pFdHytCiPEjwcEoYTRmU1J8F13vss2nV1HTNvpSlBf2VgDjX1IM4PUE+g2ao+oTogTzDABaW44M63qtLf7goNk8EwCn8+xAp0c1KSsWQojRC5R1de33BN3LuqKBolGwdJQWH/vwEAApOWno4kLe4WbcrfrYWkyJ8TRU1LHzlfe7XdZcb+OlPzyF6lMpWTWHuesXwfnnw4EDFNz6JQAOb91Hc71tTPe4980dvPXIywAsumQlKz66Jqped40Hi9WfPWi37ep23OmsAFQ0GhNxcaN7TZPcMbG4sao+OPE6VjVW1ePz+tCbDJiT+57obU5OpPTGj3DND64nszCHdqebd57YyD++9xdO7DwSNR9+xCKDzsAHN3zAw9Pu55tnvsxvkn7B9hu3d/v64IYPMOiiJ7lDCDEwCQ5GkZycq1m1cjNZmVcCMDv9AC3O1kGuNbBwlhQDeLwdk4qjYBhJV+aO4GBL6+FhXa+1I3MwNXU1AB5Pc5/lK7EgkDmoH+ULaSGEmKjGu6xrrAWCg8e3+4ODsTKQwWg2cc4n1gPw/jNbsNc1AeBxe3jhd//B0dxGen4W6667uFtALqtoEpOKJ+Pz+tj5yrYx29/+zbvY+PCLACy4cBmrPr5WAoN9CJQW23v0HexaUjzafzdrehIarQaP20Nzw9gGhMOt4ay/dDolJ23Qf7esoklc8/3rKb3hcuKtZmzVjTz/6yd45pf/HNeye9FdnjUPc7mBPHcOa2avZWH2wm5fuZbccG9RCBFCEhyMMkZjNsXFP0LRZpBuamCW5YVRrRfOkmIAr8cfHNTqoiw4mNCROdh6FFXtO92+L61t/uCg1TI3WG4bq9mDTqc/6KwSHW9ahRAi0oSjrGssBSYWN9f7PxSL5n6DPZWsmsukGZPxuNvZ9Kg/m/Otf7xM9ckKjAkmLv3ax9Dp43pdb/ElqwDY99YOnC2OkO/r4Nt7eP3B/wIw/4IlnPuJ8yUw2I/OoSS7ugXcO4ODk0d9GxqthqRM/+u/WC8tDgT1UicNrQWSolEoOWcun/vZl1l8yUq0Oi3l+07w6O33senRV3G2hv73QwzM4/ZQeczfAim3JD/MuxFCjLXor+WYgLTaeJKy/ofGs99lZeYLOF3/i9EwshfY4Swphs6BJNEyjCTAZMpHo9Hj9bbhcJwmPn7wJ0xV9dHaehyAhIRpGI2TaG9vwOk8Q2JiyVhveVxVVDyB0+lvzL5////g87YNa3CLEEKIzrKu2rb+M2cyEjIivqzLZrPR1taGmqDBo+8MuiiJOiorK0lISMBisYRxh6OnKAprP3sRj/3gfk7sOMJTP/sHpw+UoSgKF37lymDWZE/5cwpJm5xJXXk1e974kKUfOTdkezr07l5efeA5UGHu+kWcd600+R+I2TwTRYnreG12OhgM7JxUHJosqeScNBoq6misrCd/TlFI1oxEDR3BwZQhBgcD9CYDq65ex6zV89nyr9c5seMIu17dxuGt+1jx0dXMWr2A5uZm2tra+l0jFv6mRIKq42fwtnuJt5qD/TKFELFLgoNRKjPjMrbte4BpySc4duznzJ71q2GvEe6SYgBPMHMwuoKDGo2OhPhpNLfsp7X18JCCgw7HaXw+JxqNHpNpMkbjJJqb98Zc5qDTWcnBQ9/rckTl4KHvkZJyLkZjeB5nQggRrfKseeRZRzcEIZw8Hg/3338/ra0dbVC6xFeefc2f0WY2m7nlllvQ6aL7ZWlqbjp5M6dwau9xTh8oA6Bw0XTyZ/ffXF9RFBZdvIJX/vwMu177gAUXLifO0DvDcLiOvL+fV+/zBwZnr1nAmk9fKIHBQWi1BhLNJdib92Cz7eoMDoZoUnFASnYqx4GGCZM5OLLKpKTMFC675WpO7TvB5kdfpaGijo0Pv8TujdupSGjE4XL2e91Y+ZsSbqcP+j/ozy3Jl78fQkwAUlYcpZLi9fzz0FX4VIXq6mex2XYMe41wlxRD57RibZT1HARIME8HoLllaH0HA/0G4+OLUBQtJuMkABwxFhxsc5RBrxI4Hw7HqTDsRgghRDhptVqs1oGHp1ksFrRa7TjtaOw0N9gp33ei27ETO47Q3DBwb+HpS2diSbPiaG7jwJbdA547FEc/OMjLf34GVVWZed481n3uYhSNvLEfiuBQki59B50hLCsGSM4KTCyuC8l6kcjT7qGp2j+YbriZgz3lzy7kUz++gdXXlmKIN1JXXo3b1n9gEGLnb0q4nTlYBkCelBQLMSFIcDBKxeu1nGnN552zywA4cuTHw+p9B+EvKYbOnoO6KMscBDCbiwFoHXJw8BjgLykGMHYEB2MtczDeVAD0fBOiwWSSFxZCCDHRKIrC2rVrBzxn7drYGJDRVN3QaziM6lOxdQRJ+qPRalh40QoAdry0FZ93eK/nujq+/TAv/+lp/3Tkc+Zy/vWXSmBwGCzBvoOdwcFAWbExVGXF2YHgYOxmDjZVNaD61AEnFQ+HVqdlfulSPvfzrzB37SJMTQO/b4mVvynh1O5qp+q4/z1KbklBeDcjhBgXEhyMUoqiYDXF8dSxS1E0Cdib91BV9cyQrx8JJcUQ3ZmDgaEkQ51YHMgcNAeCgyb/i0yn88wY7C58jMZsMjM/0uWIhpLiu6SkWAghJqiioiIyMzLpNZ9KhcyMTIqKYqPvWlJmSq+AhKJRsHYMoBjIzHPnYUqMx15n48i2AyO6/RM7j/DiH/6Dz+tjxorZnP8FCQwOl7VjYnFLy358Pjft7TY8Hn/mZ6jKigPBwdamFlwOV0jWjDQNFZ3DSEIZpDMlxrPuuov5zHduwEhczP9NCafKY6fxeX2YkxOxZiSHeztCiHEgwcEoZjHqsLst6JO+AMCx478I9vAbTCSUFAN4vR2Zg9EYHDT7g4NtbWV4vQOXN0BncLBn5qDDEVuZgwAGvf+Fb3r6haxauVmGkQghxASmKArziuf0TipXYH7xnJjJ8ElMsbDu+s4SXkWjsO66i0lMGXwwQpwhjvkXLAFg+4tbe2UgDqZs9zFe/L0/MDh92UxKb7gcjUZe5g+XyVSATpeEz+empeUQDkc5AHp9GlqtKSS3YYg3kpDkr5iJ1ezB+uAwkrF5j5GRn8V5554X839TwumM9BsUYsKRLq1RzGryN6x2xl1FvOlZHI5THDv+SzIyNhBvKhgwU+vFvZVAeEuKoXMgSTSWFev16cTFJdPe3khr2zEsibP7PVdVvbS2BcqKpwIEew56PE14PC1R+W/QH3/fQUhJXiEZg0IIIZg1dzZvvPY6Xj3+N/QqaN0wc27/z53RaPbqBeTPKcJW3YA1M2VIgcGAuesX8+EL71JXXs0HG9/jxS2vcNNNN5Gd7X8eDUx97qny6Gk2//M1VNXH9CUz2XDTFWjC+NoumimKgtU6j/r6Tdjsu9Dr/f3yTMbQDgVKzk6ltamFxso6sgpzQrp2JKg/6++nmDrKfoMDmTVvDm+8/kbM/00JleYGO03VDSQN8e9SZ3CwYIx3JoSIFBIcjGKWjuCg3aUwb+p32bP3Js6e/Ttnz/6dQClnXxlbXp/KS/uqgPCWFAN4g2XF0RcYUxSFhITpNDW9T2vL4QGDgw7HGXw+FxqNIdjQWqdLRKez4PHYcTrPBjMRY0FbWxkApviCsO5DCCFEZLCkWlm+ZDnv7HnPf0CB5UuWY0kdeFhJNEpMsQwrKBhgNJuYvXYhO19+n41PvswP//Ij1q9eR3Z2du+pzz1lgU7Rcv4XL5XA4ChZLPOpr9+E3bYbc8fwuVANIwlIzk7jzMFTMZs52BDMHBy74OBE+psyWvs27WTjQy+iqiqKorDu+ouZvXpBv+e7nW6qT/p70+fKMBIhJgx59RDFAsFBm6Mds3lmj0t9HDz0PZzOyl7Xi5SSYgCvx/8iN1qz5gIBvZZBhpL0nFQcEGhu7XRWjNEOx5+qenF0TPbzDycRQgghYP0Vpf7eg/j7gq2/ojTMO4o8CzYsQ1EU6s74gyvP/epx9m3aOaSpz+lZGegN+vHYZkwL9B202XcFX88E+kSHSqDvYEMMBge7TipOzRnb9xnrryglPdV/G1oXrLl0/ZjeXjRqbrAHA4MAqqqy8eEXB5yiXnnU328wMc2KNV36DQoxUUhwMIpZjB2Zgw4PDuepPs7w4XD0Ph4pJcUAno6eg9E4kAQ6JxYPNTgYGEYSYDT6S0kcMTSUxOmsRFXdKIpeSoqFEEIEKYpC6YZS0tLSKN1QKn2s+tG136Cqqrzx4Av8+yePkKYOnI24bt06+TcNAUtHcNDhKMPevA8AkzG0mYMpgYnFFXUhXTcSNFbW+ycVxxtICMGk4oEoisKGiy5E265gbNBgq24c09uLRo0VdcOeon46UFJcLFmDQkwkEhyMYtYumYP+DK2ed6cGk6n7H/VIKikG8HRkDmp1URocHOLE4s5hJFO7HTcFMwdjZyhJoN+gyTS5W5akEEIIUVhYyM0330xhYWG4txKRmvp5w15x5DSn3jmC1olMaB1jcXFJmDoqH5qb9wKhm1QcEMgcbKpuwOf1hXTtcAuUFKfmhHZScX+KioqYps8jzqHQUBl7wdbRKtt7vNexwaaonzlYBkhJsRATjQQHo5jF5G8ZaXe2YzRmU1J8V5dL/T0He2ZuvbS3kroWF4lGXdhLiqHrtOLoLCsOTB52u2txu/v/BK6lx6TigMDE4lgKDjo6+g3GS79BIYQQYliSMlN6BVQURWHVNetYdOEKso1pMqF1HFgt87t9H+rgYGKKFZ1eh8/rw17XFNK1w62hYuyHkfQULNPuCEwKv+qTFex6dZv/my5/Hmadt6Dfvqguh4uaMn+VmQwjEWJikeBgFOuaOQiQk3M1VusiAKZN/W6vYSSPf1DOV/+5E4Bmp4endoS/lDWapxUD6HQJwVKT/rIHVdVLW5v/U7tewUFT7AUHA5mD8Sb5tFEIIYQYjsQUC+uuvxhF438nr2j8wwMWX7yScz95Ph//6qfRuujMHlT9vdZkQmtoWazzgv+vKHEYDJkhW9tms1FVXYUpKxGPXuXowaNUVlYGv+z2/nvBRYP6wDCS3PELDgYCkQ0xWKY9Uh53O6/85VlUn8q0JSVcf8/XKDlnLgDl+0/gaff0eb2KI6dRfSrW9CQZ7iLEBCPTiqNYZ8/B9uCx+Pgp2Gzb8fkc3c6ttDm47am93Y5996l9nDc9nWyraew32wdVVbtMK47OsmKABPN0HM5yWlsOk5K8otflDsfpLpOKu3/yHMgcdDjCH6gNFZlULIQQQozc7NULuNx3Db98/o9c/o1ruk0VlQmt46Nr5qDBkBmyNindpk7rgFx4cdPLsKnzHLPZzC233IJOF51v0wLBwdRJ41ehlNwx+ESCg53eeWIjjZX1JCSZWXvdRZjM8az97IWU7zuBvbaJPW98yMILl/e6XmdJccH4blgIEXaSORjFemYOAhgN/jLintNvT9a14uvRo8arqpTVtY3tJgfg9bYR+Og7WjMHYfCJxf1NKobOnoPt7fV4vc4x3OX4cQQzBwvCug8hhBAiWk0tnsYdd9zB1OJpvS6Tqc9jLzCIBMDpPENFxRMhWXcoU6ctFgtabXT2bPa4PcGhICk545g52BEcbKyqx+eLrR6OI1G+/wS7XvsAgPM/fykmczwAcQY9Kz66BoBtz76Ns8XR67pnAsNIpN+gEBOOBAejmKUjONjs7EwLD0y/dbq6BwenpCXQsxWNVlEoSIsf200OIJA1CBo0mvBkL4bCYENJ+ptUDKDTWYNZk7FQWuzzeXA4TgPSc1AIIYQYqezsbO68806ys3sPj5Opz2PL6azk8OE7uh07eOh7OJ2Vo15bURTWrl074Dlr166N2vu0saoeVVUxxBtJSBq/D/4T06xo43R4273Ya5vG7XYjkbPVwWsPPA/AnLULKZjXfRhiyTlzSc3NwNXmZNtzb3e7zNXqpPaUf3ClTCoWYuKR4GAU6ytz0BAIDvbIHMy2mvjs8s4/8lpF4SdXzQ5bSTHQpaQ4PmpfBAGYzcWAPwioqr0/rWxtPQb07jcI/heJsTSUxOk8i6p60GgMGAxZ4d6OEEIIEZNk6vPY8fdO7vl6zofDcSok6xcVFfkzP2Nw6nSw3+CktHF9ba/RaEgJDCWZ4KXFb/39ZVoamrFmJnPuJ8/vdblGo+HcT6wHYPfrH3SbkH72cDmqqpKUmYK5n4ElQojYJcHBKGYx+nuRtLg8eLz+FzFGQyA42PvTzcJ0/yd4SwqSefs7a7lmyeRx2mnfPJ5mILpLigFMpnw0Gj1eb1swa66r/iYVBwT7Djqjv+9goKTYZMpHUeTPixBCCCGii78tSs/XMBpMIRq0pigK84rn9Dl1enbRzKj+wLwh2G9w/EqKA6TvIBx5/wCHt+5HURQ23PgR4gz6Ps/Ln1NE/pxCfF4f7z75ZvD46WC/QckaFGIiGva798bGbezefQNb3l7BGxuLqK19tdvlqqpy/MS9bHl7OW++NZMdOz9DW9vJbufYm/exc+dn2bR5Pps2L+Lgoe/i8bQykKGsO9EEyoqhs7TYaPSXn3i9LcHgW8CZRn9/wXm5SWHNGAzwBDMHozs4qNHoSIj3B/5ae5QWd59UPLXXdaGz72DPbM9oFBhGIiXFQgghhIhGRmM2JcV30fk2SUNJ8V3B19ihMGvu7N5Tp51w5NXd1JZXh+x2xlvDWX9gLhzBwdQJHhysPlnB6w/6y4mXXLaK7Km5A55/zjXnoygKRz84SOUxf4LC2UOBfoMFY7pXIURkGnZw0Otrw2wuZsaMO/u8/FT5fZw58zeKZ/yYxYufQquNZ+eu6/F6XQC4XNXs3PlZTPH5LF70FAvmP0Rr61EOHPy/AW93sHUnojithni9v2Gx3ekvLdZqTcTFJQO9g01nGv1NZyclhz8wCOD1tADRnzkI/onF0HsoicNR3u+k4oBgn8gYyBxsk2EkQgghhIhyOTlXs2rlZhYueJRVKzeTk3N1SNcPTJ0OZg8qkNhmoLnWxuM/epC9b25HVXvWHUe+zrLiMGYOnp14wcF9b+3kX3c+SHvH+8GhlASn5WVQcu5cALb883UcLW3UnvYHpqXfoBAT07CDg2mpaygq+iYZ6Rt6XaaqKqdPP0RBwc2kp19AormYWTN/idtdTW2dP8Owrm4jiqJjxvQfkpBQiMUyl+IZ/4/a2peDWUcjWXeishj92YN2R5ehJIa++w4GgoO5yeEbQtJVIHNQ1zGQI5oFJxa3Hul2PNhvMH5qr0nFAUZTIHMw+nsOOjp+h02SOSiEEEKIKGY0ZpOcvDykGYNd9Zw6fcOPv0bBvKl4271sfPglXv7T07gc0ZME4XF7sNX4JxWnTkob99sPZCs2VNZFZWB1pOx1Tbzx0Avdjr35yEs0N9gHve6KK1ej08dReewMv/7rL7h70m+pyK0d12EyQojIEdKmYE7nadzuWlKSVwWP6XSJWCzzsdl2AuDzudFo4rr1I9NoDAA02T4c8bo9uVwu7HZ78KulpWXUP18k6nsoif9FTO/goL+sODdiMgc7yop1MRAcDEws7pE52DpIv0Ho7DnodER/cFAyB4UQQgghBtdz6nS8JYHL/+cazrlmPRqthiPvH+CfP3iAmrLRT0keD40dQTlDgpF46/gHl6wZyWi0GtqdblqGEBiLBR53O6/85dlex1Wfiq3LoJH+mFMsLLxoOSoqf6q6n2p9Lc8kvDihgqtCiE4hDQ663P5Ucr2++6dFen0a7o7LkpNX4HbXcerUffh8btrbbRw7/gsA3K7aEa/b0913343Vag1+LV26dOQ/WASzmPxDSQJlxdClTNXVGRxsdXlobPOfEyllxR5vR1lxlPcchM6JxW1tJ/F6ncHjncNI+u43CGDqCA663DX4fNHzCXFPPl97MPtReg4KIYQQQgys59RpRaOw6OIVfOy7nyUxzYqtppEnfvwwu1/7IOIDNvVdhpGEY6iKVqclKTMFmBh9Bx3Nbfznp/+g4kjvYYiKRsHa8W8xmEUXr+C4tYzTRv9r+CPtx7jvmT+GdK9CiOgw7uNEzebpzCz5BeWn/8pbm2az5e3lmEy5/sBfCKeb3nbbbdhstuDXtm3bQrZ2JOkrc7Czh11ncPBskyN4fqAUOdwCPQdjIXNQr0/v6PXoo7XtWPD4UDIH4+JS0WiMgNrnlOlo4XSeQVW9aDQm9PqMcG9HCCGEECIqZU/N5VM/+iJFC2fg9Xh56x+v8MLv/4Or1Tn4lcMkEJALR7/BgIkysbipuoEnfvwwVcfPYkgwsujiFSgaf0BW0Sisu+5iEofQdxDA2ergWfMrKGrH9VWFuz64G3u9bcz2L4SITLpQLmbQ+58M3O46DIbO4IDbXYfZXBL8PivrcrKyLsflrkOrMaEoCuXlD/Y7sGGo63a7jsGAwWAIfm82R392Wl86ew52CQ529Bx0dQk0RVpJMcTOtGLwl4YkJEynqel9WlsOY0mc3WNScf/BQUVRMBon0dZ2HKfzbNRm3XVOKs4PyyfGQgghhBCxwphg4pKvf4zdr33Aln+9zvEPD1FbVslFX7mKrKJJ4d5eL10zB8MlNSeN48RecLCyspK//OUv3HTTTShtPp6793EczW0kplm54pufJCUnjXkXLMFW3YA1M2XIgUGA5/Y8w2lDZ2sjVVE5bTjLc3ue4dNrPzcWP44QIkKFNHPQaMxDr0+nofHd4DGPpxm7fRdW64Je5xv0aeh0CVRXv4BGYyAl+ZyQrDuRWPrMHOzoOdilrDg4qTgpcoKDwWnFMRAchC5DSTr6DvonFbvRaIz9Br4DOrM9o7fvYKDfoEn6DQohhBBCjJqiKMwvXcrV378Oa3oS9jobT971N3a8/F7ElRkHJxXnjP8wkoBYzRw8dugoP/zhD3n7v2/xn5/+HUdzGxn5WVzz/euD/96JKRZySwqGFRhUVZV7D/0mmDUYoKgK9x76TcQ9xoQQY2vYwUGPp5Xm5gM0Nx8AwOE4Q3PzAZzOChRFIS/vesrK/kBt7eu0tBxm/4H/Ra/PJD2tNLjG6TOPYG/eR1vbSU6f+TuHj9zJ1KL/JS6u84/Z1vcuoKb2FYAhrzsRBYKDXXsOGjoCTS5XFarqBSJvUjF0yRyMgbJi6DKUpGNicWdJcVG3ATx9MRn9E4sd0RwcDGYOFoR1H0IIIYQQsSRzSg6f/NEXmbqkBJ/Xx5Z/vs7zv34CZ4sj3FsD/IMxOicVhzdzEKDhbOxMLN63aSfP/epxAN5/dgset4f8uUV89LufHfVU4VePv8qOmp2oSvd/K1VR2VGzk1ePvzqq9YUQ0WXYZcXNzXvZsfPa4PdHj90FQHbWVcyc+QvyJ9+I19vGocPfw+OxY7UuZsH8h9BqO0t87fbdnDjxG7zeNhISCime8f/Izr6y2+20tZ3A42kOfj+UdSeizp6DnuAxgz4dRdGhqh5crhqMxuyILCuO9czB4DCS+P5LigOCE4udZ4Z0W05nJW2OMuJNBcFM0XBzBIKDkjkohBBCCBFShngjF998FXs37mDzP1/l5K6jPPr9+7noK1eSM23gCpWx1lBZD6q/FDreGr4P/ZOzU0Hx99FzNLcRb4nuBITmBjsbH+o9PXjdZy9Cb9SPam1VVfn+m99HgwYfvl6Xa9Dw/Te/T2lRqbQLEmKCGHZwMDl5OevXHe/3ckVRKCr8BkWF3+j3nFkz7xn0dnrexlDWnYgsxo5pxV3KihVFi8GQhdN5BqeroiM4GMgcjJzgYCBzUBcjmYMJCdMBcLtrcLsbaG091nF8OMHBikHOhIqKJzh46HuAD9BQUnwXOTlXj3jfoRIsK5bMQSGEEEKIkFMUhbnrF5E9dRIv/uEpmqob+PdPHmHlx9ay6KLOoRSjZbPZaGtr6/fyhIQELJbOiq+GMx0lxZPSwhpI0unjsKYlYattouFsbdQHB5uqG/rMgLTXNWFJTxrV2m6vm3JbeZ+BQQAfPk7bT+P2ujHoJnYyjhATRUgHkojx19e0YvD3sHM6z/iHkljhbASWFXu9HdOKtdH9xB2g0yVgMk7G4SynpfVwZ1mxeQjBQVNHcNAxcOag01nZJTAI4OPgoe+RknJuWDMIfT5XMLApmYNCCCGEEGMnPT+LT/7wC2z824sc3rqfd57YyJlDpyi94fJRB8Q8Hg/3338/ra2t/Z5jNpu55ZZb0On8byXrK8I/jCQgZVK6PzhYUU9uSUG4tzMqCUmJvY4pGgVrZsqo1zboDHxwwwfUttX2e05GQoYEBoWYQCQ4GOX66jkIYDR0DCVxVtDm9lDf6gZgUiRlDgbKinW9n/iiVYJ5uj842HwwOKnYPITMwUDPQZe7Gp/Pg0bT96+mPzuv5yd8PhyOU2ENDjocpwEfWm0Cen34GlELIYQQQkwEepOBDTddQW5xAW/94xVO7TnOY99/gHM/dwGW7OR+r9cz668nrVaL1WodMDhosVjQarXB7xvO+geARERwMCeNk7uO0lDRf9ArWnz433e6fa9oFNZdd/Gwho4MJM+aR541vCXpQojIIcHBKBfIHLT3yBwMDCVxuiqCWYMWoy54fiTwBgaSxEjmIPj7DtbVvU5t3evBScXGjsDfQPT6dBRFj6q6cbmqMJn6vo4/K08BupcYGI2TR7/5UWjr0m9Q+pIIIYQQQow9RVGYvWYBWUWTePEP/6Ghso7Hn34SdYB3eD2z/vpac+3atTz66KP9rrF27dpur/eCk4onhf8D4pQYmVh8eOs+DnjSAVQAADVlSURBVL69B0VROOea9dzzwp+4/BvXMHv1gnBvTQgRo4Y9rVhElmDmoMPTrSeFMRAcdFYG+w1OiqCSYlVVO4ODMdJzEDonFjc1bQOGNqkYQFE0wcw/5wATi43GbKzWRb2OV1b9ZyTbDZnOfoP5Yd2HEEIIIcREk5aXwSd/+AVKVs1F46HnZ8jd9Mz660tRURGZGZm911EhMyOToqKi4KF2Vzu2Wv+k4pQIyRyE6A4O2moa2fi3lwBY+pFzWHb+Su644w6mFg9ejSSEECMlwcEoF8gEdHt9ONs7y027lhVH4qRin8+JqnqB2JlWDJ0TiwOvpoYyjCRgKBOLfT5PsFx56tTvMrXoOwCcPPlrqmteGsGOQ0MmFQshhBBChE+cQc+GGz/CyuUr/EUm/eiZ9dcXRVGYN21273UUmF88p9v1Gyvr/JOKzaaIGACS3BEcbG1qwdXqDPNuhs/r8fLyn5/B7XCRPS2XpZefS3Z2NnfeeSfZ2eFrISSEiH0SHIxyCXot2o7JZF37DnZmDlZE9KRiAK02cjIaR8tkKkCj0Qe/D0wwHtJ1O8qPHQNMLLbZPqS9vZG4uGTycj9Hfv4N5OVdD8CBA/9Lc/P+Ee58dAKZg/EyqVgIIYQQImzWXn4BqcmpQ8r6G1CzF62TznVU0DohKyWz22mBkuLUSekR0VrGYDJgTvb3M2+ojL7swfee3kTV8bMY4o1c+KUr0Gjl7boQYnzIX5sopygKFqO/Z0jXicWB4KDH00Rlkz/VP6ImFXuaAX+/waGU3UYLjUZHQnxntmBcXOqQr9sZ0O0/c7Cm9hUA0tLWB4eWTC36Dqkp5+HzOdm950ZcrvFvwBzoOWiS4KAQQgghRNgoisKiOQuGlPXXn9amZna9sg1jo6ZzHQWMjRpe+P1/OPbhoeC59R3DSCKhpDggWkuLTx84yYcvvAvA+s9fgiUtKbwbEkJMKLETlZnALH0MJdHpEtF2lOvaW/097CIxczCWSooDlC6Zg4cO3UZFxRNDul5gcEl/PQdVVaW29lUA0tNLg8c1Gh2zZ/+W+PgiXK4q9uz9Ml6va6TbHzav14nLVQlIWbEQQgghRLjNmjsbrYteWX8lc2YN6fpb/vUGboeLSVk5/t6DQEZaOoWFhXjc7bzwu3/z/rNbUFWVhi6Zg5EiGBw8Gz3BQUdzG6/85VlQYfbqBUxbUhLuLQkhJhgJDsaAQN9BW4+JxYFMNFdHmWokBQe9ntgbRgL+ATB2+64uR3wcPPQ9nM7KQa8b7Dno6Ds42Ny8F5erCq02npTkc7pdptMlMm/uX9DprNjtOzl0+LvdBtSMJYejPLiHuLiUcblNIYQQQgjRN0uqleVLlvfK+ivbeXTQ6545dIrDW/eBAus+dxGlG0pJS0tjw0UXcsU3P8n80qUAvPfUJl76w1PUlPlf4xoTI+d9RmBqcrSUFauqymsPPE9rUwspOWmcd23p4FcSQogQk+BgDLAYOzIHnX0HB3XUAJFVVuzxtgCxlzno773XMyjnw+E4Neh1TaaOzEFXZXBYS1c1HVmDqalr0GoNvS6Pj5/CnNm/Q1G0VFU9Q3n5fcPd/og4ApOKTQUR0WtGCCGEEGKiW39FaTDrz2JKROeALY+/EewR2Bevx8tbj7wMwJw1C8mckkNhYSE333wzhYWFaLQaVl9byvrPX4JGq+HoBwdpbfK/pn/lT8+wb9POsf/BhiAlO5A5OP6tdkZiz+sfcnLXUbQ6LRd++UriDHHh3pIQYgKS4GAMCGYOtvUdHEwxNpJo0AXPiwSxmjnoL6vt+WulwWTKH/S6en0GiqJFVdtxuWp6XR4sKU67oN81UlJWMX3aDwA4dvwX1Na9MdStj1ig36AMIxFCCCGEiAyKogSz/i6/6iMUzCnC2+7hlb88i9fT+0NogN2vf0D92VqMZhMrP7a237Vnr17AhV++stsxVVXZ+PCLNDfYQ/pzjESg/6G93ka7yx3m3QystryaLY+/DsA5nzif9MmZg1xDCCHGhgQHY4DF5B9MYXd6uh03GgLBwSYmRVBJMXRmDmq1sRUcNBqzKSm+i85fLQ0lxXdhNGYPel2NRofB4D+vZ9/B1tZjtLUdR1H0pKX1/2INIDf300yadC2gsn//N2hpOTyCn2TogpOKpd+gEEIIIUTECGT9FU0t4vwvXIYxwUTtqSree3pTr3NbGpt57+nNAKy6eh1G88DvHfq6XPWp2KobQrP5UTAlxmNKjAcVGivrw72dfrW72nn5T0/jbfcyZf405p2/ONxbEkJMYBIcjAGWfnoOGjoCUqnGxogqKQbwejrKinWxVVYMkJNzNatWbmbhgkdZtXIzOTlXD/m6wb6DPYKDgazBlJQV6HSJg64zfdr3SU5ajtfbyu49N+J2j90LI5lULIQQQggR2czJiaz//CUAfPjCu5w9XN7t8i3/ep12p5usoknMOnf+oOslZab0aiejaBSsmZHRfzoaJhZvfuxVGirqSEgyc8EXL5P2PEKIsJLgYAwI9hzsOZDE0FlWHEnDSKBzWrE2xnoOBhiN2SQnLx9SxmBXpn6CgzW1rwCQnr5hSOtoNHHMmfN7TKbJOJ1n2Lv3Zny+sSmrCPRTlMxBIYQQQojINXVxMSXnzMWnUXn+gf9w6uQpKisr2fnudg7s2IfXALMvWUxzS/OgayWmWFh3/cUoGn9AS9EorLvuYhJTLGP9YwxJcoQHB49+cJB9b+0EBUpv/Ig/01EIIcJIF+4NiNEbbFpxirGRXEPvARbhFMwcjLGy4tEKZA46nGeCx5zOCpqb9wEa0tPWD3mtuLhk5s29nw8+/ChNtg84fPgOiot/EtJPJb1eBy5XFSA9B4UQQgghIt2qT6zn/TO7sGvsPPzIw50X+Ofi8e//PoXZbOaWW25Bpxv4reLs1QvIn1OErboBa2ZKxAQGAVIjODhor7fxxoMvALD44pVMnjUlzDsSQgjJHIwJgbLintOKDYZMVFUhTushNymymvEGMgdjsax4NIzGjonFzorgsUBJcVLSYvT6tGGtl5AwldmzfwNoqKh8gtNnHg7VVgFo68ga1OmSiItLCunaQgghhBAitOLN8aSkpYLa/zkWiwWtVjuk9RJTLOSWFERUYBAiN3PQ5/Xxyp+fwdXmJLMwh+VXrQ73loQQApDgYEywGP2f6tkc3QeSaDRx2N1WADITbOO+r4F4g2XFkjnYVSDb09klc7AmMKU4vXREa6alrmHa1NsAOHr0J9TXbx7lLjs5ZFKxEEIIIUTUUBSFDRdtgAEKSdauXRv1/e8CmYNN1Q39TmcOh23PvU3FkdPojXou+vKVaHVDC8IKIcRYk+BgDAiUFffsOehs91LrSAIgyRBZk7o8Hn8vE61OgoNdmUydmYOqquJ219PU9AEA6WkXjHjdvLzryc7+OOBj3/6v09p6PBTbDQ4jkX6DQgghhBDRoaioiMz0jN7ZgypkZmRSVFQUln2FUkJyInqTAdWn0lQV/gnKAGcPl7Pt2S0ArL3uYqwZyWHekRBCdJLgYAyw9BMcPNPooMHpf9LR+mrGbT9OZyUNjVtxOiv7PSeQOajTDj55dyIxGLIABZ/PhdtdR13dG4CPxMRZwcDhSCiKQvGMH2K1LsbjaWb3nhtob28a9X7bHGWATCoWQgghhIgWiqIwr2Ru7+xBBeYXz4n6rEHw/4ydE4trw7wbcLY6ePnPz6CqKiXnzKV4xexwb0kIIbqR4GAMCGQONrs8eH2dHwGeaWwLBgedrv4DdaF05sxjvPPuuezc+Wneefc8Kiqe6PM8r6ejrFgyB7vRaPQYDJmAf2JxsKQ4bWQlxd3XNjB3zh8wGifhcJxi776v4fO1D37FAQTLik35o96fEEIIIYQYH7PmzkbrojN7UAWtC2bOjZ2gVUqE9B1UVZU3HnyBlgY71sxk1nx6Q1j3I4QQfZHgYAywGOOC/9/cZSjJ2SYH9Y6O4GCXARdjxeE4y+Ej36fzVYaPg4e+12cGoccbmFYsA0l6Ckwsbmk9TEPDOwCkZ4TmRYRen8bcufeh1cbT2PguR4/eNar1ApmD0nNQCCGEECJ6WFKtLF+yvDN7UIHlS5ZjSbWGdV+hNFBw0GazUVlZ2e+X3W4P2T72vbWTYx8eQqPVcNGXr0JvMoRsbSGECJWB59OLqKDXaTDFaXG0e7E7PCTF64HuZcWucQgOHj/+8z6O+nA4TmE0Znc76pHMwX6ZjLnYbNs5e/ZRVNVNfPwUEuKnhmz9RHMxs2b+ij17v8yZs38nIWEaubnXDnsdj6cFt9tfphEfPyVk+xNCCCGEEGNv/RWlHKs6SXVNNZkZmay/YvSVKpGkv+Cgx+Ph/vvvp7W1td/rms1mbrnlFnS60b1drj9by+bH/JVAqz6+jswp2YNcQwghwkMyB2OExRSYWNyZOdg1ODjWZcWVlU9TXfPfPi7RYOpRcqqqKt5g5qAEBwMCn2C2tmbS0pJCZWUlLS0paDUXUFVVFdJPMNPTL6Co8JsAHDn6Qxoa3h32Gg7HKQDi4lLQ6aR3pBBCCCFENFEUhdINpaSlpVG6oTQmeg12FQgONlbV4/P5gse1Wi1W68AZkhaLBa12dJOEPW4PL/3xaTxuD5NnF7Jgw7JRrSeEEGMp5JmD75+o577NJ9h71kZNs4u/fGYRG2ZlDXgdl8fLb984yjM7K6htdpGeaOCW9dO4ekkeAO1eH3988zj/2XGGKruTwrQEvnNRMWtmZIR6+1HLaoqj2u7C7uwaHOzsOeh21+LzudBoQp/GbrPt4tDh7wKQmrKG+oa3Oi5RKCm+q1fWoM/nRlU9ABJU6tDzE8zm5tV8+OGHLF68mMREJ3BfyD7BDMjP/xKtrUepqn6Wvfu+ypLFTw2rPDg4qVhKioUQQggholJhYSE333xzuLcxJhLTrOj0OjxuD/baJpIyUwB/UHTt2rU8+uij/V537dq1ow6Wvv3469SfqcFkSaD0hstRNLEVfBVCxJaQZw62tXspybbwo48MvZntzY/u5J1j9fzso3N545ur+e0nF1CY3plR9stXD/PYtlP88PJZvP6N1Vy7PJ+b/r6dfWdtod5+1Ar0HeyZOdjSngCKEQCnsyrkt+t0VrJn75fw+dykpZ3PvHn3UzjFn5GWmDiHnJyre10nkDUIoNXGh3xP0ajnJ5jNzc1s2rSJ5ubm4LFQfILZlaIoFBffjcUyD4/Hxu49N+HxNA9+xQ7BfoOmgpDtSQghhBBCiFDQaDQkZ6UCcOS9A9RX1FG25zjvPLmR7f/c0n0gS4AKmRmZFBUVjeq2T+w8wu7XPwSg9IbLSUiSPutCiMgW8szBtTMyWDuMjL63Dtfw/sl6tvzf2mCvvLyU7gGjp3ec5avrprK22L/uZ1LzeedoHQ9sOcGvP7EgdJuPYoGJxfaO4KCz3UttswtQMBiycTlP4nRVEB8fuqmyXq+DPXu/hNtdS0LCdGbNvAdF0ZCVdTknTt5Dc/M+2tttxMV1T9v3ePzBQY3GhKKELtgVzcbrE8yetFoDc+f8mQ8+vJK2tmPs238L8+be3+/9YrPZaGtrA6DibDktLSm0OXKprPSXrSckJGCxWEK6RyGEEEIIIUZCo/O/pt361FtsfeqtbpcZTRpas33dr6DA/OI5o3rN3dJg57UHngdgwYXLKJg7ukCjEEKMh7APJHn9YDVzc638edMJnt55hni9jvNLMvhm6QyMcf4/5m6vD4Oue5KjMU7DB2WN/a7rcrlwuVzB71taWvo9NxZYTN0zByuaHAAk6LXEm3JwOU+GdCiJqqocPPgdmpv3EReXwry596HT+T8RM5lySUiYRmvrURoatpCZeWm363q9/tLZwPnCr6ioiKysdKqqqntc4iMra/SfYPbHYMhg7pw/s33HJ6iv38SxYz9j2rTv9jqvd/PmeOBSdu1sAu4DQte8WQghhBBCiNFobrBTfaL3+5+pS4opmDuVpMwUHvrbQ3j1+Kc2q6B1w8y5Q6+A68nn8/HKfc/ibHGQkZ/Fyo+tHfkPIIQQ4yjsA0nKGxx8UNbIkepm/vKZxfzg0pm8uLeK25/ZFzznvGnpPLDlJCfrWvH5VLYcreXl/VUdmXF9u/vuu7FarcGvpUuXjsePEzbBzMGOnoNnGv3BwdzkeEzGSYC/BDhUyk79keqa/6IoOubM/j0mU163y1NT1wBQV/9Wr+t6OoKDWhlG0o2iKCxdlkfvX0sNy5ZNHtMm0RbLHGbO/AUA5af/SkXFv3udM17Nm4UQQgghhBitpuqGPo/PW7+YWefNZ9KMySxfstwfGARQYPmS5VhSB369O5DtL2zlzMFTxBniuPArV6KLkw/MhRDRIezBQVVVUYBff2I+8/OSWFucwfcvLeE/O87gbPcCcMdlMylIS2D9PW8x7faXuOPZ/Xx8UR4DxUpuu+02bDZb8Gvbtm3j8wOFicXof+KxO/yDPjqDgyYMHQNBnK7QZA7W1r7KiRO/AmDG9DtJTu49eSutIzhYX78JVe2eru/tKCuWzMHeimcswmyuo7MBiorZXMeMGQvH/LYzMy5mSsHXATh0+HZqal6hoXFrMKisKApr1qwZcI2xKH0WQgghhBBiuJIyU3q9LlU0CtaOwSQA668oJT3VP9VY64Tla1cObfHTp2HHjm5ftc++xLH7HyO9voLzNywI9jsUQohoEPKPMs4eOsX2l96jpqySbzS10Hw0FQaYVpwVp3KZ/RRP/+B+mmoamH/BUqZesAJVhUqbkylpCbz5u8eZfaicYIL3WWAvfDQxud91DQYDBkPnZF6zObYDUT3Lis80+vvC5SabMBpyAHCGoKy4ueUQ+w/4B47k5n6GSZM+2ed5VusitFoz7e0N2Jv3YrXMC17m6RhIIpmDvZlMOZxzzgKOHHm/44jCOecswGTKGZfbnzLla7S2HqWm9iX27vtK8HhCwgzAh8NxFrN5DS0tKXT/bGFsS5+FEEIIIYQYjsQUC+uuv5iND7+I6lNRNArrrruYxJTO/tiKonDhxRfx+CP/JK7RR9muo8xeM8iH8i4XLFkC1d1bAaUDgXdG6van4dIy6PJ+VAghIlnIg4PtrnbS8jKYee48Xvhd79LEnuZmW3jLq2Hexcs48IZ/otOJ2lY0CmRb/VN2L/3ax/F6vMHrtNhbeez795MyUwIRAZZ+yoonJZswBjIHR1lW7HbXs2fPjXi9bSQnr2Ta1Nv7PVejiSM15Vxqal+ivu6tbsFByRwc2NKl1/Pcc0cASEtLZunS68ftthVFQ2HRrdTUvtTteGvr4eD/5xfsYv++83tcc+xLn4UQQgghhBiO2asXkD+nCFt1A9bMlG6BwYDCwkLWL1zN1v+8xbHthwcPDur1MHky1NaCz9frYlWjQcnL858nhBBRIuRlxenFBVhXLsSV4w9I1TW72F9h42zHgIyfvXyIWx/fFTz/qvOmcyC3iPvO+vDqdFTZHNz90iGuXpwXHEhysMHJljPN1Hs17G9087MHN+HVaLnuU+f2uw+Xy4Xdbg9+xfpAEmu/mYPxGI3+rDOXqwJVVfteYBA+n5u9e2/G6TyLyZTPnNm/Q6MZOLbc2XfwzW7HAz0HdVoJDvZFURQuu+wKLrroIi677IpxD7i5XD0HovgVFX2bFctf58IL/95R+hx4MeQbt9JnIYQQQgghhiMxxUJuSUGfgcGAokUzADhzoAyXo/++9gAoCvz4x30GBgEUn89/uXxoLoSIIiEPDu45Y+OS377NJb99G4Ant5/hkt++za9e9WdC1dhdwUAhQIJBx9+/sAy7w8PeszY2HallfXEGd14+K3iOy+Pjl68e4fx7N3HT3z8ku7aSGctnkZbUf1nqRBtIYjF2ZA52BAcD/8a5ySYMBn+g1uttw+OxDXttVVU5fOROmmwfoNWamTf3PuLikga9XmrqagCam/fictcFj3s9HQNJdFJW3J/ly5fz4osvsnz58nG/7XhTAX0NRcnKvIz4+CmYEwo455wFXc7RjGvpsxBCCCGEEKGUkpNGUlYKXo+Xst3HBr9CaSneBQvw9QgA+hQF74IFUFo6RjsVQoixEfLg4IqiVMp+egllP70EgPs+s5iyn17CPVf7y0rvuXoej9+0ott1pmaY+ccXl7F0SgrXLJnM7ZfODGYNAiwvTOX1W1dz5P9dxEvXzkLf0syS8xcNuI+JNpCkM3PQg8vjpdru/8QrNzkerdZIXJy/Ie5ISovPnHmEiorHAYXZs35NQsLUIV3PYEgnMdHfKbKhflPwuPQcjGxGYzYlxXfRNfhXUnxXsDwd/KXPWVnpAGRlpY9r6bMQQgghhBChpCgKRYuKATi+/fAgZwOKQsOXb0HToypLo6o0fPkWyRoUQkSdsE8rHq79m3eRmptBVtGkAc8zGAxYLJbgV+wPJOmYVuxsp6LJCUC8XktyvD9oaBzhxOKGhnc4euwuAKZO/TZpaWuHdf3O0uK3gseCPQelrDhi5eRczaqVm1m44FFWrdxMTs7V3S5XFIULLriQtLQ0LrjgQuk1KIQQQgghotrUjtLisj3H8Lg9g54fd+klVKVOCmYP+hSFqtRJGK+6Yiy3KYQQYyKqgoPtLjdH3j/ArNXzw72ViBPIHHR7fByr8QffcpNNwaBNoO/gcCYWt7WdZO++r6KqXrKyrmRy3heHva+0juBgQ8MWfD5/yXOg56CUFUc2ozGb5OTl3TIGuyosLOTmm2+msLBwnHcmhBBCCCFEaGVOySEhKZF2p5vTB04Oev6pA2Vsnb8+mD2oUVWc376NxFTrWG9VCCFCLqqCg0e3HcTr8VC8cna4txJxEvQ6NB3JWwcq7ABMSjIFLzcaOoaSDDE42N5uZ/eeG/F47FgsCyiecdeIssMslrnExaXg8TRjs+0EwOuVzEEhhBBCCCFE5FA0CkWLpgODlxb7vD52vvQe5TlTaZnqL0f2LlhAwf9+Zcz3KYQQYyHkwUG3003tqSpqT1UBYKttovZUFfZ6/yCMd57YyCt/ebbbdQLntzvbcTS3Unuqivqztb3W3r95F0ULZ2Ayx4d621FPo1GwdGQP7q/w/1vnJnf+Ow0nc1BVvezffwttbScwGLKYO+dPaLWGEe1LUbSkppwHQH1HabEnOJBEgoNCCCGEEEKIyBCYWnxi5xF8/UwjBjj24UFstU0YE+Mx/uZXUFKC9uc/l16DQoiopQv1gjUnK/jPT/8R/H7LP18DoOScuZTecDmtthaaG7pPzH3sBw90Xr+sksNb95OYZuXz93wteLyxsp6KI6e54lufCvWWY4bFGEdTWzsHKv2Zg7nJnZmDhkBw0DX4QJJjx35GfcNmNBojc+f+BYMhfVT7Sk1dTVX1M9TVv8nUqf/XJXNQyoqFEEIIIYQQkWHSjHwMCUYczW1UHjnNpOL8XueoqsqHL2wFYN75S9BdfB5cfNF4b1UIIUIq5MHB3JICbvnb7f1eXnrD5b2ODXR+QHJ26pDOm8gCfQfPNDqAHpmDho6BJINkDlZU/pvy038FYGbJz7Ekjr6EOzX1PEBDa+sRnM6KYOagTjIHhRBCCCGEEBFCq9MyZd40Dr27l2PbD/cZHCzff5LaU1Xo9HHMu2BxGHYphBChF1U9B8XAAhOLA7pmDgbKil2uany+vqdvNdm2c+jQ9wEoKPgqmZmXhGRfcXFJWK0LAP/UYm9gIIlkDgohhBBCCCEiSKC0+PiOw6gdw0a62v7CuwDMXj1f2l0JIWKGBAdjSCBzMKBrcFCvT0NR4gAfbndNr+s6nRXs2fNlVNVNenophVNuCeneAlOL6+vfwuPxlxVrZSCJEEIIIYQQIoLkzylCp9fRXGejtry622XVJys5faAMRaOw4MJlYdqhEEKEngQHY4jF2BkcNMVpSUnQB79XFE2/pcVebxu799xEe3s9ZnMxM0t+iaKE9qGR2hEcbGh4B1V1A1JWLIQQQgghhIgscYY48mcXAXB8+6FulwWyBmcsn4UlLWm8tyaEEGNGgoMxxNIlc3BSsgmlx7Qsg7F3cFBVfRw48H+0tBwgLi6FuXPuQ6cLfbmv2VyCQZ+Jz+cMHpOyYiGEEEIIIUSkCZYWbz8cPNZU3cCxD/3BwoUXrQjLvoQQYqxIcDCGdC0r7lpSHGDsY2LxybLfU1P7EooSx9w5f8JkmjQme1MUhdTU1cHvNRoDGk3I5+EIIYQQQgghxKhMmT8NRaNQf6aWpuoGAHa89B6qqpI/t4j0yZlh3qEQQoSWBAdjiMXYGWzrMzjYo6y4puZlTp78DQDFM35MUtLYTttKTVsT/H/pNyiEEEIIIYSIREazidyOScXHtx+m1dbCgbd3A7D4kpXh3JoQQowJCQ7GEEu3zMHek7OCE4udFTQ3H2D/gf8FIC/venJyPj7m+0tJXtUxFAUURYvTWTnINYQQQgghhBBi/BUtKgbg2IeH2P3aB3jbvWQVTWLSjMlh3pkQQoSeBAdjSNfgYIJB2+vyQHDQZt/Drt1fwOdzkJJyLlOLvjMu+9PpzJhM/idTt7uGd949j4qKJ8bltoUQQgghhBBiqIoWTgeg6vhZdr78PgCLLl7Rq6+7EELEAgkOxpAPTjYE//8Hz+7n8Q/Ku11us+8BoL29Dre7Br0+jdmzfjtuvf+czkra2k50OeLj4KHvSQahEEIIIYQQIqKYUyxY0qwAeNo9ADhbHOHckhBCjBkJDsaISpuDP286HvxeVeG7T+2j0uZ/AnM6Kzl58rfdruN2N+D1to7bHtscZYDa46gPh+PUuO1BCCGEEEIIIQbT3GDHXmfrdmzj316kucEeph0JIcTYkeBgjDhZ14qvR9zNq6qU1bUBgcCcr8e1xjcwF28qoPdDToPJlD9uexBCCCGEEEKIwQSmFHel+lRsfRwXQohoJ8HBGDElLQFNj/YXWkWhIM0/mCQSAnNGYzYlxXd12YeGkuK7MBqzx20PQgghhBBCCDGYpMyUXv0FFY2CNTMlTDsSQoixI8HBGJFtNXH3VXPQdjyBaRWFn1w1m2yrCYicwFxOztWsWrmZhQseZdXKzeTkXD2uty+EEEIIIYQQg0lMsbDu+otROjIwFI3CuusuJjHFEuadCSFE6I3PJAoxLq5ZMpnzpqdTVtdGQVp8MDAYkJNzNSkp5+JwnMJkyg9bxp7RmC3ZgkIIIYQQQoiINnv1AvLnFGGrbsCamSKBQSFEzJLgYIzJtpp6BQW7ksCcEEIIIYQQQgxNYopFgoJCiJgnZcVCCCGEEEIIIYQQQkxQEhwUQgghhBBCCCGEEGKCkuCgEEIIIYQQQgghhBATlAQHhRBCCCGEEEIIIYSYoCQ4KIQQQgghhBBCCCHEBCXBQSGEEEIIIYQQQgghJijdcK/Q2LiN8vL7sTfvw+2uYe6cP5GeXhq8XFVVTpz8NRUVj+Px2LFaF1E840fEx08JntPWdpKjx36KzbYdn68ds3kGhYXfICV5Rb+3e+DAt6iseqrbsZSUc1kw/+Hh/ghCCCGEEEIIIYQQQghGEBz0+towm4vJzvkYe/d+pdflp8rv48yZvzGz5BcYTXmcOHEvO3ddz/Jlr6DVGgDYtfuLxMcXsGDBP9BqDJSffpjdu29g5Yo3MRjS+73t1JTzKCn5efB7jUY/3O0LIYQQQgghhBBCCCE6DLusOC11DUVF3yQjfUOvy1RV5fTphygouJn09AtINBcza+Yvcburqa17FQC3uwGHo4z8/C+RaC4mPn4KU4u+hc/noLX1yIC3rWj0GAzpwa+4OOtwty+EEEIIIYQQQgghhOgw7MzBgTidp3G7a0lJXtV5A7pELJb52Gw7ycq8jLi4ZOLjC6mqfApL4iwURc/Zin8SF5dKYuLsAddvanqfzVuWEBdnJTl5BUWFtxIXl9znuS6XC5fLFfy+paUlND+kEEIIIYQQQgghhBAxIqTBQZe7FgC9Pq3bcb0+DXfHZYqisGD+I+zZ+yXe2jQXRdEQF5fKgvkPDZgJmJJ6HunpGzCZ8nA4TnHs+D3s2vV5Fi/+N4qi7XX+3XffzQ9/+MMQ/nRCCCGEEEIIIYQQQsSWcZ9WrKoqh4/ciV6fyqKF/2Lx4qdIT7+A3XtuxOWq6fd6WZmXkZ5+PmbzDNLTS5k/737szXtobHyvz/Nvu+02bDZb8Gvbtm1j9SMJIYQQQgghhBBCCBGVQhocNOj9w0Tc7rpux93uOvQdlzU2vktd3UZmz/oNSUmLsSTOpnjGj9BoDFRWPtVrzf6YTJOJi0uhzXGq770YDFgsluCX2Wwe4U8lhBBCCCGEEEIIIURsCmlw0GjMQ69Pp6Hx3eAxj6cZu30XVusCALw+Z583rSgawDfk23I6K2lvb8SgzxjttoUQQgghhBBCCCGEmJCG3XPQ42nF0SVbz+E4Q3PzAeLikjAac8jLu56ysj8QbyrAZMrj+Ilfoddnkp5WCoDVsoC4OCsHDn6LKQVfQ6s1crbiXzgcZ0hNXRtcd+t7F1BU9L9kpG/A42nlZNlvyUi/EL0+vaPn4M8wmfJJTT03BP8MQgghhBBCCCGEEEJMPMMODjY372XHzmuD3x89dhcA2VlXMXPmL8iffCNebxuHDn8Pj8eO1bqYBfMfQqs1AKDXpzB/3oMcP/Erduz8NKrqISFhGnPn/pnExJLgum1tJ/B4mgFQFC0tLYeprHwKj6cZgyGDlJRzKCy8FY3GMKR9e71eAI4fPz7cH1kIIYQQQgghhBAiYgViHYHYhxDDoaiqqoZ7E+Phv//9L5dddlm4tyGEEEIIIYQQQggxJp5//nkuvfTScG9DRJkJExx0u928+uqrFBQUoNVqR7RGS0sLS5cuZdu2bTLgJIrJ/SiGSh4rsUHuRwHyOIglcl+KoZDHSWyQ+1EMlTxW/BmDZWVllJaWotfrw70dEWUmTHAwFOx2O1arFZvNhsViCfd2xAjJ/SiGSh4rsUHuRwHyOIglcl+KoZDHSWyQ+1EMlTxWhBidkE4rFkIIIYQQQgghhBBCRA8JDgohhBBCCCGEEEIIMUFJcHAYDAYDd9xxBwbD0CYki8gk96MYKnmsxAa5HwXI4yCWyH0phkIeJ7FB7kcxVPJYEWJ0pOegEEIIIYQQQgghhBATlGQOCiGEEEIIIYQQQggxQUlwUAghhBBCCCGEEEKICUqCg0IIIYQQQgghhBBCTFASHBRCCCGEEEIIIYQQYoKS4KAQQgghhBBCCCGEEBNURAYH7777bpYsWUJiYiIZGRlcccUVHD58uNs5TqeTm2++mdTUVMxmMx/96Eeprq4OXr57924++clPkpeXh8lkoqSkhN/85jfd1qisrORTn/oU06dPR6PR8D//8z9D3uMf/vAHCgoKMBqNLFu2jG3btnW7fM2aNSiK0u3rS1/60qDr7tmzh3PPPRej0UheXh4///nPu12+f/9+PvrRj1JQUICiKPz6178e8p7H20S9H51OJ9dddx1z5sxBp9NxxRVX9Drnrbfe6rWuoihUVVUNee+xJBYeKwBbt25l3bp1JCQkYLFYOO+883A4HAOuW15eziWXXEJ8fDwZGRl861vfwuPxhGTP420i349f//rXWbRoEQaDgfnz5/e6vKysrM/f+ffee2/Ie48W0f446O++UhSFJ598csB1Y+k5HCbufSnP48MT7Y8TgKqqKj7zmc+QlZVFQkICCxcu5D//+c+g68pzeGzcj/IcPjyx8Fg5fvw4V155Jenp6VgsFq6++upu++tPLP3OC9FTRAYHN23axM0338x7773Ha6+9Rnt7O6WlpbS2tgbP+cY3vsHzzz/Pk08+yaZNm6ioqOCqq64KXr59+3YyMjL4xz/+wf79+/ne977Hbbfdxu9///vgOS6Xi/T0dG6//XbmzZs35P09/vjj3Hrrrdxxxx3s2LGDefPmsWHDBmpqarqdd8MNN1BZWRn86vkmoSe73U5paSn5+fls376dX/ziF9x5553cd999wXPa2tooLCzkpz/9KVlZWUPeczhM1PvR6/ViMpn4+te/zvnnnz/guYcPH+62dkZGxpD3H0ti4bGydetWLrzwQkpLS9m2bRsffPABX/3qV9Fo+v8z6/V6ueSSS3C73bz77rv87W9/4+GHH+YHP/jBqPccDhP1fgz4/Oc/zzXXXDPgOa+//nq33/lFixYNef/RItofB3l5ed3uo8rKSn74wx9iNpu56KKL+l031p7DYeLel/I8PjzR/jgB+OxnP8vhw4d57rnn2Lt3L1dddRVXX301O3fu7HddeQ6PjfsxQJ7Dhy7aHyutra2UlpaiKAobN27knXfewe12c9lll+Hz+fpdN9Z+54XoRY0CNTU1KqBu2rRJVVVVbWpqUuPi4tQnn3wyeM7BgwdVQN26dWu/63zlK19R165d2+dlq1evVm+55ZYh7Wfp0qXqzTffHPze6/WqOTk56t133z2i9QL++Mc/qsnJyarL5Qoe+/a3v63OmDGjz/Pz8/PVe++9d1i3EU4T5X7s6nOf+5z6kY98pNfxN998UwXUxsbGEa8dy6LxsbJs2TL19ttvH9J6AS+++KKq0WjUqqqq4LE//elPqsVi6fZ3YCR7jgQT5X7s6o477lDnzZvX6/jJkydVQN25c+eI145W0fg46Gn+/Pnq5z//+QHXjfXncFWdOPdlV/I8PnzR+DhJSEhQH3nkkW7XS0lJUe+///5+15Xn8Ni4H7uS5/CRibbHyiuvvKJqNBrVZrMFz2lqalIVRVFfe+21fteN9d95ISIyc7Anm80GQEpKCuD/pKG9vb3bp7nFxcVMnjyZrVu3DrhOYI2RcrvdbN++vdttazQazj///F63/eijj5KWlsbs2bO57bbbaGtrG3DtrVu3ct5556HX64PHNmzYwOHDh2lsbBzVviPBRLkfh2P+/PlkZ2dzwQUX8M4774Rs3WgXbY+Vmpoa3n//fTIyMli5ciWZmZmsXr2at99+e8C1t27dypw5c8jMzAwe27BhA3a7nf37949q35FgotyPw3H55ZeTkZHBOeecw3PPPReydSNZtD0Oetq+fTu7du3iC1/4woBrx/pzOEyc+3I45Hm8t2h8nKxcuZLHH3+choYGfD4f//rXv3A6naxZs6bfteU5PDbux+GYiM/hQxFtjxWXy4WiKBgMhuA5RqMRjUYz4Gu+WP+dF0IX7g0Mxufz8T//8z+sWrWK2bNnA/5+Enq9nqSkpG7nZmZm9tvr5d133+Xxxx/nhRdeGNV+6urq8Hq93f4oBG770KFDwe8/9alPkZ+fT05ODnv27OHb3/42hw8f5qmnnup37aqqKqZMmdJr3cBlycnJo9p7OE2k+3EosrOz+fOf/8zixYtxuVw88MADrFmzhvfff5+FCxeOau1oF42PlRMnTgBw55138stf/pL58+fzyCOPsH79evbt28e0adP6XLuqqqrPdQOXRbOJdD8Ohdls5p577mHVqlVoNBr+85//cMUVV/DMM89w+eWXj/wHi3DR+Djo6a9//SslJSWsXLlywLVj+TkcJtZ9ORTyPN63aH2cPPHEE1xzzTWkpqai0+mIj4/n6aefZurUqf2uLc/hftF+Pw7FRH0OH4pofKwsX76chIQEvv3tb/OTn/wEVVX5zne+g9frpbKyst+1Y/l3XgiI0J6DXd18883s27ePf/3rXyNeY9++fXzkIx/hjjvuoLS0dMjX27JlC2azOfj16KOPDvm6N954Ixs2bGDOnDlce+21PPLIIzz99NMcP34cgFmzZgXXHajvTayQ+7G7GTNmcNNNN7Fo0SJWrlzJgw8+yMqVK7n33nuHvEasisbHSqA/yU033cT111/PggULuPfee5kxYwYPPvggABdddFFw3VmzZg3/h4oycj92l5aWxq233sqyZctYsmQJP/3pT/n0pz/NL37xiyGvEY2i8XHQlcPh4LHHHuuVaTbRnsNB7sue5Hm8b9H6OPn+979PU1MTr7/+Oh9++CG33norV199NXv37gXkOXwkYul+nKjP4UMRjY+V9PR0nnzySZ5//nnMZjNWq5WmpiYWLlwY7DE90X7nhYAIzxz86le/yn//+182b95Mbm5u8HhWVhZut5umpqZun0hUV1f3avB94MAB1q9fz4033sjtt98+rNtfvHgxu3btCn6fmZmJwWBAq9X2mmbU1213tWzZMgCOHTtGUVERL774Iu3t7QCYTKbgz9XXuoHLotVEux9HaunSpSEtX4xG0fpYyc7OBmDmzJndzikpKaG8vByABx54IDjxNi4uLvhz9ZyeJr/zftF0P47UsmXLeO2110a1RiSL1sdBV//+979pa2vjs5/9bLfjE+k5HCbefTlSE/15PFofJ8ePH+f3v/89+/btCwYB5s2bx5YtW/jDH/7An//8Z3kOJ3bvx5GK9efwoYjWxwpAaWkpx48fp66uDp1OR1JSEllZWRQWFgIT63W7EAERmTmoqipf/epXefrpp9m4cWOvMp1FixYRFxfHG2+8ETx2+PBhysvLWbFiRfDY/v37Wbt2LZ/73Oe46667hr0Pk8nE1KlTg1+JiYno9XoWLVrU7bZ9Ph9vvPFGt9vuKfCHK/DmMz8/P7jupEmTAFixYgWbN28OvkgFeO2115gxY0ZUliNN1PtxpHbt2hVcd6KJ9sdKQUEBOTk5HD58uNt6R44cIT8/H4BJkyYF1w0cW7FiBXv37u02ae+1117DYrH0ClBFg4l6P45UrP7OR/vjoKu//vWvXH755aSnp3c7PhGew2Hi3pcjFau/04OJ9sdJoJd0z6n0Wq02mFEuz+Gxez+O1ET9fYfof6x0lZaWRlJSEhs3bqSmpiZYJj4RfueF6CVck1AG8uUvf1m1Wq3qW2+9pVZWVga/2tragud86UtfUidPnqxu3LhR/fDDD9UVK1aoK1asCF6+d+9eNT09Xf30pz/dbY2ampput7Vz5051586d6qJFi9RPfepT6s6dO9X9+/cPuL9//etfqsFgUB9++GH1wIED6o033qgmJSUFJxcdO3ZM/dGPfqR++OGH6smTJ9Vnn31WLSwsVM8777wB121qalIzMzPVz3zmM+q+ffvUf/3rX2p8fLz6l7/8JXiOy+UK7jk7O1v93//9X3Xnzp3q0aNHh/zvO14m6v2oqqq6f/9+defOnepll12mrlmzJri/gHvvvVd95pln1KNHj6p79+5Vb7nlFlWj0aivv/76UP5pY060P1ZU1X+fWiwW9cknn1SPHj2q3n777arRaFSPHTvW77oej0edPXu2Wlpaqu7atUt9+eWX1fT0dPW2224b9Z7DYaLej6qqqkePHlV37typ3nTTTer06dOD+wtMr3v44YfVxx57TD148KB68OBB9a677lI1Go364IMPDvnfN1rEwuNAVf33qaIo6ksvvTSknzvWnsNVdeLel6oqz+PDEe2PE7fbrU6dOlU999xz1ffff189duyY+stf/lJVFEV94YUX+l1XnsNj435UVXkOH65of6yoqqo++OCD6tatW9Vjx46pf//739WUlBT11ltvHXDdWPudF6KniAwOAn1+PfTQQ8FzHA6H+pWvfEVNTk5W4+Pj1SuvvFKtrKwMXn7HHXf0uUZ+fv6gt9XznL787ne/UydPnqzq9Xp16dKl6nvvvRe8rLy8XD3vvPPUlJQU1WAwqFOnTlW/9a1vdRuX3p/du3er55xzjmowGNRJkyapP/3pT7tdfvLkyT73vHr16kHXHm8T+X7Mz8/vc08BP/vZz9SioiLVaDSqKSkp6po1a9SNGzcOum6sivbHSsDdd9+t5ubmqvHx8eqKFSvULVu2DLpuWVmZetFFF6kmk0lNS0tTv/nNb6rt7e0h2fN4m8j34+rVq/vc08mTJ1VV9b+xKCkpUePj41WLxaIuXbpUffLJJwddNxrFyuPgtttuU/Py8lSv1zvknz2WnsNVdWLfl/I8PnSx8Dg5cuSIetVVV6kZGRlqfHy8OnfuXPWRRx4ZdF15Do+N+1Gew4cnFh4r3/72t9XMzEw1Li5OnTZtmnrPPfeoPp9v0HVj6XdeiJ4UVVVVhBBCCCGEEEIIIYQQE05E9hwUQgghhBBCCCGEEEKMPQkOCiGEEEIIIYQQQggxQUlwUAghhBBCCCGEEEKICUqCg0IIIYQQQgghhBBCTFASHBRCCCGEEEIIIYQQYoKS4KAQQgghhBBCCCGEEBOUBAeFEEIIIYQQQgghhJigJDgohBBCCCGEEEIIIcQEJcFBIYQQQgghhBBCCCEmKAkOCiGEEEIIIYQQQggxQUlwUAghhBBCCCGEEEKICer/AxaK+N4Hw99lAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "env.render('simple_figure')" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "#### Render in *advanced_figure* mode\n", - "\n", - "* Clicking on a symbol name will hide/show its plot.\n", - "* Hovering over points and markers will display their detail.\n", - "* The size of triangles indicates their relative volume." - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertext": [ - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 12736.381709
margin: 6730.000000
free margin: 6006.381709
margin level: 1.892479", - "balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf", - "balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf", - "balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf", - "balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf", - "balance: 12736.381709 USD
equity: 12706.535265
margin: 3230.933000
free margin: 9475.602265
margin level: 3.932776", - "balance: 12736.381709 USD
equity: 12605.835265
margin: 3230.933000
free margin: 9374.902265
margin level: 3.901608", - "balance: 12605.835265 USD
equity: 12605.835265
margin: 0.000000
free margin: 12605.835265
margin level: inf", - "balance: 12605.835265 USD
equity: 12605.835265
margin: 0.000000
free margin: 12605.835265
margin level: inf", - "balance: 12605.835265 USD
equity: 10927.304248
margin: 7894.516666
free margin: 3032.787581
margin level: 1.384164", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 12340.810450
margin: 4180.000000
free margin: 8160.810450
margin level: 2.952347", - "balance: 10927.304248 USD
equity: 12284.032107
margin: 4180.000000
free margin: 8104.032107
margin level: 2.938764", - "balance: 10927.304248 USD
equity: 14737.797087
margin: 4180.000000
free margin: 10557.797087
margin level: 3.525789", - "balance: 10927.304248 USD
equity: 12907.743921
margin: 4180.000000
free margin: 8727.743921
margin level: 3.087977", - "balance: 12907.743921 USD
equity: 12907.743921
margin: 0.000000
free margin: 12907.743921
margin level: inf", - "balance: 12907.743921 USD
equity: 12907.743921
margin: 0.000000
free margin: 12907.743921
margin level: inf", - "balance: 12907.743921 USD
equity: 11394.930310
margin: 7234.529500
free margin: 4160.400810
margin level: 1.575076", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 10782.592383
margin: 3831.428119
free margin: 6951.164264
margin level: 2.814249", - "balance: 10782.592383 USD
equity: 10782.592383
margin: 0.000000
free margin: 10782.592383
margin level: inf", - "balance: 10782.592383 USD
equity: 10782.592383
margin: 0.000000
free margin: 10782.592383
margin level: inf", - "balance: 10782.592383 USD
equity: 13026.542293
margin: 4987.296900
free margin: 8039.245393
margin level: 2.611944", - "balance: 10782.592383 USD
equity: 14401.292293
margin: 4987.296900
free margin: 9413.995393
margin level: 2.887595", - "balance: 14401.292293 USD
equity: 14401.292293
margin: 0.000000
free margin: 14401.292293
margin level: inf", - "balance: 14401.292293 USD
equity: 16069.266491
margin: 7110.000000
free margin: 8959.266491
margin level: 2.260094", - "balance: 14401.292293 USD
equity: 11701.665022
margin: 7110.000000
free margin: 4591.665022
margin level: 1.645804", - "balance: 14401.292293 USD
equity: 10928.383748
margin: 7110.000000
free margin: 3818.383748
margin level: 1.537044", - "balance: 14401.292293 USD
equity: 12550.990984
margin: 7110.000000
free margin: 5440.990984
margin level: 1.765259", - "balance: 12550.990984 USD
equity: 12550.990984
margin: 0.000000
free margin: 12550.990984
margin level: inf", - "balance: 12550.990984 USD
equity: 12550.990984
margin: 0.000000
free margin: 12550.990984
margin level: inf", - "balance: 12550.990984 USD
equity: 12550.990984
margin: 0.000000
free margin: 12550.990984
margin level: inf", - "balance: 12550.990984 USD
equity: 12607.800048
margin: 306.659600
free margin: 12301.140448
margin level: 41.113339", - "balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf", - "balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf", - "balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf", - "balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf", - "balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf", - "balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf", - "balance: 12607.800048 USD
equity: 13476.741387
margin: 9248.130601
free margin: 4228.610785
margin level: 1.457240", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 11866.091062
margin: 3895.966800
free margin: 7970.124262
margin level: 3.045737", - "balance: 11866.091062 USD
equity: 11866.091062
margin: 0.000000
free margin: 11866.091062
margin level: inf", - "balance: 11866.091062 USD
equity: 14164.385010
margin: 9746.529273
free margin: 4417.855737
margin level: 1.453275", - "balance: 11866.091062 USD
equity: 17007.087916
margin: 9746.529273
free margin: 7260.558643
margin level: 1.744938", - "balance: 17007.087916 USD
equity: 17098.937565
margin: 258.533000
free margin: 16840.404565
margin level: 66.138317", - "balance: 17007.087916 USD
equity: 16949.082195
margin: 11995.055500
free margin: 4954.026695
margin level: 1.413006", - "balance: 17007.087916 USD
equity: 18179.652195
margin: 11995.055500
free margin: 6184.596695
margin level: 1.515596", - "balance: 18179.652195 USD
equity: 18179.652195
margin: 0.000000
free margin: 18179.652195
margin level: inf", - "balance: 18179.652195 USD
equity: 18179.652195
margin: 0.000000
free margin: 18179.652195
margin level: inf", - "balance: 18179.652195 USD
equity: 18179.652195
margin: 0.000000
free margin: 18179.652195
margin level: inf" - ], - "legendgroup": "g1", - "line": { - "color": "rgba(31, 119, 180, 1)" - }, - "mode": "lines+markers", - "name": "GBPCAD", - "opacity": 1, - "type": "scatter", - "x": [ - "2021-05-05T00:00:00+00:00", - "2021-05-06T00:00:00+00:00", - "2021-05-07T00:00:00+00:00", - "2021-05-10T00:00:00+00:00", - "2021-05-11T00:00:00+00:00", - "2021-05-12T00:00:00+00:00", - "2021-05-13T00:00:00+00:00", - "2021-05-14T00:00:00+00:00", - "2021-05-17T00:00:00+00:00", - "2021-05-18T00:00:00+00:00", - "2021-05-19T00:00:00+00:00", - "2021-05-20T00:00:00+00:00", - "2021-05-21T00:00:00+00:00", - "2021-05-24T00:00:00+00:00", - "2021-05-25T00:00:00+00:00", - "2021-05-26T00:00:00+00:00", - "2021-05-27T00:00:00+00:00", - "2021-05-28T00:00:00+00:00", - "2021-05-31T00:00:00+00:00", - "2021-06-01T00:00:00+00:00", - "2021-06-02T00:00:00+00:00", - "2021-06-03T00:00:00+00:00", - "2021-06-04T00:00:00+00:00", - "2021-06-07T00:00:00+00:00", - "2021-06-08T00:00:00+00:00", - "2021-06-09T00:00:00+00:00", - "2021-06-10T00:00:00+00:00", - "2021-06-11T00:00:00+00:00", - "2021-06-14T00:00:00+00:00", - "2021-06-15T00:00:00+00:00", - "2021-06-16T00:00:00+00:00", - "2021-06-17T00:00:00+00:00", - "2021-06-18T00:00:00+00:00", - "2021-06-21T00:00:00+00:00", - "2021-06-22T00:00:00+00:00", - "2021-06-23T00:00:00+00:00", - "2021-06-24T00:00:00+00:00", - "2021-06-25T00:00:00+00:00", - "2021-06-28T00:00:00+00:00", - "2021-06-29T00:00:00+00:00", - "2021-06-30T00:00:00+00:00", - "2021-07-01T00:00:00+00:00", - "2021-07-02T00:00:00+00:00", - "2021-07-05T00:00:00+00:00", - "2021-07-06T00:00:00+00:00", - "2021-07-07T00:00:00+00:00", - "2021-07-08T00:00:00+00:00", - "2021-07-09T00:00:00+00:00", - "2021-07-12T00:00:00+00:00", - "2021-07-13T00:00:00+00:00", - "2021-07-14T00:00:00+00:00", - "2021-07-15T00:00:00+00:00", - "2021-07-16T00:00:00+00:00", - "2021-07-19T00:00:00+00:00", - "2021-07-20T00:00:00+00:00", - "2021-07-21T00:00:00+00:00", - "2021-07-22T00:00:00+00:00", - "2021-07-23T00:00:00+00:00", - "2021-07-26T00:00:00+00:00", - "2021-07-27T00:00:00+00:00", - "2021-07-28T00:00:00+00:00", - "2021-07-29T00:00:00+00:00", - "2021-07-30T00:00:00+00:00", - "2021-08-02T00:00:00+00:00", - "2021-08-03T00:00:00+00:00", - "2021-08-04T00:00:00+00:00", - "2021-08-05T00:00:00+00:00", - "2021-08-06T00:00:00+00:00", - "2021-08-09T00:00:00+00:00", - "2021-08-10T00:00:00+00:00", - "2021-08-11T00:00:00+00:00", - "2021-08-12T00:00:00+00:00", - "2021-08-13T00:00:00+00:00", - "2021-08-16T00:00:00+00:00", - "2021-08-17T00:00:00+00:00", - "2021-08-18T00:00:00+00:00", - "2021-08-19T00:00:00+00:00", - "2021-08-20T00:00:00+00:00", - "2021-08-23T00:00:00+00:00", - "2021-08-24T00:00:00+00:00", - "2021-08-25T00:00:00+00:00", - "2021-08-26T00:00:00+00:00", - "2021-08-27T00:00:00+00:00", - "2021-08-30T00:00:00+00:00", - "2021-08-31T00:00:00+00:00", - "2021-09-01T00:00:00+00:00", - "2021-09-02T00:00:00+00:00", - "2021-09-03T00:00:00+00:00" - ], - "y": [ - 1.70525, - 1.68648, - 1.69619, - 1.7070699999999999, - 1.71108, - 1.70468, - 1.7082899999999999, - 1.70635, - 1.7059199999999999, - 1.71128, - 1.71211, - 1.7107, - 1.70726, - 1.7044000000000001, - 1.7066, - 1.71089, - 1.71345, - 1.71356, - 1.7132399999999999, - 1.70755, - 1.70462, - 1.7068400000000001, - 1.70999, - 1.71255, - 1.7139199999999999, - 1.70927, - 1.71433, - 1.71691, - 1.71341, - 1.71492, - 1.71638, - 1.71949, - 1.72017, - 1.72173, - 1.7158099999999998, - 1.7177, - 1.7149299999999998, - 1.70721, - 1.71244, - 1.71535, - 1.71437, - 1.71059, - 1.70511, - 1.70716, - 1.71879, - 1.72167, - 1.72692, - 1.7307000000000001, - 1.72832, - 1.72767, - 1.73236, - 1.7407, - 1.73684, - 1.74244, - 1.7273800000000001, - 1.72183, - 1.72851, - 1.72728, - 1.73336, - 1.7481900000000001, - 1.7405300000000001, - 1.73688, - 1.73335, - 1.73577, - 1.7441499999999999, - 1.7412999999999998, - 1.7408299999999999, - 1.7419799999999999, - 1.7408000000000001, - 1.7316500000000001, - 1.73282, - 1.72889, - 1.7357200000000002, - 1.7402199999999999, - 1.7349700000000001, - 1.74061, - 1.74874, - 1.7468, - 1.73506, - 1.72784, - 1.73259, - 1.7377, - 1.7353399999999999, - 1.7338900000000002, - 1.73501, - 1.7372800000000002, - 1.73603, - 1.7362600000000001 - ], - "yaxis": "y" - }, - { - "hovertext": [ - "order id:
hold probability: 0.0000
hold: False
volume: -44.176482
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=49647.13488780763, order profit=-2247.909433094914, free margin=10000.0)", - "order id:
hold probability: 0.0000
hold: False
volume: 72.038866
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=49507.25646699986, order profit=-1901.7386746816774, free margin=12736.381708571604)", - "order id: 3
hold probability: 0.0108
hold: False
volume: 5.578163
modified volume: 5.5800
fee: 0.000689
margin: 7894.516666
error: ", - "order id:
hold probability: 0.0000
hold: False
volume: -23.267540
modified volume: 23.2700
fee: nan
margin: nan
error: low free margin (order margin=32939.58357766416, order profit=-1372.3300137940907, free margin=10927.304247610115)", - "order id:
hold probability: 0.0000
hold: False
volume: -60.861710
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48716.679483547174, order profit=-2006.6653647666162, free margin=8727.743921036426)", - "order id:
hold probability: 0.0000
hold: False
volume: -47.949233
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48286.44183342022, order profit=-2061.781190291184, free margin=12907.743921036426)", - "order id:
hold probability: 0.0000
hold: False
volume: 25.554756
modified volume: 25.5500
fee: nan
margin: nan
error: low free margin (order margin=35588.47445149181, order profit=-1520.1010704901496, free margin=12907.743921036426)", - "order id:
hold probability: 0.0000
hold: False
volume: 76.377012
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48862.149399783804, order profit=-2201.901585803025, free margin=11394.930310040349)", - "order id:
hold probability: 0.0000
hold: False
volume: 41.376815
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48709.71799553661, order profit=-2057.0564947657103, free margin=11394.930310040349)", - "order id:
hold probability: 0.0000
hold: False
volume: -24.612648
modified volume: 24.6100
fee: nan
margin: nan
error: low free margin (order margin=34159.687771032084, order profit=-1346.1979953576295, free margin=11394.930310040349)", - "order id:
hold probability: 0.0000
hold: False
volume: -43.428668
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48415.57530402245, order profit=-1673.8828367509084, free margin=11394.930310040349)", - "order id: 6
hold probability: 0.0000
hold: False
volume: -2.767402
modified volume: 2.7700
fee: 0.000678
margin: 3831.428119
error: ", - "order id:
hold probability: 0.0000
hold: False
volume: 86.698742
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48271.320130953914, order profit=-1926.546075508112, free margin=10782.592383267549)", - "order id:
hold probability: 0.0000
hold: False
volume: 58.165697
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48225.67261353844, order profit=-2061.3341280204318, free margin=8039.245393258917)", - "order id:
hold probability: 0.0000
hold: False
volume: -23.148405
modified volume: 23.1500
fee: nan
margin: nan
error: low free margin (order margin=32177.92921221077, order profit=-1256.0504973146583, free margin=9413.995393258905)", - "order id:
hold probability: 0.0000
hold: False
volume: -62.835675
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48583.01676157127, order profit=-1936.8996474079252, free margin=14401.292293258906)", - "order id:
hold probability: 0.0000
hold: False
volume: -75.380819
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48473.505804099645, order profit=-2063.592990500289, free margin=4591.665022357844)", - "order id:
hold probability: 0.0000
hold: False
volume: 52.140152
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48378.502854692575, order profit=-2003.1495778654673, free margin=3818.3837479887043)", - "order id:
hold probability: 0.0000
hold: False
volume: -10.638036
modified volume: 10.6400
fee: nan
margin: nan
error: low free margin (order margin=14646.306796116505, order profit=-589.7664711693458, free margin=5440.990983899694)", - "order id:
hold probability: 0.0000
hold: False
volume: -69.807531
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=47848.94942489055, order profit=-1869.8149703127222, free margin=12550.990983899694)", - "order id:
hold probability: 0.0000
hold: False
volume: 47.309933
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=47681.927520801306, order profit=-2075.872962742034, free margin=12550.990983899694)", - "order id:
hold probability: 0.0000
hold: False
volume: 40.251066
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=47980.931528662426, order profit=-2106.4075730786462, free margin=12550.990983899694)", - "order id:
hold probability: 0.0000
hold: False
volume: 31.759616
modified volume: 31.7600
fee: nan
margin: nan
error: low free margin (order margin=43707.13884222511, order profit=-1915.7067892978068, free margin=12301.14044816353)", - "order id:
hold probability: 0.0000
hold: False
volume: -97.668424
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48557.36495012261, order profit=-2013.4883226468503, free margin=12607.800048163532)", - "order id: 10
hold probability: 0.0000
hold: False
volume: 6.651386
modified volume: 6.6500
fee: 0.000786
margin: 9248.130601
error: ", - "order id:
hold probability: 0.0000
hold: False
volume: -47.663715
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48588.34397044004, order profit=-2097.7086650777032, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: -96.021717
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48700.617480933084, order profit=-2150.22721921506, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: 36.467051
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48748.699854383696, order profit=-1944.1821334036877, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: -60.311601
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48562.92862433988, order profit=-1784.2635914173381, free margin=13476.74138657302)", - "order id:
hold probability: 0.0012
hold: False
volume: -74.391499
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48411.839414659094, order profit=-1915.7597390538695, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: -32.194224
modified volume: 32.1900
fee: nan
margin: nan
error: low free margin (order margin=44447.348156312146, order profit=-1808.0163021987307, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: 48.948332
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48095.130605585386, order profit=-1876.3109125196697, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: -17.182294
modified volume: 17.1800
fee: nan
margin: nan
error: low free margin (order margin=23624.70555704783, order profit=-1010.1259860739742, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: 47.823681
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=47720.17776391705, order profit=-1904.8013206750984, free margin=13476.74138657302)", - "order id: 12
hold probability: 0.0000
hold: False
volume: 7.104986
modified volume: 7.1000
fee: 0.000675
margin: 9746.529273
error: ", - "order id:
hold probability: 0.0000
hold: False
volume: 46.866510
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48167.25710109932, order profit=-1930.6790843243173, free margin=4417.855736977503)", - "order id:
hold probability: 0.0000
hold: False
volume: -58.948852
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48150.00673849106, order profit=-1819.865669657485, free margin=16840.40456466897)", - "order id:
hold probability: 0.0000
hold: False
volume: -11.765242
modified volume: 11.7700
fee: nan
margin: nan
error: low free margin (order margin=16189.410584100846, order profit=-610.9683308350316, free margin=4954.026695193326)", - "order id:
hold probability: 0.0000
hold: False
volume: -64.416248
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48137.79736660616, order profit=-1930.4115556441482, free margin=6184.596695193482)", - "order id:
hold probability: 0.0000
hold: False
volume: 89.812738
modified volume: 35.0000
fee: nan
margin: nan
error: low free margin (order margin=48409.00761655885, order profit=-1945.310857650552, free margin=18179.65219519348)" - ], - "legendgroup": "g1", - "marker": { - "color": [ - "gray", - "gray", - "green", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "red", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "green", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "green", - "gray", - "gray", - "gray", - "gray", - "gray" - ], - "size": [ - 30, - 30, - 11.507428571428571, - 22.62685714285714, - 30, - 30, - 24.06, - 30, - 30, - 23.469142857142856, - 30, - 9.741142857142858, - 30, - 30, - 22.551428571428573, - 30, - 30, - 30, - 14.687999999999999, - 30, - 30, - 30, - 27.963428571428572, - 30, - 12.18, - 30, - 30, - 30, - 30, - 30, - 28.23371428571428, - 30, - 18.798857142857145, - 30, - 12.462857142857143, - 30, - 30, - 15.398285714285715, - 30, - 30 - ], - "symbol": [ - "triangle-down", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down" - ] - }, - "mode": "markers", - "name": "GBPCAD", - "showlegend": false, - "type": "scatter", - "x": [ - "2021-05-18T00:00:00+00:00", - "2021-05-25T00:00:00+00:00", - "2021-06-01T00:00:00+00:00", - "2021-06-08T00:00:00+00:00", - "2021-06-17T00:00:00+00:00", - "2021-06-18T00:00:00+00:00", - "2021-06-21T00:00:00+00:00", - "2021-06-23T00:00:00+00:00", - "2021-06-24T00:00:00+00:00", - "2021-06-28T00:00:00+00:00", - "2021-06-29T00:00:00+00:00", - "2021-07-02T00:00:00+00:00", - "2021-07-06T00:00:00+00:00", - "2021-07-08T00:00:00+00:00", - "2021-07-09T00:00:00+00:00", - "2021-07-12T00:00:00+00:00", - "2021-07-14T00:00:00+00:00", - "2021-07-15T00:00:00+00:00", - "2021-07-16T00:00:00+00:00", - "2021-07-19T00:00:00+00:00", - "2021-07-20T00:00:00+00:00", - "2021-07-21T00:00:00+00:00", - "2021-07-22T00:00:00+00:00", - "2021-07-27T00:00:00+00:00", - "2021-07-30T00:00:00+00:00", - "2021-08-02T00:00:00+00:00", - "2021-08-03T00:00:00+00:00", - "2021-08-05T00:00:00+00:00", - "2021-08-06T00:00:00+00:00", - "2021-08-10T00:00:00+00:00", - "2021-08-12T00:00:00+00:00", - "2021-08-17T00:00:00+00:00", - "2021-08-18T00:00:00+00:00", - "2021-08-19T00:00:00+00:00", - "2021-08-24T00:00:00+00:00", - "2021-08-25T00:00:00+00:00", - "2021-08-27T00:00:00+00:00", - "2021-08-30T00:00:00+00:00", - "2021-08-31T00:00:00+00:00", - "2021-09-02T00:00:00+00:00" - ], - "y": [ - 1.71128, - 1.7066, - 1.70755, - 1.7139199999999999, - 1.71949, - 1.72017, - 1.72173, - 1.7177, - 1.7149299999999998, - 1.71244, - 1.71535, - 1.70511, - 1.71879, - 1.72692, - 1.7307000000000001, - 1.72832, - 1.73236, - 1.7407, - 1.73684, - 1.74244, - 1.7273800000000001, - 1.72183, - 1.72851, - 1.7481900000000001, - 1.73335, - 1.73577, - 1.7441499999999999, - 1.7408299999999999, - 1.7419799999999999, - 1.7316500000000001, - 1.72889, - 1.7349700000000001, - 1.74061, - 1.74874, - 1.72784, - 1.73259, - 1.7353399999999999, - 1.7338900000000002, - 1.73501, - 1.73603 - ], - "yaxis": "y" - }, - { - "hovertext": [ - "order id: 3
order type: Buy
close probability: 1.0000
margin: 7894.516666
profit: -1678.531017", - "order id: 6
order type: Sell
close probability: 1.0000
margin: 3831.428119
profit: -612.337927", - "order id: 10
order type: Buy
close probability: 0.9998
margin: 9248.130601
profit: 868.941338", - "order id: 12
order type: Buy
close probability: 1.0000
margin: 9746.529273
profit: 5140.996853" - ], - "legendgroup": "g1", - "marker": { - "color": "black", - "line": { - "width": 1.5 - }, - "size": 7, - "symbol": "line-ns" - }, - "mode": "markers", - "name": "GBPCAD", - "showlegend": false, - "type": "scatter", - "x": [ - "2021-06-02T00:00:00+00:00", - "2021-07-05T00:00:00+00:00", - "2021-08-02T00:00:00+00:00", - "2021-08-26T00:00:00+00:00" - ], - "y": [ - 1.70462, - 1.70716, - 1.73577, - 1.7377 - ], - "yaxis": "y" - }, - { - "hovertext": [ - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 12736.381709
margin: 6730.000000
free margin: 6006.381709
margin level: 1.892479", - "balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf", - "balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf", - "balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf", - "balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf", - "balance: 12736.381709 USD
equity: 12706.535265
margin: 3230.933000
free margin: 9475.602265
margin level: 3.932776", - "balance: 12736.381709 USD
equity: 12605.835265
margin: 3230.933000
free margin: 9374.902265
margin level: 3.901608", - "balance: 12605.835265 USD
equity: 12605.835265
margin: 0.000000
free margin: 12605.835265
margin level: inf", - "balance: 12605.835265 USD
equity: 12605.835265
margin: 0.000000
free margin: 12605.835265
margin level: inf", - "balance: 12605.835265 USD
equity: 10927.304248
margin: 7894.516666
free margin: 3032.787581
margin level: 1.384164", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 12340.810450
margin: 4180.000000
free margin: 8160.810450
margin level: 2.952347", - "balance: 10927.304248 USD
equity: 12284.032107
margin: 4180.000000
free margin: 8104.032107
margin level: 2.938764", - "balance: 10927.304248 USD
equity: 14737.797087
margin: 4180.000000
free margin: 10557.797087
margin level: 3.525789", - "balance: 10927.304248 USD
equity: 12907.743921
margin: 4180.000000
free margin: 8727.743921
margin level: 3.087977", - "balance: 12907.743921 USD
equity: 12907.743921
margin: 0.000000
free margin: 12907.743921
margin level: inf", - "balance: 12907.743921 USD
equity: 12907.743921
margin: 0.000000
free margin: 12907.743921
margin level: inf", - "balance: 12907.743921 USD
equity: 11394.930310
margin: 7234.529500
free margin: 4160.400810
margin level: 1.575076", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 10782.592383
margin: 3831.428119
free margin: 6951.164264
margin level: 2.814249", - "balance: 10782.592383 USD
equity: 10782.592383
margin: 0.000000
free margin: 10782.592383
margin level: inf", - "balance: 10782.592383 USD
equity: 10782.592383
margin: 0.000000
free margin: 10782.592383
margin level: inf", - "balance: 10782.592383 USD
equity: 13026.542293
margin: 4987.296900
free margin: 8039.245393
margin level: 2.611944", - "balance: 10782.592383 USD
equity: 14401.292293
margin: 4987.296900
free margin: 9413.995393
margin level: 2.887595", - "balance: 14401.292293 USD
equity: 14401.292293
margin: 0.000000
free margin: 14401.292293
margin level: inf", - "balance: 14401.292293 USD
equity: 16069.266491
margin: 7110.000000
free margin: 8959.266491
margin level: 2.260094", - "balance: 14401.292293 USD
equity: 11701.665022
margin: 7110.000000
free margin: 4591.665022
margin level: 1.645804", - "balance: 14401.292293 USD
equity: 10928.383748
margin: 7110.000000
free margin: 3818.383748
margin level: 1.537044", - "balance: 14401.292293 USD
equity: 12550.990984
margin: 7110.000000
free margin: 5440.990984
margin level: 1.765259", - "balance: 12550.990984 USD
equity: 12550.990984
margin: 0.000000
free margin: 12550.990984
margin level: inf", - "balance: 12550.990984 USD
equity: 12550.990984
margin: 0.000000
free margin: 12550.990984
margin level: inf", - "balance: 12550.990984 USD
equity: 12550.990984
margin: 0.000000
free margin: 12550.990984
margin level: inf", - "balance: 12550.990984 USD
equity: 12607.800048
margin: 306.659600
free margin: 12301.140448
margin level: 41.113339", - "balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf", - "balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf", - "balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf", - "balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf", - "balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf", - "balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf", - "balance: 12607.800048 USD
equity: 13476.741387
margin: 9248.130601
free margin: 4228.610785
margin level: 1.457240", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 11866.091062
margin: 3895.966800
free margin: 7970.124262
margin level: 3.045737", - "balance: 11866.091062 USD
equity: 11866.091062
margin: 0.000000
free margin: 11866.091062
margin level: inf", - "balance: 11866.091062 USD
equity: 14164.385010
margin: 9746.529273
free margin: 4417.855737
margin level: 1.453275", - "balance: 11866.091062 USD
equity: 17007.087916
margin: 9746.529273
free margin: 7260.558643
margin level: 1.744938", - "balance: 17007.087916 USD
equity: 17098.937565
margin: 258.533000
free margin: 16840.404565
margin level: 66.138317", - "balance: 17007.087916 USD
equity: 16949.082195
margin: 11995.055500
free margin: 4954.026695
margin level: 1.413006", - "balance: 17007.087916 USD
equity: 18179.652195
margin: 11995.055500
free margin: 6184.596695
margin level: 1.515596", - "balance: 18179.652195 USD
equity: 18179.652195
margin: 0.000000
free margin: 18179.652195
margin level: inf", - "balance: 18179.652195 USD
equity: 18179.652195
margin: 0.000000
free margin: 18179.652195
margin level: inf", - "balance: 18179.652195 USD
equity: 18179.652195
margin: 0.000000
free margin: 18179.652195
margin level: inf" - ], - "legendgroup": "g2", - "line": { - "color": "rgba(144, 94, 131, 1)" - }, - "mode": "lines+markers", - "name": "EURUSD", - "opacity": 1, - "type": "scatter", - "x": [ - "2021-05-05T00:00:00+00:00", - "2021-05-06T00:00:00+00:00", - "2021-05-07T00:00:00+00:00", - "2021-05-10T00:00:00+00:00", - "2021-05-11T00:00:00+00:00", - "2021-05-12T00:00:00+00:00", - "2021-05-13T00:00:00+00:00", - "2021-05-14T00:00:00+00:00", - "2021-05-17T00:00:00+00:00", - "2021-05-18T00:00:00+00:00", - "2021-05-19T00:00:00+00:00", - "2021-05-20T00:00:00+00:00", - "2021-05-21T00:00:00+00:00", - "2021-05-24T00:00:00+00:00", - "2021-05-25T00:00:00+00:00", - "2021-05-26T00:00:00+00:00", - "2021-05-27T00:00:00+00:00", - "2021-05-28T00:00:00+00:00", - "2021-05-31T00:00:00+00:00", - "2021-06-01T00:00:00+00:00", - "2021-06-02T00:00:00+00:00", - "2021-06-03T00:00:00+00:00", - "2021-06-04T00:00:00+00:00", - "2021-06-07T00:00:00+00:00", - "2021-06-08T00:00:00+00:00", - "2021-06-09T00:00:00+00:00", - "2021-06-10T00:00:00+00:00", - "2021-06-11T00:00:00+00:00", - "2021-06-14T00:00:00+00:00", - "2021-06-15T00:00:00+00:00", - "2021-06-16T00:00:00+00:00", - "2021-06-17T00:00:00+00:00", - "2021-06-18T00:00:00+00:00", - "2021-06-21T00:00:00+00:00", - "2021-06-22T00:00:00+00:00", - "2021-06-23T00:00:00+00:00", - "2021-06-24T00:00:00+00:00", - "2021-06-25T00:00:00+00:00", - "2021-06-28T00:00:00+00:00", - "2021-06-29T00:00:00+00:00", - "2021-06-30T00:00:00+00:00", - "2021-07-01T00:00:00+00:00", - "2021-07-02T00:00:00+00:00", - "2021-07-05T00:00:00+00:00", - "2021-07-06T00:00:00+00:00", - "2021-07-07T00:00:00+00:00", - "2021-07-08T00:00:00+00:00", - "2021-07-09T00:00:00+00:00", - "2021-07-12T00:00:00+00:00", - "2021-07-13T00:00:00+00:00", - "2021-07-14T00:00:00+00:00", - "2021-07-15T00:00:00+00:00", - "2021-07-16T00:00:00+00:00", - "2021-07-19T00:00:00+00:00", - "2021-07-20T00:00:00+00:00", - "2021-07-21T00:00:00+00:00", - "2021-07-22T00:00:00+00:00", - "2021-07-23T00:00:00+00:00", - "2021-07-26T00:00:00+00:00", - "2021-07-27T00:00:00+00:00", - "2021-07-28T00:00:00+00:00", - "2021-07-29T00:00:00+00:00", - "2021-07-30T00:00:00+00:00", - "2021-08-02T00:00:00+00:00", - "2021-08-03T00:00:00+00:00", - "2021-08-04T00:00:00+00:00", - "2021-08-05T00:00:00+00:00", - "2021-08-06T00:00:00+00:00", - "2021-08-09T00:00:00+00:00", - "2021-08-10T00:00:00+00:00", - "2021-08-11T00:00:00+00:00", - "2021-08-12T00:00:00+00:00", - "2021-08-13T00:00:00+00:00", - "2021-08-16T00:00:00+00:00", - "2021-08-17T00:00:00+00:00", - "2021-08-18T00:00:00+00:00", - "2021-08-19T00:00:00+00:00", - "2021-08-20T00:00:00+00:00", - "2021-08-23T00:00:00+00:00", - "2021-08-24T00:00:00+00:00", - "2021-08-25T00:00:00+00:00", - "2021-08-26T00:00:00+00:00", - "2021-08-27T00:00:00+00:00", - "2021-08-30T00:00:00+00:00", - "2021-08-31T00:00:00+00:00", - "2021-09-01T00:00:00+00:00", - "2021-09-02T00:00:00+00:00", - "2021-09-03T00:00:00+00:00" - ], - "y": [ - 1.20036, - 1.20646, - 1.21618, - 1.21282, - 1.2147000000000001, - 1.20705, - 1.20791, - 1.21441, - 1.21511, - 1.2221899999999999, - 1.21744, - 1.22269, - 1.21806, - 1.2215, - 1.22497, - 1.21922, - 1.21934, - 1.21896, - 1.2225, - 1.22126, - 1.221, - 1.21265, - 1.21662, - 1.21893, - 1.21726, - 1.21787, - 1.21751, - 1.21063, - 1.212, - 1.21264, - 1.19943, - 1.19069, - 1.18597, - 1.19185, - 1.19413, - 1.19258, - 1.19315, - 1.1937, - 1.19242, - 1.1896, - 1.1856, - 1.18497, - 1.18646, - 1.18634, - 1.18231, - 1.17903, - 1.18449, - 1.18774, - 1.18606, - 1.17765, - 1.18358, - 1.18118, - 1.18055, - 1.17987, - 1.17805, - 1.17946, - 1.17707, - 1.17689, - 1.18029, - 1.18165, - 1.18441, - 1.18865, - 1.1873, - 1.18688, - 1.18637, - 1.18367, - 1.18327, - 1.17611, - 1.17362, - 1.17203, - 1.17388, - 1.17296, - 1.17962, - 1.17768, - 1.17081, - 1.17108, - 1.16756, - 1.16996, - 1.1745700000000001, - 1.17555, - 1.17716, - 1.17515, - 1.1795499999999999, - 1.17962, - 1.18083, - 1.18384, - 1.18744, - 1.18772 - ], - "yaxis": "y2" - }, - { - "hovertext": [ - "order id:
hold probability: 0.0000
hold: False
volume: -5.600001
modified volume: 5.6000
fee: nan
margin: nan
error: low free margin (order margin=6847.064, order profit=-138.8566776607775, free margin=6006.381708571604)", - "order id:
hold probability: 0.0000
hold: False
volume: -62.223997
modified volume: 62.2200
fee: nan
margin: nan
error: low free margin (order margin=75787.6932, order profit=-1560.9756801646708, free margin=12736.381708571604)", - "order id: 2
hold probability: 0.0000
hold: False
volume: 2.651722
modified volume: 2.6500
fee: 0.000233
margin: 3230.933000
error: ", - "order id:
hold probability: 0.0000
hold: False
volume: 88.656548
modified volume: 88.6600
fee: nan
margin: nan
error: low free margin (order margin=108072.99360000002, order profit=-1743.9558924969394, free margin=12605.835264609543)", - "order id:
hold probability: 0.0000
hold: False
volume: 77.548375
modified volume: 77.5500
fee: nan
margin: nan
error: low free margin (order margin=94528.0215, order profit=-1849.3482681928433, free margin=10927.304247610115)", - "order id:
hold probability: 0.0003
hold: False
volume: -94.766423
modified volume: 94.7700
fee: nan
margin: nan
error: low free margin (order margin=115359.73019999999, order profit=-2067.1155720645615, free margin=10927.304247610115)", - "order id:
hold probability: 0.0000
hold: False
volume: -75.529795
modified volume: 75.5300
fee: nan
margin: nan
error: low free margin (order margin=91985.7211, order profit=-1772.9834004175866, free margin=10927.304247610115)", - "order id:
hold probability: 0.0000
hold: False
volume: 21.124000
modified volume: 21.1200
fee: nan
margin: nan
error: low free margin (order margin=25713.8112, order profit=-432.3591558240023, free margin=10927.304247610115)", - "order id:
hold probability: 0.0000
hold: False
volume: -73.889688
modified volume: 73.8900
fee: nan
margin: nan
error: low free margin (order margin=89453.4507, order profit=-1379.7610779415754, free margin=10927.304247610115)", - "order id:
hold probability: 0.0000
hold: False
volume: 62.120651
modified volume: 62.1200
fee: nan
margin: nan
error: low free margin (order margin=75289.44, order profit=-1107.2811057389522, free margin=8160.8104503766845)", - "order id:
hold probability: 0.0000
hold: False
volume: 34.455269
modified volume: 34.4600
fee: nan
margin: nan
error: low free margin (order margin=41787.5744, order profit=-712.699513565751, free margin=8104.032106561184)", - "order id:
hold probability: 0.0000
hold: False
volume: -75.416466
modified volume: 75.4200
fee: nan
margin: nan
error: low free margin (order margin=90461.01060000001, order profit=-1622.1397144142256, free margin=10557.79708683329)", - "order id:
hold probability: 0.0000
hold: False
volume: -38.321286
modified volume: 38.3200
fee: nan
margin: nan
error: low free margin (order margin=45627.2408, order profit=-832.8209114516719, free margin=8727.743921036426)", - "order id: 5
hold probability: 0.0000
hold: False
volume: -6.069555
modified volume: 6.0700
fee: 0.000212
margin: 7234.529500
error: ", - "order id:
hold probability: 0.0000
hold: False
volume: -59.930551
modified volume: 59.9300
fee: nan
margin: nan
error: low free margin (order margin=71564.2109, order profit=-1255.28500697473, free margin=11394.930310040349)", - "order id:
hold probability: 0.0000
hold: False
volume: 53.921603
modified volume: 53.9200
fee: nan
margin: nan
error: low free margin (order margin=64303.91359999999, order profit=-1292.4046823968365, free margin=11394.930310040349)", - "order id:
hold probability: 0.0000
hold: False
volume: -18.052204
modified volume: 18.0500
fee: nan
margin: nan
error: low free margin (order margin=21523.181, order profit=-309.40284270080696, free margin=11394.930310040349)", - "order id:
hold probability: 0.0000
hold: False
volume: 30.609904
modified volume: 30.6100
fee: nan
margin: nan
error: low free margin (order margin=36291.216, order profit=-533.3124273301988, free margin=11394.930310040349)", - "order id:
hold probability: 0.0000
hold: False
volume: 78.643252
modified volume: 78.6400
fee: nan
margin: nan
error: low free margin (order margin=93293.7776, order profit=-1606.9550097028743, free margin=10782.592383267549)", - "order id: 7
hold probability: 0.0000
hold: False
volume: 4.232193
modified volume: 4.2300
fee: 0.000155
margin: 4987.296900
error: ", - "order id:
hold probability: 0.0000
hold: False
volume: -60.549445
modified volume: 60.5500
fee: nan
margin: nan
error: low free margin (order margin=71917.657, order profit=-1282.0610017970778, free margin=14401.292293258906)", - "order id:
hold probability: 0.0000
hold: False
volume: 36.277468
modified volume: 36.2800
fee: nan
margin: nan
error: low free margin (order margin=43030.256799999996, order profit=-691.4361101205322, free margin=14401.292293258906)", - "order id:
hold probability: 0.0000
hold: False
volume: 41.028668
modified volume: 41.0300
fee: nan
margin: nan
error: low free margin (order margin=48318.9795, order profit=-789.0613013174274, free margin=8959.266490917913)", - "order id:
hold probability: 0.0000
hold: False
volume: 67.920132
modified volume: 67.9200
fee: nan
margin: nan
error: low free margin (order margin=80225.7456, order profit=-1597.0027565761818, free margin=3818.3837479887043)", - "order id: 9
hold probability: 0.0000
hold: False
volume: -0.260075
modified volume: 0.2600
fee: 0.000205
margin: 306.659600
error: ", - "order id:
hold probability: 0.0000
hold: False
volume: -86.342260
modified volume: 86.3400
fee: nan
margin: nan
error: low free margin (order margin=101612.6826, order profit=-1886.9757349406686, free margin=12607.800048163532)", - "order id:
hold probability: 0.0000
hold: False
volume: -56.131961
modified volume: 56.1300
fee: nan
margin: nan
error: low free margin (order margin=66249.6777, order profit=-1278.6756114942887, free margin=12607.800048163532)", - "order id:
hold probability: 0.0000
hold: False
volume: -85.452239
modified volume: 85.4500
fee: nan
margin: nan
error: low free margin (order margin=101570.1425, order profit=-1375.9879912446002, free margin=12607.800048163532)", - "order id:
hold probability: 0.0000
hold: False
volume: 30.796775
modified volume: 30.8000
fee: nan
margin: nan
error: low free margin (order margin=36568.84, order profit=-761.5295130288157, free margin=2940.1956972515854)", - "order id:
hold probability: 0.0000
hold: False
volume: 34.883000
modified volume: 34.8800
fee: nan
margin: nan
error: low free margin (order margin=41380.585600000006, order profit=-756.6366349535826, free margin=13476.74138657302)", - "order id:
hold probability: 0.4698
hold: False
volume: -59.973584
modified volume: 59.9700
fee: nan
margin: nan
error: low free margin (order margin=70984.6899, order profit=-1281.8710375274152, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: 47.776494
modified volume: 47.7800
fee: nan
margin: nan
error: low free margin (order margin=56536.640600000006, order profit=-1072.4355341251994, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: 25.136558
modified volume: 25.1400
fee: nan
margin: nan
error: low free margin (order margin=29567.4054, order profit=-496.30293891752723, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: 72.416751
modified volume: 72.4200
fee: nan
margin: nan
error: low free margin (order margin=84993.56040000002, order profit=-1203.5430779180415, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: 95.416212
modified volume: 95.4200
fee: nan
margin: nan
error: low free margin (order margin=111835.1026, order profit=-2089.9493143201016, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: -40.881684
modified volume: 40.8800
fee: nan
margin: nan
error: low free margin (order margin=47988.214400000004, order profit=-489.2798151010228, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: -86.385672
modified volume: 86.3900
fee: nan
margin: nan
error: low free margin (order margin=101907.3718, order profit=-1827.856763017767, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: 12.583248
modified volume: 12.5800
fee: nan
margin: nan
error: low free margin (order margin=14815.214400000003, order profit=-228.83822964707855, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: -85.192746
modified volume: 85.1900
fee: nan
margin: nan
error: low free margin (order margin=99764.3052, order profit=-1785.6869691316595, free margin=13476.74138657302)", - "order id: 11
hold probability: 0.0002
hold: False
volume: -3.327621
modified volume: 3.3300
fee: 0.000227
margin: 3895.966800
error: ", - "order id: 13
hold probability: 0.0000
hold: False
volume: 0.220905
modified volume: 0.2200
fee: 0.000225
margin: 258.533000
error: ", - "order id: 14
hold probability: 0.0000
hold: False
volume: 9.946175
modified volume: 9.9500
fee: 0.000222
margin: 11736.522500
error: ", - "order id:
hold probability: 0.0000
hold: False
volume: 41.674727
modified volume: 41.6700
fee: nan
margin: nan
error: cannot add more orders", - "order id:
hold probability: 0.0000
hold: False
volume: -97.687594
modified volume: 97.6900
fee: nan
margin: nan
error: low free margin (order margin=115355.2827, order profit=-1747.9611976516298, free margin=18179.65219519348)" - ], - "legendgroup": "g2", - "marker": { - "color": [ - "gray", - "gray", - "green", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "red", - "gray", - "gray", - "gray", - "gray", - "gray", - "green", - "gray", - "gray", - "gray", - "gray", - "red", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "red", - "green", - "green", - "gray", - "gray" - ], - "size": [ - 9.261132152728017, - 22.01207902548879, - 8.596785750844509, - 27.96642440372607, - 25.464428293581737, - 29.34240966322039, - 25.00951990991913, - 12.756269833145666, - 24.640188350905927, - 21.989558808475792, - 15.760466782679906, - 24.984747671204833, - 16.62974715938172, - 9.366977172689118, - 21.496366055891084, - 20.142901013409766, - 12.064899170846555, - 14.893438427679396, - 25.70989865902344, - 8.952605179649913, - 21.635991401371687, - 16.170334732316512, - 17.240045040434026, - 23.295731395229808, - 8.058552564233802, - 27.443955369024465, - 20.64059780939707, - 27.243525437608763, - 14.936226840004096, - 15.855051694134508, - 21.505374142696283, - 18.760159688811548, - 13.661582557068279, - 24.30914116081482, - 29.488791073804894, - 17.206264714914525, - 27.455215477530967, - 10.833043300235438, - 27.184972873374964, - 8.74992322653291, - 8.0495444774286, - 10.24076159279353, - 17.384174429317227, - 30 - ], - "symbol": [ - "triangle-down", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-up", - "triangle-up", - "triangle-down", - "triangle-down" - ] - }, - "mode": "markers", - "name": "EURUSD", - "showlegend": false, - "type": "scatter", - "x": [ - "2021-05-20T00:00:00+00:00", - "2021-05-21T00:00:00+00:00", - "2021-05-26T00:00:00+00:00", - "2021-05-28T00:00:00+00:00", - "2021-06-07T00:00:00+00:00", - "2021-06-08T00:00:00+00:00", - "2021-06-09T00:00:00+00:00", - "2021-06-10T00:00:00+00:00", - "2021-06-11T00:00:00+00:00", - "2021-06-14T00:00:00+00:00", - "2021-06-15T00:00:00+00:00", - "2021-06-16T00:00:00+00:00", - "2021-06-17T00:00:00+00:00", - "2021-06-21T00:00:00+00:00", - "2021-06-22T00:00:00+00:00", - "2021-06-23T00:00:00+00:00", - "2021-06-28T00:00:00+00:00", - "2021-06-30T00:00:00+00:00", - "2021-07-05T00:00:00+00:00", - "2021-07-07T00:00:00+00:00", - "2021-07-09T00:00:00+00:00", - "2021-07-12T00:00:00+00:00", - "2021-07-13T00:00:00+00:00", - "2021-07-15T00:00:00+00:00", - "2021-07-21T00:00:00+00:00", - "2021-07-23T00:00:00+00:00", - "2021-07-26T00:00:00+00:00", - "2021-07-29T00:00:00+00:00", - "2021-07-30T00:00:00+00:00", - "2021-08-03T00:00:00+00:00", - "2021-08-04T00:00:00+00:00", - "2021-08-05T00:00:00+00:00", - "2021-08-06T00:00:00+00:00", - "2021-08-09T00:00:00+00:00", - "2021-08-10T00:00:00+00:00", - "2021-08-11T00:00:00+00:00", - "2021-08-13T00:00:00+00:00", - "2021-08-16T00:00:00+00:00", - "2021-08-18T00:00:00+00:00", - "2021-08-20T00:00:00+00:00", - "2021-08-26T00:00:00+00:00", - "2021-08-27T00:00:00+00:00", - "2021-08-30T00:00:00+00:00", - "2021-08-31T00:00:00+00:00" - ], - "y": [ - 1.22269, - 1.21806, - 1.21922, - 1.21896, - 1.21893, - 1.21726, - 1.21787, - 1.21751, - 1.21063, - 1.212, - 1.21264, - 1.19943, - 1.19069, - 1.19185, - 1.19413, - 1.19258, - 1.19242, - 1.1856, - 1.18634, - 1.17903, - 1.18774, - 1.18606, - 1.17765, - 1.18118, - 1.17946, - 1.17689, - 1.18029, - 1.18865, - 1.1873, - 1.18637, - 1.18367, - 1.18327, - 1.17611, - 1.17362, - 1.17203, - 1.17388, - 1.17962, - 1.17768, - 1.17108, - 1.16996, - 1.17515, - 1.1795499999999999, - 1.17962, - 1.18083 - ], - "yaxis": "y2" - }, - { - "hovertext": [ - "order id: 2
order type: Buy
close probability: 1.0000
margin: 3230.933000
profit: -130.546444", - "order id: 5
order type: Sell
close probability: 1.0000
margin: 7234.529500
profit: -1512.813611", - "order id: 7
order type: Buy
close probability: 0.9947
margin: 4987.296900
profit: 3618.699910", - "order id: 9
order type: Sell
close probability: 1.0000
margin: 306.659600
profit: 56.809064", - "order id: 11
order type: Sell
close probability: 0.8872
margin: 3895.966800
profit: -1610.650324", - "order id: 13
order type: Buy
close probability: 1.0000
margin: 258.533000
profit: 120.009649
---------------------------------
order id: 14
order type: Buy
close probability: 1.0000
margin: 11736.522500
profit: 1052.554631" - ], - "legendgroup": "g2", - "marker": { - "color": "black", - "line": { - "width": 1.5 - }, - "size": 7, - "symbol": "line-ns" - }, - "mode": "markers", - "name": "EURUSD", - "showlegend": false, - "type": "scatter", - "x": [ - "2021-05-28T00:00:00+00:00", - "2021-06-22T00:00:00+00:00", - "2021-07-09T00:00:00+00:00", - "2021-07-22T00:00:00+00:00", - "2021-08-23T00:00:00+00:00", - "2021-08-31T00:00:00+00:00" - ], - "y": [ - 1.21896, - 1.19413, - 1.18774, - 1.17707, - 1.1745700000000001, - 1.18083 - ], - "yaxis": "y2" - }, - { - "hovertext": [ - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 12736.381709
margin: 6730.000000
free margin: 6006.381709
margin level: 1.892479", - "balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf", - "balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf", - "balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf", - "balance: 12736.381709 USD
equity: 12736.381709
margin: 0.000000
free margin: 12736.381709
margin level: inf", - "balance: 12736.381709 USD
equity: 12706.535265
margin: 3230.933000
free margin: 9475.602265
margin level: 3.932776", - "balance: 12736.381709 USD
equity: 12605.835265
margin: 3230.933000
free margin: 9374.902265
margin level: 3.901608", - "balance: 12605.835265 USD
equity: 12605.835265
margin: 0.000000
free margin: 12605.835265
margin level: inf", - "balance: 12605.835265 USD
equity: 12605.835265
margin: 0.000000
free margin: 12605.835265
margin level: inf", - "balance: 12605.835265 USD
equity: 10927.304248
margin: 7894.516666
free margin: 3032.787581
margin level: 1.384164", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 10927.304248
margin: 0.000000
free margin: 10927.304248
margin level: inf", - "balance: 10927.304248 USD
equity: 12340.810450
margin: 4180.000000
free margin: 8160.810450
margin level: 2.952347", - "balance: 10927.304248 USD
equity: 12284.032107
margin: 4180.000000
free margin: 8104.032107
margin level: 2.938764", - "balance: 10927.304248 USD
equity: 14737.797087
margin: 4180.000000
free margin: 10557.797087
margin level: 3.525789", - "balance: 10927.304248 USD
equity: 12907.743921
margin: 4180.000000
free margin: 8727.743921
margin level: 3.087977", - "balance: 12907.743921 USD
equity: 12907.743921
margin: 0.000000
free margin: 12907.743921
margin level: inf", - "balance: 12907.743921 USD
equity: 12907.743921
margin: 0.000000
free margin: 12907.743921
margin level: inf", - "balance: 12907.743921 USD
equity: 11394.930310
margin: 7234.529500
free margin: 4160.400810
margin level: 1.575076", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 11394.930310
margin: 0.000000
free margin: 11394.930310
margin level: inf", - "balance: 11394.930310 USD
equity: 10782.592383
margin: 3831.428119
free margin: 6951.164264
margin level: 2.814249", - "balance: 10782.592383 USD
equity: 10782.592383
margin: 0.000000
free margin: 10782.592383
margin level: inf", - "balance: 10782.592383 USD
equity: 10782.592383
margin: 0.000000
free margin: 10782.592383
margin level: inf", - "balance: 10782.592383 USD
equity: 13026.542293
margin: 4987.296900
free margin: 8039.245393
margin level: 2.611944", - "balance: 10782.592383 USD
equity: 14401.292293
margin: 4987.296900
free margin: 9413.995393
margin level: 2.887595", - "balance: 14401.292293 USD
equity: 14401.292293
margin: 0.000000
free margin: 14401.292293
margin level: inf", - "balance: 14401.292293 USD
equity: 16069.266491
margin: 7110.000000
free margin: 8959.266491
margin level: 2.260094", - "balance: 14401.292293 USD
equity: 11701.665022
margin: 7110.000000
free margin: 4591.665022
margin level: 1.645804", - "balance: 14401.292293 USD
equity: 10928.383748
margin: 7110.000000
free margin: 3818.383748
margin level: 1.537044", - "balance: 14401.292293 USD
equity: 12550.990984
margin: 7110.000000
free margin: 5440.990984
margin level: 1.765259", - "balance: 12550.990984 USD
equity: 12550.990984
margin: 0.000000
free margin: 12550.990984
margin level: inf", - "balance: 12550.990984 USD
equity: 12550.990984
margin: 0.000000
free margin: 12550.990984
margin level: inf", - "balance: 12550.990984 USD
equity: 12550.990984
margin: 0.000000
free margin: 12550.990984
margin level: inf", - "balance: 12550.990984 USD
equity: 12607.800048
margin: 306.659600
free margin: 12301.140448
margin level: 41.113339", - "balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf", - "balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf", - "balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf", - "balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf", - "balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf", - "balance: 12607.800048 USD
equity: 12607.800048
margin: 0.000000
free margin: 12607.800048
margin level: inf", - "balance: 12607.800048 USD
equity: 13476.741387
margin: 9248.130601
free margin: 4228.610785
margin level: 1.457240", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 13476.741387
margin: 0.000000
free margin: 13476.741387
margin level: inf", - "balance: 13476.741387 USD
equity: 11866.091062
margin: 3895.966800
free margin: 7970.124262
margin level: 3.045737", - "balance: 11866.091062 USD
equity: 11866.091062
margin: 0.000000
free margin: 11866.091062
margin level: inf", - "balance: 11866.091062 USD
equity: 14164.385010
margin: 9746.529273
free margin: 4417.855737
margin level: 1.453275", - "balance: 11866.091062 USD
equity: 17007.087916
margin: 9746.529273
free margin: 7260.558643
margin level: 1.744938", - "balance: 17007.087916 USD
equity: 17098.937565
margin: 258.533000
free margin: 16840.404565
margin level: 66.138317", - "balance: 17007.087916 USD
equity: 16949.082195
margin: 11995.055500
free margin: 4954.026695
margin level: 1.413006", - "balance: 17007.087916 USD
equity: 18179.652195
margin: 11995.055500
free margin: 6184.596695
margin level: 1.515596", - "balance: 18179.652195 USD
equity: 18179.652195
margin: 0.000000
free margin: 18179.652195
margin level: inf", - "balance: 18179.652195 USD
equity: 18179.652195
margin: 0.000000
free margin: 18179.652195
margin level: inf", - "balance: 18179.652195 USD
equity: 18179.652195
margin: 0.000000
free margin: 18179.652195
margin level: inf" - ], - "legendgroup": "g3", - "line": { - "color": "rgba(188, 189, 34, 1)" - }, - "mode": "lines+markers", - "name": "USDJPY", - "opacity": 1, - "type": "scatter", - "x": [ - "2021-05-05T00:00:00+00:00", - "2021-05-06T00:00:00+00:00", - "2021-05-07T00:00:00+00:00", - "2021-05-10T00:00:00+00:00", - "2021-05-11T00:00:00+00:00", - "2021-05-12T00:00:00+00:00", - "2021-05-13T00:00:00+00:00", - "2021-05-14T00:00:00+00:00", - "2021-05-17T00:00:00+00:00", - "2021-05-18T00:00:00+00:00", - "2021-05-19T00:00:00+00:00", - "2021-05-20T00:00:00+00:00", - "2021-05-21T00:00:00+00:00", - "2021-05-24T00:00:00+00:00", - "2021-05-25T00:00:00+00:00", - "2021-05-26T00:00:00+00:00", - "2021-05-27T00:00:00+00:00", - "2021-05-28T00:00:00+00:00", - "2021-05-31T00:00:00+00:00", - "2021-06-01T00:00:00+00:00", - "2021-06-02T00:00:00+00:00", - "2021-06-03T00:00:00+00:00", - "2021-06-04T00:00:00+00:00", - "2021-06-07T00:00:00+00:00", - "2021-06-08T00:00:00+00:00", - "2021-06-09T00:00:00+00:00", - "2021-06-10T00:00:00+00:00", - "2021-06-11T00:00:00+00:00", - "2021-06-14T00:00:00+00:00", - "2021-06-15T00:00:00+00:00", - "2021-06-16T00:00:00+00:00", - "2021-06-17T00:00:00+00:00", - "2021-06-18T00:00:00+00:00", - "2021-06-21T00:00:00+00:00", - "2021-06-22T00:00:00+00:00", - "2021-06-23T00:00:00+00:00", - "2021-06-24T00:00:00+00:00", - "2021-06-25T00:00:00+00:00", - "2021-06-28T00:00:00+00:00", - "2021-06-29T00:00:00+00:00", - "2021-06-30T00:00:00+00:00", - "2021-07-01T00:00:00+00:00", - "2021-07-02T00:00:00+00:00", - "2021-07-05T00:00:00+00:00", - "2021-07-06T00:00:00+00:00", - "2021-07-07T00:00:00+00:00", - "2021-07-08T00:00:00+00:00", - "2021-07-09T00:00:00+00:00", - "2021-07-12T00:00:00+00:00", - "2021-07-13T00:00:00+00:00", - "2021-07-14T00:00:00+00:00", - "2021-07-15T00:00:00+00:00", - "2021-07-16T00:00:00+00:00", - "2021-07-19T00:00:00+00:00", - "2021-07-20T00:00:00+00:00", - "2021-07-21T00:00:00+00:00", - "2021-07-22T00:00:00+00:00", - "2021-07-23T00:00:00+00:00", - "2021-07-26T00:00:00+00:00", - "2021-07-27T00:00:00+00:00", - "2021-07-28T00:00:00+00:00", - "2021-07-29T00:00:00+00:00", - "2021-07-30T00:00:00+00:00", - "2021-08-02T00:00:00+00:00", - "2021-08-03T00:00:00+00:00", - "2021-08-04T00:00:00+00:00", - "2021-08-05T00:00:00+00:00", - "2021-08-06T00:00:00+00:00", - "2021-08-09T00:00:00+00:00", - "2021-08-10T00:00:00+00:00", - "2021-08-11T00:00:00+00:00", - "2021-08-12T00:00:00+00:00", - "2021-08-13T00:00:00+00:00", - "2021-08-16T00:00:00+00:00", - "2021-08-17T00:00:00+00:00", - "2021-08-18T00:00:00+00:00", - "2021-08-19T00:00:00+00:00", - "2021-08-20T00:00:00+00:00", - "2021-08-23T00:00:00+00:00", - "2021-08-24T00:00:00+00:00", - "2021-08-25T00:00:00+00:00", - "2021-08-26T00:00:00+00:00", - "2021-08-27T00:00:00+00:00", - "2021-08-30T00:00:00+00:00", - "2021-08-31T00:00:00+00:00", - "2021-09-01T00:00:00+00:00", - "2021-09-02T00:00:00+00:00", - "2021-09-03T00:00:00+00:00" - ], - "y": [ - 109.188, - 109.09, - 108.604, - 108.81, - 108.615, - 109.699, - 109.453, - 109.362, - 109.209, - 108.888, - 109.227, - 108.767, - 108.945, - 108.74, - 108.747, - 109.139, - 109.808, - 109.872, - 109.556, - 109.467, - 109.547, - 110.276, - 109.524, - 109.238, - 109.492, - 109.618, - 109.319, - 109.682, - 110.071, - 110.056, - 110.708, - 110.221, - 110.211, - 110.314, - 110.658, - 110.949, - 110.874, - 110.778, - 110.614, - 110.538, - 111.101, - 111.521, - 111.02, - 110.962, - 110.61, - 110.608, - 109.748, - 110.102, - 110.349, - 110.627, - 109.95, - 109.831, - 110.081, - 109.447, - 109.843, - 110.286, - 110.149, - 110.547, - 110.381, - 109.774, - 109.909, - 109.47, - 109.656, - 109.305, - 109.042, - 109.473, - 109.761, - 110.217, - 110.267, - 110.56, - 110.428, - 110.386, - 109.592, - 109.243, - 109.595, - 109.763, - 109.763, - 109.799, - 109.694, - 109.679, - 110.023, - 110.081, - 109.85, - 109.913, - 110.007, - 110.025, - 109.937, - 109.712 - ], - "yaxis": "y3" - }, - { - "hovertext": [ - "order id: 1
hold probability: 0.0000
hold: False
volume: -6.730375
modified volume: 6.7300
fee: 0.017759
margin: 6730.000000
error: ", - "order id:
hold probability: 0.0000
hold: False
volume: -38.349191
modified volume: 38.3500
fee: nan
margin: nan
error: low free margin (order margin=38350.00000000001, order profit=-713.478037300569, free margin=12736.381708571604)", - "order id:
hold probability: 0.0000
hold: False
volume: 70.101185
modified volume: 70.1000
fee: nan
margin: nan
error: low free margin (order margin=70100.00000000001, order profit=-1149.4569094786657, free margin=12736.381708571604)", - "order id:
hold probability: 0.0000
hold: False
volume: -62.801324
modified volume: 62.8000
fee: nan
margin: nan
error: low free margin (order margin=62800.0, order profit=-1185.3573400470723, free margin=12605.835264609543)", - "order id:
hold probability: 0.0004
hold: False
volume: -14.116188
modified volume: 14.1200
fee: nan
margin: nan
error: low free margin (order margin=14119.999999999998, order profit=-223.48196501415427, free margin=12605.835264609543)", - "order id:
hold probability: 0.0000
hold: False
volume: -17.651297
modified volume: 17.6500
fee: nan
margin: nan
error: low free margin (order margin=17650.000000000004, order profit=-255.90901089330043, free margin=4392.5603641726575)", - "order id:
hold probability: 0.0000
hold: False
volume: -31.030814
modified volume: 31.0300
fee: nan
margin: nan
error: low free margin (order margin=31030.000000000004, order profit=-675.7762066331674, free margin=10927.304247610115)", - "order id:
hold probability: 0.0000
hold: False
volume: 69.850673
modified volume: 69.8500
fee: nan
margin: nan
error: low free margin (order margin=69850.00000000003, order profit=-1467.3959994147483, free margin=10927.304247610115)", - "order id:
hold probability: 0.0000
hold: False
volume: -61.864062
modified volume: 61.8600
fee: nan
margin: nan
error: low free margin (order margin=61860.0, order profit=-1120.5552031906175, free margin=10927.304247610115)", - "order id:
hold probability: 0.0000
hold: False
volume: 27.594693
modified volume: 27.5900
fee: nan
margin: nan
error: low free margin (order margin=27590.000000000004, order profit=-508.7204641174047, free margin=10927.304247610115)", - "order id:
hold probability: 0.0000
hold: False
volume: -77.049518
modified volume: 77.0500
fee: nan
margin: nan
error: low free margin (order margin=77050.0, order profit=-1521.1870346250705, free margin=10927.304247610115)", - "order id: 4
hold probability: 0.0000
hold: False
volume: 4.175580
modified volume: 4.1800
fee: 0.016785
margin: 4180.000000
error: ", - "order id:
hold probability: 0.0000
hold: False
volume: 54.005682
modified volume: 54.0100
fee: nan
margin: nan
error: low free margin (order margin=54009.99999999999, order profit=-875.6499843537008, free margin=8104.032106561184)", - "order id:
hold probability: 0.0000
hold: False
volume: -46.004748
modified volume: 46.0000
fee: nan
margin: nan
error: low free margin (order margin=45999.99999999999, order profit=-963.8211700453492, free margin=12907.743921036426)", - "order id:
hold probability: 0.0000
hold: False
volume: -99.698869
modified volume: 99.7000
fee: nan
margin: nan
error: low free margin (order margin=99700.00000000001, order profit=-2117.341522440786, free margin=5544.360810040249)", - "order id:
hold probability: 0.0000
hold: False
volume: -19.626021
modified volume: 19.6300
fee: nan
margin: nan
error: low free margin (order margin=19630.000000000004, order profit=-284.9405887945674, free margin=11394.930310040349)", - "order id:
hold probability: 0.0000
hold: False
volume: -97.640257
modified volume: 97.6400
fee: nan
margin: nan
error: low free margin (order margin=97639.99999999999, order profit=-1334.354520180602, free margin=11394.930310040349)", - "order id:
hold probability: 0.0000
hold: False
volume: 33.847410
modified volume: 33.8500
fee: nan
margin: nan
error: low free margin (order margin=33849.99999999999, order profit=-673.7195476679124, free margin=11394.930310040349)", - "order id:
hold probability: 0.0000
hold: False
volume: 31.789763
modified volume: 31.7900
fee: nan
margin: nan
error: low free margin (order margin=31790.0, order profit=-541.3829097242395, free margin=11394.930310040349)", - "order id:
hold probability: 0.0000
hold: False
volume: -44.370963
modified volume: 44.3700
fee: nan
margin: nan
error: low free margin (order margin=44370.0, order profit=-844.7517534525579, free margin=10782.592383267549)", - "order id:
hold probability: 0.0000
hold: False
volume: -50.448845
modified volume: 50.4500
fee: nan
margin: nan
error: low free margin (order margin=50449.99999999999, order profit=-869.2298390077685, free margin=5729.665393258908)", - "order id:
hold probability: 0.0000
hold: False
volume: 71.096034
modified volume: 71.1000
fee: nan
margin: nan
error: low free margin (order margin=71100.0, order profit=-1479.922751109066, free margin=8039.245393258917)", - "order id:
hold probability: 0.0000
hold: False
volume: -97.856209
modified volume: 97.8600
fee: nan
margin: nan
error: low free margin (order margin=97860.0, order profit=-2118.1397120366405, free margin=14401.292293258906)", - "order id: 8
hold probability: 0.0000
hold: False
volume: 7.108274
modified volume: 7.1100
fee: 0.018474
margin: 7110.000000
error: ", - "order id:
hold probability: 0.0000
hold: False
volume: -43.677408
modified volume: 43.6800
fee: nan
margin: nan
error: low free margin (order margin=43680.0, order profit=-668.4377790543372, free margin=4591.665022357844)", - "order id:
hold probability: 0.0000
hold: False
volume: 63.957580
modified volume: 63.9600
fee: nan
margin: nan
error: low free margin (order margin=63959.99999999999, order profit=-1307.4066483924425, free margin=3818.3837479887043)", - "order id:
hold probability: 0.0219
hold: False
volume: 35.456921
modified volume: 35.4600
fee: nan
margin: nan
error: low free margin (order margin=35460.0, order profit=-724.0323566243522, free margin=12550.990983899694)", - "order id:
hold probability: 0.4744
hold: False
volume: 82.934333
modified volume: 82.9300
fee: nan
margin: nan
error: low free margin (order margin=82930.00000000001, order profit=-1633.5742084281487, free margin=12550.990983899694)", - "order id:
hold probability: 0.0000
hold: False
volume: 21.864062
modified volume: 21.8600
fee: nan
margin: nan
error: low free margin (order margin=21859.999999999996, order profit=-341.824261611394, free margin=12239.000448163535)", - "order id:
hold probability: 0.0000
hold: False
volume: 39.091968
modified volume: 39.0900
fee: nan
margin: nan
error: low free margin (order margin=39090.0, order profit=-579.1790940626934, free margin=12607.800048163532)", - "order id:
hold probability: 0.0000
hold: False
volume: 69.045625
modified volume: 69.0500
fee: nan
margin: nan
error: low free margin (order margin=69050.0, order profit=-1181.1728116417908, free margin=12607.800048163532)", - "order id:
hold probability: 0.0000
hold: False
volume: -88.662501
modified volume: 88.6600
fee: nan
margin: nan
error: low free margin (order margin=88660.00000000001, order profit=-1530.5850946830033, free margin=12607.800048163532)", - "order id:
hold probability: 0.0000
hold: False
volume: 39.171585
modified volume: 39.1700
fee: nan
margin: nan
error: low free margin (order margin=39170.00000000001, order profit=-626.4812959463898, free margin=12607.800048163532)", - "order id:
hold probability: 0.0000
hold: False
volume: -65.920087
modified volume: 65.9200
fee: nan
margin: nan
error: low free margin (order margin=65920.0, order profit=-916.5004798623785, free margin=13476.74138657302)", - "order id:
hold probability: 0.0665
hold: False
volume: 28.620767
modified volume: 28.6200
fee: nan
margin: nan
error: low free margin (order margin=28620.0, order profit=-579.4265199667365, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: -74.797554
modified volume: 74.8000
fee: nan
margin: nan
error: low free margin (order margin=74800.0, order profit=-1671.8298346959605, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: 76.680796
modified volume: 76.6800
fee: nan
margin: nan
error: low free margin (order margin=76680.00000000001, order profit=-1060.7877447905712, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: -64.477346
modified volume: 64.4800
fee: nan
margin: nan
error: low free margin (order margin=64479.99999999999, order profit=-1170.5778809611165, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: -82.902545
modified volume: 82.9000
fee: nan
margin: nan
error: low free margin (order margin=82900.00000000001, order profit=-1805.8683032142244, free margin=13476.74138657302)", - "order id:
hold probability: 0.0000
hold: False
volume: 35.268062
modified volume: 35.2700
fee: nan
margin: nan
error: low free margin (order margin=35270.00000000001, order profit=-692.6660983599846, free margin=11866.091062407233)", - "order id:
hold probability: 0.0000
hold: False
volume: 77.884616
modified volume: 77.8800
fee: nan
margin: nan
error: low free margin (order margin=77880.0, order profit=-1305.3657830043476, free margin=1738.9696947621178)", - "order id:
hold probability: 0.0000
hold: False
volume: 42.925688
modified volume: 42.9300
fee: nan
margin: nan
error: low free margin (order margin=42930.0, order profit=-794.0177002763351, free margin=4417.855736977503)", - "order id:
hold probability: 0.0000
hold: False
volume: 18.945682
modified volume: 18.9500
fee: nan
margin: nan
error: low free margin (order margin=18950.000000000004, order profit=-372.7402826455092, free margin=4954.026695193326)", - "order id:
hold probability: 0.0000
hold: False
volume: -22.607761
modified volume: 22.6100
fee: nan
margin: nan
error: low free margin (order margin=22610.0, order profit=-491.2012028514523, free margin=18179.65219519348)" - ], - "legendgroup": "g3", - "marker": { - "color": [ - "red", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "green", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "green", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray", - "gray" - ], - "size": [ - 9.483715803186692, - 16.454754985469485, - 23.454454354143703, - 21.84507465677924, - 11.11293716805291, - 11.89117146006614, - 14.840966028660187, - 23.399338611083273, - 21.63783946287203, - 14.082573404148713, - 24.98667201122357, - 8.921535223970338, - 19.907205130774628, - 18.14129672311855, - 29.980158332498245, - 12.32768814510472, - 29.526004609680328, - 15.4626716103818, - 15.008517887563883, - 17.781942078364565, - 19.12235694959415, - 23.674917326385412, - 29.574506463573503, - 9.56749173263854, - 17.629822627517786, - 22.10081170457962, - 15.817616995690951, - 26.28299428800481, - 12.819320573203727, - 16.61789758492835, - 23.222968233289905, - 27.546247118949793, - 16.635534622707688, - 22.53291913017336, - 14.309650265557671, - 24.490630323679724, - 24.905100711494136, - 22.215452450145303, - 26.27638039883756, - 15.775729030965028, - 25.169656278184185, - 17.464475398336504, - 12.177773323980357, - 12.984667802385008 - ], - "symbol": [ - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down" - ] - }, - "mode": "markers", - "name": "USDJPY", - "showlegend": false, - "type": "scatter", - "x": [ - "2021-05-19T00:00:00+00:00", - "2021-05-20T00:00:00+00:00", - "2021-05-25T00:00:00+00:00", - "2021-05-28T00:00:00+00:00", - "2021-05-31T00:00:00+00:00", - "2021-06-01T00:00:00+00:00", - "2021-06-02T00:00:00+00:00", - "2021-06-03T00:00:00+00:00", - "2021-06-08T00:00:00+00:00", - "2021-06-09T00:00:00+00:00", - "2021-06-10T00:00:00+00:00", - "2021-06-11T00:00:00+00:00", - "2021-06-15T00:00:00+00:00", - "2021-06-17T00:00:00+00:00", - "2021-06-21T00:00:00+00:00", - "2021-06-24T00:00:00+00:00", - "2021-06-25T00:00:00+00:00", - "2021-06-28T00:00:00+00:00", - "2021-06-29T00:00:00+00:00", - "2021-07-06T00:00:00+00:00", - "2021-07-07T00:00:00+00:00", - "2021-07-08T00:00:00+00:00", - "2021-07-09T00:00:00+00:00", - "2021-07-12T00:00:00+00:00", - "2021-07-14T00:00:00+00:00", - "2021-07-15T00:00:00+00:00", - "2021-07-19T00:00:00+00:00", - "2021-07-20T00:00:00+00:00", - "2021-07-21T00:00:00+00:00", - "2021-07-22T00:00:00+00:00", - "2021-07-23T00:00:00+00:00", - "2021-07-26T00:00:00+00:00", - "2021-07-29T00:00:00+00:00", - "2021-08-05T00:00:00+00:00", - "2021-08-06T00:00:00+00:00", - "2021-08-13T00:00:00+00:00", - "2021-08-16T00:00:00+00:00", - "2021-08-17T00:00:00+00:00", - "2021-08-19T00:00:00+00:00", - "2021-08-23T00:00:00+00:00", - "2021-08-24T00:00:00+00:00", - "2021-08-25T00:00:00+00:00", - "2021-08-30T00:00:00+00:00", - "2021-09-01T00:00:00+00:00" - ], - "y": [ - 109.227, - 108.767, - 108.747, - 109.872, - 109.556, - 109.467, - 109.547, - 110.276, - 109.492, - 109.618, - 109.319, - 109.682, - 110.056, - 110.221, - 110.314, - 110.874, - 110.778, - 110.614, - 110.538, - 110.61, - 110.608, - 109.748, - 110.102, - 110.349, - 109.95, - 109.831, - 109.447, - 109.843, - 110.286, - 110.149, - 110.547, - 110.381, - 109.47, - 109.761, - 110.217, - 109.592, - 109.243, - 109.595, - 109.763, - 109.694, - 109.679, - 110.023, - 109.913, - 110.025 - ], - "yaxis": "y3" - }, - { - "hovertext": [ - "order id: 1
order type: Sell
close probability: 0.8309
margin: 6730.000000
profit: 2736.381709", - "order id: 4
order type: Buy
close probability: 1.0000
margin: 4180.000000
profit: 1980.439673", - "order id: 8
order type: Buy
close probability: 1.0000
margin: 7110.000000
profit: -1850.301309" - ], - "legendgroup": "g3", - "marker": { - "color": "black", - "line": { - "width": 1.5 - }, - "size": 7, - "symbol": "line-ns" - }, - "mode": "markers", - "name": "USDJPY", - "showlegend": false, - "type": "scatter", - "x": [ - "2021-05-20T00:00:00+00:00", - "2021-06-17T00:00:00+00:00", - "2021-07-16T00:00:00+00:00" - ], - "y": [ - 108.767, - 110.221, - 110.081 - ], - "yaxis": "y3" - } - ], - "layout": { - "height": 600, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Balance: 18179.652195 USD ~ Equity: 18179.652195 ~ Margin: 0.000000 ~ Free Margin: 18179.652195 ~ Margin Level: inf" - }, - "width": 1400, - "xaxis": { - "autorange": true, - "range": [ - "2021-04-27 18:11:41.9845", - "2021-09-10 23:13:12.0621" - ], - "tickformat": "%Y-%m-%d", - "type": "date" - }, - "yaxis": { - "autorange": true, - "range": [ - 1.6821454430379748, - 1.7557015611814346 - ], - "tickfont": { - "color": "rgba(31, 119, 180, 0.8)" - }, - "type": "linear" - }, - "yaxis2": { - "autorange": true, - "overlaying": "y", - "range": [ - 1.16372491902834, - 1.2288050809716597 - ], - "tickfont": { - "color": "rgba(144, 94, 131, 0.8)" - }, - "type": "linear" - }, - "yaxis3": { - "autorange": true, - "overlaying": "y", - "range": [ - 108.40913967611336, - 111.71586032388664 - ], - "tickfont": { - "color": "rgba(188, 189, 34, 0.8)" - }, - "type": "linear" - } - } - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAABE0AAAJYCAYAAACXVBgzAAAgAElEQVR4XuydB3wdxbXGj3qXZdmSe++929jgAsY2mI4JoYSWQCANUiEhJAQSUkkeKST0AAnNoZjqhhu4d9zlIrnITbbVe/Obs2LlvXt3d3b37r26vvrmPX4B3Wn7n9ndmW/nnBN1ViRCAgEQAAEQAAEQAAEQAAEQAAEQAAEQAAEQ8CEQBdEEMwIEQAAEQAAEQAAEQAAEQAAEQAAEQAAE/AlANMGsAAEQAAEQAAEQAAEQAAEQAAEQAAEQAAEDAhBNMC1AAARAAARAAARAAARAAARAAARAAARAAKIJ5gAIgAAIgAAIgAAIgAAIgAAIgAAIgAAI2COAkyb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OCEXCIAACIAACIAACIAACIAACIAACIBAKyMA0aSVDTguFwRAAARAAARAAARAAARAAARAAARAwB4BiCb2OPnl+sUfX6R3P/mcdi5/2WUNKAYCIAACIAACIAACIAACIAACIAACIBBOBIZMu5Ounz2Zfv3gN5RuRbxoMveDZfTYX14xHAMtCKeD1FpFE77uEwWF9PyTPzFFxpNMm7p2zqKFr//JEjGXefSHd9CNV1/sk2/n3oN04zd/ZVlWX+4f/36P/vXK+81l7LRv1IBR23Of+xUN6d+zObs6D4zK69s1movfuuMa+u5d17lioxZatmoLfffnf/WpQ99P/lHPRd+oTABU2zEaJ239/3jiAbr4wlHN1ZuNof7+sxrrSWOHWM45p/ev0/x25qERc6ftmOVX2WuZqeMZzHbt9J/78eHi1Zb3+D0//hOt3rhTOke1GWbd8hO6asYkw/tD/4zR91N/X9m9R+xcL/cr/9ip5qyy54/VfWbULzvvJSs23J7RfNXfl5zPqH1tf43K2GHkNo+232bPRvWZ6/a57rZv+nI8B1uqD/r5b/ZMtrpWu3XYnUvcltE7zuy9on93Wj3j9c8Pq3vE7nV5NQ+s6tE/K5y+c0PRR7UN7XgYjZl2HriZb15di/rea8k+YB3cetfBXs1jtR7tO9hsTqvPv5ZcB6v3v9d9UO/nUK817I5jqxVN9JPRaBNiFyLna42iicrM7KYxY6ouHGSLJ6cvQaNNo/pw0bYla99o3NXxlW1I7c4DdTGp3QjYmYNq/U6ECrWM/iEU6CbbjWiitqnfAKk8tHNJfSgbLYjVMbQjMjm5j+3mteqb3ToCyReuoonKxWrzaLS5NJujKiOzeSNjqM4r7dw3einL2jdqR61b9pyye58ZjamdhYmMjVE/zTYasntaxtvr37UbM6M5Jfvd6/7IRIdQiyZGzyGnY+ikDrVu7XPX6B5jTlb3mf7db/ae7t45208c52c/J+2HF/1Cln93cl2hmidGfQ9V207b0YomRs842e9O23Obv6VFE6yD/UeuNa2D3c5bs3Ja0cRobyX73ev+mNVnZ23ipi8QTdxQC2IZq4Uuv7gPHyuQnoKw2lTLvs4H8dJCVrX+hIKZaGL24FRvNv2GV/bFVnaB+oWT2WLO6YbX7qaH++fkZZHVLsPnBIa2vF6cscPGjCvXa7RYc3JdRuxli3P9w88Od+anHnuT5W/JxZKsb7K5GozfAx3PQPqk/6Jstnk0uyfVOarfJOm/KDsVyXjea+t0eo/IFjYywYTL2x0Xvp9OnSn2O11ntoiwy8ZoQ8n9Mtqoyu7pQOaIm7La+4zNX41O8fCpJh5jt+9uN/0KlzJm7xv++/qte2ytZZzUYbZG4r9z0p44NZt3/HejjwVmH7K0gqfZ80P9u/a96eS6QjWe56Nowh8tjOaSOr5G92WoeLZkO1gHm9NvTetgr+eg9uMJ31v6j53qqSZ+3xmJyl73J9T1QTQJNXFJe1aiidELzczcwswsQyuaGB1B5+4ZfWXhG+Avv/qOj+mJbOOhvVT913i7Jimykwuy4dNvSrT5zU5nyBbmst+N+mS0MbF6cDsRyPSLPCsmdl8WZnXINlhWbKw2pEb1ytqSjb1snMxEE7sbXzvCREstQu30Tc9Pf0ycxUY2UdE+S8zuJ/181W/+zUyteCOy+LONSjtGgq7RParOIztmIUZzxOresnr+mm2ylGfml2Z5ducOlzG6H5zeI2b3gNEm0e09LbvPrPosY+P0eSG7p2V99fp37bifPFXot3lTzTh5jutFE7vvX+0zWytOaxeretFavXf1ecwEOuaiNRE1m8fqM8Luxxez54VszmjHyUkdZveo/l1iNY/0zwer95C+PScfYpxcl9fz1qw+O+8rLbsCIaKq80b7PLZr9hSIGaL23cAm0VpRi8eMxcqffucWxRRY+5uZCbyZKMZ/N7tOI2GC32VGLLT3ojrH7K6psQ62Npfn+Yx1cGieEtr7n99rnFQxWn0f8lz//dOv+4kmRmbKRh+11Wfj97/5FZ89p/reMTLBVN952neT1Yfq19/71McE2665jRPRRLbPtXreGn00ktWn3get0qeJ/gFutpjnh2mHrEwfO3qjjYbRy5wHZcaUsT5fDo0GSv2bXiQxWqAYtc0T/Ie/err5q5Jan3YzZtQuT4BgvizMbF5lgoXThbvZBtZKwLArbmiPI2sXvczOaOFrJrLZXQSbjZP6uHa6CVLLWZkp6F8FMhMkO33hPEYPP/WhbqcNO8KEkwesdr7zvxuJAqqKb+WjR7tRtSMsmF2H0X3qVjTR8tazNTpSb7XZDqZowu2qG1An/ljciCY81/QLBqvNpJONprqA1D8TjBYoZoKWnXtAO2fN8luxsXpeGP1mtMniPtg5UaN9jmifg17cZ/ysZd9R2g2aOl78bDV6p9h9/2r7asTYaB6pZeyIJvp3hdU8cyqamIkYTt6hduuwmmf6a7K6Rv271+pdrH8eWq0d9Ndh97pkWyHt/Wt2f8t8OKltOBFNZGsM7dwzWhcancR08r7Ujoueu+pDSX9Pcp957Hmzp32HGq2vtc8aq7WU9p40MmE0mmtO1tRYB8sDWGAdLHtKnDu5aXbf8pzsmJ3ZfJLarEbts5vzsA9O9V5XxUo2TTRaK/IzT/8OM3p/qWswow/zZutFI7cGZqKJsh7V+DK0u98y2zcYsbKzz5VZG2jXNXbq4360Wp8mZhPWzkJWXTxogdudFOqENFLF9c5R9XXaWQjJFmROvtTKHxNNGyDZETH9VzrZRtPOdRot0PVjZ7VAsDteah1mmy/ZtWg3iTKl1c5m1c4myGiM7W4I1QeHnU2SbJyM+DvZlNkRTaxOLujnr9ofVcAymrt8/SOG9JU64zVS4vXtqfPRbKFv9IU1GKIJ98uoD3oedu53O3lkoqh2karWJ/MF4VQ0Mbv3zRYE6mJfu0CRLWr4d60YqvZRdi3qePAXU9l9pvbXytmaFRure0h2/6rXr7K086zTLnq8vM/UZ5r2hI+6cWPH2XbmHPfN6P3rRlw3ep46MQWzOlVl5x5T5t6Xp6+MxsXu2Dqpw8m94+Tda/WhQM/USnTQMnVyXVa89WY/RvOM5w8n1azUqj79WkibV31f2HnHGz03uO7xIwcq/bB6Jtg9Jae9L7T3DZsQ8nOS72+780xdB6n9096LRtdiVa8dM2yz54HddZ/de1DNh3XwuWgiZuzUuR9p62B1PaM1YTN6vvP1f+Om2X7mt3pe+rmvva/Vk5UcIMPOnDN6H6v3otm+zaxeo3vHzr0ou9f1129H2HWyzzUSjfRrX6f14aTJl6NmpMxrB1w/uNrNqdnD2M5RRbsPeDvmFLKvNtqXltMXg1F+qxtXv3DRbjStNhZOXsSyjbXRlzttP2QnQOws/uwIbUY3rpan3T7J2KgLUP2Lye4LS32g8v/KIhzJ+iJ7+BktILX3lGxsuY9ORBPtJktlr33oq9djZzzt9M2oDe2Yh1I0Mdvkef084OuTbWD1Gx/tPHBzmsLouWR1vwV6j9jZPMrEELv3mZ2TWTJByew0oROB1OhLttXiWB/lKND7TH0uaL80s723+vw2m3N23r+yd6bR4hKiiW+ENz0PO+9N7diZmQ+2tGhi9HVY2yftcXlthDire0P2brV6r1qtAbViiOykjx1/N/r7Qq2fzeDU+1smbug5aMVft9dpZ6Nmd03txRpYtgnFOvgc5UhcB/PVacUM/m/9O1l7KlI25/T3hfZjqva+lYkb+nbsmIFbrSXCSTSRvbO161qjZ6b+GeKkvlZ70sRsUWu2oNfmN5pYZhOKJ652A2v0orD7gLejkqsLYbMb0+vwUFaiiWwha/blUrYZ116bncW8fnPOgo1dx4FWiz+ZKKDtp9UXMruCCddnh42RiRCz5k2GHUHA6suf9ppkfbEj8ukZcehWtY92hAknY6B/sWlFDfXf7Wx2tS9F2dd3q5dQKEUT/cJO/wVV9iJ38ruVaGI2J2SnNGTCgLZ/duZEIPeIlWhi9Zueoew+syOYGC3QjMbKyERIfSbIvvwp77Avw7bbyRuM+0wrpqrPc+3fjOacyk/2/rV6r5qdCAkH0URdrAdy0sRJHa3RPMdIaFefpWqYcSend63WAep9a/VeNXpuae939WOU0f2ufy7IPhjp7wutAKmWNeqrWk4/L/VrRTvXadTH8000wTr43MyLxHWwmXCqP41s591ptsZX32Xa9anZ/aSsCcQpMDU5WWc6vSft3It29y36/lrxcrLPNROwjNxXmK1ztftmiCY6StqFrNkEsiOamCn9gYgmdjah/MKy8xXBySbIKq+VaGKlKlv9JtuMq/1xspHSXwO3b2exY3WSwclGwuxl4UQwcfrw0V6z3SO5XEa2mbPL3858tdrs2hFN7CxCvZrr2nrs9E15eVk4MHXyMtMvvIzqlfHWCiVPPfc/5XJkvlvcsLMSTazmltVvTu51t6YPdu8RO0f/7TxbrK7XrmAim2NW4+fkXeHkWedmzpiVMRp3I8FPP+ecvH/PZ9HE7P1r1xyTuTupw+ze0j97rN7h+rGyem7Z/SJoNE+cXJeXc1a2XuLfrU5x2jmBIRM8vBDFje4LramA2XrEbI60VtEE6+Bzd0QkroO9fnYY3f96cxKj57bZe8zJOvN8EU2crF3UPY3qKN5oneekPogmuhmvvallTmSszHPMFgKBiCaylynbdjtZLHlxs1uJJlYbWquNjV3RxO7mXn+dRg8gKxZmLz2ZGYJMXFCv044PBLUuu2y016OWsat0O9l0yk4aaTfm3A+jkKpqX/UPfZkwYWZO58W8ltUh65u2vBkjJy8zO6KJnYWyOrZGoexk12z3d6v7wupkmFU5u6KJnZNnRtfh9B4xe/bIhCtt20b3mVMR1a1oorZj92SV3Wed3TliN5/dcbe7Ebf6Mm60EZV9JbbjCNZIQHPyjLViZbZQdrIIdFKHGQ+jhajZNeo/WJi904zuSbP1jdGzz8l12Z2PgeazI/JbvePtvv/t3jdu5pbR2kJ9jli160Q0kfkYsBs9R+YnMNDxVMtjHVwgNec2mxuRsA72ah6ZCZFG9evnnNmz2ck6k9sxe26Hk3mO032u9gQwO+83CwRjZ48E0UQzG9WFsArOaGOkXdRaiSZGx7TVv3GTeq+9+nCJnMdokqp91B4t0i+QjPJwfXzzcGJxRU1qG3YXz/qb1+ploU5svUmQWf/Uuu0sDJwcg9f2Wb1eo5vDjIX60NGOt9GGXe2TfvGtfjXW/l1rp2jHgZwTNtrrVdvRL9zVeaw311GPvtsx49E+4PX1G3HWzn8zp712fZqo/XQ7bwN9yTkRTYxOK2mPOmtZGL3g1PtFK64ZLUDsLJTV+q3M9NzOTZWpHfGD8xodITUbTzvX5mRM7Nwj6jOTX7L6+a3OZSMbfe2C3sl9ZlSnnXlqh422HrUdI7MOvq/0zuoCfUfYuQazPHavTT/nnLx/rU6aGNWjXQN4LZoYvSus+BnNeZkIob/33dShvR/MFrBGp5PMWBuJkGZrCyPhwUqA1M5zO2uLQOarrGygool2Xahfw/A4bN+T2+yQ1uyjAjPgcKCyU4Z2zMGNeBpdo/q+tuvThK/TqB51nngtmgT6jMM6+I5mB6etcR0su++d/G73GaWfc0bPW62Znh2fJto1j/b5YmSax3lbyjyH23ayz1WfJ2xSafaR2m59rVY0MV2kaWzBlIX9l8fr1fwMXI39LnMEq90kcnl+Ydxy3aV+ce3NNhmy41baa9Bv1M1sWvWbVTcvCyt7Wf2mR89P5WD0wlZfrEZjo78+Na/smKq+r1abRSsW+rHkPpqFp9T336hNmW2yvoxdNkb9NGNkVKeTUy/a61QX+1ZzUv3NKK9yr0nuPW3dXvvmcfJSM3ouGJXXzg+9Q0pe9HEoc96Qm92Tap388uJFrlZYNdtM6tvR3492XshuRBN9u1oeRl/ajeae2Zd+dhIp42v1EtWXdXKPGAmmVvPeLKqF6v9A+x7RfwWV+SHQ35vqS17GxugZbCaKmj2X7IqoTu8jWX63ognXa/f9K9sc6uvhcWBhiSOIWC1ErfpudQrD6Fko46R/plpFJDF7dtqpw+zZZ/aFzui5YPY+0s89q2e8fu5b+Zaye10yxl787oVooqw9hEDC80+f9ONg9KzjMnY+NsjuC+09pq9P/3zn++SHv3raJ9KinXeRvh6+Pg47LhPtnK6psQ4+N5OwDibTjbUXzwBZHXbuC67DSKjTryH4PuGkX2daiXycX18PP1856V0/BFM0MeOkfdbY3edqr8nKdNpOfa1ONJFNWPwOAiAAAqEg4MSUw6v+tJSZhVf9Rz0gEA4EnJp4hkOf0QcQON8JODUrPN+vF/0HgXAhYGSCGS59a8l+RJ0VqSU7gLZBAARAoDUQCLVo4takrTWMBa4RBMwI8Jcl7ekIu6dfQBQEQMA9AT7xMGxg72azD64Jor97nigJAnYIGJnvOfUhYqedSMkD0SRSRhLXAQIgENYEQi2auHWcHNYQ0TkQCDIBI3NCO+YNQe4WqgeBiCZgZCrY0ma5EQ0cFwcCgoCZSV9LmeiG+6BANAn3EUL/QAAEQAAEQAAEQAAEQAAEQAAEQAAEWoQARJMWwY5GQQAEQAAEQAAEQAAEQAAEQAAEQAAEwp0ARJNwHyH0DwRAAARAAARAAARAAARAAARAAARAoEUIQDRpEexoFARAAARAAARAAARAAARAAARAAARAINwJQDQJ9xFC/0AABEAABEAABEAABEAABEAABEAABFqEAESTFsGORkEABEAABEAABEAABEAABEAABEAABMKdAESTcB8h9A8EQAAEQAAEQAAEQAAEQAAEQAAEQKBFCEA0aRHsaBQEQAAEQAAEQAAEQAAEQAAEQAAEQCDcCUA0CfcRQv9AAARAAARAAARAAARAAARAAARAAARahABEkxbBjkZBAARAAARAAARAAARAAARAAARAAATCnQBEk3AfIfQPBEAABEAABEAABEAABEAABEAABECgRQhANGkR7GgUBEAABEAABEAABEAABEAABEAABEAg3AlANAn3EUL/QAAEQAAEQAAEQAAEQAAEQAAEQAAEWoQARJMWwY5GQQAEQAAEQAAEQAAEQAAEQAAEQAAEwp0ARJNwHyH0DwRAAARAAARAAARAAARAAARAAARAoEUIQDRpEexoFARAAARAAARAAARAAARAAARAAARAINwJQDQJ9xFC/0AABEAABEAABEAABEAABEAABEAABFqEAESTFsGORkEABEAABEAABEAABEAABEAABEAABMKdAESTcB8h9A8EQAAEQAAEQAAEQAAEQAAEQAAEQKBFCEA0aRHsaBQEQAAEQAAEQAAEQAAEQAAEQAAEQCDcCUA0CfcRQv9AAARAAARAAARAAARAAARAAARAAARahABEkxbBjkZBAARAAARAAARAAARAAARAAARAAATCnQBEk3AfIfQPBEAABEAABEAABEAABEAABEAABECgRQhANGkR7GgUBEAABEAABEAABEAABEAABEAABEAg3AlANAn3EUL/QAAEQAAEQAAEQAAEQAAEQAAEQAAEWoQARJMWwY5GQQAEQAAEQAAEQAAEQAAEQAAEQAAEwp0ARJNwHyH0DwRAAARAAARAAARAAARAAARAAARAoEUIQDRpEexoFARAAARAAARAAARAAARAAARAAARAINwJQDQJ9xFC/0AABEAABEAABEAABEAABEAABEAABFqEAESTFsGORkEABEAABEAABEAABEAABEAABEAABMKdAESTcB8h9A8EQAAEQAAEQAAEQAAEQAAEQAAEQKBFCEA0aRHsaBQEQAAEQAAEQAAEQAAEQAAEQAAEQCDcCUA0CfcRQv9AAARAAARAAARAAARAAARAAARAAARahABEkxbBjkZBAARAAARAAARAAARAAARAAARAAATCnQBEk3AfIfQPBEAABEAABEAABEAABEAABEAABECgRQhANGkR7GgUBEAABEAABEAABEAABEAABEAABEAg3AlANAn3EUL/QAAEQAAEQAAEQAAEQAAEQAAEQAAEWoQARJMWwY5GQQAEQAAEQAAEQAAEQAAEQAAEQAAEwp0ARJNwHyH0DwRAAARAAARAAARAAARAAARAAARAoEUIQDRpEexoFARAAARAAARAAARAAARAAARAAARAINwJQDQJ9xFC/0AABEAABEAABEAABEAABEAABEAABFqEAESTFsGORkEABEAABEAABEAABEAABEAABEAABMKdAESTcB8h9A8EQAAEQAAEQAAEQAAEQAAEQAAEQKBFCEA0aRHsaBQEQAAEQAAEQAAEQAAEQAAEQAAEQCDcCUA0CfcRQv9AAARAAARAAARAAARAAARAAARAAARahABEkxbBjkZBAARAAARAAARAAARAAARAAARAAATCnQBEk3AfIfQPBEAABEAABEAABEAABEAABEAABECgRQhANAkQ+7EzVQHWEPnF42OjKT0ljk6X1ET+xbbwFSbEx1BKYgwVlta2cE8iv/mkhBhKjIuhonKwDvZopyTGUmxMFJVU1AW7qVZff1pyrMKgrLK+1bMINoA24r1Y33CWKqrBOtis26bGU3VdA1XVNAS7qVZff2Z6vJjTDVRTC9bBngzt2yRQqXgv1tY3BrupVl1/53ZJrfr6cfFNBCCaBDgTIJrIAUI0kTPyKgdEE69IyuuBaCJn5FUOiCZekZTXA9FEzsirHBBNvCIprweiiZyRVzkgmnhFUl4PRBM5Iy9yQDTxguL5XwdEkwDHEKKJHCBEEzkjr3JANPGKpLweiCZyRl7lgGjiFUl5PRBN5Iy8ygHRxCuS8nogmsgZeZUDoolXJOX1QDSRM/IiB0QTLyie/3VANAlwDCGayAFCNJEz8ioHRBOvSMrrgWgiZ+RVDogmXpGU1wPRRM7IqxwQTbwiKa8HoomckVc5IJp4RVJeD0QTOSMvckA08YLi+V8HRJMAxxCiiRwgRBM5I69yQDTxiqS8HogmckZe5YBo4hVJeT0QTeSMvMoB0cQrkvJ6IJrIGXmVA6KJVyTl9UA0kTPyIgdEEy8onv91QDQJcAwhmsgBQjSRM/IqB0QTr0jK64FoImfkVQ6IJl6RlNcD0UTOyKscEE28IimvB6KJnJFXOSCaeEVSXg9EEzkjL3JANPGC4vlfB0STAMcQookcIEQTOSOvckA08YqkvB6IJnJGXuWAaOIVSXk9EE3kjLzKAdHEK5LyeiCayBl5lQOiiVck5fVANJEz8iIHRBMvKJ7/dUA0CXAMIZrIAUI0kTPyKgdEE69IyuuBaCJn5FUOiCZekZTXA9FEzsirHBBNvCIprweiiZyRVzkgmnhFUl4PRBM5Iy9yQDTxgjU5KsIAACAASURBVOL5XwdEkwDHEKKJHCBEEzkjr3JANPGKpLweiCZyRl7lgGjiFUl5PRBN5Iy8ygHRxCuS8nogmsgZeZUDoolXJOX1QDSRM/IiB0QTLyie/3VANAlwDCGayAFCNJEz8ioHRBOvSMrrgWgiZ+RVDogmXpGU1wPRRM7IqxwQTbwiKa8HoomckVc5IJp4RVJeD0QTOSMvckA08YLi+V8HRJMAxxCiiRwgRBM5I69yQDTxiqS8HogmckZe5YBo4hVJeT0QTeSMvMoB0cQrkvJ6IJrIGXmVA6KJVyTl9UA0kTPyIkdrE0125uTRjfc+5oNu8oTh9Mwffqj8ber1D9DpwhKf33cuf7n5v+976C/0+bptPr//4ef30pUzJvr8TVaP2hb/74p3/yotO/fZR2nIgF5eDLlhHRBNAkQL0UQOEKKJnJFXOSCaeEVSXg9EEzkjr3JANPGKpLweiCZyRl7lgGjiFUl5PRBN5Iy8ygHRxCuS8nogmsgZeZEj3EST/KIqWrTzBHVtm0wzh3Tw4hKb63jm1Q/o7y+9S3qRY87dv6THf3KXIkqw2HHztdPpvtuvVsqxSHLqTDG988Ljzf/N/6KKLB8tXkMPPfFsc52qKHPDlVPpsR/f1dz2o0/+W/l39W9c7t9vzVcEmp986yYf0UXfB7Xf3/v69c398hSMqAyiSYBEIZrIAUI0kTPyKgdEE69IyuuBaCJn5FUOiCZekZTXA9FEzsirHBBNvCIprweiiZyRVzkgmnhFUl4PRBM5Iy9yhJNo8tLKPHpqyT4qrapTLm1wp3R67vaxQkBJ8uJS/QQRo0qNBIs35i1pPg3CIgonVTThf2fRZejAXoogwv+e1S7D53ejdriekUP60tad+/3q0/dBae9LwUd76sUTKF9WAtEkQJoQTeQAIZrIGXmVA6KJVyTl9UA0kTPyKgdEE69IyuuBaCJn5FUOiCZekZTXA9FEzsirHBBNvCIprweiiZyRFzmCJZqcLq+h/6495KiLL608SKXVTYKJmlg4cXLipH1qAn3tgh5+7aonQGRmLnrBQiuIcKUy0WTItDv9TrIYQeB83Je8wyfoT/9608dEx0g04Trs1u0I+peZIZq4oaYpA9FEDhCiiZyRVzkgmnhFUl4PRBM5I69yQDTxiqS8HogmckZe5YBo4hVJeT0QTeSMvMoB0cQrkvJ6IJrIGXmRI1iiyZ4TZXTZU5950UVHdQzsmEYLvj/Fr4xqRqOe1ND7NlHFFCNfJFpTG71oop4A4fKc2F+KTJhRTXNUkx+9GGImmpj93REgk8wQTQKkCNFEDhCiiZyRVzkgmnhFUl4PRBM5I69yQDTxiqS8HogmckZe5YBo4hVJeT0QTeSMvMoB0cQrkvJ6IJrIGXmRI1iiiZuTJv9afoBq6ht9LivYJ030J1CMhAkWNVR/IkaOYLUiiZ3TIKppjtZvCl+01hmt1q+KCsRO3W7nBEQTt+S+LAfRRA4QoomckVc5IJp4RVJeD0QTOSOvckA08YqkvB6IJnJGXuWAaOIVSXk9EE3kjLzKAdHEK5LyeiCayBl5kSNYoombvi3aeZK++Z+NzUXTk+LozXsuoMGd091U51eGBZFpk0b6OGi1I5poTXSMzHO0DdnxacLih1FST8HAp4knwx3aSiCayHlDNJEz8ioHRBOvSMrrgWgiZ+RVDogmXpGU1wPRRM7IqxwQTbwiKa8HoomckVc5IJp4RVJeD0QTOSMvcoSTaMLXs+tYKS3adYLSE+PohjFdiYUTr5JR9ByZaKL+rj1pwv3ROoLV9k81A9JHz+G2jxecoXEjBvr5MOHy2lMketFErRPRc7yaCUGoB6KJHCpEEzkjr3JANPGKpLweiCZyRl7lgGjiFUl5PRBN5Iy8ygHRxCuS8nogmsgZeZUDoolXJOX1QDSRM/IiR7iJJl5ck1Udel8mnFcrRhj5NNH+LjtporatP03SPrON4uzV7CSKtl6jPsj8pATKDeY5ARKEaCIHCNFEzsirHBBNvCIprweiiZyRVzkgmnhFUl4PRBM5I69yQDTxiqS8HogmckZe5YBo4hVJeT0QTeSMvMjR2kQTL5hFYh0QTQIcVYgmcoAQTeSMvMoB0cQrkvJ6IJrIGXmVA6KJVyTl9UA0kTPyKgdEE69IyuuBaCJn5FUOiCZekZTXA9FEzsiLHBBNvKB4/tcB0STAMYRoIgcI0UTOyKscbkSTuqoaqhX/pGR640TKq2sJ93ogmoRuhCCamLNuaCijutqjlJg00JMBgWjiCUZblUA0sYXJk0wQTTzBaKsSiCa2MHmSCaKJJxillUA0kSJqFRkgmgQ4zBBN5AAhmsgZeZXDiWjCYsnOhatp32ebleYzumTTyGumUVbfbl51J6LrgWgSuuGFaGLMuqRwHp049gdqFMIJp87dfkNtMq8NaGAgmgSEz1FhiCaOcAWUGaJJQPgcFYZo4ghXQJkhmgSEz3ZhiCa2UUV0xvNWNCkqWke1tQXUocNVhgMU6O9qpVzP6TNLfNpITu5NXTrfpPwNoon8/oBoImfkVQ4nosnBDTtpwxsLfJqOS0qga5/4rlfdieh6IJqEbnghmviz5tMluXtvaBZM1Bx9By2kuPgurgcHoolrdI4LQjRxjMx1AYgmrtE5LgjRxDEy1wUgmrhG56ggRBNHuCI283knmlRW5tHp00vFP0soo+0E6t3rAZ/BCfR3/UgfPfYmlZVuF+LM1c0/xcamUFraUIgmNm8LiCY2QXmQzYlosvql9+nojv1+rc5+5B6Y6tgYC4gmNiB5lAWiiT/IwlP/oZPilIk+dej8EGVm3eaaPEQT1+gcF4Ro4hiZ6wIQTVyjc1wQooljZK4LQDRxjc5RQYgmjnBFbObzTjSpqSkgFkaKitcqg6IXTQL93Ug0qak56deOmg8nTeT3BkQTOSOvcjgRTbbOW9ZsmqNtH6KJvdGAaGKPkxe5IJr4UywrWUr5B+/3+yFQEx2IJl7MWHt1QDSxx8mLXBBNvKBorw6IJvY4eZELookXFOV1QDSRM2oNOc470UQdFD4BYiVmBPq7tp2iorXUUZw0SUjIbj5hov5+orC6NcyTgK6RRZPU5FgqLK0NqB4UlhOIj4+mlIQYKiqrk2auKCyhj379vE++/lPH0KhrL5aWRQaixIRoSoyLoeJyOWvwCoxAcmIMxcZEUWlFfWAVRVjpAzlzqLpqT/NVsVlOnwHvUExMmusrTU2OUcqWVza4rgMF7RFIT4ml+oazVFkN1vaIuc+VkRpH1XUNVF3T6L4SlLRFoG1aHFXUNAgTerC2BSyATCxQlVfWU209WAeAUVq0Y2aiNA8yRD4BiCY68x79kLMpUGnZduXPtV+echk48AlKTu6l/K3x7NnInyUeXGF0VBRYecBRVkUURRH//1mb8/Kjp+ZS3tZ9SrXtumbRnIdvp4RkvBxknPl3hbVIZ8X/IQWXAFib8125cizV1RVTbGwbGjfuA0pMdO/PBPM6uPNYXzvmdeh4g3UIWYv1Hr8W8W4MPnOsrYPPmFtgzkggELGiycovXqCyyhN0+cRHDEdZPYnyxq6Zfr/zl/rvX9pf+fva3DO0ZHdBc54ecS9Sm6Q4umry75S/wTxHfhPBPEfOyKscTsxzuM0PH/0XVZdVKs2ntMug2T//hlddifh6YJ4TuiGGeY456707LqCGhnIhmrSjfkNWBDwoMM8JGKHtCmCeYxtVwBlhnhMwQtsVwDzHNqqAM8I8J2CEtiqAeY4tTBGfKeJEk9zTFULkOElHj75J/bNq6JbpjxkOIosm5RUnqCjG12FeU/kCevGOsUq519cfph35JXT1yM7Kf9dXLKToui00afSflP+GaCK/RyCayBl5lcOJaHLm4DFa+rc3KC2rLVUUloooHA107W+/R3GJ8V51J6LrgWgSuuGFaGLMuqGhhPbuuLD5x4HDv6CoqCbzGrcJoolbcs7LQTRxzsxtCYgmbsk5LwfRxDkztyUgmrgl56wcRBNnvCI1d8SJJgWl1cTCx968/5LwomEpmhj5RPnTB29Q/8x9dM1Fv1TG/O01H1B+xUDl5ElDQwXt2/dbSksfhpDDDu4IiCYOYAWY1YlosnPBatq1aA31nTyKzuQdo6L8k3TJ/TdTu55NAiGSNQGIJqGbIRBNjFmzP5M8EXY4KipWmOTVU9/Bn1JcXMeABgaiSUD4HBWGaOIIV0CZIZoEhM9RYYgmjnAFlBmiSUD4bBeGaGIbVURnPO9EE/YxcvTYG9RQXyEcqFUozlm7d7ub2orww5zU348VFSoiR7f23Qx/NyrPpjjLtjxPl/b8gsaNeUOp78PPf0a1VRspI6UzxcVUUXZGP+rX72HhaC9F+R0nTeT3B0QTOSOvcjgRTZb89XUqPHScLrrnOjqyJYcObdxFY74yg3pPHO5VdyK6HogmoRteiCbGrNUIOuz4taGhjHr2e52SkgO7fyGahG5eQzQJHWuIJqFjbUc0iYuJDl2HJC3VNZy/TlQhmoRmGkE0CQ3ncG/lvBNN7AJlsxo+daL6JrFT7uF3t9P0QR3EP9nN2dlUZ+fR4xQnTq0cK0uhfaca6bfXD6Pe7ZtEEziClZNlB2zsQwms5KwCzWGXdUVRGb30g79RTGwM3ffcg7R14Xpa9dYSGjFjHE251d/PT6D9isTyTp3uRiKDUF0TWBuTzs9/RZx+/LVw/tqVqqvzadjQf1H7rBkBDQscZgaEz1HhKDjMdMQrkMxgHQg9Z2XZaSb7ordyBMvjUVFRISLstGxUxbS0NPERNDCTRmd0vM1th7W3LbbO2uAItnWOu/6qIZp8SYTFEfaFwoKIVXri493Kzz+/YpDyvwg5LL+R4mKjKC1ZyE4IOSyHFWAODjmcLBwZF0tCDuet20Hr31xAnYf0ocl3X0fHd+fRZ8+9Q9n9utPF374xwF60juJKyGEhOhVXIORwsEdcCTkcLUIOi9CKSOcInDj2RzpT8AolpYygqoovqFPXRyiz/c0BIULI4YDwOSqcnixCDjci5LAjaC4zZ6SIkMP1CDnsEp+jYhki5HClJORwnAghnxBHtHDhQiovL3dUv1eZhw8fTj169qLahvNXNOFTPWWVdVRXjyh+Xs0Lo3oQcjiYdM+fuiGaiLGqqKmn+9/cKk6l9KNhXdpYjt4HW48pEXVUcQXmOfLJDvMcOSOvctg1z1n76kd0ZGsOjZoznfpeOJIqi8vo48efo4TUZLr68W951Z2IrgfmOaEbXpjnGLPOP/gDKitZTOkZs6i0eCG17/BNyup4f0ADA/OcgPA5Kny+mOeEy1fWQE6rwjzH0dQMKLMd8xxuIDE+Roi9JbR40aKA2nNTuGvXrjRhwgVi/X/2vD4FDfMcN6PvvAzMc5wzi8QSrU40YcGD/9Ga7agRcoxOmXDeC3q3U8aexRU+aTK0axu6ZXx35W8QTeS3BUQTOSOvctgVTeb9/B9UV1VDlz/8DUptn6E0//4jT1NtZTVd+ei9lNQm1asuRWw9EE1CN7QQTYxZ5+27iaordwix5B46ffJ5ysi8jjp1+3VAAwPRJCB8jgqfL6JJaoIwtxD/15KJzTnY5IM3uW4SRBM31NyVsSuacO3J4sTmkUN5tGnTJneNuSiVmppKl112GVWJQ6J19eevPxO+dIgmLiaAiyIQTVxAi8AiESeasJkNiyAscPA/2emJdM/kXs3CB//Gp0Xe/OYFynBynm+8slExtzE6ZcIiCQsnXA/nZV8mnDclIVYpD9FEfldANDnHKCHO1/lZ8dECKj9dQrHinGrHgT19YNbUOX+Z2xFNCvYfoRX/nEttOrWnmT+5o7nN5U+/RacO5NPke+dQxwG+fZGPcuvLAdEkdGMO0cSY9b6dU6i+vpA6d/89HTv8U0pJu5C69342oIGBaBIQPkeFzxfRJEmYURw6mEtbt251dH1eZp5+6aXCDC2dal1a6EE08XI0rOtyIpoId3diPR0l5tYWys3Ntd1JNmurEYJHQmy0YrrpJM2YOZMSklJdzyUnbQU7L0STYBNuqh+iSWg4h3srESeaBAM4iyUny2qoQ1pCs1iitgPRRE4cosk5Rm1ThW+XoiKqrqqmslNFVHLiNJ0Vdtac4pITKbtvN4oWTsmys7OoUvhHaxALAyfJjmiy7aPPKGfpBhpw8TgaftWU5uq3vLuE9q/cSiOunkr9p4110mzQ8rKoxCdisgSXcEsQTUI3IhBN/Fk3NlZSzvbxwsl2vIia84YIPTyHEhL7U+8B7wY0MBBNAsLnqPD5Ipqwv9pU4Vdo08YNdPDgQUfX6EXmUaNGUdfuPcUm2dnmWNs2RBMvRsJeHU5EE64xVvg3SRd+79i/SZFYH8lSRW0D7T5eqvio4dSlTRL1+jI4g6zsmDFjqHOXblTTED7Re2R9tvodokkg9OyXhWhin1Uk54RoEuDoQjSRA4Roco5RnPgqwl/tFsyfT/s37aRGXai7tOy2dMnsmdSxUxdXL3U7osniP/+HWIyYct8N1KF/j+bOHVj9BW1++1PqOX4ojbtplnxgg5iDhZINbyygozv2K63EJSXQhXddE1biCUSTIE4AXdUQTfxZ11QfoNycayg+oSf17Psq7RWnTmJiM6j/kJUBDQxEk4DwOSp8vogm6sY2LSlW2dgWFxc7us5AMvfo0YPGjBlLFbXCQMjZNwSfZiGaBDIKzso6FU24dj6F21BXRfM/+USMs/VAb80vpnLxMVOb+menUbb4sGmVevfuTSNHjaaK6sYWNjZzxtMqN0QT71ha1QTRJDScw70ViCYBjhBEEznA1iKa8Ea/orBEbPATKSUz3RQMOz8rOXmc3nj+Vb88Q0cNo6lXzBILRDlXoxwy0aTiTAl98sQLwhwonq773fd8qjidd5SW/f1NyuzWkab/4FZ3HfCo1M6Fq2nXwjU+tbFwcu0T3/WohcCrgWgSOEO7NUA08SdVXvY5Hcn9ljDJmShMcp6nPdtGic1GHQ0cvkmcPrHePFhxh2hid1YGnu98Ek34avndVVdToWxsQ5HatGlDs2bNovLqBqpvCEAxEZ2FaBKKEWtqw41owuWSRPS/UwXHafWqVaad5VMmW474n0Zpl5JAgzqmmZbLzMykmcIsp1REmgl0LoWOpLwliCZyRl7kaE2iyZy7f0l79h/2w/a9r19P991+NU29/gG6+drpyr+r6ZlXP6A35i2hFe/+VfkT5zkt9kNqap/Zpvk39XdZHZxvyLQ7ffoxsG93eueFxw3b4D/OffZRGjKglxdDblgHRJMA0UI0kQNsDaIJn9xY/e/3hWhSqgDpOW4Ijbv5MlM4CdGNtGnxCtqocX7GL/U5X/sqnU1Jdf1Sl4km6mmSriP608Q7rvLpH4s+7CA2Ji6Wrv/DA/KBDWKO1S+933zKRNvM7EfusRSkgtglv6ohmoSONkQTf9ZFZ+bSifzHhfPXOcL562O0f/dMqqs9Rn0HLaC4+K6uBweiiWt0jgueb6IJX2BiXBSdPJ5P69ats3W9JcLb5r6CcsWUoo04Ztm7fSqlCPHFTpolnHXGxidTXZMVRkAJoklA+BwVdiuacCPs32TXzh2Uk5Nj2Cb7Mlmbd8bvtw5pidQv29iBPTsRvnz2bKLoeBHi272JlyMIIcoM0SQ0oMNNNCk9XUwHNu+l9PZtqM/oAZ5CYNFk6MBe9NiP7zKs165oohVF7nvoL3TqTLGP4CETTbidaZNG+vSD+6YVTbR1sHDz95feJVXc8RTKl5VBNAmQKkQTOcDWIJqo0Wi0NFg0YfHELJ0tLaaVi5fRgQMHKDo6mq686krK7N1T2KLEy6Ga5JCJJquEGHFMmLyMvXEm9bpgmF8tn/zmeUX4ueynd1FadqbrfgRacOu8ZbTvs81+1UA0CZTs+Vkeoon/uBUcf4rOFLwgQgx/T0TPuZcO7v+aCN+5lXoIU53klNGuBxqiiWt0jguej6KJurHdsX0b7du3z/Ka+VTA9qMlYqN6zql5rHjXjeqWoTjwtEoTJkyg9tkdqa7RnsAigw/RREbIu98DEU1ihFPX9ORYWr58OZ08edKwU7tPlNGZiprm31gGGdK5DWWw7bNBmjhxIrXP6ihMniNLMOFLhWji3by1qimcRJMti9bTuvc+oxoR7ZJTVvcOdOUDXxECSlMkzEBTMEQTo5MoVqLJzpw8uvHexyxPjpiJNyyc7Fz+cqAYDMtDNAkQK0QTOcBIF034lAn7CdGnLkP70qSvX2MKiJ2fVeUfo/kfz6cB/fuLCBg9KK1nYA5PrUQTthN+76d/E3bD9XTFL79JyRn+R1lXvvAeHd+VSxPvvIq6Du8vH9wg5eBTO0e3N/kzUVO8cJQ7+5G7KS7RvemBl93FSRMvaVrXBdHEn8/Rww9RadHH4rnxW2rT9mrKP/gDKitZTF16/JnSM9z7JIJoErp5fb6KJryxTUuKoWXLltGpU6dMgR0rqaLc0xV+v8v8T/Tr14+GDBlKlXXebXIhmoRuXgcimnAvec0YG92gmIHV1JwTR7RX8EV+CZXV1BHPRXaY3zUjmXq2S/a7yMGDB1O//gNEeGHv5lLoSMpbgmgiZ+RFjmCJJpWlFbR9qbNw21sWrm8WTNRrY+Gkt4MTJ8ltUmj4JWMM0QRDNNHXafe0Cpv1qCdL9J01qoPzsEnPH35+L105Y6IXQ+9TB0STAJFCNJEDjHTRRDVr0ZPoN2U0jbz2YlNAtUIl3vLmfBp40TAqE6c7jucVWJr0yEkLZ2ri2HOKiHJQWOrvFOXEnjz6/Ll3qa3wWXKpic+S7R9/TnuWrKchsybR4FneP3DsXIPah5j4OGLhqaG2jkqOn6ZycbRPJkTZqd+rPBBNvCIprweiiT+jg/tvEydLtlCPPi9TcupYOnn0d1R4+jXq0Pkhysy6TQ7VJAdEE9foHBc8X0UTvlB23BklfOjwxraurs7w2g8XVtLhokq/3wZ1TKd2KcYnKrOysuiSSy4RvifqHUePsxoAiCaOp6frAoGKJsr8iiUqF6dxly1batgPPsFUUl2nmHvlni5X8ozq1tbH9KtDhw40ZcoU4ROn0dO55BpMEApCNAkCVIMqgyWanD5SQK898lxoLkLTSvtu2XTrb75p2G4wfJrccOVUHzMbO6IJd07v00RremMmmpj93QvIEE0CpAjRRA4w0kUTJsCRXg5u2NkMgx2tXvzdr1JGl2xTQAX7DtOKf/2Pxl0zhXat2EwxCQk066E75UAtchiJJizq7P1sEx1YtZVqyquEWc5wYZ4zw3iRu2k3rXvtEzLyeRJQx2wW3i/6uOWdJUruC79xLXUe0kf5d3awu/Svb1B1WYVfqGSbVXueDaKJ50hNK4Ro4o9m367pVF93UvgwWSQs+jorpjpsstMu++uU3emHrgcHoolrdI4Lns+iCV8s+zcpLjpNn61YYXjtRv4nEmNjaKQwz4kVJwT0KTY2VvE90XA2xnPfExBNHE9P1wW8EE248aT4KMrdv5e2b9/u15f1hwqptr6RxvXIpHwhzB0vrRZC3DlnsAliPcVzqV6Yd3G+SE0QTUIzssESTfikybYlzk6abPx4tXJiXJv4pEmfMfZ9mySlh+6kid6fCffbrmiivUbVZ4l6igQnTUIz9z1tBaKJHGdrEE2YwuInX6XiY01HlUdcO436TzE++qYS27tiE33x/nLqc+EIOrhuBzUIR3nX/PrbFJ+SJIdqksNINDFyqjrjR7cZCjrcf74O9mfCfk1CmY7tPECrXpynNDl6zqUKF206mXOQPnv2HeVPI6+7mLJ6dxVOYdso4YhbIkE0CR11iCa+rM+erRfRckaKP0bRoBHblP8tKfqAjh1+WJjqXClMdn7venAgmrhG57jg+S6a8AWnJETT3pzdtHPnuY8GWhDs1+QLESK2UZiHslDCpwHM/JlMFqcC2mZmUXVdYJFyjAYCoonj6em6gFeiCetqqeLk7Nq1ayg/P7+5P2yOs0Y4g40WDl4n9W4nHAWfpU2HixTfOYM6iFNMqfE07eKLKS29LekiE7u+pnAtCNEkNCMTLNHETe8PbM6hj/76v+aiCcJ0fc7PblN8m3iRZOY5Rr/LfJbonbraqcPoWrRCCXyaeDHaIa4DookceKsRTYRfE/ZvwqnfZGGaIzb2Vmn96/Pp0MZdNOYrM+iwOOFxKjefJt9zPXUc5D5cll40MfO3Yhbd56xYjLz9478o3b7+jw9QjPjyF4rE/eRwx/XCFGfgpRNo2OyLDJvdv1KcRHm36SSKmmRmUMHqP0STYJH1rxeiiS+T2prDdGDPbOWECZ804VRRtoYO54roUqkTqHufF10PDkQT1+gcF4wE0YQ3rqmJ0bRmzWo6evSoIQP1VAA7gb2gl7GD8aFDh1Lvvv2EYBIc3xMQTRxPT9cFvBJNuANxwr9JsjhxMn/+fCovbzLDUcMOJ8fH0mhxaomT6j+H/3aXMAXo3qOXcPxq7WzY9QWGUUGIJqEZjHASTfiKTx0+SQc25VBCSiINvmg4sXDiVZKJJo8++W96+6MVPs5W2YxGa4KjFzRUx67qKRFZHR8tXkP/fmu+jz8T9aSJ6uRV3waXeeiJZxE9x6uJEIx6IJrIqbYW0eS9n/2d6muafIm069mZLrn/Zks4i/70iuKrY/r3b6X8L3IoZ9nGgH2J2BVNrHyDqP1ivyfs/yTYiU2Glv3jTSorKKQeYwfT+FsuN22STY0+ePRf1ChO5WiTGqmIf2czqdqqasru042y+gbmWNfq2iGaBHtmnKsfookv64rydXT4wDcUXybs04RTTfUBys25hhISelHvgR+6HhyIJq7ROS4YCaIJXzRvbBNjz9KCBQuoosLf8evq3DPKSRNOE3pmUlyM72a2c+fONOnCCxXfE41CuA9GgmgSDKrGdXopmnALicJXW3VlKS1auFBp8ExFLe0+Uar4xWH/OGraKpzDZmR1oGtmxwCyygAAIABJREFUTKW0xERKjvMm8lLoyDlvCaKJc2ZuSoSbaOLmGuyWkfk04XpU0UOt067PEo5soxdOzOow6oc2Kg6LJqeF6b42zX32URoywP2HZxkj+DSREZL8DtFEDrA1iCZVpeX00a+eVVTfmopqihaLwjl//L44NW/81YxNcd598CkF3pw/fV+EAT5Aa175kDqJUyYXidMmbpNeNGER4cNfPeNn/8gOavmEhlFa+5+P6ciWPTTuJhEyebx5yGS3fdSX++yZt+nk3kOKwDHt2zdaVntq/xFa/s+5fnlS2qZTv6ljaOeCVVRXfc4JrizscyDXANEkEHrOykI08eVVXCiiXB35hRI1h6PncGpoKKW9OyaJZ08qDRi61hlgTW6IJq7ROS4YKaIJX3iS2NhWlBfTp4sX+3BoEGLJGiGa8JuQ5ZDhXTIoPfHcCcakpCTF90RNfRTVBdH3BEQTx9PTdQGvRZOm+RVFR48coo0bN1J+cRUdPFNBXTKSqFe7lOZ+1kUnUOdhF9DTK/Jo17FS6pedSo9cLqLniP+N1ATRJDQj25pEk9AQPT9bgWgS4LhBNJEDbA2iCZvWLP/HW8oJk7rqGio9cUY5QZLZ3fikxplDx4Vj09cpo3MWzfjx7VRZVEof//p5Ibok0dXCr4nbpBdN2Kkrm/6wiNPY0Kj4/+DIOGaCCbe7+9N1tOOTldR/2lgacfVUt12xVW7jmwspb/0OShXx5acJx7lJ6daLG7NIRWaN8fVe+8R3bfXFaSaIJk6Juc8P0cSX3akT/6TTJ/9J7TvcR1kdz83vnO3jxJf6KhowbB1FR5/bTDghD9HECa3A8kaSaMIkkoV/k0N5B2jLli3NYGqEELJBOO2MER8QWEDpl51GHdLO+aGafuml4sRUG6oJgh8T7ehANAlsrjopHQzRhNtPTYiirVu30KJ12+iEcPzaR0TO6dTmnFnC6EnT6F9rjtP8nSebu5sqwvAsun+Kk+6fV3khmoRmuCCahIZzuLcC0STAEYJoIgfYGkQT3vizAMDmJVFiccgmIqPmTKe+F7KzRv90YPUXtPntT0nrW+Tjx5+jyuIyxQErO2J1k7SiCTuZZWezcYkJNO07NwrBJJHihYggc5zKp15WvTSPOg7oSZPvneOmG7bK7FywmnYtWkPRIprCxd+9yVRg0lemd2zLkYp6XTBUcaarPWWilpv9iPDzkHnuCK+tztnIBNHEBiSPskA08QV57MgjVFI4jzp1e4wyMs/dowf2XEG1NYeojzDPiRdmOm4SRBM31NyViTTRhA9WsmPYzZs20sGDBxUo5cIT51bhCDZeCPe1Qrjv2jaZemYmK7+NGjWKugnfEyJybNATRJOgI25uIFiiSWxMFKUnx9FfXn6bco+eoKGd2lCG+G9OY8eOpR2l8fTTebv8LvSVO8ZH7GkTiCahmdcQTULDOdxbgWgS4AhBNJEDbA2iCZ/M4BMafIojPjVJCZtr5myViW0SgkmuEE5GXjNNMSvhtOblDyl/214KxKREFU3WzFtF2z76TKl38jeFc9mB9jdQ5WeKaf4TL1JSm1S68tF75QPsIkfe2u20cW6TA8uJd15NXYf3c1TLvs82K053WQDqJ6IUsSiydd4y4r9rE06aOMIatpkhmvgOzeEDXxemEOupe+/nKSVtYvOPhw7cSZXlG4Wfk5fE1/vxrsYTookrbK4KRZpowhDUjS37NykuLqbiqjracayEUoSDzoraemovwsIO7JhGPXv2pNGjx4i/naUv3Z24Ymi3EEQTu6QCzxcs0YR7lhAXTStzjtLHn3xMo7tmiLDX0dS7d28aMXIk/WHhfnp9w2G/C3jnm5N8TqQEfoXhUwNEk9CMBUST0HAO91YiVjTJ33OIKorLacAF1j4Z8rbuo9wt+xSTiuxenajrwB6U3bNT87jJfodoIp/irUE0WfvqR3Rkaw5NuHU2pWa1pSVPvUbpHdvRrAfvNAS0RJjmFAoTHfbhoTorzVm2gbZ9+JkItTtShNydLgdrkINFk6Obd9Gylz5SfnUrwKhOba9+/NuUIEQgL9OJPQfp8+e+DB1s4VvFaZtsusP+TtQIRjFxsTThtiuInd4GI+GkSTCoGtcJ0cSXy/7dl1Nd7RFxouQjcaKkZ/OPRw89SKXFnyghhzn0sJsE0cQNNXdlIlE0adrYxohIaBU0/5NP6FR5DeWcLKO2yfFUVFmriCfThvagWbNmCcevDVQvwsWGIkE0CQXlpjaCKZrUidNKz686QN0Tayj+1F7KzMykmTNnUmllHR0prKI5z632udAp/bLo99cOC93Fh7gliCahAQ7RJDScw72ViBNNioQvCRY68oQQ0kUIIBdcZ23LuHnBWmorNrcZHTOp4OAJ2jx/LU2/a3azcCL7HaKJfIq3BtHk07/8h4ryC2j6A7coZiZv/+QpOtvYqPjTMDKHeUc4geUIMNrfTx0QTk6fnqtErOHINW7SmQOHaenTTfHbh105mQZe4u5r89K/vUFnDh6jqULUyfYwAg37euFIObWV1UHzmaKGcu49cZgI5zzTDUZbZSCa2MLkSSaIJr4Y92wbIb7ON9DA4ZuFOWB8848nj/2JCk+9QtmdfkTtsu9yxR6iiStsrgpFqmjCMBLjouhUwXF6Z/5Syj1dTh3TExU/FByi+PHvfE2YZSZSfWNwwgsbDQZEE1dT1FWhYIomecIB7K0vraPfXjuY+sQUUe8+fehsVFzzXNpXUE5PLd2rmITxCabXvz6Bemqcxbq6oDAuBNEkNIMD0SQ0nMO9lYgTTfh0CQsn+bsPKexlool+gBb86z3qOqgHDZ1mHFlE/ztEE/kUbw2iybyH/67407hGOHGNF85cVdFhyn03UIf+PXwgcZhhDuvLzk8vf/gbzb811NXTuw/9Vfnv60XknRjh68NJKj52ilY8/ZYIt1tD/YXJzwhh+uM2bZq7mHLXbqNR111CfSePcluNTzk+zbVMOMstEf3sNnIAXXC7uy/hss4c3ryH1v3346C2wX2AaCIbCe9+h2hyjmVd3Qnav+tSio3Lon6Dl/lAZsGEhZPMrNuoQ+eHXA0ARBNX2FwVimTRhIGIwyW04PP19Om6rdRd+DI5WVZNw0aNpVnjhlBCbJMvilAliCahIh3ckyYr95+mB9/bRrOHdKI/3zicqmsbqKq20e/iHnx3G608cJoevmwQXTns3Onx0FEITUsQTULDGaJJaDiHeysRJ5qowHcs30zlReWORJNasellUWT05RcoZjr6ZPQ7RBP5FI900aS6tEIJ66uNfLP1PeFf4/PNNGz2RTTw0gk+kA5t3EV8GqLriP408Y6rfH779C//FSdWTiqRZLJ6d5XD/TJHdVmFckqlrKCQ+k4YTKO+erntskYZ932+hba+t5R6TxwuTmvMCKgutfDKF0SY1F25SoQhdvwaFR2cr4yn847Rsr+/QZk9Oiknf4KVIJoEi6x/vRBNzjGprNhMh/bfTknJI6hnv9d8YLFpDpvopGdcRl16POlqgCCauMLmqlCkiyYx4hl/srya3nj/E0o/W0VtO3enhOyewlQnmcb3dOfs3BVoUQiiiVtyzssF86TJmxuP0N+W7aMbRneln84aSLUmYarf2ZJPf/50L00fmE2/vmqo84s4T0pANAnNQEE0CQ3ncG8FoolmhNgUpyDvOF1y1xUUn3juyLOaxeh3VrmRrAnwcdzY2CiqrfP/GhAJ7I7vO0If/PG/lN27M133szuUS9q3dgctffFD6jVqAM389vU+l7lm7hLatng9jbt2Ko2+YpLPb5+/tpB2CcHvgq9cQiNm+ootVqw++NNrdHzvYeoyqCdd9+CtVGeykLDDOzrqLNVWVNMxUV9KRhplCV8/gaYzR05S2ekSihX27B37dRP/a/6VsVGYNVGUs1M22v5VFJXRfx/8ByULR7a3Pfm9gLpuJetEiw0B/1MfAGujzoXGwj8gLCEvzJsvjkpVL+zZW3s6deoD2pvzY2qfdQUNGPB/PjhKStbTju1fo/T0sTRs+OuuULEjT06h8jXhqpMRUihWRJQ5K2wIGhoj967/5/ID1CMjlupO7KMhoyfQfa9tpq9P6kW3Tuge0lGMi40W4bgjm3VIgVo0xqx5TjNvr9OvP95Fr607TD+7fCDdMbGnafWHCytp5lOfUVpiLG14+FKvuxE29cULR7j19YJ1KLwph81Vh74jicJfIBIIQDT5cg7krN0p/KDspck3zxAbxVS/mWH2e2FZLWaRhAAvwpMTYhVHXZGYDohIMKv/O596jRtMF93RZHJSerKQ3v/1C5QsRIc5v/mWz2Uv/tubdEIIEpd86wbqMqS3z29qXT2E2DLlG9fYwvX5Sx/QQWGS0qZTe7riR7eIEKSpVFZZb6usUSZe8NRUlNMrf3uWMjq3o5S26QFFNyg9VUQlJwqFEEJCWOpCCcmJpn0bOmwYde/egxoo1nX/ueBrDzxJjWKDfctTPxRmTu7q4o16jOhJ41njjTqLgXxYpt7DhWGs6GuNiDBxNspdnwOCFsaFecEi9pdUIRxHtvZ08vizdCz/KerQ6W7q3PVHPjhqqg/Rru2XUUJCNxo8vCk6ldPEJ6g4VdWAtVN2TvOnJIonjHi8RPLHl2+9vkmY5iTSD2YMoDXCtOJH72ynm8d1p5/MHOAUV0D5U8XmmUMeR+rHm4DgeFyYT6tVC5OZQD7emHXpu29uptUHztBTN44kdvJqlb76/BpiHyfP3Dom5CebPEZqWh2HYK4UYb0hcgeXeGaa/4f04LaI2sORAEQTMSpsysM+UMwEE6vfYZ4jn9aRbp6jhhsePGuiEnJYTe//4p/ixEYVXfGLeyhZCA/Nf3/kacURKofz5bC+2lR68gwt/MPLSn4uJ0tsQsOmNOxHhSPxZPfoQLwQLywNTMxjJ36Hd4soPGuXU/vMbGqkpi+inPiaSkQ/z4oFaGJaihIlSE0NDQ10+PBBapuRSRlt21JVSZkwNzql/Ny2a7bf9Wqvr3v37jRmzFgSESqFUCG7cuvfOWQyh06+7GdfpzQRzchtSk6IohzBYffu3X5VsKjCJ028WhhmZWXRJZdcIsTF+oj+8uxmLGCec47a8fzHqPjM/6hjl0eobfubfHA2NlZRzvZxwvQtkQYO2+gGNcE8xxU2V4Ui3TyHodzxygaxcS2jBfdPpi+OlNBDwh/FxF7t6M83jHDFzG6htmKTw87Y+YQap5Y8aVIiIgjxO7S1pGCa59z4whrKL6qy5eD16RX76bX1h+nW8d3pO1ODE0WvpccU5jmhGQGY54SGc7i30upEEw5FzAKJ6iB27XufKaGJJ998qaFJjux3iCbyKR7pookabnj8rZdTjzGDm4FwWF0Orzvxzqup6/B+yt/LTxfT/N++qIgHLJoYpfe/FFWu+OU3lZMqZmn3p+uIBRtOqsNZDjnshWhSVXJGLPFq6P11H1Cx8ELfNUOY1CQkEftOKTx80qdLSenJSsQfTnV1tTT3zddpzNjx1Kt7LxGB57jy93QRnSq1XYbptaSnpyshKCtrzhKHFAw0rRChhwv2H2nm4rY+FkXSkmLo888+oxMnTvhU46VowidMZl9xhTi1Io7ahjCihFsuoS4H0eQc8cO591FF2Urq1uuflJruHx1u746J1NBQRv2HrqKYmDaOhwqiiWNkrgu0BtHk2mdWUUFZDb177ySqrmugW0Tkk64ZSTT3nomuudkpyGYLIvCxEva4tra2RUSTrl270oQJF1CFeK+1JvOJYIkm/N3moj8vVU6+rvjhNIrj44cWaeOhIrp/7hbqm5VKr97pLpKgnbnWknkgmoSGPkST0HAO91YiTjThcMPbl21WIpmw41Y2tdE6duVTIzlrdtKcn92m/P7O7/7jN0Zc5uoffFX6OxeEaCKf4pEumqjOWy8RTkfbCeejato5fxXtWrxWCfvL4X855W/bS2te/pA6DepFF93j6+tELXdObLlKiC39DQHnrdtBG99aqPw24dbZ1H3MIOXfvRBNeCFSduQI/XLZL+hrU2+ntavXUkpNCqXFplPpiSKqF1F+9KmT8KUSFR1N1ZVV9M47b9HwoSMoOzmTGkRY5ZR26dSmY3vLiTJj5kxKTEqjGmGb60Xa8MYCOrhhJ4396kzqNWFYQFXy/I2NbqAF8+dTdXV1c11mogl/3awXJjZxBn6RzDoyecoUYVaVRTV13lx/QBcchoUhmpwblNycq6mmOpd6D3iPEhKbxFhtys25Rvx+wPR32fBCNJER8u731iCaXPx/y8VzvZGWfH8qxYt3y+Q/N0V8+uxHF4vnanCcgasjJKyCqaykiJYvXxZy0SQlJYVmz55NlbXiQ4DHfq+8m4HBqSlYosmRokr66gtrqVObRHrnm77+4MyuZMbfxIdRYb7yPyHSdRFiXaQliCahGVGIJqHhHO6tRJxoEmrgEE3kxCNdNJn38D+ESFdDV4twwxxBR03Hdh6gVS/Oo+x+3Wnqt76i/HmHEFJ2CyFlkIioM1RE1jFKOxespl2L1tCAS8bR8Cv9vyRzBBqORMNpxNVTqf+0sc3VBCqa8EnmmIYq+tXcn9Fnhz+jkT1G0U3jb6Yli5dSv7Q+VFtSQ5WllX7dTkhJpJi4WCovLqUVm1dS3659qFt2F9KeQjGbKePGjaMOHTtTbaN3jrZUhoNnXkBDLrtQPkklOXjxXVFeQkuXLGnOaSSasOlSoXB6y/5UOKW2a+NjvmTUzNChQ6l3337iK2xwNxABQ2jBCiCanIOfs32scLBYTQOGrRPmYSl+o3L4wN1irq6l7r2fo5Q0exsLbSUQTUI30SNdNKkSJ0umP7VChBeOpmU/mKaA/aowrzgizCte+/oE6tXOf/56TT85IZr2791DOXt2hdQR7KUzZlBicpqI7uL1FYV/fcESTdbmnaEfvv0Fje3Rlv524yhbIH7xwQ5aklNAP760P10/yn5EQluVh0EmiCahGQSIJqHhHO6tQDQJcIQgmsgBRrJowuYqHz76DMUL56bX/OY7PjDUUMR84uDa3zZFcVHD7nKoYQ45bJRUUSSrTzea9p0bfbIUiQ358qffEicZ6mjAxUJUucpXVAlUNImPb6TFB+bTE2/8orndq0ZdTYPaD6btG7bT0I7DlAhTdTXGTn3rG+rp8y9WN4smMrOcPn360PDhI6giMBcsfhjVkzg9xw2hcTdfJp+kNnLw4jt3/17atm2bklsvmvAJk5PCwa8qmKhVZnbvoPh+MUqdO3emSRdeSOXVjUGJNGDjss6LLBBNmoapvv4M7ds5VTg3zqD+Q5pM8/Tp2OGHqaToA+rc7TfUJvNax+ML0cQxMtcFIl00OVFaTdc/u5qy0xJo3n1N4vWP3/mCVueeod9fN4ym9LV25OkarKYgO+xmE8uNG9YKf1tHQuIvavTo0dSlW3dxwqb1+DHRjlWwRBM1jPC1I7rQgzYdCX+0/Tj9dsFuuqhve/rjdcO9mFJhVQdEk9AMB0ST0HAO91YgmgQ4QhBN5AAjWTQ5nXeUlv39Tcrs3ommf/8WPxifPPECVZwpoZk/uYM69siivcs3KqZj/aeMVoQWo8TmL3uWrBdfkaOJT0qoicvlrd+hOJHN6JzV7CdFW0dMbIxyDNmNI9i4OBFZoLGCFuYuFL5IjokIOudMUSYPn0qVZdWUuzeXEhsT6OS+Y0qzfMKEo/ZUijC/5eI69aKJ1UmTdu3a0aWXXkplVd57fmfx4rNn/kdZfYXwJBzkepH4FE6acLK7fv06sfg+7Cea8CmT08KHS5u2vr5bktLZWW6mXxeSkpJo6tRpIqJD4M5kIzlkKYODaNI0faoqt9PBfTcLU7bB1Kv/XMNpXXD8/+hMwYuU1ekBap8tdyatrwSiiRdPC3t1RLpoknOyjO56dQP1z06jl+8Yp0D569J99NamI4pjTnbQGYrE78T0pGj6+ONPqLSsXNokR0TLO11BZ75U8zsLc5DumcnScpyhV69eNGr0GGES0hhQ1DlbjYVppmCJJm7mzinhT+ca4VeHzY6XChMx/tgRSQmiSWhGE6JJaDiHeysQTQIcIYgmcoCRLJqw3wz2n9F99CCa8LXZfjBUJ7Fjb5pF/ccOpAObvqDcg3nUcWBPS3DsxLRenObI6tNF+MZIIBKuLs4cPEo1lTWUkJrk4ztFrSgjI4MGDxa+TcTu3o1owvXExp4LM3p4yx4qKyhSzG7YB0tn4a+FBYNDhw6JnCKaDkcmEMIOJ/7347sP+okmadltDaPXxMTE0OXC3rtRhBYOhuPTchHmeP7vXhL+VNrQ7J/fLZ+kNnPwwosj6ixcuFCYQJT5RM9RRZNZ14qTLWIMGgUThWl8nKF/kw4dO1J0TGzAkYJiomOo7mxsSL6g2sTkeTaIJk1IS4sX0dFDP6S0NtOpa8+/GnIuPP0anTz6OxFZ52YRYefnjscCooljZK4LRLposv5gIX3/f1tpXI9M+qsIEcvp3S359OSne+nq4Z3pp7MGumbntGD79AQqLCqkBQuafIFZpd0nyoRgUuOThYUfPjFjlfgdzA7Ng/EhQNbncPo9WKLJg+9uo5UHTtNvrxlG0/rbP6V093830q7jpfTknBE0qfe5aH/hxMxtXyCauCXnrBxEE2e8IjU3RJMARxaiiRxgJIsmqo+SwTNFuOHL/P0H5IiTJds+WEF9Jo2gzkP6UGNZCZ0oPUWna8oswRUfLaBKEdUpo3N7Jfwwm+VUlVYom+/2vTo3ixVqJQkJCYoIERUTRwkiaoBb0cSqU1rBoLS01C9rmRAqio6fajbP6d2jF7Xv6d9XLnjhRRdRu/YdhB+P4Dg+bRQOaN958CnBKYpuePKH8knqIEeiiFBUXVkq/LwsahZNKovLqPhoU2jlYWNGUKpwJr1yVZP5RHxykhBHfI9pt2nThvikSaCBghR/KH36UnWEHwOHaNI0Qc+cepkKjj1JmVm3UYfODxnO2rKSRZR/kIWVS4Ww8pSDmd2UFaKJY2SuC0S6aLJ490l69KOddOnADvT4VUMUThsOFdIDc7fSqG4Z9PRNo12zc1qwbWq8EKgbKffAAdq0aZNpcT5lwr4z9KlNUhwN62wdjeqKK68U3xPiRQQ4p72LrPzBEk048tLBMxVKJByOiGM3Pb8ql/69+iB9ZXRX+sF0Y7Nou3WFWz6IJqEZEYgmoeEc7q1ANAlwhCCayAFGsmiy9j8f0xFxImP8LSLc8Nhz4YZVKqcO5Cs+SNp266CY0xxcs40uu/8G2pqzkwoKCkzhsalL6YkzQiSJU056VJdVCT8GMdROCCZ8ckGfpl18MaWltxULNm9CDpt1TBUMFomTFkaprLCYPvh4Hg0bPIyGjRrlJ+5wmVBt9D967FmqKiknWehm+Qw+l4PnMqfE+GixgT1BOTk5VCJO47CgxYnNkXi8+vbtQ8eOH6cd27cr/83/qIkFrpTU1KYTJi41Iw5f2alTJ0V8ag3+UCCaNM0ePkHCJ0lYMGHhxChVVWylg/u/RknJw6lnv9edTG8lL0QTx8hcF4h00eTtzfn0lyV7aY5wwPkj4YiTk+rnpH1qAn3wrcCddNuFz6IJhzyOEecbt27dQrm5uYZF3YomEydOFOZwHYUfk8gy/7DLV5svWKLJ1L8sF4JUUySmpDj7juO3HS2h+17fRN3bJtObd58zeXZzbeFWBqJJaEYEokloOId7KxBNAhwhiCZygJEsmnz6f/9VToFccv/N1E6cqtCnBuGw9d2f/k35Mzt+zf9iL03/9leoy6CuNP+TT6i21t8DaoPwaXJKmOc0Krvqc6l9r07KqQV9GjlyJHXr3pNqGqI9CTksG1F2iHr0yCHasGGDX9a6ulqa++brNGbseBo4yF9ECuVGf+lfX6czh47Txd+7SZzO6SK7LFu/R4uoJXyN7HeGF9+nTpykkuISpSybUcUmNAlasbGx1L1rV1qzZg3l5+cLLSuGLXYUESlRiCa6oRXOYxvorFgM8u/RQhyzSvHx8RSfkESXXX65iMwQJf5pMgOK5ATRpGl08/O+R2Wly5QTJHySxCjV1R6l/btnUVx8J+o7aLHjaQHRxDEyvwLsQ8NOSk1sMqurqg3O0QSuW/8esdMvr/K8uCqPXlydR1+f1IvuvrBXc7VqGOLF90+hFA5NFoKkiiYc/jctKZYWLVpERUVFhi0bmef0bp9CndsYh6wdNGgQ9R8wkKoQAU3hGQzR5LhwKjxHOBXOEmLb+y7Etiv/uZIKhY+a/941gXgsIyVBNAnNSEI0CQ3ncG8FokmAIwTRRA4wkkWTeT8X4YarRLjhx78lfI0YO4pb/Of/CNONAkrOSBMmN2U048e3C6ew2cI/QSEtX77MDyCfMOGTJvrUaVBPv5Mb3bp1o/HjJyhO53gjHmj0HPloNuVIiScRReYLOiCOOmtTg9j879ubQ+3bZ1H7LF+bYzZH4Y1+nRB3QrHRV/3JsK8Z9jnjReKTNjVVZTTvrbeFg99iatupHZ05c4bOxkQpwog2dejQgcaI0zYLFiygyspKxUQnXggmUeL/tHIYC2scDemsOD3CiesxcxLMZj2JiYl08fQZlJzahmqCZN7kBSsv64Bo0kQzb+8cqq7KUZzAsjNYo3T2bB3t2SZOeUXF0MDhXzgeBogmjpH5FGBxNJbqqE4I4uo9bVYjiyucp77B5ZEzi66y36hUcaKttCo4gowdSn8Wvks44gmbRLBphJpuf3k97T9VTi/dNo4GdkyzU1XAeVTRpKqmQTFhbairUj5cmI3R1vxiKq9pihfMzkMn9jL2hZGdnU3Tpk0TfkwaItqvlJMBCIZosvFQEd0/dwuNFGZd/3Rh1vXrT3bR/J0n6HvT+tLN40LjgNgJM7d5IZq4JeesXGsSTaZe/wDdfO10uu/2q5shPfPqB/TGvCW04t1zvtSGTLvTB+LAvt3pnRceV/7GdZwu9N3HzH32URq5S5TjAAAgAElEQVQy4Jx4ri2v/nbfQ3+hz9c1RahU0x9+fi9dOWOiUue0SSPpsR/f1fzbR4vX0ENPPEv6up2Nrv3cEE3sszLMCdFEDjBSRZPqskoRbvhfhuGGtVQ2zV1EuWu3K3/ijfOcP/1A+ffk+Cjavy+HduzY4QOx6MgJYe5R6Qe2fU9x0iTl3JeutLQ0uuyyy6iy9izx1zNOoRJNYoVIwF/rPv30U0U0sJMumT6dUtMygubHRN+HbR9+RjnLNtCwKy6igdMn2OmirTwlBw5S/qGDtGHjRkU0SclMo4JTBYaREvr17UvtRZSgpUuXUoI4iRIjHL9qt0fsQJejIXXo2IGGjxzR3D4LJ9E6L/+xscKhrDhlwlGHUlPThAPdpux19WdFBB5bXT9vM0E0aRq6vTsmUUNDqRJumMMOm6W9OydTQ30R9RuyXJx6au9o3CGaOMJlmJkPT7AovmLFcsvKWDRhU7uGIIgmLFDHxCW1qH+NX364kz7dc5Ieu3IIzRjUoZnFz9/fQcv2Fvj9PXDy5jVoRRPOlSRMLE8VHKfVq1YZFtpbUE4FImJcojj5Vy18ZA3okKacctAmPvXHnBuj4qi2LvJP/Nkdn2CIJu9/cYz+sGgPXTmsEz18mfOPIIuEf51fCf8643tm0lNfaXJKHAkJokloRjHcRJPq6nw6dWqx+IjWlbKyZngKwY5oYiRgzLn7lz6iiVZ4YdHl7y+9S9/7+vU+Yoxe9GDRhNMzf2jyRaj+zsJJr+4d6cZ7H/MRSIz66ikMXWUQTQKkC9FEDjBSRZPTecdEuOE3RLjhjiLc8K2mIPZ9vpm2vtd0okQbzSVafJJMTYymtWubTDjUxA5VOWqNNrHY0qF/d5+TJjNmzhQb8VSfDXOoRBPuG3+to8Za+uTjj8Wi33rXPkqcuOjarYdiQhSqtH/lVtry7hLFCe/oG4xNGZz0hf2jbHxrEZ3IyaPJt8yg07UldKr0jHL8vba2hgoLCw2rGy2uvbamWpzM2S5Mb3yPorPD2tqqaurStQuNmzBezIW1VF1dLU4JiPMowlTnrHBcyEeI+N/ZF0pSSgpltMmgej6VIv5/3LhxlJicFjIhygkvL/NCNCFFLGHRJDo6hQYMW2eJN1ecSKlRTqT8T5xIcbbBgGjizcw1E8W1tQdLNJkwYQJld+zc4v412OErO37lTSpvVtX0zOcH6NW1hxSTHTbdCUXSiybK+1hEQtu1c4fim0qf2A9GaXWdYpJzrKSKrps2zi96Tk8RXjgxMTkoJ4XMmLDz8HAXyYMhmjy9Yj+9tv4w3Tu5N91xQU/HU6akqo4u/8fnSrklDwifKOLUaCQkiCahGcVwEk2OHPk35eb9jerrmwIypKYOohHDn1EEFC+STDTZKdbAevFC365ZHSyc7Fz+cnN2mWjCGVmMGTqwl3LC5NEn/00nxR6JRRX+9x178pqFGi+uXVYHRBMZIcnvEE3kACNVNDkkwg2vV8INDxThhq8wBFFRWEqL/vSKCB98znfJyGsvpn5TmqIG8KJZOOWn+fPnU0VFkzNRTmcOHqOaimrl31kwSe/YTjHvURNvljt26uInQoRSNOG+8Ne608Ih6qqVTZFijFL37t3F5n68OOrcaHgaQz6D3OU4tvMArXpxHnUU4ZIn33O9u0q+LHV8Vy5tFCeGqoXD1+S2aTTp9iuo37BetGzZUjp+okA5vl0uQhCXl5f7tZOUlEiXTJ1GWzcLB50iXDP7LFGj6fC8aBDCCachQ4cIk6b2tHzFCr86EuITRJDnKMXkKVqIJ3ykvCWEqIAgBlAYogkpZjlsnpOQ2Jd6D5hnSfNI7n1UXraSuvV6mlLTpzoiD9HEES7TzGaiuLZAMESTfv360eAhQ8PCv8adr2ygvQVl9O/bxyknNdT08Y7j9MT83TRzcAf61RVNUXWCnYxEE35upyXFiBNBK+jkyZM+XeBwybVCoRjTvS3ll5+lr8y6iPJz91FlRdMzPl2c9ExKTgk4ZLyT6+4q/GS1E6av4R4tLRiiycPvb6fle08pUZg4GpOb9J03N9OWI8X0xDVD6eL+2W6qCLsyEE1CMyTBEk1qa09T/tHXHF3EkSMvNwsmakEWTpycOImPb09duxh/7JWJJtwm52mf2cZUsDA7AcImOaq5DdfjVDThMlwHn1hhASZUZjkqZ4gmjqaqf2aIJnKAkSqa7Jy/inYtXkuDZ14gwg0bRwHYuXA17Vq4xg/StU98l+KSmo76sp+MqooSWiwc02lTdVmF+KocTTEiWo42+kqfPn1o2PDhwizH30t/qEUT7i9/Uc3Zs4t2797td53p6emKCVFFdaPi9T6UqeTYKVr05KuK4DTrwTtdN73703W045MmUYjDRo+5cSYlpiUrUUaiGuto3vsfKidt2H9r4ZlCqq6paW6LN05s8x4fG0+jhcPehSLqkJnzQS504WQRDUeIL19s29Zsax8XJ1Q1caqkbbowbRImYW06Z1OPnj1bRIhyDTHAghBNSHEAy45gU9OnCDHkn5ZEjx/5JRUXvkuduv6KMtrd4Ig+RBNHuCwzsyiSGHtW8WukFcXVQmaiCUdwqRH2dykOv4ZnCVH1YhFJLVz8a1z3zCo6WVZD7947iTqmJzazUqOZDOqYTi/eNtY74BY1GYkmnJ3XJ7HRDYp/k5ovn93sQHeNCDvMz+9Jvdsp/lcy2mXR1JH96fNlnxI/k9u2bauEjJf5rfHq4kLpRD3QPgdDNLnjlfW0T5hMBeIHh0838Smnq4d3pp/OGhjoZYZFeYgmoRmGYIkm5eV7aN1644+uwbyy1FTxsXf8x4ZN2BFNuKDep4nW9MZMNNH/XSaaqGY9WnGET5i8/dEKuuHKqT7+TYLJS60bokmAlCGayAFGqmiy7r8f0+HN5uGGmczql96nozv2+0Ga9u0bKatvt+a/c0SaI4fyaNOmTZZAMzMzaaYwyymtFM5DDezgW0I0Yd8b/LVu5eef03ERZlebZgnBJC4+uUWOE7ODXnbUyyGar/v9/fKJqsvB5fl0CUc84qQXx5ISYsQpoSg6cvSYctKGF9hRUWeFnXyBWEw3CUTsfyQuLp7OHCmgjkI86T2wDy1avKh5oc1iWKywi1ei54gy7Ch2+qXThZ+b7ZSXmydOsMQIPyjRlCyOgEeJAymlp0qo39ihNPvKK6iyRviyCbEQ5RiiRwUgmghBToQa5pDDbdvdRB27PmJJ9tSJf9Dpk89QVsdvU/sO33Y0ChBNHOGSZmZRvLK8mD5d7B/JyEg0OVxYKcxBqoXPoqZnSP/sND+zEKNGeSN/+ezZ4pkQRQ1nQ2cGaQVAjZKjDxFbVFlLVzy9klKF85dFIoJOKJKZaMJtsw+a8tJi5eQgpwph/7LlSJH4IBBLo4XjUTbTYaFn2pgh1LdDOu3fv1+YZbLlpPcOfI1YsBN1HlsOZ6z6LwsFM7dtBEM0mf7UCnF6qoEWfm8KpYmoU25SzskyuuvVDdRBCHjvCSEvEhJEk9CMYrBEEzcnTQ4delY8f859nGMCoT5poqeuihtap616Z7Jcxs5JE70jWP1pEjvmQcGaFRBNAiQL0UQOMFJFkyVPvUaFh0+YhhtmMkYnTfiEyYwf3S4ciKY3w+MzIymJUbRl82bKy8szhMqnTnjhdFY4natv9D9loiz+xAI9JTGGCkv9QxnLR8p9Dh7juJhGWiDMjKqqqpSKxo8fLxycCrv6EPox0V/B+488rThavfrX3/5/9q4CvIok6x6Iu3tIgiRAIEjwENydYdyFHffZ0X/HXXZHGHc3hgEGd/dgAeKBuLs7/Pd26PDytJ/G3v0/fnZ41dVVt/pJnTr3HNjIiOhqmmnR+WwBMKmm2kl2shlN7JKAYaHtLmPQxNaKRALJJSMlKRHx8fFCmU5zcxOKi4sF+rY90bcZ2yq6kE0uS42IHD8KvWmNjh5r1aSwZcclttuQCU9PT0yMmoDttMmqoXIfawsr2JHFcEl2MRw9XHDN7TcRuOLQIUCUprwZ63UzaAIU5P4XpUU/wNvvcXh4L1eb6rKSP5Gf/Rqdjl9LbJOXtFoWM2iiVbokNVYFisuDJiVkiZqQ31qnLhtjgt1pY68eCJk8ZQpc3Tw7jb5RPW1wp9NGl8e9+/GpCnNifQnWmVj/QDQ82I7NyKEONOFb8xqlJicKwuziOrjbWyPcr/V7Oja7AlUNTXjlwVuRm5mOuHhFZqWxpjBj5swu5ZZmaNCkuJocCj8/CDdaj40PRuuV5mVkW5xP9sX6MFb0GoCBLzaDJgZOqIrujAWa6DJ6FoA9c/a+tkstLZ0RGfkbnKhExxAhqyEi9qfMPUf+XrIsEkNqmsjfxwyaGGKVO6gPM2iiOfHdFTRp25CrsRvm7Oz5dCWKzmcJiWLAhDVNQsYo1nGzI42zvZXKEo6J0dGkaeGLukbVZS4dBZrw3BhEqKooxa6dOzGAXGOGDo1AbZNycEfzU2OYFqLd88wnboFboOo6aLaEZmYJs39S9pFw79pW4V5v+u9R188msELRqUQETSqI9SPLtGHghIVfbcgaWKRvl+cUCXbTHNPmzUBWbhaSk5NV2lRz/vr360u53AVnBycUE1OFWSmzly2Cf2CfDgWiDLMy2vXS00GTitK1BJq8Q2VgVXBxWwz/oDfVJvBKKc8UQddEmzCDJtpkS1pbVaC4PGjCgqMXiq9oW4m99/N0EARJVUVERARC+vbvVJ8LBbQxvYo2qN5ONlh7n2L56j2/nsC53Ap8dmMkRgSqdoKSlmHNrTSBJmxW5kgHDizMfvRcCtJKaoScc+458oj949QnDH4BfTA3IkAps1LVKLjcip14asju2IVEzDgnUoO1q/oE9yUwTOoVHd/O0KAJ2z8/8PtJDPV3wVc3j9Jrgu9uS8La2BydBWX1urkRLjaDJkZIqpIuOxNowsOrqk4g95xtpIvoDD+/q8kl78ohrL4ZEctfZAVbmSEilsNwSc33f25up2ciMk3Ea1SV4ci758iDMfLuOcrmYgZN9F3hDrzeDJpoTn53BE0aqmux7sXPBRCE9Uk0BZfoWJPlrD0JJ8kyTOSvY0ealqY6ob5atlZ6yJAh6D8gVKMAXEeCJjwXO9I3KcjLQXBwMJUQNRNoYBr6sqr8sxAsC8JG3bkYARHtmSJ8DQMlMSTmK5ZQsdUvl8pwhE0ZheFLpqpcWhE0KatuFOrirYlpw4K+dfV1xLqhdSSKiUjf5tKbguRM6vsinJydMHPRbBw5fox87JXbNXNZz7CIYULbfbv2oigtD0Mjh2HK/NlEHdf0tHW/13syaFJa9LMAmMiGj/8zcPe6VeVC19eeQ1rKDeScE04OOiu1eiDMoIlW6ZLcWLRp30baVaKukVSmCWt/qGJjBAQEYNz48VSuZ7pyESmTTqZSiDuoFCLU2xE/3j5W4ZLXNsVjc1w+nps7CIsi/KV0qVcbTaAJd86f46zR9dUf/+B8fjFC3B3h59IKcAT2CUKhjT/e2pKEn+4Yiz6u1qRVc4VZqWpwDJjE51UKgIkY7sSsGejjqHY+XPnD36OjRo2mz/xLJhVR1yvRdLGhQRNROHhOuC9eWhCu1/D2phThubVnMZyAus8JsOvqYQZNTLOCnQ00MfasReBEvI+8fgizURJTM9sNQxZkYdCkuLSi3euyZTay18sKw5pBE2OvbAf3bwZNNC9AdwRN2N1m14rf4dbHFzMfV203rDk7ii3YkaaoMA+HDh4UXvT19cWkSZNQTWKqmkCIjgZNuNLEyc4StfXNVEKky+wNe82p1buQeuAUsXumkmOR4gmVKqHeMTfOVcoGkh2dLGjC/y7LtGF9E/l6dwZORLZJn37BGDgoTGAVieKDYt8snmtvZ4+Jk6fAm0p1Yo6SA8Xxs5i3cD5s/Hw1PgOGzWDn6K0ngyapCbPR1JjbbiF6Wzhh4FBFgWmxUXNTIVLip8PSyguh4a2sKanRnUETa7ZJ78Dg78KmhjpsJJv2i/R5IA+a8AabXVtkPztY94NP2C2ZCiEXDmRBPm/ePNJ6IAC4M3zgyoyP5/HYX6cxOtgNK64bqTD2Hw6n46sDF3DL2GA8MKW/0VdFCmji6mAl6FKVkuB2Tl4+nEk7w5oAcCvSnfLx8UEKAUFpJbUIcrcX3IBKCfRmZqW6YB0O1kiRDzdilVrIlWaKbfiowdHRGbPnzKHv/RaTWhobYiEMDZp8tf8CfjiSjuVkT72cbKr1CbFsjPvY9NAkuLJ9YRcOM2himsXraaCJabLa9e5i1jTRc816EmjCp/KFVGZSSza6/kMHqGVMyKa1O4ImGcfjcey3zegzchDG32p45WsHm16IjzuHDLKonUs/ipsvWqBRwo/ijgZNeN2ZZdFZBEqTdh/HmfV7EUqskRFKWCOqhHrnP3+3xudbHjThufMpZdqFVMTGxmr8ZOlH5Tc2JFK7b9++tra2VNLj5uqGwWQZ2rffADRd7E2idxY4f5yYAyeSMfrWxRr77Y4NzKCJdqAJ2y0lxEYIj8LgYWdIN0c6WNBdQRPen/ZqqSeQsl5gfHVUuLg4orK8HHv2HVAATcTyHN5MtxDVwIGESCMClAMmPP6Zs2bB1t6Jvhs6ajaq77s9oQAvbYgje1hvsokdqtBwZ2IhXlh/DlNCvfDW0tZn1ZghBTQRnHR6NRP1fDUaaqicsrFW0KliB7Re9B4qJ3SKBWEZSBkb4o4IsokvLi7CGXI7UxW1tDi8UZcP/p5kTSz+WzZY9NXVxRWz5sxFL0tblfplxsyVvn0bGjR5cX0cdiQW4EVimcwltom+8fiq0ziaViqwVpi90pXDDJqYZvXMoIlp8tzZ72IGTfRcoZ4CmjBgcpCcYERtDk6blNN4btcdQZO4LWQlvO0wBs8aj6HzlNsN6/No8Q811smoqKAfaLYOpJovrbfOAJpIG6lpWmWfTsLhnzYIpTlcoiMfrF3CGiaywSVXCwg0ES2hVY1UGWjCGzMHEhQ8HnMMmZntqYvK+hkWMQSFhQU4e/YcWRZbwIt+nPv5BWAs0e1r6lvLe7hk6+z6PYjdFoOFL90LO9p09bToyaBJbtZ/UFH6T7sld3FfAv8+b6h9DFLip6G5qQgDwtkiVfrGoLuCJpwsOxJhrlHhZGOK91Qv+oBgMW8bYi6wcPSF8ynCe5xL+dhi+ERmmfDffdzskVVWKwhfDrksRCo/vsjISAT0CRYcVTpjrDqZjfd3JuPqkYH498wwhSGK5TusGfLLneOMPgUpoAkPwpYc0dbFJKE46QTs0AAbcjSzsbYRBL05WF+jmr6QmQHk6+KAq2ZNxOnTp1V+3qsCTcQJMyuxVUi9N7EVreFNttGjxoyDN4modyUdE9kFNDRosvzn44JA8pekZxJBrCt944/jWVixO0UAYBiI6cphBk1Ms3pm0MQ0ee7sdzGDJnquUE8BTWTFMWVTJuVEvjuCJkd/2UR2wwmSgSNdHjOmkrNhQm2D9FNRM2jSPtOlGXnY+dFvVEblQ2VUtygsQw2xpja9/nW7fw+fMwFD5mi2I1QGmnBHrF3AgoJbtmxBZaWiE4bszaxp8zQ6ciROnDwhlOk4Ojphzrz5wo9lWbo9l4JxSdjUB8mquv8Vq2pdnquueE1PBk1Y/DU381myRN1LVAkL2DtEIjBkBVlRO6ldyrTk61FfF4eQ0N9hZy/9JL87gyacMHZJyUg7j1OnTpn8rTBhwgRBzLuZLIEZFD90kGza8/MF0CS5sFoQC/VytIG/qx25tZTDycaKtBcUN4khISEYGTkKtZ1Y6+Lbg2n49lAa7qKSin8pKangshW2kbWiz8u9T0wz+lpIBU1yy+uw/3whPFpKYFmWSWtDZbGXARNl5VODgnxxzczxVGq5TeHznhmXVXLIBwNntpYWNN9L5IBGgNlla2lOADNa+g0YCBb2tbWSLhZr9ORpeQMpoIk2UN+Czw5QHpvxz/1RcLNT77QkRUUtnUR+b/ruqEHceLRMjcGbm0ETg6dUaYdm0MQ0ee7sdzGDJnquUE8BTVgsMz0mTiFbUx+gTRw5jKiL7giaiHbD0x6+AZ59A/R8ilRfzswFFoSTGmbQpH2m6itrsP7lLwS7YbYdVhaHv1+H7LMp8OwXgLCpoxFApWdSQhVowtfa0ol2Q10VthJwoinc3d0wKXoidu/eQwyTCUrp9uL7j62P+46XvgHWdO+u8npPBk14jaor9yEr7QE4OI5HUP9vJC1bdtrDYBedwJCP4OQyQ9I13Ki7gyb8mcqg5onjMUhPT5ecF30bhoeHIzRsIOmPtG4XGRS3JfHoTZs3Ibu4UhAL5VdGBbkLrx/PLBXKN0YHubW7taurK+aQ1kVVHelGibt5fQdnhOvf35GMVaey8fiMMFwbGaj0Dku/OEhAUQNW3T1BAIqMGVJBk5iMUjy/7hw+um44ehWlEIMkq02UXZW70VUTIxDo44ltZBPPAu4MjLQCJkwRJbYggSRiGQ6zSPmPGM3UrpH+2JGGibOnL/oNn4BXNsTDhpgn08K8MW0gASmXHXyMmR9D9i0FNHF3sm4ndq/q/k30jB9JIwCLcjahn4fGYZYR8Mjgsqa48dsjyCitFcRgWRS2q4YZNDHNyplBE9PkubPfxQya6LlCPQU0UcY06U0/BOY+e5dG7YfuCJqIdsOLXrkPtk6tloSdIcygieIqrH7mI3IkasZVbz0CSzq5lY8tb32HqqIyzHjsJrgH+UleRnWgCXdiT4K+uTmZOHbsmNo++/Xrh9GjR6GxsYlONHsppdsnbD+Cc5sPYuD0MRi2cLLkMXaXhj0dNCkvXYO8rBcgpSxHXPP87FdRVrISvgHPw83zBsmPQncHTTgRopMNCzGXk76I1OASGtancKDSDGXCrKr6YRHRyZMnK4h5uzpYoKy0FO9+/zeJhTYjxMMBgQQeMKOhdaPYG+P7toIoYnB5T2/SulAikyF1GiZpx3omrGvy8sIhmD1Yud37w3+eEkqSPrhmBMbJzdPQg5QKmrAdLdvS3ju5Px6e2lcQ666qarWLTyM76ByyhZYPDwcq6Yweicqqahw6eqwdGMCACT8v6sLB3h5u7u4YN2U2tiUW45uD6SgmVzYx2D1p2kAvAURhy+I/qbxkX2oROfvYYfIAT8wfKv17y9B5VdafFNCEDxYa66uxhRzn1AUDT7E55UI5lDpr6qCgIPoeHSPZaejDXSlYeSILd0wIwT3R/UyRFqPcwwyaGCWtCp2aQRPT5Lmz38UMmui5Qj0FNGFNkz2frUR5TmG7jPEGjjdy6qK7gSYNNXVY98Jnku2G9XzEtLrcDJoopmvL29+jqrAUc56+A86+7U+qxPIcaztbLHnjQa1yrQk04c5IkgDnzp5Bamqq0r7d6Yfy7NmzyZ65SThVrqFaeWXMoizSZjmiRptFq4F3wcY9HTQpKfwGhXkfwsN7Obz9Hpe0gsUFX6Ao/xN4+twDL99HJF3DjXoCaMLz5Pdbc1MtNpGTjZTIpFPp3Ip6AjRayyX59N+fNq2agjUxGOhQJubtQm4tp4lREhN7Fukpie02hQcvlAib74n9PIm50HqX8aR11FW0Lh4l55wYctD54FoCREg0VVm8sTkBbCfLTBRmpBgzpIImn+09j1+OZeDeSf0E4KSupgLbySaao4KEYM/mtrfRFMfMS3T93MnIuJDS9nlvSWwRZ1v17izWVlZUsuWFCVHRBIp6oaGplVrKoNnu5CLsSSpElYyomZeTDYqInSMbb5OQ7mQS1O0sIQU04bHywUJ+fg6OHFbuBMauQxeKqlFBJU529H4dJce6EufLjnPMvqptuCRZhP4wvb/+/XcsBvs64dtb1f+G7Sx5VTYOM2himtUxgyamyXNnv4sZNNFzhXoKaMJpamluxuqnPyIjhl4InzUBbNfKMfp6KhkYp7pkoLuBJiUZZDf8EdsNK9fJ0POR0utyM2iimL59X65CQVIGJt29DL6D29sVcskZl76wG9TEu5ZolXspoAnTsHljtGPHDnJZKG7Xf286RebNFHpbC6fG/KNbVSUWg5Xb//czXPw8Mfup27UaZ3do3NNBk4Kcd1Ba/DN8/J+Gu9dtkpa0vPRvYqe8BFf3q+DX5zVJ13CjngKa8FzZ3r2wIBeHD7V+l6mKkppGQYhSPsYEu1PphXpnoqnTpsHJ2U2pmHdZfSNu+uYoXlo4GC15SagpLWi7BVv2ctkGu7SwW0tYWBgGhw9pK++RvKAd1PCOn8gqnSx6v7ttDAaRPa98pJCGy8N/nkSlUMIChHo74tMbIgVGgTFCKmjyHyrN2U1AxSvEkJlFDBnWwMnJykBMTIwwLFm2CTOB/FxsBRFfQY/GzUUATnbubP281wSaMBjm7e2DIUMjSMskDHVXyCXtUrA3pUgY0x4CUfiZkA8GTBg46SwhFTTh8bJTIB8spKSktBs+5/RUVnkbSMkvMstGmRDsLDp4sLVzonWQXsvMgsvTSVOHXQnX3hcFbyfbzpI+rcZhBk20SpfOjc2gic6p61YXdlvQ5AihyIWVDVg8wl/tgr2xMUHhdQcbCzymRO19Z0IhCuiL8aaxQW3X9CTQpKakApve+EYox2EBWNHOlZMRRRtOVVoQ3Qk0YcbNydU7kXkiQdDAmPaQdNq7KT45zKCJYpaPr9yGtCNnMeqamegXNbxdg+N/bEXasXMYTnbEYWRLrE1IAU24P3a/6XWpSTjRbibgUYyoqCi4e/rQj2DNknjNDY1Y89zHsCCq97J3H9NmmN2ibU8HTXIyniKb2s3wD3oHLm7SLM7Lin9Hfs4bsLIOQnD/r+lvadpLPQk04TcHs8HY3j05OVnle0WVloUmtsnw4cMRFNwXDS3KgZWXN8ZhW3wB7iNGw0NUCsLi0dXV1cI4TtKGkZ1XIvu4ISTQD1OnTiUdkxYSDpW+MezIN/9VXx5CQWU9/r43Cn7OihvS2388BgZOZIPLTJ6fN9gow5YKmsEh+FYAACAASURBVIhgzze3jEb4ZeciR9rYx8aexvnz54WxcfkUb+oZMOMyLbGcil8b1LcPxg4ZQOwU0rO6dFEt04SZhiEhfTFuQhSq6y4Kzknqoqy2EQs+PaDQZGQfVwFw6iyhDDRhxyFmFVUTSMYAmciM4YMFZ3tL7Nq1C0VFRW1TYGZXJjlIyYc8UDlmzBj4kNNQ40XNOibyfT275qxQ5vTsnEFYPEz9XqGz5FZ+HGbQxDQrYwZNTJPnzn6XbgeaXKCa051UR8sAx/h+7m3gR1nZUdIMKISPz6K2NWEq/NmcVqplS/1JXGopQmZdtHDtt7ePbrd2O2O3YHPsOVg7zsGby64g+j0JNClOy8Huj/+AR4g/pj9yo5Cfsxv3I3HnMdLd6o2p918nAAny0V1AEwZMtv/vJzoNvHLiOGLpNIRO7jw/VsygieJHbvy2I4jbchCDZoxDxILodg02v/ktqovLMfOJW+AWqLzuXtWHuFTQhK9nG8vSkkIc2L9f6G7IkCHoPyAU9c3qT6ll773hlS9RV1FNgOW/CLjU33axs385yY6vp4MmGefvQm31MUEElsVgNUVtdQwJxz6Eixdr2pqy446Ty3RNl/YopgknQ9WmTTZRqpgmrDXh4aDczaNPnz4YM2as4HCjDOfYmViIF9afI9DGAn8sH49Ad/t2pSD824TLEkaFeOH6ZYtpY96b/mgGWDUusIka8Ck+67/sfHSKYPUsH1Hv7VL4N2Zt/H2PZucyXaYgFTSZvWKfYCm8+aFJArOBgzVwnO2tsI3KdEpJg0ZZJORXoaSmtWxmUmQ4ubxYIfbEMaEMTFk4OTnCy9Mbs5W4pambnzKwaTk5FC1X4lCkS54McY08aML5fPCPk+1AMtkxKztYUKUfI/ue69+/P4YNG046JrqNes3pHLy3PUkQ231j8VDdOungq8ygiWkWwAyamCbPnf0u3Q40KaSTDQZOmGnCcU+UFdEkd9GfnXB1G4d+fR9ttya1tWntXv/m1HQMJYs/kU3CrydlbEFyxmY4u4zF/rwlPRY0EXUVAoeHYcLtV8An8SSfBVGnPHAtnH3a60Z0F9CEhThZkFM+lr7xkKBv0hnCDJoorkIGleAcoxKcoMjBGHcLlcNcDgZLGDRR56yjbk21AU24H/79nZKciJKSEqWikJqeH9YUKkrNwuR7r4HPwGBNzbvV6z0dNLmQtAQN9efRb+Aa2NiGalzb7PRHUFXRflPamyyKBw5Vrh0g22FPY5rw3NnJpjexwTZv2oSmJvL7VhKnyQKYN39iuJBWxWBiIigThHV0dMTcuXOplKa9dbh4LfMJrv/6MLLJ3vYZOuVecvmUm0tBsjLScOLECSoHat2E333tQgzo46+0vEfjg9BBDRgsYdCEmRi7H5+qdBQiOCH7ojEZE1JAE5HJ4WRria0Ptxfc5o39xeZ64Rm5KGMTLDt+3ugzwMYgyzUzo1BRnI/4+HiF+duSzg0Lv06bPhM29k5UIiJ9ofJIV+f1zfFC6QrHggg/PDot1GhlTdJHdqWlPGjyJwmufkTCq/LBABkDZRzyBwvKgEouhxod7Ca852T1wHR1kWIG2TVfHRaAyx0E7nXFMIMmplk1M2himjx39rt0O9BETPhvxzKpPKce909yBQMfZeWtm1150KShobDt9eyyOvx4diZW3DCiTe08tyQLH2/fjWsiClFe04Sd2Qt7LGiSvPcEYv/Zg9BJkRhx1bR2z/Yhsm3NIdtWFtpkG2IbR/u217UFTXhjeJru01RHNcL9+4DZHB0BStRX0Q+g9Ny2P8VpuUrfz1Jsl031QWAGTRQzzc8TAw5sDc0W0WJwWQ6X5wQMC0XUHYu1XiJtQZPe9EPPyc6CGNvswAGhllqbOLFyOy4cOYPIq2eg/8QR2lza5dv2dNAkOS6aNKXKETZkH5VoKRfVlF3k1ITZaGpU/Lzy7/M6nKm8p1cv1eKUPRE04dyxlEZVRRn27Nmt8v1yiA5jxBKKUG8n+JAop7KYTaKU1jYOVHqnvKsv9p3HT0czEEnClt/fTo4fl3U9mEfCGg+nT5/CtqNn4N4nlFgLQxHgpqgJ0pnf1FzGfNUXh0gnwob0IiYqHeo+0ul4du3Zdr8T3r9muFCOZIyQAprEke3z3b8cxyASB/1OiTgoa+AUF+Xj4AHFEhn5Mdva2mLM6EgcJpHTvLy8tpctaOPvTW5KI0ZEwr9PsPBdoEvc//tJxBKQ98n1I4XnqDOFPGjCgAkDJ/LxyQ00dpn1ZivwxIS4NqApiTRxiqpb2TsMmHBZDzO7RD2wS/Q5pi/76vYfY4gBU4WPSLB4jArB4s6UW/mxmEET06yOGTQxTZ47+126PWgiapPk5P6BhoYCBdBEXCB+fdPps8LrMwZ7C//M5TusecK6KH1styMxO00BNNEV4e7sD4ay8R1auROnthzBhGunI3LehHZNeCO49t1fkZucCf+wICx9+mYSjG0tPWCxs970/6TUYuckZmDzJ6vQUFvf1n8AnaovfeYWvVLG/dnYqxf6Ks0tRv75bOSn8p8clOW1F+5UNgDu8/qX/wUnz85RLqFNrvVKaBe6uLKoHD8/8ykcSYvn9v8+3Dbynd+uR+LBM5h002wMm6m9er4uueZrWlpa6Eef9vXX/N7j9+DwWWMRfeOsLrQC+g+V8CZBKVfFAa/+N+jEPVy61Ix9+wbR52hvYiip1t2QnUJc3P3EoNyudFYWFnYkPrlY+OPqOk6hzeWP7R6a6xYkxCcgLi5OIS8Mcu4n/QML/i4j7Ql2zmGmiXyMHj0aXJpjaaW8bCc+txKLL+tS/H7PeMFZRrZ8hx91BlhXbT8AK88gFNe04I6okE78hCoOTZwj52f9Q+1LImVbJxBI8fGuVNJ1yRfslnc8YbzTfi7DYsBLnWzI+thcPL7yNOYTe2MFbeiVxcWLLYg7dw6JiYka18TDwwNcQrJ16xbU1bVaFXt6eiE0NJTscUejt4XuordP/hWLtVRe8s7Vw3A1uQ91ppDP9Q+H0vH6xvaMG3YV4mcjwK29A1UvkkPfT2WsDDRlk6YJAydejjYI92dWV+tvyujoaPj5kc0yfSbqG+9tTcKXBGIuj+6L54ykp6PvGNVdL+W5Nub9e0rfzB4zhzkDZtDk8jOw88RXuFCQgbvnv9H2VKw7nSuU+cwgBXXUrkVZVR42ZywQSndEYKWuQcVRUjd8tnZ9sw6px+Iw7a5FCB2vWP9ZV1mDDe//hjICH0JGDsTs+5cJWeDvOSui6TY0aj5Z3/PDBiQfunL6JKbxxrcegJOH9sBESVYBTqw/IIA5jQScjFoUTX8mCVaOBedz6E82Ci7w3zng8cuGpY0VfEijxbd/IHz6B9CfQKx77xdwnxzWBJhEXTcTYVGdR7Wef2zzh3tjk+Zcd8NHVOmULtGO5Ov73hZeu/uLZwX3J47fn/sMVSRufPULd8GDnJC0DQvKM2+gtGWMaHsfsX366WRs++xvBEUMwNyHr9W1my55HT/TvSjXTVqyc7rkZOUG3diYj+Mxk2Ft7Y3RYzSfcPPlDQ055Ehxi/A3h4UlsSJ8riOR0bOorDjWdgd7+wFkd7oIXl6LYWPTqkdladn6/mjWwomiO+SZ59AKWFzCIXLTyclpzZ0YlVRrcyKzDA7WlqSh0CyUnkT192zXhjfIw4cTC6yXalD03l9OgFkW/Dvi1SVDhe8i+cMX/hzPKa/Fo3+cpnIEdzw9Z2CXSvGh8yVYTu45E/p54Dti0miKqHd2gUtj1j0YLbAJjBHMeGWwq6VFtdjq52Q3vIJYEXeT3fATSswAhGeEHhKScCMgcx/Z5eZrHGpwcBDs7OywZ/duODu7wN/fH3OodIvXXIPuq9q+eZw83genDsBD0wZoHIcpG3C5G8/v4mU08L1tSfjuYFrbEHij/xo9+1eNUNTA4wM2Boo3URnUqbRC5FEJDbO6Ai+DK6wHFhoaRoCTeitnqfM9mlaKO344Jjx3/Px1tbAh9hN/L/bEAwVTrhUzi81hzoAZNKFngBklKzb8F9MG9Mb44U+3PRUsxCZqozhf3IjKmnwcKbpKEJjlHzwOxOetoJKdnhJbPiQ3BgIf5jx6A/xUaCqU55VgK9nxMgARNnE4om6eKwjt8QdOdZ3mwt1jq3YiftdxhZQu/r874R7YygDSJrZ8QGNOyWx3iSvZtlYWluKinHWfA1GgvQkk8aI//LdnMJ1kKInM2NbaXEcCcXQZkzbj17YtWxxak+hobX3PAfOk5Oiv5z8XBHyvfvVeYgW5orKgFKtf+Rp2zg64/u2HpHSh0IaBQCvazNeaCDgtJ+bT2te+hbO3O5a9fLdOY+6qF/GPcAao6lTVO3TViUkYd20N0dXPXQ17h3CED10t4YorTcrLdsKCtEzsHQYLf3PU1aWSffF60tZZj8aGKyU8Lq5T4OGxEH7+rdbbUkBurQbTRRrz95VFr4vYvGUzamquAOnsxse2w2xNWkU1FXWk2zGSSguc7VrZAqLGQj0dDoibRfkp/xObgxfXxcGdSgzW0wbNi8pXeCOvDOQ+lVVGm7kYLBnuj1e7mEjllrh8PLP6DOaE++JdYkJoCs4J5+aR6aFGEzS1p98gTbSRVwe8iuN4cUG4WvYGPyO4SBo49IzU119hxaqaZ/jgwfS+q0VGegbmkvCrtY09LgoQne6x+lQOXtkQ1ymfD3sqs2lsYjDwIjaRY85z5FLD8S8Sq/2GwBMrOkk7/p+ZKifP360VZSV457u/BB0h8X3m6+uLyZMmC9bC+gBO8jee9N5usr5uEkCTYBJk7krhSJ8/fHgrhcndlebV2cbq4mAYkK6zzcs8Hu0y0ONAk8JLtwhAiKylMOuflBX+hXlDLNWW7ygrz+lJ7jlb3voOVUVlmPvsnXCijZuqKCbmBmtIcMnOoBljMWrJFDjTB05xRWttqroQ9Sdk27gGeAs6KdrqmpTnFJLbzc8qb+fi7wVPcgJiNyD+40ib6a4eZk0T5Su4+5M/wM+lqD/D2iCsERI4YiAm3LZQp2XXVtNEp5vIXHSRynr+fupD4ajzmv8+LjAvekr0ZE2T6sp95ITzABydotGn3xcGXXLuu6J8AyrLNrX1a2lJjjCeC2HnOB92Dle0c1paqkgnJQe2doMMOobO2Bm7vdRUl2PH9islTllUKpBBNqh93OyFDQqLSAbR/w6iTZaosYDe1rQxVz4jBlmu/+YIikmjQbQ45R/ifCIvaprIXrk/tRjPrDmDaGKzvLtMM/DQmfK46lQ23t+RjGUjA/DkTM0smb3EvHmO9E0i/F3w5c3aWb9LnbcUTZMHyOHlNAmsrrhupCA4qi5YA6emugK7du7UOAQ3NzfMnT0TxSVlsHVwok2//p/dMRmleJRKiVjPhHVNOlOImiZJVH5118/HBRelh4kNc+PoINz03VGkl9Tg21tHg51wVIW15SX8Ts6MsbGxiOrnCXs7WwKc5pGGCQEyBmYcvrg+DjsSC/DEjDBc08lKnTStq1nTRFOGDPO6WdPEMHns6r10O9CE7YIZBGH2CP/xdrYlqmVfQZOENU2YKcJlN39QLTEHt1n+43E8MTEBnvaVZtBEzRO95tkVaG5swtI3H4aVrfJ6bfHynLOpOPT9P8J/Ri6ZinGLoySBJiy8umvF722jsCUmwPRHbiKLVdVfrqqGzBbBa//zicLLHsQgib57mVBe093CDJooX9Gjv25C5okEjLlxLkLGDIH43yOXzcCAaN1EVU0NmvDMNr3xDWqopEgTcNndnuueDJqUl65BXtYLcHFfQsKRV8pHDbnGLS2VBJxsJABlI9nenr7y+UsACQvHXrpYj5Kin4idVyW8xoKyLu5LDTmETtcXO9lkpl/AyZMnhbGlFFaDBU5DvRxhbWmBuLwKOFEJ53By24uKioKXjz8xoVSXRX5I5RQrSQxzLGmYfEiikxzqQJMzxHS977cTRgUSjJX0bw+l4VtiFNxFVrjMLtAUDELN+GivsBlefW8UfOl3m6FDCmiy9IuDKKxqEGyPRVcXdePgZ+RCajLOnDmjdrhcjmNr5yCwbqvrDVM6y8YF131zmLR1bLHKSDbNuq6BCJrcSWUv/Bwz4+glYu9wvL45QWCf/JvKn64eqVqLJZ5YXcXVdchLPQe3lgpMnTYNTs5uRnGR2kjjeYPGNZEAyve6GEBpBk10fUq1u84MmmiXr+7autuBJvILxXbDObm/k/NADZ3o1FDdtjeC+vwLbmQ/zKHv6z2FadJIAMQ/BEAwWMKgiZRIO3oWx//cJjSddudCeEZoPnE6+O1a5MadB9saZ8cmwycsGJPvu0bK7ZS2OfTdP8g5l9rutai7liBgaOeqAdZ5gnIXmkET5Zk8u+kAEnccxZC5ExE+ezw2vPoV6sqrMPup2+FC5Vq6REeAJvu+/BsFSemI/tdV8Avvp8uwu+Q1hgRNaqtjUF+XKJSrdIWNf0nhNyjM+xAe3nfB2+8Jo6+fxaVk+l7cQC4h69HcVKTyfgMGb4WVtaImgdEHaKIbMJHLgTbFJ08cR3p6Orhct4Io/MyGcCH/cNFJ5/b5kzBk0EDUN6sWpRQBEB667Am7OtCEWS03fntEYLL8sbz1kKerxPs7k7HqZDYenxGKayP7SBr28+vOYVdSodFO+zWBJg0E2Ez7YI8AbOz/d3t3QFUT4GeEHV9ijh1FZmb7MmDxmrFjx8Lb15+clKjEkPo2VBlFMwFNk/+3W9BYOfjkdEk5NlUjBk1e+icOfx7PQl9PB8GJiDWAOLis6L87kojZ7YsX5rcCKcqC2UobzuZReVcEbOpKyHHIDw2UQ2ME2xsv+uyAsD67HptCZbfGuY8xxm4GTYyRVcU+zaCJafLc2e/S7UETYy9ATwFNKvNJq+TdH4SyHD7llhpJu2JwZsM+ofnE5UvhP6S/ykvzE9Ow/6vVYAHWKfdfh50f/goHD1fM/89yqbdT2m7T63Q6X1oBe9Is4U0zMw26a5hBE+Ure+FwLE78tQN9x0UgbOoobH3nB9i5OGLhS/fq/Ch0BGhyavVOpB44jeHE3gqbYhwau84JMeKFhgJNstMfIVvZXW0j5VKTvmGrjDhy/bsuyH0HpUU/w8f/Kbh73a5/hxp6kLUcrqrYgaL8z9FQn6RwlY//MzSeW40+no68AQsQO5FmwNatW7Et9oLAhBhDwqy8AUzIr4KloyvuXDafGCfWajfDD1LZxykq+7iZtNAenHIFsFcHmpST8Oz8T/YLAM3mhyZ1ZBq0vvdLpLWxPaEALy8Ygtnh0kS2WQfl1U3x7Zg4Wt9YzQWaQJO04hrc/P1RrUEq3mDbk000PyOVlZXtRjBgwABERAwj4WBDzuRKX9oyY4wzCsVe95DL1P9d1jH58qZRiAi4IuKfSO+bu36OQbCHPX6/SzUYyMwPZoB8TC5G08I8SUeoxaA6JvKjvufXEziXWyGUwnFJXFcJM2himpUygyamyXNnv4sZNNFzhXoKaFKQnIF9X6yCd2gQARraOXfEbdyPeKpN7U2UZr7Ws6/y08k9n/6JInKzGTo/GgOnjW7Tb7iW9BuE4xQdY/v7P6M8uxAzHr0J7irEXXXsutNdZgZNlC9JfgIBcl+vFphLAcNCcXLVDgRFDsK4WxbovIYdAZqk7KOa+7W70X/iCERePUPnsXe1Cw0BmjC7JC1ZkbXW2Tf/ORlPo7J8E/yD3oELlcoYO2RBE74Xg0wMNslHTyjR4TnbWJGGQkMNXvjkJ7CzRxQ5wnCUNVxCSOQkxOfX4M7xqktQ/qYT8/+RvgeXe/z5rwlkm3rlu0wdaMJClxP/2wrwHXxqup6yocZ+atr3/9hfp3EsvRQfXDMC4/qq1j+TvaqKSqXnrGg9YGGQiMEiQ4Ym0OTA+WI8TeK14/t64P1rhmt1a1vSwKmvrcQ2Ak7E8PT0xIwZM1BZ22wwdon8oLh8i1lMn94QSWKpnUOTLbmwCstJx4QZNapKcKYSo4cBSHXrfBuV9qQWVeMr0rhhIdgmOeF+rRZIQmOxpIxLhnjcXSXMoIlpVsoMmpgmz539LmbQRM8V6imgSXpMHGJ+34Lg0eEYe9M8rbLGVn8n/tqGxP2x5FbiiCkPXKsgJJt1KhFHft5Ip/9OWPDi3YLI5cbXvkJtWRXmEdPEkRgnusZq0mJpYS2WNx7SWkxW13t21HVm0ER55tuYUl5ucA30AT9vkdfMRP8o7X4cy/beEaBJHoE/By6DP/qUrXXU86nrfQ0Bmqja/Hv6PAAv3wd0HZrRr8s4vxy11XQC3v8bODgav0xDHjThCaYmzCYR2CtOO1bW/sTQ+bvNkcfoSejgG9TQ98eOkwlIOB2DSNrAcYyPnoyvYopIn6FQoPQrC7bRZfFXdgB5eSGxLga3Z12oA024v7kf7xdcPTYRiOBqYBDBmCm9k+yGkwqqhLKMQb6trk1S4olVsTiSVoL/zBuMBUOVu9dJ6UdZG02gCevNsO6Mrptm1jfJycpATEwM2XZbYt78+YJoacsl3Q98NM31lY3x2Bqfj+cpX/MNnC9N91b1OgMm7DK1hOyEn5mlvCT7gd8J/M8ux/+uHi7YUsuHWCrF/77vialgV0BjB7NMmG0S6GqHlXdPMNrt2EWJHZfc3KSBiZoGYgZNNGXIMK+bQRPD5LGr92IGTfRcwZ4CmrAeBOtCDJo+FhELtaMKM2jC7jn/fLASuaQvwhoSU8gNx8bBri372/77EypyizCSTs8H0Ck6h8g84c0hMwR0CbaZ3fQ6W8tSKcbLupdi6HLvjrjGDJooz3pzQxPWPLcCFvRj1sreBvVkiT3nmTvg7KP4g03qunUEaFJdXIbNb34nCCPPf77n2A4bAjRh95fkc4o/hgNDVsDJpXNpAsg+gxeSllB5zHn0G7gGNrahUh9PndspA004d4W576G8dDU5xdjRWNZ2az0T+eTtI3eXmsZGXCrJgGVVPoYPH46g4L64+YcT4HIDZiYwQ0E+3t6aiHVncjE51AtvL41QeF0TaMKAC7v2sKYJa5t0lbjqy0MoqKyXLKgqzmv1adK72J6EKWFeeGuJYr70mb8m0OQD0mH5i3RYHpkWihtGS9NhkR8POUmTKGws2Xb7w93Dm1xjiC5kxPhy/wX8eCRdENtl0d2Ojne2JZJ1dC7C/Z3x4x1j0dSkXPT2kz2p+C0mE8tpzMuVCAWLGkADfZzw/W1jTDatxZ8fIPHZRvxMY+9Pgs/GiNUrf8X6tX/h+9/WGqR7M2hikDRq7MQMmmhMUY9oYAZN9FzmngKanFq9i7QUTmHEVdMQOilSq6yJoElhaR32khVxcVoOvAb0wVQu8yFGyflDsUK5hLOvJ+Y8faVmP+aPLUg/FodR181Cv/G6WS7mk2jmfhLP9Kb7MVDT3cMMmqhe4XUvkjZDda3QwN6VGU336PU4dARowgNe9e/3qbb7Epa98ygsrMj3Us/oLVMuoE9XF4mObawwBGjCYyvK/wzFBZ+1G2Zw/+9g7zjWWEPXu9/kuGgSMi9H2JB9BPoZ5nRS3aCUgSZi+6Szo3GRnHQGDj2M3iSk21Pid9rgsTDll7dEorEoE2FhA1HbeAlf0Kb1h8PpuG5UHzw2vT2gxeUpXKbC8etd49DXw0EhXZpAE1FnQV4XorPnffqHewWb2R2PToE9la5IDXauYZ0OLmHaQewdawMyDDSBJk/+HSuI+zK4xSCXLsEaOM72Vqitq1crDKxL38quYUCOgTlm5TA7pyNjDQFe7xHgxfH3/VEIcXdAQ6Ny/20W/GXhX2aZMNtEPhi8YhBr8TB/wZ7bVCHqqLDuEOsPGSP++P1nbF3/txk0MUZyjdinGTQxYnK7UNdm0ETPxeopoMmh79ch52wKJty+SHC20SZE0KS4okE44d/7+UpUFpQKp/ysc1JVWIqWpmaMu3k+gkZd+eKP33YYcVsOYdCMcYhYEK3NLdvapuwnGuga0oCgMgwux+juYQZNVK/wjg9+QVlWgdAgeBSVmd2sXZmZfM8dBZpseft74T2jj/OP7FzcnazpRLCJatB1t8Ls3bs3baYv0UbSOO8wQ4EmwEUkxPKP9EukD7IYFWXryAp0oFBq0hnj0qVmJJ5h5l1vDB6u3tbUUONXB5pcSL4aDXVJ6Bv6J2ztu6+gtnwu2e2DXT/eu3oYFg7zI9vYFjSRJoN4Iq7M4UYsU+CTdD5RVxaaQJOnSGPjIGltvHsViVMO6BrilGJpBX/v73l8qtaP5f1UuhFLpRuvLx6K6QO9tb5e1QWaQJObvjuC9JJavVkGNla9SX/jkvB5aOwQgblRQW74+PqRxr6dyv7j8ipx9y/HhdcZ5LgjOgQ19B5RBZrkEwtpGbGRVIkcv0aCwJtJGPgpKu+5isp8TBU7Egvw4vo4jA52w4rrDJ/Pj6j8a9+mVXDMOUK1d/+hsqpwhHrrx2gxM01M83SYQRPT5Lmz38UMmui5Qj0FNNn50W8ozcjD9EduhEeIv1ZZkwVN+MKK/GLs/OBXASiRjVn/vhWuAVd+JGWciMexXzejz8hBGH+rbgKIJ//eifMHT2PE0qkIndz93UbMoInyR7OJLLN3k9Awl4BxRCyYRGCcfuyCjgJNRFvuqDsWC6K2+ga/P60sLmLL5s2oq6tr190lAlJqyZq5pbEZvejU14k0YZTFzFmzYGPnSJsF49TvGwo0aahLxoXkZbC2CUH/QRuQlnIDCTieE1xp2J2ms0VzUwFS4mfA0soLoeG7TTI8daBJdvrjJAy7HQHB78LZdb5JxtMZbiJqbbxHzhozSJekXuYEfSFZlZaSPcovd45DP7JX5fj1WCY+3ZsqsEuYZaIqNIEmr5ODyCZyEDGGxoex8iqyRbycbPDPfRO1vo2YO02WtNp2rAk0mfL+HkFsdCcxXOxI/LcrBJducQmXP+lwrDKiDoe6XHDO7iIdk/Mk2rpsZACenDkQbDmsDjTh/kTnn9+pyvmCZwAAIABJREFU9CxYrvTsFnIxukBuRt/cMhrhfs4mW4qqehIj/rhVjHj7I5PJclx/Jqc4eH4f8/vZI/cw3POPISXyUThS/9voPvqEGTTRJ3vSrzWDJtJz1Z1bmkETPVe3p4AmG18lUVbaPC144W6y7tXuS0weNOEN7Nr/fKKQ+YChAxB115K2f+cynt0f/wH3ID/MeOwmnVZq7+d/oTAlE5PuXgbfwR1f86vTJLS4yAyaKE/Woe/+QQ7p6YhhaWuN2U/eLmiD6BodBZrE/rMHyXtPCNpCrDGkKuxtpP/w5/doeVkJdu7c2a471gRqqm9o+7deRJt3oTI62Rg+YiQC+gSjodk4gAnfy1CgSUXZRuRmPkMaJrMQGPIBamtOISO11Ta3T7/P4eiknV6Trs+O1Ovq6+LJ8ec6YsOYzhpZHWhSmPcBSgq/JeHch+Dpc5/UaXT5dqK2yG8EgITIldmIwMZDUwfgpjFByKuop43sYRIBvaSx1EMTaPIxaT9waZDYd1dIJLun3PFjjHCC/uPt2gPTGaW1uPHbI3CyJavnh/XbUMrmSx1owvorrMPi6WiDdfdrD/R01LowYMFgD7s6HXhyWocM4/VNBOzF5WGov4vgdMMhBTT5v3/OYk9yEV6YHw4GyMSoo7KuGVTexYaJ+56YBgsDlY9KTc5Df57CycwygzOdnl17FqyNJAua8Jj4PaIP28RQoMnJrDICaPMF0Wp2YrqeSg7NcSUDZtDE/DRwBsygiZ7PQU8BTUQdhavfe5xq2bVTMpcKmnj1J52TB6/ojtRVVmPDy1/CxtEei1+9X6eV2kBgTx2BPfP/8y84eLjo1EdXusgMmiiuVnlOIbb/72eFF8LnTMCQOVE6L29HgSaiBlDfcREYff1sleN3trdEUWEB8vPzJc3Rz9cbOdnZJGTYWgZykVgmjTX1Ctcy4GRJWipWVlYYNHgwhg4bibomKngxIhvdUKBJYd6HtOn/BgMHkZjuZR2TmupjgjuNhaUb3DxvImtX1Z9vDAxdNOZE5bJdXbkfWWn3w8EpGkH9vpC0jvo2UgeasBBsXtaLQmmTf9Cb+t6qy1wf/d/dmDfUV3DAkbUM5gmcIdeNlcez0M/LAXdN6IuVJ7NwJrsCwwJdcF1k+41HAwljyj4/mkCTn45kkG7Kedw6Lhj3T+7fJfIVk1GKR1ee1qvEgUEXBl9UCezqkgh1oAlvGB/64xSGBbjgi5u6FiN1yecHUVTdgNX3RsHX2VaX1Oh8jeg4xL/x2ClJZFpJAU1+OZqBz/adV3ArYlcddtcZ5OtMfY7WeWy6XiiOa2GEH/5vruF0Yrg0509yaJIHTf6+J0qwI9c1DAGapBRW48E/TgqAiRiqxKt1HWdXv84MmnT1FTTM+M2giZ557AmgCeuQrH/5C9g62WPRK9qDF/KgCaecN7G8mZUNZZvYNrvgN8ku2NZGq9Vqqm/E2v/7WBDLZNHMnhBm0ERxlZlhwkwT+QgZMwRjbpyr82PRUaBJQXIm9n3xF7z6BxLIeL3K8bPAq5OdBQ7s34+8vDyN82QQZPSokTh9+jQyMzNxsbkZjcQKkw9LasfOV2FhYZg1aw4qapvQTDX8xgxDgSZZaQ8SGlSIwYO/QnxCXls5EjNOLrZU0BQYMLlIzjCB5FQzoG1KbCE6YsQIARwy9lxl81heupZAiucJpFhCIMUbxkxxW9/qQJPamuPEzLkDdvbDERL6q0nG09E3ySmvw7VfH8YnN47AcE8LlJaWthtSEzFKDqYW079dEspx0kpqCHgDxoZ4wJb0LcTw8fGBpbUdmi5e+TdNoAk7kbAjiakFMfXJuagLMWOQN15bNFSnrj7bex6/HMsQQIx7JvVrs3nWqbPLF6kDTdafzcVbWxIFxgMzH7pS3PfbCUFb57MbIjGCGAKmitNZBG7QRpvjRcrZXBm2iBTQhNkczOoYTODItzLgCAMLDDAsHR6Ap2crtyw25hwZQLj9x2PQtbxM1diYgXb1V4fagSbM6PiU1k2fkAKa2Fn3EsTjVQXrJqXSvOWDmXNWBIgZMshBvUuGGTTpkstm8EGbQRM9U9oTQBMWz2QRTdYbYd0RbUMZaMK0/72f/Qn+28rOBryB5VN//t+ysfXdH1FJGijyeidSxlCamY+dH/4KV38vzHryNimXdPk2ZtBEcQlVlYMxYMLPna7RUaBJbVklNr4mzUZb0Cvp3YItW7Yo6JXIzlvULnFzc8P4SROwdctmlBSVgP9dPqzpPerj64sFixYDFrakA6BrBqVfZyjQJDVhDpoacxAxgvQLGm2xfds2YRAN9cn037ntBmRp5SuUxXBMmToVzi7uVIIkfcyGaMmsGGbHeHjfBW+/JwzRpcY+1IEmzU1FpLFClHli5YQN2a+xr+7QIIZccB4lFxwWJf2YgBN5EJKFT5mp0CIj/BlMziF93Ozapt+3b1+MGBmJ2oZLBK1cCU2gCZcvcBnDFHJzeUuJZXFnzO/f5DL0vx3JWEYCnk+SkKe2wafdz6w5g1O0KReDSwUelXMnEl+TWr7Buea1qm9Q/MD6nZhCq2ncfJ9rIgO1HbLQXnb9depAx4te3hCHbQkFCmUuOnYn6bJa0vS56+cYZFIpFdszs02zbEgBTdhdiV2WOPY+MZV0tVo3569ujMeW+Hw8M3sQlgzXTj9P0uAlNLrmq8PIragzuKbKF/suYOOa39s0TWYM9MFri3X/DcJTkQKa8OFJQX4e0tPTlc7+LLHlKvhEQC7GBLvDxkCgiZOTk2DVXkaWziYka0pYbWlNzKCJtDx191Zm0ETPFe4JoElu3Hmw+KRfeD9E/+sqrTOmDDQRO2HQhDdh8mCJ+Hqb6OWdJHoZoZ3oZZuQ7IiBGH/bQq3H3RUvMIMmyletKDULe8juWozQyXQqt1S/GvCOAk14Dquf+UgQUl4qgYHF46yqKMUuOb0SMRfcT0l6LppJ7JUjNDyM9D2CsH3HdvQiVxxZ4IRZJh4+Xpg6dRppWviTrahp3iWGAE1aWqqQfG4CzckGgyJOwN6mN3KyMhATE4Oa6iM0T7lSpF6WpHESLfzQCwrui4YWw564SclcQe47KC36WRCpZbFaU4Q60ITvn3RuHLFyagg0OUDgielOtk0xd2X3WBubg3e3JWFRhD9eWhiuIJqckF+Fkpr2jCwfJ9s2nQIGImfPno2qumYFlpIm0OQUgTEPUtmIIU6kTZW/7w6l4ZuDabhzQgjuju6n9W1FpoH8hcrKGFjLw7p3s1BKqCmsifXDwEaLElbcOdo0FlTVY4ifi04lLlyybNHbAqQHbPLg8i0u4+Jcc85NEewww4yiyD5u+OQGRZcZKaAJj/OOn6gMq6AKn98YieGBrZ8lN393VGBrcbnPIN+OsTVn62S2UDZ0ThkQitmxBh75NO/IR4T5ygpI67J2UkAT1odxtLVAzLGjAotUPhggYuFd2bCgi9gS2hDB7nrz5pNweG9y6jPBIYshxizfhxk0MUZWu16fZtBEzzXrCaCJqKHQb8IwjLp2ltYZUweaaOqM7YLZNnj44ikIm6pdfeu5zQeRsP0IwmePx5C5XUfcTVNO1L1uBk3UZ4/BEwboZF2adM13R4Im2977CRV5RZj5+C1w6+OjcQpMz007n9KmVyJ7QVlWPuoqa9v1MSZ6LHoR2HLqTCxtkFvQWFtPwny94OblgTFjxyJsUDjZCxtP+FV+QoYATWprTlJpyW1klTuULHP/EG7hYE2aFDTHM7G/KgVNBg2+AePGjUcNMQRMqWUizj8n42lUlm+i0py3qUTHNMCvJtCEhWlZoDYk9Dcq0xmm8dnr6g3YBYcdXe6lMpHbx4dQyU0vVFeVt4GQR9JKSfS1/abdkjYJ4/u6C++ZefPmobeVHRqbFenxmkCT88XVuPX7Y4JWBG+uukJ8sDMZf53MxmPEDLlOBzFJUftBfq7PzxuM+UP9FFLA4Gd2ZjqOH2+1vFUVXGbANsDKGCGxpEFT1dCE4QGuggCttjGX1tiC1rgjNoRiCZehNThU5YDLprh8ip1fuKymj5u9QlOpoAmDkQxKPkwiyjdSKUgtAfczP9oniL+yCCxv9jsi9qUW4dk1Zw2uccNlfpUXTmGKUzGsxlwvADP6lt5JAU04h8zksbfpha1bt6KysrJdWpmBxVpEYjAYyd93suCvPuswMToanl6+qGvUDG7qcx9jXmsGTYyZ3a7Ttxk00XOtegJoErflIOK3HRHKZ1h3RNvQBzRJ2XcSp9fuxoDoERi5bIZWtz7843pkxyZj3M3zETTKcIJeWg3CxI3NoInpEt6RoMnhH9Yh+0yKYMXNltyaQtVJE7NICglIapH/tU8/VpfcejWSU1KQQn8aqmthbW2NkWNHY9LkKaisbTEpHd0QoElZyZ/Iz34Nru5Xwa/Pa0LKLC1Y98USmzf9gNyco+3S6OYehiVLHxF0TJroR2VHROb55cSCOUoisF+TGKz2n726jFkTaJKT8SQBOVsIyHmLgJxFutyiS10juny8umgIZg5qBShlQcjjGWWob25/fMobyhF0cj5hwgRhs9CgwopbE2hSTAKfi0no04PQvfUPRHeJvInlIi8tCMec8CuuKFIHL1qzyrdX5TLC+2p7Aj9jY0/jwoULKm+jCjRpJu2mY2lFaLnUG+P6e8FaS6H7cePGwcvHD40dwETjyR6l8rHHqXxsdLAbVlynyPqQmncp7Y7RvR6je3G8tngoZlDJmrKQCppsOJuHN7ckQNS/EQV52WaY7YY7Khrp855Lhxg42PBgNNz5AdMQ9qwb0q74rv0FDAitI40i/j28bGSgwDzbeK61JHQhsdgcdQDrWj+LLNBIAtMtMjUvJOendCS21LahrorKb7e0G1wasUxyiG3iRe5RgQSCsStTfF6lMP8AsrNmrSZlwSU9zApinS8XOyulLkBDhgxB/wGh9BlpeqampjXT5nUzaKJNtrpvWzNooufa9gTQ5PifW5F29BxGXTcL/cZrf7KoD2iSe45Kg76j0qDBVBp0t3alQdqexuv5KHSKy82giemWoSNBk7Mb9yNx5zGBQcVMKinBJ00Otr0FfZPS4hLUUmlcDemjXJLRYhD7sbS2RP/IcIwZFYmdu3YhOy0DAf7+WHbjDWiGlfAjzZRhCNAkP+d1lBX/oVDqYkO0/UstDVi3lpy26jKo3pqtgFowb8GtBLCMJR0E44rcqsvjhaSlpLeSin4D15AwrXblibqujybQpCj/YxQXfEnlWfeT9TAJ63bzEJ1c+FSdRSs5BBCSGA4xMcdwKiEVCfntT265XfTo4QgNG6h2s6AJNBEtZdmxZ9+/9SsnNNUy8aaaN9f6ON+wECcLcooxO9wHLy9Qrf3A4KezvRW2kUaRvFCv2Icq0CQ5ORkxRw8haMwsTBoUoFWaQkNDET5kKAGrHUSJoNEKuiJk0cyb27/uNh6wWk4b5OWkY8KCpprcnKSCJheISXULManYPYbLr34/nomPd6fiKtLDeUoHPRytFk9D43//HYvDF0oka8U4UPlLaXEhEhMTlfZcTFoeiQWVAgDDoBAHP+NcFubvYtfmPKTtHLjsrJm+oxjgcHZ2RmRkJMprmlTqhjAzKzc7E8eOHRNuJcsyYaCXAV+OMhJ4j8tjcXQIYAqDicwA8qfnjD+PSqgWTf5zj4GTCLKeFsOXtM8mTZqE6noCdZT8ztB2rh3Z3gyadGT2O8+9zaCJnmvRE0CT/V+tRn5imqBnwrom2oY+oElFXjG2vfcjnH08MOeZO7S69d9Pf0gOIC246q2HYWmj+aRAq847aWMzaGK6hTEkaMIbd20iLyEdyXti4BMWjEEzxkq+tLm6BtVlpVi7ajUaalt1GGwc7dBMR1Mtl0/LuT7fNcCL3LIc4Ec/eoL6BGDvzt2IGjMevv1D0dzLQvL9DNXQEKAJu76w+0tQv6+ItdHeappLLkqKC3DwwAHSPKhE+KBLcHWrhp3LUmLYtLeNNdScpPSTHDeJ1qUMoUP2wdLSXcolerfRBJpUlP2D3Mz/wNl1PgKC39X7fp29g1lULlBDp8RbHp4EZ1urtuHK0t2zCkpQWNVAZTqXaANki7CQQEyZMoVOk9UzsjSBJnwz8f7bHpnctqHpzDm7k3QqkkinQl9Nin0pReSgkwnWG7l7Yl/cGdVX7bT5M/Ricz2xxjYp1ThRBZqcjU/AmRNHERY1B2P6K5b/qLqpl5cXpk2bpnGNjb1WjcQKmPr+HmFDu9+IwNpza89iL63JOCo7++CaEe2mxRvxFirjFMOeSju5HK2ZxqYpWAOHN+63ka324bQSAUiYGuYlAJRc3qZtGEpnS7RTnj2YADuyGpcSDlT+coYYT+fPn1dozpohrB0iKxJdQ4K6rFvEMZZEV/m3sqaYMJ6+7wkgEaF8dskTDj4oV4GBgfTv9D7QgPPzbbgsNTU1FVX1zVQ200xlhxZwJtBDNlist1JOIJbXhEvYakhQOZ7AYnkwRBSPtbW1BZetNV/kZ0Hzc6Bp3h39uhk06egV6Bz3N4Mmeq5DTwBNtv2X9BNyi3RysOH06gOaNFOd8ZrnVpDgINkGvyvdNri6uByb3/wW9q5OWPDiPXqucte53AyamG6tDAmauDpaoYysTGtq22uLqJpNY3WdUFZj7WAL79AgjZOur6hGdUk56km7JIiAlrqmBuzcugsO7s5tIsy15VWC6CuDJWzTLUZ0dBRsSRQ160wa3AcOgJOXm8b7GbqBvqAJi+CVFv1JPyYbhfKc3r2vOJuIY+UfkmVlZYKGi4vrRVqPXbC26UsAi+G0JJqIxtykolRDPmeXLjUj8QxvTnpj8PAzhk6pyv40gSZ1NaeRnnpLO20Ykw3OxDcqpdPUhZ8dEMASBk3kQxnd3cbGRtgstMBSIyNLCmhyDdmU5tLpPrMImE3Q2WPZl4eQX1kvMAeYQaBPsBXqU6vP0AbaifQzxmjsys66N4oK83Do4EGFtspAE97EnotPRFFqLPoQ02R4sLdQZqAp2J6dhS35vcxlPR0dXMLFpVxr7o2Cj7N+ORfnwi5Gf5KrEOt78OdWOpVhuBFL4jtiXMnfg91ZSkuKkZGRIVzOv/kYQGQNGU0RR2UgZbWNAkiSQfeopY36SGI8OFxmPGi6Xnydy0cjIiIMxmrIIAbPjcTg4edh80OK731l42LgytneEjt27EBJSUm7JqJuzlBiYrjKPGMMMBbR2gXSeztERRmMbEfhgwcRZnIRp06dEv6ZbimwStzcCXSxtpHE6HBwsMewoUNI7H0nUrNaS4T4M44ZW7LBUk3ldYrqxvwZ5+jk0lbCI3uNCJpMJUDRydnN5I5zUp8XbduZQRNtM9Y925tBEz3XtSeAJute+AwNNXVY9Mr9tKFSFP3SlEJ9QBPue/1LX6C+qgYLCfywIxBESuQlXMCBr9cIJ/GT77tGyiXdoo0ZNDHdMhoSNJEtnZEXaVM2I2ZQ5SdlEJjYGz4DQ1ROurasCrVlFWi8/MOHT6WWXHcN/PoG0mYhTjhpUhfe3t7klDMVmaeTsffnLYi6ayk8QkxvA6kvaGJrWUPWvVvodC1VgWUizp9P0CyJRNOL/q+xqZbEPo8IL9k7jiaQxVHvBys8PJxsi+lHpETtg+amArL3nQFLKy9yNNqt9/2ldqAJNGlpLkVy3GT0tnDCwKGHpXbbJduxFee9v54QNnRcnqMsWN8kLyerje6ujT21FNBk+c/HBRo8azyItP7OnMwZpAVRRxvfHY9OIa0R/VlpMz/aSwKhLVj5rwmkt6AZNHKkEsS4c2eRlJTULk3yoIlYXlBdkImS82cQOHomlcDZC05FmmxWJxOLyNXNk9zDNIMCplgrfkb5WZV1odH3vsoEeW8jIeT7SBBZPpgQ4kBsk5Mnjgu2ttqAJgxOZJXVCoBgTnkdgQC9EKWDa8uMmTNh5+BMrAZ9Z37letHJ59MbIoXnQkqI5Z7MeBLZN1w6c4hKfTh4bjxHMZjpEZtTLvzb2BB3ofRFU4wcMZxccDKEUiBu7ujoRKLc9nQooPlasW8/P1+4e/vin/UbwFiJWJYje28uD6ySo+5YWFiCfxeUEtCVXVbXbqhiec6IESPQJyhE8nedpvl2htfNoElnWIWOH4MZNNFzDbo7aNJCImmrn/6IfiBb4Or3HtMpW/qCJrtW/C5Yok576Hp49guUNIbkvScQ+88enQRkJd2gkzYygyamWxhDgiY8alUibapmlJ+YTqyIi/AdFELvzyunncwWYSvvmtKKNoFX1iixd3fBlNkz4B8QiOZLRMWlE7GdZENcXFys9BZ8cscn5hd7WeHgjxuRfjweE5cvhf+Q/qZL8uU76QuaVFdSeQtSkZ3tiAtpqt0x+IcrE5/55I61RJoaswm08IatXbhecx4wYACGDo2gU1TpP2rZoYadamztBqFv2Cq97q/NxZpAE+4r+dxE2hBUUNnQXiobMowtpTZjNFXbrfH5eIVsQlkAloVgVQXrRJ47ewYODg5a2VNLAU0eX3UaR8mhRx+NEFPli8sspn2wR9A/2PPEVIPcVhSWfWRaKG4YrblUjk/7mfmwd+9eFBQUtI1BHjRhLZBM2qzLgiYW1rYCQMbCu6qC2Qwhfft3qg3hSxvisD2hAC+S+O5cHcR35efKLJPZK/YppGByqBfeXhqhNDWiqDa7s9RWV0pmmjCbi8s8eNPO92XGw7CAK7oYUh6ikSNHIpA36c3SP1+l9Ltidwr+ILbNbeODCSyS/r3HjKfionyh3JOD9WC4zMzJxoqslRXnJtqWO9D3NLNQWDdEHXBnZ2eHMaMjcZAYVRUV5WBbc66uvSQjBqtpfvxetfXwhSuV2sSfPk4HBoqMKe6PWUCy4e7hRZ/5lgLriJlamaWtwIkDlWSFeTshtF8IRo8eQyWNrd+j3SXMoEl3WUn95mEGTfTLH7o7aFJTUoFNb3wj0PjnP3+3TtnSFzQ5+ssmZJ5MwNgb5yJ4jLTa0hN/bceFw2fIcWc6ASfGVZTXKSlGusgMmhgpsUq6NTRowrewpx9buTlXRNpUzYaBkaLz2WimYzV7Nye4+nvR/266LO5aQWU2rVda29vQ685CmVr//v0xbNhw+jHT+hqfiPUi0dNNGzeSkJzi8Ryfprq4egj02pjftyA9Jg5j6D0YIvE9aMiV0Bc0KSn8jkRgv0d4+Dc4dbocOTk5God3iUp5aqqYSXGJTjBHwMJC2kmjfMeenp6YMWMGOQ41S6JOi9dXV+1H1oX7iQY9EX36falxvIZqIAU0SU+5EXW1ZxE84CfYO0Qa6tadrh/WW/jmYJpgNcyWw6qCN+oMgDTR+6imXro9tRTQ5OWNcdgWXwBd3WhMmVTWdVn6xUFBOPKf+yca5NY7EgkMWB+HyCA3fHK9tO9y/s1h2btF0DdpaGjVbpIHTdgdhE/LtQFNAgICMG78eLAcVEdYkKtK6Of7zuPnoxm4J7of7pgQonfeVYEmzLZg1oWqsCFdjBZi6e3YulkyaMJsBnYAEm1u/UgUtT9ZbEuN4OBgjBo12iibdNGZKNTbEezepE3YEe6WnJiAhIQEYtLUIaO0BgE0t75K5paYX4XimtbnlIMtyzUxnrxJU2dg2ADBNaqmtl6r7xa+h6ixcvPcaGKjFiI+Pl7p9GTZJs4uLrAiYNGVflcoY8SwEO2cOXPo/cFlqF1fx0Q2IWbQRJunv/u2NYMmeq5tdwdNitNysPvjPwRK/vRHbtQpW/qCJuc2H0TC9iOC3THbHkuJPZ+upE1lFibfew2VLwRLuaRbtDGDJqZbRmOAJjx6FpM7e1mkTdVsyrLyUUf6JGIw21f2VIfL6BjotHFsLafz8PDATKIvs80h2wOKwQKopSWFOLB/f7tbDRs2TDhNrb98che7bi8Jzx7HsMVTMHCq6a0g9QVNcjOfQ0XZevQd8Am8PKYJDkI1NTUaH5bGhnTwHwsSYbWz1945jE/k5i9YIIjhaauFV166FnlZz5Ot72Ky931T41gN1UAKaJKb+SzlcwNZN79OGjFLDXXrTtfPa5visTkuH8/NHYRFZAuqLgQhUnpraWNPLQU0+WBnMv46mY3HpofiulGamRYdmUQW8WTnmwFejvjpDu02marGzaU+M6nkhz+12HZZHQtEtg+WxKiuLMfu3buEfxZBEz5hP19ULehIcMiCJi5OjmDNCWUbQmYRzZ07V/hM1GaNTbEea2Nz8O62JCwa5o/n5mi2oJcyJnkHI75mOYnxLidRXnXBLIvyknzsP3BQkqYJ9xWTUSqIwXL093SUrIXjQpt43qRX17e0+16TMj8pbfh5vuOnY23frVLmL/bLpbDMeOLv1p0nkwSAbpCPMzwd27OYZN1rZMfk42Sr1MJXts38+cQEbW7Ctu07JYF4rDOTSyVQxXRywhbIHFGhfpgaNQaHDh9GXl6eyrRYkl6Kq6trqzivCgbJrNmziRnp1KGOc1LWVZc2ZtBEl6x1v2vMoImea9rdQZOs00k48tMGBA4Pw4TbF+mULX1BE7Y7Ztvj4NHhGHvTPEljWP8y6aBU1mDBC3cLJ+09JcygielW2ligiXhqzWJyykpnmsjphlkmyoJZJw70vFvZ2bS9bEGldSxaeJEKVJovKtKX7UmTITkpoe2kiRX4x40bT+r4V07ME3ccxdlNBwSnnogF0kTxDLkS+oImacnXoL4uESGhv8LdNRI11eXYsX27hCFSqROxTdiGuFdvW2KbOMLGZoDwv6VENNktunt466R9UFL4LemwfAAP77vg7feElNsZpI0U0KSo4DMU538GT++74eUnXaDbIAM0YSf3/XYCZ3Iq8MkNIxHZx/ACyFJAE5HtcicxCO4mJkFnjuMZZXhk5SmMIlbIxxJZIVLm8/SaMziQWoxnZg/CkuHSNZXY1eV8ShLOnj0rgCZFxIThjXAD1TJY0OaPdTSy088jLe4Exs5YhL6+qjUlZs6aReI/vMIoAAAgAElEQVTHTgbVzJAydyltjpDrzBOrYsEinB9d197ZRsr1ytqwtfA9vx4XrGW5VGTp8AABMFGmfSF/vbujBU7HniHNjfa6MsruwyUezHoQg7//+L2mSVeG288hEMvCitzflHyv6Tpv2ese/OMkuduUt+uKy5O4TElK8G9fa4uLeOmzX1FFIL0okip7rSrQhOfP5S6qhImFkqQ+wXBysKHv7kTKd6zGIYllQLINR1KuQ/x9EEasFS6tqqtrr1PCba0I/PciHRM+cFFVAjRmzBj4+PqjkQ4IumOYQZPuuKraz6nbgibZiRmoKa/GwPHqyznSTqfgwqkUNNU3wLuvHwIHBcM7RNF2TlV/3R00EbVBQidFYsRV07R/wugKfUETdgnZ+9lK0jMJIF2TGzSOoZGoiv88/ynZDFuR3fAjGtt3pwZm0MR0q2ks0IRnoK50hkWRSzOv1OqLM7ZzcYBboI9CAiZGR8PTy5dsBZXTZflEjMUTuf6aRWjnkY4JuwzKnqZyqRuXvPUbH4FR1802XZIv30lf0IRdaNiNZmDEMRJ1tQdvpjLTL+DkyZNq58LX1NbEULnTFeo0yEnIwWG0RuBk6NCh6D8glHKpW519Qe475PjzM3z8n4K71+0my7kU0KSibCPZDj9DtsNzyHb4fyYbm6lvtIicc3jTaEhXEtk5SAFN/j6Vjf/tSMayEQF4ctZAU6dAq/vtpFKaF6iUZsZAb7y2eKhW16prvO5MLt7emoiJ/T3x3jLpjC8WyWSB0mPHjuLgmSTSX2hl57EeQz8qk7CjcpLU1GQcPXwIV119LeztlZeFREZGIoA2qIbWzDBUgkSnFxbKZcFcQ8U9JDDLWhycc8691PBwthY217t27UZhYaHKy5j5wEBbM9u0yIQUlsW4cePgTZt0Y62JyJqSH7w6XRdlE60gIdUjpD928vA+AUyUD87BaQJm6lmUREmwxgu7Ffk4XTkICQoKatMN8XC2Ecprjxw5SuKwmSpzLWtvrCzXfUOCYW9niz2kBSQfLPzaq5dqK2P50l+pz0lXamcGTbrSahlvrN0ONCnLLwEDIWkEhAQQADL+qslqs3dyyxG4+XrAlU4YCtPzcXLzEcy4c34bcKKpv+4OmpxZvxdJu48jYuEkDJquG91WX9CERS03vf417FwcsfClezW+G1g0lsVjeQM584lbNLbvTg3MoInpVtOYoAnPQlXpDOuZ5CWkK0zUPchHsAuWDd649+s/gH6QqbfFFE/E2PLYysZe4TQ150wKDv2wDgERoYi6c7Hpknz5TvqAJizoeiFpKdkHB6H/oE1Cj/JuD6om1NxcjPracwov29gOoNpu1aLUfn5+YLCquv6iZIq6/E1yMp5GZfkmKs15m0p0Fpos51JAE9YzYV0TU4vUmiwJdCMuC2EnGEOKmsqPXwpoImp6zBhEQMQiwwERxsilsQAe0fqZx6ytK082MRkaaVP597oNqKqqQrC7A/rIuPAUFuQjLu4coidNAVsJy0dISAhGRo6icobOK2wpCvByWdG+f+t2uKXseWAxWNY32fhgtAA0SQ13Ak0amy6imaztt2zejMZGRdta7osBA2bJyAezWUaQ7bCqCA0NxZAhQ7US1pY6drGdKl2X+UP98Py8wZK7W306h4CdZgT0KkN9/gWl11XQKQWzQETwiAVjne0sBWZU42VtEHbY8yXwJDTQG0sXziftpIuCboiniw1qyYGH8D+BKaLKfU8VaOJBTBW29OaIIBviErKOjpVhrbhRSY6NrS1ppiifsqrSX8kJ6iINzaBJF1koIw+z24EmzC5hoCM7odUvXhNoIp/fLZ+vQeDgYAyd2ip2pam/7g6atImw3jwPwaN0c5DQFzThdVj15Ad02nsRy959lPQFVLtfcFsWrGThyqDIwRh3y3wjv4U6V/dm0MR062Fs0IRnwqekSYnxCiJt8mwTRw8XOBP4Kxvabtzt2B70UovAMpEPLgfa8+mf8OofiKkPXm+6JF++kz6gSWX5ZuRkPAUnlxkIDPmobeyybg/l5e0p2GIjVaAJAyYMnCgLdjbgcqhG0j5o1FbIRKbDzPPLqYzoKIL6fU02yYY7Pda0eFJAE3bOYQcdZu0we6c7RirpXtz2wzGEeDjgt7vGGWWKUkAT1nt4dOVpjA52w4rrpAmhGmWwEjo1ZinRw3+ewonMMryycAhmDVZk1Ckb3p8nssDWubOH+GBBmDMyzxwmBxP1vx9k+2ENB9bMkNeCkpAKkzcRWVFr75sIbxlWgq4Dya+sx7IvD8GdnIQ2kJaMNsGgSQ3pjPQiRfLK8lLs2aPaMp2ZJvIsiyA3ewS5t+pxyYcXCaBOnz5da2FtbcYvtn127VnsSylqd6m2pXqvkvvW/tQirLxnPApSz6plgzB4wi42DjJW3QUEnBTQWlRetv6dPnM2Shp6E/DnKFgUM2hSWdNEn8W9UFdTge3btimdKjv4xOVWCu5wssGMK38SqOVgDa7Ro0YKoAmzVljHx8nJSSVg0psEa/m77hI57BmrREqXdTPGNWbQxBhZ7Xp9djvQRFyCc3tOorqsWivQpJG0Ahg0iZw3XijTkQ1V/RWW13e9VddixDs//hNcHjP9wevgExakxZVXmjJC7kj2pmVVyk8bpHS64fVvUVVUhgX/dyecfdRbXMau34940mCImBeFoXOlCcdKGUNXaGNNxw12tNGuqFay8+0KE+hCY2SAiuuOK2uNl2t2FOBSkgNUOiMv0nappYXKChvRi95fVrZXqLucQmHjPm+uYC1sCNHCirxibHr7B7gQMDP/uTtNvkp2tNHhU9QqZYiOhtEU5K5AYf6XROW+j0pdHm7X2prEO5sbarFxYysDRT64PKe6sr1ILrexse0vMFeUxcyZM2Dv6EKngPqlKSV+CeqJJRM6eA0xOsL060yLqxmg4qih00t1kXBmEtHCSzEoYhed0EvbxGoxjA5vuie5CE+vPoPoAZ6C3a8xwonsRfm0vY4tqlREUkEVbv3+GMJ8nPDLnbqxPY0xdmV9chnRn2TR+sTMMEn2wNqM6/eYLLAo7uxwH7yxZKhaO9NiEnn97/Zk7EpqLQ25emQgXl8ajoyMdBw9GiP5tiy0aWFl2yU2hMt/Po6zpL/z9S2jyNZWN6cv2cQcvlDSBtZ9dqN2Dlkujlb0TF8ktkkL+OMkJSUZ584pMvb4fhV1jYJukBis4RHu5yw4yMiHIKzN4qekz9VySbeyR8mLf7nh1wcu4McjGQIA/viMMNw4RjsxZgaessk9Z819URjk5ySIkKtig6gbWyV99wUMjEBCpRW+PpiJVxcPhhvlqr83Madc7QUohAGXLHrGY44fb9cV/wZg62AWqhZF4/lvLk9zJFaLLIzCQOGIYUOxm4AuKytrwZVHlXVwdPREeHj5dEqdH23XWVN7b1dpOmaa+jG/3rUzYAZNZNaPS3UK0/Iw/c4FsLZtT0VUBZrIOlF07UdB+eh/fe5zlBeU4qY37oObn3qwQtX8+cOZN3/84atrrH//d2Seu4CFj12P4GHKT3jFvjd/sgoXSK189n1XIXSsbuwYXcfZ0dcZItcdPYeucn+ul2cleX2eaylz5TVtbmrCZqI5KxNpU9YHW9y6ubsLdciGiNqKanz/+Eewd3bAnR8+ZoguteqDcw36I1f6LqmPc+fuI8rxDrIb/gheXgsUr6HTULYgPnTokNL+mprKiNZ/RtBEISETYuMQT5n+dnYeSQJ57TcnLM4X0jeETuykU9lVTeLQobFoairFhAlHYW2t22evpATJNRL3Kppyffr09aioOIHhw38lVwXjMDF0Gb+hrvn2QBre2pyA26NC8MIC43yPCLmmr0V1X43sdjH5vd2Co8j+p6cbanpG6ecJYsSsi83F/64djiWkwWLIYD2S6f/bQ7bsFjjx/FTSSrNRupnbfC4PL5OuSkl1oyCi+dKiIVhM4rEsMMraD6dOncL58+c1Dm08WQuzxXBvC+nMFI2dGrHBY8TE2XAmz2C5/46stt/clIBbxgfjZcqhNsG5Zkvmts02fWYeJneW7GzlAuZcllJGbAmB/UcoizLAhO8/efJk+PgQQGug7zWpc7qftF22k+33ChKEnh+hqHmoqh8W05307i6wLsnJF2YJgEVlRYUAnGgbAwYMQAS52pXUtmAlAZNOthboVVuGhPg4IV/+tKkPIIbOyKGDiZmagKSUlP9n7yrA4yrT7om7u3uatqmlqVE3KrBQirsVWy8sLIvsLvwssiywsCy6LM6ipUhdoO5tmrRp3N3d5X/fO51kJjOZuTNzM00n933+PvuT+ey+3x35zj3vOQJDhOfkUiPWmHGwtRHy20cfOPb2dvDy8ta6DNZMGT8+QVjncL8hJk6ciLj4eAFYGQvB96YccgZk0OT8PZB5+CzpoGRh/o3L4eLpqnFnDAeaWHp5zrePvoaerm6sefY39DTbuA9HKcpzTn69E7kHT2Pa2iWInaeborzt7x+giUq0lj90KzxD/MfUu9yBnhy4kM1dXZPxrJ4xlTATLtYc5TnK5XHpTEtzPXaRo46+UKrqd/ZKA5jwfH306+ubh1+h36rWuOYf6/UtQfLXTSnPyTm3Ct1dxYge953AENEWXK6fTroGWVlZw669v49YhSQC29WRS2BGOf2YtIOTyxSiRSu+LyIiIjB9ejJaJdA+6KcyqYxUZjdYYfyUNMnzqWtAMeU53L+s+HE01n1HtsNPke3w1WZdozkm+8eOTLAewfqlcbg2ybCny2LXJ6Y8p4Oe1i8hbRVH+mzf/fuFYoe+IO3Wf5WCIwV1AjNndpT0QN+6T44jNsAJa5MdMSkwnD6XHNSYdEp7Zr74+cQQepCYASyiyeFFVq+sD8HswO1UwlBXVzdsjuLpMDh+wkSjRZwvRPLf3JuLj48U4r750bh9dqTJS3iOhHd/IAHePxBraC0xdQwJZXlOZ5eCbsfORY62/aKt3rXNJehzkbB2h5HC2oasf2hbZW7XzY3GXQSiio1dGVUkjHwGc6J98NLVCraaM1kyl5UWkTix+LJGX19f8IOQpraegYc0fISvb+/AnkNHceJMxsCS4kL8sHrRHGyje7y2dlAvxp4AE6XzEQMp/v4BhNdaaQUeFyxcCH8/fyrRKdS6zsDAQMwnAKu5vddozS6xORwt7eTynNGyExd2HTJoQvlnQIQ1UIYDTHiLxiJo0tXeie8ef10ASxg0MTakAE0ydx9D6o97Eb+IqKdXLNK5lK//8DI9DO7H2hdI/8Tu4nhKZGxuh/aTQROpMql/HHOCJrwaemiKgvxcNZG2oavkJ0QzZsykJ0t9Ounr+q9Os8XGx14XXMbW/O3XapbGxoxlaB9jQZO+vlZkps0SAI6EyaeGnZafjLoR2Pjzzz/rdHtQDtDRnk7snyrBQcfJeQo9sQsUtA9aqI5fCvYhj52dvgS2dn6ImzC8HoCheRTTXixoUlP5Nqor/mV2S2Qx1yBFGyUAYKhziCFziwFNeLzFr/xMYpJ9AmjC4Mlojbs+OoYMKid679ZkEpd0l3yZO8idx8mxBy8c+QNWjZuGR+b8kUQwgZSSBrxMpUFZVc3CnL9eFIubZqiXzzFowgAUP2Xv6+nAls2b6f/XVLdkp5BFixYJB8KRZhFKmaBvCeB7kYC+KyYH49EVCSYPfR+xK9LIOed1so5O0uL6omuCoaAJt3Uk4L9NtNW7+ujBwcG4ZO5ck4S1DUnIUE7BlrMVYBBpOYkxP7laPOvsXz/n4KuTJYJV8+2zBkv+XRyskJp6mpybcvQui0uSVpKjXW+/ZkkSsx9Y0+TzDT8inQwQWIeGY0I0ueuMjyJwcBt6qYyXwXcvZzuBGcvhTSxUe3sHrff3ZGKzRERGgx+68MOEM2mpaut0JFFY1jHpptdN0ezSe+GjrIEMmoyyDblAyxlzoAlbBzNAohSIPfztXkHsdf6NyzRKclT3ZCyCJszWYNaGm783Vj5qvI6BFKBJyeksHPrwB3LviCX3jiuHfbs0V9Vh6/Pvw8XbA6ufWHeB3lYXbloZNDFf7s0NmigdX04cP0a1+Qqha9Vwd3fHypUrB1T1pc7E5r/9B621jVj12N1w9TW9Zt6Q9RkLmrS3pqAg5xbSBJmAqPgvdU7J+ibW/d063R5UB2AHmd6eWmKauGDN2kfI4txTMu0DBmXys667IO40YkGTpoatJLD7Bw2BXUP2dTS3ve4/VE5AWgQsAstisCMRYkGTNW8dQBUJQrIuAtuxjsbgEoDr/nMYDaSd8PW9cwbEJaVaKwtdkooTrv/iEaRWpgiOH/cm34JYt6W4/b8pwjQJ9DdmlyQGe2hMqwRN2jtJZ8POCrU1lYLNumrY29sLB9SePtI66ru46PiHyIXmoa9PC+Kg/7x2qslpN9Y5hyfWBprw31mfq7gwHydOnBC9PmdnZ+GQzjqoUuhziZnY201hmayMZtJ3YmCOmRrTwsR/93Ef7juJ7kdPAi2Uwd/ldsT82EnM0ZqaGp1LmjX7Enj7BtD1ay9v9/d0QENjMzYTCNjZ3UNAVxM5PfVgwfSJ8HCwISviQ8L4Hk72QokaC7u6kLV2r5bhQkNDMWvWbLR2ErBI18/t+TNKdZ2LFi+Gm7sXgbhiMmk5bWTQxHL20pQrsTjQhO2G0346KQgksrArl9qoCrsy+JF56Cyu/tOtwuvfPPexRv64zxXrFQ4R+saz5PKcyqxC7H3ra/jHhWPhA9cafZ9JAZrUF1di5yufwDPYD8v/cNuwayk7m4sD721EYEIk5t9reZRxfZsggyb6MiTd6+YGTXjl/GTJlWqZ2VqwkWqjVWMFASa2dk7oHqEf+7v++Snqiiqw9Pc3wTs8CHXVH6Ox/jt6ktUkHJwDgv8oXXKHjGQsaNJQ+xXKS54iy94ryLr3Wb3r48OUPreHwUH6yK0glUpyYuHjawsHtysFAEWKaGneh+K8B8g1Zy6557wtxZCixxALmiiBHQfHOCp9+lb0+CPd0J7IhVKUn//veJHA1rohOUzQ5DIm+L2oi3kkFjS5/cOjyK5qwQe3z0C8v8IedDQFr+1Xn5P4/vmTVIyfK/5+1WRBh0WqsLfvxWdnvsZj294SDnTC5yGVCz48h8rEGsNACg/43ZK4YadTBU24ET/tZz2IjIzB0gYuS/Dw9LkoD4QFta246b9HyFXFGV+sm21S2tmt5SojnXN44uFAE34XuTha4dTJk8jPzxe1xmXLl8PR2c2sYqPMiulsb8a289ojSmtkG/oc4FIbMcH36EES0+W4hPoM/QwJohKX8LAQbKXvctbaGRouBBbNueQSRETFkrvQ8KW2zDTpoPddRUUZDh44gPyaVpSSzTbH2qVzUFNRKtzjHqSr4uzkCG8fb/pMIimlIequ7JSzmsApttZWBacc6GGCFT1M2LxpEyZNmoTQsAiBhTLWQgZNxtqOa79eiwNNzL2tlgyaKK17I5InYOZNq4xOrRSgSRdxcL974t96S4Uyf6Iynh/2Im5BEqauWWz0mi/WjjJoYr6duxCgCV8d/6Dr7mwV6OXKmDlzJvwDgtDVN3LU/X3vbkDFuXzMu2ctHHz3o7LsBbVku3ksIUvf10ZkA4wFTSpLn0NdzafwD36IVP7FseXY5jk7K2NYtwfVC4yNjaQfvrXkDrGeAI7Zgj2woFhrYjTWbSTNkCdEgz0mTqe+j+R0xtFM9fO6YrD0yZ5Kn05KuQSTxuL3R193u0FPs4dO2NHdh+NFdaTDYCNY/RoabMU5Y8YM0tAg0EQHiCkWNPntl6fA1qyvXjcVMyK0izcaukYp2ytBHdUxVycG4YlV4yWZxt6uH+dq03D1/x4cAGaUA7vZu2LbbR8gzMOfnrRrltso2w0FTfgpuiuV5O3bu5cOnBXgsoTIqBg6oJr+/pXkog0cRKl9w26Fex5cZGBv9eaHibXyILFWuCyHy3MMjeFAEx5HafXOujL19fU6h2Z9rrCIKIFlYu5gVkxZyaD2CFt/c4kcv/9YF0dfsMXvGSpvciN3mimhmswn7h8bEy0ItQ4VIbezoz50P86acwma2vt06oYoLYftbPoFXa6z5zKQUtwg2Dh7uDrj+pXzcfr4UTTX18KPSs/6yXVICTqqXoMucMqRdFg6Wpvg6uomiWaXvtyNxtdl0GQ07or51ySDJibm3JJBkwyy7U3bvB8JS2Zi0uXzjc6UFKAJT86gCYMnVzz9ABzoy0BbHP9iO/KPpCHpmmWIuWRkbCKNToQZOsqgiRmSfH6KCwWa8PQsJldZWYZD5PjCqvqJiZPQNsICeUc/3YLCE+kCgGrj+xaaG3drJHv8FO22kqbuirGgSWHuXVRHfxRh0W/B1W2eqGXwE0FXR2uB1jyc2wMP5OfnhyVLlqCusRR52Xeiq7OQGDfSAEe1Ve+hqvwV0gu5E/5BD4lat1SNxDJNeD7WXWH9ldjx22FnHyzVEkwehw88JUUFOD7EelPswMoDD7uvMLXe0Jg7bx6xj4an1CvHEwuaPPn9Gewi+9ynycVkWcLos3e+5EXNzwJmmXxz7yWGpk6jPT/pbu9txAOb78eurFLN1+kAe0fyfDyz5Bm0tPUNq0MyFDThgfi3ia1Vj6ATlZQ0faAsweRFX6ABLn9jP+pau/Dd/XPh56ZuQ88sINZ84UN8nL+m2YHqkj8nd5bXfsoWrJofIiFYQ0MXaMJj8Z72ErDJwP9QxoNyrsjISEyblkTfa8yKMHQF0rRnNlLaee0RBkD4c2FikIegD6Iviqm0r7CuVShTi/YdnoE4bepk4XsmPT1dGJIhu3ASFV992eWC6K0+3RAlaML6O+4EeLMuV2VlJcqIbcIg4uTYMEweH4cTxO7pIlMHbU5dSUlJCAkLJ1BoeDCIGa6dVCLUzZY8YzBk0GQMbrqWS5ZBExPvA0sGTU5t2IWc/SmYetVixM1PMjpTUoEmO1/+BPUllQPlAdoW9NO/PkdNfqlQTsRlRWMtZNDEfDt+IUETvkr+QVeQnwd2elBV1R+pDKRs/AnZe09iypWLYBf0HDraB2ntyjnjEw/Bxkb68gFjQZOss/NJd6QesRN2kjVioOjU6HN7YHE+rrNn7YPefmt0duSgKO8eAhCqiR1yOZUCPS96Lm0NK8v+TuVPH1HJ0x/g7XeHSWMZ2tkQ0KQw9w4CpY4jPOY/cHE1rSTA0HXqai+UAdD7IyXlFPLy8gwemgUVc6pbEEjOK7FUamJICC4fMbop9crxxIImLPDJQp/GOJkYsnZj2179zkGwvapqLIjzw/NrJhk7pNBPYCXQQfCRHY8gszYTh/Pr6D2nfmhTAluXx12OGxNvJqcs7QdabaAJz0EyFeQ4Z0/Crz1m08wwKSk6Ot9D7kJny5vw1k3TMTlkEOzj8qlHN6YO7BGDJh/ePnPYkZ4n0dPvyTmHARMGTgwNfaAJj+dEwH91VblQUjI0PD09BWFt3hMphLUNXb+yPbORGIjYtWsXjpAeYjkBEQyAMBCiL9JpH+pI3ychwB2+JEI8XLCw6ozkJMGSuby8nETFvQTAxN5JXEmSEjRhcEUAAa17BTCqs7NzYMqFCxfAnkwRduzUBDejoqIwTQAMdYvHs6YQiyiP1ZBBk7G68+rXLYMmJt4HlgyaHHz/O5Sm5WDO7b9A6BTDnzYoUysVaMJCsCwIO/vWyxA2Tbs6/Pd/fgOdLe24/C/3wcnDsB+7Jt4Ko6K7DJqYbxsuNGiiFGlroieL9HtpxOPcjsM4s+UAxi+bheAZ+aO+PKenu5KYEEthY+uF+In7DM6PLrcHtlv09PYTnrwpo70tFUW599APy1Z4+VyPwNAnDZ5T2aG06I9oqt8kgC8MwpgzDAFNyov/goa6b4Rr5WseTcEHbnd6IqzPXlbbmlkfoqShHZHeLgj10n9AUo4RFBQEZpm0dOim1CvbiwVN3tmfhw8OFeAesjy90wDLU3Ptx6vESviC2AnKYMHM56+ahKQww0ubVNfs6NhHOiaf4vvM74Q/19Jn3bmKpoEmrGnCgrAMnHCsn70eM4PmorNL88qHA024JVu6t5+3xzVXzoabx9ne+PKg3VlVgqbFonh/xKiwG749XSowUFQjjrRxFpAts7b4IY3AjNwaXJYYYrBzDo8nBjQR8k5lVxnn0pGZmam2DBbjtWF9LoVj8QUNpabHe599g8yKBr1AKuufMEhV19pJlr5AFO1DiB6QxY8shePjY6lM54DAeAoOjRStG6IKmnCiGARsaWrATz8pABJ21EtOniEwTPJys8m1J3Ugn6MFnLqgGyxychk0EZkoC28mgyYmbrAlgya7/vkZCT+WY8lvb4RPpPHUa6lAE9YqYc2SSZfNQ8LSWRo719nShu///KZgh8q2qGMxZNDEfLt+oUET4QcS0Zx11fFLmY3cg6dx8uudiKayt+lU/qZkQ/Ac9g7RiIz7dERYJjy+MUyT1uYDxP64D86uMxAR875RqdDm9sBMgpi4eDpkaQ7Z2nJYAE6IUC5oqLCWijFRlHs3WluOCBopLm5zjBnC6D6GgCbKMiJvv9uJFfOw0XOOVEcxZQBD524kCj6zTNrpxMauOaGe4kATJycnwXnFECtOsaDJFyeK8erubFw3PQy/1yF2OlJ51DfuDe/RfV/XJghestUw65mYKgLLQIaVTTcaOtQFr1vIjYSf+HME0WHU1VGhwaOMAFd/1DdrimDoAk30XZ+5XlfqfaSlpaG5WWGfbEgU1LYR2NeGCAL7ws6DfazDwXocQ4OBramh2p1gSnpc0QQnLE4Ihjf7zhoYYkETpdX7nj17hJISjlmzZiEgKOSC6JgMd5ksEJ5bVIK3v9okAHS6SvbYppk/Q1SD3xM+LrrzOG3qFEREhMPaxo50Q8SXJA0FTXheJwLe8nKyBJc9paMeM7RcqWzx2LGjKCoqEpa3ij6vrEcJOGXgLWb25jJoYvaUj8oJZdDExG2xZNDkx2g+QUUAACAASURBVKffQXtDMy578h44e7kbnSmpQJOBQ9vsSZh+3aUa66k4V4B9735Dzh6BVMJzs9HrvZg7yqCJ+XZvNIAm5rtaCCwvZnsx64zZZ1yek591jbAE/6AHSX/jrhFbjqGgCa+tqvxltDYfJKbGlcTY+JtRa1OWeZw6pXB7CA4OxiVz5+pkErDWS0nBb4X5/AJ/Bd+ABwyeOy9zjVDyEz1uAxwcjWf5GTwxdTAENGlu3EHXuh6u7osQFvW6MdONeB9dZQBDJ2cdgDx6Um/ogYfbL1m6lHRzPIe1BtV2oWJBk63pFXh6UzpWTAjEXy6bMOI5M2SCT44U4o29uZgQ5I7/3JJsSFe9bflQbWjw031tZQQXA2jC18pAH/q6BLeS3l7DqBblVFaWO6SsTOn8MjSPPi4OAktnaPgFBqPTOxqv7c7HZ3drPpwSsx9iQRMei63ebdAjWL0zK2LCxEQCLA3fdzHrMqVNP63xi52HkZOZIdg6a4tWYiudKtYUtx0u18oxuESHAVdbG1tyr+kzqCRJG2jCbxvWIOnoaEe/ld2Aox6LBDtT2SK7702cOBG+/oGkYzL6cm3KPo1UXxk0GanMXlzjyqCJiftlyaDJ1w+9LIh0Xf3iekK/9auFD5dKqUCTigwCRd75Bv7xZIF8v7oFMust5B1KJXGxHji6OQt2w54h/ibu7sXXXQZNzLdnYw00qcouwp43v4IfCcst+uV1BEgcEnQ8OLx9b0FAyKMjlnxDQJO2lmMoJtCir3fwSS27+rBIqzGhfPq7l1w2GDBhJwdVS0ZtYzbW/4iyIkU+mIHBTAxDQqnFEjdxD2xtxVlcGjK+rraGgCadHVnIyyQ3JWIaRSd8L9USJB+HhX3PnknTKAMYOhE71LDrhGpwCcjsKN2ONezyYYwVp1jQ5BBZlz70zWlahw9evmb0CJzXk2bDNe8cElg5f187GfNitJd7SL6hRgx4sYAmfGnMbKitqcSB/fsNutJ6Uk09W95IQqX2JFiqeNClBFJUB2LrXAa5lGVNytdcXV0xa8FS3P/ZKSrzsDHKOUf4PnC3R2tHL5VJiQN9uKSko70FXqRl0tzeO6yYr0HJkLgxa3qcLK4j8fX9iHDsIu0QTbDBUIBKucRFixfDzd2L3LbEM0yUfbWBJvwa63KR4pYGKMJlp1YEysGKBJZHITgl8bZJNpwMmkiWyot6IBk0MXH7LBU06WhqxQ9/fUsAIH7xlOFPSlXTKhVo0lxdj63P/RcuPh5Y/fi6gSlKz+Tg4H8VNc/KGKslOjJoYuIb2oDuYw00aSyrxvZ/fASPIF9c+vDtaGrYgtJCRUmGm8elZDf8sgHZM6ypIaAJszyGOvtYkzjtOBKpNTb46S8fZFj3oEu3E+/AFPW1X6Ki5GnhvwND/0KaH+pA73Br6e/vRUYqH4ytMH5KmrFLNrqfIaBJX18HMtOSyTbThmyHTxs950h31FYGoG3O/aTjMDT0gSb8dHzGjJlkhatbSFHbfGJBExaVXEcin0zzf+9WadkcpuT+5V1Z+PpkCRaS6OtzJoq+mrIOMX0vJtCEr4e1TTIz0nHu3Dkxlye0aaPPp5PEdHCys8F0sguuJOZJNjFPOPxcHQTnE3aAUQVVVAdffumlOFnehd98kYK1JADLwsPGhKGgCc/hwsyIzm5BWHu0xt9JkHlJvDcqzx6GXb92H+SUkgYNW2xd5TlTp05FWLh4DZOhuRkONNGVQ/4+7aB7hR135BCXARk0EZcnS28lgyYm7rClgib1xZXY+conAltj+UO3mpQlqUCTPvrC/+bhVwRPtmv+8SD9UFcg/QyYMHAyNHjdY41tIoMmJt2qBnUea6BJe2MLfnzqbTi5u+Lyv96H+prPUFH6rJAzJ+cpgqbJSIUhoAmXDI2Esw+voZX0FAyJ2uoPUFX2D6FLcPgLVCp0md7ubOHLVr62tr6Im/iz3vZSNzAENOG5c84tJ8eScsSM3wJ7+zCplyPZeMM5S6hOoE2PQBe13t3dfUAzwBgrTrGgSSmJ0l777iHBtePre82rcTPcBrB97R0fHhNefv+2GRgXIL1rlmSbTwNdbKAJMxvcnGywf98+wVVFTHTRb6SjBXX0E8kKAe4OYBcoDqWgcQfpmxwnfRNtQGBycjICSUvk6S3ZJjnn8HzGgCZs9d53obyFxSSX2jy9OV1gcNwy2RPnThzU2ksJXPGLrBvjT9bPw7ntKEVaW7v6jbZVNgY0EXm5cjOVDMigiXw7cAZk0MTE+8BSQZOys7k48N5GBE2Ixrx1V5mUJalAE17Epv97F231TVj1+N1w9VGImB35ZBOKTmran65+4h64eBuvxWLSRV+gzjJoYr7EjzXQpJfKFjY88k9YE2376r//HtUVb6Cm8g0h4Xb2QYgdv2PEkm8IaFJW/Dga69SZZ45OCYiK/3rE1jd0YKZAK4NdcBobNgv/6RtArl7Ok3Wuo6uzmER2n4ctWSR7+T9mtjUrJ1IFTRiXVr0WZRt6kD0QLU0H0NNTRYK1c8nWWX9JZHfP8E832QVKX+mTKQlROkvs2bMZrq6HSE+hAl3dgWhqWiwMy6KZ/KRe+QSWDz38lNiBDkraYsXKlXTvOwu0emNCLGjS0tmDS1/bSzbKZBv62wXGTCV5nz9tTMOe7GpckxSKB5cax0iQfFE6BrzYQBO+FP7tZGfTJ+h9tLcrxG+HCy4NSSlu0Cgvi/B2JlFY54FuSiZEYrAHPM+7DkVHR2PK1Glo6+zHvZ+dQFppI/51/TSBrWJMGAOaGDOPuft8eLgAb+/Lw7u3JMG3txanT2uy62paupBR2SQI6HIJ1HDBgCvbKnPOjQFclePKoIl57gIZNDFPnkf7LDJoYuIOWSpoMiC6Omcypl+73KQsSQma/PzGl6jOKcaC+69BQHwEyohhcvijH8EHOtUISYzFJXddadK6L8bOMmhivl0ba6AJZ/bbP72GHqJQr3n2N6itfZHYJv8TEj7S5RmGgCa9pGWSl3E5HeRrhbVxaU4YaZqwi445QqmBUlJaiu5uBYW7sz0TnZ35nClaR7JOnZKe7hp0d55GZNR0dPZPNMeS1eZQBU24JKm/rxtF5MKg9vkaHIj6+nqUlZWRdkwLCW+2U55dYW2t6TSjWvnPDjNWpBGijRUeEhJCQIY7+qzU3VDEJqCLAA8xD6rtbVpwNnUd3R9nBoZm4KSy8pfCf58oqhc0Opg5wWUM2rQLuN3MmTMRwKKZvcaXE4gFTXi++S/9JIA5ex9aPOyaxObK1HYHqIzp4Q2pVLJmg2+I+cJ5Gu1xMYImnFP+nmlurMPuXbt0plibiDF3mBHhrQb6KR122BWK3aG8vb1xKZXlNJEeSk9vP1YQONdMIN2Pv5wHbz2OL8MtyFJBk5+zqvHYd2lYlhCAl6+dhBPHjwkONarBls+lJCit6mCkLU9cCuXo5EZArWklMjJoYp5PHhk0MU+eR/ssMmhi4g5ZKmhydssBpO84jIkrLsGEFabRgaUETfa/swHlGfkImzoOvtGhOLVB8UMieGIMuju66F8n/GJChXWzrslYCxk0Md+Oj0XQZPMz76K1rgmrn1iHhuZnBF0TPizzwZlLSbikZCTCENCE56+v+ZxKh54hV5eFVBbz/IhZIQ93rczO6GhrwnZyKVAGi6Z2d5XRf9IhmykcpF1iZx9K7jixasP0dFdg9mwfYqTYUinU1SORTp1jDi3PcSGbyuysDJw5Mwgy2NvbIXl6Ek6ePInCgkwCTdrokuwoz650bSo0lP4++juDGTYkdOgGdonoGQJw82IiSBckaXoy6hsbtTqf6EuCGwlY2js4iQIwmuo3orToCY0ha2pvpHt6nGDPqk/HJDY2FomJk9BmopCiIaDJ5W/sRx15kf5Ah1l99qX68mXq66yvwjorDyyIwa2zIkwdziz9L1bQhJPDFrL5udlITU0dNlfKw/rQBkP1NNgOl8vQXOxtMZ0AFXZtgbU9evqsUNXcgTVvHRRAsE2/mmf0vlgqaMI5vvn9IwJzZ8N9l5AOi7XgRNNIn1vKOF3SSKBTN1SZPEMTOWPGDAFw7epT+aw0MtsyaGJk4gzsJoMmBibMQpvLoImJG2upoMnxL7Yh/8gZsvZdjujZuunk+lIoFWiSvfck2CVH40fBsllIXG38F7y+9V9Mr8ugifl2ayyCJjtf/gT1JZVYtv5mNHc9gdaWw4KORVdXMZW/fElPzkbGDtVQ0KSy9HnU1XwC/+CH4ON3p/luCpWZ+KBTVlKEY8cUug8cbS3HCRRQCDMqg8twuHxIGRMmeMHTPYdEHZvIyvkhs699KGjCWgPsPnP48CGUlJQMrMfb2wsTJ8Rjy5av0NzUNPB3G1tPAkpsBfYJgylM/2CGiYeHP+rq2jR0C5Q09dOpacReaTD4egMCArBw4ULRrhuqZWWqkzU0rEJeRRIyK5t1Uut9fX2xlOyFm9p6TBZSNAQ04cMaH9o+uXMWon1dDM6TVB02ni7F37dnCgfHL9bNlmrYER/nYgZNGGNlC9ljR4+gqKhIa66qmjvBOjNqny3E6poW5qlRXnY4v45Akj78+vrVCAsOIbBRwQc7Qnoo679KQRL1ef2GJKP3xFJBE2Z6MeOLgxlfrqRz1dXRIpRPcTCD7mCeQkz6kmgf8Gfn0IiJicHkyVNA+KckIYMmkqRR7yAyaKI3RWOigQyamLjNlgqa7CNGRwUxOljPhHVNTAkpQJPu9k5soqfc/L+q4RMRhCW/u8mU5VlUXxk0Md92jkXQZO/b36Ays0Cw9G63/oMguOrskoS21pMIi3qdmB2LRmQDDAVNivMfQEvTPnL0Md5qWIoLcXWworr3FOTm5grDMcjUT44zakEAg6ubAvRlYcDEiS5IT78DPgEPEOBzhxTLMGgMbUKwLH7oaNuPrVu3orW1dWC8wIAeeHsFY9eu3QN/syIrSysrRzpAkAYDASa2tiSG6O9HmgwF1Nef/m6ntp7ly5ejpraOAJlS4e+szcDaIi4qujDDXYC9vT1WrV5Nxpp0eOkmQRQRwfcsiwUPjarqO5Fe6o9yotZz2QKXLwwNvhZ+Mt8HO1qniMn0NDEENPnl/+ihATlz/JsOs3wQvhDBe3P1OwdRTQf0P6+egJUTAy/EMoya82IGTfiC7Wys4UyfJ8xsaFIBKVWTkV3Vgkpii3AwW4rBNRYiHRoMDHqGRGPprKkI9hwU8P3ieDFe/SmbnHNCyDlnnFF55k6WCprwtd343mEUEvj78R0zEePnSi5H1igvK8aRI0cEZ6IzxOJxc7DDlFAPjfz5+PiAP++UpVBGJ1ilowyaSJFF/WPIoIn+HI2FFjJoYuIuWyposv3Fj9BYXi0455jqQCMFaMIlAVwaMDSkcPcx8RYYVd1l0MR82zEWQZMjn2wm0eVzmHXzanQ6/Ro93ZVw91qNpvrNZKv7Z7LVvW5ENsBQ0CQ3YzW6OosQPe57Kn8xDfQ15YJY38Td2Q7bt28nlkWdTtBE6cSSV/ASCcG+S2VFz5Hbzi9Mmd6ovsO553DJUXtrI3bQtSijpXk/pkxejI4Oaxw/fkLrfH5+vsQ4qSM2UhUJxUahqXnwEMc0dUdHJ2RkZgl9+Wl5HrEp+Ck4R7y/m9ZDn3KihYsWwd3Dm0AWwy61suwF1FV/fL6TLRoalqO5ZQ5OkZBmK3lKTw7xgLujOrjDjefOo9IY3wB0dJumQ6BcrSGgiVJ49dkrJ2FRvJ9hFyxR63f35+H9QwVIIoHQ10ko9GKKix004Vzze7CzvRnbCLwcLrj8hsOWQJZhgUdnT/jHT8WWM1X404pBltvz2zJMds7huS0ZNHn02zTszanGM1ckYsk4hfA1S/qcPZOG3UdTCVBpFdxyhrLBrAnEYoC3n8oYuRRKqpBBE6kyqXscGTQxT55H+ywyaGLiDlkiaFJw7CyOf7mdSu77sPCBa+EfF25SlqQATZhhsvHx1zXWwXorrF8ihyIDMmhivjthLIImp77djZx9pzD1qsXo9VhHRIIucoS5l1x03hGcYfwCfzMiG2AIaNJPWiEZqVOEdSRMPi2I1F7IcLCzRm93u0Dh7mjPIzCnQG05NrasXzIJSieWnKx1ArgSHv0OOdKY/7NNl+WwM+mbFBfm48QJBUDS3pZCejZNmDfvemRm5gmMGmaagNgz/X1d8PT0IKCkh0AVhViis0siXb8jARSkgRMXB9YGOX7ilPAas0sYtFACJsokDRWyVP59ypQpCI+IEqVjMnT/eQ9ySSyYw82NBHe7HkRGVg6VJ9QKlHqm1g+NxMRERMfEkjuJ8cKvQ8c0BDRRHmj/SIfcKycHm/2WLm/sEFgmHKY4q5h94ecntATQRHgP0XuQy/6OHj1qVCodHByw5NKV+NXnqWD9jd2/XwgbsjfmuE8C5xwex5JBkzf25uKTI4W4Z1407pwTKeSN88fv5dc+3oCsojIkBLjD11VdHJkBV1+/QLR3SUBRU9l5GTQx6m1gcCcZNDE4ZRbZwWJBk8N5tahq6sQVU3X/uPjbpnMaG+tCauW/X6aw0Nt1ror+VaKFnj4FuDliEj2BUh3T0kAT1gxh7RDVMJVtIgVowuth1xx2z1EGs0wW/fK6MSn4OtynkQyamO9zeiyCJunbD+Hs1oMkDj0N1oG/FdxSAkIeRXnxX+DpTaV8Yf83IhtgCGjS2ZGHvMwrSBg0HDEJCqvfCx1OROGuqa7Agf37SQy2hFgXJQLgRMgCuck4YtHiXyEwKEwAAPIyr0JnRzai4zfAwcn8Vq66QBM+Wrk4WuEUCcDm5+cLpUYM8LBeybx512H7jh0kitgjiMI6OnTBhQ4SbW3MIukXBIOdXabBjkpcrAlYmTt3Lo6dOInmZoXGy3DuH/zElp/cqkZoaChmzZqNVrLr7BNjmTPkBmhq2I7SwgeFvzq7TMG0aV/hf9/+iAPpBYINK4s4qkZQUBAuofUK82mz/jHyBjMENHmTDmsf02HtfhJfvW0Y8VXWnhmpSCttQEl9O5VzOFF+3OnwN1Izjcy4lgKaCPcsncfPpKUiJyfH4GQtWryYRJm9cOsHCjHff1w9ZQAkXPEvcs7pMM05hxdkyaDJpjPl+NuWc1gxIRB/uWxQw4vB8X2ZZVTCuBnTQtRtyidOnIiY2DhJAVflxsugicFvAaM6yKCJUWmzuE4WB5owtZdBDgY7Zkd7D4Af2naulTi97EevGor+VXjv9mThz58dLYIrqYwnUn1iVVMH/rkzG/fMp1rQ8QpaniWBJsOxOUy175UKNOF8c5lOdW4xXLzchbKhseiQo+tTSAZNzPcZPRZBk5z9KYJjVeyiMDhGPE3uL8EIDHkSrCHi4jaX2BFvj8gGGAKaNDfuRknBb0lfZT7prLw5IusxZlAX0iM4l34WGRkZA93b204jKtIHk6fMBeynC3/POjufLNTryY1oj05rYmPWIKaPLtCE+ystlbnkiG2HOdjxJzg4FOFhE7Bt+05y0bGBv58fWlqziFlSQuCaC5wIMGGBWHs7O1x++WqhnKeoeFBYtpaUEc9VDArKKtca4O6IONIOUIaLiwtWka4IVyF0GyksUl3xL2JHKe5Ve4cITJi0BVllNXj/iw0I9XBEuLfzwHwsYsu0+q4eK/on7VNiQ0CTz44V4fWfc3DTjHD8epG64xIvlskCLBaamnoa5eXlYrZadJsmOkinEmjCcf2SmRgXG035l67EQPRCTGhoSaAJMxvcyV1rF9kQ19QohEeVYW3dQfdCB9kHa+reMDsrIjKaDu9WePcAlVodLMC1SaFYvzReKI1b89YBk51zeB2WDJqwZsm9n55AQqAb/nvroI0968lsOVuGRK8+9JSmD+wHA67z5s8XhKqlBFyVE8igiQkfCgZ0lUETA5JlwU0tDjRhYIOBD2aacCgZI2L38LENaQJActNM7SUpzEyJ8nMZeH0sgCZ+MWFY9CvjtQqkBE3E7uNYbSeDJubb+bEImhSfysDhjzch8hIXuMa9LrjlMLskP+tq0g6JIw2Rb0dkAwwBTWqr30dV2Uvw9r1FYMGMluCDjquTDfbt3YuKigphWd7eTpg9y42eGP8N3v6/h5vHsvOlRVYYPyXtgixdH2jCi1KWHG3ZvJkYM4P6HvFxsfTffVSmk8PcEnR315H1cipsbL2pBEnhwsYHCHa8YcBlNx36lMEio6eK64UynaHBFqhRJM7qTJoOyy+9lBg4rgRgGJ+ekvzfkOOPwgXDxsYD8YkH8E1KMey7GtFedFZgmyhjCTnluLh6GKybImZ1hoAmm9LoCffWc7gsMQiPrxqvdXgW7HUm1yYW7G1uVndSEbOe4dqcJUZCfVsXZkyIwc1XXIqWjr4ROQCaskZ9fS0JNFG+B636u7F50yay8Va8Gdzdf4Kb6yECKTtofxxJYPlGdHZGCa+FhYVhxoyZ5MrF7CwQCNaI+6kchwHCz++ePeCcwyLDLDZsSlgyaMJMHGbkONnZYBeVNinj25RSvLgjE2/cOAW+3dUk5p0uWKwz4NpNDEKpAVflvDJoYsqdKr6vDJqIz5Ult7Q40ES5WcwQYQDFENCEgZZ39+XjtRumwsXBVm3fmZHCr+dXt+Lxy8YPvG5JoAlfMIutMptDNUzVDZFBE/N9hMigiflyPRZBk8qsQux962uEziS9ivGfCuySkPDnBXaE8vA5EjtgCGhSXvJXNNR+TQyYx+Hle+NILMfoMfmz0NG2D9nZWeglzaj4+HjS+8hHAwnpcvmKh9ca1JNVMjMzfPzvGnYetggdiaeWPKEY0ITbOdpZCSVHBw8cUFvn5ZetotKdApxNP0fX2ETisSfp2jyE0hzWBWGaOrMU2Akkn8CV06dPD/QvI92MvJoWwSnE39WB5rBBSUPbAJBy9fIFmJkYb5SOieoic86toDIpduthtkQ/IsanYNmre/HYyngkOjUhK1PBBpo6dSpCwyLQ1TcyujiGgCb7cmrwx29TMS/GF39fqwCgtAWLhXa0NWE7uazoiv7+HsH+uq+3Rbj3bGy0O/LUtHQho7IJ7q4uePL+m8lmeeQOgEa/sUR0tDTQRPkerK2pFMr+IsJraD9fG5IJZ9rXNwTLb76XO3v66T05CHI+R8KvzLj+7eI45FS3YDOVnsyM9MYVRmjmdNPnWc/5sS0ZNOEEX/HmAdS0dGLDfZcgkJhwHE9vTsfWsxV4klylbpgRiv3792H8hAkjBrgqN1oGTUS8+SVoIoMmEiTRAoaQQROVTWSWydLxAQOlN6r7y69VEn1xEtUqqgIxnSJtDi+We6W2uBIbX/gY3R2KguXgceFY+atrYO+s+GIwJpg2zEruI4W0G7MmS+3DIobEjCfaujTuDpaaJymui5kDfG93q/wIlWLc0TxGTVElvn76PYTOqIbnhB/h538Fxo17iQ7OifSDvZN0H1IFnROpg3NNt/bAj3Jd46el3kK6GkeQOOkDEiKlspdRFHwNdEql0pRjBJZ0wMFB8bna3HyaWBm1sLXzolKXenoPu5BOyCyNlXPZCx9+SAmF2qgD+1JdJpffcCgPQLrG7evtRvrZsyQCmyk049r9+HHjBN2SvcSoKS3NFfaCrychYQ3pnswTGCgDn04k2nuMBC2LioqE/mlEfWc7WxZSDPZU5IYZKDlEfXfwDkRUwiRsT6/GwySGGus/WLJjyLX39DTg8KEZwn1qY+NIea9Hn99m3PNpDpbT9/+bN0/Dnj17hKfE05OTSXNmZPLMa+ZcM1GnV4ROysmietz47mFMI+eaz++ZrfOSaVQUFuTj2LFjWtsxYNLSeo6Ao+qB1x0dw+DsHKfR/mhBHVroYH3P9VdiSmyoQuj3Igw7yjWnWUyuL6bL6+/rQVFhIb3P/knOVJquOv19DxGzi0BtWzsBIlSNtLImlDe0Iz7AVQBPSun/H0dlJ+Feg+VpYnLh5eUFT/pnbaNgaNnZWlGe6aNOxH0tZvzR1ub2948KD1Hfu30G5sX6Cstb/soeFJEV8cZfzsUE0vyxIsZdNzGAbGzVBWGlvhYG4nso2RaaaqnTZfR4zK6UQ86ADJqcvweUgq/Prp2k867g8hx/dwdB14SjhsRmLS12vvY5KrOLsWDdGoRN0fwRZej18lNDflLcQDXrcoxsBuzpUOVI6vpNbQrbQTlGLgPM6uEfLM3nLR5HbqbRM3JrfRM2/vltBE3PgU/iPnLMuRUhYX/CubQVpF1RjITELVSmEyH5gp3o6TkDJy1EjdYX6acX0UG4CuMn74Q9aa6MtuAfXy2Nddi5cycdbRXHmL7eNrQ0sxvGINjp4BhFuYxUW/68efPh4+dPQN3IXZUzCaFztHXqn4RBWmcSud2zdw8dpq0IFJkv2PGSuyasCRDZvHkjaqp2E8vEE9dd/wx6+q3UwBjeUxbJ5XKSxsYmHMilp+WEIsyK8oaD7SC7gw9l0+YsxPovU3CsQKGjsp7E2m8epoxWV3Y4z7mZd9AT4KlU1tBIorvkBtT2Bt7Y34M7yA2Dx7VBLwFYtoLTxUgesl3pe5HHb+/Sn+sKZs7S9TOY9Op1+u1+6S2D0ymnBEejodHdXYO2Vs3yL1e3GQQkDYJRlfT7ppiYPrOTk7BqDuWr/+I9OLhRyRU/uOkcyTfPyL0thx2Z34P8Hjp16mFys/peo11JyV30fowc+KxRbcA6JhmkI8TlbwxwNHZ0C3bbnqw0KzJ8fX2xlErY+PNC+V5hm/UOeu909ei/r0VOM6qaPb81A1+fLMFDy+NxI2kMVdJ787LX98OVGOo/P7RIWCt/zvP9ZoROtUHX6ulij1b6XmSmjxwjlwFfOvfJIWdABk3oHhDoiZ+nEIMkTnDH0RVc9nOGbNqU4IqllefwtX//5zfR2dKGy/98L5w83Ux+l8jlOSanUPQAcnmO6FSZ3HAsluf0dnVjw6OvITA5Bb4TTwkWw2w1XJhzOx3CTiAi5n04uw6K45mc31S5FgAAIABJREFU5PMDiC3P4VKDzDOziR3ggIRJClvc0RisO5GfN1iawmUSbS3HNZbq6JxIYrCKJ5mC5S07MIywAKfY8hzlYu3pcGBr1UsHMz4kDIqlcoVra3Mtvt/4FJYsWQT/kLVadUi4nKSzvRn/2/C94Obh5miHKee/hwMC/OHr40NlTATeE+OjnZid/IQ3s1Kh1xFKT8RnR/nAmw5pYqOq8hOUFD9P9p/Xor09m9x/UlBt908UNkcLjhgRpPFAOL8QqueQ7j51wEfsfLraiS3PcXWypafWpF+RUiiULi2K81MblgGroWFD7dxcncGCvXV1dWovd3Tkni9PUu/l6EgsIfsA4Y+sVcPivOEREVi2YC66SJdBtbRDius35xiWWJ4z8B4k8L6/pxipp1eopbS9PYTAyNvp3tHOFGYW1+F8hf6fLb1/2e57FpXn8D0mJpj5xpodfbCjvoM9LL085ysCTF7ZlYWrpobg4eXjsCuzCk9+f0b4LHr5GoXdvblCLs8xT6bl8hzz5Hm0zzLmQBP+wcX/VEtshgIhqpvGDBSlUw6DK8w0URWKtTTQpKO5FT/85S3YOzniyr/9SpL7VwZNJEmjqEFk0ERUmiRpNBZBE07chj++ioDkvfCOz0Rg6JPw8rme7FsfRlPDFtI3eQHuXpdJkl/VQcSCJh3tZ0mU9nrBqpcte0dr8BmXnU6OHT0ilKawDXFnh6Z9qL1DJLm7RJIzTbBgeWsOAU5DQRPOsVICjL4i1cKZWG+VpRtJOqQMrt73EBtFuzaIwFY5lY4fdu0VQIuw8+UBUZERiCNx2ezsHDX6Oets5Ne2DGidRJEtccgQW+Lh9r6/7z0CBPYSsHYbIQNp9P+fQmbVXahtmygcemy55m5ITJ48mVgWxD+RmGkhFjRRWD1b419fbROsnlnXREwEk3NHcHAgtpG+SR8diJVhY91MLCzWdFGPzq5waqcozWgjpV0HZ1fceP318CA9E9KBvajDkkET3hj+Pqoo/RZlpY/Rfym0elqal6OhaYGaWPPQTWS9PmaYcDBYwqCJ2JhL5XY+vgECu0w1LB00OUIla+u/SkESlcq9fv00vLo7G1+cKMY986JxJ7HVzBkyaGKebMugiXnyPNpnuWhBk/r6I+jqqqJazV+o5ZhBDgZB3K3TYNNfi/r+RVRKE0X2wz5Cu/8dyUBm/gZcM6mK6sn9yZZyEdZvtBbEXbWxTJ7+5hM49R0i+qOtUDfoQRTPRROmIyriZmE8SwNNqnKKseeNL+EbFYzFv5FGRFEGTcz3MSCDJubL9VgFTTY9/Q58p34H94hChES8DHfPS1FZ9iLqqj+Ef/BDVD5yp+SbIBY0aWrYTADOI+RCsxyhka9Ivg4pB1SULSpKU+rri0gwNUVjeEenBLh7RGMlWex2EovDWItdQ9ZtDGgy3PgMDvV3bEZW1l8QM34H1fdrFxvl/vtzq5CXeQauHTUCzZ1jHOmjTEqciOycXDXBWH6NSwHya1vBZSscqg47uq43wJ8eCtiXoar6brg4n4SLyykcyVyGqvrJmBqqub5Zs2bBLyBIYFpIHWJBE56X9U/SSZB105atGOdJ7B4t4I629bGjUR/p6Bw6dEjtZXu7UirFUXfY6en1oNK2ICG3je1duOKKKxFNwFUfAUYjXWYgdW6HjmfpoAlfb2fLVuTl/oF+2yaQa04GgbHBqKi6X2dqWQBW+R5yIMbKjAhxoAnrF7Goc0eP5vvC0kETztfatw/C19Ue3z8wD+s+OS6w5F69bqro/El1v8ugiVSZ1D2ODJqYJ8+jfZaLDjRpa8snX/rd9G8XCU/NQnTU79RyrO/10rLP6QfqYaFfZ2cV/Rh7FlMmvysAKNqC2zc3paHPcbnwo4zV/G1tXeDmlig0tzTQJOdACk59swtRsych+bpLJbl/ZdBEkjSKGkQGTUSlSZJGYxU02fHSx/Ca9CFcAiqoHOe/VI4zUwBMGDjx9rsVAcF/lCS/qoOIBU1qKt9EdcW/yXnmHvgHqX83SL4oCQZUlqZsI+CkvS0FvSRSqgx2NHFynkoWu6vg6OxmksWuIUuVEjQRviMLH0Bjwz4CTbYSWBGqdSl84GD3iWeuSkRT9kn6fq8RbIkXLFhA5bN9glPPCRLPLSTBy6GhwToha+IQz+HFiENDniLGSy+J1D5OFq0/03f5AaTkzUNT01wwY0U14uLiqCxqEkZKjssQ0ITX9fLuLCSHOKEh4wi5MIkHcZKmTRFyl5GhcAVShpMjC/j2E1ASSBoulcRP6CedFy/Ut/pg+oxZmDyFnQSdLEIvYSyAJjUV/0J15dsIDFxH76FvaS9rUVV1Dzq7wrS+71pJSye1tEFNt8eRtISSI7x0fmQEEYOJmW+tnWRfrEWB1NJBE07Oslf3EPuqF989MBdXkpsOx26yIOYzgjlDBk3Mk20ZNDFPnkf7LBcdaMJABwMj9Q2HhdwOBU30vX469R6Eh62DFwEuHEVF7xGDpEVjHOXGMWjS2Vk57OuWBpqc2rALOftTMOXKRYhfOF2S+1cGTSRJo6hBZNBEVJokaTRWQZO9b30F9/GvwsGzAdHjviWx0jihNIdLdNw9VxD75CVJ8qs6iFjQpKzoUTTW/4igsGfg6b1G8nWMxIBcmlJWWoSj5CLDZTp9fR2CGKcNaZlMnz4ToeGRRH8fiZm1jyk1aJKfdQ062jMQFf8VHJ3Ga530vYP5eO9APv64YhyuTwrEzh07CCy6lOVY0UU6Jsyy4HImZuU0NTVpjCGWdWJHwEBgwL/pMOmD8orfwd1tH7kU7cC54unobFsFHxJVVAYLXC5btgyNrd0jJgZrKGhy76cnMC3MHVfEOeHsSRYO1h+NJFTdTXm8dOFsnDx6GNVVlUInK6tuEg3PJQaJLTo6Y0mThhyK7EuE1wJCZ2Ji0pVwtHekQ6B4vRj9q7lwLcYCaFJS8Ds0N+5CdMw/0Np6FpUV76OlZSb9Xr5ca+LZ7aWovk3jtWlhXnBhJWEtwfbFrGOiql80tNlYAE3u+vi4UML2119MxF0fHsP4IHe8d0uy2W9wGTQxT8pl0MQ8eR7ts1x0oIkyofrADG2vM6DCoIkqs0TJWklI+JvWvVIyUwIDrhDYKEqGibJxRZ2CGmwp8ROV5lRlF2HBfVcjKCFKksuyoydi/EO8rukiL4qWJBsjOwiLMrrQ4aK+2YynrJG9pFE7OrsU8VOlhpaxletDH/0I57i/wtaJ7Ckn/kxPqP0EEdj87NvIJWUaouI+kXzPnOme5oNzU6tu95y8rBuIsZEmrIHXcrGEE53Vz6SlIidnUNckMjKS7IWnEf1dYUtrrnB1VhyWWtqkcb4oyLmDxFaPITL2fXKsman1Mu76+JhAb//H1VOwdJwvWXmTaw3ph9CZZCAEN4qOFgE4GS5qWjqRV9NKpUyKtQeRzon9eQtlfzdHeHucgbfX1yQAOxG1dTdQac5xeHl+h9zyibDquk5ww+KwJcvk1XQw7Okj8VMJdUy4XMlWRWSTP6sZ8GGnETHxT2KanC5pwCvXTEJNcc6A1fNwfdm+mW1kOSJDAzF78jjs/2kX+khU1sq6jUCSIgLpnIiJoHC8srFpQkhwNxYvWYzssiLEhCnKkC0hPF3J0YWcczqIuWSpkX1uFbmYFSFu/He0rz3kEnU1oWNOKCl5lC5Zk5mUV9MycH+o5mRCoDt8XLW7hSxZsgQubp46mW9ebnbEQumlEnrLzfVTP55FcrQbovzs8cGBKgTR58v6pfFmv7UYoGpuI/ccVSVes6/C8icM9NYupmz5Vy5foWoGxhRowgyVM2d/j+lJn9GPAwUNl7VRior/IwAp2oJBlaZmhTVf13mWCwMszs4KQIHtES0p3vvdq2hrbMEdL/0abj66nYTEXrcVkX75x6Kl5Urs9ZuzHeea/4+dD+QY2QyM1Vz//PFW9IX8ht7T/Vi0KIP+l1xN2otx+PBiODqGYM6cPZInXsg1Rb+KJa+2SfbtSyIWQRNZ3x6BnZ1Cx+piil27dgmlKZ6enli5cuUFeR+LzbXYvKal3U/XtBOTJr0JX9/lGt3K6FA/74WfBAAy7a+XCtbSChlLzegnMdMCKjNhVs5w0Uttsiu1HwZXTD1BwMkBegq/lP4tISZLKoL8v0BFHTEtega1eObPn4+gwEACFsSXwIjJB6+/o7OT3i8KIEMpOTv0Wof7/E4pakAxMQNmkGBtbLAP9u7Zg8pKBXNEWzBo0qvyXTA+PgZebi44cvAA/QZqJHConEAbD/SQjgkHeSDh8isuQXvzv9HQcAAJCc8iKOg6MZc26tsIDkOUaH2fIaP+QoZZYC/Zlu/dO1kQW160iMuuQDbEN9I+HqPPkdtRXa15oG8hCtuRfHVnJSd6H84ky29VcE855dSpU4l1HUUOS7otiS0915yPPVkV2Jy1B3uLNuP/Fr9AGkOU93HqrlbmuJfYcprf4pZ6X5sjh2Lm4DzLIWdgTIEmvb2tOHHyJjXQhEGRisrvkTjxn6LuBtZA4YiLZYVyy9I0YZththu2c3TAmmd/LSofYhrJ5TlisiRNG7k8R5o8ihllrJbnnN2+A9YB6wkFdcb4aYrDa39/FzJSkwQAJWGypqCpmHzqaiOmPKenpwbZZxfRYdAD8YmKGvOLKZhJYdVPtrKbNgmlKda2jqQlYf4rkLo8p6zoMSqZ+h7B4X+Dh9eVGhf0bUopXtyRiUXxfnj2yknC6/wDdTiQnaTFcPZMGjnqZOtMDjtcdKt6BlPrJZO/R4BXAWpqbyTgYjyaujMxMepTNLaEUonZvcJ4grVzTKxWgUtTd8OaACE3Jxvs37cP5eXlYBYmX6dYK18WvmXmSBTptiTFRyAqKkKwFO4kIGZoMPBSr8XyZuWyxehsbUF6+m4CTWqEUqXuHsVhb8rMuQiOHoe8gnfh0vW28Dcut+Oyu4s9LL08p70tFQXZN1EJXAKVwn0tbFdD7dcoL/krMaRnISv7StprTaZeWWO7wM7iYAFmdq5SLVNT7nt4eDiSk2eQvg8dz/U8k7H08hzWojpXU4DlH9wqfFYtiVyKN9Y8DJteBz2wvvTvIrk8R/qcahtRLs8xT55H+yxjCjThzTh67Eq18pzKyh8EJokSBNG3YdyehWSV5TyWpGlSnVuCn//9BXwigrDkdzfpS4Xo12XQRHSqTG4ogyYmp1D0AGMVNMk6sBm9ro+gv9sPE5J/GshX1tn5JGRaj7iJe+gwJi3LQwxowiVChTm3k3jqFETGfSp6H0dTQxY8RV83+ulpMbvlXIgQA5rYWvcPlLLoW2Nx0bOoqvwUYeF/gn/ALRrNt52rBGsrzI/1RUKAm77hSHvDiuxVbbFzp4KVwzqU2pgZ+3NrNMZaM+c9csJrJT2T9YLgaVFDHuYmfkDsD196Ev9bYlUEgW1UR9Lamb8P7Wz6sHXLFmJ4dBoEmpTUt6OgrhWhdLCNJGvm6KhIKhu2J4bBXq15Yz0TZt4ow97eAWEhwVgwewaxbjeTlk4aacYEEmjjiei4BIybOgNfnqzA/QviSFD5NdRUviN0DY9+m0oy5urdm9HcwNJBk4a6DSgv/jMBk5cTQPm8sBX9pI+UeXYu/W8ngkPfx5HDxcNuUQ+9kYZzZHJ3dxeYb60dfaJEgS0ZNGHXMyeq1LjxqwewK+eskE9bYqR9cM1jmB+2iESVFc5f5goZNDFPpmXQxDx5Hu2zjDnQJC+fBAwdAqhu9wb6odBKT6ueJcrwUvq3RNgrLtdhkVmlwCz/t1I0VtnezX2S0J/DkkCT3IOncfLrnYiamYjkG6R7siSDJub7GJBBE/PleqyCJvmnNqLD+gn0toUjcc7mgYTnZ11Ngp+ZOgU/jd0dMaDJ4KHhCjo0KBiBF2O4OdtRjfqF08kRA5o40ZPWnq42pKUpSld1RX//Bjq9fU8spLVUj3KFWlN+Yn0wv1YAPWZGepP+iLhyGC8qX/L28sABKjPhWn5tT77TyhrJNncwjwyWMGjS1eOAw1Sm29LZQzbCDcLfenpdqIzhr3oFLvVdq9jX+bOjubEO+/b8ZBBowlanbBEb6O6IWD9XYbopkxNRUVGOM2cUBzjVYGeTRirB4PxaWVnD188flVSyk0APRi6d50nA0/fEuvGCv38MZi9ejq9SqjE+0AOzaC84KkqfRX3NZwRUOSE85j8CIHmxhqWDJpVlL5CL2cfkGrae3MPuHtim8uK/oKHuGwQF30OisCuIYZRu8BauIMDE1t5ZNPPNUkETrtBwcOjDc3tfwdtHN5Hm0SAg6eFkh223/wehrtGkUWQ+iqAMmhh8OxvVQQZNjEqbxXW66EATLqcpLfsfPdFspR86rYI4q6objr7XlTbDDIDwGAyYhITcMKBxwsKvlRXfI4l0Tzi4HIeBE56H27OWSVzcYwPtLQk0OfXtbuTsO4XJv1iIcYulUwGXQRPzfW7IoIn5cj1WQZPi9C/Q0v1/6KqPx5RFdCA+H8X5D6ClaR/Cov4NV/eFkm6EGNCkqvwV1Fa9B7/A38A34D5J5zfnYMyk0Gbjaa41iAFNeC0sYlqQl0O6Cad0Lo0tfT09tqG5eS4aGtXB+Fry8j1X0QR3RztMDjFMQ2vZsiXkNtSFPXv3a52/k8CUtNJGKrNRHGCi/Eswe/wGVDWEYNdpEsikYMHZ6xe8TqCCNcaN3w8nF3ezWTs72VuhpDAXKadPiy7PqSLAI6uqGZ50QEsMVuTLnvQlZiZPxzGyZC4pUbjfqIYADlEOggP80UflcwwmcfxyTQGcnZKxa3c1Vl1xA1IrO/FDWhX+7xeJav2V5VUs+Bwe/R9yy4ox160o6TyWDpoU5d2D1uZDGp+/bS3HUZh7B2k8BWJ68s/Yv19RGiY2Zs6cCf/AYAIYxQGaPK6lgib2Dr3Ylb8dj257lcBHTROIX0yYgLd+8S9ikNmZTZhVBk3E3smmtZNBE9PyZym9LzrQRKrEM3hia+syAH7oGpcBFm7PwIlSQFbZ3pJAk71vfY3KrELMu+cqBI2PlirVAo3b3cUONY2addeSTSIPJGRABk3MdyOMVdCkLOdDsmF9EW3lkzB95f8GEl5e8lehhj4w9M/w8pFWPFIMaKK02wyJ+AdpMKw0341gYTOJBU34qasLOUidPHEcBQUFw2bBxYXEV72+I+HV6airV9c0YdYEsycivF1IS8FJdCZjYmJIWHYyrG1skXHurM6n5wzMcNlBsN8ReHtuR0l1EvalzxuY65q5b5O2SCfsA7ciJiBU9BpMbcj583a1xeEjR5CfX6h3OAaBzhDg0X5e6Ib1Jxg44Wvz8fbGhAkJgr5JS0uL2ljMtnFydkGQryeBRNYopFKo0oYWASwKDb2b7IhvRKe9O+7/9BS58pDQp69CJF81lO8te4cogXFiZxegd72jrYGlgyas58S6TrHjt5NQa7Ba+vOy1qKzPQuRMa/Bz2cJtlBpmFKMWNc+xcbGksbPJLR1G1YqaImgia1tL8paivDIroeRTxowpaQFMzTYqnlZ9Dw8OPshtHcMr8sk5XtDBk2kzObwY8mgiXnyPNpnGbOgiVQbY0mgyY9PvY12cs5Z/cQ6uHgb9tRPVz5l0ESqu03/ODJooj9HUrUYq6BJeeEbVMrwBhpzkzB77UcD6ayueIM0EN4glsf9xPaQTkiaJxADmuRlrkFnR86IlAdJdc9cDOOIBU34WtgG2s3JFtu2baN7okHr5Tk7nYGPz5doY5vf2uvV2hwrrCPtlj5MDfUURCjFhI+PD5YtW4bm9h5Bz8SNGC9inp77eH9DTNHTyClZhWO5cQNTXTX3Uzja1qLc9iMsmZgkZgmSteGDvBWxXTZv3oqmpiad4w4tN+LGAWRzGuevKNOJCA+Dh4c72IFJNdp6reDh6QUPR55L8UpZUxFmTfgP2rq8ET1pO5787hxKyJVn4/3D6Zb0oyh3HVlHHyEAZhIxTt4lwEox78USlgya9PTUkgj2QtoTN4xLPKSxJbXV76Oq7CWhvCo0/EFybYrDrp07dW6dr68vli5diiays2VbbEPC0kAT/g1rZduFX23+Jera66BkyKnmxNHWBtPCPAX3rxsTb8TlcVcSE07cZ5ohuR3aVgZNTMme+L4yaCI+V5bcUgZNTNxdSwFNulrb8d2Tb8CWROWueu43JmZFvbsMmkiaTp2DyaCJ+XI9VkGTipIXUV/7IapPz8SC2/47kHClU4On91oEhT0t6UaIAU0yUqdRmUU3xk06ShoMzpLOP5YGMwQ04bzwZ05vd5vg+qMtHB1z4Of7ETo6YlFdc5vQhNkP1S2dAsuEDxvJEV6iUmxjYyPojvSD6O/n5QT4+8WehFX1PT0PDPg3MSQqUVJ+D/ZlKVgtHh4eWDXja1h1n4Nb0AcI9ZeuLFXMBXkQA5NxjMamRmzbulVnF23CtkNzN5HYJgy+nDx5UjEWoSR2rl6Cjsk4/0GR3dbedNI1+RwdmIy9dX/FF8cVZT2v3zANSfS0XFv09jajKG8dOtrOwsV1DjFO3hVziaOmjSWDJq0thwVQy9klCRGxg0C2MvnNDTuoFIwcz86Hk3MC2cP/GampOVr3x9bWFitXrSK7alv6ZxjLhAe0JNCEyyVdnazwZfqXyKkdzFdZYwe5DilYXaxnEk/vLwf6LFLGTYk3IdQtCm2dI6tvIoMm5vmIkUET8+R5tM8igyYm7pClgCY1eaX46fXP4R0eiKW/v9nErKh3l0ETSdOpczAZNDFfrscqaFJe/CQJC36L0oNzsXjdv2Fjp3ia1tK0F8X5v4Sr2zyERb8l6UboA026ukqQe26lULcfO0H3E1RJF2aBgxkKmnAKnOytySGnDIcOHtTIiL19CQL830FXVygqq+4VntJmV7WoiSiOD3TXanM6dDB2tvHxDUBHt/qTbxambWmuH/bpuZVVL0JDnhKGKyn9Mxra+oU1zF28DP3NjyPAIYW0IN4kLZ75Zt1RBk16etnCtQ9lJUU4elRh4a0tjhfWD+izKF9ndg6zdJRhTS4eydOn4dy5c8jLy4ObpzdKGrsExxPOsTI6+g8gLmwb6vouxcM7Lx/4+xOrxuO65JBh19DX10a6GQfQRyXLXALi7DrT6HxpczxiQd82srQdibBk0KSu5hNUlj4vlEVyeeTQyDl3KbEeytT+7Ot3Ferq1qCwULM0bN78+fD28dd4n4ndF0sCTfia7ex76H2qYtesgiPxe4sddbRFJ5XS2VtplruJzaOYdjJoIiZLpreRQRPTc2gJI8igiYm7aCmgSd6hVJz4agciZ0zEjBul1QOQQRMTbzIDusugiQHJMrHpWAVNivN/QwDJTyj6aSkW3PkMnDwUT7A72jOQn3UNCUXGI3rcoECsiWkWuusDTVqa96M47356Aj6LnoC/J8WUY3YMY0ATTpazPZB+9gyysrLUcmdnW43AQBJH7PElq9/fIqWkQXCuUQ227JwdpXBsGS4SExMRHRNLwIH2Awo97EVhQR5SUlI0hrC3LyPg5i2yA/VHRaWidGzWrFkICApBXu6jaKz/kRyXniO71l+Ydd+VoElrRw/pw1ghLZXKh3K0P/3XVhKgDWxie9gZyUlkL3sYFfXNlO9G0otxJt2YQfaVf9AhONhswab8K7Ahe5lwzQzAvH3zdEwN86AcnkJlZaXWXPT1taK99TQBPV0EUgbBwWmcJDkbN24cAmk/Og0QHDVkYksGTcpLyCGn9hsEhjwOL98b1dLCDKGsM3M0UuXolIBp0zYKpXWNjQpxYA5+n8XExpF2juEME+UYlgaaGHKfmbutDJqYJ+MyaGKePI/2WWTQxMQdshTQJGXjT8jeexKTL1+AcUtmmJgV9e4yaCJpOnUOJoMm5sv1WAVNCnJuoUNTCvK2rMbc2x6GZ7CfkPTenjpknV1AYtmeiE/U7mhi7O7oA03qaj6lJ63PDfuk1dh5x2I/Y0ETruV3c7LBzz//jKqqqoHU2dg0IzjoRXKIcUVZ+SM4nF+nxjLhhvpAk6CgIDDLpKWjb1hnIaUw7QlykRn69NzF5SSJ0W5EW9sk1NZdSw54cZg4MVEQuKwse56sWj9BQPAf4e13q1m3XBU04fy5O9sKmiQ1NTVa18HuOaUN7Wjt6oE/6ZnEn9czGdp42rSpCA8NxUvvf4mKxjaMC3CDn6uD0IxBlZjo7TTHZrybdhsOlycLgMndc6Nw/fQwEsW1ppKpfmylcqHW1lat6+jtJUHattNkJU1P2e1DCSiNNSlvISEhmDV7NpUyQLBgHomwZNCkIPtmYT8iYt4n9o/m77dzp9UdkTi/LOo7cfJmdHW0YCsJw3KIeZ+J2RsZNBGTJWnayKCJNHnUN4oMmujL0Nh4XQZNTNxnSwFN9r79DSozCzD37jUIniitpaAMmph4kxnQXQZNDEiWiU3HKmiSm3E5ujoLkL1xLWbftA7+ceEDmcxITRKeQI+bdJx0RRxNzPBgd32gSUUpWcPXfEYH34fp4Hu7ZPOOxYGMBU2Eg5idNaxJV4YPYV1kB8xhZdVNpTH/R/eFHZXGPEkWw81UoqPupMaaAJPOW+gOzbmTk5Ogr9BNDIQuEo3VFSxM60rCsEOfnnt6boGb6yF6or6cDvhrsWTJkgGBy5rKt1Bd8bpgU8121eYMVdCE53Wg/KGvC1s2byZmjjobR7kuJePEm6g9E4IGS26Ur7NOy4oVK4SSnO8PncGefftJoNILLlTCxLFi5Uqyir6bAKQ0+Ed8iMLmaLg52A0IynIbR2rb3tqIHeTGM1z0EEja0ZYqvGzvECn8MyZcXFywivaXZG5G1KbVkkGTzLSZBCa2IX7iftjYDpZrKfejsW4jyoqf0NgeD6/LEBPzAoGcFUgh6/DVl12GTtoHfe8zffssgyb6MiTd6zJoIl0udY0kgybmyfNon0UGTUzcIUsBTX58+h20NzRj1WN3w5WsCaUMGTSRMpu6x5JBE/P2SixtAAAgAElEQVTleqyCJlln5hJroBHnPr8RM66/BmFTB+n5OaQr0k36IjEJm+kQNQimmLor+kCTorz7BK2FsKjXSZdikanTjen+poAmwoHbzgpNDXXEOPlpII+sJ8K6IiWlfyGdBCucKm4YYJswyyGORBSVh/qhyV9MAIebu5dofQU+8Hd3tgrAgzL8/d6Hg0M+WR7fjqXLHiRAwYoELhVlPvW1n6Oi5BliKV1PehBPmnXvh4ImPDnrw9RUV+DAfu1sLXYbYtch1lGYFalZ0sSgiK29M2mD9GH7uTI0lObCl9xVuNhi5syZCAgMxplUtqetQ9yEn2Brp2CKDQ1nspMuLszHiRMnhs1JT3cVleWlC68zc8HaxoX22VZgm4mNZcuXw9HZjQ7qYnsY185SQZOurmLSc1pF+xhA+6nunKSaKS6fbG7cLfzJzs6fGFYvEtDSCnv7MBJWJt2brkrSo5oBv6A/gkt3TAkZNDEle4b1lUETw/JlbGsZNDE2c5bVTwZNTNxPSwBNuto78d3jr8PG3hZrn/+diRnR7C6DJpKndNgBZdDEfLkem6BJH86dniwk+cyHdyLp6mWImTtlIOmFObehrfUk0cQ/IJq4dE4k+kCTQbDmB+HwJofxGTAVNOGZXejAnZ2VgTNnzggLCQl+gZhHrSgt+yMd1FxwtrwJ9W1dpLPhgiAPRyrP0a6fMG3aNISGRRisc+FMwEN5WTGOHDlyfv7naf42hIV/BR//CfQ0fbAEpKlhK0oL/wB3zxUIiXjJ+MQZ0VMbaMLDOJE+THZmBtLTFYDE0DhaUIcuYpIkh3sTSDWo8cI6LX4BQfSaNbKqmvHot2l44epJaCtIhZubGyZNmozmjlZkps2ClbUDEiYND4jwjrg4EsBFTjz5+fnDXl13VzlZfWeqvc52xE5OiTSHbrZZUlISgkPDhfWOdFgqaMJASEnBb+FCAtzhBghwd3Zkk3D3bwSQWzWGsy02ZH9k0MSQbJnWVgZNTMuf2N4yaCI2U5bdTgZNTNxfSwBNagvKsPu1/8ErLADL1t9iYkY0u8ugieQpHXZAGTQxX67HImjSQ0+ss88upBICV5z5+FpMXDUXE5bPHkg6Hz75EBoS8Xc6hK6WbDN0gSZcDsRlQVQIgvFTuFzAeAFDyRZ8EQ8kBWhiTQIjro7WOHz4EEpKShAU+E/Y2taREOzviOHgM6BrMiPCW82mUzVt4eHhmDFjJonG9lFpj+EJZWHVM2mpaO+ogLfnl2hoSMfU6fsFpotqKO1aL4SI8HCgCducsj7M/n37UF5ernHx6QQ61RHolBDgDl9XQlgoWKclMXES6Z0omm9Lr8BTm9Jx3/xo/GphJLEL7ISSpLa2TORlrqUypWgSbP5eZ2K53MnNyRbbqUynvr5+2LatLYdI3kS95MqWnKx0MRYiIyMxLWm64JZjzP4aekdYKmhSU/kOlZe9Bh+/O+Af/AeD0lJW9CcSQf5Bo89w2ihiB5dBE7GZMr2dDJqYnkMxI8igiZgsWX4bGTQxcY8tATTJP5KG419sR0TyBMy8aZWJGdHsLoMmkqd02AFl0MR8uR6LoElnRy4duK6EVV8w0j5egbgFSZi6ZvFA0ivL/k6imh8JP975R7xUoQs04SemeZlXCZoKMQk/SjXlmB1HCtCEk6cqKOrq8hKVAZSR5fD9aGgJwMniehIbtUFyhJfWPLNY6UoqM2kl4VfW5jAmWFjVkyx9a+tyCLApQmXFVviF/E1DSHbA9YlcYKLjvzFmKqP7DAea8ID8vWlv04ctpA/T3t6uNkdRXRuK6tsQ6umESB8X+Pn5qem0cOM39+bi4yOFuPuSKPx6SSx6yP60m1LZTM5XJcQwYHtltlnWF6yz0tvdLpQ7abMJ5v4tTT9rDMMsExfXQUBVtYGnp6egu9LczlauRiBi+hat5XVLBU1KCx8moHoLgsP+Bg/vKw3KTGXZC/R5/bFGn9DI1+DmscSgsVQby6CJ0akzuKMMmhicMqM6yKCJUWmzuE4yaGLilloCaHL6u5+RtecEJl02HwlLZ5qYEc3uMmgieUqHHVAGTcyX67EImrS1Hkdhzh0k9pmA1I/mIGL6eMy8eZBRUlf9AdXK/4PEWG8jUdZH9G6Gh4stOXDoPzTxAdiK2As9Wg7Q3aSr0E6ClLa2vnB2map3Tm0N+vr6qWzBuMO5UROO4k5SgSZ8iawv0tbSgNMpN8PRIQ/V1XegsCYE2VQ64ktuLgnk6qItBF0OOyc65BvPGmI3HSeHLry8bz2IY4E7k9aT5gYzktSju7sCOenL9GpCjMSW6QJNeD7+jGlurMNuctRRDWaZMNvEkwR0p4b7CAKeLJTb2z+Yr0e+TcX+nBo8c0UilozzH+heV/MJOU09T9a0N5BFraY4qLbrZJ2V6qpyHDxwQGsamK3T39eh9pqtnS8xTTRdW7jRqtWrYW3rSGseiaxqH9NSQRMGjBk4jor/gvI90aCEdneVIufcCrU+zA4KJxceGxvt700xE8igiZgsSdNGBk2kyaO+UWTQRF+GxsbrMmhi4j5bAmiy750NqMjIx9y7rkRwomnWgdrSKYMmJt5kBnSXQRMDkmVi07EImjQ37qT6+d/DznoOTr2fgMCEKMy/d+1AJpsaNpM+xCOi9SFYbLKirESn2CQPbkNlAlzy0a3FPaWrq4hsM/PI+jSMSg4Md/6aMGECIqKiNco2TLw9LtruUoImnATe4zOn16Gz8yBqam/AmaJwlDd1IIoYEiHElBgaLFbqz7ocfQq3F2PDyqoSmzNew3sn3xaG+O2sh7Aw9j463KuLp/bRYT8zLVmvxoex69DVTx9oosifFfJzc3D6NFn8ng/WM2FdE7Zq/sNtV8Lbx19DKPfadw8J9sSf3jVLyLUylOwCQ9lgTnb9yDiXjsxMdf0SHrenp4acdBT6NUKQGKyTc6JWQdjZZC3sT2K0HeTSYs6wRNCkv7+XShMVmlIJk08SsKwo1TIkmGnFzKPu7nISS45GWPSb9FkaYsgQGm1l0MSk9BnUWQZNDEqX0Y1l0MTo1FlURxk0MXE7LQE02fR/76Ktvgkr/3QX3Py006VNSZMMmpiSPcP6yqCJYfkypfVYBE0aar9CeclT9AR8NY69EwDvsEAsXX/zQBrbWk8QE+V2YnxMQ0SsJu1bW75ZeyIt9TRycnKG3Q5doElne6biB79jPP3YDzZoS4ODg3HJ3LloIZYJs03kAKQGTZj7UFX2JDnCfEvuNWtwIDOadEp6MDnEA+6Odmopj42NFXQ52obojhi6L3Z2fcgq/wIP71C3EP735Z8hwmcVOrrUKQ6ZaTNo/9vJKvsYCcZqAjmGzi+2vRjQhBkzbKN8/NhRFBYWDgx9vLAekXEJuGZRMlk9O6hN2U4UjqX/3ANmaO17aLB8jhuxaCiLh4ZGvkIlGMvFLlUYi3VW9uzZg8rKSo1+fX0tJAKdQsyxHjgR40ubg058fDzGT5hI9sLGM4hEL3hIQ0sETTrosy8/62pB/DomQVObRGyuaqv+i6ryl6mk8k4qrXxIbLdh28mgickpFD2ADJqITpVJDWXQxKT0WUxnGTQxcSsvdtCku6MLGx/7F2xsyTnn79I753B6ZdDExJvMgO4yaGJAskxsOhZBk5qqd1Fd/irc3W7Fwddt4eLjgdWPrxvIpNL+kp9Uxo7fJirDfBhzd7bFLipBqKmp0dpHF2jSTge13t4GOqhNoYOaeNDX2dkZK1etQmePdgaLqMVbYCOpQRNOUXX5C6ip+hgdnWvx7eFQIWuXRPsSe2gwgb6+vli6dKkgVtprAoDF3zdWtl24/YvJJJZapbZDYR5R+M81x2kdtOcqpV4555aTi0g53bM7CHgLMtuuigFNeDFsL+xCwrrbtm1DY2OjsL4mazdEJiYJgN+iOHXbYC7dWffJccT6u+Kj29VLbvmQzYftqPgvqZxjgkHXak/6JjbowVbSWensVBd+5YHYOauvt4nei0n0XnRXG9vf3x+LFi0iHZNek/bXoAWrNLZE0KSx/keUFT1K4NelBIK9bGxq0FD7NYHhf4Wnz9UICn3K6HGUHWXQxOQUih5ABk1Ep8qkhjJoYlL6LKazDJqYuJUXO2hSW1iO3a9+Bs8Qfyx/6FYTs6G9uwyajEhatQ4qgybmy/VYBE2UQq++fuvx8z8aYOdojzXPDj7NZweNjLTpRBO3+3/2vgNAsqJa+0zOOee0s2lmNkeWTWzeBZUooEh4qCiIgImkqL8i7ykICCISFFSygLh5YTOb44SdnHNO3ZPD/53q7Z7u6Z7p7nt7wvbc8966bHdV3apTdW/f+uqc70O4+HmLJ4PJJh0Ge2nnjh0I9e8zqjcaaKJuPwZalB5Ibi7HdQ1P3EfrwLr167G586Ue48tZ3G97LDgmoEnNy9RQ+wr5Bd1Lr37iRV7gOpkX7a9znzNAewawBsA+YiIDy2I3s+qMh/sgPXP0d3Q4/2Ujng2Wwt086xG6f/EDAE4cdXQ6xXk3A0jIBpDwIYCEWRZfT25BS0ETvg7zw/R0qQRgwYDf7KWr6cnPsmlGqA/98Jpkg67syKim3+7Opo2zwuiX1xryXORmLgOwoaLpqV8C2PCzeghuoCFStbXQgQP7jep2IkWnH6k67kjNYY4hrbFyD/OYDOC50MNstBNg9gia1FU/T411r1Nw2PcpJPz7kr3a1rIXaZWPyAZftB1QQBPJU2F1RQU0sdplkioooIkkt9ldJQU0kTmlVzpoUnIqk06/t4diF8yipd+0nUSovlsV0ETmIrOiugKaWOEsmUWnImhSVfY4JCo/o8jY39K+3xZhUzpAN/7+IRBsDvFP5GVdjY1TCyWnHMLGKchiL7u7OFBTY52QWR1upkATTgfo6S6HKginCjiQp/dCpFZ4W3S9+fPnU0xcwrjzKljUuQkuNBagCSsqMeA26HELFTRfT5U55ykpeGiurl650iQvh7Wu8PJwoLzGHMqqzxLkmEx0qTPwbDDJJW/m54XPo2CPcHIc8BRflxXdS+r2ExSb+JoA38bLrAFNuE+eIGStqiwjH6gLVXU60ddfO0lzAT69cpshwe2fDhbQu6fLhNzwncvidcPp72umvKyVuF99aEbqccnDZJ6agrwcyszU4zFBa7pUOSgRubgMReysWr2a/PyDENUl+ZKyK9ojaFJefD8ArENWp1oNd6a6/TjugW8LtaPYpNdl+1oBTWS70OIGFNDEYlfJKqiAJrLcZzeVFdBE5lRe6aBJ+n8PUe6BM5S69WqatX6pTG+Yrq6AJmPiVpONTiXQxAMnr+NlncM4EPi6UxE0KS/6Hqnaj0Cq9M904NlL1NWuput+eR+5+w4RTRYh/J83T1JO7T3AY5ifm0OXLl0ymNrhoMkgeBM6Oy6IE3OdYVPs5cWEnu6jLov4+HiaP38BeDMsEu4ZryU2aa4zFqBJS9PHVF3+CypUrSFHv0cpBIpHzVUlYsypqamUmDSNuvocZfuA70k2Xhe1Vb8XPCWCkNQ5ADw7Cw04bzjiQZsGVFn6Y8i27qaouN+DxHiL7H5Y2oC1oAm3yxxArCJV195HW146Qm5IRzrw8BqDSz7y0UU6UdxIz3wtjVbppe5wJEhJ/q0CPEqY/pGl3TQqx6TM3kgXOnHiOFVUVOi+7+4uot7uMnJ1T4TEdKz4fM6cORSfkIT5HX8eE/2O2yNowso3DAwynwnzmki1ro4sKs7/ukjX4rQtuaaAJnI9aHl9BTSx3FdySiqgiRzv2U9dBTSROZdXOmhy9DW8zGYX01V3f4Wi0gxDfGW6RlddAU1s5Unz7UwV0IR5MHjDUVZWRp2dneYdc7nEoAXytsMb4002K3n09RsShU5F0IQ3XLzxik9+hw6/dI7aahpp40/uJL+IoVD8IWDlZfL2XW3x3HBBTq9gskmONqmurtbVHQ6aGKl1XC7p5j4NG2MNZ4Yp8/f3p40bN4IHot9oPq3qqB0XHgvQpL11HwhIH6aspgX0bv599Nn9K+jM8aOYb0dacfXVNifiZYCGgRofv2twCv+i2dmqqfwNNTe8BwneJyDFe5vZ8rYqIAU0cYaSFD/H+FF299tnqLK1k165dQElhQwBl9/8+ymAKt305h2LKPqyQhHTxLS17EEaxo/gl3XwywuyhuECsAaKx7R7925SqTTgZW9PBSJ8CsQ9yPdidHQ0LV26jNTdgzQg4dkrq4PDKtsbaDLQ3065mUhJdIR0d9pZWa7qAdBVmLMVQFcMJc3aJastrqyAJrJdaHEDCmhisatkFVRAE1nus5vKCmgicyqvdNBk529eJ3VTK21+9G7yCTWUYpTpGl11BTSxlSfNtzNVQBP2BPNgDPZ3066dO0EEaqiGYd5TlpVYvHgxRURGmzwlnYqgSUH2ZrEx4hfrY68do/rCClrz/VsoZFqMzqHV5U9hw/pvEAo+BWLBmy1ztF4pfl64Og3QLnA3aAGx4aAJn65y+sVw027WRroo82Y4OruDN2NiT72tdso4VhgL0EStQvh/4bcpu2kG/TXzIdr/8GpydugTaV09iEDokUNkMsw3qrYjVF78PfFp4ozPsHlPNOu9+pqXwLnyF/BC3A9+CE3d8TBrQRNetd4eQxE5TPhaC/nmmeE+FObdByClD7wwXnS0sEVIdK+erkcQC9CkpOx1oZISGHInhUX+RPYQmWelU91K+/buFW1xqhxzwzi7hFFQ8CLaCh6Tjp5Bk1Lhsi9uZQP2Bpp0qM9DqewORIekIDrkfSu9YVic0yk5rZI5bpjrRq4poIlcD1peXwFNLPeVnJIKaCLHe/ZTVwFNZM7llQya9HX30iePvYgXV0fwEjws0xMjV1dAkzFzrVHDUwk04cEzD0ZjQy19efSoRU7mTYUD0jgssaSkJJozdy5OSU2XnoqgSW7GUqQ8qMGHcIJOvL2fKjPyafld11H0nOk6J9VfJv3kzSdvQqUY+7a9tYn2Q1GHTR800QAmLE88TCIY8ypSMZyGCEb1r7106VIKi4hSeEzMTMhYgCbatJCStljaV/s7eu6muUgr0cygrYl4telhIeEPAgD5jkXLr6nhn1Rb+QwFBn+DwqIes6iOLQpZC5rwNb3AJ5J/mU+ksqWTihvVND2wnjydhmSAK1UR1DUQDr4TDdHr8uXLKTg0nEpLEFHT+D7G+DjGersthkDMb1JeWkxnz54Fl1ETItHSRTrUdV/9MQhhfWw+v1I7bW+gSXPjB1RT8WvyC/waRcb8RqpbRL3BwX7KSZ+L/3KkWXPTZbXFlRXQRLYLLW5AAU0sdpWsggpoIst9dlNZAU1kTuWVDJoUHrtI5z76nHzDAmnTz+6W6YmRqyugyZi51qjhqQaasAOYByMvJ5uys7NHdDSThnZ15ug4MMylcQQGBoo0jjYQXwxPy9FeZKqBJqxQk5O+QKeMc/aDfVR0Ip0W3ryBEpfP0fm+pfFDyFf+ivwDIV8ZI12+0hPcDcWFBXTx4kUBmgyCn0KtLhDqHGxOLsGINOoUIA40Zskd6QDOLuEm10BycjLNTkmlzl4lwsTc02gsQJOe7lKE/2+j2o4QKhh4k+5dIZ1/YbT+s0IPg3asgMOcOpaaVrrVN2AbRcX+r6XVZJeTAppo+USOHz9GlwpKqKyxnBJ8y4z6Utc9hxJDAmnWrFk0fcZMsfbLi+4DJ9FRcBJZnzo30mD5jmKelQsXzlNBQTp1qM7QwkUraPqsm0H8Kp+nRraTLzdgb6BJTeXTSCl7h0Ijf0xBIXfJdtOQqtJxPG99ZLWngCay3GdVZQU0scpdkgsroIlk19lVxSkLmlTklJK6RUUzlhnK8Q2f3eIL+VR0Hiz8Xd0UmhBB0TPjKDR+iBX+SgRNeju76fS7u6kyk09rNbb4ts0Uv3h0X0hd+QpoItVz1tebiqDJSDwYWu+ZJA3Fl8NlMbXlmWeB5THJ0ZV6R8n6mWqgSR/IO/MvXQNgIoSSZx+gjB1HKOeLU0Yk0qzmwKoO3j4rKSbxFesX8eUayC4Qp+pnz5ymosLjSNXB82pwAKCNq+BLcHYJtajtkJAQWrt2LbV39uuIPy2qOEULjQVo0tfXSPlZq6mtx4f6g7bTVYmWqypZOg2crlWUe70oHpv4KlRwVlhaVQAJDChwHa47XiYFNOG+aflEtu/YSRcLz1OU9xD/j7bvHYNJlJq8kNasWaNb+4U510FxqhhpS5+Ke8hWxjwrPh7OtGfPf8nZ8RLNnTebnD036ySdbXUdOe3YC2jSDy6Thto/U0vjvwEYdwjAhIETuVaQvRGpl1U0bdZeA8JkKe0qoIkUr0mro4Am0vxmbS0FNLHWY/ZZfsqBJs0gLmQgpBhASBQAkGXXrxp1Zs/tPkEB4UHkHx5IdSU1dG7XCVp391YdcHIlgib5h8/RhU8PGI1765OQnAv0tflKV0ATm7t0xAanImjCzuA15gIejN16PBhaJ/X3tyDv/oKRzzgqgVUkhttVV12FUHaEt/cOS/8YVtDeQBMm1x3NuqCIU5BzA3w2nabN/ISKT2RQ9ucnKWFpKs3asExXlTkNCnJuQrkZKPfxiE1qlUtGvehAHbk5NdLOHe9Qa2ur4ErgzZ6DAxgoLTBnZ2faum0bOEwcFR4TC/zFRcYCNNFGKfUNOFPMjNPk72nZ/FnYZVFMK7/KPDrMp2ONDanKyOeHsOa6UkETvgarh3WAT+Tlt1+jSM9io8s6esyh226+h/rJmVgpiI0jxXguZqSdBgmvhzVdNVuWOaaovwuRYKeoqOg5ip028r1vtrExKGAvoElFyYNIXdxv4CEmO2bSYzlWDNUzfsazqpKp30Vr2lZAE2u8Ja+sAprI85+ltRXQxFJP2Xe5KQeacHQJAycV2aViZs2BJsOnf/crn1D0rDhKXbNAfHUlgibH3vyPQZSJdozDCR1ttfQV0MRWnjTfzlQFTcQmYhgPhtZbgwNdpFadMHKeKdLQlJQUSpqWbJH8qT2BJr7YxA7091J3T8+Ii0zVjs1Q4X3k7b2YEqe9Kgikm8tqyDPAlwLjhqLv+sBrcClzPTk7+9PsVMOXe23jLi4ughyyF6pEIxnn7NdV/R8FBq4gL8+NdORIOTk4WRZdom1z5apVFBAYYhYAM39nTZ0SYwGa5Na2U3fVKnJx7IXSxxmzstDWerul6VNIGj8puDSSZm4XhJbWGJMbM8mxi2sUTtr3WFNVVlk5oAlfmPlE9p64SKWZ/yAP5y5dXzii5/qvPkRhIaG6tc8krfmX1uG+DKLklEOy+j1SZQ9XRyor/jE1NOwUhKLWzsOYdOpyo/YAmnCUSR4Uc4abpSpRo/m3tPBupFadprikN8nTe4msqVBAE1nus6qyAppY5S7JhRXQRLLr7KrilANNtLOXefAcqZpVVoEmPV09xKDJgi3LRJoO25UImmTtQS70nuNGC1mJNLny7+2pDJrw7Hm4Mg9GPqWnG5LZdajP6PhMxCybIA0NDw+nlStXCvlTS6Ig7Ak04SgTb0j9Hj50iGprhwgl9e8IT89MCgr8AOSda6ml+VrqVndSS1U9uXl5kH+knkoHKoWGPo8T7QGqq/uBUVSIh6enSJfhSB4GTtj0/c0h4rUAS9pbPxff+QZspRnJv6aa6iY6dtwY/Brprk1NTaXEJAbAFB4Ta55sYwGafHKhkiJ7byJf13Zs2A9i4z4kUW1N30yVHehXgS/lWmIZaubQYS4da43bYE4HR0cvRGGctLa65PJyQRNOYatr76TtB46Sr2onOSCuhC0yeTWtWXaDwdrvUJ+D2sq3QJY8R0iGj5Uxdw1z2CTN/C+5uo0Nd42Uvl/JoAmnPHJ0SXvbF4jkaTEavieA7Likv0lxi66ONoKFpahZklqOKaCJHO9ZV1cBTazzl9TSCmgi1XP2VU8BTcyk5+hPN6fq1BVX0zV3byNXd7BPwjq6+q64FdHT0U3bn/sXNZbX6fqeum4RLb9l/ZiMhTknONqkq2dsZGHHpNNXaKPMx+Hi7ICIganrayfHQTp16hSVlQ2RIw4O9FFbOwMnHZhZAATeqThVHtrou7m50dYtWyFHi4iLgdHTcrRLwwmqUww29IxGfHIFrSO+Twf6emnnrp3U3W0sGeTpeZJ8ff9L8fGvIvc9Gi/vA9Sl6hDqWx4+ngYjbWo6QU899S+65547aP58w1PLsLBw4kgTngdh2Pk5we+DcHtt7QdQ+HgGEtJqbKx9ca3HKCT0Bvw35KUxhxcvplN+vrHU8HA3R0ZG0lXLr4L8KghkLZvOK2imxrarzJfBpgW0bHG1Jz7NpEVe36NwrzqaN383eXjYbjNdXPQrqql5h/wDVoH09DXJ3T1xPBVrpZeWLctAJIzm932szRUpLfy46cO9ZCY7bsSu1Km6IevbQ2e+eJpaWlopOjqKFkEqPTh4o0Gd+vr/UF7eTykkeBuIYZ8bsT0H3I+WgMYjNZCZcRu1t5+jlNR/4XmxaKxdaHH7ri5OYlz9/RqgdjIbA87NTV9QU/MX+PtzrI92XXcdHT0Fl4m+xSc8ThERd8oaUkHBY1Rf9zEiLZ8G6G098Kh/cTekjvX2D+L3dvL7WpbTJkFllv1myXZL31smQZevyC54ulumunhFDk7ptMUeUEATC0GT3BNZ4EHJo5W3bSAvf2+dg1vUvRY7e7IVvLT/jAixD0uOpdi5yWPWPWe8DbojdULVeeUBTGPmlDFq2AWEfPwiru6ayqCJA/hNBkFKuIfa2tp0nu5QZ2OzXyMkh339VxrMwNo1a8kvIIj6By2PSnAFOOUCwEDdbT++dnIYpNbmRjpw0JjzyMf7APn47KegoF+RSpVAx748JqJNeJPl5u0h/tZaT3c+HThQSPPmzaKwcE1UHpufnx82zB6IVtGUTYWijUiH6m2gitJnsEHYLT4PCNpCMbGPAdjSpOO4YSPPCjp8ic8//xzh/xoFHVPmiUgWBsD6Bh1lbf7G6HfmR5sAACAASURBVBad9M26I8WCravHdhueG/9yjG5L/BUl+JXSzJQPyMt7SG1JjkPa245TXrZG+W1W2ifk6TlLcnPp51ZSb289zZl/WLfuJDdmYUXmJeHNTi82l26QT2dAUP+ZZUkzDArWdbfSnNhmOnz4PK3fsJGqq54HcL4B98wQYNnX+wnG9yF4gb4K0PLrJptm0uSoqGjq6bf8OTi8ocK8BxCJ9jklJb+IqB9D4MaS8YxVGS+8g7Cfe/rGDkV1crD8nhkcjuZC9lelygRw/A789wXWRafOFZ5eKQAF14k/rm6RkHh+mhrrP8H8+lJk9AMUGv4t2W6rKP0d1da8RdFxj+KZfZes9rzcsZEHjw4DJ4qNrQe8QcDchXeQPgsPe8a2N/bbur+X7Xm47Ndb9jsyBTSxADThVB7mQBkOmPCyuBLTc8Z7OSucJuPn8amenqP1NJ++dHW00V4AJ1rr6syiPmyKRKSJ72rd5/PmzcMGPZ66+62Tx7Sn9Bz9FcopTkUFeZSRkWGwcAP8dyBC5yQ1t2yl5KTvUH52joHMs6uHOyJ1nHBi3kU9PYW0f385LVoUQiEh0wFe+JAnwBJfP38AU3iRxv9HRETQiquvpqrq7VRZ/mucSrZjE+BN0bGPUnCI4Uknr2sEUYnoh4G+HtqxYwdOX02DsBs2ANj29jULgPHp3Ehy0uN3x06+K9k6Pacd0Zib/nSYfrzozzQrMAfqNH+FSs1VNhl4Sf6txCSuwWH3UUj4A7LaZOUdVuBJnPEJyIbH7hBBv5P66TkMdjtRnyCzNhXpNdrgKtsv0o3rPMnNYyWl510ib6fnqaMzhRobh8CRwIBPycvrHDU3f4VUauMIEEtk1i1xMMuNs+x4ePQvAH7eYkmVcSkz1uk5LAXt4+lEOdnZ8HujwZhYwa2vtwaRTH2IzPPWS0/DZheAMaeWxcX54nCpjioqNYpjHp5zkSazFr9V12A9Jo65j7Ry3ba4l5T0nDGfLt0FlPSc8fG1kp4zPn6e7FdRQJNhoAlLETNAoiWIPfHJYSFNvPK29bqUHP1JVUAT80tcAU3M+8hWJRTQZMiTTJJYWV5Kp0+fFh92dlxESkmz+G9vX440caLY2Fhs7BcjvB2hxFYeitkraMJpAiz1e+rUSSovL9c5NCjwQ5zkZ1Bj003UXjudll+9jI4cPQLeEk2aH0eauHu7kZtbEU5MuwCaVArQJCrKC+DENIAnsdgMNuNPMdrxoW3bbqK6hh1UXfkXUd8/YCOAlIdwTbXR7cBRJrwpYdAkKCgAc6mmo0e/NCq3YP58nJKGU23dyJEoXCkqKgobTK9RiWhtdU9eae3YGjQ5WdxED390gR5d9g9K9j1NUXHPIdJLfgRCY90bVFf9R6GmxBK6cq208C4QYZ4R3BDMETEeNpzTxB3RJm0tTXTQRKTXaP1RDxynmbG7yDfwCXp7ZzV9bdmbonhl1c8QseAl/js05G+4N4upvuFO6upKMmiO712tzHrfgPQoE260vuZFSOL+VYBYvAGfLDbWoAmPk1Pb3J0HaReAr44OTQqNKcl7RycfPM/cBFjClpCQQGlzEqm65r8AFFeSN5RwXF1jxtV1TQ3/otrK31FA8O0UHvW4rGsroIks91lVWQFNrHKX5MIKaCLZdXZVccqBJiw3nHHgHPWC1JWJXTnVRp/YlaNKco9n0Y2P3SG+//fv/mE04VznKw9rTnAU0MT8/aCAJuZ9ZKsSCmhi6EkvNwfKSL9IBQUFkOc8K6IZ2Lx8liPfPpg2b94sABMp/A32CppoX/49EXGye/du8BNofBYS/Ba5uxdi0/UtKr/kThEAJ1IWpNHefXsRWaJR3fH0Q5qBayXq9BqAJrxJ4FDy3p5KUW7tNVdjM3cBgMtnQvo0LPJn5B90kwBr8vNyKDMz02Ai9UET/mLe3DSqrKykS5cu6crFx8dTGshfT589D96CkVOmEhMTae68+dTRPcgBL4oN84CtQZO/HS+h144W0a9Xf0ZRbp9LJmvV7yYTjTL5K4csxST8CSDoWtnzWFHykCAfjo7/I074N8huz5IGTBHB8n1XkJ9rdA+M1p6j2z6KCjlCuZUr6FzBQvrK4j1QnMoFx8lWaldp5MAjwp9DhEMLNuY/xGY9yKC55cuXI7orHNF28gATbrSp4Z/YfD9jk823JT60tMx4gCbcF065Uqta6PN9+0TXWJmpu6tgxG4GBScAQL6dVN1QEnOwHUGypX7Rlmtt/oyqyh5Hmup1FBn7O2urG5RXQBNZ7rOqsgKaWOUuyYUV0ESy6+yq4pQDTWw9ewpoYt6jCmhi3ke2KqGAJoaeZKJWX09nwYNRVroDZKIaWU4+Sd60+XqcUnsjf1+a9+0ZNGGPDE9xCg97BVwI1ci5/x7VFjlQZ1sHpS2cS94AkY9+eVREmnj69uOE1Bg00ffwvHlzQO7aRxUVLwl+maSZO4TUKxtHk3i7O9KJE8fxfYWu2nDQxN3dnRYvWkDHjx+n6upq8vf3p40bN9L58xeppbV1xAm1VQqCtBVzZdSyNWjyk4/T6cvCBnphyxHy7v+QQiN/QkEh8kgrK0oeBsCxj/wCv0qRMb+1iWOrK36JtJKPkFbyFNJKbrZJm+YaMQWajHQPjNaWt+/HFOB7gU7nXUMltWl0TUoVlK4+BJgZjair76AqwCWMi60c48Sdpmtu9uzZNC15ukUy6+bGw9+3teykytKfIppoM6KK/mBJlXEpM16gifh9AfhbWlyI59F5AZgwcDLc+Jnn6hZHW7d9DVLqiDqRGeEj14mqtoNUXvyASF2NSXhZVnMKaCLLfVZVVkATq9wlubACmkh2nV1VVEATmdOpgCbmHaiAJuZ9ZKsSCmhi7Ek3cAXQQA998N5jSM/RqMKsWn0vCPRSqGcAp3sSzd5BE3YL85tUVZSJFKfIiGcRLdIKDpIfIQrPi2rzNOpEK9evokakFOTgdNzJ1QUpACU4aW0fijSJ9gXYEiFy+mNjo0AOO50KC38NnhMN0eH01ONo10c3C9oQd45yUas1qTrDQRP+zNsvgOIRNbIL5dasWkVNTY3UXD+kCDZ8WllZavOWLWKDYieCRxJX7ujVbAWaqLr7aEdmNb1yuFCoO/zrlizqanlVNv9IW/MOqiz7mZAHTpq5HcSmhnLXUp1SV/08Nda9TiERP6Tg0G9LbcaqeiNJDvM94AHeQb4HVCrVqG0yAaSv/98oyLeEDmZ8laqb4sgPlTeDQ8bRsROgyX2I6uLIsOcRgeWP+/cRXXthYWG0CveOpTLrlgxOrTpBZYX3gldoKcUmvWFJlXEpM56gCRNWe4MM9eyZ04gaOkFdnTmGYwRY7OW1iK5asRZrDRE+k0AWnSMxSwvuJE+vBRQ37W1Zc6KAJrLcZ1VlBTSxyl2SCyugiWTX2VVFBTSROZ0KaGLegQpoYt5HtiqhgCamPenuMkglBf+iY8dOU1JSIi1eejP1DEbKcvtUAE0EOIEUp4sXL+DE9E5EhiBCpPLnyNOHRPDAADWWVOPM2oE233QtXcxMF9EhECwFm38ZHTqYS0uXxkMdZxEkXL3Jw72Z1qyZTsXFzwEM0cgGc8QPc0gMN45y6dALcR8OmvBGMbOqlWYlJ9Kc5Dgqrqyh/acyaHFcoFDaMWVXrViBCJcI6rShKoysBTRJK9sCNGHA5De7sulwPhMva+y2lOO0PupdCgz+JoVFPSpp9IODPUjL2YaT+2rwLjyBFJDbJLVjqlJj/d+pruoPFIgomDBEw4yHjQSa8LX5HuhUt9K+vXtH7UqjuocSY/6MiLom2nnmG9Sq1qTebJ5/HNEnp5EqtwIcJsngFPo7+ITiqa7+HvE9y6wzj0kfgGMGtWxl3Z15VJR3gyDTZVLdyWLjCZrwmJ3Bw+QDZRNWcaupPioIX4UBMHEHD0/anLWQfp5Jnb3yU6Js4WMmQWYyZFtwBCmgiS1mxLI2FNDEMj/JLaWAJnI9aB/1FdBE5jwqoIl5ByqgiXkf2aqEApqY9mRfXyP1qrZjw+BIydOSqEXVQZ4+62W5faqAJvzy7+XWSyeOzxNgCYMmWlM1tFBbbRMlpiTTohVLaC82eBwd0oE/R0ESu3LVaoqNSxDFN4E/pq3tE6oo0+TLM2ASGfMbXWrO8MngEPeykiI6d+6cUaQJbxSzazRy0ltWLqJdR86I/04M9qJIPw+jebV1CoKshTPJK9sCNGGw5NFPDdWXVkSepHtS/yUrpaa26v+oqf5tRDEsQRSDhuzUVtba9ClVlT8JTgek/MTaJuXHXN9GA03EPYJ7oLy0mM6ePTtiU2VNHbQ05Vls0nvpo6P3IYrKVZRdEN9CM+LeRnSJL7W2raXAgP/g3pxPTc3Xi+/XrF1LPr4BiHIw10vrvmeFsvxLa8GfEkTJKYesqzyGpccbNOGhuEP1q7dHTbt27iBVG/sCKYzeCyk8PBEA8hpq7+yfNLLovb21VHBpHSK3Qil59n5ZM6GAJrLcZ1VlBTSxyl2SCyugiWTX2VVFBTSROZ0KaGLegQpoYt5HtiqhgCamPdndXUQVRffQ9ORfYdP/Prl6LgGvwl2y3D5VQBN2ksNgNV1K3yDC+6trfqTzW2drOzWV15GHnxfNX7GYfHy8kZazH9LE4Dk5cpjmL1yME+5QWrJ0iYjy6BvUpEP1C3nhoZQcUxPB569Minn+/Dnw0RQLzhSWCG7p6KHKlk5qwt9sbkgJ6u7pFf8dBcAkAcCJvo1FCoKshTPJK9sCNHn/bDm9sF8TTaS1BaHpdP+810Gyeg3IVl+02gsd6nNIH/iWqBef/A4kWedY3cZoFWzJ6WBpx8yBJnwPeHs40nkAh0VFRSabnTY9nkICj+KecqKssiW6MmE+7hQccBr3mYp6e0ORIleHiJNERJskYtMeDrWqACMeDSbE7h+0Tnp9eKcGB/spJ30uPnagWXMNgTNL/TIW5SYCNOFxeLg6Uk1VAX2x73lE3LlTQOAqkSY44OBCPb22i/CR67OBgQ7KzVgiiLlnpGkU56SaAppI9Zz19RTQxHqfSamhgCZSvGZ/dRTQROacKqCJeQcqoIl5H9mqhAKamPZkp/o80nPuoMDAa8B9sR+8Ct+BJOaDstw+lUCTro4sKs7/OkL6p1NpyR2QZ9boznSru6iuqIrcPN0oNCmKZs+ahWiUQcrJyQb1pCbsPDk5mVKhaiMlA8ARRL7uAEX2QaGnpq4Roez9AE4GBIDC0SZVrRpiXzZncJakRfmRF9IatDZWKQiyFs4kr2wL0CS/TkV3vnXKYKQzA/PpJ4v+hJP2JUjJsj5KhAETBk6CQu+h0IghXg5bubNTfQHPiG8CjJkLUOZftmp21HbMgSZiXSPSy9fTRURxNTU1GbW3YnkqUnAAKJU3UF2LhlCZIxw8XZ0R7dEIGdx6ESHm4NCLTXoEubqEgTg5AOAI1KP05KNYVcrDy8cmMtx5WVeDP6qFpqccISfngHHxpbmLTBRowv1ydayns6feo8KiOtq89SEAVsHU1Tv5tLty0udjTfTSzDnnsV5AqiPRFNBEouMkVFNAEwlOk1BFAU0kOM0OqyigicxJVUAT8w5UQBPzPrJVCQU0Me1JDo0uL75f5GuzmkFA0K1QyXhSltunEmiiav+Syou+S75+KwCFPCRUa7q6umgQAEZfUxdOUB3IOcgDRK+xtGH9Ojp46DDIXgsRZRJCa5EGcPrMWRBaakhdrTHe1HkEBFEkTsZ37dopqrq5ulJ0JMgTcUrLqQlN6m4hHTw91IdCfdwMmh+rFARrxnCllbUFaMJjfvjDC3SyRLPJ93ZzptvmddAyvx+Tu8csSpj+oVVu4ZQcTs1xdYsV5K/66i9WNTRK4Z7uEiFjzIomrOg0HmYJaCLWPMis+3s7keaxU4CS+hYYWElLFqXQwYMZVFDiKMBDVg1jc3ToBtBZrCs+MBBEQUFzkBICbmy9dhjYTElJpQ4b8WsU5X4Fz9kicJr8B8/cpPFwpdlrTCRo0tF+AMCXE0h4uykmbh2kneVF85gdrMQC+VmrIEfdJNKqOL1KqimgiVTPWV9PAU2s95mUGgpoIsVr9ldHAU1kzqkCmph3oAKamPeRrUoooIlpT7Y2f0ZVZY8LZQA+rfb13wI5zN/LcvtUAk1am7fDf4/ihHQbzZ79HH159DClp6cjJaCfeus7hB/944JpM3hLSsvLKQmn1pyms2TJEiorr6CamlqrfN2DXV01okj4Tx8IZ9cuTiNfpOpcPHuaYqIiEPnvqDslT69spbauXkqN9CN/lhy5bHPnzqW4+ERIqU4OokWrHDCBheWCJv5eIAnG/52AzHA7CDOYZybE2w2RDz3gdTiM8H9PyJqusniEg1BZUrUdQYsDiAKZBw6ccLN1ORKpC9fu6bd87jkygiMknJz8oOj0pdlr2KKApaAJX4vTPOrrqunYl4Z98/Y+SfFx1QBDfkDbt2cIMFNrLs612Pw2G3SVSUidXaN1nzGwuW7dOhDI9tqMX6O04C48Z88IkmfmLpoMNpGgSWPdG9TTeYzi439GvTTDALCaDL7R9oFBQwYPk2b+F+ChhotKiimgiRSvSaujgCbS/GZtLQU0sdZj9lleAU1kzqsCmph3oAKamPeRrUoooIlpTzbV/wMn1f8L4sNrqL1tP3n5rKDYxFdlud2eQRNOCdC3hrp/UHXFM0iN+CaAiCfImfqwQfsMajmViDTpRMTJIG26aRu1d6iptKycoiIjKDEhnqpqahBxMnTSbc7hnH5T395NDYgeYRuASg6r4UT5e9LGlUtEekJxSSk2HUMtFTaoAa50UkKQF8ppSGBjYmJo8eIl1NGDrfbki4I354YJ/V4uaOLu4kAVtfX06oc7MHdOUDTSpGdw2L8aEUsc9s/3n6XW1ZkN5RFs/kFQ6e4x26Jqq1avJndPH0QjWTf52RfTuKfg4kjH32MfDWANaMID9wTHa/alLMrNzdX5wd9vL7iEjpKP9xP4LI0OHT6s+87drVCk5RgY1Fu8fa4WHzk7O9PWbdsATDoa8ZtY5OgRClWUPEztrfsATD8LgHqTnKZsVnciQZOayqepueEdik/6A3l4b7bZmGzdUEn+bdTZkSGbM0gBTWw9MyO3p4Am4+NrBTQZHz9P9qvYLWhyoqiR6tq66SvzRpcV/e2ObKM58nJzoofWTxeff5Fdhz+1pOrpE/nyyxKDxN9aU0AT80tcAU3M+8hWJRTQxLQn62teoobavyAt5yZqbvwIJ9ZpeDF8V5bb7Rk0cXcGIWRfH0ALDVFhbe0rOOV+g0LD7qPQ0HvBiwBJ4A4V7di+g5rK6mhuyhwKjA6hnOIh8s8ZM6Zjc5dn5GNOL+BIAH3rRWRJZ08/wtaHiBF5w+3jgV0i9r0sOZwGXpRZM2fS/oOH0Z+hyJXati7Kr1eJaIYZYT6ChJYjXjqxV2RiS8Ws84Bc0ISvdq68kQoL8qilopDiAj0vd2BQpyDi7bvaok719dUT8+kwgMGKOUykac7mz5+PFIgEcEaYK2n8fV7WSqz7ZnBxHAYXR6D1DVhZw1rQhNNufDyc6NChQ7p7ICjwQ/L0zKDGphtpWtLtVF9fL6LA2Nzd8nGv9Rv0ytHJGxF3i8RnV69cSYFBoTbn16ip+H94zr5vc1loK91rUHwiQZOKkgcBIu0HAfIfQYS8Qc4wxrRuGVIwGdiMSfyLDliTckEFNJHiNWl1FNBEmt+sraWAJtZ6zD7L2x1oUoRTRwY5GOxYlhioAz9MTZ8a4bsZCO3WN039OnrjTs1LxWtHkJcb7E0JIV6UWdEq/v30DWk64EQBTczfGApoYt5HtiqhgCamPVlT+Vuc9L0LAtj7BHii4UbQcGRINbsGTUCm2t3ZTnt27xbuCQj4L3l7nabm5mtJpdYodMydkwo5zR4qyS6kmbHJdAAbuR7vkU/2GSzhSJJuABn8365OTiCpdBD/ZnJXrfEadgdgEhIcRK6ubiJlIDw8lNZdgyghSHQ6IGKBuR16cG02FZ7jFypaBPHlghh/2rhpE+bXC6kZUmd2ateTC5rwfNz82nH6xbaZ5NZUSA01VTqHqtqPAATrR3rOSnw2RNg7ksc7VKcA3HUILiIXvZSSkcrHxcXRwoWLSI0Io2HUHxZNamHOdUhPKJadnmDRxVDIWtCE2+XfU2fHfnEPdHd3U2jI6+AtKYOc+j0YM6S/Fy6A4tR5Kisrg2JONYhkDd9xXN3icX/EC3LmxKRpSF+zfURNfc3LeM6+guft90C4fb+l7hjTchMJmhTn3UJdnZcEUM+A/WS1ytKfUFvLLkQI/R8ihLZK7qYCmkh2ndUVFdDEapdJqqCAJpLcZneV7A40qcOpIwMfHGnCpo0YsXTmHv84g1Kj/ej2JbEmqzz43nkRbaL9XgFNzHtWAU3M+8hWJRTQxLQnK8t+Sm3NO0H++guqqfg1Ihf8wVtwVJbb7Rk0Ycd4gkOhqrKMTp06Bb6E98nTI4saG79OHZ0pwm+uULVZsXwZuROUPf7yH6ofaKX+EOcRfdqJaD0GTUwZR564YzPI69cR/83SxV6e3lD4IGz8XOi6a7eRo5MztXUOQBnEAS/2TSC+PCCaYpjmGPgz+O8f3LyJoqNjJi3RoqwFN06V5YImH56roD9+kUe3Lo6ln2+dAQLfXSABVoneq1XHaXCgG+k5VyECAlFEoxjLhPd2l2He/RAZMd/s6P38/GgTADNVFyssWZeWo22cFbZYaStu2j8suqbZTpkpIAU04Sb5HmhvbaYDB/ZTZMSzeJ61Qgr8YZB4BlAgpIRTU2dBbWcfqdrbcS81Q3IYkVlIy3EDWOLsEk5RUbF01YoV8NWASIGztTFAzUC1LQi3bdW3iQRN8rNWY24aKXn2fpFmNlmNfxubGz/A7+TPMXdfl9xNBTSR7DqrKyqgidUuk1RBAU0kuc3uKtkdaKKdoXdO4eQFAIo1oAkDLa8dKaYXb51HXmD7H24cmfLgexfo2ysTBHDCpoAm5u8JBTQx7yNblVBAE9OeHAo7/jNUYL6PQo6XeQuke97eQRP2jJebA2WkX6S21ieECkdd/d043R4iCAwMDCC/QXe68NExGggC00nkyDKVLR09JgkQOUKEJVK15ubmCpAmCBtf5sEYJOanCAsNw6bPQZBVsnmCFLYgP5cyMzPFvznSJBQbwds2rwaPhnSpTOmr4cquqc9h4+Wu+e1Td/VJGtTP/5tJxQ0d9MCaJFo9PQQgRBvt2bNX02Y7R46oAZosASGsl1H7fUiNYXWrgQGQmQ5qru8BwITJWc3Z5i1byMnFg0bA5cxVF99XFD8AzqODFJ3wJ/AfrbWojrZQdVWlAPiCQyzfFEsFTcQ94OZIhfk51NJ8I/41SOUVv8TfmqiRWHD6+Pv70rlz50S0lj4u4uHhQVu2bkWEl8OYpa+1teyhytIfIVphI6IWnrPKj2NVeKJAk8HBbspJX4jHlzOkfC+M1fBs0m5d9fPUWPc6JL1/CP6qb0tuUwFNJLvO6ooKaGK1yyRVUEATSW6zu0oKaKI3pRxlsm5WGP6Yfunh1BxO5/nd9Wk6UKWzW4kBN3dXOCIPW4Th9yj8AuZ8Jfd79jVvgHogx6rYkAfSL96E0+50SpvzIV3KugeqL+20ZOkZECH6SnYT82wwx4A9+5qpR3g9HTy4Gi/9VdTQ8AOcmALA0LOeOjW1na8hv9ggavTXKOnwJo0lTZ0vS5/yyX8rSCaGy6VyhEmQ11DEgSPkUkPDwiBr7CAiR9LS0mjatGSxGeWyWo4SZkRxdBwU0scVFRVU1+NCaUtXUgtAlW1pUNdRzGIP8Pz29vYgfUCjugJhImGDEh4hTQDGOOqH+Wg24LeUzcXFmcqhqHT27Bncgxdw77WRl9c8E/deD7W1ncEa0QNr0Bk/v2WY69G5TJYuXYoUrgjwkIwevWLOKQX5j1Fd3b+x5p7GOrzJXHGD7x968H4KCQ2lJ558yuJ6Loiu4ntCSmQM3wO9PZV06vRa+NQXXCY/Nbju6lWrSA1i5jOQ+9a39evXw6cBuL8sVxayeECXC7a2nqSszDvI13cJpab909rqY1LelWWb8WDqlxiFJLVTXV2ldO7sBqSYRSN1bL/UZsalXmXla1Ra8ntEIt0Lwm/D9WRNB9jXvKbHIorJmn5MhbJuiAjt7VN8PdZzzYdkiikeUECTy2tAS/jKfCWm7LMLVfR5Ti09uXUWhfoOvcA1qzR59YqN7AHeOHkgcqedmRkVG1MPuDghxQE/oqpOaafEY9q5CWw8K30TTrDLKGXObsrPvRe8BRWUMncvoidiJPeKI6jY3xyBZs/Gm+rzZ67GxroB5JM/xabDx2C4fSDcbjtZSd6hfhSyMp6ysnOE1KwWIHGGj/Q5S/Qrc4SJFyJNtBYEHhMXF1fBRxEVFUXLli8X3CSu2ISjGerQA6kZsHJ2GKB9+/ZRfOoi+uOBEgrwdgeXhmUKK/Y8Z9aMjYExN4Dax48do8rKSgEEsvEG01rLq2sXMtExAZ5CapiNgbD58+dRTnY2AK5D+LcafDQx2FANRZq4e7iDzLQbMrXGxOzuHsm4T4ckcof3KTk5mVJS06hvUD43R2XZ76m25k2KivkxhUX8j8XDZxD2Zz96CBFSfvTYzy2PrPDEizjT+XRLDI/hVKLsrNtxT8bh3rxX198wAI+rEaHVDyLnC+A3KSwsFN8xSW5cfIJNfDWac7o6C+hSxnVQO0qi2WnbLfbjWBbk6GEmnO4ZZ3Lo9raTlJ9zF4hVF9H0Wf8YyyHKbruh7gMqK3kK0VI3U2zCryW35+3hjDU9MGaRTJI7Ngkqdnbk4OChDZFsGm4wuebj4UKd+L3tk/C8lnvtqVSfI9UUUzyggCZYA9q0m4fWJxso42iXB6f6cOrOcMCEv1fSc8zfREp6jnkf2aqEkp5j2pN5mSuwsWiFKsZRKiv6Nk7Vsylh+vt4qdfwUCyaSQAAIABJREFUc0ixKz09B+9aFlt97csi9KC17RrUMTyhZrnh7pIWcgCqMX31HMopKKS9XxyEvw2j8HhtOqFuDzZyDIqwlDD/0Srp+Pr6koeHp4hS8fLyIk63YAUUji7hlBEGb7TpOdqOu4Ow1hnqIKXNXXTdy8doZrgvvXmHhsRbMcs9wBEPvB6Yf6S7SxMtZG30A0cWnShuEhFGC2ICkEI1dDLHc7t40QI6eODv1NpaguisSBEdweYMQuBQRGh0dtdAKccUaDJT8HCYspCQELoGBMFtHX2SQJ7hbXJqAqcoBIX+D1IUHrbIgV2dOVRd/iS98nI7Iiv66Rt3+EMl5QUQ10aZrS8nPYcbb2vZiTSYn+K66yjrkkaRyM3NTaTf9A04ibnw9QTn0F6WJfaRRZJrdjB6Bfr6mig/axUif8AdhWfuZLCJSs9pbf4vVZU9Rr4B2ygq9n8ngytG7IOt0qqU9BxjFzOwWl3+hFBR0lpc0t/I03uxrDWhpOfIcp/FlZX0HItdZdcFpxxowuAH/9HnOmFQhJVxTEWZPP95npAufmLbLJM8JwpoYv7+UEAT8z6yVQkFNDHtyeyLqeKLWXMzqKzw2yCkPEGxia+BW2G5ZNdfyaAJp3H5ejpTXm4uNTXVI/KmBJEkNYJHgjeorFbCOfhsnC6hbj8q/u3kNI/aL5N66juuDxwWDIT4xYfS0mXL6O//fJeampt1RThdwxRPlLaAh7s7+YPAkqMbuJ31GzaQu6cPToU1JUYCTfg7PtWsa+2m9S8cElESR35kHReF5AVgZxU9AHKoVS10cP/nYmTWgiY14BArgPSzP2SiUyON094iIyMoPnaAPv/8Q/DihKJ9f3EdBj4cHZ0x971inRkY1pwnUnkcHb2NvO3s7CzAgf5BJwAEtkk1aYEceXXFL8k/8EaKiPmVRTNcWng3dahO09/ejAJ40Uc33lRLfoFfpciY35qtLxc0aax7EyDPcxQWfheudQtScc7QmrVrcYodAM4SzeXdkCrhMNBD7rjH5JDkmh3MsALZFzlqd/Ayd5T8KCBrrz+8/ESBJg11r1F99QsA4u4BEPeI3GGMaX11+zEcKnxH/C7y76NUU0ATY8811f+DaqsMQTNHJx+aNmsvflcNozet8bsCmljjLellFdBEuu/sqabdgSacZsMgCEeP8B9OpdEnbuXvONXmve8sE/PIZf7nrTMCFEmLMiSb4+9u/esJo/nmNrWSxApoYv52UEAT8z6yVQkFNDH2JEeYcKSJk5MvFHOQglD6CE5o94Kg8FkQFW6S7PorGTThQXN0gZvTAH32n9dAJplh4Ac+IfbwnCc+GxjoxKbwJDauHuQLfonmpibqgtSpvvU1dUJJdpCuuX4LqRFP0gFg5diXkJe9bB6IMvHQS8PRr+sMQCUU5JmcpiCiFBYsQHpEnCCq1NpooAmX4kSS2944QaVNHfT3OxfT9FDpL6GSF4QdVGRy0cqyIiFZaw1owqHhWVVtSMvqFb4P9XEz6Y15c3qxnnro0OEShKgHkT8Ub9zcPXREpQMDKqwd5uAYhGqOr5AGd3YONtnWSnB2+AeGIA3A+jSikaaqvfVzqih5iHz81oloEUssN3M5DeAUWR804c3QjNTjZqvLBU1qKp+GlPo7FB71KEVHfhMAaCPuUQAm/YYghYfgPYCqkI3AJbMDQwGdYkzKwRHn0JJ2bFVmokCTmor/B0Wa9zFHj1NA8O22Gs6YtNPZkUkl+bcCsE6hhOT3JV9DAU2MXVdR8qBBlIm2RML0jxDxOlOyrxXQRLLrrKqogCZWuctuC9sdaDLeM6WAJuY9roAm5n1kqxIKaGLsyR7IlhbmbEW4fAxOdXbhJPlX1NL4oZAfDgi6RbLrr3TQhAfO0QX1Nftp755/G/nB03uRiDLhVCaWiWVz95hG7uCXqKurE3wJWusHj8W8lLnkHxFM7xw9SxtWLKS2xjqhbsPpN/7I/dCm4Qy/kCbSgFMJiOLj42ne/AWQJuYIl6GSo4Em2lJPbc+iL3Lq6PHNM2lrqkIGK2VhM7+Jv5cTnUXEQkFhsdkmGCzJr1NRo1qzPniOl8YH6giAhzfg63OI5s9bTDk5zlRU3IXIDL9haTUDpGo7jGqO5O27asTrp6amUiIIgrt6bRNhor1Qh+oMlRbeheiWhZAdfsvs+LlAQfZGELJWGYAmvAnizZA5kwuaaDdi0fHPU0DgBijqOAk+q8lAb1CU+zWhhJQ442MAY9PNuWLMv58o0KQcikwqVmQCCMdg3GS2nu5S/FZuE2Bl0sydkruqgCbGrquteoaa6o1JkafN2mNRKt9Ik6GAJpKXqVUVFdDEKnfZbWEFNJE5tQpoYt6BCmhi3ke2KqGAJsae7OzIwOnZbTg9S8Xp2XsIZ/8jZBXfQKg0iBtDh8gTrZ0DewBNeMxdbR9QZUU7Xbx40YQLtHEcQ195ec/HP7ygpNOg+zA2OJJmxibT6bPnqAan2g1d/XTr5lWUeeEcNdZWAxQxvbn190ekgZsm0sDf3582b94MfopeoygHfdAkwNs0AFPR0kkljWqK9PPQkZBaO6fWlO/DyX1bp/2pp/FG3hXEsDt27qaWlpZRXcKASW27RnVHa2E+7pQcapxOw997e5+k8LAzlJT0AlSs2qmiqsZAUUkTaXJGyBGPlOsfGRlJV61YgVSTAZurc/Amnzf7bu5J2Oz/x6LlwBwFDF5oI01uuqUV3BX/hw0y8/+MbnJBk+K8mwWoGY/nmgeebxw9plWYMnftsf6+tPAezOUpik16nby8NZG9E2kTBZoU592EOcoRkRscwTGZrR+S33lZK2Vz0SigifEsm4o0CQy5g8IifyZrSSigiSz3WVxZAU0sdpVdF1RAE5nTq4Am5h2ogCbmfWSrEgpoYuxJFXgSyovuQ572CuRpvyoAEwZO5OaY2wtoomo7RB7OrXThQj6VlpYKBzo6MiErogcGjUEBV7d4ELYmUAfkTNva2igAXCTrV6yhQ3/bTZ0eA5Tt4kBqkJGsnZNIy+an0p49e0itVhtNjJenJ7gXfEVaDhvzUzi5eIDHxDjdQh804VSDutoqofaib80AW7KqW8kPUS1pkYaplra6v7TtsApJNKcQDUuDsPV1JqI9H3DdMOlue7uKdu7YMWoXzpQ2UxfAI31zhlrOsoRAk/W8PC9SYOC/KTr6AYqI/C7t2LET/CZDqV59vfXYYGaJdA4GOYebJ9YMEwRz6tZYgAN9fQ1IK1mD6wdRcsohi93PPBAvvVAqOE2+dfc08ZyxxOSCJrzB5Y0u95X7PJmssvTHSIPcjTTI3yMNcsuEd22iQJPJPEfDJ2UQz/uc9LkIGXOiWXNMgeiWTaM9gyauToPkinRTa6yzI516uooh5+6K+zRESIU7OLrgvgAnEyI2O2WIcCqgiTUzIb2sAppI95091VRAE5mzqYAm5h2ogCbmfWSrEgpoYuzJtuYd4Gn4mXhx5xd4KWSPpubHXkCTwcEeqij6BlJjHoR87yGAIZ4IF46GukkL1EwyjYbO37khTYelxFtbW2kVuCXKL5VQ/o7z5BDqRemeGlWcxXGBFB8XC9UOb9q/f0gxgBt0cXEBjwleHsGDwtLEy0AeGxoeKdRyTNnw9BxPqP9dysqkvLw8XXGWEz1Z0oR+jbxpt8V9FhsbS4sWLQYwpCGttTdj0IStFzK49XXVRuCU/nhNgSbekHadF60heR1uHh45FBz0Dvn5raGEaS8hbaGFDhwYWhs9PWXYXBSJVDqO9hhuwwmCbe17TkfLSZ+HNCMnmmnFppHT/159pV+AJrfe5kDTZmvIdM2ZHNCEuYZyMxajr67o6zlzlxr377V8K2FRj1Fg8DfG/frDLzgRoMlknyNTk5KbsRQRXGpw8pwAr5DpiDFzk2nPoAkTKztBse3QwYPgZbrMtjyKQzjlqadbk+roAVJrJyd/EF5/id+OXpo7/w5IgM9AOqr0NENrQRNPPJ/dcLBhyvj5x2TwDo7uJr/v6u6R1Vdz62Yyf6+AJpN5dsavbwpoItPXCmhi3oEKaGLeR7YqoYAmxp5kokR+gQ8IvhVkfE9SW+teqix5BOHzG5Bn/kfJrrcX0EQLIkVF3wdehHtp186hXPYO9RmQXKqGfKSnZsL8FStXLKeW1jY6d+g0qc/XUK+3K+UEu1GUvwclBHmJeqkps6m5uQmRLBfEv/l1LTQsFP/rKNJypk+fTrNTUqljlNO24aAJq+T4eDjRQby4Mr+K1k4j8qEbkQ8LYwMgoWvdaaAlC4GlczmFSI3UEAZp7NG0oEk7ZHw9XAYp+1KWATilP+ZGdQ9l17QZuCEx2EukSJmymTNAvq7+BVJvFlFc0t/BqeNARQV5lJGhISLu7swFWFMtODBcXCMNmuDonpi4hBGBNVvNhZbYlUmjmTzanGlTGk6dCkYEliulpVWBD2I7eCHizVUlOaAJb8QKc66TzT9htpMSCzTUvgK+pJcpOOy7FBL+A4mt2K7aRIAmrEpWmHPtpJ0jU94tuLReKKlNm7UP96A0bih7Bk3YZ+4AHVqaG+jwIeNoNAYetGp0jgA0BwY0Eu7uHrOhTMe/e0ScMhwa4krr1t9LXQOhstIMrQVNOIrQB4pzHAGqn37JqYm9PRWifwyWMS+TvmrZiquvpqDgMDx/7fCkwILHjAKaWOCkKVBkyoAmzc0nqaenjsLCrjM5rSN939+vppra/+Kl/wRy70NxSrYO4ehLdW0ooIn5u0QBTcz7yFYlFNDE2JMNtX/By/tLupd3lhsuK7wXG7el2Li9Idn19gKalBbcSR3qs5BY/Q1Fht9A1VXldPLkSeEX7QsgR5044vSJN4LaF6nZs2fTzJkzqaOzk3Z+9Bm1n6igHpzC5UZ50VxEGvjgRIvNycmJFi2cT1lZWVRcXIz0jEBydXUTBKBMArsWEqnt4Abhf49kpohgXXEtR5zW7d61C892DeJyCRv4JmzkZ4b5UjAAHFvbxk2b4AMv6rE/KhOdq/RBEwanWJr6wIEDBuCUvl+LwSNTCT4ZFydHAZSNpJwTFhZGCxeGUkb69XghnwGi1H8TU914QbHn1KmTVF5eTp3qCyLCycNrLtZNgO4yTBA8HwTByMAa8+iewuwtWE/lggiTCTHNGZ8alxV9V5DHOrsECWWuiJhfQ9nnBnNVZYEmOnlYPMdiZTzHzHZSYgFWjGHlGP+gmyki+imJrdiu2kSAJkO/NYvxW/M32w1mDFsqyr0BBL554v7k+1SK2Ttowj7h51Zebrb4XdO3zg48w/oMuaBcXKMABCfrijk51tE1a5MAvteRt7+8KCxrQRPuBL8n9vd26NIv+wCSMe+OgeGAxNvnavGRIN5OmoZUzImXDpeyHm1RRwFNbOHFK78NuwdNOjqKQVi4H3++IH+AHYkJPzSYNXPfV1a9JwATrtfdXUf5BU/T3DmvCQCFTQFNzN8ECmhi3ke2KqGAJsaerK36X7DW/wOEaz+lwJBvCeJEJlC0VOFipLmxB9Ckq/MSfHGLOFmakQKOEAdHvAw6UGZGOuXn54+4LHkDzGk5TMbpBtLQipJi+uIPHxErmpZODzBKz/CDtOzC+XPp2PFjOM3qI2TliBQd5jEZcHChnt7RozZGUs9hXKa9tRkRJwdEX8sgOVzW3EHRAZ4UH+hp1H810I78unaclg1gnE4Ui3LMgWKJLV68mMIjouySx0R//PqgCX9uCpzSL1/b3i18GgoC2OkjEMC6ubmJue7orKHszA1CLYJVI9iYvNQTESe7d++mmuq9QqnJy3s5lqJGtpgJgjcBrGqHKow1MsiWzKmpMkwazSfB8cnvglw1zWwzDbV/BSj7oni2cHRMbeUz5Bf4NYoECGnO5ESatDR9TNXlv8C1vopr/dbcpcb9+/bWfXguPGyVfPNYdnIiQJPWpk+pqvxJ8gu4jiJjfzeWw7NZ26UFdwFEPyNAnpHImM1dbCqAJo6ItPR2d6Tj+E2rrKwULtESWQ/3j7MLOJo8hjiaVq2ai9TE16F0VU7x04wVdcz5V/97a0CTfkijN9T+GQTNpyki4nbq7JxGp0/nY77PCdn04cYEzpFRCXT1ypXiYGNgMshyWeMcG5ZVQBMbOvMKbsruQRMGOhgYaW45IaZpOGhi7vuL6d+m2Jh7ddElZWVv4MVNpWtHAU3Mr34FNDHvI1uVUEATY09WlT1Orc2fiY0FbzCYhK0ge5PY4EybtVey6+0BNNECSgHBtyN16XHhC210AfOQ1NfXG/mHN8BMxtk/6AzSVg3YwUDLWw8/T4MARNRzQikyRJOao29pqSlQTUmk/3y2XfCYrFq9mvz8g5BOY34KRpMc5g13QX6ukDfWposEgPQkJcIwtYLlcTOrWkk17ILMvcIcLKNZUlIS0i7mINJBeu65+VFOjhLDQRPu1Wjh6OXNnVTapB4RqOL6axBN5OMbQB3drZSXuUKkvXD6i9bcIX3dpW6ijz/6uQDuvH2G5IZ5rTFBMChWxsXKi7+HDc0Rikl4BbLHK81es6LkIQB3n2NT/AxOkxMFCGmpZKsc0KS+5s9iAxQcdh/SXx4w28/xLsDRaxzF5uk1H/LN/xjvyxtdbyJAk4baVwGo/UmotLFa25VgFcU/oPa2A0hdfdEiBShTY5oKoAmPmwFfd+dBAfgy2TlHZqpBPD/c9EGTefPmUUxMFF04v1A862amgQsMHEpSzRrQpLTwbgGYaC0x4QkcBEMxKXdYlMnlAkHBa2jrtTfg2euo+62X2s8rvZ4CmlzpM2ib/ts9aKJ1E0eMdHfXGoEmo33PgAqDJvqRJdqolZkzNSc7CmhifiEqoIl5H9mqhAKaGHuyvPh+bIIOYRP0EjZBawRHR27mMk10BcjupJo9gCa8ge3vb9VJlmp9wWR3NNAj+E2Gk92tXrOGfP0CDcAOjtzY9+zb1FXXSK4LIsgjwJBIzt3dXQAtTo7OVF1TRar2dhDgJVoctTEaaKI98Ttx4jgVlJTRmdImckWqyJJ4QwUXU/wbPN7RODj4+6CgIFq/fv24RTpIXY+2qmcKNOG2ORw9Py9HgFP6VtSgpqrWzhH9OHfuXDHXXVC8waKi7Itz8LcDzZqr4THRmqtjPRXk7qBz5/IE5wnb0qVLKQzRPSMRBNtqzPrtVJU9CpB1u4gM4AgBc1aQvQFAbDXSeT4DWJIIUOgq3FNtApAdzssyvC05oEl1+c+ppekTpL78EikwN5nr5rh/P8S5Ei84XibaJgI0qa74FYjHP6Tw6CcpIOjWiXaBRdevKn+CWpv+IyKlOGJKik0V0IR94wHAV61qoc/37ROuMuIBw2esBMaKYHFxcUhRXCRIxAs5DaozT0SaMEGsVLMUNOH0G5a/1jd3twiaNu1JOnL0IqL8Cgy+c3IOoG3XPQIA23/K8pjoO0QBTaSuUPuqp4Aml+fTFKjCESqZWQ/RwgXv4GRMc3LK3Cdl5a8LIIVN3WXBMal9rRmrR8ObGg7x7rJnIgCrvTI2FThKwBmnH92Kr3UOzsq4FfKp5ykl9R2cduN0B3by+GycCvXT0uVZOOXRcG9Ya04gVGOllu7xOgK3toNmytfXf0qF+T+Dus18Skl7z6i0Aw1SQ30dHTlyWPfdnDlzKSEhAYqUhikt750up/KP91JAUz35L4wi52BD0GTNmrUgmQ1Ei47YLvdD0taZOPLDUvUZZ4AgzH8xkswsk9KyPPL+/V/QF5nliAYcoMUATdz1yGAbkEYynLSUBxYJ0tqkEI1KhJYbRTtg5mPZsmUruCrAj4JTwalgfHrKNtzX7GIseWJwqqJCQxjIxtE79fBtCmSeh/OZxMTE0OLFS8S8axlrTp9cCFBBRYuXnsXv6pA6R2PDLqTmtCItrJtqaz0pOTkZ9yxC2iXen1LnqqT4aWwg3gLQ8xhkke8atRnmSTt3ZiWeub60aInmBDc35z5qbjpA05L/QMEho4MufKDAEe+8Xq217Et3U2vLMZo5+3WkMJmPiLG2fbnl+8DrcObUUgPfyG1TTn0+UOiDvGs/5waOk+VkfweEoYdoxsxX8Py7ZpyuKu8y1qz/ka7kBiChD1GIo/FUyevl5Krt6DBIxUWFdP78eRzKdIn3DVZOYulmD49EcnePgbKWhkScFdoH8MNXVPhzqqv9wKLnzGij5Sg9Tm/lNkezvr423I+LjYrExn6fwsO/R9u3fwCS/DzMWQfGoKb5CxbRnDnfIEdn00o6k2sGxr43fHCjmOIBBTS5vAZMgSZMAnv23O0GoAlHmtTUfgZFiOdFzVb1CBqZytrSeYDZuvnBrkJOumJj6wHeXLKcnLprnGLZx3Y4Nmk9M30reEyKKHXODuQVa2RML5xdjpe6Zpq34Bg2xIYRCZZelDc8vLY7uifG1xxRkVvTTjPCfWgRUkystbyce/CSdIziEn5FIaFfN1mdMYfs7Cy6dOkSRUdH09IlS6lvEBvgYe9n97x9mvzSM2huRz3N2baUKnqH0nrmzZ1H8QmJiDHQhCAz+MEghzUv1Bz5wr7uwxsnp/aYMkc03AtC2LzSCrHhd6E+4jny8NAouXA1JonVr8/98Pd0ESlJjgDAqmtqqLCwSNf81Suuhm/CkYpk/2k52kG7u2pAk64e44288BNAr917NOHo4l4qb6HWzl6aF+NvwA/j4+NDmzdhkwCiG/25Tj+/BuBUDc2ZfwCEwEPqHNWVr1BT46dIg3qVMjKbcCK7EJsBzQZjPK268s9UWfEiRUR9j6KiDTnQhvejpfkAFeR9D5FXy2n6TA3RZ03V61RR/gcKCbsVG6Jfjtp1jlZjnoBuM5w+phrJvLiFurqKKWXOdqzxaePpIouvdfZUqkhZWLgkA/e8ZdxBFjduZUFP+Jo5cbQphVZWl1Q8K+Or4MfJpdmpHyNNabakNsa7UlXlS1RV8RK4LO6nyGhpqkde7k6IRBwUwMlUMVfsqc+cOU0lJSWIpDwLMtg2RGksICdnP+ECfha6e3rjeab5LWmo/4hKip6kwKAtlDhNuoqfN5Rw+EDSEr6njIsbQfJbZjAlM2a9Tf5+i/HsradDhzVqQEEBTZQ2J4JUHaVYB9LWgL3NO0cFKqZ4QAFNLq+BkdJ3Tp3+qkF6Ti2UdNraMyh5mib/X0nPMX8TKek55n1kqxJKeo6xJ/OzVuPlrZGSUw6KEFm2wpxtkAUstVga1NT8TGR6zvtny+mF/UNErckg4HzrziUWLyOWFyzK/Ro2Mm7glvhSKOOYMgYifPACfO7cWaiXzCfsjY0iEEqgnnL7mydpOQCTZa0VlLp+MfnMChVAS2xsLC1atFiEI8vZ+/IpDz9HONph79691NTUZLK/vKlvbG2n2oZGKs7JxOa8m5Yvv0qU5Y17a6dW15hfXAdFpJAviGAZWGGy0bz8AvC4NIjyU1UxYKT0HK3Dh4ejnylrRvh2Py2K5cieoWickZSGeN3x+kuc8YmBooQ2LWDajL9SaPBqalN3A6yybXRPX18vmTsx7FSng9NhP0hg5whOBxHFNIKp20+AT+cByJnfDs6KR0QpVgAqKfimGBuPcTSTk56Tm7EIgEsXzUg7ifvXmEPI4ofBGBbMv7SW+gCgJs/+AuB02BheyXzTE5Geo01/nJ5yBJvnITUo872duBJNDf8UZMaBwd+gsKjHJHVkKqXnaB3EoL4vAHjmN6ks34HfOzxrfFYIsHDJkiUUGh4J1bWh55n2N1gut5ql6TncT61SHv+3o5MPgN3vg8D6DjEELTdYWVkZbdiwjC5l3UkqVS6eYZ/iWTY5QVlJi1NiJSU9R6Lj7KyaAppcntCRQJOi4heglBNGUZG3IqxTjdDhpyk4eB3+aEItFdDE/B2hgCbmfWSrEgpoYuzJnPR54rRz5hwmXNOcFpTkgzm+Ix1cHv/C5miuJPdPFGiSX6ei+987Z0Ro+sNrkunrC2MsGktd9XPUWPem4EJgToTRjNM1fHCapQLgAJ5XI3v9y2J681gx3RY8SOEZFyh2/gza+N2vIVT5nABaOroHQSQn78RRy2nCJ2r9vZ2Ca2WkiJNehODX1DdS5tlTiDwBaHKVBjRRIZWyp78fpK8ImUYITctlAMXfwxXyj2tI3dmFU8JSUTYiIoJWXH21UAeaaooB5kAT8YINfpOykiKAaefoWFGjiAZZnhiE9B0NwDCa0lBJwR0AFs4LclAmCdWa7nOodgQHLRuTCC5+PjoO9ghelpHWD2/yuzqzsMkPRWTayNEBrP6UlNBPBQU/o8Cwh8jXf5NuLDnpC9F+N4DaQwBqg0a8vaSCJv2IksvLWmlEqGvRzT+OhYrzboQvcyFf+5FQK5tIG2/QZGBATbkZSwUgPSPtzEQO3aprtzb/h6rKngCfz1fA6/O0VXW1haciaMJj53TQnq5m+uiDJ0XarxckeznNMDU1DQcHxq7UgmrTZu+DmtxQ1J01TrcUNGlv3Qs1q0fwPAqkJPAtDT8o0XKDdXd30SDek0pLNXw8Pn4bQQr8nDVdssuyCmhil9Nq9aDsHjThdJrKqncRKqdG+JpaSAXrq+GY+14rM8yACbfBgElU1K06jhMFNDG/5hTQxLyPbFVCAU0MPakjfXX0xIvrKd2XZUX3CZb7mEQoZPhI4wOYKNDkcH49PfqpIYkmD2xragQ9uWWWRUtJewIcN+1tbFwXmK3D0QWdw3hyWIXmHKIMfr8vV6jWPLMigmo/2klB8ZG06ZFvaICWDgAtNshe0ieC9UD6SH1dNR378kuT/e4EsqOqbaRz508hAqKblqQupAFvV1Lhc44aYIlhfkHk/vcg3WfpogUUHR4K/qps0R5HnTBp7VRVDLAENGFshOU2T50+Q+/uPyMidpYlaFLEWGloDshfEShi0obUaf4MYuYhlZy8rFX4jW0a86gEXj91tVV0/NiQeo9+R3t6KrDxKQCFjTt5es4Tf5syVgTqUL1G1dVvYxOyC6mHTeDFAAAgAElEQVRGQ4BlWdG38Xw5js3GH7Hp2DDi/SUVNNFKhbt7zAAg8W+z9+9EFdD6ITbxr9hAasDLibLxBk26uwoRzfdVkANPDiJcS/3OyjmsoMOk6UyeLsWmKmjCvnKmKiot2kunzxRQbNxGWrduHbV19JlMRy3He4gK7yFRcc8BdN0oxdVkKWhSnHczAMxsCosEyHs5umT4BfmAxMlhQBBv9/U2ICJ3s4hmi47/E55jayX1z14qKaCJvcykvHHYPWgizz1DtRk8cXb20oEl2m8U0MS8hxXQxLyPbFVCAU0MPdnbUwV54Y1QsQBL/CwNuz1bZelPqa1lJ07S/hcnatskuX+iQBPe7G98cYicVdv5WxZE00PrppsdS1sLwodLf4yT3xRsuN43W95UgerWLnrg/XPEf2vtt+sSqOGfyN3396Ftv/iOUBUYDrRIuhgqDVfP4Q17VmYG5ebmGjXZVtNIqsZWyijMEqDJ4pkLaACh02pER3gi8VxLDsvRL4FhkSC7m0tFOVk6laBr8JIrVTGAN+S2tpEiIka7jgNAjE6JXDuWgCZ8bQ5HZzLk370OZTp1Oy2MDaBAkP1u3LgRm4TeEXPstfdeFO4938v3HqvNsOqM4zBw09a+1LYHRWqEn2dSXl6ewSX6emvAEwIVCUSmaU2rfKFfkGVDo6ND6OKF5eLkNjnF8H5sqH0FUrMvi80Jb1JGMqmgSXvrfpwaP4iN7WpsbF8eKzfJbrey7GfU1rxDyDH7BVwruz05DYw3aKJuP0ZlRd8hL++lFJv0hpyuj2vdIanohYgGe0vStacyaMKKVh4u3YjUcKE5874mwPeROLG0suFBIXdRaOSPJfnaEtCkufEDqqn4tZBET5zxmcXXaaz7G9VVPyuixDhabCqbAppM5dkfGrsCmshcBwpoYt6BCmhi3ke2KqGAJoae5JMVPmEZ/qNfU/kbam54j8KjHhd8BFJsokAT7utjiDQ5hIgTfYsL8qTnb5pHYb6js92XF38fEsyHka/+KPLWvyll6PSbXdm0M7PaoK6PmzPdW6JRELnpD4/ghN525KnDQRPmLvHxcKJDhw5BaaXWoB91+WXUh6gSfdCEC3R5u6DOEJkbqxksW3UNfbL/BPk49FCQl6tIJ4qJSzCSuG2prKP6wgryjwyhkGmmU6A4+sLX05lKiotH5FyR5GwrK/n7+1NCYiKAC2khPpaCJtytsuYOKoHM9OnDn9Pc6AARoePg5IaNwsidrqn4f9Tc+D5kWH8OGVYNAXFnRwZS5m4bt5dz7fo5ePAg1dXV6TqrVp2Ags8QECi+QJi9N8LstaZVBKptOIBN8QPiu5jEvxgMWK2Cyl7h/4D4EcBk8sjApFTQpKnhHfBOPC38x36crMbcGMyRERb5UwBI35rQbo43aNLS9DFVl/8CYNFXARr9dkLHbs3Fu7vyECFzg0WcPCO1O5VBk7rq50ndtgspOW+CMjt6VLlejjLhaBOO9uSoTylmHjQZFAdHLItuqYy6fj8Ks7eCG6wMv+duItWQeVCkSlFLGd9kqaOAJpNlJia2HwpoItP/Cmhi3oEKaGLeR7YqoYAmhp7kTVBZ4b1Gp331NX+ihtpXKST8AQoOu0+S+ycSNPnuO2cpo7KVViQF09XTgmkXAIx0/JsJYZ+9cS4Fe7uZHBOT3zIJLnaCggDWyclX0tjvfOsUMbfKcHusI5+6WlW09clvk1egtLZNdWg4aMJlhHqRY7/gN+nu1uSCcPpNfWE59YCvxAA0AaDhAllhjo7Q2sYNG6kUaTxHM4pEys6qudOh3JKG6BiQ1up1ImPXMcrcPZTKkbAkhZZ9Y4tJvwmlMJChMhlgW1ubJN/KqeTp6SmAi+4+KAlJVK6wBjTZc6mGSppUNC9wkFIimFgwEv4bnb+mrvqP4NN5A8SpD1FQ6L1iuK2IRqhCVAKHqHOo+niYK+bJEWSNu3ft0klNq9oOGl9aDzQRikCQDe3AGqkq/yM11L2G58d38RwxVJhgEsicdE57G6QZqccF6aIpkwqa8OkvnwLr+3A8fGbtNRpq/4qImxfFPHNfJ9LGGzTRRhsFh30H6+PBiRy6VdfuRbRVwaX1griXCXyl2FQGTSpKHqb21n2UPONv5OxuLPGr709thB3znzDnGv8uW2vmQBPtPSgVmNESd+v3Kzr+RUGSPZVMAU2m0myPPFYFNJG5DhTQxLwDFdDEvI9sVUIBTQw92dayB6koPzIiM2uqf4tqq34vTj/5FFSKTRRocqa0mR784DwFIsdg+/2aE/AORFY88tFFAZzMhATxczfOE1K6w62+5iWARX+Rffr5y+1ZtDfbMMLDG5Emj1IlNZZU0doHvk7BidFS3GqyjinQhAu6Q167vbWZDhzYrwFEQEiqalFRU3mdAWji6uVGvhFD6hVLFi+moKBgamppoSZVDzYILjQ7KVa8tOoTvzZXNtCuZ9816tOqe7ZRdGqiyb56erpDfaUNsrx7bTZ+Sxtat349eXr7QcJWukyvNaDJO6fL6KWDBfT2XQspLdIX6krmX/ob615HyPfzBhtp3QYz9NsUEjG6zK+lvrCkHK+ftpYmOnjwgCje2XEBvCotBlWdXYIRAZMqPtuA1CM3d2/B08OpF5yCER3/Ap4v64wup1WqiEkw5G7RLygVNKks/Qn6vWtSpL2M5ueWxo+ouuKX5B94A0XE/NqSKRmzMuMNmlSXP0UtTf9GJNAvEBF0y5iNy9YNDxHYGvKAWXOdqQyaFOVeD3WwfKSzfDAqkbTWn9ryUknpQ/3dL0sOG4PVAwMdIr1mcKBXpAqyopfWmFQdgnKjWldnDiJ1bzIqw4AJAydTyRTQZCrN9shjVUATmetAAU3MO1ABTcz7yFYlFNDE0JPaXF7/oJuhEvOU7suWpk8ROv0kwkwROh0jLXR6okCTn3+WSV/k1tE9VyXQvSsSdGNqA3sbAyeXqtsoNdJPRJz4QKpX3zRhulXIsX8d0TfLJC+7H+E6x4sbdfUZMHkI6j2BkCYuv5BLS7+5lWIXWEZKa0knRgJNuC4ruRTm50IRJYM47aKyoob6m9SUUQROE6jnMKcJgWpk0MsJmMigUDNIBFnpgQMHxaXV4IjxCQhCTICjUYROd3kbdeUNjVPbV5cwb/JMDTHqemhoKK1ZswbpKYNUUVZCp09r0pXGw0ZKLbL22taAJn86UEDvnimjRzfPpOvnRpkkOxx+/ebG95Bf/xuD1JKqskcRbbIdG+v/hw329dZ2WVZ5L6yf/LwcjaIOUnM6AJwMpeg4AIRaLLhWWBEojGVDB7COYHmZV0NRr4Wmzf4cyhfhRn2oq34B0SCvjRplIRU0GVIgeguh/QtljX8sK7e3fgHulR+Ce2UtuFf+ZHSp3p5KgJ77wTkVNeYn1+MNmujIxkcBzcbS93LazkmfC/y5H9EPF4QKjLU2lUETjjAbhEKXpVLgnMLFqVxS0mUd8XsX4ucKVc8iasYBgNaYm4kJrQf6O/DRAOSug6ASmKb7fsaMGdQ36ER9A6OD3P397XjOLTeafjnvTdaupclSXgFNJstMTGw/FNBEpv8V0MS8AxXQxLyPbFVCAU0MPcmbFt68BIX+D8LDH9Z9qSVS9MHLfLSJl3lL5mMiQJOypg669Y0TonuffW+F0Sa/CWo1DGjk1raDY8KfnrtprpDXZdNuYPi0KXHGJ5YM0WQZlhdmmWFfdxe6YX6USG1ZEBMgUoPS/3uIcg+cobRrV9LMa5ZIvsbwiqOBJlqpxBMnjlNVZSXVllZTb3sHXSzWgCYLZy8kZ4AYjm5OFBAVREz0yoBJa2uruIy3jy81dA2SuqKdojv7yRFAkyPUdvjvrsJmGhxB/scJHCgukd7kGukD2gtHqKe4XlbdcQDxnyN5uTlQRvpFSNKCWNRCa+3shTRln5BFZo4VSy0+Pp4WLFiIukgtkh5kIi5nDWjyFCKO9iHi6Klts2nTbGPgwFT/dak4IIFlMlg2rQS4pWpOlvrFknL666eiokJU6etroJ7uMmw62sTp7MxZqwRhsFY2VJvmNloKA/MGMX/QaGHxUkETTp/gNIpps/YIwGGyGktLM8DDsu58kq5v/AyuKn8CPm4XH3MKUyLIJsdqPOMNmmjTGljdiFWOriRjOWuWtZ4OgmMnEB1ba1MVNGEQsCB7k1WpTdpoLF//rUhN/D9rXU0h/m6IbOmhnUgz7OjoEM+uro5Mg3b43tKCqwsXLqTI6BikcFpGWs6RJhxxom9xkIVnMHkqmQKaTKXZHnmsCmgicx0ooIl5ByqgiXkf2arEWIAmrDQx1sbpBCMxzMu5dl3VH6ix/u8ATB4BcHKPrqkO9RkqLbhLvEhIVQiYCNDkxQP59N6Zcro2LZIex+m+KatXdYuIk8J6lVA0eRbAiauTI058HwJw8jl88SP44m5Jbj2YV0+P/0cjd/zM9Wm0apphtEX+kfN04ZP9NG3FPJp/o3HKgqSLotJooAm3yVKJXq6DVFxUTG31zeIyew59Aa6TLtqy9VpyYdAEfCdxSfHUiHQeVbuGj8XFxRmbNFdqbeggd8hCmjSk/Vzce5pUDRqOEkdIKYs0HgAcmg8cBHCy7Lo1FDsrGS+jmo856oWJYb/44gtqaGgwO/TsmnZINw/p9HL0zjwAX+aMiV83bdpE7Z19IyrWmGtD/3trQJMH3j8vZKdfvGU+Lfr/7F0FfBVX+v2Iu3uIEEgCJLgXd6hSd3dvt7u1f9utbtvtVrfduht1g+LFijsJEHd3d/mf7z4meT7zJAJ932+zoXl3rs28mbnnnu+cqN70J2PtNdRtBZhwp7Ab5tQVjrRjYG0gLSY2YQvEBgNM6a5VyvL14+LQLbRoGhsbRZ0d7eVYLByjgMBIWnH+oxqOQJwawykyhhgUfHxXZyOlJk8TdY0cexA79ro3UvNAk246cUS1azxy7BHUqwJFB2NI4BLbMbMts3pIrDf1v/XlDnZ/gyapydNxDTSc1I7yHoynx2CfWPeKz93wkauEZbKp8VcFTSTHJDePqXjWfKRo2iThXUenoQBB1yo6Rr0Qa5q0AtivxXNt44YNSDFMxr1U93nDzNKY4aNo/ISJ1NSqqdtlrFFmm5QWvQAXrLUA5FshnH8lBPQfMbmfp/oBNtDkVD+D1um/DTSxcB5toIn8BNpAE/k5slYJa4Mm7Aji6WJPKSkndFxKrNFnO1ijTp8+HRoBhm35LGlHor6GRjwF2v+FPVVxzjHnEju7jADr4mezmuhv0KQZliRnvfUn1Pg76YOrJtPoUMNCq2wF/MAPRyinspGmRvvRi+cFURZSczhiE7YKFXxTgm2Oq8FiuemL/VTf0kG3zIqh62bovkwXJmXQzo9/obCE4TTzxhWmNGG0rBxownomPu6OtHPbdko5cQKIhT3YH/YQQ1UBG1gPk5+3D3V1QPOkrRG53F1wA7AjZwAmnNfdXtVMQO00+4Br3yPQm6bNnkEH/thLldBJsQOrxjHQTTBL2ssaqa2onjoqcezJCBkZTcOmjaGhEJXlcIbYaHdnqxCr7ew0bCnDDJOkIhXzRT3igjwpyFO/qK9UjoVf7R1djTrWmHIiTAFNLgfrKRfspy9vmEbD/N0VNdPUeBCA5TU9DAze0eadbTt7D4imqlhUAxEubJHdWEsb1vdq0bQ07YOF8kyyd44kR5exPd2SwNjAkDshBHu7we5mp18mdn0NpcOZA5pINuqWCHX21/xK9H47O3eRriCFIdq/o1MYFo59owXUn6BJ77jN1wXpr3Okr50cXLe8+I6O/VojrUNpn/6qoEk1XK1K4GqlnQ4sN2+pSIFhxhUL7/L32pSQhGC7O8spK+MA7dv7Ow7X1TcZGrGcli4712xwXRLP12btmtLXU7msDTQ5lc+e9fpuA00snEsbaCI/gTbQRH6OrFXC2qAJ98sRLAU3pBqsW7fO6o4gM2fNwk5uiKzjhrnzw/n0nJYyNPo15Mwv6qmmo72U0o8vxAtKEF5U/jCr+v4GTb6G6OZ/Ibo5bZgfvQprYbkoqG6mv/1wmPj3HZO20yT/7+BOshwU4JfkDu35/GB+Nb3+R7qGU87CkUH0zDkqYUztqM4vpY2vfkE+4UG0+IGrFbcjV1AONBHXKfRKmspKafW61VTT1ChAkc7ODryMdpK3txc5D3GkqoIKsgcI2AmyiJOrE3RMgIwANenAHAFH0Ymll5xFdWCl5OblG+xigJsvOSHDIG3HUepsV9FMPAJg+wvwhH+8fd2osqKUdvz5p8E6imqbKatCxXBQj0gcG+nnZvC4adOmwbEmVICO1gpTQJMlb2wjBtTW3j1bpGspCW1L0+YmgHvpVyKFAfa8cYbteZXUbWkZ1sfJz82mAwcOiKqmTA4HkWgT1TcWa6Tx5WbeQE0NewVThhkzhqK06N9UVf4Z3FPuALhyh0YxYXsMJhJjaU0SPUnBAJj9wuLWLi6jKDz6VQVHaBbplFN/NLlG4wdIGg8jxxwQtqVS6GOa9KXAZH+CJj2gvHMMxYz81coz2vfVSSLHkTHvkrvnTJMb/KuCJqWFz8Ni+0sKCvs7+Qdep3je8rJuhaj0Dp33FCUVdLdtoMLC73E/OkjDRzxORw5nUE5OjsahDo6+dMGFjwDsdzEbXO9NN5wMdu4nSrp2WpWxgSan1ek0ezA20MTsqVMdaANN5CfQBprIz5G1SvQFaMJ9413YlqY6Wg/gxFB0d3dAZBTiY12c+uBAzqD1DrFzMVg+MTERdNER1KIwt9acOeIUHE7F0c7B7YLgY2rSZNG/kWP2m1M19TdocukHuym/uomeXzGG5sbqipDqGwQzTThV5+4xj1GIexkWeW9jkTdb0Xh5MXzBuzvFolg9XoHA7PQY/UyV1oYm+vWJt8nJ3ZXOe0ZzkaioUQOFlIAmaVsPUFdDPYVOiKI/tm8V+d1YlwobYm+ksNRUVlMr0nDUww7XdTeYO/p0QMZOnkhBw0Lo+HHNfG71493d3Wk5mB6cqdPc1ErZu5Moe08S1Rar6NHTLphDPqGB5Dc0kFq7WnvTdBigUcM5WDi2tL6lp+pfNqt25UO9XWl4gH4GBwvajh6dQM1W/v4oBU2Y+bTwta3QX7GjzffPU3x629uKkfe/WIinsohqbfVvsBt+xGRAT3GDJhRkWUQPVzs6CNCE7ZtjYqLo8CHW5ukSjDRmpnGkJk3Dfa5RNp2I0+E4Lc7dcwZFxrzf0xMPTvHq6gBQx9ceQDttlpORPre3F4MRcwRpZSFgAciDp+pVubg4Q/gYqZD9CJz06q9sQJ9De7rT1LCPcjN70wSZaRQ1/BOAZ/rTDk04jXqL9ido0lD/J+Vn3aZz3i0dQ38dX5j7d7gzrQXA/h98L5eZ3OxfFTThc87nnnXSWC9NaUiudpxCzKnEcsHvWSxmX1P1E9IIVS52nP4XEnYbRUZcDWbjd1RWBmFrvJPZ43s1b/71FBQcTa2d8u5mhtru7KyFKOxMtOMo0g3NsUeWG9dg/twGmgzms9N/fbOBJhbOtQ00kZ9AG2giP0fWKtFXoAn3j3dhC/NzDTqCtDQn4wGulksL1X13dxUwoR2hoaHELJOGli4Ni1drzYNUj2TnFxP/IxY8qpQJKVKSJmHR0gra+H64YxgGdwz1iUETNyc77BIbTruw1njWHSulh39OohgsoL+4XqWToDTSCzYgheR+Km0Kog1lb9Bz5+lniWjXty29XLSpHTfCtedGNdce7c9/fOh1wbg4//m7ycHZOoI4SkCTtS98TPVlVXTps7dScUUhbd22DddWFwUFBVJVZRX0KVrAKAEwoUcotdNhiABOWDCWyScRMUizmTAedovHjKbVLFq8mFzcPAnarRpRfDyLio6mU9zkWEpNS6PKykpy8XBlOgy1NbcKcVlmttghfcfeC7vvQHfq4X7kDlHaMWPG0tvfrAYBRtXRKDBNIsA4UY/AwEBasGABdDY6rL4AVgqaMIPpkg92URiAne9v0XVYMHR9Mg2d6ehSOo60YAgIvhWMjLuVXtZ9Vo5Tvbxg183pVPW4PxXlPUnVld/BsvMq2JM/DNHFTKT2nScES1mI1Vh0dFRR+rE5WGg4Y6GhYq9wSGmPhw7uo5zcXLSlXL23rS2P2lqy0H4E7mnDFc9Df4DU+jqTnXYJvnvHaVjsN/iuJPQUkezgebHHbiPhUS9jgb5U8XhMLdifoEmv1fL5whHqVIuSgqfENW+uXfJfFTTJPLEcrjX50IL5FVow+i3p9V0LPSwOD7A4ABwaCtaDYrCkvnZDTxEPjwSwGVeQh895wuWLN7jaWxtFSijH6NGjKTYuXpEdvNx12mOPPOILcnU3DbCVq3uwf24DTQb7Geqf/tlAEwvn2QaayE+gDTSRnyNrlehL0IT7yIYeR+EIkpmZqdFlZpc0NegyNlhETltIztXV9aTLiB0Wm3pyIqw1Gagn/fgCADll2NHehJ1tzVzh9OPzhdgjp+dwmo6p4Y7dYncAJ8nHTlBDg0pY1NpRB/2Q4OhYemldGu3OraW/LYyjiyYONamZwtwHsWv4O63NPZe+S11Ei0cG01Pn9C5eDFVmCDS5dFIE3Qt7YUOx9vmPqB5irEsfuo68gk3TTjFUpxxowjbHuz9bRV4h/rT84evJB2kP27dvgf1wIc6tIwRhwfIoKqPO+jadJthVpwHgRScAFg5faJ8sXraUftm0i6I9De/MKXEhaEdqj117C/248jtqbNBNv+H27JAuZA/dkhZgb/MXLaETaVnUBm2N2ua2npQddycHsdBmRkKwtxvdee0lsIu0k7WMNOlCOVlYKWhypKCGbv/6II0J96Z3rzDN9lYlZNpNo8YlIdXkIXF9hkX+Cy//55rTZbOPgZyv0J3RDgZOGLNiRgbfP6orvhY7rP7BtwA0Saf6mvWCdeIFByC5qKr4goqLPqDQyFeh4zKhpzinPXq72dOadWupulpXz8ZQvdw+u3Rw+yweqSQYpJ41ezb0DDr7FKTW1xcp9SAiBiw3z16WW0H23VRftxnMklEAVU7g/L+I8y8/n0rGq69Mf4Im5SVvUUXp20LvhnVvTrUoK34VdtkfgvVwn7DMNjX+iqAJszpSjqqAhFFjjwIZVZ4yySLYLIbNAKKKxdEbnQBeJVZJW2t2zwfevmeTN+zZo8LnUF1ju8a7lCs2c8pKiygL72lz584V33trsMuKC54EY/N7gMf/AIh8ramXxSld3gaanNKnz2qdt4EmFk6lDTSRn0AbaCI/R9Yq0degCS8mPAEWbNy4UeyeS9HZWQPK+GGdYTiAgq9Nt2bLVw9PHwiaKt9dNXd+etkk+7ALg51+teDdYt41Vqfdm9KOYJrA4aQRaSC/r14Nqz8D7iumVKpWlsVBPaNGU3aLK32+O098cj3EV2+GCKvS6OioxE73XFG82/8n+ttPJVQHRsOyhBB64szRRqthpgOnX7SqAVvs6PLWZROFvbCh2Po2qMHpeTT71gspJD5aaVeNlpMDTaQ2x5+/gGJnTyC+57g4dMENZQ01NDYLJ5vqsgpqKNVdnNoDYOnAuBpaVaKxS5YspaRM0J8rygzqiQwbNkzlQqDA4tcVO38NdVX02/c/UW1JhY52Cr9bD/F1pcSJU6kCzkddtRCcPYnVVDS0wT66ToMcM/2MWVhcBtDM4aYDfUpOhlLQ5I/UMnrs12SaHxekmL0ktZ8GpgmLZcYl7iTWT2Cx1OgB2L3kXdnujhZKStJlVKnPVXMT9GqweGGgglP7mB7v5BIDm+lIo1PKQtdxsU7QGHiG3L0WCetz9fDzdKK62hrYhSp3zWhuSkJfwFxyS1TkNNSfILW+yeDUK07BCot8DtfteaKIpCnF//YNuFyAUuYu0JVc06Id2IiziHZzPzADi/MfF6kToUOfhCjoRUq7OGjKVZZ9QGXFr4nrNSj0fpP79VcETVpbMsBAW4FNoigwTVabNGd8L8yEUDv/dnAMpKCQewWTjcGS2upfeuriun0AlHj7rej57ktCsNobUGx5z88RTslpa7fO5hRf03xte/ksATPsFZPGeKoXtoEmp/oZtE7/baCJhfNoA03kJ9AGmsjPkbVK9DVowv3U5wjCuyyNDXC+wG/10N4NnTBhAg2NiMKDXPkujLlz06NbokWNl+rLgYNHM5w82HKYrYdNDUnTpBmL7arKMvpz+3ajVXRg17oR+iD82xsuLA7SytjAUV2+Q6nbK4yeWZPWU4JBi/X3GBae1K6qsvxjKit6GSK4CyEy9zodLQRb5fvDWOx3wrY4FLbFowz2+V9rT9CqpGLyQV954R/i5UL3LYgzCphwZftWrqWcvcdo8qVLhBCqNUICTZrRb/WoLSyj8qxCKkAqjIOTI8284Twagh18DgZKGmqrhOUv65rATIcKjucgdai3DgYsHABY8Ntla0cnjRk/iRpxbR5OTjHoTuTr6wtgZYlJLgSYQsrJzqSNP62mdjBI1IP7EDt9Ajl7+dOeg0dpRKAmILU3pwpCr6qX3pGjEsg9KILe2ppj0nVgyjlQCpp8eyCfXoNIMDOfmAFlSkgioJzekp12MRYLdRSXsI3sHfxMqcYqZbXFX/VVKtkPswsM1BQhLlwLPZFx6K9xm2VOQfRwr6Djxy6BltBcaAq9pVE9u+eA00LZ2dkG0x6lA/geywszlYZBt3DZYJaGXMxHGpenl2+/gNT6+lJa9BLEcD/VEMesLPsIi/JXRDqOq/tEYgFNX//LkA7ymNxwzP68P0GTvKybIey5C2l+72CDYJbZfR6oA6srv6WSgqdNdoGR+vtXBE1YcJ6F59Wt1JWeP9b2YY0fQ8ECycwq0aeTYgg04ecfv6tZM324FWmBWanninsPO/38lcIGmvyVzrbhsdpAEwuvAxtoIj+BNtBEfo6sVaI/QBPuK9M/K8pLehxBeOeVX+g1AosL9RfGyMhImjJlKnb0u/QKb1prDqR65Cd+FzkAACAASURBVBxy8rPvAgNgi8mibVL96kKwMGKh9NQUiIYe1zsMBkqSYSmrLqo6JsxbgCf6Ijg4mNyjx9CDPyRTSV2vQCiX/eGWMyAQqkyDJSv1ApyXNAGYMHDCwY44D0Aclhkk540Lo4eW6Aov/nCogF7emCaAh4+uniILlKiP4djanXR8/S4avWQGJSw7wyqnVQJNYBNAdnVgi0CfhFkbdScFV7kRe4AmbHUs7IYTE6i6pRv53UMoOzMdKWVHgYsMAXjSTUWZ+UL8lYESO160ngRZ4uLisGiLovd/2SwAIm3wQhoIC7/amWjxy6k17tAE2rF5Cx3avldjTiJjo2jElMm0cu12ivF11nGh2Z9bDbHkTgoLC6NJU2fQU6tOCCq2KeCZKSdBKWjy9rZM+nxPLt06O4aunR5tShOUlXYhtTanwor3Q8rLvBGnzBuskx0m1WGtwkzqcXcZQocOHhTghaFoatgDlgnbS/MR3dCfYTo9BF0NREJCAtwsYgGulVLG8cUYoyfGuEujtGQ5zKKw+tIe1Qu3NKcAMCnROJ7TcyRxWn3d6E+Q2tA8cJoHp3uoi1xmpeG+1Mz3pTfEYQU59+gFlax1jrme/gRNslLORUpgFliMP+H8GE5ltOb4rFkXi8CyGCyDWqw1Y2r8FUETCQj0C7wa6SsPKZ4y/l5np+mykVgHyT/wGgGWOMHy3FAYAk0Ud8DEgqzRxFpNw0etAdMuwsSjT93iNtDk1D131uy5DTSxcDZtoIn8BNpAE/k5slaJ/gJNuL9uWJCmphwHtX0H6PXI4UU4uowEi8GZHAmaJ9A5YfFVR6cw8vLyomXLllEjhBXbT+6aW2vMhurptTYdIVJwtKMo71FQX3+lsAjQxv1UtHFTQh00sWP7UFd7wTYpLi7WqSa9rEHDHYULOIC6Px32wdrh7OxMZ551Fv10uJSeXHVM4+MJET4iPUZJNGKRxwtSnv8Ro9ZrHLIvt0q46nCe84UThtIDi3qZAgzu3PKlSrSSmSjMSDEl2EFm/7frKXpqIk25zDrCjhJo0gqasWtBDnXcfieVI4VGO3zCA8n1pReobcx4MEYYJIEbCjRD9u3FXOTlCbpyZ2c7XGx6U8u4jqCgIOR+z6FNf+6lXWlFAsxiUEs7ZsyYQYFBoQAxTJkRVVlObeO+/PTN91SSk0+tcNth953FF59DP247QBVIdxs/1Een4mxYEVe3D6HFS5bRBzvyiLVE5HRlTO9d7xFKQZNn15yg35OLzbpGcjOuhavVAYBU/4cd7efA2hhD0bFfW9Jti46V0g7Xr18PfZFqvXXxTjA75khh7+Bj0L0mJCSEZoFlIjnVZKacRW2tucJSma2VpZBAk1aAePrSHtU7wq4c2kw+Zr0YYjL0N0ht6ATUVP0ISv8TIqUgLOJZnPeDlAuWn7RbzXomzDZydo2nmLgfLDqPxg7uT9AkNWkqrpUmAZIxWHaqBdvfshaNu+cZcH16z+Tu/xVBk+L8fyKd5gfBlmLWlNLglBxOV9QOpfbb/Q2aSFpEYZEvIN3ubKXDPOXL2UCTU/4UWmUANtDEwmm0gSbyE2gDTeTnyFol+gM0YQCAF0tNeNG/f2E4Hd7xHhUV5VJrdzilV/kj/aSLfJ1rKcorX6i5u3lMpaUATByd3JBmYK2RytfDwrS5mdeJ1BtOwdGO0qIXQRv/HLtCD0LU7Br5CrVKaFsO83XuZN9Fa9asoeZm3pHujcNY6Gpb9/Kn04f566TpzJs/X9DpKxs76A4IbWaUq0RmWUeEBVgnRhhPCZBaLcr/P6qt+gVihLdBjPAunfHtyq4UjBOO88eH07RoP4iPttNX+/Iot6pJB0xROkElKTm0/b0fKDguiubcZp18fnVNEw+QczpXrabqhx7X6ZLH3bD5vO5qqrXv1a9hwU13Fzvom6yluro6wZ5pamyguvp6cbyTk5NIt8nJzaO8whJiQIltdKdEaQJao0aNorj4kRa5EKg7G1Tnl9AM6JjkV9XSujRo68AZiZ1o9EXU2Om0OrWOvj+kAnS+u3kGcapWX4RS0OT+7w7THqQOvXIRLKhxHZsSEsuLHWmqyr8QAqAsBDqQwVT2zvZm4TrBNsDq0dFRIXRXtMMNbhd2dprpVC4uLkLouqPLvkecUdK44B1o3omWQgJNGoHC6Ut7VG9PH2jCDkRucCjTjoEAqQ2dO2bz8fmW0hZKCp6BM8s3PcyTzo5qiGDOBrjgJTRu+ir6CzSRrFkld6i+Gk9f1su6OTnplwMUTASYudLkpv6KoEluxnV4ruwHe+4DcveYbtKcMdOEGSfqwSwsBk7kor9BE0nvhrWIQsL/T657p83nNtDktDmVFg3EBppYNH1ENtBEfgJtoIn8HFmrRF+DJgyY/P37HTQjZCO5OTTT/Fh7Sog+m9ZvxAIq10dDoT3eN4NcHVpo1pyrKCJyssk6JgwysINLcW0LnZkYqjglRZpLKcfY0I4Nuxuwy4EhUEHunGiDJlye/1YPHY0/oKOhHqml9VQOkU/10Mc0GTduHEVFx4DJoFICffr347T2WAldg/SHq6ZGKl4os0ZEWjLn0ncJUToWkNMXf2ZU0IM/qVhC6hEJm9uVN5r24icdX1daSete/IQ8g/xoGZxsrBHaQrBesCgte/ifROvULF8nTybv116idi8fHYcQBitam+tpHYATZp8wcFJTA/FigFvMCOgE+ykjM0t0dWdWpbD7nQEggMtxcLqUtVwI2Ka6uCifamGP3F5cR4f2ptBR9069ABq3PXHiRBoaGQ1NCqJFr28VejQMmoT76AdYLJ1vpaDJ1Z/spUwAep9eO9Wk9C3uX1Hew2B5rcKiYD6+L5sB6t2B7+Edlnbd4uM57bC8rJh27tBMFdKbfojWWOSaxa7VQwI9cfvqCUlA0dN7CVJSegUU1UETLqyd9qheL6c/cj/Uw5CDzkCA1IYmn0V0c9KvOLkA/4pSk2YIxs4wsEpcwC7hSE2aIlKf4hN3Cyvqvoj+Ak1akHaWjfQzPjf6GI59MTZr19nWmkOZKWebJWrKffkrgibpx+chfa4CrM4N2CAyjZ3JbJPSohfEJgffU1gwWR1cNXZ++xs0YcYda7C4uI7Gd/hba196g7Y+G2gyaE9Nv3bMBppYON020ER+Am2gifwcWatEX4Mmz676g5aHPiQAEyk8/S6nlKoLadvWbRrD8HOpoQUTXGjo8BF01Vee5Ae/Yv7xd3fu/beb9DfVb1/8NwcDJXd9c1D8luKFFWNoTmyg4qmSaOGsNh8a8YzOcVUVX6oECAOuwI7Jo4rrlQrqA034Mzeo1mdnZtCRIyoWBwenvNSAxaEe2syCiIgIofnCjizImhFx6Qe7Kb+6iT65dgrFBSmneUtjUyJKd9MX++k4Fu/q4QaQYeO9KtcdU6OjtY1+euS/ZO/oQBe8eK+ph+strw2acDpFa1EJtd9zH1ZcqUT+/uT00QfkMDScuuz1MzBY8LOoII/27t0r9E2QHUUhAEP8cOzRpN40qEP5NdTY1iFSZZjNwUyU5WeeSZ3koNeFwEmPZa3coF3QxS4wsj574E3qbGmlwLOnUEerZsoQ1xEdHS1Ak1aAaHxJPIV0rd+OFptlPS3XJ+lzpaDJmW9tp5qmdlp1xyzx3TUlSgqfE44p/OLd0nwcLJPBQ/V2deymlBPHcVnhujoZhtzBXN3HgyHRm1I1fvx4iowa1gN6Ssdzag6n6Dg4BFBswpaeerVBE/5ASns8ceKEzpS2NB8TNulsf8xAqD7L4alTp1JwSJjJILUp58+Usm0AejJPMNMwDODY3QDMHgE7ZiLYf5/1VJMJDZC2PtYA6S/QpKFuG5g1dwjNm0gIwZ6KwU5RadCuYKHjuATjAuf6xmcqaGLY2N302WMAglP/2JabQVlHxzC9lVjTu09KsbGzc6H4MftN77QFR/Q3aNKNDYuUo6oU4fgxeJaCTfxXCBto8lc4y/JjtIEm8nNktIQNNJGfQBtoIj9H1irR16DJj9tup1Heui9RafQLtVeXC8FNKQICAujOiyPxAvk4/XfvPNpVPEV2mPZYzPICjIVTq5s0XUbMdY7xD7xOODdoB+908463uakBhkATSfTzwH7syOTmUhY0KYpqm5HyYY/UCgcqq2/VSf/w9PQUmi8MmLSftPhl+9lz396BRZTpAEZ2+qVIJzgGEb//QMxvmdF5v/bTvcQMIu1goVFDKSAu+vVre6pI27IfqQ4dFDd3khBoNRZt0B7pklAiAwW1QZOG8mo69utmShwdTl5PP07Or7xMHcNjqc3JuEAu2zAmHT1CGRkZFBUZQZMnT6JVq9dAtLGXBZRSUk8Vja0UH+xJgR7ONHfePPL28TfoPuLtDrvihgZqqNedQ/XhsIOPFA4ODoLxsvrDtdQKbZYJZ8+kGudGaK1U9JTx8fFBWttSaGzUAaxpx069K5U0IZXqnd00I8afXr5wnOz3yZwCSkAT/n7OeXmzAJ/+/Pt8k5spL36dKsreF/aaDAKwngnrmgyGYHYR6xNt3bqVSkvZqUYV2kwPbRFW1hCZNGky0hYhPaJnRZZxfBG1Q8hV3eJcH2hiTB+JLdLb2/JhdzxcrwjjiBEjKDFxDPpgzWWoZWeFWSWpSdOE5bsrUiUboc0SMvRx6D5c2lMx20431u+Eu9DbSOOZbVmDBo7uL9Ck13nmQlgOP9UnY+nrStmpKeXoeCF0PHLsYZObMwU08YLlu8ToM7khrQO438KSu7Om5xNmbjg66md+VDdobmSY234zUvdy0i8TzClmUPVn9DdowmPLSb8S83wEoOD7AAd19Vj6c/z91ZYNNOmvmR7c7dhAEwvPjw00kZ9AG2giP0fWKtHXoMnug5eTt32STnfjRm+gvDoP2rQdAnIQ3ORF4dKly2l0YBoVZN9Jjs6jwQb4iKoa28RPpfQbYpjqf2NNDWNhinNMWfFrxPm3gaH3UkDQzTrVSjuCHp6zYQ35tsmnwBBowhVJop8fffMzHc4qEnWPhbCoF/QoWAeCxXAnR/qRy0mWwpKlS7Fz7K6h+bIVqUmP/JxEU6A18vrF4xX3r0doUWtX21AFkqCn+ufGACoem5ebowDIWCNEX7BIa3tLGwUOD4c4sLPeMo6OjoJFwae8o9P4vp82aHLguw2Utesozbt6GcXHhVK7mwfVD5FnO/DLOb+k79y5k6ZPny4YPXm5ORp2rznQcykAuyfKz53OnjddI11K30CkOtnaWB30kDth1Vhd52VWUnQZADVfN5p765m0FulGHR2qvI6luCZKy8phGFREDKCw7kpRTQstek3F6Np031xydYSPspVDCWhSCken89/dSUGezvTzbTNN7oHkNMGMie7uduGcww46gyWYPWRPHULfpK2tF7xlbRMWY+UUEnUtE9YQ4fPV1ArQ04DQdWHug1RX8zsAgycAGFwihqoPNOG/8zPTEfpIa7X0kSSmCYvJMuCkHgxSL1y4kOqaOjTSJAfDnErpN6q+2CENZ6dGGk6viGbv3Fi73+aAJvzddoXguSnBzCl2BuLFujN+9IW2Zg6zzpoHEdDFfZbEbM1hE5gCmjjiWndx6BaaU42NvULLpsy5VNZQGp2209WYMWNoWMwIHUaYOW3yMbXVq7EB8xA2KJZgo6I3/c7c+kw5biBAk9Kif0OL6jMwx+5EWuXtpnT3lC1rA01O2VNn1Y7bQBMLp9MGmshPoA00kZ8ja5Xoa9CkvOR/VFH6P43udg/xoNFjd+Ml346qYQX7G3buWZtjeCTsMAGeZICazS8zbF3IFobGghfPlQBS/rc1kzac6N3l5WNMZZoUFzxFNZXf6exqSu03Nx6mnIyrsMM9DjvdX5p8CgyBJmzpeyivhoK8nMnDvp02b1wnUmt4gclxAkyGSjAZpL9NhhZHWHiEzgscz8EXe3Pp+hnRdPOsGMX9k8atbvFp7GBOgWK2iSRUy/P82PJRRlOhjIlWMlhSlVtMnbDJdXRxgraJL7l4uut0gRkcXt5+SD2RH5o6aFIHq+F1/1YJ+y596DrofQRSfZtyG2vuO2tHNKFhZOHguhqCVKrDlJkJxydEKZhA6WX1NHHUCLr6nEXCAYU1TowF10ldbfT76tXY5VSmdizp3CQWNtIQuAKNXDGFPIK9BKDDKRacFpSaprLxZmFROwcXMLCG0J0rDxKnED17biItiA+SnzwTSygBTY4hnetmpHWNCvGiD6+ejPk0DbxpaNiF7+b3omd29hDAHfq04l7yPaI/HLhcHIcA5KiiLVs2y/ZtMQAtF1dPXMuGr5PqypVwCnpWOE5wOhKHIdCEP9Onj8RCk12dDULc2k7NlYVBar5GuuBbdpKoJtvn/iyQfny+YBSJMfueg/E/r9F8r77ULViI3dMnXTMHNJFclXZA48YQQKzdWckamgETRy29G30Di4mJQUoXNIs6cA8ZRJF+fCHOWSmNGL1R0TjUu24KaCKuddw/GhtqaOOGDRbNQEtzstAV0Q71NLrw8HCaDhe0RljSy93XlXZGei8KCO6769dQXwYCNKmrWQdL6geEc1fEKZqCpvTcSuVsoImpM3Z6lreBJhaeVxtoIj+BNtBEfo6sVaKvQZMNxzOosfTvFO+nWszZ2XniBfi5HpV3Fty0w84x7+BLL4GSvga/uESP+ELRUHkBzwt5SdOEAZmHlsQLQVilUZj7Nyx61htMUWlrzYbOwDlgeERDLHWV0mp7yukDTV7/I52+OZDfU+b6MyJpin8XlWX2Om8U1jRTdmUjhXi50NLp42gsACZgKDpxBxbHh7E4/g/SMM5AOoaS6OpqQS76TOruatVIA5A7VhLdrce8szsPO/XIBS8qKytKacefsEI9Gd3YMa3IKaL2Zs3UquC4SKFxIgWDaqz90NqpbKGgDprs+3ot5ew7RjEzxtKkixfjGpRP79EeixsEe5taVeCGtDDauHEjVcL2tw6Kq5k1HXTheWcDFPDtSZcyZz60j+G0lnwwWVjfhnVTOCYw06awnpwjvWnGxfOopaWF3Nzc6MBBFS1+2rRpFBgcChaSaq4YSGNA7Sx8F/4P4Ja1QwlowgLND4MFNWtEAP37/LHkA0uj0pISxQvLdizGmhtVjDVmmLALjZLw9vYmPz9/zJ2S0paXYX2RjPRUSk7Wdc6Rap8yZYrQEGmDW46xkCzQHZ3CIRapEjA2Bprw58xyyM5M70l7lBx03D1nCl0TKWZCzNg/INhgCpnlM2F+DZJLmVSDX+C1cCz7h0aFNVU/w5b4Mb2Aivktax5pDmjCNfAztbO9SQCiSoLTFtgRiMF41gQxFiwwPWfOHGpo6Rp07KCs1PORkpaO58iPELXttaRXMgemgiZcJ3/XcnOy6NChQ0qa0CnDaWCcmtONZ6B28HfO2SVWWLwvB7jI7EYpDdasxrQOKswDi6z6d1hqPwdr7fOsUaXiOgYCNOE0Q043ZDttttX+K4QNNPkrnGX5MdpAE/k5MlrCBprIT+CpApqI3eJBEq3YeTYn+ho0uR0WuGlYHL254EG8tLtA1HCzeHCqBy9wm+Hwoa5TIe1aDR32X9jpKtdA+HRXDr37ZxYN83enL2+YZtKU5GXehN2r3Qbzbjs6Kin92FykEvlhHJoitkoa0gZNWBeEgR71YN2K72+eSs0lWUJHg4OBiSOwIB4aHEgP33Qp6PTtetNT5r6yReyor717NnnJiYicbFTKp2fLQ7Y+7OvQFq1sa2wGaFKs0yyzTTwDVQuIoUOHgkkxDfotIGfIMDikiiTQJDetkDa8/Ln48/JHbySPgF4RTkvGyt/9ro4WkY7RCi0Wl5iJdLiklR5YZBoo4YoMofTUFDp+/Lje7rC2DWvcqMdQe3vyzawhO3xvAhfG0pTJE7FwOEINoKrHxsbS6NEJ1Ky2C82ONexcw9o/LMJq7VACmvx0uJBe2pBK540LA5iJHXWAmiyAvA7pRUp25DsgNNkCVxUOdp/hVAa58PX1FSlK9c0dsulccnUp/Zw1WzxgV7179y4qKNB0ruE6hg8fTmPHAvRUCOKwuCaLbA4f+TvA2khZ0ITvHx4u9rRv7x7oI2VC92OH0JngdAMpEhMTKQZi24ONqSDudbV/UEGOLnOEQSNeyErB92m+X7t5TKGo4R8rPT0mlTMXNOFGGCBmV6VdYIEZC9bSYGtq1taQA02cnZ2FwHRHN6ypzXzemzQBJhbOzbhWCKpGjfhUMJtMCXNAE+laZy2wnJwc0RzPJ2sJ8Xyy4DI7EvH1z//NDj/8OYuv4i4iWDHIncMPv8fpvj/ZwdL6rLNvJXevCMEwtGZIGmK8KcSbQ/0ZAwGa8PgkBrG6C1Z/jru/27KBJv0944OzvdMWNClIyaXGmgaKn56gaOYNlW8D1Tx5y0Eqyy4mdx9PGjYhloaO7LXvtIEm8tN7qoAmvFtaW1uLFwWoLVox8qCPkIWFDu8yszvM6FAvo1oEwcFBSJUAdVRGHFNfF/sSNDmQV013f3OIhvvV0aOTHxMvvdKOqdx0VZZ/TGVFL+OleCpeij+SK97zOdurss0qL162PTBP/FYa2WkXw5njhLDFY5cO7bBU7E4bNJF237XbYbvgR88cScxkkDQv9ubW0NxFS2hiVDC5O+sKpR4rQvrDl/uJHXa+uF45WJSTcTV28A+B/fMv7Nqeq3SqzC6nLVrZUt9IVXmaaVVcuYc/9FxC/MnDw0Ps9KkL3ippXAJN1r/7M+UdTKERsyfQhPMXKDlUcRmJOdMCG+JNBV302uZsWn3nrB5HJyUVGRPx5OP351ZjcauZvsPW0wmlTdTV2E7u40MoND6CyiEIGxgYSAsWLNCrUXH5h7spF4yVty+fSOPg8mPNUAKafLAjmz7amU03njGMbpw5TDSvbuss1x+2xG5uPCiKOTkPM2iJrV4PXzd2jq4AEuVqt+7nrLkAKSJaA30Rdc0FPz8/Wrx4sUkgTkHOfQASNvbsSMsxTXgkEiC1Zs33VFIE8V3oqbi5q5g5oaGhdMbMmaoUMjOeF9adKd3aqso/h5XqizofhEUgTclvRc/fJXchFtcdMWptn3TLEtCEO8TGbsePJVNaWpre/unT02AGlbr2jfqB+qyp+2TgZlaan30XNdRtIVM3Org5c0ATPk7Sy2J9k8rKHDBHwPACQCLFEAAkvCFgKA2HBV+dXWOhC1UlGCf2Dj4CYGltTkfK8AgKCGgFu9EBOhy3mDkr+g9LTYY+FtLm2GlIjl1k1YZR2UCBJoXQcKmDlou6RpO1xzaY6rOBJoPpbAxcX0470KS6pJKyD6dT9qF0Cge4Mf38OUZn11h5Bky2f70RYIkHxc9IECAM//ey21eQLxYAHDbQRP7iPVVAE/UHdk1Nr/q6/AgNl2DB0xMlmmKZLnBRmRyln7bLWgZBTPVWmLag3XJfgiaP/5ZMm1LK6O5Z7TTe7QFycUugYbHfKJoefnHhvHamLXMOLOfCKo0rP95D2didZ+0E1lBQGhknlkBLpUgAO+q7murHs6sD03rjE3drCBMqaUMbNJE0SLSP5YXlHfOG0xCkLTHFm4U+PaMT6SBSr+OCvGnxqGCd5jjFh1N9zhkbRo8sld+F5wokBX977KjFQWixv0JdtLIJ7AgWge1Q28qzAwvBLyKYnNxdibUfnF09TN7pY9CkKq+Yfn1BZVN61uO3kJuvcgtmpXPBTBF7gBhXfryPkgpq6Z0rJtHYcNMESnk+nCDiyYvsZgAw6mEINIFPBbVm1ZBTmCe5jgoQQspnnnUWgFY7oWOiHW9sTqeV+/Pp6mlRdPuc4UqHp6icEtDkhXUp9OvRInoQKXMrxvUyBtjWuTA/V0NYV7tRsYgB7V+1M4z5dvCXdc6ZAQ2CgMAQLHiUg6aKBquwEANCzY21tGH9enGEHa4RZgl0I0VG3/kxVG1V+acAEV4iHz84q0Q8Jcs0kerh9hvrMuiXn14FMycAIHAiubq6ij60wY66bTAKmaDzhkCTodFv9KR08hi7u1vh1jLJbLcWJafRUtBEclXasmULlZWV6TTJbBnt1BDpXGkXNjU9Ucn4rF2mKO9RCJz+KtJvvX1NSzkxFzThMfA7TEdbI/30wyu4R5ToDmsImCTd+pgkngYZMWzdPjLeiU6cuA7P+xYAL9MoOPwhk9OO9M0xa/Xwuw0DNHEJvamq1j4fhuobKNCkuuIrKinE5gzSkTgt6XQPG2hyup9hZeM77UATBjYYCCk4kStmQA40MVae61n79s907v2XCuCE4+Da3dRY3UCzL18k/tsGmshfaKcKaMIjccEDux0PbKbpWyMk0U/tuqZE+QnbWfVgu8gxY8Yqpnrr619fgSa8q8272xzfXQuBxOK7QRGfidSXdxVPU0Xpe1Re8oaglkeaIB729O/Hae2xEp0FmlzDSgCRjBOLcb6LAaysB7ASJlelxucSaJIGYdcX16fQTjihaMeECB96EZoPLK7KTIaqyjKqrqqiDs8QuvyjA3TB+HD6++J4neOe+O0YbUwpFYAJAydKorTweWL9GL+Aq/BC+LCSQ6xWRl20koVgG8qRflHfJKxXvUMDyN3PC/a+kykkNFxW+0Ffpxg02frBz5R9MJXi5k2mcefOtVrf1Stipgj+R4/9mkzrj5cKzRDWDjE19Il4ch0ZYJyVwHlGPcK9XSkKaE397gIaAoDJa24UzZ47h3z9Ag1qVOyDA9O93x2mEdCe+ezaqaZ2z2h5JaDJP348SjsyK8S1PRu6JuqhbuusryGm1fOPemjb96p/Fh8fTyNHjR5wdxEGhPJzs+nAgQNkroYIay7kpF8u2DXDR/6mGDTh+ehuP0AFucl0+EgZFnvDaQGcctw9vBUJKVv1AjGhss7OeqTdXA9mQErPUYYWWZwqySmTsaP/ADBkfYFjS0ETHgC7KrFmF7saqbsqMRDIVsraoc4Kkj4zJz3RhCm3WlHpecLPEn6mmBKWgCbcDj8rnvbp/AAAIABJREFUC3I307atPypu1hBAxc5jy5YtE2mwNdWbsdB/QQjTcwSHPUR+gVcrbkNfwaaGfZSLa9wUzTaLGtQ6eKBAk5amY8RpSeZqwllzDvqjLhto0h+zPPjbOO1AE2nKOaWmAeCGHGhirDyn7Oz5aRtd+EjvTZX/lrrrGC28/kxxaEmVrujU4D/t/dtDpjfzi3hVncLE7/7tnk5rLhAkKy0uRB67CiSwJJKLaqmaxRu0gkETBmikEHaRCxYKqnenBTRrfqlzRw58db1x615Tx/TaH2liZ/tcLODvmJYB5fSHhQvE0Chd6rWhuru6mij12HxBY40e8TFe+JUt9lbuz6PXwLpYAYDhYegnKAl+iT1+ZBx2Lu1p9DiVdoK+yEy9ULzQD4//Hru3pulXuGARtTOrkh7/OVlYKAd6ONPDADkC4ZLD+iYspsoOOerh4tiNnTRH2otF77Wf7KPhgR70pZ70m/Pf3SFEcL+6YbpI0ZGLbuy8pSafgRzveoqJ+w4797rpSHJ1WPo5y65kZ2X0iFZW5ZVQc10j+Q4NosSJ40CPHg+tG1XWualRn19Ev7/yFdhAdnTOP2/V68Zjap3GynP6yQc7suhapFaZy+QQIp6YjyNHjvQ0lVRYCxFY1f2A03L8oUvC59cB42rYX0QdsBSOXz6Rpp81H4CJcVbFYqStsT7OdzfPoAhYFlsrPNxU96WGJsN5MNd9tpdSABZ+dPUUkW6oHqodeQfauEklrKsdDfW7dHbkWafAw2u2TlkWypw9e7aw8rXkvmiNueGzwbotZWWl5Ovrbxb4x/04cXSqYLfFJfxB/j7hQp+lqUU+56gYzjt+3vGUle0OQC1eCCmby0i0xnyYUkdZyVu4z6binj8FLJsVOjpYXFdW2qWCLTcs9iswBsaZUr2ispx+24LcrpZW8/TCpEacoGddX8uuSls02tV3XfOC0tlFlb7GwemJbE3dykKkMjbrigbVh4X4nLErDNvKBoXcYVJLvp6OSBnrBLBk/lw7DCmjg/u+0UiH4vQcN3fY1EMPid8j1IP1TpycI3T6yWl99o4umG/V/bSrq1kAJ9Un3bs8veYhxeRhuJXpHqtk0FxPUf4/cV2fR+FIi+3vYICqHjbj1hS2VTqGE0cni/mMT9wKdqQmeK60jlOlXIgfa+fY4q8+AzbQ5OQVoA9k4fSc3179hhLnTxQ6Jm0trQIwqQEDZdnt56tuwAqFDP/KF9oQUM9ZiuJUmitOoTh69Cilp6crPnUdEO1saOkQebkeWEGmIi2noFqTns+VcY76nLjAnnoFFR80aycspu3xb0uC55r/123F65KdVaY+t0m8cP5850zyo58wL89C0PNaCFU+blJ3s7Nfg8jbm8gtXgRWzTuKjt2bXUWXvbebxg71Fu0riba2CtqxYzqsEv1o1ixNcVb14w8duopqanbT+PGfYyE0Q0nVPWVe35hOr29SXR+LkGLz3PmJAjBRGqOfWIs57aI9jy7UOK4I7jqzXtxMPm6OdPDxxYqqKy7+gVJSHiJv78k0ceJKRcf0RaEuuOfs2bOH8vLyqLa0iqqKKik6fhhdfsNVFl2Tq177VqRdTj77DJpxkXIhYXPH+OvhIrrvm8N05phQevOKCeZWgxfK3vnIA1srvbRe6BlNhxsS3w8ZLJGiIaWCmrIhbIi/RSP/ftqKORQQqZu6JZW/b+Vh+vVIET1+9mi6fma02X3UPlDcQxDdRuCtGc//QaVgzOx4eAGFeut/meTUpNV6LJirq3YIirx6sJijr5/md5stl/m+yKkwjrg3ni5x9OiNAJO2UkLCaxQcdI7sXEvj5uOamrLw/f4Oc+IjUrhOp0hOvpPKy9dhXt6goCDVppQ1Ywi/hACxNXZdK22vE+8HKamarkod7dUQQT4qNDQ4HB0hfu05hobY9V67DJh4eXriO26aRbfSflmzXH7+xxAvfw7P+evwnH/MpKqtNde1tQeQEvcTlZVXkKODN0Cn0Zg7FwAmLdAXSgMoUy5SutzcYrDpoQt6TJ8+nYbCYljfe1Vp6SqM71nUUQEQz5VGjHiMwsIuNWmcXDgz80U8796nmJi/UVSUaeCSyY3pOYB13vh1zxrXtan9OXz4Gqqu3kljEt9G+qSydxVT2xgs5U3R0xssfbb1w/ozYANNTs6pIWYKp+gkbz4kUn5YCLaxpl78lpgmtvQc+YvSnPQcXqjXA4Aw9EIu36plJXi3lEX6Nm3ahBe5ctnKmGnA7IIOLJI47PEg6zwJXLC1bDMAB955YTCD/x6KvzHLgGMWdlL9/IOsYhfZF+k5X+7No7e2ZtAMLPRehv1tecl/qaL0XbEDFRB8u+zcqBfo7KyFY818zEMb2Cafg9IqvyA1Rwy2tSWLslLP7aHBG+qkJMw4NPpV5Ngre+iXN7TSv9enivQEjpsghHkDdEtMjfuQXsGMk+fOTaT58b10dNaNYf0Ythlmu2ElkZuJBVXDHgod+iT5+F+k5JA+KaPuolJeXErVEIU9+7xzKCh+hEnaD+qdK03LpW3vfE8OEMxlLRMnt77f8WEdohs/3y/YQp9akP4i2Rn/+Osq2pKcK2CIkcFeFOAB8RS16IYmRf2OfGge9u7MOro60+IHrhGpTfpi7fESenr1cZoW7UevXmw9xwYl6Tkz//OHeFHf/gBy+TmfSU+4OtlRRXmJhiU1F2M3DIkeLx2mLz1n7rx55OXtN+jST/h5ZomGSEXZ+1Re/Dr5BlxO8XFPCqZJI551cpGZci7SmrJo9NgNAEzChbPWqRCGrg/tvhdj97+y7HMKCf8HBQRdZ5WhqbOTrJGeI3WKF1CchrZnz24NVyXJbpjtbR0cg8WCXgpL0hOtMhkmVlILG+gitoE2Q7PC0vQcqatVJU+RJxipW7YV435jmuB1XFwcjWLnMSOMPRaMLcV1V1fzO75TnuIdICj0fvzbuFW0+lSyIGpD3TZoFD2H+5VycXILCMUaZ3Kg0nO4E2XFL+M7+7FgCYaEq8wBTtewpeecrmfWtHHZQJOT86U0nWft2z/R0FFRlDhvojjSBprIX3CmgiYsgLk6uRgOMh1i0XLvgliaGKH8ISbfI2UlONUFkmRCvLO93XC6C7visMCjBJhItTtD8HVUiKfQs5CCgaAjhSqRWablL5k5xap2kdYGTfgcXP/ZPioE+0HSLygpeAbU1m/EQ9I34DJlk6lWqqz4VTxoPyQvn6UUHvWyouNNFYNlBxl2knF1G0/RsV8YbKM4/wmqqfpRiDKyOKNc/JkBHQfol4h0HLBKngbgMS7MNKFQqY2Pd+XQ+7BTvmRSBN2Ha1wKSeTz5lkxdP2MaKNd4s3TlqY0UNsvwO6zKwRg2ZJUc0EuNyZrfy65qKyFLlCUF5gSDZ1IOZmDHVfzLL23v/sDlaTm0MSzZ9HwBcqdhCwZF1/3S97YJlLo/rjPMv0Uno99GQX03c+/UbAnbLpxT9OO9vImajqq6zo0fsV8ip2jetZoR21zOy1/c7v484Z755A75w1YIeRAE772z/nfn8JViN2FjAUL66alnIAA4wmNYqxp0n5S5NEJjilsO6y+wGShzKjoGDgNDYzwqxWm0WAVbOPKdq5sszx+wi+KQRMWSmXB1Pgx+8R3/VQITtPq7u6EoKc8KFQGwKSw4D8UGHQF2A0PWTw8JydH4dLFoBSHNUETro/Tjl0cuomdXiRXpcb6nWJDwN1zBq7nXtZhTEwMjRs/QaSZmZOeaPFkmFGBZBft6TVfOOiYEtYATdpa8ygz5UwKDbmSXNxvgb7JVsVdYOex+fPnI925Uzatz35IF/TlKmFU3AL2Xwd4dvZCbNnOTpnQeHtbHo5rA1M4AsLQypmmzExm1ytLY6BAE04F5vtYa0uvm5S2wLOlYxtMx9tAk8F0NgauL3850IQ1SVgkVlvrRAlokrr7GFgnB+kcCMM6uagWJjbQRP7iNQU0+R1gybNrNF+wGXRYf88codfAavwNdX8I0c6A4DvEi2dfBguS1VRXGH1gN8IW91B+tU43/N2dBWiiHaX1rWCl1Au7yJsuOpOc7R2sZhdpLdCEWTPPrjlO+Ugv4rScAOh1/Hq7ij5fmPsAdmbWAfD4D4CPZSZPv6Q2zwey+w678MiFqWKwbJXIlokeXnMoYtj/DFbPNshshxwU+jfyD7rBaDckm1UuNAvil/9EWsRQaElUN5in1XMQ18xdKw9RfLAnfXzNlJ62b/nyALEWzutgD0wBi8BYeGBRkpv9KpWB+ePrfylys01Ll5Kbd3M/Z9HMpoY6qkgtoM0fraYF915O/lHKBG3V2yw+kU1/vv8jOYNdcvkLd1Kj/NrL3C7rHMfAAAMEP916BgWDGWZu/HS4kCoamyncoRFbcxnQMtEFAiIhDJz08y6dJkYvnUEJS88w2DRbgLMV+NPnJNCikYZTeUzpuxxokoYUo+sApCph4chZMOvrFwtlTps2XWWja8U0Q1PmoG/LdsMpZiIW1+00eQp0s5BqI8c06Wgvg0PHAqEbEJuwpW+7Z8XamWXiBT2zzZs363WcUW/KzfUY+ft/A8epUVRReblFvRg1ahTFxsUDdOsFaq0NmnAHGRBtaqihjRs2CLCEQZMhcFRikXQp2Jp6CVzDWIhUAnAsGlw/HdzUsB8Cp9cJe+uoEZ+Y1Ko1QJOqii8EC8TLZznFxb1M6WkplJwMC2KZ4FQ+dpViDZPObnmgnkW7u9pb4OzXQps2rsJ1WihasLNzxg/riSH9hbrw//rrYvFibtPLOwLnV653qs/NFZLWV/tAgSasd1NRqvluZWfvCX0T3eeYslkZ3KVsoMngPj/91bvTDjThvPckABvs4MCaJOx6M3E58hqhScLB4AjrkkjirnLlGShJ3aW6UXNaDoMtkpMO/80GmshfqqaAJg//nETb0nXTYZgi79XxlgBN1GNYHAt49i1w4gFh1dSU43Ts2DG9g2Wmye5sXcFDdsUYZkDEs7S5m0ZNnUuf7SmgE0V15IXFL1vTnmmGU4d6p6wFmlz76V6RbqQeL6wYQ3NiA+GGcCM1IhUkcvgHEPabLn8B6ClRWvSiOJcsJhsW+YJsHd9AhPZ12KyuGBcGFx35881WiWyZ6O17Dup/3mD9ElXeP+gmACf36S1nKB1H23JYdhBaBZg6Pu/VLWInbO1ds3ENsH1pN819ebPYjdx471xyw0u5oXB07KL27maqrVhJRbmvIt3pC6HgP1jC09Wedn33B534Yz+NP38Bxc6WT8XS7vuW/31L5Rn5NPG8OTTxzDOottG6AsfG5uqOrw/S4YIaeuOSCQYtwuXmmp1yrvxoDxZvnfTbHWdQTX4a8ugzNA5jO8yEUYn03ePvUXtza89nnJ4z745LyCfcsJPIV/vy6M0tGcIW+YFF8XpZLHJ91P5cDjTZBfHjB344QtOH+dMrF8mnjxmzYNZu293dnVi4ESSaARE2NHWuzC0vpdPFjXwLi62FsqBJE5hzuYI5Nw7MuS/NbXZAjpMcZ9iRzhhj08mpABov70FjIoxKy24zu69BQUE0D6ld2iyDvgBNuJOSq9LePRuEQClbzzLDkcNca2qzB2/FA1m4NzvtQmHLGxOv3MWGu2AN0CQv61aAUDvE89vX71zoxNnRrl07qbBQBWoYijlz55K3j79JaX0s2l1eWgTgpB1W8T+DPaFiAw9he2MGTcCWUp1PV2iq9Aqz89/hJQgNHjDl7PwUgbwJCQmCXdzaaR1dm4ECTQpy7oEg8h86p6E/3smteJkrrsoGmiieqtO64GkHmvTF2ZL0TCR2iXobNtBEfsZNAU04NeebA/k6lX5/0xiqzdMVgPREDilTAvsyOH9Z7oGdXdFIhbW9oq/sjDEGCxl3A4vehYsW0f92FtPX+zVfACRgwtzxWAM0YbCEQRPtYMCE+5eFF6lWvFBZ8nBsbyuijBNLRBMx8T/hxaw3PUXf2A/n19AdKw+CueNFH149WXZ6GJBhYEbOfpfTjDjdyNf/ErA0ntCpVz0dh9k2Dy2Jp5nDVSrxloImXMddYAocBFPgxfPHwLo1kI5gkX47FuvsuvPJtb3sE+2O8Xeqs7uAbvnlArp74hUUCcDFw9c0fRnZSbSwAOt5pG4/TAe/30hRk0bT1CuXm1RjYVIG7fz4F+GUc8m/7oC7gX2/gibPr02h35KK6B+whD4fzk3mBFsX/5FaRgtHBtG/zhsjdJI2btxIFRUqPRx1O8wK6L/sW7mOagrLxGdsq8z2ysbiPxtT6cdDvfcQBl5vhMaOJSEHmvCc8NywFTNbMisJQxbM2scuxo68s6sHNEOU1HrqlikveRO7tO9QaNgNFB7xoCxoUlv9G0DgR7DrfiYYfv8+5QbOGar1tdVwnNlssO/29vUUFvoSQGR3KioyLz2HxYOZZdBJDtQGkW316CvQhHljHq52tHvXz5R6YqPQdZCeZzNmzIBAZggWyKdemll7WzGe0YvBogihEaM3mnTNWQqadIFVnJqsEmbnlFN7e2+RDoXHHECNNT3pUNqdGjNmDEUPG475lmeYqB/Laa68OcaW4nV1tbRt22bhcNXdpQvS29t7ACBRMQ+7u1rJz49Z523k4KTamDUWzC6eNWsW9Pq6rMYuHijQRNr4Uh8vM01isJF5Omqb2EATuav7r/H5aQua7MZuWFldK5073jgl/LnVmqkgfNrdQde7b1GcxhVgqD4baCL/RTEFNGGb1Qvf26lRKS/WnzsnmtJOPkTVP3SDhWHU8I/lO2FhCSUP7N1weWFdExavHerjhjxZ/Q/uCRMmkJt/GC1+Y4dOryRgwtzuWgM0kfQctPvALJjHsEhimjjTxflFil+ozA1JG8XH7wJoijxttBpTxWClRYmcWG1dzVqkG/1dr76KRjoOgJKHYCfMFrFSWAM0YU0T1ja5Ykok3TVvBEmiuxdgkf53LNb1Bac8DOlKome3PEAHig+Qr4svvb7sdfLxPNsigUpzz6Ox46oLSmnjK1+QZ5AfLXv4epOa+OO/X1NldpEADyYsmy5cqfqTafLFnlz637ZMumxyBN0z3ziop29gUqohs4W+umEaBUHPxBk6SUOQlsE6SezQxQs8e0dXnLfe3HYGTnL2JtP4FfOgZzLJ4JxJ6V3aBd68bIJFGlByoMknuF7fw3V7zfQoum32cMXnlO16szLSeyyptQ+cNGkShYVHmLzgUdyBQVSQ0zjysm4hD89xNHL0N7KgCQMsfE/zD7oZjLh7B9FIlHfFHSl7cikWQ8Ofwu5+J2VnPkRN1UiZgJaYPac+hPgrasiYeHBfgSbcMb43OVIGvtefUVNzEBaNoXABSqDhI2I1UoQUDWKQFGJL39Tk6SJFJX7MHpN6ZSlowsKshbkPCiYrM1p7nrm4lzaeTIfS7lA4XHKmT59hdlqfJGKem5NFubk5lJR0BMwTFeNEPYYMsQfbxFMAJp6eTgDzYWPdkgeW51iAO4bFal1cXE6mDVkmJK3dn4ECTThdnplIvAEmBafMB5poT23ShTWAhW2gyQBO/iBq+rQDTbKw47/pRCl+ymDr6KcDfqjPfSPE/pIKazVOh+r4MvrwWtUOn1x9NtBE/mo2BTTh2h79JYm2pKlSdMIAQHyC1BzWNWFmgvoNmj/vz5u0q5EHditcL/blVkGvwA60dcM6FFFRUTRp0mQqq2+nRa9v05k8CZiQn1X9JawBmnDNd4LVcQjsDil4/l8AG4IFeVX5+G14kdqPFyrztR5YDDIz5WzRxPCRq+B0E2102KaIwZYUPkfVFV9DrPZRiNVeYbBeafHCwn2RMe+LchVwx3lRgTuONUATds9hF52EUC96/6rJPdf+42eOpuUJ+gEpuyFl9M3hJ+ib49/3jGtCyAR6evFHAO0iZYXvzL22zD3ux4dex+Kng8595g5ydlcmYJl/OJV2f7aK3Hw9hWOOu4tDv4MmfA/iexEzi166YKxJw6+BfsEVH+2mGuSZPAh20opxvUwV1kmqqizDvayNgkPDoRmkWXXOvmO07+u1FD5mBJ1x/XkG22VGHjPztMNStokcaPLyxjT64VAB3b8wji6eOFTxvEi7ufv2qiyp1WPYsGE0YeIkgAddp4xQpuKB6ynIlsupSap3jImTDyIdybh4c3H+4xCs/mnA3bEsGbPE2Ny9e5eG44x6naEhr0G3pYqSdl5ITfW9emAOEDkOio002jyLB0dGDTMIuvUlaMIdqyl7kZydRtHW7dXQKxtBc+bMoQZcz+oOPpbM30Ace+II3/e6aOTYIwCzlKeTWAqaFOU9TLXVqyg47B/kF3itxtA5HSo3O5MOHTrU83drpfWxRk17awM026pp/769lJNz1OC0u7m5kZeXGzVCiB0ICrJ4HACCGhbGngdhWk8vX5PShpSc84ECTaS+scsSAyi8gdnXqfJK5qOvythAk76a2VOr3tMONClDDjkDHcwM4dBmjMidnkd/TKLEod50xVTVA1quPhtoIjejRKaCJue9s4PKIZbKIYnA8r9bmlOwO3cz0H+V6KoncsFDI54Fuq9M5Vy+p/Il9D2w+SgWjGSbUnaU4AWwvvD29qalS5fiRQpuAlD0N6YbIt8T/SWsBZpIzA5uZdxQH7ocu+3MgunqasLL/lSR28suDpaG5F7j638Z0mMeM1qdKWKwvEvFu1VhkS9C1+Qsg/W2NCVTdvplVNIUTW8mPSpsoE8U1+N8tgrxW/V0HO1KrAGaMNg2H7omHBvhgHLZh3sEaLPyRuyw+bnp9NvJsZuSSzbRo+t1XYsuGXMHXTXpn7AlVf5ya+n5U3L8lje/ofKsApp98wUUMkpZ6sjGV7+k6vwSmgAtlBHQQhkI0CSzooGu/nivOA98PkyJZ34/QWuOFQvB4H+frwu48K57V1enXjvMxspa+v25D4S18nnP3mmwWUNME0tT/ORAEwnU1rbKVjI/vJvrDm0Cdhypq6sTh/j6+gqhzPrmjlNKKFPJeI2Vycm4ipobD1PsyPdhp61KRTAUuZk3QHAU1yKAXQZ4T9XQ5zijPpagwI/J2TmbUvYvodpKTZZwQHQoOQF0tbNrAcOxWBzW2qq6nygRD+5r0CTl6HikF12GNI1r4QAUCiFS6zIKBuKcpx2bJdgWcQnbodWi3MHQUtAkLfkMLMTrsJnyGzZTNJ8ZDL7y/fPggf0ANXLEtCxavBiC8p5WSevjd7yqilLq6uygtWu+p/p6NZF/NM4uX44OQygwMABpQpnoJwS+T4abx2Rcn7ruaMwuHhoR1ScsuoEGTQbiuhyINm2gyUDM+uBr87QDTaQp/mpvngA8TAFNGGh5f3s2vXHZeNyUNe0bDdVnA03kL2pTQBNm/tz61QGkt7iC1tolFpDf3zIDjBPVDjXbw/JCmyMw5B4wTW6R74AVS+h7YHP1uVVNcJppogi4qUTpWexymaXLluGFyg0vU6oOcRrMa9gp3phSKtIqJLaBJd21FmjCWh4P/nRUACZvX95redreVgjGz1JBPx4xaoMlXRXHsl1dVuoF4t8jRq0XrkiGQtpZ51173r03FpKIXETMO0Z3f3akHSG/5iupvNmfHt7+z54qZ4l0nHik4xi2ELQGaMIN3obr/Siu+0eQ/vP8uhSRAvTbHbo7Vpza0dhVTXesuoWqajbpDN/FLZEenfNvGh88BWKKgyeH/sivWylty35KWHYGjV4iv+DLPXCc9n65hjwCfGj5ozeKcQ4EaNIGS8h5r2whNrvZ/vcFEPxTFptSyujx35Jx3BD66sZpFIl7gnaIFCv80dAu9Jp/fUQNFdW06P6ryDfCsCuONiOMHW3eumyihs25sl73lpIDTSR3p3eumCQEaJWEB1JzpHBA2mJjQz2tW7sOC5AhtGz5MiyMXMBeUzrDui2y4GYd7EVPpSgrfgXW6x9RaPjt5BNgGBzjMfE9l++9w0f+jrkyzrgY7HNgjLHp5/cjubsdpqzkmVReqJkS5xcZTJ5+9RTg/xXYKCoWZFt7CBaud9GyZRfIigf3JWjS2pKB59gKpGpEUOLY3yEIOsTqjIKBOK+ZJ5bjWZJv8nVnCWjSWL9LbI4ZE6DldCi2s163bh2xnXN4RCTm2zQdE2Pzib0vKikqwLXVAA2q1YJZy3dstpEeAledAH83zEsehI1V2lRScDqRpHci/S0yMpImT55CjbC/7gszMBto0j/fDBto0j/zPNhbsYEmameIWSYLRwXjR9etwBBo0oDdMVsYnwG2HWQF/eZW+ZfaNwAivLc9i66aFgXGUAPtzKyk/yJHf3686pyUFH9GuTnPiX/7+i2iuPi3+n36eTHEOw38wK6pUb28sYBndVMbJYZ5C4aCdkybNo1CQkJpiD2UzLQiA8KrK97eQd5QOdvx4AKLxmPPudVYlLQomGtjDb2Ixfvnu3Pp9rnD6U5obUjR2JBMyUkXkrt7Al4OTVPUN9ReZvo/IIz5K4WEXktR0Y8a7Nb+3Gq67pO9Yo5X3mx85/9Y0kXU0JBECWO+JQ8Pww4ff/9uO1089CZqanejuzf3uvjsemgheSIlxFg44BrgdKwWWE5bEq9tSqMP/symeXFBSEsrowUQDX3jUl2nGUEd7mxH+kI3FlBlGN+RnmYdnQIxTpVjQ1sHROmGKEuDsaTfSo/N2n+CNn/wC0Ui3WTxnRfJHvbTsx9RVUEZzbxyGY2crRoTX9MMXrRqiTvKVmZhgaVIoSusaaZVd82iaP9e1wRD1TJD6zxYFbM2E2vgXA3dD3Ni++e/U9qOozTtooWUuMiwIDDX/TMsjf+19gQ14Tu/8qbplKgQyDDUL75Xi+vIwFxLc7LmntkCJJYLhkL4fsl0+oKCAlF8+PAYaqivB0vQHgtNJ8rJ7U3XKSsrow3r1yL//2yILBq33Oa6eFHCApAdXeaDLnJj6IvPq6v/oLSU28nbexp0TT4z2EQ3qP97d6sEd6dOP25SmkRf9NsadbLcV1ZWJh1qjT6QAAAgAElEQVQ8eFCjOk/PjbiPbaHCzPFUkNHrBMYmJmHxUUhne6+HZSId6AsHtviRL+GuaHzRzPdP1hzrUNMPssZYuI7KitWUkf438U4SD0ekvlgcW6uvptSTfPRCAAfJlDjme+iLjFF8qAt0AduxEdQJRq2pkZvzPN7zPoG+0S0UEfmAwcP5XaejrRUAmj1E0a3LruRnDT9zMqHBxG49hw73pgIxM87ZyRHvfprp1c4uEeTqqgn0eXl5AdBbhusOSU5wxuuL4M0bvlefymlgfTEv1q7TAyCdLWwzYANNTl4DrGPCWij/ukD/g8EQaFKH3HVbGJ8BBk34haWxRR5guvi9XZRaUk/vXDmJdoL589muHLp7/gi6eXaMaKSo8B0qzH9N/NvJKYTGTdwyINPPOx0tzY1C0JHjz4xK8UI2I8ZfRwA2NjaWEhLHIDPY8IP90vd2i/SeNy+fINJgzA1exDtBM4EXUJbERe/uorTSevoIDi6To3ppubU1f+JF/ybYZM6k+FEfWtJEz7H8UnYcIAfH+InbwTbRP35ekE5/YZPYwT/42CLx21AcPbwELJY8GjN+Hbm4GF643vDpPro9/mpRzU3rX8eLt6rOtVgQhoHtZCw41YCvg2YLQZPt6RV0JxxzAj2dRVrafQtj6QY9Dijaoz129AKAYzk0bPgLWFyqnIg4+ubVzPxTXV9RQ98//i65ernTZS/eZbSitJ1Hacfna8gnNIDOf0LFMuFgthqzMywFqEwdxa1fHCC22FX6vXwGwuLfQWtkOu4D711lWMRVrh8Zu5Np+6erKXJcLC28TcXEMhb3f3uYmOHyPHSHzhoTKlfc6OfMaOIwBFBN/tdGwYzb+8hCcnFUtljhc8dGYuppORMmjMdCoouOHNHUDSgqKgJosg6gyVmw8jRst8x9lFJ7Wtu7Fdl9WjQxVj64o6OWDu2fJkCQSVOPGgRD+D7G9zMn53AaN0GXYWblbvVbdXw9HECKRXZ2dk+bbm77ASL9QrVVCZSyTxMs9BsaSLEJL+n0z9k5jMZO0LU+1S7IDBdOi20Hg8zawe8k/G4SBtZQeMSpKdSrb05ST9xAdbU7xbOen/lKw40X8gCnOsyY66TDyyCsmkMjE76E0Krxeyg/FzoARvQFIMHP9o72ViotLqajSUfFderp4QHwiNNvhgAQakAqbAnabgZw44vvJzbFtHRfmF3sCjewLsU8RaUz3FuOWZj8XLSBJqbPnSlHeLnpbniacryt7OkxAzbQBOeRBWHvWXkYqTyxwiZWX9jSc8y/4JWm5+QhxeWyD3f36JhI7hOLRgbT0+ckiA6UFb8GSvMHQoCUxfQsdXAxf1SEBcMQKi8rpk1bthPrC7hgx0MdYOC6AwMDacGCBVTX1GH0ofbRzmxit5Zzx4bRw9ihNjeskZ7DC3fWleEF0R/3zdXoSm31alhfPmR168vC3AegQbIO7hA3wh3ifoPDVyoGmwZ6d2dnLXKx/0QutmFF+23p5eRWexa5OzbRvZufp4Z2d5oQ4SNSHOTC1PQcVyf9O6F1UAJ9F+wqKZaODtGb9iAo31JuFwr3CvLuxfdBfsdfbjx9+flvT75DLXWNIt2G024MxdoXPqb6siqactlSip6a2FNsINJzuHFJ9PReuOdcCl0fY/FnJlLaflQBAJ9CvJpTZcyNxiromjwrr2si1f/p7hxxDXEfua+WhLH0nDoI2y57c7tgYa27e45JzTBw3trMaTlrxXGenh74jnZRU1NTTz3tLW2UeTyFDhw7SDMmTKOIEcPJ0UW/SCqn9ixfvhz6iy49KY8mdWgQFM7LuAQ7+ceFAxwLKeqLxobdlJd5k/i8P5zi+mtapBSL9evXU3W1SjfCxSWdAgM+p8b6KEreOZ9cvd2Ftk9tsUqjbsrilULTRD2UzktfpucUZN9N9XWbYQf9snBiO12iMPdveC6vN3lc5qbntDSnCkcWB0cAZKMN21P31/zyO15DHa7Nrg7asnUL2dsxWwkbEwqoRFOnTqXgkLA+0TFRH/9ApueUZ+TTsXW7yMnVmdz8vOD4Nr+/Tk2/t2NLz+n3KR+UDf7lQBPWLeEfda0TBkSSC2oNskz4zNlAE/OvX6WgyTf74QaxOZ2WIEXqybOx0wTGyQ2f76NhAe705fXTRAdKCv8FV5SvkO8aAyZBFg2Nfl0Iwg5UcO7r5t0HaPWfB0RazshgNcV/BwdhMcfUUTnqeEZ5A12D1BMfpOj8ftdss4djDdBk7bESYtFVfa4hVRVfUmnh88KRhp1prBXNjYcoJ+Nq7NQ4YTdxM2j7+sFLZWKw3XTiiIoxNmpcEv7fOG1/x5755OdSTk/ufpICvGNgqzxa2EbLhamgibe7I2jc5YLuKwXvkjHDiMX2XB1aqK3LkRrbfQRwo25ZzTvqYWHh0MFR8UjYRYrdpBwcg/ByKb/LKjeWvv58x4c/U9GxTJp21VkUOVE/KJi58wgd/H4j+YQH0eIHVOwfKQYKNPkWrBHWHTJmAc197MJL9BUfwRUGwO9tYMVdMz3a4ild+/xHVF9eTQvvv5L8Ioxbe++BC9P9cGHS1iAypxPGQBMWWb/q4z0iVYltlE0NFlksKsijvXv36hzaDdZJaVoeVdRU0pH0JJoYN558vX0ocPhQ2M7qUqNnzJghBDcVEBhN7Wa/la+G40pJ8efQ57ob+ly36m23puoH6Hj9k3z8zofw+TP91rf+aIifV10dzbR61SrRnKNjGYUEv4n7YSBV5NxJ7gBYXTzgUFJVA9C1idx80skz4MuervHO/vC4j6BbpQs4MRtKfW3bl6BJxolluCcXUEz8r+LdZDAGy/Rxyokp0dx0BGyKXHJzG0uOMu526vUyW60T3+c2MMBMiabGg9A72g0XltFwmpkne2i7YA7JFrOogJvTEKrA5pifny+tWg29GgVpNiNGjKBEsIub2vs+ZXCgQBMGTHZ8/Au1N6tMGzjCE+H4doNhxzeLTsQAH2wDTQb4BAyS5k870ITTbBjgYPYI/wR5uSC1Y5igS3PwZ78eLqKVt6g0EbjMjZ/up/87a5RelolcfTYhWPkrWSloci8o5mzb++RZCbRkdLCg0c6FECPHtr/NF6kQRfmPgbr7M3l4zcUOwFYhBMuCsAMVnHpU2tBCK39dQ+5QUQ9XS+mYDctBX79AWIoqe3GQ3HRevmgczRimul5NDWuAJs+tOUGrk4vpHuxYX6a1u15e8hZVlL6NOb9D2D1bM6TduoDg21C//jQOSQz2vHFhcLbRv/hmhgkzTeztvSgucafRLqaV1VNm6qUU7ZVH0bFfk6ub8rxtU0ETyXL1wP59Par/jaDVFlemUoh7WU8/mztcqJnG9rjnSHnRbMcqUct7dp/dJ1PUiE+seRr6pK4TG3ZT8podFDd3Eo07b57eNtgxhp1jpl11JoAVlYaDFAMFmnBqzgM/HKEpUX70+iW9GgvaA3gDYO9KgL4sjMoCqdaI/d+up+zdSTTu3LkUN09lT2soasEAWQ4GCANtm+/XP79K+2QMNOH7M9+nJ0X60n/16O4oacMdorBJR49QRkaGRvGmmnqqKSynKrhVSKCJt4cXeYf6k7ufJog6evRoGhEbB8DEtEWgkv71Z5mOlo2UnnofHHFmwhnnXb1Nl5e8gXvue+KeyPfG0y2YgceMzZ07dgA0b6Oh4c8KwU2HrrexyreDsObJdLGGJjiaIMnVlZmIrSjjCFCknYJgU+zsrHnfZqc6R0dnXB+9i9a+Ak26kKaRmgwBUAD+I8dqarQMpnPFWkUOQzpp65YtEDBVllbe1poF0CSPnFyGC5FbpZE4eiQNB3Cw/8AhDSaZ3PG8ecLPbxY1d3AIMFqcbcq9vH2x0aAsRVCubUOfc2qhF/QsOjvxrC5RXafGIiAggBYuXCjLLja3P9rH9TVoUlNYRsfBJinLzBeMktFLz6DoKQm09e3vqCxd0zqe+7biubvIEeVOt7CBJqfbGTVvPKcdaGLeNJh/lA00kZ87JaAJpygs++92Udm6e+aQ50n3oiuxe5td2UgfXzOF4sHiKMj5G9XXrie/wOupqvxjoy+b8j2zTolXsRM9PcqDyo7tJld7FUCSmJhIMSNiAZgo32n4EOk5HyJNxxggINdja4AmF7y7k0rgPPUp9ExigzTtnEsKnwXTZ6VgmTDbxJrBlppsrWln7y6oufpSTg5DcPcO6H+MCvGiD6/Wv5Dkl7zMlDPFS97wUWuMdvHtbZkU2PEQJfiniEULL16UhqmgCdfLwB/nxrK2A4sIVzdUk2NXr6Cr1HZDZySF+Kp2LIXrkqMrtasJXVZXfkclBU+dMrvPJSk5tP29HyhgWDjNv1vXLjl920E6/PNm8osMoYX3XalzCgYKNCmAI9YlH+ymEIDvP956ht5LQwIS+MP3oMXEQsXWiNz9cBH6ag2FJQynmTeukK2SUxuZ6fIJvrdxWt9b2YPVChgDTSQWGqeQ/fOs0aZU21OWgWYvNwfatGkTBKB73ScMgSacouE7tNdBKDg4mOYAkG4AiHiq5/G7OtbQwf2zxL0ufowu+4YnrTAP9unVbJ/+POzTzzFrzgf7QczYPHH8GKWmplJ46PN4BjSTj/v7tG1XEoRbVVpoXVi0ujjmUuL4tWCZ+lNlURiFxSRhUT6OKqsu7BkiXx9z586FhbWmzkNfgSZNWOjngiXp4ppAw+K+GdRTza9V9bXVtGWLstQXdohpA6PXEY5Nzs7KGDQs3nz2mcuE1lcDXLLW/P67ojlhh5rGet7kGIJNMWbbGgZE+9qRRrvDzNBhYVv161TfoFjYmtnFXeQo0nj6I/oaNNny1rdUDsBEPVy9PKi5rkHv8M587GaA3F79MfR+bcMGmvTrdA/axmygiYWnxgaayE+gEtBk7XGkhKw+TlOj/ei1i3t3dJ+AdedGCBw+tnwUnZkYSvlZt8F14U/xAlmU9wjYBD5gE/wp34k+KiGxYS6eGEa3Tg2kP7dtRRpFGJ0xc6Z4qVdC5ZS6lg4XHWab+OLJvPpOXctZJUOwFDTJBv2edUMCPJzo19t1+1CY+3fkOK9FjvO/ha6JtSMP57cR59eQnTS/iC18fasQgd32wDy9YrDNTUmUk3652K0aFrvSaBcvgvDwuVFv05SQgxjTSxjTcsVDMgc04cr5HHW0NYqXyba2cryUHtNps9suCKJzo8lQXnRZ8cvQ9vmYAkPvpYCgmxX3eaAKtjW10C+PvUV20P258N/36XRj1VPvUXNtPc249hwaOi5O5/OBAk24I7P/sxkpdt2CwaGeMiV1UmKIXTcjmm6ZpWxhoeQ8NFXX0epn3he7drx7JxdPrjpG6yFmzppIrI1kbhgDTb4EU/OtrRl0xZRIukvNVcvUtpi+PwQsARbSlhbFnJ5TfCJHh2nCdTs6O5JHoC/5BPnDong5dZKDQXcfU/sykOU5Ze/IobOouTkDTLcvwXTTdfrKSb+SOE0iasRn5OYur7U0kOMxt20G0jxc7Gjr1q3w4X6CnF3LqKv1YXL3GUM71Hb2h4btB7NkL5XkjhY/4+d8L5osLv4bREeR0ujsLBatHUiJ1XZ/6ivQpLryWwDYT5O33woKi3jW3Cnot+M43SQjPZWSk5Nl2+Q00NaWNIizhwkLYLkQOkOYfw93N2EBbQdZ8tKSQtq9a5fRQzs7a8BoKUBaVgU0yPyNMj71MS/l+mWtz/k69XS1F9dpaWmpTrUzZ80i/4Bgxexia/SrL0ETZplsePlzvd10gINQR5smY4nBEgZNTsewgSan41k1fUw20MT0OdM4wgaayE+gEtDkn78dow0ppXTfgli6ZFIvDfSTXTn03p9ZPS/puRnXEOe98gtkYe4/oG5eSsNHroJyeTT0HjqI0y0mRvS6vcj3zrISRwv/n72rAJOjyrpn3N0148nE3d1ICO4ssLgt/LgusOjiLAQN7gRPAnF3nejMZNzd3e2/93VqpnW6e3p6LH2/L18gXfXqSXV1vXPPPacK9/x0XIg+/k4lX5kZaQgNI70VogVzZkLfuIl0TdJI3+RdAo6mEYCkbxgKmvx+Ihf/IwtcTZlkFiTk0pDgsM+IlaE+865vn+WPZ0CMgTELUqNntomZmaqWgTYxWKmN7ijvfE2JIXDvhD8x2Ws3fAOfg5vHtTp3v6egCV+ABeaKi/Jx6OA+ARIpB9/PI0ct1lgXnZv5EGUMtxPQ8zYBPct07nN/HrjljW9QXVSGxQ/fCLegLuZA0q5jOPP3XniGEQvlflUWCve5P0GT6786jKyyenx3y1REeCmKu7L4KouwMguO2XC9HZIwLrNvmIXTXXB5EJcJXTYuAE8sHa7xUC6HsCLGk6ZgK20OddasSeSolUVsligfR4S4a7dglr9GTX0TOuS+z/wdKC8rxv59MoYhRy05LWWmponynGnjWEjRF01UltHc0Cw+X7JsKbwCg2BN+gJDIRg0SUt9jspTfoW3/2Pw8LpFZVgp8fNpLUrpebiDGGdd35uhMH75MXD5CMHJ2Lvjcji6pNHv+yUYO/FWoQF19uxZAkSsER72OzE6cpF8YhEqSohJOJaeG37pKMmfhJKiuVi4eBFZFruhzcIStk6K96cm0IS1GeoIoPQKD+pRhrww77/EvlwNH//HiQF784BfFk44MEB1+PChTgtwdZ1ub68lsC4OHSS4z2FlHUjASUS342OdIU8vXzg42JBbYhuaKMnB7Iz4uFikpKSoPZe1YJoa5Ur1SKfGwWEKlWWp1xUTzEtre6NrmWgaqHSfypIesucSh2AXh0f0ecmgMUET1itZ+8yHKlPhFx2K2XdeIdihzBLlYC2y8VR66xWhexnXgP+yyHXQBJoMptUyXl9NoImBc2sCTbRPoC6gyZKVe1HX3Ipf75iBQLcuq9d9qaV4cs0ZASAwkJCRfBVZ/SYSDfZ3oa1RU7WDWCdv4JuTUWC9Cw5H4qC+TtabfQGeSBobnNn997JokYVoJGUytsDsSXxOANHXhzJx+fgAPL5E88ZHU9uGgiZPr43FHnKUeXrZCFw8RjVb3TX/vwqxNmMEl+hwqY63/6O0ibhV5RKSGOwnN0zEOH9VJ5ZqcvjJ08Hh5/UtifjrTD5emL8PQda/aWS3aBqjIaAJt2lnRSKwREk/c3qdAP+kYLefwKD5WLz4Ao110elJV4gMYGiU8daht9f26OrNyDoWj4lXLkb4LFlGvb21Detf+kxsjGfdRpna0eFqL9ufoMkT9PzZT8+h/146GguiuixwJcCUO8z6Hqzz0dtx/NdtSD98BmMvnofhC7rXNZFK11iM+qtuABx+Hluat2H3rl0KL/1S37mEjIPtWZWDQZOS2iYBEnmR8LUuYW1tjfkLFhBdnW1IFYFkO9pQpSQlik0xB2c2c3NyBGiydNmF5D4mm+/68mqE+AbC1dYZx9bsw7BJ0YheMh1O3voDy7r0ua+OYdCkqGgtMtKeJEHzhSRs/r7CpdnONCmWNpADXC+jt+aLgbTYow+i1Xw7iWYvpTKHRZgyeZIQDm5vr4Gv72viUse230jlOpZwcivCyKmb6Plpg+biV+Dh5CHuDw52XXLwcBVuXY70t3eAB2xJG8fK2Qn2brLygYNfrUNeXNeGnd0/Iufqx+bJSr2FEjkxRksk9NbcyrfD5Sa2lh2iTLSurk7tJXhMrNciH7Z2Iwi4Uw/ess5QZNRwYpiYQd49h9kZfJ9zOV5JSYlCex0dpD1ISRjQ3/LB1+BrKQczL73Jkaa5rX+1jJTLnPz8/MAsE33Zxb2xtsYETbh/zDTh57J8zP/XNQrgCH/OoMlQDhNoMpRXV/exmUAT3edK7ZEm0ET7BGoDTQ5nlOGR309T9tIJ3yi97OdVNuDqzw8JZ5q/7p0ltCpYsyJ8xEZRJsIieVVmV+KRLYrWuAycbCVtFGOHRIl/kijxlxJwItW+9vS6vCm59btj8HCwxt//0r9Ex1DQZOn7ewVj5/e7ZsDfpQu8ksaTenYxicgVIiJ6G2We/Ho6zG7PY+tGFoXlrCpnV5WDgSouQ3jzyrEIIuHd+iZF+Xx2V2KXJTfP60l75Rm112JXBR4rA3XfXp2C1qoPRJaXs726hqGgiaTtsHHDByjIp00jZdjQ0Ub13FNw0cXXdVsXnRQ7WVhuDx99iOr/FXVndO1/Xx+Xuv8kTv65U1gJs6UwhyQQ6x0ZjHn3Xq2xS/0JmnywOxWrj2Xjnrnh+Oe0YZ19vOvH44jLr8L1VKryfwaUqnS3DlnHE3D0R9Kz0EHXpJEAqIXvUnkDxZ5H5hObRPPGgl/6a6srsWuXqvNSd6BJLI2XRWfHkG6LCzl96RLz5s8nwUZ3Yt+pHs0iiww0M9ukoKAArH1TUVWJ+KwELCLQ0I30ETgCAwOpVG0ajm88jDMbuphZwxdMEeCJJltiXfrXn8fwZrKuPgexpxYLa3S2SJcPzsCnJ11GTMpQ+s37uz+72ifX5pK0/OR30WL7G2pqZqKyahk8PT0wZ/ZMKol4lxgI36G6zA8JMV22vqNnbiPWYx583B9B5uEgVNAGjhlLXBKoKbhM0CvEF76hqr9h0UtmCJtjXeP0yRlUVlIlmJFslTtYwo4swOtqK7F92zaVLjPLpL42RuXfLa08CczosoKXDlDWGVK2HJbYGVyOJy9CK0ATNUxLcwtHKkVTBIn70pFGlzVkJ7DU5ESkpaWJkqRmYhcrg8K6tGPoMcYGTerKq7DxlS9EN138vEiUfJIQgj3fwgSanG8rrn68JtDEwPvABJpon0BtoAmXg3BZiCZNgCW8uaU3btb5KM1Yeo6qvJsy7UnITr8bRY0j8O+9qk4uH143wehsk2u/OIScigaDxRflZ1EqP1lJzJopepboGAKa8IbobtoIDvOwx+rbZO5SytG5WR9zjMQLVUEV7XeDbkew/TAr6fsEPA13T0Vh0LiCKpQ31GF92g94c/m/YG3mrFC/zgwkdvlhC0+28lQX26kU7D9UEjaG3E7eWJZ5ztLzCrL0fEm3DtJRhoImfCELlKOx9ghl/LaTba0TvXyX02bxTqJ6j9VYF82gFYNXllT7HTlKtkkeDFGeXYAd7/0EF19PLH3iZrQ2NQuWCVOA59x1BXxHhGocRn+CJmtP5+HNrUlYMcYPzxCbjEMqG+yp9a6u68XiqBtojqxsSdfkVe26JpK+yqfk4OPbUC2y6Dy//mMihB2kfEgv/craBt2BJsezKyiT3CZYNXakzaMtxo0bh+BhoWjqJjPMvw/WFu1Y+9ufyE0k0Umin3iFBXY27eDggOWkY8IaCVzyyC/xCdtIIPwI24lDbHAZOGFnpsEWDJowo+f0SQKjqUyBGZTyGXZ2iMvJuI8sdWcjKGzVYBue3v3NPkGb0JhV8J22nc6dgpzci8H3UGRkJJIS/03i2Wvp2T4HeamyTZutswOCIgrhYM96MNGkC/Nb5zUZNGHwpLasEnUMolRVo7KoAtVk491YXYfIqdH0nQhBIonPyodrgBdZG8uAaNbZkdx71A3GxqYWNdV3D7pnsTQWfgZkZ6bjxAlF1x9NYIY60KRTR0aOSaYMmvD1NInQMtNEKgGS+sXlqfxHir52pNHlxuUyJwZ86+rrCPC0UQsK69KOoccYGzTJOZWEw9+th7bEhqHjGOjnm0CTgb5CfdM/E2hi4DybQBPtE6gNNLmKmCT5xCjR5DzBmiFMhX//mglwqr6AMuz1wmmgo70ZyfGzSaTRGndte1ulI3/cNRN+LrpnjLSPRPGIivpmrPhoP+lTWGDnQ4pMF33bkj+eNVx4U3bFhAA8tli/Eh1DQJNvSJvhM9Jo0HRdiSpuTrXGw8eoZqEMGbMtZb3OGSaJZlpaitFIgq4gDQRmtFiYO3UyW8zMOlDRUIPkkjS0mdVhVvAsAk06yH5S1gMu7WloiIeD41ThaKAu1pzKxYsbkoSGzvKIJHJleojo8YuIHr9S52H0BmjCAI8FiskvYB72HziO8HBbjIieBTNrzfa29bXHyGXoVsrETSBtH/UibToPog8P7KAF+uPx98RGhAGA5N3HcXbrIQGWMGjSXfQnaMJAwf/9chJjA8lO+PpJkNhg3N+3rxyHmefs7I01lZKuycIH/wGPYd2zu16jkrO/qeTs4SgHWB09JgATKWbedqkCcEIkD9I2sFDRNlAHmrQ0krMF2UHXkVhvg7klgilDb03irN2FxA6pb+4gQLD72eHvUk58Itb/uQ5OXq4KZTdLli4lYVBHyuIqtlGWmY+KjGxI8iw2jnbCncmZQLmeRCu5U6krSepJW7qeI4EmKclPoKriLxVXsk7WHGktsebSUI+Tf+4gpskWhC3fSNok42g9nsKYMWPB91BqwnI0NeWgqPhuKisL6JwKvj/S064kBmoegkI/Iqae+t9ieU2T1qYW8exxJBenGiqBOnnyZGd7FgTicfkOg7pNdY3C5tjRw4XuKw+V6Z8124lAh4eJ6TKdynNk2fjBFLTvF/omJ44fR0ZGhkLXuQy6lQD6rjCHncNYIb4vH1x65+TspgAaqANN+Bx+3iQlnkV8fJf4OYvANtSdkpt/V8FmkfTMLC0tceGKFaRhYk7verq7EfbFOjCz2Mq8Q9yf/RXGBk2O/7qVSkRjMeaiORixcGp/DbPfr2sCTfp9CQZEB0ygiYHLYAJNtE9gd6BJYmENbvv+GHycbLDmHvV2r29tS8KaU3l4kDa4Yy1l7ibR42TK72mJK+hlKQsvHnoC2TVd2UljCTPKj/Zgehke++M0JgS54qPr9KuD7m7WpDmRSpK0zbCt3N7Fkij51iTkqFyyoq0N/nz9mQLkVjVgabQPwjxVRR6bmwsQf2YJgRe+GD2WM4GKwVngto6e1RrzRs3JTmZDyla8nHmqIwYG5fo6L8IZWCtrH2Kf+JAYpA92Ht6LwpoShLoF0J8gAtPMCDhpJc2beGJsVJBoXTgdrypKFhA8DIcK2/HallHKRhUAACAASURBVFRRAmXXcUpYHds7TsGw8K91mSpxTG+AJqkJF1CGOQ9jx29FUUEx3N1KUVS6j8b4osZ+VJb/IZgxLm6Xkp7Pf3Xu70A4cOf7q8Gb3Rm3XCLKTtpaWkVZDmexuov+BE2Ka5pw2aoDcCdFw/XEdnvg15OIyaroEajZkzU4/hvpmhxiXZO5pGvSvdgsPyf5eXlvbRpsa6oVLmdOdphh08fAglwPLKwtqZTACi5eLgiI8MfWbVspY1pPWXUzypqbkysVbVDobHbD4ChJyxWbRynM6TnjFR4ICytVoWY+xtHREctIsFFih+gy7tzDJ1FSVYo8+k5b28nA7kmTJsE/IEgjU4VLDKqLi3Bw114CiGSijAyeOJHTjlRioY0twOdMmDBBlMO16K/drcvQNB4jgSZ5eT+jIPcF4d7FLl5SFOW/hfKSb+Ht9wg8vG8z6FqD4WTWT6irzMDwq36FlZU3pkzdRzoRbF2bQmVKl9K/eRIA9z9kZmYq3B/5BV+huOA9AkwWEHDygdqhqhOC5efR2PnjEEcbeW7Tgsp22qjMTV24+HmQUGyXnfi0adOoLxtRmL+SBGBvInbgk4NhilX6KP32btmyRfz2ygeznziB0d4me5Y4OE5XEGjVxCTTBJpIIrSHDh0UAr9SsOAsO+cwu4QFZ+UF4GfPmQN3D+8+daTRZyH5ESklbPQ5r7eONTZowqU5zO5b/AgJuMtZv/dW/wdLOybQZLCslHH7aQJNDJxfE2iifQK7A02+OpiBLw5kdOv48MfJXLyzPRmXj3XHRb43UlmIvWCacLDgJwt/7i26A9+eHgtfZ1sUVjeKev5f75xOYIzxmCZfUt+/pL4bar+pbgb/8dURZJbV4Y5ZYeQmFCjEbdUFzy2DJmfOnBGijqwRYEl/9K2t5UzwofRSAVFMD/UQbShHR0cmvTz9h15ohpGOxssKH4eGhhKF3KVbGr62O4VtSNtbG7Fh/XoCPuIoy1WqcoqjyyzUuHUgOnIEziTG4dQpWYZqnN9weNg6ENBySoHqy7bDlpZdmWcWbBs2aiJu/CoG0b5OeONyKoOhjBoL3NrYDUdY1B/autn5uaGgCbvfMMPFxjYSESPWwsGmDokJd6Gxqapb/QLeHJQVf0GlR/dTCdI9Ovd3IBx44vftSDt4WmRyWb+AhV9ZAFZb9Cdown1b9N4eUZbClsLMBPOj58xPt08jdpT2EhVtY9P2efaJBBz5YSP8RoZh9h2Xd3t4QmE1bv8+BneXnoV9SxfLpLuTwicNh1eUP3ao0Tfp7jzlTaT8sZz9t7VzouyzbhnY8uxC7F31G+bfvByFzZXIzs4GP1MmTJxELhztctCpao9YWoVdyw7uog02lV5Im147FwJ+6fJNdQ0C8OGSCy69UA7e/LK4JDue9XVIoEl5ZTKBApeo6Dh1uWT9jwCVpX3dvT69nmRLzuUwo276iq7dgfGTY0lUnVyWSn9EUd5rcHW/CCOj3wFv8N1J72b8hIni/mhtq0JK/FzavLYhbPifau1xNbnn5J1MQMiIIGzbuQPNBBU2VNWiIldR+JInQr5sjMuFRo4chbT0p4khtEGUdbq6d8+W69PJ1PNizFBtb20Qv73qorEhQYiVW9kEk4uRzFY9KCgIU6ZMFSwLZSaZJtBEzCO9s/B3dtOmTZ0itMyebG+vo8TFZHqH6XIoY0ea8IhIIS5rCvUzYEzQpCq/BFvf/g52Lo646Pm7z+slMIEm5/Xydw7eBJoYeB+YQBPtE6gJNGHBUS69SS+tw5tXjMXscPW0askVYkpQB+6JflBsgiNH7RYXLi/5DkX5b2J//mx8HXcNfrtzBtgGlDUrVowmDYLlMg0CYwSzTJht8vIlo7FoeO8ph/O88MYnp6K+s9uvXzYGcyPVi8yx40BtTSV2Ekujp6BJRX0L4kkrxIko9+OoDEFd2NqmwcvzW9rUh5EK/i2dh4SHh2Ps2HEkqmr4LPNYSksKsX3rShXlfm7dLnAqrIN88eyOj/DCwnuREZ8sMoS8eZ1E2eXW5nzFTlB5D+sBiHPt7IRg28sbk/Ebicm+sGIUlo70IaZHAVG/iUFDiv0RI1UZNJpGZShokpNxP4lx7u60qrQkXYfYE2PF5UaMPUnglPryh7ysR0gEeStlpN+kjdSFhk96H7XACvs7P/gZbc0kTnEuxqwgyu8i7ZTf/gRNTuRU4FESqm6Sc375L33nF/Tid56ng0FDddFMm/7DBJowq2MWldh0F1xeMuutnbigLB1RjYpZY3aaiZgzQcx/G9W6tLbI/m6jv0NGh6KirgIxMVR2R2lTZme0006I/+4gwIH/Wzk0gSaTJ0+Gn3+gXgBq/OaDolxi/MVzMOWimTh06BBmzpyJmgbqpxoXH/m+cKbXgbQZjsccE88CBk5qShTHLh2vDJzw5nfUqNGo76dNmQSa1DW2IuXsQlqTYgGYsvArR0by1QTqJiA08hfY2g9t8cX8+DQc+HKtsP4NXPgFPZfzER69CdbEFswhYfBaEgj3D3qFbKivFOC6I2ndVNPvlnR/FOa+goqynzUKgGsCTXieucS2pbkObCPL93xBQqbK/W7jYAuPEH9ydPLCAipJqWloQ0ri5WhqSCYtldWkqTKmj56kxrmM9Nt78MABlQu0ESjFGmPMAHFwmkVMMqdumWTdgSbit1hJhLa2Zi8LyBBTaA59KgOi+9ORxjgzbJxWjQmaJO+Owem/9gjh1ynXLzPOAAZJqybQZJAslJG7aQJNDJxgE2iifQLVgSYpxbV4/M/TYOo7R3clLtWNLVj2wT4EOpXhxRkv0gtlsHDP4aivO46s1JuRVR2E37Nexhc3TkZ2eT2u+5Js7ChWXkNiqsOMY0vJeiasa6LJaUb7zKg/gtkrzGKRD21uQHbWZmRbmYK4uNgeMU2Y1ZJLujJBbvYY5m6vtmP29rHwcP8N9Q2jUVZ2jTiGs31LKass//La03FL51EVBE6dWIe4WEXnHGdXT4TMvgiPbPgIZ4vTEO0dRsDJPdi2dSsa62oQ7dQCKzNViw4HAk34ZW/hokWohy3dSweEiCW7K7GDDddtp5CwKoMU4SPWEz24q16+u7EYApo0N2VSadlFovmo0QeoTlwGVDEFvakxjQQhf6NMvXrAT9pIDbYXdWV7Tx6vlR0JnP5Xu8Bpf4EmBVWNYHFVBjLlwxh6SS4OlqisoA1/raLNJ1+3iFxlWFfEOzII1g7qBZh5E+lAm5mbvjmB0PiTiGis6uwy20GyY5EmW0jO4/L37vTpU8jOkj17pM1oC5UrlCRlKYyfpQW8SaxV2bUmLCwM48ZPoPJAAlz0eBBs/98PlN0vwuw7r0DouAjaxJoRg6CVdAx0a4RLDFgvgRkIVVVVAgwqSctRAXu4rMh3RIholDe/Cxcu1GjrrduVDTtKHjTJy3pMOML5Bb1IrIUrRcPJceTM0lYjXHXYXWcoR+yGfUjccRTRi6fBKeoz+m0/IcoluWySbZdZU4tBbQa3+XnQTKV98veHxBjkZ33kqL30TJXZCkvRHWjCx9hZm6OoMA+HCbCrzCsBizDLB7OUnD3dhL5Ga7s5/SHL+NNsnd6BEaTxZUZaX4M9+BmQcDYeSUriuDyuhvrT58peI7Hi4tuIzeOokUmmDTTh9iQR2uMxB4XtsJm5DT2/ZogplBIc/eVIM5jW0Zigyb7P/hCOZtNuvBDBE42XgBwM820CTQbDKhm/jybQxMA5NoEm2idQHWgiuTzIn82aJddOUtWg4GOu+PQgrDtS8fyMN4W7ALsMcLDtKju6cBypX0sOPDKHCC754dIfdkdhJ4neDmaBXPvFYbJCtiYrZP2tgbvrz1NrY7E3pUTlkG9vnopI7y7qqvwBIttKwMmJEzHIz83RuzyH2Ty8MRxNVqKuGqxEHR2PwM11A9WXT0VF5UXEajEXzI0OAhtYRLG3goEMR9sObN60kqx40zqbnbl4Kf7KT8THhzd3bmKXRc3CxaGzEbNvL/xsmuFq2cViECeeY5pERI9GuYUbHvszXszN5GFuQliY9URYVJWzmlJwNtPFXXvJCIMmnDHriX5MdcV6VFdtpZfEaZQZ7XIHKi/5mjYLJ8kx6CaxWeBopUy/fLY9KZZq6YnKLA+29NbcG7Md1itgtolyMGjC4El30V+gyca4AryyKUGla909q3o6h7zxd7a3wlYCAcvLyzub4cx3SXoeCVPK7m07Z3sBfsi7ejg7O4vML5cqfPjFVrjHngZR8jD5igVwI2YWazFom2Pp+jt3bBPXl+65MqKQpedXwquljp7BMiikzIqy7j5uCrbkPQVQ2eFk06tfCgDmsldlble83gya6BMsJt3cWEvPjU3itOKUbGKeKbYhlViwuCQ/u9o6LHr12aVPf/lYedBEEn11cSetoqD/ElhSSaDJbGEpztbiQz12ffgzSuk+Z+Cs3WGVKLv1D35VlCxlp92u8LuvaS7YaYgdh7z9HiYNmNsVDtMGmvDBDBqcjY9DcnKy0HFg8WO+h8yppMR3eAjmzJ1LNtheQl+jsSGJmEBXDik7aNlvrznZO+9BcbHis5pZUI0NZ0lnZg4ioq7slkmmC2giMcSOHd2GhPh1AhS0s5cJoC9avJhEZ8kVT79HwFD/iqgdn7FAk/a2Nvz55EoiAHXgkpfuJa0o9cm082XSTaDJ+bLS3Y9z0IImFRVHSMOhGD4+FyuMsK2tDoVFf6Oi4jDVXnrD02MR3NymdR7Dn7PoWnVNrNrPlaeLr1NappjxtrcPQ4D/deJQE2ii/YukDJowy4RBE+Xg8hMuQ1EXj/95BsXlR/DUlJXkGjKRXEO+6zxsx8Fl8HfIhYXHZ4gKnNn571eTK08esSfYgYYdYXoztiYU4YX18ZgT4Sl0MXozVu5MwS9UPiIf/DLz+Y2TMMJHMXsmfwzruDjamWMHiTqWlqunpyv3k7NlnE3PKq8jBxczzApXdQiQznF23gUX+lNdPR9V1QsFfd7Lxx8Nzb2vnmhNpQq0ncH6v76n73ktxox2IoX+clRYRKHdKgTJxTUoIu2adtrEzQoJgUtbMw7tW492YnB0BgEmtrYRGBY2Febe4XjglzNUQtSVumYQyqHpNVSVr1OYFl03KQya2FN2sqq6BoWF8i4D2u+G2pp9wv3J3mGSQga5qSmDNn7pQhCPhWxdXFzg4upGdeOyNltbSogVs4DOcaPs8z7tFxpARxxbvRmZx7pcE7hrvPlf8uhNWnvZX6AJg5cMYirH7TNDcfsszRbJWgek4QAu0WlraRAb/3YCSziqC8vINrWLNcL/plxmcgEBJpbW9qgsqcamN75GB2Xhc4aPwiN360ep5uubExDNegPN59L4bKnOzwcLKonwba6BDWWES63IqcbHtRM0YQB1GdkCw9xabxAiZe8JnFq7izKZIyijuaKnUyfO4+9jQX4Ojhw5QiU6xNoprlBoz8nbTYjEym9+DbqggSfLgyZchsMsMi5H4bIUFrTOSL5WJ7DAwG70++msOfPnE+SsRc9zdtaqqPiYdJu+JN2mBwTDpKz4c3h43QJv/8e67SuXO3LZIwuAR9AcyocuoAn/zjqTo87OnTupBFWWuChJzUELAZZzL1yEkePHo/Gc9k0VAd/52U+R69pScl37X7/PYW91gH97zTtaxDOIddLkw9e7lNzdPNHc7iZEdzWFLqAJn8tAra1FMf5a9wHpm9gJXTEWZQ4MDukXjaHemsO+bMdYoEnB2XTs/2KNcGxj57bzPUygyfl+B8jGP+hAk/r6DJSW7qQ/O+BKYEhY6IMKK5mX/7MATPjfm5qKkZL6KsaN/VwAJAyYpKS8ShsSb/j6XNL5+ehR78HeXv0LMLdXUx1L4MwlndextHSAk9No8f8m0ET7F0kZNGFGw9L3qYZVKS4kDZJnNWiQrNqbhpNpm/DQxFVCoyIobJU4m/UGYmKfwJyAQ+Q48jRl6Luy9lvOFpKt7FnBnPjg2gkI91LP0tA+AtUjVu4iYCMmRwhD3jIjpCdNaDyH54eZNcolAVw688JFI0nAVDNw4kRjbW6swd/rZeVL3QVrNMSSlXOjnFtAlLcTvMnJSF0wy4TZJpWVRNUcdrsQaGts7Zlbjra+8edM0a+uLKdNUB6JQraSTeFNBCAsREi4zB2B+/3Qb6fopRr4+LpROHP8WyQnxRJ920dkZzlz5UbOOrPmL8JNXx0TVrHywaymSwKfFkKwyhERvUVrmY5UntNMmhCxZ04jNTVVl2EJ3QLO2HEfGTSRj9bWErJajqe+eyIgcK5K6RNT1rNS/0kZubFUR/+TTtcbKAex/e22d76jDK7MiYGZD1wnHTBaxg7rLvoLNOHvIAO8DCxKwaVy7JalifWlbSzaPucygZLiAkjaAuoYE/JlJixk6uXjh2ay5Dz49TrkxaYiyc4NJ4eNAJcR6Ruujpbk5JSPHbv3EVhST2NvEE0waOLeWAEn+v2rs7SCd7AvXM6x0mbMmAFPL1/KPuvPONu76ncUJWdh2g30XJlkOAXcwcaMSvvO0G99imALMHDCm3IHdye4+HmBxSXD+NnVTzom8ushD5rwvyfHzaL3lCra8G8Rtul5mY/obYWu73oPhOMZmNj98a/CnYNdOipKf0Zh3itw9biaNEMSqTQkVvzmS/pU3fWZ2R/MAlHWfNIFNOF2JdCA9U1a6NnOGjmOlnZYsHQRbHx9O0u+igvePQfs3EcA4r0DYRp7rQ/Sb+/u3bs622Qm2fz50YiPu4N+uwI638HUXVRX0ITPbahZQ7pJ5ti5KwORkXPIMWsyJTeovE+f+r5eG/nga8hYoAkD2QxoRy+ZjtHL1TtbDr7Z6nmPTaBJz+duKJ056EATBkIYOKmolGlWKIMmp8/cieCgOzrZJdnZXxLNuFYcx+fFxT/UCaLw+fx5U3MRIiP+rXZdGTRpaipSuY50sAk00f51UFeeI4moSmfzRuT1y8dgYpCb2gaZ2bH+2I+4d9xXcKbMTsC5zM4Hu1NRULAaN438hSxYLxF0Xvm4Z/VxnMntytLyRpmp9YYGC9ieIcDh3avHY1pI72um8GaNQRn+m8EeBoCOZ1cIV6DnV4zEQg0ilKyC70Rsk9S0DBw9qsrmkR93Bgnw5p3bEMn/uyb3HNYzYV2TtrbbMXPWo6gj3YI2NQKRhs6t/Pn2VHJkQ/aolTXlSIxfIsRhA0Peo43EYnEYl05wCcW7y49hVvRM7N13GrV1/p1NcAY+p6Yd13yuOhd8L1w34k8SE/5eocv6ME1YQJD1XHjzs337dgJzVR1/pMbZDpltFZvIIruDsqfsmqOsn9LeXo/62qMEmjjgqmvIdpgy9/J1+1Xla5Gf8yzd6xfRvf56b051n7WVF5eKegJO/AkscXDXDADKd6i/QBPuA38H3yP210kCaNmd66GFUUYDTDqfh0SRjyd9ItYWUAeakCOwEKUcNXYMgQBjhAhz2oFTOPHHDmG1+5X7CJQQgMGW2h4OVHOgRzhRpj2tuBq7Dx9H3FlZaZKngw0qSCvEqZ5ssa1JW4OEl/2HDxOfjRo1qscAKovcrnvuY9GOLmVaugxDmS1QSQ4Q9RU1cPX3RMSoEfTsmkU2turFbXVpvzePUQZNcknwtIYFT4NfQys9K4rz3yE723+SWPQTvXnZAddWwvYjiNu4H5EkVDz+8oVCIJsZI1y+yNbzrFMyfMxx+lu7W5UEuChbyOsKmvDkMGhQWVGKvVSmYkPW3ONDonFmawxmUOmQpY3s+5ST8S/q516F36MBN7EGdIh/e1NTkkgnLa6zFLeN3InOxs6m368mKpEmcWI79eLE+oAmvM4ujkEkdH0JAgLGCItpbeLPBgxryJ1qLNBky5vfCJbj/PuuFfby53uYQJPz/Q6QjX/QgSbSsqkDMxhQYdBEYpbwsRIrZcSI/xID5QgyMlZi4sSuDC3/W1HRX+DP1YXEXGFmCrNVJIaJdGxBuSwLZwrNM8CgiRPV6pdVd1lgvrxRttkdQawJdmthp5vuMrdpJbX4ZOsHuG3UjySSdxm9VL4iLsi6IuatiXhu+tu0CQ0jIc+/FDrCn7MwrHw8e2G0uJ4hMfed3bSZbceWB+bAmT1/+yD+SwDB+tgCcaX750fghqnBKldl0MSeBBGbmpoRS9nW7tgPCQU1KKtTtSUdQ7omLrReysHOObY2aYiMWgUH57l666b0ZIrMqfDZ0pIslFvaUcZOSXmsaUPWwMNl1sAxWRVYtX01Hpn0MemtTENwyNvYsnW/yBBOm8oZeF+0tFuARXvLlex9PrpuAsYFWBJz41YFtomrx1WkKfCC1u4y04RdeyqpXZGdbG/Bho0baLOjWojdQSUP9XXKdsijqF5f1RGptmovpk+fjJCIq6nviqyf4oIPUFr0KdHW76U/92nt41A5QIAmRJ2vIoDqfAje+DvZWWL3nt3ISklHeXaR6veRhEwvuvwSHPxjN3Lj0+nXnFgelJ6d+o/leDutSYCsb12p2ZVM3TyeJm0jFqLmkpznLopG4onDsG2tIXcaS3LoqkFqciJ87D0pM9whRGkDggMxd85cAlDbewSgcrnW0Z82C3HWuXfLxE97I/j7aEYlexs3bQSDJtXENvEZ5o9rbr5BsGFa5JyQeuN6PW2Dn7NcIinpt5QVf01ucO/AzeMaWk5zstr9Gb7MoPTqYlD29FoD7Tx5t6i4TQfpHi8UIrBe4QFUFpKHwtyXCZsjR7S2CmLWjaLnnUzvRl000e+DFAxOJ8fNE4ydkMjvRDkvhyuBh03ETmxo0k1d2IGe78nJCfDz9UPm4UTErN2LSdcsQfgMWTluytklwnktInoDsZdlAOJQCv7tdSDw9vDhQ5SIDIanNzHJ6KetMO8NkWhwo99JPw2/k25O1kLrq0muHFbT3KQlEuubSlLHT9yPdrjoXd43lOa8J2PxcLZBDf0uslZbb0VtWSU2vkI6U8QGvZzK5UxBbk7u6gXYTXNzfs3AkAJNJCbJJAJFLCwcxEoyKJKd84UAUrg85/TpOwnNvh6utMGS6Z/8JRgoXKKjLhh0Yf0TjuZzLBcGWKRyHhOFULcvzLn3+c6DJ71CYoO02dzy0FxE+Tjp1Mhdq57EdcN/h6/fjRg54kXEEdPj4g/3w4eyv6/N+BftF1rpBf4kbbJl2euzBdVY8b6q7gOLd44PckWgqz0C3ezO/ZH9t79r9w9GbvP7Q1n4+Vg2vOnH6sjTMsZDX8X7O1Lw7vZkcbmbZgzDS2R9qhxdc92BHWRDrIn9kEzlKsqAkhVpE8yM8BCMFuVwc/+I5jYfEyf8Sd8fdg3o+zh67CISok1ABDHDgoNkQn+rNy6Aj102Ohxvx4JJT5GAXRHy8/PJBnks9VcG/ly16iCOE8DCMdLPGVdOCsRtcpoUJaUsfrmP9I5+JHDUBzNn7NMpqyl/X7eRcFpRUSH27VO952pqzhKQJQO8pODsqYfHPJVJ9POvQmCgJekxTYKzs0wYT4r4+AdRVLweI6Pfga+vdrHavl8hI16RKz/OM8p2c3MTNlKZQDE5y9RXylx17F3ot43ej2dMmIqUwwnIPZupMOm3vH0/Pj5WiE+ppPHBRZF4aHGU1kWpamjB/7Yl47tDsrb4WfhfYv5NH+Ysrt/U1ESuNNVISDiLIA9/NNU2IZBAk2tvup40OLoX8e3u4ps++gMpxxIw/8ZlGLtYJujdW8GaMPx93LB2PUqyinDplZdi+MRR9G6gna3QW33Q2o7SPV1VfRLHj18FB4dI0mMKIJey3fQc+5yeBQu1NjWYDuC1aWlp7hQbTTueRCzCNoSOjyJtHksqgWlBSelWUtkyp698O5wco+mdK0xliGb0APb39ycmhOKapqW9iazsT+kZeTk9K98W5ym/g+gyXx1kg9tKQEvqkQRs++IvBIwYhiufuon6Xol9+0mPysIO8+bG6dLUoD2G54CTENL3vK4uFUeOXiDGM3vWEfp3TzXrIvBbnWLX7ig6tg3z51HJKuklmUK/GejJfa3tCrG7TmDXtxsROSUay+/rPTBb23UH8uc8z6YwzcCQAk0YBDl+4h+QB00Y9GBgRAJFGCDJy18tgBIba29CwovF35qYJsq3CGukcEjlPKbyHO1fIuXyHM6A/t8vJxHq6YAfb+0S6dXW0qrNL2Ce3+/osL8JIyOfFLa8nBW9bFwArgl9SVjiBYd/QZTe6aIpTdop3V2HM7x+Lrbwc7YTfzMdX/y/ix0s6Kn58O+nFLRGuhOv1Taenn6+Kb4QL288K06fGeZBOiejwOVNHMw0cbCzQHl1M/03ZVtJ0G3jBvXsh0bKzh3PLu/ch1oSYBJGa6JJ02RY8Af0Mlsi6u11teXt6Rg7z6OXKWYZSMEuNxJd285+HJW7lNGGLhN1LQ4oapqCicFuBPgwO8USFbUtIvt9KKMMj/5+Gk7Uztp7Zgm7YU3BTjr1tcdEVtPT5+5uu6/OcpgpzclJCTh7VrY+UtTXxYjSIuWQ7JClf/fx8cGUyR5ITLwP7t73EavqCoVTMlKuI82TOGKh/EDuAoqAisFzPYAb6M/ynP6cFv5a11ZXYteunQrdmD1nDhoLa7Bj1RqV7o2/bAFyfALx7F9x4vnw9pXdA5xrTuXhs/3pYOCEgwVu718YgQaiyctfnze6vIFqqKwTtO3ll6xA8OhokX3uSbDo55qn3ifh21Zc+OwdwuGnt8PBxpy0jo6jJq+UdMz84TtefTlBb19X1/aUy3P4PMlel9kLzVTKFzZ8jSjlG2rBa8PPylMxJ4Q7lKUN6eREyNzzOAFSV3OQ/kuWPbd3nEwbalVNsrnz5pG2nadws5GPluZcpCbIRJAjorfS75U/9CnPkdqyIpYsu5e1EXCy9t8fint1zgO+qKpZSb+F9dQnBxKlJwYmOfoN1WBXKmZmyZfi5mY+jJqqbYLtqE7PRdfynObmHKQlLKf18aN12jZUp9Co4zJGTMwEcwAAIABJREFUec6hb/5C7pkUTLp6CcLOMauMOohB0LipPGcQLFIfdHFIgSY8X0ePXapQnlNETjrMFNGkWcIaJ25u0zvdcLTNObfHQrMSyGICTbTNGAmr0YuHM2k+lFbJSkE+JB2Sn4ipweUl983TLgIpXeHP/c8h2mkNynALZo97DLd9dwyJxJbgTUGYzackHveTitWgsn0vgwuPUubVjbwFC8h9pZAEHlnokP+bxR5LKYOqb7DYIgMrfRmncipJ5DYeRTVNAuh4fsUoUd4kD5pwf7g2u6y0CAf271fpXmZZPXIr6+FEL6ucWea5saG1UhfBwcGU9fuXeFEcPuaIeFnsi2DGC1OEDxw4QAwTGehQX3ecAAhFUde0qlDUNDtgKunLzJk5gwQDXURtNAcDdAzU3T0nDDdPD+m223U1B5CdfjeNz068bLNLjaZQB5qYn7Ns5PkuKOhiljQ1phKVO1exqXN2yNI/2tjY4MIVK4gZtAGZ6U+q1TJIjptJDLlqRI7aS8BQ72vp9MWa9uQa5ytownNlR0BcemoyldvJGI9CyDQ8Ammn0nHwK0XnJ/6cxXWto8Jw1WeH4E4lCetJ10RdcCkOgyUn6VnCwc5Zd5Kw9aQQ2T1fUy9DQ+xpc5tG2gbS9Vsam+Fr5wpfTx8ETJ2g93KyIHD8loPIj08Tlq62zg64+IV79G5HlxP4+2hn3k7iuCk48tcBXPDkrbqcZvRjeDPO4UhALm9GG+TKGLgspaGOLKNZv4NA42GRP9DzSP3vy0ApM+rJhHH5h615G7b9vREpcYmwd3Mi3RkvAZg01JPAtxzILG9HK12LmYTDQsI0Wt/mZz+JKrIt9vS5S7jw9AQ0kR9XzC9bUZy1DaEXKLry6KqB1ZM5GqjnMKCVnX4XlZd6I3KkIqDLfdYVNKmt2Y+c9HtEoosTXqbQfwaMAZqs/fcH4Of8hc8QmO3R+2C2/qPs/zNMoEn/r8FA6MGQA03SSbOE6fVsCSy55Xh6LoKnpyq9lQGQvLzVGDfuc4VyHhaZlQRmubxHsiyW2nNyHmOyHNbj7lUGTf7x1RFkltUJB4oJVCaja+w58Qy8LdYhoe42TIm+R+iZ2FMWZPuD81BR9ivVQL9Eax8O/2FvKGR+2L6XrUOdSHvkwlG+YHaIpuC6UBmAQkAKgSiF58AU/n+2Sm6mrJNyfEjaGJoEbHUdW0+O476xOxBvfpg98Tw56yyJ9u1kmkht2pFuXUpSogL7gcd5LEvGMhkX4CpYGJrC2dkZS5bMw9EjE4jibI0RY0/0pLs9PoczXY311di6ZYssA1lLItD0t3yUN4cgu8oRlyyYgdkTRnfaQu5LLcWTa87AnUAyZpmwxaG2yM18kLJoOwi0uJkEGB/XeLg60IQP5vvd2qJd2LY2NMg0j7jfLPDa0XHOwpHtkCk7aUkuOVLMX7CAbJXdUFZ+TgTRaRaCwz7t/Ly1tRwp8XPpWeWMqNGchT1/4nwGTWjfT5trC6EtwGwPSci0qa5RwY2I7wauQV/x7J3i74s+lun4/HbnDATIlR3WNLYKsOSPkzIQjwFfBkuWjfQV/89CsBwSaMLXZ1bA0aNHkJOTg6CgIPjbuWP3N5uw8KEbhIWvPsGAydkthxROiZw7EcyQMUYwPrH1re9QlleCq955hJ5h2p8BxuiHfJvupPlQVU0uUu1twmZXXviSAdamxhRxuBkJQTs5L1LbHWsSJLW0tO581hm7z73dPjvmpOw8gtELJpAO1VbUN9QLpkl7RyGNX9WJjJl1Fhay94XAwEBMmzZdiJGz7by6qK+NQVbaLefs2fcSaGJDjBTdNU2U22RB5oSD/4b3+FMqlxsW/jWxYab09hQN6PYyU/5B4NYZ0jV5mRiRlyv0VVfQhBNdhXmvCg0f38D/DOjxDtTO9TZoUpJGTlYf/UpOY55Y+vjNA3XYfd4vE2jS51M+IC846EATLrfh8pq21jp60agT4qzybjmSzTADHHwMAyYBAdd1giIMlHC5DgeX5YSSqw63IQULvxYV/tUpFsvlOAycCMtiao+1TCIj/93Z3mBlmrBV70pyhOASlgnkWPMQOcpIJR69fafKgyYs6HrTN0cF02PDfeozoJquf/rsE7Bu2YidBXfAw/NKvE+2v0ujffDc8mDwD3hzU0bnqT7+nKm/qVeHwsK17NYiHzxnf94902hzp8sAXiLgZDO563A8tmQ47pgbKspzpOBsqxOV7OwnrQ2J/ZBOzjn5BAR50YvkcC2aMkuWLqVMZy3Oxi3WmFnSpZ+GHMPZ7rycLNo4bqMsrOpLa7uZO8qtp2IWWZ+O8XfvfJG+l9yTTpN7Egvn/mOKqnCuuj6xvWVmyvXio/ARG0nkT/15mkATPo91c2qqy7GTNGWkaKYyIv7D7BUb23AFuvm4cePIxjlUZE0lyrIlWSdHjuw6n8edmXojbO1HIzTyZ0Omc9Cdez6DJrxYzEzg0i8GTRpbu4RMK/OKBQBRmV8MeypvmXDZfLgGyH7PnlkXhyOZ5XjuwpGYFykD5/4+U4BvD1GJ6jkL5RunDRO26SyyK4UyaCJ/fdbrmUOlQYd/34247Ucx+ZqlCJ0+Rq/7aeMrn3faTksnMsjD7jnGivUvfUZlRTVUBnSnzo5NxuoLt8ulk+1k4bx962Z6j2mjBE/Xxr+VSg4b6RnEYWZmAwenGSpdcXR0xDJyBuOKqsHKNtn2zvfg+zdyajTcw7yxc/du2Ls6wc6jSpWVRzPAzz0GmR0cHLB8+XKdxp6VerNgJvKGPGzYjd2CJmz1rS3O7H8IrTZbVQ4Li/iAyoTUg1vSwR3E1WzUQRhVWx8GyueV5WtQkPMcifSOIcHd1Qrd0hU0Kcp7jcSOf6TkxGP0vnbLQBnaoOpHb4Mm7GLFblZR8yZh3KXzB9VcGLOzJtDEmLM7eNoedKCJrlPL4Ikl2XZKgrDy5wk9EwJB1H2mrn0GYLg9decMRtCEGRP3/XxCQZuDs41cZmKMkAdNvj+ShU9IoJDda55ZHq3X5dJSH0Zz3TZ8n3gHqjEPJ6jk4kXS8xjv9gc5ishsK+XDGNobksUtX4cBk2dpDN0xV/QaoAEHc+b4m0OZooWbZ4bg7lmKonny7IeK6jrEkJYJx/hA124BnylTppDwbgCqapORkXwVbNi5JkrmXNPX4WBjhjOnCQQ5+Y3KpV3dhsNn3D+wclc6bhzjihBnsl1udBC6DqzRwiwTfaKAbH0ryd6XNUX8gl5Se2p3oAmfwJvcjPRUEp8mqj1FA2mRsOUw2zTKu+Zw5n7KlKmob+asqexSSbFTRSlU1Kj9BLLIsqtVFX8jP/tpOLsuR8Cwt/QZzqA/9nwHTXgBmXHFmiJNSvoN0uK62VuQYwyVpDFzgW6kM8RAqyZWCQeX6XAZCOuWmBFA0thINtm0QY3yVhXhVgeaSNdnjRN2Hzm75yRO/rkTwyaPFG49+oQ60IStpxnQMFbs+uBnlGbkDSj7TN6kV5UXk6Dovk7QRF1pihmV5kg6XdL8LL3gAgJzHYj5aKwZM267XKK19pkPOy8y6cIZqKHnXezZOHiEOasC48TMc3CYTPeuLRYvWUIAihO5hWjvo/TMtLWLpkTYOo2giQRKxsfHC9FjTVFblgprx+cVPjYzG0aaHM/yE1/jeR4eHsSOCaJ3Lh3VUbUPbUAckXJ2IVpbiokR+RmBe13vj7qCJjnp95Ir1z4Ehn5AjCrjMM0GxEQZsRO9DZrseO9H4WQ1h+y1faNDjdjzwdW0CTQZXOtlrN4OWdDEWBOm3O5gBE2YYcIlK8rx7c1Tu7X97emcyoMm/1p9AqfoZf6/l47Ggqguho8ubedk0A9s9T6sPHk3zpTIBP12PDSPaNcsSqZaV2ssyiyX7TBDh4EmY7FzdJkP5WP+PpOP17Ykin+eRyVIz68YSZomXaKnvMmvqSrHZz+vE2VHPk623a53eHg4OTeMAzv1cklMdtodREGehmHhX/akewafwyK9zlQ6sGH9ShQWyMYpgl6oL7viP9iX1YSn18Zjat0RtBckoH7OA8JB6WFyELl6okxgUNdgRkha4kXi8BBiddhRllM5tIEmXAXAZQ3HY44hKyuL5vAQOtqbxByyZgqHk5OTyBgzYCKfMZaoz8MiviHLTJmrSEnhRwQOfiIEaruz39R1jIPpOBNoon21GFSxy8+G2YMPIoOYZHnEJFMOW7LIDvhmFVzDQ9FA3xt1oQk04WNZg6OWgBi28d329neCtaEv2HFq7S6k7FUs8TNmeQ73+8gPG5B9IhFTb1iOYZNGap/MPjrCzcECcfFxiI+XMRhZ90hdaYrEsuBjJk+eDD//QI1aHn3UdYMvIw+eWVhZYs4/FiO9IAtVbY1iDjo1oLiU0TaCgGZfAj4mIjBomF4lSakJS6mtfESP/Bx2jrM1Wg4zO7CuthLbt2kWJG1tbkFt4WmMnvE3sYBIi6ZhOCorVxBbSHOZsaurK5YSW5M1tuTLsAyewAHQQGnRKvpd+hBOLksQGPJuZ490BU3SEi8k9mU2iR2vE+xLU+g/A70FmnC5XNrB08g5lSSA9SveeAjmalwU9e/h0DjDBJoMjXU0dBQm0MTAGRxKoMnrl40xCmtCAk2S8mtwMdXZMxN8x0PzNYqOaloSiWr75rEHkFQRgcnD3PH+NeNRXvI9ivLfUDjN3MJRMCL6zOXFwPuot04/TTbMzxG7ggVtOYvMOiehHl2irU1trVi/n9gaxH5gHRbWhFEXnBlbvHgxahpaxYtedeVm5GU9RiyHC4jl8E5vdVfvdpjWjvZmrFvzKZWxVAmBxGnTV9CLdCQSixtwA+nl+ObsgnttOs5G3y60HFjToSdRlP8m3Vvf0QvhYnohVLUk1waa8DVZQ4X1KDZv/gv5uZvpRduKMnJdrBdNGeOCnP8Q0+VPopU/R/Xe14ru52c/RWyT9fAPegUu7ueX3bAJNNHtDnYkh23r/XsR8+iLtLFUpCGw8Ob0t/+DtumU1bfQLFzdHWgi34u//vMJWQ/XY9nTt+mta7Jz5U8oyyqAOYE44TPHYdQFM4UOi7Eidv0+JO48itEXzkb0Yu2ObcyEMGZ/pHG60oKxzNKu3XtQWFgoyvf4j3II/SMCDcLCwjBu/HjS8jDWTPVdu7xJ2/3xr50X9A71x4qHr8POPbsIiKgUOlDt7bWijJHt2UNDQzF+wkTUE1tDH75GafHnKClYCXf3ReQ69qFG0IQ74kDP6qyMNJw4oarb5e0t00KrLc6ER+Ab1Dd71JS/SELGqq4+8rM4ffp0us9t6HdUdW6ZEdYu0Qv7bup77UpcSpYSP0+0Fzb8LwI+ZAxX3UCTdiScHiuOHzH2pPhtNIX+M9AboAmXyfF3kZ97UgSMjsDM2y7Vv0ND9AwTaDJEF1bPYZlAEz0nTPnwwQiasJ7J/T+fVBgKsyaYaWIM5oQEmny9PwOvbU4klwZPvHWF7MdSn4g5eSkczNPw0uHHkVUdJECXn26bLhgfXDrS2NDFPnBwnElq7J/p0/yQOJbdc8roh+/hn08hnlgWLPD6AjnrzCDrUY63tiVheqgrqnMSYVVfpnbMFhYWWH7hhWT2aEk0f5nWQUXpzyTY9orYwPNGvj+Dae2lJYXCEYg3EfwiXdfYjhpi/1zzxSFYJ26BY2Uq0sfehesmB+GBBT2z62wj4VXOUra3N6rQj3n8uoAmfBwzAOqr07F2zTtCz4Stkjm49IkzxqxRoRzlJd8SEPgW3Dyvh2/AM+LjLvbJd8Q+mdifS9Dn1zaBJrpPuYt5K06+/B4a/16vcJIlMZqmvvQoKtu735zoCpoc+vZv5J5OxuRrSddkmn66Jge//ks42ky78UIET9SvTFP3meg6Mu3AKZz4Y4ewz2QbTU3BmwZmwuTFEdOB/jtkyijhRmSsYMth1jFtbW3GZhKOrq8vJcHoGMXLEWBgTyKonp7BgrFQXd8yJBgLBQkZ2P/5n7BxtCMgazr8aZPm7uOG1uY6bNq4UWEO3NzcxNglEF+f9WhrrUQyCWizfXH0GHKbMtfMaJDYgSeOxyAzM7PzMp6eHhgZPQLFRUVoqIlDu8WrVAZHjnKtzwrgz8ZBxhxUDk4+2NraUWmc6mc2tjZwdHQiBoqaD/UZYD8fW5D7AirLfoe7543wCXhK9EYX0IQ16NISL6bEVhA51Sk6EvXzkAbV5XsDNDm2ejMyj8WrjJt1pvoCPB4ME24CTQbDKhm/jybQxMA5HoygCQ+Zy3O4TIeDs/GvXjrGKKU53L4Emtz5bQz2kIvN4yRWevn4AL1mnsthTpxcCi+7Yjxz4FkU1slKey4kbRTWFeHgEp2GuhMoK/lG/H9o1O8KLjp6XXCQHixZDpdUNglnne2JRWIkEWRHnF/ZQGUgbUL4dfUdU7F7xzZUs4ODUsyaPZuEdn2o/rsrnyfRcAdKaQg7AuVmZ5Eoc2TnJuLLAxn48mAGvLN3doImDAJufYBfmHsW0rgdHKcSCPeVQiO6giZ8UnvTQRKyTcGpMyWkjRQGUfpE4q+aMsaS9TE7MnCZGUdy/BzSRKkgcdhdCpooPRvZ4DrLBJrovl5cxlbb0oKM20lYNfEckEzfk+CvPoErOYhpKxHQFTRJ3Ue6Jmt6pmuy6dUvUVtaKdwZ2KXB2FFwNh37v1gD3xEhmHPXlRovp650yJjACYMmvB6tra2k7VCJXTt3kkZEYVcC4FxpirWNvwCyOygbLwHZxp4zY7d/lDZqWbRRG7VsFkYund55OVsrM5QUF+DQwS6HsBUXUakkOQmR+U2Pgm2cK8p+gZfPDfD0fbrbNpgd6GxvRezAzYLxIsXwqEgS6K1HwtnvMXzkbhIwDUZivEyHg0ETM/NzQrKMghH6woK1XH6pDjCxtbXFMhKzbW23IG2WwQ2aNDbEU9LqWhq/DWlw7SVmkINOoElt9R7kZNwnmJfyLnE9WuDz+KTeAE3YLYddc5RjoAhnD4TlNYEmA2EV+r8PJtDEwDUYrKAJD/sr2mB+QRvNW2eECMtJYwWDJvZ2lhj/4lZh2bvmnplCT0OfYNAk9vQ8uNpU4dE9L6OySeYdz5bFbF0sH4V5/yVmxGqVOlt9rjdYj5VAE8k952MS3f2BxHeV4/tbSb/GncpGKLspH6NHj0ZYeASxHxSdBLpU7nvflagnc82OQM50T9U2NHduIp5aGyuspeVBE26bBY6ZjdSTYIp4asIS2siUiLIkLk+SQh/QJCfjfvh4zkVmlgeqayy0ZoxbWoqQenbRObtMFoqsQnLcLPFCOnzMkZ4MZVCfYwJN9Fs+LmMry85H1W13oq2lFe7ffA4HKi8ws9ZeAqMraNKla+JCuiZ36NzBlkYSAf33hyJDf+WbD+l8niEHVhWUku3wt3D28cAFT96isam+dvaRQJM60olhh7D01GScOXNG9I9LU8zMbEVpygxyBfPw8qXfz/63SzZkHaRz+Z5kIdh2qllRV95F5no4S1ovycnJYuxe3n70m9TzKzc2JNDG/mpRAiI29haqAsjyrfPvqDrGy5jhI5BX+A1t9DeiIC8aGalTxWkWdC9bWFnRd62FXKTbYWVlDR8/H5jR32wprRySvTy91gyJkARdvckFx4NccHRhmnDpK5fAyrMph8Rk9PEgegM0YY0pBozloyd6VX089D69nAk06dPpHrAXM4EmBi7NYAZNfiW2yXvENrl6YiCJZUYZOBOaT2fQ5Bi5tdz74wmM9nfGZzfIhC31jZMnJsPWohH373wTDa2yTfDtM0Nx+yxFhW+us01LuECUVQSFfgRHZ1nN7fkQyqAJOyXd/O1RlaGz48/714xDfl42jh6Vfe7n54fZxDKpIbqwcp11fvaTpKexAf7Br8HF7eIBMZXseCAvnio5GykzTQy1hGZLRAaN2IEhNOq3zrHrA5qknF0AK9KRGD9xPbkzEB2/w0Jr1jQ5bjaBJZXELNkJBlHYBlm5DwNiIfqgEybQRP9JdrDogHXsKZg1N6N57ATUUqZel9AVNOG2JF2T5aRr4ujlpkvzKE3Pxa4Pf4F7kC8WPXyDTucYepAE1FhaW+Hy1x/Q2Jw60IQtnJc82rv29VIH5EETLg1xIk2No0ePIDs7u7OPo0aNQkRkFFnsDg3AhAfGpQBcEuAdEYR5/7pGZT0k0e/09HT4BwT2ytgLs+9HRcVuePs9Ag/v27TeUuoYLxZEComMiqFy0L+QmTaZdKpkgvTyYW5mDi8vL9RV1JDTjj2JJcsSPFKMJ02aoOCQQS/kKz8mZvnmZj5Ajk7BCB+xUSfQhMt9ueyXS3q4tMcUPZuB3gBN+MqbXvsKtSUVohP8zBtPdsNe9P00hWwGTKCJ6U7gGTCBJgbeB4MZNNkYVwDeaC4f5YvnLjSeowCDJm9tT8Ivx3IEo4WZLT2JhNNcN9+BO7e9R9as5oJl8sblY9XqsJQVf4HigvdIP2IMuZ+s7snlBuU5yqAJM3SWvr9XZSxSWRNn9OLjYpGbmyvowi1t5mrpwtnpd4NLRoLCPoGj05wBOTfsanTlZwcVmCbXTgrCgwt7pmkiP8j0pEvJ0SENfoHPw9XjavGRrqBJS3OBYKuwnsmY8QdgRvewfOmTpsmUhI+Dwz4n8KSChHifIKbLUmK8/G9Azr8xO2UCTXo2u87mbaS70IIqEkzWNfQBTXqia5K6X2ZXzDoorIfSV7Hu2Y/QXN+IS166l3Q01NvDxm85iLNbDil0aeQFM4RQrTFCHjTh9q3IrcKerNW3bNkiSid9fHwwd+5coXvBltFDJfZ99gcKEzOFvgzrzKgLa2JLOZDjW3V9a6+MvaOZxIAT7oU1aWiE66ihIc94kfro4/kLrG3jkZ6yGEUFgcQwsSRXtA4qnTxn7+3mTlrlbagpqyY9CGt4hQV2Di84OJjcj6aQIx2J2Q6d5RTjS0+6nH4jU+j36S2EBF9KwFIbmrrxxM5Ov4veKQ5SYutjSmz1vIR2qHwnejqO3gJNpOfjjJsvhk8U2WgbUZi7p2Ptz/NMoEl/zv7AubYJNDFwLQYzaMKlDFzSMCfCU4APxgoGTVZ8tB9FZHP79T+nCE0NfYNZI0mxk4VbSpHtJiq3sNNq+cuWsexE4Bv4HxIwVc1m6duHwXC8MmjCfWamCTNO5OPD6yYI9xzO6PGLe3l5OWzsHKGJLpyRci3Vc8drtN8dKHPD4/zy849QlHIay/7vDTBo0htRVfE3udc8LdyYIqK3iCZ1BU1qqnZQFu5BonSTOHGY7uLEUh2+j/+TxPypE9aOHt53UKa0b0oaemPeeqsNE2jSs5nkMjbmJ+iz4dYHNEkhXZNTrGtCgqlTdRRMPf7rNqQfPoPxly9A5Jy+EzTe9s73YJeIxQ/fCLcgH40Tuu9T2tAnZXZ+fsETN8PZ1zi6K8qgCV+UhaMb66uxZ/duoWMyFHQv5Ce7vqIaG17+XPyTNqFJBk6aW3pH88PN0RonT16EhvpksbF3dl2u9UslMV527dqF4uJicbyP9yoCXvJpnV7EwUOFQr+EEZBGcpJyImFXGysbVBTIRNZtHGzhEeIv/tvZ2RkXXHCBcP9pUSd0orU3A/sALonm0mh70v+aMOEHraBJKrGBW5rziJmynhgqIQN7cAO4d70BmkiaT26B3lj8iHFYdQN4CnXqmgk00WmahvxBJtDEwCUezKCJ5KKjThfEwGlROD2hsBq3fx+DQBKc/bWH9q+t5GSSQgr4lpbuiKSaZF1C2uhaWnmLje75YGmnDjRhtgmXYZ0k1yQWRmUggZkmUrD+gblZBxoo+6UppBeciOjNBBx0Zc50WYe+PubbLz9BzNFD+ODT73r10pmpN5HQ8EkCLR4m8OJ2nUETBjtYUFZfwEN6CXX1uIoymcQWqFgHv6AX4equWciyVwc8gBozgSZ9txj6gCYMQjAYwSUIuuqa7CC74XKyG55PZRl9Sf8+8NVa5MelYeYtlyBgrGb22cFvyNnnTAq8I4NRnJKNqHmTMI6o6sYIdaAJX4f1TTraSB8DFhqBbGP0py/aTNp5DGfW70XQhOGYfhMJvPZRMGiSk/sdcrJeERv7YUrC3pq6wcCNeUeL0P9qplK3AP83KHlTBxeXL1Ba2ozY2DhxqgXBk872jijLKyXWiUyx1jXAC/ausiQR28vb2HJiYohRTM5NHOt/8TtaW1s1xoxbDQvr8RqZJh00n4lnJtCZ5oged5r+HjqlZ310O3depjdAk5hftiDjSBxGL5+F6CVdosx9PZaBfD0TaDKQV6fv+mYCTQyc68EMmiQX1+CWb48J1xy2GzZWsNgsi85eMykQDy3smXZKc3Mu6ZQsExt23rjrGpmpt9BGN4YAE2tyHPGk2tmb4O41dJF0daCJLnN1Llmm8dCkuGkkcFeH4aMPk4ieoy5N9tsxB/btIq2WHFx93T97tQ+S2r8FiQhGRG+Dg70LbEkwsKK2udvr5GT8C7XVexEQ8j84u+hejlBfewxZabfCjuxG+aWSARt20mFHnfMtTKBJ3624PqAJ96pT1+TfpGviqV3X5M8nVwpx2ktfuQ/W9rqXDRk6A+z0w44/XKsfSUCIptj8+teoKS4XdshHftgIK1trXPLyv+i5Z2FoF1TO1wSa8IFOJHTNFrtDLbb/73tU5BZj5q2XImBMRJ8Nj0GThuZGnDnBWlHVCIn4np6tvHHXHpRrQHVlOfbu3YrAgFeIWGKB4pJXMHniRHL1O4H8/Hx4e3uTjkktyglI5HIdJy9XOHm7i8bZXt7H1x/N5JYzlKO44F2UFX9Jwr20tsNe1wiaNDWmUjnPZYJhwkwTU/R8BnoDNFn3DJUuNjRiKbHqXIzEquv5CAfGmSbQZGCsQ3/3wgSaGLgCgxk0ya9qwFWfHRJlLuwwYqy45btjSC6qwXtXj8fUENlLhL7R1JhMP7JXUKYmCmHD/9T59Izkq7rsG8+dFRjyPjnrLNS5jcF0YE9Bk+7G2NFnxqXVAAAgAElEQVTRTFmhiYKpM2LsycE0Hb3eVwkAYdbIsJBHdQJNUuLnk6VoqQD7HOyDde4Tv9jnZNxLVo72xAQiZwZy0OF719LSQ+c2WCh3KOQ1TaCJzktu8IH6gCYtDU3Ys+p3VOQUig1i+MxxiJyrueSmuqgMW94g9xE9mCkGD+hcA0m7YnDm7z0CMGHgRF2wm8sfT7wnPrrq7Yexl8ZWnJqDiVctFmPr7egONKHKKtLu6u0r9m975dmF2PHej0JThrVl+jIYNGkkz+KszLdoY/8VCZpfQsLmr+rcBQdi/yQlbEdNzQP0PPdAQeGDcHd3w+hRI3HyxAnU1TeI9arILUJDVR241MHOxVFmLz+W7OW7x9Z17sdAPrCFkluplNziGDl2B1lkqy+Dk4RjWcuENU1M0fMZMBQ0yY9Pw4Ev19L96kOlOSZBXk0rYQJNen6PDqUzTaCJgas5mEGT6sYWLPtgHyn2W2LL/xlHiCu7oh7XfXHY4Gs01J1CZuqNIuseEvGDTqvG9bJcVqIcDJjw5nMohjFAk9aWYqScXUhMHS9yclG0pRuKc9jdmOrrTiArVcZgGT1uB5wdg7plmrQ059M9uJREYN0xdtweqn1vI4HHGp2nraZ6F2UtyW6HwoxcGZz0YKrY2dvBxsYO9d2UXenckX4+0ASa9N0C6AOaqLOqHH8ZaZVoAE5yTibi8PfkwjU6ArNuu7TvBkVXyjmVhMPfrRelOVyioy6YAcFMCGdfsiZ+4hZkHU/A0R83kgaKL2mh9L7TT3egSZ9OTh9d7PRfe5C8O4a0bCaQpk3fJi4k0KSqJpNYqzI9k4iR28geuKtUtbtpMCc6ZlvjQSQm3onGpjCUlNwiDl8wfx5sbW2xabNM64pZSjUllQQiuiFkRASWLFlCYrYtaG0bYgiYhsnKz36KSknXk+XyXXD3Vu9UVVb8NQn1vyNYv6zZZYqez4ChoMmxn7cg86ipNEfbCphAE20zdH58bgJNDFznwQyatJN42ey3dwkdswOPGecF5peYHKzclYKLx/nj6aUjejzb7NzCDi76iGm2tdUgOW6GyjVNoIl+y9DUQCyfZGb5RBLLZ41+Jw/Bo6WXQk/vaxEV+XK3oElN1XYSgX2I7tvZVFqzitwgzHHieAwyMzN1mpmG+tNUHy+zATQ3d6TSHN3sul1dXbFs2bIh87JuAk10ul165SB9QBN1Fr3susACn+oiduN+JG4/gpFLp2PUslm90l9dGykjHZWdpKfCIrAsBqsuso6fJZBkEwLHR2HGP2XW6utf/JSYA7WYd+/VQuekN+N8A02kuVz4wPWdAqm9OZ/dtSWBJg1NbcKJrLpyIzx97oaX7//p3IWayj+Qm/U8lZ1MJWHYixASEoLxE5hZZYbcnCzExMSgvrKGBIdL4OThguvvvIV0aSxJzPf80eyorztOiYWbKVHgQkmWvfR+qVqSVJD7IirLfoNvwDNw87xe5/k3Hag6A4aCJmuf+RDMGGSQmMFiU6ifARNoYrozeAZMoImB98FgBk146EtW7iXaaCu2PTCXNnRUuNvL8eCvp3AsqxzvXD0OM0J6/kCuqdpGm8+HKdO+mFgiMvq0LsGaEKwNIR+88RwW/o0upw+6Y4zBNKmrPYLstNuFlgZrapzvIdVj8zyMG78OzR3hGqekpPB9EoH9DJ7ed8LL70FYWpgJrQK2FK2srNQ6lXwtpjxzMNPH1m6U1nP4AHbdMLe0JZcGnQ4f8AeZQJO+WyJ9QBPphVu+d92BJvu/WAN2amBby8BxPdO36ulMNFTXYv0Ln3ZbGhK7gWxpdxwVFsNsNcwRv5lsiLceQvDEaKFz0ptxPoEmkkOHi58nlj5+c29Oo05tyYMmkl4UMwCjdBSW54uUFH5Az/NP4eF5OwHf44QbDuvOMIvEkayiT58+hYTYeJRm5GP+wvkYMWOKTvbyOg1gEB2Un3kbqqqOknPhs+RceJ1Kz7PSbqP3sqPkJvcpJRT6FjwdRNOoU1cNAU06S3O6AZJ16sR5cJAJNDkPFlmHIZpAEx0mqbtDBjtocvmqgyiqacSau2fCx7l3Rfmk8h+ev+PPLkZTU8+tA9k5JD/7Gb3rkJltUpT/OqrK15Ho2DC0thSSfWsT2Q2uIKGyNwxc/YF3ujFAk+rKLZSZe5QAqyUEWL078AbdDz0qzHsVFaU/wdPzQngFvKmxBznp96K2Zp+YN54/Dl6jtpZ6bNywQWvPGTBh4ITDytpfaPpoi2nTphE1OoBe1rUdOXg+N4EmfbdW+oAmx1ZvRuaxeIXOcWkOl+ioiw0vfSYy8cuevo2EMrWLxvb2qFmvhHVLLn/9AVhaW8HVwZIy4V0sAHb1aayph1uwD+ycZYLXLFpblJQl/ttn+DBYWOmfXGgji9nqBlUE83wATTiLzfcIi/DWllX2m0OHPGjCa5lJZZYNVG7pF/g8XD2u1ulWy8/+N5We/IVhoa+Q9fDlAhCRgGkGxJ3trbB54yZ0VDQgOCAYfpPG6tTuUDuorWkrkhMfgY3dcIRF/aEyvNSzi9FC72KDwY1voK0Nux3KBz9D6hrbCLjT//2aS+UK6dkWMnUUgifozwRv6iU78IE2x+r6YwJNBsMqGb+PJtDEwDke7KDJTV8fRVppLb6/ZSrCvXrXFWXz2UK8tOEspod64Lvbp6K0SqbN0JOQ7FfdPK8jSuezPWlCnMMOJNnkZtJOYIqz64UEnGje8Pb4Iv14ojFAk4qyX1CY+7J4seQXTFOAwLdi0ipZQi4Kbd062qTEzyPRwDJheW1lHdA5dXbW5iguysehgwc1TmdHeyNYQ4WFeKWwtR9NQrCeGs+JjIzEyFGj0dAytOjgJtCk7751+oAm3Ct54IQFPpcTIMJsE+Voqq0XTjuWNta4/DXdSyJ6c+SbXvsKtSUVuODJW+Hs4y7YAbGxZ5CWliYuwxbDrcS89I4Ion5adV6atU64RId1KvQFe0aPHo2QsHDaYKt+J4c6aMKAye6Pf6VyleLOuXQP9sOih/7Rm8uqU1vKoAmDHwyC2NqNRGjUrzq1ITFXh4V/AS/P2bRZVXQ34g0t2xOXJOdgz/dbsIQYNX3pEKXTIPrgIHdna8Qc5URZNgm9fgBH5y4Qtb29AUmxU0zC8j1cB1dHK5SXlZHwcL1oge+5FrKx5nL77qJDzef5san0LtwO3xEhsCSXMF2DgeYAf3/UNmq/rq5tDvTjTKDJQF+hvumfCTQxcJ4HO2hy7+rjOJ1bhU+un4hxga4Gzobi6c+vj8e2hCI8ujgKd88PNwg0YRs7trPz8L4N3n6PGNRPBk5yMu4TtoNDDTgxBmjCdGSmJUslJgZN/hA6uaLkIxTmfyLoxUwzVg5JiJjdbiJHkQisUtjTO8rZ+DgkJyernZXGhjgCZ0oVPzOzhCPpo6gLLy8vLFiwgOjibWgbYrYbJtCk7744+oIm3LP2tjaseeoD8fdF/7kLdq5OKh0uSs4SbjSeoQFY8H+qlP2+GOGeVb+hODkbc+66UrZROFcut337dpSWlKIgIUNofPmNDFPoTlNdA8oyC4hlYgGfqGE6d9WfNhYzZ81CbUO72k3NUAdN1AkF8+QtefQmuAZ46zyPvXGgMmjCbaYmLKLyxyISmB8HO/uxWkVJ2RmG2X/hIzYI5qq6sCdh/YPfb0TKoVgsIvFgdxIRPt+CQZOMzM+Qn/M2ASaKDjmNDUnISL6SWJPhpJG27nybGoPHy88sR1sLbN26VZT4WhNo0qoDaKJ84caaOpRnF8GaAG7PsK6Eji4dnDlzJrx8/MnCW392iy7tD8RjTKDJQFyVvu+TCTQxcM4HO2jy+J9ncCCtFG9dMRazwjVnsHsyTZJeypp7ZmJUoItBoIlUS+zlez+Jt93Tk+4onMNuPGwfO9SAE2OAJkX5b6C85Ht6oXyC1O5lzjGm4AxPM+JP00t3SwWV36yk8ptFCtMi6fA4Os1BUNgnKlNmQZ6iTnYW2L17N4kKdmVipQPr62JoE1qrch6LypoReCIfVlZWQsekpY0cHjoU6btDYa1MoEnfrWJPQBPu3cGv1yGPMpeTrl6CsBmqZQnJewigX7cb4bPGY+KVit+VvhpdzC9bkHEkTqGPgu7e3ox1v/+JQmKaWFHG1Ss8UKVLJWm5aGlshi2xaWxdHGCvBhiSP8ne3h7Lli9HU6sZZYLVby6GOmhyau0uMHCiHFOuX4aQKbrpM/XWvaEMmnDpLtvBd3R0MWC16XYlnhkn2IUjxp6gZ7DmzPyhb/9G7ulkTLtpRY/KHnprzP3VDoMm1XWViDs5WzAlQ6N+I0ZPtOhOTdVW0qd7hH4vh66LobHn3dbaAi1Nddi0caPeoEl7ezsKC/LRUd8KMwI9BOPOU/eE6ahRoxARGTXk2Kza1swEmmibofPjcxNoYuA6D3bQ5EUqn9lCZTTPrxiJC0b2XkbkcEYZHvn9NKJ8nPDTbdPgTHWXhpTnGGPjrgicLKdSnbcMvBv6/3RjgCb52U9THfff8A9+VWjKmEI2A3Y2FgQmfYvMjNcpSzkGIZGrFaampGAlSos/79ahgbNETOfevGkTmpu7ynC4IXkR2M6GNTBN5s6bB1c3zyErOmgCTfruW9dT0CTjcCxift0K/1HhmHX7ZSodlsp4Jl21GGEzx/XdgOSudHbLIcRvOYjoJdNIW6OLsWVrZYac5BRs+G0t7F0c4RqoyILooI0Gi3syaCKFjYNttw4wi8lq1sbOUQCZmmKogyYlqTmiPEc+uHRryaP/hIO7c5/eA8qgCScC+L1COVjsnMET5WhpKULq2UWiPDJy1O5u+x67ngSFdx7tN/2WPp1YNRdj0IR1NrIzXkF56Y8kBnsNicL+RxxZVvwFsYbfg4fXLfD2f6y/uzpor88lvoX5OTh54pheTJPW1lb8svoHRASFIcgrUKUUsbsJ8fHxwdy5c6ksp33IsVm13Qgm0ETbDJ0fn5tAEwPXebCDJm9vT8KfJ/NECc2VE1Szaz2dnv/tSMbvJ3Jxy4wQ3D8/wmDQpCDneVSW/0GaGi+QtsZVPe2WynlDDTgxBmgiiZkGhX4sqLamkM0Agya2RNePiVmC5qYs+AWR7ov75Z3TwxbZbJXNbk/s+qQpeMNWXVlOjJNdCod0dLSSpkkMWNtEBAEmtnYjVDRNxowhwCY0HE1tQ49hIk2ICTTpu29dT0GTxuo6/P3CKiGsykKryoKp2975Xmhb9IfdrDR7mUfjceznzRg2eSSm/mO5wqTW5eQi7tRp5JUXqWReJRtZ5VXwDPGDtYOdyuJMnDgRgcEhWsWYhzpokrjjCGI37O+cHwZMWCS4r1km3AFl0ERKxCgvXmDI+4IFoRz8rpCZeqNagFz5WAlA5HEyq+Z8Cwk0qa5OQnqSDEBllyJ2KyrIeY7e5dYIEIXBFFP0fAa4xDclKR4JCclaNU2kq7RQcubXX35CeEAoIkIidC7NsbGxEWzW1nYLNGtgzvV8JAP/TBNoMvDXqC96aAJNDJzlwQ6arNqXhu8OZ+HuOWG4eXqIgbPRdfrVnx9CXmUDPrthEiYGuxkMmuRlPU4by01CuJV1SHozGupOnyvVqaK2BzfjxBigSWbK9WiojyUmxU+i7tsUshmQQJOM7F/EiyDXuHOtuxTJ8XPR1lpOIrBbhfNNd+FgY46U5ETExcWpHNbaWiqAEwtLV5ibK4o1BwQEYNr06agnhrk2IbjBvG4m0KTvVq+noAn3cNeHv6A0PVfFUphFCP947F2i6nd0Otf03Yi6rsRCr3s++U2U38y/71qFLsT8tAlRU6KQlJ+Bitpqhc/qyqtQVVCm0mUXXw84eLgo/HtISAgmTJyE+uYOGm/3oxwMoAlntHsS1UVlwjGHYxiBByyIykCafFlTB8zQ2Nw3vujKoIlkOyw/NnMLJ3J7+V1BtFv6nN8/+D3E2WUpAkL+1+2UFBPDZg8xbPpTv6cna6bPObZdOskqp9lTQqGZdDbY0aW6YgMJwqbBwXGGYPBUlv1OJa35lGC4guZZ90Qdkb3QR7eKPtPQr8dyia+HsxW2bduJIjUlvsqd4+dYZWEpdh/fJ0CT0MAQnTWa5pNempOzG5Ub9uuQ++3iJtCk36Z+QF3YBJoYuByDHTT54WgWPt6ThhumBuO+eREGzobs9MTCGtz2/TH4ONlgzT2zYG1pbjBowsKttdV7SIn9Q2I7zO+Vfso30lBPwEk6a5wwcLKMwJm3/5+9swBv48ra8GdbJpmZYoaAHQanYWZoimm7/dstp912i1va3XK77W6ZMeWU0rRpGmZmcMjMzMx2/nNGkW1Zsi3yWJbnPI93U+neufeeO5Jm3jnnO0YfQ4wD9gY0Sbm4kFJHsggIUP6sbZAYy+gXYyihSVl1I9KTVhJYOtem+8L+Yr/JrCmUe9juHtdjSU/nHe0scfjwIWRnZ/fYnhs4ODhgIWkm1FFp4a40E7Q6UD9oJEET8TbJEGjCKQmcmsAlLMevbH/CzhEmHGni5O2OBU/8VbzFdBqpurgcm17+XEgNWfTPO1Xe/fOFT+Hs7oS5912FbTt3oK6uru39RhKCLSYh2M7GwrAuvp6wovLFjbV1cHZyxorrrwHJBdANYw/EhA5m6tDEmn675TYWiI+PV0sf7G4TOZ2JNWC4EpGTl6uw753NxcUFgUFBJFwtjpikJiHYovwPUFzwgWJqFpbwH/Q8XNzVU8v47ZLCLyit5A3S9bqFvucf6/Yc5sgkLq9t5+SApc8ZrsHWZx+YLgZWnhdxcXEERNSrIvI1XzOJkbfSHz84qKuNI/faETiZiJrqg/QQoJEE1K+gqDT1KluahuSHA+4enhRNaWVqrujz+Xi52qKGvp82bNhAaTpdEw3+TBaQCHYTlVDfe3q/AE2CfALh4kfg110V/HZe1KhRoxAUHIp60mcaqCZBk4G686rrlqCJgedBf4cmv53JwWtbE7B8pD8en6d7nXZN7vviYBo+O5CGK0cG4B/zBhsFmrSX+vuCnlZMMHDXNHc3B3DSG9Ak4dwVQonmqJiDsLISNw+9VzbaSAftCE2qKraTuN2DQvgxR5ZUV+6lp5IPq1UO6G5ovhC1k13C5s2b6SKopsdZsmaCndyJnuj12LTfN5CgiXhbaAg0qcgrxtb/fgUuPbzs+VVtk844fgFHKZIjcNRgTPy/JeItptNIXN1n7WNvCSlE17zeXoWNS+P+9vR7QiTETW89TGKVpdi5Y4dK78r8ElSXVLS9xsCkpUkRJcEVdziqZP68eciJS0fE7IlaVYcxdWjCa7Mn0cma6nJs37ZN630rpxLNtVSi2dbRHh7Bfmr9GPiySG69iMBXEzThibFQaXzcGGGO3Qm85ue8hLLiNfAJeALunn/p0Re/Pv42nR/NuPLl+wVxYXMzFiOt7eK86AhNeN21NSfpGqKSKuZEkVYXVYuzsKIqcFO1comfnx+mTJmCKtLRYAgjmaoHPF1sUU/hH0VFBdi3d2+X7lGC3xaCJx2hib2zHG7dVHgKDAzE+PEThMi5gex+CZpInzzht57CZc3yWyg7PgM15dUYPFE7hfau2jeS8Fvi4XPIvpgBB1LL9w71Uzlmf4cm2+ML8O8/zmP2EG+8sDTGKJ+KO749jgt5lXiNKvJMoYo8xog0SUu6HvW15ylF5AdKETHOPDUtVgFOuBxxeb+MODE2NLlEIqXxcaPppsCKLijPGOX8MJeDdIQmvKbM1LtIw+SgUN2J9UhY8I7/zRWftDW+EK2rqcA2KifYnbFmgv+gIApX1i90Xtv5mEo7CZqItxOGQBOe5ZbXvgQDhun3XieIDLKdWb8HibuPI2bRZAydM1G8xWgYacNzH6OObugX/+tOyN0UELgkPRc731lDNw8+mPPQXyC3tUBqchL4SXpH45vgpvoGgivWwo1wDUGUClor24Tx42FF8kNx247Dn0oWT76jXd+oqwX3B2jCc5dT+mBmeipOnlSvhMPv81NsBkpcxhR0RcmCuZaUOuBJaVAyisLpbNqI5Br7JOkKmvA4qQlXCTfz3aWgZqX9jWD4bo2V0jTNleEhQ8S+KK/ccT4cG+As750IDU4PSUtNUTsvGEpScpowjRZK0WlozEcDlRrm9NLW1mpYWjlC7jCuxy22t7cX4FoT/c4NRB2NHh1EDRiaVNY0gRguEhMu4vz58xq78Wc072I6CbiqQhNHSi90pjRDTebk5IQFCxYIwMTco1l78rUETXry0MB43+ygSRldwKSdTkLaqSQEDAnGxBXdC1f21H7H6o1w83NHzIwxlAtYgsPr9mL4zDEIHRUpnCH9HZooq9zEhrrjzWtGGXzW51fW46qPD8KWnprveHA6OO3AGNAkJX4piW2mIWzwenpaEWbwPLs7AIeSCuWImxmczKdUndd7dTxjHtzY0KS5qQhJF2aS+KgHVQzYY8yp9vtjdYYmtdVHkZFym1AO2NY+iiDfBbrA1iwq2N3i+QYlKyMNJ06c0NhMF82Efu/kywuQoIl4O2koNIn7Yy8Sdh3D4BnjMGLZdGHiez/6hULDM4SqOlxdpy+N4QhDkpl/W9kmgphKlX9OUOUfpUAsR4442lnh2NEjyMzM7Ha6uedTERkZibDAEOz/fntbW356y1EW/OdOgrGOHuplPfsLNFH4wxIn6TspLS1NzR9VRWWoKixTeb2rmzEGvgGBwUIpZjGtO2iSm/kUVYhb3604aWri1cKNf2jUTyTIPazHqR/8gkpwn0tW0/fpsaORG/DeOdG5fPLkCWRlZRn16JaWlhg7ehRpcZ1VOS+U0MTNzR3W1jZCpRUWReeHMGyWlvYUMRzb41xmzpol6GjUN5nls1219Ssj1np0TIcGSmjC6YD8GT148AByc3PVDtFYWy9UAOsITUL8g0nTJIhSpzQ/fJlLkXO2do6Slgx5U4ImupyV5tvW7KAJR5cwCOHIELaeoElP7dc88zkWrLoSbpdJ7LndJ1FdVt123P4OTc7lVuCu704g2s8Zn/6lZ/Lf00fh19M5+N+2BMyM8sZLyxURIcaAJklU6q+ZSv5FDNtOP8LGK43c1Xr6KzgxNjRpqE+ip3Ar6IcznIDV7z1t/4B6vzM04cUrRXOVjmCxO7/A53XyC99KONprvkFxdXXF/PnzSQegWSvNBJ0GNuHGEjQRb3MMhSZFKVRm9v2f4OzjjvmPK/RL/njmQ4pCqFWJ7hBvRaojHf5mA7JOJSD2pkUIGjtUePP0b7uQtPckRiyZhsGzFOVmra1Iz4MiTrZs2YLKSlVh2I5HvESC51MnTcHe77ehqkP6Tuf12VMpY49gfwGgKGCKP1ydbITPcU29ao4dpws10p/YZXm72xOZlQWc7GWCP8rLy1WassAu65d0NGt7G3iFqQp9MvAdNXqMoMMkdoxzd9BEWX7Y1eNaqtD3jEY3JJ6bRFETlVQFZh+lYbr1ePoqo6uGL56KIbN7J6W4x0lcbqDtuazt8Tq2c3FxFsDJVkrfKitTgDMKQIGjoxNFBcsppcNCiC6preYopXb9GhY2t5d3/aBu9OjRGMRwbYBEU7Lf7O0sSHOkZz0kjkhVmrPcGrX0/cEaMvwZtbJoxeZNm1BbW9vWpqW5BVUFpXT+tpD+kgzrt/yB4dEjMJIAJkeEMdTqbOMpcs7XL2BA+b+781+CJvp8O5hfH7ODJsot6gw3Om/d4dQSFFY2YNkoRVWLrtq/9sZ6WNEPQXNQIFq8vWBz/gJk4SF48HoFJe/v0CS9pAY3fnEEwe5yrLnd8LDpR9eewUHy7dMLhmLxcEUuszGgSSLparSIrKuhACeUqtNcplPECf9wObS0i6M1EezhY1la2FwOSx3b/mPW2IRqGwejfbMYG5ooKwxwKG1wxJdGm6c5HKgzNOHzM/nCHLpAVNUj0SfaRHmDspXSdJQXouwzLvlnYWVLF0jiPqXt6/2SoIl4O2AoNOGZKiHJvMdugQ2Vmd1Aopi2VJp32Qv3ireQLkZSRsLELJpCqUKK33FlJMwUSqnxo9QapfHNSUNdFbaQzpAms6Y0ndnTZ2LfV5uQG6+ISOGyutPuulrQsyjJyBP+SjNyBWjU0SzoZsU7NIAqrPjDOcAHHgRT7F2ckH7svABxGJzwsbhkbUCMcUTaDXW+rbUlWpvr8SeJTipNGfbf+didoUlfA9/uoInyd85eTuXbI9eouYm/2/kahCMkBg8/ppUbUw6ewclftiM0djjGXT9Pqz692ainc9mQsQMC/OHn441Nlz8ncns7uLq5ERBkOHaJooTThb/OJnccp1YRjtsEkUDwuHHjUaNFBSpD5m1Kfa1kLajlQgQ2LiS6bNUlVORoFD6XWTC+vr4eNvSZbKZKRcrqeS7OTgReGrFje3vUWwNFmVwiYGIpsxJEq9eu/QUjRozEkCFD6IGYnSCC3FEvJjw8XHi/ptGUPNS3c5GgSd/631RGH3DQJLW4BjsuFtBfISaGuePBOVHCXmiCJjUkrnQ6rRhpf+yBla016kvK0ezlhcNOfvj8FkVURjU98e3PVlTVgJlv7Ianoy12PzLDoKXUUT248a8ovqj3PDoTHg4K8TPOe+Uv9roG/UsLHj08jH5EWjBh4nkh/UEsq66OQ0L8XRTlUkbq7QsQGfV2j0Pzeq3r6Mb5nXfQUlWA6qpTgsaF0mT0lMrRaTSpBs7HJVIlb7AzHjQRxiZf1xvg644LLC3ZQqVwH4Cb+1xEDX6vx7UPpAYMNmT0NFpZMrOy8igunr9ZzQVeXisQFvEfnV3De1lP59HGjRuFC8+JVFrYzz+AMsUHho5JR4exSC4/vWxoEqfShs6bZUYd+LuardEAX+/7eiMSD8Zh3JXT4T7IG1vf+xn+g4Ox8KEb+txTFyha9NAPWzFk2mhMvnG+MJ81T7yHWopSve7Fe+DkqZpGQx9xZGVm4OjRo2pznz59OjyoqkcrfSaTDp0lQGQHPwp3t5GrVwVh7ZNCCpeMdVMAACAASURBVI8X/lJzUEpiqZ2NddPqCK6wYG1Hu/6lVZTe032FC7Ecy/7Iz8vFgQMH2obMTUhHc6dapC4UacR/SltEwNfWzr7Pvr8YGnAJXE1VjVpaqnH86Fjh2oKvMTpbbW0Czp5ZBnt7upkctVErV+eQfsTmt38QzodFD9+oVZ/ebtTduaxp7AaqylJfXUcPeyzVPhed20dGhJPuRROOHaPKid7e9DZFmFwOYKirSyLNGPXUIAfH4XS94qVyKGdnZ0FHo5m+6geK8KsQ7YEG3PvHKlw17GrMCZ1L3uu6pjNfGzQ21OHPP/+kdgpg0jFyaxjBkCIqQXzq1Cn6LmmlB3/NBKcsCVzbCUozKcnJ8PT0FKpXsSgzxQa17YG7uzvmUVpOI4lcD2Th187ntyNF2UkmeWDAQZNC0txgcMKRJmzdQRN+f/OH6xBDGiaDSB+F034+efcPuFOJrjv/tlToX1mryNHsr1ZPX4wTXtkBO1KROvrkbIOWsfVCAR795QzGBbvhi1sUIc5s/AXPFyydQ5C1Hay1tQEnjo6kL31bjJ0gvhhpDYGTxIR7CJyUEjyYDSenWLrwqoSz8wTKt9UcdmtNgEeWGI+6h66hpwbqpSqdFzwMi4efQL2VjVHDlPkm3kZmgVojQZOigh+RnvYMvLyvRUjYC9pu2YBoxzfyMjq3GRaytTRX4eTx9vNe6QQf3/9DUMhTevmEhkB+fi6Ki4owLDqGbs56R9BPr8mJ2Imj1fjCUgmoRBx6wA3F0QRshgCqjFOJ2PnJOvhEDELkxBjs/3YzomePw4RrDPuNMcZmZJ1NxvYP1mJQdBjm/u1a4aZwzWPvCMKuf3nzIY1DyCwvIe7MaSTTzYbSYoYPR3hYBC5Z6ncxzek3FVn5yE/JQR79FRFI4dc0Wey1szFslnr6bMd4s4LkLJTmFME9wIv8rhDgZesNNQhOAbhw/hwSEhJQlleCqqLytgpCfINt7+JAWnCews02GwNfDvVnuNRXxlWAOIWhK0HLs6epmk99GqKHryORUkXaltLKy3Yjia4BXFynImrIp1otgVO1fvnnR3Bwc8J1L/d9hJVy0prOZU0LqiomkWNK6eCbbjbeS9/IQBL27fp8HzVqJKqqqkgcNk0475R1JppJH44fHnU0SypBzNdPLDLf0eYTMLG3J8FYwgEDwThypKm+Bk/+/CgOpR8S/P3eyg8RO2wqCeB2/ZCArw0KCvJw+ODBy9BE8Unn/lwefca8WTh/8TzS09OF1znST/l55P+2s7WDu7ubChhhsMLRrFYyeuDZaV8Gwl50t0ZOg5JM8sCAgybKLf/+aCal59R3C00Ykmz+8Dfc8NztQjcGLd+vP4GZLaVY8chK4bX+np7Da5hOkSb85bzn4RlCHre+9uKmi9h4Lg/3TY/ATROC2g5jaHoOp8cknp9KX+SulE+8X9/pGdSvrvYspeqsEsRhO5p/4Itwcb9S47GdqXxs8w+voPmrN1Tf9/WFfPVR1MDR6Irkxk7PKS78FEV5b8PD+w54+z1okA/NrbMmTZPs9AeoXOnOtqVaWjkJJYit6P/1NRZ3s6FSqBWkkK8p91jf4/anflJ6jni7ZYz0HM6hX/fEO5ARjJ+/6ipsen8txlw9GyETeq/ymbYeKs8twrb/fS1UjJj/j1tRlJJNGiw/Cjojs/6uOSKAwb+zXIYdVIa4uLgYAQEBiCUQUEuMQxkWr+34Hdt1FoK9sPUwzm9uj+BQtp1023K1FB3+/rGn59NsnAJUX9meFujg6QJXP8UT/MqqejTbUAi+EY394WRvhT/X/o6kuIvCkT2CfYVS05yu01FYMioqCkOHRZOOSd/eBHeXnsPzz8l4FJXlm0mD6kW4dvpNLyv5AfnZ9LrHNaR58qzWnlz72JvCTexVr/5dKGdtCtb5XO5qTvnx6W3ARNlGTpFQrgTlurIJEyYgLDQEB/bvQ05evkqkSFNjNkWbKKAjV8+xsQ0hgXlPlUNxfx9f/wGlo2Ft3YyvtnyIL4+vbvOFp9wTX97yLVoaZKip5MgzKrdM36kcgSb8m/+fQnECwn2RkZlCQrznBV8LqVAUHdRQUw9Pb09MXzATnOLLGkR29NkUyCaZlZUVvCkaiD6qKt9fk6m0s6eXLz0IkiI6O5/jUnqOKXx79f0cBhw04dLCLBKbGhDSIzThcsNrX/lGEH3lajlP/XoWw0uyMcjRGlNvmKO4IOnnkSa8hhmv70YpJS9yeo775ZQafU7N6f/bjbLaRqxbNQnhXo5thzA00qShIQdxp2bD1jYAI0bv0GdqRumTnvpvCnn8Se1YY8YdI6CjflPMv0+WDbmoe4Gg26FD7f3eeAsO0X9Bk5XxL6Jk9KTAxtp4kSZZGf+hUOwvERj8D3pSeJtR/GguB2HAyCk6ykgT5boK8r5GVeURuigMgI/fLcJ5a4gJ5xH9z0AFJuw7KdLEkDNIt77GiDThEXd89Cvcg9zRSvdYFgWXEDxiKDyCel/Eu6fVchWJ7x55G9a2FFny1kOI33sKh9ZsRdSkEZh888Iuu/NnvbmpAbt37QJXlWi9ZGnwZ5IjMPlmR1lOlSNNfn9ptVC+V2msCXMtpefw/3c0/l6goiiof/RxFK3bpDZv3wfuhOzOO1BvY9+TS/R6n6sGNdXXCgKgjt4uQkRFZ+Mbs5kzZwpRS30d6i9EmpDobldP7/NyP0V25ut0034zRQY+rbIUfp3fDwh8EP4B92jtr1+f+0woSX3lP2+DWzewQesDGqmh8lzeSOkdzZS60dn4xjz7vHqVJI7G8otqj2Lq2E+o6kYivyScAUuqkrPhz41oaFCPnOI0687RJXyciIgIxAwfMaCiKS0sW3Am6yTu+UzxYLajjfcfj0fHP4wD3+8UUvY0mZzEpafdOBcHDx9CXp56RHP4kAjS6Amlz+hW2MrtBE0TNk7NYT0mlZSe6GiqAhaFSyKmvxvpdBblMFKkiShuNvlBzA6acLnhs7tO0o95Ixh6OLg6YszCiUJ6DRtrlyQcOo+G2dMFaLLc06Lb9oUU5nZy02EU1bcih1Tyx4e4CxCFj8vWXzVNWH8hI/1lipyoxNGcYHwWtxw/3zMXwR766WscTS/FbV8dE2DJ7/dOVjnxDdU0qa2lPT2zhJTWIzFiZLsAndifrsSE+1BW2i6upRx/aPQ3QqqOJuOUgubKODTefQ3nWQD3/g3yBfej1aF3bh6s6MKe00aMpWmSkvw4pYb8Rpocr8DL6yqxXW7S48koDYohlZQy0vvbJGma9L6PlSMYQ9OEj5V1IRHJ+Ql4cu9TeHXGK5g1cwnontUk7JuH3wLDk5v+93ec2rAfF3afQOw1sxAzp/sqJ5YWtIBLrZR6wEoC+kdlKp0gCKvSITumjJRkFeL8zmMoSM5GJZXy5fKt17+8iqCEs5rv+Le1JiUdlStJS+ly5RKh0eDB8Ph+NaxJFLI3YEXmmSRs+3AthkwejsBxETh5MU5tbjY2Nli4kCAUhflbWPZ9WqGgaUKP1lk0U5NVlO9H/MXbKWVkHKVCfqfSJDnpEZQUb0B4xGv0JH651ufw1vd/AaeDzbnnKgSPUujnmYrxuVxYkI/9+zVH7+ZSpEnnikiCCCnBH0d3VX0dpchv02VBUlsbC3rAVISdO3dptVy+iZ89e7bwOeiN81WrSYjciD+71c0VuOf3u5Fw5pz6Z5uu424cdRPm+cxD8oGLFJ1DIq4EPRh88L8t6X2OGPEc5AnfiABspqpW9Q31QrohR5oobewkSuuj68K4i+foc2gBF2cXyKmqEX+HKc2Xop+nTZtGQFFVG0Vkl5j0cJKmiUlvj2iTMztooq3nOqfndNePBWEf/O447psRgVFhquGE/TE9p74uHhkpf6UQv6q2ZRfXucMzZAOG+qpfmGnj0/d2J+P7Y5lCWg6n53Q0Q9Nz6mrPUCnXmwiajCBq/r020+mVNkX5H6C44AOVY3P6RVjUL7C26SaaoCUBsuS9sNxCaRt3PoQm+wm9kmfOEzN2ek5W2r2ortyLwND34eg8vVf82l8Pqik9p7+uxdTnLaXniLdDxkjPsWxpJqHTdNy7/l4U1xXD28Eb7y15D17hUUZPSdTHM1spPaeC0nTmPPwXxK3fg0LSA5lKFW98h4T0eDi+eDbWw5LO6TmdBz/y7Z/IPBmPsCtGYOy1czXOrSE3D83HjsPqmculcm1t0fLWW5CRyKNtgKKCnTGtJD0Xuz/4SUgXGELlmWOvnoFk0u86d071xm8aieS6uHqgkz6sMaei07F6Ss9pbi5F0vlppJ0kpwo5qqK/Gck3o7bmFILDV0PuqK5b1dVE2kpZL6VS1jO176fTwgxoTFWhSaslHhcuXFA7Cqd5sDaG0lgPQ6lvYuckF0qKyyhai20BwTEra3u66Va0dne2oQouzSSir35edB5IJpMJ/VtJ+JTFXweCCeltciu8uPdFJJSQLhBpG9VRGk5H8wzxhw0Jtz4y6VEMcx/RpU6dp4stGkhXraysBDspfZDT44rpM9pUpyh9w/s2/+rFyMjORA5V3HFxcUUzh5hcZod2VD2H/d/catUW8TYQ9kDXNUrpObp6zDzbS9DkcvUc5faybgn/KQVi+XUGLOeyK/DyVcPVzoL+CE0Kcl9FadE3amupdfwCY8O7f9LW1ceAyxZz+eL3V47B6EDV6gOGQpOaqkPITL0TDk4TERT2WZ99ErnsYCbBJoZObBYW1pTf/EyXmibKiZYWfQ07ixLKh45Fdt4WePs/12trMDY0SU+6USiXHBL5HUGrkb027/54YAmaiLdrEjQRz9eGQhOOrkNDFZ744WEczzveNvHYgFg8t/xlyJwoZadjXLh4S2sb6cDnvyH3fAom/XU5Tvy8DQ3VtVj877vAmg09GT9tN9b0e4ImlZTaseW1L4UpzX7oJrgHqkco5lAkQ2tBAbzO0I3+N9+g5R//QEVIJPwntZe272lN2r5fXVyOPQRMasurBH2a8SvnC6mDrG9y6NBBoQwq24gR9IAjNBz1zX2rY9JxXT1BE26bfHEemhpzETZ4PVX6aS89nXxxLr2eR/pUm+kBySBt3YXk/adw6tedBL1GEvRSpHSbkvFnlfdu/759GtM7WCungSIXnLxdqXqTq1A2m89J1ixiY3Aye/F80s/wRRPddCuNoQmL0dtQMNZhSh1Rnhea1s46Gh6ePqhvMpEwNBE2iCMnbW1ovR0+Hrn8OSbgYUNpNE7e7iSmfDnFnZqVU9lz2aX2lPeOU2RoUkl6Z1YkVp2WkoS4OEXUV31VjVD23EZuT9eebph8RSzOnT+PvPzCNoFebjeD0uecnN1MBm6K4H69hpCgiV5uM7tOAw6acKlhhiAcPcJ/3s52uHNqKJUf9hA2l99bfzoXP9w1UfhvbnP7V8fx9OKhGB6gXvLPnKBJmfULmDRshc4neUpRNW7+8ijc5Db4874pav0NhSZVFTuQnf53OLnMwqCQd3Sen7E7FOW/TxEnH8JOPhyhkWt6PHx+9gsoL6X8frcrUF3LF2S/9dhH3wbGhiYp8YuotF0mwof8SRodihQ3yRQekKCJeGeCBE3E87Wh0MTaphk/HvoaH+1QL1F+15x7sTL2FtIG6dtKBKfW7qCQ99OIXjBZEF7lG5XlL94nnpMvj9QTNOFmp3+nyi17TsA/JgKTSRC2o/EN7bbXv0ZLYxMWr7oSstOnUOTkgXNnMzHzbwqxemMZpzwzMCnLLoDfsDBMuaP9WoFvAu1pSzdv3gxO1YiNnUjXTopSqKZi2kATvs7g642A4Nfg7Lro8tRbcfHMCOHfQ0ac0ajH0dUa8+PTsO+TX+FNZYen33OtqbhCZR58fWZj1YpNmzahrq5O5T0WSeZ99woPoOpSCk0djjapLChBbVkVaWBEYtiwYWixkcMztD3alqFJTT2JlVKuDZ8XfOyamnahYuUgMTExCAuPILhmeKqbSTpXy0nVkIbRxpc+E4SUlz2/SsteimZKaMJaPY4kcnTs6BFkZmaqHWPZsqUEVqxIa+ZPigJSVP0cNWoUlR0OGVDCuzo5t0NjCZro6znz6jfgoImxt68/QpPa6mNCek5HK29wRqndl1g8Qve822+OZODDvSlYHOOHpxeqlurjMQyFJhVlfyA380m4uC2Bf9B/jL2FOh+vqTGHnkjNp8oQXogc1nPObmbK7aipPiKMw6rxg2MO6zymth2MDU0Sz01CC5VXjoo5QPmz6tBQ23mZYzsJmoi3qxI0Ec/XhkATG3p6mlR6Ec9uI9FsuuHqbBxy/uyCFzDMo+twczFWmkCaIXEb9mLQyChkn0mEZ1iA0SGDNuvQBppwmsSfL36G5oZGTLl9BfyoVLLSDn+9AVmnE+A3NBQz77kGpFGPn15YjfK8Ysy8f6XKjaw28+muzb5P1oIrqrgH+WHGfdepVYNhzZAGeiLu7OSE2sauS/saOg99+2sDTfhhCD8U8fD+K1WLe0QYSvl7b23ti4hh6ppm3c2nurgMm17+Ag7uzlj0zzv1nXqv9+PfsqqKUiG9o6PlXUxlCR86v0JUKiJxGyc7B4wdOhw7v9wILk88ZPYEDF88VeiuhCacNsLnRV1NBbZRFZeO5ufnB44yqSa9QIYrA9kyT1zEke82EhgNJzCquRpjV/5RQhMWk2ZxermtBbaQvkllZWVbl9jYWBKlDxAi5CrKS7B3zx4EUfreuHHjUUOfVRNimyZ7GkjQxGS3RtSJSdDEQHf3R2jCS+b0HE7TUdrFksFocHoTN4xvLxWsrWvuXXMSp7PL8dLyGMyM8lbrZig0KSv5kcr9vQA3j+vgO+jf2k6rV9slnJ1AP/S1WsGEpAuz6clqAeVK21OfOupzyKAStN0tzJjQhFXu4+M4JccSQ0eqC/31qoP7wcElaCLeJknQRDxfGwJN3OiunS7BhclyCkd5dqHwbwu6mOeQc0cPBXjlcHO09E5VF208lXUqAYe/2QBXf2+U5xb2WfqENtCE1xO/8yjObtgHdyqLPPtyWeSkffS7u26XEAEw99Gb6cbcRXhAcfy33WAopEyf0cYfPbU5+v0mZBy/IIzBwESuQZSWjyG3taQKNa2kjdDTEcV/XxtoUlW5C9lp98PB8QoEhX+qOI+rj9NDplth7zAaIRHqac3droTuRn9+9A1BP+Lq/z4oCHiaqslJvDUtNRlnzpwRpthCm1iQlElwzAo+UapRpqxDsmjxYjS2WOD0+n1I2KVIw+My3iNIvyU6dogQacLQRHleZGWk4cSJE8J/29vbY+EiimKl9C1l5ShT9YsY8zr1K0W+7T8tQCeGT7pYR2jC/ZTwcgtFfbEpooGo5PflaB4H+oxmpKcK1YpqCFh1VU1KlzkMhLYSNBkIu9zzGiVo0rOPum3RX6GJclGNDRlIjl9OqZXNOFv7Mq67YplOHimhUsVLP9gvlH/f+eAM2NJFW2czFJqUFK1GYe7r8PC6lfRAHtVpfr3VOC3xetI2OU8XUd/SxdSoLodpba1BwtlY8o8NbCgXuqEhVUjPsbVTFcs11jyNCU3Ky35HXubT9ITJHuE0527Fbo21gH50HAmaiLdZEjQRz9eGQBNNsywikVXXAG9YdyqZK96K1EdiMdOd76wRwuFZz2TUilmInDpa9ClpC014Ypte/hysKRIxeRRc/L0ELRa2CTctQvDY9gjPKqq4s/mVL4T3ONSf12iInSGh3MTdx0n00xoz7r0Obhp0VZTHZ4kGU40Z0AaaNDXlI/nCHKpS4oqoaEVVGWWkK6frcNqOrqbct/mP30oaIIo0cFM0vobjG+oTxykSOSND+FyUZOTT+WMPD4J1HY1Ffl3dPNt0SDiqjCO3SkkDhW3YjNEYvmQ6Wi9XTeLzwoEiIE6dOom0tDTMnDULjk6uko7GZaduf+NbIe1txn3XUyqU9po53L0zNOHXGF7mkvCr4GvSLKmqa2krj67UIKoj6YHLTMsUT0eTm5METUxuS/pkQhI0MdDt/R2a8PL3nn4JXhZrUNQ4BtPGf62TR/44m4tXNsdjcrgn/nuVIu+3sxkKTZQaIl6+98LT516d5tdbjXMzn6CLqQ3wC3weru5dl+Ktr7uAtMTrCJJEUTqPB1jUNjDsI7pgUNd+McZcjQVNOosFa1UlyBgL6EfHkKCJeJslQRPxfG1saCLezNtHYh2F7m7eOdUlae9JoQTnJUoNYOgg71RGteO8Wy9Z9soTcV2gyYWthwX9lY7G82Zo0tkOrv4dLBCrz5PrjsdSRrjwa1PuvEpIA+qvpg004bUlXZhJkaFFbaKvxQWfUMrOO5Syczul7Dyk8/JZ04S1TSbffiX8o8N17i9mBxmVpmVdDE7vyE3LREVeiZBa5OLXXjVy+HDScgtjHRJ1kd+L2w7j3CbFOcqiysOXTEXQGAXQ42M7UeUp1tvw8PRGYwfhWDHXaGpj8XfRuiffFaalTzSSJmjCx3IkSMXfgnWNrVTqXfVhJmsQdSxzbmo+McX5SNDEFHdF/DlJ0MRAn5sDNNlyPhWe9ddDLquj0rIfUmlZRV6qNvbk72exJ7EIj80djBWjNJfdNRSaFOT+l9KJvhKiTDjaxBSs7ULKi3Kf/RW5z5qssnwjcjL+QSK2cyklx5EEYdcRaHmOQMvVvbIMY0ATZQ535wkysGJwJZnCAxI0Ee9MkKCJeL42C2hCZTtqqsoRTyVPu7K8C6TXcJms+A4OhqVMc+pEdHQ0bEi/oTdK5+oCTba9/g3KcxTpTkoLHheNCTcuUFsir23/Z+vg6OmKhU/drtfJk3b0HI7/sEXoO/6GBQgZH63XcUylk7bQJCt1Faqr9pHo/Fv0uz2HUoOfQ1nJz5Qa/E9KEdZdXJer53AVnZHLZyBquvErGhnbv8r0jp9Wf4ua0koCJh5CWhZbQEAAJl5xBaV1dC3yW06lvC9u2kcFtBQldH2GhCJq2hjYOTsI6WNWFq0EXNQrUA3Um/iChAzs/fgXeJDe06wHbtB5O7uCJlzW2NbasstSxToPNMA7SNBkgJ8Al5cvQRMDzwNzgCZ7k4uw7/QbuCryD8gdxyM4fLVWXmmhJ3Sz39pDIX6tWHfPJPg42WnsZyg0ab9o+bega2IKVlWxjSr6PESAaQaBJvUqEco5tgvL3Smo7hcXfETRMqsIPvROpQZjQBNNQsG8Hhf35fAPfMkU3G8Sc5CgiXjbIEET8XxtDtCEvcXpABfOn0NCQoKa87giSEl6DlUCuUTRJoB3RJCasCl3GjlyJIJDwnqtdK4u0OTnh19XWwdHASylUsl8g9TZjnz3J2pKKhGzaLKwPl2sOC0XcX/sEbqETxmF4MvRApqO0V80KbSFJkV5b6O48FP6nb6bfqfvR1bqPQRR9tPv/Pv0ez9dFzcKbTmi6fRvuxBBfhx91Wyd+/dFBzlBx7MHDmPfrr2UmuMrpHjJ5XIsXLhQ+Cz0BDg8XGyQnZiBooxciuRqFTSN7F2cqBJPgyBWeom0XThlT2ajqKJlS7o8lpayAVnF5cLWQxRBdlAAagzWdLWuoImux5Had+8BCZpIZwh7QIImBp4H5gBNTmaV4YEfT+Ctmc/BQVZGT1jeoCcs83r0zL7kYjy+Lg4x/s745KZxXbY3FJrkZj5OqTB/CpVzuIKOKVhDfTJSE66kMrxBVI53Y5dTapt74Iv0VLMJefTUitN5OK2nN8wY0KSlpYqqA82jGwoSa+xgUqSJ6o5J0KQ3zmDNx5SgiXi+NhdowiDBWS7D7t27UVBQ0OZAvokrSMwUSqcqzZJu5HyHhKg4OTAwEOPHTxAqwfRWcQ9doMnGFz8Vnvx3tAAqQzx31QoqC19HJV0VT/aVVlVUSpEpRcITfn6KzWZp2XNp18baOhSSDg2nLbF4ryvpp3RlLi7OaGol8ddWdWgj3hmr3UjaQpPK8i0UHfqIAEgYlKQmLEdDfQppkf0qpNnqasqoHz6/pt7VOxGmus5Jm/bFZy8iITkRFagX4MacuXNhJ3fSSuSXq+c0NrXQg6V0bPltA+oq1MsNy2xk8I4MgrOzMxYsWDBgRUmVVamuuGWpUM1LV5Ogia4e06+9BE3085u59ZKgiYE7ag7QJLGwCrd+dQw3RB/CnIA1sJfHICTyhx498+rWePx+Jhd3TQnDrVeoXnB27GwoNGE1e1a1HxTyDsGcWT3OS5QGVIfvYpxCw2XICMqNJ6FXTZaWRIKxtSwY+w2V7q1GVtoqODhNRlDYx70yTWNAE55Y52gTjkBi/1tZOfXKvPvjQSVoIt6uSdBEPF+bCzRhj/Fvj8yyBZs2biQR7gbBiUJVH4IJna1jGoITlc3lG7neLp2rCzRhQd3dH/zUNm0W1p381+XwjQqCo70V9u3di/z8/Lb3GQ5xiWBOQTqRfBpu7h6YMrX7SAmumFJMIrktTc2CJoVrQNfAhKtyREfHoLbJ9IEJO0VbaNLYkImU+EWkQeaNyGE7SchdWSlPv6p3lQWl2PLqaoNSpcT79CtGamlswvbXv8b0m+bhYn46GCAOCgoh4VftZqIsOWyFFiHa69DW3WioqVfrzKKni5cvpYdPDgNWlPS3p94TInCWPHM3ReM4aufgDq0kaKKzy/TqIEETvdxmdp0kaGLglpoDNMmtqMM1nxyCn4sdXpv2Ij21yqSIjsUEKOZ3CymWf3QARVUN+PL/xiPKp+ubaUOhSWbK7aipPkIlAD+jUoATDdwx43VPiV9GvkpFaNRa2NkP1njghHMT6YlmNSnx70NzcxE9tbqKnlaF01Or3403kQ5HMhY04UNmpt5FugAH4RvwFNw8b+yV+fbng0rQRLzdk6CJeL42J2jCXrOVAdWV5di1a6fgRK4uU1VYpuZQBgQMCtjmzZ8vyo2cLtCE58WaJjnnkoU5hoyPEUQ62ZRwaPOmTaivb785rcgrFqJTjiWcJD0wr26hCUMWrirUWNcIOyc53IN8uzzpvOhYs6gCczFeEAAAIABJREFUSmVtc1tVDvHOUP1G0haa8NETz02mhxwV9Du9jn6zV1CpYCcMjjmk18Ac0bT2sTeFvte8/jA9YDF9yMTnGWvoDJ48ApNunEszt0ANRVwpNYB6coQSmjQ3t5L4qxXW/7AWqReT1LrNu2oJQgdHmV1aDn9GGXIy2Oz4Oe3sAKWfDdEekqBJT2ejcd6XoIlx/NjfjyJBEwN30BygSSU9Pljw7j442cnwxbL1qCxX1Hdns7MfQrBitVqEwdmcCtz9/QkMcrXHT3de0a0XDYUm6Uk3oK72LEW/fE9RMJor9Bi4jXp1z07/O6oqdlAZwv/C2XWh2jGamwpJiX8WlS90E6AJX4TxxZglCcIOjjms15g9dTImNEmJX0xQKEMAPAx6JFP1gARNxDsjJGginq/NDZqw5+xtLJBKqQZnz54Voig4PaejcXoOp7BY29lg3Lhx8POn8vAtPaeyGLorukKT7sYT4BCJ3+7aqYBDbI01dRQ5kocjF45TNIoDYsdNhLOv5rK3pZn5qCfxThu60WNfcGUhTSaTybBw0SKqyGHVL9JylGvQBZooH9T4BDyJgpxXYGsfhbCoX/Xe7o0vfkbwqgILnrwNTl5ueh9HrI5ZpxNw+OsNCBgeiTn3UPoXwY9m0v/R1pTQpIFq2tqQGOmlhlp8+fbHaGpqD1UZEjMUM5cuRJ0InzNt522Mdqxfwzo2SmNwMveR/2sDnB3HSDl4Bid/2U7Vu4ZRFSz1a0ht5iNBE228ZHgbCZoY7kNzOIIETQzcRXOAJq30+GDK/3bRExDgiwVPq2lZaBIA/XhfKr46nI7rxgbiwVmR3XrRUGjSnlP8G928Rxi4Y8brXkiCcSUsGEcVZbw0lEKurT6KjJTbYO8wWkjPYUs4G4vW1hpE0VOr3kh1MSY0iY8bSU+WWjBk+Am6gLY1nuPM5EgSNBFvIyVoIp6vzRGa8P0/l1I9cuQwsrKyVFJ0GJgwSOAok/DwcIwg8dcaRSZPr5sxoQlPVm5rKcChuLg4Ye6chsTpSEpoEh06FI4eLsJ6Gahw1A1DpEt0DdBCGhSsM8HAxMqaCEwXNnXaNBJk90Y9lTLtT6YLNFFW7HN2XUwPkf5s0zfRd717P/qFQF0GplLZZt9+ULb5ApUOPk+lg4fMmiCUDdbVOkIT7stArzgnhyJOfkFTQxO8fbyw8q5bQYFKOsEYXechdvumugb89rR6YQCuPMUVqDrb0e83IeP4BYy5ejbCJ4/Sa7oSNNHLbTp3kqCJzi4zyw4SNDFwW80BmrAL5r69l4TfqvDurMfVPMLRJqFRv6i8fstXR5FUWI23rh2FCSHu3XrRUGiSfHEumhrzEDF0K6xtFIJ2pmAVZeuRm/mUEGXC0SadjcsUcuUfV/crSfj1ReHtVErpaaCUHg77tbXrHjbps0ZjQZOmxlxBDFaZ163PXMy9jwRNxNthCZqI52tzhCbsPWvSN5FTxMkmSmGprq4WHMrAgKGJBQmkuru7Y968eZRy0iTajZyxoQk/+HAiOHT06BFkZmYKmiacHtIRmnAbLiFbW1ZJAF81esArLEBIKejKYmJiEBYRSdoWpp9i0nkNukCTirIN9Nv+BP1GDyYR2ARKT11Jaar/1PtDyNEEHFUw+qpZVEVntN7HEavj0e/oZv7EBYxbOR+hE2J0HrYzNOEDOBDQu3DmDPZs2IYlpGPiPTiiX0UqaeMEZbpN57Ze4YGYcZ965cdNL3+O6uJyikS5WagmpI9J0EQfr+neR4ImuvvMHHtI0MTAXTUXaLLio4MoqKrH5/MeUPNI50iTzLJarPzsMBzp8cHWB6b16EFDoYkyvzgqZj9FZ7j2OJ5YDThliFOHWM+EdU06m/Jplbffg/DwvkN4OzP1TtIJOYTAsI/g6DTF6FM1FjRRCsHKHcYgOOJro8/THA4oQRPxdlGCJuL52lyhCXvQzsaKhLkrsXXLFhWHclUZTjmBpQ0o4EI0MzY04YlzSVc5lVveQmtMPBqnBk26W5x7kA/pmThobOLv749Jkyejur5VDbaI5jADBtIFmiir47GWCVeR8/Z7iH7Db9d79ITdxxG3fg8ip43BqCtn6n0csTrueOs7cLrWzPtXwjM0QOdhNUETS6J1cptLuHjgJGoKKjFk8Qydj2vqHTjSZMPzH6OZomk62rD5VyB6/iSV1+oqqrHhuY+FlMArX75f76VJ0ERv1+nUUYImOrnLbBtL0MTArTUXaHLzl0eRUlSNr1bWo7n0H21e4YuGYNI04WgTpf14PAtv70rCvKE+eHZJdI8eNBSaxMeNFsr1dlelpsdJ9EKD1pYaJJyLFSrn8Nw6W1ba30iAcDdVnXmTBHVZTA3Iy/oXykvXUeQJR6AYv/ygsaAJz5Hn6uK2lEo9v9IL3uv/h5SgiXh7KEET8XxtztCEvcj6JjlZGTh+/HibUydPmQJPL1/UiZxy0hvQhBelhEO/fPU9qksqVCJN5K6OVB2lGQ216tVMuoImcrkcCxYuREOzBZpI36I/mi7QhNeXcHY8waE6YakBwa9RRClBNT0t52wyDq7+HX7DwjDljhV6HkW8bpxiwgBg2fOrYOso13lgTdCED8LRXllHz2Dft1ux+F93Qu6mEDI2J9v636/AAsxK40i2Jc/cQ360V1lm9plEHPrqD/gOplLUd+t/LShBE3HOHgmaiONnUx9FgiYG7pC5QJNVa07iTHY5PrxhDAZ75CMj+Va6YKgWxM9YBE1p1Q3NeHRtHOJyygVgwuCkJzMEmjAsYWhiYWFNYOJUT0OJ/r4ydSh8yEaqthCkMn5K/BISUk1XScUpyn8PxQUfwdNnFbx87zP6fI0FTXp7nkZfeB8cUIIm4jldgibi+drcoQl70pEiMU6fPoXU1FQqmxuNiMgo1PVByklvQRNeI+ubMBzavWU7tu3cCicHR0yMnSSk5nQlhutD5Ys5VamzzZk7F3ZyJxIEFe88NPZIukKTtKQbKSpJoQ3DmmSsTdaTOctlFJlCoUqdKuQ01dUj91wKZBRVwOKqXVlNPenLoPcFiLtbR31lDf549iPYONhj+Qv39rRkje93BU248eEv1yMrLgnTV10L70jVaya9BjOhTol7TuDM77vhSGK/I0gL5uL2oyjLyhd0YVgfpqOdocijRIpA4ggUjkTR1yRooq/ndOsnQRPd/GWurSVoYuDOmgs0eezXOBxIKcZ/rxqByeGelHZyI1WsiaOLhW/pYkEhUPX5gTT8cCKLRPIUV07/o7aTqG1PZgg0UVacsbJyIfHUAz0NJfr7yrK8gaHvC2Jx7daKi2cUlX4Y9jD0YSsv+QV52c9SlMlVFG3yvNHnayxowvncnNfNWiysySKZugckaCLeWSFBE/F8PRCgiczKAs5ya5w4cQKjRo0SUk5aOul7iOHx3oQmPH8HG5Ao7Bm8/eb/4OrmrlJyuL6qBpX5JWgmEmLrYAcHEojVlJozevRoBAaHko6JGB7pvTF0gSb1dfH04OgWQbSdjavHBdO1UE/i7XbWFqitqcSRw6rV8Rqq61CSkScciwWHnbzdVMR2HRwcMI0EdmsaWvs8kqcoJRu73/9REASe9cANem1Id9Dk+I9bkXbkLMZcMwfhk0bqdXxT7MTVkTa/slqAZlfcuhSDRkQh70Iq9n9G+nUUrbPkmbsF/SSl7XxnjVDiexpFmfhQtIm+JkETfT2nWz8JmujmL3NtLUETA3fWXKDJc39ewJYL+Xhm8TDMH+aL7PQHqZzudgpLfYPCUudhb1IRnvjtrIq3xNA0aWrKQ/KFubC29kPEsG0G7pbxu3M5wtLi7+Dt/wg8vP7aNgCLvbLoq41tIMKHbGp7vbpyH7LSVsHBaRKCwj4x+oSMBU3Sk29GXc0pITVL7jje6PM0hwNK0ES8XZSgiXi+HgjQRLgRplKofF5V1zULJVX7wnobmjAccrKX4e/330cptvYYM1a37/KQkBCMGTMWNY2XKEW2LzxkvDF1gSZpideAwUlH01RFUNPsOMInOTEe586dE97mqB4GESzIqzSuUtQxymLe/Pkkci9HU2vfC+ymHo7DiZ+2oauKL9rsSHfQJH7nUZzdsA9RM8Zi5LIZ2hyuX7ThEs1cqjlo7FDE3tSeyrXng59QmJyF4Ysp2mS2ItqEz4W1j70p/HvFK/dDZkt0U0+ToImejtOxmwRNdHSYmTaXoImBG2su0OT17YlYeyobj8yJwtWjByE/52WUFX8Pn4An4O75F7y46SI2nlM8Kelo760cjTGBbt160ZBIk4b6FHDJYX7SEzb4dwN3y/jdy0p+pAo5L6hFjlRV7kJ22v2C2CuLviqtoT6R1nNVr63HWNAk6cJMNDcVUcWibXQx52d8x5nBESVoIt4mStBEPF8PFGjCHuXPcF2DiMqvnbaxt6EJD8dw6FJLAzZt3IgWTh3R0lxdXTGfbuarCCo1t/RzYkJr1haatJDwa+I59XQJrtzHFfx6MhY8dbK3wqFDB5GdnQ2OQKjIK1Hr5hniJ6TAjB8/Hr5+AWho6du0HOUE4/7Yg4RdxzF80RQMmRPb03I1vt8dNMmh1JyDlKLjHx2OybebRxQrwxKGJlyqe8GTtwnRRErTFG2ijOZxHeSNuQ/frJePlZ0kaGKQ+7TuLEETrV1l1g0HDDQpKzuCxsZC+PgsVdnQFhLzzC/4A2Vlh2Fr6w1Pj9lwc2v/oeD3c3J+QGXVWY3vmws0+XhfKr46nI67p4bhlokhKCn8DIV5b5Fi/G2kHP8w3t6ZhB8pNaezrb1rEvxc7Lr9kBgCTZQVauzlwxESucbkPoy11UeRkXKbkMLEqUxKKylajcLc1wXgxOBJaS0tlXRBNonCNB0xOEY1hNcYizMGNGltrScRvHGUUiSj1KLTxpiWWR5DgibibasETcTz9UCCJuJ5VfNIYkATHpnTRkqKC3Bg/36tl8zCr5YyO7MpC6stNGEHJRA04ao5Hc3JZRaJur+jlf9Y8NSeMnI3b96M3OQMQYy3s7HobvSoERg+YgRqG/s+wkQ5vwOf/4bc8yltKSZaLbhTo+6gSUVeEbb+92tKUXLHgifao3P1Gaev+3CJ4YaaOiEyh+EYV0biCkmdbc+HP6MwKbMt2kQZbRMxeRRGXz3boGVI0MQg92ndWYImWrvKrBuaPTSprU1DcfFO+ttBOb2xCAv9u8qG5uT+IAATfr2hoRBJyS9j5IhPBUDCwCQp6WVKsfCGr8+ytvdjot+CXB4qHMdcoMl3RzPx/p5k3DQhCPdNjyA9i/XIzXyKqqcsoeop/0FeRT2u/uSgiu9GB7ri/ZXqPxCdPzGGQJOa6iPITLkdDo6xCAr/3OQ+jByNwVEZnTVX8rKfFfRLfAOehpunal5wwtlYIVc6KuZQjznSui7YGNBEGd1jYxtCqUUbdJ3CgGkvQRPxtlqCJuL5WoIm4vlaLGjCK5JT1aCE+Au4ePFijwuMjY2Fp7cvpYtY9di2vzTQBZpUlBI4yPpn29K4imAgARNdUlW5glFdTQU2rt8gpOd0tkHhwbju1ptQWdtkUpE8m/+zGlWFpZj32C1w8etZs07T/ncHTThd6dfH3ybBYQtc87+H+8vpozJPrix0+rddSD92vu11V3+KGnlUc9RIW7QJRRYtefZuJG0/grgthzCB0niCKZ3HEJOgiSHe076vBE2095U5tzR7aMIghMFJWbniqX5naHIm7k4EBd7RFl2Smfk5/YBR1RiCKNzv3PkH2yAK9+f3GxoLEBnxlHA8c4Emv5/Jxatb47F8hD8enz8ENdWHCVbcIVwksK4F2/m8Stz57XFBGP62K0Jx/bhAqkIg6/HzYQg0Uaa5ODnPxKDQd3scqy8aJJ6bQoCtHJHDdkFm7SVMISPlVtRWHyfdkk9Jv0Q11Dc1gQBcfapKVR1jzdsY0KS6cg/prtxH855M8//YWFMzu+NI0ES8LZWgiXi+lqCJeL4WE5pY0k0qV3fZt3cv8vLUU22Vq46MjMSw6Jg+qSbUm57XBZrwPFjTpKJMkRLs4racNGGG6Dw9BzsrZKanYt+O3YLoLmtZyGyt0drUgnlUkaiioBLBV4wmAV7dy/rqPBltOlAW1i+PvkH6NZdw9WsPUqSRftCsO2jC09j44qcUmVGJhU/dDkdPV21mZlJtGJYcW7NZZU6sS7Lk33fB2t5W41yV0Saz77+KBJptsPOLPzH13uvg6GHY+iVoIs6pIUETcfxs6qOYPTRRbgBHlDQ0FKhAEwYqDE2UkSXcVhmVMmTISxSBcgRpaW+TENr3bfvIrxUUrAe/z2Yu0GRHfCH+9cc5zB7sjReWxVCp3DSkxC+lKJtgijb4U1hrZmktVn5+GAGu9vj5Tu1LpBkCTSrL/kRO5uMkRruYRGlfNcnPU7to6hcEmRRCX91pgrRV3CGtE9Y8MaYZA5qwlg1r2rh5XAffQf825vTM6lgSNBFvOyVoIp6vJWginq/FhCa8Kv4ttrZqxeZNm1BXV6e2UC8vL8ycOZN0TFr6pJpQb3peV2hijLlw0o1Dh/LWl1pbhZLO40aNQWlCHk5tOChAgwk3LhSq1fS1cYQJR5pwJaVFT9+h93R6giZ7P/oFBYkZmHrnVfAdqoja7k928IvfkXMuWW3Kcx+5Ga4B3hqXkncxFZmHzsBnXAA2p2/FkkGLMGhMz5HaPflFgiY9ecg470vQxDh+7O9HGdDQRBlJMpagiJWVg7CXDEUysz4TQAqn55w5cycCAm6Aq2us8N/5BEy4H6fosLHyvjkYlxu++9sTQrnhj/8yltZajeNHx8LSkoTKYhW6FodSS3DnN8cxIcQdX9yivQq/FT3hsiExOn0E9woLfkRa6r/h7XM9QsOMX6LXGHuXmvI0igp/QUjoM/DxvRHNzZU4cWy8iu86jpOa8hS1X4vQ8Bfg7X2dMabQdgwrqpbA+dT1BogbZqT/B/l5q6nM5KPw97/TqPMzp4PJZBaQ0QVwfaP24ormtH4x18LnNH2NoKGpb6qciLnWvh6Lv6vZGiVf9/pWsEgrVzpuErF6jwVaUVlRjh07dqisz9raGosWLaKbeooetTANUVJjbgCnyzQTtGhuFlfUloVh+TO1detWlJaWIjo6GhzNU1fdiD2r/0DOxXRhmdP/uhQRsdHGXLLOx8qMS8a2D37BoOgwzL9f/2sTOxJY5nO6pQsB4YNrtuLinpOYeN0cRM8ap/M8+7rDni83IPmwojpSR7v+pVUUOeKicXp1FdWozi/CI1seRWJpIh6OfQgjnUdi8OSxBi2HH97wd3VflEw3aOL9rLMjVSGTTPLAgIYmDEFOnLwRHaEJR5owGFFCEQYkOblrBFBia+NNqTmFwv8rI004H9UcLC67An/54giGB7jgu9sVQrgn6cafleRHjzsCmcwF607n4Jn157FspD9eXB6j9bIZmvAFS0297oCJb96zMl4ldflb6Sa+XVBV68FFaJif9wXN8TUCJjcjKORpSm2Kw4Vz10HuMBTRw9epzSAn+x3kZn8A/0H3IWDQ/UadId/E25DoX60B0CQ58W8oK92O8Mi34O6xwKjzM6eDWVtZgkt61knQpNe3lZ+Qc3qBBKh63dVCtRU2CVD1vq/5d7GVqInYJY+tLFqRkpyEuLi4tkVOmz4dHp6k5WamXNKeoQndxDf1wQL5d6K+rganTp7E5ClTaA5oK+F88PstSNineDA1eskUjFo8ufdPvC5GOLf9KI6t3YVhM8ciloCGvibnG3mCU81d+Pr8jmM4+stODJ0xBhOvn6vvMKL1u+u2/8PS5SuEv9LsQmwnsFRTpioUPIzgT+y1XYu65qek4rODH2Nj6iZh3pYEJt+d+w5iRoyHNWmd6Gschcm/ixI00deD2vVzlpOys2QD3gMDGprw7h89tlwlPaeAKulwpRylZknnM4Q1TtzcJiLAf6Xwlrmk52SU1OKGLw4j2F2ONbdPFNbGpX5ZFDRs8DoqkRuJzw+m4fMDabj1ihDcNSVM6w+PIek5xQUfoij/fXj6rIKX731ajylmw3YNkCsEDZOKsj9IRPdJSilaQClF/1ObCgvE5mU/S2WKV8Av8AWjTtUY6TlpidcI+dyhkT/CTt63T76M6hwjH0xKzzGyQ7s5nJSeI56vpfQc8XwtdnqOcmWsS+Zoa4ljx46SThtV9Rg+nCI5I1DfbDpVXIy9C32RntNxDfY2lpcfHrWoQbKEXccQ98deoXnw+GhMuKFvHlac+HkbUg/FYfRVsxExZZTeW9BTeo5SGNV3SAim3nW13uOI1fGWlctw5TU3YEbsTBz4/HfUVVbDM2wQvCMCUZFbBC/6/xDat670TGxtLmHDgR/x312vqUw53C0cX9+9Bg0W1nqLAUvpOeKcBVJ6jjh+NvVRBjw0SSXNEltbHwGCKKvleHrOhqfnLLW9Y6CSk7MGI0d+2pbOYy7QpKSmEUs/2A8PBxv8ca9CZyMz9U7UVB0SxEBZFPTlzRex4WweHp83BMsp2kRbMwSaFOa9TuWPVwtlj7n8sSlaY0Mm6b8sgrW1LyKGbSfI8x6KCz4i0HMPgZ6/qU25umofslJXkU8nkW8/MeqSjAFNEs5NJMG6akRF74eVzDCRMqMuzsQOJkET8TZEgibi+VqCJuL5uq+gCa+QI+Xkgt7GaYwYOZIiQS9RqpC4qSvieRroa2jCa+XfjK7SlLPjknD0u43g6jKeoQFUWWUhHNw1p3r0lt92v/8TVfrJwrR7roFPVLDew/QETYylnaL3BLXsyFVyzm85iDd/eBMj/KMRZuuP5oZGBAyPwKS/LtfqKFZWLahtqcCLG59BRV6JSh9L+gwunnEVlgymB5QN+onuStBEq20wuJEETQx2oVkcwOyhCafbcHpNS3MNkdwaoZRwx2o5yjLDDEy4DQOTgICVbVCEQQmn67BxWk4oVdXhYyjNXKBJQ3MLZr65B7YUBr/roRnC8nIznxbU4zkagqMi/v7TaRzLKMUb14zExFAPrT8AhkCT/OwXUFbyIwmS/pOESRXRPaZo8WfH4lJrAwbHHBaiSCrLN1Op5ldIdX+p2nQb6pMoimcFRe+EUxSPQp3fWGYoNGlpLkPi+alCKWQuiSxZ1x6QoIl4Z4cETcTztQRNxPN1X0ITXiWnB3EqRRVps4mpqyKeh9tHMgVo0tO6y3MKcfT7TXRzXQx7Z0cBnHhHBvXUzWjvb3j2YyGKYvG/7oTczVnv4/YETbg6zy+PvCEc/+r/UpUeK/2Agd4T1LKjUvB1Q+4eRDkF018IPAhozbpf+2tRmXUzqQgpUtOLkrNQVVQm/JsrE3GkCvuZWeWlZjstZ6XaTIImerlN504SNNHZZWbZweyhiba7xvBEJnNogyUd+wl6JgRKlGKxHd8zF2jCa5r+xm4h33f3wzNgQwS8MO9tivL4lKIl7qeoibuFyjlcQee722IR6qEQztXGDIEmnObC6S7+QS8TgFimzXB90kaZ0hISuQb52c9TestF8L/t5cPV5tPSUonEc5NIo8EBg4cf0Tjf0qJvBGDFaTJOLrPg4/84rG0CelybodCkrvYs0pNuoPKKQxEa9XOP4w3kBhI0EW/3JWginq8laCKer/samvBKWetjIOgymTI0YXiltJbGZiTuPYHSTEVZ6IhJo+BDaSw9GeumaGN8g65J16W5oQn7P/lVuJmfTCkzhmhk9ARNeJ6bX/lCAAjz/3ErnH21fwinzRqN0YZLInNpZLaO0CQghqJMbtMuykTTPPi4TXX1QhRRV+k8usxfgia6eEv/thI00d935tRTgiYG7qY5QZPF7+9HWW0jNtw3Be5yG5QVEwDIeYkiPK6nSI9/USTKbjSQIvr2v0+HvMOPfE8uNASaZKf/HVUVOzAo5C2CB/oLk/U0R0Pfz8l4jKJLNglwh6NjWlvrKFLjIIE2zU9rEs7GUpsaIZqDozo6WlXFTmSnP6DymrWNPyKGbu1xmoZCE46Qycl4VPA1+1yyrj0gQRPxzg4JmojnawmaiOdrU4Am4q22b0cyVWjCvyNoaUR2draKgzjapLq4XHjN0csNLt2ABRcXZ8jt7VBcXNytk2UU0WEvl2usjNVYW4+ChHQ4uDpjyMRRqKjRXbhfObg20GT/Z+vA2iaTCUD4E4gwNePUnN+efk+YljGhibHXKUETY3tU8/EkaCKOn019FAmaGLhD5gRNrv/sMLLKavHDHRMR5CYXYAVDCyfnmXDweR0MVVzsrbHpb1N18poh0KRdV+UTQQPEVE0pWMspRGUlP0Bm7YnIYbu7nG5nkd2ODRmYMDjpbBFDt/QYbWIoNCkp/IwijN6Ch9et8PZ/1FTdbRLzkqCJeNsgQRPxfC1BE/F8LUET8XxtqtCEPSAnUd7U5ESVakb8OkclMDxhs3dxgGuANyxYxVeDDY+JRklJMc6cOaPx/daWFnh5eKKZKq3YOMrV2nBJ3Kr8Uqy47mq4BAVSeWb990YbaHL6t11I2nsSI5ZOx+CZpll2eMNzlK5EfukITcaTSC+LvpqKSdBEnJ2QoIk4fjb1USRoYuAOmRM0uf2b47iYX4nP/jIOw/yc0ZaqQRVUGpw+xW30fpS3E768ZbxOXjMEmqQn3UTzOIOQiG9h76C/mrtOE9ajsTJCQ+4wGrU1p6jc8DgER3zZ5ZEyU+8ikd2DCAz7CI5OCuFdpRXkvgpOz+lsYkCTvOznUF7yM3wDnoab5w16eGLgdJGgiXh7LUET8XwtQRPxfC1BE/F8bcrQRKhmZGeFY0ePCNWMOlpDdS3KSOuklSiGjb0NgRMfyGzVy5/KZDKMHzdGgCYZGRkqx2hpbIKjnFKqmy6hsriCNEQs4RU+CFbWsrZ2nCozPHwIPH394R4ZatDGaANNkg+cxqm1OxB2xQiMvdb0yg5Xkz+2vPYlieK3CtBkCFW6ueaGmxE5bYxBvjF2ZwmaGNujmo8nQRNx/Gzqo0jQxMAdMif/F+tmAAAgAElEQVRoohR6fevaUZgQ4o7mpgIkXZgtRE3kyH7GU7+fxdQIT7y6YoROXjMEmrBgKgunhg3+lYRTo3QaV8zG9XUJSEu8mnRxPNDcXAJXj2vgN+jZLqeQl/UvlJeuE9pw245WW30MGSl/VXlNJvNCZPSuHpdkaKRJG8wJ/QCOztN6HG8gN5CgiXi7L0ET8XwtQRPxfC1BE/F8bcrQhL3A1Ywc7CyxefNmVFZWqjimmaBHeXYhGillhIGHLUWKNDc20rWZDPauTrBzUmjMubq6YtTI4diyZYvKMazB5Y5tUZrTXr1FTv1cA7zaxvF39oQL6fq1WtsjeNwwgzZGG2jCqUB7P14riKFOv/c6g8brjc4HvvgNuedSBF+8v/5DoeTwCvozNZOgiTg7IkETcfxs6qNI0MTAHTInaPL07+ewK7EQLy6LwazBigpBF8+wkOklnG3egLd2puKaMYPw8Gzd4IUh0CT54nw0NeaQnsdmSk0ZZOBu9V73S5eaEB83um0Ab/9HKMVFFXx0HL0o/30qS/whCeyuIqHd+9Qmlpl6N0WiHKBQXGtSVm8S3mddGdaX6c4MhSZcOplLKIcNXk+QKqz3HGYGR5agiXibKEET8XwtQRPxfC1BE/F8berQhD3BgrD1tZXYStBDk5UROOF0kc7mGeIHGwd74eXAQQHw9HDH1m3bhP+2tbEhDTo7AibFBFradUqsKWrFK0xxTeXn54dI70Ds+GwDriCNEfcgP4M2RhtoUlNaQUKrn1HakROWPHOXQeMZu3PqoTic+HkbbMmn8x+/FY8+cg8WLV2BhUtWGHsog48nQRODXajVASRoopWbzL6RBE0M3GJzgiavbInHH3G5eGL+ECwb4S94hiNNOOJkX/kn+PJoPe6bHoGbJuhWAs8QaMLlb7kMblT0XljJ3A3crd7tnhK/mICDIix2UOi7ghZMV1Ze8otQmphLOXNJ586WmnAlRdgkIzh8NRobM5GX9YzQJDTyB9jJY7o8rqHQJD5uJEGaFgwZcYKAjW3vOqyfH12CJuJtoARNxPO1BE3E87UETcTzdX+AJuwN1jfJycrAsWPH1JxzqbUVeRfT1V63d5bDLdC37fWhQwajrq4WJ06cgLe3N0qzClFTrgpbbOxt4RkWAHt7eyxctAhb3/4ZOQkZWP7SfZQGpF/5W+UEtIEm3HbtP96itKMWrHjlAY0pR+KdHe0j1ZZXYcurX6K5oRGmpl+iyR8SNBHnLJGgiTh+NvVRJGhi4A6ZEzR5d3cy1hzLxN9mRODG8QowwuVnWdtkS/7z+CnOFc8vjcacIT46ec0QaBJ/diwutTZQad7jVKLXsB9ynSatY+OWlirBV40NiguaQSFvUwWa2V0epbpqH7JSVwnitkFhn6i040gPjvjgyjtcgYeNK/KUlfx4uRTwT/SKZjE4Q6AJR/RwZI/M2odEbHfo6IGB11yCJuLtuQRNxPO1BE3E87UETcTzdX+BJuwRBxuQKOwZpKSkqDioK2jSMWpE2WHc2NEoKytDenoGRZkUCaKync3JyxXLb7gWMnpA8vOT7wtpPkufu8fgTdEWmmx97StU5Bdj7iM3CyK3pmCHv96ArNMJCBw1GBP/b4kpTKnbOUjQRJwtkqCJOH429VEkaGLgDpkTNFl9KB2f7k/FrVeE4K4pitQMZcnfPzLvw2/xg/HxjWMxPMBFJ6/pC0044oEjHywsrCjyQbMivE4T6cXGmsRbQ6N+IcgxROOorNPCei2cAsOpMB1NWerZ2XUhAoL/2/ZWWtJKCt09161eiiHQpLb6KGmp3EYitmNIxPbrXvSWeRxagibi7aMETcTztQRNxPO1BE3E83V/giYyKws42cuwfft2qojTrkPC3ipKzUZTXaOK45y83eBEZYk72vjx4xEZEU76Jttw4dAJiththdzNCTZyO3oQ1UpVeUowcsQIhISFIy0uDSkHz8CZyhrP/8etBm+KttDk4OrfkXM2WYATDCn62tKPncexNZuFqJf5j/8VrPti6iZBE3F2SIIm4vjZ1EeRoImBO2RO0OTnk9l4c0eiim5Jfs7LKCv+HutTr8fvyZPx2z2T4e2kW9qGvtCEozcSz11BwmdOGBxzyMCd6r3uygiNziM4ucyiiJN3NA7c0lJJa5tEa3OgtR1RaZOddj+qKncJaTucvqO0+rqLJDbLgmmXSN/kGdI3uVbt2IZAExamZYFaF7dl8A96ufccZiZHlqCJeBspQRPxfC1BE/F8LUET8XzdX6CJPemasMlkFE3a2oxTJ0+ilSCH0riaS3VJOVo66JPYUXqOvbNjWxt3Dw8CJpFouWSBysIi/PbTL6Q0awknz3aw4udNEaX+IYg/cA4tTe1aJ77DQhE6Pgb1TS2Uqqvf/mgLTeI27EXCzmOIWTQFQ+fE6jeYkXpxlSJOy2moqaNqPnOoqs9IIx25dw8jQZPe9a/y6BI0EcfPpj6KBE0M3CFzgiabzufjhY0XsDDaF/9apFBPLyn8DIV5b2FT+hz8mrQc+x/tWqejK1fqC03aq/eYdrqIEu50Xn930ITbJpyLpXJ2NUIKDqfiKKyVomvG0cVKI6XI7KRUGdWQVaUWCrcMjeJ0nWiVYQ2BJkX575I47cdditMa+FExu+4SNBFvSyVoIp6vJWginq8laCKer/sLNHF1tEZ+Xp5Q/cbK0gINDfVq0SaC14hoMEBprK0X/tPW0R4WlpYEW2Tw8fEBvUXCr02QNbagCS04dvoEPaRRABkXFxfMnz8fyecSUJiRp7YJo2dOImFZR3TgMjptlLbQJPXwWZz4aStCxkcL+iF9aUe/34SM4xfgHxOOybdd2ZdT0WlsCZro5C69G0vQRG/XmVVHCZoYuJ3mBE32JRfj8XVxKmWFK8rWIzfzKRzOG4cNmXdh7V2TdPaYvtCksYFCRuOXwsY2FOFD/tB5XDE7JF+cR1V+clWG9PS5lyrj3NvlNFITlpPYawql56yjNJ1IoZ1S68SexF5DSPRVk+VnP0f6Jj8TMBlG4IT1TdrNEGiSm/kEKso2wD/wRbi495+LBjH3ueNYEjQRz/MSNBHP1xI0Ec/XEjQRz9f9BZpYyyyp2o0FNm3ahOrqagGcVFdXCf/WZE31DUKkCAMRTr3x8vIi/TcrtFKUSEUea5lUYfbSeSiuLMWFCxeEQ8ydOxfFJfTfx+MoaqVC5bBRUVGYOHs6LJ10S8PueBBtoUlRShZ2v/8TPEP9MfP+vivnm3UqHoe/+VOATguoWo5jp1Qn8c5S3UeSoInuPtOnhwRN9PGa+fWRoImBe2pO0ORUVjnu++EkRge64v2VYwTP1FQfRmbKHYgvjcS2gn/hg8uv6+I2faFJfe15pCVdL0RTcFSFKVt9XTzpvzzQBk7cvW6miI17KYKk65zYzNS7qKzwQQSGfQhHp6nC8pTaKJ4+dxNwub/LJaclXo/6uvOkb3It/ChVR2mGQJP05L+gruY0Vez5EnLHcabsbpOYmwRNxNsGCZqI52sJmojnawmaiOfr/gJN2CMdSw9bWFhARgEipQQ56hsa1B1GESecUnKJ/t/Tx5vE5R0JmFiAYUpRSo7QPnh4JCZOisWhQ4cwaNAg2NnZIz4hkYBKhaBtojSutDNz5gxYunnA1tlB783RFppw+eQNz31MUTJyLHt+ld7jGdKxqb6R0nJWC6WcR105E5HTFNe+/cUkaCLOTknQRBw/m/ooEjQxcIfMCZokFVbjlq+OItLbEV/dMkHwTEN9KgmWLkN+jTf2lr2HZxYr0nZ0MX2hSW31MRImJTEux/FC6d3+YKxvYkmpNt3BEuU68rL+jfLSXwl6UOlhj2uEl9nX7PPgiK9IkHVsl0uur7twWd8EKv0NgSZJF2ZSeekiRAzbBmtrv/7g7j6dowRNxHO/BE3E87UETcTztQRNxPN1f4Im7JWOpYctCZxYWFxCUWEhpd2065sovceRJtaWMjg5OkJGJYQtibKUZRWgrrIGjh4ugsCrl6cnhg7lUsR1OHb8ZJvjS9JzCbrUw8bGBgsWzCcxFXu4RyiqJ+pr2kITPv66J98Vyvsuf5FKHVOkjNh24qdtSD0cB9/BIZh699ViD2/weBI0MdiFWh1AgiZaucnsG0nQxMAtNidokldRj6s/OQg/ZzusvVuRhtPaUk3aGxPR0GKLwzU/4Z6p4Tp7TF9oUl25B1lp98HReToCQ9/XeVxT71CU/z5piHzYpiHC5YpT4pfASuaKqOj9PU6/nFJ08ihVh43TdDhdR19o0tpah4Sz4+nCzJoqFZ3qcWypASBBE/HOAgmaiOdrCZqI52sJmojn6/4GTdgzjrYWOHPmtFB6mNN0mpubUFxcrOY0a2truDo5oygjn37DKTLF1ga15dWUbmIBn8ggAaII1wkhwSgqLlFL9amvqsGk2Elw8/KGlaPhFWN0gSbb3/gWZdkFmP33G+EeLO7DGq7cwxV82OY9dgtc/DzFOyGNNJIETYzkyB4OI0ETcfxs6qNI0MTAHTInaFJV34z57+6Fk60MWx6Y1uaZs6cnQGZRi6RLa7FMj7Jw+kKTyvJNyMl4DJ1L7xq4ZSbTXSnqyhVyuFJOafF3KMh5Bc5uixEQ9KpW88zLfhZ8HGUKk77QpKE+maJcriT9mBDSj9mg1dgDvZEETcQ7AyRoIp6vJWginq8laCKer/sjNOHSw85ya2zduhWlpaUCOKmtqUZlVVWb46jGDrworaaFqt3kJ2Vxcb02s5Hbkl5IQI9OHsGlh0PDUd/MRzPcdIEmh7/egKzTCZhw00IEj9U9klnf2bY2t2DLa1+iurgcI5ZMw+BZ4/U9VJ/2k6CJOO6XoIk4fjb1USRoYuAOmRM04fJyk/+3E/yzeeCxWW2eOXRsHlxtclHp8CViI3TXutAXmpSXrqUSuM9Q2d2rCSooIirMyaqr9iMr9R7KQZ6EoLBPhKgajq7xD3yJhFiXa7nUS5Smw/omF6gE8XUIDn0ODvZWKK1s1LK/ollbVI/TFNJY+UinvgO1sQRNxNt5CZqI52sJmojnawmaiOfr/ghN2Du2VCq4tbkemzZuJK2SVsgInJSXlwtpNmxubm6UWmOLKhJ07ahPovSsT1QQrKxlXTqaNU5iYyeipoGq8ehbY7jT0TtDE7mNJbVQTyvibqVUvaeUUoncg3yFP32M9Vy6MksSd+W1dbZT63Yied8peIUPwoz7rtdnWJPoI0ETcbZBgibi+NnUR5GgiYE7ZE7QhF0x9+29qKE6c1sp0sSRIk7YNu67DqHOFyDzeBuRg2br7DFN0ITL9JYWfUM36zthbeMPF7crwSV6Oxq/z8KoLKrq4/+4zuOaeoeG+iSK7lhBlXPCKL3mV0qP4VLDzVRqeBeVGvbSevpKwVzuEBjyAoICr9cZmiijXNw8rofvoH9pPfZAbihBE/F2X4Im4vlagibi+VqCJuL5ur9CE/aQPUGH4qJ8HNi/H6xvYkUMorCoCPZ2dnCg0sAtxAQq8yntplMlHO7rHuQDOyfNoq4ODg5YuHAh6pqApmbNUEOfHeoMTVjYtqmhBseOHlU7XF1FFaXnFEHu4gjXQd76DNdlH0/ScRlOUTQVNc0qbfLj07Dvk1+F1+Y8dBPcAvWDNUadrJ4Hk6CJno7TsZsETXR0mJk2l6CJgRtrbtBkxccHUVBZj19J08SXtE3YvtxyO2J9j8Dd7zn4eOsulKUJmuRmPY2KUkUuqdJY7JVFX5VWXPAxivLfJc2P7ivJGLiFfdadwVHiuSuoPKADAoJfEyJN7OUUJhv5vc5zKiv5CfnZz/9/e3cCJkV553H8D3PPMNwwA8M1yHAjglHUBI+IqCRR4xF1c2hiTNY1ao7NZo27ybobsznWRM1hjJrEmERjDjWa4IWKxIiAqIByM9wwXANzMMwF+7419tDT9Mxb1f32S1fPt574BJi33qr6vDXd1b9+D7VfDzlp2uPSeHhMoDqqtn9PhVi/lsFDviwDBn8m0L7dtTChibuWJzRxZ01o4s6a0MSddZhDE61UpOY3WfnuO7Jq1SpvmM6RI63q/7NEZx26p0XsSjh6n54qXdE9KTrraTJLLT2cX1gs6nsyq1u84Tl6YtstmyrljTfe6HCspoZDsmfDdsktUEOJRpuHEvk90cLCQrlABUKNashRbCCkh+XokGnSBWfIxNmn+60yLcsRmrhpFkITN87pfhRCkyRbKNNCk0/+apGs310nv772VBkzqJfsV19BPPjsv8mc8ufVErg3qwDjc4HFYkOTSFgQW5HuaTJs1D3t/7xrxw9l764H1Qf5L6kP8tcFPm4YdtCT7OrJdvXSwXpi14ElNyjnGxM6dT2USQ9p6lV8ohpiEyx40csl1x54UYU3P1BzyMxO6PjdbSdCE3ctTmjizprQxJ01oYk767CHJjoo0b+br8yfLzt37lQr9KngRAUm0UNqIivhRAITvWpOYd/4E7uefPLJUjZshLV5TKJbMl5oood99yroKUtVaFJZWdle/HDrYdm5aqMX8JSOH2Xthjh31iz1JVwfaWzuODRn2VPzZfVLS7xJZ/Xks2HfCE3ctCChiRvndD8KoUmSLZRpockNjyyVt7ful59ePV1OGtZXVlfVysMv3ykfH/9HNWdGYkM3/IYmsUsL79x2h1TveURKy26TfgOvTrKljs/uqidtl1vl6ivlzaU7ZEhZP+nfb4ea2+R+KSiaGncf83Djw7Jx7ZXScHBl4LaqXHOZmhdltZRX/F598zTp+GCF7KiEJu4ajNDEnTWhiTtrQhN31mEPTbSUfpbK7tkqz8ydK4cOHYqLp1fC0UsQ5xYWSE5+btwy5eXlMm36yVJ/6HD0vLHWGqOziWD1xLbFBdnexLbV1dXtx9u5eqOat+WwWvZ3ZPtKP/qHR9Tyys0NjdKirievqKDLuVmiT37atGkyfGS5HFLDjqK3Xeu2yPyfPub90zk3XeVrklxrKCmqiNAkRbAx1RKauHFO96NkbGiycMNe2VXTqFZ7GWpsg/rGFnny7e2i96lvbJV7rjpJdYVsm89D/+x3izbL8m0HpKQ4X86dMFhOGz2gvc5MC02++udl8ur6PfK9S0+UD5wwUF5Zt1see/W3cuNJD0hx73NkWPmPjJ6xBeINz1n7zllq+by9HYrqeUv0/CWRbftmNYSn+smAE6MGPr2U7tCnSN1HXaQdtTVL5JOf+KZcccX75eKLZ6rllWd2ej51qtdP6xE9oVrnW2vTu2ry3P/yCgwsvUHNE+NvDpqN6z4pR1obZMSYX6pvsPwtOdiqBlLbmjgupY2QosoJTVIEG6daQhN31oQm7qwJTdxZZ0JoorX0o2ld7X556cUXE8LTE8fOnj1bahtapEVPhpKCravVc/TEtq3NDd7EtpEJXPdUbpOmg40qxBiqwp62YeE6MNm/bZc01BxsP8O+ZYM67TkTKTRq1CiZNm26HFSBSeyjV2R54wmzZsjkOR9IwZW7r5LQxI05oYkb53Q/SsaFJhv21Mu8lVXqv10q3OgvX5w1tss22KXm77j18RXtYYj++5SyPl5oogOTO/66Ugb3zlPhS5kKYQ55f7/76mkyemDbxFqZFprc/td35dl3d8o3PjRRLphYKn9YulWeXPK83DbjTq8Hgu6JEHSLDU30MBA9HCR6ix2ao3+2deOX1JCR59WQnR+qD//nBT1sWpTXE7jt3VMlf1+wIO75HKx/Rx7/82KZMKGfTJw0Vi0dPOGYcqWlpTJz5kypU98KtR7u+iGnb1GONNSvl6qqhWp6kx5S1OsMFYL07tLiyJEm5TxPFc9RzrN8uWWr2fiLexXLgYOWB0P7Onp6FCI0cdcOhCburAlN3FkTmrizzpTQRIvp+UE2rFsjy5YtCwTYQz0TXDhnjvTIyhO1QnHKNtOSw/q5aPeuHfKPV1/1ziEyrCivV4H0HTrI61ESb44WXXbIhFHSQ62IE2/r27evnH/++XEDoRVzX5WVzy+UvmWD5byvHP1yLmUIjiomNHEDTWjixjndj5JxoYkONnRwonuN6M0Umty/YIPXI+W2Dx37YVXXc8sjb8qD17xPBSdt6Xds+UwLTe58YY386c2t8mUVNl0+bZj8+OV1Mnf5Mvm/M7/hreiiV3YJukWHJi3Nu9QSuR9TvUz2qLk7vqBWzimT7ZtvVT0szpLh5T/pUPXmDZ+X+tpX1fwc96l5Ot4f9LBpU75QTeC26r0J3KJPqrlpqxpKs16eeqrSC03GjS9RIcdpHc47X82OryczazmcpSZrM89ur2ep75XfU55//hdSuWGxGifcWwqLpndpoeeYaah/Q5UtVmVP9uWmH7yycgrUOaXmmypfJ3GcCxGauGsAQhN31oQm7qwJTdxZZ1Jooof9FudnyaJFr8vmzZt9I55++ukycFCpNLYaxg37rjF+QVNoovcqyDkiq1a+K0v+vlBqdx0dqqN/VtS/txyqqZPWOM88A0cNkVw1VCfepp+Vembnq+eljtenQ5kX73nE2+WsG66QwRUjkrzC9Nmd0MRNWxCauHFO96NkXGgSAddDanSAYgpNrvr5Qq+XiR56U6emENe9TPR/etPBy10vrJVHP3f0g6z+t7+8tV2+fekUr0ymhSb3qRDpoYUb5XMzR8u1p42S/3xqhby4qkoemH2Ld73jT3xb9UjICnRfR4cmeoWYupr57UN9mpurZN2756oVZApl3JSOy9HpISMN9W/KyDEPqw/z0wIdM50K6wncehVkyYJXXvEmcNObXlq4vm6hmgS2WYUmm7zQZOzYPpKbN8r7L7Kdfc45yqqfmgHe3xXl5ajQpDBLGhub5PE/3SG1NVVeMJWXX9FpBTrIOtSglpRWoVh+gXk+kxkzZkjJkLJjxgv7O8PMKUVo4q4tCU3cWROauLMmNHFnnUmhiVbLUROn6i9knn32WampqTFCTpw4UcZUjFUTv3Y9xNdYkY8CfkIT/VxUlNtD/vDAw7Jj+w4ftbYVKRk7Iu7cJvq5ZODgUmlWXzDFbjow0cHJ2LNOlqkXn+37WGEoSGjippUITdw4p/tRunVookOV6x5a4s1RooMSHZroQOR6FRjoIEUPz9E//6dTR3hDfeqaWtXPt3k9We65qu1DfHVdU7q3caDze+i1jXLXvLXyqdNHypfOHSvX/GqxLFMTwz54wf+oadp3y+STXpTc3CGB6sxWb44FarjTmnV3yY5tP1Yf4gfL+El/lBz1IV1vK5dfLA0Na2TshIdVj5L3tde9csUlqifGapkw+XG1FO/4QMdMt8J6AjQ101n7BG6tasWcutrFclgNt4kOTXJyBqqAqC2Qm3rSSTJy5Cg53KNtfh0/m36QylNdXxub1XjgvRvlice/6+2m/eK1W0vLfmW8Sp1HgzeXSbR/vONVVFTIpMmTpeVIsODMz7mHrYwOA7W3fp1gS62ADgMVtRxUc06xpVagQPVW01uDer9jS61AYV6WGnIp6vUa69RK6yV7s9WQlMO+emym+lxs1Z+j3oPqaw/Icyo46WorKSmRM8880/vyxcU8ZL3UZK/6GSR2qd/YczzS0iLblq+W555/Xn3R09j+4yz1et9XrfxTs3u/NB86+oxdPLCP9B0y8JhL7eq5ZNkzr8lbTy2QPqq+i//jM96w5UzaigvUkGzVsC2GoduZdM3H41p06MqGQMaGJg89vkitvFIjX7y+8zka9Icd3dPkqZs+IFtXbZL6/XWytc8gbwhOpHfJ07+YK6t21nhL7xblqnGWKlgpUOvJ3/b1K9oeLDPsIf6xN7bIN//yjlxx8nD574smydl3vixVKlz6zcU/l8aGFTLlxMekuPikQL85PVVoUnPgZTX+9npvvwkT7pN+/c9pr6Nyw//Ijh0Py/ARN8vw4V9o//elb5yrZojfItNPfkHy88PfnVJ/s7J37255UU3gpnua7K9+5ZjQJC9/uBQWVsiIESPklFNOUTPbBwsntLUOaJrUA0vPHrr763xZsOBRZdrD6yHUs2eBshymerMMUTPS75fa2qUd2lIHWb2K20Kb2G3QoEFyjur5oh/yzSv5BLpFQllYL/mo21Rbs6VWQN/Tejy+6SE8tWfRPWrPzm77UNHSjYfeuWpp/aFXT4aZqgk5XV1HGI6TqycgVR8s9QTmmbTp9/lNmzbK4sWL415WXl6eXKiGrWTn5HnPGy42ba3vaT/HW/SneZJVnCuv/P3ovG99S/tLn5L+3qnW76uRfdv3qF65h2Xo2OGSo56/o7eunkv2bN4pf/7WL73iF9x0hYyYMsbF5Ts9hv6SrFm9VvuxdnpiGXYw3bOYDYGMC02qd+6VyrfWysJXlkvTgIHyxa98tMtWvvL7z8mNFYWye2WllI0fqb7en9Q+JKdJJdy7NnbsNvizp96SsrpqueH2a716M214zrxVu7whOR8cN1hu//AkmXln2xwmj13+pBrqMS+hSVl7HqmWdauvUN8k7JSBJTeouUxu7NAmehLSrRtvkcJep8rIE37R/rPICjsVk+ZLdvbRFYvC/GsbPYFbU+NGNSym8mhPk3EDvDlN+vTp701mdrDxiPfNWJBNfyNfpIYC7atpUjGJqGFBPWXByz+SDRtWd6gmJ3eYGi+81+thErvpc+jRs20On8iWk5Mjcz70IfUtnRhX8AlyvmEuy/Acd63H8Bx31gzPcWfN8Bx31pk2PCdarkh9Cb5s2duyfv36Y0DPOvts6a2eKVx2iPQzPCdyorvVMsCNu3fLzupdsmLFCrW0cL70H1HaYbLX/dt3y8HqWumteov0GtA2fF5v+rlEz6/WrOZoiV5ZUC9T3KT+W/LoM6KXGT7h/SfJ9Mv8rSTo7o60cySG59hxNNXC8ByTUPf4ecaFJrq3iA5O5r6wzOs2Hxua6DlJ9H+RuU6+/cc3pWdtrZzdV7wPqKtKRnQ6MaweurPwkWflsllT5OTz2oaRZFpo8nrlPvnSH9+SU487Ys0AACAASURBVEf1l3+bPU4u//lrUqImwb33wy+pnjuPSEnZrdJ/4McD/XZs33SLHNg/T032eqaa7PWnx+yrJyJds+J079/HT3lDvVm2fZOwevkp3of6cVPUhKaqh0QmbLpnaC81gdvi9yZwa2mpkd8/8meZMuUEmTL1dPVterbMVoFJbl6RJNI7Pjo00V6tzZWSn7VdnnvuOamu7jjZWmee8UKTM886S/r0HeD0wSvd25vQxF0LEZq4syY0cWdNaOLOOpNDE90Tr1gNiXnhhRdUb9a2RRD0NnXqVBkxslxN/Jr6eUyiWzJIaKL366kejHJaDsmiJYulas+uY26KhgPquX7rLtGr6wwYeXR4uH4u6dtvoBTo3nHvdX89sG231Fcf8Hqm6C0rO1tKJ5Sr58oecvBgkzT2zHF30zk4EqGJA2R1CEITN87pfpSMC030UsN6EthemzapsTMNUjd+vJqjpNybt0Rv+mc6/IgMv9HByq2PL5ceazZITlOj5E6fogKVivbVcnTZJ9/e7u07vLFWJh/YKRfddJnk5reNb8u00OSdHTVy/W+WyMQhveXGs8bIjY8ulRPVfC/fmrVUdu+4WwYMvk4GD/mS7/t6T9XPZffOe9Q3AgNkpFquOCenNO6+G9d+XM2t8bYKVe5V4cpMVeaIrHxbDxPpIROmLvd9vDAUjJ7Abf/+/fLIb3+t5i+ZLpOnnOgNySlVk6wm+pBzTGiiAqm927+mhlRdIM88M8/rCu49pKiJd/XKOi3NbRPTRraeWb3UnCpH55XR/z5lyhQZVX5CwucUhjZJ5BwJTRJRS2wfQpPE3BLZi9AkEbXE9iE0Scwtkb0yOTTRHnlqSMyR1kaZ+7e/qSFIrTJs2DA59dQZcrBJDd1wMyqnvVmChiZ6Rz1UTU3PoZ5TnpG6uroOTawDkJ2rNnr/NuS9AEQ/l5SPHqMmtlWBkZpQNmf+S3Lw7h/LfhWadHimUWFJ6ZmninznO1J7RM1r42MVwkTur+O1D6GJG3lCEzfO6X6UjAtNIuArXl4qddV1ctpHz/TVBv+Yu0gOqLGTF3782DlQ9MSvJcV5svB3z8noaRVSflLnK5H4OlgaF1q/u07OvXO+jB5UJF84p0K+/NhbctFJQ+XWsyvl3Xe/KqWll8ikiXf6uoK9+xbIW29d65U9ccq9MmjQ7E73W7/+/2Tjpntl5IjrZcyYf1fjYetk/vypanLSXnL2WW/7Ol7YCumeH/oB4Z133pHBgweLXg5QfzOUm2t3wqnXF31Yevc+WQ7WD5XXXlviMfXpM10FWP3UNy8b1H+V3r/pvxcXT1SBytGhOWVlZXLaaad53WDZEEAAAQQQQCA9BXRYsmPHDvXc9ZZccMEFaliz/0nk0+WK9u3b5/WMjd12rN0qDXUNUjJ6iIydOM57XupwfWoi2aqv/qfUP/7UMfuWPf2Y5E1UiwnwHJMuzcx5IBBKAUKT95rNFLLoeVI2vLlWzv30nA4NnWk9TfbWN8lHfvp36a8GyV4xfZjoJYg/MWOkXDNtl2zecL2ac+NUGRE170hnd31r636pXHOlNDdtk5LSz6vldP9V9hw4Ojt67H71ta959ecXTpbyikdVD4jdsvbdc7xlcCsmts2rkmmbnt9k25ZN3gRuAwYMkFmzZkltg5oFPYmJ6mJ7mmgzPfypavt3ZECfSbKhslnNb3JArWA0rAOnnphWDw2K3oqKirwJ5NQcyBn37YyNe4meJjYU/dVBTxN/TjZK0dPEhqK/Ouhp4s/JRqlM72kSMSpQ37kcaW2RIz1y1HBax11M3juJRHqaRM6/SA1f3rKpUpYsafuCJ7LV7a6Wml3VMnj4ELny05/wephE9xrRQ5SO7K+W+ms+K+ohp32/I9dfL/2u/bgcKupt4zZKuzroaeKmSehp4sY53Y9CaPJeC3UVmugJYZ+593Gv18rgUR2X28200KRRdV0854cvi15Odc6kIfLE29vkK7PGyocnNMmG1RepuTZGyQnjnzbe19s2flmtmPOcFBWfIWPGPiC9i3K6DE30h/bVy09Ww0daZeykBeqDfo2sX/UhdbyR6nh/NR4vrAX0BG4rViyXcWoY2WHJVsvGJbccXrzQJGKjV3opVpPEzp8/X6qqqoxks847T4VYxd7kr2zHChCauLsrCE3cWROauLMmNHFn3V1CE72CXqFaNrzu0PF7404mNNFPQEV5PVRvmTdV9nE0/NCTu+7esE3Om32elL9vavznEtXbpH7REsm6+ea2OU4++EHp+YUbJe+E8oxd8Y/QxM1rCKGJG+d0P0q3C0300sJbV246ZthOV6GJ/llV5c5jepnoxs200ERf01k/eNmbFHdGeX/RE8N+79IT5YxR+bJ6xWneXBjjpizq8r7eu+tB2bXjh2poTR8pH/uYFBUON4YmukLd00T3OCkbeacKS0aonipXSH7BBFXHH9L99yjh89PfjvQuzFFLV7dIQ1OwlXLiHbSr0ESX12FYVo8WeWbuXLWaUec9f6ZPny5Dh41Qk9G6nUAuYcjjsCOhiTt0QhN31oQm7qwJTdxZd5fQRIvq4OH49DFpa89kQhO9f+S5SA/T0cN1ItvQwn5ScDhPBk6okD5DBx1z8+g52yqfXSAlVZul8IVnJP/++6QxSy0skBO+YUp+fzMITfxKJVeO0CQ5v0zZO+NCEz2MZvlLS6VZ9Q7RPUSK+vaS6ReeJsP0csJq0wHI6tfekctu/aT3d1N5XcdTP/y9zLx61jG9TPT+mRiafOgnf5dqNcv4yP6FsmnfQXnomlOlYnAv1RNkhlrNpl7GTn5NBSLFcX8H6utel83rr/N+VjbyB9K772zvg7qpp4kuv2fX/d5ks/0GXCm9+82RTeuuUZOSniwjxzyUKb9vca9DT+DW2Jx8YKIrN4UmXhn1/FBXs19eeunFuOczatQomTZdzYGiJpB7b97YjPZP9OIITRKVC74foUlws0T3IDRJVC74foQmwc0S3aM7hSaJGtnaL9nQpO1Zpqda/a/B+4Ln8OHDop9Lhvcrlbl3/0EmXfB+GXdOxwnrvef5hctlyWPPyYXXzZER6pn/YM9cORQz7NjWNaZLPYQmblqC0MSNc7ofJeNCE9fgmRiaXPnAQtlSfVAKVBfPBrXu7TM3zZTe+TlquMxF0tS4QUaPe0Ly8sccQ31YTd5aufZjqsxmtcrOZ9QqO1/2yvgNTRrq35KN6z6hepmMlpKhX5UtlTdIr+KZMnz0va6bNbTH8xOa6IvT86msW7NKDQ1a0eFa+/btK+erJY+TnVsltIABTpzQJABWkkUJTZIEDLA7oUkArCSLEpokCRhgd0KTAFhJFrURmuhTKMjtKbt37ZB31WT5+rlk7dK18tLP/iQlY0fKmf98+TFn+eLdv5O9m3bIBz59kYw5ZYLUH8chSkkS+t6d0MQ3VVIFCU2S4suYnQlNkmzKTAxNrnt4iazcWePJFOVmy/O3tK1AtHn9Z6W+bqGMGP1zb66S2G3bpq9Kzf65arLYGWqy2Afbf+w3NNE7rF5xuhxWE5eWlt0mO7fdoXqqnO8N12HzJ+A3NOnZo4f0yu8pCxe+Jlu3bm2v/MI5c6SH6s6a7Nwq/s423KUITdy1H6GJO2tCE3fWhCburAlN3FnbCk28Z1A1v4kcOayGCvdQw7cPyZP/8RPvQj76nZslO/foqn6712+Vl3/ye8krLpSLbr/B3cUe5yMRmrhpAEITN87pfhRCkyRbKBNDk1vUMsOLN7WNIx09sEh+8+kZ3p+3b/66HKj+iwwd/i3p0/+SDnL7dj+kVmj5vvRUSwSXV/zem8A1sgUJTbZuvEVqD8xT9X9ULQH9uPRV/z9k+P8k2UrdZ3e/oYkWyVHDpgrUM4de9riuTi3PrZYWHlw6VA6p1XLYzAKEJmYjWyUITWxJmushNDEb2SpBaGJL0lwPoYnZyFYJm6GJnsA+X/V6jvQaefnHv1cTwm6VM1RvkrIpFe2nvOh3c2XTkndl/KwZMmXOB2xdStrXQ2jipokITdw4p/tRCE2SbKFMDE1ue3KFvLRmlydz+ugBcudlU70/79pxl+zd9YAMKr1ZBpZ8rl3uYN0S2bT+Wu/vZSO/p3qHdFyWOUhosm/Pb6Vq2/9KgVp6uOHgCuk/8ONSUnZrkq3UfXYPEppoFf0w0lB/QDZt3CjjJ0xUy/gx8avfu4XQxK9U8uUITZI39FsDoYlfqeTLEZokb+i3BkITv1LJl7MZmsSezcrnF8qKua/KCWdMlemXz/J+fKimXp76r595f77w69dJr4F9k7+IkNRAaOKmoQhN3Din+1EITZJsoUwMTf732VXy1LLtnswlU8vk32aP8/5cved3asjMt9VErVdJ6bD/8P7t8OEGtcqNnsekUvoPusabiyR2CxKaNB5ao5Y2vtSbaLZVDdMZMPh6NTfKLUm2UvfZPWhoomX0/Cb5ahjWgfpmaT18POfcD1c7EZq4ay9CE3fWhCburAlN3FkTmrizTmVosm/zTpl312+laEAfmXPbZ72LigQpw04cK6df+xF3F5oGRyI0cdMIhCZunNP9KIQmSbZQJoYmP3p5nTyyeLMn8/mZo+Wa00Z5f6498IJs3fhFKe7zQRk26h7v37ZvvlUN2XlKrXLzPrXKza/iagYJTXQFa989V1qaq7y6BqnAZKAKTtj8CSQSmujlCXPUTPVNllbw8Xem4S9FaOKuDQlN3FkTmrizJjRxZ01o4s46laGJvoqnb79PGg7Uyex//ZS39PDf7nhA6vcekJnXXyqlE8rdXWgaHInQxE0jEJq4cU73oxCaJNlCmRia/PK1jXL/3zd4Mt+YM1EumFTq/bnh4DLZuPafJF8NnSmveFT27fmNGkrzHenZM19GVTymVtQZbSU0iQQxujI9NEcP0WHzJ5BIaOKvZkrFChCauLsnCE3cWROauLMmNHFnTWjizjrVocniR5+VjYtWyIkfOUuK+hfLaw89LX2GDJLZX/2Uu4tMkyMRmrhpCEITN87pfhRCkyRbKBNDkz8s3So/nLfGk/nJVdNl2vC28aHNzTtl3buzJDtnsAxTK9psXPdJ79+Hjvhf6dOv8y6RQXuabN5wvZol/TWv7ty8cjVPyvclv2B8ki3VPXYnNHHXzoQm7qwJTdxZE5q4syY0cWdNaOLOOtWhyZY3V8nCh/8qJeNGSg+1EuDOVRvlpEvOkYozp7u7yDQ5EqGJm4YgNHHjnO5HITRJsoUyMTS568W18tgbWzyZe6+eLlOHtYUmra0HZM2K93t/zs4eKC0te3xN1BokNKk98KIaAnRzh1bpqeY3GTe5LURh61qA0MTdHUJo4s6a0MSdNaGJO2tCE3fWhCburFMdmjQdPLr0sL6qrKwsuehb/yLZebnuLjJNjkRo4qYhCE3cOKf7UQhNkmyhTAtNHny1Uh78R2UHlYeuOVVG9T0gG9ZcLofV5KyRLSurj4yd/KpRMEhoogMTHZzEbuVj/0hvE6O0CKGJDyRLRQhNLEH6qIbQxAeSpSKEJpYgfVRDaOIDyVIRQhNLkD6qSXVo8tYTL8naV5Z2OJPzvvJJ6Vs22MfZZVYRQhM37Ulo4sY53Y9CaJJkC2VSaFLX2CKX3vcP0f8fvZ1ZMUi+ctoC2VP102O0xkx4VnJyy7pUDBKaVG3/ruzb/XBCx0myKTNid0ITd81IaOLOmtDEnTWhiTtrQhN31oQm7qxTGZo0NzTKE7f9+JiLKZs8Rs74zMXuLjJNjkRo4qYhCE3cOKf7UQhNkmyhTAtNZt/zyjEiFYN7yffOeylumKFX0dGr6XS1BQlNmpu2ybqV53eoLnq1niSbK+N3JzRx18SEJu6sCU3cWROauLMmNHFnTWjizvp4hCaDThguZ9/4MXcXmSZHIjRx0xCEJm6c0/0ohCZJtlAmhSaa4rKf/0N2HDjUQeW6M8rlY5Mr4841MloNm7HZ00Qf+FDDKtE9TvRQoMJep8jAkn9RY1aLk2yp7rE7oYm7diY0cWdNaOLOmtDEnTWhiTtrQhN31qkMTfRV/O1b90v9vpoOFzTx/NNl0vlnuLvINDkSoYmbhiA0ceOc7kchNEmyhTItNFm7q07+/Yll7cGJXjnnux89UXrlZcv2LbfJgX1PemJ6ctbSoV+TPv0vMQoG6WlirIwCXQoQmri7QQhN3FkTmrizJjRxZ01o4s6a0MSddapDk93rtsjiR59pD050L5P3q6E5OQV57i4yTY5EaOKmIQhN3Din+1EITZJsoUwLTSIcS7dUS3FejuihOdFbq+r9oYfQ6N4lfnt/EJokeZMF2J3QJABWkkUJTZIEDLA7oUkArCSLEpokCRhgd0KTAFhJFiU0SRIwwO6pDk0ip6LDEx2UdMcJYCMGhCYBbswkihKaJIGXQbsSmiTZmJkamiTJ0mF3QhObml3XRWjizprQxJ01oYk7a0ITd9aEJu6sCU3cWbsKTdxdUfoeidDETdsQmrhxTvejEJok2UKEJmZAQhOzka0ShCa2JM31EJqYjWyVIDSxJWmuh9DEbGSrBKGJLUlzPYQmZiNbJQhNbEma6yE0MRvZKEFoYkMx/HUQmiTZhoQmZkBCE7ORrRKEJrYkzfUQmpiNbJUgNLElaa6H0MRsZKsEoYktSXM9hCZmI1slCE1sSZrrITQxG9koQWhiQzH8dRCaJNmGhCZmQEITs5GtEoQmtiTN9RCamI1slSA0sSVprofQxGxkqwShiS1Jcz2EJmYjWyUITWxJmushNDEb2ShBaGJDMfx1EJok2YaEJmZAQhOzka0ShCa2JM31EJqYjWyVIDSxJWmuh9DEbGSrBKGJLUlzPYQmZiNbJQhNbEma6yE0MRvZKEFoYkMx/HWENjSprn5dmpp2SUnJRzq0QmtrveysekqqqxdKXt5gGTjgXOnXb0Z7mdif9y6eckwd0RXq4+zZO6/DMQoLR0vZ0Ku8fyM0Mf8SEJqYjWyVIDSxJWmuh9DEbGSrBKGJLUlzPYQmZiNbJQhNbEma6yE0MRvZKkFoYkvSXA+hidnIRglCExuK4a8jdKHJwYOVsmfPi+q/edJXhSGjy2/p0Arbtj/qBSb63xsbd8nadd+WqSfe7wUoelu16jbxQo+yq0TXtaHybhWAXC0DB34wbmvq+mprlqtg5aL2n2dnF0lx8WRCE5/3P6GJTygLxQhNLCD6rILQxCeUhWKEJhYQfVZBaOITykIxQhMLiD6rIDTxCWWhGKGJBUSfVRCa+IRKshihSZKAGbJ76EITHYTosKN6/0KvCWJDk7eXXS8jhn+2vXfJ5s0PSktrXXu5RYsvlsmT7lLBSbm3vw5FGhurjqkn0r6mn9PTxPybQGhiNrJVgtDElqS5HkITs5GtEoQmtiTN9RCamI1slSA0sSVprofQxGxkqwShiS1Jcz2EJmYjGyUITWwohr+O0IUmXYUZOlDRoUl0z5JIr5Tx4+/wdtUhSk3tcilVPUf0sB3d00T/OdJzJLZJIz1XdBndWyW23I59DeG/C1J8BTo0KS7Mkb01jSk+EtXr0KQwP0uqa5vASLFAQW6WaO/99VinmFqK8rIlK6uH1BxsTvWhun39vQqyPYO6hpZub5FqgN7qfbG19YjUN2Kdauu+RbnS2NwqDU2tqT5Ut6+/X3GuHDzU6nmzpVZgQO88qVXvi00th1N7oG5e+5D+Bd1cgMvXAhkVmugeKCve+aKcPP136gG7yGthPSfJ5i0PeEGK3vScJivVEJ1s9XNdPt4Qn+hbQ4cuOmTRW9N7vVx0ABPpqXLkCDeSH4EePUSw8iOVfBmskzf0VYO6p9X/uK99YSVZCOskAQPsrm9qvfHeFgAtsaLeazXWieEF3AvrgGBJFOcZJAm8gLtiHRAsweLamQ2BjApNdCDyxtJ/6hCa6NBjZ9VfvCE5etOhip7DRPcyicxpogOQ2GE+nd0aeo4UvVWM+br3/wzPMf8SMTzHbGSrBMNzbEma62F4jtnIVgmG59iSNNfD8Byzka0SDM+xJWmuh+E5ZiNbJRieY0vSXA/Dc8xGNkowPMeGYvjryKjQRDeHnrMkenhOlVpJR/cU0SFHpCfKqac82d5ysT1RTE2q69MTzUaG+xCamMRECE3MRrZKEJrYkjTXQ2hiNrJVgtDElqS5HkITs5GtEoQmtiTN9RCamI1slSA0sSVprofQxGxkowShiQ3F8NeRcaGJnqMkL6/EWxJY9zxZu/bbamWcc73VcSI9UXSvkshqObq8/vdIzxEdouhJZiM9T/TfI0sWR+or7j2FJYcD3PuEJgGwkixKaJIkYIDdCU0CYCVZlNAkScAAuxOaBMBKsiihSZKAAXYnNAmAlWRRQpMkAQPsTmgSACuJooQmSeBl0K6hC030cJtt2x+R1pZ6tSpOvTc5a/RqOZFlhnXAocvowEQvLxyZ46S2doVs2vyAN6dJZCtXIUpkSWI98WvVzr/IdDUvit70cBwdnOif6/r0UJ6Kiq+310dPE/NvA6GJ2chWCUITW5LmeghNzEa2ShCa2JI010NoYjayVYLQxJakuR5CE7ORrRKEJrYkzfUQmpiNbJQgNLGhGP46Qhea+CXX4Ul2dlF7uBG7nw5V9BYJU7qqV5fV9engJLY8oYm5RQhNzEa2ShCa2JI010NoYjayVYLQxJakuR5CE7ORrRKEJrYkzfUQmpiNbJUgNLElaa6H0MRsZKMEoYkNxfDXkbGhiaumITQxSxOamI1slSA0sSVprofQxGxkqwShiS1Jcz2EJmYjWyUITWxJmushNDEb2SpBaGJL0lwPoYnZyEYJQhMbiuGvg9AkyTYkNDEDEpqYjWyVIDSxJWmuh9DEbGSrBKGJLUlzPYQmZiNbJQhNbEma6yE0MRvZKkFoYkvSXA+hidnIRglCExuK4a+D0CTJNiQ0MQMSmpiNbJUgNLElaa6H0MRsZKsEoYktSXM9hCZmI1slCE1sSZrrITQxG9kqQWhiS9JcD6GJ2chGCUITG4rhr4PQJMk2JDQxAxKamI1slSA0sSVprofQxGxkqwShiS1Jcz2EJmYjWyUITWxJmushNDEb2SpBaGJL0lwPoYnZyEYJQhMbiuGvg9AkyTYkNDEDEpqYjWyVIDSxJWmuh9DEbGSrBKGJLUlzPYQmZiNbJQhNbEma6yE0MRvZKkFoYkvSXA+hidnIRglCExuK4a+D0CTJNiQ0MQMSmpiNbJXIy82Sovws2VfTZKtK6ulEgNDE3a1BaOLOmtDEnTWhiTtrQhN31oQm7qwJTdxYE5q4cU73oxCapHsLcX4IIIAAAggggAACCCCAAAIIIHBcBAhNjgs7B0UAAQQQQAABBBBAAAEEEEAAgXQXIDRJ9xbi/BBAAAEEEEAAAQQQQAABBBBA4LgIEJocF3YOigACCCCAAAIIIIAAAggggAAC6S5AaJLuLZTg+f3z134gC15f1r73+DEj5E8P/HeH2i777Ddk1brN3r/F/tzP/nq/n/36L/LIE/Nk/p/v9nWmXR3zm//3S/nj0/OPqeedl3/VZd1d1al3POvSW2TPvgNxr9PXSRsK+bHKBGvTdca2X7x7Lllv0zno+tPNOnLNk86+tv3yb/rMpfLPn7ooqfta7xy0ziD+3cU62esMYtpZ2WTPwc/+Nl+v31ldKR/7/O1xLyfZ1+tIpfq95Ue/+LN897bPy4fPO90Gs1eHH6t0eg1JxtrU5tHvjbqsqe2CNkLYrCPXl4iL6TnE1BZBbWPLdyfrriwTfY4M4t9drP1cZ6qfr4O0C2URSLUAoUmqhY9T/fqFLDrI0H8/+4yT5PZ//XT7g+PuvfvbgxT9hj9oQF/52Xe/7P3ctP/Tz78mX7vjPq/swP59fIUm+gW4q2PqN7sVqyqPCXe6IjTVGXvd+u8TKka2X6eN5jFZ+TnHrtoqXaxN16nvoehgLvae6q7WkQ89foKSiJHpnkmkzqD+pvY2naNp/1Tc14m4mM7TdJ1BXeOVT/YcTPunwjr2OvTrd9Xu6i5fW/1aRsJ4HXbbDk1MVqZzNO2fLtam84h9fY697u56XyfiYrpnTG2Bddtzp5970GSZyHNkUH/Ta4DpfjDtb7rGeOdrOmYi97XpPF08XwdtG8ojkEoBQpNU6qZR3bFvJPrF7qs3XNX+DZ5+kf7+vY92Gn509kYUpKeJ6ZiJvNl1VWfkjSf627N4/2a7mTLVOt6HpK5CrkTaM2hbhMFaP8yUDOrXHlj6uUbT70oidfo5bldlMtXadF+b2iJZ13j7h8E69rx1r6fH7vumTBpX3imJH8vo9xRdp+3QxHZ7u3hvTMQ6sk9n79G6La6+5Nz2Hm9B3ssTvefDcF8n4uLnvtZmLowjbZOp1qb72sVzRxhfQxK5r7u6zuP1fJ3oaw/7IWBDgNDEhmII6tAp8+Tx5d4Ht8i3sdEPuPH+LfqyoveP/ne/DwF+jhnbrdLUg8VUZ+XmnV5vmOjQxHSdNpoyE63juXR2T0TKpqJXT+x5hMFaf/DT93JkiJi+hq4+XJrua/2hNGid3eW+tuGS7D3VXayjr9NPLxM/93Xs+4mL0CTZ9nbx3hjU2s97dOT99vIPn+U9F5hez7vLfR3Uxc99bfqgb8M2jO+NQa2D3NeRsqbnSBv2YXgNScY6YhR9nfFCExfP1zbaizoQSFSA0CRRuRDtF3mxjIQHQd7k9WXG7u/njSuWJ+gx9f76BVpvsXOxROr2U6d+6I48FOr9Uv2inqnWse3Z1T0RGeOaijlNYj886Dlw0vm+1uer536I/ra8K7vO7tHo+zaROpN9uQrDfW3DJdnrTNY53uutn9e5rn4vXLxe++llYrqOBa8vP2Z+rFSHJsm29/F4b/Rj7afNI+0RHejantMkbK/XOpAO6mK6r6N7Xvn9kinZ15Gw3NdBrf3c17F2pudIrP0JxHutc/187e9MKYVA6gQITVJnmxY1RybTM/Uq6SxMVx54cgAACdtJREFUiLe/6Y0rduK6mTNOlJs+81Hvw6PpPKLrjk6yE62zs0n0UvFwmMnWkbludPuY7olIG/oZn5zoL0lYrCMf5GN7lkQ+DJaPKO0woaaf3xVTnTYnzeysvYN+UNATenbWuybeB4lEft9NLvGsTfd1kOtM9F6OfT2NtQpyDqbfTVvW0R8E9e+5d5+8Nx+W/nMi7fejXzzeYfLyaJcg8wH5bYewvIYkYh17X8ebrD02kDKFuX5d45ULk3VXLonc165Dk0y29nNfx95/qRyS3Z2s472Hu3y+Tub1h30RsCVAaGJLMg3rMfUGMM1p4uchKsg3J37H/UYo/bzZBa3TTzfyRJqyO1hrFz/3RJD26w7W8b4tN32DbrqvE6kT685XYEn29zcR29h9kj0HP7+btl+vg/bcM93XsSam35NE3buDdcSmq6AsyJcY3cE6SEAZ7eH3vg7y+5eId5ju60Stu7qv45n5eY7EuvN5qPy8r0T8UvV8nUj7sA8CqRAgNEmFahrUaeqS6GembX0ZnQ2NCfrGpcubjhlvpm7TSjemOqObIvLmaZqsMGjzdRdr03XGtp+pfFBnXd5Up+l+MO2fivtan9PKtZvaJ1nWDxYv/+OtLlecMl1HInUG9TZZmc7RtH+6WJvO03SdQV3jlU/2HEz7p8I68pqu/z/6G+CuPIJapiI0MVmZztG0f7pYm85D2+qebZG28/O6FPReN1mlo3UiLqbrMLVFUNdMeQ1JxNpkmchzZFD/7nJfm67TxfN10LahPAKpFCA0SaXucaq7sy5z+nSi51bQL4ir1m32zjJ6/gk/+0cviRa5zOi5Qzq79M6OqctH/0z/PfqBrivKruqMdJ+M7G97WI4fq9hrC6O1n+uMbT/bc5r4OYd0tNbnpB+qF7y+zLsN/U5M19V9nWidfl+Suot1stfp17Orcsmeg5/9U/F6bRoKlMh7QOw+tkMTP1bp+BqSiLWfNte+kc3v65Lfez6s1vr6EnHp6vXaT1v4dY1XrjtZmywTfY70699drP1cZ6qfr/22CeUQcCVAaOJKmuMggAACCCCAAAIIIIAAAggggECoBAhNQtVcnCwCCCCAAAIIIIAAAggggAACCLgSIDRxJc1xEEAAAQQQQAABBBBAAAEEEEAgVAKEJqFqLk4WAQQQQAABBBBAAAEEEEAAAQRcCRCauJLmOAgggAACCCCAAAIIIIAAAgggECoBQpNQNRcniwACCCCAAAIIIIAAAggggAACrgQITVxJcxwEEEAAAQQQQAABBBBAAAEEEAiVAKFJqJqLk0UAAQQQQAABBBBAAAEEEEAAAVcChCaupDkOAggggAACCCCAAAIIIIAAAgiESoDQJFTNxckigAACCCCAAAIIIIAAAggggIArAUITV9IcBwEEEEAAAQQQQAABBBBAAAEEQiVAaBKq5uJkEUAAAQQQQAABBBBAAAEEEEDAlQChiStpjoMAAggggAACCCCAAAIIIIAAAqESIDQJVXNxsggggAACCCCAAAIIIIAAAggg4EqA0MSVNMdBAAEEEEAAAQQQQAABBBBAAIFQCRCahKq5OFkEEEAAAQQQQAABBBBAAAEEEHAlQGjiSprjIIAAAggggAACCCCAAAIIIIBAqAQITULVXJwsAggggAACCCCAAAIIIIAAAgi4EiA0cSXNcRBAAAEEEEAAAQQQQAABBBBAIFQChCahai5OFgEEEEAAAQQQQAABBBBAAAEEXAkQmriS5jgIIIAAAggggAACCCCAAAIIIBAqAUKTUDUXJ4sAAggggAACCCCAAAIIIIAAAq4ECE1cSXMcBBBAAAEEEEAAAQQQQAABBBAIlQChSaiai5NFAAEEEEAAAQQQQAABBBBAAAFXAoQmrqQ5DgIIIIAAAggggAACCCCAAAIIhEqA0CRUzcXJIoAAAggggAACCCCAAAIIIICAKwFCE1fSHAcBBBBAAAEEEEAAAQQQQAABBEIlQGgSqubiZBFAAAEEEEAAAQQQQAABBBBAwJUAoYkraY6DAAIIIIAAAggggAACCCCAAAKhEiA0CVVzcbIIIIAAAggggAACCCCAAAIIIOBKgNDElTTHQQABBBBAAAEEEEAAAQQQQACBUAkQmoSquThZBBBAAAEEEEAAAQQQQAABBBBwJUBo4kqa4yCAAAIIIIAAAggggAACCCCAQKgECE1C1VycLAIIIIAAAggggAACCCCAAAIIuBIgNHElzXEQQAABBBBAAAEEEEAAAQQQQCBUAoQmoWouThYBBBBAAAEEEEAAAQQQQAABBFwJEJq4kuY4CCCAAAIIIIAAAggggAACCCAQKgFCk1A1FyeLAAIIIIAAAggggAACCCCAAAKuBAhNXElzHAQQQAABBBBAAAEEEEAAAQQQCJUAoUmomouTRQABBBBAAAEEEEAAAQQQQAABVwKEJq6kOQ4CCCCAAAIIIIAAAggggAACCIRKgNAkVM3FySKAAAIIIIAAAggggAACCCCAgCsBQhNX0hwHAQQQQAABBBBAAAEEEEAAAQRCJUBoEqrm4mQRQAABBBBAAAEEEEAAAQQQQMCVAKGJK2mOgwACCCCAAAIIIIAAAggggAACoRIgNAlVc3GyCCCAAAIIIIAAAggggAACCCDgSoDQxJU0x0EAAQQQQAABBBBAAAEEEEAAgVAJEJqEqrk4WQQQQAABBBBAAAEEEEAAAQQQcCVAaOJKmuMggAACCCCAAAIIIIAAAggggECoBAhNQtVcnCwCCCCAAAIIIIAAAggggAACCLgSIDRxJc1xEEAAAQQQQAABBBBAAAEEEEAgVAKEJqFqLk4WAQQQQAABBBBAAAEEEEAAAQRcCRCauJLmOAgggAACCCCAAAIIIIAAAgggECoBQpNQNRcniwACCCCAAAIIIIAAAggggAACrgQITVxJcxwEEEAAAQQQQAABBBBAAAEEEAiVAKFJqJqLk0UAAQQQQAABBBBAAAEEEEAAAVcChCaupDkOAggggAACCCCAAAIIIIAAAgiESoDQJFTNxckigAACCCCAAAIIIIAAAggggIArAUITV9IcBwEEEEAAAQQQQAABBBBAAAEEQiVAaBKq5uJkEUAAAQQQQAABBBBAAAEEEEDAlQChiStpjoMAAggggAACCCCAAAIIIIAAAqESIDQJVXNxsggggAACCCCAAAIIIIAAAggg4EqA0MSVNMdBAAEEEEAAAQQQQAABBBBAAIFQCRCahKq5OFkEEEAAAQQQQAABBBBAAAEEEHAlQGjiSprjIIAAAggggAACCCCAAAIIIIBAqAQITULVXJwsAggggAACCCCAAAIIIIAAAgi4EiA0cSXNcRBAAAEEEEAAAQQQQAABBBBAIFQC/w8KtaGYGDmcjQAAAABJRU5ErkJggg==" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "env.render('advanced_figure', time_format=\"%Y-%m-%d\")" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### A Complete Example using `stable-baselines`" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [ - { - "data": { - "application/vnd.plotly.v1+json": { - "config": { - "plotlyServerURL": "https://plot.ly" - }, - "data": [ - { - "hovertext": [ - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10427.993279
margin: 1693.331400
free margin: 8734.661879
margin level: 6.158271", - "balance: 10458.293279 USD
equity: 9693.437185
margin: 2904.659027
free margin: 6788.778158
margin level: 3.337203", - "balance: 10059.737185 USD
equity: 10915.543626
margin: 4544.226100
free margin: 6371.317526
margin level: 2.402069", - "balance: 10253.053626 USD
equity: 10013.189048
margin: 3610.715700
free margin: 6402.473348
margin level: 2.773187", - "balance: 10013.189048 USD
equity: 9983.029048
margin: 97.720000
free margin: 9885.309048
margin level: 102.159528", - "balance: 9983.029048 USD
equity: 11390.181190
margin: 3811.719100
free margin: 7578.462090
margin level: 2.988201", - "balance: 10544.379048 USD
equity: 13683.987726
margin: 8466.999800
free margin: 5216.987926
margin level: 1.616155", - "balance: 13834.767726 USD
equity: 13842.496240
margin: 6438.115120
free margin: 7404.381119
margin level: 2.150085", - "balance: 13855.810394 USD
equity: 12183.961275
margin: 6448.627975
free margin: 5735.333301
margin level: 1.889388", - "balance: 12570.988335 USD
equity: 12439.138794
margin: 6302.140320
free margin: 6136.998474
margin level: 1.973796", - "balance: 12263.185323 USD
equity: 12462.221086
margin: 5418.630920
free margin: 7043.590166
margin level: 2.299884", - "balance: 12705.985323 USD
equity: 12575.547594
margin: 907.605920
free margin: 11667.941674
margin level: 13.855736", - "balance: 12854.331292 USD
equity: 12298.750082
margin: 1227.605920
free margin: 11071.144161
margin level: 10.018484", - "balance: 12472.515434 USD
equity: 12078.264306
margin: 2118.885120
free margin: 9959.379186
margin level: 5.700292", - "balance: 12412.816070 USD
equity: 12401.429005
margin: 2694.568520
free margin: 9706.860484
margin level: 4.602380", - "balance: 12303.776070 USD
equity: 12158.836935
margin: 3458.762920
free margin: 8700.074015
margin level: 3.515372", - "balance: 12303.776070 USD
equity: 11594.928561
margin: 5548.762920
free margin: 6046.165641
margin level: 2.089642", - "balance: 11750.942025 USD
equity: 12921.491196
margin: 3162.065620
free margin: 9759.425576
margin level: 4.086408", - "balance: 12611.822025 USD
equity: 12962.031448
margin: 3213.580320
free margin: 9748.451128
margin level: 4.033517", - "balance: 12865.371893 USD
equity: 12802.221682
margin: 5181.405220
free margin: 7620.816462
margin level: 2.470801", - "balance: 12771.489326 USD
equity: 15731.934346
margin: 4700.908120
free margin: 11031.026226
margin level: 3.346573", - "balance: 15663.375579 USD
equity: 14552.771889
margin: 2585.983720
free margin: 11966.788168
margin level: 5.627557", - "balance: 15812.062186 USD
equity: 14182.930290
margin: 2131.566800
free margin: 12051.363490
margin level: 6.653758", - "balance: 14182.930290 USD
equity: 14082.042901
margin: 790.913400
free margin: 13291.129501
margin level: 17.804785", - "balance: 14182.930290 USD
equity: 15119.085247
margin: 4219.979400
free margin: 10899.105847
margin level: 3.582739", - "balance: 15047.805247 USD
equity: 15743.138153
margin: 3319.066000
free margin: 12424.072153
margin level: 4.743243", - "balance: 15743.138153 USD
equity: 14965.829579
margin: 6132.479162
free margin: 8833.350418
margin level: 2.440421", - "balance: 15523.898153 USD
equity: 13436.435984
margin: 4879.889562
free margin: 8556.546422
margin level: 2.753430", - "balance: 15401.683778 USD
equity: 13824.741923
margin: 6819.349562
free margin: 7005.392362
margin level: 2.027282", - "balance: 15401.683778 USD
equity: 13449.394067
margin: 8841.740362
free margin: 4607.653706
margin level: 1.521125", - "balance: 15292.363906 USD
equity: 13281.798203
margin: 7701.740362
free margin: 5580.057842
margin level: 1.724519", - "balance: 13981.963906 USD
equity: 14140.088741
margin: 9712.288362
free margin: 4427.800379
margin level: 1.455897", - "balance: 15435.248099 USD
equity: 11744.587405
margin: 8416.071668
free margin: 3328.515736
margin level: 1.395495", - "balance: 14383.536910 USD
equity: 12079.238163
margin: 6412.671162
free margin: 5666.567001
margin level: 1.883652", - "balance: 14193.705638 USD
equity: 16341.160088
margin: 10391.466047
free margin: 5949.694040
margin level: 1.572556", - "balance: 15587.444966 USD
equity: 17336.720344
margin: 7112.775162
free margin: 10223.945182
margin level: 2.437406", - "balance: 15528.425727 USD
equity: 16574.016221
margin: 6062.775162
free margin: 10511.241060
margin level: 2.733734", - "balance: 14979.786496 USD
equity: 18271.453713
margin: 6644.557162
free margin: 11626.896551
margin level: 2.749838", - "balance: 15986.712361 USD
equity: 17694.145849
margin: 5143.695001
free margin: 12550.450848
margin level: 3.439968", - "balance: 15866.221917 USD
equity: 18706.238034
margin: 6160.446201
free margin: 12545.791833
margin level: 3.036507", - "balance: 16502.571917 USD
equity: 18930.683203
margin: 7893.830201
free margin: 11036.853002
margin level: 2.398162", - "balance: 17044.399307 USD
equity: 20183.268230
margin: 7942.592562
free margin: 12240.675668
margin level: 2.541144", - "balance: 16566.865642 USD
equity: 19571.433575
margin: 4847.817362
free margin: 14723.616214
margin level: 4.037164", - "balance: 16578.745642 USD
equity: 20642.718446
margin: 4716.897062
free margin: 15925.821384
margin level: 4.376334", - "balance: 16301.545642 USD
equity: 18899.112562
margin: 6115.079462
free margin: 12784.033100
margin level: 3.090575", - "balance: 17204.452518 USD
equity: 17746.701279
margin: 3735.079462
free margin: 14011.621818
margin level: 4.751358", - "balance: 17203.032518 USD
equity: 18935.596593
margin: 5676.595862
free margin: 13259.000732
margin level: 3.335731", - "balance: 17263.452518 USD
equity: 19040.181158
margin: 9265.998162
free margin: 9774.182997
margin level: 2.054844", - "balance: 17024.422965 USD
equity: 18667.449807
margin: 9085.998162
free margin: 9581.451646
margin level: 2.054529", - "balance: 17065.619203 USD
equity: 19682.078605
margin: 11651.465921
free margin: 8030.612684
margin level: 1.689236", - "balance: 13882.917772 USD
equity: 17342.087023
margin: 9816.175621
free margin: 7525.911401
margin level: 1.766685", - "balance: 13882.917772 USD
equity: 15176.113528
margin: 10606.175621
free margin: 4569.937906
margin level: 1.430875", - "balance: 14979.077772 USD
equity: 15335.963850
margin: 11199.983721
free margin: 4135.980129
margin level: 1.369284", - "balance: 12383.026762 USD
equity: 16001.556846
margin: 10192.264044
free margin: 5809.292803
margin level: 1.569971", - "balance: 12748.231397 USD
equity: 17176.631690
margin: 9128.378562
free margin: 8048.253128
margin level: 1.881674", - "balance: 12801.788742 USD
equity: 19347.529343
margin: 11818.378562
free margin: 7529.150782
margin level: 1.637071", - "balance: 14163.509854 USD
equity: 20190.888069
margin: 10187.165077
free margin: 10003.722991
margin level: 1.981993", - "balance: 20190.888069 USD
equity: 21081.173214
margin: 1865.619800
free margin: 19215.553414
margin level: 11.299823", - "balance: 21081.173214 USD
equity: 20750.310576
margin: 3408.495753
free margin: 17341.814823
margin level: 6.087821", - "balance: 20991.893214 USD
equity: 19968.116005
margin: 5668.815753
free margin: 14299.300252
margin level: 3.522449", - "balance: 20687.269032 USD
equity: 19255.134699
margin: 7299.541953
free margin: 11955.592746
margin level: 2.637855", - "balance: 20569.699325 USD
equity: 18677.077585
margin: 5141.252153
free margin: 13535.825432
margin level: 3.632788", - "balance: 20035.209059 USD
equity: 19539.340249
margin: 5021.853038
free margin: 14517.487211
margin level: 3.890863", - "balance: 19328.442142 USD
equity: 20271.397338
margin: 7491.283038
free margin: 12780.114299
margin level: 2.705998", - "balance: 20233.507940 USD
equity: 22380.439524
margin: 6911.600153
free margin: 15468.839371
margin level: 3.238098", - "balance: 23115.735505 USD
equity: 23172.803697
margin: 5172.950553
free margin: 17999.853144
margin level: 4.479611", - "balance: 23340.360461 USD
equity: 24762.474289
margin: 4607.864953
free margin: 20154.609336
margin level: 5.373958", - "balance: 24122.820461 USD
equity: 24082.721613
margin: 4557.099753
free margin: 19525.621860
margin level: 5.284660", - "balance: 24082.721613 USD
equity: 23289.788576
margin: 2098.734400
free margin: 21191.054176
margin level: 11.097063", - "balance: 24095.028576 USD
equity: 23132.170912
margin: 4759.879704
free margin: 18372.291208
margin level: 4.859823", - "balance: 24083.540506 USD
equity: 23297.762478
margin: 7620.265269
free margin: 15677.497208
margin level: 3.057343", - "balance: 25016.172478 USD
equity: 24550.987129
margin: 8727.875543
free margin: 15823.111586
margin level: 2.812940", - "balance: 24115.812478 USD
equity: 22224.905397
margin: 8705.593643
free margin: 13519.311754
margin level: 2.552945", - "balance: 23149.837494 USD
equity: 22254.956757
margin: 9084.210343
free margin: 13170.746414
margin level: 2.449850", - "balance: 22232.615676 USD
equity: 22079.068030
margin: 7456.766000
free margin: 14622.302030
margin level: 2.960944", - "balance: 22552.768030 USD
equity: 21124.591071
margin: 5616.766000
free margin: 15507.825071
margin level: 3.760988", - "balance: 22164.191071 USD
equity: 19197.822980
margin: 8123.237763
free margin: 11074.585217
margin level: 2.363322", - "balance: 22092.277156 USD
equity: 19160.188472
margin: 10502.648755
free margin: 8657.539717
margin level: 1.824320" - ], - "legendgroup": "g1", - "line": { - "color": "rgba(31, 119, 180, 1)" - }, - "mode": "lines+markers", - "name": "EURUSD", - "opacity": 1, - "type": "scatter", - "x": [ - "2021-05-05T00:00:00+00:00", - "2021-05-06T00:00:00+00:00", - "2021-05-07T00:00:00+00:00", - "2021-05-10T00:00:00+00:00", - "2021-05-11T00:00:00+00:00", - "2021-05-12T00:00:00+00:00", - "2021-05-13T00:00:00+00:00", - "2021-05-14T00:00:00+00:00", - "2021-05-17T00:00:00+00:00", - "2021-05-18T00:00:00+00:00", - "2021-05-19T00:00:00+00:00", - "2021-05-20T00:00:00+00:00", - "2021-05-21T00:00:00+00:00", - "2021-05-24T00:00:00+00:00", - "2021-05-25T00:00:00+00:00", - "2021-05-26T00:00:00+00:00", - "2021-05-27T00:00:00+00:00", - "2021-05-28T00:00:00+00:00", - "2021-05-31T00:00:00+00:00", - "2021-06-01T00:00:00+00:00", - "2021-06-02T00:00:00+00:00", - "2021-06-03T00:00:00+00:00", - "2021-06-04T00:00:00+00:00", - "2021-06-07T00:00:00+00:00", - "2021-06-08T00:00:00+00:00", - "2021-06-09T00:00:00+00:00", - "2021-06-10T00:00:00+00:00", - "2021-06-11T00:00:00+00:00", - "2021-06-14T00:00:00+00:00", - "2021-06-15T00:00:00+00:00", - "2021-06-16T00:00:00+00:00", - "2021-06-17T00:00:00+00:00", - "2021-06-18T00:00:00+00:00", - "2021-06-21T00:00:00+00:00", - "2021-06-22T00:00:00+00:00", - "2021-06-23T00:00:00+00:00", - "2021-06-24T00:00:00+00:00", - "2021-06-25T00:00:00+00:00", - "2021-06-28T00:00:00+00:00", - "2021-06-29T00:00:00+00:00", - "2021-06-30T00:00:00+00:00", - "2021-07-01T00:00:00+00:00", - "2021-07-02T00:00:00+00:00", - "2021-07-05T00:00:00+00:00", - "2021-07-06T00:00:00+00:00", - "2021-07-07T00:00:00+00:00", - "2021-07-08T00:00:00+00:00", - "2021-07-09T00:00:00+00:00", - "2021-07-12T00:00:00+00:00", - "2021-07-13T00:00:00+00:00", - "2021-07-14T00:00:00+00:00", - "2021-07-15T00:00:00+00:00", - "2021-07-16T00:00:00+00:00", - "2021-07-19T00:00:00+00:00", - "2021-07-20T00:00:00+00:00", - "2021-07-21T00:00:00+00:00", - "2021-07-22T00:00:00+00:00", - "2021-07-23T00:00:00+00:00", - "2021-07-26T00:00:00+00:00", - "2021-07-27T00:00:00+00:00", - "2021-07-28T00:00:00+00:00", - "2021-07-29T00:00:00+00:00", - "2021-07-30T00:00:00+00:00", - "2021-08-02T00:00:00+00:00", - "2021-08-03T00:00:00+00:00", - "2021-08-04T00:00:00+00:00", - "2021-08-05T00:00:00+00:00", - "2021-08-06T00:00:00+00:00", - "2021-08-09T00:00:00+00:00", - "2021-08-10T00:00:00+00:00", - "2021-08-11T00:00:00+00:00", - "2021-08-12T00:00:00+00:00", - "2021-08-13T00:00:00+00:00", - "2021-08-16T00:00:00+00:00", - "2021-08-17T00:00:00+00:00", - "2021-08-18T00:00:00+00:00", - "2021-08-19T00:00:00+00:00", - "2021-08-20T00:00:00+00:00", - "2021-08-23T00:00:00+00:00", - "2021-08-24T00:00:00+00:00", - "2021-08-25T00:00:00+00:00", - "2021-08-26T00:00:00+00:00", - "2021-08-27T00:00:00+00:00", - "2021-08-30T00:00:00+00:00", - "2021-08-31T00:00:00+00:00", - "2021-09-01T00:00:00+00:00", - "2021-09-02T00:00:00+00:00", - "2021-09-03T00:00:00+00:00" - ], - "y": [ - 1.20036, - 1.20646, - 1.21618, - 1.21282, - 1.2147000000000001, - 1.20705, - 1.20791, - 1.21441, - 1.21511, - 1.2221899999999999, - 1.21744, - 1.22269, - 1.21806, - 1.2215, - 1.22497, - 1.21922, - 1.21934, - 1.21896, - 1.2225, - 1.22126, - 1.221, - 1.21265, - 1.21662, - 1.21893, - 1.21726, - 1.21787, - 1.21751, - 1.21063, - 1.212, - 1.21264, - 1.19943, - 1.19069, - 1.18597, - 1.19185, - 1.19413, - 1.19258, - 1.19315, - 1.1937, - 1.19242, - 1.1896, - 1.1856, - 1.18497, - 1.18646, - 1.18634, - 1.18231, - 1.17903, - 1.18449, - 1.18774, - 1.18606, - 1.17765, - 1.18358, - 1.18118, - 1.18055, - 1.17987, - 1.17805, - 1.17946, - 1.17707, - 1.17689, - 1.18029, - 1.18165, - 1.18441, - 1.18865, - 1.1873, - 1.18688, - 1.18637, - 1.18367, - 1.18327, - 1.17611, - 1.17362, - 1.17203, - 1.17388, - 1.17296, - 1.17962, - 1.17768, - 1.17081, - 1.17108, - 1.16756, - 1.16996, - 1.1745700000000001, - 1.17555, - 1.17716, - 1.17515, - 1.1795499999999999, - 1.17962, - 1.18083, - 1.18384, - 1.18744, - 1.18772 - ], - "yaxis": "y" - }, - { - "hovertext": [ - "order id: 1
hold probability: 0.0197
hold: False
volume: 0.057020
modified volume: 0.0600
fee: 0.000300
margin: 73.331400
error: ", - "order id: 3
hold probability: 0.4105
hold: False
volume: -0.660544
modified volume: 0.6600
fee: 0.000300
margin: 803.510400
error: ", - "order id: 6
hold probability: 0.1222
hold: False
volume: -1.533316
modified volume: 1.5300
fee: 0.000300
margin: 1870.715700
error: ", - "order id: 9
hold probability: 0.4218
hold: False
volume: -0.078686
modified volume: 0.0800
fee: 0.000300
margin: 97.720000
error: ", - "order id: 10
hold probability: 0.1633
hold: False
volume: -1.031333
modified volume: 1.0300
fee: 0.000300
margin: 1261.719100
error: ", - "order id: 12
hold probability: 0.0948
hold: False
volume: -3.594075
modified volume: 3.5900
fee: 0.000300
margin: 4376.999800
error: ", - "order id: 14
hold probability: 0.2571
hold: False
volume: -0.755971
modified volume: 0.7600
fee: 0.000300
margin: 926.698400
error: ", - "order id:
hold probability: 0.1026
hold: False
volume: -1.941671
modified volume: 1.9400
fee: nan
margin: nan
error: cannot add more orders", - "order id: 19
hold probability: 0.3800
hold: False
volume: -3.691902
modified volume: 3.6900
fee: 0.000300
margin: 4511.025000
error: ", - "order id: 21
hold probability: 0.1840
hold: False
volume: 0.153873
modified volume: 0.1500
fee: 0.000300
margin: 183.189000
error: ", - "order id: 24
hold probability: 0.3722
hold: False
volume: -1.157874
modified volume: 1.1600
fee: 0.000300
margin: 1411.279200
error: ", - "order id: 26
hold probability: 0.1249
hold: False
volume: -0.677162
modified volume: 0.6800
fee: 0.000300
margin: 828.872400
error: ", - "order id: 27
hold probability: 0.1968
hold: False
volume: -1.363324
modified volume: 1.3600
fee: 0.000300
margin: 1655.473600
error: ", - "order id:
hold probability: 0.1383
hold: False
volume: -3.015301
modified volume: 3.0200
fee: nan
margin: nan
error: cannot add more orders", - "order id: 30
hold probability: 0.0775
hold: False
volume: 0.000517
modified volume: 0.0100
fee: 0.000300
margin: 12.175100
error: ", - "order id: 32
hold probability: 0.2227
hold: False
volume: -1.410881
modified volume: 1.4100
fee: 0.000300
margin: 1706.988300
error: ", - "order id: 34
hold probability: 0.4415
hold: False
volume: -0.828066
modified volume: 0.8300
fee: 0.000300
margin: 1006.491200
error: ", - "order id: 36
hold probability: 0.1728
hold: False
volume: 0.761568
modified volume: 0.7600
fee: 0.000300
margin: 911.566800
error: ", - "order id: 38
hold probability: 0.1767
hold: False
volume: -0.217252
modified volume: 0.2200
fee: 0.000300
margin: 260.913400
error: ", - "order id: 40
hold probability: 0.3769
hold: False
volume: 0.360622
modified volume: 0.3600
fee: 0.000300
margin: 429.066000
error: ", - "order id: 43
hold probability: 0.1396
hold: False
volume: -2.519364
modified volume: 2.5200
fee: 0.000300
margin: 3005.301600
error: ", - "order id: 45
hold probability: 0.3244
hold: False
volume: 0.483436
modified volume: 0.4800
fee: 0.000300
margin: 572.712000
error: ", - "order id: 47
hold probability: 0.0815
hold: False
volume: 1.557413
modified volume: 1.5600
fee: 0.000300
margin: 1862.172000
error: ", - "order id: 49
hold probability: 0.3756
hold: False
volume: 0.739571
modified volume: 0.7400
fee: 0.000300
margin: 882.390800
error: ", - "order id:
hold probability: 0.4918
hold: False
volume: -1.303699
modified volume: 1.3000
fee: nan
margin: nan
error: cannot add more orders", - "order id: 51
hold probability: 0.1712
hold: False
volume: -1.195292
modified volume: 1.2000
fee: 0.000300
margin: 1422.720000
error: ", - "order id: 53
hold probability: 0.1828
hold: False
volume: -0.880098
modified volume: 0.8800
fee: 0.000300
margin: 1042.773600
error: ", - "order id:
hold probability: 0.3457
hold: False
volume: 0.401877
modified volume: 0.4000
fee: nan
margin: nan
error: cannot add more orders", - "order id: 57
hold probability: 0.4052
hold: False
volume: -1.643127
modified volume: 1.6400
fee: 0.000300
margin: 1945.597600
error: ", - "order id: 62
hold probability: 0.0826
hold: False
volume: -0.037989
modified volume: 0.0400
fee: 0.000300
margin: 47.379600
error: ", - "order id: 64
hold probability: 0.3776
hold: False
volume: -0.652665
modified volume: 0.6500
fee: 0.000300
margin: 772.031000
error: ", - "order id: 67
hold probability: 0.2425
hold: False
volume: -0.522799
modified volume: 0.5200
fee: 0.000300
margin: 616.751200
error: ", - "order id: 69
hold probability: 0.0834
hold: False
volume: -1.095374
modified volume: 1.1000
fee: 0.000300
margin: 1295.415000
error: ", - "order id: 72
hold probability: 0.1588
hold: False
volume: -0.360228
modified volume: 0.3600
fee: 0.000300
margin: 425.224800
error: ", - "order id: 73
hold probability: 0.3006
hold: False
volume: -0.194337
modified volume: 0.1900
fee: 0.000300
margin: 224.304500
error: ", - "order id: 75
hold probability: 0.2375
hold: False
volume: 0.023767
modified volume: 0.0200
fee: 0.000300
margin: 23.597400
error: ", - "order id:
hold probability: 0.3316
hold: False
volume: -1.191934
modified volume: 1.1900
fee: nan
margin: nan
error: cannot add more orders", - "order id: 78
hold probability: 0.3269
hold: False
volume: -0.528096
modified volume: 0.5300
fee: 0.000300
margin: 625.113800
error: ", - "order id: 80
hold probability: 0.2330
hold: False
volume: -3.236174
modified volume: 3.2400
fee: 0.000300
margin: 3813.706800
error: ", - "order id:
hold probability: 0.3297
hold: False
volume: 0.589941
modified volume: 0.5900
fee: nan
margin: nan
error: cannot add more orders", - "order id: 82
hold probability: 0.1872
hold: False
volume: 1.363381
modified volume: 1.3600
fee: 0.000300
margin: 1605.194400
error: ", - "order id: 85
hold probability: 0.2723
hold: False
volume: -4.007377
modified volume: 4.0100
fee: 0.000300
margin: 4738.416500
error: ", - "order id:
hold probability: 0.1301
hold: False
volume: -1.840736
modified volume: 1.8400
fee: nan
margin: nan
error: cannot add more orders", - "order id: 87
hold probability: 0.4071
hold: False
volume: -1.852755
modified volume: 1.8500
fee: 0.000300
margin: 2199.002500
error: ", - "order id: 88
hold probability: 0.2929
hold: False
volume: -3.373545
modified volume: 3.3700
fee: 0.000300
margin: 4001.201000
error: ", - "order id: 93
hold probability: 0.4196
hold: False
volume: -2.363127
modified volume: 2.3600
fee: 0.000300
margin: 2793.461200
error: ", - "order id: 96
hold probability: 0.2078
hold: False
volume: -0.739540
modified volume: 0.7400
fee: 0.000300
margin: 875.619800
error: ", - "order id: 98
hold probability: 0.4474
hold: False
volume: 0.324806
modified volume: 0.3200
fee: 0.000300
margin: 376.355200
error: ", - "order id: 101
hold probability: 0.0552
hold: False
volume: -0.956741
modified volume: 0.9600
fee: 0.000300
margin: 1126.675200
error: ", - "order id: 103
hold probability: 0.2650
hold: False
volume: -1.375901
modified volume: 1.3800
fee: 0.000300
margin: 1617.401400
error: ", - "order id: 105
hold probability: 0.0559
hold: False
volume: 0.570950
modified volume: 0.5700
fee: 0.000300
margin: 669.111600
error: ", - "order id: 109
hold probability: 0.2540
hold: False
volume: -1.496685
modified volume: 1.5000
fee: 0.000300
margin: 1769.430000
error: ", - "order id: 111
hold probability: 0.0846
hold: False
volume: -1.967693
modified volume: 1.9700
fee: 0.000300
margin: 2320.029600
error: ", - "order id: 113
hold probability: 0.1522
hold: False
volume: -0.998951
modified volume: 1.0000
fee: 0.000300
margin: 1170.810000
error: ", - "order id: 115
hold probability: 0.3759
hold: False
volume: -2.432130
modified volume: 2.4300
fee: 0.000300
margin: 2845.724400
error: ", - "order id: 116
hold probability: 0.4056
hold: False
volume: -1.819777
modified volume: 1.8200
fee: 0.000300
margin: 2124.959200
error: ", - "order id: 118
hold probability: 0.4484
hold: False
volume: -1.637370
modified volume: 1.6400
fee: 0.000300
margin: 1918.734400
error: ", - "order id: 120
hold probability: 0.3947
hold: False
volume: -1.686003
modified volume: 1.6900
fee: 0.000300
margin: 1985.023300
error: ", - "order id:
hold probability: 0.2778
hold: False
volume: -0.348331
modified volume: 0.3500
fee: nan
margin: nan
error: cannot add more orders", - "order id: 127
hold probability: 0.3390
hold: False
volume: -1.351973
modified volume: 1.3500
fee: 0.000300
margin: 1586.452500
error: ", - "order id: 129
hold probability: 0.2134
hold: False
volume: -0.799289
modified volume: 0.8000
fee: 0.000300
margin: 943.640000
error: ", - "order id: 131
hold probability: 0.1654
hold: False
volume: -2.297539
modified volume: 2.3000
fee: 0.000300
margin: 2713.126000
error: ", - "order id:
hold probability: 0.3429
hold: False
volume: -1.616945
modified volume: 1.6200
fee: nan
margin: nan
error: cannot add more orders", - "order id: 134
hold probability: 0.1596
hold: False
volume: -2.123765
modified volume: 2.1200
fee: 0.000300
margin: 2509.740800
error: ", - "order id:
hold probability: 0.4972
hold: False
volume: -0.231550
modified volume: 0.2300
fee: nan
margin: nan
error: cannot add more orders" - ], - "legendgroup": "g1", - "marker": { - "color": [ - "green", - "red", - "red", - "red", - "red", - "red", - "red", - "gray", - "red", - "green", - "red", - "red", - "red", - "gray", - "green", - "red", - "red", - "green", - "red", - "green", - "red", - "green", - "green", - "green", - "gray", - "red", - "red", - "gray", - "red", - "red", - "red", - "red", - "red", - "red", - "red", - "green", - "gray", - "red", - "red", - "gray", - "green", - "red", - "gray", - "red", - "red", - "red", - "red", - "green", - "red", - "red", - "green", - "red", - "red", - "red", - "red", - "red", - "red", - "red", - "gray", - "red", - "red", - "red", - "gray", - "red", - "gray" - ], - "size": [ - 8.329177057356608, - 11.620947630922693, - 16.394014962593516, - 8.438902743142144, - 13.650872817955113, - 27.69576059850374, - 12.169576059850375, - 18.64339152119701, - 28.244389027431424, - 8.82294264339152, - 14.364089775561096, - 11.73067331670823, - 15.46134663341646, - 24.56857855361596, - 8.054862842892769, - 15.735660847880299, - 12.553615960099751, - 12.169576059850375, - 9.206982543640898, - 9.975062344139651, - 21.82543640897756, - 10.633416458852867, - 16.55860349127182, - 12.059850374064837, - 15.132169576059852, - 14.58354114713217, - 12.82793017456359, - 10.194513715710723, - 16.99750623441397, - 8.219451371571072, - 11.566084788029926, - 10.85286783042394, - 14.034912718204488, - 9.975062344139651, - 9.042394014962593, - 8.109725685785536, - 14.528678304239403, - 10.907730673316708, - 25.77556109725686, - 11.236907730673316, - 15.46134663341646, - 30, - 18.09476309226933, - 18.149625935162096, - 26.488778054862845, - 20.947630922693264, - 12.059850374064837, - 9.75561097256858, - 13.266832917705734, - 15.571072319201996, - 11.127182044887782, - 16.22942643391521, - 18.80798004987531, - 13.486284289276808, - 21.331670822942648, - 17.98503740648379, - 16.99750623441397, - 17.271820448877804, - 9.920199501246882, - 15.40648379052369, - 12.389027431421447, - 20.61845386533666, - 16.887780548628427, - 19.630922693266832, - 9.261845386533667 - ], - "symbol": [ - "triangle-up", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down", - "triangle-down" - ] - }, - "mode": "markers", - "name": "EURUSD", - "showlegend": false, - "type": "scatter", - "x": [ - "2021-05-18T00:00:00+00:00", - "2021-05-19T00:00:00+00:00", - "2021-05-20T00:00:00+00:00", - "2021-05-24T00:00:00+00:00", - "2021-05-25T00:00:00+00:00", - "2021-05-26T00:00:00+00:00", - "2021-05-27T00:00:00+00:00", - "2021-05-28T00:00:00+00:00", - "2021-05-31T00:00:00+00:00", - "2021-06-01T00:00:00+00:00", - "2021-06-04T00:00:00+00:00", - "2021-06-07T00:00:00+00:00", - "2021-06-08T00:00:00+00:00", - "2021-06-09T00:00:00+00:00", - "2021-06-10T00:00:00+00:00", - "2021-06-11T00:00:00+00:00", - "2021-06-15T00:00:00+00:00", - "2021-06-16T00:00:00+00:00", - "2021-06-18T00:00:00+00:00", - "2021-06-21T00:00:00+00:00", - "2021-06-23T00:00:00+00:00", - "2021-06-24T00:00:00+00:00", - "2021-06-25T00:00:00+00:00", - "2021-06-28T00:00:00+00:00", - "2021-06-29T00:00:00+00:00", - "2021-06-30T00:00:00+00:00", - "2021-07-01T00:00:00+00:00", - "2021-07-02T00:00:00+00:00", - "2021-07-05T00:00:00+00:00", - "2021-07-08T00:00:00+00:00", - "2021-07-09T00:00:00+00:00", - "2021-07-12T00:00:00+00:00", - "2021-07-13T00:00:00+00:00", - "2021-07-15T00:00:00+00:00", - "2021-07-16T00:00:00+00:00", - "2021-07-19T00:00:00+00:00", - "2021-07-20T00:00:00+00:00", - "2021-07-21T00:00:00+00:00", - "2021-07-22T00:00:00+00:00", - "2021-07-23T00:00:00+00:00", - "2021-07-26T00:00:00+00:00", - "2021-07-27T00:00:00+00:00", - "2021-07-28T00:00:00+00:00", - "2021-07-29T00:00:00+00:00", - "2021-07-30T00:00:00+00:00", - "2021-08-04T00:00:00+00:00", - "2021-08-05T00:00:00+00:00", - "2021-08-06T00:00:00+00:00", - "2021-08-09T00:00:00+00:00", - "2021-08-10T00:00:00+00:00", - "2021-08-11T00:00:00+00:00", - "2021-08-13T00:00:00+00:00", - "2021-08-16T00:00:00+00:00", - "2021-08-17T00:00:00+00:00", - "2021-08-18T00:00:00+00:00", - "2021-08-19T00:00:00+00:00", - "2021-08-20T00:00:00+00:00", - "2021-08-23T00:00:00+00:00", - "2021-08-25T00:00:00+00:00", - "2021-08-26T00:00:00+00:00", - "2021-08-27T00:00:00+00:00", - "2021-08-30T00:00:00+00:00", - "2021-08-31T00:00:00+00:00", - "2021-09-01T00:00:00+00:00", - "2021-09-02T00:00:00+00:00" - ], - "y": [ - 1.2221899999999999, - 1.21744, - 1.22269, - 1.2215, - 1.22497, - 1.21922, - 1.21934, - 1.21896, - 1.2225, - 1.22126, - 1.21662, - 1.21893, - 1.21726, - 1.21787, - 1.21751, - 1.21063, - 1.21264, - 1.19943, - 1.18597, - 1.19185, - 1.19258, - 1.19315, - 1.1937, - 1.19242, - 1.1896, - 1.1856, - 1.18497, - 1.18646, - 1.18634, - 1.18449, - 1.18774, - 1.18606, - 1.17765, - 1.18118, - 1.18055, - 1.17987, - 1.17805, - 1.17946, - 1.17707, - 1.17689, - 1.18029, - 1.18165, - 1.18441, - 1.18865, - 1.1873, - 1.18367, - 1.18327, - 1.17611, - 1.17362, - 1.17203, - 1.17388, - 1.17962, - 1.17768, - 1.17081, - 1.17108, - 1.16756, - 1.16996, - 1.1745700000000001, - 1.17716, - 1.17515, - 1.1795499999999999, - 1.17962, - 1.18083, - 1.18384, - 1.18744 - ], - "yaxis": "y" - }, - { - "hovertext": [ - "order id: 1
order type: Buy
close probability: 0.8125
margin: 73.331400
profit: 1.200000", - "order id: 3
order type: Sell
close probability: 0.9388
margin: 803.510400
profit: -60.720000", - "order id: 6
order type: Sell
close probability: 0.5019
margin: 1870.715700
profit: 136.170000", - "order id: 9
order type: Sell
close probability: 0.7774
margin: 97.720000
profit: -30.160000", - "order id: 10
order type: Sell
close probability: 0.5958
margin: 1261.719100
profit: 561.350000", - "order id: 12
order type: Sell
close probability: 0.7855
margin: 4376.999800
profit: -1285.220000", - "order id: 14
order type: Sell
close probability: 0.5057
margin: 926.698400
profit: -168.720000", - "order id: 19
order type: Sell
close probability: 0.7416
margin: 4511.025000
profit: 442.800000", - "order id: 21
order type: Buy
close probability: 0.6777
margin: 183.189000
profit: -39.450000", - "order id: 24
order type: Sell
close probability: 0.7763
margin: 1411.279200
profit: -109.040000", - "order id: 26
order type: Sell
close probability: 0.6051
margin: 828.872400
profit: 76.160000", - "order id: 27
order type: Sell
close probability: 0.5807
margin: 1655.473600
profit: 860.880000", - "order id: 30
order type: Buy
close probability: 0.5036
margin: 12.175100
profit: -5.810000", - "order id: 32
order type: Sell
close probability: 0.8727
margin: 1706.988300
profit: -325.710000", - "order id: 34
order type: Sell
close probability: 0.5110
margin: 1006.491200
profit: 1071.530000", - "order id: 36
order type: Buy
close probability: 0.8465
margin: 911.566800
profit: -1045.760000", - "order id: 38
order type: Sell
close probability: 0.7436
margin: 260.913400
profit: -186.120000", - "order id: 40
order type: Buy
close probability: 0.8938
margin: 429.066000
profit: 15.480000", - "order id: 43
order type: Sell
close probability: 0.6380
margin: 3005.301600
profit: -219.240000", - "order id: 45
order type: Buy
close probability: 0.6997
margin: 572.712000
profit: 12.000000", - "order id: 47
order type: Buy
close probability: 0.8298
margin: 1862.172000
profit: -1310.400000", - "order id: 49
order type: Buy
close probability: 0.5460
margin: 882.390800
profit: -573.500000", - "order id: 51
order type: Sell
close probability: 0.8541
margin: 1422.720000
profit: -124.800000", - "order id: 53
order type: Sell
close probability: 0.6970
margin: 1042.773600
profit: 207.680000", - "order id: 57
order type: Sell
close probability: 0.5095
margin: 1945.597600
profit: 254.200000", - "order id: 62
order type: Sell
close probability: 0.8957
margin: 47.379600
profit: -14.200000", - "order id: 64
order type: Sell
close probability: 0.7534
margin: 772.031000
profit: 636.350000", - "order id: 67
order type: Sell
close probability: 0.6076
margin: 616.751200
profit: 113.360000", - "order id: 72
order type: Sell
close probability: 0.8276
margin: 425.224800
profit: 11.880000", - "order id: 69
order type: Sell
close probability: 0.6933
margin: 1295.415000
profit: -277.200000", - "order id: 75
order type: Buy
close probability: 0.5442
margin: 23.597400
profit: -1.420000", - "order id: 73
order type: Sell
close probability: 0.8233
margin: 224.304500
profit: 60.420000", - "order id: 78
order type: Sell
close probability: 0.6572
margin: 625.113800
profit: -59.890000", - "order id: 80
order type: Sell
close probability: 0.7559
margin: 3813.706800
profit: -1581.120000", - "order id: 82
order type: Buy
close probability: 0.8372
margin: 1605.194400
profit: 1096.160000", - "order id: 85
order type: Sell
close probability: 0.6970
margin: 4738.416500
profit: -2385.950000", - "order id: 87
order type: Sell
close probability: 0.6615
margin: 2199.002500
profit: 271.950000", - "order id: 88
order type: Sell
close probability: 0.5151
margin: 4001.201000
profit: 1122.210000", - "order id: 93
order type: Sell
close probability: 0.5584
margin: 2793.461200
profit: 23.600000", - "order id: 96
order type: Sell
close probability: 0.5754
margin: 875.619800
profit: 507.640000", - "order id: 98
order type: Buy
close probability: 0.6256
margin: 376.355200
profit: -89.280000", - "order id: 101
order type: Sell
close probability: 0.5848
margin: 1126.675200
profit: 123.840000", - "order id: 103
order type: Sell
close probability: 0.6536
margin: 1617.401400
profit: -296.700000", - "order id: 105
order type: Buy
close probability: 0.9363
margin: 669.111600
profit: -69.540000", - "order id: 109
order type: Sell
close probability: 0.8424
margin: 1769.430000
profit: 1276.500000
---------------------------------
order id: 111
order type: Sell
close probability: 0.5241
margin: 2320.029600
profit: 1294.290000", - "order id: 113
order type: Sell
close probability: 0.5929
margin: 1170.810000
profit: -57.000000", - "order id: 115
order type: Sell
close probability: 0.5243
margin: 2845.724400
profit: 782.460000", - "order id: 116
order type: Sell
close probability: 0.9654
margin: 2124.959200
profit: -491.400000", - "order id: 118
order type: Sell
close probability: 0.6793
margin: 1918.734400
profit: -900.360000", - "order id: 120
order type: Sell
close probability: 0.6516
margin: 1985.023300
profit: -892.320000", - "order id: 127
order type: Sell
close probability: 0.6824
margin: 1586.452500
profit: -643.950000", - "order id: 129
order type: Sell
close probability: 0.5448
margin: 943.640000
profit: -367.200000" - ], - "legendgroup": "g1", - "marker": { - "color": "black", - "line": { - "width": 1.5 - }, - "size": 7, - "symbol": "line-ns" - }, - "mode": "markers", - "name": "EURUSD", - "showlegend": false, - "type": "scatter", - "x": [ - "2021-05-20T00:00:00+00:00", - "2021-05-21T00:00:00+00:00", - "2021-05-24T00:00:00+00:00", - "2021-05-25T00:00:00+00:00", - "2021-05-26T00:00:00+00:00", - "2021-05-31T00:00:00+00:00", - "2021-06-01T00:00:00+00:00", - "2021-06-02T00:00:00+00:00", - "2021-06-07T00:00:00+00:00", - "2021-06-08T00:00:00+00:00", - "2021-06-10T00:00:00+00:00", - "2021-06-11T00:00:00+00:00", - "2021-06-14T00:00:00+00:00", - "2021-06-15T00:00:00+00:00", - "2021-06-16T00:00:00+00:00", - "2021-06-18T00:00:00+00:00", - "2021-06-22T00:00:00+00:00", - "2021-06-23T00:00:00+00:00", - "2021-06-24T00:00:00+00:00", - "2021-06-25T00:00:00+00:00", - "2021-06-30T00:00:00+00:00", - "2021-07-01T00:00:00+00:00", - "2021-07-05T00:00:00+00:00", - "2021-07-06T00:00:00+00:00", - "2021-07-08T00:00:00+00:00", - "2021-07-09T00:00:00+00:00", - "2021-07-13T00:00:00+00:00", - "2021-07-14T00:00:00+00:00", - "2021-07-16T00:00:00+00:00", - "2021-07-19T00:00:00+00:00", - "2021-07-21T00:00:00+00:00", - "2021-07-22T00:00:00+00:00", - "2021-07-26T00:00:00+00:00", - "2021-07-27T00:00:00+00:00", - "2021-07-29T00:00:00+00:00", - "2021-07-30T00:00:00+00:00", - "2021-08-02T00:00:00+00:00", - "2021-08-04T00:00:00+00:00", - "2021-08-05T00:00:00+00:00", - "2021-08-06T00:00:00+00:00", - "2021-08-09T00:00:00+00:00", - "2021-08-10T00:00:00+00:00", - "2021-08-11T00:00:00+00:00", - "2021-08-12T00:00:00+00:00", - "2021-08-17T00:00:00+00:00", - "2021-08-18T00:00:00+00:00", - "2021-08-19T00:00:00+00:00", - "2021-08-20T00:00:00+00:00", - "2021-08-26T00:00:00+00:00", - "2021-08-27T00:00:00+00:00", - "2021-08-30T00:00:00+00:00", - "2021-09-01T00:00:00+00:00" - ], - "y": [ - 1.22269, - 1.21806, - 1.2215, - 1.22497, - 1.21922, - 1.2225, - 1.22126, - 1.221, - 1.21893, - 1.21726, - 1.21751, - 1.21063, - 1.212, - 1.21264, - 1.19943, - 1.18597, - 1.19413, - 1.19258, - 1.19315, - 1.1937, - 1.1856, - 1.18497, - 1.18634, - 1.18231, - 1.18449, - 1.18774, - 1.17765, - 1.18358, - 1.18055, - 1.17987, - 1.17946, - 1.17707, - 1.18029, - 1.18165, - 1.18865, - 1.1873, - 1.18688, - 1.18367, - 1.18327, - 1.17611, - 1.17362, - 1.17203, - 1.17388, - 1.17296, - 1.17081, - 1.17108, - 1.16756, - 1.16996, - 1.17515, - 1.1795499999999999, - 1.17962, - 1.18384 - ], - "yaxis": "y" - }, - { - "hovertext": [ - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10427.993279
margin: 1693.331400
free margin: 8734.661879
margin level: 6.158271", - "balance: 10458.293279 USD
equity: 9693.437185
margin: 2904.659027
free margin: 6788.778158
margin level: 3.337203", - "balance: 10059.737185 USD
equity: 10915.543626
margin: 4544.226100
free margin: 6371.317526
margin level: 2.402069", - "balance: 10253.053626 USD
equity: 10013.189048
margin: 3610.715700
free margin: 6402.473348
margin level: 2.773187", - "balance: 10013.189048 USD
equity: 9983.029048
margin: 97.720000
free margin: 9885.309048
margin level: 102.159528", - "balance: 9983.029048 USD
equity: 11390.181190
margin: 3811.719100
free margin: 7578.462090
margin level: 2.988201", - "balance: 10544.379048 USD
equity: 13683.987726
margin: 8466.999800
free margin: 5216.987926
margin level: 1.616155", - "balance: 13834.767726 USD
equity: 13842.496240
margin: 6438.115120
free margin: 7404.381119
margin level: 2.150085", - "balance: 13855.810394 USD
equity: 12183.961275
margin: 6448.627975
free margin: 5735.333301
margin level: 1.889388", - "balance: 12570.988335 USD
equity: 12439.138794
margin: 6302.140320
free margin: 6136.998474
margin level: 1.973796", - "balance: 12263.185323 USD
equity: 12462.221086
margin: 5418.630920
free margin: 7043.590166
margin level: 2.299884", - "balance: 12705.985323 USD
equity: 12575.547594
margin: 907.605920
free margin: 11667.941674
margin level: 13.855736", - "balance: 12854.331292 USD
equity: 12298.750082
margin: 1227.605920
free margin: 11071.144161
margin level: 10.018484", - "balance: 12472.515434 USD
equity: 12078.264306
margin: 2118.885120
free margin: 9959.379186
margin level: 5.700292", - "balance: 12412.816070 USD
equity: 12401.429005
margin: 2694.568520
free margin: 9706.860484
margin level: 4.602380", - "balance: 12303.776070 USD
equity: 12158.836935
margin: 3458.762920
free margin: 8700.074015
margin level: 3.515372", - "balance: 12303.776070 USD
equity: 11594.928561
margin: 5548.762920
free margin: 6046.165641
margin level: 2.089642", - "balance: 11750.942025 USD
equity: 12921.491196
margin: 3162.065620
free margin: 9759.425576
margin level: 4.086408", - "balance: 12611.822025 USD
equity: 12962.031448
margin: 3213.580320
free margin: 9748.451128
margin level: 4.033517", - "balance: 12865.371893 USD
equity: 12802.221682
margin: 5181.405220
free margin: 7620.816462
margin level: 2.470801", - "balance: 12771.489326 USD
equity: 15731.934346
margin: 4700.908120
free margin: 11031.026226
margin level: 3.346573", - "balance: 15663.375579 USD
equity: 14552.771889
margin: 2585.983720
free margin: 11966.788168
margin level: 5.627557", - "balance: 15812.062186 USD
equity: 14182.930290
margin: 2131.566800
free margin: 12051.363490
margin level: 6.653758", - "balance: 14182.930290 USD
equity: 14082.042901
margin: 790.913400
free margin: 13291.129501
margin level: 17.804785", - "balance: 14182.930290 USD
equity: 15119.085247
margin: 4219.979400
free margin: 10899.105847
margin level: 3.582739", - "balance: 15047.805247 USD
equity: 15743.138153
margin: 3319.066000
free margin: 12424.072153
margin level: 4.743243", - "balance: 15743.138153 USD
equity: 14965.829579
margin: 6132.479162
free margin: 8833.350418
margin level: 2.440421", - "balance: 15523.898153 USD
equity: 13436.435984
margin: 4879.889562
free margin: 8556.546422
margin level: 2.753430", - "balance: 15401.683778 USD
equity: 13824.741923
margin: 6819.349562
free margin: 7005.392362
margin level: 2.027282", - "balance: 15401.683778 USD
equity: 13449.394067
margin: 8841.740362
free margin: 4607.653706
margin level: 1.521125", - "balance: 15292.363906 USD
equity: 13281.798203
margin: 7701.740362
free margin: 5580.057842
margin level: 1.724519", - "balance: 13981.963906 USD
equity: 14140.088741
margin: 9712.288362
free margin: 4427.800379
margin level: 1.455897", - "balance: 15435.248099 USD
equity: 11744.587405
margin: 8416.071668
free margin: 3328.515736
margin level: 1.395495", - "balance: 14383.536910 USD
equity: 12079.238163
margin: 6412.671162
free margin: 5666.567001
margin level: 1.883652", - "balance: 14193.705638 USD
equity: 16341.160088
margin: 10391.466047
free margin: 5949.694040
margin level: 1.572556", - "balance: 15587.444966 USD
equity: 17336.720344
margin: 7112.775162
free margin: 10223.945182
margin level: 2.437406", - "balance: 15528.425727 USD
equity: 16574.016221
margin: 6062.775162
free margin: 10511.241060
margin level: 2.733734", - "balance: 14979.786496 USD
equity: 18271.453713
margin: 6644.557162
free margin: 11626.896551
margin level: 2.749838", - "balance: 15986.712361 USD
equity: 17694.145849
margin: 5143.695001
free margin: 12550.450848
margin level: 3.439968", - "balance: 15866.221917 USD
equity: 18706.238034
margin: 6160.446201
free margin: 12545.791833
margin level: 3.036507", - "balance: 16502.571917 USD
equity: 18930.683203
margin: 7893.830201
free margin: 11036.853002
margin level: 2.398162", - "balance: 17044.399307 USD
equity: 20183.268230
margin: 7942.592562
free margin: 12240.675668
margin level: 2.541144", - "balance: 16566.865642 USD
equity: 19571.433575
margin: 4847.817362
free margin: 14723.616214
margin level: 4.037164", - "balance: 16578.745642 USD
equity: 20642.718446
margin: 4716.897062
free margin: 15925.821384
margin level: 4.376334", - "balance: 16301.545642 USD
equity: 18899.112562
margin: 6115.079462
free margin: 12784.033100
margin level: 3.090575", - "balance: 17204.452518 USD
equity: 17746.701279
margin: 3735.079462
free margin: 14011.621818
margin level: 4.751358", - "balance: 17203.032518 USD
equity: 18935.596593
margin: 5676.595862
free margin: 13259.000732
margin level: 3.335731", - "balance: 17263.452518 USD
equity: 19040.181158
margin: 9265.998162
free margin: 9774.182997
margin level: 2.054844", - "balance: 17024.422965 USD
equity: 18667.449807
margin: 9085.998162
free margin: 9581.451646
margin level: 2.054529", - "balance: 17065.619203 USD
equity: 19682.078605
margin: 11651.465921
free margin: 8030.612684
margin level: 1.689236", - "balance: 13882.917772 USD
equity: 17342.087023
margin: 9816.175621
free margin: 7525.911401
margin level: 1.766685", - "balance: 13882.917772 USD
equity: 15176.113528
margin: 10606.175621
free margin: 4569.937906
margin level: 1.430875", - "balance: 14979.077772 USD
equity: 15335.963850
margin: 11199.983721
free margin: 4135.980129
margin level: 1.369284", - "balance: 12383.026762 USD
equity: 16001.556846
margin: 10192.264044
free margin: 5809.292803
margin level: 1.569971", - "balance: 12748.231397 USD
equity: 17176.631690
margin: 9128.378562
free margin: 8048.253128
margin level: 1.881674", - "balance: 12801.788742 USD
equity: 19347.529343
margin: 11818.378562
free margin: 7529.150782
margin level: 1.637071", - "balance: 14163.509854 USD
equity: 20190.888069
margin: 10187.165077
free margin: 10003.722991
margin level: 1.981993", - "balance: 20190.888069 USD
equity: 21081.173214
margin: 1865.619800
free margin: 19215.553414
margin level: 11.299823", - "balance: 21081.173214 USD
equity: 20750.310576
margin: 3408.495753
free margin: 17341.814823
margin level: 6.087821", - "balance: 20991.893214 USD
equity: 19968.116005
margin: 5668.815753
free margin: 14299.300252
margin level: 3.522449", - "balance: 20687.269032 USD
equity: 19255.134699
margin: 7299.541953
free margin: 11955.592746
margin level: 2.637855", - "balance: 20569.699325 USD
equity: 18677.077585
margin: 5141.252153
free margin: 13535.825432
margin level: 3.632788", - "balance: 20035.209059 USD
equity: 19539.340249
margin: 5021.853038
free margin: 14517.487211
margin level: 3.890863", - "balance: 19328.442142 USD
equity: 20271.397338
margin: 7491.283038
free margin: 12780.114299
margin level: 2.705998", - "balance: 20233.507940 USD
equity: 22380.439524
margin: 6911.600153
free margin: 15468.839371
margin level: 3.238098", - "balance: 23115.735505 USD
equity: 23172.803697
margin: 5172.950553
free margin: 17999.853144
margin level: 4.479611", - "balance: 23340.360461 USD
equity: 24762.474289
margin: 4607.864953
free margin: 20154.609336
margin level: 5.373958", - "balance: 24122.820461 USD
equity: 24082.721613
margin: 4557.099753
free margin: 19525.621860
margin level: 5.284660", - "balance: 24082.721613 USD
equity: 23289.788576
margin: 2098.734400
free margin: 21191.054176
margin level: 11.097063", - "balance: 24095.028576 USD
equity: 23132.170912
margin: 4759.879704
free margin: 18372.291208
margin level: 4.859823", - "balance: 24083.540506 USD
equity: 23297.762478
margin: 7620.265269
free margin: 15677.497208
margin level: 3.057343", - "balance: 25016.172478 USD
equity: 24550.987129
margin: 8727.875543
free margin: 15823.111586
margin level: 2.812940", - "balance: 24115.812478 USD
equity: 22224.905397
margin: 8705.593643
free margin: 13519.311754
margin level: 2.552945", - "balance: 23149.837494 USD
equity: 22254.956757
margin: 9084.210343
free margin: 13170.746414
margin level: 2.449850", - "balance: 22232.615676 USD
equity: 22079.068030
margin: 7456.766000
free margin: 14622.302030
margin level: 2.960944", - "balance: 22552.768030 USD
equity: 21124.591071
margin: 5616.766000
free margin: 15507.825071
margin level: 3.760988", - "balance: 22164.191071 USD
equity: 19197.822980
margin: 8123.237763
free margin: 11074.585217
margin level: 2.363322", - "balance: 22092.277156 USD
equity: 19160.188472
margin: 10502.648755
free margin: 8657.539717
margin level: 1.824320" - ], - "legendgroup": "g2", - "line": { - "color": "rgba(144, 94, 131, 1)" - }, - "mode": "lines+markers", - "name": "GBPCAD", - "opacity": 1, - "type": "scatter", - "x": [ - "2021-05-05T00:00:00+00:00", - "2021-05-06T00:00:00+00:00", - "2021-05-07T00:00:00+00:00", - "2021-05-10T00:00:00+00:00", - "2021-05-11T00:00:00+00:00", - "2021-05-12T00:00:00+00:00", - "2021-05-13T00:00:00+00:00", - "2021-05-14T00:00:00+00:00", - "2021-05-17T00:00:00+00:00", - "2021-05-18T00:00:00+00:00", - "2021-05-19T00:00:00+00:00", - "2021-05-20T00:00:00+00:00", - "2021-05-21T00:00:00+00:00", - "2021-05-24T00:00:00+00:00", - "2021-05-25T00:00:00+00:00", - "2021-05-26T00:00:00+00:00", - "2021-05-27T00:00:00+00:00", - "2021-05-28T00:00:00+00:00", - "2021-05-31T00:00:00+00:00", - "2021-06-01T00:00:00+00:00", - "2021-06-02T00:00:00+00:00", - "2021-06-03T00:00:00+00:00", - "2021-06-04T00:00:00+00:00", - "2021-06-07T00:00:00+00:00", - "2021-06-08T00:00:00+00:00", - "2021-06-09T00:00:00+00:00", - "2021-06-10T00:00:00+00:00", - "2021-06-11T00:00:00+00:00", - "2021-06-14T00:00:00+00:00", - "2021-06-15T00:00:00+00:00", - "2021-06-16T00:00:00+00:00", - "2021-06-17T00:00:00+00:00", - "2021-06-18T00:00:00+00:00", - "2021-06-21T00:00:00+00:00", - "2021-06-22T00:00:00+00:00", - "2021-06-23T00:00:00+00:00", - "2021-06-24T00:00:00+00:00", - "2021-06-25T00:00:00+00:00", - "2021-06-28T00:00:00+00:00", - "2021-06-29T00:00:00+00:00", - "2021-06-30T00:00:00+00:00", - "2021-07-01T00:00:00+00:00", - "2021-07-02T00:00:00+00:00", - "2021-07-05T00:00:00+00:00", - "2021-07-06T00:00:00+00:00", - "2021-07-07T00:00:00+00:00", - "2021-07-08T00:00:00+00:00", - "2021-07-09T00:00:00+00:00", - "2021-07-12T00:00:00+00:00", - "2021-07-13T00:00:00+00:00", - "2021-07-14T00:00:00+00:00", - "2021-07-15T00:00:00+00:00", - "2021-07-16T00:00:00+00:00", - "2021-07-19T00:00:00+00:00", - "2021-07-20T00:00:00+00:00", - "2021-07-21T00:00:00+00:00", - "2021-07-22T00:00:00+00:00", - "2021-07-23T00:00:00+00:00", - "2021-07-26T00:00:00+00:00", - "2021-07-27T00:00:00+00:00", - "2021-07-28T00:00:00+00:00", - "2021-07-29T00:00:00+00:00", - "2021-07-30T00:00:00+00:00", - "2021-08-02T00:00:00+00:00", - "2021-08-03T00:00:00+00:00", - "2021-08-04T00:00:00+00:00", - "2021-08-05T00:00:00+00:00", - "2021-08-06T00:00:00+00:00", - "2021-08-09T00:00:00+00:00", - "2021-08-10T00:00:00+00:00", - "2021-08-11T00:00:00+00:00", - "2021-08-12T00:00:00+00:00", - "2021-08-13T00:00:00+00:00", - "2021-08-16T00:00:00+00:00", - "2021-08-17T00:00:00+00:00", - "2021-08-18T00:00:00+00:00", - "2021-08-19T00:00:00+00:00", - "2021-08-20T00:00:00+00:00", - "2021-08-23T00:00:00+00:00", - "2021-08-24T00:00:00+00:00", - "2021-08-25T00:00:00+00:00", - "2021-08-26T00:00:00+00:00", - "2021-08-27T00:00:00+00:00", - "2021-08-30T00:00:00+00:00", - "2021-08-31T00:00:00+00:00", - "2021-09-01T00:00:00+00:00", - "2021-09-02T00:00:00+00:00", - "2021-09-03T00:00:00+00:00" - ], - "y": [ - 1.70525, - 1.68648, - 1.69619, - 1.7070699999999999, - 1.71108, - 1.70468, - 1.7082899999999999, - 1.70635, - 1.7059199999999999, - 1.71128, - 1.71211, - 1.7107, - 1.70726, - 1.7044000000000001, - 1.7066, - 1.71089, - 1.71345, - 1.71356, - 1.7132399999999999, - 1.70755, - 1.70462, - 1.7068400000000001, - 1.70999, - 1.71255, - 1.7139199999999999, - 1.70927, - 1.71433, - 1.71691, - 1.71341, - 1.71492, - 1.71638, - 1.71949, - 1.72017, - 1.72173, - 1.7158099999999998, - 1.7177, - 1.7149299999999998, - 1.70721, - 1.71244, - 1.71535, - 1.71437, - 1.71059, - 1.70511, - 1.70716, - 1.71879, - 1.72167, - 1.72692, - 1.7307000000000001, - 1.72832, - 1.72767, - 1.73236, - 1.7407, - 1.73684, - 1.74244, - 1.7273800000000001, - 1.72183, - 1.72851, - 1.72728, - 1.73336, - 1.7481900000000001, - 1.7405300000000001, - 1.73688, - 1.73335, - 1.73577, - 1.7441499999999999, - 1.7412999999999998, - 1.7408299999999999, - 1.7419799999999999, - 1.7408000000000001, - 1.7316500000000001, - 1.73282, - 1.72889, - 1.7357200000000002, - 1.7402199999999999, - 1.7349700000000001, - 1.74061, - 1.74874, - 1.7468, - 1.73506, - 1.72784, - 1.73259, - 1.7377, - 1.7353399999999999, - 1.7338900000000002, - 1.73501, - 1.7372800000000002, - 1.73603, - 1.7362600000000001 - ], - "yaxis": "y2" - }, - { - "hovertext": [ - "order id: 4
hold probability: 0.4880
hold: False
volume: 1.039318
modified volume: 1.0400
fee: 0.000300
margin: 1467.817227
error: ", - "order id: 15
hold probability: 0.3344
hold: False
volume: 0.320123
modified volume: 0.3200
fee: 0.000300
margin: 454.416920
error: ", - "order id: 17
hold probability: 0.4845
hold: False
volume: -0.240470
modified volume: 0.2400
fee: 0.000300
margin: 340.512854
error: ", - "order id: 44
hold probability: 0.3912
hold: False
volume: 2.239063
modified volume: 2.2400
fee: 0.000300
margin: 3127.177562
error: ", - "order id: 54
hold probability: 0.3411
hold: False
volume: 1.576187
modified volume: 1.5800
fee: 0.000300
margin: 2173.400507
error: ", - "order id: 58
hold probability: 0.3309
hold: False
volume: 1.924624
modified volume: 1.9200
fee: 0.000300
margin: 2655.917286
error: ", - "order id: 65
hold probability: 0.4128
hold: False
volume: 0.552500
modified volume: 0.5500
fee: 0.000300
margin: 764.486439
error: ", - "order id:
hold probability: 0.4725
hold: False
volume: 2.047558
modified volume: 2.0500
fee: nan
margin: nan
error: cannot add more orders", - "order id: 83
hold probability: 0.4567
hold: False
volume: 0.246626
modified volume: 0.2500
fee: 0.000300
margin: 345.387160
error: ", - "order id:
hold probability: 0.4361
hold: False
volume: -0.660105
modified volume: 0.6600
fee: nan
margin: nan
error: cannot add more orders", - "order id:
hold probability: 0.4940
hold: False
volume: 2.176184
modified volume: 2.1800
fee: nan
margin: nan
error: cannot add more orders", - "order id: 89
hold probability: 0.2163
hold: False
volume: 0.546371
modified volume: 0.5500
fee: 0.000300
margin: 764.882982
error: ", - "order id: 94
hold probability: 0.2577
hold: False
volume: 0.477664
modified volume: 0.4800
fee: 0.000300
margin: 666.526316
error: ", - "order id: 99
hold probability: 0.3777
hold: False
volume: 1.273880
modified volume: 1.2700
fee: 0.000300
margin: 1762.140553
error: ", - "order id: 107
hold probability: 0.4457
hold: False
volume: 1.681137
modified volume: 1.6800
fee: 0.000300
margin: 2319.712485
error: ", - "order id: 121
hold probability: 0.3735
hold: False
volume: -0.419654
modified volume: 0.4200
fee: 0.000300
margin: 576.122004
error: ", - "order id: 123
hold probability: 0.3664
hold: False
volume: 0.936833
modified volume: 0.9400
fee: 0.000300
margin: 1290.385566
error: ", - "order id: 125
hold probability: 0.3043
hold: False
volume: 1.339601
modified volume: 1.3400
fee: 0.000300
margin: 1844.117843
error: ", - "order id: 135
hold probability: 0.3862
hold: False
volume: 1.621046
modified volume: 1.6200
fee: 0.000300
margin: 2230.370963
error: ", - "order id: 137
hold probability: 0.4146
hold: False
volume: 1.925529
modified volume: 1.9300
fee: 0.000300
margin: 2669.410991
error: " - ], - "legendgroup": "g2", - "marker": { - "color": [ - "green", - "green", - "red", - "green", - "green", - "green", - "green", - "gray", - "green", - "gray", - "gray", - "green", - "green", - "green", - "green", - "red", - "green", - "green", - "green", - "green" - ], - "size": [ - 14.036939313984169, - 9.857519788918205, - 9.393139841688654, - 21.00263852242744, - 17.171503957783642, - 19.145118733509236, - 11.192612137203167, - 19.899736147757256, - 9.451187335092348, - 11.8311345646438, - 20.654353562005277, - 11.192612137203167, - 10.786279683377309, - 15.37203166226913, - 17.751978891820578, - 10.437994722955144, - 13.45646437994723, - 15.778364116094988, - 17.40369393139842, - 19.203166226912927 - ], - "symbol": [ - "triangle-up", - "triangle-up", - "triangle-down", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-down", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-down", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up" - ] - }, - "mode": "markers", - "name": "GBPCAD", - "showlegend": false, - "type": "scatter", - "x": [ - "2021-05-19T00:00:00+00:00", - "2021-05-27T00:00:00+00:00", - "2021-05-28T00:00:00+00:00", - "2021-06-23T00:00:00+00:00", - "2021-07-01T00:00:00+00:00", - "2021-07-05T00:00:00+00:00", - "2021-07-09T00:00:00+00:00", - "2021-07-13T00:00:00+00:00", - "2021-07-26T00:00:00+00:00", - "2021-07-27T00:00:00+00:00", - "2021-07-28T00:00:00+00:00", - "2021-07-30T00:00:00+00:00", - "2021-08-04T00:00:00+00:00", - "2021-08-06T00:00:00+00:00", - "2021-08-12T00:00:00+00:00", - "2021-08-23T00:00:00+00:00", - "2021-08-24T00:00:00+00:00", - "2021-08-25T00:00:00+00:00", - "2021-09-01T00:00:00+00:00", - "2021-09-02T00:00:00+00:00" - ], - "y": [ - 1.71211, - 1.71345, - 1.71356, - 1.7177, - 1.71059, - 1.70716, - 1.7307000000000001, - 1.72767, - 1.73336, - 1.7481900000000001, - 1.7405300000000001, - 1.73335, - 1.7412999999999998, - 1.7419799999999999, - 1.72889, - 1.73506, - 1.72784, - 1.73259, - 1.7372800000000002, - 1.73603 - ], - "yaxis": "y2" - }, - { - "hovertext": [ - "order id: 4
order type: Buy
close probability: 0.7366
margin: 1467.817227
profit: -147.473692", - "order id: 17
order type: Sell
close probability: 0.7656
margin: 340.512854
profit: 0.397941", - "order id: 15
order type: Buy
close probability: 0.5259
margin: 454.416920
profit: 148.686607", - "order id: 54
order type: Buy
close probability: 0.8395
margin: 2173.400507
profit: -740.821260", - "order id: 58
order type: Buy
close probability: 0.8153
margin: 2655.917286
profit: 1745.538580", - "order id: 65
order type: Buy
close probability: 0.5072
margin: 764.486439
profit: 59.799815", - "order id: 83
order type: Buy
close probability: 0.6680
margin: 345.387160
profit: -6.217957", - "order id: 89
order type: Buy
close probability: 0.5415
margin: 764.882982
profit: 93.254635", - "order id: 44
order type: Buy
close probability: 0.7053
margin: 3127.177562
profit: 4091.594259
---------------------------------
order id: 94
order type: Buy
close probability: 0.9003
margin: 666.526316
profit: -29.571312", - "order id: 107
order type: Buy
close probability: 0.5746
margin: 2319.712485
profit: 1474.035892", - "order id: 99
order type: Buy
close probability: 0.5758
margin: 1762.140553
profit: 447.639917", - "order id: 121
order type: Sell
close probability: 0.6554
margin: 576.122004
profit: 72.393086
---------------------------------
order id: 123
order type: Buy
close probability: 0.7409
margin: 1290.385566
profit: 332.258372", - "order id: 125
order type: Buy
close probability: 0.6324
margin: 1844.117843
profit: 106.301118" - ], - "legendgroup": "g2", - "marker": { - "color": "black", - "line": { - "width": 1.5 - }, - "size": 7, - "symbol": "line-ns" - }, - "mode": "markers", - "name": "GBPCAD", - "showlegend": false, - "type": "scatter", - "x": [ - "2021-05-20T00:00:00+00:00", - "2021-05-31T00:00:00+00:00", - "2021-06-17T00:00:00+00:00", - "2021-07-02T00:00:00+00:00", - "2021-07-06T00:00:00+00:00", - "2021-07-14T00:00:00+00:00", - "2021-07-30T00:00:00+00:00", - "2021-08-02T00:00:00+00:00", - "2021-08-05T00:00:00+00:00", - "2021-08-16T00:00:00+00:00", - "2021-08-20T00:00:00+00:00", - "2021-08-25T00:00:00+00:00", - "2021-08-30T00:00:00+00:00" - ], - "y": [ - 1.7107, - 1.7132399999999999, - 1.71949, - 1.70511, - 1.71879, - 1.73236, - 1.73335, - 1.73577, - 1.7408299999999999, - 1.7402199999999999, - 1.7468, - 1.73259, - 1.7338900000000002 - ], - "yaxis": "y2" - }, - { - "hovertext": [ - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10000.000000
margin: 0.000000
free margin: 10000.000000
margin level: inf", - "balance: 10000.000000 USD
equity: 10427.993279
margin: 1693.331400
free margin: 8734.661879
margin level: 6.158271", - "balance: 10458.293279 USD
equity: 9693.437185
margin: 2904.659027
free margin: 6788.778158
margin level: 3.337203", - "balance: 10059.737185 USD
equity: 10915.543626
margin: 4544.226100
free margin: 6371.317526
margin level: 2.402069", - "balance: 10253.053626 USD
equity: 10013.189048
margin: 3610.715700
free margin: 6402.473348
margin level: 2.773187", - "balance: 10013.189048 USD
equity: 9983.029048
margin: 97.720000
free margin: 9885.309048
margin level: 102.159528", - "balance: 9983.029048 USD
equity: 11390.181190
margin: 3811.719100
free margin: 7578.462090
margin level: 2.988201", - "balance: 10544.379048 USD
equity: 13683.987726
margin: 8466.999800
free margin: 5216.987926
margin level: 1.616155", - "balance: 13834.767726 USD
equity: 13842.496240
margin: 6438.115120
free margin: 7404.381119
margin level: 2.150085", - "balance: 13855.810394 USD
equity: 12183.961275
margin: 6448.627975
free margin: 5735.333301
