|
365 | 365 | },
|
366 | 366 | "outputs": [
|
367 | 367 | {
|
368 |
| - "data": { |
369 |
| - "text/plain": [ |
370 |
| - "<matplotlib.lines.Line2D at 0x117430d90>" |
371 |
| - ] |
372 |
| - }, |
373 |
| - "execution_count": 4, |
374 |
| - "metadata": {}, |
375 |
| - "output_type": "execute_result" |
| 368 | + "name": "stdout", |
| 369 | + "output_type": "stream", |
| 370 | + "text": [ |
| 371 | + "\n" |
| 372 | + ] |
376 | 373 | },
|
377 | 374 | {
|
378 | 375 | "data": {
|
379 |
| - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEKCAYAAAAVaT4rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAVBUlEQVR4nO3dfZBldX3n8fdHwEKQyBAHduTBkeygpZRP9LpmSYybcSwEiiEPEqh1M1thl0qMcSSbiuOStbLZ2g3GRMTUVjZkg5kEkoAbFBZ0cTKCrpagDcvDsAiDMD4xy4w4CK5GBb/7xz0NPT3dM5fpPvf29O/9qrp1zz0Pfb7zm9ufe/p3zvndVBWSpHY8Z9wFSJJGy+CXpMYY/JLUGINfkhpj8EtSYwx+SWrMwX3+8CTbgCeAp4Anq2oiyVHAVcBKYBtwTlXt6rMOSdIzRnHE/8+r6tVVNdG93gBsrqpVwObutSRpRMbR1bMW2NhNbwTOHkMNktSs9HnnbpKHgF1AAX9aVZcleayqjpy2zq6qWjbLthcAFwAcfvjhp7zsZS/rrU5JWopuu+22b1bV8pnze+3jB06tqoeTHA1sSvKlYTesqsuAywAmJiZqcnKyrxolaUlK8pXZ5vfa1VNVD3fPO4CPAq8DHkmyoitqBbCjzxokSbvrLfiTHJ7kiKlp4M3AFuA6YF232jrg2r5qkCTtqc+unmOAjyaZ2s9fV9X/TPJF4Ook5wNfBd7aYw2SpBl6C/6qehB41SzzHwVW97VfSdLeeeeuJDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNWfLBf8mm+8ddgiQtKks++C/dvHXcJUjSorLkg1+StLuDx11AHy7ZdP9uR/orN9wAwPrVq7hwzUnjKkuSFoVUVb87SA4CJoFvVNWZSY4CrgJWAtuAc6pq195+xsTERE1OTu7X/lduuIFtF5+xX9tK0oEsyW1VNTFz/ii6etYD9057vQHYXFWrgM3da0nSiPQa/EmOA84A/tu02WuBjd30RuDsPmtYv3pVnz9ekg44fR/xfxD4beBH0+YdU1XbAbrno2fbMMkFSSaTTO7cuXO/C7BPX5J211vwJzkT2FFVt+3P9lV1WVVNVNXE8uXLF7g6SWpXn1f1nAqcleR04FDgx5JcATySZEVVbU+yAtjRYw2SpBl6O+KvqvdU1XFVtRI4F/hUVb0NuA5Y1622Dri2rxokSXsaxw1cFwNrkmwF1nSvJUkjMpIbuKrqZuDmbvpRYPUo9itJ2pNDNkhSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqTG/Bn+TQJF9IcmeSe5L8h27+UUk2JdnaPS/rqwZJ0p76POL/PvCzVfUq4NXAaUleD2wANlfVKmBz91qSNCK9BX8NfKd7eUj3KGAtsLGbvxE4u68aJEl76rWPP8lBSe4AdgCbqupW4Jiq2g7QPR89x7YXJJlMMrlz584+y5SkpvQa/FX1VFW9GjgOeF2Sk5/FtpdV1URVTSxfvry/IiWpMSO5qqeqHgNuBk4DHkmyAqB73jGKGiRJA31e1bM8yZHd9POANwFfAq4D1nWrrQOu7asGSdKeDu7xZ68ANiY5iMEHzNVVdX2SzwNXJzkf+Crw1h5rkCTNsM/gT3IccC7w08CLgO8BW4AbgE9U1Y9m266q7gJeM8v8R4HV86hZkjQPew3+JB8GjgWuB97HoD/+UOAkBv31FyXZUFWf6btQSdLC