-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline_anomaly.py
executable file
·209 lines (153 loc) · 5.34 KB
/
baseline_anomaly.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#!/usr/bin/python3
from netCDF4 import Dataset
import numpy as np
import matplotlib.pyplot as plt
import datetime
from datetime import timedelta
import os
# yearb = 1979
# yeare = 2020
# # Sub-set dates to choose:
# import cdsapi
# offset = -273.15 # K to °C
# sYears = [str(y) for y in range(yearb, yeare + 1)]
# years= np.array([int(y) for y in sYears])
# sMonths = [str(m) for m in range(1, 12 + 1) ]
# months = [int(m) for m in sMonths]
# sHours = [str(h).zfill(2) + ":00" for h in range(0, 23 + 1) ]
# lonmin, lonmax = 2, 6
# latmin, latmax = 48, 53
def retrieveData():
c = cdsapi.Client()
data = c.retrieve(
'reanalysis-era5-single-levels-monthly-means',
{
'product_type': 'monthly_averaged_reanalysis_by_hour_of_day',
'format': 'netcdf',
'variable': ['2m_temperature'],
'year': sYears,
'month': sMonths,
'time': sHours,
'area': [
latmax, lonmin, latmin,
lonmax,
],
},
"download.nc"
)
def retrieveERA20C():
yearb = 1900
yeare = 2010
# Sub-set dates to choose:
dates = "/".join([str(year) + str(month).zfill(2) + "01" for \
year in range(yearb, yeare + 1) for month in range(1, 13)])
from ecmwfapi import ECMWFDataServer
server = ECMWFDataServer()
server.retrieve({
"class": "e2",
"dataset": "era20c",
"date": dates,
"expver": "1",
"levtype": "sfc",
"param": "167.128",
"stream": "moda",
"type": "an",
'area': [
latmax, lonmin, latmin,
lonmax,
],
"grid": "0.25/0.25",
"target": "ERA20C",
})
os.system("/usr/local/bin/cdo -f nc copy -setgridtype,regular ERA20C ERA20C.nc")
print("CONVERT TO NETCDF")
print("cdo -f nc copy -setgridtype,regular ERAC out.nc")
#retrieveERA20C()
#retrieveData()
def getUccle():
myList = list()
import csv
with open('./data_uccle.csv') as csv_file:
csv_reader = csv.reader(csv_file, delimiter= '\t', )
line_count = 0
for row in csv_reader:
if line_count > 0:
year = int(row[0][:4])
month = int(row[0][4:6])
day = int(row[0][6:8])
value1 = float(row[2])
value2 = float(row[1])
value = (value1 + value2) / 2
# mean taken as mean between max and min
myList.append([datetime.date(year, month, day) , value\
])
line_count += 1
return myList
data = getUccle()
# # Get the downloaded data in arrays
# f = Dataset("./download.nc", mode = "r")
# lat = f.variables["latitude"][:]
# lon = f.variables["longitude"][:]
# var = f.variables["t2m"][:, 0, :, :] + offset
# time = f.variables["time"][:]
# dates = [datetime.datetime(1900,1, 1) + timedelta(hours = int(t)) \
# for t in time]
# # Annual averages
# # Find indices of Brussels
# iX = np.where(lat == 50.75)[0][0]
# jX = np.where(lon == 4.25 )[0][0]
# if len(lon.shape) == 1:
# lon, lat = np.meshgrid(lon, lat)
# f.close()
# mylist = list()
# # Brussels
# spaceIndices = (lat == 50.75) * (lon == 4.25)
years = np.arange(1901, 2018 + 1)
myList = list()
for y in years:
tmp = np.mean([d[1] for d in data \
if d[0].year == int(y)])
myList.append(tmp)
series = np.array(myList)
for y in np.arange(1931, 2019):
print(y)
# We browse through all years and compute anomalies relative
# to the three closest full decades
ye = int(np.floor(y / 10) * 10)
yb = ye - 30 + 1
fig , ax = plt.subplots(2, 1, figsize = (5, 5), dpi = 300)
# Plot raw data
ax[0].set_ylim(5, 15)
ax[0].grid()
for j, year in enumerate(np.arange(1901, 2019)):
# If before current year, in green
if year <= y:
ax[0].bar(year, series[j], color = "lightgreen", alpha = 0.8)
else:
ax[0].bar(year, series[j], edgecolor = "white", \
color = "black", lw = 0.2)
ax[0].set_facecolor("black")
ax[0].set_xlim(1900, 2021)
avg = np.mean(series[(years >= yb) * (years <= ye)])
ax[0].plot((yb, ye), (avg, avg), color = "white", lw = 2)
ano = series - avg
for j, year in enumerate(np.arange(1901, 2019)):
if year <= y:
color = plt.cm.RdBu_r(int((ano[j] + 3) * 255 / 6))
ax[1].bar(year, ano[j], color = color, lw = 0)
else:
ax[1].bar(year, ano[j], edgecolor = "white", \
color = "black", lw = 0.2)
ax[1].set_xlim(1900, 2021)
ax[1].set_facecolor("black")
ax[1].set_axisbelow(True)
ax[1].grid()
ax[1].set_ylim(-2.5, 2.5)
ax[1].set_title("Anomalies par rapport à la moyenne " + \
str(yb) + "-" + str(ye))
ax[0].text(yb, 11, "Période de référence", color = "white")
ax[0].set_ylabel("°C")
ax[0].set_title("Température annuelle moyenne à Uccle")
ax[0].set_axisbelow(True)
fig.tight_layout()
fig.savefig("./figs/fig_" + str(y) + ".png")