margin level: 1.889388", - "balance: 12570.988335 USD
equity: 12439.138794
margin: 6302.140320
free margin: 6136.998474
margin level: 1.973796", - "balance: 12263.185323 USD
equity: 12462.221086
margin: 5418.630920
free margin: 7043.590166
margin level: 2.299884", - "balance: 12705.985323 USD
equity: 12575.547594
margin: 907.605920
free margin: 11667.941674
margin level: 13.855736", - "balance: 12854.331292 USD
equity: 12298.750082
margin: 1227.605920
free margin: 11071.144161
margin level: 10.018484", - "balance: 12472.515434 USD
equity: 12078.264306
margin: 2118.885120
free margin: 9959.379186
margin level: 5.700292", - "balance: 12412.816070 USD
equity: 12401.429005
margin: 2694.568520
free margin: 9706.860484
margin level: 4.602380", - "balance: 12303.776070 USD
equity: 12158.836935
margin: 3458.762920
free margin: 8700.074015
margin level: 3.515372", - "balance: 12303.776070 USD
equity: 11594.928561
margin: 5548.762920
free margin: 6046.165641
margin level: 2.089642", - "balance: 11750.942025 USD
equity: 12921.491196
margin: 3162.065620
free margin: 9759.425576
margin level: 4.086408", - "balance: 12611.822025 USD
equity: 12962.031448
margin: 3213.580320
free margin: 9748.451128
margin level: 4.033517", - "balance: 12865.371893 USD
equity: 12802.221682
margin: 5181.405220
free margin: 7620.816462
margin level: 2.470801", - "balance: 12771.489326 USD
equity: 15731.934346
margin: 4700.908120
free margin: 11031.026226
margin level: 3.346573", - "balance: 15663.375579 USD
equity: 14552.771889
margin: 2585.983720
free margin: 11966.788168
margin level: 5.627557", - "balance: 15812.062186 USD
equity: 14182.930290
margin: 2131.566800
free margin: 12051.363490
margin level: 6.653758", - "balance: 14182.930290 USD
equity: 14082.042901
margin: 790.913400
free margin: 13291.129501
margin level: 17.804785", - "balance: 14182.930290 USD
equity: 15119.085247
margin: 4219.979400
free margin: 10899.105847
margin level: 3.582739", - "balance: 15047.805247 USD
equity: 15743.138153
margin: 3319.066000
free margin: 12424.072153
margin level: 4.743243", - "balance: 15743.138153 USD
equity: 14965.829579
margin: 6132.479162
free margin: 8833.350418
margin level: 2.440421", - "balance: 15523.898153 USD
equity: 13436.435984
margin: 4879.889562
free margin: 8556.546422
margin level: 2.753430", - "balance: 15401.683778 USD
equity: 13824.741923
margin: 6819.349562
free margin: 7005.392362
margin level: 2.027282", - "balance: 15401.683778 USD
equity: 13449.394067
margin: 8841.740362
free margin: 4607.653706
margin level: 1.521125", - "balance: 15292.363906 USD
equity: 13281.798203
margin: 7701.740362
free margin: 5580.057842
margin level: 1.724519", - "balance: 13981.963906 USD
equity: 14140.088741
margin: 9712.288362
free margin: 4427.800379
margin level: 1.455897", - "balance: 15435.248099 USD
equity: 11744.587405
margin: 8416.071668
free margin: 3328.515736
margin level: 1.395495", - "balance: 14383.536910 USD
equity: 12079.238163
margin: 6412.671162
free margin: 5666.567001
margin level: 1.883652", - "balance: 14193.705638 USD
equity: 16341.160088
margin: 10391.466047
free margin: 5949.694040
margin level: 1.572556", - "balance: 15587.444966 USD
equity: 17336.720344
margin: 7112.775162
free margin: 10223.945182
margin level: 2.437406", - "balance: 15528.425727 USD
equity: 16574.016221
margin: 6062.775162
free margin: 10511.241060
margin level: 2.733734", - "balance: 14979.786496 USD
equity: 18271.453713
margin: 6644.557162
free margin: 11626.896551
margin level: 2.749838", - "balance: 15986.712361 USD
equity: 17694.145849
margin: 5143.695001
free margin: 12550.450848
margin level: 3.439968", - "balance: 15866.221917 USD
equity: 18706.238034
margin: 6160.446201
free margin: 12545.791833
margin level: 3.036507", - "balance: 16502.571917 USD
equity: 18930.683203
margin: 7893.830201
free margin: 11036.853002
margin level: 2.398162", - "balance: 17044.399307 USD
equity: 20183.268230
margin: 7942.592562
free margin: 12240.675668
margin level: 2.541144", - "balance: 16566.865642 USD
equity: 19571.433575
margin: 4847.817362
free margin: 14723.616214
margin level: 4.037164", - "balance: 16578.745642 USD
equity: 20642.718446
margin: 4716.897062
free margin: 15925.821384
margin level: 4.376334", - "balance: 16301.545642 USD
equity: 18899.112562
margin: 6115.079462
free margin: 12784.033100
margin level: 3.090575", - "balance: 17204.452518 USD
equity: 17746.701279
margin: 3735.079462
free margin: 14011.621818
margin level: 4.751358", - "balance: 17203.032518 USD
equity: 18935.596593
margin: 5676.595862
free margin: 13259.000732
margin level: 3.335731", - "balance: 17263.452518 USD
equity: 19040.181158
margin: 9265.998162
free margin: 9774.182997
margin level: 2.054844", - "balance: 17024.422965 USD
equity: 18667.449807
margin: 9085.998162
free margin: 9581.451646
margin level: 2.054529", - "balance: 17065.619203 USD
equity: 19682.078605
margin: 11651.465921
free margin: 8030.612684
margin level: 1.689236", - "balance: 13882.917772 USD
equity: 17342.087023
margin: 9816.175621
free margin: 7525.911401
margin level: 1.766685", - "balance: 13882.917772 USD
equity: 15176.113528
margin: 10606.175621
free margin: 4569.937906
margin level: 1.430875", - "balance: 14979.077772 USD
equity: 15335.963850
margin: 11199.983721
free margin: 4135.980129
margin level: 1.369284", - "balance: 12383.026762 USD
equity: 16001.556846
margin: 10192.264044
free margin: 5809.292803
margin level: 1.569971", - "balance: 12748.231397 USD
equity: 17176.631690
margin: 9128.378562
free margin: 8048.253128
margin level: 1.881674", - "balance: 12801.788742 USD
equity: 19347.529343
margin: 11818.378562
free margin: 7529.150782
margin level: 1.637071", - "balance: 14163.509854 USD
equity: 20190.888069
margin: 10187.165077
free margin: 10003.722991
margin level: 1.981993", - "balance: 20190.888069 USD
equity: 21081.173214
margin: 1865.619800
free margin: 19215.553414
margin level: 11.299823", - "balance: 21081.173214 USD
equity: 20750.310576
margin: 3408.495753
free margin: 17341.814823
margin level: 6.087821", - "balance: 20991.893214 USD
equity: 19968.116005
margin: 5668.815753
free margin: 14299.300252
margin level: 3.522449", - "balance: 20687.269032 USD
equity: 19255.134699
margin: 7299.541953
free margin: 11955.592746
margin level: 2.637855", - "balance: 20569.699325 USD
equity: 18677.077585
margin: 5141.252153
free margin: 13535.825432
margin level: 3.632788", - "balance: 20035.209059 USD
equity: 19539.340249
margin: 5021.853038
free margin: 14517.487211
margin level: 3.890863", - "balance: 19328.442142 USD
equity: 20271.397338
margin: 7491.283038
free margin: 12780.114299
margin level: 2.705998", - "balance: 20233.507940 USD
equity: 22380.439524
margin: 6911.600153
free margin: 15468.839371
margin level: 3.238098", - "balance: 23115.735505 USD
equity: 23172.803697
margin: 5172.950553
free margin: 17999.853144
margin level: 4.479611", - "balance: 23340.360461 USD
equity: 24762.474289
margin: 4607.864953
free margin: 20154.609336
margin level: 5.373958", - "balance: 24122.820461 USD
equity: 24082.721613
margin: 4557.099753
free margin: 19525.621860
margin level: 5.284660", - "balance: 24082.721613 USD
equity: 23289.788576
margin: 2098.734400
free margin: 21191.054176
margin level: 11.097063", - "balance: 24095.028576 USD
equity: 23132.170912
margin: 4759.879704
free margin: 18372.291208
margin level: 4.859823", - "balance: 24083.540506 USD
equity: 23297.762478
margin: 7620.265269
free margin: 15677.497208
margin level: 3.057343", - "balance: 25016.172478 USD
equity: 24550.987129
margin: 8727.875543
free margin: 15823.111586
margin level: 2.812940", - "balance: 24115.812478 USD
equity: 22224.905397
margin: 8705.593643
free margin: 13519.311754
margin level: 2.552945", - "balance: 23149.837494 USD
equity: 22254.956757
margin: 9084.210343
free margin: 13170.746414
margin level: 2.449850", - "balance: 22232.615676 USD
equity: 22079.068030
margin: 7456.766000
free margin: 14622.302030
margin level: 2.960944", - "balance: 22552.768030 USD
equity: 21124.591071
margin: 5616.766000
free margin: 15507.825071
margin level: 3.760988", - "balance: 22164.191071 USD
equity: 19197.822980
margin: 8123.237763
free margin: 11074.585217
margin level: 2.363322", - "balance: 22092.277156 USD
equity: 19160.188472
margin: 10502.648755
free margin: 8657.539717
margin level: 1.824320" - ], - "legendgroup": "g3", - "line": { - "color": "rgba(188, 189, 34, 1)" - }, - "mode": "lines+markers", - "name": "USDJPY", - "opacity": 1, - "type": "scatter", - "x": [ - "2021-05-05T00:00:00+00:00", - "2021-05-06T00:00:00+00:00", - "2021-05-07T00:00:00+00:00", - "2021-05-10T00:00:00+00:00", - "2021-05-11T00:00:00+00:00", - "2021-05-12T00:00:00+00:00", - "2021-05-13T00:00:00+00:00", - "2021-05-14T00:00:00+00:00", - "2021-05-17T00:00:00+00:00", - "2021-05-18T00:00:00+00:00", - "2021-05-19T00:00:00+00:00", - "2021-05-20T00:00:00+00:00", - "2021-05-21T00:00:00+00:00", - "2021-05-24T00:00:00+00:00", - "2021-05-25T00:00:00+00:00", - "2021-05-26T00:00:00+00:00", - "2021-05-27T00:00:00+00:00", - "2021-05-28T00:00:00+00:00", - "2021-05-31T00:00:00+00:00", - "2021-06-01T00:00:00+00:00", - "2021-06-02T00:00:00+00:00", - "2021-06-03T00:00:00+00:00", - "2021-06-04T00:00:00+00:00", - "2021-06-07T00:00:00+00:00", - "2021-06-08T00:00:00+00:00", - "2021-06-09T00:00:00+00:00", - "2021-06-10T00:00:00+00:00", - "2021-06-11T00:00:00+00:00", - "2021-06-14T00:00:00+00:00", - "2021-06-15T00:00:00+00:00", - "2021-06-16T00:00:00+00:00", - "2021-06-17T00:00:00+00:00", - "2021-06-18T00:00:00+00:00", - "2021-06-21T00:00:00+00:00", - "2021-06-22T00:00:00+00:00", - "2021-06-23T00:00:00+00:00", - "2021-06-24T00:00:00+00:00", - "2021-06-25T00:00:00+00:00", - "2021-06-28T00:00:00+00:00", - "2021-06-29T00:00:00+00:00", - "2021-06-30T00:00:00+00:00", - "2021-07-01T00:00:00+00:00", - "2021-07-02T00:00:00+00:00", - "2021-07-05T00:00:00+00:00", - "2021-07-06T00:00:00+00:00", - "2021-07-07T00:00:00+00:00", - "2021-07-08T00:00:00+00:00", - "2021-07-09T00:00:00+00:00", - "2021-07-12T00:00:00+00:00", - "2021-07-13T00:00:00+00:00", - "2021-07-14T00:00:00+00:00", - "2021-07-15T00:00:00+00:00", - "2021-07-16T00:00:00+00:00", - "2021-07-19T00:00:00+00:00", - "2021-07-20T00:00:00+00:00", - "2021-07-21T00:00:00+00:00", - "2021-07-22T00:00:00+00:00", - "2021-07-23T00:00:00+00:00", - "2021-07-26T00:00:00+00:00", - "2021-07-27T00:00:00+00:00", - "2021-07-28T00:00:00+00:00", - "2021-07-29T00:00:00+00:00", - "2021-07-30T00:00:00+00:00", - "2021-08-02T00:00:00+00:00", - "2021-08-03T00:00:00+00:00", - "2021-08-04T00:00:00+00:00", - "2021-08-05T00:00:00+00:00", - "2021-08-06T00:00:00+00:00", - "2021-08-09T00:00:00+00:00", - "2021-08-10T00:00:00+00:00", - "2021-08-11T00:00:00+00:00", - "2021-08-12T00:00:00+00:00", - "2021-08-13T00:00:00+00:00", - "2021-08-16T00:00:00+00:00", - "2021-08-17T00:00:00+00:00", - "2021-08-18T00:00:00+00:00", - "2021-08-19T00:00:00+00:00", - "2021-08-20T00:00:00+00:00", - "2021-08-23T00:00:00+00:00", - "2021-08-24T00:00:00+00:00", - "2021-08-25T00:00:00+00:00", - "2021-08-26T00:00:00+00:00", - "2021-08-27T00:00:00+00:00", - "2021-08-30T00:00:00+00:00", - "2021-08-31T00:00:00+00:00", - "2021-09-01T00:00:00+00:00", - "2021-09-02T00:00:00+00:00", - "2021-09-03T00:00:00+00:00" - ], - "y": [ - 109.188, - 109.09, - 108.604, - 108.81, - 108.615, - 109.699, - 109.453, - 109.362, - 109.209, - 108.888, - 109.227, - 108.767, - 108.945, - 108.74, - 108.747, - 109.139, - 109.808, - 109.872, - 109.556, - 109.467, - 109.547, - 110.276, - 109.524, - 109.238, - 109.492, - 109.618, - 109.319, - 109.682, - 110.071, - 110.056, - 110.708, - 110.221, - 110.211, - 110.314, - 110.658, - 110.949, - 110.874, - 110.778, - 110.614, - 110.538, - 111.101, - 111.521, - 111.02, - 110.962, - 110.61, - 110.608, - 109.748, - 110.102, - 110.349, - 110.627, - 109.95, - 109.831, - 110.081, - 109.447, - 109.843, - 110.286, - 110.149, - 110.547, - 110.381, - 109.774, - 109.909, - 109.47, - 109.656, - 109.305, - 109.042, - 109.473, - 109.761, - 110.217, - 110.267, - 110.56, - 110.428, - 110.386, - 109.592, - 109.243, - 109.595, - 109.763, - 109.763, - 109.799, - 109.694, - 109.679, - 110.023, - 110.081, - 109.85, - 109.913, - 110.007, - 110.025, - 109.937, - 109.712 - ], - "yaxis": "y3" - }, - { - "hovertext": [ - "order id: 2
hold probability: 0.1931
hold: False
volume: 1.619085
modified volume: 1.6200
fee: 0.030000
margin: 1620.000000
error: ", - "order id: 5
hold probability: 0.2995
hold: False
volume: 0.559512
modified volume: 0.5600
fee: 0.030000
margin: 560.000000
error: ", - "order id: 7
hold probability: 0.1458
hold: False
volume: 1.871262
modified volume: 1.8700
fee: 0.030000
margin: 1870.000000
error: ", - "order id: 8
hold probability: 0.2762
hold: False
volume: 1.743734
modified volume: 1.7400
fee: 0.030000
margin: 1740.000000
error: ", - "order id: 11
hold probability: 0.2673
hold: False
volume: 2.549673
modified volume: 2.5500
fee: 0.030000
margin: 2550.000000
error: ", - "order id: 13
hold probability: 0.0385
hold: False
volume: 1.538598
modified volume: 1.5400
fee: 0.030000
margin: 1540.000000
error: ", - "order id: 16
hold probability: 0.2243
hold: False
volume: 0.680192
modified volume: 0.6800
fee: 0.030000
margin: 680.000000
error: ", - "order id: 18
hold probability: 0.2389
hold: False
volume: 0.348899
modified volume: 0.3500
fee: 0.030000
margin: 350.000000
error: ", - "order id: 20
hold probability: 0.2735
hold: False
volume: 0.060621
modified volume: 0.0600
fee: 0.030000
margin: 60.000000
error: ", - "order id: 22
hold probability: 0.0617
hold: False
volume: 0.206748
modified volume: 0.2100
fee: 0.030000
margin: 210.000000
error: ", - "order id:
hold probability: 0.3570
hold: False
volume: 0.195008
modified volume: 0.2000
fee: nan
margin: nan
error: cannot add more orders", - "order id: 23
hold probability: 0.2098
hold: False
volume: 0.529452
modified volume: 0.5300
fee: 0.030000
margin: 530.000000
error: ", - "order id: 25
hold probability: 0.2775
hold: False
volume: 0.073237
modified volume: 0.0700
fee: 0.030000
margin: 70.000000
error: ", - "order id: 28
hold probability: 0.4724
hold: False
volume: 0.516047
modified volume: 0.5200
fee: 0.030000
margin: 520.000000
error: ", - "order id: 29
hold probability: 0.4200
hold: False
volume: 2.091569
modified volume: 2.0900
fee: 0.030000
margin: 2090.000000
error: ", - "order id: 31
hold probability: 0.3087
hold: False
volume: 0.518789
modified volume: 0.5200
fee: 0.030000
margin: 520.000000
error: ", - "order id:
hold probability: 0.3299
hold: False
volume: -1.722316
modified volume: 1.7200
fee: nan
margin: nan
error: cannot add more orders", - "order id: 33
hold probability: 0.1121
hold: False
volume: 2.503596
modified volume: 2.5000
fee: 0.030000
margin: 2500.000000
error: ", - "order id: 35
hold probability: 0.4660
hold: False
volume: 3.240359
modified volume: 3.2400
fee: 0.030000
margin: 3240.000000
error: ", - "order id: 37
hold probability: 0.2125
hold: False
volume: 1.218541
modified volume: 1.2200
fee: 0.030000
margin: 1220.000000
error: ", - "order id: 39
hold probability: 0.2143
hold: False
volume: 0.534960
modified volume: 0.5300
fee: 0.030000
margin: 530.000000
error: ", - "order id: 41
hold probability: 0.2024
hold: False
volume: 3.003322
modified volume: 3.0000
fee: 0.030000
margin: 3000.000000
error: ", - "order id: 42
hold probability: 0.2597
hold: False
volume: 2.891217
modified volume: 2.8900
fee: 0.030000
margin: 2890.000000
error: ", - "order id: 46
hold probability: 0.1145
hold: False
volume: 1.176740
modified volume: 1.1800
fee: 0.030000
margin: 1180.000000
error: ", - "order id: 48
hold probability: 0.4953
hold: False
volume: 1.828292
modified volume: 1.8300
fee: 0.030000
margin: 1830.000000
error: ", - "order id: 50
hold probability: 0.0657
hold: False
volume: 1.136640
modified volume: 1.1400
fee: 0.030000
margin: 1140.000000
error: ", - "order id: 52
hold probability: 0.2424
hold: False
volume: 2.449110
modified volume: 2.4500
fee: 0.030000
margin: 2450.000000
error: ", - "order id: 55
hold probability: 0.2389
hold: False
volume: 0.650336
modified volume: 0.6500
fee: 0.030000
margin: 650.000000
error: ", - "order id: 56
hold probability: 0.2544
hold: False
volume: 0.822842
modified volume: 0.8200
fee: 0.030000
margin: 820.000000
error: ", - "order id: 59
hold probability: 0.0631
hold: False
volume: 1.624233
modified volume: 1.6200
fee: 0.030000
margin: 1620.000000
error: ", - "order id: 60
hold probability: 0.2219
hold: False
volume: 2.035763
modified volume: 2.0400
fee: 0.030000
margin: 2040.000000
error: ", - "order id: 61
hold probability: 0.2025
hold: False
volume: 0.988367
modified volume: 0.9900
fee: 0.030000
margin: 990.000000
error: ", - "order id: 63
hold probability: 0.2832
hold: False
volume: 3.472024
modified volume: 3.4700
fee: 0.030000
margin: 3470.000000
error: ", - "order id: 66
hold probability: 0.3106
hold: False
volume: -0.475765
modified volume: 0.4800
fee: 0.030000
margin: 480.000000
error: ", - "order id: 68
hold probability: 0.2099
hold: False
volume: 0.875944
modified volume: 0.8800
fee: 0.030000
margin: 880.000000
error: ", - "order id: 70
hold probability: 0.1543
hold: False
volume: -1.213531
modified volume: 1.2100
fee: 0.030000
margin: 1210.000000
error: ", - "order id: 71
hold probability: 0.3369
hold: False
volume: 3.520978
modified volume: 3.5200
fee: 0.030000
margin: 3520.000000
error: ", - "order id: 74
hold probability: 0.3349
hold: False
volume: -0.065233
modified volume: 0.0700
fee: 0.030000
margin: 70.000000
error: ", - "order id: 76
hold probability: 0.4003
hold: False
volume: 2.671848
modified volume: 2.6700
fee: 0.030000
margin: 2670.000000
error: ", - "order id: 77
hold probability: 0.2298
hold: False
volume: -0.359446
modified volume: 0.3600
fee: 0.030000
margin: 360.000000
error: ", - "order id: 79
hold probability: 0.2357
hold: False
volume: 1.339944
modified volume: 1.3400
fee: 0.030000
margin: 1340.000000
error: ", - "order id:
hold probability: 0.2433
hold: False
volume: 0.031875
modified volume: 0.0300
fee: nan
margin: nan
error: cannot add more orders", - "order id: 81
hold probability: 0.3180
hold: False
volume: -0.184252
modified volume: 0.1800
fee: 0.030000
margin: 180.000000
error: ", - "order id: 84
hold probability: 0.3658
hold: False
volume: 2.763780
modified volume: 2.7600
fee: 0.030000
margin: 2760.000000
error: ", - "order id: 86
hold probability: 0.4354
hold: False
volume: 0.785653
modified volume: 0.7900
fee: 0.030000
margin: 790.000000
error: ", - "order id: 90
hold probability: 0.2761
hold: False
volume: -0.103811
modified volume: 0.1000
fee: 0.030000
margin: 100.000000
error: ", - "order id: 91
hold probability: 0.0856
hold: False
volume: 1.896111
modified volume: 1.9000
fee: 0.030000
margin: 1900.000000
error: ", - "order id: 92
hold probability: 0.4095
hold: False
volume: 2.787800
modified volume: 2.7900
fee: 0.030000
margin: 2790.000000
error: ", - "order id: 95
hold probability: 0.1449
hold: False
volume: 0.813397
modified volume: 0.8100
fee: 0.030000
margin: 810.000000
error: ", - "order id: 97
hold probability: 0.2304
hold: False
volume: 0.992999
modified volume: 0.9900
fee: 0.030000
margin: 990.000000
error: ", - "order id: 100
hold probability: 0.4921
hold: False
volume: -1.270829
modified volume: 1.2700
fee: 0.030000
margin: 1270.000000
error: ", - "order id: 102
hold probability: 0.2002
hold: False
volume: 1.507605
modified volume: 1.5100
fee: 0.030000
margin: 1510.000000
error: ", - "order id: 104
hold probability: 0.1517
hold: False
volume: 2.406100
modified volume: 2.4100
fee: 0.030000
margin: 2410.000000
error: ", - "order id: 106
hold probability: 0.4036
hold: False
volume: 0.300453
modified volume: 0.3000
fee: 0.030000
margin: 300.000000
error: ", - "order id: 108
hold probability: 0.1928
hold: False
volume: 0.936331
modified volume: 0.9400
fee: 0.030000
margin: 940.000000
error: ", - "order id: 110
hold probability: 0.1456
hold: False
volume: 1.636530
modified volume: 1.6400
fee: 0.030000
margin: 1640.000000
error: ", - "order id: 112
hold probability: 0.2121
hold: False
volume: 1.061274
modified volume: 1.0600
fee: 0.030000
margin: 1060.000000
error: ", - "order id: 114
hold probability: 0.2203
hold: False
volume: 2.235211
modified volume: 2.2400
fee: 0.030000
margin: 2240.000000
error: ", - "order id: 117
hold probability: 0.1273
hold: False
volume: 0.673580
modified volume: 0.6700
fee: 0.030000
margin: 670.000000
error: ", - "order id: 119
hold probability: 0.3689
hold: False
volume: -0.183124
modified volume: 0.1800
fee: 0.030000
margin: 180.000000
error: ", - "order id: 122
hold probability: 0.1026
hold: False
volume: 0.276759
modified volume: 0.2800
fee: 0.030000
margin: 280.000000
error: ", - "order id: 124
hold probability: 0.3367
hold: False
volume: 1.848964
modified volume: 1.8500
fee: 0.030000
margin: 1850.000000
error: ", - "order id: 126
hold probability: 0.3530
hold: False
volume: 2.977265
modified volume: 2.9800
fee: 0.030000
margin: 2980.000000
error: ", - "order id: 128
hold probability: 0.3341
hold: False
volume: 0.314086
modified volume: 0.3100
fee: 0.030000
margin: 310.000000
error: ", - "order id: 130
hold probability: 0.3355
hold: False
volume: 1.726230
modified volume: 1.7300
fee: 0.030000
margin: 1730.000000
error: ", - "order id: 132
hold probability: 0.3468
hold: False
volume: 2.070903
modified volume: 2.0700
fee: 0.030000
margin: 2070.000000
error: ", - "order id: 133
hold probability: 0.3596
hold: False
volume: 1.962781
modified volume: 1.9600
fee: 0.030000
margin: 1960.000000
error: ", - "order id: 136
hold probability: 0.1464
hold: False
volume: 0.665112
modified volume: 0.6700
fee: 0.030000
margin: 670.000000
error: ", - "order id: 138
hold probability: 0.0981
hold: False
volume: -0.381566
modified volume: 0.3800
fee: 0.030000
margin: 380.000000
error: " - ], - "legendgroup": "g3", - "marker": { - "color": [ - "green", - "green", - "green", - "green", - "green", - "green", - "green", - "green", - "green", - "green", - "gray", - "green", - "green", - "green", - "green", - "green", - "gray", - "green", - "green", - "green", - "green", - "green", - "green", - "green", - "green", - "green", - "green", - "green", - "green", - "green", - "green", - "green", - "green", - "red", - "green", - "red", - "green", - "red", - "green", - "red", - "green", - "gray", - "red", - "green", - "green", - "red", - "green", - "green", - "green", - "green", - "red", - "green", - "green", - "green", - "green", - "green", - "green", - "green", - "green", - "red", - "green", - "green", - "green", - "green", - "green", - "green", - "green", - "green", - "red" - ], - "size": [ - 18.125, - 11.5, - 19.6875, - 18.875, - 23.9375, - 17.625, - 12.25, - 10.1875, - 8.375, - 9.3125, - 9.25, - 11.3125, - 8.4375, - 11.25, - 21.0625, - 11.25, - 18.75, - 23.625, - 28.25, - 15.625, - 11.3125, - 26.75, - 26.0625, - 15.375, - 19.4375, - 15.125, - 23.3125, - 12.0625, - 13.125, - 18.125, - 20.75, - 14.1875, - 29.6875, - 11, - 13.5, - 15.5625, - 30, - 8.4375, - 24.6875, - 10.25, - 16.375, - 8.1875, - 9.125, - 25.25, - 12.9375, - 8.625, - 19.875, - 25.4375, - 13.0625, - 14.1875, - 15.9375, - 17.4375, - 23.0625, - 9.875, - 13.875, - 18.25, - 14.625, - 22, - 12.1875, - 9.125, - 9.75, - 19.5625, - 26.625, - 9.9375, - 18.8125, - 20.9375, - 20.25, - 12.1875, - 10.375 - ], - "symbol": [ - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-down", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-down", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-up", - "triangle-down", - "triangle-down", - "triangle-up", - "triangle-up", - "triangle-down", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-down", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-down", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-up", - "triangle-down" - ] - }, - "mode": "markers", - "name": "USDJPY", - "showlegend": false, - "type": "scatter", - "x": [ - "2021-05-18T00:00:00+00:00", - "2021-05-19T00:00:00+00:00", - "2021-05-20T00:00:00+00:00", - "2021-05-21T00:00:00+00:00", - "2021-05-25T00:00:00+00:00", - "2021-05-26T00:00:00+00:00", - "2021-05-27T00:00:00+00:00", - "2021-05-28T00:00:00+00:00", - "2021-05-31T00:00:00+00:00", - "2021-06-01T00:00:00+00:00", - "2021-06-02T00:00:00+00:00", - "2021-06-03T00:00:00+00:00", - "2021-06-04T00:00:00+00:00", - "2021-06-08T00:00:00+00:00", - "2021-06-09T00:00:00+00:00", - "2021-06-10T00:00:00+00:00", - "2021-06-11T00:00:00+00:00", - "2021-06-14T00:00:00+00:00", - "2021-06-15T00:00:00+00:00", - "2021-06-16T00:00:00+00:00", - "2021-06-18T00:00:00+00:00", - "2021-06-21T00:00:00+00:00", - "2021-06-22T00:00:00+00:00", - "2021-06-24T00:00:00+00:00", - "2021-06-25T00:00:00+00:00", - "2021-06-28T00:00:00+00:00", - "2021-06-30T00:00:00+00:00", - "2021-07-01T00:00:00+00:00", - "2021-07-02T00:00:00+00:00", - "2021-07-05T00:00:00+00:00", - "2021-07-06T00:00:00+00:00", - "2021-07-07T00:00:00+00:00", - "2021-07-08T00:00:00+00:00", - "2021-07-09T00:00:00+00:00", - "2021-07-12T00:00:00+00:00", - "2021-07-13T00:00:00+00:00", - "2021-07-14T00:00:00+00:00", - "2021-07-16T00:00:00+00:00", - "2021-07-19T00:00:00+00:00", - "2021-07-20T00:00:00+00:00", - "2021-07-21T00:00:00+00:00", - "2021-07-22T00:00:00+00:00", - "2021-07-23T00:00:00+00:00", - "2021-07-26T00:00:00+00:00", - "2021-07-28T00:00:00+00:00", - "2021-07-30T00:00:00+00:00", - "2021-08-02T00:00:00+00:00", - "2021-08-03T00:00:00+00:00", - "2021-08-04T00:00:00+00:00", - "2021-08-05T00:00:00+00:00", - "2021-08-06T00:00:00+00:00", - "2021-08-09T00:00:00+00:00", - "2021-08-10T00:00:00+00:00", - "2021-08-11T00:00:00+00:00", - "2021-08-12T00:00:00+00:00", - "2021-08-13T00:00:00+00:00", - "2021-08-16T00:00:00+00:00", - "2021-08-17T00:00:00+00:00", - "2021-08-19T00:00:00+00:00", - "2021-08-20T00:00:00+00:00", - "2021-08-23T00:00:00+00:00", - "2021-08-24T00:00:00+00:00", - "2021-08-25T00:00:00+00:00", - "2021-08-26T00:00:00+00:00", - "2021-08-27T00:00:00+00:00", - "2021-08-30T00:00:00+00:00", - "2021-08-31T00:00:00+00:00", - "2021-09-01T00:00:00+00:00", - "2021-09-02T00:00:00+00:00" - ], - "y": [ - 108.888, - 109.227, - 108.767, - 108.945, - 108.747, - 109.139, - 109.808, - 109.872, - 109.556, - 109.467, - 109.547, - 110.276, - 109.524, - 109.492, - 109.618, - 109.319, - 109.682, - 110.071, - 110.056, - 110.708, - 110.211, - 110.314, - 110.658, - 110.874, - 110.778, - 110.614, - 111.101, - 111.521, - 111.02, - 110.962, - 110.61, - 110.608, - 109.748, - 110.102, - 110.349, - 110.627, - 109.95, - 110.081, - 109.447, - 109.843, - 110.286, - 110.149, - 110.547, - 110.381, - 109.909, - 109.656, - 109.305, - 109.042, - 109.473, - 109.761, - 110.217, - 110.267, - 110.56, - 110.428, - 110.386, - 109.592, - 109.243, - 109.595, - 109.763, - 109.799, - 109.694, - 109.679, - 110.023, - 110.081, - 109.85, - 109.913, - 110.007, - 110.025, - 109.937 - ], - "yaxis": "y3" - }, - { - "hovertext": [ - "order id: 2
order type: Buy
close probability: 0.6755
margin: 1620.000000
profit: 458.293279", - "order id: 5
order type: Buy
close probability: 0.7314
margin: 560.000000
profit: -252.282402", - "order id: 7
order type: Buy
close probability: 0.7973
margin: 1870.000000
profit: 254.036440", - "order id: 8
order type: Buy
close probability: 0.8462
margin: 1740.000000
profit: -376.034578", - "order id: 11
order type: Buy
close probability: 0.6419
margin: 2550.000000
profit: 2394.224465
---------------------------------
order id: 13
order type: Buy
close probability: 0.6587
margin: 1540.000000
profit: 896.164214", - "order id: 16
order type: Buy
close probability: 0.6287
margin: 680.000000
profit: 21.042668", - "order id: 18
order type: Buy
close probability: 0.5576
margin: 350.000000
profit: -139.083011", - "order id: 22
order type: Buy
close probability: 0.6032
margin: 210.000000
profit: 148.345968", - "order id: 20
order type: Buy
close probability: 0.5499
margin: 60.000000
profit: -3.396516
---------------------------------
order id: 23
order type: Buy
close probability: 0.7792
margin: 530.000000
profit: -378.419342", - "order id: 25
order type: Buy
close probability: 0.6171
margin: 70.000000
profit: -20.249364", - "order id: 29
order type: Buy
close probability: 0.6259
margin: 2090.000000
profit: -628.994045", - "order id: 28
order type: Buy
close probability: 0.5484
margin: 520.000000
profit: 259.359868", - "order id: 31
order type: Buy
close probability: 0.5121
margin: 520.000000
profit: 334.048121
---------------------------------
order id: 33
order type: Buy
close probability: 0.6675
margin: 2500.000000
profit: -102.220688", - "order id: 35
order type: Buy
close probability: 0.7968
margin: 3240.000000
profit: 1820.356252", - "order id: 37
order type: Buy
close probability: 0.7557
margin: 1220.000000
profit: -583.371896", - "order id: 39
order type: Buy
close probability: 0.5328
margin: 530.000000
profit: 199.723472
---------------------------------
order id: 41
order type: Buy
close probability: 0.6002
margin: 3000.000000
profit: 851.271485", - "order id: 42
order type: Buy
close probability: 0.5223
margin: 2890.000000
profit: 679.852905", - "order id: 46
order type: Buy
close probability: 0.7871
margin: 1180.000000
profit: -134.214375", - "order id: 50
order type: Buy
close probability: 0.5512
margin: 1140.000000
profit: -109.319872", - "order id: 48
order type: Buy
close probability: 0.6031
margin: 1830.000000
profit: 1169.994889
---------------------------------
order id: 52
order type: Buy
close probability: 0.5924
margin: 2450.000000
profit: 856.789304", - "order id: 55
order type: Buy
close probability: 0.8419
margin: 650.000000
profit: -310.889930", - "order id: 56
order type: Buy
close probability: 0.5210
margin: 820.000000
profit: -65.031272", - "order id: 59
order type: Buy
close probability: 0.5968
margin: 1620.000000
profit: -559.479251", - "order id: 60
order type: Buy
close probability: 0.6439
margin: 2040.000000
profit: -59.019239", - "order id: 61
order type: Buy
close probability: 0.7895
margin: 990.000000
profit: -802.839232", - "order id: 63
order type: Buy
close probability: 0.5803
margin: 3470.000000
profit: 1021.125865", - "order id: 66
order type: Sell
close probability: 0.7027
margin: 480.000000
profit: -120.490444", - "order id: 68
order type: Buy
close probability: 0.5578
margin: 880.000000
profit: -343.356071
---------------------------------
order id: 70
order type: Sell
close probability: 0.8185
margin: 1210.000000
profit: 712.023647", - "order id: 71
order type: Buy
close probability: 0.5055
margin: 3520.000000
profit: -477.533665", - "order id: 74
order type: Sell
close probability: 0.7018
margin: 70.000000
profit: 13.255283
---------------------------------
order id: 76
order type: Buy
close probability: 0.6489
margin: 2670.000000
profit: 889.651594", - "order id: 77
order type: Sell
close probability: 0.7252
margin: 360.000000
profit: -239.029553", - "order id: 79
order type: Buy
close probability: 0.5102
margin: 1340.000000
profit: 78.908508
---------------------------------
order id: 81
order type: Sell
close probability: 0.8123
margin: 180.000000
profit: 22.177730", - "order id: 84
order type: Buy
close probability: 0.9067
margin: 2760.000000
profit: -1601.581431", - "order id: 86
order type: Buy
close probability: 0.7488
margin: 790.000000
profit: -203.883052", - "order id: 90
order type: Sell
close probability: 0.8809
margin: 100.000000
profit: 53.557345", - "order id: 91
order type: Buy
close probability: 0.7689
margin: 1900.000000
profit: 239.511112", - "order id: 92
order type: Buy
close probability: 0.6863
margin: 2790.000000
profit: 1751.359773
---------------------------------
order id: 95
order type: Buy
close probability: 0.9020
margin: 810.000000
profit: 190.395496", - "order id: 97
order type: Buy
close probability: 0.7688
margin: 990.000000
profit: 382.645145", - "order id: 100
order type: Sell
close probability: 0.8424
margin: 1270.000000
profit: -428.464182", - "order id: 102
order type: Buy
close probability: 0.6205
margin: 1510.000000
profit: 179.130293", - "order id: 104
order type: Buy
close probability: 0.7466
margin: 2410.000000
profit: -445.382567
---------------------------------
order id: 106
order type: Buy
close probability: 0.5122
margin: 300.000000
profit: -19.567699", - "order id: 108
order type: Buy
close probability: 0.6629
margin: 940.000000
profit: -706.766917", - "order id: 110
order type: Buy
close probability: 0.8797
margin: 1640.000000
profit: -568.970094", - "order id: 112
order type: Buy
close probability: 0.6457
margin: 1060.000000
profit: 311.437566", - "order id: 114
order type: Buy
close probability: 0.8712
margin: 2240.000000
profit: 281.624956", - "order id: 117
order type: Buy
close probability: 0.6880
margin: 670.000000
profit: 3.661236", - "order id: 119
order type: Sell
close probability: 0.7036
margin: 180.000000
profit: 12.306963", - "order id: 122
order type: Buy
close probability: 0.7535
margin: 280.000000
profit: -11.488070", - "order id: 124
order type: Buy
close probability: 0.6745
margin: 1850.000000
profit: 527.980513", - "order id: 128
order type: Buy
close probability: 0.6833
margin: 310.000000
profit: -73.654984", - "order id: 126
order type: Buy
close probability: 0.8258
margin: 2980.000000
profit: -379.572935", - "order id: 130
order type: Buy
close probability: 0.7809
margin: 1730.000000
profit: 199.723654
---------------------------------
order id: 132
order type: Buy
close probability: 0.6961
margin: 2070.000000
profit: 120.428700", - "order id: 133
order type: Buy
close probability: 0.7018
margin: 1960.000000
profit: -21.376960", - "order id: 136
order type: Buy
close probability: 0.8817
margin: 670.000000
profit: -71.913914" - ], - "legendgroup": "g3", - "marker": { - "color": "black", - "line": { - "width": 1.5 - }, - "size": 7, - "symbol": "line-ns" - }, - "mode": "markers", - "name": "USDJPY", - "showlegend": false, - "type": "scatter", - "x": [ - "2021-05-19T00:00:00+00:00", - "2021-05-20T00:00:00+00:00", - "2021-05-21T00:00:00+00:00", - "2021-05-24T00:00:00+00:00", - "2021-05-27T00:00:00+00:00", - "2021-05-28T00:00:00+00:00", - "2021-06-01T00:00:00+00:00", - "2021-06-03T00:00:00+00:00", - "2021-06-04T00:00:00+00:00", - "2021-06-07T00:00:00+00:00", - "2021-06-10T00:00:00+00:00", - "2021-06-14T00:00:00+00:00", - "2021-06-15T00:00:00+00:00", - "2021-06-16T00:00:00+00:00", - "2021-06-18T00:00:00+00:00", - "2021-06-22T00:00:00+00:00", - "2021-06-23T00:00:00+00:00", - "2021-06-25T00:00:00+00:00", - "2021-06-29T00:00:00+00:00", - "2021-07-01T00:00:00+00:00", - "2021-07-02T00:00:00+00:00", - "2021-07-05T00:00:00+00:00", - "2021-07-06T00:00:00+00:00", - "2021-07-07T00:00:00+00:00", - "2021-07-08T00:00:00+00:00", - "2021-07-09T00:00:00+00:00", - "2021-07-12T00:00:00+00:00", - "2021-07-14T00:00:00+00:00", - "2021-07-15T00:00:00+00:00", - "2021-07-20T00:00:00+00:00", - "2021-07-23T00:00:00+00:00", - "2021-07-26T00:00:00+00:00", - "2021-07-27T00:00:00+00:00", - "2021-07-30T00:00:00+00:00", - "2021-08-03T00:00:00+00:00", - "2021-08-04T00:00:00+00:00", - "2021-08-05T00:00:00+00:00", - "2021-08-06T00:00:00+00:00", - "2021-08-10T00:00:00+00:00", - "2021-08-11T00:00:00+00:00", - "2021-08-12T00:00:00+00:00", - "2021-08-13T00:00:00+00:00", - "2021-08-16T00:00:00+00:00", - "2021-08-17T00:00:00+00:00", - "2021-08-18T00:00:00+00:00", - "2021-08-20T00:00:00+00:00", - "2021-08-23T00:00:00+00:00", - "2021-08-24T00:00:00+00:00", - "2021-08-25T00:00:00+00:00", - "2021-08-27T00:00:00+00:00", - "2021-08-30T00:00:00+00:00", - "2021-08-31T00:00:00+00:00", - "2021-09-01T00:00:00+00:00", - "2021-09-02T00:00:00+00:00" - ], - "y": [ - 109.227, - 108.767, - 108.945, - 108.74, - 109.808, - 109.872, - 109.467, - 110.276, - 109.524, - 109.238, - 109.319, - 110.071, - 110.056, - 110.708, - 110.211, - 110.658, - 110.949, - 110.778, - 110.538, - 111.521, - 111.02, - 110.962, - 110.61, - 110.608, - 109.748, - 110.102, - 110.349, - 109.95, - 109.831, - 109.843, - 110.547, - 110.381, - 109.774, - 109.656, - 109.042, - 109.473, - 109.761, - 110.217, - 110.56, - 110.428, - 110.386, - 109.592, - 109.243, - 109.595, - 109.763, - 109.799, - 109.694, - 109.679, - 110.023, - 109.85, - 109.913, - 110.007, - 110.025, - 109.937 - ], - "yaxis": "y3" - } - ], - "layout": { - "height": 600, - "template": { - "data": { - "bar": [ - { - "error_x": { - "color": "#2a3f5f" - }, - "error_y": { - "color": "#2a3f5f" - }, - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "bar" - } - ], - "barpolar": [ - { - "marker": { - "line": { - "color": "#E5ECF6", - "width": 0.5 - }, - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "barpolar" - } - ], - "carpet": [ - { - "aaxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "baxis": { - "endlinecolor": "#2a3f5f", - "gridcolor": "white", - "linecolor": "white", - "minorgridcolor": "white", - "startlinecolor": "#2a3f5f" - }, - "type": "carpet" - } - ], - "choropleth": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "choropleth" - } - ], - "contour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "contour" - } - ], - "contourcarpet": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "contourcarpet" - } - ], - "heatmap": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmap" - } - ], - "heatmapgl": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "heatmapgl" - } - ], - "histogram": [ - { - "marker": { - "pattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - } - }, - "type": "histogram" - } - ], - "histogram2d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2d" - } - ], - "histogram2dcontour": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "histogram2dcontour" - } - ], - "mesh3d": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "type": "mesh3d" - } - ], - "parcoords": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "parcoords" - } - ], - "pie": [ - { - "automargin": true, - "type": "pie" - } - ], - "scatter": [ - { - "fillpattern": { - "fillmode": "overlay", - "size": 10, - "solidity": 0.2 - }, - "type": "scatter" - } - ], - "scatter3d": [ - { - "line": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatter3d" - } - ], - "scattercarpet": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattercarpet" - } - ], - "scattergeo": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergeo" - } - ], - "scattergl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattergl" - } - ], - "scattermapbox": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scattermapbox" - } - ], - "scatterpolar": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolar" - } - ], - "scatterpolargl": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterpolargl" - } - ], - "scatterternary": [ - { - "marker": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "type": "scatterternary" - } - ], - "surface": [ - { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - }, - "colorscale": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "type": "surface" - } - ], - "table": [ - { - "cells": { - "fill": { - "color": "#EBF0F8" - }, - "line": { - "color": "white" - } - }, - "header": { - "fill": { - "color": "#C8D4E3" - }, - "line": { - "color": "white" - } - }, - "type": "table" - } - ] - }, - "layout": { - "annotationdefaults": { - "arrowcolor": "#2a3f5f", - "arrowhead": 0, - "arrowwidth": 1 - }, - "autotypenumbers": "strict", - "coloraxis": { - "colorbar": { - "outlinewidth": 0, - "ticks": "" - } - }, - "colorscale": { - "diverging": [ - [ - 0, - "#8e0152" - ], - [ - 0.1, - "#c51b7d" - ], - [ - 0.2, - "#de77ae" - ], - [ - 0.3, - "#f1b6da" - ], - [ - 0.4, - "#fde0ef" - ], - [ - 0.5, - "#f7f7f7" - ], - [ - 0.6, - "#e6f5d0" - ], - [ - 0.7, - "#b8e186" - ], - [ - 0.8, - "#7fbc41" - ], - [ - 0.9, - "#4d9221" - ], - [ - 1, - "#276419" - ] - ], - "sequential": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ], - "sequentialminus": [ - [ - 0, - "#0d0887" - ], - [ - 0.1111111111111111, - "#46039f" - ], - [ - 0.2222222222222222, - "#7201a8" - ], - [ - 0.3333333333333333, - "#9c179e" - ], - [ - 0.4444444444444444, - "#bd3786" - ], - [ - 0.5555555555555556, - "#d8576b" - ], - [ - 0.6666666666666666, - "#ed7953" - ], - [ - 0.7777777777777778, - "#fb9f3a" - ], - [ - 0.8888888888888888, - "#fdca26" - ], - [ - 1, - "#f0f921" - ] - ] - }, - "colorway": [ - "#636efa", - "#EF553B", - "#00cc96", - "#ab63fa", - "#FFA15A", - "#19d3f3", - "#FF6692", - "#B6E880", - "#FF97FF", - "#FECB52" - ], - "font": { - "color": "#2a3f5f" - }, - "geo": { - "bgcolor": "white", - "lakecolor": "white", - "landcolor": "#E5ECF6", - "showlakes": true, - "showland": true, - "subunitcolor": "white" - }, - "hoverlabel": { - "align": "left" - }, - "hovermode": "closest", - "mapbox": { - "style": "light" - }, - "paper_bgcolor": "white", - "plot_bgcolor": "#E5ECF6", - "polar": { - "angularaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "radialaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "scene": { - "xaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "yaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - }, - "zaxis": { - "backgroundcolor": "#E5ECF6", - "gridcolor": "white", - "gridwidth": 2, - "linecolor": "white", - "showbackground": true, - "ticks": "", - "zerolinecolor": "white" - } - }, - "shapedefaults": { - "line": { - "color": "#2a3f5f" - } - }, - "ternary": { - "aaxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "baxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - }, - "bgcolor": "#E5ECF6", - "caxis": { - "gridcolor": "white", - "linecolor": "white", - "ticks": "" - } - }, - "title": { - "x": 0.05 - }, - "xaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - }, - "yaxis": { - "automargin": true, - "gridcolor": "white", - "linecolor": "white", - "ticks": "", - "title": { - "standoff": 15 - }, - "zerolinecolor": "white", - "zerolinewidth": 2 - } - } - }, - "title": { - "text": "Balance: 22092.277156 USD ~ Equity: 19160.188472 ~ Margin: 10502.648755 ~ Free Margin: 8657.539717 ~ Margin Level: 1.824320" - }, - "width": 1400, - "xaxis": { - "autorange": true, - "range": [ - "2021-04-27 19:13:51.8684", - "2021-09-10 04:46:08.1316" - ], - "tickformat": "%Y-%m-%d", - "type": "date" - }, - "yaxis": { - "autorange": true, - "range": [ - 1.1623930730233536, - 1.2297028027991792 - ], - "tickfont": { - "color": "rgba(31, 119, 180, 0.8)" - }, - "type": "linear" - }, - "yaxis2": { - "autorange": true, - "overlaying": "y", - "range": [ - 1.6823167195537918, - 1.7529663271258091 - ], - "tickfont": { - "color": "rgba(144, 94, 131, 0.8)" - }, - "type": "linear" - }, - "yaxis3": { - "autorange": true, - "overlaying": "y", - "range": [ - 108.40712627026566, - 111.74801380515137 - ], - "tickfont": { - "color": "rgba(188, 189, 34, 0.8)" - }, - "type": "linear" - } - } - }, - "image/png": "iVBORw0KGgoAAAANSUhEUgAABE0AAAJYCAYAAACXVBgzAAAgAElEQVR4XuydB5wUxbrFz+Zld8k5B0EyomRUwAhmxZyzIqIYr/GZc8ScuUZEvQooIqIIAiIiUXLOS97A5vyqZu2lp7d7urqnZ9Oc+j3f1Z1K/a/qCqe/+iqiRAQwkAAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJ+BGIoGjCHkECJEACJEACJEACJEACJEACJEACJEAC5QlQNGGvIAESIAESIAESIAESIAESIAESIAESIAETAhRN2C1IgARIgARIgARIgARIgARIgARIgARIgKIJ+wAJkAAJkAAJkAAJkAAJkAAJkAAJkAAJqBGgpYkaJ8YiARIgARIgARIgARIgARIgARIgARIIMwIUTcKswfm4JEACJEACJEACJEACJEACJEACJEACagQomqhxYiwSIAESIAESIAESIAESIAESIAESIIEwI0DRJMwanI9LAiRAAiRAAiRAAiRAAiRAAiRAAiSgRoCiiRonxiIBEiABEiABEiABEiABEiABEiABEggzAhRNwqzB+bgkQAIkQAIkQAIkQAIkQAIkQAIkQAJqBCiaqHFiLBIgARIgARIgARIgARIgARIgARIggTAjQNEkzBqcj0sCJEACJEACJEACJEACJEACJEACJKBGgKKJGifGIgESIAESIAESIAESIAESIAESIAESCDMCFE3CrMH5uCRAAiRAAiRAAiRAAiRAAiRAAiRAAmoEKJqocWIsEiABEiABEiABEiABEiABEiABEiCBMCNA0STMGpyPSwIkQAIkQAIkQAIkQAIkQAIkQAIkoEaAookaJ8YiARIgARIgARIgARIgARIgARIgARIIMwIUTcKswfm4JEACJEACJEACJEACJEACJEACJEACagQomqhxYiwSIAESIAESIAESIAESIAESIAESIIEwI0DRJMwanI9LAiRAAiRAAiRAAiRAAiRAAiRAAiSgRoCiiRonxiIBEiABEiABEiABEiABEiABEiABEggzAhRNwqzB+bgkQAIkQAIkQAIkQAIkQAIkQAIkQAJqBCiaqHFiLBIgARIgARIgARIgARIgARIgARIggTAjQNEkzBqcj0sCJEACJEACJEACJEACJEACJEACJKBGgKKJGifGIgESIAESIAESIAESIAESIAESIAESCDMCFE3CrMH5uCRAAiRAAiRAAiRAAiRAAiRAAiRAAmoEKJqocWIsEiABEiABEiABEiABEiABEiABEiCBMCNA0STMGpyPSwIkQAIkQAIkQAIkQAIkQAIkQAIkoEaAookaJ8YiARIgARIgARIgARIgARIgARIgARIIMwIUTcKswfm4JEACJEACJEACJEACJEACJEACJEACagQomqhxYiwSIAESIAESIAESIAESIAESIAESIIEwI0DRJMwanI9LAiRAAiRAAiRAAiRAAiRAAiRAAiSgRoCiiRonxiIBEiABEiABEiABEiABEiABEiABEggzAhRNwqzB+bgkQAIkQAIkQAIkQAIkQAIkQAIkQAJqBCiaqHFiLBIgARIgARIgARIgARIgARIgARIggTAjQNEkzBqcj0sCJEACJEACJEACJEACJEACJEACJKBGgKKJGqdysf7vhY/w3bS5WDX7Y5c5MBkJkAAJkAAJkAAJkAAJkAAJkAAJkEBVJlDjRZOvv5+Fx1/5xLQNRp5+PJ78z/Wu2iecRJNV67fiopse8+M0uG93fPDSveXYmfG+5epzMOba80w5D7/sXuxM3l/2m1XcWX8sxZiHXvPL4+v3H0P3I9uVy7f7sGv8/taqRWP8POFFR+2skseb/52Edz6ZEjBfTVS78Z4XMX/RKsu4VjxlAlmXR++6GhedfUK59GZc9JHefHosTjj2aL90Zu1pxVKfUCvLqi4aD2OZZuXJfI3vn1U8GTcQH0cN6zJyoLppWaowdFk8NPZ6ZhrvUJarUl9Zjx9+mR/wHdPGSy0/lfaUY8NZpwy2HDu0vIzvltkYYtZ+Zu+GyvNqbRGIu/F5Zb5W5RnHQBlXRYzX0hnrYRy7jM9k5GM2NlVWn9K3k9VcoLF1M66rtK9qHMm5MuugsQrUj1X7vd1cZuyPqu+z0/VAIPbGOtqNIdqzW7WRSt0CrR/Nxv1A87yxvmbvvZZnMGtT1f5rjGe3RqmsMcHsefR9wW4dGGj96ZaVajqzeVs1bbDxnMxBsiyztaTxvVfts4Hima39rJ410FymMo/ZrVW1cs3GCLsxMdA8HWjt4hWbYPuHPr1WJ5V9XWWOA9oY5WUdtHlCdcwNG9HE+PIEO5iFi2iidSjjy2S2YNQWGPrBLBBnmYc+X60s42BothnX+BsXjGb10gYElY2IHEi8yEOW2aZFE1NhST9YWT2zFkd7TjvRxOp348Cq5edm0HEjmmhtZ2xTra+Ytb/Z4KW1YWUtgJwOrF5OaPoFTVUTTew2JrLusu1k0AuXdhtOq36j56r1R7s+YRZP639uhBMrsUKrm9l4oz2P/j21GltVFgb6DY7qu2z2zGZlWY2tXvdps/z0m3yzhazd7xVRR60Muz4c6rpobWfVh530eycCrFaufj41m++crgcC8TKuFVTYahsus35k1sedrgklh+3J+/zGNbO/WdVVdY2g8qxexDFrVy/yDUUe+g2t2fhv93so6mSWp9M+5VW9VOcgrTzVtg+2z9qtIY3PL99hlc2s2brWbPyR+VuNX/LjreoeIRAHlbVLoL6iupb3qq9oazTt47XZekIv9KiuN7ysn7GfelkHp2v7sBVNtJfHOOmpNnQ4iSa+gc5gKaINSPoXXP6tccN65SwbzAY0q0Wa9ndt8AokKphtxmRZRush1c2V1vbB5uFkQ2bVj4xqtBeiiZOFsZtB3ShuqQxGetZ28c02nqrva7Dx7OoWbP5u0gfbnm7K1NIYv8Bafc21qqPVO6liNSLrYCc26p/NaiMj/y6DmcWckY2qdVagRaGxHoHaL9BiUUsnF5PyiKjqAsJsoWc21slnd7NJDaY/aWn175l8NuO4p1k1SUHa7dztRT0rMw/j11cr0cRJv1cdS6z6t/Z3fV2crAcC8XSzUdOe3aqfWL1fwXKgaFIxb4ZxDDSziOjfu4tvfLQT1SumxhVXipM5SNbKyV7GzbuoMhdb0VEVTWR/MLNmN+4RrNbmTtZ3Vnmorl2sntXJ2OF1b9LaVc6p8r3R76H0wp+T9YbXdQxVfk7aXtYhrEUTq0237BjGYFyYmg00VuaNxgFdezleeexWv2MvTsxIjeqr0ZTMKi87ywXVjulEMTZbiFgNEMZ8AwkQqgscJxssq+d3kofqxKKSpx1nu9/1zyMnoGAWEHZlWYkmqmWqDF5m76xqnw0mnkrdjPkbNzfSqkYe0dKPJVZ9xfh+GPuKlemo3GT+MmeRrxyzryaBvsiofNExYxhosg/0W6D3xO7dkM+xcNlapWN3wW6QjM8caNwJJNAan9fMgk6WFejZ9eOhjCePB6qIJk6EXFkH1TEsmHfKLK3+2ffuTynXxtpRRdnHzb7ymx2BtDpaIv+uF6f1G36jaK29u8Y4emtCfd3ls+mPblqNgdoYofqFU8/Mrk2d9HvVudSt0Kevt2pZMo32jCp9XCtDvzazGn+sREHVDWQgQUpVzKusdyzQps1q3tDS6Pt4E/GBTDv6rrcYVT1KbSZEq1r+6fuQPDquf7/0fcb4m1mZ8tnM5j7t/Tnx2GPKjobr19Vmzyk56NvfbCzX1/2ux97yO55u1s+151Gdn53MQVr9VK0bgumzdutHs36pKppY9WljfQO936qihR0Du7WLWV3dsPFy7tWe6ZQhfX3vtL4fSi7NmjRA08YNyq03rNahxvdY3+fHvf9NmasCfb8z7p+1OVcfx6z9tLpfdt7Jfi4c7I5vGsc0lfdLtm3YiiZmlhISomwU2Tn0qqXZRsNKNJGdTu97wswUTPubUdgwGyDMypYNJwdbzdzdzMTaytzOK9HEasFvtakyTsZWA49xwAm0MLRbNGp1sWprJ4OOah7BcjHWyW4wNZu4ZR5Wx9Hk4sLoh0VV1LCri9mza5sClUWvijDhhK/2PmsiqNmgKN+HPftSbK0NVOpmNwibvaduRRNZllMrDqvJ3OmizNhH3YomgdLZLTwkN/lFRAonep9IxjFVVYAw+v0JNDbYbfq0dtZP2lZjlfZ+6N9Bq4Wd8f2zq4f+GZxYjjjp68aNqtUGxOl7JnlIf1XSj5U2lmkMpcBg1nfk31TmX/1Zf7NxyYyV2XEO47ur35CZbeLMNoShEk2c9nurxa/KxyKtD9htJrR4qkcBtPFbvuOa1YC+T5u1nfGdsBpj9M+rYtXqV+6/fvLMNppmH86sPmAZhTlZhupCX6uPcf43im/a7yrzr0q76Pu42XyqcdWzMZuzzY5OqK6xjHPfxMkz/S5l0DZ5l5x7ku+jpP5d1Oqv52Q13mnvplmbWNXVeGQvkGgin8O4OTUT3NzMz6pzkL4djOtCs/4dTJ9188HLzKeJyuZWv/bTMw4kmqgIpirrT7u1i9nawg0bvbWv2Rijny/t9jr6sVu/D9WeRc5dZh9pJA/5cUNvmWLGSD/ems2DZs9vNpZYiSZyDaji6sGMg+p6R+MZNqKJVadRmUzM1FiVF0yWaWa2ajWRG/O026T6Bt1/J3CrBZnqhtjupdL/rvFQcYJnNeBbLeKNA04g1VxVNAlmYao9t2oeqpsT1SNDKn3A2HbaYGPm/8K4AHAyIdvVxWywVBV15DOoDF5uFlbaAslsUS/fxaO6d7R1Nmr1hcpsEW+3UPfC0sS4cDQ6RDarg9Y+br5qBxofAokfZqKvfvNk9VU20MJD3xZWTlC1Z/Ri/LB6vwLNHWabUCvuZl9YzI4MGUV1VdFEZaGnf0atPk6/+nr5nmnzlqyLDJKHfH81x8CqXwXN5l83C2ezucZKNDGbc4P9Ymr2/gWa/7zo91o/MPsaaNaXVUQTJ/ONfGZtk2bcwJn1UbP5KVA/MZubVPq80w2O6ocD/bimMkYb16Vm44Hk/dHEaUoWeWaCj9bvNC4q47JZ/9e/xzJPq/dB1YJQ/6wyPymOyD4ij4dLoVWOzdrfVdbAZuUGemetfjP2NztLE/28rbqeVV2rq8xB2lhoZblux061zzpZtwV6Pu2dtdp7qIp6Zu+5yp5OZX3vVDRxw8Y4r5nVXbb/8lUbbT8IauOsZjWpXyfqP3aorje091vfdwKltfv4p2ppYlwzqa4RVPYd+jErbEQTM9XUTMmScKw2eipfA/Xqn/7lNy48zDYLxo6v0kkDveja11i3NwRZDV7aQsZugRFoQFUVTWQdrBbxKvUwW/ipTjr6zZ20lLEzYXSyOVH5qqPvi3ZlG5/JuFkNVLdAG1t9vm5EE316s68UZl+BAn1JcDLB6DdZWj30ix0nX+FUB9ZAC0Kz9zkUliayDlabPON5Vafvgll8FYsR4yJHdfET6CYcs35i3Cx6sXk0PrPduGx8t/WbETPH1XohU/9lzc7Rpl099H1e9Qu2meBq10dC8Z5p7a61n+a/RX8bWaCvssY62y28tPhW72M4iibaYlr+r9Gq1Y1oorrBMs4Z+vL1v+nXEFYbFTsBW3sf9RvMQBtFJ/OPVlcnc4fqxxSZt6yz8dYy43rQ7N20ep9V1iROLZi0svSiRKB1hKqwbxz7tPzlxk8eJZBr3kB1tRKI9P3aShgJVP+qIpqozkF2HzXsjmvp16iB3hunQmOgOUf1HTSzZtLWZ/J/zayNjH/X10N1fe9UNHHDxsxy09j3tKOsZrduGvka5z2t70srbeMYafxYZPVBUfXSAqsx2uw9s7I0Mbt0w0vRRF+XsBZNzBYFZl82zF4Cs8bTFrz6hbGTrx/GPFWUz0BfB+TzqS6W7RbG+kWlNIUKRjDRuJt1dKsBR29SrdXFzhFiRQom2mCswtvJwshOqLBqN+MAH2jAV50M7Oqiuokz9iVtEFZZXKrWVWsPM7FJvzFVFaNU6uabcP+9njuQR/+KsDQxvmPaAkLFsk51LNDiqUxORjNb7ey31Q1TKl80zUQTYzu5XeQHYhCon9tZ/ukXZXbHcLSxxOprscr75uR9cSOYhOo9078/2pys/5tZn1OdfwPNq1YbpeommnjV742bL7uPNHbvc6BNidk7F2hDof9N1ksG4wcis36ispkOdD24LEd/E5jKeKnyhVo/f6gcQTDbOMk89GsllfWIfhy32ySrzG+BeMiNqtWHRX06u3nKOPbpP3Qa1xNmR+WMIr7Vet6sHQKN8VVBNHEzB5nxVv2YZrc2UhU5VN4jGcfJ+tlqvDJ+wJP9wc65uNN32M5KRz6LWzayn2nioJ6bfj+oMobo1+L6sVvjph8/zNYbWnnGZ3ViFWv1oaIqiSb6MSvsRRP9osBqU6gimlgNVMGIJiqLYlVzRtUBKVA8FcsO/cQfaIHkRF20qpPR5NNs8FDdFJuV4UR0UWkrJ5tMLa6dUGHFxrhZCjQ4q26s7BR0JwxkvY3l2k2+Mo0bVd6Lvq9SN33frwqiiV4okc63ZFC5KcYpLxXRxJin0bTc6vdADjTNNgRm7WS1EXbaX7U6BkoXaKFp/E11Q6iyybAaa1WPhbgVTJz2Fbv4ZmOMmeBn7HNO5t9wEE0kZy/6vVE0CdT3rcpzY2GinyutNvJG0cTMgb++v+lFSOns0GxtEGieDOb4hNMNl5MNj907pfq7V5YmdoKH2ZE51ToGGoON60GzscRqrqpJoomTOcgLC2S7tZHKsT0n7e9GNLHrk9p4abXecLJWsFsn65/VazZOOAaqh9n6zMgg0HPWNNFEP2aFvWiin3itJkUV0cTqpQpGNLEzY5TOaoOZyJ28YKrncu3M7u02HqrmmYEmXlVxJ9DzO8nDbtLQl+NUWXYrmlh9iTXbaDrZ9AYa5I2LFln3/QfT/Bwj61kYFyp2HLW+EYwQ5qTP6+Pa1U1lIjQbI4I5nqNiPWJmZumWgVU6J/1Hy8NO7LVbeFgtDM3GQ6v6BRJdAzEKtIBSWYTqj5gE2hBafbW3G0P1jFWuCNRYqnwZ87rvGPOza3f9Zlp/PMfJ/BtINLHqK9XN0kRy8qLfGxe/VvOR1Xysuh6w6ldW86XbfiLLcXtkT1X4MD6Lkzm8otZzZryDFU1U20TboAYjDKlsYs3qYzXfOhFN7CyVnNyeEwqfJk7moEDrGtUNfaA+q/pBzsm8Ytb2sv3M3BCo9GlZdqB9h5O1n8xL9T0IBRsnHFXWrPo4VtZdVtbcqsdz7Cxu7Y7Wqq6hrdiotq82F4a1aKK9UEYnV/rG1n8lCeTTxGwi1psMuvFpoi18jNeUGjcc2nMY1VTZyWUwuwlIdeOpPX8wTl+tOqtxEaI62FidVdQmY9/AJcxA7YL2shpZaAKRSh6yDFUzRhnXqaWE3YJL5nf9Jaf7CRNWz6UNemYOmlT7g9WCUyvT7GiafG6zvim9tav6NDE7NmfXvl7+rjqw+p7V5HYFvbWAnkUgk0f9O2f2bqi8L1r+gcy0tbq5XcQ6FU2sxit9e9k9m9m4pP3N+KxmfdZqoWf2jhj7kd2C3UxgNhuzrDaUZu+SWV8OVA/V/mqcA718Z9zkZdfuWp7GPudk/g0kmpjlo18DqF45rJ9ztXnJ6lpT1fnKyNNug63a77XnM47R2phr/LvZRsRs4epkXAm0zjCrh/Y3uzk6kHBk9FNmNX5I7iobHPm8RqerVs8l8zM6adTay8mRGjfvmFUalQ2m3ftp9WFDPtuESb+WWTpareFk/vqbIa3qajcG+94pk6OyZms1/XEmFZ8mVms+rU5287ZV3a3eZyfvkcZLdQ7SP4vZ5lQ/3rnpsypCo1W/NztyZ8VClmN15MpubWs33zpZ31v1O7N+rMLGy/c7UF4qAplZvzV7Bq3vqYomVmsVLZ+qIppofS9sRBOrDmOcdPULJJlGvoivPHZruavLzBZeepFEppWTn3Z3tFvRRD9h+20qDKKA1qHLLayEF3G9mm21obbio2IarjHUTz5m+ZktBoxnC82+dhq5Wi0yzeIF4mHGwmkeWnyVDacTSwkjF6u2t2JuZY5o9nwqpotGjkYfFYEW/mZxzeIb3z19mZW1kNTqEKhuWhw9R+N7I/uH2T33+kWLlo9cqMgFpt0XKxnfWI7VVdOBFg5uFmWBxgXjO2zso4HeFf2ZXLuxTP6uMn7oFzL6PM38FliJJk77ptlzWL1nxvdDRaDWzwtm+aoIUzIPq3dT42S34LSaN9z+3W5TpuVrthlWnX8DiSYyf2M+sj2kMC2PdATyRxSo7lZHV5wK9IHazKzfmPVbqysf9Vd3y3IC9UPjO202PjtZD9h9nFEpz6zPBRJ0zdZMZv09kJjiNy//u0k31iOQw2pj3Mq09vJCNDF7f6zGEqsxVYWBW9HEbL6Vbb5i7Wa/a4u19yzQXGXsk7LeUgiTQTsGazYmVIRoIuvgZA4ym8+trq9W7bN2YoSWj5VoYrXGsJqTzOayQNeSa+UHWls6Wd87WbuosnE7jzpN51Y0MZuPZL9xcjxH5mE1T8mbsPTzldnc7ZWliRUz41XGNV40cdp5GJ8ESIAEQkFAZaHndblOrUC8Lp/5kUBNIBDIfLsmPB+fgQRIIHgCcgMXihvqgq8ZcyCB6kVA5fh5ZTwRRZPKoM4ySYAEwo5ARYsmgc7uhx18PjAJKBKQX8nMrqNU+QKuWASjkQAJVGMCckMnrVP0fjQqen6vxvhYdRLwIyDFRnmiQ38qQtWJfUWjpGhS0cRZHgmQQFgSqOhFlYq5dVg2BB+aBAIQMDPzruhjSmwgEiCBqkvA6uiInY+dqvtErBkJVB4BM3cEVfUjBUWTyusnLJkESIAESIAESIAESIAESIAESIAESKAKE6BoUoUbh1UjARIgARIgARIgARIgARIgARIgARKoPAIUTSqPPUsmARIgARIgARIgARIgARIgARIgARKowgQomlThxmHVSIAESIAESIAESIAESIAESIAESIAEKo8ARZPKY8+SSYAESIAESIAESIAESIAESIAESIAEqjABiiZVuHFYNRIgARIgARIgARIgARIgARIgARIggcojQNGk8tizZBIgARIgARIgARIgARIgARIgARIggSpMgKJJFW4cVo0ESIAESIAESIAESIAESIAESIAESKDyCFA0qTz2LJkESIAESIAESIAESIAESIAESIAESKAKE6BoUoUbh1UjARIgARIgARIgARIgARIgARIgARKoPAIUTSqPPUsmARIgARIgARIgARIgARIgARIgARKowgQomlThxmHVSIAESIAESIAESIAESIAESIAESIAEKo8ARZPKY8+SSYAESIAESIAESIAESIAESIAESIAEqjABiiZVuHFYNRIgARIgARIgARIgARIgARIgARIggcojQNGk8tizZBIgARIgARIgARIgARIgARIgARIggSpMgKJJFW4cVo0ESIAESIAESIAESIAESIAESIAESKDyCFA0qTz2LJkESIAESIAESIAESIAESIAESIAESKAKE6BoUoUbh1UjARIgARIgARIgARIgARIgARIgARKoPAIUTSqPPUsmARIgARIgARIgARIgARIgARIgARKowgQomlThxmHVSIAESIAESIAESIAESIAESIAESIAEKo8ARZPKY8+SSYAESIAESIAESIAESIAESIAESIAEqjABiiZVuHFYNRIgARIgARIgARIgARIgARIgARIggcojQNGk8tizZBIgARIgARIgARIgARIgARIgARIggSpMgKJJFW4cVo0ESIAESIAESIAESIAESIAESIAESKDyCFA0qTz2LJkESIAESIAESIAESIAESIAESIAESKAKE6BoUoUbh1UjARIgARIgARIgARIgARIgARIgARKoPAIUTSqPPUsmARIgARIgARIgARIgARIgARIgARKowgQomlThxmHVSIAESIAESIAESIAESIAESIAESIAEKo8ARZPKY8+SSYAESIAESIAESIAESIAESIAESIAEqjABiiZVuHFYNRIgARIgARIgARIgARIgARIgARIggcojQNGk8tizZBIgARIgARIgARIgARIgARIgARIggSpMgKJJFW4cVo0ESIAESIAESIAESIAESIAESIAESKDyCFA0qTz2LJkESIAESIAESIAESIAESIAESIAESKAKE6BoUoUbh1UjARIgARIgARIgARIgARIgARIgARKoPAIUTSqPPUsmARIgARIgARIgARIgARIgARIgARKowgQomlThxmHVSIAESIAESIAESIAESIAESIAESIAEKo8ARZPKY8+SSYAESIAESIAESIAESIAESIAESIAEqjABiiZVuHFYNRIgARIgARIgARIgARIgARIgARIggcojQNGk8tizZBIgARIgARIgARIgARIgARIgARIggSpMgKJJFW4cVo0ESIAESIAESIAESIAESIAESIAESKDyCFA0qTz2LJkESIAESIAESIAESIAESIAESIAESKAKE6BoUoUbh1UjARIgARIgARIgARIgARIgARIgARKoPAIUTSqPPUsmARIgARIgARIgARIgARIgARIgARKowgQomlThxmHVSIAESIAESIAESIAESIAESIAESIAEKo8ARZPKY8+SSYAESIAESIAESIAESIAESIAESIAEqjABiiZVuHFYNRIgARIgARIgARIgARIgARIgARIggcojQNGk8tizZBIgARIgARIgARIgARIgARIgARIggSpMgKJJkI2TfDAnyBzCI3mLhrVAVhXT1nExUUiqFYWDh/IrpsAwL6VuYgwKi0qQlVsY5iQq5vGb1ItHSkaejzlDaAlERUagUd047E3NDW1BzN1HIDE+GtFREUjPKiCRCiDQoHYssvOKkJtfVAGlsYjmDWphT2oOSjh0h7wzxMVEinVgjFgH5oW8rHAoQO5hGEiAokmQfYBCgBpAiiZqnLyIRdHEC4rqeVA0UfONK00AACAASURBVGflRUyKJl5QVMuDookaJ69iUTTxiqRaPhRN1Dh5FYuiiVck7fOhaGLPyEkMiiZOaNXcuBRNgmxbiiZqACmaqHHyIhZFEy8oqudB0USdlRcxKZp4QVEtD4omapy8ikXRxCuSavlQNFHj5FUsiiZekbTPh6KJPSMnMSiaOKFVc+NSNAmybSmaqAGkaKLGyYtYFE28oKieB0UTdVZexKRo4gVFtTwomqhx8ioWRROvSKrlQ9FEjZNXsSiaeEXSPh+KJvaMnMSgaOKEVs2NS9EkyLalaKIGkKKJGicvYlE08YKieh4UTdRZeRGTookXFNXyoGiixsmrWBRNvCKplg9FEzVOXsWiaOIVSft8KJrYM3ISg6KJE1o1Ny5FkyDblqKJGkCKJmqcvIhF0cQLiup5UDRRZ+VFTIomXlBUy4OiiRonr2JRNPGKpFo+FE3UOHkVi6KJVyTt86FoYs/ISQyKJk5o1dy4FE2CbFuKJmoAKZqocfIiFkUTLyiq50HRRJ2VFzEpmnhBUS0PiiZqnLyKRdHEK5Jq+VA0UePkVSyKJl6RtM+Hook9IycxKJo4oVVz41I0CbJtKZqoAaRoosbJi1gUTbygqJ4HRRN1Vl7EpGjiBUW1PCiaqHHyKhZFE69IquVD0USNk1exKJp4RdI+H4om9oycxKBo4oRWzY1L0STItqVoogaQookaJy9iUTTxgqJ6HhRN1Fl5EZOiiRcU1fKgaKLGyatYFE28IqmWD0UTNU5exaJo4hVJ+3womtgzchKDookTWjU3LkWTINuWookaQIomapy8iEXRxAuK6nlQNFFn5UVMiiZeUFTLg6KJGievYlE08YqkWj4UTdQ4eRWLoolXJO3zoWhiz8hJDIomTmjV3LgUTYJsW4omagApmqhx8iIWRRMvKKrnQdFEnZUXMSmaeEFRLQ+KJmqcvIpF0cQrkmr5UDRR4+RVLIomXpG0z4eiiT0jJzHCSTQ5/4ZHsHbj9nJ4brtuJEZddTaGjhyLS889yffvWnj30+/x5eSZ+P2713x/knEOpKSX/d6oQd2y37Tf7fKQ8boPu8avHl06tsG3Hz5hWob849fvPYrunds7aVpHcSmaOMJVPjJFEzWAFE3UOHkRi6KJFxTV86Boos7Ki5gUTbygqJYHRRM1Tl7FomjiFUm1fCiaqHHyKhZFE69I2udD0cSekZMYVU002Zmagxmr9qBV/QSc2r2pk0exjStFkx5d2uPxe641jasqmuhFkVH3vYL9B9P8BA870USWM2xwb796yLrpRRN9HlK4eWP8d9DEHdsHdRGBookLaPokFE3UAFI0UePkRSyKJl5QVM+Dook6Ky9iUjTxgqJaHhRN1Dh5FYuiiVck1fKhaKLGyatYFE28ImmfD0UTe0ZOYlQl0WT8vC0YN3MDDuUU+B6hW/M6eP+qvkJAqeXkkSzjhkI0MbNECSSarFq3BRfd/HhAyxEr8UYKJ6tmf+wJC2MmNVY02bl2G7LSMtF5YPeA4OZ++Wu532PiYzHwvCG+v8t8tizd4BenfvMG6DHsGN/fKJqo9UuKJmqcvIhF0cQLiup5UDRRZ+VFTIomXlBUy4OiiRonr2JRNPGKpFo+FE3UOHkVi6KJVyTt86FoYs/ISYxQiSYHMvPw+YJtTqqC8fO24lBuqWCiBSmcOLE4aZQUhysGtjUtNxSiiTFPVWsVeaxHsywxVtYsDxlHHul5/qGbceYpgxxxVYlc40ST1D0HsWXZBp/Q0bJL2zLxwwxGfm4+9m3d7fdTmki/WaQ9+86LfX9fOXsJ9m7Zg86DDosvsUJUadKuue93iiYq3QygaKLGyYtYFE28oKieB0UTdVZexKRo4gVFtTwomqhx8ioWRROvSKrlQ9FEjZNXsSiaeEXSPh+KJvaMnMQIlWiydk8GRoyb46QqnsTt0qw2pt9RahxgDKHwaXLBmUP9jtmoiCayXkafJvqjN1aiidXfvQBX40QTaV0ihZOda0qVO81iRBXWzP9OQ9P2zcosSaRokpmaaZkPRRM1shRN1Dh5EYuiiRcU1fOgaKLOyouYFE28oKiWB0UTNU5exaJo4hVJtXwomqhx8ioWRROvSNrnQ9HEnpGTGKESTdxYmrwzexPyCov9ql+VLU2M/kxkxVVFE/1Daj5LNCsSWpo46cE2ce3EDrPk8ijOkp8WYMQt50Fak8gg85ECTOdBPZBYL6nMwkRLT9FErdEomqhx8iIWRRMvKKrnQdFEnZUXMSmaeEFRLQ+KJmqcvIpF0cQrkmr5UDRR4+RVLIomXpG0z4eiiT0jJzFCJZo4qYMWd8aqvbjps0VlSevUisHEGweiW4s6brIrl8bueI7Z73Y+S4xOXVXyMHsYvVBCnyaeNHdpJm5EE2ll0uHoTmjfu1NZTeRRn71bSo/wSCsWeXznxGtPR/1mDX1/Kyou8bDWNTcrufgmq4pp3whRTEREBIpL2Dcrgrjo2pCkibsiaAORAngxx92KgS1K4dhdYajFuC3GblEcu3fFMI8UwEvEwM2ZsmJ4cyypGM6yFK4DvWUt+25VCquTD2HG6j2oEx+DC/q0ghROvAp2osmjL/0X/5v6u5+zVXmMRn8ExyhoaI5dNSsRuzym/vIn/vvVT37+TDRLE83Jq7EMmea+p9/j7TluOoJT0USKI9KXyUlCEAkUNMexx196si/a3tRcN9ULuzRN68eTVQW1emxMFBLjI5Ga4e8oqoKKD7tiaifEoKioBNl5hWH37JXxwI3qxCEtKx+FgjlDaAnIhWL92rE4kJ4X2oKYu49AQlw0oqIikJHNsbsiukS9pBjk5BcjL7+oIooL+zKkleD+9Fx+YKiAnhAbEynWgdFiHZhfAaXV/CLkHiZcgp1PE8lBEz00Jqo+S+TNNkbhxCoPs3rob8WRosmBlHS/Zvn6vUfRvXP7kDVVjfNpopFyIppIh7DT35nk81uiOXi1Ir5uwSrfcR1NXOHxHLW+yeM5apy8iMXjOV5QVM+Dx3PUWXkRk8dzvKColgeP56hx8ioWj+d4RVItHx7PUePkVSwez/GKpH0+PJ5jz8hJjKp0PMdJvRnXWwJhJ5pIvyVS9NA7iNVuyDGzMpHxW4lbeGSQ4oq0NNE7iqVootYhKZqocfIiFkUTLyiq50HRRJ2VFzEpmnhBUS0PiiZqnLyKRdHEK5Jq+VA0UePkVSyKJl6RtM+Hook9IycxKJo4oVVz49Y40UQes1kxawkKhMAhRQ7pvPWY0waWCR9SIFn35yqc/8CVZULID69+BXncxszKRIokUjiR+cg86wlfJjKu5iiWoonay0HRRI2TF7EomnhBUT0PiibqrLyISdEkMMVocbzDq6NLFE286LHqeVA0UWflRUyKJl5QVM+Dook6q2BjUjQJlqB/eoom3vKsrrnVONEkFA0hxZestAwhnNQuE0u0ciiaqBGnaKLGyYtYFE28oKieB0UTdVZexKRoEphiQnyJ8LEThbwC/ysJ3bCnaOKGmvs0FE3cs3OTkqKJG2ru04RaNCnIycP6OYuRvHITEuvXQbfhg1CvZRP3Fa7GKSmaeNt4FE285Vldc6NoEmTLUTRRA0jRRI2TF7EomnhBUT0PiibqrLyISdHEmmJMdBG+mT4BJ/Q+AQ2atA76xjKKJl70WPU8KJqos/IiJkUTLyiq5xFq0WT++CnYtXKjX4VOufvKsBROKJqo90uVmBRNVCjV/DgUTYJsY4omagApmqhx8iKWG9Fk+7YtkP/0H3gcYmNjvahG2ORB0aRim5qiiTnvqKgiHMjejTuuHo3Op3TDY7c8ifz84K4hpGhSsX27Joom8hplp6Girm+naOK0ZYKLH0rRJCvlEKY99UG5Crbs0RGDrzsnuIpXw9QUTbxtNIom3vKsrrlRNAmy5SiaqAGkaKLGyYtYVqKJnEStwvRpP+Djj97Dh598iaSk2qbRvDD39+L5qloeFE0qtkUompTnHRMdibjYYoz5/kbs/nAvSnoXYOz192NAi2NRWBDtuoEomrhG5yphTRRN6iZGo6TY/6hYvjhGkZ+Vg+KiIiTUr4voWEMfFUrLoezQXwNM0cRVN3WdKJSiiTyaM/mhNyma/EuAoonrbmqakKKJtzyra27VVjRJTf1LfEXbh6ZNzzJlH+zvWqYynwMHZ/qVkZDQAS1bXOL7G0UTta5P0USNkxexrEST+gnRiNi8CSX79pUr5uv5f+Lz2b9i/G13olHtpHK/R3Tvjow44Qy5MHg/CV48Y1XKg6JJxbYGRRN/3pHiS35cfDFennsvflv3JRJ/6Iv8bttQ1CUdH52/AI1rtURuvrsNKEWTiu3bNVE0iY+JwMEDe/HHvHk+mNKh/sGtyUIwOTyXNGjTFPG1E32/9+nTBy1btUFuoQsTFYfNRdHEIbAgo4dSNJFVk5Ym0uJEH3qfewI6DTkmyJpXv+QUTbxtM4om3vKsrrlVO9EkO3sLDhz4TfwzE/XqD0CH9mP92Af7u7EhdyVPRMahFUKcObvsp+joRNSu3cP33xRN1Lo+RRM1Tl7EshJN5K0adRKEuf499wDr1/uKKiwuwYZ9mZgRVYJfG8Rj7PYM9GqUhCa14w5X5corUXjKcByKiveiejUuD4omFdukFE38eccKC5OfN32Pt/4YBeHERIgmA32iSUGnXTii8fF4++zJyM2LQIFuk6raYhRNVEl5E68miiaSTGJcBNasXoW1a9cidcce5BzK9gMWGRWJZl3aoX379uh99DHIzitBiTdIA+ZC0aQCIOuKCLVokrZrH2a9+RUK8/LLSh0y6gI0PbJtxT5oFSiNoom3jUDRxFue1TW3aiea5OXtgxRGUtMW+JgbRZNgfzc2pBRN8vL2litHi0fRRK3rUzRR4+RFrEA+TeREmpB2ABG33io++RUgOT0Xmw9kYnGd2DLRJF4IKf3aNkCcMPnHwIEoufMupIvbOIor6qC5FxAqMA+KJhUIWxRF0eQw75joYuzM3Ip7ZtyEnKxlQHGkn2gSHdMIp3YejVv7jRHCSSScvsIUTSq2b9dU0UT2o6RaUZg7Zw7+mbsQhfmF5cB2G3w0ho8YgYycQs+uzLZrPYomdoS8/T3Uooms7Zx3/4e967ehVe8jsXPZejTq0AonjLnY2wepBrlRNPG2kSiaeMuzuuZW7UQTDbSdmBHs7/pyUlMXoJmwNImLa1JmYULRxFmXp2jijFcwse0cwSYKq5LY5UsQ8eyz2HIgC7vSc8qJJj1b1EXddq2AN95ARkk0j+UEaBCKJsH0VudpKZqUMosVomZJVC5G/3gL0nIPIitDHH8wiCYxsa3E0Z2OuP7o6zG07UkoLnDm5JmiifP+GUyKmiqaaP01OrIIX37wCVL3HvDDFFMrFlfdeiMiY2oJi6hgCDpLS9HEGa9gY1eEaDLt6Q+RdTAdw++/FnPf/xbZ4rhO30uGo33/UuvwcAkUTbxtaYom3vKsrrlRNDEc7zE2pDwKdChjhe/P+f9auXTp8jQSEtr7/paScdgMsLp2goqot1yckFVFkAZihKlzfFwkMrLLf83TapBQnI+or7/C1g+/wLaUrHKiyYD2wtLktXHIb9EK+ZHB3cBRMU9deaUkxkfJUxGu/UZUXs2rZ8lSpMoUX6OLhEVUuIZI4SgzJqYYT815Esv2CgsTEXJztyIve1uZpUnhkXtRu84gRESUOtl86sSn0bl+d+Q78Esky6kjHHmmZRaEK+oKfe742CiI4RtZuRWoHFTgE0ZHliAt5SC+fO9jFP2rjkQKK5QzLxmJNh2PEMdFQ+/HRP+4tWtFQzo4d/JOVCCuGldU/aRYpGXlO7Z4UwUhHQ5/fvtLvuhXvH4PNv21Cn9+8ROSGtTFuY/fJMbCiu1fqvUORbwYcRw7Pi5arAM5dnvBV+5hGEiAoomNaGLsIhs2PuP7U6eOD5YuVF062Au3ricXg2RVMa0uF6HR4p9AC0G5dIhGMQofexyLJv+GecJ0WvNp0qluLXT8v7tRMmQICmuVOudjsCYQLXY5JeLcQzhv4iuyf0hLqvzCopAtvCvyWdyWJS1ACkvKL4ZTDv6Na658HBdefCyuuPIuREQe9k0UgQjkFOSgVnR5R89W9ZB7jNjoKLGxrJmbeLf8Q5VOtqvc2BW68D8Tqjp5nm9JMVb/swLT//ejL+t+xw7AcacOFX3V/S1Pbusob52S43ZxGAuwbtm5SRfqdWD63hRMfPg91G5UF5c9O9pXxe9f+By7N+xAn7OOQ9uBnbFv/z506dIVUVFRbh6h2qRRWQdWm4epAhWVfZeBBCiaOBRN9u79AfK4jrQ2kYE+TdReIh7PUePkRSy74zlaGdK8Pyk/CxsuuRbT0lJ8osk9yVkYevX5KL7xJqQXi6sivahQDc+Dx3MqtoF5PKeUt9lH003rrsPjjxzACSdm4PJrPkNsnDhipwv0aVKxfdVpaTX5eI7GQt72FF2Qi5++mSL8xeXhtHPOQHTDRpUiOvN4jtMeGlz8UB/P2bN2q+9ITpNObTD0lgt9lZX+TaSfEylGRvVrismTv8KHn/1PWOrVbMsBHs8Jrq8aU/N4jrc8q2tuFE0Moom8Ylg6mdUczMr/ri9u6ZGhqEhsMDc8I0yee/LKYYc9nqKJQ2BBRFcVTWQRCZHF+PuXBVjy/GOlliaRDTFs8mfi9oKiCnPGF8SjVomkFE0qthkomljzXrfyRPy1IE/MT3kYNPRdJCT2Dapx6NMkKHyOE4eDaCKhpGzagVgUIj8/H8lrd6LHeSc5ZuVFAoomXlBUzyPUosmmP5Zhybcz0WFgL/S56JSyii38Yhq2LV6DfYnZWLjhb4om6k3GmP8SoGjCriAJVDvRRPoY2ZX8JYoKs8SmLsvnnLVN6xvKhI1gf5cOZPfu+R7HHDPB10PkcRwpnMhyZJnSl0mnTg8K077SYwu0NFF7kSiaqHHyIpYT0WTZzjRs3HUQzeZMQfKsX9Dh4WfQ/MgOaCnMWxnUCFA0UePkVSyKJuYkS4rzsHZFHzmti39K0LLtC6hT7/SgsFM0CQqf48ThIppsmr8c6Zt3ICYhDpsWr8O5T49xzMqLBBRNvKConkeoRZPl3/+O9bMXoecZx6PLSf3LKpaxPxXTnx2PjZnbsfbQFpze/HiceOslaNyxtXrlq1lMWpp422AUTbzlWV1zq3aiSWWAlhYm8ipjKZxoYolWD4omai1C0USNkxexnIgm78zZhMnLd+HTy49C9ObNmJIRh9p16+DCY/zN+r2oV03Ng6JJxbYsRRNz3vl5W7Bp7VlijqotrCIz0LTFPWjQ+JqgGoeiSVD4HCcOF9Fkza9/YeW0eYiKjhYfowpx9hO3IC4pwTGvYBNQNAmWoLP0oRZN5v93Cnat2IhBV5+FVkcdWVa5rX+vwt9fTvcTTeISauGMh29ETK3Dfp+cPU3Vjk3RxNv2oWjiLc/qmhtFkyBbjqKJGkCKJmqcvIjlRDS56uOF2Lg/Ex9f3Q/1o4pxzvjFOKtXCzwwvIsXVQmLPCiaVGwzUzQx552V8Qe2b75Z+DFpI2562y4Ek6uFcHJvUI1D0SQofI4Th4tosnzKbKz/fTES6tVGdloGTrz9UjRs18Ixr2ATUDQJlqCz9KEWTX556VOkJe/HyXddgfqtmpZVbv54Iaas3OgnmkRGRGLY6ItqrLUJRRNnfdMuNkUTO0Lh8TtFkyDbmaKJGkCKJmqcvIilKppsT8nGJR8tQO34aPx82xCs3ZOB6z77G92a18GHVwTnC8H4HEmo5GvvhEfbzIjQXJ1M0cSLXqueB0UTc1ZpB7/B7p2PIyGpL7IzF4mjOaeJIzovqoM1iUnRJCh8jhOHi2giv/rLr/8N2zbHwW270e/SEWjXr7tjXsEmoGgSLEFn6UMtmkx64HUU5hXgnKdvRWyt+LLKLZs8CxvmLCknmpwuLE0SG9Rx9hDVJDZFE28biqKJtzyra24UTYJsOYomagApmlhzysrMQGZmJpKSkpCYVFsNaIBYqqLJV4t24LVZGzC8WzM8ekY3ZOQVYvjrc8QVo5GYfeewoOuhz6CecFQf+fdCYOlST/NVyqx5c2DkSKRkFSpFdxqJoolTYsHFp2hizm//ntdwYO8HqNfgXKSlTBZOYPugbcdPgoJN0SQofI4Th4toMu/DSdi9ejNaH90FO5auRddTBqLHacc65hVsAoomwRJ0lj6UoknuoSz88Ni7iEushbOfLL1uWAsFOXn48akPsGb/hjKfJp2H9kXvc09w9gDVKDZFE28bi6KJtzyra24UTYJsOYomagDDWTSpF1MMFFtf3rt12zaMvecO3H/PfRg0YKA1UHFXY3phJOyuDVUVTcZ+swx/b03BY2d2x6ldS01ZL3j/TySn5+CL6wagfcNSZ8deBLn5qhsnHFQ+/jiwfLkXWarlkZCAkrfeQnZUHPKiQnPFIEUTtabwKhZFE3OSydvvQ3rqj2jS4k7sS35VHNNpjSO6/BQUdoomQeFznDhcRJPfXv8SB7cmo9upg7B6xp8+8WTglWc45hVsAoomwRJ0lj6UosmBLcmY9caXaNCmGU664/JyFZPCyWdiLfD7otk+R7DD77kG9Vo2dvYA1Sg2RRNvGyvcRJNV67bgopvFel0Xjh/QC+8+f5fvL0NHjsWBlHS/31fN/rjsv0fd9wrm/vWP3+/PP3QzzjxlkN/f7PLRypL/+/t3r9mm/fq9R9G9c3tvG1+XG0WTINFSNFEDGO6iSeTkycDcuaawNuXl4Y7dO/Fgk2YYlGAhVPTogZIbbkBaXoknokmmsCo5VViVyCCP5sgjOjLcP3kF5mzYjyfO6o6Tuxw+E6zWyoFjSQuWxLxMRNx2G5DuP9gGSpkibgK5qagAYyKjMUycQ3YSSh55BHndeiK7SN4oEppA0SQ0XK1ypWhiTmbrxiuRk7UUbdq/i+1bRiEiIg5dei0OqnEomgSFz3HicBFN5E0m8kaTgVeeiQWfTUX91k1x8p1XOOYVbAKKJsESdJY+lKLJtkWrsXDCTwEFuB+nfIuvv/zEJ5r0u2g4Ogzq5ewBqlFsiibeNlZVE00OHUjDpiXrUUfcdHnEMZ09fdh3P/0eb4z/DkaR4/wbHsET917rEyWk2HHpuSdh1FVn+8qWIsn+g2n49sMnyv5b/osmskz95U/c9/R7ZXlqoswFZw7F4/dcW1b/R1/6r+/ftb/JdP/96iefQHPvLZf4iS7GOmj1vu26kWX18hSMyIyiSZBEKZqoAQwn0SQ6KkJch33YskT+d534KKFI3A+sXesHbF9GHhYIy44PmifgvH3ZODkuFm0aGG4RaNQIeOMNZEbGIb9QWK3YBBVLkxlr9uKxqavQr20DvHZR77IcP/xjC8bP34KrBrbFqOOPsCvK8e8JEUWI27wREQ8/pJx2nxBNrheiyVghmpzsRDS5/HIUjjgNhyIPn21WLtRBRIomDmB5EJWiiTnEDatPQmHBXnTsOgNb1l8gbtA5hCO7yxtK6rmmTtHENTpXCcNFNJnyf28jPysHIx64zncVbEx8HM59puKvHaZo4qqbuk4UStFk9c9/YtXP89H15AHocfpxpnVcu3olZv0wFQ33RqN1ryMx6JrSDV9NDBRNvG3VqiSaLJ2xEH9NmoO87FzfQzZu0xRnjr1QCCju53o9LaMYYUbSTLD4cvLMMmsQKaLIoIkm8t+l6NKjS3ufICL/vXHDen6/m5Uj8+ndvSOWrdpYLj+zemrCid7qxcueQNEkSJoUTdQAhotoEhkRgcRakcjMKfKzCJETWEL6QUSMEQtDYVkiQ54QQJbuSMPu6AiMb5HoE02OzC5EzxZ1UbfWYaelJS+8gNxWbZFTIoQXhaAimjz+42r8vHoPbj+hEy7p27os11nr9+GhKSsx+IiGeGnkUQqlOY9SW9zSE/O9sLyZMME2cVZ+Ef4+mImXm9TCeWn5OCc+Fg0TFY7Z9O+Pknvv9R1nKg5wNMq2AgoRKJooQPIwCkWT8jBLSgqw9p+jxQ8R6HrUCmxedw7ycjehQ+fvEBd/+OpNp81A0cQpseDih4to8s1dL/tAXfjyXfAJKGLxf9bjoxBf27sjoSotQdFEhZJ3cUIpmkgrE2lt0vfi4Wg/oIdlpbPEF+tpT32IaPGB6rxnhdVrDQ0UTbxt2FCJJtnCF8+K35xZhC79eWGZYKI9pRROOjiwOEmom4heJ/YpB0mzALE75mIULPSCiMzUTjTpPuyacpYsZi0m48m6bNm+By++M9HviI6VuKOat5seQtHEDTVdGoomagDDRTSJiS3EvqzdaJLQHAUFpUdetJAYVYLYFcsQ8fTTvj9JK5P1+zKwPzbKTzRpUz/hsLWJOJJTMOxEZEQoCAX/FqQimox4Yy4O5RZg4vUD/SxbdqRm4+IPF6BpnXhMunmwWuM6jCXcm6BudAkixr0KzJ9vmbpQiB0rk9ORXFSMd1ol4fQDOeiZWYCjW9dHomBmGRo39vkxySyJRoGCZY7D6peLTtEkWILO0lM0Kc8rP28bNq09AzGxLYWlyc/i6uEbkZUhfEV0eBdJtc2/uqpQp2iiQsm7OOEgmuQJC5PvhVASmxCPc566FTNfm4AUcYPOCbddgkbtW3oHUyEniiYKkDyMEkrRZNYbE3Fgyy6la4RnvPgp0nfvx1Bx5XCTjoc/Gnn4qJWeFUUTb5sgVKLJgR378MXD73tbWYXcGrVugsufuqlcTO0YjWapYfRtookpZr5I9EdtjKKJZgEi08sg/aXYCTPa0RztyI9RDLESTVQsZRQQmUahaOKW3L/pKJqoAQwH0SRZ3IDz57ZVuG/mfXjxlOfRu2kPtG/g/+WsTmQRov/3NfDttziYlY81ew5ZiybDhqFk1C1IK46y9WOibwU70WTRtlTc/vVSHNE4CZ9d079cA5702u/IERYe08Ycj3o6ixe1llaLFSP8m9QWLDB2LJCcbJooGgxDhwAAIABJREFUPacAK4RockjE1YsmfqKSScqSF19Ebss2ypY5ajW2jkXRJFiCztJTNCnPSwokUihJSOqPtkeMR/KOh5CeMgXNWz8hbtMZ6QywLjZFE9foXCUMB9FE+jKRR3KSGtfHaeJ4zsIvpmHb4jXod4m4drh/xV47TNHEVTd1nSiUoom8OUfeoHPG/92EhPqBbyFc/v3vWD97EbqcNAA9z3AvKrsGUQEJKZp4CzlUoom0NPlnpjNLk0U/zkdRgf9tkNLS5Ig+6r5NatVxZmlitEAxEyakqKH5EzFzBKsXSVSsQbSjOXq/KbJV9c5o9X5VtBZXydtt76Bo4pYcRRNH5Gq6aCKv612+ezdumz4aGfkZwtKkCV4bMQ6dGzUW/kwOH7WJ/PcWGZ+1yeLFWLYzDVvEdTja8ZxuucXo27Y+otu3A159FYfyS/z8o6hAtxNN3pi1EV8u2o4rB7TFLUPK+y25ecJirNiVjtcvPhp929RXKdJVnHhhLVJrxxZE3FXqjdsYNFHJKJq0rFsL7RtZmHHfdBMKhgxzZJnjqvK6RBRNgiXoLD1Fk/K80lK+xe4dj6KuuG64ReunoF0/3LjZGDRqOsoZYIomrnkFmzAcRBN5a468Padh2+Y4cexlUPFFESxXq/QUTUJF1jzfUIkmhfkFmHT/64iMjsL5L9xh+1B71m3F3Pe+rTQHxLYV9CACRRMPIOqyCJVo4qaWm5asw9TXvilLGies9s5/4EqfbxMvghREhg3u7eegVUU00R/RMTueo6+bik8TKX6YBc0Khj5NvGjtCs6DliZqwGuyaCK/xqYJPyVXfXs3VuxbUQakf4v+eOOMR9E4McnPr4a8RSapMAeQt8ikpGDSjtQy0eScOgk+nx0lwvFrTv3GyI3wP+KjQjuQaPLK809gcX4zbInviLcvPQa9W5V3HPXiL+swadkujD2xEy7uE1rT1SShJ8XO/g14++1yjyZv+FkuRKV0g6VJW2G907p+rfIoTjgBxTfehHTEOLLMUWEaKA5Fk2AJOktP0aQ8r/173sCBve+hcbPRQiQZjdQDX2LPrqdRv+FFaNbqEWeAdbFpaeIanauE4SCa7F69GfM+nITm3TrguBvOw3ZhZfKXsDZp3bszBl51pitubhNRNHFLzl26UIkm8qiNPHJTp2kDDL/v8E0cVrUsER+qvrvvNRQXFuHMR29GrbpJ7h6oCqeiaOJt41Ql0UQ+2f7te7Fp8TrEJcaj23G9IIUTr4LZ7Tl2oon2u97SRNZH7whWXz/tGJDx9hxZ9u59B9HvqC7lfJjI9HorEqNoouXJ23O86gkhyIeiiRrUmiyaxMcJnxt/f4anZ5delaUPDw+7Hjf2ubScf5NacVGI37gOWXfeg1+EXxPN0mSEGPhaPHIf8vsPRKbY/LsJgUSTay8/Dwca90HJkcMwdbS5Wep3QjB5SQgnZ/RsjodGdHVTBUdp6kUVIvKjj4BffilLJ53kSn8mOQVFyBPXIY9rloCzU/LQ9VAepLPdXi3rIikuGgfEzTqZrVqhXYzw+SItc3KLHFvmOKqsSWSKJsESdJaeokl5XsnbH0B66g/iOM5T4jjOuchIn4mdW8ciqc4wtG7/pjPAutgUTVyjc5UwHESTrX+vwt9fTkfbvt3Q/7LTkLJ9N2aOm4D6rZrg5LuudMXNbSKKJm7JuUsXKtFk18qNmD9eHEf8V4hTqd0fH01G8qpN6HepOBbWr2KPhanUL9g4FE2CJeifvqqJJt4+XfncjL5MZAy9GGHm00T/u52liVai0ZqkUYO6PmevVpYo+nzN6mDnJyVYbjyeEyRBiiZqAGuqaBIbU4JDBQfxx/Y/fTfh5IovF1qIF6aiR7euh8FtBqJeTFPkFfhfF1w7qggHJ36L5ePewe+NEzDgYA46jzwXR95xM9Ii4tTAmsTSiybyCIwMUnyYt/EAPvq/G1Gn2xAMPu0CXDOone+3QuFoVX9F8j/iaM4ocUSnS9PaGH9VP9f1UE3ou5I5QQhEd98NbNgAedmNFEyko9r6CbFo3Lx22ZXDbfdnY29GLhJiotBTWMmM79Aav+9KxoTX3kR2nQauLHNU62kVj6JJsASdpadoUp7Xto1XIztrsc+fifRrkpO9Als3XIr4hO5o3+krZ4B1sSmauEbnKmE4iCbrf1+M5VNm48ihfXDUOcN8N+dMefitSrnNhKKJq27qOlGoRBOtT3U6/mj0Pu9EpfptnLsUSyf9hjbHdMGAK85QSlOdIlE08ba1wk008ZZezcmNokmQbUnRRA1gTRVNpI8SedxGhj3puXh7ziYUFZeKI9cf2x4dGpWafeYKx6rGIAwmsGO/EAdeeBmtVizCzhbtEfPcs0KsqCvyEMqBy6CJJlnC6iKhQBwDmjsXG/dnYldaDl6ZMRH923fFcZ2OQh/hrySpfRsUd+iANBwWabJFXU8WzmCjxbPNufsEl7Vwlsx3JXPaAUSMHo3VO1OQIpzkSkuSHuL65TxRj3uLCnBNZBT6R0T6BJU04SS23fCh+CYuD/PWb8BnX3yB3ILD5onFog0++egd9O0/CD2POsZZZRzGpmjiEFiQ0SmalAe4cfUpwpptt7g5Z7q4QacVCgv2YsPqkxAd0xidus1yTZyiiWt0rhKGg2iycto8rPn1L/Q47Vh0PWWgj5O8TUfeqnPmY+KoRJ2KOyrhVDRJ27UP0qpBhnb9eiCxQR1X7RyuiUIlmiz9biY2zluG3ueegE5D1Ob7jH0pmP7cf8Xxhlo4+8nRNa5JKJp426QUTbzlWV1zo2gSZMtRNFEDWFNFE/3Tp2UX4PS35kJuNKTo8eLIXjj2iEYBAT350xqM7NkEvd56Dv9cORqfrziAMcN7oGU9E58daqihtzRJEtccRyz8C3/der8v9Ytt62CAOOIyJDUPDbsdia4TP8KhPH9LExnvog//xM7UHN/tOvKWnYoIicJ9y+bps3Dw4ccRJ4SonkIwiRcWJcaQLyxjNsY1QMuxN+LGr55FdnIxThFWKsM7DkCTpFLhpKioCNeJo0gXXHwlzjrvwpBWn6JJSPGWy5yiiT+SkpJCrP2nt++PXY/6R/x/KeKWYM3ynr6/dem1HBERAa7oDtB8FE0qtm+Hg2iy5H+/YtP85TjmgpNxxOCjfIClY1jpIHbYmIvRuEOrCoPuRDSRYok8VlSQk1dWv1PuvhL1WjapsPpW94JCJZrMff877Fm7BcdeLxxhdy/v3N6K2/TnxiNjXypOvP1SNGzXorrj9as/RRNvm5Oiibc8q2tuFE2CbDmKJmoAw0E0kTfOyJtnGibGieuE83zHX246roMloGLhjGzIy7NxUtcmGHdWZ3y1bDee+HkDHjuzO07t6t4LttGnSUJJARY9/RowdaqfaJLw3jvoctSRyEX5DdWDU1Zg9vr9eOyMbji1WzO1Rg4y1jvCSqd97Si0mzEFPRfOQm3hy8Q0xMYi5dor8f72qZi9bgcitogN4vEReH34mzixYzvkC38os9fuwX8fuwntBp2BUddcjeZ1vXOSZawTRZMgG95hcoom/sDy87Zj09rThYVJC2FpMqPsxw2rTxQWJ/vQsdsviIlp7pByaXSKJq6wuU4UDqLJn5/8gJ3L1/ucvkrnrzIsnPATti1ajb4XD0f7AT1c83Oa0IloMu2pD5CVcsiviJY9OmLwdec4LTZs44dKNJFXWMurrIf/5xrUadZQme/S734TFipL0X34YHQbPkg5XXWISNHE21aiaOItz+qaG0WTIFuOookawHAQTaat3I2nhOVIb+HHZJnwb9KvXQO8dmHpF2CzsHZPBq777G+0b5iIyaOPxTuzN+HduZtwwTGtcNdJR6qBNYllFE3kxmdlcipKHnoIL2bu8FmaHHvlKEQNFguFdubizPj5W/DhH1twRf+2GD1U/cuN20p/+fd2vDF7I5rVicc3N/ZH45efA5YtM82u8OLzMKloE97KW4CCxcIfyu5I/NU/A0c1PQpvnfksPpm3A98v34GOS17HwZaDkd92MD65un/IhBOKJm5b3V06iib+3LIyF2D7phuEL5O+wqfJx2U/btlwCXKzV6Jdpy9QK6H0i77TQNHEKbHg4oeDaPL7O99g34btGHrLhWjSqY0P2OoZf2LV9PnoclJ/9Dzj+OAgOkitKppI65LJD5V3qCyP55z+8I0OSgzvqKESTf53z6soEUdyRz4/FlEx6jcOSkew0iFso/YtcMJtl9aoxqFo4m1zUjTxlmd1zY2iSZAtR9FEDWA4iCZS8Ph0wTZc1q8NJggRIDE2Gr+MHWIJaMryZDw/Yy1GCEuOR4RFx5LtqRjz1VJ0aSYcsF7p3gGrUTR5dOoqZIjre6/qXBuvPXUHBjRujTPufwz1GwmfJsJviFn4fcN+PDB5BQa2b4hXLnC34VLrGcBPq/bgyWmrfdHvH97FJxolFmQj4tZbgfR0v2yKhh6LHUc2xagdH2FXUQzilgON98f4RBMZzu18Lo5veS5emLaxTDRJadYfp/dojodPC81NQBRNVFvam3gUTfw5pqV8h907HkHd+mejRZtnyn7cufV2cYvOb2jVbhxq1z3ZFXyKJq6wuU4UDqLJLy99irTk/eJI5eGjLduXrMVfn/+IVsLycdDVZ7nm5zShqmgi86WliVO65eOHQjTJSkkXbfMhatWrjTMfuclRJYsKCn1XD8sg/ZpI/yY1JVA08bYlKZp4y7O65kbRJMiWo2iiBjAcRJOHvl+JWev24XFxvOaDeZuxUzhelRYOnZqY+wR5YcY6TF6+C7ef0AmX9G3tO1Yy7NXZPqAz7xiKWib+PFRo60WTF8XVwZPEFcLyqMu31/XD7TddhvNGXoBzL7wioLNZ6TT2wg/+ROOkOEy55ViVYl3F+XPLQdz9P6F8iDBqyBG4akBb378nRBQhbutmRDz4QFm+Ec2bI+KGa/BXRDIyxQJp9uZU7Pz9LxxcuwlH3XyZ71hUjLiJp3F8R/y4LBUHvnkKB1sMRkrz/r5bjN66RM1BnNMHoWjilFhw8Sma+PPbv+dNHNj7Lho1HYXGzcaU/bhn51NIPTgRTVs+iAaNLnMFnaKJK2yuE4WDaDL18feRk56BM8QGN0GM4zKk7NiDma9+4fMPIsWUigpORJP9G3dg9ttfl1UtOjZGWCdcQp8mDhorFKKJtFqS1kuNj2iFYbde7KA2pVHnvPc/7F23zXeDjrxJp6YEiibetiRFE295VtfcKJoE2XIUTdQAhoNoctXHC3231EgrkYmLt2PG6r2479TOOOeolqaQrv9sEdbsOeTbzMtNvQw3fL4Iq3cfwusXHY2+beurwTXE0kSTp6euwad/bRNOIOHLT96Wc93lI3H2Wefg3Euuts371NfnIFNYqEwdfRwaJMbaxncaQR5PGvPVEsjbeqRoJMUjfagdVYyYqd8Dn39e9ufIyy5DyfkjkV0chR3CUe17772NLf8swA2PvYWhnRqLq5WL8cSPq/DLKnGTiDye869ocv3g9r7bjEIRKJqEgqp1nhRN/Nkkb38Q6anfo3nrJ1CvwciyHw/sfR/797yOhk1uQJPmd7hqJIomrrC5ThQOoon8si+/8I987nZECeFBBu34S3RcDM579nbX/JwmdCKayLzlESJ5lCgyKgrFwtn4yXddgfqt3Psfc1rf6h4/FKLJ5gUrsPjrGWjXvwf6XTLcMaJ1sxbhnx9+d53ecYEVlICiibegKZp4y7O65lZjRZMFmw9in/DdcHbvwB6xZ67Zh5lr9iIzvxA9W9bFwA4Nff+rBbvfKZqodf1wEE1OEFYiecJa5Jfbh2CaOHLy6sz1OLNnczw4ovyxEOEDVjiBnYUi8S+/jh2KhNhSZ6zjftuArxfv8DmQlY5k3QQpmny5aBtemrHel/zZc3v6BAUZcrKyEBUdjdi4w1cMW5Vxy5dLsHxnGsYJvyz9hX8WL8OeQ7m+o0jJwqJluDie9Kg4nmQMwhUL6kaL239eGwf88QfQVCxO33gDGSXRKBCcZfj84w8wf94svP3hhLLkS3ak4rYvF5eJJm36n4oXzutleRQp2OeiaBIsQWfpKZr489q26RpkZy5CmyM+RGJS6RWuMqSlTBbHdh4ud2zHCW2KJk5oBR+3posmhfkFmHT/6z6/E9L/hD58/8g7yMvMxpmPimuH61bMjW1ORRPNYW1T4Ytlr7BwOHJoHxx1zrCgGj5G3BSnzWdBZVQNEodCNFnx41ysnbnQ7wprJyjkUTF5ZEz2Odn3akqgaOJtS1I08ZZndc2txokmmw9k+UQQKXYM7NAAd5wc2KHmB3M3o0OjJLRvnIiVO9Mh//uZkT3LhBO73ymaqHX9mi6aSBFg5Hvz0UgcZ/leHGeR1iLSaqR9o0R8ce2AcpD0TmC/uO7w77+u3YtHfliFwUc0xEsj3fkSmSoc0j4jHNLKIAUbKdy4Ca8I0ee7pbswRjiCvUT4afEq5BYU4TYhmKwSjAYIMebVAM5y5YJSWpxg7FiU3HUXcpu3Qk7J4dt+5s+bjR3btuDiy6/1q5525bC0NHn3/25Hq/oJXlW/XD4UTUKG1jRjiib+WDauORUF+ck4oss0IYYefk+zMuZj++abfEKKFFTcBIombqi5T1PTRZPs1Az8+OT7pv4nfntDXDu8RVw7fOtF4qhFa/cQHaR0KprMemMiDmzZhWPOPxlLvv0VcUm1cPYTox2U6B9VfhhIrBWF7NzigMdlXRdQxRKGQjT589Op2LlsnThec7o4XuPOb5nmr6YmWQ5RNPG281M08ZZndc2txokm+8TmVQon0tJEBjvRxNhwt09c6rM2uay/+SbR+DtFE7WuX9NFk7+3pWDs18v8fGcMfWU2CoqKMf2241EnvtQMWQuaE1ijlYUmvtStFYOfxji/RWDm2n34vx9W+orRfKVECz8fdWqpe5TX6ijrIo8bNakdjyMt/LKotH6J+LqYmn845r3f/YM/Nh1A56a18ebFRyPRwhmtliJeWOEk5GWhQFjnZESqXR2sF00eHXsT+rX11lJG/9wUTVR6gXdxKJroWRZjzfJevj906bVcHMU7LCjm5W7E5nXnIi6+Azp0FsfcXASKJi6gBZGkposmabv24ZeXP0O9Fo1xyj1X+ZH6+8vp2Pr3KvS96FS0H9gzCIrqSZ2KJlMff0/4Y8nEGf93I/78ZCpStu/GgCuFL4yj3fnCiI0txoaUNejUsDPy85zP0epPWjVihkI0+fXVz5G6Yy9OHCv8mrV194Fo8de/YPOCf3w3N8kbnGpCoGjibStSNPGWZ3XNrcaJJlpDTFi4XRzPyXUkmmQJ/w23T1yGG49v7xNOjMHsd4omal2/posm0iLjpV/X4exeLXw3wMgwWhxvWSaOt7x8/lEYZOhPRieweorSYkUKFp8LC5UOwlJFNfy1NQV3flN6Te+tJ3TE5X1LhT/p06Su0GwiXxde4ufOVc0OGbmFWL4rzXespXerUp8rjsP116Pw+KE4FFNq6fH09DX4ccVuIcTE4U3hy6VVPTVv9UnCka18/+SxJpVQLK4ffHTCb/h9ew7uObOPr11CFSiahIqseb4UTQ5zKcjfiY1rRiAmphk6dvvVD1hR0SGsXzlY+F9IQuceC1w1EkUTV9hcJ7ISTbJSDokbZ/YhNj4OjTtWjBWG64cIkHDv+u2Y8+43vquG5ZXD+rDmlwVY+dMf6HKiuHb4TOcfDNzU14loot20EhkVifNfvBMb5y3F0u9+Q/NuHXDcDec5Lj4muhg7M7fivpn/wdgBY9G32UAUFfp/XHGcaRVPEArRZMpDbyE/J1dY/NwiLH/cWZTuXL5eiGA/oIl4t4aOvqiKU1SrHkUTNU6qsSiaqJKq2fEomujaVx7FWbErHc+e19P067fZ76qbuJrdjeyfTm7cazKrJ6euxvg/tuABca3tTUM6+IA8K47IvD9nM8ae1KmceHfuW3/4/IVMvGkgBohrffXh9i+X4od/kvGsOCameixm2Y40XPHhX8gSvnmuGdwOj53dvRzviAJh7nGHcAi5c6d9g4kYRcUlvtuAltSJw/HiGuRBwvmdozBEXLd8yy0oSSgVfp6bvhbv/b4JceLIzYQbB+IY4Zg2lOG1mRsw7tf1PgHpHuGQN1TB17dl5oqCTqjqES751vSxxEk7pqYuwNJll6Ne3X445piJ5ZL+PqcHiopyMHTIckQJ8cRNIG831FymEWOJ+D+/sXvZjIX4a/Ic5GXn+jJt2aUtzr+/4m6Ycfkkpsk2LFyNn97+Dp36dcVpt57vF2f9X6sw/Z1J6Ni3C04fc4GXxVrm5aRvpyQfwOcPvot6zRrgqudG+9rjvdEv+fK++oVbUbeJs/ksMz8Do6eNRnpeui+PN097E63reHcMtkIAOizECW+VrHMzc/D+mJcRWysOo965VyWJaZy87DzRli/6fhv17n+EOOm943vXlQsiode8g6hKtU8qWTKQAEWTf/vA98uSIf1JPHx6VzSpU/4IgNXvu1Ny2IsUCMgvDDWZlbw2d744Eva8ENyG/Ot0VQoOD05ZiYFCFHn1wsP+SaR4dLx0AitECXm1sOYEVsP4lXAEO05s+M8S1hEPjrA3+92eku3zEbIvIw+ndW+Gp4Xj18T4KKRk6M7EiMzjhYPYWru2AXeq36SxZFsq3uzSHL1at8a9I0YAOgeyxeJBisUzREVG+qxZ/EJCLRR37YpDEbVQKKw+JglLnI/mb/FF+b/Tuwmh6PBxGZlHKMI04dvlyWlrfI5mHzuzvKNZr8qskxAjNqYlPksYhtATaFw3HqmZeSgUzMM9SGevyduls9cz0bLtc+VwbFxzhjD734Yjuv4gXl3nt0dJS5OGQjTdl1a6YWcILQF5VDFKHKc8lF3gK0jeKjP1yQ98/6sP/S8dIW776B7ayoQg901/LMfi//2KIwYfhT4XnuxXgjxi8csrn/uO7px6r//RnRBUxZdl/aRY5OQVQfrZsgu7V2/G3A8moVmXdhhyc6ng89cXP2HbotXoPmIwug8fZJeF73f5TiXER+DxOY9j+d7lZWna1G2DcaeOE/UpqbFjW7P6tbBXOH/36gNayvY9+FVcVV2/VfBXVc968yvs37QTg689G616+d/kp9SwVSyStDRJFMfCU8S6kCF4AnIPw0ACFE1EH5BHeaQPFCvBJNDvPJ6j9hLV9OM5F334J3aKK3ClU9f2DUstK6SIce67f6C2OFry823C6uLfoDmBbSfiTdA5gdV+L3MiK37XO4k1I52SlY/bv17q8+NzXMdGvltitCuHDx7yF01k+iRh/Rs7Z7b4rPWmUsOtSE7Hy8IfSM9GjfCfhX8j4uknUSgsTgqFrxYpdmjb1mixEIzUKyeDBqEoPh4FiMSe9FysFlcry9BVWKw0r3t48okQaSIiIoXg4P0GeKmwvrl14hL0ErdhvXtZH6XndRPJ6njO/n17MfHz8bjsqhvQsFHp7UUMwRPg8ZzDDA/sfVtcK/w2GjW9GY2b3VYO7uGbdT4SDmHLO6S2aw0ez7Ej5O3vxuM5+zfuwOy3vy5XSLt+3dFPCCfVLWhHcLqePAA9Tj/Or/oFuXmY/OCbvmuI5XXEFRGcHM/ZOFccx5n0m0/wOeaCUsFn77qtmPPet0hqVA+nPXi9mAMBu28AcXFFmLT2W3y1ciKy0zJQJKxDI8SRn9qN62No26G4pe+tyMuL9ExYqAiOqmV4fTxnx9K1WPDZj2h11JEYdPVZqtUwjbfm17+wcto8v/YNKsNKTszjOd42AI/neMuzuuYWdqKJFEfkP5qDWGm+L68mfuiMrqZHcux+p2ii1vVrsmgiLUak5YgMc+4+AVJA0MIF789HshANPr+2v++WJhmsnMDqSQ4T1xfni2t1p916POoJSwazkC+Ei7FCMFkubn2SPkdeF05VZdmBRBOZT70IIWV8+gkwfXrAxpP13nowC2+3TET39h0wRjiZrJsUj33duuG3P+aXSxstFn6+J+8ujgY1box8ET9VfDFdtbvU/FiKREYfJsNOOAG169QXVzWr9SMnsTSnuo2F/5Qpo451ktRRXCmayIVyjuEhVq1YjmeeeBiPPPEcOnct/1WYlhKOMJdFpmhymFuyuFI4XVibNG/9OOo18D/uIGPt2v4fHEqdhhZtnhXWKM43FRRN3PVRt6mMoom0MJn8UHmBu5uwaug+fLDbYiot3bLJs7FhzmLfNb3yul5j+OHRd5GbkYUzHrkJCfVqh7yeTkST5VNmY/3vi9HrrCHofEK/srpNf3Y8Mvan4vgbR6LTMZ2QkWM9mcWJUx8r9y/D0/OeEs5L9yDnUHZZPtGx0T5fL9f3vh4ntT8V+fkOj8OGnFbwBXgtmmhCR+cT+6HXmYc/TLmpqbRamTnuCyQ2rIvTH7rBTRZVKg1FE2+bg6KJtzyra241TjSRVw1LyxBpKi//kUdt9I5d5W/yqI30JSF/v+T98g7yZJqPru5r+7tsdIomal2/JosmUli4bPxfPkHg6xv9TXTl9cHy2NcDwjmsPG4jQyAnsBrNMeK4zZLtqXhhZC8cd0QjU8jaLTQdGyf5BJN64sYdGexEk7LbdP7zH2DdOssGXCSO5uQWFuHdVkloWxyFe4U/lOg330DcqSdhg1BHVq4svaVHC5FCsIlq0wb5QmBZujsTUtSRwoA8xtNSsNEscLT4Rx99NFq1bou8oki1TuQi1nEvzfKV//tdwxAjRJ1QhEZ14xCRkYHCtFJrGhkKhYry699L8fZHb+LWG2/H8H69/YqOqFsH2TkFyI1Xd/QbirpXxzwpmhxutW2brkN25kK06fABEmuXPx6wL/klHNz/MZo0vxMNm1zvuLkpmjhGFlQCM0ewPz39ETIPppXlW69lEwwTzipjhB+H6hYWTig9ziKtZKS1jDHMelNc6bt5l3DGeaFwyhl6/x5ORJP546dg18qNPosGadmgBc165tg0Ev0qAAAgAElEQVSrTkW7AZ0hDsH6jvwYg9zEZhQcxC3TRiEnMwsHtiaXi1O3eUMkNqiLZ058BkfU62qaT3Vrc319vRZNFn31M7b8tdJ31KvDoMNHoN0y+uExIdodyhLHw65G3ebm6y63eVd0Ooom3hKnaOItz+qaW40TTSq6ISiaqBGvyaLJ3I0HcN+kfzBI+C55+QL/iVv6J3nttw1+t+rc8PkiyCM4b4nbY45ubX4rzbtzN+HTBdtw1cC2GHX8EeUgP/7javy8eg+aCoHv9Yt6o3X9w17j7UQTmZmcUBMyUhExejSELXC5/OWmf8GW0mu7pWjSOrcIlzZvh3ZXXYioJ59ArXvvxp/Ll2PXrl2H09YTz9KvH1YkHxIWJoePBiWKL2jG52wjxJW+ffsJx7XiiI/3J3PK6nThB39ilzhDPfH6gWjTwJ1nfbseXk9YmsQUFaDolVeBP/7wCSYrxbGmVUJYmtgsAZfvyUJH8fGxb9t/HQUKB7klt4xGWkl0SJ/drt7V9XeKJodbTt6cI2/QOaLLj4iNa1uuSVP2f4q9yS+gQaMr0LTl/Y6bnKKJY2RBJTCKJnvWbsXc978tyzM2Id73Fbw6CibyIeYJnyC712z23TYjb50xhr8n/oytC+Um+BSxCS69SjuUwYloMuOlT5GevB8n33WF8KHRtKxaWSnpWDn5NzTp0wJv7h+PcaePQ1Rxos9SVAvyQ0XthGjc/fPd2Ji60WdNk7J9b7lHk9YmtZs0QKtmbfH6aa8joqiWXz6hZFEReXstmsija/II25BRF6DpkeXHP6fPtFBce71NXHttZQnlNL/KjE/RxFv6FE285Vldc6NoEmTLUTRRA1iTRZMJf2/Hm7M34qI+rXHHif4OxOTm+aYvFkNag3x6TX/fJnnIK6VOYH8dW94JrEZznhBi/iOEmD7ihpk3hBWJPrwijpT9b+lOSDHi9Yt7Cz8hdfx+VxFNZILEqBLE/rMUEc88Y9qIeksTKZqccSAHHc4djrad2yLrswmIGjsG03/5FVlZWYiIFgLA4MHiCsUCbE71dxoZLRzFDtQ5fq1Tpw6GDx+ObOHHpEBYo4Qy3C4sdhYJi51XL+yNAe0OO5/1skx5PEe2a3ShEIrGjsXBDVuxRvhw2SZ82WiiSSvBTx7PatFD9I9x48QXx4iQP7uXz1iV8qJocrg11izvKf6jBF16ifc4ovwxvkNp07Fr2z2oXfdUtGr3iuNmpGjiGFlQCYyiycxxE8Tmeje6nNQfa2cuhBRNznnq1qDKqMzEv702AQe37caJt1+Khu3KXwNfdtxCHH+Rx2BCHZyIJpMeeAOFefk+/rIdtCAFkcL9BzHmu9HYlrcdg7sMwTNnvyAsCUt887w8sir9mHy64lNM2/CjL1lhXgH2ic2+VZBWm8d2GYrHT3sKxTGJPv9hNSF4LZr8+OT7yE7NwGkPXY+khuYfoJxw27Z4DRZ+MU04+22P428a6SRplYtL0cTbJqFo4i3P6pobRZMgW46iiRrAmiyaPD9jrc9Pyd0nH4nzj27lB0QeDRn6ymzf4mnG7UN8zmKv++xvn38PMyewWuI0Yalx+lvzkFiUiY8u7Yk2bUtvvnh/3mZ8/OdW37+/JoSAfiZCgKpoIvOoE1GI6G+/Ab49/DVTq0O6OD4iHcFqliYXZxSgU5PaqHvZRYjYsgmFu3Yj9bhjMXPePEQeczSK6zfEH1tSfMdy9MEompwqBJOY2AQUFIf+Drdnpq/B1BW7cd+pXXDOUeUX6Wq9N3AszRGsbONaO7Zg9/WjhWPeTBTedClenvEj/nPa2ejUtDnqCE/2tYYcKxzkJqCo1PuLp0FeJpNbeulGjQ4UTUqbtyA/GRvXnIromKbo1G2maZtnZy3Bto1XoVZib7Tr+LnjfkHRxDGyoBLoRZMNc5Zg2eRZPsuDEfddg2/uLhW9Lnzl7qDKqMzEPz0zHpkHUjHiget8jk+NYceydVjw6VS07NnJd4tJqIOqaJKXmY3vH3nHVLSKiynEuMnPYdKq78qqe0mfSzHq9DvFzVXRiBenqJ544SGs2rsKEcdGo1jMjynbkpGf4++oPbF+bUSLq27l8ZC8rNIPDxd0uwCnNR+BlJ2H0Kp3ZzRs2zzUSEKav5eiSXFREb69d5wQiyNwwct3eVJvrZ0jhGg18vmxiBRO76troGjibctRNPGWZ3XNjaJJkC1H0UQNYE0WTcZMFP5HdqRinBAx+puIGKMmLMY/u9J91g7SOenzP6/1XYP76BmBr8GVflJyFk9C65L9eP3tj6BZtEjiT53dAyd2bmIK34loIr9o1Y0TN9g89RSwZIlpftcKC4quYkN+V1RMqZPb2FjE3HAdIiZMQIlwCruxzzFYfOCgz/HrFnGLz650/2u4W4rbcto3KvXd0U8c32narAXyhY+Uigj//XMrPhBCk9UxJy/qoL89Jz8/H8nfTkX2a68j54IReH3RfIzoJK4xT6qNOl2PRFSDBigUtwV5HTp16oRmzVuG1D+M13V2mx9Fk1Jy2ZmLsW3T1UIQOVoIIp+Z4pRHd+QRnpjYFujYdYZj5BRNHCMLKoEmmuzbewg/PfMR5I0ymg+NKQ+/hfzsXJz95GjEJVav6y+jIkp8R0I3zluKIuEnq+NxvRElrBONQW5atwqfJ/L5zHyeWMEtEIqxwq3B5ZKriiYpwjpmprCSkcdy5PEcLUhB5Od/puDpKY+Xy/v5y17FoCOOQ1ZRFu6+53ZhLVKM3lf08Vna5GfnCQEmzpefdntOjBBMtFCYX4Cc9EyfgHJa6+GI3FaM1XOX+/xstBbiSaujOgsxrbzoFFTnq4DEXoomh/am4Ofn/1t2c5FX1desoayOkHlVTqjzoWjiLeFwEk2GjhyLS889CaOuOixcv/vp9/hy8kz8/t1rZWC7D7vGD3IX4Yfq2w+f8P1N5nFAHF3Uh/9n7zrAoyq66EnvhRQCJNTQa+i9995EBFEU8RcQBayIoqKiIgqCFBUFBaV3aaGG3iFACCUhhYQUCKT39t/7wks22d3s25JN2/t9CGanvZnZzc6Zc8/Z+tsXaNYo7wKYQ7a++Nq0j5fg9MWbheot+vQtDOvfWWizVxcvLPjg9fzX9x05j48X/oaibet29QtaM4AmWs6sATSRNoEVGTQZufosniSlY8f/upCdbgFtV5yZX04EYtOVh3izWz3EULldvo/wbu8GeKldzWInj1kSl//7Gy4ZURjxzrf4jsAWjrkkKjviuaisogbUAU24vrmpMWyzCOh4hyxLnz2Ta3Iq6XU0o9ucOcYFX3KNatWE2WuTyQpoD7IXfIlzl68hODhYqBvwOAnRiWkEsBjD2cZcAEwYbPH09ESLFi2RQqkp+opDt6Pw1QF/9G/ihgXD5IUHdTEOETTZTGlaS4/fx5f9PFFj+z8IOHFMSM+Z0LErKIEJ9vXrItdY92CRu7s7OnbqROlObHdZMWjcxa2LATTJ0yRKT7uFO37jYV9lKNxrLVI4Zbm5Gbh7sw3dxppSCo+v2tvdAJqoPWVaVRBBkxN/H8SDczfg3rw+ukwZKbR5kFxaksilRRlLQ6uOS7gy/04yysnArrUbhZ5qNJPXM+Gf5xKwEHknBHzTX71JwZfr4obXvHlzEkF2JJad+p99UkGTh2Rte7GIta2xcRbiM2MwZeMriI/M0/+SDTtHB2yftgc5qdn45vMvBdBk8thJxCJJgaWdDWq1bQpTC3ngqGg7qXFJCLx+ByHH/QUgRQzXeh4C+6SmV0NY2BJzk5yW7pMzUcqzBLjWr6kW6FTCy5/fvC5Bk0j/IJz5YxfcGtVBj7fkncM0fabbh87B//B5NOjeBl6je2vaTKnXM4Amul2CsgaapKWF48mTI7C09ICra3+dPqwU0EQRgDF26ueFQBNZ4IVBl1/W7sQ7U8YUAmOKgh4MmnD8uiiPPSa+zsBJ3VrV8OJbCwoBJIrGqtPJKNKYATTRcnYNoIm0CayooElKRhb6LTslAA8+c3opnIxj9x5j/l4/dKnnjDhKeVElAsuNJJGz09ubryHh0k5YJYUjpPkUoe23e9XHy+2LdxVQFzThdq0sTGAZeA9Gc+XFIv3oIO5IOIdHkZQS4759SNfkXaSQyCnndXt7eyMursDlgQVRRftlZ2dn9OvXDwlUmNNY9BW+4XGYsekaWtRwwG8vy1tc6mIcLPD35X/+2HEtXGjutS518BEBW7dmTMNnD0OwYOpbCLeywS3KYfd8zrgprt90EhC0oP0kJWxsbDB48GDQtkKmjPCglLrltUxlB00YyLCzMsHDp+eQ8WwTco3qwLX6LKXLef92d7rdj0WDZidhauqs1rIbQBPl08UClL5kQxv36DFcPWvCa1QvsLONNsGgSUzwI+xbnJdKJevioUoPRJt+9VHXNJfSPX3O4/L1K6hGB11lEX0/FNlEG3FrWAsmZsWDCs3I3t6zfgNyeZP2eVm0T6mgSVGtFTP6fLa0yMW7B99FcNQDhU443Fcj54ZY3P9HfPH1F5Sqk4EuLl4CwNFvzsuwrlJYi0zKGrCIbrjvfXAaU3ZmgbWxG+mMxQRHEGulID/Ta1RvNOjRRkqzeiujDDRJIV00Dmv6fSYlGCC6+d9JBF24hdptm6DDy0OkVJNUht2b2MXJ3s0ZAyktrryGATTR7cqVJdAkLGwdgoKXIysrz7HR1rYJWrX8VQBQdBGqQJPb94LlwIui/Sprg4GT2z5/5RdXBZpwQQZjmpPOEDNMvvhxHaLp8oBBFf63393gfKBGF8+uqg0DaKJqhlS8bgBNpE1gRQVN7kYnYsr6y/AkodcNJPSqKDglZ8xv5+BAlsAMhuSJwPaANQm5Kos/zwbjz3PBcAs5nA+aFAfMyLajCWjC9e1MsmF2gITq1q+XtKi5P/yAnHqeiCdBV+4zOzMFB/bnCd3JhgnlBQ8eMoTkKs1Ix0RS0zorFE1zP5rm3sXWHHund9NZu2JDrPnCwrz3aB9wfNi/EUZ7uQtMgIDzpzD/xx/w7aefI7u6Jzbs2ItaDuZws1NsFcoaMszSYZtnjnoEsNSg1CYx/G/fwuPH0ejVu1/+z/r17w9LaztyWND5o5XZBis7aGJpkYOt/ptxKnA9Fvf+COnkQGVp21fpegXfH4u01Huo23AbLK2aqLWuBtBE8XQl023+kZ/WC7f7YrCjTf/3XyXLWPUPw2IbDJocXrYZEfdCBfHXFkO757evynlGrYUthcKJj58hKfQhwmIiEZdTOIVTHE5mWgaeEmjEwqfsJGNfzVlgZSiKatWqoXv37khKy9EYiJcKmlzZehjBdEBv80I/1O/aCrbWxjjz8DSCY/PYlQlRT8kWuoCKbmlHTm2sMUXpRo1cGuHs3vOIJTYKgyasWzL6W2J1ahGs5yGCJxG3HyhtadTCmWXKaUkZaLJi6feIjHiEhYt/UTkr/J7j9x6/B8VQZmGtsjElBcRUuMGkvWOrQHtH03b1Wc8Amuh2tksKNMnIiEH4o3/VGmxY2F/5gIlYkYETdRgn5uYu8HB/WWG/qkATrsRlXMgeXUzHKdqQMgYIp+SI6TZcR13QhOtwG8xYYQBGX2k54vNVWNAk/G4okonW2KhT8ZT805uOym0azi3tNFpeuT3YN4DaTETzXgXovQE0kfZer6igyZE70fhi3230algV345srnQy+ODOB3gOVSKwXGby35eEA7QsaMI/ZzFZWxWUXk1BE8rAgQMZcBj/shw4dar4hZ06FZm9+iDRqCAP28rcGI+jI3D+3LlCdbt26wZnFzeN6NPSdlfxpbr/lOdWxEwgBp50FVuukJ30iQChuRbuDni/b0M0dLPLb94oPQmZz2Jg5uQC/9gshEZG4/K504IjUlpKkiAIaO/gIJRnVg67FWURhVs2mCHDYBtHwP079Oc+xk+YhMTERLRp0wbuNWsjPUt/6U66mjtt2qnMoImFWS5uPL6G7899h9SUG+hcoxk+6vkbsrLdKDVL8ayGBU1HUuJp1Ky7Erb2PdWaegNooni6RJHWoq9qe7v/6OptnPv3EKwd7QRHEFkhyksbDyKU9D46TByM2u2K18NSa5H1VJgZNFfoGfpNHQ6/hwEEAD8u1DOn5sSERBAQVVgg1dXTA7J6H1zJ0tISg4hhl0XaWLLWvuo+ilTQ5OTqbXgc8JAcVcaSs0odWBMzMzOnsOp2enIqpc8kklaJlbB+HLf2nUYG6dJs8t5OAEqqAJowuMZghq4iLTEFp37bLtghF41eM14UUnXKSigDTZb/+C2BJuH4bskqlUNlcWR+/8mGruf0woZ9CLt+D63H9iWQzEvlmMpiAQNoottVKSnQJCmJUv8uDdXtYCW0ZmvbGB07yF9yclUpoAmXK6ppIpt6oww0KfpzVaCJmNYjC44ww2T7vpN4YRg5jMnom0h4bK2LVDjQJJYQfwY3gq8HwL1xbYXghzhrGXSr8TgkstAkxlH9IKo7Ys74Qj/nNi/sOoWqdaqj7+sFVEADaCJtD1ZU0GQtsUH+IFbIKx1rY3oPT2EyqhB1HpmFv1DdeBSHJ4l5t5Ju9pZCuohsZNMBOiG3gHnyzcE7OOAXWQg0YbCEQRNVoSlowu2amRjDjg5mmD0bCFNiidirF3KnTafbQhPBalc2rAlD8b/th/t0uOfgfPO6xEZJz9a9loeqeRBff/GP84Jr0aY3OqG2E90AahmJaVlYfOQejt6NFlp6uWMtfETuPMn0czHYlYjDgtKW0tnWhiKMdF6CyXUo6N4dXDl/Eunp6Rg6JO+XZVpGNp6SY5Js8NwmZuSQY5Et3OvWxtbdGxH+IATz5pMNJQlCerVugxRiGVQCGZNC81JZQRNLcxPEpkVj+sFpwnykJF2kG/lUvN1tFfrVG0VMrwIAU3bCIsO+QNyzHajm8QWqOI9Ta/cbQBPF06UMNGH9EdYh0SQ4teIQ6ZakkG6Foptz8bDYamQvNOxZMqmGmoxbah1mRJz9czdaDuyEVkM74eCBA/RrsuD3ZFpiMtkr532mygYLnhZ12unVuzfs7KsQYCy1d8XlpIImBxb+gWRikqirJ3N50yGEXL6NC09vCHpTDJrI6tRoN/qC2re9SYfD+3yh5hhIGPrZm2WaacKsEd7XOw5vQxIxVUe2HgIGenjsyuLc2j145Bco93L/91/ROj1ObDT4oh+ubPFGDXovd32uKaSrtdJXOwbQRLczXVKgiSZMk9DQ3+h3fwHLkZ9U30yTorMrghuyoq1FxWS5jhSmSVEh2KJsEinpQbpd/YLWKhxowuwSBk7C74QKT6mIMVLcZB5bdwBudasVYpNwexcJMKnbuqHQrgE0UX87VlTQZMF+f3j7R2HeoCYY1iLPDtCWiAHmVy8Df/4p/H8yHYj9yD0n8zmLwJgoHa08HGFDhyAhXn0Vma1aI9G0IBUjMj4NY38/Vwg0eaNLXbzRVbU4njagCQ+HD2dWEQ9hNEuBTkLt2sDSpUigw3rWczBAdjeIegs+Pj7gtBxmmTB9munWpRWztvricugzLHmhFTrVVU/ToeiYL5Kl8g9H7oLXx5rm6SNKxxnXvqYwFyJowowdRwtjGO3eBSM/PwI18p491dgMyZROc+XmTew8fZysmbNI0LcVs7iFtK1CN6a2REmvXgM3IhLgRWrjtetVwTcrP4F1rDmGvzMRI9qMhr2ZjcI1KK151le/lRE0Yc0gG0tjzD48G6Fxeb/bkhJO0n9ziT3SA1/3/hYNqzRDanpeapdsPIlaiZjo1XBxmw7Xam+rtUwG0ETxdPFhb/enKwq9yGk5nJ5T3IGvuMm/sfck7vtcgXvTuugydYxcUf/DF3D70Fk06d8JzQd3VWsdy0LhkEt+uLzZWxAo7fbKICTGx8LH50T+0JSBJrbODkKajhheXl6oWauOTpzCpIAm/Pm9/bnd89jFc4j9I52tKIICmw9tItAkByM7DhcO4ZrukeLWURZMYC0YTiVSx4FIH3ukKNNEBAKvxvoLoEnPqu0EfaBeb7+odDjKmCa6BIhSiFG+/6vfBU0dth4uj2EATXS7aiUFmmgyShaAvXkr7/KEw9TUnpjHG2FHKTq6CFkNEbE9Re45RfuSZZHoUtOkaD8G0EQXq1ykDT+fa0iKTVILNOGUnmsHL2DQ9NEwf27/xiDMsXX70X1CP8RFPRNYKAbQRP0Fq6igydR/rgjCrr9ObIuWlKIhhgMp65v8QzagpPFxJyoRT5MLo8KWpiZoV5ssA+kQnTNlCuJzzITDs2xwes6a1T/jWVggXv14MXo0cJU08dqCJtyJLZFezM9Sis5yStWRidxffkFqFVekkRuHsjAnPQ9To2wYk3tOBqWOaEOflvTAKgp9T65De29G5OuNaNqmyCri+u1rO+HDAWT96GgFWcthsW2BsWNKqTZz5hRi7EQ6V4flpAmYu2Y1sUTS0du9trDuhVxvzMyRSwydsIQMuk21w/A+nfG+93tIuhQDmzgLJBDR7aPOi9C9NqWDlR4Wpek0al2vsoEmDMJZkI7JWt8/cfiBtzB/uXTLlJx0nlxGLGBj2xmOlo74ZdAvMMm1kXu/xT7dhqjwBXB0GovqNeWtUYtbEANoonx2WAD22M8bKc0uD6jqMGEQahMgoEnEhkfj6JI88dcRH78KCzf5z/oHZ31xbccxeJKmRpuxBbpGmvRXGnUYEGJgqGGvtmg1ohdsCFgOuH8XfgQs5+3pHDx5EI4sGYEmYwILneu456fn1KpVC+3atRcYdrrA4aWAJkkxcYL9Mwu3Dp3/pkZTt+ib+cgkO/rPvlLscqVRowoqXd1+FEHkusTpW5zGVdaiKGhy4Js1gjaJLGjCYy5Oi4WBqKNL/wGvCwcDUJwWp2uA6MhPGwSR5x7TXiBRYrosKmdhAE10u2BlCTThJ0tMukPuOYdhRoBJ9epjBeBEVyGmv8gKtjJDREyH4ZSadVsOFtIzEZkmYh1laThF3XOKgjFF3XMUPZMBNNHVSsu0owlowiyTeq0boK5XA6ElTt9hzZNGnZvBg1J9OEWnKGgSn1w4DaMEHqVCNMkHy4o4V90Xn0BCWiZOvNcLTmSvKwazSSxZimLePFzcf4b0PORvgLsRTdlk2VJKzVDOxFixbAn8/W9h1W/rJO8DUzqwW5gZEfNBvk/JjVBBq+wMGK3/i7wuD+ZVmzUb2W3aIt3KVmUzLB3C53nKOir1WHMmCCvI9nkKsXRm9cl7b6sTzCpZSLbFpwNjhGpsHT2zdwEF34oYJ9l0G5lRROXWjL7wm4URK2B2wU3VPQLQsjt2xNrUp4h4Ql/IauQ5ITHIYkViupk0YRn1GyLJzBJVSEywc+dWWHX5b+wPJAZcgAPs4q3wqG8WHdSccX7aBlgYm2ssgqjOHJSlsnZWpkgmZk4R+ZeyNESdjoV2Fo6HHMUa3zX57WZnxZNOyTWYmDrA1i5PY6t1tdaY350OZwRUyqZsxcWdQOC96XBw7IEGjX5Xa2xk1AMbmu9EtsgyRKEZyErPxD9zlgj2uLl0gvca2pX+aCY2fXTVdoT7PUDzPu3QfeIApBI7sWgEX7mDk2v3om7bxuj5Rp4NcXmKa3tO4qb3BbQZ0QMtB3UmG2wC5olsef4CpU+G5zmPsZ5JAgnGpiYkC3vY1skOVTzyHIns7OwwaOAg0jEx0tlnnrUlfeaSVTF/7iqLiLshOLx8C6qRm8+g2RM0mvIFn88j4cZMfP3tYo3qS60UfjsIR1duQ40mdTDgncIp5lLbKMly9tZmSCTBc/Hz6dDSTYgirRhZ0MScQJCJP1F6cDHhf+IKLm07Btd6NdD5pYFwer5HdDn2q7t9cOvwRTTv3xHtRvfSZdN6aYvZiXyBJps2rJeOK2gnfIapTCECJ+IzF9UPYTbK3cCHhaZEFmRh0CTmWYE4NheUTbORrS8rDGsATUppl6kLmigCRO5duC2k4zCQwiGm/bTo3SYfWDF8IElbYHYFqGhzFZOUjp4/+ghCnec+7iM3EXxLaxoXC9+RLyPu+a2IWMjW2gLt9m9GloMjsolZoCx8ThwTBPNeHC/9yxr3y5aIrJOhTQg33PSLF598QlYu9ZA7cSLSLbTXBNFmTJrU3XczEh/vvInBzath6Ytewpd1qeEbFodtV8IpxSoLDiTYMq6NBxpXKxB75XaYWUPMa4VfvM2QA2NKVTJakecKcCHoKdkDZ2Nf2/qkCZOFto4uws+dbSzyxlWzFnJdnJFrYopWbVoiPCUMR4JOCiBB7KVIJIXFw3J0WzjyWFrSAas2adzkFG/LKfVZy0s5K9L2Sae9XYidU14Gr+Y4c4wyEZ4Qhg+OvF+oZkZ6FJKT/WFm7ka5zAXshtGNR+PFpuNhggJNAC5368ZosvNsjJat9qg1AiPalAwKpmgrHqFWr+Wj8LNHT7Dzqz9hU8UOybGJqFrPnVgir6g9+AeX/HHiz72wsLHCy99NJyckSzkAlht95B+Mg8u2wJ0OxINnv6R2P6Vd4cw/h3D3tC+6vTwQjXu0FoZjTL+rjOjD89Chg7Sf82xnOXg+Y0jfxMrOSphXjv79BxBAaEdgvPT0GFXPbMlANaGv2QpSTcW6PGYee8MuLdFjsmbWtlnPtVtMzUr24BUbEYMdC/6AQzUnjFvwP1WPr/fXi34PPLvpMO4QK1wWNGkzrBvaDC8efDz5135yp7uFrhMHoknPvL2k62Cw7MDSzXCu6YbRn72u6+ZLvD1dfQ8s8YGWkw547xrCMAMVTtNEXFJ1QBNmlBxavUtI5WGhVzFYJJZTdsSIjXwmuOd4NKktaJ5wCo9BCFbam6gipufcCI/D9E3X0Ky6PdZMaqdwIqxNSKjT9zquvvle/uumlLZS/4cvYd+1M5KMdP8lShfpOeJgmeJpnZECI1tbxKdm6+yGT9qu0U2pm6QnM23jVTSrYY/Nr7SGGan0484ducbZwYa1RTgcCQh7EJNMArIpwv+72FoIgnc2BXcAACAASURBVKzmffsggbRnZPVcFKXnyDYupGqt/1tg7LBFMVsLb69mgxyP6hjl1RYhQUFCf3AmsKROHWSC0BO6ZW3UqAEyc/OYbBnkUnTC+zBu0F7q9r/5GOPlAXtiAGRRaoBxboEWjm5mrGy3UlnScxj4NDHLxMwDbyMmJY/lxJGbm0UWwreRnRULUzNXshEunBLyUZeP0NqtAwFLeeWzsmIQcLsXsVKc0LCZClesIktvSM9R/l6IIGbI2bW7BTeV6PuhAttk+AICPdhuVo3g1A9ONWhDTh0t+7YD3xArYmWKKTyOdKve/z31wRk1hlQiRc//tRfhNwPQefJweLRqmN8Hg3LJSXE4euRI/s9yCMiIuhMi/D/Pb8dOHVGturtOdExkH05Kes6t/adx99glNCMdmaakJ1OWg9lPuz5ZXma1OGTTc9hN6cQvm4XpvJEUgLiUeIz0Goz+H7yqcooP/7hecAvqM2sinGsXfGdXWVHNArvmLqd0sUwhLYvTs8pTGNJzdLtaZS09R7dPZ2hN6gxUOtCEQRBmj8gKxDLAEh0cVUirRNEEKmKjGEATaVutIoIm+25F4ttDdzCoWTV8PkS5BaS9KZ2At27B47X/0CE3B1VenwTrF8Yg3thS2uSpWUqXoAl3zfaK2SmpSDdRzohRc4h6Lf6YXItG/XpWSJ/a/3Y3OJrkwGgliTjK2CqzWO8d0qZJy8pj55jQDTun3HCwRTRrl4CEcTNat6XUmcKHIlWgCR88HazpluLjjxF//ZYAnGxzs6Y0Jwss/uRTnPU5jpRM0rwhHZMsYqwUZVCY0e3k4CFD8M3in3H9+lXUGTsPC4uxt9br5JZCZ5UBNOEbeEvLHCw++wMuR5Co9PPIzUmjG/krhJwUpMtYWjUm8KRafhkzEhz+ZfAKsg93RfrzlLG7N70EsKVxy2vEaJL+PjaAJso3uOigU7+bF5LIWSXqTrDadsC3D5HryeHzcK5bA33emUBiv6ZKQRPWfmANCG20NUrh7Zrfpc+qrXgSGIae5I5StYgNrjXpmzwMCcK1awVWsk9DI5FONr3tenZGx+5die2n+9FLAU0urCf7Wd976PjyENRqqxuhRd0/SUGLe+evAtsfD18wjQA8EhQvQyGCJtn0i+7okg2Ij4xBgx5tcOLOaTy4fQdDGvfBEHL8KS5y6Hf0jo9+FoqM/WE2jEkfrqTi3Dpy6rkViHYvDkDdTi1KqpsSadcAmuh2Wg2giW7ns7y2VuFAEwY2bp24hkxijzCDxMbRFm0GdxI0STgYILl3/jbGfpJ3U8Nl/lu6RRB6lWWZKFpQA2ii+TaviKDJ6lMPsOFiqKBx8XrnOkonhw9ADkQkMFr0fZ4V8fz5iKcvgNm6ULJT0KuuQRPNV73s1Oy5xEdInzk+uyfsSGymqK2yL7GGRJaJOGpmBDWhVBxOvwKBFjkTKc3KSN4KURVowu0JjB26TTWaMQPJlK//NR1gk+jni9u0g3G/XjgQGYksUzNkM8ukSPTo2ZP0KJzx/ZKfceXKZRj3mYUNr3UoO5Or55FUBtDEzCyLdGz2YqPfxkKzm5Z6F1mZUXIzbmPXjcCQAvpwQ6eG+HHAj0hIyRRYUYF3BpAQZQTqNzlEKT0eklfMAJoonyrfXScQcPoaiZr2JF0TY8E6VR0BzkTS7jj0fZ5WVc/p41C1Qa1iQRP+TrN73i8wtTDD6O/elbyGZaXg4cV/C4dkZhI41igsdMupiSwMe+3qFYSEhAhDTqZ8eJP0XIwcNxomTk4l4hQmBTQ59vO/ZIUchT7vTiBR2hplZTqVjoMFhZmV1Hf2RDjVKjkWhiYTIYImlzcfRvDFWwJLhNkiO7dtxK0jZ9HUth6GffEWrByU66YxmHZ82UZhD0lhpWgyTrGOKL5c06sROr06TJum9F7XAJrodsoNoIlu57O8tlbhQBN9L0RlYprwoXK/H+kqpGWhuoMlhjSX/gu5IoImn+y+hZMBT/DV8Gbo19it2K3HVHs7crxg+8JkE8pZZ0pBCYUBNJGf2PF/XEAYpdr8O6Uj6hJzRNZWmdNyLgQ/lauU73DUlFhE336rND1JCmjCjdtQqpb5LV8YLVyIBaRnkkA5OD8RK8Doh0WItLGGz9nzcmNo2bIl6tT1JAaMETlGZKPfspOCaOxJEh6urFHRQRMz81wEPPPHlye/kFviFGKZ5GQz3FY4bGw70cG9MHNtgOcATGn1BtLSTRASOAmpyb6oXX89aZvkCcdKCQNoonyWzv65CxEkvNnl9RGwq+oE70V/wYJSc0ZQio6UEBkMdTs2R7vxA4UqxTFN+PUdH/4suPWU9A27lPGrW2bfgt+QGp+k9FDMaUks8uzt7Y24uDgiU2XDq24ThN0MRrtJw9XtTlJ5KaBJPnPjS2Ju2Jct5oaihzy3bi+xI+TToCRNSAkXYtDk3IGLuLL1CIG8Ruj33iQ4uucJ/Z76dbuQ5tZ1yijUaO6pdCQPzt4gF6mjgltOe3KsKskQnZPMrSwxcqF6du0lOS4pbRtAEymzJL2MATSRPlcVuaQBNNFydSsLaMKAyTcH7+AUgQRitK7piJUvSfsCXhFBk0nrLiKIdC/WvdoejdwKi4Mq2lacu21ECvopOboTslPUjwE0kZ+V2dt8cSnkGX4a2wqd6zkLBWyJQGJ+Js9W+ULwM0qNKQxksThrk3puyF2xAilmVkgngENRSAVNuK69URZMd26H97atIAgNI4YMQ86kV5BpYYE7/rdx9+7d/C48PDzQsWMnEoFle828VCFOM+J0o21vdoY7pwxVwqjIoAl/0U3PTcT0/dOQmpUqt7rpaYHEGMlzGskPYpjYEtNEUbzd/m10du+OkIAPkRh/BO61f4S9o/SDhgE0Uf4G8/7hLyREPUX/918RDn6HvluLxCexkhgJEX6BpIeyh3RmTDH40zfyb9ZVgSb/ffkr0oipNuxLuo23V+1iVpY+HjilglMrxiyaJWhuKPvdlZ2ZggP796Nrt26IufkQl3adRLc3x6B6k7o6fxxVoElmWjqxe1bA1JzYPd+XD3YPM544dYwZUA17KdZa0/lESmzQLDkBm774Q9D/aTuuP+p1bplfU9SOaUK6Mc1JP0ZZXCXAJejCTcFmmFN7SjrE93mvmePJrUc6S6+kx6WqfQNoomqG1HvdAJqoN18VtbQBNNFyZSsLaHKAGCYMmhSNvyd3EAQyVUVFBE3ElI+js3rCmr0Ty0gYQBP5hVh0+C723IjAB/0bkYhqnhsDhyjS+njrbtx/nJj/czE1x/7br5DetEWxQJc6oImQqkWSEkbEXEEKicx+/z3in9u52lqZ4DTprERFRcHGxoYygoYQu4TsMGVYSe9uvY4robGFwJ8ysu30NoyKCpowQGFnbYJ5x+fB/4m/wvlkXRJmjOTkPGebEGAiaJqY5rkwKYolA5fCOvUqgoM+g1uNj+HkKl1E1ACaKN/WOz9ehuzMLIz6dibMLC1wfedxBJ65jmYDu6DpwM7Fvh9EIcuWw3ugUe/2+WVVgSaHf6AUl6gYDPhwMhyqK19zvb0ZJXaURarEuz6h1CIJ4IOlmREBg6kwI1e5q/suCJov9bt6oTUJ5eo6VIEmcY8e48hPG8iNxgUDPpqs6+5LpL37J6/ixh4f1O/eGq1Hy7v6lUinEhs9s2oLIgPDIcuuEquySDCLBbPwb/f/jVXa4tGllH4UFg19gRgiCKUKzJE4BXorpmvQhFPoZK3s9fYgZaQjA2hSRhailIdhAE20XIDKAposOx6ALVfD5Gbrs8FNJKXpVDTQJCI+FS/8fh6udhbYM035rYiW20uj6gbQRH7a1l8Ixa+nH+DlDrXwds/6+QXyRVrnzsX5A2cEnRk3e0vUcLCCzWuvIGvIUCQo0DGR7UEd0ITrmVOqlm12GnLT05FCTjzpxnm3rvxzU2KiHCSXHdYxsbCypTSuws/y49F72Hn9EWb1aYDxbWtqtD/Ke6WKCppYWuRgy+1N2HVvV7FLJIjBJl0QBF051aZoWk7Ryu527ljc+z08DPoaLlVfgqlVP8lbwACaKJ4qTjPhdBMLW0rH+SovHSfiNrnp/Llb0L1g/Qtlcff4Zdzad0pgpzBLRTZUgSY+K7fgyYNw9Hqbbr09y8+td0psAvZ/zSK2duREotoK19bSBKkZOXgSEoFjP2+EjZO9SoFQyZtapqAq0OQRHeTP0UG+RjNPdH1jlCZd6L1O/pib16dUl5F6719Zh767fYgBc1UA+zgtx9ik8EWTuEfMyXp75NczFDdDp/btHy4VmCqjv3uH9H2ki1prOhGRJPB8Zs1OOJH+Sl/SXykvoWvQxMyUWLImFkhNzxPLr2xhAE0q24orfl4DaKLlPqgsoMm1sFjM3HxdbrZWjG+NNrWqqJzFigaaXKR0jjnbfdGWnv0XmoOyFAbQRH41Dt+Jxpf7bqNvo6r4ekTzQgX4y0XmkyfwG/UyrElrpA2lnaF9e+R+9BHis4zpVj8vNUZZqAuacDtW5EhknJWF5OzCwq8WhJ8Ykxws+fsgnfouGlsJuPyZAMzRxJb5kFgzlTEqImhiQTomV6Iv4qdzP6pc0uzsBGKbXKNDh71kfZKO1epjZvvXaC9nwdysZb6rjqrODKCJ4hkS7VJZaJMFNzmyKfVkF7FPWLeKgRQGVIpGSlwi2GKY01T4EM6HcdlQBZqIbh6so+LeooGq5Sszr+fbJSsAihQNkvedKJS+nxyDUsg5qCSETVWBJvd9ruDG3pNo0L0NvEb3LjPzWdxAmIXBbAxFoFxpPcDD63dxccN+ofs+77xEblEFbE/ZMe376nek0ntk0NwppBMk/71S3Ef2bk4Y+PHrenmcHBKQZ1ZZLqXvlkVHImWToEvQxMQ0m8wLYlDFyhFG2VYlqsmnl0XVoBMDaKLBpFXAKgbQRMtFrSygCU+TIrZJjwau+H6Uaiu2igaabL8WjiXH7mNUK3d8NKBsHV4NoIn8m/rWo3i8tfEqmla3xx+T5PO8bz6MQQ7ZXdZevQSeRA8G6Zgk0k2+bGqMso8KTUCT4j52WAwxKTWLFE/kgwVr39t+o0yCdVp+lEquXtFAExYlTstNwJqrv0uag6ysGKSl+AkpOZbWhQFAZQ00q1oPyRExOHb9JFa+swEpadLcuwygieIZDb3ij0sbD6Jm68bo9MrQ/EKnf9+JqLtkPfzyYNRuK29Df3mzN0Iu+VE9cuN4Rd6NQxVocmVLnutIebNAZYFPFvqs2rAWek4bJ2mfi4Wu7TgGdjFpOqAzmg3qolZdVYVVgSbXdx6jlCtfvelnqBqvlNfTk1Kw9/PVMLcm8dJvSl+8NJnsuI+QvXBmajq6v9QP1Tu2UprmIYKCyuydee/ze6BWm8boOKngfSdlXrQpc5qYJppYimvTp7Z1dQWasImBmXkWZh6YiZr2NTG32ydITTNSeZmk7fjLWn0DaFLWVqR0xmMATbSc98oEmvBU9fn5JNIys/HZkCb49VQQYpLSMbBpNXwxVP4LouzUVjTQZCkBJtsIOHmnV31MaF9Ly12k2+oG0ER+Pnmfjlh9FlWszbH/bXnRTNYKGeTpgMF3zsCpdzek1ayDVImCvboGTeiSlYRfFe8JMS2sKqWF7S5jaWG63cXKW6tooAm7huQYpUuevrQUfyQlnha0TGzte6qsZ05io2lZcZjyzXhk+1ph6Bej8HIrEh/OUCxsLNugATRRPL2ss3H70Dk06dcRzYcUfJ6IehKKrIdF4IBbHPQJ3aS7yt+kqwJNblJazz1K72kxrDsa9yk/tuNhxDS4QEwDTaxbxfSIKjXd0G/OJJX7XZ0CqkAT8bCsytFFnT71UXbX3OXIysjM19vRR5/K+jj12w5E3wsR1n707HGIik1VCprcOXoRfpQmywKvLPRaNK4TgBZIAFrL4T1JC0h/IrcBpBPjSzox6liKqzvnDCqxzbboJqRu/aLldQGaGJOQiaVlDn46/yMuProodPFC0xcwutEL9PtDsZiztuMuq/UNoElZXRn9jssAmmg535UJNEkmgYX+y07B0swEx2f3hH9kAtiVhJ11VDEuKgpows+65UoYNl15KFjAjmhZA3MHNtZyF+m2ugE0UTyfvZb6CLTSY7R3rWgPi5FJ9Ft+jd1yTszpAaSmCiwTqaFr0ERVv+JzHJnVAzbmleuLC89NRQNNVK130ddjolfjSdRKuLhNg2u1mcVWZ9DD1toYnx77ENcPHYL5HQJ4J+RgTte56FijG0ifU2V9FwcLRMcSNcUQ+TNwedMhhFy+Lcf4YDcddtuwJOvh4UWsh48v34SnpNHBIrEsFqsoVIEmoh5Koz7t0XIYfVaVk+CDLh94Pbu2Qpux0jV1xMdjEVkWkx087w3YulD6pI5CFWhy6Pt1SHz8rNwJ77L9dUL001If9+1DZ0nI9wJp2dgL+j21PaoUC5owuMIgiwul7/SmNJ6iIb6HmK3ErCV9RcH72kZI0dF1PAkMw9l1ewQ2DkdxnxFS+9YFaGJmRhprD/bhn1v/FOp2bre5aOnaFhkZhdOLpY6tPJYzgCblcdV0P+ZKA5rExl6kN/hjuLkNVziLmr5emUCTkKfJmLj2ImpVscbmqZ2Eebz6MFYATjj/mBkXzLxQFBUFNPnzbDD+PBdc6BGliuHq/u2ruEUDaKJ4Xib8eQGhz1Lwz+sdUc/FJr+QmPLSjFJ3/n6tAxhEUUclXt+gyat/XULgkyT8+Uo7NKlmr69tVWb6qeygSVT414h9ugXV3D9FFRflgqO8YHnisv9g4/WvYOxvK4AmycPPw9KmEX4buRPOFtWRRuCvsiiOaWJKee4mRmaS9VHKzAbSwUBEQdae0+nw1qDw4e0gWQ8nFbEeZlcddtexJXbJYGKZKAtVoEnwBUpP2HqY3EdaoN34ATp4Ev00kc/MUWEnq2w0FzbsQ9j1e4KuCOuL6CpUgSaiTfLo794l0VHVzCxdjUvbdk7/voPSxELQbepoVG9aT9vmNKof6R+EM3/kiVp3J8voamQZXd3JqljQJIPyBvd8thLGpiYY+8NsuX5FxypOO+L0I30GaxElxcTpXFsnmfR6jvy0Ph8wEZ+pC4n4upOYr6ahLWhiapqDoPh7+NxnvtwQLE0ssXzIL7Azca40n/8G0ETTnVix6lV40CQlJRgxMcfpzzE4VqHDUt1ZhVZQ29crE2hyOfQZZm2VFz89ExiDj3bdFOZ1Spe6mNq1rty7RF3QJDI+DQFkAVudXEykWBrr4215m5g175OeREJaZqHubEm98/C7ZefWzwCaKN4NrAXCAMniMS3R1bPArnPVyQf451IoXulYG9N7FBZmlLKv9A2afLbXD8fvPRZS4jg1rrJFZQdNwkNmIzH+KDzqLIWdQ3+ly8/GEldJXPY7n1lITwuE2X2PfNAExrloVnMSlg1aQfo52cjKVpwPpgw0YacnY7NMWJP7U0JKptL6FXVv7ifBShZ1HfLpVNg4OxR6TFEHQ7Qe5oMgH7j4b9Y/YR0UZaEKNHl0i9xc1u0lEdj66PJ62XFGUbXOom2r16helHrRVlVxuddFDRm3RnXQ4y3ldrTqNlwcaMKCpCxMamlXMuwCdceqTvmr244g6PxNYvX0JXaPlzpVdVKWdVWOLPlHEHWVteBWBZpw5yK7hx12qni45Y8nPjIGhxf/LTCNmHGk77i2/SgenLuB5oO7gu2HdRWP/AJxbu0euea0ZZtoA5qYszg+kjBj/3QkZyYjIzkNaYnJYFFc/rwzszRHY+fGWNRvEX3+Z4F1uZLTilj96WqCykg7BtCkjCxEKQ+jwoMm6emPwcBIbNwFYaqLgibavl6ZQJMDfpH45uAdDGpWDZ8PKaxhcoTcSb4gdxIOtnRla1fZUAc0YWtjZnRwKgzHkObVwWwOfcaTxHQwSHI7Mh63I/jvBIGBoCgY1Pl7ctnJLzeAJop3yg+H72H3jUd4v19DjG1dYNf5xoYruBOVgJ/HeaFDHSe1t5m+QZPfzwThr/MhBFDWIYCydG4R1Z4kHVao7KBJSOAkcs/xRe3665W65/CX2Nj0aEw/MA1pqX7IyoyRA03MLGpjYKPXMa3tDKSnGytkVykCTfhnVnTJu/D0N3CxdsEbXlOpvolC4WIdLnuZaYqdb5iBYET5/i/89J7cuETrYZe6NSjFYAIxTPLERKuTU043Fba1qkATthtmlotrPQ/0mjm+zMyJqoFc+vcAQq/eQYeJJJDbrnj9M0VtiQwEfm3Uwpkws7JQ1aWk14sDTZ4E0Vyv2KLSQlpSR3ouJGqDNKY0rhalkMZ1nmyaw8mumdklzDIRQwpocunfg7RX/NF2XH/U69wyv64InHm0aojOkxUzxktymkXAUtfvvbIGmvDnu42VET4/8Tn8nvgJOivxkU8LTa1TLTcBTBxUfxAmt3oVZsbmyMoiQfNiWIsluTb6aNsAmuhjlst+HxUeNBGX4FHEZvpiFy0Hmmj7emUCTfigxgc2ZTfye29G4Hvvu8KUftCvEca0LrCVkwqaMMNk8t+X8gETcX20SYFh8GU/AT5JhISz248i5ooAkEQQQCIAJQmIiEuVe/fWpZQOBk7CSchMNt4gds0bCtg1pfX2N4Amimd+w8VQrD71ABMpjWzm8zSyuNRMDFlxGvxFwWdOL+FvdUPfoMmh21H46oA/+jV2w1fDm6k73HJfvrKDJoF3BpEIXzi5PB2AuYV8Xj8Ly9pammD24dkIiQsRWCZcvijTRNgIRqaY3n4u+tYbTf+uLbc3FIEm5hZZ2HNvF6X9bBHKT283HV09ehIwUzn0dRKin8F70TqlN97ZZCW+6+PlgvVwtzdH48yavBQF1nRQJfKoCjQRb9sdqrlgwEeTy817WXQV6kYH6Op0kNYkTq7aisek/dCkXycS3+2qSRNydYoDTVizhrVrarVpQk4tQ3TSn74aYYCKgaqi7k766J+FilmwmNNneM+znokYUkCTgNPX4LvrBOp2ohS0FwtS0FiIlQVZWXiZBZj1HVnpmdj1yXKh25ELKT2IkWMdxZGfNiDu0eP81kxIvJu1U7QBBzVlmrDw61b/zdh5Z6cwnscBD0lUuDCLxMLGUgATm7o2xtsdZuC3K79jQc+viW2SU2FZhwbQREebvZw3YwBNni+gpqAKU5MrS3xz4A62kgjqPGJ9vNS+psLH3nAhFIvpRp/jm5HNMaJVDeHf9tZmAo1bVVwOeYY31l+RKzaJUic+Gqi+tW8iASVT1l/GvajE/Dan9/REfWKHsA3tzfB44e+iLBI7S1O0dHdEC3cHtPBwoH87wMHKDNzeDwQM7bkRAS7Tp1FVGldj4d9lJUyNjWFuZoSUdOVaBWVlrPocB4MNH+24if5N3PDTuFZC197+Ufhw+010rueM3yapTxvnNvhWP4c0fVhkVh/B+/XlPy+icTU7bP1fZ310Wab6sKX3Gu/tHHWEZ8rUE2g3mKuXWtN+S0Wb9ldhYlKgzZPfqlEG1t5Yi8MPvIUf5eZmk9vONRjfccxPzzE1dyRmSC6yyVWHY2Hvr1DDLI1+YgMnl6HkmFBH+Dm7J1gTAMMW2BxGxtm49fgGvjn9NSB+j6aPvp8GLEFte0/6wqyf94B2M6hd7XC/IBxZuQ01mtTBwHfl2R4ZJOa4Z+E6JJHVqhjN+3dA+zHybiBFRyKkPRFwq+zGNiU+CVvmroSVgy1e+r707WSlzuR/i9YjJiQSwz56Ba7EwFE3eE4P/PQvYh89EaqaE9Ok7zTSydBSDNTawoQ+t3MV7tvr+87Ad/9ZtBrcBW1GdFd3yKVaPjowXJivqvXcMfRD3ToOFfdgUQFhOLhko1Ck99SRqNO2cCqaHX2HSqKLCiXmcEK9x0GPsH/xP3DyqIqRn76e393BpZsQdf8h+s8cB49mpcOwPPTzZkTeC0Uvera6RZ5NmwXn/f3vez/nN8GA04QfZsLYpECwXt32TelzxJwE71OeM7al1OfPd9+oa/ju7LdCcU7HCb9dWMOPf25KAvTNW7fG1DZvYNHZRUjPTsdgzyHEWpyO3Jzyo/0jZU7EMnyGMYRhBgygyfM9oCloIn6ZrAxbaeama/C5/wTLx7dGn8ZVlT7yb3Sb/8uJQOH1pS96CYdUWyvT/C/exc0VgxKdFx2TKzKDgI4ZSkRmi2tvlU8gWLNCVTCIwiBJy+cASUM3O1VVBAClLIEl4oBN6KaZv3ynGkCTQmt4IzxOABua1XDAljfzcpK/2u8vAIGz+zbA1G6afRHjGx22CM7UE2givkfYxerKPPWdKFRu7DJewJpAkzS6+cqp+OdzuZXIzk7ClUtt6cu0Ndp3uC73uolJLhIziCmXGCH32uFdO3Bk11ksXDOfGCp5drfZ2YnEwIxELqXvNHKpjxs3/yf83N6hM1wIPHFxGUbuO3ZCvjqzTp6lPcGMAzOQmUM6JnvSYWRvDJPeZqhuW530UZaB4FoBQKzI4e9zDec3H0bj7l7o+vIguUe9sPUobh8vDPzX79gMPV9XnVJgxqAJkd3SMxVv7mxKDfpr5mJBKPP1FR+Wm2neNv9XJDyJw7iv3oJ9VXmrZVUPco0ADAYxZIOBk1eWzlFVtdjXGfBmoE+Rps/Jv/Yh8IIfur8yBA27FqSJaNWhnionkbjolnmrYO1ohwl6AteyM7Owm8DCOHKQakEgYYexfeSeVvgeyNoXxXxE5GRnY93bi4W6k5e/Twf0vMPqhjlLweDChEUzYU2gYWnETe8LuLzLB426tUK3SYN1NoRH/sE4tHwL3Dzd6b1tKgAzHV/oi+b92mvch7rfA7n8k5QoTNtf2B0oipgmGamFbdaYafLBmLk4E3oa2+9uhxVpWzVzbYaprd9Er9p9YGZkpfG4y2pF3ruGMMyAATR5vgc0BU0qU3rOa8TYuB+dKMm1g9MgOB2CY+kLXhjdzh1S5+qF388jIr4gBYbTaVa+1AYsuKpuzN19yYG+OQAAIABJREFUC6cC8m6nZKMpOaV0rutMB2h78L/tLSsOimxIz1G8S54mZ2D4qjNwpNuuAzPzbg5fIkedh+Sos2ZSO7B7jiah7/QcHuOI1WcRk5SOnW91QTV73dGENXl+fdfRZXpOYMA9BN6/g74DhsLMrOx/BmSkh+LB3aEwN68JzyYHFU49H7wVxe4dW7F103ps2LKHGCryN5jJSVcR82Q7EmIPEDsljxVoROk7blWH0yFlFKpX7YwPDn+A+8/uC6/l7qMv0nbGMOqZ97nc2aMz3uv8Pjl2G1VoFtCNvSdx3+cKaUV0R+M+8lpWB75ZQzoACYWWgGn2rMWhKlSl53B90X539HfvkKOLdGt0VX2X5Ou7P10huINo6nrCQpms/VA0hnz2JmycNPvc5raKS885sWIzYoj10HPGi6haXzGztiTnTNu2t7+/REgRG7t4tlaMBanjEG24XYjd0numvF0wtyMlPYfLHV1KrKKwKPR6ezxcPT2QSG5Uh8iVikGgoZ/nAbulEbHh0ThKAreccjR0/ps6G4LoLtWwZ1vw/LHYMwuustC0pqFOeo6Q0mllgjnecxAcV5hZkhKbgLiImELDGNvxBVg522LJ5SX5P3eyckZdx7r4pud3qOfQGKkVTN/EkJ6j6U6sWPUMoMnz9TSAJqo39tCVZxCbkoH/ZnSDs43qL2tLjt7H9uvhsKAv8f+SRXENO9WHu/vkmPPa35cLDYYPuHzQ1SRYVHbZ8YBCVRl8YeHW6g6qx6NJn6VdxwCaKF+B3kt9kE6MkCOzeiCO0sXGrTkvAGaH3tGcfl0aoMnMzddxLSxWY/Ha0t6j2vSvS9DE+8AebFz/J35duxlW1tbaDEsvdVOSryI0cDKsbFqjTv0NavUZ9OA+ggID0Kf/YEoBUQyscIM5OWlIiDtAfw4iOfE8AScmqO05D9vuHsXB0KswNXFEZmYEzA57IMcmFdld42FplUfDn9xqMvrXHUT6Jpp9Xqv1QKVUmA80LArZ6dVhqOklnzKqCDThgz0f8FWFFNBk/9drwAcZbQEDVWPR1eu5RAnb/sFSpcK5UvoR3XdkyzIQNZTmVBvdh+JAk30LfkMqpUOVl3kuOo8HvvlDEPFkpxl2nCnJeHD2Bq7tOCqAM/3fnwR70txRFFJBE9GpptWInmjYq51gN8220zWae6LrlFEl+Sgq22ZHJXYFkqJRpLKx5wVOr9mJqDvB+Z8pDMwwQNNu/ECyF28utZlC5aSCJpSBCTPzLPx94y94Pzgk19fTkAikk3uOrYsDpQXaoTkBIu1rtsP7R95DriUx40wKfpfUtK+Fxk6NBVe22NB4hNwIEMBSdszSBtzUaAJ0XMkAmuh4QstpcxUeNGG74UcRmyh3O5komMmwsKiKWjWnogrZD3No+7pU9kQ53R/5w2bNj55LfASK9un3VedmixUXktsOi7AyyLKEGCeq7IPn7bklpAC90MYDF4KeIpwEWTe90Qm1nTQ/0ExadxFBMcnCkBgwmd2ngeDIU1HDAJooX9mJay8i5GkyNrzWQRD8ZeHi3g2rYiHp72gapQGaiE5A7/VtKLxXKlPoCjTh1JT9u3/Hjm0n8fOqr1DFSf/WnOquW0LcYTwKfY+shvuR5XBBDry67Ugtn535kEDvKPgEH8fPF38sVM3qhJcAmqR3uAdTs2r5wMmXvRagiVPLCpseKIo29pvzMqrUlLf8DjhFQpa7TxSaK6n2oVJAk6NLNtCB6jGKWrJKXVN9l0tLTMF/X6yGha0VRnw1Q6PumbnDYJRsSJ3T4jpUBprc87+NdYuXwKtKY7y0pPykQck+K7sssdtSz+njULWBvGC0RguhoJLIvuCXVB3ypYImwRf9cGWLNwnZNiKb7mG4te807h6/BF2subbPzePi8bUc3gONemuePiM7jj2frRQsyZm9wiyWkEt+uLzZWxCOZnBGk5AKmnA5mHD6jXzOVGpCMhg04XTAGk3q0fd/Y1hbWGLWnndwJ9qfNK4oFZwEcbkmazERMgpTAtkbWjbGmzVfxZn1R5FCbXB0mTIS7s3ra/IoZaKOATQpE8tQ6oOo8KBJSc9wZQFN2E3mBbqV51QATglQJz7b64fj9x6jBjE7fh7XGh5VFOc7niOQ5IMdN8BaDTtI4HIB6U1cImHYH8e2QhcS6tQ0rj2Mxcwt1wVmyfejWqoEbjTtp6zUM4Amylfifdpf52mf/TCmJY6STfZh+lPUgljddSwN0GQz6bAsPxEgACYMnFSm0AVowoBJeMi7OHniPo4ddcac90JQq+6HcHLV7AuqvuY/NmYjoh59iyrOL6Gax2cl3q2paTbScmMxde800j+JIwbJY3LiiRS+YMuCJuzCY2vXTRiPvYU9fhm8AmawRYYSbY4SH3gJdrB73i/ITMvAyK9nwNxG8e8yBk4e3SLXorR01GnfTPgjhREhBTQ59et2RN8PRY9pL8CtobzjUQk+ukZNJ0Q/Jbehv2BX1QmD5hYIe6rbGLuLcIrOfZ+ryErPgDLQSp12lYEm3rt3YePmdRjRdCDGfl5+BHdln/3SRrLuveKP9i8NRJ0Oml8KqJrPYz//i2cPowR7YLYJLi6kgibxEU9w+Mf1+Q5Vp36jPU86H13p4F2jlA/eYdfvEutlv/De4/egtiE6YhVlox389k8kxcSh82sj4NGygdrdSAVNuGEW/FYU58g6+gk5VjUd0Elgi5hbZGPjrX/wX8B/eEbpUxnJnEbPdfMAF36PWxOrjtdqTIMx6OfUG1e2nxVek5qiqPaD6qmCATTR00SX8W4MoImWC1RZQBNfEtGcQUKw7Cbz20T1XUbm7SUGyb0n8HSxxc8kDqsoved//16FH9n+TuvhiVfJLWfxkXvY5fsIc+hQOE6L2/Sd1MaP1NbwFjXwyaDCau5aLn+ZrG4ATZQvC+8D3g+8p9ZfCAHrnGyc0hF1nBW4kEhc3dIATc49IIBx5w10qOMkpOhUptAFaPLsyQZERyzC5csO+aCJhUUO6jfxJqpygVV6WZvXJ1G/ICb6N7hWexsubtNLdHisjWJJc/Lh0fcQ9Oxhfl9JiSTImZtVCDQxNrGFtU27/DIt3Vriy55fIjmVHHoqkDBselIK9n6+WrhdZdtRXYcU0OTC+n0I870n3MDzTXxZj5jgRzjxy2a4kGtO73cmaD1cMXWj2cAuAvNAm1AEmnA6wb9LV+DEzZMY0XgAxn6pWotGmzGUVF2/g2dx58iFEmFn8EE6joCNp6GRlDpzV2BEMPPJSMnhW3xGqaAJlxe1e4YvmI7Di/9CelJqPhOjpOZMSrvMCGFmCMeYRbNgYqa+1p5sP8EXbuHK1sP5rBrxtYBTV4mx5gNX0tPpRbo66oY6oImithmYZYCWnXyGffEWbGxNcf7RGSy7mMdwZAYZg2VFw4iIK7nPdazndv4Yrs+ccPfkTQNoou4CGsqXyRkwgCZaLktlAU2O0I38F/tuoy9Z7H49Qv1bC2cHC7z463mwgwmLry4jxok1KdeLsfdmhJAq4eFoha1v5n0R2nj5IVaQ+834tjUxi1JqNI0lx0hb5Vo4ZpL7zsT2JUdT1XR8uq5nAE2Uz+g/l0IFN6VBTavhENkNM/tox//UY04Vbb00QJPw2BS8+McFjZhfut5v+m5PF6AJAyYMnBQFTWp7roO1rW4o1yUxL5HhXyDu6Q5U9/gCjs7jSqILoU1mWjOI9Mvl5bgceZ7cXArsyzPSQ8B/ZJkmFpb1CWwqnCY2stFIvNRsIrnzaG6bWWIPqGHDz+iQeGzZRlTxcBMOiboOKaDJtR3H8OCsL9qM7QvPrmUfMI0gdshZEnKt0Yz0KN7QXo8i0j8IZ/7YBada1dB39staLUFR0IQBk/2UBvTgaQhuxt1HP7dOqNmwPgmSqn9o1WpgOqgcRIfxq3QYZ5YJs010FYpEefvMmgjn2qpTntUBTU6u2orHBM5wyg+nxFja2WD4gsLOLrp6JnXbYRCQwUBdMF8YMGHgxGtUL4HNIQZrAf33xa+kJ5KqEatMW9CE32P8Xms2qAuaD2qPeHJYe+dQAYDIejnxkU8VTp0xCcvmZOfC0tQSy/svQ9TFh0gjN8fy+D4SH9DANFH3XVIxyxtAEy3XtbKAJiKA8VK7mni3t/oABn/g3AlPwKxtvoIDT7vaVQTghC8mckjhnR1zohLS8NmQJhjSLO+X70lyvfmE3G+6eboI6RSaxqytvrgcqn2aj6b967ueATRRPuPH7j7G/P/84OlqiwdPkjCsRXXMG9REqyUqDdCEB9zjpxPIolv847N7Cilt+ojzZ07CsYoTmjRroY/uFPahC9BEEdPEioQl6zXanc80YaYF25HSx1OZibDgmUhK8CE9k+WkayJv6amrgVqY5+Jw0AH8dfMvwb5cFjThPjIzwmF80FZOCLZo/++Tm05bOnhmZCqmf+tqvPpqR6Tme7RqiM6TVVsIqzsuKaCJyCBoNrgrmvbPs04vyyHqU+jy8L5z7nJkZ2QK7iLsMqJpFAVNRD2ahymR+aCJpYmFTkU/NR2ruvWi74Xg1G87BD0T1jXRRXB6FIMmRUOqKKo6oMnN/07h3onLgtgyM6uqNa6L7v8bo4vH0LoN0e2mPoGWrQm81CYO//A34qNioAh4uu19Dv7elBZPeiKdJg2RlOInjkUb0IS1cFgTx4TsnscunAFbezO8e/BdPEp8lP+oaYnJxDSJlnv0Kh5VCeCyFvR0sjKy0MSlCX4a+hMyjM1h7eqkzVSVal0DaFKq019mOjeAJlouRWUBTdiBhp1o3uldHxPaqc/W4A8cnisGRhjECKOb8jY1HdG6ZhVcDHlKaTkJ8PJwxKoJbfJXJJAOta/+dQl1KXXiX0qh0DRG/noWTxLTsY0YLO7EZKnoYQBNlK+wP4m/Tv3niiAInJSehc+HNhVYJ9pEaYEmosDxX5Pbo2FVO20eQa4uCz4rig9mTUM9z/qY8e4HCl/XRyqGLkATHnzQvdE4c/pxfnoOu+c0aHqMBO1shBxve2sTJGaQO0wZcoIJCXgJqSl+qNNgI7n9aA4kF7dZ2MU2KjkcSy78JNDtFYEmXD9i0wMY26bCaYAd5bor1tYwJq72/B6fw8akCgEvzznbOt2p+m3sztGL8DtwRhCAZCFIXYcU0CTgJNH29/jQrXQbup2WLsqu67FKbY8PvnwAbkQuKC3JDUUXIaYotR7TB/W7tda4yaKgyfWdxxF45jqKgiblUcQy8fEzHPp+Xb4uiMaTJFNRkcgxv9x+wiBBt0dVqAOaMFDC62zrWgVJZDncuF9HtBiSp5tU2sHiqMeXbxLGNviTKRoPR0z1YdchtoYuGklP43Dw27WU75KH3HMaFLOG+G9VoQ1oIjqEtSBgtvXwDlh+aRnOhuVpk8jGk6BwcsdhEdm8MLMyh0udGiQQm+eow8CKiZkZhjcdjsleU8o169AAmqjacZXjdQNoouU6VxbQ5FMScz1BYq5fD2+Gvo3d1J41ETThisHkZDNj8zXEp2YWaueNLnXxRte6+T9LJUp4359PwpwszXze66V2n1whMS0LA385RTRBExyfo5svbBoNRI+VDKCJ8slmsG48pbWIsWd6V7jaWmi1OqUFmnxCTlMnyWnqK3pP9tPgPansoe0tTWCamY7cFBZ5K4hEApnmfPoRatWqjXkz34FpEdtaIztbJJFGTIaZdvOpajF0BZqkJF3C9s1zBNDkk0+tKQ/bD45Oo1C95jfkBpOJQw/2C7dk9as0LTNOMIF3+gtCrCWpvWJnbYzM7EwQx0ZgArJlfGpGQXqOuD6rly0i4IbeTxNHkgVyAditaP2ys42Jrq0fNpSq/aPN6yKVvs0L/eDZpZU2TSmsKwU0YXFPFvms3a4pOkwcrPMx6LpB0fmkxdDuaNy3g06aD718G5c2HdKafSALmvDN+KVNB5FCTj2yoImdrT0xTV4td5ap2ZlZ2PnxMsEGWNGBXJOFUMY0kQoqqQOaJD+Nx4GFfwjOLTlZ2QKzixlepRV2xoU/A+8cu0SAehZc63mQi5Yb6RwV/N7LJZAjKVe11gnbDLPdsAu10XvmeLlHE5kmsi9ItS/XBDTh9LSI2w+EzxcGPl766W0cCzuCdTfWKZ32RAK0skjwmkWxrR3t8gGTohXe7fAuOtToQmLiqueltNa4uH4NoElZXBX9j8kAmmg555UFNBFFWn8lEdiWJAarbsiCJlz3bQJNrofFFWqGb/8Pv1v49m7E6jOIScrALnLscSPnHnWDhWV57I3c7LDu1bKrVaDucxVX3gCaKJ4dZpbwvgt4nJRfoChQp8k6lBZosvrUA2y4GIqpBDROIcBRV8EsEwdLuin6/HPg1i2hWRbM5XlbXd0a1egAPfppuiAKbSPqEg0ejJxJryAORFMo4dAVaPIs5l/s271KAE2Wrf4OkWET6UYvGw2b/oPwdHN8cfJzVLGqghXkBGOUbYWMrNJnSty92ZouHTPRuMVV+nJasuAULyPvBRfSo4qOTZNb1ZTkqwgNnCwwXpj5Uhni5OpteBzwkNIExtKBvY7OH1kKaCJqelQnyn63N0frfAy6blAEmthZhR1WdBGs87B3/iqhqVHfvgMzS80+d0TQ5Ib3BYENw2Flb4t7UQFCes6g2j3Q+YXBklgUunguXbfBVs8s2MlCnlYOtjppXrTcFhtjhgkzTaSEOqAJuyWxfhADJhwlBVRKGTenatqZEtvj77+B2FiBQREbFl0oddPV0yNvH3qQttP48XiWnKWy6duHKP3m8HmlzDVF+jHc6JDP3lQJ4qkLmjBAw0wiBk44Ok7sC4vm9ph3/BOVzyG1wM+DlsHV0h1pCkB4qW2UVjkDaFJaM1+2+jWAJlquR2UBTUb/eg7RiWmCaCaLZ6obRUGTyX9fKnR4Fdtj0ITBEzGmb7pK4rHxWDG+NdrUqqJut9h3KxLfHrqDgZSC8QWlYlSGMIAmileZ08s4zaxoaLqnxXZKCzTZ7xeJhQfvYEATN3w5TDU1WureDwl+gMD7/hjWpTOsP6A0nKQksHsWg05r3G0F0GT4k1RywLJAk2qUFtSYHKkWLUJ8SpZenFJ0BZqwqGrA3f8IDBmHnn0/QFL8DhLdOwIbl5H46NS/SM15/mW9ehvM6/YpyDQBOaXoBJOdHY/7fl1hYmKHhs3PS11OrcoVB5pkkTBggH8vGo8DjUeeuq1Vx2W0Mt988w34IKLk2xE1X9chBTQRUwNYeJN1EMp6iFR/Ta1TlT2fCGB1fGUoarXWzBXPClnwWX8IDykVhKMhpRC1ohSi494H8Pe6X7F4ya+oWqNGWZ9ipeMT7YD7vDsBzpQ2oYsQAStmsLR9sb9agJJU0IQP7j4kBMvAiWxI1U7RxXMWbcOSLgiswoJh9N57KJqWwmWt7K1RpVE95K5ahRTSwUk3NlM5DNacYe0ZZe8Nn5VbSRskTK4dTs/x7NoK9TopByHVAU0UMYiGz3lRcO7R1h1IdvBGZE8ckxwHk1zN3QpVTmoJFTCAJiU0seWsWQNoouWCVRbQpOuPxwVU/dT7vYmWr76oX1HQ5Bs67B2gQ59sNKhqi78nF6bvfn3AHwdvRwlWwWwZrG6sPBmIfy89xP+61cNrneuoW71cljeAJoqXTdTlKfrqipcIkCNtHU2jtECTW8SieotYVI0JuFj7iu5YVD7HvLFuzUr8/utaVHv6BEafz8eZBzHC9MiCJpzy1q5RdeSuWIEUC1v6kqgf2q2uQJOQgImkD3ITomMOAwSm8Mfcw9NwLy4aFpaNKT0l75nGNhlLf14k15jSSzFJT3tAOiwjST+kLjwb/6fpdlWrXnGgCTd0z68zpd0komGzUzAxLb8if1ImhSn3299fkrcfFs+htIe8vH1dhhTQhOnwh75bq7Wegi7HXVxbLCjJqS9sm8qHMF3FfdJ2uUHaLrXaNkHHl4eo3SynIfjuPIbk2EQhtYDdiFh0lOPk8SNY+/svWLpqHZycnNVuu6xUOP/3fwi/cZ/sqYeSpa1mwFLRZ4kJIgvpFZs1ci+SCpqwpTGDJkWDLabZarq0wpZwEHOf44h4W17Ty9TcFK4b/kB60xZIyZb2HXn3vBXIpNQWZUwgRfNgSqJTWel5OiIWttaUJtiSGFyt5JhE6oAmlynVLYRS3oqG1LSr0loPffZrAE30Odtlty8DaKLl2lQG0ORJUjpGrj5LN8vm+G+GZkJcRUETvrVmtklkfB7tm9kl349uIXd4XXsuGH+cDcarnWpjWndPtVfrw503cZYOfN+ObIFeDV3Vrl8eKxhAE8WrpohpwvuOgTpN2FNiL6UFmrAm0OAVpwXr7qOzdKPXw+/LTTt348ye9Zg6fxn6NK2J6HX/IOr3v4THLco0afzL98ho4YVkiV8SdfF+0hVocu9We2KOpAosCWZLWJLF7ma/v/Hv1XlCCgzlv1C6To5gpcuWuh93/RitqrZDRoa0L8S6eFbZNpJJg+XhgylkidyOgJ689SjpUAWaBJMwbRoL09bfQLommgtylvRz6KL9pBgWZfwT1lXsMXT+m7poUq4NKaCJeNNvbm2Jkd+8XSLj0GWj3uQOkkDuIAM+nAyH6i46azrxMYFH368VHEVGLSywQpXSgehAxGXdm9WD15i+wrqKkZKcjOTkJNja2cHKylpKk2WyzI29J3Hf5wpaDuuBRn10A6wHXbhJVsZHUJvScjpITMsRJ0cqaKJMO6UsiB87mmQh5pMvkbXvQKE1t3jrTTi8NQUJEtMm4yKe4MiP62Hr7IjBn76hdP8w28Z3t4/wunuL+gKzhwG/oPM3BdtjMep0aCaAJ6L1szqgiSLtFG7XAJoULIsBNCmTH3F6H5QBNNFyyisDaCI6jmhzo10UNBGn/RTZCttamgruH7JpOeLr3v5RWLDfn8Rnq5IIbXO1V+vFNecRHpcquO+wC09lCANoonyVZdPCeL/N7tMAQ5rnWVxrGqUFmvB4h648g9iUDOye1hVV7bTTuGDA5ONdNxF0/TSqhh5DcMs3UcXJCfMH1If1Mrphv3gxHzRhTZPm71Oe/MjhiDfV76FCF6BJRnoIHtwdRoBIDRJVPQx2jLkRfRXfn/sOrNXB7AnZYNDExrIeVgxdCTsT51JxgkmIO4BHoR/B3nEQ3Gv/qOl2VaueKtDk0cOPkRC7HzVIPNeBRHQrckTfD8WpX7cLbAlmTZRESAFNmPK57TnjZdxP7xO4VxIj0V2b/335K9ISknWqqyGOjg+dfPjs8dYLcGuk2MFJ9kkY+Lq2/Sh4LTnajeiOJgM6l0uNBSkrFHD6Gnx3naBUDi+BSaOLYHYPs3w0EfaVCppwes6Rn9YjmUR5xWBwrOvrI3XKVtJkPkxNjGCZS8DJWEqNC8hL9zXu1BGOy35EmiXZsEv0qGfQ4+q2I6jVhphSZCesSTwmRk7Q+RsIu56XXsZRtWEteBJ44tmuMWytzPA0IU+jRDb279mBuvUboGmzvPSe07/vRNTd4EJlXD3pc+7tkvmc0+RZS7uOATQp7RUoG/0bQBMt16EygCYnCdj4ZPctdK/vgkWjNRNyUwaaqJp+Uci1cTV7SkFop6p4odfTSbix91IfwQHizPt9hL8rQxhAk+JXmYG6SLK+5pQcTgnTNkoTNJm+6Rpp/sRh+Yut0a625ilGPAciE8ch5lY+aJJlZoMJ7Wvhgx5kM/7OO5gR/QjV0rMxv0sX2HzxGeKzyBVFzzofugBNEuMPIzzkPdja90SDRr/iWVoUZhycTufRLCQnnpHbEkbGlrCx7YSGzg2xuP9iJJJ+S1Z2ng2kvuLZkw2IjlgEJ5dJcHOfq5duVYEmT6JXISZqFVyqvgnX6rP0MqbS6kQ85NTt2Bztxg8skWFIAk2o5z2frQTblY74egYsKLWkLMeOD38mEDIbY3+YLTih6DLY/pltoKUwEB5evYOrBJhwaoONswOBCP3QtH1DpNDnWXkUppQyjxF+gTi7dg+qNyXR4Km6EQ1mtxd2fek6ZSRqNK8vZRj5ZaSCJlyBGRb+3ufxmDQ9bJwchDWWYmus1oA0LMwsDqunjxE7YizSza1gt3kDoRVuyFRDLPzyZm+EXPJD69Fkm91dO5ZeUkyswDzhP5lpeak79lWd0Lx3G7i1bgpT88L6Km9OHod+A4Zi/MuvQRSbtbCzQbWGtYX3BwPDPNcMVBkibwYMoIlhJ/AMGEATLfdBZQBNtl0Lx9Jj9zGmtQc+6KeZ5ZumoAnfovNtur2lGQ69012t1bofnYjX1l8WGCbMNKksYQBN9LvSpQmafOd9F//djMAH/RthjJe7Vg/+7tbruBIai6KgyfejWmBgs2qwfBiEKTNnomquCeZt3AgTG9tScZTRBWjyJGolYqJXw73mXLJQfg2zDs1CaHyoUtDExNSRXGK8hPkd6DkQr7eagjQ965s8jlyKp4//FMAJBin0EapAk3himUQQ28TecQCxX/L0PipqiNa5zQd3RZP+nUrkMaWCJgdJ0ySJtE1KSpBWVw/HB7gTS/9BckISRn/3rq6azW9HFMW1dXHEmAX/E8APRRf913cdR+Dp60I91vZoS5bRfCCUtRzW+eDKQIMMPLDbDadFcXqULuLAN2sEBsigua/Djg7m6oQ6oIk67ZZGWRuTXKQfOYZ4At1SXGvAtV0LtYbhvegvJEQ/Rd/ZLwv6MLqI7KysfPAkIeqp0KQJASae5FrFzlW8XqyT8smXs9G6SRt4VctL9WHHqG7/GwPHGpUjhV2TuTaAJprMWsWrYwBNtFzTygCarDr5AP9cChU0RVhbRJPQFDThvgYsPyU4dxyc2R0ORDeUGofvROPLfbfRu2FVLBypfmqP1H7KWjkDaKLfFSlN0IRFjlns+MW2NYVUI3Ujihg3e25EYM/NR4hLIR0PiqKgieguZGtuhL0//IxsNw806dcPHq7qW4+rOz5F5XUBmoSHzEZK4lk0abUDG/wOs4YpAAAgAElEQVS9cfiBd35Xaal3kZUZVahrTs9hbRMxvuu7EDXtPKmcfsRvud+IsE8R/4xujWt+DUcn3dwaq1oPVaAJ65mwromFVSPUa7hDVXPl+vUL6/chjFxWmErPlPqSCKmgyXGyYn0aGglduqKUxPMkP4tHUtBDXDl0AUPJJrUkYt+C3+Hgag8Xsl5383CHk3PB+zQ2PFpIx3n2MO/97DWqt8BYEKOigybMRmJWkpkl6b58q57ui6K1ykrPxK5PlgsiyCyGrG5UJNCEn90k7hlCLtxCyMMYwYZcaoi6ROxMM2ZRyTD0ov0DEXz+FsJuB+UPi0ERTlH7L/Q46ti4o4l9PYGp1v2tsaji4SZ1+JWynAE0qZTLLvfQBtBEy31QGUAT1hRhbZH5Q5piMN04axLagCavE1vkHrFG/pjUDk2rF4i1qRrHmjNBWHc+RHDNYfecyhIG0ES/K12aoMnpwBhBh6RTXWcseaGV5AfnlB4GSw7R+1qMlu4OZCuejrSgy/npOWM7Ncas52AMp7eFRD6D74PHMLF3wLAW2mnBSB5skYK6AE0e3B0CZ9dBuJnijrU3N8kNJTMjHJkEnLBQLHKzSQi2AYEmeUyeTh4dMKBBf3jY1oK9aVW9UfvDgqYhiVKHatZdRWlFPTSdPrXqqQJNskn75T456BhT+lKjFlfUaru8FT669F/EhkWVKFAhFTQ5s2YXIu8ECSkXnHpRViMnNREhgf4wTjZGnU66ESIt+qy3D5AGUz1nfPDlXAx+cRhef2k6Uolx8uCsL67tOCYUZ4tW1vQoartb0UETfvbd834RUjZYNJjFg7WJZ7T/j9H7wKG6KzFXXlW7qYoGmqQSKHjoh7/AqS1DPp0qaT6MyaUtJvAhjq3YWqL6SKIQbIBfqMA+Cb54K398ByNP54MmukzdkjQB5bSQATQppwun42EbQBMtJ7QygCZvb76G62Ha6SZoA5p8ttcPx+89xoJhzdC/iXQ0/FOqd4LqfTm0KQY01Qzs0XJ7lEp1A2ii32kvTdAk9FkKJvx5ATUcrbD9zc4qH5zBTwZLfAk0EWMAvadGtnJH65qOwo/WbNouuOfM+nol2jQobBG69WoY1pCb1Wud6uDlDqRzUgqhLWiSk5OC8KBJsHEZDXP7/sU+QWZGFNkS+8LYyELQP7Ews4SDhQ3+8P0Tb7amm/NcU6Sk6kcsKfj+C2AWTN2GW2Fp1VQvM68KNOFBBPj3IsZNDAnqHiFgqXSANH1Mxp75q5CRnIrhC6bBkg5JJRFSQZNLGw8i9Io/OkwcjNrt9LMX1H1eS3L1Cg33xyt/TcDKYavQwqtriQCMWcmx+MN7Bc5vvQzL1tZY++nfpIVxHb77zwpD5rSENpSOY6RA1KwygCaHF/+N+MgY9H//FQE80iZ4z/HeY2vmTq8OU7upigaa8ASwDTnbkTNjhJkjqsLMLEsAXw8u3oLGfToIgrolEUXdc0S3Ke5LFjThPcF7wxDFz4ABNDHsEJ4BA2ii5T6oDKDJi3+QA01sKja/0Qm1nDRzytAGNFl96gE2XAwV2CLMGpEak9ZdRFBMMta92h6N3OykViv35QygiX6XsKRBEz64mpmS/a2C4Pz9D3dcQ8TuH/Haq69gwIDBcqU4te1i8FMc8IskEPGJ8DprBI1sVUP4U8OhsJCkzzFvrFuzEstW/wXHKoVz1jlNj9P1GDB5u6d6IoC6WhVtQZPUZF+6/Z5EzkDEFqnzs8phRT6cj5SUG3Cu+gpcq43GissrcObhGYxrOg6jGo4hC2LVX5RVdiKhQIB/bwInnqBB02MwNZMOHktoWmkRKaBJaOBkwXGolucfglhuRYyMVEpz+HQlTC3MSkSbQ5wzqaCJ7+4TCDh1DV4je6FBz7ZlbsrNKH0jKyEWUza8irCEMNS0r4k1E9bCwskVmdk5OhuvuVkuLt0/jY+3zEE1X3ckusejadsmeL/tHFzYehJNBnZBnQ7KU3MrA2hy5g9iJfkHkXDrKBJu9dRq7m+R8O5dEt5tOrAzmtHcqhsVETQRtUn6f/B/9s4CPoqra+NP3I24kgAhuBV3dyjWUqAGxaFYoYXq25ZSg+KlpQWqSIu7W5DgkkCMeELcdTey77mTboivzS5kM/f78X1f2Tt37pw7O+z9zznP86ZMTRADgxKEpgciJPAhXFMcYO3eEK4KiunKG/PqLIelejTloYk8IsrynlOb+wnQRJtXV/5rE6CJ/LGqtmd9gCbMgYY50Zxb1AcmBsqp36sCTQ6R0OW3JHg5gqxhPxomfy15z9UXOPu3C4v7wqiGTaeKy/9CHi5AE80ui7qhibm+BIbpqZAEP7MVLH+Fl0MSsPrw75jSow8mdnu2ac0uKEIc2W0/pT86NtbQb98Oq888KYMlujXYScVER4L96fBSF8poqAhUjvrHY9XJQIW/i3yuiKrQJCP1X8THfg4rm9Fw8Vglc2q5OTcQHfYOCZ3Ow51sR/z+cGfZMR/3/gRt7DpwDhzqboEPmNCgBM3aPKC35so9hxWdozzQJD7mM2Sk7YOT2yewsZ2o6CnqRH+mjXH2h794FdSs7sLlhSaPT/vh0UnS5CFBWiZM+yI17rEizsaX+z7B5ejLZVPr7dEbn726CiV6ptWKtSp6DWxTmClKwvj1I8jxo6gMmuQ4ZmNy+yl4q89M6BjW/rKkPkCTu/vOUqnSA15cWq7tOIQ4/yfo+sZIEtT1UXTJoI3QROo+0+2tUXBrW7NRArtfC0qyMPf4HET4P8ba/j+gZdvu9H2QX6dPkYBXB02YCOzFH/8pyzTp1rwrZ58uuOTIjqwATWTHqD70EKCJiqus7dAkM78Qwzb5wsJYH6feVb6OXhVowhw9mLNHOzdr/DjpmYhbbUsXmZqLydtvwJXKFv6Vo2xBxdvghTpcgCaaXQ51QxO2B7HSL4bu1q3AudIafWkrIrvfm3GZ+NrFFMOyCjHxP2tBJvDKnKe4ZmoKyx2/QkSlJY1dFHM7qBxJqYZKz8Z2+G6ccvbjqq6OqtAkIW4V0lN2wsFlKemavC3XdLIzdyK+IBWfXfmV0zeRNhN9E2wcvglmujYQFfL3Br3ypIqKUhH6qA/09G3QtKWvXHPmo5M80CQ1aTuS4n9AA/s34OjyAR+nfeHGiH0Qguu/H+EsVpnVqrqavNBEqtfRuEc7TqvjRWqGhiU4dHsP1p78vsq0Fg5agtGdJ6K4ULWNor6eDixNDTD/wFz43b0MnRKdCtDExNIUa6Zslgk06wM0CTp/E8z5yadvR7QZ3afKmhTmiyCmP2YNZOvFnfxmB7KT0iBPVkV196Q2QpOHRy8j+PwtDl7W5KrFnqMWZnpYcXYFAg49gJgyt226WOPveXtBSWxqsa+vDpqwNWHrPWfGZPTs1hdTps0UgImcD08BmsgZKC3vJkATFRdY26FJaFIO3vr9JhrZmeGvqcrb9qoCTeIzCzB+6zXYWxjh0Gz53qpdCknGikP+6N7YFqvHyS+QqeLt8EIcLkATzS6DuqEJuxpuk2BCZSCLybEg/Jkavv/TTCTTW9a1Hhbon1aATln/gRI6hmWSOFkaw2H1Kui3a4e8YtW1N/wJ0MzaeQetXKywdcrzKQtQFZpEhb2NvJzb8Gj0M8wsZD9PDClLrVgnBdP+6YL0gnSYpneBznU96IygjZ+FDlrYt8CqfquQnV+MYoJY6mii/GCEh4zngE0jnwPqOEW1Y8oDTbIzzyE2ciEnTstEarWxHdr2BxLvhaHzwH7kwNJXbZcoLzSJuRcEvz+PKa0toa4LYOUHcdlRWHBwLjnWJFY5TQMPR6x5eR2aWLdAvgrZWUaGRfgr4C8cDT5MgriRVaCJua0VZT65Y+OITTDVsa4RaNYHaBJN98oNuldYFgTLhijfWJlX5K1H3EaaZRv0mPoyJ05aXZOUlGDv0rXcR+O/X0QOOopnu2kjNIm4EYDbe05x2kJMY6i6Zmxcgt0BO3Ew+CCKThWgJLcIeV3y8HL3VzCn4zyIRLq8ZF+VP3dN0IT1mfHWKxg4eAQmTnlbXY8CrRtXgCZat6RKXZDWQhO/8FQkZYkwup1LrYE5F5iEc2RNmyMuQmtyj+hKKuzs/1ZuNY2n7dDkGsVx6b4HCrtzVI6fKtCEjdX7hwscjT+/uA+M9WX/Y/27XyR+9g3H5E4emN/3+WgvKPWN5OEgAZrwEEQFhtAENGHTYT+CTNOSoDN3LsjWBbnkEHEvJh1ieotVHpqwja6HjSkHTPRI56RoyDBk6RopcEU1d41Jz8PEX/3gZmOCf6bLFp7l5aSVBlEVmoQE9EBxcSZpg5wnbZDahRFZLE1NdLDy8pfwi/wHheI4GCY0gsENJ+iMJmhiVQqiRniPwJTWb0AsUo++SW72NUSHzyTIQ7pSjX5VR1irHVMeaCIqeILw4DEwNGqIxs2OaWxumjzRwulvwKzYGFOnzYV3r/ZqO7W80CQxJAqXf9oLx6YN0Xv2BLXNR5GBGVw0MdLBlZgrVM4r4tx9SqisV9qMLc04W1MTIxP0cO+BrFzlMrNob4/rcVew4/4ObuishFTkJGfB9IY5ChuKUOxeRHHxgI6uLnxsffBhrw+RnVc90KwP0CQ18inOb9iFBh7OGLBoctl6xAU8ASstKd8YOGHW0NWVazAxWSYqa2Fvg6Erpilya5T11UZokhIRhwsbd1eJb9l9bwjcTLiOH66vISHpAkjOF0KnUAe5nXO578M77d5B74b9ISni599o6XlrgyYP7t2Bg6MTnF1KHeGEJjsCAjSRHaP60EProAkT/mQQhMGQro0aYNHAmmsM2QL/QhvrRnbm8LI3Q0BsJvffq8a1LgMnssbTdmjCnDa+PR2EUa1dsGJoM6W/E6pCE+YQwpxC/pzaGY1pvWQ1qU3yhzTnkTT3+tQEaKLZ1dYUNGFXZUZ7csO7t6Dz7bdgpTl+JPBaGZo4WhjD24G+I126QLJ0KTILdTltHz5aVkEhhm70hbmRPk4vUL5cT5W5qAJNCsVP8SRwMPT1beHd8pLMaRgaFeNw8AHsfrSb3gSKkJvtB/04WxjdbgrR4DAY2ruT3W7p82hhl4Xo6tITIrHqGT2VJ5aZfhhPoz8kHZaRpMPyjcx589VBHmgikRQi6GEpSGje9iH97+pFi/mak6bHyU3LwgeLZ8NS1wzvLluhVotfeaGJVGPFxs0BA5e8OM4XzDGHtYy4JAScuMo51jDxUVMbS9g2dOGEdFljbiPKlrNZUplDUUlRhdsgIyEFM2a9g1fGvYLxkyZC778yRWknsZiEaemlS+VWH6BJfmYOjn7+Mxi0GvW/2WUhuLXrJJdlUrkxjYvqsk2elag15kRllWnaCE1EOXk4/OkWDjSN+Wp+hbCw70OaKIHTMckle+LM+FQ0eGIH3WJdpPgkwcLBhoNQq/qvQmPr5iplX1Vej9qgiTJrV9+PEaBJfb8DSq9f66BJEtXyM9DBMkNYkwVNKt8GC3bf47JNJv9npylrPG2HJr+Svej2axGY1t0L03t4Kf2tURWasGwXlvXy7dg26NXETuY8pv1xC0GJ2fh58kvVZg7JHKAOdxCgiWYXT5PQhF2ZFcTQ27MbOHyYsw5OKyyukGnSmkpnrBq6QrJpE3LIErew3NtePiLTa80Frgzl8nv9oE+ZGJpuqkCTnKxLiImYRxkb3Shj45dap25oKMHjlIdY6fsl109SUoDcnJsETRpw0CS//z2UWBZyjjE6OqUZJpuGb4adkQvv1qqpSTtIN2QN6Ya8RbohyzQWcnmgCZvMk8ChlIUTS5kmRyjjRPl/JzR2YXKeiAknXiXxy9NRvrA2sEQnpzYYvOwtufQf5DxFhW7yQhMGcpgTBoMRIz4h6+sXrF0isckkil3Lod3RYrD6M9LEIhFXcsDKDYaPGid3NOoDNGHB2LtsLSTkWjTuO7LF1S99VkkdmCoHqyZr4senr5P48LVSm9yRytnkaiM0YfE7THbkIrIjH/m/WTCxLIXozEGKZSkuPLEQ0VnRSA6PpTIocQVookt9nJp5wtbEFhuGbYBOsQnEPP17LUATuR8DcnUUoIlcYdL6TloHTaQrtvNmNJXnFCgETXJJG2DB7vuY0cuLAyflW03jaTs0WXUyCEf9n+KDIc3wchvlMzZUhSZrz4Xg37uxWNDPG691rL7mtvx69V93CQW0mWTitUzEtj41AZpodrU1DU3YRtbKmN7mf/opRPceIJBEjz+xM8LAdBFeMTAgC2FjSFavRoGLO/IlskvZFI3WyB+vIC1XjCNze8DW7FlKMeMnapL0qDBFVaBJatIvBB/WE3x4k+DD+zVeOvvBmVOUhnnH50JcUqoTw6AAK0XRj7N7Bk0s8slhqBmV+ThxfRpaNcTaIWuRVyDhVdwv8en3SEv+HQ7O75H18VRFl0zp/vJCk+jwWZSFc5U0TTaRtklfpc/3oh14Zs2fXNbEhaSbHDRpb9MMnp1aotOkoWqZqrzQpEgkxoEVGylzw5AskN9Vy1yUHVSqt2JiZY7hVOrBNobqbsXFRTiwdxfatusIbx/5HfbqCzQ5sWobclIyuLIaltnAmt+fRxFzr6IjG7O/7V6D0PGNv44h+m4Qd++z74AyTVuhyYWNu5AS8ZRzomFZOsxBysioBL/e+wVnw89woaoOmrC/d2nZiPu8o3NHfNBzOQnD6lD1reqZoQI0UeYOrfkYAZrwG8+6OpoATcqtHCvNYUKHX49tDTNKPy/faoImuWTrqc1t5l93cPVJCraQ6GNvb9kZHjXFgv0YVCVWf/pF4RsCOJMoA+jj4bX/KIolZfIh6y/DkTQdzi+pqhavzevFro1tdAyovryANC+Epv4IsFp+9huniN7kaaqxNdbPzoLO/HnIz87GWFEBZtAbxPF6+pDMmAlJ374Qk3aAOtqYH6+CCUQfmNMdTR2fWXqye47vrJbq5m9Cz+YC0qBSpuLoSch7SEk5isZNVsHeYXy14eF+8JK1+tLTSxGSFlLWJz8/AgX0pzI0MTNvDUND+7J+fRv2JXG/uZTGqZpDSPnJPQldhpTkw2js/R3s7dXn3lI5ICyPiMU7j14o1NYiI75EQvxfaOi5nOrkNQd11HF/lx/z11mlpVDloQkTGX1t1Ry1nFqfAAODj/K8bd4+73vSDCnG1M3LKHuAfziq7AXu/2Ib0uKS0X3SYLToK5/bnbLnUvU49j1nz211CTirOj++jj/+wy48DY7CsEWvwbW5J67+fQqBl+9Bn8qYPNo0QSTBkxKKw9iPp8HWvXqdpwMrdyA1JhGjl78JBy/lXqCp+juQr3jwPc7l348j5NpD9Hx9KJr1aocSnUKcfnIK2x9sKztV+tNkZCVnVsg0MbUyg72nc1mfCS0mYLzPBOjpqK5vIvwO5HeV2b0rNCECAjT57x44fP8pzgYlchtyB9psV241QZPM3EKtvovG/3QNT5Jz8O/MbhU2SIpeNHsbr0qsmBvOgj330IOsTn+cXPsPsSsEeebtuosuXrbY+vrzcfhQND589mc/vI0MSGisQIAmfMa1prFMjPS4N0PK1ugrO0dDSTH0Q4JQ+MnHeKtQjNfJzWD4wEGQTJ+BfP2qzzBlz1P5uOl/3MatqDT88kZHdPYstTDW1SuBuDgfJvoWagcnFuQilEfOG4psdBjQYZujgIejkZ8Xguat9sLMrFW1IdHRK8TfD//C4dDDFT4vofKc7MzrVaCJqVlzGBiWZppI2/R20zHAaxCBE1IB5KGFBE1FFp27abNtsLSS7fjDwylL15V28GbGeiSkWTs0SUr4E9FRXxGIeg0Nvf7H1+mf+zh7P/kJOamZFaCJR1tv9J8lfwmIIhfB3g6zmMvjLLNn+SbkZ+Xi1a/nwZSyOl6EFnTpLvz2nIGNqz1e/kg5sVBNXge7t8VFErU/szR5TdWd6/KOIwi/9RhdXhmIHNLWeHSOdLGIDg9691W4UHnIxV8PIZKySLpNGgIf2vRX1/5cuIasoosw5YdFMDBWblPPbKKz8wuVAt7PO4a1nd//tB/uHLyElgM6oeOE3ojNjsSysxXLKFl5VHxINKwCbThNk5yXstGANIn0DCtuxpf3WI72jh2pHFQ1EMoc9xgUVOVl5Yscc03Pje1hhCZEQIAmdA8wIMI0UGoCJuw2qa/lOYM3XEYOvWU8Mb8XrEyUf2ioWp4TQSUIU7bfgDu5guyZ3rXWb+6uW9HYePEJJnRww5IBtQsBa+MjQCjP0eyqaro8p/zVWepLoH9wP7BrF+BFWhJr1yKLYFl1ood8ReWjwwG4EJyEL0e3wgAfB+6HWVZhMpaf+wAbhm6AnsRMrjflys5H0fIclglkZCSh7BQRHt4uBa7N2tylTUNVoMH2An5xV7HuRqm1ZuVWUpKDoidJ5J7jhoKBj1FslsF1MTFtTW/7K5Z0ft3/azSyaoZ8HjK+woPHUmlQKBo13QcjEx9lQ6fwcfKW5+RkX0FM+GzSd+kCj8bP3q4qfMIX7ACmaXKR9DmkmSadXdpyKfjWrrW7Lil7GfKW57DxT333G+ccwzRWrJyVzwJVdq5Vvhu0KTz+5S8EcnLQ9Y2RcG+vuftU2WuoD+U5rLyM3cPMVrh860FlOC5UjsNauN9D3PnnDFzbeKP726OrhJOV9rASH1U1dLS1PCfOPxTXdhxGq4Gd0Imgyb+B/yJPnFcljvGBEQi58IT+7dFF7zkDqr1t9XX18UqLVyiLzEilf8eF8hxlnwrVHyeU5/Abz7o6Wr2DJgyOsD9Sgdh1Z0M4a+KPRjSvUpJTflHrIzTJox/7A9dfghFtOi4s7qvSPa4qNBHTD7K+P1yk1GWyNFzar9a5fH0qCEcePsVSck4a195NpXnXxYMFaKLZVXue0IR9H6wMJND5YQ0kU6Yg38YeBVDtDZWs6H1/JhgH7sfR98sHr3Z0A8v8WHBoAaKSItHKvTU+H/IF8vIlCmWCyDpn+c8VgSbsrb2JsQTfXvkGQxv3gp3oNNLS76ORT0WrTTa+nl4xMsUpmH9yXu3TiSyBxLeIsxwWGYVxWiekqU7gpA2Bk1K9ANbsTOw4cT8JWdWqWrYU8qgXiovSOccf5vyjqSYvNBGLYxAWOAwGpO3SpMVZTU1PI+c5/tWvOBp4Bh5unnj3/Y/UJgLLLkYRaHJx0x5OJ6HvvImwb/z8/517fIqEQk9dg4O3B/rMeUUja6PqSeoDNJHq8pSPVaNubfESZZ1IG3N2Ob7y1xo1cp4+CsPVbQfh5OOJXrOqL2uUZy20FZoweMkgpjnpxbz8WfXlibnpWQg+fwsHfI9BYqSLld+urjVkmXksc9NUnrBW20eAJkqHrtoDBWjCbzzr6mhaB02Y1TADHEzUlf1hpTblhV3ZZ6wUZ/fMrtznr231q7J27Jhtb3Xk/l7WeNosBMssfpnVrzzZHbK+AKpCEzb+2J+vIZHEff+d0Q2u1jXrNczeeQcPSZtm48T2eMnj2SZG1hy15XMBmmh2JZ8nNGFXykpPLOhHmJjU+3OgfDaYvFH75Uo4dlyPxOxejTCzrzt+e/gbTl6gH4IXCCQMN8DYHuPoTdlEiEXqqQFWBJoYGhbjaOgh7AzYCUNk4fves6FDWTGWDWZVudwinWxkiNJQUFRQayjCHofi8J8HMHPFXJiRU0JB/iO61hh6e6gHU/OOBF+ePXMsjCxgb2IPsVj5dZFQGVbQw7Y0Jx2y9PWXd5l46ScvNGEnC3rYjtLui+DT+haVmPCnp8MyhViqOSvJ0nQryM7Dkc+2cJkmbbt2waz5S9Q6BUWgyTVy9Ynzf4LuU0fDtbW3Wucla/ACKhM6RlkmJcXF6D17AhybNpR1yAvxubZDE5ZlwqBJ5Vad4Ovp1X8gk3Q3+lAmlQOJmZZvwRdu4eGRy/Du3QHtxtT+0qq2hdVWaCIpKcHepaXZiRNWL4aOblXx4ydX7uHe/vPw6NQcHV8dQv9OqPflhgBN+H3ECNCE33jW1dG0DppoeiG0GZrcjkrHgn/uoQOBh00EIFRpfECT+aRpcjc6HeteaVempVDdnIZu9KUShcIq7h6qzL8uHStAE82u1vOGJuxqjQ31NCb8++/dGKw9F4p1E1ug2MAfP9/9GZIY0na6SBkvBE1gq4Nl3ZehvUNniAv5tySWF5oYUgZOSNpj/O/yZ9wNISoIQ1MrS3w37C/SX/GokgnDNufKtuTEn5Cb5QtdfXNy5fmAyoFKHRFYY1oqqpghFBUmIvTxAHLosYd3iwvKTlGp4xSBJuHBL3Mx9mq6l3MU4qOx85uSPE9uYS7hQHON6wZJ0+7zbCTo+dooEuJVb8mJItDk9p7TiLjhTxuwwfDq2pqPcCs9BtsMsk2hW9um6PbWKKXH0fSB2g5NWEnOwY82VQlrdQ5QDw5fQsjF22g2sAtaD+9Z4Zhbu08h8mYAXpowEI26M4CrXNNWaMKiceLr7chJTseQ99+GpVPVbMAbfx9H9J1ALsOHZfqouwnQhN8IC9CE33jW1dEEaKLiymkzNDn+KB4rjwdiSAsnfDaihUqR4gOafE3uOUfI/njZIB+Mbeda7XxSckQYveUqp7/CdFjqYxOgiWZX/UWAJpq84tOBibgRlYi+zfWxLeBTrjylKCoDxn5Nkd/nIQyd3chxxR2bhm+Gpb4d7xtdeaAJ+8FYUJKFOcdnl2WO5Oc9pBKXNExouwJvtFtA81Y++6O6eMdFvYesjFMENxzh0ehnGBmX6gWo2gryHyMi5FUCEc0JSPyr6nAKHa8INImNXEhCuefg2nA1LK35seQ1MirG/qC9eJz8GF/1/4oEaRUTAFboYqvp/PDIJQRfuI0Wg7uh5dDuqg4n83hFoMnDo5e5dP/WI3uhWf/OMsdWV4fM+BSc/v53bvhB772hNr0Xdcxf26EJi9mtXScReetRWfgMTIzQY+rLnDVu+ZYQFAnfrftg4+6EgYunVPjs/PpdSI0iS10VS8G0GeqyyLEAACAASURBVJpc+fUA4h+H15j5JbV91tR3RIAm/D4xBGjCbzzr6mgCNFFx5bQZmvzuF4mfyYb5jS4NMad3Y5UixQc0+YNsh3/yDcMUsh2e16f6DckdykR5lzJS2rha4afJ9c85hy2SAE1UulUVPri+QZOQpGykk8jdF5eXwtYiGXm596EXbwHjG805aFJinUOCoF3hY9cGqwevRlZeoUqCdpUXRBY0YRt9SzN9LD+7HIEpgWWH5+ZcJ0cCETe3Jd1WoLNLD4jECi93rQfERMxHTtZFGBp5wJ3AiaFhxY2JMmfLybqMmIi5MLfoSWP+pMwQSh+jCDRJiv8BqUnbYe/0Luwcq5Y/KToJI9LpfZhwBx8fW87ZoU7oMBFvdpzKO+yqbV7nN9BmMfIpes0cDydyGVF3UwSaBJ2/Cf+jvvDp3wltRvZW99RqHP/Gn8cQfS8IjSkDoQNlItSlVh+gCVuP0Mt3uVIua3I1Ylkm1QkZS8jDff8H6zkb65H/mwUTKj2UNpatwrJWRn8xB0bmyutsaDM0eXD4ImXq3EHrEQQxB1SEmPmZOTj6+c/kOmSIMave1chXRIAm/IZZgCb8xrOujiZAExVXTpuhyWoSfNxPgo/MgYY50ajS+IAm54KS8MmRAPRtao9VL1efjrzvXizWkLjv6DYuWD6EnxRxVa77eRwrQBPNRr0+QRMmPFsIEd7a9ykCkm+jpUMOlWQ8gV6CTQVowrIsDAzdMLjxYExr+w4KRPzVb8uCJsbGJdgV8DcOBT8Te5VICpGbfZVkQfQ5+MDa5uE/wtbQGQWFfGplSBAdPpPOdZ0yTby5jBN9A9WcVjLS6A1mzCewajAGLu4rNXpzKwJNMtL20Tw/g5XNaLh4rFJpnuwHf1pWHF7dMoZEdKn067/2v7Er0a/lcN5hV3WTLabN4/7313Efjf36XU4kU91NEWgS4eeP2/+chleX1ug4cbC6p1bt+FJ3IWZfO/yTGTC1tngu81D2pPUFmsgbH2m2RKdJQzm4wlp+RjaOfrGVgyUMmqjStBmahF8nB6J/z8Czcyt0em1IhTDFPSR3nd8Ow5GEdHurIKSrSOwFaKJItGT3FaCJ7BjVhx4CNFFxlbUZmnxw4CF8n6Tg6zGt0cfbXqVI8QFNghKyMe3PW/B2MMfvb1WfjsyACQMn7/bzxqSOqr/lVemin9PBAjTRbODrEzQxMiqhcolDWHhkPeeq1d61BAV5AVWgibFpK3J5KbVBnddpHrq59UKRmB9h2NqgCb3Iw82E6/jh+poKNwFznsnPe0Die1YwMSvVZ/K09sTaIWuRm1/CayZMSUkB2e/OpAycu+So04rLOGHnVbalJP2C5Pj1sHV4Bw7Oi5UdRqnjFIEmeTm3ERX2Nl1zW3g324VCyg5RpjHRV0tTA0zdNhn+kQ8rDKGrp4t9S47D1ohgFw9WzrXNLyk0Gpe2/FttuYIy1yXPMYpAE6neimvrJlQS8LI8w/Pe5/LPe5EYHIXmg7qi1bAevI+v7gEFaFIxwiwj5f7BC2j4UnN0njKc+zAxJAqXf9rLOTSx8hxVmjZDEylAtPV0Qf8FkyqEiYnoMjFdTZX5sZML0ESVO7XqsQI04TeedXU0rYUmsUFRyM3IgU/XUlpeU/PdVdUekaXQdR1bmu4acT8U4fdCUVhAad30FsXBy7nCmNoMTab+cQvBidn49fWOaOFsqdI9zgc0ySZx1yEk8mpKopdnF/apdj5MuJYJ2K4Z3xbdGmnOmlOl4PB8sABNeA6ojOHqCzQx0C9BVHYYlp9bgWvhKZz9dzcvK4IDt6H71KQs0wT0tTMxbUduMs8gyQ8EJ1xMPXnZ6NYETZgYbpooAXOPV30bWnIgH4WeMUBzHS4DRNr6efbDjA6zqORDn5xf+LtvioszuYyTgrxHMDV7iTJOtpKjgpFSJ0iM+wZpKX9xArMN7N9QagxlD1IEmhSRK1Ho436kveKJtu1Pkv5IkcIxZbLBTMfkT/8/8dupn6gkoGr9VNdufbBh6EbkFBTzCrsqxyjwjB8CTlxV2TFEkdgrAk2Sw2JxcfMeXjazisxR2jf2QQiu/36Ey0AYQVkmegb8QFFl5qLsMQI0qRi5rESyzv32NxhZUFbJ56XP0Se+5Ppy4DwnAMuEYFVp2gxNmIPUkf/9BCMzE4z+cm6FMEntwXvOGAfn5l6qhFDuYwVoIneo5OooQBO5wqT1nbQOmqSTXzoDHREEOlybNSyDH9WtpLhAjKTI+AofZdDxDJKMXlxK1AMu3qU6RCM4eDpxEObGgcvoMKwrvNqV/vDWZmgy8scrSMsV4/CcHrAzV+4HvzS4fEATNtbwTb7IyGfOOD1ha/YsXTqH7KNXngikzJhk7of6/L5NMLmTh9Z/gau7QAGaaHbZ6wM0MaRyiWLkccKqOeIcXI9I5dxnunnZEjwphuhJMIz8vFHQ9zGM3VpVACZsNVwtXLF+6Hoqq9ClcgvlMhCkq1odNDGgDAQTcllZdHIRorOiq9wAkr/EKGwaC512xlQ25FLh85kdZqKPR38UFvK76SsqTOLACStfMrPozoETZVpc1FISmD1JAqvfkcBq6dtfTTVFoAmbU3BAVzi5TYPYpB+czBuiuFCxkhYDg2Jcib2ILbe3IIv+Lc5JzaxyqRb21hjVeRxmdZhDVs56CoMZeWPnu3U/EoIi0PXNkXBvp17XHOmcFIEmUgFWKyc7DH7/LXkvi7d+Z3/4E+mxSZwFLbOirYtNgCZVV03qAtN/4WQ4NnLB7X3nSBPlHi/rrM3QhEWyJu2XfcvWcXbcL6+cB0NmB6aBJkATfoMsQBN+41lXR9M6aMLABgMnsYFR3JpIM0bkXaBzO47D0csJrfpW/yOAZabYODco+1xboUkRbYh6r7nAvU2+srSfvOGrsR9f0GT6X7fxOD6LE3llYq/SNm/3XdyLyahw/k2vtUcHdxuV517XBhCgiWZXrD5AExtzA2SJs1FYUqovcS0sBfmFJehO2VwmlOHh5/sHfl5/Cu9/Ng7NW4+vdgGM9YxIP6QIuiXKCwmygStDE3pEkeVyCTbf3oTL0ZcrnFsiKYJYFAnDve4ETeIgaUuZJkZV3/R9M+AbeFn6IJ/nkg+xOAYxYTNpcx8DC6t+cPPcWCU2rByFwQkRxbO6xkpeWOmLR+PtJGKrWZcURaFJRtoWxObn49s7J/H1wA3wtmmJfJF8mjF6+sUQS3Kx/d42LgySkhIqDYjmRGBZ0yFHaMl/ITI0NcK4bhPRyrU977BLugYHP9xIGaZijPx0Jkw0pNWhCDTJzyJxyf/9DGNLM4z632yNPvTCrz3Anb1nYeloiyEfvK3Rc/N5MgGaVI3mXYIkYVfvo82o3mg3rCOeXHuIa3+dRS/S4nAiTQ5VmrZDk3PrdiItOh793n0Ndl6lDo9pUfE4t34nNA03BWiiyp1a9VgBmvAbz7o6mtZBE+lCsAyRnPQchaAJK+m5e8IPQ+eMhSErji/XWEYK+zw9Pg29Jg0s+1xboUl8ZgHGb70GR0tjHJilutUiX9Dks6OPcIYsTz8Z3gLDWjpxKxSalIO3fr9Z5TvYm3RYviE9lvrWBGii2RWvD9CEbZ7Lt2X7H9L3LhvfjyP9CtIYunl1DC6cF2PwUB2073SsxgVg2SmqtsrQxJDKOc6Fn8a2+6Wb7fKtID8ARYUpMDvcjYMm4mbRKK+3Iu1rb2pPJR8baINupHImTOU5sEwTlnHCMk+YFS+z5JU2BnzYi0cDPf0a7XTDgkYR+IlAI59DVFqkmouZorFXBJqwbKScvGuYcWgiivXdYW/RHBuHbeQgmfi/7CJduo/YnVTdfWBIGjlFKKgwxQi/hyjIzoNDUw9YOthSuU4BZX9EQpSbz/XTszNDk9b8u6Slxybi7A9/wdzeBsNWTFM0bEr3VwSaMJeTfSRUq6uvh/HfLVL6nAofSKmcx1b+grz0bHQh3QsP0r+oq02AJlVXjrnsXNtxCN3fGohwu6ewSCRr9mAxmg7tCVMb1cq0tR2a3Nx5AlG3H3PCzEygmTWpToymBZsFaMLvU0mAJvzGs66OJkCTcivHskwatfcuK70pv6jss1xSEXfwdK4AYvisg3+RbqJbkWl49efr6OBhg31zVIcmbHPAR6zWkKPPpvNPsHCANxYNbMqFLIu0Ttp+frpK+Ca85IbvJ7R9kcKqmblQrNnGhI94a2bCdfss7N5mrT7F++0dN3EpJBnb3+5Ebla2uHCx9LvIWq+ed2BgYK22ReWeJVzAAXGxGJGZEVh2ZlmV8xUXFyA9nRxzqJWHJoaG9rC0bFOlf2eXzni/x/sw0FWspESeC83K9seDB29RVkQmnJ3Go3nz77jDREUinA47hYTcBLze5nWY6FfNwrns2x5FRVlqj2tN1yHvs5sURrD06Ou4GXUEJqRrYmbWGB2cOuCj3h9BX4c2XtQKaE3YwhnrmcgMW1ZyBn5btol7QTH7p/ef9ad1v7TzFB6cucX9nUdLL/SeMgQNXEqFh/lokQ+e4LHvfa7Et+3ATnwMKdcYij5Ltsz+jsuGmf3TMoqTaiW0ck2QOt06cgXX912Eq48Hxq94U97DXsh+5Z8lL+QEn8OkCsmH/fSOwyjx0MWWlF8gisoj+LkBLTqq/ltK3mfJc7hsXk556zB9N/ZfxEvDu6HHqwO4MU9uOYCQG48wYOoItOxTKkKukSb8DuQ1zNJnM6+DCoPVuQgI0OS/JZMKvg6YWnvNOCvPMbMxR4ehXbkj49NK33hpWzvLsjmOPEJ/Hwd89XIrlS+PvWHgI1bH/OM57ZKhlGXy2YgWKKGd6pfHAnHycUKVOW5m5TkEfepbM6I3j2YmJIqZXVVEsb7FQhPXy5w+ioolyCNdnfrSPj/2GCcfJeBTyvga5KOPkEd9SceE6UsUU0bEfhIDfQZR+I6JvZUx0rNFVK6hA109MeadmIfU/NSqp6HSnJysK9zfl4cm+gZ2XLZJdW1iy4kY7T2GskJKN/l8trzcO+QuM4tKTApgYzeRSnU+RHxuDJadXcqdZlHnRejq2rOCna6kRITAhy9RbA3QvO09Pqcj11gs08TW0ghJGRUzQCofzFyV/nm8G/883IKC/EDOZtnYtAXXbVyzcXil+US6bl0EpvkjS5SJTk5dUVxce4zDrpaWgLi3bYpub4+qMl/2RvzegQuU8ZDF3Qvtx/ZDk541b0psjKm+x98fiCFBYBktLToB+Zk5sHZ1gFmDcm/XO3ZEvqUN5cPwZ6FdfiqmRvpg5VpZec9slmub6tEvWMZHFifEWmGesi5Qyc9FOfk4+uUvKBYXctapTs08lRzpxTjMxtyQKx/j13b8xbi2yrNg95aYspPYv1W1NQPK+EqJDMes/TMgtihBdlI6enn3xjdT1qGgQIf7zaVsc7IxQWJGvta+YIi5XyqOzBytekwrdbQ69uWvyE3LxBDSHbJy5g/syloD5m5nZmJAvwNFsroKn8sRAbaHEZoQAQGa0D3ABGEZDWb6JyyTpLbGyn4SIxKIGpfCFW0tz9l1KxobLz7BxJfcsbD/M7cJZb8yfJXnXA9PxXv7HsDOzAjz+jbm7IUDnmZxugotnCxxJzqdKxcY3sqZm3t9bEJ5jmZXvT6U51SO6IYLodh9O4asvZtgXCsRwoPHQlfXFCUleWSxuwXmFr3UtgisPCcjRwx9w2J8e+Ub3Im/U+O5mLNPSXFOBWhiZNyExGDdajzmk96forVde4Jg8mlxKHKhudnXqFRnFmW6tIWr5wosvbARKfkpZUNsHv5jBTvdQnEcngQOofk6o0nzM4qcipe+8pTnGBpI4J98D19fXUUgJBuip0EwuusDvf4WgEVpGta3A7+BvZk9Znw3ncRhi7Bx2RbYG7vW6qZ0dfshPA14UiHVvfJFsSwLZpEaeTOA+8i1tTfaETwxrUaDhLMyNibYsWQJEB5eYaji4gxOsJfdK3r61shJNENhnh4cmrhD3+g/uPPKKyge/TIyddUn5KhIeQ67gDNr/kRGXBIGLnkdNm6OvKx5bYPcP3QRoZfucJvC52VzzOdF1pfyHPaboFAnh8uiE4tqFk9m5XPGBEA/ObQcF+6fIScYYyqFK+C+T7MGzyegPFYlDSFtL8/JeJqMM6v/IK2fBqT1MxV5lJ1+7IutnPgrE4HVZBPKc/iNtlCew2886+po9Q6aMF0SJhJbXiC2Mggpv5gsA0XqlMPgCss0KS8Uq63QZD1tivbQpogvFxo+oAnTWXmTtEtyK73RZ5CEvfFubG9eV7+HvM5bgCa8hlPmYPURmvzuF4mffcPxZpeGeLNDKmVQTKPsAjtOP8TZ/XNYN6heDFZmMOXowKBJZn4ODgcfwq5Hu2o9gmV15Oc9gMnBdqRp8pTccwxqBSZsMFMqkdk0YjNMdKxqFGeVY5o1dsnLvQpjgxx8d20tHqQm0ia9VNBaX98OntaeWDdkHXLyS98I5+c9RGToZLJwbgVP792qnFapY2VBE2PajGWQVsucY7Op6Ib+h7J7CsIDYHytBXSGEmyw14GLhTPmdJyJP8hGOPSfEEhEEni+1gRryYY6r0BS7ZtvCb3N3v/BejDdjpGfkRCrFQGYWlrUnce4T1kn4rwCGJgYcU4fnp1aVjmCPRtN0xKhM4fsVP97Y86ASX4eQReau7SxrJi8xIZw9GlY+ldtqTTh00+RScl7fOjy1HQpikKTyz/tJbHcKPSePQGOTf+bq1IrLfug7KQ0nPxmB9dxwOIpaOBeqilWl1t9gCYMFlqY6mPxycUY1GgQerv3I92m6p3CDAyLcDTkEP648xuSw+Iok48yS+g5xCCAuZ01Pu3zGVrZtlMaKGs7NCkuKsL+99dTZqAOJqxZAqktt1MzL/SaOU6jXxUBmvAbbgGa8BvPujqa1kETBjn8L9zl6nwZ5DCzplIasgh2o9pk1hggCb7+iGpx3+D+m/U5snYPJ+5aXZYJy0BJT0jjxmFjWjvZ1gsh2I8PB+B8cBK+GNUSA5up/gaLD2iy/KA/LocmV/iu6dObkdMLe8OYSlKEVhoBAZpo9k6oj9Dk0IOn+PZ0EEa3ccHcLlGIi3oPhkaN6C1mOOwc58Leaa7aFsHWSg+3Y+/j88ufy3WOvNx7MDnQApKW5NzT3kyuY1rat8TKfisJXpTwvklmG5ODj3/BjlufVJyLjj4HRwY0HlNmp5uVcR6xkQtgbtkX7l6b5Jo7n51qgyZsM2ZOZYCLTy1GREYEd9qSkhyIIsIImjSHuG8U2U83xMzOcznAdSnyPJreb4qSAoITQyXo5zWCYMo8iES6VdL14wMjcOWX/Wjg4YQBi6bIdUmsnIZlnbCNCmsMmjB4wiBK+WZG+0XDOzeh812prgxzV2J/KreiXA9YOzcCpQVBsmkTco3MywRt5ZqQEp0UhSZ+fxxFzP1gdH1jBNzbN1PijPIfIhW59OraGh1fHSz/gS9wT22HJkyHgQll//7gN5x8coJbidWD1sDdvFEVpzCWMRaUFoAv6LnKOVcFR9H3ubQUx9zWEpZkbW1uYM6JOxvpWkFcg9tXbcut7dCEXfvxr6gch6zShy6finA/f4RcvI2WQ7qjxZBuGv0mCNCE33AL0ITfeNbV0bQOmqhrIZiNsRmlKFZ21dHWTJNZO+/APy4TWyZ1QFs31UUd+YAmzCGHOeVUbvtmdocz6RwIrTQCAjTR7J1QH6HJJYKXKwhiMoeqD3o9QkLsSpiavQSm22FtOwHObv9TyyKwH4IletmYfmg28ovk05PKzb4Kk+PtodNCHzqt5Rd5Hek9EpNbv04b6urfyipzgWxjEpz2iIDP/5BPMKe4OLPiMAROzC16YkaHGejrMQBJCQcotpS5YzueYiofJFJmXjUdUxM04WyejUuw4/6Oss0YyzLJzfGDXpI5l2lS0Msf4/tPpUwUY2y+tY7gUw5a+neEcYkxcnvcIs2TlpjdaTn6ew4iS+aK0Pv+gfMI9b2HFoO7ouXQHgpdErNLZfCEWRWzsgIGTlzbVCwxtdIphN5uylI6fJgryykUx1Y9R5EXzBs0hOSLLyDyboY8yj5Rd1MUmtzdd5bsYR+gw/gBaNyjndqmlxIRhwsbSzOdhn88nfRTSrOj6nrTdmhioF+EyzEX8PPdn8uWysHMgXMKKy4yLHMKY8/VPEkG5h2dy4k1Zyenc1om5VsDD0cYW5ihlX0rfNn/S3LKUhwo1wdo4rt1H+fwNXjRJNw9dAkpEU8py0Tz+j8CNOH36SRAE37jWVdHE6CJiiunbdAkh0pftl2NwL77sVza9ItUnrP+PJUM3ako4sdgCYMmQnsWAQGaaPZuqI/Q5H5sBubuuos2blZY2f8mkhM2c3a6WRknKSuiF2VFbOF9EdgG3pLSzD+99CEeJj6m7ATZgoQSSSEYNMF/MELRSS3qsggvOXchHQ7VhWHZj9iCkizMOT4bBUUFHGBg5UOVmxlBEx2a79cDvoadJBpPQhZS9s4syt55V9Hpq9y/JmhiaFCMi9HnsPXu1rJzFBUmkAhsEPSSrTlo0nSiJTq06473z67g+kgkJfB+0BamEsr2GZREGSbxHCBa1X8VGls1r/Dm++TX27mNW793J8HOy0Xh62ClJKxcJyE4kju2Sc92BE/6c4KxrLHrsmLCsFRyI3lwi1uL8q2EyheMjdvDcM5cFPUfiCx9zYgAKgpNAk5cReAZPw4sMcAkTyvMFyHy1iOIyb6ZCd26tmoi8zBfyvpJoOyfZgM6o/UI9ekVyZwIzx20GZro6RcjKS8O750hDZ9KrYtrFyzttgz5JOzKACh7ri4/txyBKYFcT7bpZ9CxfDOxNIXNfyVZo5qOwmstJxNsVOy5WB+gCXvuxD0Mwaglk3BkzU7kZeVizFfzq2S88XwrVxlOgCb8RliAJvzGs66OJkATFVdO26BJdWDimzGtuTfKqjQ+Mk0Y0Jm3+25Ztok5qcF/PKy5ynNT5bpexGMFaKLZVamP0CQyNReTt99AwwamWDf0AtJS/oatw1SkJu2AkYkPGjXdx/siMEdV5gxlYKDDuUDIwUzobWoGl/2ip2cJU3PlrGMLi8ldo0C1LAMO+FBdyPKzzzYmBfkBnAZM+aZDIqNm5qWbX3tTe3zbZy7io76GqcVIctyZzHtMZQ1YHTTR0ytGakECFp1eWOHwytDk9ffGYE3Y94jNepbFwaCJXqE+9IblQ48AkqFxS9iZ2GEDWZqi2Jgrf8mirM5T3/1Gb7VNMepz0h5RoQWfv4WHRy9zI1g62qLZwM4QM2FLcsTxat8UZvnZ0Jk/H0XpEShguibUSor1kZ/sCMe334JkwUJkluiRY4gKk1DgUEWhSQiJsj4gcVbv3h24jBpZjQGTiz/+w4nHShsrG2DlAzW1OBLjvUaivEzMkrn06BvJn60laz7P+3NthSbMAcfAoAjzT8xHUu6ztS4fb84prOlY6OnoYlfA3zhEWiassdKc+MDIKktjYGII+0bPBLSXdF2Cjk7dqEynFETK0+oDNGGZbro6ImTa5MIizQRh10MxeKnmrbkFaCLPHSl/HwGayB8rbe4pQBMVV1eboAmDEoM3lP7ALN8YMGHgRJXGBzSRnp/pmpgb66OpgwUYOBFaxQgI0ESzd0R9hCYZZIk6fLMvrMjS8NdRRyjD5DicXD9BQtyXnPtI05alVr98N/ZWlLMczhHJtM5k585IO0zlLV/AymY4CdR+odR05IEzsgY2MZZgZ8BfOETaHtLGskwqZzjo6duQrgmJjv7XWtuYYnHHyZSFwWBKX1mn4f3zytCEbcb0aTP2bjWbMa48J/sKzNLJge6yF4yGF+Ga6ApldZgTdBDRZkzMZZowaBLZ7RFaO7Sjt9zWnIVpR+eOWN5rBfKo4iqIQMeDw5c4TZJOk4aqfE2ZT5Pgf9QXzEa4fGP2n0PmjINpVBiKPphJWTKPuY+L8swhse8Mm/17kEvApLDSG3fpGOoAKYpCk6jbj8G0Rhp2bIHOk4fJjFXo5btc6VLlNvzjmi2Lz637m4tdm9F94NO3o8xz1KUO2ghNdOkhyUrn1lxfjRtxN549b+4WQ8eRHqCuzwDw5/0+g7mhBd47VWp7Lm2pkU8515zyzcLBBhb2NmV/RTkq2DziR9gYOJFgtnxOY/UBmhSkpeCG/wV8e+97fNDxfTS3ag2H1j4a/1oI0ITfkAvQhN941tXRBGii4srVB2jC3Gl+f6uzSpHiE5qoNJF6cLAATTS7yPURmrAX7z2+P88Feve4XbT5vw6PRlsREzGfMkDE8Gl9myyI1aMzxNxz0rLlgyZJ8Wsp+2UbV9rCSlyeR6MXtPBPecCJMVZuTDiVZZuwmBWKn3IfG5u0JDBRmtnHRGwHe3XDUB+KK1w1Pv3y0IRtxhj8WX39+wqbsfKTYk40fQy7wfe3BwjueA/5NrRRI5tTlhbEPmtyvzUHTYI73YeduQca2TQlrRMagW6oV1q8gjE+43Fu40FOhLLL6yPg0UE1cVO2cTD8j6vHPQytUtJlZmMJJ3cHiHZ+D9GOb7lL0dUhcPUjiWY2aoQivVqgPM05u6BiCYOqC6QoNIl/HI4rvx6Ac4tG6Dl9rMzTM2DCwEnl1nfuq7Ane+XKLeKGP27vOQ1z2iwPWzFN5vh1rYM2QhN9g0KcDDuGv/z/qrAckr/J+qmlHjmIleoHse+2Ad3f09pNw5Xoa1Ty6F/Wn2WbMFDGwImuni6nZWLlbEvf5YoZd17WXpwLltTtS9b6azs0Yc+b7IIUjF83AmJ6ppvomuCv6Xtga+uuFie22uItQBNZd6NinwvQRLF4aWtvAZqouLLaBE1YKKpzqHmnuxfe6eGlUqQEaKJS+BQ6WIAmCoVL5c71EZqwoA3f5IuM/EL8MWozCkXB8Gr6D+Iil5CoZywaNztGrg3qsUBVBJrERi5EduY5uDZczWmuPI9mZgrKVii1s61Nh4UJkrJswsbIIgAAIABJREFUBwabmFuOjo4hzf0sOVjkwdisJ3ShuouZotdfHpqwdP8TYUerbMbKj9nfqy+sMyyxb8NedJzWGdbuFUXE7/51A0UFhehEnzGYwiyWHUwdKS6lm7GmDbxxbdMJxD+Jxcsr53ElIao0lplkZqSLW35+uHG6ahalHlkQu7fyRp+uljDa+D1w/ToKpy9AnOdQBMRWIw7732S6du0KBycX0KXw2hSFJiwj4PyGXbBt6Iz+C2WXb1WXaaJLJW9Dl08jcVdL7lo+WDwbbdt3wuQ33ylzAmEZP9VZOPN68c9hMG2DJgb6JQjLCCbdp4rOXAxY6u42QYlPLnQ7mFK5ogn9ITfJpAA0tmmMz/t9jq23tiGxmlIeBlAqw5IK33nP/pjx0iwSzNaTWTKpzdCEs3Y20cf7p5fh4rWTlFlXGqV+3Ybi26HfIZts5NVpV1756yNAE34fKAI04TeedXU0AZqouHLaBk1Yic70v24jOi2P9AN0Mbt3Y4xo5axyGYwATVS80RQ4XIAmCgSLh671FZpM3u6HyNQ8bB+2EpLiJDRpcQZPo5ZzGiING+9QWkNE1pIoAk3Cg18md5QwAjp7KYNDtawFWfPi4/OY8DnIyaayJ5tR5JjzMVZ+OgG9e6dg8MgL9MbXnI9TKDSGFJpk5hUgLica2+9tk3m8daYlrv9+Bb2m9yXhyAYV+l/ZfgqFBWL0mdWHrqd0kz6syTDSNXHiLEyTw2Jxat0uLuuBZT/w0dhmxpR0cP7YsBUZGRlVhjQyN0GPQbfR2GUSdPbuR/7wITh/U8KSX6ptTZs2RfMWLZGvgJaDvNehKDRhYrlMNFeRTBDmgsPccMq3ZgO7oPXwntxfLZzzNtp16IRujTtxZU22ni7ov2CSvJdQp/ppEzQxpCyHQkkO5h6fg9zC3LJ1kFpqmx3uhkLvOIhbPCUX7U70/TMug7jMKWxK6ynQkShZ7kx0MitPDD3UrnejzdCElUTtJG2Y38/+jPysvLL4G5kZ461BM3l3YpP1RROgiawIKfa5AE0Ui5e29hagiYorq23QhIWDuWIwd4x1r7RDZ8+KP3qVDZcATZSNnOLHCdBE8ZipckR9hSZz6DnxgJ4T24ZQPfx/JTnxMZ+QvskJuHh8Qxv/kaqEtcZjFYEmQQ/b0cagSK3lQnxepFgUhfDgsVy5joHJYnz56SGMGpWBCVOqZknwed6axpJCkyxyWhGRFamqLTbqNAoL4+DqPoAykTyebewImOjDFLf/OY0IP3/OoYU5tfDVjA31kBH/FLu3/Vk2pC6VJ+hQ6YGebjba9/0Htg1Gws1tNAIfr8Zt34FlTiHl5+Dg4IC+ffuq7a2xotBElJuPw5/8yGXksMwceZrUPphllvR7axhy4xK5w+y8HGBomYA5i1ajXRsPvDp4KPJTreHczIsTzs2GAWU9aUgRV54L4aGPtkAT9j01N9XFx+c/xqPkR2WRkdqAg56BZdCkeTSV/zmR5XdFiLy482J0ce0BEVXxKNPk0X7SVmjCRMpvPL2Gr898SWVNpd+n8s3a1R4fDvkEHZw6o4SsnjXRBGjCb5QFaMJvPOvqaAI0UXHltBGaDN3oiyzKOz48pwfVndO/Bjw0AZrwEEQ5hxCgiZyB4qlbfYUmKw7640ZEDDb3f59KSkwJTNxE0tPVSE3+DQ7OS8hNRz0aCPJCEwYgwoJGwMDQBU2an+ZptdU/THrqP5x4bWamCbb86MxBk5Hjtj6XTJmaLIeVjUJ87OfISP0XTm6fwsa2aibJsS+2Ii8jG4Pee4Ozw+WzmRrqIjrsCS6dY1k7ujC1tuCGL8y+gcYtTyArzRmeTZogLc0XN069DcemHtAzePbm3cDAAMOGD0eJjgGXFaOOpig0SX4Sw7nhsCavgw6DUgxOMfHY3m+PRElwELI++ASmdsnQN8nH3IQG6GAsxnRr0tvJc4Z1xwHAokXIzC3UaHmBOuJbeUxtgSZGRsX4N3AP9gfur3CJUnFm9pfloQkT6zYxbVclxJuH/whbQ2cqO5NP2FXRNdJGaMLcxDJJl2r+iXnITctEZnxqlbBIRXQ3Dd8MOyMq6xOrJ77lTyxAE0Xvztr7C9CE33jW1dEEaKLiymkbNEkigcUxP12FtakBjs/rpWJ0nh0uQBPeQilzIAGayAwRrx3qKzT55lQQrof645tenxOYcCUwcQppyX8g8el3aGD3Ohxdl/MaZ+lg8kKTnKzLJEw7F2YW3TmR2rrSiouzOdiTlpKFLVs8MGJkMtrS/qYRlRixOGuy8Q1NkuJ/IGHe7QTVFhNUe6fCpTDhSebUYtbACsM/nq6WyzQz0kGA/0OEhoaWjW+oc5Lu1WtIiGoBO5cwegsvwp0Lr8HSqSEngCltvfv0gZW1LaiCVW1NEWhSHphIJ+Taqgm6T3u51vkxi2JmVSzN5jHXl0C091/obJvLHTfXtCM6FKdjuigMuiRIbPLHFeSbWaFAR8nSDbVFS/WBtQGaMAfoB0l38M3Vr6sNSA45WlXONDE08qRML88q/RUVdlV0BbQNmhgQfDUh2aUFJxdw1uqs9JCVGFZudlTiZkhlOg2tGmLdkHXIJQHpomL1Zm0J0ETRu7P2/gI04TeedXU0AZqouHLaBk38IlKxZO8DdHC3wabX2qsYnWeHC9CEt1DKHEiAJjJDxGuH+gpNfvINg2/gZXzcZQ2lereEl/ceKs05hbio92BhNQhunmt5jbN0MHmhiRTg2NhNIjvkj9QyF3UMWpAfhIiQCcjM0C+DJq1bZ5P7z1xyASrd2Gqq8Q1NUpJ+QXL8egIm0wmcLKpwGQHHryDwLGV9dG+LDhMGquUS2fVYmurj/PnzSE5O5s5hbbGT7tcghAf0hIvXQxLdzYL/9XGwcGpVlmnSpk0bNPRsRCVKFd1D+J6kItDk2vZDiAt4UmUKY76aT6VdNWeI+m7dh4SgSPSYNgYurRpzx1vpFiB/PWWGnT5dAZqULFoB4/4LkEPZNdrY6jo0MSYh43RxIuYcn13j8jAR2Pzc+2WZJoUt4klvqgsJTVcPwfp59sOMDrPIzUtfprCroveENkETJjLN3MQ23twA32jfslBkJaQiJzWz7L/Nba0IwNqW/Xdfz76Y03EeCgp0eI9v+fUQoImid2ft/QVowm886+podRaapKffIJeGJDg6jqo29jV9Xlyci4TEI0hP94ORkQPsbAfAxqZLjevHxklJPVfhc1PTRnB1eY37O22DJrtuRWPjxSeY0N4NSwY25e2+FqAJb6GUOZAATWSGiNcO9RWa7L5NpQH+B7Gww88wt+gJ90Y/0Y/ze4h88galfreBp/dOXuMsHUxeaMJKXFipi6PrCsp8maKWuahj0OzM84iNXFAFmjSwfwOOLh+o45Q1jsk3NElP2Y2EuJVUmvMaleh8zJ2XZUzc2n2SUtuzuP/27tUe7cb2V9t1ss2EjqQQx48dQ1FREZycNsJAP5lAyWh4NveDhXUSosMnQ8ewVPPBzc0Nnbt0QZ4IKJFHuEGFmSsCTS5u/ofeasdUOdvwj2eUOeFUN5VjX/6CvPQszkKYCciyJiksJCvoAOh/Mg9zYy25TJNpo9ogv/8gGLjzI8irQljUdmhdhiZM4NjcWA+LTi9CZEZkrTFi4twmB1qVCsGSpomZRTeCJjWDtRkdZqCvxwDSH+I3u0iboAnjkkUQITUvrUrsC0kDSpwvgiF1MmCpKJWarUkDevaQ21AJv/EtfxoBmvD72BCgCb/xrKuj1TlokpcXgZSU8/TnHKwJdjTyWlgh9rI+j3u6mwMm7DiRKAmhT1ahbZtfOIBSXWP9s7P8Cc6MLvtYX98MFhatuP/WNmjy1YlAHAuIx7JBPhjbjr9UcAGaaO4RIUATzcWanam+QpMTj6ic4v5veKfVX5zbi4vH1/R28imeBA6GAQkNNmlxVi0LIS80iQp7B3k5N6g052faJPRQy1zUMSgrz2ExTE/Nr5Bpok5Hopqug29okpl+FE+jl8PSZgRcPb7lQMmZNX+gkDYY5Zs6NE0qbih0kJmeAt/LZ+DmupI+0kVo4FI4u+0nAPiEXpRMRn5+M5iZmWE46ZjkiSUoLFKPjkn5eSkCTSJvPcKtXScrxI3pwLDY1dQKC0Q4+OEmLoNm3LcVfzvd3X0AL3WRYOHyX9DeSgfvbFyKkIiv6LszSG2ldur4/igyZl2FJizLgbm1bL+3HafCKt4D1V0/K1U0O9wFxT7pKPAJotIcL5mW8N8M+AZelj7I51F/Q5ugCYszA1fKNqE8R9nIPZ/jBGjyfOL+op21zkETBjoYGEnP8ONiWRmayPr8wcMZ8HCfXpZdEh29jWoLc6qMI10oBk1EosQaP9c2aPLOn7cRmEC19JM6oK2bNW/3qwBNeAulzIEEaCIzRLx2qK/Q5Hp4Kk7fWYtXmx5EA/s3KQvifc6phjnWADpo3taf1zhLB5MXmoQ+HoCiwkROa0XTWiCqXjgr0Qm4vxAb1xth1Ohs9B80jWJc82ZY1fPVdDzf0CQn6xLpzMyDuWVvuHv9yJWXsDKTyq3FkG5oOaS7ui6LG9fUUAdBgQeRm/MRCbu6IDFxNhrYHCRQchdp6WOQm9sBAwcNotIzC4jVqGNS/iIVgSbsuPsHLyD08l1uCCMzEwxY/HqtWSapkU9xfsMu2Lg5YOCSivfTo1PXSNPFH1+vO4PWLZqjo7crDBtu4sa2c5gBe+eKkEWti6OhwesqNCGzJISkBeFS1CWZkSopySN4fBM5T/VhYd8YEoNgTrjb1Lx2dyoLQwtMajUJ+SJd3lyTtA2ayAz+c+wgZJrwG3wBmvAbz7o6Wp2DJtJAy4IZ1X3OgAqDJuUzS6RZK82afVXtGkozU5wo04Rlo0gzTKSdtQ2a9F93iVNOP/luL1ga81fHLEATzT0iBGiiuVizM9VXaMLg6nG/TzHc6yy3oWIbK9ZCH/clWJEC7xbnSFTTkffFkAealFAZZnAA1e3rGqFZ6zu8z0ETAyYnJWLpghl4Z/Zs9O47XBOnrHIOvqFJXu5dRD15E6Zm7dGwyZ/PFZro0uv63Mw9iIz4ggBJewIlY2FtdZr+jb+CjMzB8PZeQNbIHiT8ql4dE1WgCTs2KzEVp779jYMlrDSnthZxIwC395yCx0vN0WVK1Xsq+N5E7PhdH828vDFmwlzomt3jNIpYs3daQLo6M5/Lfaiuk9ZVaMLgmjwW4BIqJxPlh1Cp33EYGTfmMgLTyN2sqCgD1g3GVCsGWznWxUX8/Q4UoIm67uSq4wrQhN9YC9CE33jW1dHqFTRhGSoBjxbhpQ47oadXqorPNEuiY37lQEp1jUGVrOzSN6bi/7JcGGAxNfXi/i5PnVL6Gr6rolLzMGyDL5ysjHF+SR9ez25qpK9VseI1ODwPpqery6WNitRkG8jzdOv8cIb69CaOhPCLitWfvv8iBSs2PR87z8xBL9fraNTkSyphLNU+ePhgPL29D0DrNv9SqUMb3qdsbEgbBrq32YagppZD5/eneZiaNSPnmaqZDLxPSg0DJiYmYOY7U7Fw8XvoP0A9wqiypq1DGUPGhnqUos9PqkVeXgge3BtF/356o237o9zp93+5HakxSWVTMTQ1wsj3psDWnV/L4equNSLsMyQksGzSsfRb4CXKMvElaHIK+voj0bnzd5Do6MkKEa+f65MbB2nVUmaLYs+S3xb8wDl3vL76XZhYPnP8qTy5G3vP4+Hpm+g0pg/aDe9WZe53bzMtmSK0aPUnlX805D5PStqPsNAV3P/v6fUhnF3e4vWan+dg7AUDK5MoLlEs3s9zzoqeOyZ6HWJjtsDNfQ7cPRZx/z/7Ozu7EfD2+UHR4VTqL/wOVCl8Ch3MgDd7ngi/AxUKW42d2b0rNCEC9QqaMBHYO3cnV4AmDIokJB5Gq5br5LobmAYKa95NPuT+b0aOWK7j6kKnC8FJWPzvA/RobIfNk/hzzmHXbm1uqFWxepHXk/1DaWyoi5x8fjY6L/K1vghzM6F/TEuImtS3Hyd5VOu+8/QktHfwR2PvjaQxVbqxDwudh4z08/R3G+jvBvG+RJZkh55bUEQbnZqhSVrqUUSELYNNgyEEdOR7tvM+URUHLKGNnERSQoKNtJEmEPo8mi798DY30UdWbiEvpxeL4+F/vz8MDZ3Qut0FbkxRXgF2v7+B1EhJdJXcXNqP6oUGVD6iiRb0+DUCfA/g6fkjrl1LJZhzB9bWBwkAToCH10reyhLkvRa2iWcxz1fwZczJdbuQGBqDgfNegWuL0hc61bVzP+5F7KNw9Js5Fh5tvSt0kUiKcfdWqVZbh06PuPtO2pIS/0ZMFNN+ARp6fQE7+1fkvaQXuh/L2GCAShN6Nc8rENLncaMmP9DzcBgZKJR+B1lr0/4K6U89c3ZR9xytzAyRlSdWq2uMuq+hroxf+jtQj34H8vPsrivXra55sj2M0IQI1Ctowpb75q2XK5TnJJKTDsskkUIQWbcE68+EZKXlPNpUnvPb9UhsvRKOyZ08ML9vE1mhUOhzoTxHoXCp1Fkoz1EpfAofXF/Lc1igjl0ejUZW4XD2/I1KGzpysUuIXUkiprvJ5vdD2NhNVjiesg6QpzwnOWEzUhK3cOUErKxAaMpFgO/ynBLSDwsO6EpgwAw+rW9wk0qLise59Tth5WyHwcs0m8UQ5P8SOViI0K6DH+JiUxAY+Dc56u2CpVU/uHpuVC5oKhylqKaJ9FT3D11E6KU7aDW8J5oPrNkN8PjKX0l8NxNDl0+FhUODCjMVi6IQFjSC0/9hOkCVW2rSdiTFl2YmuJCIrxWJ+crTXuTsgrpaniNP3KV9ngQOJYHuWDTyOcSV6LAWG7kI2Zlnyfb7PbL/nqrIcCr1FcpzVAqfQgcL5TkKhUtmZ6E8R2aI6kWHegdNwiPWkzaJI2cZzDJPQkNXUZriAPpTSt5ZuQ4TmZUKzLL/lloSS/tbWLbWSsvhz448wpmgRHw0rDlGtHLm9QsgQBNew1nrYAI00Vys2ZnqMzTx9aNnp0kirNz2wsW21KI1JXErkhM20I/xd+hH+WLeF0MeaBIX9T6yqI7fxWMVbe6eOZ/xPhktH5BvaMLCFfiAlWyVoFmbB5TNoIcnV+7j3v5z8OzcCp1eG6KxiIoKniA8mHQdDN3J6ekEZ9+aEH8J0VGzYUKaK56kuaLppiw0ibr9GDd3noBb26bo9taoaqddJBLjwIqN0NXTw/jvF1Xpk5t9jayWZ8LMvAs8Gm+rdgwpjGQfunlugIVV7dbQbONmTIK7BeQ+JCp88UpgtB2aSCGljo4hfd9KBYNZk9qaGxl7E0w5oLHbXIAmGgs1BGjCb6wFaMJvPOvqaHUOmrBymrinu1BclEu1qLmcOGt5NxxZn0tthhkAYWMwYOLq+lqZxgkTfk1MOIwOpHvCGivHYeCEnYf1Z1om3t4flvXXpkyTN367ibDkHGx7oyOaO1nyek8L0ITXcNY6mABNNBdrdqb6DE3u3e0CY71c6DqchI+zGxf4zLRDeBrzUZkNMd+rIQ80iQh5FQX5j+HpvRMmpvzrqvB9TS/qeOqAJiEBPeiFRSaatrpC/45ac7a5zD63w/gBaNyDOS9ppmWmHyP74w9o4z+QAMC6UvvQogj4PxzJWbI2bnZEMxMpdxZloUlWQgpOffc7zGytMPyj6dXOOy2aMnrW7YS1iz0GLX2zSp/01H8oS+wLEggdB2f3L2q89qSnq5FKYqLMIcuj0VayJK6qjcIOZvG0MNXH5lubMa/TPGTnFXH6IS9S03Zokpd7j4SX34CxSUt4Nd1TIfTM1pxZxDdssh12DbqR5lyx2pdGgCZqD3HZCQRowm+sBWjCbzzr6mh1DprwFWgGT/T1zcrgR23jMsDC+jNwIhWQlfbXFmjCNBV7rjnP1ZpeWNwXRiRuyWcToAmf0ax9LAGaaC7W7Ez1FZowDYSgh21JikIH2VaX0MWzNN0/N/s6vbGeQW+sO9Mb6+28L4Y80CTYvzPpUeTRxvwqPbOteJ9DfRlQHdBEWi7QuPlJyvJwo83+b8hKSMWARVPQwMNJY6FlpSas5MTeaR6Vcc3hzispyUCQf0/o6VujacsrGpuL9ETKQhN2/IHlG1AkLsToL+bCyNykytwjbz7Crd0n4dGhGbq8XrW0Jil+LcVjm1wuOQmxX1IJ3h7OupaBExOzqrDLyLAIux7vwuHgQxjaeCjeavM2ROIXS0xR26GJFIRZkVOOi3upJo20JSdsoqzAnxATNxX7/72JLb/+CR099eo2CNBEc48UAZrwG2sBmvAbz7o6Wr2FJnwtmLZAE5ZhwjJN3G1MsWd6V77CUzaOAE14D2mNAwrQRHOxZmeqr9CkqCgFoY/6IltsjgyzgxjconTDKyoIp7KH0ZydZeNmpQ4pfDZZ0KSwMAFPHg8kKG4L75aX+Dx1vRtLHdAkImQCZQEF0Zvvf6Gn0wgHP9xE1tC6mMBKRsgGWFMtOnwWAb6rlcpMJFQ+1JqbQvO2zDVPc/Nh51QFmlzYtBsp4XHoPWs8HH08q4Tx4ZHLCL5wC62G9UDzQVX/jWfWwlkZp+BKeiWWcuiVPI3+EJnph7nvmTuBE2MTn7JzGhsBfk+vYp3f2rK/m99pPrq4UJYRjxa2qt4r2g5NEuK+QnrKLji6LEMD+4p6QWJRNNkPr8dlP0Mc2/sIf+/aA4meaa0C26rGW4AmqkZQ/uMFaCJ/rOTpKUATeaKk/X0EaKLiGmsLNDkTmIjPjj5CH297fD2m9Ecjn02AJnxGs/axBGiiuVizM9VXaCLVhHia44RU4x149SV3LvDPxD5NSOzzFu+LIQua5Ob4ITpsOtkNv0Sp57/zfv76NKA6oElU2FTk5dxCQ8pCyol3wqUt/8K2oTP6L+RfNLi2tWLAj4E/JnrKxE+lLeRRT9rYZ1CmiS9lnNhodLlVgSb3D15A6OW7aD2iF5oN6Fxl3ld+PYD4x+Ho9vZouLWp6JzDOkeEvoaCvADScvmbMkfaynXdsZGLSR/jDMXPjcs4MTTyoMyuYmQWpmD+iXlVxlg/dAMcTdxJ40T9pSDyXIC2Q5OoJ28jL/f2f2VU3SuExICyicWi65j1wxKI7tiiz6JGmNnrcxQVPsvMYyVWfJZUCdBEnruSnz4CNOEnjtJRBGjCbzzr6mgCNFFx5bQFmjDXHOae83Y3T8zs2UjFqFQ9XIAmvIe0xgEFaKK5WNdnaMI2vmwDHJLeBIn6P1R4bgQHdCN4kq2W8hhZ0ISVDbDyAesG40mb4XPN3gxadjZ1QJPYyAWcEKWb53rE3baA/zFfNOnVHu3H1i4qymdoiwoTEfp4QLVlOGFBI2kzGYlGzQ5TSS7//xbWdh2qQBOmC8P0YdzakRjsm1XFYI9/Rc45qZkY8sHbsHSsajMrhUXeLS9S9oid3OGOCZ+NnOwr5MzijcZNd8DczAYLTy1EbFZslTHcLN2wbsg6KnfWRWHx8xeG1XZoEhLQnfSDsuDd4gL0DezL1kOXMroM9FLw1cVpuHMpHIb+XsgbdhMLei/CQJ8PqIxKh0v6MjGWcOtUKNaT+36oraMATXgJo1yDCNBErjDJ3UmAJnKHSqs7CtBExeXVFmiy/KA/Locm44tRLTGwmaOKURGgCe8BVGBAAZooECweutbXTJOsjNOIi1qCO4lt8RSf4v3Bz9Lzw4NfpjKdMM6ZgW2m+GyyoEni028p7fxPjdtp8nmNL8pY6oAmTCSYiQUzjYXHh3UR+zAUnScPQ8OOLTR22TlZlxETMbdap5jIJ68jP/c+ZSn9QdlKHTQ2J3YiVaBJZnwKTn//O8ztrDHsw3cqzJtpnTDNE64ManVVR6tiApwhBDqZRolP65sKXbNEIqLMrpkEmoLR2Oc77Hh8C74x12sco5dHL7zbeQHyC3Q4DbXn2bQZmjCRVyb2ygAYA2Hlm7GRBPv912D7nW9gEO5cBk0kpEOzbYIvHM1aoZjW9XL0BTSzbw5n04a8ZAcJ0ERzd7sATfiNtQBN+I1nXR1NgCYqrpy2QJOJv/ohJj0Pf07tjMZ25ipGRYAmvAdQgQEFaKJAsHjoWl+hiTSj41JsD8QUvYuvXm5VFk1mXcosTN0b/QRzi548RPnZEDVBE7bBZz8Ug4NmIifLVy5LVF4npoWDqQOaJMZ9g7SUv+DouhzXt+QjLz2rxuwHdYU0JekXJMevJ52HN0nv4f0Kp4mJeJfunwvP5f5RBZqwi9j/wXoUFxbh5S/nwtDsmRhsekwCzq79G1bOdhi8rKK2BTuuID8QESGvcIBTGQva4uIMiPJP43yMH/4MOPKfYxWlKrBkElaJwxIVymnLT2s3Df08B9Jc1Ss8Kuv+0WZokpN1icDgPM7dyKPRL2WhMDAoQXRWOJYcn0AZJLFVoImP8wisH7EDT7MS8O5nc2HlYI1tH+yAmLJNVM0OEqCJrDuSv88FaMJfLNlIAjThN551dTQBmqi4ctoATQoKi9F/3SXQngO+7/VXixafUJ6j4o2mwOECNFEgWDx0ra/QhDkvMAeGo+FDECmags2vPXsrHx/zMTLSDnLWpczClM9WEzRhqeTQKUFM2EdITj76XMor+LzOF2EsdUATqWuHtfUMXFlfBAMTI4z5ar5GLzcuaimJnp6Ei8dXZI39coVzx8d8QvfuAbXcu7IuUlVocmEjicFGkBjs7AlwbNqw7HRRtx/j5s4TcG/ng65vjqwyjezMs4iNXARzy35w99ooa5pVPjfQp+9dThAWHBrKuVbpkTisiSlpoyWWQHK6CDqDyTXHsaIj38p+K+Ft0xL5GrC6remCtBmapCb9iqT4dRXAoCFB5RKdfHxw5n1ki1LA9J9KQhug5J4z9McEAYbF8HHsiXe6foI119Yi7jcqsXLSQc+JfbCwyyIUUHZQiQrZQQI0UfirpfQBAjRROnTVHihAE37j+X/2rgM+iuKNvtzlLr33hISAj3iPAAAgAElEQVQkhEBCB5GOSBUUBOxdBAtFsaLYC9hpUsQ/omLFhojSlCa9SCeNhPTey6Ve+3+zMeWSC7d3e5eQZMdf1ORmZmff7O7tvPm+99prbyJpInDmOgJpEpNditnf/ItuXo745uHmAnICIeKai6SJOVDk14dImvDDyVy1OitpkpPxHkUMfIfNcTORUH4zvps1pB7SvOzVZGf5mY6dq7nw1keaMLeOE5lHsSfxLzw/4AYkJryLkJ676ZDmtU431zm0l34sQZoU5m1CTuZHkFtNw5mvPLjFPVvkt1Zhi4nYqBkUXRFHDj6/kOtLT51D52YtI+vdLym96xl4eOumuVh6jEJJk7O/7UPCobPoe8to9Bg7uH64TDcmdu9J9Jo0HJGThjU7jYK8r5Cb+THcPe/nIoCMKXISFIV1NeZvn4eCigxUVlwg6+Yq0tDwhm1pzxZJEzdbN6yevBoSjT1qVG2jb9KRSZOM1BdRWrSdyD+m7zSDm1I7CuyxkjawHmpVEf78/Vt8+/UerFv/NEWl2BDZFYIVJ9bgZOZ5qH7RQuNdCckIG8we+CTGdp1AIsmmRweJpIkxd5awuiJpIgy/pq1F0sS8eLbX3kTSRODMdQTSZPulLCzdGYMJET5465ZeAhHR31wkTSwCq95ORdKk9bBmR+qspElG6iJ6Kd+BDRcfxOWS4fhzfkMaTr0Yq8cd8OvyhlknpClpIpGoUKYqxPyd82iXuxzjA/xwZ49psHWYbtbjdsbOLEGaFBduQVba69BWDEfUzz3Qc/wQ9Jli3hSuluaKuYE420uQmLwM2Rlfomffc1RV11a4IHcj7dCvIMJkFqeL05pFKGmSfPISTm3ejcABFFHyQENEyZGNW5EZdQXDHpqKLv3Cm51SvTUtESaMOOFb2PVhb2eFpQeX4Ez2Ga6ZRlNGmjBEnGiVkBa4wfZwBKpGxkAWGNBMYHag70C8MvpVVFRqLWp129L5dGTSJDFuBulKxSO4+2YiQhpSJ5ti8feuP/DtVxuw7vPv4EpmUVsufoxNZ9dy1ez/HgS1ZwmqBySQo1J/vDt+DcIFRAeJpAnfO0t4PZE0EY5h4x5E0sS8eLbX3kTSRODMdQTSZM2BBHx/KpXs5kLx8NBggYjoby6SJhaBVW+nImnSelizI3VW0iQ18VHSLTmGFafnIrowEoefv7EeeEXpAcqnX0Dh/qMp3H+dWSekMWkik0rI4QFYuGsh0krTOAtZZpu6aOQSjAx9HDVK3QWxWQfSCTqzBGnCLGqZVW01XTPxfwzB8FnTENDHvGLBLU2NLaUffHn2EwzysIOfrAZOHk81q1pH6rDdebZL35pFKGlSnJmHvz/+Gk5ebrhp8SP1Q9/57kYo8osxadFDcPZt7oyTljS3VgeIUnOcKEWHb5HbqLEt7jdsjtqs00SlzKNInihI851he6Q3qkZcosV3KQnvDiUxWrphG5WZPWfi9si7SEjWPA4tfMfO6nVU0kSrVSP2Qq1tdM8+pwlzCsVroRw7/A+2/voD3l+2ElnVaXh532LODQlalQ5pYi3zhK/bSKy+aTWkWgeTooNE0sSYq1NYXZE0EYZf09YiaWJePNtrbyJpInDmOgJp8uwv53E8qQDvT++D0d0bbOkEQqPTXCRNzInm1fsSSZPWw5odqbOSJkmXb6eFUSw+PvMSYvL9sevJUXC2lXHgV1VGk7DknVzqA0uBMGepI03UlFxva6PB2lNryOXhIHeImppU1FQlwkbeFZ/fvhuu1j6oJs0msZiGgCVIE6ajkHplDipyuyBx5wTc/PpjsHd1Mm2ARrSylqlwJP0frHt2JWQ9ivH5a+sgk/WDsklqCLNDZrbIjDxgJEJrFqGkCRvrlkUrKYVCjVuXzIfc3pYThmUCsUysjDnnWDEv2SYlMXYa2QAnGuV2JZdr6b6/iHcOvd2sPyYwWl2V0Iw0sbENg0zepVn9F0e8iH7e19H927okZ0clTdhzmT2f5WSZ3Y2ssw0VpnWiRgXm7niCtE6KiQwn0oRK40gTidSR3KSuwwDfAXh19GsmRQeJpImhmTDf5yJpYj4sWU8iaWJePNtrbyJpInDmOgJpMn39EeSWVeOnOcPQxa1BcV8gNDrNRdLEnGhevS+RNGk9rNmROitpkhA9HkplNlac/xCXcmyxefZQBLnbc+CrVAWIj7qBBCHdEN7rkFknpI40kUjV2Ju8GxvPbqzvny0WVDQmG9seJGg4AismrkBZpQoqtQD1QrOOvn11ZgnShEUCJcXfjcoCT2QdvpcjTSxdpNZqFNfk4cmdC6D9vhrK0EwMnToSi29YxVnfahp531aUn0FKwoOUjjAAwWHfWHpoOv2bgzTZ98kPKEjOxA1z74B39yAUpedgz/JvKcLEgyJNHtZ7PrEXBlI6TQ1nN8xshw0VtiBTqCkljnRMajQ1zarXRXw1jTRhJKq1zLdZfblEjtVT1sCZ7HGrla2nb9JRSZOSoj+QmboYzq6TENB12VWnk93jjpSy9vr+13Ex9yJXt6L8X2jUCh3SRG4TTCRMMPf5jJ4zcAcXHUQCv0YUkTQxAiyBVUXSRCCATZqLpIl58WyvvYmkicCZa++kSWmVEjetPgRbmRT7nr5BIBotNxdJE4tB26xjkTRpPazZkToraRJ7cRAJPlZjTfQGnE2vxPp7B6FvgEs9+LEXBnC6BobCw42dLUaalFRWIr00BS/seV6neUX5WXrZL+Hy76VSV4wLGYdHBz1GdqhSiLSJsUiTUywtqDxdbJBTVGV84xZa1FSn4ErszagpdUZ5wktceo4li4yESm3kGizY/giSC47CZksYlN2yoOlXgYcHv4OpYdOJ/GtY/NVUJ9H4ptICMYR26f+w5NCa9W0O0uTslr1IOHwOfaeSGOyNg5FyOgYnv9vBaZkwTZOmRaXMQXz0OE5vpHuvAwbPt1YXRobn/3oelwsv662vpdQOtvCW5Mob0nO8KmrTc6z0L7TD3cPx8cSPUVqhbDWSs6OSJrlZy0nM+AsS4l4AT58nrjqnLFrv55gf8WvMr/X1mJBvRcU52O3uxWmaqK7Lhy3pojSeu0XDF6G/z2CjooNE0sTg7WW2CiJpYjYouY5E0sS8eLbX3kTSRODMtXfS5Fx6Meb9cAaRfs74/P7rBKLRcnORNLEYtM06FkmT1sOaHakzkiZMcDXu4hDalbbDxoSNOJyQjw9m9MWosAa9hISYSVDWZNDCcwctQIPMNik+brYorVRQKPk8FFYW6vRbXnaEI2ocnIbTC36ty8MTg57AqMAxOgtjsw2mg3dkCdJERaK98VGjoaqyhaxsLScEa6lCnA9FHWmw6sRK7I1bR2krxXD4YyhHmtREpnDpY2+P/xS9Pfqj4j/rW+YocjlqFEVJuVKUVG2aQmsVc5AmSScu4d8fdyNoYE8MI3vhC38eQsyeE4icOAy9bhre7FQqyk9TZM1DJBbaj0RDvzN4qnaE57eXvsUfcVdP+2DESU1qEuQHu6J6ZBxsunZvpmfS9GCTuk3CrH6PoKqV9E06KmmSlkgaNWWkURO8Ck4u41qcUzs56chIa+g5WqS3zuL5T6JbD2/MXvAizZ2uaw5L8/Jz9EVRmdLgNVNXQSRNeEMluKJImgiGUKcDkTQxL57ttTeRNBE4c+2dNPntXAY++jsON/f2wyuTIwSi0XJzkTSxGLTNOhZJk9bDmh2pM5ImTLMgIeYm0ifwx08pq/DnxSwsntQTU/v614PPUhxYqkPXbl/B3tE8hKyEVsFuThK8eWAJTmee1ploRpYw0oTthjo46bqxfDThYwQ6dkNVjahvYszdYQnShM0TF4WkkcDD4Q/OcthSRU4RJn8l7iDx1/VgWiqsNCZNmLilp/NQzvrWRuJCwsEsNYS0Os734epG9GPpCq2ns2EO0qQ4Ixd/L/sGTt7umP7Gwzj/x1Fc2HWcc9NhrjpNS0nRNkrleBnObjcjIOiDq04Fs/Y+nnEEK0+s4DVlmqwKWO2xRvWoK7AN5vd+sWDwAgwNGElpdsalfvAaUJNKHZU0qUud5ENYs8ihlsr8x6YjJFiFp57/DHJ5QLNqJCtFbkn8Y/hE0sSUq9S0NiJpYhpuLbUSSRPz4tleexNJE4Ez195Jk2V7LuPXs+l4ckwY7hlsvt3gprCKpInAC82I5iJpYgRYZqjaGUmTyoqLSI6/h0K2e2FH5lJ8dzIVc0d3wwNDGhbAGSnPo7R4F7cQYwsycxSZXIW/k//EpnPfUUSJ7su6mtJyKik9RyJ1JsHCgTqH83XwxarJq2ghJmsm/GmOcXXUPixBmjCsok73h8RahZAwSg11IJ9TCxSZtQbpimS8uHcRXSuqenHLpqSJrV1v9PbujXdufAeKCg1nfXs5aiQXlRLe6yBFnLhbYHT6uzQHacJ6/vWFlegxqhe8J3SDY4E1/vlyF4bPmQEXv+ZC7/k565CXvY7SOB6jdI7mbkJ1I5WShlBJTT4W7JrPGw8taaWpD5eiZlAq7L0H8W63nLSI/B2CLU5ydkTSxEpbiugLwzltGqZRI6TEXLiHc0Hq2edbikTqK6Qrrq1ImgiGkHcHImnCGypeFUXShBdMHb6SSJoInOL2TprM33wGZ9OKsfz2/hgaYrmXQ5E0EXihGdFcJE2MAMsMVTsjacLsSZlNqSNFdBzMfxlr/0nAvUS6LiDyta7kZH6EwrxN8PZ/Dh5eswQjLZdRBEDBRXx4fClnd9mYNNFoFOTWkUwL3XwiTVyINBnQ7HhDuwzF80NfQAXJczQW/hQ8sA7cgSVIk6K0HKSnT4W1fQW6R+4jYVBvsyMoJx0TraQK83bMRUl1Cdd/heIU7YqX66bnkE4D0/JgZWr4VNzX+wFKDZGQpsktJHKZjFByHrEhB5LWKuYiTaL/PAD7rvZ4M+59XC/rj1t8pyBw8EBKsZA0O5XM1FdQUvQ72Su/DVf3mXpPlenC2Nta4atzXzVLibs6NlqyMv6HqpDYqDN/zTR3O3c81O8hKCq1RkUyGDtPHY00YcSWBPm4cGY86TpRulXYt8ZColM/NfFxLnovMHQ996wXWkTSRCiC/NuLpAl/rPjUFEkTPih1/DoiaSJwjts7aTJlzSEUVyqx9YkR8Hai2FsLFZE0sRCweroVSRPDWLNFQFOrUcOt9NfojKRJXUi/i9tUnC15Ckt3xWAKpfi92ijFjxEmjDhx97wfPgEvmQov1469AJZriji3DkhIK6ERacJEC8tJdBIUTVBXmK0pszdtWu7pfQ9u6X4raa1YPvRf0AlfI40tQZpcOXoeZar5sHEpJovb32meupn1bDk3EDsJNp3fhPjCeK5v7hpRsF13DVK+dIELbZr7jvRr5uRyV6+7EOYagcsxD1DU0jl0Dfu6WdSSWQfbpDNzkCYs3UJTQvfKj3ORgWwoCkrw0uiXcNPoO/SKdjI9E6ZrEtRtIwm1tqwvI7Fu7pLDBwsmSMoEoz28ZxnUNGnan0alq6PB53jG1OlIpAn7TrMlG+ijyVsRYBVHFtKV8OvyhjFwNKubkfICRQvuJAeeD8mJZ4qgvlhjkTQRDCHvDkTShDdUvCqKpAkvmDp8JZE0ETjF7Zk0yVdUY9qnR+BsJ8OuBaMEInH15iJpYlF4dToXSZOrY21L4ncyay3K2S5mkxQPU2apM5Im9YSI14OIr3wEi7ZcwPBQD3x8W796CFlqDkvRcXadSC/dy02BlmvDFoFOdtZYtGcR4gpIUJKcvhqTJnU2w00PwHRN9Dl1vHnDW4j06Fsv/GnywDpBQ0uQJkyk1Mrjfdh75dFO+Hfcjri5i0yuhFrboF9TXnaUCINUEiTuiifnrMGkW27GXfffq/ewamqWceUFlJXuJyHNT0hIc6y5h9dif+YgTWwohW3jofX4+p8vILe3RQ2FVjm5uuD7x3/Va+lbp38RFrGbNIqa61YIPfn6qB0LEGRCx9ZRSBMmeGxrq+UEj/fFf4mPxzwLH4cwWNsKiw7JTn8HRQU/wjfgVbh53i0UbpE0EYwg/w5E0oQ/VnxqiqQJH5Q6fh2RNBE4x+2VNDmTVoSVe+ORkKeAl6MNfp87QiASImliUQCN6FwkTVoGSyaV4MjBv/Dt5q+xZu0GCv0WHl3VGUmT3KyVZGn5Obz8FiJbdSce++40epED14ZGDlxMBJaJwTL7XyFh4nJaAG+O3oxtcb9zE9uUNGG75Bp1WbNJ5+xNJbbN/u4kd+KEP+VWzv8Jfxpxc3WyqpYgTf766Gu49foOjgEZZgv7v9q0lBRtJ6HTFzmnp1CyEP5wyUoMGT4K4ye1rLOTlfYaigt/u2rKiiUuBaGkCRNqPZF5FB8eeA95VzJgTXayKko3cvJyxYCe12P5xOU6lr51orwUvkWitxcscUqcMw+7R7t2+5IEoQdb5BimdtpRSBMmePx30k58ee5LTny7i4Mr1s/cT9GUblCqmbixaSUvaxXyczdwWjdM80ZoESNNhCLIv71ImvDHik9NkTThg1LHr9NpSZPjiQXILaVIi/4Nbg/6pntvTC72xuRAUaNCnwAXDKXdVPbfutIeSZP4XAWYlomiuiGcfUCgK9berSueaM7LX4w0MSeaV+9LJE3040MOibCj3bhFq55D0r4EvLzuTQzwGyw44qAzkiZZaW/QovJXCv9+EwrJzbjz82No+gxhdsPMdlgm80NY5N8m3QB1i8AVxxsiVRqTJix6oKYqsVnfjCxhpElLpY93H7w95m3STKgV/hSLfgTMTZqoqpX4bfEnCLzhAFyCkygC6SOKRJpsMfg1mkokxk4lu+ls2i1/hXbL7+F1rNysZUQKfglvv2corWQ2rzbmqCSENJFIVSitKeCEWjVqBcqKL0Aqq02psYIPHJwjMCF0Amb3m4PqGil5BIF0W5JIv2UqZwnOnFYsUdKTn0FZyd8018toridZ4hAm99kRSJPGgscMCGY1DIqymtxrMRYMfobEdEnfx8RHXEHel8jNXEaaVA+TNtXzJuNc11AkTQRDyLsDkTThDRWviiJpwgumDl+p05EmifnlHAnCyJChoe54enz4VSd5w6FEhHo6IsTLAZfSS8B+f3dmn3ripD2SJhuPJGHj0aRm573poevR3dvRIhe9SJpYBFa9nYqkiX6s5bTruiv+B3z+9UrILpGewZ252HD7TthKPQRFHHRG0iQ9+SlaCO2j9IVVFPpxA6avP4LnJ/XA5AjfevDrd7GtaBe7r/G72BLSLilV1i4CGxd2fVdWF6O6MgHMMYdbFBJJwnQran+xhq1dz3qBz5buvGk9puGeyPu4BaRY9CNgbtIkLyENB9b9hNAJ52Dvfxa+XV6Hm8edFoM/O+NdFOV/TxbUwxAUuoH3cZgOR27Wck6Hw9vvOd7thFY0lTRhEXR2FFS1cNdCpJWmkejtvxRFp9AZDndPyHwx77p5GN5lNGfpqyg7jLTEJ4zGx5jzbEjx4E9aGdO/kLrtnTThBI+lVZzWUzE9ExlJWKE4wT0PGWn8SP9HMCZ4PDRK07RhGDHOCHJX99so6uotIVBzbUXSRDCEvDsQSRPeUPGqKJImvGDq8JU6HWmSW1oFRpywSBNWDJEmTa+Apzaf5aJN7r2+1p63PZImq/bF48fTac0u7ven98Ho7s0tCc1xF4ikiTlQ5NeHSJo0x4ntxqWWXsST2yjyId4H8qiuKL/lOPr4D8TyaX/XW43yQ1i3VmckTVISHqAw8LMklLmJhDIH4ZtTCfB2qcGUiJ5EZDQ4dMRH3QCVqsBol5Smi8DGiKtVqaisqI0uYbaaMnkIyvOAKkURLRYoFF0rh1uAP+QOzVNzms7vc8OewyCfoUSaURiSWJohYE7SJPlUFC5tP4zKUgWCb4yBY9Bxi0ZylJcdQ2rio9w5hYT/RERaJO8ZLi7cQovF12mxOIMWi+/wbie0oimkSV0E3eqTn+BQ6iGOLGGkSdMikbhTekytbeyyScsRYB+CrMzvkJ2xBK4edwgWDW3p3POy1yI/51NK75hLaR787YqFYsmnfXsmTdi96WBnhbf/eRvncs7Rc7eYIodSyEGsiJ6LDvWpUEvHLiVx40gimhs0fvhgw+qwCCEWKeTkMoEI8hV8m7VYTyRNBEPIuwORNOENFa+KImnCC6YOX6nTkSZ1M/r9yVRKz6kyijQpp3SWpzafw6OjQjjihJXc4v92N9vRpXImtQhPfH9GZ8R+Lrb4dtYQONlaxlXC29W2XWLVjqa1fqhyaynZQ0pQrFC2x+GbfczMVUBrVYXZWyYip+QiZAkB9aQJpBrcPfBt3NfnMXrplJl0bCcSUlZRikdlo3Q3kzpqR40uR99CFr9JCI/8gzRLumLlT5txYvNmLHrnNQzuTSQEuduwkhB7BxEc0Qjr+SPsyN6VT2GLQLlMg9WnVnOLwLrCFgXVlVdonkq5P8ltah1yynKLUEo/jYuEdt79IkIMHk5CWg7rblkLN5lP/ZgNNupEFdjCzNVRjgJKZRVS4v45jTNb9td34dXnAnwGnqZF9KPw9X9aSNcttq279rz95sLHb4FRxygt3oeUxCfh7HIjaXGsMaqtkMp2NtawJszLyNGOb7GWqbEnaTc2nv2Ca6KqqURl5fFmzTU15BrkVZuC6+/oj1WTVyIn43ukprxHc/AMzcUcvoc0ql5B3g/ITFtCKR53wT/wdaPaWroyI7yrajSoVhpPKFh6bIb6t5apsDVuC36M+onTdKogtydtIwcxa5knPXP7wMPOA59MXkVfdfZG65soyo4jKX422Q0PQUj32utLSPGi98x8eu82NV1IyLE7W1sWhWRP7/PFCtNcrzobXobOl61hxCIiIJImBtJzGl8iLDXnYkYJ3pvRBw70csO9oKhNTBZt42vvq6PJWLI9mhtFBAk4PjW2OyZE+lhsVMwBo71iZTFQLNQxW3RK6F+iVkMtwCSFiKWHluJQwmZUVaU1I02cnPrixdHvYkSXEZBKjCdOJCywgh4DnUka4+jR60gnohgjRpyChgQ2R71+J9z/rYLfnV3x1ZwNlCrDQYJLlx5HQcFe9OpFO82eE3hd8Up1NXYnskXgxvr6FRVXaCGYzP0uldIuqkN3IlZqievsK+moLKts1ndAjyDI7QwL/Ya6hWLFxBXci3z7fJrzgtXkSuZ4dn+9aA3K8mtTqVhx7xkL/yHH4O9/H7p3Fx723/TkUlLWIDl5JaUo9MR1g/40+txLSk7j3Lm74Ow8EAMG/GR0e1MbMBcUEiChaBF+Pag0SiSXJOGFv1+ob6Ah+5+8rBOwtmu4J7RasiGuCIJ3UIMN9/AuwzErcgTiop5CePd34OXdsjAuv9Hor5WXtxPR0U/Cy3MSInutFdKV2dsyUpA5qLW3Rbya5p1Flyw5tITDRKGIJovhrGb4uLqx7zRbDPIbhMUjF0NqZdz3m0IRhdOnb4WjYy8MGlQrxC2kmONZIuT4namt+B5o3tlm165YRARE0oQnabLtXCb2xObg1SkR8HZuYBzbY3pO48ueicE6/kcAWfJ2ENNzLImubt9iek4DHnK5Gn/Eb8UPl37gwpcraTeucaSJlUxOC/DriGSSYe2UdXCT+xq969j50nM0iDnPwvytMGjYBby6dym2/f0PekTbIXZgJR4YNxXPDp8HZbU1suotK/XrGbDdsLqoFDZrMoowUWorsC9pHzeJXHRJ1ZV6dxy5PBBOTuFcm+oKyt8vKEVFia52Q93s+4QHkRAmv8i5YLdg9HSPIFta4xYVrXdXt82RzJWes2PJBpQX1kYIseIaegVdRh2Ei9vN8A/6wKwnV10Zh8TLt3F9Boaup11y421XGwRSg0kg1XjSxdQTMiY9h907kFZj/o55KKrSjbTKS0yH3DkVUnntLrNGJYMUveHg3iBiz/5+R7cIjPDxh43NSC4qwRKlQnEKKVdmcWl8LJ3vWirtMT2HpV0oVIWYt/0xVNZkcemPKiXlJ+qhfBs7iN0eeTtm9Lgdyhp+z0Q2T8qadBLzvomzomaW1EKLmJ4jFEH+7cX0HP5Y8akppufwQanj1xFJEx6kCUvlYRooTQkTdnm0d9KktS5xkTRpLaRrLVkd7aQUUt+5wzLtbUgwVFOGqLyoevBZzvfxXQdwbGcqHl86ihZtQ0gHw4773EHugP7e/VBkZFpTZyNN2Es60yqxtnZDjM1CLNq1Ds4FJPYaY4/zfctR5azF+mkvYUK3sUSabERe9moS1JxD+hW6aRgS2uV1tiMxyiqVThSanbxWmLWk6E+UldaSJ+yl3cVtGmxtu0NZWIjE8wkoTM3Rf1PRhpBfRCiCB/cy6qZjkXBC7DmNOlg7qWwu0uTc1v2IP9iQEurUJQ1dx+2Bo/NoBIasMysaTNiUCZwygVkmNGtKYboQl6NGQWrtivBeh03pwqQ2xpAmrg7WuJB7AYWVhc2OpSK3PwVFy0jlCor6knBaP4y0YOfTuChK/0F/3z5wsR8LNSwjAs9Iz8S4WymdrnUJKD4T0NakSUlxEU4eP4zefQfCzz/A8JC1xZRCrcbCHQ8hNrd5ClbjDvQ5iL008iX09RpE5DC/XXOWCnn50nBIpE7o0fuY4fEZqCGSJoIh5N2BSJrwhopXRZE04QVTh68kkiZNSBNGjrCfOoHYlXsuc9bEr9wcUZ+S0/iqEEkTfveISJrww8kctUTSpAFF9uLQtHzzxf3Yvr0Yq9bcR1oHuhakLMVG+Z8eB9+56GykSXVVAi2CpkMi74Inz1qTsLYC7kXW9aSJwlHNOY59d/saOFRdQErSyxzh4R/0ru6CjdRb16xbjscfmUcL3MD6z8rLjiIn8yOKMInn/lZHuGRciEf84bNgDiyssCiSsJEDuJ8aijqJ2/8vUs+QwKinKya/3Ho2sXyvk/ZYz1ykiZZurC0vrqKIITWsbeTwjqyGe9+vaCE/gKIPvjEbNEUFPyE7/W1yifFEtx5/0mLPVCJAS9FUtZEXEZ/H7QgAACAASURBVP0u0r/5LTKFnogxpIm+Z1vj42dlvEPRXumwtx+CiooTcCKCys3zvvoqGk0FJ/IpofQNrwDhIp8tnbtaVUwE1EhKq3NGeO+jQiEya3tLkybujlePXEtMvIKFTy3Aq6+9gSFD9FukM1ewyoIYXM76hFKoxmFzzDZsT6iN+pAScW1t7Uk/HpSek0wRJ9nc39l1z0gq9lnjYiu1xeopa+AodaeISn45YLX3gZbuA+aA1vz71JgJEUkTY9ASVlckTYTh17S1SJqYF8/22lunI02Y1TCLHGGiruyHpdo0FnZln7FUnM2PDeU+v/t/zdl81mbjQ9dxcy6SJvwufZE04YeTOWqJpEnLKGo11fj2i7E4eNANb7xzHbp0fVMw5J2NNFFWnUZC3EPIqHHE8iteuJxb1ow0ifB1Rn8fP8wLsUFx0T5YWUlpwXYvfPxf5PBmaTgHzv6N/y1Zi1seuxX3THqIXvglRJZ8jMK8r7k6TDjW2/8F5EbbIuHQWRSl10aW2DnZI2zUAISO6E+aJQ2pkpWUpvPnW59Bbm+LW5dcWy4dgi+yNurAXKRJCjnnnPxhFzxDAzBy9gxorFKJeJtBQr7dEdrjN7OcnUqZjytxU7lULkbQMaJOSGELfbbgD+91kBan7kK64t3WGNLEUKcsQoBFCnTt9hWlxzzMOU2FU7QAuxdZqaqMQtLluzh77pDwXwx1J+jzmAuUzkdCRz37nqXjXzspcJYmTewo2tE2IQ5WL72kF794mp9nYYvFlJI4vFEUkEZT/l/aTT7UCx9BcQ8p1DY2OFNUgE/P/kqkoAdHiOjDkrknWVnZ0o/+NJyeHj3xwfgPUFqh4qV7Vncdhfc+QsSXbnqXsReFSJoYi5jp9UXSxHTs9LUUSRPz4tlee+t0pIm5J0okTfghKpIm/HAyRy2RNGkZRZUyF/HRY7kKzq4TEdB1uWDIOxNpwhbRysq9iIt9CpcrnfBLnj9OpRTppOeoKANgQKArRrsWYKRzvg6+Lu63IiT0PVRoCjBnIy2edzlDNSIPK2evhkyxB1lZ33L1mT1pScJwjiwpy6vVa3DwcOGiSoZPHYbicqVeYek/3lyPqtJyTHl1TjP9BsET3Qk7MBdpcvCzX5ATl4JBd0xA6LC+JCKchYToCUSe+SIsco9ZkM1MfZlSuraRPep4skddKbjPK7G3kIVrMkJ7biPNj1DB/fHpwFykiUatQNyloUSU2KFHH9IUSXiI3FVOE5m0lMikW7mhlBb/hYyUZwmvcYTXKj7DM7lOfPSNnO5G98i9tOC3nOC8sQO0NGnCxuMkVUO2YzvwdS0ZXFdYxF48pYEttuuH56tiMVhbRdh4EU4FnG00V6ZNQ/XMcchUnEN4+IuwogiROtLL2HNtXF9iJSHSpJp4LMP6JkzThGmbdIvYCaYpJaSIpIkQ9IxrK5ImxuFlqLZImhhCqHN83mFJk/TYFJQXK9Bj6NXz2g/90PyFTWYrx9AZo7krIOlcPBLPxkNZVQ3vED906dkV3sF+9VeHSJrwu1FE0oQfTuaoJZImLaPIUj7YDjcrDo5DENStwaHFVOw7E2ni4miNi1dWoTz7U9TYDUel851gYtKnjsUidus+hN11E4YNDOXEpZ3y34ZErau3YGcXisg+G/DCzlmIiYuG3T99UTUkBr7d7cnBZjny8/ajMCES8ftLOfKDFVd/L44sCRlamy7BrP8Ky6r1kiaHPvsV2XHJGPHIrfDv3eAUYurcdvZ25iBNGOm1670vKGVAQhFACyg9R0bRIHWLegda1J8QDHNZyR5KNSHNHFoMsrQcuU2Q4D6TEx4g4eizlD70NaUR1Vr1WrqYizSpe87Z2IZSJM821KUtOTgNR1Do/7jTKMj9ArlZy+Hu9RBFgDW471jiHJkwLxPoDQn/mSJbIixxCJP6bA3ShLmYuFhrIVmzGhTiyI2TkSIVin+RLHGoJ00GNXpWsggS6wE3QvruGpSr3SkihC5tM2eI8XUMSrp8J0UlRZPl8I+wtTdOJ6rppIikiUmXqUmNRNLEJNhabCSSJubFs7321uFIk6LsAo7oSCKiI4AIjjryQ98E1VTVIDdZ16atmNozkmTaM3dxTc7sOg43Xw+4+rpT3Wyc2Xkc42ZNqSdORNKE36Uvkib8cDJHLZE0aRlF9qLKQtVZYS/v7CVeaOlMpIktibRmZ36KrIxP4Ov/BPwCFnLw/XP4CNYtfxfhM5/BO/eP5/4WdWE87dRnNILXCsFhi/FTzC5yNNoBSbFjPWmi9i3C8IDJeND7ZRz5Zi9qKqvhGUKODZSGE9i/h84UXY00ufDHQdI2OYVeNw1H5MRhQqe207c3B2kStesoov86huDre2Hw3TfVY1rrwMRSNs4L3D3X4ErsVLrWUiid63l4eNXe30JLetKTJES8n6IwPqFojNroNEsXc5EmitKDSEuaBwenEUSSfEaL9ApO0FOrVXFuQEzvgmm/MDLFN+BlLnXOkiU18VGUlx3jxsLGdK2U1iBN2LnKiDB0ktP/LKTnZVoapd7ko6riUjPSREK6LzY2IZC6BUG7hggTOyfU8NQesRSmqVfmoFxxnOZuA82dsGeqSJpYapaa9yuSJubFWiRNzItne+2tw5EmLLqEESfpMSncnFyNNNE3aXu/3AGfEF/0HqN/Z2nXp7+hS0TX+s9F0oTfpS+SJvxwMkctkTRpGcX6HWn2Iiv3JxvFvwRD3plIEwZWTsb7KMz/ltMncfd6gMMv8Uo8Xl76ATLDbsWBxbeQhbMV6ZN8QPokDSKf/gEPIqZcjuUnVlOkQUkz0qSmzAl3BS7E2CAiXWgH1i8iRO/cXI00ST0dgxPf7UBA3+4Y/rAwTQvBF0YH6MAcpMmOpZ+jvKAEo5+4HT7hXetRuXxpBGlulJDOhjCthNzMZSjI+5KLBmFRIeYqWWmvobjwN/gFvg1X95nm6vaq/ZiLNCkq+JFIkXfg6nE7/Lq8yR0zM+0VlBT+zqW+efnOR2ri40RkHOHci5iLkSVLZuqLlDq1ndKD3qP0oKmWPJRRfbcWacIGxQhnu5wMWC1YwJFX5eTw1DTShOnLWFPKmvatt1AdHkFpjMKEV40Co4XKLIWLpXIFdF1GKa2TBHUpkiaC4DOqsUiaGAWXwcoiaWIQok5RocORJnWzdunAGSiKFEaRJiylh0WS3DR3BuSUotO0sMgURpoMnDyUS9PhXkQKKjvFhSL0JEXSRCiC/NuLpEnLWBUX/oqstDe4ChIppQb0Fp4a0NlIk4YF0Pu0ALqlHuwZn5HrTWkVfnlsGPxdam2c87LXUVTKBnh73Qgbr9vx9N4PUa2ogEp7phlpUl0SACdy0fng5o8R7tYLldVqvRN5NdKkJCsff320SXTQ4f+4uGpNoaRJVkwSDm/YAidvd9z00iydY9VpJYRF7CICs4tJI64oP0N6HQ9ybYPJhceO3HjMVXKziIzJ/ZKssp8hB6fWcWMyF2mSm7WKxr6ByJEFRJI8wUHCIj1YxAfTpWD6FFdib+aic0J7/E6CvN3MBZvefuoIVJYGxNKBrpXSmqQJO2fKboT8CKXofPIJuYM1aJo8R5omQyUSmoeesHp4NlTjJqCUnG6uhZKV/iaKC34h8u0NIuHuEDQkkTQRBJ9RjUXSxCi4DFYWSRODEHWKCiJp0miaWZRJ6IDuCOnfXe/ks1Sd3KQsjJ11cz2pUlap6hQXitCTdLKzhoiVUBT5tbcmsU45We1WtLDo5NdLx6yVlfk50lI+opNjCeJaDB4a1aLLAF8EbAlrZlVcY6RVMd/+r7V6cdGPoKTkCHpEbISL68j64T305UmcSS3CFw8NxuDgBreRdatXYPKUSYhFPIqqilBMxEalIhNKdTZObipCvxmucPLyJrecrnDxcYedtR1mRtDOvlZGO7LNz54tLCtJR4Vhrq9sWvARuZ6ocf+KZ8hdx+Zag69djYceJbAnfRpFlWnfc/98sQ1XTkZj0LTR6DdluM65X7owncRJY9C7728UJRJpEi7Rl+6BouwM/PznILCreXU5sjI30LPiY+p7NvW9yKTxGdtIbi2hKC1ythGYknEl/nkU5P+B0LD34elVq+HEyoVzN5E+RRLdu5/jcuwTXMTDdUPOc7bDliyZGZ8hPXU5YfkoYfm8JQ9lVN92FP2hJMEQlbqFh4lRvfGrbKuqhtWmTcDOnbhQdh4v2vTAy9oyjJS7wWr4KOCZZ1Al1f/s43cE89Zi35fse5PNG5s/IYW9Byronbn10BYy2vbdVnwPNO/8sWtXLCICImny3zVQJ/jK9Er0lbjjZM939jJG3TMBDq6O9VVKK5TiVcQDAWd7Gam1i1jxgEpwFWvKn5ZbW4mkiR4k01OX0QvgBs5VQqOpRP9BR8jBw0MQ5izsWkMr+M5CmkRdnEmL3WgSdP0VDg4NwoCLf7uI7RezsOTW3pjWz5/TJTn752Fs+v1rjBk3BoN6DeTIjMK0WuvgnMJcfL3rR9w2dgq6B/VAr3GD6dnqVD8XWk2tNWrT4shIkxp1i3aZf3zwNfJJq2rys/eSwKwwtwdBF0YHaMzSrOxtpdxCx9hSXV6F75+vdWW5fckTFEWka1caG/0gaYacRM/ITXByHmJs96StsxFpqR/B1jYYffrvpPbmVcrMy/0FyYmvEukwEyHd3jV6fKY04EgTYk2q6PoWUmKj7kdZ2b/oQdg6N8I2M30tMtJXw819AooK/6aoEx/0G/iPkEPxatsWWPIZmD1ZAitVWo44aa3C7il6hAGLF+P8yR/wkk0EXqNH3fCArtCuXo0aiYyXFXBrjTcr439IT2OE12PoEvSsoMM62cmIgFXqJcMFdSw2boaAtZQ2z6yl9B5o/LNbhLM5AmwNIxYRAZE0oWugLu2G6Z80dsapuzxYqg/TSGlKmLDPxfQcfjeRmJ7DDydz1BLTc1pGMSu9NtTY2tqDxPgKSBTxDxJF1K+dwXcuOlt6TkL0eLKMzSY9mL8praLBSWz9oSv4+ngKHh0ZilnDghG1mwRAdx/DsfzzHJTDPPtx/7W2kZMbTn8kxl/GluO/Y3yvMRg7YxoCeLrdXC09h/X/709/Ien4RQyYOZZz3RGL6QgISc9hdtFnf9sHv8hQjJzTEO1QN5r05KdQVrKPs7tltrfGFGYFzMRfWbSYKe35HIuNjY3R0flG0v0g55NWKOZKz0mImUg2sZnNbGJratJwJWYynUltpJ0d6cAEm1EHpiWIFKUHSJh2AWF5A2G5thWQ5HeI1k7PqRsVS52wVxQh4/7+uKCyQ1/7CAQsW44qvy6o1Ooni/mdkflr1enjuHncCd8urws6gJieIwg+oxqL6TlGwWWwspieYxCiTlGh05EmTLeEESCNBWIZKZKTlM254jQtx387yFkXj7pnvF6dE5E04XefiKQJP5zMUUskTVpGMT35GVqo0Q6rTVcunz847FtaOPQXBHtHJE1YSoa+HSobuRZZqa8gJ2cbWcX+qxPWv/V8Bj78Kw7T+vrjpUk9sWPJBpQXluqQJhKpFDe/9ihsnR0oWqUc5eUKilZxpPQMB95zYIg0SThMi/Ut+ziL4uvunGiwXxYpJHRn3+BB2mkFU0iT3JxsfPX5OvSUBaE6uwRDHrgZQQN6NkMgk66jkqLf4R+4FC7utxqFUHryQrqP93LtWHtLlDq9FPZ8YM+J1ijmIk0anInOUvqhDGwBxeaSlbyc9VBWp3L/LyXy2MP7ESKR3bjfLZXSWVlxAcnx91IKXm8Ed9/cGlDyOkZbkSZscDbaAqhPfAHpe6vg8MImKIeNQNk1omPSGLzS4p3ISHmBRGBvIjHYj3nh2lIlkTQRBJ9RjUXSxCi4DFYWSRODEHWKCh2ONGFpNhf3n4GSRFtZBAlLpWks3MoIkrhjUbhtca3rA6vzx4ofOVKkaZQJ++zX9xrcH+quCNZnnSWxSJrwu09E0oQfTuaoJZImLaOYcuURVChO0st7H1RWXDSLc0RHI01sSQZEItFQKo01qhtpK0ilapSp8iCrOY+8rB/gH/yVDtDHkwrw7C/ncT3pmay8o79e0kRGGiPTly4QdJkbIk3yEtNxYM2PcA/yxbin77vqseREAtnbyFBeqaEw/dYL0RcEQCs2NoU0ibp4Dh8ufR3DPfvDz80X096Zp3fE9S5MAS/B3fN+3mfFHGCYE4yU7FlDKVKMRY1ZotRUJ3HRLMyel9n0tkYxB2miVGYhIXoCubB4o3vkPm7Y9jakcaUoRUrKJe65B21D+o8V6Zm4uo1CeHg4SivVFkmdUNakgwn/msuxzFxz0ZakSYXiFGTKi3COU8NmxCyUqK2vSa0P5rDEnJYcnIaT7fD/BEEvkiaC4DOqsUiaGAWXwcoiaWIQok5RocORJq09ayJpwg9xkTThh5M5aomkScsoJl6eierKy5zFpqL0oFksMDsSaSKRqIgYKcSqEyvx0cSPUFah4kQSZaS1YGujxYLtj8JdkoEXhi2CRD6GxFgbJP2SCspx3xcnEORuj82zh+Lc1v2IP3hGJ9Kk++iB6D/9RkGXuSHSRFlVja0vryF3JClu++jpFo/FXirLKEXr2wvfYMH1T6KqyqpFcVlBA27HjY0lTZSkY/PX5l/x0+7NHGkyeMxoDLydLKT1lLzsNcinqAdmf8tscPkUtboMibG3cKl15nDzuNox1aoiXI4aRdEYrgjvdZjP8ATXMQdpUh8hY9+Xojq+rx+TAxkCnjr1E2Kjm5/LLbcuomdiF9JlEnwKejvQaCoQd/F6LjKNRahdK6UtSZOSoj+Qn/0xIiPWQi3t06pitMbgz0i25Ph7zBIlJJImxiAvrK5ImgjDr2lrkTQxL57ttTeRNBE4cyJpwg9AkTThh5M5aomkScsoxkePg0qZQ2H901FSuBU+Ru5y6+u5o5AmMhIQtiMTjYW7FiKtNA2Tuk3CrH6PoKZGChsbDT45uQoHk3ehsvw07uk7B3cPWEK6CQ2K8pVKNcat/Ac2RLDsf2YMB9WWF1fhcNZpWFFqwN2T7uEIExZtIqQYIk1Y3zvf3QhFfjEmvvAQXPw8mx2OieQxYbfn/noO8YXxeLjfwxgfMomuDVHsrTFYxpAmjDA5sO4nJCTG4XjBBY408Xbywoz3ntQ73YV5m5CT+RFZ0D4IH39+7jRZ6W+RJtHPtMAfRVFinwq5jHi01SLmfB+uXkQ/is4ws9CsvgGYgzQpLd5B6RSLKJ1iEqVTLKs/DJtLG0kydu74CgUFBfV/79+/L7p1HwettTBtJ0OAxl0czIlv9+hzgsgT/ul4hvoV8nlbkib5ZAmdR9bQgV1fg6PrXUJOw6JtWRors6eW2wRRxNUOQccSSRNB8BnVWCRNjILLYGWRNDEIUaeoIJImAqdZJE34ASiSJvxwMkctkTRpGcW4i9fRi3sV5fE/igJ6afX0mUc73frTB/jORUcgTcjQATZyNdb9uxYHUw/Wn/qCwQswMmgkdiXswlfnv6KUnUIK779Au+/ueG/yr+jt0V9HB2HKmkMorlTiz3kjUZWUiiNf/I5TZdFwDfDGy2++xxfSq9bjQ5oc+2ob0i/EY8h9UxA0KKJZf7Y2anx76Vv8efmP+s/evvEd9HDrTXbGwpxLzHKS10gnxpAmyaeicOqHXcivLqonTdzlLhxRxiKMmpbiwi3ISnsdru4z4Bf4Totn/MX/1iAm6gLeWPIA0hJrI1JCe/wGG9vuFkfpctRIuuaLKdLkIHfNW7qYgzQpyN2I3KwV8PB6GN7+uva+VpoMVJWfxa6de6FWq9G1a1cMGEiaTvIhRGQ0uAJa4jwTYiYRyZrRTJzWEsfi22dbkibZ6e+Aiaz6BrwCN897+A651es1RFy50X1wSNDxRdJEEHxGNRZJE6PgMlhZJE0MQtQpKoikicBpFkkTfgCKpAk/nMxRSyRN9KOo1VQj9uIgEkaU02LiWTBNBXfP+yjaZLEg2DsCaSKXa7A3eTc2nt2og8XYkDG4kX7ePPAWZ4PJonSqKmNIL8EXHs6DsGbyGthKXOq1T2Z9fQpxOWX4/P7rULbvMFJPxyDWOhMOni54dpEw54W6gfEhTaL/OoaoXUfR48bB6Dt1tM45MTHbY5mH8cmJWjvcuuJi44LVU9bAWuPQaeyjDV34xpAmLBWLpWTxJU2YIDMTZnZymUAOOCu4oTDL3aZl/dqViLp0AS8t9qFFdyqRLHfQz3SumqVtvq9QKhBz6gntsY1ImlBDcAn+3BykSXbGEhTlb+aea+z51qwoLyA3m7TfLl3C5MkzUaPxJREjL8FjN9QBS/FgqR7B3b+jVI9aJ622Lm1JmqQlzeNSRLuQM5MTOTRdq0VL+jexF2i+rKSI6FvrhGZqEUkTesbJtPQOYoXqmuYosmhPc9lfi6SJqVep/nYiaWJePNtrbyJpInDmRNKEH4AiacIPJ3PUEkkT/SiyBT9Lz7GWecHb71lkpi6Gi9stpGvyviDY2ztpwl7iMhQpeGGP7q50L+9IjA8di5f2vohA50CK0KEXveo0VFclkKBjIC0iu6GXVy8sHbuUtE/UHKmyeOtF/BOfhyVTIlD01Y/Q0G725Jdnw9HTVRDGjRvzIU0yLyVwUS6+PYIx6vHb6pszMdsSZT4W7Jyvdzz9fPrhjRveIGFYLXc+nb0YQ5owpyTmmNSYNPFx8caIWbfCKyywGZTlZcdIYPJRODgORVC3z+FAmV5yZRWQmFRft6oqBmu3/oWolEKsfHwYib86kSDlCO5zKy9P1Li4QaFtSBEz93wlJzxA6Whn0ZVsee3JntfSxRykSVrSfFqM/3NVK2Y70jex0pL4sYYt0ix9VrX914/rGiIJ2pI0SYwjfa2qywgJ/xm2ds2j4VpnVvgdJe7iEHr+l6NH7+OkFWV6RFJnJ00YkVGtLUOFqgLucl8d1zYW7elkT651VWqz6NuIpAm/a5tvLZE04YtUx64nkiYC51ckTfgBKJIm/HAyRy2RNNGPIntBZS+qNrZhRJo8w73EM0HYwJB1gmBvz6QJt7Mvrcb8nfNQVFlUiwMtojzkbnjk+ln46PiHOJdzDu527ghxDaWd4hTaeU+i/PYQzraZlVu634J7et9HUQAyrNoXjx9Pp+GprjJIj5/kFstj5t0pCN+mjfmQJuWFJbSA/xy2Tg6Y+tYTXBdMzNaGImqe2vkUMhWZLY5peo/puKv3PbSgkZp13O2xM2NIE3Z+LEVn51c/cOk5o/2uw7h7b0Pw4F56T72y4hIJTN5NC8ZetHD8kavjghpIf6L///13up7SOYJuvU0YoqQUBVRxmluw2TtcB0RGAu++ixJye7EkuZWe9CTKSvcTAfEJRcSMtfgUmoM0Sbx8G4ldxxGmPxG2hJOeIiF9Ezuy2i6vspDyq55jZqW9huLC3ygV6y2KFGogMi0O6lUO0JakyeVLwylFqpRLeZH+Z/ncllhc7dgJMRPofsxCWMRfnAOSqaUzkybsWepoJ8Gr+1+FokaBlTet5FzbmNA6K3LSDYsviEG4Zw9y9RTupCSSJqZepfrbiaSJefFsr72JpInAmRNJE34AiqQJP5zMUUskTfSjyCweU67MokXXII40SU64nwsTZ+HiQkp7JU3Ywsnejtaeh5biTNaZBgjiNdAeV6HrnGBsS9tW//dA5yC4yiWoVFwi4qkHvTz71X/29JCncb3fCHx9LB2f7I/HXHUmbHNzMPC2ceg2gjQTzFj4kCbscL+/uhY1FVW45Q2yyySbeBtbDVYdX4mj6UfrR8Os6bVqDYnTykmstiE15Plhz2OQ71C9IdRmPJVrvitjSRN2Qpte/RD7Eg7jqbkvYNANo1o8R30Ck+x4Lja05frmm6g68T2lg+XrkCasMweficC6z1AhtUG1lEImLFiMWejTqOuLWqMgi99/ucgY9rypK4Zil8xBmlyri3Gms8L0Vrz8FsKTNKWuhdJWpAmL2mDRG9eam1BLc9JAxP1CRFxPk6euM5MmtkSK/Bj9A36L/Y3Db0zwGDw+cC4ntM4iINNKL+GFv+Zj7nULcUPIdMGi5CJpYvJlqrehSJqYF8/22ptImgicOZE04QegSJrww8kctUTSRD+KZSV7SEPhadoxHkekyUJyBJhGuzvB5AjwpyDY2ytpIifh1z/it+KHSz/onH/vkp64uO0CosfEQGmj1PksXN4FMqsyWDm4wdpa15Vm7ZR1yMi3x/wvjuCxnEtcu2nvzIONAzEzZix8SZN/yMklNyENIx+dia79umJ34nZsOr+pfiSl2QVQFJTU/+4a4AV7Vyfudynl77PzcaFUrmqlxoyjb19dmUKabHj2bRzO/BcvLn4bkf1aJsxUJCocHzWa22VvLDDJop8cqhWoeoREWAtTm5Em9h/8iZo+Q1ChbkxTWAbX3KxltND/kiNZPbxnX/Ug7vYUmUQW3Go1jZ3EkpngNCtWVtawo9QeKUXJMIKuSI+WQV3HQkkTDR077tJQWozbkUvNKcuAYmKvhXlfk1vSh+SW9AC5Jb1oYi/mbdZWpEl11RWKerzVLN8/5kVEf29ss4FtOnTt9gXsHa83+ZCdlTSxIW73fM5pvH9UVwz90QGPYmzoeIqoS8KjW6dStGceh+3ySesR7nuXTvqOsaCbSpqwzRSNmJraDG6RNDH2CuyY9UXSROC8iqQJPwBF0oQfTuaoJZIm+lEsLvyV3DreoNDwmdxuZ3zUDZwjBnPGEFLaI2kiJzHUmPyLeOfQ2zqn3t87CHYpzjj6yxlcGHkUGntbbtFXV3oeCofcWwLJSFqwWunahga7BuOdMR9jyerdCLt8CQG9wzD8kVuFQKu3LV/S5NzWA4g/eBpj5t4KdaAVp81SVyqKy1CcUfuCWlckJMLn1a0LpLLa8w1zC8OySctIr0VllhxzswPRCh0aS5qoVWr8/MJyEhYFZr63EHJ5y5EgWq2SBCYH0PUlQ8++Z3XOxt5KDWns3gZb4gAAIABJREFUYVQ/f5sOaSJ9aAFkM19CqYS8sVuhFOR+QU40y4kwmUXEyXNXPaKj3AryHX+iat1zXIRM4yK1doXdM59COXIUyq4ydqGkSXVVPC3GZ5BFeChCezZEibUCVAYPUVL0J+lIvQRntykICPrQYP3WqNBWpEl52RHS86EIOCfS8wn9vDVOVdAx0pMXoqxk71V1cvgcoDOSJraUBldYlY15O2udvxoXlvb6yeSP8cH+J3EsZXv9R74Ovlg/Yxc9G4OgVJlG2ptCmrDnvZ2NBApKexSLLgIiaSJeEQwBkTQReB2IpAk/AEXShB9O5qglkib6UWy8APLyXUgLtv70UiKlBZswR4D2Rpqwl6lydRHm7aDQYHXDtrevgz0eGzgLL332OuxOu+HCiKNQ2tbAWkoirla0CqZd9J6Hw1HjWgm3id60GyWlP+kmHIwMvAFjJeNw/ts9GHTnBAQNNL/AIV/SJPlkFDLORKH3tOvxWvTbKK0urb8wGGHCiJOmxTPYH3KHhgX5+JDxeHTQY+QYJIGh1Apz3LvXWh/GkiZ1YrD2bk64+bXHDJ5OnQU4i4pg0RGNi5NUA81PH2H1D79xmibrBwRB9to6lKrlrbYTytcWmXuZIh7RRQZUvH83sH+P7rmPnwT7Z79GiZrumaugIpQ0YW4szJWFieUGhX5mEP/WrFBedpSIgseuKaKgrUiTOgLfhVyg/AOXtOY0mHSsrLRXSY9mK2cNzizCTS2djTSxllrBwVaCp3c/jZSSlGawPdz/AZxIP4So3JOkY5IOlarhO2p06B1YPOZTVFZR5EeT71k++JtCmthSCmteRQ48bHxRo9SN5GPPNxOGwWeo7aKOSJq0i2my+CBF0kQgxCJpwg9AkTThh5M5aomkiX4U63Lqvf2epp3jOVxOuTkcAdoTacJe4hztpHhxz4uIK4irB8paYo1H+t2OX6O/x+nDUega26OWNLGppsWsPXEmMnLCKUfksUGocCpD9dBSBLj2hJaIk8ZFVaPENIeJ6GvdF12GDaFjmV9zgi9pUpZTAK2iGO+f+gCZToU64yzLK0JZ7n/Ct40+8QkPqo80qfvz3EFzwcggpdJyLi3muO8t0YexpElBShb2rfoe7kG+GPe0HrvbJoOMj76RojLy0D1yH7laeet8KqG3dDtNMlbPexLRJVp88eNvKCO7cFN3Xk3Bp6xkH6X0PYWAgLlw815gUHSW3V/WytPQPEWaHSn/LZJCQyH5ZANUkv4GI5aEkiZFBT8iO50tbG/jBFevpVJVGYuky7eTtlA4WThvuSaG1lakSV72WuTnfApPnyfg5bvgmsDiaoNgaVUsvcrH/wVKr3rI5PF2JtKEkQw2pGPyxbmN+OvK7maY3dR9ItRaFT468gEcrTXo5haCiooE+k6t3chggvUPDnwBN4dNM0nfxFjSxIaiT0/nnMSak6uxZspaOEjcdFJTWTqvlJ6/ldWdMwpFJE1Mvu07VEORNBE4nSJpwg9AkTThh5M5aomkiX4Us9LfRHHBL/DrQik6HnegwRFgN4maBpgMfVuTJnmk25FBFrsyOxuEjx7E/belYiNX4XsiRv6I0w3dnxk5HanFsVh/ahU8M/11SJPGffU6TloSRJok9YpGd49IuNkzK+KGGgoiI0qJjHhp7Ie4rs8YONuYn2jgS5rIbdRY/dN7+DVuC/wiQygSoGHnTEuDzo5N1tk5s3N2gFugj17oPp64DF0cQgXlmJt8gbVhQ2NJk4yLCTj65e/w79UNI2ZPNzjyRNIVqq5OpEX075yFddNSWvQN/tqWiPiYbLz9wRpUalvX0aiC7IZz0hejZ8+PoJVHkHOU4evZSn0FkrTDkD5J6Tx0zWnWfAKlR0/KZhtgEA+hpElu1irSYNnALcTZgvxaKiplLlm+j+W0kLr3OnBNDK2tSBNjBIavBaDyc9YjL3sNXVOP07X1pMlD6kykiUymwoGUvdhwdoMuXvR9OcCvP27sdgN+j9tKZLyCvkMr4O/kD287F4pqTKSNCgfSQWKpi9aYFDYJbk3siflMgDGkSdMUogjPCLw//n2Ulqs4olhqrcbpS8cQ4BWAAJ9uqDExZYjPuK/VOiJpcq3OTOuOSyRNBOItkib8ABRJE344maOWSJroR5GJwDIx2C7By0kMdiK368l2P0PCfyZHANPTSNqSNDm3dT/pdjQ43zDCZMJzD8LB3bkZCLbEpRzPOIKVJ1bofDY8cCiCXYOwaM8LFB5cqEOaqGyZECylptCOGCuNSRMJRaf09x8Na9p9qhOOy7uSDuZIo3btiq2PfAN3W2ezRwbwIU2Y8N7FvLN45uu5UFbWwDM0APJGZFJdpIlUVrsIVyvVcPR0gbOPh96Lh+WYfzKZFr8UbdKakQ7meB4I6cNY0uTK0fM488sehA7ri0F3TDB46OT4+8jG+jznYMWcrJqWtKQFlGNvA3/Px1EjDzfYn7krMHttdc1RbLlyBBEBd+N6/+G062uYOFGW/Az7U9GkKEy2vn3o2vOcxWtoQkkTphnCtEP8A5fCxd38ekK8TqKFSuwZwlIi2fMkot8FIV2ZrW1bkSapiXNQXnYcgZRC5UipVNd6Kcr/HtkZ78LN8x74Brxi8nA7C2liLSNSvjwNz//dXAdJu4++S6u1mLRgMolGF9PzJJfDU2rtggnBI+EuVVC0YxjsGr2TKKqqYSM1TlCdL2lSF326cNdCnRSiyWGT8WDfh0m8WgYr6xrc99CdcPZ3wRcfbiKrZBK87mRisSJpYvJt36EaiqSJwOkUSRN+AIqkCT+czFFLJE30o1jnABBEDgAO5ACQemU2yhUnENTtc/p9qMnQtxVpUqcf0XTgkZOGodek4Tp/ZpaGJSROuWDnfJ2/h7l3w+2RM/HMX08jS5EFtaoEHhneXKTJpVGnobajBSLtljMyhYVlNCZN2C6Ys10AenlFQqnWcva+eYkZtCaSIFHuiHv7jcXym95ARTXMqkFhiDRhL4uldK5Ms6UgPZvTLnH194S9Wy2RxFKIcuPTuP/3CGa2yVYoSM6kF1UpfMK7tngdDOsyDM8Ofc7kHHOTL7A2bGgsaRK1+yiidx9D5ES6Bm/SvQb1nQYTw2SimIGh62nxOLJZlcTYqRSJkkQOV7+T00jzSBRLQyOzrsCh+I+w7MR6Tifkk5tW025wF4MRR1do3CE+pG2iVuNy5krSTTrNXWeGilDSJCXhIVSUnxbscmJonKZ+fvnSCIKkhHNLYq5JbV3aijS5EnsLRS0ltxhh1da4ND1+nYivi9vN8A/6wOThdQbSREbuX1KZEgt2zEd+ha4gNANOu482Iug7UT2+mDZtojgsbWy7c9GuElUmlo19Brb0j53TVJNx5vqk70FHOxkKSulgLRQWfGlrq8XGs5/XphAxwSUWOUoSZuxx9fyw5zEscAjePbgU/64/Aa2HGjPn3Iu7e9+LqipWqfMUkTTpPHN9tTMVSROB14FImvADUCRN+OFkjloiaaIfxcS4mWTtd5kiS36lyJIepFXwDEWe/I2Arsvg7DrJZOjbijRhaTkHyFa3aQke3AuD77mp/s8ycoWxtdFi4e6FSC9Nr/+7IxEbcwbNwv9Of4aj6Ue5aBJGmnhlBiAoNlzHclirqeasVOtJk94xkEocSetEDi97bwTY+6MgLQ/VikpoHe2RpLJGFzd7LBr5MKaFzzApJ7ulCTFEmrCF0MmMkyirKYMivxglWflw8HAh4sSL67IwLRuVxQoiUZzg1qU2HSc3PpWLkGFaHHYuji1eC8xRx97aGVKtrnOQyRfPNd7QWNLk9M9/I/HYBQy8fTy6DW8eOdL0dDNSnkdp8S66Bz+ie3ByMzRiLvSlF3kNRzpYWbWcdmYJGOtC1h/8sTYKzdF5DAKdA7Fy0kpUVVsRUajf1YKRAowcsLMLJvegLigpOYyuYV/B3uE6g8MUSpokxEyEsiaTSKadRDIFGjxea1dgZBKL3mkpHau1x9NWpEmDAPIJLhXjWi91AsOOzqMQGPKpycPt6KQJs+tlYqofHfkQpzJ1Lb/Z9ysjyqQHnWFVY43K0bXRVnIbek7QDysqVR5CHbT4YOKnUKG3oGgOPqSJXKbG/pQ9DSlE8Rpoj6tgdTspWttZ4cF+96FcWYrNZ5dBssMHGtdyKK/PxGtjN2EQRZnW1Bgmgk2+WK6xhiJpco1NSBsNp9OQJkVFJ+gGz4WPj372tqXP1SR+mJ3zB4qKjpOokzc8PcbBzW1I/XSJpAm/K1ckTfjhZI5aImmiH8X46HG0eM9BWOQeyGS+yEqv1TjxJY0TN9I4MbW0FWmirKzG1lfWNBt2Y9KkVoxOjTWnVuNw6mGduvf0vQsXcs7ju4vfcn9nQq8aTRVcin3hkxKI5P7J0JBAXV1hxEnEkd4ody5Hat/UeitiNo5Ah0A4EpFQmlsCib0dEjQyeDnaoIePE14b/Tr6eA6giBPzCMgZIk3Yy2JdKcnMw4U/D8HF1wN9p91AhEkOonYeIbLHCoPvngQbInhYYVocbLHv0dUPLFLnaoXlc8tpN7FaaZoVpKnXWVu0M5Y0OfLFVmReuoLhs25FQJ8wg0POSn+L7sGf6R58ne7BO3Xq11Sn4ErszbQD64+wiL8M9mXOCpzrhR25Xux6GtHp3xOhqOQiTZg98uig0Zh/3QKKNmFpa82PWucSwzQJWNofS23w8n2K9CAMuwkJJU1izhPJRFvFzMKZjfVaKw2RMF/C3nFwmw+vLUgTtaoIl6NGUeaWM8J7H21zDPgMoLL8HJIT7iedjf4IDqv9vjCldHTSREaaYdvjt+H7S983g4cRJuzH9ngEkSYyjjRhIuv2FPVa/x2rrabIu2OYEj4NTwz/Hy8NpZbmwRBpwnRKcirSdVOIGpEmk3pP5Ezzlh99C5GePaDZKqe0WxKBH3SZImMC8MWM/XCWeXaK70GGsUiamHLHd7w2HZ40qahIQn7+PvrZC1ciO0JDFurMoqHPMzI3c4QJa1ddTUJmCe+iX98NHIHCikia8LspRNKEH07mqCWSJvpRbGpv2tRNx1Ts24o0YeON/usYonbpvnjLSLxk9BO310ZN0Oa8UluFgkpd9xgHmS0yFRl4ed9i7rTZ2o+5mLBiTWHzLPVGX5Fuo4WiuxaakbWrRbVKzaXlsCKhf8oyi7lUnAyKYrGxt0HfABeKzLDHmpvX0saVi1lesAyRJo3HXV1eiW1kU2ttI8OM957C3hXfcZEmvaeMRMT4BvK7hur9TvVYmfzKbDh6kM1yC4W9jLLFbWmF0qAbiqnX1LXSzljSZO9Kwjc1G2OfuodSn/wNnkZu1nISLv0C3n7PkKPVbJ36Dfa5w8g+t4mYosGeTa/Q1PWiQnGSE2pkixu2yGFl9oDZuKHrOGiUzd2h8kmINY8EWd092SJzADJSnuNtASyENFEqs5AQPYFciLzIjWi/6QBYsGV68rMU3feX4Og+cw2xLUiTqsoY0tO6AzZ25CIUfm24CBnCs7oqEYlx0+i9NxShPXVFxA21bfx5RyZNZDIt4oui8eY/b+iFpFxxnILmqnRIExILaZaWWEEpwxpNJYmpf43rA8ZDozLNge5qpAkj/SUshWg7pRBV1qYQqZTZUMWWwuZcMMJnu2Bsv7vw9M6FKKd1j4edB4IP9oLKpZhIkzgiU2zRL+h+LJ+4vFN8DzJ8RNLEmDu949bt8KQJIzoYMVJUfJybxaakiaHPz194FEGBc+qjS1JTN9KLsqK+H5E04XdziKQJP5zMUUskTZqjyCIoGGliRaKlPfvWCqcW5G4EI048vGfRoq25YBvfuWhL0uTQhi3IjklC8PW90X3UAMTt/xepZ2Jg5+yIUU/cRhEWnmC75o0Ly7lWoZw0P+ajtLr0vxem3NrQYRKjs7Ht0eKpa8+QiB2F7VpF1AqoVpbUpsBwhXiUGkpx4bAlUqbKxhaDu7pzv/fy6oWlNy5FWaVaUMgx68sY0oTV3/7OBlQUlcI6yBmq1FISe3XHpBebC3Oe/H4nUv6NvqoeByMRnOyl+C32N0zuNoWIdClHOHXUYixpUof1lFfnkBixi0FY6ggGD+9H6R7U3dAozPsGOZkfkPjk3SQ++arBvsxVgYWs70v5G59Tnj8rzEFHQyk3jACRShvOaenYpQhzjWxmwVknOO0f9B6nlcRslSUSO/Tooxuur2+8QkgTNs6UhAdIULcvCes23+k2Fz5C+snOWEKRN5s5MVEmKtrWpS1Ik7LS/UhPepLSvUZTqkstUXutFxVpRMVHjxHsfNRRSRNGUFRryzBv+1xUqCr0TmdF+b/0HFEYJE0YqcYiYpk19/pbt8CLojqqaoyP0myJNGEpRHakY/LB4ffxb9a/3FiZIC2LJrJO8SHSpBue/mAO3j29BDH5MfXn0v/kSEg8lKjof47eE1zpOdMfE0InYHb/OR3+e5CBIJIm1/pTqnXG1+FJkzoYWcRIdXVOM9Lkap8zQoWRJo0jS+qiVnr2XMo1FUkTfheqSJrww8kctUTSpDmK7CWEpedYy7xpF3YfV4Gl5mSlvwlX99vgF/iWydC3FWlSnJGLv5d9A4m1FLe+M4+iKWp3pJjlK0s3cfR0xejHb+f0POoKWwQ7EOnx1j9v4Tyl5tSVivIz9EJXyqUTWMv02+7qA6iqrJwiC3KafZQjs0e51BojunnWy1/e3P1m3NfnAUEhx+xAxpAmDKND/9sCNs66MvTBWxDYvzkxlHM5FQfXk+sJCcbe/Nqjeq8HG7kaP8f8iC2xWzB30FyMDBpDGhKta4Nr8oVqQkNjSZNfX1hJ1xGJBX6wkMQQDbvMFOX/QK4cS/USI3ULbB//F+Hu9YAJoze+ib6Q9aqKS6Q1kA9b+97corGuuNu5YzUJw1pp7HQsOFm0B4v66NbzD9IqCKEd+umkpZRAaQ3fcMTL1YoQ0qS0eAdFtSzi9JmYTtO1WPJz1pF17TrODpnZIrd1aQvSpP6ap3Q0lpbWHoqW0kZiLwzS2XQwZdwdkTSpI9Jf3vcyovPIMauFwp4h7FnSOD1HRppHNra6aYzKmgx6XsTT97AvevhOwopJK1BRpTU6qrEl0oRZIW9P0E0hqksdkqX4Qn4uFN7322Bn5i6ab/puo2gYlprL9MysPWkDZmgm/c2ZE65lZe519D0Y2LG/B9l5iqSJKXd8x2sjkib/zak+UoVFqFyKehqDBn5PO0y1Yl1M+yQ17XOOSGGlM+S1m+Oy55j4TqABYA6shPYhofhycroka9SOvAduHErl5XE4e+YWEmMMx8CB27nG+fm7ERuzAB6eExERsda4DhvVZpEcTNugtS34Dn+3G5f2n0bvsYMw8l5dIds/V/yA9KgkeHTxxi3P3kORJ7XPLyuJBsWVRZSuU1B/BkrKsS8uPgYJCW16kGaTMaWssBS5zDGnUXGi1JYoJnRHNr5jwr1gL28gFfwc/WBN4rEyieminiy0WEUinHwcD7d88E29U07dECfNvx0hA/Tb1/70xgYUZuRh0vzbqI4usUImizhN4n7v7n4XWoUWVq5WWDFtBUJIHLbOctkY7NpDXZaqwiKTang8u1kq1JcLV1Bali1mffIsr9PLy92GuLjn4OU9DT166C70L12aheKiw4jstQHu7mN49SekEjvXGnUluV4sqA9ZZ/2Vl8fShksmHBwiKD2BuS01lEF+g7B45GJKTJNxEUfV1dk4dXIUkSsuGDqsdhf3SsIbyMr6HsHBz6NL4ONXHSJbgLFxqMiNytiSnv4/JCd9hIAusxES8pKxzVulflbWd4THm/D1uwdhYW+3yjGvdhCZtRXdu6377GZzxOaqa/CzCAyc2+YY8B3A0SN9OM2r4cNJi8NI+9u6Y7D3QKYJpU8LiO84rrV6lKCKHy58j9/ifjM4NIUiGpKDlP5aI4fVTRXc86RpKqxKXYbSklOEsQNcXYZQGuANmH/9AkhhXJoOPUroPVBC74EN2ltq0maKyY/CGyyFqNEjpqIintxw0tBTMR5peytw35v0ruRsR88xV4qSs+FE4r9753v4BHpi0aJ5lDJUAkeHyPrzdbFxoTodd/OAnWhjrTSDEy1W6LAIiKTJf1OrjzRhIrCnz9yrQ5qwSJPsnG3o3Wsl1zL/KnZeHfaqMeHEPJ1tRKxMwM2UJnJiTOxsJCghzQWx1CKgKDuJK3EPk7bAdQjr8fV/fztBf5tFOcXXo1uPr0yGypH0LRhhUmlCCK2pB2VOL78sXkMvL2pMeekhuAXUaizVFWaru2/tz5wFsGeIP8bOvwMyikRhCzK2MGtccjLXo6Tob9rtnw4vH/47+goiTI589SfUdKyAvmFcSpAH6ah4BPng7T+jEZtThlcmR6CXf63Vb/3YTFgQNm7v5ihHGdMTMcCaFKXnYscHm5pBbBsahNueuUsv9DF7T+HM1gMI7Nsdox+dXl+HETUFVTmYu+MJaJOJsPlHCel0OaUZ+JEN7ScUXWFt0kL3avNfQwK7zNWHpbm4EfnVFkVKF4yLowyFZbVpV1crzKXoz3e/pPQnD0x99RFD1bnPS0sOICl+HpxdbkBId11XjpiLEygqKQM9e++k3diWraB5HchAJUY0W1NazodHPqgPWa9rUlV5hcaRSmPoRj9BzXq6LeI23NbzDroGZCgp3kuCmU/CyXk46VXUpvcUF25HSuILes+xaWd2RDCy+1NRRWlwRpaM1HeQn/sDAoJehqf3/Ua2bp3qJUW7kXzlGbi4TUBwt1Wtc9CrHMXZXobqGg2q6TnaWiWVroUiuiaCQt4n8eNprXVYwceJPk/RBMpcRPbdT1EG/KMRGx/Yw8kGhYrqDkOayKy1OJl1HMuOfcwLX6YNY3XAHhKlI6yntuzSVlpykEgNNT1HSHyaNhnmUArMDV3HwkrLf7NBToSJnY01vQfWPrsZ+V1BZMf8HXNRQ+SXSsOu+VrRdEaGKUqP1afnOMzMgISE3O0delOkaC0Zkv9DDqy9ZBg4zQlPDHyQiHQtnFzG1p43ETCajsSE6ZlNtoYRi4iASJr8dw20lL5z8tStOuk5OeSkU1p2Ed3DXuZaiuk5/G4iMT2HH07mqCWm5zRHsaxkD1kMP01f8uPQJbj2Zb2qMpYE+W4nQb4etMD51WTo2yI95/KBf3F+2z/wiwjByEdn6h07s/89+NkvYCkq3t2DOHFYK8aaNCoaTTnZo47k3EGMtQE9sPZH5F1JR9DACAy5f4pOv29tj8bu6Gy8SqTJlN7/Z+8qwKSq2vC73Z0sbLL00t0p3WEHiiiNoqLIbyCKYlACJioliIB0S0h3LSwbbHd3x/99d5jdmd2ZnTuzs8sC8/0PD/7MuafumTv3vOf93lf+dF7jiX5wodj0nKiEDFxYKtm4yka6gzOmLlQMDhVk52LPx5LNu1SXQ3BSMSUnlSNvISI9AvkhxTA5T8DJSEMY2Omje6PumNf9HeTl0am1ll4cg/+7hjuHz4GdiTgq20jXdA7FXq9Oeg4DPKd++BvOvu7oO0PeCUdZe5wWFhHyMr2cdyBbXgmYySFNB+CX+hZtJdactRmKKOvS9goLo2BwxAJllJlj2E2i0VM53u/1Pto6dUJM5PdITviZQIupcHqg0VJEAoshdwcJJ8fN/C5WO4yapOdEhc2ijc9J4fnGz7n6GKzrEBEyucr9flh9fRjpObzeed17Nq4fDkJi516aZubT7B8CD5uIvUyu3OOUniO1JJ9xUDxbKD/vDvSvWMGw1B76fZWDJnm5N0lkPU0uJXDJgCVobNNC9OGMbHqOkEJkYYAF/y5AUGoA4rJjYU/iriYk6MoHPiXFqcjLvUWgiStpmvigcGQojG28BMHX8gggkMWcrNbdEjHK2w+jfPrS93g8lXkywARdeo5GX/nH7iIdaPLglioDTULDVhKFzgUN3Z4lsaQcBAcvgaPjQPojQVh1oIm474QONBE3T9oopQNNqs5ihX7JeNIvkdDCiwrJbSLgKcF+mG2INY2HAZoc+up3ZCWmkrXraLJ2Vf4CywKoDJxkJabBrVVj9JxSwZ7g8bIdanzMEmLb9IS7z0+ip+AGsTGC/7sKK2d7DJr3IgyN5e1NfzodivUXwjG1pzde7eEtul4xBcWCJtkFxVi96A80zs+Qq/Z+q3b4YIryTeXFTQcEMd02w7ujzbBetG8vwu83f8OR+4cRmZqLgvvF8L1nimvts+HuaQFnOj19pe0reMp7KAn41dzmNYcYPEe/21AOmEg73/m5oQJ4UpehDmgSeTUAFzcfgEf75uj60ghR3eTc/dDAccImjDdj0pD+O2uCsDZIbYaRUSmCaSPx6X+KXS8Y9NDfS645DsUw6KsYNDExMMH3w1cjL3EjYmN+JuBiBQEXg8q7ff/eaGKrhAoCrSzUqixqApqEBU0gIDgQ3k23kTZRBXW+NudO3boLaA5CaS6MTbzovu5T93Ktl38YoElIwGD67YlF4xYHYWzsrvUx1VaFLDLMYsMMbjLIqUk8LqCJrCV5REaE6KnIzSYx2NJscuLqSGkvVkqvKywIo+dFBLFDPQTHIg5HM0esGraKcslM5TSUlFUiC5qYmpZiK9kg7wnehazCTHreBcGMXO1aObeifQ2lIGazplkGTGNaweCKDfQm0u8YaZ8pCwZ13u36Oto4dCBWXDukJidTiqULOZQqfj6KnqB6XFAHmtTjm1OHXXvsQRNOp4mJ3UJIag7Rp3MEq2BZNxxVn0tthhkw4ToYMGnY8NlyjRMdaCJutepAE3HzpI1SOtCk6iwqcsphlkXg7a6inS2U3Zu6Bk1Y5JXFXhmwGPpBVReYyv3MTEgh4GQH8tKz4E4b2m4yG9qw4GdInO4OCUd+TQKS8myRyvWEX76D8Et3UFxQiLRoifhr/1nPwNGnUZWp2X0zBkuPBGJUazcsGNpcG8u6vA6xoAlf8OafV+F25xa86GQt08AYN229MX5CTwxvpZyp7aGFAAAgAElEQVT9EnM7mOZ3DzGOy2Bgbwqbro7YVLgdKTmFCIjPhGOyEZoFmQmgSZ5ZqeAQZELU50/7LUIL+zZV3FTUHXxSSBROrt1W5bKHwTZRBzSRsp+a9u2ItmP6iRq21Ca3MnApZYZZWvcjh5HVourSpBBvLPJLM8lJajryivOqVMG5/MxIMz7kgVJ7EhPuUUKpCVXXO1/Y3KE5Puo6ig5WFqGh9zoCYyvWWFz0p4LwtLPbu3Bwmqy0qzUBTYL8e9AGKBNNW50mdws7Taaj1q9hlw5mthkYWKOpn7xVumzjvO7qQiPqYYAmAbcINCsrJRe368T8qznIWus37UEDUWEzicl0Svg+8vdSk3hcQBNjEgQ3NyKGhXJcQeH08PyVoVRwTpKmvSgqWFycImF+GNiReHS7iiKUBpOWl03i0zIMECU3QgqasPNOKqWW3kq6SSk5hbiRcL08PcrR3BFeNq5kA36JxkJpmNGNcOXwJYyaPkZI51UWJZTmU5h7A709e+Pa9RysXv4bFn25HF7ejTVZFo/ENTrQ5JG4TbXeycceNNHWDDJ4YmhoUQ6WSOvVgSbiZlgHmoibJ22U0oEmVWcxMW4ZWQz/Rramb5PF8JTyAvdutRNEztiGmO2INYm6Bk3OkM1wHNkMtx3dF037dRLV5bSoBIFxUpibD++ufuj0zBA6NbxKVPlXSMvBiRyFTlRbD6eL3NglX8a7a2uqZ7DC6y6EpWDe9pvo7GWPlZNkXvpE9bb6QuqAJmtP3cemSxFocm0lshp2Q7xLVwxu4YJPRypnbAQcOQ//Q/IbuittAnHNOAZhyQScVwJNPOzN4WFnDisTK6wetoYkQS1FCacqGyWn5OxaWBUoYFvpzs/KC/5qYTqrrUId0OTW3lOC5XWbkX3QbEBnUV1jC85A/24EXFLqSuuK1BUpyGnv9Apc3N4TVZe6haSuF0xZl7XWlK2HXW+KCqNhdqwDSu2yUNAxmFgczQVni8pRWpqHPi52eNFvItHq5RldGWl7ERu5gDZL/WnT+b3SrmoKmlTMozhrY3XnSpvl791qS8/ckmpBA7b1zs0vrXXgpK5Bk3IXN3JhatLqpDantdbr4vXL69jNYwlp0mimxfK4gCaaTDY/R+7fGyE4+Pm2OFptFZyawxbP/E4ixqpcUWVS0CSN9KhY487MxADrrv+GuKw4ueJ9GrijibUNCcHbk+Zbj2r7xboo0sjOPEOAsj+uXYvGjz9cxZKvv0ZjX/nf1QISg9dSxqomU67Va3SgiVan85GtTAea1PDW6UATcROoA03EzZM2SulAk6qzGBf1CQky7kCDRmQx7DCxvEDwnb5kJ5oivMDK2omqcx/qEjRJj03C0W83kD6CPkaTzbCRqfh8YtYfOU2Mk5JiSi/p1R6unU/SnOwkEOl1ApPeqnbIBz7/BZw2Ihu2JD771DuKtUHCU3Lw/G8XwYDC1ind1JlOlWVVgSYs2spRQm9r7+24BU7Tyd69CINHjscV47bkkFKKV7p5kR2yg8K2/n5/FViEVTZiHVOw2eWKsImzjjeAxx3jcqYJl7MxM4KLlSkG+XbGp30/RU4e5YmLsfdRMtpTxDRJJMaJbLAeTbdXRqERidTWVagDmlyi1JwIStHp8vxQeHYSn0YUcJPTVUrRog1pl+hJ7l1c1MfC2nRt9BGJZSoW7a3pHEgp67sCdymtKjvrDLECiuVAE87zt7CsuqaLSSQzP+8u3ur+Cfr6TqPvWQWLgNMxOC1DFcNCU9CkIs3Jh9Kc9tR0amr1+uC7AyiNLZFSIv8lNk5VQVET4zLE50bD1dKNrFdr15GjrkETTmsID36BUrT8KFVra63Os7YrT4j5ktIwNsOl4Qewd9RMaPhJBk34WRIVOo2eHV3h0XidytsTGjiG1v99lSl9yiqSgiapZFZhYlKCjbc3Yn/wg5S4VKKsEFml0DAKhSRO++WglWjT8GWVeil25obQux+CspgYQQctm4S8r0Wm4bsjYVg8tilaNOoAY6lot68viiyskG1EqY2PQehAk8fgJmphCDrQpIaTqANNxE2gDjQRN0/aKKUDTarOIovAMuW/kddy0hp4qryAVGtAXRFU2RbqCjRhQde7Ry6A00ca92yHDhPUF3uMvxeG0z/vhIFxIVo8t0XYrPo031OeN61o/SljPlQHmrDd8MAVp8AAxsm3+2ljWZfXUR1oQkYvMM7NRllkFKLSchGUmAU7M2P8+PfPGN6tBzq36kSuPpnkUKKPbt72yMjKQHxqKlp6epG7gCEKra3wx5d/VelvhkUWjrY8j6KCIhhlWMH0fJkAmpRSWjq7+EgBEiMCs6Z2moSZnV8VRPbEhIFhCQwILCgsquB639r3HwKPXxZSsNzJ+jiXACtOj+Lg1BdjsvXNSc0gjRM/cteRdycS06bYMuqAJv/9uB0JQRHo8+YEuDTzEtsEpWv0pLSSDErXOEuggo1wHTOgmAnl0fhXhQCF6MqVFDQlUtml+PNYdl7e5li2ODPQchg0oZBlmugbWJKmQ1WGF29wikg0lnVYfhyzB85mjcDUeGnwKTPrFHg3+YuYKIpBJU1Bk+zM/xAVNoNOinvCQw1toprOoybXs/g2pzx5N/2bWDst5Kpgcc00dqk6OA3vdn8XHV27kbuNJq2Iu6auQZPM9MOIiXhH0Lth3ZtHKZLi15DI8Q9wcp0BR5cZGnX9SQZNGHBi4IlBYAaDVYUUONYUpJKCJrn0BToZeQw/XKlwJyvbQl+qpqRl0pTYfcT6cncYgNWjNkKvxKxavRT+PbAhUXR8/DGKr5+g1F5imlAK0TemLbAk7xa8Sa+FAWW93gNRNms2MsoMSRxd1Ugfjc91oMmjcZ9qu5c60KSGM6wDTcRNoA40ETdP2iilA02qzmLE/VeRm32ZHAt+IxG2LuUFwkNeRF7OjRqJ29U2aMKgxeUthxDjH1Le724vjRQ205pE9K1gBF38Cg260AtTQWu06MLgSfVxbPlmpEXFyxVq0qcD2o3tr/TC4WvOIJ3sDvfO6AUHC81SnxRVroppYmtQDP1163B13TYweNPcxRqOZFMsDbZCTibbS0cLEwS6mONXsl7cSnonpj26ILmdL/aejkBJYqlc0+dszyGnWRbZpxgiPZIsvS/qIal/KRzcTIjWrIeErHwkZhUgM19i8/1W13nwtuwAEwMjDGqu3J6T6c4GRkVIz0+HjaEzmM7MsW/RT8jLyJbTjPE/eBYBRy9UmZIer41BQz9fVbdQo8/VAU2OfL0eGfHJGPzuy7BxcxLdXkjAEAIbYoiyfqhcL4Sp6cVFycRGOCqnDSK60moKCq4XBfGCjomq4M19MQnByoImLGLKfypHHolkMvjDQq9e9m2xfMhyFBToo4iYTRxxUR8Re+YfSjeaD3unlxU2rSlokpayDfHRnxGLbgKx6RapGtZD/Twy9A0Co84J4A6DPNJgcU1LMwPMPTxXcKky0DPA6uFrYEvpDAVF8t9HbQ2grkGT1KT1SIj9RmBq8Gb4UYrUpI3U96W0dqnvbpr1/UkGTeJjviDh9S00d+/THCpmaMquB6l4vbXtMNIc+0btpcKgiSnh9tHpsZh9aFb59QwGYyulvjVOR37zu0J6rqlZK3Rq0Akf9F6AXJJ2Kq0G6TCmei1yM1H8xlgUJN+oApqY+PSB0Y87kVVCz77i2vneqj0ZWrhAB5poYRIfgyp0oEkNb6IONBE3gTrQRNw8aaNUXYImfDb+KBwkhAaOJ6prEJ1u7qAXhAqwQRvidrUNmrD17N3D5+WWBrMLhv9vqsbLJfDGKJTqhSHqVD94tp6MZv2Va6OwA8/RbzdSykp+eXtOjd3RkzbrRmbK04Ne23gZ9+Kz8MuLndCqgfbYEKpAE9585ZeWIuiFqbCIDEd7d1u5eSqkF7lrUenEEClFiKsldtDJ2RavxrCe/CI2J/wLB0dfhO0NAxIll+m5kYFOd324e/jA27kFrl68hT/XbsC8Je+TsKc8IJKRW4S4zDzEZeSjpVMzzN16G3bmRoLt8gj609DWrLwv+nRqxyki35z9Gim5KVg+dDmycosReTMYZ3/bLQAPDEDIhtTmWfbf+B6M/aLipVjjRaHgQnVAkz0frUVBTh5GfzYdJpbiKdmVmQclJVnEPuku2F02b31Fm8MhYUWyjzbTx9yDcxGZGamybt5gsK6J0UG3ck0TBl319auOLzvrP0Hgk4EAFvjs7dEbszvPIWFgPSGvPyN1F2Kj/lcty0BT0CQpbiWSE38hFsAsYgFMUzmuh1kgNvID0sbYJ6eNwU7oJialpLnwE/YHrBMcRgihRCvXQVg2dA2y8opJyF/7vzR1DZow6MDggwsJAttXIwj8MO+PsrYzUnfT+l1IeiZj6N59oVEXn2TQJDJ0KoGF50nTaK0gBKsqpCl3RsZupDl2hJ5d6oEQFqYG4FS3N/fOJIthiY4Jf6/yiB1ivqcdirzjUNgqgg6ROtHzTGJ/PLHlRIxrNpFAbMNqu2euR+zIgNMoeG9iVdDkx8ModmuLPL3q61A1/vr2uQ40qW935OH0Rwea1HDedaCJuAnUgSbi5kkbpeoSNLE0M0Q2vdDW96jIoz8mWAxLIzbyQ3qB3wM39y9gYz9Go2GoC5qwO8odAkGMabPr5EsibMTYqC7O0QZalmUiLcugiSapGcy4YeaNXpkdbm+QCFZyqg+n/CgKqfAsa2m0Gd1PKCKm3Q9338bJoCR8PtoPA5o5azS3ii5SBZrwNT+euY+u5kVotfgDuFIeduVgVgin7ly2NsZxcshZ+err2By+FcfDT6KFZ3uhuIt/a7gaOyGywR3keRbA2NMdY5pPhH2BE04cPY7R4ybByloxGMQMlzMhyVh/PhyBxGyRRh9fJwxv7Qr+25AYJnuD9uK3GxtpQ1iKcS2GYGqHN3Hql4OIuhGI1iN7o/mAClYU13H0u43gNK3KoelaUHVTxIImpdT/He8tJ6BDDxO/naeqWrnPK7PAmPIdFvysAG4yyKmtkG7Mf73+C46FVi/EWLnNsl1FKLHLQH57f4FlUplpwpsRthNlMEWWyTal/RT08xhI+ibGKKTUnfsBwwRnG3a4URSagiblQEQNnmPammdV9STEfk3AwQY54MDYqAQnIo5h1dmZNFfpFVXQxmuM3wd4g8Cn/Dx9rQP0dQ2aRIe/TWmiR4k58B25ldWtqLOq+6Lq86yM44gOn6NSzLi6ep5k0CQk4CkCI+LIavsAPT88VE238Lk0ddGvwxlYmjoQqF5K6S6qwUNmP5qRs9vqyytwKvxseVu5OWR5TOLbFvu6lYMmlZ9nC3otQGvHDnLpooo6a21QisLNH+LK1h3l6Tk+M6fBcMAM5Bhq75BE1ETVQSEdaFIHk/wINKEDTWp4k3SgibgJ1IEm4uZJG6XqCjRhRzo9fQJMSk3kcvd5DCXkJGFsYEJinBVq69oYm6Z13LvdkQ6BCwQlen39itP+hJivSNxuU7WUeVVtqgOaKHKhaTmkO1oNUa5az6k5Uj0LaV+YXTCCQJPqmB7K+h1Hp93pdOrt6DwVaUG9cHP3SaFo5+eGkkaGvNYCa6jcOXQWZjaWguirOgyClSeC8deVKMzq54vnO4t7SVQ11/x5daAJU4dPBibh3R03MbOXJ2ZZpUPvyy+rVFsZNFn25hvILaDNGr9sGhkIL6abdlyBu6kbvFvao+Vrg1ECfeHfTQxMYUZOAyLeXYV2r5JQ3gH/OBy8U5HeNLW3BzxcUvD24YXILZSAjoaks7Jq4Dxk/BIo/P8RH78Bc1sSTZEJdjDiNSQb9YFpkkt21vs/+1lYJyM/eVPMbSwvwxsx3pA18lpFLIwByEzbj5jI92FtMxgNvZapVVd1hY2Mi3E87CjW3VAtwli5nrK9RShzKEKu3yV65plQ3n53uSK8GSrIDyQgzKWKTscX/b+Ar11LwYo6JGCo4Mbj3XS74MJTOTQFTSJCJpMGzBXSgPmN+iYPtGltArVUUUrir0iMW0EC1K+RAPU8ApFKkEDCr28fmiKkSlYOE1NfzOn+BXq590VRkXZPr+saNAknMJBP+r2abKY0rrZamtG6qYbXF68zc4uOlM66XqNGn1TQhJ21Am93pp8XQ3KNqrrGlU0m6xSZkCtbkfUY3EqOwegm40R9B0xMynAkdD82+28o1ygpKUmj79dNoSlZ0MTA0JbWYsWBiamhKb4fRrbSBvbVpsUxMGNjVIYL77+BJcHxWNLWHM3fX40sfUeN1kZ9v0gHmtT3O1Q3/dOBJjWcZx1oIm4CdaCJuHnSRqm6AE04Xza7OBWL/vsUqwd+S5tJw3IxzIKsbCz6ahFRQ03wwdsfwMRaQv3kKKCNp7o069zcHKxevhRjxj+DZi3Eu3JI2ywtzacXlk7CZqd566tyU8zCdixwx5R2prZrEuqAJoqYAqo2vexaw+41sqEKaFE2jpKSTOH0ipOqGjffJ5yYs04G62VwdGd3lrakEEeREBgh2BRz9JwyFm6tGqs1PX9djcLK48GY1KER3h4oqVMboQw0YSMhM2MjzN9+C3tvxWFan8aY3c0NBttI2HWXvENKcGK2oENyhZgm/xLT5EMjBzIT0ENjR0tywpFszOYn5sHH2hdN2nij1+vjkC8DAKq7hrm+NNJ3OeAfj9iMPLT3MSTAZBbyiimBXCb6ZjfG0OSWcG/ti26vVmU+sb7N0e82lDsZMbOD7aMrg13amGeuQyzTJDUyHv+u2Aw7dxcMels9Z43YyIXE9tpdzvaSficdCNRzbjBXK0MxpI15bE4k5h+rmX1xbs41OqnNhAkBHrKMNU79Y4cc3uAbGTeS67OdqR1pc6wWRBbDQ9m2dTfpWSwgXYsXqoxNU9BEqgujzim2ViZWg0rYFYlFLm3tx8LTewn0iXE1a/9MxGfdE4QlKwfPJ8/rt4O/QyMLnyoAvQZdKL+krkGTCq0exc5BNRlLbV/La5zTXE1Mm5BD0z8aNfekgiasjcRpiLyOfZopd+uqPKm5mbtgSL9p844vQzYxQz/u+wn8HNoRwF8hMF35Gn7WRWWFYeHJBQTE6yEvP4WAlnjSZkooLyoLmhgaORKA6ydXTQvHFvhq0FfIzCmu1gWONbkCrpzD4q+WYMmSybB3JgDGcoBGa6O+X6QDTer7Haqb/ulAkxrOsw40ETeBOtBE3Dxpo1RtgyasC2BKuf6vb5yMuzF38OmojzDKgVJMjv6LXBLCLOvTHVNWLKIcXAP8MP19GJ27TKclZGsydCjynVyRW6aejWRyciLemfU6Xp82F737qe8YU0QvCyF3B9IpsDPlBh+Xm+K05D8RH7MEdo7PwbXhQo2mv6agCTc6adk71bZ9bfsx3D93E5aOtoJdsKqUHmWVScX8LK37Um71mvJit/efxr1/Lwn/382vMbFyypAcFgPepLcY1BV+w3upPTengpOwYNdt9PZ1xNJxbCurnVAEmugT4ymTrKN33NkPO72BWH40DPtIgNaarIBtTEgw4bPPgBsVJ3yRqbmIJHcdKWjyVmQWTGjMnT3tYfLAsniugTlaOraFs6cr+s6tusHVZDQMQliR2OX0/e9h5+0Lgi2ybMyM641GBbboPWUY3Nv6KRXS43StC+v30ga+VCEjRZO+KbpGLGgSe+c+zq7bhQYtfQSASZ2obGUqTTVp4P65sLGuaQgW1AYFmH1wFlLyUmpUHW8+CmgDpG9gTSfuFWl17PRTSlosZhbtyx2AZBvq0KADPuy1EPFx+xEVPl9IzeAUjcqhKWgitW1u3ua6oKdSnyM78yQ5/cyCnf1I2kB+ia/PLMWVuCvE3KpwK5Ltv5lFO5pTW7hauGLlsJW0+TPSmsBkXYImbNF67xan/umjRVuy137Egtd+yN1BApuqCdlFaxJPKmiSmU5C7hHvquWaxJpXRvpJ+PTYC7ieGCw8byyMLLCaWCAm+jaUPlNVZJWZlqV6eZi2fwrSs0MEsKSE0nGkwSxbZr2UgyZ+MYL9NX+/Kscw32F4uc1kErOu/n0tLTkeR/b/iU7tAmDh4CHKGUiTtfOwr9GBJg/7DtSP9nWgSQ3vgw40ETeBOtBE3Dxpo1Rtgyb6ZXlYvusL7A8+UN7dDc/9hKYnriGLTun3Ot3C1m30UmhQgpee7oLBUb4wKTJG6fDhoMN7mFpbwIz+6FE6gqrgTfuVA8fJMvYHDGw/ABOmviZKT0O23upOyFiQkDdp1nbD0dDja1XdUfi5OqCJ1JZVtiJ2PmEHlOrizK//IO5uKLq9TK457TRzzeH6paKbDT2X0cZtsFyTl7ccpjQg+ZNeVSyY6vrMIrAsBtvE2QrrX+ms0dwquqgyaMI2vwW0IXn+72m4nXAf0zu8hc4NuqGrp0RHhTfNFkW50Js5k9Q4M4R/Y5vgGyQGe8bcQGCaMGjiQW46TZwrWFG5/QZhY0AOTCzMMHqxZhablftvSmKXW+/8iV2Bu3A7NgMZeRK3HQ4GSxg0KaST98znDMhy9T06JdRTmsN+7vc9gv10x6cHw6dba63Nr2xFYkGT0PO3cPXvo/Du2pqYL/LrSlXHkuJXk5Xpj8T0mkmMr+kID36OUhhuUwrARtooSPRlahI2FoacdUUAlfLTWXXqz8k6S/ekEOZEaWd9Erbtzso8JVRhZdWXcxaVVpdCrjD37w4nEyZHNGl1sko5TUCToqI42sw+JbhgNGl5Qp2hPJSyfG/5Hns3+RIX0/SxM2BneT8KCkLJ1lsq0KtHJ/ON5Zg7HRt0xIzOM5GTVyY6Pa66QdYlaCLVtGFhT98WRx7K3Nek0dLSXGJssgiymZDmqkk8qaAJP9/4OefgPIXYc2+LmjpOJ9wbuBO/XpgB/RxTmBtQ2p2zPvyc/LB4wGJkk76J1OqeK+RntbFhGj76dwauRVesLxbUZlYc/+H/5vRAw+1OKPHNgn4n03IRWEWdmtNlDrq49SCgsvq0OEO9WNy+MZgYeM3go0UdKlETVUeFdKBJHU10PW9GB5rU8AbpQBNxE6gDTcTNkzZK1SZoYmhUjCM39uCr/Z/LdbWBbQNsnroJQfe2Yf6NhTA9TZs4Ak3ye9zFlx2/RDOHsdi7eidyyUZVGqyPIQVQTK0shP8W/r/w35bCf1/eeghRwffxb8JFtLWlH2QHT9LWeFkt4CQ3+xIJn74mqMR7Nv5Drt/ZWacRFTqdHC96kQXmjxpNv1jQhJkbJ77fKtcGj3vA3OdVjkfqTFITwc+c7IuIvD9FeHnybXmsylgV6a1wIdYysW2ovpBrOjnJDF9zGtamRjg0u7dGc6voIlnQhDfDRbSBnbFniSDiyqFP/1s/7mf082lWbuFrrl8Kk9AQ6C38sLxKBk42ESjH7jkrckrhaWki0JmF8CUL32XLsG7WdyguKMSYz2fC2Jz8G2sQ7GRwhdbxd+e+FWphwISBE2mMTG2Fnpk+CHOPw92m4Xim1TMY1WSscLKuKKRABQv0dp88ugY9U36pWNDk7pHzpH1zDi2e6ga/YRU2smI6VW7DSja8bMcb5N+DTkczCVT4j8AFezFVqCzz4K6qLCemQHLizwLIY2k9CI08v0Zu7k36Xr0qCNd6+VZv3828IqkgJKc4cKqDbGgCmgQQu+rWtc/RtZs3aWX8KWYID7UM20tzOlELv7X0TJZ/LuRlX0UxMcYkQaws26eq9FWPvvQCmFiNLarYAdYlaCIV4GbGgKfvBrFdrFflmCnDjJnmba4REKm+jfyTCppUsOcWE3tONRPPmLRC7qX447PTi0ir6CqMrjrDMMkZehMkbnUjm47Ecy1fICaJkfCsZGcjCwtb7Li3CzsDdwtlhLQb0wb0NXKosobKthQCzQyg10E16/f7oavhZNZQRVpcqcCiKiNguqnfOWKu6IRg69UXV9cZrc2ADjSp4VTqQBNxE6gDTchSkaiTHAUKaJXiZlFcqdoCTViwL70wCa9tfgkZcfI0907enfDqgNfx1amXkVGQLAea2Js5Y/WAE7h/Jggx9yKQn5WD/Mwc+oFVrQLPI84ryS8HTdzNXaGunge7FbBrgZXNQBKbXCk3iXm5t+jU83miqLamDUf1Gx5lsy8GNGEr1uMr/0R2cjp8yaXGq6sfji3bJKTbDPtwSrU3NisxFYe++h1mJAo6ksRBNQ2pU5Cjy5t0qj+7SjWKREa5ELNgmA2jSQxccQrsJHN0Th9YmGhHxFEWNDEm5saa89ux9Mxaue752Prg/LQNgvimVH/EyrAMRnvphXLTpvKyu+kl79fSEmw1MIaF9F8NDVG2Zg3yLGywd9kWwa1m4FsvwN6jwnVJk7kwMSlGPq1l2cjOL0ZSdgE4XSh53X6UEYgz4J1xsH/AkjHQo5faEnOFG0S2gt6/+Bch533cV3M06ZLKa8SCJtd2UPrY2ZtoP36AkD6mTkg1LtwazoaF7UQE3+krpLg09atwfVCnvtouW1ycTH3sJzTTuPleZGeeAVvJ2jpMRINGn6psXrqBcm30P9g5PCtXXhPQ5I9f/odzZ27gk8+aKUz5UdmhOi5QLopZyVK6ID+UNDNGC+lFzOApLkoUGBnMzKitqEvQJCNtL7EaFxDDj1iNBLY9ihF0pw+5G6USoHmKAM2qm3FVY3pSQRN12HP8nphfmkkpnNOE34uCvEDoXzaHQaID9CdWWJ3P6fQqWhIxMizkAzRs+BxKTJrgZmIgHYq40XemAd0fc+EQoLC4ahrPfztOwM2nIXzbq9YaszCxQI9GPZCWVcGKVHSfI0JeEQAesZbKqtZKfftcxzSpb3fk4fRHB5rUcN51oIm4CXzSQRPefFg/sD7NIoteTYQkxc00gzMGsCTdhJRMOk3QUrDglymdlH9y8hMS0IxHXEC4ULOrrStt6EoxY/gsfHl5KdIzzpOVbaEcaMKU0N5NZuDD3uQUQuk50hNCBk4YQMnjv4X/zpb8TX/433JS0unfcquAJqzn0ZjxdHwAACAASURBVG5sf9EjS0/ZjrjoT+mEZwIauC+Su66wIBz3740ULABZRFGTEAOaSNNrnJt6oO+0SUIzuxauFjRDFLmkyPYj4spdXPrzIGrCKGAbz6A7El0SZWKRDA6wUK1s1MSlh+t5/reLCE/JwcbJXdDYqSL1RZN5ll4jBU309CTinkM3TJVLc5GWe7/vRMzpNgP5+WRVSvgck0hsCDjRW7kCOCvZkN+jD86XleJFfQOU8zneew+FbTsgmzZv50k3JPpmELq+OBweHVrUpNsCfVpZrP/rNEzOXyRbWzu88Ik8iCZLwa58PQNvadEJ6PPmBLg086pR/xRdLBY0kaYKyQoJi+1MVsYRxNP3s3nL75FfZE4shEk1AjHFtluTcixkymBPavoYbN0cgOeeD0PL1h8ScCL5blcXaSnbaLyf0eZ5GG2ev5Erqgo0sTCQB5pZ5PqXXz7DmTP3sGbVFEozHCFXX06JNjk2qkYm/nNO8+B0j2atL1J6gASuTIpfRQyen+k5PZ50FEIFJx12aWG3ltqKugRNkhN/QVLcynLXoNoaU23Wy7+V/JvJYKGxibfaTT2poEmQf3dihGQJVuOSlD7Fwc9bfp+Yf2w+7iXfE3R+8nKuw+iaK4EmdsgdckNgipaUZKCMtEq+H7qMUncuEDCiBzc3cluzrACsjVh7ztgQWTIpoGrfsAcXsGucIg0V2foS45YjJXEdpVi+QYcytQPia9p/bVynA020MYuPfh060KSG91AHmoibwCcdNDE1LcUW/83IKczB1PZvIL+ANnLipk7tUrUBmugZFNMPcEWufvy9cJQUFsHZ3RVknINjccdxKPQwsrOu0UlUJgqOuRM/lOxZ+0ULDi38Z3iT4RjSeDjl1IpjHDCgsJ9cYzKzM+SYJv1mPA0nX6pfZPAPOf+gSy0uZS8rKU4jMKG3IITW1O+MyBrliykCTbjvQf9dRUZMEvKzc5ESHiswRQbOeU74m+PML6RTEkA6JS+NgHv7qvaj0lau7/gXIWdvoM3IPmg2QDNtEGkKhKV1PzoJWq10nLIpOgyYsA2xpiwTbmTe9pu4EJaCb8a3Qc/G2rEiZNCEXwQp+QszD8zAnYQ4hCZXpH1xu6aGBujkaYc3O7yJPh79y20aGfyzMqCTt7nkyhITU3Uenn4aJaNGI4OAPo7b+8+QQO5FtBraAy0Hy9vMarRYlFx0eO12ZIZE4BIJ6X2zUPXGW1qN/4EzCDh2EU37dkTbMf202SWhLrGgyfFVW4Q13n/2s3D0bqhWP3KyzqO0+AaiCi3h59oLd2+OF4RS3Ty+UqueuizMtrFsHxsSYoftf9vh1ddi0K33RkrRaamyGwX594lRMUahoKYq0MSOUsn0zhHgFxQk2VDl3sD6ewk4GVeAdX3sYUqijqyXQrx8YOJEZJRWuJqp7FgdFpBaLzducRDGxpJnuTRtyZNsk9NS/kZm+kFhDdjYjay1ntUlaBIfvZjG9RcJjn9IwuPP19qYarNiZmUyO1NTy+QnETQpLkpC8N3+AljCoEl1wZpX/J64O0iSYsMAFf8xudFYApoMvlJ+ObsBNnHqjtWj/iQBfpMqB3HMWLEkIfSUzILaXBLldWdlnkB02GwCbrpQGvRvddJmXTaiA03qcrbrb1s60KSG90YHmoibwCcZNDGh/NTLCRew7LzELWF6x+no5d63fCMnbgbFl6oN0ES2dd4c8Sap86ResO3UEA1tGtCpoR54M8Ciq6y6uPSLvXQioo957w0XxMFMTHyEKgpKClBaZCZ6MEkhUTj6y184HPGfoGkydNx4IT1HnUiMW0YnIL8JAmwsxCYfpZA4T+iRo8FtdaotL1sZNGHA5Oxvu5F0P0quvr7TJ8G5iUf5v/Fmlze9nM7AaQ3K4tjyzUiLike/mQQWNRYPFsnWx1aRfG8aeS2nNKWqOgGV22bWiYW9DRg4qUl8fSQQu27G4N1BzTC+vXqbaWXtMmhSQuym1Lx0FBQXEIBSjEsRqeXFrUwNBUFXO3NJzr2lsSUBdUblwpGmxgYwiw6H3tuVBPnatQM++ggZRNCSsjvCLvrjyl+H4dmpJbo8P6wmU1HlWl4ndw6fQ/glfxTlS1hhP7q0xsKx7TCgmTgNmaT70Ti55i9YuzpgyPzJWu0fVyYWNDnw+a9kg5whpJpxypk6UVoaieCEf/DR6RWY1WUBWlvlEPBqKojC1ucII9Dk9s1Q7NjuSqBJLIEmmwg0UQ5+yo4l+O4AIf3Ep9luQexUGqpAE3Yus2ZLbFq7BXePCKKOG429cNLQBetyL9JjzBCWpM9UtmgRCpq2QG6parHthzHH5Ztv303kONSOhHQlGy6pnW3FM3suPbOn1loX6xI0iQqbSalcp+gZ/D09g8UzJWtt8BpUHBU6jQ5GzsDd5wdaZ+rrVD2JoIlUy4adtbxI3FpZsObVpbjzWH5hWXmR3Jwr5MqVXQU0kbU8H+A1AFM7vkngioGcOHJdgybSAyjWumHNm8ctdKDJ43ZHNRuPDjTRbN7Kr9KBJuIm8EkFTXiDlloQjxkHppONa2m5Y8y3g79DIwsfFeJa4ua2cqnaBk2ubD0MI9pLhxrEYNefu7Bw6afwbaCPwIAXha409PwW3684SekQWRg79pRwksgnipqG1HKYQZPn5kwXbE3VibioT4hKv0PQG2DdgcoRSNRZtgvVVMCsMmjCdrDnCDSpHJxSJGsVLN3w2jZyxlPzXlI4pJLiEuycT+kkFOOXzoWBkTiWjmxlOdkXSKjydUEboK5dG9ZfCMdPp0PxYldPzOhTsTlU5/5VLsugSUZOYfnJ2jdHAwU2y8jWbujf1BnOViYwp++dbFROcbEkFpTxfycB0i4RwsZG0DHJMTKXywGX3iMHLzcMIJaQNoMBk7uHz8tVedfMHvmdO+HLseLdcHZ/tBaFpJkz9INXYeWsHeFUaafEgiY731+JkqJiQVuFNVbEBjsbFZcl49W/OyOrqJCsfC3xVd958LTtAj2jtmKrqfNyLGYaGjgWgYH6BJq4CEyTBm7GwvfLwEDCJKsuYiLeE5gUDRp9IpfSowo04Tr5+W6emoCCyb1RTBpTcqAJfW42YxXKhkxAJp1E19dgy2G2Hm7ktYoAhAFkxzqP5uNIObCdlryFrOC/IM2Xp8nC9ONaG0ZdgiZS4Nq76d8ErtUs1a/WJkTlup1P9+kAOc0trZIKJqZPTyJokk6sqbjoRYJ9OtuoKwp+T0zJj8PMg/Iubflkb15MtsFyTJMHwKhsPW90eAP9PAZSCk3F715dgybcH34mFuSHaMxEErOGHlYZHWjysGa+frWrA01qeD90oIm4CXwSQRM+FbQw08ec/bNxJ+QmctOzaHNeCnNKz2jm2wrfjyBNC7JyK1Ig1CVuVhWXqk3QhPVGrm05AK+eTfDJ6S9ReCoPDZ51wrejX0No6Lcwtxom5LT++sNKoqMaol/f/5Cfd4defD+iF+BnNBqWLGgybMIEwaFDnYgOn4usjH+VsizYyYE3QbJUcXXqrwyaKHOhqQyaMIi2gwCRMnKBGPvFLIWsjqRQYhKs/gt2jVwwaJ4ElFI3pMKTfHLPtq51GVLQpLGjBb4e3xYNbGrmQMN9lxWCvUwMk7nbbsCYbId3TusB+wfsEjFjtCV3J/3f1gFHjqBs8WIU+DarcjKfl5mNfZ/+BBNLsh3+TDu2w9K+HaDUs5zUTLmuFpC2ylqXNtg3oxfsLcS5U1zcfACRVwMEnR9ZUE7MHKgqIwY0YcYM6/MYmRpj7JKqAsPK2uC6Lcz08OlJEjINWSu4cfAfZzNL/DLxDLHX7LX+bFQ1XrGfpyZtFMRfg4MtykETF5cCcv95H/ZOigFQ2brTkrcSKPC5kHoim4YkBjTheljbpOzcJhR//rY8aNKjN8z/txWZpaZKrarFjrE2y0k1YRjItrTpVy6s26Tlv0LaEgMqDKxYWvemdMIfaq0rdQmaSF2hVOla1NpgtVBxfPTnlGK0lVKMFlKKkfog8sMGTY4fPYh9u3fgm5U/Ebip2jlGC1NGz4lvwOmxzg3eItbU61WqNKLfLnNTPcw5NAdRmfLs1DLSLOJDD1nQRJruXLmib576Fh6WjZFXKLFWfxigSVz0p2ANORe39+g5+Io2pq/e1KEDTerNrXioHdGBJjWcfh1oIm4CnzTQhK1QTSg/dd2NX7Hj7BZkp1RYi/KMMXAyrOtozOv2jsQ+UaSTjJjZrk3QJJRcGpwb2mDp7UUICb0O4wueyOt/C33adMKMzu8TE6KzHEU0M20/YiLfJ00TTxKP2y+m+1XKFBYWIvTybdzYfhwebZuhh5r2qhH3JyM3+4qQZ8v5tpUjLOhpAnbuwrvJX6QJ0ErtPsqCJqXEDDn3+27SKgmrUo8iLZYTBIgkEzDS6/VxChk0gSeu4NbeU2jcoy06TBykdt/Y6YAdDzh8WxwitkkjtevQ9ILgxGxM23K1/CWO61n9bHt0cFcuhCemLVnQZM6267gSkYYpPb0xpYd6woRCqoM5sSJOnEBx+47INFAM6Pyz4Hut2Q7Ljo9FdzkNSjZKCGhc5dQac/s3wTOdxKViSYWCXVt4o/fU8WKmUHQZMaCJ1N3JyskOQxe8JrpuE5MS/HNvB7bd3Uqb5P/oOkolYd1SEuZ9qsV8zOs+X+vPRtGdU1EwKX4tiZaurQKaSJkTqtrhVDlmHlRmf4kFTbh+a+SiYN272HDgkiQ9xyYGJj/vR76he70Fm6TzkkiCqCkkjMqCkXr6xkiM/ZYYJ2Th7CVh1eWTY0hY0ARK1/GlFKZdqqZT48/rCjQpLc1B4O2uJHprSuK3FboUGnf8IV2YFEdivWS5zfeND0fUjYcNmuwnwGTblvX4deN2Sh8WB0qrO8bK5StYVSuENS4b/J5oakwOcFdW479IfgZWDdYuKj2XDb04E5SNKxD01xSFs4UzVg5dSfpQJsL3/2GAJumpuxAX9T8hBZhTgR+n0IEmj9Pd1HwsOtBE87kTrtSBJuIm8EkDTYyNS3A87Ch+JdAkMTiSaNTFchOlT6cLrs298ErbV/CU91CiYIqntKua8doETeJv3sauyL9xLPtnGMbZwORSMwJNbqDUOg9ze/+KAd4jqmi1hAVNopfggCpUdFXjkP08Mz4Zh79eDwsHGwxfWPW0prq6QgPHEWU0GD5Ndwj6KpUj8v5UOs05Dw+fn2Fh1UOdbgllpaBJVHA06V8cQUZsEqUZGBCrSHLiw7ogrYb0UMgCuL3/NAmNXkLzQV3RerjE3UY2pO4tLMjq1Vl9QCcl6XfakHwnUOB5Q1eX8cGu2/gvOEmuSUuyHT5C9sM1CSlocvRuAhbu8RcYGf+82QN8Yqdu8IulOUnKZpD7ABF+FIYU3NCG7bBsAwFHL8D/oLytrmnrFvgy2RQtG1jj1xc7iRpOAQkN7/n4B2Jp6AnpMWZmxgptJkVVVqmQGNCEdYdOrt0GJ59G6DdLHJvMhPYr/kk38MUZCV09O4sEEsn+mYMFDi0suwvPxsE+w0QLR2syPk2vYWYaM9RkmSbqpOdwu2ytXFycQmDyPkEom0Md0ITvjaVRNn6ePAEn0w3w57KlKGzUAnlldXOCrunc8XVSpo6944tkU3pZAEkYMJFuKtkdJMi/p+Csww47tRV1BpqUxSCd3IHSMu4I9/tRDenvib3TZGITvKv2MOoKNGFAnB0KbfQqbHJZQ2jbjt+w7Z/L+OOHt2Bt04F+pyXOTUX0fpZrJF5rTZ2BSx2HfJr9I2j2yIapCendxV3APwH/VFtl0vF45EZkw/NV32rL+Tn74eV2ryA7h0T461gIljsmdSM0NHJCk5Yn1Jmmel9WB5rU+1tUJx18bEGTC6EpSCTV6NHt3ERNpLLyOQXF+PNSJG7HZMDFyhQDWzijm0+FP70ONBE1vXiSQBNDwxLE5UThvWOSlwp2muG0HNmQgib8b5/2W4QW9m2QVyDZNNQ0ags0yYmPw7mAE1h9fzGMLJIINHGQAU1yhVPBb4dthI91czl2QUbaXsRGLhAsCtmqUNPY+cEqwbFnzOIZMLYQ/4IjFV30Jeq3EVG/K0dMxDuUp31YsP9kG1B1g0GTgNM3cXaTRLeF9S86PT0YZjaWApPAtqGzUkHVuLuhYDtip8a04ZxZdcO5f/EvyE3LxJD3J8PapeK5I7aP0hzjRl4raUMyUOxlWik34edziMvIr1LXufeUi96KaVgKmrz0+yUEJmThrQFN8HRHcawMRfWzo051KXIVtsMjyHZYnNCnmHFIbah5LTPzzM2vMZr26YjR6y4JFsq/vdQZzV1V62NwWye+34rksBj0Jethnw7epC+iL/cdFNMfRWXEgCZR1+/hwsb9cG/XDN1eVu10wi/zWUUpmH5gGkoeACUMWpaVSlweDAxtyXKYRHkfPBtb0rMxV0vPRk3nQdF1rDdw8uiH2PJnMabPskGr1qQpQ+Ck2JDqeDRw/0yw2eVQBzTh8sX5l7B9/T84dTYQm37/E1lK2FJi+1RX5TKIgbhh3df0vXPBsGF3FToJBfp3E0Qwm/qdpdN1m1rpWl2AJvx8MdBPQlbWFWSlXYO964JaGUtdVMraYKwRxuuV1626URegCbM3zOn1oKzYgIADPeht2ICSuxfJ9ccfewhc3JJmig2eGZTSaUrgLKX6PvssCpo0R+3Yc0uF5kHiqNcJ2JY/HDMzLSPRcfkDNUVzevniRSTExWPk2DGipryQhM8fBmjCnWOnIHYMkgWDRXW6nhfSgSb1/AbVUfceO9AkNDkH/wYk0J9EAjfs8dagptVOZXXlGTD5Yn8AnK1NCHxpSCBMvvD/Vz7XHj6Uo8+hA03ErdQnBTTRLymGvlER3jr2NhKzEwXWQR7pgFQOY3Nyh/CWAHpWJlb4fuj3MNazJiEveXBF3OzKl6oN0ITrDA64gqk7X4d1wxKU6UdXAU3Y7rKBdQuBIlpWYiq3EWWqNZ8mNnBnQbQJmgyrfGPYZ9pEuDT1FF3HvdsdhQ0Z06KZHl054qM/ozztbRrrrgTsPwX/fyWUa5/ubdBxkmp3GmkfCnPzsft/awSB4Alfv0V/c36CJHLTsrB/8c/gtTLmc/W1SHKyziEy9A0hJYdTc+o6Zm69hutR6XLNsqvN+leqpkip0zcGTX4/E4YvDgbA094cW6aop3GjTltcVsoG0qbtcOiFW7i67ShppZgLAq58j6Wx7N8gbL8Wjec6e2B2v+pPFqXXSFkrT80dj9uG9zDQeyCtefnvoLrj5vJiQJPgU1dxY/dJNOndAe3GVe8KwifAVuaGeOfwOwhJC6lY69mXScNE8pw0MmpQzgizMrbC6uGklwIrrTwbNZmD6q65duUiVn77BT77agU8vdQTqE5N3oyEmC9hYz8Gbu5fCM2oC5okU4pLfHggcnPboGu/l2vNxl7b88Y208uWfoScHFO8MjlccDVjdzPZkDIEvZtuF+1KpG4/axs00acdPNvILjk+jzbt97Bw0FLKQmtLa10JrU3dAdRx+ayMo4gOf1sulUqdLmgTNImOjEAC2c137Cz//GeW7/X4K+jh0QOU2QuzwlzkTx2M4vg72GPUEFuMPbEh5wI9U0ph9irdjzHPI8NA/CGMOuMtyA+lNLzRNRbDV6dNadmHBZrw+uB14kaitzYkfvu4hA40eVzuZM3G8diBJgxsMBDCzBEOVaBJdeW5nrlbrmPdK50IOJG81P5CThDMYFk4QqJ+rgNNxC3AJwE0ibkZCCtrQ6y9/ANuJdyiE1MDss4ksUk6aTK1shBYEuwwIU3VsWvoBDM6YeZo4dSC9E3mITuvtNzuVNzMVi2lbdCENzomKMZLPzyD8KxwuDRrJIiTGcZWpOeU2ZLArUUnOkkxRGe3zni/xwd0Oozyl8OM1N2IjVoo2GuyzaYmcX3nvwghTZU2o/qiWX9xqQulpXmUS95ZoPw3b31VYbOy+fXq5GmzxSqn43D6FQfbBrN9sLohTf9gpgkzTqQRfTMIzHLQVKuCtWRYU4bFXx+GfSuzTF5ZfwnZBD5zsFPKsomkzaIFTZO+35xATHoe/jesBYb7NVB3ytUqr23bYU6nOfTV72DArPNzQ+DdxU+uP/6xmZj913U4UNrR9jdU22uzHFJaVAJibtxGmlMW1qVsFr6D83u+L9EEqcEGTQxocmvffwg8fhmtR/RC84Fdlc4tw4G8gdxwewP2B8unKOTmXCNWgUQU15ieEey4JY3WZMO8qM8i5OTzqWz92mzevXMLP61ehg8/+RIuruqtQ05Z5NRFWVBTXdBE6gzm6cMi3EPVWtcPs3B6yk58v3wtsrMNMPnVGEG3hJmKshEVNkPQumnkTRa91rVj0VvboIkhHaAcCT2IP75ZQ+u7ABNmD8PTbd6plylnYtZDTvZFcmKbImiDsUaYuqFN0GTTHz/j3JlTWPvr5vJuGBDLNyEnGu8eewf9vfrjjY7TYFBmjJIbW1A2f4Y8aNKuDYy/2Ig8uNXacyUr4ziBTHNqXdBY0X14WKBJatIfJH77reBUyELPj0voQJPH5U7WbByPHWginQ5OqWFARBVoUl15Bl5WHAvG1jcqkGz+tz03YrFkvMQSUgeaiFuA6oAmnNLADiRs3erc2F3QgnDy1Zx+L66HNSvFLhjHV25G92f6SsQMHwSfJNt7NpCz4cxKSkV6NAlA0imUSzMSUi3Ix6b16zGWnGGcnD1r/AOubdDEykIfZ68fx90If1g52sLKxZ42YtkIvnIaZ7ZGYNjMVmjgzcBExWl5U/umcLVoCJRUnOBITw4buC8mtsk4tSc87OJtAaTw6NACXV8cLur6IrLrC7k7iOjfzpRje1zhNRV52q8Iqu9iItb/PvXlMArI6tXa2Q49XxgGS3f1Nk3SdqRgUOsRvWnTWcHCuLWXNqMnLqPlkO6CJoo6UVycXO5IwTaoLDj5sIItgf+5EYNOnvZY9bQk7aImsed2LL46dA+tSPfjF5G6HzVpT9u2w5fJsjv8kj8atfbF0JmKhVuvRqYJYFMrN2s4Wii3jmUdkyxCJw0NjRBy6yqm758OG29KByMnm0ktJ2Fsswk12qCJAU0ubzmE8Mt30PnZIfCqBADJzruRUTHORJ3CD1eruqHkp92BXihtblzTYOziQ+NxlLtlo5uNxnMtX0BBYf3X61BnrQXd6U3Aelq5c5e6oAlbiTOA7eHzE+kx9VSn6YdWNoPEImNJLHL7367loIki16H46MXEAPyLnFo+JKeW52ulv7UJmnCabmh6ED4+9RFKDmcQ+7IIZYOK8HH/VfBz6kDaXzIvCrUyOu1XKgX6TM2agxlA6oa2QJOSkixs/G0lLl64iVU/rKDft4bgNChDesbM2vc64rJDhQOc6Z3no5OdMcqy6N3lVBj2/HlMwjQxvAuD75chJvsgTC2G1BojIiWRNMXivhMctXiN12U8LNAkL+cGwkNeFPRbWMflcQkdaPK43MmajUMHmjyYP0UgC6fnTFl/Bc938RBSfbLJymsPvfwzA2UVuUBwaCOdoma38NG42pjy2MXMVQGdvu75ZjOS6eRUNiZ9MgWO7lX1KOrL6G8du4yzW49W6U7PZ59Cm0Gdq/z7yfX7BR0MHlOHF/pizpyZWPi/j9GjR81ffDnFgzUxi4trdirL9yL8ehBS6F5kP7BG7fPSUJhbWwrj2bFzNn79JRArV36Bpk2rjrGyI1BCwnYEBS2AhUVTdOigvpNOUkQ8ti/+DXYNHPHsYnHK/Tk593Dt2ihqsxm1qViALz7+bxJ0/BAuLhNoHF+pXFJX953FpV2nhHI+HZph4JSRMDYji08NT8GDL93BsZ93w7ONL4bPebq8/d1fb0JsUCRGzH0GHq0bq+yXbIHo6J8RFvYNHB0Ho0WLNWpdq+3C0Wl5GLDspCDYeuGDmumq5NIzuN93J5CeW4QfXuiAgc1r/5mQk56NDe+ugpmVOSYvf6tG0xN+IwgHV0s2G899/iZsXWxx+fJlREREyNUbnpIj/M6YEFvN2coE7pSGZEqbAtmwtrbG0KHMLqC8ffrotd9fwdWgK/T9cIANAXkcC3ouQNdG3TVem6wPYMiaL9WkDe5bvhVRd0KrXacl5AARnxOL2QcVWxLnxATD8Ig7CjoHwqKFL2lYSNJfZeOd7u+ge8Me0KfN0OMSd+/ORErKEXruLKXnz3hKH6R7SXNeQiKWYuLy5QHIz49Cp05HSQDYS8wlD73M3bvTaczH5EATQ0NrdO8uzwSMivoJ4eHfolGj1+HtXTsbTkNDZmJVMCK1NTl8D7OKMjB93xuIT7sMg5PO1IgeivoSU9O+J9aM+BH2po5yTnPaars268nPj6bnVX+YmjZE584n1W5KeA8kZ5ea5JEVF2fi7t0ZZPUdAn9/K7z1djj8/H6FjW0PfHZ8Nk7d/4vm9YFOCD0Yl5BmnJNeLBrYj8TuBd/gz+hCbPpgHPK99BES8Y0wBienUfDx+ZAYbvJgrdoDrHRBcPBCxMdvg6/vIjRoUDvAn7I+8m+CAaX9FvN813GcPdOKhNUL0a3bJUq3rJlbXh13XWlzvHZ1oZsBHWjyYA0oY6bwi+uWi5HCC6wLvbwmZBUIf0uZJsmUqqML1TPgSLowYuYqITgKx1ZtrVJh62E90Wa4eqftqnulvRLRt4Jx6peq1oh9p45FozbyiunSVg9/twnJ4XEoo5OQ/XeOYvzACZg049Uad8qYEBMzEwNk0MayJnHrwDncruTuITueI/t749AhUyz89Fc4OIjTGAm8M4q0Te7Dw3sJ7BzUy3ctI1Biy1vf0QtRGZ757i059o6ycWZnXcL9wMmwtOqMxs3WKyyWkX6MTkbm0EvXQHj5fq90yoryC3Hxz0OIuB4olGkzvCdaD+sBS1NDgR2URxt6TSKHhF53ffyTALxM+rpiU7l13nIhnWviV7NgoobwLfch0H8kbaZC4e27msRtxYtTatJ/nhxvJAAAIABJREFUMdeMWH0GCcT8+5vSTbwf6EGJua5ymbWn7uO3s2Ho0dgBq55RPxVKkzb5mr/eXSnYDk9aOltOf0Td+vZ+vg6ZCaloP6YvWg7qImiGmBnr4/Dhw8jIqLAlZ+HxtFxKyH8QhvTy28HDFqakLSSNIUOG0poxJ8CkBJv9N2Pb5T+REplAa8WUnGyI5UVhbmiOVcMovcHIXiMbWtZksCWh49Tsir5UHvOBr/5AWkwShr//Cuwa0eawUnB6nwH1cfah2QScxCucsry4IBgf8RRAE/MWlK7Eb/yVQp8sideMWAsHExetuQOpe/+0XT4pYT2xLpbC3nEC3L0W01owENZEdr5qcUjahePmFUlqV5uOtwlseTRYOEF3xwv6HrJMEx5D20535aY3LXUfaTLNJ1biMHj6fKftqRfqszYzQn5RiVbXEwNfZiZ6+PjEx7gc8Q85ikTB9Bw5nxFokt/Ln1gRrujoOQFLBiwhlmnN03FrZWKUVMoMD//rXQnUtIJfe/VdjRzo3TmV3qHFQYKKOxEfu4bSP9bg2FGHctCkodc8nE7IwO/XvhQsy2XDxdIdP40nUNHIFXt2bMMf6//A9g2bUWRhg5Skv4TvX2lpPoHDdqTD8T69l4zW2pSG3HuZmGBX0Ljpb5SiU7vaW5U7ra33QE0mg9+5+N3L23cNvX/UTmqdJv2qyTW8h9GFbgZ0oMmDNSA2nWfO1uuCew6zTzh06TnivkRi03M4Jefcb1U1LzhFp93Y+vvwLcorwNHvNoDTdKRhYW+Np955WalzSmZ8Co58uwEZBVn4L+kKOtm3grtdQ4z9Ypa4SVVSSlvpOQc+/0VuPNxcQz9f9HhtDAEXJbh3qy39ix5atL0tur9S9X1Tsv71JgtgdePYsk1Ii05A/9nPkpCuZGNYXYgRrsslEcqI+6+SJktHePoqBlaSw2KFdJysxFRh08zuOA0fgGFSy+EcURsdxb09uGQdspPTab28JLjtsEbFseWbyDHHnpxz1APSsrPOICp0GrkVeZCC/QFVU1Qnn7M18InARCwkDZIRGmqQJNLL9vifztEJVhl+fL4D2jS0rZO+cyPasB2+vY/spY9fEtyVBsx5rrzvprRRLirIwcEDknuVQ+Db9ai0KmPzsDOHBzFOOLp06QJnVzdBL+lCzFmsuLgchXn5SA6NFT5ndy4rYptY2NugpVNLYYOWlVuiduqfmPScvZ/8gPysXIz6dBpMreUZIlIhzOUXl+F89HmF96sgPwQlyakwO9FOAE1K3QsEfSRF4WPng+WDlyMrj7ShRLIx6myRaNBQfu4dhAU/Q99VT/qu7ldLCLawMAr3A4YJqXecgveoBGtbscaVLGiiyBKddW4iQl4mJ6W28GpSoVuhzXHWRnoO6/b8HfAXdgTsEFKnymhDLguagJhSlla9MLzJcLzY+mUCVR4t5lTATU5NL6Pf/Vv8pFHrdmgjPYc1QlgrRAqaLFnaCbFFVlh0mgATBWFo5Ig+jV/Dez3mY/+e/dixbQtW/bSecFkJyFhUGE0gzNdCnRw2dqMolWY+adLVjCHBAOit670EW3HflseIceGq1lzVtPDDSs/hfifFrQSLVDs4v04CzzVjZ9Z0HrR1vS49R1sz+WjX88SBJqxJwn8qa52IAU1Yy4TLsTCshYnkh04Hmoj7AogFTRSBD0ZmJuj56ph6r2uSwSDI138ITihuLX3QlkAeBk6URVJIFE6u3YbMopxy0MSVKLsMDjFIpGloAzTh+7Br4eoqXeANPW/s+UUg+E5f4cWiaavTanX1/r1R9KIYBjcPco6gFxR1gjVNWNtErOhqesp2xEV/Kjj2sHOPoijIDyKF+/FKc3Dvn7uJa9uPCZeyUGunZ4bAkrRdpKEN0OQS6UJEkC6EdFz3z97AtR3/wqtzKxILVU/gMSbiPbJQPkgCsLNIAHaaOtNba2X/vByJ1SdDMLZtQ8wf3Eyjdr47FoQd16Mxso0bPh7eok43zTW1HU4Jj8XxVVuEcfebRYK/PhWCv/xv5sQ2iYuNwkWylkzJKURAfAX4Kp2shjZmAkunSZMmREdvjfzSEmQUJmPWQYmzErdRkCNv8Wzv4SKIUI9oMgIvtH5J7Q2aKtCEWV/b31kmtD9p2TtV7isLYR4NO4T1NxWDkayNlEsnsfqZ5uWgSbFbiuCWYqhkk8HOQK+3f4OcMQweufQGRQs/yL8HpeNkCsCHrbUHmJmTkaOaJcgONJGhUzUW5dToS6iFi5itkBD7Fdb9dFHQNJkx201w2mBdCtkoKoxDSMBT1epR1bQ72gZNjI3KcDvpOr48u0TomiLQhLW/BKtbirld56Kja1eUFhvXdCh1dn2Qf09arxn0u39GsAdXJ7QBmiTELkVq0kYBNLl71xZLV71Mz0AS19W3IgAkrkp3WGiZRYafbvk0RjcdB70yE4Wsu7TkrbQul9IzpYhYJw4CcGJtN0Kd4ZWXZdFzc7ITvnP7BVrjQeTcd0mjempy0cMETbIzTyEqbKYAfnv6/lGTYdSba3WgSb25FQ+1I48daMJWwwxsGCQmoSw3D6VeHpja21tgh3DwZwx+SMVdN6/ZI7ygFtGpVRHl/plTWkM7b0dMfE2yUeGyu2/GwiItFY5EMZ42uX+5kw5/rgNNxK1fsaAJ1xZ1IxAXNlToT3SYOBCNe9RcQFJcTzUvJWXJsLhrnzcnqqxIWr4yaFJTVo02QBPu/Mk125B0P0puHFJRUj4dDg0cSyekPnRCukflWGULpKf8TUDGItoYtSC2yd9qXcvuOSyc6t3VTwAvVEVK4joSYltOJx6v0YnHPIXFi4oSSCx2oMKXcwYuGMDgYGccBjUqhzZAk9DzZEH791G4t2+Obi+NgFRcs8MEWvs9xa/94qIkBN+VMLJ8Wx4V7FvrQ9yMTsf0LdegqeUwp0e++LuEDr5vdi84kzhqXTINamo7fHLNX/RdikbTfh3RdnQ/hbfEgij9/rdvISAwCBfCJO5vstHC1RrNPN0wcOBAcqYqAW/Q5h6ei+jMaHDqGNdfOcyszWHnLjnh1GSDpgo0ycvIxr5FPwkME2aayIaRUSkiM0Ox4PgHSpcgCxbn5/pXAU2kGx1lF77Z4U308ehPWiuP1im9ovFEh81CVuZJAUR2azBONGgifY6yqDaLaz9qsfybz0noNZ7smlfDXL8UJgpIC+eu8rOvFN07XKX0IyNs/2cHgoKD8OH8BSqHW0TpdNkGVS3mZS/UJmjCv7sZRYkkxjyNeBiSBBTp+pZlmhibeNHvpld5N74fthpOpBGSr2F6p8qJ0HIBZjcxy4lZjMxmVCe0AZow6BZ8tx+OH3OF/x0LOD2bgODMHGFOCwvChT/lQaweBqhYFJbjoz4fo7Vje+H5qSgKC8jGmFgnvOnnYDtwgXViYCN6mJyeZU7693/dXodh7g0RG72dHKB+EX29tgo+TNCEQTUG13jem7e5TkN69ESPK98HHWiirZX5aNfz2IEmaXTaH3YjGGHXg9GwuSe6jeuj9A4V0otmImlKyEY6XR9K145++xnhn7m+K2fvIO1eODxaelWpTweaiPsCqAOaMIWdqeys48DuJExlZ0p7fQ9/0v8IOHpBsN1k+01VIWVzVAZN+s14ukasGm2BJty/fZ/9RFoOklNPZj0wC4aZP3w6HHF/Mp0kdKCThA2qhlrl8/v3RtDLTQQaeixV6zQnOSwGJ77fKmgnDJr3ksp2WbmeFeydG7xNwMkUheXLbYn1TGCQ/oswPgdyPGJWC7fH0XHSU/Dp3kbh9doATThV6zCxlMztrDDiozcES1pOBRr09ou06RUvdppClFi2ULa2pfQhTwkDoD5EMWm+9F12QmAGHJ3bBxbG6m12P91/B0fuJmBcu4b4ZlJbIS++LkGTmtgOB526ipu7T8LSwRZDPnhVSJ1RFAxQWJkZ4MSJEwiJjMXt2AqNE3bQ8Wtkh2HDh6OkzID0fEqx5vJqnI6UsLzKSM0yLiC8SrXmZGluS9bm0lg9bA0cTd1Eb9BUgSacKscpc1IGmrQdFs0rJTPP6QemIaswS+kSZMHGHEonU4dpIq3s28Hfwd3CR2MtofrwveA+SN27bB0mkWDkYtGgSWLcCnq2/UqMstnEKHuzvgxHdD8YNElPTcGiL5cLduSWxXnAJ58AmRUsqysTL6HAMh8dd3SGaZYZVmek4TK5za13rh4MLps5E4XNWiKnpPrNmrZAE2YHWZkbYsnpJQKIKRv5ef5IP0ipIKUGcBhtLlhMy4ablRs+7P0hcvJK6/SZJvpGVSoYFvQM6ZLdgXeTrTA1l7dLV1WnNkATbiM8+HmcOuGES5fi8dP6HwSNFWkwqMKHB7xh59Q1KWDCn5PMMqV3koGDipSo1OTNSCTwhNOQ2XlPYJ3YVmV88vOR00X5d6382WdSgr1Bu7Dx+gqM8vbD2KaTYGJW97piDxM04blg9i6zeD19N9J7Yt3pj6lag5p+rgNNNJ25x+u6xw40YacDBjqiAyRuBNWBJopu5b+/H4CLtyv8+knSI1TVpwNNxH0h1AFNpAwHJ7IbZqZDdRtWca3XTanTP+9E/L0wdJ88Wqn4a+WeMNvk0E9/lqfntG/fGb2mKrYhFTsKbYEmLEK68/2VQrMjPiIauF1FqlGFVshANPKSlFEn2EqSLSVNzVoR2+Qv0ZcWFxbhnw9WCQcXE795W0iFqi7ioj6mF/OdaNCIUnQclLN/Am7yj3oR7m56GaUlFYKK1q4OAqOFQRRloQ3QhOveQ9oQBaQNMfCtF/Dvis0wMDLE+KVzRc8NF7x/b6Rw0ubuvYaE58j+uh7FG5uvwp+AgJWT2qGzl73onklZKnzBzjd7oA0JotY1aKKp7XB2SjoOEwBWWkKn5a+MQqO2TasdN7/o6hE9/MD+/XRKXYx7CVlIzi4A65k8P2YI7B2cUUqMx2Ohh/Dbjd/k6koKJcZJnrxgqyOBzcYkDCsNTxtPLB+yHLn5ZaI2aKpAk7i7oTjz6z9wbe6N3m9Inlt8jYWZHj459QluJ6jWO+L1WpyUWJ6eA089otM3l9vsKJo0FwsXrBy6kix7jTUSuRW9AGu5YF7uLWETaGLqg9ZtD4gGTWIi3qU0vEPEUFlKaY6apRHU8tCqrb6oSALGGxkZCX+b65XAJPw+9D78sPy6289FItM9F35bidEQaISVZNsbSGzgL7NKyvV9qjTy7LMoGT4CGQYVdvfKOqIt0KS4rACWJCpbVkmElNtlIdBvlvxOn5kTQCRxa1EUJcVGor6TD/OecducEsapYR4+P5PNtXri/NoATaTM0GNHnRFwzxU/rpOkPYqNyq5+yq7jFOKEGGKdZEmAaVv78QJ4om8gcQ/k2ESAjTmJcY9/+hXh/xsblyEg+TYWn/5MSEHmg6FFg35G50aTlLJbxPZb3XIPEzRh4Coi5BUBNOF4GJbL6s6XqvI60ETVDD0Znz92oIn0tvmfvIbstGy1QJPoexG4dvAChk4fB2NT+RxTZfXFp8rnkD8Zy0b9Ubram0LMXDGzZNf/JBaprYf1IveWM2hK+h7tx0mQen4Y5+fdE/6b895lTxjU75V2r9j10VoUZOdi5MdvwEIGYFDVSlRkOD58b7YgBNu1R28hPaMmwae8lqYGtLFUnRdfXTtxBAD999MOATAYRBt52UijFJvYqE9JaX4i5aMr1gpRNYbggKGCs0Ajr2/JuWaYquLlnx9a+jtYP+apeS/C/kHqgbKLo8LmIDPjXwIRVsDa5imlbdy6QE4mpjkI/PsZFOVKxDZZRHPo+5NVuvRYWxgKL7u5+Zq550g7dfb33WAXpmb9OiHw5BXST3HH8HnibQrzSFQyKeFn2oQ4EUj0P6Vj5TREdvup61hxPAhbr0Thzd4+eLW7t+jm522/iXOhyXi5mxdm9GkMRxsTpJObS10yTTgNZc+nP8LE0hxjF88Q3fdzf+xB1E06bevYEt1eHC7qOhMjPUpbSMTp06eRSvomd+Iy0LVDO0zo2wklhBHG5kRg/rH5VeoqLSGNE/pe5GVkCQYSVqS7w6Bf5ejn2Q/TOk4XpQnCAIi9tTGS0hW7xIWSvtDlrYfh3cUPXR5o7xgbl2B7wDbsuCde6LkkJRt6+2nT2asQBj4Vp8aqJqxbo254p9s75BRFzBbZ415VF9azzwNudSEHjxy07XCSNmENkJmj2j0nNOhZcqG5TSf+m+kkV3wKXz0bulx3LAkQNNq/l3ajm4R/DxoRi8SWGWi0yxlxhyk1j5zm7psbYWZUFhyIfdWyQSXNsA4dULZgATKLaT2IeMbZWRqBbcwLCmvPljU4YAQO7MuClc1wvPaG8lS1+nxfZPsWFT6PwLrD5Pb0nUL2RXXjcLEzRWJ6fo20iNKSt1HKyyKkpfUk56OxGDRY3HNV0/lNSdqA+JilwuUs5ura8H2Bycnph2+9NQ2Ojo745CNy4KHnT05xKmYcnIHCkkL6bvoLjBc7q474ccw2WBjYo7Aa63ZN+6fsOsl7oCG9Byp3PtN2m9L6EuPXICl+rVz1tvZjiVn8RW01Wev18h5GF7oZ0IEmMmuAWSY+7ZvAu11Vi1hloMmj/KJWl8ufXRTEzFXgOX8c+Xk3PPxISPWpzti7/C+4U1rU2Pkv0MlrJm7fno709Aqru/btN8PWtmtdDkVhWxmJadgwfy0sbC3x2gr12AFhYWGY9uabEvccGzdM++m9Go2HKag03aLmu7qGzv19Alf3n0PHET3QY5K8c1FExA8IDf0Onp7T4OPzrkb9jYnZiKCgRbC2bouOHcVvsI78tBuB5/0x4NURaNW3+s3C9evP03q5hOrWSUFuPk4c7gUT23SE7BmL/DSJar4jiWg+99nrKsfG880hzWNXeYGSAtcPXcSZrcfg5OWKpPB4DHp9JHy7tgSvDzGRlXkTBQUJtIHyhbm5j8JL+AXP0sKC8r/r3j5v3604zNlyHQOaO+NXEtMWE8fvJeL19VdgbWqE0+/3hxW9BIp9loipX50yP077RtAOeWPNO4Ktr6rgNcpr1YgA+Be/nAZLSr0SGwyA3A0IwK3b/gjMNEDnbj0wqKUrMauKsfbKWmQXZCutKiU6EZlJGbB3c4ANuS8piiG+Q9DOuS2lRaheB9XN9+W9Z3Fhx0l0HEnPiIn9CcgqwrWE6/jitHovx2VppSjYWQCjAcYw8FbPOvdZv2eJAj+GLEUlYOejGLduvY6UlJNo1XIFXFxGiXqWnDnThTRdUtGz53k64a5IwXoUxy/bZ71C2uStWAGcPYvQHokI75IE88PWyNlpjEMOpuWgCV/Tt6kTMXMesA3t6Lm9ejXKLCuYAKrmQo9/KAk/rumzW1k7JSW5+O+/NvR7rI9+/SSn7o96BAb+D7GxW9Gs2WK4uVW4gIkZlzae3bduvUHfleNo3vxLNGgwSUyzNS6TkxOMkJAvkJp6RqirSZP/Qd+iC16dNgPGVgb48/sNlJ5FIudH5yMwJRBlGWXI+zcV+R3vwbpha7Rp0A1LBi4hFmHdaXto6z1Qk8k7f74vAdmS1GZpGBpao3fva5pUVy+u4bWrC90M6ECTB2uAdVBYy2Tgq4pRa2WgiS49R9yXSGx6zsXNBxB5NUDQzmjY2hf7F/8iuD+MWjRNQK6TE+TRa33KZW3mp9jKUlzPtFMq6jqJ127cB7dWjdFzyli1Ks3MzCA2RDpubv0XuXFp6PnaWLj5NVarDtnC2krPOb7yT6RExAm0e6bfywaLpaXSCYyz27twcJqscV9DAoaQ4n2MoL/BpzdiIohYGDf3nBIEUlkotboIDRxHFNFg+DTbSfR35akR108Mhql9LMIODUNOgkQ4U2qvrKpP2krP4bnmOW/Www8MHnI6R9POzctdVZT1g3UhBAbW/9m7DvCoijV60ntvhFRIIfTeu3QQBCmCPpWOCIiKvSMqiooKiAURFQUFAem99xogIZ1U0nvfTdv3/3fdZLPZmkII5n8fT2Xnzp1y9+7MmfOfU3RLKGJh1ZcW6TU3w66urhgwYADyRRVancJq6reunyfnijD5xwuwJRr7gcUDtbp8wZbrCErMFRgm/+vtJVzjbGt639Nz+L662A6XkQgl69IwQ0VXMV++Fy/QLE31cf36Neg5tcbq43fxbG/S1PJVAgworOXyUjIoTTCWLIft4UouXqqiuLQEpnqq3b34Ok3pOYE7TyDqXCC6TBqKDo/0ICewDEHHpEJJmoLaCad0IaTSH1vqjE31DrFDD4ewwVUR7w1+Hx0cutx3CrxWD7EWhVibhDVKnF1moLXPBxrdcyro+x4e3Bf6+mbkzHFVizs0nSJGpG9iZUDMj6VLkeJ0B3dHpsDokjlKNpnXAE16etnDhMoL8dFHEPn4o6hCexvc+krPUfkdo3dybORTAiu2lf/fTWcS1LQ0LXk1aen8rFYnTNXldU3PkemPcf1+7U8LLjf3MzLTf0F+9nb4+72NV46+goQdZpCYl+Dd995ASFYi9oQfJRYNva9SKiA5WgbRgGCYterMb1KpxXQHspgu0U3Pq7b9a8z0nKjQkbSuS6rW9AdlrV7b8WxOz6ntyD1c1zWDJjSfLAh76LtdQiqPs7dy7YJm0KRuD762oMluSs0poZP/0SSYyIt+tr1lQVIGTVLTFpMAac0Foj+BJo2dpnN77xmEn7yK9qP6gR1mahMsIstisq16dyQdDe0ABGX3qQ/QRN5ymHU1WF9DPpLi30Ju9h5KzflYUJivbbDgWmriSpiZd4Y30cy1ibTIeJz+brsgDswiweoiMuQRosimwa/dcRJ0Uy2oejd4LlFqLyH+5DDkxXsKYrAsyMsCl5qivkATtqAOPXgWPScMQMiZWzCwtkKXx4aQvbnUVSUyMrJGU9iylWnAkgppmqC+vrlgQaoYZmZmGD1mDLmE6aOE0nMaKyZ9fx6pJOK6ZXZveDtYqG3GoRBy1tgfAlcbU+yYX5U731igiS62w4HkuhRFrkvaOmkpGwjePHKa3YGgZCz7+zae6OGBpUNrsiAVr81JSsfRL36DpRMJx745u05TrQk0kY3J0Ocmw6+bH1468hKis6PrdE/Fi+PjYkhXIA/tOvDmQ3lYGlti7ei15MBic18p8PXV0aLCQNIAeJreg/7o3GWvRtCEU1RjIqaotEmvr3bd73rYvZCDn32jrAxk71uJYN99sMx2g+XlYfgrIQohuVlY3qEXjEjPii24hRg0COVt2kJkINVH0TYsiLnG70NOWVTlqKJtXcrKyRyObOwmkPaM1Ia4qYcM4GNhdRZY1yXqCpqwhg9r+Zhb9oSXzyZdbl1vZY0Ms7Dh8kvYF7EfZqc6w7VFS3g/1gK7I+jQzKYdaSwVojwhC4ZnWhBocgemXm2JIShlJrKDWY8WfaiMbs9pbRrfmKCJzBZavt1NXdekGTSpzVP48F3znwNNWLeERWLlBWIZEEmNSVHJMuFpbwZN6vbwawOa8Kbx1PptlIfviFGvSYW12CmFHUwGL5wKicVWYjdsrtYQRq992x5pdNDkNLU7jdo/YC7ZP6o53VU3irm02TlCmx3WTZjw4cJaD3h9gCZJJFB7/ufdpKvhjiGLpE5S8pEQvVAQSKsPwdGokBFEM08mbZOvKe97uMZ+M6jG4Jo2Qqlht7vTyY+YTmOvEaCgOqXibvBSAk2OI+3GMLT0eVZwCmLgRJuoD9CkMCsPZ3/Yjl6TBuC30M2Y3XkWrv9zAf4j+8Kzkx+syZnhxIkTSE9Pr2yS4DxScIm45dX1D/hU05Byr+Vj6COPwMrajnLA77+WiXw73tkTjBPhaXh7TFuM66DeAeOpny8jJrMQr41sg4md3SqraSzQRFvb4dTwONICkp4qj1j2tFbAm6rnzMzYAOejMrD4r0Cd7JpZwJmFnB/7aBGMzTWnEqm6vybQ5OQ6ej9HJ+Lp1S8gtSKdALFUbb4ySssYkn6KsoiKiiQmXi66da+Z0sVPs0yfx8bEGq3tfMiFpNZNaNQLw4N6EAOMnGJ6nENRqa3atuTnHsO92BdJ7HkovYPXNmq76/PmtgQQ6weTeHBwMJhAUlwUiSvt/oJ5vgUCdvfF91npCBQV4dsWHsJtrUyMYOzsiFJPTzyzdw+mt++IMb6agUVZm9m1p9zcQhCOzRZXd0Gpj36lJH6C7IwtdWZk1kdb6quO7MxtJOL+IQmrTyXtLHI70iFqA5rwO0j2HU+Kf5MOa/Y22nia0pLgUuJ5fHRUelDkdHEQ7BztsaeFVMy+jWNbmOmVojQhD2wzzUyTcsciWFpVuSneL4vpxgRNeCyYGZ6b/Y/AgnVyeZ4O1yY2+jpdh0e1RtFm0KQuo/fwXPvQgSacZhN08oaQe84MEtaY6DamD9zJfpiDwY/wi3cw+U2pXSmXYd2MgTOGK2WZaKqvOT1Huy+DNqDJ7X3E1jhxFW2G9kCn8VLnj+vbjyL64m2B/u3d2wWcziEfjvQydmqhvTCjdq3VvdQ/b60VnjlmxHA6UW3jyOe/Ijc5A4OemwIXf+kzq2vUB2hykyxSI8kqtR1t2tuPrqmQHxs5QxAh9PbbQqejyq14tW03A2F8MsG2dGxPp00c/Hgj2Jlk5KvPwsbVUekllVbCBJYEEGiiLm6fXAQj+9OQ5E9FuwG6LQTrAzRhFyVRbjrOZp/DlpCtGOQ5CAs6zCMadAECHukNXgChogQHDxwQXFU4mGXC1s+KYWjkSHTwKivIrl27wt3DC2JWEW3k2Ho1HmtPRQkgCIMhquLvG/coJSVCKVDQWKBJDImesg21V4926PWkauHio6s3I4d0RVR9d2ozBUO/OgUxnYbvWdgfjpaawbyTa7cS2JxUp/cIt1MTaHLwE/oeZuTg8RXPwYzsjesSlsb60Gf9nkip9gNvlNKIlXQgOhLJxXl40r8LvOzNhTYJ4ewMSadOyC+rAlvKSZC5MUSO69Jv2bXx0QvIleQ8/Np8DUNT9eDxKEcNAAAgAElEQVRxFqUJpCZ9Qa4U/yNHj6YvLiobA32aWxsCTvQ+Jk2c69ehT/atZ5dGQp9kTro9kYP1Xh64aW+LjbeCUVxaDn1zc1h37wKSEca0MjEm6Rtgtp72mjgMmpR9/gUKXdxQTFbe9R1xUTNRVHitVk4z9d2W+qpPxvawth1FabVf6lRtbUATK3MDFIuldswRwf1oE54Hn4C9pMulvZi4To1UUdjAgIS2Kf1w8cFFZEYQDG8bV1QcaYX4sjgEt70iXGWob4gOzu0huVdATBNPKWjikEeMMN9Kq2ldHcxq2/bGBE0KxGXYeD4G+4OTSX+rDE90J5bkI9qDmbXtc0Ne1wyaNOToNp26HzrQ5H4PfTNoot2IawOaHPn8NwIM0gVWibMfWQxSRJ0NROCuE2jdt5NgPcyoNf9wsnSbsYk3/Xju064BDVgqjxwrDq/6RXBbGfuOZuFQdU0JPnAOoccuw3dg10rHIF2bXh+giUy/YTClqDj7Sk/15OMuO9+U3KPxP0DzIJ2rukRkyDBKo0kltskaYptInZLUxcVf9pLTTISweeVNrLIoLU1BVMhwIS2H03PUxdnfZ8GRtAGsLJ6Gu+/rmm5f7fP6AE2KyHI1MOw8ll9cUVn3rE4zMbr9eNh5SBeHpuyqQietZ8+cEf5bYJrkS4Xp5MPI2F1YpHF40glsjx49UVhS/6eoOg3Sv4VvJeZg4ZYbalkTvOmd9MMFwWp3xfgOGEbCsfLRWKCJNrbDIUcu4s4h0m1p6YQRrzxTmyFSes2yHbdwMToTHzzaHiPbqk4zk13M70x+d3Z8dCCBbjXTtbRtmCbQZNeba1AmLsXET5YIgrd1CdZxsTGSQG81bcQuXkR8VhHis4twwNEMcZSmtJA2Ijakh9OxpQ0d8ZLw6dq1yNdr2nbD8uOVkfoDnc6uRQvXp2HnrP4dlJL4MTEYtsLF7Q3YO/6vLsP+wF3LQIZlGdGFXngBellZuLw4AqVm5ejwTC5+tncXQJOtBYUoIXZIuaMTxPRezPcrxtzPDmHSqDZ4unU7mGVKgUVJcjLKL6jWPDNaTE4nfQcgG3V7dlUNomyT79fuFP0OKQf3H7gJ0NCgwvwLZDs8nzTIhhFo8o1OzdcVNOFXSkJBDDysPJGZcUWwOzY1a0P6MNoLx+vUQDWFzUwrUEzPJSmCEURXASO9fMx//mUUGOVBMlhEVsQ2ZC1PAt2SEkiSKmBwykEpaMK3GOw1GAt7LCLhdv06OQmp61tDgSaKgqiFJWVIzROjtSxVjhr1x5U44XBEPsYSs/QdYpg21WgGTZrqzNVvu5tBkzqOZzNoot0AagJNCtKzcXDlz0JKxMSPF1dWKtOvcGzVEkOXzBBSLTjlQhYBnW6SQOD9EdZS1dO4q3dwZeshuHf2F8Q76xJZJAZ6nMRAzcmyeNy782pVVV1BE1F+Efa+/x30DQ3AeibKBBjDg/sIC4T60pORnZyaW/QgtskvGvst03/xH9wdnUn3Q1mIisMp73+yIADLQrCq4h5ZwoZf/hwte18kC+Un0ML9XY33ly9QV9CEFzdiST6mrh2P3Pycyqr1yRViw/zN8HfsQCdtUjtjCxN9hIeFICQkRPhvPvEqo9OvyqDvAtuP6utbkiuRNUaPHo1CEn4tLW88HRP5sSojQGTw6pPCQvHo0kGwMK753d10MRYbzkWjm4cd1k3vWmMuGgs0YVHXfct/UJk+J9MS4QYPnD+ZxJO9dXqO1BX+40o8vj0dhQmdWuKNUQEa642ld9JVeid5dGmDPs88qrG8qgLqQBMWu9315lrBknvSpy/U+h7yFwoioGQ7yxvm0MAIZBYS00QONOGyfVo5wODLLyBy82wQdkC9dKQWlTBrLO7uTPr+tqV34Ha1NSTEUHpkHqdHrqMUnSG1uNuDfYkZaZuYRoVD7403cGtmLAqcRfB7JR8md8thS05aRsOGQe/xxyH67XcUeoohNqvAzJvleNJNH+Nd9GCVaAbDznS40tINpZtVaGUNHw6jhQuQW2EIEdkO13ewwDkzYxksYdDkYQnW0IqLego+vu/ByHyyTt3SBTQxpdTELHEKnj+wEIt6LkIHq3LERrwIR+f5cHKtn/eNLo2vZLjRRUZkq3707iH89PH3gLkE+o9IUyD5IIN19/RSTaql58h+k+XvN7fLXAz0GkrZtZqZg7q0U1a2oUATS2KCydymYjIKkUDANv+uc7RrYQ1rArZvJOSgmL5Tr+wIrmy6pYkhjrwwqDZdeSCuaQZNHohpaPRGNIMmdZyCZtBEuwHUBJpE0qnoTTod9egagD5Pj6usVLaBl4Ep5WXZiLgzkDbyBvQDVQ5v399hRptEDtaFyElKgzElnjopYUdo11LdS9XXqa7szrLUk6FLpsOxVZWWg7YtqytoknCTnIB+20cilt4YtKDmokgiKSXgqqsAVjFoVT8hgVS0NV2rjUBySDTO/bRLYMEwG0ZZFBbQydTd2RpF47ivebkH4THoNJ2ejabTsy906lJdQBNeiDH9+O0Tb+NO+h16hnMhyiskvRYjEkK2g6O1E9aNWQe9cjNBsJDp61Z06n7+/DmyfZSq0/MiraKCrjF0JIDIWwBMOEYRYGJkTK4T9b8f0Gl8FAvP/+M6gpNy8fXULujlXd0SN6e4FI8Ty0RE1Puv6PPeCp9zXY0FmvC9ZcyKxz4mrRCz6lohZ3/cIbjW+PTrjG5TNGvz6DKIYSn5mL35KtxszbB9nmahaWbsMXPP0tEWY96ao8utqpVVB5qUFxfgOllkZyZlYszbtb+HYuN4s2SWEIPg6XOQS8+DImji9soLaDlpHAoNGmazUevBqvOFEnqvdqPftVL4tz9L32ep9bmyuBs2ASXiaAKDdwlisA9jWFE6hNHBAwjNI6tXvwJ4brJCi733CGilNBpKzcJzzxFonIWiXZ9CDH3MtOiDJ0viML40EUZtesHymfdRtmEjJMRWqRG+xMT74gvoETBdKCqvAZpEEDB9cN8uzF/0EszMamdlnZ93EvdilpCbWT8hPedhiRJxHEQFf8OA0nId6fdSBuhr0z9tQRNDAz1YmOlj6aGliM+NF6r+sO/jMBddhYXNs5VrPm3uWd9lDA3LkVgYh9ePvQbJ/lI6yaB0siFV4H95eQ5K4uJhej4AooGhMHJzqaExJmvTykdWorVtgE5jqG1/Ggo0MaeDm3vxsTh94TICE7KVNqdXn36ILTbBlisJlZ83gybazlxzuQd5BJpBkzrOTjNoot0AagJNzm7YiZTQGKXpFns/+F7YSI59Zx6MLfOF0xt2CamoKKqkJ0eeuYE7hy8ITjsc7HrCIoz3I06s2YrM2LrrB8jaeov0RCJIT6TNIz3R6VHdkfm6giY3dhzD3fO30GHsALQd3rvGELIbDQMchrRJ92t/qt6GmG0M2c6Q3V+8fH5WW6/s1J83rryBVRb5uUdILPFlQVyWRWaVBacW7CI9GkvXe/AecaRWC9y6gCYmdGK1PfQv7AxTzYTp5toNbw18G0XEWK+gEx0+jTem0/jDhw+jqKiIQJMrwneBHQX09aV6Or169YILqfo/CDomiuP+zYlI/HU9AfMGtMasvt7VPmZKL+ueDPJzwqcTOyqds8YETVTZDt+9cAs3/j4GU2sLwfnLiBUD6znGfXsO2UUl+GtuH3jYad7IycRgJ6x4HiYWZrVqjSrQhFMoSkW5KEzMRuiFO+g+Q7XGS21ubEnmEnl7DyDsg1XVQZOhQ5H79Cx8eT4RU7u5C7nyD1MkxsxDXt5FjaLYUnClRLAbZtvhhzHYYdqGnoPYvdOR3CIYTgfs4HewBCaiQqBtW2LPkQ31nGeQF7ED4n0HqkATyyLor6B3+uZzqAgNqzk0BnTg8u23KLa0hbm1ueCao8g0OX3iCH7+cR2+Wr8J9va1s7WVpVs5OM0UhEsfnshFYuYOLD/7BX6edgP6FQTMa+nIpg1owvNuYlKBjYE/4Wj0EWHY2GLbTj8F34xZDyOTgYLbUWMEv/dgKMai/c8jW0SAAWntCKGY3fWv5bDeKHqAnVVbpTuaOWLNmDUk4GSq9Rhq2++GAk24N+zod+D0RRy7crtGc9q17wBXD2+8ubv6d6+p65o0M020ffIe7nLNoEkd57cZNNFuANWBJuzywAt8DnaNYfcY+Tjz/d9IjYgTnGnsW5cjOnwSIffOgpWsjd2jlN6+HPs/2lAJmMiu7TJxKPwGddOugXUoteO1r1FRVk6b98V0+lz3zRK78LAbD1su8wZM16graHL4s1+Ql5op2Pmyra9iiEURNAeP17vdJTOHophtUpZJbJP1RDtXDxhxqgSDJ3ySzifqiiGze7S1n0w/4suVDmPslWBc/fMw3LoZwq7jBsqXbk/50lIlfG2jtqCJCS20bqVdx6fnV1beium9EgnlR//LFpF9MLntZEwOmEY6MlKxQnZVKcjPxvFjx4imf5r+RvLveOnDl05RO3ToSA4cqhdr2vatIcodC0vFe3vvoJ+PA754vMpG9l52Mab9JNUf+Ol/PdDO1Vrp7RsTNFFmO8yA7qFPNxGIIFarsVPXsXyXnIeOk/PQ6ySg+5icm5CqemXOY8wWY9ZYbUIZaMJ/x4Y8b+97HfqZFVjQZyFsSXenPn2Z+Mm1IaZB4PufY8eV04g3M8SqFl4wWbsGnx+NxD83E4XueJIw7NO9vTQ6MdWm741xTW7mD0i6t5YEXp8mgVfluiZVWk0PV9qHsvE2IiZIXuYmxMZ9DoMT5uh/3RMGFeUo1yPXG1KWKLC2h2TV/1Dy8fuYGWslME3GvTsXGddzkLHpJOlAGcCENrr8T+EP/bvJ669Bn0DlAj0j2FsZ1wBNWLjym1+3IeLEn+j41Ht4ZXxN1yZtng22xmXRVLYaZsvhhyEEwJ6A/rnbuiAxnw6K/F/C24PeIUBfOwFmbUATrv94zBFsvLmxcshKxLHErIrFEJ9peG3QtxCJSVWkPl84WkwO609bWxjiTNwZpBSkqL0iJYrSrDccxojnRsOplXoNqpZWLdHXox8KCuu3Qw0FmnDHmQlUSjm23/z2N7LkmFyurq6YM3kMfc+MsOFsNA7cSUa+qAxz+rcS3tHMNmmq0QyaNNWZq992N4MmdRzPZtBEuwFUB5ok3o7EhV/2wLG1O4Yurmlve/Ofk2AmCbMuPPsYIzbyKWHDLhZFCmKw1obfCVbFiuHWwRf9Zkut4Roqsu+l4tjq32sNcKhql4xdUxvL0rqAJkXZ+di/4kdB1JHFHZVFYcFlSnuZozHtpTZjnpn2E7FNvoaFZR94+vyktgpOz+E0HdaRYT0ZxZDV5eA8B86uLymt6xwxnJKJ4dRtWieUmL0kKNz7tj2kU9NrA5pwCkK2OBULDzxXeS+m9XK+uMxCmJ9t/iOL1/u/js7OPQg4kYIhpoYSxMaE4MK5H6BHDkE8Zo6OjhhG+f55RWUPrItIcq4Ik3+8IIh6Hlw8sLJ/nxwKxb6gZGFxxZbEqqIxQRNltsNXthxE3LUQuJE1dL+ZDbc52kVAwedHwzE8wAUfjm+v8Rm9uYvem2dvoOM4EoMdppsYrCx/n/9pRxvLjFwpg4/DyJhA7rAd+OEYndZn5ePl4a9iQt9pZHGsfEFcWzeb7OISJOeLcPDFeUghK96fviOQ1M4JIhjgZEQaNl+OA6ctcbSlXPpn+nhhMDGUmnJUlFxDeOhMmJoTeOunHLwtKrxOmhLSFAVOT33YIzF1P/JSXofBTRP0O9qaoBLaoP+7v2QthfAAd7jM649ZL/+OGZ0cMOyp7oiavoPA55qb0NLHpyBz2GgsP30PLW1M4UXila7WpnC2MoGbjRlszY1Jh+EW9BNvwiXuGGI6zkVHH3d8O133w5fo8Am0RokmEP5vAuM16xA96PPIoAEzQNZc+QaHQz4TfqcsyEp3cttpmNLuCQI1NLsPaQJNOPUluTABrx77l5nDTI5cCYr1glBunCU49c3tvgzDW41CqYr3TUOOI2vtaBP87PEf1oNTpgmnWAczSMWl9cueaUjQhNvP9V+ISMTe/fuJ6VpBaWxmeOzRcfBvYQdDpgs9ZNEMmjxkE1rL7jSDJrUcONllzaCJdgOoDjS5tu0IYi4FoSOlgwQoSQeJps+uUxl2SWk/3lZQULew7EupCTcgqRCjlc9x7H2v5uKRWSbMNmnIYDtktkX26t4WvZ4aW2+3klkttx/VD+1GadYwkL9xXUAT3vzxJrBlex/0nzNRaX/ycg4jMW4ZrG1Gws17db31mStiyjk76bB2jUfr72FJizJVEXzwPFgQllOIOJVIMdKSvyTL3k0EmLwMB+fZNT4X5ReS4C0JuVGMX/40YqIfgYGBNYnbXtCpT7qCJnxKY0m6JC8eeRGxObHCvSS0KSwka0oZYCJrgKl5ByENisPYwBjrxn4LKwMHYYHF6xJTg3ScP7sZCfdyaay6YczYsazrT8JsOnXhvhdmd5zUPBG2zO4NbwcLhKbkYc5mqX3yn3MIMCMGgapoTNBE0XZYBvjq0Y6CWWGWjqp1KOo6yHHkJjNj4yXYWxhj3/Oqvxd8H37GYq7cwaU/DsKziz/6z5qAon/FbcxZE0Ih2M5TPmyJd64nFgvPGL9PZOkLElND3M6+gxVnP0Jk2F0YS4xg62yLn57YgNbmHigntk21IKaAhBbTOaW6211vJ9vpa/HZ6JB+HkUJd7FsxUoUSKoDMwyy/XY5FsxS4ujpZS8wT3p4Ndw81HUe1V1vTkTFG1c7C3pd/h3O0/uInIIUIjdrN5IS3hZYli09P23I5jwQde+5fhR+hi/BsMQdvb+W6jXJR7grCWET+PrKG7cwbUIv+HfeB8/dlnC4ZQ0RMUBF9K5kjSRR+44ofP0trDgSgZAkKdimKqwzgitBkzJjS0GQmoWptQ1el4QFSQXrAzrdEjTYmnoYG1fgaMxBbLq5CaKYOzAK9ID+KGPoWZhCEdBX1Vd1oIks9WXJgcXILM6UVkHsC8nOUoi7RqHMK6tyPfDh0BVoY1clkN7Ux7Yh2t/QoAm3OSItD2Excbh9/TKemDAGfh7ETJY8fIAJ97UZNGmIp7Tp1dkMmtRxzppBE+0GUB1osu/DH1Gcky9okLAWiWKwXgjrhti5u6D3HFfSqVhKOhW8sc4Bn7rx5jrugj5CDldZCzK6z6k+xrXM5deuVxAAEwZO6jsVKDmUhE437KI+O2P4y7pps9QFNLn212HEXA5G5wmD4T9EOS05O/NPpNz7iJxmppHTzHvaDpXW5TJSfyTrzTUa9UUCd5Kt6rlAQczPq1tbYQ5YMFgWyQnvISdrp5Cawyk6iiGzs3brSIykWY8h9FYHoUjbzkH0/9r/8OsCmvAmlOnHm279jCN3D1c2qawsAyJmmSiEItukjUMbrBqxCvnEJOGNbmHeAaIMW+HkSdKV6Pk4HBxdaINQvzRfrSdOh4LvUKrJifBUvEmpJuM6tsQ7lK5zKiIdT/TwwNKh6oUtGxM0kbcdHrp4upCWU5CRjU7jB6PN0NrR+HUYNkz58SKScoux6ZmeaONipfJSTjtIvJuAfZ/+DksHAgIJAE0ihk8ZuShZEvDR3tUGVv9Spc3NzWhzSXRrOaSNWOgwvkF6GatWgTczYtp06nfrhswBnbHw2FKUVJThrqE5jAxM4VBWCD9TO3w9ajWMtu2GJOpuZbskJLYpaulRK5ebF7YF4lpcNv6c2R0dnc3pwJn0AVTEn9cSBOYJa75wDPV3FsCTgBaqx0iXcb9fZS1obiLCSKcj9wrcW62FlXVN0D895VtkpH4HR5fn4NSiymnufrXxft/nw71nMNXzebJ0tUPfmzOBgwerNeHuiBQkdc7Fd9+2Q093A/SadBtWSWbo9LtXVTlyEmMdk0JjC0E7gkEU/j7kkaZVdHoh4jILhf8OSsxFnqgUiqDJ5K7uWDbcn1xBshEYL3U4YwtVV2KrKIvioiBixM7Q6Nx2v8eytvczMqzAvYJYvH78NaEKcQSxfC97QTKuFPr2FqSxZYy1Y9cR69dRLWNCFWjCAudmphJ8du5TXEuWgucckoIyUt+uEEAT+NAhgVk74e9tTGyEAwQDHfRUatv3pnrd/QBN3tgVhIF+9ujsZACfls4PpIZafc1fM2hSXyPZtOtpBk3qOH/NoIl2A6gKNJFZ7Fo42GDs23OVVlYqKsE/JNbJFrjD32yNpPi36JRtPLkL2CMr/VfpwrFwPE6u+1PQFDEkEcai7Dy0G9kH7Uf3166BtSzFqTmcosMbKMfWujvdqLvtP2+vE3Ra+tOGviVt7LWNuoAmMuee4S//TwCplEVG6vcEaqyjRTtZ/7Wof+s/Zl2w0Gx5eZ7gOsDuA4qRGByFCz/vrvbXTj4eGLKoykmHwbX83OMqRRVPrfsL6dH30Pt/Y+FJoEtEcH+6Zy45V5yjZ6umRoqq8dcFNDE2KsdJon1vCNxQrTptQRO+aJTPKMzsNAviEkOkJq6EviSJnDWXkeOOJ21+dT/R1/a5qs9yLPb644EL8AzdgkdnvoivCKfizfmuBf1gRxR5ddGYoIm87bB3z3YIP3lNcLhip6v7EbIUpiVDfDGjp6fKWxoTdVqfXFh+f2kNJASUhHpYoozYJ7Iw1NdHT287BPj7g4X7ipXo39gQ28Rw218wPrAPJc4tYDRvDpYdWYbQzAgUUJ56hjXRsGmzZFmUQyKNFRjg0Rcvd3keet+TFkFBATB/PkoHDUG+nvr5VNaJrMISPLr+nPARW1Nbk82spjQfMW2GGTjhPzKL7Uc7uuKZ3t5wt2saYqkMmiQnrkHivfVQJSDKv3+52XsIDF5BYPCk+/HYNeo9xqw7i1X9l9CzVoa+fSl15q0PgNDQyjZdnxcNkR3ZX+9sh76RpfBcFIMSyzK03+4B2xipMLZk+XKI/duiqKL6+1FR04RBkcV/BtYATbgOZngVkt4JP2ey+PXZXvBzrsl+ycnageSE9x8KNhC/lyUGIjy/fyFyxbn0G5mD0qgkmFzxhXh4FExcKGWK0kP97f3xxcgvKDW0VAD0lYUq0IRT/vZF7sbW4K2Vl5WVpkCclQDzI50F0ETSukxIz5FFF5cueG/weyjUUk+lUR/iRrh5Q4MmnP029OtTsKff632L+xPozilJjdDR+3TLZtDkPg30A36bZtCkjhPUDJpoN4CqQBOZRoBv/y7oOnmYysoOfPSTYMc64AU75OSuJpbDE6Sp0YPSRF4lAcwhyAl5AmHHrwjCry07+JCQ6nahLgZiGJBpiKgoL8eOV6WuLI9/tpQ2rfUncsVgyZHPf0URMXA4mIHTc/oopUwcxb7VFjQpSM/GwZU/kxCvGbF0nlc5ZLxRz8r4QxAqZMHChggZMMPpOcwkUgwGTBg4UQx2WLKwlwqIxkXNJCbSNXLi2STor8hHQUYODn6ykcARQ9JuWSwAcnfDxlBedgJ8AvaTlojcKaWGDmoLmhhQvnZGcTJeorQcZSFzwan8jCydWaeErZ0VY3HPxejdsj+dZr5AQrBn0aHzHkj0fQR3naYQt+lEd+lPlDpCoIl53ydxq8QZc0ksbna/Vhqb35igSTqLNH+3vZpeQm2twTV2VEmBQyEp+HB/CPr7OOLzx6s2EMrqYiLJwS9/R2ZcKmJdzJBPYqry4eTkhCFDhmLlwXAwSMGLbFP6Hsj+yfbG8/p5wnQlscpGDcDW2F04EHdEOKkvMTBCIbmP6JEgp3lBDswJoLGktJ8ZHWZggnl3GCWkomLefORSqlhtFtK7byXhsyNhGODriFWT1PdTse/cFwZOunvZwFyPFvKUb8/pXpwGxpve9AIxbcD1BZaAGaUeVQb9XS6BRxW1aXBtJlPJNQyaFOZfQGjIbNogdoS3X9UmUlY8LuoZeq/dUPpeq6dmPDDVRKTlY+avV7Fq0EdwME1DQIf9sC+3h97ChYBIhCJHMQJnx8Co0BAx61qhE1kPW/bPRPyADDhEWiFgFx1kPPssyh4ZjjzDmsCZMiHYjedjsH3PXiE9J63HAgzu6COkD0amERCoEKpcvlITP6XfyN9VpoY+MAOsoSEy0ecVZ1bgZurNyjRSw0QbmFxtg+KhN1FhU1KZNsOA/uwuc1AsUg7eKwNNjI1IlybrDpaf+aCyNSyIXlhwCXqFBjA/2l2anuOZRlo/VemqXHhim4mY3uFJehSaxmHB/Zz3hgZNLkZnYhnp/7Ce1G8ze1UC1fezj/fzXs2gyf0c7Qf3Xs2gSR3nphk00W4AFUETBgXYIjjqHP8QV8DG1VFga8inV8jXfG4jiX7eiUb3meUQS34TNCpsHabibugYQfMh5uBs5CalY9BzU+Di7yXocrA+h3fP9ug5Y7R2jdSxlCxtyLalE0a88oyOV6svzmMjn27EpRkMYFBAU9QWNJFpx7CoKourqoqk+NfppHM/5dOvFBg/DRFsocvaJmw1yIKw9nb9qtF+tQFNosMnkhBfFFq32SnQpOWDATYG7Ly6tyMtGqldakzkdCFFhjcqvGHRNrQBTdh1wMCoFJyvnV6UrrRqcXE4idsl02fMCJDAjEBBAwUXHfkLvxlNLILMX5CcvIX6uJv6SPzlBzjsTGlhK5Ge0mbTxvbw5VvYsnYFJjy7BG3adxE2yJxWx+8DdRoYjQWaFGbl4eiXv1Vz6WKwbfIq5SBYQ0xFer4Yj31/Hk6ZtzDCRYzFL72h9jZ39p5CyMnrSLEzQbpNFePDyMgIo0aPwfYbyTgfTdaZKqJXK3u8PcwNt07+iO+ufiuUKjWxgNjMglLXqzYqFoU5cCIKP8cHI1ei84hnaY5VnzhrGhsW47xAi/I3RwVgfKeaDl6arufPC0po43U3BpmvvikUF54tBUCENVDYXQWUeiSZN4+eOy6jTe0NU4ZBE329Ely5JAWK2nS4RGkp1ZkMzMJj5zjftkdIlLd2Y9Mwra//WreRNfnXZFG+cvAGOJsECcxDZ9u+MMlkCJoAACAASURBVL5zG3orViCpezZihqXC6Q6loO2XjkWpeTmuLI4U/r1r4CSYzfkAuRWGSsEwZaAJX3f6xFGyHF6Lj7/aAHdXF7Cjzsg1Z2p0kIG3HfNrMiHj7s4WrOA16XLV/4jVb40mJuXYFb4D2+5IhfZLS+4Jv6mGSQ5VoIl1kSB0a2jUQijDgH4ftwH0jNYE+xVBE97YiyryBEF0UZmosvGCKHrhTegVmVQDTfgeiqK6r/Z9FV1b9KoUSK/fEWi6tTU0aMLfS/5+zurrjXkDWjfdgdKy5c2giZYD9ZAXawZN6jjBzaCJdgOoCJooAwUU0yvka650rZiSTsJj+4SUHM7pjrwzhCxqMxCxcwp53TvhsY8WCZfJmAT870OenwYnXw/tGqpDKZkmRqveHdHjiZE6XKm56KlvtyGdNAkUYyLZGqsClmRlawuaXP7jAOKvh6Lr48PgO6CLykbGR88XTkMbekGYkbqe0oCIpu74OAICPkUhpQTIFOa1Sc+JDBlKC7d0+LU7Tgs6aapRTmKawFBhNyYh9YnclVqSyxJHfPQC6td5nfulCTQR8rVNJFh14TNcTbqqdFyFkzW6N4Ml+gZWAljE7hgGBqrThNyt3bGizwTci18P99ZbaVOoWvNB8xPX8CWsjPVgdPY0xBs3ITAhB/f0KvCrtQSTC/TgWyoV8TR5YirKBw9BLullqIrGAk34mWEnL8VgUJbB2foMdlcyV0FcY52PPX9uQtTtq9jyR00mgqwdJSR0HHIzBvy9LnGwQricvMeEUcMxgBh5rH9TQuk7rFki+lfrgdMPWPOB/2lrqU+aOXl0okhCyuHhgq1wupkdKvSrC1salJfCo0zKirPs3g9fT/iBHBQowacWjhDyG9QDiwaSo0ntn2tLulR05BjurViFrH/1TuTnycXKFH6d6Pu/di3yKwyq6brU53xqWxeDJizie/vWDIFNomi9LhMYZfZZQKeb2lbbZMu9vTuInJLSSS9nP6wkhyv1qaz1ymC4awdCKr5Ctk8B/Pa7wvlOFaP07sgUpHTJgavzdDh5vKdyXjWBJl+t3wR7ewdh/Njxi52/5EMV0yTizgBBc03+t6epTQIzQEIyb+Ojsysqmy6z/q0BmigwQFaP/AotLbwrBaRlFciDJsxiYQvfN469gdCMqnQrLiv9PTxXAzRR1Pjisob6hvh2zHpYG6nXU2lq41/X9jY0aDKdRMnjSZz8+ye7o5Nbw7C56zoG9Xl9M2hSn6PZdOtqBk3qOHfNoIl2A6gImhz4aAOl2+TVuHjq6mVKK4y7Tq4u5AThNzYSJk7nKDXkNUoNeQYJMYsoPeE0Es4MofzusdUcbGTuKs4EmAwm4KS+48rWQ4i7egfdpgyHT7/O9Vq9MtCET7UnLF/YIKAJgwlnvv8b4sJijHztWdi0kDq2KIuYiGkQFYeQJeafAl22oaKivEDQNvH0XopLGbmY2H4m0estKvOleRMbeeY6CskmmY+H5QEQblPYbTo9JjeegI7XKefaRHjeFJkC8kAdp3rl5RyEm+dnsLYbp3W3NIEmFuZ6CKdFYWBKoMo6S0oSUCK6S2lCDtAnnYjSEsoZJ1ttI2PVOjkVFcVwMUxDz5Y9YGg8Quv2NlZBFsG1ITZCxhdrELH1H6QQMPBrSwtMTiuCLwnbth4zBK4fv49c0mVRl2bUWKCJMqCXx5JtzdnevD6DN87WnE7zBjFJoqOrVc02u1sNyhFmZoC1EmPBLlUxJB9/DJGbJ1KTsnF41S8wsrFEjLc1SkXFGNirG/p37UAuS+rTCZkdZUoWo68cfQkJOQnQTyEWVGIiYk3sa9zPkNxe3EtySayxNSps7dDWqROWD1leK72Bg3dSsOJACHp52+PrqarBW23H25bGqmLjRlz6fkuNSywph6nzXxshcnWvlVittm3QtpwMNImK+gIZaRuIUVndLl1M74jo8McEK3KfgH3aVttky4379pwg7rt56m2U5P5UKX7LQLS1UQUuXSKnIdLT6bneF8YFVc9zobMYN2fGCOljfu3OqNSoUgWaFBcXobi4WLBRNTOTArisd8LClwzqcZhSatcPtGFU1DQpLUlGVOgIYsDaw699TXZKU5gM3nAXlGUJDJAyEn2WheDyRmkz1UATSs9RTCN1s3LDN6O+ITBWvxpgJQ+asPDrlqDfsTuiujaZ7F6i4mCU5+ZXMU3IPUdVuqqvvS9Wj1ytVk+lKYx7fbaxIUGTGBJOfurny1I9k0Xqndzqs0+NWVczaNKYo//g3LsZNKnjXDSDJtoNoCJocvTLzcKpv3wwg4KZFMqCy/I13sOuw9L9NlzdP6D0nCmCi4DgJnCnA7wCPiBBz4DKyyvoBJW1UIrph7fXk6PJsrh+T4OPrPoVuSkZGPbiU7D3lFJT6ytYO+HUeiklVj7YdrnXk9J0ElWhK9PkKoE/sQT+yELTyXlU6EhhU+/b9rDaTX19jEVR/jYEZoTgq0vrpAKonefAyOSRalXz6f+9wDC07tsJHcZIf8DLytJpczGJAAgTaudx4e/CTl5BBAl3FucXVbtepoOSkvgRsjP+RAu3t2HnOEPr5msCTcxN6AS7gqgUaoJZNaXEimGtHhbAZfDG3LI7bGwfVXmVWBRJefO0EdSzg6Pz/UsR0XpglBRkMKCU0m9Cn5yLlITYKtDE3BZuv2+EI1n2yru4KLtXY4EmDLox2Csf/M4aRylzmthftRkzXvSaZ6VBbxGx50g/iSO3uBQhyXk4ROk2oRZGeCEhHw4WJpRXLkcjmTsXpUOHIZ/0RNafuQub3XvIGrgC494mW+2EGPTp05fAR4la7Q7akxJoV4E1l7/BtZRLgo6JhCyIc0g4uUjalGphXlECZ3LRkLi5gfw0hM8m+E/AtPbTUVaimxDsW8QuYCcldith15K6hgBAEVvl2tQ5EIVUP9F2f+NluI0fiXxyAXoQQgaaJKacQEL0QoFt5u37e2XTCvLO0EHB8ySO3Z9SVX54EJrcYG2ISi/AM79cEbRnNk5JIWHV92BjT8xAj4+Fe4qLziM6cgEs063QeZMCuEyaJyFuO5FNByosVs6i5cpCFWiirlNnItOx4mCooI/z0/96oJ2rVENLFsIhDh3mWFiRdXrrnxpsfBqqYtn3hUWfI7OkaU7yIRWCTSEh2NaCpomevQmls9Y8NOrv0R8v9n6J9E1A7xppDTLQxIQYYFdSLmL1xS/VdqMo7QbMDndAWY80GLah9E0SnFUVI1qPwJwucyESN3175/qY24YETbZei8fak1EY074F3h0rdTR62KMZNHnYZ1i7/jWDJtqNk8pSzaCJdgOoCJooS69gEVe2jVUWMtFVj0GnYdMqGm5eq2BtOxY56ceRnLQUhakt0HnQfhiRc458RF+6jevbjgoirS3aeMOcdEFU3UO7nkhLyRx99Gh3Mfnzl4R8+foOBooYzCiizZoxibMmEDBQRhaJLv6e5PjyqCDYqix0AU24fgZN5IM3gCOWPVMpqKp4j/CgnsQEKEabjpcJlJC6EzREGOrlIDHrABYdqnLoeb7HcxjUahqd4lWJQ2bFp0C/KJ/YFoZwadtKSG1hajufinEwW4MZMTyehSQAe2nnGeQTc0UWMqZAespaBN08TKDJULTrqJzxpKyfmkATTWMj2wgZm3jS6fEBIReec+IVN0yK9bDQIAsO2jlMJ+vndzTd5oH5nNfPYTfDkPzSEvxKAqXMNGn17sfw6tkJ1iqeafnGNxZowm1gMPPm7lOCKLUtWSx2mUgMNyU26fU12IL1b+A16H36qVBlKLFMMgvFOGpvWgma8N/3aeVANHU9Sm0ajNcT4jB01KOQtOwI1gaZmhlJLJACDH9+Clp19qHNXoVGYMrYuAJHog/g19u/Cq5GGUkZyE+Tap8YCEk6EpAJsfS/KTXH1UwPhgFtCBBj0leVKMiyvsvQ3aUPpelo937klKDh35wWnHL+ea6/UhZNbcaWNxAlSUm4M5m0p0qktsTWj45Bm3deRhGL1dam0ga4RgaaZOfnIjyol3CHNh3J+llf+q7PJpA0JfETAVxt4f5uA7Tgwany7xv3sPp4BEbTxmzZwFxKn5xHQHIvEsD9WWhkatLngnueu/lUeH3ANvH/xogRqJg9G4m5l+ma54TUTE6TURa1AU24nm9ORuIvsrme0s0dLw+rrpeVSQyhtORvBCYsM2KbUvC31MS4HJuDN2N/pBomUzyBqKfLpEKwpGnCDnd6SlyyZnWZhWHeIylNVppix6BJTkEJMkTJWHRQtdi8bMwKU68K7jnoqwc9X81pegt7LER/98FK9VSa0jzUR1sbEjR5cftNXInNwgePtsfItspdFuujDw9SHc2gyYM0G43XlmbQpI5j3wyaaDeAiqBJSlgMzv64E4YmZFnpaCtoAvAfdSe2hz/7BXYd/oKVewLleq8TXHNir11GsdEc2iAboV3XmukPvFE+9tUfgrikLNRpp2jXGyCNXTSICWLv5YphS5/U9rI6lWNr48ub9yOfXG6sXRzQ++lxtHFzqlGnLqCJIstEVpkqHZgKAiLCg3oIC6SATjfq1B91F/Npl6lRHhbsHIK43LhqRdeO+x2tHMdVy5cO3X8adm52uBJ6C2V69BxQTrR8sHicr1dPWJUZ4dzWqgW0PFMgK/03vP/2PnTt5oPZz63Uum91BU3uxb5E1shH4eS6lBgj8ygXPgsRdwYJApAsBKkqePPEmyhZqprWDX4ACnI6x+Wt27Bmz1b8r+cQDFkwH0aWNa07lTW1MUGTxhg6tv41IOtf7N6NoKRcgW1ysU973MhIwac9BwtN8iBLXSMnR5SMG4eJ06Zg+oynkdeiO/JEpWidEI2sGyHoNq4/uo/rh1wRbXjUdMSI0h7u5cfi9eOvQVxQRGBJFkqKpUCDJYHOduSqY0CWr8n6ZANcWgozshe16tGFnlcDVMiJw3J52upg/bjvYGvkXE3IWdXtj4Wl4r29d9DFwxbrp3er1+G2MJDA+HYgri14FWIvb3T6izbfNBCq7FHr9eZaViYDTXJJRDc28ikUF92qprGUmkTaLPSecnZdRqk7s7SstWkWe3dPMI6Hp+ENEgMe3aaE3M0ehbGxB3zaHhQ6FB3+OImSRiDA7yc4nM8AfvkF8KU0udVVaRqxkTNoDINU2jPXFjQJT83HrN+ugtO7Di8ZRL+HVWOcGPcaMQUP0D0/opThiU1q8Bkg1TPk77p6GPHG1WtY99U3eO+jOaT5UkqstNYqhcjNSZ8qh55nxlIZNCmmg59NtzYho4jmTE1wam1exgWkXNGHe49usHDR7vfh2c7PwsrQSdBp+i9HQ4EmxTSuw74+LQztocUDKY1UM5j1MMxDM2jyMMxi3fvQDJrUcQybQRPtBlARNLm56yQiz95A2xF9KKWiv1aVXPx1L4xafAOLFimVdouXNu+DqfdKmFjnopX/dlJWb1utLlWgQMCwXrBzdyE2hY1gSWxsrj09W3D+OXIRkaevw4eskrupsUrWqmM6FBLlFeISAScsEssb/j7/G4cWxK6QD11AE1U6DfLWvfJ1l5amICpkuNrTOx26o7QoL0BNSEvhp8Dv8c/N92qUaeXYH989thvikqp86Qiai4oCEk91N8L1ENpgKkRLt3bkFrIIf7//E3JSs4RPefw4FUmmRyEpu4mFz32I7j3bYfHiT7Ta5HE9dQFN2I0gKlTq7uTX/pTgBMVR5ZBxiJgyylMUEugUtYDE8mQAYl3H/X5fnxEThmVvvoZ3XnsT/t37au1a8l8DTVgw0caEvhTLlyP+5EXEZxfh+rgBuBwRih8spELB+vSlMe3aGRmEFc49cxTDWrRCD7uWsKUFrYmpGU7EEpvHwRQj31uAXAmBHSqsqXnTZGhUht8DNyONmBlFrBdEYWxmDCtncswgJpAhNUU/kzY8sbEoKilHUSsfSKysYUP57crC0cIRU9tORXaB+hQ1vvaDfXdwJDQVS4b6YkYPz3p/JK1J3yRi7UYk9xoAa3JF8XGTinw+KCEPmqQlr0Zm2s9CagmnmPBnkREvkXPZQbh7r4aVTf2Kjz8oYyBrx/j154hVVYKtcyjNxdYAYUHdBft1FsCVvTcZWA7oeAk2tG/T/249JNOno9jCBiLiQ3HkZJHrXsK7Ku2bawuacN3PbbkOtk7n9AROU5CFzLWtlf82Wo80vdQFfpdoG0WF13Ev9gUCTG3gK2js1LT+JdPvync7gyaZBQWkk6IZ0OAU4NxsWvMRU8hGR/Apn7SbLAwffnFSdfPUUKDJyYg0vL07GF0J2P62noFtbZ+7xijXDJo0xqg/ePdsBk3qOCfNoIl2A6gImhxa+bPAmHjkhRlw8NbONpEteEVGb8LMIYNESP+ilIv22PXmWrTodQy2re+Szsn7gg2xfLDeBQuGagreQMsAFOGfwh9rAVDhf+f0HmERRsyVq38ertRjMbe1wshXn20QTQN1bb78+37E3wgTirBzDzv4yEIX0IQBoL0ffE8nxlXMDHU2zaLiUMRETKXFYBsCqXZoGtZafW5OmwMJxCgsIzE+OiUsLUmsrEePFmWWNo/AzNCCHD7KoF8hFekTkVPI3ve/x8CnhiADFxEREVF5jbGxMcZPmI3kMAOc3bQPzr6e6PzYYGFeZcymiooEpOScwBsv/Qmr1hXY+MEqsrb2o3aodnGR3aA2oAmLbPLaNDHhG9Ll+UGwbmYLZ1lUOhT9y6hSNpB3Q8dSpkE8WgfsIZCp6Vn+5edmY+3qlXhmzkK4e1YH/tQ9OP810ITHgsEMC3EB9BYvRmRUEv60sxDSc35KzYQesT7KiDmRR1bAkXlifOlljcHZYvTJFZPWiTX0bWywzaELrKzM8PiHC1AkUZ/zn3Mvjr4rMZXvBK+OPrBtVR24MyXxTf1Ll1FoYo4wOzeEZorxeFfVosV8cF1OLC9VkZeXi68//wgXTboj18QZ2+b2hTuxZ+o7WEA0o6AYuy5FE+hghWnd699VrS5tlgdNZNoY5hbd6Tv+M21My5Gd9jcSYj+hd2/T3JDzRk6bSKHneNWRMNiRFo1MMyH41iBKu8hA+04nkZdLuiFxpGtmNxKunqsFxyEWThYTI6qwvPqmn63ry0pTlbqi1QU0+edWIrUxvJpgsURSSgLkXYUuBnQKfOAdzbSZC01l4qJmUjrsNa20wBQth9XVnZO1gwCv9+m3kXRsPKU6Ns2h/Qg0FGjy6eEw7LmdhOcG+eCZ3l7aN6iJl2wGTZr4BNZT85ssaJKdfZk2DGlwcRlfbSjKywuRkroX2dmXaCPhDEeHYbCz611Zhj9PTPwTeflBSj9XHFe+T0Zm9XxYc/PWcGs5XSjaDJpo9yTKgya5yRk48vmvMLW2wPgPntOuAip171YEMnJnwcQml7Qf9iKLTCXObtgJj74JsPEn4MRhMgEny6vVp0w7hVklnl0DSCC2QNAm4D+sUaIuzKwtBQClICObNujVhUTVgQxad64WBW/vOY3wU9eEK9uP7o92I/sI/64LaJIWGY/T320XqPUubbxIL8VLbZpUYT6ddFNuOavYe/o0nMgdn67LIj/nMGkipJJL0gmUiu/BzulpODg9W+O0/MIve5BHKUzjXu+A02eOIy1NKjQ8aNBAorMPxO7lu4S5GzB3ElzbVYEMRgb6tEG8jCUH5yJ7W0uUuWZi2OQ2eLbL83Tq3lfjzOgKmvBJnjlhMYZ6BmQtOpXcCIKEPH3O15eFLF/fmVJ2HChlRzEklN4SdlsqvhfQ6RYtzpum+J0xa03oaEv7XwRNeJ7NCagwuRsJvXfexg90UnuaviPbFiyAPumd5Jtb4eq9PEpNQzXQRCYSu8mtvyDmOn75czC1Uq5DxNpAQQfOIi0iXniu3Dr6ofP4gWjt54rU7OpWq7JNahmBroPWXkAWMQJOvDhYcBSpTdwjHZa3X12C5Nbj4NWuOzaQwGZDxSkS8nzrnyA8QYDJ0kf8Guo2tapXHjRhbabw4L6wtGyHth3/wtJDL+JZ//ZwlJC4r/PbZEdeXYC0Vje8jxfxK93W0hhJyckkeq2edZSYXYwwSoFpYW2C9i2ljIG0lEW05guHs8sa5Of/TYD6GXi3eh8WttMEty226RYR80kxMlJ/JLH4NQSSPUIMnTXVPq4LaMJpCqPXnkUpCc5vmd0b3g4W0CPwPSRoDLG7fNG6zT/3cXQb71acisQpSez21rrNLrUN0QU0kTGt1An5Nl6vH/w7NxRoMun7C0jNF+GXZ3rC30VOgPzBH5I6tbAZNKnT8D00Fzc50KSoKAYZGSfoz3E6ZeiN1q2WVpuMxKQ/BcCE/14sTqNTuU/QudMGASBhwCQy8hOy63NGC5cJlZ93aP81bWKUn3Ryffl5QQTOTKi8jyGdcltZSa1Wm0ET7b4L8qBJ+ImruL2PFjy9OqDn9FHaVUCl8iitIjZ6NIzMiwRhtyDKfY86F4h245yg77hKJftBPgWFRRvbjepbwyJUTKePMgBF+GdmnvDfRfSngP5IaGGkKpiRwuksjRGclnKLhCk52PaY7Y91AU3O/UT05ZBoAlz6EvDST2MXZAska1tKa/H6QmP5+izAVofxd+dK+xqwn77H1U857t2OxJ0Ta9FpUgGBpVNx/MQtBAR0gq9fL9w5FYPbe8/AieynWa9FFryQNzYW49MTT+Bc/DmYH+opgCYlnaOxpPfLGNbmNY2icrqCJiYksnnoLqVYFYRjHD2PaSn76eS4ekqRjFZuQ9bHLckCWTFKxDGU4z+eUnc8yB1ImuP/X4n/KmjC82tlUAGjPf/gh9834wwBZ3/OnA19svkVv/8hLkRnKAdNJo3EXgN3hJJzjFNvP4x/cgYJi8qd+JPYQNCBcwg7fkV4hJg913HcQHh2bwsGLx1tTGqAJlyOF+Wc5TObtB2CKE3hi8c7o5+P9ukuvMnl4M3n3vO3sGPNu3Aa9BRGDxuKRzu6Cp8p2wTX9Tk/SToZb5NexiA/J3w6sYqhV9d66+N6edCE60uIngMX1wnYFHYDFxJvwqwsHGvGrIOFBTmYEQjW1ILnvFRciIMHDqhsehk9VKHkEJVLejy+TpYEnEhTZx0c/oK52R1kZk0jXZ099AyL0K79QUgM1bOFystyBI0o8nAR2JHMkpRFXUATrmPloTDsDUrCs328sHiIH4GGGQi6/T9yeOsgiNX/V4L1ZkrEsQRKfUXg1AiV3dYFNLkXu5S0vo7TOH5Jov/arxP/K2OuqZ8NAZqEpuRhzuZrgqPVjvma14ua2tiUPm8GTZrSbDVcW5scaMJACAMn2TlSgURF0OTW7Xnw9JhbyS6Jj99IQm8FQjm+LvjOi5UgCl/Pn4tLUuHn+5bSUWbQRCxOrXEfWeGmDJpwqgmnZ/BGsqFDHjRhAVUWUu3zzKPw6FK1gNGmDcHXulGqTAmdfp7B8a92EriRi0eWTkNajtSGV95pQLE+tgxlgKM2UZQtBVFYvFY+lYXrYiBmxLKna1NtvVzDrjqsc8LRsoMPBs2aAFv6UcvMU8+ekbFMWIz30fcXkPOQZmtQtrhNZfcGsuRla977HUkJ7yA36x/BOUlxUcrCcUEXh8DIIg9e7qR9Y0untBaWKCDhyz2UgsR6MP3nTETL9j6VzTYm7ZRj0Yew5uxsQTxWHjQxNHLEhkmn4GTmpnbzpgtowiKbcbnheP3YEhIxvIsXe85BL7cx5PzTvdpQcloSixia0AK/tZI0qCpby4ffelTxGfsvgybMUrIxouS1Lz6H5PZtmK5fD5iZQW/nTlz7/AcUkDWxfHpO6w6+aPnrjzi98yz27tmJ8PwY/PzHTmIpSNMN792OQNC+cwKDjoMdzBgwkaUjqgNNZPPyw9lo/HopFk/29KSNIwlxahFmtHk2K85H2fkLCCZx27vpGfjl/H5M6DIQbV090cPTHqY9uqLY0hbFpGNRnyFb+Ps7W+GXZ3vWZ9V1rksRNCktOYdDUTuwNewsDAztUUyuYL08hmL5yO1k5aonMCyaWpgb6yM1NQkXL1yo0fSk3GLEZxWT5oUUEJK307a1PQQrywsoKOxJ7/Wr9Nj7wdtfPbNBdgOZnbyi61BdQZMbCdlY/GcgCZNbYMfCHjgesQldyHpbVFREDME5TW1qat1eFidmkWILq75ks1zdll2+Ul1AkyptmL8J6Aqoddv+qxdqA5rwoRGnLGob/9xMwrYbCRge4ILZ/bzVXvYgCWxr2z915ZpBk/oYxaZfR5MDTWRDrgzMYECFQRMZs4TLylgpAQEfEwPlMmJivkG3blsqZ47/LjV1D51IK8+ZlDFXmJnCbBUZw0RWQVMFTRS1PlS5pdTXIy4DTUqKRNj9zrdCtZNWLhHcc3SJ0Jt0MqhHVFzRFlz76yjM7aww7t35tMEkAbii4EqBWF3q1KWsYrqPopioLnXVZ9n06HuCsw6nHDl4tsDI5yaizFS9HfC5DcQyCdWeZcLtTU/5ljQ4viNxwoUkTrioPrugVV2lJcnEsBhDwnJlJIC6njZ/3WjjUEqLNTvBipPdZApTWsCg6C0MmDGCUhIkCD56hVgmp+Hk444hi56ovA+n5YiRB3G5CGWU6ldUdAMfvrYHHbu4YdKTPYh91pUox64wJ2ZZWYnq51Rb0IRTUcoqsjBrx0ByQEkW2sEaLZumXoQDbQDEcmkqMpciFtZr2/mWUFI+stI30yL1s0YDr7SarAYq9F8GTXhIWQ/HSp/SEEi3R+TjD5FEXxDCLFrxMbHvjuNjNwsMzSnBdENDuP70LUSu7gi5eAdbN24UQJO1a3+l740BgikVR6aL5NjKjcCSAXBsXV27RBvQ5GpcFpZuu4mAFlb4+WntQQhLYz0U7d2P4PdXIYO+GxvdLDExjazMi8jxZ+Z0uCyYhVy96hby9fFI5VD9Y789CyvSTmLnkwcp5EETQ8NyxGZfwYv7xhNgYkeCmK4QFYdQyqATnu7+ASa2M2IlTAAAIABJREFUmUx6T/ULKN2vsbAgYePgoNvE/I2svCXbTQcm5FQCJrIPWJfHwYKEiC0vwtaWmCUSL0pHjCOnsWfJcexVrZosFkWS284k4T3q3/60AEBxaAJNzEw0p5t9d+Yu2ruTtk/kHhz9ZScen98eE/vOh5mp5o0+s4Uehs2lpEIssHkqKgrh7bsZZhZSXRfF0AU0YW0Y1ohRdxCm1eT/RwtpA5rYmOpDnwT0kV+gcZS+3PQTJEaW6NxjKDq72aq3g3ewRxHJ5InJYe1hiWbQ5GGZybr146ECTWRMku4EihgYSDeMDIrEJ/wkACmcnnPr1jy4uc2gH9/ewn+nEGDC13GKjrJg0IX1TzhK/mW5MMAiS+dR5UJQt2lp2KtDz93G8Y17q93EhHQ+nvl8EfifDRG8+OaxirgUjCM/7IZn+9aY8MoMnW5VXl6Ms2c7oqLcEMV3ViAmMAIdhnbDkGfG0OLrfdKq+QM+Pq/Dw6NhU2V4/BLD44Sxat3VH24BD4YYVm5aNg5/vwtpMcnEsrDCKAJOWrZR7kBxLyQW/3z+h8AumbX6BXLH0G5zEhn5AY3z7/Dze4++R8/oNH/1VTg+/jtER38pAJiXLg3DqZOn8NPGNxAYKH2e7tImQyL2wNy1L9OiS4JfXl6DwpwCjHthKlrRfKmKoqK7mPnsS2jf3gCjx+ShRYvJ8PJ6XmOz+fRf3iFA1QUVlE6xbN9UXEs4Uq2Ir307/DL9Sg2Tx8uXR6C4OAY9e+4nOn51RpZsHnx934G7+0yNbXyYCvC7hE/Ym94Ze/3NAosI6xUXo4KccTgYUuP/LiGh2EfvJWAWMUlmLFkCCen5iIipseeLrTh3+5IAmoxzHSSAJhV0mm9AwErfKUPQZVSV7pdiK2XvblWt5/d6u/cO0WZXgqtvD4c9bXC1jeS0XIS9/xkyzp6qAk1a+cNj3ZfwbSl1BmqI6LT8CArFZQh8d4RWlpnFNLYcZsTqacgQ5pX+x++twtJCLNw/D9FJe4QZZi01fkeZmXnRv/vi3YHvoodbD61dpxqy3bWpm5/ZEydOID09Xbg8vUCM2/dyalTlaW8OP2IFmZiEwMb2D3IYs0ZZWR46ddpIdrdSy21tIjj4eTpEO4JWrV6k9/pi4RJN7279Mtr53SLQWg7cUbxXqoMTwo0L8c7uD2F6h9hAg27jt0lb0CqLvgeJVSLmNdrYgVK8PT1QQc5TD0NER68i5vaPlMo+EW3bKk/d1fQukY1DcXE8Ll9+hObcFX37nn0Yhue+90H4TaAXSgV7PasJff78jTeAMKmxgKqYJRbBpqAEE9JFGNKGUuJVuSwNHw7Mm0e/TQ2zl7jvA/nvDeV19hqrDc33bfwReKhAEwZBrt94EvKgCYMeDIzIQBEGSBKTtgpAiYmxM6XmpAn/VMU0UZwi1kjhkKXzKArkNf6Uam7B2Y3/IDEoqkbBRxY/Qc4iDZOq42JnKuTFX/r9AGKvhaDrxKFoM6R6SoKmlpeVZZLtICnoi0wRe2Cu4JgyaN4kId0iO3MXEuPfoUXVKGIgrNZU1UP7OacOcapOAul7cPSjFCjPbjVPvM5QmlESaZl0IB0T/qNtJMS+Ilheenh/Tqr2Y7W9rN7LRYY+Bmubjti2W4Ibl0Lx7fo5iIl8k9gvz+HWFhtkxiej37PjUZSTj5uk+cIsk2FLpOLN6mLRvKfRtXsA+vSWstH82pIzjWlVOo+ya63MDQmApZN+2oSpCiOjcvwdug2/Xn0Fkorqopp8zYRO72N+9+eJ0cLOQdKIj1mKvJxjSsc6Nmo+2Q2fJ2bVelhZa79x0NT/pvC5A4lD5pDwaHn5fxk2kW745BfErBehFxGCya+9gpn+AXj845XIlxgijHSPAtniPT++EjThxbRHF390eWwILOxUb9p4oWhnZUwC3GK1j8aSvwJxJTYLnzzWEcMCnLV+jMSkFRWekovMZUuxsSIbE/Mq4P35Wjg72cGzhZ3W9eha8MmfL1NKUAE2z+oFTtPRFMtemE/aSG2wcMkyTUXr9Lm5iSGBAiD2QRk+PvcxAlMCSSj6Gh0U5BPDxIH0lTIpVcGftIzcyEHMDGvHrIWlgb0g8tvUgh2hUFGCA6RvUkbghIi0bZi1pBheBJp4UsqLiXEMnJx+Fj5m6+F2na8L/9Q2CvLOI/bufBpHWu91OClcZmtphGJxBbH8lFvg8vNvZUpskzffBMilSjH02pKg/NjhmHF8IfKIFWF2vS2BJkFop98Sawd/A70//oKErLlrRA8Cu15/HfllrAv0cLzHSsjlLuKO1Abbv90h0hyruZZklmB6rkgj0FeQd47magExSPugle9Gbae4uZzcCDCzlZlr2fnq07T5e2iWkwE9AtlJi0DpGKbmifAaYYAutMaZkVdKdsMq3s0+tFb68kvki8sfut9n3sM0R/MIPFSgCU/nlauPVUvPSSUnHWaKqNIsYY0TO7s+lW44mh4Jro+FZmUgS1NMz1Flw8tiprXV/NA0brL0nD3vroe4sBijXp8FaxcpRVbbKClJwN3QMSjJt0LEzinQIzHDyZ+/KKDpYlEU0W8nCotJ37aHta3yoSzHQrCBO46R+KnUarkzbYz8B1cBVLXRMpENFAuxsiAr5y1z/nJjRanoAkor0vH8ylWoiLPBrHe7o7uTD2mdzBQspvkZt3K2Ix2TInJGEqPfrMfIDUSz3sLhA7vh2tIDTo57kZO5nYChR0mI9VO13dSUnmNsTClCaTfxyfmPKYXsJlmvVj9N1dM3FdyIFnRbgEGeQ8lZQroRSE9ZR6lQ31Mq1HwCg16o1oao0NFEzb9Hgrj7aHHq3VjT0Cj3/a+n56gbdAvS9TG4ehn6gwejoEQiUP8v/LwbnFaoCJpok5KpTXoOt4c1TVjb5HFKbXtlhG46VfdyixB28TI2//IVHhs0DgETpqCdu/aCsrV5CF/deRvn72YIQrAsCKspXlk6n9h1AViw+GVNRev0OW9y9AxKsP3ODvx1RyoOzb9t/F3X0zcjwLUYZuadKtNL2jq1xcpHCBwrok1KE9Q3MTHSIxA+A2dOnxb6GkT6NrnFVc46poYG6OJhSwKruWjZ8nvabFc517X0+Ag29hN1Gu/YyCfpHXwbrh7LYWs/WWN6DlfOaQ7mhbnQW7iQlImrAG89OztInpuDFdc/w0mDczDIoHZeYtDkNiQ2hXhUMgpLA+ZC//uN1Cdpu22YE+boCMnatSjUN2mSYJe6AU+Kf4vmcw/pucwix7qaAKO26TlZGX+QdtpK2DlMQwv393Sa4+bC0hHQJj1HNlYWBhIY3yaL7E+kh8LykUQgV3RGATZQ+mQLcqcan14sWNlzyly1IPYi5X6iyMYBImhOa2tq89ScntPUZqxh2vvQgSbRpFliYuIigCAytxxHx2H0O/VIjRFkACQxcSs6d95QLZ2HRWZlArOc3iOzLJbVZ2XdsUlbDrP46/6PNggisLJoaNtcfuHcuhKBU99ug3ULB4x6babOT3R80DEUVrwIUbY9ovY8JlzvRkKH/WZL/z08qLeQU+vuRQrutqoV3HW+cRO7QOaec27HGQQfPC+03n9ID7Qb0UcQs2UXmdSIOMFFqP0o7VkmXE9MxBTKqw8jF4LtdOLZtlFGhjdyRnr38NbRpxF2jE5g7zmhaMwVrB71NfxbPIvA/ecr+80NZHBtzFtzdAIES0uSEBUqPTXz8v0F5haqLVDVgSY8F/llGXjt6KtCCk95eQ6JOd6sGjc6KTUh0MPIWKol8cGQ5Whp7oViWpzkkdVyYtyyGlaZrOcSdruLUL5t59v0/3JOKI0yI/f3ps2gierxZsa0Da1lRSI6uf/3FF4GksuDJmy7PmLZMxq/E9qCJrzZXfDHdcF2le1XdYlMYg39fvQSbvz5BV5e8hI69x+qy+W1KvvlsQjsCLyHF8lyeBpZD6uKZNowfHMyEvG7PofIogW6jZ+Fd8Y03HvP0oK0PtJu4YNTH1Y2qawsnYRF79CLjDYilOJnbtmbxBur0oTG+o3F/zo+Q+nD2rMuajVoDXSROWnbREaE4c6dO4jJKEQiicGaE2vK0cIELW3NYEjvew93FnwNrNYCfQMrtOlwUadWsYg4i4mbmrUXHMs0aZrIKhc2lcFk7f7RR1XzMvtp/JN1DptStqDYUQyDVLtK0KTCrgDmGSZ43nMehhsG4MPf/0QZvf8/JY0HyWefQezuhSI0zflSN+DFhbcQG/UUPZ+UUtX+DP2z+um8tqCJTJ/MpeWrsHd6Vqc5bi4sHQFdQBMub006WYZ/bwN27Kg2hNfisiEqK68GmlgSI66Lu0L65LJlKOnaAwV6D4+OifxANIMmzd8sHoEmB5pwug2n15SXFdIpWqEgzirvliOzGWaAg8swYOLmNr0SFGGghNN1hJcKpeW0IlcdrkMWLPyamrKnUiyW03EYOBEsi6k+1jLx83ursr6myDThvjJgwnazGTGJcCV9kd5PjgWLmjZU8Avn8K9HEHbiirCB7zxB95SCK9vWwKrNjyhKc0b0wXGVTZ348WLSsSJHnuQv6CRKSrNltfVW/n83VHce6HrlLYdjLgeTYK6UeWNobETpH9JTPD0SQZ340SKdhXijQoYREyIVvu2OCsKEjREmJuXYfP0dbAvaAOOgVpWgibu1O36YdAFHvtmHlMiEak1jV5AulBKmS6SnrCGmx4/EqFHvUKMONLEyN6ClcgVRsKvo86LCIBrDZDottqXUHz9B5FEWBvoGyCjIhomejeCuEx3+GFkie8BHzlZYLIqmv59ADBNPYpqotu7Upa9NqWwzaKJ+tgwN9KqJS/K7/hQ5ll0Nu1aZnsP24toAptqCJtyikWvOoIDo2zsX9Ku0idXmuboUk4k3Np+AV8hmLHn5DfTopRuQq809FMtsuRqPdaei8EQPDywd6qeyijf+CcKZyHR4B/8igCYprUZjbAfXBgFOeJNTTELRiw8tQlFJ1YFGBbFLigouV7aR30d6ChuTF3q/gJ4t+tIapeltWDjNzJIEKS9evICd5+ndSClbnWlDZkUbMw5LS0taw9HvfmFNzQVmlTK7VJeIChkhvH9ZSNzTbTilVZZrZW0tbCp30ppi+3ZUjB2JIKdyrLj8GQqsS1DiTAwvRdCk1BVmElt8NPhDBNPzdvX8eXz52uuoaOmGEgbAZEGgfm75w3MyHx89H4X5F6AM8NAWNImPXkB1nKc5WgdL6yG6TG9z2X9HQFfQhF10bEigWQAGb0hZyqxTxe9nDnmmSQ3QZMoUlD82EbkKINnDNBnNoMnDNJu170uTA0207SqDJ4bkeiEThJW/TtAzIRBE2WfK6mcAhutTdk1TBU24n2HHLiPowDkEDOsl2Ew2ZPAL59c3f0BOUjoGPTcFLv66i6de2EJ0zfZ/oCDJDbFHpSwAjtFvzUBSymQh71s+HF2ep7QGzUKeDdnvxqhbHjTh+6eExQgAmUSBvt1zxmgww0iXCAvqTvWISdH+Wo1TJF3qqW1ZIdUl/SbePzZLoKzLgyZc59BWSzDNagoubDmJEjkmlZOPBznnTNPptrxZiQodRRuRLLh7E3vJRjl7SVN6juJNY6P+J7BNtElxYkYJM0vadLwinN5xFOSdQkLMYlhaDYBH6+916tPDULgZNKndLP62bh2OnzuC1at+IIct7QBPXUCT13fdxtmoDAFQYGBB2/jtchy+PxOFuWRhObNvK3rOG545dSI8De/sCcZgSs1ZSSk6qqLf5yeEj+RBE1eyc98xv36BHQa6rM2N8PrxVxGVHQl2VZGFqDiYtEwyqppIDCILYr5xWp98rB2zDk6m6u3RtZ2T+12OHaHyionV8+s2GJSXEmhiU9mEkaNGISN9HdLTNldrVm2YJlxBRtoGpCd/I2zGO3ciMEZL0ETYVBKLy2D7NmS5WOL5Y0tRUl6CIhK0ErX5P3vXAR5VtXXXpPceSCUJIdTQi/QuUlSaUgRF4KEoRZAmKCo2wIJSRVDpRZEmUgTpvZeEFtJ77z2T5O19h0kv01Immf1/vP+9zD3nnrPPnbn3rrP2WhnFQJN8szSY+upRkQK3scT7Q1bjxpFTeJMYYEbkGFggKtmqFfLHj0dCxZJB1b0cSp0vJek0QgM/IFDfhUD9o8X6khU08aPy0+x6Wn6qVPKLNJYXNOGmrG9iIibRaxIUp91iobfHkSmIS8sqBpo4mhsKNttCtGlDFNnPkZRFTFo1LBGUNd8a0ETWTNXt4+osaFJdy6bOoInf5Xu4s/803Hu0Q4fRA6o0ZUbiTGxbuJ7cWvQx4huJcr284Xf7d2TrrEJykCuCz0lYA/wy3GWSG4L8JpfqztS8P73srpH3NGp/fEnQJDEsGqd+KP7AyZMsWtoky6S59IlLoJgazjaA1R38EJArSsceb2Ka5aYL2ip+ZzIQ9TgH3WeYCSUuenqN4ZpsB6tMC9w/fKNgiIqUInFjqbWvgWFLYi4RdbWMkBc0efKgAwEh2WjqeYWA24qdEwJ8XqdyqMdw9dhFWgZthbPHx2wju+HvYGXzBho6LqnuZajx82lAE8WW4MjBP/HXHzvx+64DdN3JVhogD2jyx+0QrD7zDENbERNjqOwlLEuPeOP0EwIx5ARbFMuCpNXjyGRM3XFLEIHdOql8m2Qpe6YoaOLRwATbJnVR5vSl2hoQe26n904c9/tHEPiVgiZ5eanEMrlV6njWMSqpZeRi7kIliqtA2INa2tjuvxdKJQJZpL9zDQ70UsbRiQRT7R2ciHmThmC6x3NpKAcDJg7OXwuli/JGbm4Snj3sI4DR7dofgkinmUxMEz6PIZUNkQ41Nmx5H8ExEjF9MQm5JiEbmQYixJw0ht0rWTBPz4RudCESouXWEePbvIncWZ+Shb0WuQGZkKpmQ0EDgsWai4Jk8s6nNh7v/3QUMSV9SA9sJemCFbKCZQFN+N7I90h2jJKUn7IPjCbkzYAioIlwjZPNtoHvU4jYUYevbwJCrgfEYxNZ2bOmycRUsaBpwmVzZGGI/PXrkWZgguwc9ROjlienGtBEnmzV3WM1oImSa6vOoEnQ7ce4sesYGnVsgRcmVK0TSsxdb5zb8S+c2zdD1zdfVijr0nrkRL8miLo9EBYODcBsCQNzEXy8S4uSapgmEtV0pucf+nhdqZzLq2OTQ+r4zLzQ1bMnsd1TCq2hso20dAqV4HNyorFt8xrcvO6PH9fPg4GRJwE6+kiNTcTlvceR6CPZnWVgrQfp3ihafsYlMlwqw4J0LExXMuQBTRgAYSCEX3hYxLWyCA9eTMJ6RwqEC/n4yNAvyS3qDwJMFhNwMqGyLurc5xrQRLElDQzwQ6C/L3r3e1FmNoc8oMmz6FRM2nZDKM3hEh1ZY9xv1xAcny4AEcLLZDVEYnoOhq6/SM4ouvh3VvksSwaBGAwqCpqoGtyhfQRcCbuINddXE5glKgaaiEkPKTPdu1RGdHTthBLUktHHpQ/e6zSDmLFalTqUVEOaZT5FdEoWRmy8jBl93NDPPg/eD+7DnZw4WtMudnp24UtzSpKE+WNg2Ezuspyig5FqZtjZjaPf1s9kBk3SqUSbdVBEiQkQXS3UU8mgF8YrBj7YuP4yPpw4Di+0IfbStWvCzjt749yxtSFNExr3J2uhQ6BYVzcr5JPLSKa9EzLy605pjjTHCXF76T71FWmBdSRNsG0FqZcFNMnKfEblpyNlvkfKfJHVswMVBU04TabaedA9Rs8n27cTyyRbAJl/dTJFCwL8FmkXlgDmL1uGrKYtkJ5X9ezAml4+DWhS0ytQO86vAU2UXAd1Bk3CH/rhMtkP27dsjJ7/G6lkJipufnPbYQTe9xVADnlLQgpuxLG7wQ87ljbjYW01v9hLcEzkBtKf2FA4CKoZbtL8hPCCX9+iJNOE539zzwkE3iQxwefBAEIPcpSxlcNimh/eA56NowfW8lkX1Z3rnVs348qls9jwq8QiWBpp8cmI8QsR7FQtHBsoDJhwf0kJ/yA8+CPScLEjLZeT9JfiDwjygCaJcX8hIvRzYfeNd+Eqi7jo30mrZxWJ4U2kGnHJzk+w/zSq975K9d4/E8W8asvqKhtfTXyuAU2qL+vygCY8qld/vkys7gR8/7I7WrjYky14CbHAEkNnDRRmc3B5yoUP5dMcUjYLA1efpxfyXAJNehN4Uj7z5h0SuE09uRqZJqRp4jpYYKbIYlMsy/i0tMRIotKbWSck7MuSoAmzIdJSLpXqigFiHR2bMk8xtd1U9HEdgLycEu4Wsgyoho7ZQSVaP1/ww5BWdvh2dGs8ffIYnp6eSCZwix2gVB1Stz3u17PdReTmy2dvbUr6JronSE9qmwQQyDEWY/+roTh0sCHeS9fDgFGjIAoPRfJP6yFu5IIvyEI7VZyPCZFpYEegTt98hJyevZBSZzUg8sl+uI9Q2trI/Tdyh5OIQ8sCmqQk/UflPXPo3taH7nHrVb309aY/ZUATQVCcsBGttWvwdN9RxKRmYWsjMzQnLbz5Ws9/KydNgnjgICTTRlV9CA1oUh9WufI5akCTynNU4RHqDJrE+Ifi3Lo/YNPYCf1mjlUyE+U3z80R4+BHa2jnKx+vLHsPBqYSbQZ5Iy76V3qB/Ins7KaSnd3cUs2Zuss7USnJp5GV8ZReNN+kF81F8p5G7Y8vCzThSbEVb5iXL4EItgJwxWCCPJFKD+8h/tNJGLU76XFskqdplR177vS/gvPCtPc+qLJzcMdBfm8LNHlbu5lkATy92LnkAU0iQ5cRS2QfXZcL6fp8q9IxpyZfIP2S9wVL4kbuvwrHM9uHWT9cL8514/UtNKBJ9a24vKDJ5/88xKXrN+H47AA+WbYSHs0qLtO5G5KIGXvvoKW9GX6dWL5DVVXMeOKW62SlmVYpw0UKmpjZu+KBdV+MJFvlBXLaKpc1ftbx0NfLwwcnPkBYSphwSEnQhP9W0nGLyxD1DSq2T/+m/zdwNyf7WwKFqioKdDlUcIIP/ryHoPg0LBncAt3drWFiqIuUtEwCMyrfwVZURyE0cC49L5yCveNMWNgU/02vbErCS6VOPrTWE4OT7JJT7DPw4M0gREbqo/U2VzTV0YHu/6Yg59wFxN0kDS5y38mlMhMGTRqPeQV282ZTSQ856ageD6ps6NX2eUzkOtrI2ggzi5fg6PKDcF5ZQJO46N/oOe9H4f7I90lNKJYBZUATPqMuASRG2rm4NmIS8oOD0cbFCvr8m8UfduuG/DlzBQHjvLp8ERdJvQY0Uew6rGutNKCJkiuqzqAJi7Ke+n47zB1sMWh+5S9wiqYqzOsZrmz5GzZujug3a5yi3UDqZmJrN5teXN8pt58MYkQEEiOCgx10yqIxKzwINWhYHmii7NC5TITLRcyIJeEoA0tC2fPVpvas5M+K/iLaVWnS4iTt8loXDE8e0CTAZyzV5T8UKMtMXa4spNbHvKvs0eqcoIVS3+u9NaBJZVeN6j6XFzQ5/CAca/edlBk0+ZNKX36iEpjhbR2waFDpchPVzaR0TwsOPMBlv1isGNkavZvYlnsqZqSY+hzH4E4tsC3WWSifOTqjJ8zpxV7RYDkAff08rLmxGpdDJLbwHGWBJtLPGDwRkQisllblJUw2hjZYTeKjolxDZBcRlVV0vCXbmRoSKJCThfx0Eo1UMhIysnEnmBzDiIHR013CntEmsdTcrMJSzPJOITI0QCaxldJ1ioviyjIkZusxa09X15YYhGdlaVLsGEG8ly+BuXMRa/gQT4eHwdjHBO6HnGBKfxb17gXdjxYiacZcLHpIrkAEkMxt6IKmuzaT6K24Shg0ck+iChuIc2Lw7JGEPda42WEC+txlAk0iQj5DYvx+KoddSuWwVbeZV4VTrxVdKwua8CQeUllOjq8vGixdBE+H5+LMdnYSLZ487TqnxVPRwmlAk1pxWdf4IDSgiZJLoM6gCZcwHPtqM4yohGHY0mlKZqL85rf3nYL/1QfwHNoTLQZKaJqKRFTYCsTH7iQth49Iy2FihV1Ehn2NhNg9JBQ3gMRgVytyOrVtU1WgiVQUlXU0WE+jvoV0Z7Lk/GUFTZhqz244HCyky4K6soSPd3fabU4WQJNccSLVe48o05lAlr7qwjEa0KT6VlFe0OSXi37Yd/KiAJqENhuDd8hafmxH53IH/PXxxzjqHYH5xNwYRQyO6owf/vPB/ruhmNPfA2PKGWNoQgbG/HoVDUz1cWh6D3x0kCyIfWPwbq/GmNTVVeHh6pML2En/Y9hyf0uxPioCTeQ9WSf7Tvio12IwrpGnYlcLBo7MdfMh+v474HqhHbK8Y+TjfWNSEZmcCSdLI7haycFCbUEsphUrkJQuVti1I9T/TaSk3IW90+ewsH5N7uEbkDCsYVQYwre9gcB+0XC4ZQW3M8TgNDRE/oYNyDEygW5SAhZOnoxUYtx+uHINHJu6IpN8depDRIR+Di5Jld4zZWGaBPkSqzPtlsCsZIalJhTLgCpAk4UELLdoYITxaX5w2L5ZGEhd1uKpKNMa0ESx67CutdKAJkquqDqDJtkks3/4Y3K0IX2LEV8r5mgjS/qOfkG2fokpGPjhRFg6kWK8ghER8intQBwg4bYvYGE1qsJecsUJVMYwmB4W0wTQhMGT+hJVBZrERK4luu0vZZao1IfcSkVcea6Nmx2knTMPYdqygiYZ6feJATWB2jWl9gdkTlmQ71v0EHlHeIjMI9eg0MDZgpYJa5rUx9CAJtW36vKAJiwEy6U2eTH+BaBJhomDYM/LNr1lBQvHcrtNEzoW7mRW0/R23wzGunO+AqjzAQEnZcX5ZzFYfMiLhDutseq1trjqH4d5++/LLXZbtG9dAhvCUgKx7MLnpU6pStCEOx/ebDiGebxK5XyyuSXJk3ouLzJFDjBrFhAdLU9T4VhqKYik3qac5hLFv4OzJYwIhJApDAwE1450PWNkSTUWZGpY/CBxxjEq71xIbNQWxErdp0APgAnDTnWkAAAgAElEQVSlNvTGTERonxMAEwZO8pcuRVYrErHNFcGYSnN2rPoe0QmpaDpiMvq3c1XoPOrYSHrPZIaUR6vzcLIlXSACIiuq6GB2CrNUWGy+PmrSqWqdlQVNEtKzMWz9JYFZd3tudxjuJgdGV1fkdO+JFG35mV2qmldN9aMBTWoq87XrvBrQRMn1UGfQhDVG/pq3inikIrz+w4dKZqLs5vHBkTj90y6Y2VrgpcVTlTpHWNB8JCeeoPrY76lOdnClfcXFbEV0+PdCeQ6X6dSXqCrQJDL0C9Lj+JNos58QbVbxMit1Xgepc42ZxVC6Dr8VpiIraMLMJ2ZAWViNJODvS5nTUOCWQ/o8XBnP1zQzrZhxVR9DA5pU36rLA5pILYeNkoOLgSYMSJTFNmEry94/SMoizs7tK9TLV2eceUo2x397o4+HLZaPILeTMmLL1UBsvuSPCV0akbOLREdk8vabeBqVgk+HtcTglkRVlzMsTHWJOcZeKqWD8y2i+7E4V3X2neK8XLIhrprcsgWvQZAfRPPny5kF4Ms8MaJonuOCk4VSp9ZS+r8MPeV/8gmyPdsijUAJZYKdcG7e7IfsrDBBdJTFRxWJyMCZSEg6h+aHHGHd6V3kDh2GJFGhQKaISplOe4fh51tR2DettNOfIudUlzYhATORmnwOtvYfoHXz2RWCJrm5KYITohYJ5DZrXdpqW13mXBvGqSxocuBeGL4/9RQ9m9gIgLEZleTlU8lcYo5IADvrW2hAk/q24mXPVwOaKHkdqDNowlM/tGQtcjKzMeKbmdBl70MVx6OTV/HwxBW06d8RzV7uq1TvIQHv0c33olyuIWxdxxZ2sgpvKjXAWtK4qkCTsKAPCbQivQISdWNxt/oYOTmRxGAaRFukeXBx/x1GJl1kBk0iQj4hptQh2Dl+LDhAyRqFYMtoeqHSlgBXjkuojzdk7aJOHacBTapvOeUBTS4QK+MjYmWUBE1WECDRm4CJksE2llN33EJjG2PsnKx42aai2ZCen51w2BGnrFhKoMppAleWDm0pOLsI98z7Yfj25FO0dbLAz+M7KHr6MtsZk4sPa2UkpTEPQz3CRE8EPXaS+e03uQb8RW4OwnNyMTEsFU1sTQT2jkwxfjxyhwxFkrZs5Y0V9cmgSUDgRoSHrirl1sKAkKxCugE+r5FW1RO0DZkC41EkkCnWKl4SRdjO6F+uICIpExfn9YMqRXRlylkNHsTPbPzsxu5zvXperhA0kerRsaW0W9P9NThq9T+1sqDJrD/u4jZpDUl/+7g/Fl2uCjcrdci2BjRRh1Wq+jFqQBMlc6zuoIm0dGbYp+/AyILly1QbZ1bvRlxQBF6ZMwYGjcqvbZflrEG+k6hM4bbMIprcZ0rSSSpnIBaNiHba6EXX1Ly/4Kijq1e99fOyzE9Vx1QVaBLkN5kcZG4WsxBU1ZjVqR+pK4CxaTdyEdosM2ji/3QUAXg+cPXYDUOjNjJPmV172L2H27AOSlrqdTg33ggT054y91GXDtSAJtW3mvKAJjwqLrcJ831UwDQxtXcTABET/dLlISwau/LfJ3iJ2BqfEWujuiOR7GyHrr8o2A2z7XBZ8cbv1xEYl4atb5HNcEPJ/ZF3WYetu4jEjBysH9cB7Z0rtlWWZ17qCJpInGTyoLVxI3DmTKXTZYZRSHw61hqIiOYvwtvhaejsagU9cuuoNDp1Qv6iRaVBiUobln0AgyYp6YnwutuDSkZy6EX9T2KmtoQuzcfYQA9pmXkyiV1Kdae6vHANWWKzMsV3WRuHNXJ2T3kBrtbGCo5YPZuxMD8DIi2ar4DI4OVyy3OSEo6S2Pwi2pQZRJszxILWhMIZUAY0CU/KwGubrkKHmG8nP+gt2GTX99CAJvX9CpDMXwOaKHkdqDtocvLbbUiKjMWgBZNgbi9RrldVZCSl4p9lv0CLHoZmbF6EyMTK1fArOneAz+u0m/NYqD3mGmRZgi2IWQOiaOjqOQgOKHU1qgo0kbJ2WI+DdTnqa+TnZ8H30SCIxXEC68bZ8WVh9yUts2zKPecpLy8DT70ku9nN29wXGCOyBou/+jzsSYCJEbR1zEmfIILsho+RGGwjWbuoU8dpQJPqW055QRMe2fd7T8Dr0AZBCHbKsN5CaUtZ8f1/T3Hgbhhm9W2C8Z1r5lpmZ5x0suX9d3ZvmJYAdrKpdKTvqnPC0C8QO4BfIKSx6aI/tl4LxIstGmLZy61UtiDqCJrw5AUnGQP6TfuQNij8/SvMRzABJsEJ6dhPApOpOiJMItDE2lgfLewq2bSxthZ0TNJEeipzBGLQJD0rF0EBX5HI/C5BDNbF9QvkaWXgt7u/4v1OM6i0SVShrWoelZQ8FUpKjNCu4+1y2SmshcOaOCtHtkEvKnmoT5EYfxARIUthZtYGTo13lwuaxERtQGzkBsEdkV0SNaF4BpQBTXbdCMb6874q/31TfDY131IDmtT8GtSGEWhAEyVXQd1Bk7Nr9yA2IFywAmZLYFVGwHUv3PrjJBxaueP1heOhbK78ngyj2uMgemE8KriHyBLhIR8jKf5wqUPrshVxVYEmUoE2j5ZnoKNLDgH1OPgBOypsOYF3zdCu/d+VgibsBsCuAAaGrQj0+0PuzD17NAAmxq4wNnJDWMSfaNHmgdx91JUGGtCk+lZSEdDkodc9fPv1pwJo0trTEz+9LnGMKhnv7roNr/AkrBnTHp1cLKtvUkXONHHLdfjHpmHbpC7waFDcyvdJZAqm7LhZrHyIwQGOuNRszCT6OsdCcv5p36g020QRGru6giacB77vGMVFQvT++0THKVQ9YCHJvCL/+1ZQAjLFucVAEx0tLRLbtarwGshfuRJZzq5Iz5cdcK7sopKCJknJz8iV7FWygW6I1u2O4+tL3+Je1D2MbTUWr3iMIGHS8u2lmT3ILEJ9gyYk8H2o3FOytTZbbM8kkPCNGgIJK8tHVX7u+2gguLy1UeOfYWzaq8xTMcuE2SYOzl/D3Gp4VQ6nzvetDGjyv5238CgiGd8Mb42+Tcu3Y6/zSSwyQQ1oUp9Wu/y5akATJa8DZYEAJU+vdPOLmw8g8nEAek4bBfsWbkr3V7SDq9uOIPS+Dzq8NhC9XumqNGhS+NJ+ll7aZfshjwpfCbbKLRlNWvxbZ0t0qgo0Ybtcts1t3uYuMSXKf4hU6UVUizuTMm/cGn8Ga9vxFTJN4mO2Iyr8WxLQHUNCup/KPauo0I8RFNgIQaERGNBXBCu7z+Tuo6400IAm1beSioAm0VGR2P/XXuxJdINYzxTHZvSChVHp34t+P56jUoY8HJ/ZSxACrYlYQJaal/1isWIk6a40KX5PYStktkQe2LwhvnilFUxpDrppKchPThFAgRuB8UjOLNQeYY0TWxOJLpjI2gpp2XnI0taTa1rqDJrwRNkpRu/OTYi+lYhks6gtA00MILHwPMe90ESkZonlA02mToW4Vx8k68phSSxD5qWgSSaxjVizy9yyDU6FR+Cw3+2C1p/2+Qye1u0ERkpZwSKnLHZqQkCAMwEC5cVfZG+9imyuR7R1xMJBzWQYXd06JDZ6M2IiyMnQrC+c3NaVOTlpGY9rk50wNC4bbK1bWam62ZQETQx0ReSEU7mEaxKVHZ58HAVdYoiPaOtQ7gD5p0/FTuZVlwwV9KwBTVSQxDrQhQY0UXIR1R00ubbjKELuPsELE4ehUYfmSmajePODH62BOJvqxj/5Hzw87JQGTZ56daEyh3RSVb9OVFjZaoJZg4O1OEpGXRYzrQrQpEDVXtsEzTyvqfQ6UdfOkhOP0YP2Qujp8e7kaXqoLn8m0h00e+dl5J4zWu4p5+XexicrVyDSLwN7tv5Adp3N660gmwY0kfvyUbiBIqCJ9GTzqRzhCpUjLB7cHK+0Lv7wzewOZnk4WBjirxp0E/mBXmL308vsHHL4GUPWw0Vj7Vlf7LkVjHd7Ncakrq6C9aY5YSCib1ci7dJVPAhLFIQRi0ZnFyvoDxuCvEmTEBifKnxkYVkxg6Joe3UHTXgu5lpiaO/eBRw5QvfpfKTmpMJE14Tu3RKWDjsPxaRmFQNNHM0N4UaCwGVGnz7If3c6EqFboVWtIhd5UdAE+YG4E7wHy6+uJSZE94LujHWNsW7IOuhrmSM7p7SrkVSouzJA/DqBbHP33UPHRpZYO7a9IsNV6za5uUl49pDWkjZeyiuxZuccftZo2uoilaLWDPtMrZNcZPClQBMSNs7NTseNGzcqnKK0fI6FmVmguWSYmZmhc+fOSCSx6rx6hJpoQJO68s1Qbh4a0ES5/CkNBCh5eqWb3/7rP/hfuS+wQdy7t1W6P2kHkU8CcXHTflg6NcTADyeCf3CUBZge3/cUum/R1ov+U3arQdY1iaVa2ezsMAFsERNFlIMtY9k6tq5FVYAm2VnB8HsylAACJ7i3OFHXUqbwfIL8ppA47g04OM2EufX0cvvxe/IylZYFyqXHI+1MTy8ft0IOYuWqldCOtkSfWU3xftdVyMouLa6p8ETUqKEGNKm+xVIGNJG6zLB+A+s4FI1/H0Vi2dFHAvWbKeA1FbtvBmPdOV+M7eSMD/p5FBvGHHrBZTZJUQ0KXbJFNs3PRvikd+D/qLR2R+PuHeCwaS2SM8RYtnQRdHR0segT2e3F6wJowteMuYEWtD5bipQ7V/As3gfulk1grm+BmJRssGsRxyE7Y0EI9jMCmxuY6hfTjClYiEakdfPjj0imXW1Fyp0qu66koAmzYFLF8Zi07wUCRuIEzS7WPpOGp60nvur/FYnG5pYCyqIjViEu+nc0sJ8D6wb/K/eUUnFNnuuh6T0qG1qd/Dwl7luEhm4XtGPsnT4vNkdxTgyYTaytbYGmnpfq5Pyrc1JllecY6WshNDgQt26VtnNmhkkAiV6nEaOKeGFgVzG+VosGM8eGDB0KLR0D0hWqnLVSnfOt6nNpQJOqzrB69K8BTZRcJ2WBACVPr3TzB/9cwNMzN9H65V5o3r+L0v1JO7h36CyeXbiDFi++AM8hPZUGTZhhwkwTFltr1rpipLyySUgfcvg4h0bLiZL7SmVN1OrzqgBNMtIfIPDZG+Tg0prcX/aoVT6qcrBpKVcR7D9NKFdiceGyysZ4h83Huwcdo0elTXfkGo4B6QTEZQbSw3xn6N91EUCT9EG3MKfnT+jbeBwBgPUPONGAJnJdQkodrAxoEktsgld/vkzXPXD6gz7ga1kaDFQwYDGtZ2NM7uaq1BiVaXyG7IQ/IVvhPmSJvJyskYsGj53n8Nc73eBATAhpsBVtwn0v+E8m7Y4ioW1uBtMN69DIzQHJpAm9fNkS2i3XwbIvvil2XBF5j1JDrwugCU/KhK2TU2JwcewAXMozQM+MOPSwbgb/mGxEp2TCxcoIW4m2E08vZz9qlV+alb9mDTKsGyITqtMxKZp0Bk2yiD3CL5jzTs7D46hLgti8FjEqjYw7FVuflz1exoTWbyIrq/hYwoLmIznxBD1LrKRniWEVXo59SFg4hwSGz8wp/n1Q5hpWp7Zm+mG4fuMlYcgeLYuXWUt1vwyN2tIzBjGVNKFUBsrTNDHRF+Hevbuk11wI+jJg8pg0nMR5hUyqsnSGunXrBhtbO2Tlyr5pqdQkalFjDWhSixajBoeiAU2UTL66gyaP/7sO72OX0HzAC2g9THUWpidWbEFKdHyBwKyyTBNxTiztQvSlnTsbeLQ6p+SqgWpr1yA2epPQj73zl1QyMVLpPmtLB1UBmqQmn6e67RkwMaO6bbfy67ZrSw6qcxzRoQsQF3ccljbjYef4calTS4EVrtHmWm1Zg7UATAy1Mf3QQPjG3IL+PfcC0AQiHfwy+gYcjd3A9fj1KTSgSfWttjKgCY+SxVLvBCcIDjPsNCON2X/eBQuCfjeqDXq415yTCLMepu64JdgJs62wNOLTs/Hy+kswJkedU+SsUzL0RHl48tseZG7aLHxkN3wIbN55G/GkuRFFbArekd229mt6+dbBlFkfgfVOpO47afSCklUOUFAXQBPBSYf0X/Z77Yb4ui92HryCKcl+cCF3MQ/rFohNyYIbWe5uystFKoEmH2qVA/zOno3sjp3JYacQsFL1lS+AJrlZ2Hp/G476/CN0n5Z6Ffl5WQIrlUtEWOBVGnO7zkUX+x7E8iscSeCzCWSnex8uTXYQ0FJx2c0EKkkLKEd4WNVzq4392VsZ4tbd9whkOkkOOdPJIWdmwTAT4/eTw85nBDy9SgBUcaCxNs6lto+pPNBE+v08efIk4uPjhWlIS3JKzqm1g3mB3lTLli3RxKMpiTjLYA1e25OjwPg0oIkCSauDTeosaHKNaqmjk2mnq135QkZF17O849NIsOzw/XDw5w1NDdDa0bxYn+oOmvheuoe7B07DvUc7dBg9QCWXeFJELE5+tw0GpkZ4Zdl7Qp/KgibsmsPuOWyzynarqoiYyPVUtiMBAJgqypTRuhBVAZqwAxE7EWkeaEpfIbrww4P7EqX/xk33Q58cdYpGXPSviI74CVY2E9DQcbFMlxjvzuvqibHt/lYcfPAV8nJTi4Mm1EsTu5FYM/QXciTQQQ4JataX0IAm1bfSyoIme2+FYM3ZZ6WsK4esuwje3eQyhZIU8OqbHZBA4MgwAkfMDHRxYlahowcDOgzstKH7/cY3OpYaEn8/jUS5CF++CqknTsJixrtwGDcKj2cvRuKV68Lxu6j8RJtAgXGR6cKzg8fQvsj/6CMk5ZCbTDlaABWBJry3qw6EeH363dr5cCf+fnIEA3R74+zW0xgX4wP7jGQ0NGkAzwbupGtRyU41lQDkTZhIOibyCenKe+1YmmrhXNAF/Hj1J6Fpfl4m0tKIyZpf+Hsq0jKAsUlX4XMR/d/6oRtgpWeHzBwJWC0VqG/S8j/o6tpVOISPDnnhwrMYfPWqJ/o3q38OdAya+IWcIye5qQRIWZF2yXkhqxxSBrCt3SwCVN6Vdyk1x5fIQEXuOfxZnjgTx48do9+iPAHIC0vKKJXDFnZmZAeuh4YNG6J3795IzcwrVZ5WXxKvAU3qy0pXPM86B5qwwNxpUn4+/TgaXRtbYc7AphVmoLLjlxzwgputMd7o0kiwJvzpv2fCfx/QQnLDU3fQJOj2I9zYdRwuHVugywTV6Hs8PXsTD45cgGvnVug8frCQJ2VBE6bMBvi8TpatzUkX4i+VfXtjozYiJlKi5G7ntJTcTcaqrO+a6qgqQJP4mK3k/vI9rGzfQkOHhTU1tVp5XnNjXfj7LUN01G7SyBlMWjnfFxsnuzLwzhrvnjHoJEvo6opxLvg0Nt/ZjKxMX+RkhxYDTaQP8t2cuuHDrvOQkVnc1lOWc6jrMRrQpPpWTlnQJCwxA69vviqU5pymkgR+PZJqO/DD+JH3VcduVDQrA1efRzqxtf4lRokpMUs4/iBr2NVkETuynSMWkKVwWSHs2BpQqcYvvwDk7pJGVrjGWWm4/soE5MTGFQNNRLa2aLBlE4Lpe8oOO04kgFtWlAeaJCcnYeEH7+CtKdPRvVc/Rada5e106HfrSugFbLi1QaD7G8YbwOV2Pl631oLT3RsCONXEyg2WhtaES5QDnLRoQbVNywlUK60fosoJaGvnIh1xeP+fGQUvgvw7y7+3JYNZgqy1weFm4YYfB/+IVNI3yRFn4cmDDsQs0qbSy/uVDm/9eV/sulEoLlxpgzp2AIMmkQkZVOr7FtLT7hR75goN/AApSaeF+yffRzUhXwb4t7po6JH+Ev+eJJA9elnBP3WxMVG4fPkyIpMziW2SVuwwfR1teDqYwcjQEIOHDIGYft/KEkKWb5Tqe7QGNFHftVPlyOscaBJNX34GN5gZwlEZaFLZ8a+svYTV49uj8XNl9910w+M20n7VHTQJf+iHy78dgkMrd/SYOkIl19b5n/ch+lkwur75MpzbSx44lQVN0tNu0+7EJKK/diQa7DaVjFPaidQKj/93Q8clxAh4Q6X9V3dnVQGaMFOCGRO2drNpF+id6p5SrT4fgyYZGZF4cG+A4AzQyP3Xgp1JHrjv45cI9AhD42aHilG9y5uUtg49zJMOynaijHNwnxnp9xB0KgXJwUCryboCeMilahx9XfqiuXUr5Iqrdle2tiyCBjSpvpVQFjThkf5v5y08ikguEFQ9Tzvti2nHvaubNVa9pjrxcUWzwi4+/MywbVIXeDSQuEUsP/EER7zCMY82XUa3dyq3awaDjPREZKGbR8KIeQL75PaZG8hfvLgYaJL59QqcyTbGAe8YoS8GjFram6EF/WtJu7n8303oLaY80CQpMRqzp/8P/3vvPfTqM0TRqVZpO/7dSsyOwazjMxGXJhF8NU/Wgae3EUa+8zpc166CcSKJrNLLXEvbVjDUNiq9a21ggPz165GuZ0wlTFWn18SCvvp6eZh/ag5CksMKxiEFqEsmysDIs+D3lj/r79of0zq+i1Rq6/t4KLECnUnT6nil+T38IBwr/32CYZ72+HgIgUO1NJhJpYooqd8jBU0S44+CHeVYcLdxswOU2zwkxG5BaNCPComlq2Ks6tyHHjFHjLPSizGktJ/bfbOte8k4c/ECXJzpmm3eHHe9vHDj3kPhEHIZFhyq+HfflAAXdgzr168fLCwskZhTNbpC6pJ3DWiiLitVteOsc6CJNF0lwY3K0lje8Zsv+sMrLAnD2zoKzBVmmnDJD5fpcKg7aBLjF4pz6/+ATWMn9JupPMsiOyMThz9eL+RmxDczoWsgUd9WFjRJTb5ImhrvwcSUNDUaq15Tg9XvmR7KwUwKZlSoa1QFaBIR+jkS4/6iMqbPqIzpdXVNTZWMm0ETdnYIDCSdHHJpMjJ5AS7uvwnnEotJi+dhX9I2MCarZgltv7Jg6mxOfmapwzat+xbeD3zw08+rqD+zYp+nkZWgoZZkJ7SuhwY0qb4VVgVosu1aIH6h++jLre2xZHALbL7kjy1XA/HWCy6Y3tu9+iZTzpkWHHiAy36xWDGyNXo3sRWOkgI9G8Z1QDvnir9XhvrayCDHCWkkJKYgYtef2HXqgFCe8/rQ8RANGIhb0VkCkMAAEoMKJYM3Zlj7pI2TuaD5we4VHBG0SRMdF4FViz9A+1eGYOTQSXCxNKo0b+wIc+HsKbi6ucOF/lVlSEGI2cdnIzw1nNhEvHmVWgCaWAxrhnEurWC1dClYSNdA2wCtGngKbJO8Im/W+fR5Vqs2BBqr6K29jEnzhry+fh7W3FiNmxFXBcBEah2dl5dKbmglnEVIP4rLc0T0/4vGux3eRTd7Dzy+/zL95neh3/zfK03xnZAEzNxbftlXpR1U0wFWhs/fnpU8X152DhLzCvMmBU14ydmNj135mjTbSgzMDgiK3AekXIK1w0pB8F8ThRnY9tvP8Lp/B9+vkWgolRWC1ffOHcDRo8LHWnShs44Sg7kl47VcKkskdtR4S2tkT56Cc8Q2SYqLhTF9N4tGG09PuFGpXLaBGTLy66eWiTQfGtBE843kDGhAk+fXQXmgCWuaLD7oBRM9HWE3qmTJT3nUN3W5vBJCo3Fk+VZYOjbAK0veVnrYAbce4+KWI7Bv7ooXZ40p6M/SRK9cmqAsJ02IP4EA37mwtBoMtyY/ytJE7mOiI7eSHdtKoZ2j8wI0tJ8idx+1oYEubRcY6GkhhWwvVRX+z2YhMeE/NPZYDQvLQarqtk70Y0QvTWSIQIKsmfC+N5A0RqLh5v4DlXoNRVLiefj5TIepGe1iN1eOIbVx/Rrcv3sbP/+qXD/qnnQWmUwjUUnpi466z6c2j593Gk2NdJCURp6vCsaz6FSM2XQVlkZ6OPNhH3zwxz1B12ElicAOalkoDqtg90o3W0Gskj9Ie2XBoGZC6S1Ht5VnBM2Kc/P6Fgghynoi3qUX0+bBx1Pfpp1aLXz682YYmhoX0yMJSUiHd1gyHoYnwTs8mf4llbqeDYnF0snFEq91aog1F76D1hEfhDfXwmdvryN2SgM4FnH0KWtsrFUwbvQrGPvGmxj9+jhZhy/3cTxfLR0xVpMuyJXQK0L7hPQcPAhLLABNvD3TMe2lsRjgFwmD3yTggqWhJRpbNpbom7BYyxtvIG/YMKTrVp3wK59Xi14uj/sdE/SitKnEiuVl8otozGRnRxKz7/HzPIiI3epJWiVlixV/3XsOdJMP09rpw6Vx5eKl0SSC+9LqC7AiptHpuX3kznV1NTBELrQP7Af27i3zlImkR5RKz8YWhroCQ6rMmDcPYhLyzdQpZEBa0LyTCDDk5Y6O3IKoiM1o2nwVNjw4Ad+Iw1g9eAP0jbrX2992A2KVlhXryJXr9t072LK5bGAuW5scqCipRvTchyVLgIcPBTFqBr3F/HBSJDLFuRhH5xlIp+oWkw4dz5ZwfvM1XLp4jpyhyP/7eTg5OeGF10Yj38wSGboG1XXp1drz8DuMJjQZqLegSeiTIKQlpqJZ11bCVVAeaLLs891oYWcKe3pAYeG62+QEYG5qiDnzJG4rRXeY1PFySolNwp4lG2BqbY7xy4tbKCoyn7O/H8Gza97o+voAtHmx0MK45G6cvH1HR/0FX98laNBwNJo0WS5vc5mPj4jYjgD/r4TjXVzmwdFJdYJkUsprRZaTMg+0ggOFHQZ6GFRl/am31xtITr4Fz9Y7YUYAgCYKM8C7rLyry2yTyIidZOX3BYyMmsLe/ldcubIahoaH0bzFJLi6LlIqbVGRkUhOSYYHKdjX5zCg3bAseqGt6u9Rfc6xdO78m8XMNWUdmoZvuAyfqBT8Rg41Hx/2QiQxEY7P7gVXYlTUdPx+OQDfnXyKSWR9/NHg5giMS8OQNRcFm+HTBPIoEsxm+GjhPLIg18WXVJpT2bXKbAtmtDKI8oDAlPshicI4PhjghkeJZ7Hvzk50vmUCX/cMOLZtjY3Dv0YTG/OCfnXz6A1IXPyFKzk9C2MnjsXIka/jnTcn0BZZcfZGjq6EBaps5CEHx3yPkgPNVqErFrm9F5ooPC9Jy3MYNLFtbKgC74cAACAASURBVILvB8yE+RayrD9zRjjW2cwZDYwbQNSJ7imLFiGHXv4qy5Uy482DGIGJ/lh4WqLLxaAg/3aXJbCbEH+WjsinTYLepVgm0jGYaaVhRe/ZEIlpfg1lY+p2+vo/pGWLce2jAXIDcsrMXZ62fKXo8gv8d98B14szJL3pOo0hK25pMCvK9Xn5esEfX30V+WPHIcegOGNEeA5ktzdKeF5eBkIjtuFU8B0c2vEM+Yli9HzHHQv6/AJtkWquTXnmXNPHCuLv9CyBHcQWoXu9NHwJdP494BmepSfhy+Yd0IQYaPx8VxBvvw2xsSnydPUk7JJEcsSZMQOi9HQBOCnK5AolsDYgNh3fOhujQ3IO+iZkCjpD7d4ehXgXF5y9clno1sTEBIMnTICWUyNkFwG9ajpHNXl+vnY1oclAvQNNEiLjEHDvGQLuPoNjcxd0HSmxEywLNPEJS8BX2y7jm1GtC66UO17BuH/tMZb+INF1UPfynOx0Kqf5ZD10DfUx4utC+zdFvxp/f/ozslLT8dKit2HW0LqgG2XLc+JjdyIqbIVcDiSKziEhdi8iwyTAiSqV3A2IEsxPC5lZVfvjWxXlOf5PXyWBPH+ZdTkUzb06tpOW5zD7gcPfZzSyMp4iOXUqNqw9iwkTw9G155ckblc7tQjULeea8pzqWzFVlOfwaLk8h8t0uETnH6+Icq18q29mhWc68zQan/ztjT4etlg+ojXO+cRgCQE73Rtb4/vRimuuHPv7L2gR22PwiELGZWXzK6ppkp2fg2vBDzHl8BzoZWsVgCZRDXMwu+tEzO81mcobJPcSU30t6D70Ag4fljyXECgVFJ+Ob2J90MvQCoMsGqAdlf4IQTvILFybQOwhZQEKHdYxyYnF9nuF7LeHVH7ErkTMQHCiKiS/fd5we70VGjS2hK2xDV5yJ5e+uR/SD6W/MBzHxm2hv+FXJJNTTlmlBJXlTNbPWRhTVzcXe733Ip1ADg7+W9HynKJ9sVBpXm4yiorAljxXZsYTOBuTUGbzd5Gd6yjTUN7eflMAEH+d2EnQsqmtwS/wpgSIgayfERUlDFOqVVNyzO2dLQtLO1rT8/LnnyOJ1r4kG7BoeY4u6Zg8jDyMJaemweCWJ0QpOhC/FI2Z3b9D30YDBFe4+hZcmmuUGAsRgR6UgIIyt+PWhggw1Mb7oakCyMGlewz15c2chaS2neCbRps2BFbyxo2TmQ5s/Z9A+6svBdCEnfUYGGQyVQABsQyirHIxLQBNbEiYujlZrmPCePjSOR88eIBBBHqZ9OiJZBJj5j41IZEY0IQmA/UONLlwPwR3vEmk1EhSg1wRaMKlOeM2XRNEX6VuOau/2o0scwssnCVxmlF30IR/TP+at0r4cX3tB3qQUSKk+igMljBoUjSUBU1iozaRy80aQYSUxUirOhLj9iEidJlwGpuG79E56SamROjp5uPjT+cR/TET365cA3EVPhBUBWjy7GFv2siMhwdZBOroFIJhSqSkzjQtCZokJ55AWNB8hITYYNdOMwE06fviAcEuWxPKZ0ADmiifQ1l7UBVowi/S00gQlkt0+IW6PemErCe9kNoQrDMydcctNKUXh63EhPntSgB+I/bJm6S58l41a65IQRPejdclQOKE3wlcD4pCYnwKQnacgk2fdjBv6YJW5GoxpEkfmNBvcV6uBDiRahqIj/wDtkzOIcDmW1cz9ErMQnf614h0UBrZWyJ/3TpkGJgiUwVCq3xfy8kvZB1c8o1FEO1mmxAbjC11Q319sPzzZVj8+Wdo3qqlME59Yt8YkbuQ6D1itjLL49uVSHV0on6q/qVEW6d4mZkRuR9li+lls4jug5R3kpJ4Cunp96m0si9plnQq81JNiP0D2dkhMLEYTlotEtZyZbH0iDdOP4nGZ8Na4qWWFVsUV9ZXVX8u6M8E+0NEpTYcUq2akufll3jBOtyUXuZZyFekS0K+VDJSIqSgCQMyVOCD6UfeREzCeejfbAatVENkDfSHoVEbrBz4PdzMmklYKfUsjLXzoUf6JSJykGIHqri0LBQFTQrSQY420SPH4uOT/qXAz0X93eBxnoSJ//yzzOwVBU0Y3BQAVWNjiN6dhti0NJj36IFsstrOLKHjU8+Woth0NaBJfV79wrnXOdCErYaZNcKAB/9rYGaAab3cSItE8qLHn/19LxyfNNVDakIq0kg9uqLjmTLLYrCsaaIXGwsjPz9MnD8GDraSHQJ1B014DgcXr4U4K5uEW2eRcKvidXteRy/iyekbaNqnI9oO71vqB0eZXEndWxrYz4F1g/9Vy7c3Mf4gIkKWCudSBqzhcoKErChM/5DGTaj96h83wM6wkdKU9/KSUBWgyeP7beh0eYKtItsraqIwAyVBE/7E9/Fg+PrEYc8eewE0advhdRIYVq48R5NzSQY0oEn1XQmqAk14xK/+fBmxz2n9XVxJVP31dtU3kQrOxCDOsPWXhB3cE7N6UfmQN8761MxLbVGmCb+wcrA+yNFbT/H3T4tg13M0zD26YGIXFzQjkId1V6RsEV4rc9qNTvpwAbxOXRVKToqCJtbGtKO8Zjmy27RHWhUIrUodh1jnYvWY9oITUVxcDOLpucnKxgbW1hKRXQ7hxfDuLYji4pDTbwBSUPoFuzouDitTPaSTiG9Z5WcsfB4R+jmJlL5MdvEryhwO/86zTbF786MEirvINORNJIS89WogpnR3w/96uMnUpiYPMiF3KL3/TgrW2uUxTfjFu4mtCYxXfI2spi2Qnle2aCiDJjHEgjIyEOHTs5/ibtgJweJZCppk9LtHJW02aGTdn/RNVhMgqC8wJepbmJMdtvbePfDasE0ocysJmui39oTWiuX4+UIAYkgnR5fKdXS0tISyHda0syTdr7e7OMHwx++pvOqGUJnHG6MRSRlCKouCJg1NDQpcw0TujSFatBAZRuZII+BLE4UZ0IAmmquBM1DnQBNZl9X73B0BNJEyTSprxwDMpZ0n0LRjM7i18yg4nG+46h67F61DWkIK3lg5A8aWitNFD3z5O+JCojBkzjg4tSz+MMBimcrkKoB0Ilgvwq3xUtjZv1ltKY+JPgTfZ5L6Z0end9DIZb5c5+badhaee/fQcAQdpFpTsRYcRhlj86hj9OXTESiTqg5+eOabZ1aOah42xOJE3LzehRgm5uj8wk1VD1ft+9PTkYgJSmmsyUk38NB7IoICDQtAE2fnTLRpd5g2c2qvzaS6LASDkNn0slgV3x11yUF1jZMfttlWV9kd30P3wrCEBNWLxkdDmuOtrq7VNZUKz8M6E+msM7F4AMZtvoZAEn0/+F4PNCM9s+oM/t3mewazH4pGHAEPU96eiDZDJmB/tC0xTcyx791upYbGmgaEVODSS2OQT5oGxZgmM6ai8VtjkE36B6oOFtPdfjUQevTC9tukzuhIAraVhV4WvcDRBZatV3Mik1wOwb/bZYlKp6Z6kWPJaGI+NEG79sfKnM61Ky0ItMrFC9286T4v24bTYfousLnAMCpV+64WWG5Xtk78uZ44G6JfNgpaNDcD4wURWGmwtW0ua3pNfAsWI4bBs5mToBVTVvBzYBoJpu99uAcHHh8gofQrpG2SWQw04XaWVv3RxaELFvVYRCK97EFVv4LTpyfKR+yCJfA6eh4nbAzhT6woLs+xJS0jz0M7BR2TXNIxKS8EAIWYzXkzqew+RmJ1zqA1bwRLQZOBVEPVvpFFoZjvGColHD4CWSW0aOpX9sueLV+7mtBkQAOaPNc0qexSYB0Uf9JBGTBZUpYjjcTU0taBlfVV2z4//NXvSIyIxfCPp8DCoWyV+MrGnBKbiAOfbRKYKm/8MKfU4RakPK1MrgL9lyAu9iBcSaHe2kYiwltdER/3DwL8Fgina2g3GU6NJCBKZSE8Nmjn4Oern+DvR5tgcIXoyUSlzuzlhb7ur2Fx/43IE9MDgYqfCHSeu+ekqsg9JzMzAA8fDIW+gQs825yobNr17nND2mVj8UMWJ+WIjtyOkODlpUAT50aL0cBOfa2sa8vCsntOKunHcM41UbUZ4JcfE3LPSVbCPYdHOJaAiKek41A0TA10cHF+v6qdgIy9v/bLVfjGpGLH5C54cwvvzIpwe8mAcl/+ZOxW7sOYJcjAR0aRl1LuJIMAkEUL5mDiW5Ox4m6+4OS38CVy++lcuuQvh1ijd4+cg+jrLwtAk94ebdDll++Qo6X6+83P5/0EzRqOtePao1cT2Z4h+Nril8OadMFiZg/rqJTFZsjPz8Odm6xnl4f2HW+TzXtxUdPs7Ah43esPXb0GBIifl3mt75NI7qStN9GK9Ex2TX1B5nY1eSBvxBgQwIS5cyH29RMsunn9Wjuag7/HgXR9PZswDZ+c8BUYW7P6NSnTGYsZJtdCb2L5JYnTUErKTWKTpBYDTdja2cy8l/D52FZjMbzpCNpgqn/CsAx66GekwWvEROzOSYW/oQ6+SRGj0SoyQmjfDtlkaF5R8HMgi5fmPSInqIWFz6wMeE0U5aIfAbMzDPQFW2Ih2hHzjyy/M4glVFQ8tiavu9p0bn6H0YQmAxrQRAbQJDszGyd+PiiwUhq42he7apQpOaktl9+ZNXsQFxiOfrPGw8bNQaFh+V66h7sHTsO5XTN0fevlUn0oq2kSGvghUpJOwtF1Fd1Qq9/yVqpTwRMzNu1OQEcO2RWaEnV3BEzN+5eZM11dMc4Fn8ZPF6bSbklmMdAE9GAwq+dvGOA2iPRNVEuDVHV5TkbaXQT6vkk7bm3h6rFLoeujLjcqWZ6TknQGoYGzS4EmTq5ryr1W6nJ+VD03TXmOqjNafn+qKs+ZtO0G2Hq4ZFxZUPZvZ/XNUHKmBQceCC+CM/q6Y/05P6HUYPvb1e8SVrQ8p7wcnCbh2qUkXMsvp/ve6UYisMUFMz865IVuzibocO0UPrn4D3plaaHTt+vhYG+DBiT6qMrYczMYa8/5Cl0ue7kVXmxR8xbS8syvovIc7ifg2Vhkpj+ES5OtZD1cXNeEhWKDfN+S+76YSOVWQ9dfFHb3T86WGBGoQ/BzhVF8FFKnvEPuTvHC+AUtDDvSZVm7FrciiNn07xNyf0oSpjOgeQNM7+UORwuJVg23z9aKw9sHpwnCpBxicSzl17sYaKKr50QbNE0KUrK096dobdNeKaayOuS3rDEaaeXh0YXbOLDiUwQb62L7W28j96XBSNIpDuCV1ZZZVCZUKpeVkQW9U/8CmzcXHPZaLpUkUpn1ZAJRhTAnJ64NG5CmY1ilYszqug48bk15jjqvnurGrgFNSoAmbEUc+jioWNkOl/JEBUSWYpnwMtQF0OTi5gOIfByAntNGwb6FYjW2l34l/Y9H/ug87iW4dvEsdYUqC5oE+7+LtJTLcG68ESamPVX3DZCjp5SkU/QyPLdUi7JehrW0xYhOD8P8/+YhLfVamaAJz+PLfl+hqWUrlVpXqxo0SUk+i9CAWTAhQTxnt3VyZKx+HFqWpkmQ32Q89vYuKM9p6dkdfJ1oQvkMaEAT5XMoaw+qAk2+Ov4Yx7wjip22N7nVrCC3mtoQP/zng/13Q4WX/lOPo4Rd8s+HySbsqcrxywKa8PmkIM+Yjs6Y07+wXJi1Mlgzw93GBH9O6YBxY0fhpR79EeHxIkgsAvNI1F5VcfhBOFbSSzLHwkHNMKKtbO4xqjq/KvqpDDRhMXgWhWc9Kivb4mXBSQlHER68SHBFc3Qha145Ysi6i4JWxZH3e8LaWH12sI0Jn4s7exH+C5aS8KsBubiYIP+HH5Bp74SMfMkL+B+3Q7Dxgh+yiMHDbJTpvRrj7e6u9AKvjcVn5+NxDIFsRUiCrAkjuqRP7jn6yB0cT8wdp2IWz0YEEKwbth6GInOVlRzLsVQ1fuihW/6I2LsecQkR+GHnbiTlUDmwDCxLKWgST5on5jr50NqwHjh3TpjPSWJRuUEEj+dlVPlffYUs96blatHUeBJqwQA0oEktWIRaMIR6B5pwmY3X2TvIIfYIM0iMLWhHZkhXOJH9MAcDJE+vPsToxZIbJB9z5Mc/0Gv8wFIsE/5cnUGT3FwJXfrm7gsIufsEL7w5DI3aN5f7sswT5+LAR2sIGMjDK59Ph4GZcak+lAVNgojpkE6MB5cmO2jHp73cY1RVAx9ykcklF5miYWDYHG5N/yr4EyvD6xDLZOaxGYhJjyFbyEDhX9HyHOluirm+OdYNXQ/tPCOVIfyqBk0y084hJPBjAk36wd5ZYsWsicIMlAWaCN+rqxuwbvUJfPDhMLTt+IbATNKE8hnQgCbK51DWHlQFmjAlnIGTC88ktfXsnvPJkJawN685PYuiOdhNjIl1xJhgBx22g2XXHHbPqe4oEzQhzQz+e9HgF+5LvpJc9mxiSwKwuoIg5I3AOOFvnVysKLeGOH3yGFwcnbEvRIdeZsNxbEYvoZxC2fjvSRQ+PfJQ6GZm3yZllgkpe47qaF8ZaJIQ9yciQ78gRumrJAYrKSmRRmz0ZsRErCZh+iloYC+f8+A7u27BOzwZG8Z3KLSCro4Jq+AcIRFxSNmyDS6XiFm85EPkdOuBFO3i3+NouhY3XvTDiYeRwhl/GOuJzqRzY2OqU6bo7o/ffoew0DB8v+anMkeoQ05PKaSBI8qteoclFaRIZV14hydh3v77+GlkS/QgM4tU0neR1ZZbCprEJWcJGndmpImCOVQ6HxhYfHyTJ0Pctz+SiWWiifIzoAFNNFcHZ6DegSaqXnZ1BU1iIjeQqv0OqidNQV6WI/xPdkLL/mPg3r2t3CkK8/bFld8PU2mPI5X4jCuzvbKgib/PaKIZPiVwYj8MDJvJPUZVNGCQyce7tPheSdCEH8QCE4OQnJVccNqM9HvYueY4ckj3Ysr84UQ/bU67KZKyHBN9E9iZ2CEzQzVCU6oETXinSE8nGJFR/xCAmI4GDhLrQU0UZqA80OSR932s/GopPv58BZo2l9htakL5DGhAE+VzKGsPqgJNpOdj8CSC3DPYWaU2xRkqefn04B1YUvVKQrYIK1/riB7usmlzqHIeZYEm7IZhbKCFy5cvIzW1sMSJdU3CyQ3DkMoeuFQikYCUnNw8OJO1sIuVhL7v6GAPOwdHnPJLw5fHnqgEDLrqHye8yHFM7uaKaT0bqzIF1dpXZaBJRroXAp+Np/u1Bxo3O1hsbAymMKhi5/gxLG3GyzXuL449EgCFJYNb4GUShFWnWHnyCYa2aoBWN8/DavQrSMrVKVeoNYoMBi75xSGebHP5uYTLeTo0soSBTvFnnc2/bkR4eBg++/TLclMhLenhA6rC/ak2roEUzH2fygankRuOlM0jy1iLgiZ8PAuoG8ZEQPQ+WX1Lg6yF82fNRhKBMTKQV2Q5bZ09RgOa1NmllWtiGtBErnSVPlgdQROp5kLR2eRm60E35Rc0699Z7ozc3ncK/lcfwHNID7R4sWuZ7ZUFTfweD0F2dgjcWxyHnp6z3GNUVQPWquD8FQ2m7Ra1k9UjpknJiI/bjR+/+5NAk3wsWfo+UXpfKnYIK/irSnxLlaCJjm4OidiuhrORNlradIa2fs2URqlq/aqin/JAk5joKNy+eZUch3qQeHGh3WZVjKE+9akBTapvtVUNmlTfyMs+E++4lhV+JAL7ybrt0Hp0HOJ+c7DurZ6wLUP/Q+qQVVXzKK88h194MtOTcfJf0iZ4Hmnk9nMvJLHYC6sRHdfBudC5plWrVnBv4oHTT+OFkh5m9ux/p7vCw78flogP/rwn7HaXLA1SuNMabFgZaJKfL8aTBxJr7Gatb5FIbyGjIsR/OlJTLlHJ6npiYfaRaxZbrgZiM5VRMZuJWU3qFON+uwY7uo42TuhImiR5Ba5xJefAlR8W+loQnT+H4Ov3EZyQLhzCICCDenZmCrDMWD9l5EjEp6i/AYMsa876RMzOWzq0JYa0ornLESVBE24qWH3fJqHr76iczJHK6VavRkquVr20dZYjlcKhGtBE3ozVzeM1oImS66qOoEl4yMdIij9cauZ5sR+i1YApcmfk6JebkZ6QjIFzJ8LSuWwhOGVBk2cP+9ANOg4erc6T9a213GNUVQNmmwSTXkVmhqSWm3egXJpsr7T0gjVBdu98SKCJCNOmD61SxoaqQBMdnVwEp/hj3tFRMNRKw6aR/8JIt5nM9FBV5by291MeaFLbx62u49OAJtW3cnUNNLHIz4Iog6xuxYWWqZzNbGJorP/rH5w9fQjTZ3yCoW3LYE8YG5H7jA5SRVWnQVGRpokRvYCGhQTh5k2J7TsL67o1di11MbCILdvAWlhYwKNpU9KBkADym8jhJjI5EyPbOQquJ/JGFNH8d14PIstYsfCyvJhYEuoelYEmPL8AnzF0v38k3OeNjDsUTNn/6XBkZfoRA+UAPQfIpxUjLW/q29QW3wyvHbo+sqwlOx31+uGscOiNxQOF66CiYIDEVJcETKgsJN0vECEEnMSQ7S2HpZGeAJ6wpXnac7coLjMrN/T0kL9+PTIMTZFJQvr1IVgwmIWD903rViCoK+u8ywJNuK25iEwMdu9C/oAByGzggIxKXHhkPV9dP04DmtT1FZZtfhrQRLY8lXuUOoImUeErER+zo9ScsoI+Q7tXX5crIwkhkfjvx10wsjLDsE+mldtWWdDkqVcnEr/KpN2em7TbU/O1lxEhS5EYf1CoZeaa5srC78krpGsSIBymiHBcZf0X/VwVoIkeKa/nIh3vHZuOmMRrpOMSiy5ub+CrAeuQlpFfozaR8uSiOo7VgCbVkeXCc2hAk+rLd10DTQyJiWEQ5AfR/PnFkhgcn47DBKSctDbArNBUvNCAnNGKvsA1ITcPErxMJhv3qmSbVCYEa6wvgteD+/D19YUX6R2MHtATxn7PSIzNu2A+FobEGqXyhwYNG9I9kwxznzuVMGDCtsrm5LpTAJo8F4Ks7IpiUU/WV8ig8lLLMaPQqKElcnRV68RT2Riq4nNZQJOIkE/pXn8ADR0Xw8pmQsEwnnp1pvxmoJnnVbIjlk+v6klkCqbsuAl3Arh21IBLk6K55JKwiVuuCyVgf/yvbFZxyb6FspCIEIhmzxZKRILj0hEYn1aw+cLACpeVcehoaQnXpjEdVzLylyxBdpv29aY0h9lvb269oTA7rDzQhH/TzclGPicppZQWjaLXRX1opwFN6sMqVz5HDWhSeY4qPEIdQZOc7DD4Pi5eHpKVaIHs0CXoMmGoXBl5dOoaHh6/LGihdHhtYLltlQNN8vD4fhvqWwst2j6Qa3xVdXACKepHkrK+hdUIGcRRefysFSORjDckIVtXErStqlAWNOGbqomRFj49+ym8or0EAd683CRh3CNbvolxrd4gAKh+7PTIskYa0ESWLKnuGA1oorpcVtZTXQNNeL4mtJmtd/oU8MsvwvTj0rLxODIZd0mLikGTmSEpMM8XCWK1+lxqqa0t2HFmGJtX+Q53ZaAJr4cZvfCcPn0ad3yCyUkDGD+oJ3RXLAfu3BHcSixoB9/GxoaGrVNKp+B6YLzwgmpAL6b+xFwZSbajlRnei4ldwIAJ69GYLZyH5q8ORGodEY2UBTRJiN2LyLCvit3rWQyeReG1tc3R1PNyZV+jUp8zs+LFNReE6+vs3L5yt6+pBmd9ovHxYW/0JL2fb0fxM5lsIXznLl2Awcb1yCTgjRkrQQSesCZPyWC9k04kGlssxo9H7pChSNKu+Q0z2Was/FEH74Xhu1NPFXbyKg804ZHxZ1k5FbOElJ9B3epBA5rUrfVUdDYa0ETRzD1vp46gCQ+dy0uYcZKdFQxxThQyEyyJPjkPPaaOkCsjZ9bsQVxgOHpMGQ4HT9qNKyeUAU3yclPx1Lsr7eaY0K7ONbnGV1UHp6fdRpDvJBgatYGrx+4KT5OV6Q//p69CV9eeynMiyFLPHk1a0EN7FYWyoImBfh72Pf4D+x/vF0aYnnqDdtTSYWTShVg+RpjXbR46NuyKbCo10gTRXY11hd3ntMzilH9NbqomAxrQpGryWlavdRE0YXKFuXYutDZtAqEPCKDd8zB6eSsKmhjT97m1g7mEbUKslOx2HakspzJ4Qfl1qQw0kb7wiPJzcOzoUXiFJtDLvBUGtfaA7pwPYJyWAhsrCxgaGpUp7BhEjBoukXhka4Qj5B/7p7YeKnoNZZifARN26zEbNRzN572H1BJOKcrPuuZ6kAU0yUi/T2KwEwQBehaiF56f0h8i4NlY+ltx5zx5ZvLqz5cRS6UqB97trpi+hzwnU9GxUkvrCV0aYUaf8p/3yjqduZYYxnt3IvPvfwosh28QiMelcSWjq5s1sU6eP1907Ij8xYtlttpV0VRV0o2WdA5FemPAzJiEm0tGSRvhZUcf4d9HkZj/YjOMopI6eaMi0ETevjTHazRNNNeAJAMa0ETJK0FdQZOi0/bxGkrIfzCSfYfhhdErZc5IZnIajny+ESKiVI5aMRtaJRTRi3akDGgizonGs0f9yca3ATxaFhdhlXmwKj4wV5xAO029ZAJypMK7JmY9kZp8ib92xJjxUvGICrtTBjTRo/pjr5i7WH75G7AIHlslMzOJn3L09N3onwvtZmoJNsmWug01uxWUGQ1oUmWXcpkda0CT6st3XQRNOHuCBachvbjMnYvgW96CSGVJ0KSFnRms356A3FderbYdbllAEx6/ga4I8XHRuHTxImmM5MKjkTOaiDNh9vXXsDC3gJhLciTExmLBZTY3g+Jx00wPZ6wM8Cs5BTWsQEfiUUQy4tOzYdS2NTy3kp4E6aMwS6CuhCygSX5+NonBSrRMmre5Q653eiQG/x9CA+fA1Lw/nFzXKJSOGXvv4C4J+a4e047seK0U6qO6G31BL/In6EVeEdcf/i1paKGPzHkLgEePhaE/pjKlOHLWKRpcotPV7Xk+CBBkHZM0LX211FIzM2RXmjzadJII5gbGpQnuYWL63yw03Zx+Y6Ti1CJ6LiTSW0GM3nRFOHY7lW+xTpG8oQFN5M1Yns4jTQAAIABJREFUxcdrmCaqzae69qYBTZRcuboAmkT470RiygqIMyzQuiu/1MsWATe8cWvvv3Bo5V4pQ0UZ0IS1QFgTRE/fFe7NaZeiloRUnLZJy1MCi6S8iIv+HdERq8AuO8mJJ4jZE4MmLf+jNvKpocs6bUVBE26XRADVe0en0/N2Ponc+RJgElrstPoGTYgp4wR3S3esGrQKKVVc4y/rnGvyOA1oUr3Z14Am1ZfvugqacAb5984oPgq5707HNf/YYqCJg54OWrzUCzqff4YkepGpLqBAVtCEx0/SJXj29AkePXokXBBd27WBx5PHEG/ZToB32cAGl9rcCU7AZWKZMGiy+nVyfjMzKtCQYDyEnXGYjZNOZRQZBMhoUZ6sBr9Itid6yMgTUS7qDsNQFtCEcxvg85rAznVtshPGJu0QG72dmLrfChonrHWiSCz/9wmOPAjHAmISsDivOsTUHbeEUraNb3REGwXEhO2tDJEVGQ289x7RdTIhBfGKzr2xjQkcyJ2HI3/FCmS5NEZ6XmlHQnXIF2sopaUm4r9Tp8C6SVIHIenYG5oaCPbrvfv0gbmFNeVD8kl4YgZe23wVFgRoHpvZS6GpakAThdJWbiMNaKLafKprbxrQRMmVqwugSVp8Ep7cGQEj2xhydZkPa9u3ZcrK1e1HEHrPBx1GD4B7D4ktX3mhDGiSmUFUWB+mwrYkeuyfMo2tOg4K8psilK40avwLjE17lHtKqZCcndOn5Fp0EBnpXsLDl6FxxTlTdA6KgCa822FKtfJzTsxBQKJEsJbtFEFsk6IhIstFYxOJANwAtwGY1uEdAleo5l/RwdaBdhrQpHoXUQOaVF++6zJowlkk7AB6d24i/ctv8FdmFv6iP6xIFqMZucBp/7wBaXrG1brDLQ9owtR/U9rJZrZJREQEBg8ZAgsDetlcuxa4cKHMiyScdq79Y1MLmCZfvj4BAYEBwssZAyapVGKYV+TXnAxjYdKmJbTJiadTlxeQr6VHmijVd/1V9ZlkBU2kwu92jh+jocNYpCedxjOfuXI9L5Wcy84bQdhw3g/jOjljdj+Pqp6qSvofuPo80glIO04v8hU63ZRzNgZNkpPSoffwAURffikcxUwpvia5BIzZF80aPhfVnToV4t59kazm+jnsehUc6I9NB08jU1z8y8OsmneG94Wrmzt9VghGnngYiS+OPULvJrZYMVIxdyUNaKKSS76gEw1ootp8qmtvGtBEyZWrC6BJdnomzm5ahEb9TkNbx0LQ25DFoebg4rUQZ2Vj6Mf/g7F1xRaGyoAm6ak3EUQ2v0YmneHivkXJFVNd88jQL5EQ9wc9RC0SWCTlRZDvm4KYaiP335EQu4eovafg6PI9uegMVt1givQkL2jCu4qsY7Ll/hac8D0u9MSlOWkMmpQI1pUxMu5U8NfpHaejV6O+xEipv8KwGtCkSi7jcjvVgCbVl++6DppwJgULzr17cPzwIWzIE2OHti7Ml32BrKYtqn2HWx7QhMeuR0Kietp5iIyMhKW1LVV+6sJUhzQiqOwIISGlLhSpfou0PGfdxKnwjQiDv78/wSMigWFYNHSdnWHayAGduveEja0dsnLrDsuE5ykraJIQu5vEYL+Bs9sypOt1gGF+MNJidsLI7HW6jw9S6At5/lkMFh/ywuTubpjWw02hPqqzEbsvjfrlCqyN9XDk/Z4KnZpBk8iEDJiKcqFz4C9g3z6hn9hUKoGKSqa+9dHCjkCT3r2R/977SMzXoWcRhU5VaxrxN8bEUAu/Hz4NryfkdFUkXBs1wgfjhpLlssQWXBrfnnyKQ/fDMLNvE7zRuZFCc9GAJgqlrdxGGtBEtflU1940oImSK1cXQJN82mL6a/4quL54EiYOYbBpOB22djMrzEzU00Bc+GU/LBwb4MV55QMG0k6UAU1Sk88jJGAGTMz60EPLeiVXTHXN42N3ISpsOT2sjgGzSMoL1j5hDRTWY4mL2SLYPTckRo+VjIweeUcsL2iip5uL88Fn8MsdiZuENJiOLM6JLPY3LpHif0Xjuxe/h7MJ7ZTQjlF9DA1oUr2rrgFNqi/f9QE0ESw4DbRw/8O5+NvPFwvefAs6g4bUyA63vKAJXwlcAkBFM8QAkFwXgsVreDBEH3xQ6kIpyTRZIjJH64/m4OTJk4iLjyt+PLFLRGS13Ll9W3g0bUY74epZIlHRt0VW0IQ3PRJjfoKNw2QsvLAT5lrh+LrfEnKCaQAdvaYKfSHZUnbB3qsYahGO4YMGwrZh7S7RYdHWOfvuCa5S68dJNF7kDSloIqKdGnMqLxMtJ9enW7cEtsndkAQYUVlchx7kyvPjj0ghoXmpFbG856ltxzOTNyEjG7/+cQgJCQnC8IyNjTFpzEiybzZBDpXEFQ22dWZ7518mdBQEqRUJDWiiSNbKb6MBTVSbT3XtTQOaKLlydQE04RQwa0TfMghuL52gemYdgW2io0s7V+XE/cPn4HP+NloMfAGeQyvfdVAGNElOPI6woAW0ozOEGBrfKbliqmuelnIVwf7TiHnRES5NtpXZsdSaUEvblJx/rhJosg3R4d8JzBRmqFRFyAOaaJOLRFxWJOb8W/oBm8fGLkF5uSn037Sgb9CYrgk74fooGnbGdlg9eDXEYt1SN/+qmF9t61MDmlTvimhAk+rLd30ATTibemTBaZyRAtG2bch/510k5bFdb/VvcSsCmvD4eZ2K6q4IFq8Xz0tKdUrEvdBEnKWSAdY0WRCahnZDekNvYB/s/vs49fEc+NbTQ75na+ib2+DNkUNIu0piE1vXQlbQRIRs5OdcxFcXl8M3w5xYmFcw2H0gpvf4mViW8ot0ch5ZO2b32cs4+9t3mE/uMG3adavVrIp9d0Lx42kfjGjriIWDmil0KUhBE/5qMUvKJI9EYGfNQl5MLK6QrhCDKd3/2YVM64bIgLZC56itjdad90UbOwNcOv0vCcHmo3uffqQTZISBzYvr4bHw8svrLyltR60BTVR7JWhAE9XmU11704AmSq5cXQFN/ln2CzKSUtFluh/SMy5QmY4lgQHtYW45QlCILxknVmxBSnQ8+s0cC5vGTpVmURnQJDF+PyJCPoOF9WjYOy2r9FzVdQBbNT97NEDIVdNWF8s8bXraHbImfousiVuTNfEeQQg2LGg+5fRFUt3/sUqGKitooksPLbq6Ynxy5hPEZsSWOZasTB96KAwnwIQsLfXK3wnraN8R73aYTra7RPCue8/WFa6TBjSpksu43E41oEn15bu+gCacUSMqGTAwNkBKZm6Ngb+KgiZlXREWVHaktWM7cFxSclk0dlFZ7V7CvrfkasOGmSovD0OQmTn+vXRFOCyveQuk6hrjrbGjYEg6Kdk5pW1hq+8qrLozyQqa6OvnYset+fjTe4egRZaRdo9oEtpYMmAfujh0J0am/OWpenr5+P7wXtzetgcdxgzA/LEzkKNAP1WXneI9f//fUxy4G4YP+ntgbEdnhU5bFDThDpglZRDwDKKFC3ErKAFp099Hq+EvQsvUTKH+a2ujjRf9sP1aEIn+euBFVz1EJyTjaow21p8PLGU5fc4nBksOewmOSuyspGhoQBNFM1d2Ow1ootp8qmtvGtBEyZWrK6DJv99uRXJkHF6YHoe0jL+LZYUt9YoCJ3wcH69vYoRXvyAVdBlCGdCEy1miwldWKTtDhimUeYiPd3fk5ibDo9U56OjYlDomMf4AAT6fEvj0ChwaLRcetgJ9JxaAKIqet6J2MoMmunlkd/e8p3JK1dNTbxGDJFZg01TEPJKOh0Vha2KHtiryKGufGtBE1kyp5jgNaKKaPMrSS30CTTgfXNpSk2WGqgRNhLIjEvfGImI0PnlSbLkP5efiN2KV/KmtB0PpLeB/U3AvOhpeKenItrBCv4ED0MDGtsDRQ5brRd2OkQU00acykoex9/HJyQlCuSqXp2ZnBZLumxHprHXB2sHrYGvoKNd1wy+0V4IC8M6Od+B5Vx+Pm6dj6fhvMKZ1N8GxqDbGrD/u4jY5L616rS1ZAlsrNMSSoAl3YqqVC92TJ/Dw3jP4DBoBHWMT9HAv/Syl0AlrQaMHYUmYvvu2MJJ1Y9ujl4eVwKj56KA3jnlHYnR7J8wbWFjitfasL/bcCsZU0rqZqoTWjQY0Ue3ia0AT1eZTXXvTgCZKrlxdAU3OrNmDuMBwtH57HzEFUotlhQETBk6k4XPuFu7/fR4unVuhy3jZxEyVAU1iozYiJnIdaa28S1ors5RcMdU2ZwCEgRAWqGWh2pLBVsNsOczj5vHn0EOX76OBAgDh0fKsagfzvDdZQRNZTu73eCiys4PRuPnf/2fvPACbqtr//03TvWlLKW1ZZZW9QaYoiqIiiKg4cOEEBNy8uAfuBeJGQVFBQERFQRFkyJINhVIKtKUtdO+VJmne59ya0p2b5PbSps/5/f2/2jznOed+z22afO4z4OYWIWdKs7NhaKLukTM0UU/v5gZN1FO29pWUhCZiBfHFyZNanmqmT5davJpHIhV8TaKQwIEaijb874eawEA4PTsPW6mAbGCr1mjXPqJKR4+LrU1DrG8Jmgj9CgxZePj3h1BcEk+d4k5RZGkA1SjLkv7Xw7M32vq2xftXv0/yyqvBIepbaCnKc8yX05CceBp9D3tJ0EQb3gI/374YYT4tLlqkU30aX//JDirYqsOPDwxD6/9aAlt7JrVBE1GI3p9uwrhcHcGFg5jQOxS32lj81Nr9qGH/wHf7EHUuTyroKgq7ivdUcc0nUvJx59J/pS0sv/cStAv0lP79/m/34dj5PCnKRESb2DoYmtiqXO3zGJooq2dT9cbQxM6TcxRosv3zNUg/E4Nut35XQxF3j0hq9UuVzmmkn0rEgTWbyqNSpl6Ltv0iZSloDzQxg4fg1o8hMPheWeupZXShnfBzVBD2lhrLJsXPom45m6kWy7tUk+Uq6fXow6KFnAmRvQ/VqA+ixL6VhCbRh6koGzWhjOx9gPZKj9x41FCAoYm6NwVDE/X0ZmiintZiJaWhieTTqQyuUYehmT+//otp1w5OCxeg1GikByeaGh091FVCndXqgyYCbvh6uuDxPx9HbFYsRZTm0gOSg9A4ucNUVkLpqqGUtloeITCq7ShMHzgDulKtxfRUd0r1WbD7K7y9/Tt4FWoroElWgAGTe4zGouuoQw/xrcYUsZlPraiv+nAb3F202DznUpsPpzZoIpwJrXdQTZNHVx7GhD6heHqsvM+VNm9EpYlLdsXji3/OoH2gF76/d0iNVd/44wR+OXIO1/ZsjWfGdUMx9fMe8wHVIqLx96Ojpbomtg6GJrYqV/s8hibK6tlUvTE0sfPkHAWa7F62DokHY9D7rr/pK3J8FVWCWk2nSInp2PnVz0iOOlXxWuTlg9HrupGyFLQHmqQkv0qtelcgJOxZtAiaIms9tYwy05dSYdd3aF+30/7+V2PZ0yfGUyhvHCK6rqn4gHXq+JUUcXKeiu1uoA9eluvBWHstSkETfWkSTkVfTXVPQtCp+1/WbqPZ2DM0UfeoGZqopzdDE/W0Fis1BDQRfn01hvIWr6vLH37UNkxUNLa4RUto3N1gMJoaZbSD0qdRHzRxczXg22Pf4reT6/5b1oiCvO1wO9AZJg8qYNpXS6k67Sq2dG/fezG6/RUo09f9cIGkxa7kf/DervexKy6zBjQJopa7L4y5D+M7T6RUIHMMkNJXbb2/qHO5eOC7/ejaygdL7qwZUSvXY13QRMzfS915ZtvZnUfuPhrS7gB1AVqwORaxaRcitt+9sQ+GRtRMaUrMLsIti3dL2/loUiR2/L0Bq8/5oEvHCHxOnXPsGQxN7FGv5lyGJsrq2VS9MTSx8+QcBZrsX7URZ3YdoYJkfeEU8AlEu1npwxZFR4SEv4iU6FQJmlQf1zx7P7wCLBftsgeanDs7D7nZv1BNkNeoNsj1dp6YstML8rZRO+Tp8PIeirYdv6jm3ERRJSJSQ0SVXIjUiD81VXpi1a7TUqoVMlDZDZE3paBJYcFunD19H6UdDaT0o6WK79NRHDI0UfckGZqopzdDE/W0Fis1FDRxEvVN3CgtQESb7C+vr1BlzJmD0r79qfhreYpAcxl1QRNnKpC+M2kbPt73cRUpigr2wu2vLijzLYRmpJbSbFtVeX3+5fPRyb87inU165KIejlOWj0OpRyW5sRTS9mo6AQc/vYHRE64BgEdO0g/D/J2w4SeA+Hh5NtowNVvUecxf300xnZrhRev62Hz7VEfNEnJK8Gkz3Yi0MsVv0633JHR5k004MTzuSW46+t/UaAzVKzionXCimmXoGOAG0Xq1IwcOUWtp5NzimEqyMS7Lz2J8Xc8hDGjR6NjkFfNnTo5oaSgGEVOlqN+GZooe9AMTZTVs6l6Y2hi58k5CjQ58us2xPy9F72vG4Wulw/CmZOToCs+SR1fvpfydo/9sRPH/9hVQ61BVNOkPdU2sTTsgSZJ8bMpxWUT1VX5gArSXmFpKVVfN0djiA9PnbtvqrK2iDARkSYurm0oquRCBwPRPlm0UQ5t+wZBoOsU369S0CQnczXOJ70I/4CJaN3mVcX36SgOGZqoe5IMTdTTm6GJelqLlRoKmgjfUotXQ7HU4hVZWRcu7NprUXbrbcjRUBhEMxu1QROtsxE5pel4ZP3MGmoU0cMOt40REjQxDddXiTQRxoEegVg4biE0Rg+ppXD1IVpbVx7/Hj6O919+CvfMfAptIvth2b8JyC0uRUsCJ9f2aI0+4f6N4kQ+2XYay/Yk4D4qTHovFSi1ddQHTYRPkZoiUlT+eGQUfNyt70hk676UmvfD/kQpyqT6EB2H7hjcDj7OdE+IwsznzlWYlBrLKMomGxl0uYsDnTEh14gb/L0leFRlEDDBO++gyDcAJTLaMTM0UepUy/0wNFFWz6bqjaGJnSfnKNAk+q89iPr9H3S7Ygh6XjMC5locZlAh0nJqizQZdu8EhPXsZFFFe6DJ2TP3ozB/F9pGfA4vn2EW11LbIOboIJSVFaNLz53Qai9E3YhaJkJHb5+RaBPxScW20s69i8z0JQhuPYdqtNyn+HaVgiZp5z+gIraLKTVrJhWxfUjxfTqKQ4Ym6p4kQxP19GZoop7WYqWGhCbCv4cbtXg9FQPN3LnlF9a9O/Daa/RF3QhjWTPrFU+XXx2auBBYcnMtw6z1s3Cu4MIXWyGVeEAiCsF6bO4nQRPdwJNw9+xZo2vegNYD8L8R88rrkljQNCH+DJ6fOwezn3gG/QcOQWp+CV5bfwJ7E8qh1lNju2JinzB1b8JaVpu79ii2xabjlet7YkzXYJv3Ywma3PPNXsSk5uOLOwaiR2vLEcw2b6SBJgqNhFbVx7NUr+Qaqlsioo08kuKhefTRKiaHk3IRT92sFod5Y0J6MQboTejXphowe/xxlPYbiAKNvLQthibKHjJDE2X1bKreGJrYeXKOAk1O/XMQB9dsRqcRfdFv0hikJM+nOiLL0YrqdARQvQ4xNr67DDnJaRWKiQgTEWkiZ9gDTeJjb0dx0WG07/QtPLxs71svZ5+22MSdvIXSmY7V2J/omiOK2Aa0nIpWofR04b+RlfEdUpNfpzoot1IdlGdsWbLeOUpBk+SEJygiZkODRcQofuEXySFDE3WFZ2iint4MTdTTWqzU0NBErOGjpRavv/8m1TcxffQRipzdoXOS90VMXTUafrXK0MSJWpq4uhmwcM8CSs3ZWWNxka4qCsBWhiZOWu9aU2wnd5+MG7pOJtBSf7REbk42Tp86idah4fTPBTjy/qaTWHUgSdrDTf3D8eiYCy1pG16Vmivc+uVuJGQV4Zu7B6NTS2+bt2AJmryw7hg2Uir4c9d0x7geITavo8REP6cLKTZy/e2jlszJ2RTNVWmIIrdXdgtB8X+ww5t+1Vy3baH+w4skq0JqMX2Q6qBkUhSSGZpEFuoREeSNUHOXosmTYZwwEblUhFjuYGgiVyl5dgxN5Onk6FYMTew8YUeBJgn7juPf79ej3YDuGHz7OIow+IK+8C+QutWIrjXmsebpBTDqDWRzDdl2k62ePdDkTMwN9IQnloqp/kTFVDvLXlMtw3Nn/0c1V36lFJaXKZVlUsWydXXWEalGIuXIx/cyhHf4UPFtKgVN4mOnEKyKarSwSnHhbHTI0MRG4WycxtDERuFsmMbQxAbR7JiiBjQR7U796IubU1IiSlqHo8hIP2imozI0cXUrw5+nf8fSw0trqGEyGSja9R/p53KgibCbO2IuegcNQKneNn3XHk7GW3/GSGuK1rOiu0qwj/opVKKLz4h3/pb2sfWx0RA1OmwdlqDJ4h1x+GpnHO66pD0eHBlh6zJ2zxM1gPzd6ToXLwZiys/A0hAthDMKdRDwzdvNGUUEQ7wositi3GXwuOlG5Bi1FS78CVw6LfkK+OMPZBaWIjolrwY0CfPzQAdR16QXdVt86SXk6kxWRYMxNLF0Yta9ztDEOr0c1brZQJPs7D0oLU1Dq1bjq5yl0ViIlNRfkZ29G25uwQgKHIMWLS60BhOvJyevQF7+0VpfdxRocu7Yaez4ci1Ce3TE8GlEtKnwqijAKmpuiNobYuhLdFg7bxGcXV1wwxuzrPqdsAeanIq+ip7YJFNdkD+oPsjFD1WtfuEZBJjSBWBqeTeCQ5+oeDnh1J0oKjxABWK/pEKxF+6pEgIRcQQk3D26USvnVVbpKMdYKWhy8tgIGA056NxjS40QZDn7aC42DE3UPWmGJurpzdBEPa3FSmpAE7GO+OLrAQPyjLZ/AVZXmYZZzQxNjGV6JBbEYe6mCxGh1VcsKY6ijjYZVaCJ6H7n5l57erK71h0fXrMI3toA6PQ165vIuaJDSTmUrhONJCoUKgrECnAypH2AnKlW2RAjoBbHtU+Jo4K1ty/Zg/AWHlh531Cr/FY3tgRN/qQokxcp2uQySgGaT6lAF3NINYD0ReU1gLKzq2zFQGIlUuRNbole6jQlQKSoxSJ+r7qH+F6oxxJB4Oe995BXYpTszENqZ+1BUUhPPgnDiRjspk5K1SNNugT70OfJICkarNDdm+CbdfcQQxNl7x6GJsrq2VS9OTw0KSqKQ0bGZvpnE/wJhkR0mF3lrJLPrZCAifi5TpeG2FOvoU/vLyRAIoBJbOxrFLIZjJBW11e83rPHB/D0LC+G5SjQJP10IrZ8tBItO4Zj9IxbUFiwhzqnTKPOKYOoc8oS6VpzUzLw51tfw6dVAK5++h6r7nl7oIn5y3uXHtuhdW5h1bpqGJsjR7x9R6FNhwvV9k8eG0XQIYsKxG6mKvsX8oANhgzEHhstXYu4pvqG+OPqTH+IS+iphdyhBDQxGvNwMmoYnJw80bXXv3KXbpZ2DE3UPXaGJurpzdBEPa3FSmpBE7GWeCIuogia8xDQRBRsLaHPetN/fxh5urw65RDRJsVFh6gQbGepponhkjR68NGTvjDXnYITGRiJN694E/nFhipfmq3RPLdYj/kbovHPqQxp2uzLOuOWgW2scVGvrfgdd6MAlqLi2u+FLSfTMe/noxjeMQhvTxLdAG0flqDJCapnci/VNelIKUDLKBXoYg9PjRFu8aehmTevylbOEjA5S+2CKw8BTHqG+sGL6pZIg36/TJSCU+wXiJJa7hEBNTzzs6F5+GGcTcnBwYKSivSc4XBC52BvaF95Gbou3VBUZj3cZGii7N3D0ERZPZuqN4eHJgKECHCSnVPeC706NDl85H60bXNfRXTJ2bNf0h+3AslOzIs6NqcCooj54nVdaSo6dyp/E3UUaCJqlYiaJf6hLXHlE3fC3PnF1a0dOkZS/jONlOg4bP9iDVp1bYdRD0626p63B5qcONIfJlMpInvth8ZJ/fBUSxd6oUtOOEXDbJDMjYZsnDw2kloMeqNrz/J7r/I4caQfXZOegMQ+AhO156mKpxce7ibqeuCCwqIy6KnKupyhBDQpKT6OuJM301O0LpQWtUbOss3WhqGJukfP0EQ9vRmaqKe1WElNaKLulTXO1QJ9XWEoM+DFLS/hcGp5K2BLw/RLKeBP0QWj5H0WGddpHKb2os9UpfbVjTF3sBH7u753KOZeFWlpq7JeT0yIxqbNf2LavTNhNF1IITFP/np3PD7bfga3DWqLmaMtF/2vb1FL0ESktFyxYCtcCUBsoVSgxjB8tGVw+e1XYNmyiu3sS8hGiaHqgyxn6m5zSYdKUUCPPYbSAYNQgLrP3UtLn++OHISGijGfpGt/nNJ2ZhMgucKFQNxdd8FwxVjk2fiZl6GJsncPQxNl9Wyq3hwempgPRkSU6HSpVaCJACoCmpgjS4StOSolMpIKoVJKT1zcAvTv/33F+Yqfpab+AvG6GOezqhZ9aqo3QmFmLn57dTG8Avxw7XP3UdX3Ipw4Mlj6Qh/Ze590WWd2HcG+lRvRYUhPDJpylVWXKv5Y2qKVeLoTfbiv9DSnW59DVq2pprHYo9hrZO+9pJkHpeUcRHzsVGrX3ItScJbX2Mqp6HEEphIJsqyjSKb2tW7V2cWALfGbEJMVgxkDZxKsc6I1LF+Vm7MWXh5aZOXThzsbR17On1R35TFq8Xw5Rc8stNFL85jm6+kiPUUs0llfOK55KKTsVbak4njZ+Tr6siPjl0HZpZudNwFNAn3dkJZDrUB4NLgCnlQLQUQX5hXpG3wtXgDwpZqmP0StwopjP8iWw/QznU0LDUET+S1xHxn4CIaEDqPoZfvAyfpjKXj192gpQqh3mJ+UrtM2wFP23qsbulFX28++X4jNq/7Cp998CX+vVjVaJb/823GIdf93daQEa+wZIZTik0qpRvV9jpnwyQ6k0fv76geGIszfw57lFJkr1QByJki2cAHwT3ldm91nsujvT9WHWKKOSV9zx5vx41F2yxTkymjj7etkhHb1SiRSYebpRj2e0jpj5LDhMM15lNLntDZHg7lRepGXhwt9DtQpokNzdyK+w/BgBZo1NDFHkgwgKKK46XNxAAAgAElEQVTVUsElGgKKnE1cLIEUkZ5z+PD9CAu7Ff7+Q6T/TiFgIuaJFB0x5HyJbQq3WUlBMT6f+S7cvTzwwEePS1vetr0fDIY8jByxHy4u/ti9Ziv+/WU7hkwcJf1jzRB/eGzRymDIpX30p5oavhg18qA1S6pq++/ea1BQEINBA9fCx6cXzp9fhegTcxESMhHdu71bYy8HD95G0U970K/vMopyqtlGWU851gm58Xj8z/KzmNZ3GsZ0uIJCP8vv03oHaS1Kz9mit9nv2bOf49TpN9Gmzb0UVaV8hx9Ll9CUXhf3tiO9FzR27aX3Eknwxr5Tx9ifre/djnH16l4Fv5eop7eIMDmYcgCvbn/VukXNbFw+M5H8Lxq3CG1821q3Vi3WR5Nz8eTqw4ihwqO+9KX47cm9MbZ7eaeZb775GmvXrsWaNT9ZXEdn0OF8QSqmvHwvfKM0CJ/WC4tveZsSQ6pGm0z8aAcOU22VVQ8OxUA766nIeS+548s92EGpSEsoPWd015YWr0MtA42eHkLNpvT+5GQcoEiTrKKqD6UEvOrSygfoSbVYXn4ZJoIfcofGaEDuCy8g+tAhhAcHI/zTT2FylRfJVOcaCnwOlLv/5mBnfm9uDtfK11i3As0amggIsv/AbagMTUSkiQAjZigiAEnyueUSKHFzDaan/WnS/5ojTRwlPcdE1Hz1E+9T+osGk98p75ZzJmYida05JaVniDSNvcs3IH7vMQy8ZSxFm1BFbyuGrek5en0KTh2/gqBNCDp1/8uKFdU1vdCe93UqnjteajUsWg63DHkEQa0erLEZc8ed0Davwi9gYpXXRQEyJxc9Zv42AxnF5XnMYsy/fD46+XdHsa7++iZKpOekJL2M7MyV1BJ5HrVGvk1dMZvYapyeo+6BcXqOenpzeo56WouVOD1HPb39fJyhdSrvSFKmQtQaxaYgpzgfTmUyHnzUI4MvRT3QEzxEnc9FSm55BJiofyFa1H793TL8Sqkkq79fWasHE83LgatUsNTF1YRLv7gLBcfOISLOHXsG5+OuwTfjxTEPUFT2BXBy5YJt1BbXgN9njoQ/QRp7hqX0HOH7nb9isOZgMuZc3hk3D1Cudos9+xZz3alWiUdSPIyz51CL4Bzo/kvPEWk5rairURuCJs6+PlIdk0JPX6sKt0pFZw0UtT5zJkzPPit1tSquJVXKmmvg9Bxr1LJsy+k5ljVqDhbNGpqIA/5374Qq6Tmp1ElHdMox1yypfhOIGictWlyCsNAp0kuOAk3Etfz0v4Uw6PS44fVH4Exxm2fPPEBt9naiTcQn8PYZia2frEJa7FmMfPBGhHRtb9Xvh63QRFdyhuDN9QRtIgje/GLVmmoap6d8jIzUj6lF8/3Uonk2pbbMQn7uZoS1exe+/jVTmUS3HdF1p2XITIIqD1VsVbS6c3cvw9s73sLec3uBBAoBLaQPSd21CPQIxMJxC6ExetQIoa18rUpAk4qzp8K2osAtj7oVYGii7t3B0EQ9vRmaqKe1WImhiXp6iyfHLbxdpYcQJdT5RI1hT/SneX/Sl/fsdGiefx6JVIw0gYqSiuHr7oINphLs0ujwmrYFQRQviBSNijFuHIyXj0EedfXxcDNh3l9vY+mB39H6vGsFNDEQkFlxy2sY3mYYPSAEUvNLcMOnOxHg6Yp1M0bYLZEcaLJyfyI+2ByLSX3D8MSVXe1eU0kH3sSM4lb9ivQ33kUL0qRHa98q7k0ULaKL7GFT4VYPak/sUZALvZMz8umM7B0MTexVsOp8hibK6tlUvTV7aHKGapa4ubWSIIi5W05Q0BgEBV1e40wFUElOXo4+fb6oSOdxJGiy7qXPUJxbgOteeBAeft44n/gccrJ+QuvwF+EfOBkbXv8K+enZuOrpu+HbKtCqe95WaFJcdJRqg9xKtUF6on3nFVatqaZxXs4GiGgTH78xCG+/AKdPXE81S85QPZMfqcJ+zT/82Zk/ICXpFUlXoa95uLoasS72Z3wfVV5Hx7SDYoHTKJ/2hvInPANaD8DcEf9DcQl1Pqjj6ZgS0OT0iWto/2clUCWAFY+6FWBoou7dwdBEPb0ZmqintViJoYm6eptbDlvTnU7dHda+mjcVEHXZ/y80b7+NzIJSxKTlS7UvtrZwwz6qQfR4Qh7cqbbZwHb/dRvsRZHBL72EXJ2JuvYZsSn+Dzy7cSGSc4trQJOerVtgxU2L4efSEv/EZmD2qkNSrY6Pp/S3+9LlQBPRfvcxSj8Se194cz+711TSwR/RKXCj1OlWq75Dv+N74OlSKZVp6lQYrrxKglK2Dm9qQ1xInZaUyDxlaGLrKdQ+j6GJsno2VW8OD01Euo1IrzEaqEUcpeOIVsKVu+WY2wwLYCJsBDAJC5tSAUUEKBHpOmKItJwO1FVH+DAPR4Imf7y5FHmpmbjqKYIiIYFIT1lE0ROfUiTEdIqImI41Ty+AUW+oiESx5qa3FZpcaH08hFoff2nNkqra6kpOUkTMJCrq2gHde/2GQ/sorxVlVBiWOv7UUgysIG8rEuNmSBE8IpJHDBEuG5t1HC9ufUH6b1FYtuyfImjSCZhMNFKBWapaR2Ny98m4oetk6Etrz5lVAppEH6HWgiax/wO0f6oWx6NOBRiaqHtzMDRRT2+GJuppLVZiaKKu3k0VmgiV/JwM0H73LbBuHaLO5VLqj74KNBE2g9oFwK2FH0yffIJCV0/pM8W5wrN48q8npGKrJwm2VI40MVKkSadgHwxv1wPvjn0X0x6cgZP6Fhh+7S14eqz93XrkQJNzBHImf74LwZTysvah4ereEPWsllGgw9Sl/0oRJkvuHoTWrzwLnDxZPmPIEJgeexy5dhRuFW7k1HyRKwhDE7lKybNjaCJPJ0e3cnhoIvcABTxxdvaqgCWV50n1TAiUmIvFVn7NkaDJ5oXLkRl/DpfPuhWB7UOlmhaitoV/4I0IaDEXvzz3MVw93THh1RlyZa2wsxWa5Of9jaS4RyhF5DLq4vKh1euqNUF8GDlxpC+8vDqjd5+VOHTweqmjirkFcfV9lBSfoJa+kymKozNFc/wE8QeuxJSH6b89jGLKbS0rK6AOPIfgtr89tJm+KLryAEWsRMKZaruIMXfEXPQOGkB5s/9VIa20gL3QRF+ajFPRVzX6OjJqna2ldRiaWFJI2dcZmiirZ33eGJqop7VYiaGJuno3ZWgifjf9POnBybx5iNv6rxQ1UjnSRCgpoInr/Feg69INBkr7cHExUqegFVSjpJBqcpRhX0IWdCfOQ7c3Dr630Bd/Sv0RozOBk9ERffHlc18iUROMW+6ZgSkD7a8vIgeaiPVHv79FSkH+a/YoeLrKL6jakHfPs79EYXNMGi7t3BLv3dQHnjkZ0FANEuoSQVV+FyHf5Aw97bmxDIYmyp4EQxNl9Wyq3hia2HlyjgRNtn/+I1JOxGPkA5MQEtkBFdEQviPh7fIS/npvGfxCW2LsE3darZqt0CQ3+zecO/s0fFtci7C2b1q9rpoT4k7eiNDwOxCVp0c3byMVgt1WEUVSfR9GYw5ORo2Ak9YH3Xvvho+nFv/b/D9Ep0dLpiXFUTDoM+B2oFMFNAG1Xfb2Kc8rdqcQ0A+vWQRvbQB0+qp/qO2FJhXRPV4D0a7TUjUlbJJrMTRR99gYmqinN0MT9bQWKzE0UVfvpgxNhFLii7FnUR7y7rkfR0+drwJNPCh1ZMBzc2C4YizynMo7sWipwLx5bDqRhuiUPJTG7sWBDavx9qdf4kwedRSiIqdihFBr93UfPI8stzBcNnkaZl3W2e7DkQtN7qSIjlPpBfhq6iBEhlBHmos81h5Oxlt/xsCL2govo64+Ib7u8KIUKdcj1NExMFCRwq1KXyJDE2UVZWiirJ5N1RtDEztPzpGgye5v1iHxUAwumXod2vTrSl/czdEQXeCufxs7vlqL1t0jMOK+G6xWzVZokp25iqJdXkKLwJsQEl6ettJYR3HBr9iauB1Lj/2Gh/tOxpDQUXD3HFPndmOODqKIkhL0G7IfK6JWYm3M2grbosJ9KDMWVIUm4kM1QRMNwRMxIgMj8eYVbyKvyCB1ADAPe6FJTtaPVM/mBamrj+juw6N+BRiaqHuHMDRRT2+GJuppLVZiaKKu3k0dmgi1POnLu9vxo0h/8hkspTbKu7xcpJomGDoUfd99CQatm1TvpPIQLYQfXn5A+tGcjjn4beVSfLz4O3h5++D7vWexaMsp6bUOR79CkU84UtuPxRsTe2EURVnYM+RCE3NUx4vX9qB2yq3sWdLuuUnZxbhj6R4p8uWZcd1wbc/WFT59tUaYKGU9/z8oZfdiCjpgaKKgmOSKoYmyejZVbwxN7Dw5R4Im+1dtxJldRzDgpisRMbQ31XjJwsljoygtyQ9OOR/h4JpNiBjWBwMmX2G1arZCk6z0pUg99w4CWt6FVqFPWr2uWhNEcbX4zE149PfbpOiRMmM+Pp3wO8L9h6KuInOnT4ynGjojEWfqhw/+/azKVkWrZ31pUhVoImqLePkMq2I3rtM4TO19FxVtvRDCai80SaPOPplSZ58ZVM/mYbUkbLLrMDRR9+gYmqinN0MT9bQWKzE0UVdvR4AmQjFfbRmcf/oRXy//Hr+YjHjTNQBJL7+FrfF5eGR0pxqizl55CHspNefOIe1wc09/SsXOQJt2HeDqWl6/7PIPtkodhSpDk35UDPYjO4vByoUmn/9zBkt3xePeYR1w3/AO6t4U1VZ74sfD2HmGav11D8EL13av8qrodmgiIKVEVySlL5KhibKKMjRRVs+m6o2hiZ0n50jQ5Miv2xDz9170Hj8KXS8bJClz4kh/+oNQCkPSApzYdAg9rxmBblcMsVo1W6GJaOMr2vmKL+/iS3xjHC7U1k+EvT78801IzNxGkSAupJkeXVqPpxSapSjRaaA31sx1zc/6GIUaLzy57WuqaB9Q5dJEjZTCgt1VapoIv57eg2oUZn1k0CMYEjac0nnKwYm90CQ54Unk5axHaNvX4ddifGOUvFHtiaGJusfB0EQ9vRmaqKe1WImhibp6Owo0EV/e/ahe/E9zZuGvhHgseG8h3jxehG8Pnsecyzvj5gFt6CEYdeKjSqObYtLx4m/HEejlitUPDKvalpjkL9AZMHbhNukgKkOTzsHe+PquwXYdkFxosuFYCl7+/TiuiGyFl8f3sGtNeyav2JeIhX/HIohaUy+7ewj8PMq7GDaFwdBE2VNiaKKsnk3VG0MTO0/OkaBJ9MbdiFq/Q4IiAo6IcSr6ainioeDkU4jflY7Bt41Du4FVabscCW2FJmkUZZJJ0SbBoU8gsOXdcpZS1UZ8WHF3L8PbO97CnsTNVLx1P60virOaKCpkKC5tdyVmDJpJ4MSpytMIZ60GWsRgxi9TkFrqQZ1zLoR8mi+gqGAfXPaFQJsVCN3VJ+lDTzbBlUBqv0ztA6uND69ehJYeYVJUi73QRLR4Fq2e23daBg+vxtXyT9XDlbkYQxOZQilkxtBEISFluGFoIkMkBU0YmigopgxXjgJNxKX6ULtadxiB06dhbNce+1KK8OPBZDgRKHl4VEfMvHsyJtwwGZnhw6Q2xSLNZIC5JfF/WpVRmq+okTZ37VFsi02vAk2mUdTHNDujPuRCk+Pn83Dft/vQpZUPlt5Z/gBP7RGbVoC7vv5XWvaV8T0xJvJC10y192LLegxNbFGt7jkMTZTVs6l6Y2hi58k5EjQ59c9BSsHZjE4j+qHfpMslZRJO3SWBgOwjU5F80BmXTr8ZwZ2sr6JuKzQR3XtEF5+Q8OeprsnNdp6W8tNdXAz4/dSv+C7qO3JeRsVzy5/QQKOV2gmLMa3fNIInY1CmLw99FW3lvDw02HhyKY6d20htittL/1QeZWXFKCrYg5N/6JCXrMWlVEVenIOpTEe27aTWxpVHgEcAbu5xM3ILDXB1prU9tMjMK7Xpgk8eGykBms7d/6ZuPfblMNu0gSY2iaGJugfG0EQ9vRmaqKe1WImhibp6Owo0caeuN54FOdBuWA8nyhXR/1fCRHzxT80vQQC1yZ23/TeM7dAFvQPbw8fNBX3C/aqK3aYNTIOHINvgJEWbfLA5FtHL50Pv3xbDJ94jARNvKoRqz5ALTfJp/aso2sWditlunnOpPUvaPHfmioM4kJiNCX3CqN1yV5v9XKyJDE2UVZ6hibJ6NlVvDE3sPDlHgiYJ+47j3+/XS5EkIqJEjOSEpyhV43ekH7waqUdaY9y8afAOohZrVg5bocm5s3ORm72OUkXeoFSR66xctWHNXVxNiM06jhe3lheoNdchMa9aGYbMv3w+Ovl3R7GOngTRcKW5BYUHSds/KXKkB3z9r66y2SJ6LT93M/LzKQJFMxCdunQh/3HIyVoj2flT2oybR5caF2jUu9gVaWKkWiwno4bCyckDXXvtbVgBHcQ7QxN1D5KhiXp6MzRRT2uxEkMTdfV2FGgiVPOmzBHXvzdB8+mnUp0NMQwUObI/IRv6MoqGbeeLIXk6jMrWoUdrP7TwrJRqEhICfPgh8su0VdrmPj7zPnTq1hMPz5ijyMHIhSZises/2YGMAh3WPDhM6laj5liyKx5fUF2VcH8PLLtnSI0UJjX3YutaDE1sVa72eQxNlNWzqXpjaGLnyTkSNDkXdVrqkBPaoyOGT5soKWNOj0k9MAjpR3ti0luzKUXE+qcNtkKTpPhZEjwIb78QPn7l0S+NYYg/SDpTPqb/9jCKDEUwGDJQUhRVY2ue3gMJQHhDRIIsGrcIMLpLVdjFKMzfgbNnHqQ0nkvQNmJxlbmJcTOkls+ie43oYmMeGVSgNZ0KtWq1vmjf5QeCLzWjfuxJzykpjkbcyZvg5t4ZEV1/agxSN/o9MDRR94gYmqinN0MT9bQWKzE0UVdvR4ImIinYj7q5OH1JnyU2bqwQUkRLFFHabmVo0i3EV6ppYh6m995DSUgYik3aKgfw1JwH0a1Hb9xzvzL15KyBJjNXHKBIjxx8cFNfDG5fteZbQ94lR5Nz8eD3Is0aeHtSbwzvGNSQyzWYb4YmykrL0ERZPZuqN4Ymdp6cI0GT9NOJ2PLRSrTsGI7RM26RlMlKX0bda95EZnQ3ZEVfjutfsq2biq3Q5OzpaVQQdQ/adlxM7fAusfO0lJkuvkj4eGoxb/M8HE8/LjkVdV9EpEn14ebeieqVhEs/7t+6P+aNfAZFxZTII3KHS07jTMwEKTWnY+S6Cx9gqPCuaEdsoir4nXtsgbNz1T/ayQmPU4TKH6THYNLlq5prUkirrek5+bkbkRT/KHx8L0N4hw+VEczBvTA0UfeAGZqopzdDE/W0FisxNFFXb0eCJkI5USvNl2qb4PHHqSDdKRQSLDlI0ESMytAk0MsN3UJ8ysV++GHohw5HvrbhozksQRMBfszj7b9i8OuR8kK2k/qGKXJjVG28XLvLacv2ITolD1MGtsGsyzorsu7FcMLQRFnVGZooq2dT9cbQxM6TcyRokpOcho3vLoN/WDCufHyqpIxIH0lOeAx5Ce2Qf/pWXPHoHTYpZis0qShK2vl7SmPpbdPaSk8ShV9/OLYcP524EIlRV6SJu2fPKtDjxm43YlLkTQRZnKktcQFioi6pkQqTn/c3kuIeoSKsfakY67c1ti/aGcfFTqE2wwnUivlOasX8VBUbeyJNMtOWIO38u+R3Kvl9WmnpHNIfQxN1j5WhiXp6MzRRT2uxEkMTdfV2NGgi1BNflj2z0qCZMYM66hmwOy5TErVWaHLllSibNg25RmcqXd/woz5oIroQ+rg5VWwiKacYcRmFCPVzR8eW3jU2V1xcDKPRCG/vmq/VdSWlOXkocPGs80I/2XYay/YkoBOt983d9nUKang161+BoYmyJ8DQRFk9m6o3hiZ2npwjQZPCzFz8Pp8iOgL8cM2z90nKFBceQvypO1Cc0RIlZ+dg2D0TbFLMVmgiIjFEREZE158pZaSjTWsrOcmNapHsS92Dd3e+U8NtUeE+CYSYh7NLENw9etawe3r40+jTciBK9RqpfoioI9Klxz+U9lReKyYl6RUqfvuD1GJZtFqubRQV7EXC6Xukl0Lbvkb1Xq6vMLMHmpjXbhX2PwQE3a6kdA7ri6GJukfL0EQ9vRmaqKe1WImhibp6OyI0ke4jCjZxPbgPmjfeoKiJfGQW6mqm5/ShLojvvou8YgMMRjWQCVAfNKEAXvg5m6BZ8AGwYweyikohuui0oCK2PVr71rgxPi8zYgtF436vvZBmVOfd4+4O06JFKHLzhs6p9vTyvQlZmL3ykORi0S390L9tC3VvRoVXY2iirKAMTZTVs6l6Y2hi58k5EjQpLSzGz899DFdPd0x4tTyHVV96ntoOXwl9kSeMKW+g3w221RWxFZqcOk5r689TMbKNtbbltfP4rJouKtRnlaRg+vq6U5QM+hRKvSmh6BF3giBB1Cmn5h9oN60bPrxmEXy0gYiOElAoFh26rCbAEintx9zmuX3n5bW2FzZv2pw6pdG40vwVBJXKC8PaA01EjRVRa6VNh4/g7XtxqtZbdSiNwJihibqHwNBEPb0ZmqintfRl191ZSrHILdSru3AzXc1RoYk4Tj+UQrvyB+Dnn3E2qwiP+DpjVJEBd2udEejrAdNHH6HY2x8ltXxGaajbwVJ6jhRt4kTF8ufMQXH8WexMykGMrxuuDvBChGg7WGl8ajRgK3UsXC4DmpiefRalPfug0FjVh9mdqJt7x5I9iMssxN1D2+OBERENJYFqfhmaKCs1QxNl9Wyq3hia2HlyjgRNTFRhffUT70NDyH/yO4+VK2MqQ/SR8rQYp6yv0PUy20IWbYUmJ6OGUyRGLrr03EHFT6u1yLPz7KyZLj7I+ng648fjPyKrOMuaqbXaBnsHY2LXiTh8ZBoVfN2Odh0/haf3CJQUn6BCrJOp1W8ravm7yeI65xKfQW7Wz1LqUntKYRLDHmhy+sS1UtpPY4nssShAIzBgaKLuITA0UU9vhibqaS1WYmiirt6ODE3E766fO6W7vPgicPgwJhpLcaNGi6lOVOz1iSdQ2ncACjSVOuioIH1d0ER8wTcPVwInbmfjgccexY7UfLwW4IrZFB0yVnuhSG1KbgmWOJXhgKsT5qUWo1OwD7zooVat49ZbYRx3DXK1HnVe4fubTmLVgST0DPXD57cPUEGJhl+CoYmyGjM0UVbPpuqNoYmdJ+dI0ERI8dPchTCU6nHD67Pg7Fb+B/XYPmpB65IPr7LP0LbfcJsUsxWanDjSlwqiGhDZ+yBFbaj7B776hbpRFKjBqNwTwDLKIj6X8DpyMlehV+9VMGi6ITNtMdUU+QD+ATeidZuXLGottImPvYVgSwxaBN6MkPDnbYYm4o/s4f29pAK0kb32Ezxzs7g+G9ATPS8XKby5sMTAcqigAEMTFUT+bwmGJuppzdBEXa3Fao4MTcT1CQDhpSuAZuZMzM3JxGiCJlfffAuM46+vFyI01EnUBk083LTw0BXBdKg8NUYM59DWcNq/D7HvLcQjgb54hKKgr6UHeGIU641SgdtvfDyx08MVb1IL5bQiIwa2qyWdZuBAmObORS6lQovi+7WN7afS8fRPR6WXFt8xEN1rSQVqKD0a0i9DE2XVZWiirJ5N1RtDEztPztGgybqXPkNxbgGue+FBePiVF9g68s+VcPE5D3+vBWjdaYxNitkCTUzURebEkf4ES1wJmhywad3GPikj9TP6Yx6PgODb4O7eDadP3A9RrySs/Xvw9Rsra/vF1Oo4ngrDiiGgSUjIrVZ3z3F2LqMibMDBg9dCbyiVFeUia3PNwIihibqHzNBEPb0ZmqintViJI03U1dvRoYlQ01NjhNuZU9A8+wzQpw/w/PPILQWMdUCEhjyBuiJNfJwMcNmwHvj66/LlKaqk9M67kLx8BWYV5uDB0/EYk5EFD+oMWFRqgJHyab6O7Iwd/n6YnVgAA0VJD2oXADeCRBUjKAimDz9EIT38KTWUA5fqQ7Rinrp0D85T5MpDozriziHtGvLyVfXN0ERZuRmaKKtnU/XG0MTOk3M0aPLHm0uRl5qJq56+G76tAiV19m24Hl6tz6Bl0GsICrtQcNQa6WqDJiIVJT93M0GDfCo6egfVLKnaVs5oyMHJYyOkAqmiUKojjtLiHSjTZOHRv97Em1d/D13qe8jI+Atde/1LdVHqrvJeXYuczNU4n/Si9OMu3VYgOKg/MvPok5GMIfKIXVwMWHn0S1we4oX0lD/RrtNSGTPZRCjA0ETd+4ChiXp6MzRRT2uxEkMTdfVuDtBEKOqjLYPLH+thuvxyFLp61QkRGlr9uqCJKFciisA6fbQI2LpViiQ55ewL34fvxKyPF0jQ5NK0jAvbo8KuX/fuiW0aE2adzZd+Xh2amN58EyVt2qPYVEfaDs15bcMJrDt6Tpq74Oa+DX35qvpnaKKs3AxNlNWzqXpjaGLnyTkaNNm84HtkJpzH5bNuRWD7UCppYsLOVTcjIDKaWtDOpVa0yrQcFtEUifGzqNtM+R88McLbL4SP34VCs/rSc1QUdSzBlFAqBPunnSfV+KaLLySuzll49o+bcSQjDhGBQ/D6qPuRkb4dQa2fs3rDKUmvUtedFVRQtgv691+D7AuNfOr05USfVkQL5Xd3vYN/4tfigZ5XYFDrwfD0utbq9ZvrBIYm6p48QxP19GZoop7WYiWGJurq3VygidSZhrKbdZTaUlQPRGho9esrBCvqxvmKDOxHH0Vm9Cnq+pMHzSX98EbKaTwYn4hLz6dCfF5x0TqhuEskPnN1xV5qUTyboEmYnwc6BHld2D61UdZfNgb5FKVceRQVFUL806JFIDadzMCL645RJDOw7O4hiKg8v6GFUME/QxNlRWZooqyeTdWbw0KT3WcykZanw/V9Q2WdTV3283+LrjHfi3Iw51xR3qnE0aDJ9s9/RMqJeIx84EaERLZHYVYe9v78CFr134/A4HsR3Pq/ArionhoAACAASURBVLGyVL1gVD3SJImAiYgyqTyctD7o2nNXxY90JadwJmYidYXpRIVJ11q5YuM3d3Uz4Kfo77Bkz+NUP8RDKnQ7rHUXPDr8LYo+6US1Ray/Bqk9NLWJDg6eiMDWr1p04OJqwPpT6/Dt0W+pAGycVAT20+t/RniLUSihpz08LCvA0MSyRkpaMDRRUs36fTE0UU9rsRJDE3X1bi7QRKgqIkr1daSpqKW6pe45okOhR2oyjNNnYHdcJvJoz5+Ee+OBTpEYvexbKT3Hs0snlPj44a0SPfb/B01EpIj3y/SgSXxmCqII6XYdoEfNTjmrV6+iDKAlWLFyDY6mFEJPtcg6tvRCKEGX6iO32HhRUpiUOguGJkopWe6HoYmyejZVbw4HTc5kFGJTdCr9k4ZLIgIq4EZdB1SffaHOgKPJuVWmltun4cu7Bko/dzRosvubdUg8FINL7rwObfp2RcaZZBxc/yrCR2yHX4vrENr2DZvu9erQRHSIEek51UcXgiZagidiFBcdplodt1fpDGPT4o1wkquLCcczjuDVf15CYcZOaPT0RIT+X5lLEWaO+BRjIibAqLe+8K0ATaK+iWh73Cr0KYoMurPOq3ehOianc2Pw/JbyqJaS4uMw6NPQudVYLBq/HCUlGvpQUXsucCOU9KJtiaGJutIzNFFPb4Ym6mktVmJooq7ezQmaqKts7atZgiZilrczfRTauR1nX3gdUfklEjS5Z8AluCblPLz37oambVvoTRp8XmbEX9R2WKTnRLbyRfDYS6Ht1ROab76Bnj62mGp56rRSX4plVLPtjTwTReLqEOjlim4hvlU3O3QoTA89jFyTMy5C2RfFjomhiWJSSo4YmiirZ1P15nDQJC2vBAJs7N5FX8iLijHn/ivqPRthH3suB3v/PgRNaho6+FFP+IdvgKt7eVhfaUkporYcQFrceXj5+2BTvhZd+nbEbYPbSq87GjTZv3Ijzuw+ggE3XYmIob1x9sAJRG1ajA5jN1BL3EHUGneJTfd6zUiT2RRpUrWlrrtHJDp0WV3hvzB/F86euR9ePkPRNuILm9ZtjJPEH7N8QyZm/D6d/rjrUZx8EO6be0A3OAZlYcWk82DMv2w+OrXojmKd9dEeRXm/IyHuKenS23X8SvJXfbjSHvQowPTfHkahvlB6uajwAKVL5cHDqx8u6zAeMwbOpGgTJ5siXhqj7g21J4YmDaVs7X4ZmqinN0MT9bQWKzE0UVdvhibq6i0Hmogd+VFhWO2yb5Cw9lfM1Bpxv5s3Jr34LJx+/hn6fQckIPIbdfnbS0Vhr0jKRysfd3QO9oZ2yVcwHTyIsoUf1riwOPpe8BPVQPnb3xWPJ+TRMyoNBrRtUbV4bBjV1VuwAPnGix+VY+/JMDSxV8Gq8xmaKKtnU/XmcNAkOyUTcYdisXvbUZQGBmHO4zfUezaFOQXYtOQ3ZPgHIs+vBSZ3D0Jw+9YSNBHAZPvyvwiWeKPr0B7Ye/wcDqz5G3c+NYUiLoIlv44GTY78uhUxf+9D7/Gj0PWyQYjZvBcx239F54lr4OrWFh0jf7fpXq8OTeJjKY2k6EKLOY3GWQIjAsyYh4AqSfGzqc7JGKp3ssCmdRvbJClv19MFT/z5BE5mnZS2V5IcBbfNXSRoomnnIaUjtXBvgUXXLILG6GF10TY3CmFNT3kHyUlfwtW1Ddp3+YGidy48TRFfhLw9nfDc5ucQlR5VIVFh/g76MKInSDVM6lg0rd80XNpuDMpEFAyPOhVgaKLuzcHQRD29GZqopzVDE3W1FqsxNFFXc7nQRLzv+HlokfbkE5h24jhmu7rhyq+W0OcSJ5TNmgXk5EgbF91vDiRmw5XqnAx+/yWU9hsArbsbtF8vBdZTN57/Rlq+DifT8rGbHopubeEmQRM3giZDI8qbHZiH6f33URIcimLUXTxWXcVsX42hie3a1TaToYmyejZVbw4HTQQEEeBk/V9HINJrLEGTAxt2o5AqZiZ27EI1UEqqpPMIPxs+WYvrH71FAifz1hxFn/xUhNJ3yJG3lkew2FJ3ojHfLP/+8g92r9mCQeNHYOiNo7H12z9wdMtOdL/9W+rm4o7Rlx6zafui2JZZq5OxLyMp6Wt4eXZCaOgUxJ56lbq3+GPkiP1VfKekrMXx6Mephe5EdO/2rk3rNrZJOmMJlh1Zhl9P/iptraTkPIrOJcDj7z4SNNG2d4GPTw/ptf6t++OZEc/A2cnKNB3SWmTzHjx4J7KydyC45dXo2fOjCinEHlYcW4E10WsqflZWZkBW1lb6UKJFYODoip/Pv3w+erbs1dhkbFT7Efe2I74XNCqRK21Gei+RBG+sO3SsfVV+73asK2t8V8PvJeqeCb+XXAS9rXjfLkpKxD8ESTpNnYqI68ZLHyI1sfSwad68io3vPJ2JoivGos/cmQgKKYcgGhPl5/zvf0B0eU3Cw0k5SCdwUhmaULMeKdKkBaXoSGPGDJiGDaf8IG91RWmo1f77HOho31EaSi5Lfs3vzZbs+HXHVsDhoIn5uL5a8hfysvItQpMfX1+GDv0643CmDrl5xbhtXB8p0kSMpBMJ2PPTNtz4v6lSHRNRK2V6d1/E7DqGMfdcI9mk5+oc6g6J2XYA+1dvQpdR/TFw8hhsW7wWSUdi0euulfQdpRDd++yEM7UAtna0JMIvtMrO/Im65jwjTe/Y9Vt4efdHzLFroCuJR6fIFdS1pXeF68z0FUg++zICW05BWNvnrV2y0dmLGiK7kndgwZ4PpL2VmUpQmL8XmlxXgiZ9JWhiaJ1J0Tb94Kwt1/jGbjfixsibYDTKByeuVDzNg4oVp2fFI/YEzaXWzSGhs6iI70N47eV5aNenPTZo/qiij5G6GBUW7IOT1os+M1xI5wnwCMDCqz+EMzykomk8airg7e4sFYwr5sK5qtwe4ulwXmEpLnJNQ1Wu9WIvQg9w4U9fKjLz5bUvv9j7berre1AhTPGUvaDE0NQvpUnsX0R96uh9W8dvJqqcV5CvG72X6GQ/bHTXlME1OxNlXl4ocPGU9uilMcL511+Ab7+V/vt0cFskPfkcddspwK2DytPmRdFbj/wcaB5+WDyZwumMAiTnFNeAJoPbB8DdmaJKxo5F2T331Oi2o4ooDbSIq7OGPgc6I7dQ30ArNC+34jsMD1agWUMTEZXyy/s/IDyyHU6VuUjQpE1OOvqPuwQd+naW0nN+pdc7j+iDj6Pzcc+QcJjOJCCHIlBE3RMxHK1QZszOo9i0+Fd0HdYLY+4bj1Uvf4X0+BQMuG8LtauLw4ABvxLoiLT6N0e0icvOPYaDBybRH0wDOnV6HqFhUyU/sbHP4/y55ejQ4Qm0aftghe/ExC8Qd+YthLe5DxERT1u9ZmOaYKDaJamFKZi5fmbFtkp1KSgoOA6nPM8q0MTDowMVv+1QYff08KcxKHQwtJTCJGc4UZyJE33ZMdAX+YyMjTh+bLo0bUD/HzFlylygpwbOAy74EudRWBCD0tJUSuPxgp//kCrLDGg9APNGzKN2f/LWl7NHR7IRX3LE05wyfqSjyrE6080tIJX4Px4Nq4CG3ku0lFJo4ILQDSv0f95FS1XxRFPc3zwaXgFneu8WUvN7d8NrLVYQnwPFe4k1d7f4nah+PloDgYAP6OHT/v3IeOM9PPlHHDLoR2tnUKSI+XfJYIDm0EHg1VdRQpVhd57OqAJNWnu7oVeYH9CFOmG+8w4Vz3esvyjlnwPpvbuMi/krcXeLe5cHK9DsoIloLSz+ES2DBRQRkSa3vjQN3/97VkrPmRCkwYH1u6XoEjFEis6q5VsJlGRhQGQoCnPypYKw5kgTR6tpci7qFHZ89TNCe3bE8Hsn4pfnP4GuoAiDHjqO4uI9aNPhE3j7jrT6N0fkA+7cPZHqmByFf8ANaN3mlQofeTkbkJzwRI2Cr+kpi5CR+ilahsxAUCt6YtBEh3jq4eZahlnrZ+FcwbmKqzAYMlBSFFUDmri6taf6Me0r7FydXLHo2o/gow0kcGX5D6CoaeJN+cCZeeVPh9NTPkJxwUYCT0/h9jvegLFLFpwGeNMfVG8JYBUW7Kaw1wtPNp1dguDu0bOK2iLiZRJFvOhLGZxUvw25pom6v5hc00Q9vbmmiXpai5W4EKy6enNNE3X1llvTpPKuxBd/ATQqD/EF1ocidxETgxJKrR/23japvsnqB4ZWaR/sqzHAec1qlK1aRS2Ms7DT11WqabKooAxhPm5wdnOFadEiFHv5ocTBHgpxTRNl722uaaKsnk3Vm8NBE5FGIwCId0IC9awtRkFkJO4f2YHaD5fnOorXfjl0DiseuET678+f/hQHOvZCDhV+EjVQOhiL0C87Cfe8dK/0uvjZtK/34Zlru0lUesMnPyG8Wzv0HN1fet3RoEn6qURs+XglWnZsg5EPTMKapxdQyoYThs3KQk7WT2gd/iL8Aydbfb/nZcxHcvJy+jIeifadf5BqZ5iH0ZCNk8dGSj/r2ms//W/5F/PUc28hK/0bap37JLXOvcvqNRvDBPp7T4Vdy6SUnJ2JO2tsqahwH5G5sguRJqG5FMlzSYUG5gldArrg7bFvI7/IQE9q6n9OUx2aiCeXJcXr8fWhJdixoBj6zsko7XZWOgsDaW/Qp9bYl7QHqmFTeTw94mn0CRqIUv1/RTwag8CNYA8MTdQ9BIYm6unN0EQ9rcVKDE3U1Zuhibp62wJN6tqhO6WyueqKkKdxw7O/RGFzTBoep4ehN/YLr5gigIsflSw5P/cFnNmwBYeDPLGBehr/qHWl7jk0nnoKugGDUeiA2XAMTZS9txmaKKtnU/XmcNDEfBCiTXABFXi95IZRVc5G1ClJik6o+LnojiOGKOxqbi8sCsOaC71Wnhyz+xii/j6A8VQY1tyS2NGgSU5yGja+uwz+YcEYeud1WP/6V/AK9MOgaSVS1IeI+BCRH9aM7MyVSEl6WZrSofMKuHtWjWIQP4+PvVWKQmkb8RlFnJSHWJ5PehE5mattBjXW7LGhbF0pwuTPM79j6eGldS5RmpoAlz9bQz80FS4RLWvACvPEqzpehXv63IsSXf2V3atDE61zEX6LehGLD9JZ/jK0AprUd83ijJydg6qYuGnd8CF19JEb8dJQmjY2vwxN1D0Rhibq6c3QRD2txUoMTdTVm6GJunorCU3Ezs2pO78dPY/5G6IxrGMg3pnUp8pFiRpvx0/Rg6IZM1Hipse/bk542skZ2ltugfHa65Cr9VBXBJVWY2iirNAMTZTVs6l6czhoItoNHyWwoafUGwFBRNcbUaNE1C0RQ8AUUcjVnH4jbDZTy2FR30QMf6q+LUCLmCeGACUxu8rbsoq0nMqviZ85GjQpzMzF7/MXS6Bk4M1jsfWTVRR1Eo4+U5wIfLxEqTU3UmrNS7LvdwFCBBARo74olbTzHyAzbTECg++lgqWPSfbJCU8hL+d3hLV7C77+5YV3m9JwdjYiqSAeczdZqMeSTbm06/TQXEoRNm3rz5ucOWgmhoaPpDSZusFJZWiipT2kFMTh4Z/KI6uqQBOK6NE6eVGR2dyqstLPvbwG1gpvugZ2xVtXviUr4qUpnZU9e2VoYo961s9laGK9ZrbOYGhiq3K2zWNoYptuts5iaGKrcrbNUxqamHeRSYXBx3/8jwRRNs+5FAKUmMffFIGyOyELk9xzMfSzt8t/3Lcv8OyzyKWoWUetH8TQxLZ7tK5ZDE2U1bOpenM4aGLrQQhoUlqiQ4v/WpZV9iPqmghgYo4uqfyao0GT0sJi/Pzcx3D1dEefCaOxd/kGtB3QDT3GeyExbga8fUagTcSnsmQ2mfSIi50CXXEMwsNuh08QtYCrYxTm78TZMw9QFEoPikb5QbIS6xXkbaU6KouojspoWWs2JiMX11KUUHtfY5mx3m3l5eZhxZJvMf6miWgdFmrxEgKpo01+Ud0pOmZokkepPFoXPR75fSbi036FqaykCjQx104pKT5BKTop5esSMHF37wRnl5A693F1x6txV++7qesA1zcRIjE0sXjLKmrA0ERROet1xtBEPa3FSgxN1NWboYm6ejcUNBFX8dD3+3EkORevT+yFSzu3rLiw2asOYW98FlZM7Yu+R3YAP/8s1TEppG48pQ7cNYmhibL3NkMTZfVsqt4Ymth5co4GTcqo0vaPT7xPUQZO6HHVUESt34HIMYPR+fKWiDs5mepzdEFE1zWyVDuX+Axys36mTjB9MOySNfVG5ZhMRsQcHSAVJu3cYyulhgQi4fQ9KCrYi3Ydv6I2vBfa4MpavBEYiS8cDTXqezpihiYl+lK8vfMt/HvuXyqkVkDpT1HwXNuP0nPOw9THIBWbNdePEboLG1Ec1vyz+vYuIl6GhA6ndsbyWyE3lBYX2y9DE3VPgKGJenozNFFPa4Ym6motVmNooq7mDQlNvt4dj8+2n8H1vUMx96ryDo/Hz+fhvm/3wYOK4/8+cwRaeTjBKTUFJYHBKDLVn+asrjLKr8bQRFlNGZooq2dT9cbQxM6TczRoIuT4ae5CGEr16DCkJ+L2RKH/jWPQfkg7qVirVuuHLj2J1lsYWRnfIjX5DfoC7ooOXX5Ah7DeFlOZzp55EIX5Oygd521KxxlHUSq3UHeZY3XWQbG0h+b6uoAmrpS7u+bYz/gu6rsqMpi+o4463amtZT/7YcfCqz9EsEc4SqhqfXMeDE3UPX2GJurpzdBEPa0ZmqirNUMT9fVuSGgSk5qPe77Zi2DqirP2ofK6eK9RnZN1VO9kysA2mHVZZzhT+3RqLIj8UmuaHquvkxIrMjRRQsULPhiaKKtnU/XG0MTOk3NEaLLuxc9QnFeA4M5tkRZ7FsOnTURoj444caQ/RYKUUoebvRSRUHfxLNERJuHU3ZKyoW1fg1+L6yHecCxplZn2FdLOvyd15xH1T06fGI9SXRw6Rv5CECDCzpNqPtN9vLQ4X5CAz/Z9WeOij75/AC0HtULIiDC7BWnp2RIzBs9AUTEcNi9YjkgMTeSopJwNQxPltLTkiaGJJYWUfZ3Tc5TV05I3jjSxpJCyr9sLTQT0qG88tvow0vJKMPuSIIS1DMBT62Il87cn9UZrv/JugKKboKkSM7HUjVBZBdTzxtBEWa0ZmiirZ1P1xtDEzpOzBALsdH9Rpm94cwnyU7Pg07IF8tOzceXjU6VuOqejx6G0NJEgxjoptaO2UVZWSGk8UyTYEdByKrULLi+CKgealFD6iKiB4uraBh27rUfs8TFSO9xO3TfBxaXVRdGiKS7q5+UMI3S1RoDodDqKFtJS+pNy9UjKjG6U2uP4T27quhcYmqj7W8LQRD29GZqop7VYiaGJunozNFFXb3uhSYC3C0xp6QB9jqltRKfkISGzAB8vegHXXHENIroPQytfN/QJ86/VXhPcEnllWjgiOGFoouy9zdBEWT2bqjeGJnaenCNCk00LvkdWwnk4u7nCoCvF9a9Mh5uXB0WP3IWiwv311hhJTniSOt6spxokg8huSYW6cqCJMD55bBTVycgiMPMrAZRbUWYsoHSgXfRF38fOk2o+06u3HG4+V35xrpShibq6MzRRT2+GJuppzdBEXa3FagxN1NXcXmgiQIBnYS40M2YARUU1Np9VVIooAidvt/PFZbmlGJxdgp6hfvD3qCUd+fbbYbh6HPKcyiNQHG0wNFH2RBmaKKtnU/XG0MTOk3NEaLLtsx+RGhMvKaN1dcGkN2ZJ/25uARza9nVKuRlfQzlzeo2T1lvqgOPqVt7mWQy50MQMXULCn6MWx/NpZhkiex+mkErHLtpl521YZTpDEyXVtOyLoYlljZS0YGiipJr1+2Joop7WYiWONFFXb4Ym6uptLzQRu/XUmuB27Ag0r7xSY/MFOgMOJufgLYImo7J1uLRAj8HtA2pe5KBBMD31FHINTg4bJcvQRNl7m6GJsno2VW8MTew8OUeEJru/WYfEQzGSMj7BAbh67j3Sv6edexeZ6UsQ3PpRBAZPq6KcuWWw+GFYu3eokOvVVV6XC01yMlfjfNKL8PEdg/y8TdTFxx2RvfbZeUrNazpDE3XPm6GJunozNFFPb4Ym6mnN0ERdrcVqDE3U1VwJaCJ27KsxwPmnH4FVq6pcwKGkHOSVGqRIEwFNhubq0CXYRyoOWzGCggBqOZxPTQr03HJY3RugCa/G0KQJH56CW2doYqeYjghN9q38E3G7j0rKtOrSDqMemiz9e1b6MqSeexMtgm5DSNi8CuWMhmyp042+9JwEUwRUqT7kQpNS3VkqAHsNpeP4wmjMg9Y5AF16bLPzlJrXdIYm6p43QxN19WZoop7eDE3U05qhibpaMzRRX2+loImTkwZ+lHGjefMNYO9e6UIKqYvfwcRslFGh18rQJNDLDd1CLqR3m956CyXh7VDMLYfVvwGa8IoMTZrw4Sm4dYYmdorpiNDk8C9bcXJLeXRH+8E9MWjKVdK/5+X8SSk6j8HH7wqEt/+gQrmk+NnIz90EL5/haBvxWa2KyoUmYvLpE9dRIdl4yY+Lazg6ddtg5yk1r+kMTdQ9b4Ym6urN0EQ9vRmaqKc1QxN1tWZoor7eSkET6bOhsxN8jCXALEofz8iAgYrR747LrAFNWvm4o3Owd/nF3n8/9JdeJkWZOPrg9BxlT5ihibJ6NlVvDE3sPDlHhCbHN+7GsfU7JGW6jx2KHlcPk/69uPAQ4k/dAQ/PXmjfebn0s4zUT5Gesoi6sQTQz34gyNG6VkWtgSYpSa8gO/MHyY+bexdEdF1j5yk1r+kMTdQ9b4Ym6urN0EQ9vRmaqKe1WIlrmqirN6fnqKu3ktBE7NzDVQv3uFhoqD6JGNEp+Ugv0lVEmozM10tRJn6iEOzo0TA98CByQB14mkGzP4Ymyt7bDE2U1bOpemNoYufJOSI0id1+EId+2iwpM+DmKxFxSW/p3/X68zh1/Eo4uwSjc/fNKMjbgsS4mdJr4e0XUgTK5XWqaQ00MUe0SH8Uvfqifadv7Tyl5jWdoYm6583QRF29GZqopzdDE/W0ZmiirtZiNYYm6mquNDQRu/eh+iYuG/8AlpR3a0zMLcF0bydcXWjA3e5u8CKwgnbUlOCDD5CnK3PI9sK1nSJDE2XvbYYmyurZVL0xNLHz5BwRmsTvPYa9y8tTYkY+MAkhkR3+U6kM0YfLAUrn7hsRd/JWGAwZCGo1HS1DpterpDXQpKhwL7U3Li8+K4YlIGPnETrcdIYm6h4pQxN19WZoop7eDE3U01qsxJEm6urN0ERdvRsCmmiohomob+L00SJgyxYY6JJuMJZiqpMWN//XddH04YcobtESJRpndS/4Iq7G0ERZ8RmaKKtnU/XG0MTOk3NEaHL0t+04selfSZmhd49HeO8u0r8bjfkUaTKGWrQVURpOGBV+TaYuN5chvMOHFlWUC02kNaLHooz+t/Jo13EJPL0HWVyHDSilyUULbw8tMvNKWQ4VFGBoooLIlZZgaKKe3gxN1NOaoYm6WovVGJqoq3lDQBNxBc5aDXzdnIA5c1CWkIB3ygwYpXHCJfSP+FlpvwEocPZQ92Iv8moMTZQ9AIYmyurZVL0xNLHz5BwNmhz7YyeO/7GriipXPj4VPiEeOHv6HpQUn6h4TUPFtDpRxImzc6BFFeVCk/zczUiKp8Je1YacaBaLm2gmBgxN1D1ohibq6s3QRD29GZqopzVDE3W1Zmiivt4NBU3ElbhTGo5H2jloZsy4cGHXXouyW29DjqZSy2H1L/uirMjQRFnZGZooq2dT9cbQxM6TczRosvaZRdAX66qoEtazEyLH50nthqsPuREg9kKTgJZT0Sr0aTtPq3lMZ2ii7jkzNFFXb4Ym6unN0EQ9rRmaqKs1QxP19W5IaCL9/lD2jeu+PdC8/TbQowfw6qvILSmDkTrrNLfB0ETZE2dooqyeTdUbQxM7T86RoImAJQKaVB/+YcHofes5ZKUvq/FaaJtX4Rcw0aKKcqGJcBR3cnKViBYnrQ8EnHH3iLS4Dhtweo7a9wBDE3UVZ2iint4MTdTTmqGJulozNFFf74aGJuKK/JwM0P6wAqYJE1Dk7A6dExU8aYaDoYmyh87QRFk9m6o3hiZ2npwjQRMhxcZ3lyEnOa2KKt2vGoqOowIkmFF5CJgR0WW1VN/E0rAGmoi6Jqnn3kBRwV7Jt4gwYWBiSeELr3OkiXytlLBkaKKEivJ9MDSRr5W9lgxN7FXQuvlcCNY6vey15pom9ipo3Xw1oIl4z/LzdKYHb6UoMlKV2GY6GJooe/AMTZTVs6l6Y2hi58k5GjQpzMrD1o9/gPhfMVp2bIPh906Ai4eblJ5jjjYRwCSEYIacKBPhxxpoYueRNPvpDE3UvQUYmqirN0MT9fRmaKKe1mIlhibq6s3QRF291YAm4ooEMNDpy9S9uEa2GkMTZQ+EoYmyejZVbwxN7Dw5R4MmZjnSTyVKoESk5lQeIgpER8Vg3ShVRkvgRO5gaCJXKfvtGJrYr6E1HhiaWKOW/bYMTezXUK4HhiZylVLGjqGJMjrK9cLQRK5SytipBU2U2W3T9sLQRNnzY2iirJ5N1RtDEztPzlGhiZ2y1JjO0ERpRev2x9BEPa3FSgxN1NWboYl6ejM0UU9rsRJDE3X1Zmiirt4MTdTTm6GJslozNFFWz6bqjaGJnSfH0ESegAxN5OmkhBVDEyVUlO+DoYl8rZSwZGiihIryfDA0kaeTUlYMTZRSUp4fhibydFLKiqGJUkpa9sPQxLJG1lgwNLFGLce1ZWhi59kyNJEnIEMTeTopYcXQRAkV5ftgaCJfKyUsGZoooaI8HwxN5OmklBVDE6WUlOeHoYk8nZSyYmiilJKW/TA0sayRNRYMTaxRy3FtGZrYebYMTeQJyNBEnk5KWDE0UUJF+T4YmsjXSglLhiZKqCjPB0MTeTopZcXQRCkl5flhaCJPJ6WsGJoopaRlPwxNLGtkjQVDE2vUclxbhiZ2ni1DPxZmuwAAFgxJREFUE3kCMjSRp5MSVgxNlFBRvg+GJvK1UsKSoYkSKsrzwdBEnk5KWTE0UUpJeX4YmsjTSSkrhiZKKWnZD0MTyxpZY8HQxBq1HNe2yUKT7Ow9KC1NQ6tW46ucjtFYiJTUX5GdvRtubsEIChyDFi2GVNhUf93Xp1cNH5UdinUyMjdVWcPTMwJhoVOknzE0kffLwdBEnk5KWDE0UUJF+T4YmsjXSglLhiZKqCjPB0MTeTopZcXQRCkl5flhaCJPJ6WsGJoopaRlPwxNLGtkjQVDE2vUclzbJgdNiorikJGxmf7ZBH+CIREdZlc5neRzKyRgIn6u06Uh9tRr6NP7CwmgiHHixDOQoEfYFAhfZ+IWEAC5FUFBl9d6ysJfft5RAivXV7zu7OwFH5+eDE2s+L1gaGKFWHaaMjSxU0ArpzM0sVIwO80ZmtgpoBXTGZpYIZYCpgxNFBDRChcMTawQSwFThiYKiCjTBUMTmULJNGNoIlMoBzdrctBEgBABO7JzdktHUx2aHD5yP9q2ua8iuuTs2S9hMBZU2P27dwJ69viAwEkHab6AIjpdag0/5nO39DpHmsj7DWFoIk8nJawYmiihonwfDE3ka6WEJUMTJVSU54OhiTydlLJiaKKUkvL8MDSRp5NSVgxNlFLSsh+GJpY1ssaCoYk1ajmubZODJvXBDAFUBDSpHFlijkqJjJwvTRUQJS//KEIockSk7YhIE/Hv5siR6kdtjlwRNiJapbpdeo7Oce8OBa+spb8bWCsFBa3HlYuLEzzdtMgt0KuzYDNfxdvDGcYyE4p1xmauhDqXH+DritzCUhhZ7gYX3MkJaOHtisy80gZfixcAPOh9W4CqgmIDy6GCAr5eLigpNaJUX6bCarxEkJ8bMvLoM7OJtWhoBVxcNPQ50Jk/ByoktPgOw4MVcChoIiJQoo7NwYD+30Or9ZJOV9QkOZu4WAIpYoiaJtGUouNMrwv72lJ8Kt8WAroIyCJG6X9RLgLAmCNV9Eb+Yyvn18hF6wTWSo5S9ts4QQPxZcdAX+R5NLwC4kuOiaQuE/8fjwZXwJlubgGpxP/xaFgFNPReotVqKFqT/841rNLl3p00pLiGPqfwe7cacsOZ3ruF1PzerYrcEJ8DxXsJv3M3vN7lnwPpvbuM37uVUFvcuzxYAYeCJgKI7D9wWxVoIqBHSuovUkqOGAKqiBomIsrEXNNEAJDqaT513RqiRooYnTvNk/6X03Pk/RJxeo48nZSw4vQcJVSU74PTc+RrpYQlp+cooaI8H5yeI08npaw4PUcpJeX54fQceTopZcXpOUopadkPp+dY1sgaC07PsUYtx7V1KGgijknULKmcnpNKnXREpIiAHOZIlMGDfq440eqRKJaOWvgThWbN6T4MTSwpVv46QxN5OilhxdBECRXl+2BoIl8rJSwZmiihojwfDE3k6aSUFUMTpZSU54ehiTydlLJiaKKUkpb9MDSxrJE1FgxNrFHLcW0dDpqIGiVubq2klsAi8iQ29jXqjDNG6o5jjkQRUSXmbjnCXvzcHDkiIIooMmuOPBH/bW5ZbPbn49uLWw5b+TvB0MRKwewwZ2hih3g2TGVoYoNodkxhaGKHeFZOZWhipWB2mjM0sVNAK6czNLFSMDvNGZrYKaAV0xmaWCGWDFOGJjJEagYmTQ6aiHSb5HPLYTQUUm5koVSctXK3HHObYQE4hI0AJqK9sLnGSX5+FBLOLpZqmphHB4Io5pbEovBrasov6E91UcQQ6TgCnIjXhT+RytO587wKfxxpIu+3hKGJPJ2UsGJoooSK8n0wNJGvlRKWDE2UUFGeD4Ym8nRSyoqhiVJKyvPD0ESeTkpZMTRRSknLfhiaWNbIGguGJtao5bi2TQ6ayD0KAU+cnb0q4Eb1eQKqiGGGKfX5FbbCnwAn1e0Zmsg7EYYm8nRSwoqhiRIqyvfB0ES+VkpYMjRRQkV5PhiayNNJKSuGJkopKc8PQxN5OillxdBEKSUt+2FoYlkjaywYmlijluPaOiw0UevIGJrIU5qhiTydlLBiaKKEivJ9MDSRr5USlgxNlFBRng+GJvJ0UsqKoYlSSsrzw9BEnk5KWTE0UUpJy34YmljWyBoLhibWqOW4tgxN7DxbhibyBGRoIk8nJawYmiihonwfDE3ka6WEJUMTJVSU54OhiTydlLJiaKKUkvL8MDSRp5NSVgxNlFLSsh+GJpY1ssaCoYk1ajmuLUMTO8+WoYk8ARmayNNJCSuGJkqoKN8HQxP5WilhydBECRXl+WBoIk8npawYmiilpDw/DE3k6aSUFUMTpZS07IehiWWNrLFgaGKNWo5ry9DEzrNlaCJPQIYm8nRSwoqhiRIqyvfB0ES+VkpYMjRRQkV5PhiayNNJKSuGJkopKc8PQxN5OillxdBEKSUt+2FoYlkjaywYmlijluPaMjSx82wZmsgTkKGJPJ2UsGJoooSK8n0wNJGvlRKWDE2UUFGeD4Ym8nRSyoqhiVJKyvPD0ESeTkpZMTRRSknLfhiaWNbIGguGJtao5bi2DE3sPFuGJvIEZGgiTyclrBiaKKGifB8MTeRrpYQlQxMlVJTng6GJPJ2UsmJoopSS8vwwNJGnk1JWDE2UUtKyH4YmljWyxoKhiTVqOa4tQxPHPVu+MlaAFWAFWAFWgBVgBVgBVoAVYAVYAVaAFbBDAYYmdojHU1kBVoAVYAVYAVaAFWAFWAFWgBVgBVgBVsBxFWBo4rhny1fGCrACrAArwAqwAqwAK8AKsAKsACvACrACdijA0MQO8XgqK8AKsAKsACvACrACrAArwAqwAqwAK8AKOK4CDE0c92zx0NPvYfueIxVXGNmpLX5c/HKVK77xvudx4tRZ6WfVX5czX8z79JtfsHztJmxds0CWmvWt+cI7S7B63dYafo5tWVqv7/p8iomXTpqNjKzcWq9T1qYtGMnRyhG0tnSd1c+vtnuuueptvu4eo++ukOCReyfhoTuvt+veFpOt9WntGVg6d+Gvsd3ftuht73Vaq2tt9vbuQc58Jd+3j8XE4eYHX6r10u193zY7FX9jPvxqDd585kFcd+VQJWSu8CFHr8Z0b9ujt6Vzr/x3UthaOj9bDqKp6W2+Rlu0sfS5xNJ52KJv9TnNSe/69LT1s6U1Z9BctJZznQ39mduac2FbVkApBRiaKKVkI/Qj3rQqgwzx36OH9cVLT9wj7Va88aVn5lSAFPEHvmWgPz598zHpdUvz123chafnfybZBgX4yYImltYUf9iiTsTVgDv/b+/+dWU3iwCA5xUoUKhAt0CAQLRUiII2BUgU0NJRUFLzAFSIAtGkjmh4hUiRIqVDUIAEEiIViIJXQN8RPjjG6/n8ebx3PftLc3PPtWc9v5n1n1mvzxZvFHOZd/v71778pdc8M0oXWfVs41atHsU6yrP10Hwwt+ypDOue3nxE7+lip2dQMjlFeYzEHKlBVPdoO6P1z+jvEZtoO6M8R2yX6xzdhmj9M6yXObT9+D//9e/NfWyv5TSUb0PvM4YmkVe0ndH6j+IdbcdyX73MO6O3r7rvHrGJ+iaqB+//nYv29GLkOXJuubcG0b4g6olo/SjHte2NXnOkt6PtvMc5997aWJ5AhoChSYbiRWIsDxptx/azn/zw9ZO7tkP+xa8/uDn8uHXQ2XOnSfSaIwe2rZjTQWb+idnaz7JLWNV67eJoa8g1Us+RWlzBu528vPv5z70OLXvyjN4vIzF7Xjdapqp31N9RPSK3kX+/gvUyr3bn029/8/N3vv6VNzdT7rGcH1tazDOGJtk1v8dxcsR7WufW8brV40ff++7rnW97jusjfT2tc4X+HrHp6e9mcC/n6t5Rf9/rXGT+Xqja21v7zLd1zn1kH2RdAr0Chia9UgWWaxPlb3z1zctF2/Qp7PzEdu1n87Tn689/3nvQ73nN5S2U0R0sUcy/ffqPl7th5kOTKM+MUle0XnO51RPTsmfc1RNtR9QTaxdy9+jtdtHX+nn6mljLY+vCsiePvTEzervFuEJ/Z9gczTPD++g23KO3lxcK0V0mPb29PK7ca2hS0bvneD0de3/w3ndezhGifXtGb19lX7LXpqe/o4v8LN9lnCv0917vPf09LRudW2b4V7eejOZ5rg1N7nHOnVEvMQhEAoYmkVCRf58OQtPwYM9BvREs1+85SC3p9r7mdELV/lw+i2WK3ROznWxPJ4JtvbN34FWtl/Xc6onp+6xnPdNkeZHWnoPzyL3dtrc992H+SfmW360+nffuSMyM3dkV+jvD5miez2K9HEL23GUS7bc/+uSP//ecrHsMTY7W/G0cJ3u8e47XU03mg90znmlytX136++9NlF/z98zvR86PdP+ZK93T38v/dqF/ta55VHvq+xLjljfuja49zn30VpZn0CvgKFJr9SFl5seohfdVXJrmLC2fnSQWj6s7tvf+uY7P/3x918uHKPtmMeeT61HY956cN4ZJ4SVradn3bT6RD0x1bDnu8hH3lpX8Z4u4pd3lkwXgm+++IXPPEyz5/0Sxcx+YOatuu+9QGgP9Lx1h83aBcTI+z6yWfOO+ntPnkd6elr3Kr09vwBs7/eXPvnvc7Ha/4/U71fv/+4zDzGfe+55JtCeOlT2Xvb22oPbl0OpaKi7x3Zt2St5b9mM9PfbGJpU9u7p72UPnvk17WeyXjue3/Oc++h+yPoE9ggYmuzRuuCy0d0A0TNNek6c9nxS0vs934m658C2N2bPQwpHSv0M1s2lpyf21G/EOtqOnp7oySOzt9c+KY8+PY/yGInJe/s3sBx9H4/6ztc7ug337u35cCR6lsmUZ9TbS8fovXLE/Rm858O45dDk3gPBK3mP2vT2955jzGiPP4P3Vn+vufWcW454P4t1zzFm8jvrnHukPtYhcETA0OSI3oOvG91+2PNU7Zbira/G7D1IteWj11x7Knf0m26imPMyTQfK3hP73hI/i3WU57J+0fK9vsvlorhRT0Trn9HbbZv+9Je/vz5ouZ1IfPjx7zd/61SUx0jMEfPIK9rOaP1H8Y62M8pzxLZCb0/79vbn/FPfLY+9lmcNTY7WPFr/jN4e8Y62o/m2O9ym+vXsn0b6PfKK+iJaP8pzbZuj1xyxiWKObCfvX4YEWw86Xv6GwujcMnyxxQJRb0Y9Ea0/0jPRa470du92tu0965x7b20sTyBDwNAkQ/EBY9y6Pa5t6vy5Cm3n9+e/fvqSwfz5Ez3rz3/92UQwf3bILZZbr9mWn/9b+/v8JG6LeSvmdKvktH7213J6rJa5XdG6J89l/c54pknPdjyid9umdgLz0Sd/eGnF3gfRbfX2aMw9u6xn8T6a5x7TW8se3Yae9c/Yb/d+XW+Zd9Tb8+XPGJr0eD3ivmTEu6fuzXj6r3f/tKfvr+rdchyx2ervnnrssV1b9pm8I8/Rc8veGjyLdU+eZ59z99bEcgSyBQxNskXFI0CAAAECBAgQIECAAAECBEoIGJqUKKMkCBAgQIAAAQIECBAgQIAAgWwBQ5NsUfEIECBAgAABAgQIECBAgACBEgKGJiXKKAkCBAgQIECAAAECBAgQIEAgW8DQJFtUPAIECBAgQIAAAQIECBAgQKCEgKFJiTJKggABAgQIECBAgAABAgQIEMgWMDTJFhWPAAECBAgQIECAAAECBAgQKCFgaFKijJIgQIAAAQIECBAgQIAAAQIEsgUMTbJFxSNAgAABAgQIECBAgAABAgRKCBialCijJAgQIECAAAECBAgQIECAAIFsAUOTbFHxCBAgQIAAAQIECBAgQIAAgRIChiYlyigJAgQIECBAgAABAgQIECBAIFvA0CRbVDwCBAgQIECAAAECBAgQIECghIChSYkySoIAAQIECBAgQIAAAQIECBDIFjA0yRYVjwABAgQIECBAgAABAgQIECghYGhSooySIECAAAECBAgQIECAAAECBLIFDE2yRcUjQIAAAQIECBAgQIAAAQIESggYmpQooyQIECBAgAABAgQIECBAgACBbAFDk2xR8QgQIECAAAECBAgQIECAAIESAoYmJcooCQIECBAgQIAAAQIECBAgQCBbwNAkW1Q8AgQIECBAgAABAgQIECBAoISAoUmJMkqCAAECBAgQIECAAAECBAgQyBYwNMkWFY8AAQIECBAgQIAAAQIECBAoIWBoUqKMkiBAgAABAgQIECBAgAABAgSyBQxNskXFI0CAAAECBAgQIECAAAECBEoIGJqUKKMkCBAgQIAAAQIECBAgQIAAgWwBQ5NsUfEIECBAgAABAgQIECBAgACBEgKGJiXKKAkCBAgQIECAAAECBAgQIEAgW8DQJFtUPAIECBAgQIAAAQIECBAgQKCEgKFJiTJKggABAgQIECBAgAABAgQIEMgWMDTJFhWPAAECBAgQIECAAAECBAgQKCFgaFKijJIgQIAAAQIECBAgQIAAAQIEsgUMTbJFxSNAgAABAgQIECBAgAABAgRKCBialCijJAgQIECAAAECBAgQIECAAIFsAUOTbFHxCBAgQIAAAQIECBAgQIAAgRIChiYlyigJAgQIECBAgAABAgQIECBAIFvA0CRbVDwCBAgQIECAAAECBAgQIECghIChSYkySoIAAQIECBAgQIAAAQIECBDIFjA0yRYVjwABAgQIECBAgAABAgQIECghYGhSooySIECAAAECBAgQIECAAAECBLIFDE2yRcUjQIAAAQIECBAgQIAAAQIESggYmpQooyQIECBAgAABAgQIECBAgACBbAFDk2xR8QgQIECAAAECBAgQIECAAIESAoYmJcooCQIECBAgQIAAAQIECBAgQCBbwNAkW1Q8AgQIECBAgAABAgQIECBAoISAoUmJMkqCAAECBAgQIECAAAECBAgQyBYwNMkWFY8AAQIECBAgQIAAAQIECBAoIWBoUqKMkiBAgAABAgQIECBAgAABAgSyBQxNskXFI0CAAAECBAgQIECAAAECBEoIGJqUKKMkCBAgQIAAAQIECBAgQIAAgWwBQ5NsUfEIECBAgAABAgQIECBAgACBEgKGJiXKKAkCBAgQIECAAAECBAgQIEAgW8DQJFtUPAIECBAgQIAAAQIECBAgQKCEgKFJiTJKggABAgQIECBAgAABAgQIEMgWMDTJFhWPAAECBAgQIECAAAECBAgQKCFgaFKijJIgQIAAAQIECBAgQIAAAQIEsgUMTbJFxSNAgAABAgQIECBAgAABAgRKCBialCijJAgQIECAAAECBAgQIECAAIFsAUOTbFHxCBAgQIAAAQIECBAgQIAAgRIChiYlyigJAgQIECBAgAABAgQIECBAIFvA0CRbVDwCBAgQIECAAAECBAgQIECghIChSYkySoIAAQIECBAgQIAAAQIECBDIFjA0yRYVjwABAgQIECBAgAABAgQIECghYGhSooySIECAAAECBAgQIECAAAECBLIFDE2yRcUjQIAAAQIECBAgQIAAAQIESggYmpQooyQIECBAgAABAgQIECBAgACBbAFDk2xR8QgQIECAAAECBAgQIECAAIESAv8B0SNT3O5bJdYAAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import gymnasium as gym\n", - "from gym_mtsim import (\n", - " Timeframe, SymbolInfo,\n", - " MtSimulator, OrderType, Order, SymbolNotFound, OrderNotFound,\n", - " MtEnv,\n", - " FOREX_DATA_PATH, STOCKS_DATA_PATH, CRYPTO_DATA_PATH, MIXED_DATA_PATH,\n", - ")\n", - "from stable_baselines3 import A2C\n", - "from stable_baselines3.common.vec_env import DummyVecEnv\n", - "import random\n", - "import numpy as np\n", - "import torch\n", - "\n", - "env_name = 'forex-hedge-v0'\n", - "\n", - "# reproduce training and test\n", - "seed = 2024\n", - "random.seed(seed)\n", - "np.random.seed(seed)\n", - "torch.manual_seed(seed)\n", - "\n", - "env = gym.make(env_name)\n", - "model = A2C('MultiInputPolicy', env, verbose=0)\n", - "model.learn(total_timesteps=1000)\n", - "\n", - "observation, info = env.reset(seed=seed)\n", - "\n", - "while True:\n", - " action, _states = model.predict(observation)\n", - " observation, reward, terminated, truncated, info = env.step(action)\n", - " done = terminated or truncated\n", - "\n", - " if done:\n", - " break\n", - "\n", - "env.unwrapped.render('advanced_figure', time_format='%Y-%m-%d')" - ] - }, - { - "attachments": {}, - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## References\n", - "\n", - "* [https://www.mql5.com/en/docs/python_metatrader5](https://www.mql5.com/en/docs/python_metatrader5)\n", - "* [https://www.metatrader5.com/en/terminal/help/trading_advanced/margin_forex](https://www.metatrader5.com/en/terminal/help/trading_advanced/margin_forex)\n", - "* [https://admiralmarkets.com/education/articles/forex-basics/margin-in-forex-trading-margin-level-vs-margin-call](https://admiralmarkets.com/education/articles/forex-basics/margin-in-forex-trading-margin-level-vs-margin-call)\n", - "* [https://www.investopedia.com/articles/forex/12/calculating-profits-and-losses-of-forex-trades.asp](https://www.investopedia.com/articles/forex/12/calculating-profits-and-losses-of-forex-trades.asp)\n" - ] - } - ], - "metadata": { - "interpreter": { - "hash": "0abee77d591a174194b91b850e12395de882ac6d36de3e6e63e8904e4cff1216" - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.6" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/trade_flow/environments/gym-mtsim/setup.py b/trade_flow/environments/gym-mtsim/setup.py deleted file mode 100644 index 7f6917e..0000000 --- a/trade_flow/environments/gym-mtsim/setup.py +++ /dev/null @@ -1,26 +0,0 @@ -from setuptools import setup, find_packages - -setup( - name='gym_mtsim', - version='2.0.0', - packages=find_packages(), - - author='AminHP', - author_email='mdan.hagh@gmail.com', - - install_requires=[ - 'gymnasium>=0.29.1', - 'numpy>=1.25.2', - 'scipy>=1.11.2', - 'pandas>=2.0.3', - 'matplotlib>=3.8.2', - 'plotly>=5.16.1', - 'nbformat>=5.9.2', - 'pathos>=0.3.1', - 'MetaTrader5>=5.0.45; platform_system == "Windows"', - ], - - package_data={ - 'gym_mtsim': ['data/*.pkl'] - } -) diff --git a/trade_flow/environments/gym-mtsim/CITATION.cff b/trade_flow/environments/gym_mtsim/CITATION.cff similarity index 100% rename from trade_flow/environments/gym-mtsim/CITATION.cff rename to trade_flow/environments/gym_mtsim/CITATION.cff diff --git a/trade_flow/environments/gym-mtsim/README.md b/trade_flow/environments/gym_mtsim/README.md similarity index 100% rename from trade_flow/environments/gym-mtsim/README.md rename to trade_flow/environments/gym_mtsim/README.md diff --git a/trade_flow/environments/gym-mtsim/gym_mtsim/__init__.py b/trade_flow/environments/gym_mtsim/__init__.py similarity index 100% rename from trade_flow/environments/gym-mtsim/gym_mtsim/__init__.py rename to trade_flow/environments/gym_mtsim/__init__.py diff --git a/trade_flow/environments/gym-mtsim/gym_mtsim/data/__init__.py b/trade_flow/environments/gym_mtsim/data/__init__.py similarity index 100% rename from trade_flow/environments/gym-mtsim/gym_mtsim/data/__init__.py rename to trade_flow/environments/gym_mtsim/data/__init__.py diff --git a/trade_flow/environments/gym-mtsim/gym_mtsim/data/symbols_crypto.pkl b/trade_flow/environments/gym_mtsim/data/symbols_crypto.pkl similarity index 100% rename from trade_flow/environments/gym-mtsim/gym_mtsim/data/symbols_crypto.pkl rename to trade_flow/environments/gym_mtsim/data/symbols_crypto.pkl diff --git a/trade_flow/environments/gym-mtsim/gym_mtsim/data/symbols_forex.pkl b/trade_flow/environments/gym_mtsim/data/symbols_forex.pkl similarity index 100% rename from trade_flow/environments/gym-mtsim/gym_mtsim/data/symbols_forex.pkl rename to trade_flow/environments/gym_mtsim/data/symbols_forex.pkl diff --git a/trade_flow/environments/gym-mtsim/gym_mtsim/data/symbols_mixed.pkl b/trade_flow/environments/gym_mtsim/data/symbols_mixed.pkl similarity index 100% rename from trade_flow/environments/gym-mtsim/gym_mtsim/data/symbols_mixed.pkl rename to trade_flow/environments/gym_mtsim/data/symbols_mixed.pkl diff --git a/trade_flow/environments/gym-mtsim/gym_mtsim/data/symbols_stocks.pkl b/trade_flow/environments/gym_mtsim/data/symbols_stocks.pkl similarity index 100% rename from trade_flow/environments/gym-mtsim/gym_mtsim/data/symbols_stocks.pkl rename to trade_flow/environments/gym_mtsim/data/symbols_stocks.pkl diff --git a/trade_flow/environments/gym-mtsim/doc/output_28_0.png b/trade_flow/environments/gym_mtsim/doc/output_28_0.png similarity index 100% rename from trade_flow/environments/gym-mtsim/doc/output_28_0.png rename to trade_flow/environments/gym_mtsim/doc/output_28_0.png diff --git a/trade_flow/environments/gym-mtsim/doc/output_30_0.png b/trade_flow/environments/gym_mtsim/doc/output_30_0.png similarity index 100% rename from trade_flow/environments/gym-mtsim/doc/output_30_0.png rename to trade_flow/environments/gym_mtsim/doc/output_30_0.png diff --git a/trade_flow/environments/gym-mtsim/doc/output_32_0.png b/trade_flow/environments/gym_mtsim/doc/output_32_0.png similarity index 100% rename from trade_flow/environments/gym-mtsim/doc/output_32_0.png rename to trade_flow/environments/gym_mtsim/doc/output_32_0.png diff --git a/trade_flow/environments/gym-mtsim/gym_mtsim/envs/__init__.py b/trade_flow/environments/gym_mtsim/envs/__init__.py similarity index 100% rename from trade_flow/environments/gym-mtsim/gym_mtsim/envs/__init__.py rename to trade_flow/environments/gym_mtsim/envs/__init__.py diff --git a/trade_flow/environments/gym-mtsim/gym_mtsim/envs/mt_env.py b/trade_flow/environments/gym_mtsim/envs/mt_env.py similarity index 100% rename from trade_flow/environments/gym-mtsim/gym_mtsim/envs/mt_env.py rename to trade_flow/environments/gym_mtsim/envs/mt_env.py diff --git a/trade_flow/environments/gym-mtsim/examples/SB3_a2c_ppo.ipynb b/trade_flow/environments/gym_mtsim/examples/SB3_a2c_ppo.ipynb similarity index 92% rename from trade_flow/environments/gym-mtsim/examples/SB3_a2c_ppo.ipynb rename to trade_flow/environments/gym_mtsim/examples/SB3_a2c_ppo.ipynb index 5874fb7..c155040 100644 --- a/trade_flow/environments/gym-mtsim/examples/SB3_a2c_ppo.ipynb +++ b/trade_flow/environments/gym_mtsim/examples/SB3_a2c_ppo.ipynb @@ -9,11 +9,27 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 10, "metadata": { "tags": [] }, - "outputs": [], + "outputs": [ + { + "ename": "TypeError", + "evalue": "Argument 'placement' has incorrect type (expected pandas._libs.internals.BlockPlacement, got slice)", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[10], line 10\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mmatplotlib\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpyplot\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mplt\u001b[39;00m\n\u001b[1;32m 9\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mgymnasium\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01mgym\u001b[39;00m\n\u001b[0;32m---> 10\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mgym_mtsim\u001b[39;00m\n\u001b[1;32m 12\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mstable_baselines3\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m A2C, PPO\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mstable_baselines3\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcommon\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mcallbacks\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m BaseCallback\n", + "File \u001b[0;32m~/Tech/labs/Financial_Eng/Financial_Markets/lab/trade_flow/trade_flow/environments/gym-mtsim/gym_mtsim/__init__.py:13\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01menvs\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m MtEnv\n\u001b[1;32m 6\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdata\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m FOREX_DATA_PATH, STOCKS_DATA_PATH, CRYPTO_DATA_PATH, MIXED_DATA_PATH\n\u001b[1;32m 9\u001b[0m register(\n\u001b[1;32m 10\u001b[0m \u001b[38;5;28mid\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mforex-hedge-v0\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 11\u001b[0m entry_point\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mgym_mtsim.envs:MtEnv\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 12\u001b[0m kwargs\u001b[38;5;241m=\u001b[39m{\n\u001b[0;32m---> 13\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124moriginal_simulator\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[43mMtSimulator\u001b[49m\u001b[43m(\u001b[49m\u001b[43msymbols_filename\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mFOREX_DATA_PATH\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mhedge\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m,\n\u001b[1;32m 14\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtrading_symbols\u001b[39m\u001b[38;5;124m'\u001b[39m: [\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mEURUSD\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mGBPCAD\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mUSDJPY\u001b[39m\u001b[38;5;124m'\u001b[39m],\n\u001b[1;32m 15\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mwindow_size\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m10\u001b[39m,\n\u001b[1;32m 16\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124msymbol_max_orders\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;241m2\u001b[39m,\n\u001b[1;32m 17\u001b[0m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mfee\u001b[39m\u001b[38;5;124m'\u001b[39m: \u001b[38;5;28;01mlambda\u001b[39;00m symbol: \u001b[38;5;241m0.03\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mJPY\u001b[39m\u001b[38;5;124m'\u001b[39m \u001b[38;5;129;01min\u001b[39;00m symbol \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;241m0.0003\u001b[39m\n\u001b[1;32m 18\u001b[0m }\n\u001b[1;32m 19\u001b[0m )\n\u001b[1;32m 21\u001b[0m register(\n\u001b[1;32m 22\u001b[0m \u001b[38;5;28mid\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mforex-unhedge-v0\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 23\u001b[0m entry_point\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mgym_mtsim.envs:MtEnv\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 29\u001b[0m }\n\u001b[1;32m 30\u001b[0m )\n\u001b[1;32m 32\u001b[0m register(\n\u001b[1;32m 33\u001b[0m \u001b[38;5;28mid\u001b[39m\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mstocks-hedge-v0\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[1;32m 34\u001b[0m entry_point\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mgym_mtsim.envs:MtEnv\u001b[39m\u001b[38;5;124m'\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 41\u001b[0m }\n\u001b[1;32m 42\u001b[0m )\n", + "File \u001b[0;32m~/Tech/labs/Financial_Eng/Financial_Markets/lab/trade_flow/trade_flow/environments/gym-mtsim/gym_mtsim/simulator/mt_simulator.py:42\u001b[0m, in \u001b[0;36mMtSimulator.__init__\u001b[0;34m(self, unit, balance, leverage, stop_out_level, hedge, symbols_filename)\u001b[0m\n\u001b[1;32m 39\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcurrent_time: datetime \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mNotImplemented\u001b[39m\n\u001b[1;32m 41\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m symbols_filename:\n\u001b[0;32m---> 42\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload_symbols\u001b[49m\u001b[43m(\u001b[49m\u001b[43msymbols_filename\u001b[49m\u001b[43m)\u001b[49m:\n\u001b[1;32m 43\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mFileNotFoundError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfile \u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;132;01m{\u001b[39;00msymbols_filename\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m not found\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "File \u001b[0;32m~/Tech/labs/Financial_Eng/Financial_Markets/lab/trade_flow/trade_flow/environments/gym-mtsim/gym_mtsim/simulator/mt_simulator.py:73\u001b[0m, in \u001b[0;36mMtSimulator.load_symbols\u001b[0;34m(self, filename)\u001b[0m\n\u001b[1;32m 71\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mFalse\u001b[39;00m\n\u001b[1;32m 72\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mopen\u001b[39m(filename, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mrb\u001b[39m\u001b[38;5;124m'\u001b[39m) \u001b[38;5;28;01mas\u001b[39;00m file:\n\u001b[0;32m---> 73\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msymbols_info, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msymbols_data \u001b[38;5;241m=\u001b[39m \u001b[43mpickle\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mload\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfile\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 74\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m\n", + "File \u001b[0;32m~/anaconda3/envs/algo_trading/lib/python3.11/site-packages/pandas/core/internals/blocks.py:2728\u001b[0m, in \u001b[0;36mnew_block\u001b[0;34m(values, placement, ndim, refs)\u001b[0m\n\u001b[1;32m 2716\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mnew_block\u001b[39m(\n\u001b[1;32m 2717\u001b[0m values,\n\u001b[1;32m 2718\u001b[0m placement: BlockPlacement,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 2725\u001b[0m \u001b[38;5;66;03m# - check_ndim/ensure_block_shape already checked\u001b[39;00m\n\u001b[1;32m 2726\u001b[0m \u001b[38;5;66;03m# - maybe_coerce_values already called/unnecessary\u001b[39;00m\n\u001b[1;32m 2727\u001b[0m klass \u001b[38;5;241m=\u001b[39m get_block_type(values\u001b[38;5;241m.\u001b[39mdtype)\n\u001b[0;32m-> 2728\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mklass\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mndim\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mndim\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mplacement\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mplacement\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mrefs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrefs\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[0;31mTypeError\u001b[0m: Argument 'placement' has incorrect type (expected pandas._libs.internals.BlockPlacement, got slice)" + ] + } + ], "source": [ "from tqdm import tqdm\n", "import random\n", diff --git a/trade_flow/environments/gym_mtsim/metadata.toml b/trade_flow/environments/gym_mtsim/metadata.toml new file mode 100644 index 0000000..4b4b049 --- /dev/null +++ b/trade_flow/environments/gym_mtsim/metadata.toml @@ -0,0 +1,7 @@ +[environment] +name = "gym_mtsim" +version = "0.1.0" +description = "`MtSim` is a simulator for the [MetaTrader 5](https://www.metatrader5.com) trading platform alongside an [OpenAI Gym](https://github.com/openai/gym) environment for reinforcement learning-based trading algorithms. `MetaTrader 5` is a **multi-asset** platform that allows trading **Forex**, **Stocks**, **Crypto**, and Futures. It is one of the most popular trading platforms and supports numerous useful features, such as opening demo accounts on various brokers." +type = "train" +engine = "gym" +url = "https://github.com/AminHP/gym-mtsim" diff --git a/trade_flow/environments/gym-mtsim/gym_mtsim/metatrader/__init__.py b/trade_flow/environments/gym_mtsim/metatrader/__init__.py similarity index 100% rename from trade_flow/environments/gym-mtsim/gym_mtsim/metatrader/__init__.py rename to trade_flow/environments/gym_mtsim/metatrader/__init__.py diff --git a/trade_flow/environments/gym-mtsim/gym_mtsim/metatrader/api.py b/trade_flow/environments/gym_mtsim/metatrader/api.py similarity index 100% rename from trade_flow/environments/gym-mtsim/gym_mtsim/metatrader/api.py rename to trade_flow/environments/gym_mtsim/metatrader/api.py diff --git a/trade_flow/environments/gym-mtsim/gym_mtsim/metatrader/interface.py b/trade_flow/environments/gym_mtsim/metatrader/interface.py similarity index 100% rename from trade_flow/environments/gym-mtsim/gym_mtsim/metatrader/interface.py rename to trade_flow/environments/gym_mtsim/metatrader/interface.py diff --git a/trade_flow/environments/gym-mtsim/gym_mtsim/metatrader/symbol.py b/trade_flow/environments/gym_mtsim/metatrader/symbol.py similarity index 100% rename from trade_flow/environments/gym-mtsim/gym_mtsim/metatrader/symbol.py rename to trade_flow/environments/gym_mtsim/metatrader/symbol.py diff --git a/trade_flow/environments/gym-mtsim/gym_mtsim/simulator/__init__.py b/trade_flow/environments/gym_mtsim/simulator/__init__.py similarity index 100% rename from trade_flow/environments/gym-mtsim/gym_mtsim/simulator/__init__.py rename to trade_flow/environments/gym_mtsim/simulator/__init__.py diff --git a/trade_flow/environments/gym-mtsim/gym_mtsim/simulator/exceptions.py b/trade_flow/environments/gym_mtsim/simulator/exceptions.py similarity index 100% rename from trade_flow/environments/gym-mtsim/gym_mtsim/simulator/exceptions.py rename to trade_flow/environments/gym_mtsim/simulator/exceptions.py diff --git a/trade_flow/environments/gym-mtsim/gym_mtsim/simulator/mt_simulator.py b/trade_flow/environments/gym_mtsim/simulator/mt_simulator.py similarity index 76% rename from trade_flow/environments/gym-mtsim/gym_mtsim/simulator/mt_simulator.py rename to trade_flow/environments/gym_mtsim/simulator/mt_simulator.py index 4f6a987..04d906e 100644 --- a/trade_flow/environments/gym-mtsim/gym_mtsim/simulator/mt_simulator.py +++ b/trade_flow/environments/gym_mtsim/simulator/mt_simulator.py @@ -16,9 +16,9 @@ class MtSimulator: def __init__( self, - unit: str = 'USD', - balance: float = 10000., - leverage: float = 100., + unit: str = "USD", + balance: float = 10000.0, + leverage: float = 100.0, stop_out_level: float = 0.2, hedge: bool = True, symbols_filename: Optional[str] = None, @@ -30,7 +30,7 @@ def __init__( self.stop_out_level = stop_out_level self.hedge = hedge self.symbols_filename = symbols_filename - self.margin = 0. + self.margin = 0.0 self.symbols_info: Dict[str, SymbolInfo] = {} self.symbols_data: Dict[str, pd.DataFrame] = {} @@ -49,8 +49,8 @@ def free_margin(self) -> float: @property def margin_level(self) -> float: margin = round(self.margin, 6) - if margin == 0.: - return float('inf') + if margin == 0.0: + return float("inf") return self.equity / margin def download_data( @@ -63,17 +63,17 @@ def download_data( self.symbols_data[symbol] = df def save_symbols(self, filename: str) -> None: - with open(filename, 'wb') as file: + with open(filename, "wb") as file: pickle.dump((self.symbols_info, self.symbols_data), file) def load_symbols(self, filename: str) -> bool: if not os.path.exists(filename): return False - with open(filename, 'rb') as file: + with open(filename, "rb") as file: self.symbols_info, self.symbols_data = pickle.load(file) return True - def tick(self, delta_time: timedelta=timedelta()) -> None: + def tick(self, delta_time: timedelta = timedelta()) -> None: self._check_current_time() self.current_time += delta_time @@ -81,7 +81,7 @@ def tick(self, delta_time: timedelta=timedelta()) -> None: for order in self.orders: order.exit_time = self.current_time - order.exit_price = self.price_at(order.symbol, order.exit_time)['Close'] + order.exit_price = self.price_at(order.symbol, order.exit_time)["Close"] self._update_order_profit(order) self.equity += order.profit @@ -89,8 +89,8 @@ def tick(self, delta_time: timedelta=timedelta()) -> None: most_unprofitable_order = min(self.orders, key=lambda order: order.profit) self.close_order(most_unprofitable_order) - if self.balance < 0.: - self.balance = 0. + if self.balance < 0.0: + self.balance = 0.0 self.equity = self.balance def nearest_time(self, symbol: str, time: datetime) -> datetime: @@ -98,9 +98,9 @@ def nearest_time(self, symbol: str, time: datetime) -> datetime: if time in df.index: return time try: - i, = df.index.get_indexer([time], method='ffill') + (i,) = df.index.get_indexer([time], method="ffill") except KeyError: - i, = df.index.get_indexer([time], method='bfill') + (i,) = df.index.get_indexer([time], method="bfill") return df.index[i] def price_at(self, symbol: str, time: datetime) -> pd.Series: @@ -109,18 +109,20 @@ def price_at(self, symbol: str, time: datetime) -> pd.Series: return df.loc[time] def symbol_orders(self, symbol: str) -> List[Order]: - symbol_orders = list(filter( - lambda order: order.symbol == symbol, self.orders - )) + symbol_orders = list(filter(lambda order: order.symbol == symbol, self.orders)) return symbol_orders def create_order( - self, order_type: OrderType, symbol: str, volume: float, fee: float=0.0005, - raise_exception: bool = True + self, + order_type: OrderType, + symbol: str, + volume: float, + fee: float = 0.0005, + raise_exception: bool = True, ) -> Optional[Order]: self._check_current_time() self._check_volume(symbol, volume) - if fee < 0.: + if fee < 0.0: raise ValueError(f"negative fee '{fee}'") if self.hedge: @@ -128,18 +130,24 @@ def create_order( return self._create_unhedged_order(order_type, symbol, volume, fee, raise_exception) def _create_hedged_order( - self, order_type: OrderType, symbol: str, volume: float, fee: float, - raise_exception: bool + self, order_type: OrderType, symbol: str, volume: float, fee: float, raise_exception: bool ) -> Optional[Order]: order_id = len(self.closed_orders) + len(self.orders) + 1 entry_time = self.current_time - entry_price = self.price_at(symbol, entry_time)['Close'] + entry_price = self.price_at(symbol, entry_time)["Close"] exit_time = entry_time exit_price = entry_price order = Order( - order_id, order_type, symbol, volume, fee, - entry_time, entry_price, exit_time, exit_price + order_id, + order_type, + symbol, + volume, + fee, + entry_time, + entry_price, + exit_time, + exit_price, ) self._update_order_profit(order) self._update_order_margin(order) @@ -158,8 +166,7 @@ def _create_hedged_order( return order def _create_unhedged_order( - self, order_type: OrderType, symbol: str, volume: float, fee: float, - raise_exception: bool + self, order_type: OrderType, symbol: str, volume: float, fee: float, raise_exception: bool ) -> Optional[Order]: if symbol not in map(lambda order: order.symbol, self.orders): return self._create_hedged_order(order_type, symbol, volume, fee, raise_exception) @@ -174,7 +181,7 @@ def _create_unhedged_order( entry_price_weighted_average = np.average( [old_order.entry_price, new_order.entry_price], - weights=[old_order.volume, new_order.volume] + weights=[old_order.volume, new_order.volume], ) old_order.volume += new_order.volume @@ -186,10 +193,10 @@ def _create_unhedged_order( return old_order if volume >= old_order.volume: - self.close_order(old_order) - if volume > old_order.volume: - return self._create_hedged_order(order_type, symbol, volume - old_order.volume, fee) - return old_order + self.close_order(old_order) + if volume > old_order.volume: + return self._create_hedged_order(order_type, symbol, volume - old_order.volume, fee) + return old_order partial_profit = (volume / old_order.volume) * old_order.profit partial_margin = (volume / old_order.volume) * old_order.margin @@ -209,7 +216,7 @@ def close_order(self, order: Order) -> float: raise OrderNotFound("order not found in the order list") order.exit_time = self.current_time - order.exit_price = self.price_at(order.symbol, order.exit_time)['Close'] + order.exit_price = self.price_at(order.symbol, order.exit_time)["Close"] self._update_order_profit(order) self.balance += order.profit @@ -227,32 +234,34 @@ def close_order(self, order: Order) -> float: def get_state(self) -> Dict[str, Any]: orders = [] for order in reversed(self.closed_orders + self.orders): - orders.append({ - 'Id': order.id, - 'Symbol': order.symbol, - 'Type': order.type.name, - 'Volume': order.volume, - 'Entry Time': order.entry_time, - 'Entry Price': order.entry_price, - 'Exit Time': order.exit_time, - 'Exit Price': order.exit_price, - 'Exit Balance': order.exit_balance, - 'Exit Equity': order.exit_equity, - 'Profit': order.profit, - 'Margin': order.margin, - 'Fee': order.fee, - 'Closed': order.closed, - }) + orders.append( + { + "Id": order.id, + "Symbol": order.symbol, + "Type": order.type.name, + "Volume": order.volume, + "Entry Time": order.entry_time, + "Entry Price": order.entry_price, + "Exit Time": order.exit_time, + "Exit Price": order.exit_price, + "Exit Balance": order.exit_balance, + "Exit Equity": order.exit_equity, + "Profit": order.profit, + "Margin": order.margin, + "Fee": order.fee, + "Closed": order.closed, + } + ) orders_df = pd.DataFrame(orders) return { - 'current_time': self.current_time, - 'balance': self.balance, - 'equity': self.equity, - 'margin': self.margin, - 'free_margin': self.free_margin, - 'margin_level': self.margin_level, - 'orders': orders_df, + "current_time": self.current_time, + "balance": self.balance, + "equity": self.equity, + "margin": self.margin, + "free_margin": self.free_margin, + "margin_level": self.margin_level, + "orders": orders_df, } def _update_order_profit(self, order: Order) -> None: @@ -270,23 +279,25 @@ def _update_order_margin(self, order: Order) -> None: def _get_unit_ratio(self, symbol: str, time: datetime) -> float: symbol_info = self.symbols_info[symbol] if self.unit == symbol_info.currency_profit: - return 1. + return 1.0 if self.unit == symbol_info.currency_margin: - return 1 / self.price_at(symbol, time)['Close'] + return 1 / self.price_at(symbol, time)["Close"] currency = symbol_info.currency_profit unit_symbol_info = self._get_unit_symbol_info(currency) if unit_symbol_info is None: raise SymbolNotFound(f"unit symbol for '{currency}' not found") - unit_price = self.price_at(unit_symbol_info.name, time)['Close'] + unit_price = self.price_at(unit_symbol_info.name, time)["Close"] if unit_symbol_info.currency_margin == self.unit: - unit_price = 1. / unit_price + unit_price = 1.0 / unit_price return unit_price - def _get_unit_symbol_info(self, currency: str) -> Optional[SymbolInfo]: # Unit/Currency or Currency/Unit + def _get_unit_symbol_info( + self, currency: str + ) -> Optional[SymbolInfo]: # Unit/Currency or Currency/Unit for info in self.symbols_info.values(): if currency in info.currencies and self.unit in info.currencies: return info diff --git a/trade_flow/environments/gym-mtsim/gym_mtsim/simulator/order.py b/trade_flow/environments/gym_mtsim/simulator/order.py similarity index 100% rename from trade_flow/environments/gym-mtsim/gym_mtsim/simulator/order.py rename to trade_flow/environments/gym_mtsim/simulator/order.py From 77485f1ac8cf4d39c2c4747c5311e48f53e8ee5c Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 17:58:35 +0100 Subject: [PATCH 21/23] fix: update `gym_anytrading` environment --- .../environments/gym_anytrading/README.md | 311 + .../gym_anytrading/docs/output_11_0.png | Bin 0 -> 32938 bytes .../gym_anytrading/docs/output_14_1.png | Bin 0 -> 30403 bytes .../gym_anytrading/examples/SB3_a2c_ppo.ipynb | 398 + .../examples/SB3_a2c_quantstats.html | 28968 ++++++++++++++++ .../examples/SB3_a2c_quantstats.ipynb | 522 + .../environments/gym_anytrading/metadata.toml | 3 +- 7 files changed, 30201 insertions(+), 1 deletion(-) create mode 100644 trade_flow/environments/gym_anytrading/README.md create mode 100644 trade_flow/environments/gym_anytrading/docs/output_11_0.png create mode 100644 trade_flow/environments/gym_anytrading/docs/output_14_1.png create mode 100644 trade_flow/environments/gym_anytrading/examples/SB3_a2c_ppo.ipynb create mode 100644 trade_flow/environments/gym_anytrading/examples/SB3_a2c_quantstats.html create mode 100644 trade_flow/environments/gym_anytrading/examples/SB3_a2c_quantstats.ipynb diff --git a/trade_flow/environments/gym_anytrading/README.md b/trade_flow/environments/gym_anytrading/README.md new file mode 100644 index 0000000..bb28b4e --- /dev/null +++ b/trade_flow/environments/gym_anytrading/README.md @@ -0,0 +1,311 @@ +# gym-anytrading + +`AnyTrading` is a collection of [OpenAI Gym](https://github.com/openai/gym) environments for reinforcement learning-based trading algorithms. + +Trading algorithms are mostly implemented in two markets: [FOREX](https://en.wikipedia.org/wiki/Foreign_exchange_market) and [Stock](https://en.wikipedia.org/wiki/Stock). AnyTrading aims to provide some Gym environments to improve and facilitate the procedure of developing and testing RL-based algorithms in this area. This purpose is obtained by implementing three Gym environments: **TradingEnv**, **ForexEnv**, and **StocksEnv**. + +TradingEnv is an abstract environment which is defined to support all kinds of trading environments. ForexEnv and StocksEnv are simply two environments that inherit and extend TradingEnv. In the future sections, more explanations will be given about them but before that, some environment properties should be discussed. + +**Note:** For experts, it is recommended to check out the [gym-mtsim](https://github.com/AminHP/gym-mtsim) project. + +## Installation + +### Via PIP +```bash +pip install gym-anytrading +``` + +### From Repository +```bash +git clone https://github.com/AminHP/gym-anytrading +cd gym-anytrading +pip install -e . + +## or + +pip install --upgrade --no-deps --force-reinstall https://github.com/AminHP/gym-anytrading/archive/master.zip +``` + +## Environment Properties +First of all, **you can't simply expect an RL agent to do everything for you and just sit back on your chair in such complex trading markets!** +Things need to be simplified as much as possible in order to let the agent learn in a faster and more efficient way. In all trading algorithms, the first thing that should be done is to define **actions** and **positions**. In the two following subsections, I will explain these actions and positions and how to simplify them. + +### Trading Actions +If you search on the Internet for trading algorithms, you will find them using numerous actions such as **Buy**, **Sell**, **Hold**, **Enter**, **Exit**, etc. +Referring to the first statement of this section, a typical RL agent can only solve a part of the main problem in this area. If you work in trading markets you will learn that deciding whether to hold, enter, or exit a pair (in FOREX) or stock (in Stocks) is a statistical decision depending on many parameters such as your budget, pairs or stocks you trade, your money distribution policy in multiple markets, etc. It's a massive burden for an RL agent to consider all these parameters and may take years to develop such an agent! In this case, you certainly will not use this environment but you will extend your own. + +So after months of work, I finally found out that these actions just make things complicated with no real positive impact. In fact, they just increase the learning time and an action like **Hold** will be barely used by a well-trained agent because it doesn't want to miss a single penny. Therefore there is no need to have such numerous actions and only `Sell=0` and `Buy=1` actions are adequate to train an agent just as well. + +### Trading Positions +If you're not familiar with trading positions, refer [here](https://en.wikipedia.org/wiki/Position_\(finance\)). It's a very important concept and you should learn it as soon as possible. + +In a simple vision: **Long** position wants to buy shares when prices are low and profit by sticking with them while their value is going up, and **Short** position wants to sell shares with high value and use this value to buy shares at a lower value, keeping the difference as profit. + +Again, in some trading algorithms, you may find numerous positions such as **Short**, **Long**, **Flat**, etc. As discussed earlier, I use only `Short=0` and `Long=1` positions. + +## Trading Environments +As I noticed earlier, now it's time to introduce the three environments. Before creating this project, I spent so much time to search for a simple and flexible Gym environment for any trading market but didn't find one. They were almost a bunch of complex codes with many unclear parameters that you couldn't simply look at them and comprehend what's going on. So I concluded to implement this project with a great focus on simplicity, flexibility, and comprehensiveness. + +In the three following subsections, I will introduce our trading environments and in the next section, some IPython examples will be mentioned and briefly explained. + +### TradingEnv +TradingEnv is an abstract class which inherits `gym.Env`. This class aims to provide a general-purpose environment for all kinds of trading markets. Here I explain its public properties and methods. But feel free to take a look at the complete [source code](https://github.com/AminHP/gym-anytrading/blob/master/gym_anytrading/envs/trading_env.py). + +* Properties: +> `df`: An abbreviation for **DataFrame**. It's a **pandas'** DataFrame which contains your dataset and is passed in the class' constructor. +> +> `prices`: Real prices over time. Used to calculate profit and render the environment. +> +> `signal_features`: Extracted features over time. Used to create *Gym observations*. +> +> `window_size`: Number of ticks (current and previous ticks) returned as a *Gym observation*. It is passed in the class' constructor. +> +> `action_space`: The *Gym action_space* property. Containing discrete values of **0=Sell** and **1=Buy**. +> +> `observation_space`: The *Gym observation_space* property. Each observation is a window on `signal_features` from index **current_tick - window_size + 1** to **current_tick**. So `_start_tick` of the environment would be equal to `window_size`. In addition, initial value for `_last_trade_tick` is **window_size - 1** . +> +> `shape`: Shape of a single observation. +> +> `history`: Stores the information of all steps. + +* Methods: +> `seed`: Typical *Gym seed* method. +> +> `reset`: Typical *Gym reset* method. +> +> `step`: Typical *Gym step* method. +> +> `render`: Typical *Gym render* method. Renders the information of the environment's current tick. +> +> `render_all`: Renders the whole environment. +> +> `close`: Typical *Gym close* method. + +* Abstract Methods: +> `_process_data`: It is called in the constructor and returns `prices` and `signal_features` as a tuple. In different trading markets, different features need to be obtained. So this method enables our TradingEnv to be a general-purpose environment and specific features can be returned for specific environments such as *FOREX*, *Stocks*, etc. +> +> `_calculate_reward`: The reward function for the RL agent. +> +> `_update_profit`: Calculates and updates total profit which the RL agent has achieved so far. Profit indicates the amount of units of currency you have achieved by starting with *1.0* unit (Profit = FinalMoney / StartingMoney). +> +> `max_possible_profit`: The maximum possible profit that an RL agent can obtain regardless of trade fees. + +### ForexEnv +This is a concrete class which inherits TradingEnv and implements its abstract methods. Also, it has some specific properties for the *FOREX* market. For more information refer to the [source code](https://github.com/AminHP/gym-anytrading/blob/master/gym_anytrading/envs/forex_env.py). + +* Properties: +> `frame_bound`: A tuple which specifies the start and end of `df`. It is passed in the class' constructor. +> +> `unit_side`: Specifies the side you start your trading. Containing string values of **left** (default value) and **right**. As you know, there are two sides in a currency pair in *FOREX*. For example in the *EUR/USD* pair, when you choose the `left` side, your currency unit is *EUR* and you start your trading with 1 EUR. It is passed in the class' constructor. +> +> `trade_fee`: A default constant fee which is subtracted from the real prices on every trade. + + +### StocksEnv +Same as ForexEnv but for the *Stock* market. For more information refer to the [source code](https://github.com/AminHP/gym-anytrading/blob/master/gym_anytrading/envs/stocks_env.py). + +* Properties: +> `frame_bound`: A tuple which specifies the start and end of `df`. It is passed in the class' constructor. +> +> `trade_fee_bid_percent`: A default constant fee percentage for bids. For example with trade_fee_bid_percent=0.01, you will lose 1% of your money every time you sell your shares. +> +> `trade_fee_ask_percent`: A default constant fee percentage for asks. For example with trade_fee_ask_percent=0.005, you will lose 0.5% of your money every time you buy some shares. + +Besides, you can create your own customized environment by extending TradingEnv or even ForexEnv or StocksEnv with your desired policies for calculating reward, profit, fee, etc. + +## Examples + + +### Create an environment + + +```python +import gymnasium as gym +import gym_anytrading + +env = gym.make('forex-v0') +# env = gym.make('stocks-v0') +``` + +- This will create the default environment. You can change any parameters such as dataset, frame_bound, etc. + +### Create an environment with custom parameters +I put two default datasets for [*FOREX*](https://github.com/AminHP/gym-anytrading/blob/master/gym_anytrading/datasets/data/FOREX_EURUSD_1H_ASK.csv) and [*Stocks*](https://github.com/AminHP/gym-anytrading/blob/master/gym_anytrading/datasets/data/STOCKS_GOOGL.csv) but you can use your own. + + +```python +from gym_anytrading.datasets import FOREX_EURUSD_1H_ASK, STOCKS_GOOGL + +custom_env = gym.make( + 'forex-v0', + df=FOREX_EURUSD_1H_ASK, + window_size=10, + frame_bound=(10, 300), + unit_side='right' +) + +# custom_env = gym.make( +# 'stocks-v0', +# df=STOCKS_GOOGL, +# window_size=10, +# frame_bound=(10, 300) +# ) +``` + +- It is to be noted that the first element of `frame_bound` should be greater than or equal to `window_size`. + +### Print some information + + +```python +print("env information:") +print("> shape:", env.unwrapped.shape) +print("> df.shape:", env.unwrapped.df.shape) +print("> prices.shape:", env.unwrapped.prices.shape) +print("> signal_features.shape:", env.unwrapped.signal_features.shape) +print("> max_possible_profit:", env.unwrapped.max_possible_profit()) + +print() +print("custom_env information:") +print("> shape:", custom_env.unwrapped.shape) +print("> df.shape:", custom_env.unwrapped.df.shape) +print("> prices.shape:", custom_env.unwrapped.prices.shape) +print("> signal_features.shape:", custom_env.unwrapped.signal_features.shape) +print("> max_possible_profit:", custom_env.unwrapped.max_possible_profit()) +``` + + env information: + > shape: (24, 2) + > df.shape: (6225, 5) + > prices.shape: (6225,) + > signal_features.shape: (6225, 2) + > max_possible_profit: 4.054407219413578 + + custom_env information: + > shape: (10, 2) + > df.shape: (6225, 5) + > prices.shape: (300,) + > signal_features.shape: (300, 2) + > max_possible_profit: 1.1228998536878634 + + +- Here `max_possible_profit` signifies that if the market didn't have trade fees, you could have earned **4.054414887146572** (or **1.1229001800089833**) units of currency by starting with **1.0**. In other words, your money is almost *quadrupled*. + +### Plot the environment + + +```python +env.reset() +env.render() +``` + + + +![png](docs/output_11_0.png) + + + +- **Short** and **Long** positions are shown in `red` and `green` colors. +- As you see, the starting *position* of the environment is always **Short**. + +### A complete example + + +```python +import numpy as np +import matplotlib.pyplot as plt + +import gymnasium as gym +import gym_anytrading +from gym_anytrading.envs import TradingEnv, ForexEnv, StocksEnv, Actions, Positions +from gym_anytrading.datasets import FOREX_EURUSD_1H_ASK, STOCKS_GOOGL + + +env = gym.make('forex-v0', frame_bound=(50, 100), window_size=10) +# env = gym.make('stocks-v0', frame_bound=(50, 100), window_size=10) + +observation = env.reset(seed=2023) +while True: + action = env.action_space.sample() + observation, reward, terminated, truncated, info = env.step(action) + done = terminated or truncated + + # env.render() + if done: + print("info:", info) + break + +plt.cla() +env.unwrapped.render_all() +plt.show() +``` + + info: {'total_reward': 27.89616584777832, 'total_profit': 0.989812615901, 'position': } + + + + +![png](docs/output_14_1.png) + + + +- You can use `render_all` method to avoid rendering on each step and prevent time-wasting. +- As you see, the first **10** points (`window_size`=10) on the plot don't have a *position*. Because they aren't involved in calculating reward, profit, etc. They just display the first observations. So the environment's `_start_tick` and initial `_last_trade_tick` are **10** and **9**. + +#### More examples + +[Here](https://github.com/AminHP/gym-anytrading/blob/master/examples) are some examples that mix `gym-anytrading` with some well-known libraries, such as `Stable-Baselines3` and `QuantStats`, and show how to utilize our trading environments in other RL or trading libraries. + +### Extend and manipulate TradingEnv + +In case you want to process data and extract features outside the environment, it can be simply done by two methods: + +**Method 1 (Recommended):** + + +```python +def my_process_data(env): + start = env.frame_bound[0] - env.window_size + end = env.frame_bound[1] + prices = env.df.loc[:, 'Low'].to_numpy()[start:end] + signal_features = env.df.loc[:, ['Close', 'Open', 'High', 'Low']].to_numpy()[start:end] + return prices, signal_features + + +class MyForexEnv(ForexEnv): + _process_data = my_process_data + + +env = MyForexEnv(df=FOREX_EURUSD_1H_ASK, window_size=12, frame_bound=(12, len(FOREX_EURUSD_1H_ASK))) +``` + +**Method 2:** + + +```python +def my_process_data(df, window_size, frame_bound): + start = frame_bound[0] - window_size + end = frame_bound[1] + prices = df.loc[:, 'Low'].to_numpy()[start:end] + signal_features = df.loc[:, ['Close', 'Open', 'High', 'Low']].to_numpy()[start:end] + return prices, signal_features + + +class MyStocksEnv(StocksEnv): + + def __init__(self, prices, signal_features, **kwargs): + self._prices = prices + self._signal_features = signal_features + super().__init__(**kwargs) + + def _process_data(self): + return self._prices, self._signal_features + + +prices, signal_features = my_process_data(df=STOCKS_GOOGL, window_size=30, frame_bound=(30, len(STOCKS_GOOGL))) +env = MyStocksEnv(prices, signal_features, df=STOCKS_GOOGL, window_size=30, frame_bound=(30, len(STOCKS_GOOGL))) +``` + +## Related Projects + +* A more complicated version of `anytrading` with five actions, three positions, and a better reward function is developed in the [DI-engine](https://github.com/opendilab/DI-engine/tree/main/dizoo/gym_anytrading) project. It is a mid-level tool (somewhere between `anytrading` and `mtsim`), appropriate for semi-experts. More information and documentation can be found [here](https://github.com/opendilab/DI-engine/tree/main/dizoo/gym_anytrading/envs). diff --git a/trade_flow/environments/gym_anytrading/docs/output_11_0.png b/trade_flow/environments/gym_anytrading/docs/output_11_0.png new file mode 100644 index 0000000000000000000000000000000000000000..2e56f36adebcc5792c534559a41aef57edd12675 GIT binary patch literal 32938 zcmdpebx@Vj*X{uX1VunVNF)0C4y8pvM7q1XyQI6NySp2{ef-UL|F|=E zzB~8NduBj^bKdjry;nTzSfC*_&EhG10NnG19yW=ZmJui0Y?Jcl6x5Aqxb2lycHu=vW4f{u<}_Y8qW zP*8CFHO>SYI(meJj?8E9Bi;Y>N7YKxaWV=_WQ*C#-ciLo3`}JBMVB=c5oKQu70r9x zyURK2(PB-`+J=Vr@7_TmA9Y$GFL6G$rd^OQ{z=V#B}aj fHQyy$+!U8qvle(0!G z?~qq$1s*2zwG3UM_<?7wR3Ah`di$h34Il znw~#@?vs*26o5(;X1_HQN7LYPqE~6XLojmiyP*9w+|2b}@9C z?fBM>vTJ)OT&}O>v%l~kEjF#JtibpSe9g?vq)J-5K3T(IG(hSvPW^ChG6kwAlga$3p5fsV zCxYGAkkyN6?UKur43Y3RU>{d+woQR^E_%|5tqom=CHhs) zliOyT@iWK?xQqU3A}*KGF?$pO4h3fOsY2n4vQ1+e1_oIO+SQVG%QaYD=UA3Rrv!b| zhx_|`Kj92?#8+=~WeLt{RZ96FXgSg;(U$ZyG?@PW{$qRG?w8LYdcD6$S?U*mkxKZ< zglCVcIRYf2BoIH8_idwX0Tr5Iyr1O`i_8t7nGYzq3Y?6rZ-z@ z3hU#t8chBNTib&;;1vNCBxs{QhI4~m>^TC9l+IYDSbF`5u_Ypl`{jOwrT0!&3|Poo zIImK}t13!z^6u5g_-8B)P6w|ce-Md0-dXk!4`UapRYA8fijdd+(gKEWf3Zn@*6IG* zHcc+?&-u=HmZht!Yr1YnfZp~IZzfnHLst8usNeL@Q03M+9mMza^}QB&e$s|Wq`;mV z_sKT>`1~AmYd9sQx=6i73W5gC^jEcJtqnhLt`M>b*XHun>_Y#s3NY^SRF8&&WTnaNHA_Dl= z=Vu5A-`x-Ey0<$rviS$Ky&p&+L060J($x>Zy7kt3BGQ4a3S^81SuNBD^FCgGp7mbq zLP=Ag>TGm9%d`XrkB;mw0It%vxaEh0A!uTfd+ydBO}m=xeh5MhxDn z%ji)8T`MIp&61|e_}ZQ91izG&l;hLW*PgfM=ueM#C8HPSuP4^m*MZ57r1A>{eP8Ma zaU?hxgZ%sQvJN^Ln$Cs0*;HZNsQcJtk@wSMI`{(58b;~>``$Y^h}9iVRKom`Q6VXn z?867aA9yT%Chi6XnY9Pia|TBQKA+sqa|`Fo4f~%#RQK{K5+nVVWAVs8__ZcEF9wJ6 zKH_{1c-baG2w63;C$49oSvRqC@E`dyZ9oYWLk=Z6Lt==E&W*Q4%Y|%6w74% z3Y-vw-k<09AdW$Ne0(4dyAw$2)fN$9bJdpkAn+G!w}k0;hl$PASS@^S_Pi4>@qWB9 zUfbX z$pU5IZ$4lTR=~-FDBVWjJWm|udO2e}T4^c|_5cwt6oGFh&?<$;^LR{xUW_Q+^X{?} zq(>5h8pk~)5C##+r4n1GiquET^hGFJaY1}ju)5rz0io-+RyYwaAqZVv{q!wA*4GV~ zEoT*Gl~q)NWHW?yHwWUzs(lerR~wF+JAelU-<)kpTsaTKGJJB_mZ>^?0m;nHP6y8v zo^za|)2uhR{JS?@l2KY(I<^MPFJxjuAy{-G~XZ zjXl$&C^aP|zpN~JV`F0>Pf9bja%>Xg`tYd7e6xn6ND}*D%uK;E({z5B0oPr*&aF` z-uLTk7qC<~kY9w4TB^ZPVSRuFEDYxeXYiYuQ3-thoF+r@qYnnFC49(EimD?TkG#_D z!VD~#>ui9j{9u^->a8Ez_1#emHFw}+jF+t~L$PK<05}LJ?7F);DsfuS)7M9T`}Rjr z(DQlwVeaG0%PwF=qnTnD5JPP@5X$Heo36ABjE&cJCkvoUfnK1t_ERE{r&>JiWR10U zW=_u9dT%78?^`@D-8Ac^=D+oh)IQ}?_{4sNS;9|E8=IS};Kkbu4QzgBWKa3fq_uwm zego6G{V0{pHM8#iMnHuHgO-<98+rBI)x|~hj+Wp>YyR5V*_oksa)9AQKYIuJ;HX)Z zN~H<%X z%_5!5>)kwNzrMAl4{S-L+yIGAtMNIpUnM;gQ^l-f0UdE@1*xywP-^q1td(~W+Bb;~ew0WyQ8=(ewLh{r>mNAEs;!XfgyPOBUq9!8aw zl^r_)c^n#Kl!`Tifl2lZSza&B&(CN2NNj;Uk@*h_v~UORP~gJ0&c)3wtD<63*_4{f zH*3A40#PD30>C*vog{LLl7ixAlzo7Gd&nklKWpT97V1?wWt*dgG^p@>j~%c^l;=2%?nbApNJigAbbFj&KH5GW0~Z(Md#Ro-bMD9MH3}-K_LYu6u=znCP_=e4FI0vf_`8_WCt!l(;_tJmPCQ`56E*1cincRcd(Ntd2YO#@^kGKX~l+0T_ZV z@LY8|EH6dg_!D`Q?o}iP028?2x*t$#C)jOQ{VKJ)ONo@WVzj;5Kn`Ls9(oJ)ZfNAX zJ>T*D@#AH}r2JKy=gt_ZsSk9EU?3o=g7;#%8L|F4=E!0Rj1EM6|B@2=^z?La2;sm0 zbeAFp(vx{WMT+jd_kIb(aF*?4CAhmh}JvnLQqh z*@qV<4ijc9^^SW1;4gC@Qb!+na37zrv9O347)E!OYNBb?S8JBMIzFRv`+<1$r>jfc z+j6=(zmeQL&i$w=5A5pmSFc!a&T8DRtY(H4ri(QrVqyXTaOv;EedOWjXU}`-i%0Ho zcTkg2Svg@s*49nr{SufO2)d>TpwQ~&6Uvh7txtq3k4y6knVRNF?s0%R^?ZK@11v#^ zpC3j*Kmb~~(x_GTtZP#S%rJvY9+H{);r@CpT+aEoT%I5>u#-^{qO{st71m^7HY>iT zCM4pIpg1YmD{Syi@i+~(XsG*A2C^fcot<6QR?}9pyNsF|Rez5fuoF<&r7D+bfol9` zH90xC1b_bH3A8lvL`w!`CKP5`=xhV0{0@={4JetM?g6k^-q;{b=-i;$a>)GqS0#7S z%;U6|yga1<GZd3b5n7HTeTlR3dk3)MS#p!K$Qz( zy;;?sMIXRTp^w*49QJs-M-Qr5(K%L&zdoRF==FL8b@eM}XJ?Pco2@Zc;%9H@G=e~J zp5c77DCH~#%Y@7c*TKb-m6fHp-1=1@O(qCLfe?_wLx3Z^fasmB_m=AeAnLSoa6k(p z<@;!QZ91pJc}hRD)s;Y^H&jvLTzC5wdZXz=dh@lm=>VlcOQ~`LPnJRX_ku!;;qWis zfVc_;!zLrCUrqj&rp2;a#$T_7(EpjUZlSdT*B;H1z@CBb@J~Cf``f*eu}k1x$Pj3q z^6eX}sk^Lf1hhE@`B;}fy*R3kix4y z?|HS5E)hdVW*-FkdFrTO1fm+WfNnf)e*wMIbg=k;1@&U1s*+U9nV`0kQuM!fKte(X z8NT@%ScecOs-L5xV#m;HM@LO=RM&!Y{{x(rlF;i~7lyC#?yy11b!gUrN_udwq=gO= z)aHvAGR$-Lh3nybTp&v>n2_5o2*m8Xd63)bAwiV#*+IaSf}^OFk%|4T!7||?wp&Tg z-vO}@Y&xDD3~)IVdu14SW_xwLjO&-z?-@JFsyY%=9{Sk*!z&q&xX?qAa1s%!7oK z)Eg9hR!nGB47F~TqoylCP&f!~4J8?-U2Gix(Imtfhlcuo}jBh}Lp{8Zvr9OiT>xBPuN& z14^T6NeCJM4=hyP`+pfg45J1FjUYh!|5yUB=LMJ(Ad80>C%Xzm!J~`2yZV=A<)~CL z09Cl2?$1bQXug;*`!4e3z&~oJZ`Z|d7u(pH3vuOxQI?PsE zQcsvwLCpbb2BBU&i93l^of@Z2(8H}XpO%6yePl$2!FE+pHJyXF@7EIdaVs3jyLWui z9?}Jq-=PIJAXA|4icUa43-w6`r+t+`c$TSVa&uoiaQc9;5Da`p;Fpk)uzyuV#UFau z6z7JsNG;DFiYD-u-A)kHHYzTzu27?3FdD##?C<*>9WDMu4@dxq{lBsvR}0Q$dmw@o z9$^aLobv%-0Qa^%A{6CVd z|HCWe6co}sW7LOM4AiPK3Iq(Wpp34;*s5i)i}Qu;pTULI?R+#$Lv0cB%=H^ zR~&k4vROmg{f-V;K~$aK&~ph@N_S{@?yel7!bWQqJ%ltGBdqtR&}R}8GN}0k1uvu2 zRY)937nUk0@or5DIf_dKskxOKPONqE@2=&=1=m+A1w@C>LL`cKq$F~I}st&ljeEsx`sn>(yWQX{I){xB9j$$&fL&v z@Sx_0t(-osP~qWRuGsBSdH8$(;x`fMY^9XoCDcZHI(M9T9g(k`HH3opfBd`JxOHAH zEtRc~WRD^eu?X<2UTjPrMkTEbKn50Cx7{CLzu zd}GNI@{Q^XG5J=O#QybINg#n*I29rbs9J-*e{Tn>g;5UJi{CIq>4PYs7c$3@e89F*Cpn3lA3obll_y z2Wu$mul&A%kDqQu3;sWiGU z0Q451Zry|hDK+SQ4JG6`oe%#2dO>5dhF?&@`uFxmcAl7oq~m=lIedk%Q{JSx+=Jqt zzFDOjZFxlnIu6cr2oz9*m7@XVDNC94x~!}WAYDX=&Qh}{1sz>UG&8Y@L z>pvhn70Xj`TMZ%q|y zQR7d7NpYD9(58TLAu7!tQ2vN&E=Q?gv`C!|a2oux*^_2vx*Z6A{``SJ0DwmT2vIdI zl3bdEon4g*^pCPb)yqZPw9>Iuj5g$uIFdK`LzR9PAt~A}mQUcT!guyi((r!`KH;Eh zQee(sJRoOxLZqsLn;K8;%z%6A+nWYh&19yu?&W3qQPVvb|@}*CaL)E488H*b9Yl-Fup1tSiG0QZL_Dn;9No@F~ zuOQq~V6MFCSWqG{lu^r7mrvGgFo;Ov;#(AgwOh(;$9V-IXUEmKI|r3%Dk?XKnnF*{n>U|w!5Z#u~!tVCo6`*(PkhpN8-vH3+W z#V{5Ac9HPeJ8OvHnoX_|oiVmf7m4=HP5&2~Bo&h1yrzt$|O8un-5UeR|0{EyquwAr{h~pfdk^vxQ8& zQlL*W)yA&E~*6Xj^y7Z`4_YX$(|W-zpT> zRvuoi3{s-T!{|tlp#bXvWhz*3mV(0l#{N!mdykbQ6}Qo!`=?S1<<6H%npfl3&9tF? z(I)=AQ@%Fd(i8*tqh3>gUQ#mBzb|>7<>;a#rzw%!1I>v-JKb3L(pqgk)oo+u_7y7j zDD{!^ed=cO3gUunC_fLVCz02&@xzBt6be#(c5;QMVFjmlZl^dzl-mk_$+_}zK7CDi zs}P9{&D*<34?miPvZg|ZM~Em2nN7SXN0H}ySRN%7hTCakos|e`cI!WAFSaN4^1f{? zvS-DG$Ej-j2qB!!k}aBUL;JTTN7@?EOSK~G2@7sVEM@!kBC<}hW}Hbk{=pF2Q(I6t zw&!x@DTnZZPIAS9v;nuK9H+h4oHq>hYr2*BD2;p9?O&bcmp=>GLadew%HD`i5q3*c zk&}=#xF3YQDu-;GSYN_IjOIsSZaT9l=q6Y9EQ5u+ceV(3Cd-L0TUej-9!Rzof*g0; z`Q`06{_{dxdA-erB$(DOTNsK$!EF%Tho_M9Lf9`4JE`Yt-g)0<(_fguHqMWZbe9#_ z??FMYoh)}e+fSoRE;k8#iZ9G5jTh4l72S7kwYanqXxl{r>aJ8C4?deuw^e`6Y%Qtl z3;rs|>j%&p>v|E6*>}9_LLYCc==a4t;`k}161X4@TI=G|3(Qx|#bj{teFKCuo$F3) z7<+g35jJA1k6opIY8MBywxXkF(~tw!lBKkV+J@|>A&`I_--%Z$FrM8r<@J8olc7p@ zK2XHdKZepPvkOmbMy=eJ%v_4K%IP0BpTlSyRvVT^Cax6wc23yMN>W&#F)7999GerS z)nuh-##{;~swyYabmm&;Kn!yF=7Wen6eOirZqSn4E_t6MNg`4OXa$)YS37nqNDP`g zJN#^7K6U%!;h4I9e9bH%&!;7l)^2@7BLkR#dXX1)uM7*h- z#;O{{!_B8g`d7U=l)izeiWk~6N^6A#sj0Mj4mnnep$$`2K^%XW79!n{w0uM`r_$`B z_{eTxI=53$B})rw9hJa}OB=7)9lF)}2O=kWPZg6c^ndzN;zki(&5pc!bA?|$5i6c^ z8ncMG##7Y)>(R7N8IhhsS0a?S}LS?r%ziT9ptf3KJqeM?^HOyQV>Ug27np z)YuumtKp5EL+{gHIemhKeRAih*EQ8IBC3xh>vipR{ABRMEoaniUG4h~nIcVXZ*;MTmg~VhnysEL zj2OcbNkj6(aSl@Loe3^D58(nxY;-;tE2OMJ{J6~v>@ zDiJKGqIywQMX1(@k1wSmoHB!NyOf?pF^T-PE;cv{k$$D%G*Q@74N*5J4rU|lAAlYT z)9PcKjaKQLii~&J-rO8J3)GKSrNKYczR|wZzsNR*ROm|%}U$` zV&(x@KtU8;s}?j8&&0jwIlE|hLGs!2d{?iYu^?q9M3a6gz>=`KR>KArY>g zLbju5CyP3~yRzHR?rQ;2T7GqD?Y6J$_&q(;`Rf#0HizP>Hg>n=Cw-e3Elbv?u><#d zG&jSam?~)jsO&UR*Hq_kJj{goKthr*`c%x2ScEypgSi);(_c-AIThaf{N${4QCUAi zS>?Nao+{2n+b5CG95w$8>n{F-?B7PhEaysVYF6m=%qM|p?PT67B|M2_+$}cmiJU!~ z3BE3x?R#6wgbp8=loWp=aVMDkLxf0g5KpPOl0dL^GIcD)((Kj$?nt~_pZo22W7l*U zY4yLQ=d~C)jwhP0#Rs%~&JBK9nvHO$_If>oe>^}7XN+=y!es1Zs4me-ad(33_A~iD6lEDi zNN7Tzpx7N{CCP}Q+DV1tf37;(`NJb}PI6GIjP&6Q-|J|b?JX^iJ;s#ufikr(_l0kK z_Sa~Pd)59~1_EzF@y^4{y-!iez9P~4WxZ7eR4uuf=Hc051?uW!4@nooa|7@>pBtF- zZ5Lh|Zep!@xTXu+_u_cRq3NIPO=13X5YhVh5TS%&yrRlN{ioFI)w;2FI-@C<_)B%@ zYJu0YRdgI%#R@N7xD7i0qN#J_vlV%|-w6DuvK&z6Jn>#S?4Yf9s#38k;eVCk-oOT< z(;RZVfZnxcEbLvDF=mJ%m1DdXLTen_XSj*|ez(XwbJ~mWFdz^XQqP83>Eb1_%%=;S z6z8^AY5h%<-db-z*_FDP4w}GnL(4LtU8oS&g9LS#NEv*`U@*X|B zZ!{w}Q6dA*5l-dbSaVWlgHO%9!=D!yM+<~L&pa($dllJ)`|I>ZK&@yp9eZ^awsc-D zBgMAnpujxek-$|V)MIIz5dC^NneOjtd#hPeL%qN~*Kr%SCImvz@nCS*yciv%&O7fX zVbt|5j>PXHr%~_6BJZElLgvC!X||~@A4%Z`bBfwOhd8Txdb+E6H>Nw5DB1`$r!-rB zJ6_OlGB9)uwRzM!bU8M1)$6QK{&6-JTXEzebo?-#rZB@}9g0u5HwPOE$8|E%TF)}q z`wv^-Q!|`lpZi%_vt_7T+g_&so$T`-?Usk8#5? zMz!@;V?41lx9Z<<{h5ZF)4~hd>errDgr+fzFVhzW+i3|2V)8mw0`F={pLr8D`hDh?8hZN^?C$50pn#Z=O@zWD(ZA)%)ZtsoD zOQUeqi?h~&2F?u6_q-K`G^4am`50E&_|o2mlA3C-+TKFBBUU4`O-ltqNIM)?mM3Wz zEJpKOU``BCs}CyM%D~2Vx*XJ}GAoq#5A>TcUfe&v5?R4Q*0G|}pAZxB)jb>3ybBA> zNn3u!u}8TYcIwWUhbACfxv@P~cuPyHnS6o&h<{%1^73jAR=`~iWJ1U>aN9`BmO4Wr zxh^yevDXCxE&YQs!Tb`cws}5iu)ONH3RC~tya9#bv9{kYAy`ZiQrX7+^&E@$XR*EZ zs(3O9#@Rx-bmPOW<>bBR?{?o(pVr>nEAV_4Et2aqa@}|nwfdFb85U9k#n?;kt&=GS#+Z*diN%-uemy|Tv+BlB@`2PL?eVYynZ0rxUxCADW@y0 zd18EpbJ0D2Z%-pxJv@u6sHnU1B;H~u$~KiNug`n!9zTStU-Y`DHP?SGYdWR^+2-9% zK&A8&XF=GSn6D7y-fgOm{J;1fo3%3=z^?Bw;K-seNXdx*_Y>997s>6d{82~#EaP5Z zoDO;o^WnQ)nQ?s?sVw|qST|wo!SuhEr||3t5z^$B8G}Ywjumaz=Foe&pgeEAUR7)orBIL4Pp|hqx8d9y zOZGr%HiZGIJ0lUftgjgj;<8&)j^zl@Oo2b{NnTHh_4iDiW~dQATq?A``O~1Mw2E5C z_Du>ZEJP~PP`78E_Ik@i)mh9IOL?mJ#XO4IyK|<=UCbB-+T7z&g%2T2TrDd!L<_&r zu=^{{HnF2t|7Ovs#_d*O&h&+zVs+ui_Pn;BjS8M>?RV33<2`8dS)#^eTmJ#W^bbI7 zI(Y9;VrJP*fYJ4Ii~FD79gi=aRNyAkOrE!%Chax9rQ9$@1&xiw5)xB@ma3 z^1QHP^X@+fh@oIxvKuROVL>aCat6(Uki6?on=heOGWlNN-9i}V_xqpRQAFta)G-HW zZT{9s{ycB|%yJg{H-tqKufCC+>G9L|8;*DkW}v<`}NWh z_dkaLPm$dprqRSeQwjBy)L~$Qwb>7URHp*D zg}rYv-n>6Fw~EDzD2YmV{RxkXV-UXVl_;JIE=8B?FDQsxq<9tdp5ZwO#l`QUs2m~} z7Qd!$us`jGW35sjY)<}s&t>LtFXwB^KJ<@F4&7qNZzUD zT)E+k02KUy<6|38%|b=ZdN)9w#08o=K|g)~HR~Usp$YAS3Qv&z+qW5jyeV&>)^_d3 zB`PjsX8t5ONqK<;?v2Z3_cKT~BK#gA$4OGV&AOgy!2q`UP@mm*NGtb3e5&+bdGUu1 zTz+G^t)6J4k*!U?3MHTNsxrvC*8T;98dZK*^QcD)(ua3K+O;jV#c^obsQ2gI3{g`Z z6Z=*1V^tH|iy4&DeTYbK)xBnKH?^Cl@T?s-){=Mg|2O_w8*r+C`fj}4EdZP}qv|H; z#eX(4%Rm2QxBgs#3Ja*tNU7NjdeBts0Pp;dUS?HRk^6q+lq}MB!8Ol#xAc9#jqKZt zti_z-E=m81Q}~yW#T&hEOrH5v#Mm#ZK4vAEl=4g%KgDZbmlc_xmq*~@y#Ak?l4E4sPOqm9HOW{grD^-@^QKh<$~6m1m6EpM z8X5B;RUxNR_1o58PrnTG9g5c#k{xS`cSpIvH0^NqKSwmDoQWg@~GvvTC!6Es?lI6%o6P*dYkc@4COfN}l?nw@%}VOk3m z#54AoZ{CnlQ%hXFBPkE8+v``8e5t&}dNCQRt|FTq=YK+H7WG93HL0; zd+6OxeB*}LL3SbYj;5C_r5&=wPmN?5Yk*oS3`KTmyLEEinQn;wM5OV!xVwl@E`=7U zo1Gh5!MoIDs8{ecGNm)YzO);?uP-5S9#|4tmta$f@p96ouj(Vycib)KxH^Oi9^Z?E zL7D6rOClhZZ@$^YhbrWNqOxmqFae#2D11zA{6+m>B0I+8dNMmcn4w)#i4iyFwz za{|2GyqV_*D_;o*-2Pp63sc(q77vsa89))TJtNPPWO2SdS_`acw9el62Mzr`T1!>lIy5=cx6T*vp7quZo-&cli*7UICb336ddAmG7R{6||2fg#-u?vIIsp2S z{7MTT0Yb;b^kXs}TCSe^kyB*KjAz1}jUDu!#O@8oT}{_+M|1Ub}?GJp9Ds(B@2X`gACVNF<_ntO3qBSKP@`vX4Rcj?Uh!Whbxs+zdJ zKO3f?q50#B%A;aB^8%Z08K|>NfZ`&{FgVC8BqvnaMM>$DvPu88=-SM}x!->`HOAVS z+`UKvVkzJm+Q;p#p2-Y1AQNQ0As-zj4u4yX6dkI)vsei8&7)7t`$>@A)LlqIa^s=| zSyLi(rS%xb(pNHCo2jm3(5O^MgxRO03k59rwhAfQ(bdYOm^XgUkmK^grsRxii%Ndu zCk;6{qVbRdGYlCS83{2l%-649O=c@8v!zqQz<|nXf^~C5--iz$M7y=>?BJ1*kbp`Q z%mMiB&x5~q1);wmDNSpnX8;!gT?;ZOp$|GXiQMjQKtF&)t;Q;}wzf9E86FUtz4WZy zLnTz_Ey`30=o3AHJa3G3K5eM2Ww-nE=x{COz&Fn-u~x4?L};cu$;W@myy~GHEbz1h za;Bz|SB$g8`11ODU)$@W@j8l$0564cThrb?Xlyt)=Rad*`XWp2YlpRxhxBgvIP$4e z)8Y@Rnu+~|2JF$%(V(y}1jv^p4lMA0sLIf%+`t_O4$Ji&Hm(ll0)gm+n1cfk1pkJ@ z0ieVyvz%k)y8NpzJgtzY05rO2hmB`aK%2c<)=l^s2*68$ve1bEJ)$G-c8zsl81CuI zj`B{~68F@LgZ6b=%-hc#G$02dAacIvZK4N>)j=S(1rdnIled-2_P?sTI*01+O`rL` zKe_$buPHsLTk^FXX~Q*SNUN7+mW{TV;I;9hRpo+KJc1iB6$xZi63#$VzBs+_$fVT= zX6zO}n?|#K!XzQ&5e0zmvOv4ysSdEaT9i{{p&xhS|;dg-9lu zCE91mCbhE3u4o$pS-s&pvx=m@ z8~GxfnL7Xh!qZ$r{l;424;**G?D=f=Z(0_EtNu?=Mll^Pe+M=QL>W-&hnuqtiPj|t zerk%NhbL3oLh$j5XrsG{seW{4jIo_*Djyx6{D6X4t#{I!KTXcs49ovQsO2L52d^mKMRN>@GL2?ns+9nkZslr zSfGneDjqFP;({+#H_KWRLql^T#TaSV_Rs1?4Vf7dK3lsIm=o}g9fE?BKO>YQqNcjm z#0}N_71q&lXS2|6qr&@DZYF3i8%zi?`>Ektt&mn7;zAtdOD%=4V;OVHc>ld^Tl{-d zKt+XytyK4u>WKxFAWli{AQGXnQIdzEwUc&_tDG*ZHGMQVRQluiGO8%WK%$Xx=Gzw)0$>@W=_Pola_GZBh$H3SXULgL=f54n=<@ABi_wRnI?bdSF z2&zZb3+m*3%j(H5&%eGISMIO2v|qtBcZ6353`3zzKGwCJd3r_xzf&d%3ZGU@*y3)2^8-V-7>tz0h z!o4V^VmlHg$M$M#j^UxE!>I&cF${1PvZM~){?vObyMHf2yL6(*@H_etZlpr25v#<5 zTapj;?a0Pa-Q|ATahE9Vif-BhjS_eT_lqB<8Y#LmXEtB#A+3IoMaM2FZ*1f#2c1|h zJiRlT3PhrGK&wZVv{Fu{Be!d^4)^8$B+<*_xf~e^8*@%NDOK$M+_uuLmz|AJ?$EWH z25QLN8b`pCoTMlbG-!#NuxDp$nc?nR+O{P4Q(Qen$W|A>QvFA>AaM?9b?kY+<>$A} zW6lPG@rNPP2-3`19 zy|>|FdBLsDT&i*ym39yjt?J_)mL)N#)sO*4xHsOusQ7{DuN<(cwv!19)6|dZX1jr| z84aszcj+Iw^2<8y@Yt}(P%LQYx_r9I{ymXDPpKd#r>iY0O${A)H>5{q?-yl#9+ekG za$QxG|1Smn|2)e!56oyWQh%}5{8$XX=>jGEUT)JXxUl5N#6SFr4S30NKDzvvEQ!8a z(DwIK&~yFMz847zqYZb7sGHZJI9=pXgb>rw;mgzt;JyF$I4jm8yoViH?K8?0)*v%M z46uJgz?-DkLytG&>o2*RZ~mM^ns9)R$SwZoP|N2V7BhRaImHmLLI3?ck(fi4x+LHN zj`;tAT9zT!r+Q>T1O6!Acv|&p9WWOJ)T)63X|3O}sA;05B_%uIP`P}1dPFIr#J_+E zj@$vDW&pD&2B_enic9>=Xdw10C;{6*f(62yPoB39iUrbw3X~6iX17k{S|uCtXtIi6 zfDw$k2`MOGZVsndE8YM#!!tz0wMk`dA%)*JS$`ky?|;U}Q*jTa@Y2r#x%1H)7y)Vn zBdBHO({wTjpA9In&Nc_(ARb`0 z!>FGU6WPxn^gzk|TERHk$!a6(OgXFfrLI6C^!7&U+I zl)Z5EEej``(4ZbXN24#2Qc|ztSk9_i(#=xrf#knuVBj|)B_$3TXAuVn=AlG(ILMev!uh#_Y907iv1S8C1%XP@0F{I!sY2P#=4$I{WeH

{eQDrel|`|m-!0aU|YeZ9RAYBE0M{EYxD zKY#gBa6DU*0ay=o8e_@hEL4Gvn3$jA5{xK;fhiv#%>qJK2*kSS;*C}FjS+P40~Z(f z8jQHvJl?xN)Mx1k)+s@|8Q)grBIo3p z&KP#?9>(_O+splFa=L4}Ee`}nn_PX>@`%tCrGYCnxnDtr>|=X*@;R^&Fr69#)N>>( zELi^lF&LD|+5!^*9bhVRq)?UV11ZScU{vEPR10TnY6=wUFwk)ZFt#Vbj|yo7D)pYh z!A>wc3+8K~(=0kb-Xkn_8x%xUv9oR%Ij3**NbP=5Ol3Zx)Id3!Bl&Y-Pe_m@15F^P zFND1X2->di?tr8}a?Lzww{9{}{v=Z?WMH=UVT9}tBCWO-Ew%IJf=g}Qt^qx_Y?Ex% z(GfuPXz1*m9sZOxNp;`xH++2^54XpHU{E3=SFCA(7!k#DqI}vc3YO`Khj@;)(mrFh z@HP4jRMe91{9U4|e0thGL{{bl5!e3SidKRmU|DspFwohn-eWV_0__;+b{93;)PblY z(;hyZ!br82r!-k>C8*E<80v`e`b141PM!q>hza_7Xy`C%>2B@oqUte5Xa_&>RYOWp zk10W2EG4&eW4!r=tq^H6xhLzZW5EKQ6tn4&ptrstq_NZbrZMzTQntsMMMuj}L|UQ*uxuA~+yB@wyFm z(|hg(+ry^0lhGzw$d75qa?A;4(`6*KrX49DAjD%cdQE1h^zSwRY<&iCczNY3M~_2E z6M@K5pUB*#&ce*mo#CmLs;|$xbHVwZW2T^9P~pYD!xICISJ2LR2^l-L&_q}!@lDN6 z&7{e7U;?u9(!?`o2c&KwV_Du?LGTxV@rV6;ehj|1ogl`cU698{_oPN zSCrgWk-N&DmgW{lMwsYzZ~ndhmG;2zWN#a3?1HeHgWko<{8#9c#L%-d4c#TwRjiZY zMdh6K3)+Q+KKmEoG+#lkubV0Q;e&e&ZQ`B*gCK6k3%OgWt$4p!TcJ-o833LO%7+Mf zwpdP4K+fg0h-@rg%xfTdCFi7&v|J@V100icBTgT|m{9mRgGm#4J!~O+hs})mJ5*X*k*E7}VnmP)WKOB?Vn)HIuUK zqZ;95O3PQC3bxfOZB+e<_JcR!oIgF_YKCU~F1p9e9UkUp1E;oKNbI=55_8p>7i_iM z9$S?gGPi(iLd~McbtUHWCudUZaPNwmzUhgh-P0}5i)V!PS@I26HY<#-gqm+_X3AJu zc9Q$(>7tU|^Asm}P|@qM0dEZ^EZa(TJHSNXD?o@~Q7fs?qyXh5BB2WegkCU`2xbk- zW#gcq=K+R6guuKCnAwK|6J>f=hYRJ5U<%MzAnhkN7<-WeqV0%K;GZ?MEtCBPl2*zM zici*gjp?r;J_0Z%W;TQ*c9M#Z3LvomA7IUn!v^?(jdn2l5*~`rrUwQg!E`|Da+|L$ z_{0*`I^xd(?^swA-DtF%8=<5>cfS+q+CfX0?yB?M&tyfJEd8RLN6Ha%)zMMO-r}(P z^zt*;x`Nc@-&OzuZWz8^U0VZ8skP$`piK1_8(kqjV8nFRAPx*3X4=MckHfJDLo^f8`kP9I#`EuGe;YL zSHhKhVla(?9w$RSXMJ{hDx;zC1E^(ZE&;ts{Nckh0BAbFP>$`vEK9`};Ozv#=+i#G zAePlSRI`5w?=J5;O4l}O7GE?D%J!Tq-4Dw3GE*Jd)+9wj<;(da|Q;;p`-X^ z08CYb-B<=3S{rDbd;}k_VX@eVdvbC@LCa#bh~NXpxZ0PNwB5i5luRgH1SftIH@)9$ zA>ZMMmsa-&(OmB|7T6msM2SeM<2zgoRZ~Dh-!&eK*ralPKbZzOZ(UH&=Lxj)?}WW@rW@FK>T9S4JXp#->%TVLnvKb2B#;&>Far3m??{&G z`t)#h0zOkkAHaxhAUDq1px3DN0YeFCU_QP|hLdDkUc)S5<0V2hN*BJf6KFZ{rPiob zADLO9`=Nb`iwq#LBqdiVd&nSbU#bLO0xbM}mT_D1;l;(ecIJ!{?fb)z!qFMqVFvaF1u zBZyU8NTP?Gy90et?+Qi}agQ&yZ$4Qe7dw z=FWH?38-TG`uak{!)dj55efx3%EBTdyx{uNg~Ho-vYKmdZZ7*|%5SBtjWpRzz?>xN zJo^53?qTy(YTbw%pLfehBno$C=)k4&;dS&q6zWsK((@C%bOYtAu4)zzdqIM*2P(KG z2OE5+*vSLiy9c*rE*?lvt1p+0i*Coaazj_dYV=Be#PCUL=txw z;@AflOJDub8tCZTI>xQYQH6`fbWNSI{3g3>5feu4iVY4xKX%jLc_ z@o@%<8!-_P2G(^M8TW?rwM}LAp*8Z6E^WkZ$VKvsQU|l8)w!lvyOed-_U3UF;~+(j z{vS#EJ42K*mr*e>%3`9*4ow623hVETj?kDU6O_~Ru{y7Cp}i!D{pb@PgJu|%!~5|s z3<(Tw{O;=IS?f1fFVD#(i2-G)0hT9uvXk+8ukCVGMdau^JK>-)8NczdkI%;Wywy6G zTo%i@)gLa>gKjNUWofOiky?VqDEWkMb^AOn{KnZY+3*F}|7c|_Z(_2935ljFSDpCz zz6bzG+zTS50vwX4g85X?&u&*zA=i?n1O4o>*7!3+{s|S|O|!E=(LDUh`F``hRiZbe z;)c-9YAoz7Z!M42RPy)rg?)H`VvurITY$t6Yy0GVF}jhR6mcoe?k^}pXa~9*`o7Zd zo4qW*BKh*wLVauX{IdACG`gUus2P~j0~?DP zUh|I8A_?uQrrWuRV|Za-Ypv8G*E?7uDhB>6{e0fd@FNk_l7D_lr`Xgvt7VW6hxoq0 zLmuG%@a>oz@05r@(4y5TNbVNfqvhmATW|yIrAaC7HaaRRtts?eQ{j+lA{Y_NST5+l z+Y4GA%x&7Ir5SF3^Law06)m2Q8E-%`VV*))EbpQCR~S~JW}3HoMACAPBs|ZRH*f2_ zYY)v&Ymyf}I+llh_s)V-ZST2Y;)*9U8ckpD!0tnNUs_piFZMeDYHMnRsCXS({g+U= z@nbq;Lo_w0#cwXod^!0`v-v;Ip3oMa|20gBicBW#*J#4K`+5eH5i}#ijz{4Fd7eF0 zeswCt^vTD5!Z->~7V;H!R|6_&2D%@4T;1OPQP;iS4BLNuxr51?&%NXF(qnRHO?-%@ zFRzJxlZED?bD;f0o~X(~pqjO9Wt9*IlV>qwQsfOu{m@ zGE&a@M%Q%0RY~9AH%W?i3@c0{px4`QVgEV0?X%N8s!LBbE&Y942%)wbyv&wIPHw(C z^hiM7`1htC^qNvhlOiZ~COBb=bQvy0Fs>y#{ZRJSHPtdPQG!AE@)4ZaDAkE*-ikxz zv-19fUS2OZ{N>M66HA8uiC%3q)Zt;E(D=h?%^DVhD(~vU403|e2vx?djg@)v@jUaa zcQ%d^r_&WDX4=f*kG)T9ZeF3u=7!3RWkWH2n_LowD27y;@iy@NF}AdW?_g=R}oRi*J-{3g9qTVhU{ewQX&3JS@p!a2pG`?JyBrJg=~ z9D9Uerh11&Vc6}=x$3*i>$A6R_Q0VE3h3WI-v&sgEmf4`+3Cvo`mTjQ0gm0?Z<_Un za%TAl@~e@aAX$_W6`W;$czFB1_}BldO`ZML##H-FPgBf=yqLAqGJcfM+~5mLsES+8 z|9J)^*T~RNVrfRC9^h3)isu(2oy?ceP|Tj+kb;-y}=ZbkI>@!#hXzkk}c->u9d#?8M*5O$`*n>qS_qUDf@LVy$qFy!>B_DfKoF+-2j6=a8#jMxpt*FA*uY{MN>XfP~~D z80NK9Y5{atUtjOIKd1&@Gc4`^I*>K&`13GWYXCIJLqISg180d~%CNR?&@B54{Gmdt z*{5q`W!O_wQ(yoT0j`Y7^rbMR_+zC@$F+3?ATCsXqmh*+-U@5vTUT(7XCBmJp}Sq2 zIlx2x%-#W0kPvVa*c>)qj2<9+;rZ6x(Jv-~o zQDe;t{Q5uJZ26)*C9Q-o$>nQ?P4bESy$^AvrJP>gZEE0|sItEIWv?>L z_V3MfnsCi0A0u5iXm%k+a&sv;ISF<3n14Sw(2(5R+=?;7IBKBd;Wxb*Zk}UybXgmp zcrB+$>pR?i{?K;=cN~J)DmGso$`b*f87c|9`rud(k8Evg`w4EZRCdvPi>@)HM{gAb zxN{3fT;y$_Z+#NZfyioa4iJT{+T^UDfqn6j&0^r*V>UK||C^Q>_|2J)4>v=A;h_s7 zX{djw3mrCJx&YS?)n=q2lfZv-^V=>iFupv2qB2u9{89w4CxaXXzMm&UoP%oQnac(m zyT=)xSQ7l!kA6%*Fi7|BLJTfO$$|{oFIXr*6*5J!X#0cC>F&LI?ZJM*!BGjD;}v+I zHV^@7U}!|d6%>L6LfoJL9Uy@d7(4PC;fR(5PQ5;BWDX8@0h`;Yqk(}zl3b#IdWjJZ zKRIi)0u{8Y2CSR;$r+aa;oy`!qDg z_cGd*L_`Obl=Z5CN@N+?Mz{wH7#6G@vdPvS8NJ*#`X)R6uoQKYJB{Yaii+A@gM|n4 zXtP7*)Ie{mfEUU%@$q~EvN)!AZTU+{W=ugDHQ7!icWK_T!_q=&(4khdHOK1HbKx0O zXk@JA_HMO3eF^i~coXxeezBRoFdOQ}a03n&I_5PZg)=z0w$y{ay5Y#w@c9l5bbcI} zR?)YUM1&-6E2~ZId{UWGoL^N~xE3rbDjNW6;^hc(Cd(v62CG?ds*Q6OzGL^o=VP@i z@(jpvN05+3ve~gxg=)a;(aR{;akY7i8cDDhTO&{Ghn0)8brz|g8l$GM?W96@)H)`L z|3u_NsoXrvMcJg|PVt(Zu=N9hX7yT!_{k&EKUDQMpe%!nV#`vP5-Z z{wp~;rJ5^Cm>IqqTY`X)*W(qVv_ckt%Q7gK!<(~I4BdS=w^X(4zKqh=D5uzqigx)y zMTjeJj6V?gqVRIvTAlo|^%JctlHK~_K5sbaM9| zIjD$*CJSn73$k?7o9@H`O4f1J?}4LFHG$8mu>A39A*S ze=bpyxYzh)Cd@Wd4PyJS8qB4*%O)pPI@NnIgK~Lhqq{;MCZaHGHruy8qxDQ%!c=5W zU6Q%XIAm)gsE^~{KKz~`>;w6^6TEXj-~Uu*y?$aw;ZYnbqJ$y#I2HFeK)SYi&R3<` z%+>m~A_sP1l}lXtxu%@=yrIRHl56hLE3|aWHuG>m%zphhgL073o%*@mNZEc(Fnluu zvmkf+O`1#J<@Jo{EWk>$Yu!J-TDUsFg=!MUBM8fZJ#4=%Ymd@LyM|#^a%zARHGcvn zA1B^URJm43RDarz2l93*PZyr}Wk#tN;q#z$MTf0AfFAK37jLU^u4r<*A%Pgi{IB=- zSqvA|%KYJy3u5L{-pu89Y-JNspwa$_TcfP)#Zwl_WEXbU*)q^i6b}iRB z=W0GNmRQ;4u&8>0k+U{)M9ASHut@Lq_uWV~^8R?j`%|!IF^CWKsz_MmwRN-B!msJ( znFTW4)N`xvH>vAJ)0bdrpf}6<>O|Wj!CdA=9IYA4+2rjde9`~YCtFY`#@9Cx%F^gz z*a%U&2Q4g$@=D5zCjbNpuH(AGyvL4CM4-@#d`E`q9fg_)X$B6za5vm`Y<~zDLaEZ6 zl%9YbwM59+DYbEGh@Q@fTM*!;8$27g%~8#Xz^cq?^S)YFyOUY^1t<$J0w2B%7Y{y< z12$@ACa`|%@U4SY(3<|@baRpMF7NU_-n?Z~Co_d)eL%dT-+UIy^FwGsiVpjFXyzoA znF-MHN*I)Q>K9K*==+x%%q!fh`*e>!L_r|9}&ZFsM*m~E>;rq49((v1=B8{kbv zLlF~GuqNutRT~l#+tEG81q=ju_5#M<7}Ym@&};5G&N6>Kypy_w{!7!v)>3WRF0b1o zTX6d>L72$HOlyT-n*BN>qv&+|*=0@gmo2&U#-o|{{`g*T5t?i@k{11Ka$}(KJ|0iM zlJ_QzhBc*iaPk5=PmAc~O~-n$QOJP^^#hbq>zemO^6i@ad{?M2xLC3qrKN(pM07T@ z)8a-#R2f5||NitUv1(uBo|QBQC+=2+IbXprmr6V_r7{eT$*!BcP`2&IAU(WrXxfXR zc+IZAKydx9714RcldQfZBi$PO^N4Ai&nB{t%yZUaRIkH**v+D0{6#+)IoGbh`St0=?EA6Iw(!eCGh zY)7pw6}$W|kIt^b$}*}~rAT&Be7@R4H@Z4ia*mENo=}#*Pi)*LG&T4;J=d68Axf~D zmE{-f3Cl=T`VTd&?yn7jT+f)gqZ_8cMthR^zd&Dzr8NW9`5MopEfLHI5s?}U!P*Xx zN$Wqt$_-eXxsQXtB`Z!`EXdaA1OUMy=dFBr ze0%^8wv$Q_opwb ze)keWBb}jg&e3$uh}Kf3c@pBZN}vfswD3}$_8l*OZI1lM*;#=(3(_@)~U3*qgiVF9_lI- zYOKOC1bU*gK;#jB@q!Ws>^^n-4rn;`0HYY@v^wRJ?d{l5MXKZ#OR-%S1uKsxIQk@; zoE_|-Ih*&#tvXK0SNuF7GAbwFH221DXEj^>T!GL2zCx^}S7CkEX@Br3vL->xYYVmX z4Np{5xqd_6#C~n$J)A5?%PT7%t&J2l7#sm93W54K?)6FprPo4ze+d1?r%m?!`b@j(R{T4Fd5M9!|Mh`*hIt-a^lJ&rKi4B9(MdyA-}7v&-Df1a zxk3xW$?S!%hGvM{0K3LLE+Z}N4vehJnK?O$H8eC@x_K-PbYP~=&d&bOV&c*00n%}w zc0IhsZ871y+@CQIFsWZ4?KD29{?CHE^~5@LB%}imH@|D9UolT;$FBLeNmdpihj6D- zMS0fV2yaSt+sonOx7UDULuO}j&<}J}L>~;tkkJD`j3K&!FMJM7pjX@irU=s6Z5}O2 zFZn6^AJ7d0UbU~Q=3`*Ul}$HH0o74Xa68NWtZ(wSb{C>-V!khWwYr{ksZD)a*jxyH zQlMN)MfEN8RZh0XM;wp}9lSbBqGw{dzP!9#Y!3f|o~>s_hOqbW?oyH4nG-U3j!dWk zqzK9bURumVL9g-5($YQW%IegdDo1b)Ku7Zu-eIvJAxv(9#m}i?c&ZsWEt)PSd1Xll zuHHdT_eO^quSqoR5_G@wbAyXiao*{sFSl{^~dHjX(Tms?W)& zbMj2bUf4Qsu$$ChDyZhmUULgS&;4TV9Q`4QRoPi^$9GH{Pkd_OM_#zX|Lh7Y%7^`n zz;X9pw4uWnI4@BFy)5e#*v?iP6THZP`;qnB6@iOWn^T~w#jqRtuYJ?ZBbAC`LZF1R zi}Z;Rb_Z)32t;h8!jk&ar%#1%7bN*lw;BNXMO|&XtT1DP+ck;Zy%5JDYCj>aO{KtP%K*gFf zs16v>#jY;_6B93B)SwHTYvd4)tRC`;*NN3gx@6w5O#Lc{FvZsYU#YNKun0)qFQ@yx8)Gm;juXRLiCSleyu>)WDrQK;Kmh1)$8o?&mF;E4#1 z((|!&bT|BY(I$EPI5=ZyJ!|7lEc)MfmRRCoK-AR<8h!9*{b#m-(F!Ppx8@3bX7Y<& zZ!62cFtOJ$46r1Gy?vl+RBm58OZAzj_C99gN>dBUBf16)44i3Tf;B8!hU1C&()br+ zehOpXmt>vYCoH<%cv#rRp+ejgS<}{ z8O4wJ)7ovcs}Fxl#qQeM?Qe9zYA|0Hk)e8xGig@%Q*XTD^KXjMfgALv;0GAjmse`O zVgJK$F|t!uv#`~XR7Nz3>@nAY1Wf*|*`SvzJ`Vk8#}fYb{HF@r=%?#lyD_`nttLa? z?EjFa?Cn}LoMKvJ_g2{o%V?^i3A}WWB=<4E_GUH!nX+a2UEmjBA+N#8R$@TwB1xIC zr$@{DAO;+%HD7GgV`AqhW!z8}YuGSU8+fu3pZsivv}p?ye0XLD-w?CM!3T!Xpt|oP%m4 z4temK(Vi6>X6J8Y1N6mLFF&j~>o6R5FH##`a?-X)=AY=3@!@{4R{EHKkfG#cCqUA? z@76+IR;75ToQCOmPnYzK=b{F9DhYiuxINu(0qvyecW3 z-T6~KE&mUqp!J9PEuX~C4Tt-KvWmnWle0R^Cm8{+;jgtN);Yi9^Re>ZVN_7%rD_fX zPQa*dx0CgH<50g^uONG+<`R@I?IViwLOgE+dgdqh9nY6M`?$5b8m&vVIxX{0T0a5V z0U5Gc#O||lf8k7cV<=bszM`5yvp5?{-g!vyv6G=m7--Fn`wa&$AWUG23SJHcWQC zmGP@l#rSKdl@)qvyBhA}?q8cQEiD+Fzo^KY^>5rmRi;So*L(l~&Z}cfA8W8MCz|J~ ztE;$!c_}XFtEgz%N8zB$%ia8vtQS&(1)uoY9K?9I#|}m>_o~#EXDwi$k}{P8%rgq& zCMp2qvO_kwUYm{85UXK|oAI^OC8bY1`eN;U{KG=?g-PMqqb6+k{KqfC3LjP!u3fBy z3lYx6+G7?bhPKeyz;l~>9NH6aYWw#oJ!-~4lN+_mOrK7Ef8!4!(%XKzicg)>Ty0#o zxWxOU(orp~dAJEn%6rsP=X5`m_{B)_$@ABaYV$(9J?FbTf#u7rQoWVJqpt2IM{b|* zUkL75sSP=f@d5-X1YQxHc3ul>%E={ncNvYHnq-AvqVEvJ5D zn;sey_!@hX)a zGVW`E`R&U;gZytQy{P!)n`zIMX`NK=6!1`1vz!`1Uwzk#mKnv}>5X||T+}EnufOhg z3)a#)!FSktk2Rut58o#c&=Yk;8Z)~qsFqKMo^#>W zv8k6^&Ke!{UH^VP-FKV@ErIU&aN9=6x$YG79Ioi{2E0{y5QzmGB3f`CyiA*y-2Xs6 zNv?8Gdk=PKP>ExLkGXYCpe(-c_sjqxw*D*ByJ%mogxWG3a;Kc_#V@yJU(r|woJ%KY zW31jB92%~8we^}6`tcXT1#}+88b;L9WOU=3IbjY;%hRTlC4t}kFG^0TB}Oum;qeKV z;vdVyCtPyVWl}|Qjo)F?*!g+ZLR3sP2G}Y>PH1ZO z)^KBv%ibhLCKNra>^Fc{F>!P7#`mdl4;Ua`-Lj949Hi#3IoC`u3nWH$)MiMTE64i! zwiTr{y?5d)aB7-v(=^HE@EB6;iU#JB&_Mh}%(o3X#wY^hL<;8m5x0YE1)(S{^$#i0 z>|sjAygc0?74FF@O8muMJ_pk$-#<-?ef*$&!IOwYzXu1?Fg4{5pd(}ZlhXNjNj=VX zV({}*I5UOsIe{G7B&`;T+xKt*lEkTh)Rb6H7afsAViXyN6Orez*=d>+ zZ;f7h_y+dHexyV%KwC!lx-d!*86jByk~j8j6MW! zn^`N6Bl$hqVo<&l3zgRPz-m-Yl#) z%tw*l@#=khS*qe*+ku*RPPB1>N}*ijim4O~3P)FWhZ(5nZJaY6I;;5j`gZ8bD+RcX zga=-mUT>b+$*Qj*3L>gr&YX-ep2-u>ec3J@O^>Fkok1^kRrwy@cEJM2CtHNc6{T^Z zceFt~YJax8xVW?ahnP5e&O}yY%YdObVOE;S+5dXp)y&*4>EmudG*Xwxsx@SyJ`FGLe2GxC_P3Xr?4_fullIN(W7{1{jQakvbb*P*kn~1m zf8r%=h~ z?$2@}pDh#H`0-9h<>DHnT)WQb4_)U!Q~dZ;8;kCob2!zi#}W6g4^(|Ne5~HDW7%f4 z{-9yw{+Tt?O$?=R>ec>Bv#KnZuNdQYPT0=JUFi=k6YX>MPRs4niJ;*Z=E{~?l+u}z z|Eyc8>?t?;Um!tg@^h!FXe8;Hd+Ta3-shhD)CU*7CC;W-Ymxbu<5A_U2J&>HxCD|k z>ZF?(TtIQr9>RK?>B7u}GM>&fTkOZSHt*#gAPdJRFF$r2@%M?h#-(0%D((46CnG-)-pizYHwd>G4a8f)l8XivH4}1_Vcj<6K`E-MkW@q!UBwNecE28 z777o3;b{uSkhqQl{mhZ1lLvR`F5|gql!q=J>n}U57U=g0B<`d-z^`l?dvHeC_uXbp zTHucBWIW~^@Jnc7I1+t*DL)9yFthWZk4*P#N9pDphF0uV>sPwx4RrP-%I&jNxteV* z_StAVjE$u%E8>z%X?)s`CAW%K6=2LQR?V%R3qMKus`_AiHZ!vg8~i`aG* z$SL&w#&pvI-45G;Ts6Bo>pjlL!_ME4|CndHd6owwWtZZjrJN!-qnFo)4s-oyu3YHr zku!s?N8fK}=T~tsP>MYEj+Kdc23ui(aL}zPjo7K_Zlwe_cW4MMSA{g;bmLf<_B&~` zE8FXxEzccKG7TBA3%E0rLHnJ;PH@?b&sF81+9AiAzI~8eCy1hWpPl+J;5vq`z%B<& z8wA{F#>0mEuhRse~UV~*jkS$U^>k55&p_=d&bfM*3ZNX-y1$e8z!#;MlAR_c_xn4dn z^4!GRT3lNxm(qS7KTh&(35rA*P(7yaqeAoH5xJAe$sK#0hvp!x1~ zq#bWIS}3P!=C8AA4>3WFmxlQZEo6;m;OBz=5=Er*)}oPWVmMSv!a-ludBsOoG(>_8 z-jEK1P*d8%J=;a|_^%st&;gxJw`YxTd+^h*KR&SWw3bhfKS|D3p`%H53e-1Q`wcVM zoVLMjZ*r8Ow)Am-?0&3Pya^~=CkO_whTW;9Kdivr{-BA|2HD^=qu9yAg@(zrrLG>u`LFq7fw=%v`3TCTnumfVlcvq>n;~^CgQ*(sdJP3G z!|1y2mHa#^PsAm4NfzX4$?x|W^-i3tQ$#AQjb`cQonn{@62El~izImU^hwUbY0mp^ zo`MLh<_g#q2#iW{m0CsoBH+csl`}c&>0y#5aHFkSPX-+b;IFt;Wg<^o>pF&W^m#u0u z?XUgSgF)TJ>3gUcYUNz5H{+p0y3$?qu3GSLPd8PCxiZ<{%9c>E$oj7db8??Pa2dVg zEvm1X!#3hmn1cU>KSl3$jSyfmBpx`Z(s`}X|rjhzZ0=!aw(($U7PwrV`ni- zbl^9d@a9KEXK3G7gJbbHB}93e{!s0_8FSSv5d+_aSxVca9Q4|JLqaO5Pr(fW&~yc`DsWWupuhqWYR>0+%n8|9y~T!7!12Ur zZ6z_i3QF8ECPEN_tZc?wdeE^X002sL`2Rib_xbKv-QIsxcRotKd<5DmCJZi3H9zop`BLV>{R6fkxK~0$ zLs3a)ZT3%}e&8&00ACJb+DY3XqL=Pfr`w(%q%qE-0tl)yteQknn@JmxQeeDfO{%evkVInCm{Z;j#y6!y^`eq zasoG8CCE#9%gwcrfJMk$xC4<5e!v3B>Hs5CAmHvV1IR(N&g~4Jl++uEBpkDxFnZ}i zAkbbLX|6f?%42WB{FpPq2h$n@$&{42@0Ce?Mhy+)t;0hJBct^7>STX^6e}y`bql{) zeL-%GyUPu;LNBS3RNKo7p2T@iAL=x&g=x=hE?DfS!}WNa&oDjxqNkW%;DYi#vsnN2 zqtczE&lDuAl2Q=$;k$an`y-y6z7T+i4PaVqGPkCI67sxsWOlFa=L^&i-xLbN1^AR& z+@NfO0D-=K`)H!HCG-tLZJGD)V#WXYI|2ARNPxSPUA#OY=z8&~ly^GMY^$KAywvO> zT<&oyB0}E3<{1|!pYtB!`?`s}^L_Fi8)endPK}yT)l@8>)(u4v@1qI3OMe_n52smA z4pTys`l8zG(;Ba%j081L?4Sjb?E~yc?9Dp7-wXB3*(GMX?gCL{4uB}68He(j(S$3) zd?81+&Rzl&Qw5g7%yamv$dTC2Mh3XBZz+SMDf!q(I0)w^i+rB-{5tGR+03UyWwg|I z!434t|6Dg&dp4i`7NG7RL&1Tm_`k9}N951cH$fMcX`u%XI7J@(6*kki#28%M!~}on zp6Gy|8aMYEtUhNjV)C|lGbrygmG<0Y9=r{r%6LU}jozSb@&%VGpkMaOZ6e9itmvh?5)R1e4mZIf{xV1Gi6yWK-JWb)b zimF6@`GNy#qyR(WpK(3S=n!^@Y)ZAYwJ;ase&V32N(ygw=%-JY0Fxb`Fix^{t{i;W z!akMQwoRqcbfQ#M?G)mL-_q43?&$a^Lb5%@XhlXU2%=t~gS_U1BPdw+c;8cg_`iS5 zF@(YNYws*V5d6>Fgd(&canE5L_gmyaO^}ot?&!|Y>}+szQ*OaAglYaP>oem-iW7%C z%!++qP#_NO|4rJ0i7{}Rk+35W$n=0T3Nm#7om?F7UlvY-laKfa%mH$CuE@#Bfzx3Q z&?Lp|!v#9c@O79}_&_!U!f}ALFD#N5I1Z2*hz;IOcnfF1yHIhcRpJMF^4D&u2SsWijY5*x-nhHg33|g;gANuBSbL?$S5BTd%?I%$f$KEHetqou z$?C}&ng@d2fJ`t^kX9jqupl_s2Tx_6Tl7UPsj|7?>6RxjIOagZMhZ`zM2>&k3-YM& zp-u|UkL%2P`CaqdP8%ZtWPEbVP(NmO@o3tHwOlUx)YxKN_`%lIt<}INTN%}XWstz zWyOLGN#YP<0!0}TVESwvCWA=qYkM>+%+swQg9Q>)M@u9acHvFL1}r!L-S0yf5b({( zaL76FAqZA6Hu|O0^HTHip{~uA0~VcHCX_EcZ|pm5Ko6^_K`PBOb_mZTLp289;`72c ze4heIu~6_R#v)-sa91xUAd{(NK(H5^PC_+G!@|-vW!cI?&S`wR_IQPHiuwse(Ii7* zrUy~NNH8ZD*`1Y12SmlhVkeqUln&mFX2?;OoUAsy<^pDaR%Yf^s3k?r%yLU*Aaj(P zn-oevE8R{LoqtOe55cEG{oQH*)5b4&PWbrv9vhQ2QidRFgm6^E%bX<*yJeDUP8vJJ z+B|xL70>m#sNFYO`A4of4-3q39 z!VuXj=#w8&o>>`Mn2h0*kmT=nH{%lE{und>>cPA3~G>dg`QK0Wc#FU;U z3pc6{O_yInZ3#aiT0Y&`i388Jm_5Dgt2@r?q(KulI2=s8ZD;;7kVWKCe4I0Aa^=dE zmNxRKl(wn5D)xV-#N8Fm<3(AJ?Ap-Wj6_Ky)eziz!ML{`Z=FY+Aj(Ad3peBnGN#@n zKo&NjxDZ32a6PONp)i7k6bKqVzW75-q=+iit-pjAeZlyGc#*a{IJ#%tFHWdEj<+?m zEmfE4vzcM3{uxFqQ3$LW3AMDYH{<2ZNNomrd^&DN=m?u1+*7x-^B&)!qeDl8k`S1P z35%bET86BDNJw;o!*U-we4bB1!?*=?8o1p1-*e?qKsW{R{y~}q9t!`~Ere&KJNxq^ z$RKk)P1X2D6qRH^f(v)0IPEI@2mvYSVv;7W_r{rKH5rHiDk0$0%>DWEYmk`A!l=JO zc|4rCngAUBQ%G(eskEkrbQv0RJZx+cu&%(JW3Yg;sbIJ{{o*EE)fs=~)p7jR9>8RzxW8=_JWt+Q`y0bCv0t9q-+HDmNC5XaM#I8ZKgYU z;XAHmWo$v5)jWJVNMV@`PHO&@9WnakG29ZL!ov*@|3K7SF5l74KT4@+x{m};L2RYj+v;U()^E3isRda8r?AP{FOwk?PtR>R#Y9L%gk<41!foO8 z^eaB(R)yeyIBX_98_^%b&5l#$?8h@0yzc`b*Wt0mN0SwQD;A9dpi zlH=@kKc3<5m}!9@gj;>>HEuMon52j7&j)w`v4No{h_M3244bT!Y|}$p>san zI*-wVlK;@z7UU{^0J1>-9x`8f1ZoUisnDn{qR2k D8SCtN literal 0 HcmV?d00001 diff --git a/trade_flow/environments/gym_anytrading/docs/output_14_1.png b/trade_flow/environments/gym_anytrading/docs/output_14_1.png new file mode 100644 index 0000000000000000000000000000000000000000..1b83f8d407cb2215665b9f160014123f6eb7f35a GIT binary patch literal 30403 zcmdqJWn5KV^fh`wx)BBG5D-xiM7l!+0Z9P?K>ti1nur?+o@Zd*f~Cb^8%&x+|I_r+RoyYA%nwK7@-mVdPVpO4Z}mP6 zpJ8wJ@if;Fun804RL;lhu(RX7N{M+ApkJJKkbSRKGdXfG*J`cD>V=fnpp|`TPj^6f z-iykVXobqq&(&Yn+1Lpf*1G?ma(8z$pm-X%xLl|6DelDmiGQ2OqukvcWm~sIBag!< zAtNI*)YzFbg<@i2`ZCgx>=zIaV1e#U1uu(m3C!SC2P;=5BfO0J|N12gb@S%UP-a~C zI%4&(nnC`uzWd)7=KS87PwV)zv$G4Gb__8vF(p|e=B8b?FdGgDpU`_#-3n*!{7SDb z);;aCKxi>pF)(kbU+s`9IkCRJ-k+<>FS6G!-O<}ycC;`2ZpQr|VTkyd!13W0v6hw= z1~#_Q@!pDn+p%43RnVzN{X(#CY>npIw}PKJpMG#ZJ#K7m#hj|LZ!UQ?xV@C*F_K+v zzoz+-k_U^ElXLk;8or^C(d)S;%+w_gPR_RZ)<9A!D!c~|9@wpo5Ed2|R=A&5)jhJZ z;!Jee6qLDtzj11+wsU6q`}c=6J8jg<6Xkc}13xpEGcQ`+vxF@$9Z7+j5{^l?C4j7 za)Hg9RO61<4RI$k4Njz zd=1?HVh*M&H784Yhek#DU%jRIY`H%L`2-fhwd8#Bb?=SYMsGPq#g+ue>9Jp>bWXEq z7ULzjw!ga@`%|RDA|kvaZ)q`!h|shL(@Gz1PNAXB|IM6pz4(5GfL7>=b=_Z94fd;- z$;h}(y06g)zQGU^6Fasgzk2og`p?3S@86pyD{TjgO_lZPTq(1%vNAI>Jp%*rQL{r? z>PN`<^lP1;&o+4dEVnlB-pKj(t?8?LM1kX$es>HHwl@}GQ>po=&1?hOm8(}Jvou!M z&QAXHMT@+>>qkKOj>5o|)XK_Az;QEvV76V&VzIW;w2v-FrxZ{8Wc$+D(E{=5dG+V< zLL=-d`!&DCt|;nHQIV02y_;>L-(gvIzTe89g~fQ6kzrb#ANBdO-|K}o#@n|Ew(9l?LtaN7mUPDIP-JlExhLBczAewjd3i!xG%+pKLiGHyB^v6`u&^lDE3j37-5W} z-`hXG8)s(dA!?gpmjq8(RTIYXTetb(lEu1Y3yVo^w7tW`m$5yMs;H{^Fjj2J|8HE_ zaq|kQr8hyCI=9@UhYC&N!j| zR$ca;wbA^f<+0)n$?6|Je)uS|k_D1;+;uuT`TNH=BO^n=PpCa`x8~F-kwcL{e4B4q zD%H}je)#a=^69@r>!Rri>v|4Uz}}u+aj(H>%X_l>5)z(l?Cd|H+>Yk_(LIk~Ur@Pi z>RQ*bpaM1~%GbJv%t|ZvM|6Gb>+2g`=7WVdNxZzgzSPv{8E8I!%;LPa%!oxuWjtVu z$JpYFPvIk*N-7n7?xL=v!w$oev9l}b>?^!a<8HR}P(fj5NL`tcjSVL_ICyz5gLwMw z5^aD^T(&~E&yOE!u8;?g^Gu(XFSZ6!?3CA^61pAlc|jhisj1{Qs_~$rfPcb<)wbO8k7=>bIXGgNu z(a}-E)D-REq^+{IDEbZML>XCG*@#2Kp-fd98yhaRwc%_ENZKJ}Hy+(Pp8W6u&-G6a z|21KU9LX(T?$*{;6iQrN+~oa}Zv{f;q3p;A&(j;pFhwNz9*VRHG7s*_XIvI?NEh#bv&tFT=; z-hEPR(%92ONX=*Qa_=uBo$Z~Sff;O6Xs0o3>0&dhu4Of^40k4{gYq)EBD)^Tm9#7GKf(zZ`jyUtaRRWaJramI}T zR=$y^PsICvAopZUT(rLZ09rf~$Fj7(|c}$RE)LirSPl4M% z2UsA!zt0Vcrm!DJaX#I9;c@o&hHNm+dsv~_%B95Sq8DAWtE(SewrVM$>T;kO1_#M5 zVG%TJPF3&sO%$6FGt2+*pj`W!p1$gR19fz~mjC+n*uFbSoc{dmu%48bHpm0=G-Mym z+JnbhTGxeysOswKoR$(Cx$IXpPz|XeVjp~bFecwFB{)GWJh!$EfigW# zh_UnZ=ralOf)zOKK$=6vs+F9u6 z>}-Vc#O1iD2MMlec=#%k_#w9uu3Al$5#srxkByBX8*y@SGFgR<3-ZmUs3`umzPOo95r>93I9sviR9;Th~Qd0W`zJK3%dN@Ojf|aYR%d^U~ZT)Z+ z2Oq!rqGkLeG7}6P-gjfQ5Q{v5f!b){k74xNXTN!D3T=iXVw9+8Ekd@p_@9!Rr!X)l*)opliHlpO%NSqZ-!^{`?sf z*DrY)RuNg@?+ODhjYK3vAo&@eUMa^*)Fr25x8^Y`7x*2ju5Q9BUP zltW4i3S_93nX?0a@7)+4Qz}|_bcVKI+KJ`UR~@EFZmg&PKou1O&gvPDuEK_yA1^g$ zO*n)>e0dN;hwgc1`m^9U6F2ZmUTF? z+Di9R=efm2miUB(`i0&pVhpR`(MO-1eQ4E0gb`DxWmE`YL8VLr?8 zdvjY`Gs}OHoaS*EBRY|SLGazQJDL#{&`$3G6-7;rDP1{<6SiP|lAfMkOIr{%hkI|8 zBBlF>;NX#@!Nx{Ok%ON`UvhGC29|yb9YFFxAjz*cf{CuX^4_}{iOzUZ0jy-dP|fwd z+26j|EPlVbw?0Oen3yO4lT$pw=YHY@Ih_I0KVVZEd;8XOrMNw5R;_&f)?iv;EvSz#T$kWAP*=ycvAB zmb0=>$DzilLi$uqm6gPKzL#JA_sW%rl-ZS4Zo z+}vEWsEdR5K0rM_>* zA)YZBBmFzrh!(VE{oR)of?NY)OS|$- z+E~7UWAFUDp~XxcEwShx2~ztkAQ?#E)IgQTvd=fD4~8^92N_jbQIP=nj3_eWP@+V8 z;{^woOJSsmZU;|}j*q2MRFK-Jp03yktM?IV#{AyOpq!js10eJsciK|>PlvyOl+6DA z?PpzoN)CjDC)0HOwExGb@dc2R!a0w1ziqq`;a)nHrtsGyhA10o~96m zusOHna0rDowfEN_1kdh|8u*8VT;Q8iZeJ-c$YpCuNnv4L9w!U*KTBSb} zEZHrHl#~=H+uH!CR=TVK{=i%s_QdiY-^tT5aJvfO>$H|zz73y2M{U;pc_adGRJ+!h z7jivn^5{!~$lIbi0u(Yu{rxKIQ`Mt2)GBN7NC8n%39SWS>2lSIh-3kbC$q8H1lHyzASesF$vN=iZDe+ipNdp*AAHB{QQ^M8%l z^ew=xcKW4>8E@Xq8e3XlzBcr;;zptqIzTH)S67jy=4RM)X!7A)@O0!X&)|Z3;%#nQ zwTFh?(cH*>d6Xc8$HV30naskY2uw&WM3rX<@+| zIE!A56Dfcpq-2~)OXg|J3J&eqylFYfzdJyQo+=DvdiAMCUg=lq_5fx>C*>a?ps z*RBOXkuBDL zYG7c1dbxYdW76G#f2Ssym<~vpmB{{(I*bJ9z>V2ozkIwdVN)pzmwhgCvgT`{+VcPX zgQbo-ZazLPZsONJJQN}>^obtMLY48?$!&uP->=Pst%{ZW^ufwPh&UoR5N-z5){3$| ziVpx{oLp3-mSkc5-nPsKhQ3+3L{|e?fbG^T^SeKbACGvLs(V*CZUsYSPN}H)Ih&sW zsbn=|?cOKuq)(rGfR`DK6}>nv0??z`6B^aEh-_Baq6LPncp`wzD^}9uP%md{7TQCs zcWGc>{H%512iSxJMKdHQZ){>ee}C*Ui?MfzjuEM)KQJopuzn3lVvw@f-xh|qj=+>y z%d1@uH~U}SLujw$)<>&rIV|71y13u&8pn&dQB9OtO4qxeQspMa#RVn^JI*6&!+4L? zM=MF*QXNYbP9IO5T)uI_jisdw;%h@@ylQG{T!t+;rv{&atX@K;;@|xJ>sK;_18Zq+ z8O(6g^mJXL?TG$$q{#oQvd}u%*)F=bVn~~ z_NEF-pXOGGFJ}4v{X2t?#Ov3uGYHLuWHYDbr|d_cs$>sq7aICX{@q>dVwArO%a(b^ z*501?_&Hlt7hzQ?+AJhM$LzW=l%?M}BzI(E?(V*U8o+e-?qzz{ZLfj)0#1WEi){fQ zXcU}!4UmG;=!3&MjbT?@nRYvTs`2P)T3Xt* zyT)>+&FwV((aOR0 zb_1a59iUEYQQW8!p00-vA70etF#wvcp`?4yJT-zU=?$BI0T|v$eTb`@+uX{^dnkXJ zN#EI!#_92XbDi720?P?L z@0Eny#Te7XM$ifi95!^iIR za<2dF=`wX5HW4)Wv=etm^)nOnRK3 zI-Q>$s%mKX01QG3;Mu*I8Yl~NXp*@W4LJJ? zWnT~($)v-CrH!p^bD8Bt!SiM;k>lmmj+0)%re+J<>7-RvNs++ZgN&~K zW@RnEo(OepNr^B_K=9b8?I!#?%WJhDi2kf|6Sk^9b#P-^1=i>fwR;})&FZ@8P)6zP z?PlVI`t#E}-?Fp!5C6ec+QL~B6sgQ!;?r)_j*aJcYE&iG15lxZjO&S{MCC*R0Pi{4 zh3NS;yLb+plVipO$9*1WWT~=2O+O2bxPh&~Dm;gjSMjG;m{7Ct6yOBu)vLZy`p%ut zh`)jSyE0nxP+7VC+vDv1Qgf{w{aPJ^2b@t0upn)a)IGzlKQII^1H1a@XdxslGV<}3 zo5g!ucUYF=zSeKw*l9$aHO}d(ml9pLUiLGf#>G26J!FyncnuAzgR!ykGk_5YcZ5y+ zV*Z?#dU#|oH}iR$CI_g=xZd(+t16I8!4W{tx} z>{0#sKXG8X8~`~GAxPlu?$_n%+UiET#?N^=>^=^wHX(GPGRQxB`%<7(K>gkW_Qdt@ z@BrF;2gF6zO{h*l(=@jJ0?9`A?C9$ojoKJ1et;r@Jiot6FYd1QkzQQCqOua#+S;1i zw3h~hbRI-!_Kk{)f^vKn3JiHnObkct4^fA8ZSR{S_8zN3 zFg%os^^2MDAA^I0XZ5Rkwa$-k>s6>ggy@2-hlkt%P=j+e8ohvx1oE_B6rwnrIy>bd z=V-$!R5jl0(=E5U3J~zhqeqXvn2+Yo=X;!HH{RPBKWrHqeY@Px$PEN!ZgrI%5NPYC zo9amY1`R1E=gOV>lOkkx3d+kVKySVR;cC4-UE&*jHl34Oc<7y#-#K)1N(yIZ+&uri z)l?O3jG_rw?F9Tx2*3v-NFgHuZWDlsPmUA$@P*0)$Nbf@=WQP;LF|$f5D*AxXprEx zo)+=$iy246RfH}=a=Hl&t~G%4`bT&DC-d=DD+g`vW*+Ie+J#bp-DN?)!3P-!pw4v& zT?@N$7t`ywsu|}I&_Kz&WcY{>)?o|-ix<=xW3p>Quq)v}9iJw$#SqmwFYCd>XN(3W(T&NE;Zr{l#NbN*~4ZlvqAIvcLceBDZc zrby$-@!d43_bs^Z18@Ti4ZFt4{gdG1LIuCbIs>Li%t`uD5@qbvh17;&u1sSOIm}%y zx@SUcrLsX49Ir`8_Jdcx&zHAI=c<<559Yi>R$Uc4GB!*n-#?uX%}enys~V5mM8V^c z=6HDSFGTF+0_DT2V^UwZk!~EkZV*j=ygK&q3-`s1%~Z{YjwF9;%!%o&ULyO=|m>O^TYlcBWU(YSlC!I=@rmBz>q) z?bs2|l<}$)=~sHs`Pf!PO@LrQt2Stjlb*5u-UAQ4EEU7venHk7R1f@Qbar2qTrAnp z3h%HHqomZyXD7uKp0uYdeTlty+OVtp8t?PqnH!#AX&v%ly{{Y1(^}|#Y`q}2k}ZKt zAe&XBG3Io0ktHI}$V{rJ6j_%qkNV=X1~$^#rBX?q&L)g9)$l(O|7m`D37t`XieT05 zHQMfCHnm)37G;r{0PTamAs=IN9^niV=pP~78{iRu-}tO1fBv#X0I1!v3S_P?rhSP} zL@jHDK<{(fZo~%N2Gi8klz>Kn1d!wqJ%!XP{rM3#Iy(C7`ufM6h4ux21;6r_OISD#0F0Rv@F9p)LLp5Y1x#NN25A9x3DEM55FCZbVtfb4DW)}th9+p5^ z9k_R}e}5onD7UaynK>+B#vU4nkAZGGS}Qe)>oTN0a?KGtp7`N`1^)(aRb zwEdFKc0k**>EbAVHeT`ydaA7mUI8s?H3XVV*YDivn-!s>qr1j!=+pQXHhio!XT()Gl4-wOPnf-X1Ooa?dbKk$=`o@WqU?MGRX4E&{`?nk5_IWIy-POX0gA&$W8_A`m$ZN4TdhRZIZFEhR9ol2HH3b zJn9qGMluQ`;jeCMXA9RbM|F}?UVh(N4*i@S23HpWVzZ#aR_pP6hr**o*;J%C3!u;X zSw|>iw6G&5uxbR)^Z$#7V(;tk?|*iKjV<%4uA+=g85`?utom*-B6!SMgW7AtCL0pY zdP1^(K40)K30X(*aEvvdHg3)yw<|{LeT_61IZsQA(_DR5YK7PQOesr+>ZyyVUi2N2 z_>Hg(_Vzob`2AtpBAGjfhY#G{>m;AJyNdy~j!!6kuY`t%whX;O$%KLeE&yoDeJL*b zQ-79&hf9q+FGCA=#RCeB?&3ZPX_)1$nmoS<6A~%CO&N`sSAN~C?8Gg9YsFDvzx%3TM)n~np*WH+cZl##43k6j<)qE( zfTXi-Y1JoJVN#Tw6H8;J)YaA0-j$Tx`AHddy zuLfCZgdGTqO?sq28r%fslf1?iYOi!va$8rAq``AaSE1g+;CkbDdq zJkgvsN=HM1c0+Gj!oYNAzSU{|{SBnEgS?UL=FP^>9J-+046Rcr%gAVGNy@XJniFHw z$*fqIPkv**m8QHGj^Xqc?O~ea4hu1TclF_x+}^eRXD$v&b?6!45B9XOJvK%R6lBAh zTZjhBcvn=~C2_ot&JKGc$4Ue4EC5ph!8aMsA(A#2RouoBm1XWMydJ zZL~k~0gdDLl0$x&2gDk+RRtxXWy@Q^IEvCj^l^qDtIR-Hk~KZc-Niz z%_#eh-g>>XJ5`~f=M{F^J0Epx>soyoX1czCTIBVU9$FQ1j52Xva#2^EaIPWO->x3E zTQ>kN=;STCn9;1#2I2-beiBm;jSVv^c>Pt66}u^!P;Y*oAjAGvq=ZycQ0qR^^?m;@ zXfo%Cfe=*fwlg%%{C^%ua#jye|Cx96m{)s^>3mdSxN#cNtbbOqW3KC&--K)A^6y!D zr^3;16>@Ur<%zwBoR1fPhNJDWuetfXIX>2OeQN?HCaUfzG*7KfN>77ceMub?MzJYJ zx|FHAVY=~wd#)}P$5UtycZF+&PfY~I%=-pDQ=2`aPHzd0hzfNTpjMt5YiF1>3%P*H z!-lt2f8KsmDQT^!ej*ybz3wCCwEB;j+i^`g^RrbB;dRHoHt*+mp4;?4?J-xtpQ8JX zuN*~fJ~BBn(ayfX^|)HwH3aH(ZG|DT>dznXSN(0qb_g|^Z3=};b5Kc%&P9!uB)5A8 z9tGd@zQj0~`TAFJP;OCm1xsNDIHEFTOLe@nM<@6)0d#2}+14CLUP=|-(Vgc`>${S@ z{`qt}?Yfi2J`)D{C|<>ok{`|R4#~p%1p0XACs|!>~mE`NzXf5jw!6hFX0iS zCqFGPu8fXxN|skU71=w7QZ*sgt4u%6r1b2-OY6TZ|6CoTnqbiO(IISUmAw4L9XtGe zbznK~1@h(9iD#Z9$Soz5%2rUyEnlecVs)S>$NKMgIbqC`d*lSU^@Q)_seba-jO~x3 zE)XP@Qm(2Iu99_Q|M3Jv^jEK^&2dlj2`|iD-(HX5H7k2Mq|HOkSWaIyQOVO_3%e)U z$uz-m?Vo*G)YOqO-?Jq_#aBJeVVD7m4$+=8lMrqsdN~3u*l&n$SO^W z#6mIHoc$f`PYoLmpP>5h*8F}+<7FAL83P>Gau`|Lmfbb)>$^K~&Xb-|*J>JU z6*|o3BoYU=Lx$*C%mvbg|)Ubs&X}*^rYl#pk(|{E#m?PlEvT9_{{& z0t}2^+9otuGo}u73dZ!liB>A%G-nbmCtC0d_tsWxy7~;$-;K@+&9Dq{zT@hw(+(c>||^%K8cG%uI{dNO;yY?@9S zdKcu2EM7C$xHIJq_s90Ea=0%eJ}i{Cl&`2R4iAAQ9soO!~Vn2%KUr37@{QSTI>dcFD_#5j9KcJ$lQ5k_-5$rzxU)PN6R<; zcP)Eot%vsi#JJ@vt{Wi_kdSC~^j?&gmKu5L)x8Soa?Ag@6WVBI;e~lHb8wIauQ(&! z=)Vt42gy9g;-#hh?*mrMc(zAb*B6T3!?hB02*0MIS5`_$fM$W#u{dJ&I4(=m+-5__ zak&f=;V?qQzl<3;i8{Vlsite7zke^G_;G)H*e_2%--pDL8SUxQF?g`oNACkNiyuD1 zGBhH*M1|_;9r=9YhHl1F%baBG35CJoR;Ptr_l_%z#{CEo*LDy}cdQI+G{7t8}mo?d2-X z4-^S1G_?QbNcI2=-oJv3^k!t9hMu&xFlCmC2EDL7!`-hve3JFtGVnbN zF>s5N)ZTESN!Dn%CS)gP?S;t51ZI?8HN&wM?}u!(5Yd%r+Xd2*b&qDV@8(A6h?m0qVv1qO)kV6q$J+nHHb1 zHgddgMP?dVrGbRbuLFIELIgqfNYHS2PMP;vv*{6QN`8HHonAQeM_N0&DB2l`%HKtE zwi?K03;ab^R_OcAN~pX#l{S9eG6VZtF|t>NlZDrO$Y#0o z!qmF@6{ZDs?e`!6jlx&D*Q0gvMHfsym-!+=a6>~_-bo@MnYCf6B$re%cQkRuFR4N{ z=px96a2KycE||Sy`E?ifIhtRyGHD~J3j3$fRo0=QPzFXhQlEg?;Cf#v$(yhhST3R@ z#pubne(bb;xDT2HLLuHc;QLm21#P|tED)!i?*}XU-+lKUT#|1R;(pF87n|r~^}z~j z5m>$aV1$K90@V~b?zG~SGF&~VW|?F{CdLD`RfbK5Tu_HxkJe0Tj!x+?Dlli|CL{O; zq*HD0^PjXNQpGhSLgYS5FJzvp`gK=ubCZWIZ?%x^*2<;MwmQDO_f6|rg}7z=6Y?@L zO5Zuy+as~UeS&t>1teL~9-E~Yc#V>Odi+gQC+n$1s3>n4qF1TjNTqgOU0gHyF@idH zL+Lt|fI?OJE|Od7>i$?96!_UWyV+qupo=($Gb6am-oH>s7cqYq`{iz6Nhg)r4P1rr zot3qr!i&%}-ji>7IOrWKp==5Y3gP~c-p%LX1-ab9nPbqP0yXU;2y${TB5HoVzww_w zUHCo`Yus4z4RD>B+nfOQ^JA9B5(j3-n@L7V`6Ry=Tu$AVVx+1WtUmqus)HKgHkMv= zuxBUMvf$zyT*8?*IXGIud0O~p@nOU&Fg>FmU*!Wne2~)7p_*S<*jY{unFp47H*>V! z!voxss~#Y+t8eLnFO@s<&xo#d%!DhY-1Hn7F_)VSTTqmk7MQL5W?ht!bS?zyY{yBj94@ zZ_J7;zhyvNm9@htDAG2k#;t(_Ux*kRUAy#4!tGXGnMy45?_Kz7kyH zLMeQ{-3Z+l>Kd#2_c6g3)JP0jZ8VD78A-cXyoFvo0~)^r2UIDB4JrTA-@8i&)d)q_WkwC zICbgR2NemZu3+>kH{vpOC@WBAwQEw^6Ast11)^^sTqEfLAeD^nHykm2K%3P z5qx30f+rv>Ozjq&k#WQMa5D(xZ$77K((AG)32%EETG|v9HiSb96^lF;#CzDSd>IQB zqxh{+D^T)N9pni?sh>K=23VAqmu;g^BTt$2R`7b@}%nM>6F37z}1H>hj`R^AGmIdsJL2kkE6Hs8pG#qn7-4#onGx2KS(Wo`Wv?aN?632tl9|U1gka*1=cF0K?m{>8wbaIu%o9xO87vb@02ojCmu?< z;7E6jvQX7rMtrbPu5K>Y{5*Tlvb7S&hFC(z2IJS= zTT3R)H!i(?UBPk-zkK;SU+pDkR&;J|lZ1!-CmK$*crPN&1cdDhY9az~B(i)udi{)V z2T6sa($sWAgqRU@SNaYlXB>F~$)Ovn(J>-qs!1}8%-k5AH*y5x(j!fe+2YsderKNQ zR!AR=bS#cPdxVOuYX2HLH0J}5)A1QnjC9!k%G@>NZ(&k+aZSWHyNI-!aYV>VDK|!J zfBF0TLXW=PqjF892MK78c^CCXPNOJ70gE_EWMPDdcW>5yIk+fP_?f(BEtc=SB~E80 zwaDvP=**O;^R>-;73p~}mQ5t=`;F&BP4TvsI&dcc?U|}rPZ0eF<-ca|Bp0G}XE8FF zc@2FWaz^GK$N1abu-LE<9ibg%=Fz?;$98M8olSA>eP}2}nj9b3Nz|=!KOJg>QRy(0 z|13#v7;?^Slj3o+tG0J+NsKLe$m@Q_LyWTN>+#aGB7B0JVEIChW5dtE##O4HJb^`@=2xCVccs0PIkxA*hkCXVHd;h4o;^Fa{qpvX7<6Px0t;`oBiiB`-&BLJV(P5h(1X7t@2{vlP zO>+d1k0cv(H z$r(JdKF(;!=gmqFmi-cCr-!cUTLtGjZ%Uk&Yz7x>Gtc{bV*q<(rd4{pt}Iu zX~B=tDz=$Dx%zQqWALZCZUXXYoo3~Y(hOF?C)Lt#HObp9T_aAmb3x6Pzl+lx7dSvd z4SlK%ttusklvi41q$9iV7mPGDgVo?MQBZmUM?+LRK}*}nM9Spio5V5^!Lf&gsbv?K z>gv#=D_EYS{I9%YXNvJu_0z119kiX7aZx9ew2Tp+?4=Tt^1k=;25ut^r>)~*dwAY$ zF@4<-i^~`L;VW#4KB$db? z0g3o8358aLb8&2$%sA!B^ilWVL$%x$%<%nI$iM^5eh1J@#?+8#Sv;Kjs{ z^U$2l0U3O9afs6S#{ed;KTlptk&Y3`cFAX?&o*({|Mugag23yuOn+MQx*wBI$^DU4 z84PwdV`3^14mCBU?#cFIeiiaSro?R`Q>g&Nn@nG`d{uQ_WdnXYdwYqukwEP6bx*50 zZ-hhAJCK!7U#R+hkqZC%ESeloUUN5lAjha`tn{>!Po%l1Nq)*%P?RnF&A~cTt$-!T%L%d5xu;-m^T8=+F9| zr5C>xulJRap&bfJq{?t^KR&)SyJ_qn{=tlh!Clv`;yk`VvLe#%667~l3bNTR(Bb54NLnjV%?Dwe9V!EAb+mLWG z`N{;$_RQ++=&u|_eBW{i>fcg|W=><;n&5F25G!1=%eSi@5!zhOPk);G_|mMM7yyG? z7gO5bPsLkGxcnOpMunHJHMf^$xVNtrZ6D-}zm67aUNi7mj3Vi55qEN6>#AD=*?-;R zz=Qr}jFG*el8jQbdsJS7e_0U4h4NzWcu{BLjw)XsDU9mkV%GNBSaM|CiLyQFDv)Hw zrmMm{Sj~Ho`Weq=?D@^SE`LeRz`~A_jr5ZC$G$xIPaiyqq#|;-Yj^mj)WJ40h#LuQ z%)Mr1I>N&tXzsQVM`bY0>}+YDKA?dnuN1V-B5s}WRW&4H$Q7)kyC_w1pA5M>o7w%n zSL-^(VBN+=Z*OrC(h{Qz1O3|(c^PR1cl(k>bR(yJX=44pU0_Oxh<3`#gb_Z%{Qu3z zPqU_={Sq9qvbzNbaLIw(E_Dq}-ya{$vP)9()D-tDZt>F0&b6t*t z(N7YN*dMzE@ct35d40MfVVUst1xmo9^2#t3n&S=OqgzyoL9%6m>Q(OpVzWTWgHCxe z$bz}w`NX{CQAFXyt~6NY-d;l*4Ez*k2I4KIm4-8aZ*9L0Xb69uG(RA{uK6h+4ivFu9BD=rc7LjVA^TMkZi{-|p z!oqD5`*)@577Tpkau3b^G{{CN55~ziC0zIrVzUaTD(yiD2)!qYJ9TA>;Cmz!lm4@_RS80EoNhyS9Tvgnb0DAFGj6C<37sJ76&ziPqgRpx~=_^ zdOGUOEi7*Pv~=_*gng^;NF+?s%k+(n<9HSL6XHa96DW|%WAfd~5J^*_99U{<3@^&- zXOrbCS@Qyo%xX1N)Kr6V%*Pobc#?$fAUKy-U0sk@$;`jeOCDWOkD?tApF|Y%dWMZp zMxb=u)2ML@Br1DURCC)F=kZYK`$N};iM%gG$jH1j7396wEO(*3)$%nlKfl0rybAg~ z?hhUv+_igMXgw`I{@mu-wA0NJ+ONQZGXvnUJO*^3C?a?Po3!9ZV zuLy#xwzj;?uyo{!AC6qx49X!ExBRm*nGwUR`0NW8scP}ECYhCkSWqyhKtLc*yec&9 zE>YdOZD?8)eQl#VC-(j&vNN_em&a$(%U@f*^I3g|M0=mwAZDEG;t`S!Qrl7iQ>)w& zfOCcp9a*9W{X;BKYo;bj9qNpXj90}^!U6~XwpxyutEs4YK?M$FPR_{Jjnj)5zi}~D z-tNEEqcm~MJgFPuu#x%s1`e7Mt=s99du z?U#PwwwjYjGm4KY_^Zv?JM^nkJC-wZ?)Y8{BHd6bjxnY1;Nhz0rH?c&_T_OFfBnD3}bqC{51ZPrP`xI<-MMd7< zov&*Pc7By>+pmgizpj!n_)o|u<$j*a^H{XHfFKQ6Q^$+t&Bbx{rLVz(2y!*~4g-yN zlwGz^v_P$r+JNM?pr3?=a$;eV?4tvVgL~Wd-nH=tuM%iIE(HX1+ZkO~AQGia9mymu zXLzS^{mtKm69cCOFQX;vKTCCq=VC;A6Z3X( z&K|d;%6MU1M;I+eh!sQ(IIxO1jc;kimKC}>I}5QY#rkAsvVoq#C?-aSoMA!i4BpOg z>h=Njde6XuBZ}1y*64t(`g1x1k5gVa)aeU{vszjT;=%&PHS507NTGtE4%*unIM|No z{zsgo`0w+3zws!S01{<3!lkOq%AnqE?C_`uy!za)=Vc<+^7U(};N+%unFS?^0S;Na z9IQ8jjT;Usx}`EYIKZ)2e&^sXUzl9sbUt#x0&%jU8owi|oz@A0|TLUmHIk?JQ)=7AW-t3PiisuzP`2jKU1XrRUSWnVUq}kWF`TDis`p@|J%=@ z^FhApcUadifP*bY#PGgSX)aZpYBh6Oqi$t}gGSq$J6hq$GMceDwW$ z2|dwu*^doypsDah7ddh)9ZtAHLlRu=g=aKy(h&YgK#pT#O^wKZvYm*C$ey^Qq-5^- zd_bl;G&+CUGh(LgKFur>Z<{3K`M8yFN+%HinlS1^SDZc3Q}j2rS5M7Kn9*V^q^qM( z@4+l9#_;6FP$ zr1!Y*)jV;u+C<~S>}OLJ^d59nZtWE`M$e5KoV;r^5M*~|4#=S{{l+Ut?&aU=P37Tn z?p*u{tk|H`&8}P2{2PID0ANyYgEJ8OOPM)2GT@@F{d4b={{q-6e5IamLkoe1Q0cnW zhTBJrsf5$gq*3wnS2g~%H>GgaMMucQB0c;gCfjGBhhgD>es_#05Stgy6@a6;T5=3r z2XLf*de#=s*A zCf~ompkOo}L`2Qr3~CH}plr0Xo}m4IJ4%EuQQh@8P?wi~Ux$s^|7h%yf`T;2RHQUC zA6XPWGk`=1XKQYvo=w-hg<}Vp)C%PKoNgRWw26?f22fk)T*`g$av&Tjk;nBO&97x!p&N`t;6-v~o8{AG&yTR3km z$_@m=NRiA=#TeDOv)rInsvaO1RM85pBFDWyn5Yxi$&TA>r8*PRM#dzPKTe4QLPkff ze?vNt_Uu3=Z&IjjFBaYjd&8L4`9uM@oV%a{nJfD_k+1ih)R%bKNfD@_k2a>AMd+!N z5@uO=OZAC^V8RCs;!K22>6 z{r{FFU0%jA*7#HC(f;btdOZ8mfz*m`H<7Dm(4{#i(G<;h%tI=8ZrE#==N#*>78QcaE z7-Yp+VgPZ%dU)*7YGEluyMA?W^!i3j;%7T*p`pNiGPpftWcJx`g~C{vLqhfmn#qV= zc;(pN#>zd?UmxQFhpD5?4s&x7xNZ+y7{`R7I>r=a_mMgtXS&+tG#HV-U^e#n)Tr`T z5Mv!a_p8~bpUreKK0$&i=IiwgC2;9|_-$8pejDpb$O-ljgNW5!^-F1L)cq}7+;JZl zlIUcN|DaDQb=7Cm_M<#?*c%$>DYiE{tvLpA9%U7#NXVg>aSamQ60W*rpeQ&|!j9-` zBd^Ytluae1gAA2nUOww6tX*e78FpX$ny~M$w?J5`;TfCuf?%c2V2v)K4S8nC+Tyw^cutqA`cY5}i?bPjf1g3{8v*k0EqAb?9 z?AiKa%w!{vu7JdmYYPtP66{L3=o2OY@EH<+0mq;E6JVI9W1 zyi!&8?^fiubMya&W2)Sl@iQp;ObP}@=Ihd4lL~=49{|n`?Zi|WyIB^ z+HmIyK3K7{_^))-mSmlUeRc|(~u znk-jVg7Rdtk)bFI^+x|W?Lk8O=+_$tZqk4tUo88!;T~-r1I`HQUlSy%?M>jtE+XXS zuBfvT-JPl>?23HIaP$4Gfy?&j>mXpq6lCpH)(rV5-G`G@QX9AG9z={ z^V4M$@7`U(_$?aZ7J?E7+W_G0nT%f!GJ4OH(hthkMIA9wT;Keo(sboyHW1Cz%pg3X zH2c!1zM^v05Gy)=IE8I)$>kew9-}P4v#Di%-_wO>~q2!T!q840jr|7Q2SGCLG&Cl$*yg>UVv=;1tcN(|*cu~Ny@=7?yM}ikB(nC)W3aMz?M54O8 zTlxPs%YX5zi6&p4DakikekGBNEuy!sBuq>?Mgz>qxQf*;V2C83dLIvC6Iv z_dYw$wf~$SYhC)4^PAtC?>pjo?qRERQ2F8p|HBovhI+w`cVeA(zDKEkGmyI}ps%Nc z*Z(Y!cTX6(RX_2|#Tkd;h6k1OCe8gK!g1WEqeM|N7b>+5f9fd>WVBX#)5q(z-#i!V zWT&FnLnEUg^x(lKILyDbYFKmGQyL0;w##>!f6AQzPr>B;_pqZocN-vTUf;Z1AAz&_ zc+3?4U8-E{%V0$xF0|%oJrW5*%CLm!_bnO{-ZW7hiD7p8kiV~D{%&?3Rh>*@1lzUA(g5U1WnrlVb2*0HU# zNWiso+)8Qh^1q_H87xGcJJQbUZJir)&BQvN`edUD;x4a1Y=hezLTc<99lnlUpBy|S@Kg_%8irfnEBdEl=Cr=$*O~|mfiSo z(EA9A^a%EjKMXPuz!$#>?LQSBQ_|gMd82_w3i0pq4TB-+#z01f z8@|T!{+W&SzM_8rXEwGvLIpM0tQaOFpr|IPJ|Xx>J_Fj;Slvvq5o%}8z0p8x^zjx0 zv+bqsRVSpDqNqkY=$_+RD_wXB!js+=;xWP0@lzqTVF!bzBJ|62UI-4c<5b!ee|e}a z*3(*^(n_m?UX#TW$LQMw&*S+-NZo%=A4yu=vAU+&5Lt{Mx>i>W@kh)pDb`XeDfEt^4`7v3D{;A;4R-m$ z!~AA53KpVkomGBI@+3w4T-V>3nH6#?xh~hCFJFR}zw!P;`Bd(DYGB&IXMF*7noSq? zxl>wu&6*dPKg_5!2_m&A4#`Bf!_(_0(#XmB?y?q;B0Q{vJs%bsnfdVGC_l`sDB5eD zgg?!xpcir=^aql@aN{CG1WUJm_LGvuN5KU}Es|h>ABmKEiPdXPS}ab(!>BTt`lb{_ zx7X11Ho#%}bXanD`dd`1L#_vJh`Do~p9>>##vUmlAD!z&ADTY$|0+7ET9b8Kul z@?pgH-@au*DLx=J5YpfJEIb~9y(4{7|Im4Ufnia4sr5MeIVo zi+3?=l#ZFX;Jt` zrEHjFZk$$*u{>z*neSTR|zx_ATq~AP{dENq|Zm+9T%|S%+CW2Z343WTFBv! zF+9J@0Nn!MJx7Pw2Q3Q9wxP+Pe6K>o#TXyW^ezmSkbqBL`23@&s3s@~5Vb);CICPe zeVInX|3>DMWu&Er0cJ)>bR)$-`NGMp<*a^f`ES)dpow4zBRSgyX6yb5FRL#}55U@s zo^XKaG!}G9Jp#-Qlc?yo+Xvvf{tg%bo4x@#i}tpQeIhZLCl67XEqzR%$LyDm4h3Ul zx?+dX6X()GDR&dZJ#r3f@QCTc0pk@xD@;7|<)u8hR_FR|{BPAxZ+Yaoe5U67M_04S zR&+#|Yl9yxk!dxXuckBsg>GkO2iFq*2OI|{clRbJi#W}8vjOYxn!jm0mF342CaH8!7Rln?a*jX`AO(- zp(QQQ<)GxGBN0hSdK(*?UqeM4LBYX!;4rbUww?l)77lW39@ovP1-r#6m_y6~U5MH( zKpI1YfG@H+00WCC2kfmUpv3041L~%a4x?hI>we|;?@xgB$OB6TYMec(am3EtL(Ns* zjQ*rA;QkRGTj1>Ov(sX_5u@su3Co$#AW|6pmr(Yws{VR3K#?n*