2NcR/x9V1ZZZ5m8BrknyXOCEhS9LktSXvZ7cnS30kyxL8spu+Q+q6oG+ipMkLbyhrupJcnOSH0tyFHAn8OEkH+i3NElSH4a9nPMFVfU48PPAh6vqFAaXZ0qSDjDDBv/B3c1W5zA40StJOkANG/y/B9wIPFBVX0xyIrC1v7IkSX0Z6gauqvoI8JFprx8EfqGvoiRJ/dnrEX+S3+lO6M61/GeTnLnwZUmS+rKvI/67gf+R5B+A24GdDG7gWsXgy1X+HvjPvVYoSVpQew3+qroWuDbJKuBUBuPvPA5cAVxQVd/rv0RJ0kIato9/K57MlaQlYSTj8UuSFg+DX5IaY/BLUmOGHavnpCSbk2zpXr8yye/0W5okqQ/DHvH/GfAe4Ifw9JesnNtXUZKk/gwb/IdV1RdmzHtyoYuRJPVv2OD/ZpKfAAogyS8C23urSpLUm2G/bP3XgcuAlyX5BvAQ8LbeqpIk9WbYG7geBN6U5HDgOVX1RL9lSZL6MlTwJzkS+GVgJYOx+QGoqnf2VpkkqRfDdvV8HLiFwaBtP+qvHElS34YN/kOr6jd7rWSRumTT/Vy45qRxlyFJC2bYq3r+Ksm/SbIiyVFTj14rWyQu3ezYdJKWlmGP+H8AvB+4iO6Szu75xD6KkiT1Z9jg/03gH1fVN/ssZrG4ZNP9ux3pr9xwAwDrV6+y20fSAW/Y4L8H+G6fhSwmF6456emAX7nhBrZdfMaYK5KkhTNs8D8F3JHkJuD7UzO9nFOSDjzDBv/Hukdz1q9eNe4SJGlBDXvn7sa+C1ms7NOXtNTsNfiTXF1V5yS5m2eu5nlaVb2yt8okSb3Y1xH/+u75zL4LkSSNxl5v4KqqqaGX315VX5n+AN7ef3mSpIU27J27a2aZ95aFLESSNBp7Df4kv9b17780yV3THg8Bd+1j2+OT3JTk3iT3JFnfzT8qyaYkW7vnZQv3z5Ek7cu++vj/GvgE8PvAhmnzn6iqb+1j2yeBf1tVtyc5ArgtySbgXwGbq+riJBu6n/vu/apekvSs7TX4q+rbwLeB857tD+7OD2zvpp9Ici9wLLAWeGO32kbgZgx+SRqZYfv45yXJSuA1wK3AMVMnjbvno+fY5oIkk0kmd+7cOYoyJakJvQd/kucDfwe8q6oeH3a7qrqsqiaqamL58uX9FShJjek1+JMcwiD0r6yqa7rZjyRZ0S1fAezoswZJ0u56C/4Mvpj3z4F7q+oD0xZdB6zrptcB1/ZVgyRpT8MO0rY/TgX+JXB3kju6ef8OuBi4Osn5wFeBt/ZYgyRpht6Cv6o+C2SOxav72q8kae9GclWPJGnxMPglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4e3bJpvvHXYIk7cbg79mlm7eOuwRJ2o3BL0mN6XN0zmZdsun+3Y70V264AYD1q1dx4ZqTxlWWJAGQqhp3Dfs0MTFRk5OT4y5jv6zccAPbLj5j3GVIalCS26pqYuZ8u3okqTEGf8/Wr1417hIkaTcGf8/s05e02Bj8ktQYg1+SGmPwS1JjDP5FziEfJC00g3+Rc8gHSQvN4JekxjhkwyLkkA+LxyWb7rfNteQY/IvQhWtOejps5jvkg8E1P5du3mr7acmxq2eJ8xyBpJk84l/kHPJh9Oxq01Ln6JxL0MzgmtJicM23q8vRVXUgm2t0To/4l6CFPEcwbvMNbvvopT3Zx69FbdznKObb1eYNeFqMDP4lrsVzBJdsup+VG254um9+anp/Qni+fy3M94PLDw71weBf4sbdzbE/wTXf4L5wzUlsu/iMp7u4pqbH3Rb740D/4DjQ978Q9S+GGmYy+NWr/QmuAz24F/Ivjvka9wfHgb7/hehqXAw1zOTJXe3VgX4D2Di6uuZ7cn0xXU467pPj497/UtXb5ZxJLgfOBHZU1cndvKOAq4CVwDbgnKrata+f5eWc47MQwTVlf4LrQP/gme9VVeNu/xb3vxD1L4YaYO7LOfsM/jcA3wH+clrw/wHwraq6OMkGYFlVvXtfP2viiCNq8pRTeqlTe3fLg4/y+hN/fGzbH+i+tut7HL/sefu9/Tja/2u7vsc3dn13j/nHLjvsWf9bDsT9L+T2464hn/70aK/jr6rPJFk5Y/Za4I3d9EbgZmCfwa/RmvmLd8uDjwL794vXuvm217HLDlugSoZ3/LLnPV33OD64x73/JlRVbw8GXTpbpr1+bMbyXXvZ9gJgEpg84YQTSuPx4ndfP6/tP/DJ+xaoEu2P+bb/uP//x73/hXj/jrMGYLJmyddeh2zojvivr2e6eh6rqiOnLd9VVcv29XPs4x+fA/3OX83PuM+xjHv/B7q5+vhHfTnnI0lWdAWtAHaMeP96llq8AUzPGHfojnv/S9Wog/86YF03vQ64dsT717PkL5609PQW/En+Bvg88NIkX09yPnAxsCbJVmBN91qSNEJ9XtVz3hyLVve1T0nSvjlkgyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1JixBH+S05Lcl+SBJBvGUYMktWrkwZ/kIOC/AG8BXg6cl+Tlo65Dklo1jiP+1wEPVNWDVfUD4G+BtWOoQ5KadPAY9nks8LVpr78O/NOZKyW5ALige/mdJPeNoLb98ULgm+MuYi+sb36sb36sb/7mU+OLZ5s5juDPLPNqjxlVlwGX9V/O/CSZrKqJcdcxF+ubH+ubH+ubvz5qHEdXz9eB46e9Pg54eAx1SFKTxhH8XwRWJXlJkucC5wLXjaEOSWrSyLt6qurJJO8AbgQOAi6vqntGXccCWuzdUdY3P9Y3P9Y3fwteY6r26F6XJC1h3rkrSY0x+CWpMQb/EJIcn+SmJPcmuSfJ+lnWeWOSbye5o3u8d8Q1bktyd7fvyVmWJ8mHumEy7kry2hHW9tJp7XJHkseTvGvGOiNtvySXJ9mRZMu0eUcl2ZRka/e8bI5tex9yZI763p/kS93/30eTHDnHtnt9L/RY3+8m+ca0/8PT59h2XO131bTatiW5Y45tR9F+s2bKyN6DVeVjHw9gBfDabvoI4H7g5TPWeSNw/Rhr3Aa8cC/LTwc+weA+itcDt46pzoOA/wu8eJztB7wBeC2wZdq8PwA2dNMbgPfNUf+XgROB5wJ3znwv9Fjfm4GDu+n3zVbfMO+FHuv7XeC3hvj/H0v7zVj+R8B7x9h+s2bKqN6DHvEPoaq2V9Xt3fQTwL0M7kA+kKwF/rIGbgGOTLJiDHWsBr5cVV8Zw76fVlWfAb41Y/ZaYGM3vRE4e5ZNRzLkyGz1VdUnq+rJ7uUtDO6BGYs52m8YY2u/KUkCnAP8zULvd1h7yZSRvAcN/mcpyUrgNcCtsyz+ySR3JvlEkleMtLDB3c+fTHJbN9zFTLMNlTGOD69zmfsXbpztB3BMVW2HwS8mcPQs6yyWdvwVBn/BzWZf74U+vaPrirp8jm6KxdB+Pw08UlVb51g+0vabkSkjeQ8a/M9CkucDfwe8q6oen7H4dgbdF68C/hj42IjLO7WqXstg1NNfT/KGGcuHGiqjT90Ne2cBH5ll8bjbb1iLoR0vAp4ErpxjlX29F/ryJ8BPAK8GtjPoTplp7O0HnMfej/ZH1n77yJQ5N5tl3rNqQ4N/SEkOYfAfdGVVXTNzeVU9XlXf6aY/DhyS5IWjqq+qHu6edwAfZfDn4HSLYaiMtwC3V9UjMxeMu/06j0x1f3XPO2ZZZ6ztmGQdcCbwL6rr8J1piPdCL6rqkap6qqp+BPzZHPsdd/sdDPw8cNVc64yq/ebIlJG8Bw3+IXR9gn8O3FtVH5hjnX/UrUeS1zFo20dHVN/hSY6YmmZwEnDLjNWuA365u7rn9cC3p/6kHKE5j7TG2X7TXAes66bXAdfOss7YhhxJchrwbuCsqvruHOsM817oq77p54x+bo79jnvIljcBX6qqr8+2cFTtt5dMGc17sM8z10vlAfwUgz+l7gLu6B6nA78K/Gq3zjuAexicYb8F+GcjrO/Ebr93djVc1M2fXl8YfAHOl4G7gYkRt+FhDIL8BdPmja39GHwAbQd+yOAI6nzgx4HNwNbu+ahu3RcBH5+27ekMrsL48lRbj6i+Bxj07U69B//rzPrmei+MqL6/6t5bdzEIohWLqf26+X8x9Z6btu442m+uTBnJe9AhGySpMXb1SFJjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/GpekoPGXYM0Sga/lrQkK7sx7Dd2g4f99ySHdWOuvzfJZ4G3JjmvG4N9S5L3Tdv+tCS3d4PHbe7mHd4NQvbFJP87ydpu/iuSfKEbx/2uJKu6dW/ott+S5Je6dU9J8uluILAbp92m/84k/6fb/m/H0GRqwMi/bF0ag5cyuHPzc0kuB97ezf+HqvqpJC9icLfwKcAuBiMzng18jsGYM2+oqoeSHNVtdxHwqar6lQy+DOULSf6ewZ3Il1bVld2t9AcxuMPy4ao6AyDJC7oxWv4YWFtVO7sPg//EYMTNDcBLqur7meOLVqT5MvjVgq9V1ee66SuAd3bTUwN1/RPg5qraCZDkSgZf5PEU8JmqegigqqbGd38zcFaS3+peHwqcAHweuCjJccA1VbU1yd3AH3Z/RVxfVf8rycnAycCmbniigxgMLwCDW/ivTPIxFu8IpTrAGfxqwcxxSaZe/7/uebZhbqfmzzamSYBfqKr7Zsy/N8mtwBnAjUn+dVV9KskpDI78fz/JJxmM+HhPVf3kLD/7DAYfOmcB/z7JK+qZL1+RFoR9/GrBCUmmQvY84LMzlt8K/EySF3Ynes8DPs3gCP5nkrwEBt+H2q1/I/Ab00YTfU33fCLwYFV9iMEgZa/supG+W1VXAH/I4OsA7wOWT9WU5JDu/MBzgOOr6ibgt4EjgecvdGNIHvGrBfcC65L8KYNRD/8E+I2phVW1Pcl7gJsYHM1/vKquBcjgG5iu6UJ5B7AG+I/AB4G7uvDfxmCM/F8C3pbkhwy+V/j3GHQjvT/JjxiMFPlrVfWDJL8IfCjJCxj8Hn6QwWiLV3TzAlxSVY/12C5qlKNzaknL4Gvtrq+qk8dcirRo2NUjSY3xiF+SGuMRvyQ1xuCXpMYY/JLUGINfkhpj8EtSY/4/9OF7nabmwEYAAAAASUVORK5CYII=\n", |
| 376 | + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAEKCAYAAADUwrbCAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAY1klEQVR4nO3dfZBldX3n8fdHwEXxAdCBHQUy6A4YQynKxOiiaBjHQqFAYyBScXdSmqWiUQdcV8fFtSSpbMZHMKktE+LDsoJGVBSEGBhH0WghOkN4GALOqIyKjMyI+BSjiHz3j3uatEP3TPf0Od3z636/qm7dc8+993u/t/ve8zlP95xUFZIkqQ0PmusGJEnS1BnckiQ1xOCWJKkhBrckSQ0xuCVJaojBLUlSQ/YesniSLcBPgF8B91bVsiQHAh8BlgBbgNOq6u4h+5Akab6YjSXu362qo6tqWXd7NbCuqpYC67rbkiRpCuZiVfkpwAXd8AXAC+egB0mSmpQhj5yW5DbgbqCAv62q85P8sKr2H/eYu6vqgAmeewZwBsB+++13zBOe8ITB+pQkaU+yYcOG71fVoonuG3QbN3BsVd2R5CBgbZJbp/rEqjofOB9g2bJltX79+qF6lCRpj5LkW5PdN+iq8qq6o7veBnwCeBpwZ5LFXWOLgW1D9iBJ0nwyWHAn2S/Jw8eGgecBG4HLgJXdw1YClw7VgyRJ882Qq8oPBj6RZOx1PlRV/5jkq8DFSV4OfBs4dcAeJEmaVwYL7qr6JvDkCcbfBSwf6nUlSZrPPHKaJEkNMbglSWqIwS1JUkMMbkmSGmJwS5LUEINbkqSGGNySJDXE4JYkqSEGtyRJDTG4JUlqiMEtSVJDDG5JkhpicEuS1BCDW5KkhhjckiQ1xOCWJKkhBrckSQ0xuCVJaojBLUlSQwxuSZIaYnBLktQQg1uSpIYY3JIkNcTgliSpIQa3JEkNMbglSWqIwS1JUkMMbkmSGmJwS5LUEINbkqSGGNySJDVkQQb3uWs3zXULkiTtlgUZ3O9et3muW5AkabcsyOCWJKlVe891A7Pl3LWbfm1Je8nqKwBYtXwpZ604Yq7akiRpWlJVw75AshewHvhuVZ2U5EDgI8ASYAtwWlXdvbMay5Ytq/Xr1/fW05LVV7BlzYm91ZMkqU9JNlTVsonum41V5auAW8bdXg2sq6qlwLrutiRJmoJBgzvJIcCJwHvHjT4FuKAbvgB44ZA9TGTV8qWz/ZKSJPVi6CXu84DXA/eNG3dwVW0F6K4PmuiJSc5Isj7J+u3bt/falNu0JUmtGiy4k5wEbKuqDbvz/Ko6v6qWVdWyRYsW9dydJEltGnKv8mOBk5O8ANgXeESSC4E7kyyuqq1JFgPbBuxBkqR5ZbAl7qp6Y1UdUlVLgJcAn62qlwKXASu7h60ELh2qB0mS5pu5OADLGmBFks3Aiu62JEmaglk5AEtVXQ1c3Q3fBSyfjdeVJGm+8ZCnkiQ1xOCWJKkhBrckSQ0xuCVJaojBLUlSQwxuSZIaYnBLktQQg1uSpIYY3JIkNcTgliSpIQa3JEkNMbglSWqIwS1JUkMMbkmSGmJwS5LUEINbkqSGGNySJDXE4JYkqSEGtyRJDTG4JUlqiMEtSVJDDG5JkhpicEuS1BCDW5KkhhjckiQ1xOCWJKkhBrckSQ0xuCVJaojBLUlSQwxuSZIaYnBLktQQg1uSpIYY3JIkNcTgliSpIYMFd5J9k3wlyQ1Jbk5yTjf+wCRrk2zurg8YqgdJkuabIZe4fwEcX1VPBo4GTkjydGA1sK6qlgLrutuSJGkKBgvuGvlpd3Of7lLAKcAF3fgLgBcO1YMkSfPNoNu4k+yV5HpgG7C2qq4FDq6qrQDd9UGTPPeMJOuTrN++ffuQbUqS1IxBg7uqflVVRwOHAE9LctQ0nnt+VS2rqmWLFi0arklJkhoyK3uVV9UPgauBE4A7kywG6K63zUYPkiTNB0PuVb4oyf7d8EOA5wK3ApcBK7uHrQQuHaoHSZLmm70HrL0YuCDJXoxmEC6uqsuTXANcnOTlwLeBUwfsQZKkeWWXwZ3kEOAlwLOAxwD/BmwErgA+XVX3TfS8qroReMoE4+8Cls+gZ0mSFqydBneSDwCPBS4H3spoe/S+wBGMtlefnWR1VX1h6EYlSdKul7jfWVUbJxi/EbgkyYOBw/pvS5IkTWSnO6dNFNpJDkjypO7+e6rq60M1J0mSft2U9ipPcnWSRyQ5ELgB+ECSdw3bmiRJ2tFUfw72yKr6MfB7wAeq6hhGP++SJEmzaKrBvXd3sJTTGO2oJkmS5sBUg/vPgCuBr1fVV5M8Dtg8XFuSJGkiUzoAS1V9FPjouNvfBF48VFOSJGliO13iTvKmboe0ye4/PslJ/bclSZImsqsl7puATyX5OXAdsJ3RAViWAkcDnwH+96AdSpKk++00uKvqUuDSJEuBYxkdf/zHwIXAGVX1b8O3KEmSxkx1G/dm3BlNkqQ5Nyvn45YkSf0wuCVJaojBLUlSQ6Z6rPIjkqxLsrG7/aQkbxq2NUmStKOpLnH/HfBG4JcAVXUj8JKhmpIkSRObanA/tKq+ssO4e/tuRpIk7dxUg/v7SR4PFECS3we2DtaVJEma0JR+xw38KXA+8IQk3wVuA146WFeSJGlCUz0AyzeB5ybZD3hQVf1k2LYkSdJEphTcSfYH/iuwhNG5uQGoqtcM1pkkSXqAqa4q/wfgy4xOOnLfcO1IkqSdmWpw71tVrx20k3ng3LWbOGvFEXPdhiRpHpvqXuUfTPLfkixOcuDYZdDOGvTudZ6HRZI0rKkucd8DvB04m+4nYd3144ZoSpIkTWyqwf1a4D9V1feHbKZF567d9GtL2ktWXwHAquVLXW0uSerdVIP7ZuBnQzbSqrNWHHF/QC9ZfQVb1pw4xx1JkuazqQb3r4Drk3wO+MXYSH8OJknS7JpqcH+yu2gnVi1fOtctSJLmuakeOe2CoRuZD9ymLUka2k6DO8nFVXVakpv4973J71dVTxqsM0mS9AC7WuJe1V2fNHQjkiRp13Z6AJaqGjt15yur6lvjL8Arh29PkiSNN9Ujp62YYNzz+2xEkiTt2k6DO8kruu3bRya5cdzlNuDGXTz30CSfS3JLkpuTrOrGH5hkbZLN3fUB/b0dSZLmt11t4/4Q8GngL4HV48b/pKp+sIvn3gv896q6LsnDgQ1J1gJ/BKyrqjVJVnd137Bb3UuStMDsNLir6kfAj4DTp1u42z6+tRv+SZJbgMcCpwDP6R52AXA1BrckSVMy1W3cM5JkCfAU4Frg4LGd3rrrgyZ5zhlJ1idZv3379tloU5KkPd7gwZ3kYcDHgTOr6sdTfV5VnV9Vy6pq2aJFi4ZrUJKkhgwa3En2YRTaF1XVJd3oO5Ms7u5fDGwbsgdJkuaTwYI7SYD3AbdU1bvG3XUZsLIbXglcOlQPkiTNN1M9ycjuOBb4L8BNSa7vxv1PYA1wcZKXA98GTh2wB0mS5pXBgruqvghkkruXD/W6kiTNZ7OyV7kkSeqHwS1JUkMMbkmSGmJwS5LUEINbkqSGGNySJDXE4JYkqSEGtyRJDTG4JUlqiMG9hzt37aa5bkGStAcxuPdw7163ea5bkCTtQQxuSZIaMuTZwbSbzl276deWtJesvgKAVcuXctaKI+aqLUnSHiBVNdc97NKyZctq/fr1c93GnFiy+gq2rDlxrtuQJM2iJBuqatlE97mqXJKkhhjce7hVy5fOdQuSpD2Iwb2Hc5u2JGk8g1uSpIYY3JIkNcTgliSpIQb3AuRhVCWpXQb3AuRhVCWpXQa3JEkN8ZCnC4SHUdWYc9du8n8uNczgXiDOWnHE/RProQ6jaiC04d3rNvt/khrmqnL1xm3nkjQ8l7gXIA+juvC4qUSaPzw7mGZkx0AYYyD0Y4jND55xTtrz7ezsYC5xa0ZmY9t5K4YIWbdHS9qR27ilnrSyjX+oTSUe2EeaHQa3euO2836cu3YTS1Zfcf926LHhvoJxqCX4IWZcnBmQHsjgVm9aWaXbZxgMEbJnrTiCLWtOvH+zw9hwK3/fPg21FqOVGYJW+oRheh3q/bfU60QMbi04fYbBQg/ZodcODKWVtQMtzbgM0etQ77+lXifizmnaoy30g7rs6Zsfhtg5sdWfrrW0I2FLveqBBvs5WJL3AycB26rqqG7cgcBHgCXAFuC0qrp7V7X8OdjCNVQYjOkzDBb6TMYQvyros+bQn4GWPqt7cq9Dvf+WeoWd/xxsyOA+Dvgp8P/GBffbgB9U1Zokq4EDquoNu6plcC9ce3oY6N+19JvzPTm4xluIMy5D1xyqbt815yS4uxdeAlw+Lri/BjynqrYmWQxcXVVH7qrOssMPr/UrVw7Wp/Ys13zjLq697a4HjP+dwx/FMx7/qBnXP+8zmzjzuQt3ybgl13zjrl7+5zsa4jPQSs2h6rZSc6i6fdfMOefsMQdgObiqtgJ04X3QZA9McgZwBsBhhx0Gb3nL7HSoOfeM7gLDzBnXsZtgAa/Sbskzdv2Q3TLEZ+C8n1/BmW9p47PaSq9Dvf8mej3nnEnvmu0l7h9W1f7j7r+7qg7YVR1XlS9crtZWK1rax6GlXheqna0qn+2fg93ZrSKnu942y6+vxuzpe1VLY1oKwpZ61QPNdnBfBoxtrF4JXDrLr6/GOIGRpF83WHAn+TBwDXBkktuTvBxYA6xIshlY0d2WJElTNNjOaVV1+iR3LR/qNSVJmu885KkkSQ0xuCVJaojBLUlSQwxuSZIaYnBLktQQg1uSpIYY3JIkNcTgliSpIQa3JEkNMbglSWqIwS1JUkMMbkmSGmJwS5LUEINbkqSGGNySJDXE4JYkqSEGtyRJDTG4JUlqiMEtSVJDDG5JkhpicEuS1BCDW5KkhhjckiQ1xOCWJKkhBrckSQ0xuCVJaojBLUlSQwxuSZIaYnBLktQQg1uSpIYY3JIkNcTgliSpIQa3JEkNMbglSWqIwS1JUkPmJLiTnJDka0m+nmT1XPQgSVKLZj24k+wF/B/g+cATgdOTPHG2+5AkqUVzscT9NODrVfXNqroH+HvglDnoQ5Kk5uw9B6/5WOA7427fDvzOjg9KcgZwRnfzp0m+1mMPjwa+32O9Ieu2UnOouq3UHKpuKzWHqrvQe/X9L9z3/xuT3TEXwZ0JxtUDRlSdD5w/SAPJ+qpa1kLdVmoOVbeVmkPVbaXmUHUXeq++/4X9/iczF6vKbwcOHXf7EOCOOehDkqTmzEVwfxVYmuTwJA8GXgJcNgd9SJLUnFlfVV5V9yZ5FXAlsBfw/qq6eZbbGGQV/EB1W6k5VN1Wag5Vt5WaQ9Vd6L36/ofRUq8PkKoHbF6WJEl7KI+cJklSQwxuSZIasqCCO8n7k2xLsrHHmocm+VySW5LcnGRVT3X3TfKVJDd0dc/po25Xe68k/5zk8p7qbUlyU5Lrk6zvo2ZXd/8kH0tya/f3fcYM6x3Z9Th2+XGSM3vo86zuf7QxyYeT7DvTml3dVV3Nm3e3z4k+80kOTLI2yebu+oCe6p7a9Xpfkmn/LGaSmm/v/v83JvlEkv17qPnnXb3rk1yV5DF99DruvtclqSSP7qHXtyT57rjP7Av66DPJq7vDTt+c5G3TqbmTXj8yrs8tSa7voebRSb48Nm1J8rQeaj45yTXdNOtTSR4xzZoTTvP7+F5NWVUtmAtwHPBUYGOPNRcDT+2GHw5sAp7YQ90AD+uG9wGuBZ7eU8+vBT4EXN5TvS3Aowf4f10A/HE3/GBg/x5r7wV8D/iNGdZ5LHAb8JDu9sXAH/XQ31HARuChjHYi/QywdDfqPOAzD7wNWN0Nrwbe2lPd3wSOBK4GlvVU83nA3t3wW6fb6yQ1HzFu+DXA3/TRazf+UEY73n5rut+JSXp9C/C6GXyOJqr5u93n6T90tw/q6/2Pu/+dwJt76PUq4Pnd8AuAq3uo+VXg2d3wy4A/n2bNCaf5fXyvpnpZUEvcVfUF4Ac919xaVdd1wz8BbmE0MZ9p3aqqn3Y39+kuM96TMMkhwInAe2daa0jdXPBxwPsAquqeqvphjy+xHPhGVX2rh1p7Aw9JsjejoO3juAS/CXy5qn5WVfcCnwdeNN0ik3zmT2E0U0R3/cI+6lbVLVW120c4nKTmVd37B/gyo+M+zLTmj8fd3I/d+F7tZFpyLvD6nmvutklqvgJYU1W/6B6zrae6ACQJcBrw4R5qFjC2RPxIpvndmqTmkcAXuuG1wIunWXOyaf6Mv1dTtaCCe2hJlgBPYbR03Ee9vbrVTduAtVXVR93zGE1Y7uuh1pgCrkqyIaND1fbhccB24APdav33Jtmvp9owOn7AtCYsE6mq7wLvAL4NbAV+VFVXzbQuo6Xt45I8KslDGS1tHLqL50zVwVW1FUYTIeCgnuoO7WXAp/solOQvknwH+EPgzT3VPBn4blXd0Ee9cV7Vrdp/f0+rX48AnpXk2iSfT/LbPdQc71nAnVW1uYdaZwJv7/5X7wDe2EPNjcDJ3fCpzOB7tcM0f9a+VwZ3T5I8DPg4cOYOc/S7rap+VVVHM1rKeFqSo2bY40nAtqra0Ed/4xxbVU9ldMa3P01yXA8192a0ius9VfUU4F8ZrX6asYwO/HMy8NEeah3AaE77cOAxwH5JXjrTulV1C6NVw2uBfwRuAO7d6ZPmsSRnM3r/F/VRr6rOrqpDu3qvmmm9bubqbHqaCRjnPcDjgaMZzRi+s4eaewMHAE8H/gdwcbeU3JfT6WGmuPMK4Kzuf3UW3Rq4GXoZo+nUBkaruu/ZnSJDTPOnyuDuQZJ9GP0DL6qqS/qu360ivho4YYaljgVOTrKF0VnZjk9y4QxrUlV3dNfbgE8wOgPcTN0O3D5uLcPHGAV5H54PXFdVd/ZQ67nAbVW1vap+CVwC/Oce6lJV76uqp1bVcYxW9/WxBANwZ5LFAN31tFeVzqYkK4GTgD+sbgNijz7ENFeVTuLxjGbebui+X4cA1yX5jzMpWlV3djPw9wF/R3/frUu6zXFfYbT2bVo70k2m21z0e8BH+qgHrGT0nYLRjPaM339V3VpVz6uqYxjNYHxjujUmmebP2vfK4J6hbk71fcAtVfWuHusuGtuDNslDGAXErTOpWVVvrKpDqmoJo1XFn62qGS0dJtkvycPHhhntTDTjvfar6nvAd5Ic2Y1aDvzLTOt2+lwi+Dbw9CQP7T4Lyxlt85qxJAd114cxmhj21fNljCaIdNeX9lS3d0lOAN4AnFxVP+up5tJxN09mht8rgKq6qaoOqqol3ffrdkY7MH1vJnXHgqDzInr4bgGfBI7v6h/BaMfPvs5q9Vzg1qq6vad6dwDP7oaPp4eZ13HfqwcBbwL+ZprPn2yaP3vfq6H2etsTL4wmfFuBXzL6Yr28h5rPZLSN90bg+u7ygh7qPgn4567uRqa5h+YU6j+HHvYqZ7Qt+obucjNwdo89Hg2s7/4GnwQO6KHmQ4G7gEf22Oc5jCb+G4EP0u2t20Pdf2I0s3IDsHw3azzgMw88CljHaCK4Djiwp7ov6oZ/AdwJXNlDza8zOg3w2HdrWnuAT1Lz493/6kbgU8Bj+3j/O9y/henvVT5Rrx8Ebup6vQxY3EPNBwMXdn+D64Dj+3r/wP8F/qTHz+ozgQ3dd+Ba4Jgeaq5itCf4JmAN3RFEp1Fzwml+H9+rqV485KkkSQ1xVbkkSQ0xuCVJaojBLUlSQwxuSZIaYnBLktQQg1uSpIYY3NI8l2Svue5BUn8MbqlhSZZkdL7qC7oTUXysO4rbliRvTvJF4NQkp3fnH96Y5K3jnn9CkusyOu/7um7cft0JLb7aneDllG78b2V0jvjru9da2j32iu75G5P8QffYY7oTWGxIcuW4Q0G+Jsm/dM//+zn4k0nN23uuG5A0Y0cyOnLVl5K8H3hlN/7nVfXMJI9hdErMY4C7GZ3J7YXAlxgd//q4qrotyYHd885mdDjcl3WH3f1Kks8AfwK8u6ou6k7UshejI0bdUVUnAiR5ZHcc578GTqmq7V2Y/wWjkzusBg6vql+MHdJX0vQY3FL7vlNVX+qGLwRe0w2Pnejht4Grq2o7QJKLGJ3r/FfAF6rqNoCqGjtv8fMYnYzmdd3tfYHDgGuAszM6p/slVbU5yU3AO7ql+Mur6p+6s9gdBaztTjq1F6PDTsLoMJEXJfkko8PYSpomg1tq347HLR67/a/d9WSnbMwEzx0b/+Kq+toO429Jci1wInBlkj+uqs8mOYbRkvdfJrmK0Rnibq6qZ0xQ+0RGMw0nA/8ryW9V1YI9Xam0O9zGLbXvsCRjIXk68MUd7r8WeHaSR3c7qp0OfJ7REvSzkxwOMG5V+ZXAq8fO0ZzkKd3144BvVtVfMTrhxZO61fA/q6oLgXcwOvXq14BFYz0l2afbPv4g4NCq+hzwemB/4GF9/zGk+c4lbql9twArk/wtozMTvQd49didVbU1yRuBzzFamv6HqroUIMkZwCVdqG4DVgB/DpwH3NiF9xZG58P+A+ClSX4JfA/4M0ar4d+e5D5GZ2B6RVXdk+T3gb9K8khG05nzGJ2N6cJuXIBza3SueUnT4NnBpIYlWcJo2/JRc9yKpFniqnJJkhriErckSQ1xiVuSpIYY3JIkNcTgliSpIQa3JEkNMbglSWrI/wcDPgpEiiid2wAAAABJRU5ErkJggg==\n", |
380 | 377 | "text/plain": [
|
381 |
| - "<Figure size 432x288 with 1 Axes>" |
| 378 | + "<Figure size 576x288 with 1 Axes>" |
382 | 379 | ]
|
383 | 380 | },
|
384 | 381 | "metadata": {
|
|
388 | 385 | }
|
389 | 386 | ],
|
390 | 387 | "source": [
|
| 388 | + "plt.figure(figsize=(8, 4))\n", |
391 | 389 | "plt.plot('procs', 'median', data=df, marker='+', linestyle=\"None\")\n",
|
| 390 | + "plt.axhline(min(median_times), color='red', linewidth=.5)\n", |
392 | 391 | "plt.ylim([0, 50])\n",
|
393 | 392 | "plt.ylabel('time (s)')\n",
|
394 | 393 | "plt.xlabel('processes')\n",
|
395 |
| - "plt.axhline(min(median_times), color='red')" |
| 394 | + "plt.xticks([i for i in range(1, 21)])\n", |
| 395 | + "print()" |
396 | 396 | ]
|
397 | 397 | },
|
398 | 398 | {
|
399 | 399 | "cell_type": "markdown",
|
400 | 400 | "metadata": {},
|
401 | 401 | "source": [
|
402 |
| - "### Dúvidas\n", |
| 402 | + "Agradeço a esses generosos tuiteiros pela ajuda pra fazer esse gráfico:\n", |
403 | 403 | "\n",
|
404 |
| - "1. O eixo x são valores discretos: a quantidade de processos em uso. Como faço para que o eixo x seja marcado com os números de 1 a 20, um por um (20 ticks)? \n", |
405 |
| - "2. Como alargar o retângulo do gráfico uns 50%, para que os números no eixo x não fiquem muito apertados?\n", |
406 |
| - "3. ~~Como exibir uma linha horizontal na altura do valor mínimo, que é 10.39?~~ feito: [fonte](https://twitter.com/hcpyz/status/1355310776916062211)\n" |
| 404 | + "* [@hcpyz](https://twitter.com/hcpyz/status/1355310776916062211)\n", |
| 405 | + "* [@guilhrme_alves](https://twitter.com/guilhrme_alves/status/1355314798796414982)" |
407 | 406 | ]
|
408 | 407 | },
|
409 | 408 | {
|
|
0 commit comments