+g*E@C&r^hrEu5qXi{&A8pU_o^?XPaDtt@2IOBiWN$=k!e9H@y;7 zL<)P#AgQV3wRtSCkh2h(#-En^f*sJy{JLOpf`W;R| zf!)9_5&MmXW;U+2PT+_!=)%Io5gL8hd_guaHjX?OvB=0r@Fv218Ch4|ST$4>)bt}7 zb2Sxuhd}3Tp$;l06?{^1oQ|Z717TJLBZt=ZWEG`_PmQRK1IU@#g zik(%4t6;y-1wgRqu?7+K2W3ny(jj}_!+3W#%k-;OPvWZvUE?s*uh@TC%N;Ep&3j2d zw`s6waq?v6hq7>@YFgg6VH5H8geRjo$S(?v`E~0_fsWe(z?Y*(?Fr}D&mUXqN_u@)%`}Xik2Sx}8(Qb+ zzDRg`){sYoZ({cIGM3CiiV{9+7)BoDcxd`v9_T#8X`9;i37sNyI|I8QXG)`89b^Hf zJ}ns(Mc57MJW?!1GQZZW3^OC)({KhdnDS9C@_F*h2WMu>6O0K{V-&ZvE3gb0Zi_hC zFsDq42`E^g#sY%?V|HZ_UcYTtGdzBg%cz>8@@UG#`LCogmq1T$!30v`?fvT9!pyDy zH^;V)jMbu>Aebmfdbc~ug~66;a`dc4@2h&(=Y6}=WNueMnw6iDlh2FKc|?_*JhQUE zDve!^mrzU*VVv`_n4UKC0`! zbIS(NLISb=Htr`;46G ze!p|>N&88PnVtuKxSd2Q!3q*At1j+dl}~f!NwnE*C&~^6@>`43kK>E!AzxP5SPiTi z;S=3)iBGD(qM#rsvX?=>H&>$O8}~eTK=^DkbQJA`!#WB#6h42|sj(uK1joJsP#AS+ zB5Tk2a3jcvUd(y_&mSFvTR3O9;wJWgY7e%vf%wN9jd|Qo5ZMl8n51z}eR?*(+kAtr zMdq2Ic_T%PsH?mti{tO0ir6Z2XX+K@Nw-Ps?_KZiII&FZD2(?bqb;v!`q7i28hb%` zO%JDEPj%U#l_)gPfnnU4}>SDOb6ChP+i*& zz1G|^L6C^~`LLVZlpSg?5YLCS!TSSxG|95x=!RzK>urHNOG)2ufD-HQDqIIC+Lb)3ez*WSkE(n6QI zJFfEt2?laU;z{J2`Rls2^nz$te$<)^3t6&2_4ui9-dN@gdrHsJ&|_xw6Mtrrt9X-J zBi{C*cYF70>N7(X^=}?aCvx;YOy)YtL3j^3Hicf$l-MY1YnaG2_03-u`8HY21i85C zlXuJ6J9my0ZwoYSTC>|#&(+)#h!HDztpo=IW4X2+NlRY@kNa*xF`e8&1%u7CuI^DM_!OR>M3ll z29nm!>_z*I<=?QGrF2P z=_iG~1P%N*(;?>!4UR80HL#!Tk5|SIY*bawgO=`dM@jp|X?VYf?wSn#R7GFodLBP4AKmCi~@d54*MxLkVZ zT%GG&HvPIZE#a2l zoi*cKI%qz}W8e9uvXj`X9h8@2Qg;_5ya>kM|CC|JI7$%1F9~(Uxj7{pX&lvN+0Mk6 zlHsE!9Pt9G!s;ZtaIfu9_3CSZQw1)~k8xK@TZj7=W~7CAiNNoek_A$e8+4!MOlGq9 z&Rhqz!c2`MF5>CwdL9?g>z2yLbI62B69@-2jdsiTvS0Wwk2`;>Z(a$|CV+*Hm$%;r zvbu8(DNPUIUWT;&$0DwH+0GHi2;Jh!>VgpuN2PcOGPb|UntU*Q{$l3*2CaUtxb#ao z4J}cq2AFrftinKopE5jFm4QcoKWrN=l(bjOCfhzQNH4uXegACrFyXOVF6}^A@+Ahy z?`Sh?D5Q(x`Qt#RC3!HC;72T8MwF{T9gtXQvO0GZWnN#$X<>S)ehx3JuD-FlC}Ai? zo-%jV+Of)cT;^btn2Xr`*L-g6sxf&tU#?kD*dklIgJg2pdXToK$guft3u$d$T2Ue> zr8Dx<;7k3m^Re~b5t2^t^1AJMUMks-1G))=9)~BEe2yp|<%$?X?-C` z<#~kX!%|LM8X~qMmAl!OvxWp1OpZ>@wbYP=hi65~Mv}iQdq-$HV)WBj%g--H!2b-U zWRg>L%9*X|BSPY&n(m7;LRQz?M3c&{VRGx?Rq|ZO8e3(OO-AnUr|$?JT)fxG83H!i z8Y*VEQb2sdL57MRy-RLxXXJcDaD=3!Xo7?)+$bvNNv}G+_j8hq0Z)RsljZh-Uz7?I0`F+BpISmTtVH~w2R8Bih>YA zm;1y^uVwI7FKKMsE~$i!|G3{~d-AYsM=(+F1G?+2UAA2~YZ$4zbQ;nr%f zo9(q;8Fbrq$xQMACHXfQuy^-n~e)wsFo@2?0}>D}E5 z7O%te*xq8oyApn;>Q-h2xh9DqY-qcG#@B1%3P?Kx4SO#8TmiWf6O+ufGdy=wH^(27 z+KZ-;c;@)+6a22;Bjbytx$9`o4cDj7rwg>YF6=kN>C9VGa1m66GS1N2^z91Uw(pVR zKJXI?I-OT9Ur65njeoDRdueKYAZB!R{~eFWH{mMn90#)MLR}RK4XDEaU!_HRbdcI8 z<0>;k;?hJvsIGYl9~7n zUpDm*CU`2{myuXZ8lx;Qfzq8ZS zy)|qU1(OeVJsSLgC&a%XXL0s>K%#G<*Et)5`_n@7pdh*c)ifxX zGYs(sZks#GzqF_F{N-avLns0H2M%ZIV^`U$zP`a_!f^K%!;)7A;ZAy6CR6NJ_6Mmh z@ge?dOL)lk_u58wYi3K+swileGS6P6usB63oI_ci#D8iuq2-lL%VS29d?&Ml50h#7k&2h?Kr!AT0u#-#`_NFt8z4$tQmIkA8 zw?>+FWczmsp&qa0Pi~QTJtDZXvJ&}E5ib84&8o_9H7qZ)1b1Gba!#H`?oeP@%s2H} z_iUd1fhV<~W-x@no8xx->$IW6dwNuK3l`fy7s&5OCf``z4jt#?U8_GRH8gy177Oqqo>fzmbf#_CbJh zM(^`xrtgHdpM+cOv-m@b?^4hF70%D4k@LCmWg(%kQ=K$lV5 z*L_*#iF@M>yKw66lflmzK&pYRIxBi2Og3ZZ)ogE)r1d+Q<6c{Pa$kDfpNuO(OJ8Kd zdLgOm^!%-UGth9TL|;+vI1;4uRB^i(P4hG{bJ6)h1ol$RjlJ9)Ja+ab&)WI`kk6Tb zhw;C&8Gg{)f;k}dcxQbBz!29bUJL~wU*OQ8T=hJF#sB#6gE1BBUdFFY-xG7+F|G0D ziHuq-PMOB@Ar4XQRQ*+iLXuK6Smj>&>j~w_2_O|bpPeo=Uxvd*zCHQEJ+v!pC6N?p zE_--m(JhZvS}fJE8FW%#xW}YE@uNNA2~qGUkGS(KAg#U-aemXf0i5SZ;N7C64FnZH z0cq_fP%p!QE7cT~8x}hp_O>Irh-j zYB1de{8K^oT$--=A~uve!Bx6pb>ZjCj6C3{0eK%rO#cZE4MklYI2Rd4f?&uT zIP~c-52dC?`XUF1mcIV&uST)2UXl3wPtk%_P3#i@l9+Qd%5t9RzJY)~V8cqvK<7vX zXW{25Q29T0%O(PwC6HddHpH|wZr~ykJa4EWf}n0M18`cR+3IB4Ke;0Dj?2R692bD^ zAI>~CayY(_fLa5ZB_diOqRq`s+!;}~xifrxeCso__+L!>H@jWeTthS8_KCL+CB;_J zVeOCd@J*fPIdlEEDS1|o_= ztR4YYD8MuE!Fn13TuUH&Pdqr6ECaZgu!Nm=?P;?S@|sA%4~s0npN=b~ARsr;Nd;_= z*Zhy7Yu7UK;Ia;|V#fzxOPaa+G41AG-IJ6cBHNt;h2mhP7e8=$!W$YC&Of{C3*;}{ zo-*}3=pwXO@Tt8N10pgx+=orTZ*+86%brsckN;v%ew=8YaZ9^yZ4FBC-4GL?&Vee? z*MC9t$I}ebH&mezb7uEg0jS|BC?zh9nfZW75F~$~%fkkR+%qAG?JkT3QKNv8RN_zT zM%k|lN31|OLHx~4=xJ}J0SEg|vj^GMnw&+3L+_gFN^|p8j)EGM^?4u>C>=9r(uCg4 zXV{R~^%iFI_J#s`ffTdVAwFC^!3rhgX<164cEcTo{QIL900ail2)|pauB4Um)ok0HhjHQX_x4PZO^=1$}BAYs{8~IwBFZeg@?Y&``Rs{qG8TEk+ z7DA3__R`V7h@<4R|#XB^DAHz+EV%0 z8rJns?T9=ZSfRQMX+l0>k@ypjwxon1*FEl0|C-J5gp+LMe@XX4B}M zTq@jKx9m9DCk1EB>d%pwUyFLu*3-u7+>y~0ED|PkL*);IN6&*saa*>Hg z%E~D>0x)sdo|PWeW9`lki=mBg=6o<4W!Lh2%&3hxqWg-+C$ku@`O-;D7+8k1P)E63 zUTTY#_%We&`jBL69xG9!O8l><9=Zmq-|+V^=IX~4^0%O5non?_K7CBc;S7^i=a@G< z_i?8kZ;ugs;^$mIP7bP3RIs=}WXoCG{+aBCgczpZ{s=G#Mh(h)ay5ZIVqpf)HK5OR zPzR0)4l}P4UehmAgm)E3&iCp+E=gpmPN0oi?#_4Knvj879$Xu#5XpVy$|3f=?V4Vc zC<`C5CbAFj_4Li>X7)` zTfGu|Y7*vNcbS2Q;eYW-3o)UYR=M7N1qR9#y6cExk8!W9CdY?uwfk0DPfs53X&Q~@ zYQ%yT2|eAY*#7^(nqDdd#zII)NNsB?0jfxbpuu*Ly@(bj1vLF=jYW?artLUSDFsgf zWMt~>kqkg!fVPSrM-($W%&=mYo|+NPxLy}-@g48y4=fYb;y zdUSb&)}gL#o?ABPok5G-%{@&H^RQsdftG*L)(0DOUKp#YoUd`;ic^ zpp$UG0pB-ZQ0l~l;;(%Hx;9v3N9p3?LVEhNd84jTw01@VI=BJ4;gf)_Kw~Xlz$v0b ziV)A-gx~+rxh87!8YkLV9zR=FR<`>J!na@1tEPP(i$j7D43adk&!SVsocFh#(GU-y z4P66yzpQIgtZ1ctOZ7kA3_Q#;%%%to47>#+TXgSS-@}&i-CHc#ZKjD-g4tu}&^n_V zy88O(0hiDSC(-6UMX@wMC{G~`us?>74(*u(nHVN<+4;Q$UL-zpYrNX8-`1+4`~4Nl z)h^|;tEPegvDZh@$ahA|uSd{}>oznt5-@Fx>keGuu42U{VYstSwfxK(ohSx!VYT4q zO9$UNlM}2yWMwr#Qqb}Z z)39fqr1Tb@uAmgn5DA2Oivk{;{hZuQIMG7MbO7Mf5E)du!<^WEir~y}H zLhJA_txH*@X{rw}8)0xocJGHMd5>t%qd6aNU918hoCM~|g=lB=#_jFxp<`NL>=W*W z_?qNhCnp(jhVTN-9nQiT^uD`wiy6Ky8tnsc(hOz_ek>>me)*Cf^^2hQojaI1*4C!{ z>_YyI`S|UT1&GK$7?B40`Y-Mce(8R7KmDg(?Bz7}st zXy~W$@$rd6P?gh(IHmNANi$(H`0qQTHw64-crZfYWE9Dt(d*U%q?#=)Ex!u4vbZ9Z zf??FzSSBv2hWO{OH|5B2tRxf_g#eTTA0K~WSsx273=_u-4`Fb}TNtu{3{4c&G-fot z9E1x1l6?@CyawN>44A zdIamm1qn&XMtJyK6ocf&RJC|!IATR0eLpjDpa-rfCD2Wo+1M11AvZZUYI1V?L8KMG`DZad4|qf?k9i{X2}3LZSO|_+uP8eaQ!`*vm%t z0Iz?lqN)l|*V*r|K9GT!g>r0c>^t25=(c-Qx;0Yj{2hLRe)~dl>Iyxi0cFs-!8C{C@lsu|`oLgLW^}9^YFMaJGU}=)k>&)N z4Ht+cLZYLise~Ppq*BO&w%V?_1=Ea`&>sGdt3eelkmfO>sP*H&gXv)|dd-x23kG{V zf?F9y{&&F$$<;M1& literal 0 HcmV?d00001 diff --git a/trade_flow/environments/gym_anytrading/examples/SB3_a2c_ppo.ipynb b/trade_flow/environments/gym_anytrading/examples/SB3_a2c_ppo.ipynb new file mode 100644 index 0000000..16d6452 --- /dev/null +++ b/trade_flow/environments/gym_anytrading/examples/SB3_a2c_ppo.ipynb @@ -0,0 +1,398 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from tqdm import tqdm\n", + "import random\n", + "\n", + "import numpy as np\n", + "import pandas as pd\n", + "import seaborn as sns\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import gymnasium as gym\n", + "# import gym_anytrading\n", + "from trade_flow.environments import gym_anytrading\n", + "\n", + "from stable_baselines3 import A2C, PPO\n", + "from stable_baselines3.common.callbacks import BaseCallback\n", + "\n", + "import torch" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create Env" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/fortesenselabs/anaconda3/envs/algo_trading/lib/python3.11/site-packages/gymnasium/utils/passive_env_checker.py:42: UserWarning: \u001b[33mWARN: A Box observation space has an unconventional shape (neither an image, nor a 1D vector). We recommend flattening the observation to have only a 1D vector or use a custom policy to properly process the data. Actual observation shape: (30, 2)\u001b[0m\n", + " logger.warn(\n" + ] + } + ], + "source": [ + "env_name = 'stocks-v0' # or 'forex-v0'\n", + "env = gym.make(env_name)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Define Functions" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "def print_stats(reward_over_episodes):\n", + " \"\"\" Print Reward \"\"\"\n", + "\n", + " avg = np.mean(reward_over_episodes)\n", + " min = np.min(reward_over_episodes)\n", + " max = np.max(reward_over_episodes)\n", + "\n", + " print (f'Min. Reward : {min:>10.3f}')\n", + " print (f'Avg. Reward : {avg:>10.3f}')\n", + " print (f'Max. Reward : {max:>10.3f}')\n", + "\n", + " return min, avg, max\n", + "\n", + "\n", + "# ProgressBarCallback for model.learn()\n", + "class ProgressBarCallback(BaseCallback):\n", + "\n", + " def __init__(self, check_freq: int, verbose: int = 1):\n", + " super().__init__(verbose)\n", + " self.check_freq = check_freq\n", + "\n", + " def _on_training_start(self) -> None:\n", + " \"\"\"\n", + " This method is called before the first rollout starts.\n", + " \"\"\"\n", + " self.progress_bar = tqdm(total=self.model._total_timesteps, desc=\"model.learn()\")\n", + "\n", + " def _on_step(self) -> bool:\n", + " if self.n_calls % self.check_freq == 0:\n", + " self.progress_bar.update(self.check_freq)\n", + " return True\n", + " \n", + " def _on_training_end(self) -> None:\n", + " \"\"\"\n", + " This event is triggered before exiting the `learn()` method.\n", + " \"\"\"\n", + " self.progress_bar.close()\n", + "\n", + "\n", + "# TRAINING + TEST\n", + "def train_test_model(model, env, seed, total_num_episodes, total_learning_timesteps=10_000):\n", + " \"\"\" if model=None then execute 'Random actions' \"\"\"\n", + "\n", + " # reproduce training and test\n", + " print('-' * 80)\n", + " obs = env.reset(seed=seed)\n", + " torch.manual_seed(seed)\n", + " random.seed(seed)\n", + " np.random.seed(seed)\n", + "\n", + " vec_env = None\n", + "\n", + " if model is not None:\n", + " print(f'model {type(model)}')\n", + " print(f'policy {type(model.policy)}')\n", + " # print(f'model.learn(): {total_learning_timesteps} timesteps ...')\n", + "\n", + " # custom callback for 'progress_bar'\n", + " model.learn(total_timesteps=total_learning_timesteps, callback=ProgressBarCallback(100))\n", + " # model.learn(total_timesteps=total_learning_timesteps, progress_bar=True)\n", + " # ImportError: You must install tqdm and rich in order to use the progress bar callback. \n", + " # It is included if you install stable-baselines with the extra packages: `pip install stable-baselines3[extra]`\n", + "\n", + " vec_env = model.get_env()\n", + " obs = vec_env.reset()\n", + " else:\n", + " print (\"RANDOM actions\")\n", + "\n", + " reward_over_episodes = []\n", + "\n", + " tbar = tqdm(range(total_num_episodes))\n", + "\n", + " for episode in tbar:\n", + " \n", + " if vec_env: \n", + " obs = vec_env.reset()\n", + " else:\n", + " obs, info = env.reset()\n", + "\n", + " total_reward = 0\n", + " done = False\n", + "\n", + " while not done:\n", + " if model is not None:\n", + " action, _states = model.predict(obs)\n", + " obs, reward, done, info = vec_env.step(action)\n", + " else: # random\n", + " action = env.action_space.sample()\n", + " obs, reward, terminated, truncated, info = env.step(action)\n", + " done = terminated or truncated\n", + "\n", + " total_reward += reward\n", + " if done:\n", + " break\n", + "\n", + " reward_over_episodes.append(total_reward)\n", + "\n", + " if episode % 10 == 0:\n", + " avg_reward = np.mean(reward_over_episodes)\n", + " tbar.set_description(f'Episode: {episode}, Avg. Reward: {avg_reward:.3f}')\n", + " tbar.update()\n", + "\n", + " tbar.close()\n", + " avg_reward = np.mean(reward_over_episodes)\n", + "\n", + " return reward_over_episodes" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Train + Test Env" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "env_name : stocks-v0\n", + "seed : 42\n", + "--------------------------------------------------------------------------------\n", + "RANDOM actions\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Episode: 40, Avg. Reward: 284.550: 100%|██████████| 50/50 [00:02<00:00, 18.59it/s]\n", + "/home/fortesenselabs/anaconda3/envs/algo_trading/lib/python3.11/site-packages/torch/cuda/__init__.py:128: UserWarning: CUDA initialization: The NVIDIA driver on your system is too old (found version 11040). Please update your GPU driver by downloading and installing a new version from the URL: http://www.nvidia.com/Download/index.aspx Alternatively, go to: https://pytorch.org to install a PyTorch version that has been compiled with your version of the CUDA driver. (Triggered internally at ../c10/cuda/CUDAFunctions.cpp:108.)\n", + " return torch._C._cuda_getDeviceCount() > 0\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Min. Reward : 284.550\n", + "Avg. Reward : 284.550\n", + "Max. Reward : 284.550\n", + "--------------------------------------------------------------------------------\n", + "model \n", + "policy \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "model.learn(): 100%|██████████| 25000/25000 [01:10<00:00, 353.41it/s]\n", + "Episode: 40, Avg. Reward: 572.746: 100%|██████████| 50/50 [01:48<00:00, 2.16s/it]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Min. Reward : 68.926\n", + "Avg. Reward : 554.476\n", + "Max. Reward : 958.279\n", + "--------------------------------------------------------------------------------\n", + "model \n", + "policy \n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "model.learn(): 26600it [01:10, 377.94it/s] \n", + "Episode: 40, Avg. Reward: 629.892: 100%|██████████| 50/50 [01:32<00:00, 1.86s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Min. Reward : 305.330\n", + "Avg. Reward : 628.717\n", + "Max. Reward : 1131.069\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + } + ], + "source": [ + "seed = 42 # random seed\n", + "total_num_episodes = 50\n", + "\n", + "print (\"env_name :\", env_name)\n", + "print (\"seed :\", seed)\n", + "\n", + "# INIT matplotlib\n", + "plot_settings = {}\n", + "plot_data = {'x': [i for i in range(1, total_num_episodes + 1)]}\n", + "\n", + "# Random actions\n", + "model = None \n", + "total_learning_timesteps = 0\n", + "rewards = train_test_model(model, env, seed, total_num_episodes, total_learning_timesteps)\n", + "min, avg, max = print_stats(rewards)\n", + "class_name = f'Random actions'\n", + "label = f'Avg. {avg:>7.2f} : {class_name}'\n", + "plot_data['rnd_rewards'] = rewards\n", + "plot_settings['rnd_rewards'] = {'label': label}\n", + "\n", + "learning_timesteps_list_in_K = [25]\n", + "# learning_timesteps_list_in_K = [50, 250, 500]\n", + "# learning_timesteps_list_in_K = [500, 1000, 3000, 5000]\n", + "\n", + "# RL Algorithms: https://stable-baselines3.readthedocs.io/en/master/guide/algos.html\n", + "model_class_list = [A2C, PPO]\n", + "\n", + "for timesteps in learning_timesteps_list_in_K:\n", + " total_learning_timesteps = timesteps * 1000\n", + " step_key = f'{timesteps}K'\n", + "\n", + " for model_class in model_class_list:\n", + " policy_dict = model_class.policy_aliases\n", + " # https://stable-baselines3.readthedocs.io/en/master/guide/custom_policy.html\n", + " # MlpPolicy or MlpLstmPolicy\n", + " policy = policy_dict.get('MlpPolicy')\n", + " if policy is None:\n", + " policy = policy_dict.get('MlpLstmPolicy')\n", + " # print ('policy:', policy, 'model_class:', model_class)\n", + "\n", + " try:\n", + " model = model_class(policy, env, verbose=0)\n", + " class_name = type(model).__qualname__\n", + " plot_key = f'{class_name}_rewards_'+step_key\n", + " rewards = train_test_model(model, env, seed, total_num_episodes, total_learning_timesteps)\n", + " min, avg, max, = print_stats(rewards)\n", + " label = f'Avg. {avg:>7.2f} : {class_name} - {step_key}'\n", + " plot_data[plot_key] = rewards\n", + " plot_settings[plot_key] = {'label': label} \n", + " \n", + " except Exception as e:\n", + " print(f\"ERROR: {str(e)}\")\n", + " continue" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot Results" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAsEAAAIlCAYAAAA0ZCXgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d5gsdZn3j78rd5yePCdyEswhnUCWpILIGjCwLMr6gK7uquyu7k8f12dZXdlHwVVcXYyrfEEU8EJFMIuuID4oINET4eQ8c86cmemZ6Vy5fn9UV093T4fq7uowM/fruriAmQ41XdVVd70/7/t9M5ZlWSAIgiAIgiCIRQTb7g0gCIIgCIIgiFZDRTBBEARBEASx6KAimCAIgiAIglh0UBFMEARBEARBLDqoCCYIgiAIgiAWHVQEEwRBEARBEIsOKoIJgiAIgiCIRQcVwQRBEARBEMSig4pggiAIgiAIYtFBRTBBEAuaH//4x1i/fj1+/OMft3tTCIIgiA6Cb/cGEAQxf1i/fn3B/7Msi66uLgwPD+O6667D2972NjAM06atI5rB9u3bcd999+HPf/4zJiYmIIoient7ceqpp+K8887D//pf/wuBQCD3+CuvvBKjo6MFr8HzPHp7e3HOOefgfe97HzZv3lzw+2Qyia985St4+eWXcfToUcRiMYRCISxfvhzXXHMN3vGOdxS8Ry1885vfxJe//GUAwK9//WusXbu2rtdpF7fccgt+8pOf4He/+x1WrFjR7s0hiAUFFcEEQdTMhz70IQCArus4cuQIHn/8cTz//PPYuXMn/u3f/q3NW0d4xc9+9jPccsstsCwLr3rVq3DVVVeB4ziMjIxg69at+P3vf4+rr74aq1atmvPcd7/73ejq6gIApNNp7NmzB7/97W/xu9/9Dv/93/+N17zmNbnHzszM4KGHHsKGDRvw2te+Fr29vUgkEnj22Wfxuc99Dj/60Y/wwx/+EKFQqKbttywLDz/8MBiGgWVZ+NGPfoR/+Zd/aexDIQhiwUBFMEEQNfPhD3+44P9feukl3Hjjjfje976Hv/mbvyHFagGQyWTw6U9/GgzD4N5778XFF19c8HvTNPHcc8+hp6en5PPf8573zDkO7r33Xtxxxx245557CorgpUuX4sUXX4QgCHNe52Mf+xh++ctf4sEHH8QHPvCBmv6Gp556CiMjI3jHO96B3/3ud/jpT3+Kj370oxBFsabXIQhiYUKeYIIgGua8887DunXrYFkWdu7cWfC7nTt34vbbb8db3/pWXHjhhdiwYQOuvvpqfO5zn8PMzMyc18r38D777LO46aabcM455+Dcc8/F+9//fuzbt6/kNhw5cgT/9E//hAsuuACbN2/GDTfcgN///vcVt3vHjh340Ic+hIsvvhhnn302rrjiCvz7v/87Tp48Oeext9xyC9avX49jx47he9/7Ht785jdj48aNuPLKK/Gtb30LlmUBAH71q1/huuuuw6ZNm3DxxRfjtttug6Iorj7Hv/3bv8X69euxe/fukr//2c9+hvXr1+OOO+4o+Ls/+clP4qqrrsKGDRtwwQUX4I1vfCNuvfVWTE9Pu3rfUuzduxepVAqnnXbanAIYsK0wF198cU7tdcOll14KAJiamir4OcdxJQtgAHjjG98IADh27Jjr93H40Y9+BAC4/vrr8Za3vAVTU1N4/PHHyz5+fHwc//qv/4qLL74YGzduxNve9jb85Cc/wXPPPYf169fja1/72pznzMzM4Etf+hLe+MY3YuPGjTjvvPPwnve8B0899dScx9Z6bK9fvx4/+clPAACve93rsH79eqxfvx5XXnll7jHN2v8EsRggJZggCE8wTROA7f/M56GHHsLjjz+OCy64AJdccgkMw8DOnTvx3e9+F08++SQefvjhksvc/+///T/87ne/w+WXX44bbrgBBw4cwJNPPokdO3bg0UcfRW9vb+6xhw8fxjvf+U7MzMzg1a9+Nc444wwcOXIE//iP/4hXv/rVJbf38ccfx0c+8hEAwF/8xV9g2bJl2LlzJ37wgx/gd7/7Hb7//e9j5cqVc573hS98Ac8//zyuuOIKXHLJJXjiiSdw5513Qtd1BAIBfOUrX8FVV12FCy64AM888wy+973vQdd1fPrTn676GV577bV46qmn8NOf/hS33HLLnN//7Gc/yz0OAE6ePInrr78eqVQKr371q/EXf/EXUBQFIyMj+PnPf44bb7yxrFJbDefzHR8fRyqVQjAYrOt18vnTn/4EANi4caPr5zg3MsV+9GpMTk7iiSeewLp167Bx40ZIkoTvfve7eOihh/CmN71pzuOj0ShuuOEGjI6O4oILLsA555yDyclJfPrTn84V78WMjo7ipptuyj3n1a9+NdLpNH7/+9/j7/7u7/DpT38a73znO+c8z+2x/aEPfQiPP/44du/eXWAvCYfDAJq7/wliUWARBEG4ZHh42BoeHp7z8xdeeME6/fTTrbPOOssaGxsr+N3IyIil6/qc53z/+9+3hoeHrbvuuqvg54888og1PDxsnXHGGdYzzzxT8LsvfvGLJZ/z3ve+1xoeHra++93vFvz8sccey23zI488kvt5Mpm0LrzwQuuMM86wXnrppYLnfOtb37KGh4etv/mbvyn4+b/8y79Yw8PD1hVXXFHwN8ZiMevCCy+0Nm3aZF144YXW/v37c79TFMV685vfbJ111lnW5OTknM+gmEwmY5177rnWJZdcYmmaVvC7sbEx6/TTT7euvfba3M/uu+8+a3h42PrOd74z57VSqZSVyWSqvmc5TNO0rr/+emt4eNh6y1veYt1///3Wtm3bLEVRKj7viiuusIaHh63bb7/d+upXv2p99atftT7/+c9b73vf+6zTTz/dete73mWNj4+XfK6mabnn3HbbbdZb3/rW3L6o9r7F3HXXXXOOlbe//e3W+vXrraNHj855/L/+679aw8PD1he+8IWCn+/atcs666yzrOHhYeurX/1qwe9uvPFGa/369dajjz5a8PNYLGa99a1vtTZs2FDwt9ZzbDvH3bFjx+ZsczP3P0EsBsgOQRBEzXzta1/D1772Ndx555346Ec/ir/5m7+BZVn4+Mc/jqGhoYLHLl++HBzHzXmNd77znQiFQiWXjQHgzW9+85xl+He84x0AUGC5GBsbw9NPP40VK1bgxhtvLHj8VVddhQsvvHDOaz/++OOYmZnBm970Jpx77rkFv3vf+96H5cuX45lnnpmTcgAA//AP/1DwN3Z1deHKK69EJpPBu971Lqxbty73O1EU8YY3vAGapuHAgQMl/858fD4f3vjGN2JycnLO5/Kzn/0Mpmni7W9/e+5nThKH3++f81qBQAA+n6/qe5aDYRh85Stfwate9Srs2bMHt99+O66//nqce+65eMc73oFvf/vbSKVSZZ9///334+tf/zq+/vWv495778VTTz2FJUuW4A1veAP6+vpKPscwjNxzHnjgAezevRtvf/vb8fWvf70mH6+VbYLjOA5ve9vbcj//y7/8y9zv8lFVFb/61a8QDofx93//9wW/O/300ws+c4fdu3fj+eefx1/8xV/kLBsOXV1d+PCHPwxFUfDb3/52znPdHtvVaOb+J4jFANkhCIKoma9//esF/88wDP7jP/4Df/mXfznnsZqm4Yc//CF+9atf4cCBA0gkEjnrBICS/lsAOPvss+f8bOnSpQCAWCyW+9krr7wCwPYllyq2L7zwQjz//PMFP9u1axcA4KKLLprzeEEQcMEFF2B0dBS7du3C8uXLq27X4OAgAOCss86a8zunYB4bG5vzu1Jce+21+NGPfoSf/OQneO1rX5v7+c9//nMIgoBrrrkm97Mrr7wS//Vf/4XPfOYzePrpp3HppZfi3HPPxamnnupJVN3SpUtx33334cCBA3j66aexc+dObN++Hdu2bcO2bdvw4IMP4r777ivZCJkf6aUoCo4cOYJvfOMbuP3227F161Z86UtfmvMcSZKwZ88eWJaF8fFxPPPMM/jSl76E6667Dvfcc4/rhstnn30WR48exeWXX15ww3LNNdfgjjvuwI9//GP80z/9U866c+jQIciyjLPPPrukNee8886bUzhv2bIFAJBIJEp6hR3f88GDB+f8zu2xXY1m73+CWOhQEUwQRM3s2bMHgB19tWXLFnziE5/Av//7v2PFihVzlNePfvSjeOyxx7By5Uq87nWvQ39/f07Vu++++6BpWsn3cHyP+ThFS34RnUgkAKCsutjf3z/nZ85zBgYGSj7H+bnzuHxKFUnOdpXaZqcw13W95HsVc95552HVqlV44oknEIvFEIlEsGPHDuzbtw9XXXVVgRd6+fLlePjhh/G1r30Nf/zjH/E///M/AOyC6u/+7u/mKOP1sm7dugKF+8CBA/jkJz+JLVu24HOf+xy+8Y1vVHy+JEkYHh7GF7/4RezYsQO//OUvceONN+Kcc84p+XiGYTA0NIRrr70Wa9euxTve8Q7cdtttuOuuu1xt7w9/+EMAmHNT1tPTgyuvvBL/8z//g9///vd4/etfD6D6MVTq505T59NPP42nn3667Lak0+k5P3N7bFejVfufIBYqVAQTBFE3gUAAl156Ke666y785V/+JT7+8Y/jN7/5TW55dseOHXjsscdw8cUX4+677y5IADBNE/fcc0/D2+AUFNFotOTvJycnyz5nYmKi5HOcn5cqVlrB2972Nnz1q1/Fo48+ir/+67+e0xCXz7p16/DlL38Zuq5j9+7duWa82267DX6/H9ddd53n27du3Tp84QtfwOtf//pcs5sbBEHAWWedhdHRUWzfvr1sEZzPpk2b0NXVNUfNL0d+AsRHP/pRfPSjHy35uB/+8Ie5Iti5sSl3DJX6uXNsfPKTn8S73/1uV9vWDNqx/wlioUCeYIIgGub000/H9ddfj7GxMXz3u9/N/fzo0aMA7Hin4gis7du3Q5blht/7zDPPBGBnFRuGMef3pYqnM844o+zvdF3HSy+9VPDarebtb387GIbBT3/6U2iahl/+8pfo6ekpyNYthud5nH322fjABz6A//qv/wIAPPbYY03bRictwspGw7nFWe53+7xkMolkMlnS6lKKn/zkJ9A0DWeddRb+6q/+quQ/PT09ePrpp3Oe77Vr18Ln82HPnj1IJpNzXtM5HvLZtGkTAODFF190tV31wrL2ZbqaQtzq/U8QCwEqggmC8IR/+Id/gCRJuPfee3OFjuOnLS42o9EoPvOZz3jyvkuWLMGll16KkZERfO973yv4nTPJrpirrroK3d3d+NWvfoWtW7cW/O6+++7DsWPHcMkll2DZsmWebGOtLF++HBdeeCG2bt2K++67D9PT07jmmmtK3kiUUrqdn0mSlPuZ05zn3JhU49ixY7j//vtLWkIsy8I3v/lNAMAFF1zg+u/avn17rqDMf96uXbsQj8fnPF5VVdx2220wTbPiDUA+jnf3//7f/4vPfvazJf+5/vrrYZomHn74YQB2A+Ob3vQmJBKJ3N/lsHv3bvz0pz+d8z4bNmzA+eefj8ceeyz3OsXs2bOnrLrslu7ubgDAiRMn5vyulv1PEMRcyA5BEIQnDA0N4Z3vfCfuv/9+3HPPPfjYxz6GDRs24Nxzz8Vvf/tb3HDDDTj33HMRjUbxhz/8AWvWrMk1lDXKrbfeine+8534j//4Dzz99NM4/fTTc+Ocr7jiijlDM4LBID772c/iIx/5CG688Ua84Q1vwLJly/Dyyy/jqaeewsDAgGdFer1ce+21eO655/DlL3859//F/OIXv8CDDz6ICy64AKeccgoikQiOHj2K3//+9xBFsWCZ/uTJk3jTm96E5cuX44knnqj6/slkEp/97GfxhS98Aeeeey6Gh4cRDAYRjUbx7LPP4tixY+jr6ys7hvi+++7L5doqioKjR4/iiSeegK7ruPHGGwuaCH/84x/joYcewoUXXohly5ahq6sL4+PjePrppzExMYE1a9a4Gnf83HPP4dChQxgeHq6YRXz99dfj7rvvxiOPPIIPfehD4DgOH/vYx/Dss8/innvuyVk1JiYm8Otf/xqvec1r8Pjjj89pNvvSl76E97znPfjkJz+JBx54AJs2bUI4HMbY2Bj27t2LvXv34oc//GFZr7EbLr74Ynz729/Gpz71KVx99dUIBALo6urCjTfeWNP+JwhiLlQEEwThGR/84Afxox/9CA888ADe8573oL+/H9/85jfx5S9/GX/4wx/wwAMPYGhoCNdffz3+/u//Hm9+85s9ed/Vq1fjoYcewpe+9CU888wzeP7557F+/Xp84xvfwNTUVMnJcVdddRUefPBB3HXXXXjqqaeQTCbR39+PG264YU4MWju4+uqr8ZnPfAbpdBrDw8MlkyeuueYaqKqKLVu24JVXXoEsyxgaGsKb3/xmvPe978Xw8HDd779u3Tp84xvfwFNPPYVt27bh0UcfRSwWg8/nw6pVq3DzzTfjPe95T0GjXj73339/7r9ZlkUkEsGFF16Iv/qrv5ozrOINb3gDUqkUtm3bhq1btyKVSiEUCmHdunV473vfi3e9610lY8CKeeihhwDYRW4lTjnlFFx44YV47rnn8OSTT+LKK69Ef38/fvCDH+C//uu/8OSTT2Lbtm1Ys2YN/v3f/x1+vx+PP/74HI/4kiVL8Mgjj+B73/sefvvb3+IXv/gFDMNAf38/Tj31VNx4440N7QMAuPzyy3HLLbfgoYcewne/+11omobly5fjxhtvbOr+J4jFAGPVaugiCIIgiEXEnXfeiW9961u45557cPnll7d7cwiC8AjyBBMEQRAESmdW79mzB/fffz+6u7tLDl4hCGL+QnYIgiAIggBw3XXXYdWqVTjttNPg9/tx5MgRPPnkkzBNE7fffjs1mhHEAoPsEARBEAQBexLiE088gdHRUSSTSYRCIZxzzjl43/veRyowQSxAqAgmCIIgCIIgFh3kCSYIgiAIgiAWHVQEEwRBEARBEIsOaoyrAV3XEYvFIElSbpQlQRAEQRAE0TmYpglFURCJRMDz5UtdKoJrIBaL4fDhw+3eDIIgCIIgCKIKq1evrjixkYrgGnDicVavXu1qelExhmFg7969GB4eBsdxXm8e0UJoXy4saH8uHGhfLhxoXy4cWr0vM5kMDh8+XDXWkIrgGnAsEH6/H4FAoObnG4YBAAgEAvSFnufQvlxY0P5cONC+XDjQvlw4tGtfVrOukrGVIAiCIAiCWHRQEUwQBEEQBEEsOqgIJgiCIAiCIBYdVAQTBEEQBEEQiw4qggmCIAiCIIhFBxXBBEEQBEEQxKKDimCCIAiCIAhi0UFFMEEQBEEQBLHooCKYIAiCIAiCWHRQEUwQBEEQBEEsOqgIJgiCIAiCIBYdVAQTBEEQBEEQiw4qggmCIAiCIIhFBxXBBEEQBEEQxKKDimCCIAiCIAhi0UFFMEEQBEEQBLHooCKYIAiCIAiCWHRQEUwQBEEQCxRFNvDD+/YjNqO2e1MIouOgIpggCIIgFiiJuIqZKRXTUaXdm0IQHQcVwQRBEASxQFEVE4CtCBMEUQgVwQRBEASxQFEUo+DfBEHMQkUwQRAEQSxQSAkmiPJQEUwQBEEQCxRSggmiPFQEEwRBEC0lEdfavQmLhlkl2GzzlhBE50FFMEEQBNEy4jEVD357H6ITcrs3ZVGgOkow2SEIYg5UBBMEQRAtI53U7X+n9DZvyeKA7BAEUR4qggmCIIiW4RRjmkbL863AsUOopAQTxByoCCYIgiBahqraRZmuUxHcClSVlGCCKAcVwQRBEETLcDyquma1eUsWB6pigmFsT7Bl0WdOEPlQEUwQBEG0DCVXBJMS3AoU2UAwLMA06caDIIqhIpggCIJoGWo2qos8wa1BVQx0dQkAyBJBEMVQEUwQBEG0DFKCW4dlWVBVE+GICIBi0giiGCqCCYIgiJbhpBVo1BjXdDTNhGUBYUcJpiKYIAqgIpggCIJoGdQY1zqcG45whOwQBFEKKoIJgiCIluFEdpEnuPk4RW+4i+wQBFEKKoIJgiCIlqFk1UnyBDcfRwn2+TgIIpv77AmCsKEimCAIgmgZKjXGtQznsxYlFpKPIyWYIIqgIpggCIJoCZZl5dRIskM0H8cOIfk4SBIVwQRRDBXBBEEQREswDAumYUHycdQY1wJUxQTLMeA4BpKPpcY4giiCimCCIAiiJThKZDDEQ6eItKajKgZEkQXDMKQEE0QJqAgmCIIgWoLTqBUM8WSHaAGKYkKSOAAgTzBBlICKYIIgCKIlOPFowZBAjXEtQFUMiJJ9mZckjtIhCKIIKoIJgiCIluAUYYEgD123YFnkC24mqmIUKMEqKcEEUQAVwQRBEERLcCK7giF7gpmuUxHcTBTFhOgUwZLdGEc3HgQxCxXBBEEQREtQZQMMA/gDdmFGlojmUmCH8HGwLEBV6TMnCAcqggmCIIiW4CiTgmBfeqg5rrmo+Uqwz/43WSIIYhYqggmCIIiWYHtUWfDZIpiU4OaiZD9vADlvMGUFE8QsVAQTBEEQLYGU4NZhWVbWDmEXv2JWCVZk+swJwoGKYIKY5+x+eQZ7Xp5p92YQRFVU1faozirB1KTVLAzDgmki5wn25YpgUoIJwoGKYIKY5+zbNYP9e2Lt3gyCqIoT2cXzDABSgpuJU+w6NginGCY7BEHMQkUwQcxzVMXMTeIiiE6m2A5Bo5Obh3NOcOwQDMNAlFhSggkiD77dG0AQRGNoqgmGbmeJeYAT2UWNcc3HUXydxjj7vzlSggkiDyqCCWKeo6oGGIZp92YQRFVU2YQkcWBZBhzHkCe4iTh5wI4SDNgxadQYRxCzUBFMEPMcVSElmJgfKHnDG3iBJU9wE3Gm84n5SrCPIzsEQeRBRTBBzGMM3YRhWIABmKYFliVFmOhMnGPVadQSBIY8wU3Emc7n+K8BskMQRDGkHxHEPCZ/BKpG41CJDqZ4eZ6U4ObiNCHmW6UkHzXGEUQ+VAQTxDwmvwhWSeEhOhilaHme51lqjGsiqmpAFAsv8ZKPo/MEQeRBRTBBzGPyL2gqKcFEB+NEds3aIVho1BjXNFTFhOTjCn4mSRxkUoIJIgcVwQQxj8nPByaFh+hk5ijBAinBzSS/CdHBVoJNWBbdfBAEQEUwQcxrVJWUYGJ+oMpOEZz1BPMMFcFNxM5knqsE27+jz50gACqCCWJeU6gE04WN6FwUZ4JZ1qcqUGNcU1EVs6QnGAA1xxFEFopII4h5jKoa4DgGlmUVqMIE0Wmoqr0876QV8AJLEWlNRFGMnPLrIPnsopiKYIKwoSKYIOYxqmJClFiYJinBRGejKmZBUcZTY1xTUbMRafk4nz9lBROEDRXBBDGPUVX7QmcapAQTnU1xo5YgkCe4maiKAamoMU4kOwRBFEBFMEHMY1TFzgI1TYsa44iOprhRi+wQzcMwLOi6NUcJFkUWDDPrzyaIxQ4VwQQxj1FVE6LI2UUwXdiIDqbYDiFQRFrTUIvi6BwYhrFHJ5MSTBAAOiAd4oUXXsDNN9+Myy67DOvXr8fjjz9e8HvLsvC1r30Nl112GTZu3IibbroJ+/btK3iMqqq47bbbcNFFF2Hz5s24+eabMTY2VvCYWCyGj3/84zjvvPNw3nnn4eMf/zji8XjT/z6CaCZqdolZlFjKCSY6GkUutEPwvO1lNwzyBXuNcy4obowDbEsEFcEEYdP2IjidTmP9+vW49dZbS/7+7rvvxne+8x3ceuutePjhh9Hf34/3vve9SCaTucd89rOfxWOPPYY777wTDz74INLpND74wQ/CMGa/6B/72Mewe/du3HPPPbjnnnuwe/du/J//83+a/vcRRDPRsp5gQeTIDkF0NMWNWoJgX35IDfaeXBxdiSJYklhqjCOILG23Q7zmNa/Ba17zmpK/sywL999/P26++WZcffXVAIA77rgDl1xyCX75y1/ihhtuQCKRwCOPPIIvfOELuOSSSwAA//mf/4nXvva1eOaZZ3D55ZfjwIED+OMf/4iHHnoImzZtAgDcdttteOc734mDBw9i7dq1rfljCcJjnCxQw7SgRenCRnQuqlrYqMULdlSaps0d70s0xqwSPFfnkkgJJogcbS+CKzEyMoKJiQlcdtlluZ+JoogLLrgAW7ZswQ033ICdO3dC0zRceumluccMDQ3htNNOw5YtW3D55Zdjy5YtCIfDuQIYADZv3oxwOIwtW7bUXAQbhlGgMtfyvPx/E/OXTtmXimKAFxiwpq3+tHt75iudsj8XMopiQBCY3GfMcs7PdfgD3i1K0r4E5IwOAOD4uZ+DKLHIpOu7hrUa2pcLh1bvS7fv09FF8MTEBACgr6+v4Of9/f04fvw4AGBychKCICASicx5zOTkZO4xxa/hvK7zmFrYu3dvzc/JZ8eOHQ09n+gc2r0vZdmHickxWBaQSfPYunVrW7dnvtPu/blQMU1A1/wYOzkKfetRAEAqwQDw4eWduxAMe+8LXsz7cuIEB0DEK7t2IDubJEciISAZZ+fVuWIx78uFRqfty44ugh2Yom+xZVU/Ybp9TPFru2F4eBiBQKDm5xmGgR07dmDDhg3gOFr+m890wr40TQsv/mEv1qxZAcOwcPzwODZt2lTXMb3Y6YT9uZCRMzr+/NQBnHraaqxeFwYATE8p2LXlMNatPQ1Lltd+Pi0H7UtguzmF40eiOOeczXN+p6UncCAZx+bNZ7R+w2qE9uXCodX7Mp1OuxIsO7oIHhgYAGAruYODg7mfR6NR9Pf3A7AVX03TEIvFCtTgaDSKc845J/eYaDQ65/WnpqZKKsTV4DiuoZ3Y6POJzqGd+1LX7OUen0+AYVqwLMCyWPB82/td5y303WwOup49Vv1C7vOVJAEAYJhMUz7zxbwvNdWCJJX++/0BAapizqvPZjHvy4VGq/al2/fo6KvlihUrMDAwgKeffjr3M1VV8cILL+QK3LPPPhuCIBQ8Znx8HPv27cs95pxzzkEikcD27dtzj9m2bRsSiUTuMQQx33AmxAkSC1G0v8oUk0Z0Iqo8t1FLyDbGUTqE96iqMScj2EGSWKiqCdOkaDqCaLsSnEqlcPTo0dz/j4yMYNeuXYhEIli2bBne/e5346677sLq1auxatUq3HXXXfD5fLjmmmsAAOFwGNdddx3uuOMO9PT0IBKJ4I477sDw8HAuLWLdunW4/PLL8W//9m/4zGc+AwD41Kc+hSuuuIKSIYh5izMcQxRZmNmsVVUxEQy1c6sIYi5KbnhD4cQ4gIrgZqDKZsl4NAC5JA5FMeD3t70EIIi20vZvwM6dO/Hud7879/+f+9znAADXXnstPv/5z+P9738/FEXBpz/9acRiMWzatAn33nsvQqHZK/0nPvEJ8DyPj3zkI5BlGRdffDE+//nPF8jhX/ziF3H77bfjfe97HwDgyiuvLJtNTBDzATWvsMgVwSopwUTn4WRY5w9v4DgGDENFcDNQFKNkPBowuw9UmYpggmj7N+Ciiy7Cnj17yv6eYRh8+MMfxoc//OGyj5EkCZ/61KfwqU99quxjuru78cUvfrGhbSWITsIpLESRzS1t0sAMohNxbtgEcbYwYxgGvMBC02lZ3mtUxUA4Ipb83awSTOcKgmh7EUwQRH3kiuB8JZgubEQHoigmBJEFyxYmlwg8S0pwE1BVs7wnOFsEyzQwgyCoCCaI+YqqGGAYgOcZWFx2+hbZIYgORC2zPM8LDDQqgj3H/rzLeILz7BAEsdihIpgg5imqYje/MIztrRQElpRgoiNRFKNkoxYvkBLcDBSlfGMcLzBg2dlmRYJYzHR0RBpBEOVRVSMXjQbY41DpwkZ0IuXSCgSBJSXYY0zTgqaaZRvjGIaB5OOgkBJMEFQEE8R8pdj3J4gsNGqMIzqQcmkFthJMjXFeouUaZssPC5AkKoIJAqAimCDmLapiFlzoRImjdAiiI7Fv2EorwbpOx6yXzGYyl7+8iz6O0iEIAlQEE8S8RVUKp0KJIksT44iOpPhYdaDGOO9xzgHlGuOc35ESTBBUBBPEvEVTi5RgkaPGOKIjKZdWwFNEmuc4Cq/oq1AE+6h/gCAAKoIJoi5kzcBPD8hQ2riUq6oGBKmwMY4mxhGdSLm0Ap4a4zxHdWGHoMY4grChIpgg6mD3eBK/OaLglbF427bB9gQXF8FUUBCdRaW0AoEa4zzHWQ2ixjiCqA4VwQRRB5ms4no8JrdtG4qXmG07BF3YiM4if7JhMbzAUGOcxyiKAZ5nwHFM2cdIPo7sEAQBKoIJoi4yWnuLYMuy7I57sbAxjiLSiE7DmUxWanmexiZ7j1pmMEk+ksRB1ywYBqnwxOKGimCCqIN2F8G6bsGyAEEqjEjTdbqwEZ2F41Mv2RgnsNljmY5Zr1AVs2IyBGArwQDIEkEseqgIJog6cIrg0VimLe+fa34p8gQDoOY4oqPIpRWUyQkGQL5gD1HKxNHl4/izyRJBLHaoCCaIOnCK4BNtUoLVEoWFkC2INYpJIzqISmkFfLYIpoQI71DLJHHkQ0owQdhQEUwQdeA0xk2kVMha6y8kjtqbX1hI2W5wUoKJTkKpkFbAC3bzFvmCvUMtM6I6H6cIpkZaYrFDRTBB1EE6r/Adi7deDc513JeyQ5ASTHQQqmKAF0qnFTh2CI0SIjyjXCZzPk4RLJMSTCxyqAgmiDqQNRPhrIrVDl9wqSxQIacEU0FBdA6KXHpaHDBrhyAl2DvKjajOh+dZcBwDVabPnVjcUBFMEHWQ1gwMBVjwLIPRmTYowdllTKGkEkzqDtE5qGp5ZVLgyRPsNeVGVBcjSZQVTBBUBBNEHciaAT/PYGmXry1KsKaaEEQWLDu7xMzzLFiOISWY6CgqeVR5SofwlFx+uIsiWPSx1BhHLHr4dm8AQcxH0poBkWOwLORrS1awohgFfmAHUWRJCSY6ikppBdQY5y2aasKySidxFOPz0ehkgiAlmCDqIKMakDhgWcSH4+3wBKtmyW57UWRJCSY6ikq5tTzZITyl0ojqYkSyQxAEFcEEUQ+yZkLiGCyL+DA6k2n5xKtyzS+ixFE6BNFRVBrjy7J2aoRO6RCe4BS11SLSADshgpRgYrFDRTBB1EFaMyBxDJZH/EipBuKy3tL311SzTBHMUk4w0VEoVcb4CgJLnmCPUGUnP9xtYxzdfBCLGyqCCaIOMtqsHQJofUyaqpi5SLR8RJGUYKKzqBbZxQss2SE8wilqXaVDkBJMEFQEE0Q9ZJzGuGwR3OrmOFUt3xinkRJMdAiWZUGtogTzAkONcR5RapJkOSRKhyAIKoIJolYM04Kim/BxDLp8AkISj9GZ1ivBpZY8yRNMdBKlJhsWI5AS7BmqYoLlSk/nK0aSOBiGRX5sAgCQUnW87f97Bvsnku3elJZCRTBB1IisZ5tPsjVoOxIiVLV09qogkieY6BycuD7RV0kJZqkQ8wgnk5lhXBTB2X1CajABACfjCo7HZOyjIpggiEpknCXHrNqyPOJvixIslLJDSBSRRnQOqguPKjXGeYdSIYmjGCqCiXwSsgYAmE6rbd6S1kJFMEHUSFpzlGC7CLaV4NZ5gg3DgmFYZXKCbTtEqyPbCKIUTmRXxcY4nuwQXqEqZkXrST7OjQklRBAAEFfshKOptNbmLWktVAQTRI04SrAjuCzv9uNEXIZhtqbwVCsUFs7PNFKDiQ7AjRJMjXHeYdshSAkmaoeUYIIgXJGZowT7oZsWJpJKS96/0lQoRwUiSwTRCTgFViV1kiLSvEOpMKK6GKengMasEwByWfdTVAQTBFGJ4iJ4eXdrs4JzSnBJTzBX8BiCaCeqaoDnGXB8hXQIniUl2COqZTLnw/EseJ6BTEowASCRLYKnyQ5BEEQliu0QS7uyRXCLmuNICSbmC7ZHtbIyyVNjnGdUy2QuhgZmEA5xhewQBLFgSCo67vz9Prz5m08jmvL2S13cGCfxHAZDUsua40gJJuYLimJA9FW+zAgCQxFpHqHUoAQDtlebcsUJAIhnFqcdgm/3BhCEl5iWhV/uPIFv/OEAYhkdhmXhRCyDvqDo2XtkNAM8y4BnZ7M4l0V8LVOCtQoDCEgJJjqJckNd8nE8wZZlucq3JUpjT+dzH5EG2PnNpAQTwKwSLGsmMqoBf5UVnIUCKcHEgmHn8Rje+70XcdtvduOCVb341g3nAABSHg+PyKgG/ELhCWJZxN9CJdgEx5X2WTrZwaTuEJ2AopQe6pKPILCwLMA0yBLRCLpuwTQrJ3EU4/NxuRg7YnGTkHUMhGyxaDGpwaQEE/OeyaSCb/zxAH65cwzDgyHc/dfnYvOKbsxkv8hpr4tgbW4RvLzbh+eOTHn6PuVQ1fJLngzDZAdm0IWNaD+qYsAfqHyZ4YVsrJ9ugaMrUt1Uik4shyixiE0vnoKHKE9c1rGqN4CJpIrptIrl3f52b1JLoFMOMW/RDBM//PMI7nnmEHiOxb++fj3etnEZuKxNISDah3da1T1937RmwC8UXmiWRfyIplTImgGf0NxlJKVKs5EospQTTHQEqmKiu6e6HQKAnRBRYbwyURln9acWO4RESjCRJSFrOHdlN148OrOoBmZQEUzMS549FMWXntiHo9Np/NXmFfjApWsQ8QsFjxF5FjzLNMcOIRYrwfZd8/GYjLX9QU/frxitghIMzE6NI4h24yayS+Dtm1bKCm4Mp5itZj/JR5LIE0zYJBQdp/TY17HFlBBBRTAxL7AsC7GMhiPTGTzw/BE8uX8S563sxn+85WycNhgq+7ygyCGteasEl7JDLIvYMWnHY5mmF8GqYua8v6UQJZbSIYiOoNqqBVCkBBN1M2uHqD0ijZoSFzeyZkDRTXT7RUT8AnmCCaIdaIaJsbiMkZkMRmcyGI3JGJ3JYGQmg+OxTE7RHQpL+Nxbz8brhgeqnrgDIt9ET/Ds6w6EJAgc05KBGbYnuPyFThA5Socg2o6TVuCmMQ4gJbhRnO98rTnBpmk31QkCFcGLlYRiC0VdPh69AWFRDcygIphoKzNpFbc++goOR9M4mZBhZhvEOZbB0i4fVnT7sXFZBG88cwjLu/1YHvFjTV8QYoUJVPkERM7zIjitGujy8cgvglmGwdIuP47PND8hQlVMRCo0G4kSi0zaW/WbIGrFjj2zY7gqQUqwN6iyAYYB+BqKWecGRZGN3M0IsfiIy3bRG/YJ6AmIpAQTRKv488gM/nRoCv/r/JVY1RvA8m4/VnT7MRiWwLONn5SbUQTLmoGhsDTn58u7fTjeEiW4cvaqKHLU8U20HbeNWkKuCKaItEZQspnMtdgapOwNiqIYCIWFKo8mFirOyGRbCRbJE0wQreJwNI0uH4//32tPbYonLSjyTUqHmHthXxbxY/tozNP3KoWqGCUHZTiIInmCifbjtlGLp8Y4T3BjPSkmVwRTc9yiJp4tgsMSj56AgCNT6TZvUeug9Q+irRyMprCmL9i0poyAyHmfDqEZCJQoQpdH/Dgey8CymqtoVVWCJZY8wUTbUWV3jVosx4BhQKOTG0RxMZ2vGMc/TEXw4iaRtUN0+QT0LjI7BBXBRFs5HE1hdV+gaa9fix0ildSQTlVXjTNlsoCXR3xIqQZimeY1FZimBU01KyvBEjXGEe1HrTDeOx+GYSAILHmCG6TSEJ1yOEWzQpGKi5q4osMnsBB5Fr0BETNpDWaTxZxOgYpgom2YloXDU2ms7WtepFhAcG+H+OPvTuCpJ05UfVxaNRAoZYfIZgWPNnF8srNkXNkTzMI0LFLWiLaSs0O4GIDBCyw08gQ3hJ3JXJsSzHH2DYhKSvCiJiFr6JJsT3hPQIRhWYg3UczpJKgIJtrGiZgMRTexpplFsMghrbk7wadTOmIzlZeBDNOCopslPcHLs1nBzYxJyzUbVVGCAdDUOKKtqIoJlmPAcdWtTjwpwQ2jKGZN8WgOko+DTEXwoiYu6wj77Bax3oBdDC+WqXFUBBNt41A0BQBNL4LdeoIV2UAirlX09Mq6/VqliuCwT0BY4puaEKGqjs+ycmMcAGqOI9qK06jlxu8vCAw0WrloCDfT+Uoh+VganbzIictaNvYT6AmKABbP1Dgqgom2cSiaQkDgSsaNeUUt6RCKYkJTzYr+uEy2CC0em+ywvNuP0SZmBc8qwZUb4/IfSxDtQKlheZ7nSQluFNXFdL5SSBLXsXaIHcdji8ab2k4Sso6wz1aAewN2EbxYmuOoCCbaxqFoGqv6Ak0d1xkQOWiGBc2ofIF1plsBQCJW/sufyVor/GWGdSyLNDcrWHOhBAvZC6HicSoGQdSCqpiuI7uoMa5x6olIA+xhJp2oBB+PZfD+H2zFS+OLY1m+ncRlHWHJVoKDIgeBYxbN1Dgqgom2cSiaampTHGAXwQCqWiJU1Z5uBQCJePkvf7qaEhzxY3SmFZ7g6koweYKJdlJLoxY1xjWGoZvQdavmxjjAVoI7MSJtIqEAABXBLSChaOjKKsEMwyyqqXFUBBNtwbIsHGpyPBpg2yEAVLVE5C8HJisUwbJW3hMM2ErwWEKBbjanAFWV6qNRnQKZ7BBEO1FqWJ6nxrjGcOLo3CRxFCP5OChy5332TmPWy1EdKY8HHhGF5DfGAVhUU+OoCF6kmJbV9KEOlZhIqkipRlOb4oBZJbhaVnD+cmBFJbhKEby82w/DtDCeVTG8Rs1mBFeykHDZjnxqjCPaSS2NWoLA0MS4BnC+6wupMW46Yxdhmgk8fXCqzVuzsEnIOiK+2bHZPQGB0iGIhc2nfvkyvvTEvra9v5MM0So7RLUi2IkI6u4RkYhX8ASr1ZRgOyv4eJOygqtNi3OgqXFEu6klsosXWMq1bgDFhU2qHI4dop2iSCmm0yp6/AJWd3H43d6Jdm/OgkXWDKiGSUowsbh4+US8rfPBD0VTEDk2VzQ2C/d2CPsi0jfoq6gEZ6oowUu7fGCApjXHqYoBocoELsCZGtd56g6xeFAVA6LP3SWG0iEaw1GC62mMk3wcLKvzegimkyouYsI4r0/Es4emXKf8ELURl+3PtSuvCO6hIphYyOiGibG4gqTSvpPK4Wgaq3oD4NjmJUMAtdsh+vp9FbOC05oBjmUglBkAIPIsBsJS05rjVMWlEiyy5Akm2oaTtuJWCRaoMa4hckpwncMy7NforJvm5IyGFaqI9T4JimHiqQPRdm/SgiQu26JPWJq1Q/SSHYJYyIzFZRiWhUQbi+CDLWiKA/LSIapMjVNk27/Y1S1WzAqWNXtkciVP7vKIr2mjk1XVqDgtzkEUOSqCibah6xZM031RxgsMKcEN0JAnOLuPOq05Tk7Zf1OAZXHmUBiP7xlv8xYtTJw6oFgJTio61EVgUaIieBEyklUpE3L7iuBD0VTTm+IAgGdZSDxbdSlNyapW4S77brhcVnBaNcpaIRyWRfw43iwluCZPcGcpO8TiodbleUFgYRgWTJPU4HpQFaNqw2w5OlUJ1jP29hgacOXwAJ45FCVLRBPIKcEFjXHZqXGZhW+JoCJ4EZIrgpXKI4KbxXRaxUxGa0kRDNj+3ap2CNmE5Msrgsv4gtOaUTYj2GF5xN88JVgx3SnBEkeNcUTbcJNnnQ8v2Mc0Nce541c7T+DBF4/m/l9xaZMqhXOj0mlZwUy2/tJ1BlcO90PRTTx1kCwRXpMo4QnuDdjXwcUwMIOK4EWIUwRrhgWlDRcdJxliTQvsEIBtiag2LMNRgn1+DjzPlM0KduwQlVje7cNUWs0lSXiJ29gpQWQpIo1oG0qNy/N8dgKjTr5gV/xm10k8vnvWHlBLHF0xYs4O0TnnC9OyIGQ3x9AZLIv4ccaSMH5HlgjPics6fAILgZs9fnoW0ehkKoIXIaMzGXDZZbN2NMcdjqbBMQxO6WlNERwUeVfDMiSfvZwY7hLLK8GqAZ8LOwQAHI97b4mwc4LdNcZ1Wrc3sXjI2SFcDm8Qskpwo1nBpmlhy/OTMBb4qvnJhJzLLAecEdX1KcEsy0CUOisrOJ7REIT99+jZfXnV8CCePkiWCK9JyLPT4hx6HCU4RUUwsQAZmcnkVNh2NMcdjKawosdfcOfZTAKiCztE3ojXcEQomxUsa0au2a4cy7vtInh0xltLhGVZ0FR3io8kUWMc0T5qTStwJiA22hw3NSnjpWejmJ6sryCcD1iWhRNxueCcpjSgBAOdNzp5OqMhlC2CDd0+Nl63fpAsEU0gLuvokviCn0k8h6DILYqECCqCFxmWZWE0JuOMJV0A2tMcd7hFTXEOruwQspFTrUJdQmVPcBUluC8oQuRYz7OCcx33LpRgQWShaSY1GhFtQVUMsCzA8+4atbxSguVsM1VseuFe2mKyDlkzi5Rgo25PMGAr9p100zwRk+FjWLAck1OCl3eTJaIZxGWtoCnOYbEMzFi4ZwqiJNGUioxm4PShMID2KMGHoumW+YEBd3YIRZ7NNA1ni+BSTYMZF+kQLMNgWcSHUY+L4FpikJwLIlkiiHbgrKy4TSvINcY1WgRn1cz4NLdgbwBPxu0VpvxzWiN2CMBWguUOUoInpuyx8z19Igxt9hhyLBHN6LdYrCQUvaApzqEnIJInmFh4OEMczliSLYLl1i53JBUd40ml5UpwJTuEZVn2iFefUwSXzwrOuLBDANmYNI8TIpy0B3fpEGz2OXSxaCeqauCJ34winVpcPka3KSYOQi4dorHC1VnSN3QGk+PNSWhpN2PZIlgzLGiGfU5QXdqkyiH5WKgdVATPTNtF8MCQD7o+WwTPWiIm27VpCw5bCZ5bBPcGBEqHIBYeTjLEqf0hcCzTciX4cC4ZonPsEM4y4GwRXD4rOK1Vb4wD7IQIr7OCZ5Vgd41x9nNICW4nY8cz2Lcrhj8/N9HuTWkptS7P8x7aISQfB46zMHIk1dBrdSpjidni3rm5byQiDbDPKZ3UGJdMaDBhoadXgqEjtyq3vNuPM4bIEuElCVlHlzTXDrFYRid3fBGs6zruvPNOXHnlldi4cSNe97rX4etf/zpMc/ZkaVkWvva1r+Gyyy7Dxo0bcdNNN2Hfvn0Fr6OqKm677TZcdNFF2Lx5M26++WaMjY21+s9pOyMzGfQFRfhFDmGJb3k6xMFoCgyA1b2ts0MERB4ZrfzfqRQF+1fKCs64iEgDbCV4NCZ7msOs1aIEZ9VqiklrL9NRW9HatXOmrM+8VXzzjwdw5xP7qj/QA5Qal+cd77AXdgh/gENXj7lwi+C4kvvvtKrDNC1oqul6MEkpJF9nNcbJKQMKa8Hn42BZTEF03uvWD+IpskR4RlzWSyrBPUGyQ3QEd999N37wgx/g1ltvxaOPPoqPf/zj+Pa3v40HHnig4DHf+c53cOutt+Lhhx9Gf38/3vve9yKZTOYe89nPfhaPPfYY7rzzTjz44INIp9P44Ac/CMNYXF+kkZkMVmTTC8IS3/LGuMPRNJZGfK7UVK8IVhmW4Zz8HSW4UlZwxqUSvCziQ0YzMJPxrvBRa+i4n7VDkBLcTqajCrp7RYgiiy3Pt1cN3jISw8tj8Za8V625tQzDgOcZT5Rgn49DV4+BiZNyRxV2XjEWl+HLKudpzZi1STWgBPs6rAjWMwYMPi/DOO9m3rFEPH2IUiIaxbIsJJS5EWnArB2iHQO1WknHF8Fbt27F6173Orz2ta/FihUr8IY3vAGXXXYZdu7cCcDeiffffz9uvvlmXH311RgeHsYdd9wBWZbxy1/+EgCQSCTwyCOP4JZbbsEll1yCM888E//5n/+JvXv34plnnmnnn9dyRvOK4JCPb7kdolXjkvNx7BDlvsyzSrB9wi2XFWxaFmTNdOUJXh5xYtK8s0Q4/l7B5cQ4+zlUBLeT6aiCwSE/Np/fhz0vzyA+0z5lZTKptGzlR1UM1xnBDrzANjwxTpF1SD4OkR4TlgWMHK2sBv98x/GCyWvzgZNxOXcOTatGzsvbiCfYtkOYnVPwqAB8DCTf3Gl2K7r9OJ0sEZ6g6CY0wyrbGKcaZtVkpfnO3L+8wzjvvPPwgx/8AIcOHcKaNWuwe/duvPTSS/jEJz4BABgZGcHExAQuu+yy3HNEUcQFF1yALVu24IYbbsDOnTuhaRouvfTS3GOGhoZw2mmnYcuWLbj88str2ibDMOpSkJ3ntFN9HpnJ4FWre2AYBsISj3hGben2HIqm8NpT+1v6nj6ehWFayKg6JH7uhUJO24UBL8zum1AXj3hMKdhOR032cUzVfbkkbE/cGZlO44yhkCd/h5zRIQgMLMtEtY+PYSwwDCBntEW32lEPzfhuWpaF6aiCVeuCOP3sCLa9FMWLz47jNa9f6tl71LItE0kF3X6hJceDIhsQBKam9+J5BqpS37nVQc4YtvLus9DdI+LooQRWryt/0/3EnnFMZzS885zldb9nqxmLy7hgVQ92jSWQlDVkGPsyzvO1fd75CKJtR8lktIZSJrxC0AH4WfBZgTJTdB678rR+3PvsESRltWpaD1Ge6ZRtrQmK7JxjpztbGE8mZPh5f8Pv1er6x+37dHwR/P73vx+JRAJvfOMbwXEcDMPARz/6UVxzzTUAgIkJe4mxr6+v4Hn9/f04fvw4AGBychKCICASicx5zORk7V2me/furedPybFjx46Gnl8vsm5hOqNBj41j69YZ6Jk0jsctbN26tSXvrxoWjsdksKkotm5NtOQ9AeDkhK3oPv/nrQiXUFEnTnAABLyyawecRCdZEZCMswWfTSxrRzgxcgQ7ZPvYqrQvgzyDF3cfxED2sY0yepQHGN71/mI5H44cGYVqHvHk/RcDXn43VZmBpvkwPTOKnS8fQ/9SDvt26ZCC4/AFWqu4ZXQLsm4illFa8n1PpXyITo1j61b3x75uSDhxYhxbt47W/b7xmAROSCAyAEiBNA7tVxDuG0O5pLbj0SSSWuvOgY2imxYmUyokJQYAeHnvfsiCBEDCgYN7MHqivuMqPs0CkLD1zzsh+durBpsmIFl+JLQkDhzcA8CPfXsPYXJqdpVgqW5A1k08+Ps/47zBuUv5hDtGk3ahOHb0ELbGjhX87mTK/t3z219GNOJdqdiu+qccHV8EP/roo/j5z3+OL33pSzj11FOxa9cufO5zn8Pg4CCuvfba3OOK8yjdLOvUu/QzPDyMQKD2xi7DMLBjxw5s2LABHNf6u9e940kAL+HSjafj7GVdWDmxF3vHk9i8eXNL3n/PeAIW/ozXbLbfv1VoR6eBHduxdviM3DS3fLbpUZw4OoVzztmc+xlrTGHL81Fs2nR67tg6Np0Bnn4eZw2fig3Lu6ruy5UvvwQrEMLmzes9+Tvk+DgyiRQ2bz7d1eN3bz2I/r4+bN484Mn7zydmplXAstDdK7l6fDO+m8cOp7AdIzjv/NMRjojQzzbx0H2HkEl04VWXLPPkPdxyeCoN/OEFyDqwadMm1/m99bLl6b1YtXo5ztrU4/o5R/YcQU+3hM2bl9T9vtuf3YcVKwcAjGDTuafgt784jlWnnIHevtLHgf7n5yGbWsvOgY1yPJaB9f+ex6UbTsVPDuzEkuWn4BQpgL3bj2Pz5rPg89d3SZ8cl7F3xxGsW7ce/YM+j7e6NqJRBX9+6jBWnDKAzZuXYtufDmDJ0EqcsaHwWHrg4Es4qPrxt5vPbNOWzn+skRng+W04b8OZWFXUrL46owHPPYO+Zaux+bT+ht+r1fVPOp12JVh2fBH8hS98AR/4wAfw5je/GQCwfv16HD9+HHfddReuvfZaDAzYF/jJyUkMDg7mnheNRtHfb++4/v5+aJqGWCxWoAZHo1Gcc845NW8Tx3EN7cRGn18vJ7Jdxaf0BcFxHLp8ApKK3rJtOTptR/usGwy39O8P+2xrgmxYJd9XUy1IUuE+6eqWoGkmdJ2BL+ttVLPh+0GfmHtspX25ojuA43HFs79V0yyIPvfHjiiy0LTSf/NC5/mnJmBZwJuuPaWm53n53YzPaOB5BpEeHxiGAcdxOPeifjz1xBjOvVBDb3/rig1n/KkFQDGBoAtfe73ougnDsODz8TV9loLAwtDrP15N04KqmvAHBGQ0YNnKIDiOwfFjGQwMlhYt4rKGhKLDYhjwbMe3yGA8ae/HVX1B8CyDjG5Cy262zy+C4+q7ufEHbDVVU9t/vnAGZfT1+iAIPDjOKnkee/3pg/j2nw5DM9HSRuuFRCrbM9IdkOZ8vj1BFixjTyj08phoVf3j9j06/lsvy/Ic1YLjuJyKu2LFCgwMDODpp5/O/V5VVbzwwgu5Avfss8+GIAgFjxkfH8e+ffvqKoLnKyMzGQRFDt1++4QXbnFj3KFoCgMhESGptfdeTiNbuYQIpUQTT6msYCeSx60HbVnE5+noZFUxahpAIEqdNQq1lWTSOuRMewdUTEUVdPdKBeev08/uQahLwEvPtjbsfyI5exynmhybV0uKST68wDaUDuE0T/myzVQ8z2LZygCOHU6WfLxhWohn03HibT5W3OIMylgS9iEgcsioBlTFAC8wdRfAwGxTcKkBQa1mckqBaVkY7LVvEjneKplccdXwIGTNxNMHKSWiXuLZ63+pxjiWYdDtX/gxaR2vBF9xxRX41re+hWXLluXsEN/5zndw3XXXAbBtEO9+97tx1113YfXq1Vi1ahXuuusu+Hy+nG84HA7juuuuwx133IGenh5EIhHccccdGB4exiWXXNLOP6+ljMxksLzbn7sohyS7CLYsq+nLo4AzLrm1yRDAbBFcrstVkc3yRXBcw8CQbaHIaEbB61VjecSPk3EFuml6ojKpam3Zq6LIQlvgnb3lyGQMsM0/pCsyPaXMWYbnOAbnXdSPJx87geiEjL6B1qjBk8nZbNmkomMw7M4mUg/Fudtu4QUWSqaxpjgAkPwckG05WLEqhOeeGoemmbmpdA4JRYdjiIvJGnqDYt3v3SrGEjK6/QJ8Amen3mgGVNPI5YLXi5Ms0QkxadMzCtIw0Rey9wcvoOQgjxU9AawfDOHxPeN43frBOb8nqpOQNfgFDjxX+ru6GKbGdXwR/G//9m/4yle+gk9/+tOIRqMYHBzEO9/5TvzjP/5j7jHvf//7oSgKPv3pTyMWi2HTpk249957EQrNduV/4hOfAM/z+MhHPgJZlnHxxRfj85//fNuXflpJfkYwYN/9GaaVHQXc/EPhUDSFi1b3Nv19iglm/7a0WlrtURRjTnFZKis4nS2C3S69LYv4YFgWTsaVkl7kWlEVI1ecu0GUOKQSC/sEVg45o4NrYxVsWRZmogrWrAvP+d1pZ3Rjy/OTePFPE/iLt65syfZMplRwDAPDspoek5abbFhjRJogsEg2cLzKRXnfALBydQh/evIkToykcMqawn0Ry8vwjnmY591MxuIKlnTZN05+gUdGNaCwtd0cl4JhmI4ZmJFMaEjCQE/2psRWgksr1K9bP4h7nz0M2WV+e71sfXES05MKrnjD/EkRcUNc1kuqwA49AVKC204oFMInP/lJfPKTnyz7GIZh8OEPfxgf/vCHyz5GkiR86lOfwqc+9almbOa8YDSWwVVLZu+YQ9lRiQlFb3oRrBkmjs1kcEMblGDHvlDWDiEb6IoUFpelsoIdO4Q9Ma56U6VT+I7GMt4UwapZUxaoKLKYXoRKsK6b0DULOiyYpgW2DcVwKqlDVU30lGjI4jgG571qAL//n+OYGMtgYEnjx0Y1JpIKlnf7cHQ6g1SZm0GvcJbUay3MeIFpaGKcY3/x5RXB3T0iQmEBxw5XLoK9HGrTTMbiMpZkVfygyCGt6lCZ2gaTlEOS2I4YnSwnDWQYEwGBg2ma4HnkspCLuWr9IP77jwfxzMEormyiGjw2msbRQ0lcdPkQAsGOL5tyjI9lkE7pWF3iZhywPfGlBmU49AbFglWkhUjHe4IJb9AME2NxuaAYC2e9ua2YGndsOgPDtLC6r3Xjkh04loFPYMvaIdQSSjAAhCMCEvE8T7BmgGMZCC69d0u6fGAAHI/JdW13qe2sZdlTlNhF6QnOpGf3c7uGhTjjkksVwQBw6ukRdPeIeOFPrZkiN5lUsDp7A9oyJbjGwkzg2YaK4OLJj4B9M7tydRDHjsz1Bcfk+acEn0zIGMoqwQGRsyfGKXPtXPXQKUqwLhvQ+VmLHsdbZb3KK3sCGB4M4fG9zR2ckUkbsCzg0P7WTFz0im0vRfHsH06W/X25kckOPQEh11S7UKEieJFwIi7DtFBgh3AO/lZMkToUtSc3rW2DEgwAAYEvb4eQS0+3CnUJhUqwZsAvcK790wLHYjAsedYcp9WsBHOLcmJcfkNcuy7q01EFPM+Uta+wLIPzLh7AscNJjB1PN317JpIKTumxb0CbPQFKVUwwDOZ4cKvRaGOcnLEV0WLlf8WqEGLTakGTKzBb+PoFbl4UwZZlYSyuYKlTBGfHwdfaMFsOSeJyNzDtwjQtQAWYvPMcX6YxzuGq9YN46kAUsta8bU9nByod2DO/iuBkXEM8psIwSq9cJmQdXRUa1XsDIqYXuB2CiuBFwkh2fO+KUkpwi4rgiF9AT6A9zSdBkcs1tuVjWbbKUKqTPZwtgp0kkoxmZK0Q7lne7fdkdLJhWNB1qw4luPy46IVKJq+5qm1F8NTcZIhi1g13obdPwotNVoMtyx6wMBiWEBS5lijBosjW3GzLCyx0rf5jVZaNAiuEw/JTgmAY4NiRwhHKsYyGgMChLygWqMKdSlzWkdGMnCc4INo39uXOX7Ui+bicr7pdpJIaGACCf/bv4QRULM5ft34QGc3AM01KibAsC5mUjr4BH06MppFKdv6x4pCMa7AslB3XnpA1hCvYIXoCImIZDbq5cMUUKoIXCSPTGfAsg6HwbDe6owQnWnABOBRNYW0brBAOAZErqYA5doFSSnC4S4SmmrmluLRae/OFHZPWuB1CVWtfYhZFDpYF6PriKoKdMdhA+4rgqahS1grhwDC2Gjx6NIXjI6mKj22EpKJD0U0MhCQERR6pJhfBimLUVZQJPANdN+u+aVNkAz7/3PeVJA5DS/1zotJmMhoifgHdfmFeeIJz8WhOY5yYpwR74Qn2tT9S0Vl584dm1Uk+a4cod1yc0hPAaQPNs0Roqp17feaGbrAscHDf/FCDDd3MKdgz06V9vXGluh3CAhCbJxGC9UBF8CJhdCaDZRFfQce8xHMQObZFSnB74tEcHNWkmJyPsMRFpDgr2E7RqFEJjvgx6oEdIpe9WqMSbD+3/T6/ViJnjNyY3HYUwU4yRLkpZfmsOTWM/kEfXnxmommKvZMRPBAUEZR4JJvcGFevR5UXWFgWyi7dVkPOGJDKXNBXrg5h9Fiq4LVj2SI44hfmhR1iLGEXwUMFjXFG2Z6GWhEltu2eYCeNJ79RmePtfVapQG+mJSKTLSS7eyWsWBWaN5aIZHL2ez4zVV4JrpQO0ZtduV3IlggqghcJI2USCkIS3/TGOMO0cGQqnWvMaQfOBaOYXKZpSSV4NisYmPUE18KyiB/Taa2sH9ktWl1KcLYIXmS+4ExGRygsgGVL54s2m0rJEMUwjJ0UcWI0jdGjzVGDJ7Ld3f0hCSGp+XYIpU5lks96iOttjitnhwCAlatC0FQTJ0/M+q9jsoaIj0fENz+K4JNxBQLH5PKM/Y4nWPXODtHudIhEXIMME72hWdscn63RKhXoOUvEIe8tEelso60/wGPd+i6cPJFpKMqvVTg3FD4/h5mpuUqwZdnDYsJSZTsEgAUdk0ZF8CKhOCPYoRVT407EMlANs21NcUB5O0SpjnKH4qzgjFp7EezceDRqiZhVgmubGGc/d/EpwT4/17Zu91wyRK+7gRSr1oYwuMSHF/7UHDV4MlcEi1k7RLMb4+q0Q2SLYK1OX7CSMexBGSXoH/LB5+cwkucLLlCC54EneCwuYyjsA5td5giIPFTVhGXVnsRRCl/WDmGa7bNPxWIqEpZR0DviKMGVvsurem1LxBN7vffXO0qwP8hj9dowOI7Bgb2drwYnsoX68lOCJe0QsmZCNy1E/JWUYLtAJiWYmNdYloXRckWwxDddGToYtdWXdsSjOfizmZrFVMo0Lc4KTtdlh7D9e41aIhw1t5biwimYtUWmBMsZA/4A37ZGn1wyRMTdYBOGYXD+xYMYP5EpO+K3ESZTKrp8PCSeQ6gF33dVMetKK2hcCdbLKsEMw2DFqmDB5xvL8wTPByX4RFzGkq7ZG6uAyMHU68tkLkUn3DTPzDhF8Ox3h8/+ZzWV+sylYRyb9j5pJZ3SwbK2ZU6UOKxcE8KBPTHP38drknEVgQCP/gEfZqbUOTfYzo1fpcY4v8BB4tkFHZNGRfAiYDKlQtHNttkhDkVTCIocBkPNG9VajaDAl7ZDyJVtBvlZwfXYIfqCIiSexehMo0pwdjvrUoIXVxGcSeu2Eiy1SQl2kQxRzIpVQSxZ5seLTVCDJ5IK+rPfvaDEtWBYRn0eVUGwP696imDLsso2xjmsXBXC5LicU/ZsO4TjCdY7PkXlZFYJdgiIHMTsJdyrxjgAZTN5W0Eynp0WV6MSDNgFW6aBiL1yZNI6/AE+931eN9yFiZNy2cSFTiGZ0BHq4tHdK0FVTaRThd9757pfKSKNYZgFH5NGRfAioFQ8mkOXj0dCae5d3qFoCqv7gjVHJnlJoIwn2G4qKR/nlJ8VXI8dgmGYbEJE40owxzHgePdfWSHnCSY7RCtxkwxRDMMwOP+SQUyclHHkoLdq8GRSwUDWRxoSeSSbboeoz6PqKMGaXnsho6omTLO0rclhxaoQAODYkSQsy0Iso+fsEK0YJ90oYwk5lwwB2DnBIuzzliee4OxrtKs5zrIsyGkdScvINWQBAMcBDOOuCFb05jTG+QOzheKqtWHwfOdbIhJxFaGwiO4e+7OcmS4sZONKdSUYcAZmUBFMzGOcInh5pJQdQmiJErymjVYIwPbPlVLAyg3KcMjPCs5oBvw12iEAbxIiVMXIFbVuYVkGvMAsysY4v59vSxFcSzJEMctX2mrwK9unPd2miaSapwSX/h54iXNjWStCA3YIJZsNXc4OAQCBII/+QR9GDqcgayZUw0S3X0Ak2x3fyZYIzTAxmVQLi2CRg8TYn5kXdoicEtymIjid0mGZQBIGuv2zhRnD2EV+NYXaVoKbUQQbBaOSBYHFKWvDHV8EJ+MaQl08whERLAvEiprjckpwhXQIwBmY0bnfjUahIngRMDKTwUBILJlxG2pyY5xlWTgcTbe1KQ6YHZZRvORZLdM0PyvYtkPU/pVZFvF70hhXj9ojiu2fAtVKDMOCqph5SnBrbwCcZIhul01xxQwu8SMe81Z1mUzN2iGa7Qk2dNMe6lKPEszX3xjneL8r2SEA23Zy7EgSMxn7M3aUYACItWB8fL2MJxRYAJaE8z3BfJ4S7IUdwn6NdiVEOIkLOmfNuVZJElvV3y/xzSmC00VKMGBbIqITctn83XZjWRaSSR3hsAiOY9DVLWK6WAl2PMEV7BCAnRAxnSIlmJjHlGuKA5rfGHcyoSCtGW2NRwOyTSSW3RGbjyJXzjTNzwpOawb8QuUTRikcO0QjnkNVrW80qj01bvEowUquGOLha4MS7CRD1KMEA/ZNVzJvSmGjWJaFyaSKgWzkVEjioegmdKM5x4Sz6lBvTjBQnxIs5+33SqxcHYKcMTCaHVVtN8Zll4sznXuhdzKCl0TmeoIZdvYGohEEgXVlO2gWju1MCJQYeOKrfjPvF1jImgnTY293JqXDX7RNp6wJQRDYjs0MTqd0mIaFUPb61d0jzYlJS8g6AgIHnqt87JAdgpj3jMyUzggGZotgr08cDoejdiRROwdlALZqAmDOUrAiV27icYrgeFyFrJk1p0MAdkyarJkNddjaWaB1FMEit6jsEJnsZCN/wFaC5RaPjZ6eqi0ZophQlwDDsOY0sdRLXNahGiYGgrMDFgAg2SSfuKMi1nOschwDlgW0BuwQ1YrvoaUBCAKL49lMZrsxrvPtECedaXHhuZ5glvem14JhmLZmBSfjGkwWCAfnfnckF4M8nH4NtQ5PeTksy5rjCQbsm45V6zrXEuGo6qGwUwSLJTzBlafFOZAdgpj3lMsIBmw7hGmhZNOYFxyMpiHxLJbmednagXPxTxctlymKkVsGLIWTFewsJdVnh7D/9kaa4+zYqTrsEBK7qOwQcnpWEZQkDqZhtXRs9HS09mSIfJzi2VHFGiV/UAZgK8EAmrb6U89kw3x4ga1TCdbBcUzOV1wOjmOw/JQgpk/YRWXEL0DiOfgEFjMdPBp2LK6g2y8U2AQCIgeRYT0rggG0rZkUsI95lbMKkiEcRBfb5RTBXloiNM229wQCc4vFdcNdmI4qmJpszOrWDJxse0fE6e6VkIxrBTeY8YyGripNcYBth0hrRlOm8XUCVAQvcJKKjlhGK1sEO/EoiSaFxR+KprCqN1AwrrkdOApupqjYr6YEO1nBsRmnCK7HDmF/9qMzjRTB9U3halQJPjqdxtEmZG82C0cJtj3BWY9jCy/q03UkQ+QTzio3SY+KYGdQhmOHCDorIk0rgsuPIXcDz7PQ61DynEQQN6xYFYQ8o8PHsrmb44ivswdmjMULkyEAwCdwkMDA8rIIllrvo3dIJjSkGSM3oCEfSaquUPuaUARnnGlxwbnn/ZWrghAltiPV4ERCgyCyuWtGd6/9/Y/lqcEJRa/aFAcs/IEZVAQvcEZz8Wil0xmceJRmNccdjqbaboUAKtghlMrpEICtzsXj9SvBIYlHxC801Bynqu1Rgr/0u334ryf21f38ViNnDLCsnafc6m53y7LsIrjOpjjA7oKXfJx3SnC2oaUvWKQENykhwungrzeySxDYuhrjqqW85LNyVQiwgHWiP6fYd/sFxDp4yXcsIRc0xQEAyzDwsxwsD6/iko9tmx0iEdcQN42SSrDkY6sW504RXNz30QiZrC2plBLM8SxWZy0RnZYxnUxoCIWF2eO7xz528hv54rJWNR4NyB+d3Lnfj0agIniBk4tHK2eHcJTgJhTBlmV1RDwakGeHyFOCLctOEqh28Qx1CUglsidDsXYlGLAnxzUSk6ap9SrBbEMT48YSMk7EO2+5rxxyRofPbwfb+1pcBDvJEI0owYATy+eN6jKZVBDxCxCzjVPO971Zo5PVBjzBQAN2iBqU4K5uEaYIrGRn91Onj04eiysYKmEp8zEsDC+LYImD2gY7hGVZSMY1RHW1YFpc/nZVt0PYH4SXSnA6PdtjUIp16yOITauITnRWSkQyruWsEIBtc/EHuILmuITsTgnuy2aMkxJMzEtGZjK2ElnmYHfiUZIV4oHSKR1P/Hq05oaV6bSGmKx3iBI8twhWK4xMzifcJUBOZk+GNQ7LcFjVG8ChyVRdzwXqH0UrSlxD6RATCSXXlDMfyGSM3AXLublp1ejk6anGkiEcwnkDWhplMqnmBmUAeY1xTVr5UbK2nXo90YLA1J0OUSkjuJh0wMKAwecUvIhfwEyHNsZZllXSDgEAEsPAYLxTIcU2jRpXZAOaZmLa0MsowRw0zYRhlP9bZ5VgL+0Q2ZHJZY6t5SuD8Pk4HNjbWWOUHSU4n+5eCTNTs4VsXNarxqMByGU2L9SECCqCFzhOU1y5i5LTHVpJCX552xT27Y7V3ABwqEOSIQD7BMmg0A6RG5lcoTEOsGOrDN2CBKYuOwQArB8MY+9EErpZ30hYOx2ijlG0Ilv3xDhZM5BQdKRUo+OnaTnIaSMXkyW2eALWdLSxZAgHL4vg/JHJACDxLHiWaWpjXCPTy3iBrS8dQjYguVC1HKZ4A5LB5jySEZ/QsekQcVlHRjNKFsEiWGjwrgj2uYgiawbO8V48Lc7BWVmotG3NaIxLp2ZXlkrBcQxWnxrGgT2dZYlIxEsUwT1SgR0iobhrjOM5FhEfv2ATIqgIXuBUSoYAAIFj4RNYxMsowYZhYfeOGQCzTQJuORRNgWMZrKzw/q2CZRj4hcLRyUquiae6EgwAIXDw12mHOH0oDEU3cWSq9iYzp7GtXiVY162KCko5nGSB4v/uZOSMDn92WZxlGYhS6zyOjSZDOHiZFTyZVNAfmi0qGIZp6tQ4pc5pcQ680PzGOAA4bimwGHuEMpC1Q3RoETyWi0ebu8LAWwwUeOeBbVdjnBPplYRZMC3OwY2/3ymCZQ8j0oqnxZVi3fouJOIaJk52xoqZqhhQFbPADgHYzXGxaRWWZcGyLFsJdnnj2BMQSQkm5iejFTKCHeys4NIXgCMHEzlfVCZd24XzUDSNU3r8VcO4W0VALCqCZXfZos7JJMxwCNRphxgeDAEA9pxM1vxcx9Nb38S47BSuOtTg/MJ3PDE/iuBMxigYmODGS+gVjTbFOXiZFTyZUjEQKtymkMg1VwmuMx4NAAS+vsY4WdZrKoKnZQ1WiMGxw/ZqVXcHe4JzgzKKlGDLssBbgGJ5V/SJLmwHzSAR18BwgAwTvcESdghnVafCDa2P994TXCojuJhlK4LwBzrHElGcEezQ3SNC1y07hUMzYJgWIi6UYCA7NY6KYGK+oRkmTibkikowAIQkoawd4pXt0xha6ofPz9VcBB/skGQIh4DIl7RDVFOCfX4OYIEww0Pg6sx/9QlY0e3HnpOJmp/rLAEK9SjBorOMWPuFMr8IPpnoDJWjGnZj3Oz+bFXuaS4ZokE/MOBdVrBlWbYdIli4TbYS3LzGuEZG+NbTGGfoJnTNqskTHJN1iL0CToykoOsmIn4Bim52ZBbqybgCgWPmFIe6boEBg0wdFqtySC5sB80gGdfAOnFeJZXg6nGHPGdbfYpjMBvBLoIrH1csy2DNaV042CEpEc55IzRHCc4mREypSGRXft0qwb0BAVMLdHQyFcELmOMxGaaFqkVwWOJzX4p8YtMKRo+mcObGHvgDfM12iMPRVNvHJecTLFaCc3FOlb8GDMOAkVh0c+W9YW5YPxjC7vF6imB3DXylcNTjenzB4wkVQZFDb0DEyXmgBFuWBTlj5OwQAFo2Ojmd8iYZAvAuKziW0aCb1lwluImj0lWlcu52NeppjJNdrug46KaJpKIjskSCrlsYG00jki28OrE5biwuYyjsA1t07nEK1bTp3fHd6lhBh0RcgyUyCEs8hBIrhzkluIpVwy9wUHRvi+BS8WjFrBvuQjKh4+SJ+hOAvCKZ0MCymGPjCIUFcByDmSkF8eyqhxtPMODYITrvu+EFVAQvYEZyGcFVimBf6YviKztmIPk4rB3ugj9QmxKckDVMplSs7YB4NIeAyBVMjLMHZbjrZLdEoIup/+IOAOuHwthzMlHziGqngK0rIs1RduqISZvMNlUNhaV5YYdQFBOWBfjyLlr2pKnmexynovbn40URLEocJIltWAmeSNrKzUCoUEEMSXzThmUobWiMc4pgt3aIeHagSl+/hECQx7EjydyycCf6gscSMpZ0zT2unJvjlOGhEuyrbjtoBslE+WlxAMDxDFiOcTU1zuuItFKDMopZsiyAQJDHgT3tH5yRjGsIhgSwRQOqWJZBJDs+uXYlmOwQxDxkdCYDgWPmKEHFhCR+jh1C103sfXkG68+MgOdZBAJ8TUXwoajdANbRdggXgzIcdMFujKuXwwcSWAYRKdXA8Ronx802xtXjCc4qwXXYIcaTCgayRfB8sEPI6dlpcQ4+X/VJU16QS4boaiwZwiEcERvOCp5IFY5MdgiKXNMa4xq1Qwh12CHkTLYIdvlddry/3QERS1cEMDEm55bgO1kJLsY5rhO6d9sstThRxSER15CGWXJaHGCvxvlcTY1jkfFoWIam2jabap5gwC4w157WhYP74jDN9loiEgltjhXCwY5JU3KN8F0uItIAoCcgYDqj1SzgzAeoCF7AjMxksCzirzqyuMs31w5xcF8csmzgjA09AGx1LV1TEZwCA+CUng5Tgosa49wWwSpnwW+xdXm+LMvCU0+cQOKgXUjuHq+tOU5VTDAMwAu1WzHcRAuVYzKpYDAkYTDsmxdKcCZbDPnzG+NalHvqJEMUqy/1EvIgJs0ZmdwXnKsEJ5t0Y1DLjWUpeIGFptf2HVOy+13yu7ugO2pvxCfYN/cZPWeH6MTmuJNxpWQ8mvOdTnq4/D9rh2hdQoSmmlBkAzFLR3cZJRiwoyyrFec+D5XgaoMyilm3vgvplI6x4+0dM58sEY/m0N0j2p7gbCN8qAYl2DCtkrbJ+Q4VwQuYavFoDmGJz30pHHZtn8aylYGcmT5Qoyf4UDSF5d3+XIB5J1DsCa7Fv5hhTfAWU5eievJEBqmkjsSMisGghN01NsepigFBrG8AAccxYNn67BDj2XitwXlih5Azc5XgVjXGeZUM4eBFVvBk0p6+VeyxDIrNiUgzDAu6ZtUV5efA8wxMw6pJTZNlAwwD19FsThHc7Rfg83OQMwaCIgeOZTrODqEbJiaS5Ypg+zs9o+meNWTxju2ghXYIZ8VjStfKKsGA26lxnGfNjc7KpxtPMAAMLfUjFG6/JSKZ0MquSPX0SkindcSSGoIiB551953pWcBT46gIXsC4LYJDklBwhxedlDF2PIOzNvbmfuYP2Ccgt9E5h6JprO4gPzBg2yEKlWATokvVKs3YF5x6lqgP7LVPiqpi4qz+cM0JEfUOygDsZURR4mpujLMsC5NJFYNh2w6RUHSkm7SE7hXOTVq+EilJ9tjoZkY+WZaF6SlvkiEcwl1Cw1nBpZIhgOY1xmk573pjSjCAmiwRsqxDkjjXN4mO2tvl5+Hz87nCqhMHZownFVgonRGsKAbAAIppQvPo+GYYBpJUXXH1EifS66SqlPUEA9kb2irFeTOKYDeeYMD+7NYOt9cSYRgWUkm9vBLca3++yRnVtR8YQG6U9ULMCqYieIFiWhaOx6pnBAO2OT6l2rmBgK0CBwI8Vq0L5x7j+KIcta0ah6IprO0gPzDg2CGKPMEuL9gJ035ereqcZVk4uDeOVWvtnOB1QT/2jCdqKm5U1WhIXRNFtmYFOybrUA0TA0EJg9kLcKerwU48Wr4lwSmImxn5lE7pUBVvkiEcwl1iw1nBk1lPdzFBkUNKMTyPc1IaSDFxELJFcC3NcUrGgFRDRnAsoyEk8eBZFj4/B8uyrVHdgc4bnXwiXjojGLBvqjnePta9vEF1U2x6SSKugWGBsYySK7bKblc1OwTvnSc4k9LBMO695gCwbjgCOWPg+LGUJ9tQK6lk6Xg0h0iPfT7IJHTXyRAAclP8FuLUOCqCFyiTSRWKbrq2QwD2SGFNNbF3Vwzrz+4Gl5eJ6xTBbprjMqqBE3G5o+LRgBIRabKRy5+sRsIwYDK1F8Enj2eQTunYeF4fBIHFACdiOq1hvIYJbPYAggaKYInLDdxwy0S24B0I255gAB0fk1ZqalgrIp+8TIZwcJYzG7FETKTUgmlxDiGJh2FZkD0qFhycG41Gc4IBOwPXLbJs1FSozGQ0RLIqmHO8yBmjI5Xgk9kiuFRjnKoY4LLnhbSHiQitHDAD2Md4MCRANcqnQwBOEVz5mPUJHGSPPNLptAF/oLZYzIEhH7oiQm71r9U4sYrhMkqwILAIhXnoaRNdNSjBYYkHxzKkBBPzh5EZ25zvqgjOfhniso79e2LQVBNnbOgueMxsEVz9BHN4yr4L7jwlmEdaM3IdrrUowbJuwhKBRKy2i+SBvXEEgjyWLg+gp1+CT7NPqLX4gu2O+/rVNVsJru3C4CQLDIQkDGbVxE5PiMhkjIKmOGBWxWlmc9x0VAHHeZcMAcwqOY1kBTsRd3NeO3vTm/TY3uJ2DHklhHrsEDWOTI7JWq4Rzjle5Ixhj07usMa4sbiCiF+Av0QyjKKYuQE6aQ8HREg+Dpm09ysF5UjGNYjZ5rPeSkWwi3QILyPS3EyLK8axRBzan2j51D1g1loSLFMEA0B3jwRkLIQl9+crhmHQGxDIE0zMH0ZmMmAALIvMVRCKcZTgpKLjle3TOGVNCOGuwpOR0yHrRgl24tE6zxOc/Rs0A6ZpQVVM153saVUHIzE1eYIty8LBfXGsPa3LPon0SUjHNHT7BeytYXyy7QluIHZKZGtujJtIKGAA9AdFiDyL3oAwb+wQ+bRCCXYmxXmVDAHYF/xGsoJNy7JHJuclQxzaH8f+3TEEnZUfj33BjuXGrc++FHx2eb8mO0QNKS8AEMtLg3COFzshgu84JXgsLpf0AwOFjb1eTgAMhQUcO5zEA//fXvz2F8ew/c9RjI9lmlbUJRIaWF/5aXEOkst0CK88wWkX0+JKsW64C4pstCUlIhHX4PNzuZvJUnT3ShA01KQEAwt3YEZtnwIxbxidyWAgLEHiq3+JnSJ47EQak+My3vC2lXMew/MsRJF1FZN2KJrCYFhCUOyswyuQTapIqwY4077Yuk6H0ExwodqKkrGsFWLdcBcAoLdPwr5dMZy+JFzT5DhNNevKCHYQJQ6JWG138BNJu0mFzyYLzIeYNDljzLl5a1kR7GEyhEMjWcEzaQ1G0bS47S9FYRgWNlw1CACeN8fl7BANWHfqUoJlA0M1eoKHsoWlc3w4dohO8wSPJWQsLeEHBuxeAcfOlfFQ1b/4NUNYtS6MsdE0xo6n8fxT4zAMCzzPYHCpH0uWBbB0eQCDS/0NnZccknEN/mX297aiEuzj7AQS3QTPlz7G/ALrnRKc0hHpLr895ejt94HnGUQnZCxf2drV0ErJEA7dvSJ8BgPWZUaww0IdmNFZVQrhGW6TIQAglDXIn9ifRCjMY+XqUMnHuR2dfDiawprezlKBgVklOKXqEHW7CBZdeoIzmgExwCM56r5j/+DeOIIhHkPL7P3Q0y/BMCys7w7i1wfHXW+3qjTYGCfVoQQnlYJJY/bAjM4ugjMllBueZ8E1MfLJSYZYtTZc/cE10khW8ESycFCGZVmYjipgGAbBJqiHQHZ5XmAbUsT5Ohrj5IwBXw2qVkzWMDxon+NYlrGzpDMGuv1iByrBCi5c1VPyd4piIhixz91e2iF4nsUpq0M4JXsdMAwLk+OZbFGcwSvbpvHn5ybBMEDfgA/LVwZx/iUDZQvTSui6iXRKB8cJYICcQl+K/EEefKj0e9lKsEeNcWkdS5bXfh1jWQY9fRKmJlt/vqyUEezQ3SOBBYNwjcOfegICxuKdbYmrByqCFygjMxmcOlC6mC0mJHEQwSAxquD8Vw2UvYi5HZ18Mqlg/aD3RUGjOMp0WjUQzDqB3DTUmJaFjGZACnKIqwpUxQRfxU6Vs0IMd+UaK/r6bUVnuWjn7k6n1YqNIA5qg6NoRZGrOR1iPKlgIG8ZdjAsYcuxmbq3odlYllXWG9rMrOBmJEM4hLsEHDtU22AVh8nctDj7+Mqkjdn0BsY+9puhBDdi2wHyI9Lc3WiaplWHHUIrKLb8fg5yRkek107J0Q0ztwLSTizLwsm4XDIZArA/7wGf/TsvG+OK4TgGQ0sDGFoawKbsds1Mq3ZRPJrG9j9HEekRc4OVaiGV9bCmGRPdAaHiYKf8VZ1gqPQJ2FtPsOE6I7gYuwhufcGYSGg4ZU3l636kJ2sF0mu7We0JiHhlrLZ4z/lA+7/pRFMYrUEJ5lkWZ/IBWBaw/qzuso/zuxydHE2p6A3WvozUbBwlOK0aNTXxKFllIRi2T4hulqjHRtMFVgjA/vx8fg4Ry34dN3nBlmXZEWkNFBeiyNacEzyZVDEQLCyCa0m0aDW6ZsEwrDmNcUB2dHKTJmBNNyEZwsEZmFFPg9JkUgUDoM+JNorO7jsjO2HN64EZqmI21BQH1O4JdiwYbhvjLMvKpkPMFlHOwIzZqXGdkYedUHSkNaN8ESyb8Pt5iBzrqRJcDYZh0NMr4YwNPbjiDcsxtCyAwwfqK46clY6YqaPbX/ma4cba5BM4KLrZ8HhfTTOhaWbNjXEOff0+TEeVljUXAvax7UYJtgQGqmWCV2srgheqHYKK4AVIQtYQk3VXGcGA/eVZzwRgdbNl77ABd0WwZVmYSqm5i28nERBno+CcE6mbJh5HZXE6bt0sUR/Yl7VCLC3cB739EvSUPaHKjS/YMCyYJhr2BKuKWdMJeTxRqAQPhX2IyzoyLbzY1kKmxLQ4h2aOTp5qQjKEg5MVXMukRodiT3d+EZxK6PALnOdKsOKBEswwDHiBga67K4Kd/eo2Is3JQ89vwPL5eciyge5sYTyT6YwLvbP0XLYxLntz7Bc5pLX2Fe5r1oUxejRVcwwjMJtmMG3oFafFAXl2iAqrWv7sSoLSoCUik6ptZHIxPf0SdN1CvMY0oUaQM/Ywq2rnoqSiIwYDqFEY6AkIiMs6NKN1I7VbARXBC5CRmQwAd/FogK1ahi0O6e7Kj3PjCY7LOnTTQn8HKsHBAiXYBMO4a+Jxmk7CQR48z1Qtgk3TwqF9iVwqRD69fT5MTypYPxTGHhcJEY6NQWjQEwy4V9d0w8R0Ws1FowHIDcw4mexMT5icVTdLKTfNtEM0IxnCYTYruPaibDKpFni6p6cU9PZJueM3JHlfBDca5ecgCKzrxjhnv7sdluF4fiP+YiVYRyRbhHWKL3gsbt+4lFKCDd2ErluQJG5O/nmrWbUuDMOwcOxI7dYdOyOYx5QLa5hbJRhAw5aIdI3T4orpza4M5d98NhvnulRNCY7LOmYsHXqqtmLWaVrstObRRqEieAFSaxH8yo5pyJyJGb5KBmPWE1xJUYym7At2XwcWwRLPgmWyRbBsX7DdBKE7E4iCkoBwl1g1K3jsuG2FWJtnhXDo7ZcQm1Gxvj/kKivYiwEETqHv1hc8mVJhAQUZs0Ohzp4a56xQlPUEN6kxbjqqoLsJyRDAbFZwPc1xE6nCjGCnWHeO36DII+XxZ6J4YIcA7MYstzdsSo1KsJMDXFwEZ9KzSnDM5VTMZjMWl8GzTElrmdPoKkoc/EJ7i+BIt4iePglH6rBEJLLL93Z/ROXijePsVYJK32Uf700R7JxP6vUEB4I8JB/XUl+wo6qXmxbnkFB0xCwdcqLytbwY5yZlKtUZKyVeQUXwAmRkJoMuH+9qLGImrePgvgTiXRYSVTyC/gAPy6o8eCCabcjpxCKYYRh7YIaqZwdluDv8HTuET2ARjghVlblcKsTSuTchPX0SLAtYG/RjZCZTVY1zLnaNFBeOlcLtwAwnWSBfCXasEZ2aEOEogqWKITf5ovXgJEP0NsEPDORlBdexpDqRVHJNcU4yRE+fhHBEQDymIiTxng/LUBXDddpKJXiBdd0Yl9vvJbzgpcgpwXlpEo4dIuyzEwo6ZWDGWFzGUFgCW+JGXcm7OQ60WQkGgNXrwjhyKAnTrM0Dm4zbkV7TGc1Vk3C1aXZ+j5TgTNoAw6Cmhst8GIZBb39rEyKScQ08z1S9IYzLGmZgT4d1vj9ucOwqC80XTEXwAmR0JuPaD7znlRkwAMxeDskqDSHOXbFcwRLhKMGd2BgH2M1xqawS7PYE54SvBwSuamxVzgoxPNcKAcwuk/Vz9uezp4ov2IvsVUdFdhuT5hTB+cvpEs+hJyBg3MOpcYpieKbQZjI6RJEFVyKmqVl2iGYmQzjYWcG1F2XRvMZGOWNAlg309EnoijhKMNeUYRle5MYKNXiCFdmAILAFI94rUcoO4fdnx4qbFsI+vnM8wYlKyRCzN8cBDxMR6mX1unBdAyISCQ3BsICZtFYxI9ih2nfZKYIVl8dPOTJpHX4/35DNqbfFMWmJhIZQl1B1dTMh65ix7M9wZsr99uWU4AU2MIOK4AWI24xgy7Kwa/s01p7WhWCQR6LKRdFpEqg0MCOaUuEXuFwTWqcRFDlknCLYpbrqqCx+gUO4S0CyQsf+2PE00unCVIh8RMkupFnZgsSzVRMinMJVaEQJzj63liJY5Ng5mZ2DIclTO8QfHz+BJ3973JPXktPlR+f6suqR153azUyGcLBvumorygzTQjSl5gZl5LazV8qtZIREvimeYLerK5XgBfd2CFk2XPuBAVvlFTgmVywBsxYaWTbQ7Rc6yg5RKR4NcJRg3vOkj1oZGPIhEORrSokwTQuphAbez8KwLPRUyAh2qF4EZ4eHeOAJ9gcbu6Hr7fchNqPAaLAgd4ubZAjA9gQbggWGAWam3Z9bfILtPyclmOh43BbBo0dTiMc0nLmpB2GJR6KKEuw0HVVKiJhKqx1phXAIiDxSmm2HcDveNZPtvPaLHMJdIlTVLOuvPbA3jlCYx+CS8p9/b5+E2JSK0wZCVZvjPJnClfMEu7VDqOgPiXMUhaEun6d2iNiMipkpb06osmzAV8a/J/o4WBbq6l6vRDOTIRycm65amE6rMCwLfVklfyqqgGWBrm4R4S4Bum4hxHOeDsswTSs73tsbT7D7xjjdtR8YsJXgbn+hWuZYKZypcZ3SGHcyrmCoTBHsJCSIIodA9sa+nTAMg1Vrwzi8P+H6ZjOV1GFZgCXa+6LHxXWjmr/fq8a4TEqvOx7NobdPgmnWVmg2gptpcQCQUDSE/ALCEbEmJRhwRidTEUx0MKpuYjyhuCqCX9k+jd5+CUNL/Qj7qivBgmgvO1YqgqOpDi+Cs00ktWSaZjQTHMNA5Ni8jv25F0rbChEvmQqRj7NMtn6o+vhkVTXBC0xDy3JOAe22CJxIKAXjdh28VoLTKR2JhOqJQmsvX5ZRgps0OtlpimtGMoRDPVnBk1lLUk4JnlIQ6ZHAcQy6IvZ3M2x5mw6heeBddxBqUYIzRo1FsF6QEQzMKsGZjI6IX+gIT7BumJhIKuVHJhd5gr2e/lcPq9eFkIhrmHKZiOCscKicva+rNcYBjie4/LHhFMGyB41xjRbBPf3298/t59EorpXgjI6wj0d3j1hzgd4TEDBNdgiikzkey8ACqnqCU0kNhw8kcObGHjAMg5DEI6PZ05LKwTAM/MHKMWmdXgQ7cUK2J9hlY5xqwCewYJhZ1c/pxM1nbDSNTNoomQqRT2+/D8mEhuG+EA5HUxVP2F74LBmGsQdmuFSCx5NliuCw5Jkn2LIsZNI6dM3yJMPXnhZX+qLleL+9zgp2ms2aST1ZwZM5T7e9bTNRBT3ZBAvn+PWbrKdFsOJBiolDLY1xSh12iGKbT84OkR2Y0QlK8HhSgYXyGcFOJjPDMNl0iPZbOJavDEIQWNcpEc4KRxr2vu6pMiwDqN7k6vPMDmE0XARLEodQmG9JQoSmmZBlo2oyBADEFQ1dPgHdvbUrwQtxYAYVwQsMt/Fou3fOgOMZnHZ6BAAQlrLFXTVfsL/y6ORoSnXV4NAu/CI3mw5RQ2OcM23O5+fKZgXbVgihohUCsGPSAHt8smkB+ybKWyIanRbnIIisa0/wZJkieCjsQ0zWG1ZZALvgcMTNWpf7S7+eXtYT7CZftFaanQzhUE9W8ERSAcvMKmvTUwp6+uzvpChx8Pk4CAbjqXqo1jCBsRo15QTLtSrBc4tgQWDBckzODtEJOai5QRkVGuMc60lQ5NveGAcAHM9i5eqQa19wMqHB5+cQUzVwLIOwr3rRWc0OwbMsBI6B3OiwjLSOQJ0Zwfn09vta0hznnEPDLpTghKyjy8eju0dCPKa5bkIFFqYdoqa9/MILL9T04hdccEFNjycaZ2QmA5FjSxYxDpZlYe+uGNYNR3InUucElFB0dFcoYv0BHunUPLZDZPNRa7FDpDUDfsH+fGw1WEQyrsEfmX2MaVo4tD+O086IVO3O7e4RwTBAQGfBsQz2nExgw7JIycd61XHvTI1zw0TZIng2Jm1Vb6Ch7ck/hhJxDQND7tJMypHJGGXtEM0ogluRDAEUZgUPLXX3nMmkfSPKsywyGR2ZtIGevtliKhwRkNRMe+XHNMGzjd9k5TyqnijBTE12iFpirGIZbY7FgGHsWCk5o6M70BlKsDMoYyhc3g7h2Jw6xQ4B2CkRT/xmFKmkVnH6KDCbETyV1tDjF0pGwRUj5TW5ljvP+htMy9B1E5pq1j0tLp+ePgkH9sYbfp1qJFxmBAN2RNpQl5TLN4/NqOjrL32cFdO7AO0QNRXBN910U+7Aq3QQOuzatav+LSPqYmQmg+XdvoonlOmogviMiktfO5T7WViyD4V4tZi0YPnlHcO0MJPp7CI4KHKz/kW3jXGqkes6BpDtsNcLiuATWSvEuuHSxWw+HM8i0iMiNq1gXX+woi9Y9WAULWD7glUXF8qUqiOlGrl4tJEjSTAMg+WnBHNT48YTsqdFcClrSS0Y2YtWOTuEKLJgmMrjVmulFckQQH1ZwXZGcHEyxOx3MtwlIjllrxilVQNdHmT7znpUPVKCXahTlmVBkQ34XWYEA6XtEEB2EFDGQKRXQFzWYFqWq6KsWZxMyIj4BfjL3ABn0rMKeEDkoOgmDNMC10R/uhtOWRMCwwCHDyRw1qbeio91MoL3p9OuMoIB+5ztNLmWO9Z8AtfQapUzMrneQRn59PZL2Pai5tk0xXIk4xoYBlVvPICsEizZdggAmJlyXwQ7SrCb+m++UNNevv/++3P/nUqlcNttt2HNmjW45ppr0N/fj8nJSfziF7/AoUOHcOutt3q+sUR13GQEH9qfgCiyWL4ymPuZowRXs0P4/BzSZfyJ02kVpgX0BZtbGDRCQOSgq7Ut3Wby7BCAfbc9NprGYN5jDu6NI9QlYGDI5R11dnzy6VXGJ1c62deCKLGulOBcRnC24P3TkyfhC3AFRbAXCRFOEdwVEeoaBpGP4/Utp9wwDFM1ZL9WpluQDOFQa1awPS0ue4HLJkNEema/k10RASOjKQD2993NUJ1qqDkl2IN0CJeNcbpuwTCs2jzBJewQAODz8VlPsAjT8u5zqZexuFzWD2xZFsaOp3NWNieOMqMZCEntjaaUfByWrgi4KoITCQ2r1oQwE9NcNcU5rw84nujS+71RJTg3MtmLIji7AjMVVbBkWWPCQSWSCXv8tJsm3bhiN8b5/Tx8Pg6xaffn896ACEU3kdYMBDs0BrVWapIALrzwwtw/Tz75JM4//3x8+9vfxrXXXovLL78c1157Le69916cf/75+P3vf9+sbSYq4CYe7dD+BE5ZEyoYLOAowdUSIgIBHplU6XGLnTwy2SEg8jCyTTeuG+M0I9d1DOR37Nv/71ghqqVC5ONMExoeCGH/RBJamYZErzzBosi5UoInErPT4tIpHVNRJVewSjyHbr/gSUJEOqVD8nGI9IgNK8FO01ilqWGSj/O0MW6qBckQDqFwbVnB+YMypqYUdHWLBcMkwhERasYAA3g2OllRDPA843poRSXsiDSraiJGpSmBpdAMEynVKF0E+207hPO7dvuCx+JKWT9wbEZFOqVj2Uq7qHIyj9s9Nc5h9bowjh9LVfTuWpZlpxl0CZhKq+6VYKm6tcnHsw15gp3ziRdFcHevbX2bbnJCRMJlMoRpWUjIWu4Gr7tXxHQNMZW5PoMFNDq57qvrb37zG7zlLW8p+bu3vOUt+O1vf1v3RhH1YVoWjsfkikVwfEZFdELGmlMLEwyCEg8GQKJKPJA/yMMwrJJKTTTd+UVwUOTAZM+frpVgVUegoAgWoakmjOz9wokRxwpRORUin54+CbJsYG13ELpp4eBkquTjbE+wB0WwayV4Nl7r+DF7m/KtC3ZChDdFcCDAIxSubyJaPnJ2uEE5TzDg/dS4manmJ0M41JoVnO/pns5Lhsi9XkQALCAIzrPRyV4u9/KCXUgbRuUiWMlat9wWwbMjk0sUwQEOcsYelpH/2HZxosKgjOPH0mAY5JTFoOgUwe1PiADsItg0gWOHy69wZdIGDMNCuMtOG3DbTD3r7y9/LvMLHGS9ASU4pYNhULbRthb4rPWt2c1xybiKUFf1zzCtGjCt2ZXf7l5p0U+Nq/vqKssyotFoyd9Fo1HIcvNjQYhCxhMKVMOsWAQfOpAAxzFYuTpU8HOWYRCUqk+Rcvx3pSKbppyRyR2cDhEQeUjZw979sAyzwJvnLIGrin2xPrA3jnANVggA6MsmRPTCvvkoNz45vwu8EWwl2J0dIizx8AkcRrNFsKqYuZueobAPJz2ISUun7O7rcB0T0YrJZNwpwV4VwZZlYSo6m7jQbGrJCtZNE1NpNc8Ooc4p1ruyx2+Y8S4rWKmh0bQaQtZ/X80S4SjBbu0QTv5vZTtE+4tgy7JwMi6XbYo7PpLCwJAvd17IKcEdkBAB2CJB34CvYlSa850Phe1Gq3rsEOXwNWiHyKTtpBmvVnl6+3yYija3HkomdITC1ZXruFx4I2hnBSuuc8ida/tCikmruwg+77zz8OUvfxl79+4t+PmePXvw5S9/Geedd17DG0fUxmg2Hq2SJ/jw/jhWrArmpojlE5bcj07OlEiIiKZUdPl4iHznJu8FRA4iGIBxP4UtoxkFY1adIliRmbqsEIC9JM1xDFIxDav7AthdZnyyqhoeKsEu7BB5TVWjR1O5ODdHDR4MSx55gjUEgjxCXQJUxXSdYVwKOa2D45icglgKycdWvHDWgpMM0dvn/qanEcIR91nB02kNpgX0h+yVhnRan1MEO4pRFzikPCqCvWrgBGxPMICqMWmOvcWtEuxYHCIlbpYcO0RX1hbWziI4oehIawaWdM1dabAsCyeOpbFsxWw/x6wS3BlFMGAPzjh6OFlWzXdWNvxhDrGM5toO4ZwLK2cFN14Ee2GFcHCsb16PbXcwTQuppIawCyXYmQrrKMGRHgm6ZiGVdHceiPgFMMCCikmr+6z1iU98Aqqq4u1vfzve+ta34m//9m/x1re+Fddeey00TcMnP/lJL7eTcMHITAYMgGVdpYvgVFLD2PHMHCuEQ9jHV02H8GezEzOZ0kVwJ1shACAocJDAQhBZ10VrcRHsZAUrMoMTo2nImdqsEADAsgx6+iRMRxUMD4ZLFsGGYUHXLQgeKcFuJsZNJBUMhkTEYyoScQ2nnWE336SS9kVrKCxhPOlBEZw24M8qwcBsxE89ZDIG/AGu4v70UgluVTKEQy1ZwRN5gzLKbSfHMQiGeXR5qASnkt4VDgLvFMHVPcEsi5I39KVwCtvuEnYIv5+DaQKMaSur7fQEV8oInplWkU7rWJrX1OzPNih1VhEchqqYODFS2uaVSGgQRRayacGCu2lxgH3eFKXKAzP8AttYOkRa9yQZwqG3X4KcMWoaeFMLzvhpt/FoAHI3ez25hAh353SOZdBdR0xaKqnhRw8cgpzpvESJuovgdevW4Re/+AXe9773wefz4dixY/D5fPjbv/1b/PznP8fatWu93E7CBSMzGQx1SWWV2CMHEmAYYNW6cMnfh13YIXw+DgxTTglWOtoKAWTtEAwDTnB/6KfVwiKYYRhbwZRZHNqXQLhLQH8NVggHWyGQcfpQGPsmkjDMwou+lr2oeaUEG4YFo0r01ERCwUBYwujRFBgGOHW9XQSns0rBUFhCLKM1PDAjndIQzCuCGxmYUWlanIOX6RCtTIYAkGt4ceOdnsx6uvuDIqajChgG6O6e+53s6hLRzfGe5ctOR5XcqkGj8C7tEPbUx8o3P/nEMhoYAOFSnmDH5pX1BbdzdLKTEVxqZPKJY/b3cmle0kCneYIBoG/Ah1BYwOGDpVe4EtmmOGdZ3c20OIdq32W/wDXUGJdOeawEZ29CmzU5Lpm9OXY7KAOY/Q6EIyJYFjWNT65nYMYr26eRSmrgheao4Y1Q155WFAXf+MY3cPXVV+Of//mfvd4mok6qJUMcOpDAshXBssuHYYnPfUnKwTAM/H6+ZEzafFCCbTsEC7bC0nkxxRFpgK3OxeMMDu9PYv3Z3XVlJvb2STi4L46Nl3RD1kwcnU5jTd+swqN6OIDAUctU1YS/gl1lIqXg/FU9GD1m+w5DYQGCyCKVs0PYF+bxpIJTeuqL/FFVA7pmIRDkEQjyYFl3BV45Kk2Lc/B5qQRPtS4ZArBVbNFlVvBkUgHHMOgJiNgzNY1It1iQAuMQjgjoOlH9ptcNsmwgnZpru6gXIfvdrGqHyBjwuZgy5hCTNYR9fMks3dnRyXrbRyePxWXwLIPeEufS0ZE0Bpb4C9RviWfBMp3jCQbs68SqdSEcOZDApa9dMuf8mMymGThFcK9LJRioPjWucTuEgcGl3mX6hiMieJ7BVFTBilWh6k+okdygDBdFcDz7fXei9FiWQaS7tuY4e2CG+yJY1028sn0aw2dEwPNp189rFXVdXSVJwne/+11kMhmvt4dogEoZwYps4PixFNacVloFBoCQj0dCqX7y9wdLj06eSqsdnREM2KqJBNb17Z9pWZCL7BCAfcKJT7OQ5dqtEA49/T7omoUVfruwLLZEOI1skkcT4wBU9N6aloWJpIr+oIjjx1JYll1yDQZ5pLN2iNmBGfVbIpxVBH+Qt1X1sNBQEWxPi6uiBPs46LpV04jQcsRnNERKqKvNJNzlLkVjIqmgNyiAYxlMRxV0lylMuyIighaLlAfq4XRW4fJqhLRbJViWjZo6+GMZvWQyBJBfBBuI+Pi2FsEnEzKGwtKcYR2WZeHESArLVhTefDIMA7/AdZQdAgBWrw0jmdARnZirgDqDMpxl9Z4axBPb2lT+2Og0TzDLMujulZqWEJFMaJB8nCtbUELWEJIKbwS7e0XM1BSTJtaUDnFgTxxyxsCZm3pcP6eVNGSHGBkZ8XJbiAappAQfOZiAadperXKEJcGVMuQP8CWL4PmhBPMQwcByee1UNBMWMKcIDncJsCx7Sbx/sL4GKadoUBIGlkV8JYpg+0QueDQxzn7N8hePmbQGw7QQsXhk0gaWn2IXwYEQP6sEZ5vmTsbrX9pzXiuQ9ZeHaowAK8aNEuzl6ORkUnPVie0lblM07EEZ5ePR8l9PtFikSnj7a2WqxECORnDbGKfIuieDMoBZO4STENFuT3BJP/CUikzayN2c5hMQOWQ6rAheuiIIUWJxaH/hec2yLCQSsxnBIscWRFBWo7odgoVc582urptQVdNTTzBgW9+mm5QQ4dxQuCEm6+gqWj3p7pUwU+PADLdKsGVZ2Ll1CitXB9Hd05m1Qd1X13/4h3/AN7/5TRw9etTL7SHqJJbRkFB0rOguvUR96EACg0v9FccqhqXqjXGAHZNWXASruom4rHd8ESxwDHwMC9Plke8oCsXjS50mhDWnheseHxkM8RAlFlNR2xe8tygmLWeH8FQJLn9xcJqqmIQJjmNyOaSBoJDzBPsEDhG/0FBzXLqoCLZVzvq7jeW0AV+ZaXEOXhXBlmUhldAQdLH06CVus4InkyoGQhKUKhaFcMT+niqpxgunqaiCSI/kyaAMIC8iTa/eGOc2GQIoPzIZsJsFRZHtEDtE6UEZx0dSYFmUnDwWEHlPVH0v4TgGp6wJ4cjBuec1TTXtjOCMHY9Wyzm0mh3C38DYZOe65jSAe0Vvvw9T0eYkRCQT7gZlALYSHC6aKtjdIyKV1F0NUwLsJka3RfDY8Qwmx2WcfU6fq8e3g7r39COPPIJMJoM3velNGB4exuDgYMHvGYbBN7/5zYY3kHDHSDYerZQSrGkmRg4ncd7FAxVfI+xz5xH0BzmMjxV+YRyjfCkfWyfBMHYRrLs85zo+u2KlordPBMNYWLe+vLLuZlt6+6Tc+OT7nz9aMJPdsS54MzHOUYLLn+icwjYT1TC0zA8+6yUNBnmMj81anwZDjcWkpVM6eJ7JbVO4S8DRQ+UzRSthmhZk2Z0dAmi8CFYVE7puIVThZrIZ5GcFVyoYJpMKzl4awXTW41fOotAVsbffqLCs7JbpScUzKwRgLx+zHONCCa6xCM5oFXsm7Ji0DmiMS8g4f9XcpePjx1IYGPLnbhLyCXSgHQKwLRH7d8eRiKm5Gy/nhjfcJWD6kPtBGQ6Sr1o6BAdFN2GYVkn/dyWcBIdGleD8gTWArQTrmoVETEOXx1aqRFzDilPceY3j8txx4N3Z1aLYtIqBocrTZgHbDjGT0Vx9vju3RBHpEbFyVRCm2fi5phnUfXXdu3cvBEHA4OAgZmZmsHfv3jn/EK3jYDQFBsCqEs1Kxw4noetW2Wg0h7DEQ9FNKFWm7fgD/JyItNzI5A5PhwAAESw0xt0X0lliLLZDdPdK2HyJjL7+xrJiHYVg/VAYSUXHaGx2yUxVTbAckytGG8GtEswxQHRMxvK8JddAyPYEOyrGUJfU0MCMTLb72inmQmEBmbRRl1/XuRi6aYwD7KEOjeCMeA622g7hMit4ImkPynCSISJlliADQR4WA0BpTJmyLMu2XXgcFyfw1YtgOWPUboco4wkGbEtEJmuHiGVKj4ZvNrphYjKpYEm48PO0LAvHR9IlrRCAbYfopMY4h5WrQ2BZFKREON52pzGuu4amOMBFYxyf9XfXMTXOWaVqxBM8Fpfxlm89g60jM7mf5RIiPB6f7IyfdmuHsEcmz1WCAbj2BfcGRJjWbNxa2feKazi0P4GzN/fWvVraCure00888YSX20E0yP6JJJZ3++cs2wPAof0J9PZLVZt5QtkvR1IxIPHlLy5+P59VxMxcgZYrgjtcCTZNCwIYyC4vcOXsEADAedBA3NsvYffOaby2376T33sykVOrvBqUAdhLkxzHVFSCJxIK1vn90FQz5wcGgGBIgK5bUFV7KthQyIcdJ2J1b4szLc4hPyatu4yHtRzO1LBqSrBzE9CoEuzkJVeyFTWD/KzgQJmlWt0wMZ1W0R+SMD2lZLvSSx8/DMMAIsCpjRV6mbQBWTY8i0dz4AW2YmOcYdjHo1d2CGB2YEbEJ0I1zGwqTGtvdiaSCkxrbkbwdFSBnDHmNMU5BES+I5VgUeKwbGUQhw8ksCG7JJ6Ma+A4Bv4Ah+kq6nwpJImDqpgwTatkQosvK1jImolaL0eOHaKRkcl7TiZgWBYORVPYvKIbgH3TKfk4TE3KFftyakWRDXtlyqUdIq7oWBop/LxFiUMgyLv2Bc+OTlYrDjl5ZdsUBIHF+jO7Xb1uu+jc0V5ETRycTGFd/1yVwDAsHD2UwJpTq3/xHK9QtYSI3MCMPFUqmlLAMnA9+addOBYD2XKpBGullWCv6OmTYJoAp1gYCInYnecLVhXTsyIYcKbGVVCCUwpW8Xb8Uv6yWDC7vx1f8GBYaigdorgIDnW5z8EtxlmRqOYJ5jgGglB5GdUNyYQOhkHZQrRZuMkKjqZVWAAGskpwNYsC62chGo0dX1MeJ0M4CAJbcWVgdgXA3X6wLAvxrN+3HI4dop2jk0+UGZRxfCQNlgWGSviBgWxjnNZZnmCH1evCODGSzu0zpymOYRhMVymkSuFYm8ol3fizdpF6EiK8GJm8fzIJAAWWMcf65nVCRE5Vd60Ez22MA5yECHfb5sTZVRqYoWkmdu2cwfqzu10Ps2kXnmzd1NQUjh8/PucfonXsn0hi3cBcX9DxYymoilnVCgHY6RAAkKzSHBfIFhxyXnNcNKWi2y/U7MFqNc5yeMZyd4J01JVaupdroTdrp3AsEfkJEapi5hRMLxBFrmI6xERCxYDJY+nyQMFFIBCyT5r5U+NmGhiYkU4XFsHBkACGqa8IltPuiyHJx+VG7dZLKqlls41be5w7WcGVmuNmB2XY0+K6eysXF2KAg99kGlr2n3IGh0S8vfnlBbbixDinoJJcKsFJRYdhWVWKYB6ybHuCAbuTvtU4gzKWhIuK4GMpDC4p7QcG7POTV4NPvGb1ujAsCzh6yC4O85fvp9Iaeirsk1JIVaxNs0pwHXYID6bF7Z+wp+QVW8Z6+yXP7RCOPasWO0S4VBHcI7m2Q+QrweXYvzsGRTZw9qZeV6/ZThra2//93/+NBx54ADMzMyV/v2vXrkZennDJTEbDZEotqQQf2h9HV0RwtVzpfDniVZrjHL9UuqgI7vSMYGD24pkyalSCPUhoKIXPZy9FTU0qOH0wjB9vG801P6mq4UlTnIOtBJe/MEQTCs5QQgVWCGBW9UynZpVgwF66XVnHwIxiJZjjGARDfO6EXguZjK3MSi4+Jy9GJyfbkAzhUC0reDLb2NgtCkglqw+v8IV4hGB30vvrXPZ3/MBe3xTwPFPRDiE7KwAui2BH1Y1UGK7h93OQ03pbleCTCRkRv1BwvrHzgdMVc1b9HRiR5hAMCRgY8uHwgQROOyOCRFxD/6APmmEiqeg1ZQQDth0CKG9t8jdQBGdSRsPJEPsn7GLfuaFx6O2TsGvHNAzD8ixJxbGWuLFvmJaFhKKjS5p7/uruFbH75ZmyFpN8giIHkWPLJkRYloWdW6awam3I8ybAZlD3Ffbhhx/G3XffjZtuugmWZeGDH/wgPvCBD2DJkiVYtWoVbr/9di+3k6jAgezyy6n9hUqwaVo4fCCB1ad2uTKmO0VwNSU4N2I0rwi2B2V0/gHvNFQkDXcnyIxmgGUAkWveko6dIWkrwVNp+4YGADTV9CQezUEQ2YpKsJUwwFiYUwTzPAvJxyGVs0Nkp8bVYYkwDAtyxphjJ7AHZtQek2aPTHY3OrdaV7kbUgm95ckQDtWygieSCjiWgZWx93E1i0IoLEBkWEw1EE831YSmOMBRgisUwS4bIh0cVbeaHUJRzJwtrB1F8FhcntMUNzWpQJYNLFtRuikOsAuTTvQEO6xeF8axw0kYujlnUEYt0+KA6kkvjhJcrx2ikaY4RTdwbDqDsMRjvEgJ7un3wTRRUyZvNfKtJdVIKTpMC6WV4F4JpmG5Wo1jGAY9AaHswIzjx9KYiio5D3inU/eV/cEHH8QHP/hBfPCDHwQAvP71r8dHP/pR/PrXv0YwGMT09LRnG0lU5sBECgLH4JSeQsP7yRMZZNKGKz8wYC+psQyQqKIEcxwDyccVeYLnSRHs+NJ0dxe4THZaXDO7W22vmJ0VDMxOjlMV7xrjALsBopwSrOomujQOrMiULJ6CQT6nBA9lL9L1JEQ4N07FRXC4S6xrYEYmo1dtinOQpMpd5W5IJbWWJ0M4ODFp5ZjIfgcdb1+14RWOShOtYWRqPk4yhNd+YMD2BFdSgmu1QzjDL6rZIQCAMwCeZdoyMKNURvDxkRRYjsHQsvINZH6B78h0CIfV68LQNBNHDiYhywZCXbNZs93+2iPSAJT9LvtzRXDtSTC2HaJ+4eFwNA3DsnDxml6cTBTmAucSIjz0BTvjp93gzAAojkgDbDsEAPe+4KCI6VTpm+cdW6Lo7ZOwbGXtq4TtoO4r7JEjR7Bp0yawrDPi0j5h+Hw+vO9978NDDz3kzRYCOHnyJP75n/8ZF110ETZt2oS3ve1t2LlzZ+73lmXha1/7Gi677DJs3LgRN910E/bt21fwGqqq4rbbbsNFF12EzZs34+abb8bY2Jhn29hODkwmsbo3CL5IrTy0P45AkMfQUnfdtwzDICy5HJ0cKBydPJ+KYAtAwuUFI6POHZnsNT39PsRjGnp9AiJ+Ia8I9toTzEIrowRPphQsY0R0DYglC/5AiM95gn0Ch4iPrysruHhQhkOoSoFXDjlTfVCGQ6N2CMuystPi2qgEx7SyHt7JbDbp9JSCrohQ1j/q0Ju98E3VqUwlEzo01WyPEpyxrUJubRizdojKSrDz2t1tGpgxlpg7Le74sTSGlvorRiXaSnB7Yt3c0NMnoSsiYOfWKQBAODxbBNeqBAsCC4appATbn1NddogGlWDHCnHxmj4oullwDEk+DsEQn2sm9YJkooZ4NMUpguf+faEwD55nEJt2H5NWyg4Rn1Fx5GASZ5/T2bFo+dRdBPO8/UEyDINQKFRQUPb09ODkyZONbx2AWCyGv/7rv4YgCLj77rvxq1/9Crfccgu6umYbve6++2585zvfwa233oqHH34Y/f39eO9734tkMpl7zGc/+1k89thjuPPOO/Hggw8inU7jgx/8IAyXy+KdzP6JuckQlmXh8P4EVq+rbaJZSOKRcDM1rmh0cjRVe+h5O1AUAwwP16pJWjMQaJIf2KGvz7kLV3H6YAh7nCLYa0+wyJVNhzgRzaAfApaWyyHNU4IB2xJRjx1itgguPHGHuwSkUzoMo7aLuJw2XCcE+BosglXFhK5ZLY9Hc6iWFTyZVDEQFDEdVV0Vpt1hEYplIh6rzw7hjIH1Oh4NcNIhyh8Lco2DMmYyGiSezS2VlyJXBMvZrOAWD8ywLAtjMRlDeU1xth84VTYazcEvcjAtQKlzXHCzYRgGq9aFcWI0DcA+lp3l9FrTIRiGqXhDW29OsK6bUBWzsSJ4MoVlER/W9Nnn0bGic2Rvv89TJThRkxKcbaIrcSPIMAwiPVJuyE41ytkhdm6bguTjcOrpEVev0wnUfYVdtWpVrvDdsGEDfvSjH0HTNBiGgR/+8IdYvny5Jxt49913Y8mSJfjc5z6HjRs3YsWKFbj44otxyimnALBPEvfffz9uvvlmXH311RgeHsYdd9wBWZbxy1/+EgCQSCTwyCOP4JZbbsEll1yCM888E//5n/+JvXv34plnnvFkO9uFZVk4MJnEuoHC4iU6ISMR11xbIRzCPsF1Eew0xqVVHRnNmCdKsAlWYF375xw7RDPpzgtSXz8Uxp5xpwg2PY2XESW2bE7wyEgKLMPg1HWlU0SCISHnCQZsS0S9SjDDzPVyhroEWBaQqrE5LpPRXftCG02HSOYygttnhwBQ1hc8kVTsjOCogh4XecshiUcCBlKJ+lIQpiYVCALbFGWcF6o1xhk1ZblWywgGZrOmnZi0VtshkoqOtGZgSdfsvotOKFAUs+yQDAfnRr3TfcEAwLL2TfV0WkVA4CremJSj0sAMjmUg8WzNnmDn5rKRxrj9E0ms6w/l1PyT8aKEiD7vEiJ03YScMWoYmVxeCQayMWkNKMGaamLPzhmccXZ31VWoTqLuvf3qV78aL7zwAq699lp84AMfwN/93d/hggsuAMdxSKfT+I//+A9PNvCJJ57AZZddhn/6p3/CCy+8gKGhIbzrXe/CO97xDgDAyMgIJiYmcNlll+WeI4oiLrjgAmzZsgU33HADdu7cCU3TcOmll+YeMzQ0hNNOOw1btmzB5ZdfXtM2GYZRl4LsPMdL9XksLiOlGljbGyh43QN745AkFkNLfTW9X0jiEJe1qs/x+VlMR3UYhoGJrDe0x893vLIuZ3RwAgPVMKGo2hwLSTFpRYdPYOf8XV7uS5a1x9hGJzI4bTCI+59XMJnIQFVMCALj2WfKCwxUxSz5etHjGSRhYLBXLPl7f4BFOqVB13UwDIOBkIiXxxI1b1sqqcLn52BZJvKfGgzaF8LYjIJg2P1FUc7okKS5+6cUgmj//Zqmz1lGd7M/EzH74hUIuHs/r/EH7WM1NqOgf3BukTuZVNAj8UgmFER6hKrb6OeAhGVATuh1/T3RSRk9fWJTxqFyHANNLX2sAvZ+FyWu5O9L7cuZtIqIr/L5ieMtMAyQTmnoknjMpNWW7ufRGVslHQzOfgdHjybAcQz6Bkp/Lx182bSBpKwiUoNC3koGhiRIPhaCaH//p1IKugOVj9Ny30tJYiFnyh+3Es8irdR2XKey6So+X/3n3P0TSbz5rCXoklgIHIMTsUzBa3X3CkjGNWTSasNWt9iMXYQGQqW/B8XMpFUwAPx86b8v0i1g9GjK1WtFfDymir4fu3dOQ9NMnL4h4vp72Uzcvk/dRfCHPvSh3H9ffPHF+P73v49HH30UDMPgNa95DV71qlfV+9IFHDt2DN///vfx3ve+FzfffDO2b9+O22+/HaIo4u1vfzsmJiYAAH19hZ2I/f39uaziyclJCIKASCQy5zGTk5M1b1OjI6F37NjR0PMLXmvSViuU8SPYGj+W+/nulyWEIia279hW0+sZmRROJIGtW7dWfNzMDI9EnMfWrVuxf8a+wxw/dhBbpzrzBOwwPi5Cyy65P/fnrQhWuWMdm0xBN8p/Hl7tS5YXcfSQjAiXAQA8+vQ2AF04fvwYZP2wJ+8xcZKDponYsmUrih0yqQkBUUbDtm2lj5fpSRamKeHFF7ZBEAEjIePEtFr1OCnm2FEBDMvOeZ5dR/nxyssHMB51d/KyLCCT9iE6dQJbt45Uffz0BAtAwp9f2ga+jHhSaX9OnOAACNi7/+U5n1+r4Hgf9u45ikS6UL3VTQvTGQ3KyShEhDA+eRiprdWtJSnGRCah1LwfAeD4iIRAyKzrudUYn+ChKHzZ145OihB9FrZuLX/+zt+XR06kwerVt5XjfTh0cAR6Jo4Tieb8beXYnj2XTx7bj63j9nlp/ysiAiFg587tFZ87ErePhy07XsFEDTeRjSLrFu7emcZfr/ej319d/Yv0ClBVxr5ujKQhWe4+4+LvpayIGD+ZwtatpW2XnGXg8MhxbBWnXP0dADATtc8PBw7uxrFR10/LkdRMTKZUCKkJbN8WQ0RgsOPAUZzGTOQek04yAHx4/rmXEepq7OYxNm1v77Fj+zA+Wf27vueIAj8PbC9zjp+JcZAzIl58YWvZ86NDYkJFSjXwwktbIHAMLAt4+UUJ3X0W9h94ueJzvax/vMCzdb2NGzdi48aNXr1cDsuycPbZZ+N//+//DQA488wzsX//fnz/+9/H29/+9tzjin2vbhoE6m0iGB4eRiBQe+ejYRjYsWMHNmzYAM6LmbsAtj9/FEHxKK646JzcZzAzreLFPxzC5VeswKoaRzSuGN+DA5MpbN68ueLjfPwMjh85iY0bN2Fq/yTw51dw6bkbqy45tpvRg8dgSQYQm8Ta9WdiaVETSjHige3oETls3nxWwc+93pd6ZhJ7X5nB6y8+A3f8+WnovgEACk4bXouVqysvhbrlYCCOI/tO4MwzN+SyNgHbovDiHw7A6DKxefOGks8dH8vgwCtHsXbN6egb8GFUGMPPD+3BGWdvhFShYaeYiZFRSKKFzZvPmPO7XX/ej57updi8ud/VaymKgZf+uB+nnroKa4erD4M5fiyNA7uO4bTTzpwzQtzN/nxJnsREMIZzzjnd1fY1g0OvHEY45MPmzUsKfj4Wl4H/9xzW9C/F6EgCF75qg6slSf2ZP4MzOGzcuKmmrF/TtLDl6X3YeM4Qzt7sfSC+yEzjxJHxsueh/TsOYemyIDZvHpzzu1L7ktm/DSu6BWzefGbF9z2w8xB6enqxri+AA7snqp4HvWT/1lHw7AG8+sJzwDIMTNPC9uf24+zNPVW/E5FoCnjxRaxceyo2LW+dH3PbaAwv/2ErDlm9uGrz6qqP37TJvuYyDIMHDu/Acj+DzZvPLvv4ct/L6ZPHkUro2Lz5lJLP69r6AiJ9vdi8eZ3rv2X3zhnsf/kkzr+gtu+Cw0vHZgBsw+vOPwtr+oJYuXcrLL9YcMzpuoldW/ahv/cUnH52d83vUby9+3AS51+40VXu8NOJg+ieLH9MRydkHNx9BCH/6qrbJndPAbt24JThMzAU9uHY4RTkzAiuevNKLCkz1bAZ9U8l0um0K8Gy7iL4jjvuwKWXXorzzz8fPl/lQqIRBgYGsG5d4YG8du1a/M///E/u94Ct9g4Ozp4Qo9Eo+vvtE0d/fz80TUMsFitQg6PRKM4555yat4njuIZ2YqPPz+dgNI11/aFcoyIAHD2YAs8zOGVtF7ga8227fAKSilF1+4Ihu4jQVGA6o4NnGfQEpY7vCFUVE76urPdPt6r+nRnNRH9IKvs4r/Zl34AP6ZQBQwPWD4ZwZDKDZWDh8/OeHSu+7A2KoQNcXqLC2HG7gVTqE8q+VzjrU5QzJjiOw5Ls/PmptIYVNQzMyKR19PT5Sr5PuEtEKqm7/ns1Z5pfSHT1HKcZT9dQ1/5MJXWEusp/Rq0gHBGRSsz9jKazwyM4xfYO+yqkIORjCgygA3LGQrjL/eUgGVdgGBb6BvxN+TxEic+uDrAlL/CKYsBf5buRvy/jso5VPcGq2+oL8FBkA939EuKy1tJ9PZ5UMRiWIGTP5VOTtiVqxSmhqtsRzsaMyUb1c5qXnMgOhPj9/kncfLn7ghMAYhkda/ur7xNg7vfS5+cxHVXLPjcgcFB0s6bPQpFN+PwcBKG+sujQVBoCx2B1Xwgcx2Jplx+jsUzBNnAch0i3iJmpxo+tdMpAMMRDdDnoJqkY6PKVP3/1Dwaw+tQwnnriJI4fS+PSK5aWHQ/fH7JrvphsYFk3h1e2z6B/0IdlK0JVawAv659q7+OGhoZlvP/978cFF1yAm266Cd/85jexbds2z/1h5557Lg4dOlTws8OHD+ca71asWIGBgQE8/fTTud+rqooXXnghV+CeffbZEASh4DHj4+PYt29fXUVwJ3Fgcm4yxKH9caxcHaoYqVOOsI9H0mVEGmAXNVNpFb3B0tFaXvPSsxPY9lK07ufbF0/3TSSZFqRDAHkZktnmuGNR2x/obU6w/VrFAzNGj6aQZA30Vhh9m5sSWDQ17mSytiaP4mlx+YS6hJqmxjnpJP4aGuMA1N0cl0rqCLWpKc6hXFbwRHZkspYyaoosY7IPrXVQidPc04x4NMCOSANs5awYy7L+/+y9eZgcZbn+f9fWXb3OTM+ayb5NQgJZ2EKGsEVARAIKCh4BFRFEkCUiixzgCIiAgOABRURZRDw/PYEvEo6gIIflEHaSEALZJsvMJLMvvVd3bb8/qqume6aXqt6mJ/N+rotL093TXd3VXfXU897PfSMmWByMi4qoMuEiwvOMMRgXjssQTSZLFoPuQKo9WldnBAxDoaEpt8WlHute7sG4zmFNvrW7P4y9g2FLfzsYiVt2htCx27M7vfBcfoNxhdmjhVOsShu99rRe6lp8cuE2aVY8ggHNIi3TUBwA0DSFU8+Yhi+cPhUHOiP461O7sG3rcNoV85HoZBHDgzF07A3h0GUTxxYtmbzPsO+//z7+8pe/4IorrgBN03jkkUdw3nnnYcWKFbjiiivwzDPPFGUDv/3tb2Pz5s347W9/i3379mH9+vX461//im9+85sAtGWVb33rW3j00UfxyiuvYMeOHfjJT34CnudxxhlnAAA8Hg/OOecc3HPPPXjnnXfw2Wef4brrrkNLSwtaW1uLsp3jgSQr2DsYxrz6kaS4UFBEX4+A2fNzLw+nw2PnEBBy+03qB4toRCqrR/C2T4exa5s/77+PCzKciZNhJJ57Kr4c7hCAFmxA0zDik4eCWlFSXJ9g7blG26Qd6AijU4kZhW06GIaCwzmSGtfotp4ap6pq1iLY4+EsBWYIUT01zGRYRo6kqVxoQRnjK/dxZ/AK7gvFwNIUQsOiKWcIHSZRSAb81pwQhgZisCciv0sBy2on03RewfG4AkUxH5kMmHOHALTjmhCVDT/hcnoFdwdiKfKs/R1hNDU7wZhoZjgMd4j8nD7ypXM4ikMaPXBwDP53R1/uP0hiKCJa9gjWyeX5zXMMBIthGZGIZDR38qGtL4R5SS5NjR4efcE4ZCX1t1pTq9mkFerprKfFmSUgiGmDMpKhKArzFlThvG/PxYw5HrzxzwP4n2fbERhOvUiuSey3wUgcn24eBO9gMHdBfjXHeJP3EYyiKEMHfNlllyEWi+GDDz7AE088gX/961947bXXcP755xe8gUuWLMHDDz+MX/7yl/j1r3+NadOm4aabbsKZZ55pPOaSSy5BLBbDbbfdBr/fj6VLl+Lxxx+H2z1SHN50001gWRbXXHMNBEHAypUrcffdd4/r0mahtA9FIcpqSid4764gaBqYMdud5S8z4+FZSIqKmKRkta4xOoNlLIIjYQmhoIhoRDKVcT4aRVERjytw6dtushNcjiKYYShU+zR7q3mHumFLXJ8W1SdY7wQnWQsFhuMIBkS0yzF8yZ29eHK5OaMT7LAx8PKspdS4mCBDUcYGZejonWCz+1ZISADMpoaxLAWazq8IVlUVoaA4bpHJOh4vZ3gFJ3+O/eEYGl02BAOipe6si2ch0iqCFr2CB/u1pLhSdX50PXO6IjiWuPixm+wExyQZgqig2kQRzDsYIywD0PyF63L8LopFd1DAkTNrAGjHqu79ESw90lz0LEvTmiNCmTvB+4ejmFPnwrQaB/61vRcXHTPL1N8JooyoKFtOi9Ox2xlIkgpZVtPKZRyc9RjpaETK2/5QUVW09Ydx4vx647ZGjx2yqmq/zSTvZ1+dHUJUHvMbtkooIKLRxCqBTlCQMLXK3ON5B4vVp03FvIVVeOtfXfjvp9twZGsDDlvuA01T4BgaHjuLQX8MfVsFHHa4L6+V50qg4Mv47u5uvP3229iwYQPeffddDAwMYNq0aUXtsJ500kk46aSTMt5PURSuvPJKXHnllRkfY7fbccstt+CWW24p2naNN239mpZzblIneM+uAKbOcKUMPlnBY9e+EsGYlLUI5jgaLEdBiMgYCMcwvz6/otsKfT3a0pssq/APxy11vICRmE1vQhsaNrFcFo2XRw4BjMQnL62qAwftwF5Mv0W9E5ycGre/IwxQQJcaR0OOk73TNZIaBwANbrulTnCmtDgdj5eDomiPM7PMF43IsNvTa0bTkctkPxsjQRnjLYfQioZgIJ7yOfaFYphm54GoNYmC285CoCUELXaCBwdimJIjwKEQdDmEKI7tlulyFj7L0m4y/sTFkplOsCaHkIzHliswQ5IV9IdiaEqsxgz0CojHFTRPMz8U67QxliUAhdIxHEXrnFrMqnXhJy98is7hKKZV5y608k2L00le1Ul3POFZBoMZYn0zEY1IqGvIb77pgF9ARJQxr2HkPDjiFTy2CAaAwX4BTld+501FUREOWe8Ee0z+ZnRmzHLj3Avn4v0NvXj3zR60bffjhFOaUVvPo8ZpQ6BTAC8rWLSkxupbqBjyPqLfcccdePvtt7Fv3z5UV1fjmGOOwdVXX43W1lZMmzatmNtIyMCu/jDqXDajaxGNSujaH8FxX5iS93MaRbAgoT5XUZQIzBgIx3HMrNJ3gnu7o+A4GqKoYLBPsFwExxMnT4eThY2hcy4dqqqKqCjnZeaeD746Hu17Q3DbGLgZBmDGup4UAstRoKjUTvD+9jCc1RzEPjXn/na5WfT1jHR+G73WUuOMIjiD7k4PgzCrdROiEniLGr58i2AjKGOc5RAjgRkiGpN+5v2hOBpYbf9V+8z/Fl12BkEqbkkTLMsq/EMxLF5auhNftk6wvgJgVhNsJjJZh3eykCQVrkTqmD9NKlYp6A7GoKgjhdOBTm24ud5Cp8/JMQiXsRMcikkYjoqYVu1A62wf7CyN/93RiwuPnpnzb/NNi9PJVQQ7OAaCxfS8SFjKeGzKRVsiLnle3UhR26jPTQQFACMD+d4qGxiGwuBADNNm5lcER8ISFAV5aIKtH784G41jT2zCvAVevPFKF577824sPbIOdQ4OdJ+COS3ecUvRLAZ5F8HPPPMMHA4HLrnkEnznO9+Bz1d8mxxCdnb3hVKkEPvaglBVYOYca7Zoybj5kU5wLhxOFtGwNhhX6yr9kmFfTxRTpjnR3ytgcCAGa7PIQCyhhbXbGThtuZfLYpICFSNDJ6WmptaOeExBJCyj2s6h2BkEFEWBs9HGYJyqqtjfEQbbyAF9QJ07+wnJ6eIQCY9EkTe47fg8EfFsBqMIztBNdScVeE0mAiejUdn0UJxOvtHJepJdKdLRrGDnGdjs9BjtdH8ohnmcHW4Pa3T8zeC2sdivSJY0wf6hGBSldENxgHbBBgBimkJG7wSblcHo3VxTneDE94lTKFAAhsvUCd7apc05LGjQjt0HOiOaHtjkKgcAOG0somUsgvcnhuKmVTvgtLFYObsWr+3oM1UED0e1i678B+O0i6RMqXFWB+PkAiOTd/WH4OVZ1CcdQ912Fk6OGZOsSdMUamrtBcUn6wPEZjvBiqoiKEiWO8HJNE5x4pzz52Dj+/3Y+H4fllA8WBk4bLk5yU6lkvda6/XXX48jjzwSTz/9NFatWoVzzjkHv/zlL/Huu+8iHs8vi55gjV394VFSiCCapjoL0hl57IlunCmHCBbBsAhRVkuuCVZVFX3dAuobHfDV2THQZ326NmacPGlTRbB+fzk0wUDqMpmXZSGisMGJdNjsjFEED/bHIERlCE4VVQ4OdjaXLR5r6LEBzSGi14ImOBKWYLPTGbVjNhsDO88gGDR3/NCic/PoBGc4cWYjHNLinks1CGaFdA4RfeE4HBJtuTB12VkMKSIiYSmtE0M6dGcIX0mL4OyaYIahTEuFjE6wSTkEoK2WeB1c2QbjNnb4McvnhM9lg6Ko6NofwZTp1uQmThuDcBkH4zqTimAAWN1Sj0+7AppndQ5GOsGFyyHS4eCsSUOiUX2VML9j/a6+MObWpdqDURSFRq897efhq7NjqACHCP0i2GPyojwUk6ACeXWCk2EYCkeurMfXLpgL2CkMspIp95JKJu8i+Lvf/S4ee+wxvP/++3jiiSdw3HHH4d1338X3vvc9rFixAt/73veKuZ2EUUTjMvYPR41OcDwuo7M9jNnz8u8CAyO54gHBTCeYQSjhFlDqIjjoFyEIMhqaePjq+LyuovXix25n4LKxuYvgxEHUUSZNsMfLgeNoDA7E4GIZxNTi2zPZbLQhh9jfEQbDUOiHiHoT+8/pYhMpbQmHCC+PwYiIuMniKRLJvdzo8Zp3iBCikiWbLCC3tVImQkERThebl4l+sfF4bSnyhbikwB8VQQsqamqt/Q7ddhb9ovZ5p7NeS8fQQAxOF2v5AsQKnKEJTt8JtmqPRlPae82F/p50h4hyFcEfdw5j+bRqAEB/rwDRoh4YsF74FUrncBQuG2NcXBw3tw4cQ+F/d+Z2iRgKx+Gxs+As+tjr5CqCNXcIC0WwPvCbrxyiP9UZQqfRw4/pBAOJ+Y+B/B0iggERNjtt2j1IP597TPwGzFBTa4fvSA9eFAehFOhyMd4UPHXDcRxWrFiBs88+G1/96ldx1FFHIRqNpnjyEorP7oEwVMCwR+vYE4Iiq5htMSFuNHaWBktTCJoqgllDn+crcRHcmxiKq290oLbOjmBARNzi0l9MkEFRmsbJTNdEP4iWSw5BUdoy2VB/DDxNI1KCjHWtCNYKi/3tYTQ2O9AfiaM+iz2ajj4UFklc+OiDdL0mvYKz2aPpuD3pfXDTEY1aK4YA7eSZj09wOCTlrXv7rDsAqYh+s+5RneD+cAwMADmqWNbJu+0sgtA+D7MOEYP9sZJKIQAYMgApw2CcWSkEoMkhvDwH2oS+Xv8+aV7BLIbLUAQPR+LYMxDG8unVADTLQpajUN9orcPmMrG6VUw6h6OYXuM0up9uO4sVM314bXtvzr/VPILz70qyrDYQm2lVx2HRIi0SyT60m42YJKN9MJqiB9bJ7BXMQxJVywOpOqGgRY9gC5Igs8z0ORGXFVOd/0om78uCwcFBvPvuu9iwYQM2bNiArq4uqKqKefPm4YILLpjQ/rsTgbb+ECgAc2q1q889bUHUNfDwZAk8MANFUYnADHNFsChoB5pSd4L7uqPweDk4nCx8ddrwyGB/LGNEYzpiMe3kSVGUKQsd/f5yDcYB2jJZf68AG2iEZBlCkQfzNDmEbCy5LjuqFr3b+0y5e+iJa+GwhHqMDH70BgVTE+GRsARXjpOMx8uhY28o62N0hIhkuXOT92BcUITbY/1wueWAH9995iPMrnXhui/Mx1EzC5+d8CR5BVMUhf5QHNWJQ7llOYSNQQQKKNq8V/DQQCxvC0azUJQmd8gkh7By8TMcNecRDCRcb1gK0YRDRDncITbt1/TAeif4QGfYsh4Y0Fas9NCUctA5HBnzu1+9oAF3vPQ5+kOxrNZyw1Exbz2wTrbfMs/RiMsKZEUFY2L1Rl/dymd1Y+9ABLKqpvj16zR6eLy1q3/M7Yb0bSAGb7X1zyEUFI0hWTMUuxMMADMTSaH7BiNoNmm9Vonk/Ykce+yxAIDGxkasXLnS+E+PMSaUlra+MKZVO8BzDGRJQfueEJYeURyBusfOmh6Mgwp4Wabk3dLe7qgxKV3js4Gi8iiCBcWwjnPZmJyFvr60WC6LNEArYnZ+7ofNzUCEit5QDDMsxBLnwmanEQ5J6O2OQowrmDrdhf6P4lg5O3fx5HAyoCggknBKaDCKYHOd4Gg4twWR7hWsF3iZEEUFkqTm1QmOCXLO5x9NOCTCV2u98Ptg3xBcCU/ly/+6CV9oqcfVJ87DlAJOGqO9gvtDMVRTiSI4j06wCoB3saYcIiRJgX84bpzESwnLUZnlEBYGfPxR0ZQzhA7vGAnMaB+KmP67fNnYMYwpXh5NXh6yrKJ7fxTLj66z/DyaxKu8muDFU6pSbjt+bh1omsLrO/vwteWZXaIKSYvT0X7L6bu9euMgKsqmZDCRiASeZyxfeADArj7dqjSdHMJuSMZsSbMQThcLu53GYL+AWXms3oYCoiXNuH4+z5YYZ5UmLw8bQ6N9KIKVsyfucFzen8jNN9+M1tZWzJ49u5jbQzDJrv6QMRR3oDMCMa7k9WNKh9vOImghOrnJUTrTfEDzROzvFXBk4v0xLI3qGs1T1wrxmAw7rx2InDY2Z/EWLbMcAtA6BLKsQghKiENBT0AobhFsYzAUi+NARxg2Gw1fPY+BcG6PYEDrzjldLMK6y4ONhcfOptW8pcOMHMLj5SBJKoRo9ghTXYbjyGMwTlEASVLBcea+s3pQRj72aB91DGH5tGr88uwleOmzHjz0xi58/fH38O0VM3HhUTPy6vKP9gruC8dQS7NwuVnLCYMum/b52ZyMqaXZoQxxyXsGwohLChY0FucYBCBzJ1iQUWWhe+a30AkGUgMzthwofVG5MUUPHIUoKmi2OBQHJAIiyqQJjksKegKxMZ3gKgeHI6dX4187shfBQxERi5ry8+TVsdvprINxgCZpM1MER8P5Rybv6g+juYo3fkvJ6JZ3vUEB05KO4xRFoSbP2RZVVREMiphv4XgUEERQ0AZhiwVDU5hW48C+wdJfKJaSvDXB559/PimAx5G2/rAxFLdnVxAeL1e07ozHzprSBOtDTvX20naFhgZikCQ1xTPTV2fHgMUDiCDIRpHgtDE5wzLGRQ5Rqx00VQWIqyq6LfjwmkEfjNvfEcaUaU4MCyJkVTWdiuVyc0Z0MqA7ROTeRlFUEI8rpjTBQO4hrZHIZOudYMBaapwelOG2GJQhygo+OeDH4dNrQFEUTl/chHXfOwbnHT4Nj7+zF+c98R5e39lneTgm2SsYAPoSHsH56HT1AoHmKVNabKMIHtVxfvjNNtz5z22WXz8bLEdDktJogqMWNcFREVUWLpa0Irg8cohQTML23mCSHjgCjqNR12B9pcCM402xOBCIQgXSyqBWL2jAxo5hIxAjHUOROKqL0QnOogkGYHo4LhqR4HDl6wwRwtw0emAARkhG2uG4OrvhtGKFeEyBGFdMO0MAMOzRzOjirTCjxon2yVoEA5ou+P7778d5552HL37xi9i5cycA4P/7//4/fPbZZ0XZQMJYhiNxDITjmFfvhqqq2NcWxOx5nqJ1Yz08Z3owDgCq01wBF5O+nigoCqhPOjH46rVOsJUCIp40UKMNkeQejKMpbViwXDiczIhXqY0u+tCBza51uXoORDF1ugt9iaG2BhODcYDm8RsJjxQGjR7elE1aNEdQho6uac9VkI1YGln77vF5FMHhPIMyPusOQhAVHDGj2rjNZWNx5Qnz8F8XHY2ZPieue34Lrlq3GXsHwqafd7RXcH8ohmoweRXBLr1zbKcRMDEYNzgQg9vLjek4dwcE7OwNISYVrwhjWTq9HMKiK4hfyFMO4eAQiIqQldJNv2854IeijtIDT7WuBwbKmxi3f5Q9WjInzquHChVvpNHCAloncygi5p0Wp5NNE+ww5BDmhuOiecwX6GRyhgBG5ibS2qTV2uEfikGWrX2/rHoEA4m0uCJ2gXVm+pzYVwbJUCnJ++ze0dGBM888E08//TQoikJ7e7vhD7x9+3Y8/fTTRdtIQiq7+rUT5tw6F3q7o4hEpKJJIQCtE2xmMM5mp6FARRVT2iK4tzuKGp8dnG3k6+qr5RGPKSldyVzEYrKhCXaatEhzcExJpR6joSjK6Og7HUzayeJCsNm1wkKWVUyd4UJfokNRZ3Kw0eVix3SCzcghckUm69jtNDiORiiNPlVKSg8RjEGW/DrBVhwidBtAq0EZH3doeuCWhrFdolk+F351zlLc99XD0DEUwTeefB+/en2Xqd8dkOoVPBCMwS5TlvXAgCb1oSlA4lTEY0rOi4OhgVhaf+DeYAySomJnr7mhRjOwHDVGDiFJCS245U6w+X3n0OUQPAcV5oKD8mVj5zB8Tg4zahwJPXAEzXnGUTttLGKSkvI7KRWdw1HYGDrtxbPPZcPyadV4bUd6l4hwXEZcVgrXBNszd4L1xoXZi4JInkWwPyqiLxRP6wwBaKuIVQ4uQyeYh6IAw0PWusH6797K8Sgg5JcWl4uZPie6AzFLdnSVRt5F8L333guv14t//OMf+NOf/pTSkTviiCPw8ccfF2UDCWNp6w/BxtCYXuPA3l1B8A4GjRYGxHLh4c0NxlEUBQEKnFRp5QJ9PcKY+NDa+pFgCbPEBMUogjSLNDlrJzmaKILLjS6J8Lo49ASKK4fQLyQcTq1z2BeKgaEp0xZ3Wie4gCI4h80YRVGaBVgwtRN8wB/Fib960yiyhKgMlqMyBm9kIh85RDgogqKsd50/atf0wCydfhspisIJ8+rxl++uwCWts/DfGzvxtT+8izd25fZZ1byCtc8oEpRAgcqrE0xRFFw2FnFG+x3k6gans0cTRNmwEtvaHbC8DZnQI9KTiVlMi5MVFQFBsq4JFiRUJTqVpfQK3tih6YEpikJfTxSSpKJ5ujV/YB19dqEckoiOoSiaq/iMy+urWxrw/r4hBNLISYYTMomaAu26zHSCBZMrE9GInFdk8q7+RFxyFnedJk8Gm7Ra/Rxm7RgfCoqgGcqSnVtQEAtKi8uEPq/SMRQt+nOXi7yL4HfffRc//OEP0djYOKZTVl9fj97e3F6BhPzY1RfGrFonGIrCnrYgZs31FNXE323SHUJWVERUBXzhdtMZkSQFA30CGhpThyjcHg42G42BPvMHEK0TrG2ry8ZAVlTEs/i3RuNyWZ0hdPQio8ptK74cIvF+mqe7tBNvKIY6l820Vszl4iBEZciJgAxt+jkOMYcPbiQigWYo4/PPhm4Blkz7YAQxScHfP+sGAESjkuWhOEDTRAPWiuBQUITDyVpaohZlBZsTeuBc2FkGF6+cjXUXH4NFTV7c8LdPsWHPQNa/0byCtWJCDmvvJZ9OMKBJIqKUtv+yyVDiMRmhoDimE6xLahiawmdd5mO0c6FpglO/V1a14MFEUlZ1HnIIb2L5uFRFsCDK2NodGNEDd4bB2eicDiqZ0I9V5SiC9w9Hs9ointRSD1lR09qDjaTFFUMTrKRtZDiS3CFyIcsqYoIMRx4ewbv6QuAYCjNqMn8Wjd70gRl2noHLzVoe8A4GRLjdrKUVylJ2ggFMaElE3tVLLBZDVVVV2vui0WhZl5AnG239Icytc2F4MA7/ULyoUgggIYcQpJx62+GoiKiqgC3hMbe/V4CqYkwnWJcNDJqMnlQUFWI8uROcCH7IcsKIFNmj1ywNianpuho7uoPWdM+5sCWK0KmJblNfKI56k0NxgNYJBkbM5fXBj1zDcZGwlhZn5rig26Qlo584X93eA1VVE5HJ1vcNTVOwZZkqT0c4JFmWQqTTA+eiycvjF185FK2za3Hj3z7F1q7MXVU9WS8al8BLNGg7ZWlYLBm3jUVIlsHZsuuChwYTccmjBnD1fX/UjJqid4JHyyF0GYtZOYSVyGQd3sFAVQEXrb1GqQIztnYHIMrqiB64I4IpU515NzTMHNOKRedwFFOzFMH1bjuWNFfhXzvGrmroA3O+IhTBiqymHZ7kE4mDZpbpdY9gZx6Rybv6wpjlc4HNknzX6EkfnQwkhuOsdoIDoiU9MKBdDBbTHk2n2sGhysFN6OG4vIvg2bNnY8OGDWnv++CDD9DS0pL3RhEyo6oqdveHMa/Ojb1tQbAchakz8ls+y4SHZyGrak67ncFwHFHIoNIchIpFX3cUDEMZARnJ+Op4DJrsBBuRyUlyCEDTp2VCEOWy2qPp1DU4cP735qO5wQlBVExFWJulptaO5mlOzJyjXTj1hWKWimA97ELXBRtewTlS48zYo+l4PFqBl1z8DyZOnN2BGLYcCOS0UMsGbzEwIxwUjbQ8s2TTA2eDpWn8fM1izK9345pnN2e0H9Kt5LoGBFSDhdPiSTEZl51FWJTTduCTGeyPgaKA6lEdZ73LdeL8euwbjBjpVIWiDcalHltiRifY3P7ItwgGAFvi9Fgqh4hNncPw2FnMrXNDllX0HIjkLYUARuQQpR6OU1QVB/y5A3K+sKAe7+0dHJPMORTV7LoKTS/TV5XS/ZZ5C4NxehGcz/GkrS/zUJxOpuhkQJO+DVl0iLCaFgckBuNK0AkGgBkT3CYt7yL461//Op566ik89dRT8Pu1xBtRFPHyyy/jz3/+M84777yibSRhhK6AgHBcxtx6F/bsCmDGLLdlXWQu9B9LLoeIgXAMUSiQY6Urgnt7BNQ28GmXon11dgybnK6N61pCIyxDO+BFs3WC4+PTCQY0uUdjwmOymJIIh4PFmq/PMgrSXotFsK7pjYwugnMM8EXCouki2O3lEI8rRrwzoF1wNVfxqHXZ8Mr2HkQj1hwCkrEanRwKWfcI/qh9CMuy6IGzwXMMfnn2EtQ4bbhq3Sb0p7nA0L2Cu/oiqKHYgmKM3YlBWG+VLWtgxuBADN4q25jjTW9IgJdncURiWf+z7uJIItINxgmJ6HObCVkNMFLAVlsajNO+p1JMgcvGlEwOsbFjGEunVoGhKQwPajaQjVPyD1EZubAvrbdxbzCGuKzkLIJPml+PuKzg7bZUac9QJI4qB2cqyS0b2fT9NEXBztKWOsFWi2BFVdGWaEhlo8lrRygmpd0vvjo7ggERcQvd+1DAWlocoJ3LvSVwhwAmvkNEQT7BX/3qV3HXXXdh1apVAIBvfvObWLt2LdasWYOvfvWrRdtIwghtCWeIZgePvh4Bs+Z6i/4aupVKrkn1gXAcUVVBPMOEbjHo646ioTH9wdaYrh3MfSUdSxRUozvB2WzSouL4aIJ1DHudIjtEJNMfiqHeY35Z0m6nwTAUwgmbNJeNhdvO5hzgi4Rl853gUT64gNYJrnPZcfKCBvxrey+iecohAO07YPY7q6oqwkFrcggpoQfWi8J8qHJw+M+vLYWkqLhq3eYxv0X9M+rtF+AFg6YMvxEzuGwMwnEpZyd4aCCGmjRe5L3BGBrcdszwOeGyMfisSJKIdINxgiAZ0edmKKQTLAiaTVopimBJVvDJgYAhhdC/694CYu/1Y1W2C/tiYNijZdHBAsCUKgcOafLgX6NcIoqRFgckFcFZvILNdMUjkfzsFrv8AiKibIRWZcLwCk5zjNSlRWa6wYqiYqBPQCQiwe01//nJiopQTCrJYBww4hVcTNleOcnrUxEEAaeccgpuu+02fO1rX8Nrr72GwcFB1NTU4MQTT8Thhx9e7O0kJNjVF4LbziLcEwNNAzNmW49yzYVeBOcajhsIxwGWgiSqEEUFHFfcjnRMkOEfjuPwDMlCRv56fwy19dmHSfTOX3JYBoCsgRlRUUatSdeEUuBz2cAxVNEdInQEUUZAkEylxelQFAWXmzU6wUAiMCOnHEKE02VOu653OUNB0RgSGozE4XPZcMqCBvzl406EZTGvwThAWw2IRs11y+JxBaKoWJJD6HpgM0Nx2Wjy8vjPry3FJX/+GD/+f5/gV19bCjurfW91r+ChLgE0RWFKHuEKOm47i/ahKLxVNgQCmSOrh/pjWHhY9Zjbe4IxNHg0p4BFTV58lkXLbAU2jSY4FpUt26M5OQZcFs3maAwbvaiEKp4riSZ4e28IUVE2huJCAREMQxkpnPlgRuJVDDqGo6AANHtzf+e+0NKA37+zB9G4DEdi+4YiImoK9AgGRlb1MkmbeM5kJzisXVhZ9WbWnSHm5yyCR5oZc+pSpRPVPjsoSjuHNU5JdXgKh0T0dkfR2xVFb08UfT0CxLgCmgZqLQRjhRLDoaUYjAO0TnAwJmnez+N4vsyXvM4iPM8jFovB4XBg6dKlWLp0abG3i5ABPSlub1sIU6a58h6GyYaeIpVbDhEH56CBiHYg4SxEmZqhr0frOGTqBNvtDNweDgP9AuYj/ZCmjiGH0GOTTdgJReLjY5GmQ1NUQk9Wmk6wvsxuNi1OJzk6GdAO8tls0hRF1SyITHaCHU7thJS8ND8YjuPQKVU4bGoVGt12yIJaUCd4eCh3MASg6YEBa56cHyX0wAsaC79AnVvnxgNnL8EV/70Jt/7PZ/j5mkONZWSPl0P/YAwUgJo0mnmzuO0swjEJnioOiqwiEpbgGmVlF41KiESktLKL3mAMCxNxyYunePE/W7vy3pZkuERiXHJRbjktTrDmEQxow5N2nkE0UrpO8MbOYfAcbXxuwUAcbg9X0EC5jaHBUFTJNcGdw1E0eu2wmZDhrW6px8NvtuGdPQNYvaABgCaHKHQoDshtd+jgGAgmNMGaR7D1Y0lbXxhenkW9O/t7qXfbQQHoSSNrY1kaVdU29HZHjf/V/9PnLlxuFvVNDhx+dB3qmxyob+QNlx8z6Br9UnWCkx0iJmIRnHfr7phjjsE777xTzG0hmKCtL4T5NS50dYYxe15xXSF09B9LrgGXgUjc8FY021mzQm9PFDY7jaqazD8ss9O1sZimJdS71Q4TcghhnOUQQPbJ4kLRu7dWOsGApgse3QnOVqhb1dwZXsFJcgi9e0RTFL4wtx4AYMvzAjCbv+hoQsaJyHwh9XHHcN564HQsnVaNO9csxus7+3Dfv3YYy44erw2UBMRpa+ERo3HZWIQScggACKSRROjLtemDMgSj27WoyYu+UNxUlHYu2MRvNXn6XxCsyWCsBmXoGF7BJYpO3tg5jEOnVBkd6mAeOs/RUBSViE4urSY4lz1aMtNrnJhf78ZrO0dcIorVCaZpCpyNNqRuo+FNyiGiESkvj+CdibjkXBcuLEOj3p25UeCrs2Pbp8NYv24fPn6vH7GYjPkLq3Dqmmm44JL5uOCSFnxxzXQsO6oOU6e7LBXAABBIrOiWqhM8rdoBCpiwDhF5XxpcdtlluPLKK2Gz2XDqqaeivr5+zJehurq60O0jJCHJCvYORnB6UwMiStSY8C82dpaBnaVNySFq3RzQr5mNF5u+bgH1DY6sBxlfnR07P/fnfK5YIjJZfy6WpmFn6axLh5FxCstIpsnLl8yIvC/PTrDLlept2ejm8X+jhl+S0YMyXBZ8OHWHCEDT5epyCABonebDpq29aA9GMAfWNfFW3CH0TrDZLrYkK9i0fxiXts62vF3ZOGFePX5y6kLc+Y9tqHPbcPHK2YZNkpz/TByAkcE4I7LaH8eUqalLs0MDmvyqqib1xeKSgsGIaAxILp6i7Y+tXQE0eOoL2i79glVKkloJgozqLBfFo/FHRVTl0QEzUuMcHHb1FS8FD9AGqjZ1DuMbh083bgsFxZySLjM4bEzJLdI6h6OWVjlWt9Tj6ffbEZNk2FkGQ5E4ahzF6Rja7Zl/yzxrvgjOyxmiP4QjZ5iTPDVmaRQc1dqAGbM9qG/kUe2zF9XzHxhZ0S2FRRqg1QtTqvgJ6xCRd6vi7LPPxv79+/Hwww/jrLPOQmtrK1auXJnyH6G47BuKQFJU2IMq6ht5yzYpVjATmDEQjqMmcSJOThErFr3dUdRn0APr1NbzCIeknNP+yZHJOq4cXZPoOMshAN1ovTSd4L5QHE6OMeQvZhmdGtfotWMwnDkwYyQtzvzrJHeCgzEJkqKiNrGEOtWtfSfe2z9kabt17DxjREfnIhTUXC3M6gWLpQdOx1eWNOOyVbPx2//bg/+3eb/ROWRchXWcXTYGoqxCpTQpSrpO8GB/DNU19jGfg34hpQ//NHjsqHfbiuIXzLLaayXrgmMWByLzkUMAI4EZpdAE7+4PIyBIhh4YKE4nGNCPaaUrglVVRedwFNOrzSeUfmFBAyKijPf2DkFRVQxFi9MJBnKnxpnTBFu3W4xLCtoHozmdIXQavTy6M8x2VPvsWLC4Gr46vugFMAAjta9UnWBAk0S0T1CHiLwvDa644goSiFFm2vrCYAAEe2I4fEVhXZZc6IEZ2RgMx1DrtoNyxCAUWQ4RDomIhCU0NGVfdhuJnhTQPC2zX6MWmZxaLDhtbMYThqqqWmzyOMshmjxatLGkKEVbXtfpC8Ysd4EBLTUuHlOMYcgGtx0qtIKouWrs/tLlEGa9XQFN77p3l2a1NRhOxKwmOsF6atjrewZwbR6fi64ljMdyn/y0oAzz211MPXA6vnvMLAyE47j7le24ZYXmxe4qsHhyJ7nBeDLYpA0OjI1LBpIkNZ6R+xYXaThOl0MkO0QIggzeQkfLH5Uwu9a69y7vYDDYL6DKYYM/mnlYMB8+7hgGS1M4NNE1F0UFQlS2HICQDgfH5PR3LwS/ICEUk0zLIQBgdq0Ls2udeG1HL5ZOrYKsqEXRBAPajEdmd4jsK3060YgEh8vacX7PQBiyquZ0htBp8Nixo7d4aYpWCAoSaAollfbNqHHivb2DJXv+UpJ3EXzllVcWczsIJmjrD+EQhwuSqBY9JW40nhydYFFW4Bck+Jw2xJyykSBWLHq7E0NxOYrgqho7aIbCYH8sexEcGztQ47QxGQ+SMUmBClREJ1hRgf5QHE3ewpdLk+kLx9BgwR5Nx0iNC4moqrGjISk1Ll0RHAlrnr5Wpq/dXg6CIEMUFQyMSpgSojIoGugX4vhw3xCOmV1raft1k31BMFMEi+OqBx4NRVG4dnULBsNxPPLhHpyJ2oKG4gAtLAPQ/GW9aWzSVFXF0EAM02eO/X3pwz7JRfCiKV489d4+KKpqOo47HdwoTbCiaPG2VjrBw9E4qvLogPEJOYTPwUJStOAg3Vu8UDbtH8aiJq/hQa7LfjxFWNnTLuxLpwnuTHT7rBTBAHBSSwP+++NOXHDUDABAdbE6wdnkEByD/nD2AVhZViEIsmVNcFvCGWJunbkLrKZEdHIxL6bMEoiJ8NjZgn6LuZjpc+LZTftL0qwpNRNrayc5u/rDaOGcqKqxodpX2ilMN5+9CNYTvGpddjicLKLh4nYferujcLrYnAUIw1Co8dkw0JddMhAXrMkhdC3ZeCTGJdPkKX5ghk5f0FpQho5uF6Y7RIwEZqRf7gtbSIvT0QuCUEDEUCIyWberi0YkOBwsplc78Mr23ozPkYlcU+XJhILmgzJ0PfDhCe/XUsHQFG778iJMn+LCs1I/pk4zvzSdjlyd4EhYQkyQMzpDuO1sSoG4qMmLcFwueFBmdCc4Pir1MReqqsIflfKWQ0SjMqoT2tViOUSoqoqNHcNYNm3EzUb/vK14v2bCaSttJ7gz4RGcLTI5HV9oqUcwJuGVbT0ACo9M1skmhzAzGKevYFqVQ+zqC6O5ijctJWv02BGTlJIFr2QjEJVKlhanM6PGCUlR0eUvnad9qSBF8ASirTeEmjiD2XM9Jb+a9NjZrO4QA4kr7DqXDQ4XYyx5F4u+biFnF1jHV8djMIfZeCwmj3ETyCaH0G8fbzlEo1crPEqhC7aaFqejF7S6Q4RWBDEZtzGaRxGsFwTBQByD4Tg4hoLLpvu3ynA4GZy8sAH/u6MvoxY5E1aK4HBIgtukllnXAx9hclimEOwsg/u+ugRfP3Y6ljRntwfMhTvxuWqpcRxCQQmyNPKZGs4QaTrOvaFYShcYABY1aatUWwuUROia4I37hvDSZ92G7t9sJ1iQFMRlJb8imGcgxhV4EsV9sXTBncNR9IfjODxJDxwKiKBpWI7mToeTK60muHM4imoHZ3mOYH69G9OqHXj+E80+rxhhGUCiE5zBHcKMRZoxr2C1CO7XnCHMomvmu4vgmmKVQEwsmT2ajmGTNgGH40gRPEGIxCVIARmUBMwqkTVaMh6ey9oJ1ovgWpcNDgdbVIs0VVXR1xtFfaO5ZV7NJk3ImlgTS9MJziaH0DsI4y2HcNlYeOxsxqGKfFFVFf2heF5FsM3GgLPRKV7BDR4+owVQJI8i2OVmQdPawNBAwld0xCtWAu9gccqCRgRjEt7fZ02LZrYIjsVkiHHFdCf4484hOLnS6YFH47azuKR1dsHR3iNyCDklqERncCAGhqHSDm71JNLikvHwHGb6nAXHJ+tyiJc+7cbDb7RB0LXlJjvB+aTF6ei+sY7Ed65YHbyNncOgACydWm3cFgxqkptiDEU5SzwY12nBHi0ZiqKwuqUeg5E4GJoqWlGWfTAud1iGYd9o8fi0qy+EefXmtea6hWA6r+BSU8rIZJ0Gjx08R0/I4ThSBE8QdveHMYvmYeNp0x3SQvAkbJMyMRCOg4Km7dLkEMUrgv1DccRjiun3WVvHQxLVrJGv2mDc2CI4lxxivItgQNOTFVsO4RckxGUlryIY0OzOIqGRz7vRY88oh8inCKZpCi63ZpM2FE411xeiMhwOBvPqXZjlc+KVbdYkESxLg2WpnEWwEZRhUhP8UXtp9cClQpcyhBKBGQAQSPZoTgzFpSvSkj2Ck1nc5C3YIUKXQwyHRPSGYtjTq0XGm5VD6P6++WmCtc/EpmrbUMwiuKXBndJJDQbEogzFAdlXt4qBFY/g0axu0cIyqh1c0fSpegR6ugaIGYs03drTYdF7ui8UN+0MASSlf45HJ1iQ4M3jQtAKNEVherWTdIIJpWNXXwgzKTtmlUEKAehyiCya4HAc1U4OLE3D4WIRi5mznDJDbyIprj5DUtxo9Pjkgf70haIsa7HO+kCUjotjMx4kDTlEBRTBjV47uossh9DT4vItgp3udKlxY7dRVbUEsnzM6N1eDsGgmOIRDADRqAzewYKiKJyysAGv7+xDTLJ24rfzTE5bPSOxyYQ7hCQr2LzfjyOSlrknCjaWho2hEY5LidQypFxQDvbH0oZkAJomeLQcAtD8gnf0BhGXrElVkqFpCqAAB6N5em/br3WWzbqM+BOrU/nKIQBAFVXYGLpogRkbO4ZTrNEATQ5RDHs0IPuFfTHItxMMaDKZJq+9aHpgQBtyVVUgnkYSYUYTHI1IsNlpMCbS73T0uOS5FjrBNEWhwZ09VKhUBAURXntpi2BAk0SQIphQMvZ0huClWMxrKUz/ZxY3r3WClQwSg4Fw3PBt1a+ii2WT1tctoKraZrrj43Sx4HkmY3JcpoGabHIIfRltvBPjAG04rqfIcoh01lZWcLrGpsal6wTHExdHVjvBgGaTFgyIGBzTCZYMXejJCxoRjst4d491SUQmayWdkBGUkfsE8nlPEFFRLoseuBS47QxCMQk0TcHt4RDwa3In3Rki3VCcJCsYCMcNd5BkFjV5IMoqdhYYNCFCxewaF5ZPq8a+njA4jjbtMqIXrtX5FMEJOYQgyKhysEXpBPcEBez3C1ieJIUAEp3gInm+O02mpOVDNC6jPxzPuwimKArfPnomTmopnr2nIW1K81t22BhIigopy8xAJI+0uLa+MDiGwswaawOpjSVY0TNDMCaVXBMMADMmqFcwKYInCIGuGGRKRfN0656X+eCxs1CBjEtrA+GYMa2vH0SKFZjR2xNFvQXJB0VRWeOT9QPkWE1wlsG4CpJDNHqL30HoSxSstXlmvbtcLMJJcogGD4+BcHzMCccYPMmjCHYnUuMGI3HDXF9VVUMOAQBz6lyYW+ey7BJhJjo5HDIflPFRR3n1wMXGZWMRTvxOPFUjNmmhgAhRVIzVlmT6QjGoQFo5xPwGN1iaKmg4rj8UQ0xRMLvaiZWza9Hvj8HGmz9l+aMiGHpkoNIKHEeDZqiiBmZs6hwGACxLcg+RJQWRsFTkTnB6eUCh7PdrK3T5FsEA8LXl03BJEdMUs+n79WO3kGU1IhqW8tIDz/K5wDLWyqemLHMTpSQgSCVLi0tmZo0TfaE4wiWO7S42pAieIPAhgKmx5rVaCJ6EZi2QYRlwIBxHrUs7+ekHkWI4RMiyioFeAQ0mh+J0fHV8SpRvMvoBMpMmON0JIxqXQQGwW1gmKxVNHh4BQSrqMmdfKAafkwNn8UCuo6fG6Z9do2ckMCMZ3T86305wJCxhOCwaxXpMkKGqAJ/UvTllYQPe3NVvKh1KRyuCsy/VWwnKmKh6YB130gyAN8kmTXddqalN4wwRzLyaYGcZzG9w47MCdMFvtvVDgoopHh4rZ/vAqhRkCx9vQJBQxXN5yccoigLPMxASFmvF6ARv7PBjls+ZIu0JJVZTPEWwRwO0Y5oK5HRFyId87dFKSbYimE8cu7N1xiN5RCbv6rc2FKdTimZGLmRF1bT+JbZIA0YcIgq1Riw3E/OIPcno6A6jWmXRmMasvlToP5pMuuCB8IhOU1+a1ocMCmGwX4Asq5Y6wYCmC/YPxyGluerXLXTSFcGKqgVjjCYqynDamIpIRdRDMorZRegL5ZcWp+Nyc5Ak1dDiZfIKHukEWz8I68NCjDTiKxqNjrXJOmVhI6KijA27B0w/dzaTfZ1Q0FxQxkTWA+u47CxCiYssTxVnRCcPDcTA2ei0FwM9oyKTR7O4yVtQEfzGzn7YbDQYlcIsnxNVLIuQbP4Y44/mF5ms43BqgRlFK4L3D2P5KA/pEY/g4g3GAShJN65zOAoHx+S9elQK9NW9dDZpRic4SxEcjVgLylBUFW19YUtDcTqNHh59wThkpfhd+kzoDk+ldocAkorgCSaJIEXwBOCTrYOQVRWHLqwu22vqGqJMDhGDkbhxMGRZGjY7XZROcF93FDQN1DVY6wTX1vNQ1RFP02TiQiY5hPbvdLrgiChXhBQCGCmCi6kn6wvFx1hbWcHlSpXA6IVQz+hOcFgCx9HgbNYPNXp3zE0xhq+oHpnsSBqOmlHjxIIGtyVJhCk5RFAyVQTreuDDJ3AR7LYxhhzC67UhJsiIx2QM9mt64HQXg73BGJwck1FusHiKF3sHIlldZjIRjkv4oH0QHicHSVRAURTqeBv6hewJYMn4BRHVFqK6R8PzLISojGoHB3+OCPlcDEfi2N0fTpFCACNpccXUBAPZu5/5og/FVUJjQMeWGHZO2wk28VlEI5Jhh2eGLr+AiCibjktOptFjh6yq6A+XTxKhe/2XQxPstrPwOW0TbjiOFMETgK59EXQhjlkNZewEJ64c03kFR+MywnE5pSPgcLJFKYJ7ewT46niwFmUI+uBOOl1wLCaDpgGWSz1469ZQ6WQG0XjlFMF1bhtoqthFcGGdYD06WdcFG4EZgbFFsFXNnY5eGLgx0n3Shy9HByacsrARb7X1m5aM8CaK4FBINCWH0PXACxtL799dKlxJcgjdJi0YEDE4kNsZIlNRtKjJCxXA53l0g9/ZMwhRVuFz2yAmVmrcDIOBeBxdCW1qLvxRKS97NB3ewSCakEMMR80X3+nYtN8PAGMulIIBES63Od25GfQL+1LYpO0fjlaUFALQZCuZLmh5TpdDpJeGKEpivsBCJ1h3hshHDmGs6BV5yDkbgcTFm7cMcghA6wa3D5n7fVYKpAiucISoBMkvI+pSy6o3dGcpggciI0EZOg4Hg0gR5BB93eZDMpLhOBrealtam7SYIMNmHyttyHbCiIryuKfF6bA0jTq3vahpQ71pQg6s4HSNHYZs8NjRG0r9/PPxCNZhGAqsnYabYkbkEJH0+u6TFzQgJin4vzZzkgjdHSLTAFHcQlDGxx3DWDqtyvKgTCXhtrPGErregfcPxzE8mK0IFrK6i8z0OeGyMXn5Bb++sw/z691wO1hIiSKGUYA4VLyz15wTiF8oTA7BOxhjMM5foPPNxo5hTPHyRiGkEyqiMwQwknBZiujkjqFIQUNxpcJup9O7Q+SQQxhBGRaK4La+MLw8m9ex0wjMKKMuWO8El2MwDgBm+BykE0woLvt2hwCo8E6xXhgWAsfQ4Dk6bXRyclqcjsPJGolO+SLGFQwNxvIOA8nkEBET5LR2ayNyiDSd4AqSQwC6TVpxDp6SrGAoEkd9nvZogCaBsfOM4aULAA3usTZpkbCYdxEMABRPwQvGKGZ0e7TRwQ1Tqx1Y1OTBK9t6TD2v4S8aT98lMjyCc8ghJFnB5k4/jpg+Ma3RdJI7wQ4nA5al0LkvDFlWUZPGGQLQNOqZ9MAAwNAUDmny4LMua8lxkqzg7d0DOHF+HTiOhiQqUFUVMUGBz2szbYcXKFATzDtYQxMcFeWCPI/T6YEBrRNcLGcIIPvqViFIsoLuQKwyi+AMnWCzRbCV45Mel5yPJMRtZ+HkmLI6RAT01Z1ydYJrXGgfjJTEnaRUkCK4wtmzK4B+SJjdVD4phI7XzqUdjBvUi+Ak71aHizWcAPKlrzcKVTUfkjGa2kR88mhiMWWMHhhIPmFk6ARXUBFczMni/nAcKoB6d2EDLi4Xm9IJbvSOtQCKhq0NnoxGYoEqhgWTKHq1oIz0++WUhY3YsGfQlAY1V3Sy7hGcSw6xrSeIiChP6KE4IKEJTvwOKIqCp8qG9j1a8epL4wwBZA7KSGZRHslxH3UMIxSTcMK8erAcDVFUIYkqFFnFrEYXPmgfgqTkLkj9QuFyCCEqoSrRRcs3MCMcl7C9JzgmJAPQIpOLNRQHjBR+xZZDdAcEyKo6IYvgjIFIelqcFTlEXzgvKQSg/a4avfayegUHBQkMlZ9NYD7M8DkQETU/6YkCKYIrGFFU0LEvjN1yNC8hfqG4eTa9HCIcA0NTKVGMziJogvt6BLAsldaY3wy+Oh7RiDzGr1jrBI/9qmeTQ0TickUEZeg0eXh0F0lLVmhanI7TPcor2G1Hb3C0HKKwTrBAK/BgZD8IUSllKC6Zkxc0IC4reHNXf87nzVUE6+8rl6vFRx3DE14PDGid4HBSOI7HyyEcksDzTNrBIUlR0B/OXQQvnuJFbzA2xjovG2/s6kOT146WBjfYRCdYSFyMHzLVi1BMwtYD2QtrWVERjEkFyyEUBXBz2vdtOJJfEfzJfj8UFVg2LTXoSFFUhINi0ezRgNIVwZVoj6Zjt6cPvrHlsEiLhkdWPswQlxS0D0bycobQaSyzV3BAEOHm2bINM+oOERNJEkGK4Aqmc18IiqxinxrD3Lryd4I9SUukyehpccn5746Efq6QZZDe7ijqGvgxS91mqa3Th+NSC7FYTE7bCdZPGBNCDuHl0RMUMib4WaG3WEWwKzU6ucFjR39oJDBDkhTEYkpBRXBIlWFXKSgJWyEhkrkT3OTlsaS5Cq9szy2J4E10gs0EZXzUMTTh9cCAtlSbHI7jrdIKs5q69INvA+E4FDV9UEYyi5q8AIDPTIZmqKqKN3b144R59aAoChxHQRQVwxVkfrMHVTybUxcckbTvS0EWaYmLLQel7dt8O8EbO4fhc3JjEsbCIRGqWjx7NECToPAcXXRNcOdwFAxNoclb2DGjFGTy/KYp7bPIFJahRyabHcLeMxCGrKoFNaTK7RUcEKSy2KPpTKtygKGoCeUVPLGP3Ac5+3aHQDkoqHaqoCGmfPHYM3WC42O8Ih0uFqo6YmGVD33d0bz1wADgqbKBZSnD4F8nJsiwpdEE0xQFJ8dMGDmEKKsYyrMblUxfKAaOofKKk03G5U6NTm708lABYyksH83daIZkCRQoozMrCDL4LLZXpyxswLt7BjOGvOjk7gRLcLmzb/fBogcGRqRB4SSvYAAZV2WMoAx39lmFRo8dtS6baUnEtp4geoMxnDCvDgC0TrCkGPvJ6WRx9Cwf3tmTfQAyJBZeBOsXWzYlUQTn6RW8sUPTA4++mAgm7NE8RRyMAwAnxxZdE9wxHEWzl6/IMJhsEegOjsmqCbY0FJdwhiikIdXo4cvqDjEQjhV8nLcCy9CYWs2TTjChOMya60FPtYx59a5x8WZ029m0muCBSDwl9QgY0VXlK4mIRiQEA6LlkIxkaFqTUgz0pV5pxzN0goFEalyag2QlWaQBmhwCKI5NWl8ojnp3Zmsrs7jcLCJh0ej+6xdq+gBfIZHJOr1xraDWC4Zcvp5fWNAAWVHx+s6+rM/L2WhQVPZOcC5niINFDwyMuMEkp8YByGqPBqRPi0uGoigsnuI13Ql+fVc/vDxrDJFxhhxiJCTlmFk+fN4dxHAks+4wrBfBBWqCAYBWVNBUfkVwTJKxtTuQVg9seAQXsRMMjEQnF5NKtEfTsdvpjL9jnmWyaoKt6oGbq3jjt5IPjR47BiPxgoYsrbB5vx+LpnjL8lo6M3xO7JtAgRmkCK5gZs31YGs0jDkFaJAKwcOzad0hBtN1go0iOL+Db1+PpjlryHMoTkeLTx7dCVaM5e/ROG1sxVukAVqXFUBRHCL6gjHUuQpfWXC6WCjKSPd/dLJdMYrgbkF7v6GAVmwLWQbjAE3isWxaNV7NEZyh+4sKGTpI4aAEdw5niI86huE4CPTAAIzBGT0wo8an/b4zDan2BAXwHG3KeklLjguakvK8ubMPq+bUGfISlqWhKNp3iaa1oviYWbVQAby/byjj8xSnE6y9t1hUgZfnMJxHEby1KwBRVjM6Q/AOBhxX3NNwKYpgPSijErHzDMS4YkimkuG5zEVwNCxZGtrVnSEKQT9Gjp6dKAVd/igO+IWyr1TNrHESOQShOIiygr2DEcwbBz0woNmqmJZDOPXo5Pw6wb3dAnieMZZh86W2zo6hgZhxQJRlFaKopJVDANrJP21Yhigb6UuVQBXPgudodBfh4NkXyj3QZAbdPkwvdo3AjOBIJ5imxwZbmEWSFQzGJNAchWBAhCgqkGU142CczikLG/D+vqGcRUu21LhwSIQrhzPERx1DWDp14uuBgaROcOK3UFVjx/nfm59RntQTjKHBzZtaTVg8xYtgTEJHDhP9zqEIdvWHDSkEAKNADAVF8IkBnwaPHXPrXHhnb2ZJxEgnOP8LMIahYLPREIT8o5M3dg7DbWfTFk+hYHHt0XRcRS6CVVXFfn9lF8EAMngF0xAyhGVEIxIcLvPHprYCnCF0jGTNMgzHfdwxDABpVyFKyQyfEwf8AkS5PN3uQpn4R++DmH2DEchKYUL8Qkg3GKeqatoimONosCyVt01aX08U9U3mTqrZ8NXxkGUVgWFtqTQe0yOT03/VHUnWUDqqqiJSYXIIiqISXsGFHzy1tLjCJ9L1Dm+yQ0SyTVokrGnu8t2nQ4miw+ZiEAqKECIjS+LZWN3SAFVV8cq2nqyDmpkGauIxGfG4krUTLCkJPfCMahPvpPLRi+Bw0u89W4iDGXs0nUOatE751hySiDd29cPG0Dhmts+4TU95DAVE2JP2+8rZtXh3z2DG/RsWVbhsTMEXKLyDgRDRrNbyGYzb2DGMZVOrDIu/ZIrtEazj4NiiDsYNhOMQRKXyi+AMNmmZ5RDmO8EBQURvKFaQMwQwMkhaDpu0jzqGMb/eXVZNMKA5RMiqajiKVDqkCK5giiHELwSPnUU4Lqd4coZiEuKygtpRy+kURYHP0yZNVVX0dkfz9gdOxpdwiBhISCL0A2O6sAwg/dJhTFKgAhUlhwC0A2jROsFFGLTUJTDJgRmNnhEfzELS4oARP2qXh0MwICIaNZfwVOuyYeXsWvzi1R344m/+D5f/ZSMeeG0n1n/ahW09QcSkRDGdoRNsBGVkKQK394QSeuCJPxQHaL8DCjDlsQxoRXAuZwgdL89hRo0Dn+UYjntjVz+OnlUDp21k/7IpneCR3+Mxs3zoD8exqy+c9rnColqQFEKHd7B5d4IlRcEnBwJppRCAVgQXWw8M6Me04g3G6cXMtJoKLYLtmYtgPsNgnNXI5F19iXNxgZ1gntOCf8rRCf6oY2hMTHc50F1QJookonzeGQTL7OoLo8FjL1vu92g8RndIRpVDOxnpkck+59htcjqZvDTBoYAIISoX5Ayh43CycDpZDPYLmNviNZbIMg3GuWys4Zuro3cOKkkOAWh6sp2Jg3G+ROISwnG5YHs0QFsudjiZFF/mJg+Pz3u0kIVCi2D9u1ZdZUN/Z9TQHpuRV9y5ZjHe3zuEXX0h7OwL4a22fvzXRx1QATAUhRk+J46R3XBTDP6vrR9za0fsq0KJzrY7izvER+1DcHAMDjkI9MBAwinFxiCUQSM9mt6QYKkLvqgp+3DcUCSOzfuH8ZNTF6bcniyHaGwe2UfLplXBztJ4d+8A5jekkRqICqr4wlM29ejkageHPQPpC+5MbO8JISrKaZejVVXV5BCe4nkE6zhtTNHSJQHNGQIAplZVaBGcoxOcbq5FX70yXwSHwdLUGJu7fGjylN4mbbz0wIDWhHDZmAnjEEGK4AqmYygybl1gQAvLALT8cb2rMhKZPLaIcuTZCe7t0Q4IxegEA4CvfiQ+OWcnOI1Fmv5vvsKK4EYvj//bnd0aKhfF8gjWcbm51E6w147Xd2nODJGwhLqG/AuRocR3rc5nx57PA4hGRzq4ObfLxuKklnqc1FJv3BaJS9jdH8aOvhB29YUQbotBjMhY+9wnAIDpbhpr4u1YwGi/OWcWOcRHHcMHjR5Yx2Vn03pmj0ZWVPSF4pZWExZP8eK1HX0QZQVcms/srbZ+qCpw3Ny6lNt1D9doRE7Z73aWwRHTa/DOnkFcePTMMc8XllRUFZBUqMM7GPiH4qhqst4J3tg5DJ6j0w5ORsISFFktWSc4XEQ5ROdwFPVuW8UdD3VGNMFjpU08R6M3OPb2LR8PgrPRaGo2d87Z3R/GLJ+zKL/3dMmaxWa89MCAtio8w+dE+wRxiCBFcAXznWNmwTaOJ1m9E5w8HDdSBI/tYDic7Bh7MjP0dkfh9nAFdQ2T8dXZsXeX1o3UD4zZLNJGa4KNTnAFyiEGwpq9js2kwfto2hLLxzN8hXc0AE0XHAknaYI9PIYiIgRRLlwOEYnDbWdRXW2HIqsY6hdgs9Fg8nzvThuLQ5urcGizltz1oasXn28ZxvpvtGJz5xD+3we78Pi7+3CI7MBhrAt//qgdX1jQgOZRHTBJUbCpcxgXrRxbfE1k3BnCcUYzGIlDVlTDscQMi6d4EZcV7OoL4ZCmsZZNb+7qx2HNVWOOK2ySc8Loi5+Vs334zzd2aXaGo36rYVFFY5HkED1dUVQ5WEuaYFFWsP7TLiyfVp226Dc8gktRBHMMokUcjNtfwc4QAMCyFGg6gxwijUVaMBDH1k+GcPjRdVk9x5MZCMfQ4Cl8ZQHQjuN6kVoqxksPrDOjxjlhOsEHTxvjIGRhowdzxrET7EnIMEYXwXaWTptFrnWCrR98+3qiaGgqzgEGAGrreAT8IuJxGTFBBk2PDNiMxmUbayyvHzQraTAOKI69zqb9w5haxRexE8ymdIKbkqzcohEJrkLkEOE4fE6bUSj09gh5O02kQ3eHaPLyOHlBAy451ImXftCKE2fWQbFRePTtPTjrd+/gO3/6EM980G5onQ82PbCOy8aY6gSPBGWY/w61NLjB0FTa4ThBlPHu3kGcOL9uzH1c0u/WPmrfHzPbB1FW8VHHWKu0YmmC9STMKp5DUJAgp7HhSscT7+7FvsEIfnj83LT3h4Kl8QgGdNvH4mqCK9UjGBixO8wkhxitCf5wQx/sdhpLDq81/Rp+QUSVyYI5F+WITh4vPbDOzAnkFUyKYEJG9E5wSEgtgmtdtrQT/w4ng2hEshSdrCiq5gxRJCkEMDIcNzQQQzwmw2ZnMjoUpBuMq/QiuLuAA+jmTj+WTq0u0hYBTheXognWh6X290egqlqSYL4MRUT4nJzhUtDfGwVfhCVuHTvPQJZVSEnG9Q6OQRXDYuF0L/55xSrcecZi1Lvt+M1bu7Hm0Q347jMf4rENew4qPbCO1gnOfRGr6xnNDsYBmnxhfr0bn3UHx9z37t5BxCQFJ8yvH3NfSid4VBEys8aJKV4e76aJUA6JakH2aCOvqRVXVXYOKpBWXzqanb0hPP7uPly0YiZaGtJ/R0IBETY7nXGFqhAcXPoAoHypZI9gnUypcQ6OgSCN3D7QL2DH534cvqIenM18+TMclYpyUQUATV47QjHJ1AVnPoynHlhnZo0TQxExZ3JnJUCKYEJGXIkDdHIneDAcR60z/TCHw8lCllXE4+b9Aft7BUiiWlBS3GiqfXZQFDDQF0NMkLNqSPXEuGQjf30psdLkEKMT2awSiUvY0RvC0mlVRdsml1vTgeu+zLptVvegto2FyiF8LhvsPAObnYYkqnAUsxOcYao8HNKCMpw2Fqce0oh7v3IY/nHFKtz+5UWocdrw/r5BHDWz5qDSAwNaERw2IYfoDcZgY2jLRcHiJm/a+OQ3dvVhdq0TM9IMHTEMBf36dfTvmKIoHDPLh3f2pBbBqqoW1R0CAFyJfZ3Le1pSFNzx8ueY6XPiuytnZXxcqezRAK2jL8pqUXxag4IIf1TE9OriyKdKhd2evhOshWWMfA7v/18vvFUcDjnMWoHoj4oFpQ8mY3gFlyg+eTz1wDozfRPHIeLgOooTigpLa7KH0XKIdHpgYGTSVjA5HKcoKt5+vRvVNTY0TSleEcyyNKpqbBgcEBCLZQ7KADQ5BIAU3VikQjvBPMegxsnlbZP2aVcAsqpiWVE7wSxUdSQkxc4y8Dk5DAzFEvfnf+LQ5RDAiGetWQ2fGTJNlacLynDbWXxpURPu/+oSvPLD43DnGYuLth2VgsvGGmEZ2dA9gq36Py+a4sGe/nBKB0xSFLzVNoAT5o3tAgNaoat3g9NdzB4z24f2oQj2J3mSRkQZslpYZLKOLr/hKe1/cw3HPfNBB7b3BnHraYek1QLrBANiVh/mQtD10cUIzNDt0SpZDgFkDr7hOdo4tnftj6B9TwhHHdsAhjH/3VVVNSGHKFYRnGgUlMghYrz1wAAwPWGnNxGG40gRTMiK254anTwQjqV1hgBgGI9HTOqCt24eRG9XFMef0pz3sFMmaut4DCY6wdmWHJ1pThhRUQYFwF7kbSoGTR4e3Xl2EDZ3+lHFs5hVW7yujsudziuYhz+heXQ687+QGIqMFMF616yYmmC9qBKSTp7xuIJ4LHtQhsvGVuykfCGY7gTnmTi4eIoXKoBtSZKIzfv98EdFnJhGCqHDJX6HozXBAHD0TB8YikqRRPgTftLeIlww6d83m6oVTcNZlnf3Dobxu7f34PwjZ2DxlLHDf8mEAiI83uLbowEjF/bF0AUbHsGVXgTbmbTuEA6OgayoECUZ773Vg7oGHnNbsu+b0YTjMmSlOCsLgObMQyH/Fb1cjLceGNB06Q1u+4QYjqu8szyhovCOik7O3gk2H50c9Mfx/v/1YtHSGkyZWvylNl+dHYP9glYE85m/5noRnNydiibS4gpNrysFjV4+77ShTfuHcdjUKtBFfF96p3e0LjgcEmHnmbwvbhRV1TTBLr0I1v63qHKIRBEcTzp56v6hriwewQcrLpM+wT0BwZIeWGeWzwUHx6QMx725sx91LpuRKpcOfag1XSfYbWdxWLMX7+4ZsQ7UdYjF6QRr3wM28RXJ1AmWFRV3vLQNTV47Lj12dtbnVFUVwUC8ZHIIfQVrtOtNPnQOR+Gxs0UrAEtFtsE4ANi1M4CeriiOXtVg+biu7/NiySFYhka9216S4bhK0APrzPBNDIcIUgQTsqJ1grUCZ3RhMho7z4CichfBqqrizX91gXcwWHFsQ9G3GdDik2MxBUMDsaydYEMOMaoTXGlpcTpN3vwOnpKiYMuBQFGlEIB24UNRY6OTRUEpSA8ciIqQVXVEDuEtnRwiuRMcDmrf3VItVVcybpM+wVon2LqbC0NTOKTJYyTHqaqK13f14YR59VkvzHQ5RCav72Nm+/BB+xCkhAbWKFqKULjZ7TQoChBjWgxzpiL4vzd24pMDftx82iE5VwkEQYYklcYjGBi5sM8UF2yFSrdH07HzdEY5BAVg43v9aJ7uxLQZ1t2WdGu8YsoLGksUmFEJemCdmT4n2ocqPzqZFMGErHj4Ee9Qf6IwydQJpijKVGDGzs/96NwXxnFfmAJbCaajAaA24RAhCHLGkyeQWQ5RaWlxOo0eHj0BwZIDB6AlHkVFGcumFm8oDtD2ueYVnCqHUOJKQVKIwYh24tGTCT2JotRRwHOOhqYpcLbUk6cu68gWlHGw4rKziElK1oEqRVU1TXCeFnvJw3G7+sI44BdwQhprtGQ4jobNToOm0xfKx8yqRTguY0uiwzxcxM4dRVGJ1DjNHSDdYFzncBS/fqsN5y6fljEiOZlQCT2CgfTHtHypdHs0HbudQTzNKgbPMZhHORAcErFiVWNeq3vFvKjS0Vb0it8JrgQ9sM6MGi0wQ7F4rio3pAgmZMVjZw05RLagDJ1cXsHRiIQNb/Rg3kIvZswuncWU28sZFjjZOsHplg4jcbliNZ9NXh4RUU6RqJhhU+cwbAydNqigUNKlxtlVGlwB0oVBPZ478V2r9qUOyBWL0cuo4ZAIh5OxNDhzsOC26THpmb9bQxERkqLmJYcANF1wdyCG/lAMb+zqg8vG5Fy6ZTk6q8PLIU0eVDs4vJOQRPgFCSwFOLjinN54nkU0KqPKwY0JzFBVFXf+YxtqHDZccfwcU8+nB2WUrhOsa4KLUwTrQ06VjJ1nIEmpdocAYKdpHEG7UT/dgYY8HYiKLYcANBedQvzeM1EJemCdmT4nYpJSMu1zsSBFMCErbstFMINIlk7w2//bDQpA6wlNRd3O0VAUBV+tdqI24w6RPEQSFeWKs0fTafLoNmnWugib9/txSJMn76S5bDjdqalxTR4eDtBQClAuDCa+azUJOYSvjse/XTQPvrrihaoAms50dCd4MkohAMCduFgMZSme9BN3PoNxAIyBsc+6g3hjVz9a59Tm/E5yHJ11IJKmKKyY5cO7Cas0f1SEi6OKpunnnSOBGfrQnc7znxzAh+1D+PcvLjSKz1yEAiJYljIV/50PLqMTXNhgXEyS0RuMTRA5RHqnl77dEThBo3lx/g0XvyDCxtDgi3RRBWjNjJ5gzPKKXjYqSQ8MADMNh4jKlkSQIpiQFU+SO8RAWCu8fBl8ggGtE5zJIm1vWxBtOwJoPbHJsFMrJbX1WsFkt2f+mvMcDZoaK4eoNHs0nUYjMMP81bWqqti8fxhLiyyF0HG52DGdYCdoxKn8D/CDkbHJhN7q4k/Tj/YXDYckuCahFALQ5BBA9k6wkRaXZ4Rso8cOn5PDazt6sa0niBMzWKMlM32WG7PnZV/BOGaWD9t6ghiKxOEXtCK4WPC8JoeodnDwR+PG7T1BAb96fRfOOmwKVszymX6+YMIZolSDtxxDg6WpggMzDvgFqKh8ezQgved3LCZjzxY/tqtRgM//s/ZHtbS4Yu6vRo8dMUnJablnhUrSAwPAlCoHOIaq+OE4UgQTsuJJcocYCItw2ZisUgGHk01rkRaLyXjrX12YMduNeQuLvySfDj05LpsmmKIoODhmjByiUovgWpcNLE1Zcog44BfQF4pjmQm9Yj5oneCRwsnLseAoGmE1/5PwYMIerdQOHaMHasLB0vm3VjpuPSEySxHcE4yBYyjUOPP7jCiKwqIpXrz0WTdYmkLrnNzRtYuW1GDZUdl1w8fM8kEF8N7eQQSiUnGLYAerdYIdHIYTnWBVVXHXP7fDaWNw9YnzLD1fKCiWTAqh40qThGmViWKPBiR1gpOcXjZ/OABFVrFRCUGQ8g8O8UelokohgJHAjELSP0dTSXpgQBuEnVbtrHivYFIEE7Li4VkIojYsk80jWMeZiE4ezXtv9UKMK1i1ekrZrMcaElHMuTp7LhubsnQoVLAcgqYoNHjslorgzfuHAQBLmkvVCeYgRGXIiRNNLKqdfIel/JdjB8PxvAstK9h5JtUdIiRNSns0YEQalC0woycooN5tL8hmb3GTF4oKHDmjxii8C6XObcf8ejfe2TMIvyDCXcQi2KHLIRyc0bl76bMevL17ADecsgAeiwVSKe3RdBy2wqOTO4ejsCXsvCqd0XKIcEjElo8HcMiSGkSgFOSUUcygDJ1GT2Hpn+moJD2wzswaB+kEEyY2nqTuUDaPYB2Hk4UYV1IGFA50hvH5liEcvaqh5Af/ZOqbHPjmxfNRlWMZ3TmqaxIRK3cwDhjRk5llU6cfs2tdJfP6dCaKRr0brP/vQDz/pb7BLFZ8xSR5ME6WtLAM16TtBCeGRHPIIfIditPRdcEnzMve3bXKytk+vLt3EMPR0sghqnhtMK4/FMMvX9uBLx7SmDHpLhulTIvTcY66sM+H/cNRTK3mi+orXip0yZv+W/74vX4wDIUjjq4DhcLs4jQ5RHH3l89lA8dQRfMKrjQ9sM5E8AomRTAhK3oRHLRQBAMjXsGSpODNV7rQ1OzA4qXl/4GaKbqdNgZhcVQnuIKL4EaP3VIHYfMBf9Gt0ZJxJfyAw6OK4APR/Lscg5E4arNoz4uFnWcQS1grxePayd49STvBtoSWNFtgRr4ewcksn1aNbxwxDace0ljQ84zmmFk+DEbi2NUfhquIQ0y8g4UkqfDaWciKitte+hw0TeHHq+dbfq5YTEY8psBTVeIimGNSvM/zoXM4imnVxQ8yKgUMS4NlKcRiMvzDcWz7dAjLjq4D79DSHYVCi+AiyyFoikKDu3hewZWmB9aZ6XOiOyAU9PmXGlIEE7KiL1cGBQkDEStFsPal/+idPgSDIo4/pbkiE9gAvWsyShNcoXIIQOsEmx2M80dF7O4PY9m00hXBuqduJDRSBKsU0FXAAV6TQ5S+COZ5BvGYAkVREY9p38/J2gmmKCpnYEYhHsE6PMfg2tUt8Ba5sFg6tRo8R0NW1OJ2ghPe1C5K+9939w7iui+0oDqP76fuEVz6TjBTcGJcx9DECMrQ0Vd1Pni7Fw4ni0OXacOKDo6GIBagCS6BHAIoLP1zNJWmB9aZWeOEihF9eSVCimBCVjy8XgSLGDTVCU7Y84Ql9PVEsfmjARyxog41vsrVlY0eIqlkdwhAsyDrC8YhK7ndFz454AcALClyUlwydjsNhqEQTtikRcMSGDuF3nAsL6N0VVW1wbgyyCH0sJZ4TIGoF8EFJN1NdNx2NuNgnKoHZRQohygVNpbGkYnl4GJqgnUrMwelnS5PnF+Pkxfkl3QZLHFQho6TYwqSAMiKigP+iVcEH+gIo21HAEeurAebsN7jC/wsSiGHAPTUuOLIISpRDwxonWAAaK9gSQQpgglZ0bs1Q1ERw1ExZxGsx9pGwhLefLULNbV2LD2yuNq/YqNpgkemvis5MQ7QOgiyqqI/nPsAuqlzGHUuG6ZWFddfNxmKouBysymdYLuDgSirht+vFSKijJiklEUOwRtT5TLiMUoLyiiBl/JEwWVjEM4ghxiOiojLijHZXomsnK25TRS1CE4c02rtNnzziOm48ZQFea9qhYIiaIYqKFLcDIVqgnuDAiRFnRD2aDp2O4PuA1FU+2xoWVRt3F5IESzKCsJxuSRFsDbbUXgnuFL1wICWsuflWeyrYIeIyXu0J5jCaWNAYeRKLlcRzDCaCfzGD/ox0CfgxFOaKz59y2ljjaXDmKRAUVHRg3H6YJKZ2M1P9vuxbFp1yaUoThebognWHTny6XQMGUEZ5XGHALSBmniMmrTOEDpuO5vRHWLEI7gyO8EAsGpuLTx2Fo3OYmqCte+IFFOwdvX8nMfAbAQDcbg9XMl/j44CLdImkj2ajv5bPvrYhpSIbQfHQJDy+yxKkRan02hhRS8blaoHBrQGycyayh6Om3BF8KOPPooFCxbgzjvvNG5TVRUPPfQQVq1ahSVLluDCCy/Ezp07U/4uHo/jjjvuwIoVK7Bs2TJcdtll6O7uLvfmTzjohE5wr1EE5z4B8k4GoYCIww73oT7PqMpy4rKNDJHoAv5KtUgDtA4CkNteJybJ2NodKFlIRjJON4dwSDthRCISqr1aoZBPp2Mgoj1PudwhgOQiuLI0deXGZWczukPoFzSFukOUkuYqB/55eSsancX7/XKcNnQlRAtzWwA0TbCnDJrzQn2CO4ejoCmguYQrSMWmptaO5ulOzJqbmg5XiCZYj8kulRzC7IpeNipVD6wzw+ckcohi8cknn+Avf/kLFixYkHL7Y489hieeeAK33nor1q1bh7q6Olx00UUIhULGY+6880688soreOCBB/DnP/8ZkUgE3//+9yHLlTu1WCl4eNa4ksuWFqfjdnPwVnE4cmV+urlykzxEontrVrIm2G1n4bazOQvMbd1BiLJaliLY5WJTLNKqq2yws7SpbvVodAlFudwhAM1kXySdYLhtmTXBvUEBDE2VZWCxEErRZeUdbIqfdL4EA2LJnSEAjAkAskrncBRNXh4cM3FKhKOPbcAZ58wcs/95Nn85hNEJdhT/uKDLinryOEYmU6l6YJ2ZPif2DUWKGhFdTCbMNzwcDuO6667Dz372M1RVjZzUVVXFH//4R1x22WU49dRT0dLSgnvuuQeCIODFF18EAASDQTz77LO48cYb0draikWLFuHee+/Fjh07sGHDhvF6SxMGt501Ul98Jpaoj/vCFJzxtZngimhTVEocHItIwiJN755UchEMaF2EXAXm5v1+ODgG8xvcJd8eZ0ITLMsqhKgMl4tFoyc/zdtQJA6GouAtQ2eDZSnQDKV1guOkCHbZMxdPvaEY6t02MHRly5tKAe9gDMebQiiHRzCgSbwKGQbrHI5ialXlr+KNJt0FEF+AXZw/0f2vLoEcosmbCMwoQBdcyXpgnZk1TgQECcNFjIguJhPmiH/77bfjhBNOQGtrKx555BHj9s7OTvT19WHVqlXGbTabDUcddRQ2btyIb3zjG/j0008hiiKOPfZY4zGNjY2YP38+Nm7ciOOOO87StsiynFcHWf+bidZ99thZxCQF1Q4OFNSc2+/yaAXkRHmfDpaCICqIixLCMe2Hameyb/9478tGjx1dgWjW19/YOYxDp3hAqbn3WaE4HAzicQXDg5qWkHfQaPDY0BMQLL92f0hAtZODqigox6drt9MIBuKQJQoOFzNhvrelwMkxCMbEtJ9BT0BAg9te8Z9PKX6bPE8jGkn/uZhFEhXtAtFd+u8Yz1KIijJEScor7KJzKIpFTZ5x39fF2Jc8S6NHzO+cPRSJgQLg5OiifxYOloKTY9Dlz34cz8aH7YMAgKXN47+vMjGtWut47x0Ig0L5zplmX2dCFMH/8z//g88++wzr1q0bc19fXx8AoLY2NYO+rq4OBw4cAAD09/eD47iUDrL+mP7+fsvbs2PHDst/k8yWLVsK+vtyIwthAICTlrFp06bx3ZgS0NujLb+///Em7AtoP5y9u3YgtD93J3u89iUbj2KPX8q4PxRVxcb2IE6abivLPgsM0wDs+OjDHQBs6OhsAxcPY/ewYvn1d7RHwVOZ31uxUWFH+94BAAx6etoRie0ty+tWIoGBGAKRWNrPvu1ACB4bPWGOAcX8bUYEDnE/hU2b+vJ+jmiEAsCju2cfwrH8fWvN0Kcf0z7aBJ61VgSrqor2wRAWe8v3G8xFIfsy5I9iMJjfe9m2LwYHS2HLJ5vzfv1seDkVn+7uxCZ2IK+/f/XzCKa6aezZvrXIW1Y84rIKCsCGLTtxbLOt4uqfii+Cu7q6cOedd+Lxxx+H3Z55IGP0MogZ/Um+GpWWlhY4ndaTdGRZxpYtW3DYYYeBYSp7uT2ZaT3bsamvG1NrvVi2bOl4b07RiewZALZ+irkLFkHsDQKbtuLwpYdm1T+P977cHG/H5g87sGzZsrT37xkIIyx9iFMPX4BlM0u/VDY8FMeOT/bA5WgEMIRlyxdjK92JXVu6Mm5jJv7asRVTWRnLli0pybaOpmNXOwLDcQAyDlvaguqaiTMMVGx2Uwfwt907sXTp0jHH1MjH7+OI6bVYtmzuOG2dOUrx24wGerG/PYxlyxbl/Rwde8PYik4sO/yQkvsER3YnjmkLF6HeYrjJUCQO4X/fwVGHzMGyFuux0MWkGPvy/wK7sSvYZ/k4BABvBdrgGxjI62/NMLPtEygcg2XLFuf197d/9B5WzW/AsmXzirxlxaVp43tQXbUAgmU7Z0YiEVMNy4ovgrdu3YqBgQGcffbZxm2yLOODDz7AM888g5dffhmA1u1taBgZxBoYGEBdneZPW1dXuzK3cgAAVehJREFUB1EU4ff7U7rBAwMDWL58ueVtYhimoJ1Y6N+XG90ruNZln1DbbRYPrxW7gqwiJqnGbWbe63jtyyavA35BQlxG2nS7LV1BMBSFJdOqy7J9noQbxGBfDBQFuNw2NFU50B+OQwUF1sKAzVBURJOXL9vnyvMMehJ6T4/H3H4/WPE6OCgqEFdSHVJUVUVvKIZGr2PCfD7F/G06nSxiglzQ80XCMigK8FbZUyy8SoErccyOybC8zV1BrYs8w+eqmH1dyL502lkIkpLX3wdjMqodXMk+h6YqHjt6Q3k9v64HPnKGr2L2UyZm+pzoGI4CVeU7Z5p9jYqfXDrmmGOwfv16PP/888Z/hx56KNasWYPnn38e06dPR319Pd5++23jb+LxOD744AOjwD300EPBcVzKY3p7e7Fz5868iuDJhjuRGleIP2Ylo5/sI3EZEVEGBcBe4YEJuYYqNu/3o6XBDZetPNe5NhsDzkajv1eAw8GCpik0euxQoQ1UWWEgLJbVgUB3iGA5dVIHZQAwvi+jh+MCgoSYpFS0PVop4R0shKhc0IR7MBCHy8OVvAAGRvZjPoEZhkdwzcQbjEuHo4CwjFKlxek0evi83SEq2R94NJpDRGVGJ1d8J9jtdqOlpSXlNqfTierqauP2b33rW3j00Ucxa9YszJw5E48++ih4nscZZ5wBAPB4PDjnnHNwzz33oKamBlVVVbjnnnvQ0tKC1tbWsr+niYbHrhfBB+cJ0Gmc+CUIicjkUpvZF4ruFdwdEDCr1jXm/k2dwzhuXnmT+lwuFsNDcXirbSnb2BOModnCpPlQJF4WezQdvQi22SvTwqecuBO/9VBMSllGnwhBGaWEdzBQVc1KT08ZtEq5PIKBkdWhSB7FX+dQFD4nV7YL6FLDs5pPsKqqlo/r/qho6dhllUaPHYOROOKSApvFC/BK9wdOZkaNE89u2g9FrbzvVOVtUR5ccskliMViuO222+D3+7F06VI8/vjjcLtHrKFuuukmsCyLa665BoIgYOXKlbj77rsrfhmhEvAe5J1gV3InOC6nlRdUGg1uOyikT2TrD8Ww3y9g6dTqsm6T060VwXokrN41zBXqkUxcUhCMSWUJytDhSRFsoBfBowMzekPaPqzkyORSoqfGCVEp7yI4GBCNC8RSo8e+5xOY0TEcmVBxyblwcAxkVYUoq7BZHBL0CyIOafKWaMtGfk+9QQHTaqzNGX3UMYTj5pa30ZEvM31OSIqKgWhpB0LzYUIWwU8//XTKvymKwpVXXokrr7wy49/Y7XbccsstuOWWW0q9eQcdbruuCT44i+AROYSEaKITXOmwDI06tw3daQrMzfv9AFCWkIxknC7te+JwaocVp42Fx86i24IP5mBEj0wufyeYI0WwcUE4OjCjJxADQ1EH7TEgF45EWIIQlYE850xDQRFTZ4xdtSkF+jEtH3/cHb2hsh87Sol+PBck2XK3VZNDlK5MSl4ts1IETwR/4GTm1LnA0BTCUuUdYye3AI5gijp36vL2wYaNobUfaFyeMEUwADR5+LQF5qb9w5haxVueCi8UV6IDrHeCAe07Y0XzNpQogstZbBE5xAiGHGJU8dQTiqF2kgZlAMmd4Py0pbKsIhySSu4KocNzDChoEi8rCKKMvQMRLGjw5H7wBIHXLwgsSkNUVYVfkFBVgqAMHWO1zGJgxkTSAwNAvduO/77oaMzwVN65lRTBhJwc0ujBf33naMz0WbeFmwhQFAWXjRmRQ0yQIrgxQ4G5udOPZdOqy749TvfYIrjRY08r2ciE3gk2E89dLOz2RBFsI0WwoY8fLYcICmgs80VVJaFfKAlR64NmgNYFBlCWtDgAoCkqr4Gwtv4wZFXFgsaDqAhOdH+tfhbhuAxZUUs6GMdzDKocnOV4+YmkB9ZpruLzCm4pNaQIJuSEoijMqy999O544rQxiIgyBFFOsYaqZLQCM7WDEIlL2NEbwpJxWM5M1wlu9PBpJRuZGAjrcojyHdyJJngEhtZSrEbLIXqDsUk7FAcANE3BzjN5d4JDAa0I9lSV7+LOacscgZ2J7b2ateLcuvLINsqB3tSIidb0qHrMbymLYCD9cTwXH3UM4fAJ0gWudEgRTCBA64BF4hIiE0kO4eXRHYil2DZ92hWArKpYVuahOABwJbpcKUWw145eCwf4oYgIL8+Cs+ArXCh1jTyOP6UJ7qrKG9oYD1x2ZswyulYEH5xyKLPwDgbRPIvgYEC7uHO7yzeG47QxljXBO3pCmFnrBD9BjoFm0I/nVjvBfr0ILqEcAtCO41u7AtjZGzJlwTfR9MCVDimCCQRo09SRuIzoBJJDNHl5xGUFQxHRuG1zpx9VPItZteWXrjQ0OXDCqc1oaBqZLG/08PALkumT8WA4XlYpBKCtdLQcUoUKXKkbF9x2FqHYyP5SVRU9wdik9QjWcTiYvOUQwYAIp4stqw+1dmFvsQjuDaLlIFv14/MtgoXydIKPn1uHjqEovvnU+zjzdxvwi1e34509A4hL6S/KJ5oeuNKZkO4QBEKxcSY0wVFxYlikAcmTxYJhKbZp/zCWTK0eF+0VTVNYuLg65bbGpFCPdH7GoxmIxMvqDEEYi9vGpnSCQzHNNWUyyyGAkcCMfAgFxbINxek4uLEd/WzIioqd/SGsXtCQ+8ETiLyL4EQnuNS627OWNONLi5rwcccQ3mobwFtt/fjvjfvh4BismOXDcXNrsWpOnXGMn4h64EqGFMEEArSuSThhkeacIJ1gvTPXHYjhkCZAUhR8eiCA766cNb4blkSTZ8QCyEwRPBSJT1obrkrBZWdTNME9RlAGkUMM9ueX7hUMiHCXuQh22awNxrUPRSCIChY0HFydYAendd8Fi5pgf1SEnaXLIg2xsTSOmV2LY2bX4sdfmI+2/jDeauvHW239+NnL2wAAi6d4cdzcOry/bxAnzq8v+TZNFkgRTCBAO2EMReITyiKt2sHBztKGTdquvjAiooxlFeTx2eDRQz3M6YIHw/GD1oVkouC2swgIIxIbPfZ6sssh+ALkEKGAiMam8gZQOGxMilQqF9t7ggCAloPIHg3QLDBpSrN/s4I/KpZcD5wOfRB9Xr0bFx0zC4PhODbs0TrET723DxFRxtEzfWXfroMVUgQTCBiRQ0yUxDhAO1gmuy9s6hyGjaFLmnBkFY6h4XOlD/VIx2Ck/JpgQiouG4OupP3VG4yBAlA3yTv0+cohFEVFOFT+TrDTxuCA3/xQ6vbeEKZ4+ZJrYMsNRVHgWet2cX5BNNJSxxOfy4YzDp2CMw6dgrikYM9AGC0HWbd+PCGDcQQCUuUQE6UTDGjdud7EcvXm/X4savJYTkUqNU1e3pRXsKyoGI6KZY1MJoxltByiNyig1mUDW0bHjkqE5xnE4wpk2ZqVXjgkQVFQdk2wi9Mcb8yyvSd40EkhdHiOgSDl0QmusAsCG0tjQaMHFJniLRqT+6hGICRw2RgMR0QoKiZUEazZpAlQVRWb9w+Piz9wLho9dvSY6AT7o9rnTzrB44vbxqaEZfQGY2g8SNMirTCSGmdNEhFK2KN5vOX9XjsSq1tmUFVVc4Y4iEIyknFwNKJ5aIIrrQgmFB9SBBMIGAnL0P//RKHJa0d3QMABv4C+UHxckuJy0ejh0W2iEzweaXGEsbjsLELx1MG4hkmcFqfjcGpL41YlEUE9LW4cBuPMFsE9wRj8gnRQxSUnw3OMdU1wiSOTCZUBKYIJBIzExQITrxM8EI7jw/YhAMCS5srrBDd5tUSkXEbwRhFM5BDjitvOQBAVSIrWOeuZ5GlxOh4vB5qhsGu739LfhQIieAcDjivv6dbBaRf2ZgIY9KG4BY0Hpxwinwhp0gmeHJAimEAA4EoqfCdSEdzo4aECeGVbD+bUuSryoN3o4SGICgJC9mXkwbDeCa689zCZcCcuCMOJwIzeoDDpnSEArRN8+NF1+OSjAQz0mR84CwZEuD3l/047bSxkRUVczi0D2NEbQpWDO2g7/nl1gkkRPCkgRTCBgFQJxIQqghNhFB+0D2FpBXaBgWQ/4+yFw2BEBM/RKV15Qvlx2bXPPxSTEIpJCMdJUIbOsqPqUFVjxxuvHICimBuQCwXKH5QBjBzTzKQ1bu/VhuIO1oErrRNsXhMsygoiokyK4EkAKYIJBIySQ0wkTXAiwEBRgWXTKrMIHkm2y64LJvZolYE7UQSH4xL6QiQoIxmGoXDCKVPQ1yPg002Dpv4mOM5FcNh0EXxw6oEBgOdoS3IIPS2OaIIPfkgRTCAgtRM8URLjAG2ZT4/PXDq1enw3JgM+lw0sTeUMzBgMkyK4EnDZte9/KCYZ9ntEDjFC4xQnDl3mwwdv9yLoj2d9rKqqCAXL7xEMjBzHchV/w1ER3YHYQasHBrROcMxCETysF8GkE3zQQ4pgAgETVw4BaAVKvduG5qrK7NbRFIUGjz2nHGIoEidDcRWAoQmOy8aFS/1BqhXNl6OOrQfvYPDmv7qyDp5FIzJkWS27PRowsrqVqxO8ozcxFHcQd4KtDsb5Bb0IJtKsgx1SBBMIGDlhUADsZZ7iLpSlU6tx0vyGitbzNXpyB2YMEDlEReBO0gT3BGPwOW3gJnlQxmhsNgarVk9B574wdm7L7BYRNDyCx1MTnH0gdXtPCDxHY3rNwRtXbmfzk0NUEznEQQ+5zCEQoHlqAlrHgK7gYjId153cMt6bkJNGj92kHIKcdMYbO0uDoSmEE3IIIoVIz8w5Hsxb4MU7r/dg+ky34SOcTDCQ8AgeF3cI7ZiWyyt4e28Q8+vdYOiJddyzgtXBOH9UBAXAQ4rggx5yeU8gAOAYGhxDgZ9gUoiJQqOXR3cgcydYVVUMRUhkciVAURTcNgahuFYEE2eIzLSe2AQVwIY3etLeHwqIsNlo2PnyH1d0TXA4Rwd0x0E+FAckNMEWYpP9gggPzx7UFwYEDVIEEwgJnDZ2QqXFTSSaPHb0hmKQM9hKheMy4rJC5BAVgsvOIhST0RsUSBGcBYeTxcrjG7Frmx/te0Nj7g8GxmcoDgBYhoaNobNapAmijH2DESw4SOOSdXRNsJngEADwR0la3GSBFMEEQgKXjZlwQ3EThUYvD1lRjVS40QyESWRyJeGysZocIhRDI7FHy0rLoipMneHCW//qghhPXXIPBcfHHk3HYWMQzqIJ3tUXgqICLQ0HrzMEoFmkKSpMBYcAJChjMkGKYAIhgZMjRXCpyBWYMUQikysKt51FfziOgCCRTnAOKIrC8V+YAiEi4YMNvSn3jWcnGNAu7LMNhG3vDYGhKMytc5Vxq8qPLnMTTOqC/QIpgicLpAgmEBIQOUTpyBWYoUcm15BOcEXgsjPY3R8GAFIEm8BbbcORrQ3YsnEQPV0RAJrOPRiIj4s9mo6TY7IOxm3vCWJ2rRN29uA+7jlMeibr+KMikUNMEkgRTCAkqHPbyHJ8ifDYWTg4Bj0ZOsEDkTgYmoKXJ4Y1lYDbxqJzWCvmGolHsCkOW+5DXQOPN1/tgiyriAkyJFGFZxycIXQcthxFcG/woNcDA8mdYAtFMOkETwpIEUwgJLjp1IX48Rfmj/dmHJRQFIVGjx3dGWzShiKaPdpEs6c7WHHbWegzjPWkE2wKmtYilYcGYtj8Uf+IPdq4yiFYRDJogiVFQVt/GC0HuTMEkEcnWBBJUMYkgexlAiEBufIvLU1eHj0ZbNIGwyKRQlQQrkRgRrWDO+iXyotJXYMDS4+oxcfv9oOCdkE3roNxHINIhsJv70AEMUk5qOOSdfhEAJIg5dYEq6qKAHGHmDSQTjCBQCgL2QIzSFpcZeG2a4UvCcqwzhEr6+Fys/jwnV6wLAXeMX4XEc4scojJEJesY6UTHIpJkFWVNEUmCaQIJhAIZaHRkzkwYygSRy1xhqgYXIkY8QZij2YZlqVx/MnNUBRNCjGecebZiuDtPSFMreKNmOyDGT6xmiHkSM8DRiKTSRE8OTj4v/0EAqEiaPTaMRiJIy4psLGp19+D4TgOa64apy0jjEYvjIgzRH5MneHCksN9MJnNUDKcWTTBk2UoDhjpBAsmUuP8gvZ5ETnE5IB0ggkEQlnQQxd6Q2O7wYNEDlFR6EUwkUPkz8oTmtB6YtO4boOTS+8TrKoqdvSGDvqQDB2OocBQFKImfIKHSSd4UkGKYAKBUBYavVpBNdomTRBlhOMyal3kpFMpuBJ+2Q3EHm1C47QxCKeRAHQFBARj0qTQAwOaOw3P0aY0wbocopoUwZMCUgQTCISy0OTRAzNSi2A9LY64Q1QO3sRSsB5yQpiYOG0MYpICWUnVZWzvCQHApJFDAJpXsKkiWBBhZ2nDW5hwcEOKYAKBUBZ4jkGVgxuTGjcY0TovRA5ROcytc+HONYuxbFr1eG8KoQCciQHH0cXf9t4gfE4OdZNoGNXBMabCMkha3OSCFMEEAqFsNHrs6B4lhxhMdIKJO0TlQFEUTl3YCIYm4SUTGX0gLDxqOG57bxAtDZ5xda4oN1oRnFsTTNLiJhekCCYQCGWjycuP7QSHtSKYaPAIhOKia7ujo3TBO3pCk0oKAQA8a1ITTNLiJhVkT1c4UlcnlHBovDeDMApZkcEeaEfcw4OhiXbMLHVKBJv744jv2mbc1tcRRJWNhrJnB+LjtF1kfx48kH05AjusSY38u9sQH9JWWoZiMnpDMcxVAim/w0qkmPvSLgmIDMVzvuehgWF4OLriP5uJhqzIoAf7xnszxkCK4ApG9g+j69KzASX3Eg6h/PgA9I/3RkwwnNNPRNfMk9Bz9Y+M2zrnrYGnpgU9V/94HLeM7M+DCbIvNaK8DzjmRux/8E74htsAAJtq5gNLL4Hv4Z+gJ1r5n1Kx9iV16LfhB4WeZ57M+riBI66GL9iBnj8/V4RXJSRTS9OQjzwKTE3teG+KASmCKximqhpTfvcc6QRXILIiY8f2HWhZ0DLpu01WmNcRQeTDYbjv+yNcnKbGin0whHpBRuMFfxq37SL78+CB7MsRbDEZ+HsP7Jf9BI1TNKePvh1BOLaHsPSuB0BXuCa4mPuy6oMhDAoyGi/JfpyJvNyDpiMWoPGKswt6PUIqsiJj274OTPVWj/empECK4AqHnTJtvDeBkAZZliEFBdjmLgTDTO4TrRWm8sPAhx9jqH4maupcAIDhjzairo6Dbd7Ccdsusj8PHsi+HKFK1IpgsbYJtnlacEfb55+ipZEGP/+Qcd663BRzX7p2fY6u/nDO40xA6oGvuQm2eTMKej1CKrIsQxllj1kJkME4AoFQNvQEsu6kgyFJiyMQSoOdpUFTQCRpMG57b2jShGQkw5uwSItLCqKiTNwhJhGkCCYQCGWj3m0HhdTUuMEwKYIJhFJAURQcHINIoviLxCW0D0awoHFyxCUn4zARluEXSGTyZIMUwQQCoWywDI16t92wSZMUBf6oCB/xCCYQSoLLxiKS8Ane2ReGCkzSTjCdsxOsRyaTsIzJAymCCQRCWUkOzBiOiFAB1DjJSYdAKAUOG2PIIbb3BMHSFOYk9PiTCTNhGUYRTDrBkwZSBBMIhLLSmBSYYaTFETkEgVASnElF8I7eIObUucAxk+/UzyfkEKqqZnwMKYInH5Pvl0AgEMaVRo8dvYnBuKGIdtIhcggCoTQ4kzTBk3UoDgB4loEKICZl7gYPCyIoAB47Mc6aLJAimEAglBW9E6yqKgYSkclkMI5AKA1OG4tIXIYkK2jrD03KoThAk0MAyKoL9kdFeHkWDF3Z/smE4kGKYAKBUFYaPXbEJAXDURGDkTicHAOem9x+rgRCqdDkEBJ2D4QhyipaJmkn2JEI5xGydIL9UZFIISYZpAgmEAhlpcmrJVf1BGMYisSJFIJAKCG6HGJHr5Y8Or9+cneCs9mk+QWROENMMkgRTCAQykqjRyuCuwMCBsJx4gxBIJQQ3R1ie28Q06sdcE9SvStvpgiOSqQTPMkgRTCBQCgrNU4OHEOhJyhgMBInzhAEQglx2RhE4zK294SwoHFySiGAkSI4lyaYFMGTC1IEEwiEskJTFBo9PHoCMQxFRNSQIphAKBkOjkU4LmFHbxAtDZNTCgEkyyGyaIKJHGLSMTnXRQgEwrjS6LGjOyhokclEE0wglAyXjUE44RM8uTvBicE40gkmJEE6wQQCoew0enh0BzQ5BLFHIxBKh8M24rwyWT2CgdyDcYqqIiCQIniyQYpgAoFQdpq8duzuD0NSVNIJJhBKiDNRBNe5bKidxL81jqHB0FTGTnAoJkFRSVrcZIMUwQQCoew0enhjidZH3CEIhJLhsmmqx8kshdBxcExGTbARmcwTlehkghTBBAKh7DR67cb/J51gAqF06DKAyTwUp8OzdMZOsFEEk07wpIIUwQQCoezoXsEAiUwmEEqJy64VwZNZD6zj4BgIUoYiWCBF8GSEFMEEAqHs6KlxHEPBM0nN+wmEcjCzxomfnLoAx82tG+9NGXd4jsk4GDcihyBF8GSCnH0IBELZcdtZuGwMXHYWFEWN9+YQCActFEXh7KVTx3szKgKeozMWwcNRCXaWNkI1CJMDUgQTCIRxodHLw8aQxSgCgVAeHBwDIdNgHLFHm5SQIphAIIwL06sd470JBAJhEqEVwZnlEEQKMfkgRTCBQBgXbjxlAdTx3ggCgTBp4DkG/aFY2vtIWtzkhBTBBAJhXKhz23M/iEAgEIpENk2wPyqimhTBkw4iyCMQCAQCgXDQo1mkZdEEEznEpIMUwQQCgUAgEA56cmqCHWRxfLJBimACgUAgEAgHPTybxSeYuENMSiq+CH700UdxzjnnYPny5Vi5ciUuv/xy7N69O+UxqqrioYcewqpVq7BkyRJceOGF2LlzZ8pj4vE47rjjDqxYsQLLli3DZZddhu7u7nK+FQKBQCAQCONEprCMmCRDEBUih5iEVHwR/P777+P888/HX//6VzzxxBOQZRkXX3wxIpGI8ZjHHnsMTzzxBG699VasW7cOdXV1uOiiixAKhYzH3HnnnXjllVfwwAMP4M9//jMikQi+//3vQ5bTXxUSCAQCgUA4eHBwNARRgaqm+tL4oxIAEpk8Gan4IvgPf/gDzj77bMyfPx8LFy7EXXfdhQMHDmDr1q0AtC7wH//4R1x22WU49dRT0dLSgnvuuQeCIODFF18EAASDQTz77LO48cYb0draikWLFuHee+/Fjh07sGHDhvF8ewQCgUAgEMqAI5EGFxs1HGdEJpMieNIx4VTgwWAQAFBVVQUA6OzsRF9fH1atWmU8xmaz4aijjsLGjRvxjW98A59++ilEUcSxxx5rPKaxsRHz58/Hxo0bcdxxx1naBlmWM3aQBUHAwMBA2vtUVQXP8+js7CRRsRMcsi8PLkq5P2tra8HzfFGfk5AZ/dhMVvkmPsXelzZG+22HhDg42mbcPhQWAABuG02+NyWi3L9Ls68zoYpgVVVx11134YgjjkBLSwsAoK+vD4B2okmmrq4OBw4cAAD09/eD4zijcE5+TH9/v+Xt2LFjR8b7nE4npk6dCoZJnz9eV1dn+fUIlQnZlwcXpdifsiyjvb09Rb5FKA9btmwZ700gFIli7cv9g1rH9+PNn6LWMbIQvqlXu71j1zYMchW/QD6hqbTf5YQqgm+//Xbs2LEDf/7zn8fcN7p7M1rzkw4zj0lHS0sLnE7nmNv379+P5ubmjAWwqqqIRqNwOBykezjBIfvy4KKU+3P+/Pk4cOAApk6dWtTnJaRHlmVs2bIFhx12WMZjMWFiUOx9SR/wA5s2YU7LAsyudRm37/nkAOitO7HyyOWgyfG8JJT7dxmJRLI2LHUmTBF8xx134LXXXsOf/vQnNDU1GbfX19cD0Lq9DQ0Nxu0DAwNGZ6eurg6iKMLv96d0gwcGBrB8+XLL28IwTNqdSFEUWDb3R0pRFCmcDhLIvjy4KMX+ZFkWFEWRgqzMZDpOEyYexdqXTpum+Y3JSHm+YEyGh+fAmTh/EwqjXL9Ls69R8X1/VVVx++2345///CeeeuopTJ8+PeX+adOmob6+Hm+//bZxWzwexwcffGAUuIceeig4jkt5TG9vL3bu3JlXEUwgEAgEAmFi4bBphdHowIzhKEmLm6xU/GXPbbfdhhdffBG/+c1v4HK5DA2wx+MBz/OgKArf+ta38Oijj2LWrFmYOXMmHn30UfA8jzPOOMN47DnnnIN77rkHNTU1qKqqwj333IOWlha0traO59sjEAgEAoFQBnR3CEFKLYJJWtzkpeL3+n/9138BAC688MKU2++66y6cffbZAIBLLrkEsVgMt912G/x+P5YuXYrHH38cbrfbePxNN90ElmVxzTXXQBAErFy5EnfffTdZLiMQRrF69Wp861vfwne+853x3pSicLC9HwKBkB96ERwVR1mkkbS4SUvFF8Hbt2/P+RiKonDllVfiyiuvzPgYu92OW265BbfccksxN++g4eOPP8b555+P1tZW/OEPfxjvzYEoinjwwQfx5ptvoqOjA263G62trbj22mvR2NhoPK6vrw+/+MUvsGHDBoTDYcyePRvf//73cdppp415zng8jq9//evYtm0bnn/+eRxyyCEZX//GG2/E//t//y/ltqVLl+Kvf/2r8e9LLrkEH330UcpjTj/9dDzwwAP5vu0xr80wDBoaGnDCCSfgRz/60RiHE8IIzz33HH7+85/jww8/TLl93bp1cDgc47RVBAKhUuBZTQE6OjXOHxUxo2bssDvh4Kfii2BCeXj22WdxwQUXYN26dThw4ACam5vHdXsEQcBnn32GH/zgB1i4cCECgQB+/vOf4wc/+AGee+4543HXX389gsEgHnnkEdTU1GD9+vVYu3YtZsyYgUWLFqU85y9+8Qs0NDRg27ZtprbhuOOOw1133WX8m+PGdgq+/vWv4+qrrzb+XSw/WP21ZVnGrl27cNNNNyEYDOKXv/xlUZ5/MuHz+cZ7EwgEQgXAMjRYmhqjCfZHJVQ1k07wZKTiB+MIpScSieCll17Cv/3bv+HEE09MKTLPO+883HfffSmPHxwcxOLFi/Huu+8C0IYML730UixZsgSrV6/G+vXrsXr1ajz55JN5b5PH48ETTzyB008/HXPmzMGyZctw8803Y+vWrYb/MwBs2rQJF1xwAZYsWYLp06fj8ssvh9frNRIFdd544w28/fbbuOGGG0xvg81mQ319vfFfdXX1mMc4HI6Ux3g8nrzfc7rXbmpqwqpVq3D66aenDHbKsoybbroJq1evxpIlS/DFL34RTz31VMpz3Hjjjbj88svxhz/8AatWrcKKFStw2223QRRF4zEDAwO47LLLjH33wgsvjNmWAwcO4Ac/+AGWL1+Oww8/HFdffXWKv/ZDDz2Es846C+vWrcOJJ56I5cuX4z/+4z8gyzIee+wxHHvssVi5ciUeeeSRrO/5k08+wUUXXYQVK1bgiCOOwAUXXDBmPwYCAdxyyy1obW3FYYcdhjPOOAP/+7//i/feew8/+clPEAwGsWDBAixYsAAPPfQQAIz5Lpp9P88//zxWr16NI444AmvXrk2JYX/55ZexZs0aLFmyBCtWrMB3vvMd4gVMIEwAHBwztggWRFQTOcSkhHSCS4zU1QklrJ08VVWFJAiIJwb6SgHtcoOdMs3S3/z973/H7NmzMWfOHJx55pm44447cMUVV4CiKKxZswZ/+MMfcO211xrb/Pe//x21tbU4+uijAQA33HADhoaG8PTTT4NlWdx9990ZU/MKIRQKgaIoeL1e47bDDz8cL730Ek488UR4vV689NJLiMfjWLFihfGY/v5+3HLLLfj1r39tqVP7/vvvY+XKlfB6vTjqqKOwdu3aMaEs69evxwsvvIC6ujocf/zxuOKKK1K06KN57rnn8JOf/MSUzEeno6MDb731Vor9nqIoaGpqwoMPPoiamhps3LgRt956K+rr63H66acbj3vvvfdQX1+Pp556Cu3t7Vi7di0OOeQQnHvuuQC0Qrm7uxtPPfUUOI7Dz372s5R9p6oqrrjiCjgcDjz99NOQZRm33XYb1q5di6efftp4XHt7O9588038/ve/R3t7O6666ip0dnZi9uzZePrpp7Fx40bcdNNNWLlyJZYtW5b2fYbDYXzlK1/BzTffDAB4/PHHcemll+If//gH3G43FEXBJZdcgnA4jHvvvRczZszArl27QNM0li9fjptuugn/+Z//iZdffhkA0np5Z3s/jz76aMr7+de//oXf/va3CAQCuOaaa/DYY49h7dq16O3txbXXXovrrrsOJ598MsLhMD788MO8fccJBEL54Dk6RQ6hqCqCAnGHmKyQIriEyP5hdF16NqCkivADpXxRmkHzn/4Bpqra9J+sW7cOZ555JgBtGT4SieCdd95Ba2srTj/9dNx111346KOPcOSRRwIAXnzxRZxxxhmgaRptbW3YsGED1q1bh8MOOwwA8LOf/QynnnpqUd9WLBbDfffdhzPOOCOlyHzwwQdxzTXXYMWKFWBZFjzP4+GHH8aMGTMAaEXPjTfeiG984xs47LDD0NnZaer1jj/+eJx22mlobm5GZ2cnfvWrX+Hb3/42nnvuOdhsWtzml770JcyZMwf19fXYuXMn7r//fmzbtg1PPPFExuf1eDyYPXt2ztd//fXXsXz5csiyjFgsBgD4yU9+YtzPcRyuuuoq49/Tp0/Hxo0b8fLLL6cUwVVVVbj11lvBMAzmzp2LE044Ae+88w7OPfdc7NmzB2+++Sb++te/YunSpQCAO++8M+XvN2zYgO3bt+Nf//oXpkyZAkCTlXz5y1/GJ598giVLlgDQPuef//zncLvdmDdvHlasWIE9e/bgscceA03TmDNnDh577DG8//77GYvglStXpvz79ttvx1FHHYUPPvgAJ510EjZs2IBPPvnEuGjT33fyZ0tRlOEdno5s72fr1q046qijjPdz1113Gd+1M888E++88w7Wrl2Lvr4+SJKEU045xQjAWLBgQcbXJBAIlYODY1IG44KCBEUFGYybpJAiuIQwVdWY8rvnUjrBgiAY1m6lgHa5LRXAu3fvxpYtW/Dwww8D0Iz9Tz/9dDz77LNobW2Fz+dDa2srXnjhBRx55JHo6OjAxo0b8dOf/hQAsGfPHrAsi8WLFxvPOXPmzKIOcImiiLVr10JVVeN1dR588EEEAgE8+eSTqKmpwauvvoqrr74azzzzDBYsWICnn34aoVAI3//+9y29ZnIh2NLSgkMPPRSrV6/G66+/bhT4Z599NpxOJyiKQktLC2bOnIlzzjkHW7duTfk8kjnllFNwyimn5Hz9FStW4Kc//Smi0SjWrVuHPXv24IILLkh5zH/913/hv//7v3HgwAHEYjGIooiFCxemPGbevHkpDij19fVGik5bWxtYlsWhhx5q3D937tyUTntbWxuampqMglF/Tq/Xi927dxtF8NSpU1MuTurq6sAwDGiaTrkt2wrBwMAAfvWrX+G9995Df38/FEVBNBo15C+ff/45mpqaTF1EZCLb+9mzZ49RBI9+Pw0NDca2L1y4ECtXrsSaNWuwatUqrFq1Cl/84hfJ0CKBMAHgR8kh/IImDyNF8OSEFMElJlmaoKoqpEgEtkThVAmsW7cOkiTh+OOPN25TVRUsyxoJe2vWrMGdd96JW265BS+++CLmz58/ptgaTbGWhkVRxDXXXIPOzk489dRTKYVJe3s7/vSnPxnbBGgFyocffohnnnkGt99+O959911s3rzZ6FLrnHPOOVizZg3uueceU9vR0NCA5uZm7N27N+NjFi9eDI7jsG/fvoxFsFkcDgdmzpwJALj55ptx4YUX4uGHH8Y111wDQJOk3HXXXbjhhhuwfPlyuFwu/OEPf8DmzZtTnmd0giFFUWP2Tbbvoqqqae8f/RzpXifdbcqoVZFkbrzxRgwODuKmm25Cc3MzbDYbzjvvPEPDXIyhw3zfT/JjGIbBE088gY8//hhvv/02nn76aTzwwAP461//OibMh0AgVBZaJzipCI4mimAih5iUkMG4SYwkSfjb3/6GG2+8Ec8//7zx39/+9jc0Nzdj/fr1AICTTz4Z8Xgcb731Fl588UVDOgEAs2fPhiRJ+Oyzz4zb9u3bh0CgcNGHXgDv27fP6PQmE41GASCl2whoRYpesNx8883429/+Zry33/3udwCABx54AGvXrjW9LUNDQ+jq6kqJ5h7Nzp07IYpi1uX4fPnhD3+Ixx9/HD09PQCAjz76CMuXL8f555+PRYsWYebMmWhvb7f0nHPmzIEkSfj000+N23bv3p2y7+bNm4euri50dXUZt+3atQvBYBBz584t8F2l8uGHH+LCCy/ECSecgPnz58Nms2FoaMi4f8GCBeju7saePXvS/j3HcZBlOe19Otnez5w5c0xvK0VROOKII3DVVVfh+eefB8dxePXVV03/PYFAGB94lk7tBEdJJ3gyQ4rgSczrr78Ov9+Pr33ta2hpaUn577TTTsO6desAaANGq1evxq9+9Su0tbUZSXyAtnze2tqKW2+9FZ988gk+++wz3HLLLWMkH9dffz3uv/9+09smSRKuuuoqfPrpp7jvvvsgyzL6+vrQ19eHeDwOQCviZs6cabx2e3s7Hn/8cbz99ts4+eSTAQDNzc0p72vWrFkAgBkzZqCpqcl4vdNOOw2vvPIKAG1A65577sHGjRvR2dmJ9957Dz/4wQ9QU1NjPG97ezt+97vfYcuWLejs7MQbb7yBq6++GosWLcLhhx+e8X298soraT2Mc7FixQrMmzfPGN6aMWMGPv30U7z11lvYs2cPHnzwQWzZssXSc86ZMwfHHXccbr75ZmzevBmffvopbr755pSOa2trKxYsWIAf//jH2Lp1Kz755BNcf/31OProo8d01wtl5syZeOGFF9DW1obNmzfjxz/+ccq2HH300TjyyCNx1VVX4e2330ZHRwfeeOMNvPnmmwA0CYOuZx8cHDQukpLJ9H6OOuqoMZZ6mdi8eTN++9vfYsuWLThw4AD++c9/YnBw0FIRTSAQxgcHx0CQRlakRopgsjA+GSFF8CRm3bp1aG1tTWvrdeqpp+Lzzz83LKrOPPNMbNu2DUceeeQYD+F77rkHtbW1OP/88/HDH/4Q5557LlwuF+x2u/GYrq4uI/LaDN3d3XjttdfQ3d2Ns846y9Berlq1Chs3bgSgdf5+97vfwefz4bLLLsOZZ56J559/HnfffTdOOOEES5/Fnj17EAwGAWid5B07duDyyy/HaaedhhtvvBGzZs3CX/7yF0OOwXEc3n//fXzve9/Daaedhp/97Gc49thj8cQTT2RNIQwGgxk7mbm46KKL8Ne//hVdXV34t3/7N5x66qlYu3Ytzj33XAwPD+Ob3/ym5ee86667MGXKFFxwwQW48sorce6556Y4YFAUhV//+tfwer244IIL8J3vfAfTp08vOBAkHT//+c/h9/vxla98Bddffz0uvPDCMW4cDz30EA499FD86Ec/wpe//GXcd999hsTi8MMPxze+8Q1cc801WLlyJX7/+9+PeY1ivB+3240PPvgAl156Kb74xS/iwQcfxI033mj5O0cgEMoPP1oOIYjgORp2lqTHTkYolfj6mCYSieDzzz/HIYccktZ+qaOjI6smUFVVRCIRY5jqYKW7uxsnnHACnnzyyTET/wcLk2VfThZKvT9zHRsIxUOWZWzatAnLli3LekFKqHxKsS/v/Mc2bO8N4o8XakOwj7zVhv/Z2o0XLzu2KM9PSE+5f5e56jUd0v8nFMw777yDSCSClpYW9PX14d5778XUqVMNSzUCgUAgECqB0WEZ/qhE9MCTGFIEEwpGkiQ88MAD6OjogMvlwvLly3HfffeljRkmEAgEAmG8cHA0hCSfYD8JypjUkCKYUDDHHXccjjvuuPHeDAKBQCAQsjJaEzwcJZHJkxkyGEcgEAgEAmFSMGYwLioSOcQkhhTBBAKBQCAQJgUOjkFMUqAkPAH8AimCJzOkCCYQCAQCgTApcHBa2RNL6IL9UaIJnswQTTCBQCAQCIRJAZ/wA46KMigKiEkKqklQxqSF7HkCgUAgEAiTAp4bKYLFRNAOkUNMXkgRTCAQCAQCYVLgSBTBgiRDjmu6YCKHmLyQIphAIBAIBMKkwCiCRQWRuASAdIInM2QwjgAA+Pjjj3HIIYfg4osvHu9NMbjxxhuxYMGClP/OPffclMdceOGFYx6zdu3atM8Xj8dx1llnYcGCBfj8889Nb8ett96KBQsW4Mknn0y5vb+/H9dffz2OPfZYLFu2DF/96lfx8ssvW36fmci2T7Zt24Yf/ehHOOGEE7BkyRJ86UtfwlNPPTXmcaqq4i9/+Qu+/vWvY/ny5TjyyCNx9tln48knn0Q0Gs1724aHh3HHHXfgi1/8IpYuXYoTTzwRP/vZzxAMBlMet3r16jH757777jPu7+zsHLM/QqEQLrzwQpx22mno6urKexsJBAJhNHxiMC4qyvALpAie7JBOMAEA8Oyzz+KCCy7AunXrcODAATQ3N4/3JgHQgjjuuusu49/pUujOPfdcXHXVVca/eZ5P+1y/+MUv0NDQgG3btpl+/VdffRWbN29GQ0PDmPtuueUWRCIRPPLII6ipqcH69euxdu1azJgxA4sWLTL9GpnItk8+/fRT+Hw+3HvvvZgyZQo+/vhj3HrrrWAYBhdccIHxuOuuuw6vvPIKfvCDH+CWW26Bz+fDtm3b8NRTT2HatGk4+eST89q23t5e9Pb24oYbbsC8efOwf/9+/PSnP0Vvby/+8z//M+WxV111VcrFS7Yc98HBQXzve98DAPz5z3+Gz+fLa/sIBAIhHSOdYBn+qAiaAtx2UgpNVkgnmIBIJIKXXnoJ//Zv/4YTTzwRzz33nHHfeeedl9K5A7RCZfHixXj33XcBaAXRpZdeiiVLlmD16tVYv349Vq9ePaZzmg82mw319fXGf9XV1WMew/N8ymM8Hs+Yx7zxxht4++23ccMNN5h+7Z6eHtx+++0ZI6A/+eQTXHDBBViyZAmmT5+Oyy+/HF6vF1u3brX0HtORbZ8AwNe+9jXcfPPNOProozF9+nScddZZOPvss/HPf/7TeMzf//53rF+/Hvfffz8uu+wyLFmyxCh8//jHP2LFihV5b19LSwseeughrF69GjNmzMDKlStxzTXX4LXXXoMkSSmPdblcKfvH5XKlfc6uri5885vfhMvlwh//+EdSABMIhKKTPBjnj4rw8hxoihrnrSKMF+Typ8R0DkcRimlFgaqqEAQBPC+DKtGPzm1nMa3aYelv/v73v2P27NmYM2cOzjzzTNxxxx244oorQFEU1qxZgz/84Q+49tprjW3++9//jtraWhx99NEAgBtuuAFDQ0N4+umnwbIs7r77bgwMDBTl/bz//vtYuXIlvF4vjjrqKKxduxa1tbUpj1m/fj1eeOEF1NXV4fjjj8cVV1wBt9tt3N/f349bbrkFv/71rzN2iUejKAquu+46XHzxxZg/f37axyxbtgx///vfceKJJ8Lr9eKll15CPB7PWlw+99xz+MlPfoLt27dnff1s+yQTwWAw5SJh/fr1mD17dtpuL0VRaS8WCiEUCsHtdoNlUw8rv//97/HII4+gqakJp512Gi6++GLYbLaUx+zZswe/+MUvsGjRIjz44INj7icQCIRikCKHIGlxkx5SBJeQ4Ugc5/z+HShq+V6ToSi8fPmxqHaaLyLWrVuHM888E4AmP4hEInjnnXfQ2tqK008/HXfddRc++ugjHHnkkQCAF198EWeccQZomkZbWxs2bNiAdevW4bDDDgMA/OxnP8Opp55a8Hs5/vjjcdppp6G5uRmdnZ341a9+hW9/+9t47rnnjCJpzZo1mDZtGurq6rBz507cf//92LZtG5544gkA2oXHjTfeiG984xs47LDD0NnZaeq1H3vsMbAsi29961sZH3P33Xfj3//937FixQqwLAue5/Hwww9jxowZGf/G4/Fg9uzZOV8/2z5Jx8aNG/Hyyy/j0UcfNW7bt2+fqdcqBkNDQ/jNb36D8847L+X2b33rW1i0aBG8Xi+2bNmC+++/H52dnbjzzjtTHnf99ddj+fLleOihh8AwTFm2mUAgTD5YmgbHUBBERUuLI84QkxpSBJeQaqcNz35vZZpOMF/STrCVAnj37t3YsmULHn74YQAAy7I4/fTT8eyzz6K1tRU+nw+tra144YUXcOSRR6KjowMbN27ET3/6UwBaB49lWSxevNh4zpkzZ6Kqqqrg93L66acb/7+lpQWHHnooVq9ejddff90ospO1pi0tLZg5cybOOeccbN26FYsXL8bTTz+NUCiE73//+6Zf99NPP8Uf//hHPPfcc1n3029+8xsEAgE8+eSTqKmpwauvvoqrr74azzzzDBYsWJD2b0455RSccsopWV8/1z4Zzc6dO3H55Zfj8ssvx7HHHmvcrqpqXt+zL3/5yzhw4AAA4IgjjsDvf//7rI/XP9+5c+fihz/8Ycp93/nOd4z/v3DhQni9Xlx11VX48Y9/jJqaGuO+L3zhC3j11Vfxj3/8I2W/EwgEQrFxcIyhCSad4MkNKYJLTLI0QVVVRCIMnE5nyYpgq6xbtw6SJOH44483blNVFSzLwu/3o6qqCmvWrMGdd96JW265BS+++CLmz5+PhQsXZn1eVS1++7uhoQHNzc3Yu3dvxscsXrwYHMdh3759hm558+bNRpda55xzzsGaNWtwzz33jHmODz/8EAMDAzjppJOM22RZxj333IM//vGPeO2119De3o6//OUvWL9+PVpaWgBoRd6HH36IZ555Brfffnve79PMPtHZtWsXvv3tb+Pcc8/F5ZdfnvI8s2bNQltbm+XX/93vfmfoenPJR0KhEL73ve/B6XTi17/+dVrtdDLLli0DALS3t6cUwZdddhkWLFiA6667DgBIIUwgEEoGzzGGHGJmbeZBXcLBDymCJzGSJOFvf/sbbrzxxpQOIgBceeWVWL9+PS644AKcfPLJ+I//+A+89dZbePHFF3HWWWcZj5s9ezYkScJnn32GQw89FIC2DB8IBIq+vUNDQ+jq6krr1KCzc+dOiKKI+vp6AMDNN9+Ma665xri/t7cXF198MR544AEsXbo07XOcddZZYzquF198sTF8BsCwF6Pp1NlShmEKugAwu0/09/rtb38bX/nKV9Lawq1ZswZr167Fq6++OkYXrKoqQqFQWl3w1KlTTW1rKBQy9L2PPPII7HZ7zr/57LPPAMDYP8lcfvnlYFkWP/7xj6EoCs444wxT20EgEAhW4NlEEUzkEJMeUgRPYl5//XX4/X587WtfG1MMnXbaaVi3bh0uuOACOJ1OrF69Gr/61a/Q1taWUpzMnTsXra2tuPXWW/HTn/7UGIwbLfm4/vrr0djYiGuvvdbUtoXDYTz88MM49dRTUV9fj/379+OBBx5ATU2NUdC1t7fjhRdewAknnICamhq0tbXh7rvvxqJFi3D44YcDwBirN92ea8aMGWhqakp5v9deey1OOeUU1NTUpHQpAc2ara6uDnPmzAEAzJkzB9OnT8d//Md/4IYbbkB1dTVeffVVvP322ym63NG88soruP/++zP6CZvdJzt37sS3vvUtHHvssbjooovQ19cHQCvCdVeFL33pS3jllVdw7bXX4vLLLzfkLTt27MCTTz6JCy+8MG+LtFAohO9+97uIRqO49957EQqFEAqFAAA+nw8Mw2Djxo3YvHkzVqxYAbfbjS1btuCuu+7C6tWrM1rwXXrppaBpGtdffz0URTF00QQCgVAsHBwNQVKIHIJAiuDJzLp169Da2pq2G3jqqafit7/9raGtPfPMM3HppZfiqKOOGlPA3HPPPfj3f/93nH/++aivr8ePfvQj7Nq1K6Uz2NXVNaZrmg2GYbBjxw48//zzCP7/7d17XMz5/gfwV1dTJKmsJOVgBpUkbdtN7reVtdalRTm0JJdzXPYheywn5KSfS1boZDvr0uKgyBbrsaxj3S+5rtwTQpQuNE1bpr6/Pzp9z8425VKqMa/n4zGPh+/n85nv5/31Nnn3nc98pqAAlpaWcHNzQ2RkpLjzg4GBAU6fPo24uDgUFhbCysoKPj4+mD59+ht/uCo9Pb3SFz1Ux8DAAFFRUVi3bh2mTJkChUKBNm3aYNmyZfDx8anyeQUFBUhPT6+y/3VzcvjwYeTm5iIpKQlJSUniGGtraxw+fBhA+Q4QK1euxI4dO5CQkIDo6Gjo6enB1tYWw4YNg5eX12tf7x+lpqbi8uXLAFBpjfPPP/+M1q1bw9DQEPv378fatWtRUlKCVq1aYdSoUeI+wFX54osvoKenh3nz5qGsrAzDhg176ziJiP7IyEAPihIlXvymZBGs5XSEd7F48z2lUChw/fp1dOrUSe2G/xkZGbCxsany+eVrghUNak3wu/DkyRP4+Phg06ZNcHd3r+9w3gltyaW2eNf5fNXPBqo9paWluHTpErp27cqdRjTcu8rljF2XoCwrQ8qDfEQMdUBvWdVL7Kh21PXr8lX1WgXeCaYaO3XqFBQKBaRSKbKzs7F8+XJYW1uLW6oRERE1FBIDPdzJLv9cB+8EazcWwVRjSqUSkZGRyMjIQOPGjeHs7Fzlt6wRERHVJyMDXTwt+A0Ai2BtxyKYaszb2xve3t71HQYREdErGRno4WVp+UpQFsHa7fU/qURERESk4ST6/1uTyi3StBuLYCIiItIaEsPyItjIQA+G+iyDtBmzT0RERFrDyKC89DE14opQbccimIiIiLRGxXIILoUgFsFERESkNYwM/lsE80NxWo9FMBEREWkNFsFUgUUwERERaQ2JAZdDUDkWwQQAuHDhAjp16oTAwMD6DkVFWloapkyZAhcXFzg7O2PUqFF4/PgxACA/Px9LlizBgAED4OTkhJ49eyIsLAwFBQUq50hPT0dwcDDc3NzQrVs3+Pn54fTp09XOK5PJ1D5iY2PFuSMiIjBw4MBq534b8+bNE+ezt7dHnz59EBERAYVCAQB4+PChSkyurq4YO3Yszp49q3KezMxM/O1vf4OXlxccHBzQq1cvhIWFIS8vr8Yx3rhxA7Nnz4aPjw+6dOmCQYMGYfPmzSpj/hhnxePo0aPimN27d1f6ZsG0tDT06NED06dPR0lJSY1jJSL6PYn4wTgWwdqOH40kAEBCQgLGjRuH+Ph4PH78GK1atarvkPDgwQOMGTMGn332Gf7yl7/AxMQEaWlpaNSoEQAgKysLWVlZCAkJQfv27fHo0SOEhoYiKysLa9asEc8TFBQEOzs7bN68GRKJBJs3b8aUKVNw8OBBWFpaqp37+PHjKsdHjx7F/PnzMWDAAHHu7OxszJ07Fx06dKhy7rfl7e2N8PBwKJVKpKSk4Ouvv4ZCocCiRYvEMZs2bUL79u2Rk5ODyMhITJ48GUlJSbCxsUFGRgZGjx4NOzs7rFq1Cq1bt8bt27exfPlyHDt2DDt27ECzZs3eOr6rV6+iefPmWL58OaysrHDhwgUsXLgQenp6GDdunMrYijgrmJqaVnneK1euYNKkSejTpw+WLFlSJ98xT0TahcshSCTQayssLBRSUlKEwsJCtf0PHjyo9vllZWWCXC4XysrK3kV4b62wsFBwdnYW0tLShJkzZwpRUVFi36hRo4Tly5erjM/JyRE6d+4snDp1ShAEQXj69KkwadIkwdHRUejVq5fwww8/CL169RI2btxYo7hmzpwpfPnll2/0nP379wv29vbCy5cvxVilUqlw7tw5cUxBQYEglUqFkydPvvZ5g4ODhYCAAPFYXS7/OPfbCgkJEYKDg1Xa5s+fL3h6egqCIAgZGRmCVCoVrl27JvY/efJEkEqlwvbt2wVBEITAwEChR48eQlFRkcp5srKyBCcnJ2HhwoU1ilGd0NBQwd/fXzxWF+cfJSQkCC4uLoIgCMLJkyeFrl27CsuWLav12F7lXb82X/WzgWqPUqkUUlJSBKVSWd+hUA29q1zezioQuv/fz8K+q5m1el6qWl2/Ll9Vr1Xgcoh37EV+CbKfFiH7aRGeZRUh51kxnmUViW21/XiR/+ZvH+/fvx9t27bFn/70JwwdOhS7d++GIJR/paSvry/27dsnHleMNzc3x4cffggACAkJQVZWFuLi4hAVFYWdO3ciJyenRn9vZWVlOHLkCOzs7BAYGAh3d3eMHDkShw4dqvZ5crkcTZo0gb5++ZscZmZmaNeuHRITE6FQKKBUKrFjxw5YWFjA3t7+tWJ59uwZfvnlF4wYMeKN5lZn9+7dkMlkrzXv70kkErx8+bLafgBQKpXIz8/H8ePHMWbMGLG9gqWlJXx9ffHjjz+q5LQ2FBQUqL27HBwcDHd3d/j5+eHAgQNqn3vw4EEEBQUhODgYISEhtRoXEdHvNWlU/jO6uTHvBGs7Lod4h4qKlPj3pjuo5VqjWjo6gH+QFEZvsAl4fHw8hg4dCqD8bXiFQoFTp07Bw8MDgwcPRnh4OM6fPy+u3UxOTsaQIUOgq6uLtLQ0nDx5EvHx8XB0dAQAhIWFoX///jW6jpycHCgUCnz77beYOXMmvvzySxw7dgzTp0/Hli1bxAL89/Ly8rB+/XqMHj1abNPR0cHGjRsRHByMbt26QVdXF+bm5oiNjUXTpk1fK5Y9e/agcePG1V6TurnVMTExQdu2bV9r3gpXrlxBUlIS3N3d1fYrFAqsXLkSenp6cHV1xf379yEIAtq1a6d2fLt27fD8+XPk5ubC3Nz8jWKpysWLF3HgwAHExMSIbcbGxvjqq6/QrVs36Ojo4PDhw5g1axaKi4vxySefqMT/17/+FUFBQZg8eXKtxENEVJWWTSX4ZoQTXG2b13coVM9YBL9DRkb68PtzexQXl/63RUDRb7/BSCIBoPNO5mzUSO+NCuC7d+/i119/xdq1awEA+vr6GDx4MBISEuDh4YHmzZvDw8MDP/zwA7p3746MjAxcvHgRoaGhAMo/dKavr69yV9XW1rbadZ+vo6ysDADQp08f/PnPfwYAdOrUCRcuXMC///3vSkWwXC5HUFAQ2rVrh+nTp4vtgiAgNDQU5ubm2Lp1KyQSCXbt2oWgoCDEx8ejRYsWr4wlISEBvr6+4lrkP6pqbnX69euHfv36vXLOI0eOwNnZGUqlEkqlEn369MGCBQtUxvj5+UFXVxdFRUWwtLREeHg4ZDIZLl++XO25K+4A6+hU/jf4+PFjfPzxx+JxUFAQpkyZUu35bt++jalTp2Lq1Knw9PQU25s3by7mDgAcHR3x4sULxMbGqhTBjRo1gouLC3bt2oUhQ4ZUWbwTEdUWj7a1cwOANBuL4HesaTND8c+CIEChEGBsbKS2AKkP8fHxUCqV6NGjh9gmCAL09fXx/PlzmJqawtfXF0uXLsWCBQuQnJyMDh06oGPHjtWet6ZvtZuZmUFfX79SQdSuXTucP39epU0ul+OLL76AsbEx1q1bBwOD/73Fdfr0aRw5cgTnzp1DkyZNAAD29vY4efIkEhMTX3nnMSUlBenp6Vi9erXafrlcjkmTJqmduybc3NwQGhoKfX19tGjRQu15IyMj0b59e5iYmMDMzExsb9OmDXR0dHDnzh307du30vPu3r0LU1NTledUaNGiBRITE8XjV/0yc+fOHYwfPx6jRo3C1KlTX3ldTk5O2LVrl0qbnp4e1q9fjxkzZiAgIACbN29W+SAdERHRu8A1wVpMqVRi7969mDdvHhITE8XH3r170apVKyQlJQEA+vbti5KSEhw7dgzJycni0gkAaNu2LZRKJa5duya23b9/Hy9evKhRbIaGhnB0dER6erpK+71792BtbS0ey+VyBAYGwsDAANHR0ZXu1hYVFQGofNdTR0dHvNtcnfj4eNjb26st+l81d00YGRnB1tYW1tbWVRbWVlZWaNOmTaVi1szMDJ6enti2bRt+++03lb7s7GwkJSVh0KBBan8R09fXh62trfiobgeJ27dvIyAgAMOGDcOsWbNe67quX7+udkcOQ0NDREVFwdHREQEBAbh169ZrnY+IiOhtsQjWYkeOHMHz588xYsQISKVSlcfAgQMRHx8PoHxtZ+/evfHNN98gLS0NQ4YMEc/Rrl07eHh4YOHChbhy5QquXbuGBQsWQCKRqBRZc+fOxcqVK98ovsDAQPz444/YuXMn7t+/j++//x7/+c9/8PnnnwMoL0InTpwIhUKBpUuXQi6XIzs7G9nZ2SgtLV+C0rVrVzRt2hTz5s3DjRs3kJ6ejoiICDx69Ag9e/YU5xo4cCAOHjyoMr9cLseBAwcwcuTISrHJ5XJMnToVRUVFVc6tzsGDBzFw4MA3+nt4GwsWLEBJSQkCAwNx7tw5ZGZm4ujRo5g4cSI++OCD1y5aq1JRAHt4eGDChAnitefm5opj9uzZg6SkJKSlpeHu3bv417/+hbi4OPj7+6s9Z0Uh7OzsjPHjx+PmzZs1ipGIiKg6XA6hxeLj4+Hh4QETE5NKff3798c///lPpKamwt7eHkOHDsXkyZPh6upaaQ/hiIgIzJ8/H2PHjoWlpSVmz56NO3fuqNwZzczMhK7um/3O1a9fP4SGhmLDhg0ICwtD27ZtsWbNGvEDeqmpqeL61z+us/3555/RunVrNG/eHLGxsVi9ejXGjx+Ply9fokOHDli3bp3K3d309PRKX3RRsSvG74v+Cqmpqbh69Wq1c6tTUFBQ6e72u2BnZ4eEhASsXbsWs2bNQn5+PiwsLNC3b19MmzatRnsEA8CBAweQm5uLpKQk8R0DALC2tsbhw4fF4+joaDx+/Bi6urqws7PD0qVLVdYD/5GBgQFWr16NOXPmYPz48di0adMrl94QERG9DR2htvdJeo8pFApcv34dnTp1grGxcaX+jIwM2NjYVPn88jXBChgbGzeYNcHvwpMnT+Dj44NNmzZVuaOBptOWXGqLd53PV/1soNpTWlqKS5cuoWvXrvyyFQ3HXL4/6jqXr6rXKvBOMNXYqVOnoFAoIJVKkZ2djeXLl8Pa2rrS1+ESERERNRQsgqnGlEolIiMjkZGRgcaNG8PZ2RkrVqyotZ0SiIiIiGobi2CqMW9vb3h7e9d3GERERESvjbtDEBEREZHWYRFMRERERFqHRXAtq26PWCLSPvyZQETUMLEIrkWWlpZ49OgR/9MjIgDlBfCjR4/UfkseERHVL34wrhZJJBK0aNECmZmZULf9siAIKCgogImJCfeW1XDM5fvlXeazRYsWkEgktXpOIiKqORbBtUwikVT5bWEVm0V37NiRG39rOOby/cJ8EhFpHy6HICIiIiKtwyKYiIiIiLQOi2AiIiIi0josgomIiIhI6/CDcW+grKwMAFBUVPRWz6/YOk2hUPDDNxqOuXy/MJ/vD+by/cFcvj/qOpcVdVpF3VYVHUHdXl6kVk5ODu7du1ffYRARERHRK9jZ2cHc3LzKfhbBb0CpVOL58+do1KgRdHW5koSIiIiooSkrK0NxcTFMTU2hr1/1ogcWwURERESkdXg7k4iIiIi0DotgIiIiItI6LIKJiIiISOuwCCYiIiIircMimIiIiIi0DotgIiIiItI6LIKJiIiISOuwCCYiIiIircMiuA5t3boVvXv3hqOjI4YPH46UlJT6Dole4dy5c5gyZQq8vLwgk8lw6NAhlX5BEBAVFQUvLy906dIF/v7+uH37dj1FS9WJiYnBZ599BmdnZ7i7u2Pq1Km4e/euyhjmUzNs27YNvr6+6NatG7p164bRo0fjl19+EfuZR80UExMDmUyGpUuXim3MpeaIioqCTCZTeXh6eor9DTGXLILryP79+xEeHo7g4GAkJibCxcUFkyZNwuPHj+s7NKqGQqGATCbDwoUL1fZ/++232LhxIxYuXIj4+HhYWFhgwoQJkMvldRwpvcrZs2cxduxY7Ny5Exs3bkRpaSkCAwOhUCjEMcynZmjZsiW+/PJLJCQkICEhAR999BGmTZsm/ofKPGqeK1euYMeOHZDJZCrtzKVm6dChA44fPy4+kpKSxL4GmUuB6sSIESOEhQsXqrQNHDhQWLFiRT1FRG9KKpUKBw8eFI/LysoET09PISYmRmwrLi4WXFxchO3bt9dHiPQGcnJyBKlUKpw9e1YQBOZT07m6ugo7d+5kHjWQXC4X+vfvL5w4cUIYN26cEBYWJggCX5OaZs2aNcLQoUPV9jXUXPJOcB0oKSlBamoqvLy8VNo9PT1x8eLFeoqKaurhw4fIzs5WyauhoSFcXV2ZVw1QUFAAADA1NQXAfGqq0tJS7Nu3DwqFAs7OzsyjBlq8eDF8fHzg4eGh0s5cap779+/Dy8sLvXv3xqxZs5CRkQGg4eZSv95m1iJ5eXkoLS2Fubm5SruFhQWys7PrKSqqqYrcqcsrl7k0bIIgIDw8HC4uLpBKpQCYT01z8+ZN+Pn5obi4GMbGxli3bh3at2+PCxcuAGAeNcW+fftw7do1xMfHV+rja1KzdOnSBREREbCzs0NOTg6io6Ph5+eH5OTkBptLFsF1SEdHR+VYEIRKbaR51OWVGrbFixfj1q1b2LZtW6U+5lMztG3bFomJiXjx4gV++uknhISE4Pvvvxf7mceGLzMzE0uXLsV3332HRo0aVTmOudQMPj4+Ksddu3ZFv379kJiYCCcnJwANL5dcDlEHzMzMoKenh2fPnqm05+TkwMLCop6iopqytLQEAOZVwyxZsgSHDx/G5s2b0bJlS7Gd+dQshoaGsLW1haOjI+bMmYOOHTtiy5YtzKMGSU1NRU5ODoYPH47OnTujc+fOOHv2LOLi4tC5c2cxX8ylZjI2NoZUKsW9e/ca7OuSRXAdMDQ0hL29PU6cOKHSfvLkSTg7O9dTVFRTrVu3hqWlpUpeS0pKcO7cOea1ARIEAYsXL8ZPP/2EzZs3w8bGRqWf+dRsgiCgpKSEedQgH330EZKSkpCYmCg+HBwc4Ovri8TERNjY2DCXGqykpARpaWmwtLRssK9LLoeoIxMmTMDcuXPh4OAAZ2dn7NixA5mZmfDz86vv0KgahYWFePDggXj88OFDXL9+HaampmjVqhUCAgIQExMDOzs72NraIiYmBhKJBEOGDKnHqEmdRYsWITk5GevXr0fjxo3FNWomJiaQSCTQ0dFhPjXEqlWr0KNHD7Rs2RKFhYXYv38/zp49i9jYWOZRgzRp0kRck1/B2NgYzZo1E9uZS80RERGBXr16wcrKCrm5uYiOjoZcLsenn37aYF+XLILryODBg5GXl4f169cjKysLUqkUGzZsgLW1dX2HRtW4evUqAgICxOPw8HAAwKeffoply5Zh0qRJKC4uxqJFi/D8+XM4OTnhu+++Q5MmTeorZKrC9u3bAQD+/v4q7eHh4Rg+fDgAMJ8a4tmzZ5g7dy6ysrJgYmICmUyG2NhYcWN+5vH9wVxqjidPnmD27NnIz8+HmZkZunbtip07d4p1TkPMpY5Q36uSiYiIiIjqGNcEExEREZHWYRFMRERERFqHRTARERERaR0WwURERESkdVgEExEREZHWYRFMRERERFqHRTARERERaR0WwURERESkdVgEExG9h6KioiCTyep8XplMhqioqDqfl4joTfFrk4mI3kMjR46Et7d3fYdBRNRgsQgmInoPtWzZEi1btqzvMIiIGiwuhyAiaiDu3buHOXPmwN3dHQ4ODhg0aBC2bt0q9p85cwYymQx79+5FeHg4PD090aVLF4wbNw7Xrl1TOZe65RCnTp2Cv78/3Nzc0KVLF/Ts2RMzZsxAUVGROCY/Px+hoaHw9vaGg4MD+vTpg8jISJSUlKicSy6X4+uvv4abmxucnZ0RGBiI9PT0t7ouIqL6wDvBREQNwJ07d+Dn5wcrKyuEhITA0tISx48fR1hYGPLy8jB9+nRxbGRkJDp37oywsDAUFBRg7dq18Pf3R2JiImxsbNSe/+HDhwgKCkL37t2xdOlSNG3aFE+fPsWxY8fw8uVLGBkZobi4GAEBAcjIyMCMGTMgk8mQkpKCDRs24Pr169iwYQMAQBAETJ06FRcvXsS0adPg6OiICxcuYNKkSTW6LiKiusQimIioAQgPD0fjxo2xfft2NGnSBADg6emJkpISbNiwAf7+/uLY5s2bY926ddDR0QEAuLi4YMCAAYiJiUFYWJja86empqK4uBhz585Fx44dxXZfX1/xz3v27MHNmzexevVqDBo0SIzB2NgYK1aswIkTJ+Dp6Yljx47hzJkzmD9/PgICAsRxBgYGiIyMfOPrMjU1relfHxHRG+NyCCKielZcXIzTp0+jX79+kEgkUCqV4qNHjx4oLi7GpUuXxPFDhgwRC2AAsLa2hrOzM86cOVPlHJ06dYKBgQEWLFiAPXv2ICMjo9KY06dPw9jYGAMHDlRpHz58OIDy5RQAxHl+X0BXxFWT6yIiqku8E0xEVM/y8/OhVCoRFxeHuLg4tWPy8vJgZWUFALCwsKjUb2FhgRs3blQ5R5s2bbBp0ybExsZi8eLFUCgUsLGxgb+/P8aPHy/GYWFhoVJgA4C5uTn09fWRn58vjtPX14eZmZnKOEtLy7e6LiKi+sAimIionjVt2hR6enr45JNPMGbMGLVjWrdujVu3bgEAnj17Vqn/2bNnaNasWbXzdO/eHd27d0dpaSmuXr2KuLg4/OMf/4CFhQU+/vhjNGvWDJcvX4YgCCqFcE5ODpRKpVj0NmvWDEqlEnl5eSqFcHZ29ltdFxFRfeByCCKiemZkZAQ3Nzdcu3YNMpkMjo6OlR6/LzaTk5MhCIJ4/OjRI1y8eBEffvjha82np6cHJycn/P3vfwdQvl4YANzd3aFQKHDo0CGV8YmJiWI/ALi5uQEAkpKSVMYlJyfX6LqIiOoS7wQTETUA8+fPx5gxYzB27Fh8/vnnsLa2RmFhIR48eIDDhw9jy5Yt4tjc3FxMmzYNo0aNQkFBAaKiomBoaIigoKAqz799+3acPn0aPXv2hJWVFYqLi5GQkAAA8PDwAAAMGzYMW7duRUhICB49egSpVIrz588jJiYGPj4+4jgvLy+4urpi+fLlKCoqgoODAy5cuIC9e/fW6LqIiOoSi2Aiogagffv22L17N9avX4/Vq1cjNzcXJiYmsLW1hY+Pj8rYWbNm4ddff8VXX30FuVyOLl26YNWqVWjTpk2V5+/UqRNOnDiBqKgoZGdnw9jYGFKpFNHR0fDy8gIANGrUCFu2bEFkZCRiY2ORl5eHDz74ABMnTlTZykxXVxfR0dEIDw9HbGwsXr58iW7dumHDhg3irhJvc11ERHVJR/j9e2pERNRgnTlzBgEBAfjmm28q7eBARERvhmuCiYiIiEjrsAgmIiIiIq3D5RBEREREpHV4J5iIiIiItA6LYCIiIiLSOiyCiYiIiEjrsAgmIiIiIq3DIpiIiIiItA6LYCIiIiLSOiyCiYiIiEjrsAgmIiIiIq3z/4HExWqJOGrUAAAAAElFTkSuQmCC", + "text/plain": [ + "

" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "data = pd.DataFrame(plot_data)\n", + "\n", + "sns.set_style('whitegrid')\n", + "plt.figure(figsize=(8, 6))\n", + "\n", + "for key in plot_data:\n", + " if key == 'x':\n", + " continue\n", + " label = plot_settings[key]['label']\n", + " line = plt.plot('x', key, data=data, linewidth=1, label=label)\n", + "\n", + "plt.xlabel('episode')\n", + "plt.ylabel('reward')\n", + "plt.title('Random vs. SB3 Agents')\n", + "plt.legend()\n", + "plt.show()" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "p3.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/trade_flow/environments/gym_anytrading/examples/SB3_a2c_quantstats.html b/trade_flow/environments/gym_anytrading/examples/SB3_a2c_quantstats.html new file mode 100644 index 0000000..6bfbad3 --- /dev/null +++ b/trade_flow/environments/gym_anytrading/examples/SB3_a2c_quantstats.html @@ -0,0 +1,28968 @@ + + + + + + + + + Tearsheet (generated by QuantStats) + + + + + + + +
+ +

Strategy Tearsheet
10 Jun, 2009 - 29 Aug, 2018

+

Generated by QuantStats (v. 0.0.62)

+
+ +
+ +
+ + + + + + + + 2023-08-27T15:27:48.522329 + image/svg+xml + + + Matplotlib v3.7.2, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ + + + + + + 2023-08-27T15:27:48.723627 + image/svg+xml + + + Matplotlib v3.7.2, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + 2023-08-27T15:27:48.913058 + image/svg+xml + + + Matplotlib v3.7.2, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + 2023-08-27T15:27:49.065073 + image/svg+xml + + + Matplotlib v3.7.2, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + 2023-08-27T15:27:49.209090 + image/svg+xml + + + Matplotlib v3.7.2, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+
+ + + + + + + 2023-08-27T15:27:49.425112 + image/svg+xml + + + Matplotlib v3.7.2, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + 2023-08-27T15:27:49.617134 + image/svg+xml + + + Matplotlib v3.7.2, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + 2023-08-27T15:27:49.906033 + image/svg+xml + + + Matplotlib v3.7.2, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + 2023-08-27T15:27:50.122231 + image/svg+xml + + + Matplotlib v3.7.2, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + 2023-08-27T15:27:50.330257 + image/svg+xml + + + Matplotlib v3.7.2, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + 2023-08-27T15:27:50.620214 + image/svg+xml + + + Matplotlib v3.7.2, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+
+ + + + + + + 2023-08-27T15:27:50.883623 + image/svg+xml + + + Matplotlib v3.7.2, https://matplotlib.org/ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
+ +
+ + + +
+ + + diff --git a/trade_flow/environments/gym_anytrading/examples/SB3_a2c_quantstats.ipynb b/trade_flow/environments/gym_anytrading/examples/SB3_a2c_quantstats.ipynb new file mode 100644 index 0000000..4676e75 --- /dev/null +++ b/trade_flow/environments/gym_anytrading/examples/SB3_a2c_quantstats.ipynb @@ -0,0 +1,522 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "\n", + "import gymnasium as gym\n", + "import gym_anytrading\n", + "from gym_anytrading.envs import Actions\n", + "\n", + "from stable_baselines3 import A2C\n", + "\n", + "import quantstats as qs" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Create Env" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "observation_space: Box(-10000000000.0, 10000000000.0, (10, 2), float32)\n" + ] + } + ], + "source": [ + "df = gym_anytrading.datasets.STOCKS_GOOGL.copy()\n", + "\n", + "window_size = 10\n", + "start_index = window_size\n", + "end_index = len(df)\n", + "\n", + "env = gym.make(\n", + " 'stocks-v0',\n", + " df=df,\n", + " window_size=window_size,\n", + " frame_bound=(start_index, end_index)\n", + ")\n", + "\n", + "print(\"observation_space:\", env.observation_space)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Train Env" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "env.reset(seed=2023)\n", + "model = A2C('MlpPolicy', env, verbose=0)\n", + "model.learn(total_timesteps=1_000)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Test Env" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "action_stats: {: 1351, : 973}\n", + "info: {'total_reward': 625.4919891357422, 'total_profit': 0.00048684219339681156, 'position': }\n" + ] + } + ], + "source": [ + "action_stats = {Actions.Sell: 0, Actions.Buy: 0}\n", + "\n", + "observation, info = env.reset(seed=2023)\n", + "\n", + "while True:\n", + " # action = env.action_space.sample()\n", + " action, _states = model.predict(observation)\n", + "\n", + " action_stats[Actions(action)] += 1\n", + " observation, reward, terminated, truncated, info = env.step(action)\n", + " done = terminated or truncated\n", + "\n", + " # env.render()\n", + " if done:\n", + " break\n", + "\n", + "env.close()\n", + "\n", + "print(\"action_stats:\", action_stats)\n", + "print(\"info:\", info)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot Results" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABR4AAAI6CAYAAABBxVTpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeVxU5f4H8M+ZYWAGRnAYcEHcEFFwB1REjdQWy73FyjaztL1bt7r5a7mtt2vZfrtXUzMrb4tZltu10lxIxQVcARfcARUYBnCGWXDO+f0xzMgwMzDAoKKf9+vV7zbnPOecZ5ChHx+/z/MVJEmSQERERERERERERORHsks9ASIiIiIiIiIiIrryMHgkIiIiIiIiIiIiv2PwSERERERERERERH7H4JGIiIiIiIiIiIj8jsEjERERERERERER+R2DRyIiIiIiIiIiIvI7Bo9ERERERERERETkdwweiYiIiIiIiIiIyO8YPBIR0RVNkqRLPQUiusLx54zv+LUiIiK6ugRc6gkQEdHV6bPPPsP8+fMbdM3OnTsbND4nJwfvvPMOvvzyywZdV1NhYSHGjx+P6Oho/Pzzz/WOnzFjBrKysjyek8lkUKlUaN++PYYPH477778farW60XNrSVavXo2///3vGDt2LF577bUm3UuSJKxYsQLLli3DkSNHYLPZEBcXh7vuugs33HCD2/jy8nIsWrQIGzduxJkzZxAQEIDu3bvjtttuw0033eQ2fsGCBZg7d67X57/88suYOHFig+ddVVWF++67D4cPH8by5csRFRXlNiYrKwtffvkl9u3bh6qqKnTu3BkTJ07ExIkTERBQ9//bJkkSHn30UZw5c8br92plZSW++uor/P777zh9+jQ0Gg0SExPxwAMPICYmxuM1mzdvxtdff43c3FxUVVUhKioKN9xwA+6//34EBQX59T34086dO/HII4806Jq5c+ciOTnZ5/ElJSX46KOPMGnSJCQlJTV0ik7jxo3D6dOnsWrVKrRt27bOsd5+dgqCAIVCgdatWyMhIQG33347Bg8e3Og5+eLs2bN47733kJmZCbPZjLZt2+Jf//oXJk6c6PYz8+TJk5g9ezb+7//+z+P3fkPYbDb8/PPP+PHHH3Hq1CkEBQVh4MCBeOSRR9C5c+cG3Wvbtm344osvcPjwYZw/fx49e/bE/fffj9TUVI/jc3JyMH/+fOTk5KCyshIxMTG46667MHr0aI/jT5w4gc8++wx79uxBWVkZOnbsiIkTJ2Ly5MmQyeqvAXn77bfx008/4dVXX8W4cePczp87dw7z5s3Dxo0bUVRUhJCQEPTt2xcPPPAA+vbt6xzn+G+ZL7z9fCIiImoMBo9ERHRJdO/e3S30KSgowN69exEeHu6XX5inTZuG8+fPN/k+jdG3b1906NDB5VhVVRXOnDmDnJwc5OXl4c8//8Tnn3+O4ODgSzLHlkiSJPz973/H//73P6hUKiQnJ8NoNGLPnj148cUXUVpaijvvvNM5vqSkBA8++CAKCgoQERGBwYMHw2AwYO/evdizZw/27duHv/3tby7POHjwIABgxIgRUCqVbnOIjo5u1NznzJmDw4cPez2/dOlSvPvuuxBFEZ06dUKXLl1w5MgRzJo1Cxs2bMDs2bOhUqm8Xv/JJ59g586dXudXXl6O6dOn4+jRo1CpVOjfvz9sNhvWrVuHP/74A2+//TbS0tJcrlmyZAneffddyGQy9O/fHyEhIdi7dy/mzZuHLVu24LPPPnMJH5v6HvxJq9W6/YwxmUzYsGEDAHgMnbVabYOe8eqrr2Lbtm2NCqKbqkOHDi7BEgBYrVbk5+djw4YN2LBhA5577jmXz4O/vfrqq9i5cyfat2+PQYMGITQ01GuY9vTTT+PkyZN+ee5bb72FFStWoHXr1khJScHZs2fx+++/Y/PmzZg3bx569uzp031WrFiB119/HYGBgUhOToYoiti5cyeeeuopvPjii7jllltcxmdkZODpp5+GJElITEyEUqnE9u3b8fLLL+PIkSN4/PHHXcYfOnQI06dPh9FoRL9+/ZCQkICdO3fivffeQ3Z2Nt58880657d582b89NNPXs+Xl5dj2rRpOHHiBNq2bYthw4ahqKgI6enp2LJlC/7xj3/guuuuAwAEBwd7/J6vOdcjR46gXbt2aN26dT1fOSIiogaQiIiILhPLly+XkpKSpOnTp/vlfoMGDZKSkpKadI+CggIpKSlJmjBhgk/jp0+fLiUlJUnLly/3OiYvL0+68cYbpaSkJGnBggVNml9LsWrVKikpKUl69dVXm3SfX375RUpKSpImT54sFRcXO4/v2rVLGjJkiDRo0CBJp9M5j//f//2flJSUJL388suS2Wx2Hj906JA0cuRIKSkpSdqyZYvLM8aNGyelpqZKVVVVTZprTbt27ZIGDhwoJSUlSUlJSVJBQYHL+WPHjjm/X7/77jvn8fPnz0sfffSRlJSUJH344Yce7202m6XXX3/deW9v36svv/yylJSUJN19993S6dOnncfz8vKkm2++WbrmmmtcvqalpaVSamqqlJqaKu3evdt5vKKiQrr33nulpKQk6euvv/bLe7hYHJ/npv5ccHj00UelpKQkaceOHU26z9ixY6WkpCTpzJkz9Y6dO3duvZ8lx+dkyJAhLn+m/jZ06FApKSnJ5fupqqpKOnbsmHTq1CmXsRMmTPD4vd9Q69atc34fnzt3znl86dKlUlJSknTnnXdKoijWe5+ioiJpyJAhUlpamnT48GHn8f3790vXXHONlJqaKp09e9Z53GQySddff700ePBglz/vU6dOSTfffLOUlJQk5eTkOI+LoijdeeedUlJSkrRq1Srn8dLSUufxtWvXep1fWVmZ878T3v6b8uGHH0pJSUnSzJkzJYvF4jy+evVqKSkpSRo5cqRktVrr/VoUFxdL1113nTRkyBDpwIED9Y4nIiJqCO7xSEREdJF169YNDz74IAB7RQv5buHChZDL5Zg1axYiIiKcx/v3749JkyahTZs2yMnJAQAYjUasX78ewcHBeOGFF1wq87p3746HHnoIAPDbb785j1dUVKCwsBDdu3f327Jgk8mE1157DVFRUYiMjPQ4ZsWKFbDZbBg9ejTuuOMO53G5XI4nnngCMTEx+O6776DX612u27JlC+655x4sX77crcK2JqPRiN9++w1yuRxvvvkm2rVr5zzXrVs3/OUvf4HRaHTZlmDXrl2wWCxITU1Fv379nMdbtWqF++67DwBcthVo7Hsg/xs/fjzi4+NhtVrx559/NttzqqqqAMDl+ykgIABdunRpdGVwfRYvXgwAeOaZZ1y2qrj11lsxePBgHD58GJmZmfXeZ8mSJbBarZgyZQpiY2Odx3v16oX7778fFosFy5Ytcx5fvXo1SktLcdNNN7ksx4+OjsaTTz4JAPjuu++cx7dt24bDhw8jKSkJN998s/O4RqPBzJkzAQDff/+91/nNmjUL5eXl6N27t9cxGRkZAOzV/YGBgc7jN910E2JiYlBeXo4jR47U+7V49dVXodfr8fjjj6NHjx71jiciImoIBo9ERNSirF69Gg899BDS0tIwdOhQ3Hnnnfjiiy9gNpudY1asWIHk5GTYbDYAQHJystveWL/99huefPJJXH/99UhJScGIESMwY8YMrFmz5qK8j/bt2wOwL5Wr7ezZs/jnP/+JsWPHYsiQIRg9ejRee+01FBQUOMccOXIEycnJuOuuu9yu/+STT5CcnIxnnnnG7dzf/vY3JCcn48CBA85jGRkZeO655zB69GikpKQgLS0N9913H77//nuIouhyfXJyMu69915s374dkyZNQmpqKm677TbodDoAgMViwYIFC3Drrbdi6NChuOWWW/DDDz94bSgxY8YMJCcn47PPPqv3a3bw4EHk5+cjNTUVXbt2dTv//PPPY8WKFRg2bBgAQK/XIyEhAYMGDfK4l2anTp0AAMXFxc5jhw4dAgDEx8fXOx9fffDBBygsLMRrr73mcU9EAMjLywMA59xrksvlSExMxPnz57F9+3aXc0899RROnDiBO+64Ax999JHXORw/fhw2mw0dOnTw+LVzBClbtmxxHnMsmS0qKnIbX1ZWBgAICwtr8nu43OzZswfPPfccrrvuOqSkpGDcuHGYNWsWzp496xxTWFiI5ORk53t55JFHkJycjMLCQueY/fv34+WXX3Z+jocPH4677roLCxYsgMViafb34QiiHUGvY85/+9vfsGbNGtx8880YOnQo7rvvPueWFOfPn8f333+Pe++9F8OGDcPw4cNx33334YcffnDZtuK1115z+xmbnJyMnTt3Op/jWH6+c+dOJCcnIz8/H4A9FK0Z3H322WdITk7GjBkz6n1P586dw759+xAWFoYBAwa4nb/22msB+PYXOo7vdcc19d1n69atAOC2HQFg/56Xy+Uun5+67t+vXz+Eh4dj9+7dMBqNbufXrFmD33//HdOnT0e3bt28vgdvn9Hz58/DYDAAcP2MerJ27Vps27YNCQkJHv97QkRE1FTc45GIiFoEURTxyiuv4Ndff0VQUBAGDBgApVKJXbt24d///jfWrVuHOXPmoFWrVoiOjsZNN92ENWvWQJIk3HTTTS57Vs2aNQtLly5FcHAw+vXrB6VSiePHjyMrKwtZWVkoKytr1n3RgAu/0Nb+pfLAgQN44oknUFZWhs6dO2PYsGEoLCzEypUrsXHjRnz66afo1asXunXrhvbt2yMvLw96vR4ajcZ5jx07dgAAdu/eDVEUnb+cOkKfyMhI5x5oX375Jf71r39BoVBgwIABUKvVKCwsRE5ODnJyclBQUIC//vWvLnMsLi7Gc889h+joaAwePBhlZWXQarWoqqrCk08+iaysLGg0GgwdOhTFxcV45513vDYuaQhHWNqrVy+Iooj09HTs3LkTZrMZPXr0wJgxY1z2D4yOjsbnn3/u9X6Oysg2bdq4PUOpVOLVV19FZmYm9Ho9OnXqhAkTJvjcEMJh8+bNWLZsGe655x7079/f6zhHMOut2ZBcLgdgDxBrGjVqFKZPn47Y2FiX0Kux9z916hTOnz+PgIAA9O/fHyqVCtnZ2Xj//fdx7733Qq1WY9u2bZgzZw6CgoJw++23N/k9XE6WLFmC9957D6Iook+fPmjTpg0OHTqEpUuXYu3atfj000/Rs2dP535527dvh06nw6BBg6DVap37ta5ZswZ///vfAdhDpl69eqG4uBj79u3D4cOHcfDgQcyePbtZ38vRo0cBuFYjAvYAf+PGjejVqxdiYmIQHByMgIAAWCwWPPXUU8jMzERISAgGDhwIAMjMzMQ777yDTZs24YMPPoBCoUDfvn1hs9lcfsYCnvfIdOy1uXHjRlRWVuLaa69t9D6fx44dgyRJ6Nq1q8fPYZcuXQCg3io/SZJw7NgxyGQyj0F8p06dIJPJcPToUUiSBEEQnPesWR3poFarERERgbNnz0Kn00Gr1Tq//t6Cw86dO6O0tBTHjh1zqWosLi7Gu+++i969e+P+++/H22+/7fV9pKam4tChQ3jnnXfw0ksvoV+/figpKcF//vMfFBUVYdSoUc6/5PLEYrHgk08+AQA8++yzDfrZRkRE5CsGj0RE1CIsWbIEv/76Kzp16oRPP/3U2XHTaDTipZdewp9//om3334b//znPzFgwAAMGDAAv/32G2w2m8sG/tnZ2Vi6dCk6duyIL774wiWQXLx4MT766CN8//33zRI8ms1mnDlzBitWrMDSpUshl8udS1YB+7LFF154AWVlZXj++eddlquuXLkSr7/+Ov7v//4PP/74IxQKBYYNG4YffvgBO3bscHZzrqiowMGDByGXy3Hu3DkcPnzYuXRu7969MBgMuP766wHYf8GdM2cOWrdujUWLFrksjfzjjz/wt7/9DT/99BOeeuopl2XHJSUlGDFiBN59910IguCsivzuu++QlZWFAQMG4KOPPkJISAgAewjzyiuvePyavPHGGzCbzT41M3BUTKlUKjz66KNuyym//PJLfPLJJx6DhNrKysrw7bffAgBGjhzpPO5oLPP1118jMjISvXv3RklJCXJzc/Hee+8hKysLs2bN8ukX9PLycrz55puIiYnBo48+WufYzp07Y8uWLdi1a5dbxaAkSdi7dy8AuC1Tfuedd+qdBwB07NjRGaSUl5e7VUHt3r0bgD3gr6ioQHh4OFq3bo23334br776Kr799lvn1wsAunbtitdeew0JCQlNfg+erF27Fp9//jlOnjyJtm3bYtCgQZg8ebJLgK3T6bBmzRrcfffdPn0N6nPgwAG89957CAwMxPvvv+9scCWKIhYsWIB58+bh+eefx48//ojWrVvjzTffxGOPPQadTodp06Y5q/isVitmz56NgIAAzJs3zyVU2rdvH6ZPn47169ejqKjIJfT2F0mS8OWXX+Lo0aMICQnB0KFDXc4XFBRgypQpzr9QcHx+//3vfyMzMxN9+/bFBx984PxMlpaW4umnn8bWrVsxd+5cPPnkk7jllltwyy23ePwZWzsA79q1K958801MnDgRlZWV+Otf/+rSMfmOO+7AjTfe6LGRU20lJSUA4LLNQk2O444KbG8qKipgtVqh0WigUCjczgcEBKB169YoLS2F0WiEWq123rOuZ589exalpaXQarWNnuubb74Ji8WC1157zRnWe/PQQw/h2LFj2Lhxo1tjmwceeKDeKtIVK1agsLDQbTsFIiIif+JfaxERUYvwzTffAIBzrzyHkJAQvPXWW1Cr1Vi7di3OnDlT530MBgNGjBiBxx9/3C3suvXWWwGg3nv44vXXX3cuP3T8M2zYMNx222348ssvERkZiffee88llPjjjz9QUFCAESNGuISOADB27FiMHDkShYWFWLduHQA4AwVHhSNgr04SRdEZpu3atct5zrFU0BEK6XQ6jBgxAtOnT3fbj23kyJFo3bo1zGazc1ltTXfeeScEQQBwYbmfo/vqSy+95AwdAWD06NHOzqq1tWvXDl26dPEpeHQsHVywYAGOHTuGWbNmYf369Vi6dCmuv/56nD59Gk8//bTLsntPrFYrZs6ciYqKCgwcONAlJHMEj3fddRdWrFiB2bNn44svvsBXX32Fdu3a4Y8//sCSJUvqnStgr6zV6/V1LrF2GDNmDARBwDfffOOyJ58kSViwYAFyc3Odc2+MsLAwDBs2DGazGa+++irOnTvnPJefn48PP/zQ+brmM+Li4pCWlgaFQoH+/fsjNTUVYWFhOH78OL755huXsf56DxkZGZg5cybKy8sxaNAgVFRUYOnSpbjjjjvwzDPPYOnSpZg/fz6mTJlSZ5fwhnJsLfDggw86Q0fA/v09Y8YMJCUl4fTp0/j999/rvI9Op0Nqairuvfdet/35+vTpg7i4OABN/zmza9cuvPLKKy7//PWvf8W4cePw6aefQi6X46WXXkJoaKjbtTWX1MpkMpjNZvz444+Qy+V4++23XT6P4eHhePvttyGXy7FkyRK/LxNv3bo1unTp4laZ6YnJZAIAryGl43PmGNfY+3i6l+N/vX2WHccrKysbPdelS5diy5YtePzxx53Vm3VRKpUYPXo02rRpg3bt2uGaa65x/kXTihUrsHPnTq/XSpLk3JNy2rRp9T6LiIiosVjxSEREl70zZ86gsLAQbdu2Rd++fd3Oq9VqpKam4rfffkNWVpbLRv61DR482CVUAOzLzY4fP459+/ZBEARnw4Sm6Nu3r3OPNYvFgszMTJSXl6Nt27aYOXMmhgwZ4ta8xPFLYlJSksd7DhkyBOvWrUNWVhZGjx6N5ORkBAUFueyZt337dgiCgPvvvx+///47MjMzndWbmzdvRlBQkPP99+zZE//85z9dnnH+/HmcPHkS+/fvd+7f5unr4QhPHIqKinDq1Cl06NDB4y/MaWlp9QY29XEEVgaDAQsWLHBW6LRq1Qpvv/02CgsLkZ2djf/973+YNGmSx3uYzWY8//zz2LlzJ6KiovDWW2+5nP/yyy9RUFDgtpwyLi4Ozz33HJ577jn88MMP9VbEOvZoe/DBB12qAr3p2bMnHnnkEcyZMwdPP/00evTogfbt2+PIkSM4ffo0Jk2ahGXLljWp4c3MmTNx+PBh/Pnnn5g4cSJ69eoFq9WKffv2ISEhAUqlEnl5ec5nnDp1CtOnT4dMJsNXX32F7t27A7Dvs+fY9kAul+ONN97w63soLi5GUlISPv74YyiVShiNRsydOxfff/890tPTkZ6eDsC+dHvMmDGN/nrU5miU46gIru2GG25AZmYmsrKy6nxu+/btXSoAAcBmszm/Px1BflN/zhQUFLjs+wrYg6g2bdpg3LhxmDx5sse9Slu1auW2/DY3NxcWiwX9+/f3GABGR0cjISEB+/btQ25ubp3bBjQnRwWg4y89vKm9N21j71PzXjKZzLnsui6OLQcaOtdTp07h448/RmJios97LX788cf4+uuvMWXKFJfK9PT0dMycORPPPfccvv76a49bXWzbtg3Hjx9H3759L9mfJxERXR0YPBIR0WXPsWStrr2qHCFffUvsAHv4tGLFCmzcuBHHjh1DUVGR8xdKb01QGmrSpEkuDW1MJhNeeuklbNq0CXPmzEG/fv3cKpEczSvee+89vPfee17v7RinVCqRnJyMzZs3o7CwEFFRUdi5cye6du2Knj17IioqyrmEtqSkBIcPH8aQIUNcKnDOnz+P3377Db///juOHj2KM2fOOANHxy/Mtb8mMpkMrVq1cjnmaNDibelozSrVxnLMu3v37m7LAgVBwKRJk5CdnY2dO3d6DB5LS0vx7LPPYt++fYiKisKcOXPc9qRTqVQe93ADLjSQOHHiBEwmk9d96hx7tMXFxWH69Ok+v78HH3wQMTEx+Prrr3Hw4EEUFhZiwIAB+Oc//4njx49j2bJlbl/3hmjTpg2++uorzJs3Dxs2bMCOHTsQFRWFhx56CPfcc4+zytbxjP/85z8oKSnBrFmznKGj4/wbb7yBSZMmYc2aNXj00Uedn01/vIeIiAjMmjXL+ecdEhKCZ599Ftdddx0+/fRTZGdno0OHDnjqqaec+xD6Q30/ZxryM0aSJKSnp2PlypXIy8tDYWGhszmLt89VQ40dOxavvfZag6/zVAHp+PzW9TM2KioK+/btc36dLgXH94S3qmZHNaZjr01vHJ/duqo3a99LpVLh3LlzsFgsHqseHeMd93bM1dszat7fZrPh1VdfhSAIzv+tz9GjR7F48WLExsbiL3/5i8uy7OHDh2Pq1Kn47LPPsHjxYud+ozU5/iJo7Nix9T6LiIioKRg8EhHRZc+XX9AdYZmn/bpqKi4uxvTp05Gfn49WrVqhV69eGDVqFOLi4pCcnIzx48fXWy3TGCqVCm+//TbuvfdeHDp0CDNnzsS///1vl18wHc91NKrwpuYehkOHDsXmzZuxfft2DBs2DMeOHXM2/EhKSsKKFStw9OhRZGdnQ5IkDB8+3HmtyWTCww8/jJycHKhUKiQkJGDo0KGIjY1FUlISnnrqKbeKKsBzBU99vyjXt1eZLxwNdLyFmI5KLU9Lw0+cOOF8P926dcO//vWvBu+vFxAQgNDQUOj1epjNZq/B48KFC1FRUYEuXbrg9ddfdzlXWloKwN7pWqVSYdq0aS5/niNGjMCIESPc7rlhwwaX99hYGo0GL7zwAl544QWX41arFQUFBdBoNM5QxVEBWLtCGLCHV3369MGff/6JQ4cOuQRWTX0PQ4YM8Xi8X79+mD9/fp3XNkV9P2d8/Rljs9nw3HPPIT09HQqFAvHx8UhOTka3bt3Qv39/fPTRRy7bI1xsnj6rvvyMdfx8CgwM9PucfBUZGQnAe/hb376KDiEhIVCpVCgrK3M2U6rp/PnzKCsrQ1BQkDMoj4yMxLlz56DT6Tz+DKr97MjISBw6dAglJSUeq8Brjl+/fj327t2LDh06YO7cuS7j9u3bBwBYtmwZtm/fjhEjRmDkyJHIysqCJEkYOHCgx5+vQ4cOxWeffebcPqImR3OugIAAjBo1qs6vFRERUVMxeCQiosue45fNurr2OgKyugI7wF7FlZ+fj/Hjx+PFF190+YXTaDQ2S+jooFQq8frrr2Pq1KnYvn27WxMbxy+sY8eOrXO5eE3Dhg3Du+++i+3btzsrbBxLtR3Bo2N5KACX4PHrr79GTk4OUlNT8c9//tNlX0bgwp6KvnCEeKdPn/Z43h9VUo5KREd1Vm2OMCI8PNzl+IEDB/D444+jvLwcSUlJeP/99z12Xj59+jTmz58PmUyGl19+2e18ZWUl9Ho9goKCPFaNOTj2bNu7d6+zoUptjhBuwoQJ6Nq1K/R6PfLy8tC2bVt06tTJbbwjqPK0dNZXubm5KC0tdWs2Atj3C7TZbC73d+wD6S00dhx3LBm+GO+hOUVGRqKgoACFhYXo2LGj23lff8b873//Q3p6OhISEvDhhx+6ja+5v+bloiE/Y2t/vi6mmJgYyGQyr53Rjx07BsB7J2kHQRAQExOD7OxsnDx50m0p8okTJyCKost9unXrhqNHj+Lo0aNuwaPBYEBJSQk0Go3zz7tbt27YvHkzjh075mw85CBJEo4fPw65XI6uXbs65+1p+byD4+dJdHQ0Ro4c6fz57OvnsybHz4KUlBS3RlNERET+xuYyRER02WvXrh3at2+PoqIij0GOwWBARkYGZDIZBgwYUOe99u/fDwC477773KpcMjIynP/eXAFkQkKCc0nrnDlzXAI5x9w3b97s8do5c+ZgypQpWLZsmfNYVFQUYmJisHPnTuzevRuCIDiDR8cvu9u3b8f27dsRGxvrUm3m+FrcddddbqFjbm4uysvLAfj2tYiIiEBMTAzOnDmDAwcOuJ339p4aIjk5GYGBgcjNzfX4y7mjeU7N/cry8/PxxBNPoLy83LlU11PoCNiroFatWoWff/7Z2UG7ptWrVwOwV6TWVcH52muvYefOnR7/cTTxWb58OXbu3On8Mzpw4AAeffRRjxV9eXl5zmooX/aL9Obdd9/FX/7yF5w6dcrt3I8//ggALk2AHFVanv7sKisrnd8/jv0+L8Z7aE6Oz9/atWs9nncc97YHq4Pj6zJhwgS30LGkpAR5eXkAmr7U2p8ce3zu37/fY9Ob/Px8HDhwAGq12tm8pKF8WT5cH5VKhf79+6O0tBR79uxxO+8I9D2F67Wlpqa6XFPffRyVuBs3bnQbn56eDpvN5jK+rvvv2bMHer0e/fr1Q0hICMaNG+f1Z8aECRMAAK+++ip27tyJhx9+GMCFz+eWLVs8fi9t27YNgPt+vMCF79E+ffq4nSMiIvI3Bo9ERNQiTJkyBYA91KlZlVNZWYlXXnkFRqMRI0eOdFli51gyWrNyr23btgCATZs2udx/3759ePfdd52vG9s92BcPP/wwIiIiYDQaXboJ33jjjdBqtfj111/xww8/uFyzdetWfP311zh8+LBbcDN06FCUlpZizZo16Nq1q3NJcrt27dChQwds2rQJ5eXlLtWOgPevxfHjx/HKK684X/v6tXA0RHjjjTeg1+udx//880/88ssvHq85c+YMjh8/7nF5dG1qtRoTJkyAKIp45ZVXnMEoAPz222/49ddfodFocMMNNwCwBzuvvPIKysrKMHToUPzjH/+oc5lsaGioM3h74403XCrTcnNzMWfOHMhkMrcOsMePH8fx48fr7aZdlwEDBqBVq1b4/fffnUsrAXtQ9fLLL0OSJGejl8ZKS0sDAHzyySfO/QYBYMmSJfjjjz/QsWNHl0rbW265BQDw0UcfOSuyAPv+em+++aaze7OjuvFivIfmdMcdd0Aul+Pzzz93adgkSRLmz5+PrKwstG/f3uVzVNfPmD///NO5PBuwV+q+8MILzq+9v7tDN4VSqcSkSZNgs9nw4osvunwe9Xo9XnzxRYiiiEmTJtW71NwbxxLt2pXUZWVlOH78uM9dvm+77TYAwDvvvOMyz59++gnbt29Hz549XSoMz58/7/yM1vy+HzduHIKCgvDll186O64DQE5ODr766isEBQU5t60AgJEjRyI8PBwrVqxw6dqen5+PTz/9FIIg4O6773YeT0xMRExMDLZt2+byl0V6vR7vvPMOAOCee+7x6T17MmTIELRr1w5Hjx7FJ5984vIXRDt37sSCBQsgCAImT57sdq3j/V6ufwlARERXFi61JiKiFuGOO+7A3r178fvvv+P2229HYmIilEoldu3ahbKyMvTo0QMzZ850uaZjx444ePAgZsyYgZiYGLz11lu46667kJGRgU8++QRr165F+/btUVhYiNzcXISGhkKr1UKn06GkpMRZneZvarUaTz/9NF5++WX8+uuvmDhxIgYOHAilUolZs2bh6aefxjvvvINvvvkG3bp1g06ncwY5jm7BNQ0dOhRff/01DAYDbrrpJpdzSUlJWL58OQD7suyabr/9dqxcuRI//PADMjMz0bVrV5SUlGDfvn1QKBTo0KEDCgoKoNPpPHZFrW3ixInYtm0b1q5di0mTJmHgwIEoLy/Hrl270Lt3b5cwyuHvf/87srKyMH36dGclT12efPJJHDp0CHv27MGECROQmJiIkpIS5OTkICgoCK+++qpzT7bNmzc7nylJktdGHF26dMGDDz4IAHjuuedw4MABZGVlYeLEiejbty9MJhN27doFURTx7LPPulUJOYKQuXPnui2p9JVSqcSLL76I//u//8NDDz2E5ORkKBQKZGZmwmQy4fbbb29yE4i7774bv//+O9avX49bb70VcXFxOHnyJI4cOQKNRoP33nvPpQr41ltvxe7du7FmzRrceeedGDBgAFQqFXJycqDT6dCpUyeXphUX4z00p/j4eDzzzDN4//338dhjj6Fv375o06YNDh06hJMnT0Kj0eCf//ynS3Mmx5Lsd955B6tXr8aTTz6JMWPGYPHixUhPT8ctt9yCHj16oKKiAnv27IEoiujcuTNOnDjhU5Oai+nxxx/HwYMHkZWV5fxsAfa9Po1GI1JSUvDoo482+v6dOnXCkSNH8MILL6B79+74+9//DrVaje+//x7z589HYmIi5s2bV+99brjhBqxfvx6///47brnlFiQlJaGoqAjZ2dlo1aqV276qRUVFzs/o8uXLncuko6KinD9rH3jgAWejoh07dsBms+H11193WVauVqvx0ksv4W9/+xueeeYZJCYmIjg4GDt27IDZbMZjjz3m0oRJJpPh73//Ox577DH84x//wC+//ILIyEhkZmaioqICkyZNwjXXXNPor2dQUBBmzZqFJ598El9//TV+//13xMfHo6ioCLm5uZAkCU899RT69u3rdq3jL+/q2zaAiIjIHxg8EhFRiyCTyfD2228jNTUVy5Ytw549eyBJEjp16oSpU6di8uTJbk0PXnzxRfzjH//AsWPHUFxcjPLycgwdOhQff/wxvvjiCxw9ehSHDx9GmzZtcNttt2Hq1KlYvHgxvvvuO6Snpzsr+JrD6NGj8csvv2DHjh1455138O2330KhUGDAgAH473//i0WLFmHr1q3YvHkzWrdujdTUVNxzzz0YNGiQ27369+8PtVoNg8Hgtgw0OTkZy5cvR+vWrd0Cs7i4OMybN8/ZgODkyZPQarUYPXo0pk6diq1bt+LDDz/Epk2bfOoeLAgC3n77bQwYMADLli3Dli1bEB4ejocffhgDBgzwKVisT3BwMObOnYtvv/0Wq1evxrZt2xAcHIwRI0bgwQcfRM+ePZ1jHUuvAftyRG8SExOdwaNGo8GXX36JL7/8EuvWrUNGRgZUKhUGDx6M++67r9HBoi+uv/56BAUFYdGiRdi9ezeUSiXi4+MxefJkvzSAUCgUmDNnDubMmYMNGzZg8+bNaNu2LSZPnoypU6e6NdsRBAFvvfUWUlJS8PPPPyM3NxdWqxXt27fH+PHjcf/997stW2/u99Dc7rzzTvTo0QNfffUV9u7diwMHDqBt27aYMmUK7r33XudeiA4PPPAATp48iZ07d2Lbtm0YP348hg0bhgULFuA///kP9u3bh40bN6J169YYNmwY7rvvPpSUlOD5559Henq6cxnt5UCpVOLf//43fvjhB6xevRrbt2+HQqFAt27dMH78eIwfP75J1ap/+ctfoNfrnds4nD592iWoa4g333wTvXv3xi+//OL8GXnDDTfgkUce8bi/qDe333472rVrh6+++gq7d+9GYGAg+vfvj2nTpnn8WZuWloZ58+ZhwYIF2LdvHyRJQvfu3XH33Xe7bFPg0Lt3byxatAhz585FZmYmjhw5go4dO+Lxxx/HxIkTG/Xea9//m2++wRdffIGtW7ciPT0dwcHBSElJ8frfCwDOivT6OswTERH5gyBdThvMEBERERERERER0RXh8txkh4iIiIiIiIiIiFo0Bo9ERERERERERETkdwweiYiIiIiIiIiIyO8YPBIREREREREREZHfMXgkIiIiIiIiIiIiv2PwSERERERERERERH7H4JGIiIiIiIiIiIj8jsEjERERERERERER+R2DRyIiIiIiIiIiIvI7Bo9ERERERERERETkdwweiYiIiIiIiIiIyO8YPBIREREREREREZHfMXgkIiIiIiIiIiIiv2PwSERERERERERERH7H4JGIiIiIiIiIiIj8jsEjERERERERERER+R2DRyIiIiIiIiIiIvI7Bo9ERERERERERETkdwweiYiIiIiIiIiIyO8YPBIREREREREREZHfMXgkIiIiIiIiIiIiv2PwSERERERERERERH7H4JGIiIiIiIiIiIj8jsEjERERERERERER+R2DRyIiIiIiIiIiIvI7Bo9ERERERERERETkdwweiYiIiIiIiIiIyO8YPBIREREREREREZHfMXgkIiIiIiIiIiIiv2PwSERERERERERERH7H4JGIiIiIiIiIiIj8jsEjERERERERERER+R2DRyIiIiIiIiIiIvI7Bo9ERERERERERETkdwweiYiIiIiIiIiIyO8YPBIREREREREREZHfMXgkIiIiIiIiIiIiv2PwSERERERERERERH7H4JGIiIiIiIiIiIj8jsEjERERERERERER+R2DRyIiIiIiIiIiIvI7Bo9ERERERERERETkdwweiYiIiIiIiIiIyO8YPF6BbDbbpZ4CETURP8dELRs/w0QtHz/HRC0bP8NElwcGj1eg4uLiSz0FImoifo6JWjZ+holaPn6OiVo2foaJLg8MHomIiIiIiIiIiMjvGDwSERERERERERGR3zF4JCIiIiIiIiIiIr9j8EhERERERERERER+x+CRiIiIiIiIiIiI/I7BIxEREREREREREfkdg0ciIiIiIiIiIiLyOwaPRERERERERERE5HcMHomIiIiIiIiIiMjvGDwSERERERERERGR3zF4JCIiIiIiIiIiIr9j8EhERERERERERER+x+CRiIiIiIiIiIiI/I7BIxEREREREREREfldwKWeABERERERERER0eVKFEXkluRBbyqHRhWG+IhYyGSs5fMFg0ciIiIiIiIiIiIPtuXvwqKsJdCZypzHtKrWmJo4GYOjB1y6ibUQjGeJiIiIiIiIiIhq2Za/C+9vnucSOgKAzlSG9zfPw7b8XZdmYi0Ig0ciIiIiIiIiIqIaRFHEoqwldY5ZlPUDRFG8SDNqmRg8EhERERERERER1ZBbkudW6VibzqRHbknexZlQC8XgkYiIiIiIiIiIqIYdBXt8Gqc3lTfzTFo2Bo9ERERERERERETVRFHEn8e3+TRWowpr5tm0bAweiYiIiIiIiIiIquWW5KHCaqx3XGiQGvERsRdhRi1XwKWeABERERERERER0eXC1+XT8ZHdseVUJjSqMMRHxEImk0Gy2VCRkwurXo9AjQahCfEQ5PJmnvHli8EjERERERERERFRNV+XT2/L34Vt+bsAAFpVa9wa0h9h/10Hq07nHBOo1SJm+jRoh6Q0y1wvd1xqTUREREREREREVC0+IhZaVesGXaMzlWFe8XrkqAwux606HQ7Mmg3d1gw/zrDlYPBIRERERERERERUTSaTYWriZPsLSXI9Wft1LesGqSEK7sePLlgIyWbz0wxbDgaPRERERERERERENcSesmDMpnKoK0XXE4KHVLHGObNSjh0JwW6nrCU6VOTk+nmWlz/u8UhERERERERERFRNstlwdP5CxOosiCmwoDBSgZNtFdjRR+3T9bt7BmNgTiVktYojrXp9M8z28saKRyIiIiIiIiIiomoVObnOBjEyCYguqkL4Od+XSZuDZCiMVLgdD9Ro/DbHloIVj0RERERERERERNU8VSaaghpWu3e4YxAAIKq4CjIJUISFIjQh3i/za0kYPBIREREREREREVXzVJmoMoseRnq3t0cw9vYIhtpoQ1qmAcMTr4Egl/trii0Gl1oTERERERERERFVC02Ih1ztup+j2uRj8Fir67UhWIZVw0Nxome4v6bXojB4JCIiIiIiIiIiqibI5YgaN8blWFRxFdRGm1uw6H6x4PH1El0GRLFhVZNXAgaPRERERERERERENXS8/VYEtFLDETPKJCDuuLlxNxME6ExlyC3J89v8WgoGj0RERERERERERDUIcjliH38UACAByIsOQlZCcJPuqTeV+2FmLQuDRyIiIiIiIiIiolq0Q1JgSr0ekgBsTKre87H2UuoG0KjC/DSzloNdrYmIiIiIiIiIiDywhmpRGqmAIaRpHam1Kg3iI2L9NKuWgxWPREREREREREREHgi6szCqmh6fjeo2FDLZ1RfDXX3vmIiIiIiIiIiIqB6SzQb1rj8RYmp6N+p26jZ+mFHLw+CRiIiIiIiIiIiolvL92ZCfr0JUcRXURhsgSfVf5MXVuL8jwOCRiIiIiIiIiIjITfn+/QAAmQSkZRrsB2uHj5J04R8vrtb9HQEGj0RERERERERERO6kCx2sY/MtGJNeAXWl67JrpUWE4rzkudt1dSB5f/9br8r9HQF2tSYiIiIiIiIiInKSbDaUZWcjD6U40TkIISYRUcVViM23IKbAgsJIBYwqGcrUcmT0DfF6H6VFwqjt59AzXgF0uohv4DLC4JGIiIiIiIiIiAiAbmsG1vyyEOviAEOIHBhq35tRabJh5A4DuudbEF1UBVEAvhivtV/kpdpRbpMQU2BB+f79aN2v70V8F5ePq7POk4iIiIiIiIiIqAbd1gysXPwJfukvgyHYNTIzq+RYPTwU6f3sFY6FkQp7MOkpdAQAQYAxRI7CSIXLku2rDSseiYiIiIiIiIjoqibZbMibvxAbh6ntB7wEilkJwWhbeh6Sj6V8RpUMYX16+WmWLU+Tgke9Xo833ngDM2bMQHx8vPP4kSNHsGLFCpw8eRIA0LlzZ0yaNAmdOl1Y0C6KIlavXo0tW7agoqICHTp0wIQJE5CQkODyjIMHD2LZsmUoKChASEgIUlNTMWbMGMjl8qZMnYiIiIiIiIiICABQkZOLze1MMISovQ+qDiM3DYvADX8U+XTfUEGJsN5Xb/DY6KXWpaWl+Pjjj1FZWely/NSpU/jggw8AAPfffz/uv/9+WK1WvPPOO84gEgCWLl2KNWvWYMSIEXj44YcRFhaGTz/9FMeOHXOOOXbsGD755BOEh4fj4YcfxrXXXos1a9Zg6dKljZ02ERERERERERGRi+2Fe+tsFFOTUaiCIAFqo83eudoTSYLaaEPaHQ9BuIqL5xocPIqiiC1btuCtt95CRUWF2/nffvsNYWFheOKJJ9CvXz/069cPTz31FJRKJdatWwfAHlquX78eEydOxPXXX48+ffrgkUceQVRUFFauXOm81/Lly9G+fXtMnz4dvXv3xujRo3HLLbdgw4YNKCsra/y7JiIiIiIiIiIigj3r+ubc9gZdY40MQ1qmwf6idvhY/fquTiMRmZrqjym2WA0OHgsKCvDf//4XKSkpeOCBB9zOd+zYEddffz0CAi6s4g4KCoJGo3GGhQcOHIAoikhMTLwwEZkMiYmJyM3NRVVVFaqqqnDo0CEMGDAAQo119UlJSRBFEdnZ2Q2dOhERERERERERkYvsokMw2izeG8V40P36mxCbb8GY9AqoK0WXc+pKEdMjrsX1193p76m2OA3e4zE8PBxvvfUWNBoNDh486Hb+hhtucDtWVFSEgoICXHvttQCA06dPQ6FQIDw83GVcmzZtYLPZUFxcDEEQcP78ebRt29ZljEajgUKhwOnTpxs6dSIiIiIiIiIiIhfZxYd8HyxJ0ASEYHDaeOiV7RA4fyFilutQGKmwN5IJVOOaW6Ze9ZWODg0OHkNCQhAS4tuadwCwWq344osvoFAoMGrUKACA2WyGSqVyG6tUKgEAJpPJWeXoOFZ7nNlsbujUiYiIiIiIiIiIXHnZptF9nH3g8O1lECZJ0A5JQfiggajIyUVPvR6BGg1CE+Kv6j0da2tSV+v6VFZW4j//+Q+OHz+ORx55BBEREQDsa+frIggCJG+bc9YY01iOqsorlcViwZkzZy71NIioCfg5JmrZ+Bkmavn4OSZq2fgZbj6SKKLy0CHk6U+gUiVA2ykWsZoukAmN7l98ybVXRPg2UBCQsseArgcrcfzPzVD1iLMfj4wAIiNgAmC6gvOmmiIiIly2WfSm2YLH4uJifPrpp9DpdHj44YfRr18/57ng4GCPFYsmkwkAoFKpnMGjxWJxG2c2mz1WQvpKLpejXbt2jb7+cnfmzJkr+v0RXQ34OSZq2fgZJmr5+Dkmatn4GW4euq0ZWPPLQqyLAwwhcsAKYN9WtJYH48GUezA4esClnmK9JJsNZdnZyDl7CEaVDFHd4jE0bhAWZH8Pi81a7/WtDTYAgFoQEMnvsXo1S/B47NgxfPrppwCAZ555Bt26dXM537ZtW1itVpSXlyMsLMx5vLi4GAEBAc7KSJlMhqKiIpdr9Xo9qqqq0L59++aYOhERERERERER1aLbmoGViz/BquGhbufKzhvx/uZ5eHbojMs6fHQLTgGg4He0lgcjKaoPtpzKrPceISb7Kt5AjaY5p3rF8Hsd7JkzZ/Dxxx8jKCgIL7zwglvoCAAJCQkQBAGZmRf+QEVRRFZWFuLi4qBQKKBQKBAXF4ddu3a5LM3OzMyETCZDz549/T11IiIiIiIiIiKqRbLZkDd/IdYNbmU/UHv7O0EAJAlzty6qd3u9S8URnP7SXwZDsGscVnbeiC2nMqEMCPK+36MkQW20Iaq4CoERWoQmxDf/pK8Afq94XLx4McxmM+644w4YDAYYDAbnOaVSiaioKISHhyM1NRU//vgjrFYrOnTogPT0dJw+fRpTpkxxjh8zZgw++OADfPbZZxg2bBgKCgqwfPlypKWluXXEJiIiIiIiIiIi/6vIycXmdiaYg9TeBwkCjKIVi3+dj/tuevjiTc4HzuD02rqD0wCZHBBgDx9rDqneDjAt0wCZBMQ8NI0NZHzk1+CxoqIChw8fBgAsWrTI7Xy3bt3wt7/9DQAwZcoUhISE4I8//kBlZSU6dOiAJ554AjExMc7xcXFxePTRR7FixQrMnTsXrVq1wujRozF27Fh/TpuIiIiIiIiIiLwwl+qwq0ewT2PXluzC3eerIA9QNPOsfOdrcGqwVmJA6DBkFu+ALOhCzxF1pYi0TAMSzGrEzHwK2iEpF2HWVwZBqq99NLU43ESXqOXj55ioZeNnmKjl4+eYqGXjZ9i//vjuM8wVdvs8/rnOEzEo5cbmm1ADnd24Ec8d/wYWZf07Dl5jS8aJDRXQ9lVj6E19EFRcjs4WJZTh9uXVrHRsmGbrak1ERERERERERC2bZLPh1N5MoJ/vgZuuvKj+QRfRiSCzT6EjAGD3esQrRYTsERGYtQPdpk+DNo0Vjo3F4JGIiIiIiIiIiDyqyMmFDiYAdSxTrkUb1sbjcclmQ0VOLqx6PQI1motWQWht2xo44cNAScKmpFbOl2qjDWmLP8FYgMurG4nBIxEREREREREReWQu1WFfrMreYKV2UxYPlFYJSckj3Y7rtmbg6PyFsOp0zmOBWi1ipk9r9lBPE6Jp1HWGYBlWDQ9FwPKFmDJoIJdZN4KPdaZERERERERERHS1ORFkhjFE7lPoCADXRQxwayyj25qBnHdm46i8Agc7ByG/jQKiAFh1OhyYNRu6rRnNMXWn+IhYhKtaO7tTe+Wp2zWAdd2Bsuzs5pncFY4Vj0RERERERERE5JHuXIlvAyUJIfIg3HPjdNfDNhvW/LIQ68ZrYQi5UDGoNtqQlmlAbL4FRxcsRHgzVhTKZDIMDO6CXyv1Db9YEGAIkSPn7CEMRV//T+4Kx4pHIiIiIiIiIiJyI9lsqFyz0bfBgoBHhkyFTOYaNW3IWIlf+stgCHY97ljGnBcdBGuJDhU5uf6atptt+bvwa8nuJt3DqGKE1hj8qhERERERERERkZuKnFy0OaKD2mirc5myIAF/HTIdg6MHuBwXRRHfFm6qHuR5GfPGJLV92bW+EdWI9ZBsNuj37sWC9EUAfNuj0puobvF+m9fVhMEjERERERERERG5ser1kElAWqbBfqB2+ChJgCRhaEUCUjolul2fW5KHMrHSe+BXvYy5MFKBQE3jGsB4o9uage3TH8V/F7+Lcpm18aGjJEEjD0ZC2x5+nd/VgsEjERERERERERG5cYSBsfkWjEmvgLpSdDmvrhQxJr0C7WQxHq/Xm8p9eo5JE4zQBP9VFOq2ZmDl4k/w2TBgU1Krxt9IkgAIeGDQ3W5LyMk3bC5DRERERERERERuQhPiEajVwqrTITbfgpgCCwojFTCqZAgxiWhfXAWjPBinIzt5vF6jCvPpOSp9JUq374B2SEqT5+xoZrNqeGiT7+WokmylVDf9XlcpxrVERERERERERORGkMsRM30aAEAU4BI6RhVXQSYBayMGwuZh+0fJZkPUGTNay4K9P0CSoDbaEFVchbx/z4VkszV5zmXZ2VgX53gDjd/TsSZfKzfJHSseiYiIiIiIiIjII+2QFFQ+eTu+zd8Ag+pCkKc2S+hf1Q+HcqMQa3Ndgq3bmoGj8xfCqtNhaHTQherDmkFg9X6RaZkGyCTg/LlzKN+fjdb9+jZpvjlnD8EQIvdtsORbwxlfKzfJHSseiYiIiIiIiIjIo7Xrvsf8kg0wKF2PG5QC/my1FzLNGZyvUfKo25qBA7Nmw6rTAbiwP6TS4hpOQhCgtLqWSpbvy27yfI2qBkRdjtDRW8duCdCqNIiPiG3yvK5WDB6JiIiIiIiIiMhN8ZYt+KrgD/sLT5WBEqDodABVtvP2lzYbjs5f6PFe5iCZW8BnDhSwangoDkcHVT/DSwDYAFHdGtmkxlPHbki4v88tbCzTBPzKERERERERERGRC8lmwzd/LLIHht6WIwuALMiMMvE0AKAiJ9dZ6eggCsDGpOrmLLXvIwiAIOB/w0JxqGMQwnr3bvK8E9r2gFJQNOialL1Grx27O+493eQ5Xc24xyMREREREREREbkoy87Gzo6+NWcxi0YAgFWvdztXGKmod89FSWYPH+M1VWhqX+sdhXtglqoACYAP01eaRbQvqUKYwQaTUgaVRYS68kLzHPOZM02c0dWNwSMREREREREREbnIOXsIFqVvC2VlNvsGkIEajfOYowv24Y5Bvj1QEPDl7h8xKHpAo5c2i6KIRVlLqu/n2zU2ObBs1IV5q402Z8MbAFC2a9eouZAdg0ciIiIiIiIiInJRojvtU3gnVMmhPN8GABCaEI9ArRY5KgM2Jql97y5dTWfSI7ckD73axDVmysgtyYPOVNaga6oCXN+kIViGVcNDMSa9ArGFVWh/0+hGzYXsuMcjERERERERERE5STYbqrbv9Wms9UwnVPeWgSCXo/zuUVg1PBSG4FqRk7fO0bXoTeUNmWrjr5Uk+z+e9p2EfV/K9hPGQhbYsP0iyRWDRyIiIiIiIiIicqrIyUXbo6VQG23eA0NJQpDZBq1OBn3AUWQXHcJ523n8aNztbBrjwluDmlo0qrBGz9vnax2Bo9emOQIMIXJU3jio0XMhOy61JiIiIiIiIiIiJ6teD5kEpGUasGp4qHtlYHUYKQgCKvofQQWO4PX1mxEaGIIKq7HRz9WqNIiPiG309fERsdCqWte73DrIIsGirD8ILTySi97t4xs9H2LFIxERERERERER1eBoEhObb8GY9AqoK0WX80qL/bU50DW88zl09FJFOTXx9kY3lgEAmUyGqYmTvT9TkpCyx4CbN/u2JDvEJNY/iOrEikciIiIiIiIiInKqqqgAYO9MrbSKGLrbAJNSBpVFREiliN+GhNoH+rh8urbAKgnWGqGlVtUaUxMnY3D0gCbPfXD0ADw7dAYWZS1xqXxUV4pIyzQgNt8CUbB3rzYEyzy/h+pg1KxibNZU/AoSEREREREREREAQLc1AwfffR950UFunanVRht655ka3K3ahSRBUSXh5nQ9TEoZeky4DakjJjap0rG2wdEDMDCqHx786Hso9Xm4tuwook5VQFZdaCmDgGsyDVjtaRk5YH8tSVhaug0jxPF+ndvVhsEjERERERERERFBstlw+NP/IC86yL63Yy2GYBky+oY07SGCAGOIHDIJ6HRKQr+UMY0O9iSbDeX7s1G+fz8gCQjr0wthvXtBkMshk8kgngtHfmVfJD3/OCLLC2HV62HVl+H4wkVQWcW6KzYFATpTGXJL8tCrTVwj3ywxeCQiIiIiIiIiIpTvz0aV0YiNo7T2A14qAf2hUiVDR9EC/b79aJWS1ODrdVszkPfpHFiNBhRGKmBUyRCy8Rd0MgUh7vFHoR2SAmuVDQAQFKRAWJ/eAIDiTekAAKPKt7BTb/JtP0jyjMEjERERERERERGhfF82CiMVdS+ldoSRnpYo13W8lkqlDAc7B8Fw9hCixQENqnrUbc3AgVmz7cvBR2ndloOnLf4EN0sirEFFkKtMOHHuGDpE9oZMJnM2zvG1cYxGFebzvMgdg0ciIiIiIiIiIgIEyedKQO/3qCd0lCQIErApqZX9tXkTfl651+fmMpLNhiPzPq9zOfiq4aFYd+QryOMEyAF8krkX/82xN7AZlNAXgVotoop1dTeYAaBVaRAfEVvvnMg77o5JREREREREREQI693b50rAlL1GhMmCG/UcqVbOpzOV4f3N87Atf1e911bk5MKiL8XGJLX9gKfl4ADMCs/P2H56L2KmT4NMAtIyDdUT8rx8fGri7Wws00T86hEREREREREREcJ694I1LBiCWMc+jpIEtdGGoWdVeP3aV2HJHQjxTLeGPcjLEu2FGYshinUHn1a9/sJycG/VlYLg9dyirB+gGTwIPWc+jwSTGmPSK6CudH2mVqXBs0Nn+FSBSXXjUmsiIiIiIiIiIsL203uxYmCQ9wYy1cfTMg2IfegpIFAB8ZwWYpDV98q2OsJCva0S2zYux5ARE52HRVFEbkke9KZyaFRhiGod1qTl4DqT3t6pekgKwgcNRFxOLkaX6nAiyAxr29bQhNiXV7PS0T8YPBIRERERERERXeVEUcSirCX2F17CQUECxu0VcdM9T0E7JAXlBov92trrmptg0/b/IeWacRDkcmzL34VFWUugM5U5z4erWqNnG3WTnuHoVC3I5Qjr0xthANo26Y7kDYNHIiIiIiIiIqKrlGSzoSInF/vPHHAJ+DyOlQno/9Qz0LaPBwDI5TIIkojr8w4gs3PdjVp8ldMOKMvOxqFwG97fPM/tfKmpDFu6y6GoElEV4H1JdV3YqfriYfBIRERERERERHQV0m3NwNH5C2HV6XCwcxAwtP5Arsxc4fz3czu349FjPyJUNEGdWd1lWpKaFD6alDLsP3MQ3xzPqnNclULmfUl4Hdip+uLignUiIiIiIiIioquMbmsGDsyaDXOpDvltFNCFyn26LvBsmfP6o+99gFaiCQAQm2/x2KilMY7Iy+utvgTQqICTnaovLlY8EhERERERERFdRSSbDUfnL0RedBA2JqntHaKdJ71ULEoS1JUiOluUzusBoObI2HwLYgosyI9UYNmo1vaDjQgHlRERQEmDL6v7nlYJj6VNZ6fqi4wRLxERERERERHRVaQiJxc5KgNWDQ+178tYW+0lzDW6WSvDtajIyYVVp/N4b5lUHTYJjdh/UZKgkQejo67pVZO12SChR5n/muCQbxg8EhERERERERFdwSSbDeX79qN4UzrK9+2HqaQYG5OqO0PXDgc9hIXqShFj0iuQYFYjNCEeVr2+zucZVY2Im6orLR8YNAUBi9dAbbQ1ag9Hb6oCZVh+6k+/3Y98w6XWRERERERERERXqJoNZBxOd20Nw5BA7xdVh4+D9hnQ8WwVooqrIJOAmJlPQZDLEajR1PnMEFPDKxa1wRpMTZyMnnoF9ut0SKurWY0jkGxgReUG0yHcK4rc4/EiYvBIRERERERERHQFcjSQqa1CNAGoI3isFl5hQ3RRFQCgw6QJ0A5JAQCEJsQjUKv1utzaFCirNxwMV7ZG28pU7DmajxuTe+Dh66+FTCZDUd5GAEBMgQVKqwRzoIfrBcF+/wZ20DbaLMgtyUOvNnE+X0NNw4iXiIiIiIiIiOgKU7MBTG2+ViTWHFec/ickmw0AIMjliJk+zf6cWteIArDJ2zLuGqYOuB2RAR1hK41CuKyDswqxqrwCAFAYqYA5SOb9Ho3ZQxKA3lTe4Guo8Rg8EhERERERERFdYepqABNVXFX3HoqSBLXRhqjiKucha4kOFTm5ztfaISno8bdnYRZcG7YURirsXbLrCQVbKdUIVNi7aVvPXwg4FWGhAHzfJ1JhFRu0F6RGFebzWGo6Bo9ERERERERERFeAmk1kyvbs8zpOJtk7VNsv8t7BWlbrVM2mMrqtGTj2+SKopCqXMb4GhnpTORRy+1hrlc15PEirBeB7VWZVYB1VkbXIIKCHNsanseQf3OORiIiIiIiIiKiF89REpi6x+Rbc9GcFNgxsBZPyQnCnrhSRlmlAbL7F7RpHUxlve0cCvgeGGlUYFAp74FhVo+LRsX9kVLEOaqMNhmAvwWID93cEABESDuqOco/Hi4gVj0RERERERERELZgjCPQ1dASAvOggpCeqYVJeiIaUJhuu8RY6RmgRmhDvde9IUQDy2yhgUMmgMte9/Fmr0iA+IhaBMgEdK0/DdGoTfvvzJ+w/nQtJEBAzfZpPVZmNwT0eLy5WPBIRERERERERtVB1NZHxJi86CKuGh7odNytlWD08FGPSK9zCx67TpkKQy1G+b79bwJkXHYSNSWr73o7OiXnvOj018Xbot22H8bcFMA+UYWuIHFsLsoGC39FaHowHU+5Bz5nPQ/rPfIxJr3C/N9CoxjIA93i82FjxSERERERERETUQtXVRMZRhXiwcxDy2yggCvZj6wa3sg+oHd5Vv96YpIZY61TlyVMAXPd5BC6EmIbg+iMmrUqDZ4fOQOwpC1Yu/gT/Sw5wu67svBHvb56HvI5BMD32MraLaeh3JBlhu7tBdTzS87x95Ki0pIuHFY9ERERERERERC1Uwc/LPR73VIWoNtrQvsgKc1AdIaEgwBAiR2GkAtFFFxrHFP6yAh0n3+bc5xGwh5gbk9TO62rfB5IElUXCg8OnQhsSjviIWAiShO1/fxQbh9V93ReZ3yMx5EYURIsI6dAeZ/a1QV/9ZhzuUu+XxKupibdDJmMN3sXE4JGIiIiIiIiIqAUq2bwF+p2ZAOwhYGGkfY/FU+0CkROjdBtvCJbhcBf3457U7k5tM5lQkZOL0IR4BISG4nxFhf15tZdA1yQIMAUByrPl6JWSAgAo37cfx+UVMIRo6ryu1FyOteYlCIwFjmMvlP2CEHqwDICq3rmrZIEwiVbna61Kg6mJt2Nw9IB6ryX/YvBIRERERERERNTCSDYbjsydD1EAdiQEY1fPYFjqqmQEGrRE2VN3aqteD0EuR5trr0Hh8pVu4aQ3uvIil3v4el1NQqAZmX2UUFpEmAMFr52uW5mBuXe/i0P6E9CbyqFRhSE+IpaVjpcIg0ciIiIiIiIiohamIicXB0ItWHedFmZlHVWHjaC0iIgqrnI77lhmHT5oIAqXr/QYTnqiDWvjcg9fr3NRvQTb3tFacG9cU93pegK6Q6EIQq82cQ1/Bvkd414iIiIiIiIiohZmW8FurBoeWvd+jY3U/0AlZJLrscAILUIT4gHAudw6qrgKaqPNGfq5kSS0MklISh7pPBSaEI8uttC6r/NGEGBWypGy1wh1pWt4qa4UMSa9AmlJNzbsntSsGDwSEREREREREbUgoijih3L73o6N7fDskSRBabZhYE6l26mYh6ZBkNsrKx3LrWUSkJZpcF5b+16AvQJRHqBwHhbkcsROn+b9Oh+0NtjwwHIdbl2rx+jN5bh1rR4PLNchwaR2hqN0eWDwSERERERERETUguSW5KEcZr+HjgAwaofBpdoxMEKLnjOfh3ZIisvw8EEDAQCx+RaMSa9oUAWidkgKxt7zFMbusLpd54sQkwiZBEQXVaHHCQuii6ogk4C2N1znDEfp8sA9HomIiIiIiIiIWpD0nWv8fk+lRcKo7ecwZsoTUISGwqrXI1CjQWhCvMcwLzQhHoFaLaw6HWLzLYgpsKAwUgGjSoYQk32PSKVW67UCMXzQQPSY9zm6LNdhZ0IwMvqG2E/UFaZKEtSVnvefBABVVPsGv29qXgweiYiIiIiIiIhaCNv5KmwpyQGC/FvtKLdJuOmuxxAxNNWnSwS5HDHTp+HArNmQAGcFYk01l2fXVpGTC6u+FIWRCuzqGVx903rekyCgd54JAJDfxjXklEkXmt/Q5YPBIxERERERERFRC5G58w+Y/Rk6AoAgwBgiR3FcG7Spf7STdkgKes58Hns/mYvAynPO44ERWsQ8NM1teXZN2wv34tvxWhhCGrY02hwo4Ita16mNNow6BKRyf8fLDoNHIiIiIiIiIqIWQlde1Gz31pvKG3yNdkgKsk8GInfDDoTYTPjrjGvRdkCfOvda3Ja/C/PL0oHghrce2e2ojqzBECzDL/0FxJ7ei8HRAxp8T2o+bC5DRERERERERNRCaMMaUpPYMBpVWKOuEyHgZHA75LbqCm3/ukNHURSxKGuJ/UVDmuNIEgRR8nydIACQsChrCUSx4c1qqPkweCQiIiIiIiIiaiGSkkdCbZKcXajdSHWcq4NWpUF8RGwTZwcEyOuOmnJL8qAzlTXsptXvR5IJ3sNKQYDOVIbckryG3ZuaFYNHIiIiIiIiIqIWQibIcKuyj/1F7YCx+rXS2vDg8f7+t0Ema1xMJNaYh1BPFWNjlnM3RHPfnxqGezwSEREREREREbUAZzf/iZ9+/wo6mQUJAQJOtA+EMbhGk5VKESNzzuPGWx7CYdMZbN2yGtviFD7du5VS3eh5NaTAslHLuRuwJLuxy8WpeTB4JCIiIiIiIiK6zM1b9S+sPZcNxMsBVDdYESV0P2ZCTKEV7WN6IuXa8dDcb99jMRLA4LRxeGjZ8zCKlnrv35RKQclmQ6fKMwixmVC+bz9CE+K97vMYHxELrap1w5db1zsJCdpg/ywXJ/9h8EhEREREREREVx1RFJFdfAjZZw8BAtArMg692sQ1erlxc3pn03+QeS7bQ1MV4HAXJVpViui7Lx+aJ10bu8gDFLgpfhSWZq+u9xlhQa0aNTfd1gz0XzkXg03nAAD7X05HoFaLmOnToB2S4jZeJpNhauJkvL95HiDZ34NfCAKmJk6+LP/8rmZNCh71ej3eeOMNzJgxA/Hx8c7jBoMBS5cuxf79+2G1WtGjRw9MnjwZkZGRLtdv3LgR69atQ2lpKSIjI3HTTTdh0KBBLmNOnTqFpUuX4vjx41AoFEhKSsKkSZOgVCqbMnUiIiIiIiIiukpty9+Fz3YshsFa6Tz2E/4HdWAIHh54NwZHD7iEs3P11a6lyDy9z/NyY0EAJAm74oMxZF8xKnJyEdant8uQ+Mjuvj2oEQGgbmsGDsyajcBax606HQ7Mmo2eM5/3GD4Ojh6AGRHX4psT62AIqVEZKUkN63Rdw+TeYy+rPzeya3QMXFpaio8//hiVlZUux0VRxMcff4yDBw9i8uTJuP/++1FcXIz3338fJpPJOW7dunX49ttvkZycjEcffRRdu3bF559/jl27djnHlJSU4IMPPoAkSXjwwQcxduxYZGRkYOHChY2dNhERERERERFdxbbl78L7m+e5hI4OBqsR72+eh235uzxcefFtPZWJlYfW1T1IECDJBOzrroJVr3c7XW4+59OzfB3nINlsODrfns94iwqPLlgIyWbzeG3Yf9fhgeU63LpWj9Gby5Gyx1B90kPDnHo6dYcrW+OW+JsaNH+6OBpc8SiKIjIyMrB06VKP5zMzM3Hy5Em8/PLL6NixIwAgNjYWL730EjZt2oQbb7wRVqsVK1euxIgRIzB+/HgAQK9evWAwGPDLL79gwAB7Qv3rr78iICAATzzxBAID7fl5WFgY5s6di2PHjqFr166NetNEREREREREdPURRRELM7+vd9y8Hf/FwKh+dS7bFUURuSV50JvKoVGFIT4i1q/LfEVRxIId3/o8/kS7QCjC3Bur+NpspaFNWSpycmHV6eocYy3ReazCdFwrAxBdVOU8ri23YWOS2qUKUl0pIu64GVkJwV6XZj+QxCXWl6sGB48FBQX473//i7S0NMTHx+PTTz91OZ+dnY2IiAhn6AjYw8LY2Fjs3bsXN954I44dO4bKykokJia6XJuUlISFCxeiuLgYkZGRyM7ORp8+fZyhIwD07dsXCoUC+/btY/BIRERERERERD7btnE59Ob6m6icsxqRXXQIfdr19Hyf/F34ImsJSms0SAlXtcYDiZP9ttw3tyQP56qMPo8/E6mAKIlux31p5qJVNbwpi6fqSl/Hebs2Nt+CmAILCiMVMKpkCDGJiCqugkwC2uvOY8vIKOjPX/iaaFUaTE28nUusL2MNDh7Dw8Px1ltvQaPR4ODBg27nT58+jXbt2rkdb9OmDTIzMwEAZ86cAQC0bdvWbYzjfFhYGHQ6ndsYuVyOiIgInD59uqFTJyIiIiIiIqKrlG5rBtZvXAbEB/s0PrvYc/DoWKpdW6mpDO9vnodnh87wSxDW0C7TlkAZcovzMBT9XY67NHPxYmri7Q2uGAzUaBo9rq5rZZJrFaRDglmNeyb8EwdKjzVblSn5X4P/dEJCQqCp4xvEZDJ5bPwSFBQEs9nsHAMAKpXKZYzjOpPJ5BxT372IiIiIiIiIiOoi2Ww48NG/cKBLUAMucj8kiiLm/Lmwzv0G5+34L0TRvfKwoeRHCxp8TZbOvUAMsDdzeXboDGhVrV2Oa1WaRgeloQnxCNRq6xwTGKFFaEK82/HQhHgEhIY26HkxD02DPECBXm3iMKzzwMu2Azm5alJXa0+kOj58DvV9AAVB8Ok+jWWz2VBcXNxs97/ULBaLs6qUiFomfo6JWjZ+holaPn6OiVq22p/hM/M+R36oDWaVvI6rXIXlleKYfhOU3WMhVAdc23/5CpWtz6OuFtDnrEakH8xAD01Mo+cviSIOr1kJDKiObXzs9JyOU+j4y0KkDL7Z7VzngPZ4ZeCTOFJ+EhXWcwgNbIVuYZ0gE2SN/nmnue0WnP1svvfzt96Cs17yl/A7bkfR/M/rfYZc0xoRk29HVdcu/Ll8GYmIiEBAQP2xot+Dx+DgYI/ViGaz2VnhGBwc7DymUChcxgD2SkjHWG/30taTqtdFLpd7XA5+pThz5swV/f6Irgb8HBO1bPwME7V8/BwTtWw1P8OitQpHsnbB2CmwnquqSRKUFhHqb1egUAICtVrETJ8GTVISDuXvB1qH1HuL0+dLkNYutdHz1+/diw09qqv5fAwdHVbot2NcxL2QByg8no9qH9Xoebm5eTQ0mtY4On+hS6OZwAgtYh6aBu2QFK+Xtht7MxQlJShY9ovXMR3vugMdb78Vgtz3wJguL34PHtu2bYvjx4+7HS8uLkb79u2dYwCgqKgIrVq1co4pKioCALRr1w5BQUHQaDRulYk2mw06nQ7Jycn+njoRERERERERXWFO/28NIEkIMfm+/HnUdgNk1QsxrTodDsyajdDevSEJPq7ObOIizpyzh1w6O/tMEHBOBWTu/AODUm5s2iR8pB2SgvBBA+2dqvV6BGo0CE2I9yks7DL1Pqi7x+LI3Pk4X1HhPO5LcEktg9+Dx4SEBGzbtg0FBQXo0KEDAKC8vBx5eXkYM2YMAKBbt24ICgpCVlYWunXr5rw2MzMTbdu2RUREhPNe+/btg9VqdXa23rt3L6qqqpCQkODvqRMRERERERHRFcZcvTw3qrgKaqMNhmCZ9ypCUcKg/UbY5EB+G4WzozIAVOzfj45tFNjRp/5n9mob16Q5Z6Np28PpyouadH1DCXI5wvr0btS1EUNToU0Z3Kjgki5/fg8ek5OTsWbNGnzyySeYNGkSFAoFVqxYAbVajbS0NABAYGAgbrzxRqxYsQJyuRxxcXHIysrC3r17MWPGDOe9brzxRmzfvh0ff/wxbrjhBpSVleGnn35C3759XQJLIiIiIiIiIiJPlDW2TeidZ0JG3xB7c5ia4WN1nwlllYTtfdXOw2qjDWmZBsTmWwAAHYqroDTbYA7yEl5KEoKFQPSKbHzwKIoithmONPp6ANCGtWnS9RdbU4JLurz5PXgMCAjAX/7yF/zwww/49ttvIQgC4uLicPvttzv3dgSAm2++GXK5HJs2bcK6devQpk0bPPjgg0hMTHSOadu2LZ555hn8+OOPmDdvHoKDg5GSkoJbbrnF39MmIiIiIiIioitQ+5tGY+3v32Jjotrr8mWlRYQ5SAZzoGuYaAiWYdXwUIxJr0BsvgUyyb4Me9XwUK/h5SOD7mtSt+Xckjycsxobfb3KIiEpeWSjryfyJ0FqzvbRdElwI2yilo+fY6KWjZ9hopaPn2Oilq3mZ3hb/i68/+c8AJ6DwsF7jciOVXlfgi1JCKkUMW25zrnsOi86CBuS1DDWCDJDjDaMq4zGLU/8vUlzX7P2GyzUpTf8wur3M8Uci4lTn2vSHIj8xe8Vj0RERERERERElwNRFLEoawkgANX/5wJBACQJe+JUMKvq2E9QEGAMkWN7QjA6FFfhVFsFBADXZ1RAAGBSyhBsEtGhuAqp3/6rSfPVbc1A+ffLges0jbo+MacSI24f3aQ5EPkTg0ciIiIiIiIiuiLlluRBZyrzPkAQ6g4da9jWN8StIjLIImLAgUoAQGGkAttnPIK4xx5uVDdmyWbD0fkLEVVaTxMcSYIgAZLswjmlyYaROwzoZVYjNCG+wc8mai4MHomIiIiIiIjoiqQzljbr/S2BAjL61WpGs/gTjAUaHD5W5OTCqtNBBiDuuBlZCcHug6qXU9/0ZwVUVhFGlQwhJtHZfTtm5lPsBk2XFQaPRERERERERHTF0W3NQPavC4F4PwVxnqoPBc/NaAKWL8SUQQMbFAJa9XoAwKGOQZ5Dx2qJOZXoqZPBZrI4jwVGaBHz0LRGVVoSNScGj0RERERERER0xZBsNpSuXA39ilVQdAkCEHbxHl69b+S67sDN2dnQ9O3r86WBGg0ORwdhzdBQzyFntUNdlLjmiBm93ngVVeXlCNRoEJoQz0pHuiwxeCQiIiIiIiKiK0LJ5i3ImzMPVYZz2NErGJnx3isHm40gwBAiR87ZQxgK9+BRstnsy6r1epfQMFdtxurhdYeOjnufCrail0yGyGuGN+MbIWo6Bo9ERERERERE1OIdX/QVCpb9grzoIKy7Xguz8tJWAO5HMYbWOqbbmoEj8z5HVemFvScV4eHoOv0BfHH6J5/vbVTJnEuziS5nsks9ASIiIiIiIiKipijZvMUZOq4aHgpzkA9xhyQ5m7U0hx3GoxBF0flatzUDB2bNdoaOogDkt1Fgfysjvv/5P9CfN9Zd7VhDiElEoEbTLPMm8idWPBIRERERERFRiyXZbDgydz5EAVg3uJX9oA8BnsoioW2xFcc7KptlXhUWA3JL8tCrTRwkmw15n85xnsuLDsLGJDUMIQ2sypQkqCtFdBFDEZoQ7+cZE/kfg0ciIiIiIiIiarEqcnJxvqICa4a08q3SsVrcMRNiC5oveASAkzl70ObAWVh0pThvMACAsyqzsdIyDYh96Ck2k6EWgcEjEREREREREbVYVr0eh6ODcLhLwwLEQ11VGLbHCLXRBkOwzOdlzg3x31NrUZRxDrH5FgDAeRnwx6A6qjIlyes8BFHCmEwrxtzzFLRDUvw+V6LmwOCRiIiIiIiIiFqsgNZh+GOgusHBoUkpw5kIBdIyDfYKxNqhXx0hoK+sCgGrhodiTHoFAGDdQDXMyjqqMr2FkQDuEXpj7DuPstKRWhQGj0RERERERETUYhVEKmBWNS6MM2mCEV9gA9Ir3PdclAA0tQhSEABJwq+D1Tgf2Lj+vupKEWOtnTHukSeaOBmii4/BIxERERERERG1WGVWQ6Ov7T56LAalTUD7H35E7E8/Iz9MhFElQ4hJhE0G/DzSD52jBQHngxpfpSgBMBw8BMlmY7UjtTiNi9uJiIiIiIiIiC4DGlVYo68N7ZUAQS5Hpzsno9dLMxFdVIUeJyyILqpCx7NVUBttzqXObrwd9zNjsAwrB6uwIWPlRXkekT8xeCQiIiIiIiKiFqtneFeoTWKjgsBy8znnv4f17gVFeLjztUwC4o6b/TLHJqne9/G7wk0QRfEST4aoYRg8EhEREREREVGLVbB0GdJ2VAeIDQwfa1ZLCnI52t14vfN1XnQQshKCPV8oSeifUwmF9SIFgYIAvViJ3JK8i/M8Ij9h8EhERERERERELZJks6FwxSrE5lswJr0C6spaQWAdQaRWpUF8RKzLMVVUewCAKAAbk9T2g146W+d1UWLAgcrGT74R9Kbyi/o8oqZicxkiIiIiIiIiapEqcnJhM9iby8TmWxBTYEFhpAJGlQxlajky+obYw0cP4eHUxNshk7nWYwVq7M1kCiMVrh2uaxMEGELk6GQIwF6rBLMCXgNKf2rKfpZElwKDRyIiIiIiIiJqkax6vctrmQREF1U5X2vLbdiYpHYJEbUqDaYm3o7B0QPc7heaEI+A0FAYVRafnt9q7HV4rEdPfLB1gb39dHNlj5IEjaKVW4Um0eWOwSMRERERERERtUiKsLorAB1VkFV3XI/A1CRoVGGIj4h1q3R0EORytLn2GhzP+NWn52tbRWBQpyT8FcC8P+bBoPLDjna1KzSrl4s/MPBOr/MmulwxeCQiIiIiIiKiK5ZMAhITUtG6c1+fxocPGghT1u8X9of0tIRakqCuFNHZogQAxJcH4YGfS1AYqcDGxBCUhAc2aI59D1aiva4K5SFy7I9VuVRoqitFTOk8Cimdkhp0T6LLAYNHIiIiIiIiImqRqsp9a7bi6zgAUMf3wKaBofYXXkJHABieZYByoBaAfcm3Y5l3wjELNvkaPFYHmGlZBsiqc86BOZXOfSpDLMCIex9Dm2HDfJ4/0eWENbpERERERERE1CI5msH4axwAHCg9BoNK8N4sRrCfC1WqEZoQ73b/PodNgOi9m3ZtaZkXQkfgwj6VPU5YMOq+Jxg6UovG4JGIiIiIiIiIWqTQhHgEarV1jgmM0DoDQl/oTb5VR4aMvhaCXO42jwAR6H7C7NM9UvYakTZwtNt7CIzQoufM5xExNNXneRNdjrjUmoiIiIiIiIhaJEEuR8z0aTgwa7bXptIxD01zBoS+0Kjqbljj0LFvssd5AMDojHM4Hh2EqgAvlZOSBLUZuHfso4hMTUXne+9GRU4urHo9AjUahCbEN2jORJcrVjwSERERERERUYulHZKCnjOfh1XVyuW4o2pQOySlQfeLj4iFVtW67meqNIiPiPU4j0CtFjIJuGHrOfsJycOya0HAjJHTEZlqr2gU5HKE9emNyGuGI6xPb4aOdMVgxSMRERERERERtWjaISnYmiuhcMdeTEyORGxsBLoMG9qoAE8mk2Fq4mS8v3me1zFTE2+HTOZey6UdkoLwQQNRkZOLOL0eneSl+F6XgVJT2YUxKg2mJt6OwdEDGjw3opaGwSMRERERERERtXjW88DJ4HaQ90uEKlrRpKrBwdED8OzQGViUtQS6BoaGjupFABgBIE0ch9ySPOhN5dCowhAfEesxtCS6EjF4JCIiIiIiIqIWz1JlAwAEKfyzTHlw9AAMjOrX5NBQJpOhV5s4v8yJqKVh8EhERERERERELZpksyH07HHEnyuB4lQ4pMhufrkvQ0OipmHwSEREREREREQtVvGWLdj04yK0qzKgmyTCsiAdJ8JaI/CR6Q1uLENE/sXgkYiIiIiIiIhapLXrvsc3J9bBMEgOIAwAoDbakJZpgG3W7EZ1tSYi/+FupkRERERERETU4mSczMS84vUwBLtGG4ZgGVYND0VedBDy/j0Xks12iWZIRAweiYiIiIiIiKhFEUURX+z41v5CEFxPVr/emKSG1XAO5fuzL/LsiMiBwSMRERERERERtSi5JXnQnze6h44OggBDiByFkQqU72PwSHSpMHgkIiIiIiIiohZFbyr3aZxRJQMEqZlnQ0TesLkMEREREREREV02JJsNFTm5sOr1CNRoEJoQD0EudxmjUYX5dK8Qk4iw3r2bY5pE5AMGj0RERERERER0WSjZvAVH5s7H+YoK57FArRYx06e5dKfuGd4VapMEgxKel1tLEtSVIjpVBiGsd6+LMHMi8oRLrYmIiIiIiIjokju+6Cvkzn4fx5UmHOwchPw2CogCYNXpcGDWbOi2ZjjHGnIPIm1HdTgp1VpKXf06LdOADuPGuFVLEtHFw4pHIiIiIiIiIrqkSjZvwcYda7BxvBaGkAtBodpoQ1qmAbH5FhxdsBDhgwZCkMth1esRm2/BmPQKbExSu15TKTqvUUW1vxRvh4iqMXgkIiIiIiIioktGstmweskcrBoe6nbOECzDquGhGJNegdh8HSpychHWpzcCNRoAQGy+BTEFFhRGKmBUyRBiEhFVXAVZdRGkYxwRXRoMHomIiIiIiIjoktnz4svY0E9lf1F7v0ZBACQJG5PUiCmwwKLTAQBCE+IRqNXCqtNBJgHRRVVu9w2M0CI0Ib65p09EdWDwSERERERERERNJtlsKN+fjfL9+wFJQFifXgjr3cvrHouSzYYT3y7BwdJjMITUUZkoCDCEyLEnToWy0gOIKWqP+IhYhHTrCmt1EOlJzEPTuL8j0SXG4JGIiIiIiIiImkS3NQN5n87BeYPBeSz/h6UIaKVG7OOPunSkdow/Mu9zVJWWwtAlyKdnbEpqBVTtBtbvRmiVHMMKS6Fq43mJdXDfvm7PJKKLj8EjERERERERETWabmsGDsya7fHc+XMGHJg1Gz1nPg/tkBRINhtOLVmKU98tAQDkRQdh4wB1g59ZEXAeq4eHuizNrtmIpnLfPojWKsgCFY17U0TkFwweiYiIiIiIiKhRJJsNR+Z9DgAQBXht8nJ0/kJIooi8f8+FzWiEKAA7EoKR0TfEh4dIXvd+rMm1EY0Fp/+3Bh0mjPPH2ySiRmLwSERERERERESNUpGTi6rSUnvlYpIahpALeyrWrEC06nQ4+O77AOxVjhuS1DCG+Lj/Yu3Q0dvxWo1ozGfONOYtEZEfyS71BIiIiIiIiIioZbLq9ciLDsKq4aEwBLtGDI4KxLzoC3s4OsYag5spjqhuRFMYqYCyXbvmeQYR+YzBIxERERERERE1SkDrMKwb3Mr+wlMFIoB1g9QQBftS7I1Jas9j/cwYLEf7m0Y36zOIqH5cak1EREREREREjbJWOAFzUB01TYIAs1KO3we2giSDy1Ls5tQmoR8byxBdBhg8EhEREREREV1BRFFEbkke9KZyaFRhiI+IhUzm/wWPoijif4c3+DT2QKzK78/3SJIQej4AiePvuTjPI6I6MXgkIiIiIiIiukJsy9+FRVlLoDOVOY9pVa0xNXEyBkcP8OuzckvyYKiq9Os9m0SSAAiYfu2DkAncWY7ocsBPIhEREREREdEVYFv+Lry/eZ5L6AgAOlMZ3t88D9vyd/n1eXpTuV/v5w/jsqwY1L7vpZ4GEVVj8EhERERERETUwomiiEVZS+ocsyjrB4ii6LdnFpaf8du9/EIQEKg3oiIn91LPhIiqMXgkIiIiIiIiauFyS/LcKh1r05n0yC3Ja/KzJJsN//72H1ias6rJ9/I3o0oGq15/qadBRNW4xyMRERERERFRC3dq706fxjV1ebRuawbm/z4PWXGBgCA06V7NIcQkIlCjgelST4SIALDikYiIiIiIiKhF023NQNn3y30aG6Zs1aTnrFj8SbOEjmpFCG7rNQatZarqJjEeSFKd59RGG7qIoQhNiPfr3Iio8VjxSERERERERNRCSTYbjs5fiIJ2Ch8v8P2+FTm5sOr1CNRo0KpHDxye9zn+SFP7L3SUJCQeqcLYac8hoW0PyGQyRJbbMOfU/+wBY83neAsca5xLyzQg9qGnIMjl/pkfETUZg0ciIiIiIiKiy5xks6F8fzbK9+8HJAFhfXohrHcvVOTkIkdlwLa+oT7dZ3Pmb+gzpmedY3RbM5A3fyGOyStwsq0ChhA5Qn9WIDDSBLOq8RWTtfU/UImHrn8EEe0vVChemzIWhStWYV0cYAi5ECCqK0WkZRogCsCGQa1gCpK5nBt1GBh9z1PQDknx2/yIqOkYPBIRERERERFdxnRbM5D36RycNxicx/J/WIqAVmqEj7gGfwzyPQzcWpKNW7dsQWRqqtdnrVz8CdalqWFWamqd9V/oCAB9AjsgYqjrPAS5HKMnTEOnd2ajMFIBo0qGEJOIqOIqyKqLHsdOeQJnu2pQeCQXISYRCfFxaH1/L1Y6El2GGDwSERERERERXaZ0WzNwYNZs52tRgDOQK1OL2C3fBrPS98DNpJRh6W+LMGPQQMgDXJdnSzYb1vyyEKuG+1Y92RRBVhE3Pfuax3PaISlIeOF5KOcvhPWEznk8MEKLmIemQTskBZEAerfnXo5ElzsGj0RERERERETNzLFUWrd/L7agEPpAG9oEh+P66MEI793HWa0n2Wwoy85GztlDMCoFVPz8K9oKgEwC8qKDsDFJ7bIEuc69D71YHy/H7l/+D9MG343B0QOcx8uys7E2rvpFM3es7iwPR0BQkNfz2iEpCB800GWfydCEeFY1ErUwDB6JiIiIiIiImpFjqfT6bhJ2xQdDkgmACMBwEstydiFp5XlMu3YaBJkMa35Z6Lq/4SA51L20iDtuRlZCsPvNGxkQ6quMeH/zPDw7dIYzfMzMWg9jyMUJ9oYkXVfvGEEuR1if3hdhNkTUXJoteExPT8e6deug0+kQHh6OtLQ0XHvttZDJ7BvAlpSU4IcffsChQ4cAAH369MFtt92G0NALJd2iKGL16tXYsmULKioq0KFDB0yYMAEJCQnNNW0iIiIiIiIiv3EslU7vF+IxOJQEYGe3AIi/zkV73XmPy5wNwbIL1/qrElEAIElYmLEYA2/pB0GScGpfFjDIQ7jpZwKAG2PTmv05RHTpyeof0nCbNm3C4sWL0bNnTzz22GNITk7GkiVL8NtvvwEATCYTPvjgA5SUlOC+++7D5MmTceDAAfzrX/+CKIrO+yxduhRr1qzBiBEj8PDDDyMsLAyffvopjh071hzTJiIiIiIiIvIbyWbDkXmfwyqH9+Cw+nVWfDA2JKu9j3H840+CAL2tEts2Lkf5/mwEV1j8e38vUqITESDnAkyiq0GzBI+bN29GbGws7rzzTsTHx2PcuHFITk7Ghg0bAAAbN25EeXk5nnrqKQwYMABDhgzBE088gZMnTyIrKwsAUFpaivXr12PixIm4/vrr0adPHzzyyCOIiorCypUrm2PaRERERERERH5z6ocfkRtsxIKJ2rqDQ0EAZAKMwfJm31vRk8Nr/4eyvfsQVVyFEKOtUftGOigluffrJQlBQgD+MuTBRt+fiFqWZgkeq6qqoFQqXY6FhITAYDAAALKzs9GtWzeEhYU5z3fq1Alt2rTBvn37AAAHDhyAKIpITEy8MFmZDImJicjNzUVVVVVzTJ2IiIiIiIgaSLLZUL5vP4o3paN8335INtulntIlp9uagfXpP2PV8FBUBTbLr95+oyguh6W4BDIJuDbT/nt7Y8LHECEQj6VOs4enta+XJEAQ8ETqNOcWbER05WuW2uZRo0Zh8eLFyMjIQL9+/XD06FFs3boVKSkpAIDTp0+7BIoObdq0wenTp51jFAoFwsPD3cbYbDYUFxcjKiqqOaZPREREREREPtJtzcDR+Qth1emcxwK1WsRMnwbtkJRLOLNLR7LZkDd/ITYO87J0+jIjSEBQZAQAIDbfgjHpFVg7SA2LsmGNZkZF9EdKp0Q8K5uBL7KWoNRU5jynDdZgauJkly7aRHTla5bgcfDgwTh8+DC++OIL57GEhATceeedAOx7PNauiASAoKAgFBcXAwDMZjNUKpXbGMd1JpOpOaZOREREREREPnI0TqnNqtPhwKzZ6Dnz+asyfKzIycVxeQUMIZpLPRWfVKpksOhKna9j8y2IKbBge0IwtvUN8Sk4VVRJuOuaewAAg6MHYGBUP+SW5EFvKodGFYb4iFhWOhJdhZolePzPf/6DvLw83HLLLejatSsKCgqwYsUKzJ07F4899hgkH0q2azaZ8URowt8YOSomr1QWiwVnzpy51NMgoibg55ioZeNnmKjl4+e4fpIo4sRn8+scc/izBbB27gThIgdOoiTiSPlJVFjPITSwFbqFdYJMuHhzOHfsOIyqyyBkq17eXJ8Qk4iS9RtcjskkICW7EgKAjH7qeu9xTUg8ikt0Lse0CIU2KBQQgaKioobMvMn4GSZqXhEREQgIqD9W9HvweOTIEWRnZ2PKlClIS0sDAMTFxSEiIgKffvop9u7di+DgYJjNZrdra1Y5ehvjqHT0VA3pK7lcjnbt2jX6+svdmTNnruj3R3Q14OeYqGXjZ5io5ePn+AJRFD1WrpXv2w+bvqzOa216PYJ1pQjr0/viTBbAtvxdWJS1BLqay3xVrS/qMl9l504IMdVdTNPsHAU/dYWPkoSQShGiABzsHIQQk4io4irIatQKDcypxP5YFQzBMs/3kSQorRIeuvUxyAMU/n8fjcTPMNHlwe/Bo656X4/Y2FiX4927dwcAFBYWom3bth4rDouLi9GtWzcAQNu2bWG1WlFeXu7ShKa4uBgBAQGIiIjw99SJiIiIiIiohrpCvK66Cp/uYdG5VsF5CzL9Nd/3N89zO64zleH9zfPw7NAZFy18jCqugtpo8x7YNbMgiwhLkByA9w7TAGALELBs1IUl4WqjDWmZBsTmWwDYKx/TMg1YNTzUPcSsvseobedgGHDwogbMRNQy+L322/E3CocPH3Y5fuTIEQD2UsyEhATk5eWhouLCf6hOnjyJoqIiJCQkALDvCSkIAjIzM51jRFFEVlYW4uLioFBcPn+TQkREREREdKVxhHg1Q0fgQoiXWXrIp/tUlV/4vW9b/i48vvIlvL7+Q3ySsRCvr/8Qj698CdvydzV5vqIoYlHWkjrHLMr6od5tvfyhqrzcGdgB8NzhuRFdo+tVfd/UPBtUIa0AAfWGnuZA1/OGYBlWDQ9FXnSQ85ij4Yy60vVrp64UMSa9ArH5Flj1er+9DSK6cvi94rFTp05ITEzEjz/+CLPZjK5du6KwsBArV65Ex44dkZiYCLPZjPXr1+PDDz/E2LFjUVVVhWXLlqFjx45ISkoCAISHhyM1NRU//vgjrFYrOnTogPT0dJw+fRpTpkzx97SJiIiIiIioWlWVBZ9lfOV9gCThe9NuDO8SBHWl+/LcmhRhoQCavxoxtyTPLSR1f5YeuSV56NUmrtHP8UWgxl5B6AjsNiapYQi50CFaaRFhkwmoCmxCJaSHJdRBMgWmdbgOkWlx2LLpk7qvFwTPy7Crj29MUiOmwOL8c3U0nCmMVMCokrkty3a8ZyKimpqlucyDDz6I1atXY9OmTVixYgXCw8MxZMgQjB07FgEBAVCr1Xj22WexZMkSLFq0CAqFAr1798Ztt90GufzCD+MpU6YgJCQEf/zxByorK9GhQwc88cQTiImJaY5pExERERERXfXWrvseXxWud6uEcyEIqAwQ8WuqfVus2stzawrSan2uRhwY1a/Ry671pnKfxu0o2NPswWNoQjwCtVpYdTqvgZ0oAAsnRsAUJDRqKfakdWWQ3Xo9ToZUQakIQlrnFPRu2wMymQx/ntjh2028PVcQYAiRozBSgeiiKudhmQSX1w6BEVqEJsQ3+D0Q0ZWvWYLHgIAAjB8/HuPHj/c6pn379vjLX/5S731uvfVW3Hrrrf6eIhEREREREdWydt33mFe8HmjgzlaO5bmOZbc1VVVUXJRqxLCgVj6N+/PEdtzX71a/7SvpiSCXI2b6NByYNRsSPAd20RPGY+T2Xz3vnVgPlVnEqPufQJthwzye16jCPB5vqCMdAj0GjbXFPDQNQo0iIiIih+b7SUtEREREREQthu18Fb7JX29/0dAKvOrxG5LUEGtdemzhIuiNvu3/52vVooNks6Fsz14c//q/OLJgoU/XVFgMyC3Ja9BzGkM7JAU9Zz4Pm9o1BAyM0KLnzOfR9YH7MfaepzB+pxVKi4/7Tlbv4Xh3VJrX0BEA4iNiESwENmX6AICDXVX2P09BQNxzf0WgVuty3vFetENSmvwsIroyNUvFIxEREREREbUsmTv/gEHZhD0HBQHGEDl2JARjcHal87C1RAfrtt32Rif1aEilXsnmLTj8r/9ANJkAAKWdg4Duvl1fWlnm83OaInzQQJy9thjHNmeiR8fWuPa2kQjr3ctZHagdkoK7Bw3Ezfv24cfs1UgX8mGW19105vrQ3rjh+rr7HshkMlyn7YflJT4uufbCpJQ5l1tbS0uRPH8OKnJyYdXrEajRIDQhnpWORFQnBo9ERERERERXOVEUsb/ksF/uldE3BNpym8uSa9WKLVCPCoIhWOa5mlKSoA3WID4i1qdnHF/0FQqW/QJRAAraKHCqrQLnQnwPwCos53we21i6rRk4On8hOuh06AAAeuBwQQ5ipk9zqRAU5HKE9++P6f3740FRRG5JHnYU7MGfJ7ajwmJwjlPLlHho0BSkdh7o0/PvSrsXv327HWYFGrWHpINRZV8oaT5zBoJcjrA+vRt9LyK6+jB4JCIiIiIiukqJoogfs1dh9YF1MIrujWEaa+2gVgisEhFdZO96LBoMSMus8ryfoWSv8JusTfFp38WiP//Ets2rcWRACHK6qWANbPgOYq2C1A2+piF0WzNwYNZst+NWnQ4HZs32ujxZJpOhV5s49GoTh/v63YrckjzoTeXQqMIQHxHboH0p5QEK3Bc1wr5nZwP3kKwpxGRfBq5s165R1xPR1Y3BIxERERER0VVoW/4uzNm6CJWi1b83FgRYlAKWjdIgxGjDyJzziDls37tRaRFhVrpWJiotEkZtP4fed4TXe+utJ3ZiztHFMF+nadIUtcFNu74uks2GvPkLcaq6ElMA0KGoyhnCAsDRBQsRPmhgncuUHSFkU1w36g5gHfBVwR8wB3muNAXgtQpVXWnvwA2ZDO1vGt2kuRDR1YnBIxERERER0VVmW/4uvL95XpMq4XxhDJZhRXIQEoNDkJUQ7D5AkpyBWKCm7jDw611LseLQOsBTgOYrCQ1a0t0Yf2xdgS9GCLAGur4fpUXEqG3nEJtvgbVEh4qc3IuybPm6UXdgQFZ3fLn0Q+zqGQxL0IWqSaVFhDlI5rUKNS3TAJkEtB83BrLABrY6JyICg0ciIiIiIqKriiiK+CJrSbOHjgCc93eGjrWfJwiAJGHTwFDcE9/D621+W/sdVpRs8HwPX1W/36mJtzdoyXJDfL3rR6woWAt4WP5tDhSwangoxqRXIDbfAotO1yxz8CS8Xz8MfV+GgTklKIxUwKiSIcRkr2Y82iEIG5PUMNTYI1NdKSIt0+DcpzMoQuvt1kREdWLwSEREREREdBXJLclDqams+UPHmup6liDgnAo4UHrM49Li4i1bsOj0H0Bg07onh8iVeGTI/RgcPaBJ9/Hm690/YsWhtd4HVIesG5PUiCmwoKq8olnm4fHRcjlin3gUB2bNRnRRlcu52HwLYgosboGkrEZzbfOZMxdtrkR0ZWHwSEREREREdBUprSy71FPwSG8qdzsm2WxY//18nE9VNvn+Tw+bgX7tE+ocI1qrULhqNSpycyFXqtBmRBpa9+1T516MALD1VCZWHKwjdHQQBBhC5CiMVKBHWGhDpt+sZBLcAsma2FiGiBqLwSMREREREdFVpMJy7lJPwSONKszt2KkffsSJVuf9cv/6llcfX/QVCn5efqHhCoCSjZsgUyoR9/STHrtQA/al6wt2ftuguRhVMgRpL97yZclmw9H5Cxt3MRvLEFETNM/GFkRERERERHRZ2pm79dI8uEagV/u42mhDm7wS5yFRFLH/dC7+yPwfzoU0bYm1Q/bZQxBF0eO544u+QsGyXzzOUTSbcWDWbJz89ntINpvb+dySPJyzGhs0l1AhCKEJ8Q26pikqcnJhbeSekh0mjGNjGSJqNFY8EhERERERXSW2nNiBbHN+kxu0NOqcpzE1uicf37wIEYMHY/vpvViUtQQ6UxmQ3PQl1g4/5f4PG49vxdTEyS77PIrWKnulYz1OfbcEp1etRuzjj7pUP3paIl4XpUVE8pDR9S7f9ierXt/wi2QydJgwDl2m3uf/CRHRVYPBIxERERER0VVAFEUs2P5Nw0PH6nCwXbEVZyIDGxc+VjdWESRAqnG6ZvdkKyzYkLESc/LXeJ2Dx3vXda4WnakM72+eh2dSH0JoUCvoTeWwZWZDBsmn5YDnzxlwYNZs9Jz5vDN89LREvC6Jx86j88u3NeiapgrUaHwa1/amGyEIApTt2qH9TaNZ6UhETcbgkYiIiIiI6CqQW5IHg2hu+IXVgd7QvZUwB5qxMUkNQ43lz0FmEQMOVqIkTI68Lqo67yMJwDWZ5xBsFt26J4sC8G3hJu9zkCSvwaZMlCDKfQ9UP97yOURcWFatHq91BqC+ODp/IcIHDYQglyM+IhbhqtYordTXHX5KEpQWEXdf/+BFrXYEgNCEeARqtXUutw6M0KLb9Is/NyK6sjF4JCIiIiIiugrsKNjTpOuNKhl6nLAgpsCCwkgFjCqZMzwEgHm3Rvp0H1OggH6HLM7A0aEwUoEysdL7hR5CPaXJhpE7DOhWYMH2hGBkxQejKrD+2sWaoSMAGIJlWDU8FCl7jWhtsLmEoqIAFEQqcKqtAgKADkVViC7SoSInF2F9ekMmk2FoxySsOLjO+wOrqzLvix6FyNTUeufnb4Jcjpjp03Bg1myvY2IemsbQkYj8jsEjERERERHRFU4URaQfy2jSPUJM9sYsMgmILqpyOWe56wZYhN0+3WdHHzVyY1RuFYZGlW+9TwfuM0BbYXOrmBx2Uo77xt6PdSFF+OnArz7dy6m6ojKjn9p5KMRoQ4diK452CMJ5hevclBYR9xbuxfV9emPtuu+xoni940Yebx9mU+DB4VOR0impYfPyI+2QFPSc+TyOzl/oUvkYGKFFzEPTvHbtJiJqCgaPREREREREV7jckjycq6qjmrAukgSNPAQjH7gXxxcs8hha5UbJgYzdPt/SUWE4Jr3CGT46gs36yEWgxwn7NYJCgQ4TxiGsbx+E9e5lr+zLaGDo6FCrotIYLMMhL0vHzYEC5uvTIa2V4buTfwDBMq/7TyrNIqal2zD4zv6Nm5cfaYekIHzQQHuXa70egRoNQhPiWelIRM2GwSMREREREdEVTm9sRFdjwLlE+M6oaxCZmoqIwYM9hlaaokMNu291heHGJDViCuzLrqOKq6A22mDwFuJVzyejbwi05TbE5lsQ98xTiBjqunS5s0VZ/318nWM98/9v4QaYQuoI7QQBZpUcJ2V6JFQvzb7UBLn8spgHEV0dfKtlJyIiIiIiohZLcbq0UdepK0VM2CPi2pSxAC6EVpHXDEdYn97OSrme4V2hNkkXOkz7QhBgCJGjMPJC5+SoYmu91wDAxiQ1RAFQhIa6DVGG2xvFAGjYfBpKEGAK8i3YNATLYNU3MvwlImrBWPFIRERERER0hWtzVI8Qqw3GeqoJQypF3JBRAZPyQuOYhBeer3cpriH3INJ2VGDV8FCvnae9MapkyIsOwrpBapiVPiz5rRFY9vQQ5oUmxCPBpMbpnEpkJQT7PI/mZAqSIVCjudTTICK66FjxSEREREREdIWTCcC1dVUBVh+7NtOATmer7N2rxVAkvPC8T01HrHo9YvMtGJNeAXWlb3s1OpSp5Vg1PBTmoIb9empUyaAIC3M7Lsjl6PLQVBzqomzQ/ZpTK0UIQhPiL/U0iIguOlY8EhERERERXekEmTMY9FRZqLRIGLX9HK67/k4Ehmsa3HTEUc0Xm29BTIEF23oHY3sfdT1XAQFVInb3rK5KbOB+jHU1oznbVfP/7d15fFR1ni/8zzmVqlSliiSVhSUJa0LIxpaQkLCILAoKggqi7YKIgm23OjOP19Z+eubeuXdu9+OMI86o7QKKaKO2ICI7KIuAhAAmIJCFGBAhkEBSZKFSa+qc549KioRsVZWqbHzer9ed2znrr1I5VPzk+/t9YbzUcxqmxM+6hw1ciOi2xOCRiIiIiIioD5MdDlz9bi+Am8Hg5UglLg1QQgAQfc2OmGt2qLQ6RN0316uALDgpEarwcNgMBogyMPiqHcdGd3xefYCAek8bwMgydCbnNHB7TU2rh1w5V+jZNf1IJ6oxcdr87h4GEVG34FRrIiIiIiKiPqy2oBD26zeby4gyMPiaHZNOm5B12oQhV+0QZWCQl6Ej4JzePGL5MtfXAyvtECQPm824o+F68RcsEGW0uW5ie9WQXabhpT8z8TGIIv/Tm4huT/zXj4iIiIiIqA9zt5uyJmpQp+4TnpWJqPnO7tflEUrIotDx9GlPqx0bji+I1SAgIrzNdROTBsRDV+fwb1frjjS8tBB1y87bRES3CwaPREREREREfZi73ZR90XU5LCMdgLPxi98IAixqEfWPzWmzQjM0ORkzixu+8DZ8lGUorQ5X5aK3qsytTwcnIrodMHgkIiIiIiLqwxrXX2yPqp3qQU/vFaDXd8lU50uRbbcsEBQKzFmwDKkFJu8u3hBW3n3UiMeQ1KnKSb2mZedtIqLbBYNHIiIiIiKiLiBJEvKvFeOHX48j/1oxJKlr1iEUFAoMe2YpSvsrcXZoIEr7KyHdMsN5xDPLfNJ1WVAoMGjO3YiqsLs31VnuxDqQHZymn5iBn0f28+rSaquMuYdqkVCrwk+XT3s+JRwAZBn6AB0SI+K8GgMRUV/ArtZERERERER+drT0BNbmrYfBXO3aFq4JxdLUxZgYM97/967cCsOsm1OpdXUOTMs1Ismiw4hnliE8K9Nn99NEDYIoA9Nyjdg+NdgZLLYW3DUNHNs6ph3JA+Lb3V9w9SxuqCS4Fltsiywj0CJhzDkzBPlml29RBgY8Mh9F9fs9GldT91kHs7EMEd3WGDwSERERERH50dHSE3jj8KoW2w3marxxeBVemryiWfgoSRIKrp7FlXOF0JolJA2IR2hyslcViW3d2xikwPY7QjAq6xmED0nz+LrtaVwrMq7UirmHanEgTQejtuXYdSYJ03KNANDmMW3RqbRIjmw/eLxyrtDt6806bkRcqbXZtugHFuByRADqr3sXHGaeqsPopEivziUi6isYPBIREREREfmJJElYm7e+7QNkGR8eWov0h8dClhz44uA6fHctF2bB4TpEd+lbzPwcmLPAs8pESZLwUc661qsJG7785ORGZMSM92lVXuOakjaDAXGlVoy4bMWVSCWMGhFmtQiNVYLOJCGqwllVCKDFMbVaESdHBTkH2krB4rPpj3U4ZnfXmcw8VdcsdAwIDkbsb5cjYvIkFP/wtbsv+yZZhtYkIb3AhJCHkz0/n4ioD2HwSERERERE5CeFlSXNple3IAioEWz44P3/F0f6VcOiahm0GYNEbB4H1K97C/MAt8PHowe2oNphancKs8FchcLKEiT3b7960BOCQoERy5eh6LXXAQCiDMRcs7d7TmvHDDWrcTArDFWWm12hw9SheCrNvenpSQPiobv0LYxBYptTvbUmCbNDxyLm/86BraoKKr0ewUmJrurSqNhE4PJ3Hd6r6TUB4M5cI5QaDUJSGDwS0e2NwSMREREREZGfGExVbh23P6y67Z2CAMgyDqTpkPDhGoRlpHc47Vp2OFD83Q5gbMfTl6vq3BujJ8KzMpHw6ss4v3oNbAaDV9eYs2AZfjMxA4WVJagy10CvCUFiRJzb1ZmhycmY+TmweRxaVn02BIQzCuxI+vd/avP7mTRgFEIVQaiur3NrDUq1VcbMYzcQV2pF3B9e8knDHiKi3ozBIxERERERkZ/csBrdP7i9YEsQYNQqcEGsQkJBIUJGp7R7qdqCQqgragHo2z0OAFRXq4Hh7g/TXeFZmQjLSEdtQaGrmtBWXY3i/3yzw3NH/eElV2Wnt9WYgkKBOQuWoX7dWy3WkGxcX/Lex19sNxwURRFPZz7uXCezowY4sgyFQ8aIy1aET5mMiMmTvBo3EVFfwuCRiIiIiIjIT4ID+7l3oJsdnY0aEbaqjisUbVVViKqwQ1fnaHeqsc4kYahV7d4YvSAoFC1C0rpz53F50+Y2zxn1h5d8FtqFZ2ViHoCE1WtwQVGFOo0IrVnCMCkYcc+86Na09Ykx4/HS5BV4/8gnqJOsbR8oCKjTKnAlUomEiek+GT8RUW/H4JGIiIiIiMhPwoJCfXo9s1p0dY1u97grZRBlYFquEdunBrdZrRd/wQJr0FWfjrEjw5YugW5kHM69vxr1tbWu7arwcIxY7lkDHXc0Vl4mNKm8bLqOozsyBo1B4QkzdozteJp3nca994iI6HbA4JGIiIiIiMhPEiPiEKYOxXVzVZtVh+5WOwKATqlFcFJiu8fIDgfKdzsbosSVWpFaYEJeUlCrx+YlBWHQoW8wb+gQnwd+7YmYPAnhmRObTcP2NAz0RGuVl56oLSiEpqIG7kxdD1HpOnyPiIhuF+6tyktEREREREQeE0URT6UtBiC4Gpq4NHyttEtuX2/wqJQOw7nagkLYr18HAEgCUDysjanUDYHngTQdSj5cA9nhcHscvtAYBkbeMRUhozt+Xd2p6dT1Fu9jI1mGrs6Bqfcv6dGvhYioKzF4JCIiIiIi8qOJMePx0pQV0Nqah1E6k4S5h2oxvtDk1nU0Fgm6A6ddAaEkSci/Vowffj2O/GvFkCRngGm5bsDF/krszOyHz2frnU1V2qqqdDWtqUVtQaH3L7KPU+n1rqnrANoMkaflGhEYEtq1gyMi6sE41ZqIiIiIiMjPMgaNgXm3GeVBJpgaGpxEVdhxPjoQ+bGa9k9uCLXiL1hwQbQiPj8fxWEOrM1bD4O52nWYPkCLKSMy8e3VA7DO8myNwTo3m9bcroKTEqHQ6RBXasTcQ7VtdsmOK7Xy+0hE1ASDRyIiIiIiIj+rLSiE0liDwcab20piAp2NX9whCPgpIQg/JQRhZ9FHMMm2FodU2Y3YenYPAAFwf9lIAIDWLLEhSjsEhQJR983FpS++RFypFSMuW3ElUunqkh1VYYfYUATJ7yMR0U2cak1ERERERORnt1bBSYJzbUUA7TeXaWU9QZNsA1pbZrDxOp6Ejg3rEg5zBLMhSgcGP7QQAf2c75koAzHX7Bj1qxUx15qEjhHh/D4SETXB4JGIiIiIiMjPbq2CuxKpbH/txaZaO6at0zzokN10XcJBd89iQ5QOCAoF4n7/XLvHjHhmGb+PRERNMHgkIiIiIiLys+CkRNTrgl2FisYgN/9TzJMg0UONzW3iSq3QRA3y2336kvCsTCS8+jJU4eHNtqsiwpHw6ssIz8rsppEREfVMXOORiIiIiIjIzwSFAlWT5yFi9+coiQnEgfG6bh3PqPNm3H30Btcl9EJ4VibCMtJRW1AIW1UVVHo9gpMSWelIRNQKBo9ERERERERdwDg0AYaYQOx2t6GMHyWft3Bdwk4QFAqEjE7p7mEQEfV4nGpNRERERETUBfrl7sNhdxrK+JMsQ21xILrC7trEdQmJiMhfWPFIRERERETkZ7LDgbryH2EcFeTFyXLzoPLWrz0085gRouysdBzxzDKuS0hERH7D4JGIiIiIiMjPagsKYQmwd3xgU7IMpU2CCAHWwCZBY2dCx/CxuPfhFK5LSEREXYLBIxERERERkZ/ZqqqgNUsen2cPbBIMdrLSEQCmjJ2JyP7xnboGERGRu7jGIxERERERkZ+p9HpEVdihq3M4A8SOtHZMJ0PHcI0eiRFxnboGERGRJxg8EhERERER+VlwUiLqNcG4I9fo3NBW+CjLNysbfdyAZmnqQxBF/icgERF1HX7qEBERERER+ZmgUKB0wt2IK7Xi3kO10Jlan3atU2h83/FalqEVVUiPGuvb6xIREXWAazwSERERERF1gaqYBJwcOA0Lqk8idosBVyKVMGpE2MJ1GDZpGoaMTcd1UzXePvqxb28sCKiTbCi4ehYpgxJ9e20iIqJ2MHgkIiIiIiLqAg5JRrFuKCoemo1ZA+xIqKpq0V06/1qx3+5/5Vwhg0ciIupSDB6JiIiIiIi6gCQ513UUAxQIGT2q1WMSI+IQrgmFwVzt8/t701WbiIioM7jGIxERERERURdwBY9i22s4iqKIpamLW9/ZXjfsxqY0bezT1TmQNCDe3aESERH5BINHIiIiIiKiLuBoCAYV7QSPADAxZjxemrwCenVo8x1t5Y5NA8dbw8eGr2f+DIQmJ3swWiIios7jVGsiIiIiIqIu4E7FY6OJMeMxvAJY/8UbqNYpEGp0ILnEjLyEIOQlBsGuullDojNJiL9gQUGsGha1otl11FYZM4/dwJzHX3StI0lERNRVGDwSERERERF1AVfwKHQcPB4tPYGPStahOq2fa1teQhCm5Rrx242VuBKpRJ1GhNYswRQoYueU4JYXkWVYAgUoNGqEZaT77HUQERG5i1OtiYiIiIiIuoDDzYrHo6Un8MbhVaiWTM22G4NEbJ8ajPPRgYi5ZseoX62IqrDjUKrOecCtgWbD1/uSAlCdn++bF0FEROQBVjwSERERUa8nSRLOlBcir/AIJLMFCWEj0G/4MNTY6qDXhCAxIg6iyL+5U/eS3FjjUZIkrM1b3/pOQQBkGXszdBhx2QpRBq5EKmHUtjOFWhBg1CpQcLUYkzGmM8MnIiLyGINHIiIiIurVjpaewHtH1sIk2VzbdtXlA5duHhOmCcVTqYsxMWZ8N4yQyElydFzxWFhZAoO5uu2LCAIsagWOJwVhYr4JdRr3AnV3jyMiIvIlBo9ERERE1GvlXMzFyuwPAcgtp5k2cd1UhTcOr8LilHl4MPGeHlf9KDscqC0ohNVggL2mFsqQYASGhyM4KbFTDUEar2urqoJKr+/09ahzGise21vjscpc49a1TiYEIb3AhGClzq3jo2IT3TqOiIjIl/wWPJ4/fx6bNm3ChQsXEBgYiOTkZCxcuBDBwc5FjysrK7FhwwYUFxcDAEaPHo1Fixa59gPOaQY7duxAdnY2amtrER0djQULFiApKclfwyYiIiKiXqIiOxsfFH8KqNFu6Ajc3L/+zDbsOfdDj6p+NBzJwfnVa2C5bmjWMCSqwo5AfRhiVzyN8KxMr69rMxhc21Th4RixfJlX16POc2eNR70mxK1rWQJFBL66Ag9MmIFvv3kV1fV1rT8Hsgx9gBZJA0Z5NWYiIqLO8Mufen/99VesXLkSgYGBeO655/Dggw+ioKAA7733HgDAbDZj5cqVqKysxJIlS7B48WIUFRXh7bffhiRJrut89dVX2LVrF6ZPn45nn30WISEheOedd/DLL7/4Y9hERERE1EsYjuRgz9q3UKcROg4db3HdVI03Dq/C0dITfhqd+wxHclD02uso0Bjx8fxwbJylx67JIdg4S4+P54ejMKgORa+9DsORnA6vJTscqDl9BhUHD+Hi39ej6LXXm4WOAGAzGNy+HvmW7HBAX3kRiTd+gfhrCWSHo9XjEiPioFMGuXVN26AwKAKUeDrzcdf6j81v6qwEXpb5eI+r8iUiotuDXyoeN27ciOjoaPzud79zfcCp1WqsX78e165dQ15eHmpqavDKK68gJMT5F73o6Gj8+c9/Rl5eHiZMmIDr169j//79WLhwIWbNmgUASE5Oxl/+8hds27YNL7zwgj+GTkREREQ9nOxwYOfGVdg51b3KsBYEALKMNTnrkP7g2G4LZGSHA+dXr0FJTCC2Tw1usb+xg/E9h2oR8Nf3EJaRDkGhgCRJKKwsQZW5xtU4p+roMZSsXoMLilpXxeRAESiPUMKoEWFWi9BYJehMzkrK8x+ucV2P/K+x+nRKYxC85hB+3PxZq9Wnoiji3lEzsP7Mtg6v21gdOTFmPF6avAIf563H9SbrQ4YH6bG0B1X3EhHR7cfnwaPRaERxcTGWLFnS7Je41NRUpKamAgDy8/MRGxvrCh0BYMiQIejfvz9Onz6NCRMmoKioCJIkuc4BnB/Cqamp2LZtG+x2O5RKpa+HT0REREQ93I4N72PLBFXnLiIIqHKYcPTAFmRNv98n4/JUbUEhLNcNODA/3DWmZhq+3jk1GOWFJow6k4+z4Q6szVvfrPmIVgzEqNPXUTxFDaNWf/N0SYbcypReXZ0D03KNiC8oRMjoFJ+/Lmqusar1Vo3VpwmvvtwifHww8R7sKN4Po62uzeuGa/RIjIhzfT0xZjzSo8a2CKVZ6UhERN3J58Hj5cuXIcsy+vXrhzVr1uDkyZMAgLFjx+KRRx6BVqtFWVlZs0CxUf/+/VFWVgYAKCsrg1KpRFhYWItjHA4HKioqEBUV5evhExEREVEP5qi3Y6P5FODFFOvWnN25BZl33NfllX+yw4Hqn07jSqQSRm0H9xYEnEgMwsrcT1CkNbXYXSdZkZfUcmqu3Ma3p7GSMurKKdzF4NGvGqta29Na9akoing2/TG8cXhVm+ctTX2oRagoiiKS+8d3btBEREQ+5PM/f924cQMAsG7dOgQEBOC5557DokWLcObMGdcajmazGWq1usW5gYGBsFgsAACLxQKNRtPimMbzzGazr4dORERERD2UJEnIv1aMj756A8Yg0SehIwBoqkyoOZPvk2u5q+LQYeQ89iRKN3yFH0e1/H23LUVBdYDczgFtVEy2ddxXxhPN1lcn36stKGyxzuatbJUG1BYUttjeOH06XBPabHu4Ro+XJq/g9GkiIuoVfF7xWF9fDwAYPHgwlixZAgBITEyERqPBhx9+iPz8fMi3Lnrcio5+CRI68ctmY8VkX2W1WlFeXt7dwyCiTuBzTNS78Rn2rZ8qCrGxZBeqbbXO9Rl9QZZd6x3+8s1mDBrQ30cXbl/ZXz+A6dQpAMChsVr8GhPo3oludu12myCgqt6IL/O2YFp0BkSB03Fv5Yvn+MYvF9w67tovF2COjGixfWjAIPxL+gs4V3MRtbYbCFb1Q2zIEIiCyH9jiDrAz2Ii/4qIiEBAQMexos+Dx8aKxJSU5tM2kpOTAQCXLl1CUFCQq7KxqaZVjm0d01jp2Fo1pLsUCgUGDhzo9fk9XXl5eZ9+fUS3Az7HRL0bn2HfOVp6Ah8VrPftRRv+CD4t1whRBqyFZzEgMtLv061L1nyMs+WFuDQ6CDLQ6vTorrbp3G4cuHIUT7EBSQu+eI41w4fhWsP/lgTgSqTS1fwnqsIOsaEeo//wYQhp515Rg7jEFJGn+FlM1DP4PHjs39/51+LGysdGDocDAKBUKjFgwIBWKw4rKioQGxsLABgwYABsNhtqamqaNaGpqKhAQEAAIiJa/kWQiIiIiPoOW70N7x37m1+unVpgQlypFQDgMJtR6+dGK999+zn+pjgCyyx9xwd3seumKrxxeFWvm74rOxzOqcxVVVDp9QhOSuxxXbqDkxIR0E+HohA7DqTpmq3n2djkJ8miQ3BSYjeOkoiIyH98HjwOGjQI4eHhOH78OGbOnOmaEn2qYUrJyJEjYbPZsGvXLtTW1iI4OBgAcPHiRVy7dg333XcfACApKQmCICA3NxczZswA4Jx+nZeXh/j4eHa0JiIiIurD1v30NbYWfdfukoadUTxMjcmn6lwVZ7aqKj/dCdiz90usvn4QCOyh05kFAZBlfHhoLdIfHtsruiBXZGfj4Ma1qLEbXdWD6rBwjFi+rEWH6O50/dhxFIXYsX1qcIt9jU1+oiOn97jAlIiIyFd8HjwKgoCFCxdi9erVWLVqFaZOnYqrV6/im2++wbhx4zBs2DBERERg//79ePPNNzFv3jzY7XZs2rQJgwcPRlpaGgAgLCwMkyZNwsaNG2Gz2RAdHY1Dhw6hrKwMjz76qK+HTUREREQ9xLqfvsaWou+cjVR8taZjU4IAo1aBK5FKxFyzAwBUev9UIjrq7fjs0n5ADZ81xPELQUCNYEPO/m8waeaD3T2adu3Z+yU++3Uv6jIUAJwzo7R1DtyZa4TttdcR/8pLuBYXgSpzDfSaECRGxHVLmCo7HChZvQYHpuicG1pr/iPL2Fh3EjOklh2qiYiI+gKfB48AkJaWBqVSie3bt+Ovf/0rtFotpk6digULFgAAdDodXnrpJaxfvx5r166FUqlESkoKFi1aBEWTv/Y9+uij0Gq12LdvH0wmE6Kjo/H8889jxIgR/hg2EREREXWzekc9thbtca7D6EVQFyQpMDv5Lmwq3NXhsXWam0GPvbbW43s1am/Kb+6P+1Cn6cGB4y1+/m47su5c0GMr8HIu5mJVxX4gqHlIV9dQPZhaYMJHP38K46Wb3/NwTSiWtrGGpSRJKKws8UtIWVtQiAuKWhi17YTaggCDuRqFlSVI7h/vk/sSERH1JH4JHgFgzJgxGDNmTJv7Bw0ahH/4h39o9xoBAQFYuHAhFi5c6OvhEREREVEPI0kS/vXLP0FWeBE6NjSMeWLwLAwcmOhW8BhkllDa39nso/zrtbh/YjoUAZ4t52M4koPzq9fAct3gahwSotThjoVLETlpEgw11zq+SA+iNtT5fb1Lb0mShPez1zq/aK16EK037DGYq1tdw/Jo6QmszVsPg7nata29kNJTtqqqZuF2e6rMNZ2+HxERUU/kt+CRiIiIiMhdORdz8X72WpgU9R0f3IYJ5+sx46H7IAsCwjWhzQKlZmQZaquEb7OCmzX7+HbzH7Fs4mNuh06GIzkoeu11lMQE4sD88GbX2l60Fg8UH4HSXA+Eef2SupTG4lwr0Z/rXXbGke83wyTUo9359+0E1mvzNiA9yrmG5dHSE3jj8KoWxzQNKYcGDOrUeFV6PbRmya1j9ZqQjg8iIiLqhbiQCBERERF1qz17v8TK7NUwwe7V+WqzA/ceqsWiAZMhKBQQRRFLUxe3fnBDZaQlUITxlum6VfY6vHF4FXIu5nZ4T9nhwPnVa1ASE4jtU4NbXMsYJOJv6p9RduYnaOscrvt6Iqrc6vE5nTHqFzNEGVCGhEB2OFBz+gwqDh5CzekzkB2OLh3LrWSHA0ePdFzF2h6DuQqFlSWQJAlr89a3e+zavA2QZPdCw7YEJyXCHh7sfO/bev9lGeGaUCRGxHXqXkRERD0VKx6JiIiIqNtUZGfj81/3Otfs82B6daDFgcRfrIi9bEVUhR2iDIStSHPtnxgzHi9NXoE1Rz9DVX2da7vWJMERIMCiElqZrgtAlrF632pEOn5CREZGs/Uam6otKITlugEH5oc3nNv61N9dU4IxtsiEk4lBHq9bGVNhx5WBgW4f31mxl20AnK/t5/9+BzaDwbVPDApC3O+eReTUKV02nqZqCwohmU0AdJ26TpW5BoWVJW1XwzYwmKtwruYiogZFuX3tW9eLHBU+Agcn9APq61p/3xt+Hp4cx8YyRETUdzF4JCIiIqJuITscOLBxLYwZnjcysQaKOJmgQXRD6NiaiTHjMWFgCja98nvU2o3QmiVIArBpZvvNPm5ogB/3fIuYLduhCg/HiOXLEJ6V2fz+Bueajk2nV7dGFgVn6OjhmpUai4Toa95VgLYacDZW3LURgOlMzmnWAHDp7y2rAevNJuz79B0IebuR/JsnurxTtK2qyvvvRxPlRvfX3Ky13XD72NbWiwxWaVHrMLX93jds76fuXJhKRETUk/FPa0RERETU5WSHAzs3fYjNY7zs+NwQ2hxI00FquIS9pmWDDkWAEnc+uBSjfrUi5podv0S5V0HYOHXaZjCg6LXXYTiS02x/9U+n3W4c0kIHU28hy7jz+A3EXLMj0OLhdN+G66qF5k1ytIrAZvtvPX5artEV4EoCcKm/Etmjg3BkdBCOpARh9QMR2DhLj68GVuJ/738Tv9v2JxwtPeHZ2DpBpdcj5podivrOTX/eUvQd+qm0bh171WTo+CDAtV7krVWUtba61k+4BRvLEBFRX8aKRyIiIiLqUoYjOdi2/j1sn6gBAr0MHgFAEGDUKnAlUomYa3ao9K1XMiqDgwEAJTGBOJmgcevS5sDmoeL5D9cgLCMdgkIB2eHA9aPHoNW6GYK1Ng27MXxspRoutcCE+EvO9R3HnzUhZ6z7FXF6ZT88lf4IMmLGN5v2mxgRh22frMQ3cnGzKk2dScK0XCPiSp33K4kJxN4MHSzq9is5r5uqWu0U7S/BSYnImRgOh6ITPy8ALPVWHPr1mFvHHvr1CJZmLIYgy6gtKIStqgoqvb7Z9Ht31ovsCBvLEBFRX8bgkYiIiIi6jOFIDrauews7pwR7PP24LXUaEQqNBsFJia3ut1VVQRKc1ZHuqr2lWYyt0oDagkKEjE5BbUEhHHV1iDI5G9tYNJ5PFW/ttetENR7uNwEJCQqU/rQBAJBeYMLJhKDW16RsEKzS4cnxDyEsKLTZFOjk/vHNjps2YQ70/3IEVyKVqNOI0Jol1/qYAFyNctwevyzj/SNrkb5wrN+nXedcOYnjIxReNem51ZFLeW4dVwcbcvZ/g4B1O2G/fv3mjoAA9IsfiZCkRJTHhnW4XmR7wjV6NpYhIqI+jcEjEREREXUJ2eHAzm8+wo6pvgsdATgDtAULWm0CAzin6bqzHmNTJxOCEF1R76oEBJwBZtP/X5SBhAtW5xqOXpolD0VS1kxXVWJjgCfbbLi8aTNEGZh59IYzEGyjQnJ5+qNuVR0GJyVCHRaOmGstpxBLAvB9YzDr7nsjCKiTbNiYvx0Pjb7PvXO8UO+oxwfH13k2tnbYJffXiiza/BVGXb+lu3h9PW4UFOJGQSEOjNcBnXj/l6aysQwREfVt/JQjIiIioi5RnZ+PfaN8FzhClqGrcyCmVoHBixe1eVhwUiIskW5W8jXxfZP1IwG4pnIrQ5xTYyUBCDY5PL5uU5OmLcCUoelI7h/fLIAatnQJRv3hJYgaDeJKrZh7qBY6U/Op3eEavUdTnQWFAiOWL2t135VIJeq0Cq+Cva0/7cClTZsh2Trf/OVWR0tP4LdbXoXJbvHthd0snKxTi7g4QImzQwNR2l/p+nloXAczP1bt9RB0Ki3So8Z6fT4REVFvwIpHIiIiIuoSuXn7Pao6dMfUPCMS/vHFNqsdAWfgNnhMGoCT7l9YEFCnVeB4UhAm5pugighvNpW7JCYQB9J03r8eWUYo1EgaMKrNQyImT0J45kTUnMlHzJkzuEMGrg3Wwz4oDHqt3qvO0mEZ6Qjop0P9DWOz7V43ygFgUQKHd3yBwZ/8DdH3z8ewpUu8vlZTjU1b/MLNfPVQWr9mXwdaJAwtt+JKpKrTP8tGWx0KK0taTIknIiLqSxg8EhEREZHfOertOHXpDBDvw18/BQEjH1iI8KzMDg9NHpSAwAt5sKo9C9hyxmgRXuPAtPQprnDzePkZ99dCbMeyiY93GBwKCgVCx45B6NgxAIDhnbxnbUGhK3SUBLjWe/x1gKpT1918ZwhG/2xB7OEdkCBjxNInO3U9SZLwUc66NqeXdxerWkTxMI1P1poE2NGaiIj6PgaPRERERORXR0tPYM3Rz1Dly9CxQWl/pVvHqcPCMX63Zx2iG+3N0GHEps3oNyoeoelpWF993LmjE4FYxuk6JCZ7P03XW43rU7ZasdmJkM8RIOJkYhBOJgZht+kwVvySjMzhEwA4Q8RbO2w3DVxb23/0wBZUO0w9KnRsxkfjYkdrIiLq6xg8EhEREZHfuKbLynB7eqtH3Cw8C05KxORyDU4mSO12iG5BEGBRK7BzUjCu/v0D4CslajK8WwuxqbAbDlcI2JVUen3b3at9FKYZNSJWHvsILykVkCUJHx//AlX1da79YZpQPJW6GBNjxuNo6Ql8nLce15t0hu6n1EJTeQMI8WL6dw+rkGxTw1R7drQmIqK+jsEjEREREflFp6bLunlO8gD31scTFArELV+Gmeve8mqadMlQNUqGAkqb1PHBbtCaJVezmq6kSxyFA+kN6xb6K6ATBEAG3steC5NkbXGv66YqvHF4FeYn3IUtRd+1eK9v2Otww93Q8ZZztSYJNpUAu7KH9NBsnJLd9HvdsO2OH2shPOSbKdtEREQ9FYNHIiIiIvI52eHA9xs+RLXgxXRZ2VkeqQ4IhKXe2uZhOpUWyZHuN+YIz8rEPABlBz9G3jDvQje7qpOBlixDZ5IwTApu1qymqxRd/wXGTjSScZsAmGRbw/++5XstCIAsY2vhdwA6UaHYEOBl/mREqNEBrVlCVIUdx5OCvJpS7w8B9TICJMASePM16kwSpuUaMbzUitqCQoSMTunGERIREfkXg0ciIiIi8qmK7Gzs37gWB4c7gEjPm5boA7RYlvk4ALTb1fjZ9Mc87uocnpWJ6XIV8i5t8XhcLu1VY3a0D8C0XCPinmm/E7e/dHkzk7a+F4LQMEu+E1WXDQHmmTgNntpigNhQPJheYMLJhCDPptT7SeJ5C+7MM7qa+DSGo41j7Y7p9kRERF2JwSMRERER+cyevV/i09K9sGQoAHgerC0Z8yDuHTXTFSi+NHkFPs79EtctNwOzMHUonkpzrhHojWH2IOjqHDAGid4FU+2dIwhILDEjYngsTigNMEo3KzZ1JgkzfwbmPP6iW524/aHPNTMRBBi1ClyNDcesJc/DXlMD08VSzDyy1TmlvpvXfNQbHRBlIOaavdX93THdnoiIqCsxeCQiIiIin8i5mItVFfuBQO+m8gYH6pqFjgAwMWY80qPGttsV2VPqsHBMW2/0aq1Hdwy9asPC+Q/g98lJKLh6FlfOFUJrlpCUGI/QJ5O7pdKxUWJEHIJVWtTa6jo+uMGIy3aUR2lggr3bKwjbokwfjdCxYwAANafPIG7DV5h7qLZl5+6uIssQZGD0z+Y2D1GGdM90eyIioq7E4JGIiIiIOk2SJKw59rnzCy/DqSlDM1oNFEVRRHJ/99dy7EhwUiKSzDoYTtX5ZS3AEJUOwUmJEEQRKYMSkTKo54RLoiji6Qm/wZvZH7pdDZiaPAlDk8fjjR9W+a6CsCGYkwX45HoR4YNc/zs4KRGq8HDElRow4rIVJ+M1OJTWr9P3aMaNKfXjC00IaKcX0Yhnl3drCE1ERNQVeki7NyIiIiLqzQorS1Dt8KKRTBPp0WN9OKK2CQoFRixfhvQCE3R1jpudhztLliFIMqY8sKRHB0pZg9MwO3yc28cPHJWMiTHj8dKUFQgN0HZ+AE2CuaZfe3stXZ0DSU26mze+vwAgysC4YrNvupHLMrRiIGZao6AztX09QQZSC0yY+lPbVaXRDyxAxORJnR8TERFRD8eKRyIiIiJymyRJLaY9y5IDx3860Knr6lRBSIyI89EoOxaelYmkV17GzM1rsHkcfFPJJwiQBaByZH8M8MUg/WjZ9Gfwy1vPoTiq44A0PMi5DuHEmPFIf3AsCq6exf7vN+KQUNqpNTILYtVQ1suwK72shWgILGf+DIQ+mdx8zFmZSHj1ZZxfvQY2gwFphabOVbc2/Hz8NutJTIwZjwezs3Fw41rU2I3QmCVU6ANQF6lFzMDhGLGrEDC2HjoGBAcj9rfLGToSEdFtg8EjEREREXVIkiR8XbgTO4r3wWgzubZrHCLkegcsgZ0L7e6Nn9GpdRu9EZ6ViUcz0hGVsw1fXDmIasnU8Ulu6PLO0V6QBQFXY3RAB1Wq4Rp9s0BYbJw+/pt/huKvr+D7iFo3b9hQ1djkXhYv1wJtpDNJmJZrxJzHW+8QHp6VibCMdNQWFCLuugGnKzahzmFt5Uod0yrUrtARACInTcKDEyeitqAQtqoqqPR65/R6hQLyow7UnMlHzZkzkCVA2U8HZWgIAsPDXccQERHdLhg8EhEREVG7jpaewAfH1zULHBuZRQeg6tz1dSotHky8p3MX8ZKgUGD65AWYJt2HH499hz27PsPJhKCGnd6Fqb2hc3RhZQlqJHOHr3Fm7OQ2A+HfTH0MOXnvwKJxM0i79V6dqDC9I/cG0g1BiHum/Q7hgkKBkNEpCAHw29JgvHF4VZvHzk+4C4d/PQ6Dudq1TSsG4t6EmViYPLfF96Hx2q3dM3TsGFezGyIiotsZg0ciIiIiatPR0hPOsKatqcg+aAzybPpjXV7teCtRFDHcFoRpJ+oQXVHvXTdkWUZ4kL5Lp4x7y92qzIG6/m3uC01Oxt2fA1vGuTFN3YfdsPViEB57/DmEJnvWIXxizHi8NHkF1uatbxYuhmv0WJr6ECbGjMejo+93LSUgmx2YHN96wyMiIiJyD4NHIiIiImqVJEn4KGedTzsZN71O08CnJ1DpnWsZxpVaMeKyFVcilTBqRBxM6wdzoND+96DhtS1NXdwrgip3qzLbO05QKHDPgmU4dfgDXBis9tXQ2tbwPV6W9Tj0Md5VE06MGY/0qLEt1iltfM+adlAvLy/vFe8lERFRT8bgkYiIiIhatTF/e6c7VTeltspIvWBHwuSZGDxmQrPApycITkqEMiwM9uvXIcpAzDU7ACDAAWyfGtxuABsKNZ6e/GSPCVE7khgRh3BNaLPKv1vdur5jq8dkZeIBSznevLbbxyMEVDYJNtXNnw99gBbLMh/v9Pe4abhIRERE/sXgkYiIiIhaOFp6AhsKdvj0mvPM0Xjon//UY5trCAoFYlc8jaLXXm+2Pa7UirmHaltMv1abHUi4YEV8tQIP/OdbUAQou3rIXhNFEUtTF7e75uHS1IfcCoYnTpuP0I0HfRdSyzIEGXh6UyWuhStRpxERlTgWdz/7co8KqomIiKhjDB6JiIiIqBlJkrA2bz0gA/Dd0nxIWvBQjw0dG4VnZSLh1ZdR8s57qDcaXdubTr+u04jQmiVEVdghysCoP7zUq0LHRu6seegOURTxm6hpeO/STt8MTBAgC8C1cKWr6nRgchhDRyIiol6IwSMRERERNVNYWeIMonwYOmoEFZIGjPLdBf0oPCsTYRnpqDmTj/Jdu2HIzgGAZtOvG0U/sAARkyd1xzB9oqM1D911Z+Y8lH6zBdtSlZBF3/zg1GlujkE9cKBPrklERERdi8EjERERETXjbsdjtzSsi/hs5hO9qmJNUCgQOnYMQseOgeFIDs6vXgObweDaHxAcjNjfLu/VoWMjX6x5KCgUmJIwBaVF+3EiMcgnU661ZqlxgBh0z5xOX4+IiIi6HoNHIiIiImrG3Y7HbhEETIgeg0lDJvjuml2ssQKytqAQtqoqqPR6BCcl9vhp413tQkIYTmiDfHIttdU5lR0AohfcB1HV+6ayExEREYNHIiIiIrpFYkQctGIg6iRrp69136hZeGLcQh+MqnsJCgVCRqd09zB6LEmS8KXBOSXdF9WO44pMEAUR0fffh2FLl3T6ekRERNQ9GDwSERERUTOiKOLehJnedbWWZQTYZUwqrsez//NdKJWBvh8g9TiFlSW4bq7ufOgoy9A4FHgo4yFE/+s9rHQkIiLq5XrPQjtERERE1GUWJs+FVgx0rtHYllv3NXw9O+cGfnPvcoaOtxFfrgv63NRlGHz/fIaOREREfQCDRyIiIiJqQRRF/DbrSWcFW2sBowxnMNmEziRh/kkJ8x5/EeFZmV04Wupubq8L2k6QLUgynkAKMoek+WhURERE1N041ZqIiIiIWjUxZjz+n0nL8cb+TyEE3lzvMTxIj6Wpi5EeNRYFV8/iyrlCaM0SkhLjEfpkMpuu3IYSI+IQrgmFwVzd5jFqqwyLCq5O5y4NYeS8XBvm/ftz/h0oERERdSkGj0RERETUprRB42D56SLEftfxwmNJGBQShsSIOIiic+JMyqBEpAxK7OZRUncTRRFLUxfjjcOr2jxmSfR0XP56Mw6k6WDU3gyndSYJ03KNuPfxFxlaExER9TEMHomIiIioTQ6HBECAdCMcU4ZMgDqQvz5S6ybGjMdLk1dgbd76ZpWP4Ro9lqY+hIkx42EIGoqE1WtwQVGFOo0IrVnCMCkYcc9wej4REVFfxN8ciYiIiKhN9dLNNfkUCi4PTu2bGDMe6VFjUVhZgipzDfSakGYVsuFZmQjLSEdCQSFsVVVQ6fUITkpkpSMREVEfxeCRiIiIiNrkrHh0ClAI7RxJ5CSKIpL7x7e5X1AoEDI6pQtHRERERN2Ff7YmIiIiojbVNwSPClGAIDB4JCIiIiL3seKRiIiIqIeSJKnNKatdpd7hnGrNadZERERE5CkGj0REREQ9UM7FXHx8/AtU1de5toVAjaczHkPm8AldNo7GqdacZk1EREREnuKfromIiIh8SHY4YD5bjIqDh1Bz+gxkh8Pja+zZ+yVWZq9Gld3YbHuNbMbKox9i66dv+mq4Hbo51Zq/NhIRERGRZ1jxSEREROQjhiM5KFm9BhcUtajTiNCaJQyxaDDyt8sRMXmSW9eoyM7Gp5f3ASoBuHVNRUEAZBkb5CIkfbwWsU8t9f2LuEXjVGtlACseiYiIiMgzDB6JiIiIfMBwJAfb1r2FA1N0MGr1ru1qswMzPn8Hd/5cgmFLl7R7DdnhwIGNa2HJULR9kCDAohawLXcPktaZUCfaECwHYlxyFvSjR0NQtHPuLfeqzs9HwdVi1GlERMUmImnAqBZrSLoqHrnGIxERERF5iMEjERERUSfJDgd2bV6D7VODW+yzaBTYMTUY5QV78MzhuGaVj5LNjrKdu2ApL4d64EAEDRmMvAF2AB2Hh4fT+uEwTru+1uWdwIx19bhn4QqEZ2W2e67hSA52bl6D7xIFmNUNgeLl7xCqCMLTmY9jYsx41+uyFBUh8cYvCFTqITscbgebREREREQMHomIiIg6qTo/H7uTGqYi3zo9ukFeUhB2bv4Ij2dOhKBQ4MLaT3F581ZAklzHlMQEoqSV8NIdxiARWyao4Fj3FuYBrYaPkiQhZ/83+ObkVlwYF9hirNX1dXjj8Cq8NHkF4i5ZcX71GtgMBiwAgKvAj8sPY8TyZR0Gm0REREREAINHIiIiok7LLy+CJbCdqcgNAd+e5ADMPX0a177bB8MPh5sdIgnAnon9vB9Ew/qP36fpEP/Oe8jMSG9WnZhzMRcfZX+KGsEGxKjbvcZHP3yCJ/5+CaLcfLfNYEDRa68j4dWXGT4SERERUYe4WA8RERFRJ51T3HDrOLNaxJ6P/qtF6AgAuzL7wRootlkx6RZBQJ1WgeyhEi5t2Oja3NgluwZWt65RLVhxJVIJSQBK+ytxdmggSvs7vwaAkr++51W3biIiIiK6vbDikYiIiKiTHFaL28feEGwo7a90db0eWGnHj4lB+HlYG1WIXjg6Rov64l34g2MhKo8ebbtLdjvORauwOysYRu3NqkldnQPTco2IKzXi0oaNGPLIYp+NmYiIiIj6HgaPRERERJ0gOxyoyfsJGOle05X96f1gUzWZdCLLnatybENuvAof7Hkf9T/kwZKi8vj8kwlBLbYZg0RsnxqMuYdqEbBtOwY/tJDNZoiIiIioTZxqTURERNQJa/Z/iCNxbv5KJcuwKW8JGf0QOkJwVjfuqz6Dg16EjpDlm9e59boADqTpYDMaUVtQ2MmBEhEREVFfxuCRiIiIyEtHLuVit+Gk+ycInk137jbtjVMQYNQqcCVSCVtVVdeOi4iIiIh6FQaPRERERF6QJAmrcv7m/KI3hIk+VqcRodLru3sYRERERNSDMXgkIiIi8sLRA1tQJ7nRJbqPClHpEJyU2N3DICIiIqIejMEjERERkYdkhwM/f7ezC28od9293KC2SrjjwaVsLENERERE7WLwSEREROSh2oJCBFbUdM3NZBmAgBGqyB4TQN6hGoHISZO6exhERERE1MMFdPcAiIiIiLqKJEkorCxBlbkGek0IEiPiIIqe/x3WVlUFs0p0BoF+Xt9RVS/j+TuWI3NIGr7b83esu/I9zIGduGdbHavdHY9dxlOP/D/e35+IiIiIbhsMHomIiOi2cLT0BNbmrYfBXO3apoQCd4ePx+N3LoEiQOn2tQJCQ3AwTdfxgT4IJp8ddDcyh6QBAO6a9Qhm1C9E7o/7YKi5BmXlDXws/wS70oPwVBAAWYba7EBimYQTwwNubu+ILOPhgBSPvldEREREdPviVGsiIiLq846WnsAbh1c1Cx0BwA4Htht+xGPrX8Du775w+3qXI5UwahVuh3VekWVoxUBMnv5As82KACUyMmfjntlPIH3MHUgrMHl+bUGARaPAzOkPYXnYNATa3BvjsMtWZEaN9fx+RERERHRbYvBIREREfZokSVibt779YxQCPjIcwDvr/rdb16y2Gd06blh5PXQmqe0DZLntYFIQ8NusJ9udCh6clIjJ5RqorZJXAadtQCjuuvs3+MNd/+DW8WlFZqj0eo/vQ0RERES3JwaPRERE1KcVVpa0qHRslSDgYEAZXtv8/0GS2gkLAZwvyHXr3g+MnYc/CZOwcE8VxhXWQWNpfl2dScK0+iiEaUKbbQ/X6PHS5BWYGDO+/SErFIhbvgwzj95wbvAwfNRrnSFi8oAE5xjaOl+WoatzYJgUjOCkRI/uQURERES3L67xSERERH1aldmD7tOCgDzLRSzZ8CJmh43D3aqRUIeFIzgpEYJCAQC4evgH7K48ASiFtqdayzL0AVpMnDYf4nQRCkFEzOatmHqyDlcilajTiNBagfSs2Rjx+JOdanoTnpWJeQACNq/B3ng4p4B3RAbCg/RIjIgDAIiiiKdSF+ONw6tarkvZEEZOyzUi7pkXXd8HIiIiIqKOCLLs7cJD1FOVl5dj4MCB3T0MIuoEPsdEviFJErYX78Pfftro1flKu4S0AhMml2sQt3wZfo5W4t3vV8ES2HEouChpLhaPnndzLDY7ynbugqW8HOqBAzHonjkQVb5r0iI7HKjOz8ePeftx/EIuTiYEOXfcGo7KAAS0WlF5tPQEPspZh2rHzXUjdXUOzPwZmDN/GcKzMn02XqKejp/FRL0bn2GinqFLgscvv/wS+/btw7vvvgtFw1/JKysrsWHDBhQXFwMARo8ejUWLFiE4ONh1niRJ2LFjB7Kzs1FbW4vo6GgsWLAASUlJ/h5yr8Z/YIl6Pz7HRJ3XWhdrb6mtEpJKzMhL0gJwr1P1g0n34JHR8zt9b28YjuRg1+Y12J0IWNTNKxT7qbRYkf5Ym9O4JUlCwdWzuHKuEFqzhKQB8QhNTmalI912+FlM1LvxGSbqGfw+1bqwsBD79+9vts1sNmPlypXQaDRYsmQJLBYLNm3ahLfffht//OMfXVOLvvrqKxw8eBALFizAwIEDcejQIbzzzjt4+eWXMXz4cH8PnYiIiHqpxi7WvmJRCchLCoK7oSPgPLS7hGdl4tGMdNybn48z5WdxTlEDdUQEkgckILl/fLvTuEVRRMqgRKQM4lqORERERNQ5fg0eTSYTPvnkE4SGhqKqqsq1/cCBA6ipqcErr7yCkJAQAEB0dDT+/Oc/Iy8vDxMmTMD169exf/9+LFy4ELNmzQIAJCcn4y9/+Qu2bduGF154wZ9DJyIiol7KnS7WHnM3bGwieUC8b8fgIUGhgH7MGEwdMwZTu3UkRERERHS78mtX6y+++AIRERGYNGlSs+35+fmIjY11hY4AMGTIEPTv3x+nT58GABQVFUGSJKSmpt4crCgiNTUVhYWFsNvt/hw6ERER9VL514p9Mr3aa7KMIEGF5MjuDR6JiIiIiLqb34LHH3/8ET/99BOefPJJCLdUCZSVlbW61kL//v1RVlbmOkapVCIsLKzFMQ6HAxUVFf4aOhEREfVSR0tP4D9+eK/7BtCwdPYjCfPd7kpNRERERNRX+WWqdXV1NT7//HMsXLgQkZGRLfabzWao1eoW2wMDA12BosVigUajaXFM43lms9nr8fX14NJqtaK8vLy7h0FEncDnmMgzsiThx9P78beqH+DROow+pjVJmF0VgcSsOD7DRL0cP4uJejc+w0T+FRERgYCAjmNFvwSPn3zyCYYOHYpp06a1ut+dRtqSJLW7/9YqSk8oFIo+3d2K3buIej8+x9RTyQ4HagsKYauqgkqvR3BSYrd3OzYcyUHJ6jXYcKcAqIRuCx0TS8yYdfwGRv/v52EJDOQzTNTL8bOYqHfjM0zUM/g8ePz+++9x/vx5/Mu//AscDgeAm0GjJEkQBAFBQUGwWCwtzm1a5djWMY2Vjq1VQxIREZH/GI7k4Nyqj2C/ft21TRkWhtgVTyM8K7PbxlT02us4mhwES6DO8ws0/jG0M2GlLENtlTDr+A2odP0QkpIMSx+eWUFERERE5C6fB4+5ubmwWCz405/+1GLf888/j3nz5mHAgAGtTnWuqKhAbGwsAGDAgAGw2Wyoqalp1oSmoqICAQEBiIiI8PXQiYiIqA2Vh7NR+PobuBKphHFoIMxqERqrBJ3pBqz//jqSXnm5y8NH2eHA+dVrIAlAblKQFxdwho7zjllQoXbg6Bitc7snIWTDNWYeM0KUgbjf/7bbK0CJiIiIiHoKnwePjz32WItKxUOHDuGHH37Aq6++Cr1eD1EUsWvXLtTW1iI4OBgAcPHiRVy7dg333XcfACApKQmCICA3NxczZswA4KyYzMvLQ3x8PJRKpa+HTkRERK24evAgPtu1GicejIA1sGXDFF2dA3eufxfzg4IQkpLcZcFbdX4+zitqcXJSP9iVnjdy0ZokzCoGfvPaatw4exb9LuzDnrpCj6+TWmBCQrUSca++2G2Vn0REREREPZHPg8fW1lA4ffo0AGDIkCFQKBSYNm0a9u/fjzfffBPz5s2D3W7Hpk2bMHjwYKSlpQEAwsLCMGnSJGzcuBE2mw3R0dE4dOgQysrK8Oijj/p62ERERNSKbz5difXiWdSPbXsaszFIxLaJQZBXvYYksw4jli/zewB3tPQEPsxfi5pZes9OlGUE2GXcd6gGMdfsSHrlZYgqJUJGp2DF6BTI376HvVWnPLpk8TA1Vjz4O4SNG+fZWIiIiIiI+ji/NJfpiE6nw0svvYT169dj7dq1UCqVSElJwaJFi6BoUiXx6KOPQqvVYt++fTCZTIiOjsbzzz+PESNGdMewiYiIbiv/d/OfcUp1CRA6qCYUBECWsSdDhxGbDCh67XUkvOq/qddHS0/gjcOrAEEG4Pm06Nk5NzDCpEbcK//YYoyTR9+JvQc9CB4FAUatAlcGBCLM/bOIiIiIiG4LguxOi2nqVdi9i6j343NM3e3TvA3YVrzX+YUHax7GXzDjnuwbUEWEY8Kq93wy7VqSJBRWlqDiRgXyS07gSHURbHK9xw1htHUOzCnrh9nznmxzSrgkSXh24/9AjcPk0fVfzFyGKUPTXV/zGSbq/fgcE/VufIaJeoZuqXgkIiKinqveUY9tP+/zqtNz8VA1Yi/ZEH/JgNqCQoSMTunUWI6WnsDavPUwmKub7/BwbFHlVrwQfAdi/7S03eNEUcQzWU84Kypl2e376DUhHR9ERERERHSb8XwldiIiIurTdpcc8P5kQcDeif0gCYCtqqpT42icUt0idPTCwqR7EfvUUreOnRgzHi9NXgFdoNat48M1eiRGxHVidEREREREfRMrHomIiKiZ4h9/6NRvCDaViNL+SozRe9j4pYHscKA6Px8fnV3n/SCaUAtKTJ75oEfnTIwZj/SoscivKMa3Px/E0csn2jx2aepDEEX+LZeIiIiI6FYMHomIiMil8nA2qi/8AsRpOnWdsmEhCE5K9Ogc2eHAxb+vx5XNW3AxREa1px2rW1zQOVX6d5lLvQoGRVHE6AEJGD0godUp3+EaPZamPoSJMeM7N04iIiIioj6KwSMREREBcAZ/P7+/GufuCvRofcPW6MeP9aixjOFIDs6+8V+Q7XZIAvDTyGCv7+0iCJifcBcyh6R2+lKNFZCFlSWoMtdArwlBYkQcKx2JiIiIiNrB4JGIiIggOxy4sm0Hjgyuhy1Q3enrTUid4faxhiM5KHrtdQBASUwgvk/ToU7buW7YSlnE85OXIWtwWqeu05QoikjuH++z6xERERER9XUMHomIiG5zhiM5OL96DSzXDTjxQIR7J7VTEalTaZEc6V5AJzscKPngQ0gCcDwpCDlj3Gvo0halTcKEX2W8+OpbUAQoO3UtIiIiIiLqHAaPREREt7HGakNJAH6K18Cq7vzU4WfTH+twCrLscKC2oBDVp06hQGfC/ukRsHTy3op6CSu+rkTKH15m6EhERERE1AMweCQiIrpNyQ4Hzq9eg5KYQBxI08Ho5vRmraDCo1F34G9XvocF9a7tOmiwIuuxDputVGRn48DGtai1G3EuWoWfpwR3aj3JRo4AEQVzEjAtK7PT1yIiIiIios5j8EhERHSbqi0oxJkgI3ZO8ayRy9zku3FX8lyMyx6EgxvXosZuhNYsIariGsRd7+PC7Fm4HK5AnUZEVGwikgaMclVA7tn7JT7/dS+MGQoAIT5/TUeCDFhRb2fFIxERERFRD8DgkYiI6Db1fe4u7JrsQbWhLCNIDsCDiffAcCQHxf/+BgYC6C8AVyKV+HlIIKp1Fpwx7YVRaKievPwdQuRAPD3pCQDAqor9QJD/OkFbVAJyf9yHjMzZfrsHERERERG5h8EjERHRbcRRb8fx43uxu+R75KurPQodAeDhwLEQZBnnV68BgNanaTcc26gGFqzMXo0gNFQh+mBadXsMNdf8en0iIiIiInIPg0ciIqLbxHd7/o5Pyr+HTSkAKgDwIAAUBGSersPs/7kUtQWFsBkMKIkJxPaprUzTvjVYFARAlmES6j27p5fCQ/r7/R5ERERERNQxBo9ERNRryQ4Has7ko+bMGUAWEDI6GSEpyRAU7jVJuZ2s2v429tzIB5TeB3/DR42DqFLCVlUFSQAOpOmcO9ypYPRzlSMAQJbRzwKkTZjh/3sREREREVGHGDwSEVGvZDiSg5J33kO90ejaVrrhKwT00yHu988hnJ2NXXZ/94UzdOyk+NnzAAAqvR5XIpVud8H2Kdn1f5qHmQ3Tu38zeDobyxARERER9RD+W92diIjITwxHclD02uvNQsdG9TeMKHrtdRiO5Pjl3pIkIf9aMX749TjyrxVDkiS/3MdXKrKzsfba986QrhNVh+EaPRIj4gAAwUmJMIdpvbvQLes/enysANwVnAKdtfnmfhZgReR0zJr5sHfjIiIiIiIin2PFIxER9Sqyw4Fzqz7q8Ljzq9cgLCPdp9Oucy7m4uPjX6Cqvs61LVwTiifHLUJiTSBsVVVQ6fUITkrsEdO9ZYcDn+1bC8fIzo9laepDEEXn3ysFhQIxiWMAFHkwmFaqFDugsckwB948Plyjx9LUhzAxZjyW1duR++M+GGquITykP9ImzGClIxERERFRD8PgkYiIepXagkLYr18HAEgCcCVSiTqNCK1ZQlSFHWJDvmUzGFBbUIiQ0Sk+ue93e/6O1ZXfO79oEp4ZTNVYmb0acw/VIq7UWYanCg/HiOXLun26d3V+Po4P7dzaijqVFs+mP4aJMeObbU9LnQ51Xj4sGjdDTU+qLWUZOpOE/2/UElSO7I8qcw30mhAkRsS5wk9FgBIZmbPdvyYREREREXU5Bo9EdNuQHQ5nN94eVpVGnrFVVQEAigcH4vv0fjCrb64aoqtzYFqu0RUAlm7cBACdfq93f/cFPjIcaD08EwDIzkYrIy5bIcrO0LPotdeR8OrL3Ro+5l8pgl3lxaoqDdWJ94aMw5LZK1xhX1Ohycm4+3NgyzjPKxndufejQ2diwOQpGOCbqxIRERERUTdg8EhEtwXDkRycX70GNoPBta2nVKWRZ8xXynBorBZ5SUEtwi5jkIjtU4Nd1YfVJ06i+sTJTr3X3373OT4yHGw/WBMEGLUKXIlUIuaa3bX5/Ie+n+7dEUmSUFhZguLd23Du7AlgtM7ja+hMEhYGjcXce37b5jGCQoF7FixD6c53ne+Fj+iV/fBU+iPIHJLms2sSEREREVH3YPBIRH1eYyOSW7VVldZYGWk1GGCvqYUyJBiB4eGskOwBKg9nY9+hb5A3Nbj1AwQBkGV8m9kPV4sVGHzVjphrdq8rEL/d83d8WHkQEN2r5iuJVjULHm2VLad7+7Py9mjpCazNWw+DuRpQwaPQUWmTkHzOgtjLVgx19MPE1W2Hjo3CszKxHMDOzWuwK1mAzZvqyiaeGLsQc+NntFphSUREREREvQ+DR7otOdiUoEeSHQ5cP3Ma35Uew3lUoZ8+EtOGZyFlwCivgwjZ4cD51WvaPabkr++5qtIqD2fj5/dX46La3GLdQFZIdi1JkpBfVoRfjhyA+GsZIooqYK28hj0PRnRYfWhXCfgxRYcfUwC1VcLMozcQV2r1qAIx52IuPqz83u3QEQB+SgiCSS1iTs6Nm2tNNkwNB1qvvA0IDkbsb5cjYvIkt+/TmqOlJ/DG4VWendQwrTn9dB0y802uMY989Wm3w9DwrEw8lpGOufn5OF1WiL1luSjU3PBwHEC/QC1DRyIiIiKiPobBI91W7HYrVn71/+GkVA5HQEOYUA3ozm7CozHTMWvmw906vtuR7HCgOj8fP+btx56aM/hlgOJmqGS8gEOXjkMdEIjfT3yyRXMLd9QWFDYLeVpTf8OIi19ugGS14uCPu3Fgug5Grdq1/+a6gT1j3T5vSDY7Lu/YiSJDCSx6LYZNnIrkQQk9NuQ5WnoCHx5aixrR5twQA6gjHHCIER6vWWhRCU2mX7fdcMZRb8fxo9/h0ulcaEz1+GZgFeDpt0cQ8PNwDS5FBbrCTpVeD6Dtytv62lqc/Y83YHygBMOWLvHwhk6SJGFt3vr2D5LlVgPb1AITJp0xAQBUEeEY8Yzn4bqgUEA/ZgzuGDMG4dfG43/vf9P9kxvGtSL9sR7780hERERERN5h8Ei3jdU73sF3NWec1Uu3VDAZA4FVFfuBvWD42AUap5oaco7ih8JD2J+iQp1WAWha/yfJYrfgjcOr8NLkFR6Hj9aG0PHW7scDK+0oi1Di0gAlBADR338Di0rEzlam8N66buC51R91+bp9nXFh7ac4kLsbB8ZrYdQpADuAH04iRFLhmalLvQp0faUxeC64Wow6jYio2EQY7WaszF4NCDKcnVucLIFehlIN068bm780rUBs/Fk8kLsb38jFMAaJgB7O/+c82atbNoadI8skXJJKkFQK3Hj3A5T2b/4zWB5x82vpm83QjYzzqvKxsLLEOb26PbeEjmqzAzOOGzG+3zAM+qfZPltOIDEiDuGaUBhM1W59+3QmCU+MmtutP4dEREREROQfgiw3zLOiPqO8vBwDBw7s7mH0KKt3vIPvas84v2hriqYso58FWPX425x27UeNU02N1QbsmBKCX6NUzh0ddcSVZYTIgfjg4TfdrooyHMlB0Rv/hZIBIg6k6WDUNglUJLnlFFq5ne68sgylTcIz3xigcgAxDz+EoY8+4tY4vOGr5/jC2k9x4PgubG8MVJu+NtkZ7L00xfNAt7Mc9XYc+GoNjp0/joJoBSxNOlNDbvg/vuqS3MQduTcwJGMyNBYHTL9eQlXVVRhUDhwdo3Ue4Id7utxScShIMuQmP4O6OgdmFNbjsddWexz+7drzOdYYDrl9/B25NzC22AxRBoYtW4roBfd5dL+OuKZ9t1Fl2fisZZ6qw+RyDTJWv9drgnx38bOYqPfjc0zUu/EZJuoZWPFIfZ7dbu04dGzYd0MD5P64DxmZs7tmcLeZxqmmW6YE45fBkZ6FPIKAGsGGnP3fYNLMB1s9xFFvx9Fje3C44hRMZiP0eb9AN0jErsmtNCJpbd2+jtYNDFTgvcWRSC0wYeqXGyDbbF5Pje0Kks2OS1u24sC8hvK9W19fQyXgB8fWIT1qbJdNc92z90t8fmkfjBoRiG0l5Bdc/8fnDqb1AxynACWAOADQ+OU+rbrl+y/f8hKNQSK2pKmg3/A+5j7ye7cvaziSg5ovtwCz9B0f3CDIIjnXcxRFDLpnjtvnuWtizHi8NHkFPspZh2qHqcV+nUlqWL7AirhXf9/nQkciIiIiInJi8Eh93jt73vMo4Co9e5rBox80Nnlxho6BXl/n5++2I+vOBS2Cij17v8THZfthVza81wKAtH7tVzF6KS8pCAAwdZP3U2O7Qsm77+NKuKJ5peetBAFGuwnrdn2AJfc+59fxOOrt+PirlfgWvwBqP1YW9hZtBMFfWn9CRnY2Iid1/HMlOxwo+et7MIWIbVcXtkJrlgAA0Qvug6jyT4X3xJjxSH9wLI4e2IKinVtQBxs0Vgk6k7Nhk0rXD3Gvvtjr1kslIiIiIiL3MXikPu3qwUM4dr0QCHC/kqv+6E+QH3d0SQVO4/pytqoqqPR6n6yv1lPVFhTCWG1wVjoCXgeBakMdrmzbgah590IWBOSXFWHP7s9xJKiy9X/RfD11tiEcyksMwpCrNuDtdxGeObHHvW8X1n6Kiv3fo26oeyHv7usnMWXtJxix9Emfj0V2OLBjw/v4ynIKdRoR/qpmbDd48yCU88n9vCUIsKgV+Hz/Wrw4se2fq8Z/O6pO/gSb0Yj9s8LdG4ssu4K/6AcW+L1iVxRFZE2/H5l33IeaM/moOXMGkAWEjE5GSEpyj3tuiIiIiIjItxg8Up8hOxyu/7CVHDKuHTyEL0fb4BjoQXWdQ8L5CGDHX/+Ce57/k1+nnl49/AO+/u5TGEQrQo0OjP7ZjCB9OEYs97yjbG9gq6rC4XG6zgU1koz84WoY932B2tNbkTciAFaFDGgBv4VZrREEQAC+maGHrs6B6g3v457Fz6GwsgRVdVUIuGJAyLFiwGxFcFIiBt17j9+qylpTeTgblzdtBnCzsq0jdqWIYwd2InjkSJ9UcDY+j+W7duPYldPYlhXUNVWObYWB/ly70Q9+HCygOj8f+jFjWuyryM7GwY1rUWM3OpvS9FfConE/wJtnHYLJ6//apT+TgkKB0LFjEDq25eshIiIiIqK+i81l+qDbbRFdR70dBzZ8hAvHs1EXIMEcKKAsQomycCUkpffBoVYMxLMTn0DmkDQfjtZp9Y53sKfmTLPGEoIkY3yhCVN/qkPCqy/3ufCx+qdT+Ld9/4VLUd5Ps+6RGv4J1SrUqJOsrs1Km4TUQhMyCkwQISD6/vkeVZd5+xzLDgeOLX0G9bW1AJzdvN9fGAG7quNnIf20EdMuBiD94w87VYlmOJKDknfeQ73RiHoRWHN/BMyBgv/CP1mG2ipj+vEb2J+ug0XdBVV0sowFv2ixM8YImxvfW2/MskZj+WN/bFYVfezqGXxxcV+z6fNivQTJzaruecHjsOSeZ/0yXmrudvssJuqL+BwT9W58hol6BlY8Uq9V76jH2zv+Cz/WlDjX9Zuo9en16xwWrMxejRU/l2DWzIfdHtOu4v24dKkYYfUqzIpOR1jK6GYhzt9OfOVsdnNrQ2Xh5tqBqg/XICwjvc9NQ9TfcOBSdw/C1xqmXtc5LM2CNbtKxNGxOuQlBeHuIzeATZth/PUiBj94v1+n1NcWFLpCRwAQZWBomQ0lQ9UdvxQA9ppa1BYUImR0ilf3b2wgBAAlMYHYm65r3rHa1xqC35nHbjgblZRacSwpCHmJQW6Frd4aXl6PR//wHxj3H/+J9VIhCuN836Rmj6oU6pefxvDzN3AlUolz0SqcTAgCgpq/LndDR50YiMdnL/f5OImIiIiIiNrC4JF6pU9PfIVtxXudXyj9VEXVECh9/utejM0e3GGjh3U/fY2tRXsg42YR8dcFuZiwQ8KyO53Tp+sd9dhWvO/m9Vu534nEIGSdruhU+NMT2WtqMPmkEafiGwKaXjb1tV3tvBZ7gIDtU4Nx76FajMw7gZq8E1CF+29Kva2qqsW20SVmt4LHxh/d1q7hDtnhwLlVHwFwho7bp7bSTdzHgh1KPDxgMkLN+2CDFeejA3F0jG//CNGaWaHOPyhE33sPhn70k1+CRwgCtmWooR4XCEtgJ0LUhnB2ecbjXda5nIiIiIiICGDwSL3Qq7v/gvPVXVQ3JwgwahU4+PVaPNhOo4d1P32NLUXftVhfThaA48NFOHa+i4fPn8cmoRiyop2GFIIAWQBOj9Qgycvwp6dS6fVQOYDhl6zOrtb+aMzha74YY8P5O6cEQz5ci/hLVtgMBhS99rpfptSr9PoW22Ku2aG2SrCo2pnuLMs4NlqLyGoHwo8eR+QdUz2+d21BIezXr0MSgANpOudGP7zHQfUi0gOH4I6s+5A8KAGiKEKe/hCq8/Pxydm1gMPk12ndOpOECROmAwBCUpIRDD8uHyAIsKg6f5k7bIOQNXRC5y9ERERERETkAZY+UK/yPz97BeerLnb5fattRtQWFLa6r95Rj61Fe1oPqRq+zksMwh9xADmKq+7dT6doNUDqzYKTEqEKD8f8H2ox/JK15QGyDK2xHgMcblTmeUuWEWCTEGjpoOGKLENpd0BZ77slcGVRwM4pwSiJuRlSnf9wDWSHw2f3AJzf54Dg5pWGogzMPHqjYSBtvKaGn9W96TpczT6MysPZHt+7sVLySqTSuQahH8K/xMsSPnr4v/D7Ra9gdHSSq4JPUChwZaAa1ZK58/dt63vUOK37ZyA0Odl132mPLEeg2cP30ZPllTvZkGnOD7V4YvxC769BRERERETkJQaP1Gus/69/RpGixjdhhoc9lcxqsc3pp1/v+dQ5vbqdKkaIgtvrsAFAuByI4KREj8bY0wkKBUYsXwYAuO+HWjy3vgJjzpow+IoVY86a8Nz6Crye8BQWT/qNfwbQ8J7PzrmB/1U/EZk/GZ3bbv1ZkGUAAl6441n814gnMSX3hk+HcSBNB6nhR8VWaWgz0PaWoFAg9rct1/GLK7Ui81Rd+8+PIMCiUWDN/RHYuXGVx6FoY1hep/HfR8uwxHFQBLTejbnKXNOpawdaJMRfMENtaz2YVltlzD1UiznzlzWrfo6cNAlPxMxo/eepkSxDaXNgdnaN82evq4gCggM0fe7fEyIiIiIi6h041Zp6nHpHPXYW7cO5M8dhr65GjKSFrZ8auyIqAMGHgYYH02g1VqnVCkTDkRwUHz0AjAry6bgemPF4n2ssAwDhWZlIePVlnPyv96G23MD0XGcAo4oIx4iXn0N4VibCrhV7f4Omoc8t763SLuPunBuYlj4Hw5YuwZNHkjBg8xrsjUezDsH6AC2WZT6OiTHjgSHAbwCcLP4ERrUPujI3TN2/EqlEzDU7AO/XU2xPxORJMD5QgsubNjfbHmp0L0g0BwrYmqFG2Ib3MfeR37t93+CkRCj69YPWbPFovJ6YMH56m/v0mhCvrjmiRoE7bVEYFTIE+jlj0C85EUe+34KcIztRG1APncmBwVftGOEIRtwzL7Y6Pf7uWY/g6okAbG1ce7aphp/Lu3OMiCt1VvuG1TiwY0owIPppSngT4nj/NTMiIiIiIiJqD4NH6lH+duIrbDu7F3Ljf4uHAsfRWB3km9BRaZMw9qIDp2IDYUMHU24bh6HUtagYamykYRjr2/+gFyVgz/Z1uCdA5ZfmI90tPCsT+07YUX26AIszB2JcamyzLs+JEXEI04TiuqnKq6Bv+CUr7s2uxamRGlyOVEJVLyPhggXDTRqM/O3ziJg8yTWORzPScW9+PgquFqNOIyIqNhFJA0Y1a8AROWkSVsQEYmX2h775BqB5RaCvp9TLDgdqCwqhHTEcgx9ZjJL1mxAoOUNOrdm9n/fGRkcbzacwp97eosLQUW/Hj8f2oOzCWQTLgRiXnAX9aGezlQEzp8O+eQt0dQ4Yg8T230NZhsIuwaFy4xmSZWgDNEjuH9/mIYkRcein0uKGrc6919nggZS5mDjpnmbbpsxaiMnT70dtQSFsVVVQ6fUddiN/YvwijAwfgdW5nzcbg84CTDte6wodVRHhmPfoUigsRdhaedyjsXojZtRov9+DiIiIiIioNQweqcdYveMdfFd7puEr31cBKW0Spjmi8VDq/Qh9NBmSLOFf3/49zg5qJxyRZSjtEsYkTkRtQSH6jRqFmvx8XN3/PUy/XEBBUB0uDwz2aaMUSQS2jBPhWPcW5gF9KnyUHQ5cP3MadssB3Iiz4vSQCExOSmgW5oiiiKdSF+ONw6s8/r5GX7Vh/g+1AIC0CxIWpN4DTdQgqOa1HhoJCgX0Y8ZgMsa0e93MIWn4R1nCf2d/BNkHFWqNAaCoUsFqMKD6p1MAnJ2/GwMubxiO5OD86jWwGQyubfaAIBwNTsTcSUORoVVhX0AequzGjr+vggBjkIAP9nyAwMgIDNRFYnbcNOzf/xW+uLTfGSo2fDt1eScwY1095jzwDK7tdXZtTykxI2eMtu33sEkV4E53Kv8EAXdqRrbblVkURTwz4Td48/CH7v0TIsvoZ5YxIWNW67dUKDzuLJ85JBUZMeNQWFmCKnMN9JoQJIQNhzHtbIsA8zEpE7s3/gSbZPPoHm6TZfSzAGkTZvjn+kRERERERB0QZNnDxe6oxysvL8fAgQO7exgeuXr4B7x4cZ2z0tHHDSmUdgnTxeF4avFLLSq3DEdysPnzt7BrckMzjjburbZKmHn0BkZctuJKpBJ1GhFBZgk7JgfDovHDFMaGzrlP767DpM8/7fXTJGWHA5fWf4UvSnYjL07VLLwTIOC+hFl4fOyDzc45WnoCH+WsQ7XD5PZ9ZmfXYsrQdPSffidCx4z2+fft6/f/jL+HXvL+Z7ThfX1yqwHlEUoYNSJMahGWQAGQgUCbDK1VQoigweiZD2LUfXPdvrThSA6KXnsdktDQ3EUjwqwWobZK0JkkpC5agfjZM3C09IRXoa5z/K7/0/zcho+RuYecoe+BNF2z6eut0dU5MC3XOfV489RgXBjccVOhZ6Lvwt1THuzwuNd3/ieO157r8DjIMlZETsesmQ93fKyffJW/HevPbPP9hRvek+URd+KuWY/4/vrUod74WUxEzfE5Jurd+AwT9QwMHvug3vYPrOxw4L1/XYHvU1Q+uqAMRb2MqXIUUuMykJ4+q81mFABQkZ2Nl859CosS7VY+AoDCATgC/L8mW6OM00akJk3CnY88226lV0/UOOXXcOw4ynfuxoFkFU4kNqyFeWtoJQiYn3BXi/BRkiQUXD2Lw/s3Ya/iUof3XG5OwF1L/8GXL6P5eGx2vPaXZ3Ay0Ys1PRt+hlILTCgepu4wmFObHRhj1GH2A88geVBCu++/7HDgx+XP4UyQEd+n94NZ3fJYnVnGihnLkREzHs9s/gOMVjeqHtt4DW1VMAbYJdQrxZbHNJyXeM6CIdds0JkkRFXYIcpAQHAw6p+ch/827Onw9v/zjheRMqjjalBHvR1PffFCu8+0IMl4OuIO3H3Xox1ez58kSfL+/WhCaZdgV95833V1DjwQkIj7lvyTL4ZJXuhtn8VE1BKfY6Lejc8wUc/AqdbU7S5t2IjrynoAPggeGzoS/8Mdy5E5JM2tU67FRcByqeNpngDg6OIn5thoHY7hFP7+9ct4urHhSS9QkZ2NAxvXotpuRFmEEuXTtagIV7YerDSsJ7itaA8eSZmPAMXNb7IoikgZlIjoFDuO/vhO22sGNlQSTpjQduMRXxBVSmQMT8NJeN6JWmeSEH/Bgrwk90JLi0aBYxozjv3wNoIcItKEgUiWIpqtp9iotqAQe2MsyEsKbjO8MqqBldkfYvHoeTDaOuhuDbReEdlBR+x6laLt82QZlwapMOv4DYx4ailU+lDXtGNZEPDJ19morm9jXLIMfYAWSQNGtT/mBooAJZZETceqiv0tx9MQgi6LmIa77/JTB3UPiKKIZ9Mfa70K1c2qVJVNwvKvK1Ee4azG1polTJg0B7FLlvpv4ERERERERG7oXSVU1OfIDgeubN2OyhDfTIkND9LjpSkr3A4dAaDKXOOTe/tTdX0d3vhhFXIu5nb3UDq0Z++XeKVoLdZnKPDt5BCcHhWEighVh6GVBBm7Sw60ujs0ORkzG5td31qk3fD1zJ+dx/nbjCeeR7Bd0XIcTccjA1k/O/DA3irMOVyDhXuq8ORWA4qHNUwn9rCyzaSQcEi8gvcDTuEfT76LT19ehsrD2a79OZd/6jjQFAQAMrae2uneTb2tvmvrvIaO3leHBiNq3r2IvGMqQkanQFAoIIoins583BVQNtMQvi3LfNyjqt9ZMx/Gisjp0Fmbb+9nAVZETsfsHhA6NpoYMx4vTV6B0ABts+1akwS1VergZ03GzKM3ECABMdfsSK4KxMylLyL2qaX+HzgREREREVEHWPFI3aq2oBD74mRcGdC5asdAIQB/uOP3SO4f7/GUZL0mpFP39pbCIcMhwr2ApyGQWb1vNWLjrYicNMnv4/NGzsVcZ5VZkHd/0yg3VrS6XVAoMGfBMtSve6vF+oE6k4RpuUbMefzFLlkLUxRFLL/z6bbXSWyYNv7og/fh+NMrUH/Vue5haX9lh9Or3WHRKLA9Q4Oy3e9j8dliDFu6BF/e+NHtnyOz4Oj0GDpDmZXa6vvUGL59nLce183Vru3hQXosTV3sVbXvrJkPY3r9g8j9cR8MNdcQHtIfaRNmtLv0QneZGDMe6Q+ORcHVszj1yUdQnCtFVIUd56MDsX1q2w2sJvwiYeaU+51NlNzovE1ERERERNSVGDxSt/r7L3ud6+V1sqHM/MS7MXpgglfnJkbEQSsGok6ydnywJ9rs5gv0M0uYknvD2c3XXYKAGxpg38dvYZYg9rhu15Ik4YOjf3N+4eX7OVAX2ea+8KxMzAOQsHoNLiiqXFNKh0nBiHvmxS79frQVkgWrtHh6wm+QNTgNNafPoL621rWvTuPbAvO8pCAM+OFbFFadhzHG4tG5apvc/pqmfhQ7rfUO0kBD+BY1tllH6MSIuE6tb6oIUCIjc7bX53elxqUFUl79T1QcOoySv76HuFIz5h6qbRm4C4F4LPpOzHjoPgaNRERERETUYzF4pG5z5FIu9pqKOhd+yDI0kgILk93v/nsrURRxb8JMbCjY4f04PCEAvxkyA5pv1qOsyOxxo5KLA5Q4+867yMpIhywIPg1pAKDeUY9dxftx6VIxwupVmBWdjrCUjjtEf1240xneevN+yjIEQcTsuGntHhaelYmwjHQkFBTCVlXVrRVeHYVktqqqZsdrzZLvbt7wPf4+vR+m5JUAMZ5V7Y4rrEPOGJ13na29JcsIhbrDdRpFUURy//iuGVMPFjl1MiImZaK2oBDxVVWYHxqCy5FKVNuMPnvWiYiIiIiI/I3BI3Wpxk7HlusGvHd1I9CZzKNh3bMnh9zV6f8AX5g8F9vzv4UJdp8FMbNsMTgRWgdD02mjGj2Wpj6EiTHjYQgairIvPsBJD697fLQOhSMcOP7RP6NoIJpdv59Ki4fDJyGgtBy1sh2DhsdjQkb7Xb2bWvfT19hatAcybq4p93VBLtK21WPZncsQMbn1Kd6SJGFz/i4PX0lz8+JnNGss0xZBoUDI6JRO3ctX2gvJVHp9s6+jKuzQ1TnabpDjBbNaRFHjupFuUlslpBeYMHraPfiy6ihqYfPJWNrV2NBlomfrNN7ubv1Z17dzLBERERERUU/E4JG6TOXhbJS8twp24w2cjNfAktavU9dTW2XcfdqO6Q/d1+mxiaKI305aipXZq31SBaaxSHho/Hw8k5LSZkVceFYmHkhPw671L6FWtHl0T2OQiMOoAszNz7lhq8OHV74FFA3bLxVBV/wNHh08A7NmPuw6rjEAblo1+NmZzdhS9F2L1y8LwI+xAZB2v49Hfi7BsKVLWoxnY/52WOV6T75FN8kyZvVLxhPjF3l3fg8VnJQIUaOBZDYDAEQZmJZrbHe9Pm9cigr06PhxRSaIMpARNQYzZj6Ed177PQ7HNYSBfqp+bFyHMzHZs5CUiIiIiIiIejcGj9Qlfvn4E1z5ZgtKYgJxYEa4Z002bglpAi0Sxp81Ib3AhKRXXvbZNNvMIWlY8XMJPi3dC4vay2s2VHbdVSQj9PFkCB1MG1UEKPFM1hKsPPqhZ2FUa91/22BUC86GL3udzTYqD2fj3Purm60/6OjXD1vnaQC03iwFsoy8xCDEfL8DQXEj0H/KFNduSZKwo2ive+NuqrEKLnwa5vSgDsO+IigUiF5wHy79fb1rW1yptdX1+rqELLuqHVUR4a4p6o9NX4rQz9/B3nQdLBrfjyn2ohn3Hr4BUW45/ZyIiIiIiIj6NgaP5He/fPwJSjdvwfHkIOSM0Xp2sizjDgzGwGO/otZuhNYsIarCjsCwMMS+8nufNxSZNfNhjM0ejM++/QjH4gJQr2xjWmhj6NdKUJhaYMI983/ndiCaOXwCnjh0CBukQs+Cn7ZCyjaCwy8u7sPwj80o/2Zrs90lMYH4dqIKsgC0OfddEAAB2DJDj29/WYffDdEgc0gaAKCwssSrxjxqm4zfTV2OzOETPD63txi8eBEuf7MFkuVm85e4UitGXLbiSqQS56JVyI/VwK7y8/Tjhp/XmceMEGVgxDPLXD+fyuBgxJVa4RCAXY3NjlptitT2z3x7rvQPBHADQMvp50RERERERNS3MXgkv6o8nI2DP+7G9/PDUedFhVd8uYTfv/Aq8BBaTA32V0ORyEmT8A8TJ6Lq9GlszN+BQ0IpLIqb1YVaOQCTwpJxvOZnVEsm13a12YG7zwL3zP+dx4HofUv+Cea//iu+0lz12etoRhBwI0jAj3t2IabJ5pKYQOfUXw9YlMDKIx/iJVHExJjxqDLXeHS+6JCQccaEJ+Y9h8g+HDoCzqrH+H98AUWvvd5suygDMdfsiLlmx9RTZpQN0qAkEiiI1cDmhxBSbZUx89gNJFl0GPFq8w7gtqoqSALwQ6quYdBtB4vKehl2ZZP9blTpmtUirkQqMcwUiOCkxE69DiIiIiIiIupdGDyS38gOB3Zu+tDjYMt5sowAu4x/yFjqChi7sqGIoFAgbNw4LB83Dk9LUqvrND4tSSi4ehZXzhVCa5aQNCAeoU8kex2IJj34MHDwLR+/kubORasQc80OAJAE4EBax2FTCw3H/vXoJ0iPGgvT/mxA48Z5soxAi4TfHQLin/F9tWpPFZ6ViYRXX8b51WtgMxhc2wWVCtH3z8eQRxbj+rHjiH7tdUw9WYfjSUE4kRAEa2DnA8imyxKMeGopoubd2+LnUxkSgiuRyo6nfgsC7jtQDQGAOUyLmKSxOH75FE7Edty4qE4jYtDMud3SfZyIiIiIiIi6D4NH8ol6Rz12Fe/HpUvFCKtXYVZ0OgQZ2DWuIZTwtGmFIGCGcjgiJ7XeRbkrtdW5WBRFpAxKRMog31RxJQ0YBa2sRJ1g98n1WnMyIQjRFfWIK7XieFJQp9YZtNRb8X/W/A/8KhoBdHAdWQYgYNnIuch8Yt5tF0CFZ2UiLCO9zardpuHkxHwD0gtMzjBQI8KsFqG2SrAEijAHCjieonPrnjHlVjywvwaiDIhqdauhY6M6jXshZ8iiuZgUNd41dvW363Gian+H5+kcARj80EK37kFERERERER9B4NH6rS/nfgK287ubVgj0OnrglyE3HDAHuL9j1jCxDs7P7heRBRFTIufgh0/dxzkdMbeDB0kAZ6vt9mKAp0JQMehldoq44mBd2D65AWdvmdvJSgU7VbtNg0nrQYDIi6VQi3LsFUaoI6MgAwBlzZuxKm4IFjVHX/PSweoUBITiPhLVoRPymozdLTX1EBrltx6DUPGT0RIkxA+eWACdKV7YAwS21wXUmeSkDGV1Y5ERERERES3IwaP5BXZ4UDV6dN4J/dvOKOta9h6M3iQBaA6uHNBg157+zWiSI8Z59/gURBgUSuwd2I/n12vPU2n+o75tzG+uWcf1jSclMrLMXDgwGb7TRcuYPzZQuSMdaPqURDwfXo/xJVaEffcs20eptLrEVVhh67O0W6AqFf2Q2JEXLPNocnJmPk5sHkcWq732NCMZkZBPYb++6KOx0tERERERER9DoNHcpuj3o7cH/fhYuFJnLl6Fj9HKWHXiWi1E7KnU6tv0U+haRFy3A4SI+IQrgmFwVzt1/v4o4FJa+b+UIPB1+wQ1Wo2FvGB6PvnI/1fcpGbFAR7Wx3XmzCrRdROSYaoansdxuCkRKjDwjEt1+hcj7WNAPGp9Ecgis3vKSgUmLNgGerXvYUDabpmU/d1JgnTco245/EXWe1IRERERER0m2LwSG7Zs/dLfF66H0a1AAQBGB7onxs1hBzPpD/aIuS4HYiiiKWpi/HG4VXdPRSfMDWsHdjeVF9yX3BSIgL1YUgrMLlX9QhAmTmu3f2CQoERy5fB9trrmHuottUA8dGhM5E5JK3V88OzMjEPQMLqNbigqEKdRoTWLGGYFIy4Z168bZoIERERERERUUsMHqkFqUkX536BWuw9vh05decAP2WNt7orOAVZQyd0zc16oIkx4/HS5BVYm7fe75WP/qY1S4AgtDvVl9wnKBSIXfE0rP/+OnITg2B3o3I1KrbjStPG5jaq1WswYosBVyKVqNOICFHpcMeDSzts8tS4PmVCG81ziIiIiIiI6PbE4LGPkx2ONjvptibnYh4+zPsCtVZj8x2dnDrdcmByi+tqrDIei7oTd896xLf36oUmxoxHetRYFFaW4NLZ0/js/LewBgq+fx/aIdockFTeB0dqq4SoCjui71/Q7lRf8kx4ViaSXnkZczauwtYJKufGttZlDNAiacAot6/b2NwmwYvwsKPmOURERERERHT7YfDYhxmO5KBk9RpcUNS6pj8OsWgw8rfLETG5ZQXTup++xpai7/w/sIbQcW7sdCQ6QmGouYbwkP5ImzADigAGVI1EUURy/3gkhcfCsH03No8TWq6/16iNdfm8DSrH1wXjpUf/Fc9u/SPqJKtX1xhXZELMgvkYtnSJV+dT28KzMvF4Rjqs+z7Et4aTLQ9o+HlYlvm4R0sWMDwkIiIiIiIiX2Lw2EcZjuRg27q3cGCKDsYm3aF1dQ5M+/wdTPu5pFkgdORSbteEjg0m1+rxZPrDXXa/3qxpA49vM3Wwt1qF2DxgVDtEWBSS5zeTZaitEn474TGo1BrcmzATGwp2eHWNx+Ysx4A77vB8DOQWQaHAM3c9i5SLefgw9wvU2m5WKYcH6bE0dTEmxozvxhESERERERHR7Y7BYx8kSxJ2bV7j7FB7C2OQiO1TgyEf2oV7hw+D7XoVqgsL8MGwUsDfy7HJMiADv91Yjelf/tXPN+tbmjbwOK+oQv4INYxaBULqA3DX2LuReecCnDWcR5W5BnpNCG6cO4eVF7d4dpOGKsnZRUDo48kAgIXJc7HlzC5YRTdDzIZrPBE9g6FjF8kckoqMmHGudVn1mhAkRsTdls2ZiIiIiIiIqGdh8NgHmYqLsTe+4Ytbp9o2fL1jSjDkDe8j/pIVpf2VMMXq0WntTe9t2JdaaMLYl/6RTSe80LSBx6xW1uBL7h/vOvaHuirgomfX15kkTMs1Ys7jL7quKYoilg6+Cx+U7nJr2rbKLuMRRQru4jqdXapxWj4RERERERFRT8LgsQ8qqfoVRm0HwZ4oYOeUYIiHanE50jfrKirtMhQyYAlsGVAJMpD6sw3P3PM7hGdl+uR+tyN31+DTaz0IkmUZGafrMLVcg7hnXmzx/szIug+5/7EDPw4X2w4fZRlqi4TlO+sw5fPfuX9vIiIiIiIiIuqzGDz2QSaNANjcO3Z3pg4BXiwF2FSgRcL4syakF5gAAFcilbihEVEeoQQEIPSGhOmRY5H0p39ipWMXSYyIg05UwyhZOjw2/lcLHkq6B0P+z8Otvj+CQoGn71wGx653cSIxqGX42FDNOvO4EUn/+CLfYyIiIiIiIiIC4Kfg0eFwYP/+/fjhhx9gMBgQHByMsWPHYv78+VCr1QCAyspKbNiwAcXFxQCA0aNHY9GiRQgOvrkuoSRJ2LFjB7Kzs1FbW4vo6GgsWLAASUlJ/hh2nxE+JA44faTjAwUB9SoF6r25SUPYlHG6DhPzTRDlm7tirtkBAFnhSQgdOxaD7pkDUcVu1V1JFEU8k/Eo/uvIR84NbUx/D7RKmH3kBkL/bUy7gWF4ViZWANi5eQ2+SxRgVt9cP1BnkjCzGJjzeMtqSSIiIiIiIiK6ffklePzmm2+wd+9ezJkzByNHjkR5eTm2bt2K8+fP4w9/+AOsVitWrlwJjUaDJUuWwGKxYNOmTXj77bfxxz/+0dUU4auvvsLBgwexYMECDBw4EIcOHcI777yDl19+GcOHD/fH0PuE2NChUFkUsAXWu7Uun7dSi8zIOmNqsV2h0WDkPzzPEKqbTRqajjNncrDnRn7LnQ3B8axjRqjDwxGclNjh9cKzMvFYRjrm5ucjv7wIVcYq6HV6JCcmIPTJZFY6EhEREREREVEzPg8ebTYb9u7di7vuugvz588HACQmJkKn0+HDDz9EcXExLly4gJqaGrzyyisICQkBAERHR+PPf/4z8vLyMGHCBFy/fh379+/HwoULMWvWLABAcnIy/vKXv2Dbtm144YUXfD30PuNCmQnGiylQjTzpl+urzQ7MOG7EfY+/CP3/m4Yr23egtrAQCrUG/adPQ+iY0QyheogVc1/AwE/fxEa5qEWV4rRcI+JKrRjxqvvTowWFAvoxYzBlzBh/DZmIiIiIiIiI+gifB491dXWYMmUK0tLSmm0fOHAgAKC6uhr5+fmIjY11hY4AMGTIEPTv3x+nT5/GhAkTUFRUBEmSkJqa6jpGFEWkpqZi27ZtsNvtUCo5ffdWkiRjS/ZlOKoHIbb6Os7pL3XugrIMlVVGRn4dtFYJOpOEIWY14n9/c1ptzAMLgAcW+GD05A/zl/wTMn/4AQe/+hi1khlas4SoCjvU4eEY8SqnRxMRERERERGRf/g8eNTr9Xj00UdbbD958iQAZ2VjWVlZs0CxUf/+/VFWVgYAKCsrg1KpRFhYWItjHA4HKioqEBUV5evh93o7s39BwYUaAMCyub/Fv2X/L1i8W8XR5a5jNxBXaoWgVCJm0YMY/NBCVjT2Mv2nTMHCrCzUFhTCVlUFlV6P4KREvo9ERERERERE5Ddd0tX63Llz2L17N0aPHo3BgwfDbDa7msw0FRgYiIqKCgCAxWKBRqNpcUzjeWaz2b+D7qWOFV4FANw9cShGDg7Dc5OW4s3sD51r+nmx3mPmqTrElVoxZMnjiLl/PoOqXkxQKBAyOqW7h0FEREREREREtwm/B49nz57Fu+++i4iICCxduhQAIMty+yfB2dG6PUInmqY0Vkz2RSUXqwAAGaP6oby8HMOV0ZgZMwl7L2W3PLjxfWij47HWJCG9wAQolQjImoirffR7RtQTWa1WlJeXd/cwiMhLfIaJej8+x0S9G59hIv+KiIhAQEDHsaJfg8fs7Gx89tlnGDRoEF588UXodDoAQFBQECwWS4vjm1Y5tnVMY6Vja9WQ7lIoFK41J/uauyYORXllDdJHj4AoOgPFZwc+gbEXk/H+oY9gCrgZ6KqtEiyBYstqyIZA8s5cI0QZGLzwAQzitHaiLlVeXt5n/50iuh3wGSbq/fgcE/VufIaJega/BY9btmzB9u3bkZSUhGeffbbZ1OoBAwa0WnFYUVGB2NhY1zE2mw01NTXNmtBUVFQgICAAERER/hp6r7Z0XjLKy8tdoWOjzCGpyPjNOOz72zu4mJvjajByPjoQB9J0MGpvTqFu2vFYVKsxePGirn4ZRERERERERETUy/kleNy1axe2b9+OrKwsPPHEE1Dcsi5gUlISdu3ahdraWgQHBwMALl68iGvXruG+++5zHSMIAnJzczFjxgwAzunXeXl5iI+PZ0drL4iiiFlPvgjpN8/hyvYdqC0sRMiNOozYUoArkUrUaURXICk2zMKO/8cXuK4jERERERERERF5zOfB49WrV7F582YMHDgQU6dOxa+//tpsf2RkJKZNm4b9+/fjzTffxLx582C327Fp0yYMHjwYaWlpAICwsDBMmjQJGzduhM1mQ3R0NA4dOoSysrJWu2aT+0SVEjEPLAAeWAAAMBzJQeCqj2D/9brrGGV4GGKXP43wrMzuGiYREREREREREfViguxOpxcP7N69G19//XWb+5944glMmTIFZWVlWL9+PUpKSqBUKpGSkoJFixa5KiABoL6+Hps3b8bRo0dhMpkQHR2N+++/H4mJib4ccp/jzVoWssOB2oJC2KqqoNLrEZyUyEpHom7ENWmIejc+w0S9H59jot6NzzBRz+Dz4JG6H/+BJer9+BwT9W58hol6Pz7HRL0bn2GinkHs7gEQERERERERERFR38PgkYiIiIiIiIiIiHyOwSMRERERERERERH5HINHIiIiIiIiIiIi8jkGj0RERERERERERORzDB6JiIiIiIiIiIjI5xg8EhERERERERERkc8xeCQiIiIiIiIiIiKfY/BIREREREREREREPsfgkYiIiIiIiIiIiHyOwSMRERERERERERH5HINHIiIiIiIiIiIi8jkGj0RERERERERERORzDB6JiIiIiIiIiIjI5wRZluXuHgT5Vn19PQICArp7GETUCXyOiXo3PsNEvR+fY6Lejc8wUc/A4JGIiIiIiIiIiIh8jlOtiYiIiIiIiIiIyOcYPBIREREREREREZHPMXgkIiIiIiIiIiIin2PwSERERERERERERD7H4JGIiIiIiIiIiIh8jsEjERERERERERER+RyDRyIiIiIiIiIiIvI5Bo9ERERERERERETkcwweiYiIiIiIiIiIyOcYPBIREREREREREZHPMXgkIiIiIiIiIiIin2PwSERERERERERERD4X0N0DIN85e/YsNm3ahMuXL0Or1WLSpEmYO3cuFApFdw+N6Lb3T//0TzCZTC22/8d//AdCQkJQWVmJDRs2oLi4GAAwevRoLFq0CMHBwa5jJUnCjh07kJ2djdraWkRHR2PBggVISkrqstdBdLupqqrC//k//wcrVqxAYmKia7vRaMRXX32FM2fOwGazYdSoUVi8eDEiIyObnX/gwAHs3bsX169fR2RkJO655x5kZGQ0O+bSpUv46quvcOHCBSiVSqSlpeGBBx6AWq3uktdI1Ne19Rx/+eWX2LdvX4vjH3jgAcyZMweA+5+9/D2cyLccDgf279+PH374AQaDAcHBwRg7dizmz5/v+nz05e/PfIaJ/IfBYx/xyy+/4K233sLYsWMxb948lJaWYsuWLTCbzXj44Ye7e3hEt7XKykqYTCY8/PDDGDZsWLN9Op0OZrMZK1euhEajwZIlS2CxWLBp0ya8/fbb+OMf/whRdBanf/XVVzh48CAWLFiAgQMH4tChQ3jnnXfw8ssvY/jw4d3wyoj6tuvXr+Ott95q8UcDSZLw3//93zAajVi8eDEUCgW2bt2KN954A//rf/0vaDQaAMDevXuxYcMG3HvvvYiNjUVubi4++ugjKJVKjB8/HoDz34eVK1di8ODBePrpp3H9+nVs2rQJVVVV+N3vftflr5mor2nrOQaA0tJSJCUl4b777mu2PSwszPW/3fns5e/hRL73zTffYO/evZgzZw5GjhyJ8vJybN26FefPn8cf/vAHWK1Wn/3+zGeYyL8YPPYRW7ZswaBBg7B8+XIIgoCUlBQEBARg48aNmD17NkJDQ7t7iES3rdLSUgBAWloaQkJCWuw/cOAAampq8Morr7j2R0dH489//jPy8vIwYcIEXL9+Hfv378fChQsxa9YsAEBycjL+8pe/YNu2bXjhhRe67gUR9XGSJCEnJwdfffVVq/tzc3Nx8eJF/PM//zMGDx4MAIiLi8Of/vQnHDx4ELNnz4bNZsO2bdswffp0zJ8/H4DzmTUajdi8ebMreNy9ezcCAgLw/PPPQ6VSAQBCQkLw/vvv45dffuEfFYi81NFzDDg/n++++26MGDGi1f3ufvby93Ai37LZbNi7dy/uuusu12doYmIidDodPvzwQxQXF+PChQs++/2ZzzCRf3GNxz7AbrejuLgY48ePhyAIru1paWmQJAn5+fndODoiunTpEvr169dq6AgA+fn5iI2NbbZ/yJAh6N+/P06fPg0AKCoqgiRJSE1NdR0jiiJSU1NRWFgIu93u3xdBdBu5fPkyPvvsM2RmZuKpp55qsT8/Px8RERGu0BFwhoVxcXE4deoUAGf1hMlkavbMAs7P5rKyMlRUVLiuNXr0aFfoCABjxoyBUql0Pf9E5LmOnuPG2QhNn+NbufPZy9/DiXyvrq4OU6ZMQVpaWrPtAwcOBABUV1f77PdnPsNE/seKxz6gsrIS9fX1GDBgQLPter0eSqUSZWVl3TQyIgKcwaNGo8G7776Ls2fPQpZljB49GosXL0ZISAjKyspahBMA0L9/f9fzW1ZWBqVS2Wz6V+MxDocDFRUViIqK6pLXQ9TXhYWF4f/+3/8LvV6Ps2fPtthfVlbm+o+fpvr374/c3FwAQHl5OQC0+Gzu37+/a39ISAgMBkOLYxQKBSIiIvj5TdQJHT3HjbMRTpw4gXXr1qGmpgbR0dG4//77kZKSAsC9z15BEPh7OJGP6fV6PProoy22nzx5EoCzstFXvz/zGSbyP1Y89gFmsxkAWl2EXq1Ww2KxdPWQiKiJ0tJS1NTUIDY2Fs8//zwWLVqE4uJi/Od//icsFgvMZnOrz29gYKDr+bVYLK5145pqPK/x3wEi6jytVgu9Xt/mfnee2cZn8tbntukz297nd9NrEZHnOnqOL126BMD5LD755JN47rnnoNPp8M477+DMmTMA3Pvs5e/hRF3j3Llz2L17N0aPHo3Bgwf77PdnPsNE/seKxz5AluV29zctGSeirrds2TKo1WrExMQAAEaOHImoqCi8/vrrOHLkSIfPMOBcq6o9fM6Juo6vnll3rkNE/pGVlYXhw4e7qhsB59pv//Zv/4bNmzcjJSXFJ88xP5+JOu/s2bN49913ERERgaVLlwLous9iPsNEncfgsQ9o/CuO1Wptsc9isbT61xsi6jpxcXGtbtNoNCgtLUVQUFCrf01t+lfato5pq6qKiPzH3We2cZtSqWx2DOB8ZhuPbeta4eHhPh87ETlFREQgIiKi2TaFQoHExER8//33ANz77G0MLfh7OJF/ZGdn47PPPsOgQYPw4osvQqfTAXD/s5jPMFH341TrPiAyMhKiKOLatWvNtldVVcFut2PQoEHdNDIiMhqN+OGHH1zrvTWSJAn19fXQ6XQYMGCAq9FEUxUVFa7nd8CAAbDZbKipqWlxTEBAQIv/eCIi/3H3mQXQ4rO58euBAwciMDAQer2+xbUcDgcMBgM/v4n86OTJk6714pqy2+2uYMOdz17+Hk7kP1u2bMEnn3yC+Ph4/I//8T8QHBzs2uer35/5DBP5H4PHPkCpVCI+Ph4nTpxoVk6em5sLURSRkJDQjaMjur0pFAp8DdZ4zgAAA7NJREFU9tln+Pbbb5ttP3XqFOx2O0aNGoWkpCSUlJSgtrbWtf/ixYu4du0akpKSAABJSUkQBMHVuAJwhpd5eXmIj49vVlFFRP6VlJSEq1ev4vLly65tNTU1KCkpcT2zsbGxCAwMRF5eXrNzc3NzMWDAANcfC5KSknD69GnYbDbXMY3/PjRei4h879ixY/j000+brZFstVpx+vRpjBo1CoB7n738PZzIP3bt2oXt27cjKysLzz//fIvKQ1/9/sxnmMj/ONW6j5g7dy5WrlyJDz74AFOmTMHly5exZcsWTJs2rUUXLyLqOhqNBnfddRe+/fZbaLVaJCUl4fLly9i6dStGjx6NpKQkDBkyBPv378ebb76JefPmwW63Y9OmTRg8eDDS0tIAOLtzTpo0CRs3boTNZkN0dDQOHTqEsrKyVrv+EZH/TJgwAbt27cJbb72FBx54AEqlElu3boVOp8O0adMAACqVCrNnz8bWrVuhUCgQHx+PvLw8nDp1CitWrHBda/bs2Th27Bj++7//G3fffTeqq6vx9ddfY8yYMYiNje2ul0jU591zzz04deoU3n77bcyePRsOhwO7d++G1WrFggULALj/2cvfw4l86+rVq9i8eTMGDhyIqVOn4tdff222PzIyEtOmTfPZ7898hon8S5C5snmf8dNPP2Hr1q0oKytDv379MGnSJMybNw+iyMJWou4kSRK+//57HDx4EJWVldDpdMjIyMC8efOgUqkAAGVlZVi/fj1KSkqgVCqRkpKCRYsWNZtSUl9fj82bN+Po0aMwmUyIjo7G/fffj8TExO56aUR93tmzZ7Fy5Ur84z/+Y7NnraqqChs2bEB+fj4EQUB8fDweeughREZGuo6RZRm7d+/GwYMHUVNTg/79++Pee+9Fenp6s3ucO3cOGzduxK+//oqgoCCkpqbiwQcfRGBgYJe9TqK+rK3n+JdffsHmzZvx66+/QpIkjBw5Eg888ACio6Ndx7j72cvfw4l8Z/fu3fj666/b3P/EE09gypQpPv39mc8wkf8weCQiIiIiIiIiIiKfY3xPREREREREREREPsfgkYiIiIiIiIiIiHyOwSMRERERERERERH5HINHIiIiIiIiIiIi8jkGj0RERERERERERORzDB6JiIiIiIiIiIjI5xg8EhERERERERERkc8xeCQiIiIiIiIiIiKfY/BIREREREREREREPsfgkYiIiIiIiIiIiHyOwSMRERERERERERH5HINHIiIiIiIiIiIi8rn/H0Zq0IL1rhZqAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=(16, 6))\n", + "env.unwrapped.render_all()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Analysis Using `quantstats`" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "

Performance Metrics

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Strategy\n", + "------------------------- ----------\n", + "Start Period 2009-06-10\n", + "End Period 2018-08-29\n", + "Risk-Free Rate 0.0%\n", + "Time in Market 26.0%\n", + "\n", + "Cumulative Return -99.95%\n", + "CAGR﹪ -43.5%\n", + "\n", + "Sharpe -4.77\n", + "Prob. Sharpe Ratio 0.0%\n", + "Smart Sharpe -4.36\n", + "Sortino -4.91\n", + "Smart Sortino -4.49\n", + "Sortino/√2 -3.47\n", + "Smart Sortino/√2 -3.17\n", + "Omega 0.16\n", + "\n", + "Max Drawdown -99.95%\n", + "Longest DD Days 3362\n", + "Volatility (ann.) 16.99%\n", + "Calmar -0.44\n", + "Skew -1.94\n", + "Kurtosis 14.57\n", + "\n", + "Expected Daily % -0.33%\n", + "Expected Monthly % -6.64%\n", + "Expected Yearly % -53.36%\n", + "Kelly Criterion -102.2%\n", + "Risk of Ruin 0.0%\n", + "Daily Value-at-Risk -2.08%\n", + "Expected Shortfall (cVaR) -2.08%\n", + "\n", + "Max Consecutive Wins 1\n", + "Max Consecutive Losses 1\n", + "Gain/Pain Ratio -0.84\n", + "Gain/Pain (1M) -0.99\n", + "\n", + "Payoff Ratio 0.67\n", + "Profit Factor 0.16\n", + "Common Sense Ratio 0.0\n", + "CPC Index 0.02\n", + "Tail Ratio 0.0\n", + "Outlier Win Ratio 29.12\n", + "Outlier Loss Ratio 2.37\n", + "\n", + "MTD -6.99%\n", + "3M -18.28%\n", + "6M -41.07%\n", + "YTD -48.55%\n", + "1Y -55.88%\n", + "3Y (ann.) -45.82%\n", + "5Y (ann.) -45.19%\n", + "10Y (ann.) -43.5%\n", + "All-time (ann.) -43.5%\n", + "\n", + "Best Day 9.05%\n", + "Worst Day -11.43%\n", + "Best Month 5.22%\n", + "Worst Month -16.7%\n", + "Best Year -38.39%\n", + "Worst Year -65.26%\n", + "\n", + "Avg. Drawdown -99.95%\n", + "Avg. Drawdown Days 3362\n", + "Recovery Factor 7.48\n", + "Ulcer Index 0.89\n", + "Serenity Index -0.07\n", + "\n", + "Avg. Up Month 2.51%\n", + "Avg. Down Month -6.83%\n", + "Win Days % 19.15%\n", + "Win Month % 2.7%\n", + "Win Quarter % 0.0%\n", + "Win Year % 0.0%\n" + ] + }, + { + "data": { + "text/plain": [ + "None" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "

Worst 5 Drawdowns

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
StartValleyEndDaysMax Drawdown99% Max Drawdown
12009-06-162018-08-222018-08-293362-99.950257-99.945944
\n", + "
" + ], + "text/plain": [ + " Start Valley End Days Max Drawdown 99% Max Drawdown\n", + "1 2009-06-16 2018-08-22 2018-08-29 3362 -99.950257 -99.945944" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "text/html": [ + "

Strategy Visualization

" + ], + "text/plain": [ + "" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAHDCAYAAACJXp0zAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/Z0lEQVR4nO3dd3wVZdr/8c9p6Z00Qg2hhyJdQaqoUaQoVnSx69pWXXfd3edZd/XnPrtu19UtYpdVbIAIKAgICCjF0EuooSQkJCSkt9N+fxwycDgJoISclO/79ULPmXtmzjVXJpO5zj33jMntdrsRERERERGpg9nfAYiIiIiISNOlgkFEREREROqlgkFEREREROqlgkFEREREROqlgkFEREREROqlgkFEREREROqlgkFEREREROqlgkFEREREROqlgkFEREREROqlgkFEmhWHw8Hrr7/OuHHjiI2NJSAggLZt2zJlyhQWL17s7/B+kBUrVmAymTCZTDz77LMXtK4tW7Z4vX/77beNdb/99tsXtO4fasyYMUYMp/+zWCxERETQp08f/ud//oeSkpIL/qwzt19ERC6cCgYRaTaOHTvGiBEjuP/++1m+fDkFBQXY7XZyc3OZN28eaWlp/OQnP/F3mH6RlZXFXXfdxcCBA/0dynlzuVyUlpayY8cO/vCHP3DVVVdht9t/0Lqa4/aLiDQXKhhEpFmw2+1MnjyZ9evXA3Dvvfeybt06du3axb/+9S+io6MBePnll3nnnXf8Gapf/OhHP+Kdd97B5XJ5Tb/55ps5cuQIR44c4eabb/ZTdKfUxnLkyBEOHjzIypUr6dGjBwDr1q3j448//kHrrW/7RUTkwln9HYCIyPl4++23WbduHQA/+clPeOmll4y2nj170r17d8aPHw/Am2++yZ133umXOP3F7XbXOT0kJISQkJBGjqZ+7du393rfqVMnnnvuOW699VbAUzRMmzbte6+3vu0XEZELpx4GEWkWansNzGYz//u//+vTfsUVV/Duu++yfft2VqxYYUy/6667jGvmDx48aEw/ePCgMf2uu+4yptdeb3/ppZeyd+9epkyZQkREBDExMdx7770UFxezd+9eJk+eTFhYGG3atOGuu+7ixIkTxjrONibh9Ov5z8d///tfhg8fbozXSEhIYNKkSaxdu9aYx2QysXLlSq/3Y8aMAXzHMNTU1JCQkIDJZKJ79+4+n/foo48a8+/atcuY/t577zF06FBCQkKIjIxk3LhxLFq06Ly24Vys1lPfXZ1Z3Kxbt44JEyYQFRVFcHAwl1xyCS+//LJXT8L32f7Tde7cGZPJROfOnY1pzz77rDH/qlWr6NevH4GBgfTq1Qu73W78/AYPHszRo0eZPn06sbGxhISEMG7cOKMHrNaJEyf46U9/SteuXQkMDCQwMJAuXbrw2GOPee0zIiJNmXoYRKTJczgcbNiwAYCUlBTi4+PrnO9HP/pRg31mVlYWw4YN8zqpe/PNN9m9eze7du2isLAQgPLyct555x0KCgqYP39+g30+wCuvvMJjjz3mNS0vL4/58+ezZMkStm7dSrdu3b7XOgMCArj77rv54x//yN69e/n222+57LLLAKipqWHWrFkAjBo1il69egHwy1/+kj/+8Y/GOiorK1m+fDkrVqzg3//+Nw8++OAP2r7Kykr27dvH7373O2Pa2LFjjdefffYZN954o9e4hi1btvCTn/yEtWvX8t577/2gzz1fkyZNoqioCIDU1FRsNpvRdvz4cS699FKOHDliTFu+fDlXXnklBw8eJDo6GpfLxZVXXkl6errXejMzM3nllVf45ptvWLdunVfBJCLSFKmHQUSavBMnTlBTUwNAXFxco3xmdnY2vXr1YsOGDSxbtoyIiAgA1qxZQ1xcHKtWrWLlypW0adMGgM8//5yKiooG+3yXy8XLL78MwLBhw9i4cSN79uzhF7/4BQBVVVV8+eWXgGdcwKWXXmose+TIkbOOBXjwwQcxmz2H/3fffdeY/tlnnxmFUG0RsGHDBqNYSEtL47vvvmPz5s1MmjQJt9vNE088QU5Oznlv1+l3SQoJCaFfv35s3rwZgPvuu4+rrroKgIqKCu677z7sdjspKSksXryYjIwMnnnmGQDef/995s6d+4O2/3wFBASwcuVK1q5d69OrdejQIdq0acPXX3/Nli1b6N+/PwAlJSXMmTMHgE2bNhnFwtNPP20Um48++ijg2ce++eabC45TRORiU8EgIk2e0+k0XjfmoNZXXnmFwYMHM27cOMaNG2dM/93vfsfll1/OqFGjjOkul6tBLzExm83s3r2brKwsPvvsMwYMGEBiYiI9e/Y05qk9uW/fvj2BgYHG9Pbt25+1sEpOTjZOzD/88EOqq6sBjEt22rRpw9SpUwHPiXmt5557joSEBNq0acNzzz0HeAqXDz/88IK29cYbb+TTTz/ltddeM6YtWbKE/Px8AB577DF69+5NaGgoDzzwAF27dgVOXab2fbf/fD300EOMGjWKYcOGMWDAAJ/2119/nZEjR9KvXz9+/etfG9Nzc3MBiImJMabVFlrR0dG8+OKLFBYWkpuby6hRoy44ThGRi00Fg4g0eTExMcY34nl5efXO932KifMZJHv6yXl4eLjxunfv3nVOP59bgn6fwbkul4u1a9fy9NNP07NnT6Kiorj77ruN9tMLqe/roYceAjy9N/Pnzyc3N9d4jsWdd95pnIDv2bPHWGbYsGF06NCBDh06eJ1An3nJzdkcPnyYzZs38+Mf/9iYtm/fPgYPHuw13+mf+8QTTxif26FDB/bt2/e9P7cu5/pZ9OnT56ztp+8HpxcotftBcnIyzzzzDCaTia+++opbbrmFxMREevTowa9//Wu2bt16AdGLiDQeFQwi0uQFBAQYJ6iZmZnGN7inczgcJCcnM3ny5HofUHb6CXZVVdU5Pzc4ONh4XVuwgPfA3HMNXj7zpP58Phc8J7MTJkzgxhtvZNasWfTv35+XXnrJuNzlQk2YMIEOHToAngHNs2bNwuFwAPDAAw8Y853P9fW1PQHno0OHDvTv359///vfxpiTzZs3k5aW5nVJV0N/Lnz/n0VkZORZ20/fPywWS53z/L//9//YsWMHv/3tbxkxYgRBQUHs37+ff/3rXwwYMKDBx72IiFwMKhhEpFmoPbl0u91eA3Brvfnmmxw+fJjPPvvM6zKa0y9VOf1JwocPH75osdb3mW6322uQ7NmsWLHCuAvRs88+y4cffsijjz7qc1vSWqcXLufTi2GxWLjvvvsAWLRokXF5z5gxY4znIgDG5T/guebe7XbjdrspKSkhPT2d8vLyH3y3pFdeeYWOHTsCsH37dn71q1/V+bnvvfee8blut5t169ZRUFDgdcJf3/bX97MoLy+noKDgrPGdPsj5hygoKGDlypWsXr2aRx99lNWrV1NSUsLy5csJDg72GqciItKUqWAQkWbhwQcfpF+/fgC8+OKLPPzww2zcuJEdO3bwwgsv8PjjjwOenoDf/va3xnLt2rUzXr/yyivY7Xb2799f561ZG8rpn/nJJ59w+PBhKioq+N///d/zHiBcWlpqvF60aJFxu9iHH37YmF7bIwAQFBRkvF69ejVbtmw552fcd999WK1WqqqqjPnPvOPR7bffbryePn06a9euJSMjgx//+McMGjSIsLAw5s2bd17bdKaIiAhef/114/0rr7xiPGvjiiuuICEhAYD//d//ZcGCBezfv5+//vWvDBs2jDZt2vDUU08Zy9a3/af/LN5++20KCwspKiri0UcfvaBLus7HF198wZgxY3jggQe46667+O677zh8+DCHDx82fnYXWpSIiDQKt4hIM3H48GF3v3793ECd/8xms/vll1/2WmbHjh1um81mzGMymdyAOzU11R0WFuYG3Hfeeacx/+jRo415T3fnnXca0zMzM43p9957b53Thw8f7hWbyWRyW61W96BBg3zWv3z5cmPab3/7W7fb7XYXFBS44+Pj691WwH3vvfca6/jFL37h1da7d2+32+12v/XWW8a0t956yyenN9xwg9EeFxfnrq6u9pnnoYceqjeGtLQ0t9PpPOvPrb6c1nrggQeM9v79+7vtdrvb7Xa733//fbfZbK7zczt37uzOzs4+5/ZXV1e7k5OTfZYPDw939+7d2w24O3XqZKznt7/9rTHP8uXLz3tbVq1a5fMztNvt7gkTJtSbu8DAQPfXX3991tyJiDQF6mEQkWajQ4cOrF+/npdffpnhw4cTERGB1WqlXbt2TJs2jbVr1xq3rKzVu3dv5s+fz5AhQwgKCqJt27Y8/vjjrF692utylYY2Z84cbr/9dqKjowkNDeXKK69k1apVxgPFziUmJoYlS5Zw9dVXExUVRWRkJEOGDGHmzJnGE60///xz41vyJ598kokTJxIVFUV4eLhxqc+51A5+Bs9g54CAAJ95/vnPf/L6669z6aWXEh4eTkhICH369OFPf/oT8+bN8xrf8UP85S9/oVOnToDnOQsvvvgiALfddhtfffUVEyZMoE2bNgQEBJCcnMxjjz3Gt99+S1JSkrGO+rY/ICCAL7/8kuuuu47w8HAiIyO54YYbWL9+vfGciYvFarUyZ84c/vnPfzJ06FDatGmD1Wqlbdu23HjjjXzzzTeMHDnyosYgItIQTG7397hlh4iIiIiItCrqYRARERERkXqpYBARERERkXqpYBARERERkXqpYBARERERkXqpYBARERERkXqpYBARERERkXqpYBARERERkXqpYBARERERkXqpYBARERERkXqpYBARERERkXqpYBARERERkXqpYBARERERkXqpYBARERERkXqpYBARERERkXpZ/R2AiMjFVFJSwr/+9S9uvfVWOnfu7NVWWFjI4sWLOXToEGazmd69e3PllVcSGBh43uvfvHkz8+bN4/HHHycqKqphgz/D22+/TVFREU888QQALpeLFStWsGXLFioqKkhKSuLKK6+kffv2xjIOh4MVK1awbds2KioqiI2NZcSIEfTp06dBYnK73aSnp7NhwwZOnDhBaGgoPXr0YOzYsV553LNnDytXruTYsWOEhITQu3dvxo0bR0BAwDk/Y//+/fz3v/8lPj6ehx56qEHiPl+ffvopW7Zs4be//a1P2+7du/nggw/qbEtPT2fdunUUFRURGRnJkCFDGDJkCCaTqTHCFhFpUOphEJEWq7i4mJkzZ1JdXe3TVlVVxTvvvENZWRlTpkzhiiuuYMeOHXz88cd+iPT8mEwmrxPOxYsXs3btWoYPH86NN96I2Wxm5syZFBYWGvPMnj2bb7/9lr59+3LbbbeRmprKZ599xrp16xokpjVr1vD555/TrVs3br31VoYPH87WrVv56KOPcLvdAOzatYtZs2YREBDATTfdRFpaGgcPHuTdd9/F5XKd8zM2b95MfHw8eXl5HD58uEHiPl/1neAfPHiQOXPm1Nm2ceNGFixYQHJyMrfeeiupqal88cUXfPvttxczVBGRi0Y9DCLS4rjdbrZs2cKXX35Z7zwbNmygsrKSBx98kJCQEAAiIiJ4//33OXz4MB07dmyscM9bWFgYTqcT8BRD3333HWlpaQwZMgSAlJQUXnnlFVavXs2kSZPIyckhIyODsWPHMmrUKAC6dOlCQEAAS5cupX///gQFBf3geNxuN2vWrGHQoEGMHz/eWH9wcDCzZ88mJyeHpKQkVq5cSVxcHHfccQcWiwWAjh078o9//INNmzYxaNCgej+jqqqKjIwMJkyYwOrVq0lPT2/Un01YWBjh4eHG++rqalavXs2aNWvqzd2mTZvo2LEj11xzDeDJSUFBARs2bGD48OGNEreISENSD4OItDjHjh1jwYIF9O/fn+uvv77Oefbv30/Hjh2NYgE8J9wBAQHs3bv3B3/2p59+yosvvug1raioiOeee47NmzcDnm+nn3vuOQ4cOMDMmTP5v//7P/7yl7+wZMmSs37jHh8fT0JCAgCZmZm4XC569epltFutVrp168a+ffsAOH78OAA9evTwWk/nzp2x2+0cPHjwB28neE6e+/XrR9++fb2mx8bGAhg9Hfn5+aSkpBjFAnhOxOPi4s6Z623btuF0OunatSv9+vVj586dVFZWes2zYsUKnnvuOZ9ln3vuOVasWGG8Ly0t5ZNPPuGPf/wjf/zjH1mwYAHLli3z+Xmd7vScg6cY2LhxI9deey1Dhw6tcxmHw+FzWVtwcDAVFRVn3VYRkaZKPQwi0uJERkbyk5/8hIiIiHpPio8fP05qaqrXNLPZTHR0NAUFBY0QJcyZM4chQ4Zw+eWXs2fPHr755huio6MZPHhwnfOPHDnSeJ2fn09AQABhYWFe88TExFBaWkpNTY1RDBUVFXmd9J44ccLr/z9UUFCQ8S366TIyMgDPyTZASEgIxcXFXvM4nU6Ki4txOBxn/YxNmzbRtWtXwsLC6N+/PytWrGDz5s1cdtll3ytWh8PBu+++S01NDWlpaQQGBrJ69Wpyc3N9cni6vn37ehVE3bt3Z9CgQdhsNq9i5HTDhg3js88+Y+vWrXTv3p2srCy2bNlCv379vlfMIiJNhQoGEWlxgoODCQ4OPus8VVVVdQ5uDggIqHPMw8UwcOBARo8eDUBycjIZGRns3bu33oLhdNXV1XXGXzuturqazp07Ex0dzRdffIHNZqNdu3bk5uaydOlSAGpqahpwazyysrJYs2YN3bt3NwqGAQMGsGrVKlavXs2AAQNwOBx89dVXVFVVnXXQ87Fjx8jJyeGmm24CPIVgcnIy6enp37tg2LZtG8ePH+f+++8nKSkJ8OT8H//4x/daT0xMzDnn6du3L4cOHWLu3LnGtJSUFNLS0r7XZ4mINBUqGESkVaodkFuXxrqTTYcOHbzeR0REnPdJ/NniB882WCwW7rjjDubNm8fMmTMBz6VA11xzDR9//DE2m63edZ+5frP53FewHj58mFmzZhEVFcXkyZON6WPGjMHlcrF8+XKWLVuG2Wxm4MCB9OzZk/z8/HrXt2nTJoKCgujUqRNVVVUA9OrVi4ULF5KZmUlycvI5Y6qVmZlJdHS0USyAp7jq3r07mZmZ572e8/HBBx9w+PBhxo8fT7t27cjLy2PFihV8/PHH3HLLLbpTkog0OyoYRKRVCgoKqrMnobq6moiIiEaJ4cwTdpPJdM5CoFZgYGCdxUXtNtX2NMTExHD33XdTXl5ORUUFbdq0MS4Pqq8XZt68eWzZssV4HxkZadzKtT7bt29n3rx5tGnThttvv91rbIjZbGb8+PGMGTOGEydOEB4eTlBQEG+99Va9MTidTrZt20ZVVRV/+ctffNrT09O/V8FQUVFBaGioz/S6pl2II0eOsG/fPiZOnMjAgQMBjJ6e999/n71799K9e/cG/UwRkYtNBYOItEpt2rTxuYbf5XJRVFTkNZD4dAUFBWzevJlhw4YZ173XDlK2Wj2H07pO+i/GpT+xsbFUV1dTXl7uddJbWFhIZGQkNpsNu93Orl276NChA9HR0cZ8OTk5ALRt27bOdY8ZM8ZrQO/pg5Xr8s0337BkyRI6d+7MLbfc4nP3oIMHD+JwOOjatStxcXGAJ295eXn079+/znXu2bOHiooKrrvuOtq0aePV9t1337Fr1y6fbXe5XEZPyJk5Dw8Pr3NsSnl5+Vm37fsqKioCfHuPOnXqBEBeXp4KBhFpdnSXJBFplVJSUjh48KDXCeP+/fupqakhJSWlzmVKS0tZvXo1x44dM6YVFxdjtVqNb9QDAgKoqKjwGsx7MZ4d0KVLFwB27txpTHM4HOzZs8eI32Kx8Pnnn5Oenm7M43K5WL9+PdHR0V4DoU8XFRVFUlKS8a+++cBz8r5kyRJSU1O544476rzV6M6dO5k/f75xS1jwXG5UVVVFz54961zvpk2biIiIYODAgXTu3Nnr39ChQ3G5XGzatAk41ZtSUlJiLH9mzjt37kxRURG5ubnGNLvdbtxRqqHU3iHqzM+vfR8dHd2gnyci0hjUwyAirdLgwYNZv349M2fOZPTo0VRWVrJkyRK6du3q8+1wrXbt2hEeHs6yZctwuVxUVFSwfv16evXqZXyz3b17d9avX89nn33GgAEDyMvL49tvv23w69ajoqLo378/ixcvxuFw0KZNG7799luqqqoYMWIE4LkUaMiQIaxdu5aIiAhiY2PZsGEDhw8f5tZbb73gmMrKyli8eDFRUVEMHTrU6LmoVdurMXjwYDZu3Mi8efO45JJLOHbsGEuXLiU1NdXn6dvgKcz27dvHpZdeWmeMHTt2JDo6mvT0dEaMGEH37t358ssvWbBgAcOHD6e4uJiVK1d6Daju27cvq1ev5oMPPmDcuHEEBQXx7bffUl5eTmRk5AXl4XRt27alV69eLF68mMrKStq3b09eXh4rV6402kREmhsVDCLSKoWGhnLnnXeyaNEi5syZQ2BgIL179+aqq66qdxmbzcZtt93G4sWL+eSTT7BYLD7LpKSkcOWVV7J+/Xp27txJUlISt9xyC2+88UaDb8N1111HUFAQa9asoaamhrZt2/KjH/3I604+Y8aMwWQysWbNGiorK0lMTOT222+vtxfl+9i7dy8Oh4OioiLeeustn/bJkydzySWXEB8fz2233cayZcuYNWsWYWFhjBw50us2safbsmULbrebPn361PvZ/fr1Y+XKlezfv5+uXbsyZcoUVq1axfvvv09sbCwTJ07kiy++MOY3m83ccccdLFq0iIULF2I2m+nbty8hISHG8yoaytSpU/n6669JT09nxYoVREZGcskllzB69OjzGjwuItLUmNznO8JORESkmcrLy+P48eP06tXLq9fitddeIyIigltuucWP0YmING3qYRARkRavpqaGjz/+mCFDhtCrVy9cLhfbt2/n6NGjjB8/3t/hiYg0aephEBGRVmHnzp188803xrMfEhMTGTVqVINcniUi0pKpYBARERERkXpp9JWIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBYOIiIiIiNRLBcN5KCws9HcITY5y4ks58aWc+FJOfCknvpQTb8pH3ZQXb8qHr4bKiQqG81BTU+PvEJoc5cSXcuJLOfGlnPhSTnwpJ96Uj7opL96UD18NlRMVDCIiIiIiUi+rvwOoy+7du5k7dy7Z2dmEhoYyfPhwJkyYgMViAWDevHmsWrUKm83GxIkTGT58uLGs2+3m97//PSNGjGDMmDF+2gIRERERkZahyRUMmZmZ/OMf/6B///5cd911ZGVl8dlnn1FZWcktt9zCtm3bWLJkCT/60Y8oLy9n5syZdO7cmaSkJAA2bNhAVVUVI0eO9POWiIiIiIg0f02uYPjss89o27Yt999/PyaTiT59+mC1Wpk9ezZXX301u3btomfPngwbNgyANWvWsHv3bpKSknA4HMybN48bbrjB6I0QEREREZEfrkmNYbDb7ezZs4cBAwZgMpmM6YMGDcLlcrFjxw4AAgICjDaLxYLb7QZgxYoVhIWFMWjQoMYNXERERESkhWpSPQzHjx/H4XCQkJDgNT06OhqbzUZOTg4pKSnMmjWLY8eOUVFRQXZ2NikpKVRWVvL555/z4x//uEFj2rVrF1u3biUqKsqYFhUVRceOHamqqmLPnj0+y/Tr1w+Affv2UVFR4dXWoUMHoqOjKSgoIDs726stLCyMLl264HQ6jeLodL169cJms3Hw4EFKSkq82tq2bUtcXBxFRUUcPnzYqy04OJhu3boBsG3bNqPAqtWtWzeCg4PJysryuf1WXFwcbdu2paysjAMHDhjTi4qKiIuLo1evXkae7Ha717JdunQhLCyMnJwc8vPzvdpiYmJo3749lZWV7N2716vNZDLRt29fAPbu3UtlZaVXe8eOHYmKiiI/P5+cnByvtoiICDp37ozdbmfXrl2cKTU1FYvFwoEDBygrK/Nqa9euHW3atOHEiRMcOXLEqy0kJISuXbsCsHXrVp/1du/enbKyMg4dOkRRUZFXW0JCAgkJCZSWlpKZmenVFhgYSI8ePQDYuXMnDofDqz0lJYXQ0FCOHj3K8ePHvdpqc1hRUcG+ffu82sxmM3369AFgz549VFVVebV36tSJyMhI8vLyyM3N9WqLjIykU6dO1NTUkJGR4bOtffr0wWw2s3//fsrLy73aanNYu38XFRUZvzuhoaGkpKTgcrnYvn27z3p79uxJQEAAhw4dori42KstMTGR+Ph4iouLOXTokFdbUFAQ3bt3B2D79u24XC6v9q5duxISElLn/h0bG0tSUhLl5eXs37/fq81qtdK7d2/AM66qurraqz05OZnw8HCOHTvGsWPHvNrOdowoKipi1KhRQMs+RgDYbLbzOkbs2LGDLVu2eLW1xGNEUFAQhw8fPq9jRO3vTks/RpzubMeIoqIiLr300lZxjIDzP4/YsWOH1/lJSz1GnO95RO3vTWs4RtQ61zEiKioKt9td7zFiyJAhPrHUpUkVDLU/0KCgIJ+2oKAgqqqqGDhwIBkZGTz77LNYLBYmTZpEp06dmDt3LsnJyXTt2pXZs2ezZcsWEhMTufXWW4mJifnBMT388MOsWLHCa1rfvn2ZOnUqBQUFvPzyyz7LPPvsswC8/vrrZGVlebVdf/319O/fn/Xr1/P55597taWkpPCjH/2IqqoqXnjhBZ/1/vznPyc0NJT333/f5wBz1VVXMXz4cHbs2MHHH3/s1ZaYmGgUUs8//zxOp9NnG+Pj45k3bx6bNm3yarv88ssZP348mZmZvPPOO15t4eHhPPXUUwD89a9/pbS01Kv9zjvvJDk5maVLl7J69WqvtgEDBjB58mTy8vL417/+5dVmsVh45plnAPjPf/7j88fqpptuIjU1lW+++YYvv/zSq6179+5MmzaN8vJy/vznP3OmX/7ylwQFBTFz5kyfg/+1117L0KFD2bJlC3PnzvVqa9++Pffddx9w6ud7uscee4w2bdowe/Zstm3b5tU2evRoxo4dy759+/jvf//r1RYdHc3jjz8OwJ/+9CefPwz33nsvHTp0YNGiRaxdu9arbciQIUyYMIGjR48yY8YMr7aAgAD+53/+B4B//vOfPgfaW2+9lZ49e7Jq1SqWLVvm1da7d29uvvlmiouL+fvf/+6zrb/+9a+xWq289dZbPn+YJ06cyKBBg0hPT2f+/PlebZ06deLuu+/G4XDwu9/9zme9Tz75JJGRkXz00Ufs3LnTq+2KK65g5MiRZGRk8MEHH3i1xcXF8cgjjwDw+9//3ucWcg888ABJSUksXLiQDRs2eLVdeumlpKWlceTIEd544w2vtpCQEJ5++mkAXnrpJU6cOOHVfscdd9C1a1eWL1/OypUrvdp0jPDQMeIUHSM8dIzw0DHCQ8eIU/x1jFi/fr1PLHUxuc8sE/1o//79/OlPf+Kxxx4zvvmo9bOf/YwBAwZw++23A57LlywWC2azmRMnTvDb3/6WX/ziF+zZs4fly5fz4IMPsmbNGg4cOMAvf/nLHxyTehjUwwDn38NQUVGhHgb1MKiH4aTv08Nw5glISzxGqIdBPQy11MPgoR6GUy5mD0PHjh0vuIehSRUMR48e5bnnnuOBBx7wGYfw6KOPMnbsWKZOneqz3LvvvovL5eKuu+7iL3/5C3369CEtLY2SkhJ+/vOf8/vf/542bdr84Lhyc3NJTEz8wcu3RMqJL+XEl3LiSznxpZz4Uk68KR91U168KR++GionTWrQc1xcHGazmby8PK/pJ06cwG6307ZtW59ljh49ynfffcekSZMAKCkpITQ0FMD4/5lVtIiIiIiInJ8mVTDYbDa6d+/Opk2bvLoM09PTMZvN9OzZ02eZOXPmMHr0aGOcQkREhFEg1HbphIeHX/zgRURERERaoCZVMABMmDCBw4cP8+qrr7Jt2zYWLVrkUxTU2rNnD/v37yctLc2Y1q9fP1atWsXWrVuZO3cuHTp0uKDLkfylyu7kqz35rD5QgMPVZK4aExEREZFWpkndJQk8gz4eeugh5s+fz3/+8x/Cw8NJS0vjuuuu85l39uzZpKWlGZceAYwdO5bc3FzefPNNEhMTue+++7ye6dBczNqUzb9WHwTgd9f25Oqe8f4NSERERERapSZXMAD079+f/v37n3O+X/3qVz7TbDYb06dPZ/r06RcjtEYzqksbo2DIK6s++8wiIiIiIhdJk7skSTxSYkOZlOp5gJ0uSRIRERERf1HB0IRZzJ5LqZwqGERERETET1QwNGFWs+fH43CqYBARERER/1DB0IRZLZ4eBl2SJCIiIiL+ooKhCbOYVDCIiIiIiH+pYGjCansYNIZBRERERPxFBUMTdqqHwXWOOUVERERELg4VDE2YxjCIiIiIiL+pYGjCrCdvq/rFzjw/RyIiIiIirZUKhiYswOr58SRFBvk5EhERERFprVQwNGH920YAUOVw+jkSEREREWmtVDA0YYFWCwDVDg16FhERERH/sPo7AKlfkM1Tz1XUOMktqQIgLNBKWKB+bCIiIiLSOHTm2YQFnRzDUOVwMfH19YBnIPSMm/vTNynCn6GJiIiISCuhS5KasJjQAIZ1iiLQYibQYsaE5xare/LL/B2aiIiIiLQS6mFowswmE69M7We8/9WCnSzdc1xPfhYRERGRRqMehmbEePKzWwWDiIiIiDQOFQzNiOXkg9xcummSiIiIiDQSFQzNSG3BoEuSRERERKSxqGBoRswnL0ly6pIkEREREWkkKhiaEat6GERERESkkalgaEZqL0lyqGAQERERkUaigqEZ0RgGEREREWlsKhiakdoxDC6NYRARERGRRqKCoRlRD4OIiIiINDYVDM2I9eRPa/6OYxRV2v0bjIiIiIi0CioYmpFAqwWA0moHf12+38/RiIiIiEhroIKhGbm2VzyBJ7sZckqq/ByNiIiIiLQGKhiakcSIIP4yqTcAFTVOP0cjIiIiIq2BCoZmJiTACsDe4+XYnS4/RyMiIiIiLZ0KhmYmITzQeL0xq9iPkYiIiIhIa6CCoZk5vWCosuuyJBERERG5uFQwNEMD2kUCYNfzGERERETkIlPB0AzZLJ4HuGkMg4iIiIhcbCoYmiGbxfNjszvVwyAiIiIiF5cKhmbIavb0MDh0SZKIiIiIXGQqGJqh2kuSHLokSUREREQuMhUMzZDV7PmxZRdXcehEhZ+jEREREZGWTAVDM1Tbw/D+xmxufOs75mzN8XNEIiIiItJSqWBohq7uGU+HqCBCAywA7M0v83NEIiIiItJSqWBohoZ1imbOPUO5e2hHwHNpklMDoEVERETkIlDB0IwF2zw/vm8PnuDp+Tv9HI2IiIiItEQqGJqxIJvFeP31/gI/RiIiIiIiLZUKhmasU0ywv0MQERERkRZOBUMz1j8pkhev7wNAwMk7J4mIiIiINCQVDM1c74QwAGqcblxuDXwWERERkYZlbawPOnr0KJ9++imZmZnY7XbatWvHddddR69evbzmW7lyJcuWLaOwsJC4uDiuueYahg4darRXVlby7rvvsnPnTuLi4rj99ttJTk422ouLi/nNb37D008/Tbt27Rpr8/wm0HpqHMP6Qye4tHOMH6MRERERkZamUXoYTpw4wV/+8hdOnDjBbbfdxn333UdYWBgvvfQS27ZtM+ZbtmwZs2bNYvDgwTz00EMkJyfzxhtvsGnTJmOehQsXkpWVxf3330+nTp2YMWMGDofDaJ8/fz4DBgxoFcUCnLpTEkB6VrEfIxERERGRlqhRCoaVK1ficDh4/PHHGThwIH369OHBBx+kbdu2LFq0CICamhoWLFjA2LFjmTRpEqmpqUyfPp3+/fszb948Y10ZGRmMGjWKPn36cMMNN1BYWEheXh4Aubm5rF+/nkmTJjXGZjUJJpOJJ0d3AeDIiUo/RyMiIiIiLU2jFAxxcXFceeWVhIWFnfpgs5n4+HiKiz3fimdmZlJRUcHAgQO9lh00aBA5OTnk5+cb02w2GwBWq+eKKpfLBcCcOXMYPXo0MTGt67KcDtGeuyWtzizUOAYRERERaVCNUjCMGDGCiRMnek0rLy9nz549JCUlAZ7eAYCEhASv+eLj473au3TpQnp6OmVlZaxZs4bw8HASEhLYt28fe/fuJS0t7WJvTpPT8WTBUO1w8cdl+/wcjYiIiIi0JI026Pl0LpeLmTNnUlVVxTXXXAN4BjMDBAd7P1sgKCjIq33ixInMmDGDp556isjISO655x5sNhtz5swhLS0Nt9vNq6++SnZ2Nr169WLq1KkEBAQ04tY1vg5RwQTbzFTaXew6VurvcERERESkBWnwgsHlcuE+47IYi+XUnXzsdjtvvfUWmzZt4rbbbjPucFR7WVF9TCbPcwbCw8N56qmnqK6uJjAwEICNGzdSWFjIuHHjePPNNzGZTDz88MPMnDmT+fPnM3Xq1B+8PYWFhVRXVxs9HE3VM6OS+J9lWZRW1jRKrM0hJ41NOfGlnPhSTnwpJ76UE2/KR92UF2/Kh69z5SQxMfG81tPgBcPChQtZsGCB17RXX30VgNLSUv7973+TmZnJtGnTGD16tDFPSEgIAFVVVcYYhdr34NvzUFssOJ1OPv30UyZPnozZbGbz5s38/Oc/JzExkTFjxjB37twLKhhiYmKoqak574T6ywlTKZBFjev8f/gXIjc3t8nnpLEpJ76UE1/KiS/lxJdy4k35qJvy4k358NVQOWnwgmHkyJH07dvXZ3peXh4vvfQSJSUlPPjgg1xyySVe7bVjF/Ly8ggPD/daDuo/CV69ejVWq5Vhw4ZRWlqKy+UiNDQUgNDQUEpKShpis5q8kABPL055jdPPkYiIiIhIS9LgBUNUVBRRUVFe00pLS/nb3/5GTU0NP/3pT70etFYrJSWFwMBANm7cSEpKijE9PT2dhIQEYmNjfZapqqpiwYIFTJ8+HbPZTFhYGGazmZKSEhISEiguLiYiIqKhN7FJCrV5CoZKuxO3221cwiUiIiIiciEaZdDzJ598wokTJ5g6dSput5sDBw6cCsBqpWPHjgQEBHD11Vczf/58LBYL3bt3Z+PGjWzdupUHHnigzvUuWbKExMREo0fDYrGQmprK/Pnzueqqq1iyZIlPT0ZLFRJw8hazbqhyuAi2Wc6xhIiIiIjIuV30gsHtdhtPap49e7ZPe1RUFH/84x8BuPbaa7FYLHz99dcsW7aM+Ph47r33Xp9nMwCUlJSwdOlSnnjiCa/p06ZN46233uK1114jNTXV53auLVXQaU98rqhxqmAQERERkQZx0QsGk8nEP/7xj/OeNy0t7byepRAREcFLL73kMz0mJoannnrqe8fZ3JlNJkJsFirsTipqnLQJ9XdEIiIiItISNMqD26Rx1A58rrBr4LOIiIiINAwVDC3IqTslOfwciYiIiIi0FCoYWpDQkwXD/y7M4ION2X6ORkRERERaAhUMLUjXWM/AhePlNXy8+aifoxERERGRlkAFQwvyP1d25/8m9ASgXOMYRERERKQBqGBoQaxmE70TPE/JLiivwely+zkiEREREWnuVDC0MLUDnwEe/GiLHyMRERERkZZABUMLEx1so3ucZyzD9txSP0cjIiIiIs2dCoYWxmQy8c8b+wHgdLlx6LIkEREREbkAKhhaoEDrqR+r3enyYyQiIiIi0txZ/R2ANDyb5VTBUO1wcbyshg1HiggLtDAmJZYAq+pEERERETk/KhhaIKvZhMVswulyU+Nw8dS8HWQWVgDw9Liu3HRJkp8jFBEREZHmQl81t1CBJ3sZ3kvPIre0ypieV1btr5BEREREpBlSwdBCxYYFAPDV3uNU2k+NY6iya0yDiIiIiJw/FQwt1Lu3DwAgt9S7R6HaoSdAi4iIiMj5U8HQQoUGWBncIdJn+obDRXoCtIiIiIicNxUMLdiPBncgOSaEpMgggm2eH3VWcRVvrD3k58hEREREpLnQXZJasOHJMQxPjgHgWGk11722DoDDRZVU2Z0s3HkMk8nEdb0TdKtVEREREamTzhJbiYTwQJ4e1xUAu9PN4ow8Xli2jz8s3cuKfcf9HJ2IiIiINFXqYWhFAiwmAPYdLyc6xGZMzy+v8VdIIiIiItLEqWBoRWqfAH34RCWHT1Qa08urHf4KSURERESaOF2S1IrUN07htbWHGzkSEREREWkuVDC0IrU9DHUprVIvg4iIiIj4UsHQioTY6v9x784ra8RIRERERKS5UMHQilzSLpKb+id5TRvY3vNwt4c+2crxsuq6FhMRERGRVkyDnlsRm8XM01d0ZdqgdizZk0+PuDCKq+xszCoGYFN2CVf2iPNzlCIiIiLSlKhgaIXaRwVz99COxvsvM/JZnVlIvnoYREREROQMuiRJ6BgTDEB+2annMbjdbqodLlxut7/CEhEREZEmQD0MQnxYIAD/Tc/i0IkKXG5Yk1lotH/+wDDiTs4jIiIiIq2LehiEuNAA4/WqA4VexQLAX5fvb+yQRERERKSJUMEgtI8KNl53jwv1aS+qtDdmOCIiIiLShOiSJKFXQhjPXNWdExV2JvZJYP2hIjZlFxMVbOPNdYfJLdVgaBEREZHWSgWDYDKZmNQn0Xif1iuetF7xbDlazJvrDpNdXMX6wycY2jHaj1GKiIiIiD/okiSpV/e4MOP1luwSP0YiIiIiIv6igkHqFWyzcOeQDgBsOFzk32BERERExC9UMMhZRQZ5rlrblF2Mw6VnMoiIiIi0NioY5KzSesUbr8urHX6MRERERET8QQWDnFVcWCCBVs9ucvhEpZ+jEREREZHGpoJBziks0HNZ0j0fbCbjWKmfoxERERGRxqSCQc5par+2xuutOSoYRERERFoTFQxyTvdf1okpfT3PafjzV/uwO11+jkhEREREGosKBjkvo1PaGK+PllT5MRIRERERaUwqGOS8XN6lDR2iggB4aeUBqhzqZRARERFpDVQwyHmLCLIBsOpAIX/7NtfP0YiIiIhIY1DBIOft/yb0NF5nl9T4MRIRERERaSwqGOS8tYsM5u1pAwCosOuSJBEREZHWQAWDfC+hARYAjlc42KVnMoiIiIi0eH4pGAoKCnj88cf59NNPfdpWrlzJb37zGx599FGee+451q9f79VeWVnJq6++yuOPP87vfvc7MjMzvdqLi4t5/PHHyc7Ovpib0GrFhNiM1/9ec9B/gYiIiIhIo2j0gsHlcvH2229TVeV7a85ly5Yxa9YsBg8ezEMPPURycjJvvPEGmzZtMuZZuHAhWVlZ3H///XTq1IkZM2bgcDiM9vnz5zNgwADatWvXKNvT2kQE2bhtoCe3RZV2P0cjIiIiIhdboxcMS5cuJT8/32d6TU0NCxYsYOzYsUyaNInU1FSmT59O//79mTdvnjFfRkYGo0aNok+fPtxwww0UFhaSl5cHQG5uLuvXr2fSpEmNtj2t0ZiunmcyFFaoYBARERFp6Rq1YMjOzuazzz5j+vTpPm2ZmZlUVFQwcOBAr+mDBg0iJyfHq8iw2TyXxVitVsDTawEwZ84cRo8eTUxMzMXaBAFCAzx5P1ZazV3vb2JHTomfIxIRERGRi6XRCgaHw8Gbb77J8OHD6d27t097bq7nvv4JCQle0+Pj473au3TpQnp6OmVlZaxZs4bw8HASEhLYt28fe/fuJS0t7SJviXSOCSHIagJgR24ps7fm+DkiEREREblYrI31QZ999hnV1dVMnTq1zvbKykoAgoODvaYHBQV5tU+cOJEZM2bw1FNPERkZyT333IPNZmPOnDmkpaXhdrt59dVXyc7OplevXkydOpWAgIAfHHdhYSHV1dVGwSIeb1zXnj+vLWBzbgUnSsuVH9B+UgflxJdy4ks58aWceFM+6qa8eFM+fJ0rJ4mJiee1ngYvGFwuF26322taZmYmS5cu5ac//SmBgYH1Lnc2JpPnG+3w8HCeeuopqqurjXVt3LiRwsJCxo0bx5tvvonJZOLhhx9m5syZzJ8/v94i5XzExMRQU1Nz3gltNXJzubZPOzbn7sVsC1R+8PSCKQ/elBNfyokv5cSXcuJN+aib8uJN+fDVUDlp8IJh4cKFLFiwwGtabGwsY8aMITk5GafT6dXmdDqxWCyEhIQAUFVVZYxRqH0Pvj0PtcWC0+nk008/ZfLkyZjNZjZv3szPf/5zEhMTGTNmDHPnzr2ggkHqF2j1XNFW49BD3ERERERaqgYvGEaOHEnfvn2N93v27GH27NksW7aMZcuWec37xRdf8MUXX/Dqq68aYxfy8vIIDw835qm9A1J91dHq1auxWq0MGzaM0tJSXC4XoaGhAISGhlJSogG5F0ttwVDtcJ5jThERERFprhq8YIiKiiIqKsp4n5iYSPfu3X3m+8Mf/sCIESMYNWoUACkpKQQGBrJx40ZSUlKM+dLT00lISCA2NtZnHVVVVSxYsIDp06djNpsJCwvDbDZTUlJCQkICxcXFRERENPQmykkBJwuGTdklfLz5KDddkuTniERERESkoV30Qc9BQUF07ty5zraIiAijLSAggKuvvpr58+djsVjo3r07GzduZOvWrTzwwAN1Lr9kyRISExONHg2LxUJqairz58/nqquuYsmSJVxyySUXYasEIKVNqPH6i13HVDCIiIiItECN/uC2s7n22muZMmUK3333Hf/+97/JzMzk3nvv9Xk2A0BJSQlLly7lhhtu8Jo+bdo03G43r732GomJiUycOLGxwm91kiKDeOG6XgBU2jWOQURERKQlarTbqp7p1Vdf9ZlmMplIS0s7r2cpRERE8NJLL/lMj4mJ4amnnmqQGOXc4sM8g88r7BrHICIiItISNakeBml+ggMsABwtrmLO1qN+jkZEREREGpoKBrkg7SODjNcr9hX4MRIRERERuRhUMMgFCbJZ+H/X9ACgWs9jEBEREWlxVDDIBQsL9AyFqdLAZxEREZEWRwWDXLCgk89jKK6y+zkSEREREWloKhjkggVZPQOfs4urcDjVyyAiIiLSkqhgkAvWLe7UA9yKKtXLICIiItKSqGCQCxZksxBi8/QyVGngs4iIiEiLooJBGkSQzbMraeCziIiISMuigkEaRO3A53K7w8+RiIiIiEhDUsEgDSIkwHNr1WV7jvs5EhERERFpSCoYpEEMah8JwKyN2Ty/eDc5JVV+jkhEREREGoIKBmkQPx7RmahgGwCf7TjG31cc8HNEIiIiItIQVDBIgwgLtPLxXYO5qX8SAMv3HWfWxmyj/fOdx5gwYy1/X7nfXyGKiIiIyA+ggkEaTFSwjTsGt8d08v3fVuxn2sx09uaXMWtjNnllNbyfno3L7fZrnCIiIiJy/lQwSINKigzi3zf1M97vzS/ns+3HcLhOFQk7c0v9EZqIiIiI/AAqGKTBDeoQxZKHLmNIxygAPtiUzb7j5Ub7vuPluNXLICIiItIsqGCQiyIq2GaMZzjT/y3Zy4MfbVHRICIiItIMWP0dgLRcI1Pa8PNxXamyO+mZEEZuSTW/X7oXp8vNpuwSDhZWktwmxN9hioiIiMhZqGCQi8ZqNnHzJd69DFf1iOMnc7axKbuEf63J5PlrevLCsr0UlNu5Y3B7hnWK9lO0IiIiIlIXFQzSqIJsFvq3i2RTdgnfZBby3ZEiFu7MA8DhcqlgEBEREWliNIZBGt2PBrcHoMbp5i/LTz2X4bsjxZRU2f0VloiIiIjUQQWDNLqIIJvxVOjs4iqvtp/N2+GPkERERESkHioYxC/+c9qzGk53sLCykSMRERERkbNRwSB+0S4yyOt97TMbTlTaWZNZqKdBi4iIiDQRKhjELwKtZjpFBxvvB7aPxHTy9RNzt/PtwRP+CUxEREREvOguSeIXJpOJ/94xkIOFFQTZLHSKDibYZuHFlQcA+HjzUYJtZga2j/JvoCIiIiKtnHoYxG+CbBZ6JoTTOSYEk8nE7YPac0W3WADWZBby4Edb2Xa0xM9RioiIiLRuKhikSbFaTF7v/7HqgMYziIiIiPiRCgZpUmwW711yc3YJqw8U+ikaEREREVHBIE2KzWzymXakSLdaFREREfEXFQzSpFjNp3bJSztFA/DhpmyyVDSIiIiI+IUKBmlSapwu43XX2FAAckqqueHNDfxqwU7sp7WLiIiIyMWngkGalLiwAADMJrjxkraM7x5Hp+hg3MDSPcfZlF3s3wBFREREWhk9h0GalNsHtSc8yEq/thG0iwzmD9f1wuV2c+W/vqWk2kF2URV09HeUIiIiIq2HehikSQkLtDJtYHv6tI0wpplNJq7pFQ/A4ow8Xli6lw2H9SRoERERkcaggkGahaSoIADSs4qZvTWHn3+2088RiYiIiLQOKhikWUhpE+r1vrzGidOlB7qJiIiIXGwqGKRZGNIxiviTA6JrFVbU+CkaERERkdZDBYM0C2aTiVnTB/H4qC7GtLzSaj9GJCIiItI6qGCQZiMiyMYdg9vT9+SA6Nlbc/wckYiIiEjLp4JBmp2EcM+lSfN3HMPt1jgGERERkYtJBYM0O/df1sl4Xe3Qk59FRERELiYVDNLsdIoOMV5X2p1+jERERESk5dOTnqXZsZhNBFrMVDtd5JZWEx0SQI3DxU/mbONAQQXto4L51419CbJZ/B2qiIiISLOnHgZploIDPMXA9Pc2kVlQQUZeGelZxZyotLMtp4Rdx8r8HKGIiIhIy9BoPQx2u50FCxawbt06ysrKSEhI4JprrmHw4MFe861cuZJly5ZRWFhIXFwc11xzDUOHDjXaKysreffdd9m5cydxcXHcfvvtJCcnG+3FxcX85je/4emnn6Zdu3aNtXnSyCb3SeSdDUcAuOv9TbQ/+SToWhW6VElERESkQTRaD8Obb77JihUruOaaa3jkkUdo3749r7/+Otu3bzfmWbZsGbNmzWLw4ME89NBDJCcn88Ybb7Bp0yZjnoULF5KVlcX9999Pp06dmDFjBg6Hw2ifP38+AwYMULHQwj06MpnLu8QAnuJgT365V7vGNoiIiIg0jEbpYdi7dy8bN27kkUceoV+/fgD07NmT/Px8tm3bRp8+faipqWHBggWMHTuWSZMmAZCamkpZWRnz5s1jwIABAGRkZDBq1Cj69OlDcnIyq1evJi8vj6SkJHJzc1m/fj3PPvtsY2yW+FnwaWMUurQJ4f7LOvHBxmy2HC1h9YFCxneP82N0IiIiIi1DoxQMGzdupE2bNkaxAGAymXj66aeN95mZmVRUVDBw4ECvZQcNGsSbb75Jfn4+cXGeE0CbzQaA1eoJ3+Xy3Fpzzpw5jB49mpiYmIu6PdI0hJxWMHSKDmF89zjmnnyY28Kdx9id5xnHYDGbuGtoBxUQIiIiIj9AoxQMR44cISkpiQ0bNrBw4UKOHTtGXFwcU6ZMMQqE3NxcABISEryWjY+PN9rj4uLo0qUL6enpDB48mPXr1xMeHk5CQgL79u1j79693HnnnY2xSdIE9EuKYN52z34zoH0kABNTE1l/uAiAfcdPXab0wcZsFQwiIiIiP0CjFAxlZWXk5eWRlZXF5MmTiYyMZOXKlcyYMYNHHnmEvn37UllZCUBwcLDXskFBnsGste0TJ05kxowZPPXUU0RGRnLPPfdgs9mYM2cOaWlpuN1uXn31VbKzs+nVqxdTp04lICCgMTZTGtmkPomMSmmDy+0mJsTzMx7cIZKkyCDyy6rpHB3ChNQEXlx5gJIqxznWJiIiIiJ1afCCweVy4Xa7vaY5HA6Ki4v51a9+RefOnQHPGIbnn3+eBQsW0LdvX+OyovqYTCYAwsPDeeqpp6iuriYwMBDwXPJUWFjIuHHjePPNNzGZTDz88MPMnDmT+fPnM3Xq1B+8PYWFhVRXVxs9IOLR1HKSW3Lq9asTOhqv9xdWAVBUce54qxwuMo5XEmw1071NkLHPna+mlpOmQDnxpZz4Uk58KSfelI+6KS/elA9f58pJYmLiea2nwQuGhQsXsmDBAq9pHTp0IDw83CgWAMxmMz179mTlypUAhIR4nt5bVVVljFGofQ++PQ+1xYLT6eTTTz9l8uTJmM1mNm/ezM9//nMSExMZM2YMc+fOvaCCISYmhpqamvNOaGuRm5vbLHLiCq4CDlNud50z3v9ZuIslu/MB6J8UwVU94xnaMYrOMSFnXa5Wc8lJY1JOfCknvpQTX8qJN+WjbsqLN+XDV0PlpMELhpEjR9K3b1+vaV9++SXHjx/H7XZ7fWvrdDqN4qB27EJeXh7h4eHGPHl5eUD9FdDq1auxWq0MGzaM0tJSXC4XoaGhAISGhlJSUlLnctI6RAR5dvEap5squ/OsT3/OKqo0Xm85WsKWo55955HLO3PX0I71LSYiIiLSojX4cxiioqLo3Lmz178+ffpQWVnp9cwFp9PJzp076dq1KwApKSkEBgayceNGr/Wlp6eTkJBAbGysz2dVVVWxYMECrr/+esxmM2FhYZjNZqNIKC4uJiIioqE3UZqRkAAL5pM1amn12ccxOFyeS+kSwwMZldLGmP7P1QepqNFzHURERKR1apQHtw0bNoyOHTvy1ltvsWrVKrZv386//vUvCgsLmThxIgABAQFcffXVLFu2jDlz5rB9+3beffddtm7dypQpU+pc75IlS0hMTDR6NCwWC6mpqcyfP5/t27ezZMkSLrnkksbYRGmizCYT4YGeXoZzDXyuLRh+c3V3/jo5ldl3DzHa/m/JHqr0MDgRERFphRqlYLBYLDz55JMMHjyYefPm8Z///IfKykqefPJJr3EN1157LVOmTOG7777j3//+N5mZmdx7770+z2YAKCkpYenSpdxwww1e06dNm4bb7ea1114jMTHRKEik9aotGPYfLz/rfE6np2Cwmj2/Fh2jg+ka67m87cvd+XyTWXgRoxQRERFpmhrltqrgGdQ8bdo0pk2bVu88JpOJtLQ00tLSzrm+iIgIXnrpJZ/pMTExPPXUUxcUq7QsUcE2soqr+N/PM/h8Vx5tIwJ5eEQy4UHeu7/DXVswnBpn8/y1Pbnt3XQAinRrVhEREWmFGqWHQcSfbh/c3ni9JrOQT7bk8OHmbFxuN/9Zc5BnPs8g41gpDqfn1r5Wy6mCoWtsKGk9PQ8P1DgGERERaY0arYdBxF/Gd4+j44+C2Zlbyn++OURBeQ3vp2fz6jeHjHlKquzGGIbTexjAM3Aa4LPtudxxWvEhIiIi0hqoh0Fahe5xYUzp25bnr+kB+N4xaUduKU6X9xiGWvFhnqdIZxZWkFda3QjRioiIiDQdKhikVRnSMZoPpg/iTxN70zshnMEdogAornJQfHKMwpk9DLcPOtWrMOG1dRxT0SAiIiKtiAoGaXVSYkMZ2y2Wd24fwL9v6sdlnaONNhP4DIYOsln4v2t7Gu/TjxQ1UqQiIiIi/qcxDNLq/W1KH2ZvOUphhZ2e8WFEBdt85rmqZzxbjpbw0eajbMspYWSXNj6FhYiIiEhLpDMeafWsZhO3DGh3zvm6x3meyfDJlhw+2ZLDL6/oytT+SRc7PBERERG/0iVJIudpeHKMMQAa4C/L97P/eDk1DpcfoxIRERG5uFQwiJynuLBAFj5wKQvvHwaAw+Xm1nfT+dF7G7E7VTSIiIhIy6SCQeR7ig8P5Lm0HoQHeq7oO1BQwfCXVrN4X5F/AxMRERG5CFQwiPwA1/ZO4KtHhnN5cowxLf1ohR8jEhEREbk4VDCIXIC/TUnlmau6A1Bud/o5GhEREZGGp4JB5AKYTCZiQjy3Yc04XsW0men8fske3G63nyMTERERaRi6rarIBeocE4IJqHG62Ztfzt78clITwxnTNZbIOp7pICIiItKcqIdB5AK1jwrmo7sG89zYdrSLDALgd0v28vPPdvo5MhEREZELp4JBpAF0jglhYNtQHrk8mUvaRWA2wabsYl779pC/QxMRERG5ICoYRBrQlT3ieO2WS+jTNgKADzZm+zkiERERkQujgkHkIvj1lZ47J5XVODQAWkRERJo1FQwiF0FCeCAALjccLanyczQiIiIiP5wKBpGLINh26ldryhsbyCqq9GM0IiIiIj+cCgaRi8BkMtEvKcJ4f/2bG5gwYy2bsor9GJWIiIjI96eCQeQiefXm/tzUP8l4n1dWwwMfbeG/32VpXIOIiIg0GyoYRC4Sq9nE01d0Zf59Q3ngsk7G9Je+PsD7G7PZl1+uwkFERESaPBUMIhdZYkQQdw3twC+u6GpMe3HlAW6bmc6ijDw/RiYiIiJybioYRBqBzWLmxv5J/GVSb7q0CTGm/2v1QYor7aw9WIjD6fJjhCIiIiJ1U8Eg0ohGd43lwzsH88xVnuc05JZW8z8Ld/HYnO3M3prj5+hEREREfFn9HYBIazQ8OcZ4vf5wEQB/Wb4fq9lE/3aRdI0N9VNkIiIiIt5UMIj4QZsQG8M7R/PNwRNe019Ytg8AE2AyeaZNTE3k1yd7JEREREQamy5JEvEDk8nESzf05cUpfeiVEObT7sbzlGiXG+Ztz+X+DzezMauo0eMUERERUQ+DiB+N6BLDiC4x1DhcON1uAq1mCivsALjdbqa8sZ4ap5vN2SU8+NFW3p42gNTEcD9HLSIiIq2JehhEmoAAq5lgmwWzyURsaACxoQHEhQUy+54hPH9NT2O+3y/Z48coRUREpDVSwSDShCWGB5HWK56nxqQAsO94OS497E1EREQakQoGkWZgSt9EwDOmIauoys/RiIiISGuigkGkGQiyWYyxC4/N3orDpV4GERERaRwqGESaiUvaRQJwtKSadWfcjlVERETkYlHBINJM3H9ZRwIsnocz7M4v83M0IiIi0lqoYBBpJkIDrDw0IhmAOVtz+NWCnWQVVfo5KhEREWnp9BwGkWakX1IEAMdKqzlWWs22nFIW3D/Mz1GJiIhIS6YeBpFmpF9SBC9e34dre8UDnsLhj8v28vb6w9idLj9HJyIiIi2RehhEmpkRyTGMSI4hr6ya744U88mWHACSY0IY3TXWz9GJiIhIS6MeBpFm6rdpPXjgsk50ig4GoKCixs8RiYiISEukgkGkmUoMD+L+yzrRp63n+QwbjxQbbQ6XG7eeCC0iIiINQAWDSDMXHmgDYPHufHbnlTHjm4MMf3EV17+5gcMndBclERERuTAqGESauYl9EozXK/YdZ9ne47iB7OIqlu897r/AREREpEVQwSDSzHWPC2NSqqdoeH3tYQ4VVhhtC3bm8r8Ld7FynwoHERER+WFUMIi0ANOHdiApIhAA52lDFw4WVvLl7nz+vHy/nyITERGR5k63VRVpATpFhzD7nqFsyiqixuGmXVQQO3NLySmp4j/fHOJYaTVutxunG6xmEwA7c0tZtvc4k/sk0vHknZZEREREztRoBUNBQQGzZ89mz549uFwuunbtytSpU0lISPCab+XKlSxbtozCwkLi4uK45pprGDp0qNFeWVnJu+++y86dO4mLi+P2228nOTnZaC8uLuY3v/kNTz/9NO3atWuszRPxO6vZxJCO0cb7zjEhVNQ4+c83hwB4bvEeluzOIyE8kP/c1J87398EwNHiSv5wXW+/xCwiIiJNX6NcklRTU8OLL77IoUOHuOWWW7jzzjspKCjgb3/7G+Xl5cZ8y5YtY9asWQwePJiHHnqI5ORk3njjDTZt2mTMs3DhQrKysrj//vvp1KkTM2bMwOFwGO3z589nwIABKhZEgGCbmfiwAAAW7jxGjdPNkaIqJry2zpjn24MneObzDN7dcES3YhUREREfjVIw7Nmzh7y8PO644w6GDBlC//79uf/++ykqKjKKgZqaGhYsWMDYsWOZNGkSqampTJ8+nf79+zNv3jxjXRkZGYwaNYo+ffpwww03UFhYSF5eHgC5ubmsX7+eSZMmNcZmiTR5JpOJN28bcNZ5ymucLMrI4+VVmbz0dWYjRSYiIiLNRaP1MAAEB5+6TjosLAzA6GHIzMykoqKCgQMHei07aNAgcnJyyM/PN6bZbJ77zlutniuqXC4XAHPmzGH06NHExMRcpC0RaX4SwgP51fiuPtMjAq38ZXIqT47ugunktPfSs/hse27jBigiIiJNWqOMYejTpw+JiYnMnj2b6dOnExAQwEcffURgYCCXXHIJ4OkdAHzGNMTHxxvtcXFxdOnShfT0dAYPHsz69esJDw8nISGBffv2sXfvXu68887G2CSRZuWGfkmMSokF4GhxFdtzSxjYLpKeCZ6nRN86sB3D/r4KgDWZhUzqk+i3WEVERKRpaZSCISAggOnTp/PPf/6TX//6154Ptlp5+OGHjQKhstLzRNrTeyEAgoKCvNonTpzIjBkzeOqpp4iMjOSee+7BZrMxZ84c0tLScLvdvPrqq2RnZ9OrVy+mTp1KQEDAD469sLCQ6upqo6ARD+XEV3PJSbwZxiVZwV1Obu6pMURPXZbIX7/N5XhJeYNtR3PJSWNSTnwpJ76UE2/KR92UF2/Kh69z5SQx8fy+IGzwgsHlcvkMnNy3bx//+Mc/SElJYfz48ZjNZlatWsV//vMfHn30UXr06GFcVlQfk8lz0UR4eDhPPfUU1dXVBAZ67ju/ceNGCgsLGTduHG+++SYmk4mHH36YmTNnMn/+fKZOnfqDtycmJoaamprzTmhrkZubq5ycobnnpENFAJDL1mOV3D3vIK/d0p/2URd2u9XmnpOLQTnxpZz4Uk68KR91U168KR++GionDV4wLFy4kAULFnhN69WrF5GRkTz22GPG+IPevXvzpz/9iY8++ohnnnmGkJAQAKqqqox5at+Db89DbbHgdDr59NNPmTx5Mmazmc2bN/Pzn/+cxMRExowZw9y5cy+oYBBpLXolhtEmNICC8hqOl9ew7tCJCy4YREREpPlr8IJh5MiR9O3b12vam2++SceOHb0KAbPZTNeuXVm2bBlwauxCXl4e4eHhxny1d0CqrzpavXo1VquVYcOGUVpaisvlIjQ0FIDQ0FBKSkoabuNEWrCYkAAW3j+MP3+1j9lbczhaUu3vkERERKQJaPCCISoqiqioKK9piYmJHDp0CLvdbhQNbrebAwcOEBcXB0BKSgqBgYFs3LiRlJQUY9n09HQSEhKIjY31+ayqqioWLFjA9OnTMZvNhIWFYTabKSkpISEhgeLiYiIiIhp6E0VaLIvZRIeTT30+Wlzl52hERESkKWiU26pee+21lJSU8PLLL7Nlyxa2bdvGjBkz2L9/v/HMhICAAK6++mqWLVvGnDlz2L59O++++y5bt25lypQpda53yZIlJCYmGj0aFouF1NRU5s+fz/bt21myZIlxFyYROT9JEZ4bDSzdk4/DefaxRSIiItLyNcpdkjp37szPfvYz5s2bxxtvvIHFYqF9+/b89Kc/pUePHsZ81157LRaLha+//pply5YRHx/Pvffe6/NsBoCSkhKWLl3KE0884TV92rRpvPXWW7z22mukpqYyceLEi715Ii1K55gQ4/VlL60muU0ITpfnRgY/GZnM6K6+vX0iIiLScpncZ97SSHxo1L0v5cRXS8rJPbM2sS2ntM62z+4bStuTvRDn0pJy0lCUE1/KiS/lxJvyUTflxZvy4avJ3iVJRJq/N28bQEWNk++OFFFUaWd/QTnvp2cDMOn19Xx812CvnggRERFpuVQwiEidQgIsjEppY7yPDQngH6syAfjnqkz+PDnVX6GJiIhII2qUQc8i0vz9aEgHJqZ6bn+8Yn8BD360hWqHBkWLiIi0dOphEJHz9sjlyXy5O59qh4uNWcVszylhe04pR4oqSQgPpGdCGCE2CwPbRzLzuyw+3pSF2XyIsd3ieGJ0F3+HLyIiIj+ACgYROW9tQgNYcP8wrn9zPWXVTn788dbzWu699CwOnajgTxN7Y7OoY1NERKQ50V9uEfleooJt3Dagnc/02NAAwgItxnsTcHNqjPF+9YFCHvhwi3GLVhEREWke1MMgIt/bA8M7s/d4OSv2FQAwvnscf7iuFwC5JVVU2l2EBVpwlp3g/lE9eHHlfhbuzGN7bin/b/Fubh/cnhCbhdjQAIJslrN9lIiIiPiZCgYR+UEeG9mFIKsFp9vNnUM6GNMTT3tGQ26Zp0fi2bSepB8pJre0ms935fH5rjxjnndvH0CvhPBGjV1ERETOny5JEpEfpGN0MM9f25PfT+hFj/iwc87/8OWdiQmx+Uyf/t4mfv35LqrszosRpoiIiFwg9TCISKO4plcC1/RKwO124wY2HC7i0dnbAFickc/ijHyeHteVmy5J8m+gIiIi4kU9DCLSqEwmE2aTiWGdolny0GWktDn1xOg/fbWP7TklfoxOREREzqSCQUT8JirYxgd3DubF6/sY0+6etZlFu/Jwu3U3JRERkaZABYOI+N2I5BhuPu1SpGe+yODO9zf5MSIRERGppYJBRJqER0cmc8uAU0XDrmNljHhpFQt3HtOAaBERET9SwSAiTUKwzcLPxnZl3ZMjjQfA1TjdPLtoNyNfXkNuSZWfIxQREWmdVDCISJNiNpn44oFLeeTyzgRaTx2iJr6+noLyGj9GJiIi0jqpYBCRJifIZuGuoR1Z9dgIpvZra0x/9ZuDZBZU+DEyERGR1kcFg4g0WSaTiV+O78bdQz1Pkp67LZeb3/mOX3++S3dREhERaSQqGESkybtnWEeu6BZrvF+ckc81M9bx/OLdlNc4/BiZiIhIy6cnPYtIkxdks/DCxN44nC5+tXAXK/YVUFBew2c7jvHZjmNc2SOO2we1JzUx3N+hioiItDjqYRCRZsNqMfOHCb34z0396BYbakxfsjufu97fRMaxUly6VElERKRBqWAQkWbFajEzqEMUb00bwPPX9OSeYR2Mth+9t4mb3v6OaofLjxGKiIi0LCoYRKRZCrSaSesVz0Mjkvn03iF0PdnjcPhEJW+sPcTe/DJKqux+jlJERKT5U8EgIs1eu8hg3v/RQHolhAHw1vojTJu5kSv+9S2788r8HJ2IiEjzpoJBRFoEk8nEU2NSiA0NoE1ogDH9jv9u5MGPtvDR5qMcLNQzHERERL4v3SVJRFqM/u0i+eLBSwGYveUoLyzbB8DGrGI2ZhUD8NfJqZhNMHtrDsWVdi7v0gab2USQzcL47rFEhwTUu34REZHWSAWDiLRIU/sncUX3OGZ8c4hjZdV8vb8AgKfm7fCab1tOqfH6T1/t45vHL8dmUeeriIhILRUMItJiRQXbePqKrgB8tPkoi3blkVtShd3lpqjSzmWdo4kPCySzsIKtR0sASPvPWv42JZV+SRGYTCZ/hi8iItIkqGAQkVbh5kuSuPmSpHrb391whJdXZVJS7eC+D7eQGB5Iz4QwAixmIoKsXN+vLSltQrGYVUSIiEjrooJBRASYPqQD0SE2nl+8BzeQW1pNbmm10f7JlhwAOkYF89MxKaTEhpAYEeSnaEVERBqPCgYRkZMmpiYyMTWRzdnFHCmqxO50UVhhZ8Y3h6h9fvThokqe+HQ7JqBXQjhX94ojrWc8kUE29T6IiEiLpIJBROQMl7SL5JJ2kcb7u4d2pLzGwYxvD7H1aAkVNU4Onahk57FSdh4r5e8rDgAQGmBhYmoibUJtdIsNo1NMMO2jgv21GSIiIg1CBYOIyDlYzCYigmz8bGxXY9qXu/PIOFbGyv0FHD5RCUB5jZMPNmV7LdsvKYJ7hnYkyGamV0I4pdVOoh0uAq26E5OIiDQPKhhERH6Aq3rEc1WPeB4bmcyJSjvrDxVxoKCcE5V2soqqyCur5vCJSrYeLeGJT7efsfR+Hr68M3cP7eiX2EVERL4PFQwiIhfAZDIRExJAWq94n7a31h/my4x8ymsc5JRUe7X9a/VBluzO58+TetMuUpctiYhI06WCQUTkIrl7aEejF+FAQTkHCyqw2suZu7eM1QcK2ZtfzpQ3NgAQaDVjs5iwmc1Ehdi4olssHaKC2Zlbyt7j5Yzs0obxPWKJCrIRZLP4c7NERKSVUcEgItIIurQJpUubUHJznfytdycWZeTx0aajbM/1PGm62uGi2gHg5ESlndcLDnstvzGrmJe+PkCQ1cyA9pFM6pNI19hQMo6VkVVcSVJEEKsOFFBld2E2m+gYFcy0Qe2IDQ3QA+hEROSCqGAQEWlkJpOJa3olcE2vBPJKq8kqriQ2NBA3bsqrnezILeWbzELsLheVdhel1Q4KymooqXZQ5XDx7cETfHvwxDk/57/pWQAM6RhFkNVMp+gQIoKttIsIYnhyDGGB+hMgIiLnpr8WIiJ+FB8eSHx4oNe03onh3FTHU6ndbjczv8viy935HCutprzGgd3pJj4sgACLmdTEcIZ0jCI9q5gvd+fjdHmeHrHhcBEAqyj0Wl9ogAWX201ieBAxITYGdYhieHIMPeLDsOqZEiIicpIKBhGRZsJkMjF9SAemD+lw1vkm923Lc2k92JNfzr7j5dQ4XBw+UUl5jYP0I8UcLjp1G1iAzMIKMgshPauYGd8eAiA80MqUvokM6xRNRJAVq9lEgNVMZJCNAIuZkACNoxARaS1UMIiItEAmk4ke8WH0iA/zaat2uDhyopIAq5nCihqOl9ewL7+cdYdOsCe/jBqnm9JqBzO/y2Lmd1k+y5tN0C0ujPaRQQQHWOjSJoSE8EAiAq0MbB9FgJ4xISLSoqhgEBFpZQKtZrrGhQLQMdpzS9fx3eP48YjOuNxu0o8U8em2XPLLqjlWWo3D5cbhclNR46TK4cLlht15ZezOK/NZt9kE/ZMiCA200j4ymKTIIDpGBxMVZKVjdAjhQfqzIyLS3OjILSIiBrPJxJCO0QzpGO3T5nK7cbrc5JRUs/94OTmlVZRUOtidV0ZptYP9BeWUVTvZlF1S7/qjgm20jwwiLNCKyQQBFjPhFidBwaV0jgkh2GYhIshKYnggAVYzNrMZq8VEsM1CZJBVd3wSEfEDFQwiInJezCYTZouJjtHBRs/E6VxuN3vzy9mTX0ZOcRVHS6opqrRzrNTTU1Fa7aCo0k5Rpb2OtRed8/PDA610jgkmITyIIJtnPEV8eAAmTLQJtTGuW5wGa4uIXAQqGEREpEGYzzJuAuB4WTX7Cyo4UWHH5XbjcrspqXKwI+s4ZlsQ1Q4XVQ4nBeU1FFTYcThdnsuhnG6qnZ7by27LKWVbTmk9EWQQHmglwGomNjSA7nGhdI0NpXNMCG43OE9+psVs4pKkSMxmCLZZMKvXQkTkrFQwiIhIo4gNCyQ2LNBnem47K4mJiWddttrhYkduCVlFVRRU1FBe7SS/rBqny1NMrDt0wnhmBdVQUF5T5xiLM4UGWGgfFUxcaAA2i+dp2wFWM0kRQUQF2wgNsBAWaMViNnnuFGUx0yY0gKTIIPVmiEir0aAFw+zZs9m/fz9PP/20T1t6ejqff/45x44dIyoqirFjx3LFFVd4zXP8+HE+/vhj9uzZA0Dfvn258cYbiYiIMObZtGkTn3zyCZWVlQwbNoybbroJs/nUHTk++ugjioqKeOCBBxpy00RExI8CrWYGto9iYPu626vsnidkVztcnmIhv4xduWUcLKwwehXMJhNl1Q4Onag0liuvcXoGcP+AmIKsZsIDrYQEeHop2oTaSIwIIikiiLYRgUQHB2CzmrCYTJhMYDGZCLSaCQu0YrWYsJnNRAXbsKjwEJEmrsEKhiVLlvDll1+SkpLi07Zp0yZee+01Ro0axQ033EBGRgYff/wxbreb8ePHA1BZWcnf/vY3goODmT59OlVVVcydO5eXX36ZX/3qV5jNZkpLS3nzzTe54oor6Ny5M//9739p27Yto0aNAjwFx+rVq/n1r3/dUJslIiLNQJDNQlub59kQnWNCGNQhqt55PZc5eS532n+8nJJqB8fLaoy7QR05UcmJSjtut5vCCjs1ThdOl2fAd2GlnYLyGgCqHC6qHDVQ7llvZiFA8feKO9Bipm1kIOGBVsICrdgsZqxmE86aaromVhERZKW02oHZZCIy2EagxYTZ7ClCaosgi8mz/YkRgdjMZmN8h25vKyIN5YILhtpega1btxIc7DsIDmDu3Ln069ePadOmAZCamorD4WDhwoWMHj0am83GypUrKS4u5he/+AWRkZEAtGvXjv/7v/9j48aNDB48mP3792M2m5k8eTImk4ndu3eza9cuo2CYN28el156KfHx8Re6WSIi0kJZzSasZk9x0b9d5Pde3ulyc6KihiqHi+IqB9UOJyVVDvLKasgtqeJIUSVVdhcFFTW4XG5cbowxG2XVTqodLuwuF/aTYzMOFlbW+TkrD9U3VuP8RAfbCLKZT27vyf9bPK9tFhM2y6nplpP/rGYTNrMJm8XsGeRuArP5VA+J6WSBYjWbCA6wYDF5ihbzyWVDAyycrb/EZDIRFxbgWc58cv0ne2CMz6tdp8nTs2SzmKm0e4o29caI+McFFwwfffQR+fn5PPnkk8yfPx+n0+nVfvz4cY4dO8a1117rNX3QoEF89dVX7N+/n549e7Jjxw5SUlKMYgGgY8eOxMfHs23bNgYPHozJZMJmsxm31bNYLLhcLgAOHz7M1q1bef755y90k0REROplMZuMsRj1XCF1XhwuN/vyyyirdlJa7aC8xoHD5cbudJNbUESZ20Z5jQOr2UyAxURRpQO7y4XL5cbpduN0nbrV7YkKO8VVdhwut/EE7xOVdqi7Fmmm9hFk9VzG5ell4WQBc3pBg9Hz4imITF4FSG1xY8ZTjEQG24zLw2rHr4TaLEYBZT7Zk1N7OVmA1Wx87pnFTW0xZTqt0DJzqhg6vSg6fVptIVa7vjO34/R16rbC4i8XXDBMnjyZpKSkenfi3NxcABISErym1/YC5OTk0LNnT3Jychg4cKDP8vHx8eTk5ACeAqKyspLNmzfTqVMntm3bxuWXXw7AnDlzGD9+vNd4BxERkabKajbRMyG8zrbcXPM5B4LXx+50cby8hpIqx6k7TdX+c7pxuFzYXW5qHJ4258k258lCpMbpwuF0G70inh4SPL0luHG5oNrh6Slx1ra7PMtV2l1nROP2elftcHnukgW4T1u29r3T5cbtBhee19UnHxRYq8rhIre0+gflpSWwmMBqMRtFBW43FvMBrwLEZPIURKbTCw1Of+3bo8Np7+Hkuk5f5uRyxusz1mUxm4yeJZPptNcn/1M75eRHGa+pa/qpycb6ayedOtU8Y/rJqZVVlYQEl5yxjOfTPcUixl3RfD7ntLhOfUzd02tjr7vt1PnwmdNPC994HWA1c1WPeGJDA2jKLrhgaNeu3VnbKys9X2+ceblSUFAQAFVVVcZ8tdNOFxgYSH5+PgDR0dFMmzaNt956i5qaGgYOHMiYMWPYuXMn2dnZ/PjHP2bt2rUsWbKEgIAApkyZQo8ePS50E0VERJoNm8VM24gg2raQ78+cLjdHjuYQ1SaO4io7ZdVOr+LFu7A5OQ1PQeQ845Kw018XVzqocjhxON3YXW7sThfVDhcVNc6TPTie+WsLqcoaJw6X93rcZ6zbfVqb8+R79+nzctoyJ+N0udy4waswqjcXbnA6zizKznzf2tX/4MimKutEFU9f0dXfYZzVeRcMLpcLt9t7b7ZYLOdc7sxlzlRbiZ1rvlojRozgsssuw+l0YrPZcLlczJkzhwkTJlBQUMB///tfHnnkEcrKyvjnP//J73//e8LC6r4n+PkoLCykurra6CkRD+XEl3LiSznxpZz4Uk58KSfeTE47VcUFBAKBALXjuX/QuO7a76Sb1je67tN6c9ycXtxwqghxYRQtbqC6ugarLQBOzu8G3KctDxiFTG1b7fprn03idtcu4z1fbRFTO68x3e3pEcLtKVVqY+Rku2eJ09+ffH3me/dp8xn/OTmf1/tT8+HGaxnv9btxOJzGuan79HlPxuxy167Dd511xnxajGeus7a97pg5Y/31b4PVbGJ0O9tF+30/17HkfHsyz7tgWLhwIQsWLPCa9uqrr55zudqehdqehFq172vbQ0JCfOapne/M3gmz2WzcSnX9+vVUV1czcuRIFi5cSLdu3ejVqxcACxYsYNu2bVx22WXns4l1iomJoaam5gd3DbdUubm5yskZlBNfyokv5cSXcuJLOfGmfNRNefGmfPhqqJycd8EwcuRI+vbt+70/oDbIvLw8OnfubEzPy8vzak9ISDAuPTpdfn5+nbdqBbDb7Xz22WdMnToVi8VCaWmpV29CaGgoxcXf7xZ3IiIiIiJyynl35kVFRdG5c2evf+cjLi6OuLg4Nm7c6DU9PT2dkJAQkpOTAejduzf79u2jpOTUtWeHDx8mLy+P3r1717nu5cuXEx4ezqBBgwAIDw/3KhCKioo0CFpERERE5AI0ylNdrrvuOjZt2sTMmTPZvn07s2fPZvny5Vx77bUEBHiuIRw9ejSBgYH8/e9/Jz09nbVr1/LPf/6TDh06GAXB6crLy/niiy+YOnWqMa1fv37s3buX1atXs2jRIkpKSkhNTW2MTRQRERERaZEa7EnPZ3PppZfidDpZvHgxa9euJSYmhptvvplx48YZ84SFhfHUU0/x0Ucf8fbbb2Oz2ejTpw833nhjnYOrFy1aRJcuXejevbsxrXPnztx4443MmzePgIAA7rvvPq/nOoiIiIiIyPdjcp/v7YlaMQ2i8aWc+FJOfCknvpQTX8qJL+XEm/JRN+XFm/Lhq6Fy0iiXJImIiIiISPOkgkFEREREROqlgkFEREREROqlgkFEREREROqlgkFEREREROqlgkFEREREROqlgkFEREREROql5zCIiIiIiEi91MMgIiIiIiL1UsEgIiIiIiL1UsEgIiIiIiL1UsEgIiIiIiL1UsEgIiIiIiL1UsEgIiIiIiL1UsEgIiIiIiL1UsEgIiIiIiL1UsEgIiIiIiL1UsEgIiIiIiL1UsEgIiIiIiL1UsEgIiIiIiL1UsEgIiIiIiL1UsEgchZut9vfIYg0S/rdEfnhampqAP0eSdOhgkEMOjD5qq6uBpSb07lcLn+HIE1cTU0NJpPJ32E0KZWVlcycOZMTJ074O5Qm48xjiY6zUFVVxUcffcQXX3yBy+XS75E0GVZ/B+APK1eupLi4mMjISDp27EhycrK/Q/K75cuXk5OTQ1xcHF27dlVOgHfffZfc3Fyefvppf4fSZKxcuZLMzExCQkLo1KkTw4YN83dIfvX1119z4sQJYmJi6NKlC+3atcPlcmE2t97vYnJzc3n++ee54YYbuOKKK1p9PgAWLlzI4sWLiYyMNL6EaO2WLl3K7t27iY6OpmvXrgwdOrTVnxwvWLCAL7/8kpqaGi699NJW/3sDnmNsUVERMTExpKSk0LZt21Z/TPHXOWyrKhiOHDnCG2+8gd1uJzk5mY0bN1JUVMRNN93EoEGDCAoKwu12t6qDVn5+PjNmzKC0tJS2bduyceNGFixYwF133UWfPn2w2WytLicATqeTY8eOceDAAfbv309KSkqrPkgdOXKEt956i+rqapKTk9m2bRtfffUVJSUljB49moCAAH+H2Kiys7N5/fXXqaqqIjExkaVLlxIREcGTTz5JbGxsq95XysrKcDqdLFmyhFGjRrXaYwjAli1b+PDDD3G5XMbfmZCQEH+H5VeFhYXMmDGDkpISunXrxu7du1mzZg3x8fF07tzZ3+H5xebNm5k1axYmk4lJkybx7bff0rZtW3+H5VfZ2dm88cYbVFVVERsby/79+4mLi+PRRx9ttcdYf5/DtqqCYcmSJQQGBnL//feTkJCAxWLhww8/5IMPPsDtdnP55Ze3uj9qW7ZsweVy8cgjj5CYmEhZWRmzZ8/m3Xff5dZbb2XYsGEtPid1/YKVlJSQl5cHwHvvvcdvfvObVndwquV2u/nqq6+IiYnhxhtvJDY2FofDwYcffsjSpUu55JJLiIuL83eYjerrr78mOjqaW265hTZt2rBnzx7efvtt5s+fz913391q9xXwXFIRHBxMUVERn3zyCbfddlurLBjy8/P597//Tb9+/bj11luJiory2i9aY04Atm3bRlVVFT/+8Y+Nk+LCwkISEhJaXU5KSkp48cUXyc/PZ8yYMYwdO5bw8HC++uor7HY70Hr3k6+//prg4GAeeOABYmNj2bVrF++99x6ffvop9913X6s8xvr7HLbVZDw3N5dt27bRrVs32rVrh9VqxWQycfPNNxMYGMjq1avJzMwEWu51lHVt18aNG4mNjaVDhw7YbDaio6O59957CQsL46uvvuLQoUP1LttSVFVVAd7X0y5fvpzAwECuv/56cnJyWLFihc88LdWZP+u8vDy2bNlCly5dSExMxGq1EhQUxJAhQyguLubYsWN1LtdSnLldZWVlbNmyhaSkJBISErBarXTt2pWIiAivg3VLzQecfdtKS0sJCAjgyiuvZOXKleTm5mI2m1v8787pOXG73cTFxdGlSxcsFgsxMTGYzWacTicbN27kyJEjlJaW1rlsS1LXdm3YsIHY2Fg6duyIzWbDbDaTl5dHbm4uFRUVfoiycZ2ek6KiIrp06cLPfvYzbrjhBmJiYqiurqayspLIyEg/Rtm4ztxPSkpK2LZtG4mJicbfnJ49exIZGYndbsflcuF2u1vs7w345qQpnMO22IKhtlu8Vk1NDZWVlURHRxvTXC6XcbJTUFDA5s2bW/QgozNPjKuqqjCZTNhsNiNXTqfT2AlzcnLYsGFDi82Jy+Xiww8/ZMaMGQDGNxZlZWXs2LGDyy67jCFDhpCamsq8efOw2+2t4luN2v2kdp+w2+1UVFQYvQi1+8/p34ABLXIfAd98lJeXU15eTmJiojFPSUkJ5eXlhISEsHfvXux2e4vNB9RdZNfKz8+nZ8+eDBgwgKioKD744AOg5e4ftU7PSe22Dhs2jG3btlFZWcn69et58sknef/99/n973/PCy+8QHp6eos9vkLdf3NcLhdRUVEArF69mieffJJ33nmH559/nhdffJGDBw+26BPB2py43W46dOjAtGnT6NSpEyaTCbfbjc1mIyAggOLiYj9H2njOPMY6nU4CAgKorKz0+jvjdDrp1KkTxcXFmEymFvt7A3X/Hfb3OWyLO/vJyMjghRde4OWXX+bvf/87W7ZswW6307FjR5KSkti6dSv5+fmA5wQxIyODSy+9lPbt27Np0yays7P9vAUNr64TY7fbTVBQEFFRUWRlZVFQUACAxWIBoG/fvvTs2ZMtW7YYvQwtjdPpJDMzk4yMDPbu3WtMN5lMXHfddUyYMIGYmBguv/xynE4nn3zyCdByexnO3E8sFgtut5v27dszduxYn+sja78hPf3EuSWpLx8JCQk8/vjjDB48GPBcTvHCCy9gt9vZtm0bf/3rX/nHP/7Bnj17gJb17XF9RXZtG3juLFZRUUGXLl0YNWoUGRkZ7N69G5PJRFlZmV/ivpjOlpP27dsTFxfHjBkzWLNmDZMmTeLhhx/mkUceITw8nE8++YQdO3b4K/SL5mx/c0JDQzl+/DiHDh1i1apVTJw4kUceeYRp06ZRUVHBf//73xb5N+fMnNSe8J6+v5hMJqqrq7FYLMaJcks+Ka7vGBsdHU3Pnj3Zu3cvL774IosWLeLZZ58lPz+f5cuX8+yzzzJz5kzjXK4lOdvf4fbt27Nt2za/ncO2iIKh9g/yhg0beOONN0hKSqJv3744HA5mzpxpnOhdd9117Nmzh3/84x+8//77/OEPf+DDDz9k0KBBXH/99eTl5XH8+HGvdbYEdZ0YOxwOAMaNG0dubi579uwx/uDXVrSTJk0iPz+/RRZRAMXFxeTl5WGz2Zg7d64xPTQ0lD59+hj7QPfu3bnssstYuXIlx44dM/74tTR17Se1+8SkSZPo27ev17c627Zto127dsTFxbXIIups+ejatStBQUHGvFdddRU//elPefLJJ3nyySc5cOAAa9asMXrxWoqz5aT2xOf48eMkJCQAMHDgQLp168Y777zDyy+/zJIlS4wToZairpzUHkOTkpKIjIxk165ddOnShTFjxtClSxf69OnD3XffTVlZGbt37zaOxy3F2f7mjBgxgoyMDObMmUN8fDyjR48mOTmZESNGcM8995CVlUVGRkaLO6ac7XenltvtJiIigoiICONLvJaWh9OdbT+ZMmUKd9xxBzExMSxatIju3bvz9NNP8+ijj3LjjTeyZs0aVq9ebTyvoqWoKye1X9RNmDCB3bt3++0ctkUUDLV/kDds2ECnTp249dZbue6663j66acZNWoUK1euZO3atQwcOJC7776bTp06kZmZSbt27fjtb39LcnIy8fHxxMTEkJGR4bXOlqCuE+PaO5d07NiRvn37snTpUq9eBqfTSfv27encuTM7d+4EWlYRBZ5xCmFhYVx++eXk5OSwcuVKwHOAttlsxj4QEhLCkCFDiImJYdasWUDL2j9q1bWf1H67ERwcDJz645Wbm8vOnTvp168f0PrycbqoqCjGjh1LUlISMTEx9OjRg2HDhnHgwIEWd51tXTmpLaBrT5JdLpexnyQkJGA2mzlx4gQ5OTmMHz/e6MVsKerbT5xOJ8HBwfTv359+/foxYsQIrFbPfUbsdjuJiYn07t2bAwcOYLVaW/x+YrPZAOjYsSN9+vRh9+7dxMbGGndYczgcpKSk0L17dzIyMlrcFzNn+92pZTKZsNvtdOjQgaysLCorK1v0ZbD17Scul4vAwED69+9PbGwsoaGhTJo0iXbt2tGpUydGjhzJwIED2b59u3EpV0txtv1kwIABfj2HbTF7YlFREUePHqVbt27GAchsNjNq1CgGDBjAp59+SkFBAUOHDuW+++7jF7/4BdOnTzfu0nB6l2lL2vmg/hPj2uslr776agoKCli5ciXl5eXAqUuTgoODcTgcxtiG5iYnJ4c9e/ZQWFjoNb2oqIgdO3YwYsQIxo4dS/v27fnyyy+NA3TtCU/tvpCcnMzIkSPJyMhg+/btQMv75ufM/eTrr78G8PmDBrBr1y7sdjv9+/c3ph8/fpytW7ca+1Bzd7bfm9OZzWbjZKh2nwgODjZ6F5rj7019zpaT2mNGSUkJXbp04dtvv+WJJ56gsLCQ5ORkysvLsVqtLW4A9Ln2k7Fjx3LPPfcYt4KEUyfPwcHBVFdX43A4WsV+AhAZGcngwYMJCAigoKCAkpISAKOYCg0NpaKiosWNAzrf44nNZiMqKoqqqirj2+KW6mz7yek92e3btycmJsZr2dDQUEpKSprtuUl9zvZFJmCcw/7yl79s9HPYZlkw1HUSGBUVhcvlMr4lr+3WioqK4qqrrqK6utq4043D4SA7O9u4xhhg//791NTUkJyc3Cx3vh96Ygyeyyuuvvpqli1bxjfffGMsm52dTW5uLj179mx23wpWVVXxxhtv8MILL/Dqq6/y7LPPMnfuXOMpq2azmSuvvJKrr76auLg4hg0bRnV1NQsXLvRaT+23FxaLhUsuuYROnTrVea1yc/F99pPFixf7FFC1+di6dSsdOnSgc+fOVFRU8NVXX/Hss8+ydOnSZlVwX2hB6XQ6OXLkCDk5OYBnn8jNzSUjI4MRI0Z4XbbUXPzQnDidTiorK3E4HLz++ut8+OGHXHvttTzzzDNce+212O123nnnHaD5/e78kJxYrVavAuHgwYNel3cePXqUAwcOMGjQIONkuTn5ITkBz5dRvXv3ZsiQIWzevJn09HRj2by8PI4ePcqAAQOMoqo5udDjSe3/hw0bRlFRkXFcaU7H1DNdyPEEPD1Shw4d8npCem5uLpmZmYwcObLVHGMtFotxdyin00lWVlajn8M2q6NUVVUV7733Hlu3bsVqtWK32xk7dixjxowhOjqaPn36sGHDBm666SajW8tsNtOuXTtGjBjB119/TVpaGqGhoaxdu5aNGzfStWtXevTowcqVK+nYsSMpKSn+3szv5Vw5qT0xHjFiBOA5EH366acsXLiQG2+80cjRddddx5EjR1i8eDEbNmwgOTmZvXv3EhISQu/evf28ld/fwoULycrK4sc//jHg+QWdPXs2RUVF3HjjjURERDB48GDj2sABAwaQkZHBN998w/Dhw0lKSjJyU/vL17ZtW0aOHEleXl6zuzPQhe4np6vtzevbty/79+9n5syZFBYWMmXKFMaPH++PzfveGiofbrebzz//nH379pGamkq7du1Yt24dLpeLgQMH+mvzfpALzYnFYiE4OJh27drRt29fRowYYdxZq/ZLiTZt2vhzE7+3htpPnE4nX3zxBXv37iU1NZX27duzYcMGbDab0UvXXDRETiIiIrjhhhvIzs7m448/Zt26dcbfHJPJZFzq2Fw01H5SW0hHRkbSq1cvli1b1myfgH2hOanNxbBhw9i8eTMzZsyge/fuxMTEsGrVKiwWC4MGDfLnJn5vDbGfmEwmLBYL69atIz09vVHPYU3uZlS6zp49m+3bt3PzzTcDp04CBw8ezG233ca+fft47bXXGDNmDNdff73XkwD37dvHK6+8QlpaGmlpaeTn57Nhwwa2bt2K3W4nJSWFW265pdl9k362nNx4442Eh4dTXV1NQEAAJpOJ8vJyZs2axc6dO/nZz35GUlISdrsdm81GeXk5GRkZrF27lsrKSjp06GCcCDQXLpeLkpIS/vCHP3D55ZczYcIEYx9YsGABq1atYvDgwdx0003GMrVFw7Zt2/jggw9o3749Dz30kNd6a+dprk+XbIj9xOl0YrFYyM3N5dlnnzV6Gy677DJuv/32ZvUtaUPm4/DhwyxfvpycnBzcbjfJycncdNNNzer3BhomJ+D5o2iz2Zrd9telofeTr776ythPunTp0mr3E4fDgdVqpbi4mI0bN7Jz505qampISkpqdn9zoGFycvrfFpfLxZIlS5g7dy6/+c1vjN+t5qShjifguQR24cKFlJWV4Xa76dGjR6s9X6v93SkoKGDdunWNeg7bLP7C154Erl+/nssvv5wePXpgNpvp1asXFRUVrFy5ksWLFzN58mT69OnD6tWrGTFiBPHx8UZyk5KSaNOmDWVlZbhcLuLi4rj22msZN26c16DO5uJcOVm1ahWLFi3ipptuIjAwEPCc9IaGhjJs2DAyMzOZN28eDz30kDEAOjQ0lEGDBjFgwAAcDocxFqSpKywspKSkhOjoaCIjIwkMDKSyspK2bdtiNpuNgmj8+PHk5uayfv16Bg8eTHJystc9i1NTU+nfvz/ffPMN27Zto2/fvsYf+9p5mlux0JD7Se2AX4vFQlRUFO3ateOWW24hPj7ez1t5/ho6Hy6Xi44dO3LnnXdSU1NjDHRtThoyJ0CzvETgTBdrP7nrrruoqqpq9X9zagd5R0ZGGt+w2u32ZvM3p1ZD5qT2b4vb7cZsNjNs2DAuvfTSZvcAt4Y+nrhcLnr16kXPnj2pqKjA7XYTFhbmz0383i7G706bNm0a/Ry2yZ79FBYWcvDgQYqLizGbzXWeBAKMHz+eHj16sGrVKnJycrjiiiuw2WzG3Wxqv/UMCgqiqKjIGHRX27ESFBTUbA7c3ycn3bp1Y/369caT/04fZFh7Yrx79262bdvm0242m5vFgbumpoZ3332XP//5z7z66qs888wzfPrpp+Tm5tK2bVtjcHLt5WlBQUEMHz6c4OBgvvzySwDjkqPab3eGDRtGbGws77//PkCz+wYDLu5+YjKZCAsL44knnuCxxx5rFsXCxczH6R20NptNxxJO3VK0uWms/SQwMFD7yRntJpOpWfzNgYv/u1P75VRUVFSzKRYa43fHZDIREhLSbIqFxvrdacxz2CZXMFzISeDnn39Oly5duPrqq9m1axezZ8/m2LFjlJeXs3r1agIDA5vlbSB1YuyrpKSEGTNmcOTIEW6++WZuuukmxowZw6JFi8jOziY8PJwjR45w8OBBr+V69+5Nt27dyMrKYv/+/cb02m93OnXqxMCBAxk0aBBOp7NZDTZrjP0EPHd2aQ4Pa2vs35vmcEzRscSX9hNf2k98KSe+9LvjqyXvJ03qkqSSkhLeffddiouLufnmm3G73Rw8eJBFixYRGxvrdRLYuXNnY7nevXsb924+fPgwY8eOxe1289lnn/H111+TmJhIVlYWY8eO9VquObiQnHTr1o09e/awf/9+YyDMmSfGFRUVOJ1Or8G9zcGhQ4c4cOAA9913nzEo+5JLLmH//v1s27aNq666ir/97W9s3bqVdu3aYbPZjMuLhg4dynfffcfx48e9BgjV/nJeffXVze7Arf3Em/LhSznxpZz4Uk58KSe+lBNfLT0nTaqHofYk8Prrr2fAgAEMHDiQKVOmkJKSYpwEZmdnG4M8Tr/11tChQykrKzNuQzZu3Dgee+wxbrjhBlJTU/nVr37lNfK+ubjQnJSUlPjcy7m2O+vqq682Bpg1l1/IWnv27CEoKIj27dt7TY+Pj+fAgQN0797dGI9w5oNMevToQUBAAEVFRcCpLs/afaO5FQug/eRMyocv5cSXcuJLOfGlnPhSTny19Jw0qbPnhjwJBEhJSWH06NFMmjTJZ53NhU6M65aYmEhAQACVlZVe21VRUUFERAQAN910Ew6HgxUrVpCXl2ds9969e6mqqjKuD21OB6T6aD/xpnz4Uk58KSe+lBNfyokv5cRXS89JkyoYGvIksKXQiXHdBg8ezM0330xsbKyxXWVlZezfv58uXboAEBsby6RJkzh27Bhvv/02W7duJSMjg5UrV5KQkEDPnj39uQkNSvuJN+XDl3LiSznxpZz4Uk58KSe+WnpOmtQYhsGDBxMdHV3nSeCAAQOAUyeBX375JW+//TZpaWkEBASwevXqFncSCMpJfQIDA42xC7XPSDhy5AhlZWWkpqYa840aNYro6Gg++eQT3njjDSwWC9HR0dx5551ERUX5KfqGp/3Em/LhSznxpZz4Uk58KSe+lBNfLT0nTapg0EmgL+Xk3Gp/MTdt2kRYWBh9+/Y12pxOJ6mpqfTo0YMTJ05QVlbW7J7mfT60n3hTPnwpJ76UE1/KiS/lxJdy4qul56RJFQyn00mgL+WkfoWFhWzevJk+ffpgsViw2+1kZWWxYMECunXrxhVXXEFCQgIJCQn+DvWi037iTfnwpZz4Uk58KSe+lBNfyomvlpiTJlswgE4C66Kc1O3o0aOUlJTQr18/iouL+fzzz1mzZg3t27fn0ksvxWaz+TvERqX9xJvy4Us58aWc+FJOfCknvpQTXy0tJ026YNBJoC/lpG5ZWVmYzWb27t3LRx99hMVi4cc//jF9+vTxd2h+of3Em/LhSznxpZz4Uk58KSe+lBNfLS0nTbpg0EmgL+WkblarFZfLxdq1a0lLS+Pqq6/2d0h+pf3Em/LhSznxpZz4Uk58KSe+lBNfLS0nTbpg0EmgL+WkbvHx8UycOJGrrrqq2VXtF4P2E2/Khy/lxJdy4ks58aWc+FJOfLW0nJjctTeLbYK2bt3KkSNHdBJ4GuWkbrV3JBAP7SfelA9fyokv5cSXcuJLOfGlnPhqaTlp0gWDTgJ9KSdyPrSfeFM+fCknvpQTX8qJL+XEl3Liq6XlpEkXDCIiIiIi4l9mfwcgIiIiIiJNlwoGERERERGplwoGERERERGplwoGERERERGplwoGERERERGplwoGERERERGplwoGERERERGplwoGERERERGplwoGERERERGplwoGERERERGp1/8HWEQll6rWPfsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAF4CAYAAAD5U36FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABu0UlEQVR4nO3dd3yV5f3/8ddZ2XuQEAJksPcGZaMoiuJC3KtarVardth+21q1ra39tbau2tZRB1VURAUBQZANMmSvMMIIKwkkJCH7jPv3Rzy3OZyEIYGT8X4+Hjw4ucc51/0597nP9TnXuC2GYRiIiIiIiIjUwRroAoiIiIiISOOlhEFEREREROqlhEFEREREROqlhEFEREREROqlhEFEREREROqlhEFEREREROqlhEFEREREROqlhEFEREREROqlhEFEREREROqlhEGkCXO5XLzxxhuMGTOGhIQEgoKCaN26Nddeey1z584NdPG+l0WLFmGxWLBYLDz99NPn9FwbN270+fvtt982n/vtt98+p+f+vkaNGmWWofY/m81GVFQUPXr04Ne//jUlJSXn/FonH39zsWLFCqxWKxMmTDCXeeM4atSowBXsDGzYsIE777yT9u3bExISQnh4ON26deOxxx7j8OHDF6QMTz/9tBmvRYsWNehz33fffeZz79u3D4BevXoRGhrK7t27G/S1ROTCUcIg0kTl5eUxdOhQfvjDH7Jw4UIKCgpwOp3k5uYyffp0xo0bx09+8pNAFzMgDh48yN13302/fv0CXZQz5vF4OHHiBFu3buXPf/4zl112GU6n83s9V1M8/jPldrt56KGHMAyDhx9+ONDFOSuffPIJAwYMYPLkyeTk5FBVVUV5eTnbt2/nxRdfpFevXmzbti3QxWxwP/7xj6msrOTBBx8MdFFE5HtSwiDSBDmdTq655hpWr14NwL333suqVavYvn07r776KrGxsQC8/PLLvPPOO4EsakDccccdvPPOO3g8Hp/lkyZN4sCBAxw4cIBJkyYFqHTf8ZblwIED7Nu3j8WLF9O5c2cAVq1axdSpU7/X89Z3/M3BtGnT2LhxI5mZmYwdOzbQxTljVVVVPPjgg7jdbpKTk3nvvffYsWMH69ev50c/+hEABQUFzTLJv/3224mKimL+/PlNtuVTpKVTwiDSBL399tusWrUKgJ/85Ce88cYbDBo0iC5duvDggw/6VDT/+9//BqqYAWMYRp3Lw8LCSE1NJTU1lbCwsAtcKn/esqSmptK+fXtGjBjBM888Y673vsdnq77jbw7+9re/AXDjjTdisVgCXJozt3XrVvLz8wG4+eabufXWW+nUqRN9+vThX//6F927dwdquuS53e5AFrXBhYeHc+WVVwLwj3/8I8ClEZHvQwmDSBPkbTWwWq385je/8Vt/ySWX8O6777JlyxafPsp33323X/9igH379pnL7777bnO5t7/9kCFD2LVrF9deey1RUVHExcVx7733UlxczK5du7jmmmuIiIggPj6eu+++m+PHj5vPcaoxCbX785+J//3vf1x88cXmeI2kpCQmTJjAypUrzW0sFguLFy/2+dvbr/3kMQzV1dUkJSVhsVjo1KmT3+s9/PDD5vbbt283l7/33nsMGjSIsLAwoqOjGTNmDHPmzDmjYzgdu91uPj45qVm1ahXjx48nJiaG0NBQ+vTpw8svv+zTknA2x19bWloaFouFtLQ0c1ntvu5Lly6lV69eBAcH07VrV5xOp/n+DRgwgMOHD3PnnXeSkJBAWFgYY8aMMVvAvI4fP85Pf/pTOnToQHBwMMHBwWRkZPDII4/4nDP12bt3L2vWrAHg2muvPe32p/PVV18xYcIEkpKSCA4OJjMzk8cff5y8vDy/bY8dO8YDDzxAcnIyYWFhjBgxgpUrV5qfqdpxq0twcLD5+K233uKNN97wGafy9ddfc/ToUXJzc7Fafb+aP/jgA4YPH05UVBQRERF0796dZ599lvLycp/ttm3bxq233kq7du0IDg4mJiaG/v378+KLL55xa9OZntvV1dX87ne/IyMjg5CQEHr16sXHH39c7/N636+5c+eyf//+MyqLiDQihog0KU6n0wgKCjIAo2PHjme171133WUABmDs3bvXXL53715z+V133WUuHzlypAEYbdq0MWJjY81tvP+GDh1qxMXF+S2/6qqrzOdYuHChufypp57yKY/3+Wtfiurb/uWXX/Z7He+/kJAQY+fOnYZhGHWuHzlypGEYhvHWW2+Zy9566y3DMAzjl7/8pblsxYoV5utVVVWZxzZixAhzee3ta/+zWCzGv//979O+B3Uds2EYRnl5ubFp0yajT58+5vq5c+ea66dPn244HI46X/vWW281tzvb4/dq3769ARjt27c3lz311FPm9jExMebjG264wedY2rdvb7Rt29bvdaOioozCwkLDMAzD7XYb/fv3r/c97Nevn+F0Ok8Zu1dffdUAjODgYL9tTz7W03n22WfrLUvr1q2Nbdu2mdsWFRUZHTt2rPO86927t1/c6uPd1vvP4XAYw4YNM373u98Z69evr3Ofn/3sZ/WWc8yYMUZ1dbVhGDWf4fj4+Hq3/f3vf28+Z+33deHChebyMz23PR6PccUVV9S5bUpKSp3XmP3795vLX3/99TN6j0Sk8VALg0gTc/z4caqrqwFITEy8IK956NAhunbtypo1a/jqq6+IiooCYPny5SQmJrJ06VIWL15MfHw8ALNnz/b79fNceDweXn75ZQAGDx7MunXr2LlzJ7/85S8BqKys5MsvvwRqxgUMGTLE3PfAgQOnHAvwwAMPmL/ovvvuu+byGTNmUFhYaG4DsGbNGv7yl78AMG7cOL755hs2bNjAhAkTMAyDxx57jCNHjpzxcdWeJSksLIxevXqxYcMGoGa2mcsuuwyA8vJy7rvvPpxOJ5mZmcydO5esrCyefPJJAN5//30+/fTT73X8ZyooKIjFixezcuVKv1at/fv3Ex8fz5IlS9i4cSO9e/cGoKSkhE8++QSA9evXs3btWgCeeOIJduzYwfbt282By4cOHWLFihWnLMOyZcsA6Nq1q09LzNlasWIFv/3tb4GalpUZM2awdetWnn32Wex2O0eOHGHixIlm16C//OUv7Nq1C4CxY8eyZs0aVqxYwcCBA89qJqqPPvrIpyXC6XSybNkyfv/739O3b1/Gjh3LoUOHzPVff/01zz//PAA9evRgwYIFbNu2jTvuuAOABQsWMGXKFAAmT55MYWEhwcHBTJ06lezsbObMmUNkZCRQcz6fytmc2zNmzOCLL74AMM/HjRs3ctddd9U701O7du2IiYkBaPCZmUTk/FPCINLE1O7ffCEHtb7yyisMGDCAMWPGMGbMGHP5H//4R4YNG8aIESPM5R6P54y6mJwpq9XKjh07OHjwIDNmzKBv374kJyfTpUsXcxtv5T41NdWn+0dqauopE6v09HSzYv7hhx9SVVUFYHbZiY+P54YbbgBqKuZezzzzDElJScTHx5vjDiorK/nwww/P6VgnTpzIZ599xuuvv24umzdvHkePHgXgkUceoVu3boSHh3P//ffToUMH4Ltuamd7/GfqwQcfZMSIEQwePJi+ffv6rX/jjTcYPnw4vXr1MivjALm5uQDExcWZy7yV0djYWF544QUKCwvJzc1lxIgRpyyDtzKakpJyTsfy6quvmuM8PvzwQ66++mq6devGr3/9a3MA8rZt2/jqq68AmD59OlDTReyDDz5gwIABXHTRRUydOpWQkJAzft1OnTqxdetWXn75ZS6++GJsNpvP+vnz53PFFVfgcrmAmq5IXv/+978ZPXo0Xbt25dVXX+WZZ57hk08+4ZJLLgHgySefpKSkhE2bNjFx4kTS0tJISkoiOTkZ+O7zUZ+zObdnzZplbvuf//yHyy67jF69evHGG2/Qvn37el+jdevWQE0SKyJNixIGkSYmLi7O/EXcO4iyLmeTTBhnMEi2duXc+6slQLdu3epcfiZTgp7J63p5PB5WrlzJE088QZcuXYiJieGee+4x15/LQFHvdI/Hjx/n888/Jzc315zN5a677jIr4Dt37jT3GTx4MG3btqVt27Y+FWjvr+hnIicnhw0bNpiVVIDdu3czYMAAn+1qv+5jjz1mvm7btm3Nue3P5nXrcrr3okePHqdcX/s8qJ2geM+D9PR0nnzySSwWCwsWLOCmm24iOTmZzp0789vf/pZNmzadtoze893bwvV9eVsFoqKiGDRokM+62jMvecu0Z88eADp37uyT+CQlJdU59uVUwsLCePjhh1m+fDmFhYXMmDGD+++/3zzHNm/ebP56723VAOjTp4/5OCIigt/97ndcd911tGnTxly+b98+3nrrLYYNG0Z0dDR9+/Y1n+N0n4+zObdzcnJ8tvWy2+3079+/3tfwvm+num6JSOOkhEGkiQkKCjK/xPfu3Wv+gluby+UiPT2da665pt4blNWuQFRWVp72dUNDQ83HtQdl1h6Ye7rByydXWs7kdaGmMjt+/HgmTpzIlClT6N27Ny+++KLZ3eVcjR8/nrZt2wI1gz6nTJli/sp7//33m9udSTcYb0vAmWjbti29e/fmX//6l9nNZMOGDYwbN86nS1dDvy6c/XsRHR19yvW1z4+Tfzn3+v3vf8/WrVt56qmnGDp0KCEhIWRnZ/Pqq6/St29fPv/88zMq+8mDgs/WqeJZO3Hyns9BQUF+687W22+/zW233caYMWPMQb9RUVFcffXV/Oc//+Gll14yt/UOsK/9eqdLwP/3v//Rp08fnnvuOaqrq/npT3/K7Nmz/RKi+pzNOVb7c37yDxP1vfe1ORyOMyqTiDQeShhEmiBv5dIwDLPfcW3//e9/ycnJYcaMGT5dDWp3Vak9Q0vtXwwbWn2vaRjGGXdNWLRokTlTy9NPP82HH37Iww8/TGpqap3b167QnEklz2azcd999wEwZ84cs3vPqFGjzPsiAGb3H6jpc28YBoZhUFJSwtq1aykrK/vesyW98sortGvXDoAtW7bwf//3f3W+7nvvvWe+rmEYrFq1ioKCAp8Kf33HX997UVZWRkFBwSnLd66VvIKCAhYvXsyyZct4+OGHWbZsGSUlJSxcuJDQ0FCfcSr1adWqFQAnTpw4p7J07doVqImBd9Ylr/nz55uPvb/qZ2RkADW/wtfu2nPkyBF27NhxRq954MAB3n//fRYuXMhbb73lt772e+ZtxejYsaO57JtvvjEfV1dXM2TIECZNmmSOu/nNb36D2+2mS5curFq1imeeeYYrrriC0tLSMyrf2ZzbmZmZ5ra1Z8JyOp1+M2PV5u2meKHGXolIw1HCINIEPfDAA/Tq1QuAF154gYceeoh169axdetWnnvuOR599FGg5pfYp556ytyvdveFV155BafTSXZ2dp1TszaU2q/58ccfk5OTQ3l5Ob/5zW/OeIBw7QrinDlzzOliH3roIXO5t0UA8OlXvmzZsjMamHrfffdht9uprKw0t/cOdva67bbbzMd33nknK1euJCsrix/96Ef079+fiIgIs7/72YqKiuKNN94w/37llVfM+zBccsklJCUlATUVw5kzZ5Kdnc3zzz/P4MGDiY+P52c/+5m5b33HX/u9ePvttyksLKSoqIiHH374vM/9/8UXXzBq1Cjuv/9+7r77br755htycnLIyckx37vTJSXeiuqpEtzCwkLmzJlT5z/voOp7773X3P7mm29m5syZbN++nb/85S/8+9//Bmq6YI0ePRqAW265BagZfH7LLbewbt06li1bxvXXX2+OeTmdu+66y3xfnn32Wf7whz+wceNGtm/fzuuvv24O4A8ODuaqq64C4KabbjL3f/jhh5k/fz5ZWVk89NBD5o39vK/v/Yzk5OQwa9Ystm/fzs9+9jPzztG1Px91OZtz2zumB2o+N3PmzGHz5s384Ac/qHfKVMMwzM+7954TItKEXMgpmUSk4eTk5Bi9evWqdxpFq9VqvPzyyz77bN261WdqTovFYgBG9+7djYiICAPqnlb15EtFfdOz3nvvvXUuv/jii/2mabTb7T7TbHrVNa1qQUGB0apVq3qPFTDuvfde8zlOnh6yW7duhmGcelpRwzCM66+/3lyfmJhoVFVV+W3z4IMP1luGcePGGW63+5TvW30x9br//vvN9b179zanD33//fcNq9Va5+umpaUZhw4dOu3xV1VVGenp6X77R0ZGGt26dfObHrS+6TdPdyxLly71ew+dTqcxfvz4emMXHBxsLFmy5JSxe/vttw3ACA0NNSorK33WnercqB1Pr1//+tf1bte6dWtj+/bt5rYnTpwwunTp4rddTEyM0bp1a/M9OJ133nnHsNlsp/zMvvnmmz77PProo/VuP2bMGPMcve+++0557LWnoq3vfT2bc7v2NaD2v379+tV5DcjOzjaXv//++6eNlYg0LmphEGmi2rZty+rVq80ZV6KiorDb7bRp04Zbb72VlStXmlNWenXr1o3PP/+cgQMHEhISQuvWrXn00UdZtmyZT3eVhvbJJ59w2223ERsbS3h4OGPHjmXp0qXmDcVOJy4ujnnz5nH55ZcTExNDdHQ0AwcOZPLkyVx66aVAzVSu3l/JH3/8ca6++mpiYmKIjIw0u/qcjnfwM9T8Iuztu17bP//5T9544w2GDBlCZGQkYWFh9OjRg//3//4f06dPP+f+9X/729/MmWY2btzICy+8ANT8yr1gwQLGjx9PfHw8QUFBpKen88gjj/D111/7zBxU3/EHBQXx5ZdfctVVVxEZGUl0dDTXX389q1evNrvpnC92u51PPvmEf/7znwwaNIj4+HjsdjutW7dm4sSJrFixguHDh5/yOcaMGYPFYqGiouK0U7CezrPPPsu8efO45ppraNWqFQ6Hg7S0NB599FHWr1/vM8g/IiKCxYsXc/fddxMXF0doaKh5DnvjfiafnzvvvJM1a9Zw5513kpaWRlBQEKGhoaSlpXHHHXewatUqfvCDH/js88ILL5g3LIyIiCAiIoKePXvy5z//mc8//9w8R1988UV+/vOf065dO0JCQsjMzOSRRx7h1VdfBaCqqsqcerg+Z3Nu//e//+Uvf/kLGRkZBAcH06dPHz744AOfiQhqW7duHVBzDtYeWC4iTYPFMM5hFJeIiMgFdNlllzFv3jx+/etf8+yzz16Q11y+fDlVVVW0bdvWvIuyV+fOndm5cydDhgzh66+/viDlaYoefPBB/v3vf3PDDTec8o7QItI4qYVBRESaDO8UtDNnzrxgr/nBBx9wySWX0KlTJyZOnEhWVhY7duzg+eefN6cjHThw4AUrT1PjcrnMGwvWnkJYRJoOtTCIiEiT4fF4GDhwIOvWrWPVqlVnPG3oudi8eTODBw+moqKizvVRUVGsX7/enE1JfH388cfceOONXHHFFcyePTvQxRGR70EtDCIi0mRYrVZzXMc//vGPC/KaPXv2ZPny5UyaNInU1FQcDgcOh4O2bdtyxx13sHr1aiULp/D3v/8dh8Nxwd4vEWl4amEQEREREZF6qYVBRERERETqpYRBRERERETqpYRBRERERETqpYRBRERERETqpYRBRERERETqpYRBRERERETqpYRBRERERETqpYRBRERERETqpYRBRERERETqpYRBRERERETqpYRBRERERETqpYRBRERERETqpYRBRERERETqpYRBRERERETqpYRBRERERETqZQ90AUREzqeSkhJeffVVbr75ZtLS0nzWFRYWMnfuXPbv34/VaqVbt26MHTuW4ODgM37+DRs2MH36dB599FFiYmIatvAnefvttykqKuKxxx4DwOPxsGjRIjZu3Eh5eTkpKSmMHTuW1NRUcx+Xy8WiRYvYvHkz5eXlJCQkMHToUHr06NEgZTIMg7Vr17JmzRqOHz9OeHg4nTt3ZvTo0T5x3LlzJ4sXLyYvL4+wsDC6devGmDFjCAoKOu1rZGdn87///Y9WrVrx4IMPNki5z9Rnn33Gxo0beeqpp/zW7dixgw8++KDOdWvXrmXVqlUUFRURHR3NwIEDGThwIBaL5UIUW0SkQamFQUSareLiYiZPnkxVVZXfusrKSt555x1KS0u59tprueSSS9i6dStTp04NQEnPjMVi8alwzp07l5UrV3LxxRczceJErFYrkydPprCw0Nxm2rRpfP311/Ts2ZNbbrmF7t27M2PGDFatWtUgZVq+fDmzZ8+mY8eO3HzzzVx88cVs2rSJjz76CMMwANi+fTtTpkwhKCiIG2+8kXHjxrFv3z7effddPB7PaV9jw4YNtGrVivz8fHJychqk3Geqvgr+vn37+OSTT+pct27dOmbOnEl6ejo333wz3bt354svvuDrr78+n0UVETlv1MIgIs2OYRhs3LiRL7/8st5t1qxZQ0VFBQ888ABhYWEAREVF8f7775OTk0O7du0uVHHPWEREBG63G6hJhr755hvGjRvHwIEDAcjMzOSVV15h2bJlTJgwgSNHjpCVlcXo0aMZMWIEABkZGQQFBTF//nx69+5NSEjI9y6PYRgsX76c/v37c+mll5rPHxoayrRp0zhy5AgpKSksXryYxMREbr/9dmw2GwDt2rXjpZdeYv369fTv37/e16isrCQrK4vx48ezbNky1q5de0Hfm4iICCIjI82/q6qqWLZsGcuXL683duvXr6ddu3ZcccUVQE1MCgoKWLNmDRdffPEFKbeISENSC4OINDt5eXnMnDmT3r17c91119W5TXZ2Nu3atTOTBaipcAcFBbFr167v/dqfffYZL7zwgs+yoqIinnnmGTZs2ADU/Dr9zDPPsGfPHiZPnsyzzz7L3/72N+bNm3fKX9xbtWpFUlISAHv37sXj8dC1a1dzvd1up2PHjuzevRuAY8eOAdC5c2ef50lLS8PpdLJv377vfZxQU3nu1asXPXv29FmekJAAYLZ0HD16lMzMTDNZgJqKeGJi4mljvXnzZtxuNx06dKBXr15s27aNiooKn20WLVrEM88847fvM888w6JFi8y/T5w4wccff8xf/vIX/vKXvzBz5ky++uorv/erttoxh5pkYN26dVx55ZUMGjSozn1cLpdft7bQ0FDKy8tPeawiIo2VWhhEpNmJjo7mJz/5CVFRUfVWio8dO0b37t19llmtVmJjYykoKLgApYRPPvmEgQMHMmzYMHbu3MmKFSuIjY1lwIABdW4/fPhw8/HRo0cJCgoiIiLCZ5u4uDhOnDhBdXW1mQwVFRX5VHqPHz/u8//3FRISYv6KXltWVhZQU9kGCAsLo7i42Gcbt9tNcXExLpfrlK+xfv16OnToQEREBL1792bRokVs2LCBiy666KzK6nK5ePfdd6murmbcuHEEBwezbNkycnNz/WJYW8+ePX0Sok6dOtG/f38cDodPMlLb4MGDmTFjBps2baJTp04cPHiQjRs30qtXr7Mqs4hIY6GEQUSandDQUEJDQ0+5TWVlZZ2Dm4OCguoc83A+9OvXj5EjRwKQnp5OVlYWu3btqjdhqK2qqqrO8nuXVVVVkZaWRmxsLF988QUOh4M2bdqQm5vL/PnzAaiurm7Ao6lx8OBBli9fTqdOncyEoW/fvixdupRly5bRt29fXC4XCxYsoLKy8pSDnvPy8jhy5Ag33ngjUJMIpqens3bt2rNOGDZv3syxY8f44Q9/SEpKClAT85deeumsnicuLu602/Ts2ZP9+/fz6aefmssyMzMZN27cWb2WiEhjoYRBRFok74DculyomWzatm3r83dUVNQZV+JPVX6oOQabzcbtt9/O9OnTmTx5MlDTFeiKK65g6tSpOByOep/75Oe3Wk/fgzUnJ4cpU6YQExPDNddcYy4fNWoUHo+HhQsX8tVXX2G1WunXrx9dunTh6NGj9T7f+vXrCQkJoX379lRWVgLQtWtXZs2axd69e0lPTz9tmbz27t1LbGysmSxATXLVqVMn9u7de8bPcyY++OADcnJyuPTSS2nTpg35+fksWrSIqVOnctNNN2mmJBFpcpQwiEiLFBISUmdLQlVVFVFRURekDCdX2C0Wy2kTAa/g4OA6kwvvMXlbGuLi4rjnnnsoKyujvLyc+Ph4s3tQfa0w06dPZ+PGjebf0dHR5lSu9dmyZQvTp08nPj6e2267zWdsiNVq5dJLL2XUqFEcP36cyMhIQkJCeOutt+otg9vtZvPmzVRWVvK3v/3Nb/3atWvPKmEoLy8nPDzcb3ldy87FgQMH2L17N1dffTX9+vUDMFt63n//fXbt2kWnTp0a9DVFRM43JQwi0iLFx8f79eH3eDwUFRX5DCSuraCggA0bNjB48GCz37t3kLLdXnM5ravSfz66/iQkJFBVVUVZWZlPpbewsJDo6GgcDgdOp5Pt27fTtm1bYmNjze2OHDkCQOvWret87lGjRvkM6K09WLkuK1asYN68eaSlpXHTTTf5zR60b98+XC4XHTp0IDExEaiJW35+Pr17967zOXfu3El5eTlXXXUV8fHxPuu++eYbtm/f7nfsHo/HbAk5OeaRkZF1jk0pKys75bGdraKiIsC/9ah9+/YA5OfnK2EQkSZHsySJSIuUmZnJvn37fCqM2dnZVFdXk5mZWec+J06cYNmyZeTl5ZnLiouLsdvt5i/qQUFBlJeX+wzmPR/3DsjIyABg27Zt5jKXy8XOnTvN8ttsNmbPns3atWvNbTweD6tXryY2NtZnIHRtMTExpKSkmP/q2w5qKu/z5s2je/fu3H777XVONbpt2zY+//xzc0pYqOluVFlZSZcuXep83vXr1xMVFUW/fv1IS0vz+Tdo0CA8Hg/r168HvmtNKSkpMfc/OeZpaWkUFRWRm5trLnM6neaMUg3FO0PUya/v/Ts2NrZBX09E5EJQC4OItEgDBgxg9erVTJ48mZEjR1JRUcG8efPo0KGD36/DXm3atCEyMpKvvvoKj8dDeXk5q1evpmvXruYv2506dWL16tXMmDGDvn37kp+fz9dff93g/dZjYmLo3bs3c+fOxeVyER8fz9dff01lZSVDhw4FaroCDRw4kJUrVxIVFUVCQgJr1qwhJyeHm2+++ZzLVFpayty5c4mJiWHQoEFmy4WXt1VjwIABrFu3junTp9OnTx/y8vKYP38+3bt397v7NtQkZrt372bIkCF1lrFdu3bExsaydu1ahg4dSqdOnfjyyy+ZOXMmF198McXFxSxevNhnQHXPnj1ZtmwZH3zwAWPGjCEkJISvv/6asrIyoqOjzykOtbVu3ZquXbsyd+5cKioqSE1NJT8/n8WLF5vrRESaGiUMItIihYeHc9dddzFnzhw++eQTgoOD6datG5dddlm9+zgcDm655Rbmzp3Lxx9/jM1m89snMzOTsWPHsnr1arZt20ZKSgo33XQTb775ZoMfw1VXXUVISAjLly+nurqa1q1bc8cdd/jM5DNq1CgsFgvLly+noqKC5ORkbrvttnpbUc7Grl27cLlcFBUV8dZbb/mtv+aaa+jTpw+tWrXilltu4auvvmLKlClEREQwfPhwn2lia9u4cSOGYdCjR496X7tXr14sXryY7OxsOnTowLXXXsvSpUt5//33SUhI4Oqrr+aLL74wt7dardx+++3MmTOHWbNmYbVa6dmzJ2FhYeb9KhrKDTfcwJIlS1i7di2LFi0iOjqaPn36MHLkyDMaPC4i0thYjDMdYSciItJE5efnc+zYMbp27erTavH6668TFRXFTTfdFMDSiYg0bmphEBGRZq+6upqpU6cycOBAunbtisfjYcuWLRw+fJhLL7000MUTEWnU1MIgIiItwrZt21ixYoV574fk5GRGjBjRIN2zRESaMyUMIiIiIiJSL42+EhERERGReilhEBERERGReilhEBERERGReilhEBERERGReilhEBERERGReilhEBERERGReilhEBERERGReilhEBERERGReilhEBERERGReilhEBERERGReilhEBERERGReilhEBERERGReilhEBERERGReilhEBERERGReilhEBERERGRetkDXYC6LF26lK+++opjx44RFxfHyJEjGTNmDBaLBYDp06ezdOlSHA4HV199NRdffLG5r2EY/OlPf2Lo0KGMGjUqQEcgIiIiItI8NLqEYeHChXz44YeMGzeOLl26sGfPHj7++GMqKysZP348mzdvZt68edxxxx2UlZUxefJk0tLSSElJAWDNmjVUVlYyfPjwAB+JiIiIiEjT16gSBo/Hw5w5cxg0aBDXXnstAF26dCE/P58FCxYwfvx4tm/fTpcuXRg8eDAAy5cvZ8eOHaSkpOByuZg+fTrXX389NpstgEciIiIiItI8NKqEwWKx8OijjxISEuKz3Gaz4XK5zL+DgoJ81hmGAcCiRYuIiIigf//+F6bAIiIiIiLNXKMa9GyxWEhJSSEuLg7DMCgrK2PZsmWsXLmSESNGAJCZmcnOnTvJy8tj7969HDp0iMzMTCoqKpg9ezY33HBDgI9CRERERKT5aFQtDLXt2rWL559/HoB27doxduxYAPr160dWVhZPP/00NpuNCRMm0L59ez799FPS09Pp0KED06ZNY+PGjSQnJ3PzzTcTFxcXyEMREREREWmyLIa3P08jc/z4cY4ePcrx48eZOXMmTqeTX//610RFRQHgdDqx2WxYrVaOHz/OU089xS9/+Ut27tzJwoULeeCBB1i+fDl79uzhV7/61fcuR2FhIaWlpT7doASqq6sVk5MoJv4UE3+KiT/FxJ9i4kvx8KeY+FNM/J0uJsnJyWf0PI22hSE2NpbY2FgA0tPTefLJJ1m2bBlXXnklAA6Hw9z2888/p1+/frRp04YpU6Zw8cUX06ZNG8aNG8cvfvELCgoKiI+P/17liIuLo7q6+owD2lLk5uYqJidRTPwpJv4UE3+KiT/FxJfi4U8x8aeY+GuomDSqMQwVFRWsXLmSY8eO+Sxv1aoVISEhHD9+3G+fw4cP88033zBhwgQASkpKCA8PBzD/LykpOc8lFxERERFpnhpVwmCxWHj33Xf58ssvfZZnZ2dTWVlJamqq3z6ffPIJI0eONMcpREVFmQlCUVERAJGRkee34CIiIiIizVSj6pIUEhLC2LFjmTt3LmFhYXTp0oUjR44wa9Ys2rZt63NHZ4CdO3eSnZ3NPffcYy7r1asXCxYsoG3btqxevZq2bdt+7+5IIiIiIiItXaMb9OzxeFi8eDFLlizh6NGjhIeH07dvX6655hpCQ0N9tv3zn/9Mv379uPzyy81lTqeTKVOmsG7dOpKTk7n77rvPqe/W9u3b2bRpEzExMeaymJgY2rVrR2VlJTt37vTbp1evXgDs3r2b8vJyn3Vt27YlNjaWgoICDh065LMuIiKCjIwM3G43W7du9Xverl274nA42Ldvn183q9atW5OYmEhRURE5OTk+60JDQ+nYsSMAmzdv5uS3vGPHjoSGhnLw4EEKCwt91iUmJtK6dWtKS0vZs2ePubyoqIjExES6du1qxsnpdPrsm5GRQUREBEeOHOHo0aM+6+Li4khNTaWiooJdu3b5rLNYLPTs2ROomS2roqLCZ327du2IiYnh6NGjHDlyxGddVFQUaWlpOJ1Otm/fzsm6d++OzWZjz549lJaW+qxr06YN8fHxHD9+nAMHDvisCwsLo0OHDgBs2rTJ73k7depEaWkp5eXlZsuWV1JSEklJSZw4cYK9e/f6rAsODqZz584AbNu2zed+I1AzjXB4eDiHDx/266rnjWF5eTm7d+/2WWe1WunRowdQk1hXVlb6rG/fvj3R0dHk5+eTm5vrsy46Opr27dtTXV1NVlaW37H26NEDq9VKdnY2ZWVlPuu8MfSe30VFReZnJzw8nMzMTDweD1u2bPF73i5duhAUFMT+/fspLi72WZecnEyrVq0oLi5m//79PutCQkLo1KkTAFu2bMHj8fis79ChA2FhYXWe3wkJCaSkpFBWVkZ2drbPOrvdTrdu3QDYsWMHVVVVPuvT09OJjIwkLy+PvLw8n3WnukYUFRWZ00Q352sE1Iw1O5NrxNatW3G73T7rmuM1IiQkhJycnDO6Rng/O839GlHbqa4RRUVFDBkypEVcI+DM6hF1vW/N9RpxpvUI7+emJVwjvE53jfCea/VdIwYOHOhXlro0uoShsRk9ejSLFi3yWdazZ09uuOEGCgoKePnll/32efrppwF44403OHjwoM+66667jt69e7N69Wpmz57tsy4zM5M77riDyspKnnvuOb/n/cUvfkF4eDjvv/++3wXmsssu4+KLL2br1q1MnTrVZ11ycjI/+tGPAPjDH/7g98X80EMP0apVK6ZPn8769et91g0bNoxLL72UvXv38s477/isi4yM5Gc/+xkAzz//PCdOnPBZf9ddd5Gens78+fNZtmyZzzpvEpifn8+rr77qs85ms/Hkk08C8O9//9vvy+rGG2+ke/furFixwq/7WqdOnbj11lspKyvjr3/9Kyf71a9+RUhICJMnT/a7+F955ZUMGjSIjRs38umnn/qsS01N5b777gO+e39re+SRR4iPj2fatGls3rzZZ93IkSMZPXo0u3fv5n//+5/PutjYWB599FEA/t//+39+Xwz33nsvbdu2Zc6cOaxcudJn3cCBAxk/fjyHDx/mtdde81kXFBTEr3/9awD++c9/+l1ob775Zrp06cLSpUv56quvfNZ169aNSZMmUVxczD/+8Q+/Y/3tb3+L3W7nrbfe8vtivvrqq+nfvz9r167l888/91nXvn177rnnHlwuF3/84x/9nvfxxx8nOjqajz76iG3btvmsu+SSSxg+fDhZWVl88MEHPusSExP58Y9/DMCf/vQnqqurfdbff//9pKSkMGvWLNasWeOzbsiQIYwbN44DBw7w5ptv+qwLCwvjiSeeAODFF1/0G0N1++2306FDBxYuXMjixYt91ukaUUPXiO/oGlFD14gaukbU0DXiO4G6RqxevdqvLHVRwnAaamFQCwOohaE2tTDUUAtDDbUw1FALw3fUwlBDLQw11MJQQy0MLYCm6fKnmPhTTPwpJv4UE3+KiT/FxJfi4U8x8aeY+GuW06qKiIiIiEjjooShkZq64TBDXljKlf9ZSe6JytPvICIiIiJyHihhaKRKq124PQZHy6rZcuTE6XcQERERETkPlDA0UvcMakfXpAgAnG7PabYWERERETk/lDA0YnFhQQA43RqXLiIiIiKBoYShEXPYLAC4PGphEBEREZHAUMLQiDlsNW+PWhhEREREJFCUMDRiDmtNC0O1xjCIiIiISIAoYWjEvC0MlU4lDCIiIiISGEoYGjH7ty0MX+08epotRURERETODyUMjViIwwZAXHhQgEsiIiIiIi2VEoZGrG9qNADl1e4Al0REREREWip7oAsg9Qv/toXhYFEFf1u4G4DkyBBu6dcG27fdlUREREREziclDI1YQkRNV6TiShcfrj9sLu+eHGm2PoiIiIiInE9KGBqxtLgwnh7Xmf2F5QDM3JrH0bJqTlS5AlwyEREREWkplDA0cuO7JZmP1x0s5mhZNS6PbuQmIiIiIheGBj03Id5pVl0e3ZdBRERERC4MJQxNiN32bcLgVguDiIiIiFwYShiaELu15u1SlyQRERERuVCUMDQh33VJUsIgIiIiIheGEoYmRAmDiIiIiFxoShiaEG/C4HRr0LOIiIiIXBhKGJoQ76DnFxbv4cus/ACXRkRERERaAiUMTUi/1Bjz8bK9hYEriIiIiIi0GEoYmpAJPZL52ahMAHYfKwtwaURERESkJVDC0MQkRwUDsOtoGUUVzgCXRkRERESaOyUMTcyAtjHm47wTVYEriIiIiIi0CEoYmpiIYDsp0SEAVLs0W5KIiIiInF9KGJqgoG9nS6rW9KoiIiIicp4pYWiCgmw1b5sSBhERERE535QwNEFmwqAuSSIiIiJynilhaIKC7DVv27PzdnHH/9ax/3h5gEskIiIiIs2VEoYmKCM+DIDjFU6y8ktZkl0Q4BKJiIiISHOlhKEJ+vnoDvzv9n5c2ikBgJeW7GVHfmmASyUiIiIizZEShibIZrXQuVUEqTGh5rKXluwJYIlEREREpLlSwtCEtYoINh/vPFoWwJKIiIiISHOlhKEJu6p7EmM7JwIQGWwLcGlEREREpDlSwtCEhTps3D2oLQAHiioprXIFuEQiIiIi0twoYWjikmp1S1qw61gASyIiIiIizZEShiYuOtTB8Iw4ALLyNFOSiIiIiDQsJQzNgHccw9SNh/l6X2GASyMiIiIizYkShmagb2q0+XjGlrwAlkREREREmhslDM1AcmQIPx6WBkBJpTOwhRERERGRZkUJQzORmRAOwAnNlCQiIiIiDUgJQzMRFWIHoKRSCYOIiIiINBwlDM1EVLADgBNKGERERESkASlhaCYiv21hOFHlwmMYAS6NiIiIiDQXShiaiajgmoTBAN3xWUREREQajBKGZiLIbiXYXvN2ztyWR1GFZksSERERkXOnhKEZiQ2tGcfwj0V7eH5hdoBLIyIiIiLNgRKGZuQnIzLonhwJwKHiigCXRkRERESaAyUMzcjYzok8MjwdgM1HTrDpcEmASyQiIiIiTZ0ShmamVUSw+fi5r3YFsCQiIiIi0hwoYWhm2saGclv/VACKNfBZRERERM6REoZm6NqeyQBUOj0AGIZBtcuD26P7M4iIiIjI2bEHugDS8EK+nV61wuXGMAwenLqJtQeLiQq289pNvclMCA9wCUVERESkqVALQzMU4rAB4HQbfLLpCGsPFgNQUuViowZCi4iIiMhZUMLQDEUG2wm21by1Ly/d67OuvNodiCKJiIiISBOlhKEZslktfHbfIADKTkoQ9haUBaJIIiIiItJEKWFophLCg7iqe5Lf8hlb8/gyKz8AJRIRERGRpkiDnpux34ztxK392uAxaroi3f/RRgB2HC2jTXQJf1mwm+gQB89d3ZXwIJ0KIiIiIuJPLQzNmN1qoWNiBJ1bRdA3NZp7BrUF4FBRBZ9tyWV7Xikr9x/nmwPFAS6piIiIiDRW+lm5BQn+drrVr3Yd81leWFYdiOKIiIiISBOgFoYWxDvd6smeX5R9gUsiIiIiIk2FEoYWxNvCcDKn28OJStcFLo2IiIiINAVKGFqQnq2jCHX4vuXRIXY8Boz999dUOnWPBhERERHxpTEMLUjnVhHMe/BilmQXsHD3MYalx3GkpJJ/r9iP22OwPa+UvqnRgS6miIiIiDQiShhamGC7lbGdExnbOdFctnB3ATvySzlQVKGEQURERER8KGEQeiRHsiO/lD98uZNZ2/KocLrZnlcKQJjDxqf3DiQuLCjApRQRERGRQNAYBqFNTIj5eN3BYjNZACh3unln9YFAFEtEREREGgElDEK/1BgAbBa4OC3Wb/3h4soLXCIRERERaSzUJUnonhzJF/cPxgASI4LJO1FF7olKco5X8Pu5O1mUXcC+wnLS4sICXVQRERERucCUMAgACRHB5uOkyGCSIoNpVWvZhkPFShhEREREWiB1SZJ6tY4K4aruSQD8XXeDFhEREWmRlDDIKXVMDAfAarEEuCQiIiIiEghKGOSUrupW08JQVu3mtRX7MAwjwCUSERERkQtJCYOcUkSwnYhgGwCvr8xh05GSAJdIRERERC4kJQxySlaLhRev62n+/eOpmwNYGhERERG50JQwyGn1SoniJyPSAahyezhR6QpwiURERETkQlHCIGfkjgFtza5JY15dwaJ96pokIiIi0hIoYZAzNq5LK/Pxor1KGERERERaAiUMcsZ+eUlHfjYqE4CsY5WaMUlERESkBVDCIGfFe1+GMqeHt9ccCHBpREREROR8U8IgZ6V7cqT5OCuvNIAlEREREZELQQmDnJUQh40/XtkFgAW7jrH2QBFuj7omiYiIiDRXShjkrCVGBJmPfzR1E9O35AawNCIiIiJyPilhkLPWp000N3WPM/8+cLwigKURERERkfNJCYOcNavFwu29E7hvSDsAKlzuAJdIRERERM4XJQzyvYU5am7kVulUwiAiIiLSXClhkO8t5NuEYda2fBbsPBrg0oiIiIjI+aCEQb63Lq0izMdzdyhhEBEREWmOlDDI99YzJYrHR2YAUFrlCnBpREREROR8UMIg56RdbCgAq3OKWJJdEODSiIiIiEhDU8Ig56RzrW5JShhEREREmh8lDHJOEiOC+fGwNADKqjVbkoiIiEhzo4RBzllcWM2dn/cUlAW4JCIiIiLS0JQwyDkL/XZ61T0F5QEuiYiIiIg0NCUMcs66JX83jsHtMQJYEhERERFpaEoY5JwlhAebjyt012cRERGRZkUJg5yzIJsFu9UCwOGSygCXRkREREQakhIGOWcWi4VWkTWtDPe8v57Pt+ZSqZYGERERkWZBCYM0iIeGpgFQ7Tb4/dydvLkqx2e9xzA4cLxCYxxEREREmhglDNIgLu/Sir9O6EZKdAgAb68+wDVvrmbtgSI8hsHvZmdx/Vtr+M2s7QEuqYiIiIicDSUM0mBGdUjgnzf0xGH7djxDcSU/mrqJ+TuPMnfHUQC+2nUMp9sTyGKKiIiIyFlQwiANKjUmlAUPXcxt/VPNZb+ZleWzzaebjnCi0nWhiyYiIiIi34MSBmlwIQ4bj43M4FeXdKhz/V8XZnP/RxsxDI1nEBEREWns7IEugDRfV3dPJtRhw20YdGkVwYHjFby5KofsgnJ2Hyvjq13HGJYex9SNh6modnNtz9bmbEsiIiIi0jgoYZDzJshu5cpuSebfHRMjGNMpkUembWbl/uM8N38Xj4/K5KUlewEoKHfyf5d2DFRxRURERKQO6pIkF9xt/dsAUFzp4uk5O8zln2w6wpqc44EqloiIiIjUQQmDXHCD2scSFVx349brX++/wKURERERkVNRwiAXnNVi4fWbe9e5bv2hEqZvPqIB0SIiIiKNhBIGCYiUqBBiQh3m3z8Znm4+/uO8XWzNPRGIYomIiIjISTToWQIixGHj0x8M5FBxJeFBNlJjQokMsfPsvF0A3DNlA+nxYfz35j5E1NN9SURERETOP7UwSMBEBNvp3CqC1JhQAK7t2Zq+baLM9XsLyvnNrO3qniQiIiISQEoYpFEJttt8/l6x7zgbDpUEqDQiIiIiooRBGr2ZW3M5UekKdDFEREREWiQlDNKoFJZXm4/HdWkFwIyteVzx2kqembsDj7oniYiIiFxQShikUemVUjOGISM+jOt6JdM1KYLE8CCqXB5mbs1j97GyAJdQREREpGXR9DPSqDw0NJ0eraPolxpN66gQ3r2tH4ZhMObVFZRWuZm/4ygbDpUwMjOepMjgQBdXREREpNlTC4M0KpEhdsZ3S6J1VIi5zGKxcEWXJADeWn2Avy7YzdNzdgSqiCIiIiItihIGaRJ6tI70+Xv9oeIAlURERESkZVHCIE3CZV1a0Skx3Pzb7TEoq9bMSSIiIiLnmxIGaRLsVgv/u70fn/5gIBHBNfdqeH/toQCXSkRERKT5U8IgTYbFYiE1JpS2394ZetqmIwEukYiIiEjzp4RBmpxHR2QAUK4uSSIiIiLnnaZVlSYnIz4MgAqnh82HS+iZEkVRhZOffLKZ3JIquiVH8vdru2O1WAJcUhEREZGmTy0M0uREBNuxfpsL/OCDDSzafYwP1h1ie14pxyucLN9byKGiysAWUkRERKSZUMIgTY7DZuWR4Rnm37+YsY03V+X4bHOiSt2VRERERBqCEgZpkm4fkErP1lHm31HBdp+/V+0/zrGyao6VVVNc4QxEEUVERESaBY1hkCYr8tvpVQGu7JbEz0ZncsN/15BTVMGry/fx6vJ95vqfjcrk5n5tAlBKERERkaZNLQzSZF3TI5m2MSFkxIdxeZdEAO4cmFrntqtzjl/IoomIiIg0G2phkCZrTKdExnRK9Fl2eZdWnKhyc6LKyZiOieSWVPLzGds4Xn76bkn7j5ezYu9xYkMdXNYlUbMsiYiIiKCEQZqZEIeN2wd818pQ5fIAUFhefdp9fzMrix35pQA8+UUW3ZMj6ZAQzsPD04kJdZyfAouIiIg0cuqSJM1aXFhNRb+g3IlhGKfc9liZb1KxNfcE07fk8uDUTeetfCIiIiKNnRIGadbiw4OAmpaGcqf7lNu63DWtEb+6pAPPX9Od9rGhAOw+VsZfvtqFy3PqhENERESkOVLCIM1aqMNGqKPmNH96zg7W5Bwn90TdN3Wr/jZhGNw+lhGZ8Uy9e4DZQvHxxiNsOlx8YQotIiIi0ogoYZBmr3VUCACLdhfw0MebmfD6atYdLMIwDD7fmsv7aw9SXOGk2l3TghBkq/lYWCwW/nVjL/N5iip0MzgRERFpeTToWZq9F6/rweOfbcVtGOwtKMcAHvjId1zCwaJK3N92OXLYvpsdKSM+nGHpcSzbW8inm44wpmPChSy6iIiISMCphUGaveSoEKbc2Z+P7hrAM+M617nN1I2HzccOm+/HwttCsXL/cd5fe/D8FVRERESkEVILg7QoV3RtRafECI6cqGTejqNEBdv5cMNhn21OThgeHp7O7O15lFW7+cfiPQxJiyUjPvxCFltEREQkYJQwSItisVjokBhOh8RwhmfEA9CpVQT/XLYXt8dgaHocwXbfhCEsyMbk2/px/VtrAPhk4xEu6ZRInzZRWHRzNxEREWnmlDBIizehRzITeiSfcpu2saE8NDSNV5fv48MNh/lww2Fu6deGn47KvEClFBEREQkMjWEQOUNXd0/iorRY8+8p6w5x3Zur+d83B097UzgRERGRpkoJg8gZSogI5qXre7LsJ8PIiA8D4GBxJS8u2cOIl5ez+lBpgEsoIiIi0vCUMIicpWC7lXdu7cvrN/XGbq0Zw1Dp8vDN4bIAl0xERESk4SlhEPkeQhw2+rSJZtlPhvHQsDQANhwp57mvdrFg59HAFk5ERESkASlhEDkHNqvFnGL1SKmTaRuP8MuZ2/nvqhxyT1QGuHQiIiIi504Jg8g5Gpoex/9d2oFbesSZy/61fB+3T15HaZUrgCUTEREROXdKGETOkd1q4fpeKdzaK4EXru3B1d2TsFktFFe6+MWMrYEunoiIiMg50X0YRBrQ0Iw4hmbEYbNa+GxzLgeK1C1JREREmja1MIicB3cOaAtA3okq3lt7MMClEREREfn+1MIgch7EhjmwAAbwwuI9TNt4mL5tonlkRAYxoY5AF09ERETkjKmFQeQ8iAi286tLO5h/HyiqZMbWPMb+62veWp0TwJKJiIiInB21MIicJ9f3SmFEZgLL9xTw3rpD7C0oB+DVZftYsPMYvVKieGhYGuFB+hiKiIhI46Waish5lBAexDU9WzOuaxILdh3ld1/sACArv5Ss/FKqXB5+NjqTvBNVpMWFBbi0IiIiIv6UMIhcAMF2K1d0TaJvm2iW7Cnk7wt34zZg+pZc1h8qJud4BS9f34MhaXGnfzIRERGRC0gJg8gFlBwVwqQ+KXRLiuCeKRsAyDleAcAjn2yhZ+tIokMd9E6JAsBqsTAiM16tDyIiIhIwShhEAqB7ciTX9Uzm0825Pss3HzkBwLI9heayl5fu5YGL2zOxd4pmWBIREZELTgmDSABYLBZ+PbYTDw5NY/2hEr7eV4jdaqGk0kWIvWbysmNl1azYdxyA/6zYzzurD/Dubf1Ij1drg4iIiFw4ShhEAig2LIgxHRMY0zGhzvULdx3jmwNFfLThMJUuD7+dvZ337uh/gUspIiIiLZkSBpFGbHTHBEZ3TKB9bCh/XZjNoeJKXB4Du9US6KKJiIhIC6Ebt4k0ARP7pGAByqrdPDR1Ex7DCHSRREREpIVQwiDSBFgtFq7o2gqA9YeK2XS4JMAlEhERkZZCCYNIE/GLMR0ID7IB8N9VOfzvm4NUOt0BLpWIiIg0d0oYRJqIiGA7PxmRDsDX+47z4pI9/GLGtgCXSkRERJo7JQwiTciVXZP4weB2tI4KBmDl/uOM/udyfjBlA2XVrgCXTkRERJojJQwiTUiIw8aDQ9OYcd9gRmbGA1Ba5WbzkRI2HtK4BhEREWl4ShhEmqjnru7GlDv70yM5EoCZ2/IAqHC62XComPwTVYEsnoiIiDQTShhEmii71UKHhHDaxoYCMG/HUfYVlvPYp1v44YcbuebN1ezILw1wKUVERKSpU8Ig0sTdM6id+fjmd9ey5UhN1ySXx+CNlft5Z/UBco5XBKp4IiIi0sQpYRBp4tLjw3hsZAYAbo9Btfu7m7ot2l3AK8v28uy8nYEqnoiIiDRx9kAXQETO3W39UxnULoZFuwtwewxSokPYmV9K3okqFmUXsO5gMYeKK5i/4xhD0+PokBjOi4v3sGj3MX51aUcGt48N9CGIiIhII6WEQaSZ6JgYQcfECJ9lBWXVLM4uwACufXMNAK8s2+uzzT+X7WVHfindkyPp3zbmApVWREREmgolDCLNWHx4EJP6pPDhhsP1brM9r5TteTWDo++/qD33DWmHxWK5UEUUERGRRk5jGESauZ+NzmRMxwS/5XarhTsHtmV8tyRz2Wtf7+ejUyQXIiIi0vKohUGkmbNYLPzl6m7knqgkxG7jUHEl+wrL6ZcaTeuoEAB+e1knRr28nCq3h52ailVERERqUQuDSAuRHBlCTKiD7smRjO+WZCYLUNPa8LPRmQDM2JrHDW+toajCGaiiioiISCOihEFEAOjTJpowhw2AnOMVrMkpCmyBREREpFFQwiAiQM39HL588CKu6NoKgD0FZQEukYiIiDQGShhExBRst9KlVc3UrG+szGH3sTLKq90YhkFheXWASyciIiKBoEHPIuKjW3Kk+fiWd9f6rHtkeDp3Dmx7oYskIiIiAaQWBhHx0Tsliiu6tqJ1VDC2k27H8PLSvdz9/npKq1yBKZyIiIhccGphEBEfFouF31/RBQCn20OVy8ORkkru+2Aj5U43W3NP8OTsLP50VVdCvx0kLSIiIs2XWhhEpF4Om5WIYDsdEyP46scXkxgeBMCyvYVc++ZqKpxujpVVs6egDLfH8Nn3YFEF87OL+XxrLoeLKwNRfBEREWkAamEQkTNit1p4745+PDh1E9kF5RSWO7nsX19T6fKY24Q6rFiw0LlVBJsOF+M2APIA+M3YjlzTIxmLxVL3C4iIiEijpBYGETljsWFBfHDXAC5KiwXwSRYAKpweyp1u1h+qSRbCHd9dYp6dt4snPt+GYfi2RIiIiEjjphYGETlrv7u8M1f8Z6X598jMeH4wuB0Om4WNh0swDIgOtdM1ws1hVwj/XLaX7XmlLNpdwCWvfs3Q9Dgigm2kRIVwa/9UbFa1OoiIiDRWShhE5KwlhAfx2b0D+XRTLjarhRt7tyYhIhiAjokR5na5ubkMbhPL4PaxXPvmag4VV3KiysWcrHxzm5eW7uVP47tySacErOquJCIi0ugoYRCR76VNdCgPD08/4+1fur4nC3cdI/dEJaEOG++tPYh3nPSvZ22HWfD4qAxu7Zd6nkosIiIi34cSBhG5INrFhnLXoO9u+vbjYenM2JLLn+bvMpf9Y9EeEsKCuKRToropiYiINBIa9CwiAWGzWriuV2vW/HQEr07saS7/zewshrywlA/XHwpg6URERMRLCYOIBNzAdrG8cF0Pn2V/W5jN+NdW8t9VObqztIiISAApYRCRRmFoehyrHh/OR3cNMJfll1bzr+X7GP3PFbyz+kAASyciItJyKWEQkUbDarGQHh/G4oeH8stLOtAtKdJc98qyvXyxPY+iCmcASygiItLyaNCziDQ6YUE2JvZOYWLvFHYfLeOWyWsB+N0XOwC4tmcyDw9LJzrUEchiioiItAhqYRCRRq1DYjiz7x9Ml1bf3d/hs825XPqvrxn24jLmZuWzLfcEbo/uIC0iInI+qIVBRBq9xIhgJt/ej2qXh5eW7OHjjYdxG1Dl9vDb2VkApEaHMPn2foQH2bDoBnAiIiINRi0MItJkBNmt/HxMB1Y+PoIXru1BWlyoue5gcSWj/7mCH364EY+h1gYREZGGohYGEWmShmbEMTQjDsMwmLktj1eW7qWw3MnGwyXc+NY39GkTRa+UKK7p2TrQRRUREWnS1MIgIk2axWLh6u7JzLp/CJnxYQDkFFUwY2sef5y3i1GvLGfKukMs31vIiUrdz0FERORsqYVBRJoFu9XCW7f25dNNR6h2e/jnsn0AlFW7+fuibHO7x0dm4DFg2Z4CHDYrnRLD8RhgscCkvikkR4YE6AhEREQaJyUMItJshDps3No/FYCb+7ZhblY+M7bmUVhWzcHiSgD+sXiPzz4r9x83H0/+5iAvXteDi9PjLlyhRUREGjklDCLSLIU4bFzTs7U5huGL7XmsySniaGk1HsPgeIWTvm2isVst5JdWMX/nMQAe/XQLwXYrwzPiiQm1E+qw0TYmlLGdE4kI1iVTRERaHn37iUiLcEXXJK7omlTv+h8XVfDDDzdyrKyaKpeH+TuP+qz/0/xd2KwWkiODmdQnhQ6J4QxsG6MpXEVEpNlTwiAiAqTGhDLzh4PZnneCLUdOUFbtwuk2OFBUwZc7apIHt8fgUHGl2a3JZoFOrSIY2DaG8GA7mQnhpMWFkhQRTIjDFsjDERERaTBKGEREvmWzWujROooeraN8lj91eWdKqlx8tvkIOccrqHJ5WLDrGG4DtueVsj2v1O+5woNstI8NY1LfFDonRmCzWmgXG0q124PHMLCqZUJERJoIJQwiIqcRZLeSYA/iviHtzWWVTjd7CsrZebSUTYdLWJJdgMeA8moXbqNmdqZteSd4es4Ov+cLD9rLLf3acO+Q9titShxERKRxU8IgIvI9hDhsdEuOpFtyJNfWujmcYRgcK6umtMrNxxsPs2j3MUoqXVS6POY2ZdVu3liZw39X5XBNj2SiQhzEhjmwWSzYrBbiwxwMaBdDVIiDfYXlFJZX07dNtMZLiIhIQChhEBFpQBaLhcSIYBIj4BdjOvCLMR0A2FtQzuGSSsLdpXx1wMkH6w/hMeDTzbln/Nzp8WG0jQmlV+soBrWPoXVUCNnHynB5DKJD7KzOKcJtGITabbSKDGZoehzBdt2fU0REzo0SBhGRCyA9Poz0+DByc6v52eh23DukHUuyC9h4qJiyajd2qwUP4HIbZBeUkXO8wu859haUs7egnCXZBbDszF43PMhGelwYIQ4rraNCCLHbaB0VTO820SRGBOGwWrDbrATbrYRqoLaIiNRBCYOISADEhDqY0COZCT2S/dYZhkFxpQu3xyDUYaPa7WFfYTmlVS5mbctn46FiiiqdON0GAFHBdjwYdEqMoE10CBsPlZBTVJNwlFW72ZJ74ttnLj5lmTolhtO5VQTp8WHEhwUxtnMiDptaKEREWjolDCIijYzFYiEm1GH+HYaNPm2iARiWEQ/UJBUuj4HNaqlzxqUql4fdx8o4WlqFy2OQW1JFpcvNwaIKsvJKyT1RhdPtwek2ML7dZ+fRMnYeLTOf46k5O4gNdRDisGK1WAiyWYkIthFst5EZH0ZiRDAxoXYSwoOJCLYRFeIgLS5UYy1ERJoZJQwiIk2QxWLBYau/Yh5st9I9ORKIPO1zuT0GR8uq+CaniINFlczbcdRsoThe4QT/3lF8c6Co7te1WWkXG0pUiJ3kqGCSIkOICLYRE+ogMTyI5KgQWkeFYLPUHIMmiRIRafyUMIiItHA1d7AO4aruNd2jfjQ0jWqXh6IKJ4Xl1biNmqSiwumm0unmaFk1R0qqOFZaRVGFk/zSaiqcbg4XV1Ll9rDrWNlpXrHWa1ugVbiDsOCDBNlrxlKEOWzYrBbsVivRoXZiQx1EhTiICrETFWInITwIh61mXURQzddYiN2KXd2nRETOCyUMIiLiJ8hupVVkMK0ig894nyqXh535pRwtq+ZYWTUFZdUUVzoprXSRe6KKo6VV5J2owm18t4/bgCOlTih1nlN5Q+xWeqZEER5kw/btTFUp0SGkxYUSFxaEYRi4jZquXFEhDlKigsFiMVs6RESkfkoYRESkQQR/W2k/FZfbQ6XLg2GAxzAoq3aTlXOEyOgYql0GlS435U43bo+B021QVOGkqMJJSaWLE1Uu8k/UtGp4gIKyavN5K10e1uQUnXWZo0PsxIcHERPqwG6tuQ9GkM1KcmQw4cE27FYrdqsFx7czSQXbrYTYrSRGBBMWZCPUYSPIbsGKhbgwh1o5RKRZUsIgIiIXjN1mJaJWpTo61IE1MZTk5Nizfi6X22O2GmTll5JzvIJKp5vSajcHiio4cLyCw8WVGIDVAlaLhWq3h8Ly71oziitdFFe6GuLQsFsthAfZiAsPIjrEjs1iwWq11Pxvqen6FR3qINxhw2GzEmS3EBFsJzE8mCCbBYfdSpCtZnrbqhNV2COqCHHYsH67v/l/PQPdRUTOFyUMIiLSJNltVvNLrE+baHMmqdOpdLqpcnmodnvILami3OmmuNKJxwNuwyC/tIriChcutweXx6iZTcpj1Ozj8lBc6aSg3InT5aGs2o3T48HtqZm1qiETENh/yrW1k4gQu43YMAdBNisOm5VQh5W48CCz1aR20mKzWAj+dsyH7dtl3yU2NduHOqyEBdmwULOfd4C6938rFrB8VwbLt8ssFrBYwGG1Euyw+izzJjnWWoPdzcc++3+XIDlsNS0+hmHUHwgROe+UMIiISIsS4rAR8u1N6hIjznyMxqm4PQZHS2uSj8PFlVS7POZgcY9h4DYMXG6D4xVOqlxuql0GFS43+SeqqHB6cLprEphql4cKl4fi8mrKnR5OVU32fNutC6Da7aKkqqESlcbJbt1NsN1KRLAdC9SZyFgsFqzUSmK+/d/2bSJkt1qw2yxmV7Ogb1t1fBKfWglQva/xbbJ0ckLl9xy1Xv9s97Nyqte2UHS8nIPVRd9tf9J2tnr2q53c1bWfuR01iZ7l22056W9vG5el9rY++2l8UHOihEFEROQc2awWkqNCAMiIDz/n58vNzSUpKQmnuybh8CYHPo893z0+UVUzxsPpNmq6XZXVJBxmwuKpSVq8f1e6PLjcNcs8Hu96zG1Lq1xUuTx4DADv69R0//IYYGCY41AMAwy+e+wxDLNFxqi1DHyTHHNfAzx4HxvfPpd/TFweA1e1m7Jq9znHt/k4GOgCnJHaSQQnJxXftlZ5l323T80fdeUcZgKDpdb24DE82Kx7TtrWUiu58V3u3c/n/1NtUytRoo79/cpl8X/ek9cF2aw8NCyNi9Li/A+0EVHCICIi0ghZLBaC7Gf2C63//cKbPo9hUO2qubngodxcYuMTqXC6qXC6fZOXWklU7eTDN9Hi225jNYmS69suZFUuDy53TWLkOSkJ8pz0/Obr1LFdXa/nsx91lPPk16Ge1zspUfM+h9PpxGqz+zyX2zDqiMcpYlUrZrXXNzSDmsSw5o+TX6ChX9DTwM93/q3JKVLCICIiInK2rBbLt93HICbETtJZTPHbEuTm5pKcfH5SxdoJhreyb3Dy34ZZ96/9t1HrOWrvyxk+l39Zaj02/zfqXH/06DESExPM56y93qj1BOY6/PMXb7n89/1un++O+aTyGNSxr/+x1S6fw2alR+tTzy7XGChhEBERERGTdwxErQ44TUJIdRDJcWGBLkazpAmjRURERESkXkoYRERERESkXg3aJWnatGlkZ2fzxBNP+K1bu3Yts2fPJi8vj5iYGEaPHs0ll1zis82rr77Kxo0b/fa97777GDhwIACLFi3iiy++wOPxMGbMGK644gqfbf/1r3/RqlUrbrjhhgY8MhERERGRlqnBEoZ58+bx5ZdfkpmZ6bdu/fr1vP7664wYMYLrr7+erKwspk6dimEYXHrppeZ2Bw8e5KKLLmLEiBE++7dq1QqAQ4cO8cEHHzBp0iTCw8OZPHky7dq1o3v37gBkZ2eza9cu7rzzzoY6LBERERGRFu2cE4Zjx44xdepUNm3aRGhoaJ3bfPrpp/Tq1Ytbb70VgO7du+NyuZg1axYjR47E4XBQXl5OQUEB3bp1IyMjo87nycrKonXr1owZMwaoabXYvn27mTBMmzaNyy+/nPDwc58DW0REREREGmAMw0cffUR+fj6PP/44bdu29Vt/7Ngx8vLy6Nevn8/y/v37U15eTnZ2NgAHDhwAqPM5vCwWC0FBQebfNpsNj6dmvt0NGzZQWFhoJhMiIiIiInLuzrmF4ZprriElJaXe23/n5uYCkJSU5LPc283oyJEjdOnShQMHDmCxWFiwYAEbNmygrKyM9PR0Jk6cSHp6OgAZGRlMmzaNvXv3EhYWxs6dO7ntttvweDx8+umnXHPNNTgcjnM9JBERERER+dY5Jwxt2rQ55fqKigoAv+5KISEhAFRWVgI14xcMw8BisfDDH/6Q0tJSvvjiC55//nl++ctf0rZtW9LS0rjyyiv529/+hmEYjBw5kn79+rFkyRJsNhuDBw9m3rx5LF++nKioKCZNmkRqauq5HqKIiIiISIt1xgmDx+PBOOlWdTab7bT7nbzPybwtE5dddhkXXXQRnTt3Ntd16dKFJ598ktmzZ/PAAw8AMH78eMaNG4dhGNjtdqqqqpg5cyZ33HEHW7ZsYe7cuTz88MPs3LmTV155hT/+8Y/Y7eeWF52vOyk2ZYqJP8XEn2LiTzHxp5j4U0x8KR7+FBN/iom/horJGdekZ82axcyZM32W/ec//zntft6WBW9Lgpf3b+/6lJQUv33DwsLIzMzk4MGDPstrJyrz588nKSmJnj178tZbb9G3b1/S0tJo164dM2fOZM+ePXTq1OkMjlBERERERE52xgnD8OHD6dmz51m/gDezyc/PJy0tzVyen5/vs37VqlVER0fTpUsXn/2dTme9sx6dOHGCL7/8ksceewyAkpIS2rdvD4DVaiU0NJTi4uKzLrOIiIiIiNQ441mSYmJiSEtL8/l3JhITE0lMTGTdunU+y9euXUtYWJg5oHnBggVMmTIFt9ttbnP8+HGys7N9uinVNnPmTLp3724+R1RUFCUlJUBNolFaWkpUVNSZHqKIiIiIiJzknKdVPRNXXXUV69evZ/LkyWzZsoVp06axcOFCrrzySnOa1Kuuuoq8vDz+/e9/s2XLFlatWsXf//53wsLCuOyyy/yeMz8/nxUrVnDttdeay3r16sXatWtZu3Ytn3zyCeHh4WYyISIiIiIiZ6/B7vR8KkOGDMHtdjN37lxWrlxJXFwckyZN8rlnQs+ePXnkkUeYNWsWr7/+Olarle7du3P99dfX2SXps88+46KLLjKnZwXo168f+/fv57333iM6OpoHHnjA574NIiIiIiJydizG6aYxEhERERGRFuuCdEkSEREREZGmSQmDiIiIiIjUSwmDiIiIiIjUSwmDiIiIiIjUSwmDiIiIiIjUSwmDiIiIiIjUSwmDiIiIiIjUSwmDyCnoNiUi348+OyLfX3V1NaDPkTQeShjEpAuTv6qqKkCx8fJ4PIEugjQB1dXVWCyWQBejUamoqGDy5MkcP3480EVpNE6+nug6C5WVlXz00Ud88cUXeDwefY6k0bAHugCBsHjxYoqLi4mOjqZdu3akp6cHukgBt3DhQo4cOUJiYiIdOnRQTIB3332X3NxcnnjiiUAXpVFYvHgxe/fuJSwsjPbt2zN48OBAFynglixZwvHjx4mLiyMjI4M2bdrg8XiwWlvubzG5ubn84Q9/4Prrr+eSSy5p8fEAmDVrFnPnziU6Otr8EaKlmz9/Pjt27CA2NpYOHTowaNCgFl85njlzJl9++SXV1dUMGTKkxX9uoOYaW1RURFxcHJmZmbRu3brFX1MCVYdtUQnDgQMHePPNN3E6naSnp7Nu3TqKioq48cYb6d+/PyEhIRiG0aIuWkePHuW1117jxIkTtG7dmnXr1jFz5kzuvvtuevTogcPhaHExAXC73eTl5bFnzx6ys7PJzMxssRepAwcO8NZbb1FVVUV6ejqbN29mwYIFlJSUMHLkSIKCggJdxAvu0KFDvPHGG1RWVpKcnMz8+fOJiori8ccfJyEhocWeKwClpaW43W7mzZvHiBEjWuw1BGDjxo18+OGHeDwe83smLCws0MUKqMLCQl577TVKSkro2LEjO3bsYPny5bRq1Yq0tLRAFy8gNmzYwJQpU7BYLEyYMIGvv/6a1q1bB7pYAXXo0CHefPNNKisrSUhIIDs7m8TERB5++OEWe40NdB22RSUM8+bNIzg4mB/+8IckJSVhs9n48MMP+eCDDzAMg2HDhrW4L7WNGzfi8Xj48Y9/THJyMqWlpUybNo13332Xm2++mcGDBzf7mNT1ASspKSE/Px+A9957j9/97nct7uIENbFZsGABcXFxTJw4kYSEBFwuFx9++CHz58+nT58+JCYmBrqYF9ySJUuIjY3lpptuIj4+np07d/L222/z+eefc88997TIc8WrsrKS0NBQioqK+Pjjj7nllltaZMJw9OhR/vWvf9GrVy9uvvlmYmJifM6LlhgTgM2bN1NZWcmPfvQjs1JcWFhIUlJSi4tJSUkJL7zwAkePHmXUqFGMHj2ayMhIFixYgNPpBFruebJkyRJCQ0O5//77SUhIYPv27bz33nt89tln3HfffS3yGhvoOmyLiXhubi6bN2+mY8eOtGnTBrvdjsViYdKkSQQHB7Ns2TL27t0LNN9+lHUd17p160hISKBt27Y4HA5iY2O59957iYiIYMGCBezfv7/efZuLyspKwLc/7cKFCwkODua6667jyJEjLFq0yG+b5ujk9zk/P5+NGzeSkZFBcnIydrudkJAQBg4cSHFxMXl5eXXu15ycfGylpaVs3LiRlJQUkpKSsNvtdOjQgaioKJ+LdUuKSW0nTpwgKCiIsWPHsnjxYnJzc7FarS3qs2MYBomJiWRkZGCz2YiLi8NqteJ2u1m3bh0HDhzgxIkTde7bnNR1XGvWrCEhIYF27drhcDiwWq3k5+eTm5tLeXl5AEp5YdWOSVFRERkZGfz85z/n+uuvJy4ujqqqKioqKoiOjg5gKS+sk8+TkpISNm/eTHJysvm906VLF6Kjo3E6nXg8HgzDaLafG/CPSWOowzbbhMHbLO5VXV1NRUUFsbGx5jKPx2NWeAoKCtiwYUOzHmR0csW4srISi8WCw+EwY+V2u82T8MiRI6xZs6bZxsTj8fDhhx/y2muvAZi/WJSWlrJ161YuuugiBg4cSPfu3Zk+fTpOp7PZ/6rhPUe854PT6aS8vNxsRfCeO7V//QKa5fnhdXJMysrKKCsrIzk52dympKSEsrIywsLC2LVrF06ns0XEpK4k4OjRo3Tp0oW+ffsSExPDBx98ADTvcwR8Y+I91sGDB7N582YqKipYvXo1jz/+OO+//z5/+tOfeO6551i7dm2zvb5C3d85Ho+HmJgYAJYtW8bjjz/OO++8wx/+8AdeeOEF9u3b16wrgt6YGIZB27ZtufXWW2nfvj0WiwXDMHA4HAQFBVFcXBzgkl44J19j3W43QUFBVFRU+HzXuN1u2rdvT3FxMRaLpdl+bqDu7+JA12GbXe0nKyuL5557jpdffpl//OMfbNy4EafTSbt27UhJSWHTpk0cPXoUqKkgZmVlMWTIEFJTU1m/fj2HDh0K8BE0vLoqxoZhEBISQkxMDAcPHqSgoAAAm80GQM+ePenSpQsbN240WxmaG7fbzd69e8nKymLXrl3mcovFwlVXXcX48eOJi4tj2LBhuN1uPv74Y6B5tjKcfI7YbDYMwyA1NZXRo0f79Y30/jpau9Lc3NQXk6SkJB599FEGDBgA1HSneO6553A6nWzevJnnn3+el156iZ07dwLN69fj+pJs7zqomVmsvLycjIwMRowYQVZWFjt27MBisVBaWhqQcp9Pp4pJamoqiYmJvPbaayxfvpwJEybw0EMP8eMf/5jIyEg+/vhjtm7dGqiinzen+s4JDw/n2LFj7N+/n6VLl3L11Vfz4x//mFtvvZXy8nL+97//NcvvnJNj4q3w1j5fLBYLVVVV2Gw2s6LcnCvF9V1jY2Nj6dKlC7t27eKFF15gzpw5PP300xw9epSFCxfy9NNPM3nyZLMu15yc6rs4NTWVzZs3B6wO2ywSBu8X8po1a3jzzTdJSUmhZ8+euFwuJk+ebFb0rrrqKnbu3MlLL73E+++/z5///Gc+/PBD+vfvz3XXXUd+fj7Hjh3zec7moK6KscvlAmDMmDHk5uayc+dO8wvfm9FOmDCBo0ePNsskCqC4uJj8/HwcDgeffvqpuTw8PJwePXqY50CnTp246KKLWLx4MXl5eeaXX3NS1zniPR8mTJhAz549fX7R2bx5M23atCExMbFZJlBw6ph06NCBkJAQc9vLLruMn/70pzz++OM8/vjj7Nmzh+XLl5uteM3FqWLirfgcO3aMpKQkAPr160fHjh155513ePnll5k3b55ZEWou6oqJ9xqakpJCdHQ027dvJyMjg1GjRpGRkUGPHj245557KC0tZceOHeb1uLk41XfO0KFDycrK4pNPPqFVq1aMHDmS9PR0hg4dyg9+8AMOHjxIVlZWs7uunOqz42UYBlFRUURFRZk/4jW3ONR2qvPk2muv5fbbbycuLo45c+bQqVMnnnjiCR5++GEmTpzI8uXLWbZsmXm/iuairph4f6wbP348O3bsCFgdtlkkDN4v5DVr1tC+fXtuvvlmrrrqKp544glGjBjB4sWLWblyJf369eOee+6hffv27N27lzZt2vDUU0+Rnp5Oq1atiIuLIysry+c5m4O6KsbemUvatWtHz549mT9/vk8rg9vtJjU1lbS0NLZt2wY0ryQKasYpREREMGzYMI4cOcLixYuBmgu0w+Ewz4GwsDAGDhxIXFwcU6ZMAZrX+QF1nyPeXzZCQ0OB7764cnNz2bZtG7169QKaXyy8ThWT2mJiYhg9ejQpKSnExcXRuXNnBg8ezJ49e5pdP9u6YuJNoL2VZI/HY54rSUlJWK1Wjh8/zpEjR7j00kvNVszmor7zxO12ExoaSu/evenVqxdDhw7Fbq+ZZ8TpdJKcnEy3bt3Ys2cPdru92Z8nDocDgHbt2tGjRw927NhBQkKCOcuay+UiMzOTTp06kZWV1ex+mDnVZ8fLYrHgdDpp27YtBw8epKKioll3g63vPPF4PAQHB9O7d28SEhIIDw9nwoQJtGnThvbt2zN8+HD69evHli1bzK5czcWpzpO+ffsGtA7bbM7EoqIiDh8+TMeOHc0LkNVqZcSIEfTt25fPPvuMgoICBg0axH333ccvf/lL7rzzTnOWhtpNps3p5IP6K8be/pKXX345BQUFLF68mLKyMuC7rkmhoaG4XC5zbENTc+TIEXbu3ElhYaHP8qKiIrZu3crQoUMZPXo0qampfPnll+YF2lvh8Z4L6enpDB8+nKysLLZs2QI0r19+Tj5HlixZAuD3ZQawfft2nE4nvXv3NpcfO3aMTZs2medPc3Cqz01tVqvVrAx5z4nQ0FCzdaEpfm7qc6qYeK8ZJSUlZGRk8PXXX/PYY49RWFhIeno6ZWVl2O32ZjcA+nTnyejRo/nBD35gTgUJ31WeQ0NDqaqqwuVytYjzBCA6OpoBAwYQFBREQUEBJSUlAGYyFR4eTnl5ebMbB3Sm1xOHw0FMTAyVlZXmr8XN1anOk9qt2ampqcTFxfnsGx4eTklJSZOtm9TnVD9kAmYd9le/+tUFr8M2yYShrkpgTEwMHo/H/JXc26wVExPDZZddRlVVlTnTjcvl4tChQ2YfY4Ds7Gyqq6tJT09vkiff960YQ033issvv5yvvvqKFStWmPseOnSI3NxcunTp0uR+FaysrOTNN9/kueee4z//+Q9PP/00n376qXmXVavVytixY7n88stJTExk8ODBVFVVMWvWLJ/n8f56YbPZ6NOnD+3bt6+zr3JTcDbnyNy5c/2SJ28sNm3aRNu2bUlLS6O8vJwFCxbw9NNPM3/+/CaXbJ9rQul2uzlw4ABHjhwBas6J3NxcsrKyGDp0qE+3pabi+8bE7XZTUVGBy+XijTfe4MMPP+TKK6/kySef5Morr8TpdPLOO+8Azfuz442J3W73SRD27dvn073z8OHD7Nmzh/79+5uV5abk+8QEan6M6tatGwMHDmTDhg2sXbvW3Dc/P5/Dhw/Tt29fM6lqSs71euL9f/DgwRQVFZnXlaZ2Xa3tXK4nUNMitX//fp87pOfm5rJ3716GDx/eYq6xNpvNnB3K7XZz8ODBC16HbVJXqcrKSt577z02bdqE3W7H6XQyevRoRo0aRWxsLD169GDNmjXceOONZrOW1WqlTZs2DB06lCVLljBu3DjCw8NZuXIl69ato0OHDnTu3JnFixfTrl07MjMzA32YZ+V0MfFWjIcOHQrUXIg+++wzZs2axcSJE80YXXXVVRw4cIC5c+eyZs0a0tPT2bVrF2FhYXTr1i3AR3n2Zs2axcGDB/nRj34E1HxAp02bRlFRERMnTiQqKooBAwaYfQP79u1LVlYWK1as4OKLLyYlJcWMjffD17p1a4YPH05+fn6Tmh3oXM+R2rwteT179iQ7O5vJkydTWFjItddey6WXXhqIw/teGiomhmEwe/Zsdu/eTffu3WnTpg2rVq3C4/HQr1+/QB3e93KuMbHZbISGhtKmTRt69uzJ0KFDzdm1vD9KxMfHB/IQz1pDnSdut5svvviCXbt20b17d1JTU1mzZg0Oh8NsqWsqGiImUVFRXH/99Rw6dIipU6eyatUq8zvHYrGY3R2bioY6T7yJdHR0NF27duWrr75qsnfAPteYeGMxePBgNmzYwGuvvUanTp2Ii4tj6dKl2Gw2+vfvH8hDPGsNcZ5YLBZsNhurVq1i7dq1F7QOazGaUOo6bdo0tmzZwqRJk4DvKoEDBgzglltuYffu3bz++uuMGjWK6667zudOgLt37+aVV15h3LhxjBs3jqNHj7JmzRo2bdqE0+kkMzOTm266qcn9kn6qmEycOJHIyEiqqqoICgrCYrFQVlbGlClT2LZtGz//+c9JSUnB6XTicDgoKysjKyuLlStXUlFRQdu2bc2KQFPh8XgoKSnhz3/+M8OGDWP8+PHmOTBz5kyWLl3KgAEDuPHGG819vEnD5s2b+eCDD0hNTeXBBx/0eV7vNk3x7pINcY643W5sNhu5ubk8/fTTZmvDRRddxG233dbkfiFtyJjk5OSwcOFCjhw5gmEYpKenc+ONNzapzw00TEyg5kvR4XA0ueOvS0OfJwsWLDDPk4yMjBZ7nrhcLux2O8XFxaxbt45t27ZRXV1NSkpKk/vOgYaJSe3vFo/Hw7x58/j000/53e9+Z362mpKGup5ATTfYWbNmUVpaimEYdO7cucXW17yfnYKCAlatWnVB67BN4lveWwlcvXo1w4YNo3PnzlitVrp27Up5eTmLFy9m7ty5XHPNNfTo0YNly5YxdOhQWrVqZQY3JSWF+Ph4SktL8Xg8JCYmcuWVVzJmzBifgZ1NxelisnTpUubMmcONN95IcHAwUFPpDQ8PZ/Dgwezdu5fp06fz4IMPmgOgw8PD6d+/P3379sXlcpljQRq7wsJCSkpKiI2NJTo6muDgYCoqKmjdujVWq9VMiC699FJyc3NZvXo1AwYMID093WfO4u7du9O7d29WrFjB5s2b6dmzp/ll792mKSULDXmOeAf72mw2YmJiaNOmDTfddBOtWrUK8FGenYaOicfjoV27dtx1111UV1ebA12bkoaMCdAkuwic7HydJ3fffTeVlZUt/jvHO8g7Ojra/IXV6XQ2me8cr4aMife7xTAMrFYrgwcPZsiQIU3uBm4NfT3xeDx07dqVLl26UF5ejmEYREREBPIQz9r5+OzEx8df8Dpso639FBYWsm/fPoqLi7FarXVWAgEuvfRSOnfuzNKlSzly5AiXXHIJDofDnM3G+8tnSEgIRUVF5qA7b8NKSEhIk7lwn01MOnbsyOrVq807/9UeZOitGO/YsYPNmzf7rbdarU3iwl1dXc27777LX//6V/7zn//w5JNP8tlnn5Gbm0vr1q3Nwcne7mkhISFcfPHFhIaG8uWXXwKYXY68v+4MHjyYhIQE3n//fYAm9wvG+TxHLBYLERERPPbYYzzyyCNNJlk4nzGp3UDrcDh0LeG7KUWbmgt1ngQHB+s8OWm9xWJpEt85cP4/O94fp2JiYppMsnAhPjsWi4WwsLAmkyxcqM/OhazDNrqE4VwqgbNnzyYjI4PLL7+c7du3M23aNPLy8igrK2PZsmUEBwc3yakgVTH2V1JSwmuvvcaBAweYNGkSN954I6NGjWLOnDkcOnSIyMhIDhw4wL59+3z269atGx07duTgwYNkZ2eby72/7rRv355+/frRv39/3G53kxlsdiHOEaiZ1aWp3KztQn9umsI1RdcSfzpP/Ok88aeY+NNnx19zPk8aVZekkpIS3n33XYqLi5k0aRKGYbBv3z7mzJlDQkKCTyUwLS3N3K9bt27m3M05OTmMHj0awzCYMWMGS5YsITk5mYMHDzJ69Gif/ZqCc4lJx44d2blzJ9nZ2eZAmJMrxuXl5bjdbp/BvU3B/v372bNnD/fdd585KLtPnz5kZ2ezefNmLrvsMv7+97+zadMm2rRpg8PhMLsXDRo0iG+++YZjx475DBDyfjgvv/zyJnXh1jniTzHxp5j4U0z8KSb+FBN/iom/5h6TRtXC4K0EXnfddfTt25d+/fpx7bXXkpmZaVYCDx06ZA7yqD311qBBgygtLTWnIRszZgyPPPII119/Pd27d+f//u//fEbeNxXnGpOSkhK/uZy9zVmXX365OcCsqXwgvXbu3ElISAipqak+y1u1asWePXvo1KmTOR7h5BuZdO7cmaCgIIqKioDvmjy950ZTShZA50hdFBN/iok/xcSfYuJPMfGnmPhr7jFpVLXnhqwEAmRmZjJy5EgmTJjg95xNhSrGdUtOTiYoKIiKigqf4yovLycqKgqAG2+8EZfLxaJFi8jPzzePe9euXVRWVpr9Q5vSBakuOkf8KSb+FBN/iok/xcSfYuJPMfHX3GPSqBKGhqwENheqGNdtwIABTJo0iYSEBPO4SktLyc7OJiMjA4CEhAQmTJhAXl4eb7/9Nps2bSIrK4vFixeTlJREly5dAnkIDUbniD/FxJ9i4k8x8aeY+FNM/Ckm/pp7TBrVGIYBAwYQGxtbZyWwb9++wHeVwC+//JK3336bcePGERQUxLJly5pVJdBLMalbcHCwOXbBe4+EAwcOUFpaSvfu3c3tRowYQWxsLB9//DFvvvkmNpuN2NhY7rrrLmJiYgJU+oalc8SfYuJPMfGnmPhTTPwpJv4UE3/NPSaNKmFQJdCfYnJ63g/m+vXriYiIoGfPnuY6t9tN9+7d6dy5M8ePH6e0tLTJ3c37dHSO+FNM/Ckm/hQTf4qJP8XEn2Lir7nHpFElDLW19EpgXRST+hUWFrJhwwZ69OiBzWbD6XRy8OBBZs6cSceOHbnkkktISkoiKSkp0EU9r3SO+FNM/Ckm/hQTf4qJP8XEn2LirznGpNEmDKBKYF0Uk7odPnyYkpISevXqRXFxMbNnz2b58uWkpqYyZMgQHA5HoIt4wegc8aeY+FNM/Ckm/hQTf4qJP8XEX3OLSaNOGFQJ9KeY1O3gwYNYrVZ27drFRx99hM1m40c/+hE9evQIdNEuOJ0j/hQTf4qJP8XEn2LiTzHxp5j4a24xadQJgyqB/hSTutntdjweDytXrmTcuHFcfvnlgS5SwOgc8aeY+FNM/Ckm/hQTf4qJP8XEX3OLSaNOGFQJ9KeY1K1Vq1ZcffXVXHbZZU0ua29oOkf8KSb+FBN/iok/xcSfYuJPMfHX3GJiMbyTxTZCmzZt4sCBA6oE1qKY1M07I4HoHKmLYuJPMfGnmPhTTPwpJv4UE3/NLSaNOmFQJdCfYiKno3PEn2LiTzHxp5j4U0z8KSb+FBN/zS0mjTphEBERERGRwLIGugAiIiIiItJ4KWEQEREREZF6KWEQEREREZF6KWEQEREREZF6KWEQEREREZF6KWEQEREREZF6KWEQEREREZF6KWEQEREREZF6KWEQEREREZF6KWEQEREREZF6/X+tfOX2zriAOgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAF4CAYAAAD5U36FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABb0ElEQVR4nO3deVgUd77v8Xc3NKsgIJugAhJXwD1RY1wwiaJR4xKzmEz2TZOZE+Mkc3LunVzneJ/JMjO5SWZVs2oyWRx3SOIWo9GYaMBdccWdFhEFkZ3u+wena2yhXABl8fN6Hh+lftXFr75WV9enq35VFqfT6URERERERKQG1obugIiIiIiINF4KDCIiIiIiYkqBQURERERETCkwiIiIiIiIKQUGERERERExpcAgIiIiIiKmFBhERERERMSUAoOIiIiIiJhSYBAREREREVMKDCIiV+DRRx/FYrFc9s+QIUOqvba8vJz33nuPlJQUIiMj8fLyolWrVtx222388Y9/pLCw0G3+l156yVjesGHDauzP3/72N2Oem2++mcrKyhrnmz59eo39tFqt+Pn5ER8fzyOPPMKBAwfqXKOcnBzsdnudlyMiIo2LAoOIyDV08uRJbr31Vp566imWLVvGyZMnKS8vJy8vj/Xr1/PSSy/RtWtXMjIyjNf87ne/IzY2FoAVK1awcOFCt2WeOXOGV199FQAPDw9mzZqFh4fHVfXL6XRSXFzMwYMHmTNnDn379iUrK6tW61hUVMT//b//l/j4eDIzM2u1DBERabwUGERErtKGDRs4evRojX/mzZtnzFdRUcGYMWP4+eefARgyZAhff/01Bw4cYMOGDUyZMgWLxcLRo0cZPnw4R48eBcDPz4+//e1vxnKmTZtGSUmJ8fP06dM5ffo0AC+88AI9e/a8on5/+eWXRj8PHz7M1q1bGTt2LACnT5/mtddeq1U9/vCHP/Db3/622pkSERFpHhQYRESuUmRkJG3atKnxT1hYmDHf+++/z8aNGwG46667WLlyJSkpKbRv355+/frx17/+lTfffBOA3Nxc/uu//st47YgRI7jvvvsAyMrKMubbvXu3ESZiY2P57//+7yvud1hYmNHPdu3a0a1bN/7xj38Y7T/99FOt6uF0Omv1OhERaRoUGERErpFPP/3U+Pcf//jHGi8bmjp1Km3atAHgiy++oKioyGh75513CAoKAuCNN97gyJEjTJ06lYqKCqBqHIOfn1+d+ujp6Wn8++JlHT9+nCeffJKoqCi8vb2Ji4tj2rRpnD171phnyJAh/O53vzN+Tk5OxmKxAHDo0CFjzMSjjz7qtuwLx4QcOnQIgO+++86Y9vHHHzNq1Ch8fHyIiIhg8+bNbuMxTp8+zauvvkpMTAze3t4kJSUxd+5ct9/hcDh4++236dWrFy1atMBmsxEZGcmECRPYuXNnneomInIj8bz8LCIiciG73e52oH2hiIgIbDYbTqeTDRs2ANC2bVs6d+5c4/weHh4MHTqUOXPmUF5ezs8//8ygQYOMZb355ps8/fTTFBUVkZKSwu7duwG4//77GTFiRK3Xoby8nJMnT/LKK68Y05KTk41/Z2Vlceutt7oNYj506BBvvfUWX3/9NRs2bKBly5a1/v2X88ILLxjBxGKx0K1bNxYvXmy0jxs3ju+//974eceOHTz88MNERUVx++23A1WXcr399ttuyz158iQLFixg9erVbNy4kZtuuumarYOISHOhMwwiIlepf//+tG3btsY/rm+uT58+bZwJcJ1BMBMVFWX8++TJk25tTz75JAMHDgQwwkJwcHC1A+Er4fr232Kx4OXlRdu2bfnkk08A6NWrl1t4eP7557Hb7fj4+PDRRx+xd+9ePv30U/z8/Ni9e7cx6HrevHlMnTrVeJ1rnERd5efn8+GHH7Jz504+/vjjamdnduzYwZdffsnevXv5xS9+YUz/6KOPjH+/9957AAwbNozNmzdz4MAB3nvvPTw8PKisrGTRokV17qeIyI1AgUFE5BpwhQW4/DX+DofDdF6LxcLMmTPx8vIypr355ptERETUSz/79u3LX//6VzZs2EBAQABQdRemb775BoC7776b22+/HV9fXwYNGsSECRMAmDt3Lk6nk7CwMAIDA43lucZJ1NWgQYN49NFH6dq1K8OHD6/W/r/+1/9i4sSJdOjQgbfeesuYfuEZkVatWgFw4MABfvzxRyorK3niiSew2+3k5+fz61//us79FBG5ESgwiIhcpaysLJxOZ41/evToAVQdrLq+FT9y5Mgll3dhe2RkZLX2Ll260L9/f+PnJ554olb9/vLLL8nMzOSdd97B29sbqDqY7tq1q1sg2b9/vxFivvjiC7czKK5xAmfOnOHgwYO16gdcPkQlJiZesr1r167Gv0NDQ41xE+Xl5cb0v/zlL/j7+3PgwAEmT55Mx44dCQ8P57nnniMtLa3WfRcRudEoMIiIXAM2m43evXsDcOLECbZu3VrjfOXl5Xz77bfGa/r06XPZZbsOjq9WWFgYnTp14le/+pVxp6Xc3FxGjRrFrl27jPnMxmdc7NSpU1f8uy9+sNyFt4mtyeXGR/j6+rr9bLVW/zgbNWoUWVlZ/PnPf+auu+4iODiYU6dO8eWXXzJq1ChefvnlK+y9iMiNTYFBROQaufDOQFOnTqWsrKzaPDNmzCAnJweA++67r853PbpSjz/+uPEMhvPnz/Pwww8bB/Xx8fHGfE899ZTbGZQdO3Zw5MgRnE4n/fr1A9wDzIVnDlxnMQAKCgrcfv/lzrrYbLbardj/KC4uZtOmTSxbtowBAwaQmprK6dOn2blzJ927dweqzkCYPSFbRET+TYFBROQq2e12jh07ZvrH5YknnuDmm28GYPXq1QwePJjU1FQOHjzIhg0bePzxx5kxYwZQdVnN73//++u6Hv/4xz+M6/zT09ONsQCBgYGMHj0agI8//piZM2eyb98+UlNTufXWW2nXrh19+vQxwoGPj4+xzPT0dON5Dq1atTJCw6pVq9i6dSvl5eX89a9/5ccff7ym63by5En69+/PL37xC+69915WrFhBVlYWx48fJz8/H6i6Q1Vtz9aIiNxIdFtVEZGrdOF4gpq4DqS9vLxYunQp48aNY8OGDfz444/GgfiFoqOjWbJkCW3btr0m/TUTERHBn//8ZyZNmgRUPUH63nvvJSYmhjfeeIP169eTl5fHs88+6/Y6X19f3njjDeNg2/WNPcBLL70EQE5ODmFhYUyYMIF//vOfnD9/nh49emCxWHA6nfTt27fWD4q7ErGxscyYMYP/+q//Yv/+/QwbNqzaPK+++mqNlzKJiIg77SlFRK6hiIgIvv/+ez755BNGjBhBeHg4NpuNoKAg+vXrxxtvvMHu3bvp1atXg/TvgQceYPz48QAUFRXx/PPPA1UDrX/++Wcee+wx2rRpg81mo3Xr1kyYMIF169YZzzoAuPPOO/nlL39JdHQ0Pj4+JCUlUVxcDMDMmTN57rnnCA8Px9fXl/79+5OWlsZDDz10zdftlVdeIS0tjZSUFKKjo/H09CQoKIjk5GS+/PJLI9yIiMilWZyXu1WFiIiIiIjcsHSGQURERERETCkwiIiIiIiIKQUGERERERExpcAgIiIiIiKmFBhERERERMSUAoOIiIiIiJhSYBAREREREVMKDCIiIiIiYkqBQURERERETCkwiIiIiIiIKQUGERERERExpcAgIiIiIiKmFBhERERERMSUAoOIiIiIiJhSYBAREREREVMKDCIiIiIiYkqBQURERERETCkwiIiIiIiIKQUGEREREREx5dnQHRARuRE4nU7S09PZtGkTZ86cwd/fn06dOpGcnIy3t7cxX15eHsuWLePw4cNYrVa6du3KnXfe6TZPWVkZK1asYPfu3ZSVlRETE8Pw4cMJDQ015ikpKWHlypVkZmZSVlZGZGQkgwcPJj4+vl7Wp6Kigg0bNrB161YKCgoIDAwkKSmJ2267DQ8PD2O+EydOsHz5ck6cOIG3tzc9evRgyJAhbvNc6Msvv8TLy4uxY8e6TS8qKmLlypXs37+fsrIyoqKiuPPOO2ndunW9rI+IiJjTGQYRketg/fr1fPXVV3To0IH777+fW2+9lW3btvHll1/idDqBqoP8jz/+mMLCQsaOHcvtt9/Ozp07mTdvntuy5s+fz65du7jjjjsYN24c586d4+OPP6a4uBgAh8PB3Llz2bZtG/369eP+++8nJiaGzz77jMzMzHpZn2+++Ybvv/+eHj16cP/999OjRw/WrVtHamqqMc+ZM2eYM2cONpuNiRMn0r9/fzZs2MDXX39dbXlOp5NvvvmG3bt319j2xRdfsGfPHpKTk7nnnntwOp189NFHnDlzpl7WR0REzOkMg4jINeZ0Olm/fj29e/fmjjvuAKB9+/b4+voyf/58srOziYqKYtOmTRQXF/PMM8/g5+cHQGBgIP/85z85cuQI7dq14+jRo+zdu5dJkybRoUMHANq1a8c777zDpk2bGDRoEHv27OHEiROMGzeObt26Gb+vsrKSr7/+mk6dOmGxWGq9PkVFRaSnp3PHHXcwYMAAY/kAq1at4o477sDf359169bh7e3N/fffj4eHBx06dMBms/H1118zcOBAWrZsCcDJkyf5+uuvOX78OJ6e1T+W8vLyOHLkCKNHj6Znz54AtG3blj/84Q9s3bqVIUOG1HpdRETk8nSGQUTkGistLaVbt24kJSW5TXddQpSXlwfAgQMHaNeunREWAOLj4/Hy8mLfvn3GPDabze3SIn9/f2JjY9m/fz8Aubm5AHTq1Mnt98XGxlJQUMDJkyfrvD59+vSptnzX+ri+9T9w4AAdOnRwu/yoa9euOJ1Oo68ACxcuxOFw8OSTT+Lv71/t91VUVAC4XZbl5eWFp6encVZFRESuHZ1hEBG5xnx8fBgxYkS16a7Lg8LDw4GqA/2EhAS3eaxWK8HBwZw+fdqYJzg4GKvV/fue4OBgtm/fDmAEjrNnzxIREWHM4zqQP3PmDJGRkbVen+DgYO66665q0/fs2YPVaqVVq1aUl5eTn59Pq1at3Obx9/fH29vbWB+AcePGufXzYhEREcTFxbF27VrCwsIICAhgzZo1lJeXk5iYWOv1EBGRK6MzDCIiDeDYsWOsX7+ejh07GoGhpKTE7Vt0Fy8vL0pLSy85j7e3tzFPly5d8PHxYdGiRRw/fpzS0lL27t3LDz/8AFQNmq5vu3fvZsuWLfTp0wdfX1+jL5dbH+CSYcHlrrvuoqysjL///e+8+eab/PTTT4wePZq2bdvW30qIiEiNdIZBROQ6O3LkCJ999hlBQUHcfffdxnTX4OeauMYcXMk8fn5+/OIXv2Dx4sW89957AISEhDB06FAWLVqEzWar8fUOh6PatIvPZNRk9+7dzJ8/n3bt2nHnnXdetp8X9vVKnDp1ig8++ICgoCAmTpyIj48PO3fuZOnSpdhstmpnZUREpH4pMIiIXEc7duxg8eLFtGrVigcffNBtvIKPj4/bN+8upaWlBAYGGvOcP3++xnl8fHyMn6Oiopg8eTIFBQWUl5cTEhLCoUOHAPD19a2xb3PmzOHw4cPGzzExMTz66KOXXJ8NGzawYsUKYmNjue+++4xBy64zC2brU9OZBzM//vgjTqeTX/ziF0a92rdvT0lJCV999RVdu3at0yBuERG5NAUGEZHr5IcffnA7uL7wAB+gVatW1W4T6nA4OHv2LF26dDHm2b9/P06n0+0gOS8vzxh0XFRUxN69e+nYsaMRNACys7MBTMcvjBo1yu1yJS8vL9N1cd0GdePGjSQmJjJ27Fi3wc1eXl4EBAQYA7pdzp8/T1lZGWFhYabLvlh+fj6hoaFu4QqqAs2uXbs4f/48LVq0uOLliYjI1dEYBhGR6+Dnn39mxYoVJCQk8NBDD1ULC1B1R6RDhw65nUE4cOAAZWVlxl2R4uPjKSsrc7vL0Pnz5zl8+LAxj9PpZPHixezatcuYp6ysjIyMDGJjY03PMISGhhIVFWX8ufBBcBdbtWoVGzdupF+/fowfP77GB7HFx8ezb98+4y5HALt27cJisRAXF2e67Iu1atWKU6dOVbsj0tGjR/H29q4WJEREpH7pDIOIyDVWWFjIsmXLCAoK4pZbbjG+6XcJDg7G39+fPn36sHHjRubOncvgwYMpLi5mxYoV3HTTTcbg3piYGGJjY1mwYAF33nknvr6+rFmzBh8fH/r06QNU3YkoMTGR1atXY7PZ8Pf35/vvv6egoIDx48fXeX3sdjvr168nKiqKhIQEjh8/7tYeFhaGt7c3AwYMYMeOHXz66af079+f06dPs2rVKnr37m08g+FK9O/fn+3btzNnzhxuu+02fHx82L17Nzt27GDYsGFXNM5CRERqz+K83Mg0ERGpk82bN7NkyRLT9rvvvpsePXoAkJOTwzfffGN8e96pUyeGDRvmds1/cXExy5cvJzMzE6fTSdu2bRk+fLjbGYHS0lJWrlxJZmYm5eXltGnThuTkZKKjo+u8PqtXr2bt2rWm7Y888gixsbEAHD58mBUrVmC32/Hz86Nbt24kJyfXeEYC4O233yY2NpaxY8e6Tc/NzWXVqlVkZWXhdDoJCwtjwIABxqVaIiJy7SgwiIiIiIiIKZ3HFRERERERUwoMIiIiIiJiSoFBRERERERMKTCIiIiIiIgpBQYRERERETGlwCAiIiIiIqYUGERERERExJQCg4iIiIiImFJgEBERERERUwoMIiIiIiJiSoFBRERERERMKTCIiIiIiIgpBQYRERERETGlwCAiIiIiIqYUGERERERExJQCg4iIiIiImFJgEBERERERUwoMIiIiIiJiyvN6/8I9e/awcOFCjh8/jr+/P7feeit33XUXHh4eACxevJjvv/8em83G6NGjufXWW43XOp1Ofv/73zNgwACGDBlyvbsuIiIiInLDua6BISsri3fffZfu3bszatQojh07xpIlSyguLua+++5j+/btrFixgl/84hecP3+euXPnEhsbS1RUFACbNm2ipKSEgQMHXs9ui4iIiIjcsK5rYFiyZAmtW7fmqaeewmKxkJiYiKenJ/Pnz2f48OHs3r2bzp0707dvXwDWr1/Pnj17iIqKoqKigsWLFzN+/HjjbISIiIiIiFxb120MQ3l5OXv37qVnz55YLBZjeu/evXE4HOzcuRMALy8vo83DwwOn0wnAd999R4sWLejdu/f16rKIiIiIyA3vugWG3NxcKioqiIiIcJseHByMzWYjOzub+Ph49u7dy8mTJ8nKyuL48ePEx8dTXFzMV199xYQJE65Xd0VEREREhOt4SVJxcTEAPj4+1dp8fHwoKSmhV69eZGZmMn36dDw8PBgzZgwxMTEsXLiQuLg4brrpJubPn8/WrVuJjIzk/vvvJyQk5HqtgoiIiIjIDee6nWFwXVpkxmKxYLFYePDBB3n33Xd59913GT58OGfOnGH16tWMHz+eNWvWsHXrVp555hlCQ0OZNWtWrfvzm9/8xvidrj8TJkzAbrezYcOGam0WiwW73Y7dbqdPnz7V2j755BMA/vrXv1ZrGz58OAAFBQU1LvfUqVMAjBkzplrbW2+9BcC8efOqtfXq1ctYH29v72rta9aswW638+CDD1Zr++Uvf4ndbmfBggXV2qKioox1jYqKqta+YMEC7HY7v/zlL6u1Pfjgg9jtdtauXVutzdvb2+hvr169qrXPmzcPgLfeeqta25gxYwA4depUjTUsKCgAYPjw4dXa/vrXv1JZ6eBvf/tbtbY+ffoY61rTcjds2IDdbmfChAnV2n79619jt9v57LPPqrXFxcUZy23VqlW19nXr1gPw4osvVmt77rnnAMjIyKjWFhgYaNQwISGhWvuSJUsAeO2116q1TZw4EYBjx47VuK6HDx/Gbrdz6623Vmv705/+hN1u509/+lO1tltvvRW73c7hw4drXG5GRgZ2u53Ro0dXa/uv//ov7HY7H3/8cbW2hIQEY10DAwNrXC7Ac889V63txRdfBKjxvRwWFmYs96abbqrWvmzZMgCmT59era0u+4i//OUv2O32Gv9vhgwZgt1uZ9++fTUud9euXVRWOup9H+G6FPTJJ5+s1vbKK68AVZeDXtzWpk0bKisd5OTk1HofsWbNmmpt3t7eRg2TkpKqtc+ePRu73V7j/01d9xEAn3zySbW2/v37GzWsabn79+8H4KGHHqrWVpd9RGpqKna7nWeeeaZa22OPPYbdbmf58uXV2gICAozldu7cuVp7XfYRpaWlAAwZMqRa23vvvQfAe++9V+P2DVBUVFzjcmu7j+jUqZOxrgEBAdXaly9fjt1u57HHHqvW9uyzz1JZ6aj3fcRDDz0EwP79+2tcV5f+/ftXa/vb3/5W633Ejh07sNvtNW7f06dPx263M3v27GptSUlJRg3rex/h0qZNm2rt3333HQCvvPJKtbYnn3wSgJ07d1Zrq8s+Yvjw4djtdnbs2FFjDfft24fdbq9x+37ttdfIyclhzpw51drqso+YPn06AMuWLavWdtNNNxnLDQsLq9a+YcMGKisdPPvss9XarnQf0alTJ66UxXm5I/l6cuLECX73u9/x9NNPVxuH8Pzzz5OcnFzjJUdz5szB4XDw6KOP8sc//pHExERSUlIoKCjgpZde4ve//z2tWrW66v5kZ2eTnZ3tNi04OJi4uDhKSkrYtWtXtde4Pnz37NnD+fPnjel/W5dFvlcI3i1aUlJwhqI8u9vrPH38CYxsh8NRydkje6stN6jNTVg9bZw7eZTy4kK3Nt/gcHxbtqL0fAHnTx13a/Ow+dAyOq5qvjOHmDwg1q29S5cu+Pr6cvjwYU6fPu3WFhERQXR0NOfOnWPfvn1ubTabjaSkJAC2b99OeXm5W3uHDh0ICAjg+PHjnDx50q2tVatWxMTEUFxczO7du/nbuixOFJT8T6uFkNjOAOQfz6KyvMTttf5h0Xj7B1Kcf5riMznuffJtQUBEWxwV5Zw9tv/iEhLUriNWqwcF9iNUlJx3a+scH8dbD9xKXl4ehw4dcv+d/v7GG8Z1AHqhrl274uPjQ1ZWFmfOnHFra926Na1bt6agoMDYIbh4e3sbB7zbtm2joqLCrb1jx468sfYYO/dnUVKQ5/7aFkH4h7amorSYgmz3/mKxEhJT1d/84wepLC91a24R1gYv/wCKz+ZSfPaUW5vNL4CA8DZUVpST/z81jAr0YcptVdtQjx49sFqt7N27l8JC9+2wXbt2hIaGkpuby5EjR9x/Z4sWdOzYEYfDwZYtWy4uIYmJiXh5eXHw4EHOnj3r1hYVFUVkZCRnz57l4MGDAMY242HzpmV0ewDyDu8Bp8PttYGtY/H09uV8bjalhe7L9QkMwS8kgvKSIs7ZD19UQk+C23UA4OyxAzgqytzaAyLaYvNtQSiFPNy1hVtbbfcRALGxsYSEhHDq1CmOHj3q/jsDAujQoQOVlZVs3bq12nKTkpKw2Ww89/5ysrLd/1+vdB+RdygTcN/dB0bF4enlQ2FuNmXVatgKv5BwyovPc+6k+/9525AAZk6pOkCv6z7iQhaLhZ49ewKwe/du48y0S1xcHMHBwZw8eZLjx93X9f3NueR7h9ZqH+EXEolPYDClhfmczz3h1ubp7Utg61gA8g659xegZVR7PLy8Kcw5TqhnmfF+grrvI1q0aMGxY8fIyXHfH4aGhtKuXTuKiorIzMx0a7NarfTo0QOAXbt2UVJS4rYfvtp9xIWC23XCYrVSkH2YitIi9xq2isQnIJiSc2coOn3RZ6C3H90TuvC7lI71so9w8fHxoWvXrgBs2bIFh8N9H9G5c2f8/Pw4cuQIubm5bm3h4eG0adOG38xPZ/tu9xpe6T6i+Owpis+6L9fLL5AW4dFUlpWSf8K9vwAhsV0AKMg+REVp1fbt2g/Xxz7iwIED5Ofnu7VFR0cTERHBmTNnyMrKcmvz9fWlS5eqPm3evNn4cte1zdR2H2Hx8CS4bVUNzxzdh7PSffsOiGiHzdeforwcSgrcj0+8WgTRIrQ1FWUltCjMdntP1WUf0bJlS+Lj4ykvL2f79u3Vati9e3c8PDzYt28f586dc2tr27YtYWFh5OXl8fInqy84rrm6fURZUYFbm29QKL5BYZQXF3LupPv/udXTi6A28QCcObIPp8O9hkldOvPGhN513ke43kOXc90CQ3l5Ob/61a8YM2YMI0aMMKafOXOG//zP/+SRRx5xe+YCVIWM119/nenTpxMSEsKrr77KnXfeycCBA6msrGTKlCn853/+J3FxcRf/uuvqoU8y2JNTePkZr6FO4S345KFel5/xOlNtzKk2NWsMdQHV5lJUm5o1xrqAanMpqk3NGkNdQLW5lOtdm+t2SZLNZqNjx45s3rzZ7VuA9PR0rFYrnTt3rvaaBQsWMHjwYGOcQmBgoHFa2fUtREBAwLXvvIiIiIjIDeq6BQaAu+66iyNHjjBz5ky2b9/ON998Uy0UuOzdu5cDBw6QkpJiTOvWrRvff/8927ZtY+HChbRt27ZWlyOJiIiIiMiVua4PbuvYsSOTJ09m6dKl/OMf/yAgIICUlBRGjRpVbd758+eTkpKCv7+/MS05ORm73c4HH3xAZGSkMQhHRERERESujesaGKBqUEn37t0vO59r9P2FbDYbDz/8MA8//PC16JqIiIiIiFzkul6SJCIiIiIiTYsCg4iIiIiImFJgEBERERERUwoMIiIiIiJiSoFBRERERERMKTCIiIiIiIgpBQYRERERETGlwCAiIiIiIqYUGERERERExJQCg4iIiIiImFJgEBERERERUwoMIiIiIiJiSoFBRERERERMKTCIiIiIiIgpBQYRERERETGlwCAiIiIiIqYUGERERERExJQCg4iIiIiImFJgEBERERERUwoMIiIiIiJiSoFBRERERERMKTCIiIiIiIgpz/pc2Pz58zlw4AAvv/xytbb09HS++uorTp48SVBQEMnJydx+++1Ge2VlJZ9//jk///wzAQEB3HvvvSQmJhrtZWVl/Pa3v+Whhx4iKSmpPrstIiIiIiIm6u0Mw4oVK1i+fHmNbZs3b2b27NnEx8czefJkevbsybx581i5cqUxz9q1a9m8eTOPPPIIvXr1Yvbs2Zw7d85oX7VqFeHh4QoLIiIiIiLXUZ3PMOTm5jJv3jy2bduGr69vjfMsXLiQbt26MWnSJAASEhKoqKggLS2NwYMHY7PZyMzMpHfv3vTo0YPu3bvz3XffcejQIZKSkigsLGT58uX86le/qmt3RURERETkKtT5DMOXX35JTk4OU6dOpW3bttXac3NzOXnyJL169XKb3rt3b4qKijhw4IAxzcvLCwCLxYKHhwcOhwOAtLQ0unTpQlxcXF27KyIiIiIiV6HOZxjuvvtuoqKisFgsNbbb7XYAIiIi3KaHh4cDkJ2dTefOnWnfvj0bNmxg6NChHD58mNLSUmJiYsjNzWX9+vX87//9v+vaVRERERERuUp1DgzR0dGXbC8uLgaodrmSj48PACUlJQAkJydz8OBBXnnlFXx9fXnooYcICgrivffeo1+/fgQFBTF37lz27dtHTEwM999/P/7+/nXtvoiIiIiIXMIVBwaHw4HT6XSb5uHhcdnXXfyai7nOTHh5eTF58mTKysqw2WxYLBYOHz7M9u3bmTFjBkuWLMFutzNlyhSWLFnCp59+ytNPP32l3a8mLy+PsrKyWr8ewNPTk9DQ0Doto77l5uZSUVHR0N1QbS5BtalZY6wLqDaXotrUrDHUBVSbS1FtatYY6wKqzaXUtTaRkZFXNN8VB4a0tDRSU1Pdps2cOfOyr3OdWXCdSXBx/XzxmQfXOAaouk3rHXfcQWBgIOnp6YwfP57IyEjuvPNO3nzzTRwOB1Zr7YZhhISE1Op1jV1j3JgbC9XGnGpjTrUxp9rUTHUxp9qYU23MqTbmrldtrjgwDBw4sFa3NHUll5ycHGJjY43pOTk5bu0X27FjB9nZ2UyZMgWAgoIC4xIkPz8/HA4HhYWFBAYGXnWfRERERETkylxxYAgKCiIoKOiqf0FYWBhhYWFkZGRwyy23GNPT09Px8/Or8c5HDoeDhQsXctdddxljHQIDAykoKAAgPz8fq9WqMQwiIiIiItdYvT7p2cyoUaP48MMPmTt3Lj179mTPnj2sXr2aCRMmuF2C5PLTTz9RVlbGwIEDjWndunVj+fLltGjRguXLl9OtW7crGkMhIiIiIiK1d10CQ79+/aisrGTZsmX8+OOPhISEcO+99zJ06NBq85aXl7N48WImTpzoFgjGjBnDnDlzmD17NnFxccZD4ERERERE5Nqp18Awbdo007YBAwYwYMCAyy7DZrPx+uuvV5vu7+/P5MmT69Q/ERERERG5OnV+0rOIiIiIiDRfCgwiIiIiImJKgUFEREREREwpMIiIiIiIiCkFBhERERERMaXAICIiIiIiphQYRERERETElAKDiIiIiIiYUmAQERERERFTCgwiIiIiImJKgUFEREREREwpMIiIiIiIiCkFBhERERERMaXAICIiIiIiphQYRERERETElAKDiIiIiIiYUmAQERERERFTCgwiIiIiImJKgUFEREREREwpMIiIiIiIiCkFBhERERERMaXAICIiIiIipjzrYyEnTpxg0aJFZGVlUV5eTnR0NKNGjaJLly5u861Zs4ZVq1aRl5dHWFgYI0aM4JZbbjHai4uLmTNnDrt27SIsLIwHH3yQuLg4oz0/P59XX32Vl19+mejo6ProuoiIiIiIXEKdzzCcOXOGP/7xj5w5c4YHHniAJ598khYtWvDOO++wfft2Y75Vq1bx2Wef0adPHyZPnkxcXBzvv/8+mzdvNuZJS0vj2LFjPPXUU8TExDBr1iwqKiqM9qVLl9KzZ0+FBRERERGR66TOZxjWrFlDRUUF//Ef/0GLFi0A6Nq1KzNmzOCbb74hKSmJsrIyUlNTSU5OZsyYMQAkJCRQWFjI4sWL6dmzJwCZmZkMGjSIxMRE4uLiWLduHTk5OURFRWG329m4cSPTp0+va5dFREREROQK1fkMQ1hYGHfeeacRFgCsVivh4eHk5+cDkJWVRVFREb169XJ7be/evcnOzubUqVPGNJvNBoCnZ1WWcTgcACxYsIDBgwcTEhJS1y6LiIiIiMgVqnNgGDBgAKNHj3abdv78efbu3UtUVBQAdrsdgIiICLf5wsPD3drbt29Peno6hYWFrF+/noCAACIiIti/fz/79u0jJSWlrt0VEREREZGrUC+Dni/kcDiYO3cuJSUljBgxAqgazAzg6+vrNq+Pj49b++jRo5k1axbTpk2jZcuWPP7449hsNhYsWEBKSgpOp5OZM2dy/PhxunTpwoQJE/Dy8qrvVRARERERkf9xVYHB4XDgdDrdpnl4eBj/Li8v58MPP2Tz5s088MADxh2OXJcVmbFYLAAEBAQwbdo0SktL8fb2BiAjI4O8vDyGDh3KBx98gMViYcqUKcydO5elS5cyYcKEq1kFQ15eHmVlZbV6rYunpyehoaF1WkZ9y83NdRso3lBUG3OqTc0aY11AtbkU1aZmjaEuoNpcimpTs8ZYF1BtLqWutYmMjLyi+a4qMKSlpZGamuo2bebMmQCcO3eOv//972RlZTFp0iQGDx5szOPn5wdASUmJMUbB9TNUP/PgCguVlZUsWrSIu+++G6vVypYtW3jppZeIjIxkyJAhLFy4sNaBobmOhWiMG3NjodqYU23MqTbmVJuaqS7mVBtzqo051cbc9arNVQWGgQMHkpSUVG16Tk4O77zzDgUFBTzzzDP06NHDrd01diEnJ4eAgAC314F5ulm3bh2enp707duXc+fO4XA48Pf3B8Df35+CgoKr6b6IiIiIiFylqwoMQUFBBAUFuU07d+4cb731FmVlZbz44otuD1pziY+Px9vbm4yMDOLj443p6enpRERE1JiOSkpKSE1N5eGHH8ZqtdKiRQusVisFBQVERESQn59PYGDg1XRfRERERESuUp0HPf/rX//izJkzTJgwAafTycGDB/+9cE9P2rVrh5eXF8OHD2fp0qV4eHjQsWNHMjIy2LZtG08//XSNy12xYgWRkZHGGQ0PDw8SEhJYunQpw4YNY8WKFdXOZIiIiIiISP2qU2BwOp3Gk5rnz59frT0oKIg33ngDgJEjR+Lh4cHatWtZtWoV4eHhPPHEE9WezQBQUFDAypUreeGFF9ymT5o0iQ8//JDZs2eTkJBQ7XauIiIiIiJSv+oUGCwWC+++++4Vz5uSknJFz1IIDAzknXfeqTY9JCSEadOmXXU/RURERESkdur84DYREREREWm+FBhERERERMSUAoOIiIiIiJhSYBAREREREVMKDCIiIiIiYkqBQURERERETCkwiIiIiIiIKQUGERERERExpcAgIiIiIiKmFBhERERERMSUAoOIiIiIiJhSYBAREREREVMKDCIiIiIiYkqBQURERERETCkwiIiIiIiIKQUGERERERExpcAgIiIiIiKmFBhERERERMSUAoOIiIiIiJhSYBAREREREVMKDCIiIiIiYkqBQURERERETHnWdQGnT59m/vz5ZGZmUllZSefOnRk/fjwRERFu86Wnp/PVV19x8uRJgoKCSE5O5vbbbzfaKysr+fzzz/n5558JCAjg3nvvJTEx0WgvKyvjt7/9LQ899BBJSUl17baIiIiIiFyBOp1hKC4u5q233iI7O5uHHnqIxx9/nLNnz/LHP/6RwsJCY77Nmzcze/Zs4uPjmTx5Mj179mTevHmsXLnSmGft2rVs3ryZRx55hF69ejF79mzOnTtntK9atYrw8HCFBRERERGR66hOgWHTpk3k5uYyZcoUevXqRffu3XnqqacoKChg06ZNxnwLFy6kW7duTJo0iYSEBCZMmEBycjJpaWmUl5cDkJmZSe/evenRowd33303FouFQ4cOAVBYWMjy5csZP358XborIiIiIiJXqU6BoXfv3vzmN78hLCzMmObpWXWVU0VFBQC5ubmcPHmSXr16VXttUVERBw4cMKZ5eXkBYLFY8PDwwOFwAJCWlkaXLl2Ii4urS3dFREREROQq1Skw+Pv70759e6AqIBw9epSPPvoIf39/+vTpA4DdbgeoNqYhPDwcgOzsbADat2/P9u3bOXPmDFu2bKG0tJSYmBhyc3NZv349Y8eOrUtXRURERESkFuo86NnlnXfeYe/evVgsFiZNmkRwcDBQNc4BwNfX121+Hx8fAEpKSgBITk7m4MGDvPLKK/j6+vLQQw8RFBTEe++9R79+/QgKCmLu3Lns27ePmJgY7r//fvz9/eur+yIiIiIiUoMrDgwOhwOn0+k2zcPDw/j36NGjcTqdbNmyhU8//ZTCwkJGjhxZ7TUXs1gsQNXlSJMnT6asrAybzYbFYuHw4cNs376dGTNmsGTJEux2O1OmTGHJkiV8+umnPP3001ezrm7y8vIoKyur9euh6vKr0NDQOi2jvuXm5hqXgzUk1cacalOzxlgXUG0uRbWpWWOoC6g2l6La1Kwx1gVUm0upa20iIyOvaL4rDgxpaWmkpqa6TZs5c6bx744dOwLQqVMnCgsL+eqrrxg+fLhxZsF1JsHF9fPFZx5c4xgA5s+fzx133EFgYCDp6emMHz+eyMhI7rzzTt58800cDgdWa+2uqgoJCanV6xq7xrgxNxaqjTnVxpxqY061qZnqYk61MafamFNtzF2v2lxxYBg4cGC1W5oeOHCA/Pz8agOaY2Ji2LhxI4WFhUZyycnJITY21pgnJycHME82O3bsIDs7mylTpgBQUFBgXILk5+eHw+GgsLCQwMDAK10FERERERG5SlccGIKCgggKCnKbtmDBAlatWkVcXJwxZgFg586dtGzZkoCAAKxWK2FhYWRkZHDLLbcY86Snp+Pn51fjnY8cDgcLFy7krrvuMsY6BAYGUlBQAEB+fj5Wq1VjGERERERErrE6DXpOTk7mhx9+4C9/+QsjR47Ey8uLH374gd27d/PEE08YlwuNGjWKDz/8kLlz59KzZ0/27NnD6tWrmTBhgtslSC4//fQTZWVlDBw40JjWrVs3li9fTosWLVi+fDndunVzG0MhIiIiIiL1r06BITg4mJdeeolFixbx2WefUVJSQrt27Xj++edJTEw05uvXrx+VlZUsW7aMH3/8kZCQEO69916GDh1abZnl5eUsXryYiRMnugWCMWPGMGfOHGbPnk1cXByTJk2qS9dFREREROQK1Pm2qhERETzzzDOXnW/AgAEMGDDgsvPZbDZef/31atP9/f2ZPHlyrfooIiIiIiK1U6cHt4mIiIiISPOmwCAiIiIiIqYUGERERERExJQCg4iIiIiImFJgEBERERERUwoMIiIiIiJiSoFBRERERERMKTCIiIiIiIgpBQYRERERETGlwCAiIiIiIqYUGERERERExJQCg4iIiIiImFJgEBERERERUwoMIiIiIiJiSoFBRERERERMKTCIiIiIiIgpBQYRERERETGlwCAiIiIiIqYUGERERERExJQCg4iIiIiImFJgEBERERERUwoMIiIiIiJiyrO+F3j69Gn++7//m+TkZMaOHevWtmbNGlatWkVeXh5hYWGMGDGCW265xWgvLi5mzpw57Nq1i7CwMB588EHi4uKM9vz8fF599VVefvlloqOj67vrtRYX4tfQXWgUfRARERGR5qdeA4PD4eCjjz6ipKSkWtuqVauYN28eI0eOJD4+nvT0dN5//31sNhs9e/YEIC0tjWPHjvHUU0+xefNmZs2axYwZM/D0rOrm0qVL6dmzZ6MKC5UOJzNGdm7obgBVffGwWhq6GyIiIiLSjNTrJUkrV67k1KlT1aaXlZWRmppKcnIyY8aMISEhgYcffpju3buzePFiY77MzEwGDRpEYmIi48ePJy8vj5ycHADsdjsbN25kzJgx9dnlOquvA/Tc3Nw6L0NhQURERETqW70FhuPHj7NkyRIefvjham1ZWVkUFRXRq1cvt+m9e/cmOzvbLWTYbDYA46yCw+EAYMGCBQwePJiQkJD66nKjUlFR0dBdEBERERGppl4CQ0VFBR988AG33norXbt2rdZut9sBiIiIcJseHh7u1t6+fXvS09MpLCxk/fr1BAQEEBERwf79+9m3bx8pKSn10V0REREREblC9TKGYcmSJZSWljJhwoQa24uLiwHw9fV1m+7j4+PWPnr0aGbNmsW0adNo2bIljz/+ODabjQULFpCSkoLT6WTmzJkcP36cLl26MGHCBLy8vOpjFUREREREpAZXFRgcDgdOp9NtWlZWFitXruTFF1/E29vb9HWXYrFUXXsfEBDAtGnTKC0tNZaVkZFBXl4eQ4cO5YMPPsBisTBlyhTmzp3L0qVLTUPK5eTl5VFWVlar114LpaWlxpmW5sDT05PQ0NCG7oab3NzcRnHpl2pTs8ZYF1BtLkW1qVljqAuoNpei2tSsMdYFVJtLqWttIiMjr2i+qwoMaWlppKamuk0LDQ1lyJAhxMXFUVlZ6dZWWVmJh4cHfn5Vt/wsKSkxxii4fobqZx5cYaGyspJFixZx9913Y7Va2bJlCy+99BKRkZEMGTKEhQsX1jowNLaxEHa7/Yr/06R2GuMbvbFQbcypNuZUm5qpLuZUG3OqjTnVxtz1qs1VBYaBAweSlJRk/Lx3717mz5/PqlWrWLVqldu8X3/9NV9//TUzZ840xi7k5OQQEBBgzOO6A5LZgfK6devw9PSkb9++nDt3DofDgb+/PwD+/v4UFBRcTfdFREREROQqXVVgCAoKIigoyPg5MjKSjh07VpvvtddeY8CAAQwaNAiA+Ph4vL29ycjIID4+3pgvPT2diIiIGtNRSUkJqampPPzww1itVlq0aIHVaqWgoICIiAjy8/MJDAy8mu6LiIiIiMhVqtOgZx8fH2JjY2tsCwwMNNq8vLwYPnw4S5cuxcPDg44dO5KRkcG2bdt4+umna3z9ihUriIyMNM5oeHh4kJCQwNKlSxk2bBgrVqygR48edem+iIiIiIhcRr0+uO1SRo4cydixY/n555/5+9//TlZWFk888US1ZzMAFBQUsHLlSsaPH+82fdKkSTidTmbPnk1kZCSjR4++Xt0XEREREbkh1cttVS82c+bMatMsFgspKSlX9CyFwMBA3nnnnWrTQ0JCmDZtWr30UURERERELu+6nWEQEREREZGmR4FBRERERERMKTCIiIiIiIgpBQYRERERETGlwCAiIiIiIqYUGERERERExJQCg4iIiIiImFJgEBERERERUwoMIiIiIiJiSoFBRERERERMKTCIiIiIiIgpBQYRERERETGlwCAiIiIiIqYUGERERERExJRnQ3dAmre4EL+G7kKj6IOIiIhIU6XAINdMpcPJjJGdG7obQFVfPKyWhu6GiIiISJOjS5LkmqmvA/Tc3Nw6L0NhQURERKR2FBik0auoqGjoLoiIiIjcsBQYRERERETElMYwiIiINGON4cYPjaEPIlJ7CgwiIiLNlG4+ISL1QZckiYiINFO6+YSI1Id6OcOwcuVK5s2bV236oEGDePDBB42f16xZw6pVq8jLyyMsLIwRI0Zwyy23GO3FxcXMmTOHXbt2ERYWxoMPPkhcXJzRnp+fz6uvvsrLL79MdHR0fXRdRERELkM3nxCp0lgur7ve/aiXwHDs2DHatGnjFg4AAgMDjX+vWrWKefPmMXLkSOLj40lPT+f999/HZrPRs2dPANLS0jh27BhPPfUUmzdvZtasWcyYMQNPz6puLl26lJ49eyosiIiIiMh11Zgu8YPre5lfvQSGo0ePEhcXR/v27WtsLysrIzU1leTkZMaMGQNAQkIChYWFLF682AgMmZmZDBo0iMTEROLi4li3bh05OTlERUVht9vZuHEj06dPr48ui4iIiIhcsfq8xC80NLTOy7mel/nVeQxDRUUF2dnZtG3b1nSerKwsioqK6NWrl9v03r17k52dzalTp4xpNpsNwDir4HA4AFiwYAGDBw8mJCSkrl0WEREREWkQTfESvzqfYcjOzqayspL9+/ezcuVKcnNzjfEJ/fv3B8ButwMQERHh9trw8HCjPSwsjPbt25Oenk6fPn3YuHEjAQEBREREsH//fvbt28cjjzxS1+6KiIiIiMhVqHNgOHr0KAAFBQXce++9WK1WfvzxRz766CPKy8sZNGgQxcXFAPj6+rq91sfHB8BoHz16NLNmzWLatGm0bNmSxx9/HJvNxoIFC0hJScHpdDJz5kyOHz9Oly5dmDBhAl5eXnVdBRERERERMXFVgcHhcOB0Ot2mJSQk8Nxzz5GQkICHh4cx7dy5cyxZsoTbbrvNuKzIjMVSdQ1WQEAA06ZNo7S0FG9vbwAyMjLIy8tj6NChfPDBB1gsFqZMmcLcuXNZunQpEyZMuJpVMOTl5VFWVlar114LpaWlxpkYcdfcauPp6Vkv1y7Wp9zc3AY/RdoY6wKqzaWoNjVrDHWpb9oPX3uNYbtpjHWBxlGb+tSY3k+RkZFXNN9VBYa0tDRSU1Pdps2cOZNu3bpVmzcxMZHdu3eTn5+Pn1/VrZ9KSkqMMQqun6H6mQdXWKisrGTRokXcfffdWK1WtmzZwksvvURkZCRDhgxh4cKFtQ4MjW0shN1uv+L/tBuNanPtNcYPiMZCtTGn2tSsOdZF++FrrzluN/WludWmKb6friowDBw4kKSkJLdpmZmZ5Ofn07dvX7fp5eXlWCwW/P39jbELOTk5BAQEGPPk5OQA5ulm3bp1eHp60rdvX86dO4fD4cDf3x8Af39/CgoKrqb7IiIiIiJyla7qLklBQUHExsa6/dm5cycfffQRp0+fNuZzOBxkZGQQFxeHl5cX8fHxeHt7k5GR4ba89PR0IiIiakyOJSUlpKamMm7cOKxWKy1atMBqtRohIT8/3+05DyIiIiIiUv/qPOh56NCh/PDDD/z5z39m9OjReHp6smbNGk6cOMGLL74IgJeXF8OHD2fp0qV4eHjQsWNHMjIy2LZtG08//XSNy12xYgWRkZHGGQ0PDw8SEhJYunQpw4YNY8WKFfTo0aOu3RcRERERkUuo83MYgoODeemll4iIiOCzzz5j9uzZlJeXM3XqVOLj4435Ro4cydixY/n555/5+9//TlZWFk888US1ZzNA1R2XVq5cyfjx492mT5o0CafTyezZs4mMjGT06NF17b6IiIiIiFxCvTzpOTIyksmTJ19yHovFQkpKCikpKZddXmBgIO+880616SEhIUybNq3W/RQRacriQvwaugtA4+mHiIhcH/USGERE5NqqdDiZMbJzQ3fDUOlw4mG1NHQ3RETkOqjzJUkiInLt1dfBeW5ubr0sR2FBROTGoTMMIg2kMVzW0Rj6INdXc3r4kYiIXB8KDCINoDFdXqJLS0RERORSFBhEGkB9HKDn5ubWy9MvFRZERORCjeXsc2PphygwiDRZurRERETqW2M6Aw46C95YaNCziIiIiAC6wYLUTIFBREREROqVzoI3LwoMIiIiIiJiSoFBRERERERMKTCIiIiIiIgpBQYRERERETGlwCAiIiIiIqYUGERERERExJQCg4iIiIiImFJgEBERERERUwoMIiIiIiJiSoFBRERERERMKTCIiIiIiIgpBQYRERERETGlwCAiIiIiIqYUGERERERExJRnfSykvLyc1NRUfvrpJwoLC4mIiGDEiBH06dPHbb41a9awatUq8vLyCAsLY8SIEdxyyy1Ge3FxMXPmzGHXrl2EhYXx4IMPEhcXZ7Tn5+fz6quv8vLLLxMdHV0fXRcRERERkUuolzMMH3zwAd999x0jRozgueeeo02bNrz33nvs2LHDmGfVqlV89tln9OnTh8mTJxMXF8f777/P5s2bjXnS0tI4duwYTz31FDExMcyaNYuKigqjfenSpfTs2VNhQURERETkOqnzGYZ9+/aRkZHBc889R7du3QDo3Lkzp06dYvv27SQmJlJWVkZqairJycmMGTMGgISEBAoLC1m8eDE9e/YEIDMzk0GDBpGYmEhcXBzr1q0jJyeHqKgo7HY7GzduZPr06XXtsoiIiIiIXKE6n2HIyMigVatWRlgAsFgsvPzyyzzwwAMAZGVlUVRURK9evdxe27t3b7Kzszl16pQxzWazAeDpWZVlHA4HAAsWLGDw4MGEhITUtcsiIiIiInKF6nyG4ejRo0RFRbFp0ybS0tI4efIkYWFhjB071ggIdrsdgIiICLfXhoeHG+1hYWG0b9+e9PR0+vTpw8aNGwkICCAiIoL9+/ezb98+Hnnkkbp2V0RERERErkKdA0NhYSE5OTkcO3aMu+++m5YtW7JmzRpmzZrFc889R1JSEsXFxQD4+vq6vdbHxwfAaB89ejSzZs1i2rRptGzZkscffxybzcaCBQtISUnB6XQyc+ZMjh8/TpcuXZgwYQJeXl51XQURERERETFxVYHB4XDgdDrdplVUVJCfn88rr7xCbGwsUDWGYcaMGaSmppKUlGRcVmTGYrEAEBAQwLRp0ygtLcXb2xuouuQpLy+PoUOH8sEHH2CxWJgyZQpz585l6dKlTJgw4WpWwZCXl0dZWVmtXnstlJaWGmdixJ1qU7PmVhdPT09CQ0MbuhvV5Obmut18oalrrttNXIhfQ3fF6ENz22ag+W43jUlz226a2zZTnxpTbSIjI69ovqsKDGlpaaSmprpNa9u2LQEBAUZYALBarXTu3Jk1a9YA4OdXtRMtKSkxxii4fobqZx5cYaGyspJFixZx9913Y7Va2bJlCy+99BKRkZEMGTKEhQsX1jowNLaxEHa7/Yr/0240qk3NVJfro7EdVNRVc9xuKh1OZozs3NDdAKr60ty2GWie201j09y2G20z5ppiba4qMAwcOJCkpCS3acuXLyc3Nxen02mcKYCqg31XOHCNXcjJySEgIMCYJycnBzBPN+vWrcPT05O+ffty7tw5HA4H/v7+APj7+1NQUHA13RcRkWbIw2q5/ExXIDc3t84HbfXVFxGRxuSq7pIUFBREbGys25/ExESKi4vdnrlQWVnJrl27uOmmmwCIj4/H29ubjIwMt+Wlp6cTERFR4w66pKSE1NRUxo0bh9VqpUWLFlitViMk5OfnExgYeNUrLCIiUpPmdDmIiEh9qvOg5759+7J69Wo+/PBDxo0bR3BwMKtXryYvL48nn3wSAC8vL4YPH87SpUvx8PCgY8eOZGRksG3bNp5++ukal7tixQoiIyONMxoeHh4kJCSwdOlShg0bxooVK+jRo0dduy8iIiIiIpdQ58Dg4eHB1KlTWbRoEYsXL6akpIR27doxdepUt3ENI0eOxMPDg7Vr17Jq1SrCw8N54oknqj2bAaCgoICVK1fywgsvuE2fNGkSH374IbNnzyYhIYHRo0fXtfsiIiIiInIJdQ4MUDWoedKkSUyaNMl0HovFQkpKCikpKZddXmBgIO+880616SEhIUybNq1OfRURERERkStX5yc9i4iIiIhI81UvZxhEROpLY7ifPjSefoiIiDQ0BQYRaTQa0/30oao/uk2miIjc6HRJkog0GvV5P/36oLAgIiKiwCAizZDupy8iIlJ/FBhERERERMSUAoOIiIiIiJhSYBAREREREVMKDCIiIiIiYkqBQURERERETCkwiIiIiIiIKT24TURERG5IjeGJ7o2hDyKXo8AgIiIiN5zG9GR5PVVeGjtdkiQiIiI3nPo4QNdT5eVGocAgIiIiUgt6qrzcKBQYRERERETElAKDiIiIiIiYUmAQERERERFTCgwiIiIiImJKgUFEREREREwpMIiIiIiIiCkFBhERERERMaXAICIiIiIipixOp9PZ0J0QEREREZHGSWcYRERERETElAKDiIiIiIiYUmAQERERERFTCgwiIiIiImJKgUFEREREREwpMIiIiIiIiCkFBhERERERMaXAICIiIiIiphQYRERERETElAKDiIiIiIiYUmAQERERERFTCgwiIiIiImJKgUFEREREREwpMIg0Ik6ns6G7INKs6D0lUv/KysoAvb9uJAoMct1pB2OutLQUUI1q4nA4GroL0sSUlZVhsVgauhuNUnFxMXPnzuXMmTMN3ZVG5+J9jfbH/1ZSUsKXX37J119/jcPh0PvrBuLZ0B1ojtasWUN+fj4tW7akXbt2xMXFNXSXGo3Vq1eTnZ1NWFgYN910k2pzgTlz5mC323n55ZcbuiuNzpo1a8jKysLPz4+YmBj69u3b0F1qNNauXcuZM2cICQmhffv2REdH43A4sFpv7O+D7HY7M2bMYPz48dx+++2qyQXS0tJYtmwZLVu2NL6kkCorV65kz549BAcHc9NNN3HLLbfooPh/pKamsnz5csrKyujXr5/eTxdYu3YtZ8+eJSQkhPj4eFq3bt3s9jkKDPXo6NGjvP/++5SXlxMXF0dGRgZnz55l4sSJ9O7dGx8fH5xO5w258zl16hSzZs3i3LlztG7dmoyMDFJTU3n00UdJTEzEZrPdsLUBqKys5OTJkxw8eJADBw4QHx/f7HY2tXH06FE+/PBDSktLiYuLY/v27Xz77bcUFBQwePBgvLy8GrqLDeb48eO89957lJSUEBkZycqVKwkMDGTq1KmEhobe8NtPYWEhlZWVrFixgkGDBt3w+xiArVu38sUXX+BwOIzPJT8/v4buVqOQl5fHrFmzKCgooEOHDuzZs4f169cTHh5ObGxsQ3evQW3ZsoXPPvsMi8XCmDFj2LBhA61bt27objUKx48f5/3336ekpITQ0FAOHDhAWFgYzz//fLPbDysw1KMVK1bg7e3NU089RUREBB4eHnzxxRd8/vnnOJ1Obrvtthv2w2rr1q04HA6ee+45IiMjKSwsZP78+cyZM4f777+fvn373jC1qemgpaCggJycHAA+/fRTXn311Wazk6ktp9PJt99+S0hICPfccw+hoaFUVFTwxRdfsHLlSnr06EFYWFhDd7PBrF27luDgYO677z5atWrF3r17+eijj1i6dCmPPfbYDb/9lJSU4Ovry9mzZ/nXv/7FAw88cEMHhlOnTvH3v/+dbt26cf/99xMUFOS2jdzItQHYvn07JSUlPPvss8bBcF5eHhERETdsbQoKCnj77bc5deoUQ4YMITk5mYCAAL799lvKy8sBbTdr167F19eXp59+mtDQUHbv3s2nn37KokWLePLJJ5vVfrj5rEkDs9vtbN++nQ4dOhAdHY2npycWi4V7770Xb29v1q1bR1ZWFtD8r4esaf0yMjIIDQ2lbdu22Gw2goODeeKJJ2jRogXffvsthw8fNn1tc1NSUgK4Xye7evVqvL29GTduHNnZ2Xz33XfV5mnuLv6/z8nJYevWrbRv357IyEg8PT3x8fHh5ptvJj8/n5MnT9b4uubo4nUsLCxk69atREVFERERgaenJzfddBOBgYFuH97NvTaXWr9z587h5eXFnXfeyZo1a7Db7Vit1hvmPXVhbZxOJ2FhYbRv3x4PDw9CQkKwWq1UVlaSkZHB0aNHOXfuXI2vbY5qWr9NmzYRGhpKu3btsNlsWK1WcnJysNvtFBUVNUAvG8aFtTl79izt27fn17/+NePHjyckJITS0lKKi4tp2bJlA/ayYVy83RQUFLB9+3YiIyONz6jOnTvTsmVLysvLcTgcOJ3OZvN+UmCoJdfpbpeysjKKi4sJDg42pjkcDuOg5vTp02zZsuWGGCR08QFxSUkJFosFm81m1KyystIIVNnZ2WzatKnZ18bhcPDFF18wa9YsAOObh8LCQnbu3En//v25+eabSUhIYPHixZSXlzerbycux7XduLaR8vJyioqKjLMIru3pwm+2gGa9zbhcXJvz589z/vx5IiMjjXkKCgo4f/48fn5+7Nu3j/Ly8mZfm5rCt8upU6fo3LkzPXv2JCgoiM8//xy4MbYXcK+Na5379u3L9u3bKS4uZuPGjUydOpV//vOf/P73v+f1118nPT292e+HoebPKIfDQVBQEADr1q1j6tSpfPzxx8yYMYO3336bQ4cONZsDv0tx1cbpdNK2bVsmTZpETEwMFosFp9OJzWbDy8uL/Pz8Bu7p9XfxfriyshIvLy+Ki4vdPpcqKyuJiYkhPz8fi8XSbN5PN87RSD3JzMzk9ddf589//jP/7//9P7Zu3Up5eTnt2rUjKiqKbdu2cerUKaDqgDAzM5N+/frRpk0bNm/ezPHjxxt4Da6dmg6InU4nPj4+BAUFcezYMU6fPg2Ah4cHAElJSXTu3JmtW7caZxmaq8rKSrKyssjMzGTfvn3GdIvFwqhRo7jrrrsICQnhtttuo7Kykn/9619A8z/LcPF24+HhgdPppE2bNiQnJ1cb++P6JvTCg+Xmyqw2ERER/Md//Ad9+vQBqi6deP311ykvL2f79u386U9/4t1332Xv3r1A8/vG2Cx8u9qg6o5jRUVFtG/fnkGDBpGZmcmePXuwWCwUFhY2SL+vh0vVpk2bNoSFhTFr1izWr1/PmDFjmDJlCs899xwBAQH861//YufOnQ3V9WvuUp9R/v7+5ObmcvjwYb7//ntGjx7Nc889x6RJkygqKuKTTz5p1p9RF9fGdaB74fZjsVgoLS3Fw8PDOEBuLgfDl2K2Hw4ODqZz587s27ePt99+m2+++Ybp06dz6tQpVq9ezfTp05k7d65xTNjUKTBcAdeH7aZNm3j//feJiooiKSmJiooK5s6daxzYjRo1ir179/Luu+/yz3/+k9dee40vvviC3r17M27cOHJycsjNzXVbZnNS0wFxRUUFAEOHDsVut7N3717jA92V0seMGcOpU6eadZgCyM/PJycnB5vNxsKFC43p/v7+JCYmGttEx44d6d+/P2vWrOHkyZPGh1pzVdN249pGxowZQ1JSktu3NNu3byc6OpqwsLBmH6YuVZubbroJHx8fY95hw4bx4osvMnXqVKZOncrBgwdZv369cYavOblUXVwHOLm5uURERADQq1cvOnTowMcff8yf//xnVqxYYRzwNDc11ca1r42KiqJly5bs3r2b9u3bM2TIENq3b09iYiKPPfYYhYWF7Nmzx9hvNzeX+owaMGAAmZmZLFiwgPDwcAYPHkxcXBwDBgzg8ccf59ixY2RmZjbbfc6l3lMuTqeTwMBAAgMDjS//mms9LnSp7Wbs2LE89NBDhISE8M0339CxY0defvllnn/+ee655x7Wr1/PunXrjOdWNGUKDFfA9WG7adMmYmJiuP/++xk1ahQvv/wygwYNYs2aNfz444/06tWLxx57jJiYGLKysoiOjub//J//Q1xcHOHh4YSEhJCZmem2zOakpgNi151J2rVrR1JSEitXrnQ7y1BZWUmbNm2IjY1l165dQPMMU1A1TqFFixbcdtttZGdns2bNGqBqh2uz2Yxtws/Pj5tvvpmQkBA+++wzoHluLy41bTeub3B8fX2Bf38o2e12du3aRbdu3YDmXRe4dG0uFBQURHJyMlFRUYSEhNCpUyf69u3LwYMHm9U1tC411cUVrF0Hxw6Hw9huIiIisFqtnDlzhuzsbO644w7jLGdzY7bNVFZW4uvrS/fu3enWrRsDBgzA07Pqvifl5eVERkbStWtXDh48iKenZ7PbZsD8MwqgXbt2JCYmsmfPHkJDQ407sFVUVBAfH0/Hjh3JzMxstl/gXOo95WKxWCgvL6dt27YcO3aM4uLiG+KyWbPtxuFw4O3tTffu3QkNDcXf358xY8YQHR1NTEwMAwcOpFevXuzYscO4pKspa/7/0/Xk7NmznDhxgg4dOhg7EqvVyqBBg+jZsyeLFi3i9OnT3HLLLTz55JP85je/4eGHHzbutnDhqc+mvtGYMTsgdl33OHz4cE6fPs2aNWs4f/488O9Lk3x9famoqDDGNjRV2dnZ7N27l7y8PLfpZ8+eZefOnQwYMIDk5GTatGnD8uXLjR2u68DGtW3ExcUxcOBAMjMz2bFjB9B8v8m5eLtZu3YtQLUPKoDdu3dTXl5O9+7djem5ubls27bN2Kaak0u9py5ktVqNAx/XduLr62ucXWjK76maXKourn1KQUEB7du3Z8OGDbzwwgvk5eURFxfH+fPn8fT0bLYDoC+3zSQnJ/P4448bt3yEfx80+/r6UlpaSkVFRbPbZsC8NgAtW7akT58+eHl5cfr0aQoKCgCMUOXv709RUVGzHRt0pfsam81GUFAQJSUlxhUTzd2ltpsLz3y3adOGkJAQt9f6+/tTUFDQ5I9tQIGhRjUd9AUFBeFwOIxvx12no4KCghg2bBilpaXGnW0qKio4fvy4cf0wwIEDBygrKyMuLq5JbzS1PSCGqksohg8fzqpVq/jhhx+M1x4/fhy73U7nzp2b7Ld+JSUlvP/++7z++uvMnDmT6dOns3DhQuMpqlarlTvvvJPhw4cTFhZG3759KS0tJS0tzW05rm8hPDw86NGjBzExMTVei9zUXM12s2zZsmpBylWXbdu20bZtW2JjYykqKuLbb79l+vTprFy5sskG8bqGzMrKSo4ePUp2djZQtZ3Y7XYyMzMZMGCA22VLTUlt61JZWUlxcTEVFRW89957fPHFF4wcOZLf/va3jBw5kvLycj7++GOg6b6nalMbT09Pt4Bw6NAht8tAT5w4wcGDB+ndu7dxkNwU1aY2UPXlVdeuXbn55pvZsmUL6enpxmtzcnI4ceIEPXv2NMJVU1TXfY3r7759+3L27Fljn9NU970Xqsv+BqrOUB0+fNjtyel2u52srCwGDhzYZPfDF2q6e4VroKSkhE8//ZRt27bh6elJeXk5ycnJDBkyhODgYBITE9m0aRMTJ040TkdZrVaio6MZMGAAa9euJSUlBX9/f3788UcyMjK46aab6NSpE2vWrKFdu3bEx8c39GrWyuVq4zogHjBgAFC1Q1m0aBFpaWncc889Rq1GjRrF0aNHWbZsGZs2bSIuLo59+/bh5+dH165dG3gtay8tLY1jx47x7LPPAlU7n/nz53P27FnuueceAgMD6dOnjzF4t2fPnmRmZvLDDz9w6623EhUVZdTIFShbt27NwIEDycnJabJ3BKrrdnMh11m+pKQkDhw4wNy5c8nLy2Ps2LHccccdDbF6dVJftXE6nXz11Vfs37+fhIQEoqOj+emnn3A4HPTq1auhVq/W6loXDw8PfH19iY6OJikpiQEDBhh32nJ9adGqVauGXMVaq69tprKykq+//pp9+/aRkJBAmzZt2LRpEzabzTh719TUR20CAwMZP348x48fZ968efz000/GZ5TFYjEuhWxq6mu7cQXsli1b0qVLF1atWtXkn4Rd19q4atK3b1+2bNnCrFmz6NixIyEhIXz//fd4eHjQu3fvhlzFemNxNodoWE/mz5/Pjh07uPfee4F/H/T16dOHBx54gP379zN79myGDBnCuHHj3J7gt3//fv7yl7+QkpJCSkoKp06dYtOmTWzbto3y8nLi4+O57777muw36JeqzT333ENAQAClpaV4eXlhsVg4f/48n332Gbt27eLXv/41UVFRlJeXY7PZOH/+PJmZmfz4448UFxfTtm1b44O+qXE4HBQUFPDaa69x2223cddddxnbRGpqKt9//z19+vRh4sSJxmtcoWH79u18/vnntGnThsmTJ7st1zVPU39KZH1sN5WVlXh4eGC325k+fbpxtqF///48+OCDTfbb0PqszZEjR1i9ejXZ2dk4nU7i4uKYOHFik3xP1UddoOpAwGazNckamKnvbebbb781tpn27ds32W0G6qc2FRUVeHp6kp+fT0ZGBrt27aKsrIyoqKgm+xkF9VObCz+LHA4HK1asYOHChbz66qvGe64pqq/9DVRdMpuWlkZhYSFOp5NOnTo16eO+izXNT9p65jro27hxI7fddhudOnXCarXSpUsXioqKWLNmDcuWLePuu+8mMTGRdevWMWDAAMLDw40dTFRUFK1ataKwsBCHw0FYWBgjR45k6NChboM3m5rL1eb777/nm2++YeLEiXh7ewNVB7v+/v707duXrKwsFi9ezOTJk40B0P7+/vTu3ZuePXtSUVFhjAlpKvLy8igoKCA4OJiWLVvi7e1NcXExrVu3xmq1GsHojjvuwG63s3HjRvr06UNcXJzbPc4TEhLo3r07P/zwA9u3bycpKcn4MHfN01TDQn1uN65Bvh4eHgQFBREdHc19991HeHh4A69l7dR3bRwOB+3ateORRx6hrKzMGNza1NRnXYBmcQmAy7XaZh599FFKSkr0GfU/tXEN9m7ZsqXxLXN5eXmT+4xyqc/auD6LnE4nVquVvn370q9fvyb7ALf63t84HA66dOlC586dKSoqwul00qJFi4ZcxXrXNI9G6kFeXh6HDh0iPz8fq9Va40EfwB133EGnTp34/vvvyc7O5vbbb8dmsxl3r3F9u+nj48PZs2eNwXSuEzc+Pj5Nbkd8NbXp0KEDGzduNJ5ifeEgQtcB8Z49e9i+fXu1dqvV2qR2xGVlZcyZM4c//OEPzJw5k9/+9rcsWrQIu91O69atjcHJrsvVfHx8uPXWW/H19WX58uUAxiVHrm9r+vbtS2hoKP/85z8BmvQ3Eddyu7FYLLRo0YIXXniBX/7yl00uLFzL2lx4kthmszWp/c21rMuFD9Zsiq7XNuPt7d2kthm4fp9RFoulSX1GwbV/T7m+zAoKCmpyYeF6vKcsFgt+fn7NLizADXiGoaysjM8//5zdu3cDVU9MHTp0KN27dzcO+vr06VPtoO/w4cN89dVXPPHEEwwfPpwvvviC+fPnc9ttt9GiRQvS09Px9vZu0rd7rG1tjhw5wvLly3nmmWfcTlm6Doj37t1rPJeiqR4QFxQUMGfOHPLz87n33ntxOp0cOnSIb775htDQUAICAjh69CiHDh0iNjbWeF3Xrl3p0KEDe/fu5cCBA8YYFledYmJi6NWrF0VFRVRWVrqNYWgqrsd2A1V3cGlqBzbX+z3VVLYd7WvMaZsxp+3GnGpjTu+p+nFDBYa6HPS57sF85MgRkpOTcTqdLFmyhLVr1xIZGcmxY8dITk52e11TogPiSzt8+DAHDx7kySefNAZn9+jRgwMHDrB9+3aGDRvGW2+9xbZt24iOjsZmsxmXF91yyy38/PPP5Obmug16d+14hg8f3mR3xNpuzKk2NVNdzKk25lQbc6qNOdWm/txQlyS5DvrGjRtHz5496dWrF2PHjiU+Pt446Dt+/LgxUPnCW2bdcsstFBYWGrcRGzp0KL/85S8ZP348CQkJvPLKK24j5puautamoKCg2j2ZXafwhg8fbgwYa6pvqL179+Lj40ObNm3cpoeHh3Pw4EE6duxojEe4+OF8nTp1wsvLi7NnzwL/PnXp2laaalgAbTeXotrUTHUxp9qYU23MqTbmVJv60zSPbmupPg/6AOLj4xk8eDBjxoyptsymRgfElxYZGYmXlxfFxcVu61dUVERgYCAAEydOpKKigu+++46cnBxj/fft20dJSYlxvWdz2rFouzGn2tRMdTGn2phTbcypNuZUm/pzQwWG+jzoa250QHxpffr04d577yU0NNRYv8LCQg4cOED79u0BCA0NZcyYMZw8eZKPPvqIbdu2kZmZyZo1a4iIiKBz584NuQrXhLYbc6pNzVQXc6qNOdXGnGpjTrWpPzfUGIY+ffoQHBxc40Ffz549gX8f9C1fvpyPPvqIlJQUvLy8WLduXbM96APV5nK8vb2NsQuuZyQcPXqUwsJCEhISjPkGDRpEcHAw//rXv3j//ffx8PAgODiYRx55hKCgoAbq/bWj7cacalMz1cWcamNOtTGn2phTberPDRUYdNBnTrW5cq6dzubNm2nRogVJSUlGW2VlJQkJCXTq1IkzZ85QWFjYZJ/ufSW03ZhTbWqmuphTbcypNuZUG3OqTf25oQLDhXTQZ061uby8vDy2bNlCYmIiHh4elJeXc+zYMVJTU+nQoQO33347ERERRERENHRXrxttN+ZUm5qpLuZUG3OqjTnVxpxqUzc3bGAAHfRdimpzaSdOnKCgoIBu3bqRn5/PV199xfr162nTpg39+vXDZrM1dBcbhLYbc6pNzVQXc6qNOdXGnGpjTrWpvRs6MOigz5xqc2nHjh3DarWyb98+vvzySzw8PHj22WdJTExs6K41KG035lSbmqku5lQbc6qNOdXGnGpTezd0YNBBnznV5tI8PT1xOBz8+OOPpKSkMHz48IbuUqOg7cacalMz1cWcamNOtTGn2phTbWrvhg4MOugzp9pcWnh4OKNHj2bYsGH6RuIC2m7MqTY1U13MqTbmVBtzqo051ab2LE7XjWlvQNu2bePo0aM66KuBanNprrstiDttN+ZUm5qpLuZUG3OqjTnVxpxqU3s3dGDQQZ851UZqQ9uNOdWmZqqLOdXGnGpjTrUxp9rU3g0dGERERERE5NKsDd0BERERERFpvBQYRERERETElAKDiIiIiIiYUmAQERERERFTCgwiIiIiImJKgUFEREREREwpMIiIiIiIiCkFBhERERERMaXAICIiIiIiphQYRERERETE1P8HdHflcRd8+uEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAw4AAAF4CAYAAAD9pq64AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACDVElEQVR4nO3dd3RU1drH8e9MeoVAEhJ6753QQZpIR5AioBRRQVBRROWiYgGxgIKiqFhB5CJNpIP0jnQQpNcEEiAkhJCezLx/5M1cQhICYZJJ+X3WmpXJKfs8Z3YyM8/Z5RjMZrMZERERERGRezDaOgAREREREcn9lDiIiIiIiEimlDiIiIiIiEimlDiIiIiIiEimlDiIiIiIiEimlDiIiIiIiEimlDiIiIiIiEimlDiIiIiIiEimlDiIiIiIiEimlDiI5HNDhgzBYDCkehiNRtzd3alevTpjxozh8uXL99zvwoULWT6+yWTin3/+ue/tL1y4YDnukCFDLMtbt25tWZ6dzp07R2RkpOX3zZs3W477/vvvZ+uxs8OWLVto0qQJrq6ueHp60qJFC8xmc7rb3vkaGwwGhg0blmaboUOHptqmdevW2XwGaV27do2QkBDL7xn9zWQku+r0/fffT/O/lvL/5urqSoUKFRg8eDBnz5596GPd/RqIiOQEJQ4iBZDZbCYqKorjx48zdepU6tevz+HDh61+nLVr11K3bl0+//xzq5dtbWFhYbz22mtUq1aNGzdu2Docq4iOjqZ79+78/fffxMTEEBkZyc2bN+87+Vq/fn2aZRs2bLB2mPctOjqaDz/8kAoVKnDixAmbxfGgzGYzMTExnDt3jl9//ZXGjRtz/vz5LJWVV18DEckflDiIFCC7du0iMDCQs2fPsnXrVp5//nkg+eplr169iI2NtWw7bdo0AgMDCQwMpFSpUg98rIsXL9KxY8cHam0AKFWqlOW406ZNe+DjZtWYMWOYNm0a8fHxqZY3bdrUEs9rr72WY/FYw7///sutW7cAeOyxxzh9+jR//PHHfe9//vx5zp07Z/n9zJkzXLp0yepx3q8pU6Ywfvx4bt++bbMY7teCBQssfzcXL17k8OHD9OjRA4AbN27w8ccfZ6ncvPQaiEj+Y2/rAEQk5/j5+VGyZEkAypcvT8uWLbGzs+O7777j7NmzzJkzx5JMeHl54eXlleVjZdQdJjN2dnaWGHNSRvE6OTnZJB5riIqKsjxv0qQJFStWvK/9/Pz8uHnzJrGxsaxfv97SZSmltcHFxYVChQrleFeZrP5N2YKPj0+qv5vSpUvz3Xff8eeffwLw999/Z6ncvPQaiEj+oxYHkQLu5Zdftjxfvny55XlGYxx27dpFt27d8PX1xd7eHk9PTxo3bswvv/xi2WbWrFmUK1fO8vvs2bMxGAzMmjULgLJly2IwGOjduzdTpkyhaNGiuLm5MX78+Pvqr37x4kV69eqFh4cHhQsX5oknnuDUqVOptsloTER6/dvLli3L7NmzLduUK1eOsmXLZrh9ilu3bvHuu+9So0YNXF1dKVy4MO3atWPJkiVpYr7znE+ePEmPHj0oVKgQHh4edO/ePU38GTGZTPzwww80a9aMwoUL4+bmRr169fj8889TtZa0bt061fiDCRMmpKqDe3FycqJJkyYArFu3zrI8JXFo0qQJTk5ODxUf/O9vzNvbm4iICF5++WX8/f1xdnamUaNGrFmzJtX5fPDBB5bf27Rpk2GXq02bNtGsWTNcXFwoUaIEY8aMITo6+p7n3LBhQwwGA87OzpZWmhTjxo2z/A3s3r37nuXci739/67Vubq6plp3+fJlnnvuOYoXL46TkxPlypVjzJgx3Lx507LNvV6De/3fpPe/fOff9ezZs+natSvOzs4UK1aMgwcPphqvcePGDd59913KlCmDk5MTtWrVYs6cOamOYTKZ+OKLL6hfvz7u7u44ODjg5+dHr169OHbsWJZfMxHJXdTiIFLAVatWDRcXF2JiYjh48OA9t927dy+tW7dO9QUwMjKSPXv2sGfPHsLDwx+oO8+GDRtYvHix5ffGjRvf137NmjXjypUrlt+XLFnCpk2b2LNnD5UqVbrv4z+My5cv07Jly1R91WNiYti4cSMbN27k1VdfTber1alTp2jcuDERERGWZcuXL+fo0aOcOnUq1ZfLuyUlJdGtWzdWr16davmhQ4c4dOgQS5YsYe3atbi5uT30+bVu3ZrNmzezadMmTCYTBoOBTZs2Wdbd2YXpYeOLj4+ndevWHDp0yLJs7969dO3alX///ZfKlSvfd9zbt29n7ty5JCYmAnDlyhWmTp3K7du3mTlzZob7DR06lH379hEXF8eff/7JoEGDLOsWLlwIQJUqVSwJ1YNISEjg6tWrjBs3zrKsTZs2lufnz5+nWbNmaQZ8T506ldWrV7Nr1y4KFSr0wMe9X6+++qolQTEYDNSuXZulS5da1vfs2ZNt27ZZfj969CiDBg2iePHitGvXDkju6vfFF1+kKvfq1av88ccflv/N+23xEpHcSy0OIgWcwWCwfCkJCwu757a//vor8fHxuLm5sWbNGs6dO8f27dupUaMG9vb2LFy4EJPJRN++fdm1a5dlvz59+hAYGEjfvn1TlXfz5k169erFiRMnmD9/Ph07dryvmN3c3Pjrr784fPgwgwcPtpQ1duzYBzl1i927d9OnTx/L77t27cr0yvKzzz5rSRpeeeUVDh8+zIYNG6hfvz4AX3zxBb///nua/f755x8CAgLYu3cvf//9NyVKlACSvzxu2bLlnsecMmWK5Ut5u3bt2LlzJ/v372fAgAEA7NixgzFjxgDJX3YXLFhg2Xf06NHp1kFGUr7Y3rhxg4MHD3L48GFCQ0NTrXuY+O4UGRlJeHg4q1ev5vjx47Rv3x5ITkRSrmwvXLiQ0aNHW/ZJGUNwt7Nnz/LKK69w4sQJ/vjjD0vLyOzZsy3JRHr69++Ps7MzQKp6O3jwoGUWpJS/tfuR0hpgMBhwdHSkVKlS/PbbbwDUr18/VRLx0ksvERISgrOzM7NmzeLUqVPMnTsXV1dXjh8/zrvvvvtAr8GDioiI4JdffuHYsWPMnj0bOzu7VOuPHj3KggULOHXqFAMHDrQsv7P16scffwSSx9KkvGY//vgjdnZ2JCUlWbpoiUjepsRBRCzdHe71xQqgaNGiAMTGxrJx40aCgoJo0KABO3bsICoqil27dlmmnvTz87Ps5+rqSsmSJdN0zwD47LPPqFKlCn379r3n1fY7zZw5k/bt21O7dm1+/PFHypQpA8CaNWsyPYf0+Pn5pYrNz88vVfx3O3PmDGvXrgWgU6dOfPHFF9SuXZu2bduybNkyyxfQ6dOnp9nXYDAwb948AgICaNSoEa+++qplXWZjBmbMmAEk95//888/adq0KfXr12fOnDnUqVMHgF9++YXbt2/j4+ODj4+PZV9PT88M6yA9jRs3xsXFBUjurnTn+IaMWoYeJL67ff7553Ts2JGqVavy0UcfpXlNfHx88PT0tCy/ewxBimrVqln+pnr27EmHDh0AiIuL4/r16xmeb0qXN0ieTSoliU5pbTAajam+NGdF48aNmTFjBrt27cLDwwOA8PBwS5esxx9/nHbt2uHi4sIjjzxCr169AJgzZw5ms/m+X4MH9cgjjzBkyBCqV69ueb3u9Pbbb9OnTx8qVarE1KlTLcvv/HtNeW84e/Ysu3fvJikpiWeffZaQkBAiIiJ4/fXXHzpOEbE9JQ4iYuk2U6RIkXtuN2rUKOrVq0dSUhKTJ0/mkUceoVChQnTp0oWvvvoqTd/wzLi5uVnGEjyIRo0aWZ7b29vToEEDILmrUMpV8YxYY3DpnVPXPvroo6nWlShRgmrVqgFw5MiRNPve/YX+zucJCQkZHvPGjRsEBQUByWMM3N3dLeuMRiNt27YFkrv9WGOazjvHOaxfv96SODRt2hRHR0erx1e9enXL8/t9TdJTq1atVL/f2cXn7jEWd3v22Wctx0zpQpeSOLRt2/aBvqQvWLCAEydO8OWXX1paPc6ePUv16tVTvX5nzpzBZDIBMH/+fEqVKmV5pLS2hIeHp9s17H5l9jdfs2bNe66/s268vb0tFxrurJuvv/4aNzc3zp49y4gRI6hcuTK+vr68+OKLrFy5Msuxi0juosRBpIA7e/asZeBo3bp177ltkSJF2Lt3L8uWLeP555+nUqVKxMfHs2PHDl5//XUCAgJSDebMTFb7bd/9ZfLOrhV3d7OA5C4vKe6ccjarMmsZSfmilt7g3ZSr+CnSi/dhjpnRcbMiZXD1jh072Lp1a6pl1o7vztflfl+T9Nz9+hqN//uYy+wLdJs2bSyD+ufPn8+hQ4c4c+YMwH3dWO5OPj4+VKlShVGjRvHNN98AEBoaahm3keJ+W9nu1Vpytzv/3iHzv/nM/g/v9Zqm6Nq1K+fPn+err76iS5cueHl5cf36dRYsWEDXrl1588037zN6EcnNlDiIFHB3zo6S0lUjI6dOnWLVqlVERUXx/fffc+rUKa5fv24ZW3D69GlWrVoFpP5ymNEXNgcHhyzFnPIlFpK/JB04cABI/gKU0mXizll/7mwJyeg+BPcTb4qUFgVIe0O0y5cvW66oZ5aIPYhChQrh7+8PJE/leWd3H5PJZBm47OTkRNWqVa1yzJSxDLGxsZapXTMa35AT8T1IHWW1/JQEYfPmzXz99dcAeHh40LNnzyyXO3ToUMs9HKKiohg0aJDly32FChUs2z3//POYzWbL4+jRo1y6dAmz2Wxp/cnoNcjo7x0y/ptPkdX/wxQxMTHs3buXtWvX0rx5c1asWMGNGzc4duyYpYva119/nSahEZG8R4mDSAESEhJCUFAQly5d4vDhw3z44YeW/uTlypVLNZNMekaOHEn37t156qmnmDZtGqdPn+bKlStcvnzZsk3Kl5CUfv6QnFAcP37cKgM5IfkL1h9//MGxY8cYMWKEZfBqjx49LFdDUwYdA3z55ZeYTCYOHTrEJ598km6Zd8b7999/s2/fvgyPX7lyZVq0aAHAqlWreO211/jnn3/YvHkzPXr0sFzhvXOqW2tI6Upz7do1nnjiCXbv3s3BgwcZMmSIpfvU0KFDrTKrEqQe5wDJY1Xu7CaW0/HdWUf79+/P8r0Q7mXIkCEYjUaSkpL46aefgOTB/fc7NiQj3333nSWp3b9/v2WsgKenJ926dQOSB3DPnDmT06dPs2LFCpo1a0bp0qUJCAiwJAkZvQZFixa1JA8bNmzg8OHDJCQkMGPGjIeaQvZ+XL16laZNmzJw4ED69u3LunXrOH/+PJcvX7Z0g7Szs7NaS5iI2JBZRPK1wYMHm4F7PooWLWo+cOBAhvudP3/ebDabzUeOHDF7e3tnWE69evXMsbGxZrPZbE5KSjL7+/unWj958mSz2Ww2lylTxgyYy5Qpkybe8+fPW7YfPHiwZXmrVq3MgLl06dJpygXMfn5+5qCgIMv2f/31V6r1BoPBDJibNGliWfbee+9Ztv/2229Tbe/q6mo2m83mTZs2pbv9uXPnzCVLlszwtXj11VdTnVdG5zxnzhzLPr/88ss96zIuLs7ctm3bDI/ZvHlzc1RUlGX7jGLPSMprfGeMdx6vXbt2ac6nVatWWY4vvb8xs9lsDgwMTPdvYPXq1WnKvHbtWoZ/MxkdI7PX5bHHHkt1jC1btmT62pnNZvN7771n2WfTpk1p1v/3v/9N9fd14cIFs9lsNv/777/mIkWKpPuaubi4mNevX5/pa2A2m80DBgxI92++cePGD/wa3Otc7Ozs0tT9Rx99dM/3mJT/fRHJ29TiIFJAubq6UqNGDd544w2OHj1KvXr1Mt2nVq1a7N27l5deeolKlSrh6uqKs7Mz1atX56233mLz5s2Wq55Go5GZM2dSu3ZtnJ2d8ff3p3Dhwg8dt4+PD7t27aJ37954enpSqFAhnnzyyVRTmwK0b9+e3377jZo1a+Lk5ESZMmV49913U93k7k4DBw7kqaeewtfX1/LaxMTEZBhHuXLlOHr0KOPHj6dGjRq4uLjg4eFBmzZt+OOPP9K9h8PDcnR0ZN26dXz//fe0aNGCQoUK4ezsTJ06dfjss8/YuHHjQ18Zv9udXZMyGt+QU/G1b9+el19+mRIlSuDs7EytWrXuWUdZNXToUMvzcuXK0bJlS6uU279/f0t3wOjoaF566SUguevbvn37eOaZZyhZsiQODg74+/vTq1cvtm/fbrlXAtz7NZg5cyYvvvgivr6+uLi40LRpU1auXMnTTz9tlfjvZdy4caxcuZKOHTtSokQJ7O3tKVy4MG3atGHBggW88cYb2R6DiGQ/g9ms+9eLiIikWLhwoeV+F++9916aO4aLiBRUShxERKTAu3XrFlFRUVy4cIEBAwZw4cIF7OzsOHPmTJamDBYRyY/ubx44ERGRfGzPnj2WO1anGD58uJIGEZE7KHEQEZECr3z58hQrVoybN29SokQJBgwYwHvvvWfrsEREchV1VRIRERERkUxpViUREREREcmUEgcREREREcmUEgcREREREcmUEgcREREREcmUEgcREREREcmUEgcREREREcmUEgcREREREcmUEgcREREREcmUEgcREREREcmUEgcREREREcmUEgcREREREcmUEgcREREREcmUEgcREREREcmUEgcREREREcmUEgcREREREcmUva0DEBGR+2M2m9m/fz979+4lPDwcNzc3qlSpQps2bXBycrJsFxYWxtq1a7l48SJGo5Hq1avTvn37VNvEx8ezbt06jh8/Tnx8PGXKlKFDhw54e3tbtomNjWX9+vWcOHGC+Ph4/Pz8aNWqFRUqVLDK+SQmJrJr1y4OHz7MrVu38PT0pFatWrRo0QI7OzvLdleuXOGvv/7iypUrODk5UbduXVq3bp1qmzstWLAAR0dHevTokWp5dHQ069ev58yZM8THx1O8eHHat2+Pv7+/Vc5HRCS/U4uDiEgesWPHDlatWkWlSpXo168fzZo148iRIyxYsACz2Qwkf9mfPXs2t2/fpkePHrRr145jx46xcOHCVGUtXryYf//9l0cffZSePXsSGRnJ7NmziYmJAcBkMjFnzhyOHDlCkyZN6NevH2XKlGHevHmcOHHCKuezZs0atm3bRt26denXrx9169Zl+/btrFixwrJNeHg4v/76Kw4ODvTp04emTZuya9cuVq9enaY8s9nMmjVrOH78eLrr5s+fz8mTJ2nTpg29e/fGbDYza9YswsPDrXI+IiL5nVocRETyALPZzI4dO2jQoAGPPvooAOXLl8fFxYXFixcTHBxM8eLF2bt3LzExMQwfPhxXV1cAPD09+e9//8ulS5coXbo0gYGBnDp1igEDBlCpUiUASpcuzZdffsnevXt55JFHOHnyJFeuXKFnz57Url3bcrykpCRWr15NlSpVMBgMWT6f6Oho9u/fz6OPPkrz5s0t5QNs2LCBRx99FDc3N7Zv346TkxP9+vXDzs6OSpUq4eDgwOrVq2nZsiWFChUC4OrVq6xevZrLly9jb5/2oy0sLIxLly7RrVs36tWrB0CpUqWYMmUKhw8fpnXr1lk+FxGRgkItDiIieUBcXBy1a9emVq1aqZandC0KCwsD4OzZs5QuXdqSNABUqFABR0dHTp8+bdnGwcEhVZcjNzc3ypYty5kzZwAIDQ0FoEqVKqmOV7ZsWW7dusXVq1cf+nwCAgLSlJ9yPimtAGfPnqVSpUqpuiVVr14ds9lsiRVgyZIlmEwmnnvuOdzc3NIcLzExESBVdy1HR0fs7e0trSwiInJvanEQEckDnJ2d6dSpU5rlKd2GfH19geQv/DVq1Ei1jdFoxMvLixs3bli28fLywmhMfe3Iy8uLf/75B8CSeNy8eZNixYpZtkn5Qh8eHo6fn1+Wz8fLy4suXbqkWX7y5EmMRiNFixYlISGBiIgIihYtmmobNzc3nJycLOcD0LNnz1Rx3q1YsWKUK1eOrVu34uPjg4eHB1u2bCEhIYGaNWtm+TxERAoStTiIiORRQUFB7Nixg8qVK1sSh9jY2FRX1VM4OjoSFxd3z22cnJws21SrVg1nZ2f+/PNPLl++TFxcHKdOnWLnzp1A8uBqazt+/DiHDh0iICAAFxcXSyyZnQ9wz6QhRZcuXYiPj+fbb79l8uTJ/P3333Tr1o1SpUpZ7yRERPIxtTiIiORBly5dYt68eRQuXJjHH3/csjxlkHR6UsYk3M82rq6uDBw4kKVLl/Ljjz8CUKRIEdq2bcuff/6Jg4NDuvubTKY0y+5u2UjP8ePHWbx4MaVLl6Z9+/aZxnlnrPfj+vXr/PzzzxQuXJg+ffrg7OzMsWPHWL58OQ4ODmlaaUREJC0lDiIieczRo0dZunQpRYsW5amnnko1nsHZ2TnVlfgUcXFxeHp6WraJiopKdxtnZ2fL78WLF2fEiBHcunWLhIQEihQpwoULFwBwcXFJN7Zff/2VixcvWn4vU6YMQ4YMuef57Nq1i3Xr1lG2bFmefPJJy+DmlJaGjM4nvZaIjOzevRuz2czAgQMtr1f58uWJjY1l1apVVK9e/aEGe4uIFARKHERE8pCdO3em+pJ95xd9gKJFi6aZXtRkMnHz5k2qVatm2ebMmTOYzeZUX5bDwsIsg5Ojo6M5deoUlStXtiQcAMHBwQAZjm/o2rVrqm5Mjo6OGZ5LyvSpe/bsoWbNmvTo0SPVIGhHR0c8PDwsA79TREVFER8fj4+PT4Zl3y0iIgJvb+9USRYkJzb//vsvUVFRuLu733d5IiIFkcY4iIjkEfv27WPdunXUqFGDp59+Ok3SAMkzKF24cCFVi8LZs2eJj4+3zKJUoUIF4uPjU81KFBUVxcWLFy3bmM1mli5dyr///mvZJj4+ngMHDlC2bNkMWxy8vb0pXry45XHnDeXutmHDBvbs2UOTJk144okn0r2hW4UKFTh9+rRlViSAf//9F4PBQLly5TIs+25Fixbl+vXraWZQCgwMxMnJKU1CISIiaanFQUQkD7h9+zZr166lcOHCNGrUyHLlP4WXlxdubm4EBASwZ88e5syZQ6tWrYiJiWHdunVUrFjRMgi4TJkylC1blj/++IP27dvj4uLCli1bcHZ2JiAgAEieuahmzZps2rQJBwcH3Nzc2LZtG7du3eKJJ5546PMJCQlhx44dFC9enBo1anD58uVU6318fHBycqJ58+YcPXqUuXPn0rRpU27cuMGGDRto0KCB5R4O96Np06b8888//Prrr7Ro0QJnZ2eOHz/O0aNHeeyxx+5rHIaISEFnMGc2+kxERGzu4MGDLFu2LMP1jz/+OHXr1gXg2rVrrFmzxnI1vUqVKjz22GOpxgTExMTw119/ceLECcxmM6VKlaJDhw6pWgji4uJYv349J06cICEhgZIlS9KmTRtKlCjx0OezadMmtm7dmuH6wYMHU7ZsWQAuXrzIunXrCAkJwdXVldq1a9OmTZt0WygAvvjiC8qWLUuPHj1SLQ8NDWXDhg2cP38es9mMj48PzZs3t3ThEhGRe1PiICIiIiIimVLbrIiIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJg4iIiIiIZEqJgzywsLAwW4cgGVDd5E6ql7tERYHBkPyIirJZGKqX3En1kjupXnKnnK4XJQ7ywOLj420dgmRAdZM7qV5yJ9VL7qR6yZ1UL7lTTteLEgcREREREcmUva0DEBGRAsbVFW7f/t9zERHJE5Q4iIhIzjIYwM3N1lGIiMgDUlclERERERHJlBIHERHJWXFxMGRI8iMuztbRiIjIfVLiICIiOSsxEWbPTn4kJto6GhERuU9KHEREREREJFNKHEREREREJFNKHEREREREJFNKHEREpECyt9eM5CIiD0KJg4iI5FkmsznL+3p7e2dLuSIi+ZUut4iISJ5lNBiYsy+Qa5EPPq1rfHw8jo6OaZb7ejgxMKCUNcITEclXlDiIiEjOcnWFa9f+9/whXYuMIygi9oH3i4uNw8nZ9NDHFxEpKJQ4iIhIzjIYwMfH1lGIiMgDyneJQ3h4OBMmTGDYsGFUq1bNsnz+/Pls3LgxzfY9e/akY8eOGZYXGhrKwoULOXXqFAC1atWid+/eeHp6Wj94EREREZFcKl8lDmFhYUyfPp3o6Og064KCgqhevTrdunVLtbxIkSIZlhcTE8PUqVNxcXFh0KBBxMbGsmTJEr766ivGjRuH0aix5SIiDywuDl57Lfn51Kng5GTbeERE5L7ki8TBZDKxe/duFi1alOE2QUFBPPbYY5QvX/6+y92yZQsRERGMHTuWQoUKAVCiRAkmTZrEgQMHCAgIeOjYRUQKnMRE+Oab5OeTJytxEBHJI/LFJfPLly8zd+5cmjRpwjPPPJNmfWhoKNHR0ZQq9WCzZBw7dowKFSpYkgaA0qVL4+vryz///PPQcYuIiIiI5BX5osWhSJEifPjhh3h5eXHy5Mk064OCggA4ePAgv/32GxEREZQoUYIePXpQs2bNDMsNDg6mfv36aZb7+voSHBxsvRMQEREREcnl8kWLg5ubG15eXhmuDwwMBJLHLAwePJgRI0bg7u7O119/zdGjRzPcLyYmBmdn5zTLnZyciI198Kn/RERERETyqnzR4pCZpk2bUq5cuVStCzVq1GDixIksXbo0w1YHczbdOTQsLIz4+PhsKTsnxMXFERISYuswJB2qm9xJ9ZKaITqaYv///OrVq5izeC8He3t7vL29iY+PJy72wW8AZzKZ0t0v3iX5mlpoaCiJiYlZik2yTv8vuZPqJXeyVr34+fnd13YFInHw9vbG29s71TI7OzuqVavG5s2bM9zP1dU13ZaF2NhYXFxcshzPvWZyygtCQkLu+w9McpbqJndSvdwlKsrytFixYuDm9lDFOTo6ZulGbsk3gEs7MDvlbtJ3f25IztD/S+6kesmdcrpe8kVXpcwcOnSIQ4cOpVmekJCAu7t7hvsVK1aM69evp1l+/fp1/P39rRmiiIiIiEiuViAShz179vDrr78SExNjWRYXF8c///xDlSpVMtyvevXqnDlzhlu3blmWXbp0iWvXrlG9evVsjVlEJN9ycYHz55MfD9F6KyIiOatAdFXq1KkTR44c4auvvqJDhw4kJSWxdu1a4uLiePzxxy3bXbp0CXt7e4oXLw5Aq1at2LRpE9OmTaNr164kJCSwZMkSSpUqRYMGDWx1OiIieZvRCGXL2joKERF5QAUicShVqhRjxoxh6dKlzJo1C5PJRKVKlRg0aBA+Pj6W7b777juKFi3KmDFjAHB3d2fMmDEsWLCAWbNm4eDgQM2aNenduzd2dna2Oh0RERERkRxnMGfX1EGSb2mAVO6lusmdVC93iY+Ht99Ofj5pEvz/YOSs+nzTGYIiHnyK7IwGR5cs5MyYNhUfKibJOv2/5E6ql9xJg6NFRCR/S0iAzz5LfiQk2DoaERG5T0ocREREREQkU0ocREREREQkU0ocREREREQkU0ocREREREQkU0ocREREREQkU0ocREREREQkUwXiBnAiIpKLuLjA0aP/ey4iInmCEgcREclZRiPUqGHrKERE5AGpq5KIiIiIiGRKLQ4iIpKz4uPho4+Sn7/1Fjg62jYeERG5L0ocREQkZyUkwAcfJD9/4w0lDiIieYS6KomIiIiISKaUOIiIiIiISKaUOIiIiIiISKaUOIiIiIiISKaUOIiIiIiISKaUOIiIiIiISKY0HauIiOQsZ2fYs+d/z0VEJE9Q4iAiIjnLzg4aNrR1FCIi8oDUVUlERERERDKlFgcREclZ8fHw5ZfJz195RXeOFhHJI5Q4iIgIACazGaPBkP3lJiTAm28mPx85UomDiEgeocRBREQAMBoMzNkXyLXIOKuV6evhxMCAUlYrT0REbEeJg4iIWFyLjCMoItbWYYiISC6kwdEiIiIiIpKpfNfiEB4ezoQJExg2bBjVqlWzLD979izLly/n0qVLAJQpU4aePXtSunTpe5b3zTffcPjw4TTLn3vuORpqOkERERERKSDyVeIQFhbG9OnTiY6OTrU8MDCQqVOnUqlSJQYPHgzAX3/9xaeffsrYsWPvmTwEBQXRtGlTHnnkkVTLfX19rX8CIiIiIiK5VL5IHEwmE7t372bRokXprv/rr78oVKgQL730Evb2yadctWpV3nrrLTZs2MAzzzyT7n7R0dHcuHGD6tWrU758+WyLX0REREQkt8sXicPly5eZO3curVq1olq1anz99dep1pcqVYry5ctbkgYAJycnvLy8uHnzZoblBgYGWvYXERErcXaGTZv+91xERPKEfJE4FClShA8//BAvLy9OnjyZZv1jjz2WZtm1a9e4fPkyrVu3zrDcwMBADAYDGzdu5NChQ0RFRVGuXDl69+5NuXLlrHkKIiIFh50d3OO9V0REcqd8MauSm5sbXl5e9719fHw8v/zyCw4ODrRr1y7D7YKCgjCbzRgMBp5//nmee+454uPj+fzzzy2tESIiIiIiBUG+aHF4ENHR0XzzzTdcuHCBF154AW9v7wy3feyxx2jatClVqlSxLKtatSrjx49n1apVDB8+PEsxhIWFER8fn6V9c4O4uDhCQkJsHYakQ3WTO+WFerG3t8fb25v4+HjiYq13A7h4l+TrU6GhoSQmJiYvTEjA9bffAIh++mlwcMhS2Q8bs8lkSne/dGOWHJMX/l8KItVL7mStevHz87uv7QpU4nD9+nW+/vprbty4wfDhw6lTp849ty9evHiaZa6urlSoUIGgoKAsx1GkSJEs75sbhISE3PcfmOQs1U3ulJfqxdHRESdnk1XLA1JfpImKgrfeAsBz1Chwc3voY2Ql5rjYOJycndItD7jnhSXJPnnp/6UgUb3kTjldLwUmcTh//rxl0PTo0aOpUKFCpvv8/fffFCpUiKpVq6ZanpCQgNtDftCJiIiIiOQl+WKMQ2ZCQkL48ssvcXJyYuzYsfeVNABs3LiRefPmkZSUZFkWHh7O2bNnU3VfEhERERHJ7wpEi8Nvv/1GbGwsTz75JLdv3+b27duWdc7OzpYuSZcuXcLe3t7ye9euXZkxYwbfffcdrVq1IioqihUrVuDq6pruTE0iIiIiIvlVvk8cbt26xenTpwGYNWtWmvUVKlTgzTffBOC7776jaNGijBkzBoBatWrx8ssvs3LlSn744QeMRiM1atTgiSeeUFclERERESlQ8l3iUKVKFWbOnGn53dPTM9Xv9/LRRx+lWVajRg1q1KhhtfhERERERPKiAjHGQUREREREHk6+a3EQEZFczskJVqz433MREckTlDiIiEjOsreHLl0eeLfw8HB27drFzp07CQwMJDExkcTERM7fSsKtZCWKVayJT9kq2Ds5Z0PQIiKixEFERHKt+Ph4Fi5cyFdffcXff/+d6fZ2Do5UadmJOp37U6yCxqeJiFiTEgcREclZCQkwd27y86eeAgeHNJvExcUxbdo0pk+fTnBwsGV5pUqVaN68OdWqVcPR0RE7OzuW7zvNmWOHuXrmKNERYfy7cSn/blyKX+XaPDLkdYpXq5dTZyYikq8pcRARkZwVHw/PPJP8vE+fNInD1q1bGTZsGCdPngTA39+fl156iaFDh+Ln55e2uE1nqBERi9lsJuTUEQ6vmsepnWsJOXWEBW8NolaHvrQY+CpObh7ZfmoiIvmZZlUSEZFcITo6muHDh9OqVStOnjyJn58fs2fP5sKFC7z11lvpJg13MhgM+FepQ8fRn/Ds9+uo8egTAPyzdgG/vvw4l47szonTEBHJt5Q4iIiIzQUGBtKyZUu+//57AIYNG8bx48cZNGgQjo6OD1yem5c37V/8gF4Tf8areFmiwq+z5IMXOLJ2gbVDFxEpMJQ4iIiITe3cuZOAgAAOHDiAt7c3GzZsYObMmRQuXPihyy5VsyFPTVtE1VZdMZuS2PjdRLb8/CmmpKSHD1xEpIBR4iAiIjazbNkyWrduzbVr16hduzb79u2jbdu2Vj2GvaMTHV75iKYDXgLg4PLfWD1tLKakRKseR0Qkv1PiICIiNvP000+TkJBAz5492bFjB2XKlMmW4xgMBhr3GU7n1z/DaG/P6R1r2TRzAmaTKVuOJyKSHylxEBERm0kymXj66adZuHAh7u7u2X68ys070Pn1zzAY7Ti1bRUbvpuA2WzO9uOKiOQHWU4cTp06xdatWwE4d+4cXbt2pVGjRpaBbSIiIun5c/VqnjQa6QM8OXAgs2bNws7OLseOX7FxOzqO/gSDwcjRdYvZPntqjh1bRCQvy9J9HLZt20bHjh3p0aMHjzzyCP3792ffvn2YzWb279+Pp6cn/fr1s3asIiKSx+3cuZP+AwcSazIxZMgQfvjxxxxNGlJUadGR2KgoNn33PvuXzqJIyfLUeLRnjschIpKXZKnF4f333ycmJgaz2czJkyfZu3cvFSpU4IUXXsBsNvPFF19YOUwREcnrTp06Rffu3YmNjaVbt2788MMPNkkaUlRt1ZUm/UYCsGHmBK4cP2izWERE8oIsJQ5HjhzBxcWFn376iY0bNwLw3HPPMWPGDNzd3Tl9+rRVgxQRkbzt2rVrdOrUiRs3btAkIIAFffpgv2QJJNp2ZqPGfYZTsWl7TImJrPj0VW5dD7ZpPCIiuVmWuipFR0fj7u6Oi4sLW7ZswWAw0Lx5cwwGA0ajkSTNjy0iIv8vISGB3r17c+7cOcqVK8ef8+fjXKFC8srbt8E+Sx9FVmEwGukw6kNuBl8i9MJJVnz6KpVn6CZxIiLpyVKLQ6lSpQgNDeWHH35g9erVeHh4EBAQwCeffMKtW7eoWLGiteMUEZE86o033mDbtm14eHiwatUqihUrZuuQUnFwdqX7uOk4uxfi2tl/Wf3TNFuHJCKSK2UpcXjqqacwm8288MILREZG0r9/f8xmM2+//TYGg4Hhw4dbO04REcmDDmxYxpdffgnAr7/+StWqVW0cUfo8fYvT/qUJAGxZ+BNr1qyxcUQiIrlPltqHx40bR2RkJKtXr6ZevXpMmTIFZ2dnypcvT58+fXj++eetHaeIiOQx1y+cZOFnbwPw9ttv06NHD9sGlIkKjdtSp1M/Dq/+ncGDB3PkyJFc1zoiImJLWUoc7O3tmTx5MpMnT061/PDhw7i6ulolMBERybviY6JZNeV1EuJi6dChAx988IGtQ7ovLQeP4drJgwSfO8mQIUNYtWoVBoPB1mGJiOQKWb4BnNlsZunSpYwaNYpevXoBsGHDBmJiYqwWnIiI5E2bf/yY8CsXKOTjx9y5c2067eqDsHdy5ql3puHs7MyaNWv45ZdfbB2SiEiukaXE4fbt27Rq1YonnniCr7/+mj///BNInpI1ICCAq1evWjNGERHJQ05sW8W/G//EYDTy3HvT8CpSxNYhPZBKVaoxYULyeIfXXnuNy5cvW61sk9lstbJERHJalroqvfPOO2zfvp2qVaty6dIlYmJiiI6OJi4ujhMnTjBu3Dh+/vlna8cqIiK5XERIIBu/mwhAo17PU6dRc4wGA3P2BXItMg4AY2IC1d78BIDjOy9hsnfI0rGqFnOnS3U/6wR+BxcHO5597TW+m/1fzh07RPveAxk6aeZDd1ny9XBiYEApK0UpIpLzspQ4LF68GAcHB7Zv306dOnWIiYnB1dWVw4cPU7lyZc1GISJSAJmSElnzxTjio2/jX7UujZ98wbLuWmQcQRGxlt8vNe2S/CQqCcjavX983Z0eJtx7srOz44nXPmLa8Mc5vnsTG5Yvpmqrrtl2PBGRvCBLXZWuX7+Op6cnRe5qfi5TpgxOTk7cvHnTGrGJiEgesu/PWQSfPIyjqzudRn+K0c52N3azBr9ylWjcNzn52fzjJ0RHhNk4IhER28rSu3r58uU5efIkq1evtiyLjo5mwoQJ3L59m1q1alktwAcVHh7OhAkTGDZsGNWqVbMsv337NosWLeLo0aPEx8dTpUoV+vbti4+Pzz3Ly+p+IiIFyfXzJ9n9+wwAWj/7Hzx9i2e4rTEpkaoHdwJwol4zTLk4wWjQ8xlO7VxL6IVT7JjzheVeDyIiBVGWWhzGjBmD2Wyma9euXLlyBQAPDw+mTJmCwWBgxIgRVg3yfoWFhfHll18SHR2darnJZOLLL7/k5MmT9O3bl8GDB3P9+nU+//zze84CldX9REQKksSEeNZ+OQ5TYiIVGrelWpvu99zePiGe5ye9yPOTXsQ+IT6HoswaO3sH2g4fD8CxDUu4cvygjSMSEbGdLCUOzz77LJ988gnOzs6YzWbLw93dnYkTJ/LCCy9kXogVmUwmdu7cyYcffsitW7fSrN+/fz+XLl1i5MiRNGrUiAYNGjB69Ghu377N1q1bMyw3q/uJiBQku3//htCLp3HxLEK7F97Nd/c9KF61LjUefQKAjTMnYkpKtHFEIiK2keX7OLz55puEhISwZs0a5s6dy8aNGwkMDOStt96yZnz35fLly8ydO5cmTZrwzDPPpFl/7NgxvL29KVXqf7NZFCpUiIoVK3LkyJEMy83qfiIiBcXVM8fY/2fyvQ7ajXgX18JFbRxR9mgx8FWc3QsRevE0h1b+19bhiIjYRJYTh9DQUObNm8djjz1G//79KVeuHFOmTCEkJMSa8d2XIkWK8OGHH9K3b18cHR3TrA8ODsbPL+2Ufb6+vveMN6v7iYgUBEmJCayb8S5mk4kqLTtRsUk7W4eUbVw8vWgxaDQAu+bN4HbYNRtHJCKS87KUOJw+fZo6derw8ssvk5CQAMDBgweZNGkSAQEBnDlzxqpBZsbNzQ0vL68M18fExODs7JxmuZOTE7Gxsens8XD7iYgUBPuX/ELohVM4exSm1bP/sXU42a5Gu574Va5NQmw0O3770tbhiIjkuCxNZfHWW28RHBxM6dKlCQ0Nxd/fHy8vL8qXL8/58+cZP3488+bNs3asWWbO4p06s7pfZsLCwoiPz90DAu8lLi5OLS65lOomd8oL9WJvb4+3tzfx8fHExcZlun345fPsXvAdAM0Hv46dk1u6+6VcXEpISLCsN8f+7/0vLjaeeOyyFHN6ZT8Ik8l03zGnaDbwNf4YP4Tjm5ZRvV0vfCvUuO/jxbskX6sLDQ0lMVHjJDKSF/5fCiLVS+5krXpJr4dNerKUOGzbtg1HR0f27duHt7c3AK1atWL37t2ULFmSLVu2ZKXYbOPq6ppuC0FsbCwuLi5W3y8zd9//Iq8JCQm57z8wyVmqm9wpL9WLo6MjTs6me25jSkpiyw8fYkpMoFyDR6jZtnuGA6IdHBwsP52ck2/Y5njHDd+cnB0xOGftRm7plf0g4mLj0t3vXuWWrtmAaq27cXzzcnb+No2+H/1634PBU7rSpnxuSvry0v9LQaJ6yZ1yul6y1FUpIiICJyenNG9+RYsWxcHBgfDwcKsEZy3FihXj+vXraZZfv34df39/q+8nIpKfHVnze/KN3lzcaPvC+AeeRSnR3oFFz7/FouffItHeIZuizD7Nn34FeycXgk8c4uT21ZnvICKST2QpcahSpQq3b9/mP//5j+Uu0VevXuWVV14hKiqKKlWqWDPGh1a9enWuXr3K5cuXLcsiIiI4c+YM1atXt/p+IiL5VcS1y5b+/S0GvYaH94Nf6TLZO7Cjc392dO6PKQ8mDu5Fi9Gw17MAbJ89lYQ43ddHRAqGLCUOo0aNwmw2M2XKFEsrQ/HixZkxYwYGg4FXX33VymE+nICAAPz9/Zk+fTq7d+9m//79TJs2DXd3d1q1amXZ7sqVK1y6dOmB9xMRKQjMZjMbvp1AQmwMJao3oNZjvW0dks006D4YD5/i3L5xlYPLf7N1OCIiOSJLicPQoUOZNGmS5QZwSUlJmM1mnJ2dmTRpEkOGDLFymA/H3t6eV155hQoVKjBv3jzmzJmDr68vY8aMwdXV1bLdvHnz+O677x54PxGRguDfTUu5dGgndo5OPDryfQzGrM3obUhKosLRvVQ4uhdDUlLmO+RC9k7ONH/qZQD2/fET0RFhNo5IRCT7ZWlwNMC4ceMYOXIku3btIiwsjKJFi9KkSRMKFSpkzfgeWJUqVZg5c2aa5V5eXgwbNuye+44ZMyZL+4mI5HdR4aFs/XkyAE37jcSrRNksl+WQEMdL44cCMHbe38Tb5c0LMVVadmb/sl+5fu44exZ+T+vn8v+UtCJSsGX5BnCQfBfljh07MmDAADp06GDzpEFERLLHph8+Ii4qEt/y1ajffZCtw8kVDEYjLf//pnBH1s4nIiTQxhGJiGSvLLU4mM1mfvzxR1atWkVkZCQmU+qp+wwGAxs2bLBKgCIiYlund63jzK51GO3saf/SRIx2WW6szndK12lK6brNuHRoJzvmfkXnMZNtHZKISLbJ0rv/2LFj+fzzz4H0b5L2oFPziYhI7hR7O4JN308CIKDnM/iUy12z5uUGLQaN5r+Hd3Fq+2oaPD6YYhXv/6ZwIiJ5SZYSh9mzZ2M2mylVqhStWrXC1dVVyYKISD609ZfPiL55A68S5WjUZ7itw8mVfMtVpeojXTixZQXbZk+l14Qf9ZkoIvlSlhKHmJgYnJycOHjwYJ6/C7KIiKTv4qGd/LvxTzAYaP/iB9g7Zu0OzwVBswEvc3rHWoKO7uHCge2Ua9DS1iGJiFhdlgZHd+zYEaPRiIuLi7XjERGRXCA+JpoN304AoG7n/hSvVs/GEeVunr7FqdNlAAA75kzDlEenmRURuZcstTh89NFH7N+/nx49evDiiy/i7e2NvX3qoho1amSVAEVEJOft/O9X3Lp2GQ8ff5o99YpVy06yc2DZoNcsz/OLRr2e59j6Pwi9eJoTW1ZQve3jtg5JRMSqspQ4VKmSPDjuwoULrF+/Ps16g8FAYmLiw0UmIiI2ceXEIQ6tnAtAuxHv4ehi3fssJDk4sKnnM1YtMzdw9ihEw17Psf3Xaez871dUbt4BeydnW4clImI1WeqqZDab7/m4e3pWERHJGxLj41g/4z0wm6nWpjtl6zW3dUh5St3OA/Dw9uP2jascWvVfW4cjImJVWWpxOH/+vLXjEBGRXOCv2V8RFnQO10JFaPXMm9lyDENSEiXPHQcgqHw1zHZ22XIcW7B3cqZJ/xdZ99V49v7xEzUf642zm6etwxIRsYosJQ5lypRJ9futW7fw9NQbo4hIXrZ79242zf8BgLbDx+PsUShbjuOQEMdrb/YHYOy8v4m3s25XKFur1qob+/+cRVjgWfYvmUXzp0fZOiQREavIUlclgCNHjtCzZ08KFy5smZJ1yJAh6Y55EBGR3C0mJoYhQ4ZgNpmo+kgXKjZ91NYh5VlGOzuaPfUyAAdX/EZU2HUbRyQiYh1ZShz2799P06ZNWbp0Kbdu3bKMbViwYAGdO3dW8iAikse8/fbbnDx5Es+ivrR+fpytw8nzKjRqi1/l2iTGxfD3wpm2DkdExCqylDi8/fbbxMbGMnbsWLy9vQGIj4+nc+fOJCYm8sEHH1g1SBERyT7btm3jiy++AKDPmEk4u2dPF6WCxGAw0HzgqwAcXbeYm8GBtg1IRMQKspQ47Ny5E09PTz766COcnJLvJOrk5MT8+fPx9PTk8OHDVg1SRESyx+3bt5O7KJnNDB06lGpNWts6pHyjVM2GlKnXHFNSIrt+/9rW4YiIPLQsT8eakJBA0l13xgwLCyMqKirNzeBERCR3Gjt2LOfOnaNUqVJMnTrV1uHkO82fSh4YfXLrKq6cPW7jaEREHk6WEodHHnmEmJgYhg4dSnR0NADffvst7dq1w2Qy0by55v0WEcntNmzYwDfffAPAzz//TKFC6qJkbb4VqlO5RUcAVv+kxExE8rYsJQ6TJ0/Gw8ODuXPncvPmTQBeeukljh49ipubGx9++KE1YxQRESu7desWQ4cOBWDEiBE8+mjOzaKUZOfAmidHsObJESTZOeTYcW2laf+XMBjtOL57M9u2bbN1OCIiWZalxKFGjRrs27eP/v37U6xYMezt7SlVqhQDBw5k37591KlTx9pxioiIFb388stcunSJ8uXLM3ny5Bw9dpKDA2v7jWRtv5EkOeT/xMGreBlqPvoEAOPGjcNsNts4IhGRrMnSYIS3336bgIAAfv75ZxwdHa0dk4iIZKO5c+fy66+/YjQamT17Nu7u7rYOKd9r/OQLHN+8jB07drBy5Uq6du1q65BERB5YllocvvrqK55++mni4uKsHY+IiGSjc+fOMWLECADeffddWrRokeMxGEwm/C6dwe/SGQwmU44f3xbci/jS8onBQHKrw92Ti4iI5AVZShzKly+PwWDQG5+ISB6SkJBA//79iYyMpEWLFrz99ts2icMhPpaxr/Rk7Cs9cYiPtUkMttCm/zAKFy7M0aNHmTdvnq3DERF5YFnqqvTMM88wduxYatasSZcuXfD398fFxQWDwWDZ5s0337RakCIi8vDeeecd9uzZQ+HChZk7d66mzs5hrh6FGDt2LOPGjWP8+PH07dtX3X1FJE/J0qfG6NGjMRgMXLlyhR9//DHdbZQ4iIjkHkuXLrUMgv7pp58oXbq0jSMqmEaNGsX06dO5cOEC33//PS+99JKtQxIRuW9ZShxKly6dqnVBRERyrzNnzjB4cHL/+tGjR/PEE0/YOKKCy9XVlfHjxzNy5EgmTpzIkCFDNDhdRPKMLCUOu3btwt/f39qxiIiIlcXExNC7d28iIiJo3rw5n376qa1DKvCee+45Pv/8c86ePcsXX3zBO++8Y+uQRETuS5YGRzdt2pS6desSGhpq7XhERMRKzGYzL7zwAocPH8bX15f58+fjUADum5DbOTg4MHHiRACmTJmiz1IRyTOy1OJw48YNIiMj8fb2tnY82eLkyZNMnTo1w/Vdu3alW7duaZZHR0czevToNMvt7e2ZMWOGVWMUEbG2zz//nF9//RU7OzvmzZtHiRIlbB2S/L8nn3ySTz/9lMOHD/PJJ5/w2Wef2TokEZFMZSlxeOONN/jggw+YPHkyAwcOzPXdlkqXLs3YsWPTLF+6dCkXLlygUaNG6e4XGBgIwLBhw/Dy8rIs1/gOEcntVq5caZmk4osvvqBt27Y2juh/kuwc2Pj4EMvzgshoNPLxxx/TuXNnvv76a1555RVKlSpl67BERO4pS4nD8uXLcXR0ZNy4cYwbNw4AR0dHyxdqg8FAVFSU9aJ8SC4uLpQvXz7VssOHD3PixAmGDRtGsWLF0t0vMDAQBwcH6tWrh9GYpV5dIiI57tixY/Tv39/SVenFF1+0dUipJDk4sHzIGFuHYXMdO3bkkUceYevWrXzwwQcZzlIoIpJbZOnb8P79+4mLi8NsNlsecXFxxMbGWh65WXx8PL///ju1atWiQYMGGW4XFBREiRIllDSISJ5x5coVunTpQmRkJK1bt2b69OlqJc2lDAYDH3/8MQC//PILJ06csHFEIiL3lqUWh19++cXaceSojRs3cvPmzXTHL9wpMDAQe3t7pk6dyrlz53BwcKBBgwb07t0bZ2fnHIpWROT+RERE0KlTJy5evEilSpVYtGhRrhwMbTCZKBwaDMBNb3/MBfjiTLNmzejevTvLli3jnXfeYdGiRbYOSUQkQ1lKHFLmA8+LEhMT2bBhAwEBAfj6+t5zu+DgYFxdXenevTtdu3bl4sWLrFixgitXrvD6669nuSUiLCyM+Pj4rJ6CzcXFxRESEmLrMCQdqpvcKSfqJTY2lgEDBnDkyBF8fX357bffSEhIuO/j2tvb4+3tTXx8PHGxcVaLKyEhwfIzpVzH2BjeHd4RgFd/2Ua8s4vVyn4QJpMp3f0ettyMxLskf2aEhoaSmJhoWT569GhWrFjB4sWLWb58OQ0bNrTaMfMivY/lTqqX3Mla9eLn53df22Upcfj1118z3WbQoEFZKTrbHThwgFu3bvHYY4/dczuDwcCoUaMoUqSIJcGoXLkynp6e/Pzzzxw9epTatWtnKYYiRYpkab/cIiQk5L7/wCRnqW5yp+yul8TERPr168euXbvw8PBg7dq11K1bN0tlOTo64uRsslpsKS0eDg4OODk7JR+DJMt6J2dHDP+/3BplP4i42Lh093vYcjPi6OgIkGZGQj8/P5555hl++uknPvroI3bu3Fmgu5fpfSx3Ur3kTjldL1lKHIYMGZLpm1puTRz2799P8eLFM529ws7OjqpVq6ZZXqtWLSB5/ENWEwcREWtJTExk4MCBLF68GEdHR/78888sJw1iOxMmTGDevHns3r2bRYsW0adPH1uHJCKSRpb62jg6OqZ62NnZWQZJFy1alPr161s7TqtISkri33//veeA6BRhYWFs3bqViIiIVMtTmrDd3d2zJUYRkfuVlJTEM888w++//46DgwOLFi3KVdOuyv0rXry4ZfrcsWPHEhdnvS5SIiLWkqXEITY2lpiYGMsjPj6e27dvM336dKKiopg+fbq147SKoKAg4uPjqVChQqbbxsXFMXfuXLZv355q+d69ezEYDFSqVCm7whQRyVRiYiLPPvssv/32G/b29syfPz/dG1lK3vH666/j7+/P+fPndZNREcmVrDaVhaurKy+99BJlypRJ92ZruUFQUBCQfGXnbjExMZw7d47IyEgA/P39CQgIYNWqVaxevZrjx4+zfPlylixZQqtWrXL9Te9EJP+KjY2lb9++zJ4923JX6J49e9o6LHlIbm5uTJw4EYCJEycSFhZm44hERFKz6hx4Fy9e5NKlS+zfv9+axVrNrVu3gOQk526XLl3i008/5Z9//rEsGzJkCB07dmTnzp18/fXX/P3333Tr1o0nn3wyx2IWEblTZGQkXbp0YcmSJTg6OrJw4UJ69+5t67DESoYMGUKtWrW4efMmH374oa3DERFJJUuDo6tXr55mWVxcHFeuXLnvrkC20KlTJzp16pTuuipVqjBz5sxUyxwcHOjWrZua/0UkVwgODqZ79+7s27cPd3d3li5dmifHNCTZ2bO945OW5/I/dnZ2fPbZZ3To0IGvv/6akSNHUrFiRVuHJSICZDFxuNfdLY1GI++//35W4xERkXQcOnSIbt26ERQURNGiRVm9enWene8/ycGRxcPfsXUYudZjjz1Ghw4dWLt2LePGjWPhwoW2DklEBMhi4vDee++lWWY0GvHy8qJNmzbUqFHjoQMTEZFky5YtY8CAAURFRVG5cmVWrFihCRryuc8++4x169axaNEidu7cSbNmzWwdkoiI9RIHERGxrqSkJCZMmMDEiRMxm808+uijLFiwAC8vL1uH9nDMZtxuhQMQ5ekFBfhmZxmpWbMmQ4cO5ccff2TMmDEF/qZwIpI7ZHlw9JYtW1Ld5O3w4cO0bNmSDRs2WCUwEZGC7Nq1a3Ts2JEJEyZgNpt58cUXWbVqVd5PGgDHuBg+HNKKD4e0wjEuxtbh5FoTJkzAzc2N3bt3M3fuXFuHIyKStcRh3bp1tG/fnrlz51qmLz127Bg7duygU6dOSh5ERB7Cxo0bqV+/PuvXr8fV1ZXffvuNr7/+GgcHB1uHJjnI39+ft99+G4A333zT8nkrImIrWUocJk6cSGJiIt26dSMxMRGARo0a0atXLxITEzWFnIhIFsTFxfH666/Trl07Ll++TNWqVdm7dy9PPfWUrUMTG3nttdeoUKECwcHB+mwVEZvLUuJw5MgRPDw8WLRokaXZvGLFisybNw93d3eOHDli1SBFRPIye/vMh5Pt3buXRo0a8fnnnwMwbNgw9u7dm+7011JwODk58cUXXwAwbdo0Tp48aduARKRAy1LikJSURFxcHPHx8amWR0dHExcXR0JCglWCExHJbiazOdvL9fb2znC7sLAwXnjhBRo3bsyRI0fw8fFh2bJlzJw5E3d39xyLV3Kvrl270rlzZxISEnj11Vcx629ARGwkS7MqNW7cmE2bNtGtWzdefvllvL29uXz5Ml9++SWJiYm0bNnS2nGKiGQLo8HAnH2BXIuMs1qZVYu506W6n6Xc+Ph4HB0dU21jMpnYt3YxK7+fQlRE8gxD9R99nG4v/IdT7t58vulMmnJ9PZwYGFDKanFK3vHFF1+wfv161qxZw4oVK3RjUhGxiSwlDh988AHbtm1j8+bNbN682bLcbDbj6OjIhAkTrBWfiEi2uxYZR1BErNXK83V3SlVuXGwcTs6m/x3v/Ak2zfyQ4JOHAShaqiJthr1FyZoNiQAirBiL5A+VKlXitdde45NPPuHVV1+lffv2ODs72zosESlgstRVqXnz5qxbt45GjRphMBgwm80YDAaaNm3KunXrdKMaEZF0xEbdYvOPHzPv9ScJPnkYB2dXWg55nQFTF1CyZt68C3RWJNnZs6dNd/a06U6SXZauXxVIb7/9NsWLF+fcuXNMnTrV1uGISAGU5XfsRx55hF27dhEdHc3Nmzfx8vLCxcXFmrGJiOQLZrOZ45uXs23250TfvAFA5RYdeWTI67gXLWbj6HJekoMj80ZNsnUYeY67uztTpkzhqaeeYtKkSQwcOJBSpdR1TURyTpZvABcaGsr333+Pq6srxYsX59q1a4wfP56QkBBrxicikqeFXjzN0gnDWfvlW0TfvIFXibI88f73dB4zpUAmDfJw+vfvT8uWLYmOjuaNN96wdTgiUsBkKXE4ffo0derU4eWXX7bMoHTw4EEmTZpEQEAAZ86kHdQnIlKQREZGsuzbj5n7Wh+CTxzA3tGZZk+/wlPTFlO6TlNbh2dbZjOOsdE4xkaDZgh6IAaDgenTp2M0Gpk/fz4bN260dUgiUoBkKXF46623CA4Oxt/fn9DQUAC8vLwoX748wcHBjB8/3qpBiojkFWazmd3rllG1alW2LvwZsymJcg3bMOjrZTTq9Rz2Do6ZF5LPOcbF8Gn/xnzavzGOcTG2DifPqVu3LiNGjABgxIgRxMZqML2I5IwsJQ7btm3D0dGRffv24e/vD0CrVq3YvXs3Dg4ObNmyxapBiojkBWFB5/jj/ef55u2XuHLlCkWLl+bxd76h42tT8PTxt3V4ko9MmjQJf39/Tp06xccff2zrcESkgMhS4hAREYGTk1OamxoVLVoUBwcHwsPDrRKciEhekBAbzfY5X/Db6F4EHvkbBycnPvjgA17/eRXlGui+NmJ9hQoVYvr06QB8/PHHnDhxwsYRiUhBkKXEoUqVKty+fZv//Oc/3Lx5E4CrV6/yyiuvEBUVRZUqVawZo4hIrmQ2mzmzewO/vvw4+/74CVNiIuUaPMLHv6/n3XffxcHRydYhSj7Wq1cvunTpQkJCAsOHD8dkMmW+k4jIQ8hS4jBq1CjMZjNTpkyxtDIUL16cGTNmYDAYePXVV60cpohI7hIZGsLyT15hxaevEhkagodPcbqNm87j78zAt0QZW4cnBYDBYGDGjBm4urqydetWZs2aZeuQRCSfy1LiMHToUCZNmoSzszNms5mkpCTMZjPOzs5MmjSJIUOGWDlMEZHcwZSUxKFV/+XXlx/n3J5NGO3sadjreQZ99ScVGrWxdXhSwJQpU4YJEyYA8Prrr3Pt2jUbRyQi+VmWbwD37LPP0r59e1atWkWlSpUoWrQojRs3plChQtaMT0Qk17h+4SQbvp1AyKkjAPhXqUO7Ee/hXaaSjSOTguyVV17ht99+49ChQ4wZM4Y5c+ZYtXyT2YzRYLBqmSKSNz1w4rBw4UImTpzIsWPHUi2vVq0ab731FgMGDLBacCIiuUFiQjx/z/+W/X/OwpSUiKOrO80Hvkrtx/pgMGb5PpoFlslox6Gm7S3P5eHY29vz/fff07hxY3777Tdca7ejckALq5Tt6+HEwADdnVpEkj1Q4jB+/Hg++ugjzOncsOfff/9l4MCBHDp0iMmTJ1stQBERW7p+4SRrvxhH6MXTAFRs2p7Wz/0H9yK+No4s70p0dGL2m1NtHUa+0rBhQ1566SW++uor5k99l4Ff/IG9k7OtwxKRfOa+L5Vt3LiRSZMmYTabadq0Kd988w1r1qxh9erVfPXVVzRs2BCz2cznn3/OunXrsjNmEZFsZ0pKYt+SX/j9jf6EXjyNa6EidP3PF3R9c6qSBsmVPvzwQwp5FyMiJJDd87+1dTgikg/dd+Lw1VdfATB8+HB27NjBCy+8wGOPPUaHDh148cUX2b17N4MHD8ZsNjNjxoxsC1hEJLvdunaFxe89x/Zfp5KUmED5hq15+os/qNi4na1DE8mQp6cnPV95H4D9S2cRcvqobQMSkXznvhOH3bt3Y29vzyeffJLueoPBwNSpU7Gzs2PXrl1WC1BEJKeYzWaOb17Ob6N7cfnYPhycXXh05Pt0Gzcd18JFbR1evuEYG820nrWY1rMWjrHRtg4nX6nZ/FGqPNIZs8nEX1+9Q2JCvK1DEpF85L7HOISFhVGkSJF7zprk5eVF0aJFc+2do0ePHk10dNoPqcmTJ2d4Xvv372fVqlVcvXqVwoUL06ZNG9q101VHkfwmIS6Gjd9N5Pjm5UDyjEkdXvmYwv4aGCp5S+tnxxF4eDdhgWf5e/53NH96lK1DEpF84r4TBy8vL8LCwrh58yaFCxdOd5sbN25w48YNihbNfVfmQkNDiY6O5sknn6Rs2bKp1rm7u6e7z8GDB/nhhx945JFHeOKJJzhx4gQLFy7EbDbz6KOP5kDUIpITrgee5/fxI7lx6QwGox1N+o2g4RPPYrTL8ozVIjbj4lmYti+8y4pPX2Xfkp+p2KQdxSrWsHVYIpIP3HdXpUaNGpGUlMSbb76Z7nqz2czo0aNJSkqiSZMmVgvQWoKCggBo0KAB5cuXT/Wws0t/OsAlS5ZQu3ZtBgwYQI0aNejVqxdt2rRh5cqVJCQk5GT4IpJNFi9ezBcjenLj0hlcCxel1wc/0LjPcCUNkqdVbNKOyi06YTYlqcuSiFjNfScOw4YNw2w289NPP9G8eXO+++471q1bx7Jly5g2bRo1atRg7ty5GAwGXnzxxeyMOUsCAwPx8PC47xvUhYaGcvXqVerXr59qeYMGDYiOjubs2bPZEaaI5JCEhARee+01evfuTVx0FCWq1+epzxdSsmZDW4cmYhVtnh+Hi2cRblw6w56FM20djojkA/d9Sa1r16689tprTJ06ld27d7N79+5U61Pu7TBmzBjat29v3SitIDAwEBcXF7755htOnjyJ2WymVq1a9O3bN91kIiQkBIBixYqlWu7rmzwNY3BwMFWrVs3+wEXE6q5cuULfvn3ZsWMHAK2ffI7afV5UK4PkKy6eXrQd/jYrp4xh7+KfqNi4Hb4Vqts6LBHJwx7olqefffYZv/32GzVr1sRsNqd6VK5cmdmzZzNlypTsivWhBAUFERERQYUKFXjppZfo3bs3p06d4rPPPiM2NjbN9jExMQC4uLikWu7snHxDnfT2EZHcb//+/TRs2JAdO3bg6enJH3/8QdfhY5U0SL5UqdljVGr2mKXLUpK62YrIQ3jgT8oBAwYwYMAArl69SlBQEImJiZQsWZISJUpkR3xWM3ToUJydnSlZsiQAlSpVonjx4kyZMoVdu3bRpk2bVNund3fsOxkMhizHEhYWRnx83u1vGhcXZ2mRkdwlv9aN0WjEaHyg6xzpWrFiBSNHjiQmJoYqVarw22+/ERAQwMdr/yUuNs4KkSZLGQOVkJBAXGwcJpPJKuXHuyS/BqGhoSQmJj50eXeyt7fH29ub+Pj4bH0tAJLiEzlatzkAMfGJJJK146VX9oPIqF4ettyM2Kr+mg16ncB/9hB68TQ7f/+GRn1eyBUxZyS/vo/ldaqX3Mla9eLn53df22X5EluxYsXSdOPJzSpWrJjuMhcXF8vA6TultDTc3bKQ8vvdLREPokiRIlneNzcICQm57z8wyVn5tW5MZjPGh0jWzWYzH3/8MW+//TYAHTp0YP78+ZZuio6Ojjg5m6wSK4CDg4Plp5OzE3GxcTg5Oz10uY6OjgB4e3s/dFn3OkZ2vhYAODvx03vfAWD3/w+rlf0AMqqXhy03I7aqPydnf9oOf5tVn73BgT9/oWLjNvhXrn3f5UH2xny3/Po+ltepXnKnnK6XAtE2f/v2bQ4dOkTFihVTvbgmk4nExMR0p2NN2e7atWuppm+9du1aqvUikv2MBgNz9gVyLfLBr/4mxsex8PN32L/uTwBa9BxI25Fv8eOB61QtFkOX6vpflvyvcvOOnN2ziZNbV7H2i3EM+Hwhji6utg5LRPKYApE42NnZMXfuXJo2bcqgQYMsy48cOUJCQgJVqlRJs4+Pjw8+Pj4cOHCARo0aWZbv378fV1dXypUrlyOxi0iya5FxBEU82Nii6IgwVnzyKldOHMRgtKP1c/+hTqd+BN9OBBLxdbfe1WSR3K7N829x+dh+bgZfYuusKTw64j1bhyQieczDdxrOA1xcXGjfvj07d+5k8eLFHD9+nPXr1/PLL79Qq1YtqlevTkxMDOfOnSMyMtKyX9euXTl48CBz5szh6NGjLF68mE2bNtG5c2dL862I5E43gy8xf+xTXDlxEEdXD3qM/4Y6nfrZOiwBHGOj+aRfIz7p1wjH2Ghbh1NgOLsXosOoSQAc/WsR5/ZusXFEIpLXFIgWB4AePXpQuHBhtm7dyqZNm3B3d6dVq1Z07doVgEuXLjF16lQGDx5Ms2bNAGjSpAlJSUmsXbuW3bt3U6RIEfr27Uvbtm1teSoikomrZ47x58SRxNwKw7NYCXq88w1FSpa3dVhyB6e4GFuHUCCVqt2Y+t0HcWDZr6yf8S5Pf/EHroWL2josEckjCkziYDQaadu2bYZf+qtUqcLMmWlvkNO8eXOaN2+e3eGJiJVcPLSTFZ++SkJsDD7lq9HjnW9w88q5gZ0iuV2zp0Zx6fAuQi+eZv0379Nt3PSHmilQRAqOAtFVSUQKhhNbVrD0wxdJiI2hVO3G9J74s5IGkbvYOzrR4dWPsbN34NzezRxb/4etQxKRPEKJg4jkCweWzmbNF+MwJSVSuUUnHn/nG5xc086YJiLgU7YKTQe8DMCWnz/lZvAlG0ckInmBEgcRydPMZjPbZn3O1lmfAVCv29N0Gv0J9g6awEDkXup3H0SJGgEkxMaw5otxJCXqrtIicm9KHEQkzzIlJbHhmw/Yv3QWAC0GjeaRZ97EYIW7TIvkd0Y7OzqMmoSjqwchp46w+/dvbR2SiORy+nQVkTwpKTGBNV+M4+j6xRiMRtq/NIGAnkM1yDMPMBuMnKkRwJkaAZgN+hiyJU/f4jw6Mvl+Dnv/+JHAI3/bOCIRyc30ji0ieU5ifBwrJ7/Gqe2rMdrb0+m1ydRo19PWYcl9SnByZsaHvzDjw19IcHK2dTgFXuXmHajZvheYzaz5YhzREWG2DklEciklDiKSp8THRLN00ouc27sZO0cnuv3nSyo372DrsHKEh5M9JrPZ1mFIFuXm+mv17FiKlKpAVPh1/vrqHcwmk61DEpFcqMDcx0FE8r7YqFssnTiS4JOHcXB2pfvbX1OqZkNbh5VjXBzsMBoMzNkXyLXIOKuWXbWYO12q+1m1TEktN9efg5MLncdMZt6bA7iwfxsHV86lfreBVoxQRPIDJQ4ikifcvnmDxeOf5fr5Ezi5e9Jj/Lf4V65t67Bs4lpkHEERsVYt09fdyarl3YtjbDTjh3cEYOLMNcQ7u+bYsXOD3Fp/3mUq88gzb7Bp5ods/3UqJas3oGT9+laITkTyC3VVEpFc79q1a3w3ZhDXz5/AtVARek/8ucAmDfmF+61w3G+F2zoMuUvtDn2p0LgdpsREVn3+JrHRt20dkojkIkocRCRXCwkJoXXr1oScP4Wblw+9J83Cp2wVW4clki8ZDAbav/gBHt5+3Ay+yJLpE2wdkojkIkocRCTXunLlCq1bt+b48eMU8vGj94e/UKREOVuHJZKvOXsUouPoTzEYjez/awk///yzrUMSkVxCiYOI5EpBQUG0atWKkydPUrp0aUZOm4tX8TK2DkukQChRvT5NB7wMwIsvvsihQ4dsG5CI5ApKHEQk17l06RKtWrXizJkzlC1bli1btlC0eGlbhyVSoDTsOZRqTVoTGxtL7969uXnzpq1DEhEbU+IgIrnKhQsXaNWqFefOnaN8+fJs2bKFsmXL2joskQLHYDTS/z9TKFu2LGfPnuWZZ57BnEvvQyEiOUOJg4jkGmfPnqVVq1ZcuHCBihUrsmXLFkqXVktDfmM2GLlUsQaXKtbAbNDHUG7m6lmYhQsX4ujoyJ9//snnn39u65BExIb0ji0iucLp06dp1aoVly5dokqVKmzZsoWSJUvaOizJBglOzkyb8jvTpvxOgpOzrcORTAQEBPDll18C8J///Idt27bZOCIRsRUlDiJicydPnqRVq1ZcvnyZatWqsXnzZooXL27rsETk/w0fPpynnnqKpKQknnzySUJCQmwdkojYgBIHEbGpf//9l1atWhEcHEzNmjXZvHkzfn5+tg5LRO5gMBiYOXMmNWrUIDg4mP79+5OYmGjrsEQkhylxEBGrMT3gwMmjR4/SunVrrl69Su3atdm4cSO+vr7ZFJ3kFg5xMYwf1oHxwzrgEBdj63DkPrm5ubFo0SLc3NzYvHkzY8eOtXVIIpLD7G0dgIjkH0aDgTn7ArkWGZfptlfOHmfm64OJiginRMXq9PrgR349GgFEpNquajF3ulRXC0R+YjCbKXL9iuW55B1Vq1Zl1qxZ9OnTh6lTp1K7dm0GDx5s67BEJIcocRARq7oWGUdQROy9tzn7L3+8P4zY2xEUq1iDbu/NJBwXwtPZz9fdKbtCFZEs6N27N+PHj2fixIkMGzaMKlWq0KRJE1uHJSI5QF2VRCRHhZz6h8XvPUfs7Qj8Ktem5/vf4+xeyNZhicgDeP/99+nRowfx8fH07NmTy5cv2zokEckBShxEJMdcOXGIPz4YRlxUJP5V69LzvZk4u3naOiwReUBGo5E5c+ZQs2ZNQkJC6NGjBzExGq8ikt8pcRCRHHH53/0s+WA48dG3KVG9AT3fnYmTq7utwxKRLHJ3d2fZsmUULVqUffv28dxzz+nO0iL5nBIHEcl2gf/sYcmEESTERlOqVmN6jP8GRxdXW4clIg+pXLlyLFq0CHt7e/773/8yZcoUW4ckItmowAyOTkpKYtOmTWzfvp0bN27g6elJnTp16N69O87O6d+5NDo6mtGjR6dZbm9vz4wZM7I7ZJF84eKhnSz/+BUS42MpXbcZ3f/zJfa6W3CBZjYYCClVwfJc8rbWrVszffp0Ro4cyX/+8x+qV69O165dbR2WiGSDApM4/Pnnn2zYsIGOHTtSqVIlQkJCWL58OefOnePNN9/EaEzb+BIYGAjAsGHD8PLysiw36INO5L6c37+NFZ++SlJCPGUbtKTrm9Owd9QsSQVdgpMLn07/09ZhiBWNGDGCw4cPM3PmTJ588km2bt1KgwYNbB2WiFhZgUgc4uPj2bBhA+3bt6d79+4AVKtWDXd3d3788UdOnTpF1apV0+wXGBiIg4MD9erVSzexEJGMndu7mZWTXyMpMYHyjdrQ+fXPsHdwtHVYIpJNvvrqK86fP89ff/1F165d2bVrF2XLlrV1WCJiRQXi23BUVBQtWrRIc/XDzy/5plI3b95Md7+goCBKlCihpEHkAZ3ZvYEVk0eTlJhAxabt6fL650oaRPI5BwcHFi5cSO3atQkJCaFz586Eh4fbOiwRsaIC0eLg5eXFgAED0iw/dOgQACVKlEh3v8DAQOzt7Zk6dSrnzp3DwcGBBg0a0Lt37wzHRYgUdAfWL2XllLGYTUlUbtGRDq98hJ29g63DklzEIS6G197oD8DUKfNIcHKxcURiLZ6enqxcuZImTZpw/PhxHn/8cdauXYuLi+pYJD8osJfSz549y9q1a6lVqxalSpVKsz4xMZHg4GBu3LhBQEAAo0aNonPnzuzdu5fp06djMplsELVI7vbtt98y7+M3MJuSqNa6Gx1f/VhJg6RhMJvxCzyLX+BZDJq+M98pWbIkK1euxNPTk23bttGvXz8SExNtHZaIWEGBaHG428mTJ/nmm2/w9vZmyJAh6W5jMBgYNWoURYoUwdfXF4DKlSvj6enJzz//zNGjR6ldu3aWjh8WFkZ8fHxWw7e5uLg4QkJCbB2GpMOWdTNjxgw+/PBDAGo+1ocWg98gISEJEpIeqtyEhATLz7jYuIeOMyfKvrtck8lklfLzw2sBYI793/tfXGw88dhZrewHkVG95ORrkdvLjndJvr4YGhr6QF/+ixUrxqxZsxgwYADLli3jqaeeYtq0affV9VefMbmT6iV3sla9pHTfz0yBSxx27tzJ3Llz8ff3Z9SoUbi7p38DKjs7u3QHTNeqVQtIHv+Q1cShSJEiWdovtwgJCbnvPzDJWbaoG7PZzFtvvcUnn3wCQLunRlCz1wirzT7m4OBg+enkbN0ZmbKr7LvLjYuNs0r5+eG1AHDkf8mkk7Mjhiwe72FjzqhecvK1yO1lOzomj03y9vZ+4H179uzJ/PnzeeKJJ1iwYAElSpTg888/z/S9QZ8xuZPqJXfK6XopUF2Vli1bxuzZs6lcuTKvv/46np6eGW4bFhbG1q1biYiISLU85apORgmHSEFiMpl48cUXLUnDp59+SqdnX9OUxSICQPfu3fnxxx8BmDZtGm+99ZbuLi2ShxWYxGHNmjWsXLmSpk2b8tJLL2U6uDkuLo65c+eyffv2VMv37t2LwWCgUqVK2RmuSK6XkJDA4MGD+fbbbzEYDHz33Xe8+eabtg5LRHKZIUOG8PXXXwPwySef8P7779s2IBHJsgLRVenq1assXboUPz8/WrZsycWLF1Ot9/Hxwd7enuDgYHx8fPDw8MDf35+AgABWrVqF0WikbNmynDlzhjVr1tCqVSv8/f1tdDYithcZGUmfPn1Yu3YtdnZ2zJkzh/79+9s6LBHJpV588UXi4+N57bXXmDBhAvb29owfP97WYYnIAyoQicOhQ4cwmUyEhIQwefLkNOsHDhyIj48PU6dOZfDgwTRr1gxIvkqyZs0adu7cyYoVK/Dy8qJbt2489thjOX0KIrlGcHAwXbp04eDBg7i6urJgwQK6dOli67AkDzEbDIT5FLc8l4Jh9OjRJCQkMHbsWN59911iYmKYNGmSujaK5CEFInHo0KEDHTp0yHS7mTNnpvrdwcGBbt260a1bt+wKTSRPOXHiBB07duTixYv4+PiwcuVKGjZsaOuwJI9JcHJh4vdrbR2G2MCbb76JwWDgzTff5OOPPyYqKoovvvhCyYNIHlFgxjiIyMPZsWMHzZs35+LFi1SsWJFdu3YpaRCRB/bGG28wY8YMAKZPn87zzz+v+zyI5BFKHEQkU4sXL6Zdu3aEhYXRuHFjdu7cSYUKFWwdlojkUSNHjmTWrFkYjUZ++uknevToQVRUlK3DEpFMKHEQkQyZzWYmT55Mnz59iIuLo3v37mzcuBEfHx9bhyZ5mENcLKPf6MfoN/rhEBdr63DERgYPHszixYtxdnZm5cqVtGnThmvXrtk6LBG5ByUOIpKu6OhonnrqKcaOHYvZbGbEiBEsXrwYV1dXW4cmeZzBbKL0mWOUPnMMg9lk63DEhnr06MHGjRspWrQoe/fupUmTJpw4ccLWYYlIBpQ4iEgaly5dokWLFsybNw97e3tmzJjBjBkzsLcvEPMpiEgOatq0KTt37qR8+fKcP3+eLl26sGTJEluHJSLpUOIgIqls3bqVgIAADh48iLe3N+vXr2fkyJGa9UREsk3lypX5+++/adu2LdHR0TzxxBO8//77mExqkRLJTZQ4iAiQPJ7h22+/pV27dly/fp26deuyb98+WrVqZevQRMRGPJzsMZnN2Vb+nWV7e3uzdu1annvuOQA++OADOnToQEhISLYdX0QejPodiAhRUVG89NJLzJo1C4B+/frx008/aTyDSAHn4mCH0WBgzr5ArkXGWbVsXw8nBgaUSrXM3t6eiRMn0rJlS0aMGMH69eupW7cuc+bMoX379lY9vog8OCUOIgXcP//8w5NPPsnx48cxGo189NFHlps0iYgAXIuMIygi52bAGjRoEA0bNqRv374cPXqUxx57jFGjRvHRRx/h5uaWY3GISGrqqiRSQKV0TWrUqBHHjx/H39+fDRs2MHbsWCUNku1ue3px29PL1mFILlatWjX27NnDCy+8ACTfLK5OnTps27bNxpGJFFxKHEQKoCtXrtC5c2dGjhxJbGwsnTp14vDhw7Ru3drWoUkBEO/syvjZWxk/eyvxzuoOJxlzcXHh22+/Zc2aNZQsWZKzZ8/SqlUrhg0bxo0bN2wdnkiBo8RBpAAxm83MmzePWrVqsWbNGpycnJg2bRorVqzQTd1EJNfq0KEDR48e5dlnn8VsNvPDDz9QuXJlfvjhB5KSkmwdnkiBocRBpIC4ePEiXbt2ZcCAAYSFhdGgQQMOHDjAq6++itGotwIRyd0KFSrEjz/+yNatW6lVqxZhYWEMGzaM+vXrs3r1aszZOPuTiCTTtwWRfC4hIYGpU6dSo0YNVq1ahaOjIx988AG7du2ievXqtg5PCiCHuFhefOcZXnznGRzicm7AreQPLVu25MCBA0ybNo1ChQpx5MgROnfuTNu2bdm+fbutwxPJ15Q4iORja9asoXbt2owZM4aoqChatmzJ4cOHeffdd3FwcLB1eFJAGcwmKh7bR8Vj+zCYdYMveXD29va8+uqrnDt3jtdffx0nJyc2b95My5Ytad26NRs2bFALhEg2UOIgkg8dOnSILl260KlTJ06cOIGPjw8//PADmzdvpmrVqrYOT0TEKooUKcKUKVM4deoUzz//PA4ODmzZsoVHH32UgIAA5syZQ1ycde8/IVKQKXEQyUfOnDlDv379qFevHqtWrcLe3p4xY8Zw+vRpnnvuOY1lEJF8qXTp0nz//fecPXuWl19+GWdnZw4cOMCgQYMoU6YM77zzDqdPn7Z1mCJ5nr5FiOQD+/bto0+fPjzyyCPMnz8fgP79+/Pvv//y2WefUahQIRtHKCKS/UqVKsX06dMJDAxk0qRJFC9enKtXrzJp0iQqV65M8+bN+eGHH4iIiLB1qCJ5khIHkTwqMTGRP/74g3bt2tGwYUMWLVqE2WymW7duHDp0iP/+979UqlTJ1mGKiDwQe3v7hy7D29ubt956iwsXLjB//nw6deqE0Whk586dDBs2DD8/PwYMGMCqVauIjdUA/fthjXqRvE+Jg8hDMmXTALyMyj179izvv/8+ZcqUoVevXmzcuBF7e3sGDhzIxo0bWbZsGXXq1MlS2SIiOcXDyT7d9yJvb++HLjulXAcHB/r27cuqVasIDAxk8uTJVK9endjYWObNm0eXLl3w8fGhT58+/Pbbb4SHh99XuXmJtWK+u17y4mshD0/po8hDMhoMzNkXyLVI6w3A8/VwYmBAKcvvV65c4Y8//mDu3Lns3r37f9v5+vLss8/ywgsvULp0aUJCQmwWc9Vi7nSp7me18iR/i3NysXUIYmMuDnbpvhfFx8fj6OiY5XJT3ovSe48zBvTkmQY9CDp1lH1rl3B0+19EhF5l0aJFLFq0CKPRjnK1G1KjWVsqNWiOX9lKGAwGIO37cl5hrff7O+slr74W8vCUOIhYwbXIOIIirNfcbUpKYu/evaxdu5alS5eyb98+yzqj0Ui7du0YOnQoTzzxRJY/YK0ds6+7k9XKkvwt3tmV//y+x9ZhSC5x93tRXGwcTs5Zn6Y35b3oXu9xBr9KNBz8JgGD3uDa2X85+/cGzu7ZxI1LZzh7aDdnDyVfoHEtXJRStRtTulYTGjZ/BPLol2VrvN8/bL1I/qDEQSQXiIu+zbVzx7l6+ijBJw9x5dg+Ym7fsqw3GAw0adKEvn370q9fP/z8dGVfRORhGQwGilWsQbGKNWj21CgiQgI5u2cTFw7u4Mq/B4i+eYOTW1dxcusq1s2A398pT4sWLWjWrBlNmzalRo0a2NnZ2fo0RHKMEgeRHGQ2m4kKv074lYuEXjjF1TNHuXrmGOFXLsBd/UULFSpE69at6dq1K127dlWyICKSzQr5laJ+90HU7z6IxIR4gk8eJvDIbgKP/M3V00c5d+4c586d49dffwXAw8ODxo0b07RpUwICAqhbty6lSpWydG8SyW+UOIhYkdlsJu72LW6HXSMq/DpRYdeJuBpE+JWL3LxygfArF0mIjU53Xw8ff4pVrEmxijVo0KQFnw97XLNYSL5kHx/HM5NHA/DLm9NIdFQ3N8l97B0cKVWzIaVqNoQBL+Ntn0A9YzC7du1i165d/P3330RGRrJ+/XrWr19v2c/Ly4u6detSt25d6tWrR/Xq1alcuTIeHh42PBsR69C3EpH7YDabCQsLIzg4mCtXrqT5ue/4OcJDk5OFpIT4e5ZlMBrx9C1BkZLlLU3kxSrUwLVwUcs2JQs5K2mQfMtoSqL6/m2W5yJ5gbObB53b1KNz584AJCUlcfToUXbt2sXu3bs5dOgQx44dIzw8nE2bNrFp06ZU+/v7+1O5cmUqV65MlSpVKF++PCVLlqRkyZL4+vqqy5PkCQXqm8nJkydZsmQJly9fxs3NjWbNmtGlS5d7/rNmZR/JO1ISgvSSgTt/BgcHExd3/zNSOHsUxs3LG7civnh6++NVoiyFi5fBq3gZChUrhZ2DQzaelYiIZDc7Ozvq1KlDnTp1eOGFFwCIi4vj33//5dChQ5bHiRMnuHbtmuWzZMuWLWnKsre3x9/fn5IlS+Lv74+Xl1eaR6FChXB2dsbZ2RknJ6dUDwCTyYTJZMJsNqd5HnL+AtcjojGZEjElJmJKSsSUlJT80/J7Ikn//7s5KYmkpATLdsm/J+Hg5IzRaOSSmxOeZ/yxs7PD3t4eOzs77OzscHV1xd3dHQ8PD8tPDw8P3NzcdDEsnygwtXj+/HmmT59OnTp16Nq1K0FBQSxbtoyYmBiefPJJq+0juUN6CUFGSUF8/L1bCO5UtGhRihcvjr+/f6qfe29ArFNh3Iv44urljb1D1qcSFBGRvMnJyYl69epRr169VMtv3rzJ6dOnOXnyJKdOneLkyZNcvHiRoKAggoODSUxMJDAwkMDAQBtF/uD+eMDtXVxccHd3p1ChQnh7e1O0aNF7/kx5roQjdykwtbFs2TL8/f15/vnnMRgM1KxZE3t7exYvXkyHDh0oXLiwVfaR7JOSDFy9etXyCAkJSfV7yuPatWtWSQjufO7n52e5snO3zzedserUpiIikn8ULlyYhg0b0rBhwzTrEhMTuXr1KkFBQVy+fJmQkBDCw8PTPCIiIoiNjSUuLi7Nw2AwYDQaLT/vfh6baMJstMNotMNob4+dnQNGO3sMdnbY2dtjtLPHaGeH0c4Bo729ZTujnb3l98SERAwGMCcl4mQH5Yu4kJSURGJiouVnTEwMkZGR3L59m8jISCIjI0lMTAQgJiaGmJgYrl+/zpkzZ+7rdTMYDHh5eeHj44O3tzc+Pj6Wx92/pyxzcdE9YrJTgUgcEhISOHXqFJ07d04100GDBg1YuHAhx44do3nz5g+9j2TOZDJx+/Zty5vK7du3iYiIICwsLN1HeHg4YWFhhIaGcu3aNcsb0P1KSQjSSwruJyEQERHJTvb29pQoUYISJUpk2zGscXEr+T4OyZ+VJQs5M6ZNxfvbLy4u1Wd+eHg4N27c4MaNG4SGhlp+3v08LCzMcsEwLCyMkydP3tfx3NzcMkwuihQpQqFChfD09Ezz8PDwUDf0+1AgEofQ0FASExMpVqxYquVeXl44ODgQHBxslX1yu1OnTnH69GlMJhNJSUlpfma2LCkpibi4OG7cuIGDgwNxcXHEx8ene/Uj5REVFZUqUYiOTn9GoQdRuHBh/Pz8KFasWJrH3cuVEIiIiNhOyjiMokWLZr7xHRITEwkLC+P69etcv36d0NBQy/OMfk9ISCAqKoqoqCguXLjwwLG6ubnh4eGBi4uLZTzJ/Tx3cHBIM94jo+fp/Z7SQlS4cGGaNGmC0Wh84NhzSoFIHGJiYgBwdnZOs87Z2ZnY2LRZeFb2yc2uXLlC1apVMd91rwBbMRqNlkFTHh4eFC1alCJFiqR6eHl5pfq9WLFi+Pr65spkwNfDujFltbwH6Qtq7ZiLuDnkqXKzs+y7y413MWb5Dt/3KteacrL+7B3/d/fZ4p7OJLqkfZ/NatkPIqN60d9y9pd7r7If9v8lu2LOjtcgp1gj9jvrJSdeC3t7e3x9ffH19b2v7c1mM7du3bpnYnHjxg0iIyO5detWqkfK5CcpSYct/fjjjzz77LM2jeFeDObc8k0yG509e5bJkyfz8ssvU7NmzVTrXn/9derVq8dTTz310PuIiIiIiORXubctxIpSBsqkN51mbGxsuq0KWdlHRERERCS/KhCJg4+PD0ajkWvXrqVaHh4eTkJCAv7+/lbZR0REREQkvyoQiYODgwOVK1fm4MGDmEz/61u7f/9+jEYjVatWtco+IiIiIiL5VYFIHAC6dOnCpUuXmDlzJv/88w9r1qzhjz/+oFWrVhQpUoSEhATOnTtHeHj4fe8jIiIiIlJQFIjB0SkOHz7M8uXLCQ4OxsPDg2bNmtG1a1eMRiOhoaG8/fbbdO3alW7dut3XPiIiIiIiBUWBShxERERERCRrdNlcREREREQypcRBREREREQypcRBREREREQypcRBREREREQypcRBREREREQypcRBREREREQyZW/rAMS2rly5wp9//sn58+dJSEigRIkSdO3alWrVqqXabsuWLWzYsIGwsDB8fHzo1KkTjRo1sqyPiYnh119/5d9//8XHx4ennnqKcuXKWdZHRETw7rvv8uabb1KiRIkcO7/8YvHixZw9e5Y333wz1fLo6GhGjx6dZnt7e3tmzJgBqG6yW3BwMIsXL+bUqVPY2dlRtWpVevToQbFixVJtM2vWLEJCQqhUqRKDBg3C09PTsv7w4cPMmzePiRMn4uDgYIvTyPdu3LjBhAkTaNOmDT169LAsP3PmDL/99hs3b96kTp06DBgwACcnJ8v6jRs38vfffzNu3DgbRJ3/nDx5kiVLlnD58mXc3Nxo1qwZXbp0wc7ODoClS5eybds2HBwc6NatG82aNbPsazab+eijj2jevDmtW7e20RnkT6NHjyY6OjrN8smTJ+Pu7s7vv//Ovn378PDwoG/fvtSsWdOyTXx8POPHj+fpp5+mVq1aORl2vhQeHs6ECRMYNmxYqu9it2/fZtGiRRw9epT4+HiqVKlC37598fHxsWyTE+9nanEowMLDw/nss88IDw+nf//+PPfcc7i7u/Pll1/yzz//WLbbsGED8+bNIyAggBEjRlCuXDl++uknDh48aNlm5cqVBAUF8fzzz1OmTBm+//57EhMTLeuXL19OvXr19MU0C9atW8dff/2V7rrAwEAAhg0bxtixYy2P119/3bKN6ib7hIaGMnnyZIKDg+nfvz/PPvssBoOBTz/9lNDQUMt2v/zyC56engwfPpzbt2+zYMECyzqTycSSJUt4/PHHlTRkE5PJxKxZs4iNjU21PDExkR9++IEKFSrw3HPPce7cOVatWmVZHxMTw8qVK+nVq1dOh5wvnT9/nunTp1OkSBGGDx9O69atWbNmDYsWLQLgn3/+Yd26dfTp04f27dszZ84crly5Ytl/7969xMbG0rJlS1udQr4UGhpKdHQ0Tz75ZKrPkbFjx+Lu7s7WrVs5ePAggwcPpn79+vzwww9ERkZa9t+wYQO+vr5KGqwgLCyML7/8Mk0SZzKZ+PLLLzl58iR9+/Zl8ODBXL9+nc8//5yYmBgg597P1OJQgG3ZsoXExEReeeUV3N3dAahevToTJ05kzZo11KpVi/j4eFasWEGbNm3o3r07ADVq1OD27dssXbqUevXqAXDixAkeeeQRatasSbly5di+fTvXrl2jePHihISEsGfPHt5//31bnWqeFBoaysKFCzly5AguLi7pbhMYGIiDgwP16tXL8G7mqpvss2HDBuLj43nrrbcsV31q1KjBJ598wtKlS3n22WeJiYnh4sWLvPXWW5QpU4a4uDh+++03Sxk7d+7EaDTSuHFjW51Gvrd+/XquX7+eZnlwcDA3b96kZ8+euLu7W/4fevbsCcDatWspW7YslStXzumQ86Vly5bh7+/P888/j8FgoGbNmtjb27N48WI6dOjA8ePHqVq1quV/YceOHZw8eZLixYuTmJjI0qVLeeKJJyytE2IdQUFBADRo0IBChQqlWX/ixAkaNGhA3bp1qVOnDps3b+bChQvUqlWL27dv89dffzFq1KicDjtfMZlM7N6925JE323//v1cunSJd955h1KlSgFQsWJF3n77bbZu3UqHDh1y7P1MLQ4FmI+PD+3bt7ckDQBGoxFfX18iIiKA5CtE0dHR1K9fP9W+DRo0IDg4ONWHccrVUnv75HzUZDIB8Mcff9CqVSuKFCmSreeT3yxYsIBr164xevRoyxvF3YKCgihRokSGSUMK1U32CA4Oxs/PL1VTscFgoFKlSqla7SB1HaS8/vHx8SxfvpyePXtmWoeSNZcvX2bZsmUMGjQozTqDwQCAo6MjAHZ2dpa6uXnzJps2beKJJ57IuWDzsYSEBE6dOkW9evUsrzskf5aYTCaOHTsG/K8uILk+zGYzAJs3b8bd3Z0GDRrkbOAFQGBgIB4eHukmDSlS6sVgMKT6P1m5ciXVqlVL1f1VHtzly5eZO3cuTZo04Zlnnkmz/tixY3h7e6f6LlCoUCEqVqzIkSNHgJx7P1OLQwHWvHnzNMuioqI4deoUlSpVAiAkJAQgVX9tAF9fX8t6Hx8fypcvz/79+wkICGDPnj14eHhQrFgxzpw5w+nTpxk8eHA2n03+8/jjj1O8ePFUH7J3CwwMxN7enqlTp3Lu3DkcHBxo0KABvXv3xtnZGUB1k43c3d0JCgoiMTHRkpQBXL9+nZiYGKKionBzc8Pf359du3bRqVMn/v77bypWrAgkXwlXE3/2SUxM5Oeff6ZZs2ZUr149zXpfX1/c3d3ZsWMHDRs25MCBA5a6URc+6woNDSUxMTHNZ4mXlxcODg4EBwdToUIF5s2bx9WrV4mOjuby5ctUqFCBmJgYVq1axQsvvGCj6PO3wMBAXFxc+Oabbzh58iRms5latWrRt29fChUqRPny5dm1axdt27bl4sWLxMXFUaZMGUJDQ9mxYwfvvPOOrU8hzytSpAgffvghXl5enDx5Ms36lItUd/P19WX//v2W5znxfqbEQSxMJhNz5swhNjaWTp06AVj6zt3dVSblS2nK+m7duvH9998zZswYChUqxNChQ3FwcOCPP/6gY8eOmM1mZs6cyeXLl6lWrRq9evVKdWVJ0srsHzwxMZHg4GBcXV3p3r07Xbt25eLFi6xYsYIrV67w+uuvYzQaVTfZqFmzZuzdu5eff/6Znj174uLiwu7duy1XT+Pi4nBzc2Pw4MH88MMP/PXXX5QpU4Zhw4ZZmvhfeeUVLl26xIIFC4iKiqJly5a0bdvWxmeWPyxbtoy4uLgM+/Q6OjoyZMgQZs+ezfz586latSrdunUjODiYvXv38v7773Ps2DGWLVuGyWSiQ4cOBAQE5PBZ5A8pnxUpnx13cnZ2JjY2lvr163PixAnef/997Ozs6N69O2XKlGHJkiWUK1eOihUrsnjxYg4fPoyfnx/9+vVTa6kVBAUFcfv2bVq0aEH79u0JDg5m+fLlfPbZZ7z99tu0adOGc+fOMW7cOFxcXHj66acpXLgwP/74I02aNKFw4cLMmTOH06dPU6ZMGfr164ebm5utTytPcXNzu+drFhMTg7e3d5rlTk5OlrFbOfV+psShgDCZTJYm3xR39hNNSEjgl19+4eDBg/Tv39/S7JjSzJWRlKvhHh4ejBkzhri4OMsI/gMHDhAWFkbbtm35+eefMRgMjBw5kjlz5rB8+XINOPx/mdVNRgwGA6NGjaJIkSKWFqDKlSvj6enJzz//zNGjR6ldu7bqxkrSq6fq1aszdOhQFixYYLnqVq1aNTp27Mjy5cstCVi5cuX46KOPUtXB77//TvXq1SlVqhRvv/027dq1o3Llynz99df4+vqmmrVE7i29ujl//jzr16/ntddeSzWryN1q1arFZ599Rnx8vKW+Zs2aRatWrXBwcODbb79l8ODBuLu7880331C8eHGKFy+ereeTH91dP3czGAwYDAaeeuop+vbti52dHUajkfDwcDZt2sTYsWPZsmULhw8fZvjw4ezYsYPvv/+e//znPzl0BvnX0KFDcXZ2pmTJkgBUqlSJ4sWLM2XKFHbt2kWbNm0YMWIE8fHxODg4YDAYuHjxIv/88w8TJ05k2bJlhISEMHLkSJYtW8bcuXMZNmyYjc8qf8ns/ydFTryfKXEoIFauXMmKFStSLZs5cyYAkZGRfPvtt5w/f54BAwbQqlUryzaurq4AxMbGpprxJSXDvbslIuUDOikpiT///JPHH38co9HIoUOHeOONN/Dz86N169YsWbJEX07/373q5l5Spv68W0q3l6CgIGrXrm1Zrrp5OBnVU+PGjWnYsCHXr1/H0dERLy8vli1bhsFgsPz/pEipg+vXr7Njxw7Gjx/P2bNniY6O5tFHH8VoNFKvXj327dunxOEBpFc33t7etG7dmnLlypGUlJRqXVJSUprkPOVD9vTp05w5c4YhQ4Zw6NAhihQpQsOGDYHkL1T79+9X4pAFKZ8VcXFxadbFxsamaom487Nm+fLl1K9fnxIlSjBv3jyaNWtGiRIl6NixI2+88QY3btygaNGi2X8C+VhKd5a7l7m4uFgGTkPq8SeLFy/m0UcfxdPTk/379/PEE0/g5+dH+/btmTx5MiaTSeO2rMjV1TXNrHCQ/L+T3uQp2fl+psShgGjZsmW6/aivXbvGl19+ya1btxg+fDh169ZNtT6lP+q1a9fw8PBItR+Qbp87gO3bt2Nvb0/jxo2JjIzEZDJZmuHc3Ny4deuWNU4rX8iobjITFhbG0aNHqVOnTqpBbQkJCQCpBr3fSXWTNenVU3BwMBcuXKBp06ap+m5funSJkiVLZvjB+eeff9K0aVN8fX25ePEirq6ulm3d3Ny4dOlS9p1IPnR33Zw6dYrFixezYcMGNmzYkGrb1atXs3r16gyT88WLF9OxY0fc3NyIjIxM9X+k/4+s8/HxwWg0Wj47UoSHh5OQkIC/v3+afa5cucK+ffsss77dunUr1XtVyjIlDll3+/ZtDh06RMWKFVN9nptMJhITE9P9HDl69CjBwcGMHDkSSF0vrq6umEwmbt++nepeNfJwihUrxoULF9Isv379err/Oymy4/1MiUMBUbhwYQoXLpxqWWRkJFOnTiU+Pp7XXnst3VkRKlSogJOTEwcOHKBChQqW5fv376dYsWLp9rmLjY1lxYoVDBo0CKPRiLu7O0ajkVu3blGsWDEiIiL0hnKH9OrmfsTFxTF37lwiIyPp0qWLZfnevXstM/vcTXWTdenV04EDB5g1axZly5a1vHlfuXKFY8eO0blz53TLuXDhAkePHmXixIkAeHp6EhUVZRlgffPmTdXBA7q7bvz8/NKdcvDjjz+mefPmPPLII+mWs3//fm7evGkZY+Lh4WGZYQ6SZybR1KxZ4+DgQOXKlTl48CAdOnSwJMr79+/HaDSm23p696xvnp6eli86N2/eBEh1QUsenJ2dHXPnzqVp06apZh47cuQICQkJVKlSJdX2Kfed6dKli6WV6M56iYiIwGg0aoyDlVWvXp2///6by5cvW8Y/RkREcObMmVSf/3fKrvczJQ4F2KJFiwgPD6dXr16YzWbOnTtnWWdvb0/p0qVxdHSkQ4cOLF++HDs7OypXrsyBAwc4cuRIhn0Y161bh5+fn+UKoJ2dHTVq1GD58uU89thjrFu3Lk3Lhjw4f39/AgICWLVqFUajkbJly3LmzBnWrFlDq1at0r0Kobqxrpo1a+Lr68tPP/3E448/TmxsLIsXL8bHx4dHH3003X3ubOKH5PEPzs7OLF68mIoVK3Lw4MF0p+OT++fs7EzZsmXTXefp6Znuuju78KV0lalevTr//e9/WbNmDR4eHpw5c4Y+ffpkY+T5W5cuXZg6dSozZ86kRYsWlqly05sS+tSpU5w9ezbV/0Lt2rXZuHEjpUqVYs+ePZQqVUqtDQ/JxcWF9u3b89dff+Hm5kb16tW5fPkyy5cvp1atWmlmI/v777+Jj49PdRO+2rVr89dff+Hu7s5ff/1F7dq1da8NKwsICGDNmjVMnz6dnj174uDgwPLly3F3d0/VvTxFdr6fKXEooMxms+XOz4sXL06zvnDhwnz66acAdO7cGTs7O7Zu3Wq5Q+Szzz6b5t4OkNxkuX79el599dVUywcMGMAvv/zCDz/8QI0aNejWrZv1T6oAGjJkCGvWrGHnzp2sWLECLy8vunXrxmOPPZZmW9WN9Tk6OjJq1Cjmz5/PTz/9hL29PTVr1rTMsHS3f/75h5CQEF588cVUZTz//PPMnTuXPXv20K5dOyVvNrBt2zYcHBxS3YjPy8uLIUOGsHjxYsxmM/369aN06dI2jDJvq1y5MiNGjGD58uV89913eHh40LFjR7p27Zpm2zu7WKRo06YNISEh/Pzzz/j5+fHcc8/dc7pquT89evSgcOHCbN26lU2bNlm+jN5dLwkJCSxdupQ+ffqkSgy6d+/Or7/+yg8//EC5cuUYMGBATp9Cvmdvb88rr7zCwoULmTdvHgaDgcqVK9OnT580Y+kge9/PDOb7HaotIiIiIiIFloa8i4iIiIhIppQ4iIiIiIhIppQ4iIiIiIhIppQ4iIiIiIhIppQ4iIiIiIhIppQ4iIiIiIhIppQ4iIiIiIhIppQ4iIiIiIhIppQ4iIiIiIhIppQ4iIiIiIhIppQ4iIiIiIhIppQ4iIiIiIhIpv4PCLO3uHDnbckAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAEHCAYAAAADJ8GRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACGDklEQVR4nO3dd3wUZf4H8M/2lmyy6b0npAdCIEDoLSiColJEznIqih31PL07FX4W9E7Ocp5nb6iogAUB6RB6Cy2UEAiEFFIJSUjfMr8/lp1smdlsCtkkfN+vly/DzuzMM8/OPPN85ykjYBiGASGEEEIIIYRwEDo7AYQQQgghhJDeiwIGQgghhBBCCC8KGAghhBBCCCG8KGAghBBCCCGE8KKAgRBCCCGEEMKLAgZCCCGEEEIILwoYCCGEEEIIIbwoYCCEEEIIIYTwooCBEEIIIYQQwosCBkJIr3bfffdBIBBY/CcUCuHi4oL4+Hg8++yzKCkp6dI+xo4dy27bZPv27exnixYt6uJRcPviiy/YfajVatTX13fbtltaWpCbm2vxWVhYGAQCAcLCwrptPx1hnqfW/8lkMgQEBOCmm27C1q1bu7wvruMnhBDSORQwEEL6HIZh0NDQgNOnT+Pf//43UlNTcezYMWcnq8M+//xz9u+rV69i+fLlXd4mwzBYvnw5YmNj8cMPP3R5ez2ltbUVpaWlWL9+PSZNmoRff/21U9vpq8dPCCG9GQUMhJA+Y+/evSgqKkJ+fj527NiBhx56CABQUVGBO+64A83NzZ3a7ooVK1BUVISioqLuTK5dp0+fxp49eyw+++STT7q83R07dmDu3LkoKCiwWbZv3z4UFRVh3759Xd5PVy1cuJDN88LCQuTl5eHll18GABgMBjz//POd2q694yeEENI5YmcngBBCHOXn54egoCAAQEREBEaNGgWRSISPPvoI+fn5WLZsGRtEdIS3t3d3J7Vd5q0L0dHROHv2LA4dOoSjR49i4MCBnd4uwzC8y/z8/Dq93e6mVqvZ39Jk8eLF+Omnn5Cbm4uzZ8/iypUr0Gg0HdquveMnhBDSOdTCQAjp05544gn2799//91i2R9//IGJEyfCz88PUqkUXl5emDRpEtatW2exHtcYBi5DhgyBQCCAXC5HXV2dxbIXX3yR3UZ7T/C1Wi2++eYbAEBkZCTeeOMNdtnHH3/M+70ffvgBo0aNglqthouLCxISEvD666+jsbERALBo0SKMGzeOXX/x4sUQCATYvn07ANsxDO+++y6b5u+++85iX2VlZZBIJBAIBJgzZw77eUlJCR588EEEBARAJpMhPDwczz77LGpqauwes6PEYuNzLKFQCLlczn7e3NyMxYsXIyYmBjKZDL6+vrjrrrtw5swZdp2OHr/JV199xebDV199xX5u+uzZZ5/Fs88+C1dXV6jVanz88ccW4zHWrFmDZcuWISUlBXK5HCEhIfj73/8OrVZrsZ+1a9diwoQJ8PDwgFgshkajwZgxY7B69epuyTtCCLluGEII6cXuvfdeBgADgLlw4YLNcoPBwCgUCgYAExQUxH7+66+/MkKhkP2u+X8CgYDJyspi1x0zZgy7zGTbtm3sZ6+88grDMAzz4Ycfsp99/fXXFumIjIxkADADBgxo95hWrlzJbufvf/8709zczLi5uTEAGLVazdTX19t859lnn+U8FgDM+PHjmdbWVuaVV17hXL5t2zaGYRgmNDSUAcCEhoYyDMMw1dXVbN5NnjzZYn//+te/2O9v3bqVYRiGOX/+POPn58e5j7i4OKampsbucXPlKcMwjE6nY6qqqph3332XXT58+HB2eUtLCzNq1CjO/bq6ujKHDh1iGIbp8PGbfPnll+y6X375Jfu56TN3d3eL7eXk5FgcC1/aXnrpJXZbP//8MyMQCHjPxxUrVtjNO0IIcSZqYSCE9GkCgQBubm4AgOrqavbz//znPzAYDIiMjMSePXtw7tw5vPfeewCM3VasWyMccdddd7FPvc0H1B45cgT5+fkAgHvvvbfd7Zh3R5o7dy5kMhnuvPNOAEBdXZ3NYN29e/di6dKlAIDExERs3boVp06dwp/+9CcAwNatW7F8+XI888wz+Omnn9jvmcYJDB8+nDMdGo0Gs2fPBgBs2bIFly5dYpd9/fXXAICYmBj2qf3jjz+OsrIyyOVyfPXVV8jLy8N3330HpVKJ06dPs2MQHGF6+i8QCCAWi+Hl5YWnn34agLGL2Icffsiu+95772Hnzp0AgOeffx6nT5/G1q1bERsbi6tXr+KBBx4AgA4fv6Nqamrw+OOP48yZM/jpp5+QmJhosXzXrl144403kJeXx55jAPDll1+yf3/xxRdgGAbBwcHYsWMHzp8/j40bNyIgIAASiYQGaBNCejUKGAghfZ6pK5FOp2M/27x5MyoqKrB9+3YMHz4cgYGBiIuLY5ebBxeOcnd3x+23385u37SNFStWADB2ozFV4vkUFxdjw4YNAICUlBTEx8cDAObNm8euYz342bwy+dFHH2HcuHGIi4vDhx9+iMWLF+Pnn3/GhAkToFarLcZjmMYJyGQy3vQ88sgjAAC9Xo9vv/0WAHDo0CGcOHECADB//nwAwJUrV7B+/XoAwK233ooJEyZAoVBg9OjRuOOOOwAAy5Yt69IYgpCQECxatAjHjh2zGMfx/fffs8ufeOIJuLi4IDo6Gk8++SQA4NixYzh69Ginjt8RCoUC//znPxETE4OZM2faLJ86dSpefPFFNk0JCQkAjN26TDw9PQEYz7vt27fj8uXLGDduHE6cOIHGxkasXLmyS2kkhJDriQIGQkifV1tbCwDw8PCw+PzIkSN49dVXkZycDLVajcmTJ7PL9Hp9p/Zlepqt1WqxatUqAG0Bw/jx420G8lr78ssvYTAYAADx8fFYv3491q9fj6amJri4uAAADhw4gOPHj7PfOXv2LPu3eUXaxcUFL7/8MmbMmIHAwMBOHU96ejoGDRoEAOy4ClM/fplMxraYnDt3jk33jz/+iODgYPa/ZcuWATAGFefPn3dovwsXLsT58+fx888/Izg4GABw6dIluLm5wd/f32LdvLw8AEBhYaHFfh999FF2nezs7M4cPoD2B0pHRERAoVDwLjcFfSamoMU8gH355ZcRHh6OhoYGvPzyyxgyZAjc3Nwwa9YsfPbZZ2hpael0+gkh5HqjgIEQ0qfl5+ezg37NK9MPP/wwMjMz8dlnnyEsLAxLlizBrl27ury/cePGITw8HICx4nz06FGcO3cOgPElc/YwDIMvvviC/ffy5ctx00034aabbsLNN99s8eI288HP5hVa64G03cHUynDy5EkcOnSIbdG4/fbb4eXlBaBtMHJ7KisrHVpPrVYjPDwcM2bMwLp166BQKKDT6bBw4UI2cDFxZN+O7hewDRbbm47X1OWNj3UwIRKJbNaJiIjA6dOnsXz5csybNw8hISFobGzE5s2b8cgjj2D8+PHX5bclhJDuQAEDIaRPMz3dBsB2Fzp//jzbrefBBx/E6tWr8eyzzyImJqbL+xMIBGxgsH37dnzwwQcAAFdXV8yYMcPud7ds2eLw+wG+++47NhCKjo5mPz906BD7d2trK4YNG4ZZs2axlWzzmZ4c7R40d+5cuLq6AjCOU7h8+TIAY9BlEhkZyf790EMPgWEY9r8TJ06gsLAQDMNg2LBhDu3TXGJiIpYsWcL++/HHH0dhYSH776ioKADGfDDfb2FhIXJzc6HVavHCCy8AsH/8pq5J1jNcme+Li0Qi6fAxmTMYDDh58iTWrl0LFxcXLFu2DBcvXkRJSQnuueceAMCePXtw8ODBLu2HEEKuFwoYCCF9RllZGYqLi1FYWIhjx47htddeY6ckDQ8PZytf5k/qd+7ciezsbBw4cMBifIF5d5GOuu+++yAUCqHX69kBzDNnzoRSqbT7vc8++4z9e9WqVRaVX9N/U6dOBWDsZvXjjz8CADswGTBWpjdv3ozc3Fw8+uij2L9/P1asWMF2aTGfivTkyZM4efJku0/fXVxc2LzZv38/ACA2NhZjxoxh11Gr1Zg2bRoA44Dojz/+GGfPnsWaNWswYsQIhISEIC0trdNjGJ588kmMGjUKgPGt1wsWLGCX3X333QCMXbOeeuoptiXklltuQWxsLNzd3VFaWtru8Zu6bdXV1eGLL76AwWDA9u3b7U5l211mzJiBO+64A7NmzcLXX3+N/Px8lJSUoLy8nF2nq4EJIYRcNz06JxMhhHSQ+bSqfP95enoyhw8fZr+j1WqZuLg4u9+ZMGECu76j06qamzx5ssX2zKdp5XL58mVGJpMxABhvb2+mtbWVc73ff/+d3eawYcPYz5966im706q2tLQwDMMwNTU17H5M//30008Mw/BPK8owDHP8+HGL7/z73/+2WefUqVOMh4cHZxoUCgWzefNmu3nQXp6ePXuWUSqV7DqmqUYbGxuZ1NRU3uN//fXX2W3YO/5PPvnEZjpTUz6bPuOaVnXMmDEdOpYJEybYnE9btmxhp7Dl+m/q1Kl2844QQpyJWhgIIX2SUqlEQkIC/vKXv+DEiRPswF3A2Of9jz/+wMyZM+Ht7Q0XFxckJyfj3XffZQct79q1q0svG/vzn//M/h0eHs4+Hefz7bffsq0Af/rTn3ifJt98880ICQkBAOzbtw85OTkAjC9Z+/bbbzFixAi4uLjAxcUFSUlJWLJkCX7//XdIpVIAxv72H3zwAQYMGACZTIbQ0FCLp+58kpKSkJGRAcBysLO5uLg4HDp0CPfffz+CgoIgkUjg7++PO+64A7t27cKECRPa3Y89UVFRFl2TnnrqKdTV1UGhUGD79u146aWXEBcXB7lcDo1Gg1GjRmHlypX429/+xn7H3vE/+OCDeOeddxAVFQWZTIYBAwbgnXfewUcffdSldDti/PjxOHDgAO655x5ERERAJpNBqVRi4MCBeOutt/Dzzz9f9zQQQkhnCRimC3PgEULIDWrFihWYNWsWAOCVV17BokWLnJsgQggh5DqhgIEQQhxUV1eHhoYGFBQUYO7cuSgoKIBIJMK5c+cQFhbm7OQRQggh14Vj8+QRQgjBgQMHMGnSJIvPHn74YQoWCCGE9GsUMBBCiIMiIiLg6+uLmpoaBAYGYu7cuXjllVecnSxCCCHkuqIuSYQQQgghhBBeNEsSIYQQQgghhBcFDIQQQgghhBBeFDAQQgghhBBCeFHAQAghhBBCCOFFAQMhhBBCCCGEFwUMhBBCCCGEEF4UMBBCCCGEEEJ4UcBACCGEEEII4UUBAyGEEEIIIYQXBQyEEEIIIYQQXhQwEEIIIYQQQnhRwEAIIYQQQgjhRQEDIYQQQgghhBcFDIQQQgghhBBeFDAQQgghhBBCeFHAQAghhBBCCOFFAQMhhBBCCCGEFwUMhBBCCCGEEF4UMBBCCCGEEEJ4UcBACCGEEEII4UUBAyGEEEIIIYQXBQyEEEIIIYQQXmJnJ4AQQrpLXV0dPvzwQ8yZMwdhYWEWy6qrq7FhwwZcvHgRQqEQ8fHxmDRpEmQymcPbP3r0KH777Tc89dRTcHd3797EW/nqq69QU1ODp59+GgBgMBiwfft2HDt2DI2NjQgICMCkSZMQFBTEfken02H79u3IyclBY2MjvLy8kJGRgcTExG5JE8MwyM7OxsGDB3HlyhWoVCoMGDAA48aNs8jHvLw8ZGVloby8HEqlEvHx8Rg/fjykUmm7+8jPz8e3334LHx8fLFiwoFvS7ahff/0Vx44dwyuvvGKz7MyZM/jhhx84l2VnZ2P//v2oqamBm5sbhgwZgiFDhkAgEPREsgkh5LqjFgZCSL9QW1uLZcuWoaWlxWZZc3Mzvv76a9TX1+O2227DhAkTcPLkSaxYscIJKXWMQCCwqHBu2LAB+/btw4gRI3DnnXdCKBRi2bJlqK6uZtdZtWoV9u7di6SkJNx1111ISEjA6tWrsX///m5J0+7du7Fu3TpER0djzpw5GDFiBI4fP46ffvoJDMMAAE6fPo3ly5dDKpVi5syZmDJlCgoKCvDNN9/AYDC0u4+jR4/Cx8cHFRUVKCws7JZ0O4qvgl9QUICff/6Zc9nhw4exZs0ahIeHY86cOUhISMAff/yBvXv3Xs+kEkJIj6IWBkJIn8YwDI4dO4aNGzfyrnPw4EE0NTXh4YcfhlKpBACo1Wp8//33KCwsREhISE8l12EuLi7Q6/UAjMHQoUOHMGXKFAwZMgQAEBkZiQ8++AC7du3C9OnTUVpaitzcXIwbNw6jR48GAEREREAqlWLz5s1ISUmBXC7vdHoYhsHu3bsxePBgTJw4kd2+QqHAqlWrUFpaioCAAGRlZcHb2xvz5s2DSCQCAISEhOD999/HkSNHMHjwYN59NDc3Izc3F1OnTsWuXbuQnZ3do7+Ni4sLXF1d2X+3tLRg165d2L17N2/eHTlyBCEhIbjpppsAGPPk8uXLOHjwIEaMGNEj6SaEkOuNWhgIIX1aeXk51qxZg5SUFMyYMYNznfz8fISEhLDBAmCscEulUpw9e7bT+/7111/x7rvvWnxWU1ODxYsX4+jRowCMT6cXL16M8+fPY9myZXj99dfx9ttvY9OmTXafuPv4+MDX1xcAcOHCBRgMBsTFxbHLxWIxoqOjce7cOQBAVVUVAGDAgAEW2wkLC4NWq0VBQUGnjxMwVp6Tk5ORlJRk8bmXlxcAsC0dlZWViIyMZIMFwFgR9/b2bjevc3JyoNfrERUVheTkZJw6dQpNTU0W62zfvh2LFy+2+e7ixYuxfft29t9Xr17FypUr8dZbb+Gtt97CmjVrsGXLFpvfy5x5ngPGYODw4cO4+eabMXToUM7v6HQ6m25tCoUCjY2Ndo+VEEL6EmphIIT0aW5ubnjyySehVqt5K8VVVVVISEiw+EwoFEKj0eDy5cs9kErg559/xpAhQzBy5Ejk5eVhz5490Gg0SEtL41x/1KhR7N+VlZWQSqVwcXGxWMfDwwNXr15Fa2srGwzV1NRYVHqvXLli8f/Oksvl7FN0c7m5uQCMlW0AUCqVqK2ttVhHr9ejtrYWOp3O7j6OHDmCqKgouLi4ICUlBdu3b8fRo0cxfPjwDqVVp9Phm2++QWtrK6ZMmQKZTIZdu3ahrKzMJg/NJSUlWQREMTExGDx4MCQSiUUwYi49PR2rV6/G8ePHERMTg+LiYhw7dgzJyckdSjMhhPRmFDAQQvo0hUIBhUJhd53m5mbOwc1SqZRzzMP1kJqaijFjxgAAwsPDkZubi7Nnz/IGDOZaWlo402/6rKWlBWFhYdBoNPjjjz8gkUgQGBiIsrIybN68GQDQ2trajUdjVFxcjN27dyMmJoYNGAYNGoSdO3di165dGDRoEHQ6HbZu3Yrm5ma7g57Ly8tRWlqKmTNnAjAGguHh4cjOzu5wwJCTk4Oqqio89NBDCAgIAGDM8/fff79D2/Hw8Gh3naSkJFy8eBG//PIL+1lkZCSmTJnSoX0RQkhvRgEDIaTfMw3I5dJTM9kEBwdb/FutVjtcibeXfsB4DCKRCPPmzcNvv/2GZcuWATB2BbrpppuwYsUKSCQS3m1bb18obL+3amFhIZYvXw53d3fceuut7Odjx46FwWDAtm3bsGXLFgiFQqSmpiI2NhaVlZW82zty5AjkcjlCQ0PR3NwMAIiLi8PatWtx4cIFhIeHt5smkwsXLkCj0bDBAmAMrmJiYnDhwgWHt+OIH374AYWFhZg4cSICAwNRUVGB7du3Y8WKFZg9ezbNlEQI6RcoYCCE9HtyuZyzJaGlpQVqtbpH0mBdYRcIBO0GAiYymYwzuDAdk6mlwcPDA/fffz8aGhrQ2NgIT09PtnsQXyvMb7/9hmPHjrH/dnNzY6dy5XPixAn89ttv8PT0xN13320xNkQoFGLixIkYO3Ysrly5AldXV8jlcnz55Ze8adDr9cjJyUFzczPefvttm+XZ2dkdChgaGxuhUqlsPuf6rCuKiopw7tw5TJs2DampqQDAtvR8//33OHv2LGJiYrp1n4QQ4gwUMBBC+j1PT0+bPvwGgwE1NTUWA4nNXb58GUePHkV6ejrb7900SFksNhadXJX+69H1x8vLCy0tLWhoaLCo9FZXV8PNzQ0SiQRarRanT59GcHAwNBoNu15paSkAwN/fn3PbY8eOtRjQaz5YmcuePXuwadMmhIWFYfbs2TazBxUUFECn0yEqKgre3t4AjPlWUVGBlJQUzm3m5eWhsbERt9xyCzw9PS2WHTp0CKdPn7Y5doPBwLaEWOe5q6sr59iUhoYGu8fWUTU1NQBsW49CQ0MBABUVFRQwEEL6BZoliRDS70VGRqKgoMCiwpifn4/W1lZERkZyfufq1avYtWsXysvL2c9qa2shFovZJ+pSqRSNjY0Wg3mvx7sDIiIiAACnTp1iP9PpdMjLy2PTLxKJsG7dOmRnZ7PrGAwGHDhwABqNxmIgtDl3d3cEBASw//GtBxgr75s2bUJCQgLmzZvHOdXoqVOn8Pvvv7NTwgLG7kbNzc2IjY3l3O6RI0egVquRmpqKsLAwi/+GDh0Kg8GAI0eOAGhrTamrq2O/b53nYWFhqKmpQVlZGfuZVqtlZ5TqLqYZoqz3b/q3RqPp1v0RQoizUAsDIaTfS0tLw4EDB7Bs2TKMGTMGTU1N2LRpE6KiomyeDpsEBgbC1dUVW7ZsgcFgQGNjIw4cOIC4uDj2yXZMTAwOHDiA1atXY9CgQaioqMDevXu7vd+6u7s7UlJSsGHDBuh0Onh6emLv3r1obm5GRkYGAGNXoCFDhmDfvn1Qq9Xw8vLCwYMHUVhYiDlz5nQ5TfX19diwYQPc3d0xdOhQtuXCxNSqkZaWhsOHD+O3337DwIEDUV5ejs2bNyMhIcHm7duAMTA7d+4chg0bxpnGkJAQaDQaZGdnIyMjAzExMdi4cSPWrFmDESNGoLa2FllZWRYDqpOSkrBr1y788MMPGD9+PORyOfbu3YuGhga4ubl1KR/M+fv7Iy4uDhs2bEBTUxOCgoJQUVGBrKwsdhkhhPQHFDAQQvo9lUqFe++9F+vXr8fPP/8MmUyG+Ph4TJ48mfc7EokEd911FzZs2ICVK1dCJBLZfCcyMhKTJk3CgQMHcOrUKQQEBGD27Nn4/PPPu/0YbrnlFsjlcuzevRutra3w9/fHn/70J4uZfMaOHQuBQIDdu3ejqakJfn5+uPvuu3lbUTri7Nmz0Ol0qKmpwZdffmmz/NZbb8XAgQPh4+ODu+66C1u2bMHy5cvh4uKCUaNGWUwTa+7YsWNgGAaJiYm8+05OTkZWVhby8/MRFRWF2267DTt37sT3338PLy8vTJs2DX/88Qe7vlAoxLx587B+/XqsXbsWQqEQSUlJUCqV7Psqussdd9yBHTt2IDs7G9u3b4ebmxsGDhyIMWPGODR4nBBC+gIB4+ioO0IIIaQPqKioQFVVFeLi4ixaLT799FOo1WrMnj3biakjhJC+h1oYCCGE9Cutra1YsWIFhgwZgri4OBgMBpw4cQKXLl3CxIkTnZ08Qgjpc6iFgRBCSL9z6tQp7Nmzh333g5+fH0aPHt0t3bMIIeRGQwEDIYQQQgghhBeNyCKEEEIIIYTwooCBEEIIIYQQwosCBkIIIYQQQggvChgIIYQQQgghvChgIIQQQgghhPCigIEQQgghhBDCiwIGQgghhBBCCC8KGAghhBBCCCG8KGAghBBCCCGE8KKAgRBCCCGEEMKLAgZCCCGEEEIILwoYCCGEEEIIIbwoYCCEEEIIIYTwooCBEEIIIYQQwosCBkIIIYQQQggvChgIIYQQQgghvMTdvcErV67g//7v/zB//nzExcWxn9fX12PlypU4ceIEWltbMWDAAMyaNQve3t7sOufOncO3336LmpoapKSkYO7cuZDJZOzyrVu3Yv/+/XjxxRe7O9mEEEIIIYQQDt3awlBdXY333nsPjY2NFp8bDAa89957OHPmDGbNmoV7770XlZWVWLp0KZqamgAAOp0On376KSIjI/Hggw/i/PnzWLduHbuNpqYmrF27FnfccUd3JpkQQgghhBBiR7cEDAaDAXv27MFrr72Guro6m+XZ2dkoLCzEo48+iqFDh2Lw4MFYuHAh6uvrsWPHDgBAaWkpampqMGPGDCQmJmLMmDE4ffo0u40NGzYgLCwMMTEx3ZFkQgghhBBCiAO6JWAoKSnBd999h2HDhuH++++3WX7y5El4eXkhODiY/czNzQ1RUVE4fvw4AEAgEAAApFIpAEAkEsFgMAAAampqsG3bNtx+++3dkVxCCCGEEEKIg7olYPDw8MBrr72GWbNmsRV+c6WlpfDz87P53MfHB2VlZezfLi4u2L17N+rr63H48GFERUUBAH7//XcMGjQIgYGB3ZFcQgghhBBCiIO6JWBQqVTQaDS8y5uamiCXy20+l8lkaG5uBmBsWbjvvvuwdu1aPPfccxCJRJg2bRpKS0tx8OBBTJ8+HSdPnsSSJUvw+uuv49ChQ92RdFRXV3fLdvobyhdblCfcKF+4Ub5wo3zhRvnCjfKFG+WLLcoTbt2VL90+SxIXhmEcWi8pKQlvv/02Wltb2ZaKr776CmPGjIFEIsH//vc/3HvvvXBxccGHH36IgIAABAQEdCpN1dXVaG1tRUtLC1pbWzu1jf6M8sUW5Qk3yhdulC/cKF+4Ub5wo3zhRvlii/KEW3v5wtUDiEuPBAxKpZJtSTDX3NwMhUJh87kpWDh79izOnTuH++67D0ePHoWHhweGDBkCAIiOjkZ2dnanAwYPDw8AQFlZmcOZdSOhfLFFecKN8oUb5Qs3yhdulC/cKF+4Ub7Yojzh1l350iMvbvP19UVlZaXN55WVlfD39+f93qpVqzBlyhSoVCpcvXoVLi4u7DKVSsU5IxMhhBBCCCGk+/RIwBAfH4/y8nKUlJSwn9XW1uLcuXOIj4/n/E52djZqamowfvx4AICrqytqa2vZ5TU1NVCr1dc34YQQQgghhNzgeiRgSEtLg7+/P95//33s27cP2dnZeOedd+Di4oIxY8bYrK/X6/Hrr7/i1ltvhUQiAWAMOmpqarB+/Xrs3r0b586dQ0pKSk8kn/Qjj6087uwkEEIIIYT0KT0yhkEsFuOpp57CihUrsHz5cggEAsTExGDmzJlQKpU26+/cuRMSiQTp6ensZxqNBvfddx9WrVoFhmEwZ84chISE9ETyST9yoLDG2UkghBBCCOlTuj1gGDBgAD7++GObzzUaDebPn+/QNsaOHYuxY8fafD5kyBB20DMhhBBCCCHk+uuRLkmEEEIIIYSQvokCBkIIIYQQQggvChgIIYQQQgghvChgIIQQQgghhPCigIEQQgghhBDCiwIGQgghhBBCCC8KGAghhBBCCCG8KGAghBBCCCGE8KKAgRBCCCGEEMKLAgZCCCGEEEIILwoYCCGEEEIIIbwoYCCEEEIIIYTwooCBEEIIIYQQwosCBkIIIYQQQggvChgIIYQQQgghvChgIIQQQgghhPCigIEQQgghhBDCiwIGQgghhBBCCC8KGAghhBBCCCG8KGAghLSr4moLdl+odnYyCCGEEOIEFDCQGw7DMM5OQp+z4/xl/GX1SWcngxBCCOk1bv1sP/KrGpydjB5BAQO54VC4QAghhJCuulTXgrpmnbOT0SMoYCA3HGpg6DiGoXwjhBBCblQUMBCnGP7uTqftm+q9hBBCCOkOzA1Sq6CAgfQ4hmGgMzjxAqNH5R0mEBj/I4QQQsiNhwIG0uOcXV139v4JIcSet7eew8Urjc5ORpcdLLyCbw8VOzsZhFxXAtwYT9MoYCA9zpmNCwA1MBBCercfj15CwWXnBgw6A9PlGeUOFtZgxdGSbkoRIcSZKGAg111xTZPFvw1Ojhj6Q7ygMzC8TyBH/2dXD6eG9LTdF6rxj3WnnZ0M0o89+MNR/H6y3NnJIIT0EhQwkOtuxhcHLf5tcPIj/v7wHoacS3W488tDnMuatIZu318/yLJ+5WJ1I3bm04v0yPVTXNOE2iats5NBCOklKGAgPY7qnoQQQgghfQcFDKTHOb2Fwal7J6Tzhvx7h7OTQIhTOfv+QciNigIG0uOcXd47e/89Rac3oPBKU/srOuhGyTdn+s+O885OAiF26fTd1+XxYOGVDn8n/Z2dKKntvnKN9E7j/7sHNdQlrlehgIH0OGc/IbpRXrKSXVyLO7482P6K/dwX+wudnQSHfUNTUJJe7FxlA4a/132TKjy6MqdT32u+DuO0SO9ytUWHZp3e2ckgZihg6KeqG1t7bXTe0UmS3s06j3OVDd22f2fEK9WNrahr7p2/R3/3v90Fzk4CuUG06gw4U1Hv7GRcN41a51bgqhpanbp/QjpDqzf0i+6kFDD0U39bcxpvbzvn7GRw6mgLw3fZxThb1bdvws+vPoV3s5zT3WTet4ev6/ZzK6l7ACEAcPxS3XW/3m5kN328z9lJ6JV0egM9kOrF9M5++VQ3oYChH8h4b6ezk4CDhVfw0xH+F/SYT2Xq7GvHGS0Mzjzm6/3E8y+bivrFVLXdrbiOnoYSQq6/30+WY+ZX3NNs92n95Lai7yf3RwoY+oFWvfNPxn0FV/Dj0Uu8y82T2NnK5Rub8vDL8dJOfdfcjTKGobsJBPzLesEpaJcznvAsWFPQ4/skhNx4WvUGNLT0v/7+zn64WFbX7NB67dUpqIWBkA4wf7uzvWvnSmMr/rPzAueyo5fqcKGa++3GHeGcYL9/FBh8enuBqOvl6QP6xwsFHVFU24qvDxQ5OxmkHQ2tenzZS3+nG+NKIdfrvnKytA77L7Y/Q9e0zw44tL32iu7efn90FAUM/cyvOaX455beN3bBfNyCvYpRcU0zvjnYfTepVp3BZvC3sy5dOw/oux3DMD1aAdUZevesJc4qsDuy3/ZaafpLQJFb1YQPdnE/FOgovYFBq673nHs90XqpNzA4f7n7JoHgozMwuNqiu+776Yz+ci1057nbV1vOjxTX4olV3LNlXa+uPCuPl+KzfRe7bXvtjcukgIH0SueqGnC0pNbZybBhfuH3ZH++X3JKMfeb7B7bH5/uPuT2CqieLp90vbxPkrMCGuuWjavNOpwqu8q5bns3lX5yz+lWyw+X4NGVx52djB5VUN2I2V87v0zrLp2p/PeXCljG+903Ra2zTf7f3k59r7SuGft4nvZf7ynYHZm5yJHzs701dP0kwO3xgOHMmTN488038cQTT+CFF17A6tWrode39b377bff8Nxzz+HFF1/Enj17LL7LMAxef/11bN++vYdT3Xv1loKzvVSYXy/2rh17/eTb+y4XrZ6xmQqwPzydau8QrkdBa2+TvX1Ql7O6JFkHKtvOVeHe749wrtt+ENg78rixVY+X1uV2+vt8l3h9J55mX23RoqK+pdNp6W6CHm1H7HnmZWdtkxYFPF1EH1t53OGpsDtzafby5xM3pCtN2m4vZ7tSv2EYhrd7c4fScC0JNXaOr937ce9pBO2SHg0YLly4gPfffx8eHh54+OGHMXbsWKxfvx4rV64EAOTk5GDTpk2YOXMmJk2ahGXLluHSpbaBtAcPHkRzczNGjRrVk8nu1WxOYLN/2rt5LVp/5jqliJvewTEMPcEZu2cACNqLhjqgvQp6d+dxu09Qevkd3FmBdUfypb009paHA3UtWqzPrXB4fYZhsPP8ZbvrNLbqMe6/e+yuw01gc7OubdKi/GqLU96/0Zu6hVyP9/CYlzsrjl3CIyu4W3cOFNag/KpjgVxnzmtDL7kW7CmuacKXB/hfGtkXxlUBxt9H6+Dbvbu7e2BXsqhVz3RL92bTm81nfHEAm85wl3tcD3PyqxrYALu3lN1d1aMBw+rVq+Hv74+HHnoIiYmJmDJlCm6//XZs374dNTU1OH36NGJjY5Geno7x48cjICAAZ84YK7Y6nQ6//fYbbrvtNohEop5MtlMdK6nF1Wb+J298XS2yi227JW0/V8X+vfZUedcT1wHmF5S9J6XtVYRNde6C6kb8Z0fn3mvQSx7UdokjT6M7U0a9ueVs57oImH2nrlmLn4/zz5jlDE123gzLMI7fEDuqI5WCdgOGLpy4JbVN+P5w97xFuqM3v2adAc/8etLuOi2dfKOrUGB7LfxvTwEW/noCX+wvZM9le2UoH4ZhUN3IPTVuVUMrGltt09yd9QK+bTl6Hkz6395ub5Xq0G/v4PORzqTRmS2aZysdm6b6dHk9PtxVwLv8epU53e277GI8+fMJh9Zt7eZj6kpQ1WznJYMM01YPaO/80xkYlF9tQX2LHlqeB0BcyZzzTTYuNxqD9t7eAu+oHgsYtFot8vLyMGjQIIsnrYMHD4bBYMDJk8YbilQqZZeJRCK2wN++fTtcXFwwePDgnkpyr/Dgj8ew+0I173KbJ5hmhbT1hfCX1ac4P+8JltOq8q/n6BPZs5UN+OZQ5ypAzrx0u+ttj+01ceoNTKcKqVXHStFi5ykRX7Os+e92rqoBSzb3roH3d3x5kHfZkZJaTP6oc/1v29OhgIHn99pXUI2HfjzapWbtnEtX8c72jgfY32cX27QO2Ds/uHBVrK3ZC+jsaa9Oakrr+A/3dLiCdrSkDpkfcb8o7OGfjmHZIdunl9351JgvcNd2IP+t876r3TFtGrS74V7SmTxz5hPbucu658V8vWmwvj01TVpUONha1O0tDHZ+5++zi7E1rxLv8bwQtdnBtLSXZq3egKZ23nDOdx2Ytt1XWpPa02MBQ1VVFXQ6HXx9fS0+12g0kEgkKC0tRWRkJPLy8lBeXo4LFy6gpKQEkZGRaGpqwrp163DHHXf0VHL7DJtKhtk/uW7UOr0BzZ28OfP5z47zqGvnCZ75BWWvItsjF1Y3BkwMw2CCA10pun3QczthD8N0vtne3swod355EKtP2L4Lw/x3Mx1rq86AZ37lfjJ1pqIes3rJi4YaWvWod3AOc53e0KGn1R0ZbM33e1XUt+JoSZ1DAWBVQyuWbD7Lv48Onoi/nyzH/gLLAYkdLT8cCxjaX8e6i83aU+Vo0hpsri3zIMJ8XER7ZZQ1rZ3fTqs3cOalqSJ7rKQWVe2MrahqaEVDK3+azJ+dXDFr6WjpQOBjnvdnKuox9ZP9Dn+XS0fKZ75KlHVlvzMPsKy/06pz7E3Hjo6T0RsYznR15/i37n4a3xt09zHZOzfeyTqPnNKr2JHP3d2xmaPVcuEvJ1BV3wKBoK23Al+aTb+1Vs/Yba0wppP7c9P111+6JAmYHhoBev78ebz11lt44oknkJiYaLHsueeew8CBA3H33Xfj+++/x65duyASiTBt2jRkZmbil19+QXFxMR577DH88ssvOHbsGPz8/DBnzhx4eHh0Kj2nT59GYWEhampq4O7uDgBwd3dHSEgImpubkZeXZ/Od5ORkAMC5c+fQ2Gg52Cs4OBgajQaXL19GSYnlG49dXFwQEREBvV7PtqQcLWvE5vN18FKKETMgFiKxBPnnL0DQ2oCKBh1C3GSobdHhdLMKwf6+8Bc3o67iEtzlYtQ06yAQACKJDCERUdh0vg5xhhIIARwrb4Cp7qPwDcWwMA+I6ytwobQK56pbMDxIhZpmPc61KDA2MRyXa+pQVnwRQa5SFNS0wEMhhlwmgcgzGIHuChTm58Gg0+F8TQsCXaVwkwmhdwuAh7sawoYq5BeX41x1C1QSARq0DBJCfJAUFYZjxdUQ15TAXS7CzsJ6xHrKIZMIMSAuARdrW3Ew5zTiNSIYGAZeCgkatHrIPf1xoUmKqqpKRIjrIRUZr+jjFU1IDvZCPuMBCfTQVVxAsFqK01XNGB3iCgDQeYVBIRVDWHMJRwovI9ZLjhadAcV1WlwWa5AeHQBxSz22HT+HeG85NHIxRAIB6iGGR0AYBAIByvJPQ3Mtf11kIhTWtmBochzqdCKI6spRWFYBbxcFapp1cJeLoVO6o0mmwemSy0iR1UAmEqKmWQeZWACxRIrQyBhkXbwKn8YiHCtta8ZO8lEgMjICcoUKtVXlKCmrgJtchAatHpcbdfD19oLayw9ytGLf8TPwc5HAw/S7CwXwDhsAnQHYcfgk1CI9kn2V0BoMuNpqANR+uNAsQaS0AbWXK3Cx1ngTHR6kgqvaDQa1L8rqmiCougipSIAL135XjVwMVWAUdhQ1QNNUBo1IC6HALNBR+yC/WQZtfQ0CUQNPpRhigQBSkRC7y3XITItHi1aHyoI8HK9oAgDEeMiQV92CUamJEIklaKgsRktDPVr1DMobtLjSrEdEkD8SwwNRV1eL6lJji5FAACglQhiEUrgGhEFrYFB9MQ8amQg11yp9KqkQRWJfjIzwwpWKSyirvAyGMXZREQkFcNN4QqD2glqgxS97jUHL6BBXVDRoUd3KwCUgEl5KCcovnoNW24pLV7XwUoqhEAsQHBIGF1dXXK2uRHNtFUx1LpEAyG8SA27+GOIjhqGqCJWNWoiFAsjFAhy81Ig544cCAM6eO4vswiuI9pBBa2CgEAvRqvKGXuaKSxVVSJBfhUQoQJOOgQCAr4caSp9gbDp3BVE6Y3cud7kYhXUt0BsYVKmCMSXGA6v3n0aqB4PKRh0KaloxJECJVoUHlO6eELXUo6HqEo6UNSHWUw6lVAChWI6AsAgU1bXi6LEchGuk0OkZ+LpI0KpnIPcNhVqlRGVpCaqrq+HnIkFpvRYGBgjy98GJRhVE2iYky66grtmYEQU1LbiqF8AvLAYiARDYUoKmFi0UEiEMDIOSq1r4BIbAy12NsxdLoGitQ+7lZqT4KqCWiZDfKEat3AdDfcXQVhaitlmPBq0e56+0IslHAe/wWPioJPhp51G4i/XwVUngoRBjd1E9bh0aC4WLGiVl5dh5qm1aRD8XCZKCPVEq8kZtUwuK8o3ld6ynHD4qCXYUXkVKUjwC1HIUXLgAia4ZEpEASokQOeVNSIgMhpvGE+LWehRcLIS7XIwTlY2obtJjcIgGXkHhkImEyD56DO5yMU5WNsFLKUaomxSu/mEQS2W4cLEQDVfrUFavvfb7iRAXGoCLOhdEqnSoKSuGi1SIorpWeMjFOFGtg8o/HFOj3ZF7+hSkhhaUNAJuchFOVTbDNygUg0I8cenSJRwvKEOSjzH/dhfVQ6xyw5RBUdC3NqOk4DxUUiFa9Qy0egYCoQA+4bHYU1SPJFElGpqaIQBQ1aTDpatajB8YA6nSBaKmGly9XInaFh1qW/QQCoAGgQLjBg6ATqvFyp3GwfnJPgrj+S8EyhQhqNMyiBVWoezKVZRc1SLZRwF3uRh1Mg+4umtQXnkZeQVFiPeW40qTHqX1WgwO8UB0VBRadTr8vOMwPBQihLpJcaSsCfHeckRGDYBBJIa2uhSV1VdQVKeFv4sEGrkYLRIVVF7+cDE0YvXBtrF3I0NcIJXK4BMSid/zatBYchYR7lKoJEK4y8XGssQzCC4qJcpLL8HQWIPDpU3G30wmgkKtgYunL/QtjbhUWICyei08FSKEuslx8nILfMJiEKSWouBcHmQCPRRiAZp1DHIqmhAfHYEATzdcKC6FqrWWvS8DgL+XBnq1LxqamrH32GmEuUtR32qAv4sEAFDnHg5/FwlKCy/gYlUdUv0VkIuFqG8x4JLQAxPjA9FQW43aynIcLmtAqp8KOoZBbh0g8wpGsKsI1YVnITDooZAat1mv1aNUHgR3pQwhTBUa6ushvFaGXGnWITQwAE0yNVrq6yCsq2DvYTXNOkhkckRFR+Fyow6VF3KhlAhxtroF7nIRdAYGjCYYVVoRRrk34mRhOYLUUjS0GivZxXoVJiSHo+JKHbKOnkFagBLVTTrUtRjgoZLBPzwaKokI1UVnodXqUNmgRZi7HFdbdRBqAhHt74HcgmIcPX8JfioJPJQiyEQCVEOJKrEnDNoWRDEV7H0ZADQKMST+Udhb3ACXqyUor21AWoASSrEIjc3NcAsIg0DuAu3VK8g6WYAkHwUYAAqxAIerBRg7MAZ7L9aisdTYMhHoKoGbXITC2lYMHZgIHxc5jp4+i9zSK+x1HKSWIq/VFR4eHohStsJQW4GSulaEusmwo/AqfNxUkHiHINVfiePHjyPYTYZdhcZ7/iA/BS5J/VFvEGOYaz0qL19Bq56BVCSAQADUitwwf8wAxLsxuHDBcpC2TCbDgAEDAACnTp2CTmcZ8EZGRkKlUuHSpUuoqqqyWObh4YGgoCA0Njbi0KFDbD0XAIRCIVsPz8vLw5gxY+AQpoecO3eOmT9/PpOTk2Oz7Nlnn2W+/fZb9t+tra2MXq9nGIZhqqurmSeeeIIpLi5mtm7dyrz00ktMcXEx8+OPPzJLlizpdHrGjh3LwPg8nv0vKSmJWbRoEfPEE0/YLAPALFq0iFm0aBETFBRks2zGjBnMokWLmJtvvtlmWWRkJLNo0SLmhRde4Nzu48//g3l+8ZuMW/wIm2VRtzzApC3NYiLuWWSzTBkYzcx/7b/M84uXMAKR2GZ56rMfM2lLsxj/IZNtlqWPHMOkLc1iYha8a7NM4ubNpC3NYsb9cy0jcfO2WR6z4F0mbWkWEz32VptlXkOnMgte/Q+T8JevbJYJRBLm1jd/ZNKWZjE+/gE2yyPuWcSkLc1iRk6x3W7kgDjm+cVLmAV/fZkzDwe9vo5JW5rFhEVG2ywbP/U2Jm1pFhM+9+82y1Sh8Uza0iwmbWkW53ZvfXaJMf9T0m2W+U++z5iHD71ls0zh6cfMf+2/TNrSLEascrNZftPDLzLPL36TSRs+0maZ9whjemcteM5mmVCmZNKWZjHPL36Tcffxtz1f7n+DGf2vP5jAmx+yXZaQzKQtzWKSX1rBeaypb21innj1XcYlcqDNsuG33cM88toHTOjMv9gsCw4LZ55f/CaT+tYmzu0mv7SCSVuaxWiSx9gsC7z5ISZtaRYTdf8bNsvkvmHsbyOUKW2Wxy38lHl+8ZtMdPp42+2OmsGkLc1i7n5wgc0yscqN3a7MM9BmefRD/2LuXPId4z/5PptlHqmTmIde+5BJfPE7zmO9//WPmYde+5BRhcbbLAuf+3cmbWkWM3TaXNv0RsUxzy9+k5n90gec201Z/BvzzP/9i/GOG2KzLGj6o3bLiLSlWcz4f65hRCKRzfKEv3zFpC3NYryGTrVZ5jf+buaB1z5i4h5ZarPMRW2Wh26eNstNZYTf+LttlnkNncqkLc3iLSPSlmYxj736HqMM5LiW5zzIzH/tv0zQ9Edttxs3lElbmsXc8vf/cebhoNfXMaP+tZ5Rx9jmYciMp5m0pVlM4uynbZa1V0Ykvvgdk7Y0i/FInWSzzFRGRD/0L5tlMs9AJm1pFnP/6x9zlhGxTxjLD9/RM22WmcqI4U/a/jamMmL2G98wHt5+Nsuj7n/D+N2Jtr+5JnkM8/ziN5kFz7zIeaypb21i0pZmcZYRoTP/wqQtzeIsI1wiBzL3vv4p88xLr3Fud+yLnzLj/rmWGRCfZPvb3PRnJm1pFjPqT0/ZLPP09mGeX/wm88LiN3jLiPH/XMN4j7jNZpnv6JlM5lu/MrFP/NdmmUKpYua88Y3dMiJtaRZnGRGfPNBY9jz9Euexms4lvjLivtc/YSbebHsPVMcMYdKWZjGDXl/Hud0/vfgmk7Y0i7MekXLzXLtlxKR/rmbSlmYxApHEZnnm00uY5xcvYeIHD7NZ5jf+bmbcP9cysY/822aZqR4x+l9/MFI3L5vlMQveZR557QMmfeRYm2X2ygihSMykLc1iXlj8ht16xLhM2/M7akAsM2PJciZl8W+ceTjo9XXM46++x1lGTLp5eqfrEYkvfscMfXsrEzwww3bZ+FuZvy96jZk3b57NMo1Gw9Y7lUrb8/uBBx5gFi1axAwbZvvbDBkyhFm0aBEzf/58m2VSqZTdrre3t8P15h5rYbh06RIWL16M+fPn24xDePzxxzFu3DjOLkfffPMNDAYD7rvvPrz99tvsYOm6ujr85S9/wRtvvAFPT88Op8fZLQxfHKlCTkUTFGIBfnl8EiQSCSb/Zztc0YyaZj0Wjw3AGzsvIT48CHnNSugar6KluhR/HuSFL44YI0mhRIr/3TMKUR5yPPjZZly40gIXqRD1rQb8fZQ/fipV4VKzECGCKzhdVIl3MoMBAAs3FOHbeal4fm8TqmuvormqGD5KMSoajdGrQCSC0j8SH04NxX2fbQVjNu3tU+k++DhfCrlShdGeLVh9pMBiu2KlGp/cPRSPrT6LpvKLuDNeg4xgFyzcUAQBgNnjh+L3vBosTQMe+dWYx+9kBmPhhiLIPPwhVrpiyXAVnlxxhN3n0snBcHdTIywsDDUNzbjjwy24K1GDoYEuAIC6Fj3eylNAIBTh3XQRHv3lNKZGu+NEZRPUMiGenJiIx7bVYqiHAdP9W7B4+yWkB6kwLkyNv++sgtwnBAIA9cV5iPOS43RVM8aHu2LrhatYOHUIPjlWi4ej9Pj39nw2rY8M9sb35w3QqzzhyjQjwFCJkSGueH9/BeK85JDLpJifOQTPbSxC46V8TAxTYtP5q+z3n7s5FTcl+OPSpUv403dHMDtBg91F9Siu00KscoNM44t3J/jgoa+N83S/PMYf/5dVCoFAAGVgNFbfFY2Tp3Px5Jp8vDouAH+cq8OeonrIPP0xOMwHh84Ww9NQh+cz/PDP3WWI9pBj5uAgvHBQD4NOi0GSCmj1DA5eMp7Hjw/1wbJLbvh4ejju/nwn9C1NkIsEaL7WL+IvUxIRE+SHx1Yex1vpMry3vxzeSjHmJnmitbUVaWlpmPbdGTReMo5duCXGDWvyavFOZjD+dkwMoViClsuXoGuyHDAoVXtCovaEVNuAK+Vt181gfyWOVOqg8AsDADSWnMW/Jwdh4QZjv3E/lQQ1Kn+svTcJy3adwld7L7Dn0n8OlEPiokEx44bl0wPwwop9EAkE+PMgLzTrDPjbtjIoAyIBAE1lFyDUa/GvycHsthVegfjLuAgs2XAK/xyuZD8HALHCFW/dmYZ/bDyPNwYasHBDEeRiAULUUuRVt+Ctu8dCLhbimeV78I9BEize3/bOBZmHH8RKNZ4dKMfOExdwuqqZfRr97Jhw3Dw0Hjsu1GDxyt0AgNfGB+IfW0sQ5yVHgSQAq+YMwGurs1FxpRaPDfFht/vXfU2QuHpA13gVD0froZGLsDirFC+N9se/D14BPEOQ5KPAHJ8reHp9IZ4Z5ovLTTp8fewyFL6hEEpkaKkug66xDgCgkgjw2vggPL+nHq9PT8Hb2y9A3VSGc9UtUIiNrSJvTQ7F/52SAQDCtJdwsrzeogyRewVBJFeitbYSweIGLEjzxd+2FCHcXYbzzTLIPPxg0LYgTF+O01XN7G/3zIYifDF/ImQiIeZ9th0GbatFGfHajFQMi/TDgbxi/G21cYaem6Lc8Me5WiQGeeICPHHHAFcMElfgvwcroJYJMSzQBR8eqoQyIBLhHgrknj0PfYvxvL8zXoOVp65A6u4DiYs7Bmv02JGTjzcnBOGFLcV4JzMYz22rhItfKHQGBg3FbfeFkSEuOFzaAMYjxJiHl0uhb7qKf18rDy/UtOB/p/WQqj2hb25Ac1UJwtylKKgxHpNQLIHCLxwvjQ7Aiz/sRGawGOsvtiDVX4E/JXvhxcMMFEoV6i+X46+pCry2oxQPpXoh3luBv+yqg0zjiyE+Imw/fBpDApTstWwqIx5K9YZPcwn+trGATfOseA1+K5fjq9lJYOqrsen4BXx5tK1Lh1jhgg2Pj0Fraytyc3NxuqoZn2RXssuVAVEQCIVorizCnxNc8Olh47K/jfRHEdzwc4EB2voa/CVJBC+lmP3ec9ur8PJtQzAiSIWb3/kDWoPxGv5Lhh+e3ViEyUOTcEUrwIJoAxb+dgq1LQa4yYRYNDYQbx1uxlWZBnNjpPDRXsbrO41dIqfFuOHmOB/ExMQAACa+vY7tRvLquACU1Wvx+UUFUoI0yD5TgJFeBowPd8XL240teBIXd9w3KhbLDhWjubJtPNw7mcEQi8XIFfjjq6NVaCq7AIPOeJ1KhEBagApHmt0hkqvQWncZ2rrLmD/Ym82nL2cn4fHdLXh/ki8e+HInXhrtj1d3tHXjVAUZ09tcUYi3x3njrV1lCNdIsbe4ATIPP7ycOQDRihbsOHEeHxyowN9H+ePQpQZsLtZB7h0ExqBH46V8mHtljD/UgVF4eUc5mqtKoG9usLhu5o+JxXf5Bugar2KCZyPWna1llwklUoxIiceRskY0FudhWJAKe4vbpsRd/dg4qJRKHDlzAc+tPoUAVwkuXb2WH64aJEcGo6iyFi8mGlsdTOWlqR4RoZHB/WoREjwl+Ci7Eq+M8cd/D1aiXumH928dAGXLFfx04DxW59UAMJ4XVYyCLSOayi/i/oGe7Hk6LcYdWxt9sPquaJw9exafHyhGVaMOT6b7oqamBvCNwtuHG/D5RHeUlpbil9M12FF4FTEeMvx1QhS2XXHBujNVqC5qu5+3nd+R+PTWSNzzxS7oWxrZ+sDoEFc8PjEB92+shq6xDg9FGfDBgQr8NcMPDIClB2sg9wkBADQU52GgrwJXmnVsC7/CNxQ+bioMUtbh16OWYy/vHRGNezJicPXq1V7fwiBuf5Xu4e3tDaFQiIoKy2mprly5Aq1WC39/f5vvXLp0CYcOHcKiRYsAAHV1dVCpVADA/r+urq5TAUNcXBzi4uJQVlYGPz8/m+Xh4eG83+VKq/ky6y5X5oKCggAA65tO4Ly0Gm5yMUJCjCea3CsQXmoZtHUtmDBxGP5z8QA8fN2Ai1cgVrpCrHTFiJGJ+LGyrV+4v68P/L1U8I1KQkVpHTRKCZhGLSZMGIrffjkBNDfCOzAMhYwGmZmjAQCqkzuQmpqKryKaMOOLg1AFxcDPU4mGy41YckscXlxzmt220j/SIv133zYCn/13D7xdpIgdEIotlVKL7QKAv58PhJJCqIJikDwkCpkpAewy4+9Wg9GjR0N1rQt7ZuZobBjahNuvDUyNj0+AKqitwJqSOYodKO/WqocqKAYpQ2OQmWj83aoaWvHPc8bBiRkZGXA/DCSmhWK4XAyVRITkcA9g2278976xAID3L+5DXKIfpg0PxatndgIAxCIBVEExCAzToLDgCgakBGG/tvjamJtaDE5NheqcCJmZo6E6uQMZo5OxqvokGrV6yF3UCAsKxujBQfi85AiCwjSQiUXw8/EGUARlQCQSUkOwp7UQmZmj8YA0H6MSfeHv7QJ/f3+oshowcGg0zslKcaWirUIdGhoKVZDxehk7fiiW5re9pt7f39/43aMiTJg4HGcVBTjGGG9KSoUcErUnvD2DkZmZhi/LDiE6RIORw8OBg7sgFEsQmZQGhmFwSliGCE8lbpoUj0c9laisb4Hc21jhUUlFEF3rjxMeEYUgTyUkLu7IzByNH6uPIkSjQGbmAPYaEgjPsjfDtPRIbGvMR2bmaPzj2m8v8wyAjOe6ULi6oVWiYv8dEeeD3NNtZYUyMJrNewAI8HHB1Yp6+Pv7IyKGgapIwp5LK2uOQiwUoLioFlFRUQgc0ASpSIjMzAQAwGtn2gaeK/zCkejniszMQey25WIh3NzdIVV7WuzTxMfLE0JJCbsswlMJf7UcJReq4eXpAaVEBLlPCMaMiYGqxPbBQ3R0DG4dNRiNrXpM+dh43g5MTYa/vzu86yVsHk6cOBxL8vay52RQYAD8wusg9m5FZmYKuz1T/oqVrhgxaiAC3OR4O38f7rptND4t2YOrLTpIpVJMnjwZqhM7MGpsKkpqmrDysvE6FwmMwYzMw3g9ucnFyMwcgX+c3AFPTw/IVJUIDRuI0otX4KWSoqqhFePHj8D/nTKO3QmNTUKB5DJbhpiTunkjIiwGU29KwpK8XQgOckPJtZc0CSUyBEanoPDaGInMzNFQntwBP18fuMklUPiGsdth8zoiEgEBbhgod4fqsDHQSE2PwI7m8/AN1eDCxStwc9cgM2MQ3AZUQyEVQatj8HWZMbiQiCWQexvL4J/vH4KDRVfwR50xyP1izkAUXGlE9hURbpoyEq+e2cWev2KhADoDw/42ABCZ5I8Lsip2bIXM0x8qaRAyMzMAADmX6vB5yVFjHstVUAXFICzEHZWFNew2Hh0ZBm8vFygDIhGb4o2d+kqMHRGKzGGh+MfJHZCIhJC6++CmycPwzvl9SM9IxIhwD/Y3V7tpoAqKQXSiH04JyyzyXq1WY/ywKKhOtU0kMnh4DBaEaODrKgMQghqXIPxUdcrie6b7W2hoKNwvXsF35ca38P5472D2hXFy72CMHJ2E7yuMy8aOH4JtZ6uAgguQuLhj4sT0a/toO0c1Gg0CA73hGhKLFp0BgT4umJI5CC+f2gm1mxsa65oxbNhAuB8DdA2tCNQokJk5BO8X7MHVBh38AoIxNmog3r1wAG5yMeJTgzFmaDC7D2VgNPv3xInDUXClEV/9cAxSqRQyjS+iBwZi4tAQvHWubYIDDzc3iGTVFr+r6X526WARgCoo/NrqAjKREJHxPjieY8xrqdoTUrUnxoxJwXflxwAA6enpwO4diAwLgyqoHNNuGoF/n98DlVSEhmvlaYi7AoUIQWbmaHxeegjRQW44DmP57eXpgcQITzAeIfjy0lGMHT8ETacrsKvF2AVPIBRZpNd4vMNQVNMEoByP3zIcn+0rZI9FdXIHYmNicJuyBr/mAKlDU5DVdJ5dJhIAcrkMQCOUQTEYkBKA42ib5S4q0lgHkLh6QHVYB38fF9Sa3afkMilkKhdkZg4HAJvyUiqRIDwhBcOjvbCsPAezbx2N5VUH0FTbDD9fH0R5heOkwRtbGo2V5cBrZTtgLCNUQTEYNjIBP1UZH7YOHhaFrVvPsffArY25kNQ0IzNzIMrKylBuUACHjyE5ORnJycnIkZ5DtuESAkLcMXx4Mo7tLoCbqgEtQTGc5bu/nw9bRgRdK3ujUwKRmBgJbNwBsVKN0WMG4stLRzF+/BDoDAz+e7FtPJ4qKAaP3JqAjHAPDHt3J/u5UChEaFQsVFXKts8EQHB4BHsspuCXS3v1TntUKhVnPdeR75rrsUHPEokEMTExOHLkCAxmg8mys7MhFAoRGxtr852ff/4ZY8aMYccpqNVq1NUZn4LV1NQAAFxdXa9/4q8D08A8odXc/KaKsZD9v+X3RFYfSEWmn9CyoUhstp71d1bcl2azjuTadlxlbTGkddoAY2UKAL7702DcmRJgsxwAJEL+08r6eEyCNYq2day+bj6rFtf3TZ9tfGSYxefTEvwwPsbb5vgjvVTwcZVBIBBgzUPpACzzAgCUUsupe03jKdr2aZYmoQAQABKrdcz/7a6QsH8/Oy4S0d4utgdixTz7hXbmgxHxvN/BuunQ+hhM+frjvWkI9zQWYtZ5Zb6uvd/VmlTcsaLFer9Cs3/fmmhb0LWd99fSZ7VcbJZWBvbfgfHGLXEAgCR/Y1kil9ifttk6rV/NHcT+1gJwXzfWFBIRPFVmM8Jx5Lv1dkTtbxYiocDmXLYmFgos8sOUVwMD1fBSSXFTnK/Nd0ybNP2u5uec6dj5zh3Tb8WAsXkxY4i7Ahqza8OUPgXPb8B1rpvKLutFw8I8kBLgxn4+JtLT6nsCDA3RYPEU4xM8831a5yHfsfGXx9zfsU7/3alBds8X0/qmtPGlgw9XPppX5NvbmvnuQjRKi2X2jtW6rAHaKhsPDDM+IJOJhex5yJUO6zIYaPut2yMWtZVXf5sUDdm175n/rpMHeGNOaqBD2zM3eYCPzWcKiW26TNeKaZ8SkRB/zDfebzxUlue8xf3kWm6YPhIJBe2WKcZr2vi3+e8LAA+khyDW1wV/n2SsjMqt02q1bb5TTHwtD61/65kDA/DJ7BSur1ht13bDprwxf2eU9b3j0YwwZIS3jVXlOrfM8d0PTe4bGoyPZvKnV+zAfc503kpEApv6CtA2lg4AHrx2vnMRCgQ29+nerEffwzB16lQUFhbi448/Rk5ODtavX28TFJjk5eUhPz8fU6ZMYT9LTk7Gzp07cfz4cfzyyy8IDg7uVOtCb2A6SazPbdMPwnfRWl8MfBeP2Kxgtb5QwzyUNutwVTK40mD6jotMzAYP1qwrzubae3nZ13MH2a8ccyTK9IlGKbVZxvWd929Pwm1JxqjaVLhav+TuniHBFv8W2rlRmxZZ38xMN9Sf7x+C9DAN7/f5mP/W9uoJNgEWz3rmec+3Dt+NSQDLfHx9aiweHxlms97rN8ey65sCOOsKoUm4R1sFxPr8M//X7EG2gan1qWedPx5KCT6aaexCyDD23yAuufblL+4axP6b66WHK+83BtrW16BCIjKrtAo6VKkLdJNbbtOsh6j1dhx58Z9IwH0tmxPbBI5tf6eHuuPZcZGwZkoVW/GyKDuEFv83NzLCg/eGOHtQAGYk+9vsTywUQsZTtpjyxPw8lbCVDm6mdd++NcFqPwIEuStwc7wxQDLPB+u8FgsFCLj2WwHAn9ON5YN5Vo6N8oSbou2Bi3U+R3up4CKzbNQXCgV2r22RUIB70oLYILaD8QIkIiGWWh23OdNvw3cfMb8OrFexfJBjdV/i+P1M698/tC1gMHlsZDhezhxgsb7NwzS0/dbtEZldh6EaJfzdjOW8+bWhlottzrNoLxXakxbibvMZ10MGqVWQcn96MLxcZGz6LNJr57jaqwADxnPNtJ63yjJgeCQjjL3nA4BcbP+ByJQ4H9yWZPuQhu/BgLtCglCrYNKcn6sMnkopZ7lk/pnqWoBoCuBNXOVii3PB+mGRoy/8MBWtcokIGqXlPemlyW1P9tsrP82JRULO38f82rD323b0ena2Hg0YYmJisGDBAly+fBkfffQRtm/fjilTpmDWrFk2665atQpTpkxhux4BwLhx4xAfH48vvvgCVVVVePDBB7v17bnOYH2ytbUscFdabA6X72mA0Lww517HvPBNDXIDAHiaVbqtC+y/ToiyTDvPhu09BWrv1xKL7N9AuSq0XOeAeSXFkSe+1iQiIYaGuLMBhb1tCAQCix1atxJJxUKHCiHrJ2oCgQBjozwttgmAbRUxsVfJb9sW9z5D3BUW/7Z3c/J1lWHTAmOzs79azt78zE0a4M3+bQrg3pnB3UXvq7mD2L+t80fYToFrc8wcLXWDg90BGJ9s28t+88pv5gBvuMi5e2qaKhfmwaPpJmr6iGGYdgMG85aFXx8YarNNE9MxtjfKbP7wUPZvR1oYrH9j81jFfF9v35qAJH+1xboytoXBbHvCtn2bjAy3fAAEAJ/OHogpsW1PZ6cl+CGSo4JmL/2mfZiv4aHiflBgwvfAUGxVThnLXP79Tkvwxc4njN2NFmSEW6QHgEVAAVjm84sTo/H9PYPhrhBbrWM36RAKuQPQBRlh8HWV2Q2ETZID2n5DvtXvT+d/Csp+12pn5m+1Fgktn5TaVupsmV/DPq4yBFmVRdYYdKCFwSrPgt0V8FJxV1rNjYzgnnUxyV+NhWMjbD6/Kc54PptaclbdP4RdJrUqL8xbJmxaVDmSZcoPR+5fYmFba82QEHe8ODGKd12uPDTfQ6K/GuOjvQAAO66d70Dbb2p9ztp7wAcAS6bF48/pIXZbGEZFeuBvE41dygKtriMT5bU8tg7EO8M8LSPCNFCblfkdCRgkPK0/piT6uEgtem1Y0yilDl0rvUWPpzQlJQX/+Mc/8N///hdvvvkmpk+fDiFHif7iiy8iMzPT4jOJRIJ77rkH7777Ll544QXePll9gekUs64omDdDMu00VqUEqOEi5T4ZzU96vq2YFxx/GhKMg8+MRpR32w2c76n6tsdGXEur5XLTkyx7F1x716JQIHDoaX5P+O+dyUgP1eDgM6PtVqTbu4hEPDd9a9ZPAoUC4LlxUezfJtZNztYF1j1Dgm0qLyam3w4wnoPWQUp76XTnaS1gt9mB4MxU2VZJRRh0LWA1eWxkGHvT4yqQ7Z0j1oxTYPOvb94iZqp8cl17Yo7uE3ueGmWbNjtJW3JLnMXTPnbbXN1XHDzGKLNKt1AgsKkI2+zL6oabEc7dSjsm0pN9Im76xoxkP7x9awLn7ywWCuAqE2N6gi9nkBjv5wo3s/OH75qyGzCYfgOzVWK87T8V5qvQ2ASpdrKtrQuCbZDBx/z3m27VrW5sZNuDAOswxTxo46sb/Tk9xKKFzh5XmRivT7Xt8gu0/a7xvl3r2mudzvYqXRNjvHmX2fumvdZri/RY7f/tWxMwb3BQh1r/LCuRPN3hrm3PFEiHXOta++28VDYPTOeI6d8uMhHirPObI1mmslYkFNicP9bEZi1VUrGQ82Gj+brWkgLUeO1m23OEq5uebcun3aRBfO3+x7WeeSvQ5GsPEwQCAT6dnWLx1B8Asq4FL+21uDgSVJofw3u3J1lU6ts7nhcnRiP02u8sEQk5yw1TebHq/iGYPID/XF/+p8GYwdGa01v1ndCmn7K+ducODrz2efsF22dzBto0cZuYKg3eKilGR3JXCCzGOdiJkq2Z73NclBf7d0a4B357YChvwQJYVijvter2Y0pHu0/zYb8FxVctsxvV8xEJBbxjC2y6jpldOa/dHIuFYyPZwlUhEUIuEbL9WsVCgd1CbmKMF4I1CtvuCmbN6vYq4ua/U0a4BwYHu2N0BPdvzne+tO3T7mKHWVS3eR6Rm37DWxJ8sWiK5c3KXSGBD0/zPd9n5izGfwjsH5cjTf6ZsbZjYbj3axkcerfz9Lvte9Z/tP2uHWkgEwkF7T61tj7eVzKNN+YFGWGYPYi7T7fpF7w9OcBmLID5vmO8VXjJqmsJH/4n//zXtuk7lt2H2tmP1fJZA41d3GwCBge6NlifA452JbH+TZ6fwP8E2N727VUETZ4cFW5c1+zhE1e/e3Mjwj3YfOFy8JnRNp+Zd20RCgQYFGgM+sM8FNet5d/Rp7/W+xcKjON2OpKuaYl++JSnb36SvxpTYn0wLMyDM10DfGzvI6Z1tj2WYdES2x6hAPBqpxxxZJwDAOx6cqRFIAQALlIRvFVSZMb6sN2CuJjyriPXAJ8P7kgCwP97Dgx0Y4OkYLOWp98fHGo3jYDxAcLWR0fYfG6ePbbd68yX2T+e25P92fuoyOzeruToliaXiOyOiXCVi9t9wNOb9J2U9lPWF/nQEA0A4wltfnNYOMbYHOqpkiLMw37Tren7ER5KzBsSxPskSiwSYGS4B0RCAeeTG0cKoH9Oj2/b57V+vlKx0OZphamLgnn58Pi1G5vFPoWOVVonm3VtsL6JLrs7Fbck2A7cbM+To8IR6cmdV+aF4vqHhyHZX417r83Q4esqg6dKCl9XGQ4+MxovTR6AFydGs11yTE9Y+Cy5JR6pQe4AjAPUTIQC88Hx/Onme9rO17IU5aViJ2S21pHm2M4wdWkC7AdBFv2jeQaV2WMeo7x6UyyeH89dQVtxXxpvf3lz/5gU49BguEhPpcV1s+5hy4H4Qzn6P1u4lvCdT2RY5MHPZl0d7BE5UCmyXmpaf3CwO+L9uJ80J/i54vs/pdrdbqK/KxKtujDZT4dxv8NCNfjvnUns56Z8nj881KKLpPl3zK/59irRfPlh0yXJ6uc1dcuwFmTWeudIsGmeBtN4Hvvnvtnf7WyXKxb/05Bg3vFl3eX/bhpgUSkWCQVIClBj3uCg67pfgUDAGbxw8XGRck6Y4CihQMA+rbbO5i/uGohXb47FpAHeCHSTO/RUu7NlK999+MOpYRhs1jJrvpqrXMzZymxd1t2S4IuV9w/B1GvjeLY/bnyKr5SIOMe1xPq42HZp5El3kNX+zc9VU3er9oKNnU9kID1Uw/7bTy1HmKcS96S1nWcCge34I1eebqUm1vdMi0Hn1/7+c3qwTeD34sS2mbhW3JcGqajt3v7e7Yls125z1sf4+0ND7aatN6OAwcmsKzKm81YgEODzOQPZC3nutYI4zEOJZXfbv3F/NicFAoEAb06Lx9xU/gJcKBDgnRmJ2Pf0KM5BW515cmDabmas5ROtd2YkQikRtfs0sL0WBhPzwtd6dZlY2KFxC+bBEt/XzLfnqZJCIBDgz9cq99Y3f6VUZNOU62jFYkqcWSAkENg0a7eXNkfY7TJ2bVlXb/zme/B3k+OOFH/cluRn06WJL0Az52je8dEopRZdYcyFeSgtfr9ZAwPwyuQYm0qoedDHF4gNDnKDl4vM7u+hltvv0mVifT2azyJmj2nXacG2Ny4T88rNwWdGOxSgS0TCdmf2untwEOdDgPa4KSTsgxKgrdwZE+WJJ0Zbbs/UVcyU5pczY+BxbQAj3+/CdXw7n8iwO24GAN6aFg8uvzzQdsN3pIw0H3P0wLBQ3jR1t+v1hqX5w0Ntxra0d210hFAogI+LlLPy1REapRT/mMw/TaVDaXHgd/r1gaGQiYV2A5lBgW6dfpLMd44Fu0nx0awUfHatFcS8hWxCtBdW3JvW7rZfyRwAd4XEJm3JAWpseyyD51tGa63G0lm7Lcm/3eCuvXsXV73Ez1WOJ0bbjifhYxqQbX492M5OabbsWn4vyAhnZw80uT25bQpS073DtK2BgW6cLUHWP5+fq5ydHKSvoYDByeJ8LW/C5tOpRnmr4KeW2zR1tXeRpQR0raB9cWIU3poU3KGuEFyeGRNhUegvHBuBYaHcg8pMhA4GDOa6mk6ufujW7D7hb2f/HZk5x2Kwr0AAN4UEu58c2eFjFAjafzppb//eLo51pXGEh1KKFyZEs9P6mUsP07BPcUzN1Na48o4BoLbTvaqz50SQuwIJ/mqLMQyv3hR7rcm/c9vsTsn+anYwNxfTcf+PZ9rAg8+MtgmeOjMpgImfq8w4AF7VPYP39jw1kq3Ix3i74KY4X2x/3LZ7genknpbg1+7TXa6n+VwVEaFAgHHRXvh2nu0DGYZhOCvg9rLOtMx8zBHXLE9d9dmc9qe07CyuZD40PNRmgHJXg3pzX941ECvuG4InO1ApBIzlsL3Bvp3RXUf1yewUx1sYrFYzP1e4KuAp17qCWT9l7+jU1hZJcOD7XNPe2t+m5b8HB7nZXLtLrk1x3REeSim8VLYTcJjMHBjQbhcw82Cro+V8e+c+1+8+OdZ+F8Heqsde3EYsDQvVYOf5at5I13STSw5QY8tjljfMjgz47IzbkwNQVlbW5ZvALKv+0Lcl+aO+xfJNhcv/ZPnW7/b6m3NxpF+vo/ieyjkyroKLqdnSwDgaMJhv1/h/qVgIg9axZ3dc0+Hx6QX1Xywc0zalZnqoBp/NTsGDPx6zWIcvf90U/MVXdz5dNbX6iEVC+Kv5b0w9wfqacsS8wUGYncrfP72zxcm+p0cZu80JBHh4RJjN8o2PDMPJsqsWn8V4q3DvQC98fbTKZn2Ae8CiymxiB9O1zjXegO8wHD0+ocC4L67+53zMN50W7G7RgiaXiHi7BpmnybpixjUo3p6UADf8fqLcNm1Wx23efcJRAwPdHOpCYbonpYe6d/lhgzfH7Gsd8cxY22mBzQ0L1WDftZcHmkhEAmj1DNvN1MS87PFQShHh1bHf5v3b+V/i6ihTA7ipNTY1yA2Hi2tt1uvOINQRXd3fR7NsA117g+H5PJoR1uWWLcsxbx07LvOujFxB1PWur/UkamFwEtON3/rk5LoR2rxEiOP8u3doCIaZ9fXrDqa0bbB6IVp3irKe4UTQsZl2gK63MHR1H/YCK1OzpaPBF990oo7kSayPC8ZGcfe77gmO9i22x/S0zJz5ke9f2H5rUHtuS/Jrd+AcF7FQgNUPpiPWx4V9J4PJYyPD8TeOFhRn+9/MZNw7NBh+rtyzZgEdv95MjDOf8H9Xo5RiZIQnRpoNwPd2keHOeO6Boh3Btds0npYXR4+Pr6JgbOHjnuXF3KgIT/YdA4BxoOrOJ0e2u68kf1d29jK5WGhRaWovj/kkB6htZlP7/aF0TLIz+Hlagq/NO1NEQoHFufNnnulXTfek4WEeuPs6j2PgY5oW+K5OvIxtbmoQZg8MsAhOAcvAbmKMF742mwraEcPDuFvU+V5MyMVU4fzhWhcjvnEZPRUvmIL6jl6+rnIx7zt5usKRqaQFuH75Y35vf5YjWO3pQO56ohYGJ7MeaOfIRch1AxkT6Yn8qgbkVdbbLOvsvMWmgsqD54VondqmAxdPR5PryOqfOfAmSqBzhYoj33H0yR7fgMeOFs5pwe68M2t0trtSb+Bo4Wtvtb9PisGZinrEduBJsjmRUGDzoiJ/NX+FvD1+rp2b1YuLdctKR56W96Rtj41od8Yua6sfHAo/04sWOX7gEI2CswXI0XOd7xrrStcOPgJB25vFBQIBZ15kPZ6BJq2erVxGealsXjjF5793Jtt81l45Huvrio1mkxJwWZARxvl5R4MaX1cZXGTG49rNE1R11N8mRdtMz+yoBD9XjOMY5G7xssturPiFaBQ2Dz8OPjMaf/39FAKsyhJHy7yeqph6u0ix84mMDu8vVKNs9/y6njrT6uxIuW6eD1xdHfsTChiczLZLkmMXofXYB3uS/dUWs9M4qhvej2KjswFRV9fnenLNxUUmhk8Hm9QdKTiFAnR4oJOQ42bFNxDT2uhIT97pdE34yk970yt2hy/vGtihCrajp4P5k7frNeDTESqpyOYcUsvE+Ppu7qeTv5sNHnSRi9lBvB214r403pcedUWkl6rdaR07qqPBAmB58+Y7JbpSZHW2wrXivjTM/OpQh/dlerM4H6VUZNHFYfk9g+2s3TkKqahTrW0m84eHsu8e6IinRoe3vWW6mwKy25L821+pg65nbxL2fDPbhyPle6CbnPPFiD3Z80UuEUFnsF/ItjdTkbO9aTZegi/rBga62Qx8tubIw8D9C0dh2qf7O5K8Xql3/6I3AJsuSQ5e9N+0M1OSOYFA0O4Lt/i+ZzJnUCAGX5v683rr+BiG7jMy3IN9+66jHA2COjrQybzvo+lPvqke7Qn1UFr0K26vMv2X8VH4Pru4w/txVEem3gSMU1H++oDltKJcTdAdmRHlX9MTHJpOtTM8VVKsnT8MZWVl7GefzRnY7ptsAWBIsLvF7COfzUmxac3g09G+7476kONptbPxXXNdiRPtBQyfzEqxeUuziZ9rx/vcd3fd7snR4YjzdcGbW8516HtDgt2x/uHOdzl9yOwt4x1hfGGdc1i/lNFVJuYdwOu8VBq5cVS6UwLd8M4MN4vyBei5Lkkm9u5739w9qFe1bnKVCxPMuv51rdwA7kixH6xylS3d0YW3p1HA4GS2LxDp/FUvEQk61DeyI54dZ38gmaPs3ZQ/uCMJXipZu3lg3X2jOwtKgYD7nRRysRB89cvr1RRsMQC6C9t5k2fmid7eLUkhEUF8rQ93oFtbZXvroyPw9cEiFFQ38n63vZ/Eun/39SYVO9qVSmDRhbCrM571V50tJ13lYt5uA/Zes2HvKXpnrv/OTlnNRy2XwLMTrUACgaDfd6Noz/qHhzn8BumetpnjBWRd1V3v6LCXYxJhx6Y278sEAgFemBDd/or9AAUMTmb7Rkrg0ZFhndrW7IGBmJ7Qva8Zd7Tvv6Ps3SfTrQZtS0UCtOptY/+tVrNGXa+3iprTKKX4ZQ73E+zr1RRsvlm+Y9z2WPs3lM7kT5S3CpmxPvj5eCnSgt2cMjtQapAb5/E50tTd1S5JAwPdun2Kxuuls2OU+qP2cuKd2xJ5B0h29mlyZ67/niizCDfr3/l6jFHpzeL9XLHzCfvvWHBEXzqHr+egZ0c9PyEawe7d32W0J1HA4GTWNxuhQGAx00ZHSMXCbi/8HO3776iOFDK/PTAUXg5Msdcd5cDfJkV3ugm1O6dNk3RwZqTO9AV3xNAQDYaGaPDz8VK8NyOpQ+fV13MHIdiB7jftcfTpp1go6PY32/qr5bg9+fqO5eguI8I8rutMZr0R1yUnFgrb7Vpgb+74zlYoOnP996OZFkkfc6O2KjnyEMmRB3CdNaadMYV9AQUMTsTVh83ZUfD11pHjcyRY6Og2+Vi/mbojuvMn83KRYdeTIzHy/V3duFVbHXkA39EKUbyfa8cS00VT431tBnj39+vInEgo6PBMZq6yzg+u7g2snxJvWjAc6i4MshQLO/7CyCmxPhgc7N6p65/vO11pGLuBTvl+5cFhIfC3M+0x6TmmcW33pDlnauDejgKGXqa/9/tz9Og60mTq7Bzr7qZZmVjITrnoqBCNot1ZKzqrtz8NlYiE3Tr1b3eTiYSQi3vXE73BwW5YO7/vtkpYX3KmSR2eHh2B4E7M2rP36Y6/38O89dV6UH57uMqMGE95p94hQPq2yXbejdEX+HHMeNfdY3S6ytE7oynVT3TwLeM3CgoYepnedZl1P0cr1x1pMnVmX8rVD3ZsRiVHtTflorW5HXhZUkfew/DubYl97pxcMjUOYo43BjvLrqe6Z5757iQQCODgOOxeie+SH9+JN8V2B/NB+Z0V663A2A68qd2aE2cSJjcorl4SWx8d0eunVOXTHXWJlzNjetUMUd2pb/6q/VhfGkhEuvbCLmfpyIDgjAjuN5X2Zo52ZSN9V19uie2uF5WRrhnG8xZm0jW9MVhwdNBzdzSMTOvmiWd6k973y97g+u5tkJDucWc7c1oDQJC7HHG+PTtWoj/7eFbve9eCPR0pJzVKCYaEuF+vpHRYd01MkR6quW7vEunvJkR79YtBqOa8VTIsnjLA2cnotRx5UMb5wJaa7lgUMPQiE2O8e13fP9J7bO3mObl7azn4VwfmtL4tyf+6vNn1RpXaQy9l7C4daYn1UEp75cvnumqe1cBMunPc2KRiIW6O972u+1g4NgJqed+dLIF0DQUMvcgSnhdsmay6v2MD60j/0l1NvV4uUrgpxKhp0nXL9gjpaVQ5vvFInfi+kXuGBDtt371JX3uwYNLewzE3e0GQ4Maadc8eas/sQ+y9bZQQR/1zWjweGh5GlS7SZ1FDrK1YX1csHNM/Z3e5I8Uftyb2fN9wjVKCiTFeGBXRv7ovEUudmVntRkQtDITcYCS9aAYhQjqFHvnZ8HWVdWi2tL5ELRM7ZeYzd4UES26J7/H9ku7lyKDnWxKub3eu/oBqDqTHZcY6Z+pDQkj/QOFC3yISANJOVvjVMhEUVm/olomFNN6PdEh7g55fyaQB4+2hFgbS41672f5YDdIzeuugZ0LaQ3XFvmXzoyOgknbu5YVLJgYjyN+yO9K381KhlFL1hZCeRFccIYSQPoXeV9O3uMg6X9WQi4U23ZE0vfjN7qT3oYdj3YO6JBFyg6IqFyGEEEIcQQEDIYQQQm4IcomQXnh3g3H0Tc9cAtRyaJT07gmAuiQRQgjpg16fGuvsJJA+aNGUARBQ++oNx5E3PXN5+9YEGjN1DQUMhBBC+pzJA3ycnQTSB6losDTpADFFCyxqlyOEEEIIIYTwooCBEEIIIYQQwosCBtIv3Dsk2NlJIIQQQkgvRDMxdx0FDKRfeHxUuLOTQAghhJBeqLODnkkbChgIIYQQQgghvChgIOQGpZaLaX5pQgghhLSL5hcj5AY1f0QYDAZqpyWEEEKIfRQwEHKDEgsFoDfSEEIIIaQ91CWJEEIIIYQQwosCBkIIIYQQQggvChgIIYQQQgghvChgIIQQQgghhPDq1kHPq1atQn5+Pp5//nmbZdnZ2Vi3bh3Ky8vh7u6OcePGYcKECexyvV6PH374AYcOHYKrqytmzZqFxMREdnlrayteeuklzJs3D0lJSd2ZbEIIIYQQQgiPbmth2LRpEzZu3Mi57MiRI/j0008RGRmJBQsWYNCgQVixYgU2b97MrrNjxw4cOXIE9957L1JTU/Hpp5/i6tWr7PItW7bAx8eHggVCCCGEEEJ6UJdbGKqqqrBixQocP34cCoWCc51ffvkFycnJmDt3LgAgISEBOp0Oa9euxZgxYyCRSJCbm4vBgwdj4MCBSElJwfbt21FQUICkpCTU19dj48aNePLJJ7uaXEIIIYQQQkgHdLmF4aeffkJFRQUWLlyI4OBgm+VVVVUoLy9HamqqxeeDBw9GY2Mj8vPz2c+kUikAQCAQQCQSwWAwAADWrl2LuLg4hIeHdzW5hBBCCCGEkA7ocgvDrbfeioCAAAgE3C+AKisrAwD4+vpafO7j4wMAKC0tRWxsLCIiIrB3716MHz8eFy9eREtLC0JDQ1FVVYXdu3fjH//4R1eTSgghhBBCbiCMsxPQT3Q5YAgMDLS7vKmpCQBsuivJ5XIAQHNzMwBg3LhxOH/+PF588UUoFArMmzcP7u7u+OyzzzBs2DC4u7tj2bJlOHv2LEJDQzFnzhyoVKquJp8QQgghhBBih8MBg8FgAMNYxmkikajd71l/x5qpZUIqlWLBggVobW2FRCKBQCDAxYsXkZOTg1dffRWrV69GWVkZHn30UaxevRrfffcd5s+f72jybVRXV6O1tRUtLS1sKwhpQ/lii/KEG+ULN8oXbpQv3ChfuFG+cKN8scWXJy3NzWht1d2w+dXeueLn5+fQdhwOGNauXYs1a9ZYfPbxxx+3+z1Ty4KpJcHE9G/rlgfTOAbAOE3rxIkToVarkZ2djdtvvx1+fn6YNGkS/vnPf8JgMEAo7NwwDA8PDwDGLlOOZtaNhPLFFuUJN8oXbpQv3ChfuFG+cKN84Ub5YosvT+TyK5AatDdsfnXXueJwwDBq1KhOTWlqSmRFRQXCwsLYzysqKiyWWztx4gRKS0vx6KOPAgDq6urYLkhKpRIGgwH19fVQq9UdThMhhBBCCCHEMQ4HDO7u7nB3d+/wDry9veHt7Y3Dhw9j6NCh7OfZ2dlQKpWcMx8ZDAb88ssvmDp1KjvWQa1Wo66uDgBQW1sLoVBIYxgIIYQQQgi5zrr1Tc98brnlFnz55ZdYtmwZBg0ahDNnzmDbtm244447LLogmezfvx+tra0YNWoU+1lycjI2btwIFxcXbNy4EcnJyQ6NoSCEEEIIIYR0Xo8EDMOGDYNer8eGDRuwb98+eHh4YNasWRg/frzNulqtFr/99htmzpxpERBMnz4d33zzDT799FOEh4ezL4EjhBBCCCGEXD/dGjA8++yzvMsyMjKQkZHR7jYkEgnefPNNm89VKhUWLFjQpfQRQgghhBBCOqZHWhgIIYQQQgjpaUHuCrjKqbrbVZSDhBBCCCGkX1qQEebsJPQLnXuJASGEEEIIIeSGQAEDIYQQQgghhBcFDIQQQgghhBBeFDAQQgghhBBCeAkYhmGcnQhCCCGEEEJI70QtDIQQQgghhBBeFDAQQgghhBBCeFHAQAghhBBCCOFFAQMhhBBCCCGEFwUMhBBCCCGEEF4UMBBCCCGEEEJ4UcBACCGEEEII4UUBAyGEEEIIIYQXBQyEEEIIIYQQXhQwEEIIIYQQQnhRwEAIIYQQQgjhRQEDIYQQQgghhBcFDIQQQgghhBBeFDCQGxrDMM5OAiH9Al1LhHRda2srALqeSO9DAcMNggofbi0tLQAof6wZDAZnJ4H0Ia2trRAIBM5ORq/S1NSEZcuW4cqVK85OSq9iXbZQ2WvU3NyMn376CX/88QcMBgNdT6TXETs7Ad0pKysLtbW1cHNzQ0hICMLDw52dpF5h27ZtKC0thbe3N6Kioihfrvnmm29QVlaG559/3tlJ6VWysrJw4cIFKJVKhIaGIj093dlJ6hV27NiBK1euwMPDAxEREQgMDITBYIBQeGM/dykrK8Orr76K22+/HRMmTKA8AbB27Vps2LABbm5u7EMJAmzevBlnzpyBRqNBVFQUhg4dShVjAGvWrMHGjRvR2tqKYcOG3fDXj8mOHTtQU1MDDw8PREZGwt/fn8oXOK+u2y8ChqKiInz++efQarUIDw/H4cOHUVNTg5kzZ2Lw4MGQy+VgGOaGK5gqKyvxySef4OrVq/D398fhw4exZs0a3HfffUhMTIREIrkh8wUA9Ho9ysvLcf78eeTn5yMyMvKGL4iKiorw5ZdfoqWlBeHh4cjJycHWrVtRV1eHMWPGQCqVOjuJTlFSUoLPPvsMzc3N8PPzw+bNm6FWq7Fw4UJ4eXnd8OdNfX099Ho9Nm3ahNGjR9/Q5cqxY8fw448/wmAwsPcfpVLp7GQ5XXV1NT755BPU1dUhOjoaZ86cwe7du+Hj44OwsDBnJ89pjh49iuXLl0MgEGD69OnYu3cv/P39nZ0spyspKcHnn3+O5uZmeHl5IT8/H97e3nj88cdv6DLX2XXdfhEwbNq0CTKZDA899BB8fX0hEonw448/4ocffgDDMBg5cuQNe/MyGAx47LHH4Ofnh/r6eqxatQrffPMN5syZg/T09BsiX7guoLq6OlRUVAAAvvvuO7z88ss3ZAFkwjAMtm7dCg8PD9x5553w8vKCTqfDjz/+iM2bN2PgwIHw9vZ2djKdYseOHdBoNJg9ezY8PT2Rl5eHr776Cr///jvuv//+G/q8AYxdKRQKBWpqarBy5UrcddddN2TAUFlZif/9739ITk7GnDlz4O7ubnFu3Ih5YpKTk4Pm5mY88sgjbIW4uroavr6+N2S+1NXV4d1330VlZSXGjh2LcePGwdXVFVu3boVWqwVwY58vO3bsgEKhwPz58+Hl5YXTp0/ju+++w6+//ooHH3zwhi1znV3X7fO5XlZWhpycHERHRyMwMBBisRgCgQCzZs2CTCbDrl27cOHCBQD9u68k17EdPnwYXl5eCA4OhkQigUajwQMPPAAXFxds3boVFy9e5P1uf9Lc3AzAsu/stm3bIJPJMGPGDJSWlmL79u026/Rn1r95RUUFjh07hoiICPj5+UEsFkMul2PIkCGora1FeXk55/f6G+vjq6+vx7FjxxAQEABfX1+IxWJERUVBrVZbFMw3Wr6Yu3r1KqRSKSZNmoSsrCyUlZVBKBT2+2vJPE8YhoG3tzciIiIgEong4eEBoVAIvV6Pw4cPo6ioCFevXuX8bn/DdWwHDx6El5cXQkJCIJFIIBQKUVFRgbKyMjQ2NjohlT3PPF9qamoQERGB5557Drfffjs8PDzQ0tKCpqYmuLm5OTGVPc/6fKmrq0NOTg78/PzYe1FsbCzc3Nyg1WphMBjAMEy/voYA23zpDXXdPhcwmJq/TVpbW9HU1ASNRsN+ZjAY2ArO5cuXcfTo0X4/iMi6Utzc3AyBQACJRMLml16vZ0+w0tJSHDx4sF/ni8FgwI8//ohPPvkEANinEvX19Th58iSGDx+OIUOGICEhAb/99hu0Wu0N8+TCdL6Yzg2tVovGxka2FcF0Hpk/7QLQb88VE+t8aWhoQENDA/z8/Nh16urq0NDQAKVSibNnz0Kr1d4w+cIVBFRWViI2NhaDBg2Cu7s7fvjhBwA3zrliXoamp6cjJycHTU1NOHDgABYuXIjvv/8eb7zxBt58801kZ2f36zIX4L4XGQwGuLu7AwB27dqFhQsX4uuvv8arr76Kd999FwUFBf2+AmjKF4ZhEBwcjLlz5yI0NBQCgQAMw0AikUAqlaK2ttbJKe1Z1mWuXq+HVCpFU1OTxf1Hr9cjNDQUtbW1EAgE/foaArjv0c6u6/aZ2lFubi7efPNN/Oc//8E777yDY8eOQavVIiQkBAEBATh+/DgqKysBGCuGubm5GDZsGIKCgnDkyBGUlJQ4+QiuD65KMcMwkMvlcHd3R3FxMS5fvgwAEIlEAICkpCTExsbi2LFjbCtDf6TX63HhwgXk5ubi7Nmz7OcCgQC33HILpk6dCg8PD4wcORJ6vR4rV64E0L9bGazPF5FIBIZhEBQUhHHjxtn0gTQ9FTWvMPdHfPni6+uLp556CmlpaQCM3SjefPNNaLVa5OTkYOnSpXj//feRl5cHoP89OeYLuk3LAONMY42NjYiIiMDo0aORm5uLM2fOQCAQoL6+3inpvp7s5UlQUBC8vb3xySefYPfu3Zg+fToeffRRPPbYY3B1dcXKlStx8uRJZyX9urJ3L1KpVKiqqsLFixexc+dOTJs2DY899hjmzp2LxsZGfPvtt/32XmSdL6bKrvl5IxAI0NLSApFIxFaS+3uFmK/M1Wg0iI2NxdmzZ/Huu+9i/fr1WLRoESorK7Ft2zYsWrQIy5YtY+t7/Y29e3RQUBBycnKcVtft1QGD6eZ78OBBfP755wgICEBSUhJ0Oh2WLVvGVvBuueUW5OXl4f3338f333+PJUuW4Mcff8TgwYMxY8YMVFRUoKqqymKb/QVXpVin0wEAxo8fj7KyMuTl5bE3d1O0On36dFRWVvbbQAoAamtrUVFRAYlEgl9++YX9XKVSITExkT0XYmJiMHz4cGRlZaG8vJy90fVHXOeL6dyYPn06kpKSLJ7e5OTkIDAwEN7e3v06kLKXL1FRUZDL5ey6kydPxjPPPIOFCxdi4cKFOH/+PHbv3s226vUn9vLFVOGpqqqCr68vACA1NRXR0dH4+uuv8Z///AebNm1iK0D9BVeemMrVgIAAuLm54fTp04iIiMDYsWMRERGBxMRE3H///aivr8eZM2fYMro/sXcvysjIQG5uLn7++Wf4+PhgzJgxCA8PR0ZGBv785z+juLgYubm5/bKMsXcNmTAMA7VaDbVazT7g6495Yc7e+XLbbbdh3rx58PDwwPr16xETE4Pnn38ejz/+OO68807s3r0bu3btYt9Z0Z9w5YvpId7UqVNx5swZp9V1e3XAYLr5Hjx4EKGhoZgzZw5uueUWPP/88xg9ejSysrKwb98+pKam4v7770doaCguXLiAwMBAvPLKKwgPD4ePjw88PDyQm5trsc3+gqtSbJqlJCQkBElJSdi8ebNFK4Ner0dQUBDCwsJw6tQpAP0vkAKM4xRcXFwwcuRIlJaWIisrC4CxIJZIJOy5oFQqMWTIEHh4eGD58uUA+t95YsJ1vpieYCgUCgBtN6qysjKcOnUKycnJAPpvngD288Wcu7s7xo0bh4CAAHh4eGDAgAFIT0/H+fPn+2W/Wq58MQXUpkqywWBgzxlfX18IhUJcuXIFpaWlmDhxItuy2V/wnSt6vR4KhQIpKSlITk5GRkYGxGLjvCJarRZ+fn6Ij4/H+fPnIRaLb4hzRSKRAABCQkKQmJiIM2fOwMvLi51xTafTITIyEjExMcjNze2XD2vsXUMmAoEAWq0WwcHBKC4uRlNTU7/vHst3vhgMBshkMqSkpMDLywsqlQrTp09HYGAgQkNDMWrUKKSmpuLEiRNsd67+xN75MmjQIKfWdXv9GVlTU4NLly4hOjqaLWSEQiFGjx6NQYMG4ddff8Xly5cxdOhQPPjgg/jrX/+Ke+65h52JwbxZtL+dWAB/pdjUJzIzMxOXL19GVlYWGhoaALR1TVIoFNDpdOzYhr6otLQUeXl5qK6utvi8pqYGJ0+eREZGBsaNG4egoCBs3LiRLYhNFRzTOREeHo5Ro0YhNzcXJ06cANA/n/BYny87duwAAJubFwCcPn0aWq0WKSkp7OdVVVU4fvw4ey71F/auI3NCoZCtBJnOD4VCwbYu9NXriI+9fDGVI3V1dYiIiMDevXvx9NNPo7q6GuHh4WhoaIBYLO53A6DbO1fGjRuHP//5z+z0j0BbxVmhUKClpQU6ne6GOVcAwM3NDWlpaZBKpbh8+TLq6uoAgA2oVCoVGhsb++V4IEfLFolEAnd3dzQ3N7NPifsze+eLeQt3UFAQPDw8LL6rUqlQV1fXp+sufOw96ATA1nVfeOGFHq/r9qqAgavy5+7uDoPBwD4hNzVZubu7Y/LkyWhpaWFnuNHpdCgpKWH7EwNAfn4+WltbER4e3mdPrM5WigFjd4rMzExs2bIFe/bsYb9bUlKCsrIyxMbG9skngM3Nzfj888/x5ptv4uOPP8aiRYvwyy+/sG9VFQqFmDRpEjIzM+Ht7Y309HS0tLRg7dq1FtsxPaEQiUQYOHAgQkNDOfsm9yUdOV82bNhgE0SZ8uT48eMIDg5GWFgYGhsbsXXrVixatAibN2/uk8F3V4NLvV6PoqIilJaWAjCeH2VlZcjNzUVGRoZFt6W+pLP5otfr0dTUBJ1Oh88++ww//vgjbr75Zrz00ku4+eabodVq8fXXXwPoe9dSZ/JELBZbBAgFBQUWXT4vXbqE8+fPY/DgwWxFua/pTL4AxodU8fHxGDJkCI4ePYrs7Gz2uxUVFbh06RIGDRrEBlZ9TVfLFtP/09PTUVNTw5YxfbGcNdeVsgUwtkxdvHjR4m3pZWVluHDhAkaNGnVDlbkikYidIUqv16O4uLjH67q9otRqbm7Gd999h+PHj0MsFkOr1WLcuHEYO3YsNBoNEhMTcfDgQcycOZNtshIKhQgMDERGRgZ27NiBKVOmQKVSYd++fTh8+DCioqIwYMAAZGVlISQkBJGRkc4+zA5rL19MleKMjAwAxsLm119/xdq1a3HnnXey+XTLLbegqKgIGzZswMGDBxEeHo6zZ89CqVQiPj7eyUfZOWvXrkVxcTEeeeQRAMYLcNWqVaipqcGdd94JtVqNtLQ0tu/foEGDkJubiz179mDEiBEICAhg88d0cfn7+2PUqFGoqKjok7MCdfV8MWdq2UtKSkJ+fj6WLVuG6upq3HbbbZg4caIzDq/TuitfGIbBunXrcO7cOSQkJCAwMBD79++HwWBAamqqsw6v07qaLyKRCAqFAoGBgUhKSkJGRgY7y5bpQYWnp6czD7HDuutc0ev1+OOPP3D27FkkJCQgKCgIBw8ehEQiYVvs+pLuyBe1Wo3bb78dJSUlWLFiBfbv38/eiwQCAdv1sS/prvPFFFC7ubkhLi4OW7Zs6dNvwe5qvpjyIz09HUePHsUnn3yCmJgYeHh4YOfOnRCJRBg8eLAzD7FTuuN8EQgEEIlE2L9/P7Kzs3u0ritgekEIu2rVKpw4cQKzZs0C0Fb5S0tLw1133YVz587h008/xdixYzFjxgyLt/ydO3cOH3zwAaZMmYIpU6agsrISBw8exPHjx6HVahEZGYnZs2f3yafo9vLlzjvvhKurK1paWiCVSiEQCNDQ0IDly5fj1KlTeO655xAQEACtVguJRIKGhgbk5uZi3759aGpqQnBwMHvT70sMBgPq6uqwZMkSjBw5ElOnTmXPhTVr1mDnzp1IS0vDzJkz2e+YgoacnBz88MMPCAoKwoIFCyy2a1qnL79BsjvOF71eD5FIhLKyMixatIhtbRg+fDjuvvvuPvlktDvzpbCwENu2bUNpaSkYhkF4eDhmzpzZ564joHvyBTDeBCUSSZ/MA2vdfa5s3bqVPVciIiJu6HNFp9NBLBajtrYWhw8fxqlTp9Da2oqAgIA+eS8CuidfzO85BoMBmzZtwi+//IKXX36Zvcb6mu4qWwBj19i1a9eivr4eDMNgwIABN3SdznQdXb58Gfv37+/Ruq5T7/6myt+BAwcwcuRIDBgwAEKhEHFxcWhsbERWVhY2bNiAW2+9FYmJidi1axcyMjLg4+PDZlpAQAA8PT1RX18Pg8EAb29v3HzzzRg/frzFQM6+pL182blzJ9avX4+ZM2dCJpMBMFZ4VSoV0tPTceHCBfz2229YsGABOwBapVJh8ODBGDRoEHQ6HTsepC+orq5GXV0dNBoN3NzcIJPJ0NTUBH9/fwiFQjYomjhxIsrKynDgwAGkpaUhPDzcYk7ihIQEpKSkYM+ePcjJyUFSUhJ7czet0xeDhe48X0wDfUUiEdzd3REYGIjZs2fDx8fHyUfZcd2dLwaDASEhIbj33nvR2trKDnLta7ozXwD02W4B5q7XuXLfffehubmZ7kULFrADvd3c3Ninqlqttk/di0y6M19M9xyGYSAUCpGeno5hw4b1yRe4dXfZYjAYEBcXh9jYWDQ2NoJhGLi4uDjzEDvlelxHnp6ePV7X7fHaUXV1NQoKClBbWwuhUMhZ+QOAiRMnYsCAAdi5cydKS0sxYcIESCQSdhYb05NOuVyOmpoadnCdqcFELpf3qQK6I/kSHR2NAwcOsG/1Mx9QaKoUnzlzBjk5OTbLhUJhnymgW1tb8c033+Bf//oXPv74Y7z00kv49ddfUVZWBn9/f3Zwsqmbmlwux4gRI6BQKLBx40YAYLscmZ7ipKenw8vLC99//z0A9MmnFMD1PV8EAgFcXFzw9NNP44knnuhTwcL1zBfzxliJRELly7V8MX+RZl/SU+eKTCajc4XjXiQQCPrMvQi4/teQ6aGVu7t7nwoWeuI6EggEUCqVfSpY6KnrqCfruj0WMHSl8rdu3TpEREQgMzMTp0+fxqpVq1BeXo6Ghgbs2rULMpmsz079SJVibnV1dfjkk09QVFSEWbNmYebMmRg7dizWr1+PkpISuLq6oqioCAUFBRbfi4+PR3R0NIqLi5Gfn89+bnqKExoaitTUVAwePBh6vb7PDSrrifMFMM7m0pde1tbT11FfKWeofLFF5wo3Ole4Ub5wo+uIW38+X3qkS1JdXR2++eYb1NbWYtasWWAYBgUFBVi/fj28vLwsKn9hYWHs9+Lj49n5mQsLCzFu3DgwDIPVq1djx44d8PPzQ3FxMcaNG2fxvb6iK/kSHR2NvLw85Ofns4NcrCvFjY2N0Ov1FgN7+4qLFy/i/PnzePDBB9mB2QMHDkR+fj5ycnIwefJk/Pvf/8bx48cRGBgIiUTCdi8aOnQoDh06hKqqKosBQKaLLzMzs08W0HS+cKN84Ub5YovyhBvlCzfKF26UL9z6e770SAuDqfI3Y8YMDBo0CKmpqbjtttsQGRnJVv5KSkrYwRvm02oNHToU9fX17DRj48ePxxNPPIHbb78dCQkJePHFFy1G1fclXc2Xuro6m/maTU1VmZmZ7ECyvnTBmeTl5UEulyMoKMjicx8fH5w/fx4xMTHseATrF5UMGDAAUqkUNTU1ANqaNU3nSF8MFgA6X/hQvnCjfLFFecKN8oUb5Qs3yhdu/T1feqSW3Z2VPwCIjIzEmDFjMH36dJtt9iVUKebn5+cHqVSKpqYmi2NrbGyEWq0GAMycORM6nQ7bt29HRUUFe+xnz55Fc3Mz2w+0rxU6fOh84Ub5wo3yxRblCTfKF26UL9woX7j193zpkYChOyt//QlVivmlpaVh1qxZ8PLyYo+tvr4e+fn5iIiIAAB4eXlh+vTpKC8vx1dffYXjx48jNzcXWVlZ8PX1RWxsrDMPodvR+cKN8oUb5YstyhNulC/cKF+4Ub5w6+/50iNjGNLS0qDRaDgrf4MGDQLQVvnbuHEjvvrqK0yZMgVSqRS7du3ql5U/gPLFHplMxo5dML0joaioCPX19UhISGDXGz16NDQaDVauXInPP/8cIpEIGo0G9957L9zd3Z2U+uuDzhdulC/cKF9sUZ5wo3zhRvnCjfKFW3/Plx4JGKjyx43yxTGmC+/IkSNwcXFBUlISu0yv1yMhIQEDBgzAlStXUF9f3yff6u0IOl+4Ub5wo3yxRXnCjfKFG+ULN8oXbv09X3r8xW1U+eNG+WJfdXU1jh49isTERIhEImi1WhQXF2PNmjWIjo7GhAkT4OvrC19fX2cntUfQ+cKN8oUb5YstyhNulC/cKF+4Ub5w64/54pQ3PVPljxvlC79Lly6hrq4OycnJqK2txbp167B7924EBQVh2LBhkEgkzk5ij6PzhRvlCzfKF1uUJ9woX7hRvnCjfOHW3/LFKQEDVf64Ub7wKy4uhlAoxNmzZ/HTTz9BJBLhkUceQWJiorOT5jR0vnCjfOFG+WKL8oQb5Qs3yhdulC/c+lu+OCVgoMofN8oXfmKxGAaDAfv27cOUKVOQmZnp7CQ5HZ0v3ChfuFG+2KI84Ub5wo3yhRvlC7f+li9OCRio8seN8oWfj48Ppk2bhsmTJ/e5qPx6ofOFG+ULN8oXW5Qn3ChfuFG+cKN84dbf8kXAmCaL7UHHjx9HUVERVf6sUL7wM804QNrQ+cKN8oUb5YstyhNulC/cKF+4Ub5w62/54pSAgSp/3ChfSEfQ+cKN8oUb5YstyhNulC/cKF+4Ub5w62/54pSAgRBCCCGEENI3CJ2dAEIIIYQQQkjvRQEDIYQQQgghhBcFDIQQQgghhBBeFDAQQgghhBBCeFHAQAghhBBCCOFFAQMhhBBCCCGEFwUMhBBCCCGEEF4UMBBCCCGEEEJ4UcBACCGEEEII4UUBAyGEEEIIIYTX/wNqsGEsO6+WbQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAEHCAYAAAADJ8GRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+GUlEQVR4nO3dd3hUVfoH8O/UTDLpvfdGAoSQ0DsKKCAi0hQVUMHGWtay61pXf+vu2sV1V7FRbDRRBKVDKKGGNEp6Qtqk10mmz/39MZmbmcxMmIT0vJ/n4SG5bc6c3Llz3lM5DMMwIIQQQgghhBAzuP2dAEIIIYQQQsjARQEDIYQQQgghxCIKGAghhBBCCCEWUcBACCGEEEIIsYgCBkIIIYQQQohFFDAQQgghhBBCLKKAgRBCCCGEEGIRBQyEEEIIIYQQiyhgIIQQQgghhFhEAQMhxKw1a9aAw+GY/ONyubC3t0dUVBQ2bNiAioqKW3qdmTNnstfWO3HiBLvtzTff7PTYvnbhwgU2DSNGjLB43EsvvcQet3Hjxi69hmHeFxUVdTutWq0WmZmZRtt6Kr/NXbunJCcng8vlYtGiRUbbq6ur8fTTTyMoKAgikQhRUVF4++23IZfLrbpux3t67ty5Jse89dZbRscEBwf3xFvqkqamJhQWFhpt06dn5syZPfpao0ePhq2tLfLy8nr0uoSQoYUCBkJIlzAMg5aWFuTk5OCzzz7D1KlTUV9f39/J6jPjx49HeHg4ACArKwsZGRlmj9u1axcAgMfjYeXKlX2WPr2DBw9izJgx+OCDDwbVtTUaDZ588kkwDIMNGzaw22/cuIHExER8+umnKC4uhkKhQE5ODl5//XU8/PDD3Xqt06dPQ6FQGG07evToLaX/VqjVanz22WcIDw9HUlJSn7zmU089BblcjieeeKJPXo8QMjhRwEAIuamzZ8+ipKQEJSUluHHjBi5cuIDJkycDAPLz8/G///2vT9Kxc+dONh39adWqVezP27dvN9l/6dIltoZ4zpw58PT07LO0AbrC9R133GG2BaAreWju2M6u3RN2796N9PR0hIWFYc6cOez29evXo7i4GDY2Nti0aROuXbuGe++9FwDw448/Ii0trcuvJZPJcObMGfb31tZWnDt37pbfQ3d9//332LBhA6qrq/vsNR944AE4OjriyJEjOHjwYJ+9LiFkcKGAgRByU97e3vD394e/vz8CAwMxbtw4fPjhh+z+8+fP90k6PDw82HT0pwceeID92VzAoG9d6HhsX2EYxuK+ruShuWM7u3ZPeP/99wEAy5YtY7tC5eXl4dChQwB0gcO6deswYsQIvPvuu1i9ejVefvnlLr+OvqvRkSNH2G2nTp2CUqkEAISEhNzK2+iW3s5bc8RiMebPnw8A+Oijj/r89QkhgwMFDISQbuHz+ezPdnZ2RvuUSiXef/99jB07Fg4ODnBwcMCkSZPwzTff3FKh6Gb97/ft24dt27YhLi4OIpEIgYGBeOWVV6BSqYyu09LSgpdeegmBgYEQiURITEzE/v378eabb1o1RiI8PBzjx48HoGthuXTpktF+fcAgFouxePFiALo+/19++SUmT54MZ2dniMVixMfH44MPPmALqTdTX1+PF198EZGRkRCLxRCLxYiIiMCf//xnNDQ0AAA2b95sVNjdsmULOBwONm/ebDEPLel4bGfXHjduHDgcDkQiEZqamoyu8/LLL7PX6awGv7CwEBcvXgQANt8AGHXPmTRpEgCgtrYWfn5+2Lx5M9555x2MGTPmpu+n43sDgMOHD7Pb9N2RQkJCEBgYaPHcXbt24fbbb4e7uztEIhFiYmLw+uuvo7m52eg4w/uptrYWr7/+OoKCgmBjY4NRo0Zh27Zt7LFr1qzB2rVr2d/Xrl1rcQxLeno65s6dC7FYDA8PDzz66KOoqakxOubs2bO466674OnpCT6fD0dHR0yYMAHffvutyfX0eX3w4EHcuHHD4vsmhAxjDCGEmLF69WoGAAOAKSwsZLfL5XImLy+PmTNnDrv/iy++YPc3NzczY8eOZfd1/HfvvfcyarWaPX7GjBnsPr3jx4+z29544w2rj502bZrZ13zttdfY45VKJTNlyhSTY7hcLjNu3DiT61uyceNG9tgXXniB3X758mV2+6pVqxiGYRi1Ws3ceeedFvNkypQpjFQq7TTv1Wo1M378eIvXmD17NsMwDPPtt9+a3f/tt9/ecn53du3//ve/7O9btmwxyquwsDAGABMVFdVpnuqvYWNjw6hUKnb7iy++yF77gw8+YEaPHs0AYIRCIXP//fczdXV1N/17dczXzZs3s393/fn6+3bt2rXsew8KCjK6xvr16y3+DaKjo5mKigr22DfeeOOm9+aRI0dM0mb4T//31//u5+fHiMVik+Pmzp3Lvu6FCxcYoVBoMZ0ffPCB0Xu6ceMGu+/LL7+0Ki8JIcMLtTAQQm4qJCSErSkViUQIDw9na2bvuOMOPPLII+yxL7zwAi5fvgwAWLlyJVJSUpCcnMz2R9+9ezfee++9Xknn6dOn8c477yAnJweffPIJu92wVvXbb79l+62PHTsWJ0+exOXLl7F48WK2dtsaK1asYFtZduzYwbac7Ny5kz1GP9bhvffewx9//AEAuO2225CcnIyUlBTcf//9AIAzZ87g+eef7/T1Tp48idTUVADAa6+9hry8PFy8eBFjx44FABw/fhxSqRTLly/H2bNn2fOWLVuGkpISLF++3Or3Zkln177vvvsgEokAAD/99BN7TGpqKvLz8wEAq1ev7vT6p0+fBgCMGDHCqAWrsbGR/fnFF19kB5orlUr88MMPuP32200GL9/MrFmzAOhafo4dO4a6ujp2HIR+X0c//fQTNm3aBAAYM2YMjh49ioyMDDz33HMAdIPgLb3HK1euYMeOHcjJycGDDz7Ibte3/Hz00UdG3fw+/PBDlJSUICAgwOg6ZWVlWLx4Ma5cuYLjx4/D1dUVAHDo0CF2rMnWrVuhVCohFotx4MABFBQU4PTp04iNjQWfz8fOnTuh1WrZawYGBsLZ2RmArsWOEEJM9HfEQggZmCzVeOr/zZkzh9myZQuj0WjYc5qamhiRSMQAYEaOHGnUkiCVShlvb28GAOPr68tu78kWhoULFxq9h9jYWAYAw+fz2W3z589nj8/KymK3y2QyxsfHx+oWBoZhjFoNzpw5wzAMw0RERDAAGE9PT7aW3N/fnwHAeHh4MM3Nzez5Go2GiYuLY2vL9fsste4olUrmypUrjFarZRiGYQoLC5klS5awxxYXF7Pb9dtWr15tlOZbze/Orn3//fczABiBQMDU1tYyDMMwL7/8MluTX1JS0ml+zpw5kwHAzJ8/32j7unXr2Nd0c3NjkpOTmfr6eubRRx9lt2/atIlhGIZpaWlhSkpKjP5JJBKTfGUYhgkJCWEAMI899hiza9cuo3w018Kgb5kSCoVsXustXLiQPT87O5thGOMWhvfff589trq6mt1+++23s9sNW3D0LUJ6+u1OTk6MQqFgtz/99NPsvuTkZKPX5fF4zEsvvcScPHmSkclkTENDg9G5hkaMGMEAYKZPn97p34gQMjxRCwMh5KaSk5Nx5coVvP7662x/9tzcXIwdOxZcbvtjJCcnh50Tf9asWeDxeOw+sVjM9j8vLy836XPdE2JiYox+9/DwAKCbrlKvoKAAAODi4oKoqCh2u0gkwrhx47r0eh1nS0pPT0dubi6A9haI2tpalJaWAgAmTpwIe3t79hwul4vZs2cD0NWWZ2Vldfp6dXV1+P3337FgwQJ4enoiJCQEP//8M7tfo9F0Kf09Td/SpFKpsHv3bgDtLS6zZ8++6UDrqqoqAICjo6PRdsM8W7duHSZNmgRnZ2d8/PHHbEuEvsVrx44dCAgIMPo3ceJEs6+nH8dw5MgRdvxCaGioSa2+Xnp6OgAgKirK5BjDGZ3MTbVreG+6u7uzn6OO42tuJioqCkKhkP3dycmJ/Vk/Fubpp59GfHw8NBoN3n33XUyfPh1OTk5YsGABPv30U5MxJkB7nuv/BoQQYogCBkLITfn4+CA2NhZ///vf8eqrrwIAioqKMHfuXKOF2wy7kZjDGAx47o3F12xtbY1+NwxY9PSFLcO0dNfixYshFosB6ArGhjMm6YOJnsqTq1evYsSIEXjppZdw9epVrFq1Cj/99NOAmj9/1qxZ7KDo7du3Iy0tjV0QbM2aNVZfxzAIBXSFeD3DKWrFYjHc3d0BgB303RX6gCE/P58NbDpbGK2zv+XN/o4d782O79FanV1HnwZXV1dcvHgRe/fuxbp16xAREQGlUokzZ87ghRdeQGJiosX8EggE3UoXIWRoo4CBENIlr7/+OhITEwEAEokEjz/+OLsvNDQUNjY2AHR96g37Sbe0tLAz5Pj7+8PNza0PU91OX/hsaGgwqtFvbW3FhQsXunQtw1mQJBIJu6JzeHg4JkyYAEBXA+zj4wNAN/2sVCplz9dqtTh+/DgAwMbGBtHR0RZf691332UXyDt37hw++ugjrFixwmzh1HBbTwRG1l6bw+GwgcGJEyfwn//8BwDg4OCAe+6556bX1gcDHWcbmjJlCvuzfnwMoFtHoba2FgDY1os1a9aAYRijf5ZWyzYcq6Bv8bI0fgEAu7J3dnY222qkZzg9a1dnbNLrqb9bTk4Ofv/9d7S0tGDTpk3IyclBdXU1/vKXvwDQtQ7+/vvvRufo7y19qxwhhBiigIEQ0iV8Ph+bN29ma+p//fVXtnbWwcEBy5YtA6Ab5Pnggw8iNTUV586dw7333su2RvzpT3/qn8QDuO+++9ifV61aheTkZFy6dAkrVqwwai2xlmG3pJaWFpNtQHtXnaqqKixZsgTnzp1Damoq1qxZw3Zzefjhh9nWCnMMC9FbtmxBbm4uvvzyS3bQLNDe9Uo/+BjQFQ6vX7/eY4vd3ezaa9asAZfLhUajwddffw1ANzi649S75oSFhQEAiouLjbbHx8ezg7t//PFHfPrpp7h+/Tr+9Kc/sV16lixZ0uX3EhAQYNR6AXTewqD/OyqVStx99904fvw4rly5ghdffBH79u0DANx5553s++gqw7xNS0tDWloae091xZNPPolFixZh1apV+Oijj5Cbm4vy8nKUlZWxxxi2JDAMA4lEAgCIjY3tVtoJIUNcv4ycIIQMeJYG3uq988477H5fX1+msbGRYRiGqaurY0aOHGlxsHRvTqtqeCzDMMxtt91mcrxGo2GmT59uki6hUMiEhoZ2adAzwzCMSqViPD09ja6Vm5trdIxCoWBmz55tMU+mTJnCtLS0dJr33333XaeD0AEwp06dYt+j4QBuAMy7777bI/nd2bX15s6da7Q/KSnJqrzUT3Vqa2vLyOVyo31paWmMs7Oz2fe9cuVKq67fcdAzwzDMww8/zG4LCwszee+Gg561Wi3zwAMPWMz/zqZVPX78uFFaeDweA4CZMWMGu+369esm17xw4QLDMO2Dng2Pt/QaGRkZjLu7u8V0xsfHG+Vvfn4+u++HH36wKi8JIcMLtTAQQrrlpZdeYgcJl5eX429/+xsA3WDiS5cu4b333kNCQgLs7e1hZ2eHCRMm4KuvvsLOnTvNji3oK1wuF/v378ezzz4Lb29viEQiTJo0CUeOHEF8fDwAsN2qrMHn87FixQr29/HjxyM8PNzoGKFQiMOHD2PTpk2YOnUqnJycIBKJEBcXh/fffx/Hjh27aQ38qlWrsGnTJsTExEAkEsHPzw/33HMPjhw5wnZl2bt3L/sev/jiC4wePRoikQg+Pj7stJm3ypprP/zww+zPISEhmDZtmlXXnj17NjgcDmQyGZKTk432xcXF4eLFi1i5ciXc3NwgFAoRGxuLjz76CN9//323349hF6TOWhcAXZehbdu2YceOHZgzZw5cXV0hFAoRFRWF1157DRcuXICXl1e30xIdHY23334bISEhsLGxQURERLeuM2rUKFy8eBEbNmxAREQE7Ozs2AXm/va3v+HEiRNG97i+m5dQKDQavE0IIXochumHtegJIaSfpKWloaqqCgEBAQgKCjIqqM+bNw+HDh2Ct7c320WDdN3OnTvZdR/eeOMNvPnmm1afO3fuXBw+fBh/+9vf8I9//KOXUkgMPfHEE/j8889x7733squUE0KIIWphIIQMK0ePHsW8efMQExODmTNnIiMjA3l5edi8eTO7aFVXp1clQFNTEyQSCc6ePYuXXnoJgG6Wqq7MjgSAHUSvHxNAepdarcaePXsAwGgCA0IIMUQtDISQYaWiogKjRo2yuA6EQCBAUlISu2YEsc6RI0dMurM8+eST+Oyzz7p0Ha1Wi3HjxuHy5cs4f/48xo8f35PJJB3s2rULy5Ytw5133mkycxIhhOhRCwMhZFjx9vbG+fPnsXbtWravOJ/Ph7e3N5YsWYLTp09TsNANoaGh8PLygo2NDUJDQ/Hqq6/ik08+6fJ1uFwuPv74YwDARx991MOpJB19+OGHEAgElNeEkE5RCwMhhBBCCCHEImphIIQQQgghhFhEAQMhhBBCCCHEIgoYCCGEEEIIIRZRwEAIIYQQQgixiAIGQgghhBBCiEUUMBBCCCGEEEIsooCBEEIIIYQQYhEFDIQQQgghhBCLKGAghBBCCCGEWEQBAyGEEEIIIcQiChgIIYQQQgghFlHAQAghhBBCCLGIAgZCCCGEEEKIRRQwEEIIIYQQQiyigIEQQgghhBBiEQUMhBBCCCGEEIsoYCCEEEIIIYRYRAEDIYQQQgghxCIKGAghhBBCCCEWUcBACCGEEEIIsYgCBkIIIYQQQohFFDAQQgghhBBCLOL3dwIIIaQn/fLLL0hPT7e4/5lnnoGzs7PJ9qKiImzZssVoG4/Hg52dHYKCgjB9+nR4eHj0dHJN6NP/xhtvsNvOnTuHCxcuoLm5Ge7u7pg9ezYiIiLY/QzD4OzZs7h06RKamprg4uKCcePGYfz48T2WrqtXryI5ORk1NTUQiUQIDQ3FbbfdBnt7e/aYkpISHDt2DKWlpRAKhYiMjDQ5xpLa2lr85z//ga2tLf785z+Dz++7r6cTJ04gKSnJ7L0hkUjw1Vdf4U9/+pPJvqysLJw8eRI1NTWwt7fH6NGjMW3aNPB4vD5LOyGE9AUKGAghQ8r06dORmJhotE0mk2Hnzp0IDg6Gk5NTp+fPnz8fPj4+AACVSoX6+nqcOXMGX375JR566CH4+/v3WtoBgMPhGP1+9uxZHD58GDNmzICvry9SU1Px448/Ys2aNQgMDAQAHDx4EOfPn0dCQgJGjBiBuro6HD9+HPX19Zg3b94tp+nKlSvYvXs3EhISMHv2bEilUhw/fhxbt27F+vXrwefzUVZWhi1btsDd3R2LFy+GQCBAcnIyvv76azz22GMQiUSdvkZqairc3d1RV1eHa9euYfTo0bec7ltVVVWFH374AVqt1mRffn4+tm/fjpEjR+K2225DdXU1jh49itbWVsyfP78fUksIIb2HuiQRQoYUV1dX+Pv7G/1LTU2Fra0tlixZYlIg78jDw4M9LyQkBGPHjsW6detgb2+PX375xWzhsSfZ29vDwcEBgC5gOXnyJCZNmoQZM2YgIiICy5Ytg5+fH5KSkgAAra2tuHDhAuLj47Fw4UKEhYVh3LhxWLx4Mc6fP4+amppbTtOpU6cQERHBXj8uLg5Lly5FdXU1cnJy2GNsbGywevVqxMbGIjIyEqtWrYJWq8WZM2c6vb5Wq0VGRgZiY2MREhKClJSUW05zVzg4OIDD4bAtIRqNBsnJyfjqq6+g0WjMnpOWlgYnJyfcc889CAsLw8SJEzFhwgRcvnzZ4jmEEDJYUQsDIWRIy83NxfXr17Fs2bKb1nJbIhKJMHnyZOzfvx9FRUUIDQ0FADQ2NuLIkSPIy8uDWq1GQEAA5syZw7ZQAIBCocDRo0eRlZUFuVwODw8PzJgxA5GRkWZfy9PTE15eXgCAsrIyyOVyjBgxgt3P4XAQHR2No0ePQqVSoba2FgzDICoqyug6wcHBYBgGeXl5cHd379b7BnTdnUJDQxEUFGS0XX/Nuro6AEB1dTUCAwNha2vLHiMQCODv74/c3FzcdtttFl8jPz8fzc3NiIyMhKurK/bs2YPq6mqjLmBpaWn49ddfTboNffzxxwgODsbixYsB6PL70KFDyMrKgkqlQmRkJPz9/XHw4EGjbl6GPD094ebmxnaDys3NRVJSEqZOnQp7e3v89ttvJueo1WoIhUJwue31bnZ2dtBoNFAqlUb5QAghgx21MBBChiyGYXDo0CEEBQUhJibmlq4VFhYGACguLgagq9n/+uuvUV5ejvnz5+Pee+8FwzDYvHkzqqurAehqzrdt24bMzExMnToVK1euhLu7O7Zv344bN26YfZ1Ro0Zh1apVAMBex83NzegYV1dXMAyD+vp62NnZAQAaGhqMjqmvrzf6v7s4HA7mzZuH6Ohoo+1ZWVkAdIVtQFdYbmxsNDm/rq7upmlITU2Fh4cHfH19MWLECAiFQly6dKlb6f3pp59w7do1zJw5E0uXLoVSqcSRI0c6PScgIABPPfUU+7uvry+effZZTJ8+3SggMDRu3DjU1tYiOTkZcrkcpaWlOHfuHCIiIihYIIQMORQwEEKGrJycHNTU1GD69Om3fC19dxWpVApAN7ZAJpPhwQcfxKhRoxAdHY0HHngAYrEYJ06cAADk5eWhrKwMd999N8aPH4/Q0FAsXrwYvr6+KCwsvOlrKhQKAICNjY3Rdv3vCoUCbm5uCAwMxIkTJ3D9+nXI5XJIJBLs3bsXPB4PSqXylt97R3V1dTh8+DC8vb3Zwdfx8fGQSCQ4cOAAmpubIZVKcfjwYVRXV0OlUlm8VmtrK3JycjBmzBgAulaJ2NhYZGRkdHqeOYWFhSgqKsKiRYswbtw4REZG4r777oOLi0uXruPo6HjTQn9ISAimTJmCw4cP49///je+/vpriMViLFmypEuvRQghgwF1SSKEDFkXLlyAt7c324WoJ+jHQBQWFsLb2xuOjo7suAYOh4Pw8HBkZGQA0LVGcLlco+5CHA4HjzzyiFWvxTCMVWlZtmwZ9u3bhx07dgDQdaG6/fbbkZSUBIFAYPHaHa9vqTbdUE1NDbZt2wYul4tly5axaRg7diwUCgWOHz+O8+fPAwBiYmKQkJCAtLQ0i9fLyMiAVqtFZGQk5HI5AGDEiBFITU3FlStXEB8ff9M06RUWFoLL5Rq1hnA4HMTGxrJjPnrK/v37kZqaimnTpiE0NBQNDQ04ceIEvv/+ezz00EMW850QQgYjChgIIUOSTCZDUVFRp33nu6KpqQmArvZZf/26ujq8/fbbZo9XqVRobW2FnZ3dTQdaW2LYkmBY492x5cHe3h4rV66EXC5Hc3MzXFxcwOVysX//fos15UlJSSaFaEt9/PWKioqwfft2CIVCrF69Gq6urkb7J02ahPHjx6O+vh62trYQi8XYs2dPp7X1aWlpYBgGn332mcm+lJSULgUMLS0tZvPbmmldu6KpqQkpKSmYNm0aZs+ezW738/PDf//7X6SmpvbolLaEENLfKGAghAxJeXl50Gq1tzx2Qa+goAAA2MG/IpEIQUFBmDt3rtnjeTweRCIRWltbwTCMUSFWIpEAgNHgaHMMBxb7+fmx2+vq6sDj8diuNleuXIGHhwe8vLzYgd3l5eVgGMbiayQkJFgceG1OZmYmfvnlF7i7u2PVqlVs4KRXXl6OxsZGjBgxwmiQtUQisZgGiUSCyspKzJw502RQ9fXr13HhwgVUVFTA29ub3d5xlirDLleOjo5m87ulpcXq92kN/ViNgIAAo+0eHh6wtbVFVVVVj74eIYT0NxrDQAgZkkpLS+Ho6Gh2kbauUigUOHv2LLy8vNhCYlBQEGpra+Hm5gZfX1/2X3p6Oi5fvgwul4ugoCBotVrk5eWx12IYBr/++itOnTp109cNCAiAQCDAtWvXjM6/fv06goKC2Fl9Tp48idOnTxude+7cOdjY2CA4ONjstR0cHIzS7evrazEdubm52LNnDwICAvDwww+bBAuArvXh559/ZrsVAbrZj6qrq01mcNJLTU0Fn8/HxIkTERwcbPRv8uTJ4HA47OBnfWuKvqUH0HWPkslk7O/BwcHQarXIzs42yi/9AO2e4urqCg6Hww6A75iero6ZIISQgY5aGAghQ1JVVVW3Vmaurq5mC+JqtRo1NTU4f/48WltbjfrsT5o0CRkZGdi6dSsmT54MW1tbXL16FZcvX2YXS4uIiIC/vz9++eUXzJ49Gy4uLsjIyEBNTQ3uuuuum6ZFIBBg8uTJSEpKAo/HQ0BAANLS0iCRSLB69Wr2uAkTJmDfvn3w8PBAQEAArly5gszMTCxYsKDbU8nqqdVq7N27FzY2Npg2bRo7c5Oeo6MjHB0dMXr0aJw+fRo7d+7E5MmT0djYiEOHDiEgIMDsImxqtRqZmZmIiIgwGdQNAE5OTggODkZmZibmzJmDkJAQ8Pl8HDp0CLNmzYJCocCJEyeMujsFBQUhNDQUe/fuhVQqhbOzM1JTU1FZWXlLedCRWCzGxIkTkZycDAAIDQ1FY2MjkpKS4OTkhISEhB59PUII6W8UMBBChiSpVMquZ9AVv//+O/szl8uFg4MDQkJCMG3aNKM++w4ODnj44Ydx9OhR7Nu3D2q1Gm5ubli0aBHb757L5WLVqlU4cuQIjh8/DqVSCW9vbzzwwANGXYw6M2PGDHC5XKSkpODs2bPw8PDAypUr2VWeAV33IpVKhQsXLuD06dNwc3PDkiVLMGrUqC6//45KSkrYmaG+++47s+mbOXMm7O3t8cADD+DQoUPYsWMHRCIRxowZg1mzZpkdTK1fl2LkyJEWX3v06NEoLCxEZmYmEhMTsWLFChw5cgTbt2+Hs7MzZsyYgfT0dKNzli5dikOHDuHo0aPQaDSIjo5GYmKiyXG3as6cOXB0dMSlS5dw9uxZ2NvbIywsDLNnz77lII0QQgYaDnOzaTgIIYSQQaChoQGlpaWIiooymqVo586dqKurw2OPPdaPqSOEkMGLWhgIIYQMCRwOB7/88guio6MRHx8PLpeLvLw8XLt2DXfffXd/J48QQgYtamEghBAyZBQWFuLkyZOQSCTQarXw8PDAxIkTe6R7FiGEDFcUMBBCCCGEEEIsomlVCSGEEEIIIRZRwEAIIYQQQgixiAIGQgghhBBCiEUUMBBCCCGEEEIsooCBEEIIIYQQYhEFDIQQQgghhBCLKGAghBBCCCGEWEQBAyGEEEIIIcQiChgIIYQQQgghFlHAQAghhBBCCLGIAgZCCCGEEEKIRRQwEEIIIYQQQiyigIEQQgghhBBiEQUMhBBCCCGEEIsoYCCEEEIIIYRYRAEDIYQQQgghxCIKGAghhBBCCCEWUcBACCGEEEIIsYgCBkIIIYQQQohFFDAQQgghhBBCLKKAgRBCCCGEEGIRBQz9pK6urr+TMChQPlmH8sl6lFfWoXyyHuWVdSifrEd5ZR3KJ+v0RD5RwNBPlEplfydhUKB8sg7lk/Uor6xD+WQ9yivrUD5Zj/LKOpRP1umJfKKAgRBCCCGEEGIRBQyEEEIIIYQQi/j9nQBCCCGEEEKGoqK6VpwuqIOXgw1uj3QHh8Pp7yR1CwUMhBBCCCGE9IKndmWgSqobQ1BUF4R1k4L6OUXdQwEDIYQQQgghPYhhGHyXUsoGCwCQXSXtxxTdGgoYCCGEEEII6SaGYXCmsA5NcjXqZSo0ydU4lV+L3JoWo+OUGm0/pfDWUcBACCGEEEJINx3LrcFf9123uP/eOB/sTpdARQEDIYQQQgghw0uTXMUGC4EutghysYWXgw2Uai2EfC7Wjg/E1Ypm7E6XQKlh+jm13UcBAyGEEEIIIVZiGAZvHMjGqYJaSBUadvvfbo9AQoCzyfG51bquSdTCQAghhBBCyDBwKLsaf1yvMtke5+to9ngBXzeVqlJNAQMhhBBCCCFD3uHsavbn/esmwN1eCG4n6ysIebp1kmnQMyGEEEIIIcNASYMMAPB/86Ph6WBz0+PbAwYaw0AIIYQQQsigtym5CGeL6hHkaou/3BYBWwGP3adlGJQ1yAEAsd4OVl1PHzDQGAZCCCGEEEIGOY2WwVfnisEAuFLRDLWWwfQwN90aC60qyFQaKDRa8LgceDuKrLomO4aBAgZCTB3KqsKlkgYkBDhjbpQHOJ307yOEEEII6W8KtRaGHYcOZlXjYFa1yXH+TiLwudaVa9gWBjV1SSLEiFKtxRsHsqHWMtiTWYGvzt1ArLcDHpscDB8rI3LSjmEYHMmpgb0NDxHuYmgZWNVvkhBCCCHWM2wFEPI4UGoYBDrbItTNDnUyFWqkCoz0ccTCWC+rrykwGPTMMMygrEClgIH0CpVWC7W2PZIuqpOhqE4GX0cR1k8O7r+EDVJXK5rxt/3Gq0g+MSUYD08I7KcUEUIIIUOPXK1bV0HA4+Dkn6aCy8EtF/CFPN35DAC1loGAN/gCBm5/J4AMTVqDbnrbVsXDSaSLTaVKjYUzSGeqpUqTbZmSpn5ICSGEEDJ0KdrWShDyuOBxOT3SGqDvkgQM3nEMFDCQXqFh2lsXIjzssXKsHwBArqKAoTv0NR5j/Bzxz4UjAABShbo/k0QIIYQMOQfbFmSz4fdcEVlocC3VIJ1alQIG0is0Bt2RuBxAxNdNSSYfxKsc9hctw0Cu0uWbo0gABxtda01aWROS8mpQ16rEZxcqsfdKRX8mkxBCCBmUNFoGVyVNOJhVhS/PFQMAxELeTc6yHpfDAY87uFd7pjEMpFdo21oY9H3/RAJdbPrH9Sq8dWc0e5xKo0VZoxwBzrbsh4kATXIVDmZV4/drlShpkMHTXjfA2ZbPRZCrLXvcC3uvwUnER6NcjVPFUiwa6Q0AuFbRjLyaFtwV6zUoB1cRQgghfeU/pwrxXUqp0baP7hnZo68h5HEg0zKDtksSBQykV2jYgEFXWHW1FbD7qqUKqLUMXGwF+NPPmUgra8LsCHf8+66YfknrQLTxZCF+NWgxaJTruh/ZCXnwdhDh82Wj8fjODKN9LUoNCmpbEOomxuofUgEAPo42GBfo0sepJ4SQgU2qUMNWwMPVimZImuSYFuoGux6sUSaDw8Xiemy7VIqzRfVG29+6MwpBLnY9+lpCHhcylXbQdkmigIH0Cv2gZ15bwDAtzI3dd7G4AW8cyDY6/kxhHf53phCzIzwQ6SEetrXiZY0yvLT3GnKqW0z22fC4WDrGFwCQEOCMHx9MQHF9K+RtU9gCwIotKXgo0Z89J6tSSgEDIYQYyK6SYs0PqRDwOJC1dfdcPS4AG6aF9HPKSF/bfKEEF4ob2N+fnBKMVQn+RmMOeorh1KqDUbcChuzsbOzZswdlZWUQi8WYPHkyFixYAB7PfHSu0Whw/PhxnD59GrW1tXB0dERcXBwWLVoEkah9Tv6amhrs3LkTOTk5AIBRo0Zh6dKlcHR07E4yST9iuyS1feYEPC4CnW1R3CAzCRYA3awE35wvwTfnS/DoxEA8NgymXv04qQAZ5Y1gGN1UawwDXKtstnj8jjWJ8HVq/7yEe4gR7iEGAGTcqMLu67oakq2X2ptVN54qhEKjxdI4XzgbtPIQQshwlV0lhVrLGE39nVdjWklDhrb91yqNgoVIDzFWxPv1SrAAtA98/vfRPFQ0ydGq0mBikAv+b8EIqxeA609dDhgKCwuxceNGxMXFYeHChSgtLcXevXshk8mwYsUKs+f88ssvOHr0KO644w5ERESgoqICv/32GwoKCvDSSy+By+VCJpPhww8/hK2tLR566CHI5XLs2bMHn376KV5++WVwuTQ+ezDp2CUJAMQ2pgHlVyvi0CBT4UpFMzZfKAEApJcP/elCq6UKfN+hv6Shf98Vg9oWJVJKGqBhGCwf42sULHS0Jt4DKq4Qe69Wmuz7IvkGkgvr8M198T2SdkIIGcxa26b3drUT4OEJgXj/eD4kTfJ+ThXpa/uutnf7PfzEpF6vVNOvxWA4JfrR3BoEJhfhyakDv3WrywHD3r174ePjg3Xr1oHD4WDkyJHg8/nYvXs35s2bB2dnZ6PjlUoljh49ijlz5mDRokUAgBEjRsDe3h5fffUVcnJyEB0djaSkJDQ2NuIvf/kLnJycAAB+fn74xz/+gcuXLyMxMfHW3y3pMx27JAFAmLsY1yul7O8fLY5FnJ/ubz0j3B3xfk54Zs8VXCxuwJ4MCe4Z7dOnae5LzW1TooqFPPz9jiiAw4Fao0V5kxxjfJ0wylfXqrasrQuSNZ6dEYYgVzssGukNZ1sB0ssb8d6xfGRXSVFcL+uV90EIIYMJwzD44EQ+AGB6mBsmBOm6bFY0KQbtCryke/Td0d6YF9knLfB2gvYit4DHYccyfHuhZOgFDCqVCjk5OZg/f77RhyohIQE7d+7E1atXMWXKFKNzWlpaMHXqVCQkJBht9/bWzebS0NAAALh69SrCwsLYYAEAAgMD4enpiczMTAoYBhl9C4PhzEevzInE0jhfeNoL4dE2648hH8f2GvSNpwqGdMDQotDVcDmJ+JgR7t4j13QQ8fHQuAD29zhfJ3x8z0jc+cU5NMrVOJRVhZnh7r3W3EoIId2RV9MCMGC7WPamrKr2SitHGz68HXTfRa0qDQpqWxHm3vtpIAODfl0oTwfT8khveHJqMH7JlMBdbIM14wPA43Lw8r7riPcbHN3uuxQw1NTUQK1Ww8vLy2i7i4sLBAIBJBKJyTkuLi64//77TbanpaUB0LUiAIBEIsHYsWNNjvP09DR7XdI/5CoNsquliPFyYAfwmNM+hqE9YOBzOYj1drB4ToibHV6cFYb3judDqtDgk6QCuPFVWOTsBkeRcfSv1jJQqDWoaVEiq1KKCUEug6qPfmvbg0os7N15B5xEfLYm45XfswAAz88MYxfSI4SQ/pRf04L7tqYAAF6fF4m7Yr175LoNMhXeOpiN0kY5vlk5BvZt69eUNLS3ti4e5QORgAcOdOPIvjlfjH8sGNEjr08GPlnbegi2/L6ZHWtCkAvboqX3v2Wj++S1e0KXSisyme6DZjhQWU8kEkEut64PYH5+Pg4ePIhRo0YhICCAvba569rY2KC6urorySS96KXfrrHTj4mFPPC5HEwLc8MrcyLZQTvF9TJcLmkEAPC62Lq7bIwvPk++gWaFmp0TeU92Ex5I9MfsCHeklTVi48lClDfJjQaszYvywP8Nogd9i6J9mtTeJOBx8dad0Xh533V22wcn8uFhL8S4QGdcq2iGfoa3OF9H9kuVEEL6QqlBAf6D4/mYF+V5S62gao0W63ekI1PSPoFEpqQJk4Jd215PV05ZGOuFABfdmjYjfRyQKWmGdnDOdkm6QaXRorxRdy/YCmg6XWt0qXTAMJ1/mqzp+5ednY3//ve/cHd3x5o1a6y+dnfV1dVBqVT2yrVvhUKhQEXF4FuZ93pF+2CdlraBY/uuVuKPa5XwcRBCo2UgkarYY6qkyi6/z79N88alshYcL2pCnUyD4gYZ3jmSi38eyYWluyS3qmlQ5Wd5TVtAxah7JN2d3U8jHYHv7w3Dp+crcK5UNxPIXw0CCL0x3nZ4e7a/yfahZrB+9voa5ZP1KK+sYy6fKmuMv1Pe+SMTD8S5Y39OA5oVGjwy1sOqssXP1+two0EJhVqLTInUaN/TP1/B27P9oGWAL5LLAADOvPZn7+xAO2RKmtEgbR0wf0e6p6zT3XwqaVSwP/MVjaiosDxD4VDQWT7phwjcTJcCBltbW/aFO5LL5WZbCAwlJyfj+++/h4+PD55++mnY29uz++zs7My2UMjlcvZ1u8PV1bXb5/amiooKq/9IA4lKqxss9p97R8HDXoh/H83D5dJGaBigtMl8YNbV9+ntDdw+GnhOrcUDWy+gqEF3XcNg4eEJgVg7PgBXJM14YlcG5Jquv05/4pdrAFTC1UHcI+m+2f3kDeDTID+czK/F879eNdrnJhaitkWJihbNoMrD7hqsn72+RvlkPcor65jLJ1ENALQXZPbnNmJ/biP7+6/ZDVg9LgBcjm5yDHPdWm/Ut+Lb1JxOX/u1Y2VGv8cGesLb2wMA4NPEA1CJS+UtuNrEw22RHl17Y72A7inrdDef6tAM4AZc7QQI9rd+cpHBqifupy4FDB4eHuByuaiqqjLaXl9fD5VKBR8fy4NU9+7di/379yMmJgaPPfaYSXDh5eVltutRdXU1wsLCupJM0ks0WoZtVYjwEMPVTogvlsdBrtIgt7oFSo0WKo0Wng42+OeRXKSV3dr0qDZ8LjbeGQQPTy80yFTYmS7BN+eLAQBj/BwhEvDYwUr61Y4Hi/YxDH3bFDo9zA1frxyDR35KY7f9b+loLN9yiZ1qkBBC+oqirR/5GD9HzAhzxycnC0yO2XJRN+X2t21Tb98R7Ql/ZxFsBTxMDXVFU9vz39lWgPsT/MCBrr94hIc9Pjieh9TSRnA4HHA4ugUwo73sMS20fTFRw+fwX/ddx3/u5Zv0NSdDg0ylwY26VpwprAMAOFA3XKt1KacEAgEiIyORmpqKefPmsWsjpKSkgMvlIjo62ux5Bw4cwP79+zFp0iQ8+OCDZhd4i4mJwYEDB9DU1MQu1FZcXIyqqircddddXX1fpBcYFijtDQbrigQ8dhpQvVE+jkgra4K9mbUXuoLD4YDP48Ld3gaPTw5CWaMMkiYF4nx1s2k52+rS0aLUQKnWDpoZgFoMplXta6N9HbF6XAC2XSrBa3Mj2XEUTQo1/nkkFyN9HHps4CEhhFgiU2mwI01X8+/jKMIDif5YGueD0gY5DmVXsQFCRwey2istD2ZVYX6MV9s1bLB2fKDRsX+5LeKm6Yjzc8KUEFe2ELlhdya+WhnHfs+QwUel0aJaqmTXL2qQqfDesTwcyjaumK6WDrwu6wNVl0OrBQsW4MMPP8QXX3yBqVOnoqysDHv37sWMGTPg6uoKlUqFkpISuLi4wMXFBZWVlfj111/h7e2NadOm4caNG0bX8/DwgIODA2bMmIHjx4/jo48+wsKFC6FSqbBnzx4EBASYTMlK+odUqSvkCnmcmxbMV48LgJYBpob0XJcwDoeD/5tvPLDZ3oYPHgfQMECjXGV2utaBRKXRYle6BFfa+kv29qBnSzZMC8GjEwMhEvDQqtSAywG0DPBzhgS/ZEowK9ydBkATQnrV7nQJiup0g571lVAiAa9tFfsQPDoxCCmlDRjp7QiVVotvzulamLOrpShpkKO2RYmc6hbkJOlaJbpbW2wr4OHje0ZiV3o5/n00DwCQXFhHAcMg9vTPV3CppAGudgIEudjhWkUzFBqtyXFRnjSNrrW6/OmKjIzEE088gd9++w2ff/45HBwccMcdd2DhwoUAgMbGRvz73//GwoULcddddyEtLQ1arRYVFRV49913Ta734IMPYurUqbC3t8fzzz+PHTt2YPPmzRAIBBg5ciSWLl1qtkWC9D1pW624NQVJJ1sBnp0R2ttJApfDgZOtAHWtKjTIjAOGZrka67anwUHEx+QQVzyY4A9+J1PB9oW9VyrwYduiQUDvT6vaGVHbzBB2Qh5enB2OlJIGHMmpgZYB5GotBnjsRciQciirCpdKGvDMjNB+fS70NqlCjZP5tRjr72TU/cjcVM9CPped3QgAXpgdzv5c0SzHXV9eMDr+/rG3NmnD0jhf1LeqsOnsDXxzvgSjfBwx1aDrEhk8LpU0AADqWlWoa9WNiRHyOFiV4I+7R3nDhs/D5gvFmB3RM+sgDQfdeirFxcUhLi7O7D53d3d88cUX7O/z5s3DvHnzrLquj48Pnnnmme4kidwiLcPgxb3XkFxYB5GAi38tjDHpwyltW2zMfoB9mRkGDIYOZlchv7YVAJBW1oTKJgWiveyR4O/MTqfX1wra0qPXXy0MHS2N88XSOF+c+PgU1FoGGppfkJA+9ebBbKg0DH6/XoV96yYMqnVluuKz04XYlW68ttIb8yIR2MVncsfvoUnBLpgSeust2pGe7ZOx7M6QUMAwSNnb8CBVaPDElGAEudiCAZAY4Gz0uXphVrjlCxATA6vkR/rFFUkT1v6Yxv4uVWiwYXcmXpsbiYlBLuzAYn2XJPEtjkvoac5ti7o1yHTpk6k0qGhSYNulUqPjdmfovqQCXWyxe+24PknbtYpmfHn2BlRaLdaMC4S/c/uXYqibHSYHD6yBdTwuhwIGQvqBqm1BFIVai31XK7Ei3rfTxTEHowqp0iRYANCtWYnshDy42ukqiwBgxZieWYxyeqgr7hvrhx8vl0GuMu3CQgYH/Uz9cyI9+q2CcKihgGGYK6prxVO7Ms3ue/uQbpq6s89Og0qjZbskDbTmcn2Nwa9XJKholmPjyUKj/U9PD0FlswJ51S1IKW1EXWvfDXL68XIZTrcNpDt/o4HdHufriK9WjumzdFiLz+VAAVDAQIa0FqUa9a0qowC+vzTKVHAQ8SEW8thZ6D45WYCvzt3AwlgvPDoxaMi0NvyW3WD0u5tYiF1rEru1cBaXw8GW++NxvVKKEDc7BLva9UgaORwOxvo74cfLZewMTmTw0S/syuN2cfVYYtHAKvmRPve3/dfZKT4B4IO7Y03m6Z/08SkAgKBt2eZbnfmopzm1zZR0/kaDUaHcTSyEv5MI94zygb0NH6UNMtzzzUVo++g7oKZFaTSbh6H08lubcra38NoWSNIYLKRY0SzHUzszMcLb3mTQeU9SqLXQMgytukl6FcMwWPtjGgprW/HNyjEmM7z1hRqpAht2Z7JdJm34XJPCaYtSg+2p5XC04WPdpCCotQwaZSo42wnBH6SFIJlBjf1dsV74620RtzSznbejCN6Ona//1B02bWmSq2mq6cFKQwFDj6OAYRhrlquRW61b+XdaqCvemBcFJ1sBzj4zFX/bn4XjeTVGx+ubzEPdBtasArHeDvglU7fwz8i2RX3+PDPMpCCgXyxU20urihvKKG8yWuvg/+ZHo7RBhs+TdbOE3T1yYE5bqn+4arQMtAwDuUqL947lo7hBhuIG3Wwmr86JZAdM95TvU0rxcdtMJ09ODTaZGpGQnnCjvhUPfneZLbhmSJr6JWC4VNLIBgsAOq3J/vJcMb5smx0IADgA7o3zwRg/Jwh5XIzydYS7WNibye0xSk37s5cDDNhpsPUBQ6NMha/P3YCWAbgcwMVOiEWxXp1OnlEjVeBYbg1qW5VYFucLd5o9ol/oA4bBGlwPRBQwDGPvHstjf37rzmh29iM+j4tX5kTgWmUzYr0dsGFqCEQCLsoa5eBxOIgxs9Jmf1o8ygcJ/s5wEws7HUSsrz3vg3gBZwpr2Z/fWTACc6J0fXRXjvXDmYK6Hhmc1xv0AYNUqca931xEaaPx6usHs6pxMKsaT0wJxop435t2T7tR34ofU8owLdTN4nsuqmtlgwUA+O/pItwX7wc+j2v0sK9vVYLH5cBRNDS6Z5DeVS1V4GJxA7gcDsI9xKhvVeJ6pdSolltlZprF3lBY24rD2VW6NWt8HFFY1x4sPDsjlL3/3cRCbL0/Hh72QmRXSbH2xzS2a4UeA2BXusRoLMCjEwPx2OTgvngrFhXUtuDTk4VokKlgK+ThzXlR7Pg3PZXBe+mNloGeIuLrvkeqpEq2kkdv/7VKLI3zQbNcDS0DXCxpgLtYiCAXW8hUGqPjSxrkeGdB77XKEvM0Wgb6O41aGHoOBQzDWFqZbqoxexueyQJiTrYC7Fs3wWjbQF7jwJpBTZy2gEGL3o0YvrtUim/O6xYcivAQ4/bI9mnbxEI+5kZ79urr3wr9w/VqRTMbLPA4gKudEG5iIbKqpACA/50pgoDHwYOJAWav0yhToVWlwbaLpfj1SgV2Z0jgaifA+EAXCHkcFNS2QsjnoqZFieJ6mcn50z49Ay4HWBbniygve1Q0KbDp7A2I+Fz8+uh4uNoNjhrVjhiGgZahL7GexDAMFGot2+ql0TL4PqUUn54qvMmZYFcI7mlXJE3YmVaO/NpWSBVqlHUIvPXuHOGJVQn+uD3SA0V1rQh3F8OtrbUg2ssBh5+YBJlKAz6XAz6XC5VWi/+dKUK1VAm5SoOUUt0zfHtqOR6bHIzKZgU2XyiGl4MNVo8LAIfDQVmjDO8czsXtkR64Z7RPr7zfRpkK921NgWFs831KKe4Y4YmLxQ2YGuqKUDcx28LA4wAPJN7aFKi9KdxdjHg/RxTWycABEOkpZru7ZpQ3IcPKLqVXJAOz6+lQZzgGj1oYeg4FDMNMeaMcm87eQJibHSqaFQCA3x6dwBamhzL9c0PbSwN6m+QqPLUrky1UA8CLs8IHVd7qC7JFbd0lEgOc8emSkWwT/LGcauxMl+BSSQOuSprNXqOkXoYVWy+xXdj06lpVFsd0AMB/7h2FA1lV2He1EoBuIbntaeVGx8jVWtyokw26gGFTchG+vVDC1haLhTx898BY/ONwDiI87PHklOBOu3kxjG7mqv5eR6SvFdW14lBWFY7k1IDDATztbfDa3EgU1rVi48kCMADbrXKUjyN8HG2QlF9r9WBVfcDwc4YEKSUNePOOqFuemei3qxV462COVcfatf3NvRxs4OVgWiFjb8M3WffmlTmR7M+SJjkWfXUBzQo1Xvj1KjIlTeysQT+klMHHUYRrlbrP6YXiBosBQ6NMha2XSqFUa7F8jG+XZ5X5LqWUDRaCXW1RVCfDD5fL8MNl3SrOn50uxPnnprPPhDfviB7QY5WEfC42rRhjtK1GqsB92y4bTd8d6GILMLqpWHkc3fPTyVaAY7k1qGxWIN6PFn7rD2oKGHoFBQy9SNIkxzfnizEp2LVfFwdhGAZKDQMhj4N3j+XhTNusPYDu4T5cVvRlWxh6OF5480AWUkoacd9YPzZYcLDh44cHxw7oZndz+G15VNTWZSLY1daokDo70gNCPheXShpwNLcGUz85jZduC8eitjEZR3Oq8dd9102u++KsMLx3vH3BugcT/RHlaY8fUsqQX9uCp6eHYkKQC8YHOuOpKcHgcTl4bGcGCjusWwEArcqBPxBRrWXA53LQIFPhs9OF7BgbvRalBvd8cxGArj/7jrRyfLNyDEZ42ZsEmGqNFg9+n4q8mhZ42gvxyZJRCHcfWOOIetL5G/V471ge4nwdcb64AZVtFRuAbh2TBV+eN3tepqQJmR1m7PS0F+KTe0YBAL6/XIr0skaEuInh5yTCj5fL8OuVCiwe5Y1/HskFAEwLdcMdI7rfAihTafCPQ+3BwuRgF7iLhXC2FWBVoj9SSxuNPh9dXXugI28HG/g62qC8SYGk/FqjffUyFeo7rE1jjkqjxVuHcnCy7fxWpRqvzYsye6xGyyC3Wgoel4NAFzvY8Lk4klONMwW67xQnER/f3hePDbszcbWivUJBywAzPj0DdduMEwN17EJn3O1tcPiJSVBrtMiu0uVBtJf57rm+jiJ8cCLfpDsZ6RuGLQzUmttzhkdJsZ/sSC3HL5kV+CWzAl+uiMOYPq5t0Hd/WLb5Ikoa5EbT9gG6yPv5mWF9mqb+pH9uMNDlTU/U/DMMg/3XdLXme6/oCoWhbnb48aEEcAdRy4Ke/uGaWqZrSjdX0xju0V5YVWi0ePtQDqaHucHZVoCfM0znWAd0A9P9nEQoa5RDyOPg6em6VcDndeiexeFw2EGCO1YnAtAVaH67WoF/HtGNucmQNOH365UIcLbF41OCb+Hd9o5tl0rwn1OFeG5GGJQarVGwsOX+eKz+IdXkHI2WweofUiEW8vDeohiMC2xfn6OiWYG8Gl0tepVUifu2pujG6wi4+MeCERhhodAyWP10uQw36mW4YdBVbVKwC65XSk0WZ5wb5QEXWwF8nUVwtOGjpEEGAY+LQGdbRHraw96Gzw4IfsOgEHzIoKXLcA2a3Gop5kV7dPnZoGUY/JwhweWSBugb1t68Iwqzwt2NxlXdFumBPx5zQlZlM8RCPkbf4oBrDoeDravG4r1jeTiYXc1u//sdUfgiuQjlTe3BlpDX/p4+PVmAn1LL8I8FI7A7XYJzN+rZfY2ddNP67HShyfo2hl6bFwV7Gz423x8PdVtw8cTODLQoNUaz8QUOgOlsu4vP4yLWp/O/m35GwY6trEORSqMdcOuFGM7yRwFDz6GAoRdNDHbBdym6h+upgjo2YGiUqXq95qFBpsKD311mux0BYIMFLwcb/PRQAsRC3qDqLnOrDAvwDHSzdHSXTKVBpqQJMQaFNf2sJxHu4kEZLAC6QcqGRnmbfjF62duAx+UY1eL8fr0SPg4ilLf11X5qajC8HGxQ3iiHl4MNYrwd8Pc7o/BF8g0si/PtUpoEPC6WjPbFqfw6nC6swzfn22eMSQxwRlJ+LQJdbLFsTNeu21v064B8cKK9RSUxwBlPTglGjLcDzj07DdVSBbKrpPg+pQypbWOJAN1ndFe6xChgkKlMW1RqW5Soha4rzStzhlbAYO4L/vlZYQhysUNBbQtWbElht985wrNbK/E6iMx/9W29VAoOh4MN00K6dL1vU2vwS1Z7odtDLMSCGC+zx7qLhT26erCTrQB/mxMJexEfNnwu5kZ6INbHEXuvVBgFDEoNA6Vai4a27kcA8OLeaybXazVzv+mZa/EDABdbAZbG+WCKwUKUfC4HI7wccOSJSbhWKYVKo0VdXR2iA32G/EJa+gK0qq/m8O4nF4vr8cyeK3hiSrDF8WzWUqq12HKxBAzDYHaEB9zthdBoGdTLVDhTUIcIDzHGB7lY1cVI3TaZAZeDQftdPBBRwNCLJgS54PHJQfg8+Qa2XixBkIstvj53A+VNCrjZ8vHzI55s7VNWZTPSypoQ5WmPeP9bb4nIlDSxwYKIz8WMcDfMjvAAGAYxPg7DphuSIcPnjH6avO769nwxvr1QYnafeBDnrY+jiB2g+dC4ALNTTnI4HOxem4jFX19kt310osDomPGBLiazacX5OuG/S0d3O22TQ1yRXFRn1KXsiV0Z7M/vHsuDow0fT0wNxr2jffo8GC6qa0Wj3HwXkHg/RzYveVwOO3/8jHBdV0WZSoOvzhVj68USNHaoRdfP6uPrJMIn94yETKXB9Uop/nkkF79kVmBGmBua5GpUShW4Z5TPoFnki2EYZJQ34XJZI4Jc7Nhum/rKlIcS/VHeJEegix1bIx3qJsYPD47Fmh9SwQHHqLWrKwwLHYtivaBhdLPfAMCWiyV4bHKQ1bWmDMNgf06D0ba+7p9vJ+Thr7dFGG0zN5vYnP+dxdI403EMQS62eGJKMP667zrKGmTYdrEEpwvrMD3MDasS2gcnK9sKYn+/Iwox3g5453AOUsuasGyML9ZNCjKbNj6Py7akVAjk8B7iwQLQfn+ph3ALQ41UgSfbFn3deLLwlgKG65XNeOj79pZXw2mEDS2K9bLYXc6QmqE1GHrD4C3ZDBIzwt3ZadbeNujbWitTo7i+FdFeDlCotVjzYxpbYzsjzA1rxgcg3F3c7fnu9f1+PcRC7HlkPDuv9HBmWNOgvYWIQa1lLAYLI7zsMT9m4M6CdDPPzgjF7nQJHpkY2GkXOj8nW2y+Px5rOnSvifQQI9DFDpGe9j2etmVjfHH3SG9oGQbP7rnCzhBjqEmhxr+P5iGrUopX50aauUrPa5Sp0KxQY9nmS0bbkzZMwduHcnC2qA4TgzufRtdWwMO4ACdsvViClNJGKNRapJY2gM/lYuMpXTBmJ+Cxq9kGu9qx/e6f+6V9ocWqZgX+0qHgOFBdq2jGo9vT2d+9HGwwyseBHWMV7eWAP7V1XTMU4WGP/esngssxXyi2huGg+VfnRoLD0XXPnP3fZABAYV0ruBwO1Brd7EsMAwS52pqtrZSrtUbThQKASND/z9v1k4PgKOIjzs8R6WVN+PVKBVpVGrZ1QcDj4InJwZgT7QEvextcKG4AAJQ3KbCxbYapy6WNiPFyYCux9F1shHwugl3t8Om9oyFpkvfYKstDBdvC0EfT9vY2lUbXMmU4U+Kdm9rHEvk6Gg/YZxgGlVIFNFoGzXI1Ht+ZAZGAh1A3O7y/KNZk+vMTHdZ8MsTjgO3ml2+hhasjWoOhd1DA0MvC3cWYEeaGSyUN8HMSwcvBBqfaBojpaw6P5VYbde9Iyq9FUn4tYr0dsPn++G69blVbwDAz3J2ChTYcoxaG7tX8aBkGD2xr7xLx9LQQSJoUuF7ZjHcWjoDPIBvk3NHMcHfMDLdugH6stwM8xEJUtygBAEefnNTrayToB0u+dWc0zt2oZxdTeuHXq0bd/H69UoHHJwf12qJJWobBpuQbOJBVhbJGORw6tCqFuNnBTsjDPxeOgJZhrGoWN1wQ8b1jefj1ivFAaRe79ry1FfDw3IxQfJRk3LKzK12CGG8H3BU7MBcGNKRfCFCvsllhNMDZoZMV5W+1FSXMXYwXZoXBXSxkW6IcRHzE+zkhtawRq7ZdNntelKc9aluUeGRiIJbG+aK4XoajudUmx3kOgCmow93FbNA8J9ID9TIVO7AZAN5fFIvJIe2BbKSHGK52AnaWJb31O9Jx+IlJcLYVsAVgfYHYpi1wIMb0YxhSShuRXtaIX69UoLRBhiWjfW9pUH1/eWxHOjIlzfh82WgkBDib7G+QqbH1YgkEPC6mhrhi26US7DEz0UNtixLP7rmCSA8xzhfX6ypKAl2w9aKuAm5pnA9enB0OjVb3zORydC3aF4rr8dSuTMg76S5nSP9dQC0MPYsChj7w/t2xRr8/+N1lZFVJ0arSQKNlsCO1ferI0b6O7BzPBbUt3X5N/Revp8Pgmn6yN3Ucw9AVn50uRFFdK9Qahq3l8LQXYkGs16Cb4rMnGQ4u68tuGJ4ONuzMTABw9MnJEPA4qGxWsLMPLfr6AvY+Mr5Xgobd6RJ8bTCWolnRPlB0Vrg7Fo1s779ubR9aTwcb2Al4aFVpjIIFJxEft0d5YOlo4zEad4/yxu50iUnB+59HcsHjcFAlVWB6mNuAW5k9t1qKz5NvsAHBlBBXPDoxEJImBcoaZShtkMNWwEOimYJJT1oR72eyLcJDbDSmBNB16ZS3TdOa3TYL2r+P5uHfR/OMjhMLeXhmeijkai1mhffcGIWeIBLw8MHdsdiZVo4daWWYG+VpFCwAusB7/7oJKG9SILmwDrvSy9mB5w0yFWpblGhpK7AZDqAmpgwrjgxb0VLLmlAnU+L+sf6oaJbjWG4N+2UU6+OAON+BNw2rlmGQ2TaF9uM7M/DWnVFQdpi2uFWlYdc9+dBg7BYAONrwIRJwUSXVVSylljUafcauV7ZPQx7eNv6P2+H+sm1bSE9m5XTJ+gpYHo1f6FEUMPQD27bm6lf2X0eomx2utE0/9+TUYKwdH4iqZgUWfHkecpW2W7P5MAyD36/rZgEZCDVdA4VRl6QutDAU1rZic4cuSDY8Lvavn9hjaRusDFvG+nOmDH0Tt5+TCPNHeOL361VQaRiUNMg7DRgkTXJ8nFQAqUKNedGeRkGIJSqNFu8dyzO777dHx9/SVLoLY72ww2DtiYcS/fHk1BCzNWViIR+71iZC0qRAlVSBHWnlOJxdDZWGwRsHsgHoJlv488wwbL5QjAcS/QdEgeSny2VGNd1udgKM9HHEyN5ZU6xL4vwc2fyP83XEx/eMRJNcjbu/vsAew+dyjFqzxEIeEn3scFdcADsmZaBaNsa308kB+DwuAl1sEejihxXxvpj+6RnI1dq2QKP9vhRwqdW6M1Ge9lgY68WuKWPooxMFmBvlifeP5ZtMhfvrI+Ph69QzrdRahoFWy6C0UY4bda2okipxV6xXl7s517a1IOu9/ke2VefdM8obfzNYM+TjpAJ8n2I6w9bMcDdkVUoR7WmP2yI9zF5LXxlV3ihHZnmT2bF1hvSfz+G2bk1vo4ChH+gL8S1KDRu5A7oZP4D2DwcDXZ9RIb9rAYNhxO7nPLi7yPQkwzKXtfGCQq3F8i2XTLZ37IM5XA206fQ4HA7+fmc08mpakFPdYnaGIT2VRotHf0pja77KG+UWAwaGYXAouxo/Z0igZRi2hWrzfWPw/N5rqG1Rwr+ty+GteHF2OPZfq2RnNFs7IbDTZnUOhwNfJxF8nUQIdrVDjVRpVHuXUd7EjjOpb1Xhq5Vjbil9t6JGqsCrv2eZjD252Zd/X7o9UjdNq5DPZYOrjgWsPx6bCLVGi80XSyBVqHVT+7Y0wNt7YAcLXcXhcOAqFqK8UW4ULACAoIvfScPRWH8nNmCYGe6GE3ntwcFdX56HY9tMXeMCnXGxbfxIlVRhMWBoVWrw9qFstCg1GOvvhCa5Gp72NuBydM9h/Wx0zrYCbE8tw0dJBUYVOgCw+UIx/nPvaAS62FrdXedSSQP7s4DHMZoqlssB3lkwou09tk/gwDCmM5GtmxSIKE8xeFwOZoa5d2ktDnuD7okP/5SG2yLcMT/GC9PDzLfktbcwWP0SxAoUMPSDZ2eGwVOkRVqVEnKVFiIBF3+/IxreDroHheGAOYVa2+VFbuoN+qCOvsl80cOJYUtNxwepJdXS9j7Vk4NdkFykmzrR0rSMw80jEwPxzbli3GlhCsn+og+6c6tbUNogg70NH7dFerDjeRiGwZO7MthgAQBKG+V4/Y8s2Al4UGsZ1LQoUdYowytzIqFlGLz6e5bRa2yYGoJYH0d8s3IMrlU2Y5SPY4/MzLRuUhA+TipAVNs6AtZythVg04o4aLQMrlc2G60vAOhaU/qDQq3Fi3uv4mxRvdF2Gz4X/106+pbXIuhJXA7HaEpbwHTgpJ2AB6GtAC/MCme3VXS/9+iAZmOhQmCwzMTVnwzHDr58ewTemBeFNw5k42R+LdRahh0r8sqcCLz46zXk1rR02kf/YkkDjuToBgd3/Cyxr8nj4oPFsXj/eL7Z/VVSJZZvuQQbHhf/XhSDKSGWJ2Oob1Xit6uVbDDj6yTCr4+MR3q5LuBXaxh4O9rAz8l41itLzyyxkI87R3Tve8LbUYS14wPYyUaO5tYgKb8WR56cZPZ4GvTcO6jU0w/cxUIsj3XD07eZr83kc3WDfbQM8MnJAvg7izAp2BVRnvYoa9T1Ke34ITWkUOseOmP8eqYAM1QYtTBYeY6+77KLrQAf3B2L90/ko6JJYVXXleFgaZwvlnZxXYW+oA8Y/nO6kN3WotSwU0rm17YirW1xuqenhbCzwvxxvQodfXO+2GjBsDlRHpgV7o5ZbdOA6mv4e8qqBH9MDnZlayC7isflIMzMStA8LgdbL5bgRF4t3MQCvD43qk8C36zKZrMFnC+Wjb7pAlgDheGil4NxleLu6vheJwW7YP4ILwS50EDnm7EXtn+2HGz4EPC4ePvOaHxxtgitSg1seFxEednDz8mWrSRUdNJHv1XZPk5KPzhfwONgWqgbKpsVuFrRDIVGiw27M9njPrg7FuMDnWHD52LLxRJ8drpI9zoaLY7kVFsMGPJrWvDIT2lGC70mts2U1V/dGp+cGgJnOwH+d7oIcrUWai2D7CopfM08wtguSdR1rkdRwDAAcTgcuNoJUdOiZAc/fnO+GIkBzjhVUAcnER/710+0OPuRom0mC+EA6y7S36wZw5BS0gAXOwE7UFT/ALfhc8HncU3mOicDk7nPxrvH8vDusTx4ivmoamn/8n0g0R/+zra4VNIARxEfXA4HfC4HJ/NrcaXCuLB7f4IfnpvR+6ujh7jdWoHMVsDD58tG49sLxXCzE+L361WQNCnYgYkAcFtE3U1nbGmWq5FX04IRXvbdnuJZalDo+OOxibAT8CBpkpsNagaqT5aMxNsHc/DWndH9nZQ+1fE75PW5kb0289hQMz7IBQ9PCESQiy3bddNOyDP7/LBpG9T7UVIB4v2dzM42p59VcXqYGz64OxbKDr0PfsmU4J3DuWxlGAe6Qfz6z+2a8YGYEeaO/54pxIm8WuRUSWGOlmHw2I50o2ABGBitSveP9cd98X54ae81nMivxbUKKXz9TYuxGpolqVdQwDBA/fuuGJwrqkNlswJ7r1ZCptKy07E2ytVY+2MqFo/0xvwYL0gVaqzfkQ5HkQCvzY00KuQSY/qWm449kiRNcnySVICjubom3/WTgrBuUhDbRDwQ5lUn1gtzF7MDCudFe+BgVvvUl4bBQrCrLTgcDmZFtLcY6N0V62U01zgArB0f2Iup7lkJAc5ICHBGfk0LOwmCodxqKeZFe7CtkFqGQXmjHHZCHjvz1yPb09jVfe8d7QMhn4sV8b6dtnB21NJWMzrW3wnuYt11B1OwAOhqVXetHdffyehzsd4OyJToWuLEQh7cxMN3Rriu4nM5eGJKsFXHitq+q8sa5fjpchnWTzY9T97Wc8C27diOrT+LR/lgbpQnuBzg/I162Al5JtN8h7jZ4bkZYTiRV4v8mhY8tSsDz8wIRaRH+7o5cpUWjXLdZzbUzQ4Fta2I93PC3aMGwKwE0FWoxng74ER+LXakleF2f9MFA2la1d5BAcMANdrXke3be7m0EaWNxv2Pc6tb8N7xfPx2tRL3jfWDpEkBSZMCD3zXPn84BQymOBwOwDBgOrQwvHssD6fbAjIA2HT2BrZcLDEIvmiQ82Dy2OQg2At5GOnjiKwqqVHAYKiz1Und7W3w8u3h+OcR3YxIT08PGRC1bF0V5i7Gq3MiUFwvQ7SXAy4W12NPZgW2XipFSYMco3wdcCS7Bnk1Uig1DDgA/nVXDCprmthgAQB2Z0gA6AaLd2VxuNa2mkoxTRQw6Px5ZiiWj/HFr1cqkBjgRF1ce8lIHwecLmyvEOwovbwRH53QrbnSWUuffjKOzmbr8nG0gbeDDSqaFbhQ3IBV2y5jWZwvXrpNNyZH36UZAH58KMHqaaH7Uoy3AwBA0qRgVx83pKYxDL2CAoZB4B8LRuDnDAkqmxV4aJw/AOCL5BtIL29CVpXUZAYLvb6cF3+w4HIADYzXDwCA5MI6k2MN+5P69WAfddL7uBwOHhynCwbcxULsvVKBwrpWaLQM/B2FKG3SDXYOcu28pvyeUT6obFaiokmOuwfxuBXD2sFWpZpdVOl4Xg2Od1hllQHwl9+uGW17ZEIgsqulOF1QZzSpgjX0XRtoZrHBh8PhIMDFFhumhfR3Uoa0RyYG4YqkGacL63BF0owPjufjnnBbXCiux8/pErblG7j17oocDgdfrozDu0fz2F4LO9PL0SRXQa1l0NrWqi7gcQZksADAaI2WVpVpwEBdknoHBQyDQIy3AxtR640LdMGc/51Fg0yFqxXNJueMC3TGvaMHRhPiQMIFBwADhgGkCjWkCjWqpEqjLkrBrrYobZBjrL8TnpoagrpWJcb49f/89aR7Alxs8eNDCezvp68V4bkDukXXbjZ4k8OxvlvBYHH3KB/4O9vi8Z0Z7LYgF1vMjfKAq1hosiDZVyvjEOfrhD+uV+J0QR2O5tbg4R/T4OVgg1hvBzyQ6N/p6+lbGAwHgRJCjPk76yovrlU241plM35KNT1mQYwn7h9ruuBgV3k7iPDuolhsuVCMz5NvAAAOZhu3wooGcKs6j8thF1SUmxkoTl2Segc9wQexu2K9sO1S+0IoIa52eHp6CKI97WlgmgVcLgAN8Kfdmewqph2tmxiE2ZEe1Jw5RHmK27sVOQ3T6XETApzxyIRA1LQoEeVpj6VxPmx3k9sjPfDsniuoapLhv8vHINhVF1QZDsTMlDQhUwIcyanG3SO9O51tSdo2hoFaGAixrLPZtwKcRbAV8PDU1JAe6xbG53LwyMQgBLrY4VB2FTRtU0nr13ESDPBFDOyEPMjVWqSUt+JEWQH8nESYEuKK1LJGmla1lwzPb8sh4vHJwShvlLPNlUvjfDA11PxCJkTHXSxESYPcKFjgQPewVqi1mB3hjulhbvSgGcIcbXjYtTYRYgFvWPfJftxCy4mzrQCb74+HRCKBj2t7C0xigDPuiPbEgSzjAdStKo1JwCBXacDncsDncWkMAyFWUGuNa8qfm+iNe8eH9/pYxDlRHpgTpVthWaNlMPHjUwAGfmHbXshHXasKn18yndAhrK3bFrUw9CwKGAYxIZ+Lf90VA7lKgxv1MkR6DK6ZR/rDf+4djculDVBpGPC4HMyOcO/S4lhkaKB55G+uYzBlw+fi7fnReHt+NKQKNeZvOgeZSmsyd7xSrcXSzZdQ2azAtFBXdpCmHXVJIsSiWoNFJO8c4YnZoY59PnEJj8vBX28Lx76rlXhhdvjNT+hHj0wMxM8ZErTKFcitUxjtq2jW/c4bxhVCvYGe4EOASMBDlKf9zQ8kbYtsDd7Bq4QMBPY2fNgKeG0Bg64FoaJZjs0XSnCtohmVbV/YpwrqENc22xu1MBBi2frJwShukGFqiCsenhCImmrTmvO+cG+cL+4dgItxdjQ/xgvzY7xQUVEBLy8vVDQrsPViCXalS9iJFvgDvFvVYEMBAyGEkC7Tzx2vUGvx+ZkifH2+2Oxx6eXt8/gTQswLdLHF1lVj+zsZgxKHw4GPo8ik5ZhPLQw9igIGQgghXaZfm2Ttj2lG26M97RHn64i9VyvY1WkBChgIIb3LtsMCqzSGoWd1K2DIzs7Gnj17UFZWBrFYjMmTJ2PBggXg8W7+hVBfX4+33noL69evx4gRI4z2SaVS7Nq1C1euXIFSqURUVBSWL18ODw+P7iSTEEJILwlzF6OwrtVo26blcRjj5wgOh4PHpwTj92uV2JFWDh9HEeJoamJCSC/quPbUQB+4Pdh0OWAoLCzExo0bERcXh4ULF6K0tBR79+6FTCbDihUrOj23rq4OGzduRGtrq8k+rVaLTz75BFKpFMuXLwePx8Nvv/2GDz74AG+88QZsbTtfYIkQQkjfeXt+NB6eEIAmuRrnb9TjgUR/o6lX7W34WB7vh+Xxtz5vPCGE3ExioLPR79TC0LO6HDDs3bsXPj4+WLduHTgcDkaOHAk+n4/du3dj3rx5cHZ2NjlHq9Xi3Llz2LVrl8XrpqSkoLi4GK+++ioCAnQrtIaHh+OVV17ByZMnMW/evK4mlRBCSC/hczmI8NBNtpBgsPIqIYT0BxdbAXgcQNO2ECsFDD2rS3N2qVQq5OTkID4+3mjKvYSEBGi1Wly9etXseWVlZfj+++8xceJErF271uwxV69ehbu7OxssAICTkxPCw8ORkZFh9hxCCCGEEEI4HA47jTNAXZJ6WpcChpqaGqjVanh5eRltd3FxgUAggEQiMXueq6sr/u///g/Lly+HUCg0e4xEIoG3t+l0l56enqioqOhKMgkhhBBCyDDz0eKR7M8CXt+uYzHUdSk3ZTLd6rgikchkn0gkglwuN3ueWCyGi4vLTa9t7ro2NjYWr0sIIYQQQggAiG3aWxhmhbv3Y0qGni6NYWAYptP9HVcG7clrd1ddXR2USuXND+xjCoWCWk6sQPlkHcon61FeWYfyyXqUV9ahfLIe5ZV1OuaTWMsgzssOXvZ8+AvllIdtOrufzPXuMadLAYN+piKFQmGyTy6Xm20hsJadnZ3ZlgS5XH5LMyS5urp2+9zeVFFRYfUfaTijfLIO5ZP1KK+sQ/lkPcor61A+WY/yyjrm8umrVT79lJqBqyfupy51SfLw8ACXy0VVlfGS5fX19VCpVPDx6f4fycvLC9XV1Sbbq6urb+m6hBBCCCGEkO7rUsAgEAgQGRmJ1NRUaLXtK3impKSAy+UiOjq62wmJiYlBZWUlysrK2G2NjY3Iy8tDTExMt69LCCGEEEII6b4uDyFfsGABiouL8cUXXyAzMxMHDhzAzz//jBkzZsDV1RUqlQoFBQWor6/v0nUTExPh4+ODjRs34ty5c0hJScFHH30Ee3t7zJgxo6vJJIQQQgghhPSALgcMkZGReOKJJ1BbW4vPP/8cJ06cwB133IHly5cD0LUK/Pvf/8bp06e7dF0+n49nnnkGYWFh+PHHH7Ft2zZ4enri+eefh52dXVeTSQghhBBCCOkBXV7pGQDi4uIQFxdndp+7uzu++OILi+dGRUVZ3O/i4oL169d3J0mEEEIIIYSQXkCrWhBCCCGEEEIsooCBEEIIIYQQYhEFDIQQQgghhBCLKGAghBBCCCGEWEQBAyGEEEIIIcQiChgIIYQQQgghFlHAQAghhBBCCLGIAgZCCCGEEEKIRRQwEEIIIYQQQiyigIEQQgghhBBiEQUMhBBCCCGEEIsoYCCEEEIIIYRYRAEDIYQQQgghxCIKGAghhBBCCCEWUcBACCGEEEIIsYgCBkIIIYQQQohFFDAQQgghhBBCLKKAgRBCCCGEEGIRBQyEEEIIIYQQiyhgIIQQQgghhFhEAQMhhBBCCCHEIgoYCCGEEEIIIRZRwEAIIYQQQgixiAIGQgghhBBCiEUUMBBCCCGEEEIsooCBEEIIIYQQYhEFDIQQQgghhBCLKGAghBBCCCGEWEQBAyGEEEIIIcQifndOys7Oxp49e1BWVgaxWIzJkydjwYIF4PF4t3SOVCrFrl27cOXKFSiVSkRFRWH58uXw8PDoTjIJIYQQQgght6jLLQyFhYXYuHEjXF1d8dhjj2HmzJk4cOAAdu3adUvnaLVafPLJJ8jOzsby5cuxevVqVFdX44MPPoBMJuveuyOEEEIIIYTcki63MOzduxc+Pj5Yt24dOBwORo4cCT6fj927d2PevHlwdnbu1jkpKSkoLi7Gq6++ioCAAABAeHg4XnnlFZw8eRLz5s275TdLCCGEEEII6ZoutTCoVCrk5OQgPj4eHA6H3Z6QkACtVourV692+5yrV6/C3d2dDRYAwMnJCeHh4cjIyOjyGyOEEEIIIYTcui4FDDU1NVCr1fDy8jLa7uLiAoFAAIlE0u1zJBIJvL29Tc739PRERUVFV5JJCCGEEEII6SFd6pKkH0sgEolM9olEIsjl8m6fI5PJ4O7ubnKMjY2N2etaSyKRmAQyLi4uCAkJgVwux7Vr10zOGTt2LADdQO2WlhajfcHBwXB1dUV1dTVKSkqM9jk4OCAiIgIajQbp6ekm1x01ahQEAgHy8/ORn5+P8vJydp+fnx+8vLxQX1+PwsJCo/NsbW0xYsQIAEBqaioYhjHaP2LECNja2uLGjRuora012ufl5QU/Pz80NzcjNzfXaJ9AIMCoUaMAAJmZmVCpVEb7IyIi4ODggLKyMlRWVhrtc3NzQ1BQEGQyGa5fv260j8PhID4+HgBw/fp1kzEoISEhcHFxQWVlJcrKyoz2OTk5ISwsDCqVCpmZmaipqTHKp7i4OPB4POTm5qK5udno3ICAAHh4eKCurg5FRUVG+8RiMaKiogAAly9fRkcxMTEQiUQoLCxEfX290T4fHx/4+PigqakJeXl5RvtsbGwQGxsLAMjIyIBarTbaHxkZCXt7e5SWlqKqqspon7u7OwIDA9Ha2oqsrCyjfVwuF2PGjAEAXLt2zeQzEBoaCmdnZ1RUVKC8vNwon5ydnREaGgqlUokrV66YvNcxY8aAy+UiJycHUqnUaF9gYCDc3d1RU1OD4uJio3329vaIjIyEVqtFWlqayXVHjhwJoVCIgoICNDQ0GO3z9fWFt7c3GhoaUFBQYLRPJBIhJiYGAJCWlgatVmu0Pzo6GnZ2diguLkZNTY3RPk9PT/j7+0MqlSInJ8doH5/Px+jRowHoWjAVCgUAsHkVHh4OR0fHAfuMaGxsNNrX18+ImpoaVFdXD/hnREf98Yzg8Xjw9vYe0M8IQ/31jNB/xw/0Z4Refz8jzN2HA+kZAfR/OaK6utrk/h6Iz4j+LkdkZ2eb5JP+GWE1pgvy8vKY9evXM5mZmSb7nn/+eea7777r9jmvvvoqs2nTJpNjdu3axTz55JNdSaaRl156iQFg9G/JkiWMRCJhkpOTTfYBYCQSCSORSJiEhASTfZ9++ikjkUiYd955x2TfjBkzGIlEwuTk5Ji9bmZmJiORSJi5c+ea7HvjjTcYiUTCbNq0yWTfyJEj2TQJhUKT/SdOnGAkEglz//33m+zbsGEDI5FImN27d5vs8/HxYa/r4+Njsn/37t2MRCJhNmzYYLLv/vvvZyQSCXPixAmTfUKhkL3uyJEjTfZv2rSJkUgkzBtvvGGyb+7cuYxEImEyMzPN5mFOTg4jkUiYGTNmmOx75513GIlEwnz66acm+xISEtg0mbtucnIyI5FImCVLlpjse/755xmJRML88MMPJvuCg4PZ67q6uprs/+233xiJRMKsX7/eZN+aNWsYiUTCHDx40GSfvb09e93IyEiT/Zs3b2YkEgnz8ssvm+xbuHAhI5FImJSUFLPvtaioiJFIJMykSZNM9r3//vuMRCJh3n//fZN9kyZNYiQSCVNUVGT2uikpKYxEImEWLlxosu/ll19mJBIJs3nzZpN9kZGR7Hu1t7c32X/w4EFGIpEwa9asMdm3fv16RiKRML/99pvJPldXV/a6wcHBJvt/+OEHRiKRMM8//7zJPnpG0DOi47/OnhHPPPMMPSNw82fE2bNn6RkB654Rlu5vekYYPyNeffVVk30D8RnR3+WIiIgIk/36Z4S1OAzTIczsRHl5Of7+979j/fr1SEhIMNq3YcMGzJo1C/fee2+3zvnnP/8Je3t7/OlPfzI65vvvv0dqairef/99a5NpZKDWHubn5xu1qAzHmgFrWxgM82k41gxY28KgzydqYdDprIXB3d2932sPB0MLg4+Pz4B/RnTUXy0McXFxA/oZYag/WxgCAwMH/DNCrz+fEeY+U8DAekYA/V+OMPeaA/EZ0d/liKSkJDg4OBjt72oLQ5cCBpVKhaeffhqLFi3CnXfeyW6vr6/HX//6V6xevRqTJ0/u1jnffPMNioqK8NZbbxmd//HHH0Oj0eD555+3+k0NBhUVFWbHbBBjlE/WoXyyHuWVdSifrEd5ZR3KJ+tRXlmH8sk6PZFPXRr0LBAIEBkZidTUVKMIPyUlBVwuF9HR0d0+JyYmxqQ2qbGxEXl5eWzNAiGEEEIIIaRvdXnhtgULFqC4uBhffPEFMjMzceDAAfz888+YMWMGXF1doVKpUFBQYNQcc7NzACAxMRE+Pj7YuHEjzp07h5SUFHz00Uewt7fHjBkzeu4dE0IIIYQQQqzWpS5Jeunp6fjtt98gkUjg4OCAyZMnY+HCheByuaipqcErr7yChQsX4q677rLqHL36+nrs3LkTV69eBYfDQWRkJJYtWwYPD4+eebeEEEIIIYSQLulWwEAIIYQQQggZHrrcJYkQQgghhBAyfFDAQAghhBBCCLGIAgZCCCGEEEKIRRQwEEIIIYQQQiyigIEQQgghhBBiEQUMhBBCCCGEEIsoYCCEEEIIIYRYRAEDIYQQQgghxCIKGAghhBBCCCEWUcBACCGEEEIIsYgCBkIIIYQQQohFFDAQQgghhBBCLKKAgfQ5hmH6OwmEDFv0+SOk/yiVSgD0OSSDDwUMPYQ+/NZTKBQAKM9uRqvV9ncSyBCjVCrB4XD6OxkDnkwmw7Zt21BfX9/fSRnwOj6n6Llunlwux44dO/DHH39Aq9XS55AMOvz+TsBQcPz4cUgkEnh4eCA8PBwhISH9naQBa+vWraioqMBLL73U30kZ0JKSklBYWAg7OzsEBQVhwoQJ/Z2kAenkyZOor6+Hq6srQkND4efnB61WCy6X6kI6qqiowNtvv40lS5bgtttuo3yyYP/+/Th48CCcnJzYyg1i3pEjR5CdnQ0XFxeEh4dj/PjxVBA2Y9++fTh06BCUSiUmTpxIn7tOnDx5Eg0NDXB1dUVYWBh8fHzoWWVGUlISGhsb4eTkhMDAwD4pd1LAcAuqq6uxadMmNDc3w8fHB5cvX8a+ffuwZs0ajBw5EgKBAAzD0AO0jUajQWVlJQoKCpCfn4+wsDB6EHRQUlKCb7/9FgqFAiEhIcjMzMSxY8fQ1NSEGTNmQCgU9ncSB4SysjJ89dVXkMvl8Pb2xpEjR+Do6IjnnnsO7u7udF+ZIZVKodFocPjwYUyfPp2eTx2kp6dj+/bt0Gq1WLZsGRISEmBnZ9ffyRqQ6urqsGnTJjQ1NSEiIgLZ2dk4c+YMPD09ERwc3N/JGzDS0tLw448/gsPhYNGiRTh79ix8fHz6O1kDUllZGb7++mvI5XK4u7sjPz8fHh4e2LBhAz3TDZSUlODrr7+GSqVCSEgILl++jIaGBvaZJRKJeu25TgHDLUhPT4dWq8VTTz0Fb29vSKVS7N69G1u3bsXKlSsxYcKEYftlbO6GbWpqQlVVFQDg+++/x+uvv04PAAMMw+DYsWNwdXXF0qVL4e7uDrVaje3bt+PIkSMYM2YMPDw8+juZA8LJkyfh4uKCFStWwM3NDTk5Odi8eTN+++03rF27lu4rM+RyOWxtbdHQ0IBdu3bhvvvuo4ChTXV1Nf73v/9h9OjRWLlyJZydnY3uIconY5mZmZDL5Xj88cfZAnBdXR28vLwor6D7rvv4449RXV2NmTNnYtasWXBwcMCxY8egUqkA0D3V0cmTJ2Fra4v169fD3d0d169fx/fff49ffvkFjz76KD3T2xw+fBg2NjZYt24dvLy8wOPxsH37dvz0009gGAZTp07ttfuK/gJWMtcv8/Lly3B3d0dAQAAEAgFcXFzwyCOPwN7eHseOHcONGzcsnjvUyeVyAMb9W48fPw4bGxvcc889kEgkOHHihMkxw0nH+6Kqqgrp6ekIDQ2Ft7c3+Hw+RCIRxo0bh8bGRlRWVpo9b6jr+H6lUinS09Ph6+sLLy8v8Pl8hIeHw9HR0ehBOdzyCej8PTc3N0MoFGLOnDlISkpCRUUFuFzusPz8GeYTwzDw8PBAaGgoeDweXF1dweVyodFocPnyZZSUlKC5udnsucOBufd78eJFuLu7IzAwEAKBAFwuF1VVVaioqEBra2s/pLL/GeZTQ0MDQkND8cILL2DJkiVwdXWFQqGATCaDk5NTP6ZyYOh4TzU1NSEzMxPe3t7sd190dDScnJygUqmg1WrBMMyw/+xVVFQgMzMTERER8PPzA5/PB4fDwfLly2FjY4PTp0+jsLDQ7Lk9gQIGK3UsAMvlcnA4HAgEAmg0GgC6Ljf6P55EIsHFixeH3eAmrVaL7du3Y9OmTQDA1gpIpVJcvXoVkyZNwrhx4xAbG4tff/0VKpVq2NYc6O8p/f2jUqnQ2trKtiLo7zXDGikAw+p+AkzzqaWlBS0tLfD29maPaWpqQktLC+zs7JCbmwuVSjXs8gkwH6jrVVdXIzo6GvHx8XB2dsZPP/0EYPjdT4BxPunf/4QJE5CZmQmZTIYLFy7gueeeww8//IB33nkH//rXv5CSkjLsnueA+e8+rVYLZ2dnAMDp06fx3HPPYcuWLXj77bfx8ccfo6ioaNgV7vT5xDAMAgICcP/99yMoKAgcDgcMw0AgEEAoFKKxsbGfU9r/Oj7TNRoNhEIhZDKZ0fedRqNBUFAQGhsbweFwhu1nz7CMIJPJ4OLiwh6j1WrZysTa2lqkpaX12nNqeJbUusBcAZhhGIhEIjg7O6O0tBS1tbUAAB6PBwAYNWoUoqOjkZ6ezrYyDBcajQaFhYXIyspCbm4uu53D4WDhwoVYsGABXF1dMXXqVGg0GuzatQvA8Gpl6HhP8Xg8MAwDf39/zJo1y6QPor5207CAPBxYyicvLy8888wzSExMBKDrCvGvf/0LKpUKmZmZ+OCDD7Bx40bk5OQAGB41wpYCdf0+QDc7WWtrK0JDQzF9+nRkZWUhOzsbHA4HUqm0X9Ld1zrLJ39/f3h4eGDTpk04c+YMFi1ahCeffBJPPfUUHBwcsGvXLly9erW/kt7nOvvuE4vFqKmpwY0bN3Dq1CncddddeOqpp3D//fejtbUV33333bD57uuYT/qCreG9xeFwoFAowOPx2ALxcCv8Apaf6S4uLoiOjkZubi4+/vhjHDhwAG+++Saqq6tx/PhxvPnmm9i2bRuqq6v7+R30jc7KCP7+/sjMzGTzgsvlIisrCxMnToS/vz9SU1NRVlbWK+migOEmzBWA1Wo1AGD27NmoqKhATk4O+6WsjwQXLVqE6urqXvvDDVSNjY2oqqqCQCDAnj172O1isRgjR45kC2+RkZGYNGkSkpKSUFlZyX4ZDQfm7in9/bNo0SKMGjXKqDYlMzMTfn5+8PDwGFaBVWf5FB4eDpFIxB47d+5c/PnPf8Zzzz2H5557DgUFBThz5gzbEjjUdZZX+oJLTU0NvLy8AABjx45FREQEtmzZgk8//RSHDx9mCzJDmbl80j+zfX194eTkhOvXryM0NBQzZ85EaGgoRo4cibVr10IqlSI7O5t9/g91nX33TZkyBVlZWfj555/h6emJGTNmICQkBFOmTMHDDz+M0tJSZGVlDYvnVWefPT2GYeDo6AhHR0e2gnE45E1Hnd1TixcvxgMPPABXV1ccOHAAkZGReOmll7BhwwYsXboUZ86cwenTp9l1LIYyc/mkr0RcsGABsrOzsXHjRvzwww/45z//ie3btyMhIQH33HMPqqqqUFNTw57TkyhguAlzBWD97CKBgYEYNWoUjhw5YtTKoNFo4O/vj+DgYFy7dg3A8KjlBHTjFOzt7TF16lRIJBIkJSUB0D0cBQIBW3izs7PDuHHj4Orqih9//BHA8KlxMXdP6WsQbG1tAbR/mVRUVODatWsYPXo0gOGTR0Dn+WTI2dkZs2bNgq+vL1xdXREVFYUJEyagoKBg2PR7NZdX+iBcXyDWarXsfeXl5QUul4v6+npIJBLcfvvtbAvpUGbpntJoNLC1tUVcXBxGjx6NKVOmgM/XzQmiUqng7e2NmJgYFBQUgM/nD9t7SiAQAAACAwMxcuRIZGdnw93dnZ29Ta1WIywsDJGRkcjKyhoWFUGdffb0OBwOVCoVAgICUFpaCplMNiy74lq6p7RaLWxsbBAXFwd3d3eIxWIsWrQIfn5+CAoKwrRp0zB27FhcuXKF7eI1lHV2T8XHx2Pt2rUICgpCYWEh/Pz88MYbbyAkJASenp5wdXVFVlYWgJ4vLwy/O7aLLBWA9X0S582bh9raWiQlJaGlpQVAe9ckW1tbqNVqdmzDUCGRSJCTk4O6ujqj7Q0NDbh69SqmTJmCWbNmwd/fH4cOHWIfjvrCiv7DHhISgmnTpiErKwtXrlwBMDxqXTreUydPngQAky8YALh+/TpUKhXi4uLY7TU1NcjIyGDvt6Gqs8+eIS6XyxZk9PePra0t27owlD57lnSWV/rnUVNTE0JDQ3H27Fk8++yzqKurQ0hICFpaWsDn84fFAOib3VOzZs3Cww8/zE7jCLQXkm1tbaFQKKBWq4f1PQUATk5OSExMhFAoRG1tLZqamgCADbLEYjFaW1uHxVgia59TAoEAzs7OkMvlbA3wcNPZPWXYou7v7w9XV1ejc8ViMZqamoZcecqczipeAWD8+PF49NFH8de//hUPPfQQO1OZYbdBGvTcS7pbAAZ0XSPmzZuHo0ePIjk5mT23rKwMFRUViI6OHjI1d3K5HF9//TX+9a9/4YsvvsCbb76JPXv2sKuhcrlczJkzB/PmzYOHhwcmTJgAhUKB/fv3G11HX0PA4/EwZswYBAUFme1TPJh15Z46ePCgSVClz6OMjAwEBAQgODgYra2tOHbsGN58800cOXJkSNSy3GrwqdFoUFJSAolEAkB3/1RUVCArKwtTpkwx6rY02HU3rzQaDWQyGdRqNb766its374d8+fPx2uvvYb58+dDpVJhy5YtAIbG5687+cTn840ChKKiIqPupOXl5SgoKEBCQgJbKB4KupNXgK5SLCYmBuPGjUNaWhpSUlLYc6uqqlBeXo74+Hg22BrsbvU5pf9/woQJaGhoYJ9XQ+EZ3tGtPKcAXevVjRs3jFZZr6ioQGFhIaZNmzZknundyScej8fOGKXRaFBaWsqO1QOA/Px8KJVKhISE0DoMPU0ul+P7779HRkYG+Hw+VCoVZs2ahZkzZ8LFxYUtAE+ZMgWA7sP+yy+/YP/+/Vi6dCm7kMjChQtRUlKCgwcP4uLFiwgJCUFubi7s7OwQExPTz++y5+zfvx+lpaV4/PHHAehu+N27d6OhoQFLly6Fo6MjEhMT2b528fHxyMrKQnJyMiZPngxfX182z/Q3s4+PD6ZNm4aqqqohMQvQrd5ThhoaGlBeXo5Ro0YhPz8f27ZtQ11dHRYvXozbb7+9P95ej+mpfGIYBr///jvy8vIQGxsLPz8/nD9/HlqtFmPHju2vt9ejbjWveDwebG1t4efnh1GjRmHKlCnsTFz6Cg83N7f+fIs9oqfuKY1Ggz/++AO5ubmIjY2Fv78/Ll68CIFAwLb0DXY9kVeOjo5YsmQJysrKsHPnTpw/f5797uNwOGw3ysGsp+4pfSDu5OSEESNG4OjRo0NuVexbzSt9Hk2YMAFpaWnYtGkTIiMj4erqilOnToHH4yEhIaE/32KP6Il7isPhgMfj4fz580hJSUF4eDiioqKQlJSEwMBAhIWF9UraOcxQDHGttHv3bly5cgXLly8H0F4ATkxMxNKlS+Hg4ACFQgGhUAgOh4OWlhb8+OOPuHbtGl544QX4+vpCpVJBIBCgpaUFWVlZOHfuHGQyGQICAtgv68FOq9WiqakJ//znPzF16lQsWLCA/XDv27cPp06dQmJiIpYtW8aeow8aMjMz8dNPP8Hf3x9PPPGE0XX1xwylFRx74p7SaDTg8XioqKjAm2++ybY2TJo0CatWrRoSNZw9mU/FxcU4fvw4JBIJGIZBSEgIli1bNiQ+e0DP5BWg+6ISCARDJl866ul76tixY+w9FRoaSvdUh7xSq9Xg8/lobGzE5cuXce3aNSiVSvj6+g6Z776eyCfD7zetVovDhw9jz549eP3119nP5lDQU88pQNcVd//+/ZBKpWAYBlFRUVixYgXdUx0+e7W1tTh//jwyMjKgUqkQFhbWq/k0+Ese3aAvAF+4cAFTp05FVFQUuFwuRowYgdbWVpw6dQoHDhzAsmXLYGNjA0BXuBWLxZgwYQIKCwvx66+/4oknnmAHQIvFYiQkJCA+Ph5qtZodBDZY1dXVoampCS4uLnBycoKNjQ1kMhl8fHzA5XLZQOn2229HRUUFLly4gMTERISEhBjNARwbG4u4uDgkJycjMzMTo0aNYr+U9ccMhWChJ+8p/cBeHo8HZ2dn+Pn5YcWKFfD09Oznd3nrejqftFotAgMDsXr1aiiVSnbw6lDQk3kFYMg05XfUW/fUmjVrIJfLjSYjGOx6Mq/0g7+dnJzYGlKVSjXov/uAns0n/fcbwzDgcrmYMGECJk6cOGQWcOvp55RWq8WIESMQHR2N1tZWMAwDe3v7/nyLPaI3Pntubm6YP38+Zs+e3SfPqcFfUrNSXV0dioqK0NjYCC6Xa7YADAC33347IiIicOHCBXbFPMOBgPoCcHZ2NjIzM032c7ncQf3AVCqV2Lp1K9577z188cUXeO211/DLL7+goqICPj4+7OBk/cwGIpEIkydPhq2tLQ4dOgQAbJcjfc3KhAkT4O7ujh9++AEAhkQtAdC79xSHw4G9vT2effZZ/OlPfxrUwUJv5pNhA6lAIBj0BbvezCt9H+GhoK/uKRsbG7qn2tzsu4/D4Qzq777e/uzpK8icnZ0HfbDQF58/DocDOzu7QR0s9NVnTyQS9clzasgHDFQAtl5TUxM2bdqEkpISLF++HMuWLcPMmTNx4MABlJWVwcHBASUlJSgqKjI6LyYmBhERESgtLUV+fj67XV+zEhQUhLFjxyIhIQEajWbQD/Tqi3sK0M3KMpgXa+vrz95g7g9Mzynr0D1lPbqnrEP5ZD36/FlnqN5TQ7pLUlNTE7Zu3YrGxkYsX74cDMOgqKgIBw4cgLu7u1EBODg4mD1PXwDOyclBfn4+O4CkYwG4tbUVGo3GaBDvYHbjxg0UFBTg0UcfZQdrjxkzBvn5+cjMzMTcuXPx4YcfIiMjA35+fhAIBGz3ovHjx+PSpUuoqakxGnCjv9nnzZs3JB6adE9Zh/LJepRX1qF8sh7llXUon6xHeWWdoZxPQ7qFQV8AvueeexAfH4+xY8di8eLFCAsLYwvAZWVl7IARw6m9xo8fj6amJpP5kvXNQPPmzWMHdg3mm9tQTk4ORCIR/P39jbZ7enqioKAAkZGR7HiEjguDREVFQSgUoqGhAUB7s6L+Zh8KwQJA95S1KJ+sR3llHcon61FeWYfyyXqUV9YZyvk0pAMGKgB3jbe3N4RCIWQymdH7bW1thaOjIwBg2bJlUKvVOHHiBKqqqtj8yM3NhVwuZ/tmDvYPvSV0T1mH8sl6lFfWoXyyHuWVdSifrEd5ZZ2hnE9DOmCgAnDXJCYmYvny5XB3d2ffr1QqRX5+PkJDQwEA7u7uWLRoESorK7F582ZkZGQgKysLSUlJ8PLyQnR0dH++hV5H95R1KJ+sR3llHcon61FeWYfyyXqUV9YZyvk0pMcwJCYmwsXFxWwBOD4+HkB7AfjQoUPYvHkz7rjjDgiFQpw+fXpYFIAN2djYsGMX9GsklJSUQCqVIjY2lj1u+vTpcHFxwa5du/D111+Dx+PBxcUFq1evhrOzcz+lvm/QPWUdyifrUV5Zh/LJepRX1qF8sh7llXWGcj4N6YCBCsDdp7/RU1NTYW9vj1GjRrH7NBoNYmNjERUVhfr6ekil0l5bWXCgoXvKOpRP1qO8sg7lk/Uor6xD+WQ9yivrDOV8GtIBgyEqAHddXV0d0tLSMHLkSPB4PKhUKpSWlmLfvn2IiIjAbbfdBi8vL3h5efV3UvsF3VPWoXyyHuWVdSifrEd5ZR3KJ+tRXllnqOXTsAkYACoAd1V5eTmampowevRoNDY24vfff8eZM2fg7++PiRMnQiAQ9HcS+x3dU9ahfLIe5ZV1KJ+sR3llHcon61FeWWco5dOwChioANw1paWl4HK5yM3NxY4dO8Dj8fD4449j5MiR/Z20AYPuKetQPlmP8so6lE/Wo7yyDuWT9SivrDOU8mlYBQxUAO4aPp8PrVaLc+fO4Y477sC8efP6O0kDDt1T1qF8sh7llXUon6xHeWUdyifrUV5ZZyjl07AKGKgA3DWenp646667MHfu3EEVBfcluqesQ/lkPcor61A+WY/yyjqUT9ajvLLOUMonDqOfKHYYyMjIQElJCRWAraQf4U8so3vKOpRP1qO8sg7lk/Uor6xD+WQ9yivrDKV8GlYBAxWASU+je8o6lE/Wo7yyDuWT9SivrEP5ZD3KK+sMpXwaVgEDIYQQQgghpGu4/Z0AQgghhBBCyMBFAQMhhBBCCCHEIgoYCCGEEEIIIRZRwEAIIYQQQgixiAIGQgghhBBCiEUUMBBCCCGEEEIsooCBEEIIIYQQYhEFDIQQQgghhBCLKGAghBBCCCGEWEQBAyGEEEIIIcSi/wfPSZDWsfv4LQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAEHCAYAAAADJ8GRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACLmUlEQVR4nO3dd3hUVfoH8O/0Se+9906ABEJvUhQQAWmKCvZe0F13dS2s/lbXXdvqFkVREGmCIk3pvUNISK8kpE16L5NMub8/ZuZmJjOTTHp7P8/DQ3LbnDm5c+e+95zzHg7DMAwIIYQQQgghxADuYBeAEEIIIYQQMnRRwEAIIYQQQggxigIGQgghhBBCiFEUMBBCCCGEEEKMooCBEEIIIYQQYhQFDIQQQgghhBCjKGAghBBCCCGEGEUBAyGEEEIIIcQoChgIIYQQQgghRlHAQAjptvXr14PD4ej943K5sLS0REhICF544QWUlpb26nVmzZrFHlvjzJkz7LKNGzd2uu1gun37Np555hkEBgbC3NwcZmZmCAwMxJNPPonMzEy97TVlnzVr1sAXdhDcvn0bZmZmiI6O1lne2NiIt99+G0FBQRCLxfD398drr72G2tpak467ceNGnXMyODhYb5sffvhB79wdaK2trcjIyNBZ5uvrCw6HA19f3z59rSVLloDL5eL8+fN9elxCyOhBAQMhpM8wDIOmpiZkZWXhP//5D6ZNm4aamprBLtaAu3z5MqKiovD1118jNzcXLS0tkEqlyM3NxbfffouxY8fizJkzg13MQfXyyy9DKpXi+eefZ5fV1tZi+vTp+L//+z/k5OSgtbUVeXl5+PTTT3HfffdBLpd3+3Wys7NRUFCgs+zkyZO9Ln9PMQyDnTt3IjQ0FLt27RqQ13z++efBMAyeeeYZtLW1DchrEkJGFgoYCCG9cvnyZRQWFqKwsBB37tzBtWvXMGXKFABAbm4u/ve//w1IOfbs2cOWY7A988wzaG5uhqWlJb766iukpaUhJSUF7777LgBAKpXiySefHORSDp5r167h0KFDsLKywtq1a9nlf/rTn5CYmAgOh4MPP/wQaWlpeOGFFwAA586dw6FDh3r0eidOnND5fTADhnPnzuHBBx9Efn7+gL3m/PnzERgYiLS0NHz//fcD9rqEkJGDAgZCSK+4urrC09MTnp6e8Pb2xoQJE/Dpp5+y669evTog5XBycmLLMZiqq6uRlJQEAJg7dy6efvpphIWFISIiAhs3bsTChQsBADk5OQN60ziUfPzxxwCARYsWwcLCAgDQ0NCAbdu2AQAWL16MP//5zwgLC8OHH36Ihx56CK+//jrs7Oy69Tqarj3aAUNmZiaKi4sBAH5+fr19K93GMMyAvyaHw8GKFSsAAJ9//vmglIEQMrxRwEAI6XN8Pp/92dzcXGddW1sbPv74Y4wfPx5WVlawsrLC5MmT8d133/XqRqar8Q6HDh3Ctm3bEB0dDbFYDG9vb/zlL3+BTCbTOU5TUxNef/11eHt7QywWIzY2FocPH9bpG98ZgUAALld1af3tt9/w8ccfo7Kykl2/Z88eVFRUoKKiAl5eXgaPcevWLcyfPx8WFhZwcnLCE088oXMMAKipqcEf//hHBAcHw8LCAhYWFggKCsKrr76q099/y5YtbLkPHjyIadOmQSQSwdPTE2VlZex4FFtbW5SVlWHdunVwcHCApaUl7rnnHjb40ZaRkYHVq1fDyckJYrEYoaGheP/99yGVSjutGwBobm7GwYMHAQBLly5ll1+7dg0tLS0AgMmTJwNQdVHicrnYtm0bPvroI8ycObPL42vTjAc5efIke25pWhfMzMwQFxdndN+TJ09iyZIlcHFxgUgkQkBAADZs2ICysjKd7bTrNykpCZ9//jlCQkIgEokQFBSkEzxv3LgRs2fPZn//61//Cg6HY7B7Wl5eHlasWAFra2vY2tpi1apVegFmeno6Vq9eDXd3dwgEAlhYWGDs2LH45z//CaVSqbOtpq4zMjJoLAMhpPsYQgjppnXr1jEAGABMXl4eu1wqlTI5OTnMvHnz2PVff/01u76hoYEZP348u67jv/vvv5+Ry+Xs9jNnzmTXaZw+fZpd9u6775q87fTp0w2+5ttvv81u39bWxkydOlVvGy6Xy0yYMEHv+MYsWbJEb/+YmBjm9ddfZy5cuGBwH822Hh4ejIWFhV4Z5s+fz24rl8uZiRMnGq3HOXPmsNt+//337HJbW1v255iYGJ2/pZmZGRMUFKR3LAsLCyY+Pp493rVr1xgrKyuDrztjxgymra2t07r57bff2O0LCgrY5f/5z390/iYzZsxg627hwoXMnTt3uqx3hmGYd999lz3Oli1b2J8TExMZhmGY5cuXMwCY2bNn65zH2v72t78ZrVs3NzcmLS3NYP0aO8c2b96sVzbtf6dPn2YYhmF8fHwYAIyNjQ3j4uKit11oaCijUCgYhmGY/Px8xsbGxmg5X3zxRZ33JJPJGKFQyABg/vKXv5hUl4QQokEBAyGk27RvtDr7d/fdd+sEAE8//TS7bs2aNUx8fDxz6dIlnQDjww8/ZLfvy4CBw+EwH3zwAZOVlcX861//Ypd7enqy23/99dfs8vHjxzPnzp1jbt68yd5kmhowlJWVMWPHjjVaLzExMTo3nQzD6Kxfu3Ytk5KSwpw+fZqxt7fXu8E+deoUIxAI2JvrnJwc5vr162wwxuFwmIaGBoZhdG9ozc3NmQMHDjCJiYnMuXPn9P6WLi4uzN69e5nU1FTmD3/4A7t88uTJDMMwjFKpZCIjIxkAjKOjI/PLL78wmZmZzJdffslwuVwGAPPpp592WjdvvvkmG7xo++CDD3QCrI515u3tzVRWVnZZ99o35RkZGYxYLGYAMB9//DGjUCgYOzs7BgDz3nvvGQwYLl68yHA4HAYA4+vryxw4cIBJTU1l/va3vzF8Pp8BwISHh7PntXb9ikQiZtOmTUx2djbzpz/9iV0+bdo0hmEYpq6ujvnpp5/Y5Rs2bGAKCwsZqVTKMEx7wACoAsT4+Hjm+vXrjL+/P7tc83f7+OOP2WU//fQTk5uby9y4cYOZOXMmw+VymaCgIKaurk6nbqKjoxkAzNSpU7usR0II0UYBAyGk27oKGObNm8ds3bqVfRrKMAxTX1/P3rxFRkbqBBKNjY2Mq6srA4Bxd3dnl/dlwLB48WKd9xAREcEAYPh8Prts4cKFOjebGi0tLYybm5vJAQPDqFortmzZwsydO5d9sqv9z93dnamurma31yy3sbFhWltb2eUvvfQSu+7SpUs6x09JSWGUSiXDMAyTl5enE9hoggvtG9p169bplVP7b/nDDz/orJsyZQq7rqysjElMTGR/f+2115jCwkL23+zZsxkATHR0dKf1sn79evamW5v2U32hUMgcPnyYqaurYzZu3Mguf/PNNxmGUbVkab+25h/D6AYMeXl5bLkWLFjA3LhxQ+fG21DAsHbtWnbZ1atXdcr4wgsvsOuOHj2qV78vvPACu61SqWRbYgIDA9nlxs5fhmkPGDgcDiORSNjln376KbvPjh079F73ySefZI4dO8Y0NDQwjY2NTHNzs8G6v+eee9jgixBCuoPGMBBCeuXSpUtISUnBO++8w/bvz87Oxvjx49m+/ACQlZXF9nGfPXs2eDweu87CwoLtt15SUqLXX78vhIeH6/zu5OQEADqpOm/fvg0AsLOzQ0hICLtcLBZjwoQJ3Xo9gUCAdevW4fjx46itrcXx48exYcMGWFtbA1C9zx9//FFvv5CQEAiFQvZ3Gxsb9mftlJjV1dX47bffsGjRIjg7O8PPzw+//PILu16hUOgdOzIystMya/4GGppsV4CqT31WVhb7+yeffAIvLy/23+nTpwEAKSkpaG1tNfoa5eXlAMDWg4alpSX78/Lly7Fw4UJYW1vjnXfegbu7OwDg+PHjAFSZubRfW/PPEM04hvPnz+O3334D0Pn4hVu3brHlmzhxos66efPmsT8bGtuhfY5xOBw4ODgAgN44ma44OTnB1dWV/d3QOfDAAw9g/vz5AIBvvvkG8+fPh62tLWbOnIl//OMfemMtNO8JaP8bEEKIqShgIIT0ipubGyIiIvDXv/4Vb731FgAgPz8f8+fP15m4TXsgtCGM1oDn/phIy8zMTOd37YBFQ3Ojrl2W7jp48CAeeeQRzJs3D1euXGFfe+7cufj000+xZ88edtv09PQuy6kddGnKlZqairCwMLz++utITU3F2rVrsWvXLjz77LOdlk37xtOQjjf6Hf8mXf0NAVWgYsrcG9rvCwD8/f3Zn52dnXVe19vbGwBMnrxNmyZgaG5uxhdffAFAFRhpB2XaOnuPXZ2jppxjpjDlHBCJRDh69ChOnTqFF198EZGRkWAYBvHx8di4cSMiIyNx584dg8cXCAQ9KhchZPSigIEQ0mfeeecdxMbGAgAkEgmeeeYZdp2/vz9EIhEA4PTp0zpZXJqamtiba09PT/bJ7EDT3LTW1tbqzMLb3NyMa9eumXSM2tpabNu2DSdOnMBXX32lt177RtPe3r5H5fzHP/7B3pRfuXIFn332GVavXm1SBqfOnD17Vuf369evA1CVOSAgAIGBgey6v/3tb2BU3VrBMAxu3rwJiUQChmF0no53pAkGGhoadJbHxcWxN9g3b95klzMMg6KiIgBgU+bOmjVL57U1/wyZNGkSewOuabnSzlTUUVhYGACgvr6eff8a2ulZx44da/QYndH+G/UmML1z5w6OHDmC3NxcfPHFF0hOTkZNTQ3+9a9/AVC91+3bt+vsozlnNK1rhBBiKgoYCCF9hs/nY8uWLezT2/3797NP1K2srLBy5UoAqm4rDz/8MBISEnDlyhXcf//9bGvEiy++ODiFh6qbh8batWtx6dIl3LhxA6tXr9ZpLenMsmXL2JvirVu3YsOGDYiPj0dWVhZ27tyJxx9/nN32/vvv71E5tW+2t27diuzsbHzzzTfYsmULu7wnsyK/9dZb2LFjB9LT0/HOO+/g3LlzAIAZM2bAwcEBkZGRiI6OBqCaS2HXrl3Izc3Fjz/+iAkTJsDNza3L9xQQEAAAehPsOTk54b777gMAXLhwAW+//TZbDk3AsHz58m6/J6FQqNfVStPqYIj232fNmjU4dOgQ0tPT8dFHH7EBYGRkZKdBR2fEYjH7c2pqKlJTU1FRUdHt47z//vu455578OSTT+KNN95ARkYGiouLdeq1Y4BYUlICAIiIiOhR2Qkho9hAD5oghAx/xtKqamhnvHF3d2eztVRXV7NZdgz968+0qh0HmN5111162ysUCjadp/Y/oVCok6mmK8ePH2fMzMw6HRjesTya5TNnztRZrj2IV5N+88cff+z02ACY8+fPMwyjOzj2+++/1yur9t/Sy8tL7zjW1tZMUlISu/2ZM2fYwesd/zk4OOhsa8iZM2f0BmZrFBQUGCwDoErZqj0Y3JiOg54ZhmHee+89dpm5uTl7HGNpVTWZnAz9c3NzY9LT09ltO6vfgIAABgDj4+PDLqutrWVEIpHOMX/66SeGYdoHPWtvb+w1ioqKdM7Jjv+8vb2ZiooK9hhSqZTN8vTBBx90WY+EEKKNWhgIIX3u9ddfZwcJl5SU4M033wSgGkx848YN/POf/0RMTAwsLS1hbm6OuLg4fPvtt9izZ0+P+333BS6Xi8OHD+OVV16Bq6srxGIxJk+ejBMnTmDcuHEAwHar6szcuXORlJSEZ599FsHBwRCLxexkaffffz+OHz+OjRs39rica9euxaZNmxAeHg6xWAwPDw8sW7YMJ06cYLu8HDhwoNvH3b9/Px599FHY2trCwsICixYtwqVLlxAVFcVuM3PmTFy9ehWrVq2Ci4sLhEIhvLy8sH79ely5ckVnW0Pi4uLYAc7aXXwAwMvLC9euXcNTTz0FV1dXCAQCBAQE4J133sHRo0eNjjvoinZrQGfjFzT+9re/4fjx47jvvvvg7OwMgUAAX19fvPzyy0hISEBoaGiPygGoxpH8+9//Zid38/Hx0Wl1MJWHhweuXLmCN954A+Hh4bCysoJQKERAQABeeOEFXLt2DY6Ojuz2ycnJbKvTokWLelx+QsjoxGEYmiOeEEIAIDExEeXl5fDy8oKPj4/OLNULFizAsWPH4OrqColEMoil7Fvr16/H1q1bAagyIfn6+vb7az711FP45ptv8OCDD+r1syf946OPPsKf//xnxMTE4MaNG4NdHELIMEMtDIQQonby5EksWLAA4eHhmDVrFpKSkpCTk4MtW7bgzJkzANDt9KpEn2Yw/LFjx7qdcpT0jGYskXYiAkIIMRUFDIQQorZ27Vq2G8f169cRHR2NoKAgPProo2hra4NAIMAbb7wxyKUc/saPH4+lS5eisrIS+/btG+zijHg3btxAfHw8oqKi8Oijjw52cQghwxAFDIQQoubq6oqrV6/i0UcfhZ+fH0QiEfh8PlxdXbF8+XJcuHBBL+MO6ZmPP/4YQqEQn3322WAXZcT79NNPAQCff/75oI4RIoQMXzSGgRBCCCGEEGIUtTAQQgghhBBCjKKAgRBCCCGEEGIUBQyEEEIIIYQQoyhgIIQQQgghhBhFAQMhhBBCCCHEKAoYCCGEEEIIIUZRwEAIIYQQQggxigIGQgghhBBCiFEUMBBCCCGEEEKMooCBEEIIIYQQYhQFDIQQQgghhBCjKGAghBBCCCGEGEUBAyGEEEIIIcQoChgIIYQQQgghRlHAQAghhBBCCDGKAgZCCCGEEEKIURQwEEIIIYQQQoyigIEQQgghhBBiFAUMhBBCCCGEEKMoYCCEEEIIIYQYRQEDIYQQQgghxCgKGAghhBBCCCFG8Qe7AIQQ0l9+/fVX3Lp1y+j6l19+Gba2tnrL8/PzsXXrVp1lPB4P5ubm8PHxwYwZM+Dk5NTXxdWjKf+7777LLrty5QquXbuGhoYGODo6Ys6cOQgKCmLXMwyDy5cv48aNG6ivr4ednR0mTJiAiRMn9lm5UlNTcenSJVRWVkIsFsPf3x933XUXLC0t2W0KCwtx6tQpFBUVQSgUIjg4WG8bY6qqqvDvf/8bZmZmePXVV8HnD9xX1ZkzZ3D27FmD54ZEIsG3336LF198UW9dRkYGzp07h8rKSlhaWmLMmDGYPn06eDzegJWdEEL6CwUMhJARa8aMGYiNjdVZ1tLSgj179sDX1xc2Njad7r9w4UK4ubkBAGQyGWpqanDx4kV88803eOSRR+Dp6dlvZQcADoej8/vly5dx/PhxzJw5E+7u7khISMDOnTuxfv16eHt7AwCOHj2Kq1evIiYmBmFhYaiursbp06dRU1ODBQsW9LpMKSkp+PnnnxETE4M5c+agsbERp0+fxg8//ICnnnoKfD4fxcXF2Lp1KxwdHbF06VIIBAJcunQJmzdvxtNPPw2xWNzpayQkJMDR0RHV1dVIS0vDmDFjel3u3iovL8eOHTugVCr11uXm5mL37t2IjIzEXXfdhYqKCpw8eRLNzc1YuHDhIJSWEEL6FnVJIoSMWPb29vD09NT5l5CQADMzMyxfvlzvhrwjJycndj8/Pz+MHz8eTz75JCwtLfHrr78avHnsS5aWlrCysgKgCljOnTuHyZMnY+bMmQgKCsLKlSvh4eGBs2fPAgCam5tx7do1jBs3DosXL0ZAQAAmTJiApUuX4urVq6isrOx1mc6fP4+goCD2+NHR0VixYgUqKiqQlZXFbiMSibBu3TpEREQgODgYa9euhVKpxMWLFzs9vlKpRFJSEiIiIuDn54f4+Phel7k7rKyswOFw2JYQhUKBS5cu4dtvv4VCoTC4T2JiImxsbLBs2TIEBARg0qRJiIuLw82bN43uQwghwwm1MBBCRo3s7Gykp6dj5cqVXT7lNkYsFmPKlCk4fPgw8vPz4e/vDwCoq6vDiRMnkJOTA7lcDi8vL8ybN49toQCA1tZWnDx5EhkZGZBKpXBycsLMmTMRHBxs8LWcnZ3h4uICACguLoZUKkVYWBi7nsPhIDQ0FCdPnoRMJkNVVRUYhkFISIjOcXx9fcEwDHJycuDo6Nij9w2oujv5+/vDx8dHZ7nmmNXV1QCAiooKeHt7w8zMjN1GIBDA09MT2dnZuOuuu4y+Rm5uLhoaGhAcHAx7e3vs27cPFRUVOl3AEhMTsX//fr1uQ59//jl8fX2xdOlSAKr6PnbsGDIyMiCTyRAcHAxPT08cPXpUp5uXNmdnZzg4OLDdoLKzs3H27FlMmzYNlpaWOHjwoN4+crkcQqEQXG77Mzhzc3MoFAq0tbXp1AMhhAxH1MJACBkVGIbBsWPH4OPjg/Dw8F4dKyAgAABQUFAAQPVkf/PmzSgpKcHChQtx//33g2EYbNmyBRUVFQBUT863bduG5ORkTJs2DWvWrIGjoyN2796NO3fuGHydqKgorF27FgDY4zg4OOhsY29vD4ZhUFNTA3NzcwBAbW2tzjY1NTU6//cUh8PBggULEBoaqrM8IyMDgOpmG1DdLNfV1entX11d3WUZEhIS4OTkBHd3d4SFhUEoFOLGjRs9Ku+uXbuQlpaGWbNmYcWKFWhra8OJEyc63cfLywvPP/88+7u7uzteeeUVzJgxQycg0DZhwgRUVVXh0qVLkEqlKCoqwpUrVxAUFETBAiFkRKCAgRAyKmRlZaGyshIzZszo9bE03VUaGxsBqMYWtLS04OGHH0ZUVBRCQ0Px0EMPwcLCAmfOnAEA5OTkoLi4GPfddx8mTpwIf39/LF26FO7u7sjLy+vyNVtbWwEAIpFIZ7nm99bWVjg4OMDb2xtnzpxBeno6pFIpJBIJDhw4AB6Ph7a2tl6/946qq6tx/PhxuLq6soOvx40bB4lEgiNHjqChoQGNjY04fvw4KioqIJPJjB6rubkZWVlZGDt2LABVq0RERASSkpI63c+QvLw85OfnY8mSJZgwYQKCg4PxwAMPwM7OrlvHsba27vKm38/PD1OnTsXx48fx0UcfYfPmzbCwsMDy5cu79VqEEDJUUZckQsiocO3aNbi6urJdiPqCZgxEXl4eXF1dYW1tzY5r4HA4CAwMRFJSEgBVawSXy9XpLsThcPD444+b9FoMw5hUlpUrV+LQoUP46aefAKi6UM2dOxdnz56FQCAweuyOxzf2NF1bZWUltm3bBi6Xi5UrV7JlGD9+PFpbW3H69GlcvXoVABAeHo6YmBgkJiYaPV5SUhKUSiWCg4MhlUoBAGFhYUhISEBKSgrGjRvXZZk08vLywOVydVpDOBwOIiIi2DEffeXw4cNISEjA9OnT4e/vj9raWpw5cwbbt2/HI488YrTeCSFkuKCAgRAy4rW0tCA/P7/TvvPdUV9fD0D19Flz/Orqarz//vsGt5fJZGhuboa5uXmXA62N0W5J0H7i3bHlwdLSEmvWrIFUKkVDQwPs7OzA5XJx+PBho0/Kz549q3cTbayPv0Z+fj52794NoVCIdevWwd7eXmf95MmTMXHiRNTU1MDMzAwWFhbYt29fp0/rExMTwTAM/vOf/+iti4+P71bA0NTUZLC+TUnr2h319fWIj4/H9OnTMWfOHHa5h4cH/vvf/yIhIaFPU9oSQshgoICBEDLi5eTkQKlU9nrsgsbt27cBgB38KxaL4ePjg/nz5xvcnsfjQSwWo7m5GQzD6NzESiQSANAZHG2I9sBiDw8Pdnl1dTV4PB7b1SYlJQVOTk5wcXFhB3aXlJSAYRijrxETE2N04LUhycnJ+PXXX+Ho6Ii1a9eygZNGSUkJ6urqEBYWpjPIWiKRGC2DRCJBWVkZZs2apTeoOj09HdeuXUNpaSlcXV3Z5R2zVGl3ubK2tjZY301NTSa/T1Noxmp4eXnpLHdycoKZmRnKy8v79PUIIWQw0BgGQsiIV1RUBGtra4OTtHVXa2srLl++DBcXF/Ym0cfHB1VVVXBwcIC7uzv779atW7h58ya4XC58fHygVCqRk5PDHothGOzfvx/nz5/v8nW9vLwgEAiQlpams396ejp8fHzYrD7nzp3DhQsXdPa9cuUKRCIRfH19DR7byspKp9zu7u5Gy5GdnY19+/bBy8sLjz32mF6wAKhaH3755Re2WxGgyn5UUVGhl8FJIyEhAXw+H5MmTYKvr6/OvylTpoDD4bCDnzWtKZqWHkDVPaqlpYX93dfXF0qlEpmZmTr1pRmg3Vfs7e3B4XDYAfAdy9PdMROEEDIUUQsDIWTEKy8v79HMzBUVFeyNuFwuR2VlJa5evYrm5madPvuTJ09GUlISfvjhB0yZMgVmZmZITU3FzZs32cnSgoKC4OnpiV9//RVz5syBnZ0dkpKSUFlZiXvvvbfLsggEAkyZMgVnz54Fj8eDl5cXEhMTIZFIsG7dOna7uLg4HDp0CE5OTvDy8kJKSgqSk5OxaNGiHqeS1ZDL5Thw4ABEIhGmT5/OZm7SsLa2hrW1NcaMGYMLFy5gz549mDJlCurq6nDs2DF4eXkZnIRNLpcjOTkZQUFBeoO6AcDGxga+vr5ITk7GvHnz4OfnBz6fj2PHjmH27NlobW3FmTNndLo7+fj4wN/fHwcOHEBjYyNsbW2RkJCAsrKyXtVBRxYWFpg0aRIuXboEAPD390ddXR3Onj0LGxsbxMTE9OnrEULIYKCAgRAy4jU2NrLzGXTHb7/9xv7M5XJhZWUFPz8/TJ8+XafPvpWVFR577DGcPHkShw4dglwuh4ODA5YsWcL2u+dyuVi7di1OnDiB06dPo62tDa6urnjooYd0uhh1ZubMmeByuYiPj8fly5fh5OSENWvWsLM8A6ruRTKZDNeuXcOFCxfg4OCA5cuXIyoqqtvvv6PCwkI2M9SPP/5osHyzZs2CpaUlHnroIRw7dgw//fQTxGIxxo4di9mzZxscTK2ZlyIyMtLoa48ZMwZ5eXlITk5GbGwsVq9ejRMnTmD37t2wtbXFzJkzcevWLZ19VqxYgWPHjuHkyZNQKBQIDQ1FbGys3na9NW/ePFhbW+PGjRu4fPkyLC0tERAQgDlz5vQ6SCOEkKGAw3SVeoMQQggZZmpra1FUVISQkBCdLEV79uxBdXU1nn766UEsHSGEDC/UwkAIIWTE4XA4+PXXXxEaGopx48aBy+UiJycHaWlpuO+++wa7eIQQMqxQCwMhhJARKS8vD+fOnYNEIoFSqYSTkxMmTZrUJ92zCCFkNKGAgRBCCCGEEGIUpVUlhBBCCCGEGEUBAyGEEEIIIcQoChgIIYQQQgghRlHAQAghhBBCCDGKAgZCCCGEEEKIURQwEEIIIYQQQoyigIEQQgghhBBiFAUMhBBCCCGEEKMoYCCEEEIIIYQYRQEDIYQQQgghxCgKGAghhBBCCCFGUcBACCGEEEIIMYoCBkIIIYQQQohRFDAQQgghhBBCjKKAgRBCCCGEEGIUBQyEEEIIIYQQoyhgIIQQQgghhBhFAQMhhBBCCCHEKAoYCCGEEEIIIUZRwEAIIYQQQggxigIGQgghhBBCiFH8vjpQZmYm9u3bh+LiYlhYWGDKlClYtGgReDxer/ZpbGzE3r17kZKSgra2NoSEhGDVqlVwcnLqq6IPGdXV1bC3tx/sYgxpVEemoXoyDdWTaaieTEP1ZBqqJ9NQPZmG6qlrfVFHfdLCkJeXhy+++AL29vZ4+umnMWvWLBw5cgR79+7t1T5KpRL/+te/kJmZiVWrVmHdunWoqKjAJ598gpaWlr4o+pDS1tY22EUY8qiOTEP1ZBqqJ9NQPZmG6sk0VE+moXoyDdVT1/qijvqkheHAgQNwc3PDk08+CQ6Hg8jISPD5fPz8889YsGABbG1te7RPfHw8CgoK8NZbb8HLywsAEBgYiL/85S84d+4cFixY0BfFJ4QQQgghhBjR6xYGmUyGrKwsjBs3DhwOh10eExMDpVKJ1NTUHu+TmpoKR0dHNlgAABsbGwQGBiIpKam3RSeEEEIIIYR0odcBQ2VlJeRyOVxcXHSW29nZQSAQQCKR9HgfiUQCV1dXvf2dnZ1RWlra26ITQgghhBBCutDrLkmasQRisVhvnVgshlQq7fE+LS0tcHR01NtGJBIZPK6pJBKJXiBjZ2cHPz8/SKVSpKWl6e0zfvx4AKqB2k1NTTrrfH19YW9vj4qKChQWFuqss7KyQlBQEBQKBW7duqV33KioKAgEAuTm5iI3NxclJSXsOg8PD7i4uKCmpgZ5eXk6+5mZmSEsLAwAkJCQAIZhdNaHhYXBzMwMd+7cQVVVlc46FxcXeHh4oKGhAdnZ2TrrBAIBoqKiAADJycmQyWQ664OCgmBlZYXi4mKUlZXprHNwcICPjw9aWlqQnp6us47D4WDcuHEAgPT0dL0xKH5+frCzs0NZWRmKi4t11tnY2CAgIAAymQxJSUk6dQQA0dHR4PF4yM7ORkNDg846Ly8vODk5obq6Gvn5+TrrLCwsEBISAgC4efMmOgoPD4dYLEZeXh5qamp01rm5ucHNzQ319fXIycnRWScSiRAREQEASEpKglwu11kfHBwMS0tLFBUVoby8XGedo6MjvL290dzcjIyMDJ11XC4XY8eOBQCkpaXpfQb8/f1ha2uL0tJSvXqytbWFv78/2trakJKSovdex44dCy6Xi6ysLDQ2Nuqs8/b2hqOjIyorK1FQUKCzztLSEsHBwVAqlUhMTNQ7bmRkJIRCIW7fvo3a2lqdde7u7nB1dUVtbS1u376ts04sFiM8PBwAkJiYCKVSqbM+NDQU5ubmKCgoQGVlpc46Z2dneHp6orGxEVlZWTrr+Hw+xowZA0DVgllcXKxTT4GBgbC2th6y14i6ujqddQN1jaisrGTraahfI5KTk/XqcKCuEdr1NNSvER2vowN5jdCup6F+jWhtbdVZP5DXCE09DYdrhLaBvkZo6mk4XCO0DeQ1QlNHhq4RmvOyS0wv5eTkME899RSTnJyst+61115jfvzxxx7v89ZbbzGbNm3S22bv3r3Mc8891+Myv/766wwAnX/Lly9nJBIJc+nSJb11ABiJRMJIJBImJiZGb92XX37JSCQS5oMPPtBbN3PmTEYikTBZWVkGj5ucnMxIJBJm/vz5euveffddRiKRMJs2bdJbFxkZyZZJKBTqrT9z5gwjkUiYBx98UG/dCy+8wEgkEubnn3/WW+fm5sYe183NTW/9zz//zEgkEuaFF17QW/fggw8yEomEOXPmjN46oVDIHjcyMlJv/aZNmxiJRMK8++67euvmz5/PSCQSJjk52WAdZmVlMRKJhJk5c6beug8++ICRSCTMl19+qbcuJiaGLZOh4166dImRSCTM8uXL9da99tprjEQiYXbs2KG3ztfXlz2uvb293vqDBw8yEomEeeqpp/TWrV+/npFIJMzRo0f11llaWrLHDQ4O1lu/ZcsWRiKRMG+88YbeusWLFzMSiYSJj483+F7z8/MZiUTCTJ48WW/dxx9/zEgkEubjjz/WWzd58mRGIpEw+fn5Bo8bHx/PSCQSZvHixXrr3njjDUYikTBbtmzRWxccHMy+V0tLS731R48eZSQSCbN+/Xq9dU899RQjkUiYgwcP6q2zt7dnj+vr66u3fseOHYxEImFee+01vXV0jaBrRMd/dI2ga4T2P7pG0DWi47/hcI0wFYdhOoSU3VRSUoK//vWveOqppxATE6Oz7oUXXsDs2bNx//3392ifDz/8EJaWlnjxxRd1ttm+fTsSEhLw8ccf96jMQ/XpYW5urk6Lymh4MqBh6pOB06dP67U6jfQnAxrdbWHQridqYVAx1MKgXU/UwqBiqIVBU09D/Rox2C0Mmnoa6teIwW5h0NTTUL9GDHYLg6Oj47C4RmgbjBYGR0fHYXGN0DbQLQyOjo69amHodcAgk8nw0ksvYcmSJbjnnnvY5TU1Nfjzn/+MdevWYcqUKT3a57vvvkN+fj7ee+89nf0///xzKBQKvPbaa70p+pBTWlpqcMwGaUd1ZBqqJ9NQPZmG6sk0VE+moXoyDdWTaaieutYXddTrQc8CgQDBwcFISEjQifDj4+PB5XIRGhra433Cw8P1IsW6ujrk5OSwTxYIIYQQQggh/adPJm5btGgRCgoK8PXXXyM5ORlHjhzBL7/8gpkzZ8Le3h4ymQy3b9/WaY7pah8AiI2NhZubG7744gtcuXIF8fHx+Oyzz2BpaYmZM2f2RdEJIYQQQgghneiTgCE4OBjPPvssqqqq8NVXX+HMmTO4++67sWrVKgCqVoGPPvoIFy5cMHkfQNWX8OWXX0ZAQAB27tyJbdu2wdnZGa+99hrMzc37ouiEEEIIIYSQTvTJTM+AasBIdHS0wXWOjo74+uuvu7WPhp2dHZ566qk+KSMhhBBCCCGke/qkhYEQQgghhBAyMlHAQAghhBBCCDGKAgZCCCGEEEKIURQwEEIIIYQQQoyigIEQQgghhBBiFAUMhBBCCCGEEKMoYCCEEEIIIYQYRQEDIYQQQgghxCgKGAghhBBCCCFGUcBACCGEEEIIMYoCBkIIIYQQQohRFDAQQgghhBBCjKKAgQya0noptscXoblNMdhFIYQQQgghRvAHuwBk9PrfxXz8ll6OBqkcz0z1HeziEEIIIYQQA6iFgQyaOzUtAIDM8sZBLgkhhBBCCDGGAgYyaDh6PxBCCCGEkKGGAgYyaBj1/xQvEEIIIYQMXRQwkEGjZFQhA5dDIQMhhBBCyFBFAQMZcI2tcjzz0y2kl6nGLigYpos9CCGEEELIYKGAgQwoqUyBNw6lI76oDuYCHgCgTa7scr/q5jZklDXgYkEDUiT1/V1MQgghhBCiRgEDGVBHMspx5U4NAODrVWPA4wDXCmrx8I83cVW9vKP86mbc8/UVPLw9AX+/IMHjuxJR2yIbyGITQgghhIxaFDCQAaNkGHxz+Q77e7CzJe4OcwYAZJQ34oWfk9lxDdoKa1ugZIAx7tbq46haHAghhBBCSP+jgIEMmOyKJpQ3qm7096yPBZfDwZtzg3W2+ff5PACATKFEq1yJqqY2fHYmFwCwONwFK8PtAYBmhyaEEEIIGSA00zMZMFK56iZ/fogTfO3NAQBCPhdetmIU1koBANtuFCHOxw6v7U9Fa4exDU1tCpgJVDHu7oQSOFoK4WolHsB3QAghhBAy+lALAxkwmt5GPnZmOst3PByj8/sLPyfrBQsarpYCAKqxEHsSSvq+kIQQQgghRAcFDGTAKJSqiIHTYd4FsYCHu0Od9bYX8tq3i/Oxxcqx7pjmbYlvV0cDAM7nVfdjaQkhhBBCCEABAxlAmhYGHld/ora35wdj76Ox+HBxGLsswtWa/fmtecEQ8bngcDiIcFMtz6tqRptciZrmNjA0lwMhhBBCSL+ggIEMGM0EbYYmdhbyufCxM8dY9/YgYbq/Pfuzpah9uA2fy8GCUCcAwH8u5mH+V1fw/bXCfio1IYQQQsjoRoOeyYDRpEzlGYoY1BwtRdizPhYyhRL+DhawEvNhby7UCRgA4N4IVxzNqMCO+GIAwKZL+XgoxhNCvioGfmVfCtLLGrD9ofFwtBQBABiGwdu/ZcDdRoznpvn1x1skhBBCCBlxKGAgA0Y9hMFgC4M2TQYlAFga5WZwm7EeNjq/Kxhg7Y/x2LN+AtrkSlxUj294cNtNzAhwwLIxbvCwEeNoZgUA4NmpvihvbIOzpVBvTAUhhJC+U9siA5/LQWFtCwCgqloKa3sFzIW8QS4ZIcRUFDCQAWNKC4OpRHwutjwwFut3JrLL8qtb0CpXoqROyi6raZFhf0op6qQyvDorgF3+7wv5+OG6qhtTrJctvlgeCQGPeugRQkhfKm2Q4t5vruktH+tRi29Wjx34AhFCeoTukMiAaW9h6Jsn+hFu1hCpuyBFuFoBAI5mlGN3YjG7zRtzAyHic3EmpwpNre2TvZ3MqmB/vlFYi9L61j4pEyGEkHaZ5U06vz8c6wlLIRcSuuYSMqxQwEB6JbmkHqeyK03KUqRUaloY+u71tz44Dh/dG44YT1UXpfePZeHnWxIAwD+XhGP5GHfYiFUNaQ9si2f3K1a3QkzzUw2sphxLhBDStV+SJGyXz47qpTL890IedtwsYpdduF3F/rw2xhMvzfCHozkfUpnC0CEIIUMUdUkiPXYwtRTvHc0CAGx/eDyCnSw73V7JGJ6HoTcCHC0Q4GiB8Z428LQ1w52aFmyPV31ZedmqJoj7x5IIrN+RoLfv4ggXiNTdkBgKGQghpFO1LTJ8eCIbAHBtw3T2Wv5LUgkapApUNbdh501VC++KMe7YeDQT8YW17P7e6kk7RTwuWuXygS08IaRXqIWB9Eh+dTMbLABAYU2Lwe0qGluxbPM1vHk4HSmSBgBAfwwVsDUTYNkYN6wZ584u81QHDBGuVjjwxEQ4Wwp19hnjZg2oY5eRNI1DY6scb58qwv5kyWAXhRAygtRL22/y/3Agjf35wxM5+PeFPNS2yNhliSV1OJ5ZwS57Y24Q7glTTdAp5HEglStp/hwyqM7frsJnZ3PpPDQRtTAQkzEMA0l9K1ytRfjX2ds661JLG3BXsJPePmdyqlBUJ0WR1kBkDvovK5GrtRifLY2AuZDHjm8AADdrMQ4/NQkMw+DfF/LRKldgSaQrPj6dA2BkBQwX86qRWNqMzKpc3GckyxQhhHRXc1t7wJBa2oD86mbsvVXCLpPUt1/nt99QtfS+PT8YiyNcdY6juTYfTivTW0fIQJAplHj111QAwCOxXnCwEHaxB6GAgZhszy0J/nkqR2fZH+cE4p+ncrDtRhHyq5vx98Xh7FwIAPD1pXwAgK+9GfKrVa0QhmZ67kvT/B2MruNwOHhxevscDFx1k/pI6pJ0Q90FoEWmxAM/xOPv94bBx868850IIaQLKaUN7M+tcgXePJSO7Mr2Qc2JxfXsz5fyawAAfvb6155wJzPcKGnCudxqChjIgKppbsNfj2bpjMORymk8jSmoSxIx2S9aT5IA4KuVY7AgpL1V4fztakz94gIe35UIqUwBuZJBY5vqg7jzkVh2u36OF7pFU5SR0MJQ1tCKvx3PwunsSnZZTmUTPj6Vy/7eIlPgj/tTcTa3ytAhyBD0yr4U/OVw+mAXgxBUNraxPze2KnSCBW0vaT2U8TEQMNwXagsAaFMoAQByJYPkknrcLKrtsgzlDa3ILG/sRqkJaXe9oFZv0H6LTDlIpRleqIWBmExz8w8A90W6Yryn7uRp7tYilNS3IqmkHimSBrhai6BQMlgc4QK+VpQwpCZKG0FjGP5+MhsXbutnL7lVUgclw+BsThVeP6jqd5xQXIeZz00Z6CKSbmIYhv1y+9uisEEuDRntmtWZjRwshKhqUgUPsV62CHaywA71YGc+l4OHJ3ihqlkGJcPAUqR/myFQfx+0qp/sfnn+NnbEq/Y/8vSkTruHLPn2KhSMauD04ggX/HluUN+9QTKixRfWYnt8sd5yythlGmphICapbZGhrKE9b/ab84LA4XDA4XDw1coxeHdBMH59fCJemekPAPjLb+lY9t11AIC3evCxhkI5dO7OR0qXpBaZgg0Wdj4cA3crgdY6JQ6llmGnVqrDAEeLAS8j6T7tQaYJRXWDWBJCgGb1QyMH8/bry9NTfDAjoL0bqGZ8wisz/XUmy9TG4XDUmZJU113teXD+fiIbxXUtuFVSh/9eyMO1ghowDINWueopsEJ9qW5VKHE6p1Lv2IQYolAyeG1/KtLKGsDncvDyDH8sClcNwr9eUDu4hRsmqIWBmOSE1kRnvvZm7I02AMR42bI/i9VfFtXN7dkyPDsEDHLl0Gn+Y7skDfDrypUM7lQ3w91GDDMBr9fH+zW5FAAQ6myJQCcLmPF1nwW8fywLAq0JMFrlSjy2MxF/uisQIc6dp8Mlg2dXQvvTsKd+uoXzL06FuA/OF0J6okkdMDwc64Xf0svgaWOGaHdr1LTI4GQhRHWLzOSWMBGfy7YwaIIBADiTW4VaqYwdD3E4rQzhLla4WlCD9+4J1TlGdbMMpQ1SuFqJ++LtkRHqYl41LudVs+fvt2vGIsLVCodSS3E4rZztGtdd+dXN4HI4bLrgkY4CBmISTWq8ZVGueGmGv9HtRB1uVO8Jc8ZkXzudZXLFEHqaP0hdkj4/k4vdiaoxIfsem6AXVHVHi0yBT8+oxiksCFU9MXkgygHxFXKM9bDBD9cLUVwnhUyr3lPVgxdfP5iG/Y9P7PFrk/7VINXNVV/bIoMrBQxkkDSpsyTNCXLE3eoUqQBgby7Eb09P6taxhHwue6PWsUuI9uDp8sY2lDeqxlz96WB7KtexHtZILK7HK7+kYNe6WBBiSFFtC17Zl8L+/vb8YES4WgEAgtRzRzX3oEtSg1SOlVtuAAAuvDRN795nJBr575D0icRiVXeI+6PdDfZJ1dB++vl/C0Px3j2h7PazAlXN1o6Won4safdw1RHDQOVh/ubyHbyyL0Un24jmZr+nNDeVjhZCrBqrmociztMS790TiuVj3PDWvGB221dnBegMOi+pkyK7ggYQDlVNHb7ItFvuCBlozW0K8LkcnUx4PSXkc9mWBe0Whs5oerNefGkaNt4dAgDIr2nBu79nsMEMIRrXCmp0gkwAiPNpf4Cpad2X9mDQc1VzewIA7flHRjIKGIhJJOo+ph0nP+vIRtweTEz1s9dZ99a8YPxrWSRmBhhPezrQND2rBiJcYBgGmy7fwcW8avYJP6DKLiXvwbgOhmFQWi9lm1lnBjoY/CKP8WofnD4zwAEdX2rbjSKQoUcqU+BUlqqP9iT1l9ztKsNZaQgZCM1tClgI+6aFS6QOGD48ka3zAEXDSsTHymh3veUTvW0h5HPhYWOGx+O8oVAy+C29HMkl9XrbktHtq4v5yKpoAp/LwX9WROHEs5PhYtX+wNJMoPq+/CVJgorGVmOHMaixtT1ALdWaf2Qko4CBmESmUELE58LOvPOAYbynLf62KBT/XRGl1xJhYybAFD/7fp+HoTs0JRmIcdhVHZ4Oi/hc2KsHD8ar507ojk/O5OLeb69h1VZVs6i5ka4q2lmpzIU8uFrptvC0UIaIIWl7fBHbVP7cNF8AwOG08kEsERntmmR9GDDwVF2Sfklqn5H+/ItT2Z9fnxOICDcr9vcHxnvg7fnB+MeScHbZM1N98dIMVQrXtqHU1ZUMCcmSBrhYifD705Mw0dsONmYCnfXW4vbfD6SUduvY2gHDs3uTUNnNgGM4ojEMxCSNrQr4Gsin3RGPy8H8EOcutxsq2JvpAeiSVFzXovN7uIsVpvnb48vzeajrQZNmx1zkjibMVGkh5OF/K8egvLEVEa7WmPbFBZ2xDWTgNbcpkFBUh7SyBiSV1GNplCvuCnZCpTpt5Uf3hrN9bW8U1iKnogmBTpTlipiOYRj8nl6OC3nVeOOuIFiJe/bV39ymMOk6YwqRVpck7WVzg51Q1dSGmYEOEHA5SC9rwMIwF4S7Whk8jpivCmDkPRy4SkYmzVN/MZ8L2w6BgoaIz8V/VkTh+b3JqG/tXpc27TTzMgWDfcmleHKyT88LPAxQwEC6pGQYNLXJ++zJ0lAykF2SMsp0b/DjfGzhrB7P0d2n/HKFkh0YGOFqhcURLlgc7mJ0+2l+9rheWAsBjwtPWzN42ppBqQ6SepohgnRPWmkD/ncxHy9M99PJTLXp8h1sj2/vFna7qgl3BTuxXc2i3KzA53IwyccOV+7U4IFt8Xh3QTDNkEtMllhcj3ePZAIAFoY5Y5p/z7qFNrXJ+ywjjJDPhUzBgMdRpUp9c64qVfeHi3WzLP1hdmDnx1Fnf6MWBqJNM97L36HzhyseNqoMW919aKcZO7h6rDt2J5YgzUC3upGGuiSRLpXWt0LJgL25HUk0vaMGokvSSXV/9Cg3K6we647FEa4wUwdhzd0cdFWrvlhZi/jY8uA4rIh27zTd5mfLInHhpWk6y7gcDvhcDmQUMPSrrIpG/JIkwbodCbhypwZHM9q7FR1MLdUJFoD21JXX1LnBzdXnyP3Rbuw2p7Ip/zwxXblWd4l6ac8GB8sUSsgUTJ+OYQBUwcIkHzssG+PWxR6GCXiq48iGULpuMvik6pS9gY6d94ywUnedPpxWjoKaFiiUDK4V1OC/F/I6HUjfqF432Vc1VvNCXjUu3K7qi6IPWdTCQLqUV90MAPB36LpL0vAzcBO3aS5gm9eMZbtCFdSo6rbbLQzqL8fpvRxAbqhbAOlbrx9IQ3Fd+6A47eD0vaNZets3tSlQ3dzGzqSryeQxwdsWy6JcsS+5FPVSOf59Pg8tMgUejPGAh83oyANOeka7v/XFvGos7KQ10pisCtWAe2NjpbpL05UIaJ/xuSf46hYG6lpJtGm+17qat8ZaLGBT9N7//XWddb725kY/K42tqnPWUsTDghAnHM2swIZfU/HjQ+NH7NxG1MJAOqVQMjiUqhoM5DcCAwZ2OHA/f9dIZQqklzXCzVqkOwhZfTH738V8/O9insnH08yWze/lAHIBj4v0skbkq4NC0vcqG1U3/nOCHAEAzQaeWtl06FO+4KsrAIApvnbsJIkWQj7enBcMMwEXt0rqsfV6IX5KLMHabTexPb4IbR0CPyXD9Cj7Fhl5jma0T7zZ8cZaoWT05kEwpLBGNQbLuofjHzrSPudnBjr2+DgCruo2hsYwEG2aVKmmzI/wgZHJBt89kgm5QomfEkvwyWnd9OeaINxSxMf/ae3fscV4JKEWBmKUkmHw8PabyFY/WQrooi/gcDRQXZK0czZrM9Nq3v/uaiHmhzgjwLHrepb3UcBga8ZHbYsMbx5Kx45HYnp1LKKvTa5Eq0KJyb52+OOcQJzKrsSp7Eo0tCowzb897fAn90Ugo7wRO28W67RGvGag/7a5kI8WWfv51NSmwOdnb8PNWswGJQ1SOVZuvYGqpjZEuVnD1oyP1eM8dHKQk9HDQtR+nZFrdd3Zk1iCf5zKgYWQhzfnBsHGTGDwHKlubsN/LqgeaGi6YPSW9sBrF6ued3fVzGD/c5IEC8NdOp0niIwebAuDCQGDk6UIMwMccDZXv0vRE7tvsWnQPWzEiPawRnZFEyTqQdUdz7fS+lbIlQza5Eq2O+lIQZ+sUUamUILP5eg85TamuU2B7IomcDnAX+8OhdcInP5cUw/93SVJc/Ga5qfbhahj8/6l/GrTAgZF3wQM/1wSgZVbboyaiWcGWmKJasJDEY8LOzMBot2tkVbWgBNZFTiR1f7Ud4y7NaI9bGAjFuDt3zMAAAtCnAwOMPWyFbPdlb5bMxansivxY3wRKhtbsetmMS7kVSGrvAk16r9pskQ1OP5OdQt+fmxCv75fMjQptJ6IaB42tMqV+MepHACqoPMvv6nOu+uvztDb/6eEEpQ2qMZBeNqK+6RM4S6qrEdCHgeBJlzzjLFTZ8C5XdWMfUkSPDzBq0/KR4Y3TTc3Ed+0m/a35gfj7P8us79725mhoKZFZ86kTzpMsspB+xiIvy0KxV8OZyChuA6TPz/PbmMu4GHXuhi4WffN52YwUZekUaS2RYYFX11hs2V0RdOvfkGoM+4OGz6pUnuiv7Kqvnc0Ew/9eJNNkdmxebRj/8q0Ut1MSi/+nIxnfrqlNxO15kufx+tdwOBrb44gJwtUNLXhszO5JnVNIKarblLdtPs5mIPH5eDbNWPxlFbqvYdjPXH55Wls4Gpv0Z7+z9/ITdRnSyMx3tMGr88JRJS7NWaqZ1CvapbhkzO5uHqnlg0WtBlaRkYHQwFDxy5snSltUD1N/XRpBJvit7dmBzni/ItTcfr5qSal7DYm3NUKr84KAADcrm6mMVkEACBlxzCYdptrJeKzcxRteWAsHorx7HKft+YHs60I80OcEetlq7dNs0yBJd9ew+qtN1DXItP7Lh9OqIVhFCmpk6KhVY7f08vxwHgPhLno5rXee6sE1wtqsSDECeO9bNEiM71Jb7ji9vM0DAdTywAAt9QpUDvOxGwp4sNcwMO8ECecv12FE1kVCL5mgaWRrhDwuLhypwYAUNbQCkl9K67cqUFjqxyu1qoLG9+ElqKuaP6+O24WI9bbFtN7mHKR6GtQ93MN1RoEtyjcBZVNbXCyEOGRCZ46rX2e6sHLzpZCPDrR8JNSSxEfX6+KZn+3V0+mWGOk25tGxwn7yOihUDLgQHW907ROthrp8y9XMnotl+XqcTiT+rhLW1cDUk3B4XBwV5AjPj2Ti0OpZbh4uxoHnpjYJ8cmw5cmcDRlDAOgmkPq50cnoE2hhKWIDy87M+RVN2PnzWIAwK5HYnCrpA5ppY3Yn1KK9+4JwT1hugOiv1weiYzyRly4XY3syiac0+ridLuqGXP/dxnzQpyMjpkY6ihgGEW0M/EcSS/XCxg+Oqlqnj6VXQl3GzH+qZ5R02wEX3gHqkvSpst3AOgHX3wuB2fVs5tO+ZeqGfO/F/Lx3wv5cLZsnyAprbQBH53KYXNLs/v3soUBAIS89jI19DDlIjFMMzDOQqufq5OlyGhueXcbMX5YOw5+9uYmdRsEwM4WfjitTG9doKMFaltkqGxqg7vN8G8SJz2jYBjwuBxVwGCgheF/K8bg49M5yK1qRptciUaFEi0yBbIqmjDF1w6VjW2wNxewKUyHGnsLIcJcLJFe1oga9fnuaTvyutAS02lay8UmdkkCVA/0NA/1rMUCbJjpzwYM3nZmCHC0wPIxwB/nBBoMRPg8LiLdrBHpZg25Qonb1c1Yu+2mzjbHMysQ5mw5LLvODc1PP+kX2gHDjpvFyCgzPtFISZ0U8YXq/tcjuIVBc0vWH+GCoabHji0M2r5aGa2T41zzVA8A/nQoXS9YAAA+t/d/myatGStTJCN/8pmBpAkYrLoxEDPMxapbT0cthDzwuBy9iavifGyx5cFx2P/4RACg+TZGMYVSFTDwuVwkS+rx9aV83Lf5GgDV/B6x3rZsF7hVW29g3v8uY8m31/CH/anYlVCM8sZWOA3heXj4XA5+WDsea9XdSDTXtHqpDAlFdYNZNDJIutvCYAiHw8Ff5gXhzblBOsGyKcfk87gINtJ9798X8oZlVi9qYRhFWjpMDrb3lgRvzW9vZRDydG86NM1pI2GwjjGcfuySpKlKP3tz2JoJoGCYTrPUjHG3xpkXpqrSHMoV+PmWBE1tChxMKUVFk+HuJr0d9AwAjpZCQD2X2OX8ahzPrICXrRjXC2sR62Wr1xJFTNfQg4ChuzgcDkQ8LpqVqpukt+cHo7ReigdjPCHic9kZvWWUYnXU0nQz0txIf3ulgF0nUt8IaVoayxpadfb94pwqO5KThRBDneaBS1VTG6QyBZZ/dx11Ujn2rI/t1TgJMvx0dwyDMUujejahoMa3a6LxxK5b4HKAJyb54MqdGiSV1ONsbhXuCnbq1bEHGgUMw1xBTQukcoXRSFabpoXhD7MD8PHpXOxPKUWEqxWWjXGDkmH0nlDeKKwFoLqRHak4monb+iFi0DxBcLcR4/NlkSbvx+NyYCHk4xF1k+VTk33w5O5bbLYbbX0RMPzprkDMDqzF+8eyUFQnxZuH03XW//muQCwf42ZyFxnSrrGtfXKf/qSZ5ZbH5WBJpKvOOi6HAx6XMyyfaJG+oTAwLkFD0+pp1sWNVbTH0P8esFVnTHp5X4rOpJSUBW50kSuUOKQePzjYPSSi3W1w8rnJsBTxweVwoFAySCqpx58PpePKK47g9cF3+EAZuX1Nhrg2uRI3i2p79SXe2CrH/d9fx9ptN5FdoZtdh2EYHEkvR720/UKp6dOn3bSsya39/N5ko6/jZDn0nyz1FNvC0IfH3BFfhAVfXWbnrxD08oLA43LwyX3huDvUGYsjXDDG3RqLwl0wP8QJs4N6PuGRhquVGEsiXdkv247+fjKHHbxNukczJqS/c8M/P80PgPHAV8Dl0Ey4o5imS5I2CyEPsV42mK2eNG3lWPdOj7F+one/la+vLAx3xgRvWwDQyZZ0vaB2cApEBsV/LuSjuQdjGPqLtVjATsD58ARPNnhvbhteWQmphWGQfH+tAN9eKcBLM/zwcGzPBr9oPzUpqGnRSXd3Ma8ab/+egSAnC+x4WDUhl+YDZC7gIsrNCsmSBtRJ5Zjw6Tl2vzlBjvj74jDIlQxuFtXBwVwIa7HhG8mRQBMw9Ka3RnxhLbZcK4SHrRjPTPHFZ2dvAwAe25UIoG8GJtuZC/H+wtBeH6cznjZi9px6LM4LSSX1uKEex/L+sSzE+dj1aoKl0aixVQ4xn9vvg0WXRbnhekEtHplgOBWggMdFSmkDZnx5AedenNavZSFDj4JhwNNqIXwszgsPx3rpBLL+Dhb4dGkEXv01FQDw17tDcKukHr8kSQa8vD1lIeTjy+VROJNTib8ezWS74VZ3kUGMjCwppe2t8YPdwtCRhZCPhWHOOJBahoe238RnSyPgP0wmxe11wHDixAns2bNHb/mMGTOwdu1ao/s1NjZi7969SElJQVtbG0JCQrBq1So4Oen26Tp79ixOnjyJ6upqODk54Z577sHEiRN7W+xBd/VOLQBV/9CHYjx71N1DqvUE5VBqmU5/OE1wkF3RhOK6FnjYmLEXTzMBD5vXjMW529X4w/5UnWNGu1uDw+FAwOOMillhNV2SetPEcDitTJX+9E77IFdtw6XJ8V/LI5FX1YwgJ0uYC3lgGAaNrQqs+eEGyhvbcKukDvNDRvZ8HH2tsU0+IDPPmgt5nXZ7C3G2wI3COr1xTMNFUkk9LuVV474o1xE9pqov3CyqhZu1WKeeNC0Mny2NQEl9K1YZaU2Y5mePHx8aDwAIdrKAj50ZfkmSYHhcwVR4XA7uCnbCzAAHHMuswLtHMlFP2d9GraGYFt5SPct5SZ0Uq7fGY90EL7ww3W+QS9W1XtdkUVERPD098ac//Unn34IFC4zuo1Qq8a9//QuZmZlYtWoV1q1bh4qKCnzyySdoaWlhtzt58iR27tyJ2NhYPPvss/Dz88PmzZuRkJDQ22IPOu0uRInF+n3TTaHd5NrxftdGq1VAMxmYpkuSmZAHDoeDmQEO2PtoLLvdonBnPGjCZCUjSXuXpJ5HDHKt5omjGRV664dqKsKOrMUCRHvYsBPRcDgcWIn5WDPOAwDwl8MZ7ADajuILa/HI9pvIqWwasPIOB3Ut8n4d8Gyqpyb7DnYReuWd3zOw+WoBdqlTHBLDJPVSPP1TEl7el8IuUzIMCmul4HE5mObvYDRYAFSf+RBnS4Q4W4LD4SDCzRp/visQu9fFGt1nqOLzuJgfonqIdiyzYlhPmEVM19gq17mn4g/B79+FYS46c/NsvV44LM7PXtdkYWEh/Pz84O/vr/PP0dF43+r4+HgUFBTgueeew8SJExETE4MNGzagsbER586puse0tbXh0KFDmD17NpYsWYKIiAg88sgjiI6Oxv79+3tb7EHDMAy+v1ag0zpwKb+6R8fSTH0O6De5at/YadIpagY9m2n16fOxa88cMdbDpkflGM76okuSvIudh+ITju7QHvNSXCvVW1/T3IZn9iQhvawRj+9MHMCSDW23q5pQ0yKDxxCY/0Cg1S2uorG1ky2HplJ15p46KQ1e7cyVfNVEj3lVzfjheiEA4Odbqi5FPb0huT/aHX4OwzPDEJ/HZbM7SeqH33lPutbUJkdJffv9T25V+0OrB8Z7DEaRuhTibIlt6pY8AIjxtBkWSUV6dScjl8shkUjg5dW9PvipqalwdHTU2c/GxgaBgYFISkoCAOTl5aG5uRnjx4/X2TcmJgYSiQQVFfpPcoeDzPJG/PdCPgDARt0steVaIf7vWFa3L+iVWqk2O064pdC6iW1TBwyabkods2EsClfNVjhc+tH1JTZLUi+OIe8wmPSHteMwyccOsV42WD3Wnc0NPlzNCXJEmIvqaUi2gRaErIr2Zc2y4TWIqz9llKla9jQTqw2mcNf21LiX8nr2gGIwtMgU2JckYa9n1LWkc5qZ4QHgy/OqhBbFdaogf/UQvXnqb+vVM6YnFNN8DCPRB8ez8fShfKzeegNlDa3svdDLM/zx6qyAQS5d5zSB+HAZJ9qrtnKJRAKFQoGcnBycOHEClZWV7DiDyZMnd7qfq6ur3nJnZ2fEx8cDAEpLSwEALi4uetto1ncc7zAcmAvbq3xusBMKa1two7AW+1NKsSzQDP/8NQXZFU2wFPHxyX0Rnc7OmqTV7NbWIduSbsCg+lkq0+Ql1s0a8Na8IDwc64kAx9EXMLDDC3rRHChXttf9n+8KRJiLFb68P6qXJRs6hHwunp/mhxd+Tsb7xzJxNKMcH90bzq7P7RBEFNa0wMtu9M6yyjAMvr1SwM7uPasPMln1FpfDwe51MVi9NR4HU8twXy9ziw+Up3+6hfSy9u6b529Xo14qGzZfsAMlt7IJp7IrcSq7Um+dZlzVDH+HgS7WkBDppkoHm1neyD4cI8OfkmHw8i8pbJB8u6oZt4rrkFSiui+y6udU1n1hdqADimtbMMl3eIwX7VXAUFioavKsr6/HqlWrwOVyceXKFWzZsgUymQwzZswwuF9LS4vBLksikQhSqZTdBgDMzHRvPMRisc76nqiurkZb2+BkTRAC8LUVIr+2DfYCOdZPc8bXN4BDWbXIr27G+dvqp38NrTiXXoBZvsZzX0tqVLPy8rlAi0zOBlkAUFndPmNvdU0dSku5SCyqBQDUVVWgsWOKPQClpUN/lt/W1lad99lbDfWqi0t1TQ1KS3v29LK5RXXO/rI6EAIet0/L11N9XU8uPCUinc2QW92KU9mV2HohAw7mAuxJrUZRve5n6dOT6fjTtM5TNA4VfV1PAFDa2MYGCwBgqWhCaengd6UxUwfFt0rqcaeopFvZQ/qjnrpSUt+mEyxo3MothqulAJlVUrhbCeBu1T9pn3+4VYn4kiY8G+uMUCfTAuCe1lNNixwp5S2Y7tPeEnQqrx4hDmLsTqnCDUkT/jTVHdGuhrsGvXe8EGkVqu/EVRH2SCprRkalFI/+eJ39fDbVVqNUOjRuogbyfJI2qN5/dV1jl6+ZV9OKrKoWLAi0HYCSdW0wPnfDRU2LHFfu1MBcwIUZn4OqFgWKK6pRXqv6HJgrW4Z83S0LMMNS/0BwOJx+L2tn55KhB/iGmBwwKJVKvS4zEREReP755xEREQEej8cua2howIEDBzBt2jRwufpfSqZ0vVEqO8/m0Zv+Xvb29j3ety98ttwGB1PL8Ngkb/B5XLjZSwHUYuM5Va57RwshKpvawBNbGv1D/nyrBOfuqG7wvWzNIamXsttKZQpY1XEBqPquii0sIBfboK5V1V3Ew314PF00pLS01OST2xTWpUoAFbCxtYOlnS0s1APCO6ptkcFMwDN4k8UTlANohoe7G5trebD1dT0BwPcPueOnxBL881QO/nejgm3FshLx4WYtwtIoN/zvYj74AlGfv3Z/6Y96qtKaYG/9RC+MCxo6+esjXUuRUtoAsY1Dt1Lk9kc9dUbJMHj9ZHtyi7nBjvC2M8N3VwshsrLBpsQSnMmpgqWIh5PPTenzz51CyWBPahYAILOBg1lRpr337tZTXYsMj+1KREGN6iYn0MMZ4zxtUFDTgs8uZ+lsWyjlYYGBYzMMg5pWVYD640PjEeRkgcd2JgKQIqVcddwAB3MEersPmYxtA3k+8SxbAeSDIxChTWSD1/anQFLXiiWRrnj9rkCdbe/doR5DyTPDk5N9BqR8nRnoz91w0lLVDOA2FoW7Isqeg3dOF4MjMkd6larr2YwI3yGXUnUw9cW5ZHJtHj58GM8995zOPxsbG4wZM4YNFjQiIyPR0NCAujrDfQbNzc3ZlgRtUqmUbVEwNzdnl3XcBtBveRhOPG3N8OxUX3b0/jR/B7aPOAD253+cyjE6Q6Wm6fmxOC/YmQvQplBCoWRwLLMc07+8iH1aubP/cyEfh9NUwcg0v8ENloYazffnmZxKzP7PJbx3LEtvm7oWGRZuuoKXfjE8uZ1cyYDLwZAJFvrTqrHu8LM3Z4MFHzsznHp+Cg48EcdmUxqeiTv7Tr1Wal1786E16WGEeizDUM5L3ypXYvOVAp3WhcfivOGgrsvn9yaz4zAaWxVsV8vM8kZs2Jeil9r4wu0qTPj0HFK70YJaVNfegt1fqWgTi+sw93+X2WABaD93WgyMBdLOiqfBMAzW70iEpL4VYS6q7EZcDgfzQ9u76+57bAJ2PhIzZIKFgaa5aTySUY43DqUhv7oFrQolfk4qQXVzm87kphq7Eygb11B3WZ0sxkrMh4U6s19lYxtKG1oh4nEpWOgHJrcwTJ8+HVFRuv2yMzIyUFdXh7i4OJ3lMpkMHA4HFhaG+8S7uLggPz9fb3lFRQXc3NzYbQCgvLwcVlbtzbTl5eUATG9CGQ7CXa3ww9rxSM8rQpvQCi5WIpy/fQ0AcPVODRaE6ue+b2iVw1zAw7NT/fDSL8lQMsDSzdfYbCKaCbc0vr1SAACYFTg6+7Eao/kK/T1ddV5dL6jFx6dzsCDEGVHuqu5giSX1kClUE9nVtcjw1m8ZGOdpg8fiVE+O5UqGnblxNAhyskBedTMA4O9aYxk0VaDsTcqpYUChZLDtRiEmeNuxN+DatBMQzA0e/PEL2rjqP9LVOzUIc9Ev+1Dw+dlc7FVn9hHxuWiVK+FkKYKr1rwCbVqJBlZuuY7XZgXggxPZqJPKsTuhGI9Pan86/K9zqokU1+9IwOqx7vjDHN2nyoZkaw3kl/bTQP4PT2TrLTuTU4np/vZ6SSxU5dANGJJL6vHE7kQ2w5t2cgVrrVS+tmaCYZGBpb9oz/SbVdGEGE8bKBkGCcX1WPDVFQDAxZemQcjnws5MgJoWGeqkchTVtsDTdvg+mOxvUpkCdVI57M0Fg5I6PEX9AGCchzWEbaqHC9cLawEAU+jBaL8w+a9sa2sLX19fnX+pqanYsmULqqqq2O2USiVu3rwJPz8/CIWGn66Fh4ejrKwMxcXtUXxdXR1ycnIQHq66AQkICIBIJMLNmzd19o2Pj4eLi0unaVuHKzszPqI9bOBqLcb/qWf1bWiVo7iuBS/9kozHdibgsZ2JYBgGVU1tsFQP6vFWX9Q0wYIxswIdMHWUDnwzxsZMd/BkWUMrdieUsLM0A8AtrewavyaX4sqdGvzvYj67TDMp0mhhp64zGzEfgVoD5TUtLIphkE+6N45nVuA/F/Lx1uF0g+sb1E+JP1wcppOSdiiIUg8A5Q3hG8iTWarWU2dLIY4/OxmHnoyDrZkA0/3t8fQU/W4i5Y1t+OZKAerUN9nSDk/i86vbn+DvTizBgZRS3Cyqxa6bxbhdZXjeEE16UqD979nXblc16y07lFqGuM/O49m9SXrrpFpptJUMg8d2tQcLz0/z1XmwFO5qBRsxH5GuVuzT19FKO6Xw2/OD8eX9UXh6iq/ONi/+kox6qQw1Wi36h1LLBqqIw45CyWDFlhtY/M1VPK71XTkQaprbcDyzAsczK+BuLUKcjx17jms+U3NDRt794VDQq0HPc+bMwaVLl/Dll1/i3nvvBZ/Px9mzZ1FSUoJXX32V3a6kpARyuRze3qonsrGxsThy5Ai++OILLFu2DAKBAAcPHoSlpSVmzpwJABAKhViwYAEOHjwIHo+H4OBg3Lx5E0lJSXjqqad6U+xhwVZ9U5Zb2YTqpjZc1voCu+u/l9HQKmdv1l6dHYAHYjxQ0yzDo53kwf9wUdiQnMRkMM0JcsQ3q6PRKlfim8t3cKukvf/5a/tTkVPZhJK69m5x/76Qx/58LrcKFY2tSC1tGBKTcw0Ud1vVk96OaXg1T6+NTe42UlxUd4cpqtPvVgm0dysZiueEtTqVs3wI/42CnCxwraAWX6+KhpmABzNB+0SCswId8fUlVX/9GQEOOJerelilPWHglmuFeG6qL975PVMvgxcA/P1kNmTqFoqxHtb4ZvVYvW1KG9r/tscyKzAnyBF3BXcvK198YS2OZ1ZgtjotccfMTuM8rJFQXA8bMR9hLlZYEumKf1/I07nePBzriV0JxZApGPyaXIp1E7zgaWumk1723/dHIdbLVufY/g4WOPHclG6Vd6TSbl3xdzCHgMdFTIf6ullUh+3xqgeYHjZiFNdJ9QJP0q5eKkOZ+gFldkUTGIYZsFasf5zKwQn1Q4U4HztwOBxYCrmwEPLQ1KYAjwOMcTOeLIb0XK++0ezs7PDHP/4R+/btw86dOyGVSuHn54cNGzYgIKA9/+3OnTtRVVWFDz74QPWifD5efvll7NmzBzt37gSHw0FwcDBWrlzJjl0AgIULF4LH4+HcuXM4efIknJ2d8fjjj+vNzTASOaonm9E0zWvjQPVF98gEVX5pLocDDxszuFmLsSDUyeBsw8DQnPFwsHE5HHbCOh97MyQU1eHbywUoqG1hb0YAQMTjorVD6trX9qfC3Vr1BDnaY/RcoJZEuKK2WabXVU7zIG+E90jSedJrqDuapjvJUAwYNGVVDOE/UotMCRGPa7A7SKCjBb5dEw1/ewt8d7XA6DE+PXMbRzLKDa6TaXVnqm4yPEasqkkGcwEP0R7WuJxfgyRJfbcDho9O5iCvuhk/J0kwycdOL9VyTYsMNmK+zo39vBAnrNl6A7lVzZjqZ4+XZvjjmSm+mPrFBQCqSdhenunPjklzthQizmd4pGQcTI9M8MK53Er42hufgE5zPq0c647Pz97ut65oI0GSpH08kFzJQCpXsoF9X7mcXw1rsUCv22eaemzTnCBHrFaPm+NxOdi2djyK6lrgZKHbfZH0nV5/o7m6uuLZZ5/tdJvXXntNb5mdnV2XLQUcDgd333037r777l6VcTgKcLSAvbkA1c26X2jrJnjhhel+Bvfhcjj4v4VhKKlrRbI6U8vnyyIR6WrV5WzEBHC1EuOeMDFmBTripV+SdaaX37UuBsu+uw5ANfD3p8QSAEBJfSsCHMzx2dLIQSnzYLAU8fHcNP1zkMNRTYM3nMYwnMqrx5GTJfCwEeNvi8JMGriuPSB12/VCPBqnmwVJ8/RX8zR/KOEN4YBByTB47ddUpJc1wLKTYCvaXRXgr431xIGUUrZF59/3R6GqqQ3vHsnErg6DVsd72uDBGE98c/kOMsvbB1MX1LZgT2IJVkS7gcPhQKFk8McDqpZFVysR/jIvGIu/uYozOVXYMLN7k0BpT6x55U4N0kob8Ft6GdaM84CduQB3qlsQ622rt5+V+ryZoF4n5HPx21NxWLjpKnYlFOOxOG/sVV9/1k8cOhm4hrIXp/vhxQ7fm1sfHIfHdiZgUbgLEovrUaBOxzneU3V+GRp4TlQ+O5Or83u9VN7rgKFNrkRqaQOCnCxwp6YFL/2SAj6Xg/MvTdN5KFPXIkOYi6XOXEAA4GVnNqrn/xkIQ+8bjbC+WhmNVVtvAAAWhTvj3QUhJjX7ac/kHONpozdRG+mcmYCHJyb54IWf27MiOVgI8fqcQNwsqsWqce0BA4BOb25GGy5naHZJ2nGzCNtvFOGn9bGwUE+eeKemGZ9dVuWlTi9rxIyActwT1vXETs1t7TcS/72YDwcLIab528PeXIjGVjkOpqqOORRbGDRjF4ZSwFDW0IqbRbXwsjXDhbxqmAt4uCdMP9FDR44WQpx8fgpaZApwoJqQUq5QorKpDa1yJaLcrOBiJcbJ7ArMCnBEoJMFLIU8PLNHd3zAP07lIMrNCqEuVqhsamPnwnk0zhsO6lm6DQ1C7kqgozkStB46rNuhThPLqIICBkC4gYHnG+8OwdGMCvbpKQA4WYowP8QJxzIrcDyrArVSGRwshFg5dnjMdzIUhbta4coG1VxR/72Qh++vFcLJQggP9WSpv6WXY/kYN0SrW6BJO03GrsURLjiUWqZzTeypb67cwZZrqrm9NBmO5EoG9317FbvXxcJSxEdzmwJNbQr6zh0kVOtDmGbacAB4YLynyX0EzbUCBAoWeibKzRoBDuYobWjFn+4KhJmAh5Vj3dkvaBsxnx1k6Wo9tAa2DiYulzMkuyR9dkaVKedmUR2mqwf+N3a4CbxeUGtSwNDUpmCzqQDA+8eyMDvQEY9P8sZDP6qSNHA5QzOQ5POGRsAgqZfi9/RyrJvghc/P3saJrPZulIvCXfDqLNOf5ms/2eTzuGxXTY0nHNoHSsd42cLfwRy3q5qxYaY/PjurOi80f0vNU+X7x7hh+RhVxr5wFytklDdAyTDdSp0sNJLWMa2sAVnlqrEVEwy0MHjYmLEZ2LRtmOmPE1kV+MepHCiUDMbRjWyfWT/RG34O5ghxttT53D6x+xauv2p4AtrRrLKpDZGuVmza6OY+aI2p0mqR004hXN7YhtyqJlgI+Xhku+r6aj0Er62jAdX6EPdYnDeu5NfApxtNbZr+e97UPNdj5kIedq2LNbp+x8MxyChvhIWQh1CtOTRGOy6HMyRbGDQKa9sz5nQc1HgwtQxvzw/uMjBvblPAXMjDWA8bnM5RDb47nVPJ/gyoWgeHYuYsTZkGe9Dzc3uSUFQnhZOlEGUNuoPHrfq5K9emVdHIKG9EnI8dxAIePjyRjZd+ScGp56aw/da1H7S4WouQVtaAuhYZ7Loxr4YmKPvl0QlY/v11dnmyuv/3eE+bbo0/cLQU4cHxnjilPs80AQ3pPXMhz6SHBQRsIgGxgMf2ZmjpgxYG7bFFALD94fG4ml+DL87noalVAUldK2QKBhGuVlgz3sPIUUh/ooBhiHt2qi+enerbrX1emuGHu0OdKId0P3K2EsG5GzPljhY8DgeKIZRcRKFkkFXR3md9+40iPDhela9e8xQr0tWKzemdW9WskyrWkBaZAs6WIvjaG/98jfMcmk9/h0qXJE2GqfeO6k+UGG5gbou+ZGMmYG/U3bRaB+f89xLmBKnSMZprdesMcrLAqexKXLlT062bSoV6QLyXnRk+uS8C224UIruiCU3qm6vOBuAa8/JMf7w807/b+5Hu+W7NWDy2K5FNWU7aaT67nrZitjdDi7z3AYNcqfvFEeRogRT1WMzC2ha25frhWE82UQkZWJQ2ZwQS8LiIcLPWm2OAkP7GGaAxDFVNbSjSai3oSDPIf1+yBI9sT2CXa+fUb1NHNneHOSNA3f3vgR/iu3ztJnULw1NTfPHLoxNwb4TqJlIzZsF8CHcDHAqDnr/vJLsRAEzxHbisP3E+dpirlf3oVLbq6b12NydNEPHO75koqm3BtuuFnZ57GnJle33PCHDAN6vH4rXZ7V2t3CmTy5AV5W4NEY8LW3Pj36G1LTL2fOkuhmHwS1IJvrqYz94UDwdVTW34x0nVhIPjPGzYz0lftjDcF+mKU89NUaVLVV9TPz6di0/VA62HYlfP0YJqnhDSZ3gD1CXp7q9VM7RO9bOHj50ZmtoUmB/qhInedvj3+Txsjy/Csig37LlVorNfi0yJtNIGpJc1sGlzRXyuTjeYzvqqt8mVkCsZmAt57NPjP90VhHBXKyyJcMXxrArEDNHWBaB/0qpWNLbC0UJo8hir3w2kO31jbiC4HA6CnSwHdNZYLoeD6f72OmMoAN0uSf4OFuyYFU2mtFPZlfj+wXGdHluhZPQmyFsY5gIfO3MolAyi3IbmTNtERcjnoq2TuRhe/iUFaWUN+HxZJKZ2c2bh3MpmfHgiBwBwKb8aP6wdHqniPz97G+WNqrEGfg7mKKhRBc7dHcMgUyjx3dUCTPWzx43CWmy5VogAdcvu63MC2fE/U3zt8VCMJ36ML2L3jaTPzaChgIEQ0mcGYtCz9pf4xbxqXFTPpbc/pRT/vj8KW6+rMm1oBwvR7tZobJUjt6q5PVuNmp25EM9O9cXTP6my55zKrtR56qxN88WoPXuuiM/FimjVYPhF4UO7H3RftzAkl9TjsV2JeGKSN56e4guFkoFMoTSabIFhGEjUXRq0u4KN97TtURedvhDsrD8GSTvTHAB8syYaa7bGsy1XVc1tevt0pGD0Z4DncTkY4z565mwZzgQ8jt7cO9rSylTnrqTe8ASOnXltfwr7c3pZY7cH1A+GxlY5O7fJjw+NR4izJSrUwUNpfSsqGltNmtn+VnEdnth9CwDw7ZX21sYk9aSpfK2ZuS1FfLw8058NGDbM9Gez3JGBR12SCCF9hstR3Sj1hza5EpfyqnWeNnWc1Ec7Fa62/1sYilXj9FNQivkcTPOzx3hPW/xtUSgA4LsrxrvMaNIH9vUkRQNF88T7QGoZUvugK0RicR0A1Rd/ZVMbln9/HdO/vIjaFsMTol25UwOpXInxnjb4dGkEuBzVZGzdSerQ1wIdLbBt7TjYaXXh7Pj39bEzxweLwtjfNRNrAkBmeSPePJzO3vBoKJX6AQMZPkR8LvKqmlFc13n3swMppZ22RHQkVzIoqW/VWZZV3ogDKaW4pf48DUUZ6gnTotysEaIOsjWB9earBVi46apJx7leWNvpekOB0+px7hDwOGyGOzI4KGAghPQZHofTLxO3lTW0YtZ/LuLlfSn438V8drmHjRgzAjr/Enl1VgBcrcUG+4zHeViyN3V3BalaFeqkhm92tdeZC4dnwGAh4kGgfoL37pFMyBRKXCuowU+JJT3qS31cqyvPs3tuoUTdemCsj39eVTMAYGagA+zMhbi6YQZ2PhJjcnem/hLqYqXz5N9QC8nsIEfsf3wibMR8JEsa2K53P98qwfHMCnxyOhcJkiZsU7dwyQ20MJDhQ3PjunTzdTy5OxG/p5ex67TnHUgva8SSzdeMTo5a0diqM1lgo3oc1dxgRzw9RZXy93phLd4/loU/Hkjr8/fRE61yJVtOjQR1MPNQrCe7zFqsO8ZDKlPgm8t38PeT2fgtrcxgS2ZTa/fHO7w2KwCnnptCE7MNMmrbIYT0GQ4H6GkDg5JhcCanCvbmAr0sGOt2JOil3VsZ7Y4HYzxQXCfFudwqzA12xIks1SDEKDdr2JrxMd3fAcvU6SeDnS3haiVCTbOM7WoQ5tT+BcTjchDlZo1kST2+u1pgMBf+D+qbwaE8sLkzFkI+tj8Ug9f2p6CquQ07bxbjy/N57HpDOedTJfW4kFmDk0eKcG+EC+YEO8LDRlVvZQ3tT0rzq9uDhI43Gxqa7ccPwSwn2jNzGxuQ7G4jhqOFEHVSOVZ+fwNR7lY4nKbqppFW1oB31N1Ulo1xU49h6P9yk/4xK9AR29WtmYnF9VAoGdwT5oLCmhY2Te7qce44nFaGqqY2fH42F0olEO5qibEeNmyWwmf2JKGgpgXHnpkEO3MhktWBuZWID3v1oOovzqk+gzUtMjAM028BdEJRHQ6nleHlGf6dpi9+cnci0ssaceWV6WiVK7HlWgG+V0+qFqrVhS/ISTej3PQvL7I//3xLAiXDYHGEq8421erufIGOFshRp2jVEBr5wHA4HJpTagiggIEQ0md4XA4KaluQV9WsM/GgKW4U1uJPB1VP2D5cHKYzjkB7Uh9A1fXpD3MCwOVw4GlrhosvTUNNiwwnsirhZi3Cdw+M1Tu+vbkQB5+MY4939U4Nomx0uxLcFeyIZEk99idLDAYMmrkblkS66q0bLvwczOFiJUZhrVQnWACA6wU1mOCtylIkVyhxKqcSfzmcwa7/4nwe9twqwYEn4sAwDOqlctiaCTAzwAGSeimuFdQCAC7l12CSr/5A0PJGVcDgMgRTEmsehor53E7P3T/OCVTdBNa2oMBIS8obh9JRUNMCd5rUcdh6ZaY/XlGnsF38zVUkSxpQ2iDVmVPjmSm+iHS1xtu/Z2B3gnrM1C3VZ2znwzF4fm8SOzB4/ldX8OxUXzbLj42ZwGBgml7W2CephbUDj+Y2BVJK6/H8XlWXzQnetlgQang2dYZhkK7uflQvleHNwxm4oe5GNNnXDu427WXmcjiwFvFR3+EBwTR/e1y4XY2/Hs1CRnkjfk0qhb2FAEFOlmyyic+WRuDeb68hwMEcH98XgZpmGQ1oHuKoSxIhpM/YqJuotZvvTVWq1a/3jUPp7M+afvKuViKsiHZDkKMF1sZ46vR1FfK5cLES4fsHxuLrVdFdvpaDhRALw13Y7jkaa2M8EeVmjYqmNjAdmkqUDIO00gbwuBx42AzvlJjGyv/Wb+3BwbYbRTrBgoakvhW/JJWgqU0BuZLBGHdrvDU/GP9ZMQYfLwkHAOy8Waz39BBQtTAIeRzYDsGUz5N97cDjAO/eHdLpdjFetvhq5RidZb72ZtDufXTlTg0A1czTZPhzVQe47/6eyS5bGe0OSxEfMV76rWV5Vc1IK21AfJHumIRjGeWoU4/vmehtizgfO3y7OhqvzPRng9SKxla94/XE279nYMKn5yBTKPGvc7fZYAFo715kSLbW5/Z4ZgUbLADAv5ZF6m0/vkNWuNdmBeDjJRHs77sTStCqUEJS38oGCw+O94CLlQhHn5mE7x8cB09bM0S5Ww9610TSOWphIIT0mX/eF457v7mGnxJL8Nw0vy63l9RLce1ODRwtRGye7Y5+vKHqFjDd3wGv3xXY6fEi3XqfgcZGzIdMwaBVrpvt54tzeahulsFGzB/2X2x/mB2AYCcL/PO0bp3XtsjYjC3Gnp4DwIcnctCo7ousHXxoD0L/+mI+/nlfBFrlSoj4XFwvqEGypAGeNuIhWX8LQp0xO9CRTenYGR87Mwh5HLQpGCwf44Y35gYBAM6l5uO1o+2D5l+a3vVngAx9G+8OwbLvruOmVgCgucF3shRh5yMxsBXzkVbWiIOppTiTU4XHdiXqHSe3qhm5l+8AUHVJ4nA4iPawQbSHDezMBHj3SCb+fCgdp56fYjCxAsMwYGB4YHBHRzNU44u+vVKAX5IkOuvuVDcb3e+3tPa0x9rXB3tzgcHP7bt3hyD4ZjHszAW4lFeNWUEOOmN37M0FqG5uHxdmLuBhw6wA9TrTZ04ng48CBkJIn3FWp9VralPghZ+T8IfZgfC0NWPz/3e05NtrRo/1/tFM2JoJcFb9VKqrYKGvaNL6NcsUOgFDvvpLVnvyreFKLOBh1TgP3BvpCh6HgxaZAv93LAtncqtQ2yLDreJ6HEo13ErkZi2CpL6V7c4UpRWkaQ+CvJxfg0d3JCCltAGb14xtH18yhNOKmhIsAICjpQiHn5qEsoZW+Gt1Xwp2aA+enpvqi5mBjn1eRjLwPG3NcP8YN/ysvvEOcbbEcvXYKADs7PAzLEUIcbbEmZwqdt2jE73w3DQ/rNp6gx30DwB+Drr9/0NdVGMD5EoGSSX17GzkGkqGwcM/3kRWRRNiPG3w7FRfVDW1IdbbFtZiAW6V1KGysQ0CHhcXbre//ndaEyVyADAAWuXGB2jfrlK1MCwMc8Zv6e3Bw0Mxngb3sRTx8eRk1eBtTXppANj7aCwqGlTlW/LtVUjULcjWnYydIEMb/eUIIX2Gy+HgvXtC8M7vmbh6pxYrt9zAonAXbDTQzUPeIce5t50ZHovzxn/O56GiqQ0HjNyw9jfNxGELvrqCXx+fwA7wLaxtgYDHwd1G+v4OR5qnmEI+l50Z/uPTuWjS6pP8SKwnflC38ny1cgz8HMyxassN1ElV20S5t7cqCPlcfP/AWLy2PxXVzTJ2noVNl/PZAc9/nD0wgV9/szUTGOxa9cbcQOxNlGDSAM5YTfrfn+cGYc14DyRL6jHF195oBiwXKxGemuyDTeqWhHHqLjurxrrjo5OqydrszAQQdQhO/R0s8PqcQPzjVA7qpfpJA2qaZciqUN3Mxxe1z2UAqCawvJhXbbTsFkIenp/mh3vCnHH/99fR2GY4KcGjOxNR1tAKHpeDv8wLxoZZATiUWgZfe7NuT07nY2cOHztVMP3r4xPx5bk8lDZIKTXqMEYBAyGkT90T5gJ/BwscTCnFobQynMisQJ1Uhn/cG64zi2+t1pfia7MCsGa8BwDg6p0a/K71ZEvM5+r1Ge9P2q0hn5+9jYdiPWEjFqCgpmVEdEcy5onJ3tifUorjme2pUr9aOQYxXrYoqqpHhVTVfx8ADj0Zh63XC+FkKYKrle54iEg3a4z3tGFbFADg6p1aAKruCZaikZ3tZPkYdywfoz/nBxn+fO3NTZpgUDNrMQBMUrcUrIh2R1ppAw6mliHCyOBeTQBqKLVzZZPxyQKNBQtiPhcvzvDH/WPc2ADHUshHXlUz/nQwDf4O5hjjbg1JvRTHMytQ1tAKX3szvDjdH0I+F0I+VyeNak9xORy8rB5AToYvChgIIX0uxNkSIXMCIeBxsedWCS7crkZhbQv8tZrha7Rmy10a1Z516JEJXjoBwx9mByCiD8YmmEp70OGZnCqd7gUOFiO3z62rlRhPTPJmZ1+NcrNmA4QNk13h6tr+NxILeHh6iq/RY3nZ6udLj/G0wYeLw0ZswEWIhmaQdKyXjc75rhnX9aKRsS3e6nkGsiv0EwZo5n54cpI3Vo51x/yvrrDrfloXCxGfi/s263bxfHtBMOaH6LaIzgtxwuarBTiVXYlT2fplGO9p2+XcNmR0ooCBENJvXp7pDxGfi81XC9DQoZm9Rp0t5NmpvjpjBQIdLfDVyjHYk1gCdxsx7h3gFKZ56vkEgp0s0NAqZ/veAsAUA6lCR5KHYj0h4nPhYCHE4nCXHh/n6Sm+uCvYCXIlg/U7EgCo+oHb0SBHMgqEuVji2zXR8LXTbY1wtBDinQXGs3BpZjw3lCmpTd2FU8DjwtZMgHEeNkgorsM9Yc7sAGwPGzGK66S4K8gRq8d5sN2htD0z1Rebrxqezf6pyT5Y1IvPPRnZKGAghPQrzSC35/cm49TzU9iBpfHqdH2G+oHHeNmyT7cHmlSmepI3ydceL073w08JxWy2kGBni852HfYshHysn6g//0R38bgchKgneLov0hWppQ2YE0QDgMnowOFwEO3e/ckJRXwuBDwOLuVVo0WmOyOyTCtg4HA42LRaP330plXROJldiTXj3DttyQtystBrxTj/4lSaHI10igIGQki/0tz4tyqUKKmXsn2Av7uqmjnUSjS0LkOagEGsDmyWjXFDiLMlvOzMKA1gD7w1P3iwi0DIsMDhcGBnJkB5Yxvu/eYq1kc74CF1V0DNTPfGZkMGAGcrER5QjwXrzD/uDUdWRRPiC2vxU6JqwjkKFkhXaFYZQki/CnG2xFp1Sr5W9UzJ2hmSjCQbGTShLqoBiZp++AIeF9EeNhQsEEL63Xv3hAIA6qRy/OtqGarVY720Wxh6y9PWDHOCHPGH2QH4auUYnH9xaq+PSUa+ofVojxAyImlSCErlqqf3pQ3tfXSHWq76j++LwLncKswPdRrsohBCRpkYL1sEOlqwM6XXtshgby5kxzCYOleIKTgczqB1/STDD7UwEEL6naZ7j6aFQTMZ2/IxbkYndRssjhZCLB/jZtJsqoQQ0tfkyvYW2HXbE1DZ2Io2dZckwRC7XpLRgwIGQki/E2kFDK1yJQ6mlAIA1k3wGsxiEULIkPPUZF/2Z6lcidTSBvZhS1+2MBDSHdQliRDS7zQBw99PZKO8UdUn18tWDHcbcWe7EULIqDMvxAlzghyx/XIWvrxahhaZEvXqydxsxPpZ5QgZCBQwEEL63VR/ezhfFbLBAkDZcwghxBgelwMz9YOWt3/PYJcbSkNNyECgti1CSL9ztRLjwBNx7O/Lolwx3tN28ApECCFDnJivO17Bx86MWmXJoKGAgRAyIHhcDqLcVClLx3p0f1IjQggZTRzNdVsTflofy3bvJGSg0ZlHCBkwHy4Ox6dLIzA/1Hmwi0IIIUOan50IWx4Yy/5OmdvIYKIxDISQAeNiJYKLlWiwi0EIIcNChJs1Nq2KZudhIGSwUMBACCGEEDJEjfOkLpxk8FGXJEIIIYQQQohRFDAQQgghhBBCjKKAgRBCCCGEEGIUh2EYZrALQQghhBBCCBmaqIWBEEIIIYQQYhQFDIQQQgghhBCjKGAghBBCCCGEGEUBAyGEEEIIIcQoChgIIYQQQgghRlHAQAghhBBCCDGKAgZCCCGEEEKIURQwEEIIIYQQQoyigIEQQgghhBBiFAUMhBBCCCGEEKMoYCCEEEIIIYQYRQEDIYQQQgghxCgKGAghhBBCCCFGUcBABh3DMINdBEJGJfrsETLw2traANDnjwwvFDD0I7oYmKa1tRUA1VdXlErlYBeBjCBtbW3gcDiDXYwhr6WlBdu2bUNNTc1gF2XI6nhtomu5YVKpFD/99BN+//13KJVK+vyRYYU/2AUYqU6fPg2JRAInJycEBgbCz89vsIs0JP3www8oLS3F66+/PthFGdLOnj2LvLw8mJubw8fHB3FxcYNdpCHp3LlzqKmpgb29Pfz9/eHh4QGlUgkul56NaCstLcX777+P5cuX46677qI6MuLw4cM4evQobGxs2AcbRNeJEyeQmZkJOzs7BAYGYuLEiXQjbMChQ4dw7NgxtLW1YdKkSfR5M+LcuXOora2Fvb09AgIC4ObmRtcnA86ePYu6ujrY2NjA29t7QO4xKWDoYxUVFdi0aRMaGhrg5uaGmzdv4tChQ1i/fj0iIyMhEAjAMAxdUAEoFAqUlZXh9u3byM3NRUBAAF0YOigsLMT333+P1tZW+Pn5ITk5GadOnUJ9fT1mzpwJoVA42EUcEoqLi/Htt99CKpXC1dUVJ06cgLW1NTZs2ABHR0c6rzpobGyEQqHA8ePHMWPGDLoudXDr1i3s3r0bSqUSK1euRExMDMzNzQe7WENKdXU1Nm3ahPr6egQFBSEzMxMXL16Es7MzfH19B7t4Q0ZiYiJ27twJDoeDJUuW4PLly3BzcxvsYg05xcXF2Lx5M6RSKRwdHZGbmwsnJye88MILdA3XUlhYiM2bN0Mmk8HPzw83b95EbW0te50Si8X9di2ngKGP3bp1C0qlEs8//zxcXV3R2NiIn3/+GT/88APWrFmDuLi4UfmlbOgErq+vR3l5OQBg+/bteOedd+iCoIVhGJw6dQr29vZYsWIFHB0dIZfLsXv3bpw4cQJjx46Fk5PTYBdzSDh37hzs7OywevVqODg4ICsrC1u2bMHBgwfx6KOP0nnVgVQqhZmZGWpra7F371488MADFDCoVVRU4H//+x/GjBmDNWvWwNbWVuf8oXpSSU5OhlQqxTPPPMPeAFdXV8PFxYXqCKrvt88//xwVFRWYNWsWZs+eDSsrK5w6dQoymQwAnUvazp07BzMzMzz11FNwdHREeno6tm/fjl9//RVPPPEEXcPVjh8/DpFIhCeffBIuLi7g8XjYvXs3du3aBYZhMG3atH47p+gv0AuG+mnevHkTjo6O8PLygkAggJ2dHR5//HFYWlri1KlTuHPnjtF9RzKpVApAt6/r6dOnIRKJsGzZMkgkEpw5c0Zvm9Gk4zlRXl6OW7duwd/fH66uruDz+RCLxZgwYQLq6upQVlZmcL+RruP7bWxsxK1bt+Du7g4XFxfw+XwEBgbC2tpa58I52utJW0NDA4RCIebNm4ezZ8+itLQUXC53VH72tOuJYRg4OTnB398fPB4P9vb24HK5UCgUuHnzJgoLC9HQ0GBw35HM0Pu8fv06HB0d4e3tDYFAAC6Xi/LycpSWlqK5uXkQSjn4tOuptrYW/v7++MMf/oDly5fD3t4era2taGlpgY2NzSCWcvB1PJ/q6+uRnJwMV1dX9rsuNDQUNjY2kMlkUCqVYBhm1HzeNDq+39LSUiQnJyMoKAgeHh7g8/ngcDhYtWoVRCIRLly4gLy8PIP79gUKGHqh402wVCoFh8OBQCCAQqEAoOp2o/mDSiQSXL9+fVQNdlIqldi9ezc2bdoEAOxTgsbGRqSmpmLy5MmYMGECIiIisH//fshkslH7JEFzPmnOHZlMhubmZrYVQXOeaT+dAjBqziWNjvXU1NSEpqYmuLq6stvU19ejqakJ5ubmyM7OhkwmG7X1ZCgIqKioQGhoKMaNGwdbW1vs2rULwOg7lwDdetK8/7i4OCQnJ6OlpQXXrl3Dhg0bsGPHDnzwwQf4+9//jvj4+FF1HTf0XadUKmFrawsAuHDhAjZs2ICtW7fi/fffx+eff478/PxRd4OnqSeGYeDl5YUHH3wQPj4+4HA4YBgGAoEAQqEQdXV1g1zSwdXxGq5QKCAUCtHS0qLz/aZQKODj44O6ujpwOJxR83nTMHRP0NLSAjs7O3YbpVLJPjysqqpCYmJiv12bRuedWS8ZuglmGAZisRi2trYoKipCVVUVAIDH4wEAoqKiEBoailu3brGtDKOBQqFAXl4eMjIykJ2dzS7ncDhYvHgxFi1aBHt7e0ybNg0KhQJ79+4FMLpaGTqeTzweDwzDwNPTE7Nnz9brk6h5wql9gzwaGKsnFxcXvPzyy4iNjQWg6hbx97//HTKZDMnJyfjkk0/wxRdfICsrC8DIfypsLEjXrANUmcmam5vh7++PGTNmICMjA5mZmeBwOGhsbByUcg+0zurJ09MTTk5O2LRpEy5evIglS5bgueeew/PPPw8rKyvs3bsXqampg1X0AdPZd52FhQUqKytx584dnD9/Hvfeey+ef/55PPjgg2hubsaPP/44ar7rOtaT5uZW+5zicDhobW0Fj8djb4pH2w2wsWu4nZ0dQkNDkZ2djc8//xxHjhzBxo0bUVFRgdOnT2Pjxo3Ytm0bKioqBvkdDIzO7gk8PT2RnJzM1gWXy0VGRgYmTZoET09PJCQkoLi4uF/KRQFDDxi6CZbL5QCAOXPmoLS0FFlZWeyXsyY6XLJkCSoqKvrtjzkU1dXVoby8HAKBAPv27WOXW1hYIDIykr15Cw4OxuTJk3H27FmUlZWxX0yjgaHzSXPuLFmyBFFRUTpPV5KTk+Hh4QEnJ6dRFVh1Vk+BgYEQi8XstvPnz8err76KDRs2YMOGDbh9+zYuXrzItgKOZJ3Vk+YGprKyEi4uLgCA8ePHIygoCFu3bsWXX36J48ePszc0I5mhetJcq93d3WFjY4P09HT4+/tj1qxZ8Pf3R2RkJB599FE0NjYiMzOTve6PVJ19102dOhUZGRn45Zdf4OzsjJkzZ8LPzw9Tp07FY489hqKiImRkZIyKa1RnnzkNhmFgbW0Na2tr9oHiaKgbbZ2dT0uXLsVDDz0Ee3t7HDlyBMHBwXj99dfxwgsvYMWKFbh48SIuXLjAzmExkhmqJ81Dw0WLFiEzMxNffPEFduzYgQ8//BC7d+9GTEwMli1bhvLyclRWVrL79CUKGHrA0E2wJsuIt7c3oqKicOLECZ1WBoVCAU9PT/j6+iItLQ3AyH/SCajGKVhaWmLatGmQSCQ4e/YsANWFUiAQsDdv5ubmmDBhAuzt7bFz504Ao+fpi6HzSfNEwczMDED7F0tpaSnS0tIwZswYAKOnjoDO60mbra0tZs+eDXd3d9jb2yMkJARxcXG4ffv2qOgHa6ieNAG45oZYqVSy55SLiwu4XC5qamogkUgwd+5ctmV0JDN2PikUCpiZmSE6OhpjxozB1KlTweer8oPIZDK4uroiPDwct2/fBp/PH9Hnk7HvOgDw9vZGZGQkMjMz4ejoyGZsk8vlCAgIQHBwMDIyMkbFw5/OPnMaHA4HMpkMXl5eKCoqQktLy6jrfmvsfFIqlRCJRIiOjoajoyMsLCywZMkSeHh4wMfHB9OnT8f48eORkpLCdu8ayTo7n8aNG4dHH30UPj4+yMvLg4eHB9599134+fnB2dkZ9vb2yMjIAND39wej62ztI8ZugjV9FBcsWICqqiqcPXsWTU1NANq7JpmZmUEul7NjG0YCiUSCrKwsVFdX6yyvra1Famoqpk6ditmzZ8PT0xPHjh1jL5SaGxbNh9/Pzw/Tp09HRkYGUlJSAIyOJzAdz6dz584BgN6XDQCkp6dDJpMhOjqaXV5ZWYmkpCT2XBupOvvcaeNyuexNjeb8MTMzY1sXRsrnzpjO6klzHaqvr4e/vz8uX76MV155BdXV1fDz80NTUxP4fP6oGADd1fk0e/ZsPPbYY2xKR6D9ZtnMzAytra2Qy+Uj+nwyVkcAYGNjg9jYWAiFQlRVVaG+vh4A2ODKwsICzc3No2L8kKnXJoFAAFtbW0ilUvYp8GjS2fmk3YLu6ekJe3t7nX0tLCxQX18/ou6djOnsQSsATJw4EU888QT+/Oc/45FHHmGzlGl3GaRBzwOopzfBgKp7xIIFC3Dy5ElcunSJ3be4uBilpaUIDQ0dEU/wpFIpNm/ejL///e/4+uuvsXHjRuzbt4+dEZXL5WLevHlYsGABnJycEBcXh9bWVhw+fFjnOJonBjweD2PHjoWPj4/BfsXDWXfOp6NHj+oFVZo6SkpKgpeXF3x9fdHc3IxTp05h48aNOHHixIh46tLb4FOhUKCwsBASiQSA6vwpLS1FRkYGpk6dqtNtaTjraT0pFAq0tLRALpfj22+/xe7du7Fw4UK8/fbbWLhwIWQyGbZu3QpgZHz2elJPfD5fJ0DIz8/X6UZaUlKC27dvIyYmhr05Hs56UkeA6iFYeHg4JkyYgMTERMTHx7P7lpeXo6SkBOPGjWODrOGut9cmzf9xcXGora1lr1Ej4bqtrTfXJkDVcnXnzh2dmdVLS0uRl5eH6dOnj+prOI/HYzNGKRQKFBUVsWPzACA3NxdtbW3w8/OjeRgGglQqxfbt25GUlAQ+nw+ZTIbZs2dj1qxZsLOzY2+Cp06dCkD14f/1119x+PBhrFixgp1cZPHixSgsLMTRo0dx/fp1+Pn5ITs7G+bm5ggPDx/kd9k3Dh8+jKKiIjzzzDMAVB+An3/+GbW1tVixYgWsra0RGxvL9r0bN24cMjIycOnSJUyZMgXu7u5sfWlObjc3N0yfPh3l5eUjIgtQb88nbbW1tSgpKUFUVBRyc3Oxbds2VFdXY+nSpZg7d+5gvL0+01f1xDAMfvvtN+Tk5CAiIgIeHh64evUqlEolxo8fP1hvr8/0tp54PB7MzMzg4eGBqKgoTJ06lc3CpXnQ4eDgMJhvsU/01fmkUCjw+++/Izs7GxEREfD09MT169chEAjYVr7hqi/qyNraGsuXL0dxcTH27NmDq1evst91HA6H7To5nPXVuaQJwG1sbBAWFoaTJ0+OqFmxe1tPmvqJi4tDYmIiNm3ahODgYNjb2+P8+fPg8XiIiYkZzLfYJ/rifOJwOODxeLh69Sri4+MRGBiIkJAQnD17Ft7e3ggICOiXsnOYkRbe9tLPP/+MlJQUrFq1CkD7TXBsbCxWrFgBKysrtLa2QigUgsPhoKmpCTt37kRaWhr+8Ic/wN3dHTKZDAKBAE1NTcjIyMCVK1fQ0tICLy8v9kt7OFMqlaivr8eHH36IadOmYdGiReyH/dChQzh//jxiY2OxcuVKdh9N0JCcnIxdu3bB09MTzz77rM5xNduMpBkd++J8UigU4PF4KC0txcaNG9nWhsmTJ2Pt2rUj4ilnX9ZTQUEBTp8+DYlEAoZh4Ofnh5UrVw77zx3QN/UEqL60BALBiKgTQ/r6fDp16hR7Pvn7+4+I86kv6kgul4PP56Ourg43b95EWloa2tra4O7uPiK+64C+qSft7zSlUonjx49j3759eOedd9jP5HDXV9cmQNX19vDhw2hsbATDMAgJCcHq1avpfOrwuauqqsLVq1eRlJQEmUyGgICAfq2n4X+n0Uc0N8HXrl3DtGnTEBISAi6Xi7CwMDQ3N+P8+fM4cuQIVq5cCZFIBEB1g2thYYG4uDjk5eVh//79ePbZZ9kB0BYWFoiJicG4ceMgl8vZQWHDUXV1Nerr62FnZwcbGxuIRCK0tLTAzc0NXC6XDZLmzp2L0tJSXLt2DbGxsfDz89PJCRwREYHo6GhcunQJycnJiIqKYr+YNduMhGChL88nzcBeHo8HW1tbeHh4YPXq1XB2dh7kd9l7fV1PSqUS3t7eWLduHdra2tgBrMNdX9YTgBHTrN9Rf51P69evh1Qq1UlEMFz1ZR1pBn3b2NiwT0llMtmw/q7T6Mt60nynMQwDLpeLuLg4TJo0aURM4NbX1yalUomwsDCEhoaiubkZDMPA0tJyMN9in+iPz52DgwMWLlyIOXPmDMi1afjfmfVCdXU18vPzUVdXBy6Xa/AmGADmzp2LoKAgXLt2jZ1FT3tAoOYmODMzE8nJyXrruVzusL2AtrW14YcffsA///lPfP3113j77bfx66+/orS0FG5ubuzgZE2mA7FYjClTpsDMzAzHjh0DALbLkeYpS1xcHBwdHbFjxw4AGBFPDYD+PZ84HA4sLS3xyiuv4MUXXxzWwUJ/1pN2g6lAIBjWN3f9WU+a/sIjwUCdTyKRaNieTwP1XcfhcIbtdx3Q/585zUMxW1vbYR0sDMRnjsPhwNzcfFgHCwP1uROLxQNybRqVAQPdBJumvr4emzZtQmFhIVatWoWVK1di1qxZOHLkCIqLi2FlZYXCwkLk5+fr7BceHo6goCAUFRUhNzeXXa55yuLj44Px48cjJiYGCoVi2A/6GojzCVBlZhnOk7UN9OduuPYNpuuTaeh86hqdS6ahejINfeZMM1LPp1HXJam+vh4//PAD6urqsGrVKjAMg/z8fBw5cgSOjo46N8G+vr7sfpqb4KysLOTm5rKDSjreBDc3N0OhUOgM5B2u7ty5g9u3b+OJJ55gB2qPHTsWubm5SE5Oxvz58/Hpp58iKSkJHh4eEAgEbPeiiRMn4saNG6isrNQZgKM5+RcsWDAiLqB0PpmG6sk0VE+moXrqGtWRaaieTEP1ZJqRXE+jroVBcxO8bNkyjBs3DuPHj8fSpUsREBDA3gQXFxezg0i0031NnDgR9fX1evmTNU1DCxYsYAd6DecTXiMrKwtisRienp46y52dnXH79m0EBwez4xE6ThQSEhICoVCI2tpaAO3NjJqTfyQECwCdT6aiejIN1ZNpqJ66RnVkGqon01A9mWYk19OoCxjoJth0rq6uEAqFaGlp0Xmvzc3NsLa2BgCsXLkScrkcZ86cQXl5OVsX2dnZkEqlbD/N4X4RMIbOJ9NQPZmG6sk0VE9dozoyDdWTaaieTDOS62nUBQx0E2y62NhYrFq1Co6Ojux7bWxsRG5uLvz9/QEAjo6OWLJkCcrKyrBlyxYkJSUhIyMDZ8+ehYuLC0JDQwfzLfQ7Op9MQ/VkGqon01A9dY3qyDRUT6ahejLNSK6nUTeGITY2FnZ2dgZvgseNGweg/Sb42LFj2LJlC+6++24IhUJcuHBhVNwEa4hEInbsgmaOhMLCQjQ2NiIiIoLdbsaMGbCzs8PevXuxefNm8Hg82NnZYd26dbC1tR2k0g8MOp9MQ/VkGqon01A9dY3qyDRUT6ahejLNSK6nURcw0E1wz2hO/ISEBFhaWiIqKopdp1AoEBERgZCQENTU1KCxsbHfZhocauh8Mg3Vk2monkxD9dQ1qiPTUD2ZhurJNCO5nkZdwKCNboK7p7q6GomJiYiMjASPx4NMJkNRUREOHTqEoKAg3HXXXXBxcYGLi8tgF3VQ0PlkGqon01A9mYbqqWtUR6ahejIN1ZNpRlo9jeqAAaCb4O4oKSlBfX09xowZg7q6Ovz222+4ePEiPD09MWnSJAgEgsEu4qCj88k0VE+moXoyDdVT16iOTEP1ZBqqJ9OMpHoa9QED3QSbrqioCFwuF9nZ2fjpp5/A4/HwzDPPIDIycrCLNmTQ+WQaqifTUD2Zhuqpa1RHpqF6Mg3Vk2lGUj2N+oCBboJNx+fzoVQqceXKFdx9991YsGDBYBdpyKHzyTRUT6ahejIN1VPXqI5MQ/VkGqon04ykehr1AQPdBJvO2dkZ9957L+bPnz+souKBROeTaaieTEP1ZBqqp65RHZmG6sk0VE+mGUn1xGE0iWJHqaSkJBQWFtJNsAk0I/6JcXQ+mYbqyTRUT6aheuoa1ZFpqJ5MQ/VkmpFUT6M+YKCbYNKX6HwyDdWTaaieTEP11DWqI9NQPZmG6sk0I6meRn3AQAghhBBCCDGOO9gFIIQQQgghhAxdFDAQQgghhBBCjKKAgRBCCCGEEGIUBQyEEEIIIYQQoyhgIIQQQgghhBhFAQMhhBBCCCHEKAoYCCGEEEIIIUZRwEAIIYQQQggxigIGQgghhBBCiFEUMBBCCCGEEEKM+n8zQoZErhAnswAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAEHCAYAAAADJ8GRAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACHGElEQVR4nO3dd3xT5f4H8E9m07333i1tgdKy90aWiIKIg6Hivl7U6+963XrFcdHruA4QlKEggooIyB6VWSilLdA96Ep3mzZt02ac3x9JTpMmoYHu9vt+vXjRnnNy8uTpyTnP95kchmEYEEIIIYQQQogR3N5OACGEEEIIIaTvooCBEEIIIYQQYhIFDIQQQgghhBCTKGAghBBCCCGEmEQBAyGEEEIIIcQkChgIIYQQQgghJlHAQAghhBBCCDGJAgZCCCGEEEKISRQwEEIIIYQQQkyigIEQcltWrlwJDodj8I/L5cLGxgbh4eF49tlnUVZW1qn3mTJlCnturVOnTrHb3nrrrVse25vy8vLw5JNPIiQkBFZWVrC0tERISAgef/xxZGZm9kga6uvrkZ+fr7dNm0dTpkzpkTR0pK6uDu7u7nBzc0NLSwu7XS6X4+OPP0ZMTAwsLS3h6+uLRx99FKWlpWadd8uWLXrXpo2NDeRyud4xCQkJBtdwQUFBV368DqlUKqSlpelt665r+W9/+xs4HA5++OGHLj0vIWRwoICBENIlGIZBY2MjsrKy8OWXX2LChAmora3t7WT1uPPnzyMmJgYbNmxAbm4umpubIZPJkJubi02bNmH48OE4depUt72/QqHAl19+iZCQEJw+fbrb3qcrvP7666ioqMBjjz0GCwsLAOpgYd68eXjppZdw7do1yGQyFBcX47vvvsO0adNQX19/2+/T2NiI8+fP6207fvx4l3yGO3X48GEMHz4cH3/8cY+839NPPw0Oh4MXX3xxUH4vCSGdQwEDIeSOnT9/HkVFRSgqKsLNmzeRmJiIcePGAQByc3Px9ddf90g6du/ezaajtz355JNoamqCjY0NvvnmG9y4cQPXrl3Dm2++CQCQyWR4/PHHu+39f/zxRzz77LOorKw02KfNo927d3fb+5uruLgYGzZsAIfDwRNPPMFuX79+PY4ePQoAWLt2La5fv45169YBADIzM/Hdd9/d0fsdO3ZM7/feDBhu3ryJOXPmGLQudKeIiAhMmzYNFRUV+Oijj3rsfQkhAwO/txNACOm/PDw84OPjw/7u5+eHTz75BGPGjAEAXLx4sUfS4erq2iPv05GamhqkpqYCAGbMmKFXEI6KisKlS5dw8OBB5OTkoKCgAAEBAV2eBoZhTO7T/Vv1ts8//xxyuRxjxoyBv78/AHXatUFmTEwMPvnkEwDAkCFDkJubC3t7ewQGBt7W+wQEBKCgoADHjh3DO++8AwCQSqVITEwEAAQGBhp03eput/obdaclS5bg+PHj2LhxI15//XVYWVn1SjoIIf0PtTAQQroUn99WD9G+QNLa2or169djxIgRsLW1ha2tLcaOHYvvvvuuU4WojsY77N+/H9u3b8ewYcMgEong5+eHV1991aBfe2NjI15++WX4+flBJBIhPj4eBw4cwFtvvWVWv3KBQAAuV31bPXjwINavX4+qqip2/+7du1FZWYnKykr4+vrqvTYrKwtr1qyBv78/LCws4OHhgWXLliElJUXvON3PtXXrVsyfPx8ikQju7u64++67sWrVKvbYVatW6fXNNzaGQfezVVdX44033mDTEBMTg+3btxt8TpVKhW+//Rbjxo2Dg4MDrK2tERsbi48//hitra23zCOtXbt2AQAWLVrEbsvLy2NbicaOHQsAaGhoQENDAzZt2oSPP/4Yd999t1nn19J+1sTERLY7U0JCAvu3v9V4jsuXL2P58uXw9vaGhYUFfH198dhjjyEvL0/vuNu51rZs2aIX9GzduhUcDgdbtmwxeP/Kyko8+uijcHZ2ho2NDebMmWNwPRQXF+Oxxx6Dv78/hEIhLC0tERkZiVdffRUymUzv2LvvvhscDgc1NTXYs2ePWflHCCEAAIYQQm7DihUrGAAMACY/P5/dLpPJmJycHGbmzJns/g0bNrD7GxoamBEjRrD72v+79957GYVCwR4/efJkdp/WyZMn2W1vvvmm2cdOnDjR6Hu+/vrr7PGtra3M+PHjDY7hcrnMyJEjDc5vysKFCw1eHxcXx7z88svMmTNnjL7myJEjjLW1tdE0CoVCZteuXUY/l4ODA/uzu7s789BDDxk9h/bvpP198uTJ7PnefPPNDvPp2LFj7PEKhYK56667TP4dx48fz0il0lvm0Y0bN9jjExIS2O0HDhxgtz/99NPM3XffzXA4HPa8KSkpHeY/wzDM999/z55ny5Yt7M979+5lGIZhXnjhBQYAExgYqPf5da/nrVu3Mnw+3+hntLOz00v37VxrumnT/ff9998zDKN/LYeHhxsc5+TkxDQ0NDAMwzASiYTx8/Mz+bdYsGCBQd4EBgYyAJgHH3zQrLwkhBCGYRgKGAght0U3YLjVvzlz5ugFAE888QS7b9myZUxSUhJz7tw5vQDj/fffZ4/vyoCBw+Ew69atY7KyspjPPvuM3e7j48Mev2HDBnb7iBEjmISEBObKlSvM4sWL9T5XR8rLy5nhw4ebzJe4uDjmxo0b7PH19fWMi4sLA4CxsrJivvzySyY9PZ3ZsWMH4+rqygBgRCIRW5ht/7m+//575vr168yhQ4eYmpoa5pNPPmH3f/LJJ0xRURH7d+goYHB0dGR+/vlnJisri3n44YfZ7Q899BB7/Pvvv89unz59OnPu3DkmKSmJWb58Obv9iSeeuGUebdy4kT22traW3b5jxw69QKt93tnb2zPZ2dkd/g10C+UnT55kC8nPPvsswzAMM2zYMAYAs3r1aqMBQ15eHiMSiRgAjIuLC/PDDz8wN27cYL766is2sHN1dWUkEonRv8mtrrXGxkbm/Pnz7PYlS5YwRUVFTGNjI8Mw+tfyiBEjmDNnzjBpaWnM6NGj2e3btm1jGIZh9uzZw27773//y2RnZzOpqanMkiVL2PfMycnRy5u7776bAcB4e3t3mI+EEKJFAQMh5LZ0FDDMnDmT2bp1K6NUKtnX1NfXswWw6OhovUBCKpUyHh4eDADGy8uL3d6VAcP8+fP1PkNUVBQDgOHz+ey2uXPnssdnZGSw25ubmxlPT0+zAwaGUbdWbNmyhZkxYwYjFAoN8sjLy4upqalhGIZhvv32W3b7hx9+qHce3QLhK6+8YvC5dAv+WrqFZW2ttVZHAcP69evZ7ZWVlez2GTNmsNt9fHzYArO2ppthGEapVLIFcaFQqLevvbfeeosNkHT9+OOPevn03XffMfX19cymTZvYbcuXL2cYRt3SUVRUZPBPoVAYBAyrVq1iAHWNfWVlJdtqsW3bNqMBw6uvvspu023dYRiGWb9+PbtP24J2u9dafn4+e/yKFSv0jte9li9cuMBu//XXX9nt69atM3jfe++9l9m3bx9TU1PDyGQypr6+3mjeP/XUU2xApvs9JISQW6ExDISQO3bu3Dlcu3YNb7zxBtu/Pzs7GyNGjGD78gPq/vna/tRTp04Fj8dj91lbW7P91UtLS/X6/HeVIUOG6P2uHSStUCjYbdp+6Y6OjggPD2e3i0QijBw58rbeTyAQYMWKFTh69Cjq6upw9OhRrF27FnZ2dgDUn1M7H75un/QZM2bonWfmzJnsz9rB1Lqio6NvK10d0c0nFxcX9m+q7X9fXV2N4uJiAMCYMWNgY2PDHs/lcjFt2jQA6rEqGRkZJt+noqICANj80NI935gxY7Bq1SrY2tri0UcfZQfSa2dQKioqgq+vr8E/YzNlaccpZGZmYtu2bex4GVPjFzrzNzHnWjPX0KFD2Z/t7e3Zn7XjRCZPnoyVK1cCAH755RcsXLgQzs7OiIuLwzvvvGMw1gJoy3OVStUt3zVCyMBEAQMh5I55enoiKioKb7/9Nl577TUAQEFBAWbNmqW3cJvuQGhjtAU4AN2y+JqlpaXe77oBi5ZQKDRIy+36448/8Mgjj2DmzJm4cOEC+94zZszAJ598ojedaXp6OoBb501H+aJbiOwK7fNJN+gDuv7v2P78QUFB7M9ubm56+7QzStXV1XV43vZ0A4P333+ffa/2A8+1OvM3MedaM5fuuXTzSpsGDoeD77//HpcuXcLLL7+M+Ph48Hg8XL9+HevXr0d0dDQuX75s8vwCgeCO00YIGVwoYCCEdIk33ngD8fHxAACxWIwnn3yS3RcUFMQuzHXy5EmoVCp2X2NjI1u49vHxgbOzcw+muo22sFpXV6dXO97U1MROwdmRuro6bN++HceOHcM333xjsF+3gOnk5AQAiIyMZLe1XxtAd+2A4cOHG5zPWIFP9z06E/wYY29vD09PTwDqKXOlUim7T6VS4eTJkwAACwsLREREmDyPNhhoaGjQ2x4REcHmS2pqKpRKJbtP23KgnRo2ICAAjLpbrd4/Y1PV+vn5sX9fba361KlTTaavM38Tc3TV30gsFuPYsWO4dOkS3n33XVy6dAn19fXsDEjNzc3YuHGj3mu0i7bxeDw4Ojre8XsTQgYXChgIIV2Cz+djy5YtbE3977//ztao29raYsmSJQCAa9eu4eGHH0ZycjIuXLiAe++9l22NeO6553on8QAeeOAB9ucHH3wQ586dw+XLl3H//ffrtZbcyj333MMWhrdu3Yq1a9ciKSkJWVlZ2LlzJx599FH22HvvvReAem58W1tbAMDbb7+Nb775BhkZGfjpp5/w9NNPA1B3izJ3sTeRSMT+fPXqVVy9ehWNjY1mvdYc2s9QUVGBxYsX48KFC0hOTsbKlSvZrjyrV6+GtbW1yXMEBwcDUAcMEomE3c7n89kuNgUFBXjyySdx/fp1fPXVVzh79iwAYPHixXeU7vbdj241neojjzzCtjI888wz2LlzJzIyMrBhwwa89dZbAAB3d3csXbr0jtKi+zfKzs5Genr6HS06uHnzZsycORNPP/00nnjiCaSlpaGoqIidRhcwDCpLS0sBqLtOdUdrHiFkgOqNgROEkP7L1LSqWuvWrdMb3KudSaampoaJjo42OVi6O6dV1T2WYRhm+vTpBscrlUpm0qRJBukSCoVMUFCQ2YOejx49ylhaWt5yYHj79Ozbt48dFG7s/X/++WezPhfDMEx6errBORITExmG6XjQ88mTJ/XOxePxDI5vaWlhpk2bZvKzjR8/np3xx5SCggL2eN3pSRlGPVXo0KFDjZ47IiJCb1YlU9oPemYYhtm2bZveuYqKigw+v+71/PXXX7Ofv/2/W02rau61pjuQHgDz0UcfMQxj/Fo29R4SiURvyt/2/xwcHJjMzEy98/j6+jIAmDVr1nSYj4QQokUtDISQLvXyyy+zg4RLS0vxr3/9C4B6MPHly5fxn//8B3FxcbCxsYGVlRVGjx6NTZs2Yffu3Z3q791ZXC4XBw4cwN///nd4eHhAJBJh7NixOHbsGGJjYwGA7VZ1KzNmzEBqaiqeeuophIWFQSQSwcLCAj4+Prj33ntx9OhRtpZaa8GCBUhJScHjjz/OLsDl6uqKpUuX4uLFi2zrjDkiIiLw7rvvIjAwEBYWFggNDb2tfOiIUCjE0aNHsXHjRkyYMAH29vYQiUQYNmwY1q9fjxMnTnS4grC/vz9CQkIA6HfxAdSDcv/66y/84x//gJ+fHwQCAXx9ffH888/j3LlzcHBwuKN063ZBCg4O7nDV6yeffBIXLlzA8uXL4eXlBYFAAG9vb6xevRrJycmYOHHiHaUDUF9rGzZswNChQyESieDp6XlHn8vOzg7Hjx/H+++/j+HDh8PBwQECgQB+fn5YsWIFLl26hLCwMPb4yspKtiVj3rx5d5x+Qsjgw2GYXlqjnhBC+pCrV6+ioqICvr6+8Pf31yv0zp49G0eOHIGHhwfEYnEvpnLgWLduHV599VWMGzeO7W5EuteuXbuwbNkyeHh4oKioqMNB7IQQokUtDIQQAvXg1tmzZ2PIkCGYMmUKUlNTkZOTgy1btuDUqVMAcNvTqxLTVq9eDYFAgMTERHaaVdK9tGOKHn30UQoWCCG3hVoYCCEEQFlZGWJiYkzOTS8QCHD69Gl2zQjSeWvXrsWnn36KDz/8EC+//HJvJ2dAE4vF8Pf3h5OTE7KysgzWwCCEkFuhFgZCCAHg4eGBixcvYtWqVWz/fz6fDw8PDyxevBhnzpyhYKGLvfnmm3B2dsb//ve/O1rYjJjviy++gFwux7p16yhYIITcNmphIIQQQgghhJhELQyEEEIIIYQQkyhgIIQQQgghhJhEAQMhhBBCCCHEJAoYCCGEEEIIISZRwEAIIYQQQggxiQIGQgghhBBCiEkUMBBCCCGEEEJMooCBEEIIIYQQYhIFDIQQQgghhBCTKGAghBBCCCGEmEQBAyGEEEIIIcQkChgIIYQQQgghJlHAQAghhBBCCDGJAgZCCCGEEEKISRQwEEIIIYQQQkyigIEQQgghhBBiEgUMhBBCCCGEEJMoYCCEEEIIIYSYRAEDIYQQQgghxCQKGAghhBBCCCEmUcBACCGEEEIIMYkCBkIIIYQQQohJ/N5OACGEdJe9e/ciJSXF5P7nn38eDg4OBtsLCgqwdetWvW08Hg9WVlbw9/fHpEmT4Orq2tXJNaBN/5tvvsluu3DhAhITE9HQ0AAXFxdMmzYNoaGh7H6GYXD+/HlcvnwZ9fX1cHR0xMiRIzFq1KguS9f169dx7tw5VFVVQSQSISgoCNOnT4eNjQ17TFFREU6cOIHi4mIIhUKEhYUZHGNKdXU1/ve//8HS0hIvvPAC+Pyee1SdOnUKp0+fNnptiMVibNq0Cc8995zBvoyMDCQkJKCqqgo2NjYYOnQoJk6cCB6P12NpJ4SQ7kIBAyFkwJo0aRLi4+P1tjU3N2P37t0ICAiAvb39LV8/d+5ceHp6AgDkcjlqa2tx9uxZfPvtt3jkkUfg4+PTbWkHAA6Ho/f7+fPncfToUUyePBleXl5ITk7Gzp07sXLlSvj5+QEADh8+jIsXLyIuLg6RkZGoqanByZMnUVtbi9mzZ3c6TdeuXcMvv/yCuLg4TJs2DVKpFCdPnsS2bduwZs0a8Pl8lJSUYOvWrXBxccGiRYsgEAhw7tw5bN68GU888QREItEt3yM5ORkuLi6oqanBjRs3MHTo0E6nu7MqKiqwY8cOqFQqg325ubnYtWsXoqOjMX36dFRWVuL48eNoamrC3LlzeyG1hBDStahLEiFkwHJycoKPj4/ev+TkZFhaWmLx4sUGBfL2XF1d2dcFBgZixIgRePzxx2FjY4O9e/caLTx2JRsbG9ja2gJQBywJCQkYO3YsJk+ejNDQUCxZsgTe3t44ffo0AKCpqQmJiYmIjY3F/PnzERwcjJEjR2LRokW4ePEiqqqqOp2mv/76C6Ghoez5hw0bhvvuuw+VlZXIyspij7GwsMCKFSsQFRWFsLAwPPjgg1CpVDh79uwtz69SqZCamoqoqCgEBgYiKSmp02m+Hba2tuBwOGxLiFKpxLlz57Bp0yYolUqjr7l69Srs7e1xzz33IDg4GGPGjMHo0aNx5coVk68hhJD+hFoYCCGDRnZ2NtLT07FkyZIOa7lNEYlEGDduHA4cOICCggIEBQUBACQSCY4dO4acnBwoFAr4+vpi5syZbAsFALS0tOD48ePIyMiATCaDq6srJk+ejLCwMKPv5ebmBnd3dwBASUkJZDIZIiMj2f0cDgcRERE4fvw45HI5qqurwTAMwsPD9c4TEBAAhmGQk5MDFxeXO/rcgLq7U1BQEPz9/fW2a89ZU1MDAKisrISfnx8sLS3ZYwQCAXx8fJCdnY3p06ebfI/c3Fw0NDQgLCwMTk5O+O2331BZWanXBezq1av4/fffDboNffrppwgICMCiRYsAqPP7yJEjyMjIgFwuR1hYGHx8fHD48GG9bl663Nzc4OzszHaDys7OxunTpzFhwgTY2Njgjz/+MHiNQqGAUCgEl9tWB2dlZQWlUonW1la9fCCEkP6IWhgIIYMCwzA4cuQI/P39MWTIkE6dKzg4GABQWFgIQF2zv3nzZpSWlmLu3Lm49957wTAMtmzZgsrKSgDqmvPt27cjLS0NEyZMwLJly+Di4oJdu3bh5s2bRt8nJiYGDz74IACw53F2dtY7xsnJCQzDoLa2FlZWVgCAuro6vWNqa2v1/r9THA4Hs2fPRkREhN72jIwMAOrCNqAuLEskEoPX19TUdJiG5ORkuLq6wsvLC5GRkRAKhbh8+fIdpfenn37CjRs3MGXKFNx3331obW3FsWPHbvkaX19fPPPMM+zvXl5e+Pvf/45JkybpBQS6Ro4cierqapw7dw4ymQzFxcW4cOECQkNDKVgghAwIFDAQQgaFrKwsVFVVYdKkSZ0+l7a7ilQqBaAeW9Dc3IyHH34YMTExiIiIwEMPPQRra2ucOnUKAJCTk4OSkhLcfffdGDVqFIKCgrBo0SJ4eXkhPz+/w/dsaWkBAFhYWOht1/7e0tICZ2dn+Pn54dSpU0hPT4dMJoNYLMa+ffvA4/HQ2tra6c/eXk1NDY4ePQoPDw928HVsbCzEYjEOHTqEhoYGSKVSHD16FJWVlZDL5SbP1dTUhKysLAwfPhyAulUiKioKqampt3ydMfn5+SgoKMDChQsxcuRIhIWF4YEHHoCjo+NtncfOzq7DQn9gYCDGjx+Po0eP4sMPP8TmzZthbW2NxYsX39Z7EUJIX0Vdkgghg0JiYiI8PDzYLkRdQTsGIj8/Hx4eHrCzs2PHNXA4HISEhCA1NRWAujWCy+XqdRficDh49NFHzXovhmHMSsuSJUuwf/9+/PzzzwDUXahmzJiB06dPQyAQmDx3+/Obqk3XVVVVhe3bt4PL5WLJkiVsGkaMGIGWlhacPHkSFy9eBAAMGTIEcXFxuHr1qsnzpaamQqVSISwsDDKZDAAQGRmJ5ORkXLt2DbGxsR2mSSs/Px9cLlevNYTD4SAqKood89FVDhw4gOTkZEycOBFBQUGoq6vDqVOn8OOPP+KRRx4xme+EENJfUMBACBnwmpubUVBQcMu+87ejvr4egLr2WXv+mpoavPvuu0aPl8vlaGpqgpWVVYcDrU3RbUnQrfFu3/JgY2ODZcuWQSaToaGhAY6OjuByuThw4IDJmvLTp08bFKJN9fHXKigowK5duyAUCrFixQo4OTnp7R87dixGjRqF2tpaWFpawtraGr/99tsta+uvXr0KhmHw5ZdfGuxLSkq6rYChsbHRaH6bM63r7aivr0dSUhImTpyIadOmsdu9vb3x1VdfITk5uUuntCWEkN5AAQMhZMDLycmBSqXq9NgFrby8PABgB/+KRCL4+/tj1qxZRo/n8XgQiURoamoCwzB6hVixWAwAeoOjjdEdWOzt7c1ur6mpAY/HY7vaXLt2Da6urnB3d2cHdpeWloJhGJPvERcXZ3LgtTFpaWnYu3cvXFxc8OCDD7KBk1ZpaSkkEgkiIyP1BlmLxWKTaRCLxSgvL8eUKVMMBlWnp6cjMTERZWVl8PDwYLe3n6VKt8uVnZ2d0fxubGw0+3OaQztWw9fXV2+7q6srLC0tUVFR0aXvRwghvYHGMBBCBrzi4mLY2dkZXaTtdrW0tOD8+fNwd3dnC4n+/v6orq6Gs7MzvLy82H8pKSm4cuUKuFwu/P39oVKpkJOTw56LYRj8/vvv+Ouvvzp8X19fXwgEAty4cUPv9enp6fD392dn9UlISMCZM2f0XnvhwgVYWFggICDA6LltbW310u3l5WUyHdnZ2fjtt9/g6+uL1atXGwQLgLr14ddff2W7FQHq2Y8qKysNZnDSSk5OBp/Px5gxYxAQEKD3b9y4ceBwOOzgZ21riralB1B3j2pubmZ/DwgIgEqlQmZmpl5+aQdodxUnJydwOBx2AHz79NzumAlCCOmLqIWBEDLgVVRU3NHKzJWVlWxBXKFQoKqqChcvXkRTU5Nen/2xY8ciNTUV27Ztw7hx42BpaYnr16/jypUr7GJpoaGh8PHxwd69ezFt2jQ4OjoiNTUVVVVVWLBgQYdpEQgEGDduHE6fPg0ejwdfX19cvXoVYrEYK1asYI8bPXo09u/fD1dXV/j6+uLatWtIS0vDvHnz7ngqWS2FQoF9+/bBwsICEydOZGdu0rKzs4OdnR2GDh2KM2fOYPfu3Rg3bhwkEgmOHDkCX19fo4uwKRQKpKWlITQ01GBQNwDY29sjICAAaWlpmDlzJgIDA8Hn83HkyBFMnToVLS0tOHXqlF53J39/fwQFBWHfvn2QSqVwcHBAcnIyysvLO5UH7VlbW2PMmDE4d+4cACAoKAgSiQSnT5+Gvb094uLiuvT9CCGkN1DAQAgZ8KRSKbuewe04ePAg+zOXy4WtrS0CAwMxceJEvT77tra2WL16NY4fP479+/dDoVDA2dkZCxcuZPvdc7lcPPjggzh27BhOnjyJ1tZWeHh44KGHHtLrYnQrkydPBpfLRVJSEs6fPw9XV1csW7aMXeUZUHcvksvlSExMxJkzZ+Ds7IzFixcjJibmtj9/e0VFRezMUD/88IPR9E2ZMgU2NjZ46KGHcOTIEfz8888QiUQYPnw4pk6danQwtXZdiujoaJPvPXToUOTn5yMtLQ3x8fG4//77cezYMezatQsODg6YPHkyUlJS9F5z33334ciRIzh+/DiUSiUiIiIQHx9vcFxnzZw5E3Z2drh8+TLOnz8PGxsbBAcHY9q0aZ0O0gghpC/gMB1NvUEIIYT0M3V1dSguLkZ4eLjeLEW7d+9GTU0NnnjiiV5MHSGE9C/UwkAIIWTA4XA42Lt3LyIiIhAbGwsul4ucnBzcuHEDd999d28njxBC+hVqYSCEEDIg5efnIyEhAWKxGCqVCq6urhgzZkyXdM8ihJDBhAIGQgghhBBCiEk0rSohhBBCCCHEJAoYCCGEEEIIISZRwEAIIYQQQggxiQIGQgghhBBCiEkUMBBCCCGEEEJMooCBEEIIIYQQYhIFDIQQQgghhBCTKGAghBBCCCGEmEQBAyGEEEIIIcQkChgIIYQQQgghJlHAQAghhBBCCDGJAgZCCCGEEEKISRQwEEIIIYQQQkyigIEQQgghhBBiEgUMhBBCCCGEEJMoYCCEEEIIIYSYRAEDIYQQQgghxCQKGAghhBBCCCEmUcBACCGEEEIIMYkCBkIIIYQQQohJFDAQQgghhBBCTOJ31YkyMzPx22+/oaSkBNbW1hg3bhzmzZsHHo/XqddIpVLs2bMH165dQ2trK8LDw7F06VK4urp2VdL7jJqaGjg5OfV2Mvo0yiPzUD6Zh/LJPJRP5qF8Mg/lk3kon8xD+dSxrsijLmlhyM/Px+effw4nJyc88cQTmDJlCg4dOoQ9e/Z06jUqlQqfffYZMjMzsXTpUqxYsQKVlZX4+OOP0dzc3BVJ71NaW1t7Owl9HuWReSifzEP5ZB7KJ/NQPpmH8sk8lE/moXzqWFfkUZe0MOzbtw+enp54/PHHweFwEB0dDT6fj19++QWzZ8+Gg4PDHb0mKSkJhYWFeO211+Dr6wsACAkJwauvvoqEhATMnj27K5JPCCGEEEIIMaHTLQxyuRxZWVmIjY0Fh8Nht8fFxUGlUuH69et3/Jrr16/DxcWFDRYAwN7eHiEhIUhNTe1s0gkhhBBCCCEd6HTAUFVVBYVCAXd3d73tjo6OEAgEEIvFd/wasVgMDw8Pg9e7ubmhrKyss0knhBBCCCGEdKDTXZK0YwlEIpHBPpFIBJlMdsevaW5uhouLi8ExFhYWRs9rLrFYbBDIODo6IjAwEDKZDDdu3DB4zYgRIwCoB2o3Njbq7QsICICTkxMqKytRVFSkt8/W1hahoaFQKpVISUkxOG9MTAwEAgFyc3ORm5uL0tJSdp+3tzfc3d1RW1uL/Px8vddZWloiMjISAJCcnAyGYfT2R0ZGwtLSEjdv3kR1dbXePnd3d3h7e6OhoQHZ2dl6+wQCAWJiYgAAaWlpkMvlevtDQ0Nha2uLkpISlJeX6+1zdnaGv78/mpubkZ6errePw+EgNjYWAJCenm4wBiUwMBCOjo4oLy9HSUmJ3j57e3sEBwdDLpcjNTVVL48AYNiwYeDxeMjOzkZDQ4PePl9fX7i6uqKmpgYFBQV6+6ytrREeHg4AuHLlCtobMmQIRCIR8vPzUVtbq7fP09MTnp6eqK+vR05Ojt4+CwsLREVFAQBSU1OhUCj09oeFhcHGxgbFxcWoqKjQ2+fi4gI/Pz80NTUhIyNDbx+Xy8Xw4cMBADdu3DD4DgQFBcHBwQFlZWUG+eTg4ICgoCC0trbi2rVrBp91+PDh4HK5yMrKglQq1dvn5+cHFxcXVFVVobCwUG+fjY0NwsLCoFKpcPXqVYPzRkdHQygUIi8vD3V1dXr7vLy84OHhgbq6OuTl5entE4lEGDJkCADg6tWrUKlUevsjIiJgZWWFwsJCVFVV6e1zc3ODj48PpFIpsrKy9Pbx+XwMHToUgLoFs6SkRC+fQkJCYGdn12fvERKJRG9fT90jqqqq2Hzq6/eItLQ0gzzsqXuEbj719XtE+/toT94jdPOpr98jWlpa9Pb35D1Cm0/94R6hq6fvEdp86g/3CF09eY/Q5pGxe4T2uuwQ00k5OTnMmjVrmLS0NIN9L774IvPDDz/c8Wtee+01ZuPGjQbH7Nmzh3n66afvOM0vv/wyA0Dv3+LFixmxWMycO3fOYB8ARiwWM2KxmImLizPY98UXXzBisZhZt26dwb7JkyczYrGYycrKMnretLQ0RiwWM7NmzTLY9+abbzJisZjZuHGjwb7o6Gg2TUKh0GD/qVOnGLFYzCxfvtxg37PPPsuIxWLml19+Mdjn6enJntfT09Ng/y+//MKIxWLm2WefNdi3fPlyRiwWM6dOnTLYJxQK2fNGR0cb7N+4cSMjFouZN99802DfrFmzGLFYzKSlpRnNw6ysLEYsFjOTJ0822Ldu3TpGLBYzX3zxhcG+uLg4Nk3Gznvu3DlGLBYzixcvNtj34osvMmKxmNmxY4fBvoCAAPa8Tk5OBvv/+OMPRiwWM2vWrDHYt3LlSkYsFjOHDx822GdjY8OeNywszGD/li1bGLFYzLzyyisG++bPn8+IxWImKSnJ6GctKChgxGIxM3bsWIN969evZ8RiMbN+/XqDfWPHjmXEYjFTUFBg9LxJSUmMWCxm5s+fb7DvlVdeYcRiMbNlyxaDfWFhYexntbGxMdh/+PBhRiwWMytXrjTYt2bNGkYsFjN//PGHwT4nJyf2vAEBAQb7d+zYwYjFYubFF1802Ef3CLpHtP9H9wi6R+j+o3sE3SPa/+sP9whzcRimXUh5m0pLS/H2229jzZo1iIuL09v37LPPYurUqbj33nvv6DXvv/8+bGxs8Nxzz+kd8+OPPyI5ORnr16+/ozT31drD3NxcvRaVwVAzoGVuzcDJkycNWp0Ges2A1u22MOjmE7UwqBlrYdDNJ2phUDPWwqDNp75+j+jtFgZtPvX1e0RvtzBo86mv3yN6u4XBxcWlX9wjdPVGC4OLi0u/uEfo6ukWBhcXl061MHQ6YJDL5fjb3/6GhQsX4q677mK319bW4p///CdWrFiBcePG3dFrvvvuOxQUFOCdd97Re/2nn34KpVKJF198sTNJ73PKysqMjtkgbSiPzEP5ZB7KJ/NQPpmH8sk8lE/moXwyD+VTx7oijzo96FkgECAsLAzJycl6EX5SUhK4XC4iIiLu+DVDhgwxiBQlEglycnLYmgVCCCGEEEJI9+mShdvmzZuHwsJCbNiwAWlpaTh06BB+/fVXTJ48GU5OTpDL5cjLy9NrjunoNQAQHx8PT09PfP7557hw4QKSkpLw3//+FzY2Npg8eXJXJJ0QQgghhBByC10SMISFheGpp55CdXU1vvnmG5w6dQpz5szB0qVLAahbBT788EOcOXPG7NcA6r6Ezz//PIKDg7Fz505s374dbm5uePHFF2FlZdUVSSeEEEIIIYTcQpes9AyoB4wMGzbM6D4XFxds2LDhtl6j5ejoiDVr1nRJGgkhhBBCCCG3p0taGAghhBBCCCEDEwUMhBBCCCGEEJMoYCCEEEIIIYSYRAEDIYQQQgghxCQKGAghhBBCCCEmUcBACCGEEEIIMYkCBkIIIYQQQohJFDAQQgghhBBCTKKAgRBCCCGEEGISBQyEEEIIIYQQkyhgIIQQQgghhJhEAQMhhBBCCCHEJAoYCCGEEEIIISZRwEAIIYQQQggxiQIGQgghhBBCiEkUMBBCCCGEEEJMooCBEEIIIYQQYhIFDIQQQgghhBCTKGAghBBCCCGEmEQBAyGEEEIIIcQkChgIIYQQQgghJlHAQAghhBBCCDGJAgbSqxRKVW8ngRBCCCGE3AIFDKTX/Jxcgkn/O4urJZLeTgohhBBCCDGBAgbSa36+Wgq5ksH+6+W9nRRCCCGEEGICBQyk1wj56suvsVXZyykhhBBCCCGmUMBAeg3DqP/ncno3HYQQQgghxDQKGEivYTQRA8ULhBBCCCF9FwUMpNew8yNRxEAIIYQQ0mfxezsBZPBhGAZHMytRKW0BANDMqoQQQgghfRcFDKTHpYkb8OrBDPZ3WouBEEIIIaTvoi5JpEdVSVvw6E9XAQAPxvkAAOQqphdTRAghhBBCboUCBtKjjmRWsj/fO9QTAHA2vwZl9bIOX8swDGqbFZDJaRpWQgghhJCeQl2SSI8qb2hhf/ZxEIHP5UChYrBgUyJmR7ji33MjDV5T1iDDUz+nolzaArmSgYNlEf54bBREAl5PJp0QQgghZFCiFgbSY8obWrDjSgkA4NN7osHhcPD9A8PZ/Ycz2gZC68qqaESxRAZHSwEAoK5ZjtpmeY+kmRBCCCFksKOAgfSYUom62xGXA4wLcAQABDhZ6R3z8r4bAIBWhQotChUYhkG9TB0cPDbGH/NC7QEAzdQtiRBCCCGkR1CXJNJjVJqF2taM9QeHo158wYKvH7NeK2tAVqUUq3Yko1XJQMjjoFWpfh2fx4FIc7xMTjMrEUIIIYT0BGphID1GoZkNicttW6mNw+Hg5xXxesc9uP0KGyRo/weABpmCDTByqhrZAIQQQgghhHQfChhIj9EW8Hkc/aWdA52tYGvRcWMXl8OBtUB9yb57JAu7r5Z2fSIJIYQQQoge6pJEeoxK04uI2y5gAICty2NxMqcKXA4HnyXkAQC87CxQWq8eBD0h0AmLh3qioASQQoidV0pQVNvcY2knhBBCyMBxtUSCumY5poS49HZS+gVqYSA9RqltYeAaBgy+jpZ4ZKQvwt2s2W3BLm0/vzozFEI+F3YWPDwSr17wLbGwrnsTTAghhJAB6fFdKfiHZqIV0jFqYSA9RqnSdkkyfUyUhx38HS3RolBhQpAz/sqrAQBYCdsuVQfN9KoFNU1QqhijAQghhJDep1Qx2JJYiDhfB9Q2qWe8q6trwERbJ7hYC3s5dWSwaWxV4MD1cmw4d5PdpmIYoz0fiD4KGEi3YxgGHA6HHcPAvUUB30rIw55VIwEAMrkS1Y2tcLe1gJWwbZE2Po+L8YFOOJtfg7zqRsjkKoS52RjMuEQIIaR3HUwvxzfnbgK4qbd9bJEMny+O6Z1EkUHrUHoF/nMyV2+bTK7SK2MQ46iERTrlQkEN9l0rA2NixqLiumZM++ocnvslDZeK6gAYH8NgjEjAw+Nj/bEw2sNg35QQZwDAh8dzsPqnq/jqbP6dfQBCCCHdpqJBfzHOf0wLgQWPg+rG1l5KERms6prlyKlqNNhO6zqZh1oYyB27XFiH5369BgAIdbVGpLutwTFp4npIW5S4cLOWrWDid0EXomhPOwBASmk9AGBHUgmsBTysGRfQ6XP3dwzD4HRBPSZY2sPb3rK3k0MIGeBqm1rB5XCgUDFYfzIX4W7WWDnKDwBwRtOtFAD+MTUYS4d74fsLBbSWDulRMrkS931/CRKZAoB6UpVmuQq1zXIU1TXDmbrHdYhaGMgdKa5rxlN7UtnfH/kxGQU1TQbHfXQiB4B66lStrhhyEOhkBUuB/uX77YVCky0dg8mFm7VYf64M/z6S3dtJIYQMArO+uYC7Nl7A12cLcCyrElsvFUHFMNibJkZds5w9zsXGAgBgweegiWp1SQ9gGAbJxRJsulDIBgtvzA7D74+NxqRgdU+FQppx0SwUMJA7cr2swWDbki2X8cafGciskAJQDyRqUahrkbYtj2WP64rBRTwuBzsejjPYrrvQ22B1pVgCALhcVIeRnyQgTdMKQwghnaFUMfj4ZC5OZFWy2xo0hTC5kkGlVN39qEWhQnKxBO8dzUaxRAYAeHFKMMYHOgEALPlcVDW24kpx3W2nYf/1Mmw8V4DzBTV6wQghxlwTN2DNzynYeqkIALD+7igsiFJ3cx6nuR5lFLyahQIGYrbGVgX++ccNnMuvwWsHMwCoHwK6/kyvwEM/XEGpRIZKaSvkSgZzItwgErQNKOqqWY287UXsz2Gu6ilY08sbUFYv65Lz90f1MjmSiiR6235KLmF/blWo8MmpXKMBHyGE3Ep+TRN+Si7B/+1PBwD8mFSMaV+dY/fXagrwCiWDXE1f8dWj/bD/8dFYNsKbnZjCy1bd/eNIRlvg0dSqRJUZ4xrePpyFby8U4m+/XsPbhzO75oORAelGWQM+1azrpDXcy4792UrTS6H5DrrHSVsUWL3zKj44Nnha8mkMAzHbO4ezcCK7CsezqwAAcyPdsCjGAwfTy1FU14xP7o7Gm4cyIK5vwaGMCtQ0qW/+XjoFe6BtxefO4nA4WDslCCkl9bAX8ZFV2YjHd6UAAD67J5qtPdCl7bLEGYBTqB3NrMS/DqQbbK/RTGV4o6wBK3YkAwDO5dews1GRvq1K2qJeg0Qk6O2kkEGusVXB/rwjqRhfny3Q259erm5dZgB2JpqpIc5wt7XQO27lcBck3GyATNMC/dWZfHyfqK4BPvXsOFjwuNiZXIKzeTVYGO2BySHOaG5Vsl2atMSSwVs5RDr26oF0FEtk4HGAN2aHI8bTDvaWbfdRS01F5jVxPTubo7kyK6RIE9cjTVyPf84I7fK090UUMBCzta+VfmZCIEQCHrYsj4VSxUDA42LpcG98lpCn9yDxbhcwKFRd121o+QgfLB+hXpNBJOChRCJDQm41nv/tGkb6OWD9wih2ujS5UoVlW5MQ5maN9+cP6bI09BXva2o6JgU7IyG3mt1+uagOKSUSvb+JpYCHLYmFWDLcC9ZCug30ZXdtvAhLARcJz03o7aSQQa6pta3rxrcXbrJdTtuLdLdhgwdfR8OJF7QtDS0K9fmSS9paRaf87xzuH+6FXVdLAQAZFVJ88Vc+apvleGFykN55cqubkFvVqLfIJyGAunKwtF6GQCcr/HteBMJcbQyOsRWpn32ncqtxLr8W44MMKxlNkeh0h2tRqAbFtO4D/xOSLqP7sPhkURTcNLVGXA4HAp76UhIJDC+pcDf1F9XJSh3Zd0fdfoCTFV6YEoxVo3zZbZcK63AsqxLlDS1gGAZ1zXIU1jXjWFZVN6Sgd1VJW9DQoq79e29uBLxs9WujX9mfrjfIMKNCii/PFOC9o4OnObU/0hbImuUq6q9Nep12fBoASFvU95O5kW5YM9af3e5mI8TXS4YCAGwseEYrJISa1Tu1MyW1KvQrkbTBAgA0aroqKVUM22rhYi1EvK89AOCD43QPI4Zyq5qgYtQVlsaCBUA9ecooPwcAQMltdmWuk7W1th24UX7H6exPKGAgZilvaCuQAsAEI919AOhF2fcN88Svq0ayAcN7cyMxO8IVE4Ocuy2dfo6WsLVoe0C9eyQL87+9iG/P69eG7btWhpGfJGDNrhT8md7/v+yfJajXoVg63AsiAQ93hTogysMWS4Z5AQAqG1vZGj9dNJahb6ttbuvTPeeb8zQLGOlVJUa6AD02xh/+Tm2tCHweF9ZCPrYsj8X3D8QaHA/oBAyae7JMYf6g02BnK/z5xBismxcJAMgol+LD49ld2nJN+j9xg/patb7FgmwcDgePjFRXMjbqlG/MUS9rq8D54Fg2xINg7CQFDMQsJ7LbauVnh7ua7OunGzAsivHUa46O93PAv+dG6vUh7Gp2IgH+fGIMnpkQoLc9s7JRb97v7y8WAlA3hb/xZ2aPLyK0J6UUczZcwOqdV6FQdm4+8pqmVhzKqAAARHmo18JYFOGILctj8fL0EPxjWgh7bJDO9LYAUCqR4cek4k69P+k+P1xu+9soGdBUlKRXaRe4WjzUE1YCHuJ87OHjIIKfQ9t9/l+a/txRHrYIcLIyeh4uhwMLPhctCiVaFCqjgYiLtRBj/B0Ntgc6q7sfOVoJcXe0B2QKFfakiNlB1oQAgFwTjA7ztr/lcTaaCsYdV9omB2lRdNyiK2lWBxghLtZgABwcBK0MFDAQszRoouk3Z4fhrTnhJo/ztFWPV+BzOQg08bDobhZ8LqaFusLf0RLf3j8MAh4HCbnVbH9ZAKiQ6q8+2trJQru55EoVpC0KnMyuQnVjK9LE9djeyQK7tmvAhEAnzB3ibrB/kk6/zE8WRRnsz6owbHkgfUNjq36AQN2SSG9q1Nxr1k4OwunnxuObpcPA4XAQ4W6LP9eMxp9PjMFoI4V8Y0R8LmQKFR7+8Qrb+qtbofHP6SEIc2vrSrIwyh1/mxSIV2e2DTB9dWYoHorzAaCeAY4QLe0U69rWLFO0YyzrmuUY+UkCXtl/AxM+P4OZX59HcZ16fQZJs1yvRQEAJJrflwz3BADkVBmuQzXQUMBAzJJbrf4yhLvZgM8zfdnEeNnht9UjcWDNaAh7cRCQn6Ml9qwaieHe9mwXpZU7r7L7W5UMJgQ54e5o9XzMXTVzU0dW/JiMGV+fR3ZlW23Y/mt3VjNRImnG7qul7IJ5/iYCNA+7tkHn1kI+7onxgKu1EH/XDCCktSv6rqZ2AUMpzQpDelFDiwICHsfoAE8XGwu43MZquRZ8LlrkKuRXtxW0ti6PhYu1EC7WQoz2d8Tq0b6YH+WOXSvi8PrscDwc78vWCAPqLiXWFuouJz1V6UP6B+31ILhFeQUAHCwFeG9uBPu77hjH/dfLoWIYzPj6POZuvAilTrc37SJwU0JcNK+rxEfHc7os/X0RTY9CzHJNrF78y9Gq4weCj4PhrBi96aMFQ/CYZrpVXQGOVuw0gaoeeNbI5Epka5rNa3VqigvrmlHT1AonM/JW10fHc3CuoJb9/VZ9NXWP+dfMMADqKRI/PZ1HD9o+Sqli2O/dB/Mj8c/96bhRJsVIP/NqcAnpag0tCtha8LtkWmoRn6c3Lg4ARAIe/nhsFACwFVNvzjbdog0AFjztjEt0HyNt5JrnmjkVl9NCXYxu33yxEFLNNdqiUOGdw5lQqhgczqyEs7UQPC4HjpYCLI/zxo6kEuxOKcWCaHdEutt23QfpQ6iFgZhF+4C4nRqkvmKYtz0+XxxtsH2Erz276rQK3V/LXlynXzvsZCVg++jeuIPBx+IG/W5V/kamL2xPt7ZF+6Clpvy+afOFm6iQtsKCx0WMp3qxof+dyadVScltUyhV+D6xEM/sSTVotbod0hYFbLpoGmYLAVev4uTD+epBzHwe95at2O1pC4RU8UF0aVvOO2phANTX3Kb7hxndpztj18H0ChzOVC82WN3YiiAnK/V6UJPbFrBNKanvTLL7NGphIGZpbFWwsx31R6P8HNlmR3WtPINxAU44l18DAOiJHklFmv6QWndHe8DDToQLN2tv+yHeLFeyTfkLo9zxyChf+DuaHjPy4fxIVLYb2M3jcsDl0IO2tyUV1WFXcilO5qibwp8Y54/HxvizA0HfnBMOV5u2QH1LYhEeivfR65pByK0k5FbjqzMFAIDcqkbE6Kx2ezsaWhRwsbbo+EAziHRqfudHuWNamOsdnUeoKRBWtKtAIYObtoVBwDWvNUx3vagtDwzHwfQK/KwTLIwNcMSFglq2anF2hCte07TW66psbEVBTRMaZArYWwpgLeTBuR9WtBpDTxzSIRXDoLFFCRszurz0VTwuB7Mi3ACA/R8A28Kg7IEp+fa3m0XBy14EK81Kk+0Ht3ZEu4q2n4MlXu+gyR6A0YcxR7N+Rka5FDK5EiJB//379getChWyK6WIcLcFT+chphssAOoVux8b489eE2MDHMHhcPDS1GCsP5mLzRcL0diqxItTgw3egxBjdCsL2ncDMpdCxaBZroKtqGvuE7rrM9h3YhVz7do//zmZCz9HS4wJMH/xLTJwaSvChGa2VrnYWOCHh0ZAoVQhytMOchWDAzfK2fvwp/dEo1WhQqW0FZsvFuKlqcF6z8z350filf3p2HapCNsuFemd+4/HRumNJeyvqEsS6VCFtAUM+md3pI5oA4aeaGGobVI3v783NwL/XRSFeUPc2VWod6eUskGAOeSa5taR/g6dSpOVgIcmuRIv7bveqfMQ0xiGgULF4JNTuVi58yoOa6bABYCn96TqBQvq49X/XyqsAwD2GtGtAcuulOLVA+n4x77ruFk78GfnIJ2je29JKqrT21fR0ILC2mZ0RNuX27aLWrbsRW3n0S6edSfGBTix07pm09SqRINtYeCbP94m3M0GUZrun8O97XHoiTGwFvIw1MsOXA4HIgEPvo6WeGtOuEEL74wwV9wV6WZ0VqYFmxLxyancfr+ODrUwkA7laaYLC3Kx7uWUdD1tRW9PjGFIE9fDzUao18KhrWXLrmzEos2JOP3seL0Bha0KFTgcw36YCm3/TG7nYv5XZoTi5T9u0Ow73ejpPam4XCRhf9edc14bFOjKr2nC2r3X0CRXwlrIY4PacYFO+PK+GDyzJw1JxW3nu1IkwcrRvngg1pvt+93YqsBLv19HXbMCj4/xgwWfh2HedtSNaZA6klHJ/lyvKfjLlSo8tTsVKaX14HKAV2eGwdtehDhfB6PnyNHM7NZV15CDzno8nVmbx95SgLfvCseqnVfxeUI+zuTV4JslQ7tkYDbpv7Srh5vbwmCMSMDD/sdHG50VzJh37orAy9NCcE1cj4TcGuxOaevStPNKCf5Mr8CzEwJwd4znHaepN9HTg9wSwzDsom3tF/0aCDg91MJQpVn3of1DzEqnm1ezXIXdV0uxNNZbkyYG92+9DD6Pg59XxOu9Vq7SThnXuYfi1FAX+DlYorCuGf/Ydx1vzQnX6ypAOodhGFzRKdwDxmdzmTfEHQd0uqydyVOPrXl+UhC7jcvhYJSfIywFXDTrLEJY36LA5wn5CHGxxuXCOlwsrEOmztoa/7c/HYB65fX/m942hz0ZPOwtBSjWBKra1slKaStSStUDNFUM8O6RLADApRcmGT1HgaYly9zCU0cWD/NEs1wJe0tBp8fHedi2jau4UixBs1yld28lg4/czGlVO3K7AbKNBR9jApwwJsAJS2O9sGTLZXZfXbMcX50toICBDDwqhsFTu1PZAk/IAGxh0Ja3u2sMg1LFQKliUKdZFbL9g9Gq3biB/5zMRU5VI1aN9gOPw2Ef8uXSFiTerMPBG+WoamzFcM3qlZ0NGAD1bCUAcCqnGtfEDWYvvEQ61ixXQcUAk4Kd8dzEQCzZchkJudWwE/HZ9TMA9UDnJcO9sCtZXQsFAPOGuOGeoYYPlqFedrh4sw6OlgJ8sCASu6+W4lhWFcrqW7DtsulFABNv1nX55yP9g0Ln/qYtSMkU5o+bYhgGlVJ1t6ZJwc5dkqYgZ2uzxl+Zw8XGAtsfjMW6Y9lIL5eisVUBKyEPBTVNyKtuMjltJhm4bncMQ3fwMzJzYU1T/118kwIGYlK9TIErxRLwuBz837SQPre+Qldoa2HonoBhxY5kFNY2Yd089ZSB7VtptAP2dP2WVobf0sr0tl0urMNHx3PQorkJ3tT0OeZ3sksSoN+t6U4HRBLjcjR9qm0teHC1EcLGgof8miZ88Vc+e4y/oyU87UTwtBNhpJ8DGzCY6qaxfmEUPjieg1nhrhjh4wCGUS821H718vaoO9LgpVCqwOdyoFAxaFWqUCVtwYEbFR2/UOOtQ5k4qLkuHTrRfag7RbjbIsrDFunlUlQ0tIDD4bC1u8efHgu7TgysJv2PuSs9dycuh4MdD4/A8u1X9LZLmuWd6obXW+gJQkxq1sz3flek8ZrOgYAdw9BNXZK0XUOuidXrLLRvzne1scC/ZoQi0t0GShWD1//MQFGd4XiCtw9nGT1/V7QwlOsUNC8X1mHGHU5vSAzlV6sDBhGfB2shHwceH4Mvz+Sz0/V9s2SoXp9xJ8u2iQXuMdFsLRLw8NactppZNxt1d4yfk0uNHq/l69D/Z+kgd0ahYmApUC+UdiqnGqdyqvX2H3tqLB7/OQX51U0Q18vg2W5Gl6ul9bAUcLEw2gPBzn23pVk7MceTu1Mh0+n6V9ssp4BhkOmqLkmdFepqw3bz+yIhD9suF+PpPan48eG4Xk3XnaCAoZcoVQzyqhsR7GLNDmrsbgoVg09P5SLez4FdzvxWtAFD+24zA0l3Ltym2w1g88VCAOqCY3u6wdivq9WrnKoYBnvTyiCTK3E4oxI3yo0v7NYVN8M4H3sc0SxG88f1MogEPDw/KRASmQI2Qt5tLaJE9GkXppocou7GYSXk4eGRPhDwuPBxMBxgOszbDrHe9lgxyhcBTuaNGdKu0VDfrnVoToQbXpwaDGmLAvd8d4mtceuPimqbkVUpxbhAJ1gO4PtRd1EHDFwYW6rguYmBsLcUwNVaiPzqJizclAgvOwuU1qsP3vHwCFRLWxHmZo2Xpob0cMpvz7IR3kgqlhhMJpB4s+6W69SQgacvdElqb0G0B7ZdLkZpff+cZKTTAcOxY8ewe/dug+2TJk3Cgw8+aPJ1UqkUe/bswbVr19Da2orw8HAsXboUrq76tZunT5/G8ePHUVNTA1dXV9x1110YNWpUZ5Pd67ZdLsJXZwrwf9NDcN8wrx55z6wKKXZdLcWuq6X467nxBvPuJxbW4mqxBL+kivFQvA9CNWMWBvIDmm1h6MK1y3KqGlEikWG4kcWRzB2Ix+VwsFgTSDwwwhvvHMnC/uvlBsdZd8HAvtdnhWF5nA9W7khGq5LBj0nF+DFJ3Rf+7mgPvDbLcHEaYh7t2BVHneZnD1sR/j45yOjxNhZ8bDSx4qgp7b/H3y0bjia5EiP9HMDlcNjvb39eoO/pPakoa2jB3yYF4uF4395OTr+jUDEmC07a1gShTuunNlgA1OuEtChV/WLxKWshH/+7NwZn82vwwbFsVGjGXdzOlNVkYJCzKz33ndmyApysMMbfERdu1uKrM/l4ekJgbyfptnQ6YCguLoaPj49BcGBnZ3olSZVKhc8++wxSqRRLly4Fj8fDH3/8gY8//hhvvvkmLC3VfeWPHz+O3bt3Y+7cuQgODkZSUhI2b94MgUCA2NjYzia9V53KVjcJf3wyF/cO9byjKeAYhsHnCfmQtirw0tSQDmev0O2fvv9GuUGg8sLe6+wMLp8n5GPNWH8AwECenU6b76pOjGFgGAbi+hY4WakLhQ9sSwIADNMEDKP9HRDmagOGwR0NvuNwOPjn9FDEetvD2UoIiUwOhUo9t/+scLeOT9ABkYCHKA9bWAt5BgvI/X6tDM9ODOyz/Zb7urpmdUHFwapn8s/VWmiwiq+2D+/Z/Br8mipmA9H+pExTNV4lpYLfndC2MGi521rgvXkRcLQUsl3VXE0EBL9fK9Ps75oVnrsbl8PBxCBnTHjcCZeK6vDMnjS9qYzJ4MC2MHTRrF5dZWKwMy7crMXetLLBFzAUFRUhMDAQQUHGa8yMSUpKQmFhIV577TX4+qpri0JCQvDqq68iISEBs2fPRmtrK/bv34+pU6di4cKFAICoqChIpVL8/vvv/T5gyK5S921XqBhcL2tAtKfpAMuUsoYW/KCpCZ4Z7opRfree3aZe1hYw/JVbbRAwtJ/uUTud6uQumhWjL9KuuNuZMc/fnCvAdxeLwOUAHy4Ywm7XTlnoaCnE3yaZ//0wxoKv7j/cnWI87XDhZi0i3GywerQf/ns6F+L6Fnx0IocdtE1uj3axPodu7j/99PgAfHW2AE5GCn26lRHvH8vuVwFDU6sSp3PbFrara+6/M4z0lKSiOgQ4Wem1CKgHPQuwdLgXpC0KvDUn3KCS6u+Tg1FUJ8Pldgu7aS0a2r33n67G4XAQ5qqele5QegXeuSuil1NEepJcqQKPy+mxLt/mWjrcC4czKnBdXI+UUgmGetr1mzVDOhV6KRQKiMVittBvruvXr8PFxUXvdfb29ggJCUFqaioAID8/H01NTRgxYoTea+Pi4iAWi1FZWYn+qEWhXixHrtOf+Fx+zR2dS7c2OFVTOL2Vhpa2h+25glrsSi7R28/n6l+02hleHHuodrQ3aL+nnRnDoF0lVcUA/9h3w2B/V81b3t0+XxyNhOfGY/tDIzA11AUf3x0FQN1/nNyZumYFLAVcg25DXe3BOB88FOeDj3QCVl26g6T7k1f238Abf2ayvx9Mr4BMbv50oINNRnkDntyditcOZuhtV6gY8Lkc/GNaCN6+K8JoAcVKyMMrM0IxJcQZs8Nd8e+5+gVsbeG7P3HQjM1g0LYWDhn4/sqrxtWS+m6bLr2zbC34UDLAYz+l4KuzBXpTbPdlnSrJiMViKJVK5OTk4PXXX8dTTz2FN954A+fPn+/wdR4ehrUVbm5uKCtTN39q/3d3dzc4Rnd/f3O9rJ6twbGxUBcivr1QiPUnc257ak/dB2dWRWOHxzfI1MePC1C3RPxwuZjt26nUdHHRZS/iI9bbDu42/aMp+k5woemS1IkbS0eDSftSH8pb4ej0dwfUszt424uQUaGe15zcvrrmVr3xC91FyOfi+clB8LI3PhOSbmVAq5GF4/qirEopzhXUGmyvkLbiurge356/aVZlC8MwUNzB+I2M8gYczqgwutBeX6WdKvVyUR32aFaZPZVThcZWpUGFkDF+jpb4z8Io/HteJGZHuGHtlM61jPYFy+N8AABXSiQdHEkGihf2Xu/tJNySp11bmWpLYhEe35XSi6kxX6cChqKiIgBAfX09li5dimeffRb+/v7YsmULEhISTL6uubkZIpHhg83CwgIymYw9BgA7nkFL+zrt/v4m1KWtlmb+EA9EedgCUA8sq5MpUVDThHP5Nbgmru8wgGjWCRik7Qp04noZRn6SgF90libXzqLyULz6BlrW0IJ/aVaBXbpVPV91pLsNNi0bhotrJ+LY0+Ow8f7hA3qWnK6YVrV9AeyXVSMxJdgZ1kIeQl2sMT20/05Tqr2xzf7mAtXs3iaGYVDTJIeDZe8PFh2jsxjfJRNdTvoShmHw3pFs9vd7YjywfIR6BfSiumZ8eCIHG8/f1KtJv17WgHcPZ7LTKWr9fLUUYz87g6xKKcylYhg8/GMyXjuYgcMZ5q9X0Nuul7W1NH94PAeAuvspAAzTLPZ4O+YPcUekuw0+XRTdNQnsBeFu6sk7btY0Q6FicCSjAjuvlLAtw7q2Jhbh5X03um1dHtL1rovrcSRXwj6f+mqrgq7nJwXhPZ0WPDeb3n9GmMPsMQwqlcrgSxQVFYVnnnkGUVFR4PF47LaGhgbs27cPEyZMANfIwlLmfBlVHUxb05k+XzU1NWht7b3Bc3NC7HEoR4IoR2B5hAc2XObiQLYEpZImvLkvHy2aGut1030Q4256Krij19u6ZVXWN+m1uhzMqgMAfHA8B6NcOBDwOCivVT9MuLK2KTqTiiX45lQ6e/N0seDAnduMivK+GZC1tLR0aetSo1RdiCgsr8KlXDHivawR7KQfzMqVKvznbBkiXUW4J9LJ8BzNbQPqpgXaQdgiwYujnYHR2rEfsh5vEeuqfFoZ44DLRRK0KFRIzSuGn/3Aam3q6utJV0ZlM2QKFZwt+kaL6L+n+eC1E8U4kFqIYMvbu/91Zz61J1eq8Gt6rd5UwncHW+FEvvr+9fffrrHbG1oUeGLnZSyLdsbLR9UVWGH2HEwOaBsT9t9TuQCAB7dfwRgfa/xroleHz48iSVv3laKKGpj70Xsyn3R9m1SBo7n1aG5XeVFWVoZKibr1eUGgxR2l7aPpXgBau/Rz9WQ+tUjV9+cscQ0+PlKPPTfUrVanM8V4a6qP3rH/O6NeUPG1fSl4bnTvj9noreupv5DIlFj5q/r7/c2lCny7MBA36/S7nvXV/Bvq0PZzmKOg29N5q2vJWI8fY8wOGA4cOID9+/frbduwYQOGDh1qcGx0dDTS09MhkUjg6Gg4ENfKyoptSdAlk8nYFgUrKyt2m0Ag0DsGMGx5uB1OToaFvp702lw3PFLbhFBNn1Av5xYgW4J/nlD/MQU8DuRKBjK+1S3/kDxh2wO1VcXROzZYygegrhm72SLEhCBnKLnqG2WQjwfenmOBT07lQiJTYPOVtsAjNsDF7IunN5SVlXVp+uxKFQAq8UNaLcobWpBWJce7cyPgai1kW1YSC2txvliK88VSrJ4YgR8uFyHKwxZjAjTXEU8MCx4X2x6KhY+9ZZ+YlaGr8snDA1hdzeC7i4V45sBNJK6daLSwlVvViOK6ZkwMdu5zg8xupauvJ11ny9Wte76udn3iO+XgrAROFONobj3eWzjstipdujOf2nvrUAYO3FDXinvZWYDP4yLc3wsKC1tsS6kyOP6KuAlVsrZKKEZoDQ8PD7QqVGiWK6HbY/BCcSMO3myFnUiA3OpG3BXhZrTmPammbQpjnsWt78O6uiOfkorqcLO2CXMj3U2OhTlTlI9mhQoWPC7euisc35wtwM3aZjz4Sx6a5EpwOUCgr1ef+W725PUkEzYBKMSpAvXzUrvidZK4CQt2ZOHuaA/8c0aopsuWeoHMtMqWPvGd7cl8ul2tChWa5ErYifi9cl1VN7Zi9a6L7O9yFYNmvg1adNY6uneYZ5/NPwAIdytFZoUUYV7O3Z7OrriWzA4YJk6ciJiYGL1tGRkZkEgkGD16tN52uVwODocDa2vjK0K6u7ujoKDAYHtlZSU8PT3ZYwCgoqICtra27DEVFepCcF++CDpiweeywQIAzAh3xfeJRewYAl8HS+RVN+FUTjXmDXE3+mW8WiLBnhQxAMDZWohmuX7Nku5rtLMjXbip7u9ra8HH3CHumBnuinePZOHPdHWezg53HXRznGvHMJRrpm1ME9dj4aZEzI10w9uaWTUu6ywCdDSzAt+cuwkA7OqNrUoGAj4HQX14BdTOsLdsu00U18ng66gfrJc1yLBMM5Xs0uFe+Me0vr24U3dTMQy+OlOArZfUNd6TgvrGLGMiAQ9OVgLUNMnRLFeZvSZIT9P2wx/qZYdNmjUpOBwOhnnb4x9Tg/Gfk7kGr9HtXrLpwk0siHbHPZsvsQvn6dJ+fwGguK4Z/7vXsNLrTF7b2Ij2Uw13hyOZFTiUXoGPFgwBn8dFlbQFd228iCfH+bPpFfF5mDvE3eC1e1JKUdMkxwgfe2xYqs6vjZrX1Lco4O9oya7JMRjprlUzJdgZ98d648ekYpzRjH/5/VoZmuVKvKxz3xLXtyCpqM5gYUWiJm1RYNHmREhkCkwNccFHC41PttCdCmqa0KpkEO1hC1sBg/NFUkhkcuxNU1e8fnlfTIczR/a2z+6JhrhehiEeth0f3AeYXRXq4OCAgIAAvX/Xr1/Hli1bUF3dtsy8SqXClStXEBgYCKHQeL+sIUOGoLy8HCUlbbP0SCQS5OTkYMgQ9YUXHBwMCwsLXLlyRe+1SUlJcHd3h4vL7c9n31cFOVvjxDPjMNnfFvG+9rg/Vt1XNyG32mDFSq3tl9XTqYa72cDdxkJvPENFQ4veQL0muRI3a5sgbVEfo605F/C4elPNTegjBZueNCbAEfG+9uyaCdrujwfTK5BR3oCN5wrwfWIRe/zbh7PYn789fxPrjmYhs0Lap1aT7Gq6YzD+748b+Pb8Tb39V4raBhP+fLUUg112ZSMbLADqgaR9xVhNq1hVY99dzyDMVR14fzg/EhwOR68lZHaEGyLcbPDpPdGYHW44NojLASQyBab875zRYKE9SbPxwfwlkrYA5KfkEiQWGg6+7gotChX+9msaXj2Qgb/yapCnmS0lqVj9ndINbtpPKVvV2Ir3jmaxYxUCdVYGnxHW9nz88eE4/N/00G5Jf39ga9FW4fHcpCDE+zng40VResccyaxkpyjXyqwwf8zLYFMikUGiqYjUHTfTk35JVVeYLoz2wEQ/dYG7vKGF7co43Ov2x+z0NGdrIaI97fpNMN+pdRimTZuGc+fO4YsvvsCCBQvA5/Nx+vRplJaW4oUXXmCPKy0thUKhgJ+fHwAgPj4ehw4dwueff4577rkHAoEAf/zxB2xsbDB58mQAgFAoxOzZs/HHH3+Ax+MhLCwMV65cQWpqKtasWdOZZPdJlgIeXhqvbj5jGAZ/5VbjTH4NyuplKKptxgfHs/HISF8M97aHBZ+LSmkLrIU8/PDQCDy1OwUyhQpfJORhmyaQiPFsi1ibWpXsgkeTjKypMD3UBcezq+DjYHyGlYEswMkKXy9R18r9klKKAzcqkCZW3wAf/jH5lq/dqFNw7qnVunuDu60FDq4ZjeXbryC7qhHZVY2I93VAk1yJwxkVyGr3YK1ubO0Xq8LeqQaZAuuOZWHeEHejQXaFzvSNL08LgWsfmmVM+1y6XFTXpwIZrZyqRtQ1y+FmI4SLkXyztxRg+0PqqbaHuNugsK4Z6eVSzAp3xVPjA1De0IKndqeCgTpQsxbykF4uxcPxPlgx0hcfn8plW1QBIKNCiod+uIJN9w9ju/soVAwyK6Rwt7WAlZCH/OompJXWd3ltZalEhvu3XoZMp3JHu26HsfKDbksHwzBY8O1FtlV6QpATXtKpIdddaLG/TOvcXUQCHnzsRSitl8FFc18yVkDboqkY+tvEQHz+Vz6kLTQznCn7rrX1ha9tloNhmB5bS6BFoUJRbTOSNJM3TA5xxsVMdaB9KkddeT3Sz6FPdA0eaDoVMDg6OuIf//gHfvvtN+zcuRMymQyBgYFYu3YtgoOD2eN27tyJ6upqrFu3Tv2mfD6ef/557N69Gzt37lQvsBIWhiVLlrBjFwBg7ty54PF4SEhIwPHjx+Hm5oZHH33UYG2GgYbD4eC+YV44k1+DvOomlEhkSCysQ2JhHXgc4NjT45Bb1QgnK/XNT1sg0QYLAJAmbhvf0NSqZB82cT6GUfc7d0Vg1egmhLv1v3m2u9K9w7xw7zAvZJQ3GAQLex8diUWbLwEA5ka64aBOoSPG0xaPa1bFHqhcbSxw9Kmx+PJMPrYkFuHJ3SkmZ5b66kw+Xp/dP+f9N8fmi4U4llWFlJJ6HHzCMGDQXY3YqY+tYTLCxx77r5f3yZlE6prleGh7EpQMEOracfc+Ryshtj2o/yzwcbDEiWfGAQBsLPhQMQwqpC1wt7EAh8PBC1OC2YDBy84CpfUtyKyQorhOhhBXazTIFLjnu0SoGPXMJf+aGYYHtiXhcGYlHh3Ttd/x//vjhl6wAACfnc7DvcM88YGm1UDXvmtleGSkLyz4XJQ1tLDBwtQQF7wwNUhv2tTpYa7Ir2lCpHv/6OrQ3b57YDgaW5V63fA+WRSFV/5Ix3OTArH9cjHKG1rA53IwQtMN6bvEIjwU79tnu+71pl81tfsAIFcyaGxVwsai0+sA61GqGHA5hhPc/GPfdZzXTLe8ZJgXnKyEsNVMUZ+smTp35ajB1bW6p3T6L+zh4YGnnnrqlse8+OKLBtscHR07bCngcDiYM2cO5syZ06k09kcummm2dlzRX1xNyQBTvzwHAGzA8PK0EMyOcEOpRIaPThg+aDZfLGR/tjZy8xPyuYM+WNAV4W6L9XdH4aXf2+ZydrcV4W8TA5FSWo9Hx/jrBQx23byKb1/yxFh/7EgqZteeiPG0xQfzh0DFMEgsrMO7R7IMCkF9wfWyBmRWNGDx0M63BBXVqbur6K6crkvb3cdKwOtz3fy0Nc/tpx7tTdsvF+H3tDK42lhAyagrNf4++c7n/9ctuHA5HHjYtrWcOlgK8N7cCBzOrMR7cyOw7lg2/kyvwLWyeoS4WqNY0sx2tfj75GD4aNa16I61GDLatcyFuVojq7JRL1gY5mXHrhhf1tCCP9PLsSjGk61dBYAPF0QaFKqcrYWDuhtSe45WQji2m3BwYpAzzjw/AYA6WN10oRDjAp3grnn2KlUM3j2Shffn0yr3umRyJRQqBj72IsT7OWBvWhlqmuRdGjDkVTdi1Y6r6u5jd7d1H2MYhu0CO9TLDvePUN/PXa344HE5UKoYWAt5GOppZ/S8pHO6NiQkXSbM1RrBzlbIrTZcATDW2x4BTpZYPFQ9QNzGgo/xgU5oVajweULeLQtsHnaDr9vRnRjl54B4XwcoVQyemRgAPpeDh0f64mHN/rfnhOPD4zkY4WOPpbEDtztSe3weF/G+DuyCWv+eGwk3W3UL15QQZ7x7BAYLAPYFK3eoW4zifR3ZrjgqhsHe9FpcP1uJx8b4mT1PvUTTl7xFqUJKicTgddWagGHL8tg+1x1EO9amtZcDhmviehy8UYEXpgbjSEYlbtY246Zm4PLoAEdEdGPN+KwIN8yKUC8AGuNphz/TK/De0WwU1jbDx0F9bTwxzh9DNeOaIt1tcLPm9qeZPnCjHIczKjDUyw6zw90MJgtwtBSgtlmOpcO9MCvcFZHutrhYWMsuOrVqlC8eHeOPumY5TuVUYf3JXGy/VIyF0R74zwn1wO+Xp4X0WFeQgezxsf6YN8QdHrYWeusOXbzZPWNX+rOrJW0Fdm2lZW1Ta6e7OG6/XIRN5wuxbIQ3jmVVokmuREJuNTZfuMm27jW2KtGiVGFKsDP+oxNI2Iv42L0iHpWNLfC0E5mcTYx0DgUMfRSHw8H/7huKuzZcAAC8OCUYyzQLF5ki5HOR8Nx4jP/8DORGVh/evGy43tgGYpqlgIevlxjOnqI1d4i70RlLBgNHTTcbL3uR3srCfM2aK30xYNDKKG9gH2zpZQ3YnKyeUvjCzVqceHocbEUd3xJ1WxbePZKFd+6KQKirNQQ8LmRyJY5lqc/p0gfHcWhXHTd2f+hJq3ZeBaCegat9TbuPfc+NrZgR5sK2ym7X6dJpI2y7DpythUgvl6JK2mJ0XIUp7x3NglzJ4HxBLRJyq7HtwRFsX28Vw0ChYhDoZKU3q9jEIGeM8XfEhZu1mBDkDAs+F+62Flgy3As/J5eisK4ZF2/WspNcLIganPegrsblcNhgEVAHa98nFiHYxfQ6SHvTxNibVoYNS4fddsUAwzC4UixBvUyBWB97vTEnfV1pvXpqe3dbC7bLZU1TxxMMdORUTjWa5Ep8p9MjAlAP/F8Y7QEHSwFOZKunVbYzcp/2dbQ0CMpJ1+pb1V9Ej4u1kF2JeEKQeWtHcDgcdsaf9oZ62VFtFOm0cYHqa3GOppZWS9uHWtEDtdetCpXBCtvGlEpkWH+yrYuH7kwo9e0GNX6pWbSpIxKZHH6awsXN2mas2JGMD4/nYN+1Mkz84iwkMgUs+FzYWPS9Wq6+0MLwc3JbN8tNF/QLB1wOMNnIxAzdxdFKiL9NCjTYrvu3006L+9EJw+lcb0U3KEsvl2L9yRxM/PwszhfUIKNcioYWBduKoevfcyOw6f5hevu4HA7e0awM++Lv18FA/f2jmtTusXq0eoIW3cCxvfeOZuN6WQMyKhpMHmNKmrgBT+5Oxct/3MB/jHQj7quyK6V4/5g6vaP8HNnKo9rm2591TXv/zq9uwoWCGnDbFU2+WzYcU0LU3716mQKHMyrw7hH1LIW3E7iTrkMtDH3c5mXDkVfdpFf70RHtTY7H5eCNWWG4XFSH4WZ2tyCkIzPDXBHmamNwTfK1tdc90MKwdOtllEhkeHZCIAKdrWAp4CLCzRa2Ij4SC2uRkFON2RFuWP3TVb3XadfbAIDmdvPr/3G9DP83/dZdPBiGgUSmgJ+jJdxsLXBZ05f892tl+F1n5pCP747qk8G5QBMw9GYLg+7kDFovTAlGq0KFET72PT67iZ+Re6tuf+xZEa5YdywbJ3OqMPbTv+BiLcSrM0PbFm40wctehFJJ2wKlu5LVUw4fy6zEoQz1GKgRRiahsLcUGO0eN8TdBlOCnXG5uA5WAg7mU+tCt7Hgq1foSSmtR6W05ZYznWWUSzHsNqbwVKoYPL0nlf39SGYl3pvX98dJMAyDp3a3pTvA2QrQzKh/8EYF/BysEO/n0OF5qhpb8fHJXBzLqsTfJgXi8wTDihpnayFivOwQ5GyFUznVSCqqQ56me/bq0X54KM7H4DWk+1HA0MdFe9oh+jYH8MwIV8+QMT7IaVB3nSHdg8PhIMDJsKmey+GAywEU3VwYbWpVokRTEPtfu1aB40+PxdrfrqFVyeDXNLHBa2ua5ChrUE9VfFUzmHT1aD98d7EQrUoGnyfk4/lbDLhtkiuhVDGwFwngbC1kA4b2Rvv3zQWDtF2S9l0rg70lH6tG+XXqfM1yJbYkFuKBET5mdatoVajYoM2Cz2UHE88Md+21LlwTg53x6sxQvHc0m92mO3e/tZCP9+dH4pX96VCoGJQ1tGD75eIOAwahJq8teFy06LToHM+uQquSgbO1ENNCzV9PiMPh6PXbJt2Hw+GAz+OgoUWBuRsvItLdBitH+bF/r+K6tjEt60/m4kqxBB8uMG/xsqrGVoNB9MV1zdh+uRiTgpwx3szeBD3tRlkDOyHAX8+Nh0jAY8dzpZTW46k9qbj0wiT16uoqxuQg6O2Xi9hum8aChXuHeeLvk9T3YEdL9T1Bd7HGuUPczOo6SroedUkagGZHuGHPqpFYOzm444MJ6UJ8LqfbxjDkVDZi/YkcfHi8rWAX7KwfuCzclMjO4KRbi7552XC2NnfBt4l4ek8admpmIIvxtIWlQH0rbL94U3vahb7sRHw8PykI3y0bjmcmBAAA3rlLPZWssS4ufYW3vSViPO3Q2KrAwRvlSCutx6M/XcXITxIMFuQzx49JxfjuYhFe2Z9u1vGHM9U16xODnLBleSwAIMDJslfHe3A5HCyK8cRIndrR9gWSGWGu+MfUtvuph21bjfP1sga8fTgTuVWNeq+RKxl42lngzPMTMF0nMNBOcT03kroU9WULozwAqGc7Sy+X4sCNcgDAruQS3POdeortcQHqioET2VX45mwBXtmfjl9SSvUW/jtfUIPjmgIyANQ0qbvvLB/hjXuHqScu+S1VjF9Txfj30baFQfuaFM36RGunBLHXrbutfsvLlsRCTPriLKZ+eQ4PbEtClc6aNFq6004b88/poez55w1xx1qdChwve5HRFkHSMyhMI4R0GT6XC4Wq6/vHH8+qxD+NFEonhzjDUsDDtTJ1P+LGdt2MAHXBLMbTFnMj3XClWKK3T8DlYLS/I9aMDcBnCXkAgAsFNSZrj2s1D3s7kQBWQh5ivOwQ7WmL2RFu8LQTGYzr6Gss+Fx898BwPLAtCRUNLXjrUCYKNbWlG8/fxMpRvmy3Ja3vLxbCntuCEUI7g5Yl7Ywpl4vqUNYgwxsHM1BcJ8O+x0bpzTajpe2isyjGEyEu1rj0wqTu+Jh3RHdtihAXw3UgFg/zQoCzFZ7Zk4ZTOdV4fbZ6etqvzuQjsbAOza1KhNhx0JTVhL9NCoJcqYKIry74vK1Z6+ZYViW7QFhfWtCPGPrnjFD8c0YoGIbBpC/OIiG3mp2tClCvsfLJomjsulqC/57KY6cvP5ZViTgfe3y9ZCg2XyzEBs1q3S9OacXUUBec1iwuZingwV7TKqftplfV2AqFUmX0u9OblCoG/z2lvj9ODWkLftu3Inx5poD9OaeqER+fysXMMFdcKZbAyVoID1sLHMmshCntxzHYivhYHueD/55Wv/cbs8L6ZFfPwYICBkJIl+FzOciqbISKYW57ufvyhha8fjAdaeIGnHxmnF7tq7Fg4dN7ohHnY48x/k5Y83MK7h3qiV80CwoFOFnCTiTArHBX3B+rnl2sfW0YACwMd4CAx8VD8T4QCbj48HgONl0oNBkwbNDUwttbtt06ORwOPDXTFfeXh5mztQA5VY0GA7+f+yUN3yxVr3yeVSnFO4ezkKmdxegvdd7+3/QQdmXzS4V17GsXfJvI/lzV1Kq3/oFWpaZ2McjZ9OwzvWW4tx2uFEvwz+khRq9dPpeDUX6O8LYXoUQiw9hP/4KQx0WTZsai49lVOK459ukJgZArGdhYaLolada68bYXwcdeBA6Hgxlhrj310UgncDgcxHjZ4VJhHf6x7wa7/dHRfuBxOZgU5IwvEvL1WlaTiiXYcqmIDRYA4ONTuciqlMJes27PMG872IsE+ONaGYp1xrrcrG1GsJGAtSuczqnC+Zu1eHFKsEHFgK6PjudA2qrAO3dF4GhmJf51QH3/dbIS6LWuAfpdCwFgjL8jXpoWjPu+v4xjWVU4llVlcP5Idxu8NzcSi7+/hBE+9rh3mCeKapvxwAjjYxNemxmK62UNZk99TboHBQyEkC7D53GgbGGw/3o5FkZ73NZrL96sRXKJutn7jT8z8dFCdZ9gaYvhAmmedhYYr5mtKdbHHpdemISyBhl+TRVjhI89W+jVFe/rgGcmBKBBpkBRnQync6swzrdtwcJ7Yjzx4fEcpInrTdbyaR+MC/r5uKC/TQrCp6fz9Ar8APTWffnvqby2YEHHh8dzMD3UBdZCvsnVvm/WNJsIGNRdFPrilLOPjvbHpGAXRLrfehHL12eF4cndqVCoGChUhi1aADD2078AGAapNhZ83B3j2TUJJj3mf/fGYNbX59k+/AAwRVPT7uNgicNPjoG1kI9iSTO+PX8ThzMq8ZVObbvWH9fL2Z/9Ha3gZS/Cb4+OQrNcia2JRdh8sRAppZIuCRgUShUYqCc6yKqUIiG3mg1gZoa5Ik6zonV7MrkSu1PUA/TfnhPOBgsA8NV9Qw0qRb5/YDi2Xy5Gi0KFa+J6vDoz1GjljJaLtRBblseCy+Hg5xXxcLe16HA17btjPOl70wdQwEAI6TIPx/vis4Q8bDhXgAVR7h3WuLcoVGiQycHncbHtUhG7/WROW63UB8fUYxamhbrguYmBSC2tR4SRQp2HrQh/PD4a9iYGxPF5XKzUGeTbLFdCUt3WPM7jchDlYYvrZQ145UA6/rNQf4BpZoUUV4olcLAU9Ptp/cJcbfDlvTHIrW6CpYCL8oYWfHWmACml9WhRqJBR3mByQDcAzP/2IjZogrK7It0w2t8RycUSdqaoj07kYPfKeIOa+srGVtha8Ptk330hn4soj47XqYnzdcAXi6Px3K/X2G1rpwShpE6GwioJLhS3jWWgeeEHBi6Hgw8XDMFvaWIU18nwwpRgdsFKQN1FEVAHAW/PicD5/Fq29e6lqcFwt7XA6wcz9BZVddYJmi0FPLaQ/f6xHEwKdul0UL1y51XkVTfi3PMTsf5EDlsZAwB/5dWYDBh0Z3vTLiIIABMCnYwGMqGuNnjnrgiD7f+7NwatShXG+jti7Gdn2O2ediL2vhDYB1saiWkUMBBCusyyWC98lpCHCmkrZn59Hk+MC8DEICejK4wzDIPpX57Tm0FG18ZzBbC24OOwps/rcxMD4eNgecsphm9Vs9WepYAHSbttz00MxJO7U5FlpGb9m7MFAADfATLojsPhsH31ve0t2QLQv49ksbNQmdKqZNjF14KcrTBviDvmDXHHgih3PLYrBYW1zTiWWcmuqAyoWxeyKxsHRCFhhI8DlsV6o6CmCatG+2KEjwMAoFQsxt071QHuw/E+eGZC3x0AT25PnK+DyUK2Lh6Xg9Vj/PCppt/9kuFe4HI4mBnuyrYwRHvYGiz2NivCFV/8lY+GFgXEElmnAgalimFbB+/enKg3vS8AVDUaDkbW0o5LAoAz+TXsz+Fut255a093pri/nhuPr88VoLFFiVkR1BWvv6KAgRDSZfg8Lv67KApr916HRKbARydy8N/THHyxOMbgYVvXLNcLFjgAHh3jxy7m9a3Ool4iPve21iK5U3G+DojxtEOauB6v7L+BN2eHs7XhZZrpQL+8L6bb09EbXpgSjKM6awQAwLt3RWBOpBte25eCiyVNeG5iIMJcrfHwj8nsMROC2hZa0w3YNl8sxPXyBtwoa8D784ewszC59/PWGUDdGvHiVMNZ6LgcDh4Z6YtD6eWYE+kGXvtRnGRQcNQMZo7xtGVr09+YHY4KaQsu3qzD2ADDaZethXw8qgk0apsNV05WMQw+OpGDQ+kV8HO0xPRQV9TL5Lg/1huOVgJsSSxCiaQZZ/NrUafzet1gYWGUO/ZdL0eauMFgnBnDMHj7cCbO5deCA+DQk2OQVSHFz1dLYcHn4bGx/necHyIBj2ZtHAAoYCCEdKkJQc44+tRYXC2R4B/7bkCuVC9UdPjJsXpz9RfVtT3I3p8fiWmhLuByOMitatLrkgQA3ywZ2mPptxKqa/6OZVXBwVKAmeGusBepBwl72lnAsg92p+kKLtZCvD0nHG8dygQDdVeKOZHqFoJnR7nj3x5tY1J2r4zHvw6kw9/RUm9qW3dbC9wT44Hf0sqQV93ELrb06alcpGtqPN+YHdZzH6oXPDcxEM9NpJaFwWxaqAukrUpMbLemwmuzwvB7Wple10hd2skTbtY0Ae1WPC+oacIvKeqJB9LLpUgvV3+fjC2EqCvExRpvzQmHn6MlLAU8HMuqQqlEhgmfn2HHMjS2KnE0swJp4gbwuRzMjnCDk5UQYwKcOlxvhAweFDAQQrqcg6UAU0JcsGdVPD4+mYvzBbWokrbqBQyvHVQPpvOyF7HBAqAuqOoGDJuWDUPUbS5e2BliSVtz/Z4UMfaktC0AZ2tiMaKBYu4Qd4zwsYe1kH/LxZECnKyw4+E4g+0cDgf/mhmGEokMiToDqrXdyrztRTSdKBnwRAIelg73MtjuYSvCE+MCTL5OO3uYsS6BZfXq+5KTlQAMA71WiBAXa3A5QFal/log782N0OsWCAAvTg3Gu0eyIFcyOJhegYPpFXr7V4/2w+OdaE0gA1ffmuyXEDKg+DtaYaiXurD/5O4UKDRdkORKFcSaB+ALk4P0msbdbC1w6IkxeG9uBLY8MBzDvHp2Kj3tugSj/BwMFoa7nZV5+ysPO1GnV1INdTXs7zwxyAmb7jecvYoQoqbtyvRLqphd4E2rQTOI+slxAdj5SFuwzudysPOROPyoE8A7WwuxZJgXJrZrpQBgcva6UFdrPDcxEPcNo9mIiHEDu7qMENLrxgY4YcO5m5DIFChraIGPgyXKG9pq8bUDRnU5WwsNasZ62uQQFywd7oU/08vx7yNZ8HGwxLhAap43x/OTArEs1gsM1KtvA+rpb/v77FKEdCdbEZ9d12D2Nxcw1tcGny9RF/CbNItSWgp4cLYW4uv7hqJC2oIRvm0VKpuWDcOZvBo8PT7gljPUrZ0ShLTSer01Eoy1GBKiiwIGQki3ivKwxfI4b+xIKmFXYtau9rk8zrvTtdldLdjZCrnVTfDXTIl5V6Q7Zke43fZCdIMZh8NhZ8bavTIeldIWDKdFlwi5JS6Hgx8eGoElWy4DAM4XSdGiUMGCz0WzQhMwaNYsiPdzMHj9MC97s1pkl4/wAUYAqyqleHD7lQE/roh0jb71pCaEDEg2QvWtpq5ZjpzKRnaK0iXDDPv59rYv7xuKlBKJ3rSAFCzcuQAnKwQ49f+pVAnpCe2/K68dTMf784dAJld357QUdF1P8jBXG1x6YVKXnY8MbBQwEEK6nZ2mFeHZX9LYbfG+9j0yVertcrYWYloYzRVOCOkdj4z0ZReyPJVTjexKKRo1YxisB+gsbaTvo0HPhJBuNzfSHctivdnfna2FWDcvshdTRAghfdNT4/xx6IkxuD9KPWbqt1Qx9qapV2B26uQK0ITcKQoYCCHdzlbEx4tTg2Fjoa4dWz3aD45W9OAjhJD2+DwunK2FcLRUt8z+llaG+hYFBDwOnOi+SXoJdUkihPSYdfMicamwDvOG9O4MSIQQ0tfZCvXrdL9YHAMLPtXzkt5BVx4hpMeMDXDC3yYFwVpIdRWEEHIrI71tsHxEW1fOOF+H3ksMGfToqU0IIYQQ0sdYCrhYOyUYo/wcYSOiwc6kd1HAQAghhBDSR40PogUjSe+jLkmEEEIIIYQQkyhgIIQQQgghhJhEAQMhhBBCCCHEJA7DMExvJ4IQQgghhBDSN1ELAyGEEEIIIcQkChgIIYQQQgghJlHAQAghhBBCCDGJAgZCCCGEEEKISRQwEEIIIYQQQkyigIEQQgghhBBiEgUMhBBCCCGEEJMoYCCEEEIIIYSYRAEDIYQQQgghxCQKGAghhBBCCCEmUcBACCGEEEIIMYkCBkIIIYQQQohJFDAQQgghhBBCTKKAgfQ6hmF6OwmEDEr03SOk57W2tgKg7x/pXyhg6EZ0MzBPS0sLAMqvjqhUqt5OAhlAWltbweFwejsZfV5zczO2b9+O2tra3k5Kn9X+3kT3cuNkMhl+/vln/Pnnn1CpVPT9I/0Kv7cTMFCdPHkSYrEYrq6uCAkJQWBgYG8nqU/atm0bysrK8PLLL/d2Uvq006dPIz8/H1ZWVvD398fo0aN7O0l9UkJCAmpra+Hk5ISgoCB4e3tDpVKBy6W6EV1lZWV49913sXjxYkyfPp3yyIQDBw7g8OHDsLe3Zys2iL5jx44hMzMTjo6OCAkJwahRo6ggbMT+/ftx5MgRtLa2YsyYMfR9MyEhIQF1dXVwcnJCcHAwPD096f5kxOnTpyGRSGBvbw8/P78eKWNSwNDFKisrsXHjRjQ0NMDT0xNXrlzB/v37sXLlSkRHR0MgEIBhGLqhAlAqlSgvL0deXh5yc3MRHBxMN4Z2ioqK8P3336OlpQWBgYFIS0vDiRMnUF9fj8mTJ0MoFPZ2EvuEkpISbNq0CTKZDB4eHjh27Bjs7Oywdu1auLi40HXVjlQqhVKpxNGjRzFp0iS6L7WTkpKCXbt2QaVSYcmSJYiLi4OVlVVvJ6tPqampwcaNG1FfX4/Q0FBkZmbi7NmzcHNzQ0BAQG8nr8+4evUqdu7cCQ6Hg4ULF+L8+fPw9PTs7WT1OSUlJdi8eTNkMhlcXFyQm5sLV1dXPPvss3QP11FUVITNmzdDLpcjMDAQV65cQV1dHXufEolE3XYvp4Chi6WkpEClUuGZZ56Bh4cHpFIpfvnlF2zbtg3Lli3D6NGjB+VD2dgFXF9fj4qKCgDAjz/+iDfeeINuCDoYhsGJEyfg5OSE++67Dy4uLlAoFNi1axeOHTuG4cOHw9XVtbeT2SckJCTA0dER999/P5ydnZGVlYUtW7bgjz/+wKpVq+i6akcmk8HS0hJ1dXXYs2cPHnjgAQoYNCorK/H1119j6NChWLZsGRwcHPSuH8ontbS0NMhkMjz55JNsAbimpgbu7u6UR1A/3z799FNUVlZiypQpmDp1KmxtbXHixAnI5XIAdC3pSkhIgKWlJdasWQMXFxekp6fjxx9/xN69e/HYY4/RPVzj6NGjsLCwwOOPPw53d3fweDzs2rULP/30ExiGwYQJE7rtmqK/QCcY66d55coVuLi4wNfXFwKBAI6Ojnj00UdhY2ODEydO4ObNmyZfO5DJZDIA+n1dT548CQsLC9xzzz0Qi8U4deqUwTGDSftroqKiAikpKQgKCoKHhwf4fD5EIhFGjhwJiUSC8vJyo68b6Np/XqlUipSUFHh5ecHd3R18Ph8hISGws7PTu3EO9nzS1dDQAKFQiJkzZ+L06dMoKysDl8sdlN893XxiGAaurq4ICgoCj8eDk5MTuFwulEolrly5gqKiIjQ0NBh97UBm7HNeunQJLi4u8PPzg0AgAJfLRUVFBcrKytDU1NQLqex9uvlUV1eHoKAgvPTSS1i8eDGcnJzQ0tKC5uZm2Nvb92Iqe1/766m+vh5paWnw8PBgn3URERGwt7eHXC6HSqUCwzCD5vum1f7zlpWVIS0tDaGhofD29gafzweHw8HSpUthYWGBM2fOID8/3+hruwIFDJ3QvhAsk8nA4XAgEAigVCoBqLvdaP+gYrEYly5dGlSDnVQqFXbt2oWNGzcCAFtLIJVKcf36dYwdOxYjR45EVFQUfv/9d8jl8kFbk6C9nrTXjlwuR1NTE9uKoL3OdGunAAyaa0mrfT41NjaisbERHh4e7DH19fVobGyElZUVsrOzIZfLB20+GQsCKisrERERgdjYWDg4OOCnn34CMPiuJUA/n7Sff/To0UhLS0NzczMSExOxdu1a7NixA+vWrcMHH3yApKSkQXUfN/asU6lUcHBwAACcOXMGa9euxdatW/Huu+/i008/RUFBwaAr4GnziWEY+Pr6Yvny5fD39weHwwHDMBAIBBAKhZBIJL2c0t7V/h6uVCohFArR3Nys93xTKpXw9/eHRCIBh8MZNN83LWNlgubmZjg6OrLHqFQqtvKwuroaV69e7bZ70+AsmXWSsUIwwzAQiURwcHBAcXExqqurAQA8Hg8AEBMTg4iICKSkpLCtDIOBUqlEfn4+MjIykJ2dzW7ncDiYP38+5s2bBycnJ0yYMAFKpRJ79uwBMLhaGdpfTzweDwzDwMfHB1OnTjXok6it4dQtIA8GpvLJ3d0dzz//POLj4wGou0V88MEHkMvlSEtLw8cff4zPP/8cWVlZAAZ+rbCpIF27D1DPTNbU1ISgoCBMmjQJGRkZyMzMBIfDgVQq7ZV097Rb5ZOPjw9cXV2xceNGnD17FgsXLsTTTz+NZ555Bra2ttizZw+uX7/eW0nvMbd61llbW6Oqqgo3b97EX3/9hQULFuCZZ57B8uXL0dTUhB9++GHQPOva55O2cKt7TXE4HLS0tIDH47GF4sFWADZ1D3d0dERERASys7Px6aef4tChQ3jrrbdQWVmJkydP4q233sL27dtRWVnZy5+gZ9yqTODj44O0tDQ2L7hcLjIyMjBmzBj4+PggOTkZJSUl3ZIuChjugLFCsEKhAABMmzYNZWVlyMrKYh/O2uhw4cKFqKys7LY/Zl8kkUhQUVEBgUCA3377jd1ubW2N6OhotvAWFhaGsWPH4vTp0ygvL2cfTIOBsetJe+0sXLgQMTExerUraWlp8Pb2hqur66AKrG6VTyEhIRCJROyxs2bNwgsvvIC1a9di7dq1yMvLw9mzZ9lWwIHsVvmkLcBUVVXB3d0dADBixAiEhoZi69at+OKLL3D06FG2QDOQGcsn7b3ay8sL9vb2SE9PR1BQEKZMmYKgoCBER0dj1apVkEqlyMzMZO/7A9WtnnXjx49HRkYGfv31V7i5uWHy5MkIDAzE+PHjsXr1ahQXFyMjI2NQ3KNu9Z3TYhgGdnZ2sLOzYysUB0Pe6LrV9bRo0SI89NBDcHJywqFDhxAWFoaXX34Zzz77LO677z6cPXsWZ86cYdewGMiM5ZO20nDevHnIzMzE559/jh07duD999/Hrl27EBcXh3vuuQcVFRWoqqpiX9OVKGC4A8YKwdpZRvz8/BATE4Njx47ptTIolUr4+PggICAAN27cADDwazoB9TgFGxsbTJgwAWKxGKdPnwagvlEKBAK28GZlZYWRI0fCyckJO3fuBDB4al+MXU/aGgVLS0sAbQ+WsrIy3LhxA0OHDgUwePIIuHU+6XJwcMDUqVPh5eUFJycnhIeHY/To0cjLyxsU/WCN5ZM2ANcWiFUqFXtNubu7g8vlora2FmKxGDNmzGBbRgcyU9eTUqmEpaUlhg0bhqFDh2L8+PHg89Xzg8jlcnh4eGDIkCHIy8sDn88f0NeTqWcdAPj5+SE6OhqZmZlwcXFhZ2xTKBQIDg5GWFgYMjIyBkXlz62+c1ocDgdyuRy+vr4oLi5Gc3PzoOt+a+p6UqlUsLCwwLBhw+Di4gJra2ssXLgQ3t7e8Pf3x8SJEzFixAhcu3aN7d41kN3qeoqNjcWqVavg7++P/Px8eHt7480330RgYCDc3Nzg5OSEjIwMAF1fPhhcV2sXMVUI1vZRnD17Nqqrq3H69Gk0NjYCaOuaZGlpCYVCwY5tGAjEYjGysrJQU1Ojt72urg7Xr1/H+PHjMXXqVPj4+ODIkSPsjVJbYNF++QMDAzFx4kRkZGTg2rVrAAZHDUz76ykhIQEADB42AJCeng65XI5hw4ax26uqqpCamspeawPVrb53urhcLluo0V4/lpaWbOvCQPnemXKrfNLeh+rr6xEUFITz58/j73//O2pqahAYGIjGxkbw+fxBMQC6o+tp6tSpWL16NTulI9BWWLa0tERLSwsUCsWAvp5M5REA2NvbIz4+HkKhENXV1aivrwcANriytrZGU1PToBg/ZO69SSAQwMHBATKZjK0FHkxudT3ptqD7+PjAyclJ77XW1taor68fUGUnU25V0QoAo0aNwmOPPYZ//vOfeOSRR9hZynS7DNKg5x50p4VgQN09Yvbs2Th+/DjOnTvHvrakpARlZWWIiIgYEDV4MpkMmzdvxgcffIANGzbgrbfewm+//cauiMrlcjFz5kzMnj0brq6uGD16NFpaWnDgwAG982hrDHg8HoYPHw5/f3+j/Yr7s9u5ng4fPmwQVGnzKDU1Fb6+vggICEBTUxNOnDiBt956C8eOHRsQtS6dDT6VSiWKioogFosBqK+fsrIyZGRkYPz48XrdlvqzO80npVKJ5uZmKBQKbNq0Cbt27cLcuXPx+uuvY+7cuZDL5di6dSuAgfHdu5N84vP5egFCQUGBXjfS0tJS5OXlIS4uji0c92d3kkeAuhJsyJAhGDlyJK5evYqkpCT2tRUVFSgtLUVsbCwbZPV3nb03af8fPXo06urq2HvUQLhv6+rMvQlQt1zdvHlTb2X1srIy5OfnY+LEiYP6Hs7j8dgZo5RKJYqLi9mxeQCQm5uL1tZWBAYG0joMPUEmk+HHH39Eamoq+Hw+5HI5pk6diilTpsDR0ZEtBI8fPx6A+su/d+9eHDhwAPfddx+7uMj8+fNRVFSEw4cP49KlSwgMDER2djasrKwwZMiQXv6UXePAgQMoLi7Gk08+CUD9Bfjll19QV1eH++67D3Z2doiPj2f73sXGxiIjIwPnzp3DuHHj4OXlxeaX9uL29PTExIkTUVFRMSBmAers9aSrrq4OpaWliImJQW5uLrZv346amhosWrQIM2bM6I2P12W6Kp8YhsHBgweRk5ODqKgoeHt74+LFi1CpVBgxYkRvfbwu09l84vF4sLS0hLe3N2JiYjB+/Hh2Fi5tRYezs3NvfsQu0VXXk1KpxJ9//ons7GxERUXBx8cHly5dgkAgYFv5+quuyCM7OzssXrwYJSUl2L17Ny5evMg+6zgcDtt1sj/rqmtJG4Db29sjMjISx48fH1CrYnc2n7T5M3r0aFy9ehUbN25EWFgYnJyc8Ndff4HH4yEuLq43P2KX6IrricPhgMfj4eLFi0hKSkJISAjCw8Nx+vRp+Pn5ITg4uFvSzmEGWnjbSb/88guuXbuGpUuXAmgrBMfHx+O+++6Dra0tWlpaIBQKweFw0NjYiJ07d+LGjRt46aWX4OXlBblcDoFAgMbGRmRkZODChQtobm6Gr68v+9Duz1QqFerr6/H+++9jwoQJmDdvHvtl379/P/766y/Ex8djyZIl7Gu0QUNaWhp++ukn+Pj44KmnntI7r/aYgbSiY1dcT0qlEjweD2VlZXjrrbfY1oaxY8fiwQcfHBC1nF2ZT4WFhTh58iTEYjEYhkFgYCCWLFnS7793QNfkE6B+aAkEggGRJ8Z09fV04sQJ9noKCgoaENdTV+SRQqEAn8+HRCLBlStXcOPGDbS2tsLLy2tAPOuArskn3WeaSqXC0aNH8dtvv+GNN95gv5P9XVfdmwB119sDBw5AKpWCYRiEh4fj/vvvp+up3feuuroaFy9eRGpqKuRyOYKDg7s1n/p/SaOLaAvBiYmJmDBhAsLDw8HlchEZGYmmpib89ddfOHToEJYsWQILCwsA6gKutbU1Ro8ejfz8fPz+++946qmn2AHQ1tbWiIuLQ2xsLBQKBTsorD+qqalBfX09HB0dYW9vDwsLCzQ3N8PT0xNcLpcNkmbMmIGysjIkJiYiPj4egYGBenMCR0VFYdiwYTh37hzS0tIQExPDPpi1xwyEYKErryftwF4ejwcHBwd4e3vj/vvvh5ubWy9/ys7r6nxSqVTw8/PDihUr0Nrayg5g7e+6Mp8ADJhm/fa663pauXIlZDKZ3kQE/VVX5pF20Le9vT1bSyqXy/v1s06rK/NJ+0xjGAZcLhejR4/GmDFjBsQCbl19b1KpVIiMjERERASamprAMAxsbGx68yN2ie743jk7O2Pu3LmYNm1aj9yb+n/JrBNqampQUFAAiUQCLpdrtBAMADNmzEBoaCgSExPZVfR0BwRqC8GZmZlIS0sz2M/lcvvtDbS1tRXbtm3Df/7zH2zYsAGvv/469u7di7KyMnh6erKDk7UzHYhEIowbNw6WlpY4cuQIALBdjrS1LKNHj4aLiwt27NgBAAOi1gDo3uuJw+HAxsYGf//73/Hcc8/162ChO/NJt8FUIBD068Jdd+aTtr/wQNBT15OFhUW/vZ566lnH4XD67bMO6P7vnLZSzMHBoV8HCz3xneNwOLCysurXwUJPfe9EIlGP3JsGZcBAhWDz1NfXY+PGjSgqKsLSpUuxZMkSTJkyBYcOHUJJSQlsbW1RVFSEgoICvdcNGTIEoaGhKC4uRm5uLrtdW8vi7++PESNGIC4uDkqlst8P+uqJ6wlQz8zSnxdr6+nvXX/tG0z3J/PQ9dQxupbMQ/lkHvrOmWegXk+DrktSfX09tm3bBolEgqVLl4JhGBQUFODQoUNwcXHRKwQHBASwr9MWgrOyspCbm8sOKmlfCG5qaoJSqdQbyNtf3bx5E3l5eXjsscfYgdrDhw9Hbm4u0tLSMGvWLHzyySdITU2Ft7c3BAIB271o1KhRuHz5MqqqqvQG4Ggv/tmzZw+IGyhdT+ahfDIP5ZN5KJ86RnlkHson81A+mWcg59Oga2HQFoLvuecexMbGYsSIEVi0aBGCg4PZQnBJSQk7iER3uq9Ro0ahvr7eYP5kbdPQ7Nmz2YFe/fmC18rKyoJIJIKPj4/edjc3N+Tl5SEsLIwdj9B+oZDw8HAIhULU1dUBaGtm1F78AyFYAOh6Mhflk3kon8xD+dQxyiPzUD6Zh/LJPAM5nwZdwECFYPN5eHhAKBSiublZ77M2NTXBzs4OALBkyRIoFAqcOnUKFRUVbF5kZ2dDJpOx/TT7+03AFLqezEP5ZB7KJ/NQPnWM8sg8lE/moXwyz0DOp0EXMFAh2Hzx8fFYunQpXFxc2M8qlUqRm5uLoKAgAICLiwsWLlyI8vJybNmyBampqcjIyMDp06fh7u6OiIiI3vwI3Y6uJ/NQPpmH8sk8lE8dozwyD+WTeSifzDOQ82nQjWGIj4+Ho6Oj0UJwbGwsgLZC8JEjR7BlyxbMmTMHQqEQZ86cGRSFYC0LCwt27IJ2jYSioiJIpVJERUWxx02aNAmOjo7Ys2cPNm/eDB6PB0dHR6xYsQIODg69lPqeQdeTeSifzEP5ZB7Kp45RHpmH8sk8lE/mGcj5NOgCBioE3xnthZ+cnAwbGxvExMSw+5RKJaKiohAeHo7a2lpIpdJuW2mwr6HryTyUT+ahfDIP5VPHKI/MQ/lkHson8wzkfBp0AYMuKgTfnpqaGly9ehXR0dHg8XiQy+UoLi7G/v37ERoaiunTp8Pd3R3u7u69ndReQdeTeSifzEP5ZB7Kp45RHpmH8sk8lE/mGWj5NKgDBoAKwbejtLQU9fX1GDp0KCQSCQ4ePIizZ8/Cx8cHY8aMgUAg6O0k9jq6nsxD+WQeyifzUD51jPLIPJRP5qF8Ms9AyqdBHzBQIdh8xcXF4HK5yM7Oxs8//wwej4cnn3wS0dHRvZ20PoOuJ/NQPpmH8sk8lE8dozwyD+WTeSifzDOQ8mnQBwxUCDYfn8+HSqXChQsXMGfOHMyePbu3k9Tn0PVkHson81A+mYfyqWOUR+ahfDIP5ZN5BlI+DfqAgQrB5nNzc8OCBQswa9asfhUV9yS6nsxD+WQeyifzUD51jPLIPJRP5qF8Ms9AyicOo50odpBKTU1FUVERFYLNoB3xT0yj68k8lE/moXwyD+VTxyiPzEP5ZB7KJ/MMpHwa9AEDFYJJV6LryTyUT+ahfDIP5VPHKI/MQ/lkHson8wykfBr0AQMhhBBCCCHENG5vJ4AQQgghhBDSd1HAQAghhBBCCDGJAgZCCCGEEEKISRQwEEIIIYQQQkyigIEQQgghhBBiEgUMhBBCCCGEEJMoYCCEEEIIIYSYRAEDIYQQQgghxCQKGAghhBBCCCEmUcBACCGEEEIIMen/AfH4Ju9DVPqDAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAF4CAYAAAD5U36FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAACGBElEQVR4nOzdd3xUVfo/8M+dnl5ID6TSk9A7UkVBkCIgKCj2rmtb3d3frqi7q7uu+13buqtgBVcUBUSC9BIISEsChBISIJRAkknvk2nn98cwlwwzoYZMyuf9eqEz99y5c+4zd27OM+eceyUhhAAREREREZELCndXgIiIiIiIWi4mDERERERE1CgmDERERERE1CgmDERERERE1CgmDERERERE1CgmDERERERE1CgmDERERERE1CgmDERERERE1CgmDERERERE1CgmDETNxGg04r333sPQoUMRGBgItVqNkJAQjB8/HkuXLm30dXq9HgUFBTe1bs3xHu7w3nvvQZIkSJKE999/36EsOztbLpMkCf/85z8dyvfv3y+XzZ07txlr3bgDBw5c9brh4eEO+9fw39atWy/72tGjRzu9RqlUwtfXF3369MEbb7yBsrKyG9yb5vfoo4/K+3Pq1Cl3V+e6xcTEOH0+KpUKPj4+6NKlC/74xz+ipqbmprz3G2+8cdXH0fVoK58RUVvDhIGoGdTV1WHMmDF46aWXsGvXLpSVlcFsNqOoqAjr16/H7Nmz8dRTTzm8pra2Fn/9618RHx+PrKysm1Kv5ngPdxoxYoT8eNeuXQ5lGzdudHh+aePn119/lR+PHDmy6St3DfLy8vDggw+iX79+V7V+cXFxkyeAVqsVVVVVOHDgAN58800MGjQIZ8+ebdL3oOtnsVhQXV2N48eP4+2338akSZNgsVjcXS0iaiOYMBA1g08++QQ7d+4EAMybNw+7d+9GTk4OVqxYgU6dOsnrpKamyq9599138dprr6G6uvqm1as53sOd+vbtC29vbwBXThhSU1MdGlgN13d3wnD//ffj66+/htVqvar1G/ZEbNmyBWfPnnX4N3To0Kt+77Nnz+LMmTPIycnBhg0bMGPGDADA8ePHce+9917bjlCT6tixo/yZ5uTk4Mcff0RYWBgAICUlBd9//32Tv+dLL710XccREbVuKndXgKg92LJli/z4ww8/hJ+fHwCgc+fOMJlMmDVrFgBbI/aWW24BAAghbnq9muM93EmpVGLo0KHYsGEDTp8+jYKCAoSFhcFqtcqfia+vLyorK1FRUYGMjAwMGDAAwMWEITg4GD169HDbPgDX/jkdPHhQfjx48GB4eHhc93t37NhRfty5c2eMGzcOEydOxJo1a7Bjxw5s2LABt91223Vvn66fUql0+nysVqt8PtmwYQPmzJnTpO/p6+sLX1/fJt0mEbV87GEgagZarVZ+PG/ePGRkZMjPp0+fjqKiIhQVFeGVV14BYBtD/uabb8rrjBkzBpIkAbANnbGP8f36669x5513QqfTITQ0VN7ur7/+iilTpiAyMhIajQaBgYG45ZZbsHjxYnmbl3sPwDYE5cMPP0SvXr2g0+kQGBiIyZMnY8+ePU77V1NTg1dffRVRUVHQ6XQYMGAAVq9e7TDeGQA+/vhj+fmnn37qsI1jx47JZU8++eS1B7kRroYl7du3D+Xl5QCA3/72t3K5fVhSaWkpcnJynF4PAJs2bcKUKVMQGhoKrVaL+Ph4vPjiiygsLHRYr+G+b9++Hb169YJWq0WPHj1gMplQVlaGl156CZ07d4ZWq4VWq0VcXByee+45h/kBkiQhJSXF4fno0aMvu8/2hCEsLAw6nQ7FxcUwGo1XEa2r8+yzz8qPV61aJT+2j62fOXMm3n33XXTo0AFeXl547bXXAABlZWV45ZVX0LVrV3h5ecHLywtdunTBSy+9JH8eX3/9tRy3ffv2ydv+8MMP5eWffPKJvHzz5s3y8kWLFgGwzReaP38+4uLioNPp0KtXL/z444+X3aer+VzffPNNSJIEhUIBvV4vL3/ppZfkOqxdu1Ze/sUXX8jLt23b5vDdTU5OxuLFi9G7d2/odDpERUXhj3/8I0wm07V8FE6SkpLkx/n5+Q5l//vf/zBo0CB4enrCz88PY8eOdagvcOXzy+XmMGRnZ+Pxxx9HdHQ0tFotwsLCcM8997ice3Otn9Hq1atx6623IjAwECqVCgEBARg1ahR+/vnn64gSEV0zQUQ33fLlywUAh3+RkZHivvvuE998842oqqpyWH/UqFFO69u/rlu2bJGf+/v7y49DQ0OF2WwWe/bsETqdzuXrAYhFixZd8T2EEOKee+5xWa5Wq0VycrK8ntFoFMOHD3daT6FQiIEDBzpst7S0VK7bmDFjHPb5L3/5i7zur7/+2mSxbxiv3/3ud0IIId566y0BQEiSJAoKCkRMTIwAICZOnCiEEOKXX36RX/P+++/L27K/ztW/8PBwceTIEXnd119/3eXnNGPGDGGxWET//v0b3Va/fv2EyWQSQgiX5aNGjbrsPvfr108AED4+PiI0NFQAEBqNRsyaNUsUFBRcMWYNjw1X8vPz5fJbbrlFXh4dHe20vwDEqlWrhNlsFoMGDWp0n8eOHSuEEKKkpESoVCoBQLz55pvytu+880553bvvvlte/tJLL8nHZVlZmbBareKOO+5w+R4RERHy49zc3Gv+XA8cOCAv//rrr+XXJyYmystfeeUVefn06dPl76bFYnE4FkeMGOHy/V577bUrfj72OEdHRzuVLVmyRN7W/fffLy//3e9+5/L9JEkSn3zyibzelc4vDY/rLVu2yK9bv3698PLycvkeGo1GfP/99/K61/oZLV++XEiS1Gj9f/jhhyvGjIhuDBMGombyhz/8odFGiZ+fn1iwYIG8rl6vFy+++KJcvnTpUnH27FkhhOMfdEmSxJdffikOHz4s1q5dK4QQ4pFHHhEARIcOHcT69evFiRMnxHfffScUCoUAIGbOnHnF91i6dKm8fN68eSIzM1P8+uuvYtiwYQKACAkJEQaDQQghxKeffurQ0N22bZtIT0+XG0uXNjztiYhCoRD5+fny8l69egkAomvXrk0a99raWqHRaAQAMXLkSCGEEGPHjhUARFJSkkPMfH19hdlsFvPnz5frnZ6eLoQQYseOHXKjJSYmRvz888/i8OHD4q233pIbuD179hRms1kI4ZgwhISEiJSUFLFr1y6Rnp4u9u3bJ5e9+uqr4tixY+Lo0aPi2WeflRtnKSkpQgghzp49K4YMGSKvf/bsWaHX6xvdX7PZfNmEsXPnzqK0tPSyMbtSwmAwGOTynj17ysvtDVnAlhhlZWWJ77//XphMJrF582ahVqvlRvHx48fF3r175eRGkiQ5cb711lsFADF48GAhhBAmk0n4+PjI2w4ODhZWq1UIIUS3bt0EADFhwgQhhBA//fSTvF58fLxYt26dOHDggHjggQcc4mBvjF7r5xofHy8AiNmzZwshHJMnAKJ///5CCFsiba/zk08+KYRw/u6+/fbbIjs7W3zwwQfy8o4dO172s2kY544dO4qzZ8+Ks2fPiqysLPHtt9+KkJAQeVv2hvSePXvkZRMmTBD79u0T+/fvF1OmTBEAhE6nE+fPn3dZx0vPL64ShsrKShEUFCQACE9PT/Hxxx+Lo0ePim+//VYEBwfL72GP+bV+RvZksVOnTmLbtm3i5MmTYv369SIiIkJoNBoxY8aMK8aMiG4MEwaiZrR3717xyCOPyL/6Xvrvu+++k9dt7Je8hn/QG/uluaysTJw8eVIIYWu47Ny5U/610P5L7uXeY9q0afIvg7m5uXKjZNWqVfL6K1asEEIIMXHiRHlZVlaWvI26ujoRHh7u1PBcv369vOzDDz8UQghx7Ngxedlbb7112RjW1NTI9bH/a5h4uGJPdDw9PUVVVZXcoH7xxReFEI6/yu7Zs0fcfvvtciJnsViEEELMnTtXXmf37t0O27c39AGIdevWOcX29ddfd1j/5MmTctnYsWPF999/LwoKCoTZbHbZmL9SA76hwsJCMXr0aBEdHS2ef/55cfr0aaHX68W8efPkbfzxj3+87Dau9H719fVyecMEr2HC0PAXfDuj0SgOHTokN/Zzc3MdEsszZ84IIYT497//LSeVRUVFYvv27QKA8PDwEEqlUgAQBw4cEMePH5dfu3DhQiGEEI899pi8bOPGjfJ7m0wml/W71s/1t7/9rQAgAgIChNlsFosXLxYA5ORAoVCIsrIysXHjRvm1GzZsEEI4fnfvvPNOh/dKSEgQAIRKpbrsZ3NpnBv7N3XqVDnOL7zwgsM+2r83GRkZ8vL33nvPqY6uzi+uzhkLFy6Ul73zzjsO6//4449y2R/+8Ifr+ozsiYSXl5f485//LPbu3StMJpMoLS2VEzkiurk4h4GoGQ0YMACfffYZ8vPzkZmZiffff99hzPE//vGPa9peYmKiy+VZWVn44IMPMHDgQPj6+mLYsGHyGPGrudRidnY2ANs449jYWHTq1AmdOnXC5MmT5XXS0tIAACdPngQABAQEoFu3bnK5TqfDwIEDnbZ96623Ijo6GgDw3XffAQB++OEHAIBCocD9999/2botXbpUro/935AhQy77Gvs8hNraWvznP/+BwWAAAIwbN06uk32exZYtW+R5GsOHD4dCYTtN2sdh+/r6YtCgQQ7bbzjpt+GEY7tLP6fY2Fi89tprkCQJmzdvxuzZsxEWFoZu3brhT3/6k8ttXK2QkBBs2bIFp06dwvvvv4+oqCgEBwfjv//9L1Qq23Uu1q1bd93bByAfSwAQGBjoVO7l5YWYmBin5aWlpfjll18wadIkhISEIDY2FsuXL5fL7cfmXXfdBUmSYLVasXbtWvmKViNHjpSPqc2bN2P16tUAbJN/p02bBgA4c+aMvL3BgwfLj1UqFfr37+9Up2v9XKdPnw7ANh/j119/les2Z84chIeHw2q1YuvWrXLdAgMDXc456dmzp8Pz4OBgAIDZbHZa92qo1WoEBASgf//++L//+z/8+OOP8jFt/z4DtpjYvzd9+/aVl9u/zw01dn65VMM5CvbvlJ2rGF7rZzR//nzExsaipqYG8+fPx8CBA+Hn54dZs2bhs88+Q319/VXVk4iuHxMGopussLAQTzzxBKZMmYLXX38dgG3iamJiIp5//nns27dPbkAfPXr0mrZtv9pSQ2+//TaGDh2KDz74AD4+PnjttdewadMmREZGXvV27Q3LyykqKgIAaDQaALjqK/koFAo8+OCDAGyTs8+ePSsnDGPHjpUvM9uUGk5c/te//gXA1sAaNWoUAFtjzZ64LVy4UG4QN7yc6uVi0nDfG04ct3P1Of35z3/G4cOH8frrr2P48OHQ6XQ4ceIE/vOf/6Bv374Ok4mbgqenp9y4r6uru6FtZWZmyo/79OnjVO5qfw8fPowePXrg1VdfxeHDhzF37lx89913TvcfAYCIiAi5IfnLL79gw4YNAGyN0dtvvx2AY8IwcuRIBAUFAXCM/6WXoVUqlU7vda2f65AhQxARESHXzZ4wjBs3Tm4cN6zb1KlTXb7HpVeuclW3K4mOjoawjRSA0WhEaWkp9u3bh5deesnhPa/l+9yQq8/RlWuN4bV+RnFxcTh69CiWLFmC++67D1FRUaitrcXGjRvx5JNPYuzYsTc8WZyILo8JA9FN5u/vj2+++QarVq3Cv//9b5SUlDiUKxQK+Y9qw19rG/5RbawxrlarHZ7X1dXhz3/+MwDg9ttvx+bNm/H//t//w8iRI1FVVeX0+sbeo3PnzgBsjUyj0Sg3SgoLC3Hw4EHU19fLV6qJi4sDYPvVueHN32pra11eUQkAHnroIUiSBCEE/vrXv8q/UD7wwAMu12/owQcflOtj/3elO8I27CmwX/VmyJAh8PLyktex/zJ6/PhxeVnDhMF+adXKykrs3bvXYfsN7+ngqgF96edUUlKClJQUpKam4tlnn0VqaioqKyuxZcsWeHh4wGq14qOPPpLXv5pjwW7t2rUYNWoUunTpgvXr18vL9Xq93Chs2BN0PRpebcv+i3tDl+4vYOs9s1/9adeuXXjvvfcwe/ZslwkWYOtlAIA1a9bIx1HDRnlKSop89aiZM2fKr4uPj5cfNzz+TCaTy+PxWj9XSZIwdepUAMBnn32Gc+fOQaFQYOzYsXLdvvvuO/lX/YZ1cxf79xkAzp07J39vKisrkZaWhpqaGqerJQGuP0dXGl52eNOmTQ5lrmJ4LZ+R1WrF4cOHsXr1anh7e2Px4sU4ffo0zp07h3nz5gEAdu7c6fTZEVHTYsJAdJNptVr5F/XS0lLccccdWLNmDY4fP47U1FTMnDlT7qJv2LjQ6XTy47S0NOzevfuK72U0GuXu+QMHDmDbtm04cOAAHnroIVRWVgJwHPLQ2HvMnTsXgK3Rf//99yMjIwOZmZmYM2cOevXqBU9PT/kSrg1v3jV37lzs3LkT+/btw+zZsxu923B0dDTGjh0LAFiwYAEAwMfHx2Xjsyn4+/s7Da+4dOjEpc89PT3lezIAwCOPPCI/vueee5CcnIyjR4/inXfekZOnxMREjBkz5or1WbNmDUaPHo3HH38cDz74IPbt24czZ87gzJkz8ufTsLHW8HNKTU11eZlKuy5dumD79u04fvw4nnnmGWzZsgX79+/HfffdJycbTzzxxBXraJeXl4e8vDycPn1a/vX666+/BgAMGzbsqu/B0DBh/frrr5GTk4OFCxfiq6++kpc3PDbtx0J5eTnMZjOCgoLQu3dvDBkyRL53Rn19PSRJkpMLAPKN5QDg0Ucfxdq1a5GZmYmHH34Yp0+fdqrX9Xyu9rrZE7A+ffogMDAQt912GyRJkpf7+fk5HVfuYP8+A7bLOu/atQtZWVl48skn0b9/f3h7e2PlypXXvf27774bPj4+AGyXnv3kk0+QlZWF7777Dk8//TQA2zH82GOPAbj2z+iuu+7CjBkzMGvWLHz99dc4ceIEzp0753DJ26tNbojoOjXvlAmi9qm8vFwMGDDgspMUe/fuLcrLy+XXrFmzxmkdvV7vMCnx0sm0Qggxbty4y75PfHz8Fd/DarU6TGa+9N/jjz8ub8NisYiRI0c6raPRaERcXFyjk2e//fZbh/Ufeuihpg36JZ555hmH99uxY4dDeXV1tXwVH8Bxcrjd//t//6/RmISHh4ujR4/K6zY2oVwI2+TOSZMmNbotrVYrtm3bJq9/6SUxG16ZyJW//vWvjW770UcfvWKsGrvkbsN/MTEx4vTp0w6vu9zlPr/55psrbnP79u0Or2l4udJZs2bJy+1X9wEghg8f7vRel15tx/7PfkUmwHFS9rV8rkLYPr+AgAB5nVdffVUus1/tC4CYO3euw+su9921Xxnqav4sXy7OjXnqqaca3ccJEybIk/uvdH5p7Lj++eefG706l0ajEUuXLnXYzrV8Rps2bRIeHh6N1n/SpElXHQciuj7sYSBqBn5+fkhNTcV7772HYcOGwc/PD0qlEoGBgRg2bBjeffdd7Nq1y2HM8G233YbnnnsOkZGR0Ol0SEpKuqqx50uWLMEjjzyC8PBweHp6onv37njttdcwf/58AMCJEyfkuRKNvYckSVixYgX++c9/ok+fPvD09ISvry8GDBiABQsWONw4S6FQYPXq1XjhhRfkG4UNHToUGzdulCdVNrxxnd1dd92FgIAA+fnVDEe6EQ3nMbia4Orl5eUwebrhcCS7t956Cxs2bMDUqVMREhICtVqNmJgYPP/888jIyED37t2vqi4qlQrLly/Hxx9/jEGDBqFDhw5QqVQIDw/HzJkzsXPnTof6vvjii5g8eTL8/f3h4+ODqKioy27/j3/8I1auXIlRo0YhKCgInp6e6N+/PxYuXCj36FwrSZLg4+ODvn374s9//jP2799/xXo0NHfuXCxYsAA9e/aETqdDZGQk7rrrLmzcuFEelnTpTbga9jg1/KXePo8BcPy12u6LL77AO++8g7i4OGi1WvTp0wffffcdHnroIZd1u9bPVaVSOVwA4Frq5i4ff/wxPvvsMwwZMgQ+Pj7w9PREYmIi/vGPf2DlypXykL3rNXnyZBw4cACPPfYYoqOjodFoEBwcjFmzZmH37t24++67Hda/ls9o7Nix2LNnD+bNmyev7+npiT59+uCdd95xmDhPRDeHJMRVzlQkInJh//790Ov16NSpE6Kjo+Hp6SmXjR8/HuvXr0dYWJjTXWcNBgM6duyIkpISxMTE4OTJk42OZyciIiL3ufKlE4iILmPTpk347W9/CwAYOHAgPvvsM3h6eiI1NRVbt26Vl9udOnUKkiRh/vz58gTwhx9+mMkCERFRC8UeBiK6IQUFBUhKSkJxcbHLcrVajZSUFAwdOhQA0LFjR5w7d04uj4yMxKFDh+Dv798c1SUiIqJrxDkMRHRDwsLCsHv3bjz00EOIjY2FVquFSqVCWFgYpk+fjtTUVDlZAGw3r9PpdAgKCsK0adOwefNmJgtEREQtGHsYiIiIiIioUexhICIiIiKiRjFhICIiIiKiRjFhICIiIiKiRjFhICIiIiKiRjFhICIiIiKiRjFhICIiIiKiRjFhICIiIiKiRjFhICIiIiKiRjFhICIiIiKiRjFhICIiIiKiRjFhICIiIiKiRjFhICIiIiKiRjFhICIiIiKiRjFhICIiIiKiRjFhICIiIiKiRqncXQEiouZQWVmJ//znP7jnnnsQExPjUFZaWop169bh9OnTUCgU6NmzJ2677TZotdqr3v7+/fuxcuVKPP/88/D392/ayl/iq6++Qnl5OV544QUAgNVqxdatW3HgwAHU1tYiIiICt912Gzp27Ci/xmw2Y+vWrcjMzERtbS2CgoIwfPhwJCYmNkmdhBBIS0vD3r17UVZWBi8vL3Tr1g1jxoxxiGN2djZSUlJQWFgIT09P9OzZE2PHjoVGo7nie5w4cQLffPMNQkJC8NRTTzVJva/WTz/9hAMHDuD11193Kjt27Bi+++47l2VpaWnYvXs3ysvL4efnh4EDB2LgwIGQJKk5qk1E1CTYw0BEbV5FRQUWL16M+vp6pzKDwYCvv/4a1dXVmDZtGm699VYcPnwYP/zwgxtqenUkSXJocK5btw67du3CsGHDMHPmTCgUCixevBilpaXyOsuWLcOvv/6KpKQk3HvvvUhISMDPP/+M3bt3N0mdduzYgV9++QVdunTBPffcg2HDhuHgwYNYunQphBAAgKNHj2LJkiXQaDS4++67MWHCBJw6dQqLFi2C1Wq94nvs378fISEh0Ov1OHPmTJPU+2o11sA/deoUli9f7rIsPT0dycnJiI2NxT333IOEhASsWbMGv/76682sKhFRk2MPAxG1WUIIHDhwAOvXr290nb1796Kurg5PPPEEPD09AQC+vr749ttvcebMGURFRTVXda+at7c3LBYLAFsytG/fPkyYMAEDBw4EAMTHx+Pf//43UlNTMWXKFOTn5yMrKwtjxozByJEjAQBxcXHQaDTYuHEjevfuDZ1Od931EUJgx44d6N+/P8aNGydv38PDA8uWLUN+fj4iIiKQkpKC4OBg3HfffVAqlQCAqKgofPjhh8jIyED//v0bfQ+DwYCsrCxMmjQJqampSEtLa9bPxtvbGz4+PvLz+vp6pKamYseOHY3GLiMjA1FRUbjjjjsA2GJSUlKCvXv3YtiwYc1SbyKipsAeBiJqswoLC5GcnIzevXvjrrvucrnOiRMnEBUVJScLgK3BrdFokJOTc93v/dNPP+H99993WFZeXo4333wT+/fvB2D7dfrNN9/EyZMnsXjxYrz11lv45z//iQ0bNlz2F/eQkBCEhoYCAHJzc2G1WtGjRw+5XKVSoUuXLjh+/DgAoLi4GADQrVs3h+3ExMTAZDLh1KlT172fgK3x3KtXLyQlJTksDwoKAgC5p6OoqAjx8fFysgDYGuLBwcFXjHVmZiYsFgs6d+6MXr164ciRI6irq3NYZ+vWrXjzzTedXvvmm29i69at8vOqqir8+OOPeOedd/DOO+8gOTkZmzZtcvq8GmoYc8CWDKSnp2PixIkYNGiQy9eYzWanYW0eHh6ora297L4SEbU07GEgojbLz88Pv/nNb+Dr69too7i4uBgJCQkOyxQKBQICAlBSUtIMtQSWL1+OgQMH4pZbbkF2djZ27tyJgIAADBgwwOX6I0aMkB8XFRVBo9HA29vbYZ3AwEBUVVXBaDTKyVB5eblDo7esrMzh/9dLp9PJv6I3lJWVBcDW2AYAT09PVFRUOKxjsVhQUVEBs9l82ffIyMhA586d4e3tjd69e2Pr1q3Yv38/hg4dek11NZvNWLRoEYxGIyZMmACtVovU1FQUFBQ4xbChpKQkh4Soa9eu6N+/P9RqtUMy0tDgwYPx888/4+DBg+jatSvy8vJw4MAB9OrV65rqTETkbkwYiKjN8vDwgIeHx2XXMRgMLic3azQal3MeboZ+/fph1KhRAIDY2FhkZWUhJyen0YShofr6epf1ty+rr69HTEwMAgICsGbNGqjVakRGRqKgoAAbN24EABiNxibcG5u8vDzs2LEDXbt2lROGvn37Yvv27UhNTUXfvn1hNpuxefNmGAyGy056LiwsRH5+Pu6++24AtkQwNjYWaWlp15wwZGZmori4GI899hgiIiIA2GL+4YcfXtN2AgMDr7hOUlISTp8+jRUrVsjL4uPjMWHChGt6LyIid2PCQETtmn1CrivNdSWbTp06OTz39fW96kb85eoP2PZBqVTivvvuw8qVK7F48WIAtqFAd9xxB3744Qeo1epGt33p9hWKK49kPXPmDJYsWQJ/f39MnTpVXj569GhYrVZs2bIFmzZtgkKhQL9+/dC9e3cUFRU1ur2MjAzodDpER0fDYDAAAHr06IHVq1cjNzcXsbGxV6yTXW5uLgICAuRkAbAlV127dkVubu5Vb+dqfPfddzhz5gzGjRuHyMhI6PV6bN26FT/88ANmz57NKyURUavBhIGI2jWdTueyJ6G+vh6+vr7NUodLG+ySJF0xEbDTarUukwv7Ptl7GgIDA/HQQw+hpqYGtbW16NChgzw8qLFemJUrV+LAgQPycz8/P/lSro05dOgQVq5ciQ4dOmDu3LkOc0MUCgXGjRuH0aNHo6ysDD4+PtDpdPjyyy8brYPFYkFmZiYMBgP++c9/OpWnpaVdU8JQW1sLLy8vp+Wult2Is2fP4vjx45g8eTL69esHAHJPz7fffoucnBx07dq1Sd+TiOhmYcJARO1ahw4dnMbwW61WlJeXO0wkbqikpAT79+/H4MGD5XHv9knKKpXttOqq0X8zhv4EBQWhvr4eNTU1Do3e0tJS+Pn5Qa1Ww2Qy4ejRo+jUqRMCAgLk9fLz8wEA4eHhLrc9evRohwm9DScru7Jz505s2LABMTExmD17ttPVg06dOgWz2YzOnTsjODgYgC1uer0evXv3drnN7Oxs1NbW4s4770SHDh0cyvbt24ejR4867bvVapV7Qi6NuY+Pj8u5KTU1NZfdt2tVXl4OwLn3KDo6GgCg1+uZMBBRq8GrJBFRuxYfH49Tp045NBhPnDgBo9GI+Ph4l6+pqqpCamoqCgsL5WUVFRVQqVTyL+oajQa1tbUOk3lvxr0D4uLiAABHjhyRl5nNZmRnZ8v1VyqV+OWXX5CWliavY7VasWfPHgQEBDhMhG7I398fERER8r/G1gNsjfcNGzYgISEB9913n8tLjR45cgSrVq2SLwkL2IYbGQwGdO/e3eV2MzIy4Ovri379+iEmJsbh36BBg2C1WpGRkQHgYm9KZWWl/PpLYx4TE4Py8nIUFBTIy0wmk3xFqaZiv0LUpe9vfx4QENCk70dEdDOxh4GI2rUBAwZgz549WLx4MUaNGoW6ujps2LABnTt3dvp12C4yMhI+Pj7YtGkTrFYramtrsWfPHvTo0UP+Zbtr167Ys2cPfv75Z/Tt2xd6vR6//vprk49b9/f3R+/evbFu3TqYzWZ06NABv/76KwwGA4YPHw7ANhRo4MCB2LVrF3x9fREUFIS9e/fizJkzuOeee264TtXV1Vi3bh38/f0xaNAguefCzt6rMWDAAKSnp2PlypXo06cPCgsLsXHjRiQkJDjdfRuwJWbHjx/HkCFDXNYxKioKAQEBSEtLw/Dhw9G1a1esX78eycnJGDZsGCoqKpCSkuIwoTopKQmpqan47rvvMHbsWOh0Ovz666+oqamBn5/fDcWhofDwcPTo0QPr1q1DXV0dOnbsCL1ej5SUFLmMiKi1YMJARO2al5cXHnjgAaxduxbLly+HVqtFz549cfvttzf6GrVajXvvvRfr1q3Djz/+CKVS6fSa+Ph43HbbbdizZw+OHDmCiIgIzJ49G59//nmT78Odd94JnU6HHTt2wGg0Ijw8HPfff7/DlXxGjx4NSZKwY8cO1NXVISwsDHPnzm20F+Va5OTkwGw2o7y8HF9++aVT+dSpU9GnTx+EhITg3nvvxaZNm7BkyRJ4e3tjxIgRDpeJbejAgQMQQiAxMbHR9+7VqxdSUlJw4sQJdO7cGdOmTcP27dvx7bffIigoCJMnT8aaNWvk9RUKBe677z6sXbsWq1evhkKhQFJSEjw9PeX7VTSVGTNmYNu2bUhLS8PWrVvh5+eHPn36YNSoUVc1eZyIqKWQxNXOrCMiImrl9Ho9iouL0aNHD4dei4ULF8LX1xezZ892Y+2IiFom9jAQEVG7YTQa8cMPP2DgwIHo0aMHrFYrDh06hPPnz2PcuHHurh4RUYvEHgYiImpXjhw5gp07d8r3fggLC8PIkSObZHgWEVFbxISBiIiIiIgaxVlXRERERETUKCYMRERERETUKCYMRERERETUKCYMRERERETUKCYMRERERETUKCYMRERERETUKCYMRERERETUKCYMRERERETUKCYMRERERETUKCYMRERERETUKCYMRERERETUKCYMRERERETUKCYMRERERETUKCYMRERERETUKCYMRERERETUKCYMRERERETUKCYMRERERETUKCYMRERERETUKCYMRERERETUKCYMRERERETUKCYMRERERETUKJW7K+DKsWPHsGLFCpw7dw5eXl4YNmwYJk2aBKVSCQBYuXIltm/fDrVajcmTJ2PYsGHya4UQePvttzF8+HCMHj26SepTWlqKwMDAJtnWNbNYgLNnAaPRPe/fiLLycgT4+7u7Gi0KY+KMMXHGmDhjTJwxJo4YD9cYF0etNh4aDdCpE3ChnduUmqoN2+IShtzcXHz44Yfo3bs37rzzTuTl5eHnn39GXV0dZs+ejczMTGzYsAH3338/ampqsHjxYsTExCAiIgIAsHfvXhgMBowYMaLJ6mR0Z2PdarUlC0oloGo5H5dJkgCt1t3VaFEYE2eMiTPGxBlj4owxccR4uMa4OGqV8TCbbe08q/WmJAxN1YZtOS3QC37++WeEh4fjsccegyRJSExMhEqlwrJlyzB+/HgcPXoU3bt3x+DBgwEAO3bswLFjxxAREQGz2YyVK1di+vTpcm9Em6FSAWq1u2txkVrdsurTEjAmzhgTZ4yJM8bEGWPiiPFwjXFx1FrjYbG4uwZX1KLmMJhMJmRnZ6Nv376QJEle3r9/f1itVhw+fBgAoNFo5DKlUgkhBABg69at8Pb2Rv/+/Zu34kREREREbVSLShiKi4thNpsRGhrqsDwgIABqtRr5+fmIj49HdnY2CgsLkZubi3PnziE+Ph51dXX45ZdfMGPGDDfVnoiIiIio7WlRQ5Lq6uoAADqdzqlMp9PBYDCgX79+yMrKwhtvvAGlUokpU6YgOjoaK1asQGxsLDp37oxly5bhwIEDCAsLwz333HNDkz3y8/ORmZmJ8+fPy8sCAgIQGxsLg8GAI0eOOL2mX79+AGyTt2tqahzKYmJiEBgYiKKiIpw9e9ahzMfHB126dIHFYsGBAwdsC81m4Nw5QKNBUmIi1Go1Tpw6hYqqKofXRoaFITQ4GGXl5ci9ZLseOh16dOkCAMg4dEjukbHr0bkzPDw8cDovDyVlZQ5loUFBiAwPR1V1NXJyc+XlpaWlCC0pQVKPHgCAzKNHYTKbHV7bJTYWPt7eOJefj8LiYoeyDgEBiO7YEXV1dTh6/LhDmSRJ6JuYCAA4mpODOoPBoTy2UycE+PujsKgI5woKHMr8fHwQHxMDk8mEzKwsXKp3z55QKpXIOXkSVZd8Np0iIhDcoQNKy8pwKi/PoczLwwPdOncGAKRnZjptt+eF+OaeOYOyigqHsvCQEISHhqKyqgrHT51yKNNqNEjo1g0AcPDIEZgv6ZbsGhcHby8v5J0/D31JiUNZUGAgoiIjUVtXh6xLYqiQJPS5EMMj2dkw1Nc7lMdFRcHfzw8Fej3OFxY6lPn7+iIuOhpGoxGHjh1z2tc+CQlQKBTIPnEC1bW1DmVRkZEICgxEcWkpzpw7Z5tsdWH73p6e6BofD6vViv0XegsbSuzWDRqNBidPn0Z5ZaVDWURoKMJCQlBeUYGTZ844lOm0WvTs2hUAsP/QIVgvOb67d+4MTw8PnDl3DsWlpQ5lIR06oGNEBKprapB98qRDmUqpRK+ePQEAh48dQ/0l40A7x8TA18cH+YWFyNfrHcoC/PwQGxVlO0fk5DiUlZaWYlxICADg2PHjqLlw3rOL6dgRgQEBKCopwdkG5x0A8PHyQpe4ONs5wsW5J6l79xZzjgAAtUp1VeeIfL0eeZcch23xHKHT6a76HGH/7rT1c0RDlztHlJaWYqS/f7s4RwBAv6QkAFc+Rxw8elQ+xwJt9xxxte0I+/emVZ0jLsxh6BkeDp1ajdzcXJRdEsPw8HCEh4ejsrISxy/5Lmu1WiQkJAAADh48CPMlMfTz8wMA5OXlQX/JcRgUFISoqCinfXRJtCDHjx8Xjz/+uMjMzHQqe/nll8U333wjPzcajcJisQghhCgtLRXPPfecyMvLE5s3bxavvfaayMvLE99//73429/+dkN1evXVVwUAh3/Tp08X+fn5YufOnU5lAER+fr7Iz88X/fv3dyr76KOPRH5+vnj77bedykaNGiXy8/NFdna2y+0e3rRJFGZkiNtHjnQqe/Oll0RhRoZY+I9/OJUlde8uCjMyRGFGhtCo1U7lKT/+KAozMsScadOcyp576CFRmJEhli9c6FQWHhIibzc8JMSpfPnChaIwI0M899BDTmVzpk0ThRkZIuXHH53KNGq1vN2k7t2dyhf+4x+iMCNDvPnSS05lt48cKQozMsThTZtcxvD49u2iMCNDjB461Knsb7//vSjMyBAf//WvTmX9k5LkOrna7q6VK8XZ3bvFjIkTncp++8QTojAjQ3z38cdOZTGdOsnb7eDv71Se/NVXojAjQzwxd65T2UOzZonCjAyx4dtvncq8vbzk7XaLi3Mq//q990RhRob4f88+61Q2edw4UZiRITLWrnW5r2d27xaFGRlimIvj+/9ee00UZmSI/3vtNaeyYf37i8KMDHFm926X281Yu1YUZmSIyePGOZX9v2efFYUZGeLr995zKusWFyfvq7eXl1P5hm+/FYUZGeKhWbOcyp6YO1cUZmSI5K++cirr4O8vbzemUyen8u8+/lgUZmSI3z7xhFPZjIkTRWFGhti1cqXLfbVvt39SklPZx3/9qyjMyBB/+/3vncpGDx0qCjMyxPHt211ut7WeI56ZN8+prC2eIwozMniO4DlCADxH2P+xHXHx385t20R+fr6YPn26U9nLL78s8vPzxbcuvssxMTFyuzMwMNCpfNmyZSI/P188/vjjTmUPPvjgVbeHJSEuSRPd6Pz583jzzTfx+OOPO81DePbZZzFmzBiXQ44WLVoEq9WKBx98EP/85z+RmJiICRMmoLKyEq+88grefvttdOjQ4brqZO9hCAoKkpexh+FCD0NICHsYLujZpQsqKytRYzCwh+HSHoYLPXzsYbApLS3FuFGjALCHwX6OOHDoECyXvGdbPEdccw9DYGCbP0c0dMUehqFD28U5Arj6HoYDhw45jKJoq+eIa+phCAxsXecIew/DuHHQ+fjclB6G+Pj4G+5haFEJg8lkwm9+8xtMmTIFd9xxh7y8rKwMv//97/HAAw843HMBsCUZf//73/HGG28gMDAQ8+fPx2233YYRI0bAYrHg6aefxu9//3vExsZed70KCgoQFhZ23a+/ISYTkJtru0xYC5r5r9frEXJhWAXZMCbOGBNnjIkzxsQZY+KI8XCNcXHUKuNhMgH19UBs7E1p5zVVG7ZFTXpWq9Xo2rUrMjIyYLVa5eVpaWlQKBTo3r2702uWL1+OUaNGyRm2r68vKi/88lBeXg7A9ss9ERERERFduxaVMADApEmTcObMGXz66afIzMzE2rVrnZICu+zsbJw4cQITJkyQl/Xq1Qvbt2/HwYMHsWLFCnTq1Om6hyO505acYtzyYSpuXbAHR8tN7q4OEREREbVTLS5h6Nq1K5566imUlJTgk08+wdatWzFhwgTMmjXLad1ly5ZhwoQJ8PLykpeNGTMGPXv2xBdffIHi4mI8+uijDvd0aC3qTBbUm62orLcgrcSNd5omIiIionatRV1W1a53797o3bv3Fdf7wx/+4LRMrVZj3rx5mDdv3s2oWrOZ2DMU206UYFNOMUwtZ5oJEREREbUzLa6HgS7y97BNfjFbr7AiEREREdFNwoShBVMrbR+P0coeBiIiIiJyDyYMLZhaaZt7YWLCQERERERuwoShBbMnDBySRERERETuwoShBVMpbB9PlYkZAxERERG5BxOGFkx1oYdhQ77hCmsSEREREd0cTBhasBBvLQAgTKd0c02IiIiIqL1iwtCCdQm23ZCuxsJJz0RERETkHi3yxm1k46m29SxUGq345/5SQKlAgFaJOd384aFirkdERERENx8ThhbM30MNpUKC2Srw/YkqeXm4lxoTY3zcWDMiIiIiai+YMLRg3loV/jGxKw5l5QFKJbbk1+FUpQnVJou7q0ZERERE7QQThhZuZGwgRqIC0Gpxvs6KU5Um3peBiIiIiJoNB8K3IiqF/UZunARNRERERM2DCUMrwoSBiIiIiJobE4ZWxH5hJCYMRERERNRcmDC0InIPA/MFIiIiImomTBhaEZXEIUlERERE1LyYMLQi9iFJRt75mYiIiIiaCROGVsQ+JOn7nAr8L6vMzbUhIiIiovaACUMr0jtIJz9OOVfjxpoQERERUXvBhKEVGRruhX+OCAcAHCurd3NtiIiIiKg9YMLQyoR6KAEAtWaBkxVGN9eGiIiIiNo6JgytTGd/rfz4bLXJjTUhIiIiovaACUMro1JI6Bdsm8tgtFjdXBsiIiIiauuYMLRCGqXtY+PlVYmIiIjoZmPC0ApplbbLqxp5AzciIiIiusmYMLRC6gv3Y2APAxERERHdbEwYWiF7D8OCQ6W4Z80ZHCyuc3ONiIiIiKitYsLQCsX5aQAAlUYrTlQYse50tZtrRERERERtFROGVuj+7v5YMqETZnfxAwAszanAvsJaN9eKiIiIiNoiJgytkCRJ6OyvlXsaAOBv+4rcWCMiIiIiaquYMLRiwR4q+fGZKt7EjYiIiIianurKqzSN8+fP46effkJubi5MJhMiIyNx5513okePHg7rpaSkYNOmTSgtLUVwcDDuuOMODBo0SC6vq6vDokWLcOTIEQQHB2Pu3LmIjY2VyysqKjB//ny8+uqriIyMbK7dc4uh4Z54JCEAnx8ug5qpHxERERHdBM3SzCwrK8M///lPlJWV4d5778Wjjz4Kb29vfPDBB8jMzJTX27RpE5YsWYIBAwbgqaeeQmxsLD7//HNkZGTI66xevRp5eXl47LHHEB0djQULFsBsNsvlq1atQt++fdt8sgDY7vo8p5s/AMBkBfLYy0BERERETaxZEoaUlBSYzWY8//zz6NevHxITE/HEE08gPDwca9euBQAYjUYkJydjzJgxmDJlChISEjBv3jz07t0bK1eulLeVlZWFkSNHIjExEdOnT0dpaSn0ej0AoKCgAHv27MGUKVOaY7daBC/VxY9wVW6lG2tCRERERG1RsyQMwcHBuO222+Dt7X3xjRUKhISEoKKiAgCQm5uL2tpa9OvXz+G1/fv3R35+PoqKLk7qVavVAACVyjaiymq1AgCWL1+OUaNGITAw8KbuT0uiVEiYe6GXIae83r2VISIiIqI2p1kShuHDh2Py5MkOy2pqapCdnY2IiAgAtt4BAAgNDXVYLyQkxKE8Li4OaWlpqK6uxo4dO+Dj44PQ0FAcP34cOTk5mDBhws3enRZnVKQXAGD7+Vr8cqrKzbUhIiIiorbELVNlrVYrFi9eDIPBgDvuuAOAbTIzAHh4eDisq9PpHMrticfLL7+MtWvX4uGHH4Zarcby5csxYcIECCHw6aefYv78+ViyZAmMRmNz7ZbbdA/Uyo9/zCl3X0WIiIiIqM1p8qskWa1WCCEclimVSvmxyWTCl19+iYyMDNx7773yFY7sw4oaI0kSAMDHxwcvv/wy6uvrodXaGsrp6ekoLS3F2LFj8cUXX0CSJDz99NNYvHgxVq1ahRkzZlz3/pSWlqK+vl7u4Wh2JhOURUUQGg1wYSiWK39I9MDfDtWhtM4kz+m4mYxGY7O8T2vCmDhjTJwxJs4YE2eMiSPGwzXGxVGrjIfJBMlohMXD47LtvOt1pTZsWFjYVW2nyROG1atXIzk52WHZp59+CgCoqqrCf//7X+Tm5mLOnDkYNWqUvI6npycAwGAwyHMU7M8B554He7JgsVjw008/YerUqVAoFNi/fz9eeeUVhIWFYfTo0VixYsUNJQyBgYEwGo1XHdAmZzIBdXWAVnvZAylJUw8cOotaiyQP47qZ9Hp9s7xPa8KYOGNMnDEmzhgTZ4yJI8bDNcbFUauMh8kE1NcDYWE3JWEoKChokjZskycMI0aMQFJSktNyvV6PDz74AJWVlXjiiSfQp08fh3L73AW9Xg8fHx+H1wGNZ0CpqalQqVQYPHgwqqqqYLVa4eVlG9Pv5eWFysr2ceUgX42tF6fSaIEQQu6RISIiIiK6EU2eMPj7+8Pf399hWVVVFf71r3/BaDTipZdecrjRml18fDy0Wi3S09MRHx8vL09LS0NoaCiCgoKcXmMwGJCcnIx58+ZBoVDA29sbCoUClZWVCA0NRUVFBXx9fZt6F1skX41tOopFAHVmAU81EwYiIiIiunHNcqfnH3/8EWVlZZgxYwaEEDh58uTFCqhUiIqKgkajwfjx47Fq1SoolUp07doV6enpOHjwIB5//HGX292wYQPCwsLkHg2lUomEhASsWrUKt99+OzZs2ODUk9FW6ZQSVArAbLX1Mnjy1s9ERERE1ARuesIghJDv1Lxs2TKncn9/f7zzzjsAgIkTJ0KpVGLbtm3YtGkTQkJC8MgjjzjdmwEAKisrsXHjRrzwwgsOy+fMmYMvv/wSCxcuREJCgtPlXNsqSZLgq1aitN6CSqMVYV7urhERERERtQU3PWGQJAkffvjhVa87YcKEq7qXgq+vLz744AOn5YGBgXj55ZevuZ5tgY9GgdJ6CzacqYa/VokQz2bpQCIiIiKiNozjVtqQAK1t4vNXR8vwp1/ddBlYIiIiImpTmDC0IY8lBmJAiO3ys3nVJjfXhoiIiIjaAiYMbcigME/8cZDt+sNFdRbszK9xc42IiIiIqLVjwtDGBGov3lX7TzsL3VgTIiIiImoLmDC0MZ5qBV4fbOtlqDJZYbEKN9eIiIiIiFozJgxt0LhO3vLjeostYTBaBMxMHoiIiIjoGvG6m22QRnnxLs91FiveSSvCL6eqoFNK+NfIcAwM9XRj7YiIiIioNWEPQxukkCToLiQNi46WIyWvGgBgsAjsK6xzZ9WIiIiIqJVhwtBGdfRWAwCScytRY744FKnGbHVXlYiIiIioFWLC0EZ9fXsnKCWg0uiYIGSX1UMIzmUgIiIioqvDhKGN0iglPNgzwGl5RpEB32SVN3+FiIiIiKhV4qTnNuzxxEDcFuUNk0VAqZAwZ+1ZAMCxsnrkVZnwxu5CKCTgz0NCEealdnNtiYiIiKglYg9DG6aQJMT7adE9UIcu/lr8YUAwAKCg1ozVpypxoNiAjCIDtp3nHaGJiIiIyDX2MLQj2gtXTjpQbMCBYoO8vKjW4q4qEREREVELxx6GdkSncv1xf3W0jBOhiYiIiMglJgztiLbBDd0udarS1Iw1ISIiIqLWgglDO9ItQAs/jeNH7qW2PZ+15gyK68zuqBYRERERtWCcw9COBHuosGZqLPbpa7H6VBV6Burgo1bgz3v0AIB9hXWYEOPj5loSERERUUvChKGdUSslDA33wtBwL3nZtvM12JpXg7PVHJZERERERI6YMBB6BmqxNa8GCw6VYl9hLawC2H/hKkpKCfh2QhTi/DRuriURERERuQPnMBA6el+8aVt6kUFOFgDAIoBPM0vcUS0iIiIiagGYMBCSOuigUdiuoDQkzNOp/HwNJ0MTERERtVcckkQI81Jj9dQY1JmtCPdSo8xgwalKIwwWK36Tko+ssnqk6evQP8TD3VUlIiIiombGhIEAAP5aJfy1SgBAgE6JAJ0Hqk1WuXxvYS0TBiIiIqJ2iEOSqFHeagUeTQgAAHx+mHeDJiIiImqPmDDQZTXsVahp0ONARERERO0DEwa6rAGhnrhwM2i8va8I9RYmDURERETtCRMGuqJOPrZ7MGw4U42UvBo314aIiIiImhMTBrqit4aGyo//+GshzFbOZSAiIiJqL5gw0BV19tfineFh8vNjZfVurA0RERERNScmDHRVxnbyRryfbWjSgxvysOIMkwYiIiKi9oAJA121SbE+8uON+SY31oSIiIiImotbbtxWUlKCP//5zxgzZgymTZvmUJaSkoJNmzahtLQUwcHBuOOOOzBo0CC5vK6uDosWLcKRI0cQHByMuXPnIjY2Vi6vqKjA/Pnz8eqrryIyMrK5dqlduL97AGJ8NHhpez5O1VhhFQIKSXJ3tYiIiIjoJmr2Hgar1YqvvvoKBoPBqWzTpk1YsmQJBgwYgKeeegqxsbH4/PPPkZGRIa+zevVq5OXl4bHHHkN0dDQWLFgAs9ksl69atQp9+/ZlsnCTxF4YlgQA76YVu7EmRERERNQcmr2HYePGjSgqKnJabjQakZycjDFjxmDKlCkAgISEBFRXV2PlypXo27cvACArKwsjR45EYmIiYmNjkZqaCr1ej4iICBQUFGDPnj144403mnOX2pUILxU8VBLqzAJZZc5JHxERERG1Lc3aw3Du3Dn8/PPPmDdvnlNZbm4uamtr0a9fP4fl/fv3R35+vkOSoVarAQAqlS3fsVptNxNbvnw5Ro0ahcDAwJu1C+2eQpLwwcgIAMChknrsOF8Dk4WXWSUiIiJqq5otYTCbzfjiiy8wbNgw9OzZ06m8oKAAABAaGuqwPCQkxKE8Li4OaWlpqK6uxo4dO+Dj44PQ0FAcP34cOTk5mDBhwk3eEwrxvNgx9cK2fHx2uNSNtSEiIiKim6nZhiT9/PPPqK+vx4wZM1yW19XVAQA8PDwclut0OofyyZMnY8GCBXj55Zfh5+eHhx9+GGq1GsuXL8eECRMghMCnn36Kc+fOoUePHpgxYwY0Gg2uV2lpKerr6+WEpdmZTFAWFUFoNMCFnhV3UwN4OFaFL3Jtc0eOF1dBr7e4t1ItgNFohF6vd3c1WhTGxBlj4owxccaYOGI8XGNcHLXKeJhMkIxGWDw8bko770pt2LCwsEbLGmryhMFqtUIIxyEqubm52LhxI1566SVotdpGX3c50oWr8fj4+ODll19GfX29vK309HSUlpZi7Nix+OKLLyBJEp5++mksXrwYq1atajRJuRqBgYEwGo1XHdAmZzIBdXWAVttiEgYAmAE9woO0eGtvEawqjdwT1J7p9XrG4RKMiTPGxBlj4owxccR4uMa4OGqV8TCZgPp6ICzsprTzCgoKmqQN2+QJw+rVq5GcnOywLCgoCKNHj0ZsbCwsFsdfoi0WC5RKJTw9PQEABoNBnqNgfw449zzYkwWLxYKffvoJU6dOhUKhwP79+/HKK68gLCwMo0ePxooVK24oYaDGeahsI9oMZs5hICIiImqrmjxhGDFiBJKSkuTn2dnZWLZsGTZt2oRNmzY5rLtmzRqsWbMGn376qTx3Qa/Xw8fn4g3C7F1LjWVHqampUKlUGDx4MKqqqmC1WuHl5QUA8PLyQmVlZZPuH12ku5Aw7NPX4cecCszs4ufmGhERERFRU2vyhMHf3x/+/v7y87CwMHTt2tVpvb/97W8YPnw4Ro4cCQCIj4+HVqtFeno64uPj5fXS0tIQGhqKoKAgp20YDAYkJydj3rx5UCgU8Pb2hkKhQGVlJUJDQ1FRUQFfX9+m3kW6oHODezKsPlXJhIGIiIioDbrpk551Oh1iYmJclvn6+splGo0G48ePx6pVq6BUKtG1a1ekp6fj4MGDePzxx12+fsOGDQgLC5N7NJRKJRISErBq1Srcfvvt2LBhA/r06XMT9ooAINJbjXdvCcMrqQWoMl5+DgoRERERtU7Nfqfny5k4cSKmTZuGffv24b///S9yc3PxyCOPON2bAQAqKyuxceNGTJ8+3WH5nDlzIITAwoULERYWhsmTJzdX9dulCC/bfJPTVSb8dKLCzbUhIiIioqbW7Hd6tvv000+dlkmShAkTJlzVvRR8fX3xwQcfOC0PDAzEyy+/3CR1pCvr5HNxgvqms9WYFs9hSURERERtSYvqYaDWx0OlwF+H2ias15h4tSQiIiKitoYJA90wf60SAJBTXu/mmhARERFRU2PCQDfMV3PhfgwWAYOZk5+JiIiI2hImDHTDuvpfvHt3eb3lMmsSERERUWvDhIFumFIhwe9CL0O1iT0MRERERG0JEwZqEl5q26F0osLo5poQERERUVNiwkBNItTTdoXeP/1aiB9yKlBt5NAkIiIioraACQM1iad7dZAf/yOtCO+mFzuUCyGQV2WC2cpLrxIRERG1JkwYqEn0CfbAf8ZEoG+wDgDwy6kqjFl2Ervya2G2Cnx0oAR3rT6NxzflubmmRERERHQtmDBQkxkY6on/GxGOQJ3tvgzVJiueSzmPJdnl2JFfCwDILKmHvtbszmoSERER0TVgwkBNykejRPLkGDydFCgv+3B/CU42mAy9/EQFSgxMGoiIiIhaAyYM1OTUSgkPJQTiXyPCXZZ/frgMc9eehdHC+QxERERELZ3K3RWgtmt4hCfeHhaKWpNA1wANKo1WfHzQ1ttQYrDgf1llmNcjAMuOV6DEYMHEGB9E+2rcXW0iIiIiaoAJA900CknCbVE+DssGh3nirT16/HSyEv/JLEVCB518RaXs8nq8NzLCHVUlIiIiokZwSBI1u4d6BsiPn9l6Xn6cer4Wm89Wu6NKRERERNQIJgzU7CK81egf4uGy7IP9xS6XExEREZF7MGEgt/jnJROiFZLt/+drzFiaXQ4TJ0QTERERtQhMGMgtvFQSon3U8vMnEgOhunA0vptejO3na9xUMyIiIiJqiJOeyS0kScI34zvhdJUJWqUteYj21eD3OwoAAL/bUYAQDxW+vK0jQjx5mBIRERG5C3sYyG10KgW6BWgR46uBJEm4tZM3xkd5y+X6OjOeTznP4UlEREREbsSEgVoUjVJyeH68wojNebxyEhEREZG7MGGgFuXShAEAVp2sRKnB7IbaEBERERETBmpRrA1GH83o7AsA2F1Yh0k/n8Jvt+ej3mJ1U82IiIiI2icmDNSiRHjZrpzkrVZgZmc/JHXQItxTBbMVSDlXg32FdW6uIREREVH7wsvPUItyT1c/hHqq0D1Ai1g/Db64rZNt+ZozOFFhxPbzNThXY8LgUE9E+2rcXFsiIiKito8JA7UoOpUCd8T4OC0fH+2N/xwsxbLjlQCAKB81lk2Kbu7qEREREbU7HJJErUJiB53D8zNVJl5ulYiIiKgZMGGgVmFAiAdGRno5LDtXY3JTbYiIiIjaDyYM1CpIkoT/GxGOnydHI8rHNjH608xSN9eKiIiIqO1jwkCtSriXGj0CtACAjWerYRUclkRERER0MzFhoFbnN32C5Me1Jt6XgYiIiOhmararJJlMJiQnJ2P37t2orq5GaGgo7rjjDgwYMMBhvZSUFGzatAmlpaUIDg7GHXfcgUGDBsnldXV1WLRoEY4cOYLg4GDMnTsXsbGxcnlFRQXmz5+PV199FZGRkc21e9SMQjxVUCsAkxXYdr4Wd0R7w2gVeD4lHycrjOjorcZ/xkRAp2I+TERERHSjmi1h+OKLL3DkyBFMnz4dISEh2LVrFz777DPodDokJiYCADZt2oQffvgBEydORHx8PNLS0vD5559DrVajb9++AIDVq1cjLy8Pjz32GDIyMrBgwQL85S9/gUpl25VVq1ahb9++TBbaOF+NEiUGC17fVQizVaDGZEWa3nZTt7J6Cw6X1qN/iIeba0lERETU+jVLwpCTk4P09HQ888wz6NWrFwCge/fuKCoqQmZmJhITE2E0GpGcnIwxY8ZgypQpAICEhARUV1dj5cqVcsKQlZWFkSNHIjExEbGxsUhNTYVer0dERAQKCgqwZ88evPHGG82xW+RGz/TqgD/v0QMA/nLh/w1VGy3NXSUiIiKiNqlZxmykp6ejQ4cOcrIA2K568+qrr+Lee+8FAOTm5qK2thb9+vVzeG3//v2Rn5+PoqIieZlabbtKjr1XwWq1jWNfvnw5Ro0ahcDAwJu6P+R+k+N8Ma6Tt/zcUyWhZ6BWfr71XA2K68worjOjvJ7JAxEREdH1apYehrNnzyIiIgJ79+7F6tWrUVhYiODgYEybNk1OEAoKCgAAoaGhDq8NCQmRy4ODgxEXF4e0tDQMGDAAe/bsgY+PD0JDQ3H8+HHk5OTggQceaI5dohbAW30x3x0S5ol3bgnHb1LO49f8WiTnViE5t0oun9fDH8/1DnK1GSIiIiK6jGbpYaiursaZM2ewbNkyjB8/Hs899xzCw8OxYMECZGZmArBNZgYADw/Hcec6nc6hfPLkyQCAl19+GWvXrsXDDz8MtVqN5cuXY8KECRBC4NNPP8X8+fOxZMkSGI3G5thFcoMJMT6I9VUjykeNKXG+AIB7u/q5XHdPQV1zVo2IiIiozWjyHgar1QpxybXxzWYzKioq8Ic//AExMTEAbHMY/vKXvyA5ORlJSUnysKLGSJIEAPDx8cHLL7+M+vp6aLW2ISjp6ekoLS3F2LFj8cUXX0CSJDz99NNYvHgxVq1ahRkzZlz3/pSWlqK+vl7uAWl2JhOURUUQGg1wYShWS2A0GqHXO88daE6dAPx7gD3BrIFeX4NYhcBTXXUoqbeifwcVtAoJL+yrQXHtletbZLDi1yIzPJTA6DA11ArpmurTEmLS0jAmzhgTZ4yJM8bEEePhGuPiqFXGw2SCZDTC4uFxU9p5V2rDhoWFXdV2mjxhWL16NZKTkx2WderUCT4+PnKyAAAKhQLdu3dHSkoKAMDT0xMAYDAY5DkK9ueAc8+DPVmwWCz46aefMHXqVCgUCuzfvx+vvPIKwsLCMHr0aKxYseKGEobAwEAYjcarDmiTM5mAujpAq21RCYNer5eHi7U0DzcY1VZQYwJQgwqTQHBwsJx4uvK3beeRet52vL2fZUCPQC0ivdR4qV8Qgj2u/FVpyTFxF8bEGWPijDFxxpg4YjxcY1wctcp4mExAfT0QFnZT2nkFBQVN0oZt8oRhxIgRSEpKcli2fv16FBcXQwjh0GCzWCxycmCfu6DX6+Hj4yOvY88UG9vZ1NRUqFQqDB48GFVVVbBarfDy8gIAeHl5obKysul2jlqdAJ0SgO2eDVUmK3w1ykbXLalznBx9tLQeR0vrka6vw+qpMVBdY48DERERUVvQ5HMY/P39ERMT4/AvMTERdXV1OHTokLyexWLBkSNH0LlzZwBAfHw8tFot0tPTHbaXlpaG0NBQBAU5T1g1GAxITk7GXXfdBYVCAW9vbygUCjlJqKiogK+vb1PvIrUiWqVCnhxdarj81ZKMVttQuscTA/H+yHAMDrX1apXWW/DS9nzeVZqIiIjapWaZ9Dx48GBERUXhyy+/xPbt23Ho0CH85z//QWlpqTyJWaPRYPz48di0aROWL1+OQ4cOYdGiRTh48CCmTZvmcrsbNmxAWFiY3KOhVCqRkJCAVatW4dChQ9iwYQP69OnTHLtILVjghV6G3+8owL7CWpytcj0R3nQhYRgQ4oHhEV7495hIdAuwDX37Nb8WqedrmqfCRERERC1IsyQMSqUSL774IgYMGICVK1fik08+QV1dHV588UWHeQ0TJ07EtGnTsG/fPvz3v/9Fbm4uHnnkEad7MwBAZWUlNm7ciOnTpzssnzNnDoQQWLhwIcLCwuSEhNqvKB/bsLcTFUY8teU8pq8+g41nqgEAG89UY/HRMuhrzTBZbAmDRnlx6NE/hl8cCsf7ORAREVF7JIlLL2lETppqwsh1MZmA3FxOer4B5fUWvLQtH9UmC3IrTS7XGdPRCweLDSgxWPC/8Z3QNeDiTeDe2qPHTycrEeGlwsrJMY2+T2uKSXNhTJwxJs4YE2eMiSPGwzXGxVGrjId90nNsbIue9NwsPQxE7uSvVeKL2zpi6cRo/HdMhMt1tuTVoOTCHIeGPQwA0OlCD8X5GjM+2F/sdNlgIiIioraMCQO1KwNCPfHDxCh8PDoCk2J8MLurH7SXJAiXXg3pnq7+iPSyXVDsm6xy7C3kTeCIiIio/Wjyy6oStXQxvhrE+GowKMx274+BIR74R1ox6i1W9AjUIsLL8WuhUUpYOK4jJq48BQBYlVsJSQL6BnvwUqtERETU5jFhoHZvVEdvjOrofdl1gj1UmD8oBH/eo8fa09VYe7oaozt64d1bwpuplkRERETuwSFJRFdpbCdvjI70kp9vzavBpJWn8NEBzmsgIiKitosJA9FV8lIr8O6IcOyeHY9+wToAgL7OjEVHyzHo+xPYcN71/R2IiIiIWjMmDETXSCFJ+HhMJL66rSMCtEp5+e5isxtrRURERHRzMGEgug4qhYSEDjqsmxaD+YNs13zOrrTg7/v0+PlkpZtrR0RERNR0OOmZ6AZIkoR4fw0AoMQosOx4JZahEtnl9ZjZ2Q8xvho315CIiIjoxrCHgegG9QjQ4o3BIZgbe/Hu0N9nV+CeNWdQYuAwJSIiImrdmDAQ3SBJkjAp1hdzYrVYeGskpsb5wkslwSKAxzaec3f1iIiIiG4IhyQRNaE+wR7oE+yBOD8N3ssoxvkaE4QQkCTe4I2IiIhaJ/YwEN0Ed8X7AgAsAvhgfwksVt6ngYiIiFonJgxEN4FOKcFDZetV+N+xcoxbkYvXdxXifLXJzTUjIiIiujZMGIhuAkmS8KcLl1sFgGqTFb+cqsLU5NP46EAxrLwzNBEREbUSnMNAdJPcHuWDIWGeSMmrwS+nqrBPXwcAWHS0HGtPVWF4hBceTwxEkAe/hkRERNRysYeB6Cby1SgxOc4X/x4dgb8NC5OX6+ssWHGiEq/vKoTRInCioh6CvQ5ERETUAjFhIGoGSoWEcVHeWDctBr8fEIwIL1uvwp7COjyxOQ/3rDmL1aeq3FxLIiIiImccC0HUjAJ1Kszo7IdRkV64Y+UpAMChknoAwJu79Vh2vALeagX6h3jKrxka7oluAVpXmyMiIiK66ZgwELlBkIcKD/cMwBdHyhyW25OHXQV18rKPD5bg4Z4BmN7ZD6Ge/MoSERFR82Lrg8hNnurVAfd198fBYgO25NVArZBQYbTAQ2m7HGu9VWDd6WoAwBdHyvDlkTJ8Ni4SvYI83FltIiIiameYMBC5kY9GieERXhge4eWyfHJsLXbm1+LbY+UQAF7clo9N0+Oat5JERETUrnHSM1ELNjjMEy/2DcK/R0cAAKqMVlQaLW6uFREREbUnTBiIWoHBYZ4I1CkhANy39iyMFl6ClYiIiJoHEwaiVmJSjA8AIL/WjG3natxcGyIiImovmDAQtRKPJwaik7caAPB9djm+OlLG4UlERER00zFhIGoldCoFnu/TAQCwv9iAjw+W4NGNeW6uFREREbV1TBiIWpFbIrzwVFIgul+4kVtupQnDlh7H3LVnUFRndnPtiIiIqC1iwkDUiigVEh5OCMTi8Z0wPd4XAGCyAtnlRuzKr3Vz7YiIiKgtYsJA1Er9bkAwlt4RhVsiPAEAPxyvgBACRovAgeI6nK82ubmGRERE1Bbwxm1ErZRCkhDrp0GMrwap52txtLQe6UUGLDtegQ1nqiEB+Gh0BAaHebq7qkRERNSKsYeBqJWb3cVPfvzk5nPYXWAbmiQALD5ahq+OlCGnvN5NtSMiIqLWrtl6GEpKSrBs2TJkZ2fDarWic+fOmDFjBkJDQx3WS0lJwaZNm1BaWorg4GDccccdGDRokFxeV1eHRYsW4ciRIwgODsbcuXMRGxsrl1dUVGD+/Pl49dVXERkZ2Vy7R+Q2YV5qvDk4BK/v1gMAKo1WuWx3YR12F9YhObcSP06KdlcViYiIqBVrlh4Go9GI999/H6dPn8bs2bPxwAMPoKSkBP/6179QU3PxBlSbNm3CkiVLMGDAADz11FOIjY3F559/joyMDHmd1atXIy8vD4899hiio6OxYMECmM0Xrw6zatUq9O3bl8kCtSsTY32xbFIUnkwKxCMJAfjTwBDM6eaP8dHeAIDTVSacqzZhcVYZDpUYAABfHy3D1FWnsP5MlTurTkRERC1cs/QwZGdnQ6/X44UXXkCPHj0AAKGhoXj99deRkZGBW265BUajEcnJyRgzZgymTJkCAEhISEB1dTVWrlyJvn37AgCysrIwcuRIJCYmIjY2FqmpqdDr9YiIiEBBQQH27NmDN954ozl2i6hFifLR4JGEQIdlZqvA1rwa1FsEpiWfdvm6/x4sRUGNGfF+GgyP8GqOqhIREVEr0mw9DADg4eEhL/P2tv3yae9hyM3NRW1tLfr16+fw2v79+yM/Px9FRUXyMrXadrdblcqW71ittiEYy5cvx6hRoxAY6NhoImqvVAoJTyRe/vuQV23CRwdK8MK2fPx9nx4Wq2im2hEREVFr0CwJQ2JiIsLCwrBs2TIUFRWhoqICS5YsgVarRZ8+fQAABQUFAOA0pyEkJMShPC4uDmlpaaiursaOHTvg4+OD0NBQHD9+HDk5OZgwYUJz7BJRq3F/jwDc29XPZdmjCQGYFOMjP192vBILDpU2V9WIiIioFWiWIUkajQbz5s3Dxx9/jD/96U+2N1ap8PTTT8sJQl1dHQDHXggA0Ol0DuWTJ0/GggUL8PLLL8PPzw8PP/ww1Go1li9fjgkTJkAIgU8//RTnzp1Djx49MGPGDGg0mubYTaIW66V+wZjXIwAAUF5vQVZZPRI76BDja/tuzB8cglm/nMHpKhOyeUUlIiIiaqDJEwar1QohHIc0HD9+HB9++CHi4+Mxbtw4KBQKbN++HZ988gmeffZZdOvWTR5W1BhJkgAAPj4+ePnll1FfXw+tVgsASE9PR2lpKcaOHYsvvvgCkiTh6aefxuLFi7Fq1SrMmDHjuventLQU9fX1cg9HszOZoCwqgtBogAtDsVoCo9EIvV7v7mq0KK0lJr4ABnkBMBigN1xcPi9Ghb9kmpB6vhYTV5zA3/t5IczjxjohW0tMmhNj4owxccaYOGI8XGNcHLXKeJhMkIxGWDw8bko770pt2LCwsKvaTpMnDKtXr0ZycrLDsh49esDPzw/PPfecPP+gZ8+e+Mc//oGlS5fitddeg6en7eZSBoNBXsf+HHDuebAnCxaLBT/99BOmTp0KhUKB/fv345VXXkFYWBhGjx6NFStW3FDCEBgYCKPReNUBbXImE1BXB2i1LSph0Ov18nAxsmntMRnmY4bfsTOoMFpRVC9wtF6HXtH+N7TN1h6Tm4ExccaYOGNMHDEerjEujlplPEwmoL4eCAu7Ke28goKCJmnDNnnCMGLECCQlJTks++KLLxAVFeWQCCgUCnTu3BmbNm0CcHHugl6vh4/PxTHV9kyxsZ1NTU2FSqXC4MGDUVVVBavVCi8v25VevLy8UFlZ2XQ7R9SGBXmosGZqLP59sATfHivHyQqju6tERERELUCTT3r29/dHTEyMw7+wsDCcPn0aJpNJXk8IgZMnTyI4OBgAEB8fD61Wi/T0dIftpaWlITQ0FEFBQU7vZTAYkJycjLvuugsKhQLe3t5QKBRyklBRUQFfX9+m3kWiNkutlNAjwNZ7t/xEJY6V1aPWZIVVCJQazE7DDYmIiKjta5ZJzxMnTsS7776Ljz76CLfeeisUCgV27tyJEydO4LHHHgNgmxg9fvx4rFq1CkqlEl27dkV6ejoOHjyIxx9/3OV2N2zYgLCwMLlHQ6lUIiEhAatWrcLtt9+ODRs2yFdhIqKr0yNQKz++b91Zh7I53fzxYl/n5J2IiIjarma5rGpMTAx++9vfQqFQ4PPPP8cXX3yB6upqvPTSSxgwYIC83sSJEzFt2jTs27cP//3vf5Gbm4tHHnnE6d4MAFBZWYmNGzdi+vTpDsvnzJkDIQQWLlyIsLAwTJ48+abvH1FbEu2rweyufujorYZSciz79lg57ko+jTKDxT2VIyIiomYnCY4xuKKmmjByXUwmIDeXk55bgbYYE7NVwGgRKKg149XUfJyusg0r7BGoxX9GR8Bbo7zs69tiTG4UY+KMMXHGmDhiPFxjXBy1ynjYJz3HxrboSc/N0sNARK2TSiHBU61AnJ8GP0yMQq8g231RjpbWY9LPp1BcZ0Z5vQUnKuphsjj+9qCvNWNjvhE/n6zEqUpOoCYiImqtmmUOAxG1fpIk4d+jI/D0lnM4VFKPWrPAHStPOazjoZIgAejqr8WR0noYrQKA7dLIL/TpgHu7+UMhSU7bJiIiopaLPQxEdNU8VAp8eVsnTIrxcVleZxaoNQvsLzbAaBXwU19MDt7fX4KnNp+D2cpRkERERK0JexiI6Jq92DcIv+bXorTeNvm5b7AOv+kTBC+VAulFdbAKwEutQKK2FuVqX/z7QAkyigxILzJg6NITuD3KG74aJQJ1SjzYIwDqS2dXExERUYvBhIGIrpmfVon/TeiEH3IqYBECd8X7IdLbNlkr1k8jr6fX16FXkAcW3NoRj2zMw8Fi2/Ck9Weq5XUWHCrF/xsYjCmxvlAqmDgQERG1NEwYiOi6BHmo8FSvDle9/tvDwrDhTBXOVZuhU0lYdbISFUarrWxvEd7eW4THEwPxaEIAJM5zICIiajGYMBBRswj1VOG+7gHy89/07oBNZ2vw+q7CC5Ojbb0NWqWEOd38oWJvAxERUYvASc9E5BaSJGFclDd2zIrH5+Mi5eUfHSjB0KUn8ElmiRtrR0RERHZMGIjI7XoFeeDr2zs6LPv8cBnGLjuJjw+UoNRgdlPNiIiIiAkDEbUIPQN12D07HqsmR8vLqkxWfHW0DON/OoX3M4rBG9MTERE1PyYMRNRiKCQJYV5qpN4dh9cHh2BAiIdc9r9j5fjheAWK69jbQERE1JyYMBBRi6NVKnBnrC/+OzYSK++Mhu7CfRreTSvGHStP4ZXUfJQZLOxxICIiagZMGIioRYvwVuOXqTHoHaSTl23Nq8HtP+Vi2A8nsPx4BQ6VGGCyMHkgIiK6GXhZVSJq8Xw0Snw2riPMVoHPD5fi66NlMFkBsxX4274iAICfRoEfJkbDX6vgfRyIiIiaEHsYiKjVUCkkPJHUATtndcbn4yIR66uWhytVGK24/adc3Lv2LOotVjfXlIiIqO1gDwMRtUq9gjywdKLtikqbz1bj/Yxi5NeacaLCiPE/ncKtHb0Q76/FnG7+7q0oERFRK8eEgYhavbGdvDEq0gvPp5zH7sI61Jis+Dm3CkAV3s8oxhNJgegeoEXPQB0CdEp3V5eIiKhVYcJARG2CUiHh/VERWH68ArVmgY8P2u4ULQB8klkqr/ebPh2gUUhIOVcDIYCeHbSwCkACMCXOFzG+GvfsABERUQvFhIGI2gyVQsKsrv4AgLnd/JFyrgbfHiuHwWJFTrkRAPDh/hKH1+zT18mPF2eV42/DwjAuyrvZ6kxERNTSMWEgojZJrZQwLspbbvyn5FVj+/la6OvMsFgFyuot6BWkg1YpoaLeitWnqgAAf9hZgP+3ExjV0QtBOhV0KgkRXmqM6+TN4UxERNQuMWEgonZhVEdvjOrYeM/BM7074Okt53Cq0gQB270eGvpHWhGUEuCvVeL+7v6I8dVgaLgnFLyEKxERtXFMGIiIAAR7qPD9HVHIKTfiQFEdqkxWmK0C+TVmuffBIoASgwXvNxjW1NVfgwGhnvDVKBDjq0FnPw2CPVTwVPOq1URE1DYwYSAiukAhSegWoEW3AK3D8j8NCkF5vQXrTlfhWJkRJqvA5rxqWAWQXW5E9oX5EQ15qSREeKsxs7MfkoJ0UEoSonzUMFkFLFYBpYI9E0RE1DowYSAiugKVQkKQhwpzuwfIy0wWgRMV9ThRYcT+IgO2na+BySJQa7bCIoAas0BOuVG+E3VDWmU1ZnT2wzO9OkCjZOJAREQtGxMGIqLroFZK6B6oQ/dAHSbF+uKPDcqK68wX7gVRifWnq1FtsqLadPHu0/UWgW+PlePbY+WYGucLP40CgTollAoJSkmCv1aBASGeCNApkVdtQn6NCf2CPdgrQUREbsGEgYioiQV5qBDkATzXOwjP9Q4CAJytMuJMlQmexkrsrdJg4eEyAMDKk5VXvd0YXzUivdRICtJhSJgnIrzUOFNtRI3JiiCdCnsKa2GyCuiUCnTQKTEy0gs6FedSEBHRjWHCQETUDDr5aNDJRwO9vgZ9Yzrg3m7+2HG+Fvv0tjtT2zsPzFaBU1UmnKxwnhdxqtKEU5Um7MivdbgZ3eVolRK6+mugVkgI91LDQ6VAqKcKfYJ1CPVUQa2QoFJI0CgkTtQmIiKXmDAQEbmBj0aJCTE+mBDj47K8ot4CsxDQKhWwCoHTlSZUGi3YdLYauwpqUWm0ot4iAAC+GgWsAojz0yDGR43Dpba5FYBt+FNmSb1to0WGy9Ypzk+DHgFaxPlp4K9VYny0N7RKJhFERO0dEwYiohbIT+t4k7ikINvz4RFeAAAhBMxWQKmAy3tB1FusOFVpwvkaE4QA8mtMqDML5NeYcLSsHvk1ZpisAkaLgLjwmpMVRoeejb/s0cNPo4CnSgGFZJu34aNWQK2QEO+vRbCHEgFaJTroVPDRKOCtViDeTwOJ96YgImpTmDAQEbVCkiRBfZkbT2uVCpeXiHXFfufrPQW1OFdjxuaz1Th+IXGoMFpRYbQ6vSa9kd4KlQKI9tHAT6NAqKcaYV4q+KgV8NMqEeShRJinGpHeKigvJBWcx01E1PIxYSAiaueUFy4bOzHWFwDwWGIgTBaBCqMFxXVmWARgEQIGs+2ysaUGC87XmFBcZ0F5vQX6OjMMZoFzNSaYrZCHQwGXHwIF2BKGYK0EL60BWoUEjdI2l0Il2erlp7H1YvhqFPDVKOGrVSBIp4JGKcFXo4CPWgFIEnRK21wMIiJqekwYiIjIiVopXbja09X/mTBaBHLK66GvM6O4zoJSgxll9RZUm6zQ15pReOGfRVx8jVUAhQYBGJwneV8LjUJCryAdvDUKKCUgSKdChLca0T5qBHmoIISA9cL7easV6OitBgAoJXAIFRHRFTRpwrBs2TKcOHECr776qlNZWloafvnlFxQWFsLf3x9jxozBrbfe6rBOcXExfvjhB2RnZwMAkpKSMHPmTPj6+srrZGRk4Mcff0RdXR0GDx6Mu+++GwrFxUl5S5cuRXl5OR5//PGm3DUiIroCjVJCQgcdEi6zjtkqYLAIWwNeAHVmK7LOFcHLzx9Gi0C9RaDGZIVFCJisQHm9BRVGCyrrragyWVBUZ0FJnRkCQKnBIs+/MFoF9unrrrnOvhoFOuhU8Nfa5mYoFRLUCglhnip4XZivobowf0OjlKBTKqC9kEx5qSR4qGzPFZKEAK0Sat6Ij4jaoCZLGDZs2ID169cjPj7eqSwjIwMLFy7EyJEjMX36dGRlZeGHH36AEALjxo0DANTV1eFf//oXPDw8MG/ePBgMBqxYsQIfffQR/vCHP0ChUKCqqgpffPEFbr31VsTExOCbb75BeHg4Ro4cCcCWcKSmpuJPf/pTU+0WERE1IZVCgneDoUN+WiUU/iqEhHhe87bMVgGLEBACyCk3IrfSCIPZihqzFXlVJpytNuFctQlWYRv6pJAkmKwCJQaLvI1KoxWVxhvr3bBTSrbeiwCdEv4aJRQXhlUpL7y3UgJ8NUp4qxVQK22JiY9agWAP2xAr9YUhWTqVBFONBVKdGTql7WZ+9vrb/g9IYM8IETWfG04Y7L0CBw8ehIeHh8t1VqxYgV69emHOnDkAgISEBJjNZqxevRqjRo2CWq1GSkoKKioq8Lvf/Q5+fn4AgMjISLz11ltIT0/HgAEDcOLECSgUCkydOhWSJOHYsWM4evSonDCsXLkSQ4YMQUhIyI3uFhERtXAqhQQVbI3mpCAdkoJ0V/U6g9l2SVqTVaCg1oxakxXlRgusVttcjWKDBWUG22VtzVbb1ahsvR9WGK0CFfVWlBpsV5mqMdmW2eZ5NJwkbmqCPay5bKk9cVBKErRKCYE6JTQX5nJ4KCUE6mz32VBItlgpJNu6SglygiInMwrIiYlSsiUtXmoFJNjKJfv7SRIUAKQL721PZCQ4JjIqhW3ivW3IFyBBkie4KyRAAdvKjtuS5MfShXU0Sts9QoQQrkJARM3khhOGpUuXoqioCC+++CJWrVoFi8XiUF5cXIzCwkJMnDjRYXn//v2xefNmnDhxAt27d8fhw4cRHx8vJwsAEBUVhZCQEGRmZmLAgAG2q4Ko1fKvKkqlElar7eodZ86cwcGDB/GXv/zlRneJiIjaMJ1KAd2Fv37XMkfjcqxCQF9rRp1Z4HyNCfUWW++HxWors08cLzNYYLAIGK224Vf6WjNqzVaYLiwzWgTqzFZU1JtRa7HNuWj8PW3/twjba6tMzlezaktUiipolQp4XbjMr+KSREPRIDG5tEx5IRFSXRhiprpww0K1QrowpOzSxOhCjw7gtG17MnPx8YVE6pLHrsoUkuM27Nt2fp3rbVyapFVUmBGIugvbvljvhus1jEXDbdiTP/mxi+3LCRxsT+yP7cshP75kffaCtTk3fKacOnUqIiIiGj0oCgoKAAChoaEOy+29APn5+ejevTvy8/PRr18/p9eHhIQgPz8fgC2BqKurw/79+xEdHY3MzEzccsstAIDly5dj3LhxDvMdiIiImoNCkhDmZZtIHeunueHt6fV6BAcHw3Qh4bCKC/8HLj4WFx9Xm6yoNFrle2uU1VvkuSBWYbt0rkVcTF4MFiEP6XIstyUgNSYrDBYB64Vf9u3vJWAbAmYFbP8Xtvt4XFxm257pQkIkGqwnbwe2hfZtCDhuR8B1omS2AmarFTVtPDG6drXursAVuU4yLiQakuM6DV/T8P8NC53KLhRbrVYoFdWO730hoXHclvM2GtZD/q90yTqX1NHx9ZLTthrfvu2RJAEaCXiqqxeGxaJFu+GEITIy8rLldXW2SWiXDlfS6WxdxwaDQV7PvqwhrVaLoqIiAEBAQADmzJmDL7/8EkajEf369cPo0aNx5MgRnDt3Dk8++SR27dqFDRs2QKPRYNq0aejWrdsN7V9paSnq6+vlxKfZmUxQFhVBaDSAWu2eOrhgNBqh1+vdXY0WhTFxxpg4Y0ycMSbOjEaj/LfvShQAfC/8s/1kDOCa/1xIlzx2/x2+rRcmvpsFUGMwQqFSo84iYLA4JxnWS/5vTzoELiZW9mFj5gs9P+YLiY3J2tjrRYPtXPy/4/sJx/e7pC4uk6zG3stl/Ru+r3B6rUUIAJLL/W0sNk51drFvTc2+bYcFjg+ucitXo/UllClnTIiLLrgp7bwrtWHDwsKuajtXnTBYrVanMYRK5WXuGnTBlcYd2nsmrnZ84vDhwzF06FBYLBao1WpYrVYsX74ckyZNQklJCb755hs888wzqK6uxscff4y3334b3t7eV7VtVwIDA2E0Gq86oE3OZALq6gCttkUlDHq9nnNFLsGYOGNMnDEmzhgTZ4yJI8bDtZsVF3tPUcNeH9Eg0bi4zPbE/ti+HPJj4ZAsOLz2kl4lh1agaPhQOC0WwuWqKCkpQYcOHRzrceGRq9c0XK/hvgsX67l+rXCsg3B+jcO+CeG0TG21INELUIWF3ZR2XkFBQZO0Ya86YVi9ejWSk5Mdln366adXfJ29Z8Hek2Bnf24v9/T0dFrHvt6lvRMKhUK+lOqePXtQX1+PESNGYPXq1ejSpQt69OgBAEhOTkZmZiaGDh16NbtIRERE1O5JFybHX7LUHVW5Jp4GJUJ8b3xIYLMymYD6enfX4oquOmEYMWIEkpKSrvkN7FmNXq9HTEyMvNze/WwvDw0Nddn9WlRU5PJSrQBgMpnw888/Y8aMGVAqlaiqqnLoTfDy8kJFRcU115mIiIiIiGyuepCiv78/YmJiHP5djeDgYAQHByM9Pd1heVpaGjw9PREba5vl0bNnTxw/fhyVlZXyOmfOnIFer0fPnj1dbnvLli3w8fFB//79AQA+Pj4OCUJ5eTknQRMRERER3YBmmdV05513IiMjA4sXL8ahQ4ewbNkybNmyBRMnToRGY+s6GjVqFLRaLd577z2kpaVh165d+Pjjj9GpUyc5IWiopqYGa9aswYwZM+RlvXr1Qk5ODlJTU7F27VpUVlYiIeFy9xwlIiIiIqLLabI7PV/OkCFDYLFYsG7dOuzatQuBgYGYNWsWxo4dK6/j7e2Nl19+GUuXLsVXX30FtVqNxMREzJw50+Xk6rVr1yIuLg5du3aVl8XExGDmzJlYuXIlNBoNHn30UYf7OhARERER0bWRBG+feEVNNcP8uphMQG4ur5LUCjAmzhgTZ4yJM8bEGWPiiPFwjXFx1CrjYZ/0HBvboq+S5P4LLRMRERERUYvFhIGIiIiIiBrVLHMYqAmYze6ugSOTyfaPLmJMnDEmzhgTZ4yJM8bEEePhGuPiqDXGo6W17xrBOQxERERERNQoDkkiIiIiIqJGMWEgIiIiIqJGMWEgIiIiIqJGMWEgIiIiIqJGMWEgIiIiIqJGMWEgIiIiIqJGMWEgIiIiIqJGMWEgIiIiIqJGMWEgIiIiIqJGMWEgIiIiIqJGMWEgIiIiIqJGMWEgIiIiIqJGMWEgIiIiIqJGMWEgugwhhLurQNQq8btDdP2MRiMAfo+o5WDCQDKemJzV19cDYGwaslqt7q4CtXBGoxGSJLm7Gi1KXV0dFi9ejLKyMndXpcW49FzC8yxgMBiwdOlSrFmzBlarld8jajFU7q6AO6SkpKCiogJ+fn6IiopCbGysu6vkdlu2bEF+fj6Cg4PRuXNnxgTAokWLUFBQgFdffdXdVWkxUlJSkJubC09PT0RHR2Pw4MHurpJbbdu2DWVlZQgMDERcXBwiIyNhtVqhULTf32IKCgrwl7/8BdOnT8ett97a7uMBAKtXr8a6devg5+cn/wjR3m3cuBHHjh1DQEAAOnfujEGDBrX7xnFycjLWr18Po9GIIUOGtPvvDWA7x5aXlyMwMBDx8fEIDw9v9+cUd7Vh21XCcPbsWXz++ecwmUyIjY1Feno6ysvLcffdd6N///7Q6XQQQrSrk1ZRUREWLFiAqqoqhIeHIz09HcnJyXjwwQeRmJgItVrd7mICABaLBYWFhTh58iROnDiB+Pj4dn2SOnv2LL788kvU19cjNjYWmZmZ2Lx5MyorKzFq1ChoNBp3V7FZnTt3Dp999hkMBgPCwsKwceNG+Pr64sUXX0RQUFC7Plaqq6thsViwYcMGjBw5st2eQwDgwIED+P7772G1WuW/M56enu6ulluVlpZiwYIFqKysRJcuXXDs2DHs2LEDISEhiImJcXf13GL//v1YsmQJJEnClClT8OuvvyI8PNzd1XKrc+fO4fPPP4fBYEBQUBBOnDiB4OBgPPvss+32HOvuNmy7Shg2bNgArVaLxx57DKGhoVAqlfj+++/x3XffQQiBW265pd39UTtw4ACsViueeeYZhIWFobq6GsuWLcOiRYtwzz33YPDgwW0+Jq6+YJWVldDr9QCA//3vf5g/f367OznZCSGwefNmBAYGYubMmQgKCoLZbMb333+PjRs3ok+fPggODnZ3NZvVtm3bEBAQgNmzZ6NDhw7Izs7GV199hVWrVuGhhx5qt8cKYBtS4eHhgfLycvz444+4995722XCUFRUhP/+97/o1asX7rnnHvj7+zscF+0xJgCQmZkJg8GAJ598Um4Ul5aWIjQ0tN3FpLKyEu+//z6KioowevRojBkzBj4+Pti8eTNMJhOA9nucbNu2DR4eHnj88ccRFBSEo0eP4n//+x9++uknPProo+3yHOvuNmy7iXhBQQEyMzPRpUsXREZGQqVSQZIkzJo1C1qtFqmpqcjNzQXQdsdRutqv9PR0BAUFoVOnTlCr1QgICMAjjzwCb29vbN68GadPn270tW2FwWAA4DiedsuWLdBqtbjrrruQn5+PrVu3Oq3TVl36Wev1ehw4cABxcXEICwuDSqWCTqfDwIEDUVFRgcLCQpevaysu3a/q6mocOHAAERERCA0NhUqlQufOneHr6+twsm6r8QAuv29VVVXQaDS47bbbkJKSgoKCAigUijb/3WkYEyEEgoODERcXB6VSicDAQCgUClgsFqSnp+Ps2bOoqqpy+dq2xNV+7d27F0FBQYiKioJarYZCoYBer0dBQQFqa2vdUMvm1TAm5eXliIuLw29/+1tMnz4dgYGBqK+vR11dHfz8/NxYy+Z16XFSWVmJzMxMhIWFyX9zunfvDj8/P5hMJlitVggh2uz3BnCOSUtow7bZhMHeLW5nNBpRV1eHgIAAeZnVapUbOyUlJdi/f3+bnmR0acPYYDBAkiSo1Wo5VhaLRT4I8/PzsXfv3jYbE6vViu+//x4LFiwAAPkXi+rqahw+fBhDhw7FwIEDkZCQgJUrV8JkMrWLXzXsx4n9mDCZTKitrZV7EezHT8NfwAC0yWMEcI5HTU0NampqEBYWJq9TWVmJmpoaeHp6IicnByaTqc3GA3CdZNsVFRWhe/fu6Nu3L/z9/fHdd98BaLvHh13DmNj3dfDgwcjMzERdXR327NmDF198Ed9++y3efvtt/P3vf0daWlqbPb8Crv/mWK1W+Pv7AwBSU1Px4osv4uuvv8Zf/vIXvP/++zh16lSbbgjaYyKEQKdOnTBnzhxER0dDkiQIIaBWq6HRaFBRUeHmmjafS8+xFosFGo0GdXV1Dn9nLBYLoqOjUVFRAUmS2uz3BnD9d9jdbdg21/rJysrC3//+d3z00Ud47733cODAAZhMJkRFRSEiIgIHDx5EUVERAFsDMSsrC0OGDEHHjh2RkZGBc+fOuXkPmp6rhrEQAjqdDv7+/sjLy0NJSQkAQKlUAgCSkpLQvXt3HDhwQO5laGssFgtyc3ORlZWFnJwcebkkSbjzzjsxadIkBAYG4pZbboHFYsGPP/4IoO32Mlx6nCiVSggh0LFjR4wZM8ZpfKT9F9KGDee2pLF4hIaG4vnnn8eAAQMA2IZT/P3vf4fJZEJmZib+7//+Dx9++CGys7MBtK1fjxtLsu1lgO3KYrW1tYiLi8PIkSORlZWFY8eOQZIkVFdXu6XeN9PlYtKxY0cEBwdjwYIF2LFjB6ZMmYKnn34azzzzDHx8fPDjjz/i8OHD7qr6TXO5vzleXl4oLi7G6dOnsX37dkyePBnPPPMM5syZg9raWnzzzTdt8m/OpTGxN3gbHi+SJKG+vh5KpVJuKLflRnFj59iAgAB0794dOTk5eP/997F27Vq88cYbKCoqwpYtW/DGG29g8eLFcluuLbnc3+GOHTsiMzPTbW3YNpEw2P8g7927F59//jkiIiKQlJQEs9mMxYsXyw29O++8E9nZ2fjwww/x7bff4m9/+xu+//579O/fH3fddRf0ej2Ki4sdttkWuGoYm81mAMDYsWNRUFCA7Oxs+Q++PaOdMmUKioqK2mQSBQAVFRXQ6/VQq9VYsWKFvNzLywuJiYnyMdC1a1cMHToUKSkpKCwslP/4tTWujhP7MTFlyhQkJSU5/KqTmZmJyMhIBAcHt8kk6nLx6Ny5M3Q6nbzu7bffjpdeegkvvvgiXnzxRZw8eRI7duyQe/HaisvFxN7wKS4uRmhoKACgX79+6NKlC77++mt89NFH2LBhg9wQaitcxcR+Do2IiICfnx+OHj2KuLg4jB49GnFxcUhMTMRDDz2E6upqHDt2TD4ftxWX+5szfPhwZGVlYfny5QgJCcGoUaMQGxuL4cOH4+GHH0ZeXh6ysrLa3Dnlct8dOyEEfH194evrK/+I19bi0NDljpNp06bhvvvuQ2BgINauXYuuXbvi1VdfxbPPPouZM2dix44dSE1Nle9X0Va4ion9h7pJkybh2LFjbmvDtomEwf4Hee/evYiOjsY999yDO++8E6+++ipGjhyJlJQU7Nq1C/369cNDDz2E6Oho5ObmIjIyEq+//jpiY2MREhKCwMBAZGVlOWyzLXDVMLZfuSQqKgpJSUnYuHGjQy+DxWJBx44dERMTgyNHjgBoW0kUYJun4O3tjVtuuQX5+flISUkBYDtBq9Vq+Rjw9PTEwIEDERgYiCVLlgBoW8eHnavjxP7rhoeHB4CLf7wKCgpw5MgR9OrVC0D7i0dD/v7+GDNmDCIiIhAYGIhu3bph8ODBOHnyZJsbZ+sqJvYE2t5Itlqt8nESGhoKhUKBsrIy5OfnY9y4cXIvZlvR2HFisVjg4eGB3r17o1evXhg+fDhUKtt1RkwmE8LCwtCzZ0+cPHkSKpWqzR8narUaABAVFYXExEQcO3YMQUFB8hXWzGYz4uPj0bVrV2RlZbW5H2Yu992xkyQJJpMJnTp1Ql5eHurq6tr0MNjGjhOr1QqtVovevXsjKCgIXl5emDJlCiIjIxEdHY0RI0agX79+OHTokDyUq6243HHSt29ft7Zh28yRWF5ejvPnz6NLly7yCUihUGDkyJHo27cvfvrpJ5SUlGDQoEF49NFH8bvf/Q7z5s2Tr9LQsMu0LR18QOMNY/t4yfHjx6OkpAQpKSmoqakBcHFokoeHB8xmszy3obXJz89HdnY2SktLHZaXl5fj8OHDGD58OMaMGYOOHTti/fr18gna3uCxHwuxsbEYMWIEsrKycOjQIQBt75efS4+Tbdu2AYDTHzQAOHr0KEwmE3r37i0vLy4uxsGDB+VjqLW73PemIYVCITeG7MeEh4eH3LvQGr83jblcTOznjMrKSsTFxeHXX3/FCy+8gNLSUsTGxqKmpgYqlarNTYC+0nEyZswYPPzww/KlIIGLjWcPDw/U19fDbDa3i+MEAPz8/DBgwABoNBqUlJSgsrISAORkysvLC7W1tW1uHtDVnk/UajX8/f1hMBjkX4vbqssdJw17sjt27IjAwECH13p5eaGysrLVtk0ac7kfMgHIbdjf//73zd6GbZUJg6tGoL+/P6xWq/wrub1by9/fH7fffjvq6+vlK92YzWacO3dOHmMMACdOnIDRaERsbGyrPPiut2EM2IZXjB8/Hps2bcLOnTvl1547dw4FBQXo3r17q/tV0GAw4PPPP8ff//53fPrpp3jjjTewYsUK+S6rCoUCt912G8aPH4/g4GAMHjwY9fX1WL16tcN27L9eKJVK9OnTB9HR0S7HKrcW13KcrFu3zimBssfj4MGD6NSpE2JiYlBbW4vNmzfjjTfewMaNG1tVwn2jCaXFYsHZs2eRn58PwHZMFBQUICsrC8OHD3cYttRaXG9MLBYL6urqYDab8dlnn+H777/HxIkT8dprr2HixIkwmUz4+uuvAbS+7871xESlUjkkCKdOnXIY3nn+/HmcPHkS/fv3lxvLrcn1xASw/RjVs2dPDBw4EPv370daWpr8Wr1ej/Pnz6Nv375yUtWa3Oj5xP7/wYMHo7y8XD6vtKZz6qVu5HwC2HqkTp8+7XCH9IKCAuTm5mLEiBHt5hyrVCrlq0NZLBbk5eU1exu2VZ2lDAYD/ve//+HgwYNQqVQwmUwYM2YMRo8ejYCAACQmJmLv3r24++675W4thUKByMhIDB8+HNu2bcOECRPg5eWFXbt2IT09HZ07d0a3bt2QkpKCqKgoxMfHu3s3r8mVYmJvGA8fPhyA7UT0008/YfXq1Zg5c6YcozvvvBNnz57FunXrsHfvXsTGxiInJweenp7o2bOnm/fy2q1evRp5eXl48sknAdi+oMuWLUN5eTlmzpwJX19fDBgwQB4b2LdvX2RlZWHnzp0YNmwYIiIi5NjYv3zh4eEYMWIE9Hp9q7sy0I0eJw3Ze/OSkpJw4sQJLF68GKWlpZg2bRrGjRvnjt27Zk0VDyEEfvnlFxw/fhwJCQmIjIzE7t27YbVa0a9fP3ft3nW50ZgolUp4eHggMjISSUlJGD58uHxlLfuPEh06dHDnLl6zpjpOLBYL1qxZg5ycHCQkJKBjx47Yu3cv1Gq13EvXWjRFTHx9fTF9+nScO3cOP/zwA3bv3i3/zZEkSR7q2Fo01XFiT6T9/PzQo0cPbNq0qdXeAftGY2KPxeDBg7F//34sWLAAXbt2RWBgILZv3w6lUon+/fu7cxevWVMcJ5IkQalUYvfu3UhLS2vWNqwkWlHqumzZMhw6dAizZs0CcLEROGDAANx77704fvw4Fi5ciNGjR+Ouu+5yuBPg8ePH8e9//xsTJkzAhAkTUFRUhL179+LgwYMwmUyIj4/H7NmzW90v6ZeLycyZM+Hj44P6+npoNBpIkoSamhosWbIER44cwW9/+1tERETAZDJBrVajpqYGWVlZ2LVrF+rq6tCpUye5IdBaWK1WVFZW4m9/+xtuueUWTJo0ST4GkpOTsX37dgwYMAB33323/Bp70pCZmYnvvvsOHTt2xFNPPeWwXfs6rfXukk1xnFgsFiiVShQUFOCNN96QexuGDh2KuXPntqpfSZsyHmfOnMGWLVuQn58PIQRiY2Nx9913t6rvDdA0MQFsfxTVanWr239Xmvo42bx5s3ycxMXFtdvjxGw2Q6VSoaKiAunp6Thy5AiMRiMiIiJa3d8coGli0vBvi9VqxYYNG7BixQrMnz9f/m61Jk11PgFsQ2BXr16N6upqCCHQrVu3dttes393SkpKsHv37mZtw7aKv/D2RuCePXtwyy23oFu3blAoFOjRowdqa2uRkpKCdevWYerUqUhMTERqaiqGDx+OkJAQObgRERHo0KEDqqurYbVaERwcjIkTJ2Ls2LEOkzpbiyvFZPv27Vi7di3uvvtuaLVaALZGr5eXFwYPHozc3FysXLkSTz31lDwB2svLC/3790ffvn1hNpvluSAtXWlpKSorKxEQEAA/Pz9otVrU1dUhPDwcCoVCTojGjRuHgoIC7NmzBwMGDEBsbKzDNYsTEhLQu3dv7Ny5E5mZmUhKSpL/2NvXaW3JQlMeJ/YJv0qlEv7+/oiMjMTs2bMREhLi5r28ek0dD6vViqioKDzwwAMwGo3yRNfWpCljAqBVDhG41M06Th588EEYDIZ2/zfHPsnbz89P/oXVZDK1mr85dk0ZE/vfFiEEFAoFBg8ejCFDhrS6G7g19fnEarWiR48e6N69O2prayGEgLe3tzt38ZrdjO9Ohw4dmr0N22JbP6WlpTh16hQqKiqgUChcNgIBYNy4cejWrRu2b9+O/Px83HrrrVCr1fLVbOy/eup0OpSXl8uT7uwdKzqdrtWcuK8lJl26dMGePXvkO/81nGRobxgfO3YMmZmZTuUKhaJVnLiNRiMWLVqEd999F59++ilee+01/PTTTygoKEB4eLg8Odk+PE2n02HYsGHw8PDA+vXrAUAecmT/dWfw4MEICgrCt99+CwCt7hcM4OYeJ5IkwdvbGy+88AKee+65VpEs3Mx4NOygVavVPJfg4iVFW5vmOk60Wi2Pk0vKJUlqFX9zgJv/3bH/OOXv799qkoXm+O5IkgRPT89Wkyw013enOduwLS5huJFG4C+//IK4uDiMHz8eR48exbJly1BYWIiamhqkpqZCq9W2ystAsmHsrLKyEgsWLMDZs2cxa9Ys3H333Rg9ejTWrl2Lc+fOwcfHB2fPnsWpU6ccXtezZ0906dIFeXl5OHHihLzc/utOdHQ0+vXrh/79+8NisbSqyWbNcZwAtiu7tIabtTX396Y1nFN4LnHG48QZjxNnjIkzfnecteXjpEUNSaqsrMSiRYtQUVGBWbNmQQiBU6dOYe3atQgKCnJoBMbExMiv69mzp3zt5jNnzmDMmDEQQuDnn3/Gtm3bEBYWhry8PIwZM8bhda3BjcSkS5cuyM7OxokTJ+SJMJc2jGtra2GxWBwm97YGp0+fxsmTJ/Hoo4/Kk7L79OmDEydOIDMzE7fffjv+9a9/4eDBg4iMjIRarZaHFw0aNAj79u1DcXGxwwQh+5dz/Pjxre7EzePEEePhjDFxxpg4Y0ycMSbOGBNnbT0mLaqHwd4IvOuuu9C3b1/069cP06ZNQ3x8vNwIPHfunDzJo+GltwYNGoTq6mr5MmRjx47Fc889h+nTpyMhIQF/+MMfHGbetxY3GpPKykqnaznbu7PGjx8vTzBrLV9Iu+zsbOh0OnTs2NFheUhICE6ePImuXbvK8xEuvZFJt27doNFoUF5eDuBil6f92GhtyQLA4+RSjIczxsQZY+KMMXHGmDhjTJy19Zi0qNZzUzYCASA+Ph6jRo3ClClTnLbZWrBh7FpYWBg0Gg3q6uoc9qu2tha+vr4AgLvvvhtmsxlbt26FXq+X9zsnJwcGg0EeH9qaTkiN4XHiiPFwxpg4Y0ycMSbOGBNnjImzth6TFpUwNGUjsK1gw9i1AQMGYNasWQgKCpL3q7q6GidOnEBcXBwAICgoCFOmTEFhYSG++uorHDx4EFlZWUhJSUFoaCi6d+/uzl1oUjxOHDEezhgTZ4yJM8bEGWPijDFx1tZj0qLmMAwYMAABAQEuG4F9+/YFcLERuH79enz11VeYMGECNBoNUlNT21wjEGBMGqPVauW5C/Z7JJw9exbV1dVISEiQ1xs5ciQCAgLw448/4vPPP4dSqURAQAAeeOAB+Pv7u6n2TY/HiSPGwxlj4owxccaYOGNMnDEmztp6TFpUwsBGoDPG5MrsX8yMjAx4e3sjKSlJLrNYLEhISEC3bt1QVlaG6urqVnc376vB48QR4+GMMXHGmDhjTJwxJs4YE2dtPSYtKmFoiI1AZ4xJ40pLS7F//34kJiZCqVTCZDIhLy8PycnJ6NKlC2699VaEhoYiNDTU3VW96XicOGI8nDEmzhgTZ4yJM8bEGWPirC3GpMUmDAAbga4wJq6dP38elZWV6NWrFyoqKvDLL79gx44d6NixI4YMGQK1Wu3uKjYrHieOGA9njIkzxsQZY+KMMXHGmDhrazFp0QkDG4HOGBPX8vLyoFAokJOTg6VLl0KpVOLJJ59EYmKiu6vmFjxOHDEezhgTZ4yJM8bEGWPijDFx1tZi0qITBjYCnTEmrqlUKlitVuzatQsTJkzA+PHj3V0lt+Jx4ojxcMaYOGNMnDEmzhgTZ4yJs7YWkxadMLAR6IwxcS0kJASTJ0/G7bff3uqy9puBx4kjxsMZY+KMMXHGmDhjTJwxJs7aWkwkYb9YbAt08OBBnD17lo3ABhgT1+xXJCAbHieOGA9njIkzxsQZY+KMMXHGmDhrazFp0QkDG4HOGBO6GjxOHDEezhgTZ4yJM8bEGWPijDFx1tZi0qITBiIi+v/t1zENAAAIwLAE/6JRsBuOVsHeAcCtuQ4AAAD+MgwAAEAyDAAAQDIMAABAMgwAAEAyDAAAQDIMAABAMgwAAEAyDAAAQDIMAABAWpezYSluNgv2AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAEsCAYAAABuTDRkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABi2ElEQVR4nO3deXxV1b338c8+U+aRzAkhISEMYUYEZVZUFMV5tg6tHa1Pa731tr31Vh/v9Xbyaau391atdcA6I6KAIAhEZjBMYQhjgAQSEjLPOdPzxyHHHE4CKCEhyff9evEi2Wvvfdb+5Zx91m+vtfY23G63GxERERERkXaYursCIiIiIiJy8VLCICIiIiIiHVLCICIiIiIiHVLCICIiIiIiHVLCICIiIiIiHVLCICIiIiIiHVLCICIiIiIiHVLCICIiIiIiHVLCICIiIiIiHVLCICJ9xoMPPohhGBiGweHDh/3KV61a5S1/6qmnOv31i4qKvPt/8MEHO33/Xc3lcpGXl9elr5mWluaNYes/i8VCWFgYgwYN4t/+7d+or6/32aZ1venTp5/365eWllJSUnLe+xER6UmUMIiIyNe2dOlSRo8ezXPPPdfdVcHpdFJXV8eBAwd49tlnmT17Nk6ns1Nfo6Ghgf/4j/8gIyOD/Pz8Tt23iMjFTgmDiIh8LUeOHGHWrFld3rvQVkpKCoWFhRQWFrJ//34++OADEhISAMjJyeHdd9/t1Nf7wx/+wJNPPkldXV2n7ldEpCewdHcFRESkZ3G73d1dBcxmMykpKd7fMzMzcblc3HHHHQAsW7aMe+65p9Ne72I4ZhGR7qIeBhGRs2id+xATE0N1dTWPPvooiYmJBAYGcumll7JkyRK/bTZu3MjVV19NaGgoUVFRPPTQQ5w8ebLD19i4cSOzZ88mMjKSoKAgRo8ezQsvvIDL5fJZr3U8/uOPP87jjz9OWFgY4eHhPP30096yL7/80rv+888/713+t7/9zbt8xYoV3uVvvPEGAJWVlfz85z8nKyuLkJAQQkJCGDRoED/72c+oqqoC4LXXXiM9Pd27n9dffx3DMHjttdc67VhefPHFs/9R2jFixAjvz8XFxWdd3+Vy8fLLL3P55ZcTGRlJSEgIY8aM4bnnnqOlpcW73vTp03n66ae9v8+YMQPDML5RHUVEeiS3iEgf8cADD7gBN+AuKCjwK1+5cqW3/De/+Y3fdmFhYe7Ro0d712n9Zzab3Xv37vWun5OT47bZbH7rJSUleX9+4IEHvOsvWLDAbbVa/dYH3Pfcc49PHVuXR0ZG+qyXk5PjtlgsbsD99NNPe9e//vrrvevcfvvt3uU/+9nP3IDbarW6Kysr3Q6Hw33ppZe2WwfAfcUVV7jdbrf71Vdfbbf81Vdf7bRjycvL6/BvOGDAADfgHjBggF/Z22+/7d3Ht771Lb/XmTZtmneZw+FwX3vttR0e76RJk9x1dXVut9vtnjZtWrvriIj0FephEBE5R7W1tVRWVvLpp5+yZ88errrqKsAz6Xbu3Lne9X7yk594r1A/8cQT7Nq1i3nz5mG32/322dDQwMMPP4zdbicjI4OlS5eSn5/Pk08+CcBbb73F/Pnz/barqqrixz/+MXv37uW9995j6tSpTJs2DYDFixcD4HA4yMnJ8W6zatUq79CaRYsWAXDllVcSGRnJF198wdatWwF48sknOXDgAJs3b2bs2LEArFy5krq6Ou644w7Wr1/v3eftt99OYWEhd9xxR6cdy/Dhw8/6t3A6nRQVFVFUVMTevXt5++23+clPfuItnzNnzhm3/8Mf/sCnn37qjcG6devIzc31DmNau3Ytjz/+OADvv/8+jz32mHfb9957j8LCwrPWUUSk1+jujEVEpKs8+OCD59zD0PYqfdueiQ8++MC7fPPmzd7lDz/8sNvtdruPHTvmXTZ58mSf/b/00kt+PQwfffSRd9mf//xnd2FhofdfZmamG3DfeOON3n20rhsUFORuaGjw2f9///d/uwG3yWRyl5WVuVevXu1d12w2uwH39u3b3QcOHPDu5+WXX/Zu39LS4t65c6fb5XK53W63u6CgwH3LLbd41z169Kh3+enH0dnH0pHWHoYz/bvxxhu9x9D2ddr2MKSkpLgBd2xsrLu2tta73Ol0ukeNGuUG3DabzVv2m9/8xruflStXnlNdRUR6C/UwiEifYbVavT+725nE6nA42l23rWHDhnl/jo2N9f7c2ntw9OhR77IJEyb4bDtx4kS//e3bt8/7809/+lP69+/v/XfgwAEAcnNz/bYbOHAgQUFBPstuvvlmDMPA5XKxZMkSli9fDsDUqVMZP3484Jm70Nq7YDabuemmm7zbV1RUsHjxYmbPnk1cXBzp6el8+OGH3vKz3aq0M4/l67BarURFRTFu3Diee+45PvjggzPOMSgvL6eoqAjw/E1CQ0O9ZSaTiSuuuAKAlpYW3UJVRATdJUlE+pCoqCjvz6c/3Ov0ZWFhYe3uo23D1mw2+5W3baiePsm3vfUtlrOfhsvKyvyWRURE+C1LSkpiwoQJbNiwgcWLF3PkyBEAZs6cSW1tLRs2bGDFihU0NzcDnkQiJiYGgF27djFlyhQqKytJTU3l3nvvZeLEieTk5PC///u/Z61jZx/L2QwYMKDdh++di7PVs20yqcnNIiK6S5KI9CEDBw70/rx06VK/8i1btnh/TktLO+/X2LRpk0/Z2rVr/dbPzMz0/vzPf/4Tt9vt/bdx40bKy8tpamry266jHpCbb74ZgE8//dT7+jNnzvTOt8jJyfHOa7jtttu82/3+97+nsrISgA0bNvCnP/2JO++8s90Gc9tlbRvXnX0sF0pERASJiYmA545ObZ+t4HK5WLlyJQABAQEMGTIE6PiYRUT6AiUMItJn3HDDDQQEBADwb//2b/zxj39k586d7N69m7/85S/87ne/AzwNytZhKV9XbGwsU6dOBb6aOLtz504++OADfvWrX/mtf+WVVxIfH++t08KFCzl48CDPPfccEyZMoF+/ft7Jt+filltuATwTiR0OBzExMYwaNYqJEycSHh5OTU0Nzc3NGIbhTS7AM6G71euvv87+/ft5+eWXfW6X2jpkKzAw0Lts//797Nmzh8LCwk4/lgvpO9/5DgClpaXccsstbNiwga1bt/Lggw+yfft2AL797W8TEhIC+B5zbm4uGzdu7PpKi4h0l+6aPCEi0h1efvllt2EYHU6YtVgs7nfffddnm45ux1pYWNju5N/t27e7w8LC/PY9aNAgd2hoqN/6b731lttkMrVbn7S0NPexY8e869LOBN7TDR8+3LveHXfc4V0+Z84cn9uGtvXmm2+edTLx6tWr3W63Z2JwYmKiT9nvf//7C3IspzvTbVU70t7rNDc3u6+44ooz3la1vr7eu/6nn37qt05paek510FEpCdTD4OI9CkPP/wwa9eu5Y477qB///4EBQUREBBA//79ueeee9i4caP3acHf1MiRI1m/fj2zZ88mJCSE6OhoHnroIVavXu3t4Wjr7rvvZsWKFcyePZt+/fphs9lIT0/n0UcfZf369SQlJX2t12/tZQDPcKRWV199tffnW2+91Webe++9l5deeolhw4YRGBhIcnIyN998M8uXL/cOx/n4448Bz8TgF198kZEjRxIYGEhiYiKRkZEX5FguFJvNxrJly3jppZeYPHkyERERBAYGMmrUKP74xz+yYsUKgoODvetfddVVPProoyQnJxMYGMiIESNobGzsxiMQEek6htutwZgiIiIiItI+9TCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHlDCIiIiIiEiHLN1dARGRC6mmpob/+Z//4a677iItLc2nrKKigqVLl3LkyBFMJhPDhg3jqquuIiAg4Jz3v23bNhYsWMBPfvITIiMjO7fyp3nttdeoqqripz/9KQAul4tVq1axfft2GhoaSEpK4qqrriIlJcW7jcPhYNWqVeTl5dHQ0EBMTAyTJk1i+PDhnVInt9tNbm4umzdvprKykpCQEAYPHsyMGTN84rhv3z5ycnI4ceIEwcHBDBs2jCuuuAKbzXbW1zh48CBvvvkmcXFx/PCHP+yUep+rjz76iO3bt/Ob3/zGr2zv3r2888477Zbl5uayceNGqqqqiIiIYPz48YwfPx7DMLqi2iIinUo9DCLSa1VXVzN37lyam5v9ypqamnj99depq6vjpptu4sorr2TXrl28//773VDTc2MYhk+Dc+nSpWzYsIHLL7+c2267DZPJxNy5c6moqPCuM2/ePNavX8+IESO4++67yc7O5uOPP2bjxo2dUqe1a9eyePFiBg0axF133cXll1/Ojh07eO+993C73QDs2bOHt99+G5vNxu23386sWbM4fPgwb7zxBi6X66yvsW3bNuLi4igtLeXo0aOdUu9z1VED//Dhw3z44Yftlm3ZsoWFCxeSnp7OXXfdRXZ2Np9++inr16+/kFUVEblg1MMgIr2O2+1m+/btfPbZZx2us3nzZhobG/n+979PcHAwAOHh4bz11lscPXqU1NTUrqruOQsNDcXpdAKeZOjLL79k1qxZjB8/HoCMjAz++7//mzVr1jBnzhyKi4vJz89nxowZTJ06FYCBAwdis9lYvnw5o0aNIjAw8BvXx+12s3btWsaNG8fMmTO9+w8KCmLevHkUFxeTlJRETk4OsbGx3HfffZjNZgBSU1N5/vnn2bp1K+PGjevwNZqamsjPz2f27NmsWbOG3NzcLv3bhIaGEhYW5v29ubmZNWvWsHbt2g5jt3XrVlJTU7n22msBT0zKy8vZvHkzl19+eZfUW0SkM6mHQUR6nRMnTrBw4UJGjRrFzTff3O46Bw8eJDU11ZssgKfBbbPZ2L9//zd+7Y8++og///nPPsuqqqp4+umn2bZtG+C5Ov30009z6NAh5s6dy3/+53/yxz/+kWXLlp3xintcXBzx8fEAFBQU4HK5GDp0qLfcYrEwaNAgDhw4AMDJkycBGDx4sM9+0tLSsNvtHD58+BsfJ3gazyNHjmTEiBE+y2NiYgC8PR1lZWVkZGR4kwXwNMRjY2PPGuu8vDycTieZmZmMHDmS3bt309jY6LPOqlWrePrpp/22ffrpp1m1apX399raWj744AN+97vf8bvf/Y6FCxfy+eef+/292mobc/AkA1u2bOG6667j0ksvbXcbh8PhN6wtKCiIhoaGMx6riMjFSj0MItLrRERE8H/+z/8hPDy8w0bxyZMnyc7O9llmMpmIioqivLy8C2oJH374IePHj2fy5Mns27ePdevWERUVxSWXXNLu+lOmTPH+XFZWhs1mIzQ01Ged6OhoamtraWlp8SZDVVVVPo3eyspKn/+/qcDAQO9V9Lby8/MBT2MbIDg4mOrqap91nE4n1dXVOByOM77G1q1byczMJDQ0lFGjRrFq1Sq2bdvGZZdd9rXq6nA4eOONN2hpaWHWrFkEBASwZs0aSkpK/GLY1ogRI3wSoqysLMaNG4fVavVJRtqaMGECH3/8MTt27CArK4uioiK2b9/OyJEjv1adRUQuFkoYRKTXCQoKIigo6IzrNDU1tTu52WaztTvn4UIYO3Ys06ZNAyA9PZ38/Hz279/fYcLQVnNzc7v1b13W3NxMWloaUVFRfPrpp1itVpKTkykpKWH58uUAtLS0dOLReBQVFbF27VqysrK8CcOYMWNYvXo1a9asYcyYMTgcDlasWEFTU9MZJz2fOHGC4uJibr/9dsCTCKanp5Obm/u1E4a8vDxOnjzJd7/7XZKSkgBPzJ9//vmvtZ/o6OizrjNixAiOHDnC/PnzvcsyMjKYNWvW13otEZGLhRIGEemTWifktqer7mTTv39/n9/Dw8PPuRF/pvqD5xjMZjP33XcfCxYsYO7cuYBnKNC1117L+++/j9Vq7XDfp+/fZDr7CNajR4/y9ttvExkZyY033uhdPn36dFwuFytXruTzzz/HZDIxduxYhgwZQllZWYf727p1K4GBgQwYMICmpiYAhg4dyqJFiygoKCA9Pf2sdWpVUFBAVFSUN1kAT3KVlZVFQUHBOe/nXLzzzjscPXqUmTNnkpycTGlpKatWreL999/nzjvv1J2SRKTHUcIgIn1SYGBguz0Jzc3NhIeHd0kdTm+wG4Zx1kSgVUBAQLvJResxtfY0REdH89BDD1FfX09DQwP9+vXzDg/qqBdmwYIFbN++3ft7RESE91auHdm5cycLFiygX79+3HvvvT5zQ0wmEzNnzmT69OlUVlYSFhZGYGAgr776aod1cDqd5OXl0dTUxB//+Ee/8tzc3K+VMDQ0NBASEuK3vL1l56OwsJADBw5www03MHbsWABvT89bb73F/v37ycrK6tTXFBG50JQwiEif1K9fP78x/C6Xi6qqKp+JxG2Vl5ezbds2JkyY4B333jpJ2WLxnE7ba/RfiKE/MTExNDc3U19f79PoraioICIiAqvVit1uZ8+ePfTv35+oqCjvesXFxQAkJia2u+/p06f7TOhtO1m5PevWrWPZsmWkpaVx5513+t096PDhwzgcDjIzM4mNjQU8cSstLWXUqFHt7nPfvn00NDRw/fXX069fP5+yL7/8kj179vgdu8vl8vaEnB7zsLCwduem1NfXn/HYvq6qqirAv/dowIABAJSWliphEJEeR3dJEpE+KSMjg8OHD/s0GA8ePEhLSwsZGRntblNbW8uaNWs4ceKEd1l1dTUWi8V7Rd1ms9HQ0OAzmfdCPDtg4MCBAOzevdu7zOFwsG/fPm/9zWYzixcvJjc317uOy+Vi06ZNREVF+UyEbisyMpKkpCTvv47WA0/jfdmyZWRnZ3Pfffe1e6vR3bt388knn3hvCQue4UZNTU0MGTKk3f1u3bqV8PBwxo4dS1pams+/Sy+9FJfLxdatW4GvelNqamq8258e87S0NKqqqigpKfEus9vt3jtKdZbWO0Sd/vqtv0dFRXXq64mIdAX1MIhIn3TJJZewadMm5s6dy7Rp02hsbGTZsmVkZmb6XR1ulZycTFhYGJ9//jkul4uGhgY2bdrE0KFDvVe2s7Ky2LRpEx9//DFjxoyhtLSU9evXd/q49cjISEaNGsXSpUtxOBz069eP9evX09TUxKRJkwDPUKDx48ezYcMGwsPDiYmJYfPmzRw9epS77rrrvOtUV1fH0qVLiYyM5NJLL/X2XLRq7dW45JJL2LJlCwsWLGD06NGcOHGC5cuXk52d7ff0bfAkZgcOHGDixInt1jE1NZWoqChyc3OZNGkSWVlZfPbZZyxcuJDLL7+c6upqcnJyfCZUjxgxgjVr1vDOO+9wxRVXEBgYyPr166mvryciIuK84tBWYmIiQ4cOZenSpTQ2NpKSkkJpaSk5OTneMhGRnkYJg4j0SSEhITzwwAMsWbKEDz/8kICAAIYNG8bVV1/d4TZWq5W7776bpUuX8sEHH2A2m/22ycjI4KqrrmLTpk3s3r2bpKQk7rzzTl555ZVOP4brr7+ewMBA1q5dS0tLC4mJiXzrW9/yuZPP9OnTMQyDtWvX0tjYSEJCAvfee2+HvShfx/79+3E4HFRVVfHqq6/6ld94442MHj2auLg47r77bj7//HPefvttQkNDmTJlis9tYtvavn07breb4cOHd/jaI0eOJCcnh4MHD5KZmclNN93E6tWreeutt4iJieGGG27g008/9a5vMpm47777WLJkCYsWLcJkMjFixAiCg4O9z6voLLfeeitffPEFubm5rFq1ioiICEaPHs20adPOafK4iMjFxnCf6ww7ERGRHqq0tJSTJ08ydOhQn16Ll19+mfDwcO68885urJ2IyMVNPQwiItLrtbS08P777zN+/HiGDh2Ky+Vi586dHD9+nJkzZ3Z39URELmrqYRARkT5h9+7drFu3zvvsh4SEBKZOndopw7NERHozJQwiIiIiItIhzb4SEREREZEOKWEQEREREZEOKWEQEREREZEOKWEQEREREZEOKWEQEREREZEOKWEQEREREZEOKWEQEREREZEOKWEQEREREZEOKWEQEREREZEOKWEQEREREZEOKWEQEREREZEOKWEQEREREZEOKWEQEREREZEOKWEQEREREZEOKWEQEREREZEOKWEQEREREZEOKWEQEREREZEOKWEQEREREZEOKWEQEREREZEOKWEQEREREZEOKWEQEREREZEOKWE4BxUVFd1dhYuOYuJPMfGnmPhTTPwpJv4UE1+KR/sUF1+Kh7/OiokShnPQ0tLS3VW46Cgm/hQTf4qJP8XEn2LiTzHxpXi0T3HxpXj466yYWDplL51s7969zJ8/n2PHjhESEsLll1/O7NmzMZvNACxYsIDVq1djtVq54YYbuPzyy73but1unn32WSZNmsT06dO76QhERERERHqHiy5hKCgo4Pnnn2fUqFFcf/31FBUV8fHHH9PY2Midd95JXl4ey5Yt41vf+hb19fXMnTuXtLQ0kpKSANi8eTNNTU1MmTKlm49ERERERKTnu+gSho8//pjExES++93vYhgGw4cPx2KxMG/ePK655hr27NnDkCFDmDBhAgBr165l7969JCUl4XA4WLBgAbfccou3N0JERERERL65i2oOg91uZ9++fYwZMwbDMLzLx40bh8vlYteuXQDYbDZvmdlsxu12A7Bq1SpCQ0MZN25c11ZcRERERKSXuqh6GE6ePInD4SA+Pt5neVRUFFarleLiYjIyMnj77bc5ceIEDQ0NHDt2jIyMDBobG1m8eDE/+MEPOrVOe/bsYceOHURGRnqXRUZGkpqaSlNTE/v27fPbZuTIkQAcOHCAhoYGn7L+/fsTFRVFeXk5x44d8ykLDQ1l4MCBOJ1Odu3aRUFVM2bDIDXCkyANHToUq9XK4cOHqamp8dk2MTGR2NhYqqqqOHr0qE9ZUFAQgwYNAiAvL8+bYLUaNGgQQUFBFBUV+c2mj42NJTExkbq6Og4dOuRdXlVVRWxsLEOHDvXGyW63+2w7cOBAQkNDKS4upqyszKcsOjqalJQUGhsb2b9/v0+ZYRiMGDECgP3799PY2OhTnpqaSmRkJGVlZRQXF/uUhYeHk5aWht1uZ8+ePZwuOzsbs9nMoUOHqKur8ylLTk6mX79+VFZWUlhY6FMWHBxMZmYmADt27PDbb1ZWFnV1dRw5coSqqiqfsvj4eOLj46mtraWgoMCnLCAggMGDBwOwe/duHA6HT3lGRgYhISEcP36ckydP+pS1xrChoYEDBw74lJlMJoYPHw7Avn37aGpq8ikfMGAAERERlJaWUlJS4lMWERHBgAEDaGlpIT8/3+9Yhw8fjslk4uDBg9TX1/uUtcaw9f1dVVXl/eyEhISQkZGBy+Vi586dfvsdMmQINpuNI0eOUF1d7VOWkJBAXFwc1dXVHDlyxKcsMDCQrKwsAHbu3InL5fIpz8zMJDg4uN33d0xMDElJSdTX13Pw4EGfMovFwrBhwwDPvKrm5maf8vT0dMLCwjhx4gQnTpzwKTvTOaKqqoqpU6cC53+OON3FdI4AsFqt53SO2LVrF9u3b/cp643niMDAQI4ePXpO54jWz05vP0e0daZzRFVVFRMnTuwT5wg493bErl27fNonvfUcca7tiNbPTV84R7Q62zkiMjISt9vd4Tli/PjxfnVpz0WVMLT+QQMDA/3KAgMDaWpqYuzYseTn5/PUU09hNpuZM2cOAwYMYP78+aSnp5OZmcm8efPYvn07CQkJ3HXXXURHR3/jOv3oRz9i1apVPstGjBjBrbfeSnl5OS+88ILfNk899RQAf//73ykqKvIpu/nmmxk1ahSbNm1i8eLFPmUZGRl861vfoqmpid/+9rd++/35z39OSEgIb731lt8J5uqrr+byyy9n165dvP/++z5lCQkJ3kTqmWeewel0+h1jXFwcCxYsYOvWrT5lkydPZubMmRQUFPD666/7lIWFhfH4448D8Nxzz1FbW+tT/sADD5Cens7y5ctZs2aNT9mYMWO48cYbKS0t5X/+5398ysxmM08++SQAf/vb3/y+rG6//Xays7NZt24dn332mU9ZVlYW99xzD/X19fzhD3/gdL/4xS8IDAxk7ty5fif/6667jksvvZTt27czf/58n7KUlBQefvhh4Ku/b1uPPvoo/fr1Y968eeTl5fmUTZs2jRkzZnDgwAHefPNNn7KoqCh+8pOfAPD73//e74vhO9/5Dv3792fJkiVs2LDBp2z8+PHMnj2b48eP89JLL/mU2Ww2fvWrXwHw17/+1e9Ee9dddzFkyBBWr17N559/7lM2bNgw7rjjDqqrq/nTn/7kd6y//vWvsVgsvPrqq35fzDfccAPjxo0jNzeXTz75xKdswIABPPTQQzgcDv7jP/7Db7+PPfYYERERvPfee+zevdun7Morr2TKlCnk5+fzzjvv+JTFxsbyyCOPAPDss8/63RHie9/7HklJSSxatIjNmzf7lE2cOJFZs2ZRWFjIK6+84lMWHBzME088AcBf/vIXKisrfcrvu+8+MjMzWblyJTk5OT5lOkd46BzxFZ0jPHSO8NA5wkPniK901zli06ZNfnVpj+E+PU3sRgcPHuT3v/89jz76qPfKR6t/+Zd/YcyYMdx7772AZ/iS2WzGZDJRWVnJb37zG/71X/+Vffv2sXLlSr7//e+zdu1aDh06xC9+8YtvXKfu7GFYfaSGD/OruTY9iNgQC6kZg7BYrJQcK6ShzvdDFR0bT2R0P+pqaigt9j252AICSUkbCEDBvj1+VwZS0gZiCwikrOQ4tdVVPmWR0f2Ijo2nsaGe4sKvTvyNDY2EhYeRmuG5anP04D6/rDax/wCCgkOoKDtBVUW5T1lYRCSxCUm0NDdRdNj3ioNhGKRnea44FB0+REuz75WvuMQUQsPDqaoop6LM96pNcGgYCcn9cTjsHD3oe1USIC1zMCazmeLCIzQ2+F75iolLIDwqmrqaakqLff82gUFBJKWmA3Bor+8XFUBKWgYtLXYaaquoq/W9ahPVL5aomFga6usoKfK9amO12ug/0HPF4ciBfTidvjFM6p9GYHAw5aUlVFf6XrUJj4giJiGR5qZGjh3xveJgMplIGzQEgKKCg7S0+F75ik9KISQsnKryk1ScLPUpCwkNJz45BYfdztFD7cRw0BBMJhPHjx6mqdH3/R0Tn0h4ZBQ1VZWcPFFMY0MjQcFBAAQGBZOUmobL5eLwfv+rkqkDB2GxWjlxrIj6Ot8YRsfEEdkvhvraGk4cP+39bQsgJT0DgMP78/2uHiYPSCcgMIiTJcXUVPt+oUdERdMvLoGmhgaOFx72KTObLQzI9Ly/Cw8dwG73bWQkpKQSHBJK5ckyKst9G1uhYeHEJaXQ0txM0WHfL5TGhkayx3iGTR4/WkDTaVe+4hKTCQ2PoKaygpOlvl9yQcEhJPYfgMvp5PCBvZzuYjpHgOcK7LmcIwoLCrC3+MahN54jbAEBlB4vOqdzROtnp7efI9o60zmisaGRwcNH9olzBMDAwZ6ei7OdIwoPF3jPsdB7zxHn2o5o/dz0pHNEY4uLxPBArrls9AXrYUhNTT3vHoaLKmE4fvw4Tz/9NN/73vf85iH8+Mc/ZsaMGdx6661+273xxhu4XC4efPBB/vjHPzJ8+HBmzZpFTU0NP//5z3n22Wfp16/fN65XSUkJCQkJ33j7b2r78Woefmc7P5g0gNFJEV3++mdSUVFxXj03vZFi4k8x8aeY+FNM/CkmvhSP9ikuvnpiPErrmokPDWBs/8gLsv/OasNeVJOeY2NjMZlMlJb6Xs2orKzEbreTmJjot83x48f58ssvmTNnDgA1NTWEhIQAeP8/fZxeTxFo8dzpye64aHI6EREREeljLqqEwWq1kpWVxdatW326DHNzczGZTAwZMsRvmw8//JBp06Z5M8rw8HBvgtDapRMWFnbhK38BBFg8fx77aWMFRURERES6ykWVMADMnj2bo0eP8uKLL5KXl8eSJUv8koJW+/bt4+DBg8yaNcu7bOTIkaxevZodO3Ywf/58+vfvf17DkbpTeKBnTvq+svqzrCkiIiIicmFcVHdJAs/s9B/+8Id88skn/O1vfyMsLIxZs2Zx/fXX+607b948Zs2a5R16BDBjxgxKSkr4xz/+QUJCAg8//LDPMx16kuhgG0FWEwYGbre7xx6HiIiIiPRcF13CADBq1ChGjRp11vV++ctf+i2zWq3cf//93H///Reial0uLTqY/NI6/rbuCIYBEYFW7hydiMl00XUOiYiIiEgvpFbnRW72sHhiQ23UtzgoqWkm52A5RdXNZ99QRERERKQTXJQ9DPKVO8ckc0N2Ai63m/WHK/jVonxaHK6zbygiIiIi0gmUMPQAwTbP7VXDA60A2F1KGERERESka2hIUg9iM3v+XA6nnssgIiIiIl1DCUMPYvM+l0E9DCIiIiLSNZQw9CA2s+e2qkcqG5U0iIiIiEiXUMLQg0QH2zCbDJbuLWPlgZPdXR0RERER6QOUMPQg/UJsfPTt8YTYzGw9VtPd1RERERGRPkAJQw+TEB5IWICFw+UN1DU7urs6IiIiItLLKWHogR68tD8AzQ5nN9dERERERHo7JQw9ULDNjBto1u1VRUREROQCU8LQAwVbPQ9yO1LRQHFNUzfXRkRERER6Mz3puQeKDrYB8PrmIgB+Nn0gWbGh3VklEREREeml1MPQAw1PDOPlO0byq5mDAHhlw1H2ltZ2c61EREREpDdSwtADGYbB6JRIrs+OB6C6ycEXBytwuTWnQUREREQ6lxKGHsxqNvGHOcMIsZmpaXLgdClhEBEREZHOpYShh5ueGcPo5Aj2n6zXBGgRERER6XRKGHqBn0wbCMDn+05qWJKIiIiIdColDL1AenQwIxPD2Hi0imV7y7q7OiIiIiLSiyhh6CX+eGM2AGX1Ld1cExERERHpTZQw9BJRwTYGx4VQ16zJzyIiIiLSeZQw9CKxIQHUtzhxKGEQERERkU6ihKEXiQm1UdfswOFydXdVRERERKSXUMLQi8SFBlBeb+fjnSc4UatbrIqIiIjI+VPC0IuMT40kOtjK6kPlLMnX3ZJERERE5PwpYehFRidH8M4D48iICWHPiTq2Hqvq7iqJiIiISA+nhKGXCbFZuGVEIlWNdlYfrNB8BhERERE5L0oYeqHbRidxWVoUDpcbh8tNfYuDbceq2VdW191VExEREZEextLdFZALIyLQyvrDlVTUt7DmUAUrDpQD8MSMDAbGhHRz7URERESkp1APQy81KT0KgDdzj1FU3URYgCc3LK3Tk6BFRERE5NwpYeilZg2N51czB3GovIF9ZfWkRAYC8M7WY5ysb+7m2omIiIhIT6EhSb3YzSMTyYoLoay2hcSIQF7ZcISVB8rZcayWKRlW/pRzCICfTh2IzaLcUURERET8KWHo5bITwiHB8/P/vXYIU15Yy0c7iymqbuRQeQMABRX1DI4L68ZaioiIiMjFSpeV+5CAU70ILU436w5Xepcv3HUCt9vdXdUSERERkYuYEoY+xDAMYkNtPstGJ4ez/2QDH+880U21EhEREZGLmYYk9THv3H8Ju0tqWba3lLToYKZm9ONb/9zCp/mlXJYWSVxYYHdXUUREREQuIkoY+pjwQAsT06KYmBblXfbi7aO4/62tbDpadWryswG4OVbdREJYAFcPjsNsMrqtziIiIiLSfZQwCFlxoVhMBgt3l2IxGThcvvMZLGaDq7Liuql2IiIiItKdlDAIZpPBv101iG3HqrlmSDzl9c2sOlDO5PRo/nP5fj7dXcb0jBisZk15EREREelrlDAIANdnJ3B9doL396uHxGEAXxwqZ+WBcjYeqWLywOjuq6CIiIiIdAtdMpZ2mQwDw/D0PACsLajA6dKtV0VERET6GiUMckYRQTZmZsVQUtvEP3OLcOl5DSIiIiJ9ihIGOavbRiWREBbIusOVfLJLz2sQERER6UuUMMhZjesfyV9vG4FhwKd7StlxvNrvTkoiIiIi0jspYZBzEhsawF9uHg7A/6w9wsqCmm6ukYiIiIh0BSUMcs4uS4tm3kOXEBtqY/PxehpaHN1dJRERERG5wJQwyNeSGhXMJf0jqWtxsWzvye6ujoiIiIhcYEoY5Gt7atZgIgPNfL7/JEvzS2lxuLq7SiIiIiJygShhkK/NZBhcnRFBkNXE/LwSNhyp6O4qiYiIiMgFooRBvpH7RvbjrW+NBaC+RT0MIiIiIr2VEgb5RgzDIDY0AIDP9pZxsr65m2skIiIiIheCEgb5xgzD4KqsWJrsTlbtL+/u6oiIiIjIBaCEQc7LM9cNITbUxooDJ6loaOnu6oiIiIhIJ1PCIOfFbDK4ZkgcLjesLdDkZxEREZHeRgmDnLdHp6QTZDVR3agHuYmIiIj0NkoY5LwZhkGAxcSh8nqcLnd3V0dEREREOpESBukUo5MicANNDmd3V0VEREREOpESBukU6f2CKa5ppqxOE59FREREehMlDNIprh4SR6DFxG8/P8AvFu5mb2mt3zpNDidut4YsiYiIiPQkShikU2TGhPDqPaP5zoRUqhod/OWLAp75bB+f5ZfidLnZWVzDT+fv4rXNhUoaRERERHoQS1e90PLly3n//ff9lk+dOpV7773X+3tOTg6ff/45FRUVxMbGcu2113LppZd6yxsbG3njjTfYvXs3sbGx3HvvvaSnp3vLq6ur+fd//3eeeOIJkpOTL+xBiY/MmFAyY0IZkRTGG5uLOFBWz4d5JRyubKSywQ7AxiNVXJEZQ3JkIBaT8lURERGRi12XJQxFRUWkpKT4JAcA4eHh3p8///xz3n//fa677joyMjLIzc3llVdewWq1MmbMGAAWLVpEUVER3/3ud9m6dSsvvfQSzzzzDBaL51A++eQTxowZo2ShG01K78ek9H5U1Ldw75tb2HG8hsggKwlhAZTUNvNfnx9gcFwoP5majskwuru6IiIiInIGXZYwFBYWkp6ezsCBA9stb2lpYeHChcyYMYM5c+YAkJ2dTV1dHQsWLPAmDPn5+UydOpXhw4eTnp7OmjVrKC0tJSkpiZKSEjZt2sRTTz3VVYclZxAdYmP+t8dT2WjHYjKwmQ22HKtmQ0ElH+aV8P6249w5Jpn/XLaPoqomvjsxlbH9I7u72iIiIiLSRpeMCXE4HBQXF9O/f/8O1ykoKKChoYGxY8f6LB83bhzFxcWUlZV5l1mtVgBvr4LL5QLgww8/ZNq0aURHR3f2Icg3FGg1kxgeSGxoABFBNmZkxvLElYOICbGx8kA587Yfp7CqCTfw3vbj7Dhe091VFhEREZE2uiRhKC4uxul0cuDAAZ588kl++MMf8u///u+sX7/eu05JSQkA8fHxPtvGxcX5lA8cOJDc3Fzq6upYu3YtYWFhxMfHc+DAAfbv38+sWbO64pDkPJhNBv+4ezRmw2BzYTUAwxPCsDvdLN1byuGKhm6uoYiIiIi06pIhSYWFhQDU1NRwxx13YDKZ2LBhA6+99hp2u52pU6fS2NgIQFBQkM+2gYGBAN7yG264gZdeeonHH3+ciIgIvv3tb2O1Wvnwww+ZNWsWbrebF198kWPHjjF06FBuvfVWbDbbN657RUUFzc3N3oRFPM43Jgbw0JgY5u+pJC7Ews1ZYaw67Gb10Tp+v+IAd2ZHkxxuIzqoy0bNnbcWu52KiorursZFRTHxp5j4U0z8KSa+FI/2KS6+emI8qhscWFsslFibLsj+z9ZeS0hIOKf9dHprzOVy+d02Mzs7m0ceeYTs7GzMZrN3WW1tLR9//DGTJ0/2DivqiHFqcmxYWBiPP/44zc3NBAQEALBlyxYqKiq44oor+Mc//oFhGPzoRz9i7ty5fPLJJ9x6663f+Hiio6NpaWk554D2FSUlJecdk+8nJHDXBDtOt5tgq5lrxxi8lVvEf685zNs7PR/47182gDEpEZ1R5QuuoqJCw+FOo5j4U0z8KSb+FBNfikf7FBdfPTEeDlsz0aEBJCREXpD9d0Z7DS5AwrBo0SIWLlzos+zFF19k5MiRfusOHz6cPXv2UF1dTXBwMABNTU3eOQqtv4N/z0NrsuB0Ovnoo4+48cYbMZlMbNu2jZ///OckJCQwffp05s+ff14Jg1xYEUFWn9+HxIf5/P7i+iM8c+1gYkMDurJaIiIiInJKpycMU6ZMYcSIET7L8vPzqa6uZsKECT7L7XY7hmEQEhLinbtQWlpKWNhXjcbS0lKg4y6TNWvWYLFYmDBhArW1tbhcLkJCQgAICQmhpkaTaHuSEJunByrQYuLJq7P4t8X5PP9FAQOighjXP4IxKZHdW0ERERGRPqbTJz1HRkaSlpbm82/Xrl289tprlJeXe9dzuVxs2bKF9PR0bDYbGRkZBAQEsGXLFp/95ebmEh8fT0xMjN9rNTU1sXDhQm6++WZMJhOhoaGYTCZvklBdXe3znAe5+CWEBxJkNTF5YDSXpUVx4/B4BkQHsfVYNX/fcJSqhpburqKIiIhIn9IlM0qvuOIK1q1bxwsvvMANN9yAxWIhJyeH48eP87Of/QwAm83GNddcwyeffILZbCYrK4stW7awY8cOvve977W732XLlpGQkODt0TCbzWRnZ/PJJ59w9dVXs2zZMkaPHt0VhyidJCbExqffn0hDi5OwQCv/dlUWDpebncU1fO+9HfxldQF1zU6uHxbHtEz/JFJEREREOleX3FY1KiqKn//858THx/P222/z8ssvY7fbeeyxx8jIyPCud91113HTTTfx5Zdf8r//+78UFBTwne98x+/ZDOC549Ly5cu55ZZbfJbfc889uN1uXn75ZRISErjhhhsu+PFJ5wqxWbxzFgzDwGo2MSo5gsggC8U1zdQ2O/iysBrHWSbKi4iIiMj5M9yn39JI/HTWDPPepDtiUt/s4MV1h9l0tIqD5Q384spM0qKDu7QOZ9IT785woSkm/hQTf4qJP8XEl+LRPsXFV0+MR2ldM/GhAYztH3lB9t9Z7bUu6WEQ6QwhARZ+NiOTX141CID5ecU4Xcp3RURERC4kJQzS44xKimBaRj/qmp2crG/2Lv+ysIp3th5jXUHPemiLiIiIyMWs5zxGV6SNAVFB5Bws57+WH+DeccmU19tZureUZoeLQIuZkUnhhAbo7S0iIiJyvtSikh7pe5cNwOV282buMV7ZWIjNbBBgMTGifySbjlZR2WAnyGr2rm82Gd1YWxEREZGeSwmD9EgBVjPTB8XwZu4xAB68NJUbhydwvLqJTUereC7nIE12z12UDOD+8f25LC2qG2ssIiIi0jMpYZAea0RiOP9x3RAqG+xcnhZFXFgAcWEBzB4ax76yevpHBZISEcSHO4o5UFZ31oTB4XJxuKKRQIuJlMigLjoKERERkYubEgbpsUyGwTVD4vyW//uswTS0OLGaTQRYTGw9Vk11kwOny33GoUnrD1fyz1M9FlFBVgKtJgZEBTFjUAwDoi6e27eKiIiIdCXdJUl6HZNhEBpgIcDieXsnRwRR3WSnxXnmB73VtzixmU3MzIphaEIoITYLXxZW8/L6o2wtqu6KqouIiIhcdNTDIL1e/6ggluSX8sH246RFBxMaYGF0UjiG4dvb0OJwEWg18bPpGUQFWQH455Zj/M+aAl5af4T/vG4I0SG27jgEERERkW6jhEF6vWuHxLFq/0k2Ha1ibUElAFmxIWT0Cya/tI4TtS18e0J/mh0urCYDk2FgMXt6Jx4Y35+EsAB+vTiffWX1TFTCICIiIn2MEgbp9fpHBfHGfWOpamih2eni5wt2U1rXwr6yeqwmA7vLzaubCokNtWE1mzh9msOY5AgsJoM3c4sorWvmhux4v94JERERkd5KCYP0CRaTQUxoAACv3zuGmiYHNU12GlqcHKpo4C85hzhc0cjopHBMpyUDcWEBzL1vDD+dv4vFe0pJjQoiNSqI6GD1NoiIiEjvp4RB+hyr2US/EBv9Tg0vyk4MZ0ZmDHXNDoB2nxCdGRPKW98ax+yXNvC3dUcAuG5oHKOTI0gIC8Bm0f0DREREpHdSwiCCJ0loL1FoKzzQwit3jWb3iVo+3FHM4j2lLN5TSqDFxNiUCKamBBDdRfUVERER6SpKGES+hqy4ULLiQpmTHc+mo1WsPFDO1qIq1h2uJMQURv94NyYDzXEQERGRXkMJg8g3YDKZmJgWzcS0aOpbHMx5eRPLDtWy7FAeCWEB3DkmiUGxIVhMGqokIiIiPZtaMyLnKcRm4dnrh3LbsCiGxIVSUtvMX74o4L+WH6C4urG7qyciIiJyXtTDINIJJgyIYkBAM/Hx8eQV17DtWA0vrC5gfl4JP5iU5nfnJREREZGeQj0MIp3IMAxGJkVw//j+TBwQxY7iWt7KPUZtk50mh7O7qyciIiLytamHQeQCuTIrhk1HK1lTUMGaggoAZmT2Y1z/SDJjQrq5diIiIiLnRgmDyAVy04hEZmTG8NneUiob7Ly2uZCVB8pZeaCczJhggqxmvn1pKkE2c3dXVURERKRDShhELqCIICu3j04G4P7x/dlbWsff1h2mssFOXnEtc3OLmJEZw6d7TvCdCamEnOVZECIiIiJdTa0TkS4SaDUzKjmCF24did3p4v5/bmFLUTVbiqoB+O2KA1hNBjEhNp+HyF2WFsWg2NDuqraIiIj0cUoYRLqYxWRgMZl58Y5RLN59grziGtYcqiDUZibEZqGiwU55gx2AY9VNrDtcidVkMDEtijtGJ2E1614FIiIi0nWUMIh0k+hgG/dd0h+3243T5abB7sRmNuFweX4HOFrZyIr9Zewvq2f1oQocLjcPjO/fzTUXERGRvkQJg0g3MwwDi9kgvJ2egxFBVkYkhQPw7be3sv5wJdnxYVySGtnFtRQREZG+SmMbRHqIX80cBMArG49yorapm2sjIiIifYUSBpEeIjM2lPnfHo9hwP/9bD8/mb+THcdrurtaIiIi0stpSJJID5ISGcT/vXYIuYVVfHGwnBfXHyHEZqZfsJXHp2dg0YRoERER6WRqXYj0MNcMieNXV2Xx7gOXcOvIRDL6BVNQ0ciOYk9vg9vtpqbJgcPl6uaaioiISG+ghEGkh4oIsvLzKzL55cwsAF5af5RjVY2sO1zJE5/s5l8W7KaioaWbaykiIiI9nYYkifRw6f2C+Y/rhvDrxfk8s2w/AAEWE00OF79ZshezYXB9djwzs2K7uaYiIiLSEylhEOkFrhkSx7CEMJbvLaO6yU5GvxBO1rdQVNXI+iOVLMgrYVxKBEvyS+kfGcTo5AjWFFSw5lAFD4xP0ZOkRUREpENKGER6if6RQTw0IdVv+fwdxfzX8v38clG+d9mbuce8P//liwKsZoO40ADuHptMWnRwl9RXREREegYlDCK93M0jE0mKCOAvOQWYDAgJsLDjeA1jUyKYnB7NwfJ6KhvsfFlYzW8/P8APLh/A6OSI7q62iIiIXCSUMIj0ARMGRPPmt6KoaXIQajNT0WDHZEBMaIB3nZP1zVz74kYW7j7BseomZg+L78Yai4iIyMVCd0kS6SNMhkFkkBWL2URcWIBPsgAQExLATSMScDjdfLLrBIfK67uppiIiInIxUcIgIl6/nDmIv90xEoBVB8qpa3bgcruxO13YnXqug4iISF+kIUki4mUyDJIjghgcF8qmo1VsOlrlLTMbMGNQDDdkJxBg0bUGERGRvkIJg4j4efmOkSzbW0ZJTTMNDicGBrtP1LJ830mW7zvJ9y8fwMjEcMwmo7urKiIiIheYEgYR8RNkszBnRKLPMrfbzbztxfxuxQFeXHeE5IhAHp8+kKLqJk7UNhMXGoDZZGA1G8SE2Civb2HtgSqsAU2MSgrXsx5ERER6KCUMInJODMPgttFJDI4L5Z2tx/hsbxk/W7Abq9nA7nS3u02QxaDRUcfyfSeJDbVx0/AExvWP7NqKi4iIyHlRwiAiX8uIpHCGxIeSFB7Aa5uLsDvdPDwxlYx+wQRYzJyoa6amyY7NbCIzxEl4VDSLd5ey8WglL284ysLdJ4gJsWEAMaE2rsqKJSrY1t2HJSIiIh1QwiAiX5vVbOKRKQO5ZWQSVU124sMCiG6n0V9SUkJCQjjDEsI5WtHAfyzbj8Plor7Fid3pYkdxLSv2l5MYHsCopHBGJUeQridNi4iIXFSUMIjIN5YYEUhiROA5rZsaHcxfbxuB0+XG4fIMYdp2rJole0rZeqyaJfllLMkv44bseEYkhpMaFXQhqy4iIiLnSAmDiHQZq9mE1fzV75MH9mPywH402Z3sPlHL99/bwSe7TvDJrhPEhwUwOT2ajJhg0qODMQzdkUlERKQ7KGEQkW4XaDUzNiWS5T+8jGPVTXyUV8zKAyeZt6MYgACLiVlD4pg1JFaJg4iISBdTwiAiF42IICsRQVaGJYTx02kZHK1sYP3hSubnFbNgZwlbiqqICbExIzOGrDjdplVERKQrKGEQkYtSsM3MkPgwhsSHcf/4/ry47jCbC6s4cLKBrccOYTUbBFnMTMmIJjTAwvj+kYQG6JQmIiLS2fTtKiIXPbPJ4EeT02lxuKhvdvDJ7hIOlTey6sBJlu89SbPTxbtbjzM6OZzhCWFMHtivu6ssIiLSayhhEJEew2YxYbPYuH98KgCN9kxqmhwUVTXy8c4SluSXsu1YDRuOVBFgNogNDeDqIbHt3vJVREREzo0SBhHpsYKsZoKsZuLDAhibEsH3LhvAb1ccoKrBTmF1E7tO1LHqYDnRwVYCLCayYkMZmxKBzWzieE0TZsMg0GrC7QaL2SA7IQyTJlWLiIj4UMIgIr2CYRgkRwbx/M3DabS7cLrcfFlUxdpDFZysb2ZncS05B8vJOVje4T7CAszMzIplZFI4saE2DAxMBrozk4iI9GlKGESkVzEMg2Cb52EPMzJjmJEZg8PlxuF0sedEHU12J412F+FBFgLMJswmAIO9pXXM23Gc+XklzM8r8e7PbDKIDrKSFBFIsNXMwJhgYkMDiAmx0S/YqmRCRER6PSUMItLrWUwGFpOZMSkRHa4zLCGMG4YnsON4Nfkn6iivb8HpdtPY4uRoVSMnalvYW1fH+iOV3m1CbGbCAiwkRwRiM5tIiggk6tTwpyCrmfBAC3GhAV1xiCIiIheMEgYRkVMsJoOxKZGMTYn0We52u6lvcdLscHGwvB6n082+k/XsK62jqtFOcU0Ttc1On2SiVUJYAKEBZkyGQXxYANX1jYSHNDAxNZLMWD1LQkRELn5KGEREzsIwDEIDLIQGQL8Qzx2XLkuPBsDpctNod+JwualrttNk9/xf2+LkSEUD6woqaXY6qWyws7WomkCLwZFqO2sOVRAdbGVgv2CCrGYsJgOzyTjVG2KQGBFIgNlEfYuTmiYHyZGBRAVZCQuw6HkTIiLSpfStIyJyHswmw9uAjwyy+pRNGdiPu8emYHe6cAP1LU5KS0tJiI9j2d4y1h+u4EhFI3anC6cbXG43Tpcbu9NNg93Z4WsmhgcQHmjBajLRYPf0fITYzByvbsLucmMxGYTYzPSPDCIxPIDQAAs2i4kAi4lAi5kgq4noYBvBVjMmE5gMQ3eHEhGRDilhEBG5gMwmA7PJMwk7yGrGEWQhOtjGnWOSuWN0Eg12Jy0OF+DpyXCfShpKaptpcboIMJuwWgzKals42dDCiZpmth+vob7Fgd3pIsBiIizAgtPl5pLUSCIDrTQ5nBypbKSouomdJbW0OF243WeupwEkhAcQHWwjItBCeKCFjJgQb5JhNoGBgWGA1WwiOtiqJENEpI9QwiAi0k0MwyDEZiGknefKxZw2WTor9qufPb0QLhwuTxZgM5twut2YDIMAiwkAh8szYbvJ4cTthhani7pmB412J9WNDo5UNdJk95Q1OTxJS0FFA7XNDg6erOdEXQtQdsb6W0wGVrNBZJAVq9mE1eR5WF5EoIWQAAtBVhMRgVZsZoMgq5lgm5kAixmr2bOd2TB0lykRkR6gUxOGefPmcfDgQZ544gm/stzcXBYvXsyJEyeIjIxkxowZXHnllT7rnDx5kvfff599+/YBMGLECG677TbCw8O962zdupUPPviAxsZGJkyYwO23347JZPKWv/fee1RVVfG9732vMw9NROSi0bbXoiMWk0FYoIWwr3Gab739bLPDRXWjnfIGO/UtDupbHLhc4AbsTheNdhcltU002V002p1UNLTgcLlpdrgorGokv9lBo8OznzMxTh2LyYAgawnBNrN3Hkew1XyqzPPPbIJQm4WwQItnnofZRIjNk3wYeB7AlxQeiGGA+dStddUDIiLSOTotYVi2bBmfffYZGRkZfmVbt27l5ZdfZurUqdxyyy3k5+fz/vvv43a7mTlzJgCNjY38v//3/wgKCuL++++nqamJ+fPn88ILL/DLX/4Sk8lEbW0t//jHP7jyyitJS0vjzTffJDExkalTpwKehGPNmjX8+te/7qzDEhHpM1pvPxtoNRMRZCU1+ty2c7rcuN1u3EDjqTkVLjc02h1UNTpodriobXJQ1dRCfbPTMwzL6cLhdNPicFFd14DDZKXF6fLO4Wg6NVTL5Qan243L7aagvIEmh2cdp8uN3dXxOKvWpCEi0OJNHkzGqfkaplNJ16keniCrCavZ5J1wbjWbsJgNrCbTqd4Qk3dSemtCE2LzTFT3JDOefVnN6jERkd7pvBOG1l6BHTt2EBQU1O468+fPZ+TIkdxzzz0AZGdn43A4WLRoEdOmTcNqtZKTk0N1dTX/+q//SkSE517pycnJ/Od//idbtmzhkksu4eDBg5hMJm688UYMw2Dv3r3s2bPHmzAsWLCAiRMnEhcXd76HJSIi58hsMvD0F3jmN3zl3J5BUVxcTEJCAk635xa2rlMTwA3w/gxthmK53eDGM4/D4Sk72djCkfIGHG5wulycrGuhttlBWV0LLU6Xdz92pwuXE2/Scbjl1KRzlxvHqWUOlyf5+bpsZgObxUSQxUyAxeR9SnjbZMV8ahhXawISaPEM1TIbYDGbMJ9KaJobG4mt8fSsuNzgduNNXr5KfNokQad6VswmA4vZwGY2YTGZsJ3apjWPaU1nlNiIyNdx3gnDe++9R1lZGY899hiffPIJTqfvnT1OnjzJiRMnuO6663yWjxs3jhUrVnDw4EGGDBnCrl27yMjI8CYLAKmpqcTFxZGXl8cll1yCYRhYrV89WdVsNuNyebq8jx49yo4dO3jmmWfO95BERKQLGafmMlgM+KpJ+/VNTu/nt8xxaq5H2way2+3pxXDjSU4cLjeuU0mCG08y0mR30ex00ex00mz39IZ47mblpsnuoqrJjt3pxuFynfrfTVWjnRaHi5omOy1OT69Ia2O/NRFyulw0OVy4TiUnDXYndqfb24vicnkSG4fLhcNV/Y1jcTatw8GMUwmHAT6JjWF4epyMU8vg1N8JMAxO/e8pMBlfTYj3lrdZ11Pauo+vtvX+fNq+MMCEp7B1v/aWFoIC67CZ2yZinNrG8NuvCTCZjK/qZZx+fF8lWa1lZsOTbLXdX0f7/qr+rdu3HyNOi4s3Fm1j1bqmd5vT49fm9b3beurfYHcR2OL0Swi9sfP5vc3fv83rtv7ednsllHK6804YbrzxRpKSkjp8c5WUlAAQHx/vs7y1F6C4uJghQ4ZQXFzM2LFj/baPi4ujuLgY8CQQjY2NbNu2jQEDBpCXl8fkyZMB+PDDD5k5c6bPfAcREenbLGYTlnamewRa/Zd1ltbb47pOJQqtjc7W351ut/euVd4ejVMJBYALN6UnSgmL6ofd6fY0bE0GLQ4XjQ6Xz/5bf3a6wO5yYXe6aDk1pKvR7kl27C7XV/tuUweHy5OkuE/tx+XyDP9ynlreWq9THTpAm+QHvMPQPOWn1ju1rqvNMbaWfRUfz0aeBK21Tp5JMi7v65zq5XF7yh0OB1UtnmForXU4/bXb1q9t2VfH3nqsvsdwhpFtPcTxC7bn05MMn+WG4bOOf3Ji+G3X3n59kxnDr7yj3OX0fQC4XW5MpmK/Ndpb1295B69ptLPWudWpg9c/bZlhwP+Zkt5BTS4e550wJCcnn7G8sbERwG+4UmBgIABNTU3e9VqXtRUQEEBZmedOHVFRUdxzzz28+uqrtLS0MHbsWKZPn87u3bs5duwYP/jBD9iwYQPLli3DZrNx0003MXjw4PM6voqKCpqbm72Jj3goJv4UE3+KiT/FxJ9i4i/C6ibAXov3m9MJQUDEmee6t2E+9e+bc7l9W9Ktk8jbNsgNgzaJgafsq+3xGdplOtUwdJ7WQG9tsBu0rv/VCq0JSEtzC7YAm88Qtdam5en1/Koupy85/afWIW++z0Bx4eZU/uKTXLSu53Z7kjpv7xF81UPlbvvapy1rXa9tvPAkahhfDT2D1mSmdb1T63j35fbWze5wYDKZfY637et9FUf/4/etR9t4+dbRJ2Zt/vZfxdl92mu12aZNwel/pa/q4VviPsM27S5v84vD5cR8Kh5+27hb/yLtl535db7pdu2v27bcYjIwmusv2DnwbOfXhISEc9rPOScMLpfL749qNp/9ZHT6Nqcz2pyAzsWkSZO47LLLcDqdWK1WXC4XH374IbNnz6a8vJw333yTRx55hLq6Ov7617/y7LPPEhoaek77bk90dDQtLS3nHNC+oqSkRDE5jWLiTzHxp5j4U0z8KSa+FI/2KS6+zice7SVV32w/X3+b1mF2F0JnvUfOOWFYtGgRCxcu9Fn24osvnnW71p6F1p6EVq2/t5YHBwf7rdO63um9EyaTyXsr1U2bNtHc3MyUKVNYtGgRgwYNYujQoQAsXLiQvLw8LrvssnM5RBERERHpg4yzDCE69x2dd1UuSuecMEyZMoURI0Z87RdozWpKS0tJS0vzLi8tLfUpj4+P9w49aqusrKzdW7UC2O12Pv74Y2699VbMZjO1tbU+vQkhISFUV1+4SWMiIiIiIr2d6eyreERGRpKWlubz71zExsYSGxvLli1bfJbn5uYSHBxMerpnosewYcM4cOAANTU13nWOHj1KaWkpw4YNa3ffK1euJCwsjHHjxgEQFhbmkyBUVVVpErSIiIiIyHk454ThfFx//fVs3bqVuXPnsnPnTubNm8fKlSu57rrrsNlsAEybNo2AgAD+9Kc/kZuby4YNG/jrX/9K//79vQlBW/X19Xz66afceuut3mUjR45k//79rFmzhiVLllBTU0N2dnZXHKKIiIiISK/UaU96PpOJEyfidDpZunQpGzZsIDo6mjvuuIMrrrjCu05oaCiPP/447733Hq+99hpWq5Xhw4dz2223tTu5esmSJQwcOJCsrCzvsrS0NG677TYWLFiAzWbj4Ycf9nmug4iIiIiIfD2G+1xvTyQiIiIiIn1OlwxJEhERERGRnkkJg4iIiIiIdEgJg4iIiIiIdEgJg4iIiIiIdEgJg4iIiIiIdEgJg4iIiIiIdEgJg4iIiIiIdEgJg4iIiIiIdEgJg4iIiIiIdEgJg4iIiIiIdEgJg4iIiIiIdEgJg4iIiIiIdEgJg4iIiIiIdEgJg4iIdDq3293dVRDpsVpaWgB9juTioYRBvHRi8qeY+HO5XN1dBbnItbS0YBhGd1fjotLY2MjcuXOprKzs7qpcNE4/l+h8C01NTbz33nt8+umnuFwufY7komHp7gp0h5ycHKqrq4mIiCA1NZX09PTurlK3W7lyJcXFxcTGxpKZmamYnNLc3ExgYCBut1snbjyfnYKCAoKDgxkwYAATJkzo7ip1qy+++ILKykqio6MZOHAgycnJuFwuTKa+ey2mpKSEZ555hltuuYUrr7yyz8cDYNGiRSxdupSIiAiam5u7uzoXheXLl7N3716ioqLIzMzk0ksv7fPn2IULF/LZZ5/R0tLCxIkT+/znBjzn2KqqKqKjo8nIyCAxMbHPn1O6qw3bpxKGwsJCXnnlFex2O+np6WzZsoWqqipuv/12xo0b1ycbhmVlZbz00kvU1taSmJjIli1bWLhwIQ8++CDDhw/HarX2uZi0euONNygpKeGJJ57o7qp0u8LCQl599VWam5tJT08nLy+PFStWUFNTw7Rp07DZbN1dxS517Ngx/v73v9PU1ERCQgLLly8nPDycxx57jJiYmD79hVZXV4fT6WTZsmVMnTq1T59Dtm/fzrvvvovL5fJ+zwQHB3d3tbpVRUUFL730EjU1NQwaNIi9e/eydu1a4uLiSEtL6+7qdYtt27bx9ttvYxgGc+bMYf369SQmJnZ3tbrVsWPHeOWVV2hqaiImJoaDBw8SGxvLj3/84z57ju3uNmyfShiWLVtGQEAA3/3ud4mPj8dsNvPuu+/yzjvv4Ha7mTx5cp/7Utu+fTsul4tHHnmEhIQE6urqmDdvHm+88QZ33XUXEyZM6HMxAXA6nZw4cYJDhw5x8OBBMjIy+uQJCjzDBFasWEF0dDS33XYbMTExOBwO3n33XZYvX87o0aOJjY3t7mp2qS+++IKoqCjuvPNO+vXrx759+3jttdf45JNPeOihh/rk+6RVU1MTQUFBVFVV8cEHH3D33Xf3yYShrKyM//3f/2XkyJHcddddREZG+rwv+mJMAPLy8mhqauIHP/iBt1FcUVFBfHx8n4tJTU0Nf/7znykrK2P69OnMmDGDsLAwVqxYgd1uB/ru++SLL74gKCiI733ve8TExLBnzx7++c9/8tFHH/Hwww/3yXNsd7dh+0zES0pKyMvLY9CgQSQnJ2OxWDAMgzvuuIOAgADWrFlDQUEB0HvHUbZ3XFu2bCEmJob+/ftjtVqJioriO9/5DqGhoaxYsYIjR450uG1v0d6x1dTUUFpaCsA///lPgD5zgjo9HqWlpWzfvp2BAweSkJCAxWIhMDCQ8ePHU11dzYkTJ9rdrrc4/bjq6urYvn07SUlJxMfHY7FYyMzMJDw83Odk3VvjAWc+ttraWmw2G1dddRU5OTmUlJRgMpl6/dyXtjFxu93ExsYycOBAzGYz0dHRmEwmnE4nW7ZsobCwkNra2na37U3aO67NmzcTExNDamoqVqsVk8lEaWkpJSUlNDQ0dEMtu1bbmFRVVTFw4ED+5V/+hVtuuYXo6Giam5tpbGwkIiKiG2vZtU5/n9TU1JCXl0dCQoL3O2fIkCFERERgt9txuVy43e5e+7kB/5hcDG3YXtsCau0Wb9XS0kJjYyNRUVHeZS6Xy9vYKS8vZ9u2bb16klFTUxPw1USzpqYmDMPAarV6Y+V0Or1vwuLiYjZv3tyrYwL+cQHPnI6AgABuvvlmiouLWbVqld86vVVrPFrfE3a7nYaGBm8vQmsM2l4BA3rte+T0eNTX11NfX09CQoJ3nZqaGurr6wkODmb//v3Y7fZeGw9o/zPTqqysjCFDhjBmzBgiIyN55513gN77/mjVNiatxzphwgTy8vJobGxk06ZNPPbYY7z11ls8++yz/Pa3vyU3N7dXn1/b+85xuVxERkYCsGbNGh577DFef/11nnnmGf785z9z+PDhXt0QbI2J2+2mf//+3HPPPQwYMADDMHC73VitVmw2G9XV1d1c065z+jnW6XRis9lobGz0+Z5xOp0MGDCA6upqDMPotZ8baP97uLvbsL0uYcjPz+e3v/0tL7zwAn/605/Yvn07drud1NRUkpKS2LFjB2VlZYDninF+fj4TJ04kJSWFrVu3cuzYsW4+gs7ncrl49913eemllwDPcbvdbgIDA4mMjKSoqIjy8nIAzGYzACNGjGDIkCFs377d28vQ27QXF/Akm7t27eKyyy5j/PjxZGdns2DBAux2e6/uZTg9HmazGbfbTUpKCjNmzPAbH9l6hbRtw7k36Sge8fHx/OQnP+GSSy4BPMMpfvvb32K328nLy+O5557j+eefZ9++fUDvunrc0WemtQw8NwpoaGhg4MCBTJ06lfz8fPbu3YthGNTV1XVLvS+kM8UkJSWF2NhYXnrpJdauXcucOXP40Y9+xCOPPEJYWBgffPABu3bt6q6qXzBn+s4JCQnh5MmTHDlyhNWrV3PDDTfwyCOPcM8999DQ0MCbb77ZK79zTo9Ja4O37fvFMAyam5sxm83ehnJvbhR3dI6NiopiyJAh7N+/nz//+c8sWbKEp556irKyMlauXMlTTz3F3LlzvW253uRM38MpKSnk5eV1Wxu2V7R+Wr+QN2/ezCuvvEJSUhIjRozA4XAwd+5cPvjgAwCuv/569u3bx/PPP89bb73Ff/3Xf/Huu+8ybtw4br75ZkpLSzl58qTPPnsDp9NJQUEB+fn57N+/HwCHwwHAFVdcQUlJCfv27fN+4bdmtHPmzKGsrKxXJlHQflzAc4K+/vrrmT17NtHR0UyePBmn0+l9H/XWXob24tF6rHPmzGHEiBE+V3Xy8vJITk4mNja2V8bkTPHIzMwkMDDQu+7VV1/Nz372Mx577DEee+wxDh06xNq1a729eL3FmWLS2vA5efIk8fHxAIwdO5ZBgwbx+uuv88ILL7Bs2TJvQ6i3aC8mrefQpKQkIiIi2LNnDwMHDmT69OkMHDiQ4cOH89BDD1FXV8fevXu95+Pe4kzfOZMmTSI/P58PP/yQuLg4pk2bRnp6OpMmTeLb3/42RUVF5Ofn97pzypk+O63cbjfh4eGEh4d7L+L1tji0dab3yU033cR9991HdHQ0S5YsISsriyeeeIIf//jH3Hbbbaxdu5Y1a9Z4n1fRW7QXk9YLdbNnz2bv3r3d1obtFQlD6xfy5s2bGTBgAHfddRfXX389TzzxBFOnTiUnJ4cNGzYwduxYHnroIQYMGEBBQQHJycn85je/IT09nbi4OKKjo8nPz/fZZ29QXV1NaWkpVquV+fPnA3jvXJKamsqIESNYvny5Ty+D0+kkJSWFtLQ0du/eDfSuJArajwtASEgIw4cP9x5vVlYWl112GTk5OZw4ccJ7tay3aS8erVc3goKCgK++vEpKSti9ezcjR44EetfnpdWZ4tFWZGQkM2bMICkpiejoaAYPHsyECRM4dOhQrxtn215MWj8PrY1kl8vlfZ/Ex8djMpmorKykuLiYmTNnensxe4uO3idOp5OgoCBGjRrFyJEjmTRpEhaL5z4jdrudhIQEhg0bxqFDh7BYLL3+fWK1WgFITU1l+PDh7N27l5iYGO8d1hwOBxkZGWRlZZGfn9/rzrNn+uy0MgwDu91O//79KSoqorGxsVf3anf0PnG5XAQEBDBq1ChiYmIICQlhzpw5JCcnM2DAAKZMmcLYsWPZuXOndyhXb3Gm98mYMWO6tQ3ba96JVVVVHD9+nEGDBnlPQCaTialTpzJmzBg++ugjysvLufTSS3n44Yf513/9V+6//37vXRradpn2pjcfeMbjh4aGMnnyZIqLi8nJyQHwjpe85pprKC8vJycnh/r6euCroUlBQUE4HA7v3IbepKO4uFwurFar93iDg4MZP3480dHRvP3220DvbCCfHo8vvvgCwO8LDWDPnj3Y7XZGjRrlXX7y5El27NjhfQ/1dGf63LRlMpm8jaHWhnJQUJC3d6E3vVfOFJPWc0ZNTQ0DBw5k/fr1/PSnP6WiooL09HTq6+uxWCy9bgL02d4nM2bM4Nvf/rb3VpDwVeM5KCiI5uZmHA5Hn3ifAERERHDJJZdgs9koLy+npqYGwJtMhYSE0NDQ0OvmAZ3r+cRqtRIZGUlTU5P3anFvdab3Sdue7JSUFKKjo322DQkJoaampte1Tc7ULgG8bdhf/OIXXd6G7ZEJQ3FxMfv27aOiosK7LDIyEpfL5b1K3tqtFRkZydVXX01zc7N34qrD4eDYsWPeMcYABw8epKWlhfT09B755msvJuBJpHbt2sWkSZOYMWMGKSkpfPbZZz5XLjIzM7nmmmv4/PPPWbdunXfbY8eOUVJSwpAhQ3rsVcFvGpfWD2frBy89PZ0pU6aQn5/Pzp07gZ7ZVfx14rF06VK/eLRezdmxYwf9+/cnLS2NhoYGVqxYwVNPPcXy5ct7VMJ9vu8Pp9NJYWEhxcXFgOekXVJSQn5+PpMmTfIZttRTfNOYOJ1OGhsbcTgc/P3vf+fdd9/luuuu48knn+S6667Dbrfz+uuvAz3vjmPfJCYWi8UnQTh8+LDP8M7jx49z6NAhxo0b520s9yTfJCbguRg1bNgwxo8fz7Zt28jNzfVuW1payvHjxxkzZow3qepJzvd80vr/hAkTqKqq8p5XetI59XTncz4BT4/UkSNHfJ6QXlJSQkFBAVOmTOkz51iz2ey9O5TT6aSoqKjL27A96izV1NTEP//5T3bs2IHFYsFutzNjxgymT59OVFQUw4cPZ/Pmzdx+++3ebi2TyURycjKTJk3iiy++YNasWYSEhLBhwwa2bNlCZmYmgwcPJicnh9TUVDIyMrr7ML+Ws8XEZDJx1VVXMWnSJMBzIvroo49YtGgRt912mzdG119/PYWFhSxdupTNmzeTnp7O/v37CQ4OZtiwYd18lF/f+calVWsD2Ww2M3r0aLZt28ZLL73E888/36MaPZ0VD/iqN2/EiBEcPHiQuXPnUlFRwU033cTMmTO74/C+ts6Kh9vtZvHixRw4cIDs7GySk5PZuHEjLpeLsWPHdtfhfSPnGxOz2UxQUBDJycmMGDGCSZMmee+s1XpRol+/ft15iF9bZ71PnE4nn376Kfv37yc7O5uUlBQ2b96M1Wr19tL1FJ0Rk/DwcG655RaOHTvG+++/z8aNG73fOYZheIc69hSd9T5p/U6JiIhg6NChfP755z32CdjnG5PWWEyYMMH7vZuVlUV0dDSrV6/GbDYzbty47jzEr60z3ieGYWA2m9m4cSO5ubld2obtUQnDokWLKCoq4gc/+AHgydLmzZtHVVUVd999NyNHjmTjxo0sXLiQm2++2budzWZj9OjRrFmzhtWrVzNr1iyuuOIKwsLC2LFjBzk5OWRkZHDnnXf2uCvpZ4rJbbfdRnh4OJdccol30syYMWPIz89n3bp1XH755SQlJWG327Fardx///3k5+ezYcMGjh07xuDBg70NgZ6mM+LSmky1nqwTExOZMmUKpaWlPe5Wop0RD6fTidlsprm5merqau+ks8suu4xf//rXPeoqaWfFw2KxcO2117Jy5UqKi4spLi4mMzOT22+/vcd9bjojJgD33HMPVqvV5/gDAwO58cYbu+W4zkdnvU9sNhuzZ89mxYoVFBcXc+LEiT79PnE4HISEhPDDH/6QLVu2sHv3bu+Q4p74ndOZ3zfg6YUZMmQI8+fP5/jx497PVk/SWeeTwYMH893vfpdFixaxfft23G43gwcP7rPtNYfDgcVi4corryQ0NLRL27A94hve5XJRU1PDpk2bmDx5MoMHD8ZkMjF06FAaGhrIyclh6dKl3HjjjQwfPpw1a9YwadIk4uLivMFNSkqiX79+1NXV4XK5iI2N5brrruOKK67wmdTZU5wtJqtXr2bJkiXcfvvtBAQEAJ6roSEhIUyYMIGCggIWLFjAD3/4Q+8E6JCQEMaNG8eYMWNwOBzeuSA9SWfGpb2nsl5++eU9qmehM+PROuHXbDYTGRlJcnIyd955J3Fxcd18lOeus+PhcrlITU3lgQceoKWlxTvRtSfpzJgAPXKIwOku1PvkwQcfpKmpqc9/57RO8o6IiPBeYbXb7T3uO+dCfN+43W5MJhMTJkxg4sSJPe4Bbp19PnG5XAwdOpQhQ4bQ0NCA2+0mNDS0Ow/xa7sQn51+/fp1eRv2om35VFRUcPjwYaqrqzGZTAQEBNDY2EhiYiImk8l7a76ZM2cyePBgVq9eTXFxMVdeeSVWq9U7ObX1qmdgYCBVVVXeSXetV4gDAwN7zIn768Rk0KBBbNq0yfvkv7bj7bOzsxk1ahR79+4lLy/Pr9xkMvWoE/eFjEvrOMrWnoSekCxcyHgYhkFoaCg//elPefTRR3tEsnAh49F2bLHVatW5hK8+Mz1NV71PAgIC9D45rdwwjB7znXOhPzut3zWRkZE9Jlnois+OYRgEBwf3mGShqz47XdmGvehaPy0tLbzxxhv84Q9/4MUXX+TJJ5/ko48+oqSkhMTERO+E09Y5CoGBgVx++eUEBQWxePFiBg4cyDXXXMOePXuYN28eJ06coL6+njVr1hAQENAjbwN5PjH57LPPALxDa1q7PSdMmEBMTAxvvfUWQI/r2gPF5XRdEQ/w3NmlJzysravfHz3hnKLPjD+9T/zpfeJPMfGnz46/3vw+uaiGJNXU1PDGG29QXV3NHXfcgdvt5vDhwyxZsoSYmBjCwsIoLCzk8OHDpKWlebcbNmyY997NR48eZcaMGbjdbj7++GO++OILEhISKCoqYsaMGT7b9QTnE5NBgwaxb98+Dh486J0I03qFfMCAAYwdO5aGhgacTqfPWP2eQHHxpXj4Ujz8KSb+FBN/iok/xcSfYuKvt8fkouphOHLkCIcOHeLmm29mzJgxjB07lptuuomMjAzy8vK4+uqrOXbsGDt27MBut/vceuvSSy+lrq7OexuyK664gkcffZRbbrmF7OxsfvnLX/rMvO8pzjcmNTU1fvdybu3Ouuaaa7wTzHrKB7KV4uJL8fClePhTTPwpJv4UE3+KiT/FxF9vj8lF1Xret28fgYGBpKSk+CyPi4vj0KFDZGVlMWrUKNatW+f3NLvBgwdjs9moqqrybpeRkcG0adOYM2eO3z57is6MSetYwLZ3YuipFBdfiocvxcOfYuJPMfGnmPhTTPwpJv56e0wuqoQhISEBm81GY2OjT7AaGhoIDw8H4Pbbb8fhcLBq1SpKS0u9wdy/fz9NTU09ZpLQuerMmPSkTP1sFBdfiocvxcOfYuJPMfGnmPhTTPwpJv56e0wuqjkMl1xyCVFRUcTExHiDVVdXx8GDBxkzZgwAMTExzJkzh88++4zXXnuNWbNmYbPZWLNmDfHx8QwZMqQ7D6HTKSbtU1x8KR6+FA9/iok/xcSfYuJPMfGnmPjr7TG5qBKGgIAA71OFW+97X1hYSF1dHdnZ2d71pk6dSlRUFB988AGvvPIKZrOZqKgoHnjgASIjI7up9heGYtI+xcWX4uFL8fCnmPhTTPwpJv4UE3+Kib/eHpOLKmFoqzU727p1K6GhoYwYMcJb5nQ6yc7OZvDgwVRWVlJXV3dBH4d9sVBM2qe4+FI8fCke/hQTf4qJP8XEn2LiTzHx1xtjctEmDOB58MW2bdsYPnw4ZrMZu91OUVERCxcuZNCgQVx55ZXEx8cTHx/f3VXtMopJ+xQXX4qHL8XDn2LiTzHxp5j4U0z8KSb+eltMLuqE4fjx49TU1DBy5Eiqq6tZvHgxa9euJSUlhYkTJ2K1Wru7il1OMWmf4uJL8fClePhTTPwpJv4UE3+KiT/FxF9vi8lFnTAUFRVhMpnYv38/7733HmazmR/84AcMHz68u6vWbRST9ikuvhQPX4qHP8XEn2LiTzHxp5j4U0z89baYXNQJg8ViweVysWHDBmbNmsU111zT3VXqdopJ+xQXX4qHL8XDn2LiTzHxp5j4U0z8KSb+eltMDHfrzWIvQjt27KCwsJCrr766x3XdXCiKSfsUF1+Khy/Fw59i4k8x8aeY+FNM/Ckm/npbTC7qhKH1tlTyFcWkfYqLL8XDl+LhTzHxp5j4U0z8KSb+FBN/vS0mF3XCICIiIiIi3cvU3RUQEREREZGLlxIGERERERHpkBIGERERERHpkBIGERERERHpkBIGERERERHpkBIGERERERHpkBIGERERERHpkBIGERERERHpkBIGERERERHpkBIGERERERHp0P8HcgmzIm2MVE4AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwcAAAF8CAYAAACaIsdkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3wTZQPA8V9Gk3TvQimlpWXvvWRvZKoIKFMRQRS3IIgCgojgRFBAXpkCDkSm7L33poxCoYXuvbLv/SM0JaQtlA4Un6+ffCTPPXd5nutd8uyTSZIkIQiCIAiCIAjCf578cSdAEARBEARBEIR/BlE5EARBEARBEAQBEJUDQRAEQRAEQRDuEpUDQRAEQRAEQRAAUTkQBEEQBEEQBOEuUTkQBEEQBEEQBAEQlQNBEARBEARBEO4SlQNBEARBEARBEABRORAEQRAEQRAE4S5RORCEUqTX6/nmm29o3rw5Xl5eODg44OfnR5cuXfjtt9/y3S8uLo6YmJgSTVtpfMbjsnv3bmQymc3rzp07NnFu3bplF2f37t2lntYzZ87YvB82bJg1PREREQ/cv23bttb4xen+c5PzcnBwwMfHhxYtWrBgwQLMZnORP+v+c/Ck+Pzzz5HJZHz99dcAGI1GJk6cSIUKFfDw8KB79+7cuHHDbr9XXnkFmUzG8uXL7ba9+eab+W4TBEF4JJIgCKUiKytLatGihQTk+xo1apTNPpmZmdLUqVMlFxcXadeuXSWSrtL4jMdt165ddud6yZIlNnF+/vlnuzileT4OHz4stWzZUmrTpo1N+NChQ63puXHjxgOP06ZNG2v84lTQdXvv65133nnkz8jvHDwJbt68KTk5OUlOTk5ScnKyJEmS9O2330qA1K9fP2nZsmUSIDVq1Egym83W/cLCwiSFQiHVrl1bMplMdse9dOmSJJPJJD8/PykpKam0siMIwhNM9BwIQimZN28eBw8eBGDIkCEcOXKEq1evsmbNGgIDA61x9u/fb91n1qxZfPzxx2RkZJRYukrjM/6Jtm/fbvN+x44djyklFs2aNbP52/9TNWvWjMjISCIjI7l16xbXr19n5cqVODs7AzB79mwiIyMf+dj/hnPwKGbMmEFWVhYDBgzAw8MDgDVr1gDQv39/Bg0ahKurK8ePH+fWrVvW/SZOnIjJZGL69OnI5fY/2dWqVaN9+/bExcUxc+bMUsmLIAhPNlE5EIRSsmvXLuu/Z8+eTZMmTahUqRJ9+vThq6++sm67t9AqSVKJp6s0PuOfJDg4GLCvDOzcuROAihUrlnaS/lXUajXly5enfPnyBAYGUrFiRQYMGMDgwYMBMJlMHD9+/DGn8p8lMTGRxYsXA9CvXz9reGxsLADu7u4AuLm52YSfOHGC1atX89RTT9GjR498j//8888DsGDBArKysoo9/YIg/LeIyoEglBK1Wm3995AhQzh16pT1/bPPPkt8fDzx8fF88MEHgGXs+JQpU6xx2rVrZx1Hfu8Y+iVLltCjRw80Gg1lypSxHvfQoUP06tWLgIAAVCoVXl5etGzZkmXLllmPWdBnAJjNZmbPnk2dOnXQaDR4eXnRs2dPjh49ape/zMxMxo4dS4UKFdBoNDRq1IiNGzcyefJkmzHwc+fOtb6fP3++zTEuX75s3TZq1KjCn+SH0LZtWwDu3LnDhQsXALh48SLR0dE22/Ny5coVXn31VYKCglCr1ZQtW5YBAwbYjZGPiIiw5mPOnDls2rSJ5s2b4+joSJkyZRg9ejTp6elA7t8yx549e5DJZEyePNnu8zMzM3nvvffw9/fH0dGRli1bPnBexMaNG61pGT9+vM22tLQ0NBoNMpmMrl27FnicB1EqldZ/Ozk52Wz75ZdfaNKkCU5OTri7u9O+fXs2b95s3f6gc5DfvIt7z/OwYcOs4TnzLho1asTy5csJCAhAo9EwdOhQIHf+xPvvv8+RI0fo0KEDLi4ueHl5MWjQIOu1kOPSpUv079+fcuXK4eDggLOzM/Xq1WPWrFkPNcdi7dq1ZGdn4+bmRvv27a3h5cuXByx/V8BasM8JHz9+PJIkMWPGjAKP37t3b2QyGUlJSfzxxx8PTI8gCEKBHvOwJkH4z/jzzz/txmcHBARIgwYNkpYvXy6lp6fbxL937Pi9L0myHUPv4eFh/XeZMmUko9EoHT16VNJoNPmOC1+6dOkDP0OSJGnAgAF5bndwcJA2bNhgjafX66WnnnrKLp5cLpcaN25sc9ykpCRr2tq1a2eT56lTp1rjHjp0qNjO/b3na968edbP//bbbyVJkqTZs2dLgOTo6CjNmzcvzzkHW7dulZydnfM8HyqVSvr111+tcW/cuGHd1rJlS0kmk9ntM3jwYLu03fuaNGmSJEm2cw6qVq2a52dHRERYP/v+OQdGo1EqV66cBEghISE25yVnnDsgrVy5ssBzmBPv3vkAJpNJSktLk7Zs2SK5u7tLgOTq6iolJCRY44wbNy7P/MlkMmnevHmFPgf3zru49zwPHTrU7hy4ublJcrncGuf777+3yUvTpk0llUpl97mtWrWyHisiIsKat7xeY8aMKfC8SZIk9evXTwKk9u3b24QvWbLEOk/j9OnTEiB16tRJkiRJ2rlzpwRI3bt3f+DxJUmSKlasKAHSwIEDHyq+IAhCfkTlQBBK0fjx4/MtZLi7u0sLFiywxo2Li5Peeecd6/bffvtNioyMlCTJtjAlk8mkRYsWSRcuXJA2b94sSZIkDR8+XAIkb29vaevWrVJ4eLi0atUqa0Gpb9++D/yM3377zRo+ZMgQ6dy5c9KhQ4esk6r9/PwkrVYrSZIkzZ8/3xq3QYMG0t69e6WTJ09Kzz77bIGVDrlcLkVHR1vD69SpIwFSlSpVivW833u+Fi1aJLVr104CpB49ekiSJEm9e/e2Ft4WLVpkVzlIS0uTfHx8JEBycnKS5s6dK126dElasWKF5OvrKwGSRqOxFlzvLbQC0ltvvSVdunRJWrVqlaRUKiVAUiqVklarlbRarRQZGWmN26xZMykyMlJKTU2VJMm2YFyxYkVp69atUlhYmNSzZ09r+KeffmrNa14Tkj/88ENr2JEjR6zhvXr1sl572dnZBZ7D/K7be19KpVJatGiRdZ+jR49at3Xt2lU6fvy4dPr0aevnajQa6c6dO4U6B4WpHOQU9M+dOyetX79eio+Pt8vLgAEDpLNnz0rbtm2TXF1dreHXrl2TJEmSvvzyS5v7Izw8XDp+/LjUpk0bSS6XS5UrV7amMz85lbO3337bbttPP/0ktWrVSqpTp4702muvSYmJiZIkSVKzZs0kuVwunTlzxho3Pj4+z0nJkpR7DQcEBBSYFkEQhAcRlQNBKGXHjh2Thg8fLpUpUybPAtaqVauscSdNmmRXUJUk28Jufiu7JCcnS9evX5ckydKyf/DgQWsvw70tmPl9Rp8+fSSwtEzfuHFDioyMlCIjI6X169db469Zs0aSJEl6+umnrWFhYWHWY2RnZ0v+/v52hdWtW7daw2bPni1JkiRdvnzZGvbZZ58VeA4zMzOt6cl53VvJuN/9lYMpU6ZIYGnlzs7OtrYMf/rpp3lWDn766Sdr2BdffGFz7D/++MO6bfz48ZIk2RZaa9WqZRO/e/fu1m1RUVHW8Pz+nvcWjO+9Nk6ePGkNf/XVV63heVUOrly5Yg179913JUmSpNTUVEmtVkuANGLEiALP973py+vl6OgojRkzRjp58qTNPm+//bZNpSTnb3Xq1Clr+DfffFOoc1DYykFeK07lbPPy8pJ0Op01/PXXX7du279/vyRJks31MGLECGnr1q1Senq6lJGRIWVlZT3wvJlMJkmhUEiANHPmzAfGlyRJWrNmjQS5vQC//fab9fvC0dFRmjhxot0+r732mgSWCrfRaHyozxEEQciLmHMgCKWsUaNGLFy4kOjoaM6dO8e3335L7dq1rdsLu+JIrVq18gwPCwvju+++o3Hjxri5udGiRQtSUlIAy6TRB7ly5QpgeTZDxYoVCQwMJDAwkJ49e1rjnDhxAoDr168D4OnpSdWqVa3bNRoNjRs3tjt2hw4dCAoKAmDVqlUA/P777wDI5XLr5Nb8/Pbbb9b05LyaNWv2wDzlyJlXkJ6ezg8//EBqaqpN+P3unVPQsWNHm22dOnWy/vvs2bN2+9aoUcPmva+vr/XfBoPhodMMUKdOHeu/cyaxguVvVJDKlSvTqlUrwHLuJEli/fr16HQ6AOtY/IfRrFkzIiIi2LdvH61btwYgOzubxMREatasaRM35xoCaNq0qfVvVb9+fWt4zjX0KKSHmEyf3/0BUKlSJVQqlfV9Xn+bF154gc6dOwPw008/0blzZzw8PGjTpg0zZ860Th7OT2JiovV+y5lwXBCz2czEiRNxcHBg6tSp3Lp1iyFDhpCamsqCBQsIDg5m2rRpdnMLco5tNptJSEh44OcIgiDkR1QOBKEUxMbGMnLkSHr16sWkSZMAy6TIWrVq8dZbb3H8+HFrYfnSpUuFOva9hcQc06dPp3nz5nz33Xe4urry8ccfs2PHDgICAh76uPdOMM1PfHw8gLWA9TCFNbBUAHImkB46dIjIyEhr5aB9+/bWpV1LStOmTXF0dAQsD6YCcHR0pGnTpnnGL+hc3JvnvB48lvM5ORQKRaHTm9ex7l3W8mHO+8svvwxAVFQUBw4csJ7vypUr89RTTz10GtRqNUFBQbRs2ZJNmzZRrVo1AFasWGE3ibww19DDurdiq9VqHxg/r/sjx8P8bdRqNVu2bGHnzp2MGTOGWrVqIUkSJ06cYPLkydSqVYubN28+VNrzWor0fsuWLePChQu8+uqrVKxYkR07dqDVamnTpg0jRoywVuQ2btyY7zEcHBweKj2CIAh5EZUDQSgFHh4eLF++nPXr1zNnzhwSExNttsvlcmsBz8vLyxp+b2EzvwLg/QWB7OxsPv30UwA6d+7Mzp07mTBhAq1bt7aukHOv/D6jUqVKgGXlGb1ej2QZhkhsbCxnz55Fp9Mxb948AEJCQgBISUkhLCzMeoysrKw8VzYCeOmll5DJZEiSxLRp06yt8w/Tij1s2DBrenJeD/P04BxqtZrmzZsDWFtZW7RoYdOKfK/q1atb/33/Eqj3Lj1br169h05Dfh62glVYzz//PK6uroClBXzLli2AZeWsR+Xs7Mzy5cutlYBFixbx119/WbfnXEMAt2/ftv6t0tLSOHHiBJmZmTarFuW4/xzcu9JXWlqa9d/3Pg8gP0UtKN+8eZPNmzcTHh7O7NmzOXfuHMnJyXz33XeA5fr55Zdf8t3f29vbWinI6/67l16vZ/LkyTg7O/Pxxx8DlieXA/j4+FiPB9g9zTw5ORmwVHA8PT0Lm01BEAQrUTkQhFKgVqutLeVJSUl069aNv//+m2vXrrF//3769u1rLej07dvXup9Go7H++8SJExw5cuSBn6XX663DRc6cOcPevXs5c+YML730krVgZTQaH/gZAwcOBCwF/MGDB3Pq1CnOnTvHiy++SJ06dXBycrIum/rCCy9YjzFw4EAOHjzI8ePH6d+/v10hJkdQUJB1WccFCxYA4OrqyrPPPvvAPBaH+4cQFbSE6b0F6ylTpjBv3jzCwsJYtWoVo0ePBiznccSIEY+cnpy/w61bt7h06RLXrl175GPlxdnZ2brG/tKlS9FqtchksgcO4XqQhg0bMm7cOOv70aNHW6+znGsILJWQw4cPExYWxqhRo2jYsCEuLi6sXbvWGie/c3Bvj9ecOXMwGAyEh4fz0UcfFSntD2Pq1Kl069aNESNGMH78eMLCwrh9+7bNg94KqoDI5XLrszMeVJmZN28eERERvP3225QpUwbIzXvOOc35f85ypznu3LkDWIax5dWDJQiC8NBKd4qDIPx3paSkSI0aNSpwYmfdunWllJQU6z5///23XZy4uDibCbY5yz3eq2PHjgV+Tmho6AM/w2w220w0vv917yRYk8kktW7d2i6OSqWSQkJC7CbI5lixYoVN/Jdeeql4T/pd909IliRJ2rt3r81n79u3T5IkKc8JyZIkSevWrct3eViVSiX99ttv1rj5TZSVpNyVpLhvcm3Tpk1tjjl69GhJkoo2Gfd+Bw8etPmM+5eSLUjOPnlNgNfpdFKtWrWscV5//XXrtpyJsnm9unbtarP6Tn7n4MKFC5KDg4M1PGdp2Jo1a0ouLi6FOgcF5eXepXRz/vZRUVE21/D9rwoVKlhXQcrPsGHDJLBfyvRe6enpkp+fn+Tl5WXzHRAfHy+5u7tL7u7u0t69e6XmzZtLgLR9+3ab/QMDA+3uS0EQhEcheg4EoZS4u7uzf/9+vvnmG1q0aIG7uzsKhQIvLy9atGjBrFmzOHz4sM0Y6U6dOjFmzBjrQ5xq165Ndnb2Az9r5cqVDB8+HH9/f5ycnKhWrRoff/wxn3zyCQDh4eHWuQ35fYZMJmPNmjV8+eWX1KtXDycnJ9zc3GjUqBELFiywDikCS+voxo0befvttylbtiwajYbmzZuzfft26+TTe4eG5HjmmWdshkAUZmJsUd0778DJyYkmTZoUGL9nz56cOXOGESNGEBQUhEqlwtfXl379+nHkyBHrU2of1TfffEPTpk1xcnLCx8cHPz+/Ih0vL82bN7cZIlVc51ulUrFkyRLr8KIff/zROpxs7ty5LFy4kGbNmuHq6oqTkxO1atVi5syZrF271mYcfn7noEaNGqxfv57GjRuj0Wjw9/fnrbfeYv/+/XleV8UpICCAw4cPM378eGrUqIGrqysqlYrQ0FDeeOMNjh49ah3yk5+cSewHDx7Md57Et99+S1xcHOPHj7f5DvDx8WHDhg1Uq1aNbt26kZCQwE8//USHDh2sceLj4609Gd27dy9qlgVB+I+TSVIJDXAVBOE/4/Tp08TFxREYGEhQUJDNE3K7dOnC1q1bKVu2rN2TZ7VaLeXLlycxMZHg4GCuX78uhkSUIEmSqFOnDufPn8fZ2ZmYmBhcXFwed7KeeNnZ2fj7+5OamsrWrVttVrgqDr/++isDBgygbNmyREZGPtREcEEQhPyIngNBEIpsx44ddOnShRo1atC2bVvOnj3LtWvXWLx4Mbt37wawWdI0IiKCmzdvMnLkSOvk7JdffllUDEpIZGQkt2/fZsKECZw/fx6A/v37i4pBKXF0dLRO/N6wYUOxHz9n5anhw4eLioEgCEUmeg4EQSiymJgYateune/66g4ODuzZs8e6QlD58uW5ffu2dXtAQADnz5/Hw8OjNJL7n9OyZUsOHDhgfe/q6sqpU6cIDQ19jKn6b7lz5w5VqlRBrVYTFRVlt4zqo4qOjiYoKAgvLy+uXLnyUM9SEARBKIjoORAEocjKli3LkSNHeOmll6hYsSJqtRqlUknZsmV59tln2b9/v7ViAJYHwWk0Gnx8fOjTpw87d+4UFYMSVL9+fZycnPDw8KBjx45s375dVAxKWbly5Rg3bhxJSUksXbq02I77/fffYzAYmD59uqgYCIJQLETPgSAIgiAIgiAIgOg5EARBEARBEAThLlE5EARBEARBEAQBEJUDQRAEQRAEQRDuEpUDQRAEQRAEQRAAUTkQBEEQBEEQBOEuUTkQBEEQBEEQBAEQlQNBEARBEARBEO4SlQNBEARBEARBEABRORAEQRAEQRAE4S5RORAEQRAEQRAEARCVA0EQBEEQBEEQ7hKVA0EQBEEQBEEQAFE5EARBEARBEAThLlE5EARBEARBEAQBEJUDQRAEQRAEQRDuEpUDQRAEQRAEQRAAUTkQBEEQBEEQBOEuUTkQBEEQBEEQBAEQlQNBEARBEARBEO4SlQNBEARBEARBEABQPu4ECIIgCIIgCMKT5p133iErK8sufObMmbi4uLBq1SqOHz+Oq6sr/fr1o1atWtY4er2ejz/+mEGDBlG7du3STLaoHAiCIAiCIAhCcUpISCArK4v+/fsTHBxss83FxYW9e/dy6tQphg4dSkREBD/99BPTpk3D1dUVgB07duDn51fqFQMQlQNBEARBEAThCbYzasIj7de+/PRH/syoqCgAGjZsiLu7u932sLAwGjZsSL169ahbty67d+8mIiKC2rVrk5GRwdatW3nzzTcf+fOL4j9ZOZDY9biTUGQy2ol8/IM8KfmAJycvMtphXDLocSejyJRDl5P8cpvHnYwi8/x5D9kfd3/cySgyx6kbkc5MetzJKDJZ3SlIlz973MkoMlnVj5CSlj7uZBSZzGvIE3N/CBaRkZG4urrmWTHIoVKpAJDJZCgUCsxmMwAbN26kevXqVKxYsVTSer//ZOVAEARBEARB+G+Qy2SPtN9HH31U4PbPPsu/gh0ZGYmjoyM//PADly9fRpIkateuTb9+/XB3dyckJIRDhw7Rvn17bt68iU6nIygoiISEBA4cOMDEiRMfKc3FQVQOBEEQBEEQBKEYRUVFkZGRQcuWLenUqRPR0dGsX7+eL7/8ko8++oh27dpx/fp1xo8fj6OjI4MGDcLDw4OFCxfSrFkzPDw8WLZsGVevXiUoKIgBAwbg7OxcKmkXlQNBEARBEAThifWoPQeffTbtkT/z5ZdfRqPRUL58eQAqV65MuXLlmDVrFocOHaJdu3a89tpr6PV6HBwckMlk3Lx5k3PnzjF16lTWrVtHTEwMo0ePZt26dfzyyy+8+uqrj5yewhDPORAEQRAEQRCeWHKZ/JFeRVGpUiVrxeDeMEdHR+tkZbDMO5DdrbysXr2ajh074ubmxokTJ2jbti1ly5alU6dOnDp1yjonoaSJyoEgCIIgCIIgFJOMjAz2799PTEyMTbjZbMZoNOLi4mK3z/nz54mOjqZTp04ApKWlWYcROTk5YTabycjIKPnEIyoHgiAIgiAIglBsFAoFv/zyC1u3brUJP3v2LAaDgapVq9qEm81m1qxZQ/fu3dFoNAC4ubmRlpYGQGpqKnK5/J8750CSJE6cOMGxY8dITk7G2dmZqlWr0q5dO9RqNQBJSUls2bKFmzdvIpfLqVGjBp06dbJuB8uT37Zt28alS5fQ6/UEBQXRpUsXfHx8rHG0Wi3bt28nLCwMvV5P2bJladOmDaGhocWQ9Yen0xn4dMpKtm49hUbjwEsvd+LllzvlGffixVtMnrSCK1duU6lSOSZPeZFatYKs2zdsOMZ3364lPj6Vli1rMHXqYDy97GuQIh8Fe1LyIvLxz8rHsOVhHLuVbhf+TB0fpvWwX1IuMdPAtC03OXgjDbVSRu/aPrzVtjxKuaWLOCXLyKS/Izh4IxVPRyVj2gTQs5aP3XGKm6JybZxfmUDauBdswh2adsDxmeHI3b0xXDhG1uJZSBmpeR9E6YDjgNdRNe0IRgO6fZvQ/vlT7uY6zXB89hUUfgGY4qPRrlmI4fTBYs+LPLQ+Dl1fRubpjznqMoYNPyAl3M47skKJsuMQlLXbgEqD+cZZ9BvnQVqiXTz1a99h2DAPc8S5Yk/zg0TFZdDrvc38+GErmtYs88D4ny48ztWoVJZN7mC37WZMOr3e28yZX54viaTmaf3u68xZdYaYhCyqh3gx4ZXG1KmS93Wt05uYueg4f++/CUDHZoF8OLwRThoHAFIzdHw67wi7jkbh6qxi+LM1GdKzeqnlBeDEmUjGfbqO7atfzzeOwWjiu/l7WLv5HEajmT7davPe6PYolZY21puRSXz61RZOnY3E3c2RQX0bMXxQ81JJf6HukXs49B6DlJaIcdcKa5jMyx+HHq8hr1ADKTsd0+H1GA/8WZLJLxVyHm3OwaNydHSkU6dObN26FWdnZ2rUqMHt27dZv349tWvXpkaNGjbxjxw5gl6vp1WrVtawOnXqsHXrVlxcXNi6dSt16tRBoVCUSvoL3XNw4MABNm3aROXKlRkwYAAtWrTg7Nmz/Pbbb0iShFarZcmSJWRkZNCnTx86dOjAhQsX+P33322Os3r1ai5evEjHjh155plnSE9PZ8mSJWRnZwOWWtSyZcs4e/YszZo1Y8CAAQQFBbFy5UrCwsKKJ/cPaebM1Zw/f5PFS97hk0kvMHfORjZvPmEXLytLx8hX59CwUSVW/zmB+vVDGDVyLllZOgDOnr3BxI+W8vobPfj113GkpmXx4fglIh//4byIfPyz8vHtc5XY/WY96+v7vpVwUMgY0NAvz/jj1l4nQ2filyHV+eaZSmy6mMTPh6Kt2ydssGxfMaQ6I58qxycbIzh7p2S7heUBIbiMngL3TcBTVKyG87CxaNctIf2z15A5ueA0/MN8j+P0whgcajQi4+v3yVwwFXWbHqja9LQcq3wILq9PRb//b9Imv4J+zzqcR3+KIrB4G25kfhVQDZ6M6dIRdPPewnznGuqXpoNKk2d8ZftBKKo3R//HLHQ/vW+pBLxw31KESgdU/cYhLxNcrGktjCkLT5ClMz5U3JOXE1i57Vqe26ITMhk1Yy86g6k4k1eg4xdi+ej7g7zevy4b5vSifjVfRkzZTma2Ic/4c1ae4dj5WOZ/0p75n7TnxMU4vll2yrr9/S/3ERWbwapZ3Rj/SmO+WnKSfScfXLAtLpevxfHWhNWYzVKB8WYv2Mtfm87y2YTuLPx2AIePRzBj9jYAzGaJke//ipeHE38ueYXJY7vx4+IDrN9yvsTTX9h7JIey5XMoG3W972AyVIMnI2WlofvhTQzr5qJsOwBFnX//c1bkMtkjvYqiT58+9OvXj3PnzjF37ly2b99OmzZt7CYVGwwG1q5dS58+fWwK/7169cLX15effvoJuVzOiy++WKT0FEaheg4kSeLAgQM0bNiQjh07AhASEoKjoyOrV68mOjqa8PBwsrOzGTlyJE5OToCla2TFihXcunWLChUqEBkZyZUrV3jxxRepXLkyABUqVOC7777j2LFjtG7dmsuXL3Pnzh2eeeYZ6tSpY/0sk8nE33//TdWqVa0TOEpSVpaOP34/wIKf3qBmzQrUrFmBa1ej+eWX3XTt2tAm7t+bjqNWqxg79jlkMhkTPurH3r3n2bz5BM8+24Jflu+ma7eG9OnTDICZM1+ifbuPiIpMoHxgybYmPin5eJLyIvLxz8oHgIdj7leiySzx7e4oXm5Wllr+9l25eqMZb2clo1sFEORl+SHuXM2Tk1GWwv+tZC17rqWydXQdAjzUVPZz4sztDFadiKNOuZLpCVG16YlT/9GY4u8gc7RNs7rDs+iP7UJ/cAsAmT99hvus35D7lMWcYDsuVubsiqpVdzK+fBfTDUtjjHbLryhDaqDfsx5Vs44Yw06h274aAN3O2zjUewqHxu0wRYYXW36UjZ/GfOsSxp3LATBuXYSiahMUddpiOr7ZPn79jhg2zcccYSmU6f+ajeO45ci8yiEl3UHmG4jq+bGUciOijfX7IvItSN9PbzQxacEx6uXRKr/9aBSfLDiGr6djcSexQAnJ2YzuX4de7UIAeH1AHRb9dZHwyNQ8ew/2nrhNvy5VqF3Zsm1Atyr8tvkqAJdvJHPwdDSb5/UhsKwrVYI8OXouhlOX4mnVIKDE87JqzUlmztlBYDkP0jN0+caTJIkVq48z4Z3OtG5eCYDJ47oxaNRS3hnVjswsHdUrl2HSB11xcVYTHOhF80bBnDwbSc8utUo0D4W9R1A7onrmbeQV62JOibPd5uyBOfo6hnVzQZ+NlHQH8/UzyCvUxHR2T4nm40kkl8tp37497du3LzCeg4MDM2bMsAt3dnbmtddeK6nkFahQPQc6nY46depQu3Ztm/CcoUBJSUmEh4dToUIFa8UAIDQ0FJVKxdWrli+E8PBwHBwcbIYHOTs7ExwczLVrlhaShIQEALtxWcHBwaSlpREbG1uYpD+ysLAojEYT9evnprVBw1DOnomwmzV++swNGjYMtVZaZDIZ9RuEcvr0Dev2xo0qW+P7+3vhX86T02duiHwUwpOSF5GPf1Y+7vfX2QRSs00Mb+6f53aVUs4XvUOtFYNr8dnsuppC4wquAJy9k0lZNxUBHrnDKesHunLmdmaJpdmhdlMyF05Ht/V3u23KkBoYr5y1vpeS4zEnxaIIrWkft3JtpOwMjFfOWMN0m1aQtegLy78PbCH7j/l2+91fISkqmVdZzFGXbcLMsRHIA/MYdiKTof/jS0zhp+y3aSy/R/Lg2phvnEW34P1iTefDSk7XMWv5Gaa82vih4v/01yWqVHCnRW37oUd7Tt7hzf61mTCsfnEns0BdWwYzqp+lwU6rM7J47SW83TWEBub9FFgPVzVbDt4kNUNHaoaObYduUT3EC4Aj52OoWtGTwLKu1vifjGrKmwPrlXg+APYdDmfGxz0ZOqBJgfGSkrPIzNJTt2Y5a1jVUD8MRjPnw6Lx83Hlm2nP4uKsRpIkTp6J5NjpWzSpH1TAUYtHoe4RQOZZFpQqdD++iZRs2yhARjKG374AvWUEh7xCdeRBNTFHnM3jSP8uj2O1on+zQuVco9HQrVs3KlSoYBOeM8zHz8+PhIQEvL29bT9ELsfT05PERMu4z4SEBDw9PZHLbT/e09PTWinIqVykpKTYxElOTrb5f0mLj0/F09MFlSq3RdHHxw2dzkBKSqZdXD8/D5swH283YmMsaY2PK3h7SXpS8pGTvichLyIf9ul83NdWDkmS+N/haAY3KYOz6sFjPIcuC6P3T+dxUyt44e4QpIQMA34uDjbxfJyVxKbrSyTNAJlzJmI4uS/PbXIPb8wpCTZhUloyck9f+7i+5TAnxqBq0QW3z5bi9sVKND2HWIcqmaNv2vQQyMsFo6zeAOOlk8WYG5AyUpC52f6eyNx9kTm75RFZwnz9NGTnDttSNu+NlJmKFBsBgOnYJgx//wSG/FuJS9KMJafo0yaYyvkUpO91/XYaK7dcY/zQBnlunzqqCQM6VSruJD60Q2eiadB/JXNXnWH8K41xdnTIM94HLzXkdmwGzQb+SrOBv5KarueTUU0BiIrJoHwZF/635gIdXvmTbq/9xarNV0otD3O/eJ7Obas9MJ67myMOSjmx8bnzkaLjLBNFk1OybOJ2eHYOL45aSr1aAXRu9+BjF1Wh7hFAirmBfvkUpPt7De6jfm8R6hFfYo4Mw3Sh+OcSlbbHMazo36zI1aKoqCgOHDhAlSpV8PPzQ6vV2kw8zqFSqdDpLF/I+cVRq9XWONWrV0ej0fDXX39x+/ZtdDodV65c4eBBy0Wq15fcD+y9tNl6m0IPYH2v1xvt4jrkETcnnlZb8PaS9KTkIyd9T0JeRD5y4/4T8nGvozfTiU0z0LeefcE5L+M7V2DRwKroTRIfrL0OQLbBjEph+xXroJCjN5bOOtV2VGow2g5nkQwGZEr7Qp1M7YjCrzzqNj3J/PkLsn/9AXXH51B3tp/0KnNxx+X1TzFeO4/h1P5iTbLp3D4UNVsir9IY5HIU9TogD6gMigePiJVXa4byqWcxbFsMptK9fvJy8GwMJy/HM7qvfU/N/SRJ4pMFx3ijXy18PAoeO/64VK7gweqvu/Pmi/UY/90BTofF5xnvVnQa/r7OLJ7WmYWTO6IzmPji52MAZGkNHDoTzcmLcXw7rjWvPFeLGQuPseXgzdLMygMplXI6ta3GN/N2ExOXRnqGlpnf70CpkGO4b77Hd9Of48dZ/Qi7Gsvn320r8bQV5R4piH7lZ+iWTUbmH4JDtxHFlFrh36JIV8+tW7dYuXIlHh4e9O7dG7B8qeUnZyjBw8RxcnJi8ODBrF27loULFwLg5eVF+/bt+euvv3BwyLuVorip1Q52BZOc9xqNyi6uIY+4OfHy3e5oe5yS8KTkI+fzn4S8iHzkxn1c+Vhw4A4LDuZOIJ7fvwoNK7iyNSyZlqHuNnMQClKtjKWnc1qPivRfdJHbKTrUShl6k21FwGAyo3Eonq5qTfdBaLoPtL7P+GYcxqsFdP8b9HBfRUDm4ICkt29Fl8wmZE4uZC6YijkxFhOg9S6Dul0fdFt+y93fzROX974CmZzMHz6BAr7bH4aydT+UrftZ3+uXTcK4eyWqFz4CuRzzjXOYTu9EpnEq4Cggr94MVb8PMR1Zj+nE1gLjlpR5f15gwZpLAGj1lgLk/PGt0agefE39uj0ck1mif8fSXZkvL/N+O8eCP3JXdFowqQONapbBx9MRH09Hqod4cfpyPKs2X6FeNdvKdEaWnonfH2LR1E7UrWrZNn1MCwZN2MKYF+uhUMgxmSVmvdcSJ40DtSv7cPlGMr9uvkKXFsU7JGfe4gMsWHogNx9fD6BRvQoF7GHro3c68+4na2jb+3ucHB0YNawlZy/cwcXZtqGzdnXL0COd3sgHk9cydkxHVA7Ft8JMcd0jDyLduYYEGP7+CVXfDzBs+d8/opItlI5HrhycP3+etWvX4u3tzcCBA63DgDQajbX1/146nQ43NzdrnMxM+3G3Op3Our4rQLly5XjttddIS0vDYDDg5eVFREQEYFkmqjT4lfEgOTkDo9GEUmm5wePj09BoHHBzc7SLG59guyxgfEIavn7u+W5PSEjD1/fBXcxF9aTkI+fzn4S8iHxYPM589GvgR5fqXtb3ZVwtlZAD11MZ3apcfrsBkKEzsS88hS7Vvazdz6E+lu+v5Gwjfq4qEjJtW+oTMgz4uhRPRUe3ey36Y7us783Jebfc5m5PQO7uZRMmc/PCnJpoF1dKSUTS6zAn5s7tMsVEIvfKXbVJ5uGD69hvAEif+RZSej5LohaC8dgmTOdzh0VJaYmYb17AuH81aJwhMxWH/h9iTs5/SISidmscnnsP07G/LUOIHpMBnSvRrYWl8BmblM2QyTt566sDNnFenb6XPm2C7eYgbDp4i/PhSTQcYpnwbTCaMZklGgz+gw3fdKOcT+msdQ6WCcTdWuYW1OOTs7kQnkjN0NyhLJUCPbgWmWK37/WoNLK0RqpVzL3uqod6YTZLxCRk4evpSFlvZ+uypgAVA9zYf+pO8efjmQZ065A7Dr+Mr2sBse15ezmzZM4gUlKzUauVSJLE1z/uIsDfnYSkDE6fu03HNrlzJCtV9MFgMJGZqUPlUbSC+r2K4x7Jl7MH8grVMF86nHv8uFuW3kW1E2SlFUcWHov/8hChR/FITVgHDx5k9erVlC9fnmHDhuHqmnuTeXt7280HMJvNpKSkWCcu58S5vwchKSnJGicrK4vTp0+TlZWFm5sb3t7eyGQyoqMtrXxly5Z9lKQXWvXqgSiVCs6czp0QefLENWrVDrabM1GvbkVOnbpuzZckSZw6GU7duhWt20+eyB2nGx2dRHR0MvXq2q+fLvKRvyclLyIfjz8fHo5Kgrw01pfGQU5yloHIFB31yxe8olC2wcz7f13n7D0TjC9GZ6GQQbCXhrrlnLmTqicmLXcI5MmoDOoEFE/BTspMxxx32/rCUPBQS+P1iygr5y4mIfP0Re7lhyn8Qp5xZSo18jLlrWEK/6DcVY1UGlzfnQVmifQZbyGl2FcwHkl2BlJStPWlqN7cMqTBZITMVFCqUFSsg/lG3j0k8pC6lorBkQ0YNs4rnjQ9Ig8XNUFlXQkq60qdSl5smd2dNbO6WF8A00Y15s3+te32nTWmGRu+7maN279TKLVCPVkzqwt+pbw6kYermqBybtbX+j03+Hqp7dySC+GJeU5I9vOypPXeisP1KEslsnwZF+pW9eF2XAbpmbnXbnhUKgF+xV/58XB3JCjQy/rSaAo3+mDslLXsP3IdD3dHHDUO7D0YjrenM5Uq+hJ1J5Ux4/8gNi638HwhLAYvTyc8i7FiABT5HimIzLMMqgEfgWtuxU9erhJSRsq/umIAYkJyYRU658ePH2fbtm3UrFmTQYMG2bT0g2VlooiICJuegfDwcPR6vXV1otDQUPR6vXVlIoDMzExu3rxpjSNJEmvXruXixYvWOHq9npMnTxIcHFxqPQeOjir69GnG5MkrOHc2gu3bT/Pzz9sYMsSyNFV8fCpareWLrUvXBqSnZTP9s9+4du0O0z/7jexsHd26WZZzHPBCG9auPcIfvx/gclgU48Yupm3b2qWyROOTko8nKS8iH/+sfOS4Gp+NWimjvIf9vKhMvYmku70Bvi4OdKzqyWdbb3IpJpMTt9L5ZFMELzYqg4taQaCnhqdC3Phw3XUux2Wx+nQ8Gy8kWicslzbdrrWomndG1eppFOVDcH7lIwxnDuUW+B2dkTlbGnrMMZHozxzEefh4FIGhKGs2RvP0i+h2rwVA02MQct9yZP5vOmDpgZC5eUExr1ZkTryNovHTyGu0QOZVDtXzHyClxmO+etwSQakCF0/Lv+VyHJ55G3PEeQz7/rCE57yKOP66qDQqpbWikPMCS+HZ293yG5qpNZCUpgWgjJeTTVx3FxVqlYKgsq4oFY+3wNKvS2WOnI1h6bpLRNxJY/aK05y9msDQXpaHOml1RuKTLavdlPVxplWDcnwy9zDnryVy7moCn8w9zNOtgvFy19Cirj8VA9z48NsDXI9KZdO+G/yx9SovdKtaUBJKhVZrID4xd3K7h5sj387fzZXwOI6cvMnUr7bw6pAWyOUyalf3p2Y1fyZM38i1G/HsOXiNWXN2MGroUyWezkLdIw8g3b6KdOcaqmfeQuYbiLxyIxy6DMew59cSzIHwT1Sob5mMjAy2bNmCh4cHTZo0ITo6mqioKOsrMzOTRo0a4eDgwLJly7h06RInT57kzz//pFKlSgQGBgIQFBREcHAwf/75JydPnuTSpUssW7YMjUZDo0aNAMvSprVq1WLXrl2cOXOGa9eu8csvv5CWlkanTnk/ebWkfDj+eWrUrMDQod/w6ZSVjBnTk86dLcvHtWo5jk2bLDehi4sj8+aP5sSJazz37OecOXOD+QvewMnJUsioXz+EKZ++yNy5G3jhhVm4uzsx/fMhIh//4byIfPyz8gGWpx67qpV5Pkdl8eEY+i/ObbCY1j2Yqn5OvLLyCm+uvkbrSu682z63tf3zniE4qxW8sPgiCw5GM7V7xRJ7xsGDmMIvkLX0Kxx7DcN1wlykrHSyfs5dW9vphTE4vz7V+j5zwTRMcbdxHT8H51cmoNuxxvpcA1XD1sjUGtw+no/Ht2usL6cXxhRrmqU71zCsn4tD1+GoX/sOAN2yyda5DYrarXEcZ1nfXVauMnIPPxSh9XAct9zmld+yjv8kP68Lo+/4xzM/ojBqhnrz/YR2/LHtKr3fXM/e47dZOLkjZbwtLeSb9kfQamjuUrpfvt+KqkEejJyyg9em7qRWJW+mvmF5crBCIWf+Jx0wSxLPvr2BWYtO8OHwRrRvGvhY8navTTsu0qrHd9b3b41sS2iQDwNHLWXs5LUMHdDEugSqQiFn7hfP46RxYMCIJUz8fCODnm/M4H4Pt2RtURTmHnnwwczoVkwFgw71q1+h6vMmxsPrMB1eV0KpLz1itaLCkUkFzQ6+z6lTp1i3Lv+LpHfv3tSrV4+4uDg2b95MZGQkarWaqlWr0rlzZ5sVirKzs9m6dSthYWFIkkRgYCBdunSxDisCyxyE7du3ExYWhsFgoHz58rRr146AgKI9HEVi14Mj/cPJaCfy8Q/ypOQDnpy8yGiHccmgx52MIlMOXU7yy//+J5R6/ryH7I+7P+5kFJnj1I1IZyY97mQUmazuFKTLnz3uZBSZrOpHSElLH3cyikzmNeSJuT/+ic4n2j9k7GHU8s7/KfJPskL1tdavX5/69R/8wBU/Pz+GDCm4tc/R0ZHevXtbVznKi1qtpnv37nTv/u+/YQRBEARBEAThn+7xDsQUBEEQBEEQhBL0Xx4i9ChE5UAQBEEQBEF4Yv2XVx56FOJsCYIgCIIgCIIAiMqBIAiCIAiCIAh3iWFFgiAIgiAIwhNLzDkoHFE5EARBEARBEJ5YMjHnoFDE2RIEQRAEQRAEARA9B4IgCIIgCMITTC7awgulUE9IFgRBEARBEIR/k+tpsx9pvxC3N4s5Jf8O/8meg/CWtR93EoosdP85pHOTH3cyikxWezJS0tLHnYwik3kNQbox83Eno1jIKo5FOvLvf2S8rOkMssZ2fdzJKDKnmZuRLnz6uJNRZLKan2BaMeRxJ6PIFC8uBe36x52MotP0ZGfUhMediiJrX346We91ftzJKDKnr7Zi3vr6405Gkck7z33cSRCKgehnEQRBEARBEAQB+I/2HAiCIAiCIAj/DeIJyYUjKgeCIAiCIAjCE0smBsoUijhbgiAIgiAIgiAAoudAEARBEARBeIKJYUWFIyoHgiAIgiAIwhNLDCsqnEJXDiRJ4sSJExw7dozk5GScnZ2pWrUq7dq1Q61WA5CUlMSWLVu4efMmcrmcGjVq0KlTJ+v2+23ZsoXo6GiGDRtmt+3w4cMcPXqU9PR0fHx8aN++PZUrVy5ssotEU6c+fhOnc6tfN5twj4Ev49b7eRTuHmgvnSfh288xRFy329+1W2/8PppmFy6ZzVxvXRcAVeVq+H7wMaqQyuhvhBP/5VT0ly+WTIbuiorLoNe7f/Pjh61pWqtMnnHSMvXMXHqKXcdvY5agTYNyTHipAW7OKpt4RpOZvuO20KFxecb0L92lYk+ciWTcp+vYvjr/ZeAMRhPfzd/D2s3nMBrN9OlWm/dGt0eptP3C0OuNPPfSz0x8rwtNGwSVdNIBWL/zGnN+OUVMfCbVQ72ZMKoZdar65hk3NV1H0+eX24R5uKk5/NsgAJLTtHzy3QEOnLyNp5uat4Y0pFeHSiWeh3tFxWfSa8IOfny3OU2r55OPTD3Tlp1l75kY1CoFvZ+qwDt9ayCXywDYdzaWL389T0RMBsFlXXivX01a1y1bKumXV26AqvsryLz9Md8KQ//XXKT4qLwjO7rgNOUPmyApM5XsKf1x6DQIh06D7HYxJ0aj/eKlkkh6nqLiMuj19kZ+nNA23/tckiS+Xn6aP3aEYzZL9O0YynuD6lv/HjmMJjN9P9hMhyblGTOgTomnfejiixy7mW4X/kw9Xz7rHWIXLkkS3+yIZPWpeExmib4N/Hi3YyBymSUf5+9kMP3vm4TFZFHWXcXIVuXoXTfva7S4Xbx0m0nT/uDKtRgqhZZhysS+1KpRPs+4BoOJb+f8zdqNJzEaTTzTsxHvvfU0SqUCgNjYVD6b+ReHj15DrXbg6S71ePfNbqjVDiWah9P7bzN/0mGbsPqtAnh1cjO7uAc3R7B11WVS4rPxD3aj72t1CK3lY8mf3sS6RRc4vjMKndZIlbq+9B9TF09fpxJN//3kVRqi6vkKMu9ymG9eQv/nnDzvdZlnGRwnLsvzGNq572G+fg4cXVA9+waKms2RsjMw7vod4/6/SjgHFq8vOM3Ocwk2YT+MrEu7WvbXdqbOyIzVV9hxLh6VUs7A1oGM6BRs3X4rPovJv4ZxJiKVAC8N7/aqTNu7fzfhv6PQlYMDBw6wc+dOWrRoQUhICImJiezatYv4+HgGDRqETqdjyZIluLi40KdPHzIzM9m+fTspKSkMGmT/Q3nw4EEOHz5MUJB9QezQoUNs27aNNm3aUK5cOU6dOsXKlSsZNmwYFSpUeLQcF5IqpDJlpn6NpNfZhLv1fh6PAUOJ+/xjDJE38XjxJfy//JHIgb2RdFqbuBk7NpN1ZH9ugFJJue/+R9bBvQDINI74z/qBjG0biftsIm59+uE/cy63+j+NpM0usbxNWXCcLK2xwDiT5x/jVmwG8ye0RSaz7PPxj0f57v2WNvF+XhdGWEQKHRrn/WNXUi5fi+OtCatRqQq+lGcv2Mtfm84yfWIPvL2cmfjZRmbM3sbEd7tY4+h0Rt6f9BdXr8eXdLKtjp+P4aNv9jPt7ZbUr+HHig2XGDFxCzuX9sfZ0f6HPvxWCh5uatbPe9Yadm8BbvxXe9HpTKz6pgdnw+KZ+O1+gsu751vZKAlTlpwhS2d6YJzEVC3LP2pNYpqOD348hrebmmFdK3EzNoMxs4/wdt8adGjgz/YTd3j9uyP8/UVHyvs6l2jaZWWCUL/8KcZdv2I8tQtl4y6oX52BdtYroNfaxZf7VbBUBr4alRsomQEw7PkDw6GNucd2dEYz+utSKzDkmDL/6APv80XrwtiwL4I541pjMJoZ+91BvNw0DO9Twybez2svERaRTIcmpXOff9e/CgaT2fr+bFQG7/5xjRca++UZf/GhGDacS2R2/yoYTWbGrQnHy9mBl1v4k641MvKXy/Sp68sXz4ZyOjKDj9ZeJ9BTQ4MKriWaj6wsHa++sZCeTzdgxtQBrPz9ECPf+B/bNnyIk5N9o9nsH7bw1/oTTP+0Hz7ernw06TdmfLmeiR/2QZIk3nx/KW5ujvyy6HVS07KYMOk35AoZ497tWaL5iL6ZTu3m/gx8t4E1zEFl3yJ74WgMq2afZtC7DQiu7sXhrTeZM+EAk37ujIePIxuWXOTM/ju8NKExru5q/lxwjvmTDjNubjtkMpnd8UqCrEwQ6lemYtyxCuPJnSibdkX92ky0M162u9ellHiyJve3CVP1GonMpxzmCEsjnnrgeHB0Rjv7LeR+gaheHIs5PhLz5RMlnpdrMZnMHFKTZlW9rGHuefx+AHyy4hIXItOZM6IuZrPEuGUXcFDIGNY+CJ3BxPC5p6js78yq9xpzMTKd9xadY9GYBtQJdi/xfJQkMayocAp1tiRJ4sCBAzRs2JCOHTsSEhJC48aNefrpp7l+/TrR0dEcO3aM7OxsBg4cSLVq1WjYsCHPPvss4eHh3Lp1y3qs5ORkfv31V7Zv355nj4LBYGDv3r00b96cNm3aULlyZZ5//nkCAgLYs2dP0XP+ENx6P0/AvGWYkhPttrk+3ZuUVUvIOrgXQ+RN4r+chsLNA03t+nZxJb0OU1Ki9eXauQcymYzEed8A4NKhC5JeR+LcrzDcvEHid19gzsrEpV3JPdhl/d4IMrWGAuNkaY1sORzJx8MbUivUi5ohXox/qQHbj0ah0+cW/m5Gp7Ns0xUqlXcrsfTmZdWak7wwcgneXgUXGCVJYsXq47zzWjtaN69Ezar+TB7XjV/XnCQzSw/AtRvx9B+xiFu3k0sj6VYJSdmMfrEevTpUItDfjddfrE9quo7wWyl5xg+/lUJwgDu+Xk7Wl7eHIwC37qSx+0gkU99uSZVgL/p2rUqv9qGsWH+p1PKz/mAkmdkFX1cAe8/EMKxrJSqXd6NZDV+6Nw/k0IU4AGKSsunXNphhXSsR6OfMS90q46RWcO56yf9tlM26Y755EcPWZUjxURg2/Q+0mSjrt88zvqxMBczxtyEjOfeVmWrZqNfahCtbPYs59ibGA2tLPB851u+5QWZ2wRUDgGUbwxgzoA4Nq/vRrHZZ3h9cn1/+vmIT52Z0Oss2XqZSYOkVEjwclfi6qPB1UeHl5MC3O6MY3sKfWuVc8oy/7EgMY9qVp2EFV5pWdOfdjhVYcTQGgJg0Pa0qefB+p0ACPTX0rONDZT9HTkXa90wUt01bzqBWOzD23R6EhpTho7G9cXZWs3nbWbu4kiTxy68HePfNbrRpWZ2a1cszZeJzrPr9EJlZOq5HxHP67E0+/7Q/lSuVpVGDEN4c3YUNm06VeD5ibqZRLtgNdy+N9eXkorKLd2jLTZp1rkCTjhXwC3Ch10s1cfPUcP6I5W9xeMtNer1ckyp1ffEPdmPQew24eTmZ+NsZJZ6HHMoWPTBHXMSwZanlXt+wELIzUTboYB9ZMkN6svUl9/ZHUacl+pWzwGxC5l8ReZUG6H+ZgRQTgensPoxHNqMIrlni+dAbzNxO1FIryA1fN7X1pXKwL94lZ+jZdDKWKQOq0SDEg0aVPHmvVyV+3nETgN3nE0jO1PPFkFpU9nehdxN/ejYpy5Jdt+yOJTzZClU50Ol01KlTh9q1bYeN+PhYupySkpIIDw+nQoUKODnldg+GhoaiUqm4evWqNWzLli0kJSUxdOhQypa1Hy5w+/ZttFot1atXt4bJZDKqVavGjRs3MBgeXAApKqemLYmb9hGpv9p3JybO/Yr0rRvvCZFABnKXvH+0cshd3fAY+DKJ876Fu3nQ1KyL9uxJm3jac6dR16pb1CzkKTldx6zlp5kysknBaZXBvPGtqV7R0ybcZJZsWiInzT/GG/1q4emmKZH05mff4XBmfNyToQMKzkdSchaZWXrq1ixnDasa6ofBaOZ8WDQAx07dommDYFb9NKwkk2yna+uKjHqhHgBanZHFa87j7aEhtIJHnvGv3UomOCDvwtmZy/H4+zpTvmxuK2iDmmU4fSmuuJOdp+R0HbN+Pc+Ul+wryPfzcFGx/mAk2TojscnZ7D8XS40gDwCaVvdlwiDLkBWD0cwfeyLQG8zUDvEs4IjFQ+5dFvOtyzZh5pgI5EHV847vVwEp4fYDjyvzCUDZqBOGDT8VSzofRnK6jlnLTjFlVMH3R2xSFtEJWTSukdsa36C6L3fiM4lLyu25nDTvCG/0r42nW97DQ0vaX6fjSc02MrxluTy3x6XriUnT0ygo9/pvWMGVO6l64tP1VPZzYsYzochkMsySxK7LyUQkam3il5Qz527SsH5Fa6u4TCajQb1gTp+5aRc3KSmDzEwddWvn9o5XrVIOg9HE+QuR+Hq7svCHEfh426Y7I8O+Z6u4Rd9Mp0z5gn/jADr3r0LHvvbDf7MzDZjNEsPGN6Z6Q/shbtmZD67IFhf53WGD9zLH3EAenPe9fi+Hp4djPPw3UlwkAIrQukh3riMlxVjjGNbMxbBlafEmOg834jKRAYHejg+MG5lguZ/v7QWoGuBKfJqe24nZRCZmE+LnjKtjbk981XKunI5ILfZ0lzaZTP5Ir/+qQg0r0mg0dOvWzS48LMxyg/n5+ZGQkEDNmra1ZblcjqenJ4mJuS3w7du3x9fXN98uxPh4y9AOb29vm3AvLy8kSSI5ORk/v7y7lotLzIS3AMucgftpz9q20rj1eBaZQmlXyL+f2zP9MSXEk7l7mzVM4e2D/ka4TTxTciKqiiUzVnzG4pP0aVORyg9oAdSolbSqb/tDvGzjZaoGeVgLCKt3XkdnMNGvYygb9tn/0JWkuV88D8CfG88UGM/dzREHpZzY+HQqVbQMr4mOSwMgOSULgBeebViCKX2wQ6fuMPyjzUiSxKyxbfMcUgRwPTIVo9HM82+uJTYxi0a1yvDhq83w83YiPikLP2/bMbs+no7EJmSWRhaYseIcfVpWoPJD9CBNGlqPsfOP0/DV9ZglaFHTl9efqWYT52ZsBk+P247JLPFev5olPqQIQEpPQeZu+50jc/eF7Lxbl+V+gaBQon7jO2Tu3phvnEe/fgGkJ9nEc2jTF/O105ijruR5nJIwY9EJ+rQNoXI+Fc0c8cmWAoOfV+614+NuqejHJmbh5+XI6h3h6PQm+nWqxIZ9ESWV5HxJksTCA9EMaVoWZ5Uizzjx6ZbGFj/X3JZsb2fLfRSTpsf3brjeZKbR9OMYzRL9G/pRt3zJVw7i49OoFGrbCObt5cLV8Bi7uO7uTjgoFcTG5e4THZMCQHJKJm5ujrR6qqo1vtlsZvmqAzRrWrJz8SRJIjYqnYvHY9m84jJms0SDNgH0HFYT5X2t1BWq2FbkLxyNIS4qg6r1fJHLZXYVg51/XsPFXUVASOn1SknpycjcbcfSyzx8IavgniR5cA3kwdXRL5+eu593WcxJMSjb9kXZoheYDBj3/Inx8MYCjlQ8wmMycXFUMm7pBY5eS8bfQ8MbT4fQuqb9PAFvN8s9EJuiI9jPcr/HJFsqlcmZBnxcVcSn6ZAkyVo2i0nWkpJR8o2xwj9LkatFUVFRHDhwgCpVquDn54dWq81zmJBKpUKnyx237+fnV+DYwpy49x8r5/29x3rc1DVq4/3G+6SsXIwpyX4I0r3cejxL6uoVNmEytQZJr7cJk/R6ZCr77tqiOng2hpNhCYzuW/juzuV/X+HvQ7f4YHA9ABJTtXyz4gxTRjYutXGij0KplNOpbTW+mbebmLg00jO0zPx+B0qFHIOh4LHxpaVysCerv+/Nm4MbMP7rvfm29l+PTCEjS8/4kc34Znw74hKzGDVpKyaTGa3WiIODbcFJ5aBAXwp5PHg+jpNXkxjdu9qDIwM3otOpVdGTFR+34fs3m3I1Ko2FG6/axPFyVfP75LZ8MqQu36+5xJZjD26hLyrjmT0oardCXr0JyOUoGnZEHlgFFHm3o8j8AkHthGH9fPS/fI7MzRvNS1Pg3hYntSOKem0xlOJwooNnojl5KZ7Rz9d6YFzt3fkh9w5DUN29jvRGE4kpWr755TRTRjV9bPf50Yg0YtP09G2Yf4NQ9t3rXKXITaNKafm33iTZxF31Sk1mPhvK3xcSWXwougRSfF/atAa7eVEqlRK93v7eVCoVdOpQm6+/30RMbArp6dl88fV6lMq8v69mfbORi5eieOeNriWWfoCkuCz0WhNKBwWvfNKU50bV5tiOSP6cbz806l7xdzJYOvM4TToE2lUaAM4cuMP2367Se3gtu0pGSTKe3oOiTivk1Zta7vVGnZAHVgVFwZO6lc26Yzq3Hykt97depnZEUaU+8oq10C+dimHnrzj0HomidssCjlQ8bsRmodWbaFndm59eq0/rmt6MXnCG87fS7OIGeDlSN9id6asvk5JpID5Nx5y/LYuoGIxmWtXwIV1rZM6m6+iNZs7fSmP14Ts2837+reSP+N9/VZGWMr116xYrV67Ew8OD3r0treuSJOUbvzA/LAUdp7DHehgeg1/Bc/AI6/vo9197YC8AgLpmXfy//IGsw/tJWjin4LjVaqL0K0PGjs024XlVBGQqVbFMRp63+gIL1lgmTGnv/hDNn9AGjbpwf/oVm6/y2c8nGD+sAS3r+QPw2c8neKZdRao8oGWyOMxbfIAFSw9Y3y/4egCN6j38pPSP3unMu5+soW3v73FydGDUsJacvXAHF+fSHSIxb9VpFqzK7elYMK0LjWqVxcfTER9PR6qHenM6LJ5VG8OoV92+ILRh/nPIZFj/ft9N7ECrF1dy5nI8apXCrvCgN5jQaIp/xeJ56y6zYL1l+I31unqvBZp8WnXvFRGTwRcrz7Pr2674eWisx5i8+DSvdK+MUmH5QnZ1cqBGsAc1gj24died5duu06VxQLHmQ9muPw7tB1jf6/43EcP2X1APnghyBebws5hO7ABN3quoaL8aCZIERkvlXrdsGo4fr0BeoSrmm5a5HooqjcCgw3yl5CYmzvvjPAv+vGBJU87f46O2D3Wfq3MqAgYzalXOvy3H0KiUfPbzcZ5pH0KVu8O+StL8fbdZsO9O7vuBVWkU5MbWi0m0quyOh2P++VHfXXlMb5JQ51QKjJbfEcd7Kz4KOTX8nanh70xcuoHlR2IY1ty/WPMxb+EO5i/cYX1fp3YF9HrbITN6vRGNJu+C6MRxvXln3HLadJ6Gk6OK10Z05Oy5W7g42w7dnPXNBpb8so9vZg6iSuXizcP9vMs48+Wanji5OiCTyQis5IHZDIs/P0rf1+oiV9j/JsdGpvPd2H34lHNh4Hv2vbOn99/mf9OO0vaZUFp2r1ii6Vd2GIBDhxes73U/fYRh63LUwz623OvXzmA6vh00BfRQyuUoajVHv2KmTbBkMoFMjv6XGZa5RlFXMZYLQdncUpEoTvO33GDB1gjr+x9H1WNQ20DcnSzXUrXyrlyITOe3A7epVcG+F/eLITV5+39naTF+D64aJe/0qsTpG6k4a5R4u6r4alhtJiy/wLwtNyjv7cjA1uVZujuyWPPwOPyXhwg9ikcuNZw/f561a9fi7e3NwIEDrXMMNBpNnq36Op0ON7eHn7B6bw+Bo2PuWLr8ehSKKu2v38jYucX63hT/4HHamvqN8P9iLlnHDhI7eZylkFAAp6YtyT59AnO6bY3elBCHwsu2C1Dp5Y0x0XZpskcxoHMlurWwFKJjk7IZMmkHb31p+2X16vQ99GlTkSkjG+d5jP+tvcSsZaf5YHA9hnTP7c7edOAWGpWCX/62tPhq9SZOX0lgy6FbbPi2e5HTbpOPZxrQrUPuWNAyvoUbCuDt5cySOYNISc1GrVZalm78cRcB/qW7AsOA7tXp1jp3Ccb4pCwuXE2gZuXcv3+lCh5cy2dCsuN9BX1vD0c8XNXEJWTh5+NMfJJthTI+ORtfz+JfHnBA+4p0a2opqMcmaxkyfR9vfX/EJs6rXx6kT8sKdnMQLt1MwdNVZa0YAFQPcidTayQ100BSmo7UTD2Nqt5zTsq5cuxS8a8iZTy8EdPZvdb3Umoi5ogLGPestlQIMlNRDZyAlByb9wEM933XZaZCVjoyt9y0K6o2wnTxyAO/H4piQJfKdHvKsuJbbFIWQz7ezluz9tnEeXXaLvq0rciUUU1twv3ujlWOT8mmvJ9lPHlCimWoga+nI5v237Tc55ssQ6K0ehOnL9+9z7/rUaz56N+oDF1r5g7rKnN3KND+8FReb1NwxbDM3SETCRkGAjzUd/9tqbT5ujgQlawlIlFLy0oe1n1CfR1Jzir+ce4Dnm9Ot865c8Z+WrSLhETb4SoJien4+eT9m+jt7crSha+RkpqFWmX5vvpq9iYCyuW2vE/9fA0rfz/ErM9eoEvHkl9WFsDZzbYRy7+CKwa9mcx0Pa4etr/JdyLS+O79vfj4O/PG50+hUts2HBzbGcniGcdo3TOE50eXzPy6exkPbsR0+t57PQHzjfMYd/8Bjs6QkYJq8EdIyfZDvXLIg2qAXInpvoq+lJ6ElJpgs8qRFBeFrGqjYs9H/5bl6dogd1hWGXe1XaNMSBlnrkXnPbk7yNeJNR82IzFdj6tGya2ELOQyKOdp+T5uU9OH/dNbE5+mx8dVxar9UQR4le58QuHxe6TKwcGDB9m2bRvBwcH0798fjSb3wvH29iY52XZVEbPZTEpKis3k4ge5d5JzQEDuj0JSUhIKhQJPz+KdnGhOT7MrtBdEVbES/jO+J+vIfmInjwXTg4duqGvURnvutF249sIZPAYNtwnT1K5P8tKiT170cFXj4Wr50i7j5ciW721/zLuM2cC0UU1okc8a8mt2X2fWstOMH1afoT1sh4zcf6wPvjtEncrevNTr4YaWFIaHuyMe7g+ecJWfsVPW0qtrbVo2tRTMN++4hLens3UOQmm59+8B8PMf54iKSed/03OHBFy4lkCNUPvxohmZetoP/ZXZH3egWV3LXJDYhEyS07RUDHTHSaPkTlwGMfGZlL07Pv/k+Vjq5vOsgSLlw0WFx91VSsp4OrJlVieb7V0+2Ma04Q1oUcu+98PPQ0Nyup7ENB3ed+euXL+TjpNGiZeritV7Iliz/xabZnS09hBeiEghpFwJjA3PzkDKzv0RVdRrizywKob18y0FfaUKRWgddL99bb+v2gnH8UvQLZuKOdwytELm5g1Obpjjc1va5BWqYtj7Z/Gn/R529/ncXjbbu7y+jmmvNaVFXfvW5TJeTpTzceLkpXhr5eDEpTjK+Tjhl8exPvj2AHUq+5TMfe6otOsdSM4yEJmso/4Dlhv1c1Xh767ixK10a+Xg5K10/N1V+Lqq2HQ+kSkbbrDnvQZo7vYkXLyTSajvo3+v5JsPdyc83HMr5fXqBPHTzzutY7klSeLk6QhGvZLHyjjABxNW0LtHQ1q2sDTG/L31DN5eLlQKtRQK58zbyqo/DvH1FwPp2qnkC9YAF4/F8PNnx5i+qhuqu40UkeEpOLup7CoGqYnZzB67D98AF96Y0RLNfX/TsJNxLJ5xjLZ9QkulYgBAdjrSPXOHFPXbIq9QDcPaeZCRYrnXK9VFt+rLfA8hD6qGOeoqGG3H4JtvXkLWvr+lQUFrmccmK1MBKSmfRoUi8HB2wMM5t8dp/LILyOXw2cDcocJht9Op4m8/cdxslhjx4ynGPVOFKndX/NpzIYEagW64OCoJj8lk2u9h/O/1Bvi5q63bm1bxsjvWv41YyrRwCn22jh8/zrZt26hZsyaDBg2yqRiAZWWiiIgIMjNzJ0GGh4ej1+sJDQ196M8JDAzEwcGBixdzHwQmSRKXLl0iKCgIpfLxPtzZ54NPMMbFkPD9TBTuHii8vFF4eSNTWW4oubMLclfbViFVSCUMEeF2x8rYtQ2Fiyveb43DITgE77fGIdM42vRkFAeNWkmQv6vNC8DPyxHvuxMQM7MNJKVaWj9S0nVMXXiCPm0r8vRTQcQnZ1tfJpPZ7lhqlQJ3FxUBpTBx9EG0WgPxibmFPg83R76dv5sr4XEcOXmTqV9t4dUhLewe8lTa+nWrypEzd1j613kibqcye9lJzl5OYOgzli96rc5IfJLlx8bFWUXDmmWZMf8I5y7Hc+FqAu9+votWjcpTtaIXgf5utGwYwNhZe7h8PYk/Nl9mw+5wBvasUVASikyjUhBUxsXmBeDnqbEW/jO1RpLSLK3sdSt5ERrgyrj5x7kalcbRsARm/XqBgR1DkMlk9HqqAvEpWr767QIRMRn8sv066w5G8mrPqvmmobiY46NQNuuOotZTyHzKoXpxnKWF8fIxSwSlClzuNkzosjBFXEDVcyTy8lWQBVRCNXA85ivHkWIiLHHkcmS+5ZHiSm8pwHzvc28nvD3s73OAAV2r8OWyUxw5H8uR87F8tfw0g+82BuR7n/s9eNWa4nA1Lhu1UkZ5D/ve4ky9iaTM3ILagEZl+Hr7LY5GpHE0Io2vd0QyuKml4aNNFQ9cNAomb7hBRGI2G84l8L+DdxjZKu/Vj4pT1051SEvP5rOZa7kWHsNnM9eSna239i5otQbiE3Ibpzw8nPlmzt9cuRrNkWPXmPr5Gl4d3h65XE749Vh+WLCdES+1p2H9isQnpFlfJSmkpjcOagXLvjpJTGQ654/E8Of8c3TuXwWzSSI1SYvRYBmbvnr+OSSzxOD3G6LLNpKapCU1SYs224jJZGbZrBNUrutD5wFVrdvu3b80mONvo2zeA0Xtu/f6oPFIKfGYw+65111tGyHlZYMxx9ovvGG+cgopLgrVC2OR+QWiqNcGZdOuGA+tL/F8tKvty/pjMfx15A4347OY+/d1ToanMKhNIGB56FlSuqUHTS6X4eig4Ku1V4mIy2L7mTh++PsGr3YOBiDAS8O1mEy+33SdqIRsfth8nZPXUxjYOrDE81HSZCge6fVfVagSdkZGBlu2bMHDw4MmTZoQHW07kcvT05NGjRpx9OhRli1bRps2bcjOzmbbtm1UqlSJwMCHv8AcHBxo0aIFe/bsQaFQEBgYyOnTp4mOjmbo0KGFSXaxU3h541jHMlQi+M/tNtviPptI+t9r8X7rQxz8y3FnzMs2+5ny6J2QsjKJHvsGvu9/jFuvvujDrxD9wegSfQBafn5eF8aa3TfY+WMvDpyJIUtr5K/dN/hr9w2beNt/6GltZfwn2rTjIhOmbSDs0EcAvDWyLZ/O2szAUUtxclQxdECTBy6BWhpqVvbh+0868s2i43z183EqB3my8LMulPGxVLA27bnOhK/3EbbZ0rM04/3WfPHTEV79ZCt6g4kOzSrw0WvNrcf74oM2TPxmP/3eXoevlxOfvdOqVB+Alp+fN11lzf5b7Py6C0qFnAXvteCz5WcZ9NlenNRKej0VyBvPWHoWy3o5svCDp/j8l7Ms33adAB8nvnujCTWDPUo8ndLta+jXfI9DjxHInFwxXTuN9udPrEOCFHXboO7/HlljLT09+l+/RNVjBOqXPwWlA6YLh9Gv+zH3gE5uyBRKm96Jf4Kf115iza7r7JzfB4DhvauTmKplzBd7UShk9O0QyrCexd8z8CgSMwy4apR5zjNbdDCav07Hs/1ty/fxyy38Sco08OavV1DIZTxX35ehzSyVA2eVgp8GVWPapgiem38eL2cHxncJokO1km8VdXHRMP/74UyatprfVh+mamV/Fsx5xfoAtE1bTjP+k1+5fMbSav32G12Z8tmfvPjSXJwc1Qwb1Jphg1oDsGPXBUwmMz/+tJ0ff7L9/cnZvyRonBwY80VLfp97hhmv7UTjpKRlj4p06l+FpNgsJg7czDtftaZyXR9O77+DQWdi8rCtNsfoPqQ6NRqXISkui6S4LD583nY1n3e+ak2VeqXzfSVFXUW/ejYOPUcic3bFdPU02oUf597r9dugHvABWe/lPm9I5uKJdMe+gQ/JjG7hRBz6vonmnblImWkY1s3HdOGwfdxi1rmeHx/3q8a8LRFEJ2up5O/MgtH1Cbg7XHDRjpusORLNjimWydGTBlRj0spLPDfzCN6uKj56viqd6lp6eDUqBd+/Updpv4exZNdNKvu7sGB0fcqJYUX/OTLpQTN/73Hq1CnWrVuX7/bevXtTr1494uLi2Lx5M5GRkajVaqpWrUrnzp3znSewePFiAIYNG2YTLkkS+/bt48SJE2RlZeHr60u7du2oXLloS7aFt6z94Ej/cKH7zyGdm/y4k1FkstqTkZJKfi3okibzGoJ0Y+aDI/4LyCqORTry4eNORpHJms6wFuL/zZxmbka68OnjTkaRyWp+gmnFkMedjCJTvLgUtCXfIlziND3ZGTXhcaeiyNqXn25TgP+3cvpqK+atrz/uZBSZvPPcx52EPCVqVz7Sft6aFx4c6QlUqJ6D+vXrU7/+gx9w5Ofnx5AhD/8jcH+lIIdMJqN169a0bt36oY8lCIIgCIIgCDnEnIPCebwD9wVBEARBEAShBMn+w88seBTibAmCIAiCIAiCAIieA0EQBEEQBOEJJoYVFY44W4IgCIIgCIIgAKLnQBAEQRAEQXiCyUTPQaGIyoEgCIIgCILwxJKLgTKFIs6WIAiCIAiCIAiAqBwIgiAIgiAIgnBXoZ6QLAiCIAiCIAj/JlnGR3uquZOyZzGn5N/hPznnwPTr0MedhCJT9F+CdOHTx52MIpPV/ATpzKTHnYwik9WdgpS09HEno1jIvIaQ+U6nx52MInP+ZhvJL7d53MkoMs+f9zwx9/qj/kD/kzgpe5L+WvvHnYwic/1xJzF9mz3uZBRZ2T8OY/z5xcedjCJTvrwC0n9/3MkoOtfnH3cK8iSWMi0ccbYEQRAEQRAEQQD+oz0HgiAIgiAIwn+DTLSFF4qoHAiCIAiCIAhPLDGsqHDE2RIEQRAEQRAEARA9B4IgCIIgCIJQ7C5fvsyaNWu4ffs2zs7OtGjRgu7du6NQKABYu3Yt+/btw8HBgZ49e9KiRQvrvpIkMX36dJ566inatm1bqukWlQNBEARBEAThifU45hzcuHGD2bNnU7duXXr06EFUVBTr1q0jOzub/v37c+7cObZt28bgwYPJzMxk2bJlBAcHU65cOQCOHTuGVqulVatWpZ72R6ocSJLEiRMnOHbsGMnJyTg7O1O1alXatWuHWq0GICkpiS1btnDz5k3kcjk1atSgU6dO1u3327JlC9HR0QwbNuyRtpeGK7FZfLr+BhfuZFDBS8OEp4NpGuKeZ9xMnYkvNt9kx6UkVEo5A5uW4ZVWAdbtqdlGpm24wc7LybhplLzc0p/BzfxLKysARMVl0Ovtjfw4oS1Na5XJM44kSXy9/DR/7AjHbJbo2zGU9wbVRy6XAZCaoePTn46x69htXJ0cGP5MDYZ0r1aa2bDk473N/PhhK5rWzDsfialaPv3fCQ6ciUGjUtCnTTBvv1AHpcLyhbF4w2VmLD1ls89LPaoybkj9Ek9/jhNnIhn36Tq2r3493zgGo4nv5u9h7eZzGI1m+nSrzXuj26NUWvKxbXcYY8avttmnc7tqzJ7+XImmHUBRtSEOPUcg9ymH+eYldH98jxQfZRdP5lkGp0+W53mM7O/fRVG5HqquQ+y2mROjyZ5mH16cFJVr4/zKBNLGvWAT7tC0A47PDEfu7o3hwjGyFs9CykjN+yBKBxwHvI6qaUcwGtDt24T2z5/sosm9y+I2dREZ343HePl0CeQm18Pc6zkkSWL4pzvp0SqYZ9uH2mxLSdfR/c0N/PpFF8r7uZRkkgHQ6Qx8Pm0NO7adRaN2YPBLbRgyrK1dvFeG/cCJY9ftwns/05jJ0/pjMJj4YfbfbFh/EqPRRM/ejXjznadRKhUlngcARWgtNMM+JPPjQTbhykbtUfd6GZm7F8aLx9Et/xIpMy3PY8jcfVD3ex1l1fpIBj3G47vQrV0IRoNtRI0zzpMWoVv7P4yHtxRrPhyq1cV9zCckvG7/feL87DCU/oGkzp2a7/6KsuVxe+V9HKrWQcpII/Pv38la94t1u6puU1wHv4HSPxBjdCTpv/yA/tShYs1DjmErLnMsMsMu/Jna3kx7Otgu/FJsFn0XX7IJq1nWid+GVgdg//VUvtp9m5vJWoI8NbzbJoBWoXmXD0rK8dMRjJu0mh1r33uo+AuX7mPF70fYuf59a9i5i7f57MsNXLocQ9ky7rz2chv69Ci938GS8jjmHKxbtw5/f39GjBiBTCajVq1aKJVKVq9eTZcuXbh06RLVqlWjadOmABw4cIDLly9Trlw5jEYja9eu5dlnn7X2MpSmR6ocHDhwgJ07d9KiRQtCQkJITExk165dxMfHM2jQIHQ6HUuWLMHFxYU+ffqQmZnJ9u3bSUlJYdCgQXbHO3jwIIcPHyYoKCjPz3vQ9tKQrjUyfMkl2lf15LNnQll3Jp43V11h05v18HZxsIs/ad11LtzJ5PsXqmKWJD788xpKuZxhT1kqAB/8fpV0rYlVI2pxPSGbD1dfo6K3Iy0re5RanqbMP0qW1lhgnEXrwtiwL4I541pjMJoZ+91BvNw0DO9TA4D3vzlAWqaBVZ934frtNMbNPkjFcm60ql+uNLIAwJSFJ8jSFZyPD2YfAhms+qwjKek6Pph9GBcnB0Y9WxOA8KhUXuxcidf61rTu46guvY61y9fieGvCalSqgj9z9oK9/LXpLNMn9sDby5mJn21kxuxtTHy3CwDhEQm0a1mZTz982rqP+gHHLA6yskGoR0zDsH0VuhM7UDbrimb0LLI/fwn0Wpu4Uko8WZ/0swlT9R6FzKcc5oiLmKOuYjy4IXejowuOb36LYe+aEs2DPCAEl9FTkAx6m3BFxWo4DxtL1rKvMd26iuOLb+I0/EMyvxuf53GcXhiDsnoDMr5+H5nGCedRkzAnxqDfY7vGv9OQd5FpnEosP/d6mHsdwGyW+Ox/xzl4JoYerYJttqVm6Hht+m4SU7V571wCvvlyAxfPR7Lg51FE30nmkwmr8Pf3pFOXujbxvvp2GAZDbv7OnbvFuHeX8fwASxf9j3O2sH7tCSZ/1g9vb1emfPwbX81cz7gJfUo8D/JyFdGMmAxG2+tKHlQNzeD30a74BnNUOOp+b6AZOo7sHz7K8ziOr05Cysog66u3kTm7ohn8AUhmdH/Ot4mnfmYEcg+fYs+HskIoHu9Nh/vuDwDNU51w6f8K2r0FVEZkMjzHf4Uh/BKJHwxF4V8ej7enYk6KR7t/K4qy5fEc+wXpK+ehO7oXdZM2eI79goQ3+2OKjy72/Hz7TCgGU+4zYM9FZ/Lu2usMqO+bZ/zwhGyq+Tky7/nK1jAHhaWR7GaylrfWhPNm6wDaV/Zgx5UUxqwJZ+OImgS4590gWtwuX4vhrXGrHvr7PjIqiTkLduLl6WwNS8/QMuLNJTzTswGzPn2eU+duMWHKGgLLe9Gw3uMrf/0bGQwGrly5wtNPP41MJrOGN2zYkN9//50LFy4AoFKprNsUCgU5zyXevXs3Li4uNGzYsHQTflehSw2SJHHgwAEaNmxIx44dAQgJCcHR0ZHVq1cTHR1NeHg42dnZjBw5Eicny4+fm5sbK1as4NatW1SoUAGA5ORktm7dyuXLl/PsUXjQ9tL01+l4nFRyPulZEYVcxpj2gey7ksL5Oxm0qeJpEzc508Cmc4ksGladBkGuALzXqQIzNt9k2FP+XI7J5ND1VDa9WY9ALw2Vyzhx7EYap26ll1rlYP2eG2RmP7iwsGxjGGMG1KFhdT8A3h9cn29XnGF4nxpcjkjm4JkYNs/pSWBZV6oEeXD0QiynwuJLrXKwfl8EmdmGAuPoDSa83TW80a8WQWUtf4/OzQI5eTnBGif8dhq92wTj6+FYounNy6o1J5k5ZweB5TxIz9DlG0+SJFasPs6EdzrTunklACaP68agUUt5Z1Q7nJ1UhEckUjnEF1/vkm/VvZdDi56Yb1zEsHkJAIb1C1HWaIayYQeMhzbelxEzUnqy9a08uAaKui3JnjUKzCbQm5DuqVCoug7BHBOBsQQrB6o2PXHqPxpT/B1kjs4229QdnkV/bBf6g5aCT+ZPn+E+6zfkPmUxJ8TYxJU5u6Jq1Z2ML9/FdCMMAO2WX1GG1LCpHKiadUSmKZ1r7WHv9djELD747iBRMem4Oatstp24FMe42Ydw1pRehTk7S8dfq48wZ94rVK9Rnuo1yhN+LZZfVx6wqxy4e+RWskwmM3O+/ZuhL7ejZq1AJEnit5UH+GB8b1q2srTyfjTpOV4e/ANj3uqGk3PJ/bY4tOyB+rlRmBOi7a4rVds+GE/sxnhkGwDaxZ/jPG0lMu+ySIm215W8TCCKkJpkjH3Oeu/o1i9G/dwom8qBIrQWymoNMKcmFms+HDv1wXXIGEyxd5A73fPdIlfgNvw9HNs+jSnmdoHHkLt7YYi4StqCmUjaLEwxkejPH0dVra6lcuDtR9a2v8jasAqArA0rcXluGA6VapRI5cDDMfdaNpklvt1zm5eblKGWv3Oe8cMTtYR4a/DNozEwNt1A37q+DG1s6ZUb1qQM8w9Fc+5OZqlUDlatPsoX320mMMCLjIyHq7xP+nwt1av6ExuX21MVHZNK6xZVGPtmF2QyGYHlvVi0/AAnz9z611cOZI/Yc/DRR3lX1nN89tlneYYnJCRgNBopU8a2p9bT0xMHBweio6MJDQ1l5cqVxMbGkpWVxe3btwkNDSU7O5tNmzYxatSoR0pzcSj02dLpdNSpU4fatWvbhPv4WFoqkpKSCA8Pp0KFCtaKAUBoaCgqlYqrV69aw7Zs2UJSUhJDhw6lbNmydp/1oO2l6diNNNpX80Ihz60B/jaqtl3FACAy2VLAq1M+90u0Slln4tMN3E7WcjQijaplnAn00li3T+xRkTEdAkswB7mS03XMWnaKKaOaFBgvNimL6IQsGtfws4Y1qO7LnfhM4pKyOXIhlqrBngTeLXADfDKiMW++UDevwxW75HQds5afYcqrjQuMp3JQMOvN5taKwdXIVHYdv02Te/IVfjuNYH/X/A5RovYdDmfGxz0ZOqDgv0dSchaZWXrq1syteFUN9cNgNHM+zPLjGX4jnuAKXiWa3rzIvP0x3bLtcjdH30AeXOOB+6p6DMd46G+kuEj74/oGoGzSBf3a+XnsWXwcajclc+F0dFvtn1CqDKmB8cpZ63spOR5zUiyK0Jr2cSvXRsrOwHjljDVMt2kFWYu+sL6XObvh+PwoMpd8Vcy5sPew9zrAhetJ+Hs7sfrLbrg42RaA9p+K5rn2Icwe27qkkmrn8uVojEYzdesFW8PqNwjm/NlbmM3mfPdb99cx0lKzeGl4OwCSkzLIzNRRq3YFa5zKVcphNJq4eMH+mitOippN0C75Av2OP+y3VayO8artdSUlx6GoaH/PmNOSyJo91qZSDSDT3FOQVTqgHvge2lWz7YcaFZG6fnNS50y1FtxzP98RZVAlEie8guHK+QKPYU5JJPWbiUjaLAAcqtZBVb0e+gsnAdBfOEn64m8tkRUKHNv3BAcVhmsXizUvefnrXCKpWiPDm+VfzrieqCX4nt/sezWp4Mr4jpbfb4NJYvWZBAwmidrl8q5oFLe9B6/yxeTnGPZiiwdHBv7acIpsrYG+vW1bpatUKsPMT/sik8kwm83s3BvGjZsJNG4QXAKpLl0y6dFejyo7OxsAjcb+mtFoNGi1Who0aED9+vWZPHkyX331Fb169SIoKIjNmzdTsWJFKlWqxOrVq/nkk0/44YcfSEpKevQEFVKhm4E0Gg3dunWzCw8Ls7SS+fn5kZCQQM2atj+ccrkcT09PEhNzWzTat2+Pr6+vTZfLvR60vTRFJuuoHeDCpLXX2Xk5mQAPNWO7BFl7Bu6VM8woNl1PsLeldTAm1VJhSM4yEpWko7ynmp/332Hl0VhUShlDmvvTv3HBY4GLy4xFJ+jTNoTKFTwKjBefbLm4/bxyK3k+7pYLPTYxi6iYDMr7OfO/vy6yYvMVVA4KhvaoxoAulfM8XnGbseQUfdoEUznw4cd1Dpq0g+OX4qkZ4smLd9OZkKIlNUPPmt03GP/DETQqJc+1C+HlnlVL5dqb+4XlcfN/bjxTYDx3N0cclHJi49OpVNHS9R19t9UnOSULSZK4cSuJ/UeuM3/JQcxmM13bV2fMiDaoHEp2zKKUnozc3XYog8zDF7LSC9xPXrEm8uAa6JZNz3O7Q7t+mK6ewhx5pdjSmpfMORMBUD3V1T6NHt6YUxJswqS0ZOSe9sMP5L7lMCfGoGrRBU33gaB0QL//b7QblsHd7mLHAa+jO7AF852I4s/IfR72Xgdo37g87RuXz3PbWy9aKvxRcfZjtEtKQnwaHh7OONwzTMLL2xWdzkhKShZeXva9Y5Iksfh/u3hxcCtrj4CbuxNKpYL4uDRCK1kKf7ExKQAkJ2eWaB608z8BQNmsi902mbs30n0t/FJaMrI8riuyMzFdOn7PzjJLz8Plk9YgVdcXMUdds41XTFJmjgPAsW132/RmZZA08dVCH8/3xzUofP3RHt+P9sgum22KsuXx+W4VMoWS9OVzS6TX4F6SJPG/IzEMblQGZ1X+35PXE7SYJYk+/7tAus5EqxB33m9XHhd17j43k7X0/OkCJgneaRNQakOKfvhqIAB/rj/5gJiQlJzJl99vYdEPL3HuYt69PXqDkQatpmIwmhjwXBPq1S6dhst/ovx6Bh4kZ3hQfmQyGTKZjIEDB9KvXz8UCgVyuZzk5GR27drFuHHj2LNnD2fOnGHkyJEcOHCABQsW8OGHHz5SegqrWGZoREVFceDAAapUqYKfnx9arTbPYUAqlQqdLnfYhJ+fX4GFrwdtL01ZehML99/Bx9WB+YOr0TjYlRFLLxGdaj8MJMBDTd3yLny+6SYpWUbi0/XM3WWZmGkwSWTpTRy6nsrJW+l8078yw1uW44vNN9l6oXi7gvNy8Ew0Jy/FM/r5Wg+Mq9WZAFA55F4mOYVMvdFEltbIobMxnAyL59v3W/FKnxrMWHSCLYdulUzi73HwbAwnL8czuq99621BJr7UgCWT2qE3mHnvu4MAXL9jKWD7uGv4cVxrXu1TnXl/XmDJxpItkBaWUimnU9tqfDNvNzFxaaRnaJn5/Q6UCjkGg4k7MWlkaw2oHJR8O+0Zxr7RgfVbzjNrzo4ST5vp9G4UdVujqNEU5HKUjTshr1AVmdK+C94mT82fxnR2v10hCQC1I8oG7TDu/atkEv2wVGq7lljJYMgzbzK1Iwq/8qjb9CTz5y/I/vUH1B2fQ93ZUgFU1miIsnJttOuXlHiyC3Ov/xNptQYc7ius5czJMejzHiZ1/Gg4cbGpPNu3mTVMqVTQvlNtvv92E7ExKaSnZ/P1rPUolXKMBlPJZeBB8rqujHlfV/dTPzMSeWBl9Ov+B4C8bBAOrXqi+/2HEklqcUv+cjzJn7+HQ3BlXIe9bbPNnJZM4ocvk/rTLFz6vYK6absSTcvRWxnEpuvpWzf/eRoGk8StFB0Gk8S0p4OZ2i2YU7cz+HDDDZt4Xk4O/Dq0OhM7BTJ3/x22Xk7O54iPz/SvN/FMzwZUDi24MfLXxSP5ctrzbNp6lkXLD5RS6kqQZH601yNydLQ0DN9b5s2h1WptehQcHByQyy3lrPXr19OgQQMCAgI4ceIELVq0ICAggK5du3Ljxg2bBvaSVOQBpLdu3WLlypV4eHjQu3dvoOAa0z+lsP8g8/fcZsG+3Fq1zmCmUZAbY9pbatA1/J05cC2VdacTGNkmwG7/Gc9V4u1fr/DUF8dxVSt4u1MFTkdm4KJWoJDLMJklZvathJNKQa0AFy7HZPHb8Tg61/Qu1nzM++M8C/60THzR6i0/hPM/aovmISbbqnMqAgYzalXOvy3H0KiUKBSWfMx6+ymcNEpqV/LmckQyv269SpfmFfI97iPl488LLFhzyTYf41ujKeRk22rBlmFg00c35fnxW4mKy6BJDT8O/e8ZPF0tFdqqFTxIStOxcts1hvWoWoy5gHmLD7Bgae4X7YKvB9Co3sOfq4/e6cy7n6yhbe/vcXJ0YNSwlpy9cAcXZzUB/u4c3vwu7m4aZDIZ1auUxSzB2Mlr+fDNjigUxbdag0PHF3DomLuij3bBBAxblqN+6ROQKzBfO4Px2Da7cdY25HKUtVqg++WLPDcrqjUGvRbT5eJtCdV0H2Rp1b8r45txNsM77Bj0cF+BTebggKS3/9KXzCZkTi5kLpiKOTEWE6D1LoO6XR90O//Cach7ZC37Js9JnUVVlHv9n0itVmLQ2xbe9XcrBRqNKq9d2L71LC1aVrOZgwAwbnxvPnx/OV07TMPRUcUrIzty/twtnF3yHibyKFRdX0TVJfe6yp77IaZr5/LfIa/rSulgM98mz8/pMwKH9s+h/d+n1t4nzaD30K9fbDfs6FE4PzsU52eGWt8nT38Hw6WCezULyxgehhFIc/gWj7emkL50Nhgtf1spKxPjjSsYb1xBWT4Y56efR3df78KjWHAomgWHcudyzH++Eg0DXdl6OZmWIe42cxDu56CQceDNuqiVcusk5Ondg+m3JIy4dD1+rpbr0VWtoHoZJ6qXcSI8UcuKE3F0rmo/9Lgo5v28m/mL9lrf/zR7CI3qBz/UvvsOXeX02VtM+/XNAuOpHJTUrFaOmtXKERefzrJfD/HSoKeKkuz/HF9fX+RyOXFxcTbhycnJGAwG/P3tV6e8c+cOx48fZ/LkyQCkpaXh7Gz5Dc35f1paGt7exVtOzEuRfjXOnz/P2rVr8fb2ZuDAgdY5BhqNJs/akk6nw83NrSgfWWr6Ny5D11q5f4BJa69T0df2hyTYR0NMWt4TSIO8NawZXYfEDAOuGgW3krTIZeDvrsLXVUVZNxVO97SKVfTRcOBaSrHnY0CXynR7yjKRKDYpiyEfb+etWfts4rw6bRd92lZkyqimNuF+d4dExadkW5ctTEix/HD5ejri6+lIWW8nnO6ZpFgxwI39p4u/G3hA50p0a1Hhbj6yGTJ5J299Zdua8er0vfRpE2w3ByEjy8De09F0bRZoXYK1UnnLdZicrqe8H9aKQY7QADfikrKKPx/PNKBbh+rW92V8CzfPwdvLmSVzBpGSmo1arbQsNfvjLgL8LUOrPNxtJ7mGBnuj0xtJTcu2WZWiqAwHN2A8vcf6XkpNwHz9PIZdv4OjM2SkoB46ESkpNt9jyINrgFyB6fKJPLcrqjXCeOGwdThOcdHtXov+WG5hw5wcX2B8c3ICcnfbeRwyN688J31KKYlIeh3mxNx8m2IikXv5oaxYHYVfAC6vf2qzj8s7M9Ef2EzWsq8fJTtWRbnX/4l8/dxJScnEaDRZlxxNTEhHo3HA1S3vQv3BA5cZObqzXbiXtysLFr1GakoWKrUSJInvv91EuYDiK7jp967HcGK39b1031C0+0kpCcjc7K8rKTX/ccXqfmNwaN0L7eLpGE9Z/rYyrzIoQmshDwhF/dxrlogqNZoX38HUqC3Zc/JeVSs/WVvXoD2Y29toSir4/nhYcncvHKrUQncst2BrjLqBzEGFzNEZhbsXMlc3m4qIMSoCVc0GxfL5/er50qVa7t+7jIulQH/gRiqjn3rwAhr3Dh8CCLn7+xibYSBNayJVa6RhYO73eai3hmO3Ch5W+SgGPNeEbp1y53yW8X34MtWmrWeJiU2jeafPATCazBgMJuq3+pSfZg+hjJ8bEbcSadU8d2hwpYq+JKcU/29hqStCL8CjcHBwoEqVKpw6dYouXbpYewZOnDiBXC6nWjX7Jd///PNP2rRpg5eX5XvBzc2NtDTLyIaUlBQAXF1LZ27kI1cODh48yLZt2wgODqZ///42XSTe3t4kJ9u2YJjNZlJSUqhevfr9h/pH8nBS4uGUe3rqBLpwPMJ2/ekb8Vq617GvwZnNEq8uC2Ns1yCqlLFUmPZcSaGGvzMuGiV1y7uwcN9t0rVGXO8WrMPjtZTzKP7xiR6uajzuFnzLeDmyZW4vm+1dXl/HtNea0qKufS22jJcT5XycOHkp3lo5OHEpjnI+Tvh5OVK3ig8/rblIeqYe17urm4RHpRHgV/yTsDxc1Hi43JOP2bZjX7u8uZFpoxrToo79hLJsvZF3vz2I/7SO1K9i6Tq+cD0JhVxGRX9Xft8Rzv/WhfH3t7lLjl2KSKZiueKvyHq4O9oV4Atj7JS19Opam5ZNQwDYvOMS3p7OVKroy77D4bw/aS27147BUWNpkbx0JRYPd8dirRgAkJWOdM98AkX9diiCqqH/60fISAEHFYpKddGtnJXvIeQVqmGOuprv5ElFUDUMu1fnua0opMx0pMyH/9E2Xr+IsnJt9Ac2AyDz9EXu5Ycp/EKecWUqNfIy5THHWoYSKvyDMCfEYLxxidQPX7SJ7z5jBVmLZ2K4UPTekaLc6/9EVauVQ6mUc+7MLeo3rAjAqZM3qFEr0PpDe6/k5EyiIhOpl0cr6sQPV9C9Z0OaP2XpCdy25Qxe3i6EPGBoRaHcd088iOnGJRSValmfRSDz9EXm6YvpRt4TcFXdh+DQuifa/03FeCq3gC2lxJPxie0S4U7vfINh158YjhZ+SKGUkYYpI+9nLRSFws8fjw9mED+qN+a7FQ6HkGqYUpOQ0lNRd+iFY7vuJLw1wLqPQ0hVTLcjiuXzPRyVdr0DyVlGIlP01C9f8Opu1xKyeWFZGGteqkH5u7/TYbFZKOVQwVPNb6cTWHsugfWv1LT+hlyMySLEu/h6pqz5cHfCw/3RlkB+f0wXRr3c1vp+686LLPv1EMvmD6eMrxs79lxi0ufr2L95HJq7vyHnw+4QUjHv5V2FgnXv3p2vv/6a+fPn07JlS27fvs26detsKgA5rly5Qnh4OC+99JI1rE6dOuzcuZPAwECOHj1KYGBgqfQawCPOOTh+/Djbtm2jZs2aDBo0yG42dmhoKBEREWRm5k72Cg8PR6/XExoaev/h/hX6Ny7D5dgs5uyM5Gailu93RBKZrKVnXctNk6kzkZRpKeTI5TI0DnK+3nqLiMRstl9K4ofdUbza2jL8qHmoO8E+joz/M5zr8dn8fS6B1SfjGNCkZCcka9RKgvxdbV4Aft5OeHtY/oaZ2QaS7lnHfEDXKny57BRHzsdy5HwsXy0/zeAelhpvizplqVjOjQ+/P8T1qFQ27Y/gj+3XeKFLlZLNh0pJUFlXmxeAn5cj3ncnTGdqDSSl3e3l8HCkU5PyTP3fCS7eSOb4pTgmzjvGoK6VcXFyoEWdssSnZPPFstPcjEln44GbLFwbxojej78iq9UaiE/MnQTq4ebIt/N3cyU8jiMnbzL1qy28OqQFcrmM+rXLo1ErmTh9I9dvJrL30DVmzdnBK4Oal3g6pfgolC16oKjdEplPAOpB4zGnxGO6dMwSwUGFzNW2lVbuXxFzbD7zU+RyZH6B+W8vRbpda1E174yq1dMoyofg/MpHGM4cyl3G1NEZmbPlGjTHRKI/cxDn4eNRBIairNkYzdMvotu9Fgx6zHG3bV5g6ZmQ0lOKNc2Pcq//0zg6qujRuxGfffoHF87dYteO8yxbvIcXB1meFpoQn4ZWm1uxDL8ajVqtJKC8/Wpd7u7OzPnub65djeb40WvM+GwNL7/SPs9KRmnR712HQ5NOOLTohjwgBM3QDzGdP5y7jKnGGZwsfzd52Qqoug1Gv2UlpvBzyNw8rS/MZqT4OzYvzCbM6SlIqQX3XpQ0mZMzMhdLI4sh/BLG62G4j/4IRflgVPWb4zp4DJmrFwOQvXczcg8fXAa9jqJsIE5dn8OxdVcy/lxaYum7mpCNWimjvLv9MLVMvYmkLMv1FeKtoYKHmkmbb3I1PpsTURlM2nyT5+r64q5R0rOGF/EZBr7ec5ubSVpWnIxj/cUkRpTyg03zotUaiE+wVFq9vVwICvS2vry9nFEq5AQFeqPRONC2VVVcXdR8Mn0tN24msH7zGRYu3cdr91Qo/rVKec4BQJUqVXjttddITExk3rx57N69m65du9KvXz+7uKtXr6Zr167W4UMA7dq1o0aNGvz8888kJCTwyiuvlNrQ/EL3HGRkZLBlyxY8PDxo0qQJ0dG2Q0g8PT1p1KgRR48eZdmyZbRp04bs7Gy2bdtGpUqVCAz8d856D/BQ89Pg6kzfFMHC/XcI8XFk3qBqlHGzfKksOnCHv07Hs/1dSxfopJ4VmbzuBn1/PIe3swMfPR1MxxqWHy2FXMa8QdX4dP0N+s47h4eTkrFdg2hfrfSXoLzfz2svsWbXdXbO7wPA8N7VSUzVMuaLvSgUMvp2CGVYT0vlQKGQM/+jtkyef5Rn3/8bTzc1H77UgPZN8l7xpDT9vC6MNXtusPNu6+n00U34fPEpXp5mGU7Su3VF3htYB4AAX2cWjG/DzGWnWbX1Gt7uGt4fWNc6jOlx2rTjIhOmbSDskGWt5bdGtuXTWZsZOGopTo4qhg5oYl0C1cVZzcJvX+Dzb7fR9+WfcXZS0b9PfYYPbFbQRxQLc9RV9H/MRtX7VWTObpiunEL300TrkCBlvbaoX/yAzHc6WfeRuXpgvh2e9wGd3JAplIVqiS0ppvALZC39Csc+LyNzdsVw4ThZi3N7RJxeGIPcpywZM98GIHPBNJwGvoXr+DlIOi26HWvQbS/+HpCiuv9e/yd6b2wvpn+6mhEvzcPFVcOo1zvT4e6Qik5tP2XKtP70esYyjDAxMQNXV8c8fzxff7Mr06f9yUuD5+LkpGbg4NYMHFJ6y7LmxXzjItoV36DuOQyZkxvGS8fR/pK7vK2m3+vIvMuS/c27KOs8hUyhQP30YNRPD7Y5Tvpr7Us76Q/N7aV3Ufj5kzRpNJjNJH8xFrdX3sf7s4VIumyy/v6NrE2/AWBOiid52lu4vvQOzt2exxQXTcpXH2G8cbnE0peYacBVrcjzmll8NJa/ziWy7bXayGUy5jxXiRk7Ihnyy2VkMuhR04v321p+68q6qVjQrzIzdkSx4kQc5dzVfN07hBplS+chhwXZtO0c46f8yeXj0x4Y19lJzcI5w5g6cz3PDvoBT08nJrz7NB3bPv6GsiIr5WFFOerWrUvdug9e3n38ePvhfw4ODgwZMoQhQ4aURNIKJJMetN7SfU6dOsW6devy3d67d2/q1atHXFwcmzdvJjIyErVaTdWqVencuXO+DzNbvHgxAMOGDXuk7YVh+nXogyP9wyn6L0G68OmDI/7DyWp+gnRm0uNORpHJ6k5BSiq5Fq7SJPMaYlOI/7dy/mYbyS+3edzJKDLPn/c8Mfd6lnH9gyP+wzkpe/6jC+QPy/XHncT0LfmGg5JW9o/DGH9+8cER/+GUL6+AdPvnrPzruD7/uFOQN8Pfj7afg/3S/f8Fhe45qF+/PvXr139gPD8/v0LVdh5U6C+OSoEgCIIgCILwH1PAgxMFe//ONe4EQRAEQRAE4WE8pmFF/1aPbzaWIAiCIAiCIAj/KKJyIAiCIAiCIAgCIIYVCYIgCIIgCE8yMayoUETlQBAEQRAEQXhyicpBoYhhRYIgCIIgCIIgAKLnQBAEQRAEQXiSiaVMC0VUDgRBEARBEIQnlxhWVCiFfkKyIAiCIAiCIPxrPOrTp/+pT3wuYf/JngPz3ncfdxKKTN76a8wbXn3cySgyeY8FpI1s97iTUWRu83dxq9ODnxz+b1Bh2yl0M5953MkoMvXYNU/E36TCtlNIMfMedzKKTFZ2FBlvdHjcySgylzk7MB/84HEno8jkLWZhXDLocSejyJRDl2PePuZxJ6PI5B2/x/Bj/8edjCJzeO3Xx52EvImeg0IRE5IFQRAEQRAEQQD+oz0HgiAIgiAIwn+E6DkoFNFzIAiCIAiCIAgCIHoOBEEQBEEQhCeYJJkeaT9ZMafj30JUDgRBEARBEIQnl3jOQaGIYUWCIAiCIAiCIACP0HMgSRInTpzg2LFjJCcn4+zsTNWqVWnXrh1qtRqApKQktmzZws2bN5HL5dSoUYNOnTpZt99vy5YtREdHM2zYMJtwnU7Hnj17CAsLIyMjA09PTxo1akSjRo2Qyf6rnT2CIAiCIAjCQxMTkgul0JWDAwcOsHPnTlq0aEFISAiJiYns2rWL+Ph4Bg0ahE6nY8mSJbi4uNCnTx8yMzPZvn07KSkpDBpkv6bywYMHOXz4MEFBQTbhkiTxxx9/cPv2bdq2bYuPjw83btzg77//JisrizZt2jx6rh/R63OOs/NMrE3YD280ol3dMgXu9+kv57l2J52lHzS3hp0OT+aL3y9yJSodPw8NL3cJ4flWFUok3fe7Ep3BlD+uciEqgwo+jnz0TChNK3nmGTcxXc/UP69y4EoyGgc5vRuV5e1uFVEqLJWz1CwDU/+8xq4LCbg6KhneLpDBrcqXaPoVobVwfGk8GRMH2oQrG7dH0/tlZO7eGC8cQ7vsS6TMtDyPIfMth+MLb6MIrYWUlYZ+1xr0W3PXZ1bUaIzm2ZHIy5THHBuFbs0CjBeOFms+1DXr4T1uKneG9LQJd+0/DNfufZG7uaO/coGkOTMx3rqe5zEU3r54jh6Lul5jJL2OrN1bSfn5ezDoAVBVr43nyPdwCKmMKSGOtN+Xkvn3mmLNRw555aYoWg9C5uqNFBeBccdCpNi8030vZcdXkfkEYlj1sTVMVr46yvbDkXkFICVHY9y9GOnm2RJJd47i+HtYOThQdu4KkufMQHf2hDW4NP8euw9d59uFB7l1O4Xy/u68/UoL2j8Vmmfc1HQtTXv8aBPm4a7h8LrX+H7RIeYuPmy3T3l/N7avGl4iac8hD6mFZsg4siYPtglXNmyHqsfLyNy9MF06jnbFV5DPvZ67kwOOY39E//v3mK6esdkk8ymH04SFZL77dHFnwcbr3x1l5+kYm7Af3mpCu3pl891HkiRe+eowPZoF8EzL3N+I1Ew9U5edY9fpGFydHBjerRKDO4WUWNpzDFsexrFb6Xbhz9TxYVqPinbhiZkGpm25ycEbaaiVMnrX9uGttuVRym0b+FKyjfSaf46Vw2oQ4JF3Q2Jxe33eKXaei7cJ+2FUfdrV9rWLm6k1MmP1ZXacjUOllDOwTQVGdLbPb0qmgR5TD/DrB00J8HYssbTnGPb7VY7fzrQL71PDi2md7csUqVoj03ffZt+NNDRKOT2re/LWU/7I7za4fr47il9OJ9jsM6FtAC/Wsz8n/yqiclAohaocSJLEgQMHaNiwIR07dgQgJCQER0dHVq9eTXR0NOHh4WRnZzNy5EicnJwAcHNzY8WKFdy6dYsKFSwXa3JyMlu3buXy5ct59ijExMRw7do1+vbtS82aNa2flZ2dzcGDB2ndunWp9x5ci05n5vB6NKvubQ1zd3IocJ9T15JYtecmjSp7WcPiU7WMnH2UAW2C+Pylely4mcpHi8/g666mbZ2CKxpFlZ5tZPj8s7Sr6cP0F6r9n73zDm+qeh/4J0mbpjvdpXtRoEDZe29QpqigIKCguHAjIi5QELd+RZkKiCAiCMqQjbJlb1q6B3S36UibZt3fH4GUkDJKm+JP7+d58jzNueeevifnnvG+533P5fdjOUxZep4/3miPl6vcKv/UlReRSCT8NKUVqnIdr6+Mw1UhY3LfUPP1kgo9P73QmpTccqatiiPcx4mujT2tyqoLpAHhOE6eaV78mtPDGuM4biqalV9gyEhEMWoKiglvUPHNm9aFSCQ4Pf8hhrR4NLOfROobhOOktzAW5aM/uguJTwBOz8yicsN36E4fwL5lVxyfeZ+yd8chFORYl3cX2IdF4f3OJwhay3q4DH4QtwfHUfDpu+gz03AbNQHfOfPImvgAQqXGqhzvdz7FWFZC7itPIHV1x/O198BoQLX4S6QeXvjOnkfppl8o+OQd5A2b4PnaexgK8tAc2V8n9biGxCsYu8Evo9++AOPlOOzaDsF+5Ay0i54Bvfbm9wU0QtpqAELGhapEJ3fsH5iB4fBaDPGHkDXpiv2I6WiXPA9lBXUq9zXqqj1MhcnxfnMO8vAoi+T6bI/4pDymvL2JqU93o0fHcPYfTeXFdzbxy8JHaRxlPcknpRagdFewcem4KnmvLt6eGNWG0UNjzemlZZU88vzPjHvQti+YkwaEo5j0rnVfD22Ew5jXqFz9JcbMJBweeg7FY9PQLJhx88Ls7FFMmIEswHoxJ1H64Pj0bCRy2y9IE6+U8vFTrekY421Ou9UcYjQKzFl1joPn8xjcMdDi2tSFJygp1/HTW91IySpj2uIThPu70LW5r83kB/hyZBQ6g2D+fvZKGa+sT2J0m+r/77TfkpFIYOW4JhRX6Hn992RcHWQ81SXAnKe4Qs9zvyRQUK63qew3kpit5uPxzenYqGq+ull7vLPqAuczSpj3VEuMAkxbfhZ7mYQJfcLMeYrLdTy74CQFpTcf8+qar4aEW7THmexyXt2SyugW3tXm/2B3JgXlen54OIrCcj2v/5GGl5Md41qb2i+pUMNLXRowPKbqN3GWy2xbCZF/HDWKOaisrCQ2NpbmzZtbpHt7mx7CwsJCkpKSCAkJMSsGAJGRkcjlchISEsxp27Zto7CwkPHjx+PvX73VpHXr1kREWFpCvL290Wq1qNXWmrIt0eoMXM6voFmYOz7uCvNHbn/zTqPVG3lnxVlaRlha5XedzMHbzYGXH2hMmJ8z97cPYFinIDb/fcXW1WDDsWyc5DLeHdmQUG9HpgwMI9THiXOZ1pYgrd6It6ucd0Y2JMrfmbYRSvrHenM8xWShi79SxsFLRXwypgnRDZwZ0MKHkR38OZFabBPZ7bsNwXnaPISSIqtr8p4j0B37E93h7RgvJ1OxdA52zTog8bJ+tiSuHhgzk9Cs/AJj7mX05/5GH3cCuyjTcy318EG7bxPaXWsR8rPQ7vwFtBpkYU3qpB4u94/E76tlGIoKra459x9Cydof0Py9D/3ldAq/moPUzR2Hpi2s8toFh+EQE0vBJ++iS0um8txJipfPx6n3IACcuvTCUJRP8ffz0F9Op/zPbah3bML56vW6RBreEqEgA+P5P0GVjX7vCiQunki8g29xkx12A55FuBxvmRzYGIwGDEc2QHEOhsPrwKBDGhBd53JD3bUHgF1IBP5f/4BdA+t612d7bNoZR8dWwYx7sBWhQUrGjGhJ+1bB/LHnUrX5k9IKCQvywMfL2fzx8jCN4c5Ocov0Zb+coGGYF4+NtJ1yYNdlMI6v/K/avm7ffTj6E3+hP7ID45VkNMvnIotpX21fB5D4h+L42jwk3gFW12SxXXCcNh9Br6vzOtyIaQ4pp1m48o7mkJyiCh7/5CC7T2XjdsOCNT6jmIPn8/jkqdZEB7kxoF0AI7uFcCLR+hmua5SOdvi42OPjYo+nkx1f/pnJEx39adbA2SqvVm/Ey9mOtwaEEuXjSJsQV/o39uBEZpk5z/GMUh5eeoFy7d2dJnO3aHVGLhdU0CzUDR93B/NHbm+9LCoq07LleDYzH4mhdaQHbaM8eHV4NN/vSjPnOZ5YxINzD1NeWb8KjrvCDm9ne7yd7fFwtOOrA1k80caXZn5O1ebfl1rCuNY+RHk50j7Ylfsbe3A4o6o9UgoraeLraC7T29kex2p+E5F/NzXaOVAoFAwaZD2RxcXFAeDr60t+fr7Z0n8NqVSKh4cHBQVVVr/evXvj4+NzU+t/gwYNGDJkiFV6fHw8Tk5OODtbD0S2JCVHjUQCwT7Vd7jqWPxHEo2C3Ajzc+ZIfFXduzXzoXGwm1X+0grbDypHkorp3cwb2XVbur+81LravHI7KR+PqVoQJ2Sr2XO+gIc6NrhalopGAS4EX7d1+vYDDW0kOdg1a0/FsrlIFE44DJ5gcU0W0QTt1p/M34WiPITCXGQRMegLLLfxhZJCKhbPqro3shmyhi3QrPoSAMOl0xguXXU7kMqw7zQA7OwxpF6sk3oo2nWh4JN3kDo54/7Y0xbXVAu/QJ9znZIoCIAEibOrVTmGwnxypz+LUWW5IJA6uwBQcfQA2qR4q/uuXa9LhIpSJF7BSAIbI1yOR9asD0KlGqEo+6b3yDo+gJCXilB0BWlwM8uynNyQNuyIMeEw0qj2IFcg5KfdtKzaUFftAaCIbYPm1FGKl35D8KZDFtfqsz2GD4hB18d6G71UXVlt/sTUQsKCq3ctvJ6UjCLW/3GeVfNG2XTn1i6mPZoVHyFROCO/b5zFNVl4DNrt1/V1VR5CUS6ysCZWfR1AFhWL4dIptBu/x+WLLZb/p2kHtJuWIeRm4Pji57apzFVSsstqNIdcSCvG39ORL59ty4Mz91pcOxJXQKNgN4J9q+bBtx+LvbEIm7PhTD7FFQYmdmpQ7XW5nZSPhlW5siXmVbAnQcVD17moHEguZkSsN4NiPLlvwVmby3yNlFw1EiDY+/auPxn5FQDEhrmb0xoFupBXXMnlggoCvRzZf7GABzoFcl8bfwbOrNudwDtlw4VCijV6Jra9+e6RUmHHprgiOgS7UlppYH9qKX2jTPUqqzSQU6YjrJ7cuuoV0a2oRtT6KNPMzEwOHDhAdHQ0vr6+aDSaat2E5HI5lZVVE5Ovb823Pg8fPkxqair9+/evd5eipKwyXBztmPbdaY5cKqCBh4Lnh0bT/SZbuMlZZaz+M43173Zj9Z+Wi5pAbycCvasmiIKSSrYcvcJzQ2y3sL5GZkEFscGuvPPLJfaczyfAQ8G0oZG0Dne/5X2PfXOKY8nFNA1y4dEupu3tjAINQZ4Kvt+TwaqDV5DLJIzvEcSoTtYWurqgYr7JJ92+0wCra1J3L4zFln6SQmkRUo9b+0m6zPkJqZc/ujMH0Z+wnIAlPgG4zPwBiUyG5teFdeZSlP/eK4DJKn0jledPWcp33wgkMhmV505a5RXUZWiOXbcAlUhwHTYKzUlTbIQhJwtDTpb5slTpgXOvART/sLAOamGJMW4/xqh2yMd8iGA0gGBEt3Y2VFa/wyfxDETWciDaZS8jazXQsl6ZFzCc2ILd8KkgCEikMnRb/odQaJudtbpqD4CyTb/c9P/UZ3tEhnlZfE9IyefwiXQL96DrSU4rRG8w8NDkVeTkl9E2NpA3nu+Br5el4vL9T8fo2DqE5k1u7iNfF2gWvwOAXQfrvi5x80QotnQvE0qLkCir7+v6/Rtv+n8qfzIpBLKG1e8E1SVJV8pwcbRn2uKTHInLp4GnI88Pb0T3m7iS9mrpf9NYhIy8coJ8nPj+j0RW7U5FbidlfP8IRvUKs2ENLBEEge8OZ/FYe787cjsZvyKOYxmlNPV34pHrXJBe6GGKUbusql5xtRVJ2WrTnL78HEcSCk1z+v2RdG9q/Rxdc7nNUWkIu6qQZReZ3AqLyrQEejny4hCTG+Hlgop6qoElgiDw/bFcHmvlg9Mt2uOt3kFM35ZGh2/PYBSgY4gLz3Q0PWfJhRokwKKjOexPLcVdIWN8a1+GxdjGTVjkn0ut9orS09NZuXIlSqWSYcOGAaYH9GbUZkF/5MgRtm3bRtOmTenYseNdl3O3pGSVodEa6NrUm8Uvtqd7c1+enXeMc6kqq7yCIPDOirM8P7Qh3m631sA1WgMvzj+Ot5sDo7qH3jJvXVBeaWDx7nR8XOUsnNScdpFKJi06Q1bRTfynrzJjRBTLn2mBVi/w2o8XzWUdulTEiZRivhwXw6TeIcz9LYntZ/JuWZZNkDuAztI1QNBrwe7WMSHlC9+lfN50ZEFRODz8nOX9pcWoP3yailVf4jDkcexada9zsW+FvHEzlE+9QskvyzEW3d7XXvnkS9hHNaZ46TyraxK5A97vfIqhsICyzevqXlhHVyTOHuh2LEK34nWM5//E/r7nwal6pdNuwDPoD6yG8mpc0OQKcPfDcOBndCteR3/wF+z6TELiGWidtx6paXvcCpu3x3UUqSp44Z1NtGoWQJ+u1QckJ6cXUqbWMv35Hnzx7v3k5qt5+o3fMBiqrG1l5Vo2747nsZEtbSrvbZE7wI1uQHrdbfv6vcY8hzTzYfErHeke68uzXx3hXIqqxmWVa/QcOp/HiYRCvny2LZPui2Lu6vNsP2Z719RrHEkrJadEx4N3GKg6vX8IS8c0QmsQmPrb7Q8qsDUp2WpTezTxYvFzbeje1JtnF5ziXJr1mBTo5UiLcHfm/BKPSq0jr7iSeZuTACz8/e8lRzPLyCnT8mBzr1vmSymqpKmvEysebsiXg8NIzNfw3bEc8zWJBMI9FHw7LIKRzbx4b1cGOxNV9VADGyMY7+7zH+Wudw7OnTvHb7/9hpeXF2PGjDHHGCgUCosdgmtUVlbi5mbtSnM7BEFg+/btHD58mObNmzN8+PB62TVYuDmRRX8kmr/Pn9KOsX3CcXc2TUCNg904n1bMmr3pNAtTWty7Zm86RqPAw91vffqQWqPn+W+OkZqj5sdpnXF0qPugn4U701i0K938XaMz0jbCnSkDwwCICXLlYHwRvx/PMQcZV0fjAJMFcc7oRjz05QkuF2qwk0kwCPDxmCY4OchoFuxK3JUyfj6URf/Y2p1sIB80BoeBVacRlX89DUPiLbacdVqwt1wcSOzkoL21NcqYdgkjoPnlGxyfmEHl2vlguOrepVFjzEjEmJGIrEEo8l4j0J/ce8vybsTtkSdwe6TqRJe8N5+/qdX5euRNYvGdMw/N0QMUL59/2/zKSS/g+sCj5H/wBrrUJItrEoUjPrO+wD4olJyXn7h5IG0NkHUciazjSPN3ITsRIS8N48k/ANBvnY/9pK+RNeuN4YjlaTzSFv1BIsV4env1ZbcfgUQiQX9wDQCGnGSkAQ2RtRmMfkftrOz11R63whbtsWDFERatrDpNa9FHw2nbIoj8QjVPvPorRqPA/2YNNgcZ38im5eOQSCQoHExTwlezBtPtgUWcvphN62amncD9f6eicLCja/uwWst7Pfb9H0U+4FHz94pvp2NMuk1fv1ERsLMHXf1anm/Hwk2XWLSpKs5u/ksdGNsvHHdnkxW6cYg751OLWfNXGs3ClTUq2zT2Cnw8uTVODnY0C1cSl1HCz3+m0b9t3e7cLjpwhUUHq3a8Fo6Kpk2IK9vjiuga6Y7S8c6WEY2v+sB/MDicUUsvcFlVWW+nEgEs3JrMom0p5u/zn23F2F4h5gDkxkGunE8vYc2BTJqFWhs1PhrXnJeWnKbztD24Kux4eVhDTqUU46yo32DdRUdyWHy0ahd7wfAI2gS6sD2hmK5hbrgrbt4eaUWVfLr3MjsnNcXn6lpGozfy/u5MJrb1Y2gTD3pGVJXRyMeRtKJKfj5TQN8opU3rZXPEl6DViLtSDg4ePMiOHTsICwtj1KhRKBQK8zUvLy+KiiyDyIxGIyqViiZNahbQaTAYWLduHRcvXqRTp07069ev3tyJRvUMYWC7Kj9KP6UCxQ1bdRENXEi8Yh3Iu+XoFc6lFdN2yjYAdHojBqNAm+e3snFmDwK8HCmr0PHUV0dJz1Wz9NWOhPnZJoZiVOcABras2sJ9Z0084b6WPq+hPo5kVbOlW6bRs/diIQNb+JgXFZFXB/gitQ4fVzn+7g44XafUhPs6cSDeOoiwpmj/+h3dsT3m74Iq/xa5wajKR+rmyfUhbRI3D4zF1hZeiauHKRbh9IGq+7PSkNjLkSickLh5InF2tVBGDFlpyKJb1rgeZZvWUv7Xjqpy8nNve49DbBt8PvgfmuOHyJ8z/aqf+83xeG4aLkMepGDuW1Ts32VxTeLkjO+cedgFBJM79Sn0l9NvUkrNMJzahiGu6veTP/yexXcQEHJTkbhbK4myJl2R+Echf2nV1QQ7kEiRv7QK7XcvIPGLxJibanGPMScFiXftj/qtj/a4FbZqj9HDYhnUqypg28/HhZy8Msa/vBaAH756CE/lzX3dHRWWi20vDyeUbgpy86oCFfcdSaVX54ibKhh3i27/RvQn/jR/F4pv3deF4gIkbpZuDtW5Gt1rRvUMY2C7qoW6n4ej9RwS4ELiZes55Hb4uCvw93DEyaFqCg/3d+bAuds/zzXl4da+DGhS9Xv7XXWxOZBczLPdbq2IlFUa2JekYkATT/NRmZHepvVCUYW+XpWDUd2CGdi6yk3LT+lg3R7+LiRmld14KwChvk6sf7MTBaWVuCrsSc8vRyqBAA/bH1d6PaNivRgYrTR/93Ux9d39aSU82/HW7n4X88pNAeXOVf29iY8Taq2RYo0eLyd7K+UiwlPB3xnV/yYi/15qrBwcO3aMHTt20LRpU0aMGIFMZtm5IiMjOXDgAGq12hw0nJSUhFarJTKy+i3tm7FhwwYuXrzIgAED6t2VSOksR+lcdbTn9O9PI5XC7AlVvqlxGSVEB1oHJn48sRUaXdUy9cddqZxJUfHxpJb4Kh0wGgWmzD9ORn45P0ztRESDug9INNfDyR7ldSddtAh142iS5bZpSm4597e2jp2o0Bp59ceLNPBwoNXVQKzzmaXIpBDm44gq1I3FuzMordDjetV6lJxTTqBnHQz45aUI5Xc+aRqSLyKLao7ukEkhk3j4IPHwxZB8wSqv1Nsfx6dnUTZ9lFnpkIVEYywpQlCXYN/1fuw7D0T97njzPbKQaIzZNQ+INZaWYCy9zfnr12EfFonPrC/RHD1A/uzpYLz1CR5uY5/CZfBI8mdPp2LfTsuLEgk+736GnX8gOa9OQp+RWmP5b4qmzPS5iqDKRuJl+X4LiWcAxguJN96JbtOXYFfVt2Rt7kfaIBrdpi+grBDUhUi8byjLKxCKa7/wsXV73BIbtofSTYHSrcpIU16hY9LUX5FKJCz/8kF8vG5ufChTV9L74e/43/tD6NjadMpSTl4ZRcUVhIdULQrPXMxmwkPVH15QK2ra11MuIItshv7vq31d6YNE6VNnBwbUFUoXOUqX6+aQJSeRSmD2xKpTnuLSS4gOqj64/Va0iPRg8ZYESst1uF4d35Ozyixi2eoKpaOd1e5AUbmODFUlrYJuPXdV6Iy8tiGZBm4OtLya90JWOTIJhHkqbnlvXaN0tkd53aJ4+g/nTO3xWNVhCHGZpUQHWNfJaBR48psTTHsg2jzn/3Uuj5hgN1zucOekrnBX2Fkt4Isq9GQWa2kVcGsjo6+zPaoKPQXlOryuPTdFGpzspXg62jHvUBanrqhZMrLqGOa4vArC62JOv9f8h12E7oYaxRyUlZWxbds2lEol7du3Jysri8zMTPNHrVbTtm1b7O3tWbFiBRcvXuTEiRP8+uuvREVFERx8i2MNbyAuLo5z587RqFEjgoKCLP5PZmYmen39HhfWq6UvGw9fZsPBTNJy1XyzMYETiYWM7R0GmFyECktN1nc/DwWhvs7mj7uzPQ72UkJ9nbGTSVm7P4MjcQW8P645rk525BVryCvWoFLb/mzkUZ0CuJRVxrxtqaTlV/C/rSlkFGoY2sYUFKeuNFBYZpLDx01Ov+befLA+kQuZpRxLVvH2mkuM6RqIi8KOTtEehPs6Mv2nOJJzytlyMpe1f2cx2kYBybdCt/c37Dv0w77LfUgDI3B8fDr6s4cQrp1eonAGJ9OgbkiNx5h+CcdxryNtEIpdsw44jHwa7R8rTWX9vQOpuycODzyF1DcQ+57Dse/Ql8o/Vtm8Hp4vvYU+L4eiBZ8hdVci9fBC6uFlPoNd4uSC1NXknmcXEo772CcpWb2MynMnzXmlHiafU+eBw3Fo0ZaCz2dhLCutuu5ac/e+22E4swNZbD+kMT1A6Y+s+2NI3HwxnLu6+2OvAMer/7esEFTZVR9NmeldCKpsEIwYTu9EGtEGWdsh4O6HrM1gpOGtMFx1WapPatIet6M+22Phj0fIuFLM3DdNAb15BWryCtSUlpnGKE2lnrwCU7C4i7MDbWIDmfvNX5y9mM35Szm8MnMz3dqH0SjSdEy1Xm8kJb3IKtD5XqDbvxG7dn2x6zQIaUAEDuPewHD+cLV9/Z9Er5Z+bDyUyYYDGaTllPHNb/GcSChkbF/Tcd1qjZ7CkjtzjerU1IdwfxemLzlJclYpW/6+zNq96Yyup4DkhLwKHOwkBFVj+VdrDRSqTTEhPi729G3kweztaVzMVnM8vZR3tqTyaFs/XGzgRlsTesX6sPFoFhv+vkJabjnfbEniRFIRY3uadihNc7ppLpRKJTjKpXz2WwKpuWp2ns7l2y3JPDXA+r0Z94KE/AocZBKC3KzfVVSuNVB49f0RsQ2cifBS8Oa2dBILKjiaWcZn+67wSAtvJBIJPcLdOXa5jKXHc0lXVbL6dD6/XyxkQjXGw/93iDEHNaJGKm9CQgJ6vR6VSsXSpUutrg8bNoyWLVsyfvx4tm7dyq+//oqDgwMxMTH079+/RoJdvGiyAsXHxxMfb33834svvohSqaxRmbWhf+sGvD1Gx4LNiWQVVhAV4MKiF9ubLTVLtyez/mAmu+b2vm1ZO05kYxTgma+PWaS3i/a0eIuyLQj0VLD4qVhmb0hk8e50In2dWTCxGX7upkF+6Z8ZrD+aza63TDs1s0c1Yu5vSUxcaHo77bC2frxyv2kyk0klLJjUnJlrExj5xXE8nO2ZNjSS3s2qf/mKLTEkX0Cz8nMchj6OxMkN/cWjaFZ8Zr6uGPU8Ui9/yj9/GQQj5d++heKRF0zvTajUoN3zK9rdpsBQQZVP+Vev4/Dw88h7jcCYn03FopkYMxJu9u/rBKmHFw5NWwIQuGqrxbWCT95BvX0jHs9Nxc4vgNzXnsSpU08kMjvcxz6J+9gnLfKn92uFU7c+SGQyfGd/bXFNc/oYua9Z5q8txrgD6O0VyDo9iJ2rF0JOCrqf3zEHHMvaD0PWrDfahZNvW5aQdQn9ho+QdXkEWddHEAqvoFv7AUJBRp3KfDtq2h63oz7bY/veBDSVeh5++ieL9OEDY5g7fQBbdsfz5tztxP31MgBz3xzAR9/s5alpG9DqDPTpEsGMF3uZ71OVVKA3GHFzvfcWRGPKBSpXf4n8/vFInN1Mb0j+qeoYUocHn0Pq5UfFV6/eQymt6d82gLcf07Fg4yWyCiqICnRl0Ssdq+aQrYms35/Brk/73bYsmVTCgpc7MPOHM4x8by8eLnKmjW5K71a2PUXqGgVqHa4OdtW6+S47nM2Gs/nseM60y/7B/WF8tDODST+Z3rExtLkXL/cKsrqvvunf0o+3RzVhwdZksgo1RDVwZtFzrc1vNV66K5X1h6+w633TQRTvjo7h3Z8uMHLuYbxc5cx4uDH9Wtr2paV3SkG5HlcHWbXtsfR4Lr9dKGT7xKbYSSXMHxbB3L8uM25NIk5yKUMae5rdkZr7O/H5/eHMO5TFvINZBLjJ+WhQKC1vsyMh8u9DItzqeKF/Kca9r9xrEWqNtPvnGDc9da/FqDXSwYsomdzr9hn/4bgt3EN6P9u+Mba+CNlxksqPR9xrMWqNw+vr/xVtErLjJEL2gnstRq2R+D9N2fN97rUYtcZl3i6MB6feazFqjbTzJ+iXj73XYtQau/E/Ytw55V6LUWukfb9GN3/UvRaj1tg/8/O9FqFahCvWp/jdCZKA5+tYkv8f1K+znIiIiIiIiIiIiEh98h92EbobROVARERERERERETk34t4lGmNqNVL0ERERERERERERERE/j2IOwciIiIiIiIiIiL/XkS3ohohKgciIiIiIiIiIiL/XkTloEaIbkUiIiIiIiIiIiIiIoCoHIiIiIiIiIiIiIiIXEV0KxIREREREREREfn3Ip5WVCP+ky9BExERERERERER+W8gJH10V/dJIqfVsST/P/hP7hzkje58r0WoNT6rD971G//+SUgCnkdQ/Xivxag1EuXYf8VbOsH0ps67HUj/SUgipyGcn3Wvxag1kqbvYPhlwr0Wo9bIHlpG+esD77UYtcbp460If79xr8WoNZIOc6n8cPi9FqPWOEzfgHHrM/dajFojHTgf495X7rUYtUba/fN7LYJIHfCfVA5ERERERERERET+I4huRTVCVA5ERERERERERET+vYjKQY0QTysSEREREREREREREQHEnQMREREREREREZF/M0bx7J2aIO4ciIiIiIiIiIiIiIgA4s6BiIiIiIiIiIjIvxkx5qBG1Fg5EASB48ePc/ToUYqKinB2dqZRo0b06tULBwcHAAoLC9m2bRtpaWlIpVJiYmLo16+f+fqNbNu2jaysLCZMmGCRXlFRwa5du4iPj6eyspKgoCD69OlDYGBgzWsqIiIiIiIiIiIiInJLaqwcHDhwgN27d9O5c2ciIiIoKChgz5495OXlMXbsWCorK1m+fDkuLi4MHz4ctVrNzp07UalUjB071qq8gwcPcvjwYUJDQy3SBUFg9erVFBUV0bdvX5ydnTl8+DDLly9n8uTJeHl53X2t7wK7RrG4Pfs2hS8+ZHXNafh4ZA2CKJ0/+6b3Sz28cZnwMvZN2yBoK6k8tAv16gWg05rKj2qKy7gXsAuJxFCYR8XGVWj2bLRJXf48lMKX3x0m/XIxQQFuvPRER3p3iag2b6VWz8cLDvDHngQA+naN4I1nu+HkaA/ApZQCZn35Jxcu5eHr48zz4zswuE+0TeS+GcdPpTNt5m/sXF/9ewYyr6joO+Lraq+tWDCOdq2qnj293siDE5bQp0cjpjzZwyby3shzC06y+2yeRdq3T7eiV3Mfq7zF5Tpmr4lj7/k8HOxlDOsQwEtDopBKJQCcTy/h/TUXSbhcRlSAC9MfbETLcGV9VIONe5KYt/Ik2flqmkR68eZTHYhtZF2Ha6zceIEla89SUqala5tAZk7pgtLVZEC4lFrErG8PcSExH18vJ54f04rBPSPrpR7XyMwtY+hLm5n/Zk86NPOrNo8gCHz+4ynW7krCaBR4sG8kr45tZW6P9OxS3ltwhFOX8gn0debVsa3o2bZ+jBuXstXM+j2F81fKCPFS8Ob94XSIcK82b3GFntmbUth7qQiFnZShrXx4qW+IuR6nM0r5aEsq8Tnl+LnJeaJrAA+2rf43sQXShq2R3z8JiVcDjOlxaDd8g5CXWX1mRxecZq61SBLUxVTMHHVDoVIUL3yN4fwhdDvq910rmXlqhr65i/mvdKJDk+r7SLFaywcrzrD3dDYOchnDuoTw8oMx5jbJzFPz9ncnOZVYSIC3E9PHNKdr8/ppE2l0B2Q9xiJx80bISUG/YwlCTnK1eSV+4cif+MIizZiViG7Za6brQTHY9Z2IxCsQoSgL/e6lCKlnbF4HgEtXypi5Jp7zmaWEeDsyY2Q0HRp6VJtXEAQ+35jEusNZGAWBkR0DeHVIpLk9rqFS6xg85zA/v9KWQC/H+qgGz807xu7TORZp3z7fll4trJ+HgpJK3l91jgMX8lHYyxjWKZCXRjTCTmbyMl+2I5mP1ly0uOfx/uG8/lCM7SpQH4g7BzWiRsqBIAgcOHCANm3a0LdvXwAiIiJwdHRk3bp1ZGVlkZSUREVFBZMnT8bJyQkANzc3Vq1aRXp6OiEhIQAUFRWxfft24uPjq91RSEtLIz09nUceeYToaNNiMzQ0lI8//piTJ0+a/399IAuOwP3l2QhXF/LX49C5H04PTaRy/7ZbluH28hyM6hJU7z2D1MUNl8lvgtGAeuU3SNw9cX/jMzQ711P67fvYhTfG9ZkZGFUFaE8erNO6xCflM+XdLUyd3JUeHUPZfySdF9/7g1/mP0zjKOtJat7yIxw9fZmFc4eAAG/M3cEXSw4xY0p3tFoDz7y5ib5dI5jzel+Onr7M9Lk7CA1yp3mj+pmk4hNzeHH6WuQON3+UG/i5sW/LyxZpc7/cTnpmES2bB1mkf7/yEHEJOfTp0cgm8lZHYraaj8c3p2MjT3Oau5N9tXlnrb5IQWklK15uT2GZlteWnsHTVc6E3qEUlFby+P+OMbC1H3PGNmPvhXwmfn2cjW91JsDTtpPUsXPZzPhyPx+82IVWTXxZtTmOJ9/Zzu5lD+PsaF2XLX8l88n3R/no1R6EB7nz1pf7mPXtQT6f1gutzsAzM3fQt1Moc17uytGz2Uz/fB+hAe40j/a2aT2uZ+bCI5Rr9LfMs/T3ODbtS2XetO7o9EZe/+ognm4KJg6PoVJr4ImZu2kY7M7PcwdwIbmQVz7fz7KZfYhtaNt6lGr0TFx2kd6NPZg9MpLfT+Xzwqp4trzUCi8X6/Z4//dkCsp0rJjUjEK1jqlrEvBytmd8lwDySrVMXn6RUe39mTMyigtX1Mz4NREfVzk9GlW/kKpLJH6hODwxC/2en9Gf3INduwE4PDUXzSeTQKuxyi/1DTEpA589XZUoWC8M7Lo/iDQgEsP5Q7YUv1pmLj9NeaXhtnkKijX8OKM7BSWVTJ1/FC83ByYMjEIQBJ778jDRwe6sndmTnSeymPLV32ye25cAbyebyi7xDsZu6Cvot87HmBmHXfsh2D/8Ftr5T4Peeo6UeAdjzE5Gt+a6FxIar9bdyR37h2ZgOPgLhvhDyJp0w37km2gXPQelBTatR2mFnonfnqJXM2/mjGnC70ezmfLdWf6Y0REvV7lV/mV7Mth8PIevJzZHbxR4fcV5vFzlPNE7xJynuFzHs4vPUFCms6nsN5KYVcrHE1vSsUmV0fRmc8jUJaeQSOCnNzqjKtPx+ncncXW0Z/L9UQAkZZXxSM9QnhkcZb7H6Rbz6/8bxIDkGlGjgOTKykpiY2Np3ry5Rbq3t2miKywsJCkpiZCQELNiABAZGYlcLichIcGctm3bNgoLCxk/fjz+/v5W/ysgIIAnnniCyMgqa6FMJkMikaDX33rCrksUfYahnLUQY3Gh5QWpDJeJr+H69JsYci7fsgxZQCj20c0oXTAbQ2YKurjTlP+yBIcu/QFwaNcdY3Eh6tULMWRnUnloJ5q9f+DQpV+d12fTrng6tgpi3MgWhAYqGTMilvYtg/jjz8Rq8+89nMrDg5vSvJEfzRv7MXpocw6fyAAgMa2Qy9klvPBEB0IC3Rl5XwwNw704curWv0ddsfrX4zzy5DK8PJ1vmU8mk+Lj5WL+ZFwuYvueOD56dxj2djJzvrSMQlasOUJUeP0tQLU6I5cLKmgW6oaPu4P5I7evvmvuPZ/P+N5hNAxwoUO0J4PbNuBwvGkS/e3vLJTO9rw7OoYIf2cm9A6lTaSS1ftuYmGtQ/KLKnj2kRYM7R1FcAM3nnu0JcWllSSlq6rNv2TtWSY9GMuArmFEh3kwdWJ7ElKLMBiMJKaruJxTxguPtSakgRsj+0fTMMyDI2ezbF6Pa2z8KwV1xe3HmRWb45gyOpY2TXzp2Nyf1x5rxco/LgGw59hliko0fPxiZxqGKBnWM4KhPcJZtjHO1uKz4WQeTnIp7wyNINTLkSl9ggn1UnDuclm1+fdeUjG+SwAN/ZzoEOHO/S28OZxcDMCui4V4u8p5uX8IYd6O3BfrzdCWPmw6nW/zegDYdbwfY9oFdNtXIORlotvyHWjU2LXqXW1+iV8IxrzLUFZU9VEXW+bxaoBd12EYs9PqowoWbDyYgbri9ovHvaezmTAwioZBbnSM8eH+TsEcOp8LwN8X88nIVTPz8ZZEBroxeUgjWkZ5sm6v7esjDW+JkJ+B8dyfoMpG/+cKJC6eSLyDq80v8QpCKMgEtarqU1FqKiuoMRgNGP7eAKocDIfWgkGLNMD2u88bjmTh5CDj3YcbEerjxJT7Igj1duRcekm1+Vf8lcGU+yJoE6mkQ0MPXh0SxcrrxtbjSSoe/PTobZW+ukarM3A5v4JmYe74uCvMH7m9rNq83m5y3hnTjKgAV9pGe9K/dQOOJ1atb5Kzymgc7GZRlrPiX6AciNSIGikHCoWCQYMGma3/14iLM012vr6+5OfnW7n8SKVSPDw8KCiosgT07t2bp59+2sqd6BpyuZzg4GBkMhlGo5GCggLWr1+PIAi0atWqJmLXCnnLTpR++wHlW362SJcoHLELiaLorUnoE87dsgyjqgDVnJcRioss0qVOpkWt9vThal2SJE4utZTemuEDmvDqk52t0kvVldXmV7o7su2vJIpLNRSXatixL4kmDU07DO5XXUDWbr6A0Shw8nwWKRlFxFSzA2EL9h1KZO47Qxn/SMca3ff5N7t5aFgrIsIslYB3527m+Uk98PC4tbJRl6TkqpEAwd53ZtlXOtuz8WgWFVoDuSoN+y7k0yTIDYCM/HKaBrshu26bOzrQlVMpKhtIbsnAbuE8PbolAJpKPcvWn8dLqSAyRGmVt6xcy4WkAvp1rur77Zr7s3H+A8hkUtxdrj5X2y6ZnquLuaRkFBMTWT+uhEWllXyy4iQzn25/y3w5heVk5ZfTLsbXnNa6iQ9X8tTkFlaQmVNKRKA7rs5VVshGoUpOxdt+UX00pYTeTTwtnoU1z8Te1NKvdLJj4+k803NVomV/goomDUz9oFtDJbMfsHbpKqusHyON1MsfY3q8RZoxOxVpaJPq8/uGIOTf2kAhf+AFdDt+RLhBabA1RaWVfPLzOWY+fvs5TOkiZ+PBDCoq9eQUVbD/bA4xoUoATiUWEhOmtLDoto724lRi4U1KqzuEilIk3sFIAhsDEmSxfRA0agRVdrX5Jd7BCIVXbl6WkxvSaNMYLm3YAeSOCHm2V3KOJKro3czboo/88lo7ejS1Ng7lFleSpaqkbaTSnNYmwp0rhRpyi01z5/64Qh7o0ICvnmhmc9mvJyVHjUQCwT633zGS28v4eFIrQn1NfTvhcil7TufQvlHV2JqUVUaYX/3NgfWG0Xh3n/8otVYHMzMzOXDgANHR0fj6+qLRaKp1E5LL5VRWVi1AfX19rfLcjM2bN3PixAkAevbsiZ9f/fm6lnz2BgAOPe6zSBfKy1C9+3R1t1ghlJehO/N3VYJEguOAkWjPHQfAmJeNMa9qYJW4eeDQuS/la7+rpfTWRIZ6WnxPSCng8IkMRg+tfkCbOrkLL7y7hY7DFgMQHe7Ft7MHAxDo78bLkzrx6cIDfDx/PwajwPMT2tOpTfUWpLrmm09MPsS/bjp9x/ecOJ3BqbOZfPb+CIv0dRtPUanV8/DwVmzafmtlry5Jylbj4mjHtOXnOJJQSAMPBc/fH0n3ptUrWO+MasK0H87S9pVdGAXo1NiT5+4zxYt4uzoQf4NlOLtIQ1GZ9Va/rTh06goT39qGIAh8MrVHtS5FGVkmq2FRsYZHXt1EZk4pnVsFMmNyB9xcHAj0c+Hl8W349PujfLzkiOm5GtOKTi0D6qUOc5ceZ3jPCBpWo9hcT15RBQC+nlWTsre7AoCcgnK8lI7kFVUgCAISiWkBkpVfjqq0ekW8Lsko1NA80IV3NySxO66IQKUDrw8KpXWoW7X53x4SzhtrE2n3/hHTcxXpzrO9TP040ENBoIfCnLegTMcfZwt4rndQtWXVNUKpCom7pWIocfcxW59vROobDDI7HJ7/Com7F8aUc2g3LoJS08JZ1rYf2Msx/P0Hdi172Vz+65m76izDu4bQMKj6dried8e35PWFx2jz1EaMAnRu6sNzIxoDkKfS4KtUWOT3dncg5+ozaUuMF/djbNge+bi5CEYDCEZ0az4Ajbra/BKvIJBIsZ/4FRIHJ4zJJ9DvXgbaCoSMCxiOb8bugddBEJBIZeg2/e+mykRdkllQQWyIK++sjmPPuXwCPBVMGx5F6wilVd68ElOf9XWvUvSvuR7lqCrxdXfgxftN4/DlAtu3wfUkZZWZ5pDvTnPkUoFpDhkaTffmt15jPfbJIY5dKqRpqDuP9jIZavJLKilW61h/IJPpS0+jsJcysmswj/ePMI9h/28R3YpqRK3ec5Cens7KlStRKpUMGzYMMMUl3Iy7fbhat27N+PHj6dy5M3/++Se7d+++q3L+KTiPeQ678EaoVy+0vmgvx/2V2RhVBVTs3GBTOYqKK3jh3S20ataAPjcJSE6/rKKBrwvLPh/Bko+HUakz8NG3+wDQ6Q0kpxfx8JBmrJn/MG8825UlP53g71O2d2O5W37ecIJ+vRrj51s1ORcUqvni293MfOP+eh8AU7LVaLQGujbxYvFzbeje1JtnF5ziXFr1Fs2UXDXNQtxY+Wp7/vdkCxKulLFkRyoA/Vr5cia1mDUHMtEbjOy/kM/uM7noDPU3KDYM9WDdV0N5YWxrpn++j1NxuVZ5yjUml4pZ8w/x5EOxfDW9N4lpRbz+6V4AdHojyZnFPDyoEWu+HMIbT7Znydoz/H3G9m5FB09nceJiHs8+dHvrn+aq+8D1LmDXtvK1egPdWwVQWq7l65/PotUZOJtYwLpdSej0trdGlWsNLNl3GW9XOQvHNaFduBtPLrtIlqp6xSQ1X0PTQBdWPtWM/z0aTUJOOUv2WVvfNToDL/4Uj7erPQ+3qx8jjf70X8iad0PapD1Ipcja9EUaHA2y6m1bEt9gcHBCt3Eh2pUfInHzQvH4TJBIwdkd+aDH0a77X73Ifj0Hz+VyIqGQZ4c1vqP8KVmlNAv3YNXbPfj6hQ4kZJawZLPJNVejNWBvZzl9y+2kaHX1YOl0dEXirES3bSG65a9jPPsn9vdPAadqgt2lMiQe/iCzQ7/5f+i2zEMS1Bi7IS9dFVoBSn8M+1ajWzYV/YE12PWbhMTT9kH75ZUGFu9Kx8dNzsKnW9AuSsmk+afIKrKOY6nQmn5X+XW/+bW/tfXQn29FSlaZaQ5p6s3iF9vTvbkvz847xrlU1S3vmzG6Kctf64hWb+S1xScBk0sRgJebnPnPt+XJQVEs2JzI8p0ptq7Gf4adO3cyefJkq8/KlSvNeRITE3nvvfd46aWXWLp0qYVhHWD37t18+OGHNpXzrncOzp07x2+//YaXlxdjxowxxxgoFAqrioApXsHN7fbWkuq4dnRpWFgY5eXlHDx4kB49eiCTWfvU1Qan4eNwGj7O/L147qvo4u7cKn0nOD/6LI6DHqbkq3cwZN5wuoODI+5TP0LmH4LqvadBW3sL44Ifj7Jo5XHz90UfDaFtbCD5heU8MXUDRgH+N/M+qxMXAMrUWt76ZDdLPxtOixhTXMicqX0Y+9KvTHm8I3sPp3I+PpeNSx9FIpHQNNqXpLRClvx0nA4t69aquGDZfhYt219Vjy8epW2rkFvcYY1eb2T33ng+em+4Rfrsz7cxYnALoiPvfDfrblm4NZlF26oG2vnPtmJsrxBz8FjjIFfOp5ew5kAmzUItJ9vUXDUf/3qJ3R90x9fdtDun0RqZ+fMFJvULIzrAlVmPxjD7lzhm/nSBxkGuPNItmL8TLN3Z6oIFP59m0c9VfWPRrP60beaPt4cj3h6ONIn04lRcHqu3xNGyseXvKrt6KsaTD8XSu6OpDT94sSsjpvxGTkE5+45lcj4hn43zR5ieqyhvktJVLPnlDB1iG9RtPdaeY9Gv5wHTggtg4YyeKO4gAM/hmiKgM+Igv/a3qQyF3A4vpYLPX+nK9K8PsWDtOYJ8nRl7XzTLN8XftMy7ZeGfmSzaW7WYr9QZaRvmxpQ+Jut/TIAzBxJV/H4qj8k9Lftman4FH29NZffUNvhctYZWaI3M2pjCpG6B2MlMY4O60sDzK+NIy9ew4smmOMrrdvy9hl2vUdj3Hl1Vl+/eQrdzJQ6PvQVSGcakMxiO7wJF9W4Ums8mgyCYg2MrV3yA49urkIY0wq7LMPRHdyDk2N5tZcHv8SzaaGpr87P1amcUd/C7pWaX8dFP59jz5UDzDoFGa+C9ZaeYdH9DHOylVNzg1qXVG1E41H2byDo9iKzzSPN3ISsRIS8N44k/AND/8S32T81DFtsbw+H1ljcbDWi/HGdqi6tByPpN/0P++GfoXTyQtR6EBNAfWAOAIScZaUA0snaD0W+rxnhWCxZuT2XRjqp21+gMtI1UMuXqzmtMkCsH4wr5/Wg2k/uHWdzrcJ0iYO73V5WCO2nPumTh5kQW/VEVIzh/SjvG9gnH3fnqHBLsxvm0YtbsTadZmPKm5TQONq3H5kyI5aHZB7icX077Rl4c/KIfHi6mcSA6yI2iMi2r/0xnQr/qDYgiNSMzM5OgoCDGjBljkX5tfazX61m8eDHNmjWjVatW/Pzzz2zZsoURI0zeDhUVFWzevJnJkyfbVM67Ug4OHjzIjh07CAsLY9SoUSgUVdubXl5eFBVZLkaMRiMqlYomTar3Ea2OvLw8MjMzreILGjRowKlTp6ioqMDFpW598it2rEdzaJf5u7Ew7xa5a47LhJdR9BtB6bxZaI/8aXFN4uiE+xufI/MLQvXBFAzZdWN9Hz20OYN6NTR/9/N2ISevjPGvmgbxH74Ygaeyen/35PRCyjU6GkdV+WA2aeiD0SiQnVvK+Ut5REd4WVjbm0T5cOJc3Vt4R49ow6A+VUep+fm41riMU2cz0euNdGlvOcht2XEehYMdK385Cph85k+dyWDbrgtsWv1M7QS/gVHdghnYuioA30/pYDW5RPi7kJhlHTh6MaMUD2d7s2IA0CTYFbXGQHG5Di9XBx7oFMiwDgEUlGrxdXfgk/WXCPRUWJVVW0bf15hB3cLN3/MKyzmfmE/T656VqBAlidUEJPt4mBZ1EUFVyk/41b+z88o4n5hPdJiH5XMV6cWJC9a7ELVl9ICGDOpi2lLPKSxn3Ns7efGTfRZ5nvpgD8N7hjPz6Q4W6b5XjynMU1UQ5Gsai/JVJqujj4fpWo82gRxYOpK8Ig3eSgWrtyUQ6Fv3/ryj2vsxsHmV6827G5IJ97Hs12FejmSXWLuYXcxSo3SyNysGAE0CnFFXGiiu0OPlYk+ZRs/kH+JIL9Dw/RMxhN1hjMzdoD+8GcOZvebvQnEBxtTz6P9aZ1II1MXIx7yJUJRTfQG6G4wq6mIoL0Xi5o1dy54IWg12XYaartnLkYY2Qda8G5rP63ayHd07nEEdTIatnCIN4+bs48Wv/7bI89SnBxneNcQqBuFimgoPV7mF61CTUHfUGj3Fah2+Ho4kXLZ0q8orrsTHve77uuHkVgxxVYYZ+eiZGC7uvy6HgJCbisT9JsYVraWbjZBvOtBC4uqFxD8SY26qxXVjTgoSn5oZfu6EUV0CGdiqSsZ3VscRfoNvfaivU7W7a35K05ibX6I1H0+aX2rqSz5u1icb2ZJRPUMY2K7KSOKnVFjPIQ1cSLxi7XZXVqFj77k8BrZpYDYIRjYwzaVFZVoCvZ3MisH1ZeWqrHdT/t/xD4kfyMjIIDw8nIiI6pWtrKwsVCoVI0aMwMXFhezsbI4cOWJWDrZt20ZYWJj5FE9bUWPl4NixY+zYsYOmTZsyYsQIK+t9ZGQkBw4cQK1W4+xs6nhJSUlotVqLk4dux5UrV/j999/x9vYmOLjKhz0pKQkXFxdz2XWJoC5FUFfvx1pbnEY+gaLvCEr+9y7av/dYXpRIcHvlQ6S+AahmPYfhSt1ZtZRuCpRuVRNGeYWOSdN+RyqRsPyLEfjc4qQfX2/TgicxtZCm0aZBNTndpPgFNXDH19uZ4+csfUOT04sI8r+7HaJboXR3ROleuwXJ6fOXadq4AQ43WIW3rX3O4vvUd9cT2zSQxx+tWaDznaB0tkfpXOWHP/2Hc0glMPuxKjeWuMxSogOsFV9fdweK1DoKSivxuhoMnpyjxslBhqeLnL8vFfLz/kw+fyIWX3cHBEFg34V8RnWte99wpauD+Z0EAN+vO0tmThnffTDAnHY+MZ+YKOsg4gBfZ3y9nIhLKaTF1V2FpAwVEgkE+Lrg6+nE8fOWC7/kzGKC/Os+QP/6evh5OrLtm6EW1wc89zsfPNOBzi2sdyz8PJ0I8HbixMU8s3Jw/GIuAd5O+Ho6kpRZzPuLj/L9u33wvXqU7F/HL9/0nQm1qoeTPcrrji6MDXbhWIrlqSsp+RXcH2sdbOnrKkdVrqOgTGc+5jQlrwInuRRPZzuMRoEXVl0io1DD8klNifCxnWIAQEUZQkWVcixr2RNpcCN0GxeaFvp2cmSRsVSu+dz6XgcnHKcvp3LF+xiTTGflS9y8wMkNY14GFR89bpFd/sg0jOnx6Peuq/NqKF3kKK8utPw8HNn2ieXpcwOm7uCDia3p3Mx6Ue2rVFBUqqWgpBIvt6t9/UopTgo7PF3ltIzyZPGmS2i0BvPC8MSlAlpH2yBoX1Nm+lxFKMq2OplI4hmA8XzCjXci8QrCfvwnaL97EYpNyr3ELxzBoEcoyoLSQuuyvAJBdRPFrxbcOPa2CHPnaKKlITMlp5z721j3T193Bxp4OHA8udisHBxPVtHAw8HCWFMfKJ3lKK875GD696eRSmH2hBbmtLiMEqIDrQ1oFVoDry46SYM3HGkVaTqc4HxaMTKphDA/Z37Zl87325LZ8n4Ps3EmLr2EcP9/QYDyP0A50Ov1ZGVl0b1795vmufa7y+WmNr52KA+ASqViz549vP766zaXtUbKQVlZGdu2bUOpVNK+fXuysiwtxB4eHrRt25YjR46wYsUKevToQUVFBTt27CAqKspikX87YmJiOHjwIOvWraN37944OTlx9uxZLl26xPDhw//xwTESR2eQShHUpcgCQnF6YALlv61AF3caiXtVULBQXIii1xDsm7am5JNpGNWlVdf1ujpXVhauPEbGlWJ++MKkheYVmoLIFHI7XF0c0FTqKVVX4uPpjL+PC93ah/DOZ3uY+UovBATe+/xP7uvdEE+lI0P6RrNo1TE+XXiAhwc34+T5LH7ZfJ55799fpzLfDRqNzlQPr6oFZUJyLpHVHFMaGmwZpO3gYI+7myOBDZS2FpNesT689v0Z2kV70ipcyaZjWZxIKmLWo6ZdErVGT6XOiKernBbh7kT6O/PG8nO8/kAjitRaPl1/iTE9QpBIJIT5OvHn2Vx+2ptB1xgvvt+ZSkm5juEdbB/I+/CgRox6eSM/bDhP93ZB/L4niTOX8vjoVdMgaHqutPh4OiGRSBg/vClf/3iSID9XvJQKZs47SN9Oofh4OjGkVySL1pzh0++P8vCgRpy8kMsvW+OZ93Yfm9ZB4WBHaAPrCdXXywmvqxZcdYWOSq0Bz6sW2tEDo/l0xUn8vEy7IZ/9eIrHh5p2SAN9nEnKKObr1WcY2SeS3/9K4XhcHu9OvvUpSHXBqHb+rDyczbxdGQxp6c3vJ/PIKNQwpKXp+VdXGqjUG/F0tqdFsCuRPk5MX5fA1IFhqMp1fLo1jUc7+iORSFh7LIcjKcV8M7YxrgoZeVctpvYyiYVCYiuMeZnIH3oFY8o5jNkp2N83EaE4H2O8aacPOzkonE1HllaWY0g9j3zIZLRrv0IQjMiHPo3x0jGE7FTrwnVaqChFUNX9rtT1KOQyQv2qUfg9FObFv1qjNz1bbg60iPIkMtCVaQuPMe2R5hSVafnk5/OM6WsKDG3X2JsGXo68ufg4zwxrzJ6TWZxJLmLOpNY2rQeA4fR27O5/ASErEePlOGQt+iFx98Vw9qrRy15hapOKEoSCywhFWdgPeg79zu9A4YzdwGcwnt4BGjWG0zuwf+xDZO2GYEg4gqxhe6QRrdB9/4rN6zGqSwAr92Yy749khrT157ej2WQUVDC0rWlnV115dey9quA90iWQzzYm4n91F+HzjUk83qvudzhqSq+Wvry26CTtor1oFeXBpr+vcCKxkFmPmY6cN80hBjxdHfBxV9CvtT8frDrH++NjKdcYePuHM4zpHYaLoz2dY7z5aM1FPv7lIqN7hnIutZgl25LMZf0XmTFjxi2vz55985ff3khWVhYGg4HExER27txJfn4+Pj4+DBo0iE6dOgGmw3pcXFw4cOAA7dq148SJE0RFmd45sXHjRlq1amV2tbclNVIOEhIS0Ov1qFQqli5danV92LBhtGzZkvHjx7N161Z+/fVXHBwciImJoX///jUSzN7enscee4zdu3ezc+dOysvL8fPzY/To0TRqVH8vqLpbXCa8hNSnAcWznkfetjsSmR3ODzyO8wOWlqu80Z1xaN8TiVSG+7RPLa5pL5ygeNbzdSrX9r2JaCr1PPzsLxbpwwc0Zu4b/diyJ4E3P9pJ3B7T24Y/fWsAH327n8nTf0eChD5dI3j9mS6Aaffgu0+G8/GC/az67SwBvq58MLUP3dpXfzxtfbJl5wXefP934v5+25xWUKimccP6O+nqTujf0o+3RzVhwdZksgo1RDVwZtFzrc3WqaW7Ull/+Aq73u+OnUzKwmdbM2dtHI99cQQnBzuGtm/Ac/ebduT8lAo+n9iCT369xCfr42kRpuT7KW3r5YzqplHefP1WH75YfpzPlh2jYagHS94fgJ+3yeK0ZW8Kb36xj7gtTwDwxAPN0GoNTPtsL+UVOnp1COG9501H7Ab5u/Ld7AF8/N1RVm2+SICPCx+82JVuberndJxb8f1vF1m/J5ndC4cDMHFYEwqKNUz5aC8ymYQH+0QyYYgp4FThYMfX03rw/pKjLNt4kYYhSha/3YsAH9tb4QI9HFg8vglzNqeyZN9lInwcWfBYE/yuLkSX7r/ChpN57HytNXYyCQvGNebDzak8tuQcTnIZQ1v6mE8j2nGhAKMAz6ywfD9DuzA3lk9qavO6CJcT0a7/GvvBTyJxcsWQeArN9++Y4goAWYseOIx6lfLXBwKg/flT5IOfxOGJWWBnj+H8YbS/z7e5nLXl+y0JrN+fzu7PB2Ank7Lo1c7M/vEMY2fvNfX1LsE8P8KkeMqkEr55qSMzlpxg5Lt7CPV1Zt4LHWz+AjQA48UD6O0dkXUaiZ2rN0JuCrpVb0O56RAFWYfhyJr3Rjv/KUBAt3YOdv0mYj92DmDEcH4vht3LABCuXEK/bi6y7o8i6/4oQsEVdGveN7se2ZJAT0cWP9OC2esSWLwznUg/JxY8FWt2IVq6O531R7LZ9a5pXHqiTygFZTqmfHcWmVTCyI4NGN+zfk7muxX9Wzfg7TE6FmxOJKuwgqgAFxa92J7Aq8/C0u3JrD+Yya65pveCzB4fy9w1F5j4hcnFbVjHIF4ZaRqzAr2cWPhCOz5Ze5HVf6Xh5erAqw80ZlC7+jkpzpbc6rCc+iIjw/Rcl5SU8PDDDyOVSjl8+DDLli1Dp9PRvXt35HI5EyZMYPny5fz88880btyYIUOGkJWVxdGjR3nvvfc4f/48v//+O0ajkQEDBtC2bds6l1Ui/BN+sXomb7T1Of//3/BZfRDhyrx7LUatkQQ8j6D68V6LUWskyrEYd06512LUCdK+XyMkfXSvxag1kshpCOdn3T7jPxxJ03cw/DLhXotRa2QPLTMv4P8/4/TxVoS/37jXYtQaSYe5VH44/F6LUWscpm/AuLVuY8PuBdKB8zHutf2Oia2Rdq/G3e8fgPHg1Lu6T9r5k7v7f0ajlUJSVlZGWloaTZs2tXDJ//LLL8nMzOTjjz9GKq06EUur1Zrdi7755hv8/f3p378/06dPZ/z48bi4uPDtt98yffp0AgLqVoETX3snIiIiIiIiIiIiUkds3ryZTZs2WaQtXLiQ2NhYq7zNmjXj4sWLFBcX4+FR9aLKa4pBQkICiYmJTJgwgVOnTuHp6Um7du0AaNiwIcePHxeVAxEREREREREREZE7pp4Dkrt160bz5paxGnFxcRQXF9Ohg+XJdzqdDolEctODdtatW8fAgQNxdnamtLTU4qROZ2dnSkpKqr2vNojKgYiIiIiIiIiIiEgdoVQqUSqVFmnr1q1j586dREVF4eVlOlnMaDRy4sQJwsPDzTsF13P8+HFUKhW9e5tiRlxdXSkurnpJqkqlssmxprV6Q7KIiIiIiIiIiIjIPxqjcHefOuTayZtff/01x48f5/Tp08ybN48rV67w4IMPWuU3GAxs2LCBYcOGYW9vOhkuJiYGlUrF1q1bOXDgAImJibRo0cLq3toi7hyIiIiIiIiIiIiI2BAPDw+mTp3K+vXr+emnn9BoNISHh/Pyyy9X+x6wffv2YW9vb+GG5OHhwYQJE1i3bh2CIDB69GhCQur+SF1RORAREREREREREfn38g94CRqAv78/zzxzZ6dr9ezZk549e1qlt2vXzhyQbCtE5UBEREREREREROTfyz9EOfj/ghhzICIiIiIiIiIiIiIC/EdfgiYiIiIiIiIiIvLf4G5fUirt+3UdS/L/g/+kW9G/5m2Kd/nGv38S0s6fIBx/616LUWskbT74V7x5G0xv3/63PFslk3vdazFqjdvCPeh/fOxei1Fr7Mau+NeMvf+W9vi3vHnbsGrcvRaj1sge/YErw9rfazFqTcBvR+61CCJ1gOhWJCIiIiIiIiIiIiIC/Ed3DkRERERERERERP4jiAHJNUJUDkRERERERERERP69iMpBjRDdikREREREREREREREAHHnQERERERERERE5N+MUTyYsyaIyoGIiIiIiIiIiMi/F9GtqEbUWDkQBIHjx49z9OhRioqKcHZ2plGjRvTq1QsHBwcACgsL2bZtG2lpaUilUmJiYujXr5/5+o1s27aNrKwsJkyYcNP/W1lZyfz58wkLC2P48OE1FVtERERERERERERE5DbUWDk4cOAAu3fvpnPnzkRERFBQUMCePXvIy8tj7NixVFZWsnz5clxcXBg+fDhqtZqdO3eiUqkYO3asVXkHDx7k8OHDhIaG3vL/btu2jeLi4pqKW6dculLGzDXxnM8sJcTbkRkjo+nQ0KPavIIg8PnGJNYdzsIoCIzsGMCrQyKRSiXM+yOZb7amWt0T5KVgxzu2Pyv/ua+OsPtUtkXaty+2p1dL/5veIwgCkz47zOCOgYzoGmJOP5eiYvbKs8RllODvqWDy4GiGdwm2mezVkZmnZujr25g/tSsdYnyrzSMIAl+vu8DPO5PQG4z0bx/EW+Nb4SCXAXAlv5z3vjvOkYt5+HooeHlUcwZ1tH097BrF4vbs2xS++JDVNafh45E1CKJ0/uw7KMgejw+XUrb0M3QXTlYlRzXFZdwL2IVEYijMo2LjKjR7NtZlFczU5XO1bFsSH60+b5H38QGRvD66ad0KfR2yyGY4Pj6dsrfGWKTbteuNYtgTSNy90J8/imbFpwjqkmrLkPgE4PjIS8gimyGUl6Ddsx7t9p+rrnv4ohjzMnaNWiKoCtBsWIL++J91XpcJP1zkaFqpVfqIFt58MDTCKr1Eo+fTHRn8mVCEUYDuUUreGBCCm8I0RZy7UsaH29KJyy7H303OU10DGNbCu87lvhk1GXuvIQgCk+afYnAbf0Z0aGBxTaXWMXjOYX5+pS2BXo62FN1MXbeJqlzHu5tTOZhcjIeTHVN6BDEktn7a5FK2mlm/p3D+ShkhXgrevD+cDhHu1eYtrtAze1MKey8VobCTMrSVDy/1DUEqlQBwOqOUj7akEp9Tjp+bnCe6BvBgWz+b12H8sgvVt0dLH2YPs26PawiCwJM/xnF/c29GtPQxp5+7UsacP9JMfcRdzuRuAQxr4XPTcuoCeZMWKF96j9zJI6yuuTz0OHYNglH9b9bNC7Czx33iSzh2H4Cg11G+43dKf5xvvuzYYwCuo55E5u2LLuUSxUs+R5dwwRZVsT3izkGNqJFyIAgCBw4coE2bNvTt2xeAiIgIHB0dWbduHVlZWSQlJVFRUcHkyZNxcnICwM3NjVWrVpGenk5IiGkBUFRUxPbt24mPj7/pjsI1EhISOH/+/G3z2ZLSCj0Tvz1Fr2bezBnThN+PZjPlu7P8MaMjXq5yq/zL9mSw+XgOX09sjt4o8PqK83i5ynmidwiP9w5hVJdAi7If/fI4j3Wvn0V14pVSPn6qNR1jqiYSdyf7m+Y3GgXmrDrHwfN5DO54ndzlOp76/DAjugbz8VOtOZVUxIzvThLi60Trhl42rcP1zPz+BOWVhlvmWbwxnp92JPLFC51wcrDjtW8OM+/XC7w6ujl6g5HJn+wj2NeFX+f048jFXF7/5m8iA92IDq5+wqsLZMERuL88G0Gntbrm0LkfTg9NpHL/ttsXZC/Hbcp72AVbTmgSd0/c3/gMzc71lH77PnbhjXF9ZgZGVQHakwfrqhpm6uq5Aki6UsojvcN4Zmi0Oc1JbjsvSGlAOI6TZ8INbSENa4zjuKloVn6BISMRxagpKCa8QcU3b1oXIpHg9PyHGNLi0cx+EqlvEI6T3sJYlI/+6C6QSnGa8iHGvCzUHzyFLLoljk+8iTorFeOV1Dqtz5cPNURnqJoMz15W88q6REa3rV55nrU5lfSiSuY/0ggJMGtLKu9uSuGLBxtSqtHz9E+XGN7Cm7nDIzidWcaM31MI9nSgdbBrncpdHTUde+Hqs/VrAgfjixjcxlI5LS7X8eziMxSU6Wwu+/XUZZsAvPl7CpV6I6sej+HMZTXvbEoh1EtBbKCLTetRqtEzcdlFejf2YPbISH4/lc8Lq+LZ8lIrvFys+/v7vydTUKZjxaRmFKp1TF2TgJezPeO7BJBXqmXy8ouMau/PnJFRXLiiZsavifi4yunR6NbKX235alS0RXucySzjlbWJPNKu+vYAMAoCc/5I42ByCfc3rxrnSjV6Jq+MZ3gLHz56IJJTGWXM+C2ZYA8FrUNs00fsQiPxmDYXQVtpdc2xW39cH3mSij+33rIM9ydfxaF5WwreewGJozMer32AIS+b8m3rkce0RPn8W6jmzUYbdwbnQQ/i9c5X5Dw5FEFTYZM6ifxzqNFpRZWVlcTGxtK8eXOLdG9vUycpLCwkKSmJkJAQs2IAEBkZiVwuJyEhwZy2bds2CgsLGT9+PP7+N7csVlRUsHHjRvr164dCoaiJuHXKhiNZODnIePfhRoT6ODHlvghCvR05l169BXHFXxlMuS+CNpFKOjT04NUhUazclwmAs4MdPm4O5s/yPzOIauDMYz2CbF4Prc7A5fxymoUr8XFXmD9ye1m1+XOKKnj8k4PsPpWN2w0LvazCCrrF+vLawzEE+zozpFMQUYFunEgotHk9rrFxfxrqiltP8gajwLItl3h9TAs6NvUlNsqTKSObcj6lCIC9p7LJLqjg42faExHgyug+kXRv2YCTlwpsJreizzCUsxZiLL7ht5LKcJn4Gq5Pv4kh5/Jty5EFhuHx/iJkfoFW1xzadcdYXIh69UIM2ZlUHtqJZu8fOHTpV1fVMFOXzxVAclYZjYPdLMpydrSNcmDfbQjO0+YhlBRZXZP3HIHu2J/oDm/HeDmZiqVzsGvWAYmX9ZglcfXAmJmEZuUXGHMvoz/3N/q4E9hFmcZLu2YdkXr4UrF0DsacDHT7NqI/9zeyyGZ1Xielox0+LnJ8XOR4Otnz5e5MnujUgGYB1gvHcq2B7RcLeWtQKE0bOBPTwJk3BoSwK66ISr2R7BIt3SLdebVPMMEeCgY396ahryMnM8rqXO7qqOnYm6Oq5PFvTrL7XB5uNzwzx5NUPPjp0dsaE2xBXbZJeqGGvxJUzBocTkNfJ0a28mFIc29WH8u1eT02nMzDSS7lnaERhHo5MqVPMKFeCs5drv552HtJxfguATT0c6JDhDv3t/DmcLLJC2DXxUK8XeW83D+EMG9H7ov1ZmhLHzadzrd5Paprj4mdq28PgJwSLU/8cJE9l4pwU1iOa9klWrpFKXmtn6mPDIm91kesdybqAqcBI/D+aAlGlfX84f70NJRT3sKQfev5Q+LihlPfoai+mY0u4QLaM0dR/7YSebRpd1aq9KJ0zfdU/LUVQ84VSn/+DqmbO3bB4Tapk80xCnf3+Y9SI+VAoVAwaNAgs/X/GnFxcQD4+vqSn5+Pl5el1VgqleLh4UFBQdViq3fv3jz99NO3dSf6448/8Pb2pk2bNjURtc45kqiidzNvZFe3QgF+ea0dPZpab+PmFleSpaqkbaTSnNYmwp0rhRpyiy21/JTcctb/ncW0YQ2RSCTYmpTsMiQSCPZxun1m4EJaMf6ejqx7tzsuN0y00UFufPRkayQSCUajwJ5T2aRml9G2Uf3sGhSVVvLJT2eYOenWz0ZiZjFFpZX0bVu1gB7SNZTvp3cH4O8LuXRs6ovLdYvUb17twqg+N99ari3ylp0o/fYDyrf8bJEuUThiFxJF0VuT0Cecu2059jGt0F44QdHbT1ld054+XK1LksSp7i2LdflcgWnnIMzfthbQa9g1a0/Fsrlod/1idU0W0QRDwhnzd6EoD6EwF1lEjFVeoaSQisWzoNJkVZNFNkPWsAX6S6dM3xu1RB93AjTl5nsq5r+Nbt+mOq6RJRtO51Os0TOxS4Nqr0slEr4ZHU1jP8u2MwimRWpDXyc+HB5p6ueCwJ5LRaQWaGhrI4vojdRk7AW4kFmKv4eCda+1s3q29scV8kCHBnz1RN0rZDWhtm1y5nIZ/m5yApVVu+mtQlw4nWl7he1oSgm9m3hatMeaZ2JvaulXOtmx8XQeFVoDuSVa9ieoaNLAGYBuDZXMfiDS6p6ySr1thL8JG07lUVyhZ2LXgJvmuZClxt/NgbVPNcPFwVI5aOjrxNwR1/WR+Kt9JNQ2fcShdWdUX86k7PdVFukSR0fsw6LIm/oE2riztyxDHtMCY3kZ2vNVbqhl635A9fUHAGgO7qLsl6VXMzvgPPQRDKoC9BkpdVsZkX8ktTbFZWZmcuDAAaKjo/H19UWj0VTr/iOXy6msrFoY+/refOvuGhcvXiQ+Pp5nnnmmXhbOtyKzoILYEFfeWR3HnnP5BHgqmDY8itYRSqu8eSWmevq6V215X9v+zlFV4ute9ft8vzuNjtEeNA91s20FrpJ0pQwXR3umLT7Jkbh8Gng68vzwRnSPrd7Hs1dL/1v6jANo9UbaPr0ZnUFgVK9QWkZ62kJ0K+b+eJrh3cJoGHRr15+MHDXuznJOXsrni5/PUVRaSf/2Qbz2SHPk9jIyc9UE+jjz2U9n+G1/Gh6uDkwZ2ZS+7ayt8XVFyWdvAODQ4z6LdKG8DNW7T99xOZod6296zZiXjTGvKgZA4uaBQ+e+lK/9robS3p66fK7yizUUq3Ws35/B9CUnUchljOwWwuMDI20yDlTMfxsA+04DrK5J3b0wFltaMYXSIqQet/YldpnzE1Ivf3RnDqI/sddUlncDjAXZOIx4EvsO/RDKSqjcuBT96QN1VBNrBEHgu4NXeKy9H87y6ndxFPZSukUpLdJ+/DuHaF9HPK5TmLUGI+3mHkdvFBjVxpcWQfWjvNVk7AXo1cybXs2qVxxevN+k8F8uuHduEXXRJvllOnxdLXfcvJ3tySm1dlGsazIKNTQPdOHdDUnsjisiUOnA64NCaX2TOeztIeG8sTaRdu8fwShAp0h3nu1lcqEN9FAQ6FHlEVBQpuOPswU819v2u+jXEASBJQeyGNfB/6btAdCrkQe9buPqpDUYaTvn2HV9xDbKQdGHUwFw7H2/RbqgLiP/jSfvqAw7v0AMuVk49roPlwcnILGzp3zXRpNCIFRZzOWx7fB6738gkaD6/J3/vy5FYsxBjajVS9DS09NZuXIlSqWSYcOGAaaOdjNqMrGr1Wo2bdpEv379UCqVtRGzTiivNLB4Vzo+bnIWPt2CdlFKJs0/RVaRxipvhdb0EMrtqn7ea39r9VUPqFqjZ8vxXMbWU6wBQEpWGRqtga7NfFj8Ske6x/ry7FdHOJeiqlW5P73VjU+eas0ff19h2bakuhH2Fhw8m8OJ+HyefcDagnsj5ZV6NFoDn60+y7SxLZg9uR17Tlzho5Umi3C5Rs/6vakUq3XMf60rw7qF8uJXhzibXH/uUTbHXo77K7Mxqgqo2Lmhzouvy+cqOctk/fRyc2D+ix148v6GLNh4ieXbk+tY6jtA7gA6S7c1Qa8Fu5vHUgCUL3yX8nnTkQVF4fDwcwBIHByRdxqIxMmV8m9moDu8DcfJM5GGRt+yrNpwJK2UnBIdD7a+vTHmGiuP5rD1QiGv9Q2xuvbTEzF8NDyCP84XsOxwVl2KelNqMvb+f6Au2qRCZ0Qus5y+7WVSi/nFVpRrDSzZdxlvVzkLxzWhXbgbTy67SJbK2vcdIDVfQ9NAF1Y+1Yz/PRpNQk45S/ZZu7xodAZe/Ckeb1d7Hm5n+4DkaxxJLSGnRMuDbe68PW7F6klN+fiBSFMfOVQ/feRukCicsGsQjPOAEaj+9z4lS7/CefAonIc+YpFPn5ZE3qvjKF21COWL72AffW933e4WwSDc1ee/yl3vHJw7d47ffvsNLy8vxowZY44xUCgUFjsE16isrMTN7c6t45s3b8bX15dWrVphvEHjMxqNSCQSm+4mLNyeyqIdaebvGp2BtpFKptxnsjzFBLlyMK6Q349mM7l/mMW9DtcpAg5Xfa6vDdqK6ywT+y4WopBL6drYdpb2hZsusWhTVazH/Jc6MLZfOO7Opp2MxiHunE8tZs1faTQLV97V/5DbSWkapqRpmJJclYYVO5KZMMB6q7g2LNhwkUW/XQRAozX5Cy98vZvF73kzZFIJGq2BGeNb0b6JyeI7bUwLXp13mBnjWiKTSVC6yHnvidZIpRKahntwPC6fNbuSaR5R+7ZxGj4Op+HjzN+L576KLu50rcu9YxwccZ/6ETL/EFTvPQ3VBLDVFFs+V+0be3Pw64F4uJjKig52o6i0ktV7Umv9XMkHjcFhYNVpROVfT8OQeIvtd50W7C0VAYmd/La/oTHtEkZA88s3OD4xg8q188FoQFAXo1n1BQgC2owEZA1jkXcbgibts9pUi0X7r7Bo/xXz94WPNqJNiCvbLxbSNcod5R3Ga/x0LIcPt6YxrX8IXSItd+TkMikxV/3f88p0rDySw4SO1bvF1IbajL3/JGzZJg52UrQGy3lRZzCisK+Vva9aFv6ZyaK9VYv5Sp2RtmFuTOljMmrFBDhzIFHF76fymNzT0uKfml/Bx1tT2T21DT5Xd88rtEZmbUxhUrdA7GSmOVxdaeD5lXGk5WtY8WRTHO9gXK9xPfZdZtG+69pjTCPahrqx/UIh3RreeXvciuv7SG6pjh//zmZCp9r1EZcHJ+Dy4ATz98JZL6G9cKp2ggIY9UidXSj67G0MednoAJmPP86DHkT9W5W7krG4EGNxIWUpCcgbNcN54AOoLt3e5VXk/zd31RsOHjzIjh07CAsLY9SoURaBwl5eXhQVWQb2GY1GVCoVTZo0ueP/cfGiaSH4wQcfWKSfPn2a06dPM378eMLCwu5G/DtiVJdABraqsiS8szqOcD9nizyhvk7VWkv8rvqB5pdozcfk5V/d7vVxq3I12nexgJ5Nvc1HutmCUT3DGNiuyo/Sz8PRakEdEeBC4uWaB05l5qlJzVbTtXnV7xQZ4IqqrO63tkf3jTQfLZpTVMG49//kxS8tT9x56qN9DO8exsyJljEIPh6mNogIqNriDQ9wpVJnpLC0Eh+lIxKJxKIdwgNciU+vm6NzK3asR3Nol/m7sTCvTsq9EySOTri/8TkyvyBUH0zBkJ1ZJ+Xa8rkCzIqBuawGruTWgaVY+9fv6I7tMX8XVLcOfDSq8pG6eXJ9+KrEzQNjsXWwusTVA1lEjIWbkDErDYm9HInCyXSPIFhs2RtzMpAF1j625eE2vgyIqVJk/a4uxA4kFfNs9ztzj1t6KItPd2bwWt9gHutQ5fKVWVRJamEFXa+LoYr0dqSo3DZ+4bUZe/9J2LJNfF1NrkXXk1+mw8el+tObasOo9n4MbF4VR/buhmTCfSyPfw3zciS7xHrcv5ilRulkb1YMAJoEOKOuNFBcocfLxZ4yjZ7JP8SRXqDh+ydiCPO2zdGyo9r6MbBpVT2utcf+pGKe61E7F9LMIg2pBRq6XucKFulTN31EvfVXKvbvNH831NH8YSgsQKjUYLjO9VR/OQ2Zt6nv2Uc1AaMRXXJ81fWMlP/fAckid0yNlYNjx46xY8cOmjZtyogRI5DJLBcEkZGRHDhwALVajbOzaUBPSkpCq9USGXnnVr8nn7T2m/vpp58ICAigR48eVkHPdY3S2R6lc5XFsEWYO0cTLZWelJxy7m9jvf3p6+5AAw8HjicXm5WD48kqGng4WMQbnEkrYUIv27oUKV3kKK+bMKYvOYlUArMntjKnxaWXEH0XvpGnk1XMXH6avV8OMC8Mz6epiGhQ936W19fDz9ORbZ8Psrg+4JU/+ODJtnRubt0eMaFK7O2kxKWp6BprmmCTLpfg7GiH0kVOi4aeLFh/EYNRMAfZJV0uIdD7zoJrb4egLkVQ2+bUilsikeD2yodIfQNQzXoOw5W0299zh9jyufrlrzS+35rIljm9zbuDcRnFhDeoAx/38lKE8jtvC0PyRWRRzdEdMh0pK/HwQeLhiyHZ+qxvqbc/jk/Pomz6KLPSIQuJxlhShKAuwZB8Ebv7xoJECoLJ6iv1D8FYkG1VVk1ROtpZWT6LynVkFFXSKvj2v9uG03l8ujODaf1DGNfBMhbkzOUyZm1J5c+XW5kt0+ez1ETYaBFXm7H3n4Qt26RFkAtXirVkl2jxv2pwOpFRSmyQc3VF1Qqlkz3K62JPYoNdOJZieVJUSn4F91fzjgVfVzmqch0FZTrzMacpeRU4yaV4OtthNAq8sOoSGYUalk9qSoSP7d45ccv2qGVw/ZnLamZuSuGvV1ub+8iFK2oi66A+QlkJhrLqT+aqDdpLZ5E4KJAFhGC4kg6AXVA4+lyTK5RTv2HI/AIofO8F8z32kY3RJcfVuSz1wn/YRehuqNEeZFlZGdu2bUOpVNK+fXuysrLIzMw0f9RqNW3btsXe3p4VK1Zw8eJFTpw4wa+//kpUVBTBwXe+EA4ICLD6yGQyHB0dCQgIqPd3HozqEsClK2rm/ZFMWl45/9uSTEZBBUPbmgZtdaWewuss5o90CeSzjYkcSSjiSEIRn29MYlyPqvrrDUZSc8uJ9K/7wfxW9Grpx8ZDmWw4kEFaThnf/BbPiYRCxvY1WS/VGj2FJXdmkevZwg8XJ3veXX6alOwyNh3K5Ls/Enl6SENbVgGFXEaov4vFB8DX0xEvd9Mu1vX1cHGy56Fe4Xyw/CSnEgo4eamAz346y4M9w7GTSRncKQSjIDDz+xOkZZexakci+05n81Bv251WdLdIHJ2RON/ZRKboNQT7pq0pWzQXo7oUibun6XOH99eEunyuOjf1IU9Vycc/nyctp4zNf19myZZEJt0XVedy3w7d3t+w79AP+y73IQ2MwPHx6ejPHkK4tqBXOIOT6fc0pMZjTL+E47jXkTYIxa5ZBxxGPo32j5Wmso7uAokExaMvIfEJwL7HMOyadUC7b7NNZE/IrcDBTkKQ0nqsVGsNFKpNlmdVhZ7ZW9MYFuvNoKae5JVpzR+DUaBHtBIXhYyZm1NILahg09l8vj+UxdPdbn6yS11S07H3n0xdtUmwh4Iuke68sSGJ+Jxy1p3MY/O5Ah6ph5eHjWrnT3xOOfN2ZZBWUMHXO9PJKNQwpKVJOVBXVtWjRbArkT5OTF+XQEJOOUdTivl0axqPdvRHIpGw7nguR1KKeX9EJK4KGXmlWvJKtajK6+cdFHfaHrfjWh95b1NVH/nu4BUm11MfuVMkTs5IXEzu3YbL6WiO7sfjxXewC2uIQ6uOuIwcR/nWdQCUb1uPQ/O2OA8ehaxBMK6PPIl9dAxlv6++l1UQqSdqtHOQkJCAXq9HpVKxdOlSq+vDhg2jZcuWjB8/nq1bt/Lrr7/i4OBATEwM/fv3rzOh7wWBno4sfqYFs9clsHhnOpF+Tix4KtbsQrR0dzrrj2Sz613TG46f6BNKQZmOKd+dRSaVMLJjA8b3rFIOVGo9eqOAu43Obr8Z/dsG8PZjOhZsvERWQQVRga4seqWj2Uq+dGsi6/dnsOvT25+F76ywY8mrHXn/x7M8+N5feLg6MP2RZvRpXfd+yDXl+03xrN+byu7/mU5zeOOxlny66gyTP96HIJiOMn11tOn8eRcne76f3oP3vj/OkGnbCPB24vMpHWkabtuX8NwNLhNeQurTgOJZz982r0P7nkikMtynfWqRrr1w4o7urwl1+VwFejux8OUOfLLmAqv3pOHl5sCrD8UwqL3tTo+6GYbkC2hWfo7D0MeROLmhv3gUzYqq+ADFqOeRevlT/vnLIBgp//YtFI+8YHpvQqUG7Z5f0e42TbZoyin/aiqKR1/G5d2lGAuyqVg8C2NGwk3+e+0oUOtwVdhVG5u17FAWG07ns+OFlhxMKqZca+S3M/n8dsbSzWr7lBYEKh1Y9GgjZm9N48HF5/F0tuON/qH0tvFLqq5R07H3n0xdtsmHwyJ4Z2MKj3x/Hh8XOe8PibD5C9AAAj0cWDy+CXM2p7Jk32UifBxZ8FgT/Nyutsf+K2w4mcfO11pjJ5OwYFxjPtycymNLzuEklzG0pY/5NKIdFwowCvDMCktrdLswN5ZPst3b0K9RUHbz9lh6MIsNp/LY+VKrau60xFkuY/HYxnywJZWRC8/h6WzP9AGh9LFhPOHd4D7pVWS+DSh46xkAij5/G/enpuI9dxFCpQb1ll9Qb1oDgC45nsIPX8ftsWdwG/ccuvRkCt57oV7dYkXuHRLhVscL/Usxbn3mXotQa6QD52M8OPVei1FrpJ0/QTj+1r0Wo9ZI2nxA3uh//uLkTvBZffBf82yVTO51r8WoNW4L96D/8bF7LUatsRu74l8z9v5b2sPwy4R7LUatkT20DMOqcbfP+A9H9ugPXBnW/l6LUWsCfjtyr0Wolrvts3ZjV9SxJP8/qF+ztYiIiIiIiIiIiEh9IsYc1Ii6P/dMREREREREREREROT/JeLOgYiIiIiIiIiIyL8Xg/iG5JogKgciIiIiIiIiIiL/WgTxPQc1QnQrEhEREREREREREREBxJ0DERERERERERGRfzNiQHKNEHcOREREREREREREREQAcedARERERERERETk34wYc1Aj/pMvQRMREREREREREflvoJs/6q7us3/m5zqW5P8H/8mdA+PhafdahFoj7fgRxj9futdi1Bppzy/RzB52r8WoNYoZv1H54fB7LUad4DB9A0L87HstRq2RNJpBxYz77rUYtcZx9haKKv//T1AeDqMw7n/1XotRa6RdP8O4YeK9FqPWSId/h1D4w70Wo9ZIPMchnJ91r8WoNZKm7/xr3kz/T0QQYw5qxH9SORAREREREREREfmPYBTfc1ATxIBkERERERERERERERFA3DkQERERERERERH5NyO6FdUIUTkQERERERERERH51yK+IblmiG5FIiIiIiIiIiIiIiKAqByIiIiIiIiIiIiIiFylxm5FgiBw/Phxjh49SlFREc7OzjRq1IhevXrh4OAAQGFhIdu2bSMtLQ2pVEpMTAz9+vUzX7+Rbdu2kZWVxYQJEyzSk5OTWbFihVX+hg0b8uijj9ZUdBERERERERERkf8aYsxBjaixcnDgwAF2795N586diYiIoKCggD179pCXl8fYsWOprKxk+fLluLi4MHz4cNRqNTt37kSlUjF27Fir8g4ePMjhw4cJDQ21upadnY2Dg4PVfQqFoqZi1wnPfXmY3SezLdK+fbkjvVr6W+UVBIHPf7nAur1pGI0CI3uE8upDTZFKJQAs25rIRz+ds7jn8YFRvP5IM9tV4CrPfXuc3adzLdK+fa4NvWJ9rfJeSC9m5OyDFmlNQ9xYO6MLAJn55by94hynk1UEeCmY/nATusT42E7465A26ohdz7FI3LwRclLQbV+MkJ1snS+kGfLHqj+3X/P1RCjJRxIcg32/iUi8ghCKrqDfuQxj6mlbV8EkX3QHZD2q6qHfsQQhx7oe15B1G42s1UCQyjDGHUK/YzEYdABIgmKw6zsRiVcgQlEW+t1LEVLP1Es9Nv6ZzLzVp8nOL6dJhCdvTmpHbLS3Vb7MnDL6PvlrtWWsmDOAds38SM8q5b1vD3PqUh6Bvi68Oq41PdsF2boKAEijWmE/cCISzwYYM+LQbfwWIf9y9Zlldtj1G4ddbE+QO2BMOYt243woKTBft7/vKWQteoBBj/7YdvQ7ltdLPQC0Wj0TRi3g1Tfvp0278GrzTH1hFfv+jLNI+/TrMXTt0QitVs/Cr3ex/Y+zaCq0tG4Xzqtv3Ievv3t9iA/Ac18fZfepHIu0b19oR68WflZ5C0oqef/Hcxy4kIfCXsawzkG89EAj7GSWm+SqMi2D3/6Tn2d0JdDbyabyX8+lLDUzNyRxPrOMEG8FM4ZG0CFSWW1eQRCYtyOdn//ORm8Q6N/cixlDI3GwN9Uls1DD2+sSOJ1WSoCHA9OHRNAl2qPe6gJw/HQG02b9zs51z900T2Wlno/n7eKPXRcA6Nu9EW+82BcnRzkAl5JymfXpNi7EZ+Hr48rzE7szuH/TepH/Gpm5ZQx9aTPz3+xJh2bWzxVcndN/PMXaXUkYjQIP9o3k1bGtzHN6enYp7y04wqlL+QT6OvPq2Fb0bBtYL/I/99URdp+6YW3yYvtq1ybXEASBSZ8dZnDHQEZ0DbG6rjcYeWjmXvq09uf54Y3rXOZ6R1QOakSNlANBEDhw4ABt2rShb9++AERERODo6Mi6devIysoiKSmJiooKJk+ejJOTadB1c3Nj1apVpKenExJiegiLiorYvn078fHxN91RyM7Oxs/Pj6Cg+lkU3I7EK6V8PLkNHa9b/Lo721ebd9nWRDYfyuTrFzqgNxh5fcFxvFwdeOK+hgAkXSnlkT7hPDO0kfkeJweZbStwlcSsMj5+IpaOjasWbu5O1T8KSVllNAl2ZeGUduY0O5lpMBQEgefnnyA6wJVf3uzMrlM5TJl/kk0zuxHg6WjTOki8g7Ef9gq6P+YjZFxE1mEo8lFvU/nNZNBrLfIaM+PQfDneIk3+wOsIFaVQkg9O7sgfnoH+wFqMcQeRxnTD/qE3qVzwLJQW2LwedkNfQb91PsbMOOzaD8H+4bfQzn/aqh4Aso4PIGs9CN2GT0GrwX7YK8i6jsLw14/g5I79QzMwHPwFQ/whZE26YT/yTbSLnrN5PY6dz2HG1wf54PnOtGriw6ot8Tw5cye7l4zE2dGyjzTwdmLf8ocs0uZ+d5T0rFJaNvahUmvgiXd20DBUyc+f3MeFpAJe+WQvyz7oX62yUZdIfEOQj5uJ/q81GE7vQdZmAA4TP0TzxVOg1Vjlt+szFllMZ7RrPkZQF2M/cCIOY96icv7LANgPfhppRAsql72NRO6IfPQbCKpcDEf/sGk9ACordbzzxlqSk3JvmS8lOZf3PhxJuw4R5jRXN1P/Xfztbv7afZGZc0fi4eHMvC+288Yrq/lu5VNIJBKbyn+NxCulfPxkSzo2uX68qn7cnbr4JBLgpze7oCrT8vrik7g62TH5/obmPMVqLc9+fZSCEuv+ZUtKK/RMXHKOXjGezHmoIb+fyGXKDxf5Y2obvFzkVvmX/JnJT4ez+PzRxjg5yJj6Uzzf7EznlUFhprH3hwtE+zvzy5SW7LpQwJQfLrLp1dYEeNSP8Sw+MZcX31yHXH7rZcS87/Zx9GQ6Cz8bBQK88f5GvljwJzNe7o9Wq+eZqWvo270Rc2YM5ujJNKa//zuhwR40bxJQL/UAmLnwCOUa/S3zLP09jk37Upk3rTs6vZHXvzqIp5uCicNjTGPWzN00DHbn57kDuJBcyCuf72fZzD7ENrTtmAVX+8hTrekYc/s+AmA0CsxZdY6D5/MY3LF6BWbp1iTiMkro0/rmCobIv5caxRxUVlYSGxtL8+bNLdK9vU0PZGFhIUlJSYSEhJgVA4DIyEjkcjkJCQnmtG3btlFYWMj48ePx96/+4bumHPwT0OoMXM4rp1mEBz5Khfkjt69+Qb9iezJTHmhMm2gvOjTx4dWHm7JyV5U1OPlKKY2D3S3KunERZbN65FfQLEyJj7uD+XOzeiRlqYnwd7HI63F1Ivs7vpCMvHLeG9uUyAYuPDUokhYRSn49kGnzekgjWiHkZ2A8uwdBlY1+zwokLp5IfKwtIBj1oFaZP9LQ5kh8QtFtnmcqK7gJGI0YDq9HUOVgOLgW9FqkgY2sy6rreoS3NNXj3J+gykb/59V6eAdbZ5ZIkbUfin73MoS0swhZCej3/YS0QZSprKDGYDRg+HsDqHIwHFoLBi3SgGib1yO/qIJnR8UytFcEwf6uPDc6luJSLUkZxVZ5ZTIpPh6O5k9GdinbD6bz0ctdsbeTsudoJkUllXz8clcahigZ1iuSoT0jWPbbBZvXw67D/RjTL6Lf9SNC/mX0275H0JQja9Gr+vyt+6Lf8QPG1HMIeRloN3yFNKgREq8AcHRB1qY/uvVfIWRewph8Gv3+X5EG2/65SknKZdLYxVzOKLxlPq1WT9ZlFTFNA/HydjV/ri34Nv92islT+tC6bTjhkb5Mf3cYF85dJiP91uXWFZbjlcL8qW680uoMeLs58M7Y5kQFuNI22ov+bRpwPKFK1uMJhTw4a/9tF4K2YMOJXJwcZLw7IopQb0em9A8l1NuRc5llVnkNRoFl+67w+v3hdIxSEhvsyvP9Qjh/2ZT376RiMgo0vPdAFJF+TjzVK5gWoa78eizHqixbsHr9CR6ZvBwvT+fb5t17KJGHh7WkeZMAmscEMPqB1hw+lgpAYko+l7OKeeGpHoQEeTBySEsaRvpy5ES6jWtQxca/UlBX3P55WLE5jimjY2nTxJeOzf157bFWrPzjEgB7jl2mqETDxy92No1ZPSMY2iOcZRvjblNq7TH1kXKahd++jwDkFFXw+CcH2X0qG7ebKBBpOWWs2JlMZICrLUWvVwSjcFef/yo1Ug4UCgWDBg0yW/+vERdn6gC+vr7k5+fj5eVl+U+kUjw8PCgoqLJe9u7dm6effrpadyIAvV5PQUEBxcXFLFiwgPfff58vv/ySgwcPIgj132ApWWVIJBDsc/st6NyiCrIKK2jbqEqLbxPtyZX8CnJVJutj0pVSwvxvP7DWNSk5aiRAsPedWfaTssoI86teztPJKpoEu+HkUGU5ahPlwalkVR1IemuEilIk3sFIghoDEmSxfRA0aoSirFvfKJVh13MM+gO/QEWpqazyEiRObkgbdTRlie4ADo4IuWk2rsV19Qi8oR6qbKu8Eu9gcHLDeOlvc5rx/F50q9+rKsvJDWn01Xo07AByR4Q829djYNcwnn44FgBNpZ5lv13Ey11BZPDt3U8+X36Ch/o3JCLIlDczu5SIIDdcnausqY3CPDgVn2cb4a9D4uGPMSPeIs2YnYo0pJptdYkE7S+fYkg8YX1N4Yw0tClo1BhTq9wH9Xt/Qffrl3UstTUnjqXSpl04S1Y8ect8aan5IIGAIGt3FKPRyHsfjqR9p0ira+oy610UW5CSrb7jcVduL+PjJ1sRenW8Srhcyp7TObRvVDUf7T+XxwNdg/nq2bY2k/lmHEkqpneMJzJp1Y7LL1Na0qOxp1XexJxyisp19Impkn1IK1++m2RyOz2dXkqTQBec5FULwDZhbpxKK7VhDarYdziJuW8PYfzo9rfNq3R3ZNueOIpLKiguqWDHn/E0iTYZ/dyv7lCt/f0URqPAybOZpKQVEBNdP0bBotJKPllxkplP37oeOYXlZOWX0y6myvW2dRMfruSpyS2sIDOnlIhAd8sxK1TJqfh8m8l+jZTsO1+bAFxIK8bf05F173bHxbH6XZ/3lp/h+WGN8HS13tH6f4vBeHef/yi1fs9BZmYmBw4cIDo6Gl9fXzQaTbVuQnK5nMrKSvN3X19r//bryc3NxWg0UlBQQO/evVEoFMTHx7Njxw4qKiro06dPbUWvEUlZpbg42jNt4XGOxOXTwNOR50c0oXs1fq95KlM9fZVV27te7qa/cworkEqgWK1j/f50pi85gcJexsjuoTw+KMrmW/VJWWpcHO2YtvQMR+ILaeCp4PkhDenerPo4geTsMgRBYOjMfZRV6OnWzIepIxvh4mhPXnGlRR0BvNzkZBfZfuFgvLAPY8P2OIz/CMFoAMGI7uf3QaO+5X3SJl2RODhjOL7FnCZkXEB/bDP2I6eBICCRytBt/Aqh8CZ+5nWI8eJ+jA3bIx83t6oeaz6oth4SpT9UlCENbGyKUXBywxB/CMOe5WDQI2RcwHB8M3YPvF5Vj03/Qyi8YvN6XOPQ6SwmvrsTQRD45JVut90NO3Ehl1PxeXw2tbs5zUvpSF5RBYIgmPtDVr4aVUnlzYqpM4QyFRI3S+OGxN0bKqytuwgCxqRTFkl2nYYhqIsRslOQhsYgqHKRteyNXc9RILPDcGIn+j9Xg40NHCNH3X7RBpCanIeLi4KZb/7KiWMp+Pm7M+mZXnTuFo1UKqV9R0vF4OeVh1B6OBFVT4u3pKwy03i15BRH4gtM49WwRnRvfuv547GPDnLsUiFNQ915tHeYOf3FEaZdm8v55bYUu1oyCzXEBrvwzroE9lwoJMBDwbTB4bQOc7PKm1Gowd3RjpNpJXy5LY0itY5+zbx57b4w5HZS8kq1+N6wcPNykZNdXD+uUt98ZHIL/HXz7eOypj7fhxemr6XjwM8BiI705duPTfcHNnDn5ad78uk3u/h43k4MBoHnJ3Wj003iY+qauUuPM7xnBA1DlLfMl1dUAYCvZ9UC3PvanF5QfpMxqxxVqe3HrKQrZaa1yeKTVWuT4Y3oHlt9H+3V0v+WsQi/7kunUmfgoR6hbDps+zlQ5J9JrY4yTU9PZ+XKlSiVSoYNGwZwS6t+TRa+np6ePProozz++OPExMQQERHBoEGDaNWqFYcOHUKjqR/L1TVSrpSh0Rro2tyXxa91pnsLP5798jDnUoqs8lZoTVuUcvuqn1duZ/pbqzeSnGVaaHi5KZj/UkeeHBzNgo3xLN+WZPt6ZF+tR4w3i19oS/dmPjz7zXHOpVq7f+gMRjLyytEaBOaMj+X9cc05kVTEtKWmANcKncFcr2vI7aTo9PWgbTu6IXFRotu6EO3SqRjO/on94BfA6daWartW/TGc2mHpzy93RKL0Q793Ndqlr6Hfvwa7/k8i8aqHYDJHVyTOSnTbFqJb/jrGs39if/+U6ushV4C9A7Kej6HfvRTd5q+RRbXDrvfjVdeV/hj2rUa3bCr6A2uw6zcJiWf9BMUBNAxRsu7z+3nh0ZZM/+oAp+Jube3/edsl+nUKwc+ratLt3iaAUrWOr386jVZn4GxCPut2JNbLc2U4uxdZs65IG7UHqRRZqz5Ig6JBdns7irRJR+y6jkS3fRkY9Ejkjki8ApC1vw/dui/Q/fEddp2GYtd5uM3rcaekpeSj0ejo0CWKL+ePo1PXhkx9YRUXz1svCvbuuciq5Qd55oV+2NvXz/szU7KujldNfVj8cge6N/fl2f8d5Vyq6pb3zXi0GcundkSrN/LawpP1IuvtKNcaWPxnJj6uchY+0ZR2EW5MWnKOLJX1ArK80oBGZ+Tzram8fn84HzzYkD8vFvLx5hQAKrTGasZeCbp/oKUzPbOIBn7uLJs3liVfPkKlVs9H/9sJgE5vIDmtgIeHt2bNd4/zxgt9WbLiEH+fsP1u58HTWZy4mMezD93+EBBNpQG4YU6/6raj1Rvo3iqA0nItX/981jRmJRawbldSvYxZ5j7SzIfFr3Ske6wvz351hHMpqhqXVVBSyRdrL/Le+Bb1FlNUX4huRTXjrkf4c+fO8dtvv+Hl5cWYMWPMMQYKhcJih+AalZWVuLlZW0huhkKhoGHDhlbp0dHRnDx5kvz8fJsGKi/cGM+ijZfM3+e/0omx/SNwv7pt2DjEnfOpKtbsSaVZuOWWvMO1QUNnxEF+bQAxDRIKuYymYUoOfnOf2Xc/OtidotJKVu9OYcLAqLqtx5YkFm2tUjrmP9+Gsb3DzIHUjYPdOJ9WzJp9GTQLs1yQ2sukHPysDw5yGfZXT/uYOyGWB+ccJFelwcFOiqpSZ3GPVm9EIa/7wGpZ5wex6/Kg+bvxSiLG3DTzDoB+8zdIn/4GWYs+GA5VfxIOTu5IQmIwbFtkkWzXaQRIJBj2/2wqKzsZSUA0snZD0G9dULf1f34+eQAAm1VJREFU6PQgss4jzd+FrESEvDSMJ0wBqvo/vsX+qXnIYntjOLze8majAYm9A7odSxAyzpvy71qK3bBXYMcSZB0fQALoD6wBwJCTjDQgGlm7wei3LazTeixYc5ZFa8+avy96tw9tm/rh7eGIt4cjTSI8ORWfx+qtl2jZuPpdKb3ByO4jGXz0cleLdC+lI59P7cb0rw6yYM1ZgnxdGDu4Mct/v1indQCw6/Ewdj1Gmb9rl7+Dfs8q5I/OAKkUY/IZDCd3IVHc2gVQ2qQT8tFvYDj8O4Zj20yJRgMShTO6NR8jqExBwTqlD3YdBqM/sP4WpdUfT0zuwcNjOuJ21b2jYSN/4i5cYcPaYzRpWqVU/rX7Im9NXcNDj3Rg2Mg2NpNn4eYEFm1ONH+f/2J7xvYNqxp3r41Xf6XTLEx503IaB5vmmjlPtOCh9/dzOb+8Xk8lAli4O4NFezLM3zU6I23D3ZnS3+RKGxPowsEEFb+fyGVyb8sYI5lUgkZn5M2hkbSPMI3Lrw8O57VV8bw5JAIHeykq9Y1jr4DCvu5fXbRg2QEW/XDA/H3R56Np27Ka2K5qKFNX8tacTSz9egwtrj5Pc94czNhnVzDlye7sPZjE+bgsNl4NcG/aqAFJqfksWXGQDq2rdzm+63qsPceiX03jpkZrWuwvnNEThcPtl0HVzuk6UxkKuR1eSgWfv9KV6V8fYsHacwT5OjP2vmiWb4q/aZl3y8JNl1i0qSp+c/5LHRjbL/yGtUkxa/5Ko1m4skZlz1l1jhFdg4kOuvO1msi/k7tSDg4ePMiOHTsICwtj1KhRFkeLenl5UVRkaU03Go2oVCqaNGlyx/8jKyuLzMxM2rZta6HB6nSmAfH6gGdbMKpXOAPbV02Ofh6OVoveiABXEi9b+3j6XT0tIr9YQ6CPs/lvAJ+rbjgeN5xOERHgSq4N3HFG9QhmYNuqLUQ/pcK6Hg1cSLxSjdsE4HKDW0hEAxcAclQa/JQKErMs78sv1uLjXv3pU7XBcGIrxov7zd/tH51l8R0EhJwUJO43P0ZVGtEKQZVj5YMv8Y9EyEm1SBNykqsPbq4lhpNbMcRVyS0fPRPDjfXITUXibu02IZSZ+pVQUBXwLRReRmLvAE5uSPwjMeamWtxjzEmxST1GD4pmUNeqyTuvqILzSQU0jaxyyYkKVpKYobppGafi8tDrBbq0tD6VpEfbIA788BB5RRV4Kx1ZvTWeQD+XOq0DgP7IFgxn95m/CyUFGNPOo9+3DhTOoC7GfvR0jEU3D/SUNe+O/UOvYTiyBd2WxVVllRYi6CrNigGAkH/Z5Kb0D0EqlZoVg2uERfiQct0JRzv+OMt7M9Yx4qF2vPT6IJvKM6pHKAPbVj0Pfh43Ga8uW49XZRU69p7NY2DbBubjJSMbmAIqi8q09a4cjOroz8DYqrZ+Z10i4b6Wv3WotyNZxdbGNB830/wQ4VOVP9zbkUq9kUK1Dj83OYk5lq6H+aVafGzgIz56RGsG9amau/187jxINTk1n/IKHY2jqlxcmjTyx2gUyM4p4Xx8FtGRvhZzfJNoP06cqftDLUYPaMigLqYxK6ewnHFv7+TFT/ZZ5Hnqgz0M7xnOzKc7WKT7epnaIU9VQZCvaRzKvxo/6ONhutajTSAHlo4kr0iDt1LB6m0JBPrWfVzhqJ5hDGx3fR+pbm3iUu3a5HZs+fsyCrmMlbtMO1QarYFTiYVsPZrFptnVH8rw/wbxKNMaUWPl4NixY+zYsYOmTZsyYsQIZDLLhzIyMpIDBw6gVqtxdjZ1jKSkJLRaLZGR1oFtNyM3N5ctW7bg6elpcd/58+dxd3fHw8O25zkrXeQor1vAT198HKlEwuxJrc1pcWnFRAdba9i+Ho408HLk+KVCs3Jw/FIBDbwc8VUq+OXPVL7/I5Etc/uYB8W49GLCG9T94kfpLEd5XZDU9GVnkEpg9vjYqnpklBAdaD3gJ14pZdTcQ/z2TleCrk6scRkl2EklhPg4o44wsHhbEhqtwTw4nUgsonWUDdpGU4agqVoQCEXZVif6SLwCMZ5LvPFOM9LAaIQM69MjhLKiasoKsljU1RmaMtPn2v+urh6eARjPJ9x4J0JOMoJeh8QvHCHlVJWcleWm4OrSwmp/E1R1f4KJ0tUBpWuVEvj9hgtk5pTy3cx+5rTzSQXERFoHW17j9KV8mkZ6mi1x10jKUPH+wiN8P6uf2cf3r2OX6dDcBn7uFWUI18UTyGJ7IA1qhG7LIlAXg50cWUQs2nWfV3u7NKKFSTE4vNFCMQAwZsQhsXcwvXOiwOSmI/UJRriFolHfzHrrV6RSCW/NGmFOS4jPJrKh6bc+ejiJ92as46HRHWyuGEA14+53p0zj7hMtzGlx6SXVWjYrtAZeXXiCBp5daHV1DDqfpkImldz0UAVbonSyR3ndaTAtQlw5mmzpvpmSV879La0NATEBztjLJMRnqfG+uuBPyivH2UGG0smeFiGuLP4zE43OgOKqVftEakm18Qu1roe7I0r3uzua2veqIpGYmkfTRg0ASE4zBekGBSjx9Xbl+GlLRSA5rYCggLp/j8b1Y5afpyPbvhlqcX3Ac7/zwTMd6NyigdW9fp5OBHg7ceJinlk5OH4xlwBvJ3w9HUnKLOb9xUf5/t0++F49xvuv45dv+s6EWtXjxj6y5KRpTp/Yypxm6iM1P2lo6/+xd97RURVdAP9tSzZ903shCb2GjnQQBJUmVUFAwS4ooqggoiKK2AsqRYoIgtKb9Ca9BggESCON9N53s7vfHwsblt0AIQmo3/zOeefkzcybvTe7b2buzJ07s3uY3E+Zf5pmwc6MfeTux26C/wZVWoMsLCxk+/btqFQq2rZta5zdv3EVFRXRunVrFAoFy5YtIzIyktOnT7N27VpCQ0Px97cQnrESGjVqhLu7O+vXr+fMmTNER0ezbt06Ll++zCOPPHLf/eG6h3mz6XAi6w8mEJ9WyNz1lzgdlc2ohw2xwYtKy8m+acPkkz3q8OUfFzgemcHxyAy++uMio3sbXrCHmniQkVvKnJURxKcVsuVoEgu3RDH+sdoPOdm9mQebjl1j/ZFk4tOLmLs5itPROYzqHlihx/VNVMFe9gR62DJ9WQRXkgs4FZ3N9GURDOnsj5Odgjb1XPBytmHq0vNEXStgwbYYzl3NZXCn2j+XQntmB7IWvZA26YbE2Qt599FInNzRnttjKKBQgq1pRyl1D0CXmWixLmloK2Rt+yNReSJr0w9pSJjJpuVa0+PsDmTNDXrg7IWs29NInDzQnt9boYfNdT3UJejO7kDe6zkkPvWQ+NZH1n002rM7Qa9De3Yn0pBWyNr0gxt6BIehPV37MfWHPVKXY+dS+XVjJFev5fPdinDORWUypn8jwBDB6MamvhtExecSYmEjoK+HPTGJeXy/Ipyk1AJ+XHmOUxfTGfV47R/Eo8tMRtb2UaSNHkLi6oPV8Cno8zLQXTlpKCC3Avvrxq9UiuKJSejizqM5sNqQfuOSydFnJqO9dBzF4ElIvOogDW2JvMtQyo/X/u/qdmRlFlBaaliB7dytAds2n2PrxnASE7L45ee9nD2TwNAn21FermXWjPWEtQri6Wc7kZVZYLw0mvsTCrR7C082HU1i/eEk4tOKmLvxCqejsxnVMwgwba/cnZT0aunFxysiuBifx8krWUxfco6RPYPMVkAfBMPbe3EltYgfdsYTn1nCdzviScwqo3+YYbWzqExLdqHhe7FXyhna1ouPN8QSHp/Pmfh8vtx6lSFtPJHLJLQJdsLLyZqpf0QRlVrEgr2JnEssZHCbBx/6u7RUQ0aWweD28nCkc/tg3p+9lYhLKZyPvMb7s7fyaK9GuDjb0e+RJiQm5/DF3D0kJOWw4a/z/LkhnFFD29zhU6qH0lpOoLeDyQXg4WqL6/XV/aISDdl5Fav5I/rU44tlZzgWkcaxiDS+/C2cp6+3Sb7udoY2a+U5ktIK+fGP85y6lMGoR2s/bHH3Fp5sOpLE+kOJhrHJhsu3HZvcjkBPe5PLWiHDyU5x31fdagWd/t6u/1OqtHIQFRVFeXk5ubm5LF682Cx/wIABtGjRgjFjxrBt2zbWrl2LtbU1jRo1onfv3lUSTKFQMHr0aHbv3s3evXspLi7Gw8OD4cOH06DB/T+tr3drH6aPbs7PGy+Tkl1CqI8D8yd3MK4MLP4rinUHE9j95SMAPPtoXbLyy5jw3XFkMgmDuwQy5rr17etmy7zJHfh8ZQQr91zF1dGaycMa07dd7W8c7d3Si+lPNebnrdGkZJcS6mPP/IltjC//4p1xrDuSzO5PuiGVSpj7cis+WRXJ018cRSKR0K+tD28NNjR4MqmEuS+35L1fzzNk1mECPGz5/qWWtX4AGhii/JRbKZF3HILEwQ19Wizq5dOh2DAzJ28/EFmzHpTNfb7iITuVyaz9DfTXrqBZPRt51yeRd30KfVYympUz0VswJGpej0OUK2yQdRiM3MENfXocmhUVesjaDUTWtAfqnwx6lO9ajKzHGBTDpgMSdBf2o923zKhH+ZrZyLo8hazLU+izrqH54/7o0TjEle+ndufrX0/z5a+nqRugYuEHDxs3Gm89eJWp3x7m0sbRxmeycktoUMd8ZUFpLef7d7sxc/5xlmyIpG6gigUfPIyPe82vrN2K/lo0mo1zUfQdj8TWEV1sOGW/zjBGF5I17YLVkDcomfYoEt+6SJ09wNkDm3eXm9RTtvBtw2nJf8xB0e8lrJ//HDRllB/dhPbIxlrX43Y81uNz3ps5iMcHhNH94Ua8Ne1xFi/YT1pKHnVC3Pnmx6fx8XUm4mwiqSl5pKbk8ViPz03qmPvLM5WeuFyT9G7lzfRRTfl5cxQpWSWE+jow//V2Fe3V9hjWHUpi9xxD9LpZzzRn9sqLjPvqKAADOvjxxpC7d2etTXydlSwY14RZG2NYsC+JEA9bfn6mEZ7X3TAXH0hi3al0dr9jGBi//Xgdvth6lRcXX0SPnn5hHrzRNwi43vaOach7q6MY8n04Aa42fD+64X07AO12bN19kakfb+bSkWkAfPHhQD77bhcvvLEKiQR6dqnHlAmGQ1T9fFT88u1TzPl+FyvWnsLH05GPpz5G5/YPfqZ60YZI1u2NZc+8gQCMG9CQrLxSJnx2AJlMwpCeIYztZxiLKK3lfP92V2YuPMGSTZHUDVCxYHp3fNxrf8Wqd2sfpj+t4edNVyrekTfaV7wj26JZdzCR3V/0ukNN/230wq2oSkj0D+LQgAeM7ujbD1qEaiNt/xm6fa8/aDGqjbTbN5TOGvCgxag2ymkbKPt04IMWo0awfnc9+suzHrQY1UZSfxol0x590GJUG5tZW8kpW/Wgxag2ztbD0R2c/KDFqDbSTl+iWz/uQYtRbaQDf0Gf/euDFqPaSFxGo7/w0YMWo9pIGr+P7vBbD1qMaiN96PM7F3oAFL9zb26RtrNrf+X9n8j9iUcnEAgEAoFAIBA8CP6PXYTuhZqPeyYQCAQCgUAgEAj+lYiVA4FAIBAIBAKB4D6yZs0aYmJimDJlilneqVOn2Lp1K2lpaahUKrp3707Pnj2N+VqtlpUrV3Ly5EkcHBwYNmwYTZpUHOinVquZPn06o0aNomnTplWWTawcCAQCgUAgEAj+u2h193bVEjt37mTHjh0W886cOcOCBQsICQnhpZdeIiwsjD///JNdu3YZyxw4cIAzZ84wZswYWrZsyYIFCygoqDjbYvfu3Xh4eNyTYQBi5UAgEAgEAoFA8B9G/w/Zc5CZmcmff/7JuXPnsLGxHNlx3bp1NGvWjKeeegqAxo0bU15ezpYtW+jatSsKhYJLly7RqlUrWrRoQfPmzdm3bx9Xr16ladOmFBYWsmPHDiZOnHjPcoqVA4FAIBAIBAKBoJb5448/SE9PZ9KkSRbP/srMzCQtLY2WLVuapLdq1Yri4mJiYmKMaVZWhsPwJBIJMpkMnc6w0rFlyxYaNmxInTr3Hm5arBwIBAKBQCAQCP673OM5B9OmTbtt/qxZVQv7PWDAAHx8fCo9yDc1NRUAT0/TAw09PAwnqaekpNCgQQOCg4M5cuQIPXr0ID4+nrKyMgIDA8nMzOTQoUO89957VZLrVoRxIBAIBAKBQCD4z/JPcSvy9b39YbclJSUAZi5HSqXhgMPSUsOp3d27dyc2NpZ3330XGxsbRo0ahUqlYuHChbRv3x6VSsWyZcuIiooiMDCQESNGYGd394fy/V8egiYQCAQCgUAg+P+g8NWedy5kAfsfdt/TczqdjluH1zKZzOT+yy+/RKvVmkQrOn78OL/88gsffvghXl5exnS1Ws2ECRMYNGgQffr0MUlXKBRIJBLi4+P56quvmDlzJjt27CAuLo6nn36ajRs3AvD888/ftfz/lysH2lVjHrQI1UY2fCman4Y/aDGqjeKlVf+Zk54jWzR40GLUCA3DL5HzbNcHLUa1cV60n9Qh7R+0GNXGa/VRdNteetBiVBtpn5/QHXjjQYtRbaRdvkJ/7J0HLUa1kbSbjWbhkw9ajGqjGP872j/HPmgxqo1s6BLONPz39yFhkZcetAgW0d+jW9G9smXLFjZv3mySNm/evDs+d2PF4MYKwQ1u3N+6onBj3wEYQqM+/PDDODo6curUKZ544gm8vLzo1asXc+bMQafTIZXe3Vbj/0vjQCAQCAQCgUAgqA06d+58T2FEb6wWpKenExQUZExPT083yb+ViIgIUlJSePnllwHIz883uhHZ2tqi0+koLCzE0dHxruQQxoFAIBAIBAKB4D/L/d5zoFKpUKlUVX7O3d0dd3d3Tp8+Tdu2bY3pp06dwtbW1mIEIp1Ox7p163jssceMexMcHR3Jz88HIC8vD6lUWqU9B8I4EAgEAoFAIBAI/gE8/vjjLF68mGXLlhEWFsbly5fZu3cvgwcPNnEjusGxY8dQq9V07tzZmNasWTN27NiBvb09O3bsoFmzZmZ7Hm6HMA4EAoFAIBAIBP9ZdPd5z0F1aN++PVqtlu3bt3P06FFcXFwYNmwYPXr0MCur0WjYsGEDQ4cONRn89+/fn19//ZUFCxZQp04d44Fqd4swDgQCgUAgEAgE/1n+KaFMb2by5MmV5nXs2JGOHTvesQ6FQsHs2bPN0u3s7HjppXsPZCFOSBYIBAKBQCAQCATAPawc6PV6Tp06xYkTJ8jJycHOzo769evTvXt3rK2tAcjOzmb79u3Ex8cjlUpp1KgRvXr1Mubfyvbt20lJSWHs2LFmeeHh4Rw5coSsrCzs7e1p0aIFXbp0uetwTAKBQCAQCASC/1/0Ot2DFuFfRZWNg0OHDrFnzx4eeughgoODycrKYu/evWRkZDBq1CjKyspYunQp9vb2DBw4kKKiInbt2kVubi6jRo0yq+/w4cMcPXqUwMBAs7zjx4/z119/8dBDD9GnTx8SExPZv38/Wq2Wnj3v7UCLe2XMogucuFpglj4ozJ1Zg0LM0vV6PV/vTGTN6XS0ej1DWnrwRq8ApFLTI7Nzi8vp9/1ZVj7fGF9nZa3Jf4Oxf0ZxMrnILH1gIxc+7h1gll6s1vLZgWT2xORhJZPyVHM3xrWpONY7NruUT/clcy61CJVSzuAmroxv44G0kqPBa5JXfjzFnrPpJmk/vtKK7s08zMpeTMhj8KzDJmmNAxxZPc102S4+vYgBHx0k/IdHal7gW7Bp0RKfjz8j5vFeFYlSKe6vvo6q/yAkNrYUHTpA6uyP0WZnWaxD4R+A17vvY9siDG1eHtkrfyN76SJjvrJhYzzfmY6ybl3KoqNI/fxTSs+frVE9ZHWbYjd+Kvlvm8ZMV7Tric2gcUidXNFcOEHxks/RF+ZZ1qNlZ+xf/dgkTX1yH0U/zjDm2zzxHFIXd7SJ0RQv/w5tQlSN6gGgaNAcpwnvk/nKYLM8uyfGIvf2J2/uzLuqS/Xul+jzc03KW7ftisNTLyF19aD8ahT5i76iPO5yjcl/M1euFfLhH5e5kFRAgJsN0wbXo11dZ4tl9Xo9X22KYc3RFHR6PYPb+zC5X4ixvbpyrZCZq69wMbEAD5U1r/YJ4rFWlkPq1Qav/HCSPWfTTNJ+fLU13Zt7mpXNyi9j5ooIDl3MRKmQMaCDL68Pqo9cZphQWrIzls/+iDR55pnedZgytFHtKXALSRlF9J+6m5/e6EC7hu4Wy+QVqfl42TkOnE3F2krGgI4BTBrSyPidnLycySfLzxN3rYBAL3umjGjCQ03M276aZuzKK5xMLDRLH9jElY/7mvfjkWnFDP3VNPZ9I09b/hhtiOmfkq/mox0JnEgswN3eitc6+9CngeXfaU1zJbWIjzbGceFaIQGuSqY+Vod2wU4WyxaVafls61V2R2ZjJZcysr0X47tUnHabW6xhxvpYDkXn4myrYMLD/vRvYfm7rSnsWrYkcPZnXOxt2of4vP46LgMHIbW1Jf/AAZJmfUx5luU+RO7igt/7M3Do0AFtTg6pP/9M9vp1xnzfd6fiMXq0yTOJM2eSuWJ5rehUW9zvcw7+7VTJONDr9Rw6dIhWrVrx8MMPAxAcHIyNjQ1r1qwhJSWFmJgYSkpKeOGFF7C1tQUMIZVWrFhBQkICAQGGAWhOTg47duzg8uXLFlcU1Go1u3fv5qGHHqJXL8MPv06dOpSWlhIbG3vfjYNvR9RHo62wPM8lFfLGH1E82da8cwJYcjiFzecz+e7JepRr9by9JhoXOwXPdvIxlskrKeeV5ZfIKtLUuvw3+LZfHTQ3vSTnUouZvPUqI5q7WSw/Y1ciF9NL+LZfHfR6eHdbPHKZhDEtPSjR6Hh5fSyt/exZOaIeiXlq3tuRgIO1lCeb126jCBCdUsicZ5vRvkGF7E62ln/SMSmFNPR3YN6ENsY0uczUgEnJLuGlH05Rpqn9GQbr0Hr4ffEtOrXaJN312edw7PMYSVMmoc3NwWvKNHxmzSHxpXHmlUgk+H8/j9IL54kd8QRWAYH4fvol5enp5P+1GZmzCwHzF5O/YxspM97FvlMXAn5eROzgxylPTakRPaS+wdi//CF6jakesjoNsBs7heJlX6FNiMLmqYnYjnuHom/ftViPzCcQ9ZlDFC/9oiLxep1SnyDsnp9O8a9fUh51HuveQ7F//TPy3nkS1GU1ogeAPCAE1eRPjJ97M8qOvbAfPp7SA9vvqi5lx4dRtupIyd4tFfX71UH12ofkzf8MzaVz2D4+AuepX5LxyuAa1QOgoKSccT+G072JG5+MbMjGE6lM+OU8f01rj6uDebSLJXsT2XIqje/HNaVcp2fKsgu4OljxbI8A1OU6Xl5wjp5N3Zn1VANOROfy7vJIAt1taRJwdzGzq0t0SgFzxrWgfUNXY5qTrcJi2bcWhiORwO/vPERuoYYpv5zBwUbBC4+FAoa24Mlugbz0eKjxGVvr+7v97sOlZyku096xTFZeKb9N60JWfhlv/XQCV0drxvYJJSu/jJe+PsqL/erRu40vW44m8co3R/lrTi+8XGxuW291+XZAsGkfklLE5E1xjAiz3IfEZJXSwMOGnwdX/L9vtL3lOj0vr4nGT2XNn2MaciKhgHe2XCXEVUld99rVo6C0nHFLIunRwJlZg0PYGJ7JxBWX2fp6GK725r+tGetjuHCtiO9H1kenh3dWRyOXSRjb0dCnT10TQ6lGx+8vNOVcYgHvr48hyE1JMz+HWpFfWbcedb4x70M8n3sO1aOPEffGJLQ5OfhNm0bgZ3OIGW+hDwHqfP8DEpmU6LFjUHh6EvjpbLRFheTt3Gn4nNAQrn35JVk3GQzaQnPjUPDfokq+OWVlZTRr1szsYAc3N0OjkJ2dTUxMDAEBAUbDACAkJAQrKyuioipm+rZv3052djZjxoyxeKhDTEwMarWadu3amaT37t2b5557ripi1wgqWznuDla4O1jhYqfgm12JjOvkQxNfe4vllx1NZUIPP1oFOtIu2Ik3egew4niqMf9UfD5Dfz5Psfr+LnU5KeW42Slws1PgbCPn20MpPNvKgyaetmZlc0rK+etKLjN6+tHSx55WvvZM6uTDklOG2fpTyYXklZbzfg8/6rgo6VLHkafD3NlyKbfW9VBrtCRnltAkSIW7k7XxslJYDtUVk1JEsJe9SVln+4pB0q7wNIZ8chgrRe27q6kGDydw6e8WZ3IkMjnpn39KyemTqGNjyP59GbYtWlqsR+7qRtnlSFJnfYgmIZ6igwcoOn4E2zBDead+A9Hm5pI66wPUV+PI/m0pJWdO4Ty0Zk5FteraD8dpc9Hl55jlWfd8AvWJvagPb0ebFEvRglkomrZH6mZ5tlnqHYg2OQ59fnbFVWLogBSN26C9Fof68HZ0GdcoWTMfqcoVmU9QjegBYNNrIC6z5qPLy75FMBmOz03B6eVpaFOT76ouib0jDk9PQB11wSTdqkU7ypPiKN3/F9q0ZAqX/4TM2Q25v3nc6uqy/ngKttYyZgyrT6C7LRMeDSbQzYaIhHyL5ZftT2TCo8G0ClHRrq4zk/uFsvzvJACiU4tIzi5l4mN1CHCzZXB7H+p623M8OrfG5bZExbvuhLuT0nhZetfVGi1ujla8P7IJoT4OtK7nQu+W3pyKrvheY1MKaeDvaFKXnfL+GQebDidSVHLnCaEDZ1MZ2yeUun6OtG/kzmMd/DlywdD2nr6ShUwqYdxj9fD3sOPF/vWxUkgJj86+Q63Vx8lGjpu9Ajd7Bc62cr79+xrPtvWkiZflGOqxWaUEuyqNz7jZK1DZGP7ff8fmkVqg4dNHg6jjomRYC3e6BDsSfs18dbumWX8mA1srKe/3DybQ1YYJPf0JdFUSkWw+8M0p0rD1fBYfDAimZaAjrYMcmfxIAIsPXgMgIauUfZdzmDkomLqetgxu7Um/5u6sPJZmVldN4DpsOPV+r7wPSZ79KUUnT1IaE0P6smXYt7Tch9g0boJ9y5ZcffNNSiIjyd+3j7RfFuL5bIUhoQwOofjiRcozM42X/pbTewX/Pao0ElIqlfTt29c4+3+DS5cMS4YeHh5kZmbi6upqki+VSnF2dibrph9yjx49ePHFFy26EwGkpqZibW1NYWEhixcvZubMmXzxxRccOHAAvf7BLg+tP5NBXkk5425aBbiZ9Hw1qXlqWgdWzKq1CnDgWq6ajAKDlX8oOo8nwtz5ZkS9+yKzJdZfzCavtJxxrS0vRSflGWYzm97U6NdztyGjqJzkvDIauNvwbb86WMlNf0aF6tvPiNUEcWlFSAB/t7ubXYpJKSTIs/IDQPafT2di/7pMHdawhiSsHPtOnUmZ/g7Zy5ea5WXOm0vB3l0AyJxdUA0aSvGp4xbrKc/MIPntN9AVGzpSmxZh2LZsQ9FJQ3krPz9KIy/ATb6WpVGXsWneokb0UDRtR9HCTyjb8adZnjy4EeVXzhnv9TkZ6LLTkIU0tliXzCcIXVqixTx9UT4ynzrIQpuARIJ1p0fRFxeiS7+7wfrdYB3WgbwfZlK8eaVJukRpgzwwlKyp49FcibiruhxGT6DkwF9ok66apOsK8pD71UFRvxlIJNj0eBxdUeFdGx1V4Xh0Lj2auCG7yY3xzzfb0LWx+exuel4ZKblltA5RGdNaBTtxLbuU9Lwy42rc6iMp6HR6zsTlEZdeRMNKJkZqmri0IiQS8Hc3n8C4FSuFjDnjwwj0MLzrUckF7D2bRtv6FX3SndqC2iSnoIzPV0Xw4TNhdyyrsrdi0+FESsrKScsp4eD5NBoFqox5uYVqdpxIRq/Xs+vUNYpLy6nnf39Wcm6wPiLL0IdUsoIOEJNVQqCz5f2GJxIKaRfggL11haH33aAQhlaykl2TnIjLp0dDF5N35I+XmtG1vrlLU2KOYTDczK/iN1/P05aMAg3JOaWcSyrAy8nKxDW4ZaAD4Ynmrsg1gWPnzsS/+w7pS837kNQf55K3y9CHyF1ccBsylIITlvsQa38/NFlZqJOSjGmlly9j27gxyOVI7eyw8vKi7OrVWtHjfqLX6e/p+n+l2tMlSUlJHDp0iHr16uHh4UFpaalFNyErKyvKyiqWzj08bu8bWVxcjE6nY8WKFbRr145u3boRExPDvn370Gg0992t6AZ6vZ6FB68xuoMXdtaWZ6kzCg0GgMdNy/eu12epU/PVuDtYMbGnPwDJOQ/GAtfr9Sw6mc7TYe7YWlnWw/X6sn16ocbYuKdeN25ySrU08bTGza5i+bW0XMeaiCy6Btd+BxWTUoS9jZy3F5/j+OVsvF2UvNqvLl2aWHZnik0tRK/X0//DvyksKadzE3feGlwfexuD/DOfNqyGHb9s2S+zJkma9CoATv0HVVrG7aUJuL/wCtq8XK6OvXN84tCtu1H4+FKwfy8Fu3YAUJ6VhXW9BiblFF7eyO7h1EZLFP3wHgBWHfuY5UlVruhyM03S9Pk5SJ0tfz8yL38UTdqifGwUSKVoTu6jZN0i0JajPr4HRYuHcJw6F722HPR6Cr95B31xzS1t5855GwCbbo+ZylxcSPZ7z991PVZNWmHVsAWZk0fh9NwUk7zSQ7tQtu6M66z5Bj10enI+nYy+qOYHEElZJTQLcOD9lZfYG5GJj4uStweG0jJYZVY2I9/QLns43dReXW+70nLLaBroyKTHg/lyYzSfb4hGq9Pzap86dKjvUuNyWyImpdDwrv9yluNXsvB2VvJq/3p0aXr7PuTpz49w8ko2jQOdeKq7YRIqM7+MvCIN6w4l8e7isygVUgZ38ueZ3sFI7sM+qdkrzjOwUwB1/e7cRs4Y04Ip807S6vlN6PTwUGN3XhlkeJ9b13flqYeDee2H40glErQ6PZ8815Jg79pxYbGEXq9n0fE0nm7lUWkfAoaVA70eBi2+SEGZls51nJjczRd7axlJeWX4OFnx9f5kNl3MRmUj55WO3vSsq6p1+ROzS2nqa8+M9THsuZSDr8qaKX0DaRlo/t242l1/H/LVBF2fkErNu94XFpeTUaAx6e8BXO0VpOWZuyjWBHETDH2Iy8DK+xCvVyfg/corlOfmcmWk5T6kPCsLmYMDEqXSuBqg8PJGolAgs7fHOiAAvU6H54sv4Ni5C9rcXNKXLCF7w/oa16m2EXsOqka1fCgSEhJYvnw5KpWKAQMGANx2Vr8qja9Wq0Wj0dCxY0c6d+5MnTp1ePjhh2nZsiVHjhwxMTTuJ8fj8knLVzOkVeUzJSXXXYWs5BX6Wl33sVSX/zN2zJ9IKiStUM2Qpq6VlvFxtKK5ly2z9yeRV1pOZpGGH48aXKM0t7xoOr2eadsTKNJoea5N5f+bmiIutZBStZZOjdxYMLE1XZq48/LcU0RcNd/wqtHqSMwoRq3V88mYZswc3ZTTMTm8vfichZr/GeRt3kDcU0MoOnaEgJ9+QXqHY8+T3nyNxAkvoqzfAM83DX79Bbt2YNOkGaonhoJMhl2HTjh064FEYe5zXuNYWUO5qeuEXqNBIjf35ZW6eiKxtkGvUVP00weU/PETVu17YTPMEKNZYu+I1MmF4t++puDjl1Af3o7ds28jcVDVvh5VQWGF4wvvkL/wC4t7CKQOTkhVruQv/Jysd8dRsv8vnF55D6ljzW++LC7TsmB3Au6OVsx7sTltQlWM/ymcFAuTERXtVUV3cONvdbkOjVZHbFoxwx7yZdUbrXl7YCgLd8dzPMrcnaw2iEu5/q43dmPBa23p0tSDl384ScTV3Ns+N21EY5a+2R51uY43F5wBDC5FAK6OVvz0amue6xvKz1uiWborrrbV4HBEOqejsnl5QIM7FwbiUgpoUseZFdO78v3EdkQl5bNwi8E1t6i0nKT0Il4d1JA/PujGi/3rM2vZOWKv1c5MtSVOJBaSVqBmSLPKZ/k1Wj2JuWo0Wj0z+wbyUZ9Azlwr5N2tVwEoVuvYEJFNfqmWH54IoX9jF97YEEtEau27FRWrtSz8Oxk3ByvmjW5ImzqOPLckkpRc83fX19ma5v72fLr1KrnFGjIK1Mzdk2jUsVSjM+nvAaxkUtTaB9ffZ2/cwKUhQyg4coTQhZb7kKKzZ9FkZOD/3ntIbWywCgjA43rUSInCCmWdYNDrKYuNI+aF58lcvRr/jz7C6fqeU8F/l3teOYiIiGDDhg24uroycuRI4x4DpVJpceBeVlaGo+PdzyjfOCK6Xj1Tt5vQ0FBOnTpFRkYGfn5+9yr+HZm3P5n5f1cs988b1YDWQY7suJhN57oqVJVsfAWwVtzoWPVYK64bBdcH0zaV+MTXFvOPp7HgRIXf488Dg2nla8+OqDw6BTnidAdf20/7BDJpcxydfo7AwVrGax29OZtSjL1VxUCiXGcwDA7E5TP/iRCT1YSaYt7WGOZvizHe//RqK0b1CMLp+mc18HfkQnwef/ydSJMg02gTCpmUw1/2xNpKhuJ6xJLZY5sx5JPDpOeW4qGqvShRruNewG1cxcxzwivPU3Lm1B2f0yQmoAGuvfc2odv349CzN3kb11VavvSiweUl7QtrfD75nLSv5lAWE0XKzPfxnDINr2kfUHr5Ejl//I5t63aV1lMZysdGoXxspPG+8Ou3KY+6jXGlUcMthoBEoUBvYdCsy0ojd8Ljxhl0bWI0xRIJds+9R8nKudgMeRFtUhxle9YDULz0Cxxn/YpVp76U/fV7lXWxe2IMdoPGGO9zPpmEJrL6EZzsh45DExOJ+uwxi/kOo16hPCGG4m1rAMif9ylu36zEpsfjFK1fVq3PnrfjKvN3xhvvSzVaWoeomPBoMACN/Bw4fCmbjSdSeaF3kMmz1jcZAtbX26cbkxhKKxkbjqcSkVjApnfaIpFIaOzvQExaEQt3x9O2kuhH1dJlSzTz/4o23v80oQ2jetYxf9cPJNAkSFVpPQ2uu9h8MrYZQ2cdIjmzmLb1XTn8dS/jfqN6fo7kFKpZuS+Bsb2Ca1SPnzdeZv4mQySq0uuulvMmP4TyNrPsN7iaWshnv0ew95s+xvapVK3lgyXhjH+sLr9siUIPvDLQYGg0DlJxLiabX3fE8MHYFjWqx/yjqSw4WrFf7uchobTys2fH5Rw61XHCyabyPkQhk3Dw1WZYy6Uork+QzeobxPBll0gvVCOTSnBSypje2x+pREIjT1tOJxWy+mxmpXsY7pV5+5KYf6CiTy/T6Ggd5MiE66v4jXzsOBSdy8bwDF7oZj62mD0klNd/v0LHT0/iYC3j9d4BhCcWYm8tw0ouQV1uOmGm1upQ1kB/7/n8C3g+X9GHxLzwPEWn7tyHqBMSAIh/522a7NuPqldvkyhEAHq1mquvv0bQ19/Q7MRJyrOzSPvlF/zeeRddUSHZG9aTt28v2jzDpFvplSsog4JwG/Gk0XXp38L/s4vQvXBPxsHhw4fZuXMnQUFBDB8+HKWyYnDl6upKTo7pjJJOpyM3N5eGDe/en/vGvoXy8nKTdK3W0MgqFDU/AL2Z4W086dOkYlbd09HQmRyMyuWV7rc3SjyvLy9mFqqNPoiZ112N3B1qV+5bGd7MlT71VMZ7j+tRGA7G5/Ny+zuHIgxQWbNmVAOyijU4WMlIzFMjlYD3dR01Wj1vbr3K4YQCfhwYTJhP7fjyDu/qT5/WFfJ6qpRmnWywtz3R1yy7mtxwH7q5LEBaLRsHOX+uJH/HX8b78vTbb1Cz79yN0ssXKU83bDzUq9VokhORqcwHYTIXV2yat6Bw725jWllsNFIrK2T2dmhzc8nbsJa8TeuRu7hSnpmBx+tvorlWdR/3sn0bUJ/Ya7zX5WTctrwuJxOpk6nbicTRBV2eZbetW11rtCnxSKyskdg7IA+qR+muNTcV1qNNjEHqem+hNIt3rKP0cMX/TJt9e13uFmXHXshULlgv2wNgXKGxbt+d9Kd7oAhuQNFff1Q8oNejiY9CVskm7aowvKMvfcIq3GzeX3mJOrf41Qd62FqcFfVUGVwGM/PV+LoaXCYyr7sPujtasTqxgHrediYrvw19HTgTazksbXUZ3i2APm28b5KvsnfdfJa8sETDgYgM+rTyNob8DLnuapNTqMbXzdYkEMGNutJza969c0SPOvRtZwh1mZZTyuhP/ua1700Nx+e/OMzATgFmexAi43NxdrAyaZsaBjpRVFpOXpGGC1dzjcZPRb6KqCTLG86rw/DmbvSprzLee1z//x2My+fljt6VPFWB/S3ut8GuBp3SCjS428uRSJQmoa+DXJRcySipAclNGd7Wkz43rZTPWB9LnVsiIgW52pCab9kVKNDVhnWvNierUIODUkZCdqmhL3SywtPRisxC05XSzAJNjfT3matWkrOtog/RpN2+D3Hs1o2SixfR3NSHlCUmIne2bMgXR0RwsdfDyN3cKM/JwbFjRzTZ2eiKiwGMhsENSmNjsG9f9QmmB41OGAdVospuRSdPnmTnzp00btyYUaNGmRgGYIhMdPXqVYqKKpYFb0QeCgkxPw+gMkJDDWHPIiJMNwFeuXIFGxsbY4Sk2kJlKyfQVWm8lAopOUUaEnPKCAu4vV+nh6MV3k5WnEqo6LxOxxfg7WSIdnQ/cVLKCVBZGy+lXEpOSTlJeeo7DuR1ej3PrY3hSmYJrrYKrORS9sfl09DDxtjgf7g7kSMJBcwbGEwbv9rboKiysyLQw854fbjiAtOWms5cX0rMJ9jCbFP0tQJaTdxBUmaxSVm5VEKAe+1uTNTl5xlWAa5f+ju4w3m8MQWnxwca76W2dlgFBqGOizErq/D1w+/L75HftH9H2bAx5dlZaHNzsW3dDp/ZX4JOR3mmYQBs17ELxSctz2zfDn1RAbr0ZONlKdznzZTHXkRetyKqmcTZHamLB9qYC2Zl5Y3b4PTdRoMr0nVk/nXRFeSiL8hDl5tpFplI6uWPLvPewrHqC/PRpiYZr5oKI5o942UyJ48i663RZL01mrKTf1N28m+y3jLECNfmZCL3M41MJPcJpDz9WrU/W2WnINDd1ng1D3LicrLp4DkurRhfF3ND2MPJGm9na07dNNg/FZuLt7M1Hk7WeDhZEXOLm0dcerHRkKhpzN713yKYtsR0Zcfwrpu3NyVqLZPnn+FsXK4x7UJ8HjKphCBPO/78O4G+7+0zcX+9lJBPnRqepQbDpuFAT3sCPe1pFuzM9s97se7jHsYL4ONxLZk42Px8BQ+VkpwCNVn5Fb/N2GsF2CrluDhY4eGsNDOOYlMK8LuLTdtVxclGToCz0ngpFVJyiq/3IXfYlB6TWULbb8JJuskovZRejFwKAc7WNPO2IyqzBO1NA7fYrFJ8HGu+n1TZKgh0tTFezfztuZxyy+86swRflfmeSZ1Oz/jFF7mSWoSr/fW+8HIOjXzssFfKae7vwLXcMlLzKvQ8HZ9P8xoIY6rNy0OdkGC87tSH+L41BZcBA433Uls7rIOCKI0170NkTk7U/W05MpWK8sxM0Gpx7NqVwuOGDcxeEyYQumiRyTM2DRpSFlv7bniCB0uVjIPCwkK2b9+OSqWibdu2pKSkkJSUZLyKiopo3bo1CoWCZcuWERkZyenTp1m7di2hoaH4+/vf9Wc5OzvTtm1bDh06xN69e4mNjWXbtm2cO3eObt26IZPdX/ccgKj0YqzlEvwsRF4oKtOSfdN5BSPaePLVjgSOx+VxPC6Pr3Ym8HT7O8+y3A+iMkuwlknws9AAF6u1ZBcbVmukEgk2cglfH0whPqeM3dG5/HQs1bin4HB8AesvZvNWFx8CVNZkFmnILNIYn69NujfzYNOxa6w/kkx8ehFzN0dxOjqHUdc3HhaVlpNdYGhEg73sCfSwZfqyCK4kF3AqOpvpyyIY0tnf6KrwTyFn1QpcxzyLXacuWIWE4jNrDuqEBAoPHgBAam+P1NHgNlV64TylkRfw/uATrIJDsOvUBc9Jb5G58GcA1AlxOHTtjmroCBS+fnhNfR+ZoyO5G9fXuh5lezdg1aE3Vp0fReYXjN34aWjOHkGXed09wcYOiZ2h4yyPiQB1GXZjpyD18kfetB22w16k9C9D5KCy/Zux7vI4Vh16I/XwxWbI80hdPVEf2lbretwJia0dEnvDDK4uM9XE6NCXFKMvKTYYIEDJrg3Y9uyPsksfZF5+2I98GZm7F6X7tta4XMM7+nDlWhE//BVLfEYx322NJTGrhP7XV9+KysrJLqww8J7s6MuXm6I5HpXD8agcvtoUw+iuhva6X2svErNK+GJjNAmZxWw4kcKfR67xdJfac+u8me4tPNh0NJn1h5MM7/qmKE5HZzOqR5BBl5vedXcnJb1aevHxigguJuRx8ko20389x8geQdjbKHiokRsZeWXM+TOS+PQithy/xsLtMYzvc/cTV/eC0kpmNBRuXAAezkpcHa0r9LhuDDQPdSHE14G3550kKimf45cy+XzVBUY+bNg4PaRrEAfOprFkWzSJ6UUs3RbNwXNpPNmzZl2jKiMqs8TQFzpV1ocY+sI6rkoCnK35YHsCURklnE4q5IPtCQxu5oaTUs6jDV3Q6+HjnYkk5JSy8kwGB+PyGHIfohUNb+PF5bRiftidSHxWCd/vSiAxu5R+LQyffXOfLpVKUFpJ+WpHAlczS9h1MZsf9ybxfFfDypC/i5JOdZ14Z3U0l1OLWHMyjS3nMnmyfe3vv7uVjBUr8Hj2WRy7dEEZGkrgHEMfkn+gog+RORn6EG1eHlJbW3zffBMrPz9chwzB9YnBpP+yEID8vXuxb90Gj2eexcrfH7cRI3AZMIC0xYsq/fx/Knqt/p6u/1eq5FYUFRVFeXk5ubm5LF682Cx/wIABtGjRgjFjxrBt2zbWrl2LtbU1jRo1onfv3lUWrk+fPjg6OnLq1CkOHTqEs7Mz/fr1o2UlMXtrG8NyotzixurFh66xPjyDXW8YZHu2kw/ZRRom/n4FmVTC4JYejHno/p0oejuyistxsJZZ1uNUOhsuZrNjnCHk5Ps9/flgdyJDV1zGxVbO1G6+PByqAmDn9TjnH+5O4sPdFaHQfBwUxudri94tvZj+VGN+3hpNSnYpoT72zJ/YBl83w8zZ4p1xrDuSzO5PuiGVSpj7cis+WRXJ018cRSKR0K+tD28Nrl+rMt4LOauWI7WxwXvqDGTOLhQdPUTS6y/D9ZlOzynTUPj4kjB+NOh0JL3+Cp7vvEfQ0pXoSkrI/v03clYY/NfL09NJnjIJj0lT8HxjCiXnzpLwwjPoS4pvJ0KNoI25QPGvX2Iz8Fkkdg5oLpykeMnnxnzbJycgdfOicM7rUFpCwVdvYfvkBBzfn4++tJiyfRsp22bYT6A5sZdipQ3Kx0YhdXGnPCGawjmT0Bfk1roed8LxmTeQeXiTPePlO5YtPbwLidIG+yfGInV1p/xqFNkfvGrxnIjq4utiw4KXmjNrTRQLdiUQ4mnLz883M7oQLd6TwLrjqeye8RAAz/YMJKtQw4Rfzhvaq/bejOlmMA78XG345eUw5qyP4veDyXg7K/l4RAM6Naw8mEFN0rulN9NHavh5SzQp2SWGd/21thXv+o5Y1h1OYvdsw2z8rDHNmP3HRcZ9bVghG9DejzcGG3zzfV1tmTexDZ+vjmTl/nhcHayZ/EQD+raxHJb6frJoaxTrDiaw56tHkMukzJ/8ELN+O8eoWQewtZbTv6M/rw4yuOa2CHXh+4nt+G5tJN+tuUiQtwPzJj90V1GQaoKsYk3lfciJNDZEZLPjhSZIJRK+HxTC7D2JjPn9ChIJPNbIhTevD6rtrWUsGBrKzJ2JDFwciY+jFZ/3q0MjC+fu1DS+ztYsGNOQT7ZcZeHfyQS72/Dz0w3xvG6sLT54jfVnMtj1pqFPn9E/mA82xDLkx3O42imY9lgdHm5U8Q58Orgu76+PYcTP53F3sOLjQaG1dgDa7chcsRyZjQ3+M2Ygd3Yh/9AhYl6u6EP8pk7DyteX6DGGFc2rb7yB/4cf0mDDRtTJScRNep3i6x4bxRERxL3+Gt4TJuI9cSLq5GSuvvUmxeHh910vwf1Fon/QhwY8ALSrxty50D8c2fClaH4a/qDFqDaKl1ah2/f6gxaj2ki7fUNki7uLQvJPp2H4JXKe7fqgxag2zov2kzqk/YMWo9p4rT6KbttLD1qMaiPt8xO6A288aDGqjbTLV+iPvfOgxag2knaz0SysmQMRHySK8b+j/XPsgxaj2siGLuFMw39/HxIWeelBi2CRawPa3tNzPhssnxHxX6f2j4MVCAQCgUAgEAgE/wru35nxAoFAIBAIBALBfUaEMq0awjgQCAQCgUAgEPxn+X/eXHwvCLcigUAgEAgEAoFAAIiVA4FAIBAIBALBfxi9TvegRfhXIYwDgUAgEAgEAsF/FuFWVDWEW5FAIBAIBAKBQCAAhHEgEAgEAoFAIBAIriPcigQCgUAgEAgE/1lEKNOq8X95QrJAIBAIBAKB4P+DuO7N7+m5OnvP1rAk/w7+L1cOtCtGP2gRqo3sqV/RX/joQYtRbSSN30e37/UHLUa1kXb7Bt2eiQ9ajBpB2uM79DGfPWgxqo0k5G1WSOo/aDGqzVP6y5TOGvCgxag2ymkb0P459kGLUW1kQ5egz1ryoMWoNhLXsf+dtnfHKw9ajGoj7T0XCtc8aDGqj/3gBy2BoAb4vzQOBAKBQCAQCAT/H4hoRVVDGAcCgUAgEAgEgv8sYs9B1RDRigQCgUAgEAgEAgEgjAOBQCAQCAQCgUBwHeFWJBAIBAKBQCD4zyL2HFQNYRwIBAKBQCAQCP6ziD0HVaPKxoFer+fUqVOcOHGCnJwc7OzsqF+/Pt27d8fa2hqA7Oxstm/fTnx8PFKplEaNGtGrVy9j/q1s376dlJQUxo4da0zbt28f+/fvr1SOMWPGEBQUVFXx75kxSy5yIr7ALH1QC3dmDQiu9Dm9Xs9zv13isaZuDGrhbkxPyC7lwy1xnE0qxFdlzRs9/elaz7lWZK+MpPRC+r++hZ+mdqNdE0+LZfR6PV/9Fs7q3THodHqGPBzC5FFhSKUSABJSC/jg5+OEX8nE18OOyaPC6Nba977I/8qPp9hzNt0k7cdXWtG9mYdZ2YsJeQyeddgkrXGAI6undQTgWnYJHyy/wInLWXiolLw+sB59W3vXnvA38cpPp9lzLsMk7ceXw+je1FwPvV7PD5tjWPV3IuVaHb1bejFtWAOsFTLeXXqe9UevmT3Trp4LSya1qTX5b7Bpbww/LD9DamYRDUNcmfp8O5rVd7dYNq+gjHbDl5ukqRytObpyJABXrubw0Y9HuBidiYerLa+ODOPxbiG1roN7x1Z0+PUzNoY8bJLuP/gRmn8yCVtfTzIOnebYc9MpTjD/Xzed8SpNP5hgll4Ym2is07NnB1p9MxX7YH8yj57l2PhpFMUl1Yo+0vrtkXcbhcTRDX1aHJodC9CnxpqXC2iC1dOzLNZR+v04yM8ERzcUfV9CGtgUfUE25fuWoYs8VCty38qV1CI+2hjHhWuFBLgqmfpYHdoFO1ksm1dSzqzNcRy4koNSLqV/mDuvPxxgbLMORuXy5fZ4rmaWEORmw6TeAXS5D23vvkPRfDN/PwlJOfj5qHj9+a706Fy30vJLVx3nl+XHKCxW07dHA957ozc2SgUAZWXlfPTldnbsu4zSWs4zT7bj2afa1boON6jJtvfghQy+WHuZq2lFBHna8cag+nRpYrndqGlemR/OnvOZJmk/vtCc7hY+v6isnNlrrrD7fAZWcikju/jzXK8gs3LlWh1DPz9Oz2buvPpo7bdZN3PyzFXenvEnuze+VWkZtbqcr3/cyZbtZykpUdO2VTDTp/TDy9PJmP/pV1vYvO0sCoWMIQNaM+mV3kgkkvulhuAfQJWNg0OHDrFnzx4eeughgoODycrKYu/evWRkZDBq1CjKyspYunQp9vb2DBw4kKKiInbt2kVubi6jRo0yq+/w4cMcPXqUwMBAk/SWLVsSGhpqkqbValm9ejX29vb4+t6fAegNvh1eD41WZ7w/l1TIG6ujebKNeWN4A51ezyd/xXM4Np/HmroZ08vKdYxfdom6Hjb8Pq4xkSlFvLE6msVjGtLM175W9biZD+cdp7i0/LZlFm+8xOa/r/LD213QlOuY8u1hXByVjBvYiDK1lmc/3ENdfydWzX6Ei7HZvPHVQZZ82JNmdd1uW29NEJ1SyJxnm9G+QcVnOdla/knHpBTS0N+BeRMqBslymaGxK9fqePH7k/i727L2vY4cv5LN24vOEuJtTz1fh9pVAohOKWLOM01pX9/VmOZkq7BYduGOOH4/kMBX45pjq5Tx1qJzzN0SwxsD6zF1WAPeGFjPWDY5q4QxX59gVPeAWtfhZEQq0745yMevdSSsoQcrtlziufd3sGfJMOxszHWJSchF5WjNph8HGdNuDN7UGi0vfbiThzsE8smkTpw4n8q7X/1NoI8TTevV3u/KqUk9Oq3+Fm1pmUm6W4cwOv7+JSdfnUnavuO0/GIKnVZ+xY6HRpjVEfnFIqJ+Xmm8t1I50uvQCi5/+ysAtv7edFk/l/Mzvidl2980ef8Vuqz/kb+a969xfSRu/igGvIHmr5/QJ0Yia9cfq+HTKZv7ApSrTcrqki5R+s0YkzSrJ6agLykwGAYSKVbDp6PPTUO9cBLSwCYoBkxCnZmIPiOhxmW/mYLScsYtiaRHA2dmDQ5hY3gmE1dcZuvrYbjam/+2Zm6MJatQw7LxTcgu0vDWH1G42ikY09GH+KwSJq64zGsP+9OjoQu7I7OZsPwyW19vga+zstZ0uBydzoSpa3nrle50fSiEg8fieG3aWv78ZSwN6ppPzGzfe4kffjnInBn9cHO2491ZW/h87h7en/wIAHPm7iHiUipLvn+Ka6l5vDNzMz5eTvTp0aDWdLiZmmp749OLmPDTaV4bWI+ezT3ZHZ7Gqz+d4q8Pu+DrZlu7SgDRqUXMGd2Y9vVdjGlOFtorgPdXRHIhsYAfnmuOTqfn7WUXUMgkjO1hOnZZvDuBS8mF9Gx2fwycG1yOSuW1t1dgbXX7Yd13P+9i194LfPHxMFyc7fj82228+tZy/lz6EhKJhI+/2MyxEzH88sMzFBWXMendlfh4qxgx+P4Zn7WBWDmoGlXakKzX6zl06BCtWrXi4YcfJjg4mDZt2vDoo48SGxtLSkoKJ06coKSkhJEjR9KgQQNatWrFE088QUxMDAkJFZ1ITk4Oq1atYteuXRZXFBwdHfHz8zO5Ll26hFqtZvjw4SgUll/g2kJlI8fd3gp3eytcbBV8syeJcQ9508TH8mA+LV/Ns79GsvdKDo5KmUnevis55BRrmD0ohLoetvRv7k7/Zm78ejT1fqgCwKb9cRSV3N4wAFi25RITRjSjVUMP2jf14s2nw1j+1xUA9p5MJie/lDmvPUTdABUDugXTv2sdlmy6VNvio9ZoSc4soUmQCncna+NlpZBZLB+TUkSwl71JWWd7KwAORGSQmlPKZ880o46XPcO7BNCliTvhMTn3QQ8dyVklNAl0ukUP81dTq9OzZFc8U56oT/sGrjQLUvHq46FcSMgHwMFGYVLHD5ujeaSlJw+3sLwqVJNk5pTw8pPN6d8jFH9vR155qgV5BWXEJORaLB+TmEuQrxPuLrbGy1VlA0B0Qi7JaYVMfLolAd6ODO5dj7pBzhw/n1Jr8oc+P5zeh1dSmpZlltfwzWeJ+20j0fNXUXAljpMTZ6H0dsfa1Xy2ubyomNK0TONVf9IY8i5Ec/k7g3EQMn4o2ScjuPTVYvIuRnP0mXexD/LFo2vbGtdJGhyGPjMR3fm96HNTKd+7DIm9CxJ3C8airhyKco2XNLApEvdANFt+MNQV2hqJoxuaDV+jz05Ge2Y7uuhTSP1qfzC6/kwGtlZS3u8fTKCrDRN6+hPoqiQiudBi+QNXchnT0Ye6nra0C3biseZuHI3NAyAtT83Q1h6M6eiDv4uSsR19sLGSci7Jcl01xeYdF2jfKpDRw9oQ6OfCyMGtaNsykL92W24rl/1xktHD2tC9Y12aNvLhwyl9WLv5HCWlGopL1KzeeJaprz9M4/pe9Opan/Ej27N8zala1eEGNdn2puWUMrSzP2MfroO/uy1je9XB1krOuat590EPHclZpTQJdMTd0dp4WWp7cwrVbD2dxocjGtAyWEXrUGcm9w9l0e54k3LxGcUs259AiJddrct/MyvXHGPEsz/j6nLnycV1m08z6ZXetG0VTGiwJzPfG8T5C0nEJ2aRm1fMmvUnmfneIJo18adD21CeHdWZsxG1s7Ip+OdSJeOgrKyMZs2a0bRpU5N0NzfD7EF2djYxMTEEBARga1th9YeEhGBlZUVUVJQxbfv27WRnZzNmzBi8vLzu+NlpaWkcO3aMrl27olKpqiJ2jbM+PIO8knLGdfKptMzFlCK8HK1Z/XwT7K1NG82knDKC3WxwUFZY+PU9bQlPNHdbqg1yCsr4fNkZPnzx9gOStOxiUjKLadOoYnWkZUN3rmUUkZ5dQlJaAcG+TjjYWRnz6weqCL+caam6GiUurQgJ4O9mc1flY1IKCfK03GAfv5xN+wau2N80Y/TDy60Y1qX2Z9yrokf0tUJyitT0bFHxffRr68MvE1ublT1yKYuT0TlMGlC520JN0qdzHV4c0QKA0rJylqy7gKtKSUiAymL56IRcgnwdLeY52RsmC1Zvv4JOp+dMZDpxiXk0CnG1WL4m8O7bhSNj3ubS10vM8jy6tSVp7U7jfdHVJDbW6UlZ1u2NR4e6QQQ/8wSnJ1ecNu3WvjnpB04a77UlpWSfvoBbhxbV1uFW9CUFSNz8kfg1ACTImvVEX1qEPucORpZUhrzbSMoP/QklhjZJGtgE3dVzoC4xFtOs/hTtmR01LvetnIjLp0dDF2TSCreGP15qRtf6ll2BVLZyNp3NoEStJT1fzcGoXBp6G979tsFOvPtYHYP8Wh1rTqahKdfTzK92V2wHPtqUyS91M0svKCo1S9NqdZyPTKFNC39jWvPGvmjKtVyKSuNSdDrlWi1hTf2M+S2b+3HuwjV092F2tCbb3rb1XZk6vBFg+D5WH0xEXa6jWZBll7GaJC79uh6ud9YjMdPwu79Zrvq+DmTkq0nOqngnPlgZyauPBuNiYUWrNjlw6AqffTiEsU91vG05nU7H5zOH8VC7ULO8gsJSToXHY2+vpG2rClfp55/pyqcz/v2nHuu1+nu6/l+pkluRUqmkb9++ZumXLhlmPzw8PMjMzKRx48Ym+VKpFGdnZ7KyKmblevTogbu7+137se3cuRNnZ2fat29fFZFrHL1ez8JDKYxu54WdleWZEoDu9Z3pXknn5WqnIKNQg16vN+qfkq8mp/jOM/k1wezFpxjYLZi6lQzcbpCRY2j0PFwqDD03J8PSe1pWMa4qGzJySkz1yCwmt6DMvLIaJialCHsbOW8vPsfxy9l4uyh5tV/dSn1VY1ML0ev19P/wbwpLyuncxJ23BtfH3kZBUmYxPq42fLn2MhuPJeNsb8Wr/erelxn3mNRCgx5LznP8SjbezkpefTzUoh6JmcU42So4E5PLNxuiyCnS0KuFB28Oqm8227VgexwD2/vi7XJ3HXhNcST8GuPe245er+fzt7padCkCiE3MNfjmvr6RtKxiWjf25J3n2+HhYouvpz2TxrTii0UnmLPwOFqdnldHhtGhReXGeHX5e9ArANQZM8gkXeHkgLWLColcRvdtC1E1b0DWsXOcePkDSq6lW6rKSMO3xpG2+yjZJ88b02y83c2eK03LwtbvzhMkVUV38W90ddtiPeYz9Dot6HVoVs2E0qLbPidt2AmJtR3aU1uNaRKVJ/q8dOTdRyNr2g19cT7lB35Hd+VYjct9K4nZpTT1tWfG+hj2XMrBV2XNlL6BtAy0bFxO71eHd1ZH02bmcXR66BDixMvd/U3KxGeV8Pi34Wh18EbvgFp1KQIICTJ1h4uKzeDoqauMGBRmVja/sJQydTkebhUujXK5FJWjDWkZBUgkEpydbE1m6t1c7ChTl5ObV4KLc+2649Rk23uD+PQiHpvxN1qdnjcG1bsvLkUxqdf1+PUCx6Nz8FYpefXRYLo0NndddHW8vtKRW0aQh0G21ByDYZdTpMHX1Ya1R69RptEx9CFfNp+8f14AAD9+9TQAazfefvVIKpWaGQa//n4YZ5Ut9et6cSo8Hl8fZ9ZvPs3Pi/ahKdfyRL9WvDSuG1Lpvzvy/f0wnP9LVPvbTkpK4tChQ9SrVw8PDw9KS0stuglZWVlRVlYxaPTw8LhrwyAtLY2YmBg6duz4wH+gx6/mk5avZkiryvca3InOdVUUlJbzw75k1FodEdcKWXsmHc19sFIPn03hdGQGLw9tcseypWVaAJOB540OSV2upUuYDwXFar5fdR61Rsv56CzW7I5BU66zWF9NEpdaSKlaS6dGbiyY2JouTdx5ee4pIiwsR2u0OhIzilFr9XwyphkzRzfldEwOby8+B0BRmZb1R5LJL9bw4yutGNDel9fnnbFYV83rUVShx4RWBj1+OkNEvPlnF5dpKVVr+Wr9FaYMrs/HTzdm3/kM5qy9bFIuMaOYY5ez7steg1upG+jMmm/7M3FUS9796m/CL1keQMcm5VFYrOHd59rx9TvdSM8q5sUPdqLV6tCU64hNymNY3/r88U0/3nmuLQtXn+PYudpzK6oMub1hINDqu/eI+20T+/u9hNTaiq6b58Ft2i+5vR2BTz7G5e+WmaTLbG3Qld3i71+mRmptRY1j44jEXoVm2zzUi99Ce34fiscngu3tZ2XlYb3Rhu803ZdgZYOsWQ9Q2qH+42O05/eiGPw2Em/zGciaplitZeHfybg5WDFvdEPa1HHkuSWRpORanoS4mllKY197lj/fhO+eqkdUWjEL/042KeNip2DVi82Y3q8OP+xJZMcFc3ey2iInt5iJU9cS1tSPnp3rmeWXXt8HZnXL5JOVlRy1WktpqcbMhcfYLmtqf4KpJtveG7g4WPHHux2Y/mQjftgUzY7TtT+4jksrNujR0JUFL4XRpbErL88/S8R1N82b8XWxoXmQE5+suUxukYaM/DJ++MuwsV9TriOrQM3XG6P5YETDf9XG3V37LrLot4NMfvURrBRyiovLiE/IZOXa43z6wRDefr0vy1YeZsny+xN4QPDPoVqhTBMSEvj9999RqVQMGDAAMMysV8a9vjTHjx/Hzs6O5s2b39Pz98K8v5OZ/3dFNJJ5I+vTOtCRHRez6VzXCZXNvf/rXO0UfDGkLtPWxzDv72R8VdaMbOtVK3sOfl4dwfy1FwAoVRsG+/OmdUNpfWf5rY0djg5rqxt/G+pQWslxVSn56o1OvPv9EX5eHYGfhx2jHq3H0s2XK63zXpm3NYb522KM9z+92opRPYJwsjPMPjXwd+RCfB5//J1Ik1uWpBUyKYe/7Im1lQyFzGDozB7bjCGfHCY9txS5VILKTsGMpxojlUpoHODEqahsi3VVW4+/Ypm/vSJazE8vt2RU98AKPfwcuZCQzx8Hk2gSaPrZMqmEUo2OqcMa0raeYQPdlMH1eXPROaYObWDc0LvjTBoN/BwJ9a49V4mfV51l/qqzxvv5H/WmdRMv3JxtcHO2oWGIK+GXMli59RItGpgb0pt/egKJBOPv8NtpPeg8aiVnL2cQm5jHhahMNv00CIlEQuNQN2IScln45znaNat+BKlG775A46kvGO/39X2OjIOWZ9z05Ybfe8zCP7n62wYADo98kyfSDuHWvgWZR85YfM67T2e0xaWkbP/bJF1bWmZmCEitrVDnmg9IqorsoSHIOw4x3uuuRaNLjzeuAJRvmYv0xbnImvdEe2St5UpsnZAENEK7fb5puk6LvqSA8r9+BvRoU2OR+jdCFtab8pToast+M/P2JTH/QMVgvkyjo3WQIxN6Gmb/G/nYcSg6l43hGbzQzc/k2auZJczZdpU9b7XC3cHwfy5R6/hoUxzjO/saN8I6KOU08pHTyMeOmPRilh9JpXfjmnNb+3npYeb/WhGhZ/6Xw2ndwp/M7CKefe13dHo93816wvjO3syNDaXq6+31DdTqcpRKBTqdztgOG/NutMvKmndnqc2210NlWLFxsFHQKMCJRgFOxKQU8tveeHq3rNnVtHnb45i/42qFHi+2YFQ3f2PwhwZ+DlxILOCPQ8k0CTBflfpsdGNe/+UcD727HwelnEn9QwmPy8NOKeeT1ZcZ1N6HepXsQaxJfl60j3mL9hnvF3w/htZhdapcz669F3n93d8ZNbwDQwcZNovLZTIKi8r4ctZwfL0Nng/XUvP4/c+jPPt05xqRX/Dv4J5HuBEREWzYsAFXV1dGjhxp3GOgVCpNVghuUFZWhqOj5WXg26HT6bh06RKNGzdGJqvcjaemGd7akz43dRae1zuagzF5vNK1+pGSutZV8febLcks1OBqr2DVyXR8VZZDvVaHEY/UpW9HQzSFtOxiRk/fxWufmw5Ynv94LwO71eHDF02jEXhc98XMyC3Bz8PQ6GXmGpZS3Z0NeV1b+XJo8WAyckpxUylZuT0KX4+a34w1vKs/fVpXdBaeKiXKW2bWgr3tib5meWOh/S3uLcHXB85puaW4O1kjkWDSUQd52nElueb3gAzv4kefVhXuShb18LIjOsVcD3cna2P+Dep42lGm0ZFdqMbN0ZB/8GKmyb6E2mDEow3o27miQ8rILuZCdCaNQyuW5EMDVERXsiHZRmna9LiqbFA5WJOeZainXpCzyWRCwxBXTl+8vRvP3RL980oS/vjLeF+SnFZp2bLMHLRqNfmXKgw6dXYuZVm52Pp7wRHLz/n06Uzypr1wy2RJSXIaNl6mbgtKLzdywiPvQRNTtKe3oYs8aLxXPPWRyT3o0afFIXGqPIqKNDgMfW4a+gzTjZb6whxAf/26npaVjMQzqNpy38rwtp70aVrR9s5YH0sdd1P3uCBXG1Lz1bc+SmRKESpbhdEwAGjoY0dRmZa8knKyizTklZTTOqiiLwrxsOV4XPWNs5sZMSiMvj0rNmt7ujuQllHAmAkrAPj1h5GVuv+onGywtpKTkV1IcJDh/1BeriM3vwR3Vzv0QE5eMeXlOuRyw4A7I6sIpbUcR/uad4+qzbY3r1hDXpGG1nUrogWFeNtz/Ep2TYlvZHgnP/q0vKntdbI218PTctsLEOhuy7p32pNVoMZBKSchsxipBHyclWw9nYZSIWX5/kQASjVawuPy2HYmnc3TOtSoHiMGt6Vvr4p9n57uVR9Xbdl+linT/2TEkLZMnfyYMd3dzQFra7nRMACoE+hGSlrtr6LXNrrad2j4T3FPPjqHDx9mzZo1+Pn5MXbsWBwcKnwjXV1dyckx3ain0+nIzc01blyuCsnJyRQXF5vtY6htVDZyAl2UxkupkJJTrCExp4ywgOqFt4zJKOGZXyPRA+4OVkglEvZH5dI2qOov+Z1QOVgT6O1AoLcDzUJd2T63P+u+fNR4AXz8UjsmjjBflfF0scXHzZbTkRUx+E9FpuPjZouHiw0xSXmMnbELvR48XGyQSiXsP5Vc6ZkJ1dLDzopADzvj9eGKC0xbaro0fSkx32TgfIPoawW0mriDpMxik7JyqYQAdzuaB6uIulaI9iafxNjUInzuYqNatfX4/SLTfo0w1SOpgGALG/ga+TuikEu4nFRhtMSkFmGnlKG6Poun1+s5H59Hy2BVjctuooeDNYE+jsZr094YvlpiOvt+ITqTkADzlZfCYjVth/3G0bMVbkJpmUXk5JdSx88JDxdbM6MiNikPP6+amZVT5+RRGJNgvG4NXXozeq2WnFMXcG5eMdCzdnXG2s2ZoqvJlT7n2q4ZGYdOm6VnHj2Le6dWxnuZjRKXsEZkHj1rVrbKlBaiz0k1uSRupr72Eldf9LmVG1lS33roE80j6OiTLyN1DwRJRZchcfO/bV33ispWQaCrjfFq5m/P5RTTfRJxmSUWJ1M8HKzILdaQVaipKJtRgq2VFBc7Ofsu5TBjfYzJCveF5EKC3Wv2XVc52hDo52K8dDo94yetQiqRsGzuSDzdK+9DpFIJTRt6c/psRYSY8Ihk5DIZDep60rCuJ3KZjLMXKn5/p88l0qSht8WViGrrUott775z6by/LML0+0jIJ6SG3nVTPRQEutsarw9XXWLa8gumeiRbbnt1Oj3j5p7myrVCXB2ssFJI2X8hk0b+jtjbyNn2/kOsf7c9a99px9p32tEkwJHhnfyY91KLmtfDyZZAf1fjVdXVoiPHo5ky/U9GDu/A9CmmIZSbN/WnrKycuPiKoCKxcRkmxsK/FZ3u3q7/V6psHJw8eZKdO3fSuHFjRo0ahVJpOlMREhLC1atXKSqqaMxjYmJQq9WEhFT9QJCkpCSkUul9P9fAElHpJVjLJfhZ6JSK1FqyizQWnjLHV2VNTEYJP+xNIimnlJ/2J3M6oYCR7Wp3A6zSWm40FG5cAB6utrheX94tKtGQnVcRQWNEn3p8sewMxyLSOBaRxpe/hfP044aBkq+7HTGJeXy/8hxJaYX8+Md5Tl3KYNSj9WtVD4DuzTzYdOwa648kE59exNzNUZyOzmFUd8MqSVFpOdnXN0YHe9kT6GHL9GURXEku4FR0NtOXRTCksz9Odgoea+ONTq/noxUXiE8vYsW+eP6OyGBoZ//biVBzehy/xvqj1/XYEm1BD8MMqb2NnKEd/fh4VSThsbmcic3ly3VXGNLRD/n1Jftr2aUUlWoJqUWXIksM61ufY2ev8ev6C1xNzuO7305z7koGYwYYjPrSsnIysg0DBHtbK1o19mT2gmOcv5LBhehM3vhsH51b+VG/jgv9uoeQmFLAF4tOkJCSz4bd0fy57TKj+je6rzrdIPLLxdSb+DT+Q/rg2CCY9os/ITc8kqzjhgGSlbMTCseK/7dEJsOxfh3yLpq728QuWoNbx5Y0evs5nBqF0n7xpxTGJZG+r+Y39mrP7EDWohfSJt2QOHsh7z4aiZM72nN7DAUUSrA1nZCQugegy0w0r+vCAZBIkPd5AYmzF7JWfZGGtEQbXvvRioa38eJyWjE/7E4kPquE73clkJhdSr8WhsmmorKKtre5vwMh7ra8uyaKqLRiTsTl8cW2eJ5q74VEIqFfCzcyCjR8tSOBq5klrDiayqazmTxfA6vBt2Pe0iMkJucwe/rjAGRkFZKRVUhBoaGtLS3TkJFVMWP95BMt+WXFMXbtv8L5i9f48PNtDO3fHBulAhulgoGPNuWDOds4f/Eau/ZfYdGK44weVvsHHULNtr392vmQkVfGl9cPQVu+N55Nx5J5rm/lB4vWmB5N3dl0IpX1x64Rn1HM3L9iOR2Ty6iuhna/qKyi7ZVKJdgoZHy5IYqr6cXsOpvOj3/F8XzvIAAToyPQ3RZrhRQnWzm+9zkghCVKSzVkZBomlMrLtUz9cC1tWtXhuTFdyMgsMF5qTTnBQe5061Sfdz9YzaUrKfx9+Arzl+znySH/7jMOBFWnSm5FhYWFbN++HZVKRdu2bUlJMd0g6OzsTOvWrTl+/DjLli2ja9eulJSUsHPnTkJDQ/H3r/pgKz09HWdnZ+Tyam2PqBGyCjU4KOUW904sPpzC+vAMdr1uHn3iVpQKKd8Pr8vHW+NZejSVUA8b5o+sj49TzbsVVZVFGyJZtzeWPfMGAjBuQEOy8kqZ8NkBZDIJQ3qGMLafwThQWsv5/u2uzFx4giWbIqkboGLB9O74uNd+jOfeLb2Y/lRjft4aTUp2KaE+9syf2MYY5WLxzjjWHUlm9yfdkEolzH25FZ+siuTpL44aBgltfXhrsMGIsbdR8MtrbfhwxQX6f3jQELnouRY0tjDrXeN6hHkyfUQjfv4r1qCHtz3zJ7TC9/qqxeJdVw16zOoKwNtDGvDF2su8OPcUej30a+fDGwMqNjVm5hs65coOUastGoe68f17Pfl66Sm+XHKSuoHOLJz5CJ5uht/C1gNxTP36by5tfRaA2W904bOFx3n+/Z2oNVp6tg9g2ouGSGR+Xg78MusR5vxyghVbIvFxt+fj1zrRuZVfpZ9fmySu2Y6VsyNhn7+F0sOV9H3H2T/gZWN+57XfU3Q1maPPvAuAtasKqUKBOsfcVaUoPpm/n5hAq2+m0uT9V8g8fIYDA1+pFbl1kQcpt1Ii7zgEiYMb+rRY1MunQ7HBRUDefiCyZj0om/t8xUN2Kii14FahLkG9YgaKPi8ie/579HkZaNZ9bvG05ZrG19maBWMa8smWqyz8O5lgdxt+frohntfd6BYfvMb6MxnserMlcpmEn0c34NMtV3l6YQS2VjL6t3DnlR6G346XkzULxjbk0y1XWX40FR+VNV+PqEejWvYV37HvEqVl5Qwbv9QkfeCjTZn93uNs3RXJ1FlbuHTY8Bt6rFcjklPymDHnL9QaLb271eetV3oYn3tnYk8++HwbYyaswN7OmgnjO9G7W+1PykDNtr1ezjYseK01n/4RyfK98fi62fDN82H3p+1t4cH0YQ34eftVUnJKCfW2Y/7LYRVt7+541h1LYfeHnQCYMaIBM36PZPCcY7g6WDFtaH16Na9d982aYOuOc7z74Roun/qEiMhkrqXmci01l06PfGpS7td542nXOpgvPh7OzM838eS4edgoFYwc1p6nR9Ssa9SD4P95FeBekOhvt4P4Fs6cOcPGjRsrzR8wYAAtWrQgPT2dbdu2kZiYiLW1NfXr16d3794WoxgBLFmyBICxY8ea5S1fvpySkhLGjx9/t2LeEe2K0TVW14NC9tSv6C989KDFqDaSxu+j2/f6gxaj2ki7fYNuz8QHLUaNIO3xHfqYz+5c8B+OJORtVkjuz4CpNnlKf5nSWQMetBjVRjltA9o/xz5oMaqNbOgS9FlLHrQY1UbiOva/0/buqB0D+34i7T0XCtc8aDGqj/0/80yEMw3v7cDGsMjaP9T1n0iVpuPDwsIIC7vzzLiHhwejR9/9ANySUXCDkSNH3nU9AoFAIBAIBAKB4N558L46AoFAIBAIBAJBLSHciqrGv/vIO4FAIBAIBAKBQFBjiJUDgUAgEAgEAsF/FrFyUDXEyoFAIBAIBAKBQCAAxMqBQCAQCAQCgeA/jFg5qBrCOBAIBAKBQCAQ/GcRxkHVEG5FAoFAIBAIBAKBABArBwKBQCAQCASC/zBi5aBqVOmEZIFAIBAIBAKB4N/E3/73dkJy50RxQvL/DfrUnx+0CNVG4vUi0R2aPGgxqk3okQgiW9zbS/tPomH4JZIebf2gxagR/LaeRJ/83YMWo9pIfCdS/tvTD1qMaiMftQzdwckPWoxqI+30JdpVYx60GNVGNnwpevY+aDGqjYTuQo9/EP8lPQR3x5o1a4iJiWHKlCkm6cXFxUyaNMmsvFwuZ+7cuQCUlJTw66+/cvHiRdzd3Rk5ciR16tQxls3Ly+P9999nypQp+Pr6Vlm2/0vjQCAQCAQCgUAgeBDs3LmTHTt2EBISYpaXmJgIwPPPP4+zs7MxXSKRGP/esmULSUlJPPfcc5w5c4b58+czc+ZM5HLDsH7Tpk2EhYXdk2EAwjgQCAQCgUAgEPyH+afsOcjMzOTPP//k3Llz2NjYWCyTmJiIQqEgLCwMqdRy3KBLly7RpUsXmjRpQp06dTh48CDp6en4+PiQmprK8ePH+eCDD+5ZThGtSCAQCAQCgUDwn0Wnu7erpvnjjz9IT09n0qRJ+Pv7WyyTlJSEr69vpYbBDRQKBYBxtUB3XeC1a9fStWtXXFxc7llOsXIgEAgEAoFAIBDcwrRp026bP2vWrCrVN2DAAHx8fExchG4lMTERuVzOV199RWxsLAqFglatWjFkyBCUSiUAwcHBnDp1itatW3P8+HEcHBzw9PQkOjqaqKgoxoyp3v4uYRwIBAKBQCAQCP6z/FMCc95pD0B5eTkpKSnY2trSv39/Hn/8ceLj49m8eTPXrl3jzTffRCqV0q9fP+bPn8/kyZNxcnLi2WefRaFQsHbtWvr06YNer2fevHkkJyfTsGFDBg8ejJWV1V3LKYwDgUAgEAgEAsF/lnt1EarqykDF5+nMDBKZTHbH5yQSCRMnTsTFxQUPDw8A6tWrh6OjI4sWLSIiIoJmzZrh4ODA5MmTKSsrw9raGoDTp0+TnZ1Njx49WLRoERKJhJdffplly5axadMmBg8efNfyV9k40Ov1nDp1ihMnTpCTk4OdnR3169ene/fuRgGzs7PZvn078fHxSKVSGjVqRK9evYz5t7J9+3ZSUlIYO3asSbparWbfvn1cvHiRkpISPDw86N69O8HBwVUVu0bYdySWbxYeJiE5Fz9vJ14f/xA9OprvNAfIKyil3eM/maSpnJQc3fiSSVp5uY4hL6ygZ6cQJjzTodZkB1A2C8Pz/U+IH9LXVK5Rz+I0aBgyJxWlkRFkfPkJmquxFuuQe3jhPmU6Ni1aoc3PI3fVMvJW/WbMt+/9GC7jXkLu6UXZlUtkfjObsosRNaqHTYuW+Hz8GTGP96pIlEpxf/V1VP0HIbGxpejQAVJnf4w2O8tiHQr/ALzefR/bFmFo8/LIXvkb2UsXGfOVTZvj+eY7KOvWQ5OeTvbSX8hdt7pG9QCwatQcl8kfkjpuoFmew/Bnkfv4k/P1h5U+L3PzRPXqO1g3CUNXkE/h+t8p3PC7Md86rB1O415D7u2H+tJ5cn+cQ3lyfI3rAbDv6FW++eUoCcl5+Pk48foz7ejRsY7FsppyLd8uOsaGnZcpL9cxsHcDJj/fAblMytptkUyds8fsGYkEIne/Uiuy32Dsr5GciC8wSx/U3I2P+5u3O/ml5XyxM5F9UTno9NAlVMU7jwTgqDQ0rbGZJXy6PZ6zSYWobOUMCfNgfEdvpLdZUq4pXvn+BHvC00zSfpzYhu7NPc3KZuWXMfO3CA5dzECpkDHgIT9ef6I+cpnB5zWnUM2Mpec4dCEDZwcrJg6sT/8OfrWuA8CVtGI+2hTHhWuFBLgomfpoEO2CnSyWLSrT8tm2eHZHZmMllzKynSfjO1fM1CVkl/LhxjjOJhXgq7LmjV4BdK3vbLGumqSsTMNHH/7Ojh1nUCoVPPNsL559tpfFshcvJvDBjBVcuZJMaKgPH3z4FE2aBBrzN28+wbffbCAjI49OnRoxc+bTOLvY17oOQg+hh+Du2bJlC5s3bzZJmzdv3h2fk8lkNGhgHt69adOmgGE/QrNmzYzpN8bVWq2W9evXM2DAAKRSKeHh4bz11lt4eXnRrVs31q1bVyXjoMobkg8dOsTWrVupW7cuI0aM4KGHHuLcuXP88ccf6PV6SktLWbp0KYWFhQwcOJCePXty4cIF/vzzT4v1HT58mKNHj1rM27x5MydPnqR9+/YMGzYMR0dHli9fTlJSUlXFrjaXYzKYMH0zT/RtzLqFoxjevymvvb+ZS9EZFsvHXM1C5aTk77XPG68tS819wBatOllpHTWJVUhdvD75Gm7Z4OI4aBjOT40l46tPSXxmOJpryfh89TMSa6XFerw+/gJdcTGJY4eR+fVsXF+YiF3XngAom7fEY+pHZC/6mYSnBlJ6PtxQVyU78u8F69B6+H3xrZkers8+h2Ofx0iaMomrTw9D5uiEz6w5liuRSPD/fh7anGxiRzxByqwPcBv/Eo59HwdA5upGwNz5FJ88TuyIJ8j86Xs8334P+85da0wPAHlQCK5TPzPTBcCm6yM4jnr+jnW4vPsp+pIS0ic+Te68L3Ec8zLKDt0M9QcE4/bht5Qe3U/6xKfRxFzG/dOfkChr7vu4weWYTCbM+Isn+jZk3YLhDH+8Ma99uI1LMZkWy3+3+Djrt19i1ps9WPhZf46eSWL2jwcBeLR7Xf5ePdZ47V05mkBfJ0Y/0bzG5b6Vb4bWZd+kFsbr+2F1UcgkjGjtYbH8R1uucimtmJ+erM/8p+oTm1nCjM1xAJRotLz0+xU8HKxYNa4x7/UJYtmxVFaeTK91PQCirxUw57kWHPjqYePVsZGbxbJvLThDQYmG36d25OuXWrL1eDK/bIsx5k9dFE5BSTm/T+3Ii4/XZfqSc5yLzal1HQpKyxm3NJIQdxvWv9Kchxu5MHHlFbIKNRbLz9gYy4mr+Xz/ZH0+HxLKyhNpLDmUAkCZRsf4pZEoFVJ+f74J4zr58MafUZxLKqx1PebMWUNERDxLlk7i/RlPMveHLWzbdsqsXHFxGS88/wOtWoeyZu1UwsKCefGFuRQXlwFw7lwc7037lVdefZxVq94mL7+Yd95dWuvyCz2EHv927veG5M6dO/Puu++aXHdDdnY2Bw4cIC8vzyRdozG0efb2lg22gwcPIpfLadeuHYWFheh0Ouzs7ACws7MjPz+/SvJXyTjQ6/UcOnSIVq1a8fDDDxMcHEybNm149NFHiY2NJSUlhRMnTlBSUsLIkSNp0KABrVq14oknniAmJoaEhARjXTk5OaxatYpdu3ZZXFHQaDRERETQvn172rdvT0hICIMHD8be3p5Tp8x//LXN5l2XaB/mz+ghYQT6qRg5qAVtw/z5a+8Vi+Vj4rMJ8nPG3dXOeLk625qUiU/KZdmacEKD7n1H+d3gOHAofvN+sziL7vjoAHJWLKH40H40ifFkzJmJzEmFslmYWVmpgyPKpi3IWTIPTVICRX/vpfjoIWxatwMMg+qcxfMo3L6Z8mtJZP/yEzInFVZ1LK+uVBXV4OEELv2d8ixzPSQyOemff0rJ6ZOoY2PI/n0Zti1aWqxH7upG2eVIUmd9iCYhnqKDByg6fgTbMEN5h+49Kc/MJOP7r9EkxJO/fSt5mzcYjYeawK7vE3h8sQhtbrZphlSG6pV3cHl9OuUpybetQ2LvgHXDZuSv/IXya4mUHt1P6akjKFu0BcD+sSGoI8+S/9s8ypPjyVv0HbriQmy7971tvffC5t1RtA/zY/QTzQn0VTFyYFPatvDlr33RZmX1ej0rNpxn0vgOdGkXSON67nwwqSurNl2gqESN0lqOu4ud8dq46wp6vZ7Jz9XuyhqAykaOu70V7vZWuNgq+GZPEs928KaJj3mDXKzWsiMym/f6BtLY245G3na880gAuy/lUFau42R8AXkl5cx4NIg6bjZ0qatidDsvtkRYXs2qSdQaLcmZJTQJUuHupDReVgrzZW21RoubozXvj2pKqI8Dreu50ruVN6eiDL/NhPQi9p1N5+Oxzajn58iQzgH06+DL73trZwXqZtaHZ2BrJeX9fnUIdFUyoYc/gS5KIq6ZD+hzijRsPZ/FB/3q0DLQgdZBjkzuFcDiw9cA2Hclh5zicmYPDqGuhy39W7jTv7kbvx5JqVUdiovLWP3nIaZOG0bjxgH06hXG+PG9Wb58n1nZv7aexNraiilTBhMS4s3UacOws7M2DviW/7aPPn1bMXBge+o38GPOnGc4sD+CpETLRrjQQ+jxT9fjv4pKpSIoKMjkuhvKyspYvnw5Bw8eNEk/ceIEEomEunXrmj1TWlrK5s2bGTRoEFKpFHt7e6RSqdEgyMvLw9HRsUryV8k4KCsro1mzZsbljRu4uRlmo7Kzs4mJiSEgIABb24qBcEhICFZWVkRFRRnTtm/fTnZ2NmPGjMHLy8vss7RaLXq93sRwkEqlWFtbU1xcXBWxa4SBjzRi8gudzNILisoslo++mk2Q/+2Xq2d8uYtXx7bHWWV723LVxbZ9J9JmTiN35a9meZnff0HB9i03pehBAlIL1qm+rBRdSTEOjw0EmRxFQBDKZmGUXTEcL160Zwc5S+cDILG2RjViNOXZWajjYszquhfsO3UmZfo7ZC83n9HInDeXgr27AJA5u6AaNJTiU8ct1lOemUHy22+gKy4CwKZFGLYt21B00lC+6PBBrs2Yavac1N6hRvQAULZ+iOyvPqBw/QqTdImNDYo6dUmfNBZ15Lnb1qEvK0NXWoJdr34gkyH3DcS6YTPUMZcBkHn5or58weQZzdVorBo0tVRdtRj4SH2Lg/eCQrVZWnZuCUXFGpo3rHBvqR/shqZcR8Rl01W03PxSFv5+mjee64CV1Z39NWuS9WczySstZ1xHb4v5UomEuSPq0cDT9P3V6g2GQwMvW74bVhcruWkzW1imrTWZbxCXWoREAv7ud25brBQy5jwXRqCnYZYpKrmAvWfTaFvfFYBzsbl4uyjxdauoq1WoC+Extb9ycCIunx4NXJBJK9yw/nixKV3rmbetiTmGtriZX0XbVc/LjowCDck5pSRllxHspsRBWeFNW9/TlvBEczeymuTSpSTKy7WEhVVMkrRsFcK5s1eNoQdvEH42jlatQoyRTCQSCWEtQwgPjzPmt2ldMTjw9nbB28eZ8LNxtaqD0EPo8W/nnxLK9E54e3vTunVrtm7dyl9//UVkZCSbNm1i3bp1dO3aFW9v8/5o586deHl5GcfmMpmMxo0bs2nTJiIiIti5cyctWrSokhxV2nOgVCrp29d81vHSJcPg0MPDg8zMTBo3bmySL5VKcXZ2JuumGd8ePXrg7u5eaTgnpVJJixYtOHbsGAEBAbi7u3P69GkyMjLo2rVm3TvuhpAgV5P7qLhMjp5OYET/ZhbLx8ZnU67VMvSFFaRlFtK6mS/vvNoVD1dDx7Vm6wXK1OUM69eUzbsv16rsqe+8BoDDowPM8krPnTG5d+w/GIlMTunZ02Zl9Wo1GV/Mwn3yNFTDRiGRy8nfvI6CTWtNytm0bofPN/NBIiHtg7fRl5TUiB5Jk14FwKn/oErLuL00AfcXXkGbl8vVsU/dsc7QrbtR+PhSsH8vBbt2AKC5lozmWsWsvczZBcdHHiVz3g/V1KCCrJlvAmD7sOlqhL6okIw3x91dJRo1uT9+huqlKdgPGIFEJqdo50aKd2wAQJebhczV3eQRmZsnusKqLS/eDSGBpqtfUXFZHD2dxIh+TczKOjkqUcilpGUWGVfNUtINM8E5eaa/lZUbI/Bws6NP19Aal/l26PV6fjl8jafbemJXiVGiVEjpHKoySfvtWBr1PGxwtjXEn3a3r4gOUarRsfpMBt3qmT5TG8SkFGJvI+ftheEcv5yFt4uSVwfUp0tTy+5RN3j6s8OcvJJN40AnnuoRBEBGXinuKlM3Q1cna9JySmtLfCOJOWU09bVnxoZY9lzOwVdlzZRHAmkZaG6ou9ob/udpBWqCXA2uc6l5BoMhp7gcV3sFGQUa9Hq9sd9JyVOTU1xeqzpkZOTh7GyPlVVFd+vm5khZmYbc3CJcXBxMytYN9TF53s3Vkagow+pHRnoeHh4qs/y01No31IQeFXIKPQS1ydixY9m2bRuHDx9m8+bNODs7069fP3r37m1WNj8/n127dvH666+bpD/11FMsXryYBQsW0LhxY/r161clGaodrSgpKYlDhw5Rr149PDw8KC0ttegmZGVlRVlZxSz7jV3Yt6Nnz56kpaWxaFHFRtFu3bqZGR/3m5zcEia+v5mwJj707GTZZSY2IRsXlQ3vvtoVvR6+XnCIF9/ZwJ8/P0lufilfLzjIoi8H3zbW7f3GulFT3Ca8Sc7yxZVu5LUKCqbo4D5yf1+KVXAo7m9MpfjEUQp3VKw+qGOiSXxmGHYdu+L53iw015Ipu3D7WfCaIm/zBgr378V17DgCfvqF2MGPoysqqrR80puvIXd1w2vaDDzffJe0OaaRCSTW1vh9+R3lWZnkrF5V2+JXGYV/HUqP/U3But9QBIagevEtSs8cp2TfNooP7MTt/a9Q7t9O6ckj2Hbvg1W9xpSdO1mrMuXklTDxg22ENfGmp4UNyXKZlF6dg/n6l6OEBDpjZ6Ngzs+HkMukaMorpmr0ej1/br3I+OGW3cNqk+PxBaTlaxjS8s7t1A2Wn0hj28Vs5j1V3yxPp9czbWMsRWot4ytZiahJ4lIKKVVr6dTYneceDWXX6RRe/u4EK6d1pEmQqtLnpj3VhPwiNR+vuMCb887w48Q2lKi1ZqsfVnIp6vLan1YrVmtZePAao9p7Me/pBvx1PpPnfo1k88TmeDuZ9jO+Kmua+9nz6dZ4PhscikarY+5ew/40jVZP57oqZm29yg97k3ihiy9X0opZezoDjbZ2QxyWlqhNBnCA8V6tLjcrq7BQ9ka50tLb59cmQo+KskKPfx//lBOSb2by5MkW0xUKBf369burAb2joyPffvutWbqLi0ul9d8N1TIOEhIS+P3331GpVAwYYJiVvl0s2aoMhIuKiliwYAEymYxBgwbh4OBAdHQ0Bw4cwMrKig4datf/+Odlx5m/vMItZf5nA2nd3I/M7CKenbwWnU7Pdx89jlRqWafNS0cjkUhQWhv+xd9+9Didn5jP2chUflsTzqC+jakXbHlzYHVwHvMczqOfM95fe+NFi6sAt6Js0hzvr36i+MhBshdYniG3ad0Ox/6DuTqgJ/qyMsouXUDu7onLMy+YGAfanCy0OVmooy6jbNIcp0HDSK+iceA67gXcxlVsyE145XlKztx5r4kmMQENcO29twndvh+Hnr3J27iu0vKl1yMppX1hjc8nn5P21RwoN2z8kdjY4v/NXKwCg7j6zEj0pfc2U+ow7Bkchj9jvM98fyLqC+H3VNfNWDdvg+0jA0gZ/Rioy9BERSJz9cBxxDhK9m2j7NQR8lcswHXaHJDKKDt3kuLdW5DYVT8Cxc/LTzJ/ecX3MX92P1o38yEzu5hnp2xEp9fz3Qd9Kn0/pr3amTdm7qDb8KXYKuW8OKo15y6lYW9bMdMecTmdtIwiHu1Re6sG8w9eY/7Ba8b7eU/Vp1WAAzsis+kU6oTK5u6ayN9PpvHptnje7h1AxxDTSDrlOj1TN8SyPyqXBSPrm6wm1BTztkQxf0vF/o6fXmvLqIeDcLIzfFYDf0cuxOfxx/6E2xoHDfwNfqmfPNucoTMPkpxZjLVCZmYIqMt1KGvBzWve/mTm/12xalem0dE60JEJPQwniTbytuNQdB4bwzN5oat5vPDZg0N5fdUVOn52EgdrGa/3CiA8sRB7axmu9gq+GBrKtHUxzNufjK+zNSPbefLr0dQa1+NmrK0VZoOsG/dKpZVZWY2FsjfKVZpvU/O/qVsRelSUFXr8+/gnGgf/ZO7ZOIiIiGDDhg24uroycuRI4x4DpVJpskJwg7KysiptiDh9+jT5+fm8+uqruLoaXHrq1DHMQu7evZvmzZub7GuoaUYMaEbf7vWM957u9qRlFDJmkiGc5a/fDsXlNnsFbJQKk3tXZ1tUjkrSMwrZuucySms5y9eGA1BaVk54xDW277vCZgsRjapC3rpVFO7eZrwvz7hzZBSbsDZ4fzGX4uOHSX1/ClRi4FnXb4QmMR79Td9v2ZVInMcajBHrhk1Aq6XsSqQxXx0Xc08bknP+XEn+jr8q9EhPu01psO/cjdLLFylPN+irV6vRJCciU5n7JstcXLFp3oLCvbsr9IiNRmplhczeDm1uLlI7O/znLsDKP4D458eiSbj3zZeFW9dQ/PdO4702q2aiUynqNqT8WiKoK74PTcxlZMOfNd4XrFpEwZplSO3s0eXl4PLup2jTrlmqrkqM6NeEvt0qBu2ebtffj8kGl6ZfvxqEi6ryqEiuzrYs/WogufmlWFvJ0Ovhq4VH8fWqWAr/+0QCrZt54+RgOXJWTTCslQePNKpwifJ0MHSGh2LyeLnL7Q+rucHiIyl8sSuRNx/25+l2pvunNFodb66J4VBsHj89WY8w/5rbt3Izw7sG0qd1hduAp7PSbPAe7G1PdLL5Rt7CEg0HzmfQp7W30ZgL8TbImVOoxlOlJDPPtE3PzCvD3clyaOrqMLyNJ32aVLhwztgQSx130+8/yE1Jar7lvV6BrkrWvdyMrEINDkoZCdmlSCXg7WT4XrvWc+bvKa3ILNTgaqdg1ck0fFU1r8fNeHiqyMkppLxci1xu+E4yMvJRKhU4OtqYlc3INI1SkpGZj7uHU6X5mZn5uLtbDu1akwg9DAg9BP8PVDmUKRjCj65ZswY/Pz/Gjh2Lg0NFh+fq6kpOjqmfmk6nIzc317hx+W7Izc3Fzs7OaBjcIDAwEK1WS3Z2diVP1gwqRyWBfirjpdPpGf/WWqQSCcu+HYqnW+Wzr4VFZbR97EeOnk40pqVlFJKTV0KdABe2L3+GDYueZt3CUaxbOIom9T0Z3r8Z8z6r3Jf+btHl56NJSjReeguG2s1YBYfi/fn3FB/9m9T3JoO28mXE8swMFH4BIK+wKa0C6xj98x37PYHrS6+bPGPdoBHqSs5MuL0eeYZVgOvXnfTweGMKTo8PNN5Lbe2wCgyyuBla4euH35ffI7/JtU3ZsDHl2Vloc3NBIsHvy++x8vUjftzTqGPMI+5UBX1hPtqUJON182C+OuiyMpB7+5t8H3L/ILRphu/DpusjOD3/BpRr0OXlgJU11s1a14hbkcpRSaCvynjpdHrGv7MJqVTCsm8G4ulmd9vnp3yyk4MnElA5KrFRKjhwLB5XZxtCb9q7cDYyjZZNatcFR2UjJ9BFabyUCik5xRoSc8oI87/zCsv6sxl8sSuRt3sH8EwHc1k/2HKVw3F5zHuqPm0CqxYtoiqo7K0I9LQzXh8uO8+0RWdNylxKyCfY21ynErWWyfNOczY215h2IT4XmVRCkKcdzUNUXMsqITW7Yj/IqahsmofU/PkAKls5ga5K49XM357LqaYBKOIySi0O6HU6PeOXRnIlrRhXewVWcin7r+TSyNsOe6WcmIwSnll8Eb0e3B2skEol7L+cS9s6tfe9ADRs6I9cLuNseMXmztOnomnSNAjpLWGMWzSvw5kzscYVeL1ez5nTMTRvXseYf/pURZuWkpJNSkoOLZpbPk9E6CH0+Kfrcb/4t2xI/qdQZePg5MmT7Ny5k8aNGzNq1CiUStNZnZCQEK5evUrRTX7eMTExqNVqQkLufgbZzc2NoqIiMjNNQ2klJCQgkUhQqVRVFb1azPvtOInX8pg99REAMrKKyMgqoqDQMNArLSsnI8ugs72dNa2a+TJ77n7OR6Zy4Uoab3y4hc5tg6gf4mZidAT6qbC2luPkqMTXq3Y7KUu4vz0DTVoqmd9+jsxJhczFFZmLK5Lr+0akdvZIr6/4FB/ch768HI+pH6HwD8S2U1ecxzxH3p/LAchf/yc2rdviNGwUCr8AXMa/grJhU3JXLat1PXJWrcB1zLPYdeqCVUgoPrPmoE5IoPDgAYMe9vZIHQ2zIKUXzlMaeQHvDz7BKjgEu05d8Jz0FpkLfwZANWgItm3akfLRdLQFBchc3ZC5uhmff5BIbO2Q2Bu+j5JjB0BbjvNr05H7BqBs2xmHYc9QuNGwN6I8OR77RwejfKg7ch9/XKd8jDYjjdKTh2tcrnkrTpF4LZ/ZbxvOvMjILiIj+5b3I7uiTVA5Kvlm0TGuxGVxLDyZmd8f4PknW5m4IUXFZZttdL4fRKWXYC2X4GdhAFqk1pJdZHA7yy0pZ9a2eAY0c6NvYxcyCtXGS6vTczg2j/VnM3mrVwABLtbGvBvP1ybdW3iy6WgS6w8nEZ9WxNyNVzgdnc2onkEGPUrLyS4wfDfuTkp6tfTi4xURXIzP4+SVLKYvOcfInkHY2yjwd7ejUxN33l4YzuXEfFb/ncCWY8k81T3wNhLUDMPbeHI5rZgf9iQSn1XK97sTScwppV9zw0b7orKK70MqlaBUSPlqRwJXs0rYFZnNj/uSeP76CpCvypqYjBJ+2JtEUk4pP+1L4nRCASPbmUfLq0lsbKwYOLA9H3ywgvPnrrJrVziLFu1k9OgegGGzaGmpIarXI31aUpBfwiez/iA6+hqfzPqDkpIy+vZtBcCIJ7uyYcMxVv95iMuXknh7yhK6dWuKn3/Nu6gKPYQe90OP+4UwDqqGRH+7TQK3UFhYyLfffou9vb0xnurNODsbZpJ+/PFHHBwc6Nq1KyUlJezcuRM/Pz9Gjhxpsd4lS5YAmJyQXFZWxrx589Dr9XTr1g1HR0diYmI4cuQIrVu3thg16W7Rp/5c5Wf6Pr2EuATznfsD+zRi9ruPsPavC0ydvYNL+ycBhhOSP5t7gL2HY1FrtPTsGMy017pbdJF4+rU/advCr0onJEu8XiS6g3kkmNvh8OgAXMa/TPwTBgNH5uJKnS37LZZNmzmNgq0b8HjvYxTeviS/YvCZVwQF4z7pXawbNUGbm0Pe6hUmJyTbduyK64uvofAPQB0TTeY3syk9H16pTKFHIohsYX4a4O1w6j8ItxdfJebRnhWJEgmuY8fjPHQEMmcXio4eIvWTj4xuVd4ffYrCx5eE8aMBkLt74PnOe9i17YCupIScVcvJ+sVweqH/3AXYd+xs9rlFJ48bn7+VhuGXSHq0dZX0AEO0IseRz5P6TH+zPOdJMwBMTkh2njQDuacPGe+8YNDDvw6qF9/Eql5jdHk5FG76w+SEZNte/XB8cjxSRyfKwk+QM3c2upzbx9n323oSffJ3VdKj75jlxCXmmqUPfKQBs9/uaTz1+NIewwnHRSVqPvrmAHsOx2Fro2DkwKY8/1Qrk2eb9/mZH2Y+Suc2AVWS5QYS34mU//Z0lZ/760IWs3cksH+S+Vkfc/cnsf5sJjsntmBrRBZvrbMcpnfHhOYsPHSNP06bu5D5OFmxc2KLu5ZHPmoZuoNV31j254EEftkWQ0pWCaG+DrwzvBFtrocn/WHDZdYdSmL3HMM7VFCsYfbKi+w5a/C/H9DBjzeGNDRuRM7KL2P6knMcvpiBu5OS15+oz2Pt7s7t6gbSTl+iXVV1t8nT8QV8svUq0RnFBLvZMPXRIFoHGQzkH/Yksj48g11vGDatZxSo+WBjHMfi8nC1U/BCV1+euGlT+dnEAj7ecpXYjBJCPWx4t28QLQKq5uolG74UPXur9ExJiZoPPljBzh1nsLdXMm5cb8aMNfzvG9R/kU8+Hc0TTzwEGA6k+mDGCmJiUqlf35cPPnyKRo0q3oG1aw/z/XebyMsrpmPHhnw0cxTOzlXfRyShu9BD6FErevwTWW9rHijibhhYXLvRJP+pVMk4OHPmDBs3bqw0f8CAAbRo0YL09HS2bdtGYmIi1tbW1K9fn969e1uMYgSWjQOAgoICdu/eTVRUFBqNBhcXF9q0aUPLli2rFeXnXoyDfxr3Yhz8E7kX4+CfyL0aB/9E7sU4+Cdyr8bBP417NQ7+adyrcfBP416Mg38i9zIY/Sci9PhnIYyD/wZV2pAcFhZGWJj5bNqteHh4MHq05RlWS9xqFNzAwcGBgQMH3nU9AoFAIBAIBALBzehqN2Lxf45qn3MgEAgEAoFAIBD8U/l/3j9wL9xTtCKBQCAQCAQCgUDw30OsHAgEAoFAIBAI/rOIlYOqIYwDgUAgEAgEAsF/FmEcVA3hViQQCAQCgUAgEAgAYRwIBAKBQCAQCASC6wi3IoFAIBAIBALBfxbhVlQ1xMqBQCAQCAQCgUAgAKp4QrJAIBAIBAKBQCD47yJWDgQCgUAgEAgEAgEgjAOBQCAQCAQCgUBwHWEcCAQCgUAgEAgEAkAYBwKBQCAQCAQCgeA6wjgQCAQCgUAgEAgEgDAOBAKBQCAQCAQCwXWEcSAQCAQCgUAgEAgAYRwIBAKBQCAQCASC6wjjQCAQCAQCgUAgEADCOBAIBAKBQCAQCATXEcaBQCAQCAQCgUAgAIRxIBAIBAKBQCAQCK4jjAOBQCAQCAQCgUAAgPxBC/BvYt++fezfv58ZM2aYpJ86dYrNmzdTr149nnzySbPnwsPD2bBhA23btqVv3753XW9NsX79es6ePVtp/tChQ0lPT2f//v23rWfatGnI5XKjvDejUChwcXGhdevWtG7dukbkBliyZAnx8fH4+fkxbtw4i2VWr17NhQsXaN68OQMHDjTJW7RoEYmJiQwdOpRGjRpVWv+tWFlZ4erqSvv27WnWrFmN6HIra9eu5fz58/Tq1YuHHnrIJM/SdyaVSrG1tSU4OJgePXrg5OQEYPH7AMN34ujoSMOGDenevTtSac3MBdTGd1JeXs68efMoLCzklVdewd7e3qzOXbt2cejQIUaOHEloaGiN6GKJm9/HO72b69ev5+rVq7z++usmz/bu3ZsOHTrcsXxtUxO61Fa7dCfu9H7c7v+4ZMkSAMaOHWuSnp+fz/Hjx7ly5Qp5eXno9XpcXV1p3Lgx7dq1Q6FQ1KgO6enpHDhwgKtXr1JSUoKtrS2BgYF06tQJLy8voPL392Zu1/ZKJBKUSiWBgYF0794dDw+PGtUBICEhgaNHj5KQkEBpaSkODg7UqVOHDh064O7ublY+NjaWEydOkJycTElJCU5OTtSrV4+OHTtiZ2cHVN723oyl9qOqLFmyhISEBMaPH4+Pj49Z/jfffENQUJDJ59ytvt9//z0ymYyXX37Z4mdrtVq+/PJL6taty6BBg6qlxw1dbv2f3eirmjdvTps2bYzt/J36fTs7O958802TtKysLI4ePUpMTAwFBQXY2toSEBBAp06d8PT0rLb8gn8PwjioAcLDw/Hw8CAqKoq8vDzjoO1WTpw4QePGjQkICLjPEoK9vT3Dhw+3mOfq6kp6ejpApYM9AJlMZnJ/o6xer6esrIyoqCi2bNmCVCqlZcuWNSS5ofNLSkoiPz8fR0dHkzy1Ws2VK1csPpeZmUliYiIeHh6cOnXKonEA4OXlxWOPPWa81+l05Ofnc/ToUdatW4eNjQ1169atMX0ASktLiYyMxMPDg9OnT9OhQwckEolJmVu/M61WS1ZWFrt27SIxMZGXXnrJZDBz63dXXFxMREQEBw8eRKfT0atXrxqTv6a/E7lcTv/+/Vm8eDF//fUXQ4cONXkuJSWFI0eO0KpVq1o1DGqKPXv2UL9+fVxcXB60KP9K7ub9qCpXr17ljz/+wMbGhjZt2uDp6YlOp+Pq1av8/fffREZG8swzzyCX10y3mJ6ezi+//IKfnx99+/bFzs7OaJz88ssvjBkzBj8/P2P5e2l7wdBe5eXlsWfPHhYvXlypcX2vHDx4kN27dxMaGkqfPn2wt7cnOzubkydPMn/+fAYMGECTJk2M5W8Y8Y0bN6ZPnz7Y2NiQlpbGoUOHiIyMZOzYsTg5OfHYY49RVlZmfG7Lli0AJm2xra1tjeig1+tZv349L7zwgtn/sjr6tmjRgj179pCammo09m7mypUrlJSU1Gh/eHN/pdPpKCkpITo6mu3bt5OQkMCQIUOM78rt+v1b/w+RkZGsW7cODw8POnfujLOzs7EfXLhwISNGjCAkJKTG9BD8sxHGQTXJzMwkKSmJkSNHsnr1ak6dOkWPHj0slrW2tmbDhg28+OKLNT5DdSdkMplJR1QZd1OmsrKhoaGkpaVx6tSpGm0Mvb29SU9P58KFC2azsVeuXEGhUKBUKs2eCw8PR6VS0alTJ9auXUt2drbFwZq1tbVFvUNDQ/niiy8IDw+vceMgIiICgD59+vDrr78SFxdHcHCwSRlL31lgYCAymYz169dz+fJlk07Zkg716tUjJyeH8PDwGjUOauM78ff3p127dhw9epRLly7RoEEDwNABbtiwAScnJ3r37l1jOtQmcrmcDRs2MHbs2GoPav8fuZv3oyoUFRWxevVqXF1defrpp7GysjLmhYSEUL9+fRYtWsTRo0fp1KlTteUHOHLkCDY2NowcOdJk1a5Bgwb88MMPHDhwgKeeesqYXp22F8DR0ZElS5YQHh5eYzpcuXKF3bt307VrV7p162ZMDwoKonnz5qxZs4b169fj4eGBh4cHERERHDp0iEceeYT27f/X3r09NXW9fQD/kpDEYCIhIBbRAOEQSAQCjFFpPQAaRAU7o0IvOvam1hlv2v+hV/0HtIexF7XTil5orBWsI0YlgBhIIBJFAkUHgnI+JKhA4nuBySRkRwjsAL+3z2eGm+xFsp/svdfea61nrez2lk9JSUF6ejp++ukn1NbWoqqqKmDEQSAQBI1tpQQCAYaGhqDX61FSUhK0XKjxqtVq3Lt3D+3t7YyNg7a2NkilUiQlJbEay8LvSKFQIC4uDrW1tbBYLN7R7qXe90dHR3Ht2jWkpaXh5MmTfudrVlYWfv31V1y/fh3ffvsta41nsr7RnIMVMplM2LBhA1JSUqBUKmEymeB2uxnLarVajI6O4u7du6u8l6uH6YFwpXg8HjIyMmC1WgO2dXR0QKlUBqTMuN1utLW1IT09HZmZmeDz+WhpaQn5c7lcblge7kwmE+RyOVJSUiCVSkPaN8/Q+Pj4+JLKCwQC1mMI1zEpLi6GVCrFrVu3vL2KBoMBg4OD+Pzzz/0e6tYzrVaLly9f4tGjR2u9K/+TVnJ9MDEajXA6nSgvL2c8h7Zt24bdu3ezen45nU4A873Wvvh8Pg4fPhx0JHO5Qq0XluL+/fuIi4vD/v37A7ZxuVyUl5eDw+HAYDAAmO9137x5M3bt2hVQPjY2FocOHcL27dsDvpNw++STT5Cbm4uGhgbY7fag5UKNVywWIy0tDU+ePAmIyel0oqurC3l5eewGE4RGo4FYLF7WtdLc3AyXy4WysrKAepvH4+HQoUNQq9V4+/YtW7tL1jlqHKyA2+1Ge3s7srOzweVyoVar4XA40NnZyVg+JSUFBQUFaG5uxsuXL1d5b+f3d+HfwgqNqQxTuYVl3759C4vFApvNBo1Gw/q+q1QqbxqLhyeVybf33MNms8HhcECtVoPH40GlUsFsNsPlcjG+v28sc3NzGB4ehk6nw8zMDOtzDgYHB2G325GbmwtgPq/22bNncDgcS/r/kZERAAgYBfGNweVyYXJyEgaDAd3d3WGZNxGOY8Lj8XD8+HFMTU1Br9djfHwcDx48wJ49e9YkHW+58vLykJaWhrq6OoyOjq717vxPWen1weTZs2fYsmXLR/PxtVotq3VXeno6JiYmcPHiRTQ3N2NoaMhbjyqVSqjVar/yodS9TILVC8s1PT0Nu92OjIyMoJ0LQqEQcrkcnZ2dcDgceP36NdLT04OW37lzJwoLC9dkNK20tBRRUVHQ6XSM94FQ4/XIy8vD1NQUent7/cp6Rr8WHudwiYiIgFwuR19fn18H5VLOK5vNhoSEBIjFYsb3lsvlKCkpYTVdjaxvND60Al1dXd6HHQCQyWSQSqUwGo3Iyspi/B+tVgubzbbq6UUTExP4/vvvA14vKSnxG4JmKgPMV+pHjhzxe42prEKhgEqlWuHeBkpPTwefz/dLY3n69Ck2btzI+NDomQfi6U1Tq9UwmUywWq3Izs72K/vixQvGWLZs2YJTp04hIyOD1VhMJhOEQiEUCgWA+YcfvV4Pk8mEvXv3+pX1reTfvXuH/v5+3L59GxKJJCDViSmG6OhoHDhwgLU0A1/hOiYymQwajQbNzc3o6+uDVCoNmqq3npWXl+P8+fO4ceMGvvrqK0ovWqJQro+lGhsbY8yXZhrlZWvi/s6dO+FwONDQ0ICamhoA8zn0qamp2LVrFxITE/3Kh1L3+u737OwsXr9+jdraWggEAtY6AjwjEBKJ5KPlpFIpOjs7MTExAQCIiYlh5fPZJhQKcezYMVy+fBn3798PqFNCjffNmzcQCoXIyMhAVFQULBYLUlJSvOU8o6Sr+UC9ceNGuN1uTE9PAwh+3wfgN9F/cnKSMS2K/HdR42AFzGYzYmNjIZVKvcNtSqUS9fX1QfPb+Xw+KioqcOnSJdTV1aG0tHRV9lUkEjGupLRwMumZM2cY/9+zwkSwsjMzM7Db7Xj48CF+//13nD59mrWbLOCfxuJ5EO3o6IBKpQp46JqenkZnZyf27dvnPS7x8fGQSCRoaWkJaBwkJCTg2LFjAICpqSnU1dXB5XLh5MmTiIuLYy0GYH5SscViQWZmJmZnZzE7OwuBQACZTIbW1lZ89tln3niCVeyJiYk4duxYQMPSczxmZmbQ1NSE3t5elJWVeR+y2BbOY3Lw4EF0dXXBbrfjzJkzi04iXEvBHvo3bdoErVaLv/76C83NzYypFuvNWjdglnp9LGU/fcsEG/lkur7YXJ2pqKgIu3fvhs1mw7///ove3l5YLBZYLBYcPnzY75wIpe5l2u/NmzejqqqKtYdRz3e2WD3u2e75voOl1a4HCoUCOTk5MBgMyMrKQkJCgndbqPF6cLlc5OTkwGw248iRI4iMjMTg4CAGBgYY05NWg++EZKb7PuB/7+dwOKue6kXWN2ocLJPT6cTz58/hdrvxww8/BGxvaWkJOgFULpcjPz8fjx49Yj3vNBgul8u4jNtCSykTrGxycjJEIhGuXbuGzs7OoKMny6VSqVBdXY3JyUlERkaip6cHRUVFAeXa2trgdruh1+uh1+v9to2Pj2NoaMhvMhyfz/eLJTExET/++CMuXbqEs2fPsrZiBjA/4c3pdMJkMsFkMgVst9ls3hGBhRU7l8vFpk2bIBQKGd/bN4akpCT89ttvuHLlCk6fPs3qhDhf4TomPB4PMpkMvb29a9qj5clBn5ubY5yI53K5Pjr6l5+fD6vVirt377I+AhWqlcayGpZ6ffB4vKApgsB8LL7XSXR0dEAuPofD8Xsgb2lpQWtr68qDWEAoFCI7O9vbAB4YGMC1a9dw584dv0ZxKHWv735zuVyIRCLGRsRKeHrQF5vDMDY2Bj6f7y3vGUFg8ubNG3C53DWdO3T48GH09PRAp9P5fY+hxut7fuXl5aGpqQldXV3IyspCW1sbRCIR6wtZLMZTD3v2ban3fabrw5fL5cKbN28oreg/hBoHQfT398NqtaKkpMTbU+B2u7031fb2drjdblRVVQVMwtXr9TCbzSguLg7a46nVatHd3Q2dThe2nt214KmIPPmvbEpLS4NAIIDVagWPx4NEImGs+MxmM7Zv3x4wbDwzM4PLly/DaDQy/t6Eh0gkwpEjR3D16lXU1NTgxIkTrMVgNpsRExODiooKv9ffv3+P6upqtLS0eG8oS63YmUREROD48eM4f/48dDodzp07F5ZVJlbrmITLYte552Y4NTXFmC4xOTm56A2zvLwcFy5cgE6nWzRlYSVWI5ZwW+r1IRKJMD09HbShMzk56dfYVCgUqK+vx9jYmF/svudqsOV3l2NychK//PILioqKAlZuS0hIQHFxMaqrqzE2Nras919uvRCKjRs3Ytu2bXj69CmKi4sZR2vevXuH7u5uKBQKREVFYevWrbDZbDh48CBj+fv378NoNOK7775bs3NNKBTi6NGjqK6uxoMHD7yvhxqvr/j4eCQmJnpHvSwWC3Jzc1kdPV+MZ1lemUwW8uempqaiqakJDoeD8bh0dXWhuroalZWVrHf6kfWJJiQHMTQ0hIaGBr/K23dNd8/DTmZmJpKTk/3+8vPzMT09jadPnwZ9f4FAgPLycoyMjKx4JY71pL+/H8D8yhRsi4yMRGZmJqxWK6xWK+OkV7vdjsHBQeTm5gYcl4yMDKSkpKC9vR2zs7Mf/SylUuldhWLhRLPlcjgcsNlsUKlUAfvmWe3q+fPnfhN8V0IikWDfvn0YGxtDfX09K++50Goek3BY7Dr3jLh0dHQE/O/ExAT6+vr88oyZREdH49ChQ3jx4gWePXvG4t77W41YwimU6yM5ORlut5vx+/RMkveNRaPRICoqCtevX/dbW9/D7XZjeHiYtVhEIhE4HA4eP36Mubm5gO3Dw8OIjIxc97+DsX//foyMjDCusOd2u3Hz5k3Mzc15c9cLCwsxODiI5ubmgPJDQ0PeVajWuhGamZmJ7Oxs1NfXe/PzgdDj9ZWXlwebzeb9AbHVWqXIw2g0wuFwLOtHSDUaDbhcLmprawPSwmZmZqDX6xEVFbXqIyFk7dDIQRCpqang8XioqalBYWEhhoeH8eTJExQWFqK/vx+Dg4NBezqzsrLw999/w2g0Mj4s+X5GXl4e4/D5Wunr6wu6LTY21m8o1bes2+3GwMAA7t27h/j4+LClUKhUKvzxxx+IiIhg/P5NJhM4HE7QdK2cnBz09PSgo6Nj0VUkSktL0dPTg9raWnzzzTcr7gXypNYszK/3yM3NhclkYjW1Yc+ePTCZTDAYDFCr1WHpuV7NY8K2j13nwPyDvUajQV1dHRwOB9LS0sDj8bwP4jExMUta4aagoABWqxU9PT1hWe43nLE0NTUFvLZhwwbWj1Uo18eBAwegUCig0+kwPDzs7S0dGBiAwWCATCbzWxhBLBajsrISV69exYULF1BQUICtW7ciIiICdrsdZrMZIyMjrE3m5XA43t7pn3/+GRqNBnFxcZidnUV3dzceP36MoqKioPXpQgvr3tWSlpYGrVaLO3fu4NWrV1Cr1RCLxRgfH4fRaMSrV69QUVHhTf1TqVTo7u5GbW0t+vv7oVQqwefz0d/fj8bGRkRFRQWMCq2VsrIy9PT0eJecBUKP19eOHTtw+/Zt1NbWIikpKSwdZMD86IXnXHn//j2mp6dhs9nQ0tKCnJwcv559l8v10fNqy5Yt3hHfo0eP4saNG5icnERBQQGio6MxOjqKxsZGjI2N4csvv6TfOPgPoSMdhFgsxhdffIG7d+/i8uXLEAgE2L17N/bv34+amhpEREQEfdjh8XhQKpUwm82L9kaVlpaiu7ubtd7ilbp48WLQbVVVVd4fplpYlsPhQCwWY8eOHSgqKgrbBFK5XI4NGzYgOjo6YLLw3NwcOjs7kZqaGvRGmpWVhVu3bsFoNC76cBMXF4ddu3ahsbERRqNxxcscms1mbN68OehyijKZDBKJBK2traz14HK5XJSWluLPP//EP//8g8rKSlbe19dqHhO2few69ygrK0N8fDxMJhPa2towNzeHTZs2ITMzE3v37vX+eNNiKioqcP78+XCFErZYbt++HfBaTEwM68cqlOtj3759OHXqFBobG/HkyRM0Njbi/fv3kEgk2LlzJz799NOAxnxSUhLOnTuHx48fw2q1wmAwwOVyITo6GsnJyThx4oTfBNWVysjIwNdff42GhgY8fPgQTqcTkZGRSEhIwMmTJwPSM0Kpe1fTnj17sH37djQ1NeHOnTtwOp0Qi8WQy+WoqKgI+DGziooKpKSkoLW1FTdv3sS7d+8gkUiQn5+PwsJCVudwrYQnvejKlSt+r4car4dAIIBSqURbW9uyV9VailevXvmdKwKBAPHx8Th69GhACpvD4fjoeXX27FlvQ0etViM2NhZNTU2oq6uD0+mESCSCTCZDZWVl0LjJ/08R72mKOiGEEEIIIQQ054AQQgghhBDyATUOCCGEEEIIIQCocUAIIYQQQgj5gBoHhBBCCCGEEADUOCCEEEIIIYR8QI0DQgghhBBCCABqHBBCCCGEEEI+oMYBIYQQQgghBAA1DgghhBBCCCEfUOOAEEIIIYQQAoAaB4QQQgghhJAP/g/hY8OJZTht+QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwwAAAF4CAYAAAD5U36FAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABtJUlEQVR4nO3deViVdf7/8ec5h+WgsqggCIIQhoq74r6b5m4uaWll2Z5t07TPTE1NTd8mZ6ZlmibNsrLJ1LQUzV3RcBcVzQ13cUFQFFQ4bOf8/uB37vEIx10QfD2uqyvO/bnPfb/PObfn3O/PanI4HA5ERERERERKYS7vAERERERE5OalhEFERERERNxSwiAiIiIiIm4pYRAREREREbeUMIiIiIiIiFtKGERERERExC0lDCIiIiIi4pYSBhERERERcUsJg4iIiIiIuKWEQUQuKT8/nw8//JD27dtTo0YNPD09qVWrFr1792batGlun5eenk5aWtoNja0szlFeEhISMJlMpf7n7e1NaGgoffv2ZenSpdd8rry8PHbu3Hkdoi4b2dnZ/O1vf6Njx47UrFkTLy8vQkJC6Nu3L99++y1FRUXlHeJlSU5Odnn89ddfG5/x119/bWyPjIzEZDIRGRlZtgGKiKCEQUQuITc3l+7du/P73/+eNWvWcOrUKQoLC8nIyGDhwoXcc889PPXUUy7PycnJ4d133yU6OvqG3YSWxTluZvn5+Rw7doz58+fTq1cvfv7556s6jsPhYMqUKTRo0IAffvjh+gZ5g6xdu5YGDRrw2muvsWrVKjIzMykoKOD48ePMnz+fBx98kE6dOnH8+PHyDtWtw4cP89BDD9GyZcvyDkVE5JKUMIjIRX3++eesWrUKgNGjR7N27Vp2797NTz/9RHh4uLFPYmKi8Zxx48bxxhtvcPbs2RsWV1mc42bywgsvkJqaSmpqKocOHSIlJYU333wTALvdziuvvHJVx12xYgWjRo3iwIED1zHaG2f//v307duXY8eOAfDoo4+yatUq9u7dy7x58+jWrRsAa9asYdCgQeTn55djtO498MADfPPNN9jtdpftI0aMMD7nESNGlFN0IiKuPMo7ABG5uS1btsz4+5NPPsHf3x+AevXqUVBQYNzULF68mE6dOgHFtdY3Wlmc42bi5+dHnTp1XLa9/fbbTJs2jZ07d7J7925OnTpF9erVr+i4Fe19fP311zl16hQAf/3rX/nDH/5glN1222306tWLu+66i7lz57Ju3Tq+/vprHn/88fIK1y1373uVKlWoUqVKGUcjInJxamEQkYvy9vY2/h49ejSbNm0yHg8dOpSMjAwyMjJ4+eWXAejWrRtvv/22sU/37t0xmUyAa5/8b775hgEDBmC1WgkODjaOu3r1agYNGkRYWBheXl7UqFGDTp06MXnyZOOYFzsHFNe4f/LJJzRt2hSr1UqNGjUYOHAg69atK/H6zp07xyuvvEJERARWq5W4uDjmzp3LW2+9ZcQK8O9//9t4PH78eJdj7Nq1yyh78sknr/xNvgYeHsX1PmazGavVamy32Wy8/fbbxMTE4O3tTXBwMCNHjmTXrl3GPm+99Rbdu3c3Hr/99tuYTCYSEhIA9/3m3fWzd2578cUXefHFF/H19cXPz4/x48e7fPZz5sxh8uTJNGvWDKvVSkREBH/84x8pKCi46Gs9e/YsM2bMACAsLIxXX321xD4Wi4W///3vLrE6devWzeUzdTo/trfeesul7LvvvqNDhw4EBgbi5eVFcHAwgwYNYs2aNS77Od+ru+++m127djF48GD8/f3x9fVl0KBBpKSkuLxPy5cvd3nsbBlx9966c/r0aX7/+98TGRmJl5cXYWFhPP744xw5csRlP7vdzkcffUTLli2pVq0anp6ehISEMGzYMLZt23bJ84jILc4hInIRM2fOdAAu/4WFhTnuv/9+x3fffec4c+aMy/5du3Ytsb/zq2bZsmXG44CAAOPv4OBgR2FhoWPdunUOq9Va6vMBx7fffnvJczgcDse9995barmnp6djzpw5xn75+fmOjh07ltjPbDY7Wrdu7XLczMxMI7bu3bu7vOZ33nnH2Hf16tXX7b0///3685//bGwvLCx0nDhxwvHRRx8Z5e3btzfK8/LyHJ07dy71PfD19XVs2LDB4XA4HH/+859L3WfZsmUOh8PhqFu3rgNw1K1b1yWuSZMmGftOmjTJ2F7aZws4tm7d6vJa3MX2xhtvXPb78cADD1x03/DwcOMzLygocDgcrtfN5bzP//rXv9xei1ar1ZGSkmLs63yvmjRp4vD39y+xf1RUlBFHacfr2rXrRd/b0j6LzMxMR4MGDUo9Xu3atR0HDhww9v3d737n9rVUr17dsXv37ou+nyJya1MLg4hc1JAhQ3j99dddth05coTvvvuO+++/nzp16vDFF18YZdOnT+eFF14wHk+bNo3U1NQSx83KymLSpEls27aNb775BovFwvjx47HZbNSsWZOFCxeyd+9efvjhB8zm4q+q2bNnX/Ic06dPNwbvjh49mq1bt7J69Wo6dOhAQUEBDz/8MHl5eQBMmjSJlStXAtCyZUtWrFjBxo0bGTx4MOvXr3eJt3r16gwePBiA5cuXu8zMNH36dABiYmJo167d5b61V8RZ+28ymfDw8CAwMJDf/e53AAQFBfHZZ58Z+3788cf8+uuvALzyyivs2LGDpUuX0qBBA86cOcMjjzwCwO9//3uXWa6c4yTat29/TbGePn2aZ555hl27djFt2jQaN27sUp6YmMh7771HSkoKH3/8sbF90qRJFz3u+YOYL+yedaGwsDAACgoKjC5MV8Jut/Ovf/0LgLZt27Jx40ZSUlKMVg2bzcbChQtLPG/r1q3ExcWxfv161q5da8Sxf/9+o1UhNTXV5TpJTU01rqEr8ac//YmdO3diMpn4xz/+wa5du5g9ezYhISEcO3aM5557zth34sSJANx5551s2rSJvXv3MnHiRCwWC0VFRVc9aF5Ebg1KGETkkt577z3Wr1/PI488QnBwsEtZVlYWjz/+OFOnTgWKb179/PyM8qCgoFJv7rp06cJDDz1EbGwsvXv3Bopvak6dOsX69evp1asX4eHhREREGMfLzMy85Dm+//57ALy8vHj77bcJCAigTp06RtKTnp7OvHnzAJg1a5ZxjO+//57OnTvTokUL/vvf/1K7du0SMT/88MNA8c2k8wYvJSWFLVu2APDggw9e9H3Mycnh8OHDLv9dy5SwERERvPXWWyQnJ9O8eXOX1+Isf/bZZ6lWrRq33367cQOZnJzM5s2b8fPzIygoyHiec5zE+d3QroaPjw8ffPABMTExDB8+vER5//79ef31142YGjVqBHBF74XjEmMvzh9MfKl9S2M2m9m1axeHDx9m9uzZtGjRgpCQEBo0aGDs47wez2cymZgyZQpxcXG0adPGSOrgf6/vwve4Tp06Lp/D5XA4HEZi3L59e0aMGEGVKlVo0aKFcZ3OmTOHkydPAlCzZk0A9u7dy5o1aygqKuKRRx4hLS2NrKwsXnrppSs6v4jcWpQwiMhliYuLY+LEiRw7doytW7fy0Ucf0aRJE6P8gw8+uKLjXVjr7LRz504+/vhjWrdujZ+fHx06dOD06dMAlzW3vrOveH5+PlFRUYSHhxMeHs7AgQONfZKSkgDYt28fUNx6UL9+faPcarXSunXrEse+4447qFu3LoBxs+ZMHMxmMw888MBFY5s2bZoRj/O/y22ReOGFF9i3bx8zZ840Zqc6evQo/v7+JZIb53tw6NAhl3ONHTu2xHtwNS51A37bbbfh4+Pjtjw2NtblsfNmubCw8KLHPT9ZLa3V6nzOWZ8sFgs1atS46L7uXo/dbmfNmjW88sorNGjQgICAAMaMGWOUl3Y9BgUFudz8n//3pcZoXIkTJ04YCcuqVatcPuf33nvPiH/z5s0AfPrpp1StWpW9e/fy1FNPERMTQ61atXj66aeZO3fudYtLRConJQwi4tbx48d54oknGDRoEH/+85+B4hrUxo0b8/zzz7NhwwbjBnrHjh1XdGznbEvne++992jfvj0ff/wxvr6+vPHGGyxZssTo1nE5nIOALyYjIwMoboWAy6+BNpvNPPTQQ0Dx4Ozzu5L06NHDuJG/Efz8/IiKimLIkCH88ssv+Pj4UFhYyAsvvMC3337rsu+VvAeX48IbY5vNdtH9S/tsz3dhMmGxWC4rjri4OOO1LV261CXBeP311xk/fjwFBQWsWbOG9PR0AFq1alXq+3H+ayrt9TgcDvr378/dd9/NlClTaNasGR9//DEzZ868Ia/tSl3OZwz/+5wHDBjA/v37+de//kX//v2pXr06GRkZTJs2jQEDBlz1tLwicmtQwiAibgUEBPDdd98RHx/Pp59+anRvcDKbzcbN9vm1uOfPQuPuZtzT09PlcW5uLn/5y1+A4n7WS5cu5Q9/+ANdunThzJkzJZ7v7hz16tUDiqenzM/Px+Fw4HA4OH78OFu2bCEvL4/PP/8cKK4Jh+I+9+cv/paTk1PqjEoAY8aMwWQy4XA4ePfdd42Vei/VHQngoYceMuJx/nc16x80btyY//u//zMeP/PMMxw6dMh47HwPbr/9dpdzHTp0iJ07d1JQUMBrr70GXPyzcnabyc7Odtl+/rlKc+Fne71Uq1aNoUOHAnDs2DH+9re/AcWLoH3wwQc8+eSTNG/enCeeeMJ4zqhRo4y/z+8GdP5rKu31JCQkMH/+fKB4NqmpU6fyzDPPXHLsxOW6nH8jF1O9enXj31yvXr1cPueUlBT27t1LUVER9957L7m5uaxfv54FCxbQsWNHo6vStm3baNasGVDcAlFRVscWkbKnhEFE3PL29jZq1DMzM+nbty/z5s1jz549JCYmcvfddxs3W3fffbfxvPOn90xKSmLt2rWXPFd+fr4xGDk5OZkVK1aQnJzMmDFjjJu782uU3Z3jvvvuA4pv+h944AE2bdrE1q1bGTVqFE2bNqVKlSrGFK4jR440jnHfffexatUqNmzYwD333OO2P33dunXp0aMHABMmTADA19fXuJEtK8899xydO3cG4MyZMy6rbTvfg927d/P888+zbds2NmzYwIABA4yuNc6Fz85/H7dt28a2bduMWmlny052djZfffUVdrudhISEEtPKlqX33nvPaMH405/+xBNPPMHRo0f55ptvqFGjBtu3bzfGlDRr1swleTi/perjjz82uuy8//77Jc5zfpI6f/58fvvtNxISEly6dV2qC9XFnP++JyYmGonnlXB+zosXL+a9995j165drFixgh49ehAdHU1ERAS5ubkcP36c9u3b88ADDzBixAgWLVrE/v37OXLkCFlZWUBxS8iF082KiBjKbD4mEamQTp8+7YiLi3M7JSPgaNasmeP06dPGc+bNm1din/T0dLfTVzr17NnzoueJjo6+5DnsdrujX79+bo/x+OOPG8coKipydOnSpcQ+Xl5ejttuu63UKTgdDofj+++/d9l/zJgx1/dN//8u9X7t3r3bUaVKFWOf6dOnOxwOhyMnJ8fRsmVLt+/BX//6V+MYp0+fdnh7e7uUT5s2zeFwOBwTJkxw2W4ymRyAo127dqVO/enc5pwi9HJfyx133OH2vS7NqlWrHMHBwRe9VgBHw4YNHYsXLzaet3Dhwku+HmdsJ0+edNSqVeuix3/kkUeMY7ubgnby5Mmlvlevvvqqy7FiY2MdDseVTaualpbmiIyMLDU2s9nsmDx5srHve++9d9HX8sEHH1zWey8itya1MIjIRfn7+5OYmMiHH35Ihw4d8Pf3NwaSdujQgXHjxrFmzRqXfuu9evXi2WefJSwsDKvVSpMmTcjNzb3kuaZMmcIjjzxC7dq1qVKlCg0aNOCNN97gzTffBIpneHGOlXB3DpPJxE8//cTf//53mjdvTpUqVfDz8yMuLo4JEyYY3ZGguEvV3Llz+d3vfkdISAhWq5X27duzePFiWrRoAVDqjEFDhgxxWVH5croj3Qj16tVz6Zr0/PPPk52djY+PDwkJCbzxxhs0bNgQq9VK9erV6dy5Mz/++KPL6sj+/v58+umn1K9fH29vb+rWrWvUfj/66KN8+OGH1KtXD29vb+rXr8+HH37o8h6Wh/bt27Nr1y7ef/99OnbsSI0aNfD09CQoKIju3bvz/PPPU7VqVXbs2EHPnj2N6VF79erFd999R+PGjY3X+uabbxIfH1/iHDVq1GDRokX07t2bgIAA/P39ad26NZMnT6Znz54A/PLLL1fdjeeFF15g4MCBBAQE4OvrS0RExBUfIzg4mLVr1/L8889z22234eXlRVBQEL1792bx4sXcf//9xr6vv/46c+fOpU+fPoSFheHh4UFAQADdu3dn2rRpxsKLIiKlMTkcV9F5UkSkEti8eTPp6emEh4dTt25dqlSpYpT17t2bhQsXGnPan89ms1GnTh1OnjxJZGQk+/btU3eOm8zBgwd59dVXSUxMZMeOHfj6+pZ3SCIiFdblTbMgIlIJLVmyxJh/vnXr1kycOJEqVaqQmJhIQkKCsd3pwIEDmEwm3nzzTWMA+MMPP6xk4SZUt25dfvjhB/Lz843ZsERE5OqohUFEbllpaWk0adKEEydOlFru6enJ8uXLjZWP69Spw5EjR4zysLAwfvvtNwICAsoiXBERkXKhMQwicssKCQlh7dq1jBkzhqioKLy9vfHw8CAkJIShQ4eSmJhoJAtQvA6A1WolMDCQwYMHs3TpUiULIiJS6amFQURERERE3FILg4iIiIiIuKWEQURERERE3FLCICIiIiIibilhEBERERERt5QwiIiIiIiIW0oYRERERETELSUMIiIiIiLilhIGERERERFxSwmDiIiIiIi4pYRBRERERETcUsIgIiIiIiJuKWEQERERERG3lDCIiIiIiIhbShhERERERMQtJQwiIiIiIuKWR3kHICJyvWRnZ/PZZ59x7733EhkZ6VKWmZnJggULOHjwIGazmdjYWHr16oW3t/dlH3/z5s3MmjWL559/noCAgOsb/AW+/vprTp8+ze9+9zsA7HY7CQkJJCcnk5OTQ2hoKL169aJOnTrGcwoLC0lISGDr1q3k5OQQGBhIx44dady48XWJyeFwkJSUxPr16zl16hRVq1alfv36dO/e3eV9TElJYfny5Rw/fpwqVaoQGxtLjx498PLyuuQ59u7dy3fffUetWrV46qmnrkvcl+vnn38mOTmZP//5zyXKdu3axQ8//FBqWVJSEmvXruX06dP4+/vTunVrWrdujclkKouwRURuOLUwiEilkJWVxeTJk8nLyytRZrPZ+Oabbzh79iyDBw/mjjvuYNu2bUyfPr0cIr08JpPJ5YZzwYIFrFmzhg4dOnD33XdjNpuZPHkymZmZxj4zZsxg9erVNGnShJEjR9KoUSNmz57N2rVrr0tMK1eu5JdffuH222/n3nvvpUOHDmzZsoVp06bhcDgA2LFjB1OmTMHLy4vhw4fTp08fDhw4wLfffovdbr/kOTZv3kytWrVIT0/n0KFD1yXuy+XuBv/AgQPMnDmz1LKNGzcyZ84coqKiuPfee2nUqBHz5s1j9erVNzJUEZEypRYGEanQHA4HycnJLFy40O0+69evJzc3lyeeeIIqVaoA4Ofnx/fff8+hQ4eIiIgoq3AvW7Vq1SgqKgKKk6ENGzbQp08fWrduDUB0dDSffvopiYmJDBo0iGPHjrFz5066d+9Oly5dALjtttvw8vJi8eLFNGvWDKvVetXxOBwOVq5cSatWrejZs6dxfB8fH2bMmMGxY8cIDQ1l+fLlBAUFcf/992OxWACIiIjgk08+YdOmTbRq1crtOWw2Gzt37qR///4kJiaSlJRUpp9NtWrV8PX1NR7n5eWRmJjIypUr3b53mzZtIiIigr59+wLF78nJkydZv349HTp0KJO4RURuNLUwiEiFdvz4cebMmUOzZs0YMmRIqfvs3buXiIgII1mA4htuLy8vdu/efdXn/vnnn/noo49ctp0+fZq3336bzZs3A8W102+//Tb79u1j8uTJ/PWvf+Xvf/87ixYtumiNe61atQgODgZg//792O12GjZsaJR7eHhw++23s2fPHgBOnDgBQP369V2OExkZSUFBAQcOHLjq1wnFN89NmzalSZMmLtsDAwMBjJaOjIwMoqOjjWQBim/Eg4KCLvleb926laKiIurVq0fTpk3Zvn07ubm5LvskJCTw9ttvl3ju22+/TUJCgvH4zJkz/Pjjj/ztb3/jb3/7G3PmzGHJkiUlPq/znf+eQ3EysHHjRvr160ebNm1KfU5hYWGJbm0+Pj7k5ORc9LWKiFQkamEQkQrN39+f5557Dj8/P7c3xSdOnKBRo0Yu28xmM9WrV+fkyZNlECXMnDmT1q1b06lTJ1JSUli1ahXVq1cnLi6u1P07d+5s/J2RkYGXlxfVqlVz2adGjRqcOXOG/Px8Ixk6ffq0y03vqVOnXP5/taxWq1GLfr6dO3cCxTfbAFWqVCErK8tln6KiIrKysigsLLzoOTZt2kS9evWoVq0azZo1IyEhgc2bN9O+ffsrirWwsJBvv/2W/Px8+vTpg7e3N4mJiaSlpZV4D8/XpEkTl4QoJiaGVq1a4enp6ZKMnK9t27bMnj2bLVu2EBMTw+HDh0lOTqZp06ZXFLOIyM1MCYOIVGg+Pj74+PhcdB+bzVbq4GYvL69SxzzcCC1btqRr164AREVFsXPnTnbv3u02YThfXl5eqfE7t+Xl5REZGUn16tWZN28enp6ehIWFkZaWxuLFiwHIz8+/jq+m2OHDh1m5ciUxMTFGwtCiRQt+/fVXEhMTadGiBYWFhSxduhSbzXbRQc/Hjx/n2LFjDB8+HChOBKOiokhKSrrihGHr1q2cOHGCxx57jNDQUKD4Pf/kk0+u6Dg1atS45D5NmjTh4MGD/PTTT8a26Oho+vTpc0XnEhG5mSlhEJFKzzkgtzRlNZNNeHi4y2M/P7/Lvom/WPxQ/BosFgv3338/s2bNYvLkyUBxV6C+ffsyffp0PD093R77wuObzZfurXro0CGmTJlCQEAAd911l7G9W7du2O12li1bxpIlSzCbzbRs2ZIGDRqQkZHh9nibNm3CarVSt25dbDYbAA0bNmTu3Lns37+fqKioS8bktH//fqpXr24kC1CcXMXExLB///7LPs7l+OGHHzh06BA9e/YkLCyM9PR0EhISmD59Ovfcc49mShKRSkEJg4hUelartdSWhLy8PPz8/Mokhgtv2E0m0yUTASdvb+9Skwvna3K2NNSoUYMxY8Zw7tw5cnJyqFmzptE9yF0rzKxZs0hOTjYe+/v7G1O5uvPbb78xa9YsatasyX333ecyNsRsNtOzZ0+6devGqVOn8PX1xWq1MmnSJLcxFBUVsXXrVmw2G3//+99LlCclJV1RwpCTk0PVqlVLbC9t27VITU1lz549DBw4kJYtWwIYLT3ff/89u3fvJiYm5rqeU0SkPChhEJFKr2bNmiX68Nvtdk6fPu0ykPh8J0+eZPPmzbRt29bo9+4cpOzhUfzVWdpN/43o+hMYGEheXh7nzp1zuenNzMzE398fT09PCgoK2LFjB+Hh4VSvXt3Y79ixYwDUrl271GN369bNZUDv+YOVS7Nq1SoWLVpEZGQk99xzT4nZgw4cOEBhYSH16tUjKCgIKH7f0tPTadasWanHTElJIScnhwEDBlCzZk2Xsg0bNrBjx44Sr91utxstIRe+576+vqWOTTl37txFX9uVOn36NFCy9ahu3boApKenK2EQkUpBsySJSKUXHR3NgQMHXG4Y9+7dS35+PtHR0aU+58yZMyQmJnL8+HFjW1ZWFh4eHkaNupeXFzk5OS6DeW/E2gG33XYbANu3bze2FRYWkpKSYsRvsVj45ZdfSEpKMvax2+2sW7eO6tWruwyEPl9AQAChoaHGf+72g+Kb90WLFtGoUSPuv//+Uqca3b59O/Hx8caUsFDc3chms9GgQYNSj7tp0yb8/Pxo2bIlkZGRLv+1adMGu93Opk2bgP+1pmRnZxvPv/A9j4yM5PTp06SlpRnbCgoKjBmlrhfnDFEXnt/5uHr16tf1fCIi5UUtDCJS6cXFxbFu3TomT55M165dyc3NZdGiRdSrV69E7bBTWFgYvr6+LFmyBLvdTk5ODuvWraNhw4ZGzXZMTAzr1q1j9uzZtGjRgvT0dFavXn3d+60HBATQrFkzFixYQGFhITVr1mT16tXYbDY6duwIFHcFat26NWvWrMHPz4/AwEDWr1/PoUOHuPfee685prNnz7JgwQICAgJo06aN0XLh5GzViIuLY+PGjcyaNYvmzZtz/PhxFi9eTKNGjUqsvg3FidmePXto165dqTFGRERQvXp1kpKS6NixIzExMSxcuJA5c+bQoUMHsrKyWL58ucuA6iZNmpCYmMgPP/xAjx49sFqtrF69mnPnzuHv739N78P5ateuTcOGDVmwYAG5ubnUqVOH9PR0li9fbpSJiFQGShhEpNKrWrUqDz74IPPnz2fmzJl4e3sTGxvLnXfe6fY5np6ejBw5kgULFvDjjz9isVhKPCc6OppevXqxbt06tm/fTmhoKPfccw9ffvnldX8NAwYMwGq1snLlSvLz86lduzYPPPCAy0w+3bp1w2QysXLlSnJzcwkJCeG+++5z24pyJXbv3k1hYSGnT59m0qRJJcrvuusumjdvTq1atRg5ciRLlixhypQpVKtWjc6dO7tME3u+5ORkHA4HjRs3dnvupk2bsnz5cvbu3Uu9evUYPHgwv/76K99//z2BgYEMHDiQefPmGfubzWbuv/9+5s+fz9y5czGbzTRp0oQqVaoY61VcL8OGDWPFihUkJSWRkJCAv78/zZs3p2vXrpc1eFxEpCIwOS531J2IiEgFkJ6ezokTJ2jYsKFLq8UXX3yBn58f99xzTzlGJyJS8aiFQUREKpX8/HymT59O69atadiwIXa7nd9++42jR4/Ss2fP8g5PRKTCUQuDiIhUOtu3b2fVqlXG2g8hISF06dLlunTPEhG51ShhEBERERERtzQiS0RERERE3FLCICIiIiIibilhEBERERERt5QwiIiIiIiIW0oYRERERETELSUMIiIiIiLilhIGERERERFxSwmDiIiIiIi4pYRBRERERETcUsIgIiIiIiJuKWEQERERERG3lDCIiIiIiIhbShhERERERMQtJQwiIiIiIuKWEgYREREREXFLCYOIiIiIiLilhEFERERERNxSwiAiIiIiIm4pYRAREREREbeUMIiIiIiIiFtKGERERERExC0lDCIiIiIi4pYSBhERERERcUsJg4iIiIiIuKWEQURERERE3FLCICIiIiIibilhEBdr167loYceYu3ateUdilQgTzzxBP369eOJJ54o71BERETkOlPCIAabzcann35Keno6n376KTabrbxDkgpg7969pKamApCamsrevXvLOSIRERG5npQwiGHatGlkZmYCkJmZyfTp08s5IqkIXnjhhYs+FhERkYpNCYMAcPToUaZPn47D4QDA4XAwbdo0jh49Ws6Ryc3syy+/pLCw0GVbYWEhX375ZTlFJCIiItebEgbB4XDw2Wefud3uTCJEzldQUMCMGTNKLZsxYwYFBQVlHJGIiIjcCEoYhNTUVDZu3EhRUZHLdrvdzsaNG43+6SLn+/zzz6+pXERERCoGJQxCeHg4LVu2xGx2vRzMZjOtWrUiPDy8nCKTm9mTTz55TeUiIiJSMShhEEwmE2PHjsVkMl3WdhEAT09Phg0bVmrZiBEj8PT0LOOIRERE5EZQwiAAhIaGMnz4cCM5MJlMjBgxgtq1a5dzZHIze+SRR/Dw8HDZ5uHhwUMPPVQ+AYmIiMh1p4RBDCNGjKBGjRoA1KxZk+HDh5dzRFIRfPjhhxd9LCIiIhWbEgYxWK1WnnnmGWrVqsXTTz+N1Wot75CkAoiOjjbGuYSHhxMdHV3OEYmIiMj1ZHJozkwREREREXFDLQzi4ttvv2XAgAF8++235R2KVCD9+vUz/hMREZHKRQmDGLKyspg6dSp2u52pU6eSlZVV3iFJBfDDDz9c9LGIiIhUbEoYxPDOO+8Yqzo7HA7efffdco5IKoILW6PUOiUiIlK5KGEQADZt2sT27dtdtm3bto1NmzaVU0RSEYwcOfKKtouIiEjFo4RBsNvtvP/++6WWvf/++9jt9jKOSCqCrKwst93WLlYmIiIiFYsSBmH9+vWcOXOm1LIzZ86wfv36Mo5IKoJHHnnkmspFRESkYvC49C5S2cXFxWE2m0ttSTCbzcTFxZVDVHK1HA4HeXl5N/w8Pj4+5OTkXLTcZrPdsPN7e3sbK5OLiIjIjaOEQUhNTXXb7chut5OamkpkZGTZBiVXxeFw8NJLL7Fjx47yDoWTJ08ydOjQG3b82NhYxo0bp6RBRETkBlOXJOHYsWPXVC43F91Ai4iIyPWkFgYhPT39msrl5mEymRg3blyZdElyKq0VYebMmTf8vOqSJCIiUjaUMAg1atS4pnK5uZhMJqxWa5md75VXXuGDDz4wHv/xj38s0/NLxXT+quC//PJLOUYiIiKXoi5JwokTJ66pXG5t7dq1M/729PSkY8eO5RiNVAQff/zxRR+LiMjNRQmDsGXLlmsqF3GaOnVqeYcgFcCCBQsu+lhERG4uZd4ladeuXfz0008cOXKEqlWr0qFDB/r374/FYgFg1qxZ/Prrr3h6ejJw4EA6dOhgPNfhcPDee+/RsWNHunXrVtahV1pHjx69pnIRkcs1aNAgt9tnz55dxtGIiMjlKNMWhv379/PJJ59Qo0YNnnjiCbp168b8+fP58ccfAdi6dSuLFi1i+PDh9OrVi8mTJ7vcrK5fvx6bzUbnzp3LMuxKr3nz5tdULiJyOTIyMigsLCy1rLCwkIyMjDKOSERELkeZtjDMnj2b2rVr89hjj2EymWjcuDEeHh7MmDGD3r17s2PHDho0aEDbtm0BWLlyJbt27SI0NJTCwkJmzZrF0KFDjdYIuT62bdt2TeUiUvGVxYJ/Y8aMuWS5swLpRtHsWiIiV67MEoaCggJSUlLo16+fy5d1q1atmD59unFT6uXlZZRZLBYcDgcACQkJVKtWjVatWpVVyLeM3NzcayoXkYrtZlnwz26339DF/kAL/omIXI0ySxhOnDhBYWEhwcHBLturV6+Op6cnx44dIzo6milTpnD8+HFycnI4cuQI0dHR5Obm8ssvv/Dkk0+WVbilcjgcZGVllek57XY7Z86cuaHnuJyF2w4ePHjDzu/r64vZXLbj7/39/cvkhqEsam3Lm81mK/Xvyqgy105X1tclIiLXrswSBmctdWnzs1utVmw2Gy1btmTnzp289dZbWCwWBg0aRN26dfnpp5+IioqiXr16zJgxg+TkZEJCQrj33nvLbI2Am6UGrrw89dRT5R3CdVVWtYx5eXk3vMb0ZjJq1KjyDuGGmjlzZqVcY6KsF/wrr8X+oHInfSIiN0qZJQzOrkXumEwmTCYT9913HyNGjMBisWA2mzl16hTLli3j1VdfZfny5SQnJ/PEE0+wcuVKJkyYwGuvvXZV8WRmZpKfn39F8RcUFFzVueTmk5+fT1paWpkkDFJ5HD9+HG9v7/IOo8Lr2LEjK1euNB536dKF06dPl19AIiK3qJCQkMvar8wSBh8fH6D0GyibzeZSa+fp6Wn8HR8fT8uWLQkLC2PKlCl06NCBsLAw+vTpw8svv8zJkyepWbPmFcdzNS0TH3/8caXsknQ5rQf/+c9/btj5K3OXpPO76BS1fwAslXRxdWeFQGWsuS0qxLJ6MgDBwcGVsoWhrL344osuCcPVVvyIiEjZKLO7l6CgIMxmM+np6S7bT506RUFBAbVr1y7xnKNHj7JhwwbeeustALKzs6latSqA8f/s7OyrShiuhslkIiAgoEzOdb6y6nZ1MXXr1i3vECqBi7eyVWiVMVEwVOLP7SZQVl2RRETk6pVZwuDp6UlMTAybNm2id+/eRo1yUlISZrOZBg0alHjOzJkz6dq1q3HD7OfnR3Z2NoDRfO3r61s2L0DkKpzfFc+y+rtyjESuh0t1rRQREamMyrQfSP/+/Tl06BDjx49n69atzJ8/v0RS4JSSksLevXvp06ePsa1p06b8+uuvbNmyhZ9++onw8PAya10QEREREbkVlWmH6piYGJ566ini4+P5/PPP8fX1pU+fPgwYMKDEvjNmzKBPnz5G1yOA7t27k5aWxldffUVISAiPPvqoZruQm9r512dR+/vB4nmRveWmVFRgtA7p+0ZERG5FZT4Cs1mzZjRr1uyS+73++usltnl6ejJ69GhGjx59I0ITucEq8c1mZR70XJk/NxERkctQSadsEbn5OGfaEREREalIynYuSxERERERqVDUwiByA3l7e1f6aSNtNpuxwvP3339fqdcp0KJtIiJyK1LCIFgsFoqKii5aLlfHZDJV6hvoC1mt1lvq9YqIiNwK1CVJRERERETcUsIgDB8+/JrKRURERKTyUpckYeXKlZcs11S2ImXH4XCQl5dX3mHcMDabrdS/Kytvb2+t4SEiFZoSBiEsLIzU1NSLlotI2cnLy2Po0KHlHUaZcA6Yr8xmzpypsT0iUqGpS5LQrVu3ayoXcXr22WfLOwQRERG5ztTCIJw+ffqayuXWtn//fuPvI0eOsHfvXqKjo8sxosrlvpq342GqfHU7jv+/Onhl7apT6LDz35O7yzsMEZHrQgmD0KdPHz7//POLlkvFUdb931955RWXxy+88ALTpk274ee9VfqFO8o7gBuksn92lfVzE5FbkxIGYeHChZcsHzBgQBlFI9fC4XDw0ksvsWPHjnKLobCwsEz638fGxjJu3LhKeePprH0H+F611BXe+Z+niEhFpIRB6NOnD5999tlFy6XiqIw30CJycyrrFs3y6Mp2q7RmilyMEgbh6NGjlyyPiIgoo2jkWphMJsaNG1cmP+Djx49nwYIFbst79+7NE088ccPOX5l/xM9/XaNq3o5nJRzDUNkVOOxG61BlvU5vhhbNslCZWzNFLpcSBqFOnTr4+vpy5syZEmV+fn7UqVOnHKKSq2UymcpkCscxY8ZcNGEYM2aMppK8DjxNZiUMctPSTbTIrUEJg3D48OFSkwWA7OxsDh8+rBYGKeG11167ZPnFurqJSMVWli2aULzIn3Pdju+//77MKiQqc2umyOVSwiCEh4fTsmVLNm3a5DI4z2Qy0bJlS8LDw8sxOrlZ3X777Rw4cOCi5SJSuZVVi+aFrFarWjBFypASBsFkMjF27FieeOIJioqKjO1ms5mxY8eqZkVK9cwzz7Bo0aKLlsu1K3TYyzuEG+JWWIdBRKSyUMIgAISGhjJ8+HCmTp2Kw+HAZDIxYsQIateuXd6hidzStPiXiIiUN42kE8OIESOoUaMGADVr1mT48OHlHJHczC622N/llIuIiEjFYHJoRRk5z9q1a/nPf/7DU089Rdu2bcs7HLmJ5ebmMmzYMLflM2bMwMfHpwwjqjzKem77slZeg1fLiwbNXh82m81YFHLmzJmV/roRuZmoS5KIXJXp06dfsnz06NFlFE3lUl4DScuDBq+KiNz81CVJDDabjU8//ZT09HQ+/fRTbDZbeYckNzFnDfHVlouIiEjFoIRBDNOmTSMzMxOAzMzMS9Ygy63Nw8ODMWPGlFr26KOP4uGhBkwREZHKQAmDAHD06FGmT59uTHXocDiYNm0aR48eLefI5GY2fPjwEuMUqlSpYvQzFhERkYpPCYPgcDhKXZHXuV3j4uViPvroI5fHH374YfkEIiIiIjeEEgYhNTWVjRs3uizaBmC329m4cSOpqanlFJlUBPn5+Rd9LCIiIhWbOhkL4eHhtGzZks2bN2O3/291UrPZTIsWLQgPDy/H6ORm98ILL5R4PHv27HKKRq5WWU7lev6ECmU9uYKmOBURuXJKGASTycTYsWN54oknSt2uH1dx58svv6SwsNBlW2FhIV9++SWPPPJIOUUlV8rhcPDSSy+xY8eOMj93Wc+mFRsby7hx4/S9JiJyBZQwCAChoaEMHz6cqVOn4nA4MJlMjBgxgtq1a5d3aHKTKigoYMaMGaWWzZgxg9GjR+Pp6VnGUcnV0g10xVbZF/uD8m2ZKg9qDZObiVZ6FoPNZuOxxx7j5MmTBAYGMmHCBC2oJG7961//Yt68eW7L+/bty7PPPluGEcm1KOsbTudPT1nfEFXWm7DzV0GWykGrWcvNRC0MYrBarTzzzDP85z//4amnntIXlVzUk08+edGE4cknnyzDaORa3UqrS4uIyJVRwiAu2rZtS9u2bcs7DKkAPD09GTZsWKndkkaMGKHuSCLlxL9va0wWS3mHcUOUV8tUWXEUFZE1b315hyFSghIGEblqjzzyCLNmzXIZ+Ozh4cFDDz1UfkGJ3OJMFgsmj8qZMFTONEHk5qd1GETkmly4UJsWbhMREalclDCIyDWJjo421uoIDw8nOjq6nCMSERGR60ldkkTkmo0fP768Q5AKpl+/fsbfv/zySzlGIiIil6IWBhERKVOffvrpRR+LiMjNRQmDiIiUqQtbFNTCICJyc1PCICIiZeauu+66ou0iIlL+lDCIiEiZOHHiBAUFBaWWFRQUcOLEiTKOSERELocSBhERKRNjxoy5pnIRESkfShhERKRMTJo06ZrKRUSkfGhaVRERKROBgYF4enqW2i3Jy8uLwMDAcoiq8nEUFpV3CHKV9NnJzeq6JgwzZsxg7969vPLKKy7bCwoKmDNnDmvXruXs2bOEhITQu3dvWrdubexTVFTEDz/8wIYNG/D19WXEiBE0btzYKM/Pz+eNN97g/vvvp0mTJtczbBERKSOzZs1yWYPB6eeffy77YCoRh8Nh/J01f305RiLXy/mfqUh5u25dkhYtWsTChQtLLZs4cSILFy6kbdu2PP3007Ru3ZrJkyezdOlSY58VK1awadMmHnzwQVq2bMkXX3zBmTNnjPIlS5ZQq1YtJQsiIhXchQlDaQmEiIjcPK65heHEiRNMnz6dLVu24OPjU6L80KFDbN68mUGDBtG/f38AGjZsiLe3NzNnzqRdu3ZUqVKFnTt30qpVK5o3b06zZs1ISEjgwIEDNGnShLNnz7Jw4UKee+65aw1XRETK2TPPPOOy9sIzzzxTjtFUDiaTyfjbv09rTB6WcoxGrpajsMhoITr/MxUpb9ecMEybNo2MjAxeeOEF4uPjKSpy7X+XlpYGUKJlICYmhry8PFJSUmjevDlQ3IcViv+RWCwW7HY7AHPnzqVhw4ZERUVda7giInIT0GJtN47Jw6KEQUSuq2tOGO666y5CQ0PdZsLVqlUD4OTJk0RERBjbMzIyXP5/2223sXr1anr06MHBgwfJy8ujbt26nDhxgpUrV/KnP/3pWkMVEREREZErdM0JQ1hY2EXLY2JiCAwMZOrUqVitViIjIzl8+DAzZ87EZDKRn58PQPfu3dm3bx+vv/46Pj4+3H///QQEBDBx4kTatWtHQEAAkydPZvfu3dStW5d7772XqlWrXmv4IiIiIiJyEZedMNjt9hIj9i2WSzd5enh48Pzzz/PNN9/w0UcfAeDv788999zDF198YXRD8vLy4qmnniI/Px9PT09MJhMHDx5k69atvPPOO8yePZu0tDTGjh3L7Nmz+e9//8vjjz9+BS/VVWZmppGsiIiIVGR5eXnlHYJcZ8ePH8fb27u8w5BKLiQk5LL2u+yEYe7cucyZM8dl2/jx4y/rubVq1eLll18mOzubc+fOUatWLTIzM3E4HFSpUsVlX2cCAcXTtPbs2RM/Pz+SkpIYOnQoISEh9OrViw8++AC73Y7ZfHUTPdWoUeOqniciInKzsdlsxt+Ooso7l7+z4rKyDgg+/7MLDg7GarWWYzQi/3PZCUPnzp2vakrT/Px8Nm7cSHR0NEFBQfj5+QHFsycBLuMazvfbb79x7Ngxxo4dC0B2drbRBalKlSrY7XbOnj1rHE9EREQga57WYRCR6+uyE4aAgAACAgKu/AQeHvzwww907tyZYcOGAcWLtC1btoygoKBSx0DY7XZ++ukn+vfvb2TXfn5+ZGdnA5CVlYXZbNYYBhERERGRG+y6rvRcGrPZTPfu3Vm0aBE1atQgJCSEhIQE9u7dy1NPPVVql6K1a9eSn59P586djW1NmzZl4cKFVKtWjYULF9K0adPLGkMhIiJS2TnXNqrMbDYbo0aNAuD777+v9N11NH5BbiY3PGEAGDBgACaTiYULF3Lu3Dnq1KnDs88+S2xsbIl9CwoKmDVrFsOHD3dJCAYNGsS3337LF198QVRUlPGlISIicqszmUyV/gb6fFar9ZZ6vSLlzeS4cOojERERkZuMzWZj6NChAMycOVMJg0gZurophkRERERE5JaghEFERERERNxSwiAiIiIiIm4pYRAREREREbeUMIiIiIiIiFtKGERERERExC0lDCIiIiIi4pYSBhERERERcUsJg4iIiIiIuKWEQURERERE3FLCICIiIiIibilhEBERERERt5QwiIiIiIiIW0oYRERERETELSUMIiIiIiLilhIGERERERFxSwmDiIiIiIi4pYRBRERERETcUsIgIiIiIiJuKWEQERERERG3lDCIiIiIiIhbShhERERERMQtJQwiIiIiIuKWR3kHICIiIhWTw+EgLy+vTM5ls9lK/ftG8/b2xmQyldn5RG5GJofD4SjvIERERKRicTgcvPTSS+zYsaO8Q7mhYmNjGTdunJIGuaWpS5KIiIhcFd1Ei9wa1MIgIiIiV6UsuyQ5zwdlm6ioS5KIEgYREREREbkIdUkSERERERG3lDCIiIiIiIhbShhERERERMQtJQwiIiIiIuKWEgYREREREXFLCYOIiIiIiLilhEFERERERNxSwiAiIiIiIm4pYRAREREREbeUMIiIiIiIiFtKGERERERExC0lDCIiIiIi4pYSBhERERERcUsJg4iIiIiIuKWEQURERERE3PIo7wBERERE5NbgcDjIy8sr83MCmEymMjunt7d3mZ7vRrvuCcPJkyf5y1/+Qvfu3Rk8eLBL2fLly1myZAmZmZkEBQXRt29f2rRpY5Tn5uby7bffsn37doKCgrjvvvuIiooyyrOysnjzzTd55ZVXCAsLu96hi4iIiMgN4nA4eOmll9ixY0d5h3LDxcbGMm7cuEqTNFzXLkl2u52vv/4am81WomzJkiVMmTKFuLg4nnrqKaKiovjyyy/ZtGmTsc/cuXM5fPgwjz32GHXr1mXChAkUFhYa5fHx8bRo0ULJgoiIiEgFVFluoG8117WFYfHixWRkZJTYnp+fz5w5c+jevTuDBg0CoFGjRpw9e5ZZs2bRokULAHbu3EmXLl1o3LgxUVFRJCYmkp6eTmhoKGlpaaxbt4633nrreoYsIiIiImXAZDIxbty4Mu2SZLPZGDVqFADff/89Vqu1TM6rLkluHDlyhNmzZzN27Fg+/vhjl7L9+/eTk5NDy5YtXba3atWKr776ioyMDIKCggDw9PQsDsyjODS73Q7AzJkz6dq1KzVq1LheIYuIiIhIGTKZTGV2034hq9Vabueu6K5Ll6TCwkK++uorOnToQGxsbInytLQ0AIKDg12216pVy6X8tttuIykpibNnz7Jy5Up8fX0JDg5mz5497N69mz59+lyPcEVERERE5DJdlxaG2bNnk5eXx7Bhw0otz83NBcDHx8dluzPLc5YPHDiQCRMm8OKLL+Lv78/DDz+Mp6cnM2fOpE+fPjgcDsaPH8+RI0do2LAhw4YNw8vL63q8BBERERERKcUVJQx2u92Ymspp//79LF68mN///vd4e3u7fd7FOPt4+fr68uKLL5KXl2cca+PGjWRmZtKjRw+++uorTCYTY8eOZfLkycTHx7tNUi4lMzOT/Pz8q3quiIiIiNz8zh8vcfz4cbf3qreqkJCQy9rvihKGuXPnMmfOHJdtgYGBdOvWjaioKIqKilzKioqKsFgsVKlSBSgeeOIco+B8DCVbHpwfZlFRET///DN33XUXZrOZzZs38/LLLxMSEkK3bt346aefrjph0FgIERERkcrt/Jk7g4ODNYbhKl1RwtC5c2eaNGliPE5JSWHGjBksWbKEJUuWuOw7b9485s2bx/jx442xC+np6fj6+hr7pKenA+6zm8TERDw8PGjbti1nzpzBbrdTtWpVAKpWrUp2dvaVhC8iIiIiIlfoihKGgIAAAgICjMchISHExMSU2O///u//6NixI126dAEgOjoab29vNm7cSHR0tLFfUlISwcHBBAYGljiGzWZjzpw5jB49GrPZTLVq1TCbzWRnZxMcHExWVhZ+fn5XEr6IiIiIiFyhaxr0bLVaiYyMLLXMz8/PKPPy8qJ3797Ex8djsViIiYlh48aNbNmyhccff7zU5y9atIiQkBCjRcNisdCoUSPi4+O58847WbRoEc2bN7+W8EVERERE5BKu60rPF9OvXz8GDx7Mhg0b+M9//sP+/ft55JFHSqzNAJCdnc3ixYsZOnSoy/ZRo0bhcDj44osvCAkJYeDAgWUVvoiIiIjILcnkuHDaIxERERGRSsBmsxkV0DNnztSg56tUZi0MIiIiIiJS8ShhEBERERERt5QwiIiIiIiIW0oYRERERETELSUMIiIiIiLilhIGERERERFxSwmDiIiIiIi4pYRBRERERETcUsIgIiIiIiJueZR3ACIiIiJS9hwOB3l5eeUdxg1ls9lK/bsy8vb2xmQy3ZBjmxwOh+OGHFlEREREblo2m42hQ4eWdxhyncycOROr1XpDjq0uSSIiIiIi4pa6JImIiIjc4u6sfS8WU+W8LXR2prlR3XXKU5GjkIXHfrjh56mcV4aIiIiIXDaHA6h899NA5UwUnMpqYIESBhEREZFb0PnDWBel3fhaarmxbuSwZI1hEBERERERt9TCICIiInILOr+rTq+Qe/Ew67awoim0FxqtQzey65WuDBEREZFbnIfZAw+zZ3mHITcpdUkSERERERG3lDCIiIiIiIhbShhERERERMQtJQwiIiIiIuKWEgYREREREXFLCYOIiIiIiLilhEFERERERNzSOgwiIiIit7giRyHYyzuKG8PhcAA3dmGz8lLkKCyT8yhhEBEREbnFLTz2Q3mHIDcxdUkSERERERG3TA5nO42IiIiI3DIcDgd5eXnlHcYNZbPZGDVqFADff/89Vqu1nCO6cby9vW9Ytyt1SRIRERG5BZlMpkp9A30hq9V6S73e60ldkkRERERExC0lDCIiIiIi4pYSBhERERERcUsJg4iIiIiIuKWEQURERERE3FLCICIiIiIibilhEBERERERt5QwiIiIiIiIW0oYRERERETELSUMIiIiIiLilhIGERERERFxSwmDiIiIiIi4pYRBRERERETcUsIgIiIiIiJueVyPgxQUFDBnzhzWrl3L2bNnCQ4Opm/fvsTFxbnst3z5cpYsWUJmZiZBQUH07duXNm3aGOW5ubl8++23bN++naCgIO677z6ioqKM8qysLN58801eeeUVwsLCrkfoIiIiIiJyEdelheGrr74iISGBvn378vTTT1OnTh0mTpzIb7/9ZuyzZMkSpkyZQlxcHE899RRRUVF8+eWXbNq0ydhn7ty5HD58mMcee4y6desyYcIECgsLjfL4+HhatGihZEFEREREpIxccwvD7t272bhxI08//TRNmzYFoEGDBmRkZLB161YaN25Mfn4+c+bMoXv37gwaNAiARo0acfbsWWbNmkWLFi0A2LlzJ126dKFx48ZERUWRmJhIeno6oaGhpKWlsW7dOt56661rDVlERERERC7TNbcwbNy4kZo1axrJAoDJZOKVV15h5MiRAOzfv5+cnBxatmzp8txWrVpx7NgxMjIyjG2enp4AeHgU5zJ2ux2AmTNn0rVrV2rUqHGtIYuIiIiIyGW65haG1NRUQkNDWb9+PXPnzuX48eMEBQUxePBgI0FIS0sDIDg42OW5tWrVMsqDgoK47bbbSEpKIi4ujnXr1uHr60twcDB79uxh9+7dPPjgg9caroiIiIiUE4fDQV5eXpmdz2azlfr3jebt7Y3JZCqz891o15wwnD17lvT0dA4fPsxdd92Fv78/y5cvZ8KECTz99NM0adKE3NxcAHx8fFyea7VaAYzygQMHMmHCBF588UX8/f15+OGH8fT0ZObMmfTp0weHw8H48eM5cuQIDRs2ZNiwYXh5eV3rSxARERGRG8zhcPDSSy+xY8eOcjn/qFGjyuxcsbGxjBs3rtIkDVeUMNjtdhwOh8u2wsJCsrKyeP3114mMjASKxzC88847zJkzhyZNmhjditxxvpm+vr68+OKL5OXl4e3tDRR3ecrMzKRHjx589dVXmEwmxo4dy+TJk4mPj2fYsGFX8hIMmZmZ5OfnX9VzRUREROTKOBwOCgoKyjuMMpGfn09aWtpNnzCEhIRc1n5XlDDMnTuXOXPmuGwLDw/H19fXSBYAzGYzDRo0YPny5QBUqVIFKG4Kco5RcD6Gki0PzmShqKiIn3/+mbvuuguz2czmzZt5+eWXCQkJoVu3bvz0009XnTBoLISIiIhI2fr444/LtEsSYFR2l+XN+y3dJalz5840adLEZdvChQs5ceIEDofD5Y0pKioykgPn2IX09HR8fX2NfdLT0wH32U1iYiIeHh60bduWM2fOYLfbqVq1KgBVq1YlOzv7SsIXERERkXJkMpmMLullpV+/fsbfv/zyS5meu7K4olmSAgICiIyMdPmvcePG5Obmuqy5UFRUxPbt26lXrx4A0dHReHt7s3HjRpfjJSUlERwcTGBgYIlz2Ww25syZw5AhQzCbzVSrVg2z2WwkCVlZWfj5+V3xCxYRERGRW8P5yUJpj+XyXPOg57Zt27Js2TImTZrEkCFDqF69OsuWLSMzM5NHH30UAC8vL3r37k18fDwWi4WYmBg2btzIli1bePzxx0s97qJFiwgJCTFaNCwWC40aNSI+Pp4777yTRYsW0bx582sNX0RERERELsLkuHAU81XIycnh559/ZuPGjdhsNiIiIhgyZAi33367sY/D4WDBggWsWLGCrKwsatWqRb9+/WjdunWJ42VnZ/PGG2/wu9/9jqioKGN7ZmYmkyZN4tChQzRq1IgHHnigxPgHEREREZGLtSaoa9KVuS4Jg4iIiIjIzeJyuh4pabh817zSs4iIiIiIVF5KGERERERExC0lDCIiIiJSqVyqu5G6I10ZJQwiIiIiUum4SwqULFw5JQwiIiIiIuKWEgYRERERqZQubE1Q68LV0bSqIiIiIiLilloYRERERETELSUMIiIiIiLilhIGERERERFxSwmDiIiIiIi4pYRBRERERETcUsIgIiIiIiJuKWEQERERERG3lDCIiIiIiIhbShhERERERMQtJQwiIiIiIuKWEgYREREREXFLCYOIiIiIiLilhEFERERERNxSwiAiIiIiIm4pYRAREREREbeUMIiIiIiIiFtKGERERERExC0lDCIiIiIi4pYShluM3W4v7xCkgtE1IyJlRd83cjWc143D4SjnSCovJQy3GLP5fx+5/mHJ5XBeM4WFheUciVQkuvGTq+H8vsnMzAT0OyWXx3nd2Gy2co6k8lLCcIspLCxk2rRpZGdnYzKZyjscuck5HA5OnDjBRx99xK5du8o7HKlAzGYzBQUF7N69Wzd94uJi14Pdbufnn3/mH//4B4B+p+Sy5ObmMmHCBGbMmFHeoVRaShgqKbvdXmoN3759+1i2bJlu/sRw/nVy4TVjMpkwm83s3LkTDw+PUvcRceezzz7jp59+wmQy6boRAPLz841roaCgAHBNIMxmM3l5efj6+pKVlVUuMcrNx3mtABQVFQGu1423tzepqal4e3uXKJPrQwlDJZKSksLixYuNx+d3P3J+QVevXp2qVauqv58A8MsvvzB9+nTy8/MB12sGiq8bi8VCnTp12LZtW6n7yK3pyJEjxvfHhcmA83FUVBRnzpyhsLBQ142wd+9e3n77bRYuXAiAp6cn8L+bQed1ExERwbFjx4xKCrm1rV69mvfff599+/YBYLFYgP+1PhUVFWE2m4mJiTEqQ9Uydf3pG7ySKCgo4Oeff2b+/Pns378fs9lMRkYGP/30k/GPCSAoKIiAgAD27NkDKGG4lRUVFZGVlcXy5cs5dOgQAMnJyXz00UckJycDxcmBj48PFouFvLw8HA6Hrhlhx44dvPPOO6xZswYovk6ysrJIT083HkNxrZ/FYuHEiRPlFqvcPAICAvDx8WHz5s2cPHmSvLw8/vrXvzJu3DiOHj1qXDd16tTBbDazd+/eco5YbgY1a9bkyJEjbNmyhby8PI4ePcrbb7/Njz/+CBQnEA6Hg4CAAKMbrVx/ShgqMLvdztdff01ycjKenp7ceeedWK1Wli1bBsDGjRtZsGABn332mZF15+XlUbt2bU6cOEF+fr5q/W5hFouFXr16ERQUxMKFCyksLMRisXD8+HEmTZrEli1bsNlseHl5ERYWxr59+zCZTKq5EYKCgoiNjWXBggXk5uaSlZXFm2++yX/+8x9+++03Y7/bb7+dtLQ0I8lUsnnrKigooGbNmnTp0oVTp06xYsUKvL29ufPOOzl16hRfffWVUVFhsVjw9vbm7Nmz5Ry1lCeHw0FBQQExMTHExcWxYsUKUlNT8fX1pU6dOixevJipU6eSlpaGyWQiMDCQzMxMowVCri/dLVZgx48fp7Cw0GjWbd68Obfffjs7d+5k69at9O7dm2eeeca4Ady7dy/e3t4EBASQnZ2Np6enfsBvQed3HwkMDKRXr15s2bKFjRs30rhxY5577jliYmL4+uuvmT9/PlBc45efn2/UIMutLTAwkK5du3LixAmWLl2Kv78/jz76KD4+PkycOJGtW7eSn59vtGju2LEDUDeBW5Hz+8b5O9WwYUMiIiLYsGEDe/fupXXr1jz88MNUqVKFiRMnsn79ekJDQ6lWrRpHjx51OYbcOux2OyaTybhuRo4cic1mY9myZVgsFh555BGGDBnChg0b+PLLL8nKyqJevXqYzWYOHjwIqILielPCUIHVrl2bRx99lNjYWGMKui5dulClShUWL16MzWajcePGPPDAA9SqVYt///vfLF++nBYtWpCRkUFmZiYmk0n/qCq5xYsXs2HDBqD4S9jZqrR06VJOnDhBq1atiImJYcGCBZw6dYratWszduxYmjdvzqJFi4iPjze+vPXDfetxdkO7cNxTdHQ07dq1Y+HChWRkZNCkSRPGjBnDbbfdxjfffMPcuXPx8fHBarUagxTl1uP8vlm/fj1PPvkkKSkp3HHHHdjtdpYuXQpAbGwsjz32GLGxsUybNo1p06bRqFEjUlNTcTgcagm/BZ3/OzV27FhOnz7NXXfdRVJSktES1bt3b0aOHElOTg4TJkwgOTmZyMhIo2JLFRTXl/4VVnAOh4MlS5bwhz/8gZycHKKiomjevDlHjx5lxYoVANSvX5/nn3+e+vXrM2fOHObMmUNoaCiHDx8G9I+qMktLSyMhIYHZs2e7JAuzZs1i1qxZ+Pv7Y7Va6dOnD8eOHWPt2rXGAOjhw4dz3333sWzZMlJSUkhLSzNmLVHiULnl5uYyd+5csrKyjG5oZrOZ/Px8Y57zatWq0b59e6xWK/Hx8UBxV6XHH3+c9u3bs2DBAqM20DlGRpUTt54DBw7w448/sm/fPgYOHEh4eDgNGzYkNjaWPXv2sG7dOgB8fX0ZM2YM3bt3Z+XKlaxYsQIvLy9sNpuum1vQoUOHmDt3LsnJyQwdOhRvb2969+6Nv78/q1at4tixYwC0bNmSZ599FoAVK1awbds24/dJv1PXlxKGCqS0i99kMhk3fc4BQF27diUoKIh169aRkZEBFPcJHTlyJAMGDGD79u0cOHDgoseVyiEkJIQePXpw7tw55s2bBxSvxZGSkkKzZs3w9PTEZDJRr1492rVrx5IlS4zaGR8fHzp06MDw4cONGmLndaMav8pt5cqVxMfHk5CQYGybNWsW77zzDh999BG//PILAHXr1qVLly6sW7fOGCdltVoZPHgw9913H0uWLCErK4u0tDRycnJUOVHJXdgKVVRUxPbt21m8eDHr168nLi6OiIgIALp3706VKlX49ddfyc3NBYqvnX79+jF69GgsFgs7d+7UuKlbwIX3IFlZWcyYMYMFCxbg4eFBly5dqFGjBgAjRoxg9+7dbNmyxXheSEgIDzzwAHFxcQBs3boV0O/U9aZ3swJwdglwXvzbt28nOTmZI0eOAMV9Qjt06MCqVatITU2levXqtG3bljNnzhgDoKG4Bqdr1648+OCD1KhRwxicqH9UlZPzy7Rly5ZER0ezfPlyTp48iYeHB8ePHyc2NtbY18vLix49emC321m+fLnRygDQrl07HnzwQQICAsjJyXE5tlQex48fN1qQOnbsSKNGjdi0aRO7d+9m2rRpJCUl0aRJEywWC7NnzzZaD9q0aUOdOnWYNWuWkVhaLBY6d+7MiBEjCA4O5uzZs5phqxJzfh84f0ucN/gWi4XmzZvTuHFjPDw88PLyMvavU6cOrVq1Ii0tzWgNd14frVq14t5778XPz08zJVVi5183538/+Pv707ZtW2P8gvO6cTgctGrViujoaBITE10qPkNCQhg0aBAdOnTA4XBowPwNoDvFm9T5N2TOGpb9+/fz7rvvMn78eCZOnMgHH3zA/v37qVq1Kq1atSIoKIgpU6YA0KlTJ+rWrcuWLVuMKVQLCwsBaN++PeHh4Rq/UAmdf904f7wDAgJo3bo1JpOJ+fPnk5GRwdmzZ6ldu7bL51+7dm3uuOMOVq1aZcx37Tymn58fTZs2NX68lWRWLmfPnuW7775j+/btQHHrUseOHcnPzyc+Pp59+/YxZswYRowYwfPPP0+LFi1YtGgRqampBAUFcccdd7Bv3z5jmtXzk9Xhw4eTlZWl1eUrMef3wapVq5gwYQLff/+9UVkVGhpK27ZtycrKIikpyeV5Xbt2pVatWqxfv57jx49jMpmM36no6GjOnDmDj49P2b4YKTPO62bFihV8+OGHfP3116xcuRKAFi1a0KRJE7Zv325MFe+8NkaNGkVGRgYbNmwwukg6y1q0aMGhQ4eMBdzk+tGv/k3EZrNx4MABTp065VLDC8VTpH7xxReEhYXx3HPP8dBDD1GjRg2mT5+O3W4nKiqKzp07s2/fPtavX2/U8JnNZhYtWgT8b5YKKO6jfPLkSf2AVyLnj1FIT08nKyvLWBCpWbNmNG7cmA0bNvDtt98CMHHiRCZNmmR0QbJYLHTo0IHg4GBmzZrFmTNnjO3Z2dkcPnyY6tWrG+eSysPDwwOLxcKSJUs4evQoS5cupWXLlsTExJCSkkK1atWIiooCitdWGDhwINnZ2axatYr8/HyaNGlC06ZNmTdvHmfPni2xaKS/v78xMYNUXKdOneLkyZMltmdnZ/Pxxx/z448/YrFY2L9/P9OmTWPixIlkZGTQokULmjdvzoIFC8jKysJsNmO32/H19aVTp06cOHHC6Obm4eHBuXPnjG4lF/4WSuWRmprKO++8w6xZs7BarezevZvJkyezf/9+fHx8iIuLIzAwkDlz5gDF9zBFRUWEhYXRsWNHli5daiwo6rxuduzY4dIaLtePEoabRHx8PO+88w5fffUVb7zxBp988glbtmwxsua1a9cSERHBqFGjiI6Opm7dulSvXp19+/axatUqzGYzTZs2pV69esyYMQOAJk2aEBERwd69e41Bhzabjfj4eA4cOEB0dLRaGCoRs9lMeno6//znP/n444/561//ymeffcaOHTvw8vKiXbt2BAYGsmfPHlq3bk3z5s3ZunUr77//PtOnT+f48eMEBATQo0cPzp49a1x7mZmZ/Prrr+zbt4/atWsb55LKw2q10r9/f44cOcI777zD5s2bKSoqolu3bgQEBJCenu6yGm9oaCg9e/Zk1apV7Nmzh2rVqtGtWzdOnDhhTMULcPLkSbZu3cq5c+cICgoqr5cn14HdbmfGjBkkJiaWKNuyZQsnTpzg8ccf5/777+ePf/wjzz77LJs2bWL69OlYLBa6d+9OYWGhy/UB0LZtW1q0aEGzZs2MbRkZGUyZMoXg4GBCQ0Nv+GuTsldUVER8fDyhoaG88sorjB07loceegir1cr06dMBaNy4Mc2bN2fPnj2sX78e+F9l1d13301gYCABAQFA8b3N9u3bWbp0KREREfj6+pbL66rM9KtfztatW8dLL73E6tWr6datG4MGDWLIkCHk5OQwceJEFixYQFFREQcPHiQqKgpvb29OnTrFwoULgeJBh/Hx8Zw5c4aQkBA6d+7M2bNnjaRh8ODB/PGPfzQGmlmtVnJycqhbty6dOnVSC0MlcujQIf7973/j6enJsGHD6NKlC0VFRYwfP56tW7dy++2307RpUwBiYmIYNmwYL7zwAu3atSMhIYE///nPLFq0iLi4ON555x2jNcHf3x8/Pz+GDRtGv379yvMlynVit9tdWomKiopYt24dDocDLy8v7rrrLiwWC5GRkbRt25acnBx+/fVXl2P07NkTX19fli9fTnZ2NvXq1ePee++lc+fOxj4HDx5k7dq1NGrUCD8/P1VQVHC+vr4sXbqU1NRUli1bZrQabdiwgapVq9KgQQOjK8iePXsoKioiJCSEvLw8oqKi6NSpE4mJiRw6dMhoZTCbzTz44IO0bNnSOE9kZCSjR4/mtddew8/Pr1xeq1wf7lqjd+3axa5du2jatCnBwcHk5eVx+PBhAgMDjYpQgLi4OGrXrs2CBQuw2+14enpSUFCAj48P7777LtHR0UDxvU1ERAQjRozg8ccfV6XWDWBy6Bu8XGRkZPDtt99y4MAB7rzzTjp27EhAQIBxkWdlZfHVV1+xa9cu3njjDfbv30/Tpk3Jysri888/x8vLi/vuu4+cnBw+++wz+vXrx6BBgzhz5gyTJk0iKyuLP/zhD5jNZpf5881mM0VFRVoJsQJzOBwuiZ7zcXx8PKtXr+bZZ58lJCQEk8lEfn4+zz33HLfddhtPPvkkubm5fPPNN5w9e5Y//OEPWK1WAFJSUti3b5+xjgcU30Q6r58LzykV1/ld13JycjCbzVitVjIyMjhx4gRffvklzZo1Y/jw4VitVjIzMxk/fjwOh4Mnn3ySGjVqGMdITEzku+++44knnqBFixYlzpGbm0tmZiZhYWHl9XLlGp3/25GVlcVf/vIXbDYbgYGBPP744wQFBfHee+9Rt25dxowZw+rVq5k+fTpWq5WhQ4dStWpVzpw5Q5s2bTh8+DAfffQRISEhvPTSSyXOc34SIRXTmTNn8PX1paioyJiOGYq7QVutVuN3ZP/+/UyePJnXXnsNT09PfvjhB1JSUmjRogUpKSkcP36cv/3tb5jNZhYvXsyPP/5Inz59GDx4sMv5nGsE6ffpxvMo7wBuVUlJSezevZtBgwbRr18/lxuyoqIi/P396d+/PydPnuTbb7/l9ddfp7CwkI8++oiIiAieeOIJAGMQ6sKFC/H19aV79+6MHj3aaKZzOv8LWMlCxePM60tbxMhkMlFQUMDOnTsJDQ01ug0lJyfz448/EhAQQJ8+fXA4HAQHB9OuXTvi4+OJj49n+PDhQHGLQ0xMjHEOk8nkcp3oy7jic96IOSsNpk6dyo4dO6hSpQqdO3emU6dOBAUF0aNHD+bOnUurVq1o0KABNWrUoF27dsybN49ly5YxbNgw4xps3749Xl5eLsnC+deoj4+PkoUKyvmd4/wsjx07Rnx8POfOnQOgb9++1K5dG7PZTHh4OL/99ht//vOfOXXqFHfeeSfdunWjWrVqTJw4kXPnztGmTRuCg4O55557Su0u4jyPkoWK6dy5c3zyySc0b96cvn37Gr8fe/fuNWZQc3ZNa9CgAVFRUTz11FM4HA7+7//+j+zsbB5++GFiYmKIj49nz549zJs3j/79+xMXF0dmZibNmzcvcV5dL2VH73Q56dGjBxEREWzbto1z5865tAI4/6HVq1ePTp06cfDgQTZu3Mjhw4c5duwYvXr1Aor/gW7YsIHGjRsTFRXFqVOnsNvtRrKg1VUrNuesIs6aGmdtzenTp0lMTGT79u2cPn3aaKb19vYmNzeXtLQ0/vnPf/L5558TGxvLq6++Sl5eHnPnzgWKB0DXrl2bnTt3GjNMOKklofJy/rBmZmYyceJE9u/fT7NmzTCZTPz3v/9l9erVOBwOOnToQEhICAsWLDCmJuzUqRORkZEkJyeze/duoPhacU6r6nwMSi4rC+d3jt1uZ9asWbz77rv4+/vz/PPPExkZyYoVK4zro2vXrhQWFmI2m3n55ZcZMGAAVapU4fjx4+zfv9+oxPD09KR169Y0aNCgPF+a3ACZmZkcPHjQ+KwBli9fzqeffoqfnx/16tUjPz+fyZMnM3XqVKB4ocf169dz7tw5fv/73xuVVs6B9fHx8SQmJhIQEMCIESOIjIws89cl/6MWhnLi5eXFgAEDmDx5MsuWLWPAgAEumbKzli42NpaEhATWr1/PnXfeCRSvw1BQUMDevXvZsmULAwcOpE2bNiUybbUkVGwTJ07k1KlTNG3a1PgsZ8+ezcKFCwkICCAzM5MaNWrQvn17+vfvT6NGjZg5cyZvvfUWTZs25dVXXyUyMpKioiI2btzIkSNHsNls+Pv7M2rUKEJCQkqcUzd7ldepU6eYPXs2eXl5ZGdn88gjjxASEkJ+fj4fffQRS5YsISoqipCQEHr37s2kSZPYvn07rVq1wtPTky5duvCf//yHXbt2cfvtt5e4VnTtVD6//vorqampnDx5klGjRtGiRQt8fHzIy8tj/PjxJCUl0b17dyIjI+ncuTPLli1j27ZtFBUVkZ+fT0JCAmazmbZt25b3S5EbzLn4Xs2aNQEoKChg9erVNG/enOHDhxtdXWfPns0vv/xCo0aNaN26NQcOHKCoqIhatWpRUFDAnj17OHz4MI899hiAS6uCuquVLyUM5ahx48ZERESwYcMGWrRoQVhYmPEPwvnjGxERQUBAADabDV9fXzp37sy8efNYsmQJ3t7ejBgxwhgsduECb1IxOWv5W7RowU8//UROTg7+/v6sW7eOVatWcd999xEVFYXFYmHBggXMmTOH4OBgYmNjSU5OJj09nTFjxuDj44Pdbic1NZXDhw/TtWtXY8yCM1nQeJbKqbQf1qpVq3L8+HFSU1Pp1KkTISEhxiDnIUOG8I9//IMNGzbQu3dvYxreH3/8kSNHjnD69GkefvhhXn31VWMCBak8Llx4zamwsJAVK1bg7+/Po48+aqyJEBMTQ4sWLVi4cCGxsbEEBwdz9913k5OTw5IlS0hISKCwsJBatWoxduxYl1pnqTzO/545e/YsXl5exux6R44c4cCBAwwdOtRIFtatW0dCQgLh4eHGys0REREkJibyj3/8g2rVqrFr1y5atGhBbGyscb05fxN1b1O+lDCUI7PZzNChQ/nXv/7F0qVLeeCBB0rMX242mwkMDOTEiRMEBgYyatQoOnXqxNmzZ11W6r0w0ZCKxfn5wv9qamvVqoW3tzfr1q2jV69eLF++nKCgIJo2bUrVqlUBjBUv161bxyOPPMIdd9zBl19+yb///W/CwsKwWq2sXLmSOnXquMxC4qRkofI4v8LA+T1y5MgRatasidlsxsvLi759+zJx4kRjlXjngPbbb7+dtm3bsnz5cho2bEh0dDRDhgzhm2++YfXq1bRp0waTyWQkC6rpqzzO/yyzs7PJysoiLCwMs9lM9+7dSUpK4sCBAxw+fJjbb78dgCpVqtCzZ08++eQTVq1aRd++fbFarYwePZqMjAyys7Mxm83G2h26XiqH48ePM2vWLJo0aULLli1dFkcrKiqiqKjI+B0rKCjAy8uLc+fOkZGRwfjx4zl+/Dg9e/akQ4cOxiKPnTp1oqioyOie/eCDD7pMsQtqvbxZKGEoZ2FhYTRv3pwtW7bw22+/0bhxY5fBiWlpaezcudPoJwy41PA5a4j1ZVwxORwOvv/+e3799VeGDBlC+/btjWkEo6Ki8PHxISMjg4KCAs6dO0fDhg2pWrUqmZmZTJkyha1bt9KrVy9atmzJiRMnaNasGU8//TTLly/n8OHDOBwO+vfvT/fu3cv5lcqNkJycjNlspkmTJoDrirtz587FYrFgs9moV68eI0eOpEmTJrRu3ZotW7aQlJREq1atjNq7gQMHsmXLFlatWkVQUBChoaE8/fTTWCwWI0F10vdN5XH+IPhNmzZhNpuJiYmhR48eREVFMWTIEMaNG8eWLVuoW7cuXl5eAISHh9O1a1djusv09HSGDBlCSEiIy5obShYqj71795KSksLGjRtZvHgxnTp1okuXLlgsFvLz8/Hx8THGTvr5+eHr68t///tfzp49S+vWrXn44YcJDQ3lyJEjLFu2DH9/f6Kjo+nevTvt27c3WsBB183NSAnDTWDAgAFs27aNhIQEYmNjjX8kp06dYunSpQQGBtKxY8dSn6sa4orNZDIZfT9XrFhBVlYWQ4YMwdPTk6pVqxITE8Pu3bvJz8/H19eXPXv2MGXKFFasWEG9evV46aWXuO2225g6dSq5ubmMHj2a+vXrU79+ffLy8vD09DSuJ30BVx6FhYXMnDmTpUuX0rBhQyIiIvD396eoqIhFixaRkJBA+/btqV27NgcOHGDlypVMmDCBMWPG0LNnT3bv3s2KFSto3Lgx3t7e2O12AgMD6d69O7/88gtt2rTBz8/PSF41dWHltW/fPr7++mu8vb254447yM3NZeHChZjNZkJCQoiOjqZFixasXr2aBg0a0KhRI6B4APMdd9xBWloaK1eupH79+iVm5wMll5VJhw4daNu2LRs2bGDBggVMnTqVtWvX0r9/f3JycvDw8DCugeDgYJo1a8aKFSvo3r0799xzD1BcyelcTLRevXrGsZ3JwvkVpnJzUcJwE6hWrRo9e/Zk7ty5JCYm0qVLF5KSkpg9ezY2m41Ro0ZpasJK5vw5x2vVqkWzZs2wWq389ttv2Gw2Ro8eDWD8UOfk5NCsWTN+/PFHTp8+zWOPPUbTpk3x8PAgJyeHLVu2EBsbi4eHh3FsLy8vY5YTfQFXLh4eHuTl5QFw+vRpo9tabm4uq1atok2bNvTv3x8PDw/atGlDbGwsn376qTEtaps2bUhISODXX3+lZ8+exnF79+5NnTp1qF+/vsv5dO1UDhdWGjgcDtasWUNISAgjR440FmtMSUkhJSWFpKQkOnXqxMiRI3n11VdZs2YN4eHh+Pn5Ybfb8fPz45FHHuHcuXPGc6Vys1gstG3bloYNG7Jr1y7mz5/Pv//9b3x9fQkLC8Nms+Hl5YXZbKZPnz4cOnSIDRs2UKNGDfz9/UlLSyMhIYEOHToQFBRUYmY+fdfcvPTJ3CQ6duxIzZo1WbZsGePGjeOLL76gQYMG/O1vfyvRn08qpoyMDCZPnmxMPwjFX461atXi6NGjdOzYkTvvvJNVq1YxY8YMsrOzCQ4OJjg4mOTkZDp37kydOnWoVq0awcHBWCwWzp49S0JCAh4eHsTFxRnHhP/1+9QXcOXiHKDavHlzfHx8yM/PZ8uWLWRkZHDo0CHS09Np1qwZHh7F9UFFRUU0btyYuLg4NmzYwJkzZ+jUqRPBwcGsWbOG48ePYzabcTgceHt7u0yiIJWL2WzmzJkzxnSoubm5rF+/noiICKpXr05OTg6LFy/Gy8uLvLw8kpKSyMjIwM/Pj759+7Jp0yZ+++0341hQPONf9erVcTgcblf1lcqnWrVqtG7dmhdffJEHH3wQf39/Dh06RH5+vlEZ5ufnx8iRI4mLi2PhwoXMmTOHjRs3cu+993L33Xfj6empVssKRHcSNwkPDw8GDBjAsWPHjCXPR44cCWg9hcpi165drFy5kq+++opTp04Z29u0aUNWVhYnT56kU6dODBs2jLVr1/Lzzz8TFBSEv78/hw8fxtvbm4EDB1KlShXeffdd3n//fT766CMWLFhAz549adiwYTm+OrlRsrKygJIz2ZhMJho2bEijRo04fPgwK1euNPqXO7u5OdfwgOJKiVOnTnHs2DH8/f1p2bIlaWlpxroKmia18jt58iSvv/468+bNM66Njh070rRpUwoKCvj666+N75OePXuyY8cOkpKSABg0aBBFRUWsXr3aWLztfJrF5tbi/KyrVKlC+/btGT58OGaz2Vjvx/n9ERYWxj333MO7777L008/zVtvvWWMyVSCWbGoS9JNJDY2ljfffJPQ0FDgf/+YNE6hcujQoQOenp5MmjQJHx8f+vfvT40aNcjPz6dx48asW7eO9u3b06tXLxwOB/Pnz6dmzZrExsayaNEioHjRtfr167N27VrOnTuHw+HgjjvuMPp/auG1yiMjI4MpU6Zw9OhRnn/+eWNqSme3ktq1a7N7926efvppTp8+zebNm6lWrRqRkZEsWLCAxo0bu3x3OBeIdN7sdevWjdtvv53w8PByeX1yY5X2XVCtWjXat2/P2rVradeuHeHh4dx1112YzWb+8Y9/kJuby8svv0ytWrWoU6cOs2fPJikpiaCgIFq1asVLL71EYGBgiUHwcutyXmd169alQ4cOLF68mI4dO5aYftnb25vg4GBA4xQqKn1aNxGTyURoaKjRtKt/UJWLcwGjwYMHs2XLFqZPnw4UD/aqWbMm+fn5HD9+HCi+mRs5ciS//PILGRkZ5OXlsX37dmP/rl270q9fP/r374/VaqWoqEjJQiWTlJRkrOb99ddfs379egCjub9mzZrUqlWL7du3c/fdd3PmzBlSU1OJiori4MGDLFu2zDhWbm4uKSkp1K1b1xi0ajabjWRBNX0V27lz54zF0pxMJhOpqanG9JVQfNPWvXt3LBYLixcvxmaz4enpyf79+zl27BijR4+mVq1a5Ofns3TpUry9vcnLyzNWAb/tttvw9/fX9SIG52+O1WqlTZs2BAcHM23atIs+R/c1FZNaGG5Cmo2kcuvTp4/RdDtt2jRGjBhB48aNSUhIMLqfeXh40Lp1a06fPs3KlSvJz89n//79LmtvODkcDrVCVUI9evRg8+bNFBYWkpeXx/z588nJyaFr166YzWYKCgqIjIwkPT2dWrVq0bx5c3bv3k1cXBxt2rRh6tSppKSkUKdOHQ4fPsyOHTu4++678fLyKjH4VT/gFdPZs2eZPXs2aWlpnDt3Dk9PTxo0aGCMiZs8eTJZWVlERkYaizUGBwfTq1cvZsyYQVxcHE2aNOHo0aM4HA4OHz5MSEgIO3bsICUlheHDh1O/fn2XaVJB14uULiQkhHbt2rF48WJOnTqlgfCVjP7Vi5SDbt26MXz4cJYuXcqcOXMICQmhevXqbN68GfjfgNNevXpx5513EhAQYPzgX0jJZeXkXGitqKiIiIgImjdvzpQpU1i+fDm5ubl4enpitVo5fPgwAP3796egoIBDhw7RvXt3Bg4cSHp6Ops3byY3N5cXX3yRTp06AbrhqwyWL1/On/70J44dO0b9+vVp1qwZwcHBzJ8/n3/+85/s37+ffv36YbFYWLp0qfE8i8VCq1atCA8PZ968eRQUFNCkSROqV6/ODz/8wAcffMCkSZOIjo42ZrIBtULJpXl4eNClSxfGjRunZKESUguDSDnw8vKiU6dOnDhxguTkZLKysmjatCn79u2joKAAT09Poxa4bdu2tG7dGk9Pz/IOW8pYkyZNWLFiBampqfTv35+ioiLmz5/PwYMHGT16NG3atGHp0qUcPXqU0NBQunbtyuLFi9mxYwf9+/enf//+ZGVl4e/vD2g9hcpi586d/Prrr/Tr14+OHTtitVqNVsZ27doxffp0Pv/8c1544QXq1q3Ltm3b2LFjBw0bNsThcODn50fHjh2ZMmUKa9eupVOnTjz22GPs37+fkydP0r59eyNRcHZ1VJIpl8PHxwf436KyUnnoG0CkHDhbEPr370/btm3ZunUrycnJWCwWzpw5A/yvFthisRgJhKa6vLWYzWaGDh3KuXPnSEhIYPDgwdx5552sWbOGadOmkZaWRoMGDTh06BBQvI6Cp6cnGzZs4PTp0wAuyYLZbFayUMHl5eUxe/ZsfHx86NSpE1WrVsVisRgtAA0bNmTw4MEUFRWxfPlyo1XJ2eXRZDJhsVjw9vYGYMGCBaSlpREaGkrHjh0ZNGgQQUFB2O12I8EUuVJKFiofJQwi5cBkMuFwOPD09KRr164MGjSIjIwMkpOTXQYunk83e7emsLAwWrZsyaZNm9ixYwfdu3dn9OjRJCcns2TJEg4ePGj8OJtMJp588kmeffbZEqvuqoa4ckhPTyctLY0ePXpQpUoVY7tzLQ2AmJgYOnbsyPLlywkJCaF169bs2bOH1atXA2Cz2Th8+DB33HEHRUVFRiWFkybdEJELqUuSSDlx3vx7enrSoUMHTp06RWFhoduxCnLrGjBgANu2bWPJkiXExMTQrl07ANavX09mZiYbNmygdevWANStWxcouaqvVA75+fnk5OTg5+cHuH7O589YU79+fRYtWsTGjRvp0aMHO3fuZMqUKezbt4+zZ8+SmprK2LFjGTZsWInrRNeNiFxI3woi5czZlaBfv37cdddd5RyN3IyqVatGz549OXToEImJiQC0bt2akSNHEhkZSdu2bUs8Rzd9lZPNZsNisRiD3S/8nJ3fJ9HR0Xh7exvJxbBhw2jXrh0HDx4kLy+PsWPHEh4ebkzTKyJyMWphEClnF9YOqmZYStOxY0fWrFnDqlWraNKkCTVq1CAwMJDXXnutvEOTMlS/fn28vb3ZvXs3LVq0wM/Pr8QaLBkZGWRmZuLj44O3tzd2u51atWrxwAMPlBgEr65HInI59C0hcpPRj7eUxsPDg/79+3PkyBH27NnjUqYa4luHc+rKLVu2sGvXLmNgsnPxxmXLlvHGG28wfvx4srKyWLZsGa+++irr16/HbreXSBZERC6HyaFpV0REKgSHw8GxY8cIDQ0t71CkHJ0+fZp//vOfWCwWhg0bRuPGjY2yI0eOkJKSwtKlS2ncuDHR0dH4+PhgNptp0KCBJk4QkauihEFEpIJxfm3r5u/WtXfvXiZMmEBubi49evQgMjKSoqIi0tPTSUhIIDw8nPvuu08LaInIdaGEQUREpAJKTU0lMTGRHTt2kJmZSe3atXE4HHTt2pXOnTsb+znHOFw41kFE5HIpYRAREanAsrOzKSoqwmazUbt2bWO7ximIyPWihEFERKQSUaIgItebEgYREREREXFLVRAiIiIiIuKWEgYREREREXFLCYOIiIiIiLilhEFERERERNxSwiAiIiIiIm4pYRAREREREbeUMIiIiIiIiFtKGERERERExC0lDCIiIiIi4pYSBhERERERcUsJg4iIiIiIuKWEQURERERE3Pp/KT/VYMUL8vwAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "qs.extend_pandas()\n", + "\n", + "net_worth = pd.Series(env.unwrapped.history['total_profit'], index=df.index[start_index+1:end_index])\n", + "returns = net_worth.pct_change().iloc[1:]\n", + "\n", + "qs.reports.full(returns)\n", + "qs.reports.html(returns, output='SB3_a2c_quantstats.html')" + ] + } + ], + "metadata": { + "accelerator": "GPU", + "colab": { + "collapsed_sections": [], + "name": "p3.ipynb", + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.9.6" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/trade_flow/environments/gym_anytrading/metadata.toml b/trade_flow/environments/gym_anytrading/metadata.toml index bc03472..8bc08a9 100644 --- a/trade_flow/environments/gym_anytrading/metadata.toml +++ b/trade_flow/environments/gym_anytrading/metadata.toml @@ -1,6 +1,7 @@ [environment] name = "gym_anytrading" version = "0.1.0" -description = "A collection of OpenAI Gym environments for reinforcement learning-based trading algorithms." +description = "`AnyTrading` is a collection of [OpenAI Gym](https://github.com/openai/gym) environments for reinforcement learning-based trading algorithms." type = "train" engine = "gym" +url = "https://github.com/AminHP/gym-anytrading" From f823e8826e96af4c7b6f0fff0a7b17805f9c1d44 Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 17:58:57 +0100 Subject: [PATCH 22/23] feat: remove ITBAgent --- packages/itbot/agents/__init__.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/packages/itbot/agents/__init__.py b/packages/itbot/agents/__init__.py index 2bf4ec8..2117027 100644 --- a/packages/itbot/agents/__init__.py +++ b/packages/itbot/agents/__init__.py @@ -1,3 +1,4 @@ from .agent import * from .basic_ml_agent import * -from .itb_agent import * + +# ITBAgent => https://github.com/asavinov/intelligent-trading-bot From 8874b165db4d6a9035870d00608a019d13733e1b Mon Sep 17 00:00:00 2001 From: Ojietohamen Samuel Date: Sat, 12 Oct 2024 18:14:07 +0100 Subject: [PATCH 23/23] fix: update multi-agent RL finance environment --- .../multi_agent_rl_finance/__init__.py | 5 + .../multi_agent_rl_finance/environment.yml | 182 ------------------ .../multi_agent_rl_finance/metadata.toml | 7 + .../multi_agent_rl_finance/setup.py | 3 - .../tensortrade-extras.md | 68 +++++++ 5 files changed, 80 insertions(+), 185 deletions(-) create mode 100644 trade_flow/environments/multi_agent_rl_finance/__init__.py delete mode 100644 trade_flow/environments/multi_agent_rl_finance/environment.yml create mode 100644 trade_flow/environments/multi_agent_rl_finance/metadata.toml delete mode 100644 trade_flow/environments/multi_agent_rl_finance/setup.py create mode 100644 trade_flow/environments/multi_agent_rl_finance/tensortrade-extras.md diff --git a/trade_flow/environments/multi_agent_rl_finance/__init__.py b/trade_flow/environments/multi_agent_rl_finance/__init__.py new file mode 100644 index 0000000..2b07e04 --- /dev/null +++ b/trade_flow/environments/multi_agent_rl_finance/__init__.py @@ -0,0 +1,5 @@ +# +# tensortrade-extras: +# https://github.com/StephanAkkerman/tensortrade-extras +# +# https://github.com/tensortrade-org/tensortrade/pull/450 diff --git a/trade_flow/environments/multi_agent_rl_finance/environment.yml b/trade_flow/environments/multi_agent_rl_finance/environment.yml deleted file mode 100644 index 3d29132..0000000 --- a/trade_flow/environments/multi_agent_rl_finance/environment.yml +++ /dev/null @@ -1,182 +0,0 @@ -name: ray-tensortrade -channels: - - apple - - conda-forge -dependencies: - - atari_py=0.2.9=py38h0fcdffb_1 - - bzip2=1.0.8=h3422bc3_4 - - c-ares=1.18.1=h3422bc3_0 - - ca-certificates=2021.10.8=h4653dfc_0 - - cached-property=1.5.2=hd8ed1ab_1 - - cached_property=1.5.2=pyha770c72_1 - - grpcio=1.43.0=py38h740c240_0 - - h5py=3.6.0=nompi_py38hacf61ce_100 - - hdf5=1.12.1=nompi_hd9dbc9e_104 - - krb5=1.19.3=he492e65_0 - - libblas=3.9.0=14_osxarm64_openblas - - libcblas=3.9.0=14_osxarm64_openblas - - libcurl=7.83.0=h7965298_0 - - libcxx=14.0.3=h6a5c8ee_0 - - libedit=3.1.20191231=hc8eb9b7_2 - - libev=4.33=h642e427_1 - - libffi=3.4.2=h3422bc3_5 - - libgfortran=5.0.0.dev0=11_0_1_hf114ba7_23 - - libgfortran5=11.0.1.dev0=hf114ba7_23 - - liblapack=3.9.0=14_osxarm64_openblas - - libnghttp2=1.47.0=hf30690b_0 - - libopenblas=0.3.20=openmp_h2209c59_0 - - libssh2=1.10.0=h7a5bd25_2 - - libzlib=1.2.11=h90dfc92_1014 - - llvm-openmp=14.0.3=hd125106_0 - - ncurses=6.3=h07bb92c_1 - - numpy=1.21.6=py38hf29d37f_0 - - openssl=3.0.3=ha287fd2_0 - - pip=22.0.4=pyhd8ed1ab_0 - - python=3.8.13=hd3575e6_0_cpython - - python_abi=3.8=2_cp38 - - readline=8.1=hedafd6a_0 - - setuptools=62.2.0=py38h10201cd_0 - - sqlite=3.38.5=h40dfcc0_0 - - tensorflow-deps=2.8.0=0 - - tk=8.6.12=he1e0b03_0 - - wheel=0.37.1=pyhd8ed1ab_0 - - xz=5.2.5=h642e427_1 - - zlib=1.2.11=h90dfc92_1014 - - pip: - - absl-py==1.0.0 - - aiosignal==1.2.0 - - ale-py==0.7.5 - - appnope==0.1.3 - - argon2-cffi==21.3.0 - - argon2-cffi-bindings==21.2.0 - - asttokens==2.0.5 - - astunparse==1.6.3 - - attrs==21.4.0 - - autorom==0.4.2 - - autorom-accept-rom-license==0.4.2 - - backcall==0.2.0 - - beautifulsoup4==4.11.1 - - bleach==5.0.0 - - cachetools==5.0.0 - - certifi==2021.10.8 - - cffi==1.15.0 - - charset-normalizer==2.0.12 - - click==8.1.3 - - cloudpickle==2.0.0 - - cycler==0.11.0 - - debugpy==1.6.0 - - decorator==5.1.1 - - defusedxml==0.7.1 - - deprecated==1.2.13 - - distlib==0.3.4 - - dm-tree==0.1.7 - - entrypoints==0.4 - - executing==0.8.3 - - fastjsonschema==2.15.3 - - filelock==3.6.0 - - flatbuffers==2.0 - - fonttools==4.33.3 - - frozenlist==1.3.0 - - gast==0.5.3 - - google-auth==2.6.6 - - google-auth-oauthlib==0.4.6 - - google-pasta==0.2.0 - - gym==0.21.0 - - idna==3.3 - - imageio==2.19.1 - - importlib-metadata==4.11.3 - - importlib-resources==5.7.1 - - ipykernel==6.13.0 - - ipython==8.3.0 - - ipython-genutils==0.2.0 - - ipywidgets==7.7.0 - - jedi==0.18.1 - - jinja2==3.1.2 - - jsonschema==4.5.1 - - jupyter-client==7.3.1 - - jupyter-core==4.10.0 - - jupyterlab-pygments==0.2.2 - - jupyterlab-widgets==1.1.0 - - keras==2.8.0 - - keras-preprocessing==1.1.2 - - kiwisolver==1.4.2 - - libclang==14.0.1 - - lz4==4.0.0 - - markdown==3.3.7 - - markupsafe==2.1.1 - - matplotlib==3.5.2 - - matplotlib-inline==0.1.3 - - mistune==0.8.4 - - msgpack==1.0.3 - - nbclient==0.6.3 - - nbconvert==6.5.0 - - nbformat==5.4.0 - - nest-asyncio==1.5.5 - - networkx==2.8 - - notebook==6.4.11 - - oauthlib==3.2.0 - - opt-einsum==3.3.0 - - packaging==21.3 - - pandas==1.4.2 - - pandocfilters==1.5.0 - - parso==0.8.3 - - pexpect==4.8.0 - - pickleshare==0.7.5 - - pillow==9.1.0 - - platformdirs==2.5.2 - - plotly==5.8.0 - - prometheus-client==0.14.1 - - prompt-toolkit==3.0.29 - - protobuf==3.20.1 - - psutil==5.9.0 - - ptyprocess==0.7.0 - - pure-eval==0.2.2 - - pyasn1==0.4.8 - - pyasn1-modules==0.2.8 - - pycparser==2.21 - - pygments==2.12.0 - - pyparsing==3.0.9 - - pyrsistent==0.18.1 - - python-dateutil==2.8.2 - - pytz==2022.1 - - pywavelets==1.3.0 - - pyyaml==6.0 - - pyzmq==22.3.0 - - ray==1.12.0 - - requests==2.27.1 - - requests-oauthlib==1.3.1 - - rsa==4.8 - - scikit-image==0.19.2 - - scipy==1.8.0 - - send2trash==1.8.0 - - six==1.15.0 - - soupsieve==2.3.2.post1 - - stack-data==0.2.0 - - stochastic==0.6.0 - - tabulate==0.8.9 - - tenacity==8.0.1 - - tensorboard==2.8.0 - - tensorboard-data-server==0.6.1 - - tensorboard-plugin-wit==1.8.1 - - tensorboardx==2.5 - - tensorflow-macos==2.8.0 - - tensorflow-metal==0.4.0 - - tensortrade==1.0.3 - - termcolor==1.1.0 - - terminado==0.13.3 - - tf-estimator-nightly==2.8.0.dev2021122109 - - tifffile==2022.5.4 - - tinycss2==1.1.1 - - tornado==6.1 - - tqdm==4.64.0 - - traitlets==5.2.0 - - typing-extensions==4.2.0 - - urllib3==1.26.9 - - virtualenv==20.14.1 - - wcwidth==0.2.5 - - webencodings==0.5.1 - - werkzeug==2.1.2 - - widgetsnbextension==3.6.0 - - wrapt==1.14.1 - - zipp==3.8.0 -prefix: /Users/jordandaubinet/miniforge3/envs/ray-tensortrade diff --git a/trade_flow/environments/multi_agent_rl_finance/metadata.toml b/trade_flow/environments/multi_agent_rl_finance/metadata.toml new file mode 100644 index 0000000..ee2053d --- /dev/null +++ b/trade_flow/environments/multi_agent_rl_finance/metadata.toml @@ -0,0 +1,7 @@ +[environment] +name = "multi_agent_rl_finance" +version = "0.1.0" +description = "Multi-Agent Environment with support for Shorting" +type = "train" +engine = "gym" +url = "https://github.com/MrDaubinet/multi-agent-rl-finance" diff --git a/trade_flow/environments/multi_agent_rl_finance/setup.py b/trade_flow/environments/multi_agent_rl_finance/setup.py deleted file mode 100644 index d152b0b..0000000 --- a/trade_flow/environments/multi_agent_rl_finance/setup.py +++ /dev/null @@ -1,3 +0,0 @@ -import setuptools - -setuptools.setup(name='rl_fts') \ No newline at end of file diff --git a/trade_flow/environments/multi_agent_rl_finance/tensortrade-extras.md b/trade_flow/environments/multi_agent_rl_finance/tensortrade-extras.md new file mode 100644 index 0000000..8a21572 --- /dev/null +++ b/trade_flow/environments/multi_agent_rl_finance/tensortrade-extras.md @@ -0,0 +1,68 @@ +# Technical Analysis + +- [TA-lib](https://github.com/mrjbq7/ta-lib): For more technical analysis compared to ta library. +- [Pandas Technical Analysis (Pandas TA)](https://github.com/twopirllc/pandas-ta): An easy to use library that leverages the Pandas library with more than 130 Indicators and Utility functions. +- [Unofficial TradingView technical analysis API wrapper](https://github.com/brian-the-dev/python-tradingview-ta) + +# Renderers + +- [Tensortrade_dashboard](https://github.com/mitcheccles/tensortrade_dashboard): To visualize trades in simulation runs. +- [WalletPlotlyTradingChart](https://github.com/AlexQuant62/test01/blob/main/WalletPlotlyTradingChart.py): Improved PlotlyTradingChart() in ability to generate chart specific for particular exchange/quote_currency. + +# Analysis + +- [Quantstats](https://github.com/ranaroussi/quantstats): A Python library that performs portfolio profiling, allowing quants and portfolio managers to understand their performance better by providing them with in-depth analytics and risk metrics. +- [SHAP (SHapley Additive exPlanations)](https://github.com/slundberg/shap): A game theoretic approach to explain the output of any machine learning model. +- [Backtest trading strategies with Python](https://github.com/kernc/backtesting.py) +- [Visualizer for pandas data structures](https://github.com/man-group/dtale) +- [TensorBoard](https://github.com/tensorflow/tensorboard): For visualizing a TensorTrade model's output. +- [Weights & Biases](https://github.com/wandb/client): Use W&B to organize and analyze machine learning experiments. It's framework-agnostic and lighter than TensorBoard. + +# Live Trading + +- [CCXT](https://github.com/ccxt/ccxt): A JavaScript / Python / PHP library for cryptocurrency trading and e-commerce with support for many Bitcoin/Ether/altcoin exchange markets and merchant APIs. +- [Binance API](https://github.com/sammchardy/python-binance): This is an unofficial Python wrapper for the Binance exchange REST API v3. +- [Binance Websockets](https://github.com/oliver-zehentleitner/unicorn-binance-websocket-api): An unofficial Python API to use the Binance Websocket APIs. +- [Coinbase Pro API](https://github.com/danpaquin/coinbasepro-python): The unofficial Python client for the Coinbase Pro API. + +# Reward calculation + +- [Differential Sharpe Ratio (DSR) calculation](https://github.com/AchillesJJ/DSR) + +# Data + +- [Binance Data](https://github.com/StephanAkkerman/BinanceData): My simple script for fetching data, using the Binance API. There are more time frames possible compared to data of CryptoDataDownload. +- [CCXT Data](https://github.com/StephanAkkerman/Crypto_OHLCV): My newer script for fetching data, using CCXT instead of Binance API to utilize more exchanges. It works the same as BinanceData, but supports more exchanges. +- [Binance Public Data](https://github.com/binance/binance-public-data): Official Binance repo for getting their public data. +- [Binance Harvester](https://github.com/declasm/binance_harvester): A Python 3 script to harvest data from the Binance socket stream and calculate popular TA indicators and produce lists of top trending coins storing data in an SQLite3 database for use by algorithmic and bot traders. + +# Ray + +- [Stoppers](https://docs.ray.io/en/master/tune/api_docs/stoppers.html): Custom stopping mechanisms to stop trials early. +- [Custom Metrics Example](https://github.com/ray-project/ray/blob/master/rllib/examples/custom_metrics_and_callbacks.py) +- [Schedulers](https://docs.ray.io/en/master/tune/api_docs/schedulers.html): Trial Schedulers can early terminate bad trials, pause trials, clone trials, and alter hyperparameters of a running trial. +- [Tune’s Search Algorithms](https://docs.ray.io/en/master/tune/api_docs/suggestion.html): Wrappers around open-source optimization libraries for efficient hyperparameter selection. +- [Customizing Exploration Behavior](https://docs.ray.io/en/master/rllib-training.html#customizing-exploration-behavior) +- [Curiosity plugin as exploration behavior](https://docs.ray.io/en/master/rllib-algorithms.html#curiosity) + +# Stocks + +- [Yahoo Finance API](https://github.com/ranaroussi/yfinance): Yahoo! Finance market data downloader, if you want to train your model on stock data. +- [Alpaca's trade API](https://github.com/alpacahq/alpaca-trade-api-python) +- [Alpha Vantage API](https://github.com/RomelTorres/alpha_vantage) + +# Examples + +- [My Example](https://github.com/StephanAkkerman/TensorTrade): Includes benchmarks to compare net worth performance, and fetching data from Binance. +- [Zhivko's Examples](https://github.com/zhivko/tensortrade/tree/master/examples/myexample): Includes implementation of training and evaluation environments in after.py. +- [Kodiak's Notebook Example](https://colab.research.google.com/drive/1N0gZhsiXT7vwHN__FoX8an-AqxJDSfak): Includes implementation of feature correlation and Optuna search algorithm. +- [Msrparadesi's Notebook Example](https://github.com/msrparadesi/tensortrade/blob/master/examples/TensorTrade_on_SageMaker_Studio.ipynb) +- [Matthew Brulhardt's Example](https://github.com/mwbrulhardt/simple-sine-curve): How to trade on a basic sine curve using TensorTrade and Ray. +- [Matthew Brulhardt's Example](https://github.com/mwbrulhardt/penv): About making highly customized environments in TensorTrade. + +# Research + +- [Part one of 8ball030's research of technical analysis indicators](https://github.com/8ball030/FTXIndicators) +- [Part two of 8ball030's research of technical analysis indicators](https://github.com/8ball030/indicator_part_2) +- [Awesome Deep Trading](https://github.com/cbailes/awesome-deep-trading): List of code, papers, and resources for AI/deep learning/machine learning/neural networks applied to algorithmic trading. +- [Portfolio Management List](https://github.com/Draichi/Portfolio-Management-list): A list of portfolio management resources, using Reinforcement Learning.